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PREFACE.

THIS Text-book is based upon a course of a hundred lectures

delivered at His Exalted Highness The Nizam's College, Hydera-

b&d, to students working for the B.A. Degree Examination of

the University of Madras.

The order followed is the reverse of that adopted in most

Text-books dealing with the Properties of Matter.

Commencing with the First Law of Thermodynamics, an

extension is made to the more general Principle of the Con-

servation of Energy, and hence to the metaphysical conception
of the Identity of Energy throughout its various transformations.

Since our knowledge of mechanical systems is, in general,

more complete than that relating to other modes of energy, a

logical sequence leads to the study of the Kinetic Theory of

Matter, the consequences of which can be most fully developed
when applied to matter in the gaseous state.

The Properties of Gases are, therefore, next investigated

from the standpoint of the Kinetic Theory, and the continuity
of the gaseous and liquid states supplies the natural transition to

a detailed study of liquids. The Properties of Solids are dealt

with last.

It is thought that this method of treatment is simpler, and

follows a more natural sequ&ice than is attained by commencing
with a study of the Properties of Matter in the solid state

and proceeding, in the reverse order, to a consideration of

Liquids and Gases. Particular emphasis has been laid upon
the experimental treatment of the subject, without which most

of the time spent in the study of any branch of Physical Science

is wasted. Use has been made, whenever possible, of original



vi PEEFACE

papers. In addition I wish to acknowledge my indebtedness

to the following works: Jean's Dynamical Theory of Gases,

Preston's Heat, Meyer's Kinetic Theory of Gases, Poynting and

Thomson's Heat, and
Properties of Matter, Travers' Study of

Gases, Edser's Heat, and General Physics, Young's Stoichio-

metry, Lewis' Physical Chemistry, Findlay's Phase Rule,

Darling's Liquid Drops and Globules, Boys' Soap-bubbles.

I am also indebted to Messrs. F. K Becker & Co., Hatton

Wall, London, E.G. 1, for their courtesy in lending a number

of blocks for printing illustrations the remaining diagrams
have been reproduced from original drawings.

My best thanks are also due to my sister, Miss Veronica

McEwen, for kindly revising the proofs.

B. C. McEWEN.
H.E.H. THE NIZAM'S COLLEGE,

HYDERAB/D, DECCAN, INDIA,

November 80, 1922.
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CHAPTER I.

THE FIRST LAW OF THERMODYNAMICS.

1. The Nature of Heat. It has been known from antiquity that two

bodies when rubbed together become warmer. Passing over the

earlier theories as to the material or quasi-material nature of heat

which have, now, but an historic interest and recognising heat as

one of the forms of energy, we may express the above-mentioned

phenomenon in scientific language by stating that :

" Whenever work

is done against friction, heat is produced." Further, the researches

which are described in this chapter will be found to show that the

amount of heat produced always bears a fixed ratio to the amount of

work that has been transformed.

2. Mayer's Researches. The rate of exchange between mechanical

energy and heat energy or the " Mechanical equivalent of heat
"

was first determined by J. E. Mayer, of Heilbronn, in 1842, by calcu-

lation from the specific heats of air at constant pressure and constant

volume.

Experiment shows that the specific heat of any gas at constant

pressure exceeds its specific heat at constant volume. On the as-

sumption that the excess of heat energy required in the former case is

entirely used in doing the work of pushing out the surrounding atmos-

phere during expansion, and that none is absorbed in doing work

against internal cohesive forces, we can calculate the mechanical

equivalent of heat by equating the external work done during the ex-

pansion to the difference between the two specific heats. Now the

molecular volume of any gas that is, the volume occupied by the

molecular weight of the gas expressed in grammes is, approximately,

22,380 c.cs. at C. and 76 cms.

If the coefficient of expansion of the gas at constant pressure be

taken at the mean value of 0-003665 (Eegnault), then, on raising the

temperature to 1 C. the molecular volume will become

22,380(1 + 0-003665) c.cs., i.e. 22,462 c.cs.

Hence the expansion is 82 c.cs.

Since a pressure of 76 cms. of mercury is equal to 76 x 13-596

x 981 dynes per sq. cm. (i.e. 1,013,800 dynes/cm.
2
),

the work done

bv the gas in expanding against this pressure = 82 x 1,013,800 ergs* 8 F * *
- 8-31 x l%rgs.

1
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Applying this result to air, we may, according to Witkowski, take

the specific heat of air at constant pressure, C^>, a% 0*2372. This

number expresses the heat in calories required to raise 1 gm. of air

1 C. at constant pressure (vide Cap. III.). The specific heat of air at

constant volume, Cv which also refers to unit mass of the air may
be determined from a knowledge of the ratio of the specific heats, or

directly by means of Joly's steam calorimeter (vide Cap. III.). We
shall take the value Cv = 0*1715 obtained by Joly's direct determination.

Multiplying these results by 28'88 the molecular weight of air

we obtain the values of the molecular heats at constant pressure, Cm p ,

and constant volume, Cwy respectively.

Thus Cm 9
= 0*2372 x 28*88 = 6*85 cals.

and Cwv = 0*1715 x 28*88 = 4*95 cals.

Therefore the difference between the molecular heats A = 1*90 cals.

Or Gmj> - Cwv = 1'90 cals.

Now this quantity of heat is equivalent to the external work done by
the molecular volume of air during its expansion, i.e. to 8*31 x 107

ergs.

Therefore the mechanical equivalent of 1 calorie = -r-^. ergsi*yu
== 4*2 x 10T ergs.

The actual value found by Mayer, making use of the data available in

1842, was 36,500 cm.-gms., which corresponds to 3*6 x 107
ergs.

It is clear, as already stated, that this method of calculating the

mechanical equivalent of heat is only permissible on the assumption
that no energy is absorbed in doing work against internal molecular

cohesion, or, at any rate, on the assumption that the quantity of

energy so absorbed is negligibly small. In 1845 Mayer published a

second paper in which he quoted an experiment by Gay-Lussac to

justify this assumption. Gay-Lussac, in this experiment, allowed air

at atmospheric pressure to expand from a globe into another equal
globe which had previously been exhausted, and he found that the

cooling produced in the first globe was equal to the heating effect

observed in the second globe. Mayer pointed out that the cooling in

the first vessel was due to the work done by the remaining gas in

compressingthe gas into the second vessel, and that the heating produced
in the second vessel was due to the work done on the gas that had
entered during its subsequent compression. Since the heat gained in

the second vessel equalled the heat lost in the first, Mayer concluded
that the mere expansion of air, without doing external work, does not

produce any change of temperature and, consequently, that no heat

energy is absorbed during the expansion in doing work against internal

cohesive forces.

The later researches of Joule and Thomson (Lord Kelvin), on the

passage of a gas through a porous plug have, however, shown that

some work is done against internal forces in the separation of the
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molecules, or that there is a change in the intrinsic energy of a gas on
mere expansiqp, and that, therefore, Mayer's assumption is only an

approximation (vide Appendix A). But the magnitude of the cohesive
forces in a gas at the ordinary density is so small that the accuracy of

the calculation of the mechanical equivalent of heat from the external

work done by the gas during expansion at atmospheric pressure is not

sensibly affected. When a gas, however, is subjected to the combined
influence of high pressure and low temperature it must be noted that
a large proportion of the molecules are brought close together and
that, consequently, considerable cohesive forces ^will be exerted in

which case Mayer's assumption ceases to be justified. Under such

conditions, if expansion occur, heat energy must be absorbed to do the
work of separating the molecules against their cohesive forces, and, in

general, a marked cooling of the gas results.

3. Joule's Researches. Dr. Joule's researches on the rate of ex-

change between mechanical energy and heat energy were commenced
in 1840, and in 1843 he published an account of his first experiments
on the mechanical equivalent of heat. It should be noted that

Mayer's second paper, in which he justified his method of calculation
from the specific heats of air, did not appear until 1845, i.e. two years
later.

In 1844 Joule announced some further results, obtained from ex-

periments on the compression of air, in which he compared the heat

gained or lost with the work done on or by the air when compressed
or allowed to expand. Since the validity of these results depended
upon the absence of cohesive forces, Joule carried out an investigation
similar in many respects to that of Gay-Lussac's. In this investigation
air was compressed to several atmospheres in a thin copper vessel,
which was connected to a similar copper vessel. The latter vessel

was exhausted, and both vessels were placed in water in the same
calorimeter. When a steady temperature had been attained, a stop-
cock between the two vessels was opened, and, on stirring up the
water in the calorimeter, it was found that practically no change of

temperature had occurred as a result of the expansion. Joule also

found that if the two vessels were placed in separate calorimeters the

cooling produced in the first calorimeter was approximately equal to

the heating produced in the second calorimeter.

Owing to the large capacity for heat of the calorimeters and
vessels, compared with that of the enclosed air, these experiments were
not susceptible of very great accuracy.

In 1845 Joule first described a method by which water in a calori-

meter was churned up the mechanical energy being derived from

falling weights and, subsequently, he greatly improved this direct

method of ascertaining the mechanical equivalent of heat.

In the earlier experiments, a weighed quantity of water was placed
in a specially constructed copper calorimeter, A (Fig. I.). This



THE PBOPEKTIES OF MATTER

calorimeter was fitted inside with fixed radial vanes or baffles, and was

closed with a lid provided with two openings* Through the central

opening in the lid passed a spindle to which were attached paddles of

such a size that they could just pass through openings cut in the

fixed vanes. The object of the fixed radial vanes was to prevent the

circulation of the water as a whole the water being merely churned

up by the paddles, and its kinetic energy converted (through viscosity),

into heat energy. The second opening in the lid, not shown in the

figure, served for the insertion of a very sensitive thermometer. The

spindle was connected to a drum, B,
from which strings passed horizon-

tally to the wheels of two equal
" wheels and axles," and equal masses

were suspended by strings from the

axles. The temperature of the water

in A having been noted, the masses

were released and the paddles thereby
set in motion. On the masses reach-

ing the floor, the drum, B, was detached

from the spindle, by removing the pin,

C, and the. masses were again wound

up, without rotating the paddles, by
turning the handle at the top of the

drum. The pin, C, was then re-inserted

and the masses allowed to fall again,

causing the paddles to rotate. This

was repeated twenty times in succes-

sion in each experiment, and the rise

in temperature of the water and the

calorimeter noted. The total heat

generated was then equated to the

total mechanical energy lost by the

falling masses, after making the neces-

sary corrections for (i)
the terminal

velocity of the masses on reaching
the floor ; (ii)

friction in the systems
of the falling masses; (iii)

radiation

from the calorimeter; (iv) elasticity
I4 Joule's Calorimeter.

of the strings,
1 and (v) the loss of energy by the sound vibrations given

out by the apparatus. The magnitude of these corrections was de-

termined by means of subsidiary experiments. Joule thus found that

772 ft.-lbs. at Manchester would, on being transformed into heat, raise

the temperature of 1 Ib. of water from 60 F. to 61 F.

In later determinations of the mechanical equivalent of heat Joule

somewhat modified the details of the above method, the paddles being

1 The strings, being initially stretched, contracted when the masses reached the

ground and thus produced a further rotation of the paddles.
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rotated at a uniform rate by means of a handle, while the calorimeter

was preventedt from rotating by means of an applied couple. This

couple was, of course, equal and opposite to that exerted by the

paddles. Hence the total work transformed into heat = the moment

of the applied couple (G) x STT x n, where n = the number of com-

plete revolutions.

For the work, w, done by the couple during a very small rotation,

30, is given by

w 2F5 = 2FaS<9 = G . W (Fig. II.).

Therefore, the total work, W, done by the couple during n revolu-

tions is given by

W =
f
G . d6, and, if the couple be constant

= G fW = G dO = G x 27r x n.

CL
The value finally obtained by Joule was

that 772-5 ft.-lbs. at Manchester were equi-
valent to the heat required to raise the

temperature of 1 Ib. of water from 60 F.

to 61 F. Expressed in C.G.S. units this

becomes 4'16 x 107
ergs per gm. of water

per 1 C. at 15 C. Subsequent determina-

tions of the mechanical equivalent of heat

have been made by various investigators,
with results in substantial agreement with

the value obtained by Dr. Joule. A number
of the more important of these determinations will now be briefly

considered.

4. Rowland's Investigation. Professor Eowland of Baltimore

repeated Joule's experiment on a larger scale, employing a steam

engine as his source of mechanical energy, and obtaining a much

greater rise in temperature during each determination than had been

secured by Joule. The temperatures were read on a mercury ther-

mometer which was standardised by comparison with an air thermo-

meter.

Eowland found that the amount of mechanical energy which must

be transformed in order to raise the temperature of 1 gm. of water 1 C.

varied appreciably at different temperatures indicating a variation

in the specific heat of water with temperature with a minimum
value at 29 C. He confirmed this result by means of calorimetric

determinations.
The value for the mechanical equivalent obtained by Eowland was

4'19 x 107
ergs per gm. of water per 1 C. at 15 C.
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5. The Investigation of Reynolds and Morby. Keynolds and

Morby, using 100 horse-power engine with a hydraulicferake, obtained
EL value of 4*18 x 10 7

ergs per mean calorie. In their determinations
ice-cold water was passed into the brake and the rate of flow so

adjusted that the issuing water was not far short of the boiling-point.

By measuring the rise in temperature and the quantity of water flow-

ing through in a given time, the amount of heat generated could be

calculated, and this was equated to the work done in that time.

6. Griffiths' Investigation. Griffiths, in 1883, employed an elec-

trical method of generating heat for the determination of the rate of

exchange between mechanical energy and heat energy.
If the potential of two points in an electric circuit be V

x
and V2

respectively, the work done in transferring unit quantity of electricity
from one point to the other is equal to V

1
- V

2
.

If W represents the work done when a quantity of electricity, Q,
is transferred, we have the equation W

?I
- V, -

Q
-

' W = (Vr
- V

S)Q.

Now, if the strength of a current G be constant, it is represented by
the equation

r Qc = -.

where Q is the quantity of electricity which traverses any section of

the circuit in t seconds.

Hence
W -

(Vj
- Va) . C . t.

Further, if the energy of an electric current is not utilised in perform-
ing mechanical work, or in chemical action within the circuit, it will

appear as heat in the conductor.

/. J.H. =s W = (Vx
- V2)

. C . t, where J is the mechanical equiva-
lent of heat. It should be noted that if the difference of potential be

measured in volts, the current strength in amperes, and the time in

seconds, then since 1 volt = 108 C.G.S. electromagnetic units, and
1 amp. = 10 - 1 C.G.S. electromagnetic units W must be expressed
in Joules ; (1 Joule = 10r

ergs).
Since in accordance with Ohm's Law, Vx

- V
2
= C . E, where E

is the resistance of a conductor, Vx
- Y

2
the difference of potential

between its ends, and C the strength of the resultant current, we may
write

(V _ V \2

J.H. - W - (Vx
- V

2).C.* = C2.E.* = v *

B
2)

.t.

If, as before, V, V2 be measured in volts, and C in amps., E must be
measured in ohms; (1 ohm = 109 C.G.S. electromagnetic units).
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In Griffiths'*experiment a coil of resistance wire, attached to heavy
copper leads, jps imrnersed in water in a calorimeter. A steady
current was passed through the coil, and the difference of potential
between its ends was determined by comparison with standard Clark's

cells. The resistance of the coil being known, it was only necessary
to measure the heat developed in any given time to obtain J from the

(V _ y \a

equation J.H. = v l

^ . t.

Griffiths thus found 4*2 x 107
ergs per gm. of water at 15 C. per

1 of the hydrogen scale.

It was observed that a small amount of electrolysis of the water
in the calorimeter occurred, but the amount of energy so absorbed
was found to be negligible provided that the resistance, R, of the im-
mersed spiral and the potential difference, Vl

- V2 , between its ends
were not too great. To obtain accordant results it was found neces-

sary to keep the water in the calorimeter very thoroughly stirred,

making due allowance for the heat developed by the stirring alone.

The amount of heat so developed was ascertained in a separate

investigation. Very special precautions were also taken to regulate
the temperature, so that accurate correction could be made for the
loss of heat by radiation during any experiment.

7. The Investigation of Schuster and Gannon. Schuster and
Gannon also employed an electrical method of heating, and determined
the mechanical equivalent of heat by passing a current through a coil

in a calorimeter, and using the relation J.H. = (Vx
- V

2)
. C . t.

The difference of potential, Vj
- V

2 ,
between the ends of the

resistance coil was determined by comparison with standard Clark's

cells, and the quantity C . t was directly obtained from the known
electro-chemical equivalent of silver by passing the current through
a silver voltameter.

Schuster and Gannon's resulting value was 4*19 x 10r
ergs per

gm. of water per 1 C. of the nitrogen thermometer at 15 C.

8. The Investigation of Callendar and Barnes. More recently
Callendar and Barnes have employed a modification of the electrical

heating method. In their determinations water was allowed to flow

steadily through a fine glass tube, and was heated by means of a

platinum wire conveying an electric current. The water entered

the tube at one constant temperature, and flowed out at another
constant temperature, the difference in temperature being measured

by means of a pair of differential platinum thermometers. By using
a fine tube and employing a suitable rate of flow for the water it was
found that no stirring was necessary. The heat generated in calories

was obtained by multiplying the mass of water which passed through
the tube by the difference in temperature of the water on entering and

flowing out, and by the mean specific heat of water between these two
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temperatures. This product when multiplied by J,'and divided by
the time of flow in seconds, gave the rate pf generation of heat in

Joules per second, and this was equated to the electrical energy trans-

formed in unit time, viz. (Vl
- V

2)C. The difference of potential,

Vj
- V

2 ,
between the ends of the resistance wire was determined in

terms of a Clark cell by means of a potentiometer, which was also

used to measure the current strength C, by observing the difference
pf

potential on a standard resistance which was included in the circuit.

The usual correction for the loss of heat by radiation was applied
when measuring the total heat generated. The value of the mechanical

equivalent of heat in Joules per calorie was thus obtained ; expressed
in ergs per gm. of water per 1 C. of the hydrogen thermometer, at

15 C., this value was found to be 4-19 x 107
.

It should be noted that the results of all the electrical methods

depend upon the value assumed for the E.M.F. of the Clark cell.

9. Hirn's Investigation. A determination involving the reverse

process, viz. the transformation of heat into work has also been

carried out by Hirn. From observations of the work done by a

steam-engine, and the heat energy used up in performing it, he

obtained a fair value for the mechanical equivalent of heat. The

method is not susceptible, however, of any great accuracy.

10. Experimental Determination of the Mechanical Equivalent of

Heat. Two convenient methods by which the mechanical equivalent
of heat may be rapidly estimated in the laboratory will now be

described.

Experiment I. Determination of the Mechanical Equivalent of Heat

by the Fall of Mercury in a Tube. Take the temperature of some

mercury in a small beaker. About 50 c.cs. of mercury should be

employed. Pour the mercury into a glass tube, about 1 metre in

length, and 3 to 4 cms. internal diameter, one end of the tube being
closed. Quickly cork up the other opening with a rubber cork, and

invert the tube repeatedly, holding the tube vertically at each inversion,

and resting its lower end on a table. The mercury will remain at the

end of the tube while it is being rotated, but will fall as soon as the

tube is held stationary in a vertical position. The rotation should be

repeated forty or fifty times to secure an adequate rise in temperature.
Pour out the mercury quickly into the beaker and again observe the

temperature.
If m the mass of mercury, s the specific heat of mercury, and
= the rise in temperature, and if it be assumed that no heat has

been lost, then

Heat generated, H, = m x s x 80 calories.

Also, if I the vertical distance through which the centre of gravity



THE FIRST LAW OF THERMODYNAMICS S

of the mercury fells at each inversion of the tube, and n the number

of times the fal^is repealed, then

Kinetic energy transformed, W,wx^xZxn ergs.

Hence, the mechanical equivalent of heat, J, can now be obtained by

employing the relation

W = J.H.

W
__
m . g .1 . n

__ g . I . n
'' H

"
m.s.M

"
'TT65"

'

It should be noted that I is less than the length between the end of

the tube and the inner surface of the cork by an amount equal to the

depth of the mercury when measured in the tube.

Although the value of J is independent of the mass, m, of the

mercury, yet a moderately large quantity of mercury should be em-

ployed so that the heat used in warming the tube and beaker may be

very small in comparison with that used in warming the mercury.
The determination described above, although possessing the advant-

age of simplicity, is not susceptible of any great accuracy.
A much more accurate method of determining the value of the

mechanical equivalent is described in the following experiment :

Experiment II. Determination of the Mechanical Equivalent of

Heat by means of Calendar's Apparatus. A general view of Professor

Calendar's apparatus is given in Fig. III. It comprises a thin

cylindrical brass calorimeter, C, mounted so as to rotate about a'

horizontal axis, B, and containing a known weight of water. A mass,

F, of several kilogrammes, is suspended by means of two parallel and

highly flexible silk ribbons which pass round the curved surface of

the calorimeter. The ends of the silk ribbons are connected to an

ebonite cross-piece, to the centre of which another silk ribbon is also

attached. The latter silk ribbon also passes round the curved surface

of the calorimeter, lying between the other ribbons, the whole thus

forming a silk friction belt which makes one and a half complete turns

round the calorimeter. A framework, carrying a load, E, of a few

hundred grammes, is fastened to the free end of the single silk ribbon,

and this framework is also attached to a light spring balance, D, the

upper end of the spring being secured to the rigid frame, P, of the

apparatus. Any extension of the spring will thus act in opposition to

the weight of the framework and its load.

On rotating the calorimeter at a moderate speed, by means of the

electric motor, M, frictional forces are called into play between the

calorimeter and the silk ribbons, and the direction of rotation is made
such that these frictional forces tend to support the weight of the

larger mass, F, attached to the two silk ribbons.

The weights are adjusted to suit approximately the friction of the
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belt, and the final adjustment is effected automatically by means of

the spring balance. For if at any instant t^e tensiqn in the silk belt

were too great, and with it the frictional forces called into play, the

effect would be to raise the heavier mass and lower the lighter mass,
and this would result in more of the weight of lighter mass being

supported by the spring balance, with a consequent slackening of the

tension in the belt. A revolution counter, N, records the number of

turns made by the calorimeter.

Let n be the number of revolutions of the calorimeter in a given

experiment, WA and w2 the larger and smaller masses (including their

respective connecting hook and framework), w3
the mean reading of

the spring balance, and d the diameter of the calorimeter.

FIG. III. Calendar's Apparatus.

Then, the mechanical energy, W, transformed into heat is given
by the equation

W (mi
- m.2 + w3)

x g x ird x n.

The rise of temperature of the water in the calorimeter is read by
means of a sensitive thermometer, T, inserted through a central open-

ing, as shown in the figure, and bent so that its bulb lies near the

curved periphery of the calorimeter. Since the thermometer is

stationary, the rotation of the calorimeter keeps the water thoroughly
stirred. The heat generated, H, is equal to the product of the mass
of water plus the water equivalent of the brass calorimeter (m + g),

the rise in temperature, 0, and the mean Specific heat of water, s,

between the initial and final temperatures.
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Thus, H = (m + g) x 80 x s.

J = ~ + ^h) x
ff
x TT^ x n

H (m + g) x $0 x s
'

Loss of heat due to radiation and conduction can be eliminated by
arranging that the initial temperature of the water in the calorimeter

is as much below the room temperature as the final temperature is

above it.

If the specific heat of water be treated as constant, a number of

experiments may be carried out concurrently, the temperature indi-

cated by the thermometer being read after every 100 or 200 revolutions

of the calorimeter. It will be found that the rise in temperature for

a given number of revolutions is approximately constant. Under
these conditions, however, a correction for loss of heat must be applied
to each experiment.

11. The First Law of Thermodynamics. It is clear from the in-

vestigations which have been described that, when work is expended
in the generation of heat, there is a constant ratio between ihe work
transformed and the heat generated. The constancy of this ratio is

known as the First Law of Thermodynamics.
The First Law of Thermodynamics may be expressed, algebrai-

cally, by means of the equationW = J.H., which states that J units of

work are equivalent to one unit of heat.

Taking the unit of work as 1 erg., and the unit of heat as that re-

quired to raise 1 gm. of water 1 C. of the hydrogen scale, at 15 C.,

J may be taken as having the value 4-19 x 107
.

It should be noted that it has been tacitly assumed that all the

work expended was transformed into heat in the calorimeter, after

making due allowance for the loss of mechanical energy in certain

obvious ways, such as from the friction of pulleys, or friction wheels ;

the terminal velocity of falling masses ; the radiation of sound waves.

It is probable that other phenomena may also occur such as the

electrification of the two bodies rubbed together but the constancy
of the value found for J by different observers using varying methods

may be taken to indicate that the quantity of work expended in the

production of such phenomena is practically negligible.

12. The Principle of the Conservation of Energy. All known forms
of energy, other than kinetic energy and heat energy, can be measured
on their transformation into one of these two latter forms and there

is sufficient evidence that the rate of transformation in each particular
case is also constant. Thus we are led to regard the First Law of

Thermodynamics as merely a particular case of a wider generalisation
known as the Principle of the Conservation of Energy. This principle

may be stated, formally, as follows :
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The total amount of energy in the universe is invariable through-
out all its changing modes of manifestation.*

When transformation of one form into some other form, or forms,

occurs, such transformation always takes place according to rates of

exchange which are quantitatively constant in each case.

13. The Identity of Energy. It will be observed that the preced-

ing statement of the principle of the conservation of energy involves

an assumption as to the "
Identity of Energy

"
throughout its various

manifestations. It is usual to make this metaphysical assumption,
and to regard the exchange of one form of energy for another not

merely as a "replacement," but as a true "transformation" of one
identical thing energy which only differs in the manner in which
it affects our senses.



CHAPTER II.

THE KINETIC THEORY OF MATTER, AND ITS APPLICATION TO THE
GASEOUS STATE.

11 The Kinetic Theory of Matter. Our knowledge of the energy
transactions in mechanical systems, where only changes of kinetic and

potential energy need be considered, is, in general, more complete
than that relating to systems where the transformation of other forms
of energy is involved.

Consequently, the assumption as to the "identity of energy'*

throughout its various modes of manifestation naturally leads to an

attempt to express the various forms of energy in mechanical terms

and, further, since the material universe is only made known to our
senses through energy transactions, we may logically attempt an ex-

planation of the varied properties of matter from a mechanical stand-

point.
Such an attempt is, in fact, the basis of the Kinetic Theory of

Matter, and, in applying this theory, we adopt the hypothesis that all

matter is possessed of an atomic or molecular structure. This idea of

the atomic structure of matter is to be found in the writings of the

Greek philosophers, and furnishes a simple explanation of such varied

phenomena as, for example, compression, diffusion, evaporation, and
solution : phenomena which are incapable of explanation if it be as-

sumed that matter is continuous in nature, i.e. without " structure"

and therefore susceptible, theoretically at any rate, of infinite division

without arriving at any ultimate constituent particles.
The atomic hypothesis was revised by John Dalton at the com-

mencement of the nineteenth century, and utilised by him to explain
the quantitative laws of chemical combination. The hypothesis, as

presented by Dalton, may be expressed in the following form :

All compound bodies consist of atoms of elements united with

each other. An atom is an excessively small indivisible particle,

and the atom of each element has its own definite mass.

This hypothesis was further developed by Amadeo Avogadro, who
differentiated between the smallest ultimate particle of an element

capable of entering into chemical combination, and the smallest

particle of an element or a compound which existed independently in

a free state : the former he termed an atom, and the latter a molecule.

In .the case of a compound body the molecule must consist of an

13
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aggregate of two or more atoms. The molecule <3f an elementary
substance may consist of a single atom, or o two or jnore such atoms

grouped together.

Thus, a given mass of an element, or a compound, contains a

definite number of similar molecules, and since work is necessary both

to effect the chemical decomposition of the molecules and also to alter

the distance between them (for work is, in general, necessary to

alter the volume of any substance) it follows that forces exist both

between the atoms in the molecule and between the molecules them-
selves.

Matter may therefore be regarded as possessing a store of energy
in virtue of the kinetic energy possessed by atoms and molecules in

motion, and the potential energy possessed by atoms with regard to

each other, and molecules with regard to each other.

Kecent researches in radioactivity have further demonstrated
that the elementary atom is no longer to be regarded as the ultimate

indivisible particle of matter, but that it is, itself, a store-house of the

kinetic and potential energies of the electrons of which it is composed.
Theories, such as Langmuir's, have also been developed indicating
that the various properties of different substances are merely func-

tions of the arrangements of the electrons within the atoms and
molecules.

The kinetic theory can be most fully developed when applied to

matter in the gaseous state, for whereas in solids and liquids the

molecules are close together and exert considerable cohesive forces

as is shown, for example, by the elasticity of solids, and the resistance

offered by liquids to compression the molecules in a gas are, on the

average, much farther apart, and, consequently, exhibit an almost

entire absence of cohesion. 1

It will be remembered that, as already explained, the validity of

Mayer's method of calculating the mechanical equivalent of heat

depends upon the fact that the magnitude of the cohesive forces in a

gas at the ordinary density is extremely small.

Now, a gas may be regarded as composed of an enormous number
of minute molecules, and the rapidity of gaseous diffusion shows that

these molecules must be in a state of very rapid motion. Conse-

quently, frequent collisions will occur between the molecules but, in

a gas under average conditions of temperature and pressure, the time

occupied by these collisions will only bear a very small ratio to the

time during which the molecules are moving freely about, as, other-

wise, the gas would exhibit marked cohesion. The fact that only a

small time is occupied in the collisions, although the molecules are

1 As an example of the increased distance between the molecules in the case of

a vapour it may be mentioned that 1 c.c. of water at 100 C. forms, approximately,
1700 c.cs. of steam at 100 0. and 76 cms. The molecules of the steam are, there-

fore, about 12 times as far apart as those of the water The fact that water is an
"associated "

liquid has here been neglected.
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very numerous, indicates that the molecules are very small compared
with their distance apart,

15. The Pressure Exerted by a Perfect Gas. In order to make an

elementary mathematical analysis of the problem, we may consider

an ideal or " Perfect
"

gas as composed of an enormous number of

identical spherical molecules, negligibly small compared with their

distance apart perfectly smooth and elastic, and moving about with
extreme rapidity. The collisions of these molecules instantly change
their velocities and directions of motion, the time occupied by such

collisions thus being infinitely small. Consequently a perfect gas
exhibits no cohesion.

The pressure exerted by such a gas on the walls of any containing
vessel is due to the momentum imparted by the molecules when they
collide with the walls.

Since we have an enormous number of very minute molecules

moving about extremely rapidly in all directions, the average
momentum imparted in unit time to any sensible area of the wall

may be regarded as constant, and the pressure exerted will, therefore,
be uniform. In such a perfect gas the momentum imparted per
second to unit area of the wall must vary as the number of molecules

colliding per second, and, consequently, varies directly as the gaseous

density. The pressure of a perfect gas will thus be proportional to

its density, and, therefore, reciprocally proportional to its volume.
Consider a small hollow cube, the interior of which measures

I cms. in each direction, and let this cube be filled with the ideal gas.
Consider a molecule of the ideal gas moving with velocity C in any
direction, and striking against one of the interior faces of the cube.

We can resolve the velocity C into three components along the axes

of the cube i.e. into components which are respectively perpendicular
to the three opposite pairs of faces of the cube.

Let these three components be u, v, and w respectively.

Then C* = u 2 + v2 + w2
.

Now, we cannot assume that the velocity of any particular
molecule remains constant, but since if the gas and the faces of the
cube are at the same temperature the average energy of the gas is

unchanged by the impacts between its molecules and the cube, we
are justified in assuming that, on the average, the velocities of the

molecules are unchanged by such impacts. This assumption is con-

firmed by the fact that, in a real gas the pressure is found to remain
constant. We may, therefore, suppose that when a molecule strikes

against one of the interior faces of the cube, its component of velocity

perpendicular to that face is completely reversed, the other two

components being unaffected.

If the mass of a molecule of the ideal gas be m, and its component
of velocity perpendicular to a pair of opposite faces of the cube be u,
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then its corresponding component of momentum1

is mu. The
momentum given up by the molecule on striding agajnst one of these

faces and rebounding will, therefore, be 2rmi, since the component of

velocity perpendicular to the face has changed from u to - u.

The component of velocity, u, thus gives rise to a pressure on one

pair of opposite faces of the cube. Since the interior of the cube

measures, as already stated, I cms. in each direction, there will be

nj impacts per second at each of these opposite faces i.e. j impacts
21 v

per second on the pair of faces.1

Thus the momentum given up in unit time to this pair of faces

77 *

= 2wm x j =
^ ,

and this is the same as the force exerted on this
I V

pair of faces, for by Newton's Second Law of Motion Force is

measured by the change of momentum produced per second.

Similarly, for the other two pairs of opposite i'aces of the cube,
fmtrfi WIW^

the force exerted is equal to 2
-y

and 2 - .-
, respectively.

If there be n molecules of the ideal gas inside the cube, the total

force exerted

- 2 + , + ... + uj) + 3
j (V + t;

a
* + ... + vn*)

Now, the force exerted on unit area is the same as pressure, and

since in the small cube that we are investigating the molecules are

moving freely in all directions, we may conclude, from considerations

of symmetry, that the force exerted on each face of the cube is equal,

and hence that the pressure on all the faces is equal. This conclusion

is, moreover, confirmed by the experimental evidence that the pressure
exerted by a real gas on the walls of a small containing vessel is

uniform.

Therefore, the pressure, P, exerted by the ideal gas i e. the total

force exerted by all the molecules on unit area is given by

1
Although owing to collisions no actual molecule can be considered to move back-

wards and forwards uninterruptedly between opposite faces, yet the effect produced
will be the same as if, in fact, no collisions occurred. For since the molecules of

the ideal gas are of equal mass, and are perfectly smooth and elastic, and since the

collisions of these molecules instantly change their velocities and directions of

motion, it follows that a change in the velocity of a molecule, due to a collision,

must instantly result in an equal and opposite change in the -velocity of the

molecule with which it has collided the latter molecule acquiring the velocity lost

by the former, and moving on in its place. Moreover, since the dimensions of the

molecules themselves may be treated as negligible, the distance to be travelled

between successive impacts at opposite faces of the cube will not be affected by
molecular collisions,
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2j{K
s+v+-..+w 2)+K2 + 2

2+
p---. .-_

_

tffW + o,' + . . . + CB*}-
gp
-

Let n . C2 = (V + C
2
2 + . . . + Cn

2
.

where V = the volume occupied by the ideal gas.

.-. P.V. = i . m . n . C2
.

_ p 2 i P 2 i _u (~
1 2

Since C2 = -1 -
'

2 -
,
it is the mean of the squares

of the velocities of the molecules. It must be noted that ^/C
2

,
i.e. G

is not the average, or mean molecular velocity, but the square root of

the mean of the squares of the velocities. C is termed " the velocity
of mean square," or " the root mean square velocity."

We have already seen that, if the ideal gas and the faces of the

cube are at the same temperature, the average energy of the gas is

unchanged by the impacts between its molecules and the cube.

Further, the ideal gas exhibits no cohesion, and all its molecules thus

possess the potential energy of complete separation from one another.

Consequently a mere change in volume, when no external work is

done, does not produce any change in the kinetic energy and, there-

fore, none in the temperature of the gas, since no work is done

against, or by, internal molecular cohesive forces.1

Since, therefore, the ideal gas exhibits no cohesive forces, the total

kinetic energy possessed by the molecules in virtue of their trans-

latory motions through space must remain constant as long as the

temperature is constant. Now, the total kinetic energy possessed

by all the molecules in the small cube

1 In the case of a real gas, the fact that mere expansion at the ordinary density,
without doing external work, only produces a very small change in temperature
has already been used to show that practically no work is done against internal

forces acting between the molecules.
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- i m . n . C2
.

*

The average kinetic energy possessed by a single molecule

= | m . C2
.

Thus C2 is proportional to the kinetic energy possessed by the

molecules, and is therefore constant if the temperature is constant.

Consider, now, the equation P.V. = J . m . n . C2
.

All the terms on the right-hand side are constant when the tem-

perature is constant.

/. P.V. = constant, when the temperature is constant.

This relationship between the pressure and the volume of a given
mass of an ideal gas, at constant temperature, is in agreement with
the experimental results obtained by E. Boyle in the case of actual

gases subjected to moderate degrees of pressure, and is usually called

Boyle's Law. 1

16. The Temperature of a Gas, and its relation to the Molecular

Velocity. Let us next consider the relation between the temperature
of a gas and the mean of the squares of the velocities of its molecules.

When temperatures are measured by means of a gas thermometer,
we have the equation P.V. = E . for the isothermals of a gas which

obeys Boyle's Law and Charles' Law E being a constant, and the
absolute temperature of the gas.

Thus, P.V. = E .
=

. m . n . C2
,
the gas being considered as

perfect.

/. 6 oc C2
.

Hence the absolute temperature of such a gas is proportional to

the mean of the squares of the velocities of its molecules, and so is

proportional to the energy of translation of its molecules. Conse-

quently the absolute zero of temperature on a gas thermometer must

correspond to the condition when the molecules of the gas have lost

all their kinetic energy and have all come to rest.

If we imagine the gas to be at the absolute zero of temperature,
and we add heat, then, since in a perfect gas internal cohesive forces
are absent, it follows that any addition of heat must result in a corre-

sponding gain of kinetic energy by the molecules, provided no external
work be done by the gas. Thus the addition of equal quantities of

heat will produce equal increments of kinetic energy, i.e. equal incre-

ments in the value of C2
,
and consequently, since P.V. = J . m . n . C2

,

1 We have considered merely the case of a small cube but the argument can
be easily extended to any small irregularly shaped vessel by considering the latter
to be built up of a very large number of smaller ~,ubes. The pressures on the
common sides of the cubes will then be in equilibrium.
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will produce equal increases of pressure if the volume be constant, and

equal increases
oj:

volume if the pressure be constant. The addition

of equal quantities of heat will thus produce equal rises in the absolute

temperature of the gas as measured on a gas thermometer.

It must be noted that this relation between the temperature and

the quantity of heat added only holds good for gases which obey
Charles' Law, i.e. for gases whose coefficients of increase of pressure
at constant volume or whose coefficients of expansion at constant

pressure are all equal, and of the approximate value 0'00367. For

it is only on account of this equality that we can make the same

absolute scale of temperature applicable to them all. If we take

two gases with different coefficients of increase of pressure, and heat

them, while their volumes are kept constant, it is obvious that at any

higher temperature, which is the same for each, the two gases will be

exerting different pressures, and must, therefore, have received un-

equal quantities of heat. However, we shall see later, from other

considerations, that all perfect gases must have the same coefficient

of increase of pressure at constant volume or coefficient of expan-
sion at constant pressure. In other words, that they must obey
Charles' Law.

17. Equipartition of Energy. Now, we saw that the absolute

temperature of the gas under consideration in the previous paragraph
was proportional to the mean of the squares of the velocities of its

molecules, and, therefore, to the energy of translation of its molecules.

We also saw ( 15) that the average kinetic energy possessed by each

molecule of the gas was equal to -JwC
2

. Let us consider the case of

two different gases at the same absolute temperature. In accordance

with the theorem of the equipartition of energy in a system of mole-

cules of different masses which was enunciated by Waterston in 1821,

we may state that
" In mixed media, the mean square molecular

velocity is inversely proportional to the specific weight of the mole-

cule." This theorem was enunciated independently by Maxwell, who
also arrived at the conclusion that the average kinetic energy of a

single molecule is the same for molecules of different gases when the

gases are at the same temperature. Maxwell's conclusion has been

confirmed by the theoretical investigations of Professors Bryan and

Boltzmann and Professor J. J. Thomson.

If, therefore, m1
and w2 represent the masses of the molecules of

the two different gases, and if C^ and C2
2

be, respectively, the mean
of the squares of the velocities of these molecules, we may state, in

accordance with Maxwell's conclusion, that

since, as already premised, the two gases are at the same absolute

temperature.
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If, also, we consider equal volumes, V, of the two different gases,
at equal pressure, P, we have

.

P.V. = wC
where w

x
and n

2
are the numbers of molecules of the respective gases

in the volume V, the gases being considered perfect.

Combining these equations we have

Thus, equal volumes of different gases at the same temperature
and pressure contain the same number of molecules. This generaliza-
tion is known as Avogadro's Law.

If pj and
/>2

be the densities of the respective gases, then

m,n, , m
k2
n

Pi
=* ~~ and

f>2
= -r-

Hence, at the same temperature and pressure, the densities of

different gases are proportional to their molecular masses : the latter

are commonly referred to as molecular weights.
It has been seen how Avogadro's Law of the equality of the mole-

cular density of two gases at the same temperature and pressure can
be deduced, in the case of a perfect gas, from Maxwell's conclusion

that the average kinetic energy of a single molecule is the same for

different gases at the same temperature. Consequently, the total

kinetic energy possessed by all the molecules in a volume V is the

same for two different gases at the same temperature and pressure, so

that we have

Total kinetic energy = Jw1
n

1
C

1
2 = -Jw2

^
2
C

2
2

.

If, therefore, we take equal volumes of two different gases at the

same temperature and pressure, and add to each of them an equal

quantity of heat, then, provided that internal cohesive forces are

absent and that no external work is done, each gas will gain an

equal amount of kinetic energy, which will give rise to equal increases

of pressure if the volumes be kept constant.

But since equal quantities of kinetic energy have been gained, the

total kinetic energy of each gas has been increased an equal amount,
and the average kinetic energy of a single molecule is again equal for

the different gases. Therefore, according to Maxwell, the two gases
must have been raised to the same temperature by equal additions of

heat. Thus we arrive at the conclusion that, for perfect gases, equal
rises in temperature will produce equal increases in pressure when
the volume is kept unchanged, i.e. all perfect gases have the same
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coefficient of increase of pressure, at constant volume, with rise in

temperature. Similarly, for perfect gases, the coefficient of expansion
at constant pressure is the same. The preceding argument may be

expressed in a mathematical form as follows :

Consider equal volumes, V, of two different gases at the same

centigrade temperature, t C., and the same pressure, P. Let m and
w

2 represent the molecular masses of the two different gases, and n
{

and n
2 the number of molecules of each in the volume V, and let C^

and C
2
2 be the respective means of the squares of the velocities of the

molecules. Then, according to Maxwell

Also P.V. = Jm^Cj2 == Jw2
ra
2
C

2
2

,

if the gases be considered perfect.

.-. n^
= n

2
.

Let equal quantities of heat be added to each gas, the volumes remain-

ing unchanged.
Then -Jm^2 = -Jm2K2

2 where (Ij
2 and S2

2 are the new means of

the squares of the velocities of the molecules.

Therefore, according to Maxwell, the two gases have both reached
the same temperature, t' C., since the average kinetic energy of a

single molecule of each gas is the same.

Also Jm1
w

1
61

2 = Jw2
w
2K2

2
,
since n

x
= n

2
.

Then, if P\ and P'
2
be the new pressures of the two gases, we

have, since the volumes have been kept unchanged,

P\ .V. = P'
2

. V.

Thus the two gases have the same coefficient of increase of

pressure at constant volume, and, applying Boyle's Law, it follows

that they must also have the same coefficient of expansion at constant

pressure. This agrees with the experimental results obtained by
Charles, Gay-Lussac, Eegnault, and others, for the so-called "

per-
manent gases."

Let p . v = K be the equation to the isothermal of a perfect gas at

C., K being a constant. Consider a mass M of such a perfect gas,

occupying a volume v$ at pressure pQ and temperature C. Let the

gas be heated, at constant volume, to t C., and let the pressure con-

sequently rise to P^. Then, if ft be the coefficient of increase of

pressure at constant volume, we have
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.

.-. P
t
= Po(l + /).

'. P n
= Joo (1 + /)
= K . (1 + 0t).

If, therefore, P and V represent any corresponding pressure and

volume of this mass of the gas at the higher temperature t" C., we
have

Taking the experimental value of ft found for the so-called

"
permanent gases

"
as approximately 0'00366, or p, we have

P.V. - K
K

= R(273 + 0,
-rr

K being a constant and equal to
oyo.

Now 273 -f t is the absolute temperature of the gas as measured

on a gas thermometer.
Let 273 + t = 0.

Then P.V. E . 0.

This is the general equation to the isothermal of a perfect gas at an

absolute temperature 0.

We may write this equation in the following form :

P =
-~^- W~A where p is the density.

Consequently, if the temperature of a given mass of gas be constant,

the pressure varies as the density, and if the density be constant, the

pressure varies as the temperature. The combined laws of Boyle and

Charles are thus contained in the equation P.V. = K . 0.

18. The Numerical Value of the Molecular Velocity of a Gas. Let

us next calculate the numerical value of the velocity of mean square
of the molecules of a particular gas at any fixed temperature. Take,
for example, the case of oxygen at a temperature of C.

Then, since P.V. = fyn . n . C2
,

- 3 P Vno
\j~ s* m . n
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Now 1 gm. of*oxygen at C. and 76 cms. pressure occupies 699*4

c.cs. Therefore,substituting in the last equation, we have

3 x 76 x 13-596 x 981 x 699-4

the pressure, of course, being expressed in dynes per sq. cm.

Whence C = 4*61 x 10* cms./sec,, i.e. about one-third of a mile

per second. _
It must again be noted that C is not the mean molecular velocity.

It can be shown that the mean molecular velocity, O, is approxi-

mately = -921 x C, and, therefore, in the case of oxygen at C., has

the approximate value 4*25 x 104
cms./sec.

19. Graham's Law. For a perfect gas P.V. = }m . n . C2
,
and

m n ^ ..11 c ^
~^r-

=
p, where p is the density of the gas.

.

/3= A/
\

_ /3 P
whence C

P

Also we have seen previously that C oc JO, where is the absolute

temperature of the gas. Thus 5 is directly proportional to the square
root of the absolute temperature of a gas, and, for different gases at

the same pressure, the respective velocities of mean square of the

molecules are inversely proportional to the square roots of the gaseous

densities. If C^ ani 5.^ be the respective velocities of mean square of

the molecules of two different gases, then since, if the two gases be at

the same temperature and pressure, their densities are proportional
to their molecular masses, or

we have the relation

IP*

Hence at a given temperature, the velocities of mean square of

the molecules of two different gases are inversely proportional to the

square roots of the molecular masses. It will be noted that the

equation

is independent of the pressure of either gas.
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This relationship could have been deduced at once from Maxwell's

theorem that ^m^2 = -Jw2
C2

2 when two gases a*re at the same

temperature. If we take the mean molecular velocity, O, to be equal

to '921 x C, i.e. equal to K x 0, where K is
a_ constant,

then this

same relationship will apply to it as well as to C. This agrees with

the experimental results obtained by Graham relative to the diffusion

of real gases through fine pores, such as occur in biscuit-ware. For,

provided the pores are sufficiently fine, the molecules will pass through
without colliding with other molecules, and thus the rate at which

the molecules pass through the porous partition will be proportional
to the mean molecular velocity, and, consequently, will vary directly

as the square root of the absolute temperature, and inversely as the

square root of the molecular mass of the particular gas. If, then, the

temperature be kept constant, different gases will pass through such

a porous partition with velocities which vary inversely as the square
roots of their respective molecular masses and this was the con-

clusion reached experimentally by Graham. 1

20. Thermal Transpiration. Consider, next, the case of a vessel

divided into two portions by means of a porous partition, and filled

with a given gas. Let the pressure of the gas be the same on each

side of the partition, but let the absolute temperatures on the

two sides be maintained at O
l
and

2 respectively where is greater
than <92 .

V^TP

- /si?

,
and GO* = A/ ,

the suffix indicating the
Pei _ V Poz

particular temperature to which C and p relate.

00i __ /|

r
""

V"^02 * i

f>6>2

Pei'

Also

Therefore, since the mass of gas passing through a porous partition,

in any given time, is proportional to the product of the velocity and

the density, we have the following relation between the masses, Mei

and M02 ,
of the gas flowing across the partition from the hot side to

the cold side, and vice versa, in the same time :

1 The rate or velocity with which a gas passes through a porous partition must

be carefully distinguished from the number of molecules and hence the mass of

the gas passing in a given time, the latter being proportional to the product of

the velocity and the density.^
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Thus, M0X <?M02
for

l > 2 ,
and consequently there will be a

flow of gas on ^the whole across the partition from the cold side to

the hot, and the pressure of the gas on the latter side will rise. This

phenomenon has been realized experimentally, and is called Thermal

Transpiration.

Equilibrium will be established when M0l
M

02 ,
i.e. when

V

_ _. _ _

dl ' pei- =
/- ^'^,

Poi V Pez

or, when P
01 . P0l

= P,2
.
P0t2

.

Since = _ d-1-'-^ =
Z^""^

1

'

equilibrium will be attained when

i.e. when

A condition of equilibrium is thus reached when the pressures on

the two sides vary directly as the square roots of the absolute tempera-
tures.



CHAPTEE III.

ISOTHERMAL AND ADIABATIC TRANSFORMATIONS, AND THE
SPECIFIC HEATS OF GASES.

21. The Specific Heats of Gases. The preceding investigation of

the behaviour of a perfect gas has shown that

P.V. =
. m . n . C2 E . 0,

where p is the density, and M the mass of the gas.
If we consider unit mass of the gas, we have

PI /^2 "D /3=s *
, p t \j =-= -L\i (7 , p.

or - = 4 . C2 = K . 0.

P

Let Km be the kinetic energy per unit mass.

op
Then Km =

. C2 = ^ = f . E . 6.

There is, of course, no potential energy arising from intermolecular

forces as the latter are absent in a perfect gas and any potential

energy which may be due to external influences, such as gravitation,

may be neglected. There is thus no intrinsic potential energy.
Hence Kw is the total intrinsic energy per unit mass.

If Kv be the kinetic energy (and, consequently, the total intrinsic

energy) per unit volume, then

In the following investigation we shall, unless otherwise stated,

deal with unit mass of the gas, and we shall assume that all quantities
of heat are expressed in mechanical units to avoid the use in our

equations of the Mechanical Equivalent, J.

Now we have seen that the total intrinsic energy per unit mass is

given by the relation
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and, consequently, is directly proportional to the absolute tempera-
ture. .

Suppose a change of energy occur, merely due to the admission of

heat, no external work being performed. In this case the volume
must be kept constant, or the gas would expand and do external

work.

Now, in consequence of the admission of heat, the temperature
of the gas will rise, and the amount of heat corresponding to unit

mass and unit rise in temperature is the specific heat at constant

volume. Therefore, if H units of heat be added, we have

H = CT(02 - 00,

where Cv is the specific heat of the gas at constant volume.

But, since the absolute temperature has risen from 0\ to 2 ,
the

kinetic energy per unit mass, K
TO ,

has increased from f . R . 0\ to

f . R .
2 >
*& by an amount equal to fR(02

-
#1).

Hence it follows from the Principle of the Conservation of Energy
that

.

|-R ie it is constant.

Let us next consider the more general case when external work is

performed.

Let U = the internal or intrinsic energy of unit mass of the gas,

Q = the quantity of heat added (expressed in mechanical

units),
and W = the work done by the gas.

Then, if energy, in the form of heat, be added, we know from the

Principle of the Conservation of Energy that

SU = SQ - SW,

employing the usual notation to represent the corresponding small

changes in the quantities U, Q, and W, n

i.e. SQ - SU + SW,
= Cv . S<9 + P . SV.

For if we imagine, for simplicity, that the gas, at

pressure P, is enclosed in a cylinder of cross-

section A, and that, on expansion, it pushes up a

frictionless piston through a small distance Sft

(Fig. IV.), then

The work done, SW = Force x Displacement,
P. A.,

\3h

P . SV, where SV is the small change in

volume.
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The equation 8Q = Cv . 80 + P . 8V will be only 'necessarily true

when the change in volume, 8V, is infinitely small, f^r it is only in

that case that P can be assitmed to be constant throughout the ex-

pansion.

Since P.V. = E . 0.

.-. 8(P.V.)
= E . 80.

... p . sv + V . SP =* E . 80, neglecting the term 0P . 8V,~which
occurs on the left-hand side of the equation, as negligibly small.

Hence P . SV = B . 80 - V . 8P.

... 8Q = Cv . 8(9 + B . SO - V . 8P,
= (Cv + B) . 80 - V . 8P,
= Cp . SO - V. 8P, where C^ is a constant, and is

equal to Cv + B.

Let us take the case when there is no change in pressure, and

when the rise in temperature of the gas is unity, i.e.

when SP = 0, and 80 = 1.

Then 8Q = C,.

Hence C^ is the amount of heat required to raise the temperature
of unit mass of the gas 1 Absolute (or 1 C) when the pressure is

constant, i.e. it is the specific heat at constant pressure.
Thus the specific heat at constant pressure, C v ,

is constant, and

equal to Cv 4- B, i.e. = . B.

22. Isothermal and Adiabatic Transformations. As previously

stated, the equation 8Q = Cv .8(9 + P .8V is only necessarily true

when 8V is infinitely small.

In the case of finite changes we may write the equation in the

following form, employing the usual notation of the infinitesimal

calculus :

frfQ = Cv
[d<9+

f

Now, UQ = Qa
-

Qi, and Cv \dO = Cv(02 - 0i). Consequently
J
Q,

J
'i

these terms merely depend upon the initial and final values of Q and 6

respectively. In the case of the last term, however, P may depend upon

V, and we cannot necessarily express I P . dV in terms of the initial and

final volumes.
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Consequently we cannot obtain the value of 1 P . dV without

'YI
further information as to the interdependence of P and V.

Suppose, for example, that the point A, in Pig. V., corresponds to

the pressure and volume of unit mass of the gas at any particular
temperature, and suppose that, after the addition of a certain quantity
of heat, the condition of the

gas is represented by the point
B. Let the continuous line

joining A and B represent the

path of transformation followed

by the gas in passing from A
to B. If the change in volume,
8V, between any two points,
such as and D, be sufficiently

small, we can regard the cor-

responding pressure, P, as

constant throughout the small

change, and, consequently, the
work done in passing from
C to D as equal to P. 8V
the area of the rectangle dif-

fering but little from that of

the black curvilinear figure.
If C and D be infinitely close

FIG. V.

together, the work done will, of course, be strictly equal to P . dV,
where dV is infinitely small

;
in which case, by integrating between

A and B, we get

fBP., == the whole shaded area below the curve.

This shaded curvilinear figure thus represents the work done in

passing from A to B along the part ACDB.
Now the path of transformation between A and B can vary, and

if the gas had followed, for example, the path AEB it is clear that the
area under the dotted curve would have been different from the shaded
area. Hence the work done is not independent of the path along
which the change takes place, and consequently we cannot integrateP . dV unless we know the curve followed during the transformation.
Let us take the case where the transformation is alone an isothermal

(Fig. VI.).

JrfQ
= Cv (dO+ f
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Qi - Qi I P dV, since dO = along an isothermal. 1

^ isothermal

isothermal

R/3 I

I ~\f '

J
v,

R.O.logJ
2

.

isothermal

This may also be written :

P V P
Qa Qi = B . . log^

1

,
since

7̂
- = ^, when is constant.

Let us next consider the case where the transformation is along
an adiabatic (Fig. VII.), i.e. where heat is neither admitted to, nor
abstracted from, the gas.

1 This equation states that in order to keep the temperature constant, whilst
external work is being done, heat must be added equal in amount to the work done.
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.-. fP . dV = - Cv fd0, since dQ = along an adiabatic.

Jadiabatic J

Again

= Cv(0! -
2)>

where O
l
and 2 are, respectively, the

initial and final temperatures of the gas.

8Q - Cv . SO + P . 8V, >

= 5s
V
.(P.8V + V.8P) + P. 8V,

Xv

ubstituting for 80 the value given by the equation

P . 8V + V . 8P = K . 80.

K
O-*- /~i /~i

,
since Cj,

= Cv

Adiabatic

FIG. VII.

Now, since no heat enters, or leaves, at any stage of the transfer-

nation, 8Q = 0.

.-. (VP.8V + CV .V.8P - 0.

Multiplying by p-^-,
and integrating, we have

4. Cv I -TT 0.
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Let
Cy

" 7 *

y P2

Then y . loge^ + loge
=* 0-

i i

But loge 1 = 0.

/. P! . V^ = P2 . V2
? = B, where B is a constant.

We can now calculate the work done during an adiabatic expan-

sion by directly integrating P . dV.

since P . V7 = B, along an adiabatic curve,

-B

since B = Pj . V^ = P., . V./,

-Dsince E lV! P2V2i- ~~

since -,7-1
This is, of course, the equation previously obtained.

Now, for an isothermal transformation, P.V. = B .
= A, where

A is a constant.

Hence, the slope of the isothermal curve at any point is given by
the relation

dP _ A___ P
<Af

~ ~
V2

~ V
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Again, for an*adiabatic transformation, P . Y* = B, where B is a

constant.

Hence, the slope of the adiabatic curve at any point is given by
the relation

(** - ?-B = - y - p
d V yy 4 i Y

'

Thus the slope of the adiabatic curve at any given point is y times

steeper than the slope of the isothermal curve at the same point.

01 isothermal

If the point A, in Fig. VIII., correspond to the pressure and
volume of unit mass of the gas, at temperature V then, if the gas ex-

pand isothermally, the curve of transformation will be AB, but if

the expansion be adiabatic the transformation will follow the steeper
curve AC. The work, W, performed by the gas in each case in ex-

panding from YI to V2 is given by the respective equations,

Wiao .
- E .0, . loge^

- P! . Vx . loge
^,

where Pj is the pressure when the volume is Vj ;

Wadia.

where 0* is the final temperature of the gas, i.e. the temperature of

the isothermal curve which would pass through the point G,

3



34 THE PEOPBETIBS OF MATTEE

We have seen that the relation between the pressure and the

volume of a perfect gas during an adiabatic transformation is given

by the equation P.V*. = B where B is a constant. By combining
this with the equation P.V. = K . 0, we can readily deduce the

adiabatic relations which obtain between the pressure and the

temperature, and the volume and the temperature, respectively.

For, since P.V. = E .

^
for an adiabatic change

P.VY, = B.

P . VY. B
f

. VY. EY . 0Y*

/QY B=
zpr-

= constant.-
i

Again : P.V. = K .

and P.Vv = B.

T>

/. . VY
-

l
.
= ^ = constant.

Jt\i

We shall see, subsequently, that the value of y for any gas is

always greater than unity, and in no case does its value exceed If.
Thus the quantity y

- 1 is always positive. Consequently, it follows

from the equations we have obtained that, for an adiabatic transfor-

mation, increases when P increases, or, what comes to the same

thing, increases when V diminishes.

Experiment'III. The rise in temperature produced when a gas is

compressed under approximately adiabatic conditions is employed in

the pneumatic fire syringe, shown in Fig. IX. On suddenly plung-

FIG. IX. Pneumatic Fire Syringe.

ing down the piston the temperature of the compressed air rises

sufficiently to ignite a small piece of cotton moistened with ether

which is placed in a cavity at the end of the piston. Or, if the glass
tube contains a mixture of air and carbon disulphide vapour, on

suddenly pressing down the piston the mixture will be seen to be

ignited.
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Anticipating the experimental results which are given later in this

chapter, we maf take the value of y as If for monatomic gases, and

If for diatomic gases.

If, therefore, a monatomic gas at a temperature of, say, 300 A.

(27 C.) have its volume reduced adiabatically to one-eighth of the

initial volume, the resultant temperature will be 1200 A. (927 C).

For O . Vl - . Vi

In the case of air, (y If), we should have to compress it

adiabatically to one thirty-second of its initial volume to produce the
same rise in temperature.

Now, at each stage of the compression the gas must be infinitely
near its normal equilibrium state. Otherwise we must introduce an
additional term, K, into our fundamental equation to allow for kinetic

energy due to the motion of the gas as a whole.

We then have

8Q = Cv . 80 + P . 8V + K
and this equation, with the additional term K, is now an irreversible

one.

Consequently the conditions assumed in the above numerical

calculations cannot be realised in practice for the only way to pre-
vent loss of heat is to compress the gas quickly, and this introduces
the additional term K.

Experiment IV. If the air inside a flask be rendered smoky with
a piece of burning phosphorus, and be then rarefied to, say, one-fourth
of the atmospheric pressure, the production of eddies on suddenly
admitting air, and raising the pressure to atmospheric, will be clearly
visible. Or the air may be initially compressed inside the flask to a
few atmospheres pressure, after introducing a quantity of smoke from
a piece of burning phosphorus, and the formation of eddies inside the
flask on sudden expansion to the atmospheric pressure observed.
Provided the changes of pressure be sufficiently small, however, very
little motion of the gas as a whole is produced, and, in such cases,
the term K may be neglected, and the transformation regarded as

truly adiabatic.

23. The Numerical Value of y for a Perfect Gas It has already
been shown that, for a perfect gas

CV-J.Band C9 = Cv + E = f .E.

.-. 7 = 9? - f = 1-667.

3
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f

inis value of the ratio between the specific heats agrees almost

exactly with the experimental values obtained for f in the case of

certain elementary gases, when the latter are far removed from their

liquefying points and in no case does the ratio exceed this value.

Before discussing more fully, however, the causes which, in a real

gas, may contribute towards a diminution in the value of y, it will

be convenient to consider a number of experimental methods for

determining the ratio of the specific heats.

24. CWment and Desormes' Method of Determining y. Experiment
F. A simple form of C16ment and Desormes' apparatus is shown in

Fig. X. It consists of a thick-walled glass flask, fitted with a side

tube, and provided with a large stop-cock.
The flask, which should be of considerable

capacity, stands on a ring of cork, or other

badly conducting material, and the side

tube is bent at right angles, and dips below

the surface of some Fleuss l pump oil in

a suitable container, thus serving as a

manometer.
A small quantity of concentrated sul-

phuric acid is introduced into the flask in

order to completely dry the enclosed air.

To perform an experiment, the air contained

in the flask is partially exhausted as in-

dicated by the rise of the oil in the mano-
meter and the stop-cock is then closed.

Since this rarefaction cools the air which remains in the flask, it

will be observed that the level of the oil in the manometer falls

as the enclosed air gradually acquires the temperature of the sur-

roundings. When a steady state has been attained, the pressure
indicated by the manometer is read. The large stop-cock is now

opened for a few seconds, to equalise the internal and external

pressures, and is then closed again. The contained air is thus com-

pressed, and, provided the glass flask be large, it may be assumed
that a relatively negligible amount of the heat developed by this

compression has been communicated to the surroundings during the

short time the stop-cock remained open. Hence the compression may
be considered as adiabatic. After standing for some time the enclosed

air will again acquire its original temperature, and the manometer
which at the moment the stop-cock was closed indicated atmospheric

pressure will now show a diminished pressure within the flask.

When the pressure has become steady, a second reading of the level

of the oil in the manometer is taken.

BTG. X. (Mrnentand
sormes* Apparatus.

pump oil constitutes a very suitable Tnanometric liquid, since its

relative density is low and its vapour pressure, at or<Jiijary temperatures, practically

negligible.
f
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If the heightS of the oil in the manometer before and after the

adiabatic compression were respectively \ and 7i
2 , then, provided the

actual pressure changes were exceedingly small, we can prove that

For, let the point A, Fig. XT, correspond to the pressure and

volume of unit mass of the rarefied air within the flask at the tempera-
ture of the surroundings. On opening the stop-cock, this air is com-

pressed adiabatically, the pressure rising to atmospheric. The path of

transformation is thus along the adiabatic curve AB. At B the stop-

cock is closed, and the air now cools, at approximately constant volume,

r>

..Atmospheric
Pressure.

V
Fia. XI.

to its original temperature i.e. it passes along a vertical line from
B to C C being on the isothermal curve drawn through A. It should

be noted that the volume does not remain absolutely constant in

passing from B to C, as there is a small diminution owing to

the rise of the oil in the manometer tube, but since the volume of

air in the manometer is very small compared with the volume of the

air within the flask, the diminution in volume thus produced may be

neglected. Let the pressures corresponding to A, B, and C be

respectively, PA , BB, and P .

Now, provided the changes in pressure are exceedingly small, the

arcs AB and AC will be very small portions of the respective adiabatic

and isothermal curves through A, and may be regarded as approxi-

mately straight lines. Draw through A a straight line AD parallel to

the axis of volume, and meeting BC produced in D. Let the angle
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DAB = <, and the angle DAG =
6, these being the angles the adiabatic

and isothermal curves, respectively, make at A with tHe horizontal line

DA. Then, since the slope of the adiabatic curve at any point is y
times steeper than the slope of the isothermal curve at the same point,
we have

BD
tan < AD BD PB

- PA~ -
CD

"
pc

- PA .

AD

Now PB ~ PA is the difference between the atmospheric pressure
and the initial pressure of the rarefied gas. Consequently, if p be the

density of the Fleuss pump oil in the manometer, we have PB
- PA

htf, the difference of pressure being expressed in centimetres of

water if h
1
be measured in centimetres.

Similarly Pc
- PA - (PB

- PA)
-

(PB
- P

)
= JhP

-
h.p.

A

If the manometer tube be fairly short in length (say, 20 to 30 ems.),
and if an oil of low density be employed as the manometric substance,
the pressure changes cannot be other than small, and the above

equation may be employed with sufficient accuracy to calculate the

value of y. With a longer manometer tube, or using a denser liquid
such as mercury, the pressure changes may be too great to justify
the assumption that the arcs AB and AC are approximately rectilinear.

Under these conditions, the value of y may be calculated in the

following manner.
Let the volumes corresponding to A and B (Fig. XL) be re-

spectively VA and VB .

Then, since A and B are on an adiabatic

Also, since A and C are on an isothermal

PA .VA = P .VB .

V* = P
' '

VB PA
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Therefore, tafting logarithms of both sides of this last equation, we
have

log

Here, as before, PB is the atmospheric pressure, expressed in

centimetres of water, and PA = PB h^, and P = PB -
h^p.

If the side tube be bent so as to form a manometer of the ordinary
" D "

shape, the same apparatus may be employed for determining
y when the enclosed air is initially at a greater pressure than the

atmospheric. This method was first employed by Gay-Lussac and
Welter. In this case, on opening the stop-cock the pressure falls

adiabatically to the atmospheric pressure and the air becomes cooled

by the expansion. On standing, the original temperature is attained,
and the pressure of the enclosed air rises. The value of y is then
calculated in a manner essentially similar to that already described.

The air inside the flask may now be completely displaced by
another gas, the latter being pumped in until the pressure slightly
exceeds atmospheric. The stop-cock is then closed, and the experi-
ment carried out as before. 1 The gas must, of course, be thoroughly
dried by means of sulphuric acid or other suitable desiccating agent.

Using a modification of this method, Rontgen obtained the following
values for y, for air and carbon-dioxide, respectively :

boo,
= 1-305.

It should be noted that if the enclosed air be initially at a lower

pressure than atmospheric an error arises from the fact that the air

which enters, on opening the stop-cock, has not the same temperature
immediately after entering as the air which was previously in the

flask, but is somewhat cooler. Hence, after again closing the stop-
cock, the enclosed air will not all cool down equally, and the fall in

pressure observed will be too small. Consequently, the value of y
obtained will be slightly too low. This source of error is avoided
when the enclosed air is initially above atmospheric pressure, but
there still remains a small error arising from the momentum pro-
duced in the issuing air to which we have already referred in 22.

Also, owing to the momentum acquired by the issuing air, there is an
excessive outrush of air, on opening the stop-cock, followed by an
inrush, and oscillations are set up, which may cause the pressure
inside the flask to be either greater or less than the' atmospheric at

1 If a cylinder containing liquid carbon-dioxide, or a syphon of liquid sulphur
dioxide be available, the flask may comeniently be filled with one of these gases.
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the moment the stop-cock is closed. This difficult*^ may be largely
avoided by using a very wide stop-cock, or by employtog the improved
form of Clement and Desormes' apparatus shown in Fig, XII. Here
the gas at atmospheric pressure is slightly compressed by raising the

mercury reservoir to the upper shelf and opening the pinchcock, thus

allowing the mercury to flow into the flask. The highest reading

given by the manometer is then noted. After standing for some time

the gas, which was heated by the compression, again acquires the

FIG. XII. C16ment and Desormes' Apparatus (Improved Form).

temperature of the surroundings, and the pressure becomes steady at

a lower value, which is also read. Then, if the pressure corresponding
to the point A in Fig. XI. be now taken as the atmospheric, we
have

(approximately) A
tin

where \ and \ are the respective heights of
f
the oil in the manometer

immediately after the adiabetic compression, "and after a steady state

has been attained.
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To prevent as'far as possible loss of heat during the compression,
the flask is placed inside a wooden box and is packed round with

badly conducting material. A layer of concentrated sulphuric acid on
the surface of the mercury is generally employed to dry the enclosed

gas, but if, for chemical reasons, its use is inadmissible, the gas
should be carefully dried with some other desiccating agent before

being introduced into the flask. The quantity of mercury taken must
be sufficient to completely cover the cork even when the reservoir is

on the lower side shelf.

An initial experiment should always be performed to find, ap-
proximately, the maximum reading, hv given by the manometer.
The tap on the manometer is then closed when at this maximum, and
is only opened in the subsequent experiment when nearly all the

mercury has run into the flask. In this manner the correct maxi-
mum reading can be obtained without oscillations being set up.
The experiment may be varied by having the gas initially compressed,
and allowing it to expand adiabatically.

25. Lummer and Pringsheim's Method of Determining y. A varia-
tion of C16ment and Desormes' method in which both the change
of pressure and temperature were measured was employed by
Lummer and Pringsheim. The dry gas was initially compressed,
or rarefied, to a pressure P and the temperature read when a

steady state had been attained. On opening the stop-cock, the pressure
changed to the atmospheric pressure, Plt

and the temperature to a new
value, O

lt
the temperature being determined by means of a very

sensitive electrical resistance thermometer. It has been seen
(ft

previously that, for an adiabatic change, p-I
-

1
is constant.

Whence

Lummer and Pringsheim thus obtained the values 1-402 and
1'299 for y for air and carbon-dioxide, respectively,

26. Determination of y from the Velocity of Sound. It was shown
by Newton that the velocity, V, of sound in any medium was given
by the equation

elasticity

density
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Newton imagined that the elasticity was the isothermal elasticity
of the medium. Laplace subsequently showed l&hat it was the

adiabatic elasticity which should be employed in the above equation.
For during the propagation of the sound waves each compression
causes a rise and each rarefaction a fall in the temperature, but

the alternations of compression and rarefaction are so rapid that

practically no heat is conducted out of the compressions or into the

rarefactions.

We shall prove, later, that in the case of a gas which obeys Boyle's
Law its isothermal elasticity is equal to its pressure, and its adiabatic

elasticity is equal to y times its pressure.

Thus, for such a gas, we may write

V =

If, for example, we take the velocity of sound in dry air at C.

and 76 cms. pressure as 3-32 x 104
cms./sec., and the density of the

air as 0*001293 gm /c.c., then

QQO iru x 76 x 13-596 x 981
3-32 x 10*

Whence y = T406.

Experiment VI. Comparison of the Values of y from the Relative

Velocities of Sound in Different Gases Take a Kundt's apparatus
(Fig. XIII.), and scatter some lycopodium powder inside the glass
tube. By rubbing the rod it can be thrown into stationary longitudinal
undulation, and by adjusting the position of the tightly fitting piston,
and hence the length of the enclosed air column, the latter will be
also thrown into stationary undulation, as shown by the pattern
formed by the lycopodium. Measure the distance between consecutive

nodes, as indicated by the powder. Next fill the tube with a different

gas and repeat the experiment. The relative velocities of sound in

the two gases are proportional to the spaces between consecutive
nodes in each case these spaces being the half wave-length in the

gas of the frequency of the vibrations of the rod.

Thus -1 =
^,V o
*^"2

where A
L
and X

2
are the respective wave-lengths in the two different

gases.

But ^ =

the pressure being the atmospheric in each case.
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m
1
and w

2 being the respective molecular
masses.

If the second gas be air, we may substitute

the values ascertained for y2 and w2 ,
and write

the above equation

__
1 28-88 . A

2
2
~"

The value of y may thus be deduced for

any other gas the molecular mass of which is

known.

27. Determination of y by the Direct Com-
parison of the Specific Heats at Constant Pres-

sure and Constant Volume. Numerous deter-

minations of the specific heats of gases at

constant pressure have been made by calori-

metric methods, in which, in general, a stream
of the heated gas is allowed to flow, at constant

pressure, through a spiral tube contained in a

calorimeter filled with water, the rise in tem-

perature of the calorimeter and its contents

being duly noted.

The results obtained by the researches of

Eegnault, Wiedemann, Lussana, Witkowski,
and others for the specific heats of different

gases are in close agreement. It was found
that the specific heats of actual gases at con-
stant pressure varied appreciably with the

pressure and with the temperature, although
Witkowski found that, in the case of air at

constant atmospheric pressure, the specific heat
was practically independent of the temperature.

In the case of a perfect gas, of course, no
such variations would exist, and we may sup-
pose that in a real gas the variations are due to

molecular aggregation or dissociation. Only
one method has been devised for directly de-

termining the values of the specific heats of

gases at constant volume, namely, by the use of Dr. Joly's Differential
Steam Calorimeter. In this method two hollow spheres, of thin
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copper, are suspended by means of fine platinum wires from the two

ends of a balance beam. The two spheres are constructed of equal
thermal capacities, and hang freely inside a chamber which can be

filled with dry steam. Small light trays are suspended beneath the

spheres to catch any drops of water that may fall down during an

experiment. One sphere is exhausted, or else contains a gas at the

atmospheric pressure, whilst the other is filled with the gas at a high

pressure, the equilibrium of the balance being restored by the addition

of the necessary weights. When the temperature is steady it is read,

and dry steam is then admitted to the chamber, The excess of steam

condensed on the sphere containing the highly compressed gas is

directly determined by weighing. The excess of condensed steam is,

of course, due to the excess weight of the gas which has been heated

at approximately constant volume. Hence the specific heat at

constant volume can be deduced. A small correction should be made
for the expansion of the copper vessel due to the rise of temperature
and the increase of internal pressure.

Joly found that the specific heat at constant volume alters

appreciably with the density of the gas.
In the case of air we may, according to Witkowski, take the

specific heat at constant pressure, G 9 ,
as 0-2372, at C. and 76 cms.,

whereas the specific heat at constant volume, Cv ,
was found by Joly

to be 0-1715 at C. and 76 cms.

Op 0-2372
Hence y - ~ = , = 1 383.

28. Jamin and Richard's Method of Determining y. MM. Jamin

and Kichard determined the value of y by communicating a certain

quantity of heat to a gas both at constant pressure and constant

volume, the gas being contained in a large vessel, and being heated

by means of a platinum spiral conveying a steady electric current.

The current was run for the same time in each experiment, and since

in each case the loss of heat by radiation from the wire was the same,
it followed that the same quantity of heat remained, and was imparted
to the gas. In the first experiment the gas was heated at constant

pressure and the increase in volume was measured; in the second

experiment the gas was heated at constant volume and the increase

in pressure was observed.

Let m be the mass of the gas, at an initial pressure, P ,
volume

V
,
and temperature .

When a quantity of heat, Q, is added, at constant pressure, let the

temperature rise to
19
and the volume increase to V^ and when the

same quantity of heat is added, at constant volume, let the temperature
become & and the pressure P'.
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Then we have-4-

Q = m . Cv .
(ffl

-
)
= m . Cv .

(ff
-

(9
).

. 9? = LrJa
Cv 0[

- '

But, for a perfect gas

P V = R00) P^ =
R0J, and P'V = W.

' '

*!
-

*o

~
(V,

- VJJF
-

y .^.^P^,.
For any real gas we have, as before

.

Cv 0j
-

Let a be the coefficient of expansion of the gas at constant pres-
sure, and ft the coefficient of increase of pressure at constant volume.

Then

Vi- V - Vo.a.ft- ),andP - P - P . ft . (ff
-

0,).

' ' r cv e
l
-

(v l
- v

) . P O . ^
MM. Jamin and Richard thus obtained the values 1-41, 1'29, and

1-41 for y for air, carbon-dioxide, and hydrogen, respectively.

29. The Value of y in the Case of Eeal Gases. In the case of a

perfect gas we have seen that all its intrinsic energy is the energy of
translation of its molecules the total intrinsic energy per unit mass

being -JO
2

,
or -^R . 0, and the total intrinsic energy per unit volume

being . p . O 4

, or fR . . p.

Such a perfect gas was considered to be composed of an enormous
number of identical spherical molecules, negligibly small compared
with their distance apart, and perfectly smooth and elastic. In
the case of any real gas, however, we can no longer necessarily regard
the molecules as thus approximating to moving points. For each
particular gas the molecules will, in general, possess a characteristic

configuration depending upon the number and chemical nature of the
atoms within the molecule. Nor can all the molecules be regarded
as identical for the gas may be partially in a state of dissociation or
of molecular aggregation.

Consequently, if a change of energy occur in any real gas, due to
the admission of heat, some of the heat may be used in increasing
the translatory energy of the molecules, some in external work, and
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some in increasing the internal energy the latter* arising from the

rotatory and vibratory energy of the molecules and*their constituent

atoms, and also from work done against internal molecular cohesive

forces during the separation of the molecules which occurs both in

expansion and dissociation. Since we have seen that the magnitude
of the cohesive forces in a gas at the ordinary density is very small,

we may, in the present discussion, neglect the energy arising from

such internal molecular cohesive forces.

Let us consider any gas when in a steady state, and let its total

energy i.e. its total kinetic energy equal (3 times its translatory

energy. __
Therefore the total intrinsic kinetic energy per unit mass is -J/3C

2
,

or . /? . B . 0, and per unit volume $/3 . p . S2
,
or f/3 . R . 6 . p.

"if we assume that the total intrinsic kinetic energy is zero at the

absolute zero of temperature, then, since it is found experimentally
that for many gases Gv and Cv are approximately independent of the

temperature, it follows that, to the same degree of approximation, the

total molecular kinetic energy must bear a constant ratio to the trans-

latory energy i.e. /? is constant.

For, as in 21, if H units of heat be added at constant volume,
we have

H - Cv(02 -
0j)

= p(AA -
/Jjflj),

where JRft^ and p&<92

represent the total intrinsic energy per unit mass of the gas at O
i
and

#2 respectively.

Taking 1
= 0, this gives Cv 2

=
-;l-R#,0a i.e. Cv = gR)82

.

If, therefore, we may assume that Cv is constant, fa must also be

constant.

Hence l Cv =* -0R.

1

If, however, we suppose that only the translatory energy of tho molecules
has become zero at the absolute zero of temperature, the total intrinsic energy of

the gas at the absolute zero may still be represented by some finite quantity e.

In this case, let ^RjS^ + e and Rj02 + e be the total intrinsic energy per unit

mass of the gas at 0j and 2 , respectively.

.-. H = Cv(02 -
0,)

= (!Rj32 2 + )
-

Taking 0j
= 0, this gives Cy02

= iRj82 2 ;
i.e. Cv =

If, then, Cv be assumed constant, 2 must also be constant.

Whence, as before, we have

Cv = 119 . R.

It must be carefully noted, however, that in this case it is no longer tho total

kinetic energy, but the excess of the latter over its value at the absolute zero of

temperature, which equals times the translatory energy. This distinction, which
is not always observed, is of importance, for a knowledge of the conditions govern-

ing the transfer of energy between the translatory and the internal molecular

energies is necessary before the assumption that thfl total intrinsic kinetic energy
of a gas becomes zero at the absolute zero of temperature can be justified.
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Neglecting internal cohesive forces, we have, as in 21

C, = Cv + E,
= |/8B + E,

On the assumption that the only energy possessed by the mole-

cules is the kinetic energy of translation, fi
=

1, and y = If.
This was the value of y previously calculated for a perfect gas.
Now in the case of certain elementary gases, at the ordinary

density, y is found experimentally to possess almost exactly this value.

Thus Kundt and Warburg in 1876 determined the ratio of the specific
heats for mercury, from the velocity of sound in a tube containing

gasified mercury, and obtained the value 1*666 (at 310 C.). Sir

William Eamsay found the values 1*66 and 1*65 for Argon and

Helium, respectively. Niemeyer obtained 1*667 for y for Argon. For

Neon, Krypton, and Xenon, y has also been found to have the approxi-
mate value 1*66.

Consequently for these gases we must regard practically the whole
of the molecular energy as translatory, and therefore the molecules

must be very approximately spherical, and also spherically symmetri-
cal with respect to their internal structure. Otherwise a sensible

amount of translatory energy would be transformed into rotatory

energy at each collision and this rotatory energy if only slowly

dissipated would lead to the molecules possessing energy other than
the kinetic energy of translation (which would be inconsistent with

the valu3 If found for y), and if rapidly dissipated would be contrary
to the extremely slow rate at which the gas, as a whole, is observed

to lose energy. Therefore, since these gases are composed of

spherical, symmetrical molecules, we conclude that fhey are mona-
tomic. Indeed the presence of two or more atoms within the mole-

cule would be inconsistent with the absence of rotatory and vibratory

energy.

Since, however, all the gases enumerated above give, when in-

candescent, very complex spectra consisting of thousands of lines, and
since the molecules in each individual gas are considered to be

identical, it follows that each molecule must be able to execute vibra-

tions of thousands of distinct periods. Consequently the existence

of such spectra show that vibratory energy must be possessed by the

molecules but, in view of the fact that y has the value If, we must
conclude that the amount of vibratory energy is negligibly small com-

pared with the kinetic energy of translation.

Now, it can be shown that in a conservative dynamical system,
where the total energy is constant, the kinetic energy is equally
divided amongst all the modes of motion, or "

degrees of freedom,"
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when the system is in a steady state. This is usu&lly referred to as

the Law of Equipartition of Kinetic Energy. It is, kowever, clear that

the Law of Equipartition of Kinetic Energy amongst the possible

modes of motion, or "
degrees of freedom," does not apply to the vibra-

tory energy which gives rise to the spectral lines referred to above.

Nor would the law be expected to apply, for the emission of energy in

the form of spectral lines is in itself proof that the system is not

dynamically conservative.

The conclusion that the molecules in mercury vapour are mona-
tomic is of fundamental importance in the theory of chemistry.
Amadeo Avogadro, in 1811, in applying his famous generalisation to

the case of the formation of steam from the combination of hydrogen
and oxygen was led to infer that the molecules of hydrogen and oxygen
were diatomic, and those of steam triatomic. For two volumes of

hydrogen with one volume of oxygen to form two volumes of steam,

and this is consistent with the supposition that 2n. molecules of

hydrogen have united with n. molecules of oxygen to form %n. mole-

cules of steam, if the above inference be made as to the atomicity of

the molecules in each case.

Starting then from the assumption that the molecule of hydrogen
is diatomic, and taking the relative density of any gas as the number
of times that gas is heavier than an equal volume of hydrogen,
measured at the same temperature and pressure, it is clear that by

doubling the relative density we at once obtain the molecular weight
of the gas, for the molecular weight is referred to the weight of an

atom of hydrogen as the unit 1 and we have seen
( 17) that

Now, the relative density of mercury vapour has been determined

with respect ',o hydrogen, and has been found to have the value 100.

Therefore the molecular weight of mercury vapour is 200. But the

atomic weight of mercury which can be deduced from a knowledge
of its "equivalent weight" and its specific heat, by applying the Law
of Dulong and Petit is also found to have the value 200.

Hence the molecules in mercury vapour should be monatomic
and the value obtained for y by Kundt and Warburg proves that such

is actually the case.

Consequently the value found for y for mercury vapour is a proof
of the legitimacy of the assumption that mercury vapour is mon-
atomic and, therefore, that the molecule of hydrogen is diatomic,

(and not, for example, H4),
and so is confirmatory of the whole of

chemical formulae.

J More strictly the atomic weight of hydrogen may be taken as 1-008, oxygen
being now adopted as the standard, with an atomic weight of 16.
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In the case of *he inert gases no chemical evidence can be obtained

as to their atomic weights, but since, for all of them, y has the

approximate value 1*66, we are justified in regarding them as mona-

tomic, and in taking their molecular weights as found from their

gaseous densities as identical with their atomic weights. When we
come to diatomic gases such as hydrogen, oxygen, nitrogen, (air), etc.,

we find that y has an approximately constant value of If. Thus
Lummer and Pringsheim obtained the values 1*402, 1408, and 1'400

for y for air, hydrogen, and oxygen, respectively, the temperature in

each case being about 10 C.
;
Cazin found 1*41 for nitrogen ;

Leduc
1*401 for carbon-monoxide

;
Masson 1*394 for nitric oxide.

In the case of triatomic gases the value of y approximates to 1.
For example, Makower found 1*305 for water vapour, and Lummer
and Pringsheim 1*299 for carbon dioxide.

For polyatomic gases it is found that the value of y approximates
more and more nearly to unity as the number of atoms within the

molecule increases. Thus for chloroform (CHC13), ethyl alcohol

(C2
H6OH), and ether ((C2

H5)20), y has the respective values of 1*15,

1-13 and 1*03.

2
Hence in the equation y = 1 + ^ we see that, to the same degree

of approximation, ft
= 1 for monatomic gases, ft

= | for diatomic

gases, and ft
=* ^ for triatomic gases, and that as the molecular com-

plexity increases y tends to unity, and ft to infinity.

Now, in the case of monatomic gases, we can see that it follows

from considerations of symmetry, and from the experimental evidence
of the uniformity of the pressure exerted on the walls of a small con-

taining vessel, that the kinetic energy of the molecules (which is all

translatory energy) must be equally divided in the three directions of

motion, i.e. amongst the three degrees of freedom, corresponding to the

three components of the velocity of the centre of mass of each mole-
cule along the three axes of space.

In accordance with the Law of Equipartition of Tiinetic Energy
originally developed by Maxwell and Boltzmann the division of the

kinetic energy of the molecules is equal however many degrees of

freedom exist when the distribution of internal energy has acquired a

permanent state.

Consequently we should conclude that diatomic gases were

possessed of five degrees of freedom, since the total energy of such

gases equals f times their translatory energy this translatory energy,
of course, having three degrees of freedom.

Similarly triatomic gases should possess seven degrees of freedom,
and the number of degrees of freedom would increase progressively
with the molecular complexity.

If, however, a molecule possess rotatory energy we should antici-

pate the existence of at least six degrees of freedom, the three extra

degrees corresponding to rotation about the three axes of space. It

4
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has been suggested that the molecules of diatomic gases, for example,

might be regarded as pairs of atoms, rigidly attached together, so

that the distance between the atoms remained invariable each atom

being itself symmetrical about an axis and being so attached that the

two axes of symmetry were coincident with the axis of the molecule.

The whole molecule would thus possess symmetry about one axis, and
rotation about this axis of symmetry could be ignored, thus giving
rise to five degrees of freedom.

Such a theory is, however, untenable, for it requires the assumption
of an infinite force between the atoms in order that they may be

absolutely fixed relatively to one another, and, moreover, the existence

of spectral lines clearly indicates that vibrations of the atoms actually
exist. An explanation of the difficulty has been given by J. H. Jeans,
and has already been indicated in referring to the existence of spectral
lines in the case of monatomic gases.

Jeans pointed out that the Maxwell-Boltzmann theorem of equi-

partition of energy is based upon a definite assumption, namely, that

there is no interaction between matter and aether in other words,
that it is only applicable to conservative dynamical systems.
For such systems, when in a state of equilibrium, the Maxwell-
Boltzmann theorem holds good. Now an actual gas, in nature, is

never in a state of conservative equilibrium for a finite time. Unless
a gas could be enclosed in an " adiabatic space

"
for a sufficient length

of time, the Maxwell-Boltzmann theorem could not be expected to

apply. In other words, actual molecular systems are dynamically
non-conservative, for energy is being continually dissipated into the

aether. 1

Jeans further showed that the normal state for a non-conservative

gas corresponds to the condition that the rate of dissipation of energy
is very slow, and that when in this normal state the law of equi-

partition of energy will not apply. This condition is satisfied by
actual gases under ordinary circumstances, since they are not radia-

ting an appreciable amount of energy. For such gases, when in this

normal state, practically all the energy is shared amongst a few of the

degrees of freedom the internal degrees of freedom receiving, in

general, far less energy than the three translational degrees. Thus
we have seen that the vibratory energy corresponding to the spectral
lines must generally represent a practically negligible amount of

energy, for such spectral lines are frequently very numerous, and if

the vibratory degrees of freedom each received the share of energy
indicated by the law of equipartition it is clear that the value of y
would differ inappreciably from unity.

To summarise this portion of the discussion : We have seen that
the total kinetic energy of a molecule may consist of translatory,

1 It is, of course, only through the dissipation of energy, in the form of light-
waves, that we become aware of the existence of the internal degrees of freedom.
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rotatory, and vibratory energy. If the molecules of a gas be perfectly
smooth, elastic, anH spherically symmetrical, no amount of interaction
can alter their rotatory energy, and the latter may, therefore, be

ignored. If the molecules very approximately, but not perfectly,
satisfy these conditions, then collisions will give riss to only very
small rotations. Consequently, if the rotatory energy undergo dis-

sipation, such dissipation must be extremely slow.

Further, it can be shown that the gain of vibratory energy due to

collisions is also very small, as is the dissipation of energy which
arises therefrom.

Such gases are monatomic and practically all their molecular

energy is translatory. For such gases ft is approximately unity and
y = 1*667.

For polyatomic gases we must imagine that the molecules are no
longer spherically symmetrical, and consequently an appreciable
transfer of energy from translatory to rotatory will in general occur
at a collision. Here also, if dissipation of rotatory energy occur, it

must be extremely small, for otherwise dissipation of energy from the

gas as a whole would rapidly take place, and this is contrary to all

experimental evidence.
In the case, then, of such polyatomic gases an appreciable amount

of the molecular energy will be rotatory, and y3 will have a value

greater than unity, whilst the value of y will be less than 1-667. The
greater the molecular complexity of the gas, the greater, in general,
will probably be the spherical asymmetry, and consequently the

greater the rapidity with which the transference of energy between
the translatory and rotatory forms will take place. Also, since for

highly complex gases the value of y approximates closely to unity,
with a correspondingly large value for fi, it is clear that their molecules
cannot be regarded as rigid, but must possess considerable internal

vibratory energy in addition to their rotatory and translatory energy.

In general, we may state that for certain of the degrees of freedom
an appreciable transfer of energy from the translatory form may take

place during molecular collisions, whereas for the remaining degrees
of freedom the transference of energy is extremely small.

Consequently, on adding energy in the form of heat to a gas, some
of the (approximate) equilibrium states for some of the degrees of
freedom are rapidly brought about, whereas for the other degrees of
freedom the transference of energy is so extremely slow that the
attainment of the (approximate) states of equilibrium requires an
exceedingly long time. The equilibrium states are only approximate,
for the gas is never in a condition of conservative equilibrium.

For monatomic gases equilibrium amongst the three translatory
degrees of freedom is very rapidly attained, but since the molecules
may be regarded as nearly perfectly smooth symmetrical spheres it is
clear that the rotatory energy would be altered only exceedingly
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slowly by any increase in the translatory energy du% to an addition of

heat to the gas.
*'

In the case of diatomic gases apparently five of the degrees of

freedom rapidly acquire a state of equilibrium, and for triatomic gases
seven degrees of freedom behave similarly.

The values experimentally found for y (and hence for ft) for

different gases only correspond approximately, and not exactly, to an

integral number of degrees of freedom in each case. The probable

explanation of this divergence is to be found in a lack of homogeneity
in actual gases, due to partial dissociat'on or molecular aggregation,
for it is obvious that dissociation into molecules of a simpler nature

will raise the value of y, and that aggregation into more complex
molecules will lower its value.

30. The Molecular Heats of Different Gases. We may conveniently
conclude this chapter by calculating the numerical values of the
molecular heats at constant pressure, and at constant volume, for

different gases. The molecular volume of any gas is, approximately,
22,380 c.cs. at C. and 76 cms, of mercury. Substituting, therefore,
in the equation P.V. = E . 0, we have

^ 76 x 13-596 x 981 x 22,380 ,, , .

-ft =
273 ergs/degrees absolute,

= 8*31 x 107
ergs/degrees absolute,

8*31= J^Q calories per degree,
4*JLt7

= 1'98 calories per degree, where Em refers to the molecular

weight of the gas.

Now for a perfect gas, Cv = fE,

C, = Cv + E = fE,
and y = If.

Consequently, in the case of monatomic gases, we should anticipate
that the molecular heat at constant pressure, CmP ,

would equal
| x 1*98

;
i.e. 4*95 cals., and the molecular heat at constant volume,

Gmv,
would equal f x 1*98 ; i.e. 2*97 cals.

For diatomic gases, y = ~ H = If ,
but Gm^ ~ Gmv will still equalOWy

1*98 cals., provided internal cohesive forces can be neglected for

then, as we have seen in Chapter L, the difference between the specific
heats merely represents the external work done during expansion.

Hence Gmv = 6*93 cals., and Cmv = 4'95 cals.

For triatomic gases, y = ?r
-~ = If , and GmP

- Cmv = 1-98 cals.
UTWy

Whence Gm^ => 8*91 cals., and Cmv = 6'93 cals.
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The molecular Cheats at constant pressure, and constant volume,
as obtained by direct

observations on a number of gases, are given in

the following table :

The agreement is fairly good except for the last mentioned. The

specific heats of water vapour are those at 100 C., the pressure being

atmospheric in the case of 0^. Since at this temperature and pres-
sure the water vapour is at its liquefying point, a very large propor-
tion of the molecules must be close together and exerting cohesive

forces, and the difference between the specific heats will no longer

correspond only to the external work performed owing to expansion.



CHAPTER IV.

THE ELASTICITY OP GASES, AND THE CONTINUITY OF THE
LIQUID AND GASEOUS STATES.

31. Boyle's Law. In Chapter II. we deduced a number of relation-

ships which apply to a perfect gas.
It will now be convenient to consider, in greater detail, how far

these theoretical conclusions are in agreement with the experimental
results obtained for actual gases.

One of the most distinguishing characteristics of a gas is its com-

pressibility, and, accordingly, we shall commence with a discussion

of the relations obtained between the pressure and the volume of any

gas, both when the temperature is constant and no change of state

occurs, and also when liquefaction takes place.

Robert Boyle, in a paper communicated to the Royal Society in

1661, first stated the relation which obtains between the pressure and

the volume of a given mass of gas when the temperature is constant

and no change of state occurs. He compressed air in a bent tube by
means of mercury, and found that the pressures and volumes were in

reciprocal proportions. In 1662 Boyle published a full account of

his experiments in a book entitled "The Defence of the Doctrine

Touching the Spring and Weight of Air."

In accordance with Boyle's results, we may state that the volume

of a given mass varies inversely as the pressure to which it is sub-

jected, or that the density of a gas varies directly as its pressure.

Thus if V be the volume of a given mass of gas, and P the pres-

sure to which it is subjected, we have, in accordance with Boyle's
Law

P.V. = constant, when the temperature is constant.

It follows that if p be the density of a gas, under pressure P,

p
- == constant, when the temperature is constant.

P

If we plot Boyle's results, taking the pressure as ordinates and
the volumes as abscissae, we obtain the rectangular hyperbola, A,

shown in Fig. XIV. ; by plotting the pressures against the reciprocals
of the volumes we obtain the straight line, B, in the same figure.

Boyle's Law was discovered independently by Mariotte in 1676,

and is, therefore, sometimes known as Mariotte's Law.
54
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FIG. XIV.

FIG. XV. Boyle's Law Apparatus.
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Experiment FIT. :A simple form of apparatus fpr experiments on

Boyle's Law consists of a long narrow glass tube, foaled at one end,

and containing a column of air enclosed by means of a mercury
column (Fi^. XV.). The tube is held in a vertical position, and the

lengths of the enclosed air column and of the mercury column are

read. Some of the mercury is then

ipped out, by slightly inclining the

ube, and the latter is then restored

o the vertical position, and the lengths
>f the air and mercury columns are

^gain read. This procedure is repeated
ill no more mercury will run out.

leadings are then obtained with the

ube in inclined positions, in which
;ases the differences in vertical heights
h
2
-

Aj) must be taken as the read-

ngs for the mercury column. Pres-

>ures less than atmospheric may be

obtained by having the closed end of

he glass tube uppermost. Provided

he glass tube be of uniform bore,

he volume of enclosed air is propor-
ional to the length of the air c'olumn,

bnd its pressure is obtained by adding
o the atmospheric pressure the corre-

sponding reading (h%
- h^ of the mer-

5ury column. The product P.V. will

oe found to be approximately constant,

md by plotting P. against V. a rect-

ingular hyperbola will be obtained, as

n Fig. XIVA.

Experiment VIIL Determinations

of the relationship between the pres-

sure and the volume of a given mass

pf gas, at constant temperature, may
Iso be made by using the more con-

FIG. xVi.--iJatvApptotus
venient form of apparatus shown in

(with Jolly's Air-bulb Attach- Fig. XVI. The air bulb attachment

ment). enables the same apparatus to be used

as Jolly's constant volume air ther-

mometer, which will belreferred to in the next chapter.

Both in Experiments VII. and VIII. the air, or other gas, should

be carefully dried by connecting the containing tube to a tube con-

taining calcium chloride, or other suitable drying agent, for some time

previously to performing an experiment.
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32. Compressttjjlity, and the Bulk Modulus of Elasticity. Now, in

accordance with^the kinetic theory, we may regard matter as built

up of numerous small particles separated by interspaces, and, conse-

quently, on compression these particles are brought closer together.
We define the compressibility of any fluid, whether gaseous or liquid,

in the following manner :

Consider a volume, V, of the fluid subjected to a pressure, P.

Let 8V and 8P be corresponding small increments in the volume and

pressure, 8V being, of course, negative if 8P is positive.
- 8V .

- 8V
Then

^r
is termed the compression, and ,. p is termed the

compressibility.
The reciprocal of the compressibility is defined as the bulk

modulus of elasticity, E.
- V SP

That is E = -
Jp-

It should be noted that the compression, compressibility, and

elasticity are not constant quantities, but depend upon the initial

values of V. and P.

For a gas which obeys Boyle's Law, we have

P.V. = (P + 8P) (V + 8V),

if the temperature be constant.

.-. P.V. = P.V. + P. 8V. + V. 8P. + 8P. 8V.

... P.8V = -V.SP,

since 8P. 8V. is negligible when the change is made sufficiently

small.
- V. 8P.

Whence Ei80 .

= ^
* = P-

Hence if a gas obeying Boyle's Law be compressed isothermally,
its isothermal elasticity is equal to its pressure.

If, however, the gas be compressed adiabatically, the relation

between its pressure and its volume is given by the equation

constant.

.-. P.Vv. * (P + 8P) (V + 8V)*,

= (P + 8P) (V* + y . V*- 1
. 8V + negligible terms).

.-. y.P.Vv^.SV. = - VY.8P, the term y.Vv-
1

. 8P. 8V. being negli-

gible.

V. 8P.
Whence Ej^ia.

= : =
y PI
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Thus the adiabatic elasticity of the gas is equal to y times its

pressure. This was the result previously employed in determining
the value of y from the velocity of sound in a gas ( 26).

The values of the isothermal and adiabatic elasticities may be

more readily obtained as follows :

For an isothermal compression, P.V. = constant.

/. log . P + log . V = constant.

Differentiating, we have

+ - o
"P

+ V
~ Ul

P= P>

For an adiabatic compression, P.Vy . = constant.

.-. log . P -f y . log . V constant.

Differentiating, we have

d?
}
y.dV

p + y -0.

V. dP -p= 7 *.

33. Deviations from Boyle's Law. Despretz, in 1827, first showed
that for certain gases Boyle's Law was only approximately true.

He compressed several different gases in barometer tubes of equal

length standing in the same reservoir of mercury by enclosing the

apparatus in a large vessel full of water and applying pressure by
means of a screw. The level of the mercury Was initially the same
in each tube, but, as the pressure was increased, it was observed that

the gases were unequally compressed the more easily liquefiable

gases, such as ammonia and carbon-dioxide, being compressed more
than air, whereas, at higher pressures, hydrogen was found to be

slightly less compressible than air. Consequently, some of the gases,
at any rate, did not strictly obey Boyle's Law.

Experiment IX. Several glass tubes of uniform bore are sealed at

one end, and are all out to the same length. They are then filled

with different dry gases e.g. air, carbon-dioxide, ammonia, and

sulphur-dioxide and are fixed with their open ends at the same

depth beneath the surface of the mercury in the reservoir of an Oer-

sted's Piezometer (see Chapter VII., Fig. LV.). The mercury is

readily brought to the same level in each of the tubes by tilting the

latter, in a larger vessel of mercury, and allowing a little of the en-

closed gases to escape or, better, by enclosing the mercury reservoir
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and tubes in the Deceiver of an air-pump, and slightly exhausting, so

that a little of tfie contained gas may escape from each tube. The

mercury will then rise to the same level in each tube when the

pressure in the receiver is again raised to atmospheric. The Piezo-

meter is then filled with water, and pressure applied by means of the

pump. It will be readily observed that the sulphur-dioxide and
ammonia are more compressible than the carbon-dioxide, and that the

latter is more compressible than the air. If the water in the Piezo-

meter be cold, the sulphur-dioxide and ammonia may easily be

liquefied at moderate pressures, and the respective pressures at which

liquefaction takes place, at the temperature of the water, can be de-

termined with sufficient accuracy by assuming that, for moderate

pressures, the air strictly obeys Boyle's Law. For this purpose the

tube containing the air should be calibrated so that the change of

volume may be directly observed, and sufficient mercury poured into

the reservoir to make the level of the mercury inside and outside the

tubes the same before the Piezometer is filled with water. The
initial volume of air, at the atmospheric pressure, is then noted.

Under these circumstances it is unnecessary for the Piezometer to be
fitted with a pressure gauge.

When a given mass of a gas is submitted to high pressures, the

relative accuracy with which its volume can be determined decreases

as the pressure increases. Twenty years after Despratz's experiments,
Kegnault carried out an investigation on the relation between the

pressure and volume of a number of different gases at pressures

ranging from the atmospheric up to about 30 atmospheres, and, by
progressively increasing the quantity of gas undergoing compression,
he was able to attain a uniform degree of accuracy in the measure-
ments of the volume.

A given quantity of the dry gas was enclosed in a glass tube,
connected to a long manometer tube and also to a pump, and was
surrounded by a water-jacket in order to maintain a constant

temperature. The pump and connecting tube were filled with

mercury, and the level of the mercury was initially adjusted to be the
same in the glass tube containing the gas and in the manometer.

Mercury was then pumped in until the volume occupied by the gas
was reduced to half the initial volume, and the pressure of the en-

closed gas was obtained by adding to the Barometric pressure the

pressure due to the difference in level between the mercury in the

tube containing the gas and in the open manometer tube.

More of the dry gas was now pumped in under this pressure,
until the original volume was restored, and the mercury pumped in

until the volume was again reduced to half the initial volume, and a
new reading of the pressure obtained.

By proceeding in this manner, Eegnault showed that none of the

gases with which he experimented strictly obeyed Boyle's Law. In
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general, he found that for pressures between 1 and 30 atmospheres,

the product P.V. decreased as P. increased, but, in the ase of hydrogen,
the opposite result was obtained, P.V. increasing directly with the

pressure.
In 1850, Natterer showed that, in the case of air and nitrogen,

the product P.V. reached a minimum value at a certain pressure, and

that, at higher pressures, P.V. increased as the pressure increased.

Thus, at high pressures, these gases behaved similarly to hydrogen.
Further investigations, at very much higher pressures, were

carried out by Amagat, and by Cailletet, in 1870. Amagat employed
a steel manometer tube, 300 metres in length, which passed up the

shaft of a mine. The lower end of the manometer tube was con-

nected to a closed vessel containing mercury, and the mercury could

be forced up the tube by
-means of a large screw working into
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this vessel. A calibrated tube, closed at its upper end, was also con-

nected to the mercury container, and this tube was filled with dry

nitrogen, and water-jacketed in order to maintain it at a constant

temperature. In this manner the volume of the nitrogen at various

pressures was obtained, and the nitrogen tube could subsequently be

used as a pressure gauge in carrying out experiments with other gases.

Cailletet also worked at the bottom of a mine, using a manometer
tube 250 metres in length.

Figs. XVII., XVIII., XIX., and XX. show some of Amagat's
results. In these figures the products P.V. are taken as ordinates and

the pressures (in atmospheres) as abscissae. The temperature for any

particular experiment is shown by the number on the corresponding
curve.

In the case of nitrogen (Fig. XVIII.) it will be seen that the

pressure corresponding to the minimum value of the product P.V,
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diminishes with rfse in temperature, whereas for ethylene (Fig. XIX.),
the opposite result is observed. Carbon dioxide was found to behave
in a similar manner to ethylene, and Amagat showed that, at a

certain temperature, the pressure corresponding to the minimum
value of P.V. was a maximum, and that, at higher temperatures, the

pressure corresponding to the minimum value of P.V. diminished.

This is 'clearly shown in Fig. XX., where the dotted curve passing

through the minimum points possesses a parabolic form.

At the highest temperature shown for nitrogen viz. 100'1 C.

the sag in the curve corresponding to the minimum value of P.V. has

practically disappeared.
In the case of hydrogen (Fig. XVII.), P.V. increases with the

pressure at all the temperatures shown in the figure, and we may
assume that this is probably due to the fact that, at ordinary tempera-
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tures, hydrogen is much farther from its critical temperature than the

other gases (vide 34). It is to be anticipated that, at sufficiently
low temperatures, the curves for hydrogen would resemble those for

nitrogen or carbon-dioxide.

In a series of later experiments, Amagat employed pressures up
to 3,000 atmospheres but it is extremely probable that, at such high

pressures, a considerable amount of the gas condenses upon the walls

of the containing tube, and some of the gas may even be forced into

the walls themselves. Consequently the results of experiments at

very high pressure must be accepted with reservation.

At very low pressures, the gas which is condensed on the walls of

the containing tube gradually comes off from the latter, and it is,

therefore, a matter of great difficulty to determine the existence of any
deviations from Boyle's Law. Such deviations, however, if they exist,

are very small indeed. Another source of error at low pressures arises
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from the vapour pressure of the mercury over which the gas is com-

pressed : at high 'pressures the effect due to the vaf>our pressure is

negligible.

Amagat's results agree fairly well with the relation between the

pressure and the volume of a given mass of gas deduced by van der

Waals. This relationship will be discussed in Chapter VI.

We may now summarise the experimental evidence which has, so

far, been considered, and state that

(a) At sufficiently high pressures the product P.V. for all gases
increases with the pressure.

(b) At low pressures the

product P.V., in general, de-

creases as the pressure in-

creases. Probably this is true

for all gases at sufficiently
low temperatures.

(c) At a certain value of

the pressure the product P.V.

is, therefore, a minimum, if

the temperature be sufficient-

ly low the sag in the curve

becoming more and more

fully developed as the tem-

perature approaches the criti-

cal temperature (vide 34).

(d) At low temperatures,
the pressure corresponding
to the minimum value of

P.V. increases with rise in

temperature, and at higher

temperatures it decreases.

(e) As the temperature is

progressively raised, the de-

crease in P.V., at low pressures, with rise in pressure and hence
the minimum values of P.V. become, in all cases, less and less

noticeable on the curves.

34. Andrews' Experiments. Eeference has already been made, in

Experiment IX., to the liquefaction of certain gases. We shall now
discuss more fully both the conditions under which such liquefaction

may take place, and the relationship which exists between the liquid
and gaseous states.

It will be convenient to consider, first, the classical experiments
carried out by Andrews in 1863, for these experiments first supplied
a definite explanation of many of the more important phenomena
connected with the change of state from vapour to liquid and vice

versa.

40 80 120 160 200 240 280 320

Fia. XIX. Ethylene.
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Andrews employed a tube similar to that represented in Pig. XXI.
AB was a thick willed capillary tube which was fused to a tube BC
of about 2-5 mms. diameter. The whole tube was accurately cali-

brated, after which a current of dry carbon-dioxide was passed through
it for many hours, until the amount of air mixed with the carbon-

dioxide issuing from the tube was found to be very small and constant.
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This amount of air, which constituted about Ol per cent, to 0'2 per
cent, of the whole gas, was determined, and allowed for in the subse-

quent experiments.
The capillary tube was then sealed off at A, and the open end D

placed below the surface of some mercury. By heating the tube, and
then allowing it to cool, a small stopper of mercury was drawn into

the lower part, and the whole apparatus was then placed inside the
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receiver of an air pump and the pressure reduted, so that about

quarter of the enclosed gas escaped. On Igain raising^
theone

pressure in the receiver to the atmospheric pressure mercury filled

the tube DC and part of CB.
The glass tube was next fixed inside a strong copper compression

chamber with the capillary tube, AB, projecting outside, and the

copper chamber being filled with waterpressure was applied by
means of a steel screw. The volume occupied by the carbon-dioxide

B

rc

D
PIG. XXI. FIG. XXII. Andrews' Apparatus

(simple form).

was determined by observing the position of the mercury surface in

the capillary tube, and the applied pressure was measured by having
a similar compression apparatus containing air instead of carbon-

dioxide, with a copper tube connecting the two compression chambers.

The pressures thus obtained from the compression of the air in the

second tube were very approximately correct, since, under these con-

ditions, the deviation of air from Boyle's Law is only small. The

change in the internal volume of the tube^ under pressure may also

be treated as negligible. Each of the tubes was surrounded by a
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water jacket, the temperature being kept constant throughout for the

air, whereas the Carbon-dioxide was maintained at any temperature
desired.

Fig. XXII. illustrates a simple form of Andrews' compression
apparatus. The connecting copper tube is not shown in the figure.

Volume
FIG. XXIII. Carbon-dioxide Isothermals (Andrews).

The results obtained by Andrews are shown in Fig. XXIII. which

gives the isothermals for carbon-dioxide. In the case of the 13*1 C.

isothermal it was found that, at low pressures, the carbon-dioxide

although somewhat more compressible than a perfect gas approxi-

mately obeyed Boyle's Law, as shown by the curve AB. When the

5
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pressure reached 48*89 atmospheres it was observed that liquefaction

commenced, and the pressure now remained constant while -the

volume was diminished, until all the carbon-dioxide had assumed the

liquid state. This is indicated by the horizontal line BC in the

diagram, the ordinate of which is, of course, the saturation vapour

pressure at 13*1 C. Any further reduction in the volume of the

liquid carbon-dioxide required a very considerable increase in the

pressure, and the remainder of the isothermal, CD, approximated to a

straight line, slightly inclined towards the axis of pressure.

The work which must be expended in order to completely convert

the saturated vapour into liquid, at 13-1 C., is represented by the

shaded area in Fig. XXIII. In Andrews' actual results it was noticed

that, owing to the small quantity of air which was present, the

pressure increased slightly during the condensation of the carbon-

dioxide, so that the line BC was not exactly straight and parallel to

the axis of volume, and, also, the corners at B and C were slightly

rounded. The 21'5 C. isothermal exhibited similar characteristics,

but here liquefaction did not commence until the pressure had risen

to approximately 61 atmospheres.
In the case of the 31' 1 C. isothermal, however, no discontinuity

corresponding to the coexistence of the gaseous and liquid states was

observed, and the carbon-dioxide remained homogeneous throughout
the compression, the diminished slope at one part of the curve being
the only indication of what, at lower temperatures, represented a

change of state. The higher isothermals resembled, in general, the

31*1 C. isothermal, but the diminution in the slope at one part of the

curve became less and less conspicuous as the temperature was raised,

and practically disappeared at 48*1 C., the isothermal corresponding
to the latter temperature approximating to that of a perfect gas.

It was found by numerous trials that the highest temperature at

which the carbon-dioxide could, by pressure, be visibly reduced to the

liquid state was 30*92 C., and this temperature is therefore termed

the critical temperature for carbon-dioxide, and the isothermal cor-

responding to this temperature the critical isothermal.

The behaviour of many other substances has been similarly studied

by Andrews and by other investigators, and the same general results

obtained in all cases.

The dotted curve in Fig. XXIII., which passes through the ex-

tremities of the horizontal portions of the isothermals, includes within

its area all the conditions of coexistence at a given temperature of the

gaseous and liquid states. This curve is called the border-curve, and
it was suggested by Andrews that the term vapour should be applied
to the condition of a substance below the critical isothermal and to the

right of the border-curve, and the term liquid to the substance when
below the critical isothermal and to the lef j of the border-curve, and
that the term gas should only be given to a substance when above the

critical isothermal.
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In the case of & vapour, the decrease in volume with increase in

pressure is greaifer than in accordance with Boyle's Law, i,e. P.V.
diminishes as P. increases, whereas for a liquid the reverse is true,
and P.V. increases as P. increases.

For isothermals above the critical temperature it is found that for

the right-hand portion of each curve P.V. diminishes as P. increases,

and, having reached a minimum value, P.V. then increases as P. is

further increased. The point where P.V. has its minimum value in

a gas may thus be regarded as indicating what at temperatures below
the critical would correspond to a change of state, and the initial

decrease, and subsequent increase, in the value of the product P.V.,
with increase in P., may be taken as a survival of the vaporous and

liquid states. The investigations of Regnault, Natterer, and Amagat,
which have been previously described, thus acquire a fuller significance.

The vertex of the border-curve, V, is termed the critical point.
For carbon-dioxide it corresponds to a critical temperature of 30'92

C., and a pressure, called the critical pressure, of about 73 atmospheres.
The critical volume is sometimes defined as the ratio of the volume of

a given mass of the gas at the critical temperature and critical pressure
to the volume of the same mass of the gas at C. and 76 cms., and
sometimes as the volume of unit mass of the gas at the critical

temperature and pressure. Adopting the former definition, the critical

volume for carbon-dioxide is, approximately, 0-0066, and, adopting the
latter definition, it is approximately 3'36 c.cs.

The critical isothermal just touches the border-curve at the critical

point, and since at that point the isothermal becomes horizontal it is

to be anticipated that in the neighbourhood of the critical point very
small changes in pressure will correspond to considerable changes in

the volume, and, consequently, in the density of a gas. Andrews, in

fact, observed that at temperatures slightly above the critical tempera-
ture and for pressures near the critical pressure any change in the

pressure gave rise to flickering movements throughout the tube, some-
what similar to those observed when liquids of different densities are

mixed together. These flickering movements are due to relatively

great local changes in the density of the gas. It should be noted, in

this connection, that the weight of the gas will exercise a considerable

influence when near the critical point, since the lower layers of gas
will be under a higher pressure, and will have, in consequence, a

considerably higher mean density than the upper layers in the tube.

Andrews further observed that a substance could be transformed
from the vaporous to the liquid state, or vice versa, without visible

condensation or vaporisation taking place. The manner in which
such a transformation may be effected will be readily understood by a

study of Fig. XXIII.
Let us start with the carbon-dioxide in Andrews' compression

apparatus at a temperature of 21*5 C., and at 55 atmospheres
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pressure. Its condition will then be represented by the point E, and
it will be in the state of vapour. If the temperature be raised to

48*1 C., while the volume remains unchanged, the pressure will rise

to approximately 68 atmospheres, and the carbon-dioxide will now be

in the gaseous condition represented by the point F no discontinuity
in the properties of the carbon-dioxide being observed when crossing
the critical isothermal and changing from the state of vapour to that

of gas.
Next compress the gas isothermal!y to any pressure greater than

the critical pressure, so that it reaches a point such as G on the

48-1 C. isothermal. 1

Now cool the gas to its initial temperature of 21*5 C,, keeping the

pressure constant by reducing the volume by means of the steel com-

pression screw. The carbon-dioxide will now have reached the point

H, and will, consequently, be in the liquid state, but no discontinuity
will have been observed when crossing the critical isothermal and

changing from gas to liquid.
The carbon-dioxide is clearly a vapour at E, for if it be compressed

isothermally condensation will commence at K, and it is equally

clearly a liquid at H, for on reducing the pressure at constant

temperature ebullition will commence at L, with the appearance of a

definite liquid meniscus. Above the critical temperature the carbon-

dioxide is in the gaseous state. Yet the contents of the compression
tube have remained perfectly homogeneous during the transformation

from E to H.
Andrews was thus led to the conclusion that the vaporous and

liquid states of matter are "
only distant stages of a long series of

continuous physical changes."

35. Oagniard de la Tour's Experiment. It is apparent from Fig.
XXIII. that, as the temperature is raised, the horizontal portions
of the isothermals grow shorter and shorter, and, consequently, the

volume occupied by the saturated vapour approaches more nearly to

the volume of the liquid when just completely condensed. At the

critical point the horizontal portion vanishes, and the volumes of

vapour and liquid coincide. Thus the densities of the vapour and

liquid become equal at the critical point. The approach of the

vapour and liquid states until they coincide at the critical point
was first observed, in 1822, by Cagniard de la Tour. He employed
a sealed tube of the form shown in Fig. XXIV. The end A con-

tained air, which served to indicate the pressure, and the end B
contained a suitable quantity of alcohol and its vapour, the interven-

ing space being filled with mercury. On raising the temperature of

1 If the gas be compressed isothermally until the volume corresponding to G is

less than the volume of the carbon-dioxide when completely liquefied at 21*5 0.

i.e. is less than the volume corresponding to L it may next ty cooled at constant*

volume to its initial temperature,
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B ebullition did hot occur, but the alcohol evaporated silently and

its vapour pressure increased, compressing the air in A, Cagniard
de la Tour observed that, as the temperature was progressively raised,

the meniscus between the alcohol and vapour grew flatter, indicating

a diminution in the surface tension of the liquid, and that, finally, at

about 243 C., the meniscus completely lost its curvature grew in-

distinct and disappeared. The space above the mercury at the end

B was now apparently filled with a perfectly homogeneous substance.

Other liquids were also investigated, and were found to behave in a

similar manner.
This apparently sudden vaporisation at a certain temperature

receives a clear explanation from Andrews' researches. For, on again

referring to Fig. XXIII.
,
it will be seen that

if, for example, we start with the carbon-

dioxide in the condition represented by the

point W, where it consists partly of liquid
and partly of saturated vapour, and then heat

it at constant volume, it will pass along the

line WV, and, on reaching the critical point,

both the liquid and vapour phases will pass

directly into the gaseous state.
1

If the heating be uniform, the vapour pres-
sure exerted upon the surface of the liquid

at each point along the line WV will be the

saturation pressure at the corresponding tem-

perature, and, therefore, ebullition will not

occur.

36. Phenomena at the Critical Point. Ex-

periment X. Many of the phenomena ex-

hibited by fluids in the neighbourhood of the
^

critical point may be readily observed by means

of the simple apparatus illustrated in Fig. XXV. A short and thick

walled glass tube, of 3 or 4 mms. internal diameter, containing a

liquid and its saturated vapour, is supported inside a large test-tube

by means of a wire framework. The relative volumes of liquid and

vapour inside the tube must initially be adjusted within fairly narrow

limits for the reasons explained below. The test-tube is nearly filled

with a liquid that boils at a temperature higher than the critical tem-

perature of the liquid inside the sealed tube, and is gradually heated.2

1 In Cagniard de la Tour's experiments the volume occupied by the liquid and

vapour in B (Fig. XXIV.) increased slightly with rise in temperature, owing to

the compression of the air in A (Fig. XXIV.), and, consequently, the point W
(Fig. XXIII.), corresponding to the initial condition of the liquid and vapour,

should be taken slightly nearer 0.
.

2 The sealed tube may, conveniently, contain carbon-dioxide, sulphur-dioxide,
or ether. For the first-named the test-tube can be filled with water, and, in the

other two cases, with glycerine or paraffin-wax.



70 THE PBOPEBTIES OF MATTES

If, now, the liquid inside the sealed tube occupy initially a relatively

large volume compared with that of the saturated vapour, it will be

observed that, on raising the temperature, the increase in volume of

the liquid due to expansion will exceed the diminution due to evapora-

tion, so that the liquid will soon completely fill the tube, and, if the

temperature be further raised, the pressure will increase so much that

the tube will probably burst. If, on the other hand, the volume of

the liquid be initially small the reverse result will be obtained, the

whole of the liquid vapourising before the critical temperature is

reached* These changes may be conveniently followed out with the

aid of Fig. XXIII. However, if the quantity
of liquid inside the sealed tube be neither too

large nor too small, the liquid meniscus will

remain visible until the critical temperature is

attained, and it will be observed that, on ap-

proaching the critical temperature, the curvature

of the liquid surface decreases, until, at the critical

point, the meniscus becomes quite flat and fades

away, being replaced by a broader band of mist

which vanishes completely at a slightly higher

temperature. The tube is now apparently filled

with a perfectly homogeneous substance. On

allowing the tube to cool the mist reappears,
and then a very thick cloud, from which the

meniscus suddenly takes form.

The appearance of flickering strisa through-
out the tube is also very noticeable when the

tube has nearly cooled to the critical tempera-
ture. The phenomenon of critical opalescence
at and near the critical point, which has been

investigated by Travers and Usher, may further

be observed, If the meniscus disappear near

the bottom of the tube, it will be seen that, at

a temperature slightly lower than the critical, the

j.^^ below the ^enis<>us becomes opalescent,

having a brown colouration by transmitted light, and a white by ne-

flected
light. When the meniscus vanishes the opalescence gradually

iffuses throughout the tube. If, however, the meniscus disappear
near the top of the tube, the opalescence appears above the meniscus

in the vapour phase. When the meniscus remains approximately

stationary near the middle of the tube, the fluid phase becomes uni-

formly opalescent throughout, at a temperature slightly below the

critical, but in this case the opalescence is much less marked. In all

cases the opalescence vanishes at a temperature slightly above the

critical.

It should be noted that it is only at the level where the meniscus

vanishes that the density within the tube is the true critical density.

FIG.
for demonstrating cri

tupl phenomena.
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Higher up in the tube the density is slightly lower, whereas lower
down it is greater*. This, as has already been pointed out, is due to

the weight of the fluid within the tube. Thus if the meniscus finally
vanish near the top of the tube the average density of the fluid will

exceed the critical density, and, conversely, if the meniscus vanish
near the bottom of the tube the average density will be less than
the critical, It is owing to this that the relative volumes of the

liquid and vapour initially contained inside the tube can vary within

narrow limits, and the critical phenomena still be obtained, for, at

the critical temperature, the fluid inside the tube does not merely re-

present the condition of one point on the critical isothermal, but cor-

responds to a certain length of this isothermal, and if this length
include the critical point the critical phenomena can be observed.

Some uncertainty still exists, however, as to the actual state of a

fluid when at, or slightly above, its critical temperature. It has been

urged by MM. Cailletet and Golardeau, for example, that the liquid
state persists above the critical temperature, and the following experi-
ment would appear to be confirmatory of this point of view.

A very small quantity of iodine was sublimed inside the upper end
of a compression-tube, and carbon-dioxide was then compressed in

this tube, as in Andrews' experiments, the mercury being protected
from the action of the iodine by means of a layer of sulphuric acid.

Now, liquid carbon-dioxide will dissolve iodine, forming a violet-

coloured solution, but the vapour of carbon-dioxide exerts no such
solvent action. Consequently, when the carbon-dioxide was com-

pressed, and partially liquefied, the liquid carbon-dioxide, on reaching
the level of the iodine, became coloured violet, the vapour remaining
colourless. On now raising the tube to the critical temperature, the

meniscus was observed to vanish in the usual manner, but the coloura-

tion remained in the portion of the tube which had previously con-

tained the liquid carbon-dioxide, and did not spread to the upper part
of the tube. Further, the absorption spectrum of iodine when in solu-

tion is unlike its absorption spectrum when in the state of vapour, but

spectroscopic examination of the tube revealed no change on passing

through the critical point. Consequently the iodine must be regarded
as still in solution, and hence it would appear that the liquid state can
exist even above the critical temperature. This supports the view

suggested previously by Eamsay in 1880, and by M. Jamin in 1883,
that at the critical temperature the surface tension of the liquid be-

comes zero, and, therefore, the meniscus vanishes, but that the liquid
state still persists above the critical point. It was inferred by them
that the various phenomena observed at the critical point could be ac-

counted for on the assumption of the equality of the liquid and vapour
densities at that point, but the fact that the meniscus vanishes implies
only that the molecular attraction is equal in the liquid and vapour
states, and it does not necessarily follow that the densities of these
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states are identical. Conversely, if the equality ,of the liquid and

vapour densities at the critical point be postulated, it does not follow,

of necessity, that the molecular attraction is also equal and that the

meniscus will disappear. MM. Cailletet and Colardeau concluded

that the vapour and liquid densities were not necessarily equal at the

critical point, but that the vanishing of the meniscus merely implied

the equality of molecular attraction, the vapour and liquid then be-

coming mutually soluble in all proportions. The experiment
^

with

iodine, previously described, was regarded as evidence that liquid

carbon-dioxide can exist in invisible solution in its own gas at

temperatures above the critical, and can only become visible as a

liquid phase when cooled below that temperature.

37. The Mutual Solubility of Liquids. The mutual solubility, or

miscibility, of liquids supplies an analogy. If we start with any pure

liquid and add to it a second liquid with which it is only partially

miscible at the ordinary temperature, the second liquid will dissolve

in the first and form a homogeneous solution until the concentration

reaches some definite value. Beyond this value the second liquid

ceases to dissolve, and any further addition now causes the formation

of another liquid phase consisting of a solution of the first liquid in

the second, the two phases being separated by a distinct meniscus.

If the temperature be raised, the second liquid phase will disappear,

if the solubility increase with rise in temperature, and a further addi-

tion of the second liquid must be made before two liquid phases

reappear. If the pressure be kept constant, the concentration of

the components in each of the liquid phases will, at any particular

temperature, be constant for a given pair of liquids. These two

corresponding solutions, at any temperature, are known as conjugate

solutions. On changing the temperature, the composition of the two

solutions will change, and thus two solubility curves may be obtained

showing the respective solubilities of the first liquid in the second,

and of the second liquid in the first. Now, when one liquid dissolves

in another at any particular temperature heat may be evolved or

absorbed, and, therefore, in accordance with Le Chatelier's theorem

(vide Appendix B), the solubility may decrease or increase with rise

of temperature.
M. Duclaux, in 1876, and Alex6eff, in 1886, found that although

certain pairs of liquids were only partially miscible at the ordinary

temperature, yet, on raising the temperature, the mutual solubility

increased until, at a certain temperature, they became miscible in all

proportions. The temperature corresponding to such infinite mis-

cibility is termed the critical solution temperature.

In such cases the concentration-temperature curve possesses the

form shown in Fig. XXVI., which illustrates the case of phenol and

water. It will be seen from this figure tha,t, starting at the ordinary

temperature, the solubility of phenol in water, and of water in phenol,
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increases with riae in temperature, until, at about 684C

C., the two

solubility curves* meet, and, consequently, above this temperature

phenol and water are miscible in all proportions. The critical solu-

tion temperature is thus 68*4 C. and the corresponding critical

concentration is 36'1 per cent, of phenol.

It was further observed by Eothmund that, in several cases, the

mutual solubility increased on

lowering the temperature, and

that at a lower critical solution

temperature infinite miscibility

was attained. Fig. XXVII. illus-

trates the concentration-tempera-
ture curve for triethylamine and 5
water.

Finally, it was shown by
Hudson for nicotine and water,

and by Flaschner and McEwen
for 2-methylpiperidine and water,

that both an upper and a lower Temperature
FIG. XXVI.

68-4C.

critical solution temperature can

be experimentally realised. In the

case of nicotine and water the upper and lower critical solution tem-

peratures were 210 C. and 61 C., respectively ; for 2-methylpiperidine
and water the correspond-

ing temperatures were
found to be 227 C. and
79-3 C.

Consequently for these

two pairs of liquids the

complete solubility rela-

tions are represented by
closed curves of an ellip-

soidal form, and, in all

probability, this is the

general form of the con-

centration - temperature
curve for all pairs of

liquids.
The concentration-

temperature curve for

30-0-

18-5C. Temperature
FIG. XXVII.

2-methylpiperidine and water is shown in Fig. XXVIII.

If two liquids, which at the ordinary temperature do not mix in

all proportions, be shaken up together, 'they will in general separate

on standing into two distinct layers. On raising, or lowering, the

temperature, one of the layers will usually disappear, and a condition

corresponding to a point on the solubility curve for one of the liquids
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will be attained. If, however, the two liquids be taken in the propor-
tion corresponding to the upper critical concentration, and the tem-

perature be gradually raised, it will be observed that the meniscus

separating the liquids becomes flatter, and finally disappears at the

critical solution temperature, a homogeneous mixture being obtained.

On again cooling to the neighbourhood of the critical solution tem-

perature flickering movements may be observed, and, on reaching the

critical solution temperature, separation into two layers occurs. The
same phenomena occur when a mixture corresponding to the lower
critical concentration is cooled below the lower critical solution tem-

perature. A marked critical opalescence may often be noticed. In
the case of 2-methylpiperidine and water this opalescence was very

79-3*C.
iqo'C. iyyc iy>c 290*0 230*0.

FIG. XXVIII. Temperature.

strong in the vicinity of the lower critical solution point, but was not
observed at the upper point.

Experiment XL The concentration-temperature curve for \2-

methylpiperidine and water may be determined in the following
manner. In order to obtain the lower half of the curve, definite

quantities of the base and water are introduced by means of a capillary
pipette into a narrow tube, which is blown out at one end into a small

bulb, and drawn out at the other end into a capillary (Tig. XXIX.).
The mixture having been weighed, the capillary is sealed, and the

temperature determined at which separation into two layers takes

place. The capillary is then broken off at the end, and, after the
addition of a further quantity of water, the tube is again sealed and
used for another determination. The determination of the upper half

of the curve may next be carried out in small tubes of hard glass of
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about 5 mms. external, and 3 mms. internal diameter (Fig. XXX.).
These tubes areMrawn out into thick capillaries at one end, and
should only be used for one determination, although, even at 230 C.,

the glass is only very slightly attacked by the base. The 2-methyl-

piperidine for this experiment may conveniently be prepared by the

reduction of a-picoline with sodium and absolute alcohol.

A similar investigation may be carried out with phenol and water,

using tubes of the form shown in Fig. XXIX, but in this case, only
the upper half of the curve can be experimentally realised.

It thus becomes evident that two liquids which possess different

densities may mix completely at a given temperature, if taken in

suitable proportions, and that above or below the respective upper or

lower critical solution temperatures they will mix completely if taken
in any proportions. Again, two liquids which possess the same

density may not be completely miscible,
as is illustrated in Plateau's experiments
(vide Cap. VIII.).

Consequently, as stated before, the

mutual solubility of two fluids does not

necessarily imply equality of density, nor
does equality of density necessarily deter-

mine miscibility, and therefore, as pointed
out by MM. Cailletet and Colardeau, it

must not be assumed that a liquid and its

pure vapour become of necessity identical

in all respects at the critical point, the

critical phenomena merely indicating that the liquid and vapour have
become mutually soluble in all proportions.

Measurements of the density of a liquid and of its saturated vapour
show that the density of the former decreases and the density of the

latter increases as the temperature is raised, until approximate equality
is attained in the neighbourhood of the critical point. It is a matter
of some difficulty to make accurate determinations of the densities

near the critical point, on account of the considerable changes in

volume produced by relatively small variations in the pressure, but

the results of experiments by a number of different investigators
indicate that, at the critical point, the liquid and vapour densities

accurately coincide.

The Law of Cailletet and Mathias. If the densities of the liquid
and saturated vapour be plotted as abscissae, and the temperatures as

ordinates, a curve of the form shown in Fig. XXXI. is obtained.

This curve represents the case of normal pentane.
Cailletet and Mathias pointed out that if the means of the den-

sities of the liquid and saturated vapour be plotted against the

j v

L_A

Q xxiX FIG XXX
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corresponding temperatures the result is a straight line. This is

shown as AB in the figure. The Law of Cailletet*and Mathias has

been found to hold in most cases with fair accuracy. The point A in

the figure is the critical point for normal pentane.

Referring again to Fig. XXVIII., if we start with a 3 per cent,

solution of 2-methylpiperidine in water, at 85 C., its condition will

be represented by the point A. On adding more of the 2-methyl-

piperidine, it will dissolve, and the concentration of the solution will

change along the line AB. At B the solution is saturated, and any
further addition will cause the formation of a second liquid phase

consisting of a solution of water in the 2-methylpiperidine, and having
a composition corresponding to the point C. If more and more of the

190C -

170C

150'C

130C
0-1 0-2 B 0-3 0-4

Density
FIG. XXXI. Normal Pentane.

2-methylpiperidine be added, the composition of the two liquid phases
will remain unchanged, but the amount of the second phase will

increase, and the amount of the first phase will decrease, until the

first phase disappears. The concentration of the remaining phase now

corresponds to the point C, and any further addition of 2-methyl-

piperidine will merely cause the concentration of the solution to change

along the line CD. It is possible, however, on reaching the point B,
to dissolve still more 2-methylpiperidine in the water, and so to

experimentally realise portions of the dotted line BC. The solution is

then supersaturated, but an abrupt separation into two layers of the

composition corresponding to B and C takes place if the supersatura-
tion be increased to any considerable extent. Similarly, portions of

the dotted line BC in the neighbourhood of C Correspond to a super-
saturated solution of water in 2-methylpiperidine. In the determina-
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tion of the concentration-temperature curve for 2-methylpiperidine
and water supers&turation was actually obtained at a few tempera-
tures.

A minimum value for the solubility of 2-methylpiperidine in

water occurs at about 90 C., and a minimum value for the solubility
of water in 2-methylpiperidine at about 160 C.

It will be seen that, starting from the condition A we can pass to

a condition such as E without any appearance of two distinct liquid

phases, by following a path of transformation such as AFGE or AHIE.
For such a transformation the temperature is first lowered, or raised,

beyond the critical solution temperature, and then, after the addition

of the necessary amount of 2-methylpiperidine, the original tempera-
ture is restored.

38. Q-eneral Conclusions. Keviewing the experimental evidence

which has been considered, we may conclude that, at the critical

point, both the molecular attraction and the density become equal
throughout the liquid and vapour phases, and that, consequently, the
two phases possess the same state of molecular aggregation and are

identical in every respect. The experiment with iodine and carbon-
dioxide which has been described may appear to be opposed to this

view, but in reality it merely shows that the carbon-dioxide which
as liquid possessed the power of dissolving iodine still retains the

power of holding it in solution at a temperature above the critical.

We may, indeed, regard the solution of iodine in the gaseous carbon-

dioxide as
"
super-saturated," and may assume that, if the iodine were

separated out, the carbon-dioxide would no longer have the power of

dissolving it again. Further, it must be pointed out that although, in

the case of two liquids of different density, infinite miscibility occurs
above or below the respective critical solution temperatures, yet, in

order to realise the actual critical solution points, it is necessary to

have two liquid phases present, and the concentrations, and conse-

quently the densities, of these phases become identical when each of

the respective critical solution points is reached.
Thus at the critical point of a pure fluid we have the vapour,

liquid, and gaseous states coinciding, and this coincidence must be

regarded not as an equilibrium of three different phases, as in the

case, for example, of ice, water, and vapour at the triple point, but as

an actual identity of the three states.

We have seen that no discontinuity occurs in passing across the
critical isothermal at pressures lower than the critical pressure i.e.

in the passage from vapour to gas, or vice versa and, also, that no

discontinuity occurs at higher pressures in the passage from gas to

liquid, or from liquid to gas. At the critical point the three states

coincide, and a fluid may, therefore, pass from any one of the
states to either of the others without any discontinuity in its pro-

perties.
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It should indeed be noted that the only essential difference between

a gas and a liquid is the possession by the latter of a definite surface

due to surface tension. In accordance with Laplace's theory of

capillarity (vide 113) we may assume that the attractive force between

two molecules in a liquid becomes insensible when the distance be-

tween the molecules exceeds a certain value. Thus a molecule of a

liquid situated at the surface of separation between the liquid and its

vapour is acted upon mainly by forces from the liquid side of the

surface, there being few, if any, molecules on the other side within

the range of molecular action. This lack of symmetry gives rise to

the phenomenon of surface tension. Within the liquid the molecular

attractive forces are symmetrically distributed, and are manifested

in the phenomenon of cohesion. At the critical point the molecular

attraction becomes equal throughout the liquid and vapour phases,

and there being no longer any lack of symmetry the surface of

separation disappears.
The close analogy between the concentration-temperature curve

for liquids and the border curve for a liquid and its saturated vapour
should also be borne in mind. On reaching a point such as B in

Fig. XXIII. separation of the liquid phase commences and the

pressure and density of the vapour phase remain constant while the

latter diminishes in amount until finally the vapour phase disappears,

leaving the pure liquid atC. Similarly, in Fig. XXVIII., on reaching
the point B, separation of the phase corresponding to C commences
and the concentrations of the phases B and C remain constant during
further addition of 2-methylpiperidine until, finally, only the phase C
is left.

We shall see later that the curves AB and DC in Fig. XXIII. may
be prolonged some distance inside the border curve without condensa-

tion or vaporisation taking place, corresponding to the respective

conditions of supercooling and superheating. The continuation of

the lines AB and EC inside the concentration-temperature curve in

Fig. XXVIII. has, similarly, been shown to correspond to super-

saturation.

It might be suggested, from analogy, that the border curve for a

liquid and its saturated vapour should also form a closed curve, and

that, consequently, there should exist a lower critical point at which

the vapour and liquid states again coincide. This would require the

liquid density to decrease and the density of the saturated vapour to

increase at low temperatures. It is significant that, in the case of

water, the specific volume increases progressively when cooled below

4 C. At present, however, there is not sufficient evidence to justify

the assumption of a lower critical point, and, in any case, it is

doubtful if it could be experimentally realised.
\

39. J. Thomson's Hypothesis.. In 1871, Professor James Thomson

published an account of an extension of Andrews' theory of the
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essential continuity of the liquid and vapour states. Thomson

suggested that *

^although there be a practical breach of continuity

in crossing the line of boiling-points from liquid to gas or from

gas to liquid, there may exist, in the nature of things, a theoretical

continuity across this breach having some real and true significance."

Eeferring to Fig. XXIII., Thomson pointed out that condensation

of the saturated vapour or ebullition of the liquid need not necessarily

commence at points such as B and C but that, under suitable con-

GT V
FIG. XXXII.

ditions, the vapour and liquid states may persist inside the area en-

closed by the " border-curve
"

without the occurrence of a partial

change of state. Thus, in a dust-free and unionised space a vapour
may be cooled below, or compressed above, its normal condensing
point without condensation occurring (vide Expt. LXXIX.). Con-

sequently the curves such as AB and A'B' (Fig. XXXII.) may be

prolonged along BE and B'E' these latter portions representing a

condition of supersaturation of the vapour.
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Similarly, a liquid may be heated considerably'above its boiling-

point without ebullition taking place, For example", water in a very
clean glass vessel may be heated, at the atmospheric pressure, to

106 C. without boiling occurring. Dufour even succeeded in heating

drops of water suspended in a mixture of linseed oil and oil of cloves

having the same density as the water to a temperature as high as

178 C., the pressure being the atmospheric. If ABCD represent the

100 C. isothermal for water, the pressure corresponding to the hori-

zontal portion BC being atmospheric, then, on heating water at

atmospheric pressure, and reaching the condition corresponding to

the point C, ebullition should normally commence. The water in

Dufour's experiment was heated at constant pressure and therefore

expanded along the line CB. On reaching a point such as IT the

temperature of the water was 178 C., but boiling had not begun.
H', consequently, must lie on the water portion of the 178 C. iso-

thermal, and if A'B'C'D' be this isothermal it must be possible to

continue D'C' downwards to meet BC in H'. Thus the curves such

as DC and D'C' may be prolonged downwards along CG and C'G'

and these portions correspond to the superheating of a liquid.

These latter portions may even extend below the line of zero

pressure, as in the curve C"G", in which case the liquid is under a

negative pressure or tension. The sticking of the mercury at the top
of a clean barometer-tube illustrates this condition, and other examples
are referred to in Chapter VII. ( 63).

In view, therefore, of the above phenomena of the supersaturation
of a vapour, and the superheating of a liquid, and also from the

assumption thxt all natural changes are essentially continuous, Thom-
son suggested thit the discontinuous portions of the isothermals such

as BC (Fig. XXXII.) should be replaced by continuous curves of the

form BEFGC. The general form of the isothermals as the critical

isothermal is approached from a higher temperature also suggest, by
analogy, that at temperatures below the critical the curves might be

of this nature.

For portions of the continuous curves such as GE the pressure
and volume increase simultaneously, and it is doubtful if such an

unstable condition is capable of experimental realisation. If it were

possible to take a substance through the transformation represented

by the curve ABEFGCD, it would pass from the state of vapour to

that of liquid without any separation into two distinct phases taking

place during any part of the change. In general, on reaching the

condition corresponding to a point such as K or L, in Fig, XXXII.,
sudden partial condensation, or vaporisation, occurs, and, if the

temperature be kept constant, the system changes to a condition

represented by a point such as M or N, on the horizontal line BC,
where both the liquid and vapour phases exist simultaneously in

contact with each other.

The phenomenon of bumping in superheated liquids illustrates the.
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change from the ^continuous portion C'G' of one isothermal to the
horizontal portkJh CB of a lower isothermal, the sudden evolution of

vapour producing a marked fall in the temperature.
We shall see in Chapter VI. that an extension of the Kinetic

Theory of Gases, developed by van der Waals, lead to equations for

the isothermals of a fluid which, when plotted graphically, agree in

general form with the continuous curves suggested by Thomson,
provided the temperature be less than a certain value. Above this

critical value the curves obtained by van der Waals are in fair agreement
with those found experimentally by Andrews for carbon-dioxide when
above its critical temperature.

1

?

40. The Liquefaction of Gases. A brief historical account of the

methods by which all the known gases have been liquefied will now
be given.

The earliest attempt at the liquefaction of gases appears to have
been made by Priestley in the latter part of the eighteenth century,
but the first substance, regarded under ordinary conditions as a true

gas, that was liquefied was chlorine. This gas was obtained in the

liquid state by Northmore in the year 1806, and subsequently, he

liquefied hydrogen-chloride and sulphur-dioxide.

Faraday, in March, 1823, also obtained liquid chlorine, by heating
chlorine octo-hydrate in one limb of a bent glass tube, the other limb

being immersed in ice, or in a freezing mixture. The chlorine

liberated by heating the octo-hydrate was thus liquefied by its own
pressure in the cold limb of the tube. In a similar manner, by heat-

ing substances which respectively yielded sulphur-dioxide, cyanogen,
and ammonia, Faraday succeeded in liquefying these gases, and, later,

by compressing the gas with a small compression pump, and, cooling
with a freezing mixture, he liquefied several other gases, such as

hydrogen-chloride, carbon-dioxide, sulphuretted hydrogen, and nitrous

oxide.

Bussy, in 1824, published accounts of investigations in which he

used low temperatures, but did not employ high pressures. He
liquefied sulphur-dioxide, and observed the important fact that when
the liquid sulphur-dioxide was made to evaporate rapidly, by blowing
air through or over it, the temperature fell considerably lower.

Employing the low temperature obtained by the evaporation of liquid

sulphur-dioxide, Bussy liquefied ammonia and chlorine.

In 1834 Thilorier liquefied carbon-dioxide in large quantities. The

gas was generated inside a strong copper cylinder, by the action of

sulphuric acid upon sodium bicarbonate, and by placing the interior

of the generating vessel in communication with the interior of another

vessel, kept at a lower temperature, the carbon-dioxide condensed in

the latter.

1 No equation, of course, can be obtained to represent a discontinuous curve

such as ABGD.
6
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It will be seen from Fig. XXIII. that if the temperature of the

second vessel be 15 C. condensation will occur at a pressure of about
50 atmospheres. Thilorier also obtained carbon-dioxide in the solid

state by allowing the liquid to escape through a narrow jet into a box
of poorly conducting material, when the cooling produced by the

volatilisation of part of the liquid solidified the remainder. He
observed that a very powerful refrigerant was obtained by mixing the

solid carbon-dioxide with ether, and this refrigerating agent is often

called " Thilorier's Mixture."

In 1845 Faraday published an account of experiments which were
undertaken with a view to liquefying the so-called

"
permanent gases,"

such as oxygen, nitrogen, carbon-monoxide, and hydrogen. He
employed higher pressures than in his earlier experiments, and obtained
much lower temperatures by using

" Thilorier's Mixture," but although
he was able to liquefy phosphine, ethylene, etc., and also to solidify
several other gases, such as ammonia, sulphur-dioxide, nitrous oxide,

hydrogen bromide, and cyanogen, he found that the "permanent
gases

"
resisted all attempts at liquefaction.

In the same year Natterer, also, was unsuccessful in an attempt
to liquefy the "

permanent gases," although he employed pressures
exceeding 3000 atmospheres, and used solid carbon-dioxide and ether
as a refrigerant.

We have seen, previously, how Cagniard de la Tour first observed

that, above a certain temperature, the liquid and vapour states coincide,
and it should be noted that Faraday first made the very important
suggestion that, in the case of the "

permanent gases," this limiting
or critical temperature is far lower than the ordinary atmospheric
temperature, and that, consequently, these gases cannot be liquefied
at ordinary temperatures merely by increasing the pressure to which

they are subjected. It was, however, largely due to the celebrated
researches of Andrews that the existence of such a critical temperature,
above which a gas could not be liquefied by pressure, came to be

clearly recognised, and it then became evident that the liquefaction of

the "
permanent gases

"
was to be achieved only by attaining suffici-

ently low temperatures, and not by employing very high pressures.
In 1877, M. Cailletet and M. Pictet succeeded, independently, in

liquefying oxygen. Cailletet compressed the oxygen inside a capillary
tube to about 400 atmospheres, and cooled the compressed gas by
means of liquid sulphur-dioxide which was allowed to evaporate
freely. On releasing the pressure and allowing the gas to suddenly
expand a further cooling occurred, due to the work done by the gas
during the expansion, and partial liquefaction was obtained, the

oxygen appearing as a mist inside the tube. Cailletet also succeeded
in liquefying carbon-monoxide, nitrogen, and air.

Pictet generated oxygen by heating potassium chlorate in a steel

retort, connected with a closed steel tube, the latter being surrounded

by a copper vessel. Liquid carbon-dioxide was pumped into the
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copper vessel, whdre it was made to evaporate rapidly by maintaining
a low pressure.

*
The carbon-dioxide consequently solidified, and a

temperature of about - 140 C. was thus produced. The carbon-dioxide

gas which was pumped off from the copper vessel was cooled and

condensed, with the aid of liquid sulphur-dioxide, and then pumped
back again. The same carbon-dioxide was thus used continuously as

a refrigerating agent, and, similarly, the sulphur-dioxide used for

cooling the carbon-dioxide was itself condensed under pressure and

used over again. After several hours working, when the pressure of

the enclosed oxygen exceeded 300 atmospheres, a stop-cock was

opened and some of the oxygen issued as a liquid jet.
1 The expansion

of the remaining compressed gas produced a iurther cooling, owing to

the work done by the gas behind in pushing out the gas in front, and

more of the oxygen was liquefied and issued from the nozzle in the

liquid state.

Cailletet and Pictet also experimented with hydro-

gen, but the evidence of liquefaction in the case of this

gas was not conclusive.

Further researches on the liquefaction of gases
were carried out by the Polish chemists Wroblewski
and Olzewski in 1883. Using liquid ethylene, boiling

under reduced pressure, as a refrigerant, they were

able to liquefy oxygen at a pressure of only about

20 atmospheres. The following year they succeeded

in liquefying hydrogen. Compressed hydrogen was
cooled with liquid oxygen, boiling under reduced

pressure, and was then allowed to suddenly expand.
A further cooling was thus obtained and a very small FlG XXXIII.

quantity of liquid hydrogen was produced. Carbon-

monoxide and nitrogen were also liquefied, and by rapidly evaporating
the liquids, under diminished pressure, they were solidified.

Wroblewski and Olzewski determined the boiling-points and

critical constants of various liquefied gases, and by employing liquid

ethylene as a refrigerant, in a method similar to that used by Pictet,

they succeeded in producing liquid air in quantity.

Dewar, in 1886, devised an improved form of the same apparatus
for the liquefaction of air on a large scale, and, in 1893, he solidified

air. The introduction, by Dewar, of
" vacuum-jacketed

"
vessels

featly
facilitated the manipulation of these liquefied gases. Fig.

XXIII. illustrates such a vessel. If a very small quantity of

mercury be present in the vacuous space its vapour will be condensed

on the walls of the inner vessel in the form of a mirror, and this will

help further to diminish the rate at which heat is gained by radiation.

1 It should be noted that the critical temperature of oxygen is - 118 0., and
its critical pressure 60 atmospheres. Thus the initial liquefaction in Pictet's

experiment was produced in essentially the same manner as in the method

employed by Faraday.
6*
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Kamerlingh Onnes also employed the Pictet doiable cycle method,

using methyl chloride and ethylene in place of sulphur-dioxide and
carbon-dioxide as refrigerating agents, and he carried out a number of

important investigations on the variation of various physical
" con-

stants
"
with change of temperature,

Keference has already been made, in Chapter I., to the researches

of Joule and Thomson on the passage of a gas through a porous plug,
and it was stated that on the mere expansion of a gas some work is

done against internal molecular cohesive forces.

It therefore follows that for any gas which strictly obeys Boyle's
Law a cooling effect will be produced on free expansion owing to

the conversion of a part of the kinetic energy possessed by the

molecules into potential energy in the performance of this internal

work. 1

If, however, a gas does not obey Boyle's Law it cannot be predicted
a priori whether, on free expansion, a cooling or a heating effect will

result, or whether the temperature will remain unchanged. For if

the product P.V. increase with decrease in the pressure, P, there

will be a cooling effect on free expansion due to the increase in P.V.,
and if P.V. decrease with decrease in pressure a heating effect will be

produced (vide Appendix A). The total cooling or heating effect ob-

served when such a gas expands without doing external work will,

consequently, be the algebraic sum of the cooling due to the work done

against molecular cohesion, and the cooling or heating effect due to

the variation in P.V. with the pressure. Joule and Thomson found

that, in general, a cooling effect occurred on expansion, but that, in

the case of hydrogen, a heating effect was obtained. They ako found
that the cooling effect diminished with rise in temperature, and this

agrees with the observed fact that, as the temperature is raised, the

decrease in P.V. with rise in pressure becomes less marked (vide 33).
It has further been found that at a certain temperature the cooling
effect disappears, being replaced at higher temperatures by a heating
effect. The temperature at which this transition occurs is called the

temperature of inversion of the Joule-Thomson effect.

The "
Eegenerative

" method for the liquefaction of gases, which
was introduced about the year 1895, will now be readily understood.

This method is based upon the Joule-Thomson effect, and was first

utilised for the production of liquid air, without the aid of any
refrigerant, by Hampson in England, and Linde in Germany. The

gas to be liquefied is compressed by means of a suitable gas compressor
to about 200 atmospheres, and the heat generated by this compression
is absorbed both by enclosing the compression cylinder in a tank

1 '* Free expansion
" must be carefully distinguished from the case where a gas

in expanding performs external work, and, consequently, grows colder unless heat
be communicated to it from an external source.



THE ELASTICITY OF GASES 85

through which water circulates and by passing the compressed gas

through a coppei
1
coil contained in the same tank. 1

The compressed gas now flows on at approximately the tempera-
ture of the room, and, after passing through a water-separator and a

high pressure purifier, is delivered to the liquefier. The liquefier con-

sists usually of two or four coils which are wound in numerous turns

around a vertical spindle, and which unite at their lower ends in a

vertical expansion valve. The compressed gas travels down these

regenerator coils, and is allowed to escape at the expansion valve

which can be opened or closed at will by means of a spindle and a

hand wheel. The gas on escaping through the valve expands to ap-

proximately the atmospheric pressure, and flows back over the coils,

finally passing from the outlet of the liquefier back into the gas-holder,
and thence to the compressor to be recompressed. The expansion at

the valve causes a considerable cooling of the escaping gas, and the

latter, in flowing back over the coils, lowers their temperature, so that

the next portions of the gas are cooled before reaching the valve, and,

consequently, on expansion, fall to a still lower temperature. The

regenerator coils being enclosed in a cylinder of badly conducting
material, this progressive cooling effect continues until, finally, part
of the gas begins to liquefy and collect in a receiver beneath the ex-

pansion valve. The liquefied gas can then be run off into a Dewar's

vacuum vessel.

Now the expansion of the gas at the valve may be regarded as

approximately free expansion, for the compressor is working con-

tinuously and supplies almost all the energy needed for the work of

pressing back the atmosphere. Consequently the cooling effect pro-
duced is similar to that observed in the Joule-Thomson experiment
on the passage of a gas through a porous plug, and mainly arises

from the work done during expansion against internal molecular

cohesive forces. It has been seen that the magnitude of these cohesive

forces in a gas at the ordinary density is only small but when the

gas is subjected to the combined influence of high pressure and low

temperature a large proportion of its molecules are brought close

together, and, in consequence, its cohesion is greatly increased. Thus,
in the "

regenerative
"

method, the magnitude of the cohesive forces

called into play increases progressively as the temperature falls, with

a corresponding increase in the cooling effect produced by the ex-

pansion of the compressed gas. It might, therefore, be anticipated
that the heating effect observed by Joule and Thomson during the

free expansion of hydrogen would be replaced, at a sufficiently low

temperature, by a cooling effect due to the increased cohesion. A
study of Amagat's results further shows that the effect of lowering the

1 The gas is usually compressed in two stages, each compression cylinder being
fitted with a copper coil. Both the cylinders and coils are water-cooled, to absorb

the heat generated by the compression,
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temperature is to increase the cooling effect, or diminish the heating
effect, due to the variation in P.V. with the pressure'.

Dewar, in 1900, showed that hydrogen is, in fact, cooled by free

expansion when initially at a sufficiently low temperature, and he
was thus able to employ the "

regenerative
"
method for the produc-

tion of liquid hydrogen in quantity.
Hence the behaviour of hydrogen cannot be regarded as in any

way exceptional, and the heating effect observed by Joule and Thom-
son is merely due to the fact that, in the case of hydrogen, the
"
temperature of inversion

"
is much lower than the ordinary atmos-

pheric temperature. For air (expanding from about 100 atmospheres
to the atmospheric pressure), the temperature of inversion of the

Joule-Thomson effect is nearly 100 C., whereas for hydrogen (under
the same conditions), the temperature of inversion was found by
Olzewski to be about 80 C.

The boiling-point of liquid hydrogen, under atmospheric pressure,
was found to be approximately 20*5 A., and by boiling the liquid
under reduced pressure Dewar succeeded in obtaining solid hydrogen.
The melting-point of hydrogen was found to be about 14*5 A.

Finally, in 1908, helium was liquefied by Kamerlingh Onnes, and

by Dewar its boiling-point being only 4*3 A. By the evaporation of

liquid helium under very reduced pressure Kamerlingh Onnes has,

recently, reached a temperature of 0*9 A. the lowest temperature

yet attained but even at this low temperature the helium exhibited

no sign of solidification.

Most gases when condensed form colourless liquids, but liquid
chlorine and nitrogen tetroxide are yellow, liquid oxygen is blue, and

liquid ozone a deep indigo blue. Liquid air possesses a slight green-
ish-blue colour. In spite of the very low boiling-points of such

liquids as hydrogen, oxygen, air, etc., they can be poured into the

hand, if the latter be dry, and allowed to evaporate for a short time

without any extreme sensation of cold. This is due to the liquid

assuming the spheroidal state. The density of liquid hydrogen, at

the boiling-point, is only about 0'06, and when poured on the hand
the impact is scarcely perceptible. The density of liquid oxygen, at

its boiling-point, is approximately 1*13, or nearly nineteen times as

great. If india-rubber be cooled in liquid air it becomes hard and
brittle. Lead when similarly treated becomes fairly elastic. Many
bodies, such as cotton-wool, leather, etc., if placed in liquid air, and
then exposed for a short time to a bright light, are found to be highly

phosphorescent when examined in the dark. Cotton-wool which has

been dipped in liquid air burns rapidly, if ignited while still wet, and
a glowing taper or wooden splint will also burn energetically if

immersed in liquid air ice and solid carbon-dioxide being formed

during the combustion.

Liquid air is now frequently employed
* in scientific work as a

refrigerant, and it is also used commercially for the preparation of
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oxygen. Liquid^ oxygen boils at 90'5 A., and liquid nitrogen at

77*5 A. Consequently, by liquefying air and allowing it to partially

evaporate the nitrogen vaporises much more readily than the oxygen,
and after a time the remaining liquid consists of nearly pure oxygen.
The gas coming off is then compressed into steel cylinders. It con-

tains approximately 3 per cent, of argon, the boiling-point of the

latter being 87 A., which is nearly the same as the boiling-point of

oxygen. Liquid hydrogen is occasionally used as a refrigerant when

very low temperatures are required. If a piece of metal be cooled in

liquid hydrogen and then hung up in the air it will be observed that

it rapidly becomes covered with a white layer of solid air. The latter

soon melts and drips off the metal. By employing these liquefied

gases as refrigerating agents, Dewar and Fleming have shown that at

low temperatures the electrical resistance of pure metals decreases to

a considerable extent, Iron, and copper, at 50 A. were found to

become nearly perfect conductors.

It has also been found that many seeds and micro-organisms are

uninjured by prolonged cooling with liquid hydrogen.

41. Experimental Methods for the Liquefaction of Gases. The

following experiments illustrate the various methods by which the

liquefaction of gases may be effected.

Experiment XII. A moderately wide glass tube is taken, and a

narrow tube is fused to one end. The narrow tube is then bent at

right angles. A plug of loosely packed asbestos having been pushed
up to the joint, a quantity of freshly heated charcoal is introduced

into the wide tube, and the latter is drawn off to a narrow neck. A
stream of dry sulphur-dioxide is then passed through for about half

an hour, after which both ends of the tube are sealed l
(Fig. XXXIV.).

On placing the narrow tube in a freezing
mixture and gently heating the wide tube, (g^ffijgftgjgjfe 7>^
the sulphur-dioxide is driven off from the

charcoal and condenses as a colourless

liquid at the narrow end. When the tube
is again allowed to assume the temperature
of the room the liquid sulphur-dioxide boils FIG. XXXIV.
off into vapour and is reabsorbed by the

charcoal
; the experiment may thus be repeated as often as required.

The plug of asbestos is introduced in order to prevent any fragments
of charcoal from being accidentally shaken into the narrow tube.

Dry silver chloride may be introduced into a similar tube and,
after passing a stream of dry ammonia, the tube is sealed as before.

On gently heating, the ammoniacal silver chloride melts and gives up

1 The charcoal may conveniently be heated in the tube itself, and allowed to

become cold while the sulphur-dioxide is passing, the tube being then sealed off.
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its ammonia, the latter liquefying at the cold end of the tube. It is

desirable to mix the silver chloride with a little charcoal to prevent
the melted chloride from running together. In this way a larger
surface is maintained for the subsequent reabsorption of the ammonia.

Experiment XIII. Fig. XXXV. illustrates a simple apparatus for

the liquefaction of a gas requiring a pressure of only a few atmos-

pheres at the ordinary temperature. Sulphur-dioxide may con-

veniently be employed for this experiment. A little mercury is intro-

duced into the apparatus until it just covers the elbow at C, and the

dry sulphur-dioxide is then admitted at the open end of the tube E,
and allowed to bubble through the mercury and escape through the

wide tube G until all the air is expelled from the latter. The tube

G is now sealed off at BB. Mercury is then poured into the tube D,
and the valve A is inserted and air pumped in until the mercury is

forced to the top of the tube E. In this way the sulphur-dioxide in

the tube E is driven out, and on releasing the pressure, by removing
the valve A, air enters the tube E. This tube is now sealed off at F,
and the tube D is nearly filled with mercury, and the valve replaced.
On pumping in air at A the sulphur-dioxide in the tube G is com-

pressed and soon appears as a liquid in the narrow part of the tube.

On releasing the pressure the sulphur-dioxide boils off into gas.
Ammonia may similarly be readily liquefied in this manner at the

ordinary temperature. By observing the initial volume of the enclosed

air after the tube E is sealed off, and by applying Boyle's Law to the

change of volume, the approximate pressure required to produce
liquefaction may be obtained. A correction should, of course, be
made for the difference of level of the mercury in the tubes containing
the gas and the air. The upper part of the tube containing the gas

may also be water-jacketed, and the respective pressures necessary
to produce liquefaction at various temperatures may thus be observed.

Experiment XIV. The liquefaction of ammonia and sulphur-
dioxide by means of an Oersted's Piezometer was described in

Experiment IX. For gases which are less easily condensed Cailletet's

apparatus may conveniently be employed. It consists of an hydraulic

pump which communicates with a steel compression chamber by
means of a copper tube of small internal diameter. The gas to be

liquefied is contained in a glass tube to which a gun-metal collar is

cemented, and, after pouring mercury into the compression chamber,
the glass tube is lowered into position and firmly secured by means
of a nut. On working the pump, water is forced into the upper part
of the compression chamber, and the mercury is, in consequence,
driven up into the glass tube, thereby compressing the gas. The ex-

perimental tube and compression chamber are shown in Fig. XXXVI.
The projecting portion of the glass tube is surrounded by a jacket in

order to cool the gas, and also by an outer guard jacket. By means,
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of this apparatus pressures up to 1000 atmospheres may be obtained

and many gases readily liquefied. If a gas with a critical temperature

slightly lower than the atmospheric be compressed without the use

of a \refrigerant no liquefaction will result, but on suddenly releasing

FIG. XXXV.

FIG. XXXVI. Cailletet's ex-

perimental tube and com-

pression chamber.

the -pressure to a moderate extent the gas will be cooled by its expan-

sion and will be liquefied. Ethylene may conveniently be used for

this experiment, its critical temperature being 10 C. A similar result

jnay l?e gained witl* a.as such as carbon-dioxide if the jacket be
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first filled with water at a temperature a few degrees above the critical

temperature of the gas. The critical temperature of the carbon-

dioxide may also be readily shown by compressing it until partially

liquefied, and then raising the temperature of the water in the jacket

until the meniscus within the tube disappears.

Air

Liquefier

FIG. XXXVII. Air Liquefier (Hampson).

Experiment XV. Liquid air in quantity may readily be produced

by means of the Hampson liquefier shown -in Fig. XXXVII., and, in

section, in Fig. XXXVIII.
In the installation at His Exalted Highn^s the Nizam's College,

Hyderabad, the a.ir is compressed to 200 Atmospheres by means of a.
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Whitehead torpedo-compressor driven by an 8 horse-power electric

motor. The air is first drawn jinto'the compressor through the low

Part sectional view of top of Air

Liquefier.

Full length sectional view of Air Liquefier.

Diagram showing arrangement of

Begenerator Coils.

FIG. XXXVIII.

pressure purifier, which contains moist slaked lime, by means of which

carbon-dioxide is absorbed. After compression, the air passes through
ft water separator, not shown in the figure,

arid thence to the high
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pressure purifier which contains solid caustic pojash. The caustic

potash removes water vapour and any remaining carbon-dioxide, and

the pure and dry air passes on through the connection, A, and the

regenerator coils, B, and escapes at the expansion valve, C, the latter

being regulated by means of the hollow spindle, D, and the hand

wheel, E. After flowing over the regenerator coils the air passes from

the outlet, F, back to the inlet of the low pressure purifier, and thence

to the compressor to be recompressed. An additional opening at the

bottom of the low pressure purifier allows extra air to be drawn in as

required. A gauge, L, containing glycerine indicates the pressure at

the outlet, and this pressure should be regulated so

as to correspond to about 8 inches of glycerine.

After the liquefier has been working for about a

quarter of an hour liquid air commences to collect

in the receiver G. By turning the hand wheel, T,

the discharge valve, P, .may be opened, and the

liquid air then flows out through the hollow spindle,

R, into a vacuum vessel placed ready to receive it.

The gauge, H, contains coloured water, and com-

municates with the receiver, G, by means of the

hollow spindle, D, and the pipe, J. When the liquid

air collects in the receiver it compresses the air in

the pipe, J, and displaces the coloured water in the

gauge : the latter thus indicates the depth of the

liquid air in the receiver. The thermometer, K,

registers the temperature of the air leaving the

liquefier, and a second thermometer may be placed
inside the socket, K 17

to register the temperature of

the compressed air when it enters the regenerator
coils. The pressure of the compressed air on

entering the coils is indicated by means of the

pressure gauge, O.

Using the liquid air thus produced as a refrigerant, a large number
of gases may be liquefied and solidified at the ordinary atmospheric

pressure. A glass condensing flask of the form shown in Fig. XXXIX.
may be conveniently employed for this purpose. The flask is im-

mersed in liquid air contained in a cylindrical vacuum vessel, and

the gas is passed in through the small tube in order to obtain the

maximum cooling effect. If it be desired to preserve a specimen of

the liquefied gas a straight tube of thick glass, closed at one end, may
be substituted for the condensing flask the gas being admitted by
means of a narrow tube passing down to the bottom. The open end

of the thick glass tube should be previously constricted, so that it can

be sealed off with a small blowpipe flame after a sufficient quantity of

the gas has been condensed. In this manner ammonia, chlorine,

hydrogen chloride, hydrogen bromide, hydrogen iodide, sulphuretted

hydrogen, nitrous oxide, sulphur-dioxide, and many other
gases may

be readily liquefied 3-Pd 3-lso solidified,

FIG. XXXIX.



CHAPTER V.

THE THERMAL EXPANSION, DIFFUSION, AND SOLUBILITY OF
GASES.

42. The Thermal Expansion of Gases. The expansion of gases when
heated at constant pressure was first investigated by Charles (1787),

Priestley (1790), Dalton (1801), and Gay-Lussac (1802), and it was
found that different gases possessed approximately equal coefficients

of thermal expansion/ This experimental result is commonly referred

to as the Law of Charles. A much fuller investigation was subse-

quently carried out by Eegnault, who studied both the expansion of

gases at constant pressure, and the increase of pressure at constant

volume. Eegnault found that for the so-called
"
permanent gases

"

the coefficients of expansion at constant pressure were approximately

equal, and of the mean value 0-003665, and that the coefficients of

increase of pressure at constant volume for such gases were approxi-

mately the same as their coefficients of expansion at constant pressure.
The coefficient of expansion of a gas at constant pressure is defined

as the increase in volume of unit volume at C. per degree rise in

temperature, when the pressure is constant. Similarly, the coefficient

of increase of pressure at constant volume is defined as the ratio of the

increase in pressure to the initial pressure when a given quantity of a

gas is heated from C. to 1 C., its volume remaining unchanged.
A detailed description of the apparatus used by Eegnault in his

researches will not be given, but two experiments will be described

which illustrate the methods employed in investigating the thermal

expansion of gases.

Experiment XVI. Determination of the Coefficient of Expansion of
a Gas at Constant Pressure. Fig. XL. illustrates a convenient

apparatus for determining the coefficient of expansion of a gas at

constant pressure. A " U "
tube, of the form shown in the figure, is

connected to a wide glass tube by means of rubber pressure tubing.
The stop-cock on one limb of the " U "

tube being open, mercury is

poured into the wide glass tube until it just rises in each limb of the
" U "

tube, and the apparatus is carefully levelled so as to bring the

mercury to the same graduation mark in each limb. A tube contain-

ing phosphorus pentoxide or other suitable desiccating agent is then

connected to the limb of the " U "
tube which carries the stop-cock,

93
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and the pure and dry gas is passed in and allowed ,to bubble through
the mercury and escape at the open limb. When all the air is com-

pletely displaced the supply of gas is stopped, the stop-cock closed,

and the drymg tube removed. The " U "
tube is now surrounded

with clean melting ice and water, and the wide tube is raised so as to

drive out the gas in the open limb, after which it is somewhat lowered.

When the enclosed gas has cooled to approximately C., the stop-

cock is slowly opened. The gas is thus partially expelled and the

FIG. XL. Apparatus for determining FIG. XLL Apparatus for determin-

the coefficient of expansion of a gas ing the coefficient of increase of

at constant pressure. pressure of a gas at constant vol-

ume.

mercury is brought fairly close to the graduation mark between the

two bulbs. The apparatus is now allowed to stand for some time

until the gas is accurately at C., when the stop-cock is opened
again, the mercury carefully levelled to the graduation mark, and the

stop-cock once more closed.

The " U "
tube is next surrounded with boiling water, and the

latter is kept at the boiling-point by passing in a rapid current of

steam. 1
,

3

1 The stop-cock should be lubricated with burnt black rubber, as ordinary
lubricants will not stand the temperature of boiling water.
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The wide tube i$ then lowered until the mercury again stands at

the same level in each limb, so that the enclosed gas is at the

atmospheric pressure. Since the two limbs of the " U "
tube are

graduated in corresponding lengths, the mercury will be level when
it has again been brought to similar graduation marks in each limb.

In the particular apparatus shown in the figure the upper bulb has

a volume of 27 c.cs. and the lower bulb a volume of 9 c.cs.

Now, if V and V$ be the respective volumes of a given mass of

gas at C. and t C., when the pressure is constant, and if a be the

coefficient of expansion at constant pressure, we have

/. V, - V (l + at).

Since a is nearly constant for different gases, and approximately

equal to 0-003665, it follows that the 27 c.cs. of gas at C. will occupy
a volume of about 36'9 c.cs. at 100 C. Thus, after heating the gas to

the temperature of the boiling water, and adjusting its pressure to

the atmospheric pressure, the mercury will stand at a convenient

level in the graduated limbs of the " U "
tube and the new volume

occupied by the gas can be readily observed. The limb containing
the gas is accurately graduated in c.cs., but the open limb is merely
graduated so that corresponding divisions in both limbs are at the

same level. In this way the enclosed gas may more readily be

brought to the atmospheric pressure. The temperature, t, of the

boiling water may be ascertained by means of a thermometer, or by
calculation from the observed barometric pressure, and the coefficient

of expansion of the gas at constant pressure may then be readily

calculated by substituting in the equation a = ~ f~ -- the values
V0 v

obtained for V
,
V

e ,
and t.

The barometer should be read when both V and V, are measured,
in order to guard against any error arising from variations in the

atmospheric pressure during the course of the experiment, and a

correction should be applied for the expansion of the glass vessel.

For this purpose the coefficient of cubical expansion of glass may,
with sufficient accuracy, be taken as 0-000025.

Experiment XVII. Determination of the Coefficient of Increase of
Pressure of a Gas at Constant Volume. The experimental details of

this determination are similar, in many respects, to those already
described in the preceding experiment, The pure and dry gas is

enclosed in a cylindrical glass bulb which is fitted at one end with a

stop-cock, and connected at the other end to an open tube by means
of rubber pressure tubing (Fig. XLL). The open tube contains

mercury, and the quantity of gas is so adjusted that when the latter

is at C., and at atmospheric pressure, the mercury just reaches a
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mark on the glass tube below the cylindrical bulb. tThe corresponding
level of the mercury in the open tube having been noted, the latter is

raised in order to increase the pressure, and the gas is then heated

to the boiling-point of water. If the precaution of raising the

pressure before heating the gas be omitted, some of the gas may
expand into the connecting tube and be lost. When the gas has

attained a steady temperature, the mercury is again brought to the

same mark below the bulb, and the new level of the mercury in the

open tube is observed. The increase in pressure over the pressure
at C. produced by a known rise in temperature is thus obtained,

and the coefficient of increase of pressure at constant volume is

calculated from the equation

B - P
*
~ P

P p /0.6

where ft is the coefficient of pressure-increase, and P the atmospheric

pressure.
A correction should be applied to allow for the diminished density

of the mercury in the tube below the cylindrical bulb when raised to

the temperature t G. This may most readily be done by finally

opening the stop-cock and lowering the open tube until the mercury
again stands at the same mark below the bulb, the temperature t C.

of the bath being meanwhile kept unchanged. The level of the

mercury in the open tube is now observed, and this level must be

taken as corresponding to atmospheric pressure in obtaining the in-

crease in pressure produced by heating the gas.
A correction should also be applied for the expansion of the glass

vessel. Let V be the volume of the vessel at C., and y the co-

efficient of cubical expansion of glass.

Then V, - V . (1 + y .
t).

Applying Boyle's Law to the enclosed gas we have

P
I
.V

I .-P/.V .

P/ should then be substituted for P| in calculating ft.

The thermal expansion of gases furnishes a scale for the measure-

ment of temperature. When a gas is employed as a thermometric

substance, it is more usual to measure equal changes of temperature

by equal changes in the pressure of the gas at constant volume than
to adopt the alternative method and measure equal changes of

temperature by equal changes in the volume of the gas under constant

pressure.
In Jolly's constant volume air thermometer, to which reference was

made in Experiment VIII., the dry and carefully purified air is con-
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tained in a bulb Yjjiich is attached to an open tube by means of pres-
sure tubing. These latter tubes contain mercury, and by suitably

adjusting the height of the open tube, the surface of the mercury can
be brought to a fixed mark on the bent tube which is joined to the

bulb. To obtain greater accuracy the bent tube should be of capillary
bore, for, when the bulb is immersed in a bath at a temperature which
differs from the atmospheric, the temperature of the air contained in

this tube will be different at different points, and an accurate correction

cannot be readily applied. The capillary tube should be fused to a

wider tube of the same internal diameter as the open tube, and the

mark to which the mercury is brought should be engraved on the wider
tube near the point where it joins the capillary. In this way any
error due to unequal capillary action may be eliminated. The ther-

mometer is graduated in accordance with the Centigrade scale, the

fixed points corresponding respectively to the temperature of melting
ice (0 C.), and the temperature of the vapour of water boiling under
a pressure of 76 cms. of mercury (100 C.). If then the bulb is im-

mersed in a bath at any temperature t C., and the corresponding

pressure is found to be P
t ,
we have

Whence

Substituting the value obtained by Eegnault for ft, this becomes

~~

A correction should be applied, as in Experiment XVII., for the

expansion of the bulb.

When the temperature of the bulb is raised, the pressure of the

enclosed air increases, and the mass of air contained in the cooler

capillary tube will be increased, while the mass of air in the bulb will

be correspondingly diminished. This necessitates a further correction

which becomes increasingly important at high temperatures.

The relatively large thermal expansion of the "
permanent

"
gases

for a given rise in temperature renders them particularly suitable for

thermometric purposes, for small changes in temperature may be

readily observed, and variations in the volume of the containing vessel

produce much less effect.

The close agreement throughout the scale of temperature ob-

served for different
"
permanent

"
gases and the large range of

temperature over which they can be 'employed furnish additional

reasons for their use in thermonaetry.

Begnault's researches have shown that the coefficients of thermal

expansion do, however, vary to a small extent for different gases,

7
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Thus for hydrogen, air, and carbon-dioxide, at 0t.C., Regnault found

that 273*1, 272-4, and 269'6 volumes, respectively, expanded 100

volumes when raised to 100 C., the pressure being maintained con-

stant. The coefficient of expansion at constant pressure, a, was more-

over found to differ slightly from the coefficient of increase of pressure
at constant volume, ft.

Thus for air at C., and 76 cms. of mercury, Regnault found

a = -003671,

ft
= -003665.

For hydrogen at C., and 100 cms. of mercury, Ghappius found

a = -003660,

ft
= -003663.

Further, the work of Regnault, Amagafc, Chappius, and others has

shown that, for any particular gas, a and ft vary under different

temperatures and pressures the variation with respect to temperature

being relative to any gas selected as a standard, which latter gas, when

employed in a constant volume thermometer, furnishes the standard

scale of temperature. In the case of the standard gas, under standard

conditions as to pressure, it is evident that ft will be constant at all

temperatures, since the temperature is itself determined by qual
increments in the pressure. The scale of temperature which has been

adopted as a standard by the Bureau International is that of the con-

stant volume hydrogen thermometer, the hydrogen being under a

pressure of 1000 mms. of mercury at C. The usual fixed points,

corresponding respectively to the temperature of melting ice (0 C.),

and the temperature of the vapour of water boiling under a pressure
of 76 cms. of mercury (100 C.), are employed.

The bulb of the constant volume hydrogen thermometer at the

Bureau International consists of an iridio-platinum cylinder of about

1000 c.cs. capacity.
Somewhat above 500 C. iridio-platinum becomes permeable with

respect fco hydrogen, and a constant volume thermometer filled with

nitrogen is therefore employed at high temperatures.

43. Calendar's Compensating Constant-Pressure Air Thermometer.

Fig. XLIL illustrates a simple and accurate form of constant-

pressure air thermometer devised by Callendar. A and B are two
bulbs connected to one another through the pressure gauge, C, which
contains sulphuric acid. The bulb A is directly connected to the

measuring burette, D, which is accurately graduated, and is filled with

mercury. The bulb B is joined to a capillary tube similar to that

connecting A and D, and these capillary tubes are placed close to-

gether. In this manner an automatic correction is made for the

error arising from the variation in the temperature of the air in the

connecting tube. The apparatus is initially exhausted through a two-
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way stop-cock, E^the stop-cocks F and H being closed. Pure dry air

is then admitted through E, and the level of the mercury in D is ad-

justed so that the volume of air enclosed on each side of the pressure

gauge is the same. The stop-cock E is now turned so as to place A
and B in direct communication, and the sulphuric acid consequently
remains at the same level in each limb of the gauge, C, on opening
the stop-cock, F.

The whole instrument is next placed in melting ice, and when
a steady temperature has been attained the stop-cock E is closed.

Since equal volumes of air have been enclosed at the same tempera-

FIG. XLII. Callendar's Compensating Constant-Pressure Air Thermometer.

ture and pressure, it follows that the mass of dry air on each side

of the pressure gauge is the same. If now the bulb A be placed in

a bath at a higher temperature, while B and D are still kept in

melting ice, the pressure of the air in A will increase, and mercury
must be run out from D to again restore the level 'of the sulphuric
acid in C. 1

1 The mercury may be run out of D either by lowering the reservoir G, or by
means of the tube at H. In the latter case the volume of air which has passed
into D can be obtained from the weight of the mercury run off, and the total

volume of the air in D is then obtained by adding to this quantity the original
volume of the air in D when at 0.

7
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The volume of mercury run out gives the volume of air which has

passed from A into D, and the pressure of the air is practically the

same as the initial pressure, since it is equal to that of the air in B,
which is constant, except for the very small increase due to the rise

in temperature of the air in the capillary tube.

Consider, first, the air enclosed in the bulb A, the burette D, and
the connecting capillary tube.

Let VA =s volume of the air in A when at the temperature of

melting ice, and let represent this temperature on the scale of the

air thermometer.
Let VA

' = volume of the air in A at O
t
on the air scale.

Also let v
a

= volume of the air in the capillary tube connecting A
and D when at .

When the bulb A is at Q
t ,

the temperature of the air in the

capillary tube will be different at different points. Let the mean of

the reciprocals of these temperatures be
^7,

and va
'

the volume of the

air in the capillary tube under the new conditions.

Further, let VD = the initial volume of the' air in D at
,
and

VD
' = the final volume of the air in D at .

Similarly, for the air enclosed in the bulb B and its capillary tube,
let VB = volume of the air in B at

,
v
b
= volume of the air in the

capillary tube at
,
and vb

' = volume of the air in the capillary tube

while O
t
is being measured.

When A is at 0, the mean of the reciprocals of the temperatures

at different points of this tube may also be taken as -^, since the two
u

capillary tubes are exactly similar, and are placed close together, so

that they follow the same course. Further, for each system, let the

initial pressure of the air = P, the subsequent pressure when measur-

ing 0j
= P', and the mass of air = m.

Since the change in pressure, P' - P, is very small we may apply
Boyle's Law with sufficient exactness.

If, then, p be the density of the air at a temperature and a pres-
sure P, we have

Initial mass of air in A, at and P, = p . VA .

capillary tube, at and P, = p . va .

D, at and P, - p . VD .

Final A, at O
t
and P', ^~i*.

Final mass of air in capillary tube, when the mean of the re-

ciprocals of the temperatures at different points is
-g,

and the pressure

s18
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V "P'

Final mass of air in D, at and P', Jp .

Similarly, for the other system, we have

Initial mass of air in B, at and P, = p . VB .

,, ,, capillary tube, at and P, ~ p vb

Final B, at and F, = p>V
g'

P
.

,, capillary type, when the mean of the re-

ciprocals of the temperatures at different points is -,- and the

. P .t/5 .P'.0o
pressure is P, = r % -~-

+ + ._ +

Since the capillary tubes are made of equal capacity we have

a
3=3 v

b ,
and since they are exactly similar and acquire the same

temperatures at corresponding points we have v'a
= v'b .

A

.
'

'-VB- VV

Any effect due to the capillary tubes thus disappears, and the

only correction which need be applied is for the expansion of the

bulb A. Let y be the coefficient of cubical expansion of the material

of the bulb. Then since the internal volume is VA at
,
we have

and substituting in the previous equation, we have

_ 0o. (VA
- VA .y.0o)

' VB -V'D~VA .y.0
'

When Callendar's constant-pressure thermometer is employed for

the measurement of temperatures not differing greatly from the normal

atmospheric temperature, the bulbs A and B may, conveniently, be

made of equal volume. In this case the measuring burette will be

completely filled with mercury when the whole instrument is initially
at

, and, on raising A to O
t ,
the volume of mercury run out of the



102 . THE PEOPEBTIES OF MATTEE

burette will at once give V'D . For the measurement of low tempera-
tures the bulb A should be considerably smaller than B, otherwise it

will be impossible to make the pressure in the two systems equal.

44. Diffusion. One of the characteristic properties of gases is their

mutual miscibility in all proportions. Thus, if two different gases,
which are not uniformly mixed together, be kept in a confined space,
each gas will flow from the regions where its density is higher to

those where its density is lower until, finally, each gas will be uni-

formly diffused throughout the whole space.

Experiment XVIII. Three tall glass cylinders of the same size

are filled, respectively, with hydrogen, air, and carbon-dioxide, and are

closed with glass plates. Three thin glass bulbs each containing a

few drops of bromine are then taken, and, after removing the glass

plates, a bulb is dropped, as nearly as possible simultaneously, into

each of the three cylinders, the glass plates being immediately re-

placed. The bulbs are broken by the fall, and a layer of bromine

vapour is rapidly formed at the bottom of each cylinder. After stand-

ing for a short time it will be observed that the bromine vapour has

diffused much farther in the cylinder containing hydrogen than in the

one containing air, and that the diffusion is least in the case of the

carbon-dioxide. Finally, however, after standing for a sufficient

length of time, the bromine vapour will be uniformly diffused through-
out each of the cylinders.

The law relating to the conduction of heat, which was enunciated

by Fourier, supplies an analogy to the law governing gaseous diffusion,

and it will therefore be convenient to refer first to the phenomenon of

thermal conductivity.
If a plate of any material be taken, of 1 cm. thickness, and if its

two faces be kept, respectively, at constant temperatures t . C., and

(t
-

1) . C., then the thermal conductivity of the material of which
the plate is made is defined as the quantity of heat which, in one

second, flows through each unit of area of the plate. Further, if the

thickness of the plate be x cms., and the respective temperatures of

the two faces be t and t' 9 it is found by experiment that, when a steady
state is attained, the flow of heat per second, per unit area, is propor-

tional to
, provided the value of this latter quantity be sufficiently

oo

small.

t i'

The quantity ,
which represents the fall of temperature perx

centimetre, is termed the "temperature gradient." If, then, the
area of the plate be A sq. cms., the total quantity of heat, Q, which

passes in S seconds is given by the equation-
-
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where K is a constant for the given material, and is defined as the

thermal conductivity.
More generally, the" flow of heat through any surface is given by

the equation

Q-K.A.-g.S,

where - T- is the temperature gradient at the surface. It should be

noted, however, that K is not rigidly constant, but is, in fact, a func-

tion of the temperature, so that Q is proportional to -
/(#) .^

If a steady state has not been attained we must consider an

infinitely short time interval during which the temperature gradient
is sensibly constant. In this case we must replace S by dS in the

previous equation.
It was shown by Fick, in 1855, that a similar relationship holds for

the phenomenon of diffusion, both in the case of liquids and gases,

the concentration, or density of the fluid corresponding to tempera-
ture in the thermal formula. Thus, let two gases which, initially,

are not uniformly mixed together be enclosed in a cylindrical vessel,

and let the density of each gas throughout any horizontal section of

negligible thickness be uniform. Then if
/>
be the density of one of

the gases at a height x, measured from any fixed horizontal reference

plane, and if p decrease with increase in x, the mass, M, of the gas
which flows across the horizontal plane at height x is given by the

equation

where 77
is defined as the interdiffusity of the two gases.

As in the case of thermal conductivity, this equation will, in general,

become more nearly exact the shorter the time interval, S, for the

density gradient,
-

7^, will usually vary with S.

If the value of the density gradient be not too great, we may

assume that it is uniform, and write M =
rj

. A .
-

( ^r^J S,

where p and p' are the respective densities at heights x and x' from

the horizontal reference plane.

Both the conduction of heat and the interdiffusion of miscible

fluids find a simple explanation from the standpoint of the kinetic

theory of matter. For if two adjoining layers of any material be at

different temperatures, the average kinetic energy of the molecules in

the layer at the higher temperature is greater than the average kinetic

energy of the molecules in the cooler layer. Consequently, when
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collisions take place at the plane of separation, th molecules in the

cooler layer will, on the average, gain energy, and the molecules in the

warmer layer will experience a corresponding loss. Heat energy is

thus transferred from the hotter to the cooler portions of the material,

and, if undisturbed by external influences, a uniform temperature will

ultimately be acquired.

Again, in the case of miscible fluids, if the number of molecules per
unit volume of one fluid in any layer exceed the number of molecules

per unit volume of the same fluid in an adjoining layer, then, since

the molecules are in constant motion, more molecules of the given
fluid will pass in unit time across the plane of separation from the

side of greater to that of less concentration than in the reverse direc-

tion. Thus a flow of the fluid will take place from regions of greater
to those of less concentration, and, in the absence of disturbing in-

fluences, will continue until the fluid mixture has become perfectly

homogeneous. This homogeneity, once acquired, will not be affected

by the molecular motion.

Further, in the case of a gaseous mixture, if the pressure be

diminished the length of the mean free path of the molecules will be

increased, and, consequently, diffusion will take place more rapidly. A
rise in temperature will also increase the rate of diffusion, since the

average velocity of the molecules is thereby increased.

These conclusions are in agreement with the experimental results

obtained by Loschmidt, Von Obermayer, Waitz, and other in-

vestigators, who have measured 77
for different pairs of gases.

Loschmidt determined the value of
rj by enclosing the two gases

in a vertical glass tube 975 mms. in length and 26 mms. in diameter,

which was divided in the centre by means of a thin steel plate, the

heavier gas being in the lower half of the glass tube. The steel plate
was furnished with a hole of the same size as the internal bore of the

tube, and by carefully moving the plate the two gases were brought
into contact. After a given time the steel plate was again inter-

posed, and the quantity of the heavier gas which had diffused into the

upper half of the tube was determined by analysis, rj
could then be

calculated by applying equations deduced by Stefan from the kinetic

theory.
Waitz determined y for carbon-dioxide and air by enclosing the

gases in a tube and allowing the carbon-dioxide to diffuse upwards
into the air, the progress of the diffusion being observed by measur-

ing the refractive indices of various horizontal layers at definite times.

The proportion of air and carbon-dioxide in any layer was then cal-

culated from its refractive index. It was found by Waitz that
rj varied

to a small extent with variation in the proportion between the two

gases.

The rate at which a liquid evaporates is, in general, dependent
upon the rate at which its vapour diffuses into the surrounding
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atmosphere, and 4he diffusivity of the vapour into the air can be

ascertained by measuring the rate of evaporation.

Thus, if some of the liquid be placed at the bottom of a tube of

uniform cross-section, and vapour-free air be blown steadily across

the mouth of the tube, the density gradient of the vapour will, after a

certain time, become uniform, provided the tube be not too short.

The value of the density gradient in this steady uniform state is

-, where p is the density of the vapour at a pressure equal to the
x
saturation vapour pressure of the liquid at the temperature of the

room, and x the distance between the surface of the liquid and the

mouth of the tube.

Hence the mass of vapour which escapes from the tube in any

time, S, is given by the equation M =
77

. A .
-

. S, and this mass is, of
x

course, identical with the mass of liquid which evaporates in the

same time.

Thus, by measuring the various quantities in the above equation,

77
can be readily ascertained.

An error arises in this method due to the increase in the value of

x produced by the evaporation of the liquid at the bottom of the tube.

If, however, the tube be of moderate length the variation in the value

of x during any short time may be treated as negligible.
It was first shown experimentally by Stefan that the rate of

evaporation of a liquid contained in a long tube varied inversely as

the distance between the surface of the liquid and the mouth of the

tube, and both he and Winkelmann have employed the method which
has been described to determine the value of

77
for the vapours of a

number of liquids diffusing into air and other gases.

A more general equation, applicable to both the conduction of

heat and the diffusion of a fluid will now be deduced.

Consider a thin rod of any material of good thermal conductivity,
and of uniform cross-section, A (Fig. XLIII). Let the rod be heated

at one end, and let us confine our attention to a small element of the

rod of length dx bounded by two parallel planes a and b at right

angles to the axis of the rod. The curve of temperature along the

rod at any time may be determined experimentally by means of

thermo-electric junctions and is of the form XY.
Now, in the infinitely short time, ds, the heat entering the element

at a is given by the equation

Qa
= - K . A . -T- . ds, where -

j- is the temperature gradient at
(tx dx

the surface a.

The temperature gradient is less at b than at a, as is shown in the

figure by the diminished slope of the tangent to the curve XY.
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If we assume that K is constant, the heat flowing out from the

element through b during the time interval ds is given by the

equation
l

Therefore, taking the algebraic sum, we have for the total heat

entering the elementary piece in the time interval ds

Q a
- Qb

- K . A .

dx
'

But the rod is also cooling and giving out heat to surrounding

bodies, for both the temperature and the temperature gradient at b

are always less than the corresponding quantities at a.

High
Temperature
End.

Low
Temperature
EncT

FIG. XLIII.

The quantity of heat given out depends upon the emissivity, E,

the area from which radiation is taking place, the time interval, and

the temperature difference between the radiating body and the

surroundings.
2

If p = the circumference of the rod, the area of the element is

p . dx. Let a = the temperature of the surroundings, so that the

temperature difference, 6, is equal to T - a.

x lt has been tacitly assumed that the cross-section, A, remains constant,

whereas, in reality, the rod expands more towards the high temperature end.

For moderate ranges of temperature, however, the effect due to this expansion

may be neglected.
2 The assumption that the rate of loss of heat to the surroundings is propor-

tional to the temperature difference between the element and the surroundings is in

accordance with Newton's Law of Cooling. This law is only true however when
the difference in temperature between the radiating body and the surroundings is

small.
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Thus, the total leat entry for the element is

dT , , (dT _ d- K - A
-ite'

When a steady state has been attained, the sum of these three

terms is zero, and the temperature of the element remains unchanged.
If, however, the sum be not zero, the temperature of the element
must be changing, and, consequently, we have

-K.A.f.dx
= p . Adx . C . riT,

where p is the density and C the specific heat of the material of the

rod, Adx the volume of the elementary piece, and dT its change in

temperature.
We have assumed that the temperature is the same at all points

of the same cross-section. Now this assumption is not rigidly true, for

heat is flowing from the centre of the rod out through the surface,

and, consequently, the temperature must be somewhat higher in the

centre. It can be shown, however, that in the case of a very thin rod

possessing good thermal conductivity the temperature is sensibly
uniform over any cross-section at right angles to the axis of the rod,
and that the error involved in our assumption is quite negligible.

Simplifying the last equation we have

K . A .
- E . p . (T - a)

- p . A . G .
~

.

dx L r \ ) \* fo

If the temperature of the surroundings, a, be constant, then,
since T -

a, we have

an _ E.ff.0 __ p . c de

dx* K.A
~

K *ds'

_ I M
""
D '

ds'
TT"

where D = -

^.
p. C

D is defined as the thermal diffusivity of the material of the rod,
and may be regarded as the conductivity with respect to temperature,
whereas K is the conductivity with respect to heat. When a state

of equilibrium is attained, the temperature of the element remains

constant, and, therefore

.fl

the term containing D vanishing from the equation.
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If, on the other hand, there be no lateral loss ofJieat, the term con-

taining E vanishes, and we have

&0 \ dO,

dx*
~
D '

ds

Or
dO _ d*0

ds
= D

-<P'

Now, the change in temperature at any cross-section of the rod

can, of course, occur in an infinite number of ways, depending upon
the way in which the temperature at, for example, the heated end of

the rod is made to vary. The last differential equation, however,

shows how the rate of change of temperature at any cross-section

depends upon the rate of rate of change of temperature at another

section at a distance dx from the first.

An exactly similar relation holds for the diffusion of a fluid. If,

for example, we again consider the case of two gases enclosed in a

vessel, with layers of equal density horizontal, then, if the gases be

not uniformly mixed together, we have

dp d2
p

ds
=

V'dx*

where p is the density of one of the gases at any horizontal plane,

and y the interdiffusity of the gases. In such a case, of course, no

lateral diffusion can occur. 1

45. The Passage of Gases through Porous Septa ;
Effusion. The

term diffusion should strictly be applied only to the mixing of gases

across a free surface of separation.
We pass now to a consideration of the phenomena exhibited during

the passage of gases through porous septa. In the case of a thin

septum in which the holes or apertures are not too fine, the passage
of the gas is termed effusion. During effusion the gas flows as a

whole through the aperture, and, in the case of a gaseous mixture,

no separation into the constituents is produced. The effusion of

gases was first studied by Leslie, in 1804, and subsequently by
Schmidt, Graham, and other investigators. It was found that, at a

constant temperature, the velocity of effusion of a gas into a vacuum
was directly proportional to the square root of the pressure of the gas,

and inversely proportional to the square root of the gaseous density,

1 It is evident, since the density, p, is the mass of gas in unit volume, that the

quantity D in this case is identical with ij. For the difference between the^nass

of gas flowing in across any horizontal plane, a, and xiie mass flowing on through
a horizontal plane, 6, at a distance dx from a, is equal to A" . dx . dp, where A is

the uniform cross-section of the vessel.
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and, therefore, for Jwo different gases at the same temperature and

pressure the rates of effusion were inversely proportional to the square
roots of their respective densities. 1

This result was utilised by Bunsen in 1857 (" Gasometrische
Methoden ") for the experimental determination of the densities hoth

of pure gases and of gaseous mixtures. A certain volume, V, of the

gas under examination was allowed to escape through a fine hole in a

thin platinum plate, and the time taken, tv was observed. This was
then compared with the time, 2 , required for an equal volume of a

gas of known density to escape through the hole, under the Bame con-

ditions of temperature and pressure.
Then, since the rates of effusion are inversely proportional to the

square roots of the respective gaseous densities, p l
and p^, we have

0,-
t* _ fe
f

~~"

\l
*

Since p2
is known pl

can readily be calculated.

More recently Donnan has carried out a very accurate investiga-
tion on the rate of effusion of gases, using a hole of about -^ mm. in

diameter, pierced in a disc of platinum foil of about 7^ mm. thickness,
as the effusion aperture. The gas at a pressure "of approximately
70 cms. was allowed to escape through this aperture into a vacuum
until the back-pressure had risen to about 6 cms. the time being
measured by means of a stop watch. The time of escape for a second

gas, under identical conditions as to the limits of pressure, tempera-
ture, etc., was then determined, and the gaseous densities compared
as explained above.

The phenomenon of effusion finds a ready explanation from the

standpoint of the kinetic theory. For the number of molecules, N,
which flow through an aperture in unit time will be very approxi-

mately proportional to the area, A, of the aperture, to the number of

molecules, n, per unit volume, and to their average velocity, H.

,\ N sa K . A . n . O, where K is a constant.

We have assumed that all the molecules coming up to the aperture
pass through, and that none collide with molecules on the opposite

1 It should be noted that the rate of effusion refers to the volume of the gas,
measured at a fixed pressure, which passes through the septum in unit time, and
wo^to^the mass.ot the gas. The mass which passes in unit time is sometimes
termed i the rate_of efflux, and varies directly as the square root of the gaseous
density.
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side of the aperture and rebound again. This Assumption will be

justified if the effusion take place into a vacuum, and will be very

approximately true if the pressure on one side of the aperture be much
lower than that on the other.

Thus the mass of the gas, M, which escapes in unit time is given

by the equation

M = w.N = K.A.n.O.m, where m is the mass of a molecule.

.-. M = K . A . p . 0.

V3P, and since O is proportional to C, we have l

VOT)
= K' . A . Js . p . n, where K' is a constant.

PP

Hence for two different gases at the same temperature and pres-
sure _

M K'.A.
M

2
K'.A.

V3.~P~.ft

'

y-

1 = A/-, where V
x
and V

2
are the respective volumes of the

two gases which pass through the aperture in unit time.

Thus the rates of effusion are inversely proportional to the square
roots of the respective gaseous densities, and this is the relationship ex-

perimentally ascertained.

46. Transpiration. In the case of a thick septum in which the

apertures are not too fine, the passage of the gas is termed transpira-
tion. No change in the composition of a gaseous mixture is produced
by transpiration, and the passage of the gas is conditioned by the

ordinary laws of viscosity which are applicable to the flow of gases

through long tubes.

The first systematic investigation on the transpiration of gases was
carried out by Graham, and the results of his experiments were pub-
lished in 1846 and 1849.

Graham's method was to allow the gas to flow through a capillary
tube into the exhausted receiver of an air-pump, and to observe the

time required to produce a given rise in pressure. Experiments were
carried out with different gases, and with tubes of various lengths and
internal diameters, and the rates of transpiration were also determined
under different conditions of temperature and pressure.

When the tube is exceedingly short, as in the case of a thin septum,
we have seen that the gas flows through the aperture into a vacuum

by effusion, and Graham found that as long as the diameter of such
an aperture was sufficiently large in comparison with the thickness of

the septum the effect of viscosity was negligible. When, however, the

A = '921 . 0. Vide 18.
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length of the tube, pr the thickness of the septum, is large compared
with the diameter of the aperture, the rate of flow is determined by
the viscosity of the gas, and it is to this mode of flow that the term

transpiration is applied. A tube of any diameter may be employed
for experiments on transpiration, provided it be of sufficient length,

i.e. provided the ratio of the length to the diameter be large.

Meyer showed, in 1866, that the results of Graham's experiments
on transpiration furnished a proof that the viscosity of gases is inde-

pendent of the pressure, but increases with the temperature, and he

calculated, from Graham's data, the coefficients of viscosity for a num-
ber of different gases.

Maxwell had, indeed, in 1860, deduced from the Kinetic Theory of

Gases the theoretical law that the coefficient of viscosity of a gas is Me-
pendent of Us density, and an elementary proof of this law will now be

given.

47. Molecular Mean Free Path. The kinetic theory, as developed
in Chapters II. and III., leads to a number of important conclusions

relative to the velocity and energy possessed by molecules in motion.

It will now be necessary to examine more closely the nature of this

molecular motion, and, in particular, to calculate the average distance

traversed by a molecule of a gas between successive collisions with

neighbouring molecules.

Clausius, in 1858, first showed how the molecular mean free path

might be theoretically deduced, and the following calculation is based

upon his method of analysis.
*

Consider a cubic centimetre of a gas containing N molecules, and

let a single molecule enter this cube. As a first approximation we
shall imagine the N molecules to be at rest, and then proceed to cal-

culate the probable length of path traversed by the entering molecule

before a collision occurs.

Since the density of the gas is assumed to be uniform, we may
imagine the cubic centimetre divided up into N small cubes, each of

which on the average will contain one molecule. Let the edge of one

of these small cubes be X, its volume being X3
.

Then N . X3 = 1.

The length X was called by Clausius the mean distance between

neighbouring molecules.

If p be the density of the gas, and m the mass of a molecule, we
have

p = N .m.

X3
'

Now, we are ignorant as to the exact nature of a molecular colli-

sion, and as to the range at which the molecules affect each others

motion.
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If we regard a collision as an actual contact
f
of two equal sym-

metrical spherical molecules, then it is clear that the distance be-

tween their centres of mass at the moment of impact is the molecular
diameter. For molecules which are not spherical we may, in accord-
ance with the calculus of probabilities, take this distance as the mean
molecular diameter. But since actual contact need not necessarily
occur during molecular collision, we must, in general, assume that the
centre of mass of each molecule is surrounded by a region within which
the centre of mass of another molecule cannot enter. This region
may, in the absence of any evidence to the contrary, be regarded
as spherical, and was named by Clausius the molecular sphere of
action.

Thus the shortest distance between the centres of mass of two
molecules during a "

collision
"

is s, where s is the radius of the sphere
of molecular action. 1

If a collision be, indeed, an actual molecular contact, it is clear
that for equal symmetrical spherical molecules we have s = 2r, whero
r is the molecular radius. In this case, therefore, the volume of the
molecular sphere of action is eight times the volume of the molecule
itself.

If, however, contact does not occur during a collision, the sphere
of action will obviously have a still larger volume. Consider, then,
the single molecule which has entered the cube, and let it travel a
distance equal to the mean distance between neighbouring molecules,
i.e. X.

The molecule is surrounded -by a sphere of action of radius s, and
of central section ?r . s

2
, and, consequently, when the molecule moves

a distance X the anterior hemispherical surface of this sphere of action
traverses a volume equal to X . TT . s2 . But since, on the average, a
volume of X3 will only contain one molecule, the probability of the
smaller volume XTrs2 containing a molecule will be in the ratio of
X7TS2 tO X8

.

Hence the probability of the single molecule colliding while it

traverses the distance X is given by the ratio ~, i.e. by ~~; and the

probability of a collision not taking place is given by the ratio

X3 - X7TS2 . ,X2 - 7TS2

y, 1.6.1,7-^-.

Consider next the case of M molecules entering normally at one
face of the cubic centimetre and all moving with the same speed.
Divide the cube up into layers, each of thickness X, parallel to the
face at which the M molecules enter.

1 We may, alternatively, regard each molecule as surrounded by a sphere of

action of radius s ,
a collision occurring whenever two such spheres of action meet*
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Then, in the fiiwt layer,
l^ molecules will probably undergo

collision, while M . ( p -
)
molecules will probably pass on.

Similarly, in the second layer, M . ( ^^1 \ . ^- molecules will

probably undergo collision, while M. f
TT~~")

mole^ks will

probably pass oh.

In the nth
layer, M . (

"" w
j

.
~ molecules will probably

undergo collision, while M . (
-TJ- )

molecules will probably pass

on.

We need not, of course, limit ourselves to the consideration of a

single cubic centimetre, but can apply exactly the same argument to

the case of M molecules moving forward simultaneously, with the

same velocity, normally to any surface in an extended field containing
N stationary molecules per cubic centimetre.

Now, the molecules which collide in the nth
layer have clearly

traversed paths varying in length between (n
-

1)X and n\. But
since we shall show that the mean free path of a molecule in a gas is

very great in comparison with X, except when the gas is under ex-

tremely high pressure, we may, without appreciable error, take the

path traversed by a molecule which collides in the nth
layer as the

maximum value, n\, up to the end of the layer, provided the gaseous
density be low. If, then, we reckon the paths traversed by the mole-
cules which undergo collision in each layer in the same manner, we
can readily calculate the sum of the paths for the M molecules, and,
on dividing this sum by M, we shall obtain the probable mean mole-
cular free path.

Since '-^ molecules probably collide in the first layer, the
A

- , , . . , . M . if . s2 v M . TT . s2sum of their paths is--- x X =* ---
.

A. /*

Similarly, M . ( TF~ ) T5" molecules probably collide in the

second layer, and the sum of their paths is

In general, M .

(

-r~V * IT m lecules probably collide in
\ /

the nth
layer, and the sum of their paths is

TVT A2 ~ ir*
2^" 1

7TS
2

xM . I

J
. x n\

8
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Therefore, the total sum of all the paths described by the M mole-

cules is given by

<T
TUT A2 - 7TS

2

\n-
L 7TS

2

2,"-
M
-(-AT-) "V

for all integral values of n between 1 and oo .

Hence the probable mean molecular free path, L, is given by the

equation

/X2 - 7

But S n . <
M ~~

\ for all integral values of n between 1 and oo
,
is

given by

n . <p
- l = 1 + 20 + 3<t>* + . . .

-
(1

-
<)
~ 2

.

X2 ~ 7

/v \, \ * / *

L, it should be noted, is the mean free path for a molecule moving

amongst other molecules at rest.

Since a gas at its ordinary density exhibits an almost complete
absence of cohesion, we must regard the mean distance, X, between

neighbouring molecules as very considerably greater than the radius,

s, of the sphere of molecular action. For otherwise, at any given

instant, a relatively large proportion of the molecules would be close

together and would be exerting cohesive forces.
T X 2

Hence, in the equation T =
*, X2 must be very much greater

X 7TS

than 7T52
, and, consequently, L must be proportionally greater than X.

Thus our previous method of reckoning the free path traversed by
a molecule as extending up to the end of the layer in which a collision

occurred, and which, in effect, added a fraction of X to the value of

L, has not affected to any marked extent the accuracy of our result.

Since L is much greater than X, it follows that a molecule must

pass by many other molecules between successive collisions.

Now, in an actual gas all the molecules are in motion, and, there-

fore, a correction must be applied to the value found for the mean
free path of a molecule moving amongst other molecules at rest in

order to allow for the general distribution of the molecular velocities.

The effect of the general molecular motion is to increase the

probability of collision, and, consequently, to shorten the molecular

mean free path.
On the assumption that the molecules alV possess equal velocities,

and move in every direction, Clausius calculated the value
j ITS*
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for the mean free path, and Maxwell obtained the more accurate
#*

equation,L = =
, by assigning to the molecules different velocities

7TS
2

: ^72
in accordance with the law of the distribution of velocities deduced

by him from the calculus of probabilities.

48. Viscosity of Gases. In order to maintain relative motion be-

tween the different parts of any fluid it is necessary to apply an ex-

ternal force, and when this force is removed the relative motion soon

disappears. If, for example, we stir a fluid, the relative motion thus

produced vanishes soon after the stirring is stopped. Similarly, the

waves on a stormy sea subside when the wind abates.

The fact that a fluid offers resistance to the relative motion of its

parts is otherwise expressed by saying that the fluid possesses internal

friction, or viscosity.

Viscosity, then, is brought into action whenever two portions of a
fluid medium move with different velocities, and the magnitude of

the viscous resistance is dependent only upon the relative motion of

the two portions, i.e. upon the difference between their respective
velocities.

We shall assume that when a fluid flows over a solid surface there
is no slip between the solid and the layer of fluid in actual contact

with it. This assumption is in accordance with experimental evidence,
1

except in the case of a gas at very low pressure, when the layers of gas
in contact with any solid surface can no longer be regarded as fixed

relatively to the latter. Under these circumstances side-slip does, in

fact, occur at the surface when the solid moves relatively to the gas.
We shall assume, further, in accordance with an hypothesis due

to Newton, that the viscosity is directly proportional to the difference

in velocity of neighbouring layers.
It is evident, however, that the magnitude of the viscous resistance

must also be conditioned by the chemical nature of the fluid medium,
and, consequently, in deducing our equation for the force necessary to

maintain relative motion between two layers of the medium we must
introduce a numerical factor which is called the coefficient of viscosity
of the fluid, and is denoted by the symbol *.

Consider, then, a horizontal layer of fluid, AB, moving with a

steady velocity, V, relatively to a parallel layer of the fluid, CD, at a

distance x from it (Fig. XLIV.). For simplicity, we may regard
the layer CD as stationary. Then it is clear that the velocity of any
intermediate layer is a linear function of its distance from CD. For
consider a layer such as EF, at a distance x' from CD, and moving
with a velocity V. In the steady state of motion of the fluid which

1 In the case of liquids, at any rate, no appreciable slip appears to exist. The
relatively slow rate at which the banks and bottom of a river wear away may thus
be explained.

8*
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we are investigating, the velocity V' is constant, and, consequently,
the viscous forces acting on the upper surface of *EF and dragging
it forward must be equal and opposite to those acting on its lower
surface and dragging it backward. But, in accordance with Newton's

hypothesis, the viscosity is directly proportional to the difference in

velocity of neighbouring layers, and, therefore, the velocity of the

layer EF must be the arithmetic mean of the velocities of the layers

immediately above and immediately below it. The same argument
applies to any other layer we may select for investigation. Hence
we can write V = ex, and V = ex', where c is a constant.

V
Since c = -,at is, of course, the "

velocity gradient."x
Let the tangential force on an area, A, of the layer AB required

to maintain its relative velocity, V, be F. On an area, A, of the layer
CD the same force must act, but in the opposite direction.

i E -

CJ t D
F

FIG. XLTV.

Then

F-K A V
1 -.A.-,

F x
or K =- '

v ,
where K is the coefficient of viscosity.

It is found, by experiment, that K is constant for a given fluid,
under standard conditions as to temperature and pressure. Hence
Newton's hypothesis that the viscosity is proportional to the relative

velocity is shown to be justified.

V
From the equation F = K . A .

-
it is clear that F = K if A, V,x

and x be each equal to unity. We may, therefore, give the following
formal definition :

The viscosity of a fluid is measured by the tangential force per
unit area of either of two horizontal planes, at unit distance apart,
required to maintain a relative velocity of unity between them, the

intervening space being filled with the viscous fluid.

We shall now investigate the phenomenon of gaseous viscosity
from the standpoint of the kinetic theory, and deduce those theoretical
laws of viscous resistance which are applicable to gaseous media.

In accordance with the kinetic theory, we may regard the viscosity
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of a gas as
originating

in the transfer of translatory motion from one

layer to another, in consequence of molecular motion, and the subse-

quent transformation of the regular translatory motion thus carried

over into irregular heat motion, owing to molecular interaction. This

transformation of the homogeneous motion of translation into the

heterogeneous motion of heat will, in time, cause all relative trans-

latory motion to be lost, unless such relative motion be maintained

by the application of external force.

Since, then, the viscous resistance of a gas is dependent upon
molecular motion, and since, in accordance with the kinetic theory,
such molecular motion is very rapid and increases with the tempera-
ture, we may conclude that all gases will probably exhibit fairly
considerable viscosity and that, in all probability, gaseous viscosity
will increase with rise in temperature. Both of these conclusions are

found to be in agreement with experimental results.

Consider, then, a gas flowing over and parallel to a horizontal

solid surface, and, when a steady state of flow has been attained, let

the velocity, which is zero in contact with the surface, be equal to

c.x. for a layer of the gas at a distance x from that surface.

Then, as previously, V = c.x.

If the value of the "
velocity-gradient," c, be small, no appreciable

error will arise in calculating the number of molecules which pass in

unit time from any layer of the gas into an adjoining layer, if we
treat the relative translatory velocity as negligible in comparison with

the very much greater molecular velocity (vide 18).

Now, in accordance with a method of calculation due to Joule, we

may imagine that the irregular heat-motion of the molecules can be

divided up into three components, so that only one-third of the

molecules in any space occupied by the gas need be considered as

moving in a direction perpendicular to any given plane. Half of

this number i.e. one-sixth of the molecules will move in one sense,

and the other half in the reverse sense.

If, then, we assume, as B.U approximation, that all the molecules

possess the same velocity, C i.e. the velocity of mean square
*

it is

clear that, in unit time, only those molecules which are present in a

right prism of length measured by the velocity C and of unit cross-

section, and which are moving perpendicularly in a given sense to

one end of the prism, will cross, in that sense, the unit plane bounding
the end of the prism. __

Since the volume of the right prism is numerically equal to C, it

contains N . C molecules, if, as previously, we take N to represent
the number of molecules in unit volume.

Consequently, in the case of the gas flowing over the horizontal

solid surface, we may conclude that the number of gaseous molecules

1 If all the molecules have the same velocity it follows that this velocity is fcfye

same as their velocity of mean square,
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which, in unit time, pass in either direction across unit area of a

horizontal plane at any height x above the solid surface is given by
\ . N . C.

Now, although this method of calculation gives, approximately,
the number of molecules passing in either direction, it is nevertheless

certain that, on account of molecular collisions, the actual molecules

which cross the unit area in unit time will not have come from

distances commensurate with 0.

We may indeed assume that, on the average, the molecules which
in unit time cross a horizontal plane at a height x have come from

planes situated, respectively, at heights x -f L and x - L, where L
is the molecular mean free path.

The average translatory velocity, Vr ,
of the molecules in the plane

at a height x + L is given by fhe equation Vj =
c(x + L), and,

similarly, for the plane at a height x - L we have V2
=

c(x
-

L).

Hence, if m be the mass of a molecule, the total momentum
carried downwards across unit area of the plane at a height x, in unit

time, is
-J-

. N . C . m . Vv i.e. | . N . C . m . c(x + L), and the total

momentum carried upwards across the unit area is, similarly,

. N . C . m . V
2 ,

i.e. . N . C . m . c(x
-

L).
Thus the gas above the plane loses in unit time the momentum

. N . C
'

. m . c(x + L) -
J-

. N . C . m . c(x
~ L) =

. N . C . m . c . L,
while the gas below the plane gains this amount.

But this transfer of momentum in unit time measures the tangential
force, F, per unit area of the plane.

.-. P = J.N.C.w.c.L.

We have also seen that the tangential force per unit area is given

by

F.-C.I,x
= K . C,

where K is the coefficient of viscosity.

Therefore K . N . C . m . L.

Since the density, p, of the gas is equal to N . m, we have

K J . p . . L.

In the above calculation we assigned the same value of the

velocity, 0, and the same value of the free path, L, to all the mole-
cules. But, in reality, these quantities will vary amongst the gaseous
molecules, and a more exact investigation, in accordance with the

calculus of probabilities, gives the relation-

* 0-30967. p. O.L,
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where O is the arithmetical mean of the molecular speeds calculated

from Maxwell's law of the distribution of velocities, and is equal to

0-921 C ( 18), and where L has the value -, ( 47).
TTo . IL/ <j

If, however, we employ the equation * = \ . N . C . m . L, we must

X3

Dlace L by | .
,

the vali
J

7T5
2

of equal molecular velocity.

X3

replace L by f .

^
the value obtained by Clausius on the assumption

TTo

, N.C.m.X3

., K== .____. .

Since N . X3 = 1, we have

_ j
w.C.

f ^ 2

Now, the right-hand side of the last equation contains no term
which is dependent upon the pressure, and, consequently, we must
conclude that the coefficient of viscosity of a gas is independent of its

density. This important theoretical conclusion was first reached by
Maxwell, and is known as Maxwell's Law.

If we examine the right-hand side of the equation K = J . p . . L,
we find that only p and L are variable with the pressure, and it is

clear that, to a first approximation, L will vary inversely as p. Thus
Maxwell's Law is capable of a simple explanation. For as we have

already seen, the viscosity of a gas is merely conditioned by the trans-

fer of momentum in unit time, and this transfer depends upon the

number of molecules per unit volume, their average velocity, and
their mean free path. Since the average molecular velocity is inde-

pendent of the pressure, and since the molecular free path varies

inversely as the number of molecules per unit volume, which latter

varies directly as the pressure, it follows that the viscosity of a gas
will be independent of variations in its pressure.

We have seen that C oc JO, where is the absolute temperature of

the gas, whereas it is probable that the value of L does not change
greatly with change in temperature, except in so far as it varies in-

versely as p if thermal expansion occur.

Consequently we may anticipate that gaseous viscosity, unlike

liquid viscosity, will increase with rise of temperature.

The theoretical laws of gaseous viscosity were deduced by Maxwell,
in 1860, from the Kinetic Theory of Gases, and their subsequent ex-

perimental confirmation must be regarded as constituting an important

proof of the general correctness of the kinetic theory.
Two important methods have been employed for the experimental
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determination of the viscosity of gases. Maxwell and Meyer used the

Oscillating Disc method which was originally devised by Coulomb for

measuring the viscosity of liquids. In Maxwell's apparatus three

circular discs were rigidly fixed to a common axis, the latter being

suspended at one end by means of a fibre so that the whole system
could be set in torsional vibration. In order to increase the frictional

resistance exerted by the surrounding gas, Maxwell irtroduced four

fixed discs above, below, and between the oscillating discs, at equal

distances from the latter and as close to them as possible. The viscosity

of the surrounding gas could then be calculated from the logarithmic

decrement of the amplitude of oscillation.

Meyer used a similar form of apparatus but without the four fixed

discs. The results obtained showed that Maxwell's theoretical law,

that the coefficient of viscosity of a gas is independent of its density,

held at any rate for pressures from about 76 cms. to 1 cm. of mercury.

At greater rarefaction, as was shown by Kundt and Warburg, a cor-

rection must be applied for the slipping of the gas on the surface of

the discs. It is moreover evident that the method fails if the exhaustion

be carried so far that the distance between the discs approximates to

the molecular mean free path, for then any further diminution in the

pressure will only reduce the density without increasing the free path

of the molecules between the discs. Crookes, in 1881, employed an

oscillating vane of mica, and, by means of formulas developed by

Stokes, he showed that Maxwell's Law held good down to exceedingly

small pressures. At still greater rarefaction a sudden fall in the value

of the coefficient of viscosity was, however, observed.

At very high pressures Maxwell's Law is not in strict agreement

with the results of experimentnor would such agreement be expected.

For, when the gaseous density is very great, the curved paths traversed

by the molecules while casually within the sphere of action of other

molecules will bear a sensible ratio to their mean free path, and this is

contrary to the theoretical assumptions as to the nature of molecular

interaction on which Maxwell's Law was based. It is, indeed, clear

from the equation * = . p . C
"

. L, that the coefficient of viscosity

can only remain constant as long as L varies inversely as p. Such

variation, however, becomes impossible when the gas is so far com-

pressed that the magnitude of the mean free path approximates to

molecular dimensions.

The coefficient of viscosity of a gas may also be measured by means

of Poiseuille's transpiration method. This method will be considered

more fully in Chapter VII. ( 70),

It was previously stated that Meyer utilised the results of Graham's

experiments on transpiration to prove the validity of Maxwell's theo-

retical conclusions. Starting with the assumption that the coefficient

of viscosity of a gas was independent of its pressure, Meyer developed a

theoretical law for the rate of flow of a gas through a long tube,

similar to Poiseuille's law for the flow of liquids,



THERMAL EXPANSION, ETC., OF GASES 121

Thus, if a volume, Qx , of the gas enters the transpiration tube at a

pressure pv and a Volume, Q2 ,
flows out at a pressure p2 ,

we have, in

accordance with Meyer's theory

where a is the radius, and I the length of the tube, i the time in

seconds, and K the coefficient of viscosity of the gas.

Whence * = <*

The numerical values of the coefficients of viscosity for several

cases were thus calculated from Graham's experimental results, and

the constancy of the values so obtained for the respective gases proved
the legitimacy of the assumption on which Meyer's Law was based.

Graham's results further showed that K increased with rise of

temperature, as might be anticipated from the kinetic theory, but

since subsequent investigations by other observers have shown that

the coefficient of viscosity increases more rapidly than the square
root of the absolute temperature we must conclude that the free path,

L, also increases somewhat with rise of temperature.

49. Numerical Values. We shall now proceed to calculate the

numerical values of the mean free path and the "
collision frequency

"

for several gases.
Since K = 0*30967 . p . Q . L, we can at once obtain the value of

L when K is known.
For oxygen at C., for example, K has been found by Obermayer

to have the value 1-87 x 10
~~ 4

gms./cm. sec.

If then we take the density, p, of oxygen, at C. and 76 cms., as

1-43 x 10
~ 8

gms./cm.
3

, and the mean molecular velocity, 11, of

oxygen, at C., as 4-25 x 104
cms./sec. ( 18), we obtain, on substitut-

ing these values

Mean free path, L = 0-00000994 cm., i.e. 994 x 10
~

cm.

The number of collisions per second, or the "
collision frequency,"

will equal ? and, therefore, for oxygen at C. and 76 cms. we have

Collision frequency,
~ -

9.9^^0 -*e
= 4 '28 x 10 per Sec nd *

If we had employed the simpler formula, K
g

. p . C . L, we

should have obtained the values

L = 8-5 x 10-* cm.;

~ = 5-4 x 109
per second,
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which are of the same order of magnitude as those previously
calculated.

*

The following table gives, in C.G.S. units, the values for several

other gases at C. and 76 cms. Air, for the purpose of calculation,

is regarded as a simple gas :

A molecule of air is thus seen to collide with other molecules

between four and five thousand million times per second, while

between consecutive collisions it, only travels about one hundred-
thousandth of a centimetre.

The small value which has been found for the mean free path
furnishes -a clear explanation of the slowness with which gaseous
diffusion proceeds. For though the molecules of a gas such as

ammonia possess, at C., a mean velocity of nearly sixty thousand
centimetres per second, yet, since at C. and 76 cms. the mean free

path is only about seven-millionths of a centimetre, a molecule will

collide with other molecules more than eight thousand million times

per second. If, then, ammonia be diffusing through the air, we may
take the mean free path for the heterogeneous molecules as lying,

approximately, between seven-millionths and ten-millionths of a centi-

metre, with a collision frequency of approximately five to eight
thousand million per second. Thus a molecule of ammonia will not,
in one second, reach a point 60,000 cms. from its starting-point, but,

owing to the enormous number of molecular collisions, will traverse a

very irregular path hither and thither, and, consequently, the gas will

diffuse only slowly.
Since in a gas at the ordinary density the molecular mean free

path, L, must be very much greater than the mean distance, A,

between neighbouring molecules
( 47), it follows that the dimensions

of a gaseous molecule must be exceedingly small, and that the number
of molecules, N, in a cubic centimetre must be exceedingly great.

For L>X;
but

.
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For air, at C. and 76 cms., L * 9-6 x 10
- 6

; whence L3

8-8 x 10
~

1(J
.

*

.-. N>1-1 x 1015
.

It is possible to calculate the approximate value of N from other

physical properties of gases, and the value obtained is

N = 6-1 x 1019
.

Thus a cubic centimetre of air, at C. and 76 cms., contains some

sixty trillion molecules, and, in accordance with Avogadro's Law, the

same number of molecules must be present in an equal volume of

other gases at " normal temperature and pressure."

Since N . X3 = 1,

A. = 2-6 x 10
"~ 7

cm., for any gas at C. and 76 cms.

Further, since for air L = 9*6 x 10~~ cm., and A = 2*6 x 10~ 7
cm.,

we have
L 9-6 x 10- Q7 .

, 1

X
"

2-6^TT(F7
" 7

' approximately.

Hence, for air at C. and 76 cms., the molecular mean free path
is about forty times greater than the mean distance between adjacent
molecules.

If we divide the mass of a cubic centimetre of any gas by N we
obtain the mass, m, of the gaseous molecule.

Thus, for oxygen

P 143 x 10~ 3
OQ 1A_,3m = ^ = --..---VAIQ = 2-3 x 10 23

gm.N 6-1 x 1019 G

For hydrogen

0-0899 x 10~ 3 __

The molecule of hydrogen consequently weighs only about one and
a half quadrillionths of a gramme.

1

50.
" Transfusion." There is still another method by which a gas

may pass through a porous septum. When the apertures in the

septum are exceedingly fine, such as those which occur in plates of

1 Direct evidence as to the approximate size of molecules has been obtained by
various investigators. Thus Faraday prepared gold leaves of approximately
5 x 10 7 cm. thickness ; from which it followed that the diameter of an atom of

gold could not exceed this value. Measurements of thickness of very thin liquid
films also lead to values of the same order for molecular magnitudes (vide 108,

109). Reference must also be made to the investigations of Perrin, and Einstein,
on " Brownian Movement "

by means of which the approximate number of mole-

cules in one-gram molecule of a gas was found to be 70 x 1022 , i.e. approximately
3-1 ^ 1019 molecules

per
c.c. at tf.T.P.
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biscuit-ware, or compressed graphite, the passage of the gas is com-

monly termed diffusion, but since, as we have already seen, this term

is applied to the mixing of gases across a free surface, it is desirable

to employ another appellation, and we shall therefore distinguish the

passage of the gas in this case by the title of transfusion.

During transfusion a gaseous mixture undergoes a partial separa-
tion into its constituents, the lighter constituent passing more readily

through the porous septum.
Graham found that, at a constant temperature, the rate of trans-

fusion l of a gas was directly proportional to the difference of the

pressures of the gas on the two sides of the septum, and inversely

proportional to the square root of the molecular mass of the gas, and,

therefore, for two different gases at the same temperature, and with

the same difference of pressure, the rates of transfusion were in-

versely proportional to the square roots of their respective molecular

masses.

We have already seen, in Chapter II., that the kinetic theory is in

agreement with these experimental results.

Experiment XIX. Fig. XLV. illustrates a simple form of appa-
ratus for measuring the rate of transfusion of a gas. The vessel, A,

<^ and the space above the

n \| A mercury in the barometer
U""^ \ rJEL, f

U A
tube, B, are exhausted by
means of an air pump, and
the gas, at a definite pres-

sure, is then admitted to A.

The gas passes through the

porous septum, 0, which is

cemented to the top of the

barometer tube, and the

rats of transfusion is meas-
ured by the rate of fall of

the mercury in B. Several

gases, such as oxygen, hy-

drogen, and carbon-dioxide,

may be admitted in turn to

the vessel A, and the respec-
tive rates of transfusion

compared. The rate of

transfusion of the hydro-

gen, for example, will be found to be approximately four times that

of the oxygen, since the molecular masses of these gases are very

nearly in the ratio of 1 to 16.

1 The rate of trana fusion refers, of course, to the volume of the gas, measure^

a.t a fixed
^pressure,

which passes through the septum in unit ti|ne f

FIG. XLV.
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Experiment XX. The difference in the rates of transfusion of

different gases may be readily demonstrated by fitting a long glass
tube to a porous pot by means of a cork. The tube is then fixed

vertically, with its open end dipping beneath the surface of some
coloured water in a beaker. On bringing a cylinder containing

hydrogen over the porous pot, the hydrogen transfuses in through
the walls faster than the enclosed air transfuses out, and the rise in

pressure thus produced causes a rapid escape of gas through the

water. On removing the cylinder, the hydrogen inside the porous
pot will escape by transfusion faster than air can transfuse in, and
the coloured water will rise rapidly in the glass tube. Before the

cylinder was placed over the porous pot the air, of course, transfused

in and out at equal rates and, consequently, the pressure inside the

pot remained constant.

The porous pot may next be surrounded with carbon-dioxide when
the water will be observed to rise in the tube. For this latter experi-
ment it is desirable to bend the glass tube twice at right angles
so that the cylinder containing the carbon-dioxide may be brought
underneath the porous pot. On removing the cylinder the pressure
inside the porous pot gradually rises again to the atmospheric.

Atmolysis. A partial separation of a mixture of gases of different

densities may be effected by allowing transfusion to take place through
a porous septum, the separation being more complete the greater
the difference in the densities of the constituents of the gaseous
mixture.

This method was originally employed by Graham, who termed it

"
Atmolysis

"
dr/xos (vapour) ;

Avo> (I loosen). The mixed gases were
allowed to flow through a long porous tube, such as can be made from
the stems of clay tobacco pipes, and the gas which passed through
the walls of the tube was pumped off and collected. In order that

this might be effected, the porous tube was fixed inside a wider glass
tube by means of two corks, and a glass tube which was connected to

an air-pump was inserted through one of the corks so that the space
between the porous tube and the wider glass tube could be exhausted.

The gas which passed through the porous walls was thus enriched
in the less dense constituents of the gaseous mixture, while a corre-

sponding increase in the proportion of the heavier constituents was

produced in the gas which flowed on through the tube.

Experiment XXI. Pass a slow current of a mixture of hydrogen
-and oxygen, obtained by the electrolysis of water, through a long
porous tube, and collect the issuing gas over water at the pneumatic
trough. On testing the gas so collected with a flame it will be found
to be no longer explosive, but on introducing a glowing splint of wood
the latter will be rekindled. A large proportion of the hydrogen must,

consequently, have escaped through the walls of the porous tube by
transfusion. It should be noted in this experiment that the difference
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of the pressures on the two sides of the porous tube differs consider-

ably for the hydrogen and the oxygen. Since the* electrolytic gas con-

tains, approximately, two volumes of hydrogen to one volume of

oxygen, and since it is, approximately, at atmospheric pressure, we

may take the partial pressures of the two gases on entering the porous
tube as, respectively, two-thirds and one-third of an atmosphere. The

partial pressures of the hydrogen and oxygen outside the tube may be

taken as zero and one-fifth of an atmosphere, respectively. Thus the

difference of the pressures of the oxygen on the two sides of the tube

is, approximately, two-fifteenths, and of the hydrogen two-thirds of an

atmosphere. Consequently, in accordance with Graham's Law, the

hydrogen will transfuse some twenty times faster than the oxygen.
This relative rate of transfusion will, of course, decrease as the gases
flow along the tube, owing to the increase in the proportion of oxygen.

Experiment XXII. Place a little ammonium chloride in a hard

glass bulb-tube, and fix a porous tube inside the latter by means of

two corks. Fit one of the corks with an exit tube. On heating the

bulb-tube, the ammonium chloride dissociates largely into ammonia
and hydrogen chloride, and the ammonia, being the lighter gas trans-

fuses more readily into the porous tube. On blowing a gentle stream
of air through the porous tube the excess of ammonia in the issuing

gas will turn a strip of red litmus paper blue, whereas the excess of

hydrogen chloride in the vapour of ammonium chloride which escapes
from the exit tube will redden blue litmus.

51. Passage of Gases through Solids and Liquids. A number of

cases are known of the passage of gases through solid bodies. Many
gases, for example, will pass through thin india-rubber, notably carbon-

dioxide and hydrogen. Thus a rubber balloon filled with carbon-

dioxide will rapidly collapse. Palladium and platinum, at high tem-

peratures, are readily permeable by hydrogen, but not by other gases.

Hydrogen also passes readily through red-hot iron, and, at the same

temperature, iron is fairly permeable by carbon-monoxide.
It would appear in these cases that a certain amount of the gas is

absorbed by the layers of the solid with which it is in contact, the

amount which can be so absorbed increasing with the gaseous pressure.
As the surface layers become saturated, the gas is absorbed by the ad-

jacent layers, and so on through the solid. If, then, the pressure of

the particular gas on the second surface of the solid be less than its

pressure on the .first surface, the layers at the second surface will be
unable to retain all the gas which passes through, and, consequently,
some of the gas will escape.

The passage of gases through liquids may be explained in a similar

manner. For, as will be seen later, the mass of gas which will dis-

solve in a given quantity of a liquid also increases with the gaseous-

pressure. If, then, for example, a soap-bubble be blown with a gas
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such as carbon-dioxide which is moderately soluble in water, more
carbon-dioxide will go into solution at the inner surface than can be
retained by the layers at the outer surface where the pressure of the
carbon-dioxide is very low, and, consequently, the soap-bubble will

rapidly shrink. It is also found, as would indeed be anticipated, that
those gases which are most soluble in a given liquid pass through it

most readily. In some cases it is probable that the "
absorption

"
is

due to the formation of unstable chemical compounds which decom-

pose on the'side where the gaseous pressure is low. Thus the passage
of carbon-monoxide through iron at a high temperature is probably
due to the formation of iron carbonyls, and it is possible that hydrogen
forms an unstable compound with palladium, although, in this latter

case, the product is, in part at least, a solid solution.

52. Dalton's Law of Partial Pressures. The permeability of palla-
dium at moderately high temperatures by hydrogen is of particular
interest in that it furnishes a method of experimentally measuring the

partial pressure exerted by a gas, in the presence of another, exactly
analogous to that employed for the measurement of the osmotic

pressure exerted by a substance in solution (vide Cap. VII.).
If a palladium tube, or a platinum tube to which a palladium cap

has been sealed, be filled with a gas, such as nitrogen, at a fairly high
temperature (say 300 C. or 400 C.) and at atmospheric pressure,
and if it be then surrounded with hydrogen, the latter being also at

atmospheric pressure, it is found that the pressure inside the tube
soon rises to two atmospheres. For the hydrogen passes in until

its pressure both inside and outside is the same, but the nitrogen
cannot pass through the walls of the tube and, consequently,
continues to exert its original pressure of one atmosphere. If

the nitrogen had been initially under a pressure of, say, two

atmospheres, the final pressure inside the tube would have been three

atmospheres, i.e. the sum of the pressures due to the two gases.
We can obtain a similar result in a somewhat different manner. If

we take a glass vessel containing, say, nitrogen, at atmospheric
temperature and pressure, and pump in an equal volume of hydrogen,
the pressure of the enclosed gases will rise to two atmospheres. The
same volume of any other gas may now be pumped in, and, provided
the gases do not interact chemically, the pressure will be found to be
three atmospheres. In general, it is found that each constituent of a

gaseous mixture exerts pressure on the walls of a containing vessel pro-

portionally to its relative amount, i.e. each constituent exerts the same

pressure as if it alone occupied the whole vessel, and the total pressure
is the sum of the partial pressures due to each gas.

This law was first enunciated by Dalton, in 1802, and is known
as Dalton's Law of Partial Pressures.

It can be readily shown that Dalton's Law follows as a necessary
consequence of the Kinetic Theory of Gases.
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For, as was seen in 21, if Kv be the kinetic energy (and, there-

fore, the total intrinsic energy) per unit volume* of a perfect gas, we
have the relation

3PKv =
-TT-, where P is the gaseous pressure.

Now in a gaseous mixture, as in the case of a simple gas, the

pressure is merely the total force exerted by all the molecules on unit

area, i.e. the total momentum given up to unit area in unit time. If,

then, K'v,
K"v , etc., be the respective values of the kinetic energy per

unit volume for the molecules of each constituent of the gaseous
mixture, we obtain, as previously for a simple gas

where P^ is the pressure exerted by the gaseous mixture.
But if each constituent occupied the whole volume of the mixture

alone, the respective pressures exerted would be

P' - KV, P'' = |K"V,
. . .

.-. Pw = F + P" + . . .,

i.e. the pressure exerted by the gaseous mixture is equal to the sum
of the pressures each constituent would exert if it alone occupied the
whole volume, and this is Dalton's Law of Partial Pressures.

Dalton's Law will only hold rigidly when the constituents of a gase-
ous mixture exert no chemical action on one another, and when neither
attractive nor repulsive forces arise between their molecules. For if,

on mixing the constituents, intermolecular forces are brought into

play, a variation in potential energy will also arise, with a consequent
change in kinetic energy and in pressure. Since, in any real gas, in-

termolecular forces are present to a greater or less extent, Dalton's
Law is only approximately true.

53. Solutions of Gases in Liquids. In accordance with the kinetic

theory we may regard the phenomenon of solution as due to the

penetration of the particles of one substance into the spaces between
the particles of another. There is, thus, no essential difference
between solubility and miscibility. When, for example, a gas is

brought into contact with a liquid, some of the gaseous molecules
which impinge upon the surface of the liquid will be absorbed, and as
these molecules move about in all directions in the liquid some of
them will escape back through the surface into the gas. The number
of gaseous molecules which, in unit time, escape from the liquid will
increase as the concentration of the dissolved gas increases, and ulti-

mately, if the temperature and pressure be constant, a state of dynamic
equilibrium will be attained, when as man;y molecules of gas are ab-
sorbed as escape in unit time. The solution is then "

saturated
"
with
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the gas. If, now, the pressure of the gas be doubled, the molecular
concentration of the gas will also be doubled, and, consequently, twice
as many molecules will be absorbed by the liquid in unit time. The
concentration of the dissolved gas will therefore increase, and equili-
brium will be attained when the rate of escape of gaseous molecules
from the liquid has also doubled, i.e. when the solution has acquired
a concentration twice as great as when saturated under the original

pressure. This conclusion is in agreement with the relationship be-

tween the solubility of a gas and its pressure discovered experimentally

by Henry, in 1803, and generally known as Henry's Law. We may
state Henry's Law, formerly, as follows :

" At a given temperature, and with a given solvent, the concentra-

tion of the dissolved gas is proportional to the gas pressure."
l

Thus, at a given temperature, the ratio of the concentrations of the

gas in the solution, and in the gas phase in contact with the latter, re-

mains constant under all pressures. This ratio is usually termed the

"coefficient of solubility
"
of the gas in the particular solvent. Since,

therefore, the mass of gas dissolved by a solvent, at a given tempera-
ture, is proportional to the pressure to which the gas is subjected, and
since, in accordance with Boyle's Law, the density of a gas varies

directly as its pressure, we may state Henry's Law in the alternative

form :

" At a given temperature, a given liquid dissolves the same volume
of a gas at all pressures."

Henry's Law holds well for sparingly soluble gases, but fails when
the gases dissolve readily in the solvent. If, for example, we take

water as a solvent, the solubilities of gases like oxygen, nitrogen, and

hydrogen, under moderate pressures, are in close agreement with the

law, but there is an appreciable deviation with carbon dioxide, which
is more soluble in water, and the law is not even approximately

obeyed by such easily soluble gases as ammonia and hydrogen
chloride. In the case of, say, carbon dioxide the deviation may be

ascribed to the partial formation of carbonic acid, according to the

equation H2 + CO2^H2C03 , for Henry's Law is applicable only
to that portion of the carbon-dioxide which is present, as such, in

physical solution, and it applies neither to the molecules of carbonic

acid, nor to the very few ions which are formed by electrolytic dis-

sociation.

The great solubility of gases like ammonia is probably due to the

partial chemical combination of the gas and the solvent, and also, to

the presence of considerable attractive forces between the molecules

of the solvent and the gas. Great solubility may also arise from

cohesive forces brought into play between the molecules of the dis-

solved gas. In the presence of such disturbing factors, Henry's Law,

1
Henry's Law is a particular case of the more general Distribution Law of

Nernst which states the conditions necessary for equilibrium in heterogeneous

systems as deduced from the standpoint of the kinetic theory.

9
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as deduced from the kinetic theory, would not be expected to apply,

for, in obtaining the theoretical law, we tacitly assumed that the

gaseous molecules where chemically and physically independent of

each other, and of the solvent.

When the molecular state of the gas in the gas phase is different

from that in the solution, i.e. when either polymerisation or dissocia-

tion occurs on dissolving the gas, Henry's Law also requires modifica-

tion.

Thus direct proportionality between the gas pressure and the con-

centration of the dissolved gas can only be postulated in the case of

dilute solutions, and when the dissolved gas undergoes neither poly-
merisation nor dissociation. 1

The solubility of different gases in water, and the effect of pressure

upon the solubility, may readily be demonstrated by means of the

following experiments.

Experiment XXIII. A round-bottomed glass flask is fitted with
an india-rubber stopper carrying a narrow glass tube, the latter nearly
reaching to the bottom of the flask. The stopper is removed and the
flask filled with either ammonia or hydrogen chloride by displacement
of the contained air. The stopper is then reinserted, and the flask

supported neck downwards, so that the end of the glass tube which

projects beyond the caoutchouc stopper may dip beneath the surface
of some water in a trough. The water slowly rises in the tube until

the first few drops enter the flask, when their absorption of the gas
produces a partial vacuum and the water is foiced up the tube in the
form of a iountain until the flask is tilled. The initial rise of the
water in the tube may be accelerated by cooling the flask with a few

drops of ether.

Experiment XXIV. In the case of a less soluble gas, such as

sulphuretted hydrogen, a stoppered cylinder may be filled with the

gas, a little water introduced, the stopper inserted, arid the cylinder
well shaken. On opening the cylinder under water, a further quantity
of water will enter, and the shaking may then be repeated. By pro-
ceeding in this manner complete solution of the gas can be effected.

Experiment XXV. The effect of pressure upon the solubility of a
gas may be demonstrated by connecting two barometer tubes, of uni-
form bore, to a mercury reservoir by means of a " T "

piece and pressure
tubing. One of the barometer tubes is filled with ammonia, and the
other with air, and a few cubic centimetres of a saturated aqueous
solution of ammonia are introduced above the mercury in the former

1 It should be noted that the union of simple gas molicules with the solvent
will not affect the applicability of this statement, for the concentration ol
gas molecules will also be proportional to the gas pressure.

'
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tube. The volumes^of the air and ammonia are initially adjusted to be

the same, when the pressure is approximately atmospheric, but on

raising the mercury reservoir until the volume of. the air is reduced to

one-half it will be observed that the

ammonia occupies less than half its

original volume owing to its in-

creased solubility at the higher pres-
sure. Care must be taken not to

raise the pressure much above two

atmospheres, since, otherwise, the

greater compressibility of the am-
monia will appreciably influence the

result (cf. Expt. IX.). If the second

barometer tube be also filled with

ammonia instead of with air, any
variation due to differences in the

compressibility of the gases in the

two tubes will be eliminated.

The solubility of different gases
in various solvents may be deter-

mined, quantitatively, by means of

the Bunsen's absorptiometer shown
in Fig. XLVI.

Measured volumes of the gas and
the solvent are introduced into the

inner graduated tube, and the latter

is screwed down upon an india-

rubber pad by means of the screw

attachment shown separately in the

side figure. The graduated tube is

then lowered into the outer cylinder,
which contains a quantity of mer-

cury at the bottom, and, after filling

the cylinder with water, the cap at

the top is fastened, and the whole

apparatus thoroughly shaken. The
inner tube is slightly unscrewed from
time to time in order that mercury
may enter and take the place of the

dissolved gas the screw being sub-

sequently tightened before the shak-

ing is repeated. When no more gas
is absorbed, the residual volume of

gas is measured, and its temperature
observed by means of the! thermo- FlG> XLVI. Bunsen's Absorptio-
meter attached to the! upperjparti of meter.

9*



132 THE PEOPERTIES OF MATTER

the graduated tube. The pressure of the gas is obtained hy deducting
from the barometric reading the height of the mercury in the absorp-
tion tube above the mercury in the outer cylinder, a correction being,
of course, applied for the pressure due to the water column in the

cylinder and the column of the solvent in the inner tube. By vary-

ing the temperature of the water in the outer cylinder, the solubility
at different temperatures may be ascertained.

Bunsen introduced the term "
coefficient of absorption

"
to denote

the volume of a gas, measured at C. and 76 cms., which is absorbed

by 1 c.c. of a solvent at the same temperature and pressure. The
"coefficient of absorption" is thus, numerically, equal to the "co-

efficient of solubility
"

at C.

A distinction must be drawn between the volume of gas absorbed

by 1 c.c. of a liquid when the total pressure at the surface of the

liquid is 76 cms., and the volume absorbed when the pressure of the

gas itself at the liquid surface is 76 cms., independent of the vapour
pressure of the solution. According to Winckler the "

coefficient of

absorption" A, is defined as the number of cubic centimetres of a gas,
measured at C. and 76 cms., which are absorbed by 1 c.c. of a

solvent at C., the gas itself being at a uniform pressure of 76 cms.

when in equilibrium with the saturated solution. The number of

cubic centimetres of a gas, measured at C. and 76 cms., which are

absorbed by 1 c.c. of a solvent at C., the pressure of the gas

plus the vapour pressure of the solution being 76 cms. when a state

of equilibrium has been attained, is defined by Winckler as the "
solu-

bility/' S.

Thus, in accordance with Henry's Law

Q _ A Ib - A .

^ 7g

where <r is the vapour pressure of the solution, and, for dilute solu-

tions, is approximately the same as the vapour pressure of the pure
solvent at C.

Experiment XXVI. The coefficient of solubility of a gas may be

determined more readily by means of the apparatus shown in Fig.
XLVII. This apparatus is a simplified form of the absorptiometer
used by Heidenhain and Meyer (1863). The gas is introduced into

the graduated tube, A, through the three-way stop-cock, a, by first

raising and then lowering the levelling tube, B. The flexible metal

tube, of capillary bore, which connects the tube, A, to the absorption

pipette, C, is also filled with the gas by passing the latter in at a and
out at* b. The stop-cocks are then closed, and the volume of the gas
in A is read, after levelling the mercury in A and B. The absorption

pipette, C, of known volume is next filled with the gas-free solvent

by applying suction at the three-way stop-cock, ft, and drawing the
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liquid up through fye stop-cock, c. The stop-cocks a and b are then
turned so that A and C are placed in communication through the

flexible metal tube, and by raising the tube B, and opening the stop-
cock, c, a definite volume of the liquid is run out from the pipette, C,
into a measuring vessel, while, at the same time, gas enters the pipette
from the tube A. The gas and the liquid are then thoroughly shaken

together until the latter is saturated, the mercury in A and B being

adjusted to the same level when A and C are in communication. The

stop-cock, c, is then opened under mercury, after lowering the tube

B, and the mercury is allowed to enter the pipette until the latter is

again filled with liquid, the gas passing back into A. The volume of

gas in A is now read, and the diminution gives the volume absorbed

by a known volume of the liquid. Both the

measuring tube, A, and the pipette, C, should
be immersed in a water-bath (not shown
in the figure) so that they may be main-
tained at any required temperature.

It must be noted that just as the liquid
becomes saturated with the gas, so does the

gas itself become saturated with the vapour
of the liquid, and, consequently, when a

state of equilibrium is attained, and when
the mercury is at the same level in A and B,
the partial pressure of the gas in contact

with the liquid is equal to the barometric

pressure minus the vapour pressure of the

Solution at the temperature of the experi-
ment. .For sparingly soluble gases the

vapour pressure of the solution may, without

appreciable error, be taken as equal to the

vapour pressure of the pure solvent at the

same temperature.
Since only that portion of the gas which

is driven over into the pipette, C, becomes
saturated with the vapour of the liquid, an error arises in calculating
the diminution in volume, owing to the uncertainty which exists

as to the partial pressure of the gas when its volume is finally read

in the tube, A. This source of error may most readily be eliminated

by introducing a small quantity of the liquid above the mercury in

the measuring tube, A, and allowing both the liquid and the gas to

become saturated, at the temperature of the experiment, before

reading the initial volume of the gas in A. The determination of

the solubility may then be carried out as described above.

54. The Solubility of Mixed Gases. In the case of a gaseous
mixture in contact with a solvent, dynamic equilibrium will be

attained when, for 'each constituent, as many molecules of gas are

FIQ. XLV1L Heidenhain
and Meyer's Absorptio-
meter.
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absorbed by the solvent as escape from it in unit t^me. Consequently,
the amount of each constituent dissolved will depend upon its

solubility, and upon its partial pressure. The statement that
" The amount of each constituent of a gaseous mixture which is

dissolved by a solvent is proportional to the partial pressure of the con-

stituent
"

is known as Dalton's Law (1807) this law follows at

once from Dalton's Law of Partial Pressures (g 52), and from

Henry's Law ( 53).
For example, the composition of air by volume may be taken as,

approximately, nitrogen, 78 per cent., oxygen, 21 per cent., and argon,
1 per cent., and, if the atmospheric pressure be equal to 76 cms. of

mercury, the partial pressure of the nitrogen will be - (̂J
x 76 cms. ;

of the oxygen ^ x 76 cms. ;
and of the argon r J x 76 cms.

Now, 1 c.c. of water at, say, 15C. will dissolve the following

volumes, measured at 0. and 76 cms., of nitrogen, oxygen, and

argon, respectively, each gas being at a uniform pressure of 76 cms.,
when in equilibrium with the solution :

Nitrogen = 0-018 c.c.

Oxygen 0*034 c.c.

Argon = O f040 c.c.

The solvent action of water upon the atmosphere can, conse-

quently, be calculated, and we obtain :

,

7 x 0-018 = 0-0140 c.c. nitrogen,

Wo x 0-034 - 0-0071 c.c. oxygen,
, J ff

x 0-040 - 0-0004 c.c. argon,

for the respective volumes of nitrogen, oxygen, and argon, which will

be dissolved, at 15 0., by 1 c c. of water. 1

Thus, 100 c.cs. of water at 15 0. will dissolve 2-15 c.cs. of air, when
the atmospheric pressure is 76 cms., arid if the dissolved air be ex-

pelled, either by boiling the solution or by placing it in a vacuum,
the composition of the gaseous mixture so obtained will be

Nitrogen = 65'1 per cent.

Oxygen = 33*0 per cent.

Argon =s 1'9 per cent.2

1 Air contains about 0'03 per cent, of its volume of carbon-dioxide, and 1 c.c.

of water at 15 C. dissolves 1'019 c.cs. of carbon-dioxide, measured at 0C. and
76 cms., the pressure of the gas being 76 cms. Hence, approximately, 0-0003 c.c.

of carbon-dioxide will be dissolved from the atmosphere, at 15 C., by 1 c.c. of

water. If it were not for the very low partial pressure of the carbon-dioxide a
largo proportion of this gas would be removed from the atmosphere by a heavy fall

of rain, since, at 15 0., its solubility is nearly thirty times that of oxygen.
2 Whereas 2-15 c.c. of ordinary air contain, approximatf^y, 0*43 c.c. of oxygen,

2'15 c.c. of dissolved air contain 0'71 c.c. of oxygen. It is this dissolved oxygen
which is breathed by fish.
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It must be noted that when a gaseous mixture is shaken up with a

solvent the amount *of each constituent which dissolves is determined

by the partial pressure of the constituent after the solvent has become

saturated, and not by its partial pressure before solution. In the pre-

ceding example we assumed that the water was freely exposed to the

atmosphere, and that, consequently, the composition of the latter could

be treated as constant. If, however, water be shaken with air in a con-

fined space, the relative partial pressures of the gaseous constituents

will be slightly different after the water has become saturated, owing to

the unequal solubilities of the nitrogen, oxygen, and argon, and, in

consequence, the relative amounts of the more soluble gaseous con-

stituents which pass into solution will be slightly reduced.

Experiment XXVIJ. It can be readily shown that air is enriched

in oxygen on solution in water, by boiling a quantity of water which
has been well shaken up with air, and collecting the expelled gas. A

glowing splint of wood will be rekindled if introduced into this gas,
thus snowing that a greater proportion of oxygen is present than in

air ; or the oxygen in a measured volume of the gas may be deter-

mined by absorption with an aqueous solution of sodium pyrogallate,
and compared with the oxygen present in an equal volume of air at

the same temperature and pressure.

55. Additional Factors influencing Gaseous Solubility. The solu-

bility of a gas in a solvent is diminished by a rise in temperature.
1

Between 25 C. and 50 C., helium is an exception to this rule, the

solubility of the gas increasing to a small extent.2

The above table gives the number of cubic centimetres of various

g.ises, measured at C. and 76 cms., which dissolve in 1 c.c. of

1 In therefore follows, in accordance with Le Chafcelier's Theorem (Appendix

B), that when a gas dissolves the solution is accompanied by a rise in temperature.
a It appears probable, however, that for each gas there is a point of minimum

solubility, and that, at higher temperatures, the solubility again increases.
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water at the temperatures stated, the gas in ea^ch case being at a

uniform pressure of 76 cms. when in equilibrium with the saturated

solution.-

Since the solubility of a gas in a solvent is diminished by raising

the temperature, it follows that if a saturated solution be heated some
of the dissolved gas must be expelled.

In the case of aqueous solutions, for example, it is found that in

general, the whole of ther dissolved gas can be driven off by boiling

the solution (cf. Expt. XXVII.). Several aqueous solutions are,

however, known which, when boiled distil at a definite concentration

and at a definite temperature. Thus an aqueous solution of hydro-
chloric acid containing 20'2 per cent, of hydrogen chloride has a

constant boiling-point of 110 C. at 76 cms. pressure, and can be

distilled without change in composition. If a weaker solution of

hydrochloric acid be boiled it becomes more concentrated, and if a

stronger solution of hydrochloric acid be heated it becomes weaker, until

in both cases an acid of 20'2 per cent, concentration is obtained.

Similarly a solution of nitric acid in water of 68 percent, concentration

has a constant boiling-point of 1205 C., at the atmospheric pressure.
1

Such mixtures with constant boiling-points were originally supposed
to be definite chemical compounds, but Roscoe and Dittmar have

shown that the composition of the constant-boiling mixture is merely
a function of the pressure under which the solution is boiled. Thus,
under a pressure of two atmospheres, the constant-boiling mixture for

an aqueous solution of hydrochloric acid contains only 1 9 per cent, of

hydrogen chloride. It therefore follows that these mixtures with

constant boiling-points are not chemical compounds.
Not only may dissolved gases be expelled from a solution by the

action of heat, but also by placing the solution in a vacuum. This

follows from Henry's Law, for since the concentration of a dissolved

gas is proportional to its pressure, the concentration must be zero

when the pressure is zero. Similarly a 'dissolved gas may be com-

pletely removed from a solution by bubbling through the latter a

different gas, and a dissolved gas will also escape although less

rapidly if its solution be placed in an atmosphere of another gas.

Experiment XXVIII. Expose an aqueous solution of ammonia
to the air for some time, and observe that it rapidly becomes weaker.

Then pass a rapid stream of air from a foot bellows through another

portion of the solution and observe that, in this case, the escape of

ammonia is much accelerated.

Provided no chemical action takes place the power of solution

possessed by a liquid is diminished by the addition of a soluble solid.

1 The distillation of liquid mixtures will be considered more fully in Chapter
'VII.
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Experiment XXIX. Add a quantity of sugar to a tumbler-full of
"
soda-water,"

1 and*observe the rapid evolution of gas. Since, however,

any porous substance such as a piece of earthenware will also

promote the evolution of the gas, it is preferable to first dissolve the

sugar in a little water, and then to add the syrup thus formed to the
"
soda-water," when a rapid escape of gas will occur.

1 An aqueous solution of carbon-dioxide, prepared under a pressure of about

10 atmospheres.



CHAPTER VI.

EQUATIONS OF STATE.

56. Deviations from the Simple Gas Law. The general equation to

the isothermal of a perfect gas at an ahsolute temperature was
deduced in Chapter II. from the standpoint of the kinetic theory, and
was shown to possess the form

P.V. = E . 0.

The curve corresponding to such an isothermal, as was shown in

Fig. XIV., is a rectangular hyperbola.
Now, it is evident from an examination of Fig. XXIII., which gives

the isothermals for carbon-dioxide, that this simple gas law is not

fully applicable to actual gases and vapours. For, although at

temperatures above the critical temperature, and for vapours at low

pressures, the isothermals approximate to rectangular hyperbolae, yet,
when partial or complete liquefaction has taken place, the curves no

longer possess this form.
It must, however, bo remembered that the simple gas law,

P.V. = E . 0, was deduced for a perfect gas on the assumption that

both the size of the molecules and the time occupied by molecular
collisions could be treated as negligible.

When, however, any real gas is subjected to the combined influence

of high pressure and low temperature, its molecules will be crowded

together, and, in consequence, the curved paths traversed by the mole-
cules while casually within the sphere of action of other molecules
will bear an appreciable ratio to their mean free path. Since, under
these conditions, the time occupied by molecular collisions bears a

sensible ratio to the time of free molecular movement, it is evident

that, at any instant, an appreciable fraction of the total number of

the molecules in the gas will be in collision, and this will give rise to

marked cohesion. The greater the time occupied by such molecular

collisions, the fewer the number of impacts per second of the gaseous
molecules on the walls of the containing vessel, and, consequently,
the molecules will exert a pressure on the walls less than that cal-

culated for a perfect gas.

Thus, starting with a rarefied gas, we may anticipate that, as the

pressure is increased, the product P.V. for any real' gas will decrease,

owing to increased molecular cohesion, until such time as the mole-

138
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cules are crowded up within distances approximating to the radius
of the sphere of molecular action, when any further increase in the

pressure will result in an increase in P.V., the volume, V, remaining
approximately constant (cf. 33).

It has been seen, in Chapter IV., that a close relationship exists

between the liquid and gaseous states of matter, and, in conse-

quence, many attempts have been made to modify the equation
P.V. = E. 0, so as to make it more generally applicable to both these

states. Such modified equations are usually called "characteristic

equations," or "
equations of state," and, in the present chapter,

four of the more important of these equations will be briefly ex-

amined. It must be noted that "
equations of state

"
are only

applicable to homogeneous systems which may be either entirely

liquid or entirely gaseous. Such equations do not apply to systems
which are heterogeneous, as in the case of a liquid in contact with
its saturated vapour.

57. The Ramsay-Young Equation. This equation is only applicable
to systems at constant volume, and may be written P = k . 6 -

c,

where P is the pressure, k and c are constants, and the absolute

temperature.
A more general form of the equation is

p =
./(V)

-
F(V),

where /(V) and F(V) are different functions of the volume, and are,
of course, constant when V is constant.

In the case of a perfect gas, at constant volume, the simple gas

equation P.V. = E . may be written P = k . 0, where k is a con-

stant. Thus the Ramsay-Young equation for either gaseous or liquid

systems at constant volume only differs from the relation which
holds for a perfect gas, under the same conditions, by the intro-

duction of the term c. This constant, c, is the negative pressure, for
the particular constant volume under consideration, which corresponds
to the absolute zero of temperature, for, when = 0,,

P = - c.

If the volume of the system be varied, the numerical values of the

constants k and c must also be changed, the actual values of the

constants, in each case, being determined by experiment. Ramsay
and Young tested their equation for a number of different substances,
and found that for ether, {(C2H5)2O}, and for methyl alcohol, {CH3OH},
ethyl alcohol, {G.2H5OH}, and propyl alcohol, {C3

H
7OH}, the relation

agreed, approximately, with the experimental results, the best agree-
ment being observed in the case of ether, {(C^H6)20}. Water, how-

ever, exhibited marked variations in its behaviour. Amagat showed
that the equation applied to carbon-dioxide, |C02 ],

and to ethylene,

{C2
H

4},
in the gaseous state, but less accurately when they were

liquefied.
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Fig. XLVIII. shows some of the results obtained by Ramsay
and Young in the case of ether, {(Ca

H5)2O}. The curves, which

represent the variation of P with 6, at constant volume, are called

isochores, and it will be seen that for ether they are practically

straight lines, both in the gaseous and liquid states. This is in agree-
ment with the Ramsay-Young equation, according to which the

pressure is a linear function of the absolute temperature, the volume

being constant.

The dotted line, AB, in the figure is the vapour pressure curve for

ether. Oc is the critical tempera-
ture for ether, and Pc the corre-

sponding critical pressure. At B
the vapour pressure curve be-

comes vertical. To the right of

the vertical line, CD, the system
is gaseous; to the left of ABC
it is liquid. The area ABD cor-

responds to vapour.
If the equation P ~ k .

- c

be differentiated with respect to 0,

we obtain the result

5400
1

cms.
5c.c.

llc.c

25c.c

553A.
467A.

Fia. XLVIII. Isochores for Ether.

DP.

,w
the differentiation being partial

since the volume is constant.

Now, =
^

is the tangent, at any given temperature, to the particular

isochore under consideration, and may be obtained graphically.
1

The value of k having thus been found, the value of c may be

obtained by substituting for k in the equation P = k . 6 - c for any
two values of P and corresponding to the given isochore.

Other values of P, corresponding to different values of 6, may then

be calculated for the same isochore, and compared with the values

obtained by experiment. The same method may also be applied to

other isochores, in order to test the general validity of the Ramsay-
Young equation in the case of the particular substance under ex-

amination.

In the case of ether, for example, Ramsay and Young calculated

the pressures, for a number of different isochores, which corresponded
to a temperature just above the critical temperature. The following
results were obtained :

*If the pressure, at constant volume, he a linear function of the absolute

temperature, the value of ^ for a given isochore will, of course, he the same at
oQ

all temperatures.
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Temperature 470 A.

In the case of isopentane, Young obtained the following values for

k, at different temperatures, for a number of isochores :

Volume 4'0 c.cs.

Temperature.

460-8 A. (critical)
463 A.

468 A.
473 A.

478 A.

483 A.

493 A.

513 A.

405
418
428
434
430
443
439
446

It will be seen that, for each isochore, the values of

proximately, constant.

are, ap-

58. The van der Waals' Equation. It was pointed out, at the be-

ginning of the present chapter, that the simple gas law P . V .
= E . .

is only applicable to a perfect gas for which both the size of the

molecules and the magnitude of the internal molecular cohesive forces

may be treated as negligible.
In 1873, van der Waals published a dissertation in which he de-

veloped the simple equation obtained from the kinetic theory so as to

allow, in the case of actnal gaseous or liquid systems, for both the
molecular attraction and the finite size of the molecules.

The cohesive forces which arise from molecular attraction are very
small in a gas at the ordinary density, but become considerable when
the gas is subjected to the combined influence of high pressure and
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low temperature, and are exceedingly great injjhe
case of liquid

systems.
Now, the molecules in the interior of a fluid will, on the average,

be attracted equally in all directions by neighbouring molecules, but

those at the surface will only be attracted inwards by the molecules

of fluid behind them. In consequence, the molecules which arrive at

the surface layer will be retarded by the molecular attraction, and, at

the moment of impact with the walls of any containing vessel, will

possess a velocity less than the average velocity of the molecules in

the interior of the fluid. Thus the pressure exerted by the molecules

on the boundary walls is lessened owing to the existence of internal

molecular -cohesion, and, if the actual pressure exerted by a fluid be P,

the pressure which a perfect gas would exert under the same condi-

tions may be written (P + p), where p is the diminution in pressure

which arises from molecular attraction.

Since p is due to the mutual actions of attracting and attracted

molecules, it is proportional to the number of each, and, therefore, is

proportional to the square of the density. For, if we consider a thin

layer of unit area at the surface of the fluid, it is clear that both the

number of molecules in the layer, and also the number of adjacent

molecules within the range of molecular action, are proportional to

the density, and, consequently, the force of molecular attraction must

vary as the square of the density.
Hence it follows that p is inversely proportional to the square of

the volume occupied by the fluid, and we may write p =
^,

where a

is assumed to be a constant, for a givon fluid, at all temperatures an

assumption which van der Waals found to be approximately in agree-

ment with the results of the experiment.
1

Therefore the value of the pressure in the gas equation now be-

comes

where P is the actual pressure exerted by the fluid on the walls of the

containing vessel ; i.e. the actual pressure observed.

This modified expression involves the assumption that the mole-

cular attraction varies inversely as the fourth power of the mean dis-

tance between neighbouring molecules.

For the force of attraction across any unit area in the interior of a

fluid is dependent upon the number of molecules distributed over the

area and upon the mean distance of molecular separation. If, then,

as in 47, we take A to represent the mean distance between neigh-

bouring molecules, the number of molecules distributed over unit area

will vary inversely as X2 . Now the force of molecular attraction also

JThe value of a is actually found to diminish with rise in temperature.
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varies as some unknown function of the mean distance of molecular

separation say, asV. Hence the force of attraction exerted normally

across the unit area varies as .-
2 ; i.e. as

-?$=-
A, A

If V. be the volume of unit mass of the fluid, it is clear that V.
varies as X3

.

Therefore, the force of attraction varies as ~ ~
2 -x-

(V)-r

In accordance with van der Waals* equation, however, the force due

to molecular attraction may be written ^> where a is a constant.

Whence it follows that x = -4.
Thus, as previously stated, van der Waal's equation involves the

assumption that the force of molecular attraction varies inversely as

the fourth power of the mean distance of molecular separation.
It will be seen that the effect of molecular cohesion will be to

diminish the volume more rapidly than the pressure increases, and,
in consequence, the product P.V. will decrease with rise in pressure.

In deducing the simple gas law it was further assumed that the

space actually occupied by the molecules might be treated as negligible
in comparison with the space in which they were contained. Now,
although such an assumption is, approximately, justifiable in the case

of a gas at very low pressures, it ceases to he admissible when the

gaseous density is great, for the molecular volume will then bear a

sensible ratio to the whole volume, V.

Since, therefore, the free space in which the molecules move about
is less than the observed volume, V, the frequency of molecular

collision, and, consequently, the magnitude of the pressure exerted,
will be greater than were calculated for a perfect gas. The pressure
exerted will, also, increase at a greater rate than the volume, V,

diminishes, for a given diminution in the observed volume, V, will

correspond to a greater proportional diminution in the free space in

which the molecules move, since the compressibility of the actual

molecules themselves may be assumed to be very small. The pro-
duct P.V. will, on this account, increase with rise in pressure. This

mode of variation of P.V. with change in pressure is the reverse of

that occasioned by molecular cohesion, and an examination of the

experimental evidence, as summarised in 33, shows that at low

temperatures and low pressures the influence of cohesion predomi-
nates, whereas at sufficiently high pressures the influence of the finite

size of the molecules on the variation of the product P.V. is the

decisive factor. 1

1 The influence of the finite size of the molecules on the variation of the pro-
duct P.V. is also the decisive factor at high temperatures, owing to the diminution
in the value of the molecular cohesion with rise in temperature.
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Now, since we have seen that the free space in which the molecules

move is less than the observed volume, V, we Tuay write (V
-

b)

instead of V in the simple gas equation, where b denotes the amount

by which the observed volume must be diminished in order to allow

for the finite size of the molecules. It would appear, at first sight,

that b must be equal to the sum of the molecular spheres of action,
o

taking the radius of the molecular sphere of action as --
(cf. footnote to

A

47), but a moment's consideration will show that this would only
be correct if the gas were at absolute zero, and the molecules at rest.

For, as the molecules move about, they will obstruct one another to

a greater extent than if some were at rest, and, in consequence, b

must be taken as some multiple of the sum of the molecular spheres
of action. Now, in calculating the probability of molecular collision,

in 47, it was seen that the anterior hemispherical surface of the

sphere of action of a molecule traversed a volume equal to A . TT . .s
2

when the molecule advanced through a distance X (the radius of the

sphere of action being taken as s, and not as
^
Y The volume simi-

larly traversed when the molecule advances through a distance equal
to the mean free path, L, will be L . ?r . s'

2
. But it must be noted that

the space occtipied by the sphere of action of the molecule while it

advances a distance L is greater than L . IT . s
z

, since the cylindrical

space traversed has hemispherical ends, and no allowance was made
for this in our previous calculation. Thus the probability of molecular

collision will be increased, and the mean molecular free path corre-

spondingly reduced.

In the case of direct molecular collisions the free path will be

shortened by the radius of the sphere of action, s, but, when the mole-

cules collide obliquely, a smaller diminution in the free path will

result. It can be shown that, on the average, the diminution in the

/2
free path is equal to -~ . s, and, in consequence, we must now write

o

A. w 7T S

Since, therefore, L =
2 /*T"'

tne c rrec^on fc>r the finite

size of the molecules diminishes, in effect, the volume, X3
, of the small

cube occupied by a single molecule by a volume | . ir . s* ; i.e. by

1, then, we regard each molecule as surrounded by a sphere of
o

action of radius (cf. footnote to 47), the volume of each such
A

4 s8
*

molecular sphere will be ^ . TT . ^ ,
i.e. \ . ir , s

3
, and, therefore, the,
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volume A3 is diminished by four times the actual volume occupied by
the molecular sphere^

Consequently, for a volume V, containing n molecules, we have
V = n . A/', and this volume must he diminished by 4 . ^ . TT . s3 . n . in

order to allow for the finite size of the molecules.
Thus the value of b in van der Waals' expression for the volume

is given by the relation b = 4 . . ?r . s3 . n ; i.e. it is equal to four times
the actual volume occupied by all the molecular spheres in the volume
V, and this was the conclusion reached by van der Waals. If it be
assumed that the molecules actually come into contact at a collision,
b is equal to four times the actual volume of the molecules
themselves.

It was assumed by van der Waals that b was constant at all tem-

peratures, and this agrees, approximately, with the results of -ex-

periment.
1

-

If, then, we substitute the terms (P + ^Y and (V
-

b) in the

simple gas equation P.V. = R . 0, we obtain the relation

where fl, b, and K may be considered as constants.

This relationship was deduced by van der Waals, in 1873, by
means of a more rigid mathematical analysis.

The equation of van der Waals is a cubic equation in V, and may
writtenbe written

. . a
v _^a.bV . V -t- p . V

p U.

There are three roots to the equation, of which either all three are

real, or one is real and two are imaginary. These roots are the
values of V which correspond to any given temperature and pressure.
If the isothermals corresponding to the equation be plotted, we obtain
the curves shown in Fig. XLIX., and these curves possess the same
general form as those suggested by J. Thomson (Fig. XXXII.), for

the isothermals of a fluid for which the change from vapour to liquid

may be assumed continuous, so that the fluid system remains homo-

geneous throughout the transformation. For isothermals below a
certain temperature there are either three real values of V, or else

one value is real and two are imaginary, according to the value

assigned to the pressure P. Thus, in Fig. XLIX., for the 0, iso-

thermal, and for pressures between P
x
and P

2 ,
there are three real

and different roots, as represented by points such as A, B, and C,

1 Since the molecules themselves cannot be regarded as absolutely incompressible,
it would appear probable that b becomes smaller at high pressures.

10
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corresponding to the pressure P3
. For the same isothermal, and for

either the pressure Pj or P
2 ,

there are still thre,e real roots, two of

which, however, have the same value. Thus for the pressure Pp for

example, two roots correspond to the point D, and one root to E.

For pressures either less than P
1?

or greater than P
2, only one of the

roots is real, the other two being imaginary (cf. the points K and L

FIG. XLIX.Van der Waals' Isothennals.

in the figure). In the case of the higher isothermal 0\, the three real

roots, such as A', B', and C', are closer together.

For a particular isothermal, Q
c ,
which corresponds to the critical

isothermal in Fig. XXXII., the three real roots coincide at a particular

pressure, P
c

. This is shown by the critical point, M, at which the

three real values of V become identical and equal to V
c

.

For isothermals above this temperature only one real root can be

found for any given pressure, as is clear from an inspection of the 2

isothermal in Fig. XLIX.
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Since the three real roots of the equation coincide at the critical

point, M, the values, of P
c ,
V

c ,
and

C
can readily be calculated in

terms of the constants a, b, and B.

For a cubic equation in V, with three real roots, may be written

(V _ y \3 _, o, where Vc is the value of each of the equal roots.

.-. V3 - 3VC
. V* + 3V

C
2

. V - V
c
3 = 0.

Now, van der Waals' equation at the critical point may also be

written

V,_(P..*+B
: .\ y, +

a
y _a 6_ a

\ L
c

'
c *-c

Equating the coefficients of equal powers of V in the two equa-

tions, we have

W - i-. 3V *- and V3 V
c
= --p ,

o\ c p ,
ana v cx

c *-c

Whence
Critical volume, Vc

= 3b ;

Critical pressure, Pc
=
&ji % \

8.
Critical temperature, Oc

=

The values of a-, &, and K in van der Waals' general equation can

be obtained by substituting corresponding values of P and V for the

homogeneous fluid, as experimentally ascertained at various tempera-

tures, and the values of the critical constants can then be calculated.

Thus, employing the data obtained by Kegnault for the compression
of carbon-dioxide, and taking pressures in atmospheres, and the

volume of the gas, at C. and 1 atmosphere, as the unit volume, we

have
a = 0-00874,
b - 0-0023,
E = 0-003687.

Therefore

Vc
= 0-00699, Pc

= 61 atmospheres, and C
= 305-4 A.

The experimental values obtained for carbon-dioxide are :

Vc
= 0-0066, P

c
= 73 atmospheres, and

t
.
= 303-92 A., the

agreement in the case of the critical temperature being particularly

noticeable.

Conversely, if the critical constants be known for any fluid, the

values of a, b, and B can be calculated.

10*
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Van der Waals' equation may be written in the form

P_ - a
+

R -l
f

1 -
yj

+ V L ft-

If, for any isothermal, P bo differentiated with respect to V, we
obtain the result

yp _ 2. a ___5/0_
<>V

"
V3

" ""

(V~^-~ 6p'

the differentiation being partial since the temperature is constant.

Now, Yy is f*he tangent, at any given volume, to the particular

isothermal under consideration. If, then, we substitute the values of

the critical constants, we obtain

M?c _ 2_._tt
R . C

2 . a 8 . a . R
W

c

~~

V/
"

(Vc.
-

6)*

"
27 . 6 3 27 . R . 6". 46"*

~

Therefore, at the critical point the slope of the critical isothermal

is zero, i.e. the tangent to the isothermal is horizontal.

&? 6. a 2.R.?
bince

we have, at the critical point of inflexion

<)
2P

C _^
6 . a 2.R.0

c __6.J
ft 16. a. R

bV
c

"

a
"" ""

Vc
4 +

(Vfl

-
6)

3
~

81". b*
+

27 . R . b . H . b*
~

*

At points such as D and F (Fig. XLIX.), which are, respectively,
minimum and maximum points, we have in each case

y
=

; but, at D, ya> 0, and, at F,
ya < 0.

For isothermals not far above the critical isothermal a point of

dP c)
2P

inflexion occurs, but neither
<y,

nor
-^,

is equal to zero. At suffici-

ently high temperatures the point of inflexion disappears.
~v p "D A

For very large values of the volume V, we may write ^y
= --

y^- ,

neglecting the term in which V3 occurs in the denominator, and tak-

ing V - 6 as approximately equal to V. Thus, for very large values
of V, the slope of the isothermal is always negative (i.e. downwards)
and of very small value, and, consequently, the isothermal itself ap-
proximates to a straight line, slightly inclined towards the axis of

volume.

If, on the other hand, V approximates to the value 6, the slope of

the isothermal approaches the value - GO
;

i.e. the isothermal ap-
proximates to a perpendicular line.
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Thus the volumet represents the theoretical limit of compression,
and, in accordance with van der Waals' equation, this limiting volume

V
is equal to ,

c
. If it be assumed that at the absolute zero of tempera-

ture, ,
the density of a saturated vapour is zero, and if the further

assumption be made that the law of Cailletet and Mathias ( 37) holds

down to absolute zero, then, by extrapolating the Cailletet and Mathias
mean density line to and doubling the mean density we obtain the

density of the liquid at that temperature. This has been done for a

number of different substances, and the limiting volume of the liquid,

at
,
has been found to be approximately /. It may be doubted,

however, if the assumptions made in deducing the limiting volume
from the law of Cailletet and Mathias are really justifiable (cf. 38).

We may write F(V) =
^a ,

and /(V) =
y-

-
,

,
when van der

Waals
1

equation assumes the form

P = - F(V) + 0./(V),

which we have seen is the general form of the Ramsay-Young equa-
tion. Thus the isochores corresponding to van der Waals' equation
will also be straight lines.

In the case of a perfect gas P.V. = B . B, and, consequently,
13 iQ

p~\f
! If

i however, we calculate the value of the same ratio, at

the critical point, for any fluid obeying van der Waals' equation, we
obtain the result

p f\

Now, the ratio -$-

'

\? has been experimentally ascertained for
-Fc . Y c

many different substances, and has been found to possess the approxi-

mately constant value 3 '7 in the case of
" normal

"
fluids, i.e. fluids

which have the same molecular complexity both in the liquid and

gaseous states. 1

For fluids which undergo molecular dissociation in passing from
the liquid to the gaseous phase the value of the ratio is found to be

higher than 3'7. Thus van der Waals' equation, although agreeing
more nearly than the simple gas law with the results of experiment,
must nevertheless be regarded as merely a first approximation to an

accurate Equation of State.

1 It is, of course, assumed in van der Waals
1

equation that neither molecular
association nor dissociation occurs.
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It was seen, in 33, that the pressure P, a,t
which the product

P.V. for an actual gas was a minimum varied with the temperature,

increasing in the case of a gas at a sufficiently low initial temperature
with rise in the temperature up to a maximum value, and then de-

creasing again. This was shown by the dotted parabolic curve in Fig.

XX., and is illustrated more clearly in Fig. L. which represents the

lower part of the isothermal curves in Fig. XX. on an extended scale.

If the upper portion of the dotted parabolic curve be extrapolated,
the point at which it cuts the P.V. axis will represent the minimum
value of P.V. on the particular isothermal for which this minimum
value corresponds to zero pressure. For higher temperatures the

Pressure in Atmospheres.

100

Fio. L. Carbon-dioxide.

ZOO

minimum value of P.V. would correspond to a negative value of the

pressure, and, therefore, would not be realisable in practice, as was
seen to be the case, for example, with hydrogen at ordinary tempera-
tures (cf. Fig. XVII.). Now, for a fluid which obeys van der Waals'

equation, we can calculate the temperature at which the minimum
value of P.V. corresponds to zero pressure in the following manner :

Since ^ a E .

v*-'

~
-t =

.-. P.V.
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Now, for all minima on the isothermal curves, in Fig. L.,

-WW - = 0, and since in the above equation the term t p is not equal

to zero, it follows that, at any minimum point

a

V*

E . b . (V
- E . b .

-
a

'

Let O
l
be the temperature at which the minimum value of P.V.

corresponds to zero pressure. Then at the minimum point,

ft
l

= 1 since V = oo when P = and, therefore, 1
=

=5 r.

The critical temperature, Ct however, has been shown to be given

by the relation C
= ^

'

r.

at . JL\ .

Whence 27
,

; i.e. ^ 3-3750,..

In the case of carbon-dioxide, for example, Amagat's data show
that O

l
is approximately 636 C. ; i.e. 909 A.

; but since C for carbon-

dioxide is 30-92 C., or 303*92 A., it follows that O
l
= 2'99 . C ,

and

approximately the same relationship has been obtained in the case of

other gases. The proportion given by van der Waals' equation is,

consequently, somewhat too high.

Fig. LT. shows the general form of the curves representing the

isothermal variation of the product P.V. with P, both for a perfect

gas and for one obeying van der Waals' equation. For a perfect gas
P.V. = E . 0, and consequently the product P.V. remains constant

when the temperature is constant, as is shown by the horizonta

line I,
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For a "van der Waals' fluid," we have the relation

-
6)
= R.0; i.e.P.V. = R.0. + P.6. - a(V

v

~
6)

.

The dotted line II, in the figure, corresponds to the equation
P.V. = B . + P . b, and the curve III to the complete relation

P.V. - R . 0. + P . ft. - rt
(

-.

When P = 0, V = oo
, and, in each equation, P.V. = R . 0.

When P = GO
,
V =

b, and II and III again meet.

For intermediate values of P. and V., the curve III will lie below

II, and may come helow I. At high temperatures the volume corre-

sponding to any given pressure will be greater than at low tempera-
tures, and, therefore, if the temperature be sufficiently high, the

term a -^ - - will be less than P . b. ; i.e. the curve III will exhibit

no minimum value of the product P.V. If the temperature be low,

however, a
V2

- may be greater than P . b., in which case the curve

III will have a minimum value for P.V.

In Fig. L., the point M lies on the particular isothermal, Om, for

which the pressure corresponding to the minimum value of P.V. has

its maximum value. It is, therefore, of interest to ascertain what
values of the temperature, Om , the-pressure, Pm ,

and the volume, V TO ,

correspond to this point.
For any point on an isothermal, B, we have the relation

Further, for the minimum point on the same isothermal we have
the relation

(V - by __
R . 6 .

V
~~

a
'

Substituting in the first equation the value of R0 determined by
the second equation, we obtain the result

a a (V -
6)P = -

V- b' V2

a (V
-

26)

b
'

V*
'

An examination of Fig. LIL, which represents the isothermal

variation of P.V. with P. in the case of air, as well as of Fig. L. for

carbon-dioxide, indicates that Vw must be approximately equal to

3,6: i.e. equal to Vc .
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For, if VW = 3.5. = V
C ,

then, Pm = q^ = 3 . P
c ;

and Om =
i .

^^-7
=

:>- . C .

Thus, for carbon-dioxide, P
c is, approximately, 73 atmospheres,

+iooea

0-1
20 40 60 80

Fia. LII.Air.

100 120]

and Oc , approximately, 304 A. ; and, for air, we may take P, as 39

atmospheres, and
r
as 133 A.

If, then, we take Pw as 3 . Pc ,
and W as f . Oc ,

we obtain for carbon-

dioxide, the values
Pm 219 atmospheres, and Om = 456 A. (i.e. 183 C.) and,

similarly, for air

PM =, 117 atmospheres, and Om = 199-5 A.
(i.e.

- 73-5 C.).
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These values will be seen to agree fairly well with the experimental
results as shown in the figures.

1

The preceding relationships, as far as the writer is aware, have not

been previously observed.

59. Corresponding States. If any two fluids, either in the gaseous
or in the liquid states, be taken at temperatures which are the same
fraction of their respective critical temperatures, then the two fluids

are said to be at "
corresponding temperatures

"
;
and a similar defini-

tion applies to the terms "
corresponding pressures

"
and tl

correspond-

ing volumes."

Now, for any homogeneous fluid, we may express P, V, and in

van der Waals' equation as fractions of the respective critical con-

stants of the fluid, and write

' V'
~

b}
= R * 7 ' *"

where P = a . P
c ,
V =

ft . V
,
and 6 = y .

e
.

Substituting for a, b, and E, in terms of the critical constants, we
obtain the result

Whence a + ~(3 .
-

1)
= 8 . y.

This last equation is independent of any constants whose numerical
values are conditioned by the particular substance under consideration,
and is known as the " Keduced Equation of State."

This reduced equation can, of course, be applied directly to any
fluid obeying van der Waals' general equation of state, and it follows

that if any such fluids, either in the gaseous or in the liquid states, be
taken under "

corresponding" conditions with respect to any two of

the variables P, V, and 0, then they will also be under "
correspond-

ing" conditions with respect to the third variable, i.e. the fluids will

be in "
corresponding states."

The principle of corresponding states has been investigated for

a number of different fluids, and has been found to be in fair agree-
ment with the results of actual experiment.

60. The Clausius Equation. Clausius, in 1880, suggested the

equation

1

Ethylene exhibits a similar close agreement.
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where the term & in van der Waals* equation is replaced by

/T7v 4- \*
^nS a constant for the given homogeneous fluid, and S

the absolute temperature.
In accordance with this equation, the force due to molecular

attraction should vary inversely as the absolute temperature. Since
there are now four constants, the Clausius equation will not be in

agreement with the principle of "
corresponding states," unless,

indeed, it be assumed that c is the same function of b for all fluids.

For the principle of "corresponding states" requires the same
number of constants as there are variables, (P, V, and

6>) ; i.e. three

constants. It is found, moreover, that the Clausius equation does not

represent the properties of different fluids with much greater exact-

ness than the equation of van der Waals, whilst it possesses an arbitrary
constant, c, which has no direct physical significance.

61. The Dieterici Equation. Dieterici, in 1901, suggested the

equation
A

R.0 -R.eW,

-(V-*)'

A being a constant characteristic of the molecular attraction and e

the base of natural logarithms, (2-718281828 . . .). This may be
written in the alternative form

logP = log,R.0-log.(V-&)-
:

if hyperbolic logarithms be taken of both sides of the equation.
The Dieterici equation is in fair agreement with the experimental

results obtained in the case of actual fluids, and, in particular, it gives
p A

the value 3'695 for the ratio ^
'

J ; a value which agrees very well
i c . v c

with that obtained by experiment (cf. 58).
On the other hand, the critical volume, as deduced from this

equation, is given by the relation Vc
= 26, and the limiting volume,

at infinite pressure, is equal to b; i,e. --
(cf. 58).

Numerous other equations of state have been suggested, but they
exhibit little, if any, closer agreement with the results of experiment
than is shown by the equations which have already been examined.1

1 It was pointed out in Chapter V. ( 42), that the thermal expansion of gases
furnished a scale for the measurement of temperature, and that it was more usual
to measure equal changes of temperature by equal changes in the pressure of a gas
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at constant volume than by equal changes in the volume
ofjiho gas under constant

pressure.

Now, in the case of a perfect gas, P.V. = R . 0, and ^- = constant, if the
00

3V
volume be constant, and, similarly, -- -= constant, if the pressure be constant.

off

Tn the case of any fluid obeying, for example, van der Waals' equation, we
have

_ a n.e
V 2 V - 6*

.. _ =
v

-
. =- constant, if the volume be constant.

Thus, at constant volume, the increase in the pressure is proportional to the

increase in the absolute temperature as for a perfect gas.

If, however, a " van der Waals' fluid
" be employed as the thermometric sub-

stance in a constant pressure thermometer we have

?V _ R
30

"
a 2a6'

^ -
y3 + y3

and, therefore, the volume is not a linear function of the absolute temperature
when the pressure is constant.

Thus, when different gases are used as thermomotric substances, a knowledge
of their mode of variation from the simple gas law P.V. R . 9 . becomes of con-

siderable importance in an accurate system of thermometry.



CHAPTER VII.

LIQUIDS.

62. Fluids and Solids. In the preceding chapters the more impor-
tant consequences of the kinetic theory have been developed, in so far

as they are applicable to matter in the gaseous state. We now pass
to the consideration of the properties of liquids and solids from the

standpoint of the kinetic theory, and it will be found that here, also,

our theory is in agreement with the results of experiment, after mak-

ing due allowance for the greater proximity of the molecules, and the

consequent diminution in the mean free path, which characterise the

liquid and solid states.

It is customary to divide matter into two classes : fluids and
solids. The fluid state is defined as that in which matter yields con-

tinuously to an applied tangential or shearing stress, however small
the magnitude of the latter may be, whereas, in the case of a solid

body, such a tangential stress, if not too great, may be resisted per-

manently. Thus, let Eig. LIII. re-

present a vertical section through
a heap of sand resting on a hori-

zontal plane AB, arid divided into * / ^\ ID

two portions by a plane CD which
is inclined to the horizon. Both
the action and reaction between the two portions may be resolved into

components which are, respectively, normal to CD, and in the plane CD,
the latter constituting a shearing stress which tends to make the upper
portion of the heap slide down over the lower portion. Provided this

shearing stress be not too great, it can, in the case of a solid, be resisted

permanently. In the case of a fluid, however, no such permanent resist-

ance is offered, and a fluid heap will give way continuously, the rate at

which it flows being conditioned by viscosity. Pitch, for example, is a

fluid, and not a solid, for a block of pitch flows continuously, although
very slowly. Thus a specimen of very hard pitch which was kept in the
Cavendish Laboratory for many years, in a vertical funnel, gradually
flowed through the latter. In another experiment, due to Lord Kelvin,

lumps of lead were placed upon a plate of pitch, and gradually sank

through to the bottom of the plate.
Fluids are further divisible into gases, vapour, and liquids, the

last named being distinguished by the resistance they offer to com-

pression (cf. 34).
157
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In view of the close relationship which has been seen to exist be-

tween the gaseous and liquid states, we shall now, proceed to a more

detailed study of the properties of liquids, the properties of solids

being reserved for subsequent consideration.

63. The Properties of Liquids. The general properties of liquids

find a ready explanation from the standpoint of the kinetic theory,

adopting the hypothesis that matter is possessed of an atomic or

molecular structure.

Thus the evaporation of a liquid is due to the gradual escape of the

molecules through the liquid surface, and, since the more rapidly

moving molecules escape more readily, it follows that a cooling effect

will be produced by the evaporation.
If evaporation proceed in the open, the molecules will escape into

the surrounding atmosphere, but if, on the other hand, it take place

into a closed space, the molecules of vapour will collect, and, ulti-

mately, a state of dynamic equilibrium will be attained when as many
molecules are condensed back into the liquid as escape from it in unit

time. The space above the liquid will then be saturated with the

vapour, and the pressure exerted by the latter will be the saturation

pressure at the particular temperature. A rise in temperature will

increase the average molecular velocity, and the saturation pressure,

which corresponds to the state of dynamic equilibrium, will, conse-

quently, be increased. Similarly, from the standpoint of the kinetic

theory, the inter-diffusion of miscible liquids may be explained as due

to the entry of the constantly moving molecules into the interspaces

separating neighbouring molecules.

Since the molecules in a liquid must, in general, be in much greater

proximity than the molecules in a vapour or gas, the curved paths tra-

versed by the molecules while casually within the sphere of action of

other molecules must bear a sensible ratio to the mean free path.

Consequently it is to be anticipated that, in the case of liquids, con-

siderable internal molecular cohesive forces will be developed.
The existence of these internal cohesive forces in liquids is shown

by the phenomenon of surface-tension which will be discussed more

fully in the next chapter on Capillarity.

The fact that liquids possess very considerable cohesion may also

be shown directly, since a liquid can be made to support a very large

tension without rupture.
Thus the sticking of the mercury at the top of a clean barometer-

tube, to which reference was made in 39, shows that the mercury
can sustain a tension.

Berthelot succeeded in measuring the strain which various liquids

could support without rupture by enclosing the given liquid, from

which bubbles of free air or other gases had been previously removed

by prolonged boiling, in a straight and thick-walled glass-tube, a small

space being left containing only the vapour of the liquid. On carefully
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heating the tube, the liquid expanded and filled the whole space, and,
on subsequently cooling, it was observed that the tube remained filled

with the liquid untft, ultimately, the liquid column suddenly broke
with a metallic click, and the vapour reappeared. By measuring the

length of the bubble of vapour, the extension of the liquid was ob-

tained. In the case of water, for example, Berthelot obtained an ex-

tension of volume of T J^
It is only for liquids that wet the glass that the maximum strain

can be thus obtained; i.e. when the adhesion between the liquid and
the glass is greater than the liquid cohesion. Eeynolds measured the

stress various liquids could sustain without rupture by employing
a sealed glass

" U "
tube containing the given liquid and its

vapour (Fig. LIV.). Free air, or other gases, were expelled by pre-

viously boiling the liquid, and, after seal-

ing off the "
TJ

"
tube, the latter was fixed

to a board and rotated rapidly about a

perpendicular axis, 0. If, then, ABCD
be the arc of a circle with O as centre, the

liquid in EB will be in a state of tension -A.

during the rotation, the tension increasing
from B to E. The maximum stress which
could be sustained was then calculated

from the greatest velocity of rotation

which the liquid could support without

rupture.

Vapour

Liquid

IE

O

D

64, Compressibility of Liquids. The FlG - LIV -

great resistance which liquids offer to com-

pression is a further indication that their molecules are sufficiently

close together to exert considerable forces upon one another. It

was seen, in Fig. XXIII., that the isothermals for the liquid state

approximate to straight lines which are only very slightly inclined

towards the axis of pressure, and, indeed, it was thought, for a long
time, that all liquids were absolutely incompressible.

An attempt was made in 1660, at Florence, to show the compres-

sibility of water, by filling silver globes with water and then deforming
the globes. Negative results were, however, obtained owing to the

water being forced through the metal.

More than a hundred years later (1762), Canton succeeded in

demonstrating the fact that water is compressible, but he failed to

obtain an accurate value for the compressibility.
1

Canton employed a large glass bulb joined to a fine capillary tube.

The bulb and part of the tube were initially filled with mercury, and,

by heating the bulb, the mercury was made to expand and completely
fill the apparatus. The fine tube was then sealed, and, on cooling,

1 The terms compression, compressibility, and elasticity have been previously
defined in 32.
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the mercury sank in the tube the pressure on the surface of the

mercury being merely the small vapour pressure of the mercury at

the particular temperature of the experiment. t)n breaking off the

end of the capillary tube, air entered, and the mercury sank lower in

the tube, the contraction under the increased internal pressure being

due, in part, to the expansion of the glass bulb, and, possibly, in part

to the compression of the mercury. On repeating the experiment

with water, Canton observed that the apparent contraction was

greater than in the case of the mercury, and, consequently, for the

water, at any rate, part of the contraction was due to the actual com-

pression of the water itself.

Experiment XXX. The compressibility of different liquids may
be readily demonstrated by means of Oersted's piezometer which is

shown in Fig. LV. The glass bulb

and capillary tube are filled with

the liquid under examination, and

the open end of the capillary tube

is placed beneath the surface of the

mercury in the small reservoir.
1

The reservoir is then introduced

into the piezometer, and, after

filling the latter with water, pres-

sure is applied by means of the

pump ;
when the mercury will be

observed to rise in the capillary
tube.

Since the pressure is applied
both inside and outside the glass

bulb, it might be supposed that the

change in the volume of the latter

could be treated as negligible, pro-

vided the walls of the bulb were

sufficiently thin. This supposition,
1

however, may be shown to be

erroneous. For consider the case

of a solid glass sphere inside the

piezometer. On applying pressure the sphere becomes smaller, the

pressure being the same throughout the sphere. If, now, we imagine
the inside portion of the sphere removed, and replaced by a material

of the same elasticity, there will be no change in the outside shell.

Consequently, in the case of a liquid enclosed in a glass bulb, if the

bulk modulus of elasticity
2 of the liquid be the same as that of the

glass, the bulb would be compressed to the same extent as if a solid

glass sphere had been employed. ,

FIG. JLiY. Uerstecfs Fi'ezometer.

1 Care must be taken to get rid of all air-bubbles. Vide 120.
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Thus the bulk modulus of elasticity of the bulb must be known
before the real compressibility of the liquid can be ascertained.

Let Fig. LVI. represent the glass bulb and capillary tube, the

liquid initially occupying the volume YI. Then, if the compressi-
bility of the liquid and the glass be the same, the level of the liquid in
the capillary tube will remain unchanged on compression, but, if the

compressibility of the liquid be greater than that of the glass, the level
of the liquid will fall on compression to, say, a volume V2 ,

FIG. LVI. FIG. LVII. Begnault's Piezometer.

Whence, the apparent compression of theliquid
V,- V.

-2 - m . P.

where m is the apparent compressibility, and P the applied pressure
producing the given diminution in volume.

The apparent bulk modulus of elasticity of the liquid = .m
The real compression of the liquid is, clearly, greater than the

apparent compression observed, and is given by the relation
real compression = apparent compression

4- compression of the glass bulb,
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Regnault employed the piezometer shown in Fig. LTVTL, the

arrangement being such that the compressibility of the containing

bulb, as well as the compressibility of the liquid, could be determined.

The 'side tube was connected to a supply of compressed air, the

pressure being measured by means of a manometer. The inner

cylindrical bulb contained the liquid under examination, and the

volume of the latter was observed in the accurately graduated stem by

means of a mercury index. The whole apparatus was kept in a large

vessel full of water (not shown in the figure), in order to maintain a

constant temperature throughout the experiment. By turning the

appropriate stop-cocks, pressure could be applied to (a) the outside

only of the cylindrical bulb ; (b) both the outside and the inside ; (c)
the

inside only. From the apparent change in volume produced by applying

pressure to the outside only of the bulb, the bulk modulus of elasticity

of the latter could be obtained, and the bulk modulus of the liquid

could then be deduced by observing the apparent diminution in its

volume when the pressure was applied both outside and inside the

bulb simultaneously. The actual calculation of the result was condi-

tioned by the shape of the cylindrical bulb.

If the bulk modulus for any liquid be accurately known, the bulk

modulus for any other liquid may be readily determined by observing

the apparent compression of each liquid in the piezometer when

pressure is applied equally both outside and inside. Two equations

are thus obtained, from which the bulk moduli for both the bulb and

the other liquid may be deduced. Either Oersted's or Regnault's

piezometer may be used in this experiment.

65. Determination of the Elasticity of a Liquid from the Velocity

of Propagation of Sound. The fact that liquids transmit sound with

finite velocity shows that they possess elasticity, and the velocity of

propagation of sound enables the elasticity of a liquid to be readily

calculated.

We have seen
( 26) that the velocity, V, of sound in any medium

is given by the equation

v __ /Elasticity~"

Y Density

Thus, in the case of water, Martini found that the velocity of sound

at 4 C. was 13-99 x 104
cms./sec.,andat25C. was 14-57 x 104

cms./sec.

Therefore, at 4 C.,

the elasticity of water = (13-99 x 104
)

2 x 1 1-96 x 1010
dynes/cm.

2

Similarly, at 25 C., the elasticity of water

(14-57 x 104
)
2 x -997 = 2*12 x 1010

dynes/cm.
2

Whence the compressibility of water at 4 C.

=
(-510 x 10

- 10
)
x (76 x 13-596 x 981); i.e. 517 x 10

when the pressure is expressed in atmospheres.

1-6
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If the megabar (i.e. 106
dynes per square centimetre = '987 atmo-

sphere) be taken as the unit of pressure, the compressibility at 4 C.
= 5-10 x 10- 5

.

At 25 C. the compressibility of water

(472 + 10
- 10

)
x (76 x 13-596 x 931) ; i.e. 4-79 x 10~ 5

,

when the pressure is measured in atmospheres; and 4-72 x 10"~ 5
,

when the pressure is measured in megabars.
These results are in fair agreement with those obtained by the

compression of water in a piezometer.
Thus Regnault found the compressibility of water for pressures

from about 1 to 10 atmospheres to be 4*8 x 10
~ 5

, the temperature
not being specified, and Grassi found 4*99 x 10~~ 5 at 4 C., and
4-56 x 10~ 5 at 25 C., the pressures, in each case, being expressed in

atmospheres.
1

66. Effects of Pressure and Temperature on Compressibility. As

might be expected, the compressibility of any liquid diminishes as the

pressure increases. In general, the compressibility increases with rise

in the temperature, but water has a minimum compressibility at about
50 C. (Amagat.).

67. Compressibility of Aqueous Solutions. Bontgen and Schneider

investigated the compressibility of aqueous solutions, and found that

their compressibility was less than that of water, and diminished as
the concentration increased.

68. Viscosity of Liquids. A definition of viscosity was given in

48, and the coefficient of viscosity, *, defined by means of the
K A V

relation F = - -- This equation is only true for relatively small
x *

values of the "
velocity-gradient," for it is only under such circum-

stances that the steady state of flow which was postulated can exist.

Experiment XXXI. The viscosity of a liquid may conveniently
bo measured by Poiseuille's method, by observing the rate of flow of

the liquid through a cylindrical capillary tube. As long as the rate of

flow does not exceed a certain critical value, depending upon the

viscosity of the liquid and the radius of the capillary tube, a steady
state of motion parallel to the axis of the tube will be attained.

Fig. LV1II. represents a simple form of apparatus for determining
the coefficient of viscosity of a liquid. The liquid flows in at the tube

A, and any required head can be obtained by adjusting the position of

1 The compressibility of mercury at 4 C. is, approximately, *38 x -10 - 5
, i.e.

about
j^g

times that of water (5-17 x 10-
),

but in other cases the compressibility

has not been found to vary inversely as the density of the liquid.

11
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the tube B. CD is the capillary tube, and the quantity of liquid which
flows out at D in a definite time is carefully measured.

The capillary tube must initially be tested for uniformity of bore

by introducing a column of mercury a few centimetres long, and

measuring the length of the column at different parts of the tube,

A tube of uniform bore having been obtained, its length, I, is measured,
and its mean radius found by nearly filling the tube with mercury,
measuring the length of the mercury column with a vernier microscope,
and then running out the mercury and weighing it. If I' be the length
of the mercury column, and p the density of the mercury at the

temperature of the experiment, then a ~ m
,
where m' is the mass

of the mercury, and a the radius of the capillary tube.

FIG. LVIII. Fto. LlX.

In measuring Z', a correction must be applied for the curvature of

the ends of the mercury column. For a narrow tube, the curved

ends of the mercury column may be regarded as hemispheres, and,

consequently, if the length be measured to the extremity of the convex
surface at each end, we must take (I'

-
. a) as the length of the

equivalent cylindrical column. Alternatively, the internal diameter

of the tube may be measured with the vernier microscope in two
directions at right angles to one another so as to eliminate any small

error due to irregularity of bore, and the radius, a, thus obtained.

Thei temperature of the liquid is alsp noted by means of the thermo-

meter, E.
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Now, we may assume, as in 48, that when a liquid flows over a

solid surface there il no slip between the solid and the layer of liquid
in actual contact with it. Thus the velocity with which the liquid
flows is zero at the internal surface of the capillary tube, and increases

up to a maximum value along the axis of the tube. Let Fig. LIX.

represent a section of the liquid taken at right angles to the axis of

the capillary tube CD, and let the velocity of the liquid parallel to the

axis of the tube at a distance x from the axis be v, and at a distance

x -f &x be v + 8i>, &v being negative when Sx is positive. Then the

volume, SQ, of liquid flowing across the shaded annular section of the

tube in unit time is given by the equation :

8Q =5 v . %TTX . 8x, which becomes rigidly exact

when 8x is taken infinitely small ; i.e. dQ = v . 2irx . dx.

Since the liquid can be regarded as practically incompressible, and
since, in the steady state of motion, it flows parallel to the axis of the

tube, the velocity, v
t
at a distance x from the axis, must be the same

for all cross-sections along the tube ; for the volume SQ, flowing in

through an annular section at any part of the tube must be the same
as the volume flowing out through any corresponding annular section

further down the tube. Moreover, since the liquid flows parallel to

the axis of the tube the pressure is sensibly the same over a given cross-

section of the tube. 1

Let j^ be the pressure at C (Fig. LVIIL), and p2
the pressure at

D. Then the pressure difference, P, between the ends of the capillary
tube is given by

P =
(#>!

- pz)
= h . p .

$r,
where h is the head, and

p the density of the liquid.

Consider the motion of the inner cylinder of liquid of radius x, and

length I. When a steady state of flow has been attained there is no

change in the momentum of the liquid, and, consequently, the force,

F, urging the liquid cylinder forward must be equal and opposite to

the viscous resistance opposing its motion. Since the area of the end
of the cylinder is ?r#2

,
and the area of its curved surface is %nx . I, we

have

F- P. (**)--, .A.*

Whence dv = - ^---;.x.dx.
2 . K . I

C.-

4: .

1 We may neglect the very small pressure due to the weight of the upper layers
of the liquid in the horizontal capillary tube on those below,
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At the internal surface of the capillary tube, x a, and v = 0.

Hence v = -

(a
2 - #2

).
4.*. 2

'

Since dQ = i? . 2?r^ . da?, the volume, Q, of liquid flowing across the

whole cross-section of the tube in unit time is given by the equa-
tion

f
a

1 V .

J
Q = 1 V . %-rrX . dx,

TT.J?
at

2.K.Z
'

4'

TT . P . a4

By employing this relation the coefficient of viscosity, *, may be

readily ascertained.

In the preceding investigation we have omitted to take any account
of the kinetic energy possessed by the liquid issuing from the capillary
tube at D. Since part of the head of liquid has been used in supply-
ing this kinetic energy, a correction must be applied if the velocity of

efflux of the liquid be large. In the case of long tubes of fine bore,

however, this correction becomes negligible.
The volume, Q, of liquid which flows in unit time across a section

of the tube may also be deduced in the following modified manner.
Consider the liquid bounded by two coaxial cylinders of radii x, and
x + 8x, and by two planes at right angles to the axis of the capillary
tube at a distance SI apart (Figs. LIX. and LX.).

The tangential viscous force on the curved surface of the cylinder
of radius %, and length SI, is

Similarly, the tangential force on the curved surface of the cylinder
of radius x + 8#, and length 8Z, is

dv d
,

Consequently the difference in the tangential forces over the two
curved surfaces is
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If, further, the pressure gradient along the tube be
-^,

the force due

to the difference in the pressures over the two plane ends of the

liquid ring is

~
dl

When the liquid has attained a steady state of flow this force

must be equal and opposite to the resultant tangential viscous force

opposing the motion of the liquid ring.

dv CN n A ( dv\ .

Hence 2ira? . 8z . . M = - K .81 , Z* . ^(x .

^J
. Sx.

dp d / dv
~

Axis of Tube

FIG. LX.

It has been shown, previously, that the pressure is sensibly the

same over a given cross-section of the tube, and, also, that the

velocity, v, at a distance x from the axis of the tube, must be the

same for all cross-sections. Thus the pressure gradient, J,
is in-

dependent of x, whereas, for any given liquid under the conditions of

the experiment, the right-hand side of the last equation is dependent
dp

merely upon x. Consequently the pressure gradient, ^,
must be

constant, and equal to -^ -; i.e.
y.

Therefore, integrating the last equation, we have

?L _ + C = - K . x . %-, where C is a constant.
(/ CLX

Dividing by x and again integrating, we have

^ .
~ + C . log x + C' . - K . v, where C' is another constant.

4 l

If x = 0, i.e. along the axis of the tube

C.loge O + C' * - K.V.
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But loge
= - oo

,
and therefore, C must be zero, for otherwise

the velocity, v, would be infinite along the axis of the tube.

Again, if x a (i.e.
at the internal surface of the tube where

t; = 0), we have

ct
l P n , A

. + c =0.

Whence

Thus, as previously

C
a

Q = v.2vx. dx,
J o

TT . P . a4

S.K.I
'

B E

FIG. LXI.

This law for the viscous flow of liquids through capillary tubes

was first obtained by Poiseuille, and is known as Poiseuille's Law.

As long as the rate of flow of the liquid is less than a certain critical

value, depending upon the viscosity of the liquid and the radius of

the capillary tube, Poiseuille's Law is found to hold good, but it ceases

to be applicable when this critical value is exceeded.

Keynolds has shown that the steady state of motion parallel to

the axis of the tube, which was assumed in deducing Poiseuille's Law,

only exists when the rate of flow is less than this critical value, and

that, at greater values, the motion of the liquid becomes irregular.

Experiment XXXII. Water is allowed to flow from a reservoir,

A (Fig. ItXI
), through a long horizontal glass tube.,BC, of say, 1 cm.

internal diameter, the rate of flow being regulated by means of the

stop-cock, D. The tube, BC, contains a very small piece of glass tube,
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E, inside which a fragment of magenta, or other colouring material,

has been inserted. A thin piece of wire serves to hold the tube E in

position inside the wider tube, BC. As long as the rate of flow is

small, the coloured water from E follows a straight path parallel

FIG. LXII.

E

FIG. LXIII.

to the axis of the tube (Fig. LXII.), but, as the rate of flow is in-

creased, the path becomes undulating and finally quite irregular
1

(Fig. LXIII.).

If the volume, Q, of liquid which flows in unit time across a sec-

tion of the tube be plotted against the pressure difference, P, between

the ends of the tube, we obtain at first in accordance with Poiseuille's

Lawthe straight line AB (Fig. LXIV.). Beyond a certain critical

velocity eddies are set up in the liquid flowing through! the tube, and

the relation between Q and P is now given by the curve BC.

It is possible for a more viscous liquid, under certain conditions,

to flow more rapidly than one of lower viscosity, since the eddies will

be damped out more readily by the former liquid than by the latter,

1
According to Reynolds the steady state of flow parallel to the axis *f the tube

cannot exist if the mean velocity (Q/ira
2
) exceeds the value 1000 . *//> . a, where K

is the coefficient of viscosity, p the density of the liquid, and a the radius of the

tube, expressed in O.G.S. units.
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Thus in Fig. LXIV., if ADEFG represent the relation between Q and
P for a more viscous liquid, it will be seen that for*pressure differences

between P' and P" this liquid will flow the faster the formation of

eddies being prevented until a pressure difference corresponding to

the point E has been attained.

69. Variation of Viscosity with Temperature. In the case of

liquids the viscosity decreases rapidly with rise in temperature,
whereas for gases the reverse effect is observed

( 48). It must
therefore be assumed, in accordance with the kinetic theory, that the

principal effect produced by a rise in temperature, in the case of

liquids, is a reduction of the considerable inter-molecular cohesive

forces which characterise the liquid state.

The following table gives the values of the coefficient, *, for a few

liquids at various temperatures :

COEFFICIENT OF VISCOSITY, K.

70. The Coefficient of Viscosity of a Gas. As pointed out at the

end of 48, Meyer developed a theoretical law for the rate of flow of

a gas through a long tube which was similar to Poiseuille's law for

the flow of liquids. Meyer's law of gaseous transpiration may now
conveniently be deduced.

In considering the flow of a viscous liquid through a cylindrical

capillary tube, we treated the liquid as incompressible, but an im-

portant difference arises in the case of gaseous transpiration owing to

the variation in the density of the gas at different parts of the tube

due to variation in the pressure. Thus, in the case of a gas, the

volume, in unit time, flowing in across a given cross-section of the

tube will not be the same as the volume flowing out across a cross-

section farther down the tube, and, in consequence, the velocity, V,
of the gas parallel to the axis of the tube, at a fixed distance, x, from
the axis, will vary as we move along the tube.

Since, however, when a steady state of flow has been attained,

equal masses of the gas flow across each cross-section of the tube in

unit time; it follows that p.V. must be constant at a fixed distance, x,

from the axis, where p is the gaseous density. But 'the density varies

directly as the pressure, p, of the gas, and, consequently, the product,
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p . V, of the pressure and the velocity, at a distance x from the axis,
must remain constant as we move along the tube.

Since, then, the velocity V, at a distance x from the axis, varies

along the tube due to variation in the pressure p relative motion
will arise between portions of the gas which are equi-distant from the
axis. The viscous forces brought into play by this relative motion

may, however, be treated as negligible, for, if the maximum velocity
of the gas be V, the velocity-gradient along the tube is of the order
V V'
-p and the velocity-gradient across the tube is of the order

,
and

*
. a

since a is very much less than I, the second gradient is correspond-
ingly greater than the first. In consequence, the viscous forces

arising from the first gradient of velocity may be neglected in com-
parison with those due to the second gradient.

Therefore, as in 68, we have

x ^f ~ - K j-( x T h hut, in this case, the
dl dx\ dx J

'

(I'D

pressure-gradient, ^, is no longer constant.

Since the pressure, p, may be assumed constant over a given cross-
section of the tube, we have, on multiplying both sides of the last

equation by p

. -f.
= K

dx\
'

dx

Now, we have seen that p . V is independent of Z, and, conse-

quently, the right-hand side of the last equation is independent of I.

.*. -J~ is constant, and equal to i2-! O./^

Integrating the equation ?. -|-
= - * . ~(x .

d(P' VA, we^
2 dl dx\ dx )

get

. -^L + C = - K . x . 1- , where C is a constant.
4 dl dx

Dividing by x, and again integrating, we get

|
2

.^ + c . log< x + C' - - K .p . V, where C' is
o dv

another constant.

If, then, x = (i.e. along the axis of the tube)

C . loge + C' = - K . p . V, and, since the velocity
is not infinite, C must equal zero.
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If x = a, the velocity V is zero, whence

2 2

Substituting the values found for C and C', we obtain the equa-

tion

8'

Whence, if Qi be the volume of the gas entering the tube, in unit

time, at pressure pv and Q2
be the volume of the gas leaving the tube,

in unit time, at pressure p<2 ,
we have

Pi Qi = Ih - Q2
=

J
<

-I
pi

2 -
7),

2
) f

tt

1-
j
J -'

. \ x .

Jo

S.K.I

-" "

16 . K . /
'

This was the theoretical law deduced by Meyer for the transpira-

tion of a gas ( 48).

71. Couette and Mallock's Method of Determining Viscosity. The

viscosity of a liquid may also be determined by a method employed by

Couette and Mallock, in which a couple is applied to a cylinder to

prevent it moving while an outer coaxial cylinder is rotated with uni-

form velocity, the intervening space being filled with the viscous liquid.

The apparatus is shown diagrammatically in Fig. LXV.

Consider a cylinder in the liquid of length h and radius x (Figs.

LXY. and LXVL), the radii of the inner and outer solid cylinders

being, respectively, a and b (Fig. LXVL).
The tangential viscous force on the curved surface of the liquid

cylinder 'is
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and the moment T of this force about the central axis O is given
by

dV
T = K.h.^x2 .--.

dx

Now, provided the rate of rotation of the outer cylinder be less

than a certain critical value, the liquid acquires a steady state of

A

4

FIG. LXV.

motion and travels in concentric circles around the axis of rotation 0,
the angular velocity with which the liquid moves increasing from zero

at the surface of the inner cylinder to a maximum at the surface of the

outer cylinder.
Let A and B (Fig. LXVL) be points

on a radius of the cylinders, at dis-

tances x, and x + &, respectively, from
the axis O. In unit time A will move
to C, but B will move to D, where
AC = V, and BD = V + 8V.

Let OC produced cut BD at E.

If $x be sufficiently small, the dif-

ference between AC and BE becomes

negligible.

Therefore, the velocity gradient at

A is given by
8V _ ED
Bx

~
&T-

Fia. LXVI.
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Let the angular velocity be o> at A, and o> + 8o> at B.

Then tt = Y = AC
X X ,

BE
X +

since OC produced cuts BD at E.

But

V+ 8V BD BE ED SD

ED

The velocity gradient at A may therefore be written

8V _ (a; + &z) .Jo>

fix

~~

60;

When 8# is infinitely small this becomes

dV # . do>

d#
~~

dx

dV
Substituting in the equation T = K . h . %irx 2

.

~j
,
we get

Now, if we consider the liquid bounded by any two coaxial cylinders
of radii x and y, respectively, and by two planes at right angles to the

axis at a distance h apart, then, when the liquid has acquired the

steady state of motion previously postulated, it is clear that the

moment about the axis of the tangential viscous force on each of the

curved surfaces of the liquid annulus must be equal, but oppositely
directed.

Hence the moment T about the axis of the tangential viscous

force is constant throughout the liquid, and is equal to the moment of

the couple acting on a length, h, of the outer cylinder (where x =
i),

and equal and opposite to the moment of the couple acting on a length,

h, of the inner cylinder (where x =
a).

Therefore, integrating the equation K.h. %TTX* . --v- = T, we get

T
2?r . K . h . w .

= -
-:

2
+ C, where C is a constant.
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At the surface of the inner cylinder x = a, and w = 0, and the
last equation becomes

T

At the surface of the outer cylinder x = b, and w =
o>, where o> is

the angular velocity with which the outer cylinder is rotated.

T/l 1\
Whence 2?r . K . h . <o .

=
-$( TS - ra )J \c* /

If the radius of the pulley wheel attached to the inner cylinder
be r (Fig. LXV.), then the total couple, T, applied to the cylinder to

prevent its rotation is given by

T = 2W . r,

= 2M.
ff .r,

and this couple corresponds to the whole length, H, of the inner

cylinder immersed in the liquid.
It is difficult to allow for the motion of the liquid in the region at

the lower end of the inner cylinder, but this end effect may be elimin-
ated by varying the depth to which the inside cylinder is immersed in

the liquid and so obtaining an expression corresponding to the differ-
ence in the depth, h.

Thus if the angular velocity of rotation, u, of the outer cylinder be

kept constant, the weights, W, must be increase! when the inner

cylinder is immersed deeper in the liquid, in order to prevent the
inner cylinder rotating, arid the additional applied couple will cor-

respond to the increased viscous drag due to the extra length of the

cylinder immersed. This method has also been employed for the

determination of gaseous viscosity.

72. Measurements of Viscosity by other Methods. The oscillating
disc method for the determination of viscosity has already been re-

ferred to in 48, and may be used for both gases and liquids. This
method is particularly suitable for comparative measurements of

the viscosities of different fluids, and also for the determination of
variations in viscosity due to changes in temperature and pressure.
The viscosity of a fluid may also be measured by a method de-

veloped by Stokes in which the logarithmic decrement of the ampli-
bude of oscillation of a pendulum immersed in the given fluid is
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observed;
1 and measurements of the logarithmic decrement of a

sphere vibrating about a diameter, when immersed in a fluid, have,

similarly, been employed for the determination of the coefficient, *.

73. Viscous Resistance offered to the Motion of a Solid through a

Fluid. Since, when a solid body moves through a fluid there is no

slip between the solid and the layer of fluid in actual contact with it,

relative motion of the fluid will be produced, and, in consequence,

viscous forces will be brought into play tending to stop the motion

of the solid. In the case of a spherical solid moving with a small

uniform velocity, V, through a fluid, the viscous resistance was shown

by Stokes, in 1849, to be equal to fa . K . a . V, where K is the co-

efficient of viscosity of the fluid, and a the radius of the sphere.

If, then, a sphere be allowed to fall through a viscous medium, its

velocity will increase until a maximum terminal velocity, V, is at-

tained at which the weight of the sphere is exactly equalled by the

viscous resistance exerted by the medium.
Let p be the density of the sphere and p' the density of the fluid

medium. Then, since the weight of the sphere is virtually decreased

by the weight of an equal volume of the fluid, its effective weight is

^n-a* . (p
-

p) . g, and we have

-|7ra
3

. (p -/>').(/
= 6;r . K . aV.

Whence V = % .

'

This relation will only be applicable for small values of the

terminal velocity, for if V exceed a certain critical value eddies are

set up in the surrounding fluid, and the viscous resistance is no longer

given by the expression 6;r . K . a . V.

Thus, in general, the preceding relation will only hold good for

very small spheres, or for spheres of density only slightly greater than

that of the surrounding medium. The same theory applies to the

case of spherical liquid drops falling through a fluid medium, pro-

vided that the volume of the drops does not change, due to evapora-

tion or condensation, and that the spherical shape is not sensibly

affected by the viscous resistance of the medium. The size of very

small drops of water, for example, may be determined from the rate

at which they fall through saturated air. J. J. Thomson utilised this

fact in counting the number of ions produced in air under the influ-

ence, say, of Eontgen rays. For, as will be seen in the next chapter,

vapour will condense at the ordinary dew-point on these electrical

nuclei, in dust-free air ; the mist globules formed being, in general, of

uniform size, and, consequently, falling through the air at the same

1
Boyie, in 1GGO, found that the oscillations of a pendul'im in air decreased at

the same rate, irrespectively of the pressure of the air, thus anticipating Maxwell's,

law that the coefficient of viscosity of a gas is independent of its density.
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rate. The rate of fall may readily be ascertained by watching the

fairly definite upper surface of the mist as the latter settles, and, irom
a knowledge of the rate of fall, the size, and hence the number, of

water globules may be ascertained since the total quantity of vapour
condensed may be calculated from the measured amount of expansion
which was employed in Thomson's experiment to produce condensa-
tion. The number of water globules thus found corresponds with the

number of condensation-centres or ions present in the air.

Since in accordance with the relation "V ~ | . -~~^~-~^-^ ~

deduced by Stokes the terminal velocity varies directly as the

square of the radius of the moving sphere, it follows that, cateris

paribus, large bodies will fall more quickly than small ones through
a viscous medium. The slow rate at which a fine powder settles,

when suspended in water, in comparison with the rate of fall of

coarser granules, and the difference in the rates at which, respectively,
clouds of very fine mist, small raindrops, and large raindrops fall, are
familiar examples of this fact.

If, for example, the radius, a, of a mist globule be 0*001 mm.,
then, since for air, at 15 C., K = 1-8 x 10~ 4

,
we have

V = '01 cm ./sec.
1

Experiment XXXIII. Finely pulverise a small quantity of sand,
and shake a little of the powder and some of the original sand with
water. Observe how much more rapidly the coarser sand granules
settle, when the shaking is stopped, than the fine powder.

If p be less than p in the equation for the terminal velocity,V will, of course, be negative. The following simple experiment
furnishes an interesting example of a negative value for V :

Experiment XXXIV. Pour out a tumbler-full of "
soda-water,"

and observe that the smaller the bubbles of gas the slower the rate

at which they float up to the surface of the liquid.

71 Liquid Diffusion. We have seen in 44 that the interdiffusion

of miscible liquids finds a ready explanation from the standpoint of

the kinetic theory of matter, and that, as was shown by Fick, the

law of such liquid diffusion is exactly analogous to Fourier's Law of

thermal conductivity.
The slowness of liquid diffusion, as compared with that of gases, is,

1 The value taken for K is for dry air. If, however, the air be dry, vapor-
isation will proceed, the rate of fall of the globules becoming slower a^they grow
smaller, until, ultimately, the mist disappears. If the air be saturated with water

vapour, the value of K will be slightly less than for dry air, and V will be corre-

spondingly increased.

12
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further, a necessary consequence of the diminished mean free path
which is characteristic of both the liquid and solid states.

Experiment XXXV. Place a strong aqueous solution of a coloured

substance, such as copper sulphate, or potassium dichromate,
1 at the

bottom of a tall cylinder, and carefully fill the latter with water,

taking care to disturb the solution as little as possible.
At first a fairly definite plane of separation will be observed

between the coloured solution and the water, but interdiffusion will

slowly proceed until the liquid mixture becomes perfectly homo-

geneous. The i ate of diffusion will be seen to be very much slower,

however, than in the case of gaseous diffusion (cf. Experiment XVIII.).
Thus if a cylinder 30 cms. long were employed in the experiment,
and were half filled with a strong solution of copper sulphate, and
then carefully filled up with water, the liquids would not become

uniformly mixed until, approximately, one year had elapsed.

The earliest experiments of importance on liquid diffusion were
carried out by Graham in 1850 and the following year. In these

experiments a wide-mouthed bottle was filled with a solution of a

given substance, and was placed in a larger vessel which was then
filled with water above the level of the open mouth of the bottle.

After several days, the amount of the dissolved substance which had
diffused out into the larger vessel was determined.

The following results were obtained, in this manner, by Graham :

(a) Rise of temperature produces an increase in the rate of

diffusion.

(b) Solutions of different concentration of the same substance
diffuse at rates proportional to the concentrations.

(c) Solutions of equal concentration of different substances diffuse

at different rates.

(d) The proportion of two substances in a mixture is, in general,
altered by diffusion.

(e) Substances may be divided into two main classes, viz. crystal-
loids and colloids. The former can, in general, be obtained in

crystalline form, and diffuse much more rapidly than the latter,
which are amorphous. Amongst the crystalloids, acids in general
diffuse more rapidly than salts.

In 1855, Tick showed that the law of fluid diffusion was similar
to the law of the conduction of heat. Thus, referring to 44, we
may define the interdiffusity of two miscible liquids as follows :

Let the two liquids which, initially, are not uniformly mixed

together be enclosed in a cylindrical vessel, and let the concentration
of each liquid throughout any horizontal section of negligible thickness
be uniform. Then if c be the concentration (i.e. the quantity in gms.

1 Note that the copper sulphate, and potassium dichromate, become themselves
liquids when dissolved in water.
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per c.c. of solution) of one of the liquids at a height x, measured from

any fixed horizontal Deference plane, and if c decrease with increase in x,

the mass, M, of the liquid which flows across the horizontal plane at

height x is given by the equation

M -
rj

. A .
- ~

. S,
ax

where y is the interdiffusity of the two liquids, A the area of the plane,

and S the time interval.

This equation will, in general, become more nearly exact the

dc
shorter the time interval, S ; for the concentration gradient,

=
^,

will

usually vary with S.

Various experimental methods have been employed for determining
the value of the coefficient, 77,

in the case of liquids, and thus verify-

ing the accuracy of Fick's Law.
Since the withdrawal of any portion of the solution will set up

disturbing currents, it is necessary to determine the concentration of

different layers by measuring some physical property of the undis-

turbed solution, Thus the concentration of sugar solutions, for

example, may be determined by measuring the rotation of the plane
of polarisation of light. Other optical methods have also been em-

ployed for determining concentration such as the measurement of

the refractive indices of various horizontal layers at definite times

and, in certain cases, the concentration has been ascertained by means
of similar colorimetric observations.

In a method due to Lord Kelvin a number of small glass beads of

different densities were employed. A cylindrical vessel was half filled

with a solution of a given substance, and then carefully filled up with

water. The small glass beads were immersed in the fluid, and

initially floated at the surface of separation of the solution and the

water, but, as diffusion proceeded, the beads floated up or down.

From the positions of the various beads at any instant the densities,

and hence the concentrations, of the corresponding horizontal fluid

layers could be ascertained. Owing to bubbles of air, and, possibly,

crystals of salt forming on the beads, and so altering their density, the

method is not susceptible of very great accuracy.
One of the most exact methods of measuring the progress of liquid

diffusion was devised by Weber in 1879. Two plates of amalgamated
zinc were placed horizontally in respective aqueous solutions of zinc

sulphate of different concentrations contained in a cylindrical vessel,

the more concentrated solution occupying the lower half of the vessel.

The electromotive force between the two zinc plates depended upon
the difference in the concentration of the two solutions in contact with

the plates. Consequently, the progress of diffusion could be followed

by observing the electromotive force at definite times the manner in

12*
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which the electromotive force depended upon the concentration of the

solutions having been determined in a prelimirrary experiment. As
the diffusion proceeded the difference in concentration, and, conse-

quently, the electromotive force, became smaller, until, ultimately, a

homogeneous solution was obtained, and the electromotive force

vanished.

The law of Fick has been found to be in very close agreement with

the experimental results obtained by numerous investigators. Just as

it was seen, however, that the thermal conductivity, K, was not

rigidly constant but was, in fact, a function of the temperature and

just as the interdiffusity, 77,
of two gases was found to vary slightly

with a variation in the proportion between the two gases so, in the

case of liquids, rj depends to a small extent upon the concentration of

the solution.

As in the case of gases, the rate of diffusion of liquids increases

with rise in temperature. Provided a uniform temperature be

maintained throughout a homogeneous solution, the phenomenon of

diffusion enables the solution to be preserved indefinitely without any
change in its homogeneity. This property is obviously of very great

importance in volumetric chemical analysis.

75. The Solvent Action of Liquids. The phenomenon of solubility,

or miscibility, to which reference has already been made in 37, must
now be investigated in somewhat greater detail from the standpoint of

the kinetic theory.
It is well known that both the solubility of different substances in

the same solvent, as well as the solubility of the same substance in

different solvents, may vary very considerably. Thus sulphur is

scarcely soluble in water to an appreciable extent, whereas sugar will

readily dissolve ; silver fluoride is extremely soluble in water, while

the other halides of silvtr are only very sparingly soluble. Again,

although sulphur is almost insoluble in water, yet it dissolves easily
in carbon-disulphide. Consequently, the ability to dissolve depends
upon a mutual affinity between the solvent and the solute, and is

not conditioned by the properties of either of them alone.

The term solvent is usually applied to the substance which consti-

tutes the larger part of the solution, while the substance which is dis-

solved in the solvent is called the solute. It should be noted, however,
that, theoretically, there is no distinction between solvent and solute. 1

At a given temperature two substances may be infinitely miscible

(cf. 37), or there may be a limit to their mutual solubility. Thus

1 The phenomenon of solution must be regarded as purely a physical change
for the constituents of a solution may be separated by changing their respective

physical states (e.g. by boiling off one of the constituents), and, further, the com-

position CTL a saturated solution, unlike that of a chemical compound, does not

correspond to integral multiples of the atomic weights of the constituent elements.
The composition of a saturated solution also varies with change in the tempera-
ture.



LIQUIDS 181

at, say, 20 C., water and alcohol are miscible in all proportions, but,
at the same temperature, a saturated solution of water in ether con-

tains only 1-2 gms. per 100 gms. of the ethereal solution, and a

saturated solution of ether in water contains 6*5 gms. per 100 gms. of

the aqueous solution. Again, at 20 C., 1*33 gms. of lithium carbon-

ate, 34/0 gms. of potassium chloride, and 204*0 gms. of cane sugar,

respectively, will dissolve in 100 gms. of water to form saturated

solutions. A saturated solution may be defined as that solution which,
at the particular temperature, is in equilibrium when in contact with
an excess of the solute.1

Now, if a liquid be placed in a closed space, we have seen ( 63)
that evaporation proceeds, due to the escape of molecules through
the liquid surface, until, ultimately, a state of dynamic equilibrium
is attained when as many molecules are condensed back into the

liquid as escape from it in unit time. The pressure exerted by the

vapour when this equilibrium state has been reached is the saturation

pressure at the particular temperature.

Similarly, in the case of a solid body, there is a maximum vapour-
pressure at each particular temperature, but this pressure is, in

general, exceedingly small. A number of solids, however, evaporate
to an appreciable extent even at the ordinary temperature. Thus the

vaporisation of camphor or naphthalene may be readily detected by
their respective odours.

As in the case of liquids we must suppose that the maximum
vapour-pressure for a solid corresponds to a state of dynamic equi-
librium in which as many molecules land back upon the surface of the

solid, in unit time, as escape from it into the space in which it is

enclosed.

Now, although a solid will vaporise into air, or into a vacuum,
under ordinary conditions, to an extremely small extent, yet the

molecules of the solid will disseminate themselves much more freely

throughout a space occupied by a suitable solvent. Thus, for example,
the vapour pressure exerted by cane sugar at the ordinary tempera-
ture is practically negligible, but if a moderate quantity of sugar be

placed at the bottom of a vessel full of water it will dissolve, and

gradually diffuse upwards until the solution becomes perfectly homo-

geneous. The upward diffusion of the heavier sugar molecules

through the lighter water shows that they are in motion, just as the

upward diffusion of a heavier gas into a lighter one is due to the

motion of the gaseous molecules.

We have seen, however, that, in accordance with the kinetic

theory, the pressure exerted by a gas upon the walls of a containing
vessel is due to the impacts of the gaseous molecules occasioned by
their very rapid motion, and, similarly, it can be shown that the

.

1
Since, under suitable conditions, supersaturated solutions can be obtained it<

is incorrect to define a saturated solution as one in which the solvent contains all

of the solute it can take up at the given temperature.
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motion of the molecules of the dissolved sugar gives rise to an

analogous pressure, which is termed "
diffusion pressure" or^ osmotic

pressure" This pressure, as will be seen later, can be experimentally

measured, and it is found, in the case of dilute solutions, that the

osmotic pressure is proportional to the concentration.

It must be noted that, in the solid state, the molecules of sugar

are relatively close together, whereas in a dilute solution, at any ra.te,

they are very much farther apart, their cohesion having been over-

come by the action of the solvent. We may, therefore, regard the

sugar in a dilute solution as being in a quasi-gaseous state, and this

conception will be found very useful in elucidating a number of

important experimental results. 1

76. The Process of Solution. In order to obtain a definite mental

picture of the dynamical actions involved during the process of solu-

tion let us consider the case of, say, the dissolving of potassium
chloride in water at a temperature of 20 C. As stated above, 34'0

gms. of potassium chloride will dissolve in 100 gins, of water, at

20 C., to form a saturated solution. Suppose we take about 50 gms.
of solid potassium chloride, and add 100 gms. of water. In the solid

potassium chloride the molecules are close together, and very few of

them would escape by vaporisation if the solid were surrounded with

air, but when the potassium chloride is placed in contact with water

the molecular cohesion is overcome at the surface, by the action of

the water, and the molecules escape into the liquid. These free mole-

cules gradually diffuse away, and other molecules take their place.

The rate of solution, if the liquid be not stirred, is conditioned by this

rate of diffusion, just as the rate at which a liquid evaporates is de-

pendent upon the rate of diffusion of its vapour into the surrounding

atmosphere (vide 44). We have seen that the tendency to dissolve

i.e. the tendency of the molecules of the solid potassium chloride

to escape from the cohesive action of other potassium chloride mole-

cules is not merely dependent upon the nature of the solute itself, but

also depends upon the nature of the solvent.2

Thus in the case of a solute dissolved in a solvent it is incorrect

to speak of the tendency of the molecules of the solute to dissolve off

the solid surface as a solution pressure, and it is equally incorrect to

1
See, however, 85.

2 It is only in the case of a liquid, or a solid, vaporising into a vacuum, or into

a space filled with an indifferent gas, that we can regard the saturation, or maxi-

mum vapour pressure, at a given temperature, as a measure of the independent

tendency of the molecules to escape. Thus, for example, if an excess of ether be

placed in a closed space, a definite saturation pressure will be attained corre-

sponding to a definite concentration of the ether molecules in the vapour phase
and thk saturation pressure will be the same whether the ether evaporate

into a vacuum or into a space filled with an indifferent gas. If, however, the ether

be placed in contact with, say, water, quite a different concentration of the ether

molecules in the space occupied by the solvent (water), will result.
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regard the whole action as due to the tendency of the solvent to absorb
the solute and to spaak of the solvent as possessing a solution tension.

Since the tendency to dissolve is due to the mutual affinity of the
solute and solvent we shall call this tendency the solution stress *

between them.

Now, as the dissolved molecules of the potassium chloride move
about in the liquid in all directions, some of them will land back upon
the solid surface of the undissolved potassium chloride and again
cohere, and, as the concentration of the dissolved molecules increases,
the more frequently will molecules get caught back by the undissolved
solute.

Ultimately, just as in the case of a liquid in contact with its

saturated vapour, a state of dynamic equilibrium will be attained
when the solution in contact with the solute has acquired such a con-
centration that as many molecules land back upon the solid surface
and cohere, in unit time, as escape from the surface of the solid and

pass into solution
; and this state of equilibrium will moreover be

permanent when, through the process of diffusion, the whole of the
solution has acquired a corresponding concentration,

It is clear that this state of dynamic equilibrium will be reached
when the osmotic pressure of the dissolved substance becomes equal
to the solution stress : the solution will then be saturated, and any
excess of the solute will remain undissolved. Thus, in the case under

particular examination, the osmotic pressure of the dissolved potas-
sium chloride increases as the concentration of the solution increases,

until, when 34-0 gms. have dissolved, the osmotic pressure of the

dissolved potassium chloride equals the solution stress between the

potassium chloride and the water, and no further increase in the

concentration of the solution can then occur.

77. Osmosis. Before proceeding to a consideration of the experi-
mental methods employed in determining the osmotic pressure of a
dissolved substance, it will be necessary to investigate very briefly the

phenomena exhibited during the passage of liquids through porous
septa. The interdiffusion of two miscible liquids which are initially

separated by a porous membrane is termed osmosis (woyxos, a push).
The Abbe Nollet, in 1748, recorded that a bladder filled with alcohol
and immersed in water swelled out and nearly burst, owing to the
water entering more rapidly than the alcohol escaped, and that if the
bladder were filled with water and immersed in alcohol, the water,

similarly, escaped more rapidly and the bladder shrank.

Experiment XXXVI. Attach a piece of bladder very securely to

the head of a short thistle-funnel, and fill the latter with, say, alcohol,
or a concentrated solution of cane sugar. Join the thistle-kmnel to a

1 The dimensions of a stress are those of a force divided by an area, and are,
therefore, the same as for a pressure (vide Cap. XI.),
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capillary tube by means of a small rubber stopper, and immerse the

funnel in distilled water. After standing for sme time it will be

observed that the liquid has risen in the capillary tube, due to the

water entering more rapidly than the alcohol, or sugar, can escape.
It must be noted, in this experiment, that the membrane is not

"
semi-permeable," for appreciable quantities of alcohol, or sugar, pass

out through the membrane into the water.

A little more than a century after Abbe Nollet's observations,

Graham (as was stated in 74) divided substances into two main

classes, viz. crystalloids and colloids, the former diffusing much more

rapidly, when dissolved, than the latter.
1

The colloids (/cdXAa, glue) include such substances as albumen,

starches, and gums, and possess the property of forming jellies when
mixed with a small quantity of water. Crystalloids will diffuse through

many of these colloidal jellies nearly as rapidly as through water,

whereas the jellies are impervious, or nearly so, to colloids. When
crystalloids are dissolved in water the freezing-point of the solution is

found to be lower, and the boiling-point higher, than in the case of

the pure solvent. Colloids, however, when similarly dissolved, are

found to produce very little effect, and, in many cases, it would appear
that the colloid does not form a true solution at all, but merely re-

mains suspended throughout the solvent in a very fine state of division.

The difference in the permeability of colloidal jellies or membranes

by crystalloids and colloids was utilised by Graham for the separation
of these two classes of substances.

The process is called dialysis (8ia,

through; A.CCJ, I loosen). The solution con-

taining the crystalloids and colloids is poured
into a tray, the bottom of which is closed

with a colloidal membrane of, for example,

parchment paper
2 or bladder.

The tray is then placed in another vessel

Fia. LXVII. Dialyser. containing distilled water (Fig. LXVIL).
The crystalloids pass through the mem-

brane much more rapidly than the colloids, and, if the water in the

outer vessel be renewed frequently, practically all the crystalloids can

be removed, while most of the colloids remain behind.in the tray.

Experiment XXXVII. Pour a solution of sodium silicate into

concentrated hydrochloric acid, keeping the latter in considerable

1 Since many substances possess both crystalloid and colloidal forms it is

more accurate to refer to the crystalline and colloidal states than to "
crystalloids

"

and colloids.'
1

2 Parchment paper is made by treating filter paper with a mixture of two
volumes of sulphuric acid and one volume of water. The paper is then freed from
acid and dried*
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excess. Silicic acid is formed and remains in colloidal suspension.
On dialysing the mixture hydrochloric acid and sodium chloride are

removed, and a dilute solution of silicic acid is obtained.

The dialysis may be effected very readily by keeping a continuous
current of water flowing through the outer vessel.

Experiment XXXVIII. Add a little potassium iodide solution to

an emulsion of starch, and pour the mixture into a dialyser which
is placed in a vessel containing distilled water. After a short time

remove the dialyser, and add a little chlorine water to the solution in

the outer vessel. Iodine will be liberated, and the solution will turn

brown, but no blue colouration will be produced, showing that the

starch has not passed through the dialyser. If, now, a few drops of

starch emulsion be added to the solution, a deep blue colour will

appear, due $o the adsorption of the iodine by the starch which is in

colloidal suspension in the emulsion.

78. Osmotic Pressure. We have seen ( 75) that when some sugar,
for example, is placed in water, the sugar dissolves, and the heavier
molecules of sugar diffuse upwards into the _
lighter water, while the molecules of water
ailso diffuse amongst the molecules of sugar.
As the molecules of dissolved sugar move
hither and thither in the solution, their

motion gives rise to a pressure which is

termed osmotic pressure. Since, however,
the molecules of water are also in motion,

they must exert a similar kind of pressure

(vide 85).

Now, it is possible to measure the partial

pressure exerted by a solute in a similar

manner to that employed for experimentally

measuring the partial pressure of one gas
in the presence of another (vide 52). For
bhis purpose a "

semi-permeable
"

dia-

phragm which is permeable by the solvent,

but not by the solute, must be employed.
Animal membranes cannot be used since

they are not absolutely semi-permeable (cf.

Experiment XXXVI.). Artificial semi-

permeable membranes were first prepared
ay Traube, and these were utilised by
Pfeffer in his investigations on osmotic

pressure. Pfeffer obtained the best results

ay using a film of copper ferrocyanide,
winch he precipitated inside the walls of

i porous pot by filling
the pot with a very

LXVin. Heffer's

Apparatus.
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dilute aqueous solution of copper sulphate, and immersing it in a weak

aqueous solution of potassium ferrocyanide. Tke solutions diffused

into the walls, and, on meeting, formed a continuous film of the

gelatinous precipitate of copper ferrocyanide ;
the porous pot supply-

ing the necessary support to enable the film to withstand a fairly

considerable pressure.
The pot was next carefully washed out, and, after being attached

to a manometer, was completely filled with a dilute aqueous solution

of, say, sugar, and then sealed.

The whole apparatus was next immersed in distilled water which

was maintained at a constant temperature. Since a copper ferro-

cyanide film is easily permeable by water, but not by dissolved sugar,

the water gradually entered the porous pot, and the pressure inside

increased until a state of equilibrium was attained when as many
molecules of water passed in through the semi-permeable membrane
as passed out in the same time. The excess of pressure inside the

porous pot was, consequently, the osmotic pressure exerted by the

dissolved sugar, and this could be ascertained by means of the

manometer. 1

Pfeffer's apparatus is illustrated in Fig. LXVIII. The porous pot
is filled through the smaller bent tube, and the latter is then sealed

before the blow-pipe. The whole apparatus, including the manometer,
is then immersed in water.

In the case of cane sugar solutions, for example, at approximately
the same temperature (14 C.), Pfeffer obtained the following results :

Thus, for these dilute solutions, the osmotic pressure, P, is directly

proportional to the concentration, C.

Pfeffer also investigated the effect of variations in the temperature
on the osmotic pressure.

For a 1 per cent, solution of cane sugar the following results were

obtained :

1 By artificially increasing the pressure inside the pot, part of the solvent may
be forced tfat and the concentration of the solution increased. Similarly, the flow

of water through the semi-permeable membrane into the pot can be prevented by
the application of a definite pressure ; viz, the osmotic pressure of the solution.
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The osmotic pressure in this case, therefore, increases with rise in

temperature.

The relationship which exists between the osmotic pressure of a

dissolved substance, in a dilute solution, and the pressure exerted by
a gas was pointed out, in 1887, by van't Hoff.

Thus the osmotic pressure of a dilute solution varies directly as

its concentration, and, similarly, in accordance with Boyle's Law, the

density (i.e. concentration) of a gas varies directly as its pressure.

Again, the osmotic pressure of a dilute solution increases with rise

in temperature, and, as far as Pfeffer's results go, the coefficient of

increase of pressure is found to be approximately 0*00367, i.e. the

osmotic pressure varies directly as the absolute temperature (cf.

Charles' Law).
The applicability of Avogadro's Law to the osmotic pressure

of dilute solutions furnishes further corroborative evidence of the

analogy between osmotic and gaseous pressures, for it is found that

solutions of
"
non-electrolytes

"
(vide ut infra) which have equal

osmotic pressures have the same number of gramme-molecules in

equal volumes, i.e. possess concentrations proportional to the mole-
cular weights of the respective solutes. It is found, moreover, that

the osmotic pressure of a dilute solution of a "
non-electrolyte

"
is

the same as the pressure that would be exerted by the solute if the

latter were capable of existing in the state of gas and occupying the

volume of the solution at the same temperature.
Thus Pfeffer's 1 per cent, solution of cane sugar contained 1 gm.

of sugar dissolved in 100 gms. of water, and, therefore, 1 gm. of

sugar was present in approximately 100*6 c.cs. of the aqueous solution

at 6*8 C., i.e. 222*5 gms. of sugar were present in 22,380 c.cs. of

solution.

The molecular weight of cane sugar is 342, and, if the sugar
could exist as gas, 342 gms. in 22,380 c.cs., at C., should exert a

pressure of 76 cms. of mercury, and, consequently, 222*5 gms. of sugar,
in the same volume, and at 6*8 C., should exert a pressure of

76 x 222*5 x 279*8 _ _
cms., or 50*7 cms.

The actual osmotic pressure observed (50*5 cms.) is in fairly close

agreement with this result.
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Van't Hoff pointed out, however, that very many substances in

solution exerted a greater osmotic pressure than jyould be anticipated

if the laws of gas-pressure applied directly to the osmotic pressure of

dilute solutions.

For such substances the general gas equation P.Y. == R . 0, which

contains the combined laws of Boyle and Charles (vide 17), and

which applies to the osmotic pressure of dilute solutions of sub-

stances like cane sugar, must be modified, and written

P.V. -i.B.0,

where i is a factor greater than unity.
Arrhenius subsequently showed how the greater osmotic pressure

exerted by such solutions could be readily explained by means of

the theory of
"
electrolytic dissociation," just as deviations from

Avogadro's Law, in the case of gases, were explained by the assumption
of molecular dissociation. Those solutes (viz. acids, bases, and salts)

which give a greater osmotic pressure than that corresponding to

the equation P.V. = R . are called
"
electrolytes," whilst substances

like cane sugar are termed "non-electrolytes."

79. Measurement of the Relative Osmotic Pressures of Solutions.--

The direct experimental determination of the absolute osmotic

pressures of solutions is a matter of some difficulty. Several simple

methods, however, have been devised for measuring relative osmotic

pressures. De Vries employed the cells from certain plants, notably
from Tradescautia discolor, Begonia manicata, and Curcuma rubri-

caulis. The cell-walls of the leaves are lined with a thin semi-

permeable membrane, which contains the coloured contents of the

cell. When such a cell is placed in a solution possessing a greater
osmotic pressure than its own contents, water will pass out from

the cell into the solution, through the semi-permeable membrane,
and the membrane will, consequently, shrink away from the walls.

Thus, by commencing with a solution of greater osmotic pressure
than the cell contents, and gradually diluting it, a concentration can

be obtained at which the membrane will just maintain its shape
without any shrinkage.

The osmotic pressure of the solution will then be equal to that

of the contents of the cell. The contraction of the protoplasmal

envelope is, of course, observed under the microscope. In this

manner solutions of a number of different substances can be prepared,
all possessing the same osmotic pressure viz. the osmotic pressure
of the cell contents.

Solutions having the same osmotic pressure are termed "
isotonic."

By analysing such isotonic solutions De Vries found that, in the case

of non-etactrolytes, their concentrations were proportional to the

molecular weights of the respective solutes. This method has been

used in certain cases for the determination of molecular weights,
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Semi-permeable membranes also occur in certain animal cells

such as red blood oorpuscles and the latter may, consequently, be

employed in the preparation of isotonic solutions. If a small

quantity of an aqueous solution of potassium nitrate be added to

some blood, the red corpuscles settle down to the bottom of the

containing vessel, The corpuscles can then be washed and transferred

to a microscope slide. If the corpuscles be surrounded by a solution

possessing a greater osmotic pressure than their own contents, they

shrink, and their walls become concave, whereas, if the contents of

the corpuscles possess an osmotic pressure greater than the solution,

the corpuscles swell, and their walls become convex. The concen-

tration of the solution can therefore be varied till the corpuscles
neither shrink nor swell ; the solution and the contents of the

corpuscles are then isotonic.

An optical method for the preparation of isotonic solutions was
devised by Tammann in 1888. A drop of an aqueous solution of

potassium ferrocyanide, at the end of a fine pipette, is immersed in

an aqueous solution of copper sulphate. The drop immediately
becomes covered with a film of copper ferrocyanide. If the potassium

ferrocyanide solution possess a greater osmotic pressure than the

solution of copper sulphate, water will pass in through the semi-

permeable film of copper ferrocyanide, and the drop will expand. At

the same time the solution of copper sulphate around the drop will

become more concentrated and will therefore sink, owing to its in-

creased density. The downward motion of the liquid may be ob-

served with a refractometer, descending striae being visible in the

liquid on account of the different refractivities arising from differences

in density.
If the osmotic pressure of the potassium ferrocyanide solution be

less than that of the copper sulphate solution, water will pass out

from the drop, and the latter will contract. In this case the solution

of copper sulphate around the drop will become more dilute, and the

striae will be seen to ascend. By varying the concentration of either

the potassium ferrocyanide or the copper sulphate until striae are no

longer visible, isotonic solutions may be obtained.

80. Relation between Lowering of Freezing-Point and Osmotic

Pressure. Van' t Hoff, in 1887, showed that the osmotic pressure
exerted by a solute could be calculated from the lowering of the

freezing-point of the solvent produced by the solute, and also from

the rise in the boiling-point of the solvent, due to the same cause.

A proof of the relation between the lowering of the freezing-point
and the osmotic pressure will now be given. Let an aqueous solution

of the given solute at its absolute freezing-point 0-80, be separated by;

a semi-permeable membrane from the pure solvent (water), at its

absolute freezing-point, 0. Let a small volume, v, of the water pass
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through the semi-permeable membrane into the solution. The work

gained is P . v, where P is the osmotic pressure o/ the solution. Now
let this quantity of water that has passed through be frozen out from

the solution, and let the pure ice be placed back again in the water and

melted. The heat which must be actually supplied, at the tem-

perature 0, to melt the ice is A . v . tr, where A. is the latent heat and

o- the density, of water. 1

The whole system is now in its original condition, and, since the

preceding cycle of operations is reversible, it follows in accordance

with the Second Law of Thermodynamics that

T,_ . e xl , Work obtained
Efficiency of the cycle = ~ -

^ : rrr-irT 1J J Heat taken in at high temperature

_ Difference in temperatures of source and sink

Absolute temperature of the source

In the above cycle of operations, the water at the temperature b

corresponds to the source, and the solution at the temperature
- 80

to the sink.

P_.v_ ^ 80
.

'*

OTo-
""

e
'

P 80

r^ =
0*

Since, for water at 0C., X = 79'77 x 4-19 x 107
,

<r - 0-99987,

and 6 = 2731 A., we have

P = 1-22 x 10 7 x 80.

The lowering of freezing-point, 80, is thus proportional to the

osmotic pressure, P. It is evident, also, that solutions in the same

solvent, having the same freezing-point, must be isotonic. Since

dilute isotonic solutions of
"
non-electrolytes

"
have the same number

of gramme-molecules in equal volumes, it follows that equal numbers

of molecules of different solutes, in the same volume, produce equal

depression in the freezing-point of a given solvent.

This result was obtained experimentally by Raoult, in 1883, and

it was pointed out by him how the lowering of the freezing-point

could be utilised for the determination of the molecular weight of the

solute.

The lowering of freezing-point produced by, say, the hundredth

part of the molecular weight of a non-electrolyte taken in grammes,

1 The lowering of the freezing-point, 80, is very small, provided the solution be

sufficiently-dilute, and the heat required to warm the ice from 6 - 80 to 6 is, there-

fore, negligible in comparison with that needed to melt it. >The heat given out by

the water in cooling from to -
80, on passing through the membrane, may also

be neglected.
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and contained in 100 c.cs. of a solution, may be readily calculated.

For, as seen in 78.,the osmotic pressure will be the same as if the

solute were present in the state of gas, at the same temperature, and

occupying the same volume.

In the case, therefore, of an aqueous solution, at C., we have

1-22 x 10 7 x 8(9 = P,

- 76 x 13-596 x 981 x 22380

100 x 100

= 2-27 x 106
.

Whence SO = 0-186.

This agrees very closely with the experimental value (SO
= 0'185),

found by Kaoult, and equally good agreement was obtained with other

solvents. 1

The "
cryoscopic

"
(or freezing-point) constant of any solvent is

defined as the depression of the freezing-point produced when the

molecular weight in grammes of any non-dissociating (and non-

associating) solute is dissolved in 100 gms. of the solvent supposing
that the laws for dilute solutions held at such a concentration. Thus,
for water, the cryoscopic constant, C, has approximately the value

18-6. If, then, w gms. of a solute, of molecular weight M, be dissolved

in W gms. of a solvent, and produce a depression, 80, of the freezing-

point we have

_ . C . w . 100w ~ M . W '

where C is the cryoscopic constant for the given solvent.

The relationship M =
~^0~rxp is commonly used in the

determination of molecular weights.

81, Relation between Rise in Boiling-Point and Osmotic Pressure.-

The relation between the rise in the boiling-point and the osmotic

pressure may be demonstrated in a similar manner to that employed
in calculating the lowering of the freezing-point.

Thus, let an aqueous solution of a solute be separated by a semi-

permeable membrane, from the pure solvent (water), and let the

temperatures of the solvent and solution be such that their respective

vapour pressures are the same. The vapour pressure may, con-

veniently, be taken as equal to the atmospheric pressure, and the

absolute temperatures of the solvent and the solution will then be

their normal boiling-points. Let a small volume, v, of the water

pass through the semi-permeable membrane into the solutipn. The

1 In the preceding calculation, P is, strictly, the osmotic pressure of the solution

at e - 50, but this differs inappreciably from its osmotic pressure at 0.
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work gained is P . v, where P is the osmotic pressure of the solution.

Let this quantity of water that has passed through be evaporated
from the solution, and let the vapour pass back and condense again
in the water. No mechanical work will be expended in this second

operation, since the vapour pressures of the solvent and solution are

the same. The whole system is now in its original condition, and the

cycle of operations performed is reversible. If, then, be the absolute

temperature of the solvent (water), and 6 + 80 that of the solution,
we have, in accordance with the second law of thermodynamics

Work obtained

Difference in temperatures of source and sink

Heat taken in at high temperature
Absolute temperature of the source

Heat removed at low temperature
~~

Absolute temperature of the sink
*

The heat removed at the low temperature 6, in order to condense

the vapour, is X . v . a- where X is the latent heat of steam
;
and o- the

density of the water.1

In this cycle of operations, the solution at the temperature + $0

corresponds to the source, and the water at the temperature to the

sink.

P. v
__

X.v .o-
' w ~

~T~"
P SO

For water at 100 C. the latent heat of vaporisation,
2 X =

539 x 4-19 x 10 7
,

a- - 0-9584, and = 373-1 A.

/.P = 5-8 x 107 x 80.

Similar relations therefore hold mutatis mutandis for the boiling-

points of solutions as for their freezing-points (vide 80). The rise

in boiling-point is proportional to the osmotic pressure, and solutions

in the same solvent having the same boiling-point are isotonic.

Similarly, solutions in a given solvent containing equal numbers
of molecules of different non-electrolytes in the same volume must
have the same boiling-point.

The rise in the boiling-point of a solvent produced by a dissolved

non-volatile substance was utilised by Beckmann in 1891, for the

determination of the molecular weight of the solute.

*For dilute solutions, SB is very small, and the heat given out by the vapour
in cooling from 6 + SB to may therefore be neglected in comparison with that
evolved during condensation. The heat required to raise fjie temperature of the
water from to + 80, on passing through the membrane, is also negligible.

2 Carlton-Sutton's value (1917).
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We can calculate the rise in boiling-point due to the hundredth

part of the molecular weight of a non-electrolyte taken in grammes,
and contained in 1(A) c.cs. of a solution in a similar manner to that

employed in calculating the lowering of the freezing-point.

Thus, for an aqueous solution at 100 C., we have l

5-8 x 107 x SO - P,
= 76 x 13-596 x 981 x 22380 x 373-1

TOO x 100 x 273-1

3 x 106
.

Whence 80 = 0'0517.

The "
boiling-point constant" refers to the rise in boiling-point

produced when the molecular weight in grammes of any non-dis-

sociating (and non-associating) solute is dissolved in 100 gms. of the

solvent, supposing that the laws for dilute solutions applied to such

a concentration. As in the freezing-point method, the molecular

weight of a solute may be determined by employing the relationship

__
100

._C_._wM "
"80 . W" '

where W is the rise in boiling-point observed, and C the boiling-point

constant for the given solvent.

The experimental results obtained with dilute aqueous solutions

give an approximate value of 5'2 for the boiling-point constant, which

agrees very closely with the value deduced, thermodynamically, by

van't Hoffi Equally good agreement has been found with other sol-

vents.

The freezing-point and boiling-point constants may be readily cal-

culated from the simplified expression

0-02 . e*
K . __,

where K is the molecular lowering of freezing-point, or molecular rise

in boiling-point, corresponding to the molecular weight in grammes of

the solute in 100 gms. of the solvent ; 9 is the absolute temperature of

the freezing-point, or boiling-point, of the solvent; A is the latent heat

of fusion, or the latent heat of vaporisation, per gramme of the solvent.

For, as seen previously

_~
e

'

and if V be the volume of the solution containing the molecular weight

iln the following calculation P is the osmotic pressure of the 'solution at

S + S, which differs inappreciably from its osmotio pressure at 9.

13
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in grammes of the solute, we have, in accordance with the general gas

equation P.V. = E . 0~
B^0 X . o- . 80

V
" *

Since E 2 calories, approximately, this equation may be

written
2.0*

o& -ff r-
V . <T . A

But, in the case of a dilute solution, Y differs inappreciably from

the volume of the solvent, and, therefore

V . a- = 100 gms.,

M
'02 ^2

whence d0 = r- .

It must be remembered, however, that the preceding relationships,

which were deduced by van't Hoff, are strictly true only for infinitely

dilute solutions. In the case of moderately concentrated solutions

they are wholly inapplicable.

82. The Vapour Pressure of Solutions. Since the boiling-point of a

bolution is higher than that of the pure solvent, it follows that the

vapour pressure of a solvent is lowered by the presence of a non-vola-

tile solute. In 1848, von Babo found that the relative lowering of the

vapour pressure, in the case of dilute solutions, was independent of

the temperature. The relative lowering of the vapour pressure is de-

fined as the ratio of the lowering of the vapour pressure produced by
the solute, at the given temperature, to the vapour pressure of the

pure solvent, at the same temperature. Thus if/ be the vapour pres-

sure of the solvent, and /' that of the solution, von Babo found that

f - f~~ was independent of the temperature.

Wiillner, in 1858, observed that the lowering of the vapour pressure
rf water by non-volatile, dissolved substances was proportional to the

imount of the solute present.
These generalisations, as applied to dilute solutions, were confirmed

jy the work of Eaoult, who further investigated the lowering of vapour

pressure produced by equimolecular quantities of different solutes in

ihe same solvent. The " molecular lowering," K, which was found by
Raoult to be constant for a given solvent, is given by the equation

K= / ' / ^K =
~T-X'

jyhere/ and/ are the respective vapour pressures of the solvent and
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the solution, M the molecular weight of the solute, and x the mass in

grammes of the soltfte dissolved in 100 gms. of the solvent. 1

If n represent the number of gramme-molecules of the solute in

100 gms. of the solvent, we have

.-.
f.n

It was also found by Eaoult that the quotient of the " molecular

lowering
"

of vapour pressure K by the molecular weight M' of the

solvent was constant.

Since K =
f.n'

K /~/

Now n represents the number of gramme-molecules of the solute

in 100 gms. of the solvent, and, therefore, nW represents the number
of gramme-molecules of the solute in 100 gramme-molecules of the

K f f'
solvent. If, then, nW = 1,

jj>
= r~ .

Thus the quotient, ^p,
of the " molecular lowering

"
of vapour

pressure by the molecular weight of the solvent represents the

relative lowering of vapour pressure produced by one gramme molecule
of the non-volatile solute in 100 gramme-molecules of the solvent,
and this quotient was found by Raoult to have the approximately
constant value 0*0105.

This law was stated formally by Raoult as follows :

" One molecule of a non-saline,^ non-volatile substance, dissolved

in 100 molecules of any volatile liquid, lowers the vapour pressure of

this liquid by a nearly constant fraction of its value approximately
0-0105."

TC /* /'

Since 0*0105 =
g>

= J-
^p we have

J-y
= 0-0105 . n . M'.

1 It must be noted that K is only constant for dilute solutions of non-volatile

non-electrolytes in a given solvent.
Several of the solutes employed byJRaoult (such as turpentine and l^enzalde-

hyde) possess appreciable vapour pressures even at ordinary temperatures. Raoult,
however, used a solvent (ether), which, at the ordinary temperature*has a high
vapour pressure, and, consequently, the relatively low vapour pressure of the sol?
ute could be neglected.

4 A " non-saline "
substance = a " non-electrolyte."

13
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If, then, 100 gms. of the solvent represent N gramme-molecules, we
have *

100 ..,

TT-M.
/ -

/' 0-0105 . n . 100
Whence -

y
=

-^

---
,

H
= (approximately) .

But n represents the number of gramme-molecules of the solute

in 100 gms. of the solvent, i.e. in N gramme-molecules of the solvent.

Consequently, in a very dilute solution of a non-volatile non-electrolyte,

containing n gramme-molecules of the solute in N gramme-molecules

of the solvent, the relative lowering of the vapour pressure, ^-y,
i ,.

n
is equal to

g.
Eaoult pointed out that the lowering of the vapour pressure of

solvents, produced by dissolved substances, could be utilised for the

determination of molecular weights, but this method was quickly re-

placed by the more convenient and more accurate boiling-point method

devised by Beckmann, to which reference has already been made.

83. Relation between Lowering of Vapour Pressure and Osmotic

Pressure. The relationship between the lowering of the vapour

pressure of a solvent, due to the presence of a non-volatile solute,

and the osmotic pressure exerted by the solute, may be readily

demonstrated. Consider an aqueous solution of a solute, separated

by means of a semi-permeable membrane from the pure solvent

(water), the temperatures of the solvent and of the solution being the

same. Let the pressure of the vapour above the water be p, and

above the solution p
-

8p. Let a small volume, v, of water be driven

through the semi-permeable membrane from the solution into the

water. To effect this a quantity of work, P . t>, must be expended,
where P is the osmotic pressure of the solution. Now let this

quantity of water that has been driven through evaporate, and let

the vapour pass back into the space above the solution and then con-

dense. If V be the volume of vapour formed from the volume v

of water, the work gained in this second operation is 8p . V. The

system is now in its original condition, and the cycle of operations

performed is reversible. Since the whole transformation is carried

out isothermally, it follows, in accordance with the Second Law of

Thermodynamics, that there is no gain or loss of mechanical work.

.-. P . v = 8p . V.

where <r is the density of the vapour, and p the density of the water.
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The same result, as was shown by Arrhenius, can be obtained by

examining the probjem from the standpoint of the kinetic theory.

Thus, consider a tube partly filled with a solution, A (Pig. LXIX.),
and closed at the bottom with a semi-permeable membrane. Let the

lower end of the tube dip into the pure solvent, B.

If, initially, the length of the column of solution be not too great,

the solvent will pass through the semi-permeable membrane into the

tube, until the solution has reached a height, h, at which the hydro-
static pressure is just equal to the osmotic pressure of the solution in

its final state of dilution. 1

If the whole apparatus be enclosed in a space which has become

saturated with the vapour of the solvent, a state of equilibrium will

then be attained. For simplicity we shall
*

assume that the enclosure has been exhausted

of air.

Let a- be the average density of the vapour

throughout the height h. The hydrostatic

pressure due to the column of vapour of

height In is consequently h .a- .g, and this

must be equal to the difference between the

saturation vapour pressure of the pure sol-

vent, at the level C, and the saturation

vapour pressure of the solution, at the level

D. 2

If, then, the saturation vapour pressure
of the solvent be p, and of the solution be

p -
3p, we have

gp
= h . a- . g.

Let p be the average density of the solu-

tion throughout the height h. The density
of the solution is practically uniform, and in FIG. LXIX.

the case of dilute solutions may be taken as

differing inappreciably from the density of the pure solvent.

Thus, the hydrostatic pressure due to the column of solution of

height h is h . p . g, and this must equal the osmotic pressure, P.

D

P = h

Sp'

Hence

which was the relation previously obtained.

1 It is assumed, of course, that the dimensions of the tube are such that capillary

effects can be neglected.
3 It is clear that if the vapour pressure of the solution at D were not equal to the

vapour pressure of the solvent at this level, equilibrium could not exist. For

vaporisation, or condensation, would occur at D, and a flow of liquid through Itfe

semi-permeable membrane would result.
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Again, let V
1
be the volume of 1 gramme-molecule of the vapour

(of average density a-)
at a pressure p. Applying the general gas

equation, we have

p . Y! - R . 0.

Let M! be the gramme-molecular weight of the solvent.

Then o- = -1
.

.--&
Further, let the solution contain n gramme-molecules of the

solute in N gramme-molecules of the solvent, i.e. in N . M
x gms. of

the solvent.

N . M
Therefore 1 gramme-molecule of the solute is contained in '-*

gms. of the solvent.

Now, if the solution be very dilute, we may take p to be the density
of both the solution and the solvent.

N M
Let --'- l

gms. of the solvent (or solution) have a volume V
2

.

m, N . M! .
. v N . MJThen p = -

; i.e. V l
.r n . V2

n . p

Applying the general gas equation to the osmotic pressure of the

solute in the dilute solution, we have

P . V2
= R . ft

Substituting for P and V
2 ,
we have

L N -J^i_ B eXv . (7.

n.p
TTTI 7 -K . n
Whence h = Vv

If the values <r = -w^-if ,
and h = XT \,' , be substituted in the

JK . rs . Mj . g

equation Sp = h . <r . 0, we get

. R.0.w M,.
& - x - x

-.**
N '

8p n
'

f
" F

o This is the relation which was obtained experimentally by Raoult
for the relative lowering of the vapour pressure, and to which reference
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f f n
was made in 82. Jf in the equation

J ~ ( 82) 8p be sub-

stituted for/ - /, and^> for /, the two equations become identical in

form.

84. The Vapour Pressure of Liquid Mixtures. In our investigation

into the relationship between the rise in boiling-point (or the lowering
of vapour pressure) and osmotic pressure, it was assumed, either

tacitly or explicitly, that the solute could be treated as non-volatile.

When the solute is appreciably volatile, it is evident that our general

argument will no longer apply. If, for example, one liquid be dis-

solved in another, both constituents of the solution will, in general,

possess sensible vapour pressures, and we must now briefly consider

what will be the magnitude of the resultant vapour pressure exhibited

by such liquid mixtures.

We may divide these liquid mixtures into three classes.

Class L When the mutual solubility of the liquids is very small,

that is, when the liquids are practically immiscible, the vapour

pressure of the mixture is approximately the sum of the separate

vapour pressures of the constituents. Since, however, each liquid is

soluble to a small extent in the other, and, consequently, as will be

seen later, lowers the vapour pressure of the other liquid by a small

amount, the vapour pressure of the mixture is always slightly less

than the sum of the vapour pressures exerted by the separate liquids

at the same temperature. As the vapour pressure of such a liquid

mixture is higher than that of either of the separate constituents, the

boiling-point will be lower than that of either constituent. On boiling

the mixture, a distillate will be obtained containing each of the con-

stituents, in the same proportion, in general, as their relative vapour

pressures.
These conclusions have been confirmed by the experimental work

of Begnault.

Class II. When the liquids are partially miscible it is found that

each liquid lowers the vapour pressure of the other, and, consequently,
the vapour pressure of the mixture is less than the sum of the vapour

pressures exerted by the separate constituents. If the liquids are not

very soluble in one another, the boiling-point of the mixture will be

lower than that of either constituent. This is approximately the same
case as previously considered in Class I. If, on the other hand, the

mutual solubility of the liquids be great, each liquid will lower the

vapour pressure of the other to a considerable extent, and although
the boiling-point of the mixture is still generally lower than that of

either constituent, yet it may be the same as (or even higher than

that of the more volatile liquid present.
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On boiling a mixture of liquids which are only partially miscible,

a distillate will be obtained containing each of fhe constituents, and

both the boiling-point of the mixture and the composition of the dis-

tillate will remain constant as long as two layers of liquid are present,

since each solution exerts its own vapour pressure. The solution

with the higher vapour pressure will, of course, vaporise the more

rapidly of the two. When one of the layers has completely vaporised,
the boiling-point of the mixture, and the composition of the distillate,

will gradually change, until, in general, the liquid which is present in

larger quantity in the remaining layer finally distils in a state of

purity. The solution with the higher vapour pressure will not neces-

sarily disappear first, if it be present in relatively large amount.

The work of Konowalow on the vapour pressures of mixtures of

different alcohols, etc., with water has supplied valuable data relative

to mixtures of this (and the next) class.

Class III. -When the liquids are miscible in all proportions the

vapour pressure of the mixture is less than the sum of -the vapour

pressures exerted by the separate constituents. The boiling-point of

such a mixture may be higher than that of the higher boiling con-

stituent, or lower than that of the lower boiling constituent or it may
lie between the two.

Three special cases arise when mixtures of this class are distilled.

It may happen that, when
the liquids are mixed in cer-

tain proportions, the vapour
pressure of the particular
mixture is higher than that

of either constituent, and also

higher than that of any other

mixture of the two liquids.
In this case the mixture can-

not be separated into its

uT ^*~*~^ ^*^ constituents by fractional

a. Ĵ r \ distillation, for, on repeated

distillation, a distillate will

be obtained approximating
more and more closely to the

mixture which possesses the

highest vapour pressure, and,

therefore, the lowest boiling-

point.
In Fig. LXX. the vapour

pressures of different solu-

tions of propyl alcohol and

0% Percent. Propyl Alcohol.

FIG. LXX.

100%

Crater are plotted, isothermally, against the corresponding alcoholic

concentrations expressed as percentages. It will Ibe observed that
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each of the curves shows a maximum value for the vapour pressure,

corresponding, at each temperature, to a particular proportion between
the two constituents.

The second case occurs

when the vapour pressure
of any mixture always lies

between those of the con-

stituents, the boiling-point

possessing, similarly, an
intermediate value. In

this case the mixture can
be separated more or less

completely by fractional

distillation ; the more vola-

tile constituent being ob-

tained in a nearly pure
state in the first portions
of the distillate, while the

less volatile constituent

distils last. Fig. LXXL,
which gives the vapour
pressure curves for mix-

tures of methyl alcohol

and water, at several tern-

I
(D

in

<D

QL

L.

I

0% Percent. Methyl Alcohol.

FIG. LXXI.

peratures, is illustrative of this second case.

100%

Similar curves for mixtures of ethyl alcohol and water are shown
in Fig. LXXII. Although
these curves approximate
to the second case, it will

80

0% Percent. Ethyl Alcohol. 100%

FIG. LXXII. Ethyl Alcohol and Water.

the second case,

be observed that they ex-

hibit a maximum value of

the vapour pressure cor-

responding at, say, 80 C.

to a concentration of about

98*4 per cent, alcohol.

Thus, strictly speaking, they
resemble the curves shown
in Fig. LXX. and repeated
distillation of a dilute aque-
ous solution of ethyl alcohol

will not yield a distillate

containing more than 98-4

per cent, alcohol, since, at

this concentration, the va-

pour pressure of* the mix-

ture is a maximum. ^

Lastly it may happen
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that, when the liquids are mixed in certain proportions, the vapour

pressure of the mixture is lower than that of either constituent, and

also lower than that of any other mixture of the two liquids. In

this case, as in the first, the mixture cannot be separated into its

constituents by fractional distillation ;
for repeated distillation will

yield a residue approximating more and more closely to the mixture

which possesses the lowest vapour pressure, and, therefore, the

highest boiling-point. This last case is illustrated in Fig. LXXTII.

which gives the vapour pressure curves for mixtures of formic acid

and water.

Summarising the results obtained in these three cases we may
state that mixtures whose vapour pressure curves exhibit maxima or

minima cannot be separated

by fractional distillation,

whereas such separation is

100C.
possible when maxima
minima are absent.

or

0% Percent. Formic Acid.

FIG. LXXIII.

100%

Liquid mixtures with

constant boiling-points were

originally regarded as de-

finite chemical compounds,
but that this conception is

erroneous is shown by the

fact that the composition of

such constant-boiling mix-

tures varies with the pres-
sure under which distillation

is effected (vide 55).

85. The Dynamical State

of Molecules in Solution.

We must conclude this chap-
ter with a word of caution.

It has been seen that many of the laws which apply to dilute solu-

tions are identical with those which are applicable to gases, and it

might therefore be concluded that the dynamical condition of the

molecules of a solute is similar to that of the molecules of a gas.

When, however, it is recollected that the molecules of a gas, at the

ordinary density, are relatively very far apart, and that, in consequence,
the time during which the molecules are within the sphere of action

of other molecules is very small compared with the time during which

they are moving freely about, it will be realised that such a conclusion

must be entirely incorrect.
* For the molecules of a solute are not scattered throughout an

otherwise empty space, but are disseminated amongst the molecules of
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the solvent, and, consequently, intermolecular forces are brought into

play which cannot be peglected. Indeed, as was pointed out in 76,

the tendency of the solute to dissolve is due to the mutual affinity

which exists between the solute and the solvent. The conception of

the quasi-gaseous state of a dissolved substance
( 75) is undoubtedly

convenient, but the analogy between the behaviour of the molecules

of a gas and the molecules of a solute in a dilute solution must not

lead us to regard such phenomena as osmotic pressure and gaseous

pressure as identical in nature. We have seen that the pressure
exerted by a gas can be explained as arising from the bombardment
of its molecules on the walls of a containing vessel, but we are ignorant
of the true cause of osmotic pressure. Even at moderate concentra-

tions the gas laws cease to be applicable to substances in solution, and

the "
gas-analogy

"
hypothesis, consequently, fails. Many alternative

hypothesis have been proposed to account for the phenomenon of

osmotic pressure, but, so far, no satisfactory theory has been attained.



CHAPTEE VIII.

CAPILLARITY.

86. The Surface-Tension of Liquids. The existence of internal

molecular cohesive forces in liquids -gives rise to the phenomenon of

surface-tension. Before, however, discussing the nature of these

internal forces, it will be convenient to consider, in some detail, the

experimental evidence upon which our knowledge of the surface-

tension of liquids is based.

Many well-known phenomena show that the surface of a liquid

behaves as if it were a thin stretched elastic membrane. This

behaviour of a liquid surface may be readily demonstrated by means
of the following simple experiments.

Experiment XXXIX. Fasten a small piece of cotton to the

middle of a thin silver plate by means of a minute fragment of seal-

ing wax. Carefully lower the silver plate upon the surface of some
water in a basin, and then gently drop
the cotton upon the plate. It will be

observed that the silver plate remains

floating upon the water, and that the

latter is depressed to a lower level

FIG. LXXIV. beneath the plate than that of the re-

mainder of the liquid surface, the de-

pression being readily seen at the edge of the plate (Fig. LXXIV.).
By gently tapping the silver plate with a straw, it may be made to

bob up and down like a cork. If, however, the plate be pushed

through the liquid surface it sinks to the bottom. A thick plate of

silver will, of course, break through the surface, and sink, under its

own weight.
As an alternative experiment a dry steel needle may be floated

upon water by placing the needle very gently on the surface. It

should be noted that the densities of silver and steel are, respectively,
10'5 gms./c.c. and 7'8 gms./c.c.

The surface of the water thus behaves like a very thin elastic

membrane, and can support a moderate pressure without rupture.
It is for this reason that a water-beetle, for example, can run across a

pond, for each leg merely produces a small dimple, the pressure being
insufficient to break through the surface.

204
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Experiment XL. Take an ordinary camel's hair brush and observe

that the hairs are separate from one another. On immersing the

brush in water the wet hairs still remain separate, but they cling

together when the brush is taken out of the water, owing to the con-

traction of the liquid surface.

Experiment XLL Allow water to drip very slowly from a vertical

glass tube of about 0*5 cm. internal diameter. The drops form

gradually at the end of the tube

and increase in size until the

tension in the liquid surface can

no longer support the weight.
It will be observed that the

drops always attain the same
size before breaking away from
the tube. Larger drops may be

obtained by diminishing the

effect of gravity by allowing the

drops to form in a liquid of

nearly the same density (Fig.

LXXV.). Thus drops of carbon

disulphide may be formed in an

aqueous solution of zinc sul-

phate of slightly lower density,
and the shape of the drops, as

they increase in size, more

readily observed. The carbon

disulphide should bs coloured

by the addition of a small

quantity of iodine, and the zinc

sulphate solution should be con-

tained in a flat-sided vessel, with

faces of uniform thickness, to

avoid apparent distortion in the

shape of the drops. It will be

seen that a narrow neck forms

just before the drop breaks

away, and that this neck is drawn out by the falling drop into

a small cylinder which gathers itself into the little subsidiary droplet
which falls just after the main drop. In the same manner drops of

olive oil may be formed in a mixture of ethyl alcohol and water. If

the glass tube be bent round (Fig. LXXVa.), a lighter liquid may be

discharged into a heavier one, and ascending drops and droplets

obtained.

If, now, a very thin sheet of india-rubber be stretched over a large
wooden ring, and water poured in, the rubber gradually stretchy
under the increasing weight, and it will be observed that, initially, the

FIG. LXXV.
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CL

shape is almost identical with that assumed by a liquid drop. When
a sufficient quantity of water has been added % neck forms, but this

neck does not readily draw out and break as in the case of a liquid,

for the tension in the india-rubber increases with the amount of

stretching, whereas, in a liquid film, the tension is practically inde-

pendent of the stretching, until the thickness of the film is reduced to

about 5 x 10- 6
cms., after which the tension rapidly diminishes (see

Experiment XLV., and also 108).

Experiment XLIL Blow a small bulb at the end of a short piece

of glass tube, and a larger bulb nearer the middle of the tube. Close

the open end of the tube with a

cork through which is inserted a

thin wire, about 10 cms. in length,

soldered to a plane wire frame

(Pig. LXXVL). A sufficient quan-

tity of mercury must be poured
into the small bulb to just prevent
the wire frame pushing upwards
through the surface of some water

in a cylinder when the apparatus
is completely immersed, after which
the cork is securely fixed, and coated

with a thin layer of shellac.

When the apparatus is im-

mersed in water, the liquid surface

behaves like a very thin elastic

membrane, and supports the up-
ward pressure of the wire frame,

so that the apparatus floats with

the frame just submerged. If,

however, a corner of the wire frame

be raised out of the water, the frame jumps up, and the apparatus
floats with the frame in the air (Fig. LXXYL), A moderate weight
must now be placed upon the frame in order to sink it again to the

surface of the water. This experiment is analogous to Experiment
XXXIX. in which the surface of the water supported a downward

pressure.

The motion of the index in an ordinary alcohol minimum thermo-

meter shows that the surface of the alcohol can, similarly, sustain a

small pressure without rupture.

Experiment XLIII. Pour some water from a beaker down a

long glass, rod into a narrow-necked bottle. The surface of the water

4.n the wet rod forms, in effect, a tube, the tension in the surface pre-

venting the water from escaping.

FIG. LXXVT.
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Experiment XLIV. Take a plane wire ring with a thin silk

thread tied loosely across it. Dip the ring into some soap solution,
and then remove it,^so as to obtain a soap film stretched over the

ring. It will be observed that the silk thread can move about freely
in the film, but that if the latter be broken on one side of the thread,

by touching the film with a hot wire, the thread is pulled out into

an arc of a circle, the remaining portion of the soap-film assuming
the least possible area (Fig. LXXVIIa.). Several shorter pieces of

thread may, similarly, be tied loosely around the wire ring, the por-
tions of the film between the threads and the wire being subsequently
broken (Fig. LXXVII&.). Again, a loop of silk thread may be

moistened with the soap-solution and carefully placed on the $oap-
film on the wire ring. On breaking the film inside the loop with a

hot wire, the thread is pulled out into a circle (Fig. LXXVIIc.), the

FIG. LXXVJI.

area of the circle being greater than that of any other plane figure
with the same perimeter, and, consequently, the area of the remaining
soap-film being a minimum. If a piece of wire be now passed
through the loop, the latter may be moved about in the film without

losing its circular form, such movement, of course, causing no change
in the area of the surrounding soap-film.

Experiment XLV. Take a plane wire ring, such as that used in

the preceding experiment, and dip it into some soap-solution. Be-
move the ring and hold it in a vertical position, so that the adhering
soap-film may drain. The upper portion of the film will thus become
thinner than the lower, and will soon show the colours exhibited by
very thin films. Yet in spite of the unequal thickness of the film,
the tension must be the same throughout, since the film is in equili-
brium. The tension in the upper portion of the film must, actually;
be very slightly greater than that lower down, in order to support
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the weight of the film, but this difference in tension is so small that

it may be treated as sensibly negligible. In the case of a stretched

elastic membrane, such as india-rubber, it mukt be noted that the

tension increases with the amount of stretching, and, cateris paribus,

equilibrium would not be attained if one portion were stretched

thinner than an adjoining portion.

Experiment XLVI. Bend a copper wire so as to form three sides

of a "rectangle, ABCD, and rest a thin straight wire, EF, across AB
and CD, parallel to BC (Fig. LXXVIII.). Attach a piece of thread,

KLM, to the movable wire EF, and, while holding the thread at L,

dip the wire frame into soap-solution, and then remove it, thus

obtaining a soap-film stretched over GBCH. In order to maintain

this soap-film in equilibrium, when the wire frame is held in a hori-

zontal plane, a certain pull must be applied to the thread at L, and

if this pull be relaxed the film will contract, and the movable wire

EF will slide along AB and CD until it reaches BC.

87. Definition of Surface Tension. In the preceding experiment,

the movable wire EF (Fig. LXXVIII.) will be in equilibrium when

the force, F, which is applied at right angles to its length is equal to

the tension exerted by both faces of the liquid film. It should be

noted that the tension exerted by the liquid must be at right angles

to EF, since a fluid cannot permanently support an applied tangential

or shearing stress, however small the magnitude of the latter. If,

then, T be the tension per unit length due to the liquid film, we have

F = 2 . GH . T.

T is defined as the surface tension of the liquid.

88. Surface Energy. It can readily be shown that the potential

energy possessed by a liquid, as a result of surface tension, is equal

*D the product of the surface tension and the area of the liquid surface.

Thus if the movable wire EF (Fig. LXXVIII.) be pulled out through
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a distance x, the work done is F . x, and this must equal the increase

in potential energy of^he liquid film. Since the corresponding increase

in the area, of the film is 2 . x . GH ., the increase in potential energy
... f . F . x

per unit increase of area is
^
--

^=..

But F . x = 2 . x . GH . T.

Whence the increase in potential energy per unit increase of area
. 2.&.GH.T . m
19 -

Similarly, if the movable wire slide back along AB and CD until

it reaches BC, the work done by surface tension, and, therefore, the

decrease in potential energy of the film, is 2 . BE . GH . T
; i.e.

T x (area of film).

89. The Shape of Bubbles and Liquid Drops. Since a mechanical

system is in stable equilibrium when its potential energy is a mini-

mum, it follows that a drop of liquid, when enacted upon by external

forces, must be a perfect sphere, the spherical form possessing the

smallest surface for a given volume.

Thus, as was shown by Plateau, if a quantity of oil be placed in a

mixture of alcohol and water of the same density, the potential energy
due to gravity will be unaffected by variations in the shape of the oil,

and, consequently, the oil will assume a spherical shape, the area of

the surface, and the potential energy due to surface tension, being
then a minimum.

Experiment XLVIL Introduce some olive oil into a mixture of

alcohol a,nd water of the same density, contained in a flat-sided glass

vessel, and observe the spherical shape assumed by the oil. The

density of the lower portion of the mixture of alcohol and water may
conveniently be made slightly greater, by discharging a very small

quantity of water at the bottom by means of a pipette, and the density
of the upper portion may be reduced, by the addition of a little more
alcohol. The oil will then float in the middle of the mixture. If the

contents of the vessel be agitated, the oil may be broken up into a

number of globules, all of which will be perfect spheres.

By introducing a disc attached to an axle the oil may be made to

adhere to the disc, if the latter be previously smeared with oil, and,
on rotating the axle and disc, the sphere of oil will also rotate. On
increasing the speed of rotation, the sphere of oil becomes flattened at

its poles, and, with a further increase in the speed, a ring of oil breaks

off, which contracts again on to the inner sphere if the speed be re-

duced, but which breaks up into a number of separate spheres if the

speed of rotation be sufficiently increased.

Instead of employing olive oil and a mixture of alcohol and watel|
it is more convenient to form spheres of orthotoluidine in water. At

14
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a temperature of 24 C. orthotoluidine and water possess the same

density ; orthotoluidine being less dense than water at higher tempera-
tures, and denser than water at lower temperatures. If, then, a

globule of orthotoluidine be placed in a flat-sided glass vessel contain-

ing cold water, it will rest upon the bottom of the vessel as a flattened

drop, but, on gradually raising the temperature of the water, by im-

mersing the vessel in a larger one containing hot water, the drop will

change its shape ; becoming perfectly spherical at 24 C. On raising
the temperature still higher, the globule of orthotoluidine floats up,
and becomes flattened at the surface of the water.

Experiment XLVIII. Blow a soap-bubble and observe that it is

spherical. In this case the weight of the soap-bubble is so small that

the effect of gravity is practically negligible, and, in consequence, the

bubble assumes the form in which the potential energy due to surface

tension is a minimum.

When a drop of liquid is acted on by external forces its shape is

determined by the condition that the total potential energy must be a

minimum. Thus, in the case of a drop of liquid resting upon a hori-

zontal solid surface which it does not wet, if the drop be sufficiently
small its shape will be approximately spherical, for the potential

energy due to gravity will be negligible compared with that arising
from surface tension. In the case of a large drop, however, the

potential energy due to gravity has the predominant influence, and,

consequently, the drop forms a flat pool, so that its centre of gravity

may be low.

Experiment XLIX. Scatter some mercury on a glass plate and
observe that the small drops are practically spherical, whereas when
a larger quantity of mercury is poured out it collects into a flattened

circular pool (Fig. LXXIX.). Drops of water may, similarly, be

O

FIG. LXXIX.

formed upon a glass plate, if the latter be covered with a thin layer
of grease to prevent adhesion between the water and the glass. It

will be shown, subsequently, that the depth of all large drops of a

given liquid is the same, and that by measuring this depth the surface

tension of the liquid can be ascertained.

When a liquid falls freely, in a vacuum, the effect of gravity on its

shape will be eliminated and it will, therefore, assume a spherical form.

Approximately the same form is taken up by a rain-drop falling

through the air, since the viscosity of the latter medium is small.
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When molten lead is poured in a fine stream from the top of a shot

tower, the stream breaks up into small drops which, similarly, acquire

a spherical shape. This process is employed in the manufacture of

leaden shot.

90. The Surface Tensions of Different Liquids. A number of simple

experiments may be performed to show that different liquids possess

different surface tensions.

Experiment L. Fill a porcelain dish with water, and sprinkle the

surface of 'the latter with powdered charcoal (Fig. LXXX. a). This

may be done most readily by placing the charcoal in a small muslin

bag, and shaking the latter over the water. Touch the surface of the

water in the middle with a glass rod which has been dipped in some

soap solution. The water surface immediately contracts, carrying the

FIG. LXXX.

charcoal up to the side of the dish, while the surface of the soap solu-

tion is stretched out, its tension being less than that of pure water

(Fig. LXXX. 6).

Experiment LI. Pour a shallow layer of water, which may con-

veniently be coloured with magenta or indigo, into a flat-bottomed

porcelain dish. Touch the water with a glass rod which has been

dipped into alcohol, and observe that the liquid moves away from the

part touched, leaving the bottom of the dish at that place dry. This

action is due to the surface tension of water being greater than that of

alcohol, or of a mixture of alcohol and water, the liquid being, in

consequence, carried away in the direction of the greater tension.

The phenomenon of " tears in wine
"

is, similarly, due to the differ-

ence in surface tension between alcohol and water. If a fairly strong

wine, such as port, be placed in a wine-glass, the sides of. which are

moistened with the wine, it will be observed that the liquid gradually
rises up the sides of the glass and collects in drops, or "

tears," which
14
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then trickle down again. In this case the thin layer of wine on the
side of the glass loses its alcohol by evaporation mpre rapidly than the
wine below, the latter being less exposed to the air. The surface

tension of the layer on the side of the glass therefore becomes greater
than that of the wine below, since the surface tension of water is

greater than that of alcohol. In consequence, more wine is pulled up
the sides and drops gradually form, which, when they become

sufficiently heavy, break away and trickle down again.
1

Experiment LIL Take a wine-glass and half fill it with port, or

with a mixture of about one part of alcohol and two parts of water,
which may be coloured with magenta. Wet the sides of the glass
with the liquid and observe the formation of the "

tears.
1 '

Experiment LIIL Take the apparatus used in Experiment XLIL,
and immerse it in water so that it floats with the wire frame just sub-

merged. Pour a few drops of ether into a beaker, and then pour
some of the vapour of the ether upon the surface of the water. The
frame almost immediately jumps up out of the water, owing to the
ether condensing upon the surface of the latter and diminishing the
surface tension.

91. The Influence of Temperature on Surface Tension. The surface

tension of any liquid diminishes if the temperature be raised, becom-

ing zero at the critical temperature. It follows, therefore, in accord-
ance with Le Chatelier's theorem (Appendix B), that a liquid film

when stretched adiabatically becomes cooler.

The diminution in surface tension with rise in temperature may be
shown by the following simple experiment.

Experiment LIV. Pour a shallow pool of a liquid, say water, on
a horizontal thin metal plate, and sprinkle the surface of the water
with powdered charcoal. On applying heat, by means of a small

flame, to the centre of the lower surface of the plate, the water im-

mediately above becomes heated, and its surface tension diminishes, as
is shown by the surface of the surrounding colder water contracting,

thereby carrying the charcoal away from the centre towards the edges
of the pool. Instead of employing a metal plate, a shallow layer of

water may be poured into a flat-bottomed porcelain dish, and sprinkled
with powdered charcoal, the water being then heated at one place
either by converging the rays of the sun upon its surface by means of

a convex lens, or by holding a piece of hot metal close to the surface.

92. The Relation Between the Curvature of a Liquid Surface, the
Surface Tension, and the Pressure. Consider, for example, a spherical

1 Reference is made to this phenomenon in Proverbs xxiii. 31 :
" Look not

ttfuu upon the wine when it is red, when it giveth his colour in the cup, when it

moveth itself aright/'
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drop of liquid. It is evident, since the curved surface of the liquid is

in a state of
tension^,

that the pressure inside the drop must be greater
than the external pressure. Thus let E be the radius of the drop,
P the difference between the internal and external pressures, and T
the surface tension. If we imagine the drop divided into two hemi-

spheres, and consider the equilibrium of one of them (Fig. LXXXL),
we have

P . TrR2 = T . 27rK,

since the pressure on the plane face of the hemisphere, due to the

liquid in the other hemisphere, is balanced by the surface tension

acting round its circumference.

2 T
Whence P = ~4-.

FIG. LXXXI. FIG. LXXXII.

Similarly, in the case of a spherical soap-bubble, which has two

surfaces in a state of tension, we have

4.T
r ~TT'

the radii of the inner and outer surfaces being sensibly the same.

Again, in the case of a cylinder of liquid, we may consider a

portion of the liquid lying between two planes at right angles to the

axis of the cylinder at a distance H apart. If we imagine this portion
divided into two halves by a plane passing through the axis of the

cylinder, and consider the equilibrium of one of these halves

(Fig. LXXXII.), we have, on resolving perpendicularly to the dividiner

P . 3R . H = T , 2H,
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where P is the difference between the internal and external pressures,
R the radius of the cylinder, and T the surface tension.

Whence P = ?.
K

In the case of a cylindrical soap-film, we have

2.T

The general formula for a curved liquid surface may be deduced
in the following manner :

Consider a sufficiently small rectangular element, ABCD, of the

liquid surface (Fig. LXXXIIL).
Let this element be in equilibrium under the surface tension, T,

and a difference jof; pressure, P, between the two sides of the surface.

Let the element be displaced outwards

through a small distance, &x, so that each

point of the element moves normally to

the surface, and let the new position of

the element be A'B'C'D'. Then, since

the forces acting on the element are in

FIG. LXXXIII. equilibrium, it follows from an elementary
mechanical principle, that the algebraical

sum of the work done by the forces during the displacement, 8#,

is zero.

Now the work done by the pressure during the displacement is

P x area ABCD x 8#, and the work done against surface tension is

T x increase in the area of the surface ;

i.e. T x {area A'B'C'D' - area ABCD}.

Whence

P x area ABCD x $x - T x {area A'B'C'D' - area ABCD} = 0.

Since the element ABCD is a portion of a curved surface, it can

be shown, geometrically, that the lines AB and BC, which are at

right angles to one another, can be taken on the surface so that the

normals to the surface at A and B intersect in 0, and the normals to

the surface at B and C intersect in O r

,
AO and BO' being the radii of

principle curvature of the surface.

When the points and 0' both lie on the same side of the surface

(Fig. LXXXIV.), we have what is termed a synclastic surface
; when,

on the other hand, O and 0' lie on opposite sides of the surface

y. LXXXV.), we have an anticl^stic surface.
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In the case of a synclastic surface (Fig. LXXXIV.), we have

AB _ ATB^
OA

~
OA' '

OAB and OA'B' being, sensibly, similar triangles.

where B
t

is the radius of principal curvature, AO.

Similarly
BC _ KG'
O'B

"
O'B''

where E
2

is the radius of principal curvature, BO'.

O
FIG. LXXXIV. FIG. LXXXV.

Since, in the case of a sufficiently small element, ABCD and

A'B'C'D' are, sensibly, rectangles, we have

Area ABGD - AB x BC,
Area A'B'C'D' = A'B' x B'CT,

= AB x BC )

= area ABCD x
. B

2
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the product f^\
(~\ being relatively negligible if both ~ and ~

are sufficiently small.

Whence

P x areaABCD x Sx - T x (area ABCD x {Bx . B, + tefo + B,)|

\ i
tf

2

- area
ABCDJ

= 0.

Similarly, in the case of an anticlastic surface (Fig. LXXXV.), we
have

AB A'B'

OA OA'
'

BC B'O'
AlSO

.-. B'O' = BC . E
2

'

Whence
Area A'B'C'D' - A'B' x B'C',

= AB x BC

IT? T? 5v/> /T?
-r-\ /-*T^ I-*-*1! -t*O

~~
OtJu l-LV-i

~^

area ABCD x '-1 ^ ^ ^r-^

Consequently

P x area ABCD x 8* - T x jarea ABCD x {Bi ^
tejfo

-
B,)j

I E
l
E

2

- area
ABCDJ

= 0.

In general, then, we may write

* -
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provided the radius of curvature be taken as positive when the corre-

sponding centre of curvature is on that side of the liquid surface where
the pressure is greater, and negative when the centre of curvature is

on the side where the pressure is less.

In the case of a liquid film, which has two surfaces in a state of

tension, our general equation becomes

The relationship which was previously obtained in the case of a

spherical drop of liquid may be readily deduced from the general

equation

(D

FIG. LXXXVI. FIG. LXXXVII.

For a sphere, the two radii of curvature, Ex
and E

2 ,
are equal, and,

consequently

P.

Again, in the case of a cylinder of liquid, one radius of curvature
is infinite, the other being the radius of the cylinder.

T
Whence P =

^,
as was previously deduced.

Experiment LV. Blow two soap-bubbles, A and B, oj: unequal
size at the ends of two glass tubes which are controlled by means ctf

taps X, Y, and Z (Fig. LXXXVI). Since, for a spherical soap-bubble
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4T
p _ the pressure inside the smaller bubble will be greater than

the pressure inside the larger bubble. Thus, on opening the tap, Y,

the bubble B shrinks up and blows out the larger one.

Now replace one of the soap-bubbles by a short cylindrical soap-

film, and, with the tap, Y, open, blow in air until the sides of the

cylinder neither bulge out nor bend in, but are perfectly straight (Fig.

LXXXVII.). On measuring the sphere A' and the cylinder B' it will

be found that the diameter of the former is exactly double that of the

latter. Since the pressures inside the sphere and the cylinder are, in

4T 2T
this case, identical, we have P =

-g-
=

gr, and, therefore, R = 2R',

where R is the radius of the sphere and R' the radius of the cylinder.

When there is no difference of pressure between the two sides of

a liquid film, i.e. when P = 0, we have the relation

^ + l = o.

Hence Rj = - R
2

.

Thus the radii of curvature in any two normal sections taken at

right angles to one another are equal and on opposite sides of the

liquid film, i.e. the total curvature of the film is everywhere zero, since,

at every point, it is equally curved in opposite directions.

Experiment LVI. Dip a rectangular wire frame into soap solution,

and then remove it, so as to obtain a plane film. In this case the

radii of curvature in any two normal sections at right angles to one

another are both infinite, and lie on opposite sides of the film. By
bending the wire frame an infinite series of surfaces can be obtained

for all of which the total curvature is everywhere zero. One such

surface is illustrated in Fig. LXXXVIII.
If a piece of wire be twisted into a helix, the ends being bent and

fastened to a straight wire passing down the centre, and if the whole

wire frame be then dipped into soap solution, and 'removed, a very
beautiful film with a " screw-surface

"
will be obtained (Fig.

LXXXIX.). This film similarly satisfies the relation R
x

- R
2
at

every point.

When a film possesses the shape of a surface of revolution, and

when there is no difference of pressure between its two sides, the sur-

face is a catenoid. 1

Thus, consider a plane curve ABC (Fig. XC.). Let the curve re-

volve about an axis XY in its plane, thus describing a surface of

* 1 The catenary is the curve in which a heavy uniform string hangs when sup-

ported at each end, the surface of revolution of a catenary being a catenoid,
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revolution. Let O be the centre of curvature of the plane curve at B,
and let OB produced intersect XY at 0'. Then it can be shown, geo-
metrically, that O ancf O' are the two principal centres of curvature of
the surface of revolution at B

; OB and O'B being the corresponding
radii of principal curvature, i.e. OB R

1?
and O'B = R

2
. Since in

the case of a liquid film with no difference of pressure between its two
sides R! = - R

2 , we have OB = - O'B.

CL

FIG. LXXXVIII.

FIG. XC. FIG. LXXXIX.

The only curve which fulfils this condition at every point is the

catenary, and, consequently, the surface of the liquid film must be a
catenoid.

Surfaces of this shape may be obtained experimentally by forming
a soap film between two parallel rings, the planes of the latter being
at right angles to the line joining their centres.

FIG. XCI.

Experiment LVIL Take two glass funnels and form a soap film

between their rims (Fig. XCI.). Since the ends of the funnels are

open, the pressure is the same on both sides of the film, and the rela-

tion R
t
=a R2 obtains at every point. If the funnels be held with

their rims parallel, and with the planes of the latter at right angles to
the line joining their centres, the surface of the soap film will be sym-
metrical about this line, and, consequently, will possess the form of %
cajenpifl,
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FIG. XCII.

93. Stability of Cylindrical Films and Liquid Cylinders. It can be

proved that when the distance between the ends of a cylindrical film

is less than half the circumference of the ends 6*f the film the internal

pressure is diminished if the

film begins to develop a waist

and bend in, and is increased

if the film begins to bulge out,

whereas when the distance

between the ends of a cylin-

drical film is greater than half

the circumference of its ends

the converse is true, the in-

ternal pressure in the case of

a film that bends in being

greater than the internal pres-
sure for a film that bulges out.

This, as was shown by

Boys, may be readily demon-
strated experimentally in the

following manner :

Experiment LVIII. Take the apparatus employed in Experiment
LV. and form two cylindrical films each of length less than the semi-

circumference of their ends, one film, A, bending in, and the other, B,

bulging out. On opening the tap, Y, air passes from B to A and the

two films become more cylindrical, thus showing that the internal

pressure at B is greater than

that at A (Fig. XCII.). The
tubes on which the cylindrical
films are formed should, of

course, be of equal diameter.

Next repeat the experi-

ment, making the length of

each film greater than the

semi-circumference. In this

case, on opening the tap, Y,

air passes in the opposite
direction from A to B, so that

A shrinks in and shuts itself

up while B is blown out still

further (Fig. XCIIL).

It is evident from the

preceding experiment that a F1G . XCIIL

cylindrical film can only be in

^table equilibrium provided its length does not exceed its circum-

ference. For if the two films A and B, in Fig. XCIII., be imagined

X
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joined together at one end, A would blow air into B and would
shut itself up until ijs sides met, when the film would break up
into two ssparate bubbles. Thus, in the case of a cylindrical film of

length greater than its circumference, the slightest constriction at one

place leads to a relative increase in the pressure at that place, and air

is blown into the wider portions of the film until the sides at the con-

striction close up and meet one another, the cylinder then breaking
into two spherical portions. If, however, the length of a cylindrical
film be less than its circumference, the formation of a waist leads to

a relative diminution in the pressure at the waist, and consequently,
air is blown in from the wider portion of the film, thus tending to

restore the cylindrical shape.

Experiment LIX. Form a soap film between the rims of two

glass funnels of equal size, the stem of one funnel being attached to a

rubber tube, and the stem of the other closed with a cork. Blow
through the rubber tube until the soap film is cylindrical, and then

gradually separate the funnels, continuing to blow gently so that the

cylindrical form may be maintained. When the length of the cylin-
drical film approximates to its circumference, the film becomes difficult

to control, and, if the length be further increased, a waist suddenly
forms nearer one end than the other and shrinks in until the sides

meet, the film then breaking into two unequal bubbles.

A liquid cylinder is, similarly, in stable equilibrium only when its

length does not exceed its circumference. If a cylinder of greater

length be formed it tends to break up into a series of drops. The
following experiments illustrate clearly the instability of long liquid

cylinders ;

Experiment LX. Take a flat-sided glass vessel, such as was
employed in Experiment XLL, containing some carbon-disulphide
coloured with iodine, and nearly fill the rest of the vessel with an

aqueous solution of zinc sulphate of slightly lower density than the

carbon-disulphide. Dip a glass tube into the caibon-disulphide at

the bottom of the vessel and let it fill. The carbon-disulphide will

rise inside the glass tube to nearly the same level as the zinc sulphate
solution outside. On suddenly drawing the tube out of the liquid a

cylinder of carbon-disulphide will be left behind which will break up
into spherical drops, small subsidiary droplets being produced from
the necks which form at those places where partition occurs.

Experiment LXL Soften a glass tube in a gas flame and draw it

out into a fine thread. On dipping a length of the glass thread into,

say, water or olive oil, and then removing it, the liquid, which at first

is cylindrical, gathers itself up into alternate drops and droplets along
the thread.
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A spider's web illustrates the same instability. When examined

under a microscope the radial threads are seen k> be smooth, whereas

the threads which are spun round and round are covered with alternate

large and small beads of sticky liquid, the larger beads being about

one four-hundredth of an inch apart. In spinning the web
the spider wets it with the sticky liquid which then breaks up
into the drops and droplets. A wet spider's web, strung with

small beads of water, furnishes another beautiful example
of the instability of long liquid cylinders.

It should be noted that the instability of a long liquid

cylinder may be overcome by viscosity in the case of very
viscous liquids. Thus, in the preceding experiment, the

semi-molten glass, on account of its high viscosity, could be

drawn out into a long cylindrical thread without rupture.

Similarly, any very viscous liquid such as syrup can be

drawn into threads of considerable length.

91 Liquid Jets. When a jet of water escapes through a

circular aperture it forms, at first, a long liquid cylinder, but

the latter being unstable soon develops necks and bulges,

and then breaks up into separate drops. This is clearly

seen if an instantaneous photograph of such a jet be taken

by the light of an electric spark. The appearance of a

narrow jet of water falling from a circular opening, when

photographed in this manner, is illustrated in Fig. XCIV.
The small subsidiary droplets are produced, as usual, from

the narrow necks which are drawn out when the larger drops
break away. A jet of water will, in general, break up irregu-

larly into drops of unequal sizes and at different distances

apart, owing to small accidental disturbances which are im-

parted to the nozzle from which the water escapes, and which

impress slight necks upon the liquid cylinder. Many of the

drops will bounce together and rebound, and, in consequence,
the jet scatters irregularly over any surface upon which it

falls. If, however, a regular series of disturbances be imparted
to the nozzle, the necks will be impressed upon the issuing

cylinder of water at equal distances apart, and the jet will

O break up into a series of equal, equidistant drops, which will

o follow one another in the same path.

FIG.

XCIV. Experiment LXIL Allow a jet of water to issue from

a small nozzle which is supported, at a convenient angle, on

the sounding box of a tuning-fork, and let the water fall upon a sheet

p,f paper "placed on the floor. The jet will initially scatter irregularly

over the paper, but on setting the tuning-fork in vibration the water

~.

Q
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will immediately gather together, and the drops will fall with a regular

pattering sound.

Experiment LXIIL Focus the light from an electric lantern so

that it passes through a small hole in a fixed wooden disc and then

diverges and falls upon a screen. Interpose the apparatus used in the

preceding experiment between the screen and the disc so that a

shadow of the jet and tuning-fork is thrown upon the screen. A
second wooden disc, with a number of equidistant small holes near its

circumference is then rotated rapidly, by means of an electric motor,

close behind the fixed disc, so that the holes in the rotating disc may
pass opposite the hole in the fixed disc, thus producing an intermittent

illumination of the screen. Set the tuning-fork in vibration and adjust
the speed of the motor until the number of flashes of light per second

passing through the hole in the disc is equal to the frequency of vi-

bration of the tuning-fork. The tuning-fork will then appear station-

ary. Next turn on the jet of water and observe the necks and bulges
which are developed in the liquid cylinder, and the separate drops of

water, all apparently stationary in the air. If the speed of rotation of

the disc be now very slightly reduced, all the drops will appear to be

moving slowly forward, and the gradual breaking away of the drops,
and the formation of the subsidiary droplets, can be readily observed.

Since at the moment the drops break away they are pulled out into a

prolate form they will vibrate, under the influence of surface tension,

becoming first spherical, and then, through inertia, oblate, the vi-

brations continuing until damped out by viscosity.

Experiment LXIV. Allow drops of olive oil to form in a mixture

of ethyl alcohol and water of slightly lower density, as in Experiment
XLI. Gradually increase the rate of flow and observe the formation

of a jet which develops necks and bulges at some distance from the

end of the glass tube, and breaks up, further on, into separate drops
and droplets. The vibrations of the separate drops may also be ob-

served without difficulty. It should be noted in this experiment, and
in the two preceding ones, that the length of the continuous portion
of the jet is increased by increasing the rate of flow. The length of

the continuous portion is also conditioned by the surface tension and

viscosity of the liquid, and by the diameter of the nozzle
;
the greater

the surface tension, and the smaller the liquid viscosity and the dia-

meter of the nozzle, the sooner will the jet break up into drops.

95. Equilibrium of a Solid Surface and two Fluid Surfaces meeting

along a Line. Let Fig. XCV. represent a vertical, central section of

a pool of mercury, ABC, resting upon a horizontal glass plate, AC.
There are three surface tensions to be considered, viz. that of the

surface of contact between the mercury and glass, denoted by T
12 J

that of the surface of contact between the mercury and air, denoted by
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T9 ;
and that of the surface of contact between the glass and air, de-

noted by T13 . If we resolve the three surface tensions at A parallel to

AC, we have, for equilibrium

T12
- T13 + T23 . Cos

(/>
=

0,

where < is the obtuse angle at which 'the glass and mercury meet.

< is usually known as the angle of contact ; for a freshly formed l

drop of mercury on glass <f>
has the value 138 55'.

The angle of contact between mercury and glass may be measured,

experimentally, by pouring mercury into a spherical glass flask until

the liquid surface, which has convex edges in the lower part of the

flask, loses all its convexity and becomes a horizontal plane.
The obtuse angle, < (Fig. XCVL), between the horizontal surface

of the mercury and the tangent plane to the glass globe, at the same

level, gives the angle of contact.

FIG. XGVI. FIG. XGVII.

Experiment LXV. Dip a clean glass plate into some mercury

contained in a basin, and incline the glass plate until the surface of

the mercury on one side of the plate is plain (Fig. XCVII.). Measure

the angle, a, between the horizontal surface of the mercury and the

glass ;
the supplement of this angle gives the angle of contact.

96. The Spreading of one Liquid over the Surface of Another. No
case is kr?,own where three fluid surfaces meeting along a line are in

1 The values of the angles of contact found for various liquids vary considerably

with the freshness of the surfaces in contact.



CAPILLABITY 225

equilibrium. Thus a drop of oil will not rest upon clean water, but
will spread itself

out^as
a film over the surface. A drop of water will,

similarly, spread over the surface of clean mercury. If the surface of
the mercury be contaminated with grease, a drop of water may remain
floating as a globule upon the surface, but, in this case, it can be
shown that the grease has spread over the surface of the water, so
that there are no longer three fluid surfaces meeting at the edge of the

drop. Since a mechanical system is in stable equilibrium when its

potential energy is a minimum, it follows that the spreading of one
liquid over the surface of another must be accompanied by a dimi-
nution in potential energy.

Thus, in Fig. XCVIIL, let a flat drop of liquid, X, be floating
upon the surface of another liquid, Y, and let the drop spread out to
a small extent, so that the area of contact between X and Y is in-

crea-ed by an amount A. The area of contact between the drop, X,
and the air, Z, is also increased by A, and the area of contact between
Y and Z is diminished by the same amount.

The resulting diminution in the potential energy is, consequently,
TYZ . A - TXY . A - TXZ . A, where TYz denotes the surface tension of
the surface of contact between the liquid Y and the air, TXY the

FIG. XCVIII,

surface tension of the surface of contact between the two liquids,
and TXZ the surface tension of the surface of contact between the

liquid X and the air.

In order that the drop, X, shall spread out over the surface of

the liquid, Y, the expression TYz . A - TXY . A - TXz . A must be

positive, i.e. TYz must be greater than TXY + Txz .

If, however, each of the surface tensions were less than the sum
of the other two, so that a triangle could be drawn with its sides

proportional to TYZ, TXY ,
and TX z, the drop would contract and re-

. main floating as a globule on the surface of the other liquid, with
three fluid surfaces meeting at the edge of the drop.

As stated previously, no case is known where three fluid surfaces

meeting along a line are in equilibrium, for, whatever three fluid

media be selected, it is always found that one of the surface tensions

is greater than the sum of the other two.

When a small quantity of, for example, olive oil is placed upon
the surface of clean water the oil spreads out as a thin film covering
the water, for the surface tension of the water-air surface is greater
than the sum of the surface tensions for the water-oil and oilmir

surfaces.

15
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If now a further small quantity of olive oil be placed upon the

surface it will remain floating as a globule, the surface
tension of the

water-air surface having been reduced by the covering oil film.
^

A
film of olive oil, when spread over a water surface, will remain in-

definitely in equilibrium, but several cases are known where liquid

films break up spontaneously into globules. This phenomenon of

the breaking up of films has not, so far, been satisfactorily explained.

Experiment LXVI. Place a drop of dimethyl aniline upon the

surface of clean water. Observe that an irregular-shaped film is at

first formed, but that the latter soon becomes ramified and breaks up
into separate globules.

97. Interfacial Surface Tension. The existence of the interfacial

surface tension at the boundary surface of two liquids may be readily

demonstrated by means of the following experiments :

B
FIG. XCIX.

Experiment LXVII. Half fill a small beaker with water, and
add dimethyl aniline on top of the water until the beaker is nearly
full. Next wet one end of an open glass tube with water, and push
the tube down through the dimethyl aniline until the end of the

tube is just below the surface of the water in the lower half of the

beaker. Close the upper end of the tube with one finger and raise

the tube until its lower end is well above the boundary surface of

the dimethyl aniline and water. On gradually allowing air to enter

the tube, by raising the finger, a globule of dimethyl aniline enclosed

in a skin of water will be formed (Fig. XCIX. A), and on carefully

withdrawing the tube from the upper surface of the dimethyl aniline

the globule will become detached and will sink to the boundary sur-

face between the two liquids (Fig. XCIX. B).

After resting upon the boundary surface for a few moments, the

lovrer portion of the skin of water which surrounds the globule of

dimethyl aniline merges into the water beneath,, a.ud the boundary
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surface between the two liquids now passes round over the top of the

globule. Owing t<j the interfacial surface tension, the boundary
surface at once flattens out to its original shape, thereby driving the

globule of dimethyl aniline down into the denser water below (Fig.
XCIX. c).

The globule of dimethyl aniline then rises to the boundary sur-

face, and, after a few moments, the upper portion of the globule

merges into the dimethyl aniline above, so that the boundary surface

now passes round beneath the globule. The interfacial surface

tension, therefore, again comes into play, assisted, now, by the action

of gravity, and the boundary surface flattens once more to its original

shape, the globule merging back into the liquid above.

By employing a small pipette fitted at the upper end with an
india-rubber teat, and alternately drawing in small quantities of

dimethyl aniline and water, it is possible, with care, to project a
number of globules of water, each enclosed in a skin of dimethyl
aniline, into the water at the bottom of the beaker. These will then

rise to the boundary surface between the two liquids, and, after a few

moments, the drops of water will be driven upwards into the lighter

dimethyl aniline above.

Experiment LXVIII. Drop some thin pieces of copper wire into

the layer of dimethyl aniline floating upon water used in the preceding

experiment. The pieces of wire will sink through the dimethyl
aniline and remain floating, at the boundary surface. If the wires be

now pushed through the interface, by means of a glass rod, they will

sink to the bottom of the beaker.

98. Methods of Measuring Surface Tension ; The Capillary Tube
Method. A number of different methods have been experimentally

employed for the measurement of surface tension. Several of the

more convenient of these methods will now be described in detail.

The Capillary Tube Method. Experiment LXIX. Draw out a

number of glass capillary tubes of 1 mm. and less internal diameter.

Seal up both ends of the capillaries until required, so as to exclude

dust and grease. When ready to make a measurement, fasten several

of the tubes with sealing-wax to a small block of wood as nearly as

possible at right angles to its lower surface, and, after cutting off the

ends of the tubes, rest the block of wood on a beaker containing clean

tap-water.
1

Before reading the height of the water meniscus in each tube, the

apparatus must be tilted, so that the water may rise higher in the

tubes than its final position, thus ensuring the tubes being thoroughly
wetted with the water. On no account must water be Sucked up

1 Distilled water should not be employed, as it is frequently contaminated with
a trace of grease.

15
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the tubes, as doing so will almost certainly lead to contamination of

the surface.

Bead the height of the lowest part of the concave meniscus in

each of the vertical capillary tubes by means of an accurately levelled

cathetometer.

The level of the surface of the water contained in the beaker can-

not be read with accuracy through the glass, and a metal rod, with

pointed ends, is therefore clamped with its lower end just touching
the water surface, while its upper end projects above the edge of the

beaker. The height of the upper end of the rod is read after measur-

ing the level of the water in the capillary tubes, and the length of the

rod is also determined. The capillary elevation in the tubes is thus

obtained.

An ink mark is next made at the height to which the water rises

in each tube, and the tubes are then neatly cut across at the marked

points and their diameters measured by means of a vernier microscope.
The diameter of each tube should be measured in two directions at

right angles to one another in order to eliminate any small error due
to irregularity in the bore. It should be noted that no assumption is

made that the tubes are of uniform diameter throughout their length,
for the capillary elevation is merely dependent upon the diameter at

the point occupied by the water meniscus. In measuring the diameter
of a tube, the latter may, conveniently, be fixed in a clamp ; a piece
of white paper being slipped over the tube to improve the illumination.

A correction must be applied to the height in order to allow for the

liquid above the lowest part of the meniscus. For small round tubes,
and for liquids that wet glass, the liquid meniscus is sensibly hemi-

spherical, so that this volume of liquid is practically equal to the

difference between the volumes of a cylinder of height r and radius r

and a hemisphere of radius r, where r is the radius of the capillary
tube. Since this difference in volume is equal to ^Trr

3
,
the height

measured to the lowest part of the meniscus must be increased by ~.
o

The experimental results should be recorded in the following
manner :
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The surface tension, T, in the last column, is calculated from the

relation

where p is the density of water at the temperature of the experiment,
and g the acceleration of gravity.

The mean value of T is then calculated from the values obtained

with the several capillary tubes. The experiment may then be re-

peated, using, say, alcohol, or soap solution, in place of water. 1

The relation

employed in calculating the surface ten-

sion may be readily deduced by equating
the vertical component of the surface

tension with the weight of the liquid sup-

ported in the capillary tube.

If < (Fig. C.) be the angle at which
the liquid meets the tube, the vertical

component of the surface tension is

2?rr . T . cos
<f>,

since the liquid and glass
meet along a circle of circumference 2?rr.

The weight of the liquid supported in

the capillary tube 2 is

TX

(*!) P-9-

h

FIG. C.

Whence

271-r . T . Cos 4 = 7rr
2

. (h +
|
V p . g

(the weight of a column of air of the same height and cross-section

as the liquid being treated as negligible).

Therefore T = r

J The value of p must, of course, be determined for each liquid employed.

2 It should be noted, however, that the corrected height, h +
g,

was deduced

for liquids that wet the glass, and for which $ = 0. If the liquid meet the tube at

a finite angle, the height measured to the lowest part of the meniscus must ba in-

creased by a smaller amount than ~.
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For liquids that wet the glass, <f> 0, and cos < = 1.

If the liquid does not wet glass the value of the angle of contact

must be known in order that the capillary tube method may be em-

ployed for the determination of T.

The relation for the surface tension may also be deduced in the

following alternative manner : The curved liquid meniscus in a narrow

capillary tube of circular cross-section is sensibly hemispherical for a

liquid that wets the glass. If the liquid does not wet the glass, but

meets it at an angle < (Fig. C.), the curved meniscus, A, is still

sensibly a portion of a hemisphere. Let K be the radius of curvature

of the meniscus A. Then as shown in 92, the difference between
. 2T

the pressures on the two sides of the curved meniscus must equal ^.
The pressure just above the meniscus A, however, is practically

the same as the pressure at the plane surface of the liquid B, since

the weight of the column of air, of height h, may be treated as negli-

gible, and the pressure at B exceeds the mean pressure just below the

meniscus A by an amount (h + ~ \ . p . g, where p is the density of

ty>

the liquid, h -f ~ the mean height,
1 and g the acceleration of gravity.

2T

But E . cos <t>
= r, where r is the radius of the capillary tube.

+
S

d

which is the relationship previously obtained.

Since for mercury and glass the angle </>
is obtuse, cos < is nega-

tive, and, in consequence, h is negative, so that on dipping a capil-

lary tube into mercury the surface of the mercury within the tube is

depressed below the level of the plane surface outside.

99. Measurement of Surface Tension by Weighing the Pull Ex-

erted by a Film. Experiment LXX. Draw out a glass rod into a fine

capillary fibve and bend a piece of the latter, of about 12 cms. length,
t

1 See note 2 on previous page.
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into a rectangular form, A (Fig. 01.). Suspend the rectangular fibre

by means of fine silk thread from the end of a balance beam, and

weigh the fibre when immersed in clean tap water, as shown in the

figure, in the first place without the water film, B, and, secondly, with
the film. The difference between the two weights gives the pull
exerted by the film. It must be noted that there are two surfaces

which are exerting tension. Measure the length, I, of the rectangular
fibre.

Then, neglecting the very small weight of the film,
1 we have

2 . T . Z - W .g,

where T is the surface tension, W the difference between the two

weights, and g the acceleration of gravity.

Whence w.# ,
,^

dynes/cm.

R

FIG. CI.

B

2

FIG. Oil.

100. Measurement of Surface Tension by Determining the Weight
of a Drop falling from a Tube. Experiment LXXI. Allow water to

drip very slowly from a clean vertical glass tube of about 0*5 cm. in-

ternal diameter, as in Experiment XLI.2

Note that the drops always attain the same size before breaking

away from the tube. Collect about ten of the drops in a weighed
bottle, and again weigh, and calculate the weight of a single drop.

Let Fig. Oil. represent the tube and drop when the latter is just
about to break away and fall. Since the water wets the tube, the up-
ward pull due to surface tension acting on the liquid below AB is

. T, where K is the radius of the tube, and T the surface tension

1 The glass fibre should be immersed in water before weighing it without the

film. The very small extra weight of the film itself may then be neglected without

any appreciable error.
9

2 The end of the glass tube must be cut across at right angles to its length, And
should be ground perfectly smooth with fine emery powder.
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of the water at the temperature of the experiment. If it be assumed
that, at the moment of partition, the drop is

cylindrical
at the end of

the tube, the pressure, Px ,
inside the drop will exceed the atmospheric
T

pressure, P2 , by an amount ^ ( 92), and, in consequence, there will

T
be a downward force of ?rR2 .

^,
i.e. TrRT, acting on the liquid below

AB. If, then, the liquid below AB be assumed, at the moment of

partition, to be in a state of statical equilibrium under the influence

of these two forces and its own weight, W, we have

2.7T.R.T - 7T.R.T - W = 0.

W
.'. T

-.R'

The above investigation is, however, by no means complete, for the

partition of the drop is a dynamical process, and a state of statical

equilibrium is not in reality attained. It has been shown by Lord
"W

Rayleigh that the expression T =
^75 ^ leads to a more accurate
Oo . -tv

value for the surface tension.

101. Determination of Surface Tension by the Measurement of a

Drop. Experiment LXXII. Pour out some mercury upon a clean

horizontal glass plate so as to form a large pool. Measure the depth,

H, of this pool by means of a spherometer.
The surface tension may then be calculated from the relation

2(1 + COS a)'

where p is the density of the mercury at the temperature of the ex-

periment, g the acceleration of gravity, and a the supplement of the

angle of contact between mercury and glass.

Instead of assuming the value of the angle of contact, the depth of

the pool from its plane upper surface down to the horizontal section

of greatest area may be measured by focusing a vernier microscope on
one side of the edge of the pool so that the intersection of the cross-

wires of the microscope coincides with the point where the edge of the

pool has the maximum protuberance. A spherometer is next set with
its middle leg just touching the plane upper surface of the pool, and
is then carefully moved until it is sharply in focus when viewed

through the microscope. On screwing up the microscope the inter-

section of the cross-wires may be made to coincide visually with the

pointed end of the leg of the spherometer, and the difference between

th^ two vernier readings on the microscope gives the depth of the pool
between its plane upper surface and the horizontal section of maxi-
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mum area. Let this depth be h. Then, employing the previous
notation, the surface tension may be calculated by means of the rela-

tion
*

The angle of contact may also be determined since, on combining
the two equations, we have

a H
cos

2
-
72TT

The two equations employed for calculating the surface tension

may be deduced in the following manner :

Consider a very thin central section of the pool of mercury cut out

by two parallel vertical planes unit distance apart, and imagine this

section cut in half by a vertical plane at right angles to its length
(Fig. GUI.). Provided the pool of mercury be sufficiently large, its

D

FIG. GUI.

upper surface will be sensibly plane, and the pressure just above the

surface will, in consequence, be the same as the pressure just below.

Thus the difference between the horizontal components of the pressure
over the flat surface ABCD and the atmospheric pressure over the

curved surface ABGHEFA is (since AB is unity), equal to

Since the whole section AFEDCBGH of the pool of mercury is in

equilibrium, the horizontal pressure . H2
. p . g must be equal to the

total horizontal component due to surface tension, and must act in

the opposite direction.

Hence, equating the horizontal forces to zero, we have

J.
. H2

. p . g
-

T(l + cos a)
= 0,

where a is the supplement of the angle of contact between mercury
and glass.

. m '

2 . (1 + COS a)'

1 The increase in the pressure of the air in passing from the level AB to Jhe

level CD is, of course, negligible.
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Similarly, if FGKL be the horizontal plane of greatest area, it

follows from the equilibrium of the section AFLKBG that

|. AL2
./o.#

- T = 0.

This method of determining surface tension was originally em-

ployed by Quincke. The same method is also applicable to the case

of a large bubble of air confined under a glass plate in water or other

liquid.

H2
4 ' T ' cos2

2
Since T =

^n'"ir^~~V
we tave ^ =

u,

.-. H = 2 . cos^A/

It follows, therefore, that a constant depth, H, is possessed by all

pools of a given liquid resting upon a plane horizontal surface, pro-

vided the pools be sufficiently large for their upper surfaces to be

sensibly plane, and provided the liquid does not wet the solid surface

upon which it rests. When the liquid wets the solid surface, the

angle of contact, <, is 0, and its supplement, a, is 180. In this

case, therefore, H = 0, and the liquid spreads out indefinitely over

the surface.

Experiment LXXIII. Drop some water on a quite clean horizontal

glass plate, and observe that the water spreads out into a thin film.

Any other liquid which wets the glass may be employed, as, for ex-

ample, ethyl alcohol, chloroform, or benzene.

102. Eipples. A method of determining surface tension by the

measurement of ripples on a liquid surface has been devised by Lord

Bayleigh.

Let AB (Fig. CIV.) represent a section of part of the surface of a

liquid when at rest, while ACDE represents a harmonic wave travel-

ling over fche surface.

The velocity of propagation of a wave over ,the surface is con-

ditioned both by gravity and by the surface tension of the liquid.
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Consider first the case where gravity acts alone. The velocity of

propagation, V, of a gravity wave on the surface of a deep liquid is

equal to the velocity acquired by a body falling under the action of

gravity through a height j- ,
where X is the wave-length.

Hence to.g.*

V" 4 T

- VB
The vertical pressure at a point such as G on the line AB is in-

creased through the action of gravity alone by an amount y . p . g,

where y is the length of the vertical line FG, and p the density of the

liquid.

Since, however, surface tension is also acting, there will be a

T
normal pressure at F of ^, where T is the surface tension of the

-tv

liquid, and E the radius of curvature at F in the vertical plane parallel
to the direction of propagation of the wave. 1

If the amplitude of the wave be very small in comparison with the

wave-length, the normal pressure at F will be sensibly vertical, so

that the vertical pressure at the point G is increased by the total

amount
T

y P 9 +
g-

It can also be shown that, when the amplitude of the wave is very
small in comparison with the wave-length, the product y . E is con-

X2

stant 2 and equal to -
.^

4?r 2

Thus the total increase in the vertical pressure at G is

a r J \a

i.e. 11 . p

The action of gravity is thus effectively increased by an amount

- - due to the surface tension.

1 The radius of curvature in the vertical plane at right angles to the direction

of propagation of the wave is infinite.
2 The radius of curvature is thus inversely proportional to the lueight above

AB. It should be noted that where the curve AODE cuts the horizontal line M5
the length y becomes zero, and the radius of curvature E becomes infinite.
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On substituting the augmented value of g in the equation for the

velocity, we have

= A / (
\ 2ir\

y +y A2
. p

where V is the velocity

of propagation of the wave under the combined influence of gravity

and surface tension.

Since V is equal to the square root of the sum of two terms

whose product, -, is constant, it will have a minimum value when

the two terms are equal to one another ;
i.e. when g =

^2~~~
i rp

In this case, A = 2?r . ./-
t
and V = J2

\ y - P

The value of V will, further, be infinite both for infinitely large

and infinitely small values of the wave-length. If, then, the values

of V be plotted as ordi-

nates against the corre-

sponding values of A as

abscissae, a curve will be

obtained of the general
form shown in Fig. CV
Waves of shorter length
than AA the wave-

length corresponding to

the minimum velocity
V'A are termed ripples,
whereas those of greater

length are termed waves.

In the case of ripples
the velocity of propaga-
tion is conditioned

mainly by surface ten-

sion, for the influence

of the term arising from
the action of gravity in

the equation for the velocity becomes of less and less importance the

smaller the value of A.

When, however, the value of A is great, the term arising from

surface tension becomes practically negligible in comparison with

that due to gravity, so that the influence of gravity predominates in

the propagation of large waves.

The equation for the velocity provides a means of determining the

-surface tension, T, if V and A be known. In utilising the measure-

ment of ripples for the determination of surface tension Lord Rayleigh

employed an electrically driven tuning-fork by means of which a

FIG, CV.
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regular train of ripples could be generated. The number of ripples
in a given length was^then counted by viewing them by intermittent

light, the period of the intermittent illumination being the same as

that of the ripples. The value of X was thus obtained. The value of

the velocity, T, could then be determined from the relation V = n . X,

the frequency, n, of the tuning-fork being known.

By substituting n . X for V' in the equation for the velocity the

surface tension, T, could be calculated from the relation

X3 .n2

_ X2
.#

27T~ 47T2

It has been shown that the minimum value of the velocity, V'A

(Fig. CY.) is given by the equation

For water at 15 C., T is approximately 73 dynes/cms., and we
have

V'A = 23 cms./sec.

This is, consequently, the minimum velocity with which a wave
can travel over the surface of deep*waber. The corresponding value of

the wave-length, XA ,
is 1'7 cms.

It follows that the stationary ripples which may frequently be

observed on the surface of a stream flowing past an obstacle, such as

a fishing-line, can only occur when the velocity of the stream exceeds

23 cms./sec.
The flow of the water against the line sets up ripples which travel

up stream with a velocity corresponding to their wave-length (vide

Fig. CV.).
The layer of water in actual contact with the line is at rest (vide 48)

the velocity of the water increasing as we travel up stream and a

stationary ripple will therefore be produced when a point is reached
at which both the velocity of propagation of the ripple and the velocity
of the water are equal. Since the velocity of the water increases as

we travel up stream (from the line) it is evident (Fig. CV.) that the

wave-lengths of the ripples which appear to be stationary must become

correspondingly shorter.

Experiment LXXIV. Allow a stream of water to flow very slowly
down a long metal trough and touch the surface of the water with

a thin glass rod. No stationary pattern of ripples will be obtained.

Now increase the rate of flow and observe the formation of a ripple-

pattern, the crests of the ripples being closer together the further they
lie up stream. On again reducing the rate of flow the ripples travtJ!

up stream and the pattern disappears.
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By moving the glass rod across the surface of some water in a

basin similar ripple-patterns can be obtained. t The relative velocity

between the water and the rod must, of course, be constant, and

greater than 23 cms./sec., in order that the ripples may retain a fixed

position relative to the rod and to one another.

103. Oscillation of a Spherical Drop. It has been shown by Lord

Rayleigh that the time of gravest vibration, S, of a spherical liquid

drop, under the influence of surface tension alone, is given by the

relation

/a 3
.

where a is the radius of the spherical drop, p the density of the liquid,

and T the surface tension. 1

Thus a drop of water 2-5 cms. in radius would make, approxi-

mately, one vibration per second under the influence of surface

tension, while a drop of water 0*00025 cm. in radius would vibrate

a million times a second.

The oscillation of a drop was employed by Lenard for the measure-

ment of surface tension, the time of vibration, S, being found by

taking instantaneous photographs.

Experiment LXXV? Form a number of globules of olive oil in a

mixture of alcohol and water of the same density, as in Experiment
XLVII. Hit the globules on one side with a spatula so as slightly

to deform them and observe that the larger globules vibrate more

slowly than the smaller ones and take longer to recover their original

spherical shape. Next blow several soap-bubbles and notice, as in

the case of the oil globules, that the larger bubbles vibrate about the

spherical shape more slowly than the smaller ones when slightly

deformed by being struck with a piece of wood covered with baize.

It must be borne in mind that the time of vibration of a liquid

drop when surrounded by a liquid of the same density is conditioned

by the surface tension at the inter-liquid boundary. In order there-

fore to determine the surface tension for a liquid surface in contact

1 In order that the drop may vibrate under the sole influence of surface tension

it must be surrounded by a fluid of the same density so that changes in the shape
of the drop will not affect the potential energy due to gravity. In the case of

very small drops, however, the potential energy due to gravity may be treated as

negligible in comparison with that due to surface tension, so that the equation

mav ^e applied oyen when the drops are not vibrating in a fluid

medium of the same density.

c When a drop is falling freely through the air the influence of gravity may also

be neglected.
2 Refer also to Experiments LXIII. and LXIY.
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with air, the time of vibration of a drop must be found when the drop
is falling freely througji the air. The influence of gravity on the time

of vibration is, in this case negligible.
The time of vibration, S, of a spherical liquid drop, under the

influence of surface tension, may be shown by the " Method of Dimen-

sions
"

to be given by the relation

S - K.a-'.pi.T-*,

where K is a numerical quantity having no dimensions. A proof of

this relationship is given in Appendix C.

104. Surface Tensions of Different Liquids. When one liquid is

bounded by another, the surface tension at the inter-liquid boundary
is different from that of either liquid when in contact with air. The
interfacial surface tension is always less than the greater of the two

air-liquid surface tensions, and may even fall below the value of the

smaller. Thus, at 20 C., the surface tensions of water, benzene, and
olive oil when in contact with air are, respectively, 72*3 dynes/cm.,
28*8 dynes/cm., and 32 dynes/cm. The interfacial surface tensions, at

the same temperature, for water-benzene and water-olive oil are,

respectively, 33'6 dynes/cm, and 20'6 dynes/cm.

The first of the two following tables gives the surface tensions in

dynes per centimetre for several liquids in contact with air, at 20 C. ;

the second table gives the surface tensions at a number of inter-liquid

boundaries, at the same temperature.

SURFACE TENSIONS, AT 20 C., FOR LIQUIDS IN CONTACT WITH AIR.

SURFACE TENSIONS, AT 20 C., AT INTER-LIQUID BOUNDARIES.
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105. The Rise of a Liquid between two Parallel Vertical Plates.

The rise of a liquid in a capillary tube was investigated in Experiment
LXIX., and the rise of a liquid between two parallel vertical plates

partly immersed in the liquid and held close together may be treated

in an analogous manner.

Thus, considering the equilibrium of the raised portion of a liquid
bounded by two parallel glass plates and by two vertical planes at

right angles to the plates at a distance &l apart, and equating the

vertical component of the surface tension with the weight of the

liquid supported, we have

2 . 81 . T . cos 4 = d . 81 . /fc + -( -->-
. p .

</,

where T is the surface tension, <f>
the angle at which the liquid meets

the plates, d the distance between the plates, and h the height of the

liquid measured to the lowest part of the meniscus. 1

Therefore

where H is written, for convenience, for the corrected height of the

liquid.
For liquids that wet the glass, <f>

= 0, and cos < = 1.

l-(>

Adopting an alternative method of proof we may treat the curved

liquid meniscus between the plates as sensibly cylindrical, so that the

T
difference between the pressures on its two sides must equal -, where

E is the radius of curvature of the meniscus (vide 92).

Then, as in Experiment LXIX., we have 2

<*(*
-

*)}

8

1 If the plates be very close together, and if the liquid wet the glass, the liquid
meniscus is sensibly hemicylindrical, so that the volume of liquid above the lowest

part of the meniscus is practically equal to the difference between the volume of a

rectangular right prism of base d . 5Z and height ~, and half-the volume of a cylinder

of length 5Z and radius -.

Since this difference in volume is equal to ~
. (4

-
*), the height measured

to the lowest part of the meniscus must be increased by
-

. (4
-

TT).

- If the liquid meet the plates at a finite angle, the height, h, must be increased
by a somewhat smaller amount.

2 See the preceding note.
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But T\ ,
WK cos ^ == .

.-. T
;{*2 cos <

*

I 8

which is the relationship previously obtained.

106. The Rise of a Liquid Between Two Vertical Plates Meeting at

a Small Angle. Experiment LXXVI. Fasten together two rect-

angular pieces of plate glass by means of an india-rubber band, and
insert a small strip of wood at one edge so that the plates may meet

along the opposite edge at a small angle. Partly immerse the plates
in water, with the common edge along which they meet in a vertical

position, and observe that the water rises up between the plates until

its surface forms a regular curve, ABC (Fig. CVL).

FIG. CVI.

It follows, from the preceding paragraph, that the height 10 which
the water rises at any point B is given by the relation

,
2.T

where H' is the corrected height of the liquid, and d' the distance be-

tween the plates at the point B.

.*. H' . d' = constant.

Thus the rise of the water is inversely proportional to the distance

separating the two plates. Since, however, d' is directly proportional
to the horizontal distance x' between B and the vertical common edge
of the plates, it follows that

H' . x' = constant.

The surface of the water thus forms a rectangular hyperbola.
16
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107. Forces between Parallel Vertical Plates when Partly Immersed

in a Liquid. The rise of a liquid between two parallel vertical plates

was considered in 105, and it was shown that'"

2 . T . cos <

ri = .

d.p.g

For liquids that wet the plates, <t>
= 0, and cos < = 1.

It follows, in any such case, that H is positive, and the liquid

therefore rises between the plates as in Fig. CVII. a.

Now, the horizontal forces acting upon the liquid in a meniscus

such as ABC (Fig. CVII. a) are the surface tension, T, at A, the hori-

/ c d

Fid. CVII.

zontal component, ft, of the atmospheric pressure over the curved

surface AB, and the force, ft, exerted by the plate on the liquid over

BC.
The horizontal component, p lt

of the atmospheric pressure over the

curved surface AB is, however, the same as the pressure which would

be exerted by the atmosphere over BC if the meniscus were absent.

Since the liquid in the meniscus is in equilibrium, we have

T -
ft + ft 0.

.-. T -
ft

- -
ft.

Now since _p2
is the force exerted by the plate on the liquid in the

meniscus, -
p^ is the force exerted by the liquid in the meniscus on

the plate, and this equals T - pv which is the force that would be

exerted if the meniscus were absent and the liquid surface were con-

tinued horizontally along AC until it met the plate at C.

< The same argument applies, of course, to the horizontal forces act-

ing at any other meniscus, such as at D.
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If, now, we consider the horizontal forces acting on one of the

plates in Fig. CVII.
j&,

it is clear that the plate is pulled equally, and
in opposite directions, by the surface tension at A and D, but since

the liquid is raised between the plates, the pressure in the raised por-
tion of the liquid at any point must be less than the atmospheric

pressure outside by an amount proportional to the height of the point
above the level XY, the pressure at the level XY being, of course, that

of the atmosphere. It follows, therefore, that the two plates are

pushed together.

If the angle <f>
be greater than 0, but less than 90, cos

</>
will be

less than 1 and greater than 0, and H will still be positive. In this

case there will be an additional horizontal component of - T sin <

acting at B upon the liquid in the meniscus ABC. The effect of this

force will, however, be neutralised by an equal and opposite horizontal

component exerted at the level at which the meniscus at D meets the

plate, so that the two plates will still be forced together. The force

of attraction will, however, be lessened in this case, owing to the liquid

rising to a smaller height between the plates.

If the angle of contact
<f>
be obtuse, cos < is negative, and, in con-

sequence, H is negative. The liquid will, therefore, be depressed be-

tween the plates below the level of the plane surface outside (Fig.

CVII. b). It can be shown that, as in the previous case, the two

plates are pushed together, for the pulls exerted by surface tension

neutralise one another, while the pressure at any point in the liquid
outside the plates is greater than the atmospheric pressure between
the plates by an amount proportional to the depth of the point below

the level XY.

When plates of different materials are employed, it may happen
that the angle of contact is acute for one and obtuse for the other. If

the plates be sufficiently far apart, a portion of the surface of the in-

tervening liquid will be plane, and at the same level asXY (Fig. CVII. c).

In this case there will be neither attraction nor repulsion between

the plates. If, however, the plates be brought closer together, the

intervening plane surface will become smaller and smaller until it

finally vanishes, the vanishing point being represented by a horizontal

tangent to the liquid surface at the point of inflexion. On bringing
the plates still closer to the tangent the liquid surface at the point of

inflexion will no longer be horizontal but will slope upwards to the

plate for which the angle of contact is acute. 1

In this case the level of the liquid between the plates where it

1 Since the curvature of the liquid surface vanishes at the poinkof inflexion,

the pressure just below the surface at this point must be the same as the pressiare

just above, i.e. atmospheric. The point of inflexion will, consequently, be at the

same level as XY.
16*
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meets the plate at an acute angle is lower than the level where it meets

the same plate outside, whilst the level for the plate which the liquid
meets at an obtuse angle is higher inside than outside (Fig. CVII. d).

If, now, we consider the horizontal forces acting on one of the

plates, and, as in the previous cases, suppose that the liquid surfaces

meet the plate horizontally, it is evident that the surface tension in

the horizontal surface between the plates will be merely the horizontal

component, at the point of inflexion, of the actual surface tension, so

that the plate will be pulled outwards by the surface tension and
inwards by this smaller horizontal component. It follows, therefore,
that the two plates will be pulled apart.

1

Experiment LXXVII. Float two hollow glass spheres on the

water in a trough and observe that they move together and also move

up to the side of the trough. Small pieces of wood, or straw, when
floating on the water in a pond will, similarly, collect together and

gradually float up to the edge of the pond. In such cases the water
wets the different bodies

;
i.e.

<f>
0. 2

Bubbles on the surface of a liquid collect together in a similar

manner.
Now dip the glass spheres in melted paraffin wax and, after the

thin coating of wax has solidified, again float them on the water.

Since the angle of contact, <, between the water and the wax is

obtuse, the spheres will move together, but they will gradually float

away from the side of the trough towards the centre.

If, now, a clean glass sphere and a sphere coated with paraffin wax
be floated side by side they will move apart, the clean sphere gradually
floating up to the side of the trough and the waxed sphere moving
towards the centre. The same behaviour is exhibited when a dry
needle is carefully placed on the surface of the water and a wet match
is floated beside it.

8

Next fill up the trough with water until the level of the latter is

slightly higher than the edge of the trough. The surface of the water
will now be convex near the edge of the trough while it is still concave
near the wet match and glass sphere which have floated up to the
side. The conditions therefore resemble the case illustrated in Fig.
CVII. d, and consequently, the match and sphere float away towards
the centre, while the waxed sphere and dry needle, as might be

anticipated, now move up to the side of the trough, the needle prob-

ably falling over the edge.

1 When the plates are brought very close together the point of inflexion disap-
pears, and the liquid rises between the plates, the latter being pushed together.

2 If the glass spheres, for example, are not quite clean $ will not equal 0, but
the water will meet the glass at a small angle. A slightly smaller attraction will

therefore be exhibited between the spheres.
(

s A match coated with paraffin wax may be substituted for the needle. If a

glass rod be dipped into the water the wet match will ^quickly float up to it, while
the waxed match will be driven away.
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108. The Surface Tension Exhibited by Exceedingly Thin Films.

It was shown, in Experiment XLV., that the surface tension of a

liquid film was practically independent of the thickness at any rate

in the case of films which were not excessively thin. The surface

tension of exceedingly thin soap-films was investigated by Eiicker

and Eeinold, who found that when the thickness of the films became
less than about 60ft/*, the equilibrium became unstable and the films

suddenly thinned down to approximately 12^ (Ififi
= 10

~ 6
mm.).

The thickness of the soap-films was determined either by measur-

ing their electrical resistance, and assuming that their specific resistance

was the same as that of the soap-solution, or by optical
methods. It was found that the passage of the electric

current up the films prevented them from draining and

growing thinner. Eiicker and Eeinold found that when
a portion of a soap-film has acquired a thickness of about

12/Aft there is an abrupt change in the thickness on passing
from this portion to the thicker contiguous parts of the

film. Fig. CVIIL illustrates a section of such a film, the

thickness of the upper portion being 12/x/x, and the thick-

ness of the lower portion 60/x//, or more. Since the film

is in equilibrium the surface tension in the two portions
must be equal (vide 110).

It has, further, been shown by Johonnott that a soap-
film of 6/xft, thickness may exist contiguously to a film of

t CVIII.

thickness, there being an abrupt variation in the thickness on

passing from one to the other.

These experimental results indicate that the variation in the sur-

face tension may be represented by a curve such as that illustrated in

Fig. CIX., where the ordinates correspond to the surface tension, T,

O

and the abscissae to the thickness, X, of the soap-film. It is evident

from the figure that films of 6/i/x and 12/x/x, thickness would be in

stable equilibrium when contiguous to films of a greater thickness than

60/x//,, for any stretching of these thin films would rais^ and any
thickening lower their surface tension. When the thickness of Ahe

films is reduced below 6/x/A the surface tension increases at first, and
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then diminishes down to zero value at a thickness corresponding to

the point A in the figure.
Measurements of the thickness of exceedingly thin films furnish im-

portant corroborative evidence as to the approximate correctness of

the molecular magnitudes previously deduced from the kinetic theory.
Since no film can conceivably be of smaller thickness than the

diameter of its molecules, this molecular diameter may be taken as

corresponding to the point A at which the surface tension vanishes,
and must evidently be less than 6/x//, (vide 109).

109. Movements of Aniline, and Camphor, on Water. Experi-
ment LXXVIII. Pour a small quantity of aniline on the surface of

some water in a dish, and observe that the floating aniline globules
are in a tremulous state, while minute particles become detached from
the edges and spread out over the water, gradually dissolving in the
latter. When the whole water surface has become covered with a

film of aniline the action ceases, and the small globules of aniline re-

main floating quietly on the contaminated surface.

Next drop a number of small particles of camphor upon a clean
water surface and observe that the particles dart about and rotate with

great rapidity. Minute particles of soap behave in an analogous
manner although the action is much less marked.

These actions are, in part, due to the substances dissolving in the

water at the points of contact forming solutions having a smaller
surface tension than the water. The surfaces of these solutions will,

consequently, be pulled out by the surface tension of the contiguous
water and the floating particles will be set in motion. It is probable,
however, that other forces besides surface tension come into play
during the process of solution.

If a small quantity of oil be placed upon the surface of the water
while the camphor particles are darting about, their movement im-

mediately ceases, since the oil film formed on the water reduces the

surface tension below that of the camphor solution. Quantitative
measurements of the variation in the surface tension of a water
surface with the thickness of such a covering oil film were made by
Lord Rayleigh who found that there was no appreciable change in

the surface tension until the film had attained a thickness of ap-

proximately 1/X/X.
1

On further increasing the thickness of the oil film the surface

tension diminished rapidly until a thickness of about 2//,/x was
reached, beyond which point the tension diminished much more

slowly, approximating gradually to that of the pure oil. These re-

sults are illustrated in Fig. CX., where the ordinates represent the
surface tension, T, of the contaminated water surface, and the abscissae

the thickness, L, of the oil film
; the surface tension of clean water

f
1 The thickness of the film was ascertained by allowing a drop of oil of known

weight to spread out over a known area.
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corresponds to the value A, and that of the oil to the value B. Lord

Eayleigh found
that^an oil film of about

2/u,//,
thickness was needed to

stop the movement of camphor particles on a water surface
; the

point C (Fig. CX.), corresponding to this thickness, is consequently
called the "Camphor Point.'* It was suggested by Lord Rayleigh
that the thickness

I/A//, was equal to the diameter of a molecule of

oil, but since Rontgen, in 1890, obtained layers of oil of only 0'56/Aju,
thickness which held together, the molecular diameter must evidently
be assigned a smaller value.

When the surface tension of the contaminated water surface lies

between the values A and B (Fig. CX.), any increase in the thickness
of the oil film will reduce the tension, whereas any decrease in

the thickness will augment it. If, for example, a floating lath be
drawn broadwise across such a contaminated surface, the oil will be

heaped up in front of the lath whilst the surface immediately behind

A

T

B

IffL L
FIG. CX.

will be scraped clear of the oil film. This will make the surface
tension behind the lath greater than in front, and there will, conse-

quently, be a resultant force due to surface tension opposing the
motion of the lath. Such a force, of course, could not arise in the
case of a pure, uncontaminated liquid.

The calming of a rough sea by pouring oil over its surface may,
similarly, be attributed to the action of surface tension. When the
wind blows upon the contaminated surface it drives the film of oil

forward, and heaps it up, leaving a cleaner water surface behind.
The greater tension in this water surface, will, however, immediately
come into play and oppose the motion, and will thus prevent, at any
rate to a large extent, the heaping up of waves.

110. Durability of Liquid Films.- The surface tension^ exhibited by
a film of a pure liquid has a constant value, provided the temper^ure
remain constant and the film be not too thin, Such a film cannot
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exist unless the influence of gravity be eliminated, by surrounding the

film, for example, with a fluid of the same density, for otherwise there

would be no force to equilibrate the weight or the film. Thus, in

Fig. CL, the tension in the upper part of the film B must be slightly

greater than the tension in the lower portion for the film to remain in

equilibrium. In the case of a pure liquid such a state of equilibrium

would initially be attained by the stretching of the upper part of the

film, the resulting cooling of the film producing an increase in its

surface tension (vide 91). This equilibrium would only be transient,

for the film would soon warm up, and, ultimately, rupture at the top,
1

If, however, the surface of the. liquid were slightly contaminated

a state of equilibrium could be much more readily maintained, for an

extension of the surface at any point would produce a diminution in

the degree of contamination at that point, and this would, in general,

increase the surface tension and prevent further stretching of the

film. Thus a vertical film of water when slightly contaminated with

oil, could remain in equilibrium provided the covering oil film were

not stretched thinner than l^ (vide Fig. OX.)- When a film is com-

posed of a mixture of substances, its durability is largely conditioned

by the relative volatility of the different constituents. A film made

from soap-solution, for example, is much more stable than a water

film, although its surface tension may be considerably less than that

of water. In this case the vaporisation of the water at the surface of

the film increases the concentration of the surface layer which

diminishes its surface tension. If, then, the film be stretched out at

any point, the more dilute solution inside the film will be brought to

the surface and will increase the surface tension, so that the film will

contract and thicken again.
The instability of a film made from a mixture of alcohol and water

may, on the other hand, be attributed to the greater volatility of the

alcohol, for in this case the tension in the surface of the film will be

increased, owing to vaporisation, and, consequently, any extension of

the film will lower the surface tension and so cause the film to yield

more readily to the stretching force.2

111. Vapour Pressure in Equilibrium with a Curved Liquid Surface.

We have seen that, in accordance with the kinetic theory, the

evaporation of a liquid is due to the gradual escape of the molecules

through the liquid surface, and that when the evaporation takes place

into a closed space the molecules of vapour collect, a state of dynamic

equilibrium being attained when as many molecules condense back

into the liquid as escape from it in unit time.

1 It will, however, be seen from Fig. CIX. that in the case of very thin films

the surface tension may increase with a diminution in the thickness. A vertical

film-of this nature could evidently exist in a state of stable equilibrium,
*
Compare the phenomenon of " Tears in Wine "
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Now, the number of molecules passing through a given area of a

liquid surface, in unit time, and escaping from the liquid, will Depend
upon the curvature of the surface.

If the surface be concave (Fig. CXI. a), a rapidly moving molecule

passing through the surface in the direction shown by the arrow may
just fail to escape beyond the range of molecular attraction (cf. 113).
Such a molecule would, therefore, be drawn back again into the

liquid, although it would have escaped into the surrounding space if

the liquid had possessed the plane surface X.

If, on the other hand, the surface be convex (Fig. CXI. 6), a mole-
cule passing through the surface in the direction shown by the arrow

may escape from the liquid, although it might have failed to do so had
the surface been plane.

Thus, in the case of a concave surface, fewer molecules will escape
from a given area in unit time, and the saturation pressure, which

corresponds to the state of dynamic equilibrium, will, consequently, be
less than that exerted over a plane surface at the same temperature,

Fia. CXI.

whereas the pressure in equilibrium with a convex surface will be

greater than for one that is plane.
We arrive at the same conclusion if we consider the changes in

surface energy occasioned by vaporisation. Thus, in the case of

a spherical drop, when vaporisation occurs there will be a diminution

in the superficial area, with a consequent decrease in the potential

energy due to surface tension, so that the surface tension will assist

the vaporisation of the liquid, whereas vaporization at a plane sur-

face, since it occasions no change in the area, will be unaided by sur-

face tension. It may therefore be concluded that the saturation pressure
exerted over a convex surface such as the surface of a spherical

drop will exceed that exerted over a plane area at the same temper-
ature.

The influence of the curvature of a liquid surface on the saturation

vapour pressure was first deduced by Lord Kelvin in the following
manner :

Consider a vertical capillary tube partly immersed in the liquid
and enclosed in a vessel from which the air has bee"h exhausted
(Fig. CXIL). Let the liquid rise in the capillary tube to a height, h,
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above the plane surface of the liquid outside. When a state of equi-

libriurn has been attained the saturation vapour pressure, P2 ,
at the

concave meniscus in the tube must equal the preSsure of the surround-

ing vapour at the same level, and, consequently, must be less than the

saturation vapour pressure, Pv at the plane liquid surface outside by
an amount equal to the hydrostatic pressure of a column of vapour of

height h. If cr be the average density of the vapour throughout the

height h, the hydrostatic pressure due to this column of vapour is

h . a- .
,
so that we have

If p be the density of the liquid, the hydrostatic pressure due to the

column of liquid of height h is h . p . g, so that the pressure just below

the curved liquid meniscus in the capillary tube is equal to

It

_J

Pi'

FIG. CXII. FIG. CXIII.

Thus the difference of pressure between the two sides of the curved

meniscus is equal to (Pt
- h . <r . g)

-
(Pj

- h . p . g} ; i.e. (p
-

cr)
. h . g.

Since the curved liquid meniscus in a narrow capillary tube of

circular cross-section is sensibly a portion of a hemisphere, the differ-

ence between the pressures on the two sides of the curved meniscus
2T

must equal ^-,
where R is the radius of curvature of the meniscus, and

T the surface tension
( 92).

Whence (p
- , 2T

'

' 9 "
"E

'

2T
j.

2T /
-

.'. h . cr . 7 = -=r- .
(J E _ \p

-

C1 In the case of the plane liquid surface outside, the pressure, Pu just above the
surface is, of course, the same as the pressure just below/
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Substituting this value in the equation P
2
= P

x
- h . a- . g, we

have

P P 2T
p " Pl

~
'

Thus the saturation vapour pressure, P2 ,
at the concave hemi-

spherical meniscus is less than the saturation vapour pressure, P,. at
2T / \

the plane liquid surface by -~- . f -

J
the values of tr, p, and T

being measured at the temperature of the liquid.
It follows that condensation will occur more readily on such a con-

cave surface than on a plane liquid surface at the same temperature.
An analogous argument can be applied to the case where the

liquid surface is convex. Let Fig. CXIII represent a vertical capillary
glass tube partly immersed in mercury, or, alternatively, a similar
tube coated with paraffin wax and immersed in water. The surface
of the liquid within the tube will be depressed to a depth h' below the
level of the plane surface outside, so that, using a similar notation to
that previously employed, we have

Thus the saturation vapour pressure, P'
2 , at the convex hemi-

spherical meniscus is greater than the saturation vapour pressure,
2T' /

'
\

P\, at the plane liquid surface by ,- . ( -,
--

-> ) .E \p <r /
Condensation will, therefore, occur more readily on a plane liquid

surface than on a convex liquid surface at the same temperature,

112. The Formation of Clouds. It was seen, in the preceding
paragraph, that the vapour pressure in equilibrium with a curved

liquid surface increases with the convexity of the surface, and that, in

consequence, condensation takes place more readily the less the con-

vexity of the surface. The increase in the saturation vapour pressure
is, however, practically negligible until the radius of curvature of the

liquid surface has become extremely small.
In order to gain information as to the magnitude of the effect pro-

duced when the radius of curvature is very small, we may calculate
the saturation vapour pressure exerted at C. by a drop of water of,

say, 1
fjifji radius.

In this case

, , 2T'

p
- cr

/t\AKQ iorcn* noiv 2x75-2 / 48-4 x 10- 7 \
(0-458 x 13-596 x 981) + _^. (^gggg-^
6,121 + 7,280,

13,401 dynes/cm2
,
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Since Pj is equal to 6,121 dynes/cm
2

,
the saturation vapour pres-

sure, at C., over a drop of water 1 w in radius is seen to be ap-

proximately 2-2 times the saturation vapour pressure over a plane

water surface at the same temperature.
It follows that such a minute drop would rapidly evaporate in a

space which was saturated with respect to a plane water surface. In

consequence, it is possible to cool water vapour considerably below

the dew-point without condensation occurring, for the formation of

very minute drops in the initial stage of the condensation cannot

readily take place. . .

It was shown by Aitken, in 1880, that the presence of dust is, in

general, necessary in order that condensation may proceed, for in this

case the particles of dust serve as nuclei around which the water

molecules are deposited, so that even in the initial stage of the con-

densation the drops possess sensible dimensions.

It was further shown by Wilson, in 1897, that gaseous ions can

serve as nuclei for condensation at the ordinary dew-point, without

the presence of dust particles of finite curvature l
(cf. 73).

Condensation can, however, be produced in the absence of electri-

cal nuclei, and in dust-free air, provided a sufficient degree of super-

saturation be attained. Thus Wilson showed that a dense mist was

formed when saturated, dust-free air was suddenly allowed to expand
to about 1'4 times its original volume. In this case the supersatura-

tion is sufficient for the formation of drops which initially are very

small. In the contaminated air of towns particles of smoke and

dust furnish an enormous number of nuclei for the deposition of

moisture, so that dense fogs are produced when condensation occurs.

In the cleaner* air of the country there are fewer dust particles, and,

consequently, fewer centres of condensation, so that a larger amount

of water is deposited around each particle of dust, the resulting drops

being larger and farther apart, and constituting what is commonly
called a "Scotch Mist." Since the wee drops in a " Scotch Mist"

are larger than the very minute drops present in a fog it follows, in

accordance with Stokes
1 Law

( 73), that they will fall more rapidly

through the air. At great altitudes where the air is, in general, very

clean the formation of clouds is probably largely facilitated by the

presence of gaseous ions. Since condensation takes place more

readily the less the convexity of a liquid surface, it follows that, in a

mist or fog, the larger drops, which possess a lower saturation vapour

pressure, will tend to grow at the expense of the smaller ones, which

possess a greater saturation vapour pressure. The smaller drops will

thus tend to diminish in size and disappear.
The effect of dust particles on the formation of mist and the

change in the character of the mist condensation when the number of

1 The influence of the electrification of a body in partly neutralising the effect

of dfervature, and thus assisting the condensation of vapour x>n a convex surface

was shown by J. J. Thomson, in 1888. _ *



CAPILLAEITY 253

solid nuclei which serve as condensation centres is made smaller and
smaller can be demonstrated by means of the following experiment :

Experiment LXXIX. Connect an aspirator, A, to a round-
bottomed flask, B, by means of a long flexible tube (Fig. CXIV.), and
insert a straight tube, C, through the rubber stopper that closes the

mouth of the flask. The tube C has a short length of rubber tubing,
and a clip, D, fitted to its lower end. Open the clip and pour water
into the aspirator until the water fills the lower part of the flask.

Then close the clip and raise the aspirator above the level of the

flask so that water may flow into B and compress the enclosed air.

Allow the apparatus to stand until the air in B has become saturated

with water-vapour at the temperature of the room, an<J then lower the

FIG. CXIV,

aspirator again. Water will run out from the flask, and the saturated
air will expand and cool, the cooling producing a state of super-
saturation so that a dense mist will be formed inside the flask. This
mist will gradually settle down on the water in the lower part of the

flask, carrying with it many of the dust particles that served as nuclei

for condensation. If the process be repeated several times it will be
observed that, as the dust particles become fewer, the drops formed by
the condensation become larger and farther apart, so that the mist
inside the flask settles much more rapidly. After a sufficient number
of expansions the air inside the flask will be freed from dust .particles
and subsequent expansion of the clean air will fail to produce a mist
condensation. If, now, some dust be drawn into th flask by hold-

ing a piece of smouldering filter-paper, for example, bene'ath the tower
of the tube C, opening the clip D, and lowering the aspirator it
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will be found that the next expansion of the saturated air causes the

formation of a dense mist.
i

When clouds are formed in the atmosphere une minute globules of

water of which they are composed fall, relatively to the air, with a

terminal velocity which may be deduced from Stokes' Law
( 73).

A cloud may, however, rise, relatively to the earth, if an upward
current of air be present.

If the minute water globules fall through a warmer layer of dry
air they will evaporate and the cloud will gradually disappear. If, on
the other hand, they fall through a warmer but saturated region,

further condensation will take place on their surface since the

globules are colder than the surrounding air so that they will in-

crease in size and velocity, and may fall to the earth as rain.

It has been pointed out that the larger drops in a mist tend to

grow at the expense of the smaller ones, so that the latter gradually
diminish in size and disappear. The very large drops of rain which

occur in a thunderstorm are, however, mainly the result of electrical

action, the effect of which is to cause the different drops to attract

one another so that when they come in contact they coalesce. It

must also be borne in mind that, in a thunderstorm, the drops usually
fall* through a saturated region of considerable depth before reaching
the ground. Since the lower layers of air are, in general, warmer
than those at a greater height, a considerable amount of condensation

will take place during the fall, and large raindrops will therefore be

formed.
The union of drops of water to form larger drops under the

influence of an electrified body may be readily demonstrated by the

following experiment :

Experiment LXXX. Allow a jet of water to issue nearly vertically

from a small nozzle, and let the water fall upon a sheet of paper

placed on the floor. The jet, as pointed out in paragraph 94, scatters

irregularly over the paper, for many of the separate drops into which
the jet breaks bounce together and rebound from one another. Now
bring an electrified ebonite rod into the vicinity of the jet, and observe

that the drops fall on the paper with a loud pattering sound. This

is due to the fact that the drops no longer rebound from one another

on collision but coalesce instead into larger drops.
A similar action can be shown by allowing two nearly horizontal

jets of clean water to collide and bounce apart. If the electrified

ebonite rod be brought into the neighbourhood the jets immediately
coalesce.

The presence of a trace of oil will immediately cause the jets to

unite and they will also do so if the air be very dusty. In the same
wav the drops in the jet of falling water will coalesce and form much

larger drops if a very small quantity of oil be introduced into the jet.



CAPILLARITY 255

The union of jthe drops in this case may be attributed to the reduction

in the surface tension occasioned by the oil.

o '

113. Laplace's Theory of Capillarity. It has already been pointed
out that the only essential difference between a gas and a liquid is the

possession by the latter of a definite surface due to surface tension.

Laplace developed a theory of capillarity in accordance with which
we may assume that the attractive force between two molecules in a

liquid becomes negligibly small when the distance between the mole-
cules exceeds a certain very small value known as the range of mole-

cular action.

It must again be pointed out that the magnitude of the cohesive

forces in a gas at the ordinary temperature and pressure is quite
small, for it is only when the gaseous density is very high that the

curved paths traversed by the molecules while casually within the

sphere of action of other molecules bears a sensible ratio to their

mean free path. In a liquid, on the other hand, the molecules are

very much closer together and the molecular attractive forces give
rise to very considerable cohesion.

It follows that a molecule of a liquid situated at the surface of

separation between the liquid and its vapour is acted upon mainly by
forces from the liquid side of the surface, since few, if any, of the

molecules on the vapour side are within the range of molecular
action ; and this lack of symmetry in the distribution of the attractive

forces gives rise to the phenomenon of surface tension.

In the interior of a liquid the molecular attractive forces are, on
the average, symmetrically distributed, and, consequently, the average
resultant attractive force exerted on a molecule is zero. There is

thus neither gain nor loss of energy when a molecule moves from one

position to another in the interior of a liquid. If, on the other hand,
the surface of a liquid be increased in area, the molecules which come
from the interior of the liquid to form the new surface must do work

against molecular attraction in moving up to the surface. It follows,

therefore, that when a liquid surface is enlarged adiabatically the

liquid will grow colder (cf. 91).
*

Since work must be done in bringing a molecule from the interior

of a liquid up to the surface, the potential energy possessed by the
surface molecules must be greater than that of the molecules in the

interior. A mechanical system is, however, in equilibrium when its

potential energy is a minimum, and it therefore follows that the
surface of a liquid will tend to become as small as possible (cf. 89).

We have seen that the phenomenon of surface tension may be
attributed to the lack of symmetry in the distribution of the attractive

forces which occurs at a surface of separation between a liquid and
its vapour. When, however, a liquid and its vapour are heated

together in a closed vessel to the critical temperature the molecular
attraction becomes equal throughout both phases, and, since theTte is
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no longer any lack of symmetry, the surface of separation disappears
and the two phases become identical. Now we are ignorant of the

exact 'manner in which the attractive force beiween two molecules
varies with the distance between them. Nevertheless, we can, as was
shown by Laplace, deduce a number of important quantitative rela-

tions if we assume that the attractive force may be treated as negli-

gible when the distance between the molecules exceeds a certain very
small value, c, which is called the range of molecular action.

Thus, let XY (Fig. CXV.) represent the surface of separation
between a liquid and its vapour. Consider a molecule, M, of the

liquid situated at a depth, d, below the surface.

It is evident that, at any instant, molecular attractive forces will

be exerted on M only by those molecules which are enclosed within
a sphere of radius c and with M as centre. If d be less than c (Fig,

CXV.), part of this sphere will lie above the surface XY, and this part

Vapour

Fia. OXV.

of the sphere will contain practically no attracting molecules provided
the temperature be sufficiently far below the critical temperature of

the given fluid. Now, if AB represent a plane surface parallel to the

surface XY and at a depth 2d below the latter it follows, from con-

siderations of symmetry, that the average resultant attractive force

exerted on the molecule M by the molecules of the liquid lying be-

tween AB and XY is zero.

Thus the resultant attractive force acting on the molecule M is

due to those molecules of the liquid within its sphere of action which
-lie below the plane surface AB. It is thus evident that all molecules
which do not lie at a greater depth than c below the surface XY are

attracted towards the interior of the liquid, the attractive force being
a maximum for those molecules situated at the liquid surface and be-

coming vanishingly small at a depth, c, equal to the range of mole-
cular action.* We may, similarly, conclude that a molecule of vapour,

M'*(Fig, CXV;), situated at a height d above the surface XY is
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attracted towards the liquid only by those molecules below XY which
lie within its sphere" of action. If, then, neither molecular dissocia-

tion nor polymerisatiifn occur, on passing from the liquid to the v&pour
state, it follows that the resultant attractive force acting on a molecule
of liquid, M, at a depth, d, below the surface XY is equal to that

acting on a molecule of vapour, M', at an equal distance above the

surface. Thus the same amount of work must be expended in bringing
a molecule from the interior of the liquid to the surface XY as in

transporting it from the surface, into the vapour, to a point beyond
the range of action of the liquid molecules.

The work done in transporting a molecule from the interior to the

outside of a liquid may be calculated in the followingrmanner :

Let WXYZ (Fig. CXVI.) represent a
disc of the liquid of thickness r and dia-

meter 2r, where r is greater than the

range of molecular action, c. The attrac-

tion exerted by the disc on a molecule of

the fluid, of mass m, situated at a point on
the axis of the disc at a height x above
the plane surface XY, will be m . p . </>(#),

where p is the density of the liquid. The
work done in moving the molecule a very
small distance, $x, along the axisi will

therefore be m . p , <f>(x) . &x.

Now we are ignorant of the actual

nature of the function <t>(x), but it must

evidently vanish for values of x greater than c. It follows, therefore,

that the work done in transporting the molecule, of mass m, from

the surface XY to a point beyond the range of molecular action of

the liquid in the disc, is given by the expression

m

FIG. CXVI.

1C
<(#) . dx.

This result is equally valid for a plane liquid surface of infinite ex-

tent when the depth of the liquid is greater than c.

An equal amount of work must, however, be expended in bringing

a molecule from the interior of a liquid up to the surface, so that the

total work done in transporting a molecule from the interior to the

outside of a liquid is equal to

fc
> . I

<f>(x)
. dx.

JO

Let K units of work be expended in transporting n molecules from

the surface of a liquid to a distance exceeding the range of molecular

action, where n is the number of molecules contained in unit volume o/

the liquid.
17
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Then K = n . m . p . ^(x) . dx,
Jo

fc= P
2

. I <f>(x) . dx, since n . m .
=

p.

Jo

The total work done in transporting n molecules from the interior

to the outside of the liquid will be 2K, and will therefore be equal to

\

J
<l>(x).dx.

114. Latent Heat of Vaporisation. The latent heat of vaporisa-

tion, L, of a liquid at any given temperature is defined as the quantity

of heat required to vaporise unit mass of the liquid at that tempera-

ture, and in order to vaporise unit volume of the liquid L . p heat units

will be needed, where p is the density of the liquid.

This quantity of heat, which is required to
vaporise^unit

volume

of the liquid, must be equivalent to the total work done in transport-

ing n molecules from the interior to the outside of the liquid (where n

is the number of molecules contained in unit volume), plus the ex-

ternal work done in pushing out the surrounding atmosphere.
We may therefore write

L.p. J = 2p
2

. \^(x).dx + W,= V -

f
J

2K + W, where J is the mechanical

equivalent of heat (vide Cap. I.), and W the work done in expanding

against the atmospheric pressure.
In the case of water, at 100 C., we have-

L = 539 gm. -calories per gm.
p = O96 gin. per c.c.

W = 1-67 x 109
ergs.

1

Whence

2K = (539 x 0-96 x 4-19 x 10 7
)
-

(1-67 x 109
) ergs/c.c.,

- (21 68 x 10) -
(1-67 x 109

) ergs/c.c.,
- 20-01 x 10 ergs./c.c.

.-. K- 1-00 x 1010
ergs/ c.c.

115. The Tensile Strength of a Liquid. It was pointed out in 63

that liquids possess very considerable cohesion, and, consequently, can

support a very large tension without rupture.
The tensile strength of a liquid may be readily calculated from the

standpoint of Laplace's theory of capillarity.

Thus, let AB (Fig. CXVII.) represent the section of an imaginary

*1 c.c. of water at 100 0. forms 1647 c.cs. of saturated steam at the same

temperature.
v The work done in expanding against the atmospheric pressure is,

therefore, equal to 76 x 13-596 x 981 x 1646 ergs ; i.e. 1'67 x 109
ergs.
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plane in the interior of a liquid, and let the liquid above the plane be

divided up into very thin parallel layers of thickness &c. Consider a

small element of one* of these layers at a height x above AB. If the

element be taken of unit area, and of thickness 8#, its mass will be

p . $x. The attractive force exerted on each unit of area of a layer at

a height x above AB by the liquid below AB is therefore equal to

P*.<l>(x).Sx't (cf. 113).
Hence the total attractive force per unit area exerted by the liquid

below AB on the liquid above AB is equal to
/o

2
.

j
V(#) * I i-e- it is

numerically equal to K.
This attractive force must be balanced by an internal or intrinsic

pressure within the liquid which must also be numerically equal to K.

The total attractive force per unit area furnishes a measure of the

tensile strength of the liquid, so that, in the case of water, at 100 C.,

the tensile strength is equal to 1-00 x 1010
dynes/cm.

2
, or, approxi-

mately, 10,000 atmospheres.
1

FIG. CXVII.

In the preceding investigation the influence of molecular motion

has been neglected. Since, in accordance with the kinetic theory, the

molecules of a liquid must be regarded as in a state of rapid motion,

and undergoing incessant collisions with one another, it follows that

these molecular collisions will give rise to an internal pressure which

tends to neutralise the attractive force between the molecules, and

thus diminishes the tensile strength of the liquid.

If the temperature be raised both the molecular velocity and the

frequency of molecular collision will be increased, with a correspond-

ing diminution in the tensile strength.

116. Molecular Escape from a Liquid Surface. We have seen

( 63) that in accordance u ith the kinetic theory the evaporation of

a liquid is due to the gradual escape of the molecules through the

liquid surface, and that since the more rapidly moving molecules

escape more readily a cooling effect will be produced by the evapora-

tion. Let a molecule, of mass m, leave the surface of a liquid normally
with a velocity v. The work that must be done in transporting the

molecule from the surface to a point beyond the range of molecular

1 The tensile strength of water is therefore approximately the same as thdt of

ordinary steel wire.

17
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action of the liquid is m . p I <f>(x) . dx ; i.e.
~

-. The molecule will,
*

Jo P f

consequently, escape if its translatory kinetic energy, -Jm . v2
,
is greater

than ^i.e.if^ /2K
P V p

In the case of water, at 100 C., we have

i.e.
' v > 1'44 x 10 5

cms./sec.

It was shown (in 18) that the mean molecular velocity, O, for

oxygen at C. was approximately 4-25 x 10 4
cms./sec., so that at

100 C. the mean molecular velocity will be approximately 4*96 x 104

cms./sec. Since, at a given temperature, the mean molecular velo-

cities of two different gases are inversely proportional to the square roots

of the molecular masses, it follows that the mean velocity of a molecule

V32TR

cms./sec., i.e. 6*61 jx 104
cms./sec. Thus at 100 C. a molecule of

water must leave a plane water surface with a normal velocity more
than double the mean velocity possessed by molecules of water vapour
at the same temperature in order that it may escape from the liquid.

117. The Surface Energy of a Liquid. It has been shown
( 88)

that the increase in the potential energy possessed by a liquid, per
unit increase of area, is numerically equal to the surface tension, T.

If, then, we imagine that the liquid above the plane AB (Fig.

CXVII.) be moved away from the liquid below AB to a distance ex-

ceeding the range of molecular action, c, the work done per unit area

of AB will be numerically equal to 2T, since two new unit surfaces

will have been produced.
Now we are ignorant of the manner in which the attractive force

exerted on a molecule varies with its distance from the surface AB.
We shall therefore assume, provisionally, that on starting from the

surface the force remains constant throughout a normal displacement

equal to the range of molecular action, c, and then falls suddenly to

zero. When the liquid above the plane AB is displaced normally to

that plane, work is done against molecular attraction until all the

molecules initially present in a layer of thickness c above AB have

been removed beyond the range of molecular action of the liquid

below, and the average displacement of each of these molecules while

under the infliience of the molecular attraction of the liquid below AB

is^therefore equal to o
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Now the total attractive force per unit area exerted by the liquid

fc
below AB on the licfuid above is equal to p* . I <f>x . dx, i.e. K ; and

Jo
since, in accordance with our provisional assumption, the attractive

force acting on each molecule remains constant until the molecule

passes beyond the range of molecular action, c, it follows that the

total work expended per unit area of AB in separating the liquid

above AB from the liquid below is equal to K x
g.

K.c
.-. 2.T

2
"'

4.T
K '

It is almost certain, however, that the molecular attractive force

is not constant throughout the range of molecular action. If we

assume, instead, that the attractive force diminishes as the displace-
ment increases, the range of molecular action, c, must be greater than

4 . T
-j~-

in order that the total work expended in separating the liquid

may still be equal to 2 . T for each unit of area of AB. We can thus

obtain as was first pointed out by Young an inferior limit for the

range of molecular action.

In the case of water, at 100 C., we have

4 x 58;4C> 1-00 x i01()Cms<

i.e. c > 0'23/u/A.

118. The Equation of van der Waals. It was shown, in 58, that

the term ^ which occurs in the van der Waals' equation corresponds

to the diminution in the pressure exerted by a fluid on the boundary
walls of a containing vessel owing to internal molecular cohesion.

If we consider any imaginary plane in the interior of the fluid,

^ is the attractive force per unit area exerted by the fluid on one side

of the plane on the fluid on the other side, so that, in the case of a

liquid system, the term ^ denotes the internal or intrinsic pressure

and is numerically equal to K.
As was pointed out in 58 the values of a, b and B in van der

Waals' general equation can be obtained by substituting the correspond-

ing values of P and V for the homogeneous fluid as exfyerimenjally
determined at various temperatures.
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Thus the volume of 1 gm. of saturated steam at C. is 202,602 c.cs.,

its pressure being 047 cm. of mercury; and the
f
volume of the same

mass of saturated steam at 100 C., is 1672 c.cs., its pressure being
76 cms. of mercury.

Substituting these values in van der Waals' equation, and treating
the volume b as negligible in comparison with the volume occupied

by the vapour, we have

.-. 0-47 x 13-596 x 981 + pg
- 202602 = K . 273,

and similarly

?6 x 13-596 x 981 + / ' 1672 " R ' 373 '

Solving for a we obtain the result

a - 6-1 x 1010
.

Since the volume of 1 gm. of water at 100 C. is 1*04 c.c., we
have

a 6-1 x 1010 - _ 1Ain ,
/

V2
"

~[1
T
0!)*~

" X <tynes/cms.~

Although it cannot be pretended that this result is in close agree-
ment with the value of K deduced from the latent heat of vaporisation
of water, yet it is evident that both Laplace's theory of capillarity and
the equation cf van der Waals lead to values for the internal pressure
of a fluid which possess the same order of magnitude.



CHAPTER IX.

SOLIDS.

119. The Solid State of Matter. The solid state has already been
defined as that in which matter can permanently resist an applied

tangential or shearing stress provided the latter he not too great in

magnitude.
Now although solid bodies can, in general, preserve their shape

for a very long time without any perceptible change, it must not be

concluded that their molecules are therefore absolutely fixed relatively
to one another. It was shown, for example, by Sir W. Roberts-Austen
that gold diffuses through lead to an appreciable extent when the two
metals are kept in contact at the atmospheric temperature, and other

cases of solid diffusion have also been observed.

The vaporisation of solids, to which reference was made in 75,
also shows that the molecules of solid bodies are in a state of motion,
the maximum or saturation vapour pressure for a solid corresponding
to a state of dynamic equilibrium in which as many molecules land
back upon the surface of the solid as escape from it in unit time.

The sublimation of a solid may be regarded as analogous to the

distillation of a liquid, and, as was shown by Ramsay and Young, there

is a definite
"
subliming-point

"
in the former case corresponding to

the boiling-point in the case of a liquid at which the vapour pressure
of the solid is equal to the atmospheric pressure.

In considering the properties of solids from the standpoint of fhe

kinetic theory, it must be borne in mind that in solid systems the

molecules are sufficiently close together to exert very considerable

cohesion ; the existence of cohesive forces being exhibited in the great
resistance offered by solid bodies to changes of shape or volume.

120. Elasticity. Gases, liquids, and solids all resist compression
and thus possess volume or bulk elasticity, but solids alone possess

elasticity of shape, for fluids, by definition
( 62), yield continuously to

applied tangential or shearing stresses, however small the magnitude
of the latter may be, and thus offer no permanent resistance to changes
of shape.

When the shape or volume of a body alters in any jvay, due to

applied forces, the deformation of the body is termed a strain, the Re-

forming forces being termed stresses.

2fi3



264 THE PROPEBTIES OF MATTES

The ratio of the applied stress to the resulting strain is termed a
modulus of elasticity provided the applied stress be so small that the
ratio is constant.

When the volume of a body alters due to a uniform pressure, the

shape of the body remaining unchanged, the stress is measured by the

pressure, i.e. by the normal force per unit area, and the strain by the
ratio of the diminution of volume to the original unstrained volume,
the ratio of stress to strain being termed the volume elasticity, or the
bulk modulus of elasticity.

If, on the other hand, the shape of a body alters due to an applied
shearing stress, the volume remaining unchanged, the stress is

measured by the tangential force per unit area, and the strain by the

angle of shear, the ratio of stress to strain being termed the shear

modulus, or modulus of rigidity.
When a wire is stretched by an applied force acting along its

length (while no forces act at right angles to the length), the longi-
tudinal stress is given by the quotient of the applied force by the

cross-section of the wire, and the longitudinal strain by the quotient
of the increase in length by the original length of the unstrained wire.

In this case the ratio of longitudinal stress to longitudinal strain is

termed longitudinal elasticity, or Young s Modulus.

121. Isotropism and ^Bolotropism. When every particle of a body
possesses identical physical properties and chemical composition the

body is said to be homogeneous. The term homogeneity is, however,
employed in a less restricted sense to cover uniform mixtures of

different substances. Thus a solution of sugar in water, a piece of

glass, and a bronze coin are commonly regarded as homogeneous
bodies.

A homogeneous body is said to be isotropic when it has similar

properties in all directions. A well annealed piece of glass is, at any
rate very approximately, both homogeneous and isotropic. The

properties of many homageneous bodies vary, however, in different

directions. Such bodies are said to be ceolo tropic. Many crystalline

bodies, for example, are aeolotropic with regard to their thermal

expansion and thermal conductivity. Wood, similarly, exhibits

seolotropism, its tensile strength, for example, being considerably

greater along the grain than at right angles to the latter.

122. Hooke's Law. The general law of elasticity that strains are

proportional to the deforming forces producing them was originally
enunciated by Hooke in the form "ut temio, sic vis,"

1 and was sub-

sequently stated by Young in the modified form stress is proportional
to strain.

This law of the proportionality between stresses and strains only
f>

j

Boyle's Law may be regarded as a particular jase of this law.
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holds good provided the applied stress be sufficiently small. If, for

example, a vertical metal wire which is firmly fixed at its upner end
be stretched by placing different weights in a scale-pan attached to its

lower end, it is found that the elongation produced is proportional to

the load per unit area of cross-section of the wire provided the load

does not exceed a certain value. Up to this point the wire will

recover its original length if the load be removed, and the correspond-

ing extensions of the wire are therefore said to lie within the range of

perfect elasticity, but for greater values of the load the wire is found

to acquire a permanent elongation or set and is said to have been

stretched beyond the elastic limit.

FIG. CXVIIL Searle's Apparatus for determining Ycung'a Modulus for a Wire.

After passing the elastic limit the elongation of the wire increases

more rapidly than the load and Hooke's Law ceases to apply,

123. Determination of Young's Modulus from the Stretching of a
Wire,- When a wire is stretched by a force acting along its length
the ratio of the longitudinal stress to the longitudinal strain gives the

value of Young's modulus for the material of which the wire is

composed.

LXXXI. Fig. CXVIII. illustrates an improved form

apparatus,
devised bv Searle, for determining Young's moduKte for
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Two long, similar wires of the given material are fixed at their

upper ends to the same support, their lower end| being soldered into

small brass swivels which pass through the tops of two circular brass

frames. The wires are arranged parallel to each other, the swivels

ensuring freedom from torsion. The circular frames (which are hinged

together, so as to permit relative vertical motion), support the ends of

a sensitive spirit level, one end of the latter being pivoted to the frame,

while the other end rests on the point of a vertical micrometer

screw, as shown in the figure.

Two shorter wires are soldered into brass swivels which pass

through the bottoms of the circular frames, one of the wires carrying

a scale-pan and the other a fixed mass. The weights of the scale-pan

and the fixed mass must be sufficient to keep the two longer wires

taut and free from kinks.1

The micrometer screw is initially adjusted so that one end of the

bubble of the spirit level is at the zero mark. Different loads are then

placed in the scale pan, and the bubble brought back to zero by means

of the micrometer screw, the longitudinal extension of the wire, in each

case, being given by the distance through which the screw has been

moved.
Since the two wires are fixed at their upper ends to the same

support, and since their coefficients of expansion may be assumed

sensibly the same, even though the wires are subjected to different

stresses, errors arising from the yielding of the support, and from

variations of temperature, are practically eliminated.

The load in the scale-pan should be progressively increased by
the addition of equal weights, and, subsequently, decreased by their

removal, the micrometer screw being adjusted after each addition or

removal and its reading noted. The mean of the two readings, wifch

the load increasing and decreasing, for each particular load is then

taken as the corresponding 'extension of the wire.

The weight of the scale-pan must, of course, be included in the

value for the total load, and care must be taken that the maximum
load employed is not sufficient to stretch the wire beyond the elastic

limit.

The cross-section of the wire may be determined by measuring
the diameter of the wire by means of a screw-gauge. Measurements

should be made at a number of points, and, at each point, in two

directions at right angles to one another, in order to make sure that

the wire is of uniform section.

Instead of calculating the cross-section from measurements of the

diameter of the wire, a more accurate method is to weigh a measured

length of the wire in air and then in water. The volume of the wire

is then readily calculated from the difference between the two weights

1 In carryingout a determination of Young's modulus the scale par* should be

initial^- loaded, for a short time, to about one-half of the breaking load of the wire

to ensure the wire being thoroughly straightened.
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and from a knowledge of the density of the water at the temperature
of the experiment, T^he

cross-section is then found by dividir^g the
volume of the wire by its length. The uniformity of the cross-section
must initially be tested by means of a screw-gauge.

Let the original length of the wire between the fixed support and
the point where it is soldered into the brass swivel be L cms., and its

cross-section a cms. 2
,
and let the mean extension due to a load of W

gms.-wt. be'Z cms.
Then Young's modulus, Y, is given by the relation

v W.L . , 9Y =
y- . gms.-wt./cm.

2

a . i

W.L.0 , ,

2= *
. dynes/cm.

2

a . I
J

The following table gives the experimental values obtained for

Young's modulus, for a number of different materials, in dynes per
square centimetre :

l

Copper
Iron (w
Silver

Steel .

If, in Experiment LXXXL, the loads be plotted as ordinates and
the corresponding extensions of the wire as abscissae, we obtain at

first an approximately straight line OA (Fig. CXIX.), showing that

the extension is proportional to the load. If, however, the load be

progressively increased, a point A is reached at which the extension

increases more rapidly than the load, and the curve now takes the

form AB. The point A represents the elastic limit of the material of

which the wire is composed. Up to this point the wire will recover

its original length if the load be removed, whereas for loads greater
than that corresponding to the point A the wire requires a permanent
elongation. On further increasing the load a point B is reached at

which . the curve becomes nearly horizontal, very large extensions

being produced by any further small increments in the load. The

point B is called the yield-point.
The maximum value, C, for the load arises from the diminution in

1 The values are those at the ordinary atmospheric temperature. In general, a
substance becomes more plastic with rise in temperature, and moue elastic when
cooled. Thus a piece of lead when cooled in liquid air becomes highly elastiq^and

rings clearly when struck.
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the sectional area of the wire occasioned by the extension, any further

elongation of the wire beyond the point C, reducing the value of the

load which can be supported without rupture. 'The curve, therefore,

slopes downwards from C until the breaking-point D is reached. In

the neighbourhood of the point C, the wire begins to stretch out un-

evenly and the cross-section ceases to be uniform.

The curve OAEF (Fig. CXIX.) represents the relation between
stress and strain, allowance being made for the diminution in the

sectional area of the wire produced by the extension. After pass-

ing the elastic limit at A the strain increases more rapidly than the

Load

Extension of Wire.

FIG. OXIX.

stress until a point E is reached where the longitudinal elasticity

again becomes approximately constant, as is shown by the straight

portion, EF, of the stress-strain curve. If, after passing the point E,
the load be gradually removed, the wire will contract along the path
EG, retaining a permanent elongation OG, when the whole load has

been removed. 1

1 The fact that hard drawn copper wire, for example, has a considerably higher
elastic limit than annealed copper wire may be explained in this manner.

Microscopic examination of a section of a well annealed metal shows numerous

crystalline aggregates with cleavage planes in definite directions. After straining
the metal past the elastic limit it is found that relative motion has occurred

amongst the crystals composing the aggregates, resulting in a more irregular dis-

tribu^aon
of the planes of cleavage. The metal, consequently, yields less readily to

an applied stress in any given direction.



SOLIDS

124. Elastic After-Effect and Elastic Fatigue. It has been seen

that a loaded wire will contract to its original length on removal of

the load provided it*has not been stretched beyond the elastic limit.

Different materials, however, are found to take different times for the

contraction, the delay in recovering the original length being termed

the Elastic After-Effect.
A stretched steel wire, for example, recovers almost immediately,

whereas a stretched glass fibre may take many hours. The period of

delay is, in general, increased by leaving the wire loaded for a con-

siderable time.

It was shown by Lord Kelvin that if a torsion pendulum were

kept vibrating continuously for some time the rate at which the vibra-

tions died away became greater and greater. This phenomenon is

termed Elastic Fatigue. On allowing the torsion pendulum to remain

stationary for some hours the period of vibration recovered its

original value.

125. Poisson's Ratio. When a cylindrical wire, for example, is

stretched by the application of a longitudinal stress it extends longi-

tudinally and, at the same time, undergoes a lateral contraction. Pro-

vided the applied longitudinal stress be sufficiently small it is found

that, for isotropic substances, the ratio of the lateral contraction to the

longitudinal extension is constant.

This ratio is termed Poisson's Ratio.

If the initial length of the unstrained wire be Z, its diameter being

d, and if a small longitudinal extension 8 produce a lateral contraction

Srf, we have

8dlSl , . ^ .
,

..

o- = j -I -T-, where o- is Poisson s ratio.
Cv I L

In accordance with a molecular hypothesis developed by Poisson

and Cauchy the value of or for all isotropic bodies should be O25, but

this conclusion is not supported by experimental evidence.

126. Deformation of an Isotropic Cube. Consider a cube

ABCDA'B'C'D' (Fig. CXX.) of an isotropic solid. Let the faces

ABCD and A'B'C'D' be subjected to small normal tensile stresses of

F
1 dynes per unit area. These stresses produce an extension propor-

tional to Fj in the direction AA', and contractions proportional to F
t

in the directions AB and AD. The contractions in the directions AB
and AD must be the same since the solid is isotropic. Let the ex-

tension in the direction AA' be a . Fx ,
and the contractions in the

directions AB and AD be . Fr If the faces ABB'A' and DCC'D' of

the cube were similarly subjected to small normal tensile stresses of

F
2 dynes per unit area the extension in the direction AD would be

a . F2 ,
and the contractions in the directions AB and AA' would be

/3.F.J. Ifr similarly, small normal tensile stresses of F
3 dyne^per
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unit area were exerted on the faces ADD'A' and BCC'B', the exten-

sion in the direction AB would be a . F3 ,
and the contractions in the

directions AD and AA' would be ft . F3 . If, noV, the tensile stresses

F
lf
F

2 ,
and F

3
be applied simultaneously, the resultant extension

in the direction AA' is a . F
t
-

ft . F2
-

ft . F3 ;
the extension in the

direction AD is a . F2
-

. F3
-

. F
x ;

and the extension in the

direction AB is a . F3
-

ft . F
x
-

(3 . F2 .

Let the edge of the cube be, initially, of unit length, and let us

consider the case where the tensile stresses F
x ,
F

2 ,
and F

3
are all

equal. Since each face of the cube is subjected to a small normal

tensile stress of, say, F dynes, the length of each edge becomes

1 + a . F -
2/? . F.

FIG. CXX.

The volume of the cube, therefore, becomes {1 + F(a -
2/3)}

3
,
i.e.

1 + 3F(a
-

2/?), neglecting the terms containing the squares, cubes,

and products of the very small quantities a and ft.
Thus the increase

in the volume of a unit cube of an isotropic solid when each face is

subjected to a small normal tensile stress, F, is 3F(a -
2/2).

127. The Bulk Modulus of Elasticity. When the volume of a body
alters due to a uniform pressure, the shape of the body remaining un-

changed, the stress is measured by the pressure, i.e. by the normal

force per urfit area, and the strain by the ratio of the diminution of

volume to the original unstrained volume, and the ratio of stress to
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strain is termed the Bulk Modulus of Elasticity. If, in the preceding
investigation of the deformation of a unit isotropic cube, the normal
tensile stress, F, exetted on each face be replaced by an equal flormal

compressive stress, we must change the sign of F in order to obtain

the increase in the volume. Thus the decrease in the volume of a unit

isotropic cube when subjected to a small hydrostatic pressure F is

equal to 3F(a -
2)8).

It follows that

F 1
K "

3P(a"^"2/3)
"

3(a
-

2/2)'

where K is the Bulk Modulus of Elasticity.

128. The Shear Modulus, or the Modulus of Rigidity. When the

shape of a body alters due to an applied shearing stress, the volume

remaining unchanged, the stress is measured by the tangential force

FIG. CXXI.

per unit area, and the strain by the angle of shear, and the ratio of

stress to strain is termed the Shear Modulus or the Modulus of Eigidity.
Thus let ABCDA'B'C'D' (Fig. GXXI.) represent a cube, the edge

of which is of unit length, and let it experience a uniform shear, so
that it is deformed to the shape EFGHA'B'C'D'. In such a uniform
shear all planes parallel to the fixed plane A'B'C'D' remain undistorted,
but experience a tangential displacement, relatively to each other, the

displacement of any plane being proportional to its distance from the

plane A'B'C'D'.

A uniform shear of this kind may be illustrated by placing a pack
of playing cards on a table, so that the edges of the pack are vertical,
and then sliding the cards forward, while the lowest card remains

stationary, so that the ends of the pack remain plane butare no longer
vertical. Any plane at right angles to the fixed plane A'B'C'D' ^Fig.
CXXI.) and parallel to the direction of motion is called the plane of
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the shear, and the angle AA'E is termed the angle of shear. Let us

next consider the forces that must be applied in order to produce
this uniform shear parallel to the plane ABB'A' in the unit cube
ABCDA'B'C'D' (Fig. CXXL). Let a uniform tangential force, T, act

on the face ABCD, from left to right, as shown in the figure, while an

equal tangential force acts on the face A'B'C'D' in the opposite direc-

tion. These forces constitute a couple tending to rotate the cube in a

clockwise direction, and, in order to maintain equilibrium, let tangential
forces equal to T act on the faces ADD'A' and BCC'B' tending to rotate

the cube counter-clockwise.

These two couples will now be in equilibrium with one another,
but will shear the cube as shown in the figure.

If we denote the angle of shear by 0, the tangential force acting on
unit area being T, we have, in accordance with our previous defini-

tion

T
n =

2-,
where n is the Modulus of Rigidity.

6

As in the case of other elastic moduli n is only sensibly constant

provided the applied stress be sufficiently small.

Now, it can be shown
that a shear is the resultant

of an extension in one direc-

tion and an equal contraction

at right angles to that direc-

tion, and we shall therefore

proceed to consider how a

shearing stress is produced
by mutually perpendicular
tensile and compressive
stresses.

Let our unit cube
ABCDA'B'C'D' be the centre

portion of a rectangular
block WXYZW'X'Y'Z' (Fig.

CXXIL), composed of the

same isotropic solid, the faces

ABB'A' and DCC'D' of the

cube lying, respectively, in
FIG. CXXII.

the faces WXX'W and ZYY'Z' of the rectangular block, while the

remaining faces of the cube cut the adjacent sides of the rectangular
block at 45, as shown in the figure.

Let the sides WXYZ and W'X'Y'Z' of the rectangular block be

subjected to small normal compressive stresses of T dynes per unit

area, while equal normal tensile stresses, T, are exerted on the sides

XX'Y'Yan*WWZ'Z.
the edge of the cube is of unit length, the length of the edge



SOLIDS

AX of the triangular prism AXBDYC is ., and the area of the face

1
^2

AXYD ia 1 x -=. Hence the normal compressive force acting on
V

T
the face AXYD is equal to ---_ dynes. The normal tensile force acting^

T
on the face XBCY is, similarly, _ dynes. The resultant of these

T
^

two forces is equal to 2 . . cos 45, i.e. T dynes, acting tangefntially
\/2

on the face ABCD, and since the area of ABCD is unity the shearing
stress on this face of the cube is equal to T.

It follows, in a similar manner, that the faces BB'C'C, B'A'D'C',
and A'ADD' of the cube are each acted upon by shearing stresses

equal to T, as shown in the figure.
Thus the uniform shear due to the tangential stresses T, illustrated

in Kg. CXXL, is that which would be produced if the cube were the
centre poilion of a rectangular block acted upon by mutually per-
pendicular compressive and tensile stresses, T, as shown in Fig.
CXXIL

In general we may say that when an isotropic solid is subjected to

mutually perpendicular compressive and tensile stresses of equal
magnitude it undergoes a shear in a direction inclined at 45 to these
stresses.

The tensile and compressive stresses, T, acting upon the rectangular
block WXYZW'X'Y'Z' (Fig. CXXIL), produce an extension in the
direction WX, and a contraction in the direction WW'. The magni-
tudes of the extension and contraction per unit length can be at once
deduced from 126, by putting Fx

=. T, F2
=* -

T, and F3
*= 0.

Thus the extension per unit length in the direction WX equals
T(a + ft), and the contraction per unit length in the direction WW
also equals T(a + /?). _Since the length of AB is unity, the length of

WX, or of WW^ is ^2, and, consequently, the extension in the direc-

tion WX is ^2 . T . (a + fi)> the contraction in the direction WW'
having an equal value.

Thus we may regard the shear of our unit cube ABCDA'B'C'D' as

an extension of ^2. T(a + /?)
in the direction *

of the diagonal A'B combined with an equal
contraction in the direction of the diagonal AB',
i.e. in a direction at right angles to A'B.

Let ABB'A' (Fig. CXXIII.) represent the
face of the unstrained unit cube, and EFB'A'
the same face after the cube has experienced
the small uniform shear. Draw the diagonals X
A'F and EB', intersecting at 0. FIG CXXIII



274 THE PROPERTIES OF MATTES

Denoting the angle of shear, AA'E, by 6, expressed in circular

measure, we have 00
e\-
-)='

1

But
EB'

- ^ ~- V2 -T(a + /?) _ 1 -
T(a

AT 2+ 2.faV~lVTa

tan -.

.-. T(a + 0) - tan

provided the angle of shear be infinitesimally small.

T
Since n = -, we have

' n ~
2( + /8)'

The extension per unit length of the rectangular block
WXYZW'X'Y'Z' (Fig. CXXII.), in the direction WX is thus equal to
A m -1

o, i.e. equals ~-, the contraction per unit length in the direction WW ;

having the same value.

129. Elastic Constants. In the two preceding paragraphs the bulk
modulus of elasticity, k, and the modulus of rigidity, n, were expressed
in terms of a and (3. We may now readily find expressions for

Young's modulus and for Poisson's ratio in terms of k and n for any
isotropic solid.

Consider the unit isotropic cube ABCDA'B'C'D' (Fig. CXX.), and
let the faces ABCD and A'B'CXD' be subjected to small normal tensile
stresses of E dynes, the remaining faces of the cube being free from
stress. These stresses produce an extension aF in the direction AA'.

Then Young's modulus, Y, is given by the relation

Y F 1
Y ~

aF
~

a
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It has, however, been shown that the bulk modulus of elasticity,

fc, and the modulus of rigidity, n, for the unit isotropic cube, are* given
by the respective equations

* =
3(a~- 20)'

_~
2(a + ft)'

It follows, from the last two equations, that

3 fe + n

Whence

* -

1 Qkn

o
""

3* + w"

Now the tensile stresses, F, exerted on the faces ABCD and A'B'C'D'

of the unit isotropic cube produce a longitudinal extension aF in the

direction AA', and lateral contractions F in the directions AB and
AD.

The ratio of the lateral contraction to the longitudinal extension

has already been defined as Poisson's ratio, cr.

ftF __
3k

_-._2lw

oF
Thus

130. Torsion of a Cylinder. Let ABCA'B'C' (Fig. CXXIV.) repre-
sent a short element of a right circular cylinder of an isotropic solid,

the parallel planes ABC and
A'B'C' being at right angles
to the axis of the cylinder,
and I cms. apart. Let the

upper face ABC of the

element be fixed, and let a
small couple whose axis is

the axis of the cylinder be

applied to the lower face

A'B'C'.

The element, when sub-

jected to this small uniform

torsion, is twisted in such
a manner that every cross-

section of the element made
by planes parallel to ABC
is twisted in its own plane
through an angle proportional to its distance from the fixed plane

18*
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ABC, while the axis OO' of the element remains in the same straight
line as\ before,

, Consider the portion DEFD'E'FGHKG'EPK' of the element
bounded by coaxial cylinders of radii OH and OE, respectively, and

by the two parallel planes ABC and A'B'C'. Let OH = r, and
OE = r + Sr, where 6V is very small.

Let OHEB and O'H'E'B' be radii of the cylindrical element

initially in the vertical plane OHEBB'E'H'O' passing through the

axis of the cylinder. When the element is subjected to the small
uniform torsion, the radius O'H'E'B' is twisted through an angle
B'O'B" proportional to the distance between the plane A'B'C' and the

fixed plane ABC. Let the angle B'O'B" be equal to
</>, expressed in

circular measure.
If the cylindrical element were originally cut along the vertical plane

OHEBB'E'H'O' and the very thin annulus DEFD'E'F'GHKG'H'K'
removed and spread out flat, the latter would form a thin rectangular

PIG. CXXV.

block EIIE'HWwj'/*' (Fig. CXXV.), the faces EHE'H' and ehe'h' of

which were originally joined together.

If, however, the annulus were removed and spread out after

twistiny the cylindrical element, a rectangular block would no longer
be obtained, the effect of the uniform torsion being to shear the block

to the shape EHE"H'Wie"/&", as shown in the figure.
Let the angle of shear, E'EE" be equal to 0, expressed in circular

measure.
E'E"

Then =
,

, provided the angle of shear be infinitesimally

small.

In order to produce this shear, a tangential force, F, must act on
the face E'H'e'/t', from left to right, while an equal tangential force

acts on the face EHe/i in the opposite direction, as shown in the

figure.
1

*

Tangential forces must also act on the faces EHE'H' and elie'h', but
these may be disregarded in dealing with the equilibrium of the annulus
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Then, if n be the modulus of rigidity, we have

F
n ~

"p'Tjt" TT'H"
But -7 = TTTT provided oY be infinitesimally small ; and

H'H" _ r . <

HH'
""

Z
'

I

Whence F = 2?rr2 . Sr^n .J>.

^

Now in the case of the anniilus DEFD'E'F'GHKG'H'K' (Fig.

CXXIV.), the tangential forces acting on the faces DEFGHK and
D'E'F'G'H'K' constitute equal but oppqsitely directed torques acting
about the axis OO'. Thus the torque, SM ,

about the axis OO', due to

the tangential force F acting on the face D'E'F'G'H'K' of the annulus,
is given by

8M - P . r,

27rr3 . oY . n . <A,

I

The total torque, M, about the axis OO', that must be applied to the

lower face A'B'C' of the cylindrical element in order to twist the face

A'B'C' in its own plane through the angle <, is therefore given by

** f
R

7iur 2lTM0 f
R

, 7 27T7&0 R4
i -Dl U T>M = I M =s . I r3

. dr =
7
--.--r =

i 71
"
7
*/ -K where 1C

Jo * Jo 64 I

is the radius of the cylindrical element.

An equal but oppositely directed torque must, of course, be exerted

on the upper face ABC of the cylindrical element in order to keep this

face fixed.

Now the angle of shear, 0, increases as the distance from the axis

OO' increases, so that the shearing strain is greatest in the outside

layers of the cylindrical element. It has, however, been tacitly

assumed that even at the curved surfglce of the element the angle of

shear, B'BB", is very small, since otherwise the equation M =
JTTW j-B

4

ceases to be strictly applicable. Provided, then, the angle of shear be

DEFD'E'F'GHKG'H'K', since, in the annulus, the faces Etffc'lf and ehe'ty
are

joined together, and the tangential force on each face is applied by the other.
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small, we may apply the same argument to a long cylindrical wire of
an

iscjtropicjsolid? since the wire may be regarded as built up of a

large nftmber of short ele-

ments similar to ABCAU'C'
(Fig. CXXIV.). In the case

of a long wire fixed at its

upper end, the angle <

through which its' lower end
is twisted may be fairly large
without the angle of shear

becoming too great.
' un'U

If instead of a solid cyl-
inder we consider a hollow

cylindrical shaft, the torque,
M', that must be applied in

order to twist its lower end

through an angle <, when
the upper end is fixed, is

given by

where E
x
and E2 are, respec-

tively, the outer and inner
radii of the shaft.

131. Statical Determina-
tion of the Modulus of

Eigidity. Experiment
LXXXIL Fig. CXXVI.
illustrates a simple apparatus
for determining the rigidity
of the material of a wire.

The wire, which should be of

uniform circular cross-sec-

tion, is firmly clamped at its

upper end, its lower end

being attached to a metal

cylinder from the opposite

F,a. OXXVI._Toion of Wire Apparatus.
8
j

d
?
8 of which tw

J>?
llel

strings pass over "friction-

less'' pulley^, and carry scale-pans, as shown in the figure.
Pointers are attached at different positions on the wire, an$
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over graduated circles, so that the angles of torsion corresponding to

different lengths of the wire, and to various torsional couples, may be

readily observed.

Let equal masses be placed in the scale-pans, and let the total

mass, including the scale-pan, supported by each string be m gms.
Then, if a be the radius of the cylinder in cms

,
the moment, M, of the

torsional couple acting on the wire is equal to 2 mga. dynes/cms. If

radians 'be the angle of torsion corresponding to a length of I cms.

of the wire produced by this torsional couple, we have

=3
^TTH

-
. R4 = %mga,

I

where E is the radius of the wire, and n the modulus of rigidity for

the material of which the wire is composed.
Whence

Since the radius, K, of the wire occurs to the fourth power in the

expression for the rigidity it must be determined with very great care.

The determination may be effected in a similar manner to that em-

ployed in Experiment LXXXI. for finding the cross-section of the wire.

A number of observations should be made of the angles of torsion

corresponding to various loads, and the mean value of -- should be
9

employed in the equation for the rigidity. Care must be taken not to

employ too great a load, since
cf>

is only proportional to m, provided
the applied torsional couple does not strain the material of the wire

beyond its elastic limit. 1

132. Dynamical Determination of the Modulus of Rigidity. Ex-

periment LXXXITL The apparatus used in the preceding experiment
may also be employed for the dynamical determination of the modulus
of rigidity. The pointers, graduated circles, cylinder and scale-pans
must be removed, and a vibration bar attached to the lower end of the

wire. The vibration bar may, conveniently, be a metal cylinder, with
its axis in line with the axis of the wire. A small white mark is made
with a piece of chalk on the curved surface of the metal cylinder, and
a telescope is adjusted so that this reference mark is accurately visually
coincident with the cross-wires of the telescope. The wire is next set

in torsional oscillation, by giving the %etal cylinder a small rotation

and then letting go, care being taken to avoid imparting any simple

pendulous motion to the wire.

1 The proportionality between the angle of torsion anj^ the moment of the

applied torsional couple is utilised in various instruments, sucli as Coijjomb's"
Torsion-Balance," and Nernst's " Micro-Balance."
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The time required for, say, a hundred oscillations is then observed

by means of the telescope and a stop-watch, the mean of at least three

observations being taken, and the time-period, T*of one oscillation is

then calculated.

Now, since the torque exerted by the twisted wire is proportional
to the angle of torsion, the metal cylinder will execute simple 'harmonic

oscillations about its equilibrium position, the time-period, T, of the

torsional oscillations being given by the relation

where I

vibration

is the moment of inertia of the cylinder about the axis of

,
and C the torque exerted by the twisted wire per unit angle

of torsion.

Let ABCA'B'C' (Fig. CXXVII.) represent
the metal cylinder, and consider the very
thin annulus DEFD'E'F'GHKG'H'K'.

Let the inner radius, OG, of the annulus

be equal to x, the outer radius, OD, being

equal to x 4- &x, where Sx is very small.

Then the mass of the annulus is equal to

%TTX . &x . h . p, where h is the length, and p
the density, of the metal cylinder. The
moment of inertia of the annulus about the

axis of vibration, 00', is therefore equal to

%TTX .Sx.h.p.x
2

,
and the moment of inertia,

I, of the whole cylinder ABCA'B'C' about

the axis! OO' is therefore given by the re-
OXXVIL lation- ,

f"
I = I %TTX . dx . h . p . a-

2
,

J o

C
a

=
Zirlip X* . dx,

J o

= M .
,
where M is the mass, and a the

&

radius, of the cylinder ABCA'B'C'.

Now, in accordance with 130, the torque, C, exerted by the

twisted wire per unit angle of torsion is given by the relation

C = i*^
4

,
where R is the radius, and I
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the length, of the wire, and n the modulus of rigidity for the material

of which the wire is composed.
Substituting for I %tnd C in the equation for the time-period, we

have

/MiT2Z

V

= 27T.

Whence n

As in the preceding experiment the radius, K, of the wire must be
determined with very great accuracy ; and care must also be taken
that the magnitude of the torsional oscillation is not too great, since,

otherwise, the material of the wire may be strained beyond its elastic

limit. 1

The dynamical method of determining n usually leads to a some-
what higher value than is obtained by the statical method. It is

found as might be anticipated from the standpoint of the kinetic theory
that the value of n decreases with rise in temperature.

133. Flexure of a Beam. When a straight beam of uniform cross-

section is bent into a curved form by applied forces, the material of

the beam on the convex side of the curve is stretched the material

on the concave side being compressed.
Consider, for example, a rectangular beam of an isotropic solid, and

let two equal and oppositely directed couples be applied at its ends,
the plane of the couples passing through the centre of surface of each
cross-section of the beam, and dividing each cross-section into two

equal rectangles.
Under the action of these equal and opposite couples the rectangular

isotropic beam will be bent into a circular arc, the convex side of the beam

being stretched and the concave side compressed. There will, conse-

quently, be a region within the beam which is neither in a state of

tension nor of compression. This region is called the netitral surface,
the line of intersection of the neutral surface and the plane of the

couples being termed the neutral axis.

In the following elementary investigation on the flexure of beams
it is assumed that the bending is so slight that the cross-section of the

beam remains sensibly unaltered by th% flexure.

Let ABCD (Eig. CXXVIII.) represent a vertical section through
the middle of a rectangular isotropic beam fixed firmly at the end AD

*It has been assumed that the restoring torque exerted by the twisted wire is

independent of the longitudinal strews acting on the wire. ggpvjflGd the weight
of the metal cylinder, or vibration bar, be not too great this assumption $ very

approximately correct,
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and carrying a small load, W, at the end BC the breadth of the

beam, being at right angles to the vertical plane ABCD.
Such a beam is termed a cantilever. Let tne length of the beam

be I, its breadth b and its depth a. Let the beam be, initially, un-

loaded, and consider any two points, E and G, on AB at a very small

distance, &r, apart. Since the small amount of bending due to the

weight of the beam itself may, in general, be treated as negligible, we
may draw EK and GL perpendicularly to AB, meeting DC, Respectively,
at K and L, EK and GL being parallel to one another. On applying
the load, W, to the end BC, the fibres of the beam above the neutral

surface, MN, are stretched those below being compfessed so that

EG is stretched to EG', and KL compressed to KL', EK and G'L'

01

FIG. CXXVIII.

being now inclined to one another at a very small angle, 80

CXXVIII. and CXXIX.
(i)).

1

Let tangents be drawn to AB at E and G 7

(Fig. CXXVIII.) ;

these tangents will also be inclined to one another at the same angle
80.

Consider the equilibrium of the portion G'BCL' of the beam. Pro-
vided the bending of the beam be very small, the section G'L' will be

sensibly vertical, and since tlfe load, W, acts vertically downwards at

the end BC, and the weight, iv, of the portion G'BCL' acts vertically
downwards at the centre of gravity of G'BCL', a shearing force equal
to W + w must act vertically upwards on G'BCL' at the section G'L'.

JEG' and* KL' (Fig. CXXIX. (i)), will only bo approximately straight lines

provided $ be taken
sufficiently small, and provided the load, W, be not too great.
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It follows from the equality of action and reaction that a force

W + w must act vertically downwards on the portion AG'L'D of the

beam at G'L'.
'

Now the vertical forces acting on the portion of the beam G'BCL'
form a couple, and, if the weight w of G'BCL' be treated as negligible
in comparison with the load W at the end of the beam, the torque

acting on the portion G'BCL' is equal to W#, where x is the horizontal

distance 'bertween the point of application of the load W and the cross-

section G'L'.

This torque must be balanced by an equal and opposite torque

acting on G'BCL' across the section G'L', and arising from the

stretching of the fibres of the beam above the neutral surface, MN, and
the compression of the fibres below that surface. This torque is

termed the bending torque at the section G'L'.

FIG. CXXIX.

Consider, now, an elementary filament such as ST (Fig. CXXIX.
(i)), parallel to, and at a height y above, the neutral surface MN. Let
the depth of the filament be

<ty, its length being Sx, and its breadth b

(Fig. CXXIX.
(ii)).

If F be the force stretching the filament from
the length ST to the length ST', we have

Y =
TT'

F
b . 8/

y -

where Y is Young's modulus for the material of which the beam is

composed.

-

Sx

Now, when the elementary filament is above the neutral surfac^MN,
the force, F, stretches the filament, and when the fil^rnent is below the
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neutral surface it is compressed by the force. Provided the bending
of the beam be very small, all sections such as EK and G'L' will be

sensiBly vertical, and since there is no resultant Iforizontal force acting
across any of these sections tending to produce rectilineal translatory
motion it follows that the algebraical sum of the forces acting across

any section must be zero.

Thus, taking the algebraical sum of the forces acting across the

section G'L', we have

But b . 8?y is the area of the cross-section of each filament of the

beam, and sines the sum of the products of these areas by their re-

spective distances from the neutral surface is zero, it follows that the

centre of surface of the cross-section must lie in the neutral surface.

A similar argument applies to all cross-sections of the beam, so that

the line which joins the centres of surface of all the cross-sections is

the neutral axis.

Now, the force F stretching the elementary filament exerts a

torque equal to F . y about the line through N, perpendicular to the

plane of bending, in which the neutral surface cuts the cross-section

G'L'. Integrating for all the filaments of the beam passing across the

section G'L' we obtain the total torque about the line in which the

neutral surface cuts G'L', and this torque is the bending torque at the

cross-section and is equal to W . x.

Hence

-a\l

.-. 80 =

12W
where K is a constant and is equal to y j

.

If B be the radius of curvature of the neutral axis at N (Fig.

CXXVIIL), we have

Whence K oc -.
x

The radiita ~OL curvature of the neutral axis is therefore infinite

when $ 0, and has a minimum value when x = /.
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Since the bending of the beam is zero at the end BC, and has its

taaximum value at AD, the beam is not bent into a circular arc. 1

Now, provided thfc small amount of bending due to the weight of

the beam itself may be treated as negligible, the horizontal line AB'

(Fig. CXXVIII.) will represent the initial position of AB, and the

depression B'B of the end B, due to the load W, will be sensibly
vertical provided the bending be not too great. Let the vertical de-

pression B-'B of the end BC at which the beam is loaded be equal to

H, and let the tangents to AB at E and G' cut off a very small length
8H from B'B.

Then the value of H is readily found by integrating the values of

SH, corresponding to elements such as EG', for the whole length, AB,
of the beam.

For SH = x . 80,
= K . jc* . S.r.

r
11

r' z

Whence II = \dH = K .^ . dx = K .
-,

.

J J 3

2

o o

Substituting y- ,
-

3
for K, we have

4 . W .

When the cross-section of the isotropic beam is not rectangular,
the breadth, b, is not constant, but varies with the distance from the

neutral surface. In this case, the bending torque at a cross-section

such as G'L' is given by the equation

The quantity |2/

2
6d7/ represents the sum of the products of the

cross-sections of all the filaments by the squares of their respective
distances from the line in which the neutral surface cuts the cross-

section G'L' and is termed the moment of inertia of the cross-section

1 When such a uniform isotropic beam is bent by two equal and oppositely
directed couples applied at its ends, it can be readily shown that the bending torque
is constant for all cross-sections, and that II is, therefore, constant so that the

neutral axis is bent into an arc of a circle.
2 Since two equal but oppositely directed forces, W + w, act tangoutially to

the section G'L' of the beam, a shearing stress acts upon G'L', the magnitude of

W + W
the stress being

-7. Neglecting the weight of tlie beam, the shearing stress

W
will be the same at all cross-sections and equal to r. If, however, the length,

l t of the beam be very large in comparison with it 'sdopth, ^the vertical displace
ment due to shear may be treated as negligible in comparison \vith thevertical

displacement due to the bending of the beam.
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about that line. In the case of an isotropic beam of circular cross-

section, for example, the moment of inertia of the circular cross-

section, about a diameter, is equal to -r-
,
where a is the radius, and

the bending torque is given by

W x - Y
M ^w -*-~ Y -- -

134. Flexure of a Beam Supported at the Ends, and Loaded in the

Middle. Let Fig. CXXX. represent a rectangular i^sotropic beam

supported at its ends on knife-

edges in the same horizontal plane,
and supporting a load W at the

It is evident, from considera-

tions of symmetry, that the tangent
at the middle point is horizontal,
and that the pressure exerted on

W
each knife-edge is . Thus we

Fia. CXXX. . , f ,
.

may regard either half of the beam
as fixed in a horizontal position at the point of application of the load

W
W, and acted upon by a vertical upward force at the knife-edge,

and may calculate the vertical depression as in the preceding para-

graph.
If, therefore, L be the distance between the knife-edges, the de-

pression of the middle po nt of the beam is obtained by substituting

L W
^ for /, and -^

for W, in the equation for II.

Whence II
* W

VYiltJnutJ xi -_ - = -------
^7 r^ Q ~

(
_. I i -r7 / >

Y . b . a3 2 \2 ) 4 . Y . b . a6

135. Determination of Young's Modulus from the Flexure of a Beam.

Experiment LXXX1V. Securely clamp a rectangular beam to a

rigid support and insert a needle horizontally near the free end to

serve as an index. Hang different weights from the beam by means
of a loop of thread passed round the beam at the point where the

needle is fixed, and read the position of the needle on a vertical scale,

or, more accurately, by means of a cathetometer. The load, W,
should be progressively increased, by the addition of equal weights,

and, subsequently, decreased by their removal, the mean of the read-

ings of the index, with the load increasing and decreasing, for each

particular loadbel,ig taken as the corresponding depression, H, of the

beam?
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TT

Calculate the mean value of ^. If the readings taken when re-

moving the load differiappreciably from those obtained when theload
was being increased, the beam has probably been loaded beyond its

elastic limit. In this case the experiment should be repeated, using
another bea/n'of the same material, and employing a smaller maximum
load.

Measura the distance, I, from the point of support to the needle,

and the horizontal* breadth, b, and the vertical depth, a, of the beam.

Young's modulus, Y, may then be obtained by substituting in the

equation

y _ 4_.
W

;

. I
3

"Il.b'.a*'

Eepeat the experiment, using a different

length of the beam, and again calculate the value

of Y.

The breadth, b, and depth, a, of the beam
should be measured at a number of points at

equal distances apart, and the mean values taken.

Particular care must be exercised in measuring
the depth, since it occurs to the third power in

the expression for Y.

Experiment LXXXV. In the preceding ex-

periment Young's modulus was calculated from
the vertical depression II, of the beam occasioned

by a load W. An alternative method is to deter-

mine the angle through which the beam turns

at the point where it is loaded.

Securely clamp one end of a rectangular beam
to a rigid support, arid fix a small mirror at, or

near, the other end, the face of the mirror being

perpendicular to the length of the beam.

Adjust a telescope, T, to which a vertical

scale, S, is attached (Fig. CXXXL), until the

image of the scale in the mirror, M, is in the field

of view. This adjustment is effected by mounting
the telescope on blocks, so that its axis is on the

same level as the mirror, and placing the tele-

scope so that the beam produced rougtyy bisects

the distance between the telescope and the scale

(Pig. CXXXI.). Then focus the cross-wires in

the eye-piece of the telescope, and focus the

telescope on the mirror, M. Next slide the ver-

tical scale, S, to right and left until the field of

Beam

cxxxj.
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view becomes white, and readjust the focus of the telescope until the
scale figures are as sharp as possible.

Hang different weights from the beam b^ means of a loop of
thread passed round the beam at the point where the mirror is fixed,
and observe the scale reading which is coincident with the cross-wires
of the telescope in each case. As in the preceding experiment, the

load, W, should be progressively increased, by the addition of equal
weights, and then decreased by their removal, the mean of the

ascending and descending readings for each load being taken. These

readings will not differ sensibly from one another if the maximum
load employed be not too great.

Divide the means into two groups, and subtract each member of
the first group from the corresponding member of the second group,
and take the mean of all the values so obtained. This mean value

represents the change of scale reading produced by increasing the
load by a weight, W, where W is the difference between the load of

any member of the second group and that of the corresponding
member of the first group.

1

Divide the mean value so obtained by twice the distance of the
scale from the mirror, and let the quotient be 0. Then provided the

bending of the beam be very small, is, with sufficient accuracy, the

angular depression, in radians, of the beam at the point where the
mirror is fixed.

Now, the tangents to AB at the points E and G' (Fig. CXXVIII.)
are inclined to one another at an angle 80, and the angle which the

tangent at the point 13 makes with AB' can be obtained by integrating
the values of 80, corresponding to elements such as EG', for the whole
length AB.

q . . 12 . W . (x . &i?) ,

bince 80 = - -- v - ' we have-Y . o . a3

12. W ^ 12. W ^G.W^J*" ~
Y ; ~b . i'J/

' Ax ~
Y. b 7a*

'

2
-
Y ."6 . a3

'

Whence Y = '

-' where I is the distance from the point
. b . a*

r

of support to the point where the mirror is fixed and the weight, W,
attached, and a and b are the vertical and horizontal dimensions of
the cross-section of the beam.

Experiment LXXXVI. Support a rectangular beam on knife-

edges near its ends, and han different weights from the middle of
the beam by means of a loop of thread (Fig. CXXX.). Measure, by
means of a cathetometer, the vertical depression of a needle-point

1 This me^oa, is a general one for calculating a mean value from a series of
observations.
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fixed at the middle of the beam, and calculate the mean depression
H, due to a load, W, as in the preceding experiments.

Measure the distance, L, between the knife-edges, and the breadth,
0, and depth, a, of the beam, and calculate the value of Young's
modulus by substituting in the equation

~ W.L

136. Determination of Young's Modulus, Y, and the Modulus of
Rigidity, n, by Searle's Method. In this method a uniform wire, AB,
of the material for which Y and n are to be determined, is rigidly fixed
at its ends into horizontal holes
drilled through the middle points
of two equal rectangular, or cylin-
drical, bars CD and EF (Fig

CXXXIL).
The bars are then suspended,

by means of vertical silk threads,
which are attached to hooks screwed
into the middles of the respective
bars at points adjacent to those
where the wire AB is fixed, as shown
in the figure.

The silk threads are made of

equal length so that the wire AB,
and the bars CD and EF, may be
in the same horizontal plane, and
since the threads are, sensibly, tor-

sionless, the bars CD and EF, when
Fia. CXXXII.

at rest, hang parallel to one another, the wire AB being perpendicular
to their length.

The ends D and F of the bars are now drawn nearer together by
means of a loop of cotton, as shown in Fig. CXXXII., and, on burn-

ing the cotton, the bars are set free and oscillate in a horizontal plane.
Provided the oscillations are very small, the wire AB will be bent

to only a very small extent, so that the points A and B will remain,
sensibly, at rest, the bent wire exerting a torque on each bar tending
to bring it back to its equilibrium position, while each bar exerts an
equal bending torque on the wire.

The period of oscillation, T, of eithertbar is given by the equation

v f
of

inertia of the bar about the silk thread as axis, and C the torque per
unit angle of twist (vide Expt. LXXXIIL). Smce^fRS wire 4B is

acted upon by two equal horizontal torques applied at its ends, the

19
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bending torque will be the same at all cross-sections, and the wire

will consequently be bent into a horizontal circular arc,

it each of the bars, at any given moment, Ke twisted through an

angle from the equilibrium position, the radius of curvature, E, of

the wire, at the same moment, will be equal to ~
~jg>

where / is the

length of the wire ; and the bending torque will be equal to

Y f "V 2$ f

t> u/
2 b % (

vi(ie 133
)>

i -e - ec
l
ual to "

'i r
' b '^

Thus the bending torque, C, per unit angle of twis
r

t of each bar is

2 Yf
equal to ',-- I y

2
. b . dy.

If the wire AB be of circular cross-section, of radius a, we have

Substituting for C the value given by the equation T =
2r>y g,

we

have

Whence

"8"J"
'

8.7T.Z.I

Next remove the silk threads and clamp the bar CD in a horizontal

position, so that the wire AB is vertical, with the bar EF hanging

horizontally at the end, Set the wire in torsional oscillation, by giv-

ing the bar EF a small rotation and then letting go, and calculate the

time-period, t
y
of one oscillation, as in experiment LXXXIII.

Then t = arj - -
.

(vide Bxpt. LXXXIII.).
1

\ TT . n . oP ^ r '

8 . 7T .1 . I
Whence n =

,2 4 .

i . a

1 The moment of inertia, I, of
t^he

bar about the axis of vibration AB will be the

same as its moment of inertia about the silk thread as axis, since the cross-section

of the bar is square, or circular.



CHAPTER X.

GRAVITY.

137. The Acceleration of Gravity. When any body is dropped near

the surface of the earth, it falls to the ground with nearly constant

acceleration. It follows, therefore, that the weight of the body is, to

the same extent, constant. The acceleration of a falling body at the

surface of the earth, due to gravity, is termed the acceleration of

gravity, and is denoted by the letter g.

The value of
cj

is not rigidly constant, but varies, for example, with

latitude, and with the height above sea-level, so that the weight of a

body must also vary, and in the same proportion, since the mass of a

body is assumed to be invariable.

It was originally surmised that different bodies fell to the ground
at rates proportional to their respective weights, but, towards the end
of the sixteenth century, Galileo contended that the rate of fall was
the same for all bodies provided gravity were the only force acting
and he attributed the slower rate of fall observed in the case of a light

body to the resistance of the air, which exerted a relatively greater
effect on a light body than on a heavy body of the same size and

shape.
In support of this contention Galileo dropped different weights

from the top of the leaning tower of Pisa and showed that they reached
the ground in the same time. The effect due to the air resistance may
be eliminated by dropping different bodies in a vacuum, as in the
"
guinea and feather

"
experiment, in which case the bodies fall at the

same rate, the equality of the acceleration for both heavy and light
bodies showing that the weight of a body is proportional to its mass.

Galileo also showed that spherical, and cylindrical, bodies rolled

down an inclined plane with uniform accelerations, the acceleration

having one value for the spheres, and another for the cylinders, but

being independent, in both cases, of the masses of the rolling bodies.

Newton, and subsequently Bessel, proved that weight at any given

place is proportional to mass by employing pendulums with hollow

bobs, and showing that the time-period was the same whether the

bobs were empty, or filled with different materials.

138. Experimental Determination of g. The acceferaHion of g^vity
at any place is, in general, determined by means of the pendulum,

291 19
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the earlier types of apparatus, such as " Attwood's Machine," posses-

sing merely an historic interest, since they are not susceptible of any
greaf accuracy.

The following simple methods may, however, be employed to obtain

an approximate value for g.

Experiment LXXXVII. Smoke the surface of a glass or metal

plate by holding the plate over burning turpentine or ben'zene. Sus-

pend the plate, with the smoked face vertical, by means of a cotton

thread, and then allow the plate to fall, by burning through the thread,
at the same time lightly touching the smoked surface with a bristle

fixed to the prong of a vibrating tuning-fork.
1

Select three convenient points on the wave-line traced out by the

bristle such that an equal number of complete wave-lengths separate
the first point from the second and the second from the third, and
measure the distances between the points by means of a cathetometer.

Let there be x complete wave-lengths between the first and second

points, and let the frequency of the tuning-fork be n. The time

taken in tracing out x wave-lengths is --, so that we have

where s
l
is the distance between the two points, and u the velocity of

the plate at the instant the bristle was touching the first point.
Let $2 be the distance between the second and third points, corre-

/

spending to an equal but subsequent time interval .

Then S
x + S

2
=

(^)
+
^(^)

2

.

Whence S
2
= u(-} + ^,(

X ^\\W J
\ n /

'

S.,
- S

t
= i

Experiment LXXXVIII. Another method of determining the

value of g is represented in; Fig. CXXXIII. A small sphere, A,

which may, conveniently, be of lead or brass, is held in position be-

tween a thin iron spring, B, and one arm of a bent brass rod, C, as

indicated in the figure. The iron spring, B, is fixed at one end, and
is connected to one of the terminals of the primary of an induction-

*If a glass plate be employed it must be allowed to fall upon a suitable pad to

avoid the risk of fracture. The tuning-fork should be suitably clamped to a stand.
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coil, the other terminal of the primary coil being connected, through
the battery, D, to a flat strip of metal, E. The metal strip, E ^hich
must be placed vertically beneath the sphere, A is hinged at one end,

F, while the other end touches a brass pointer, G, which is in

electrical* connection with the brass rod, C. The terminals of the

secondary* coil are connected, respectively, to a tuning-fork, K, of

known frequency, and to a metal drum, L, as shown in Fig. CXXXIII.
An aluminium pointer is fixed to one prong of the tuning-fork, and

a strip of smoked paper is fastened round the drum, so that when the

tuning-fork is set in vibration, and the drum rotated by means of the

handle, M, a waVe-line is traced out on the smoked surface of the paper.

K

[M
Fio. CXXXIII.

The sphere, A, is now released by depressing a key, P, and ex-

citing an electro-magnet, N, which is placed horizontally beside the

bent brass rod, C ; the electro-magnet attracting the iron spring, B,

and pulling it away from A into contact with C. At the instant the

sphere is released, the primary circuit of the induction coil is broken,

and a spark jumps the gap in the secondary circuit produced by the

smoked paper, piercing the paper, and making a white spot on its

smoked surface. When the iron spring comes into contact 'with the

arm of the bent brass rod, C, the primary circuit is again closed, and

another spark pierces the smoked paper on the rotatijirum, making
a second white spot on the wave line which the aluminium poiirier is

tracing out. The falling sphere, A, on striking the metal strip, E,
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breaks contact between the latter and the pointer, G, so that another

spark, pierces the smoked paper, producing a third white spot.

Before releasing the sphere, the vertical distance, S, between its

lowest point and the upper surface of the metal strip, E, is measured

by means of a cathetometer. The time, ,
taken in

falling
this dis-

tance is obtained from the number of wave-lengths between the first

and third white spot on the smoked paper, the frequency of the

tuning-fork being known. Any fraction of a complete wave-length
must be estimated as accurately as possible.

The acceleration of gravity is then calculated from the equation

2.S

139. Pendulum Methods of Determining
"
g

"
: The Simple Pend-

ulum. In order to determine, with accuracy, the acceleration of

gravity at any place, use is made of the pendulum. The two follow-

ing experiments indicate how the determination may be effected, em-

ploying, respectively, a simple and a reversible pendulum.

Determination of
"
g
"
by means of the Simple Pendulum. Experi-

ment LXXXIX. Attach a leaden sphere, of about 2000 gms. weight, to

one end of a long thin wire, and securely clamp the other end of the

wire to a rigid beam. The wire should be about 3 metres in length.

Give a small pendulous motion to the suspended sphere of, say, 20

cms. on each side of its equilibrium position, and start a stop-watch
as the sphere swings through its position of rest, counting

"
nought

"

at the same instant. Count each successive passage in the same

direction, and stop the watch as the sphere swings through its posi-

tion of rest when the count has reached " One Hundred." Make at

least three such determinations, and calculate the mean value of the

time-period, T, corresponding to one oscillation of the pendulum.
Measure the length of the pendulum wire, from the point of

support to the point of attachment of the leaden sphere, by means of

a measuring lath and a metre scale, and measure the diameter of the

sphere with a calliper gauge.

Weigh the leaden sphere, and either weigh the suspension wire

itself, or weigh a measured length of the same wire and then calculate

the weight of the suspension wire from its known length.

Now, a simple pendulum may be regarded as consisting of a heavy

particle attached to the end of a filament which is so thin that its

mass may b treated as negligible, the other end of the filament being
fixed. In accordance with the theory of the simple pendulum, the

time-period, t> of a small oscillation is given by the relation

< t = 27T
/ ,

where / is the length of the
< \ 9

suspending filament, and g the acceleration of gravity.
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Such a simple pendulum represents an ideal state of affairs, to

which any real pendulum merely approximates more or less closely,

for, in the case of anj actual pendulum, the mass cannot be regarded
as located at one point.

When, a ygid body is suspended at a fixed point, and is displaced
from its position of rest, we have a physical or compound pendulum.

In the case of a physical pendulum the time-period, T, of a small

oscillation, is given by the relation

T = 2?!- /-- , where I is the moment of

inertia about the axis of rotation, M the mass of the pendulum, and
a the distance of the centre of mass from the axis of rotation.

If, then, we assume that in our experiment the leaden sphere and
the thin wire move as a rigid body, we can obtain a more accurate

value for g by employing the formula for a physical pendulum, instead

of the one for a simple pendulum.
Since our pendulum consists of a spherical bob at the end of a

uniform straight wire, the time-period, T, of a small oscillation is

given by

m n //i{fr* +7* + rW + 4w2P , .
.,T = 271-J -,ry-- -. -,

'

/. , where % is the

V {m^l + r) + wai}
. g

1

mass, and r the radius, of the leaden sphere, and m
2
the mass, and I

the length, of the suspension wire.

If m
t
be very large compared with w

2 ,
and I be great compared

with r, the time-period is, with sufficient accuracy, given by the

relation

It must, however, be noted that the assumption that the leaden

sphere and the suspension wire form a rigid system is not strictly

justifiable, for the inertia of the leaden sphere causes it to rotate

towards the end of each swing through an angle greater than the

angular deflection of the wire. In consequence, it is preferable to

determine the value of g by employing a rigid body oscillating about

a fixed axis. Thus, if a thin uniform metal rod, of length, /, be al-

lowed to oscillate about an axis perpendicular to its length and pass-

ing through one end, we have

27T
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140. Determination of" g
"
by means of Rater's Reversible Pendulum.

Experiment XC. The value of
cj
can be determined with very great

accumcy by means of the reversible pendulum, tin this method, a bar

pendulum is employed, having two movable knife-edges, from each of

which it may be suspended in turn. r .

The knife-edges are very firmly clamped, and a telescope is ad--

justed so that the edge of the pendulum is accurately visually coincident

with the cross-wires of the telescope when the pendulum is'suspended
and at rest. The time-period about each knife-edge is then determined
in a similar manner to that employed in the preceding experiment.
The two time-periods will, in general, differ from orte another, but

by sliding one of the knife-edges along the bar, and making repeated
trials, a position can be found for which the two-time periods are

sensibly the same. If the time-periods exactly agree, the distance, J,

between the knife-edges is the length of the equivalent simple
pendulum, having the same time-period, t, provided that the knife-

edges lie on opposite sides of the centre of mass of the pendulum, and are

not symmetrically situated with respect to the latter.

In this case g can be determined from the equation

t = 27T

Exact accordance of the time-periods cannot, in general, be ob-

tained, but, as was shown by Bessel, the formula can be transformed
so that the value of g can be calculated with very great accuracy even
when the time-periods about the two knive-edges are only approxi-

mately equal. Bessel's formula requires a knowledge of the distance

of each knife-edge from the centre of mass of the pendulum. This

may be obtained by balancing the pendulum length-wise on a narrow

glass rod, and measuring with a metre scale from each knife-edge to

the point of contact between the glass rod and the pendulum.
The distance between the knife-edges is then accurately measured

with a metre scale, or, better, by means of a cathetometer.
In accordance with the theory of the physical or compound

pendulum, the time-period, T, of a small oscillation about any axis of

rotation is given by the relation

T =3 27rA /^p
-

, where I is the momentr /
*

\M.a.0'
of inertia about the same axis, M the mass of the pendulum, and a
the distance of the axis from thu centre of mass.

If K be the spin-radius with respect to the centre of mass, we
have

I = M(K 2 + a2
).

Whence

a.jr
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Now, let XY (Fig. CXXXIV.) represent a rigid body of any shape,
and let C be its centre of mass, and Si and S2 two parallel axes of

rotatio'n on opposite feides of C. If T
1
and T

2 be the respective* time-

periods about the axes S
x
and S

2 ,
we have

47T2

and T
2
2a

2
= (K

2 + a
2
2
), where a

x
and a2 are

the respective* distances of Sj and S
2
from the centre of

mass.

Eliminating K ,
we have

Now, let S
a
and S

2
be chosen so that T

l
~ T

2
=

(say)

J-g.

Then, provided a
x

is not equal to a
2 ,
we may divide

both sides of our equation by (a^
- a

2), and it follows

that
CXXXIV.

4?r2

T.
2 = -(ai + ^)-

If, further, SjCS^ (Fig. CXXXIV.) be a straight line, we have

Whence

Thus S
1
S
2

is the length of a simple pendulum having the same
time-period, T

e , i.e. it is the length of the equivalent simple
pendulum.

If the time-periods T
l
and T

2
be not equal, we may rewrite the

equation

in the equivalent form

^a^'-fo- *)

Whence

yK2 -
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This last equation is strictly accurate, but can only be satisfactorily

employed when T
t
and T2

are nearly equal, since the quantity a - a
2

in the^denominator cannot be measured with fery great accuracy.

Thus, in determining the value of g by means of Kater's pendulum,
the time-periods about the two knife-edges should differ tyy less than

1 per cent, before the adjustment is considered satisfactory and

Bessel's formula employed.
The quantity a

l + a.2 is equal to the distance between the knife-

edges, and can be measured with great exactness.

An alternative method is to plot the time-periods about each

knife-edge against the respective distances between the latter, one

knife-edge being kept fixed, while the position of the other is varied.

The co-ordinates of the point of intersection of the two curves

correspond, respectively, to the distance between the knife-edges when
the time-period is the same about either, and to the value of that

period, and g can then be determined from the equation

t = 2flTA /-.

141. Corrections. In the determination of y, by means of the

pendulum, a number of corrections must be applied in all cases where

great accuracy is required.

Thus, owing to the uniform rotation of the earth on its axis, bodies

on its surface have a centripetal acceleration, which has a maximum
value at the equator, and is zero at the poles, and, in consequence
of this centripetal acceleration, the apparent weiyJit of any body as

determined, for example, by means of a spring balance is less than

the gravitational force with which it is pulled towards the centre of

the earth (i.e. is less than its true weight).
It follows that a determination of the acceleration of gravity at

any place only gives the acceleration relative to the surface of the

earth at that place, and not the value relative to the centre of the

earth. It is therefore necessary to introduce a correction for the

variation in the value of g occasioned by the difference in the centri-

petal acceleration in different latitudes.

Again, the earth is not truly spherical in form but is very nearly
an oblate spheroid, the value of the ellipticity being nearly ^J p-.

The

equatorial radius therefore exceeds the polar radius by, approximately,
thirteen miles, and, in consequence, a body at the equator is farther

from the centre of mass of the e^rth, and experiences a smaller gravi-
tational pull, than a body of equal mass situated near the poles.

The value of g also varies with the height above sea-level, the

variation being inversely as the square of the distance from the'centre

of mass of the earth as soon as a height is reached at which the effect

of local variations ih the. configuration of the surface cafi be neglected.
It was shown by Newton that the resultant gravitational force
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exerted on a unit mass inside a uniform spherical shell is zero, and

that, in, consequence, the gravitational attraction at any point inside a
uniform sphere is directly proportional to the distance from the centre

of mass. This result, however, will not apply to the earth, the

density oi which increases towards the centre, and it is found that, at

iirst, the gravitational attraction also increases With the depth below
the surface, being greater at the bottom of a mine, for example, than
at the surface level.

In determining the value of g corrections must also be applied for

the effect of the air on the motion of the pendulum ;
for the ampli-

tude of the arc*of swing ; for the curvature of the knife-edges ; and for

the yielding of the support. The air effect itself may be regarded as

the resultant of three separate actions. Thus, in accordance with the

principle of Archimedes, the weight of the pendulum is effectively
diminished by the weight of the air displaced. Again, as was shown

by Du Buat, the pendulum carries along some of the surrounding air,

so that the effective mass of the pendulum is increased. The viscosity
of the air also slowly diminishes the amplitude of the arc of swing,
but, in general, has a negligible effect on the time period,

Any variation in the temperature will, of course, affect the length
of the pendulum, and also the magnitude of the corrections to be ap-

plied for the effect of the air. In the case of small pendulums, it is

often convenient to enclose them in a chamber which can be ex-

hausted and maintained at a constant temperature.

142. Gravitation. It was shown by Newton that the gravitational
force exerted on a unit mass at any point outside a sphere is the same
as if the whole mass of the sphere were concentrated at the centre,

provided the density of the sphere be uniform at all points equidistant
from the centre. This result may be applied to the earth, since the

latter is very approximately a sphere, the density of which may be as-

sumed to be uniform at any constant distance from the centre.

Newton also proved, from a study of the motion of the moon, that

the gravitational force with which a body at the surface of the earth is

pulled towards the centre is merely a particular case of the general
law of universal gravitation, in accordance with which "

every particle
in the universe attracts every other particle with a gravitational force

in the line joining them proportional to the product of their masses
and inversely proportional to the square of the distance between
them." Thus, if Wj. and w2 be the masses of any two particles, at a
distance d from one another, the attractive force, F, on either is

given by the equation

where G is a constant, termed the Newtonian C6ntffont of Gravita-
tion.
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It is evident that G is numerically equal to the attractive force on

either of two unit masses at unit distance apart.

Sfiice force is measured by the product of nlass into acceleration,

we have

and, therefore % = G . ^
2

,

where a
L
is the acceleration of m {

towards w
2

.

fc

If, then, m2
be the mass of the earth, and m^ the mass of any

body dropped near its surface, we have

where y is the acceleration of gravity, and r the radius of the earth.

Knowing the dimensions of the earth, and the value of
</,

it only
remains to determine one of the quantities G or w2 in order to calcu-

late the value of the other.

143. Determination of the Mass of the Earth. The first attempt
to compare the mass of the earth with that of some natural mass,
such as a mountain, was made by Bouguer, who, in 1740, compared
the horizontal attraction of Mount Chimborazo on a plumb-bob hung
near the side of the mountain with the vertical attraction of the earth

on the same body.
A similar investigation was carried out by Maskelyne, in 1774, at

Mount Schiehallion in Perthshire. In the Schiehallion determination

a telescope was erected first at a site on the southern slope of the

mountain, and the angular distance of several stars from the zenith,

when they crossed the meridian, was measured. The telescope em-

ployed for this purpose was a zenith sector, the telescope being pivoted
about a horizontal east and west axis near the object-glass end, and

carrying a graduated arc and plumb-line near the eye-piece end. The
instrument was next moved to a site on the northern slope of Mount

Schiehallion, and the angular distance of the same stars from the zenith,

when they crossed the meridian, was again measured (Fig. CXXXY.).
c. Now, the direction of any given star, when crossing the meridian,
was sensibly the same at both sides of the mountain. It followed that

the difference between the angul^* distance of any star from the zenith,

as observed on the northern and southern slopes, was double the de-

flection of, the plumb-line at either side due to the attraction of the

mountain, allowance being made for the change in the vertical on
either side of the mountain occasioned by the curvature of the earth.

The change in ffrfe Vertical due to the curvature of th6 J earth was ob-

Hined oy measuring the distance between the northern and southern
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sites, and dividing this distance by the radius of the earth. In the

Schiehallion determination, the curvature change was, approximately,
40 seconds of arc, ^yhereas the observed deflection of a star,* when
viewed from the northern and southern sides of the mountain, was

nearly 12 seconds greater, so that the deflection, 0, of the plumb-line on
each sidet clue to the attraction of the mountain, was, approximately,
6 seconds of arc.

A careful survey of the mountain was next carried out, and the

distribution of mass throughout the mountain estimated by means of

a geological examination.

Zenith

North

FIG. CXXXV.

It was then calculated, in accordance with the general law of

gravitation, that the horizontal force, /, acting on the plumb-bob, due

to the attraction of the mountain, was the same as if the whole mass,

m
l9

of the mountain were at a distance, d. The vertical force, P, due

to the attraction of the earth, was the same as if the whole mass, w2 ,

of the earth were concentrated at its centre (vide 142).
'

m
f d?

Whence tan = 4 =
,
r being the radius of the earth.

The mass*of the earth was then deduced, and ite mean density

found to be approximately 4/5 times that of water, A subsequent
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survey of Mount Schiehallion raised the value for the mean density

of the earth to approximately 5 gms. per c.c.

Several other investigations have been carried out in which the

mass of the earth has been compared with natural masses, such as

mountains, or portions of the earth's crust. The density,
of such

natural masses cannot, in general, be ascertained with muckaccuracj,
so that only an approximate value for the mass of the earth can thus

be deduced.

144. Determination of the Newtonian Constant of Gravitation ;
the

Torsion Method. The Rev. John Michell first suggested* an experiment

in which the attraction between two pairs of leaden spheres could be

directly measured, He constructed an apparatus for this purpose,

but died without having had an opportunity of carrying out the ex-

periment.
Michell's apparatus was given to Cavendish, and the latter, after

making certain modifications, carried out the experimental work in

1797 and the following year.

Cavendish employed a wooden torsion rod, 6 feet in length, from

the ends of which were hung two small leaden spheres, 2 inches in

diameter.

The torsion rod, which carried a vernier at each end, was sus-

pended in a horizontal position by means of a torsion wire, approxi-

mately 39 inches in length, and was protected from air currents by a

narrow wooden case. The verniers at each end of the rod moved

close to fixed ivory scales, without touching the latter, the position of

the torsion rod being observed by means of telescopes passing through

holes in the walls of the room in which the apparatus was set up.

This room was kept constantly closed in order that draughts might

be avoided. Two heavy leaden spheres, 12 inches in diameter, were

suspended by vertical copper rods from the ends of a horizontal beam.

This beam was pivoted to the ceiling at a point in line with the axis

of the torsion-wire, and could be rotated by means of ropes passing

through holes in the walls of the room. The two heavy leaden spheres

couldthus be brought up on opposite sides of the small leaden spheres

hanging from the ends of the torsion rod, and the length of the verti-

cal copper rods was so adjusted that the centres of all the four leaden

spheres were in the same horizontal plane.

In order to carry out a determination, the heavy leaden spheres

were swung round until they were close to, and on opposite sides of,

the small spheres, as shown a/ A and B in Fig. CXXXVI. The

torsion rod carrying the small leaden spheres was allowed to oscillate

through a,very small angle, and its position of rest was deduced
tby

observing the extent of the swings corresponding to three consecutive

turning points, in a similar manner to that employed in weighing by
oscillations.

** * *

The heavy leaden spheres were next swung round so as to occupy
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positions at the same distance from the small spheres, but on the

other sides as shown at A' and B' in the figure and the new posi-

tion of rest of the krsion rod determined.

The angular distance between the two positions of rest of the tor-

sion rod,was equal to twice the angle of twist, 0, due to the attractions

,f the leaden spheres in either position. The torque, C, exerted by
the torsion wire per unit angle of twist was determined from the

moment of inertia and time of oscillation of the torsion rod (vide

Experiment LXXXIIL, 132).

Let TMj
= the mass of each small leaden sphere,

w
2
= the mass of each large leaden sphere, and

d = the distance apart of the centres of the large and small

spheres when the angular deflection of the torsion rod is 0.

FIG. CXXXVI.

Then, the attractive force, F, acting on either a small or a large

sphere is given by the equation

F = G . 5 ^, where G is the Newtonian
d2

constant of gravitation.
Let a = the distance between the centres of the two small leaden

spheres.

Then, the torque applied to the torsion wire due to the attraction

exerted by the pair of large spheres on the pair of small spheres is

given by the equation

. ..
The torque exerted by the torsion wire when twisted through an

angle is equal to C . 0.
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VTTI n A n m
\
mzWhence C . = G . -vs
a*

After introducing various corrections, Cavendish, as tho result el

twenty-nine determinations, obtained the mean value

G = 6-562 x 10 - 8
.

If w2 he the mass of the earth, we have

g = 1_?
f
where # is the acceleration of

gravity, and r the radius of the earth (vide 142).
If A be the mean density of the earth, we have

4m = Trr8 . A.

Whence

//
=

3
. TT . r . A . G.

3.0
.'. A = -

J
-.

4.7r.r.G

Employing Cavendish's mean value for G, and substituting in the

right-hand side of the last equation, we obtain a value of 5'448

gms./c.c. for the mean density of the earth.

The torsion method of Cavendish for determining the Newtonian
constant of gravitation has been employed by several subsequent
investigators ; notably by Boys in 1895. Boys employed an ex-

ceedingly fine quartz fibre in place of the torsion wire used by
Cavendish, and was thus able, without loss of sensitiveness, to reduce

the whole torsion apparatus to a very much smaller size, which
allowed it to be kept at a more uniform temperature, and so lessened

the disturbance due to air currents. He obtained the mean value

G = 6-6576 x 10- 8
.

Whence A = 5*5270 gms./c.c.

145. Determination of the Newtonian Constant of Gravitation by
Means of the Common Balance. The Newtonian constant of gravita-
tion has also been determined by means of the common balance.

The balance was first used for such a determination by von Jolly, in

1878, and, subsequently, by Poynting, in 1893, and *>y Eicharz and

Krigai-Menzel, in 1898.
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Bicharz and* Krigar-Menzel employed a balance with two scale-

pans suspended from each end of the beam, one scale-pan being near
the beam while the other scale-pan hung a little more tha^ two
metres lower down. A spherical weight of one kilogramme was
placed in the upper right-hand scale-pan, and an equal spherical
veight in tlie lower left-hand scale-pan, and the deflection of the

pointer was observed. The right-hand weight was then transferred
from the upper to the lower right-hand scale-pan, and the left-hand

weight from the lower to the upper left-hand scale-pan, and the de-
flection of the pointer was again observed.

It was found that the right-hand side gained 1*2453 mgm. in

weight over the left-hand side on thus changing the positions of the

spherical weights, so that a single kilogramme gained 0*6227 mgm.
when lowered approximately 2 metres towards the centre of the
earth.

A leaden parallelepiped, 2 metres in height, and 2*1 metres square,
was next built up between the upper and lower scale-pans, narrow

passages being left for the wires from which the lower scale-pans
were suspended, and, on repeating the preceding observations with
the 2 kilogrammes, it was found that the left-hand side gained
0*1211 ingm. in weight over the right-hand side, so that the attraction
of the leaden parallelepiped produced a difference of 1*3664 mgm.

Since the attraction of the leaden parallelepiped acted in opposite
directions on weights in the upper and lower scale-pans, it followed
that the attraction on each of the kilogramme weights, due to the

parallelepiped, was one-quarter of this difference, viz. 0*3416 mgm.
The mean density of the earth could then be calculated by com-

paring the attraction of the earth on a kilogramme (viz. 106
mgm.),

with that exerted by the leaden parallelepiped, the mass of the

parallelepiped and its distance from the kilogramme being known.
Richarz and Krigar-Menzel obtained the mean values

G - 6*685 x 10 ~ 8
;

A = 5*505 gms./c.c.

146. The Properties of Gravitation. Various investigations have
been carried out on the properties of gravitation. These investigations
indicate that gravitational attraction is quite independent of the

chemical composition and physical condition both of the attracting
masses and of the intervening medium, being solely conditioned b ,

the masses of the attracting bodies and the distance between them.

20
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The Joule-Thomson Effect. The thermal phenomena accompanying
the free expansion of gases were investigated by Joule and Thomson in the

following manner :

A stream of gas, at constant pressure, was driven through a long copper
spiral immersed in a constant temperature water-bath, and was then allowed

to flow through a porous plug of cotton wool, or silk fibrethe wool, or fibre,

being packed between two perforated brass discs inside a boxwood cylinder.
After passing through the porous plug, the gas attained atmospheric pressure,
and flowed round a sensitive thermometer, so that any change in the tempera-
ture of the gas could be directly observed.

Provided that the difference of pressure between the two sides of the

porous plug were small, there was no sensible gain in the velocity of the

stream of gas on flowing through the porous plug, and, therefore, no gain in

kinetic energy arising from an increase in the translatory energy of the gas
as a whole.

When, however, larger differences of pressure were employed, Joule and
Thomson found that the temperature of the gas, after passing through the

porous plug, was lower when measured near to the surface of the plug than
when measured at points farther away. Under these circumstances the gas
streamed through the porous plug with sensibly increased velocity, the corre-

sponding increase in kinetic energy, duo to the increase in the translatory

energy of the gas as a whole, necessitating an equal decrease in the molecular

kinetic energy of the gas, and a consequent fall in temperature. After

passing the plug, the gas was soon reduced to a state of steady flow, owing
to viscosity and to friction with the walls of the tube, the translatory energy
of the stream being reduced to approximately its original value provided the

difference of pressure between the two sides of the plug wero not excessive.

The cooling effect which occurred in the u
raj,ids" near the surface of the

porous plug, due to the increase in the translatory energy of the stream, was,

consequently, eliminated at points farther away where a steady state of flow

had been attained.

Joule and Thomson, however, found that there was an additional thermal
effect accompanying free expansion due, in part, to a change in the internal

or intrinsic energy of the gas, and, in part, to the gas not strictly obeying
Foyle's Law.

The nature of this thermal effect may be readily understood from the

following simple illustration :

Let AB (Fig. CXXXVII.) represent a long cylindrical pipe, of unit

cross-section, closed at C by a diaphragm with a small aperture, D, and let

air be forced through the aperture by the frictionless piston, E, the pressure
of the air between. E and being constant and equal to Px . After passing

through the aperture let the air expand and push forward the frictionless

piston, F, the pressure of the air, P2 ,
between F and C being constant and

less than PA .

306
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If the volume of unit mass of air between E and be Va ,
the work done

on unit mass of air in forcing it through the aperture, D, will be equal to

P]V].
"

This work is expended in overcoming friction in the aperture, and, if

tho walls of the cylindiieal pipe, AB, and the pistons, E and F, be assumed
non-conductors of heat, the heat generated in the aperture will be absorbed

by the air when a steady state of temperature has been attained.

If, novr, the volume of unit mass of air between F and C be V,j, the work
done by unit mass of air in expanding and pushing forward the piston, F,
will be equal to P2V2 .

In the case of any gas which obeys Boyle's Law, PI^ = P2V2 ,
and, con-

sequently, the heat generated in the aperture and absorbed by the gas is

equal to the heat withdrawn from the gas and converted into work during the

expansion. In this case, therefore, the total energy possessed by the gas is

unchanged by passing through the aperture and expanding from Vj to V2 .

If, then, the temperature of the gas (when measured at a sufficient distance

from the "rapids" near the aperture D), be found the same on both sides of

the diaphragm C, it follows that no heat energy has been absorbed during the

expansion in doing work against internal molecular cohesive forces. If, on
the other hand, tho temperature of the gas be lowered by the expansion it

follows that some work has been done against molecular cohesive forces the

FIG. OXXXVII.

gain in potential energy due to the increased distance between the molecules

being accompanied by a corresponding decrease in the kinetic energy of

molecular translation and a consequent fall in temperature.
In the case of a gas which does not obey Boyle's Law, the product PV

may either increase or decrease with decrease in the pressure, P.

If Pi"V\ <P'jV"2 ,
the work done on the gas in forcing it through the aperture

is less than the work done by the gas during the expansion, and, conse-

quently, the total energy possessed by the gas is diminished, so that even
if molecular cohesive forces be absent a cooling effect will be produced. If,

in addition, work be done against molecular cohesion the cooling effect will

be increased.

If P]V!<P2V2 , the total energy possessed by the gas is increased by
passing through the aperture and expanding, so that, in the absence of cohe-

sive forces, a heating effect will be produced. This heating effect will be re-

duced if work be done against molecular cohesion, and may even be replaced
by A cooling effect *

Thus, the total cooling or heating effect observed is the algebraic sum of

the cooling due to the work done against molecular cohesive forces, and the

cooling or heating effect due to the variati jn in PV with the pressure.
Joule and ^Thomson found that with air, for example, a cooling effect of

approximately~0 '9 0. was obtained when the air, under a pressure of about

1 The same considerations apply, mutatis mutandis, if it be assumed that re-

pulsive forces exist between the molecules
;
such molecular repulsion leading to a

diminution in pot jntial energy, and a corresponding increase in kinetic energy,
on expansion.

20*
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130 inches of mercury, and at a mean temperature of 7 0., was forced

through the porous plug, and allowed to attain the atmospheric pressure.

Adopt'ag Amagat's results for the increase in the product P.V. corresponding
to this fall in pressure, it was calculated that the cooiing effect due to the in-

crease, in P.V. was approximately 01 C., so that the additional cooling effect

of about 0'8 C. was due to work done against molecular coheshn forces.

In the case of carbon-dioxide (a less perfect gas) a considerably

greater cooling effect was obtained, which was shown to be mainly due to the

work expended in separating the molecules farther apart.
With hydrogen a very small heating effect was obtained, of approximately

the value calculated from Amagat's results for the decrease in the product PV
corresponding to the given fall in pressure. In the case of hydrogen, there-

fore, at ordinary temperatures, the molecular cohesive forces must be very
small.

Joule and Thomson also found that the cooling effect obtained with gases

such as air and carbon-dioxide diminished with rise in temperature (as was

to be anticipated from the fact that the decrease in P.V. with rise in pres-

sure becomes less marked as the temperature is raised) and, further, that at

a certain-temperature the cooling effect disappeared, being replaced at higher

temperatures by a heating effect. The temperature at which the transition

occurs is known as the temperature of inversion of the Joule-Thomson effect.

It has been shown, in recent years, that there is for most, if not all, gases
also a minimum temperature at which cooling is produced by expansion.

Thus Porter, in 1906, pointed out that the equations of state such as

those of van der Waals and Dieterici indicated that, if there were any in-

version effect at all, there should be two inversion temperatures for any one

pressure, and, further, that above a certain pressure heating should result,

when a gas expanded through a throttle or similar aperture, for all

temperatures.
Jenkin and Pyc, in 1913, showed that a minimum inversion temperature

occurred, in the case of carbon -dioxide, between - 20*7 C. and - 31 C.,

and by plotting their data Porter showed that the temperature should cor-

respond to approximately
- 24 C., the pressure of the compressed carbon-

dioxide being about half the critical pressure.

APPENDIX B.

The Theorem of Le Chatelier. When the temperature of any system
in a state of equilibrium is varied, a change takes place within the system

which can be qualitatively foretold by means of van't HofFs Law of Mobile

Equilibrium (1884).
In accordance with this law we may state that "on raising the tempera-

t^re of a system in chemical or physical equilibrium, that reaction takes

place which is attended with an absorption of heat
; whereas, on lowering

the temperature, that reaction takes place which is attended with an evolu-

tion of heat."

It was shown by Robin (1879), that " on increasing the pressure exerted

upou a system in chemical or physical equilibrium, that reaction takes place

which is attended with a diminution in volume ; whereas, on decreasing the

pressure, that re&etion takes place which is attended with an increase in

volume/'
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These two laws, as was shown by Le Chatelier, are applicable to all

systems ; they are both covered by the more general Theorem of Le Chatelier

(1888), which states that :
.

'* When any systei.. in equilibrium is subjected to a constraint b> which

the equilibrium is shifted, a reaction takes place which opposes the constraint,

i.e. one by which its effect is partially destroyed."

The theorem of Le Chatelier is of the widest applicability, and covers

all chemical and physical changes of equilibrium. Thus, a rise of tempera-

ture favours endothermal reactions, and a fall of temperature exothermal

reactions, whereas change of temperature is without influence on the equili-

brium of thermally neutral reactions. The dissociation of phosphorus

pentachloride, for example, is accompanied by an absorption of heat

(PC1 + 30,OOOcals.^P01 3 + C12), and the degree of dissociation is, accord-

ingly, increased by raising the temperature.

Again, the solution of anhydrous sodium sulphate in water is attended

with an evolution of heat, whilst hydrated sodium sulphate dissolves with

an absorption of heat : in the former case the solubility diminishes witk

rise in temperature ; whereas, in the latter case, the solubility increases.

Thus, any substance which absorbs heat in dissolving will become more

soluble as the temperature is raised.

As was pointed out in 91, a liquid film when stretched adiabatically

becomes colder, since the surface tension of any liquid diminishes with rise

in temperature.

When ice melts, the water obtained occupies a smaller volume than the

ice from which it was formed : it is found, in agreement with Le Chatelier's

Theorem, that the melting-point of ice is lowered by an increase of pres-

sure. Paraffin wax contracts on solidifying, and its melting-point is raised

if the pressure be increased.

The degree of dissociation of the vapour of phosphorus pentachloride

(PCl5 ^tPCl3 + C12) is increased by reducing the pressure, since the dis-

sociation is accompanied by an increase in volume ;
the degree of dissocia-

tion may, similarly, be increased by diluting the vapour with any indifferent

gas. A change of pressure will have no effect on the equilibrium of a system
the volume of which is unaffected by a variation in the position of the equili-

brium point. Thus the dissociation of hydrogen iodide into hydrogen and

iodine (2HI^ H2 + I2) is unattended by any change in volume, and, in con-

sequence, the equilibrium position is unaffected by variations of pressure.

APPENDIX C.

Units and Dimensions. In order to describe any physical quantity we

must specify the unit employed, and also the numerical ratio between the

quantity and that unit.
.

It has been found sufficient, in the science of mechanics, to select three

fundamental units, all other units being derived from these three, and being

known, in consequence, as derived units.
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The three fundamental units usually selected are Length, Mass, and

Time, and all other units are defined in terms of these fundamental units.

Thus, for example, unit volume is defined (arbitrarily) as the volume of a

cube the edge of which is of unit length ;
unit velocity as that possessed by

a body which travels unit distance in unit time ;
unit force as that which

acting on unit mass imparts fco it unit velocity in unit time ; unit work as

that done by unit force when the point of application of the force moves un* :

distance in the direction of the force.

The magnitude of any derived unit will, evidently, depend upon the

values assigned to the fundamental units. If, for example, the unit of

length were doubled, the unit of area (defined, arbitrarily, as the area of a

square having a side of unit length) would become four times as large, and

the unit of volume eight times as large : if the units of length, mass, and

time were all doubled, the units of velocity and force would remain un-

changed in magnitude, but the unit of work would be doubled.

Since an area is of the same dimensions as the square of a length, it is

said to be of the second dimension in length. This may be expressed, m
the form of an equation, as follows :

[Area] = [L
a

].

The dimensions of a velocity nre + 1 in length, and - 1 in time, since

velocity is measured by dind'hiy a length by a time, or :

[Velocity]
- [L . T- 1

].

The dimensions of other derived units may, similarly, be written in

equabional form. Thus, to give merely a few examples :

[Volume
[Acceleration

[Force

[Work;
[Young's Modulus'

L . T- a

M.L
M.LM1-

M

. T-3
],

.L'.T-"],

. L- 1 !
1- 2

].

A knowledge of dimensions is often of use, both in checking the accuracy

of formulas, and in determining their form.

Consider, for example, the case of a beam, supported at its ends, and

loaded in the middle ( 134). Let us suppose that, in our previous investiga-

tion, we had erroneously obtained the equation

II =
4Y6W

for the depression, H, of the middle point of the beam.

Now, the dimensions of the two sides of the equation must be identical,

m- f
M.L.T-.L 1

LL|J
~
[M . L- 1

. T- 2
. L37L J

or [L] = [L-
1

].

The above equation for the depression, H, is, in consequence, incorrect.

The use of a ^novdedge of dimensions for constructing physical formulae

is comm- nly known as the '* Method of Dimensions."
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Let us, for example, construct the formula for the time of oscillation of a

simple pendulum, and let us assume that the time-period, /, is only depen-
dent upon the mass, m, of the pendulum bob, the length, 7, of the suspend-
ing filament, the acceleration of gravity, </, and the angle, 0, of the arc of

oscillation.

Now, since the ciicular measure of an angle is obtained by dividing a

length by a length, 9 is of zf.ro dimensions.
We may, therefore, write

where k is a numerical quantity (having no dimensions), which may, or may
not, be constani.

The dimensions of the two sides of this equation must be identical, i.e. :

[T] - [M* . L? . (L . T- 2
)*],

- [M*. Ly+*. T^].

Since the dimensions of the left-hand side of the equation are + 1 in

time, and zero in both mass and length, we have

(.-

=
o,

\y
+ ' =

o,

I
- fc = i.

Whence, a = -
j, and y - 4 j.

The formula for the time-period is, therefore--

k\ .

></

The method of dimensions, however, gives no information about the
numerical factor, /r, which, in this case, has the constant value ^TT, provided
the angle, 0, of the arc of o&cilJation be small.

As another example of the method of dimensions we will construct the
formula for the time of vibration of a spherical liquid drop, under the in-
fluence of surface tension ( 103).

If it be assumed that the time of vibration, S, is only dependent upon
the radius, , of the spherical drop, and upon the density, p, and surface

tension, T, of the liquid, we may write

S = K.a*. p
y
.T*,

where K is a numerical quantity without dimensions. Since the A" ic: js
of the two sides of this equation must be the same, we have 1

[T]
= [LMM . L-vMM . T-V],
= [L*-

3*
. M^ T- 8

*].

1 The dimensions of p are + 1 in mass and - 3 in length, since density is
measured by dividing a mass by a volume ; the dimensions of Tare 4- 1 in mass
and - 2 in tir~e, since surface tension is measured by dividing a force by a
length.
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The dimensions of the left-hand side of the equation are -f 1 in time,
and zero in both mass and length, so that

tx - 3y = 0,

\y + z -
0,

I

- 2z = 1.

Whence, z -
J, y = + J, and x = + ^.

The formula for the time of vibration is, therefore

Lord Rayleigh showed that the time of gravest vibration, S, of a

spherical liquid drop, under the influence of surface tension alone, was given
by the relation

It is evident that all quantities upon which the quantity under considera-

tion is dependent must be carefully included when constructing a dimensional

equation.
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