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PREFACE.

Tais Text-book is based upon a course of a hundred lectures
delivered at His Exalted Highness The Nizam’s College, Hydera-
b4d, to students working for the B.A. Degree Examination of
the University of Madras.

The order followed is the reverse of that adopted in most
Text-books dealing with the Properties of Matter.

Commencing with the First Law of Thermodynamics, an
extension is made to the more general Principle of the Con-
servation of Energy, and hence to the metaphysical conception
of the Identity of Energy throughout its various transformations.

Since our knowledge of mechanical systems is, in general,
more complete than that relating to other modes of energy, a
logical sequence leads to the study of the Kinetic Theory of
Matter, the consequences of which can be most fully developed
when applied to matter in the gaseous state.

The Properties of Gases are, therefore, next investigated
from the standpoint of the Kinetic Theory, and the continuity
of the gaseous and liquid states supplies the natural transition to
a detailed study of liquids. The Properties of Solids are dealt
with last.

It is thought that this method of treatment is simpler, and
follows a more natural sequ?ce than is attained by commencing
with a study of the Properties of Matter in the solid state—
and proceeding, in the reverse order, to a consideration of
Liquids and Gases. Partidular emphasis has been laid upon
the experimental treatment of the subject, without which most
of the time spent in the study of any branch of Physical Science
is wasted. Use has been made, whenever possible, of original
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vi PREFACE

papers. In agdition I wish to acknowledge my indebtedness
to the following works: Jean’s Dynamigal Thepry of Gases,
Preston’s Heat, Meyer's Kinetic Theory of Gases, Poynting and
Thomson’s Heat, and Properties of Matter, Travers’ Study of
Gases, Edser's Heat, and Genéral Physics, Young’s Stoichio-
metry, Liewis' Physical Chemistry, Findlay’s Phase Rule,
Darling’s Liquid Drops and Globules, Boys’ Soap-bubbles.

I am also indebted to Messrs. F. E. Becker & Co., Hatton
Wall, London, E.C. 1, for their courtesy in lending a number
of blocks for printing illustrations—the remaining diagrams
have been reproduced from original drawings.

My best thanks are also due to my sister, Miss Veronica
McEwen, for kindly revising the proofs.

B. C. McEWEN.

H.E.H. tar Nizam’s COLLEGE,
HyDERABAD, DECCAN, INDIA,
November 80, 1922,
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CHAPTER L
THE FIRST LAW OF THERMODYNAMICS.

1. The Nature of Heat.—It has been known from antiquity that two
bodies when rubbed together hecome warmer. Dassing over the
earlier theories as to the material or quasi-material nature of heat—
which have, now, but an historic interest—and recognising heat as
one of the forms of energy, we may express the above-mentioned
phenomenon in scientific language by stating that : “ Whenever work
is done against friction, heat is produced.” Further, the researches
which are described in this chapter will be found to show that the
amount of heat produced always bears a fixed ratio to the amount of
work that has been transformed.

2. Mayer's Researches.—The rate of exchange between mechanical
energy and heat energy—or the * Mechanical equivalent of heat"—
was first determined by J. R. Mayer, of Heilbronn, in 1842, by calcu-
lation from the specific heats of air at constant pressure and constant
volume.

Experiment shows that the specific heat of any gas at constant
pressure exceeds its specific heat at constant volume. On the as-
sumption that the excess of heat energy required in the former case is
entirely used in doing the work of pushing out the surrounding atmos-
phere during expansion, and that none is absorbed in doing work
against internal cohesive forces, we can calculate the mechanical
equivalent of heat by equating the external work done during the ex-
pansion to the difference between the two specific heats. Now the
molecular volume of any gas—that is, the volume occupied by the
molecular weight of the gas expressed in grammes—is, approximately,
22,380 c.cs. at 0° C. and 76 cms.

If the coefficient of expansion of the gas at constant pressure be
taken at the mean value of 0003665 (Regnault), then, on raising the
temperature to 1° C. the molecular volume will become

22,380(1 + 0:003665) c.cs., i.e. 22,462 c.cs.

Hence the expansion is 82 c.cs.
Since a pressure of 76 cms. of mercury is equal to 76 x 13:596
x 981 dynes per sq. cm. (ie. 1,013,800 dynes/cm.?), the work done
by the gas in expanding against this pressure = 82 x 1,013,800 ergs
= 831 x l,Ojgprgs.
1



2 THE PROPERTIES OF MATTER

Applying this result to air, we may, according to Witkowski, take
the specific heat of air at constant pressure, C,, ag, 0:2372. This
number expresses the heat in calories required to raise 1 gm. of air
1° C. at constant pressure (vide Cap. IIL.). The specific heat of air at
constant volume, Cy—which also refers to unit mass of the air—may
be determined from a knowledge of the ratio of the specific heats, or
directly by means of Joly’s steam calorimeter (vide Cap. ITL). We
shall take the value Cy = 01715 obtained by Joly’s direct determination.

Multiplying these results by 28:88—the molecular weight of air—
we obtain the values of the molecular heats at constant pressure, Cm,
and constant volume, Cmy respectively.

Thus Cm, = 02372 x 28:88 = 6:85 cals.

and Cmy = 01715 x 2888 = 4:95 cals.

Therefore the difference between the molecular heats A = 1:90 cals.
Or Cmy — Cmy = 1:90 cals.

Now this quantity of heat is equivalent to the external work done by
the molecular volume of air during its expansion, i.e. to 8:31 x 107 ergs.
8:31 x 107

1-90

= 42 x 107 ergs.
The actual value found by Mayer, making use of the data available in
1842, was 36,500 cm.-gms., which corresponds to 3:6 x 107 ergs.

It is clear, as already stated, that this method of calculating the
mechanical equivalent of heat is only permissible on the assumption
that no energy is absorbed in doing work against internal molecular
cohesion, or, at any rate, on the assumption that the quantity of
energy so absorbed 1s negligibly small. In 1845 Mayer published a
second paper in which he quoted an experiment by Gay-Lussac to
justify this assumption. Gay-Lussac, in this experiment, allowed air
at atmospheric pressure to expand from a globe into another equal
globe which had previously been exhausted, and he found that the
cooling produced in the first globe was equal to the heating effect
observed in the second globe. Mayer pointed out that the cooling in
the first vessel was due to the work done by the remaining gas in
compressingthe gas into the second vessel, and that the heating produced
in the second vessel was due to the work done on the gas that had
entered during its subsequent compression. Since the heat gained in
the second vessel equalled the heat lost in the first, Mayer concluded
that the mere expansion of air, without doing external work, does not
produce any change of temperature—and, consequently, that no heat
energy is absorbed during the expansion in doing work against internal
cohesive forces.

The later researches of Joule and Thomson (Lord Kelvin), on the
passage of a gas through a porous plug have, however, shown that
some work is done against internal forces in the separation of the

Therefore the mechanical equivalent of 1 calorie = ergs
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molecules, or that there is a change in the intrinsic energy of a gas on
mere expansiqn, and that, therefore, Mayer’s assumption is only an
approximation (vide Appendix A). But the magnitude of the cohesive
forces in a gas at the ordinary density is so small that the accuracy of
the calculation of the mechanical equivalent of heat from the external
work done by the gas during expansion at atmospheric pressure is not
sensibly affected. When a gas, however, is subjected to the combined
influence of high pressure and low temperature it must be noted that
a large proportion of the molecules are brought close together—and
that, consequently, considerable cohesive forces ,will be exerted—in
which case Mayer’s assumption ceases to be justified. Under such
conditions, if expansion occur, heat energy must be absorbed to do the
work of separating the molecules against their cohesive forces, and, in
general, a marked cooling of the gas results.

3. Joule’s Researches.—Dr. Joule's researches on the rate of ex-
change between mechanical energy and heat energy were commenced
in 1840, and in 1843 he published an account of his first experiments
on the mechanical equivalent of heat. It should be noted that
Mayer’s second paper, in which he justified his method of calculation
from the specific heats of air, did not appear until 1845, i.e. two years
later.

In 1844 Joule announced some further results, obtained from ex-
periments on the compression of air, in which he compared the heat
gained or lost with the work done on or by the air when compressed
or allowed to expand. Since the validity of these results depended
upon the absence of cohesive forces, Joule carried out an investigation
similar in many respects to that of Gay-Lussac’s. In this investigation
air was compressed to several atmospheres in a thin copper vessel,
which was connected to a similar copper vessel. The latter vessel
was exhausted, and both vessels were placed in water in the same
calorimeter. When a steady temperature had been attained, a stop-
cock between the two vessels was opened, and, on stirring up the
water in the calorimeter, it was found that practically no change of
temperature had occurred as a result of the expansion. Joule also
found that if the two vessels were placed in separate calorimeters the
cooling produced in the first calorimeter was approximately equal to
the heating produced in the second calorimeter.

Owing to the large capacity for heat of the calorimeters and
vessels, compared with that of the enclosed air, these experiments were
not susceptible of very great accuracy. )

In 1845 Joule first described a method by which water in a calori:
meter was churned up—the mechanical energy being derived from
falling weights—and, subsequently, he greatly improved this direct
method of ascertaining the mechanical equivalent of heat.

In the earlier experiments, a weighed quantity of water was placed
in a specially constructed copper calorimeter, A (Fig. I). This

1 *



4 THE PROPERTIES OF MATTER

calorimeter was fitted inside with fixed radial vanes or baffles, and was
closed with & lid provided with two openings, Throygh the central
opening in the lid passed a spindle to which were attached paddles of
such a size that they could just pass through openings cut in the
fixed vanes. The object of the fixed radial vanes was to prevent the
circulation of the water as a whole—the water being merely churned
up by the paddles, and its kinetic energy converted (through viscosity),
into heat energy. The second opening in the lid, not shown in the
figure, served for the insertion of a very sensitive thermometer. The
spindle was connected to a drum, B,
from which strings passed horizon-
tally to the wheels of two equal
“wheels and axles,” and equal masses
were suspended by strings from the
axles. The temperature of the water
in A having been noted, the masses
were released and the paddles thereby
set in motion. On the masses reach-
ing thefloor, the drum, B, was detached
from the spindle, by removing the pin,
C, and the_ masses were again wound
up, without rotating the paddles, by
turning the handle at the top of the
drum. The pin, C, was then re-inserted
and the masses allowed to fall again,
causing the paddles to rotate. This
was repeated twenty times in succes-
sion in each experiment, and the rise
in temperature of the water and the
calorimeter noted. The total heat
generated was then equated to the
total mechanical energy lost by the
falling masses, after making the neces-
sary corrections for (i) the terminal
velocity of the masses on reaching

‘ I LJ the floor; (ii) friction in the systems
of the falling masses; (iii) radiation
from the calorimeter; (iv) elasticity
of the strings,! and (v) the loss of energy by the sound vibrations given
out by the apparatus. The magnitude of these corrections was de-
termined by means of subsidiary experiments. Joule thus found that
772 ft.-lbs. at Manchester would, on being transformed into heat, raise
the temperature of 1 1b. of water from 60° F. to 61° F. *
In later determinations of the mechanical equivalent of heat Joule
somewhat modified the details of the above method, the paddles being

1 The strings, being initially stretched, contracted when the masses reached the
ground and thus produced a further rotation of the paddles.

Fia. I,—Joule’s Calorimeter.
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rotated at a uniform rate by means of a handle, while the calorimeter
was preventeds from retating by means of an applied couple. This
couple was, of course, equal and opposite to that exerted by the
paddles. Hence the total work transformed into heat = the moment
of the applied couple (G) x 2z x n, where n = the number of com-
plete revolutions.

For the work, w, done by the couple during a very small rotation,
56, is given by—

w = 2Fs = 2Fad0 = G .80 (Fig. IL.).

Therefore, the total work, W, done by the couple during n revolu-
tions is given by—

W = j G . d4, and, if the couple be constani—

W=do0=Gx o x .

The value finally obtained by Joule was F
that 7725 ft.-lbs. at Manchester were equi-
valent to the heat required to raise the
temperature of 1 lb. of water from 60° F.
to 61° F. Expressed in C.G.S. units this
becomes 4'16 x 107 ergs per gm. of water
per 1° C. at 15° C. Subsequent determina- a0
tions of the mechanical equivalent of heat a
have been made by various investigators, F
with results in substantial agreement with P “iI
the value obtained by Dr. Joule. A number L e 2
of the more important of these determinations will now be briefly
considered.

a0

4. Rowland’s Investigation.—Professor Rowland of Baltimore
repeated Joule’s experiment on a larger scale, employing a steam
engine as his source of mechanical energy, and obtaining a much
greater rise in temperature during each determination than had been
secured by Joule. The temperatures were read on a mercury ther-
mometer which was standardised by comparison with an air thermo-
meter,

Rowland found that the amount of mechanical energy which must
be transformed in order to raise the temperature of 1 gm. of water 1° C.
varied appreciably at different temperatures—indicating a variation
in the specific heat of water with temperature—with a minimum
value at 29° C. He confirmed this result by means of calorimetric
determinations.

The value for the mechanical equivalent obtained by Rowland was
419 x 107 ergs per gm. of water per 1° C. at 15° C.
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5. The Investigibion of Reynolds and Morby.—Reynolds and
Morby, using 100 horse-power engine with a hydraulic prake, obtained
a value of 418 x 107 ergs per mean calorie. In their determinations
ice-cold water was passed into the brake and the rate of flow so
adjusted that the issuing water was not far short of the boiling-point.
By measuring the rise in temperature and the quantity of water flow-
ing through in a given time, the amount of heat generated could be
calculated, and this was equated to the work done in that time.

6. Griffiths’ Investigation.—Griffiths, in 1883, employed an elec-
trical method of generating heat for the determination of the rate of
exchange between mechanical energy and heat energy.

If the potential of two points n an electric circuit be V, and V,
respectively, the work done in transferring unit quantity of electricity
from one point to the other is equal to V, - V,.

If W represents the work done when a quantity of electricity, Q,
is transferred, we have the equation

w
Vl - V2 = ‘Q‘.
W= (V, - V,)Q

Now, if the strength of a current C be constant, it is represented by
the equation
. - Q

=
where Q is the quantity of electricity which traverses any section of
the circuit in ¢ seconds.

Hence—
W=(V,-V,).C.t

Further, if the energy of an electric current is not utilised in perform-
ing mechanical work, or in chemical action within the circuit, it will
appear as heat in the conductor.

S JH. =W = (V, -~ V,).C.¢ where J is the mechanical equiva-
lent of heat. It should be noted that if the difference of potential be
measured in volts, the current strength in ampéres, and the time in
seconds, then—since 1 volt = 108 C.G.S. electromagnetic units, and
1 amp. = 10-! C.G.8. electromagnetic units—W must be expressed
in Joules; (1 Joule = 107 ergs).

Since in accordance with Ohm’s Law, V; - V, = C. R, where R
is the resistance of a conductor, V; — V, the difference of potential
between its ends, and C the strength of the resultant current, we may

write—
- 2
JH =W=(V,-V,).C.t =C*.R.t = vy RV2) ¢
If, as before, V, — V, be measured in volts, and C in amps., R must be

measured in ohms; (1 ohm = 10° C.G.8. electromagnetic units).
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In Griftiths™experiment a coil of resistance wire, attached to heavy
copper leads, yvas immersed in water in a calorimeter. A steady
current was passed through the coil, and the difference of potential
between its ends was determined by comparison with standard Clark’s
cells. The resistance of the coil being known, it was only necessary
to measure the heat developed in any given time to obtain J from the

- 2
equation J.H. = (XL—R—‘—@~ A

Griffiths thus found 42 x 107 ergs per gm. of water at 15° C. per
1° of the hydrogen scale.

It was observed that a small amount of electrolysis of the water
in the calorimeter occurred, but the amount of energy so absorbed
was found to be negligible provided that the resistance, R, of the im-
mersed spiral and the potential difference, V; — V,, between its ends
were not too great. To obtain accordant results it was found neces-
sary to keep the water in the calorimeter very thoroughly stirred,
making due allowance for the heat developed by the stirring alone.
The amount of heat so developed was ascertained in a separate
investigation. Very special precautions were also taken to regulate
the temperature, so that accurate correction could be made for the
loss of heat by radiation during any experiment.

7. The Investigation of Schuster and Gannon.—Schuster and
Gannon also employed an electrical method of heating, and determined
the mechanical equivalent of heat by passing a current through a coil
in & calorimeter, and using the relation J.H. = (V, - V,).C.¢.

The difference of potential, V, — V,, between the ends of the
resistance coil was determined by comparison with standard Clark’s
cells, and the quantity C.¢ was directly obtained—ifrom the known
electro-chemical equivalent of silver—by passing the current through
a silver voltameter.

Schuster and Gannon’s resulting value was 419 x 107 ergs per
gm. of water per 1° C. of the nitrogen thermometer at 15° C.

8. The Investigation of Callendar and Barnes.—More recently
Callendar and Barnes have employed a modification of the electrical
heating method. In their determinations water was allowed to flow
steadily through a fine glass tube, and was heated by means of a
platinum wire conveying an electric current. The water entered
the tube at one constant temperature, and flowed out at another
constant temperature, the difference in temperature being measured
by means of a pair of differential platinum thermometers. By using
a fine tube and employing a suitable rate of flow for the water it was
found that no stirring was necessary. The heat generated in calories
was obtained by multiplying the mass of water which passed through
the tube by the difference in temperature of the water on entering and
flowing out, and by the mean specific heat of water between these two
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temperatures. This product when multiplied by J,"and divided by
the time of flow in seconds, gave the rate pf genergtion of heat in
Joules per second, and this was equated to the electrical energy trans-
formed in unit time, viz. (V; - V,)C. The difference of potential,
V, - V,, between the ends of the resistance wire was determined in
terms of a Clark cell by means of a potentiometer, which was also
used to measure the current strength C, by observing the difference of
potential on a standard resistance which was included in the circuit.
The usual correction for the loss of heat by radiation was applied
when measuring the total heat generated. The value of the mechanical
equivalent of heat in Joules per calorie was thus obtained ; expressed
in ergs per gm. of water per 1° C. of the hydrogen thermometer, at
15° C., this value was found to be 4'19 x 107,

It should be noted that the results of all the electrical methods
depend upon the value assumed for the E.M.F. of the Clark cell.

9. Hirn's Investigation—A determination involving the reverse
process, viz.—the transformation of heat into work—has also been
carried out by Hirn. From observations of the work done by a
steam-engine, and the heat energy used up in performing it, he
obtained & fair value for the mechanical equivalent of heat. The
method is not susceptible, however, of any great accuracy.

10. Experimental Determination of the Mechanical Equivalent of
Heat.—Two convenient methods by which the mechanical equivalent
of heat may be rapidly estimated in the laboratory will now be
described.

Experiment I.—Determination of the Mechanical Equivalent of Heat
by the Fall of Mercury in a Tube.—Take the temperature of some
mercury in & small beaker. About 50 c.cs. of mercury should be
employed. Pour the mercury into a glass tube, about 1 metre in
length, and 3 to 4 cms. internal diameter, one end of the tube being
closed. Quickly cork up the other opening with a rubber cork, and
invert the tube repeatedly, holding the tube vertically at each inversion,
and resting its lower end on a table. The mercury will remain at the
end of the tube while it is being rotated, but will fall as soon as the
tube is held stationary in a vertical position. The rotation should be
repeated forty or fifty times to secure an adequate rise in temperature.
Pour out the mercury quickly into the beaker and again observe the
temperature.

If m = the mass of mercury, s = the specific heat of mercury, and
80 = the rise in temperature, and if it be assumed that no heat has
been lost, then

Heat generated, H, = m x s x 80 calories.

Also, if | = the vertical distance through which the centre of gravity
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of the mercury falls at each inversion of the tube, and 7 = the number
of times the fall,is repeaged, then

Kinetic energy transformed, W, =m x g x I x n ergs.

Hence, the mechanical equivalent of heat, J, can now be obtained by
employing the relation
W =J.H.

. J_W m.g.l.n g.l.n
T H T m.s.d0  s.80°
It should be noted that I is less than the length between the end of
the tube and the inner surface of the cork by an amount equal to the
depth of the mercury when measured in the tube.

Although the value of J is independent of the mass, m, of the
mercury, yet a moderately large quantity of mercury should be em-
ployed so that the heat used in warming the tube and beaker may be
very small in comparison with that used in warming the mercury.

The determination described above, although possessing the advant-
age of simplicity, is not susceptible of any great accuracy.

A much more accurate method of determining the value of the
mechanical equivalent is described in the following experiment :—

Experiment I1.—Determination of the Mechanical Equivalent of
Heat by means of Callendar’s Apparatus.—A general view of Professor
Callendar's apparatus is given in Fig. IIL. It comprises a thin
cylindrical brass calorimeter, C, mounted so as to rotate about a-
horizontal axis, B, and containing a known weight of water. A mass,
F, of several kilogrammes, is suspended by means of two parallel and
highly flexible silk ribbons which pass round the curved surface of
the calorimeter. The ends of the silk ribbons are connected to an
ebonite cross-piece, to the centre of which another silk ribbon is also
attached. The latter silk ribbon also passes round the curved surface
of the calorimeter, lying between the other ribbons, the whole thus
forming a silk friction belt which makes one and & half complete turns
round the calorimeter. A framework, carrying a load, E, of a few
hundred grammes, is fastened to the free end of the single silk ribbon,
and this framework is also attached to a light spring balance, D, the
upper end of the spring being secured to the rigid frame, P, of the
apparatus. Any extension of the spring will thus act in opposition to
the weight of the framework and its load.

On rotating the calorimeter at a moderate speed, by means of the
electric motor, M, frictional forces are called into play between the
calorimeter and the silk ribbons, and the direction of rotation is made
such that these frictional forces tend to support the weight of the
larger mass, F, attached to the two silk ribbons.

The weights are adjusted to suit approximately the friction of the
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belt, and the final adjustment is effected automatically by means of
the spring balance. For if at any instant the tensiop in the silk belt
were too great, and with it the frictional forces called into play, the
effect would be to raise the heavier mass and lower the lighter mass,
and this would result in more of the weight of lighter mass being
supported by the spring balance, with a consequent slackening of the
tension in the belt. A revolution counter, N, records the number of
turns made by the calorimeter.

Let » be the number of revolutions of the calorimeter in a given
experiment, m, and m, the larger and smaller masses (including their
respective connecting hook and framework), m, the mean reading of
the spring balance, and d the diameter of the calorimeter.

Fig. III.—Callendar’s Apparatus,

Then, the mechanical energy, W, transformed into heat is given
by the equation—
W= (m —m,+ mg) X g x vd x n.

The rise of temperature of the water in the calorimeter is read by
means of a sensitive thermometer, T, inserted through a central open-
ing, as shown in the figure, and bent so that its bulb lies near the
curved periphery of the calorimeter. Since the thermometer is
stationary, the rotation of the calorimeter keeps the water thoroughly
stirred. The heat generated, H, is equal to the product of the mass
of water plus the water equivalent of the brass calorimeter (m + g),
the rise in temperature, 86, and the mean 8pecific heat of water, s,
between the initial and final temperatures.
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Thus, H=(m+ g) x 86 x s.
. J~W='(m1—~mg+m;,)xg><rrdxn
H (m 4+ g) x 30 x s

Loss of heat due to radiation and conduction can be eliminated by
arranging that the initial temperature of the water in the calorimeter
is as much below the room temperature as the final temperature is
above it.

If the specific heat of water be treated as constant, a number of
experiments may be carried out concurrently, the temperature indi-
cated by the thermometer being read after every 100 or 200 revolutions
of the calorimeter. It will be found that the rise in temperature for
a given number of revolutions is approximately constant. Under
these conditions, however, a correction for loss of heat must be applied
to each experiment.

11. The First Law of Thermodynamics.—It is clear from the in-
vestigations which have been described that, when work is expended
in the generation of heat, there is a constant ratio between the work
transformed and the heat generated. The constancy of this ratio is
known as the First Law of Thermodynamics.

The First Law of Thermodynamics may be expressed, algebrai-
cally, by means of the equation W = J.H., which states that J units of
work are equivalent to one unit of heat.

Taking the unit of work as 1 erg., and the unit of heat as that re-
quired to raise 1 gm. of water 1° C. of the hydrogen scale, at 15° C.,
J may be taken as having the value 419 x 107.

It should be noted that it has been tacitly assumed that all the
work expended was transformed into heat in the calorimeter, after
making due allowance for the loss of mechanical energy in certain
obvious ways, such as from the friction of pulleys, or friction wheels ;
the terminal velocity of falling masses ; the radiation of sound waves.
It is probable that other phenomena may also occur—such as the
electrification of the two bodies rubbed together—but the constancy
of the value found for J by different observers—using varying methods
—may be taken to indicate that the quantity of work expended in the
production of such phenomena is practically negligible.

12. The Principle of the Conservation of Energy.—All known forms
of energy, other than kinetic energy and heat energy, can be measured
on their transformation into one of these two latter forms—and there
is sufficient evidence that the rate of transformation in each particular
case is also constant. Thus we are led to regard the First Law of
Thermodynamics as merely a particular case of a wider generalisation
known as the Principle of the Conservation of Energy. This principle
may be stated, formally, as follows :—



12 THE PROPERTIES OF MATTER

The total amount of energy in the universe is invariable through-
out all its changing modes of manifestation..

When transformation of one form into some other form, or forms,
occurs, such transformation always takes place according to rates of
exchange which are quantitatively constant in each case.

13. The Identity of Energy.—It will be observed that the preced-
ing statement of the principle of the conservation of energy involves
an assumption as to the * Identity of Energy” throughout its various
manifestations. It is usual to make this metaphysical assumption,
and to regard the exchange of one form of energy for another not
merely as a “ replacement,” but as a true * transfcrmation” of one
identical thing—energy—which only differs in the manner in which
it affects our senses.



CHAPTER IIL

THE KINETIC THEORY OF MATTER, AND ITS APPLICATION TO THE
GASEQUS STATE.

14. The Kinetic Theory of Matter.—Our knowledge of the energy
transactions in mechanical systems, where only changes of kinetic and
potential energy need be considered, is, in general, more complete
than that relating to systems where the transformation of other forms
of energy is involved.

Consequently. the assumption as to the ‘‘identity of energy”
throughout its various modes of manifestation naturally leads to an
attempt to express the various forms of energy in mechanical terms—
and, further, since the material universe is only made known to our
senses through energy transactions, we may logically attempt an ex-
planation of the varied properties of matter from a mechanical stand-

oint,.

P Such an attempt is, in fact, the basis of the Kinetic Theory of
Matter, and, in applying this theory, we adopt the hypothesis that all
matter is possessed of an atomic or molecular structure. This idea of
the atomic structure of matter is to be found in the writings of the
Greek philosophers, and furnishes a simple explanation of such varied
phenomena as, for example, compression, diffusion, evaporation, and
solution : phenomena which are incapable of explanation if it be as-
sumed that matter is continuous in nature,—i.e. without *“ structure "’
—and therefore susceptible, theoretically at any rate, of infinite division
without arriving at any ultimate constituent particles.

The atomic hypothesis was revised by John Dalton at the com-
mencement of the nineteenth century, and utilised by him to explain
the quantitative laws of chemical combination. The hypothesis, as
presented by Dalton, may be éxpressed in the following form :—

All compound bodies consist of atoms of elements united with
each other. An atom is an excessively small indivisible particle,
and the atom of each element has its own definite mass.

This hypothesis was further developed by Amadeo Avogadro, who
differentiated between the smallest ultimate particle of an element
capable of entering into chemical combination, and the smallest
particle of an element or a compound which existed independently in
a free state : the former he termed an atom, and the latter a molecule.
In the case of a compound body the molecule must consist of an

18
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aggregate of two or more atoms. The molecule 6f an elementary
substance may consist of a single atom, or of two or gnore such atoms
grouped together.

Thus, a given mass of an element, or a compound, contains a
definite number of similar molecules, and since work is necessary both
to effect the chemical decomposition of the molecules and also to alter
the distance between them—(for work is, in general, necessary to
alter the volume of any substance)—it follows that forces exist both
between the atoms in the molecule and between the molecules them-
selves.

Matter may therefore be regarded as possessing a store of energy
in virtue of the kinetic energy possessed by atoms and molecules in
motion, and the potential energy possessed by atoms with regard to
each other, and molecules with regard to each other.

Recent researche§ in radioactivity have further demonstrated
that the elementary atom is no longer to be regarded as the ultimate
indivisible particle of matter, but that it is, itself, a store-house of the
kinetic and potential energies of the electrons of which it is composed.
Theories, such as Langmuir's, have also been developed indicating
that the various properties of different substances are merely func-
tions of the arrangements of the electrons within the atoms and
molecules.

The kinetic theory can be most fully developed when applied to
matter in the gaseous state, for whereas in solids and liquids the
molecules are close together and exert considerable cohesive forces—
as is shown, for example, by the elasticity of solids, and the resistance
offered by liquids to compression—the molecules in a gas are, on the
average, much farther apart, and, consequently, exhibit an almost
entire absence of cohesion.!

It will be remembered that, as already explained, the validity of
Mayer's method of calculating the mechanical equivalent of heat
depends upon the fact that the magnitude of the cohesive forces in a
gas at the ordinary density is extremely small.

Now, a gas may be regarded as composed of an enormous number
of minute molecules, and the rapidity of gaseous diffusion shows that
these molecules must be in a state of very rapid motion. Conse-
quently, frequent collisions will occur between the molecules—but, in
a gas under average conditions of temperature and pressure, the time
occupied by these collisions will only bear a very small ratio to the
time during which the molecules are moving freely about, as, other-
wise, the gas would exhibit marked cohesion. The fact that only a
small time is occupied in the collisions, although the molecules are

1 As an example of the increased distance between the molecules in the case of
a vapour it may be mentioned that 1 c.c. of water at 100° C. forms, approximadtely,
1700 c.cs. of stearn at 100° C. and 76 cms. The molecules of the steam are, there-
fore, about 12 times as far apart as those of the water - The fact that water is an
“associated '’ liquid has here been neglected. .
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very numerous, ihdicates that the molecules are very small compared
with their distange apart,

165. The Pressure Exerted by a Perfect Gas.—In order to make an
elementary mathematical analysis of the problem, we may consider
an ideal or “ Perfect” gas as composed of an enormous number of
identical spherical molecules, negligibly small compared with their
distance apart—perfectly smooth and elastic, and moving about with
extreme rapidity. The collisions of these molecules instantly change
their velocities and directions of motion, the time occupied by such
collisions thus being infinitely small. Consequently a perfect gas
exhibits no cohesion.

The pressure exerted by such a gas on the walls of any containing
vessel is due to the momentum imparted by the molecules when they
collide with the walls. -

Since we have an enormous number of very minute molecules
moving about extremely rapidly in all directions, the average
momentum imparted in unit time to any sensible area of the wall
may be regarded as constant, and the pressure exerted will, therefore,
be uniform. In such a perfect gas the momentum imparted per
second to unit area of the wall must vary as the number of molecules
colliding per second, and, consequently, varies directly as the gaseous
density. The pressure of a perfect gas will thus be proportional to
its density, and, therefore, reciprocally proportional to its volume.

Consider a small hollow cube, the interior of which measures
l cms. in each direction, and let this cube be filled with the ideal gas.
Consider a molecule of the ideal gas moving with velocity C in any
direction, and striking against one of the interior faces of the cube.
We can resolve the velocity C into three components along the axes
of the cube—i.e. into components which are respectively perpendicular
to the three opposite pairs of faces of the cube.

Let these three components be w, v, and w respectively.

Then Cf = u? + v? + w?

Now, we cannot assume that the velocity of any particular
molecule remains constant, but since—if the gas and the faces of the
cube are at the same temperature—the average energy of the gas is
unchanged by the impacts between its molecules and the cube, we
are justified in assuming that, on the average, the velocities of the
molecules are unchanged by such impacts. This assumption is con-
firmed by the fact that, in a real gas the pressure is found to remain
constant. We may, therefore, suppose that when a molecule strikes
against one of the interior faces of the cube, its component of velocity
perpendicular to that face is completely reversed, the other two
components being unaffected.

If the mass of a molecule of the ideal gas be m, and its component
of velocity perpendicular to a pair of opposite faces of the cube be %,
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then its corresponding component of momenturA is mu. The
momentum given up by the molecule on striking agajnst one of these
faces and rebounding will, therefore, be 2mu, since the component of
velocity perpendicular to the face has changed from u# to — w.
The component of velocity, %, thus gives rise to a pressure on one
pair of opposite faces of the cube. Since the interior of the cube
measures, as already stated, ! cms. in each direction, there will be

12% impacts per second at each of these opposite faces—i.e. %" impacts
per second on the pair of faces.!
Thus the momentum given up in unit time to this pair of faces

2
= 2mu x %‘ = 2—"%‘—, and this is the same as the force exerted on this

pair of faces, for—by Newton’s Second Law of Motion—Force is
measured by the change of momentum produced per second.
Similarly, for the other two pairs of opposite faces of the cube,
2 2
the force exerted is equal to 2";1 and 2”-]}07, respectively.
If there be n» molecules of the ideal gas inside the cube, the total
force exerted

m n ;
= 27(u12 + ul .+ Uy + 27(‘v12 A S )

77 2 2 2

+2T(w1 +w? .+ wed).

Now, the force exerted on unit area is the same as pressure, and
since in the small cube that we are investigating the molecules are
moving freely in all directions, we may conclude, from considerations
of symmetry, that the force exerted on each face of the cube is equal,
and hence that the pressure on all the faces is equal. This conclusion
is, moreover, confirmed by the experimental evidence that the pressure
exerted by a real gas on the walls of a small containing vessel is

uniform.
Therefore, the pressure, P, exerted by the ideal gas—i e. the total
force exerted by all the molecules on unit area—is given by—

1 Although owing to collisions no actual molecule can be considered to move back-
wards and forwards uninterruptedly between opposite faces, yet the effect produced
will be the same as if, in fact, no collisions occurred. For since the molecules of
the ideal gas are of equal mass, and are perfectly smooth and elastic, and since the
collisions of these molecules instantly change their velocities and directions of
motion, it follows that a change in the velocity of a molecule, due to & collision,
must instantly result in an equal and opposite change in the-velocity of the
molecule with which it has collided—the latter molecule acquiring the velocity lost
by the former, and moving on in its place. Moreover, since the dimensions of the
molecules themselves may be treated as negligible, the distance to be travelled
between successive impacts at opposite faces of the cube will not be affected by
molecular collisions,
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m
P 27{(u1’+u22+.‘. U F (V202 0+ (W W w,?)}

602
m,, .
27{ + o +w?) + (Wl v+ wg?) + . (Un?+vn? +wa?)}
B 612
2702 + G2 + Cu?
714 y t o+ Gal)
- 62
Let MG =02+ C ..+ Cpl
2mnCe
. P = _6l3_—,
_1 mnC?
= 3 f-v»—v

where V = the volume occupied by the ideal gas.
“PV.=}.m.n.Ch

C2+Cl+ ... +C2
n

of the velocities of the molecules. It must be noted that ,/C? ie. C
is mot the average, or mean molecular velocity, but the square root of
the mean of the squares of the velocities. C is termed ‘the velocity
of mean square,” or “ the root mean square velocity.”

We have already seen that, if theideal gas and the faces of the
cube are at the same temperature, the average energy of the gas is
unchanged by the impacts between its molecules and the cube.
Further, the ideal gas exhibits no cohesion, and all its molecules thus
possess the potential energy of complete separation from one another.
Consequently a mere change in volume, when no external work is
dons, does not produce any change in the kinetic energy—and, there-
fore, none in the temperature—of the gas, since no work is done
against, or by, internal molecular cohesive forces.!

Since, therefore, the ideal gas exhibits no cohesive forces, the total
kinetic energy possessed by the molecules in virtue of their trans-
latory motions through space must remain constant as long as the
temperature is constant. Now, the total kinetic energy possessed
by all the molecules in the small cube

Since C! = , it is the mean of the squares

1In the case of & real gas, the fact that mere expansion at the ordinary density,
without doing external work, only produces a very small change in temperature
has already been used to show that practically no work is done against internal
forces acting between the molecules.

2
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=4mC? + 4mC? + . .. + FmCq?
=imC2 + G2 1 ...+ Cad),
=4m.n.C%
The average kinetic energy possessed by a single molecule
=4m.C

Thus & is proportional to the kinetic energy possessed by the
molecules, and is therefore constant if the temperature is constant.

Consider, now, the equation P.V. = }.m .n . Cz

All the terms on the right-hand side are constant when the tem-
perature is constant.

.. P.V.=constant, when the temperature is constant.

This relationship between the pressure and the volume of a given
mass of an ideal gas, at constant temperature, is in agreement with
the experimental results obtained by R. Boyle in the case of actual
gases subjected to moderate degrees of pressure, and is usually called
Boyle's Law.1

16. The Temperature of a Gas, and its relation to the Molecular
Velocity.—Let us next consider the relation between the temperature
of a gas and the mean of the squares of the velocities of its molecules.

When temperatures are measured by means of a gas thermometer,
we have the equation P.V. = R. 6 for the isothermals of a gas which
obeys Boyle’s Law and Charles’ Law—R being a constant, and 6 the
absolute temperature of the gas.

Thus, P.V.=R.6 =1.m.n.C? the gas being considered as
perfect.

s C

Hence the absolute temperature of such a gas is proportional to
the mean of the squares of the velocities of its molecules, and so is
proportional to the energy of translation of its molecules. Conse-
quently the absolute zero of temperature on a gas thermometer must
correspond to the condition when the molecules of the gas have lost
all their kinetic energy and have all come to rest.

If we imagine the gas to be at the absolute zero of temperature,
and we add heat, then, since in a perfect gas internal cohesive forces
are absent, it follows that any addition of heat must result in a corre-
sponding gain of kinetic energy by the molecules, provided no external
work be done by the gas. Thus the addition of equal quantities of
heat will produce equal increments of kinetic energy, i.e. equal incre-
ments in the value of C3?, and consequently, since P.V. = }.m .n.C?

1 We have considered merely the case of & small cube—but the argument can
be easily extended to any small irregularly shaped vessel by considering the latter
to be built up of a very large number of smaller ~ubes. The pressures on the
common sides of the cubes will then be in equilibrium.
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will produce equal increases of pressure if the volume be constant, and
equal increases ¢f volume if the pressure be constant. The addition
of equal quantities of heat will thus produce equal rises in the absolute
temperature of the gas as measured on & gas thermometer.

It must be noted that this relation between the femperature and
the quantity of heat added only holds good for gases which obey
Charles’ Law, i.e. for gases whose coefficients of increase of pressure
at constant volume-—or whose coefficients of expansion at constant
pressure—are all equal, and of the approximate value 0-00367. For
it is only on account of this equality that we can make the same
absolute scale of temperature applicable to them all, If we take
two gases with different coefficients of increase of pressure, and heat
them, while their volumes are kept constant, it is obvious that at any
higher temperature, which is the same for each, the two gases will be
exerting different pressures, and must, therefore, have received un-
equal quantities of heat. However, we shall see later, from other
considerations, that all perfect gases must have the same coefficient
of increase of pressure at constant volume—or coefficient of expan-
sion at constant pressure. In other words, that they must obey
Charles’ Law.

17. Bquipartition of Energy.—Now, we saw that the absolute
temperature of the gas under consideration in the previous paragraph
was proportional to the mean of the squares of the velocities of its
molecules, and, therefore, to the energy of translation of its molecules.
We also saw (§ 15) that the average kinetic energy possessed by each
molecule of the gas was equal to 4mC? Let us consider the case of
two different gases at the same absolute temperature. In accordance
with the theorem of the equipartition of energy in a system of mole-
cules of different masses which was enunciated by Waterston in 1821,
we may state that—‘In mixed media, the mean square molecular
velocity is inversely proportional to the specific weight of the mole-
cule.”  This theorem was enunciated independently by Maxwell, who
also arrived at the conclusion that the average kinetic energy of a
single molecule is the same for molecules of different gases when the
gases are at the same temperature. Maxwell’'s conclusion has been
confirmed by the theoretical investigations of Professors Bryan and
Boltzmann and Professor J. J. Thomson.

If, therefore, 7, and m, represent the masses of the molecules of
the two different gases, and if C;2 and C,? be, respectively, the mean
of the squares of the velocities of these molecules, we may state, in
accordance with Maxwell’s conclusion, that—

3mC2 = 4m,C,2,
101 2

since, as already premised, the two gases are at the same absolute
temperature.
2
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If, also, we consider equal volumes, V, of the two different gases,
at equal pressure, P, we have—

PV. =1} ""'1'”1612 = dmyn,Cp2,
where 7, and #, are the numbers of molecules of the respective gases

in the volume V, the gases being considered perfect.
Combining these equations we have—

Ny = Mg,

Thus, equal volumes of different gases at the same temperature
and pressure contain the same number of molecules. This generaliza-
tion is known as Avogadro’s Law.

If p, and p, be the densities of the respective gases, then—

myn, MyMg

Pl =2 vv— a,nd p2 = T.
o W)
P2 My

Hence, at the same temperature and pressure, the densities of
different gases are proportional to their molecular masses: the latter
are commonly referred to as molecular weights.

It has been seen how Avogadro’s Law of the equality of the mole-
cular density of two gases at the same temperature and pressure can
be deduced, in the case of a perfect gas, from Maxwell’s conclusion
that the average kinetic energy of a single molecule is the same for
different gases at the same temperature. Consequently, the total
kinetic energy possessed by all the molecules in a volume V is the
same for two different gases at the same temperature and pressure, so
that we have—

Total kinetic energy = $mn,C,2 = 4m,n,C,2

If, therefore, we take equal volumes of two different gases at the
same temperature and pressure, and add to each of them an equal
quantity of heat, then, provided that internal cohesive forces are
absent and that no external work is done, each gas will gain an
equal amount of kinetic energy, which will give rise to equal increases
of pressure if the volumes be kept constant.

But since equal quantities of kinetic energy have been gained, the
total kinetic energy of each gas has been increased an equal amount,
and the average kinetic energy of a single molecule is again equal for
the different gases. Therefore, according to Maxwell, the two gases
must have been raised to the same temperature by equal additions of
heat. Thus we arrive at the conclusion that, for perfect gases, equal
rises in temperature will produce equal increases in pressure when
the volume is kept unchanged, i.e. all perfect gases have the same
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coefficient of inctease of pressure, at constant volume, with rise in
temperature. Similarly, for perfect gases, the coefficient of expansion
at constant pressure is the same. The preceding argument may be
expressed in a mathematical form as follows :—

Consider equal volumes, V, of two different gases at the same
centigrade temperature, ¢° C., and the same pressure, P, Let m, and
my represent the molecular masses of the two different gases, and #,
and 7, the number of molecules of each in the volume V, and let C,?
and G,? be the respective means of the squares of the velocities of the
molecules. Then, according to Maxwell—

3m,C2 = Im,C,2. ‘
Also PV. = lmnC?2 = Imm,C2
if the gases be considered perfect.
Sy =y,
Let equal quantities of heat be added to each gas, the volumes remain-

ing unchanged.

Then $m,E,* = 4m,E,2 where 6,2 and @,2 are the new means of
the squares of the velocities of the molecules.

Therefore, according to Maxwell, the two gases have both reached
the same temperature, ¢'° C., since the average kinetic energy of a
single molecule of each gas is the same.

Also Imn 6,2 = Imyn,Q,2, since n, = n,.

Then, if P’; and P’, be the new pressures of the two gases, we
have, since the volumes have been kept unchanged,
P,V.=P,. V.
S Pl =P,=P.

Thus the two gases have the same coefficient of increase of
pressure at constant volume, and, applying Boyle’s Law, it follows
that they must also have the same coefficient of expansion at constant
pressure. This agrees with the experimental results obtained by
Charles, Gay-Lussac, Regnault, and others, for the so-called * per-
manent gases.”

Let p.v = K be the equation to the isothermal of a perfect gas at
0° C,, K being a constant. Consider a mass M of such a perfect gas,
cecupying & volume v, at pressure p, and temperature 0° C. Let the
gas be heated, at constant volume, to t° C., and let the pressure con-
sequently rise to P,. Then, if 8 be the coefficient of increase of
pressure at constant volume, we have—
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Py -1y
Po-t A
o Py (1 + BY).
oo Py = pgu, . (1 + BY)
=K. (1 + Bi).
If, therefore, P and V represent any corresponding pressure and

volume of this mass of the gas at the higher temperature ¢° C., we
have—

PV.=P,.v,=K.(1+ ).
Taking the experimental value of 8 found for the so-called

“ permanent gases” as approximately 000366, or 9%, we have—

¢
PV. = K(l + 9777«3)’
K
= 57—3(273 + &),
R(273 + ©),

I

: K
R being a constant and equal to 273"

Now 273 + ¢ is the absolute temperature of the gas as measured
on a gas thermometer.

Let 273 + ¢ = 6.

Then PV.=R.6.

This is the general equation to the isothermal of a perfect gas at an
absolute temperature . ;
We may write this equation in the following form :(—

R.6 R.0.p

P="%2=f

M where p is the density.

Consequently, if the temperature of a given mass of gas be constant,
the pressure varies as the density, and if the density be constant, the
pressure varies as the temperature. The combined laws of Boyle and
Charles are thus contained in the equation P.V. = R. 6.

18. The Numerical Value of the Molecular Velocity of a Gas.—Let
us next calculate the numerical value of the velceity of mean square
of the molecules of a particular gas at any fixed temperature. Take,
for example, the case of oxygen at a temperature of 0° C.

Then, since PV.=3m.n.C
. 3.P.V
e oY,
m.n
o [FET

m.n
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Now 1 gm. of’oxygen at 0° C. and 76 cms. pressure occupies 6994
c.cs. Therefore,substituting in the last equation, we have—

C - \/3 x 76 x 13596 x 981 x 6994
= 1 1

the pressure, of course, being expressed in dynes per sq. cm.

Whence C = 4'61 x 10¢ cms./sec., i.e. about one-third of a mile
per second.

It must again be noted that C is 7ot the mean molecular velocity.
It can be shown that the mean molecular velocity, €, is approxi-
mately = ‘921 x C, and, therefore, in the case of oxygen at 0° C., has
the approximate value 425 x 10* cms./sec.

19, Graham’s Law.—For a perfect gas P.V.=3im.n.C? and

72‘.7_11 = p, where p is the density of the gas.

‘. P=3‘3.p.02
3.7
S .

" Also we have seen previously that C ¢ /6, where @ is the absolute
temperature of the gas. Thus C is directly proportional to the square
root of the absolute temperature of a gas, and, for different gases at
the same pressure, the respective velocities of mean square of the
molecules are inversely proportional to the square roots of the gaseous
densities. If C, and C, be the respective velocities of mean square of
the molecules of two different gases, then since, if the two gases be at
the same temperature and pressure, their densities are proportional
to their molecular masses, or

whence C =

we have the relation—

O _ \/&z = ™

C, P m,
Hence at a given temperature, the velocities of mean square of
the molecules of two different gases are inversely proportional to the

square roots of the molecular masses. It will be noted that the
equation

o

My
my

9=

elle)

is independent of the pressure of either gas.
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This relationship could have been deduced at once from Maxwell's
theorem that 4m,C,2 = 4m,C,2 when two gases dre at the same
temperature. If we take the mean molecular velocity, €2, to be equal
to ‘921 x C, i.e. equal to K x C, where K is a constant, then this
same relationship will apply to it as well as to C. This agrees with
the experimental results obtained by Graham relative to the diffusion
of real gases through fine pores, such as occur in biscuit-ware. For,
provided the pores are sufficiently fine, the molecules will pass through
without colliding with other molecules, and thus the rate at which
the molecules pass through the porous partition will be proportional
to the mean molecular velocity, and, consequently, will vary directly
as the square root of the absolute temperature, and inversely as the
square root of the molecular mass of the particular gas. If, then, the
temperature be kept constant, different gases will pass through such
a porous partition with velocities which vary inversely as the square
roots of their respective molecular masses—and this was the con-
clusion reached experimentally by Graham.!

20. Thermal Transpiration.—Consider, next, the case of a vessel
divided into two portions by means of a porous partition, and filled
with a given gas. Let the pressure of the gas be the same on each
side of the partition, but let the absolute temperatures on the
tt\;vo sides be maintained at 6, and 6, respectively where 6 is greater
than 6,.

Now Cp = §—13, and Gy = \/3}3, the suffix indicating the
Pe1 Po2
particular temperature to which C and p relate.

Coq Pe1

Cez 0,

Therefore, since the mass of gas passing through a porous partition,
in any given time, is proportional to the product of the velocity and
the density, we have the following relation between the masses, My,
and M,,, of the gas flowing across the partition from the hot side to
the cold side, and vice versd, in the same time :—

Mo_] Cor-por _ Cog _ ﬁz

Also

Moz 602 * Poa 001 01

1The rate or velocity with which a gas passes through & porous partition must
be carefully distinguished from the number of molecules—and hence the mass of
the gas—passing in & given time, the latter being proportional to the product of
the velocity and the density. )
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Thus, My, <eMg,—for 6, > 6,,—and consequently there will be a
flow of gas on jthe whole across the partition from the cold side to
the hot, and the pressure of the gas on the latter side will rise. This
phenomenon has been realized experimentally, and is called Thermal
Transpiration.

Equilibrium will be established when My, = M, i.e. when—

C(n cPor = Caz * Pozs

or, when \/3 - Poy . po* - \/3 . Py, . p022’
Pey Po2

or, when Py, . poy = Pyy . pgy-

EEL = Ceﬁ‘ po1 _ 01 - oy

Since ~
Poy  Co'.psy 6. Poz,

equilibrium will be attained when
Po _ 0i.py _ 01-Po,

Py~ 6y.ppy  02.Pp

i.e. when 13 = 5_1
P 62 92
A condition of equilibrium is thus reached when the pressures on
the two sides vary directly as the square roots of the absolute tempera-
tures.



CHAPTER III.

ISOTHERMAL AND ADIABATIC TRANSFORMATIONS, AND THE
SPECIFIC HEATS OF GASES,

21. The Specific Heats of Gases.—The preceding investigation of
the behaviour of a perfect gas has shown that—
PV.=%.m.n.C?=R.6,

or P=J3~.p.62=34£[‘l,

where p is the density, and M the mass of the gas.
If we consider unit mass of the gas, we have—

P=§.p.63=R.0.p,

or %=§.(’)2=R.o.
Let K,y be the kinetic energy per unit mass.
Then Kp=14.00 = 2 = §.R.4
P

There is, of course, no potential energy arising from intermolecular
forces—as the latter are absent in a perfect gas—and any potential
energy which may be due to external influences, such as gravitation,
may be neglected. There is thus no inérinsic potential energy.
Hence K,, is the total intrinsic energy per unit mass.
If Ky be the kinetic energy (and, consequently, the total intrinsic
energy) per unit volume, then—

Kv=%p02=§2— =2.R.60.p

In the following investigation we shall, unless otherwise stated,
deal with unit mass of the gas, and we shall assume that all quantities
of heat are expressed in mechanical units to avoid the use in our
equations of the Mechanical Equivalent, J.

Now we have seen that the total intrinsic energy per unit mass is
given by the relation

K,=%.R.6,
26
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and, consequently, is directly proportional to the absolute tempera-
ture.

Suppose a cﬁa,nge of energy occur, merely due to the admission of
heat, no external work being performed. In this case the volume
must be kept constant, of the gas would expand and do external
work.

Now, in consequence of the admission of heat, the temperature
of the gas will rise, and the amount of heat corresponding to unit
mass and unit rise in temperature is the specific heat at constant
volume. Therefore, if H units of heat be added, we have—

H = Cy(6, - 6y),

where Cy is the specific heat of the gas at constant volume.

But, since the absolute temperature has risen from 6, to 6, the
klnetlc energy per unit mass, K, has increased from 3.R.6 to
3 .R. 6,, ie. by an amount equa,l to 3R(6; - 6y).

Hence it follows from the Principle of the Conservation of Energy
that—

H = Cy(6, - 61) = $R(6; - 6,).
Cy = 3R, 1i.e. it is constant.

Let us next consider the more general case when external work is
performed.

Let U = the internal or intrinsic energy of unit mass of the gas,
Q = the quantity of heat added (expressed in mechanical
units),
and W = the work done by the gas.

Then, if energy, in the form of heat, be added, we know from the
Principle of the Conservation of Energy that—

83U = 3Q - W,
employing the usual notation to represent the corresponding small
changes in the quantities U, Q, and W, a
ie. 3Q = 8U + &W,

= Cy.80 + P.8V.

For if we imagine, for simplicity, that the gas, at
pressure P, is enclosed in a cylinder of cross- |......f...__]

section A, a.nd that, on expansion, it pushes up a {8 {oh
frictionless piston through a small distance &k e
(Fig. IV.), then— p
The work done, 8W = Force x Displacement,
=P.A.%, Fia. IV.

= P .58V, where 8V is the small change in
volume.
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The equation 8Q = Cy.86 + P .8V will be only®necessarily true
when the change in volume, 8V, is infinitely small, fgr it is only in
that case that P can be assumed to be constant throughout the ex-
pansion.

Sinece PV.=R.6.
o 8P.V.) =R. .

o P.3V + V.8P = R. 8, neglecting the term ¢P .8V,—which
occurs on the left-hand side of the equation,—as negligibly small.

Hence P .8V = R.86 — V. 8P.
;. 8Q =0Cy.80 + R.30 - V.5P,
= (Cy + R).86 - V. 8P,
= C,.80 - V.8P, where C, is a constant, and is
equal to Cy + R.

Let us take the case when there is no change in pressure, and
when the rise in temperature of the gas is unity, i.e.—

when 8P =0, and 86 = 1.
Then 8Q = C,.

Hence C, is the amount of heat required to raise the temperature
of unit mass of the gas 1° Absolute—(or 1° C)—when the pressure is
constant, i.e. it is the specific heat at constant pressure.

Thus the specific heat at constant pressure, C,, is constant, and

equal to Cy + R, ie. = Z.R.

22, Isothermal and Adiabatic Transformations.— As previously
stated, the equation 8Q = Cy.80 + P .3V is only necessarily true
when 8V is infinitely small.

In the case of finite changes we may write the equation in the
following form, employing the usual notation of the infinitesimal
calculus :—

SdQ - ovjdo + jP.dv.

Q) 6,
Now, IdQ =Q, — Q, and CVIdG = Cy(6; - 6;). Consequently
8

these terms rlnerely depend upon the initial and final values of Q and 6
respectively. In the case of the last term, however, P may depend upon

Va2

V, and we cannot necessarily express IP .@V in terms of the initial and
Vi

final volumes.
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» Vi

Consequentl'y we cannot obtain the value of jP . @V without

V1
further information as to the interdependence of P and V.

Suppose, for example, that the point A, in Fig. V., corresponds to
the pressure and volume of unit mass of the gas at any particular
temperature, and suppose that, after the addition of a certain quantity
of heat, the condition of the
gas is represented by the point
B. Let the continuous line
joining A and B represent the
path of transformation followed
by the gas in passing from A
to B. If the change in volume,
0V, between any two points,
such as C and D, be sufficiently P
small, we can regard the cor-
responding pressure, P, as
constant throughout the small
change, and, consequently, the
work done in passing from
C to D as equal to P.8V—
the area of the rectangle dif-
fering but little from that of
the black curvilinear figure.

If Cand D be infinitely close
together, the work done will, of course, be strictly equal to P.dV,
where dV is infinitely small; in which case, by integrating between
A and B, we get—

B
jP . @V = the whole shaded area below the curve.

A

This shaded curvilinear figure thus represents the work done in
passing from A to B along the part ACDB.

Now the path of transformation between A and B can vary, and
if the gas had followed, for example, the path AEB it is clear that the
area under the dotted curve would have been different from the shaded
area. Hence the work done is not independent of the path along
which the change takes place, and consequently we cannot integrate
P. @V unless we know the curve followed during the transformation.

Let us take the case where the transformation is along an isothermal
(Fig. VL). :

de - Cvjdé + jP.dV.
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S Q- Q= jP .dV, since dd = 0 along an isothermal.!

isothermal
Ré
= —_ d
J-V V’

isothermal

v
=R.0.fv,

A
=R.4. log,gz.
1

6°isothermal

i v \Z
Fic. VI.

This may also be written :—

Q-Q =R.9. log,l—)l, since Vi &, when 4 is constant.
Pz Vl 2

Let us next consider the case where the transformation is along
an adiabatic (Fig. VIL), i.e. where heat is neither admitted to, nor
abstracted from, the gas.

IdQ - cvjdo . fP .dv.

1This equation states that in order to keep the temperature constant, whilst
external work is being done, heat must be added equal in amount to the work done.
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o P.adv = - Cvj.de, since dQ = 0 along an adiabatic.
adiabasic
~ Cy(6s - 6), _
Cy(8, — 65), where 6, and 0, are, respectively, the
initial and final temperatures of the gas.

Again 8Q = Cy. 80 + P. 3V,
=%’.(P.8V+V.8P)+ P.3V,

ubstituting for 84 the value given by the equation
P.8V + V.3P =R. 6

- 8Q = (%V+1>.P.SV+%.V.3P,

_ Cy.P. SVE Cv-VL,s,?, since C, = Cy + R.

\n

, B
P
Adiabatic
v V2 VvV
Fig. VIL

Now, since no heat enters, or leaves, at any stage of the transfor-
nation, 6Q = 0.
s Cp POV + Gy V3P = 0.

Multiplying by 1717’ and integrating, we have—
av ap
C’IV + &[S =o.
-Gy log,Y? + Cy log,l]—::i‘ = 0.
1 1

. Co 1,0 V2 Py
o log,Vl + log,-]?1 0.
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Let %l' = 7.
Th lo \—,2 + lo B 0
en . e « = U.
‘y g lP g Pl
. ‘ 27
log. (Pfinf) =0

But log, 1 = 0. ,
o P,. V)Y = Py VyY = B, where B is a constant.

We can now calculate the work done during an adiabatic expan-
sion by directly integrating P . dV.

For IP LdV = J' B.av
VY
adiabatic
since P . VY =B, along an adiabatic curve,

av
= BIV?’
_ - B { 1 o 1
BT S\ AR ARk
1
= - —"—{szz - PIVI};

y—-1
since B=P,.Vy=P,.Vy,
R

= - ;—1{92 - 60}

since R = Péyl = 13;2}73,
= Cv(al - 02):

since R Cp - Oy _ Cy

y-1 GCp 1
Cy

This is, of course, the equation previously obtained.

Now, for an isothermal transformation, P.V. = R. 6 = A, where

A is a constant.
A

=v.

Hence, the slope of the isothermal curve at any point is given by
the relation—

P

w_ A _ P
N TVETTV
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Again, for an®adiabatic transformation, P.V¥ = B, where B is a

constant, )
B
P = v
Hence, the slope of the adiabatic curve at any point is given by
the relation—
ap  y.B __y.P
av - vrii o v
Thus the slope of the adiabatic curve at any given point is y times
steeper than the slope of the isothermal curve at the same point.

A
P 67 isothermal
i C
adiabatic
A v VvV

Fia. VIII

If the point A, in Fig VIII,, correspond to the pressure and
volume of unit mass of the gas, at temperature 6;, then, if the gas ex-
pand isothermally, the curve of transformation will be AB, but if
the expansion be adiabatic the transformation will follow the steeper
curve AC. The work, W, performed by the gas in each case—in ex-
panding from V, to V,—is given by the respective equations,

A V.
Wiso_ = R . 01 . log, -v—j = Pl . Vl . log. Vf’
where P, is the pressure when the volume is V,;
Wadia. = Cv(ol - 02):

where 6, is the final temperature of the gas, i.e. the temperature of
the isothermal eurve which would pass through the point G,
3
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We have seen that the relation between the pressure and the
volume of a perfect gas during an adiabatic transformation is given
by the equation P.V¥. = B—where B is a constant. By combining
this with the equation P.V. = R.6, we can readily deduce the
adiabatic relations which obtain between the pressure and the
temperature, and the volume and the temperature, respectively.

For, since PV.=R.6
s PY VY =Ry 6,
But, for an adiabatic change
P.Vv. =B
. P.Vr._ B
"PY.VY. T Rr.g"
. _B _
TR constant,
Again: PV.=R.0
and P.Vr=B.
B
. -1 7
R "

A B —g = constant.

We shall see, subsequently, that the value of y for any gas is
always greater than unity, and in no case does its value exceed 1%.
Thus the quantity y — 1 is always positive. Consequently, it follows
from the equations we have obtained that, for an adiabatic transfor-
mation, 6 increases when P increases, or, what comes to the same
thing, 0 increases when V diminishes.

Experiment III.—The rise in temperature produced when a gas is
compressed under approximately adiabatic conditions is employed in
the pneumatic fire syringe, shown in Fig. IX. On suddenly plung-

Fio. 1X.—Pneumatic Fire ‘Syringe.

ing down the piston the temperature of the compressed air rises
sufficiently to ignite a small piece of cotton moistened with ether
which is placed in a cavity at the end of the piston. Or, if the glass
tube contains a mixture of air and carbon disulphide vapour, on
gud%egly pressing down the piston the mizture will be seen to be
ignited.
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Anticipating the experimental results which are given later in this
chapter, we may take the value of y as 1§ for monatomic gases, and
12 for diatomic gases.

If, therefore, a monatomic gas at a temperature of, say, 300° A.
(@7° C.) have its volume reduced adiabatically to one-eighth of the
initial volume, the resultant temperature will be 1200° A. (927° C).

For 6,. Vg =0,.V,3
6 _ (&)g = (8)t = 4.
! 2
o 02 = 4.01.

In the case of air, (y = 1%), we should have to compress it
adiabatically to one thirty-second of its initial volume to produce the
same rise in temperature.

Now, at each stage of the compression the gas must be infinitely
near its normal equilibrium state. Otherwise we must introduce an
additional term, K, into our fundamental equation to allow for kinetic
energy due to the motion of the gas as a whole.

We then have—

3Q = Cy.30 + P.8V + K

and this equation, with the additional term K, is now an irreversible
one.

Consequently the conditions assumed in the above numerical
calculations cannot be realised in practice—for the only way to pre-
vent loss of heat is to compress the gas quickly, and this introduces
the additional term K.

Experiment 1V.—If the air inside a flask be rendered smoky with
a piece of burning phosphorus, and be then rarefied to, say, one-fourth
of the atmospheric pressure, the production of eddies on suddenly
admitting air, and raising the pressure to atmospheric, will be clearly
visible. Or the air may be initially compressed inside the flagk to a
few atmospheres pressure, after introducing a quantity of smoke from
a piece of burning phosphorus, and the formation of eddies inside the
flask on sudden expansion to the atmospheric pressure observed.
Provided the changes of pressure be sufficiently small, however, very
little motion of the gas as a whole is produced, and, in such cases,
the term K may be neglected, and the transformation regarded as
truly adiabatiec.

23. The Numerical Value of y for a Perfect Gas—It has already
been shown that, for a perfect gas—

and . Cp=Cy+R=25.R
.-.y=%’=§=1-667.
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"'ms value of the ratio between the specific hedts agrees almost
exactly with the experimental values obtained for 4 in the case of
certain elementary gases, when the latter are far removed from their
liquefying points—and in no case does the ratio exceed this value.
Before discussing more fully, however, the causes which, in a real
gas, may contribute towards a diminution in the value of y, it will
be convenient to consider a number of experimental methods for
determining the ratio of the specific heats.

24, Clément and Desormes’ Method of Determining y.— Experiment
V.—A simple form of Clément and Desormes’ apparatus is shown in
Fig. X. It consists of a thick-walled glass flask, fitted with a side
tube, and provided with a large stop-cock.
The flask, which should be of considerable
capacity, stands on a ring of cork, or other
 badly conducting material, and the side
tube is bent at right angles, and dips below
~ the surface of some Fleuss! pump oil in

~  a suitable container, thus serving as a
manometer.

A small quantity of concentrated sul-
* phuric acid is introduced into the flask in
order to completely dry the enclosed air.
& To perform an experiment, the air contained
Dol in the flagk is partially exhausted—as in-

sormes’ Apparatus. dicated by the rise of the oil in the mano-
meter—and the stop-cock is then closed.
Since this rarefaction cools the air which remains in the flask, it
will be observed that the level of the oil in the manometer falls
as the enclosed air gradually acquires the temperature of the sur-
roundings. When a steady state has been attained, the pressure
indicated by the manometer is read. The large stop-cock is now
opened for a few seconds, to equalise the internal and external
pressures, and is then closed again. The contained air is thus com-
pressed, and, provided the glass flask be large, it may be assumed
that a relatively negligible amount of the heat developed by this
compression has been communicated to the surroundings during the
short time the stop-cock remained open. Hence the compression may
be considered as adiabatic. After standing for some time the enclosed
air will again acquire its original temperature, and the manometer—
which at the moment the stop-cock was closed indicated atmospheric
pressure—will now show a diminished pressure within the flask.
When the pressure has become steady, a second reading of the level
of the oil in the manometer is taken.

1 Fleuss pump oil constitutes & very suitable manometric liquid, since its
rel&lqiv_% ldenssit.y is low and its vapour pressure, gt ordinary temperatures, practically
negligible,
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If the height8 of the oil in the manometer before and after the
adiabatic compréssion were respectively %, and h,, then, provided the
actual pressure changes were exceedingly small, we can prove that—

b

Y= h = hy

For, let the point A, Fig. XI, correspond to the pressure and
volume of unit mass of the rarefied air within the flask at the tempera-
ture of the surroundings. On opening the stop-cock, this air is com-
pressed adiabatically, the pressure rising to atmospheric. The path of
transformation is thus along the adiabatic curve AB. At B the stop-
cock is closed, and the air now cools, at approximately constant volume,

Atmospheric
Pressure.

v

Fia. XI.

to its original temperature—i.e. it passes along a vertical line from
B to C—C being on the isothermal curve drawn through A. It should
be noted that the volume does not remain absolutely constant in
passing from B to C, as there is a small diminution owing to
the rise of the oil in the manometer tube, but since the volume of
air in the manometer is very small compared with the volume of the
air within the flask, the diminution in volume thus produced may be
neglected. Let the pressures corresponding to A, B, and C be
respectively, P,, P, and P,.

Now, provided the changes in pressure are exceedingly small, the
arcs AB and AC will be very small portions of the respective adiabatic
and isothermal curves through A, and may be regarded as approxi-
mately straight lines. Draw through A a straight line AD parallel to
the axis of volume, and meeting BC produced in D. Let the angle
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DAB = ¢, and the angle DAC = 6, these being the angles the adiabatic
and isothermal curves, respectively, make at A with tMe horizontal line
DA. Then, since the slope of the adiabatic curve at any point is y
times steeper than the slope of the isothermal curve at the same point,
we have—
BD
tang AD BD Py- P,
Y tan6¢~"CD_ CD_ P, - P,
AD
Now Py — P, is the difference between the atmospheric pressure
and the initial pressure of the rarefied gas. Consequently, if p be the
density of the Fleuss pump oil in the manometer, we have Py — P,

= hyp, the difference of pressure being expressed in centimetres of
water if i, be measured in centimetres.

Similarly Py - Py = (Py - P,) = (Py = Po) = hyp — hyp.

C oy = hyp _
YT Gk T by~ Ry

If the manometer tube be fairly short in length (say, 20 to 30 ems.),
and if an oil of low density be employed as the manometric substance,
the pressure changes cannot be other than small, and the above
equation may be employed with sufficient accuracy to calculate the
value of y. With a longer manometer tube, or using a denser liquid
such as mercury, the pressure changes may be too great to justify
the agsumption that the arcs AB and AC are approximately rectilinear.
Under these conditions, the value of y may be calculated in the
following manner.

Let the volumes corresponding to A and B (Fig. XI.) be re-
spectively V, and V.

Then, since A and B are on an adiabatic—

PA . VAY = PB . VB‘Y.
- (YA)’ _ P
A\Ve/ By

/
Also, since A and C are on an isothermal—

PA'VA = PO'VB'
..VB PA.

. Py _ <139)*
. PA -— PA .
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Therefore, taking logarithms of both sides of this last equation, we
have—

Here, as before, Py is the atmospheric pressure, expressed in
centimetres of water, and P, = Py — hp, and Pg = Py — hyp.

If the side tube be hent so as to form a manometer of the ordinary
“U"” shape, the same apparatus may be employed for determining
y when the enclosed air is initially at a greater pressure than the
atmospheric. This method was first employed by Gay-Lussac and
Welter. In this case, on opening the stop-cock the pressure falls
adiabatically to the atmospheric pressure and the air becomes cooled
by the expansion. On standing, the original temperature is attained,
and the pressure of the enclosed air rises. The value of y is then
calculated in a manner essentially similar to that already described.

The air inside the flask may now be completely displaced by
another gas, the latter being pumped in until the pressure slightly
exceeds atmospheric. The stop-cock is then closed, and the experi-
ment carried out as before.! The gas must, of course, be thoroughly
dried by means of sulphuric acid or other suitable desiceating agent.
Using a modification of this method, Réntgen obtained the following
values for y, for air and carbon-dioxide, respectively :—

{ym = 1-405.
Yoo, = 1'305.

It should be noted that if the enclosed air be initially at a lower
pressure than atmospheric an error arises from the fact that the air
which enters, on opening the stop-cock, has not the same temperature
immediately after entering as the air which was previously in the
flask, but is somewhat cooler. Hence, after again closing the stop-
cock, the enclosed air will not all cool down equally, and the fall in
pressure observed will be too small. Consequently, the value of y
obtained will be slightly too low. This source of error is avoided
when the enclosed air is initially above atmospheric pressure, but
there still remains a small error arising from the momentum pro-
duced in the issuing air—to which we have already referred in § 22.
Also, owing to the momentum acquired by the issuing air, there is an
excessive outrush of air, on opening the stop-cock, followed by an
inrush, and oscillations are set up, which may cause the pressure
inside the flask to be either greater or less than the atmospheric at

. 1If a cylinder containing liquid carbon-dioxide; or & syphon of liquid sulphur
dioxide be available, the flask may conyeniently be filled with one of these gases,
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the moment the stop-cock is closed. This difficulty may be largely
avoided by using a very wide stop-cock, or by employfng the improved
form of Clément and Desormes’ apparatus shown in Fig. XII. Here
the gas at atmospheric pressure is slightly compressed by raising the
merecury reservoir to the upper shelf and opening the pinchecock, thus
allowing the mercury to flow into the flask. The highest reading
given by the manometer is then noted. After standing for some time
the gas, which was heated by the compression, again acquires the

ON.EB'HAM

A

Fic. XIT.—Clément and Desormes’ Apparatus ([mproﬁéd‘ f*dx‘m).

temperature of the surroundings, and the pressure becomes steady at
a lower value, which is also read. Then, if the pressure corresponding
to the point A in Fig. XI. be now taken as the atmospheric, we
have—

P B — PA —_

. h
= = tely) 4,
Y=Pp. =D, (approximaitely) >

where h,; and h, are the respective heights of the oil in the manometer
immedialely after the adiabetic compression, and after a steady state
has been attained.
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To prevent as*far as possible loss of heat during the compression,
the flask is placed inside a wooden box and is packed round with
badly conducting material. A layer of concentrated sulphuric acid on
the surface of the mercury is generally employed to dry the enclosed
gas, but if, for chemical reasons, its use is inadmissible, the gas
should be carefully dried with some other desiccating agent before
being introduced into the flask. The quantity of mercury taken must
be sufficient to completely cover the cork even when the reservoir is
on the lower side shelf.

An initial experiment should always be performed to find, ap-
proximately, the maximum reading, %,, given by the manometer.
The tap on the manometer is then closed when at this maximum, and
is only opened in the subsequent experiment when nearly all the
mercury has run into the flask. In this manner the correct maxi-
mum reading can be obtained without oscillations being set up.
The experiment may be varied by having the gas initially compressed,
and allowing it to expand adiabatically.

25. Lummer and Pringsheim’s Method of Determining y. — A varia-
tion of Clément and Desormes’ method—in which both the change
of pressure and temperature were measured—was employed by
Lummer and Pringsheim. The dry gas was initially compressed,
or rarefied, to a pressure P—and the temperature 6, read when a
steady state had been attained. On opening the stop-cock, the pressure
changed to the atmospheric pressure, P, and the temperature to a new
value, 6, the temperature being determined by means of a very
sensitive electrical resistanee thermometer. It has been seen

previously that, for an adiabatic change, -Pfl_l is constant,.
by _ 6y
SR AT S5

‘Whence— y=

Lummer and Pringsheim thus obtained the values 1402 and
1-299 for y for air and carbon-dioxide, respectively.

26. Determination of y from the Velocity of Sound.—It was shown
by Newton that the velocity, V, of sound in any medium was given

by the equation—
V= \/ elasticity
density
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Newton imagined that the elasticity was the isothermal elasticity
of the medium. Laplace subsequently showed ¢hat it was the
adiabatic elasticity which should be employed in the above equation.
For during the propagation of the sound waves each compression
causes a rise—and each rarefaction a fall—in the temperature, but
the alternations of compression and rarefaction are so rapid that
practically no heat is conducted out of the compressions or into the
rarefactions.

We shall prove, later, that in the case of a gas which obeys Boyle's
Law its isothermal elasticity is equal to its pressure, and its adiabatic
elasticity is equal to y times its pressure.

Thus, for such a gas, we may write—

V = \/SL_E
P

If, for example, we take the velocity of sound in dry air at 0° C.
and 76 cms. pressure as 3-:32 x 10%* cms./sec., and the density of the
air ag 0:001293 gm /c.c., then—

iy x 76 x 18596 x 981
«/ 0:001293 '

3:32 x 104

‘Whence v = 1406.

Experiment VI.—Comparison of the Values of y from the Relative
Velocities of Sound in Different Gases—Take a Kundt's apparatus
(Fig. XIII.), and scatter some lycopodium powder inside the glass
tube. By rubbing the rod it can be thrown into stationary longitudinal
undulation, and by adjusting the position of the tightly fitting piston,
and hence the length of the enclosed air column, the latter will be
also thrown into stationary undulation, as shown by the pattern
formed by the lycopodium. Measure the distance between consecutive
nodes, as indicated by the powder. Next fill the tube with a different
gas and repeat the experiment. The relative velocities of sound in
the two gases are proportional to the spaces between consecutive
nodes in each case—these spaces being the half wave-length in the
gas of the frequency of the vibrations of the rod.

Vi_h

Thus vz =N
where ), and A, are the respective wave-lengths in the two different
gases.

Vv . p
But & = \/ NPy
\A Y2 Py

the pressure being the atmospherie in each case.
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. )‘j =.§’1 - P2
A eem
e N ve A
Py - Ag My

m, and m, being the respective molecular
masses.

If the second gas be air, we may substitute
the values ascertained for y, and m,, and write
the above equation—

1-406 . m !
N T9gEe A2

The value of y may thus be deduced for
any other gas the molecular mass of which is
known.

27. Determination of y by the Direct Com-
parison of the Specific Heats at Constant Pres-
sure and Constant Volume.—Numerous deter-
minations of the specific heats of gases at
constant pressure have been made by calori-
metric methods, in which, in general, a stream
of the heated gas is allowed to flow, at constant
pressure, through a spiral tube contained in a
calorimeter filled with water, the rise in tem-
perature of the calorimeter and its contents
being duly noted.

Thé results obtained by the researches of |
Regnault, Wiedemann, Lussana, Witkowski,
and others for the specific heats of different
gases are in close agreement. It was found
that the specific heats of actual gases at con-
stant pressure varied appreciably with the
pressure and with the temperature, although
Witkowski found that, in the case of air at
constant atmospheric pressure, the specific heat
was practically independent of the temperature.

In the case of a perfect gas, of course, no
such variations would exist, and we may sup-
pose that in a real gas the variations are due to
molecular aggregation or dissociation. Only
one' method has been devised for directly de-
termining the values of the specific heats of
gases at constant volume, namely, by the use of Dr. Joly’s Differential
Steam Calorimeter. In this method two hollow spheres, of thin .
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copper, are suspended by means of fine platinum wires from the two
ends of a balance beam. The two spheres are constructed of equal
thermal capacities, and hang freely inside a chamber which can be
filled with dry steam. Small light trays are suspended beneath the
spheres to catch any drops of water that may fall down during an
experiment. One sphere is exhausted, or else contains a gas at the
atmospheric pressure, whilst the other is filled with the gas at a high
pressure, the equilibrium of the balance being restored by the addition
of the necessary weights. When the temperature is steady it is read,
and dry steam is then admitted to the chamber. The excess of steam
condensed on the sphere containing the highly compressed gas is
directly determined by weighing. The excess of condensed steam is,
of course, due to the excess weight of the gas which has been heated
at approximately constant volume. Hence the specific heat at
constant volume can be deduced. A small correction should be made
for the expansion of the copper vessel due to the rise of temperature
and the increase of internal pressure.

Joly found that the specific heat at constant volume alters
appreciably with the density of the gas.

In the case of air we may, according to Witkowski, take the
specific heat at constant pressure, C,, as 02372, at 0° C. and 76 ems.,
whereas the specific heat at constant volume, Cy, was found by Joly
to be 0-1715 at 0° C. and 76 ems.

Cp, 02372 i
Hence Y=G, = 01715 T 1-383.

98, Jamin and Richard’s Method of Determining y.—MM. Jamin
and Richard determined the value of y by communicating a certain
quantity of heat to a gas both at constant pressure and constant
volume, the gas being contained in a large vessel, and being heated
by means of a platinum spiral conveying a steady electric current.
The current was run for the same time in each experiment, and since
in each case the loss of heat by radiation from the wire was the same,
it followed that the same quantity of heat remained, and was imparted
to the gas. In the first experiment the gas was heated at constant
pressure and the increase in volume was measured; in the second
experiment the gas was heated at constant volume and the increase
in pressure was observed.

Let m be the mass of the gas, at an initial pressure, P), volume
V,, and temperature 6,.

When a quantity of heat, Q, is added, at constant pressure, let the
temperature rise to ,, and the volume increase to V,, and when the
same quantity of heat is added, at constant volume, let the temperature
become ¢’ and the pressure P’.
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Then we have2-
Q=m.Cp.(6, - 6)) =m.Cy.(0 - 6.
L Cp _ 0 -0,
“Cy 6, -6,
But, for a perfect gas—

PV, = R4, P,V, = Ré,, and P'V, = R¥".
L0 -6, (P -P).V,
6, - 6 (VI—VO)'PO‘
_G _(®-P).V,
4 Cv (Vl“ Vo). By
For any real gas we have, as before—
Co_0 -6,
Cy 6, -6,
Let o be the coefficient of expansion of the gas at constant pres-

sure, and f the coeflicient of increase of pressure at constant volume.
Then—

Vi-Vy=Vy.a.(6, - 6,),and P - P, = P,.B.(0 - 6,).
y=Os 0 -0, (P -P).V,.a

CV B 01 - 00 h (Vl - Vo)-Po'ﬁ.

MM. Jamin and Richard thus obtained the \;a.lues 1-41, 1-29, and
1-41 for y for air, carbon-dioxide, and hydrogen, respectively.

Whenece

29. The Value of y in the Case of Real Gases.—In the case of a
perfect gas we have seen that all its intrinsic energy is the energy of
translation of its molecules—the total intrinsic energy per unit mass
being 4C?, or §R. 6, and the total intrinsic energy per unit volume
being 4 .p. C¢, or3R.6.p.

Such a perfect gas was considered to be composed of an enormous
number of identical spherical molecules, negligibly small compared
with their distance apart, and perfectly smooth and elastic. In
the ease of any real gas, however, we can no longer necessarily regard
the molecules as thus approximating to moving points. For each
particular gas the molecules will, in general, possess a characteristic
configuration depending upon the number and chemical nature of the
atoms within the molecule. Nor can all the molecules be regarded
a8 identical—for the gas may be partially in a state of dissociation or
of molecular aggregation.

Consequently, if a change of energy occur in any real gas, due to
the admission of heat, some of the heat may be used in increasing
the translatory energy of the molecules, some in external work, and
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some in increasing the internal energy—the latter® arising from the
rotatory and vibratory energy of the molecules andstheir constituent
atoms, and also from work done against internal molecular cohesive
forces during the separation of the molecules which occurs both in
expansion and dissociation. Since we have seen that the magnitude
of the cohesive forces in a gas at the ordinary density is very small,
we may, in the present discussion, neglect the energy arising from
such internal molecular cohesive forces.

Let us consider any gas when in a steady state, and let its fofal
energy—i.e. its total kinefic energy—equal B times its translatory
energy. L

Therefore the total intrinsic kinetic energy per unit mass is $3C?,
or3.B.R.6, and per unit volume 483.p.C% or 38.R.6.p.

If we assume that the total intrinsic kinetic energy is zero at the
absolute zero of temperature, then, since it is found experimentally
that for many gases C, and Cy are approximately independent of the
temperature, it follows that, to the same degree of approximation, the
total molecular kinetic energy must bear a constant ratio to the trans-
latory energy—i.e. 8 is constant.

For, as in § 21, if H units of heat be added at constant volume,
we have—

H = Cy(8, ~ 6;) = $R(B,0; — B,0)), where }R3,6, and Rp,0,

represent the total intrinsic energy per unit mass of the gas at 6, and
0, respectively.
Taking 6, = 0, this gives Cy4, = JRB,0,—i.e. Cy = IRpB,.

If, therefore, we may assume that Cy is constant, 8, must also be
constant.
Hence! Cy = ZBR.

1Tf, however, we suppose that only the translafory energy of tho molecules
has become zero at the absolute zero of temperature, the total intrinsic energy of
the gas at the absolute zero may still be represented by some finite quantity e,

In this case, let $RB,6, + e and §RB,0, + ¢ be the total intrinsic energy per unit
mass of the gas at 6, and 9,, respectively.

< H = Ov(8, - 6,) = (§RB,0; + <) — (JRB0, + ¢) = BB, — §RB,6,.

Taking 6, = 0, this gives Cyf, = $RB,0,; i.e. Cv = §Rg,.
If, then, Cy be assumed constant, 8, must also be constant.
Whenece, as before, we have—

Cv=48.LR.

It must be carefully noted, however, that in this case it is no longer the total
kinetic energy, but the emcess of the latter over its value at the absolute zero of
temperature, which equals g times the trauslatory energy. This distinction, which
is not always observed, is of importance, for a knowledge of the conditions govern-
ing the transfer of energy between the translatory and the internal molecular
energies is necessary before the assumption that the total inirinsic kinetic energy
of a gas becomes zero at the absolute zero of temperature can be justified.
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Neglecting internal cohesive forces, we have, as in § 21—

" Cy = Cy + R,

=%BR+Rr

= (8 + DR
G _ B+l _, .2
TTG T T

On the agsumption that the only energy possessed by the mole-
cules is the kinetic energy of translation, B = 1, and y = 13.

This was the value of y previously calculated for a perfect gas.

Now in the case of certain elementary gases, at the ordinary
density, y is found experimentally to possess almost exactly this value.
Thus Kundt and Warburg in 1876 determined the ratio of the specific
heats for mercury, from the velocity of sound in a tube containing
gasified mercury, and obtained the value 1:666 (at 310° C.). Sir
William Ramsay found the values 166 and 165 for Argon and
Helium, respectively. Niemeyer obtained 1'667 for y for Argon. For
Neon, Krypton, and Xenon, y has also been found to have the approxi-
mate value 1'66.

Consequently for these gases we must regard practically the whole
of the molecular energy as translatory, and therefore the molecules
must be very approximately spherical, and also spherically symmetri-
cal with respect to their internal structure. Otherwise a sensible
amount of translatory energy would be transformed into rotatory
energy at each collision—and this rotatory energy if only slowly
dissipated would lead to the molecules possessing energy other than
the kinetic energy of translation (which would be inconsistent with
the valuz 1% found for y), and if rapidly dissipated would be contrary
to the extremely slow rate at which the gas, as a whole, is observed
to lose energy. Therefore, since these gases are composed of
spherical, symmetrical molecules, we conclude that fhey are mona-
tomic. Indeed the presence of two or more atoms within the mole-
cule would be inconsistent with the absence of rotatory and vibratory
energy.

Since, however, all the gases enumerated above give, when in-
candescent, very complex spectra consisting of thousands of lines, and
since the molecules in each individual gas are considered to be
identical, it follows that each molecule must be able to execute vibra-
tions of thousands of distinet periods. Consequently the existencs
of such spectra show that vibratory energy must be possessed by the
molecules—but, in view of the fact that y has the value 1%, we must
conclude that the amount of vibratory energy is negligibly small com-
pared with the kinetic energy of translation.

Now, it can be shown that in a conservative dynamical system,
where the total energy is constant, the kinetic energy is equally
divided amongst all the modes of motion, or *degrees of freedom,”
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when the system is in a steady state. This is usutlly referred to as
the Law of Equipartition of Kinetic Energy. It is, however, clear that
the Law of Equipartition of Kinetic Energy amongst the possible
modes of motion, or “ degrees of freedom,” does not apply to the vibra-
tory energy which gives rise to the spectral lines referred to above.
Nor would the law be expected to apply, for the emission of energy in
the form of spectral lines is in itself proof that the system is ot
dynamically conservative.

The conclusion that the molecules in mercury vapour are mona-
tomic is of fundamental importance in the theory of chemistry.
Amadeo Avogadro, in 1811, in applying his famous generalisation to
the case of the formation of steam from the combination of hydrogen
and oxygen was led to infer that the molecules of hydrogen and oxygen
were diatomic, and those of steam triatomic. For two volumes of
hydrogen with one volume of oxygen to form two volumes of steam,
and this is consistent with the supposition that 2n. molecules of
hydrogen have united with n. molecules of oxygen to form 2n. mole-
cules of steam, if the above inference be made as to the atomicity of
the molecules in each case.

Starting then from the assumption that the molecule of hydrogen
is diatomic, and taking the relative density of any gas as the number
of times that gas is heavier than an equal volume of hydrogen,
measured at the same temperature and pressure, it is clear that by
doubling the relative density we at once obtain the molecular weight
of the gas, for the molecular weight is referred to the weight of an
atom of hydrogen as the unit'—and we have seen (§ 17) that

Ll G
Py My

Now, the relative density of mercury vapour has been determined
with respect ‘0 hydrogen, and has been found to have the value 100.
Therefore the molecular weight of mercury vapour is 200. But the
atomic weight of mercury—which can be deduced from a knowledge
of its “equivalent weight”’ and its specific heat, by applying the Law
of Dulong and Petit—is also found to have the value 200.

Hence the molecules in mercury vapour should be monatomic—
and the value obtained for y by Kundt and Warburg proves that such
is actually the case.

Consequently the value found for y for mercury vapour is a proof
of the legitimacy of the assumption that mercury vapour is mon-
atomic—and, therefore, that the molecule of hydrogen is diatomic,
(and not, for example, H,), and so is confirmatory of the whole of
chemical formulze.

_ ! More strictly the atomic weight of hydrogen may be taken as 1-008, oxygen
being now adopted as the standard, with an atomic weight of 16,



ISOTHERMAL AND ADIABATIC TRANSFORMATIONS 49

In the case of ¢he inert gases no chemical evidence can be obtained
as to their atomic weights, but since, for all of them, y has the
approximate value 1'66, we are justified in regarding them as mona-
tomie, and in taking their molecular weights—as found from their
gaseous densities—as identical with their atomic weights. When we
come to diatomic gases such as hydrogen, oxygen, nitrogen, (air), etc.,
we find that y has an approximately constant value of 13. Thus
Lummer and Pringsheim obtained the values 1-402, 1-408, and 1-400
for v for air, hydrogen, and oxygen, respectively, the temperature in
each case being about 10° C.; Cazin found 1-41 for nitrogen; Leduc
1:401 for carbon-monoxide ; Masson 1:394 for nitric oxide.

In the case of triatomic gases the value of y approximates to 1Z.
For example, Makower found 1-305 for water vapour, and Lummer
and Pringsheim 1-299 for carbon dioxide.

For polyatomic gases it is found that the value of y approximates
more and more nearly to unity as the number of atoms within the
molecule increases. Thus for chloroform (CHC,), ethyl alcohol
(C,H,OH), and ether ((C,H,),0), y has the respective values of 115,
1-13 and 1-03.

Hence in the equationy = 1 + %we see that, to the same degree
of approximation, 8 = 1 for monatomic gases, B = § for diatomic
gases, and 8 = [ for triatomic gases, and that as the molecular com-
plexity increases y tends to unity, and B to infinity.

Now, in the case of monatomic gases, we can see that it follows
from considerations of symmetry, and from the experimental evidence
of the uniformity of the pressure exerted on the walls of a small con-
taining vessel, that the kinetic energy of the molecules—(which is all
translatory energy)—must be equally divided in the three directions of
motion, i.e. amongst the three degrees of freedom, corresponding to the
three components of the velocity of the centre of mass of each mole-
cule along the three axes of space. ‘

In accordance with the Law of Equipartition of Kinetic Energy
originally developed by Maxwell and Boltzmann the division of the
kinetic energy of the molecules is equal however maay degrees of
freedom exist when the distribution of internal energy has acquired a
permanent state.

Consequently we should conclude that diatomic gases were
possessed of five degrees of freedom, since the total energy of such
gases equals § times their translatory energy—this translatory energy,
of course, having three degrees of freedom.

Similarly triatomic gases should possess seven degrees of freedom,
and the number of degrees of freedom would increase progressively
with the molecular complexity.

If, however, a molecule possess rotatory energy we should antici-
pate the existence of at least siz degrees of freedom, the three extra
degrees corresponding to rotation about the three axes of space. It

4
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has been suggested that the molecules of diatomic gases, for example,
might be regarded as pairs of atoms, rigidly attached together, so
that the distance between the atoms remained invariable—each atom
being itself symmetrical about an axis and being so attached that the
two axes of symmetry were coincident with the axis of the molecule.
The whole molecule would thus possess symmetry about one axis, and
rotation about this axis of symmetry could be ignored, thus giving
rise to five degrees of freedom.

Such a theory is, however, untenable, for it requires the assumption
of an infinite force between the atoms in order that they may be
absolutely fixed relatively to one another, and, moreover, the existence
of spectral lines clearly indicates that vibrations of the atoms actually
exist. An explanation of the difficulty has been given by J. H. Jeans,
and has already been indicated in referring to the existence of spectral
lines in the case of monatomic gases.

Jeans pointed out that the Maxwell-Boltzmann theorem of equi-
partition of energy is based upon a definite assumption, namely, that
there is no interaction between matter and mther—in other words,
that it is only applicable to conservative dynamical systems.
For such systems, when in a state of equilibrium, the Maxwell-
Boltzmann theorem holds good. Now an actual gas, in nature, is
never in a state of conservative equilibrium for a finite time. Unless
a gas could be enclosed in an “ adiabatic space” for a sufficient length
of time, the Maxwell-Boltzmann theorem could not be expected to
apply. In other words, actual molecular systems are dynamically
non-conservative, for energy is being continually dissipated into the
ather.!

Jeans further showed that the normal state for a non-conservative
gas corresponds to the condition that the rate of dissipation of energy
is very slow, and that when in this normal state the law of equi-
partition of energy will not apply. This condition is satisfied by
actual gases under ordinary circumstances, since they are not radia-
ting an appreciable amount of energy. For such gases, when in this
normal state, practically all the energy is shared amongst a few of the
degrees of freedom—the internal degrees of freedom receiving, in
general, far less energy than the three translational degrees. Thus
we have seen that the vibratory energy corresponding to the spectral
lines must generally represent a practically negligible amount of
energy, for such spectral lines are frequently very numerous, and if
the vibratory degrees of freedom each received the share of energy
indicated by the law of equipartition it is clear that the value of y
would differ inappreciably from unity. ‘

To summarise this portion of the discussion: We have seen that
the total kinetic energy of a molecule may consist of translatory,

1t is, of course, only through the dissipation of energy, in the form of light-
waves, that we become aware of the existence of the internal degrees of freedom.
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rotatory, and vibratory energy. If the molecules of a gas be perfectly
smooth, elastic, an¥l spherically symmetrical, no amount of interaction
can alter their rotatory energy, and the latter may, therefore, be
ignored. If the molecules very approximately, but not perfectly,
satisfy these conditions, then collisions will give rise to only very
small rotations. Consequently, if the rotatory energy undergo dis-
sipation, such dissipation must be extremely slow.

Further, it can be shown that the gain of vibratory energy due to
collisions is also very small, as is the dissipation of energy which
arises therefrom.

Such gases are monatomic and practically all their molecular
energy is translatory. For such gases 8 is approximately unity and

= 1667

4 For polyatomic gases we must imagine that the molecules are no
longer spherically symmetrical, and consequently an appreciable
transfer of energy from translatory to rotatory will in general occur
at a collision. Here also, if dissipation of rotatory emergy occur, it
must be extremely small, for otherwise dissipation of energy from the
gus as a whole would rapidly take place, and this is contrary to all
experimental evidence.

In the case, then, of such polyatomic gases an appreciable amount
of the molecular energy will be rotatory, and 8 will have a value
greater than unity, whilst the value of y will be less than 1:667. The
greater the molecular complexity of the gas, the greater, in general,
will probably be the spherical asymmetry, and consequently the
greater the rapidity with which the transference of energy between
the translatory and rotatory forms will take place. Also, since for
highly complex gases the value of y approximates closely to unity,
with a correspondingly large value for B, it is clear that their molecules
cannot be regarded as rigid, but must possess considerable internal
vibratory energy in addition to their rotatory and translatory energy.

In general, we may state that for certain of the degrees of freedom
an appreciable transfer of energy from the translatory form may take
place during molecular collisions, whereas for the remaining degrees
of freedom the transference of energy is extremely small.

Consequently, on adding energy in the form of heat to a gas, some
of the (approximate) equilibrium states for some of the degrees of
freedom are rapidly brought about, whereas for the other degrees of
freedom the transference of energy is so extremely slow that the
attainment of the (approximate) states of equilibrium requires an
exceedingly long time. The equilibrium states are only approximate,
for the gas is never in a condition of conservative equilibrium.

For monatomic gases equilibrium amongst the three translatory
degrees of freedom is very rapidly attained, but sinece the molecules
may be regarded as nearly perfectly smooth symmetrical spheres it is
clear that the rotatory energy would be altered only exceedingly

4
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slowly by any increase in the translatory energy du® to an addition of
heat to the gas. ¢

In the case of diatomic gases apparently five of the degrees of
freedom rapidly acquire a state of equilibrium, and for triatomic gases
seven degrees of freedom behave similarly.

The values experimentally found for y (and hence for B) for
different gases only correspond approximately, and not exactly, to an
integral number of degrees of freedom in each case. The probable
explanation of this divergence is to be found in a lack of homogeneity
in actual gases, due to partial dissociation or molecular aggregation,
for it is obvious that dissociation into molecules of a simpler nature
will raise the value of y, and that aggregation into more complex
molecules will lower its value.

30. The Molecular Heats of Different Gases.—We may conveniently
conclude this chapter by calculating the numerical values of the
molecular heats at constant pressure, and at constant volume, for
different gases. The molecular volume of any gas is, approximately,
22,380 c.cs. at 0° C. and 76 cms. of mercury. Substituting, therefore,
in the equation P.V. = R. 6, we have—

76 x 13596 x 981 x 22,380
= 973 ergs/degrees absolute,

R
= 831 x 107 ergs/degrees absolute,
8-31 .
= £19 calories per degree,

= 1-98 calories per degree, where R,, refers to the molecular
weight of the gas.

Now for a perfect gas, Cy = R,
C,=0Cy+ R = 4R,
and y = 13,

Consequently, in the case of monatomic gases, we should anticipate
that the mclecular heat at constant pressure, Cm,, would equal
5 x 198; ie. 495 cals., and the molecular heat at constant volume,

Cmy, would equal § x 198 ; ie. 297 cals.
For diatomic gases, y = CCT’Z'Q = 1%, but Cm,, — Cmy will still equal
v
198 cals., provided internal cohesive forces can be neglected—for
then, as we have seen in Chapter I., the difference between the specific
heats merely represents the external work done during expansion.

Hence Cm, = 693 cals., and Cmy = 4'95 cals.

82: =12, and Cm, ~ Cmy = 1-98 cals.

Whence -~ Cm, = 891 cals., and Cmy = 6°93 cals.

For triatomic gases, y =
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The molecular heats at constant pressure, and constant volume,
as obtained by digect observations on a number of gases, are given in
the following table :—

Gas. Noent™ | G Ov. Oy Cinv.
Argon . . 8988 0123 00746 491 2:97
Hydrogen . . 2:02 8402 2:402 686 4:84
Nitrogen . . 2802 0-244 0175 6-83 490
Air . . . 28-88 0237 0-1715 685 495
Carbon Dioxide . 44-00 0°202 0-1650 8:88 726
Water Vapour . 18-02 0:465 0-840 8:38 613

The agreement is fairly good except for the last mentioned. The
specific heats of water vapour are those at 100° C., the pressure being
atmospheric in the case of C,. Since at this temperature and pres-
sure the water vapour is at its liquefying point, a very large propor-
tion of the molecules must be close together and exerting cohesive
forces, and the difference between the specific heats will no longer
correspond only to the external work performed owing to expansion.



CHAPTER IV.

THE ELASTICITY OF GASES, AND THE CONTINUITY OF THE
LIQUIP AND GASEOUS STATES.

31. Boyle's Law.—In Chapter II. we deduced a number of relation-
ships which apply to a perfect gas.

Tt will now be convenient to consider, in greater detail, how far
these theoretical conclusions are in agreement with the experimental
results obtained for actual gases.

One of the most distinguishing characteristics of a gas is its com-
pressibility, and, accordingly, we shall commence with a discussion
of the relations obtained between the pressure and the volume of any
gas, both when the temperature is constant and no change of state
occurs, and also when liquefaction takes place.

Robert Boyle, in a paper communicated to the Royal Society in
1661, first stated the relation which obtains between the pressure and
the volume of a given mass of gas when the temperature is constant
and no change of state occurs. He compressed air in a bent tube by
means of mercury, and found that the pressures and volumes were in
reciprocal proportions. In 1662 Boyle published a full account of
his experiments in a book entitled “The Defence of the Doctrine
Touching the Spring and Weight of Air.”

In accordance with Boyle's results, we may state that the volume
of a given mass varies inversely as the pressure to which it is sub-
jected, or that the density of a gas varies directly as its pressure.

Thus if V be the volume of a given mass of gas, and P the pres-
sure to which it is subjected, we have, in accordance with Boyle's
Law—

P.V. = constant, when the temperature is constant.

It follows that if p be the density of a gas, under pressure P,

P_ constant, when the temperature is constant.
P

If we plot Boyle’s results, taking the pressure as ordinates and
the volumes as abscisse, we obtain the rectangular hyperbola, A,
shown in Fig. XIV.; by plotting the pressures against the reciprocals
of the volumes we obtain the straight line, B, in the same figure.

Boyle's Law was discovered independently by Mariotte in 1676,
and is, therefore, sometimes known as Mariotte’s Law.

54
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Experiment VIL—A simple form of apparatus for experiments on
Boyle's Law consists of a long narrow glass tube, gealed at one end,
and containing a column of air enclosed by means of a mercury
column (Fig. XV.). The tube is held in & vertical position, and the
lengths of the enclosed air column and of the mercury column are

read. Some of the mercury is then
“vipped out, by slightly inclining the
 ube, and the latter is then restored
o the vertical position, and the lengths
. f the air and mercury columns are
~ gainread. This procedure is repeated
_ ill no more mercury will run out.
Readings are then obtained with the
ube in inclined positions, in which
sases the differences in vertical heights
. hy — h)) must be taken as the read-
ngs for the mercury column. Pres-
_ures less than atmospheric may be
Hbtained by having the closed end of
~ he glass tube uppermost. Provided
he glass tube be of uniform bore,
he volume of enclosed air is propor-
ional to the length of the air column,
nd its pressure is obtained by adding
o the atmospheric pressure the corre-
ponding reading (b, — h,) of the mer-
sury column. The product P.V. will
- e found to be approximately constant,
~nd by plotting P. against V. a rect-
~angular hyperbola will be obtained, as
_ n Fig. XIVa.

Experiment VIII—Determinations
f the relationship between the pres-
ure and the volume of a given mass
{f gas, at constant temperature, may
#11s0 be made by using the more con-
a XV. “yenient form of apparatus shown in
(with J Fig. XVI. The air bulb attachment
ment). enables the same apparatus to be used
as Jolly'’s constant volume air ther-

mometer, which will beireferred to in the next chapter.

Both in Experiments VII. and VIIL the air, or other gas, should
be carefully dried by connecting the containing tube to a tube con-
taining calcium chloride, or other suitable drying agent, for some time
previously to performing an experiment,

F1
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32. Compressihjlity, and the Bulk Modulus of Elasticity.—Now, in
accordance with,the kinetic theory, we may regard matter as built
up of numerous small particles separated by interspaces, and, conse-
quently, on compression these particles are brought closer together.
We define the compressibility of any fluid, whether gaseous or liquid,
in the following manner :—

Consider a volume, V, of the fluid subjected to a pressure, P.
Let 8V and 8P be corresponding small increments in the volume and
pressure, 8V being, of course, negative if 3P is positive.

- Then _v

compressibility.
The reciprocal of the compressibility is defined as the bulk
modulus of elasticity, E.
- V.8P

That is E = — E A

It should be noted that the compression, compressibility, and
elasticity are mot constant quantities, but depend upon the initial
values of V. and P.

For a gas which obeys Boyle’s Law, we have—

P.V. = (P + 8P) (V + 8V),

if the temperature be constant.

s PV.=DPV. + P.§V. + V.5P. + 8P. 8V.
- P.8V = - V. 8P,

since 8P. 8V, is negligible when the change is made sufficiently

small. -
- V. 38P.
‘Whence Eigo. = F/am P.

V—SYIS is termed the

is termed the compression, and

Hence if a gas obeying Boyle's Law be compressed isothermally,
its isothermal elasticity is equal to its pressure.

If, however, the gas be compressed adiabatically, the relation
between its pressure and its volume is given by the equation—

P.V¥. = constant.
o PVY. = (P + 8P)(V + 8V),
= (P + 8P) (V¥ + y. VY71, 8V + negligible terms).
oy . PVYL 8V, = — V7, 8P, the term y. V¥—1, 8P. 8§V. being negli-
Y Y g neg
gible.
- V.8P.
‘e ‘)/.‘P. = ————W—‘

-~ V. 8P.
Whence Eqdia. = —sv—— =7 P,
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Thus the adiabatic elasticity of the gas is eqnal to y times its
pressure. This was the result previously employad in determining
the value of y from the velocity of sound in a gas (§ 26).

The values of the isothermal and adiabatic elasticities may be

more readily obtained as follows :—
For an isothermal compression, P.V. = constant.

. log.P + log.V = constant.

Differéntia,ting, we have—
ap  av

P + ‘v = O.
V.dP
. EiSO. = - -‘R—v‘- = P.
For an adiabatic compression, P.VY. = constant.
.. log.P + y.log.V = constant.
Differentiating, we have—
aP  y.adv
_'P—“ + ——V'— = O-
V.ap
O Eadia. = T ave =7. P.

33. Deviations from Boyle's Law.—Despretz, in 1827, first showed
that for certain gases Boyle’s Law was only approximately true.
He compressed several different gases in barometer tubes of equal
length—standing in the same reservoir of mercury—by enclosing the
apparatus in a large vessel full of water and applying pressure by
means of a screw. The level of the mercury was initially the same
in each tube, but, as the pressure was increased, it was observed that
the gases were unequally compressed—the more easily liquefiable
gases, such as ammonia and carbon-dioxide, being compressed more
than air, whereas, at higher pressures, hydrogen was found to be
slightly less compressible than air. Consequently, some of the gases,
at any rate, did not strictly obey Boyle's Law.

Experiment IX.—Several glass tubes of uniform bore are sealed at
one end, and are all cut to the same length. They are then filled
with different dry gases—e.g. air, carbon-dioxide, ammonia, and
sulphur-dioxide—and are fixed with their open ends at the same
depth beneath the surface of the mercury in the reservoir of an Oer-
sted’s Piezometer (see Chapter VIIL, Fig. LV.). The mercury is
readily brought to the same level in each of the tubes by tilting the
latter, in a larger vessel of mercury, and allowing a little of the en-
closed gases to escape—or, better, by enclosing the mercury reservoir
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and tubes in the geceiver of an air-pump, and slightly exhausting, so
that a little of éhe contained gas may escape from each tube. The
mercury will then rise to the same level in each tube when the
pressure in the receiver is again raised to atmospheric. The Piezo-
meter is then filled with water, and pressure applied by means of the
pump. It will be readily observed that the sulphur-dioxide and
ammonia are more compressible than the carbon-dioxide, and that the
latter is more compressible than the air. If the water in the Piezo-
meter be cold, the sulphur-dioxide and ammonia may easily be
liquefied at moderate pressures, and the respective pressures at which
liquefaction takes place, at the temperature of the water, can be de-
termined with sufficient accuracy by assuming that, for moderate
pressures, the adr strictly obeys Boyle’'s Law. For this purpose the
tube containing the air should be calibrated so that the change of
volume may be directly observed, and sufficient mercury poured into
the reservoir to make the level of the mercury inside and outside the
tubes the same before the Piezometer is filled with water. The
initial volume of air, at the atmospheric pressure, is then noted.
Under these circumstances it is unnecessary for the Piezometer to be
fitted with a pressure gauge.

When a given mass of a gas is submitted to high pressures, the
relative accuracy with which its volume can be determined decreases
as the pressure increases. Twenty years after Despratz’s experiments,
Regnault carried out an investigation on the relation between the
pressure and volume of a number of different gases at pressures
ranging from the atmospheric up to about 30 atmospheres, and, by
progressively increasing the quantity of gas undergoing compression,
he was able to attain a uniform degree of accuracy in the measure-
ments of the volume.

A given quantity of the dry gas was enclosed in a glass tube,
connected to a long manometer tube and also to a pump, and was
surrounded by a water-jacket in order to maintain a constant
temperature. The pump and oonnecting tube were filled with
mercury, and the level of the mercury was initially adjusted to be the
same in the glass tube containing the gas and in the manometer.
Mercury was then pumped in until the volume occupied by the gas
was reduced to half the initial volume, and the pressure of the en-
closed gas was obtained by adding to the Barometric pressure the
pressure due to the difference in level between the mercury in the
tube containing the gas and in the open manometer tube.

More of the dry gas was now pumped in under this pressure,
until the original volume was restored, and the mercury pumped in
until the volume was again reduced to half the initial volume, and a
new reading of the pressure obtained.

By proceeding in this manner, Regnault showed that none of the
gases with which he experimented strictly obeyed Boyle’s Law. In
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general, he found that for pressures between 1 and, 30 atmospheres,

the produet P.V. decreased as P. increased, but, in the gase of hydrogen,

the opposite result was obtained, P.V. increasing girectly with the
ressure.

In 1850, Natterer showed that, in the case of air and nitrogen,
the product P.V. reached a minimum value at a certain pressure, and
that, at higher pressures, P.V. increased as the pressure increased.
Thus, at high pressures, these gases behaved similarly to hydrogen.

Further investigations, at very much higher pressures, were
carried out by Amagat, and by Cailletet, in 1870. Amagat employed
a steel manometer tube, 300 metres in length, which passed up the
shaft of & mine. The lower end of the manometer tube was con-
nected to a closed vessel containing mercury, and the mercury could
be forced up the tube by -means of a large serew working into
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this vessel. A calibrated tube, closed at its upper end, was also con-
nected to the mercury container, and this tube was filled with dry
nitrogen, and water-jacketed in order to maintain it at a constant
temperature. In this manner the volume of the nitrogen at various
pressures was obtained, and the nitrogen tube could subsequently be
used as a pressure gauge in carrying out experiments with other gases.

Cailletet also worked at the bottom of & mine, using a manometer
tube 250 metres in length.

Figs. XVIL, XVIII, XIX, and XX. show some of Amagat’s
results. In these figures the products P.V. are taken as ordinates and
the pressures (in atmospheres) as abscissee. The temperature for any
particular experiment is shown by the number on the corresponding
curve.

In the case of nitrogen (Fig. XVIIL) it will be seen that the
pressure oorresponding to the minimum value of the product P.V,
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diminishes with rfe in temperature, whereas for ethylene (Fig. XIX.),
the opposite resdlt is observed. Carbon dioxide was found to behave
in a similar manner to ethylene, and Amagat showed that, at a
certain temperature, the pressure corresponding to the minimum
value of P.V. was a maximum, and that, at higher temperatures, the
pressure corresponding to the minimum value of P.V. diminished.
This is ‘clearly shown in Fig. XX., where the dotted curve passing
through the minimum points possesses a parabolic form.

At the highest temperature shown for nitrogen—viz. 100-1° C.—
the sag in the curve corresponding to the minimum value of P.V, has
practically disappeared.

In the case of hydrogen (Fig. XVIL), P.V. increases with the
pressure at all the temperatures shown in the figure, and we may
assume that this is probably due to the fact that, at ordinary tempera-
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tures, hydrogen is much farther from its critical temperature than the
other gases (vide § 34). It is to be anticipated that, at sufficiently
low temperatures, the curves for hydrogen would resemble those for
nitrogen or carbon-dioxide.

In a series of later experiments, Amagat employed pressures up
to 8,000 atmospheres—but it is extremely probable that, at such high
pressures, a considerable amount of the gas condenses upon the walls
of the containing tube, and some of the gas may even be forced into
the walls themselves. Consequently the results of experiments at
very high pressure must be accepted with reservation.

At very low pressures, the gas which is condensed on the walls of
the contalning tube gradually comes off from the latter, and it is,
therefore, a matter of great difficulty to determine the existence of any
deviations from Boyle’s Law. Such deviations, however, if they exist,
are very small indeed. Another source of error at low pressures arises
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from the vapour pressure of the mercury over which the gas is com-
pressed : at high 'pressures the effect due to the vabour pressure is
negligible.

Amagat’s results agree fairly well with the relation between the
pressure and the volume of a given mass of gas deduced by van der
Waals. This relationship will be discussed in Chapter VI.

We may now summarise the experimental evidence which has, so
far, been considered, and state that—
(@) At sufficiently high pressures the product P.V. for all gases
increases with the pressure.
(b) At low pressures the

o1 product P.V., in general, de-
% creases as the pressure in-
3610 creases. Probably thisis true
3 .
B for all gases at sufficiently
32r2 low temperatures.
ZSL& (c) At a certain value of
the pressure the product P.V.
24 ig, therefore, a minimum, if
the temperature be sufficient-
20 ly low—the sag in the curve
becoming more and more
161 fully developed as the tem-
perature approachesthe criti-
12 cal temperature (vide § 34).
(d) At low temperatures,
8 the pressure corresponding
o to the minimum value of
. P.V. increases with rise in
| Pressure in ftmospheres. | tomperature, and at higher

1
0740 80 120 160 200 240 280 320 temperatures it decreases.
Fia, XIX.—Ethylene, (¢) As the temperature is
progressively raised, the de-
crease in P.V., at low pressures, with rigse in pressure—and hence
the minimum values of P.V.—become, in all cases, less and less
noticeable on the curves.

34. Andrews’ Experiments.—Reference has already been made, in
Experiment IX,, to the liquefaction of certain gases. We shall now
discuss more fully both the conditions under which such liquefaction
may take place, and the relationship which exists between the liquid
and gaseous states.

It will be convenient to consider, first, the classical experiments
carried out by Andrews in 1863, for these experiments first supplied
a definite explanation of many of the more important phenomena
connected with the change of state from vapour to liquid and vice
versa.
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Andrews emplewed a tube similar to that represented in Fig. XXI,
AB was a thick walled capillary tube which was fused to a tube BC
of about 25 mms, diameter. The whole tube was accurately cali-
brated, after which a current of dry carbon-dioxide was passed through
it for many hours, until the amount of air mixed with the carbon-
dioxide issuing from the tube was found to be very small and constant.
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This amount of air, which constituted about 0'1 per cent. to 0:2 per
cent. of the whole gas, was determined, and allowed for in the subse-
quent experiments.

The capillary tube was then sealed off at A, and the open end D
placed below the surface of some mercury. By heating the tube, and
then allowing it to cool, a small stopper of mercury was drawn into
the lower part, and the whole apparatus was then placed inside the
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receiver of an air pump and the pressure reduted, so that about
one quarter of the enclosed gas escaped. On fgain raising the
pressure in the receiver to the atmospheric pressure mercury filled
the tube DC and part of CB.

The glass tube was next fixed inside a strong copper compression
chamber with the capillary tube, AB, projecting outside, and—the
copper chamber being filled with water—pressure was applied by
means of a steel screw. The volume occupied by the carbon-dioxide

C

D

Fie. XXI. Fia. X!W‘(If.“-'—‘Abmii'ews' Appa.mt;us
(simple form).

was determined by observing the position of the mercury surface in
the capillary tube, and the applied pressure was measured by having
a similar compression apparatus containing air instead of carbon-
dioxide, with a copper tube connecting the two compression chambers.
The pressures thus obtained from the compression of the air in the
second tube were very approximately correct, since, under these con-
ditions, the deviation of air from Boyle's Law is only small. The
change in the internal volume of the tubes' under pressure may also
be treated as negligible. Each of the tubes was surrounded by a
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water jacket, the temperature being kept constant throughout for the
air, whereas the ®arbon-dioxide was maintained at any temperature
desired.

Fig. XXIL illustrates a simple form of Andrews' compression
apparatus. The connecting copper tube is not shown in the figure.
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Fia. XXIII.—Carbon-dioxide Isothermals (Andrews).

The results obtained by Andrews are shown in Fig. XXIII. which
gives the isothermals for carbon-dioxide. In the case of the 13:1° C.
isothermal it was found that, at low pressures, the carbon-dioxide—
although somewhat more compressible than a perfect gas—approxi-
mately obeyed Boyle's Law, as shown by the curve AB. When the

5
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pressure reached 48:89 atmospheres it was observed that liquefaction
commenced, and the pressure now remained constant while -the
volume was diminished, until all the carbon-dioxide had assumed the
liquid state. This is indicated by the horizontal line BC in the
diagram, the ordinate of which is, of course, the saturation vapour
pressure at 13'1° C. Any further reduction in the volume of the
liquid carbon-dioxide required a very considerable increase in the
pressure, and the remainder of the isothermal, CD, approximated to a
straight line, slightly inclined towards the axis of pressure.

The work which must be expended in order to completely convert
the saturated vapour into liquid, at 18:1° C., is represented by the
shaded area in Fig. XXTIII. In Andrews’actual results it was noticed
that, owing to the small quantity of air which was present, the
pressure increased slightly during the condensation of the carbon-
dioxide, so that the line BC was not exactly straight and parallel to
the axis of volume, and, also, the corners at B and C were slightly
rounded. The 21'5° C. isothermal exhibited similar characteristics,
but here liquefaction did not commence until the pressure had risen
to approximately 61 atmospheres.

In the case of the 31:1° C. isothermal, however, no discontinuity
corresponding to the coexistence of the gaseous and liquid states was
observed, and the carbon-dioxide remained homogeneous throughout
the compression, the diminished slope at one part of the curve being
the only indication of what, at lower temperatures, represented a
change of state. The higher isothermals resembled, in general, the
31-1° C. isothermal, but the diminution in the slope at one part of the
curve became less and less conspicuous as the temperature was raised,
and practically disappeared at 48:1° C., the isothermal corresponding
to the latter temperature approximating to that of a perfect gas.

It was found by numerous trials that the highest temperature at
which the carbon-dioxide could, by pressure, be visibly reduced to the
liquid state was 30:92° C., and this temperature is therefore termed
the critical temperature for carbon-dioxide, and the isothermal cor-
responding to this temperature the critical isothermal.

The behaviour of many other substances has been similarly studied
by Andrews and by other investigators, and the same general results
obtained in all cases.

The dotted curve in Fig. XXIII., which passes through the ex-
tremities of the horizontal portions of the isothermals, includes within
its area all the conditions of coexistence at a given temperature of the
gaseous and liquid states. This curve is called the border-curve, and
it was suggested by Andrews that the term vapour should be applied
to the condition of a substance below the critical isothermal and to the
right of the border-curve, and the term liquid to the substance when
below the critical isothermal and to the lefs of the border-curve, and
that the term gas should only be given to a substance when above the
critical isothermal.



THE ELASTICITY OF GASES 67

In the case of & vapour, the decrease in volume with increase in
pressure is greafdr than in accordance with Boyle’s Law, ie. P.V.
diminishes as P. increases, whereas for a liquid the reverse is true,
and P.V. increases as P. increases.

For isothermals above the critical temperature it is found that for
the right-hand portion of each curve P.V. diminishes as P. increases,
and, having reached a minimum value, P.V. then increases as P. is
further increased. The point where P.V. has its minimum value in
a gas m1y thus be regarded as indicating what at temperatures below
the critical would correspond to a change of state, and the initial
decrease, and subsequent increase, in the value of the product P.V.,
with increase in P., may be taken as a survival of the vaporous and
liquid states. The investigations of Regnault, Natterer, and Amagat,
which have been previously described, thus acquire a fuller significance.

The vertex of the border-curve, V, is termed the critical point.
For carbon-dioxide it corresponds to a critical temperature of 30-92°
C., and a pressure, called the critical pressure, of about 73 atmospheres.
The critical volume is sometimes defined as the ratio of the volume of
a given mass of the gas at the critical temperature and critical pressure
to the volume of the same mass of the gas at 0° C. and 76 cms., and
sometimes as the volume of unit mass of the gas at the critical
temperature and pressure. Adopting the former definition, the eritical
volume for carbon-dioxide is, approximately, 0-0066, and, adopting the
latter definition, it is approximately 8:36 c.cs.

The critical isothermal just touches the border-curve at the critical
point, and since at that point the isothermal becomes horizontal it is
to be anticipated that in the neighbourhood of the eritical point very
small changes in pressure will correspond to considerable changes in
the volume, and, consequently, in the density of a gas. Andrews, in
fact, observed that at temperatures slightly above the critical tempera-
ture and for pressures near the critical pressure any change in the
pressure gave rise to flickering movements throughout the tube, some-
what similar to those observed when liquids of different densities are
mixed together. These flickering movements are due to relatively
great local changes in the density of the gas. It should be noted, in
this connection, that the weight of the gas will exercise a considerable
influence when near the critical point, since the lower layers of gas
will be under a higher pressure, and will have, in consequence, a
considerably higher mean density than the upper layers in the tube.

Andrews further observed that a substance could be transformed
from the vaporous to the liquid state, or vice versa, without visible
condensation or vaporisation taking place. The manner in which
such a transformation may be effected will be readily understood by a
study of Fig. XXIIL

Let us start with the carbon-dioxide in Andrews’ compression
apparatus at a temperature of 21-6° C., and at 55 atmospheres

5*
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pressure. Its condition will then be represented by the point E, and
it will be in the state of vapour. If the temperature be raised to
48-1° C., while the volume remains unchanged, the pressure will rise
to approximately 68 atmospheres, and the carbon-dioxide will now be
in the gaseous condition represented by the point F—no discontinuity
in the properties of the carbon-dioxide being observed when crossing
the critical isothermal and changing from the state of vapour to that
of gas.

Next compress the gas isothermally to any pressure greater than
the critical pressure, so that it reaches a point such as G on the
48-1° C. isothermal.

Now cool the gas to its initial temperature of 21'5° C., keeping the
pressure constant by reducing the volume by means of the steel com-
pression screw. The carbon-dioxide will now have reached the point
H, and will, consequently, be in the liquid state, but no discontinuity
will have been observed when crossing the critical isothermal and
changing from gas to liquid.

The carbon-dioxide is clearly a vapour at E, for if it be compressed
isothermally condensation will commence at K, and it is equally
clearly a liquid at H, for on reducing the pressure at constant
temperature ebullition will commence at Li, with the appearance of a
definite liquid meniscus. Above the critical temperature the carbon-
dioxide is in the gaseous state. Yet the contents of the compression
tube have remained perfectly homogeneous during the transformation
from E to H.

Andrews was thus led to the conclusion that the vaporous and
liquid states of matter are “only distant stages of a long series of
continuous physical changes.”

35. Cagniard de la Tour'’s Experiment.—It is apparent from Fig.
XXIII. that, as the temperature is raised, the horizontal portions
of the isothermals grow shorter and shorter, and, consequently, the
volume occupied by the saturated vapour approaches more nearly to
the volume of the liquid when just completely condensed. At the
critical point the horizontal portion vanishes, and the volumes of
vapour and liquid coincide. Thus the densities of the vapour and
liquid become equal at the critical point. The approach of the
vapour and liquid states until they coincide at the critical point
was first observed, in 1822, by Cagniard de la Tour. He employed
a sealed tube of the form shown in Fig. XXIV. The end A con-
tained air, which served to indicate the pressure, and the end B
contained a suitable quantity of aleohol and its vapour, the interven-
ing space being filled with mercury. On raising the temperature of

11f the gas be compressed isothermally until the volume corresponding to G is
less than the volume of the carbon-dioxide when completely liquefied at 21:5° C.—
i.e. is less than the volume corresponding to L—it may next be cooled at constant
volume to its initial temperature, '
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B ebullition did fot occur, but the alcohol evaporated silently and
its vapour presstire increased, compressing the air in A, Cagniard
de la Tour observed that, as the temperature was progressively raised,
the meniscus between the alcohol and vapour grew flatter, indicating
a diminution in the surface tension of the liquid, and that, finally, at
about 243° C., the meniscus completely lost its curvature—grew in-
distinct—and disappeared. The space above the mercury at the end
B was now apparently filled with a perfectly homogeneous substance.
Other liquids were also investigated, and were found to behave in a
gimilar manner.

This apparently sudden vaporisation at a certain temperature
receives a clear explanation from Andrews’ researches. For, on again
referring to Fig. XXIIIL,, it will be seen that
if, for example, we start with the carbon-
dioxide in the condition represented by the
point W, where it consists partly of liquid A
and partly of saturated vapour, and then heat
it at constant volume, it will pass along the
line WV, and, on reaching the critical point,
both the liquid and vapour phases will pass
directly into the gaseous state.!

If the heating be uniform, the vapour pres-
sure exerted upon the surface of the liquid
at each point along the line WV will be the B
saturation pressure at the corresponding tem-
perature, and, therefore, ebullition will not
occur.

36. Phenomena at the Critical Point.—Ez-
periment X.—Many of the phenomena ex-
hibited by fluids in the neighbourhood of the
critical point may be readily observed by means
of the simple apparatus illustrated in Fig. XXV. A short and thick
walled glass tube, of 3 or 4 mms. internal diameter, containing a
liquid and its saturated vapour, is supported inside a large test-tube
by means of a wire framework. The relative volumes of liquid and
vapour inside the tube must initially be adjusted within fairly narrow
limits for the reasons explained below. The test-tube is nearly filled
with a liquid that boils at a temperature higher than the critical tem-
perature of the liquid inside the sealed tube, and is gradually heated.?

Fig. XXIV,—Cagniard de
la Tour’s Apparatus.

1In Cagniard de la Tour's experiments the volume occupied by the liquid and
vapour in B (Fig. XXIV.) increased slightly with rise in temperature, owing to
the compression of the air in A (Fig. XXIV.), and, consequently, the point W
(Fig. XXIIL), corresponding to the initial condition of the liquid and vapour,
should be taken slightly nearer C.

2 The gealed tube may, conveniently, contain carbon-dioxide, sulphur-dioxide,
or ether. For the first-named the test-tube can be filled with water, and, in the
other two cases, with glycerine or paraffin-wax,
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If, now, the liquid inside the sealed tube occupy imitially a relatively
large volume compared with that of the saturated Yapour, it will be
observed that, on raising the temperature, the increase in volume of
the liquid due to expansion will exceed the diminution due to evapora-
tion, so that the liquid will soon completely fill the tube, and, if the
temperature be further raised, the pressure will increase so much that
the tube will probably burst. If, on the other hand, the volume of
the liquid be initially small the reverse result will be obtained, the
whole of the liquid vapourising before the critical temperature is
reached, These changes may be conveniently followed out with the

b 1 aid of Fig. XXIII. However, if the quantity
of liquid inside the sealed tube be neither too
large nor too small, the liquid meniscus will
remain visible until the critical temperature is
attained, and it will be observed that, on ap-
proaching the critical temperature, the curvature
of the liquid surface decreases, until, at the critical
point, the meniscus becomes quite flat and fades
away, being replaced by a broader band of mist
which vanishes completely at a slightly higher
temperature. The tube is now apparently filled
with a perfectly homogeneous substance. On
allowing the tube to cool the mist reappears,
and then a very thick cloud, from which the
meniscus suddenly takes form.

The appearance of flickering stris through-
out the tube is also very noticeable when the
tube has nearly cooled to the critical tempera-
ture. The phenomenon of critical opalescence
at 'and near the critical point, which has been
investigated by Travers and Usher, may further
be observed. If the meniscus disappear near
Fig. R&V.—Appumis the bottom of the tube, it will be seen that, at

g” demonstrating cri- 4 temperature slightly lower than the critical, the

qal phenomena., liquid bel th . b 1

iquid below the meniscus becomes opalescent,
having a brown colouration by transmitted light, and a white by ne-
glected light. When the meniscus vanishes the opalescence gradually
diffuses throughout the tube. If, however, the meniscus disappear
near the top of the tube, the opalescence appears above the meniscus
in the vapour phase. When the meniscus remains a.gproxim‘a.tely
stationary near the middle of the tube, the fluid phase becomes uni-
formly opalescent throughout, at a temperature slightly below the
critical, but in this case the opalescence is much less marked. In all
cases i;he opalescence vanishes at a temperature slightly above the
critical.

It should be noted that it is only at the level where the meniscus
vanishes that the density within the tube is the true critical density.
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Higher up in the §ube the density is slightly lower, whereas lower
down it is greater® This, as has already been pointed out, is due to
the weight of the fluid within the tube. Thus if the meniscus finally
vanish near the top of the tube the average density of the fluid will
exceed the critical density, and, conversely, if the meniscus vanish
near the hottom of the tube the average density will be less than
the critical. It is owing to this that the relative volumes of the
liquid and vapour initially contained inside the tube can vary within
narrow limits, and the critical phenomena still be obtained, for, at
the critical temperature, the fluid inside the tube does not merely re-
present the condition of one point on the critical isothermal, but cor-
responds to a certain length of this isothermal, and if this length
include the critical point the eritical phenomena can be observed.

Some uncertainty still exists, however, as to the actual state of a
fluid when at, or slightly above, its critical temperature. It has been
urged by MM. Cailletet and Colardeau, for example, that the liquid
state persists above the eritical temperature, and the following experi-
ment would appear to be confirmatory of this point of view.

A very small quantity of iodine was sublimed inside the upper end
of a compression-tube, and carbon-dioxide was then compressed in
this tube, as in Andrews’ experiments, the mercury being protected
from the action of the iodine by means of a layer of sulphuric acid.
Now, liquid carbon-dioxide will dissolve iodine, forming a violet-
coloured solution, but the vapour of carbon-dioxide exerts no such
solvent action. Consequently, when the carbon-dioxide was com-
pressed, and partially liquefied, the liquid carbon-dioxide, on reaching
the level of the iodine, became coloured violet, the vapour remaining
colourless. On now raising the tube to the critical temperature, the
meniscus was observed to vanish in the usual manner, but the coloura-
tion remained in the portion of the tube which had previously con-
tained the liquid carbon-dioxide, and did not spread to the upper part
of the tube. Further, the absorption spectrum of iodine when in solu-
tion is unlike its absorption spectrum when in the state of vapour, but
spectroscopic examination of the tube revealed no change on passing
through the critical point. Consequently the iodine must be regarded
as still in solution, and hence it would appear that the liquid state can
exist even above the critical temperature. This supports the view
suggested previously by Ramsay in 1880, and by M. Jamin in 1883,
that at the critical temperature the surface tension of the liquid be-
comes zero, and, therefore, the meniscus vanishes, but that the liquid
state still persists above the critical point. It was inferred by them
that the various phenomena observed at the eritical point could be ac-
counted for on the assumption of the equality of the liquid and vapour
densities at that point, but the fact that the meniscus vanishes implies
only that the molecular attraction is equal in the liquid and vapour
states, and it does not necessarily follow that the densities of these
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states are identical. Conversely, if the equality vof the liquid and
vapour densities at the critical point be postulated, it does not follow,
of necessity, that the molecular attraction is also equal and that the
meniscus will disappear. MM. Cailletet and Colardeau concluded
that the vapour and liquid densities were not necessarily equal at the
critical point, but that the vanishing of the meniscus merely implied
the equality of molecular attraction, the vapour and liquid then be-
coming mutually soluble in all proportions. The experiment with
iodine, previously described, was regarded as evidence that liquid
carbon-dioxide can exist in invisible solution in its own gas at
temperatures above the critical, and can only become visible as a
liquid phase when cooled below that temperature.

37. The Mutual Solubility of Liquids.—The mutual solubility, or
miscibility, of liquids supplies an analogy. If we start with any pure
liquid and add to it a second liquid with which it is only partially
miscible at the ordinary temperature, the second liquid will dissolve
in the first and form a homogeneous solution until the concentration
reaches some definite value. Beyond this value the second liquid
ceases to dissolve, and any further addition now causes the formation
of another liquid phase consisting of a solution of the first liquid in
the second, the two phases being separated by a distinct meniscus.
If the temperature be raised, the second liquid phase will disappear,
if the solubility increase with rise in temperature, and a further addi-
tion of the second liquid must be made before two liquid phases
reappear. If the pressure be kept constant, the concentration of
the components in each of the liquid phases will, at any particular
temperature, be constant for a given pair of liquids. These two
corresponding solutions, at any temperature, are known as conjugate
solutions. On changing the temperature, the composition of the two
solutions will change, and thus two solubility curves may be obtained
showing the respective solubilities of the first liquid in the second,
and of the second liquid in the first. Now, when one liquid dissolves
in another at any particular temperature heat may be evolved or
absorbed, and, therefore, in accordance with Le Chatelier's theorem
(vide Appendix B), the solubility may decrease or increase with rise
of temperature.

M. Duclaux, in 1876, and Alexéeff, in 1886, found that although
certain pairs of liquids were only partially miscible at the ordinary
temperature, yet, on raising the temperature, the mutual solubility
increased until, at a certain temperature, they became miscible in all
proportions. The temperature corresponding to such infinite mis-
cibility is termed the critical solution temperature.

In such cases the concentration-temperature curve possesses the
form shown in Fig. XX VI, which illustrates the case of phenol and
water. It will be seen from this figure that, starting at the ordinary
temperature, the solubility of phenol in water, and of water in phenol,
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increases with rise in temperature, until, at about 68:4° C., the two
solubility curves® meet, and, consequently, above this temperature
phenol and water are miscible in all proportions. The critical solu-
tion temperature is thus 68'4° C.—and the corresponding critical
concentration is 36'1 per cent. of phenol.

It was further observed by Rothmund that, in several cases, the
mutual solubility increased on
lowering the temperature, and
that at a lower critical solution A
temperature infinite miscibility
was attained. Fig. XXVII. illus-
trates the concentration-tempera-
ture curve for triethylamine and
water.

Finally, it was shown by
Hudson for nicotine and water,
and by Flaschner and McEwen
for 2-methylpiperidine and water,
that both an upper and a lower Temperature 68-4°C.
critical solution temperature can g, XX VL
be experimentally realised. In the
case of nicotine and water the upper and lower critical solution tem-
peratures were 210° C. and 61° C., respectively ; for 2-methylpiperidine
and water the correspond-
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ing temperatures were
found to be 227° C. and

e 79-3° C.
‘€ Consequently for these
o two pairs of liquids the
2 complete solubility rela-
< tions are represented by
& closed curves of an ellip-
300p-—-—-- soidal form, and, in all
- probability, this is the
S ! general form of the con-
g ' centration - temperature
& ! ~ curve for all pairs of

18-5°C. Temperature liquids. _
Fie. XXVIIL The concentration-

\ temperature curve for
2-methylpiperidine and water is shown in Fig. XXVIIL

If two liquids, which at the ordinary temperature do not mix in
all proportions, be shaken up together, they will in general separate
on standing into two distinet layers. On raising, or lowering, the
temperature, one of the layers will usually disappear, and a condition
corresponding to a point on the solubility curve for one of the liquids
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will be attained. If, however, the two liquids be taken in the propor-
tion corresponding to the upper critical concentrati®n, and the tem-
perature be gradually raised, it will be observed that the meniscus
separating the liquids becomes flatter, and finally disappears at the
critical solution temperature, a homogeneous mixture being obtained.
On again cooling to the neighbourhood of the critical solution tem-
perature flickering movements may be observed, and, on reaching the
critical solution temperature, separation into two layers occurs. The
same phenomena occur when a mixture corresponding to the lower
critical concentration is cooled below the lower critical solution tem-
perature. A marked critical opalescence may often be noticed. In
the case of 2-methylpiperidine and water this opalescence was very
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Fia. XXVIII,—Temperature.

strong in the vicinity of the lower critical solution point, but was not
observed at the upper point.

Experiment XI—The concentration-temperature curve for \2-
methylpiperidine and water may be determined in the following
manner. In order to obtain the lower half of the curve, definite
quantities of the base and water are introduced by means of a capillary
pipette into a narrow tube, which is blown out at one end into a small
bulb, and drawn out at the other end into a capillary (Fig. XXIX.).
The mixture having been weighed, the capillary is sealed, and the
temperature determined at which separation into two layers takes
place. The capillary is then broken off at the end, and, after the
addition of a further quantity of water, the tube is again sealed and
used for another determination. The determination of the upper half
of the curve may next be carried out in small tubes of hard glass of
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about & mms. external, and 3 mms. internal diameter (Fig. XXX.).
These tubes are®drawn out into thick capillaries at one end, and
should only be used for one determination, although, even at 230° C.,
the glass is only very slightly attacked by the base. The 2-methyl-
piperidine for this experiment may conveniently be prepared by the
reduction of u-picoline with sodium and absolute alcohol.

A similar investigation may be carried out with phenol and water,
using tubes of the form shown in Fig. XXIX, but in this case, only
the upper half of the curve can be experimentally realised.

- It thus becomes evident that two liquids which possess different
densities may mix completely at a given temperature, if taken in
suitable proportions, and that above or below the respective upper or
lower critical solution temperatures they will mix completely if taken
in any proportions. Again, two liquids which possess the same
density may not be completely miscible,
as is illustrated in Plateau’s experiments
(vide Cap. VIIL).

Consequently, as stated before, the
mutual solubility of two fluids does not
necessarily imply equality of density, nor
does equality of density necessarily deter-
mine miscibility, and therefore, as pointed
out by MM. Cailletet and Colardeau, it
must not be assumed that a liquid and its \
pure vapour become of mecessity identical g xx1x Fia. XXX
in all respects at the critical point, the ’ ' ) )
critical phenomena merely indicating that the liquid and vapour have
become mutually soluble in all proportions.

Measurements of the density of a liquid and of its saturated vapour
show that the density of the former decreases and the density of the
latter increases as the temperature is raised, until approximate equality
is attained in the neighbourhood of the critical point. It is a matter
of some difficulty to make accurate determinations of the densities
near the critical point, on account of the considerable changes in
volume produced by relatively small variations in the pressure, but
the results of experiments by a number of different investigators
indicate that, at the critical point, the liquid and vapour densities
accurately coineide.

The Law of Cailletet and Mathias.—If the densities of the liquid
and saturated vapour be plotted as abscisse, and the temperatures as
ordinates, a curve of the form shown in Fig. XXXI. is obtained.
This curve represents the case of normal pentane.

Cailletet and Mathias pointed out that if the means of the den-
sities of the liquid and saturated vapour be plotted against the
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corresponding temperatures the result is a strasght line. This is
shown as AB in the figure. The Law of Cailletet*and Mathias has
been found to hold in most cases with fair accuracy. The point A in
the figure is the critical point for normal pentane,

Referring again to Fig. XXVIII, if we start with a 3 per cent.
solution of 2-methylpiperidine in water, at 85° C., its condition will
be represented by the point A. On adding more of the 2-methyl-
piperidine, it will dissolve, and the concentration of the solution will
change along the line AB. At B the solution is saturated, and any
further addition will cause the formation of a second liquid phase
consisting of a solution of water in the 2-methylpiperidine, and having
a composition corresponding to the point C. If more and more of the

A

190°C

170°C

160°C}

130°C3 91 0z B 03 _ 04 05
Density

Fia. XXXI,—Normal Pentane.

2-methylpiperidine be added, the composition of the two liquid phases
will remain unchanged, but the amount of the second phase will
increase, and the amount of the first phase will decrease, until the
first phase disappears. The concentration of the remaining phase now
corresponds to the point C, and any further addition of 2-methyl-
piperidine will merely cause the concentration of the solution to change
along the line CD. It is possible, however, on reaching the point B,
to dissolve still more 2-methylpiperidine in the water, and so to
experimentally realise portions of the dotted line BC. The solution is
then supersaturated, but an abrupt separation into two layers of the
composition corresponding to B and C takes place if the supersatura-
tion be increased to any considerable extent. Similarly, portions of
the dotted line BC in the neighbourhood of C éorrespond to a super-
saturated solution of water in 2-methylpiperidine. In the determina-
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tion of the concertration-temperature curve for 2-methylpiperidine
and water supershturation was actually obtained at a few tempera-
tures.

A minimum value for the solubility of 2-methylpiperidine in
water occurs at about 90° C., and a minimum value for the solubility
of water in 2-methylpiperidine at about 160° C.

It will be seen that, starting from the condition A we can pass to
a condition such as I without any appearance of two distinct liquid
phases, by following a path of transformation such as AFGE or AHIE.
For such a transformation the temperature is first lowered, or raised,
beyond the critical solution temperature, and then, after the addition
of the necessary amount of 2-methylpiperidine, the original tempera-
ture is restored.

38. General Conclusions..—Reviewing the experimental evidence
which has been considered, we may conclude that, at the critical
point, both the molecular attraction and the density become equal
throughout the liquid and vapour phases, and that, consequently, the
two phases possess the same state of molecular aggregation and are
identical in every respect. The experiment with iodine and carbon-
dioxide which has been described may appear to be opposed to this
view, but in reality it merely shows that the carbon-dioxide which
as liguid possessed the power of dissolving iodine still retains the
power of holding it in solution at a temperature above the critical.
‘We may, indeed, regard the solution of iodine in the gaseous carbon-
dioxide as “super-saturated,” and may assume that, if the iodine were
separated out, the carbon-dioxide would no longer have the power of
dissolving it again. Further, it must be pointed out that although, in
the case of two liquids of different density, infinite miscibility occurs
above or below the respective critical solution temperatures, yet, in
order to realise the actual critical solution points, it is necessary to
have two liquid phases present, and the concentrations, and conse-
quently the densities, of these phases become identical when each of
the respective critical solution points is reached.

Thus at the critical point of a pure fluid we have the vapour,
liquid, and gaseous states coinciding, and this coincidence must be
regarded not as an equilibrium of three different phases, as in the
case, for example, of ice, water, and vapour at the triple point, but as
an actual identity of the three states.

We have seen that no discontinuity occurs in passing across the
critical isothermal at pressures lower than the critical pressure—i.e.
in the passage from vapour to gas, or vice versa—and, also, that no
discontinuity occurs at higher pressures in the passage from gas to
liquid, or from liquid to gas. At the critical point the three states
coincide, and a fluid may, therefore, pass from any one of the
states to either of the others without any discontinuity in its pro-
perties.
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Tt should indeed be noted that the only essentiakdifference between
a gas and a liquid is the possession by the latter of a definite surface
due to surface tension. In accordance with Laplace’s theory of
capillarity (vide § 113) we may assume that the attractive force between
two molecules in a liquid becomes insensible when the distance be-
tween the molecules exceeds a certain value. Thus a molecule of a
liquid situated at the surface of separation between the liquid and its
vapour is acted upon mainly by forces from the liquid side of the
surface, there being few, if any, molecules on the other side within
the range of molecular action. This lack of symmetry gives rise to
the phenomenon of surface tension. Within the liquid the molecular
attractive forces are symmetrically distributed, and are manifested
in the phenomenon of cohesion. At the critical point the molecular
attraction becomes equal throughout the liquid and vapour phases,
and there being no longer any lack of symmetry the surface of
separation disappears.

The close analogy between the concentration-temperature curve
for liquids and the border curve for a liquid and its saturated vapour
should also be borne in mind. On reaching a point such as B in
Fig. XXIIL separation of the liquid phase commences and the
pressure and density of the vapour phase remain constant while the
latter diminishes in amount until finally the vapour phase disappears,
leaving the pureliquid atC. Similarly, in Fig. XXVIIL, on reaching
the point B, separation of the phase corresponding to C commences
and the concentrations of the phases B and C remain constant during
further addition of 2-methylpiperidine until, finally, only the phase C
is left.

‘We shall see later that the curves AB and DC in Fig. XXIIL. may
be prolonged some distance inside the border curve without condensa-
tion or vaporisation taking place, corresponding to the respective
conditions of supercooling and superheating. The continuation of
the lines AB and EC inside the concentration-temperature curve in
Fig. XXVIIL has, similarly, been shown to correspond to super-
saturation.

It might be suggested, from analogy, that the border curve for a
liquid and its saturated vapour should also form a closed curve, and
that, consequently, there should exist a lower critical point at which
the vapour and liquid states again coincide. This would require the
liquid density to decrease and the density of the saturated vapour to
increase at low temperatures. It is significant that, in the case of
water, the specific volume increases progressively when cooled below
4° C. At present, however, there is not sufficient evidence to justify
the assumption of a lower critical point, and, in any case, it is
doubtful if it could be experimentally realised.

39. J. Thomson's Hypothesis..—In 1871, Professor James Thomson
published an account of an extension of Andrews' theory of the
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essential continuity of the liquid and vapour states. Thomson
suggested that ‘““although there be a practical breach of continuity
in crossing the line of boiling-points from liquid to gas or from
gas to liquid, there may exist, in the nature of things, a theoretical
continuity across this breach having some real and true significance.”

Referring to Fig. XXIII., Thomson pointed out that condensation
of the saturated vapour or ebullition of the liquid need not necessarily
commence at points such as B and C—but that, under suitable con-
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ditions, the vapour and liquid states may persist inside the area en-
closed by the “border-curve” without the occurrence of a partial
change of state. Thus, in a dust-free and unionised space a vapour
may be cooled below, or compressed above, its normal condensing
point without condensation occurring (vide Expt. LXXIX.). Con-
sequently the curves such as AB and A'B’ (Fig. XXXII) may be
prolonged along BE and B'E’—these latter portions representing a
condition of supersaturation of the vapour.
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Similarly, a liquid may be heated considerably.above its boiling-
point without ebullition taking place. For examplé, water in a very
clean glass vessel may be heated, at the atmospheric pressure, to
106° C. without boiling occurring. Dufour even succeeded in heating
drops of water suspended in a mixture of linseed oil and oil of cloves
having the same density as the water to a temperature as high as
178° C., the pressure being the atmospheric. If ABCD represent the
100° C. isothermal for water, the pressure corresponding to the hori-
zontal portion BC being atmospheric, then, on heating water at
atmospheric pressure, and reaching the condition corresponding to
the point C, ebullition should normally commence. The water in
Dufour’s experiment was heated at constant pressure and therefore
expanded along the line CB. On reaching a point such as H' the
temperature of the water was 178°C., but boiling had not begun.
H', consequently, must lie on the water portion of the 178°C. iso-
thermal, and if A'B'C'D’ be this isothermal it must be possible to
continue D'C’ downwards to meet BC in H'. Thus the curves such
as DC and D’'C’ may be prolonged downwards along CG and C'G'—
and these portions correspond to the superheating of a liquid.

These latter portions may even extend below the line of zero
pressure, as in the curve C"G”, in which case the liquid is under a
negative pressure or tension. The sticking of the mercury at the top
of a clean barometer-tube illustrates this condition, and other examples
are referred to in Chapter VIL (§ 63).

In view, therefore, of the above phenomena of the supersaturation
of a vapour, and the superheating of a liquid, and also from the
assumption thit all natural changes are essentially continuous, Thom-
son suggested thit the discontinuous portions of the isothermals such
as BC (Fig. XXXII.) should be replaced by continuous curves of the
form BEFGC. The general form of the isothermals as the critical
isothermal is approached from a higher temperature also suggest, by
analogy, that at temperatures below the critical the curves might be
of this nature.

For portions of the continuous curves such as GE the pressure
and volume increase simultaneously, and it is doubtful if such an
unstable condition is capable of experimental realisation. If it were
possible to take a substance through the transformation represented
by the curve ABEFGCD, it would pass from the state of vapour to
that of liquid without any separation into two distinct phases taking
place during any part of the change. In general, on reaching the
condition corresponding to a point such as K or L, in Fig. XXXII,,
sudden partial condensation, or vaporisation, occurs, and, if the
temperature be kept constant, the system changes to a condition
represented by a point such as M or N, on the horizontal line BC,
where both the liquid and vapour phases exist simultaneously in
contact with each other.

The phenomenon of bumping in superheated liquids illustrates the
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change from the econtinuous portion C'G’ of one isothermal to the
horizontal portioh CB of a lower isothermal, the sudden evolution of
vapour producing a marked fall in the temperature.

+  We shall see in Chapter VI. that an extension of the Kinetic
Theory of Gases, developed by van der Waals, lead to equations for
the isothermals of a fluid which, when plotted graphically, agree in
general form with the continuous curves suggested by Thomson,
provided the temperature be less than a certain value. Above this
critical value the curves obtained by van der Waals are in fair agreement
with those found experimentally by Andrews for carbon-dioxide when
above its critical temperature.!

40. The Liquefaction of Gases.—A brief historical account of the
methods by which all the known gases have been liquefied will now
be given.

The earliest attempt at the liquefaction of gases appears to have
been made by Priestley in the latter part of the eighteenth century,
but the first substance, regarded under ordinary conditions as & true
gas, that was liquefied was chlorine. This gas was obtained in the
liquid state by Northmore in the year 1806, and subsequently, he
liquefied hydrogen-chloride and sulphur-dioxide.

Faraday, in March, 1823, also obtained liquid chlorine, by heating
chlorine octo-hydrate in one limb of a bent glass tube, the other limb
being immersed in ice, or in a freezing mixture. The chlorine
liberated by heating the octo-hydrate was thus liquefied by its own
pressure in the cold limb of the tube. In a similar manner, by heat-
ing substances which respectively yielded sulphur-dioxide, cyanogen,
and ammonia, Faraday succeeded in liquefying these gases, and, later,
by compressing the gas with a small compression pump, and, cooling
with a freezing mixture, he liquefied several other gases, such as
hydrogen-chloride, carbon-dioxide, sulphuretted hydrogen, and nitrous
oxide.

Bussy, in 1824, published accounts of investigations in which he
used low temperatures, but did not employ high pressures. He
liquefied sulphur-dioxide, and observed the important fact that when
the liquid sulphur-dioxide was made to evaporate rapidly, by blowing
air through or over it, the temperature fell considerably lower.
Employing the low temperature obtained by the evaporation of liquid
sulphur-dioxide, Bussy liquefied ammonia and chlorine.

In 1834 Thilorier liquefied carbon-dioxide in large quantities. The
gas was generated inside a strong copper cylinder, by the action of
sulphurie acid upon sodium bicarbonate, and by placing the interior
of the generating vessel in communication with the interior of another
vessel, kept at a lower temperature, the carbon-dioxide condensed in
the latter,

1No equation, of course, can be obtained to represent a discontinuous curve
such as ABCD.
6
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It will be seen from Fig. XXIII. that if the temperature of the
second vessel be 15° C. condensation will oceur at a pressure of about
650 atmospheres. Thilorier also obtained carbon-dioxide in the solid
state by allowing the liquid to escape through a narrow jet into a box
of poorly conducting material, when the cooling produced by the
volatilisation of part of the liquid solidified the remainder. He
observed that a very powerful refrigerant was obtained by mixing the
solid carbon-dioxide with ether, and this refrigerating agent is often
called “ Thilorier'’s Mixture.”

In 1845 Faraday published an account of experiments which were
undertaken with a view to liquefying the so-called * permanent gases,”
such as oxygen, nitrogen, carbon-monoxide, and hydrogen. He
employed higher pressures than in his earlier experiments, and obtained
much lower temperatures by using * Thilorier's Mixture,” but although
he was able to liquefy phosphine, ethylene, ete., and also to solidify
several other gases, such as ammonia, sulphur-dioxide, nitrous oxide,
hydrogen bromide, and cyanogen, he found that the *permanent
gases ” resisted all attempts at liquefaction.

In the same year Natterer, also, was unsuccessful in an attempt
to liquefy the “ permanent gases,” although he employed pressures
exceeding 3000 atmospheres, and used solid carbon-dioxide and ether
a8 a refrigerant.

‘We have seen, previously, how Cagniard de la Tour first observed
that, above a certain temperature, the liquid and vapour states coincide,
and it should be noted that Faraday first made the very important
suggestion that, in the case of the ‘“ permanent gases,” this limiting
or critical temperature is far lower than the ordinary atmospheric
temperature, and that, consequently, these gases cannot be liquefied
at ordinary temperatures merely by increasing the pressure to which
they are subjected. It was, however, largely due to the celebrated
researches of Andrews that the existence of such a critical temperature,
above which a gas could not be liquefied by pressure, came to be
clearly recognised, and it then became evident that the liquefaction of
the “ permanent gases " was to be achieved only by attaining suffici-
ently low temperatures, and not by employing very high pressures.

In 1877, M. Cailletet and M. Pictet succeeded, independently, in
li%lefying oxygen, Cailletet compressed the oxygen inside a capillary
tube to about 400 atmospheres, and cooled the compressed gas by
means of liquid sulphur-dioxide which was allowed to evaporate
freely. On releasing the pressure and allowing the gas to suddenly
expand a further cooling occurred, due to the work done by the gas
during the expansion, and partial liquefaction was obtained, the
Oxygen appearing as a mist inside the tube. Cailletet also succeeded
in liquefying carbon-monoxide, nitrogen, and air.

Pictet generated oxygen by heating potassium chlorate in a steel
retort, connected with & closed steel tube, the latter being surrounded
by & copper vessel. Liquid carbon-dioxide was pumped into the
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copper vessel, where it was made to evaporate rapidly by maintaining
a low pressure. ' The carbon-dioxide consequently solidified, and a
temperature of about — 140° C. was thus produced. The carbon-dioxide
gas which was pumped off from the copper vessel was cooled and
condensed, with the aid of liquid sulphur-dioxide, and then pumped
back again. The same carbon-dioxide was thus used continuously as
a refrigerating agent, and, similarly, the sulphur-dioxide used for
cooling the carbon-dioxide was itself condensed under pressure and
used over again. After several hours working, when the pressure of
the enclosed oxygen exceeded 300 atmospheres, a stop-cock was
opened and some of the oxygen issued as a liquid jet.! The expansion
of the remaining compressed gas produced a turther cooling, owing to
the work done by the gas behind in pushing out the gas in front, and
more of the oxygen was liquefied and issued from the nozzle in the
liquid state.

Cailletet and Pictet also experimented with hydro-
gen, but the evidence of liquefaction in the case of this
gas was not conclusive.

Further researches on the liquefaction of gases
were carried out by the Polish chemists Wroblewski
and Olzewski in 1883. Using liquid ethylene, boiling
under reduced pressure, as a refrigerant, they were
able to liquefy oxygen at a pressure of only about
20 atmospheres. The following year they succeeded
in liquefying hydrogen. Compressed hydrogen was
cooled with liquid oxygen, boiling under reduced
pressure, and was then allowed to suddenly expand. ’
A further cooling was thus obtained and a very small @ . ~xxyrr
quantity of liquid hydrogen was produced. Carbon- ’ ’
monoxide and nitrogen were also liquefied, and by rapidly evaporating
the liquids, under diminished pressure, they were solidified.

Wroblewski and Olzewski determined the boiling-points and
critical constants of various liquefied gases, and by employing liquid
ethylene as a refrigerant, in a method similar to that used by Pictet,
they succeeded in producing liquid air in quantity.

Dewar, in 1886, devised an improved form of the same apparatus
for the liquefaction of air on a large scale, and, in 1893, he solidified
air. The introduction, by Dewar, of ‘vacuum-jacketed " vessels
greatly facilitated the manipulation of these liquefied gases. Fig.
XXXIII. illustrates such a vessel. If a very small quantity of
mercury be present in the vacuous space its vapour will be condensed
on the walls of the inner vessel in the form of a mirror, and this will
help further to diminish the rate at which heat is gained by radiation.

. 11t should be noted that the critical temperature of oxygen is — 118° C., and
its critical pressure 50 atmospheres. Thus the initial liguefaction in Pictet’s
experiment was produced in essentially the same manner as in the method
employed by Faraday.

6 *
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Kamerlingh Onnes also employed the Pictet dowble cycle method,
using methyl chloride and ethylene in place of sulfhur-dioxide and
carbon-dioxide as refrigerating agents, and he carried out a number of
important investigations on the variation of various physical “ con-
stants "’ with change of temperature.

Reference has already been made, in Chapter I., to the researches
of Joule and Thomson on the passage of a gas through a porous plug,
and it was stated that on the mere expansion of a gas some work is
done against internal molecular cohesive forces.

It therefore follows that for any gas which strictly obeys Boyle’s
Law a cooling effect will be produced on free expansion owing to
the conversion of a part of the kinetic energy possessed by the
molecules into potential energy in the performance of this internal
work.!

If, however, a gas does not obey Boyle’s Law it cannot be predicted
a priort whether, on free expansion, a cooling or a heating effect will
result, or whether the temperature will remain unchanged. For if
the product P.V. increase with decrease in the pressure, P, there
will be a cooling effect on free expansion due to the increase in P.V,,
and if P.V. decrease with decrease in pressure a heating effect will be
produced (vide Appendix A). The total cooling or heating effect ob-
gerved when such a gas expands without doing external work will,
consequently, be the algebraic sum of the cooling due to the work done
against molecular cohesion, and the cooling or heating effect due to
the variation in P.V. with the pressure. Joule and Thomson found
that, in general, a cooling effect occurred on expansion, but that, in
the case of hydrogen, a heating effect was obtained. They also found
that the cooling effect diminished with rise in temperature, and this
agrees with the observed fact that, as the temperature is raised, the
decrease in P.V. with rise in pressure becomes less marked (vide § 33).
It has further been found that at a certain temperature the cooling
etfect disappears, being replaced at higher temperatures by a heating
effect. The temperature at which this transition occurs is called the
temperature of tnversion of the Joule-Thomson effect.

The “ Regenerative ” method for the liquefaction of gases, which
was introduced about the year 1895, will now be readily understood.
This method is based upon the Joule-Thomson effect, and was first
utilised for the production of liquid air, without the aid of any
refrigerant, by Hampson in England, and Linde in Germany. The
gas to be liquefied is compressed by means of a suitable gas compressor
to about 200 atmospheres, and the heat generated by this compression
is absorbed both by enclosing the compression cylinder in a tank

14 Free expansion '’ must be carefully distinguished from the case where a gas
in expanding performs external work, and, consequenily, grows colder unless heat
be communicated to it from an external source.
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through which water circulates and by passing the compressed gas
through a copper coil contained in the same tank.!

The compressed gas now flows on at approximately the tempera-
ture of the room, and, after passing through a water-separator and a
high pressure purifier, is delivered to the liquefier. The liquefier con-
sists usually of two or four coils which are wound in numerous turns
around a vertical spindle, and which unite at their lower ends in a
vertical expansion valve. The compressed gas travels down these
regenerator coils, and is allowed to escape at the expansion valve
which can be opened or closed at will by means of a spindle and a
hand wheel. The gas on escaping through the valve expands to ap-
proximately the atmospheric pressure, and flows back over the coils,
finally passing from the outlet of the liquefier back into the gas-holder,
and thence to the compressor to be recompressed. The expansion at
the valve causes a considerable cooling of the escaping gas, and the
latter, in flowing back over the coils, lowers their temperature, so that
the next portions of the gas are cooled before reaching the valve, and,
consequently, on expansion, fall to a still lower temperature. The
regenerator coils being enclosed in a cylinder of badly conducting
material, this progressive cooling effect continues until, finally, part
of the gas begins to liquefy and collect in a receiver beneath the ex-
pansion valve. The liquefied gas can then be run off into a Dewar’s
vacuum vessel.

Now the expansion of the gas at the valve may be regarded as
approximately free expansion, for the compressor is working con-
tinuously and supplies almost all the energy needed for the work of
pressing back the atmosphere. Consequently the cooling effect pro-
duced is similar to that observed in the Joule-Thomson experiment
on the passage of a gas through a porous plug, and mainly arises
from the work done during expansion against internal molecular
cohesive forces. It has been seen that the magnitude of these cohesive
forces in a gas at the ordinary density is only small—but when the
gas is subjected to the combined influence of high pressure and low
temperature a large proportion of its molecules are brought close
together, and, in consequence, its cohesion is greatly increased. Thus, -
in the “ regenerative ” method, the magnitude of the cohesive forces
called into play increases progressively as the temperature falls, with
a corresponding increase in the cooling effect produced by the ex-
pansion of the compressed gas. It might, therefore, be anticipated
that the heating effect observed by Joule and Thomson during the
free expansion of hydrogen would be replaced, at a sufficiently low
temperature, by a cooling effect due to the increased cohesion. A
study of Amagat’s results further shows that the effect of lowering the

! The gas is usually compressed in two stages, each compression cylinder being
fitted with a copper coil. Both the cylinders and coils are water-cooled, to absorb
the heat generated by the compression,
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temperature is to increase the cooling effect, or diminish the heating
effect, due to the variation in P.V. with the pressure,

Dewar, in 1900, showed that hydrogen is, in fact, cooled by free
expansion when initially at a sufficiently low temperature, and he
was thus able to employ the ‘‘ regenerative ” method for the produc-
tion of liquid hydrogen in quantity.

Hence the behaviour of hydrogen cannot be regarded as in any
way exceptional, and the heating effect observed by Joule and Thom-
son is merely due to the fact that, in the case of hydrogen, the
“ temperature of inversion” is much lower than the ordinary atmos-
pheric temperature. For air (expanding from about 100 atmospheres
to the atmospheric pressure), the temperature of inversion of the
Joule-Thomson effect is nearly 100° C., whereas for hydrogen (under
the same conditions), the temperature of inversion was found by
Olzewski to be about—=80° C.

The boiling-point of liquid hydrogen, under atmospheric pressure,
was found to be approximately 20:5° A., and by boiling the liquid
under reduced pressure Dewar succeeded in obtaining solid hydrogen.
The melting-point of hydrogen was found to be about 14:5° A.

Finally, in 1908, helium was liquefied by Kamerlingh Onnes, and
by Dewar—its boiling-point being only 4:3° A. By the evaporation of
liquid helium under very reduced pressure Kamerlingh Onnes has,
recently, reached a temperature of 0'9° A.—the lowest temperature
yet attained—but even at this low temperature the helium exhibited
no sign of solidification.

Most gases when condensed form colourless liquids, but liquid
chlorine and nitrogen tetroxide are yellow, liquid oxygen is blue, and
liquid ozone a deep indigo blue. Liquid air possesses a slight green-
ish-blue colour. In spite of the very low boiling-points of such
liquids as hydrogen, oxygen, air, ete., they can be poured into the
hand, if the latter be dry, and allowed to evaporate for a short time
without any extreme sensation of cold. This is due to the liquid
assuming the spheroidal state. The density of liquid hydrogen, at
the boiling-point, is only about 006, and when poured on the hand
the impact is scarcely perceptible. The density of liquid oxygen, at
its boiling-point, is approximately 1'13, or nearly nineteen times as
great. If india-rubber be cooled in liquid air it becomes hard and
brittle. Lead when similarly treated becomes fairly elastic. Many
bodies, such as cotton-wool, leather, ete., if placed in liquid air, and
then exposed for a short time to a bright light, are found to be highly
phosphorescent when examined in the dark. Cotton-wool which has
been dipped in liquid air burns rapidly, if ignited while still wet, and
a glowing taper or wooden splint will also burn energetically if
immersed in liquid air—ice and solid carbon-dioxide being formed
during the combustion.

Liquid air is now frequently employed ' in scientific work as a
refrigerant, and it is also used commercially for the preparation of
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oxygen. Liquid, oxygen boils at 90'5° A., and liquid nitrogen at
77'5° A. Consequently, by liquefying air and allowing it to partially
evaporate the nitrogen vaporises much more readily than the oxygen,
and after a time the remaining liquid consists of nearly pure oxygen.
The gas coming off is then compressed into steel cylinders. It con-
tains approximately 3 per cent. of argon, the boiling-point of the
latter being 87° A, which is nearly the same as the boiling-point of
oxygen. Liquid hydrogen is occasionally used as a refrigerant when
very low temperatures are required. If a piece of metal be cooled in
liquid hydrogen and then hung up in the air it will be observed that
it rapidly becomes covered with a white layer of solid air. The latter
soon melts and drips off the metal. By employing these liquefied
gases as refrigerating agents, Dewar and Fleming have shown that at
low temperatures the electrical resistance of pure metals decreases to
a considerable extent. Iron, and copper, at 50° A. were found to
become nearly perfect conductors.

It has also been found that many seeds and micro-organisms are
uninjured by prolonged cooling with liquid hydrogen.

41. Experimental Methods for the Liquefaction of Gases.—The
following experiments illustrate the various methods by which the
liquefaction of gases may be effected.

Experiment XII.—A moderately wide glass tube is taken, and a
narrow tube is fused to one end. The narrow tube is then bent at
right angles. A plug of loosely packed asbestos having been pushed
up to the joint, a quantity of freshly heated charcoal is introduced
into the wide tube, and the latter is drawn off to a narrow neck. A
stream of dry sulphur-dioxide is then passed through for about half
an hour, after which both ends of the tube are sealed ! (Fig. XXXIV.).
On placing the narrow tube in a freezing
mixture and gently heating the wide tube, §
the sulphur-dioxide is driven off from the
charcoal and condenses as a colourless
liquid at the narrow end. When the tube
is again allowed to assume the temperature
of the room the liquid sulphur-dioxide boils Fra. XXXIV.
off into vapour and is reabsorbed by the .
charcoal ; the experiment may thus be repeated as often as required.
The plug of asbestos is introduced in order to prevent any fragments
of charcoal from being accidentally shaken into the narrow tube.

Dry silver chloride may be introduced into a similar tube and,
after passing a stream of dry ammonia, the tube is sealed as before.
On gently heating, the ammoniacal silver chloride melts and gives up

1The charcoal may conveniently be heated in the tube itself,—and allowed to
become cold while the sulphur-dioxide is passing,—the tube being then sealed off.
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its ammonia, the latter liquefying at the cold end of the tube. Itis
desirable to mix the silver chloride with a little charcoal to prevent
the melted chloride from running together. In this way a larger
surface is maintained for the subsequent reabsorption of the ammonia.

Experiment XIII.—Fig. XXXV. illustrates a simple apparatus for
the liquefaction of a gas requiring a pressure of only a few atmos-
pheres at the ordinary temperature. Sulphur-dioxide may con-
veniently be employed for this experiment. A little mercury is intro-
duced into the apparatus until it just covers the elbow at C, and the
dry sulphur-dioxide is then admitted at the open end of the tube B,
and allowed to bubble through the mercury and escape through the
wide tube G until all the air is expelled from the latter. The tube
G is now sealed off at BB. Mercury is then poured into the tube D,
and the valve A is inserted and air pumped in until the mercury is
forced to the top of the tube E. In this way the sulphur-dioxide in
the tube E is driven out, and on releasing the pressure, by removing
the valve A, air enters the tube E. This tube is now sealed off at F,
and the tube D is nearly filled with mercury, and the valve replaced.
On pumping in air at A the sulphur-dioxide in the tube G is com-
pressed and soon appears as a liquid in the narrow part of the tube.
On releasing the pressure the sulphur-dioxide boils off into gas.
Ammonia may similarly be readily liquefied in this manner at the
ordinary temperature. By observing the initial volume of the enclosed
air after the tube E is sealed off, and by applying Boyle’s Law to the
change of volume, the approximate pressure required to produce
liquefaction may be obtained. A correction should, of course, be
made for the difference of level of the mercury in the tubes containing
the gas and the air. The upper part of the tube containing the gas
may also be water-jacketed, and the respective pressures necessary
to produce liquefaction at various temperatures may thus be observed.

Experiment XIV.—The liquefaction of ammonia and sulphur-
dioxide by means of an Oersted’s Piezometer was described in
Experiment IX. For gases which are less easily condensed Cailletet’s
apparatus may conveniently be employed. It consists of an hydraulic
pump which communicates with a steel compression chamber by
means of a copper tube of small internal diameter. The gas to be
liquefied is contained in a glass tube to which a gun-metal collar is
cemented, and, after pouring mercury into the compression chamber,
the glass tube is lowered into position and firmly secured by means
of a nut. On working the pump, water is forced into the upper part
of the compression chamber, and the mercury is, in consequence,
driven up into the glass tube, thereby compressing the gas. The ex-
perimental tube and compression chamber are shown in Fig. XXXVI.
The projecting portion of the glass tube is surrounded by a jacket in
order to cool the gas, and also by an outer guard jacket. By means
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of this apparatus gressures up to 1000 atmospheres may be obtained
and many gases readily liquefied. If a gas with a critical temperature
slightly lower than the atmospheric be compressed without the use
of arefrigerant no liquefaction will result,—but on suddenly releasing

f
e
|

A

1Y,
N

DO\

- | 3 ~ Fig. XXXVIL—Cailletet's ex-
' T perimental tube and com-
Fia. XXXV, pression chamber.

the pressure to a moderate extent the gas will be cooled by its expan-
sion and will be liquefied. Ethylene may conveniently be used for
this experiment, its critical temperature being 10° C. A similar result
may be ohtained with a.gas such as carbon-dioxide if the jacket be
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first filled with water at a temperature a few degregs above the critical
temperature of the gas. The oritical temperature of the carbon-
dioxide may also be readily shown by compressing it until partially
liquefied, and then raising the temperature of the water in the jacket
until the meniscus within the tube disappears.

Fig. XXX VII.—Air Liquefier (Hampson).

Ezperiment XV.—Liquid air in quantity may readily be produced
by means of the Hampson liquefier shown ‘in Fig. XXXVII,, and, in
section, in Fig. XXXVIIL.

In the installation at. His Exalted Highnass the Nizam’s College,
Hyderabad, the air is compressed to 200 atmospheres by means of &
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‘Whitehead torpedo-compressor driven by an 8 horse-power electric
motor. The air is first drawn jinto¥the compressor through the low

Part sectional view of top of Air
Liquefier.

! Diagram showing arrangement of
Full length sectional view of Air Liquefier. Regenerator Coils.

Fie. XXXVIIL

pressure purifier, which contains moist slaked lime, by means of which
carbon-dioxide is absorbed. After compression, the air passes through
& water separator, not shown in the figure, and thence to the high
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pressure purifier which contains solid caustic pojash. The caustic
potash removes water vapour and any remaining carbon-dioxide, and
the pure and dry air passes on through the connection, A, and the
regenerator coils, B, and escapes at the expansion valve, C, the latter
being regulated by means of the hollow spindle, D, and the hand
wheel, E. After flowing over the regenerator coils the air passes from
the outlet, F, back to the inlet of the low pressure purifier, and thence
to the compressor to be recompressed. An additional opening at the
bottom of the low pressure purifier allows extra air to be drawn in as
required. A gauge, L, containing glycerine indicates the pressure at
the outlet, and this pressure should be regulated so
as to correspond to about 8 inches of glycerine.

After the liquefier has been working for about a
quarter of an hour liquid air commences to collect
in the receiver G. By turning the hand wheel, T,
the discharge valve, P, may be opened, and the
liquid air then flows out through the hollow spindle,
R, into & vacuum vessel placed ready to receive it.
The gauge, H, contains coloured water, and com-
municates with the receiver, G, by means of the
hollow spindle, D, and the pipe,J. When the liquid
air collects in the receiver it compresses the air in
the pipe, J, and displaces the coloured water in the
gauge : the latter thus indicates the depth of the
liquid air in the receiver. The thermometer, K,
registers the temperature of the air leaving the
liquefier, and a second thermometer may be placed
inside the socket, K,, to register the temperature of
the compressed air when it enters the regenerator
coils. The pressure of the compressed air on

Fre. XXXIX. entering the coils is indicated by means of the

pressure gauge, O.

Using the liquid air thus produced as a refrigerant, a large number
of gases may be liquefied and solidified at the ordinary atmospheric
pressure. A glass condensing flask of the form shown in Fig. XX XIX.
may be conveniently employed for this purpose. The flask is im-
mersed in liquid air contained in a cylindrical vacuum vessel, and
the gas is passed in through the small tube in order to obtain the
maximum cooling effect. If it be desired to preserve a specimen of
the liquefied gas a straight tube of thick glass, closed at one end, may
be substituted for the condensing flask—the gas being admitted by
means of a narrow tube passing down to the bottom. The open end
of the thick glass tube should be previously constricted, so that it can
be sealed off with a small blowpipe flame after a sufficient quantity of
the gas has been condensed. In this manner ammonia, chlorine,
hydrogen chloride, hydrogen bromide, hydrogen iodide, sulphuretted
hydrogen, nitrous oxide, sulphur-dioxide, and many other gases may

be readily liquefied and also solidified.




CHAPTER V.

THE THERMAL EXPANSION, Déghs‘USION, AND SOLUBILITY OF
GASES.

42. The Thermal Expansion of Gases.—The expansion of gases when
heated at constant pressure was first investigated by Charles (1787),
Priestley (1790), Dalton (1801), and Gay-Lussac (1802), and 1t was
found that different gases possessed approximately equal coefficients
of thermal expansion.” This experimental result is commonly referred
to as the Law of Charles. A much fuller investigation was subse-
quently carried out by Regnault, who studied both the expansion of
gases at constant pressure, and the increase of pressure at constant
volume. Regnault found that for the so-called * permanent gases”
the coefficients of expansion at constant pressure were approximately
equal, and of the mean value 0-003665, and that the coeflicients of
increase of pressure at constant volume for such gases were approxi-
mately the same as their coefficients of expansion at constant pressure.

The coefficient of expansion of a gas at constant pressure is defined
as the increase in volume of unit volume at 0° C. per degree rise in
temperature, when the pressure is constant. Similarly, the coefficient
of increase of pressure at constant volume is defined as the ratio of the
increase in pressure to the initial pressure when a given quantity of a
gas is heated from 0° C. to 1° C., its volume remaining unchanged.

A detailed description of the apparatus used by Regnault in his
researches will not be given, but two experiments will be described
which illustrate the methods employed in investigating the thermal
expansion of gases.

Experiment XVI. Determination of the Coefficient of Expansion of
a Gas at Comstant Pressure—Fig. XL. illustrates a convenient
apparatus for determining the coefficient of expansion of a gas at
constant pressure. A “U” tube, of the form shown in the figure, is
connected to a wide glass tube by means of rubber pressure tubing.
The stop-cock on one limb of the “ U” tube being open, mercury is
poured into the wide glass tube until it just rises in each limb of the
“U” tube, and the apparatus is carefully levelled so as to bring the
mercury to the same graduation mark in each limb. A tube contain-
ing phosphorus pentoxide or other suitable desiceating agent is then
connected to the limb of the “U " tube which carries the stop-cock,

93
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and the pure and dry gas is passed in and allowed o bubble through
the mercury and escape at the open limb. When all the air is com-
pletely displaced the supply of gas is stopped, the stop-cock closed,
and the drying tube removed. The “U” tube is now surrounded
with clean melting ice and water, and the wide tube is raised so as to
drive out the gas in the open limb, after which it is somewhat lowered.
When the enclosed gas has cooled to approximately 0° C., the stop-
cock is slowly opened. The gas is thus partially expelled and the

i 0 i
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Fra. XL.—Apparatus for determining Fig. XLI.—Apparatus for determin-
the coefficient of expansion of a gas ing the coefficient of increase of
at constant pressure. pressure of & gas afb constant vol-

ume.

mercury is brought fairly close to the graduation mark between the
two bulbs. The apparatus is now allowed to stand for some time
until the gas is accurately at 0° C., when the stop-cock is opened
again, the mercury carefully levelled to the graduation mark, and the
stop-cock once more closed.

The ““U” tube is next surrounded with boiling water, and the
latter 1ie; kept at the boiling-point by passing in a rapid current of
steam.

1The stop-cock should be lubricated with burnt black rubber, as ordinary
lubricants will not stand the temperature of boiling water.
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The wide tube ig then lowered until the mercury again stands at
the same level in each limb, so that the enclosed gas is at the
atmospheric pressure. Since the two limbs of the “U” tube are
graduated in corresponding lengths, the mercury will be level when
it has again been brought to similar graduation marks in each limb.
In the particular apparatus shown in the figure the upper bulb has
a volume of 27 c.cs. and the lower bulb & volume of 9 c.cs.

Now, if V, and V, be the respective volumes of a given mass of
gas at 0° C. and ¢° C., when the pressure is constant, and if « be the
coefficient of expansion at constant pressure, we have—

_Vi-V,
R A
oV, = Vo(l + af).

Since a is nearly constant for different gases, and approximately
equal to 0-003665, it follows that the 27 c.cs. of gas at 0° C. will occupy
a volume of about 369 c.cs. at 100° C. Thus, after heating the gas to
the temperature of the boiling water, and adjusting its pressure to
the atmospheric pressure, the mercury will stand at a convenient
level in the graduated limbs of the “U” tube and the new volume
occupied by the gas can be readily observed. The limb containing
the gas is accurately graduated in c.cs., but the open limb is merely
graduated so that corresponding divisions in both limbs are at the
same level. In this way the enclosed gas may more readily be
brought to the atmospheric pressure. The temperature, ¢, of the
boiling water may be ascertained by means of a thermometer, or by
calculation from the observed barometric pressure, and the coefficient
of expansion of the gas at constant pressure may then be readily
calculated by substituting in the equation a = Y%——Xi' the values

0
obtained for Vy, V,, and ¢.

The barometer should be read when both V, and V, are measured,
in order to guard against any error arising from variations in the
atmospheric pressure during the course of the experiment, and a
correction should be applied for the expansion of the glass vessel.
For this purpose the coefficient of cubical expansion of glass may,
with sufficient accuracy, be taken as 0-000025.

Ezxperiment XVII,—Determination of the Coefficient of Increase of
Pressure of a Gas at Constant Volume.—The experimental details of
this determination are similar, in many respects, to those a.lrea.d:y
described in the preceding experiment. The pure and dry gas is
enclosed in a cylindrical glass bulb which is fitted at one end with a
stop-cock, and connected at the other end to an open tube by means
of rubber pressure tubing (Fig. XLI). The open tube contains
mercury, and the quantity of gas is so adjusted that when the latter
is at 0° C., and at atmospheric pressure, the mercury just reaches a
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mark on the glass tube below the cylindrical bulb. ¢The corresponding
level of the mercury in the open tube having been noted, the latter is
raised in order to increase the pressure, and the gas is then heated
to the boiling-point of water. If the precaution of raising the
pressure before heating the gas be omitted, some of the gas may
expand into the connecting tube and be lost. When the gas has
attained a steady temperature, the mercury is again brought to the
same mark below the bulb, and the new level of the mercury in the
open tube is observed. The increase in pressure over the pressure
at 0° C. produced by & known rise in temperature is thus obtained,
and the coefficient of increase of pressure at constant volume is
calculated from the equation

_Pe- D
F="p ¢
where 8 is the coefficient of pressure-increase, and P, the atmospheric

pressure.

A correction should be applied to allow for the diminished density
of the mercury in the tube below the cylindrical bulb when raised to
the temperature ¢° C. This may most readily be done by finally
opening the stop-cock and lowering the open tube until the mercury
again stands at the same mark below the bulb, the temperature ¢° C.
of the bath being meanwhile kept unchanged. The level of the
mercury in the open tube is now observed, and this level must be
taken as corresponding to atmospheric pressure in obtaining the in-
crease in pressure produced by heating the gas.

A correction should also be applied for the expansion of the glass
vessel. Let V, be the volume of the vessel at 0° C., and y the co-
efficient of cubical expansion of glass.

Then Vi=V,. (1 + 7.9
Applying Boyle’s Law to the enclosed gas we have—
P,.V,.=P/.V,
WP Vo L+ y. 8y =P,/ .V,
Py =P, (L4 7.0

P, should then be substituted for P, in calculating 3.

The thermal expansion of gases furnishes a scale for the measure-
ment of temperature. When a gas is employed as a thermometrie
substance, it is more usual to measure equal changes of temperature
by equal changes in the pressure of the gas at constant volume than
to adopt the alternative method and measure equal changes of
temperature by equal changes in the volume of the gas under constant
pressure.

In Jolly’s constant volume air thermometer, to which reference was
made in Experiment VIII., the dry and carefully purified air is con-
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tained in a bulb which is attached to an open tube by means of pres-
sure tubing. These latter tubes contain mercury, and by suitably
adjusting the height of the open tube, the surface of the mercury can
be brought to a fixed mark on the bent tube which is joined to the
bulb. To obtain greater accuracy the bent tube should be of capillary
bore, for, when the bulb is immersed in a bath at a temperature which
differs from the atmospherie, the temperature of the air contained in
this tube will be different at different points, and an accurate correction
cannot be readily applied. The capillary tube should be fused to a
wider tube of the same internal diameter as the open tube, and the
mark to which the mercury is brought should be engraved on the wider
tube near the point where it joins the capillary. In this way any
error due to unequal capillary action may be eliminated. The ther-
mometer is graduated in accordance with the Centigrade scale, the
fixed points corresponding respectively to the temperature of melting
ice (0° C.), and the temperature of the vapour of water boiling under
a pressure of 76 ems. of mercury (100° C.). If then the bulb is im-
mersed in a bath at any temperature ¢° C., and the corresponding
pressure is found to be P, we have— ’

P,=P,.(1 + B.1).

P, - P
Wh t= 520
enee P,. B
Substituting the value obtained by Regnault for 8, this becomes

1 Py - PO
t = o305 - <“PO*>

A correction should be applied, as in Experiment XVIL.,, for the
expansion of the bulb.

When the temperature of the bulb is raised, the pressure of the
enclosed air increases, and the mass of air contained in the cooler
capillary tube will be increased, while the mass of air in the bulb will
be correspondingly diminished. This necessitates a further correction
which becomes increasingly important at high temperatures.

The relatively large thermal expansion of the “ permanent’ gases
for a given rise in temperature renders them particularly suitable for
thermometric purposes, for small changes in temperature may be
readily observed, and variations in the volume of the containing vessel
produce much less effect.

The close agreement throughout the scale of temperature ob-
served for different “permanent” gases and the large range of
temperature over which they can be ‘employed furnish additional
reasons for their use in thermometry.

Regnault's researches have shown that the coefficients of thermal
expansion do, however, vary to a small extent for different gases.
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Thus for hydrogen, air, and carbon-dioxide, at 0°.C., Regnault found
that 273'1, 2724, and 2696 volumes, respectively, expanded 100
volumes when raised to 100° C., the pressure being maintained con-
stant. The coefficient of expansion at constant pressure, a, was more-
over found to differ slightly from the coefficient of increase of pressure

at constant volume, 8.
Thus for air at 0° C., and 76 cms. of mercury, Regnault found—

a = 003671,
B = '003665.
For hydrogen at 0° C., and 100 cms. of mercury, Chappius found—
o = *003660,
B = -003663.

Further, the work of Regnault, Amagat, Chappius, and others has
shown that, for any particular gas, a and B vary under different
temperatures and pressures—the variation with respect to temperature
being relative to any gas selected as a standard, which latter gas, when
employed in a constant volume thermometer, furnishes the standard
scale of temperature. In the case of the standard gas, under standard
conditions as to pressure, it is evident that B8 will be constant at all
temperatures, since the temperature is itself determined by equal
increments in the pressure. The scale of temperature which has been
adopted as a standard by the Bureaw International is that of the con-
stant volume hydrogen thermometer, the hydrogen being under a
pressure of 1000 mms. of mercury at 0° C. The usual fixed points,
corresponding respectively to the temperature of melting ice (0° C.),
and the temperature of the vapour of water boiling under a pressure
of 76 cms. of mercury (100° C.), are employed.

The bulb of the constant volume hydrogen thermometer at the
Bureaw International consists of an iridio-platinum cylinder of about
1000 c.cs. capacity.

Somewhat above 500° C. iridio-platinum becomes permeable with
respect to hydrogen, and a constant volume thermometer filled with
nitrogen is therefore employed at high temperatures.

43. Callendar’s Compensating Constant-Pressure Air Thermometer.
—Fig. XLII. illustrates a simple and accurate form of constant-
pressure air thermometer devised by Callendar. A and B are two
bulbs connected to one another through the pressure gauge, C, which
eontains sulphuric acid. The bulb A is directly connected to the
measuring burette, D, which is accurately graduated, and is filled with
mercury. The bulb B is joined to a capillary tube similar to that
connecting A and D, and these capillary tubes are placed close to-
gether. In this manner an automatic correction is made for the
error arising from the variation in the temperature of the air in the
connecting tube. The apparatus is initially exhausted through a two-
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way stop-cock, Bethe stop-cocks F and H being closed. Pure dry air
is then admitted through E, and the level of the mercury in D is ad-
justed so that the volume of air enclosed on each side of the pressure
gauge is the same. The stop-cock E is now turned so as to place A
and B in direct communication, and the sulphuric acid consequently
remains at the same level in each limb of the gauge, C, on opening
the stop-cock, F.

The whole instrument is next placed in melting ice, and when
a steady temperature has been attained the stop-cock E is closed.
Since equal volumes of air have been enclosed at the same tempera-

H

F16. XLII.—Callendar’s Compensating Constant-Pressure Air Thermometer.

ture and pressure, it follows that the mass of dry air on each side
of the pressure gauge is the same. If now the bulb A be placed in
a bath at a higher temperature, while B and D are still kept in
melting ice, the pressure of the air in A will increase, and mercury
must be run out from D to again restore the level of the sulphuric
acid in C.1 )
1The mercury may be run out of D either by lowering the reservoir @, or by
means of the tube at H. In the latter case the volume of air which has passed
into D can be obtained from the weight of the mercury run off, and the fotal

volume of the air in D is then obtained by adding to this quantity the original
volume of the air in D when at 0° O.
- 7
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The volume of mercury run out gives the volume of air which has
passed from A into D, and the pressure of the air is practically the
same as the initial pressure, since it is equal to that of the air in B,
which is constant, except for the very small increase due to the rise
in temperature of the air in the capillary tube.

Consider, first, the air enclosed in the bulb A, the burette D, and
the connecting capillary tube.

Let V, = volume of the air in A when at the temperature of
melting ice, and let 6, represent this temperature on thescale of the
air thermometer.

Let V," = volume of the air in A at 6; on the air scale.

Also let v, = volume of the air in the capillary tube connecting A
and D when at 6,.

When the bulb A is at §,, the temperature of the air in the
capillary tube will be different at different points. Let the mean of

the reciprocals of these temperatures be 617’ and v,' the volume of the

air in the capillary tube under the new conditions.

Further, let Vy = the initial volume of the air in D at 6,, and
V,' = the final volume of the air in D at 6.

Similarly, for the air enclosed in the bulb B and its capillary tube,
let Vg = volume of the air in B at 6, v, = volume of the air in the
capillary tube at 6, and v," = volume of the air in the capillary tube
while 6, is being measured.

When A is at 6, the mean of the reciprocals of the temperatures

at different points of this tube may also be taken as ;7, since the two

capillary tubes are exactly similar, and are placed close together, so
that they follow the same course. Further, for each system, let the
initial pressure of the air = P, the subsequent pressure when measur-
ing 6, = P’, and the mass of air = m.

Since the change in pressure, P’ — P, is very small we may apply
Boyle's Law with sufficient exactness.

If, then, p be the density of the air at a temperature 6, and a pres-
sure P, we have—

Initial mass of air in A, at 6, and P, = p.V,.
,» capillary tube, at 6, and P, = p.v,.
» D,at 6 and P, = p. V.

. , VPG,

Final , , ,, Aatf,and P, = p—vlﬁ-— B

Final mass of air in capillary tube, when the mean of the re-

” " ”»

” " 2"

ciprocals of the temperatures at different points is %7 and the pressure

oo PV PGy
is P, _.MP"a’ .
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Final mass of air in D, at §, and P’, = B;Yﬁ,);lj .
. _ P60 P Vi ve Vi)
Sope(Vat v, + Vo) =" .<0t+0,+eﬂ>—m.
Similarly, for the other system, we have—
Initial mass of air in B, at 6y and P, = p . V.
" " » » capillary tube, at 6, and P, = p. v,
Final ,, ,w 3 B, at and P, = p._Vlg._Ii.

,» capillary type, when the mean of the re-

” ” ”
. o1
ciprocals of the temperatures at different points is i and the

o o PV B
pressure is P, = P e

. _ b8 P Vg G
-'P-(VB'I‘UI))“ P .(“00“"‘0;)—‘771.

Vi v, Vo Vy 2y
‘Whence 0‘+7+70——%+-é,—.
Since the capillary tubes are made of equal capacity we have
v, = v,, and since they are exactly similar and acquire the same
temperatures at corresponding points we have v, = ¢',.

. Via V'p Ve
v ‘0;+_0;-—_é;.
. 0‘._.00.#
o *VB“‘V,D.

Any effect due to the capillary tubes thus disappears, and the
only correction which need be applied is for the expansion of the
bulb A. Let y be the coefficient of cubical expansion of the material
of the bulb. Then since the internal volume is V, at 6, we have—

Via= Vol +v.(6, - )},
and substituting in the previous equation, we have—

- 00.(VA i VA.‘y.oo).
‘ Ve~ Vp=Vi.v.6,

When Callendar’s constant-pressure thermometer is employed for
the measurement of temperatures not differing greatly from the normal
atmospheric temperature, the bulbs A and B may, conveniently, be
made of equal volume. In this case the measuring burette will be
completely filled with mercury when the whole instrument is initially
at ), and, on raising A to 6, the volume of mercury run out of the

0
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burette will at once give V5. For the measurement of low tempera-
tures the bulb A should be considerably smaller than B, otherwise it
will be impossible to make the pressure in the two systems equal.

44. Diffusion.—One of the characteristic properties of gases is their
mutual miseibility in all proportions. Thus, if two different gases,
which are not uniformly mixed together, be kept in a confined space,
each gas will flow from the regions where its density is higher to
those where its density is lower until, finally, each gas will be uni-
formly diffused throughout the whole space.

Experiment XVIII.—Three tall glass cylinders of the same size
are filled, respectively, with hydrogen, air, and carbon-dioxide, and are
closed with glass plates. Three thin glass bulbs each containing a
few drops of bromine are then taken, and, after removing the glass
plates, a bulb is dropped, as nearly as possible simultaneously, into
each of the three cylinders, the glass plates being immediately re-
placed. The bulbs are broken by the fall, and a layer of bromine
vapour is rapidly formed at the bottom of each cylinder. After stand-
ing for a short time it will be observed that the bromine vapour has
diffused much farther in the eylinder containing hydrogen than in the
one containing air, and that the diffusion is least in the case of the
carbon-dioxide. Finally, however, after standing for a sufficient
length of time, the bromine vapour will be uniformly diffused through-
out each of the cylinders.

The law relating to the conduction of heat, which was enunciated
by Fourier, supplies an analogy to the law governing gaseous diffusion,
and it will therefore be convenient to refer first to the phenomenon of
thermal conductivity.

If a plate of any material be taken, of 1 cm. thickness, and if its
two faces be kept, respectively, at constant temperatures ¢°.C., and
(¢t = 1)°.C.,, then the thermal conductivity of the material of which
the plate is made is defined as the quantity of heat which, in one
second, flows through each unit of area of the plate. Further, if the
thickness of the plate be  cms., and the respective temperatures of
the two faces be ¢ and ¢, it is found by experiment that, when a steady
state is attained, the flow of heat per second, per unit area, is propor-
tional to Lw—t—, provided the value of this latter quantity be sufficiently
small. ,

The quantity t»———w U , which represents the fall of temperature per

centimetre, is termed the ‘“temperature gradient.” If, then, the
area of the plate be A sq. cms., the total quantity of heat, Q, which
passes in S seconds is given by the equation--
t -
Q=K.A. = .8,
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where K is a constant for the given material, and is defined as the
thermal conductivity. _

More generally, the flow of heat through any surface is given by
the equation— 0

Q=K.A. - &x.S,

where — g—g is the temperature gradient a¢ the surface. It should be

noted, however, that K is not 7igidly constant, but is, in fact, a func-
tion of the temperature, so that Q is proportional to — f(6) gg

If a steady state has not been attained we must consider an
infinitely short time interval during which the temperature gradient
is sensibly constant. In this case we must replace S by dS in the
previous equation.

It was shown by Fick, in 1855, that a similar relationship holds for
the phenomenon of diffusion, both in the case of liquids and gases,
the concentration, or density of the fluid corresponding to tempera-
ture in the thermal formula. Thus, let two gases which, initially,
are not uniformly mixed together be enclosed in a cylindrical vessel,
and let the density of each gas throughout any horizontal section of
negligible thickness be uniform. Then if p be the density of one of
the gases at a height z, measured from any fixed horizontal reference
plane, and if p decrease with increase in z, the mass, M, of the gas
which flows across the horizontal plane at height « is given by the
equation—

dp
M=9.A.- dz.s,
where 7 is defined as the interdiffusity of the two gases.

As in the case of thermal conductivity, this equation will, in general,

become more nearly exact the shorter the time interval, S, for the

density gradiens, — g—g, will usually vary with S.

If the value of the density gradient be not too great, we may
assume that it is uniform, and write M = . A. - (H) .S,
where p and o’ are the respective densities at heights z and 2’ from
the horizontal reference plane.

Both the conduction of heat and the interdiffusion of miscible
fluids find a simple explanation from the standpoint of the kinetic
theory of matter. For if two adjoining layers of any material be at
different temperatures, the average kinetic energy of the molecules in
the layer at the higher temperature is greater than the average kinetic
energy of the molecules in the cooler layer. Consequently, when
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collisions take place at the plane of separation, the molecules in the
cooler layer will, on the average, gain energy, and the molecules in the
warmer layer will experience a corresponding loss. Heat energy is
thus transferred from the hotter to the cooler portions of the material,
and, if undisturbed by external influences, a uniform temperature will
ultimately be acquired.

Again, in the case of miscible fluids, if the number of molecules per
unit volume of one fluid in any layer exceed the number of molecules
per unit volume of the same fluid in an adjoining layer, then, since
the molecules are in constant motion, more molecules of the given
fluid will pass in unit time across the plane of separation from the
side of greater to that of less concentration than in the reverse direc-
tion. Thus a flow of the fluid will take place from regions of greater
to those of less concentration, and, in the absence of disturbing in-
fluences, will continue until the fluid mixture has become perfectly
homogeneous. This homogeneity, once acquired, will not be affected
by the molecular motion.

Further, in the case of a gaseous mixture, if the pressure be
diminished the length of the mean free path of the molecules will be
increased, and, consequently, diffusion will take place more rapidly. A
rise in temperature will also increase the rate of diffusion, since the
average velocity of the molecules is thereby increased.

These conclusions are in agreement with the experimental results
obtained by Loschmidt, Von Obermayer, Waitz, and other in-
vestigators, who have measured 5 for different pairs of gases.

Loschmidt determined the value of 5 by enclosing the two gases
in a vertical glass tube 975 mms. in length and 26 mms. in diameter,
which was divided in the centre by means of a thin steel plate, the
heavier gas being in the lower half of the glass tube. The steel plate
was furnished with a hole of the same size as the internal bore of the
tube, and by carefully moving the plate the two gases were brought
into contact. After a given time the steel plate was again inter-
posed, and the quantity of the heavier gas which had diffused into the
upper half of the tube was determined by analysis. # could then be
c}a;lcula,ted by applying equations deduced by Stefan from the.kinetic
theory.

Waitz determined 5 for carbon-dioxide and air by enclosing the
gases in a tube and allowing the carbon-dioxide to diffuse upwards
into the air, the progress of the diffusion being observed by measur-
ing the refractive indices of various horizontal layers at definite times.
The proportion of air and carbon-dioxide in any layer was then cal-
culated from its refractive index. It was found by Waitz that » varied
to a small extent with variation in the proportion between the two
gases.

_ The rate at which a liquid evaporates is, in general, dependent
upon the rate at which its vapour diffuses into the surrounding
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atmosphere, and &he diffusivity of the vapour into the air can be
ascertained by measuring the rate of evaporation.

Thus, if some of the liquid be placed at the bottom of a tube of
uniform cross-section, and vapour-free air be blown steadily across
the mouth of the tube, the density gradient of the vapour will, after a
certain time, become uniform, provided the tube be not too short.
The value of the density gradient in this steady uniform state is

%’ where p is the density of the vapour at a pressure equal to the

saturation vapour pressure of the liquid at the temperature of the
room, and x the distance between the surface of the liquid and the
mouth of the tube.

Hence the mass of vapour which escapes from the tube in any

time, S, is given by the equation M = 5. A. g .S, and this mass is, of

course, identical with the mass of liquid which evaporates in the
same time.

Thus, by measuring the various quantities in the above equation,
ncan be readily ascertained.

An error arises in this method due to the increase in the value of
x produced by the evaporation of the liquid at the bottom of the tube.
If, however, the tube be of moderate length the variation in the value
of z during any short time may be treated as negligible.

It was first shown experimentally by Stefan that the rate of
evaporation of a liquid contained in a long tube varied inversely as
the distance between the surface of the liquid and the mouth of the
tube, and both he and Winkelmann have employed the method which
has been described to determine the value of 4 for the vapours of a
number of liquids diffusing into air and other gases.

A more general equation, applicable to both the conduction of
heat and the diffusion of a fluid will now be deduced.

Consider a thin rod of any material of good thermal conductivity,
and of uniform cross-section, A (Fig. XLIII). Let the rod be heated
at one end, and let us confine our attention to a small element of the
rod of length dx bounded by two parallel planes a and b at right
angles to the axis of the rod. The curve of temperature along the
rod at any time may be determined experimentally by means of
thermo-electric junctions and is of the form XY.

Now, in the infinitely short time, ds, the heat entering the element
at a is given by the equation—

Q,=-K.A. iz ds, where — Tz is the temperature gradient at
the surface a.

The temperature gradient is less at b than at a, as is shown in the

figure by the diminished slope of the tangent to the curve XY.
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If we assume that K is constant, the heat flowing out from the
element through & during the time interval ds is given by the

equation—1!
dT d /dT
Q, = - KA{(?; + dz}(g;ﬂ)dm} . ds.

Therefore, taking the algebraic sum, we have for the total heat
entering the elementary piece in the time interval ds—

dT dT d /dT
Qa—Qb="K.A.%.d&'{‘K.A{[E"}'%(% .dw}.ds.

But the rod is also cooling and giving out heat to surrounding
bodies, for both the temperature and the temperature gradient at 6
are always less than the corresponding quantities at a.

X

| Y
T j ;
i :
High ; iLow
Temperature ——> Temperature
End. @ Emfe
<«dx—>
Fie. XLIII,

The quantity of heat given out depends upon the emissivity, E,
the area from which radiation is taking place, the time interval, and
the temperature difference between the radiating body and the
surroundings.?

If p = the circumference of the rod, the area of the element is
p.de.” Let o = the temperature of the surroundings, so that the
temperature difference, 6, is equal to T - a.

17t has been tacitly assumed that the cross-section, A, remains constant,
whereas, in reality, the rod expands more towards the high temperature end.
For moderate ranges of temperature, however, the effect due to this expansion
may be neglected.

2 The assumption that the rate of loss of heat to the surroundings is propor-
tional to the temperature difference between the element and the surroundings is in
accordance with Newton’s Law of Cooling. This law is only true however when
the {iiﬁerence in temperature between the radiating body and the surroundings is
small.
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Thus, the total heat entry for the element is—

aT d /dT

ﬁfdm(d-i> .dx}.ds—E.pdx.(T—-a) . ds.
When a steady state has been attained, the sum of these three

terms is zero, and the temperature of the element remains unchanged.

If, however, the sum be not zero, the temperature of the element

must be changing, and, consequently, we have—

dT  d (dT

%t iT) .dw} .ds=B.pde . (T -a). ds

dx
=p.Adz.C.dT,

where p is the density and C the specific heat of the material of the
rod, Adx the volume of the elementary piece, and dT its change in
temperature.

We have assumed that the temperature is the same at all points
of the same cross-section. Now this assumption is not rigidly true, for
heat is flowing from the centre of the rod out through the surface,
and, consequently, the temperature must be somewhat higher in the
centre. It can be shown, however, that in the case of a very thin rod
possessing good thermal conductivity the temperature is sensibly
uniform over any cross-section at right angles to the axis of the rod,
and that the error involved in our assumption is quite negligible.

Simplifying the last equation we have—

a*T aT
I{.A.dx‘g—'E.p.(T—-a) =p.A-C.d's-—.

_K.A.g»']»"-.ds+K.A.{
2L

—K.A.Zg.ds+K.A.{
X

If the temperature of the surroundings, a, be constant, then,
gince = T — a, we have—
@29 E.p.6 p.C df
dz* ~ K. A ~ K ‘"ds

K
where D = P——C.

D is defined as the thermal diffusivity of the material of the rod,
and may be regarded as the conductivity with respect to temperature,
whereas K is the conductivity with respect to heat. When a state
of equilibrium is attained, the temperature of the element remains
constant, and, therefore—

@29 E.p.6
dz?~ K.A’

the term containing D vanishing from the equation.
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If, on the other hand, there be no lateral loss ofeheat, the term con-
taining E vanishes, and we have—

@6 1 de,
dz? = D'ds
Or— P :
0 260
(7; = D . (TKD—T

Now, the change in temperature at any cross-section of the rod
can, of course, occur in an infinite number of ways, depending upon
the way in which the temperature at, for example, the heated end of
the rod is made to vary. The last differential equation, however,
shows how the rate of change of temperature at any cross-section
depends upon the rate of rate of change of temperature at another
section at a distance dx from the first.

An exactly similar relation holds for the diffusion of a fluid. If,
for example, we again consider the case of two gases enclosed in a
vessel, with layers of equal density horizontal, then, if the gases be
not uniformly mixed together, we have—

dp _ &
ds = " dw¥

where p is the density of one of the gases at any horizontal plane,
and 7 the interdiffusity of the gases. In such a case, of course, no
lateral diffusion can occur.!

45. The Passage of Gtases through Porous Septa; Effusion.—The
term diffusion should strictly be applied only to the mixing of gases
across a free surface of separation.

We pass now to a consideration of the phenomena exhibited during
the passage of gases through porous septa. In the case of a thin
septum in which the holes or apertures are not oo fine, the passage
of the gas is termed effusion. During effusion the gas flows as a
whole through the aperture, and, in the case of a gaseous mixture,
no separation into the constituents is produced. The effusion of
gases was first studied by Leslie, in 1804, and subsequently by
Schmidt, Graham, and other investigators. It was found that, at a
constant temperature, the velocity of effusion of a gas into a vacuum
was directly proportional to the square root of the pressure of the gas,
and inversely proportional to the square root of the gaseous density,

114 is evident, since the density, p, is the mass of gas in unit volume, that the
quantity D in this case is identical with ». For the difference between themass
of gas flowing in across any horizontal plane, a, and vhe mass flowing on through
a horizontal plane, b, at & distance dx from a, is equal to A'.dw.dp, where A is
the uniform cross-section of the vessel.
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and, therefore, for jwo different gases at the same temperature and
pressure the rates of effusion were inversely proportional to the square
roots of their respective densities.!

This result was utilised by Bunsen in 1857 (‘ Gasometrische
Methoden ") for the experimental determination of the densities both
of pure gases and of gaseous mixtures. A certain volume, V, of the
gas under examination was allowed to escape through a fine hole in a
thin platinum plate, and the time taken, ¢,, was observed. This was
then compared with the time, ¢,, required for an equal volume of a
gas of known density to escape through the hole, under the same con-
ditions of temperature and pressure.

Then, since the rates of effusion are inversely proportional to the
square roots of the respective gaseous densities, p, and p,, we have—

- x/ee

Pl’
,2=\/&z
1 P1

Since p, is known p, can readily be calculated.

More recently Donnan has carried out a very accurate investiga-
tion on the rate of effusion of gases, using a hole of about /5 mm. in
diameter, pierced in a disc of platinum foil of about 3!, mm. thickness,
as the effusion aperture. The gas at a pressure of approximately
70 cms. was allowed to escape through this aperture into a vacuum—
until the back-pressure had risen to about 6 cms.—the time being
measured by means of a stop watch. The time of escape for a second
gas, under identical conditions as to the limits of pressure, tempera-
ture, etc., was then determined, and the gaseous densities compared
as explained above.

The phenomenon of effusion finds a ready explanation from the
standpoint of the kinetic theory. For the number of molecules, N,
which flow through an aperture in unit time will be very approxi-
mately proportional to the area, A, of the aperture, to the number of
molecules, 7, per unit volume, and to their average velocity, Q.

N =K.A.%n.Q, where K is a constant.

‘We have assumed that all the molecules coming up to the aperture
pass through, and that none collide with molecules on the opposite

SH<As <

Or—

ot o

11t should be noted that the rate of effusion refers to the volume of the gas,
measured at a fixed pressure, which passes through the septum in unit time, and
not. tocthe mass of the gas. The mass which passes in unit time is sometimes
germeduthe rate of efflux, and varies directly as the square root of the gaseous
ensity.,
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side of the aperture and rebound again. This gssumption will be
justified if the effusion take place into a vacuum, and will be very
approximately true if the pressure on one side of the aperture be much
lower than that on the other.
Thus the mass of the gas, M, which escapes in unit time is given
by the equation—
M=m.N=K.A.n.Q.m, where m is the mass of a molecule.
~“M=K.A.p.Q

Since C = \/ lﬁ), and since © is proportional to C, we have—!
3P

M=K.A.p __—K’.A.J3,P,P,WhereK’isacor{st;a,nt.
P
Hence for two different gases at the same temperature and pres-
sure—
M, K.A. W3- P.p x/gl
M2 K'A'»\/3.P.p2 Pa
N

V.= \/ %2, where V, and V, are the respective volumes of the
2

two gases which pass through the aperture in unit time.

Thus the rates of effusion are inversely proportional to the square
roots of the respective gaseous densities, and this is the relationship ex-
perimentally ascertained.

46. Transpiration.—In the case of a thick septum in which the
apertures are not too fine, the passage of the gas is termed transpira-
tion. No change in the composition of a gaseous mixture is produced
by transpiration, and the passage of the gas is conditioned by the
ordinary laws of viscosity which are applicable to the flow of gases
through long tubes.

The first systematic investigation on the transpiration of gases was
carried out by Graham, and the results of his experiments were pub-
lished in 1846 and 1849.

Graham’s method was to allow the gas to flow through a capillary
tube into the exhausted receiver of an air-pump, and to observe the
time required to produce & given rise in pressure. Experiments were
carried out with different gases, and with tubes of various lengths and
mternal diameters, and the rates of transpiration were also determined
under different conditions of temperature and pressure.

When the tube is exceedingly short, as in the case of a thin septum,
we have seen that the gas flows through the aperture into a vacuum
by effusion, and Graham found that as long as the diameter of such
an aperture was sufficiently large in comparison with the thickness of
the septum the effect of viscosity was negligible. When, however, the

10 =921,0. Vide§18.
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length of the tube, pr the thickness of the septum, is large compared
with the diameter of the aperture, the rate of flow is determined by
the viscosity of the gas, and it is to this mode of flow that the term
transpiration is applied. A tube of any diameter may be employed
for experiments on transpiration, provided it be of sufficient length,
i.e. provided the ratio of the length to the diameter be large.

Meyer showed, in 1866, that the results of Graham’s experiments
on transpiration furnished a proof that the viscosity of gases is inde-
pendent of the pressure, but increases with the temperature, and he
calculated, from Graham's data, the coefficients of viscosity for & num-
ber of different gases. :

Maxwell had, indeed, in 1860, deduced from the Kinetic Theory of
Gases the theoretical law that the coefficient of viscosity of a gas 1s inde-
pendent of its density, and an elementary proof of this law will now be
given.

47. Molecular Mean Free Path.—The kinetic theory, as developed
in Chapters II. and III., leads to a number of important conclusions
relative to the velocity and energy possessed by molecules in motion.
It will now be necessary to examine more closely the nature of this
molecular motion, and, in particular, to calculate the average distance
traversed by a molecule of a gas between successive collisions with
neighbouring molecules.

Clausius, in 1858, first showed how the molecular mean free path
might be theoretically deduced, and the following calculation is based
upon his method of analysis. .

Consider a cubic centimetre of a gas containing N molecules, and
let a single molecule enter this cube. As a first approximation we
shall imagine the N molecules to be at rest, and then proceed to cal-
culate the probable length of path traversed by the entering molecule
before a collision occurs.

Since the density of the gas is assumed to be uniform, we may
imagine the cubic centimetre divided up into N small cubes, each of
which on the average will contain one molecule. Let the edge of one
of these small cubes be A, its volume being A3.

Then N.a=1

The length A was called by Clausius the mean distance between
neighbouring molecules.

X If p be the density of the gas, and m the mass of a molecule, we
ave—

p=N.m.
. m
..p=ﬁ‘-

Now, we are ignorant as to the exact nature of a molecular colli-
sion, and as to the range at which the molecules affect each others
motion.
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If we regard a collision as an actual contact of two equal sym-
metrical spherical molecules, then it is clear that the distance be-
tween their centres of mass at the moment of impact is the molecular
diameter. For molecules which are not spherical we may, in accord-
ance with the calculus of probabilities, take this distance as the mean
molecular diameter. But since actual contact need not necessarily
occur during molecular collision, we must, in general, assume that the
centre of mass of each molecule is surrounded by a region within which
the centre of mass of another molecule cannot enter. This region
may, in the absence of any evidence to the contrary, be regarded
as spherical, and was named by Clausius the molecular sphere of
action.

Thus the shortest distance between the centres of mass of two
molecules during a ““ collision” is s, where s is the radius of the sphere
of molecular action.!

If a collision be, indeed, an actual molecular contact, it is clear
that for equal symmetrical spherical molecules we have s = 2r, whero
r is the molecular radius. In this case, therefore, the volume of the
molecular sphere of action is eight times the volume of the molecule
itself.

If, however, contact does not occur during a collision, the sphere
of action will obviously have a still larger volume. Consider, then,
the single molecule which has entered the cube, and let it travel a
distance equal to the mean distance between neighbouring molecules,
ie. A

The molecule is surrounded. by a sphere of action of radius s, and
of central section = . s%, and, consequently, when the molecule moves
a distance A the anterior hemispherical surface of this sphere of action
traverses a volume equal to X.w.s%. But since, on the average, a
volume of A* will only contain one molecule, the probability of the
smaller volume Aws? containing a molecule will be in the ratio of
Aws? to AS,

Hence the probability of the single molecule colliding while it

traverses the distance A is given by the ratio )\;f 2, ie. by 7%3;, and the
probability of a collision not taking place is given by the ratio
A3 — Amws? , A2 — 7s?

o e by —

Consider next the case of M molecules entering normally at one
face of the cubic centimetre and all moving with the same speed.
Divide the cube up into layers, each of thickness X, parallel to the
face at which the M molecules enter.

1 We may, alternatively, regard each molecule as surrounded by a sphere of
s

action of radius 3

, & collision occurring whenever two such spheres of action meet,
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2
: Iﬁ’ £ molecules will probably undergo
2 2
collision, while M . (A )‘2”8 ) molecules will probably pass on.

Similarly, in the second layer, M.

Then, in the firet layer, M

A2 — ms?\ w2
A3 > AT

2 __ 2\ 2
A Xz”) molecules will

molecules will

probably undergo collision, while M<
probably pass on.

3 _ o\ #—1 g
In the nt* layer, M . ()f__M_’IS_>" .7-;\52— molecules will probably

2 _
A "s ) molecules will probably pass

undergo collision, while M . (

on.

‘We need not, of course, limit ourselves to the consideration of a
single cubic centimetre, but can apply exactly the same argument to
the case of M molecules moving forward simultaneously, with the
same velocity, normally to any surface in an extended field containing
N stationary molecules per cubic centimetre.

Now, the molecules which collide in the = layer have clearly
traversed paths varying in length between (r — 1)A and nA. But
since we shall show that the mean free path of a molecule in a gas is
very great in comparison with A, except when the gas is under ex-
tremely high pressure, we may, without appreciable error, take the
path traversed by a molecule which collides in the nt* layer as the
maximum value, nA, up to the end of the layer, provided the gaseous
density be low. If, then, we reckon the paths traversed by the mole-
cules which undergo collision in each layer in the same manner, we
can readily calculate the sum of the paths for the M molecules, and,
on dividing this sum by M, we shall obtain the probable mean mole-
cular free path.

M.x.s

A2

sum of their paths is

Since molecules probably collide in the first layer, the

M.x.s? % A= M.x. s?
A? A
i A — ms?\  ws?
Similarly, M. (—)‘—2——) F molecules probably collide in the
second layer, and the sum of their paths is

A2 — 7%\ ms A2~ ws?\  ars?
M.( n )vxm 2M< o )'T

In general, M. ()‘2 ;2 Ts%) T ™ nolecules probably collide in
the n** layer, and the sum of their paths is

AT — ggI\n 1 gg? A2 — gs?\B =1 gsl
M.( A2 ) F xnk=n.M.(T> -T-
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Therefore, the total sum of all the paths described by the M mole-
cules is given by— ‘

A2 — mws?\n — ! gg?

for all integral values of n between 1 and .
Hence the probable mean molecular free path, L, is given by the
equation—

L z A — ms?\n =1 s?  ms? AL — mrs?\n 1
= n.( Az-“*) . .—A- —-—x n-( 1\2 ) .

But 2 n.¢n —1, for all integral values of n between 1 and o, is

givenby;
nogr~l=1+2+3¢+... =1~ ¢) 7"

. __1:'8.2 A2 — mst\} T2 _ st {wsg}-“_ A3,
"L””X'{l_< A2 >} T\, T s

L, it should be noted, is the mean free path for a molecule moving
amongst other molecules a? 7est.

Since a gas at its ordinary density exhibits an almost complete
absence of cohesion, we must regard the mean distance, A, between
neighbouring molecules as very considerably greater than the radius,
s, of the sphere of molecular action. For otherwise, at any given
instant, a relatively large proportion of the molecules would be close
together and would be exerting cohesive forces.

2

Hence, in the equation %: ;_%, A* must be very much greater
than =s?, and, consequently, L must be proportionally greater than A.

Thus our previous method of reckoning the free path traversed by
a molecule as extending up to the end of the layer in which a collision
occurred, and which, in effect, added a fraction of A to the value of
L, has not affected to any marked extent the accuracy of our result.

Since L is much greater than A, it follows that a molecule must
pass by many other molecules between successive collisions.

Now, in an actual gas all the molecules are in motion, and, there-
fore, a correction must be applied to the value found for the mean
free path of a molecule moving amongst other molecules at rest in
order to allow for the general distribution of the molecular velocities.

The effect of the general molecular motion is to increase the
probability of collision, and, consequently, to shorten the molecular
mean free path.

On the assumption that the molecules all. possess equal velocities,

3

and move in every direction, Clausius calculated the value 2;—82
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for the mean free path, and Maxwell obtained the more accurate

equation, L = — T by assigning to the molecules different velocities

ws2,
in accordance with the law of the distribution of velocities deduced
by him from the calculus of probabilities.

48. Viscosity of Gases.—In order to maintain relative motion be-
tween the different parts of any fluid it is necessary to apply an ex-
ternal force, and when this force is removed the relative motion soon
disappears. If, for example, we stir a fluid, the relative motion thus
produced vanishes soon after the stirring is stopped. Similarly, the
waves on a stormy sea subside when the wind abates,

The fact that a fluid offers resistance to the relative motion of its
parts is otherwise expressed by saying that the fluid possesses internal
friction, or wiscosity.

Viscosity, then, is brought into action whenever two portions of a
fluid medium move with different velocities, and the magnitude of
the viscous resistance is dependent only upon the relative motion of
the two portions, i.e. upon the difference between their respective
velocities.

‘We shall assume that when a fluid flows over a solid surface there
is no slip between the solid and the layer of fluid in actual contact
with it. This assumption isin accordance with experimental evidence,!
except in the case of a gas at very low pressure, when the layers of gas
in contact with any solid surface can no longer be regarded as fixed
relatively to the latter. Under these circumstances side-slip does, in
fact, occur at the surface when the solid moves relatively to the gas.

We shall assume, further, in accordance with an hypothesis due
to Newton, that the viscosity is directly proportional to the difference
in velocity of neighbouring layers.

It is evident, however, that the magnitude of the viscous resistance
must also be conditioned by the chemical nature of the fluid medium,
and, consequently, in deducing our equation for the force necessary to
maintain relative motion between two layers of the medium we must
introduce a numerical factor which is called the coefficient of viscosity
of the fluid, and is denoted by the symbol «.

Consider, then, a horizontal layer of fluid, AB, moving with a
steady velocity, V, relatively to a parallel layer of the fluid, CD, at a
distance z from it (Fig. XLIV.). TFor simplicity, we may regard
the layer CD as stationary. Then it is clear that the velocity of any
intermediate layer is a linear function of its distance from CD. For
congider a layer such as EF, at a distance 2’ from CD, and moving
with a velocity V. In the steady state of motion of the fluid which

! In the case of liguids, at any rate, no appreciable slip appears to exist. The
relatively slow rate at which the banks and bottom of & river wear away may thus
be explained.

8'
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we are investigating, the velocity V' is constant, and, consequently,
the viscous forces acting on the upper surface of ‘EF and dragging
it forward must be equal and opposite to those acting on its lower
surface and dragging it backward. But, in accordance with Newton’s
hypothesis, the viscosity is directly proportional to the difference in
velocity of neighbouring layers, and, therefore, the velocity of the
layer EF must be the arithmetic mean of the velocities of the layers
immediately above and immediately below it. The same argument
applies to any other layer we may select for investigation. Hence
we can write V = ¢z, and V' = ¢x’, where ¢ is a constant.

Sinee ¢ = g,.it is, of course, the ‘ velocity gradient.”

Let the tangential force on an area, A, of the layer AB required
to maintain its relative velocity, V, be F. On an area, A, of the layer
CD the same force must act, but in the opposite direction.

F
A B —>V
z E 1, F >V’
{
c D
—~—
F
Fia. XLIV,
Then—
F-rAY,
@
or K =—E&'_%, where « is the coefficient of viscosity.

It is found, by experiment, that x is constant for a given fluid,
under standard conditions as to temperature and pressure. Hence
Newton's hypothesis that the viscosity is proportional to the relative
velocity is shown to be justified.

From the equation F = «.A. g it is clear that F = « if A, V,

and z be each equal to unity. We may, therefore, give the following
formal definition :—

The viscosity of a fluid is measured by the tangential force per
unit area of either of two horizontal planes, at unit distance apart,
required to maintain a relative velocity of unity between them, the
intervening space being filled with the viscous fluid.

We shall now investigate the phenomenon of gaseous viscosity
from the standpoint of the kinetic theory, and deduce those theoretical
laws of viscous resistance which are applicabie to gaseous media.

In accordance with the kinetic theory, we may regard the viscosity"
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of a gas as origingting in the transfer of translatory motion from one
layer to another, in consequence of molecular motion, and the subse-
quent transformation of the regular translatory motion thus carried
over into irregular heat motion, owing to molecular interaction. This
transformation of the homogeneous motion of translation into the
heterogeneous motion of heat will, in time, cause all relative trans-
latory motion to be lost, unless such relative motion be maintained
by the application of external force.

Since, then, the viscous resistance of a gas is dependent upon
molecular motion, and since, in accordance with the kinetic theory,
such molecular motion is very rapid and increases with the tempera-
ture, we may conclude that all gases will probably exhibit fairly
considerable viscosity and that, in all probability, gaseous viscosity
will increase with rise in temperature. Both of these conclusions are
found to be in agreement with experimental results.

Consider, then, a gas flowing over and parallel to a horizontal
solid surface, and, when a steady state of flow has been attained, let
the velocity, which is zero in contact with the surface, be equal to
c.z. for a layer of the gas at a distance x from that surface.

Then, as previously, V = c.z.

If the value of the “velocity-gradient,” ¢, be small, no appreciable
error will arise in calculating the number of molecules which pass in
unit time from any layer of the gas into an adjoining layer, if we
treat the relative translatory velocity as negligible in comparison with
the very much greater molecular velocity (vide § 18).

Now, in accordance with a method of calculation due to Joule, we
may imagine that the irregular heat-motion of the molecules can be
divided up into three components, so that only one-third of the
molecules in any space occupied by the gas need be considered as
moving in a direction perpendicular to any given plane. Half of
this number—i.e. one-sixth of the molecules—will move in one sense,
and the other half in the reverse sense.

If, then, we assume, as an approximation, that all the molecules
possess the same velocity, C—i.e. the velocity of mean square !—it is
clear that, in unit time, only those molecules which are present in a
right prism of length measured by the velocity C and of unit cross-
section, and which are moving perpendicularly in a given sense to
one end of the prism, will cross, in that sense, the unit plane bounding
the end of the prism. _

Since the volume of the right prism is numerically equal to C, it
contains N .C molecules, if, as previously, we take N to represent
the number of molecules in unit volume.

Consequently, in the case of the gas flowing over the horizontal
solid surface, we may conclude that the number of gaseous molecules

1If all the molecules have the sams velocity it follows that this velocity is the
same a8 their velocity of mean square,
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which, in unit time, pass in either direction acrogs unit area of a
horizontal plane at any height z above the solid surface is given by
7. N.C

Now, although this method of calculation gives, approximately,
the number of molecules passing in e'ther direction, it is nevertheless
certain that, on account of molecular collisions, the actual molecules
which cross the unit area in unit time will not have come from
distances commensurate with C.

We may indeed assume that, on the average, the molecules which
in unit time cross a horizontal plane at a height z have come from
planes situated, respectively, at heights z + L and z — L, where L
is the molecular mean free path.

The average translatory velocity, V,, of the molecules in the plane
at a height z + L is given by the equation V, = ¢(z + L), and,
similarly, for the plane at a height  — L we have V2 = c¢(x — L).

Hence, if m be the mass of a molecule, the total momentum
carried downwards across unit area of the plane at a height z, in unit
time, is }.N.C.m.V,, ie. 1. N.C.m.c(x + L), and the total
momentum carried upwards across the unit area is, similarly,
3. N.C.m.V, ie. } . N.C.m.c(x - L).

Thus the gas above the plane loses in unit time the momentum

N.C.m.cx+L) -}t N.C.m.cx~L)y=(.N.C.m.c.L,
whlle the gas below the p]ane gains this amount.

But this transfer of momentum in unit time meagures the tangential
force, ¥, per unit area of the plane.

“F=1.N.C.m.c.L.

We have also seen that the tangential force per unit area is given
by—

=K.c,
where « is the coefficient of viscosity.
Therefore k=%.N.C.m.L.
Since the density, p, of the gas is equal to N . m, we have—
k=%.p.C. L

In the above calculation we assigned the same value of the

velocity, C, and the same value of the free path, L, to all the mole-
cules. But in reality, these quantities will vary a,mongst the gaseous
molecules, a.nd a more exact investigation, in accordance with the
calculus of probabilities, gives the relation—-

x = 0:30967.p.Q. L,



THERMAL EXPANSION, ETC.,, OF GASES 119

where Q is the arithmetical mean of the molecular speeds calculated
from Maxwell's la% of the distribution of velocities, and is equal to

3
0-921 C (§ 18), and where L has the value » (§ 47).
wst, /2

If, however, we employ the equation x = . N .C.m . L, we must
3
replace Li by §. %—Z——the value obtained by Clausius on the assumption

of equal molecular velocity.

N.C.m.A3
K=i"*7.?"—~'
Since N .A3 = 1, we have—
m.C.
k=1 st

Now, the right-hand side of the last equation contains no term
which is dependent upon the pressure, and, consequently, we must
conclude that the coefficient of viscosity of a gas is independent of its
density. This important theoretical conclusion was first reached by
Maxwell, and is known as Maxwell’s Law.

If we examine the right-hand side of the equation x = }.p.C. L,
we find that only p and L are variable with the pressure, and it is
clear that, to a first approximation, L will vary inversely as p. Thus
Maxwell’'s Law is capable of a simple explanation. For as we have
already seen, the viscosity of a gasis merely conditioned by the trans-
fer of momentum in unit time, and this transfer depends upon the
number of molecules per unit volume, their average velocity, and
their mean free path. Since the average molecular velocity is inde-
pendent of the pressure, and since the molecular free path varies
inversely as the number of molecules per unit volume, which latter
varies directly as the pressure, it follows that the viscosity of a gas
will be independent of variations in its pressure.

We have seen that C « ,/6, where 6 is the absolute temperature of
the gas, whereas it is probable that the value of I. does not change
greatly with change in temperature, except in so far as it varies in-
versely as p if thermal expansion occur.

Consequently we may anticipate that gaseous viscosity, unlike
liquid viscosity, will increase with rise of temperature.

The theoretical laws of gaseous viscosity were deduced by Maxwell,
in 1860, from the Kinetic Theory of Gases, and their subsequent ex-
perimental confirmation must be regarded as constituting an important
proof of the general correctness of the kinetic theory. )

Two important methods have been employed for the experimental
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determination of the viscosity of gases. Maxwell and Meyer used the
Oscillating Disc method which was originally devifed by Coulomb for
measuring the viscosity of liquids. In Maxwell's apparatus three
circular discs were rigidly fixed to a common axis, the latter being
suspended at one end by means of a fibre so that the whole system
could be set in torsional vibration. In order to increase the frictional
resistance exerted by the surrounding gas, Maxwell irtroduced four
fixed discs above, below, and between the oscillating discs, at equal
distances from the latter and as close to them as possible. The viscosity
of the surrounding gas could then be calculated from the logarithmic
decrement of the amplitude of oscillation.

Maeyer used a similar form of apparatus but without the four fixed
discs. The results obtained showed that Maxwell’s theoretical law,
that the coefficient of viscosity of a gas is independent of its density,
held at any rate for pressures from about 76 ems. to 1 em. of mercury.
At greater rarefaction, as was shown by Kundt and Warburg, a cor-
rection must be applied for the slipping of the gas on the surface of
thedises. Itis moreover evident that the method fails if the exhaustion
be carried so far that the distance between the discs approximates to
the molecular mean free path, for then any further diminution in the
pressure will only reduce the density without increasing the free path
of the molecules between the dises. Crookes, in 1881, employed an
oscillating vane of mica, and, by means of formule developed by
Stokes, he showed that Maxwell’s Law held good down to exceedingly
small pressures. At still greater rarefaction a sudden fall in the value
of the coeflicient of viscosity was, however, observed.

At very high pressures Maxwell’s Law is not in strict agreement
with the results of experiment—nor would such agreement be expected.
For, when the gaseous density is very great, the curved paths traversed
by the molecules while casually within the sphere of action of other
molecules will bear a sensible ratio to their mean free path, and this is
contrary to the theoretical assumptions as to the nature of molecular
interaction on which Maxwell’s Law was based. It is, indeed, clear
from the equation x = 4.p.C.L, that the coefficient of viscosity
can only remain constant as long as L varies inversely as p. Such
variation, however, becomes impossible when the gas is so far com-
pressed that the magnitude of the mean free path approximates to
molecular dimensions.

The coefficient of viscosity of a gas may also be measured by means
of Poiseuille’s transpiration method. This method will be considered
more fully in Chapter VIL (§ 70).

It was previously stated that Meyer utilised the results of Graham’s
experiments on transpiration to prove the validity of Maxwell’s theo-
retical conclusions. Starting with the assumption that the coefficient
of viscosity of a gas was independent of its pressure, Meyer developed a
theoretical law for the rate of flow of a gus through a long tube,
similar to Poiseuille’s law for the flow of liquids,
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Thus, if a volume, Q,, of the gas enters the transpiration tube at a
pressure p,, and a Yolume, Qg, flows out at a pressure p,, we have, in
accordance with Meyer’s theory—

(02 - p?) .w.at

.1
2Q; = p,Qy = 6.1 '

where a is the radius, and ! the length of the tube, ¢ the time in
seconds, and « the coefficient of viscosity of the gas.

_ @t —pt).7.at.t
Whence = 16Tp,

The numerical values of the coefficients of viscosity for several
cases were thus calculated from Graham’s experimental results, and
the constancy of the values so obtained for the respective gases proved
the legitimacy of the assumption on which Meyer’s Law was based.
Graham’s results further showed that x increased with rise of
temperature, as might be anticipated from the kinetic theory, but
since subsequent investigations by other observers have shown that
the coefficient of viscosity increases more rapidly than the square
root of the absolute temperature we must conclude that the free path,
L, also increases somewhat with rise of temperature.

49, Numerical Values.—We shall now proceed to calculate the
numerical values of the mean free path and the “ collision frequency "
for several gases.

Since k = 0:30967 .p. Q. L, we can at once obtain the value of
Ii when « is known.

For oxygen at 0° C., for example, « has been found by Obermayer
to have the value 1-87 x 10 —* gms./cm. sec.

If then we take the density, p, of oxygen, at 0° C. and 76 cms., as
143 x 10 ~*% gms./cm.?, and the mean molecular velocity, 2, of
oxygen, at 0° C., as 435 x 10% cms./sec. (§ 18), we obtain, on substitut-
ing these values—

Mean free path, I = 0-00000994 cm., i.e. 994 x 10~ % cm.
The number of collisions per second, or the “ collision frequency,”

will equal %, and, therefore, for oxygen at 0° C. and 76 cms. we have—

. Q495 x 10t _ . . 1
Collision frequency, L= 90 10=°" 4-28 x 109 per second.
If we had employed the simpler formula, K = %.p. C.L, we

should have obtained the values—
L =85x 10" %cm.;

= 54 x 10° per second,

el o)
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which are of the same order of magnitude as those previously

calculated.

The following table gives, in C.G.S. units, the values for several

other gases at 0° C. and 76 cms.
is regarded as a simple gas :(—

Air, for the purpose of calculation,

. Collision
Coefficient of : Mean Molecular; Mean Free
Viscosity, K. Density, p. Velocity, Q. Path, L. |Frequency, ;l
4
Hydrogen | 0:%6 x 10~4 | 00899 x 10-3 | 16'94 x 10* | 18:2x10-%| 93 x 10°
Nitrogen. | 166 x 10—4| 1251 x 103 454 x 10% 9'4x10-¢| 48 x 10?
Air . 171 x10-4 | 1298 x10-2 447 x 104 96x10-%| 46 x 10°

A molecule of air is thus seen to collide with other molecules
between four and five thousand million times per second, while
between consecutive collisions it only travels about one hundred-
thousandth of a centimetre.

The small value which has been found for the mean free path
furnishes ‘a clear explanation of the slowness with which gaseous
diffusion proceeds. For though the molecules of a gas such as
ammonia possess, at 0° C., a mean velocity of nearly sixty thousand
centimetres per second, yet, since at 0° C. and 76 cms. the mean free
path is only about seven-millionths of a centimetre, a molecule will
collide with other molecules more than eight thousand million times
per second. If, then, ammonia be diffusing through the air, we may
take the mean free path for the heterogeneous molecules as lying,
approximately, between seven-millionths and ten-millionths of a centi-
metre, with a collision frequency of approximately five to eight
thousand million per second. Thus a molecule of ammonia will not,
in one second, reach a point 60,000 cms. from its starting-point, but,
owing to the enormous number of molecular collisions, will traverse a
very irregular path hither and thither, and, consequently, the gas will
diffuse only slowly.

Since in a gas at the ordinary density the molecular mean free
path, L, must be very much greater than the mean distance, A,
between neighbouring molecules (§ 47), it follows that the dimensions
of a gaseous molecule must be exceedingly small, and that the number
of molecules, N, in a cubic centimetre must be exceedingly great.

For L>x;
but N.A3=1.
SNULE>S T

.-.N>$.
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For air, at 0° C. and 76 cms., L = 96 x 10 ~6; whence L3
=88 x 10—, °
S N>11 x 1018,

It is possible to calculate the approximate value of N from other
physical properties of gases, and the value obtained is—

N =61 x 1019,

Thus a cubic centimetre of air, at 0° C. and 76 cms., contains some
sixty trillion molecules, and, in accordance with Avogadro’s Law, the
same number of molecules must be present in an equal volume of
other gases at “ normal temperature and pressure.”

Since N.A3 =1,
A =26 x 10~ 7 cm, for any gas at 0° C. and 76 cms.

Further, since for air [ = 96 x 1076 ¢m., and A = 26 x 10~ 7 cm.,
we have—

. —6
% = gg—:—%g—q = 37, approximately.

Hence, for air at 0° C. and 76 cms., the molecular mean free path
is about forty times greater than the mean distance between adjacent
molecules.

If we divide the mass of a cubic centimetre of any gas by N we
obtain the mass, m, of the gaseous molecule.

Thus, for oxygen—

p 143 x 1073
m= = = -

N 61 x 101
For hydrogen—
0-0899 x 1073
6'1 x 10

The molecule of hydrogen consequently weighs only about one and
a half quadrillionths of a gramme.}

= 23 x 107 gm.

= 015 x 1072 gm.

50. “ Transfusion.”—There is still another method by which a gas
may pass through a porous septum. When the apertures in the
septum are exceedingly fine, such as those which occur in plates of

1 Direct evidence as to the approximate size of molecules has been obtained by
various investigators. Thus Faraday prepared gold leaves of approximately
5 x 10—7 cm. thickness ; from which it followed that the diameter of an atom of

old could not exceed this value. Measurements of thickness of very thin liquid

Ims also lead to values of the same order for molecular magnitudes (vide §§ 108,
109). Reference must also be made to the investigations of Perrin, and Einstein,
on ‘ Brownian Movement ”’ by means of which the approximate number of mole-
cules in one-gram molecule of a gas was found to be 70 x 10%, i.e. approximately
8-1 x 10" molecules per c.c. at N.T.P. )
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biscuit-ware, or compressed graphite, the passage of the gas is com-
monly termed diffusion, but since, as we have already seen, this term
is applied to the mixing of gases across a free surface, it is desirable
to employ another appellation, and we shall therefore distinguish the
passage of the gas in this case by the title of iransfusion.

During transfusion a gaseous mixture undergoes a partial separa-
tion into its constituents, the lighter constituent passing more readily
through the porous septum.

Graham found that, at a constant temperature, the rate of trans-
fusion! of a gas was directly proportional to the difference of the
pressures of the gas on the two sides of the septum, and inversely
proportional to the square root of the molecular mass of the gas, and,
therefore, for two different gases at the same temperature, and with
the same difference of pressure, the rates of transfusion were in-
versely proportional to the square roots of their respective molecular
masses.

We have already seen, in Chapter II., that the kinetic theory is in
agreement with these experimental results.

Experiment XIX —Fig. XLV. illustrates a simple form of appa-
ratus for measuring the rate of transfusion of a gas. The vessel, A,
and the space above the
mercury in the barometer
tube, B, are exhausted by
means of an air pump, and
the gas, at a definite pres-
sure, is then admitted to A.
The gas passes through the
porous septum, C, which is
cemented to the top of the
barometer tube, and the
rate of transfusion is meas-
ured by the rate of fall of
the mercury in B. Several
gases, such as oxygen, hy-
drogen, and carbon-dioxide,
may be admitted in turn to
the vessel A, and the respec-
tive rates of transfusion
compared. The rate of
transfusion of the hydro-

Fre. XLV.

gen, for example, will be found to be approximately four times that
of the oxygen, since the molecular masses of these gases are very
nearly in the ratio of 1 to 16.

1 The rate of transfusion refers, of course, to the volume of the gas, measured
ab & fixed (pressure, which passes through the septum in unit time,
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Ezxperiment XX.—The difference in the rates of transfusion of
different gases may be readily demonstrated by fitting a long glass
tube to a porous pot by means of a cork. The tube is then fixed
vertically, with its open end dipping beneath the surface of some
coloured water in a beaker. On bringing a cylinder containing
hydrogen over the porous pot, the hydrogen transfuses in through
the walls faster than the enclosed air transfuses out, and the rise in
pressure thus produced causes a rapid escape of gas through the
water. On removing the cylinder, the hydrogen inside the porous
pot will escape by transfusion faster than air can transfuse in, and
the coloured water will rise rapidly in the glass tube. Before the
eylinder was placed over the porous pot the air, of course, transfused
in and out at equal rates and, consequently, the pressure inside the
pot remained constant.

The porous pot may next be surrounded with carbon-dioxide when
the water will be observed to rise in the tube. For this latter experi-
ment it is desirable to bend the glass tube twice at right angles
8o that the cylinder containing the carbon-dioxide may be brought
underneath the porous pot. On removing the cylinder the pressure
inside the porous pot gradually rises again to the atmospheric.

Atmolysis.—A partial separation of a mixture of gases of different
densities may be effected by allowing transfusion to take place through
a porous septum, the separation being more complete the greater
the difference in the densities of the constituents of the gaseous
mixture.

This method was originally employed by Graham, who termed it
“ Atmolysis "—drpds (vapour) ; Mo (Iloosen). The mixed gases were
allowed to flow through a long porous tube, such as can be made from
the stems of clay tobacco pipes, and the gas which passed through
the walls of the tube was pumped off and collected. In order that
this might be effected, the porous tube was fixed inside a wider glass
tube by means of two corks, and a glass tube which was connected to
an air-pump was inserted through one of the corks so that the space
between the porous tube and the wider glass tube could be exhausted.

The gas which passed through the porous walls was thus enriched
in the less dense constituents of the gaseous mixture, while a corre-
sponding increase in the proportion of the heavier constituents was
produced in the gas which flowed on through the tube.

Eaxperiment XXI1—Pass a slow current of a mixture of hydrogen
and oxygen, obtained by the electrolysis of water, through a long
porous tube, and collect the issuing gas over water at the pneumatic
trough. On testing the gas so collected with a flame it will be found
to be no longer explosive, but on introducing a glowing splint of wood
the latter will be rekindled. A large proportion of the hydrogen must,
consequently, have escaped through the walls of the porous tube by
transfusion. It should be noted in this experiment that the difference
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of the pressures on the two sides of the porous tube differs consider-
ably for the hydrogen and the oxygen. Since the' electrolytic gas con-
tains, approximately, two volumes of hydrogen to one volume of
oxygen, and since it is, approximately, at a.trnospherlc pressure, we
may take the partial pressures of the two gases on entering the porous
tube as, respectively, two-thirds and one-third of an atmosphere. The
partial pressures of the hydrogen and oxygen outside the tube may be
taken as zero and one-fifth of an atmosphere, respectively. Thus the
difference of the pressures of the oxygen on the two sides of the tube
is, approximately, two-fifteenths, and of the hydrogen two-thirds of an
atmosphere. Consequently, in accordance with Graham’s Law, the
hydrogen will transfuse some twenty times faster than the oxygen.
This relative rate of transfusion will, of course, decrease as the gases
flow along the tube, owing to the increase in the proportion of oxygen.

Experiment XXI11.—Place a little ammonium chloride in a hard
glass bulb-tube, and fix a porous tube inside the latter by means of
two corks. TFit one of the corks with an exit tube. On heating the
bulb-tube, the ammonium chloride dissociates largely into ammonia
and hydrogen chloride, and the ammonia, being the lighter gas trans-
fuses more readily into the porous tube. On blowing a gentle stream
of air through the porous tube the excess of ammonia in the issuing
gas will turn a strip of red litmus paper blue, whereas the excess of
hydrogen chloride in the vapour of ammonium chloride which escapes
from the exit tube will redden blue litmus.

51. Passage of Gases through Solids and Liquids.—A number of
cases are known of the passage of gases through solid bodies. Many
gases, for example, will pass through thin india-rubber, notably carbon-
dioxide and hydrogen. Thus a rubber balloon filled with carbon-
dioxide will rapidly collapse. Palladium and platinum, at high tem-
peratures, are readily permeable by hydrogen, but not by other gases.
Hydrogen also passes readily through red-hot iron, and, at the same
temperature, iron is fairly permeable by carbon-monoxide.

It would appear in these cases that a certain amount of the gas is
absorbed by the layers of the solid with which it is in contact, the
amount which can be so absorbed increasing with the gaseous pressure.
As the surface layers become saturated, the gas is absorbed by the ad-
jacent layers, and so on through the solid. If, then, the pressure of
the particular gas on the second surface of the solid be less than its
pressure on the first surface, the layers at the second surface will be
unable to retain all the gas which passes through, and, consequently,
some of the gas will escape.

The passage of gases through liquids may be explained in a similar
manner. For, as will be seen later, the mass of gas which will dis-
solve in a given quantity of a liquid also increases with the gaseous
pressure. If, then, for example, a soap-bubble be blown with a gas
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such as carbon-dioxide which is moderately soluble in water, more
carbon-dioxide will go into solution at the inner surface than can be
retained by the layers at the outer surface where the pressure of the
carbon-dioxide is very low, and, consequently, the soap-bubble will
rapidly shrink. It is also found, as would indeed be anticipated, that
those gases which are most soluble in a given liquid pass through it
most readily. In some cases it is probable that the “absorption” is
due to the formation of unstable chemical compounds which decom-
pose on the'side where the gaseous pressure is low. Thus the passage
of carbon-monoxide through iron at a high temperature is probably
due to the formation of iron carbonyls, and it is possible that hydrogen
forms an unstable compound with palladium, although, in this latter
case, the product is, in part at least, a solid solution.

52. Dalton's Law of Partial Pressures.—The permeability of palla-
dium at moderately high temperatures by hydrogen is of particular
interest in that it furnishes a method of experimentally measuring the
partial pressure exerted by a gas, in the presence of another, exactly
analogous to that employed for the measurement of the osmotic
pressure exerted by a substance in solution (vide Cap. VIIL.).

If a palladium tube, or a platinum tube to which a palladium cap
has been sealed, be filled with a gas, such as nitrogen, at a fairly high
temperature—(say 300° C. or 400° C.)—and at atmospheric pressure,
and if it be then surrounded with hydrogen, the latter being also at
atmospheric pressure, it is found that the pressure inside the tube
soon rises to two atmospheres. For the hydrogen passes in until
its pressure both inside and outside is the same, but the nitrogen
cannot pass through the walls of the tube and, consequently,
continues to exert its original pressure of one atmosphere. [f
the nitrogen had been initially under a pressure of, say, two
atmospheres, the final pressure inside the tube would have been three
atmospheres, i.e. the sum of the pressures due to the two gases.
We can obtain a similar result in a somewhat different manner. If
we take a glass vessel containing, say, nitrogen, at atmospheric
temperature and pressure, and pump in an equal volume of hydrogen,
the pressure of the enclosed gases will rise to two atmospheres. The
same volume of any other gas may now be pumped in, and, provided
the gases do not interact chemically, the pressure will be found to be
three atmospheres. In general, it is found that each constiluent of a
gaseous mixture exerts presswure on the walls of a containing vessel pro-
portionally to its relative amount, i.e. each constituent exerts the same
pressure as if it alone occupied the whole vessel, and the total pressure
18 the sum of the partial pressures due to each gas.

This law was first enunciated by Dalton, in 1802, and is known
a8 Dalton’s Law of Partial Pressures.

It can be readily shown that Dalton’s Law follows as a necessary
consequence of the Kinetic Theory of Gases.



128 THE PROPERTIES OF MATTER

For, as was seen in § 21, if Ky be the kinetic energy—(and, there-
fore, the total intrinsic energy)—per unit volume of & perfect gas, we
have the relation—

Ky = %—P, where P is the gaseous pressure.

Now in a gaseous mixture, as in the case of a simple gas, the
pressure is merely the total force exerted by all the molecules on unit
area, i.e. the total momentum given up to unit area in unit time. If,
then, K'y, K'y, ete., be the respective values of the kinetic energy per
unit volume for the molecules of each constituent of the gaseous
mixture, we obtain, as previously for a simple gas—

P, =3Kyv+EKy+ ...

where P, is the pressure exerted by the gaseous mixture.
But if each constituent occupied the whole volume of the mixture
alone, the respective pressures exerted would be— ‘

PI = %K’v, P/I = iKIlv, e
WP =P P g

i.e. the pressure exerted by the gaseous mixture is equal to the sum
of the pressures each constituent would exert if it alone occupied the
whole volume, and this is Dalton’s Law of Partial Pressures.

Dalton’s Law will only hold rigidly when the constituents of a gase-
ous mixture exert no chemical action on one another, and when neither
attractive nor repulsive forces arise between their molecules. For if,
on mixing the constituents, intermolecular forces are brought into
play, a variation in potential energy will also arise, with a consequent
change in kinetic energy and in pressure. Since, in any real gas, in-
termolecular forces are present to a greater or less extent, Dalton’s
Law is only approximately true.

53. Solutions of Gases in Liquids.—In accordance with the kinetic
theory we may regard the phenomenon of solution as due to the
penetration of the particles of one substance into the spaces between
the particles of another. There is, thus, no essential difference
between solubility and miscibility. When, for example, & gas is
brought into contact with a liquid, some of the gaseous molecules
which impinge upon the surface of the liquid will be absorbed, and as
these molecules move about in all directions in the liquid some of
them will escape back through the surface into the gas. “The number
of gaseous molecules which, in unit time, escape from the liquid will
increase as the concentration of the dissolved gas increases, and ulti-
mastely, if the temperature and pressure be constant, a state of dynamic
equilibrium will be attained, when as many molecules of gas are ab-
sorbed as escape in unit time. The solution is then “ saturated ” with
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the gas. If, now, the pressure of the gas be doubled, the molecular
concentration of the gas willalso be doubled, and, consequently, twice
as many molecules will be absorbed by the liquid in unit time. The
concentration of the dissolved gas will therefore increase, and equili-
brium will be attained when the rate of escape of gaseous molecules
from the liquid has also doubled, i.e. when the solution has acquired
a concentration twice as great as when saturated under the original
pressure. This conclusion is in agreement with the relationship be-
tween the solubility of a gas and its pressure discovered experimentally
by Henry, in 1803, and generally known as Henry’s Law. We may
state Henry’'s Law, formerly, as follows :—

‘“ At a given temperature, and with a given solvent, the concentra-
tion of the dissolved gas is proportional to the gas pressure.”?

Thus, at a given temperature, the ratio of the concentrations of the
gas in the solution, and in the gas phase in contact with the latter, re-
mains constant under all pressures. This ratio is usually termed the
“ coefficient of solubility " of the gas in the particular solvent. Since,
therefore, the mass of gas dissolved by a solvent, at a given tempera-
ture, is proportional to the pressure to which the gas is subjected, and
since, in accordance with Boyle's Law, the density of a gas varies
directly as its pressure, we may state Henry’s Law in the alternative
form :—

‘““ At a given temperature, a given liquid dissolves the same volume
of a gas at all pressures.”

Henry's Law holds well for sparingly soluble gases, but fails when
the gases dissolve readily in the solvent. If, for example, we take
water as a solvent, the solubilities of gases like oxygen, nitrogen, and
hydrogen, under moderate pressures, are in close agreement with the
law, but there is an appreciable deviation with carbon dioxide, which
is more soluble in water, and the law is not even approximately
obeyed by such easily soluble gases as ammonia and hydrogen
chloride. In the case of, say, carbon dioxide the deviation may be
ascribed to the partial formation of carbonic acid, according to the
equation H,0 + CO, 2> H,CO,, for Henry's Law is applicable only
to that portion of the carbon-dioxide which is present, as such, in
physical solution, and it applies neither to the molecules of ca.yboqxc
acid, nor to the very few ions which are formed by electrolytic dis-
sociation.

The great solubility of gases like ammonia is probably due to the
partial chemical combination of the gas and the solvent, and also, to
the presence of considerable attractive forces between the molecules
of the solvent and the gas. Great solubility may also arise from
cohesive forces brought into play between the molecules of the dis-
solved gas. In the presence of such disturbing factors, Henry's Law,

UHenry's Law is a particular case of the more gencral Distribution Law of
Nernst which states the conditions necessar. for eqlllxilibrium in heterogeneous
systems as deduced from the standpoint of the kinetio theory.

9
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as deduced from the kinetic thedry, would not be expected to apply,
for, in obtaining the theoretical law, we tacitly assumed that the
gaseous molecules where chemically and physically independent of
each other, and of the solvent.

When the molecular state of the gas in the gas phase is different
from that in the solution, i.e. when either polymerisation or dissocia-
tion occurs on dissolving the gas, Henry’s Law also requires modifica-
tion.

Thus direct proportionality between the gas pressure and the con-
centration of the dissolved gas can only be postulated in the case of
dilute solutions, and when the dissolved gas undergoes neither poly-
merisation nor dissociation.!

The solubility of different gases in water, and the effect of pressure
upon the solubility, may readily be demonstrated by means of the
following experiments.

Lizperiment XXIIT.—A round-bottomed glass flask is fitted with
an india-rubber stopper carrying a narrow glass tube, the latter nearly
reaching to the bottom of the flask. The stopper is removed and the
flask filled with either ammonia or hydrogen chloride by displacement
of the contained air. The stopper is then reinserted, and the flask
supported neck downwards, so that the end of the glass tube which
projects beyond the caoutchoue stopper may dip beneath the surface
of some water in a trough. The water slowly rises in the tube until
the first few drops enter the flask, when their absorption of the gas
produces a partial vacuum and the water is forced up the tube in the
form of a tountain until the flask is filled. The initial rise of the
water in the tube may be accelerated by cooling the flask with a few
drops of ether.

Ezperiment XXIV.—In the case of a less soluble gas, such as
sulphuretted hydrogen, a stoppered cylinder may be filled with the
gas, a little water introduced, the stopper inserted, and the cylinder
well shaken.  On opening the cylinder under water, a further quantity
of water will enter, and the shaking may then be repeated. By pro-
ceeding in this manner complete solution of the gas can be effected.

Experiment XXV.—The effect of pressure upon the solubility of a.
gas may be demonstrated by connecting two barometer tubes, of uni-
form bore, to a mercury reservoir by means of a “ T ” piece and pressure
tubing. One of the barometer tubes is filled with ammonia, and the
other with air, and a few cubic centimetres of a saturated aqueous
solution of ammonia are introduced above the mercary in the former

. 1It should be noted that the union of simple gas molswcules with the solvent
will not affect the applicability of this statement, for the concentration of hydrated
gas molecules will also be proportional to the gas pressure. ’
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tube. The volumes,of the air and ammonia are initially adjusted to be
the same, when the pressure is approximately atmospherie, but on
raising the mercury reservoir until the volume of. the air is reduced to

one-half it will be observed that the
ammonia occupies less than half its
original volume owing to its in-
creased solubility at the higher pres-
gsure. Care must be taken not to
raise the pressure much above two
atmospheres, since, otherwise, the
greater compressibility of the am-
monia will appreciably influence the
result (cf. Expt. IX.). If the second
barometer tube be also filled with
ammonia instead of with air, any
variation due to differences in the
compressibility of the gases in the
two tubes will be eliminated.

The solubility of different gases
in various solvents may be deter-
mined, quantitatively, by means of
the Bunsen’s absorptiometer shown
in Fig. XLVI.

Measured volumes of the gas and
the solvent are introduced into the
inner graduated tube, and the latter
is screwed down upon an india-
rubber pad by means of the screw
attachment shown separately in the
side figure. The graduated tube is
then lowered into the outer cylinder,
which contains a quantity of mer-
cury at the bottom, and, after filling
the eylinder with water, the cap at
the top is fastened, and the whole
apparatus thoroughly shaken. The
inner tube is slightly unscrewed from
time to time—in order that mercury
may enter and take the place of the
dissolved gas—the screw being sub-
sequently tightened before the shak-
ing is repeated. When no more gas
is absorbed, the residual volume of
gas is measured, and its temperature
observed by means of thel thermo-
meter attached to thel uppergpart! of

1
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F1e. XLVI.—Bunsen’s Absorptio-

meter,
. P



132 THE PROPERTIES OF MATTER

the graduated tube. The pressure of the gas is obtained by deducting
from the barometric reading the height of the mercury in the absorp-
tion tube above the mercury in the outer cylinder, a correction being,
of course, applied for the pressure due to the water column in the
cylinder and the column of the solvent in the inner tube. By vary-
ing the temperature of the water in the outer cylinder, the solubility
at different temperatures may be ascertained.

Bunsen introduced the term * coefficient of absorption ” to denote
the volume of a gas, measured at 0° C. and 76 ems., which is absorbed
by 1 c.c. of a solvent at the same temperature and pressure. The
“coefficient of absorption” is thus, numerically, equal to the * co-
efficient of solubility " at 0° C.

A distinction must be drawn between the volume of gas absorbed
by 1 c.c. of a liquid when the foial pressure at the surface of the
liquid is 76 cms., and the volume absorbed when the pressure of the
gas itself at the liquid surface is 76 cms., independent of the vapour
pressure of the solutwon. According to Winckler the ‘ coefficient of
absorption,” A, is defined as the number of cubic centimetres of a gas,
measured at 0° C. and 76 cms., which are absorbed by 1 c.c. of a
solvent at 0° C., the gas itself being at a uniform pressure of 76 cms.
when in equilibrium with the saturated solution. The number of
cubic centimetres of a gas, measured at 0° C. and 76 ems., which are
absorbed by 1 c.c. of a solvent at 0° C., the pressure of the gas
plus the vapour pressure of the solution being 76 cms. when a state
of equilibrium has been attained, is defined by Winckler as the “ solu-
bility,” 8.

Thus, in accordance with Henry’'s Law—

5= 4. (Tr57)

where o is the vapour pressure of the solution, and, for dilute solu-
tions, is approximately the same as the vapour pressure of the pure
solvent at 0° C.

Ezxperiment XXVI.—The coefficient of solubility of a gas may be
determined more readily by means of the apparatus shown in Fig.
XLVII. This apparatus is a simplified form of the absorptiometer
used by Heidenhain and Meyer (1863). The gas is introduced into
the graduated tube, A, through the three-way stop-cock, a, by first
raising and then lowering the levélling tube, B. The flexible metal
tube, of capillary bore, which connects the tube, A, to the absorption
pipette, C, is also filled with the gas by passing the latter in at @ and
out ath. The stop-cocks are then closed, and the volume of the gas
in A is read, after levelling the mercury in A and B. The absorption
pipette, C, of known volume is next filled with the gas-free solvent
by applying suction at the three-way stop-cock, b, and drawing the
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liquid up through the stop-cock, ¢. The stop-cocks a and b are then
turned so that A and C are placed in communication through the
flexible metal tube, and by raising thé tube B, and opening the stop-
cock, ¢, a definite volume of the liquid is run out from the pipette, C,
into a measuring vessel, while, at the same time, gas enters the pipette
from the tube A. The gas and the liquid are then thoroughly shaken
together until the latter is saturated, the mercury in A and B being
adjusted to the same level when A and C are in communication. The
stop-cock, ¢, is then opened under mercury, after lowering the tube
B, and the mercury is allowed to enter the pipette until the latter is
again filled with liquid, the gas passing back into A. The volume of
gas in A is now read, and the diminution gives the volume absorbed
by a known volume of the liquid. Both the
measuring tube, A, and the pipette, C, should
be immersed in a water-bath—(not shown
in the figure)—so that they may be main-
tained at any required temperature.

It must be noted that just as the liquid.
becomes saturated with the gas, so does the
gas itself become saturated with the vapour
of the liquid, and, consequently, when a
state of equilibrium is attained, and when
the mercury is at the same level in A and B,
the partial pressure of the gas in contact
with the liquid is equal to the barometric
pressure minus the vapour pressure of the
solution at the temperature of the experi-
ment.  For sparingly soluble gases the
vapour pressure of the solution may, without
appreciable error, be taken as equal to the

vapour pressure of the pure solvent at the
same temperature. ¥ia. XLVI1IL — Heidenhain

Since only that portion of the gas which ;ﬁgerM"yers Absorptio-
is driven over into the pipette, C, becomes )
saturated with the vapour of the liquid, an error arises in calculating
the diminution in volume, owing to the uncertainty which exists
as to the partial pressure of the gas when its volume is finally read
in the tube, A. This source of error may most readily be eliminated
by introducing a small quantity of the liquid above the mercury in
the measuring tube, A, and allowing both the liquid and the gas to
become saturated, at the temperature of the experiment, before
reading the initial volume of the gas in A. The determination of
the solubility may then be carried out as described above.

54. The Solubility of Mixed Gases.—In the case of a gaseous
mixture in contact with a solvent, dynamic equilibrium will be
attained when, for ¢ach constituent, as many molecules of gas are
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absorbed by the solvent as escape from it in unit tjme. Consequently,
the amount of each constituent dissolved will depend wupon its
solubility, and upon ity partial pressure. The statement that
“The amount of each constituent of a gaseous mixture which 1s
dissolved by a solvent is proportional to the partial pressure of the con-
stituent” is known as Dalton’s Law (1807)—this law follows at
once from Dalton’s Law of Partial Pressures (§ 52), and {from
Henry's Law (§ 53).

For example, the composition of air by volume may be taken as,
approximately, nitrogen, 78 per cent., oxygen, 21 per cent., and argon,
1 per cent., and, if the atmospheric pressure be equal to 76 cms. of
mercury, the partial pressure of the nitrogen will be |\ x 76 cms. ;
of the oxygen %', x 76 cmns.; and of the argon ;24 x 76 ems.

Now, 1 c.c. of water at, say, 15°C. will dissolve the following
volumes, measured at 0°C., and 76 cms., of nitrogen, oxygen, and
argon, respectively, each gas being at a uniform pressure of 76 cms.,
when in equilibrium with the solution :—

Nitrogen = 0-018 c.c.
Oxygen = 0034 c.c.
Argon = 0040 c.c.

The solvent action of water upon the atmosphere can, conse-
quently, he calculated, and we obtain :—

x 0°018 = 00140 c.c. nitrogen,
o5 x 0034 = 0-0071 c.c. oxygen,
o5 x 0040 = 0-0004 c.c. argon,

for the respective volumes of nitrogen, oxygen, and argon, which will
be dissolved, at 15° C., by 1 ¢ c. of water.!

Thus, 100 c.cs. of water at 15° (. will dissolve 2:15 c.cs. of air, when
the atmospheric pressure is 76 c¢ms., and if the dissolved air be ex-
pelled, either by boiling the solution or by placing it in a vacuum,
the composition of the gaseous mixture so obtained will be—

Nitrogen = 65'1 per cent.
Oxygen = 33'0 per cent.
Argon = 1'9 per cent.?

T Air contains about 003 per cent. of its volume of carbon-dioxide, and 1 c.c.
of water at 15° C. dissolves 1019 c.cs. of carbon-dioxide, measured at 0° C. and
76 cms., the pressure of the gas being 76 cms. Hence, approximately, 0°0003 c.c.
of carbon-dioxide will be dissolved from the atmosphere, at 15°C., by 1 c.c. of
water. If it were not for the very low partial pressure of the carbon-dioxide a
large proportion of this gas would be removed from the atmosphere by a heavy fall
of rain, since, at 15° C., its solubility is nearly thirty times that of oxygen.

* Whereas 2:15 c.c. of ordinary air contain, approximataly, 048 c.c. of oxygen,
2:15 c.c. of dissolved air contain 0°71 c.c. of oxygen. It is this dissolved oxygen
which is breathed by fish.
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It must be noted that when a gaseous mixture is shaken up with a
solvent the amount’f each constituent which dissolves is determined
by the partial pressure of the constituent after the solvent has become
saturated, and not by its partial pressure before solution. In the pre-
ceding example we assumed that the water was freely exposed to the
atmosphere, and that, consequently, the composition of the latter could
be treated as constant. If, however, water be shaken with air in @ con-
fined space, the relative partial pressures of the gaseous constituents
will be slightly different after the water has become saturated, owing to
the unequal solubilities of the nitrogen, oxygen, and argon, and, in
consequence, the relative amounts of the more soluble gaseous con-
stituents which pass into solution will be slightly reduced.

Experiment XX VII.—It can be readily shown that air is enriched
in oxygen on solution in water, by hoiling a quantity of water which
has been well shaken up with air, and collecting the expelled gus. A
glowing splint of wood will be rekindled if introduced into this gas,
thus showing that a greater proportion of oxygen is present than in
air; or the oxygen in a measured volume of the gas may be deter-
mined by absorption with an aqueous solution of sodium pyrogallate,
and compared with the oxygen present in an equal volume of air at
the same temperature and pressure.

55. Additional Factors influencing Gaseous Solubility.—The solu-
hility of a gas in a solvent is diminished by a rise in temperature.!

Between 25° C. and 50° C., helium is an exception to this rule, the
solubility of the gas increasing to a small extent.?

E Gas. ®C | 10°C | 15°C. | 20°¢. | 30¢ . | 40°C. | 50° C. | 60> C.
‘ C.CS, c.cs. ¥ c.cs. c.Cs, C,(S. C.CS8. c.Cs. C.CS. I
Ammonia .| 1800 | 910 | 802 | 710 | 595 | — | — | — |
at 28°C, -
Argon . .|0058 | 0045 |0040 |0037 |0080 |0027 | — | —
Carbou-dioxide | 1713 |1-194 |1:019 |0-878 |066 |053 |044 [0-36
Helium . .| 00150 | 00144 | 0-0139 | 0-0138 | 0-0138 | 00189 | 00140 | —
Hydrogen . |0°0215 (00198 | 00190 [00184| — | — | — | —
Nitrogen . | 0-0289 | 0:0196 | 0-0179 | 00164 | 00188 | 00118 | 0-0106 | 0:0100
Oxygen . .|0049 | 0038 |0034 |0-031 | 0026 |0-023 |0021 |0-019

The above table gives the number of cubic centimetres of various
gases, measured at 0° C. and 76 cms., which dissolve in 1 c.c. of

11y therefore follows, in accordance with Le Chateclier's Theorem (Appendix
B), that when a gas dissolves the solution is accompanied by a rise in temperature,

21t appears probable, however, that for each gas there 18 a point of minimum
solubility, and that, at higher temperatures, the solubility again increases.
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water at the temperatures stated, the gas in each case being at a
uniform pressure of 76 cms. when in equilibrium with the saturated
solution. -

Since the solubility of a gas in a solvent is diminished by raising
the temperature, it follows that if a saturated solution be heated some
of the dissolved gas must be expelled.

In the case of aqueous solutions, for example, it is found that in
general, the whole of the dissolved gas can be driven off by boiling
the solution (cf. Expt. XXVIL). Several aqueous solutions are,
however, known which, when boiled distil at a definite concentration
and at a definite temperature. Thus an aqueous solution of hydro-
chloric acid containing 20°2 per cent. of hydrogen chloride has a
constant boiling-point of 110° C. at 76 cms. pressure, and can be
distilled without change in composition. If a weaker solution of
hydrochloric acid be boiled it becomes more concentrated, and if &
stronger solution of hydrochloric acid be heated it becomes weaker, until
in both cases an acid of 202 per cent. concentration is obtained.
Similarly a solution of nitric acid in water of 68 per cent. concentration
has a constant boiling-point of 120-5° C., at the atmospheric pressure.!

Such mixtures with constant boiling-points were originally supposed
to be definite chemical compounds, but Roscoe and Dittmar have
shown that the composition of the constant-boiling mixture is merely
a function of the pressure under which the solution is boiled. Thus,
under a pressure of two atmospheres, the constant-boiling mixture for
an aqueous solution of hydrochloric acid eontains only 19 per cent. of
hydrogen chloride. It therefore follows that these mixtures with
constant boiling-points are 7ot chemical compounds.

Not only may dissolved gases be expelled from a solution by the
action of heat, but also by placing the solution in a vacuum. This
follows from Henry’s Law, for since the concentration of a dissolved
gas is proportional to its pressure, the concentration must be zero
when the pressure is zero. Similarly a’dissolved gas may be com-
pletely removed from a solution by bubbling through the latter a
different gas, and a dissolved gas will also escape although less
rapidly if its solution be placed in an atmosphere of another gas.

Experiment XXVIII.—Expose an aqueous solution of ammonia
to the air for some time, and observe that it rapidly becomes weaker.
Then pass a rapid stream of air from a foot bellows through another
portion of the solution and observe that, in this case, the escape of
ammonia is much accelerated.

Provided no chemical action takes place the power of solution
possessed by a liquid is diminished by the addition of a soluble solid.

____1The distillation of liquid mixtures will be considered more fully in Chapter
VIL
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Ezxperiment XXIX.—Add a quantity of sugar to & tumbler-full of
« soda-water,” ! and’observe the rapid evolution of gas. Since, however,
any porous substance—such as a piece of earthenware—will also
promote the evolution of the gas, it is preferable to first dissolve the
sugar in a little water, and then to add the syrup thus formed to the
‘“soda-water,” when a rapid escape of gas will occur.

1 An aqueous solution of carbon-dioxide, prepared under a pressure of about
10 atmospheres,



CHAPTER VL
EQUATIONS OF STATE.

56. Deviations from the Simple Gas Law.—The general equation to
the isothermal of a perfect gas at an absolute temperature 6 was
deduced in Chapter II. from the standpoint of the kinetic theory, and
was shown to possess the form

PV.=R.6.

The curve corresponding to such an isothermal, as was shown in
Fig. XIV., is a rectangular hyperbola.

Now, it is evident from an examination of Fig, XXIII., which gives
the isothermals for carbon-dioxide, that this simple gas law is not
fully applicable to actual gases and vapours. For, although at
temperatures above the critical temperature, and for vapours at low
pressures, the isothermals approximate to rectangular hyperbolw, yet,
when partial or complete liquefaction has taken place, the curves no
longer possess this form.

It must, however, be remembered that the simple gas law,
P.V. = R. 6, was deduced for a perfect gas on the assumption that
both the size of the molecules and the time occupied by molecular
collisions could be treated as negligible.

When, however, any real gas is subjected to the combined influence
of high pressure and low temperature, its molecules will be crowded
together, and, in consequence, the curved paths traversed by the mole-
cules while casually within the sphere of action of other molecules
will bear an appreciable ratio to their mean free path. Since, under
these conditions, the time occupied by molecular collisions bears a
sensible ratio to the time of free molecular movement, it is evident
that, at any instant, an appreciable fraction of the total number of
the molecules in the gas will be in collision, and this will give rise to
marked cohesion. The greater the time occupied by such molecular
collisions, the fewer the number of impacts per second of the gaseous
molecules on the walls of the containing vessel, and, consequently,
the molecules will exert a pressure on the walls less than that cal-
culated for a perfect gas.

Thus, starting with a rarefied gas, we may anticipate that, as the
pressure is increased, the product P.V. for any real'gas will decrease,
owing to increased molecular cohesion, until such time as the mole-

188
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cules are crowded up within distances approximating to the radius
of the sphere of mblecular action, when any further increase in the
pressure will result in an increase in P.V., the volume, V, remaining
approximately constant (cf. § 33).

It has been seen, in Chapter IV., that a close relationship exists
between the liquid and gaseous states of matter, and, in conse-
quence, many attempts have been made to modify the equation
P.V. = R.¥6, so as to make it more generally applicable to both these
states. Such modified equations are usually called “characteristic
equations,” or ‘‘equations of state,” and, in the present chapter,
four of the more important of these equations will be briefly ex-
amined. It must be noted that * equations of state” are only
applicable to homogeneous systems which may be either entirely
liquid or entirely gaseous. Such equations do not apply to systems
which are heterogeneous, as in the case of a liquid in contact with
its saturated vapour.

57. The Ramsay-Young Equation.—This equation is only applicable
to systems ai constant volume, and may be written P = k.6 - ¢,
where P is the pressure, k and ¢ are constants, and 6 the absolute
temperature.

A more general form of the equation is—

P = 6.£(V) - F(V),

where f(V) and I(V) are different functions of the volume, and are,
of course, constant when V is constant.

In the case of a perfect gas, at constant volume, the simple gas
equation P.V. = R.6 may be written P = k.6, where &k is a con-
stant. Thus the Ramsay-Young equation for either gaseous or liquid
systems at constant volume only differs from the relation which
holds for a perfect gas, under the same conditions, by the intro-
duction of the term ¢. This constant, ¢, is the negative pressure, for
the particular constant volume under consideration, which corresponds
to the absolute zero of temperature, for, when § = 0, P = — c.

If the volume of the system be varied, the numerical values of the
constants 4 and ¢ must also be changed, the actual values of the
constants, in each case, being determined by experiment. Ramsay
and Young tested their equation for a number of different substances,
and found that for ether, {(C,H;),0}, and for methyl alcohol, {CH,OH},
ethyl alcohol, {C,H,OH}, and propyl aleohol, {C;H,0H}, the relation
agreed, a.pprox1*11ately, with the experlmenta,l results, the best agree-
ment being observed in the case of ether, {(C,H;),0}. Water, how-
ever, exhibited marked variations in its behaviour. Amagat showed
that the equation applied to carbon-dioxide, {CO,}, and to ethylene,
{C,H,}, in the gaseous state, but less accurately when they were
lxqueﬂed.
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Fig. XLVIIIL shows some of the results olztained by Ramsay
and Young in the case of ether, {(C,H,),0}. The curves, which
represent the variation of P with 6, at constant volume, are called
isochores, and it will be seen that for ether they are practically
straight lines, both in the gaseous and liquid states. This is in agree-
ment with the Ramsay-Young equation, according to which the
pressure is a linear function of the absolute temperature, the volume
being constant.

The dotted line, AB, in the figure is the vapour pressure curve for

185cc. € acc. ether. 6, is the critical temnpera-

5400 5cc. ture for ether, and P, the corre-
cms. sponding critical pressure. At B
the vapour pressure curve be-
P comes vertical. To the right of
the vertical line, CD, the system
is gaseous; to the left of ABC
Z7gc6 llcc it is liquid. The area ABD cor-

responds to vapour.

If the equation P =%k.60 - ¢
be differentiated with respect to 0,
we obtain the result—
25cc

DL
D 1 h !
O 357A. b, . oA
467°A. the differentiation being partial

Fig. XLVIII.—Isochores for Ether, since the volume is constant.

P. . .
Now, g g8 the tangent, at any given temperature, to the particular

isochore under consideration, and may be obtained graphically.!

The value of % having thus been found, the value of ¢ may be
obtained by substituting for % in the equation P = k.6 — ¢ for any
two values of P and 8 corresponding to the given isochore.

Other values of P, corresponding to different values of 6, may then
be calculated for the same isochore, and compared with the values
obtained by experiment. The same method may also be applied to
other isochores, in order to test the general validity of the Ramsay-
Young equation in the case of the particular substance under ex-
amination.

In the case of ether, for example, Ramsay and Young calculated
the pressures, for a number of different isochores, which corresponded
to a temperature just above the critical temperature. The following
results were obtained :—

1If the pressure, at constant volume, be a linear function of the absolute
temperature, the value of gg for a given isochore will, of course, be the same at
all temperatures.
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Temperature 470° A,
R )ﬁﬂ.,, S ..A U,
s 0 | Pressure Observed in mms, Pressure Calculated 1
Volume of 1 gm. of Kther. | of Mercury. mms. of Mercury.

e i___ N S

33°17 c.cs, 10,108 10,055

38:07 ,, J 8,972 8,965

47:84 ,, ' 7,312 7,320

67-33 ,, I 5,356 5,340

8675 ,, 4,219 4,220

9644 ,, 3,820 3,820

In the case of isopentane, Young obtained the following values for
k, at different temperatures, for a number of isochores :—

Volume = 40 c.cs. Volume = 50 c.cs, Volume = 3000 c.cs.
" ‘ P . . P ‘ P
Temperature. 1 k= ’gu_' Temperature. f k:%{;. Temperature. k= Q .
e e E
460-8° A, (critical) | 405 373° A, 215 303°A | 81
463° A. ; 418 383° A- 21°0 813° A, | 31
468° A, i 498 393° A, . 210 328° A, | 29
473° A, 1 434 403° A, | 205 333°A. 27
478° A. ! 430 413°A. | 195 343° A, | 28
483° A, | 443 43° A 200 853°A. | 31
2930 A | 4% a5 A | 135 | se A | 32
518° A, | 446 473° A, . 1995 373°A. | 29
B R o

It will be seen that, for each isochore, the values of b\i; are, ap-
&
proximately, constant.

58. The van der Waals’ Equation.—It was pointed out, at the be-
ginning of the present chapter, that the simple gas lawP.V.=R.4.
is only applicable to a perfect gas—for which both the size of the
molecules and the magnitude of the internal molecular cohesive forces
may be treated as negligible.

In 1873, van der Waals published a dissertation in which he de-
veloped the simple equation obtained from the kinetic theory so as to
allow, in the case of actual gaseous or liquid systems, for both the
molecular attraction and the finite size of the molecules.

The cohesive forces which arise from molecular attraction are very
small in a gas at the ordinary density, but become considerable when
the gas is subjected to the combired influence of high pressure and
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low temperature, and are exceedingly great in the case of liquid
systems.

Now, the molecules in the interior of a fluid will, on the average,
be attracted equally in all directions by neighbouring molecules, but
those at the surface will only be attracted inwards by the molecules
of fluid behind them. In consequence, the molecules which arrive at
the surface layer will be retarded by the molecular attraction, and, at
the moment of impact with the walls of any containing vessel, will
possess a velocity less than the average velocity of the molecules in
the interior of the fluid. Thus the pressure exerted by the molecules
on the boundary walls is lessened owing to the existence of internal
molecular cohesion, and, if the actual pressure exerted by a fluid be P,
the pressure which a perfect gas would exert under the same condi-
tions may be written (P + p), where p is the diminution in pressure
which arises from molecular attraction.

Since p is due to the mutual actions of attracting and attracted
molecules, it is proportional to the number of each, and, therefore, is
proportional to the square of the density. For, if we consider a thin
layer of unit area at the surface of the fluid, it is clear that both the
number of molecules in the layer, and also the number of adjacent
molecules within the range of molecular action, are proportional to
the density, and, consequently, the force of molecular attraction must
vary as the square of the density.

Hence it follows that p is inversely proportional to the square of

the volume occupied by the fluid, and we may write p = (;2, where a

is assumed to be a constant, for a given fluid, at all temperatures—an
assumption which van der Waals found to be approximately in agree-
ment with the results of the experiment.!

Therefore the value of the pressure in the gas equation now be-

comes—
a
(B + )

where P is the actual pressure exerted by the fluid on the walls of the
containing vessel ; i.e. the actual pressure observed.

This modified expression involves the assumption that the mole-
cular attraction varies inversely as the fourth power of the mean dis-
tance between neighbouring molecules.

For the force of attraction across any unit area in the interior of a
fluid is dependent upon the number of molecules distributed over the
area and upon the mean distance of molecular separation. If, then,
as in § 47, we take A to represent the mean distance between neigh-
bouring molecules, the number of molecules distributed over unit area
will vary inversely as A2. Now the force of moleculur attraction also

1The value of @ is actually found to diminish with rise in temperature.
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varies as some unknown function of the mean distance of molecular

separation—say, asA%. Hence the force of attraction exerted normally
. . AT
across the unit area varies as X2 ; Le. as =z
If V. be the volume of unit mass of the fluid, it is clear that V.
varies as A3,

Therefore, the force of attraction varies as ——,_,.
V)ys
In accordance with van der Waals’ equation, however, the force due
. . a .
to molecular attraction may be written v where a is a constant.

Whence it follows that x = — 4.

Thus, as previously stated, van der Waal’s equation involves the
assumption that the force of molecular attraction varies inversely as
the fourth power of the mean distance of molecular separation.

1t will be seen that the effect of molecular cohesion will be to
diminish the volume more rapidly than the pressure increases, and,
in consequence, the product P.V. will decrease with rise in pressure.

In deducing the simple gas law it was further assumed that the
space actually occupied by the molecules might be treated as negligible
in comparison with the space in which they were contained. Now,
although such an assumption is, approximately, justifiable in the case
of a gas at very low pressures, it ceases to he admissible when the
gaseous density is great, for the molecular volume will then bear a
sensible ratio to the whole volume, V.

Since, therefore, the free space in which the molecules move about
is less than the observed volume, V, the frequency of molecular
collision, and, consequently, the magnitude of the pressure exerted,
will be greater than were calculated for a perfect gas. The pressure
exerted will, also, increase at a greater rate than the volume, V,
diminishes, for a given diminution in the observed volume, V, will
correspond to a greater preportional diminution in the free space in
which the molecules move, since the compressibility of the actual
molecules themselves may be assumed to be very small. The pro-
duct P.V. will, on this account, tncrease with rise in pressure. This
mode of variation of P.V. with change in pressure is the reverse of
that occasioned by molecular cohesion, and an examination of the
experimental evidence, as summarised in § 33, shows that at low
temperatures and low pressures the influence of cohesion predomi-
nates, whereas at sufficiently high pressures the influence of the finite
size of the molecules on the variation of the product P.V. is the
decisive factor.!

! The influence of the finite size of the molecules on the variation of the pro-
duct P.V. is also the decisive factor at high temperatures, owing to the diminution
in the value of the molecular cohesion with rise in temperature,
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Now, since we have seen that the free space in which the molecules
move is less than the observed volume, V, we *may write (V — b)
instead of V in the simple gas equation, where b denctes the amount
by which the observed volume must be diminished in order to allow
for the finite size of the molecules. It would appear, at first sight,
that & must be equal to the sum of the molecular spheres of action,

taking the radius of the molecular sphere of action as '; (cf. footnote to

§ 47), but a moment’s consideration will show that this would only
be correct if the gas were at absolute zero, and the molecules at rest.
For, as the molecules move about, they will obstruct one another to
a greater extent than if some were at rest, and, in consequence, b
must be taken as some multiple of the sum of the molecular spheres
of action. Now, in calculating the probability of molecular collision,
in § 47, it was seen that the anterior hemispherical surface of the
sphere of action of a molecule traversed a volume equal to X .. s?
when the molecule advanced through a distance »—(the radius of the
8
2)
larly traversed when the molecule advances through a distance equal
to the mean free path, L, will be L. = . s2. But it must be noted that
the space occupied by the sphere of action of the molecule while it
advances a distance L is greater than L .= .s?, since the cylindrical
space traversed has hemispherical ends, and no allowance was made
for this in our previous calculation. Thus the probability of molecular
collision will be increased, and the mean molecular free path corre-
spondingly reduced.

In the case of direct molecular collisions the free path will be
shortened by the radius of the sphere of action, s, but, when the mole-
cules collide obliquely, a smaller diminution in the free path will
result. It can be shown that, on the average, the diminution in the

sphere of action being taken as s, and not as The volume simi-

. 2 . .
free path is equal to 2 . 5, and, in consequence, we must now write

3
A3 J2 \
L= - - NT . § 47).
e v Bl LA Rt
. A - % . . .
Since, therefore, I = —~— -237 "~ the correction for the finite
r.s?, /2

size of the molecules diminishes, in effect, the volume, A%, of the small
cube occupied by a single molecule by a volume §.x.s%; ie. by
4. }nm.s3

If, then, we regard each molecule as surrounded by a sphere of

action of radius ; (cf. footnote to § 47), the volume of each such

s t
molecular sphere will be g .. g—-, ie. }.w,s% and, therefore, the
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volume A® is diminished by four times the actual volume occupied by
the molecular sphere,

Consequently, for a volume V, containing % molecules, we have
V = n.A% and this volume must be diminished by4.}.m.s3.n.in
order to allow for the finite size of the molecules.

Thus the value of b in van der Waals' expression for the volume
is given by the relation b = 4. }.x.s3.n; i.e. it is equal to four times
the actual volume occupied by all the molecular spheres in the volume
V, and this was the conclusion reached by van der Waals. If it be
assumed that the molecules actually come into contact at a collision,
b is equal to four times the actual volume of the molecules
themselves.

It was assumed by van der Waals that b was constant at all tem-
peratures, and this agrees, approximately, with the results of- ex-
periment,!

a

v2>' and (V - b) in the

simple gas equation .V. = R. 6, we obtain the relation—

If, then, we substitute the terms (1’ +

a
<P + VE)(V ~b)=R.6,
where a, b, and R may be considered as constants.

This relationship was deduced by van der Waals, in 1873, by
means of a more rigid mathematical analysis.

The equation of van der Waals is a cubic equation in V, and may
"be written—

\ ‘P.b+R.6 , G a.b
- (U3 ).Vz+i).v—j;=o.

There are three roots to the equation, of which either all three are
real, or one is real and two are imaginary. These roots are the
values of V which correspond to any given temperature and pressure.
If the isothermals corresponding to the equation be plotted, we obtain
the curves shown in Fig. XLIX,, and these curves possess the same
general form as those suggested by J. Thomson (Fig. XXXIIL), for
the isothermals of a fluid for which the change from vapour to hiquid
may be assumed continuous, so that the fluid system remains homo-
geneous throughout the transformation. Kor isothermals below a
certain temperature there are either three real values of V, or else
one value is real and two are imaginary, according to the value
assigned to the pressure P. Thus, in Fig. XLIX,, for the 6, iso-
thermal, and for pressures between P, and I, there are three real
and different roots, as represented by points such as A, B, and C,

! Since the molecules themselves cannot be regarded as absolutely incompressible,
it would appear probable that b becomes smaller at high pressures,

10
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corresponding to the pressure P;. For the same isothermal, and for
either the pressure P, or P, there are still three real roots, two of
which, however, have the same value. Thus for the pressure P,, for
example, two roots correspond to the point D, and one root to E.
For pressures either less than P, or greater than P,, only one of the
roots is real, the other two being imaginary (cf. the points K and L

Fiu. XLIX.—Van der Waals’ Isothermals.

in the figure). In the case of the higher isothermal ¢, the three real
roots, such as A, B', and C', are closer together.

For a particular isothermal, 6,, which corresponds to the critical
isothermal in Fig. XXXII., the three real roots coincide at a particular
pressure, P,. This is shown by the critical point, M, at which the
three real values of V become identical and equal to V.

For isothermals above this temperature only one real root can be
found for any given pressure, as is clear from an inspection of the 6,
isothermal in Fig. XLIX,
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Since the three real roots of the equation coincide at the critical
point, M, the values, of P, V,, and 6, can readily be calculated in
terms of the constants a, b, and R.

For a cubic equation in V, with three real roots, may be written—

(V - V,)¥ = 0, where V, is the value of each of the equal roots.
SV -3V, V24 3VE YV -VE=0.

Now, van der Waals’ equation at the critical point may also be
written—

Equating the coefficients of equal powers of V in the two equa-
tions, we have—

P.b+R.6 a @.b
3V, = -¢ —° 38V 2= ,and V3 = .
¢ Pc 4 Pn ¢ 1)0
Whence—
Critical volume, V, = 3b;
Critical pressure, P, = 2"7g‘bfz;

Critical temperature, 6, = 57 R D

The values of a, b, and R in van der Waals’ general equation can
be obtained by substituting corresponding values of P and V for the
homogeneous fluid, as experimentally ascertained at various tempera-
tures, and the values of the critical constants can then be calculated.
Thus, employing the data obtained by Regnault for the compression
of carbon-dioxide, and taking pressures in atmospheres, and the
volume of the gas, at 0° C. and 1 atmosphere, as the unit volume, we
have—
= (000874,
= 00023,
= 0-003687.

[=e R RS

Therefore—
V, = 000699, P, = 61 atmospheres, and §, = 305'4° A.

The experimental values obtained for carbon-dioxide are :—

V, = 00066, P, = 73 atmospheres, and 6, = 303'92° A., the
agreement in the case of the critical temperature being particularly
noticeable.

Conversely, if the critical constants be known for any fluid, the
values of a, b, and R can be calculated.

10*
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Van der Waals’ equation may be written in the form—
a R.0 ¢

v: TV

If, for any isothermal, P be differentiated with respect to V, we
obtain the result—

o _2.a_ R.0_
V. V8 (V= by
the differentiation being partial since the temperature is constant.
Now, bﬁ\; is the tangent, at any given volume, to the particular
isothermal under consideration., If, then, we substitute the values of

the critical constants, we obtain—

W, 2.4 R.6 2.«  B.a.R 0

OV, VB T (V, - b2 T 27.0% T 27.R.b. 40t T
Therefore, at the critical point the slope of the critical isothermal

is zero, i.e. the tangent to the isothermal is horizontal.

AP 6.« 2.R.0

Since sve= " yi + = By
we have, at the critical point of inflexion—

P, G6.a 2.R.6, _ 6.a 16.a.R -0

W T Vet v, - T el T et R R T

At points such as D and F (Fig. XLIX.), which are, respectively,
minimum and maximum points, we have in each case—-

P AP ' NP
SV = 0; but, at D, §V2> 0, and, at F, " < 0.
For isothermals not far above the critical isothermal a point of

. . . Pl 1 -
inflexion oceurs, but neither 3\ DOt Sy 18 equal to zero. At suffici-

ently high temperatures the point of inflexion disappears.
R.6

Vv T T vE
neglecting the term in which V2 occurs in the denominator, and tak-
ing V - b as approximately equal to V. Thus, for very large values
of V, the slope of the isothermal is always negative (i.e. downwards)
and of very small value, and, consequently, the isothermal itself ap-
proximates to a straight line, slightly inclined towards the axis of
volume.

If, on the other hand, V approximates to the value b, the slope of
the isothermal approaches the value — @ ; i.e. the isothermal ap-
proximates to a perpendicular line.

For very large values of the volume V, we may write
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Thus the volume,b represents the theoretical limit of compression,
and, in accordance with van der Waals’ equation, this limiting volume
is equal to V; If it be assumed that at the absolute zero of tempera-
ture, 6,, the density of a saturated vapour is zero, and if the further
assumption he made that the law of Cailletet and Mathias (§ 37) holds
down to absolute zero, then, by extrapolating the Cailletet and Mathias
mean density line to 6, and doubling the mean density we obtain the
density of the liquid at that temperature. This has been done for a
number of different substances, and the limiting volume of the liquid,

at 6,, has been found to be approximately —\2. It may be doubted,
however, if the assumptions made in deducing the limiting volume
from the law of Cailletet and Mathias are really justifiable (cf. § 38).

We may write F(V) = \i,lz, and f(V) = VLE' b when van der
Waals’ equation assumes the form—

P = — F(V) + 0.£(V),

which we have seen is the general form of the Ramsay-Young cqua-
tion. Thus the isochores corresponding to van der Waals’ equation
will also be straight lines.

In the case of a perfect gas P.V. = R.6, and, consequently,
R.6

A
the critical point, for any fluid obeying van der Waals’ equation, we

obtain the result—

-=1, If, however, we calculate the value of the same ratio, at

R.0, 8
P,.V, =3~ 207

Now, the ratio 55~ %’ has heen experimentally ascertained for
c:- c

many different substances, and has been found to possess the approxi-
mately constant value 3-7 in the case of *“ normal” fluids, i.e. fluids
which have the same molecular complexity both in the liquid and
gaseous states.!

For fluids which undergo molecular dissociation in passing from
the liquid to the gaseous phase the value of the ratio is found to be
higher than 3:7. Thus van der Waals' equation, although agreeing
more nearly than the simple gas law with the results of experiment,
must nevertheless be regarded as merely a first approximation to an
accurate Equation of State.

11t is, of course, assumed in van der Waals' equation that neither molecular
association nor dissociation occurs.
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It was seen, in § 33, that the pressure P, gt which the product
P.V. for an actual gas was a minimum varied with the temperature,
increasing—in the case of a gas at a sufficiently low initial temperature
—with rise in the temperature up to a maximum value, and then de-
creasing again. This was shown by the dotted parabolic curve in Fig.
XX., and is illustrated more clearly in Fig. L. which represents the
lower part of the isothermal curves in Fig. XX. on an extended scale.

If the upper portion of the dotted parabolic curve be extrapolated,
the point at which it cuts the P.V. axis will represent the minimum
value of P.V. on the particular isothermal for which this minimum
value corresponds to zero pressure. Kor higher temperatures the

P ———————
——

wc, ~ IS

Product P.V.

, Pressure in Atmosphgres.
100 200 )
F1a, L.—Carbon-dioxide.

minimum value of P.V. would correspond to a negative value of the
pressure, and, therefore, would not be realisable in practice, as was
seen to be the case, for example, with hydrogen at ordinary tempera-
tures (ef. Fig. XVIL). Now, for a fluid which obeys van der Waals’
equation, we can calculate the temperature at which the minimum
value of P.V. corresponds to zero pressure in the following manner :—

Since a R.6
P=-wtvos

. a R.60.V
.-P.V.='—'V+ v‘“:‘*‘.

b
LABY) _fa R.b.0
TP ={ -
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Now, for all zninima, on the isothermal curves, in Fig. L.,
AP.V.) S . v,
) 0, and since in the above equation the term op isnot cqual

to zero, it follows that, at any minimum point—

a R.b.6 . (V-0 R.b.6
VES (Voo TV T g

Let 6, be the temperature at which the minimum value of P.V.
R.b.6,

corresponds to zero pressure. Then at the minimum point,

= l—since V = o when P = 0—and, therefore, 6, = Rg’—b

The critical temperature, ,, however, has been shown to be. given

. 8.a
by the relation 6, = TR
Whenco— 6= 21 .0, L. 6, = 33754,

P.
Fia. LL

In the case of carbon-dioxide, for example, Amagat’s data show
that 6, is approximately 636° C.; i.e. 909° A.; but since 6, for carbon-
dioxide is 30-92° C., or 303'92° A, it follows that 6, = 2:99.6,, and
approximately the same relationship has been obtained in the case of
other gases. The proportion given by van der Waals' equation is,
consequently, somewhat too high.

Fig. LI. shows the general form of the curves representing the
isothermal variation of the product P.V. with P, both for a perfect
gas and for one obeying van der Waals’ equation. Fora perfect gas
P.V. = R. 6, and consequently the product P.V. remains constant
wheri the temperature is constant, as is shown by the horizonta
line I.
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For a “van der Waals’ fluid,” we have the relaition——

(Pt )V =) =R.6; ie. PV =R.6 4+ B3 - VD)
The dotted line II, in the figure, corresponds to the equation
PV.=R.60+ P.b, and the curve III to the complete relation

v - )

Vi

When P = 0, V = o, and, in each equation, P.V. = R. 6.

When P = @, V =0, and IT and 1IT again meet.

For intermediate values of P. and V., the curve III will lie below
1I, and may come below I. At high temperatures the volume corre-
sponding to any given pressure will be greater than at low tempera-
tures, and, therefore, if the temperature be sufficiently high, the

PV.=R.0.+P.b.-a

term a(Y—v_.[b—) will be less than P .. ; i.e. the curve III will exhibit
no minimum value of the product P.V. If the temperature be low,

b)

however, a(VV; ~- may be greater than P . b., in which case the curve

III will have a minimum value for P.V.

In ¥ig. L, the point M lies on the particular isothermal, 6, for
which the pressure corresponding to the minimum value of P.V. has
its maximum value. It is, therefore, of interest to ascertain what
values of the temperature, 6,,, the-pressure, P, and the volume, V,,,
correspond to this point.

For any point on an isothermal, §, we have the relation—

P = - .a" + B.',QA.

Further, for the minimum point on the same isothermal we have
the relation—
(V-0 R.b.6
v: a4
Substituting in the first equation the value of R6 determined by
the second equation, we obtain the result—
_a a (V=0
=yt oy
_a (V-20
= 6 . Vz .
An examination of Fig. LIL, which represents the isothermal
variation of P.V. with P. in the case of air, as well as of Fig. L. for

carbon-dioxide, indicates that V,, must be approximately equal to
3.b: ie. equal to V..
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For, if . Vea=3.0.=V,
@ P . d 1 o 3
then, P1n=971=3‘ ¢y an 0,,,=U.R-—Z=-f.00.

Thus, for carbon-dioxide, P, is, approximately, 73 atmospheres,

14 +100°C.

1-3F \\\
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12F o~ S
\\\
11f DN
e ———— +16°C.\~‘\~
1-0 \ oocl \\\\
09 ™

08
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0-4f, .
<
0-3fF
0
3
02f§
@ i
ol o\ , Pressure in Atmospheres;
0 20 40 60 80 100  120B,
Fia, LII.—Air.
and 6, approximately, 304° A.; and, for air, we may take P, as 39

atmospheres, and 6, as 133° A.
If, then, we take P, as 3. P,,and 6,, as 3 . 6,, we obtain for carbon-

dioxide, the values—

P, =

219 atmospheres, and 6, = 456° A. (i.e. 183° C.)—and,

similarly, for air—
P, = 117 atmospheres, and 6, = 199-5° A. (ie. — 73:5° C.).
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These values will be seen to agree fairly well with the experimental
results as shown in the figures.!

The preceding relationships, as far as the writer is aware, have not
been previously observed.

59. Corresponding States.—If any two fluids, either in the gaseous
or in the liquid states, be taken at temperatures which are the same
fraction of their respective critical temperatures, then the two fluids
are said to be at *“ corresponding temperatures ” ; and a similar defini-
tion applies to the terms ‘‘ corresponding pressures ”’ and *“ correspond-
ing volumes.”

Now, for any homogeneous fluid, we may express P, V, and 6 in
van der Waals’ equation as fractions of the respective critical con-
stants of the fluid, and write—

a
(a.Pc + (viv;y,f)(ﬂ.v‘, ~ 1) =R.y.6,
where P=a.P,V=8.V,and 6 =1v.0,.

Substituting for @, b, and R, in terms of the critical constants, we
obtain the result—

3.P,.V,2 V,\ _ 8.P.V..y.0,
(e 2ot Tt (oo Ve - 5) =g
Whence <a + lgz>(3 B~-1)=8.y

This last equation is independent of any constants whose numerical
values are conditioned by the particular substance under consideration,
and is known as the * Reduced Equation of State.”

This reduced equation can, of course, be applied directly to any
fluid obeying van der Waals’ general equation of state, and it follows
that if any such fluids, either in the gaseous or in the liquid states, be
taken under *“ corresponding”’ conditionis with respect to any two of
the variables P, V, and 6, then they will also be under “ correspond-
ing” conditions with respect to the third variable, i.e. the fluids will
be in “ corresponding states.”

The principle of corresponding states has been investigated for
a number of different fluids, and has been found to be in fair agree-
ment with the results of actual experiment.

60. The Clausius Equation.—Clausius, in 1880, suggested the
equation

<P + m‘%ﬁﬂ(v -8 =R.6

1 Ethylene exhibits a similar close agreement,
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where the term \‘;F‘

, ¢ being a constant for the given homogeneous fluid, and 4

in van der Waals’ equation is replaced by

a
6.V +c)t
the absolute temperature.

In accordance with this equation, the force due to molecular
attraction should vary inversely as the absolute temperature. Since
there are now four constants, the Clausius equation will not be in
agreement with the principle of ‘ corresponding states,” unless,
indeed, it be assumed that ¢ is the same function of & for all fluids.
For the principle of ‘‘ corresponding states” requires the same
number of constants as there are variables, (P, V, and 6); i.e. three
constants. It is found, moreover, that the Clausius equation does not
represent the properties of different fluids with much greater exact-
ness than the equation of van der Waals, whilst it possesses an arbitrary
constant, ¢, which has no direct physical significance.

61. The Dieterici Equation.—Dieterici, in 1901, suggested the
equation
A
R.6 “R.6.
(V=0

v,

P=

A being a constant characteristic of the molecular attraction and e
the base of natural logarithms, (2718281828 . ..). This may be
written in the alternative form—

log,P = log,R . 6 —log,(V - b) A

"R.6.V

if hyperbolic logarithms be taken of both sides of the equation.

The Dieterici equation is in fair agreement with the experimental
results obtained in the case of actual fluids, and, in particular, it gives
the value 3695 for the ratio 1?' %’

[ L4
with that obtained by experiment (cf. § 58).

On the other hand, the critical volume, as deduced from this

equation, is given by the relation V, = 2b, and the limiting volume,

;—a value which agrees very well

at infinite pressure, is equal to b; i.e. 1;'5 (cf. § 58).

Numerous other equations of state have been suggested, but they
exhibit little, if any, closer agreement with the results of experiment
than is shown by the equations which have already been examined.!

1 T4 was pointed out in Chapter V. (§ 42), that the thermal expansion of gases
furnished a scale for the measurement of temperature, and that it was more usual
to measure equal changes of temperature by equal changes in the pressure of a gas
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at constant volume than by equal changes in the volume of fhe gas under constant
pressure.

Now, in the casc of a perfect gas, P.V. =R.6, and %1; = constant, if the

volume be constant, and, similarly, 8 — constant, if the pressure be constant.

o8
Tn the caso of any fluid obeying, for example, van der Waals’ equation, wo
have—
a R.6
P=- vg + v _ '6.
LoP_ R
T8 T V-
Thus, at constant volume, the increaso in tho pressure is proportional to the
increase in the absolute temperature—as for a perfect gas.
If, however, a “ van der Waals’ fluid ’’ be employed as the thermometric sub-
stance in a constant pressure thermometer we have —

=- constant, if the volume be constant.

v R
00 a  2ab
P-w+w

and, therefore, the volume is not a linear function of the absolute temperature
when the pressure is constant.

Thus, when different gasos are used as thermometric substances, a knowledge
of their mode of variation from the simple gas law P.V. = R. 6. becomes of con-
siderable importance in an accurate system of thermowmetry.



CHAPTER VII.
LIQUIDS.

62. Fluids and Solids.-—In the preceding chapters the more impor-
tant consequences of the kinetic theory have been developed, in so far
as they are applicable to matter in the gaseous state. We now pass
to the consideration of the properties of liquids and solids from the
standpoint of the kinetic theory, and it will be found that here, also,
our theory is in agreement with the results of experiment, after mak-
ing due allowance for the greater proximity of the molecules, and the
consequent diminution in the mean free path, which characterise the
liquid and solid states.

It is customary to divide matter into two classes: fluids and
solids. The fluid state is defined as that in which matter yields con-
tinuously to an applied tangential or shearing stress, however small
the magnitude of the latter may be, whereas, in the case of a solid
body, such a tangential stress, if not too great, may be resisted per-
manently. Thus, let 'ig. LIIL. re-

present a vertical section through C
a heap of sand resting on a hori-
zontal plane AB, and divided into B

two portions by a plane CD which
is inglined to g’he Ifmrizon. Both Fre. LIIL
the action and reaction between the two portions may be resolved into
components which are, respectively, normal to CD, and in the plane CD,
the latter constituting a shearing stress which tends to make the upper
portion of the heap slide down over the lower portion. Provided this
shearing stress be not too great, it can, in the case of a solid, be resisted
permanently. In the case of a fluid, however, no such permanent resist-
ance is offered, and a fluid heap will give way continuously, the rate at
which it flows being conditioned by viscosity. Pitch, for example, is a
fluid, and not a solid, for a block of pitch flows continuously, although
very slowly. Thus a specimen of very hard pitch which was kept in the
Cavendish Laboratory for many years, in a vertical funnel, gradually
flowed through the latter. In another experiment, due to Lord Kelvin,
lumps of lead were placed upon a plate of pitch, and gradually sank
through to the bottom of the plate.

Fluids are further divisible into gases, vapour, and liquids, the
last named being distinguished by the resistance they offer to com-
pression (cf. § 34).

157
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In view of the close relationship which has been seen to exist be-
tween the gaseous and liquid states, we shall now proceed to a more
detailed study of the properties of liquids, the properties of solids
being reserved for subsequent consideration.

63, The Properties of Liquids.—The general properties of liquids
find a ready explanation from the standpoint of the kinetic theory,
adopting the hypothesis that matter is possessed of an atomic or
molecular structure.

Thus the evaporation of a liquid is due to the gradual escape of the
molecules through the liquid surface, and, since the more rapidly
moving molecules escape more readily, it follows that a cooling effect
will be produced by the evaporation.

If evaporation proceed in the open, the molecules will escape into
the surrounding atmosphere, but if, on the other hand, it take place
into a closed space, the molecules of vapour will collect, and, ulti-
mately, a state of dynamic equilibrium will be attained when as many
molecules are condensed back into the liquid as escape from it in unit
time. The space above the liquid will then be saturated with the
vapour, and the pressure exerted by the latter will be the saturation
pressure at the particular temperature. A rise in temperature will
increase the average molecular velocity, and the saturation pressure,
which corresponds to the state of dynamic equilibrium, will, conse-
quently, be increased. Similarly, from the standpoint of the kinetic
theory, the inter-diffusion of miscible liquids may be explained as due
to the entry of the constantly moving molecules into the interspaces
separating neighbouring molecules.

Since the molecules in a liquid must, in general, be in much greater
proximity than the molecules in a vapour or gas, the curved paths tra-
versed by the molecules while casually within the sphere of action of
other molecules must bear a sensible ratio to the mean free path.
Consequently it is to be anticipated that, in the case of liquids, con-
siderable internal molecular cohesive forces will be developed.

The existence of these internal cohesive forces in liquids is shown
by the phenomenon of surface-tension which will be discussed more
fully in the next chapter—on Capillarity.

The fact that liquids possess very considerable cohesion may also
be shown directly, since a liquid can be made to support a very large
tension without rupture.

Thus the sticking of the mercury at the top of a clean barometer-
tube, to which reference was made in § 39, shows that the mercury
can sustain a tension.

Berthelot succeeded in measuring the strain which various liquids
could support without rupture by enclosing the given liquid, from
which bubbles of free air or other gases had been previously removed
by prolonged boiling, in a straight and thick-walled glass-tube, a small
space being left containing only the vapour of the liquid. On carefully
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heating the tube, the liquid expanded and filled the whole space, and,
on subsequently cooling, it was observed that the tube remained filled
with the liquid untfl, ultimately, the liquid column suddenly broke
with a metallie click, and the vapour reappeared. By measuring the
length of the bubble of vapour, the extension of the liquid was ob-
tained. In the case of water, for example, Berthelot obtained an ex-
tension of volume of ;1.

It is only for liquids that wet the glass that the maximum strain
can be thus obtained; i.e. when the adhesion between the liquid and
the glass is greater than the liquid cohesion. Reynolds measured the
stress various liquids could sustain without rupture by employing
a sealed glass “U” tube containing the given liquid and its
vapour (Fig. LIV.). Free air, or other gases, were expelled by pre-
viously boiling the liquid, and, after seal-
ing off the “U " tube, the latter was fixed
to a board and rotated rapidly about a
perpendicular axis, O. If, then, ABCD
be the arc of a circle with O as centre, the
liquid in EB will be in a state of tension
during the rotation, the tension increasing
from B to E. The maximum stress which
could be sustained was then calculated
from the greatest velocity of rotation
which the liquid could support without
rupture.

64. Compressibility of Liquids. — The Fra. LIV.
great resistance which liquids offer to com-
pression is a further indication that their molecules are sufficiently
close together to exert considerable forces upon one another. It
was seen, in Fig. XXIII., that the isothermals for the liquid state
approximate to straight lines which are only very slightly inclined
towards the axis of pressure, and, indeed, it was thought, for a long
time, that all liquids were absolutely incompressible.

An attempt was made in 1660, at Florence, to show the compres-
sibility of water, by filling silver globes with water and then deforming
the globes. Negative results were, however, obtained owing to the
water being forced through the metal.

More than a hundred years later (1762), Canton succeeded in
demonstrating the fact that water is compressible, but he failed to
obtain an accurate value for the compressibility.!

Canton employed a large glass bulb joined to a fine capillary tube.
The bulb and part of the tube were initially filled with mercury, and,
by heating the bulb, the mercury was made to expand and completely
fill the apparatus. The fine tube was then sealed, and, on cooling,

1The terms compression, compressibility, and elasticity have been previously
defined in § 32,
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the mercury sank in the tube—the pressure on the surface of the
mercury being merely the small vapour pressure of the mercury at
the particular temperature of the experiment. ®On breaking off the
end of the capillary tube, air entered, and the mercury sank lower in
the tube, the contraction under the increased internal pressure being
due, in part, to the expansion of the glass bulb, and, possibly, in part
to the compression of the mercury. On repeating the experiment
with water, Canton observed that the apparent contraction was
greater than in the case of the mercury, and, consequently, for the
water, at any rate, part of the contraction was due to the actual com-
pression of the water itself.

Experiment XXX —The compressibility of different liquids may
be readily demonstrated by means of Oersted’s piezometer which is
{ S - shown in Fig. LV. The glass bulb
and capillary tube are filled with
 the liquid under examination, and
~ the open end of the capillary tube
is placed beneath the surface of the
* mercury in the small reservoir.!
The reservoir is then introduced
~ into the piezometer, and, after
~ filling the latter with water, pres-
~ sure is applied by means of the
 pump; when the mercury will be
- observed to rise in the capillary
~ tube.

- Since the pressure is applied

both inside and outside the glass
bulb, it might be supposed that the
change in the volume of the latter
- could be treated as negligible, pro-
~ vided the walls of the bulb were
sufficiently thin. This supposition,
e . however, may be shown to be

“F1a. LV.—Uersted’s Piezometer.  erroneous., For consider the case
of a solid glass sphere inside the
- piezometer. On applying pressure the sphere becomes smaller, the
pressure being the same throughout the sphere. If, now, we imagine
the inside portion of the sphere removed, and replaced by a material
of the same elasticity, there will be no change in the outside shell.
Consequently, in the case of a liquid enclosed in a glass bulb, if the
bulk modulus of elasticity? of the liquid be the same as that of the
glass, the bulb would be compressed to the same extent as if a solid
glass sphere had been employed. )

1 Care must be taken to get rid of all air-bubbles. % Vide § 120.
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Thus the bulk modulus of elasticity of the bulb must be known
before the real compuessibility of the liquid can be ascertained.

Let Fig. LVI. represent the glass bulb and capillary tube, the
liquid initially occupying the volume V,. Then, if the compressi-
bility of the liquid and the glass be the same, the level of the liquid in
the capillary tube will remain unchanged on compression, but, if the
compressibility of the liquid be greater than that of the glass, the level
of the liquid will fall on compression to, say, & volume V,.

Fia. LVL F1a. LVII.—Regnault's Piezometer.
Vi-Ve
V.

‘Whence, the apparent compression of theliquid = m.P

. 1
where m is the apparent compressibility, and P the applied pressure
producing the given diminution in volume.

The apparent bulk modulus of elasticity of the liquid = %1' .

The real compression of the liquid is, clearly, greater than the
apparent compression observed, and is given by the relation—
real compression = apparent compression
+ compression of the glass bulb,
11

’
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Regnault employed the piezometer shown in Fig. LVIIL., the
arrangement being such that the compressibility of the containing
bulb, as well as the compressibility of the liquid, could be determined.
The side tube was connected to a supply of compressed air, the
pressure being measured by means of a manometer. The inner
cylindrical bulb contained the liquid under examination, and the
volume of the latter was observed in the accurately graduated stem by
means of a mercury index. The whole apparatus was kept in a large
vessel full of water (not shown in the figure), in order to maintain a
constant temperature throughout the experiment. By turning the
appropriate stop-cocks, pressure could be applied to (a) the outside
only of the cylindrical bulb; (b) both the outside and the inside ; (c) the
inside only. 1'rom the apparent change in volume produced by applying
pressure to the outside only of the bulb, the bulk modulus of elasticity
of the latter could be obtained, and the bulk modulus of the liquid
could then be deduced by observing the apparent diminution in its
volume when the pressure was applied both outside and inside the
bulb simultaneously. The actual calculation of the result was condi-
tioned by the shape of the eylindrical bulb.

If the bulk modulus for any liquid be accurately known, the bulk
modulus for any other liquid may be readily determined by observing
the apparent compression of each liquid in the piezometer when
pressure is applied equally both outside and inside. Two equations
are thus obtained, from which the bulk moduli for both the bulb and
the other liquid may be deduced. Either Oersted’s or Regnault’s
piezometer may be used in this experiment.

65. Determination of the Elasticity of a Liquid from the Velocity
of Propagation of Sound.—The fact that liquids transmit sound with
finite velocity shows that they possess elasticity, and the velocity of
propagation of sound enables the elasticity of a liquid to be readily
calculated.

We have seen (§ 26) that the velocity, V, of sound in any medium
is given by the equation—

V= Elasticity
~ N Density

Thus, in the case of water, Martini found that the velocity of sound
at 4°C. was 13:99 x 10%cms./sec., and at 25°C. was 14'57 x 10* ems./sec.

Therefore, at 4° C.,
the elasticity of water = (1399 x 1042 x 1 = 1-96 x 10'° dynes/cm.?

Similarly, at 25° C., the elasticity of water

= (14'57 x 10%% x *997 = 2'12 x 10" dynes/cm.?
Whence the compressibility of water at 4° C.
= (*510 x 10 —1%) x (76 x 13:596 x 981); i.e. 517 x 10~ %
when the pressure is expressed in atmospheres.
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If the megabar (i.e. 106 dynes per square centimetre = ‘987 atmo-
sphere) be taken as the unit of pressure, the compressibility at 4° C.
=510 x 1075,

At 25° C. the compressibility of water

= (472 + 10 — 19 x (76 x 13:596 x 931); i.e. 479 x 103,

when the pressure is measured in atmospheres; and 4:72 x 10~3,
when the pressure is measured in megabars.

These results are in fair agreement with those obtained by the
compression of water in a piezometer.

Thus Regnault found the compressibility of water for pressures
from about 1 to 10 atmospheres to be 48 x 1079, the temperature
not being specified, and Grassi found 499 x 10~° at 4° C., and
4:56 x 1075 at 25° C., the pressures, in each case, being expressed in
atmospheres.!

66. Effects of Pressure and Temperature on Compressibility.—As
might be expected, the compressibility of any liquid diminishes as the
pressure increases. In general, the compressibility increases with rise
in the temperature, but water has a minimum compressibility at about
50° C. (Amagat.).

67. Compressibility of Aqueous Solutions.—Rontgen and Schneider
investigated the compressibility of aqueous solutions, and found that
their compressibility was less than that of water, and diminished as
the concentration increased.

68. Viscosity of Liquids.—A definition of viscosity was given in
§ 48, and the coefficient of viscosity, «, defined by means of the

relation F = 'f-'—~i-y This equation is only true for relatively small
a q y y

values of the * velocity-gradient,” for it is only under such circum-
stances that the steady state of flow which was postulated can exist.

Experiment XXXI—The viscosity of a liquid may conveniently
be measured by Poiseuille’s method, by observing the rate of flow of
the liquid through a cylindrical capillary tube. As long as the rate of
flow does not exceed a certain critical value, depending upon the
viscosity of the liquid and the radius of the capillary tube, a steady
state of motion parallel to the axis of the tube will be attained.
Fig. LVIII. represents a simple form of apparatus for determining
the coefficient of viscosity of a liquid. The liquid flows in at the tube
A, and any required head can be obtained by adjusting the position of

1The compressibility of mercury at 4° C. is, approximately, ‘38 x 10-35, i.c.

about ]T:Blt-'x times that of water (5:17 x 10-7), but in other cases the compressibility
has not been found to vary inversely as the density of the liquid.
11
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the tube B. CD is the capillary tube, and the quantity of liquid which
flows out at D in a definite time is carefully meagured.

The capillary tube must initially be tested for uniformity of bore
by introducing a column of mercury a few centimetres long, and
measuring the length of the column at different parts of the tube.
A tube of uniform bore having been obtained, its length, I, is measured,
and its mean radius found by nearly filling the tube with mercury,
measuring the length of the mercury column with a vernier microscope,
and then running out the mercury and weighing it. If I’ be the length
of the mercury column, and p' the density of the mercury at the

temperature of the experiment, then a = ﬁ"l” where m' is the mass
p
of the mercury, and a the radius of the capillary tube.

Fic. LVIIL Fio. L1X,

In measuring ', a correction must be applied for the curvature of
the ends of the mercury column. For a narrow tube, the curved
ends of the mercury column may be regarded as hemispheres, and,
consequently, if the length be measured to the extremity of the convex
surface at each end, we must take (I' — }.a) as the length of the
equivalent cylindrical column. Alternatively, the internal diameter
of the tube may be measured with the vernier microscope in two
directions at right angles to one another so as to eliminate any small
error die to irregularity of bore, and the radius, a, thus obtained.
The! temperature of the liquid is also noted by means of the thermo-
meter, E.
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Now, we may assume, as in § 48, that when a liquid flows over a
solid surface there i§ no slip between the solid and the layer of liquid
in actual contact with it. Thus the velocity with which the liquid
flows is zero at the internal surface of the capillary tube, and increases
up to a maximum value along the axis of the tube. Let Fig. LIX.
represent a section of the liquid taken at right angles to the axis of
the capillary tube CD, and let the velocity of the liquid parallel to the
axis of the tube at a distance £ from the axis be v, and at a distance
2 + 6z be v + 8v, 8v being negative when 8z is positive. Then the
volume, 8Q, of liquid flowing across the shaded annular section of the
tube in unit time is given by the equation :—

8Q = v . 2mx .3z, which becomes rigidly exact
when 8z is taken infinitely small; ie. dQ = v . 2rz . dz.

Since the liquid can be regarded as practically incompressible, and
since, in the steady state of motion, it flows parallel to the axis of the
tube, the velocity, v, at a distance = from the axis, must be the same
for all cross-sections along the tube; for the volume 8Q, flowing in
through an annular section at any part of the tube must be the same
as the volume flowing out through any corresponding annular section
further down the tube. Moreover, since the liquid flows parallel to
the axis of the tube the pressure is sensibly the same over a given cross-
section of the tube.!

Let p, be the pressure at C (Fig. LVIIL), and p, the pressure at
D. Then the pressure difference, P, between the ends of the capillary
tube is given by—

P = (p, - py) =h.p.g, where h is the head, and
p the density of the liquid.

Consider the motion of the inner cylinder of liquid of radius z, and
length I. When a steady state of flow has been attained there is no
change in the momentum of the liquid, and, consequently, the force,
F, urging the liquid eylinder forward must be equal and opposite to
the viscous resistance opposing its motion. Since the area of the end
of the cylinder is #2?% and the area of its curved surface is 27z.1, we
have—

dv
= 2) = -~ i
F =P.(m?) K.A.dx,
dv
= - K 27l’x l’(’i:l;‘
P
Whence v = - —— .x.dz.
2.x.1
P.z?
b= g O

1 We may neglect the very small pressure due to the weight of the upper layers
of the liquid in the horizontal capillary tube on those below,
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At the internal surface of the capillary tube, z = a, and v = 0.

P.at .
T4kl
Hence v = IM_’? ] (a? - 2?)

Since dQ = v . 2rz . dx, the volume Q, of hquld flowing across the
whole cross-section of the tube in unit time is given by the equa-
tion—

Q= jfv.%—m.dw,

2 P

= 4%j(a2——w1) x.dr,
. P at
2.x.1 &

_w.P.at

8.k.4"

By employing this relation the coefficient of viscosity, «, may be
readily ascertained.

In the preceding investigation we have omitted to take any account
of the kinetic energy possessed by the liquid issuing from the capillary
tube at D. Since part of the head of liquid has been used in supply-
ing this kinetic energy, a correction must be applied if the veloeity of
efflux of the liquid be large. In the case of long tubes of fine bore,
however, this correction becomes negligible.

The volume, Q, of liquid which flows in unit time across a section
of the tube may also be deduced in the following modified manner.
Consider the liquid bounded by two coaxial cylinders of radii #, and
Z + oz, and by two planes at right angles to the axis of the cap111a.1y
tube at a distance 9/ apart (Figs. LIX. and LX.).

The tangential viscous force on the curved surface of the cylinder
of radius z, and length 8/, is—

k.00, 2wz . dv

“dz

Similarly, the tangential force on the curved surface of the cylinder
of radius z + dx, and length &I, is—

a
x.az.2w.{m.‘ﬁ’ + (o). Sw}
x
Conseguently the difference in the tangential forces over the two

curved surfaces is—
a dv
-Kszzwd( dw) 5.
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d
If, further, the prissure gradient along the tube be Yi]—;’ the force due

to the difference in the pressures over the two plane ends of the
liquid ring is—
dp . 8l
ai -
When the liquid has attained a steady state of flow this force

must be equal and opposite to the resultant tangential viscous force
opposing the motion of the liquid ring.

oQrx . Oz .

dp d dv
Hence 27r:v.8x.dz.81= —K.SZ.QW.‘H(m.%).b‘m.
ie x dp_ -(—i-< dv
@ dal T T N dx ”’dx)

: i

] 61/ )

T 6x
— b L Axis of Tube

Fia. LX.

It has been shown, previously, that the pressure is sensibly the
same over a given cross-section of the tube, and, also, that the
velocity, v, at a distance z from the axis of the tube, must be the

same for all cross-sections. Thys the pressure gradient, ((%, is in-

dependent of x, whereas, for any given liquid under the conditions of
the experiment, the right-hand side of the last equation is dependent

merely upon z. Consequently the pressure gradient, %‘3 must be

-p, . P
constant, and equal to RLT&; Le. .

Therefore, integrating the last equation, we have—
2 d .
g }—? +C=-«x.2. 3, where C is a constant.
2°1 dx

Dividing by  and again integrating, we have—

x* P

7t C.log,x + C' = — «.v, where C' is another constant.
If £ = 0, i.e. along the axis of the tube-—

C.log. 0+ C = —-«.v
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But log, 0 = — o, and therefore, C must be zero, for otherwise
the velocity, v, would be infinite along the axis of the tube.

Again, if £ = a (i.e. at the internal surface of the tube where
v = 0), we have—

at P ,
i +C =0.
, at P
O = - i
‘Whence—

P 2 2>
K.v.=m.(q - x*).

Thus, as previously—
A «

Q=Iv.2wm.dm,
0

E._P.a‘*
8.x.1°

f
‘?:E)U
o]
e}

)

Fia. LXI.

This law for the viscous flow of liquids through capillary tubes
was first obtained by Poiseuille, and is known as Poiseuille’s Law.
As long as the rate of flow of the liquid is less than a certain critical
value, depending upon the viscosity of the liquid and the radius of
the capillary tube, Poiseuille’s Law is found to hold good, but it ceases
to be applicable when this critical value is exceeded.

" Reynolds has shown that the steady state of motion parallel to
the axis of the tube, which was agsumed in deducing Poiseuille’s Law,
only exists when the rate of flow is less than this critical value, and
that, at greater values, the motion of the liquid becomes irregular.

Ezxperiment XXXII.—Water is allowed to flow from a reservoir,
A (Fig. I.XI ), through a long horizontal glass tube. BC, of say, 1 cm.
internal diameter, the rate of flow being regulated by means of the
stop-cock, D. The tube, BC, contains a very small piece of glass tube,
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E, inside which a fragment of magenta, or other colouring material,
has been inserted. A thin piece of wire serves to hold the tube E in
position inside the wider tube, BC. As long as the rate of flow is
small, the coloured water from E follows a straight path parallel

B E C

»

N

Fie. LXII,

Fie. LXIIL.

to the axis of the tube (Fig. LXIL), but, as the rate of flow is in-
creased, the path becomes undulating and finally quite irregular!
(Fig. LXIIL).

If the volume, Q, of liquid which flows in unit time across a sec-
tion of the tube be plotted against the pressure difference, P, between
the ends of the tube, we obtain at first—in accordance with Poiseuille’s
Law—the straight line AB (Fig. LXIV.). Beyond a certain critical

- C
7 F
B G
Q e a
B _—" '
A f"' P ﬁrr
Fia. LXIV.

velocity eddies are set up in_the liquid flowing throughithe tube, and
the relation between Q and P is now given by the curve BC.

It is possible for a more viscous liquid, under certain conditions,
to flow more rapidly than one of lower viscosity, since the eddies will
be damped out more readily by the former liquid than by the latter.

1 According to Reynolds the steady state of flow parallel to the axis #f the tube
cannot exist if the mean velocity (Q/va?) exceeds the value 1000 .x/p.a, wWhere x
is the coefficient of viscosity, p the density of the liquid, and a the radius of the
tube, expressed in C.G.S. units.



170 THE PROPERTIES OF MATTER

Thus in Fig. LXIV,, if ADEFG represent the relation between Q and
P for a more viscous liquid, it will be seen that for*pressure differences
between P’ and P” this liquid will flow the faster—the formation of
eddies being prevented until a pressure difference corresponding to
the point E has been attained.

69. Variation of Viscosity with Temperature.—In the case of
liquids the viscosity decreases rapidly with rise in temperature,
whereas for gases the reverse effect is observed (§ 48). It must
therefore be assumed, in accordance with the kinetic theory, that the
principal effect produced by a rise in temperature, in the case of
liquids, is a reduction of the considerable inter-molecular cohesive
forces which characterise the liquid state.

The following table gives the values of the coeflicient, «, for a few
liquids at various temperatures :—

COEFFICIENT OF VISCOSITY, k.

0°C. t 20° C. ' 50° C.
C.G.8. l C.G.8. C.G.S.
Water . . . 0179 +0101 I *0055
Mercury . . . *0169 0156 i *0140
Ether . . . *0029 *0023 1 —
Glycerine . . 460 85 | —
|

70. The Coefficient of Viscosity of a Gas.—As pointed out at the
end of § 48, Meyer developed a theoretical law for the rate of flow of
a gas through a long tube which was similar to Poiseuille’s law for
the flow of liquids. Meyer’s law of gaseous {ramspiration may now
conveniently be deduced.

In considering the flow of a viscous liquid through a cylindrical
capillary tube, we treated the liquid as incompressible, but an im-
portant difference arises in the case of gaseous transpiration owing to
the variation in the density of the gas at different parts of the tube
due to variation in the pressure. Thus, in the case of a gas, the
volume, in unit time, flowing in across a given cross-section of the
tube will not be the same as the volume flowing out across a cross-
section farther down the tube, and, in consequence, the velocity, V,
of the gas parallel to the axis of the tube, at a fixed distance, z, from
the axis, will vary as we move along the tube.

Since, however, when a steady state of flow has been attained,
equal masses of the gas flow across each cross-section of the tube in
unit time; it follows that p.V. must be constant at a fixed distance, z,
from the axis, where p is the gaseous density. But the density varies
directly as the pressure, p, of the gas, and, consequently, the product,
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p.V, of the pressure and the velocity, at a distance z from the axis,
must remain constadt as we move along the tube.

Since, then, the velocity V, at a distance # from the axis, varies
along the tube—due to variation in the pressure p—relative motion
will arise between portions of the gas which are equi-distant from the
axis. The viscous forces brought into play by this relative motion
may, however, be treated as negligible, for, if the maximum velocity
of the gas be V', the velocity-gradient along the tube is of the order
i and the velocity-gradient across the tube is of the order Z—, and
since a is very much less than [, the second gradient is correspond-
ingly greater than the first. In consequence, the viscous forces
arising from the first gradient of velocity may be neglected in com-
parison with those due to the second gradient.

Therefore, as in § 68, we have—

dp d/ av C
Togp= ok cﬁ<wsz—>’ but, in this case, the
pressure-gradient, d-f , i8 no longer constant.

Since the pressure, p, may be assumed constant over a given cross-
section of the tube, we have, on multiplying both sides of the last
equation by p—

ap _ a/. dp.V)
m.p.m——-x.(ﬁ@c. 7a )
.owodp? d/ dp.V)
'2'71l——~"'(ﬁ<x"’dw" >

Now, we have seen that p.V is independent of I, and, conse-
quently, the right-hand side of the last equation is independent of .

2 2 _ g2
. fid]’l is constant, and equal to &7 ) .
. .z dp? d d(p.V
Integrating the equation g —d% = - k. &E(E. (thiw )>, we
get—
x? dp? _ d(p.V.) s
i da +C= —-«x.2. dz where C is a constant,
Dividing by #, and again integrating, we get—
%2%2; + C.log.z + C'= - «x.p. V, where C' is

another constant,
If, then, z = 0 (i.e. along the axis of the tube)—

C.log, 0 + C' = - «.p.V,and, since the velocity
is not infinite, C must equal zero.
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If z = a, the velocity V is zero, whence—

2 dp?
%'7])[+C'=0'
Cr @ dp?

O = -5

Substituting the values found for C and C', we obtain the equa-
tion—
1 dp* ,
k.p.V= '8'7%‘(“2 - %),
_1 (- ph@ - o)
8" i ’

Whence, if Q, be the volume of the gas entering the tube, in unit
time, at pressure p;, and Q, be the volume of the gas leaving the tube,
in unit time, at pressure p,, we have—

[
Pl-Q1=p2.Q2=I2ww.dx.V.p,

0

- j “Qrz . dz . (p ~ py?)(@* - 2%

. 8.1l

2 2 o

= 2’.[(%:1.,:77)1 ) . j . da(a® - a2),
0

_ 2n(p} - p)f) @
- 8.«x.1 ‘4’
_ m(@? - p)f) . @

16.«.1

This was the theoretical law deduced by Meyer for the transpira-
tion of a gas (§ 48).

71. Couette and Mallock's Method of Determining Viscosity.—The
viscosity of a liquid may also be determined by & method employed by
Couette and Mallock, in which a couple is applied to a cylinder to
prevent it moving while an outer coaxial cylinder is rotated with uni-
form velocity, the intervening space being filled with the viscous liquid.
The apparatus is shown diagrammatically in Fig. LXV.

Consider a cylinder in the liquid of length h and radius z (Figs.
LXV. and LXVL), the radii of the inner and outer solid cylinders
being, respectively, a and b (Fig. LXVL).

The tangential viscous force on the curved surface of the liquid

_cylinder is— v

K.h.21fw.;l—w‘,
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and the moment T of this force about the central axis O is given
by— »

T = K‘}L.27T.E2.€z'y.
dx

Now, provided the rate of rotation of the outer cylinder be less
than a certain critical value, the liquid acquires a steady state of

M

W-M.g. f 1W=M.g.

Fig. LXV,

motion and travels in concentrie circles around the axis of rotation O,
the angular velocity with which the liquid moves increasing from zero
at the surface of the inner cylinder to a maximum at the surface of the
outer cylinder.

Let A and B (Fig. LXVI.) be points
on a radius of the cylinders, at dis-
tances z, and & + oz, respectively, from
the axis O. In unit time A will move
to C, but B will move to D, where
AC = V,and BD =V + &V.

Let OC produced cut BD at E.

If éz be sufficiently small, the dif-
ference between AC and BE becomes
negligible.

Therefore, the velocity gradient at
A is given by—

v ED
dx ~ dz

Fia. LXVIL.
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Let the angular velocity be v at A, and o + 8o at B,
[ ]

Then w=Y=éQ
x Z
__BE
Tz + o
since OC produced cuts BD at E.
But
5 V+38V  BD _ _BE ED ED
o+ w=x+8w_x+8z_m+8x+:v+8x_w+ﬂ8m
ED
VO = — 5.
z + Ox

The velocity gradient at A may therefore be written—
3V _ (z+81). 30
or ox ’
When 8z is infinitely small this becomes—
av  z.do

de = dz -
TR . , AV
Substituting in the equation T = x. k. 27x?. gp We get—

T = K.h.2‘n’.’133.g*";.

Now, if we consider the liquid bounded by any two coaxial eylinders
of radii « and ¢, respectively, and by two planes at right angles to the
axis O at a distance 2 apart, then, when the liquid has acquired the
steady state of motion previously postulated, it is clear that the
moment about the axis O of the tangential viscous force on each of the
curved surfaces of the liquid annulus must be equal, but oppositely

directed.

Hence the moment T about the axis O of the tangential viscous
force is constant throughout the liquid, and is equal to the moment of
the couple acting on a length, &, of the outer cylinder (where z = b),
and equal and opposite to the moment of the couple acting on a length,

h, of the inner cylinder (where z = a).

Therefore, integrating the equation «.%. 2723 . (7;3 = T, we get—

Ir. k. h.w. = — 2—22 + C, where C is a constant.
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At the surface of the inner cylinder z = a, and w = O, and the
last equation becom®s—

T
0= —-'2-'“2-{-0.

T
s C = Ez

Do

At the surface of the outer cylinder z = b, and v = w, where o is
the angular velocity with which the outer cylinder is rotated.

-~ T/1 1
‘Whence .k h.ow.= §<(?* - 52)

- j(“tf
= i )
If the radius of the pulley wheel attached to the inner cylinder

be 7 (Fig. LXV.), then the total couple, T, applied to the cylinder to
prevent its rotation is given by— .

T =9W.r,
=2M.g.7,

and this couple corresponds to the whole length, H, of the inner
cylinder immersed in the liquid.

It is difficult to allow for the motion of the liquid in the region at
the lower end of the inner cylinder, but this end effect may be elimin-
ated by varying the depth to which the inside cylinder is immersed in
the liquid and so obtaining an expression corresponding to the differ-
ence in the depth, .

Thus if the angular velocity of rotation, o, of the outer cylinder be
kept constant, the weights, W, must be increasel when the inner
cylinder is immersed deeper in the liquid, in order to prevent the
inner cylinder rotating, and the additional applied couple will cor-
respond to the increased viscous drag due to the extra length of the
cylinder immersed. This methcd has also been employed for the
determination of gaseous viscosity.

72. Measurements of Viscosity by other Methods.—The oscillating
disc method for the determination of viscosity has already been re-
ferred to in § 48, and may be used for both gases and liquids. This
method is particularly suitable for comparative measurements of
the viscosities of different fluids, and also for the determination of
variations in viscosity due to changes in temperature and pressure.
The viscosity of a fluid may also be measured by a msthod de-
veloped by Stokes in which the logarithmic decrement of the ampli~
tude of oscillation of a pendulum immersed in the given fluid is
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observed;! and measurements of the logarithmic decrement of a
sphere vibrating about a diameter, when immerged in a fluid, have,
similarly, been employed for the determination of the coefficient, «.

73. Viscous Resistance offered to the Motion of a Solid through a
Fluid.—Since, when a solid body moves through a fluid there is no
slip between the solid and the layer of fluid in actual contact with it,
relative motion of the fluid will be produced, and, in consequence,
viscous forces will be brought into play tending to stop the motion
of the solid. In the case of a spherical solid moving with a small
uniform velocity, V, through a fluid, the viscous resistance was shown
by Stokes, in 1849, to be equal to 6x.«.a.V, where « is the co-
efficient of viscosity of the fluid, and a the radius of the sphere.

If, then, a sphere be allowed to fall through a viscous medium, its
velocity will increase until & maximum terminal veloeity, V', is at-
tained at which the weight of the sphere is exactly equalled by the
viscous resistance exerted by the medium.

Let p be the density of the sphere and p' the density of the fluid
medium. Then, since the weight of the sphere is virtually decreased
by the weight of an equal volume of the fluid, its effective weight is
$xa®.(p - p'). g, and we have—

dmad.(p — p').g =67 .x. aV'.
@ (p-r)-g

K

‘Whence V' =

<

This relation will only be applicable for small values of the
terminal velocity, for if V' exceed a certain critical value eddies are
set up in the surrounding fluid, and the viscous resistance is no longer
given by the expression 6x.x.a . V.

Thus, in general, the preceding relation will only hold good for
very small spheres, or for spheres of density only slightly greater than
that of the surrounding medium. The same theory applies to the
case of spherical liquid drops falling through a fluid medium, pro-
vided that the volume of the drops does not change. due to evapora-
tion or condensation, and that the spherical shape is not sensibly
affected by the viscous resistance of the medium. The size of very
small drops of water, for example, may be determined from the rate
at which they fall through saturated air. J. J. Thomson utilised this
fact in counting the number of ions produced in air under the influ-
ence, say, of Rontgen rays. For, as will be seen in the next chapter,
vapour will condense at the ordinary dew-point on these electrical
nuclei, in dust-free air ; the mist globules formed being, in general, of
uniform size, and, consequently, falling through the air at the same

L Boylg, in 1660, found that the oscillations of & pendulum in air decreased at
the same rate, irrespectively of the pressure of the air, thus anticipating Maxwell’y
law that the coefficient of viscosity of & gas is independent of its density.
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rate. The rate of fall may readily be ascertained by watching the
fairly definite upper surface of the mist as the latter settles, and, trom
a knowledge of the rate of fall, the size, and hence the number, of
water globules may be ascertained—since the total quantity of vapour
condensed may be calculated from the measured amount of expansion
which was employed in Thomson’s experiment to produce condensa-
tion. The number of water globules thus found corresponds with the
number of condensation-centres or ions present in the air.

2 - r
Since—in accordance with the relation V' = 2. q—'(&k’)—)# 9.
deduced by Stokes—the terminal velocity varies directly as the
square of the radius of the moving sphere, it follows that, ceteris
paribus, large bodies will fall more quickly than small ones through
a viscous medium. The slow rate at which a fine powder settles,
when suspended in water, in comparison with the rate of fall of
coarser granules, and the difference in the rates at which, respectively,
clouds of very fine mist, small raindrops, and large raindrops fall, are
familiar examples of this fact.

If, for example, the radius, a, of a mist globule be 0001 mm.,,
then, since for air, at 15° C,, K = 18 x 107, we have—

V' = -01 cm./sec.!

Experiment XX XIII.—Finely pulverise a small quantity of sand,
and shake a little of the powder and some of the original sand with
water, Observe how much more rapidly the coarser sand granules
settle, when the shaking is stopped, than the fine powder.

If p be less than p’ in the equation for the terminal velocity,
V' will, of course, be negative. The following simple experiment
furnishes an interesting example of a negative value for V' :—

Ezxperiment XXXIV.—Pour out a tumbler-full of “soda-water,”
and observe that the smaller the bubbles of gas the slower the rate
at which they float up to the surface of the liquid.

74. Liquid Diffusion.—We have seen in § 44 that the interdiffusion
of miscible liquids finds a ready explanation from the standpoint of
the kinetic theory of matter, and that, as was shown by Fick, the
law of such liquid diffusion is exactly analogous to Fourier's Law of
thermal conductivity.

The slowness of liquid diffusion, as compared with that of gases, is,

!The value taken for K is for dry air. If, however, the air be dry, vapor-
isation will proceed, the rate of fall of the globules becoming slower agthey grow
smaller, until, ultimately, the mist disappears. If the air be sa.tura.teq with water
vapour, the value of K will be slightly less than for dry air, and V' will be corre-
spondingly increased.

12
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further, a necessary consequence of the diminished mean free path
which is characteristic of both the liquid and solid states.

Experiment XXXV.—Place a strong aqueous solution of a coloured
substance, such as copper sulphate, or potassium dichromate,! at the
bottom of a tall cylinder, and carefully fill the latter with water,
taking care to disturb the solution as little as possible.

At first a fairly definite plane of separation will be observed
between the coloured solution and the water, but interdiffusion will
slowly proceed until the liquid mixture becomes perfectly homo-
geneous. The 1ate of diffusion will be seen to be very much slower,
however, than in the case of gaseous diffusion (cf. Experiment X VIIL.).
Thus if a cylinder 30 cms. long were employed in the experiment,
and were half filled with a strong solution of copper sulphate, and
then carefully filled up with water, the liquids would not become
uniformly mixed until, approximately, one year had elapsed.

The earliest experiments of importance on liquid diffusion were
carried out by Graham in 1850 and the following year. In these
experiments a wide-mouthed bottle was filled with a solution of a
given substance, and was placed in a larger vessel which was then
filled with water above the level of the open mouth of the bottle.
After several days, the amount of the dissolved substance which had
diffused out into the larger vessel was determined.

The following results were obtained, in this manner, by Graham :—

(a) Rise of temperature produces an increase in the rate of
diftusion.

(b) Solutions of different concentration of the same substance
diffuse at rates proportional to the concentrations.

(c) Solutions of equal concentration of different substances diffuse
at different rates.

(@) The proportion of two substances in a mixture is, in general,
altered by diffusion.

(¢) Substances may be divided into two main classes, viz. crystal-
loids and colloids. The former can, in general, be obtained in
crystalline form, and diffuse much more rapidly than the latter,
which are amorphous. Amongst the crystalloids, acids in general
diffuse more rapidly than salts.

In 1855, Fick showed that the law of fluid diffusion was similar
to the law of the conduction of heat. Thus, referring to § 44, we
may define the interdiffusity of two miscible liquids as follows :—

Let the two liquids which, initially, are not uniformly mixed
together be enclosed in a eylindrical vessel, and let the concentration
of each liquid throughout any horizontal section of negligible thickness
be unifezm. Then if ¢ be the concentration (i.e. the quantity in gms.

~ I'Note that the copper sulphate, and potassium dichromate, become themselves
liquids when dissolved in water.



LIQUIDS 179

per c.c. of solution) of one of the liquids at a height z, measured from
any fixed horizontal yeference plane, and if ¢ decrease with increase in z,
the mass, M, of the liquid which flows across the horizontal plane at
height z is given by the equation—

where 7 is the interdiffusity of the two liquids, A the area of the plane,
and S the time interval.
This equation will, in general, become more nearly exact the

shorter the time interval, S ; for the concentration gradient, = ((—i—ca—c, will

usually vary with 8.

Various experimental methods have been employed for determining
the value of the coefficient, », in the case of liquids, and thus verify-
ing the accuracy of Fick’s Law.

Since the withdrawal of any portion of the solution will set up
disturbing currents, it is necessary to determine the concentration of
different layers by measuring some physical property of the undis-
turbed solution. Thus the concentration of sugar solutions, for
example, may be determined by measuring the rotation of the plane
of polarisation of light. Other optical methods have also been em-
ployed for determining concentration—such as the measurement of
the refractive indices of various horizontal layers at definite times—
and, in certain cases, the concentration has been ascertained by means
of similar colorimetric observations.

In a method due to Lord Kelvin a number of small glass beads of
different densities were employed. A cylindrical vessel was half filled
with a solution of a given substance, and then carefully filled up with
water. The small glass beads were immersed in the fluid, and
initially floated at the surface of separation of the solution and the
water, but, as diffusion proceeded, the beads floated up or down.
From the positions of the various beads at any instant the densities,
and hence the concentrations, of the corresponding horizontal fluid
layers could be ascertained. Owing to bubbles of air, and, possibly,
crystals of salt forming on the beads, and so altering their density, the
method is not susceptible of very great accuracy.

One of the most exact methods of measuring the progress of liquid
diftusion was devised by Weber in 1879. Two plates of amalgamated
zinc were placed horizontally in respective aqueous solutions of zine
sulphate of different concentrations contained in a cylindrical vessel,
the more concentrated solution occupying the lower half of the vessel.
The electromotive force between the two zinc plates depended upon
the ditference in the concentration of the two solutions in contact with
the plates. Consequently, the progress of diffusion could be followed
by observing the electromotive force at definite times—the manner in

12
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which the electromotive force depended upon the concentration of the
solutions having been determined in a prelimimary experiment. As
the diffusion proceeded the difference in concentration, and, conse-
quently, the electromotive force, became smaller, until, ultimately, a
homogeneous solution was obtained, and the electromotive force
vanished.

The law of Fick has been found to bein very close agreement with
the experimental results obtained by numerous investigators. Just as
it was seen, however, that the thermal conductivity, K, was not
rigidly constant but was, in fact, a function of the temperature—and
just as the interdiffusity, 5, of two gases was found to vary slightly
with a variation in the proportion between the two gases—so, in the
case of liquids, » depends to a small extent upon the concentration of
the solution.

As in the case of gases, the rate of diffusion of liquids increases
with rise in temperature. Provided a uniform temperature be
maintained throughout a homogeneous solution, the phenomenon of
diffusion enables the solution to be preserved indefinitely without any
change in its homogeneity. This property is obviously of very great
importance in volumetric chemical analysis.

75. The Solvent Action of Liquids.—The phenomenon of solubility,
or miscibility, to which reference has already been made in § 37, must
now be investigated in somewhat greater detail from the standpoint of
the kinetic theory.

It is well known that both the solubility of different substances in
the same solvent, as well as the solubility of the same substance in
different solvents, may vary very considerably. Thus sulphur is
scarcely soluble in water to an appreciable extent, whereas sugar will
readily dissolve ;—silver fluoride is extremely soluble in water, while
the other halides of silver are only very sparingly soluble. Again,
although sulphur is almost insoluble in water, yet 1t dissolves easily
in carbon-disulphide. Consequently, the ability to dissolve depends
upon a mutual affinity between the solvent and the solute, and is
not conditioned by the properties of either of them alone.

The term solvent is usually applied to the substance which consti-
tutes the larger part of the solution, while the substance which is dis-
solved in the solvent is called thesolute. It should be noted, however,
that, theoretically, there is no distinction between solvent and solute.!

At a given temperature two substances may be infinitely miscible
(ct. § 87), or there may be a limit to their mutual solubility. Thus

1The phenomenon of solution must be regarded as purely a physical change
for the constituents of a solution may be separated by changing their respective
physical states (e.g. by boiling off one of the constituents), and, further, the com-
position of a saturated solution, unlike that of a chemical compound, does not
correspond to integral multiples of the atomic weights of the constituent elements.
The composition of a saturated solution also varies with change in the tempera-
ture.
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at, say, 20° C., water and alcohol are miscible in all proportions, but,
at the same temperature, a saturated solution of water in ether con-
tains only 12 gms. per 100 gms. of the ethereal solution, and a
saturated solution of ether in water contains 6'5 gms. per 100 gms. of
the aqueous solution. Again, at 20° C., 1:33 gms. of lithium carbon-
ate, 34'0 gms. of potassium chloride, and 2040 gms. of cane sugar,
respectively, will dissolve in 100 gms. of water to form saturated
solutions. A saturated solution may be defined as that solution which,
at the particular temperature, is in equilibrium when in contact with
an excess of the solute.!

Now, if a liquid be placed in a closed space, we have seen (§ 63)
that evaporation proceeds, due to the escape of molecules through
the liquid surface, until, ultimately, a state of dynamic equilibrium
is attained when as many molecules are condensed back into the
liquid as escape from it in unit time. The pressure exerted by the
vapour when this equilibrium state has been reached is the saturation
pressure at the particular temperature.

Similarly, in the case of a solid body, there is & maximum vapour-
pressure at each particular temperature, but this pressure is, in
general, exceedingly small. A number of solids, however, evaporate
to an appreciable extent even at the ordinary temperature. Thus the
vaporisation of camphor or naphthalene may be readily detected by
their respective odours.

As in the case of liquids we must suppose that the maximum
vapour-pressure for a solid corresponds to a state of dynamic equi-
librium in which as many molecules land back upon the surface of the
solid, in unit time, as escape from it into the space in which it is
enclosed.

Now, although a solid will vaporise into air, or into a vacuum,
under ordinary conditions, to an extremely small extent, yet the
molecules of the solid will disseminate themselves much more freely
throughout a space occupied by a suitable solvent. Thus, for example,
the vapour pressure exerted by cane sugar at the ordinary tempera-
ture is practically negligible, but if a moderate quantity of sugar be
placed at the bottom of a vessel full of water it will dissolve, and
gradually diffuse upwards until the solution becomes perfectly homo-
geneous. The upward diffusion of the heavier sugar molecules
through the lighter water shows that they are in motion, just as the
upward diffusion of a heavier gas into a lighter one is due to the
motion of the gaseous molecules.

We have seen, however, that, in accordance with the kinetic
theory, the pressure exerted by a gas upon the walls of a containing
vessel is due to the impacts of the gaseous molecules occasioned by
their very rapid motion, and, similarly, it can be shown that the

. !Since, under suitable conditions, supersaturated solutions can be obtained ity
is incorrect to define a saturated solution as one in which the solvent contains all
of the solute it can take up at the given temperature.
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motion of the molecules of the dissolved sugar gives rise to an
analogous pressure, which is termed “ diffusion pressure,” or ‘ osmotic
pressure.”  This pressure, as will be seen later, can be experimentally
measured, and it is found, in the case of dilute solutions, that the
osmotic pressure is proportional to the concentration.

Tt must be noted that, in the solid state, the molecules of sugar
are relatively close together, whereas in a dilute solution, at any rafe,
they are very much farther apart, their cohesion having been over-
come by the action of the solvent. We may, therefore, regard the
sugar in a dilute solution as being in a quasi-gascous state, and this
conception will be found very useful in elucidating a number of
important experimental results.!

76. The Process of Solution.—In order to obtain a definite mental
picture of the dynamical actions involyed during the process of solu-
tion let us consider the case of, say, the dissolving of potassium
chloride in water at a temperature of 20° C. As stated above, 340
gms. of potassium chloride will dissolve in 100 gms. of water, at
20° C., to form a saturated solution. Suppose we take about 50 gms.
of solid potassium chloride, and add 100 gms. of water. In the solid
potassium chloride the molecules are close together, and very few of
them would escape by vaporisation if the solid were surrounded with
air, but when the potassium chloride is placed in contact with water
the molecular cohesion is overcome at the surface, by the action of
the water, and the molecules escape into the liquid. These free mole-
cules gradually diffuse away, and other molecules take their place.
The rate of solution, if the liquid be not stirred, is conditioned by this
rate of diffusion, just as the rate at which a liquid evaporates is de-
pandent upon the rate of diffusion of its vapour into the surrounding
atmosphere (vide § 44). We have seen that the tendency to dissolve
—i.e. the tendency of the molecules of the solid potassium chloride
to escape from the cohesive action of other potassium chloride mole-
cules—is not merely dependent upon the nature of the solute itself, but
also depends upon the nature of the solvent.?

Thus in the case of a solute dissolved in a solvent it is incorrect
to speak of the tendency of the molecules of the solute to dissolve off
the ‘solid surface as a solution pressure, and it is equally incorrect to

1 See, however, § 85.

214 is only in the case of a liquid, or & solid, vaporising into a vacuum, or into
a space filled with an indifferent gas, that we can regard the saturation, or maxi-
mum vapour pressure, at & given temperature, as a measuro of the independent
tendency of the molecules to escape. Thus, for example, if an excess of ether be
placed in a closed space, a definite saturation pressure will be attained-—corre-
sponding to a definite concentration of the ether molecules in the vapour phase
—and thiz saturation pressure will be the same whether the ether evaporate
_into a vacuum or into a space filled with an indifferent gas. ‘If, however, the ether
be placed in contact with, say, water, quite a different concentration of the ether
molecules in the space occupied by the solvent (water), will result.
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regard the whole action as due to the tendency of the solvent to absorb
the solute and to speak of the solvent as possessing a solution tension.
Since the tendency to dissolve is due to the mutual affinity of the
solute and solvent we shall call this tendency the solution stress!
between them.

Now, as the dissolved molecules of the potassium chloride move
about in the liquid in all directions, some of them will land back upon
the solid surface of the undissolved potassium chloride and again
cohere, and, as the concentration of the dissolved molecules increases,
the more frequently will molecules get caught back by the undissolved
solute.

Ultimately, just as in the case of a liquid in contact with its
saturated vapour, a state of dynamic equilibrium will be attained
when the solution in contact with the solute has acquired such a con-
centration that as many molecules land back upon the solid surface
and cohere, in unit time, as eseape from the surface of the solid and
pass into solution; and this state of equilibrium will moreover be
permaneut when, through the process of diffusion, the whole of the
solution has acquired a corresponding concentration.

It is clear that this state of dynamic equilibrium will be reached
when the osmotic pressure of the dissolved substance becomes equal
to the solution stress: the solution will then be saturated, and any
excess of the solute will remain undissolved. Thus, in the case under
particular examination, the osmotic pressure of the dissolved potas-
sium chloride increases as the concentration of the solution increases,
until, when 340 gms. have dissolved, the osmotic pressure of the
dissolved potassium chloride equals the solution stress between the
potassium chloride and the water, and no further increase in the
concentration of the solution can then occur.

71. Osmosis.—Before proceeding to a consideration of the experi-
mental methods employed in determining the osmotic pressure of a
dissolved substance, it will be necessary to investigate very briefly the
phenomena exhibited during the passage of liquids through porous
septa. The interdiffusion of two misecible liquids which are initially
separated by a porous membrane is termed osmosis (douds, a push).
The Abbé Nollet, in 1748, recorded that a bladder filled with alcohol
and immersed in water swelled out and nearly burst, owing to the
water entering more rapidly than the alcohol escaped, and that if the
bladder were filled with water and immersed in alcohol, the water,
similarly, escaped more rapidly and the bladder shrank.

Ezperiment XXXVI—Attach a piece of bladder very securely to
the head of a short thistle-funnel, and fill the latter with, say, alcohol,
or a concentrated solution of cane sugar. Join the thistle-fannel to a

1 The dimensions of a stress are those of a force divided by an ares, and are,
therefore, the same as for a pressure (vide Cap. XI.).
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capillary tube by means of a small rubber stopper, and immerse the
funnel in distilled water. After standing for seme time it will be
observed that the liquid has risen in the capillary tube, due to the
water entering more rapidly than the aleohol, or sugar, can escape.

It must be noted, in this experiment, that the membrane is not
“ gemi-permeable,” for appreciable quantities of alcohol, or sugar, pass
out through the membrane into the water.

A little more than a century after Abbé Nollet’s observations,
Graham (as was stated in § 74) divided substances into two main
classes, viz. crystalloids and colloids, the former diffusing much more
rapidly, when dissolved, than the latter.!

The colloids (xdAXa, glue) include such substances as albumen,
starches, and gums, and possess the property of forming jellies when
mixed with a small quantity of water. Crystalloids will diffuse through
many of these colloidal jellies nearly as rapidly as through water,
whereas the jellies are impervious, or nearly so, to colloids. When
crystalloids are dissolved in water the freezing-point of the solution is
found to be lower, and the boiling-point higher, than in the case of
the pure solvent. Colloids, however, when similarly dissolved, are
found to produce very little effect, and, in many cases, it would appear
that the colloid does not form a true solution at all, but merely re-
mains suspended throughout the solvent in a very fine state of division.

The difference in the permeability of colloidal jellies or membranes
by crystalloids and colloids was utilised by Graham for the separation
of these two classes of substances.

_— The process is called dialysis (8ia,
through; Aéw, I loosen). The solution con-
taining the crystalloids and colloids is poured
into a tray, the bottom of which is closed
with a colloidal membrane of, for example,
parchment paper? or bladder.

d The tray is then placed in another vessel
Fio. LXVIL —Dialyser. containing distilled water (Fig. LXVIL).
The crystalloids pass through the mem-
brane much more rapidly than the colloids, and, if the water in the
outer vessel be renewed frequently, practically all the crystalloids can
be removed, while most of the colloids remain behind in the tray.

Experiment XXXVII.—Pour & solution of sodium silicate into
concentrated hydrochloric acid, keeping the latter in considerable

1Since many substances possess both crystalloid and colloidal forms it is
more accurate to refer to the crystalline and colloidal states than to * crystalloids
and * colloi@s.” ' )

2 Parchment paper is made by treating filter paper with a mixture of two
volumes of sulphuric acid and one volume of water. The paper is then freed from
acid and dried,
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excess. Silicic acid is formed and remains in colloidal suspension.
On dialysing the migture hydrochloric acid and sodium chloride are
removed, and a dilute solution of silicic acid is obtained.

The dialysis may be effected very readily by keeping a continuous
current of water flowing through the outer vessel.

Experiment XXXVIIT—Add a little potassium iodide solution to
an emulsion of starch, and pour the mixture into a dialyser which
is placed in a vessel containing distilled water. After a short time
remove the dialyser, and add a little chlorine water to the solution in
the outer vessel. Iodine will be liberated, and the solution will turn
brown, but no blue colouration will be produced, showing that the
starch has not passed through the dialyser. If, now, a few drops of
starch emulsion be added to the solution, a deep blue colour will
appear, due to the adsorption of the iodine by the starch which is in
colloidal suspension in the emulsion.

78. Osmotic Pressure.—We have seen (§ 75) that when some sugar,
for example, is placed in water, the sugar dissolves, and the heavier
molecules of sugar diffuse upwards into the
lighter water, while the molecules of water n
also diffuse amongst the molecules of sugar. 1
As the molecules of dissolved sugar move 1
hither and thither in the solution, their I
motion gives rise to a pressure which is ||
termed osmotic pressure. Since, however, 1
the molecules of water are also in motion, H
they must exert a similar kind of pressure ||{
(vide § 85). H

Now, it is possible to measure the partial |H
pressure exerted by a solute in a similar H
manner to that employed for experimentally :
measuring the partial pressure of one gas H
in the presence of another (vide § 52). For |H
this purpose a ‘ semi-permeable” dia-
phragm which is permeable by the solvent,
but not by the solute, must be employed.
Animal membranes cannot be used since
they are not absolutely semi-permeable (cf.
Experiment XXXVIL). Artificial semi-
permeable membranes were first prepared
oy Traube, and these were utilised by
Pfeffer in his investigations on osmotic
pressure. Pfeffer obtained the best results
oy using a film of copper ferrocyanide,
which he precipitated inside the walls of g TLXVIIL—Pleffer's
v porous pot by filling the pot with a very Apparatus.

rua

Vg
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dilute aqueous solution of copper sulphate, and immersing it in a weak
aqueous solution of potassium ferrocyanide. The solutions diffused
into the walls, and, on meeting, formed a continuous film of the
gelatinous precipitate of copper ferrocyanide; the porous pot supply-
ing the necessary support to enable the film to withstand a fairly

considerable pressure. ’

The pot was next carefully washed out, and, after being attached
to a manometer, was completely filled with a dilute aqueous solution
of, say, sugar, and then sealed.

The whole apparatus was next immersed in distilled water which
was maintained at a constant temperature. Since a copper ferro-
cyanide film is easily permeable by water, but not by dissolved sugar,
the water gradually entered the porous pot, and the pressure inside
increased until a state of equilibrium was attained when as many
molecules of water passed in through the semi-permeable membrane
as passed out in the same time. The excess of pressure inside the
porous pot was, consequently, the osmotic pressure exerted by the
dissolved sugar, and this could be ascertained by means of the
manometer.!

Pfeffer’s apparatus is illustrated in Fig. LXVIII. The porous pot
is filled through the smaller bent tube, and the latter is then sealed
before the blow-pipe. The whole apparatus, including the manometer,
is then immersed in water.

In the case of cane sugar solutions, for example, at approximately
the same temperature (14° C.), Pfeffer obtained the following results :—

C . ’ . P
. b Osmotic Pres 3. of .
Concentration, Smo l%/[c:::sr\;l:e m ems. o C
1 per cent, 535 cms, 535
2, . 1016 ,, 508
4, 2082 ,, 521
6 . » 3075 51-3

Thus, for these dilute solutions, the osmotic pressure, P, is directly
proportional to the concentration, C.

Pfeffer also investigated the effect of variations in the temperature
on the osmotic pressure.

For a 1 per cent. solution of cane sugar the following results were
obtained :—

! By artificially increasing the pressure inside the pot, part of the solvent may
be forced @at and the concentration of the solution increased. Similarly, the flow
of water through the semi-permeable membrane into the pot can be prevented by
the application of a definite pressure ; viz, the osmotic pressure of the solution.



LIQUIDS 187

Tergperature. Osmotic Pressure, P.
6-8° C. 50-5 cms.
18-2° C. 521 ,,
22-0° C. 548 ,,
360° C. 567 ,,

The osmotic pressure in this case, therefore, increases with rise in
temperature.

The relationship which exists between the osmotic pressure of a
dissolved substance, in a dilute solution, and the pressure exerted by
a gas was pointed out, in 1887, by van’t Hoff.

Thus the osmotic pressure of a dilute solution varies directly as
its concentration, and, similarly, in accordance with Boyle’'s Law, the
density (i.e. concentration) of a gas varies directly as its pressure.

Again, the osmotic pressure of a dilute solution increases with rise
in temperature, and, as far as Pfeffer’s results go, the coefficient of
increase of pressure is found to be approximately 0-00367, i.e. the
osmotic pressure varies directly as the absolute temperature (cf.
Charles’ Law).

The applicability of Avogadro’s Law to the osmotic pressure
of dilute solutions furnishes further corroborative evidence of the
analogy between osmotic and gaseous pressures, for it is found that
solutions of “ non-electrolytes” (vide ut infra) which have equal
osmotic pressures have the same number of gramme-molecules in
equal volumes, i.e. possess concentrations proportional to the mole-
cular weights of the respective solutes. It is found, moreover, that
the osmotic pressure of a dilute solution of a ‘‘non-electrolyte” is
the same as the pressure that would be exerted by the solute if the
latter were capable of existing in the state of gas and occupying the
volume of the solution at the same temperature.

Thus Pfeffer’s 1 per cent. solution of cane sugar contained 1 gm.
of sugar dissolved in 100 gms. of water, and, therefore, 1 gm. of
sugar was present in approximately 1006 c.cs. of the aqueous solution
at 6:8° C., i.e. 222'5 gms. of sugar were present in 22,380 c.cs. of
solution.

The molecular weight of cane sugar is 342, and, if the sugar
could exist as gas, 342 gms. in 22,380 c.cs., at 0° C., should exert a
pressure of 76 cms. of mercury, and, consequently, 222'5 gms. of sugar,
in the same volume, and at 6:8° C., should exert a pressure of

76 x 2925 x 2798 507
349 % 973 cms., or cms.

The actual osmotic pressure observed (50'5 cms.) is in fairly closc
agreement with this result.
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Van't Hoff pointed out, however, that very many substances in
solution exerted a greater osmotic pressure than would be anticipated
if the laws of gas-pressure applied directly to the osmotic pressure of
dilute solutions.

For such substances the general gas equation P.V. = R. 6, which
contains the combined laws of Boyle and Charles (vide § 17), and
which applies to the osmotic pressure of dilute solutions of sub-
stances like cane sugar, must be modified, and written—

PV.=i.R.6,

where < is a factor greater than unity.

Arrhenius subsequently showed how the greater osmotic pressure
exerted by such solutions could be readily explained by means of
the theory of * electrolytic dissociation,” just as deviations from
Avogadro’s Law, in the case of gases, were explained by the assumption
of molecular dissociation. Those solutes (viz. acids, bases, and salts)
which give a greater osmotic pressure than that corresponding to
the equation P.V. = R. 0 are called “electrolytes,” whilst substances
like cane sugar are termed “ non-electrolytes.”

79. Measurement of the Relative Osmotic Pressures of Solutions.—
The direct experimental determination of the absolute osmotic
pressures of solutions is a maiter of some difficulty. Several simple
methods, however, have been devised for measuring relative osmotic
pressures. De Vries employed the cells from certain plants, notably
from Tradescautia discolor, Begonia manicata, and Curcuma rubri-
caulis. The cell-walls of the leaves are lined with a thin semi-
permeable membrane, which contains the coloured contents of the
cell. When such a cell is placed in a solution possessing a greater
osmotic pressure than its own contents, water will pass out from
the cell into the solution, through the semi-permeable membrane,
and the membrane will, consequently, shrink away from the walls.
Thus, by commencing with a solution of greater osmotic pressure
than the cell contents, and gradually diluting it, a concentration can
be obtained at which the membrane will just maintain its shape
without any shrinkage.

The osmotic pressure of the solution will then be equal to that
of the contents of the cell. The contraction of the protoplasmal
envelope is, of course, observed under the microscope. In this
manner solutions of a number of different substances can be prepared,
all possessing the same osmotic pressure—viz. the osmotic pressure
of the cell contents.

Solutions having the same osmotic pressure are termed *{sotonic.”
By analysing such isotonic solutions De Vries found that, in the case
of non-electrolytes, their concentrations were proportional to the
molecular weights of the respective solutes. This method has been
used in certain cases for the determination of molecular weights,
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Semi-permeable membranes also occur in certain animal cells—
such as red blood eorpuscles—and the latter may, consequently, be
employed in the preparation of isotonic solutions. If a small
quantity of an aqueous solution of potassium nitrate be added to
some blood, the red corpuscles settle down to the bottom of the
containing vessel. The corpuscles can then be washed and transferred
to a microscope slide. If the corpuscles be surrounded by a solution
possessing a greater osmotic pressure than their own contents, they
shrink, and their walls become concave, whereas, if the contents of
the corpuscles possess an osmotic pressure greater than the solution,
the corpuscles swell, and their walls become convex. The concen-
tration of the solution can therefore be varied till the corpuscles
neither shrink nor swell; the solution and the contents of the
corpuseles are then isotonie.

An optical method for the preparation of isotonic solutions was
devised by Tammann in 1888. A drop of an aqueous solution of
potassium ferrocyanide, at the end of a fine pipette, is immersed in
an aqueous solution of copper sulphate. The drop immediately
becomes covered with a film of copper ferrocyanide. If the potassium
ferrocyanide solution possess a greater osmotic pressure than the
solution of copper sulphate, water will pass in through the semi-
permeable film of copper ferrocyanide, and the drop will expand. At
the same time the solution of copper sulphate around the drop will
become more concentrated and will therefore sink, owing to its in-
creased density. The downward motion of the liquid may be ob-
served with a refractometer, descending strise being visible in the
liquid on account of the different refractivities arising from differences
in density.

If the osmotic pressure of the potassium ferrocyanide solution be
less than that of the copper sulphate solution, water will pass out
from the drop, and the latter will contract. In this case the solution
of copper sulphate around the drop will become more dilute, and the
striw will be seen to ascend. By varying the concentration of either
the potassium ferrocyanide or the copper sulphate until stri@ are no
longer visible, isotonic solutions may be obtained.

80. Relation between Lowering of Freezing-Point and Osmotic
Pressure.—Van't Hoff, in 1887, showed that the osmotic pressure
exerted by a solute could be calculated from the lowering of the
freezing-point of the solvent produced by the solute, and also from
the rise in the boiling-point of the solvent, due to the same cause.

A proof of the relation between the lowering of the freezing-point
and the osmotic pressure will now be given. Let an aqueous solution
of the given solute at its absolute freezing-point 6 — 86, be separated by
a semi-permeable membrane from the pure solvent (water), at its
absolute freezing-point, §. Let a small volume, v, of the water pass
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through the semi-permeable membrane into the solution. The work
gained is P . v, where P is the osmotic pressure af the solution. Now
let this quantity of water that has passed through be frozen out from
the solution, and let the pure ice be placed back again in the water and
melted. The heat which must be actually supplied, at the tem-
perature 6, to melt the ice is A.v.o, where A is the latent heat and
o the density, of water.! :

The whole system is now in its original condition, and, since the
preceding cycle of operations is reversible, it follows in accordance
with the Second Law of Thermodynamics that—

Work obtained
Heat taken in at high temperature

_ Ditfference in temperatures of source and sink
Absolute temperature of the source

Efficiency of the cycle =

In the above cycle of operations, the water at the temperature 6
corresponds to the source, and the solution at the temperature 6 — o0
to the sink.

P.oo %
Av.o 6’

ie. =

0
Since, for water at 0°C., X = 7977 x 4'19 x 107, o = 099987,
and § = 273'1° A., we have—

P =122 x 107 x 6.

The lowering of freezing-point, 3, is thus proportional to the
osmotic pressure, P. It is evident, also, that solutions in the same
solvent, having the same freezing-point, must be isotonic. ~Since
dilute isotonic solutions of * non-electrolytes "’ have the same number
of gramme-molecules in equal volumes, it follows that equal numbers
of molecules of different solutes, in the same volume, produce equal
depression in the freezing-point of a given solvent.

This result was obtained experimentally by Raoult, in 1883, and
it was pointed out by him how the lowering of the freezing-point
could be utilised for the determination of the molecular weight of the
solute.

The lowering of freezing-point produced by, say, the hundredth
part of the molecular weight of a non-electrolyte taken in grammes,

1The lowering of the freezing-point, 89, is very small, provided the golution be
sufficiently.dilute, and the heat required to warm the ice from 6 — 86 to 6 is, there-
fore, negligible in comparison with that needed to mels it. +The heat given out by
the water in cooling from 0 to 8 — 36, on passing through the membrane, may also
be neglected.
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and contained in 100 c.cs. of a solution, may be readily calculated.
For, as seen in § 78,the osmotic pressure will be the same as if the
solute were present in the state of gas, at the same temperature, and
occupying the same volume.

In the case, therefore, of an aqueous solution, at 0° C., we have—

1:22 x 107 x 80 = P,

76 x 13596 x 981 x 22380
- 100 x 100 !
2-27 x 108,

‘Whence— 86 = 0-186°.

This agrees very closely with the experimental value (8§ = 0'185°),
found by Raoult, and equally good agreement was obtained with other
solvents.!

The ¢ cryoscopic” (or freezing-point) constant of any solvent is
defined as the depression of the freezing-point produced when the
molecular weight in grammes of any non-dissociating (and non-
associating) solute is dissolved in 100 gms. of the solvent—supposing
that the laws for dilute solutions held at such a concentration. Thus,
for water, the cryoscopic constant, C, has approximately the value
18:6. If, then, w gms. of a solute, of molecular weight M, be dissolved
in W gms. of a solvent, and produce a depression, 89, of the freezing-
point we have— ’

C.w.100
M.W”°
where C is the eryoscopic constant for the given solvent,

The relationship M = 1%%%—1~0 is commonly used in the

80 =

determination of molecular weights.

81, Relation between Rise in Boiling-Point and Osmotic Pressure.—
The relation between the rise in the boiling-point and the osmotic
pressure may be demonstrated in a similar manner to that employed
in calculating the lowering of the freezing-point.

Thus, let an aqueous solution of a solute be separated by a semi-
permeable membrane, from the pure solvent (water), and let the
temperatures of the solvent and solution be such that their respective
vapour pressures are the same. The vapour pressure may, con-
veniently, be taken as equal to the atmospheric pressure, and the
absolute temperatures of the solvent and the solution will then be
their normal boiling-points. Let & small volume, v, of the water
pass through the semi-permeable membrane into the solutipn. The

1 Tnthe preceding calculation, P is, strictly, the osmotic pressure of the solution
at @ — 36, but thig differs inappreciably from its osmotic pressure at 6.
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work gained is P. v, where P is the osmotic pressure of the solution.
Let this quantity of water that has passed through be evaporated
from the solution, and let the vapour pass back and condense again
in the water. No mechanical work will be expended in this second
operation, since the vapour pressures of the solvent and solution are
the same. The whole system is now in its original condition, and the
cycle of operations performed is reversible. If, then, § be the absolute
temperature of the solvent (water), and 6 + 86 that of the solution,
we have, in accordance with the second law of thermodynamics—

Work obtained
Difference in temperatures of source and sink
Heat taken in at high temperature
= Absolute temperature of the source
Heat removed at low temperature
= Absolute temperature of the sink *

The heat removed at the low temperature 6, in order to condense
the vapour, is A.v .o where A is the latent heat of steam, and o the
density of the water.!

In this cycle of operations, the solution at the temperature 6 + 6
corresponds to the source, and the water at the temperature 6 to the
sink.

‘P.v‘_}\.’v,a’
% T T8
ie I)=8~0
Ao 6’

For water at 100° C. the latent heat of vaporisation,? A =
539 x 419 x 107, ¢ = 0:9584, and 6 = 373-1° A,

P =58 x 107 x 3.

Similar relations therefore hold mutatis mutandis for the boiling-
points of solutions as for their freezing-points (vide § 80). The rise
in boiling-point is proportional to the osmotic pressure, and solutions
in the same solvent having the same boiling-point are isotonic.

Similarly, solutions in a given solvent containing equal numbers
of molecules of different non-electrolytes in the same volume must
have the same boiling-point.

The rise in the boiling-point of a solvent produced by a dissolved
non-volatile substance was utilised by Beckmann in 1891, for the
determination of the molecular weight of the solute.

1 For dilute solutions, 89 is very small, and the heat given out by the vapour
in cooling from @ + 86 to @ may therefore be neglected in comparison with that
evolved during condensation. The heat required to raise the temperature of the
water from 6 to § + 36, on passing through the membrane, is also negligible.

2 Carlton-Sutton’s value (1917).
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We can caleulate the rise in boiling-point due to the hundredth
part of the molecular weight of a non-electrolyte taken in grammes,
and contained in 10D c.cs. of a solution in a similar manner to that
employed in calculating the lowering of the freezing-point.

Thus, for an aqueous solution at 100° C., we have—!

58 x 10" x 80 = P,
=76 x 13596 x 981 x 22380 x 3731
100 x 100 x 2731 ’
=3 x 10°.
Whence 80 = 0-0517°,

The “boiling-point constant” refers to the rise in boiling-point
produced when the molecular weight in grammes of any non-dis-
sociating (and non-associating) solute is dissolved in 100 gms. of the
solvent, supposing that the laws for dilute solutions applied to such
a concentration. As in the freezing-point method, the molecular
weight of a solute may be determined by employing the relationship

100.C.w
M= "5 w
where 80 is the rise in boiling-point observed, and C the boiling-point
constant for the given solvent.

The experimental results obtained with dilute aqueous solutions
give an approximate value of 5-2° for the boiling-point constant, which
agrees very closely with the value deduced, thermodynamiecally, by
van't Hoff. Equally good agreement has been found with other sol-
vents.

The freezing-point and boiling-point constants may be readily cal-
culated from the simplified expression—

where K is the molecular lowering of freezing-point, or molecular rise
in boiling-point, corresponding to the molecular weight in grammes of

the solute in 100 gms. of the solvent ; 6 is the absolute temperature of
the freezing-point, or boiling-point, of the solvent; A is the latent heat
of fusion, or the latent heat of vaporisation, per gramme of the solvent.

For, as seen previously—

and if V be the volume of the solution containing the molecular weight

1Tn the following calculation P is the osmotic pressure of the wolution at
9 + 89, which differs inappreciably from its osmotio pressure at 0.

13
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in grammes of the solute, we have, in accordance with the general gas
equation P.V. = R, 60—
R.O A.o.08

v 6

Since R = 2 calories, approximately, this equation may be
written—
2.6
Y=y
But, in the case of a dilute solution, V differs inappreciably from
the volume of the solvent, and, therefore—

V.o = 100 gms.,
. 2
whence 86 = 0 Oi -9 .

It must be remembered, however, that the preceding relationships,
which were deduced by van’t Hoff, are strictly true only for infinitely
dilute solutions. In the case of moderately concentrated solutions
they are wholly inapplicable.

/82, The Vapour Pressure of Solutions.—Since the boiling-point of a
solution is higher than that of the pure solvent, it follows that the
vapour pressure of a solvent is lowered by the presence of a non-vola-
tile solute. In 1848, von Babo found that the relative lowering of the
vapour pressure, in the case of dilute solutions, was independent of
the temperature. The relative lowering of the vapour pressure is de-
fined as the ratio of the lowering of the vapour pressure produced by
the solute, at the given temperature, to the vapour pressure of the
pure solvent, at the same temperature. Thus if f be the vapour pres-
sure of the solvent, and f’ that of the solution, von Babo found that

- f

Wiillner, in 1858, observed that the lowering of the vapour pressure
»f water by non-volatile, dissolved substances was proportional to the
ymount of the solute present.

These generalisations, as applied to dilute solutions, were confirmed
oy the work of Raoult, who further investigated the lowering of vapour
oressure produced by equimolecular quantities of different solutes in
ihe same solvent. The “ molecular lowering,” K, which was found by
Raoult to be constant for a given solvent, is given by the equation—

f-f M
K = “7—' . w,

vhere f and " are the respective vapour pressures of the solvent and

was independent of the temperature,
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the solution, M the molecular weight of the solute, and x the mass in
grammes of the soldte dissolved in 100 gms. of the solvent.!

If n represent the number of gramme-molecules of the solute in
100 gms. of the solvent, we have—

It was also found by Raoult that the quotient of the “ molecular
lowering "’ of vapour pressure K by the molecular weight M’ of the
solvent was constant.

Since K=f7:.%f—,,
K _ (-7
M~ fn M

Now = represents the number of gramme-molecules of the solute
in 100 gms. of the solvent, and, therefore, nM’ represents the number
of gramme-molecules of the solute in 100 gramme-molecules of the

, K _f-f
solvent. If, then, sM' = 1, M=

Thus the quotient, %, of the ‘“molecular lowering” of vapour

pressure by the molecular weight of the solvent represents the
relative lowering of vapour pressure produced by one gramme molecule
of the non-volatile solute in 100 gramme-molecules of the solvent,
and this quotient was found by Raoult to have the approximately
constant value 00109,

This law was stated formally by Raoult as follows :—

“One molecule of a non-saline,? non-volatile substance, dissolved
in 100 molecules of any volatile liquid, lowers the vapour pressure of
this liquid by a nearly constant fraction of its value—approximately
00105.”

Since 0:0105 = 1—\%, = f_f—;-LM—,, we have—

%—f' — 0:0105. 1. M.

! It must be noted that K is only constant for dilute solutions of non-volatile
non-electrolytes in a given solvent.

Several of the solutes employed by Raoult (such as turpentine and henzalde-
hyde) possess appreciable vapour pressures even at ordinary temperaturgs. Raoult,
however, used & solvent (¢ther), which, at the ordinary temperature, has a hig
vapour pressure, and, consequently, the relatively low vapour pressure of the sol-
ute could be neglected.

‘A “ non-saline "’ substance = a * non-electrolyte.”

13
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If, then, 100 gms. of the solvent represent N gramme-molecules, we
[

have—

100 :
N =
Whence ! }l = 0010,51;1":,'_},0_0,

= (approximately) ﬁ .

But n represents the number of gramme-molecules of the solute
in 100 gms. of the solvent, i.e. in N gramme-molecules of the solvent.
Consequently, in a very dilute solution of a non-volatile non-electrolyte,
containing n gramme-molecules of the solute in N gramme-molecules

f-r

of the solvent, the relative lowering of the vapour pressure, 7o
" :
is equal to -

Raoult pointed out that the lowering of the vapour pressure of
solvents, produced by dissolved substances, could be utilised for the
determination of molecular weights, but this method was quickly re-
placed by the more convenient and more accurate boiling-point method
devised by Beckmann, to which reference has already been made.

83, Relation between Lowering of Vapour Pressure and Osmotic
Pressure.—The relationship between the lowering of the vapour
pressure of a solvent, due to the presence of a non-volatile solute,
and the osmotic pressure exerted by the solute, may be readily
demonstrated. Consider an aqueous solution of a solute, separated
by means of a semi-permeable membrane from the pure solvent
(water), the temperatures of the solvent and of the solution being the
same. Let the pressure of the vapour above the water be p, and
above the solution p - 8p. Let & small volume, v, of water be driven
through the semi-permeable membrane from the solution into the
water. To effect this a quantity of work, P.v, must be expended,
where P is the osmotic pressure of the solution. Now let this
quantity of water that has been driven through evaporate, and let
the vapour pass back into the space above the solution and then con-
dense. If V be the volume of vapour formed from the volume v
of water, the work gained in this second operation is 8p.V. The
system is now in its original condition, and the cycle of operations
performed is reversible. Since the whole transformation is carried
out isothermally, it follows, in accordance with the Second Law of
Thermodynamies, that there is no gain or loss of mechanical work.

S Poo=258.V.
p_v_ e
PV o

where o is the density of the vapour, and p the density of the water.
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- The same result, as was shown by Arrhenius, can be obtained by
examining the probjem from the standpoint of the kinetic theory.

Thus, consider a tube partly filled with a solution, A (Fig. LXIX.),
and closed at the bottom with a semi-permeable membrane. Let the
lower end of the tube dip into the pure solvent, B.

If, initially, the length of the column of solution be not too great,
the solvent will pass through the semi-permeable membrane into the
tube, until the solution has reached & height, , at which the hydro-
static pressure is just equal to the osmotic pressure of the solution in
its final state of dilution.? :

If the whole apparatus be enclosed in a space which has become
saturated with the vapour of the solvent, a state of equilibrium will
then be attained. For simplicity we shall -
assume that the enclosure has been exhausted
of air.

Let o be the average density of the vapour
throughout the height A. The hydrostatic
pressure due to the column of vapour of
height % is consequently % .o .g, and this
must be equal to the difference between the
saturation vapour pressure of the pure sol-
vent, at the level C, and the saturation
vapour pressure of the solution, at the level
D.z

If, then, the saturation vapour pressure
of the solvent be p, and of the solution be
p — 8, we have—

Ww=h.o.g

Let p be the average density of the solu-
tion throughout the height . The density
of the solution is practically uniform, and in
the case of dilute solutions may be taken as
differing inappreciably from the density of the pure solvent.

Thus, the hydrostatic pressure due to the column of solution of
height 4 is & . p . g, and this must equal the osmotic pressure, P.

Hence P=h.p.g.
Lo
".P—p,

which was the relation previously obtained.

11t is assumed, of course, that the dimensions of the tube are such that capillary
effects can be neglected.

2 It is clear that if the vapour pressure of the solution at D were not equal to the
vapour pressure of the solvent at this level, equilibrium could not exist. For
vaporisation, or condensation, would occur at D, and a flow of liquid through e
semi-permeable membrane would result.
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Again, let V, be the volume of 1 gramme-molecule of the vapour
(of average density o) at a pressure p. Applyjng the general gas
equation, we have—

p.V,=R.6.
Let M, be the gramme-molecular weight of the solvent.
Then o= -1%1
oM.y
"TTRe

Further, let the solution contain 7 gramme-molecules of the
solute in N gramme-molecules of the solvent, i.e. in N. M, gms. of
the solvent,

N.M,

Therefore 1 gramme-molecule of the solute is contained in

gms. of the solvent. )
Now, if the solution be very dilute, we may take p to be the density
of both the solution and the solvent.

Let N—h% gms. of the solvent (or solution) have a volume V,.

N.M, ., . N.M
Th = 1 je Vy= 214,
en P=v, T,
Applying the general gas equation to the osmotic pressure of the
solute in the dilute solution, we have—

P.V,=R.6.
Substituting for P and V,, we have—
hop.g. N.M; _ o 0.
n.p
, R.60.n
Whence h = m
M,. R.§6. . .
If the values o = —Rl—g), and & = N—l%l_% , be substituted in the

equation &p = h. o . g, we get—

8p=N.Ml.gx R 9
=P
-5

Lo _m

-p—ﬁ'

.~ This is the relation which was obtained experimentally by Raoult
for the relative lowering of the vapour pressure, and to which reference
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was made in § 82, Jf in the equation f }f =% (§ 82) 8p be sub-

stituted for f — f, and p for f, the two equations become identical in
form.

84. The Vapour Pressure of Liquid Mixtures.—In our investigation
into the relationship between the rise in boiling-point (or the lowering
of vapour pressure) and osmotic pressure, it was assumed, either
tacitly or explicitly, that the solute could be treated as non-volatile.
When the solute is appreciably volatile, it is evident that our general
argument will no longer apply. If, for example, one liquid be dis-
solved in another, both constituents of the solution will, in general,
possess sensible vapour pressures, and we must now briefly consider
what will be the magnitude of the resultant vapour pressure exhibited
by such liquid mixtures.

We may divide these liquid mixtures into three classes.

Class I—When the mutual solubility of the liquids is very small,
that is, when the liquids are practically immiscible, the vapour
pressure of the mixture is approximately the sum of the separate
vapour pressures of the constituents. Since, however, each liquid is
soluble to a small extent in the other, and, consequently, as will be
seen later, lowers the vapour pressure of the other liquid by a small
amount, the vapour pressure of the mixture is always slightly less
than the sum of the vapour pressures exerted by the separate liquids
at the same temperature. As the vapour pressure of such a liquid
mixture is higher than that of either of the separate constituents, the
boiling-point will be lower than that of either constituent. On boiling
the mixture, a distillate will be obtained containing each of the con-
stituents, in the same proportion, in general, as their relative vapour
pressures.

These conclusions have been confirmed by the experimental work
of Regnault.

Class II.—When the liquids are partially miscible it is found that
each liquid lowers the vapour pressure of the other, and, consequently,
the vapour pressure of the mixture is less than the sum of the vapour
pressures exerted by the separate constituents. If the liquids are not
very soluble in one another, the boiling-point of the mixture will be
lower than that of either constituent. This is approximately the same
cagse ag previously considered in Class I. If, on the other hand, the
mutual solubility of the liquids be great, each liquid will lower the
vapour pressure of the other to a considerable extent, and although
the boiling-point of the mixture is still generally lower than that of
either constituent, yeb it may be the same as (or even higher thar
that of the more volatile liquid present.
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On boiling a mixture of liquids which are only partially miscible,
a distillate will be obtained containing each of fhe constituents, and
both the boiling-point of the mixture and the composition of the dis-
tillate will remain constant as long as two layers of liquid are present,
since each solution exerts its own vapour pressure. The solution
with the higher vapour pressure will, of course, vaporise the more
rapidly of the two. When one of the layers has completely vaporised,
the boiling-point of the mixture, and the composition of the distillate,
will gradually change, until, in general, the liquid which is present in
larger quantity in the remaining layer finally distils in a state of
purity. The solution with the higher vapour pressure will not neces-
sarily disappear first, if it be present in relatively large amount.

The work of Konowalow on the vapour pressures of mixtures of
different alcohols, etc., with water has supplied valuable data relative
to mixtures of this—(and the next)—class.

Class III.—When the liquids are miscible in all proportions the
vapour pressure of the mixture is less than the sum of the vapour
pressures exerted by the separate constituents. The boiling-point of
such a mixture may be higher than that of the higher boiling con-
stituent, or lower than that of the lower boiling constituent or it may
lie between the two.

Three special cases arise when mixtures of this class are distilled.
It may happen that, when
the liquids are mixed in cer-
88°C. tain proportions, the vapour
pressure of the particular
mixture is higher than that
80°C. of either constituent, and also
higher than that of any other
mixture of the two liquids.
In this case the mixture can-

70°C. not be separated into its
/_\ constituents by fractional
distillation, for, on repeated

/_sgc.\ distillation, a distillate will

be obtained approximating
35°C. more and more closely to the
mixture which possesses the
highest vapour pressure, and,
therefore, the lowest boiling-
oint.
0% Percent.Propyl Alcohol.  100% In Fig. LXX. the vapour
Fia, LXX. pressures of different solu-
tions of propyl alcohol and
Sater are plotted, isothermally, against the corresponding alcoholic
concentrations expressed as percentages. It will be observed that

Vapour Pressure.
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each of the curves shows a maximum value for the vapour pressure,
corresponding, at each temperature, to a particular proportion between

the two constituents.

The second case occurs
when the vapour pressure
of any mixture always lies
between those of the con-
stituents, the boiling-point
possessing, similarly, an
intermediate value. In
this case the mixture can
be separated more or less
completely by fractional
distillation ; the more vola-
tile constituent being ob-
tained in a nearly pure
state in the first portions
of the distillate, while the
less volatile constituent
distils last. Fig. LXXI,
which gives the vapour
pressure curves for mix-
tures of methyl aleohol
and water, at several tem-

Vapour Pressure.

65°

43°C,

%
/”‘_"18°c./_

OO/ o

Percent. Methy! Alcohol.  100%

Fia. LXXI.

peratures, is illustrative of this second case.
Similar curves for mixtures of ethyl alcohol and water are shown

80°C

70°

Vapour Pressure.

0% Percent. Ethyl Alcohol.

Fia, LXXIIL.—Ethyl Alcohol and Water.

in Fig. LXXIL. Although
these curves approximate
to the second case, it will
be observed that they ex-
hibit a maximum value of
the vapour pressure cor-
responding at, say, 80° C.
to a concentration of about
984 per cent. alcohol.
Thus, strictly speaking, they
resemble the curves shown
in Fig. LXX.—and repeated
distillation of a dilute aque-
ous solution of ethyl alecohol
will not yield a distillate
containing more than 984
per cent. alcohol, since, at
this concentration, the va-
pour pressure ofsthe mix-

100% ture is & maximum. .

Lestly it may happen
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that, when the liquids are mixzed in certain proportions, the vapour
- pressure of the mixture is lower than that of efther constituent, and
also lower than that of any other mixture of the two liquids. In
this case, as in the first, the mixture cannot be separated into its
constituents by fractional distillation; for repeated distillation will
yield a residue approximating more and more closely to the mixture
which possesses the lowest vapour pressure, and, therefore, the
highest boiling-point. This last case is illustrated in Fig. LXXTIL
which gives the vapour pressure curves for mixtures of formic acid
and water.

Summarising the results obtained in these three cases we may
state that mixtures whose vapour pressure curves exhibit maxima or
minima cannot be separated
by fractional distillation,
whereas such separation is

ossible when maxima or
100°C. g}inima are absent.

Liquid mixtures with
constant boiling-points were
originally regarded as de-
finite chemical compounds,
W but that this conception is

) erroneous is shown by the
fact that the composition of
61°C. such constant-boiling mix-
> tures varies with the pres-
42°C. sure under which distillation
is effected (vide § 95).

Vapour Pressure.

85. The Dynamical State
0% Percent. Formic Acid. 100% of Molecules in Solution.—
Fia, LXXIIL ‘We must conclude this chap-
ter with a word of caution.
It has been seen that many of the laws which apply to dilute solu-
tions are identical with those which are applicable to gases, and it
might therefore be concluded that the dynamical condition of the
molecules of a solute is similar to that of the molecules of a gas.
When, however, it is recollected that the molecules of a gas, at the
ordinary density, are relatively very far apart, and that, in consequence,
the time during which the molecules are within the sphere of action
of other molecules is very small compared with the time during which
they are moving freely about, it will be realised that such a conclusion
must be entirely incorrect. )
¢ TFor the molecules of a solute are not scattered throughout an
otherwise empty space, but are disseminated amongst the molecules of
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the solvent, and, consequently, intermolecular forces are brought into
play which cannot be peglected. Indeed, as was pointed out in § 76,
the tendency of the solute to dissolve is due to the mutual affinity
which exists between the solute and the solvent. The conception of
the quasi-gaseous state of a dissolved substance (§ 75) is undoubtedly
convenient, but the analogy between the behaviour of the molecules
of a gas and the molecules of a solute in a dilute solution must not
lead us to regard such phenomena as osmotic pressure and gaseous
pressure as identical in nature. We have seen that the pressure
exerted by a gas can be explained as arising from the bombardment
of its molecules on the walls of a containing vessel, but we are ignorant
of the true cause of osmotic pressure. Even at moderate concentra-
tions the gas laws cease to be applicable to substances in solution, and
the “ gas-analogy " hypothesis, consequently, fails. Many alternative
hypothesis have been proposed to account for the phenomenon of
osmotic pressure, but, sc far, no satisfactory theory has been attained.



CHAPTER VIIIL
CAPILLARITY.

86, The Surface-Tension of Liquids.—The existence of internal
meclecular cohesive forces in liquids -gives rise to the phenomenon of
surface-tension, Before, however, discussing the nature of these
internal forces, it will be convenient to consider, in some detail, the
experimental evidence upon which our knowledge of the surface-
tension of liquids is based.

Many well-known phenomena show that the surface of a liquid
behaves as if it were a thin stretched elastic membrane. This
behaviour of a liquid surface may be readily demonstrated by means
of the following simple experiments,

Ezperiment XXXIX.—Fasten a small piece of cotton to the
middle of a thin silver plate by means of a minute fragment of seal-
ing wax. Carefully lower the silver plate upon the surface of some
water in a bagin, and then gently drop
the cotton upon the plate. It will be
observed that the silver plate remains
floating upon the water, and that the
latter is depressed to a lower level

Fro. LXXIV. beneath the plate than that of the re-
mainder of the liquid surface, the de-
pression being readily seen at the edge of the plate (Fig. LXXIV.).
By gently tapping the silver plate with a straw, it may be made to
bob up and down like a cork. If, however, the plate be pushed
through the liquid surface it sinks to the bottom. A thick plate of
silver will, of course, break through the surface, and sink, under its
own weight.

As an alternative experiment a dry steel needle may be floated
upon water by placing the needle very gently on the surface. It
should be noted that the densities of silver and steel are, respectively,
105 gms./c.c. and 7'8 gms./c.c.

The surface of the water thus behaves like a very thin elastic
membrane, and can support & moderate pressure without rupture.
It is for 'whis reason that a water-beetle, for example, can run across a
pond, for each leg merely produces a small dimple, the pressure being
insufficient to break through the surface.

204
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Ezxperiment XL.—Take an ordinary camel’s hair brush and observe
that the hairs are sqparate from one another. On immersing the
brush in water the wet hairs still remain separate, but they cling
together when the brush is taken out of the water, owing to the con-
traction of the liquid surface.

Experiment XLI.—Allow water to drip very slowly from a vertical
glass tube of about 05 em. internal diameter. The drops form
gradually at the end of the tube
and increase in size until the
tension in the liquid surface can
no longer support the weight.
It will be observed that the
drops always attain the same
gize before breaking away from
the tube. Larger drops may be
obtained by diminishing the /)
effect of gravity by allowing the
drops to form in a liquid of
nearly the same density (Fig.
LXXYV.). Thus drops of carbon
disulphide may be formed in an
aqueous solution of zinc sul-
phate of slightly lower density,
and the shape of the drops, as
they increase in size, more
readily observed. The carbon
disulphide should bs coloured
by the addition of a small
quantity of iodine, and the zinc
sulphate solution should be con-
tained in a flat-sided vessel, with
faces of uniform thickness, to
avoid apparent distortion in the
shape of the drops. It will be
seen that a narrow neck forms Fre. LXXV.
just before the drop breaks
away, and that this neck is drawn out by the falling drop into
a small oylinder which gathers itself into the little subsidiary droplet
which falls just after the main drop. In the same manner drops of
olive oil may be formed in a mixture of ethyl alcohol and water. If
the glass tube be bent round (Fig. LXXVa.), a lighter liquid may be
discharged into a heavier one,.and ascending drops and droplets
obtained.

If, now, & very thin sheet of india-rubber be stretched over a large
wooden ring, and water poured in, the rubber gradually stretcheg
under the increasing weight, and it will be observed that, initially, the
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shape is almost identical with that assumed by a liquid drop. When
a sufficient quantity of water has been added @ neck forms, but this
neck does not readily draw out and break as in the case of a liquid,
for the tension in the india-rubber increases with the amount of
stretching, whereas, in a liquid film, the tension is practically inde-
pendent of the stretching, until the thickness of the film is reduced to
about 5 x 10-6 cms., after which the tension rapidly diminishes (see
Experiment XLV, and also § 108).

Experiment XLII—Blow a small bulb at the end of a short piece
of glass tube, and a larger bulb nearer the middle of the tube. Close
the open end of the tube with a
I cork through which is inserted a
H Ha thin wire, about 10 cms. in length,
T soldered to a plane wire frame
(Fig. LXXVL). A sufficient quan-
tity of mercury must be poured
into the small bulb to just prevent
the wire frame pushing upwards
through the surface of some water
in a cylinder when the apparatus
is completely immersed, after which
the cork is securely fixed, and coated

with a thin layer of shellac.

When the apparatus is im-
mersed in water, the liquid surface
behaves like a very thin elastic
membrane, and supports the up-
ward pressure of the wire frame,
so that the apparatus floats with

Fie. LXXVL the frame just submerged. If,

however, a corner of the wire frame

be raised out of the water, the frame jumps up, and the apparatus

floats with the frame in the air (Fig. LXXVIL). A moderate weight

must now be placed upon the frame in order to sink it again to the

surface of the water. This experiment is analogous to Experiment

XXXIX. in which the surface of the water supported a downward
pressure.

The motion of the index in an ordinary aleohol minimum thermo-
meter shows that the surface of the alcohol can, similarly, sustain a
small pressure without rupture.

Experiment XLIII.—Pour some water from a beaker down a
long glass rod into a narrow-necked bottle. The surface of the water
«n the wet rod forms, in effect, a tube, the tension in the surface pre-
venting the water from escaping.
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Experiment XLIV.—Take a plane wire ring with a thin silk
thread tied loosely across it. Dip the ring into some soap solution,
and then remove it, so as to obtain a soap film stretched over the
ring. It will be observed that the silk thread can move about freely
in the film, but that if the latter be broken on one side of the thread,
by touching the film with a hot wire, the thread is pulled out into
an arc of a circle, the remaining portion of the soap-film assuming
the least possible area (Fig. LXXVIIa.). Several shorter pieces of
thread may, similarly, be tied loosely around the wire ring, the por-
tions of the film between the threads and the wire being subsequently
broken (Fig. LXXVIIb.). Again, a loop of silk thread may be
moistened with the soap-solution and carefully placed on the soap-
film on the wire ring. On breaking the film inside the loop with a
hot wire, the thread is pulled out into a circle (Fig. LXXVIIc.), the

a.

Fic. LXXVIL

area of the circle being greater than that of any other plane figure
with the same perimeter, and, consequently, the area of the remaining
soap-film being a minimum. If a piece of wire be now passed
through the loop, the latter may be moved about in the film without
losing its circular form, such movement, of course, causing no change
in the area of the surrounding soap-film.

Experiment XL V.—Take a plane wire ring, such as that used in
the preceding experiment, and dip it into some soap-solution. Re-
move the ring and hold it in a vertical position, so that the adhering
soap-film may drain. The upper portion of the film will thus become
thinner than the lower, and will soon show the colours exhibited by
very thin films. Yet in spite of the unequal thickness of the film,
the tension must be the same throughout, since the film is in equili-
brium. The tension in the upper portion of the film must, actuallyy
be very slightly greater than that lower down, in order to support
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the weight of the film, but this difference in tension is so small that
it may be treated as sensibly negligible. In the case of a stretched
elastic membrane, such as india-rubber, it mubt be noted that the
tension increases with the amount of stretching, and, cateris paribus,
equilibrium would not be attained if one portion were stretched
thinner than an adjoining portion.

Experiment XL VI—Bend a copper wire so as to form three sides
of a rectangle, ABCD, and rest a thin straight wire, EF, across AB
and CD, parallel to BC (Fig. LXXVIIL). Attach a piece of thread,
KLM, to the movable wire EF, and, while holding the thread at L,
dip the wire frame into soap-solution, and then remove it, thus
obtaining a soap-film stretched over GBCH. In order to maintain
this soap-film in equilibrium, when the wire frame is held in a hori-
zontal plane, a certain pull must be applied to the thread at I, and

A

B

SR

S

C 151 D
I"‘
Fig. LXXVIII.

EV

if this pull be relaxed the film will contract, and the movable wire
ET will slide along AB and CD until it reaches BC.

87. Definition of Surface Tension.—In the preceding experiment,
the movable wire BF (Fig. LXXVIIL) will be in equilibrium when
the force, F, which is applied at right angles to its length is equal to
the tension exerted by both faces of the liquid film. It should be
noted that the tension exerted by the liquid must be at right angles
to EF, since a fluid cannot permanently support an applied tangential
or shearing stress, however small the magnitude of the latter. If,
then, T be the tension per unit length due to the liquid film, we have—

F=2.GH.T
T is defined as the surface tension of the liquid.

88. Surface Energy.—It can readily be shown that the potential
energy pqssessed by a liquid, as a result of surface tension, is equal
to the product of the surface tension and the area of the liquid surface.
Thus, if the movable wire EF (Fig. LXXVIIL) be pulled out through
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a distance z, the work done is F . z, and this must equal the increase
in potential energy of the liquid film. Since the corresponding increase
in the area of the film is 2. z . GH ., the increase in potential energy
- . 'Lz

per unit increase of area is 9 7 GH'

ButF.2=2.2.GH.T.

‘Whenece the increase in potential energy per unit increase of area
i’s2.m.GH.T_ ie. T

2.2.GH * " 7

Similarly, if the movable wire slide back along AB and CD until
it reaches BC, the work done by surface tension, and, therefore, the
decrease in potential energy of the film, is 2. BE.GH.T; i.e.
T x (area of film). .

89. The Shape of Bubbles and Liquid Drops.—Since a mechanical
system is in stable equilibrium when its potential energy is a mini-
mum, it follows that a drop of liquid, when enacted upon by external
forces, must be a perfect sphere, the spherical form possessing the
smallest surface for a given volume.

Thus, as was shown by Plateau, if a quantity of oil be placed in a
mixture of aleohol and water of the same density, the potential energy
due to gravity will be unatfected by variations in the shape of the oil,
and, consequently, the oil will assume a spherical shape, the area of
the surface, and the potential energy due to surface tension, being
then a minimum.

Experiment XLVII.—Introduce some olive oil into a mixture of
alcohol and water of the same density, contained in a flat-sided glass
vessel, and observe the spherical shape assumed by the oil. The
density of the lower portion of the mixture of aleohol and water may
conveniently be made slightly greater, by discharging a very small
quantity of water at the bottom by means of a pipette, and the density
of the upper portion may be reduced, by the addition of a little more
alcohol. The oil will then float in the middle of the mixture. If the
contents of the vessel be agitated, the oil may be broken up into a
number of globules, all of which will be perfect spheres.

By introducing a disc attached to an axle the oil may be made to
adhere to the dise, if the latter be previously smeared with oil, and,
on rotating the axle and disc, the sphere of oil will also rotate. On
increasing the speed of rotation, the sphere of oil becomes flattened at
its ;poles, and, with a further increase in the speed, a ring of oil breaks
off, which contracts again on to the inner sphere if the speed be re-
duced, but which breaks up into a number of separate spheres if the
speed of rotation be sufficiently increased.

Instead of employing olive oil and a mixture of alcohol and wates
it is more convenient to form spheres of orthotoluidine in water. At

14
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a temperature of 24° C. orthotoluidine and water possess the same
density ; orthotoluidine being less dense than watgr at higher tempera-
tures, and denser than water at lower temperatures. If, then, a
globule of orthotoluidine be placed in a flat-sided glass vessel contain-
ing cold water, it will rest upon the bottom of the vessel as a flattened
drop, but, on gradually raising the temperature of the water, by im-
mersing the vessel in a larger one containing hot water, the drop will
change its shape; becoming perfectly spherical at 24° C.  On raising
the temperature still higher, the globule of orthotoluidine floats up,
and becomes flattened at the surface of the water.

Eaxperiment XLVIII—Blow a soap-bubble and observe that it is
spherical. In this case the weight of the soap-bubble is so small that
the effect of gravity is practically negligible, and, in consequence, the
bubble assumes the form in which the potential energy due to surface
tension is a minimum.

When a drop of liquid is acted on by external forces its shape is
determined by the condition that the total potential energy must be a
minimum. Thus, in the case of a drop of liquid resting upon a hori-
zontal solid surface which it does not wet, if the drop be sufficiently
small its shape will be approximately spherical, for the potential
energy due to gravity will be negligible compared with that arising
from surface tension. In the case of a large drop, however, the
potential energy due to gravity has the predominant influence, and,
consequently, the drop forms a flat pool, so that its centre of gravity
may be low.

Experiment XLIX —Scatter some mercury on a glass plate and
observe that the small drops are practically spherical, whereas when
a larger quantity of mercury is poured out it collects into a flattened
circular pool (Fig. LXXIX.). Drops of water may, similarly, be

I I

Fig. LXXIX.

formed upon a glass plate, if the latter be covered with a thin layer
of grease to prevent adhesion between the water and the glass. It
will be shown, subsequently, that the depth of all large drops of a
given liquid is the same, and that by measuring this depth the surface
tension of the liquid can be ascertained.

‘When a liquid falls freely, in a vacuum, the effect of gravity on its
shape will be eliminated and it will, therefore, assume a spherical form.
Approximately the same form is taken up by a rain-drop falling
through the air, since the viscosity of the latter medium is small.
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When molten lead is poured in a fine stream from the top of a shot
tower, the stream byeaks up into small drops which, similarly, acquire
a spherical shape. This process is employed in the manufacture of
leaden shot.

90. The Surface Tensions of Different Liquids.—A number of simple
experiments may be performed to show that different liquids possess
different surface tensions.

Experiment L—TFill a porcelain dish with water, and sprinkle the
surface of the latter with powdered charcoal (Fig. LXXX. a). This
may be done most readily by placing the charcoal in a small muslin
bag, and shaking the latter over the water. Touch the surface of the
water in the middle with a glass rod which has been dipped in some
soap solution. The water surface immediately contracts, carrying the

b.

Fia. LXXX.

charcoal up to the side of the dish, while the surface of the soap solu-
tion is stretched out, its tension being less than that of pure water
(Fig. LXXX. b).

Euxperiment LI—Pour a shallow layer of water, which may con-
veniently be coloured with magenta or indigo, into a flat-bottomed
porcelain dish. Touch the water with a glass rod which has been
dipped into alcohol, and observe that the liquid moves away from the
part touched, leaving the bottom of the dish at that place dry. This
action is due to the surface tension of water being greater than that of
alcohol, or of a mixture of alecohol and water, the liquid being, in
consequence, carried away in the direction of the greater tension.

The phenomenon of “ tears in wine ” is, similarly, due to the differ-
ence in surface tension between alcohol and water. If a fairly strong
wine, such as port, be placed in a wine-glass, the sides ofs which are
moistened with the wine, it will be observed that the liquid gradualty
rises up the sides of the glass and collects in drops, or ‘ tears,” which

14
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then trickle down again. In this case the thin layer of wine on the
side of the glass loses its alcohol by evaporation mpre rapidly than the
wine below, the latter being less exposed to the air. The surface
tension of the layer on the side of the glass therefore becomes greater
than that of the wine below, since the surface tension of water is
greater than that of alcohol. In consequence, more wine is pulled up
the sides and drops gradually form, which, when they become
sufficiently heavy, break away and trickle down again.!

Experiment LII—Take a wine-glass and half fill it with port, or
with a mixture of about one part of alecohol and two parts of water,
which may be coloured with magenta. Wet the sides of the glass
with the liquid and observe the formation of the “ tears.”

Eaxperiment LI1II—Take the apparatus used in Experiment XLII,,
and immerse it in water so that it floats with the wire frame just sub-
merged. Pour a few drops of ether into a beaker, and then pour
some of the vapour of the ether upon the surface of the water. The
frame almost immediately jumps up out of the water, owing to the
ether condensing upon the surface of the latter and diminishing the
surface tension.

91. The Influence of Temperature on Surface Tension.—The surface
tension of any liquid diminishes if the temperature be raised, becom-
ing zero at the critical temperature. It follows, therefore, in accord-
ance with Le Chatelier's theorem (Appendix B), that a liquid film
when stretched adiabatically becomes cooler.

The diminution in surface tension with rise in temperature may be
shown by the following simple experiment.

Ezperiment LIV.—Pour a shallow pool of a liquid, say water, on
a horizontal thin metal plate, and sprinkle the surface of the water
with powdered charcoal. On applying heat, by means of a small
flame, to the centre of the lower surface of the plate, the water im-
mediately above becomes heated, and its surface tension diminishes, as
is shown by the surface of the surrounding colder water contracting,
thereby carrying the charcoal away from the centre towards the edges
of the pool. Instead of employing a metal plate, a shallow layer of
water may be poured into a flat-bottomed porcelain dish, and sprinkled
with powdered charcoal, the water being then heated at one place
either by converging the rays of the sun upon its surface by means of
a convex lens, or by holding a piece of hot metal close to the surface.

92. The Relation Between the Curvature of a Liquid Surface, the
Surface Tension, and the Pressure.—Consider, for example, a spherical

! Referente is made to this phenomenon in Proverbs xxiii. 31: * Look not
thvu upon the wine when it is red, when it giveth his colour in the cup, when it
moveth itself aright.”
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drop of liquid. It is evident, since the curved surface of the liquid is
in a state of tensioy, that the pressure inside the drop must be greater
than the external pressure. Thus let R be the radius of the drop,
P the difference between the internal and external pressures, and T
the surface tension. If we imagine the drop divided into two hemi-
spheres, and consider the equilibrium of one of them (Fig. LXXXI.),

we have—
P.#R? = T.2xR,

since the pressure on the plane face of the hemisphere, due to the
liquid in the other hemisphere, is balanced by the surface tension
acting round its circumference.

‘Whence =2,

/
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Fie. LXXXI. Fie. LXXXII.

Similarly, in the case of a spherical soap-bubble, which has two
surfaces in a state of tension, we have—

P=—x

the radii of the inner and outer surfaces being sensibly the same.

Again, in the case of a cylinder of liquid, we may consider a
portion of the liquid lying between two planes at right angles to the
axis of the cylinder at a distance H apart. If we imagine this portion
divided into two halves by a plane passing through the axis of the
cylinder, and consider the equilibrium of one of these halves
(%ig. LXXXIL), we have, on resolving perpendicularly to the dividine
plane—

R.2R.H=T,2H,



214 THE PROPERTIES OF MATTER

where P is the difference between the internal and external pressures,
R the radius of the cylinder, and T the surface tegsion.

‘Whence P = 1'1;

In the case of a cylindrical soap-film, we have—

2.7
P=—x

The general formula for a curved liquid surface may be deduced
in the following manner :—
Consider a sufficiently small rectangular element, ABCD, of the
liquid surface (Fig. LXXXIIL).
Let this element be in equilibrium under the surface tension, T,
and a difference jof pressure, P, between the two sides of the surface.
, , Let the element be displaced outwards
A _B" through a small distance, 8z, so that each

D e—— point of the element moves normally to
the surface, and let the new position of

Dv‘\\‘ = C the element be A'B'C'D'. Then, since
0x"D c the forces acting on the element are in
Fie. LXXXIIL equilibrium, it follows from an elementary

mechanical principle, that the algebraical
sum of the work done by the forces during the displacement, 8z,
is zero.
Now the work done by the pressure during the displacement is
P x area ABCD x 8z, and the work done against surface tension is
T x increase in the area of the surface;

ie. T x {area A'B'C’'D’ - area ABCD}.
Whence—
P x area ABCD x &z — T x {area A'B'C'D’ — area ABCD} = 0.

Since the element ABCD is a portion of a curved surface, it can
be shown, geometrically, that the lines AB and BC, which are at
right angles to one another, can be taken on the surface so that the
normals to the surface at A and B intersect in O, and the normals to
the surface at B and C intersect in O’, AO and BO’ being the radii of
principle curvature of the surface.

When the points O and O’ both lie on the same side of the surface
(Fig. LXXXIV.), we have what is termed a synclastic surface ; when,
on the other hand, O and O’ lie on opposite sides of the surface
(Flg. LX_XXV.), we have an anticlastic surface.
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In the case of a synclastic surface (Fig. LXXXIV.), we have—
AB _A'B
O& ~ OA™
OAB and OA'B’ being, sensibly, similar triangles.
o A = aB, Tt %)
where R, is the radius of principal curva.ttlxre, AO.
Similarly—
BC _ BC
OB O'B"
~ B =80, Bt

2
where R, is the radius of principal curvature, BO'.

o
Fie. LXXXIV. Fre. LXXXV.

Since, in the case of a sufficiently small element, ABCD and
A'B’C’'D’ are, sensibly, rectangles, we have—
Area ABCD = AB x B(,
Area AB'C'D’ = A'B' x B'C/,
_ (R, + d2) (R, + dx)
= AB'MR x BC. T

1 2
Ry + 8\ Ry + 8z
=ABXBCX<v-R1 ) R2 .>!
R,.R, + oz (R, +R,)}
— ares ABCD x 1B 1+ By)}
& x R,.R,
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o oz 3z
the product (R )(R) being relatively negllglble if both E and R,
are sufficiently <mall.

‘Whence—

P x area ABCD x 8z — T x {a,rea ABCD x {B1. Ry + 32(R, + Ry)}

R, T,
_ area ABCD} - 0.
o P.sz - T. {M%fﬁg)} —0.

11
“P= T(El +-R—2>.

Similarly, in the case of an anticlastic surface (Fig. LXXXV.), we
have—

AB _AB
O& = OA""
.. AB’ = AB. @L-l’g_ﬁs“’).
Also— BC _BC
OB~ OB"
- B¢ =nC. B 1= = %)
Whence— 2

Area AB'CD’ = AB' x B'C,
— AB x BC x <R + 8“><Rz "3’”>

= area ABCD x By . R ~ ST{{ 1
Consequently— By
P x area ABCD x 8z — Tx {area. ABCD x Bi-Ba ;{ leg.R - Ry}
— area ABCD} =
. _ 3@y - Bl _
. P.éx T{ “R.E, | 0.

P = T(Rl %)_

In general, then, we may write—

P25+ )
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provided the radius of curvature be taken as positive when the corre-
sponding centre of curvature is on that side of the liquid surface where
the pressure is greatér, and negative when the centre of curvature is
on the side where the pressure is less.

In the case of a liquid film, which has two surfaces in a state of
tension, our general equation becomes—

11
P=2TGE+RQ.

The relationship which was previously obtained in the case of a
spherical drop of liquid may be readily deduced from the general

equation—

P= T(Rl—] + %—).
B B
S A4S

Fia. LXXXVL Fie. LXXXVIIL

For a sphere, the two radii of curvature, R, and R,, are equal, and,
consequently—
2T
P = -
Again, in the case of a cylinder of liquid, one radius of curvature
is infinite, the other being the radius of the cylinder.

‘Whence P= R as was previously deduced.

Experiment LV.—Blow two soap-bubbles, A and B, q¢f unequal
size at the ends of two glass tubes which are controlled by means af
taps X, Y, and Z (Fig. LXXXVL). Since, for a spherical soap-bubble
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P = %, the pressure inside the smaller bubble will be greater than
the pressure inside the larger bubble. Thus, on opening the tap, Y,
the bubble B shrinks up and blows out the larger one.

Now replace one of the soap-bubbles by a short cylindrical soap-
film, and, with the tap, Y, open, blow in air until the sides of the
cylinder neither bulge out nor bend in, but are perfectly straight (Fig.
LXXXVIL). On measuring the sphere A" and the cylinder B’ it will
be found that the diameter of the former is exactly double that of the
latter. Since the pressures inside the sphere and the cylinder are, in

T
this case, identical, we have P = % = %,E, and, therefore, R = 2R/,

where R is the radius of the sphere and R’ the radius of the cylinder.

When there is no difference of pressure between the two sides of
a liquid film, i.e. when P = 0, we have the relation —
1 1
A
Hence R, = - R,

Thus the radii of curvature in any two normal sections taken at
right angles to one another are equal and on opposite sides of the
liquid film, i.e. the total curvature of the film is everywhere zero, since,
at every point, it is equally curved in opposite directions.

Experiment LVI.—Dip a rectangular wire frame into soap solution,
and then remove it, so as to obtain a plane film. In this case the
radii of curvature in any two normal sections at right angles to one
another are both infinite, and lie on opposite sides of the film. By
bending the wire frame an infinite series of surfaces can be obtained
for all of which the total curvature is everywhere zero. One such
surface is illustrated in Fig. LXXXVIIL

If a piece of wire be twisted into a helix, the ends being bent and
fastened to a straight wire passing down the centre, and if the whole
wire frame be then dipped into soap solution, and 'removed, a very
beautiful film with a *screw-surface” will be obtained (Fig.
LXXXIX.). This film similarly satisfies the relation R, = ~ R, at
every point.

When a film possesses the shape of a surface of revolution, and
when there is no difference of pressure between its two sides, the sur-
face is a catenoid.!

Thus, consider a plane curve ABC (Fig. XC.). Let the curve re-
volve about an axis XY in its plane, thus describing a surface of

¢ 1The catenary is the curve in which a heavy uniform string hangs when sup-
port