

PUBLICATIONS OF THE DAVID DUNLAP OBSERVATORY UNIVERSITY OF TORONTO

VOLUME 3

NUMBER 6

A THIRD CATALOGUE OF VARIABLE STARS IN GLOBULAR CLUSTERS COMPRISING 2119 ENTRIES

ΒY

HELEN SAWYER HOGG

1973

PUBLICATIONS OF THE DAVID DUNLAP OBSERVATORY UNIVERSITY OF TORONTO

VOLUME 3

NUMBER 6

A THIRD CATALOGUE OF VARIABLE STARS IN GLOBULAR CLUSTERS COMPRISING 2119 ENTRIES

ΒY

HELEN SAWYER HOGG

Printed by University of Toronto Press

INTRODUCTION

This is the third in the series of catalogues of variable stars in globular clusters published by the David Dunlap Observatory. The first appeared in 1939 (David Dunlap Publications, vol. 1, no. 4) and the second in 1955 (vol. 2, no. 2). In addition, a catalogue of variables in globular clusters south of -29° declination was published in 1966 at Cordoba by C. R. Fourcade and J. R. Laborde, along with a splendid atlas of photographic prints of clusters prepared by J. Albarracin.

A preliminary edition of this Third Catalogue, in manuscript form, comprising 2057 entries, was circulated at the IAU Colloquium no. 21, "Variable Stars in Globular Clusters and in Related Systems," in August 1972. Investigators were invited to send corrections and additions to the author of the manuscript by October 2, 1972. The cut-off date for material included in this publication is November 1, 1972. Considerable new material was received, much of it from the Colloquium itself. This led to extensive revisions in the manuscript and some delay in its publication. Some of the conclusions drawn from the material of the Third Catalogue are in press in the Colloquium volume edited by J. D. Fernie.

SUMMARY OF DATA ON VARIABLES IN GLOBULAR CLUSTERS

At present a recorded search for variables in 108 of the approximately 130 globular clusters belonging to our galaxy has been made. This search has yielded 2119 variables. Certainly variables do not abound in most globular clusters. Of the 108 clusters that have been examined, only 10 contain more than 50 variables each, and 81 contain fewer than 20 variables each. At the time of compilation of the Second Catalogue, from the distribution it appeared that the most frequent number of variables found in a globular cluster was one. Now, from the data in the Third Catalogue, the most frequent number is zero. There are effectively 13 clusters with no variables, if one includes NGC 6397, whose three variables are considered field stars. One variable alone is found in each of 10 clusters.

Figure 1 shows the frequency distribution of the number of variables per cluster. More than 60 per cent of the clusters examined, 65 in all, have 10 variables or fewer; exactly 25 per cent, 26 clusters, have more than 20 variables; and 5 clusters have approximately 100 or more. The richest cluster still remains NGC 5272, Messier 3, with 212 variables. The second richest is Omega Centauri, NGC 5139, with 179. Next in order of richness is 1C 4499, a newcomer in this catalogue, less than 10° from the southern celestial pole, with 129 discovered by Fourcade and Laborde, and 41 suspected. Messier 15, NGC 7078, with 111 and Messier 5, NGC 5904, with 97 complete this list of exceptionally rich clusters.

One of the problems faced in compiling this catalogue was to decide whether to include or exclude field variables. In general my policy has been to number those variables which lie within the obvious confines of a cluster, even though some of them are manifestly field stars. To omit them would ultimately lead to confusion. On the other hand, work of recent years in the surroundings of globular clusters has shown that

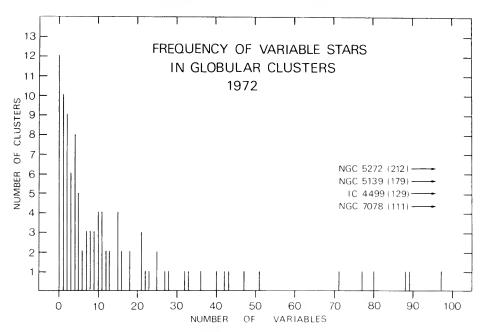


Figure 1 Distribution of the known, published variables per cluster.

some of the RR Lyrae stars well beyond their confines are likely members, or were so in the past. These stars are not included among the numbered variables of a cluster, except in a few cases.

NUMBERS OF TYPES OF VARIABLES AND KNOWN PERIODS

Of the known variables, periods have now been determined for 1313 in 55 clusters, compared with 843 in 38 clusters in 1955. In many clusters some periods have been revised or redetermined. In some cases there are only minor changes in the fifth or higher decimal places, but in others the change is major, even in the first decimal, giving an alternate period. In addition, many determinations of period changes have now been made. An effective summary of such changes in a concise catalogue is not possible, and the reader is referred to the original papers for pertinent data.

Table I gives a summary of the numbers and types of variables and numbers of periods known in the 108 globular clusters for which there is a record of search. For further particulars about these stars, such as cluster membership, the reader is referred to the catalogue itself.

The first column of the table gives the customary designation of the cluster, usually the NGC number. The second gives the total number of variables, and the third the total number of known periods. Periods for RR Lyrae stars are counted as known even when the published value is questionable or there is an alternate period, providing at least two decimals are given; and for semiregular variables if a numerical value of the cycle has been published. The fourth column gives the number of RR Lyrae periods

TABLE I									
Summary of	Variable Stars	in	Globular	Clusters					

NGC	Total variables	Total periods	RR Lyr periods	1-30 day s	31-99 days	100-220 days	>220 days	lrr SR	Others
104	28	10	2		3	5		4	
288	1	I				1			
362	15	10	7	2	1				
1261	15	0							
Pal 1	0								
Pal 2	0								
1851	10	0							
1904	7	3	3					1	
2298	2	0							
2419	36	0						5	
2808	9	0							
Pal 3	1	0							
3201	88	84	83						EA, mem?
Pal 4	2	2				2			
4147	16	15	15						
4372	2	0							
4590	42	38	37				1 F		
4833	16	9	6		1		2 F	1	
5024	47	36	33	I	1	1			
5053	11	10	10						
5139	179	159	142	7	5	2	$1 \mathrm{F}$	3	3 E, 1 RRs
5272	212	186	182	1	2	1			1 EW
5286	8	0							
5466	23	21	21						
5634	7	1	1						
5694	0								
14499	129	0							
5824	27	9	9				1		
Pal 5	5	5	5						
5897	7	7	6		1				
5904	97	92	90	2				1	1 UG
5927	11	1					1		
5946	3	0							
5986	5	0							
6093	8	3		1		1 F	$1 \mathrm{F}$		IN
6101	0								
6121	43	42	40		2				
6139	0								
6144	1	0							
6171	25	23	22				1.6		
6205	11	7	3	3 M	I M			2 M	$1 \mathrm{F}$
6218	1	1		1					
6229	22	15	14	1					
6235	2	0							

NGC	Total variables	Total periods	RR Lyr periods	1-30 days	31-99 days	100-220 days	>220 days	Irr SR	Others
Table	1 (continue	ed)							
6254	4	2		2				1	
Pal 15		2		2				-	
6266	89	74	74						
6273	4	0	74						
6284	6	0							
6287	3	0							
6293	5	0							
6304	21	0							
6333	13	11	11						
6341	15	13	12						1 EW F
	4	0	12						1 200 1
6352	4 10	1				1			
6356		15	15			1			
6362	33		15						
6366	2	0							
HP 1	15	0							
6380	1	0							
6388	9	0							
Ton 2		0			1.5		1.17		
6397	3	3	1 F		1 F		1 F		
6401	3	0		_					
6402	77	40	34	5			1 F		1 N
Pal 6	0								
6426	13	11	11						
6441	10	0							
6453	0								
6496	0								
6522	10	9	8	1 F				1 F	
6528	0								
6535	1	0							
6539	1u	0							
6541	1	0							Slow, prob. mem
6553	18	4	3				1		2 slow, 1 N
6558	9	0							
11276		1	1					4?	
6569	5	0							
6584	1	0							
6624	4	0							
6626	18	10	7	2	1				
6637	8	2				2 M			1 RR F, 2 red gia
6638	3	0							
6642	2	0							
6652	0	2							
6656	32	27	18	1 M	2	2 F?	4 F?	1 M	
6681	2	0	10	1.14	-	/			
6712	21	16	10			6			1 UG, 2 E F?
6715	80	37	34	1	1	1			2 E, 2 SR, 3 F

NGC	Total variables	Total periods	RR Lyr periods	1-30 days	31-99 days	100-220 days	>220 days	lrr SR	Others
Table	I (continue	ed)							
6723	25	19	19						
6752	2	0							
6760	4	0							
6779	12	4	1 F	1	1			6	1 RRs F?
Pal 10	1	0							
6809	6	5	5						
Pal 11	0								
6838	4	2				1		1	1 EA, mem
6864	11	0							
6934	51	30	30						1 slow
6981	40	28	28						
7006	71	58	57		1				
7078	111	68	65	3					
7089	21	21	17	3	1				
7099	12	4	3						1 UG
Pal 12	3	0							
Pal 13	4	4	4						
7492	4	4	3	1					

determined. The next three columns cover the period interval between the RR Lyrae and the Mira stars with periods greater than 220 days. The totals in this period interval are broken down arbitrarily into three groups. The shorter group is made up mainly of W Vir stars, and the longer of short-period Mira stars, with semiregular or RV Tauri types in between. Only those variables technically in the pulsating variable group are included in the above-mentioned columns. Others, mainly eclipsing, are noted in the last column of the table. Mira stars with periods over 220 days are in the eighth column. These are mainly field stars. The ninth column contains those variables with no period given, mainly red ones, with irregular or semiregular fluctuations.

About 8 per cent of the stars in the catalogue, 169 in all, are definitely designated as other than RR Lyrae. There are 39 in the 1-30 day group, 26 in the 31-99, 26 in the 100-219, and 15 with a period of over 220 days. A conspicuous difference between the Third and Second Catalogues is the increase in the number of red irregular variables, many with small ranges.

DISTRIBUTIONS OF RR LYRAE PERIODS

There are 1202 definite RR Lyrae periods known in 46 clusters. The importance of the difference in most frequent length of period in individual clusters has been widely discussed since Oosterhoff first called attention to it. Figure 2 shows the distribution of all RR Lyrae periods in globular clusters for period intervals of 0.01 day. The double maximum of this distribution, conspicuous in the Second Catalogue, is further en-

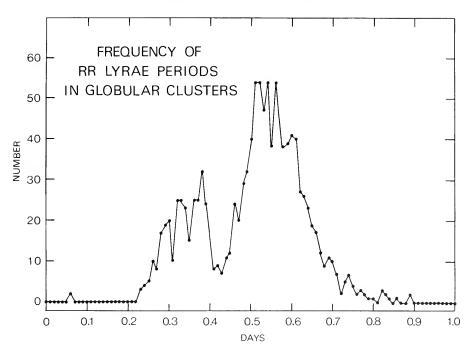


Figure 2 Numbers of RR Lyrae periods at intervals of 0.01 days.

hanced by the new material. Certainly in globular clusters variables of the RRab type have a strong preference for periods around 0.55 day, and of the RRc type, around 0.35 day.

DESCRIPTION OF THE CATALOGUE

The catalogue contains every globular cluster considered as belonging to our galaxy for which there is now a published record of search for variables. These clusters number 108, and 11 others are mentioned in brief references.

For the material of the catalogue an attempt has been made to select the most recent or the best determined data. This means that in some clusters for even a single variable the data in different columns may be drawn from different sources. When the Second Catalogue was prepared in 1955, every effort was made to obtain from the authors, or their respective institutions, information sufficient to identify variables listed many years earlier as unpublished. Despite this attempt, much of the unpublished material had to be left in relatively useless form. Now, 17 years later, it seems unlikely that any more of this material can ever be salvaged, and in most cases it is not mentioned in the Third Catalogue.

The system of references has been put on a different basis from that used in the First and Second Catalogues. As the literature proliferates with the years, it becomes no longer feasible to reprint all the references for a cluster in each catalogue. Accordingly only references since the publication of the Second Catalogue are included for the most part, along with a few overlooked earlier. However, for some clusters on which there has been no key work since then, an occasional early reference has been repeated to aid the reader.

The format of the reference system has also been altered from that used in the earlier catalogues. References are now printed under each cluster. The abbreviations of publications have been chosen to conform to the system of H. Schneller in *Geschichte und Literatur des Lichtwechsels der Veränderlichen Sterne* (Berlin), which seems to convey the necessary information in as concise a manner as possible. An index of the abbreviations used is given at the end of the catalogue. Photo or chart is shown by (p) or (c).

The principal papers on variables in any cluster are listed by author and abbreviated reference. However, there are some papers (23 in all) with remarks about many clusters. These more frequently mentioned papers are abbreviated to initials and the year of publication in this century, the key to these abbreviations being also given at the end, with the title of the paper. For clusters for which the Atlas and Catalogue of Fourcade, Laborde, and Albarracin contains new material, this reference is listed with the main references; otherwise it appears among the highly abbreviated ones.

Anyone actually investigating a cluster is strongly urged to consult the full list of references given in the Second Catalogue.

The clusters are listed in order of NGC number, which does not always correspond to the order in right ascension. Those lacking an NGC number are placed in order of right ascension, which, along with declination, is given for the equinox of 1950. If the cluster has a Messier number, that is given.

The variables are numbered according to the previous catalogues, and new numbers are usually assigned in order of discovery. The policy is to try to restrict the new numbers to those variables within the apparent physical area of the cluster, but it is not feasible to follow this rule rigidly.

The x and y coordinates are given in seconds of arc and correspond in direction to right ascension and declination. For a given cluster, they are usually those published by the first investigator, or reduced to his selected centre. In some cases, these coordinates unfortunately are not yet available.

The magnitudes are usually the latest that have been obtained, which are hopefully the best determined for maximum and minimum. Most of the magnitudes are photographic, but there is a gradual shift to the use of B magnitudes.

The epoch of maximum is usually, but not always, chosen as the one accompanying the period selected. Individual papers should be consulted to determine whether the time is heliocentric or geocentric.

The period is generally that most recently published. Stars with periods less than a day are assumed to be of RR Lyrae type unless otherwise indicated in the remarks. For stars with periods between one and thirty days the type is assumed to be Cepheid.

The "remarks" column contains a miscellany of information. An increase or decrease in period is indicated by + or - respectively, a constant period by "cst" or 0. "Alt" means an alternate period has been published, "var" signifies a variable period, and "B ℓ "

the Blashko effect. An available spectral type is indicated by "Sp" sometimes followed by the type without subdivision, and an available radial velocity by "V." Stars which have been shown to be definitely or very probably field stars are indicated by "f" and proven cluster stars by "mem." The abbreviation used for the type of variable is that in the Third Edition of the *General Catalogue of Variable Stars* by B. V. Kukarkin *et al.* (1969). For variables found since publication of the Second Catalogue, the discoverer is usually indicated.

ACKNOWLEDGMENTS

It is a pleasure to acknowledge the help I have received in the construction of this catalogue. This has come from many astronomers who have sent unpublished or explanatory data, as indicated in the references under individual clusters. I am particularly grateful to Professor Dr. B. V. Kukarkin of Moscow University, who, in the midst of his great task of recording all galactic system variables, has taken time to keep me briefed on Soviet work in globular clusters and to send me corrections to some of my previous papers. Also Dr. H. Wilkens of Argentina has been a constructive reader of my past works, and Dr. Steven van Agt of Nijmegen has straightened out the material on NGC 6362.

My thanks go also to the two directors of this observatory under which the Third Catalogue has been compiled, Dr. John F. Heard and Dr. Donald A. MacRae; to the National Research Council of Canada for their generous support of my cluster program; to my colleagues Dr. Amelia Wehlau of the University of Western Ontario and Dr. Christine Coutts; to the two librarians who assiduously tracked down elusive references, Mrs. Jean Lehmann and Mrs. Sheila Smolkin; to Mrs. Jennie Fabian, who prepared the preliminary version for distribution at IAU Colloquium no. 21 in August 1972; and last but not least to my daughter, Mrs. Sally MacDonald, who searched references and tabulated data.

June 30, 1973 Richmond Hill, Ontario

THIRD CATALOGUE OF VARIABLE STARS IN GLOBULAR CLUSTERS

No.	x''	у"	Max.	Min.	Epoch	Period	Remarks
NGC 1	04 (47 Tuca	nae) a 00 ^h	21 ^m .9, 8	δ-72°21			
1	+ 36.8	-112.6	11.60	15.63	35487	212	Sp M, V
2	+ 64.7	-193.9	11.70	14.48	35645	203	Sp M, V
3	+ 328.4	+ 52.8	11.70	15.85	35468	192	Sp M, V
4	- 18.8	-160.4	12.50	14.0	35490	165	
5	+ 271.9	-284.6	13.0	13.7	36158	45	Sp M, V
6	+ 97.3	-103.8	13.0	13.6	36159	47	
7	+ 349.2	-113.0	13.0	13.7	36162	58	Sp M, V
8	+ 16.0	+ 57.0	12.4	14.0	35524	155	Sp M, V
9	- 108	- 78	13.6	14.7	36163.240	0.73652	mem, Sp, V
10	+ 72	+702	13.1	13.6		irr	
11	+ 306	+138	13.2	14.0		irr	
12	+1254	-348	13.89	14.45	36046.614	0.37143	f, Sp, V
13	- 301.95	-139.92					Wilkens
14	+ 8.25	+ 66.83					F&L
15						irr	W300
16							R18
17							W81
18			12.0	12.3			L168
19			11.0	11.6			R10
20			11.7	12.5			A 1
21			12.0	13.0			A2
22			11.7	12.2			A4
23			11.7	12.2			A6
24			11.6	11.9			A8
25			11.6	11.9			A9
26			11.8:	12.1:			A13
27			11.9	12.2			A18
28			11.8	12.2			LR5

V15 found by Eggen, 1961; V17 Eggen, 1972; V16 Brooke, 1969. Unpublished V magnitudes given for vars. 18-28, discovered by Lloyd Evans and Menzies, marked on print (1973); their identifying numbers are given in the remarks column. W = Wildey (1961), R = Feast and Thackeray (1960). A field variable, HV 809, is shown by Jones (1973) to be a non-member.

Feast, Thackeray and Wesselink, MN 120.64 (1960); Feast and Thackeray, MN 120.463 (1960); Eggen, Royal Obs Bull 29.E86 (1961); Kurochkin, VS 13.248 (1961); Wildey, ApJ 133.430 (p) (1961); Rosino and Sawyer Hogg, IAU Trans 11B.301 (1962); Arp, Brueckel and Lourens, ApJ 137.228 (1963); Feast, ApJ 137.342 (1963); Tifft, MN 126.210 (1963); Fourcade, Laborde and Albarracin, Atlas y Catalogo, Cordoba (1966); Brooke, Doctoral Thesis, Australian Nat'l Univ (1969); Eggen, ApJ 172.639 (1972); Lloyd Evans, Letter (1972); Jones, IAU Coll 21 (1973); Lloyd Evans and Menzies, IAU Coll 21 (p) (1973)

S55a, S57, S59, S61, A62, R62a, S62, P64, S64, R65, S69, F72

No.	x"	у"	Max.	Min.	Epoch	Period	Remarks
NGC	288 a 00 ^h .	50 ^m .2, δ –2	26°52′				
1	-55	+79	13.5	14.1	25576	103	
S55a,	S59, R62c,	S62, S69		osterhoff	, BAN 9. 397 (19	43)	
NGC	362 a 01 ^h 0	$01^{\rm m}.6, \delta - 7$	'1° 07'				
1	-246.2	- 67.6	14.9	16.1	23751.558	0.5850512	
2	+ 41.4	-204.4	13.0	14.5	24391.8	90 var	
3	+ 93.6	-143.2	14.6	16.1	23604.806	0.4744151	
4	- 50.2	- 27.3	14.0	15.8			
5	- 79.2	- 31.9	15.1	16.4	24025.729	0.4900846	
6	+ 82.4	+ 15.5	14.9	16.3	24461.642	0.5146080	
7	+131.1	- 21.2	14.8	16.0	24468,687	0.5285492	
8	+ 33.4	-308.5	15.0	16.5	24433.677	3.901447	
9	-400.4	+224.4	14.7	16.0	24404.670	0.5476126	
10	+282.8	-381.8	14.9	16.4	23315.643	4.20519	
11	-136.1	- 26.0	15.1	16.0			
12	- 30.4	-115.4	15.2	16.1	24391.839	0.65254518	
13	+ 14.5	+ 38.8	14.6	16.3			
14	- 23.8	- 66.8	14.8	16.2			

Bailey, HA 38.237 (p) (1902); Sawyer, HC 366 (1931), HC 374 (p) (1932); Kurochkin, VS 13.248 (1961); Fourcade, Laborde and Albarracin, Atlas y Catalogo, Cordoba (1966); Eggen, ApJ 172.639 (1972)

S55a, S59, S62, S64, L65, R65, S69

NGC	1261 a 13 ^h	ⁿ 10 ^m .9, δ-	55° 25′		
1	- 29.8	- 28.4			L&F
2	- 39.8	+ 34.9	16.05	17.25	L&F
3	+ 49.6	- 54.6	15.88	16.67	L&F
4	+ 31.8	- 36.1			L&F
5	- 34.5	- 5.0	16.1	17.0	L&F
6	+ 78.1	- 12.3	16.32	17.32	L&F
7	-149.3	+140.2	16.85	17.3	L&F
8	-133.7	-139.0	16.13	17.48	L&F
9	+ 37.9	- 38.8	16.85	17.15	L&F
10	+ 52.3	+ 70.6	16.17	17.43	L&F
11	- 89.0	+ 89.5	16.85	17.29	L&F
12	+ 87.1	- 10.5	16.35	17.42	Bartolini
13	- 77.1	- 96.0	16.79	17.35	Bartolini
14	- 53.5	- 70.7	16.22	17.23	Bartolini
15	-114.5	+129.1	15.21	15.86	Bartolini

Fourcade, Laborde and Albarracin, Atlas y Catalogo, Cordoba (1966); Laborde and Fourcade, Cordoba Repr 127 (1966); Bartolini, Grilli and Robertson, 1BVS 594 (1971); Bartolini, Grilli and Morisi, IBVS 649 (1972); Bartolini, Letter (1972) S55b, R62b, S67, S69

No.	x''	У''	Max.	Min.	Epoch	Period	Remarks
Palom	ar 1 a 03h2	25 ^m .7, δ+7	9° 28′				
	riables found an and Rosin S61		99 (1963	2)			
'alon	har 2 $a 04^{h_4}$	13m.1, δ +3	1° 23′				
Rosin R61	riables found o and Pinto, 1851 a 05 ^h	IAU Coll 21					
1	+258.50	- 12.38	14.0	15.5			
2	- 41.25		14.0	15.5			
	- 38.50	+ 92.13					
- 3 4	+ 24.75	+ 35.75					
3	+ 24.75 + 41.25	+ 35.75 + 41.25					
3 4 5		+ 41.25					
3 4	+ 41.25	+ 41.25					
3 4 5 6	+ 41.25 - 74.25	+ 41.25 - 8.25	var?				
3 4 5 6 7	+ 41.25 - 74.25 + 4.13	+ 41.25 - 8.25 - 8.35	var?				

Small change in coordinates of vars. 1 and 2 discovered by Bailey. Variable formerly noted as unpublished is considered to be included in above list of new vars. 3-10 discovered by Laborde and Fourcade.

Bailey, HB 802 (1924); Shapley, Star Clusters, p. 45 (1930); Laborde and Fourcade, Cordoba Repr 138 (p) (1966)

NGC 1904 (Messier 79) $a \ 05^{h}22^{m}.2, \ \delta - 24^{\circ}34'$ 1 +29.6-199.6var? med 16.0 2 14.2 SR +78.3- 68.3 14.80 15.9 0.73602 3 +34.8- 64.4 16.7 34032.40 4 +93.4- 50.1 15.6 16.7 32877.50 0.63492 5 + 20.2-11.6 -70.8+115.616.0 16.6 32940.25 0.33522 6 7 +22.5- 15.2 Tsoo Yu-hua Tsoo Yu-hua 8 + 7.1 - 11.7

Pickering, HC 18 (1897); Bailey, HA 38. 238 (p) (1902); Rosino, Bologna Pubbl 5, 20 (p) (1952); Tsoo Yu-hua, Letter (p) (1965)

S55a, S59, S62, L65, R65, S67, S69

No.	x''	у"	Max.	Min.	Epoch	Period	Remarks
NGC 2	2298 a 06 ^h	47 ^m .2, δ –	35° 57'				
1	+119.35	-37.40					F&L
2	- 30.53	-22.28					F&L
C	da Tahard	a and Alban	ragin Atle	as y Catal	ogo, Cordob	a (1966)	
Fource	ade, Labord S59, R62c,		racm, Am	is y Catar	ogo, Cordoo	a (1900)	
555a,	559, K62C,	502, F&L0	5, 309				
NGC 2	2419 a 07 ^h	134m.8, δ +	39° 00′				
1	+ 40	- 52	17.59	18.32		irr	
2	- 4	- 19					
3	+ 52	- 24	18.66	19.96			
4	+ 80	- 15	18.84	19.65			
5	+ 33	+ 47	18.75	19.72			
6	+ 56	-127	18.86	19.64			
7	+ 91	+ 87	18.69	19.77			
8	- 17	+ 41	17.50	18.10		irr	
9	- 32	+ 88	18.59	19.76			
10	+ 20	- 51	17.31	17.93		irr	
11	+ 95	- 8	18.55	19.81			
12	+133	+111	18.69	19.71			
13	+101	- 10	18.55	19.75			
14	-115	- 13	18.81	19.62			
15	+ 62	+ 40	18.62	19.76			
16	+ 47	+ 72	18.77	19.85			
17	+109	+111	18.65	19.75			
18	- 15	+114	17.84	18.53		irr	
19	-107	- 40	18.77	19.86			
20	- 28	+ 45	17.65	18.16		irr	
21	- 55	+ 30	18.76	19.74			
22	+109	- 5	18.60	19.84			
23	+ 27	+ 79					
24	-147	- 10	18.94	19.58			
25	- 59	+ 38	18.78	19.70			
26	- 70	- 50					
27	+ 19	-103	19.10	19.55			
28	-192	+ 59	18.72	19.78			
29	- 58	- 7	19.01	19.92			
30	- 26	+ 23	10.05				
31	+154	-146	19.08	19.53			
32	- 19	+ 48	18.60	19.71			
33	+ 47	- 17	19.11	20.13			
34	+ 21	+157	19.00	19.66			
35	+ 43	+ 8	18.88	20.00			
36	+ 23	+ 44	19.10	19.83			

Kinman has two RR Lyrae periods, 0.37 and 0.63 days. Baade, ApJ 82.396 (p) (1935); Rosino and Sawyer Hogg, IAU Trans 11B.301 (1962) S55a, S59, S62, R65, S69

No.	x''	У''	Max.	Min.	Epoch	Period	Remarks
NGC	2808 a 09h	10 ^m .9, δ-6	4° 39′				
1	+107.25	- 35.20					F&L
2	- 48.13	+ 34.10					F&L
3	+ 31.63	- 61.33					F&L
4	-191.13	+ 60.50					F&L
5	+ 39.05	- 66.00					F&L
6	+168.58	-291.50					F&L
7	+ 63.25	+ 60.50					F&L
8			14.87	15.92			Alcaino 27
9			15.68	16.96			Alcaino 35
	971) 5a, S59, R62 	-	 ۲° 1 8′				
	print		5 18			prob RR	B&S
	•					P-00 MM	540
	dge and Sand 562, S69	lage, ApJ 12	7.527 (p)	(1958)			
NGC	3201 a 10 ^h	15m.5, δ -4	46°09′				
NGC I	3201 a 10 ^h + 59	15m.5, δ -4 - 118	46°09′ 14.56	15.66	39505.858	0.6048761	+
				15.66 15.60		0.6048761	+
1	+ 59	- 118	14.56		28272.352	0.5326722	+
1 2	+ 59 + 29	- 118 - 117	14.56 14.61	15.60		0.5326722 0.5994093	
1 2 3	+ 59 + 29 + 182	- 118 - 117 - 43	14.56 14.61 14.84	15.60 15.52	28272.352 39504.76:	0.5326722 0.5994093 0.6300006	
1 2 3 4	+ 59 + 29 + 182 + 155	-118 117 43 +-3	14.56 14.61 14.84 14.76	15.60 15.52 15.60 15.54	28272.352 39504.76: 23198.539 39504.853	0.5326722 0.5994093 0.6300006 0.5015359	-
1 2 3 4 5	+ 59 + 29 + 182 + 155 + 42	- 118 - 117 - 43 + 3 - 24	14.56 14.61 14.84 14.76 14.40	15.60 15.52 15.60	28272.352 39504.76: 23198.539 39504.853 39506.796	0.5326722 0.5994093 0.6300006 0.5015359 0.5256131	+
1 2 3 4 5 6	+ 59 + 29 + 182 + 155 + 42 - 116	- 118 - 117 - 43 + 3 - 24 - 143	14.56 14.61 14.84 14.76 14.40 14.42	15.60 15.52 15.60 15.54 15.42	28272.352 39504.76: 23198.539 39504.853	0.5326722 0.5994093 0.6300006 0.5015359 0.5256131 0.6303322	 +
1 2 3 4 5 6 7	+ 59 + 29 + 182 + 155 + 42 - 116 - 91	$ \begin{array}{r} - 118 \\ - 117 \\ - 43 \\ + 3 \\ - 24 \\ - 143 \\ - 189 \end{array} $	14.56 14.61 14.84 14.76 14.40 14.42 14.88	15.60 15.52 15.60 15.54 15.42 15.40	28272.352 39504.76: 23198.539 39504.853 39506.796 39505.823	0.5326722 0.5994093 0.6300006 0.5015359 0.5256131	 + +
1 2 3 4 5 6 7 8	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	- 118 - 117 - 43 + 3 - 24 - 143 - 189 - 99	14.56 14.61 14.84 14.76 14.40 14.42 14.88 15.06	15.60 15.52 15.60 15.54 15.42 15.40 15.40	28272.352 39504.76: 23198.539 39504.853 39506.796 39505.823 39504.816	0.5326722 0.5994093 0.6300006 0.5015359 0.5256131 0.6303322 0.6286280	 + +
1 2 3 4 5 6 7 8 9	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	14.56 14.61 14.84 14.76 14.40 14.42 14.88 15.06 14.86	15.60 15.52 15.60 15.54 15.42 15.40 15.40 15.57	28272.352 39504.76: 23198.539 39504.853 39506.796 39505.823 39504.816 23506.605	$\begin{array}{c} 0.5326722\\ 0.5994093\\ 0.6300006\\ 0.5015359\\ 0.5256131\\ 0.6303322\\ 0.6286280\\ 0.5266970\\ \end{array}$	 + +
1 2 3 4 5 6 7 8 9 10	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	14.56 14.61 14.84 14.76 14.40 14.42 14.88 15.06 14.86 14.66	15.60 15.52 15.60 15.54 15.42 15.40 15.40 15.57 15.59	28272.352 39504.76: 23198.539 39504.853 39506.796 39505.823 39504.816 23506.605 22429.597	0.5326722 0.5994093 0.6300006 0.5015359 0.5256131 0.6303322 0.6286280 0.5266970 0.5351571	 + +
1 2 3 4 5 6 7 8 9 10 11	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$14.56 \\ 14.61 \\ 14.84 \\ 14.76 \\ 14.40 \\ 14.42 \\ 14.88 \\ 15.06 \\ 14.86 \\ 14.86 \\ 14.82 \\ 14.8$	15.60 15.52 15.60 15.54 15.42 15.40 15.40 15.57 15.59 15.36	28272.352 39504.76: 23198.539 39504.853 39506.796 39505.823 39504.816 23506.605 22429.597 39506.804	0.5326722 0.5994093 0.6300006 0.5015359 0.5256131 0.6303322 0.6286280 0.5266970 0.5351571 0.2990471	 + +
1 2 3 4 5 6 7 8 9 10 11 12	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$14.56 \\ 14.61 \\ 14.84 \\ 14.76 \\ 14.40 \\ 14.42 \\ 14.88 \\ 15.06 \\ 14.86 \\ 14.86 \\ 14.82 \\ 14.50 \\ 15.50 \\ 14.5$	15.60 15.52 15.60 15.54 15.42 15.40 15.40 15.57 15.59 15.36 15.53	28272.352 39504.76: 23198.539 39504.853 39506.796 39505.823 39504.816 23506.605 22429.597 39506.804 23547.577	$\begin{array}{c} 0.5326722\\ 0.5994093\\ 0.6300006\\ 0.5015359\\ 0.5256131\\ 0.6303322\\ 0.6286280\\ 0.5266970\\ 0.5351571\\ 0.2990471\\ 0.4955583 \end{array}$	 + + +
1 2 3 4 5 6 7 8 9 10 11 12 13	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{r} - 118 \\ - 117 \\ - 43 \\ + 3 \\ - 24 \\ - 143 \\ - 189 \\ - 99 \\ - 91 \\ + 235 \\ + 112 \\ + 108 \\ + 92 \end{array}$	$14.56 \\ 14.61 \\ 14.84 \\ 14.76 \\ 14.40 \\ 14.42 \\ 14.88 \\ 15.06 \\ 14.86 \\ 14.86 \\ 14.82 \\ 14.50 \\ 14.66 \\ 14.6$	15.60 15.52 15.60 15.54 15.42 15.40 15.40 15.57 15.59 15.36 15.53 15.56	28272.352 39504.76: 23198.539 39504.853 39506.796 39505.823 39504.816 23506.605 22429.597 39506.804 23547.577 39506.720	0.5326722 0.5994093 0.6300006 0.5015359 0.5256131 0.6303322 0.6286280 0.5266970 0.5351571 0.2990471 0.4955583 0.5752145	 + + +
1 2 3 4 5 6 7 8 9 10 11 12 13 14	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{r} - 118 \\ - 117 \\ - 43 \\ + 3 \\ - 24 \\ - 143 \\ - 189 \\ - 99 \\ - 91 \\ + 235 \\ + 112 \\ + 108 \\ + 92 \\ + 133 \end{array}$	$14.56 \\ 14.61 \\ 14.84 \\ 14.76 \\ 14.40 \\ 14.42 \\ 14.88 \\ 15.06 \\ 14.86 \\ 14.86 \\ 14.66 \\ 14.82 \\ 14.50 \\ 14.66 \\ 14.61 \\ 14.6$	15.60 15.52 15.60 15.54 15.42 15.40 15.40 15.57 15.59 15.36 15.53 15.56 15.67	28272.352 39504.76: 23198.539 39504.853 39506.796 39505.823 39504.816 23506.605 22429.597 39506.804 23547.577 39506.720 23961.495	$\begin{array}{c} 0.5326722\\ 0.5994093\\ 0.6300006\\ 0.5015359\\ 0.5256131\\ 0.6303322\\ 0.6286280\\ 0.5266970\\ 0.5351571\\ 0.2990471\\ 0.4955583\\ 0.5752145\\ 0.5092897 \end{array}$	 + + +
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$14.56 \\ 14.61 \\ 14.84 \\ 14.76 \\ 14.40 \\ 14.42 \\ 14.88 \\ 15.06 \\ 14.86 \\ 14.86 \\ 14.82 \\ 14.50 \\ 14.66 \\ 14.61 \\ 14.34 \\ 14.34$	$\begin{array}{c} 15.60\\ 15.52\\ 15.60\\ 15.54\\ 15.42\\ 15.40\\ 15.40\\ 15.57\\ 15.59\\ 15.36\\ 15.53\\ 15.56\\ 15.67\\ 15.43\end{array}$	28272.352 39504.76: 23198.539 39504.853 39506.796 39505.823 39504.816 23506.605 22429.597 39506.804 23547.577 39506.720 23961.495 23164.572	$\begin{array}{c} 0.5326722\\ 0.5994093\\ 0.6300006\\ 0.5015359\\ 0.5256131\\ 0.6303322\\ 0.6286280\\ 0.5266970\\ 0.5351571\\ 0.2990471\\ 0.4955583\\ 0.5752145\\ 0.5092897\\ 0.5346644 \end{array}$	 + + +
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$14.56 \\ 14.61 \\ 14.84 \\ 14.76 \\ 14.40 \\ 14.42 \\ 14.88 \\ 15.06 \\ 14.86 \\ 14.86 \\ 14.82 \\ 14.50 \\ 14.66 \\ 14.61 \\ 14.34 \\ 14.83 \\ 14.8$	$\begin{array}{c} 15.60\\ 15.52\\ 15.60\\ 15.54\\ 15.42\\ 15.40\\ 15.40\\ 15.57\\ 15.59\\ 15.36\\ 15.53\\ 15.56\\ 15.67\\ 15.43\\ 15.21\\ \end{array}$	28272.352 39504.76: 23198.539 39504.853 39506.796 39505.823 39504.816 23506.605 22429.597 39506.804 23547.577 39506.720 23961.495 23164.572 39504.819	0.5326722 0.5994093 0.6300006 0.5015359 0.5256131 0.6303322 0.6286280 0.5266970 0.5351571 0.2990471 0.4955583 0.5752145 0.5092897 0.5346644 0.365	 + + +
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$14.56 \\ 14.61 \\ 14.84 \\ 14.76 \\ 14.40 \\ 14.42 \\ 14.88 \\ 15.06 \\ 14.86 \\ 14.86 \\ 14.82 \\ 14.50 \\ 14.66 \\ 14.61 \\ 14.34 \\ 14.83 \\ 14.80 \\ 14.8$	$\begin{array}{c} 15.60\\ 15.52\\ 15.60\\ 15.54\\ 15.42\\ 15.40\\ 15.40\\ 15.57\\ 15.59\\ 15.36\\ 15.53\\ 15.56\\ 15.67\\ 15.43\\ 15.21\\ 15.52\end{array}$	28272.352 39504.76: 23198.539 39504.853 39506.796 39505.823 39504.816 23506.605 22429.597 39506.804 23547.577 39506.720 23961.495 23164.572 39504.819 39506.874	$\begin{array}{c} 0.5326722\\ 0.5994093\\ 0.6300006\\ 0.5015359\\ 0.5256131\\ 0.6303322\\ 0.6286280\\ 0.5266970\\ 0.5351571\\ 0.2990471\\ 0.4955583\\ 0.5752145\\ 0.5092897\\ 0.5346644\\ 0.365\\ 0.5655773\end{array}$	 + + +
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$14.56 \\ 14.61 \\ 14.84 \\ 14.76 \\ 14.40 \\ 14.42 \\ 14.88 \\ 15.06 \\ 14.86 \\ 14.86 \\ 14.82 \\ 14.50 \\ 14.66 \\ 14.61 \\ 14.34 \\ 14.83 \\ 14.80 \\ 14.73 \\ 14.7$	$\begin{array}{c} 15.60\\ 15.52\\ 15.60\\ 15.54\\ 15.42\\ 15.40\\ 15.40\\ 15.57\\ 15.59\\ 15.36\\ 15.53\\ 15.56\\ 15.67\\ 15.43\\ 15.21\\ 15.52\\ 15.54\\ 15.50\end{array}$	28272.352 39504.76: 23198.539 39504.853 39506.796 39505.823 39504.816 23506.605 22429.597 39506.804 23547.577 39506.720 23961.495 23164.572 39504.819 39506.874 39504.872	$\begin{array}{c} 0.5326722\\ 0.5994093\\ 0.6300006\\ 0.5015359\\ 0.5256131\\ 0.6303322\\ 0.6286280\\ 0.5266970\\ 0.5351571\\ 0.2990471\\ 0.4955583\\ 0.5752145\\ 0.5092897\\ 0.5346644\\ 0.365\\ 0.5655773\\ 0.53\\ 0.5250201 \end{array}$	 + + + +
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$14.56 \\ 14.61 \\ 14.84 \\ 14.76 \\ 14.40 \\ 14.42 \\ 14.88 \\ 15.06 \\ 14.86 \\ 14.86 \\ 14.82 \\ 14.50 \\ 14.66 \\ 14.61 \\ 14.34 \\ 14.83 \\ 14.80 \\ 14.73 \\ 14.40 \\ 14.4$	$\begin{array}{c} 15.60\\ 15.52\\ 15.60\\ 15.54\\ 15.42\\ 15.40\\ 15.40\\ 15.57\\ 15.59\\ 15.36\\ 15.53\\ 15.56\\ 15.67\\ 15.43\\ 15.21\\ 15.52\\ 15.54\\ 15.50\\ 15.52\end{array}$	28272.352 39504.76: 23198.539 39504.853 39505.823 39505.823 39504.816 23506.605 22429.597 39506.804 23547.577 39506.720 23961.495 23164.572 39504.819 39506.874 39504.872 39506.821	$\begin{array}{c} 0.5326722\\ 0.5994093\\ 0.6300006\\ 0.5015359\\ 0.5256131\\ 0.6303322\\ 0.6286280\\ 0.5266970\\ 0.5351571\\ 0.2990471\\ 0.4955583\\ 0.5752145\\ 0.5092897\\ 0.5346644\\ 0.365\\ 0.5655773\\ 0.53\\ \end{array}$	 + + + + +
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$14.56 \\ 14.61 \\ 14.84 \\ 14.76 \\ 14.40 \\ 14.42 \\ 14.88 \\ 15.06 \\ 14.86 \\ 14.86 \\ 14.66 \\ 14.82 \\ 14.50 \\ 14.66 \\ 14.61 \\ 14.34 \\ 14.83 \\ 14.80 \\ 14.73 \\ 14.40 \\ 14.4$	$\begin{array}{c} 15.60\\ 15.52\\ 15.60\\ 15.54\\ 15.42\\ 15.40\\ 15.40\\ 15.57\\ 15.59\\ 15.36\\ 15.53\\ 15.56\\ 15.67\\ 15.43\\ 15.21\\ 15.52\\ 15.54\\ 15.50\end{array}$	28272.352 39504.76: 23198.539 39504.853 39506.796 39505.823 39504.816 23506.605 22429.597 39506.804 23547.577 39506.720 23961.495 23164.572 39504.819 39506.874 39504.872 39506.821 39505.816	$\begin{array}{c} 0.5326722\\ 0.5994093\\ 0.6300006\\ 0.5015359\\ 0.5256131\\ 0.6303322\\ 0.6286280\\ 0.5266970\\ 0.5351571\\ 0.2990471\\ 0.4955583\\ 0.5752145\\ 0.5092897\\ 0.5346644\\ 0.365\\ 0.5655773\\ 0.53\\ 0.5250201\\ 0.5291064 \end{array}$	 + + + +
$ \begin{array}{c} 1\\2\\3\\4\\5\\6\\7\\8\\9\\10\\11\\12\\13\\14\\15\\16\\17\\18\\19\\20\\21\end{array} $	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$14.56 \\ 14.61 \\ 14.84 \\ 14.76 \\ 14.40 \\ 14.42 \\ 14.88 \\ 15.06 \\ 14.86 \\ 14.86 \\ 14.82 \\ 14.50 \\ 14.66 \\ 14.61 \\ 14.34 \\ 14.83 \\ 14.80 \\ 14.73 \\ 14.40 \\ 14.74 \\ 14.7$	$\begin{array}{c} 15.60\\ 15.52\\ 15.60\\ 15.54\\ 15.42\\ 15.40\\ 15.40\\ 15.57\\ 15.59\\ 15.36\\ 15.53\\ 15.56\\ 15.67\\ 15.43\\ 15.21\\ 15.52\\ 15.54\\ 15.50\\ 15.52\\ 15.62\end{array}$	28272.352 39504.76: 23198.539 39504.853 39506.796 39505.823 39504.816 23506.605 22429.597 39506.804 23547.577 39506.720 23961.495 23164.572 39504.819 39506.874 39504.872 39506.821 39506.821 39505.816 39506.763	0.5326722 0.5994093 0.6300006 0.5015359 0.5256131 0.6303322 0.6286280 0.5266970 0.5351571 0.2990471 0.4955583 0.5752145 0.5092897 0.5346644 0.365 0.5655773 0.53 0.5250201 0.5291064 0.5665509 0.6059842	 + + + + + +
$ \begin{array}{c} 1\\2\\3\\4\\5\\6\\7\\8\\9\\10\\11\\12\\13\\14\\15\\16\\17\\18\\19\\20\\21\\22\end{array} $	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{c} 14.56\\ 14.61\\ 14.84\\ 14.76\\ 14.40\\ 14.42\\ 14.88\\ 15.06\\ 14.86\\ 14.86\\ 14.66\\ 14.82\\ 14.50\\ 14.66\\ 14.61\\ 14.34\\ 14.83\\ 14.80\\ 14.73\\ 14.40\\ 14.74\\ 14.66\\ \end{array}$	$\begin{array}{c} 15.60\\ 15.52\\ 15.60\\ 15.54\\ 15.42\\ 15.40\\ 15.40\\ 15.57\\ 15.59\\ 15.36\\ 15.53\\ 15.56\\ 15.67\\ 15.43\\ 15.21\\ 15.52\\ 15.54\\ 15.50\\ 15.52\\ 15.52\\ 15.62\\ 15.57\end{array}$	$\begin{array}{r} 28272.352\\ 39504.76:\\ 23198.539\\ 39504.853\\ 39506.796\\ 39505.823\\ 39505.823\\ 39504.816\\ 23506.605\\ 22429.597\\ 39506.804\\ 23547.577\\ 39506.720\\ 23961.495\\ 23164.572\\ 39504.819\\ 39506.874\\ 39504.872\\ 39506.821\\ 39506.821\\ 39506.821\\ 39506.763\\ 39506.763\\ 39506.825\\ \end{array}$	$\begin{array}{c} 0.5326722\\ 0.5994093\\ 0.6300006\\ 0.5015359\\ 0.5256131\\ 0.6303322\\ 0.6286280\\ 0.5266970\\ 0.5351571\\ 0.2990471\\ 0.4955583\\ 0.5752145\\ 0.5092897\\ 0.5346644\\ 0.365\\ 0.5655773\\ 0.53\\ 0.5250201\\ 0.5291064\\ 0.5666509 \end{array}$	 + + + + +

No.	x''	у′′	Max.	Min.	Epoch	Period	Remarks
NGC	3201 (conti	nued)					
26	+ 219	- 140	14.87	15.70	39505.878	0.5689949	_
27	+ 58	- 323	14.08	15.32	39505.790	0.4842943	+
28	+ 66	- 48	14.70	15.60	39505.760	0.5786766	_
29	- 256	+ 113	15.12	15.48	39506.74:	0.343	
30	- 289	+ 272	14.29	15.49	39504.814	0.5158559	+
31	+ 182	+ 131	14.65	15.51	23505.620	0.5194894	
32	+ 195	+ 199	14.30	15.54	39504.900	0.5611656	+
33	+ 48	- 40	not var				
34	+ 296	+ 285	14.37	15.62	23547.577	0.4678883	
35	- 11	+ 121	14.90	15.45	22484.504	0.6155244	
36	- 108	- 11	14.68	15.2:	39505.794	0.242	Alt 0.323
37	- 68	- 74	15.04	15.40	39504.77	0.273	Alt 0.382
38	- 61	- 60	14.70	15.60	23877.612	0.5091616	
39	+ 41	+ 54	14.83	15.80	23181.537	0.4832092	
40	- 96	+ 68	15.10	15.56:	39504.90	0.642	Alt 0.385
41	+ 291	+ 28		15.55		0.66	
42	- 301	+ 197	14.26	15.40	39504.840	0.5382490	+
43	- 377	+ 15	14.80	15.39	23166.665	0.6761289	
44	+ 31	+ 67	15.01	15.66	23190.635	0.6107344	
45	+ 127	- 32	14.56	15.60	39505.859	0.5374165	+
46	- 396	- 510	14.56	15.35	23167.570	0.5431990	
47	+ 108	+ 245	14.78	15.42	39504.903	0.342:	B ₂ , Alt 0.51
48	- 252	+ 12	14.96:	15.36	39506.67:	0.336	Alt 0.252
49	- 38	+ 151	14.72:	15.46	39504.76:	0.5814870	+
50	- 13	+ 27	14.80	15.72	39506.88	0.565	
51	- 205	- 26	14.50	15.30	39506.813	0.5205454	+
52	+ 14	- 812	14,90	15.30	39505.78:	0.38:	
53	- 873	- 758	14.57	15.38	23191.540	0.5334705	
54	+ 671	- 804	14.71	15.8:	39506.776	0.5558721	+
55	- 338	+ 767	14.47	15.43	39504.915	0.607	
56	+ 246	+ 94	14.95	15.62	23164.591	0.5903376	
57	+ 288	- 72	14.74	15.58	39506.762	0.5934373	+
58	+ 346	- 80	14.94	15.45	23164.538	0.6220418	
59	- 490	- 70	14.28	15.28	39506.813	0.5177106	+
60	- 850	+ 95	14.08	15.38	39505.798	0.5035723	_
61	-1125	+ 175	14.12	15.59	39504.91	0.54	
62	-1060	- 186	14.29	15.49	39505.798	0.5697558	
63	-1000	+ 59	14.36	15.39	23914.582	0.5680998	
64	- 646	+ 863	14.32	15.54	39504.815	0.5224218	+
65	- 544	+ 797	14.01	15.03	39506.71	1.660024	EA, Min, mem?
66	- 398	+ 289	14.90	15.27	39506.78	0.284	,,
67	- 374	- 120	14.75:	15.31	39506.70:	0.329	Alt 0.494
68	- 283	+ 846				long	
69	- 221	+ 995	14.34	15.50	23914.575	0.5122704	
70	- 221	- 13	not var				
71	- 182	- 117	14.35	15.39	39506,765	0.6011859	+

Catalogue

No.	x''	y''	Max.	Min.	Epoch	Period	Remarks
NGC 3	3201 (conti	inued)					
73	- 128	+ 86	14.40	15.60	39504.860	0.5199500	+
74	- 94	+ 36	not var				
75	- 81	+ 147	not var				
76	- 62	- 42	15.16	15.72	39506.74	0.343	Alt 0.52
77	- 10	- 52	14.64	15.50	22429.592	0.5676648	_
78	- 8	- 143	14.48	15.48	39504.83	0.514	
79	+ 10	- 101	not var				
80	+ 60	+ 23	14.82	15.60	39505.79	0.58	
81	+ 96	- 153					
82	+ 161	- 166	not var				
83	+ 177	+ 172	14.44	15.62	23190.624	0.5451918	_
84	+ 358	+ 703	14.65	15.43	22077.566	0.5136787	
85	+ 569	- 403	not var				
86	+ 611	- 315	not var				
87	+1013	- 460	14.65	15.30	23164.633	0.6038866	
88	+ 234	+1086	14.48	15.61	39504.86	0.57	Wilkens 1
89	+1404	-180	14.90	15.38	39505.83	0.369	Wilkens 2
90	- 24	+ 06	14.8:	15.65	39504.73:	0.61	Wilkens 3
91	-1524	+1170	14.64	15.10	39504.98	0.345	Wilkens 4
92	- 150	- 30	14.48	15.50	39506.80	0.523	Wilkens 5
93	+1986	- 192				0.48?	Wilkens 6
94	-2862	+1824				RR	Wilkens 7
95	+1860	+2580				RR	Wilkens 8
96	-2790	- 468	14.50	15.50	39506.86	0.59	Wilkens 9

Wilkens no. 10 = V39. Kukarkin considers Wilkens' new variables are cluster members, forming a large corona, and says identifications of vars. 6, 11, 45, 52, 57, 68 and 81 are erroneous in FLA66. Wilkens, MVS 3.75 (1965); Fourcade, Laborde and Albarracin, Atlas y Catalogo, Cordoba (1966); Kukarkin, AC 426.4 (1967), AC 428.1 (1967), AC 637.4 (1971), VS 17.610 (1971), Letter (1971)

S55a, S57, S59, S61, R62a, S62, S64, L65, R65, St66, S67, S69, S70

Paloma	Palomar 4 $a 11^{h} 26^{m} .6, \delta + 29^{\circ} 15'$											
1	-12	-4	17.7	20	35922	130.50	Rosino					
2	-43	-3	17.6	19.3	35938	109.30	Rosino					
Rosinc	o, Asiago Co	ntr 85 (19	57); Burb	idge and S	Sandage, ApJ	127.527 (1958)	; Rosino and Pinto,					

IAU Coll 21 (1973) R57, S59, R61, S61, S62, S69

NGC 4	1147 a 12h	07m.6, δ +1	8°49′				
1	-100.1	- 45.7	16.36	17.76	35546.544	0.5003860	
2	- 20.2	- 28.8	16.46	17.64	35538.485	0.49306	
3	- 28.5	- 35.3	16.68	17.24	35538,591	0.280542	
4	+ 1	+ 18	16.27	17.29	34805.859	0.30097	
5	+ 14.9	+ 2.7	17.0	17.4		0.34125:	Newburn
6	+ 31.2	+ 28.4	16.29	17.67	34805.675	0.61860	S&W

.

No.	x''	у"	Max.	Min.	Epoch	Period	Remarks
NGC	4147 (conti	nued)					
7	+ 4.6	+ 7.4	16.4	17.6	34805.924	0.51294	S&W
8	+ 8.6	+ 2.3	16.9	17.5		0.3897:	S&W
9			prob no	ot var			S&W print
10	- 47.8	- 45.6	16.96	17.54	35538.528	0.352314	S&W
11	- 12.2	- 41.9	16.72	17.30	35538.670	0.38739	S&W
12	+ 5.1	- 4.2	16.6	17.6		0.5 :	S&W
13	+ 0.1	- 19.0	16.8	17.3		0.3759:	S&W
14	+ 8.4	- 0.2	16.9	17.5		0.5255:	Newburn
15	+ 9.2	- 7.8	16.8	17.3		0.3354:	Newburn
16	+ 14.5	+ 7.7	16.8	17.1		0.2775:	Newburn
17	+ 63.7	+143.3	16.72	17.34	35538.430	0.37473	Newburn
	a, S57, S59,			, R65, S6	9		
NGC	4372 a 12 ¹	n23m.0, δ-	72°24′	, R65, S6	9		F 01
NGC - 1	4372 a 12 ⁴ -739.75	¹ 23 ^m .0, δ- - 42.08	72°24′	, R65, S6	9		F&L
NGC	4372 a 12 ¹	n23m.0, δ-	72°24′	, R65, S6	9		F&L F&L
NGC 1 2 Wilke	4372 a 12 ^h -739.75 +612.15 ns, Letter (1	123m.0, δ- - 42.08 -382.25 961); Four	72°24' cade, Lab	orde and 1	9 Albarracin, Atla	s y Catalogo, (F&L
NGC 1 2 Wilke	$\begin{array}{r} 4372 a \ 12^{1} \\ -739.75 \\ +612.15 \end{array}$	123m.0, δ- - 42.08 -382.25 961); Four	72°24' cade, Lab	orde and 1		s y Catalogo, C	F&L
NGC - 1 2 Wilke S55a,	4372 a 12 ^h -739.75 +612.15 ns, Letter (1	- 42.08 - 42.08 -382.25 961); Four 61, R62c, S	72°24' cade, Lab 62, F&L6	orde and 7 3, S69	Albarracin, Atla	s y Catalogo, (F&L
NGC - 1 2 Wilke \$55a,	4372 a 12 ^h -739.75 +612.15 ns, Letter (1 S57, S59, S	- 42.08 - 42.08 -382.25 961); Four 61, R62c, S	72°24' cade, Lab 62, F&L6	orde and 7 3, S69	Albarracin, Atla	s y Catalogo, (0.349604	F&L
NGC 1 2 Wilke S55a, NGC	4372 a 12 ^h -739.75 +612.15 ns, Letter (1 \$57, \$59, \$ 4590 (Messie	- 42.08 - 42.08 - 382.25 961); Four 61, R62c, S er 68) α1	72°24' cade, Lab 62, F&L6 2h36 ^m .8,	orde and 4 3, S69 δ – 26° 29	Albarracin, Atla		F&L
NGC 1 2 Wilke S55a, NGC	4372 a 12 ^h -739.75 +612.15 ns, Letter (1 S57, S59, S 4590 (Messie -283	$h_{23}m_{.0}, \delta = -42.08$ -382.25 961); Four 61, R62c, S er 68) a1 +109	72° 24' cade, Lab 62, F&L6 2h36m.8, 15.55	orde and <i>λ</i> 3, S69 δ – 26° 29 16.11 16.29	Albarracin, Atla , 33421.357	0.349604	F&L
NGC - 1 2 Wilke: 555a, NGC - 1 2	4372 a 12 ^h -739.75 +612.15 ns, Letter (1 S57, S59, S 4590 (Messie -283 -168	$h_{23}m_{.0}, \delta = -42.08$ -382.25 961); Four 61, R62c, S er 68) a 1 +109 -44	.72° 24' cade, Lab. 62, F&L6 2h36m.8, 15.55 15.05	orde and λ 3, S69 δ – 26° 29 16.11	Albarracin, Atla , 33421.357 33661.66	0.349604 0.578169	F&L
NGC - 1 2 Wilke S55a, NGC - 1 2 3	4372 a 12 ^h -739.75 +612.15 ns, Letter (1 S57, S59, S 4590 (Messie -283 -168 -140	$h_{23}m_{.0}, \delta = -42.08$ -382.25 961); Four 61, R62c, S er 68) a 11 +109 -44 +91	.72°24' cade, Lab. 62, F&L6 2h36m.8, 15.55 15.05 15.40	orde and λ 3, S69 $\delta - 26^{\circ} 29$ 16.11 16.29 16.15 16.20	Albarracin, Atla , 33421.357 33661.66 33661.66	0.349604 0.578169 0.4158	F&L
NGC - 1 2 Wilke S55a, NGC - 1 2 3 4	4372 a 12 ^h -739.75 +612.15 ns, Letter (1 S57, S59, S 4590 (Messie -283 -168 -140 -118	$\begin{array}{r} 123m.0, \ \delta - \\ - \ 42.08 \\ -382.25 \\ 961); \ Four \\ 61, \ R62c, \ S \\ er \ 68) \ a 1 \\ +109 \\ - \ 44 \\ + \ 91 \\ -132 \end{array}$.72°24′ cade, Lab. 62, F&L6 2h36m.8, 15.55 15.05 15.40 15.65	orde and <i>λ</i> 3, S69 δ – 26° 29 16.11 16.29 16.15	Albarracin, Atla , 33421.357 33661.66 33661.66 33423.273	0.349604 0.578169 0.4158 0.396367	F&L
NGC - 1 2 Wilke S55a, NGC - 1 2 3 4 5	4372 a 12 ^h -739.75 +612.15 ns, Letter (1 S57, S59, S 4590 (Messie -283 -168 -140 -118 - 53	$\begin{array}{r} 123m.0, \ \delta - \\ - \ 42.08 \\ -382.25 \\ 961); \ Four \\ 61, \ R62c, \ S \\ er \ 68) \ a \ 1 \\ +109 \\ - \ 44 \\ + \ 91 \\ -132 \\ +169 \end{array}$.72°24' cade, Lab 62, F&L6 2h36m.8, 15.55 15.05 15.40 15.65 15.47	orde and λ 3, S69 δ - 26° 29 16.11 16.29 16.15 16.20 16.11	Albarracin, Atla , 33421.357 33661.66 33661.66 33423.273 33423.297	0.349604 0.578169 0.4158 0.396367 0.282116	F&L
NGC - 1 2 Wilke S555a, NGC - 1 2 3 4 5 6	4372 a 12 ^k -739.75 +612.15 ns, Letter (1 S57, S59, S 	$\begin{array}{r} 123m.0, \ \delta - \\ - \ 42.08 \\ - \ 382.25 \\ 961); \ Four \\ 61, \ R62c, \ S \\ \hline er \ 68) \ a 1 \\ + \ 109 \\ - \ 44 \\ + \ 91 \\ - \ 132 \\ + \ 169 \\ + \ 17 \end{array}$.72°24' cade, Lab 62, F&L6 2h36m.8, 15.55 15.05 15.40 15.65 15.47 15.75	orde and λ 3, S69 δ - 26° 29 16.11 16.29 16.15 16.20 16.11 16.07	Albarracin, Atla , 33421.357 33661.66 33661.66 33423.273 33423.297 33422.413	0.349604 0.578169 0.4158 0.396367 0.282116 0.368523	F&L

1	-283	+109	15.55	16.11	33421.357	0.349604
2	-168	- 44	15.05	16.29	33661.66	0.578169
3	-140	+ 91	15.40	16.15	33661.66	0.4158
4	-118	-132	15.65	16.20	33423.273	0.396367
5	- 53	+169	15.47	16.11	33423.297	0.282116
6	- 54	+ 17	15.75	16.07	33422.413	0.368523
7	- 51	- 78	15.71	16.07	33423.478	0.387945
8	- 35	-134	15.74	16.13	33422.359	0.390402
9	- 30	+ 40	15.43	16.28	33422.257	0.57900
10	- 24	- 14	15.28	16.62	33423.224	0.55112
11	- 17	-113	15.65	16.16	33423.295	0.36489
12	- 12	00	15.07	16.23	33423.333	0.6162
13	- 4	- 57	15.72	16.11	33423.385	0.361740
14	- 2	+218	15.02	16.25	33421.437	0.55679
15	+ 10	+ 59	15.65	16.36	33423.360	0.37220
16	+ 10	+ 78	15.65	16.22	33423.289	0.381967
17	+ 17	- 74	15.65	16.60	33418.293	0.66693
18	+ 18	- 96	15.69	16.19	33423.327	0.367346
19	+ 32	+ 70	15.65	16.20	33421.404	0.39206
20	+ 33	-114	15.69	16.14	33421.293	0.385764
21	+ 46	+ 8	15.82	16.60	33423.358	0.37241
22	+ 61	- 22	15.30	16.52	33421.424	0.563469
23	+ 65	+380	14.85	16.13	33423.198	0.6588799

Catalogue

No.	х"	у"	Max.	Min.	Epoch	Period	Remarks
NGC	4590 (conti	nued)					
24	+ 72	- 8	15.64	16.13	33422.268	0.376500	
25	+140	+123	15.00	16.15	33423.328	0.641556	
26	+157	- 45	15.63	16.11	33799.370	0.413217	
27	+ 381	+263	10.2	17.4	33661.	320	FI Hya, f
28	+439	+159	14.81	16.18	33423.292	0.6067750	
29	+283	-153	15.65	16.15	33419.416	0.395253	
30	+112	- 77	15.60	16.20	33422.442	0.73362	
31	-109	+ 96	15.49	16.10	33423.310	0.399658	
32	-330	-639	10.17		33422.362	0.58692	van Agt
33	+ 89	+ 59			33422.317	0.38523	van Agt
34	+268	+216			33422.314	0.39696	van Agt
35	- 35	- 52			33421.340	0.71608	van Agt
36	- 38	- 52			33422.374	0.6998	van Agt
37	- 21	+ 20			33423.317	0.38553	van Agt
38	- 22	- 29			33423.251	0.3826	van Agt
39	- 50	- 8					T,R&O
40	- 1	- 52					T,R&O
41	+ 4	+ 80					T, R & O
Ros	- 3 new field var	ra, Bologna	Pubbl 6 , 5	5 (1954); v		osterhoff, Leider	T,R&O
42 Five r Ros 1959 S55	 3 a field var ino and Piet); Terzan, R a, S57, S59, 	+ 37 iables, Terza ra, Bologna utily and O S61, R62a,	Pubbl 6 , 5 unnas, 1A L65, R65	5 (1954); v U Coll 21		osterhoff, Leider	T,R&O
42 Five r Ros 1959 S55	- 3 new field var ino and Piet): Terzan, R a, S57, S59, 	+ 37 iables, Terza ra, Bologna utily and O S61, R62a, 	Pubbl 6 , 5 unnas, 1A L65, R65 	5 (1954); v U Coll 21 , S69	(p) (1973)		T,R&O 1 Ann 21.253 (
42 Ros 1959 S55 NGC 4	- 3 inew field var ino and Piet:): Terzan, R a, S57, S59, 	+ 37 iables, Terza ra, Bologna utily and O S61, R62a, 	Pubbl 6 , 5 unnas, 1A L65, R65 	5 (1954); v U Coll 21 , S69 15.86	(p) (1973) 29375.251	0.750101	T,R&O 1 Ann 21.253 (RY Mus
42 Ros 1959 S55 NGC 4 1 2	- 3 ino and Piet:): Terzan, R a, S57, S59, 	+ 37 iables, Terza ra, Bologna utily and O S61, R62a, 	Pubbl 6, 5 unnas, 1A L65, R65 70° 36' 15.32 13.0	5 (1954); v U Coll 21 , S69 15.86 16.2:	(p) (1973) 29375.251 26166	0.750101 333.7	T,R&O 1 Ann 21.253 (
42 Five r Ros 1959 S55 NGC 4 1 2 3	- 3 iew field var ino and Piet:): Terzan, R a, S57, S59, 	+ 37 iables, Terza ra, Bologna utily and O S61, R62a, $-556m.0, \delta -$ +468 -354 + 6	Pubb16, 5 unnas, 1A L65, R65 70° 36' 15.32 13.0 15.46	5 (1954); v U Coll 21 , S69 15.86 16.2: 15.9	(p) (1973) 29375.251 26166 29363.248	0.750101 333.7 0.744526	T,R&O 1 Ann 21.253 (RY Mus
42 Five r Ros 1959 S55 NGC 4 1 2 3 4	- 3 ino and Piet:): Terzan, R a, S57, S59, 	+ 37 iables, Terza ra, Bologna utily and O S61, R62a, $256^{\text{m}}.0, \delta -$ +468 -354 + 6 + 24	Pubb16, 5 unnas, 1A L65, R65 70° 36' 15.32 13.0 15.46 15.24	15.86 16.2: 15.88	(p) (1973) 29375.251 26166 29363.248 29381.249	0.750101 333.7 0.744526 0.655536	T,R&O 1 Ann 21.253 (RY Mus
42 Five r Ros 1959 S55 NGC 4 1 2 3 4 5	- 3 ino and Piet:): Terzan, R a, S57, S59, 	+ 37 iables, Terza ra, Bologna utily and O S61, R62a, 	Pubb16, 5 unnas, 1A L65, R65 70° 36' 15.32 13.0 15.46 15.24 15.4	5 (1954); v U Coll 21 , S69 15.86 16.2: 15.9 15.88 16.0	(p) (1973) 29375.251 26166 29363.248 29381.249 29381.240	0.750101 333.7 0.744526 0.655536 0.629414	T,R&O 1 Ann 21.253 (RY Mus
42 Five r Ros 1959 S55 NGC 4 1 2 3 4 5 6	$\begin{array}{r} - 3 \\ \text{new field var} \\ \text{ino and Piet} \\ \text{): Terzan, R} \\ \text{a, S57, S59,} \\ \hline \\ 4833 a \ 12^{\text{h}} \\ -264 \\ +378 \\ 0 \\ 0 \\ +132 \\ +120 \\ \end{array}$	+ 37 iables, Terza ra, Bologna utily and O S61, R62a, $-56m.0, \delta -$ +468 -354 + 6 + 24 - 66 +120	Pubb16, 5 unnas, 1A L65, R65 70° 36' 15.32 13.0 15.46 15.24 15.4 15.3	15.86 16.2: 15.88 16.2: 15.9 15.88 16.0 15.9	(p) (1973) 29375.251 26166 29363.248 29381.249 29381.240 29381.297	0.750101 333.7 0.744526 0.655536 0.629414 0.653967	T,R&O 1 Ann 21.253 (RY Mus
42 Five r R os 1959 S55 NGC 4 1 2 3 4 5 6 7	$\begin{array}{r} - 3 \\ \text{new field var} \\ \text{ino and Piet} \\ \text{): Terzan, R} \\ \text{a, S57, S59,} \\ \hline \\ 4833 a \ 12^{\text{h}} \\ -264 \\ +378 \\ 0 \\ +378 \\ 0 \\ +132 \\ +120 \\ +72 \end{array}$	+ 37 iables, Terza ra, Bologna utily and O S61, R62a, $-156m.0, \delta -$ +468 -354 + 6 + 24 - 66 +120 - 6	Pubb16, 5 unnas, 1A L65, R65 70° 36' 15.32 13.0 15.46 15.24 15.4 15.3 15.49	15.86 16.2: 15.88 16.2: 15.9 15.88 16.0 15.9 16.05:	(p) (1973) 29375.251 26166 29363.248 29381.249 29381.240	0.750101 333.7 0.744526 0.655536 0.629414	T,R&O 1 Ann 21.253 (RY Mus
42 Five r Ros 1959 S55 VGC 4 1 2 3 4 5 6 7 8	$\begin{array}{r} - 3 \\ \text{new field var} \\ \text{ino and Piet} \\ \text{); Terzan, R} \\ \text{a, S57, S59,} \\ \hline \\ 4833 a \ 12^{\text{h}} \\ -264 \\ +378 \\ 0 \\ +378 \\ 0 \\ +132 \\ +120 \\ +72 \\ -168 \end{array}$	+ 37 iables, Terza ra, Bologna utily and O S61, R62a, $-156m.0, \delta -$ +468 -354 + 6 + 24 - 66 +120 - 6 +498	Pubb16, 5 unnas, 1A L65, R65 70° 36' 15.32 13.0 15.46 15.24 15.4 15.4 15.3 15.49 15.59	15.86 16.2: 15.88 16.2: 15.9 15.88 16.0 15.9 16.05: 15.79	 (p) (1973) 29375.251 26166 29363.248 29381.249 29381.240 29381.297 29374.256 	0.750101 333.7 0.744526 0.655536 0.629414 0.653967 0.668422	T,R&O 1 Ann 21.253 (RY Mus
42 Five r Ros 1959 S55 VGC 4 1 2 3 4 5 6 7 8 9	$\begin{array}{r} - 3 \\ \text{new field var} \\ \text{ino and Piet} \\ \text{i): Terzan, R} \\ \text{a, S57, S59,} \\ \hline \\ 4833 a \ 12^{\text{h}} \\ -264 \\ +378 \\ 0 \\ 0 \\ +132 \\ +120 \\ +72 \\ -168 \\ -42 \end{array}$	+ 37 iables, Terza ra, Bologna utily and O S61, R62a, -468 -354 + 6 + 24 - 66 +120 - 6 +498 - 6	Pubb16, 5 unnas, 1A L65, R65 70° 36' 15.32 13.0 15.46 15.24 15.4 15.3 15.49 15.59 14.5	15.86 16.2: 15.88 16.2: 15.9 15.88 16.0 15.9 16.05: 15.79 15.16	(p) (1973) 29375.251 26166 29363.248 29381.249 29381.240 29381.297	0.750101 333.7 0.744526 0.655536 0.629414 0.653967	T,R&O 1 Ann 21.253 (RY Mus
42 Sive r R os 1959 S55 NGC 4 1 2 3 4 5 6 7 8 9 10	$\begin{array}{r} - 3 \\ \text{new field var} \\ \text{ino and Piet} \\ \text{i): Terzan, R} \\ \text{a, S57, S59,} \\ \hline \\ \hline \\ 4833 a \ 12^{\text{h}} \\ -264 \\ +378 \\ 0 \\ 0 \\ +132 \\ +120 \\ +72 \\ -168 \\ -42 \\ +72 \\ \end{array}$	+ 37 iables, Terza ra, Bologna utily and O S61, R62a, -468 -354 + 6 + 24 - 66 + 120 - 6 +498 - 6 +414	Pubb16, 5 unnas, 1A L65, R65 70° 36' 15.32 13.0 15.46 15.24 15.4 15.3 15.49 15.59 14.5 15.14	15.86 16.2: 15.88 16.2: 15.9 15.88 16.0 15.9 16.05: 15.79 15.16 15.9	 (p) (1973) 29375.251 26166 29363.248 29381.249 29381.240 29381.297 29374.256 28035 	0.750101 333.7 0.744526 0.655536 0.629414 0.653967 0.668422 87.7:	T,R&O 1 Ann 21.253 (RY Mus
42 Five r Ros 1959 S55 NGC 4 1 2 3 4 5 6 7 8 9 10 11	$\begin{array}{r} - 3 \\ \text{new field var} \\ \text{ino and Piet} \\ \text{i): Terzan, R} \\ \text{a, S57, S59,} \\ \hline \\ 4833 a \ 12^{\text{h}} \\ -264 \\ +378 \\ 0 \\ 0 \\ +132 \\ +120 \\ +72 \\ -168 \\ -42 \\ +72 \\ -336 \\ \end{array}$	+ 37 iables, Terza ra, Bologna utily and O S61, R62a, $-356m.0, \delta -$ +468 -354 + 6 + 24 - 66 +120 - 6 +498 - 6 +414 - 828	Pubb16, 5 unnas, 1A L65, R65 70° 36' 15.32 13.0 15.46 15.24 15.4 15.3 15.49 15.59 14.5	15.86 16.2: 15.88 16.2: 15.9 15.88 16.0 15.9 16.05: 15.79 15.16	 (p) (1973) 29375.251 26166 29363.248 29381.249 29381.240 29381.297 29374.256 	0.750101 333.7 0.744526 0.655536 0.629414 0.653967 0.668422	T, R&O n Ann 21.253 (RY Mus RZ Mus, V, f
42 Ros 1959 S55 NGC 4 1 2 3 4 5 6 7 8 9 10 11 12	$\begin{array}{r} - 3 \\ \text{new field var} \\ \text{ino and Piet} \\ \text{i): Terzan, R} \\ \text{a, S57, S59,} \\ \hline \\ -264 \\ +378 \\ 0 \\ +378 \\ 0 \\ 0 \\ +132 \\ +120 \\ +72 \\ -168 \\ -42 \\ +72 \\ -336 \\ +19.2 \end{array}$	+ 37 iables, Terza ra, Bologna utily and O S61, R62a, $-156m.0, \delta -$ +468 -354 + 6 + 24 - 66 +120 - 6 +498 - 6 +414 - 828 + 13.7	Pubb16, 5 unnas, 1A L65, R65 70° 36' 15.32 13.0 15.46 15.24 15.4 15.3 15.49 15.59 14.5 15.14	15.86 16.2: 15.88 16.2: 15.9 15.88 16.0 15.9 16.05: 15.79 15.16 15.9	 (p) (1973) 29375.251 26166 29363.248 29381.249 29381.240 29381.297 29374.256 28035 	0.750101 333.7 0.744526 0.655536 0.629414 0.653967 0.668422 87.7:	T, R&O n Ann 21.253 (RY Mus RZ Mus, V, f F&L, RR?
42 Five r Ros (1959) S55 1 2 3 4 5 6 7 8 9 10 11 12 13	$\begin{array}{r} - 3 \\ \text{new field var} \\ \text{ino and Piet} \\ \text{i): Terzan, R} \\ \text{a, S57, S59,} \\ \hline \\ -264 \\ +378 \\ 0 \\ +378 \\ 0 \\ 0 \\ +132 \\ +120 \\ +72 \\ -168 \\ -42 \\ +72 \\ -336 \\ +19.2 \\ +272.2 \end{array}$	+ 37 iables, Terza ra, Bologna utily and O S61, R62a, $-156m.0, \delta -$ +468 -354 + 6 + 24 - 66 +120 - 6 +498 - 6 +414 -828 + 13.7 - 30.2	Pubb16, 5 unnas, 1A L65, R65 70° 36' 15.32 13.0 15.46 15.24 15.4 15.3 15.49 15.59 14.5 15.14	15.86 16.2: 15.88 16.2: 15.9 15.88 16.0 15.9 16.05: 15.79 15.16 15.9	 (p) (1973) 29375.251 26166 29363.248 29381.249 29381.240 29381.297 29374.256 28035 	0.750101 333.7 0.744526 0.655536 0.629414 0.653967 0.668422 87.7:	T, R&O n Ann 21.253 (RY Mus RZ Mus, V, f F&L, RR? F&L, RR?
42 Five r Ros (1959) S55 1 2 3 4 5 6 7 8 9 10 11 12 13 14	$\begin{array}{r} - 3 \\ \text{new field var} \\ \text{ino and Piet} \\ \text{i): Terzan, R} \\ \text{a, S57, S59,} \\ \hline \\ -264 \\ +378 \\ 0 \\ +378 \\ 0 \\ 0 \\ +132 \\ +120 \\ +72 \\ -168 \\ -42 \\ +72 \\ -336 \\ +19.2 \\ +272.2 \\ -13.7 \\ \end{array}$	+ 37 iables, Terza ra, Bologna utily and O S61, R62a, $-156m.0, \delta -$ +468 -354 + 6 + 24 - 66 +120 - 6 +498 - 6 +414 -828 + 13.7 - 30.2 - 38.5	Pubb16, 5 unnas, 1A L65, R65 70° 36' 15.32 13.0 15.46 15.24 15.4 15.3 15.49 15.59 14.5 15.14	15.86 16.2: 15.88 16.2: 15.9 15.88 16.0 15.9 16.05: 15.79 15.16 15.9	 (p) (1973) 29375.251 26166 29363.248 29381.249 29381.240 29381.297 29374.256 28035 	0.750101 333.7 0.744526 0.655536 0.629414 0.653967 0.668422 87.7:	T, R&O n Ann 21.253 (RY Mus RZ Mus, V, f F&L, RR? F&L, RR? F&L, RR?
42 Five r Ros (1959 S55 NGC - 1 2 3 4 5 6 7 8 9 10 11 12 13	$\begin{array}{r} - 3 \\ \text{new field var} \\ \text{ino and Piet} \\ \text{i): Terzan, R} \\ \text{a, S57, S59,} \\ \hline \\ -264 \\ +378 \\ 0 \\ +378 \\ 0 \\ 0 \\ +132 \\ +120 \\ +72 \\ -168 \\ -42 \\ +72 \\ -336 \\ +19.2 \\ +272.2 \end{array}$	+ 37 iables, Terza ra, Bologna utily and O S61, R62a, $-156m.0, \delta -$ +468 -354 + 6 + 24 - 66 +120 - 6 +498 - 6 +414 -828 + 13.7 - 30.2	Pubb16, 5 unnas, 1A L65, R65 70° 36' 15.32 13.0 15.46 15.24 15.4 15.3 15.49 15.59 14.5 15.14	15.86 16.2: 15.88 16.2: 15.9 15.88 16.0 15.9 16.05: 15.79 15.16 15.9	 (p) (1973) 29375.251 26166 29363.248 29381.249 29381.240 29381.297 29374.256 28035 	0.750101 333.7 0.744526 0.655536 0.629414 0.653967 0.668422 87.7:	T, R&O n Ann 21.253 (RY Mus RZ Mus, V, f F&L, RR? F&L, RR?

Menzies confirms variability of all these stars, with small variation for V16. He lists eight new suspected variables, Menzies B57, B84, B105, B121, B193, C80, C308 (all appear to be RR Lyr), and D199 (perhaps Pop 11 Cepheid), identified on print.

Feast, Obs 86.120 (1966); Fourcade, Laborde and Albarracin, Atlas y Catalogo, Cordoba (1966); Menzies, MN 156.207 (p) (1972)

S55a, S59, R62a, S62, L65, R65, S67, S69

No.	x''	у''	Max.	Min.	Epoch	Period	Remark
IGC :	5024 (Messie	er 53) a13 ¹	n10m.5, 8	6 +18°26'			
1	+ 9.6	-171.0	15.75	17.20	23083.408	0.6098240	+
2	- 78.0	-183.6	16.30	16.90	22787.498	0.3861005	•
3	- 60.6	-138.0	16.10	17.10	23113.388	0.6306134	0
4	-169.5	-156.6	16.41	16.84	23113.482	0.3851900	+
5	-237.0	-258.0	15.75	17.10	23143.336	0.6394247	_
6	+123.6	+ 13.5	16.00	17.20	23083.457	0.66401573	_
7	+ 79.5	+ 83.5	15.85	17.15	23145.418	0.5448396	+
8	+ 72.0	+ 60.0	16.10	17.10	22762.553	0.61553333	_
9	+ 67.5	- 40.5	15.90	17.10	23145.523	0.6003694	_
10	-138.6	+ 54.0	15.85	17.05	23143.446	0.6082562	0
11	-143.4	- 58.5	15.85	17.0	23113.525	0.6299592	+
12	+409.5	+187.5	15.90	17.15	23113.579	0.61258094	_
13	+462.0	-299.7	15.75	17.10	23143.419	0.6274424	_
14	+354.6	-207.0	15.80	17.10	23143.363	0.5454029	_
15	+248.4	+228.0	16.39	16.67	23113.361	0.3087107	+
16	-136.5	-202.5	16.43	16.90	23113.402	0.3031728	
17	-214.5	+114.0	16.29	16.80	22762.612	0.3814992	
18	- 96.0	+ 12.6	15.83	16.42	22102.012	0.001 1992	
19	+165.6	- 42.0	16.34	16.85	22789.465	0.3918418	
20	+183.0 +188.4	-351.6	16.32	16,81	23113.615	0.3844212	
21	+437.4	-27.0	16.32	16.81	22790.410	0.3384650	
22	- 53.4	-288.0	16.56	16.85	var?	0.0004000	
23	+ 96.0	- 89.7	16.34	16.88	23113.460	0.3658077	
23	-118.5	-29.2	15.71	16.43	20110.700	3.?	
25	+130.3	+ 31.7	16.05	17.0	23113.392	0.70516256	_
26	-288.0	-279.9	16.20	16.85	23113.392	0.3911166	
27	-203.8	-157.9	16.0	17.10	23083.620	0.6710599	0
28	-181.4	+459.0	15.65	17.05	23113.183	0.63279704	+
28 29	+125.4	-79.5	16.56	17.03	22808.305	0.8232463	+
30	+ 123.4	-482.8	15.6	17.6	31223.384	0.53548466	Be, 37d
31	+ 60.6	-0.1	15.0	17.0	51225.504	0.55540400	Dx, 57-
32	-111.9	- 86.6	16.26	16.65	22790.475	0.3901324	
33	-165.0	+ 12.2	10.20	10.05	22170.715	0.5701524	
33 34	-144.0	-216.7	16.48	16.70	not var		
35	+104.1	+153.2	16.25	16.95	23113.327	0.3726739	0
36	+120.3	+135.2 +306.5	16.33	16.71	23113.698	0.3732511	0
37	-44.0	+ 62.2	15.68	16.48	20110.070	0.0102011	
38	+ 21.3	-143.2	16.0	17.0	23083.773	0.7057873	+
39	-234.0	+212.5	16.84	17.26	not var	0.7057075	
40	+ 8.9	+212.5 +111.5	10.04	11.20	not vai		
41	+ 19	+111.3 + 66					
42	- 67	+ 17	15.54	16.33			
43	- 34	+ 53	10.04	10.33			
44	+ 53	-2	15.20	15.99			
45	- 5	- 2	10,20	13.77			
46	-12	- 30 + 34					
40 47	-68.7	+ 34 +138.0	16.20	16.80	37763.435	0.35051	Margoni
Ŧ /	- 00.7	±100.0	10.20	10.00	31103.433	0.33031	margoni

No.	x	,,	у"		Max.	Min.	Epoch	Period	Remarks
NGC S	5024	(contin	ued)						
48	+	4.68	+ 3	11.58	16.63	17.53	34480.91	0.3327660	Cuffey 47
49	+	1.05	+	4.39	15.25	15.65	34478.5	111.6	Cuffey 48
50	_	2.28	-	1.34	15.22	15.52	34482.0	55.4	Cuffey 49

Cuffey, AJ 67.574 (1962); Margoni, Asiago Contr 150 (1964); Cuffey, AJ 70.732 (1965); Margoni, Asiago Contr 170 (1965), Bamb KI Veröff 4,40.249 (1965); Wachmann, Astr Abh Hoffmeister p. 121 (1965); Cuffey, AJ 71.514 (1966); Margoni, Asiago Contr 198 (1967); Wachmann, Berg Abh 8.114 (1968)

S55a, S57, S59, S61, R62a, S62, S64, L65, R65, S67, C&S69, S69, S70

NGC 5053 $a 13^{h}13^{m}.9, \delta + 17^{\circ}57'$

1	-380	+158	15.8	16.5	37343.456	0.6471748	
2	-193	- 3	15.9	16.6	37370.575	0.3789561	+
3	+140	+138	15.8	16.6	37370.470	0.5929430	
4	+ 31	-114	15.8	16.5	37371.454	0.6670627	
5	+220	-220	16.0	16.6	37370.641	0.7148605	
6	+126	+ 77	16.0	16.5	37370.556	0.2921978	
7	- 87	+169	15.9	16.5	37370.469	0.3519300	+
8	+117	+ 50	15.9	16.5	37371.452	0.3628410	
9	-199	+382	16.0	16.6	37371.407	0.7402201	
10	+ 94	+ 56	16.10	16.45	37370.427	0.4373803	Alt P?
11			16.01	16.47			Perova

Perova's var., V11, is Baade's comparison star c. Perova, VS 14.255 (1962); Mannino, Bologna Pubbl 8, 12 (1963) S55a, S59, R62a, S62, S64, L65, R65, C&S69, S69

NGC 5139 (ω Centauri) a 13h23m.8, δ -47°13'

		,	,				
1	- 416.16	+298.89	11.05	12.45	30027.0	29.3479*	0, Sp, F, V, mem
2	- 340.00	+238.51]13.06	16.12	30139.4	235.74	0, f
3	- 507.93	+167.43	14.11	15.14	27000.42	0.8412403	
4	- 337.61	+262.10	14.96	15.25	27000.32	0.6273172	+
5	- 282.75	+328.29	14.48	15.49	27000.44	0.5152823	+
6	-162.43	+252.95	13.84	15.24	27010.1	73.513	0, prob f
7	+ 153.19	+879.15	14.15	15.33	27000.20	0.7130181	+
8	+ 629.43	+ 16.20	14.03	15.35	27000.31	0.5212859	+
9	- 473.17	+137.14	14.31	15.28	30000.04	0.5233301	0
10	- 397.76	+244.48	14.43	14.95	27000.06	0.374956	_
11	- 158.63	+338.73	13.90	15.04	27000.19	0.5648246	
12	- 193.16	+274.34	14.43	14.95	27000.08	0.3867639	0
13	- 487.26	+199.54	13.96	15.14	30000.50	0.6690507	0
14	- 473.51	-627.56	14.56	15.17	30000.29	0.3771102	0
15	- 194.09	+242.62	13.70	14.39	27000.40	0.8106152	+
16	+ 517.05	-536.81	14.46	15.04	27000.07	0.3301802	+
17	+ 522.24	+200.00	14.18	14.61	30062.2	64.725	irr, prob f
18	+ 596.64	+220.15	14.06	15.35	30000.42	0.6216671	0

No.	x''	У''	Max.	Min.	Epoch	Period	Remarks
NGC	5139 (contir	nued)					
19	+ 444.14	+ 32.44	14.76	15.30	30000.11	0.2995525	0
20	+ 280.88	+ 32.06	14.09	15.28	27000.61	0.6155528	+
21	- 355.75	+162.07	14.20	14.81	30000.10	0.380810	
22	+ 552.18	-330.22	14.63	15.17	27000.22	0.3965212	
23	+ 2.54	+240.71	14.26	15.39	27000.17	0.5108653	+
24	+ 524.71	-336.96	14.57	15.04	27000.08	0.4622076	+
25	- 210.77	+ 17.48	13.98	15.07	30000.50	0.5885146	0
26	- 229.58	+101.21	14.36	15.06	27000.15	0.7847138	+
27	- 205.47	+ 24.11	14.50	15.19	30000.02	0.6157067	0
28			not var			01010/00/	0
29	- 193.25	- 6.45	12.39	13.50	30008.98	14.73383	0, Cep, mem
30	- 307.92	- 75.01			30000.21	0.403988	0
31			not var				-
32	+ 174.39	+420.01	13.87	15.20	27000.39	0.6204298	
33	- 554.54	- 24.00	14.16:	15.25:	27000.52	0.6023334	
34	- 396.87	-269.04	14.10:	15.00::	27000.55	0.7339428	+
35	+ 71.70	+365.07	14.43	15.00	27000.00	0.3868382	_
36	+ 246.11	+789.42	14.62	15.17	30000.26	0.379846	0
37			not var				
38	+ 169.10	-470.37	14.45	15.20	27000.01	0.7790474	+
39	+ 741.86	-365.80	14.48	15.08	30000.21	0.3933505	0
40	- 220.99	-125.30	13.95	15.15	30000.11	0.6340925	0
41	+ 151.80	-142.18	14.03	15.06	27000.53	0.6629590	+
42	+ 0.21	- 50.21	12.5	14.9		149.4	
43	+ 119.23	+103.16	13.27	14.29	30000.65	1.156706	0, Cep, mem
44	- 243.40	-354.05	13.67:	14.65:	30000.48	0.5675440	0
45	- 764.48	+ 80.97	14.18	15.37	27000.09	0.5891301	+
46	- 770.61	+170.11	14.43	15.44	27000.60	0.6869406	+
47	- 504.32	+269.26	14.07	14.60	27000.15	0.4851319	_
48	- 86.54	-104.54	12.95	13.80	30003.6	4.47227	0, Cep, mem
49	- 391.98	-553.77	14.40	15.52	30000.36	0.6046505	0
50	- 530.75	+ 65.40	14.32	14.90	30000.20	0.3861960	0
51	- 36.85	+258.73	13.86	15.16	27000,08	0.5741332	+
52	- 112.85	+ 36.47	13.60	14.22	30000.28	0.6603703	0
53	- 482.79	-447.74	13.30	13.87		32.7	irr, Alt 70
54	- 229.39	+592.76	14.33	15.22	27000.30	0.7728973	+
55	- 617.73	-816.68	14.50	15.50	27000.11	0.5817244	_
56	- 515.93	-541.96	14.56	15.57	27000.42	0.5680098	_
57	+ 635.72	-493.26	14.52	15.16	27000.44	0.7944181	+
58	- 335.44	+277.68	14.49	14.74	30000.28	0.3699124	0
59	- 282.90	- 65.84	14.20	15.18	30000.41	0.5185122	0
60	- 108.42	-247.33	13.24	14.47	30001.00	1.349464	0, Cep, mem
61	+ 280.44	+ 68.07	13.65	14.42	30001.59	2.273564	0, Cep, mem
62	- 199.80	+ 45.28	13.88	15.10	27000.31	0.6197945	+
63	- 996.82	-491.46	14.59	15.17	27000.24	0.8259432	+
64	- 448.01	-457.49	14.54	15.14	30000.24	0.344621	+
65	- 454.49	-474.32	14.72:	15.17:	30000.022	0.06272267	0, f, RRs

Catalogue

No.	x"	y"	Max.	Min.	Epoch	Period	Remarks
NGC 5	139 (contin	ued)					
66	- 133.37	+375.15	14.46	14.95	27000.24	0.4074106	+
67	- 178.11	+593.57	14.18	15.28	27000.41	0.5644510	+
68	- 338.18	+545.12	14.15	14.67	30000.1	0.534708	0
69	- 965.76	+530.94	14.14	15.35	27000.24	0.6532208	+
70	+ 417.83	-304.65	14.62	15.11	30000.2	0.390596	0
71	+ 220.39	+ 47.13	14.38	14.92	30000.2	0.3574826	0
72	+ 477.85	+734.87	14.44	15.10	27000.17	0.3845221	+
73	- 532.49	+750.76	14.00	15.32	27000.42	0.5752151	+
74	+ 215.47	+664.83	14.10:	15.29:	27000.43	0.5032480	+
75	+ 341.44	+591.55	14.52	15.07	30000.16	0.4283681	0
76	+ 113.31	+511.81	14.21:	14.72:	27000.17	0.3378487	+
77	+ 352.29	+392.42	14.39	14.85	30000.10	0.4260045	0
78	+ 586.10	+146.68	14.17	14.84	33929.972	1.16812901	-, EA, Min, mem
79	+1000.12	- 51.02	14.26	15.39	27000.23	0.6082758	+
80	+1304:	-108:	14.1:	14.8		0.45	Alt 0.31
81	+ 511.36	+228.72	14.39	14.93	27000.14	0.3894005	+
82	+ 499.94	+126.98	14.47	15.00	30000.12	0.335931	0
83	+ 226.09	+424.66	14.50	15.07	27000.29	0.3566071	+
84	-1202.81	- 74.70	14.37:	15.10:	30000.33	0.5798732	0
85	-1010.51	+307.98	14.33	15.13:	27000.10	0.7427583	+
86	+ 293.14	+147.26	13.96	15.18	27000.32	0.6478337	+
	+ 113.68	+184.13	14.40	14.90	30000.04	0.3965978	0
88	+ 98.13	+203.28	14.01	14.81	27000,22	0.6901959	+
	- 2.95	+159.29	14.47	14.97	30000.29	0.374948	0
90	- 5.30	+137.09	13.81	14.73	27000,48	0.6034020	+
91	+ 43.72	+144.35	14.25	14.91	27000.18	0.8951197	
92	- 317.86	+446.38	14.10:	14.68:	30000.00	1.345044	0, Cep, mem
93	517.00	1440.50	not var	14.00.	50000.00	1.545044	0, Cep, mem
94	- 504.09	+355.09	14,58:	14,99:	30000.20	0.2539334	0
95	- 824.80	- 11.05	14.51	15.02	27000.39	0.4050201	+
96	- 71.20	+ 97.06	13.93	14.82	27000.08	0.6245320	+
97	+ 225.50	+ 187.93	13.93	14.82	27000.65	0.6918907	+
98	+ 198.25	+107.33 +102.38	14.11	15.09	30000.19	0.2805649	0
99	+ 160.35	+102.36 + 50.36	13.77	14.90	37000.59	0.766140	+
100	+ 179.49	+ 65.68	14.05	15.05	27000.48	0.5527119	+
101	+ 444.11	- 73.28	14.46	14.90	26523.291	0.3408843	'
102	+ 361.83	- 94.10	14.16	14.90	27000.13	0.6913899	+
102	+ 283.14	+ 2.35	14.16	13.22	30000.02	0.3288489	0
103	+ 283.14 + 822.98	- 309.01	14.40	14.80	37000.51	0.867280	-
104	+ 603.23	-246.92	14.70	15.25	27000.14	0.3353345	+
105	+ 130.35	+ 26.92	13.88	15.02	27000.22	0.5699061	
107	+ 279.83	-139.13	13.88	15.39	27000.22	0.5141002	+
107	+ 279.63 + 185.66	-139.13 -46.36	14.07	13.39	27000.24	0.5944554	+
108	+ 153.00 + 153.91	- 57.13	13.99	15.03	27000.67		
109	+ 153.91 + 158.94	- 87.08	13.99	13.03	26524.256	0.7440615	
						0.3221021	
111 112	+ 27.26 + 79.83	- 0.30 -103.36	14.18 13.92	$\begin{array}{c} 14.80\\ 14.92 \end{array}$	27000.02 30000.07	0.7629005 0.4743558	÷ ()

No.	x''	у''	Max.	Min.	Epoch	Period	Remarks
NGC	5139 (contir	nued)					
113	+ 99.99	-187.65	13.94	15.22	27000.39	0.5733636	+
114	+ 38.08	-101.15	14.00	14.75	26470.416	0.6753065	
115	- 345.49	-336.14	14.12	15.30	27000,14	0.6304638	-
116	- 109.66	+ 33.71	14.12	14.77	30000.37	0.7201327	0
117	- 267.73	- 40.22	14.40	14.92	30000.17	0.4216616	0
118	- 58.87	- 98.67	13.88	15.02	30000.03	0.6116283	0
119	- 82.04	-157.45	14.51	14.83	26472.319	0.3058774	
120	- 211,29	-247.61	14.26	15.23	27000.51	0.5485746	_
121	- 184.36	-189.58	14.48	14.81	27000.00	0.3041811	+
122	- 162.92	-261.41	13.99	15.17	27000.06	0.6349267	+
123	+ 46.11	-512.55	14.42	14.91	26473.331	0.4739051	
123	+ 78.88	-626.81	14.37	14.97	30000.02	0.3318607	0
125	+ 23.74	-742.59	14.04	15.33	27000.26	0.5928884	+
125	+ 822.95	-730.44	14.45	14.97	30000.17	0.3418905	0
127	- 880.16	+ 4.31	14.60	15.12	30000.03	0.3052736	0
128	- 289.77	- 92.09	14.25	14.86	27000.43	0.8349478	+
129	+ 192.02	- 25.83	14.18	14.74			f
130	- 366.17	+900.99	14.13	15.49	30000.38	0,4932499	0
131	-165.05	- 59.95	14.40	14.86	27000.19	0.3921558	_
132	- 72.44	- 29.31	13.97	14.96	26469.386	0.6556410	
133	-1914.22	+1053.78	13.74	14.53	30000.07	0.31709593	0, EW, Min
134	- 942.87	+ 972.72	14.12	15.32	30000.57	0.6529026	0
135	- 184.88	- 37.25	13.87	14.85	26470.314	0.6325795	0
136	-154.26	+ 60.08	14.22	14.64	30000.0	0.3919136	0
137	- 149.54	+ 96.23	14.38	14.90	30000.29	0.3342179	õ
138	- 111.12	- 187.55	12.5	13.6	50000.25	74.6: irr.	Ŭ
139	- 86.94	+ 65.18	14.00	14.90	26462.404	0.6768666	
140	- 42.65	- 86.80	11.00	11.20	20102.101	short	
141	- 55.47	- 47.46	14.05	14.75	irr	0.6975651	
142	- 37.35	- 2.56	14.00	14.8		short	
143	- 37.45	+ 71.40	14.24	14.77	26470.394	0.8207020	
144	- 33.28	+ 22.44	14.33	14.81	26454.329	0.8353054	
144	- 33.28 + 49.07	-148.51	14.33	14.87	30000.15	0.373139	0
145	+ 65.96	-48.03	13.87	14.77	26469.386	0.6331021	č
140	+ 298.70	- 48.03 - 151.04	14.35	14.80	30000.34	0.4226989	0
148	+ 298.70 + 299.20	+ 44.21	14.35	13.8	50000.54	90: irr.	v
140	+ 299.20	+ 44.21 + 894.18	12.9	15.0	30000.42	0.6827281	0
149	+ 477.55 + 543.18	+ 694.18 - 442.23	14.03	14.94	30000.42	0.8991997	0
151	+ 343.18 +1010.06	+ 753.35	14.07	14.94	30000.1	0.4077838	0
152	+ 1010.00 + 13.84	- 48.83	12.8	13.7	50000.1	124:	irr
152	+ 13.84 + 34.46	+ 136.32	14.48	14.88	30000.23	0.386445	0
155	+ 169.59	+ 130.32 - 113.20	14.48	14.88	30000.23	0.322407	0
154		-113.20 + 237.31	14.33	14.72	30000.10	0.322407	0
			14.43	14.83	30000.34	0.3591887	0
156 157	+ 15.06 + 1.77		14.41	14.83	26523.370	0.4064970	0
	+ 1.77 - 10.58			14.79	26323.370	0.3673350	
158	-2039.94	- 119.80	14.32	14.74	30000.0	0.343101	0
159	-2039.94	- 891.45	14.39	14.90	20000.0	0.343101	0

No.	x"	У''	Max.	Min.	Epoch	Period	Remarks
NGC	5139 (conti	nued)					
160	- 711.13	+ 969.21	14.51	15.15	30000.1	0.397276	0
161	- 96.81	- 129.27	13.3	13.8		irr	
162	- 392.40	- 252.39	12.9	13.6		irr	cst now
163	- 575.24	+ 499.91	14.59	14.88	30000.0	0.3132294	0
164	+ 152.75	+ 478.38	13.7	14.0		37: †	Red
165	- 69.92	+ 104.59					
166	- 2.89	+ 144.71					
167	- 352.63	- 321.43					
168	- 543.66	- 201.42	14.96	15.46	30000.1	0.321295	0
169	+ 347.5	+ 278.7	14.61	14.85	32323.35	0.46926	Belserene
170						irr	Eggen, Herst 53
171	-2280	+2520				RRa	Wilkens 1
172	+ 720	+1440				RRa	Wilkens 2
173	+1800	+ 660				RRa	Wilkens 3
174	+ 780	-2040				1,8984	Wilkens 4, E
175	-2640	-3000					Wilkens 5
176	+ 144	- 66				RRc	Wilkens 6
177	+1380	- 480				RRb	Wilkens 7
178	+3120	+ 600				RRb	Wilkens 8
179	-1800	-2940				RRb	Wilkens 9
180	-1500	- 720				RRc	Wilkens 10
181	+1925	-1216				0.58836	Wess 2
182	+3355	+1292				0.54539	Wess 12
183	+1744	- 116				0.29605	Wess 13

* This variable appears intermediate between W Vir and RV Tau types, with alternate P 58^d.7. † Period from Dickens (1972).

Wilkens now considers his vars. 1, 5, 8, 9 also members (Letter, 1972), nos. 11-15 suspected. Wesselink has one field EW.

Belserene, Rutherfurd Contr 33.1, 43 (1956), AJ 64.58 (1959); Thackeray, Obs 80.226 (1960); Eggen, Royal Obs Bull 29.E73 (1961); Kurochkin, VS 13.248 (1961); Belserene, AJ 69.475 (1964); Dickens and Saunders, Royal Obs Bull 101.E101 (1965); Geyer, AG Mitt p.96 (1965); Geyer and Szeidl, Bamb K1 Veröff 4, 40.63 (1965); Harding, Royal Obs Bull 99.E65 (1965); Wilkens, MVS 3.72 (1965); Oosterhoff and Walraven, BAN 18.387 (1966); Ponsen and Oosterhoff, BAN Suppl 1.3 (1966); Woolley, Royal Obs Ann 2 (1966); Dickens and Carey, Royal Obs Bull 129 (1967); Geyer, ZAp 66.16 (1967); Wilkens, MVS 4.93 (1967); Jones, MN 140.265 (1968); Sistero, IBVS 316 (1968); Wilkens, La Plata Bol 12 (1968); van Albada, AAS Bull 1.366 (1969); Sistero, Fourcade and Laborde, IBVS 402 (1969); Wesselink, Letter (1969); Geyer and Szeidl, Astr and Ap 4.40 (1970); Geyer, IAU Coll 15.235 (1971); Dickens, Letter (1972); Dickens, Feast and Lloyd I vans, MN 159.337 (1972); Eggen, ApJ 172.639 (1972); Feast, Preprint (1972); Geyer, AG Mitt 31.168 (1972); Wesselink, unpub (1972); Wilkens, Letter (1972)

\$55a, \$57, \$59, \$61, A62, R62a, \$62, P64, \$64, L65, R65, FLA66, \$t66, \$67, C&\$69, \$69, \$70

NGC	527	2 (Messi	er 3) a 13h	39m.9 , δ	+28°38′			
1	_	5.2	- 128.5	14.68	15.92	36692.336	0.5206250	
2	+	15.8	+ 52.6					
3	+	57.9	- 66.0	14.75	16.00	15021.225	0.5582053	

No.	x"	у''	Max.	Min.	Epoch	Period	Remarks
NGC	5272 (cont	inued)					
4	- 43.5	- 8.8	14.9	16.0			
5	+ 261.0	- 22.3	14.71	16.15	15021.239	0.5058940	Bő
6	- 123.9	+ 60.1	14.87	16.21	36669.320	0.5143228	+
7	- 4.8	+ 87.2	14.69	16.25	15021.064	0.4974290	
8	- 81.7	- 23.4	14.37	15.4			Confirmed
9	- 291.4	- 207.8	14.95	16.28	36668.502	0.5415641	-
10	+ 153.6	+ 138.0	15.06	16.15	36658.470	0.5695185	-
11	- 152.6	- 209.7	14.75	16.17	36699.491	0.5078918	cst
12	- 3.8	- 145.4	15.23	15.83	36687.336	0.3178890	
13	- 26.0	- 137.5	14.79	15.96	36702.398	0.4830302	- RR Binary?
14	- 49.0	- 161.0	14.95	16.19	36668.549	0.6359019	+
15	- 90.8	- 273.2	14.87	16.26	36666.565	0.5300794	+
16	- 301.4	- 93.1	14.93	16.31	36687.369	0.5115075	_
17	+ 142.4	- 440.4	15.20	16.20	36668.543	0.5761417	+, B2
18	+ 97.6	- 295.3	14.86	16.30	36661.578	0.5163623	BQ
19	+ 350.5	- 245.6	15.56	16.15	36639.520	0.6319796	_
20	+ 333.5	- 271.6	14.85	16.25	36668.555	0.4912411	
21	+ 346.9	+ 17.9	14.81	16.27	30000.415	0.5157336	+
22	+ 190.2	- 10.7	14.98	16.20	36660.536	0.4814208	
23	- 113.0	+ 279.2	15.07	15.80	15021.082	0.5953756	
24	- 147.6	+ 10.4	15.06	16.07	15021.563	0.6633494	cst
25	- 124.4	- 31.4	14.66	16.07	15021.089	0.4800510	+
26	- 177.4	- 43.0	14.88	16.04	15021.239	0.5977452	-
27	- 110.2	- 102.8	15.07	16.11	15021.566	0.5790912	
28	- 25.0	- 105.8	14.92	15.88	24290.335	0.4706364	
29	- 65.2	- 73.6	1	10100		0	
30	- 36.5	+ 58.0	15.18	15.92	22760.635	0.5120902	
31	+ 33.1	+ 65.1	14.43	15.65	15021.542	0.5807216	_
32	+ 11.8	+ 60.1	14.58	15.68	15021.108	0.4953518	_
33	+ 70,5	- 89.1	14.78	15.90	15021.217	0.5252237	-, BQ
34	+ 135.4	+ 170.2	15.08	16.16	36668.467	0.5591012	B2
35	- 107.3	- 278.2	15.00	16.10	15021.032	0.5306059	BQ
36	+ 172.0	- 35.4	14.78	16.26	36692.525	0.5455855	+
37	- 236.7	+ 164.7	15.34	16.12	30000.241	0.3266384	_
38	- 203.0	+ 127.7	14.74	16.16	24290.304	0.5580276	-, BQ
39	- 243.6	+ 121.4	15.14	16.23	15021.073	0.5870766	B2
40	- 271.2	+ 1121.4	15.01	16.32	30000.397	0.5515416	<i>D</i> ~
41	- 93.3	+ 54.0	15.22	16.23	15021.441	0.4850462	
42	- 93.5 - 78.6	+ 41.0	14.40	15.68	15021.515	0.5901852	
42 43	- 78.6 + 99.9	+ 41.0 + 24.7	14.40	15.80	15021.191	0.5901832	B¢
43 44	+ 99.9	+ 24.7 + 99.4	14.40	16.04	15021.368	0.5063961	B¢
44 45	-241.2	+ 99.4 - 129.9	14.04	16.23	15021.368	0.5368966	Dr
45 46	-241.2 -128.1	-129.9 -51.5	14.94	15.96	15021.264	0.5368966	
40 47	-128.1 -117.5		13.32		15021.264	0.5409923	В¢
	- 117.3 + 126.9	-73.2 -102.7	14.74	15.97	36669.346		DX
48				15.92		0.6278128	DO
49 50	+ 140.0	-100.7	14.71	16.11	36715.388	0.5482196	BQ
							DX
50 51	+ 8.8 + 30.8	- 234.0 - 226.4	14.57 15.16	16.09 16.18	36669.560 36702.392	0.5130879 0.5839818	Βδ

Catalogue

No.	х''	У''	Max.	Min.	Epoch	Period	Remarks
IGC	5272 (cont	inued)					
52	- 76.8	+ 152.0	14.92	16.06	15021.485	0.5162250	BQ
53	- 7.4	+ 122.8	14.68	15.93	15021.006	0.5048878	
54	- 32.6	+ 106.4	14.92	15.94	15021.193	0.5063150	
55	- 204.2	+ 324.4	14.88	16.31	30000.032	0.5298136	
56	- 141.1	+ 358.6	15.38	16.02	22760.623	0.3295986	
57	+ 155.2	- 0.2	14.84	16.23	15021.618	0.5122223	
58	- 86.2	+ 46.2	14.58	15.91	22760.621	0.5170617	
58 59		-228.4	15.23	16.20	36699.425	0.5888053	
60 61	- 297.8	- 315.4	15.24	16.15	15021.389	0.7077228	D O
51	+ 190.2	+ 363.0	14.96	16.21	15021.076	0.5209312	BØ
62	+ 90.2	+ 417.0	15.42	16.16	15021.331	0.6524077	DO
63	+ 37.2	+ 341.9	14.96	16.22	15021.094	0.5704164	Be
54	+ 114.8	+ 330.4	15.32	16.26	30000.382	0.6054590	
65	+ 125.4	+ 327.5	14.79	16.22	30000.332	0.6683394	
66	- 101.4	+ 121.4	15.20	15.93	15021.323	0.6201827	
57	- 131.4	+ 123.0	14.95	16.07	15021.411	0.5683609	BØ
58	+ 21.9	+ 174.8	15.0	16.0		0.3559732	BØ
59	+ 80.6	+ 141.0	15.15	16.05	36692.851:	0.5665878	
10	+ 37.6	+ 152.2	15.22	15.75	15021.315	0.486:	Be
1	+ 160.6	- 2.0	15.07	16.04	15021.168	0.5490517	
2	+ 445.5	- 2.2	14.80	16.30	15021.327	0.4560739	
73	+ 438.5	+ 62.2	15.0	16.0			
14	+ 88.2	+ 151.0	14.80	16.20	36668.389	0.4921441	
75	+ 49.0	+ 159.5	15.38	15.98	36668.411	0.3140790	
76	- 14.4	- 88.2	14.90	16.46	15021.293	0.5017544	
77	- 94.4	+ 27.8	14.63	16.07	15021.451	0.4593425	
78	+ 47.5	+ 66.4	14.92	15.70	15021.249	0.6119254	
79	+ 43.4	+ 349.4	14.72	16.31	15021.229	0.4833275	BQ
80	+ 416.8	+ 284.6	14.80	16.17	15021.433	0.5384827	Be
81	+ 342.8	+ 351.1	14.86	16.30	30000.461	0.5291108	
82	- 102.6	- 601.8	14.96	16.31	36668.477	0.5245061	
83	- 441.6	+ 113.4	14.87	16.32	15021.046	0.5012408	
34	+ 64.0	+ 165.2	15.26	16.12	36666.463	0.5957289	
85	+ 306.2	+ 225.8	15.32	15.92	22760.517	0.3558189	
36	+ 513.0	- 114.2	15.42	16.06	15021.016	0.2926601	
87	+ 110.6	+ 60.2	15.13	15.68	22760.535	0.3574814	
88	- 35.0	- 70.2	15.08	15.67	24290.324	0.2985092	
89	+ 28.0	- 110.8	14.85	15.93	15021,507	0.5484779	
90	+ 20.0 + 97.2	-188.2	14.92	16.25	36692.397	0.5170334	
90 91	- 14.3	-550.0	14.92	16.25	36669.366	0.5301630	
) 2	- 29.0		14.95	16.20	15021.083	0.5035553	
93	- 319.4	- 408.4 - 396.6	14.94	16.27	30000.420	0.6023007	
93 94	= 319.4 = 488.4	- 224.6	13.24	16.27	30000.304	0.5236936	
94 95					30000.304	0.5236936	
	- 154.7	+ 15.4	13.73	14.42	26601 470		
96	164.2	234.0	14.74	16.10	36692.470	0.4994467	
97	- 130.0	- 196.7	15.53	16.04	° 61.581	0.3349259	
98	+ 132.4	- 3.2	not var	15.0			
99	+ 201.8	- 55.0	14.8	15.8			

No.	x''	у''	Max.	Min.	Epoch	Period	Remarks
NGC	5272 (conti	nued)					
100	+ 69.9	+ 97.3	15.31	15.96		0.6188126	
101	+ 46.4	+ 83.7	15.29	15.78	15021.101	0.6438975	
102	+ 58.4	+ 114.9	15.2	15.9	var?		
103	+ 58.1	+ 120.4	not var				
104	- 25.8	+ 145.5	14.73	15.99	15021.288	0.5699231	
105	- 20.9	+ 191.6	15.33	15.72	36668.548	0.2877427	
106	- 48.0	+ 168.0	15.18	16.04	36666.372	0.5471593	
107	- 75.8	+ 335.0	15.40	16.14	30000.039	0.3090348	
108	- 219.0	+ 310.9	14.94	16.30	30000.250	0.5196047	
109	- 89.3	+ 2.7	14.56	15.64	15021.033	0.5339239	
110	- 99.4	- 15.8	15.02	15.88	15021.397	0.5353569	
111	- 92.7	+ 21.9	15.06	16.02	15021.402	0.5102469	BS
112	- 144.6	- 719.4	not var	-			-
113	+ 199.8	- 689.8	14.90	16.25	15021.241	0.5130066	
114	+ 11.8	+ 622.0	15.18	16.24	15021.515	0.5977270	
115	+ 445.0	+ 664.7	14.98	16.34	15021.297	0.5133529	
116	- 491.8	+ 465.2	14.89	16.32	15021.441	0.5148088	
117	+ 89.6	- 467.6	15.22	16.22	15021.579	0.6005164	
118	+ 144.4	- 292.2	14.90	16.36	15021.272	0.4993807	
119	+ 253.4	+ 106.2	14.76	16.25	30000.192	0.5177411	
120	- 295.8	+ 231.4	15.56	16.07	15021.284	0.6401387	
121	- 43.6	+ 56.1	14.84	15.54	22760.550	0.5351882	
122	- 33.5	- 46.4	14.6	16.1	2=700.000	0.5017	
123	- 259	- 985	14.92	16.31	15021.395	0.5454472	
124	- 66.4	- 201.4	15.50	15.96	36685.349	0.7524328	
125	+ 186.3	- 132.8	15.48	16.00	36666.585	0.3498206	
126	- 15.4	- 146.4	15.42	15.96	15021.208	0.3484043	
127	+ 95.6	- 63.6	not var				
128	+ 114.6	+ 131.4	15.40	15.86		0.2922710	BS
129	- 43.6	+ 77.2	15.2	16.1		0.305471	2
130	+ 4.2	+ 84.6	15.27	16.00	22760.347	0.5688172	BS
131	- 73.2	+ 27.4	15.04	15.56	15021.318	0.2976919	-
132	- 53.6	- 22.0	15.3	16.4	24290.387	0.3398479	
133	- 58.6	+ 43.5	14.89	15.96	15021.482	0.5507230	
134	- 22.4	+ 52.4	14.9	16.3	24290.282	0.6190	
135	- 27.0	+ 38.0	15.0	16.5		0.56843	
136	- 25.4	+ 33.4	15.6	16.2			
137	+ 53.0	- 18.8	15.30	16.04	15021.155	0.5751464	
138	- 263.6	+ 41.9	14.0	14.46	35608.96	80.98	
139	+ 34.5	+ 28.0	15.25	16.12	22760.465	0.560004	
140	- 15.7	+ 108.9	15.07	15.51	22760.216	0.3331304	
141	-1497.5	- 249.9	14.98	15.97		0.2695671	RV CVn, EW, f
142	- 30	- 59	14.79	15.72	24290.397	0.5686256	
143	- 34	+ 16	15.4	16.4	24290.337	0.51111	
144	+ 54	- 100	15.27	15.99	24290.565	0.5967843	
145	+ 29	+ 8	14.9	16.5	24290.528	0.514456	
146	+ 96	- 59	14.6	16.5	24290.563	0.596740	
140		0)			0.000	0.070710	

Catalogue

No.		x''	3	y"	Max.	Min.	Epoch	Period	Remarks
NGC	527	2 (co	ntinue	d)					
148	_	7	+	37	15.3	16.4	24290.170	0.467246	
149	+	34	+	52	14.7	16.5	24290,228	0.54985	
50	+	69	+	37	14.8	16.7	24290.359	0.52397	
51	+	4		40	14.9	16.3	24290.191	0.51705	
52	+	77	+	50	15.42	15.76	24290.355	0.3261217	
53	т —	38	+	60	not var	15.70	24270.555	0.5201217	
55		2	+	29	12.1	13.7	38873.53	15.290	
55	+	64			12.1	13.7	30073.33	15.290	
			-	74	16.0	15.0	38872.331	0.521070	
56	-	21	-	42	15.0	15.9		0.531979	
57	-	17	+	35	14.2	15.7	24647.650:	0.5283	
58	-	16	-	41	15.2	16.5	24647.564:	0.50809?	
59	_	15	+	16	14.9	16.6	24647.602:	0.5337	
60	-	9	-	44	14.9	16.1	24647.446	0.64792	
61	+	17	_	58	15.4	16.4	24647.567:	0.49874	
62	+	28		32	not var				
63		16	_	32	not var				
64	+	21		36	15.3	15.9			
65	+	73	_	20	14.7	16.5	24647.544	0.483638	
66	-	97	_	8	15.4	16.1	38867.364	0.485622	
67	_	78	_	37	15.62	16.00	24647.448	0.6439839	
68		45	+	7	14.9	16.0	24647.617	0.3770	
69		29		35	not var				
70	_	28	+	32	15.1	16.1	24647.716:	0.43725	
71	_	27	+	16	15.0	16.1	24647.864	0.4303	
72	_	21	+	25	14.9	16.5	24647,700	0.59400	
73		13	+	39	15.2	16.6	24647.670:	0.606990	
74	_	9	_	34	15.1	16.1	24647.710	0.4082	
75	+	42	+	26	14.9	16.2	24647.914	0.60780	
76	+	46	+	32	14.8	16.4	24647.621	0.55599	
77	+	63	_	29	15.52	15.90	24647.953	0.3483438	
78	+	79	+	46	15.51	15.81	24647.755	0.2650805	
79	+	39		774	not var	15.01	24047.755	0.2050805	
80				27					
81	_	19 30	_	14	not var				
					not var				
82		19	+	60	not var				
83	+	29	+	7	not var	1.6.4	24640.045	0.517	
84	-	25	-	14	14.9	16.4	24647.841	0.517	
85		15	+	32	15.2	16.1			
86	+	12		64	15.1	16.1	24647.670	0.675	
87	-	23	+	9	14.9	16.2	24647.961	0.3927	
88		27	+	24	15.0	16.0	24647.615:	0.3677	
89		25	-	21	15.2	16.0	24647.964	0.668	
90		8	+	28	14.8	16.5	24647.936	0.501	
91		0	+	24	15.1	16.1	24647.981	0.512	
92		2	+	3	15.0	16.1	24647.933:	0.525	
93	+	15		7	14.8	16.3	24647.777	0.630	
94	+	17		13	15.1	16.4	24647.758	0.549	
95	_	13		29	15.0	16.2	24647.470:	0.600	

No.		x''	3	,''	Max.	Min.	Epoch	Period	Remarks
NGC	5272	2 (conti	inued)					
196	+	47	+	1					
197	+	58	+	10	15.1	16.5	24647.689	0.500075	
198		23	+	15	15.2	16.0	24647.923:	0.3617	
199	_	19	+	13	14.8	16.3	24647.699:	0.488	
200	_	4	+	21					
201	+	4	_	9	15.1	16.1	39964.391	0.541333	
202	_	379.7	+	101	15.4	15.8		0.9987:	
203	_	30.2	_	308	15.56	15.72		0.28719	
204	-	106.4	-	18	15.76	15.90		0.9170:	
205	_	780	+	720	15.4	16.2	35600.38	0.6369126	vZ 89
206		0	-1	680	14.8	16.1	35601.41	0.5093832	vZ 1221
207	+	36.0	-	30.8	14.8	15.4			vZ 991
208	+	2.5	_	57.9	14.8	15.4			vZ 800
209	_	68.2	-	99.1	14.3	15.1			vZ 472
210	—	85.7	-	9.9	14.6	15.4			vZ 420
211	_	54.1	+	6.6	14.6	15.7	41061.438	0.557798	vZ 519
212	_	21.6		38.0	15.2	16.2	38867.356	0.542196	SVS 1365
213		25.4	_	29.7	15.0	15.4			vZ 648?
214	+	32.0	+	5.8	14.6	15.6	41061.447	0.539493	vZ 971
215	_	13.9	-	0.9	14.8	15.6			vZ 717
216	+	27.9	_	10.8	15.2	15.8			vZ 951
217		0.0	-	26.4	14.5	15.4			SVS 1370
218	+	28.1	_	29.4	14.5	15.7	38867.304	0.543774	vZ 950
219		57.9	+	15.7	14.6	15.8			vZ 509
220	+	33.1		15.2	14.2	14.8			vZ 978
221	_	16.6		13.5	14.6	15.1			vZ 692
222	+	96.3	-	63.3	14.9	15.9	38859.416	0.596764	vZ 1198
223	+	23.9	-	5.8	14.8	15.4			vZ 930
224	_	22.1	+	5.0	13.7	14.6			vZ 668
225	+	8.8	+	225	13.86	14.26	35651.38	89.59	vZ 837

Vars. 205. 206 found by Kurochkin, identified by Kukarkin; 207-224 by Kholopov; 225 by Russev. Variability of V8 and V156 reconfirmed by Kholopov, and of V138 by Russev. 11 suspected variables, Kholopov (1963). Identification of variables in this cluster is difficult. See von Zeipel numbers in S55a, with revisions by Kholopov (1963), and above for the new variables.

Arp, AJ 60.1 (1955); Roberts and Sandage, AJ 60.185 (1955); Osváth, Budapest Mitt 42 (1957); Kukarkin and Kukarkina, VS 12.291 (1958); Wallerstein, ApJ 127.583 (1958); Kurochkin, AC 205 (1959); Sandage, ApJ 129.596 (1959); Kraft, Camp and Hughes, ApJ 130.90 (1959); Kukarkin, AC 216.29 (1960); Kurochkin, VS 13.84 (1960); Thackeray, Obs 80.226 (1960); Kurochkin, VS 13.248 (1961); Kukarkina and Kukarkin, VS 13.309 (1961); Kurochkin, VS 14.196 (1962); Breckinridge, ASP 75.22 (1963); Kholopov, VS 14.275 (1963); Fernie, ApJ 141.1411 (1965); Feast, ApJ 142.796 (1965); Szeidl, Budapest Mitt 58 (1965); Kheylo, IBVS 171 (1966); Sturch, ApJ 143.774 (1966), AJ 72.321 (1967), ApJ 148.477 (1967); Kheylo, Problems in Astrophysics, Kiev, p. 62 (1968), NASA Tech Tr F598.57 (1971); van Albada, AAS Bull 1.366 (1969); Zhukov, Soviet Astr AJ 13.306 (1969); Kukarkin and Kukarkina, VS 17.157 (1970); Coutts, Bamb Veröff 9, 100.238 (1971); Kholopov, AC 640.3 (1971), AC 651.7 (1971), AC 652.7 (1971); Russev, VS 18.171 (1971); Kholopov, AC 676.7 (1972), Letter (1972); Szeidl, Letter (1972) S55a, S57, S59, S61, A62, R62a, S62, P64, S64, L65, R65, St66, S67, C&S69, S69, S70, F72

	x′′	у"	Max.	Min.	Epoch	Period	Remarks
NGC :	5286 a 13h	43m.0, δ -	51°07′				
1	- 46.20	+145.48					
2	+ 78.10	- 42.63					
3	+256.58	- 39.60					
4	- 69.30	- 70.95					
5	+ 64.63	+ 27.78					
6	+ 60.23	- 33.00					
7	+ 24.48	- 60.23					
8	+ 16.50	- 35.75					
S55	a, S59, R62c	, S62, F&L	53, S67, S		y Catalogo, Con		
NGC :	5466 a 14 ^h	0311.2, 0 +2	8 46				
1	+858	- 95	15.80	16.80	40706.387	0.5774192	+
2	- 62	-110	15.77	16.77	40683.342	0.5885020	−, Bℓ
3	- 31	- 8	15.90	16.76	40704.319	0.5780638	cst
4	- 80	+ 9	15.69	17.03	40704.461	0.5120111	+, -, BQ
5	- 64	+112	15.85	17.10	39945.659	0.6152674	_
6	+122	- 24	15.60	16.60	40705.408	0.6206610	-
7	-210	-225	15.94	16.90	40702.398	0.7034205	cst
						0 (001100	
8	+ 23	- 6	15.81	16.70	40705.358	0.6291182	cst
8 9	+ 31	+ 15	15.74	16.77	39947.328	0.6850240	
8 9 10	+ 31 + 85	+ 15 + 46	15.74 15.87	16.77 16.90	39947.328 40705.468	0.6850240 0.7092735	cst
8 9 10 11	+ 31 + 85 +117	+ 15 + 46 + 68	15.74 15.87 16.09	16.77 16.90 16.70	39947.328 40705.468 40705.285	0.6850240 0.7092735 0.3779938	– cst cst
8 9 10 11 12	+ 31 + 85 +117 + 17	+ 15 + 46 + 68 - 88	15.74 15.87 16.09 16.09	16.77 16.90 16.70 16.66	39947.328 40705.468 40705.285 39945.210	0.6850240 0.7092735 0.3779938 0.2942387	- cst cst cst
8 9 10 11 12 13	+ 31 + 85 +117 + 17 - 49	+ 15 + 46 + 68 - 88 - 73	15.74 15.87 16.09 16.09 16.10	16.77 16.90 16.70 16.66 16.80	39947.328 40705.468 40705.285 39945.210 40736.379	0.6850240 0.7092735 0.3779938 0.2942387 0.3415476	cst cst cst +
8 9 10 11 12 13 14	+ 31 + 85 +117 + 17 - 49 - 47	+ 15 + 46 + 68 - 88 - 73 + 52	15.74 15.87 16.09 16.09 16.10 15.86	16.77 16.90 16.70 16.66 16.80 16.70	39947.328 40705.468 40705.285 39945.210 40736.379 39947.568	0.6850240 0.7092735 0.3779938 0.2942387 0.3415476 0.7858598	cst cst cst +
8 9 10 11 12 13 14 15	$\begin{array}{r} + 31 \\ + 85 \\ +117 \\ + 17 \\ - 49 \\ - 47 \\ +223 \end{array}$	+ 15 + 46 + 68 - 88 - 73 + 52 + 20	15.74 15.87 16.09 16.09 16.10 15.86 16.31	16.77 16.90 16.70 16.66 16.80 16.70 16.69	39947.328 40705.468 40705.285 39945.210 40736.379 39947.568 40705.223	0.6850240 0.7092735 0.3779938 0.2942387 0.3415476 0.7858598 0.4015471	 cst cst + -, +
8 9 10 11 12 13 14 15 16	$ \begin{array}{r} + 31 \\ + 85 \\ + 117 \\ + 17 \\ - 49 \\ - 47 \\ + 223 \\ - 149 \\ \end{array} $	$\begin{array}{r} + 15 \\ + 46 \\ + 68 \\ - 88 \\ - 73 \\ + 52 \\ + 20 \\ -175 \end{array}$	15.74 15.87 16.09 16.09 16.10 15.86 16.31 16.04	16.77 16.90 16.70 16.66 16.80 16.70 16.69 16.74	39947.328 40705.468 40705.285 39945.210 40736.379 39947.568 40705.223 39945.372	0.6850240 0.7092735 0.3779938 0.2942387 0.3415476 0.7858598 0.4015471 0.2966414	 cst cst + -, +
8 9 10 11 12 13 14 15 16 17	$\begin{array}{r} + 31 \\ + 85 \\ +117 \\ + 17 \\ - 49 \\ - 47 \\ +223 \\ -149 \\ - 60 \end{array}$	$\begin{array}{r} + 15 \\ + 46 \\ + 68 \\ - 88 \\ - 73 \\ + 52 \\ + 20 \\ - 175 \\ - 30 \end{array}$	$15.74 \\ 15.87 \\ 16.09 \\ 16.09 \\ 16.10 \\ 15.86 \\ 16.31 \\ 16.04 \\ 16.05 $	16.77 16.90 16.70 16.66 16.80 16.70 16.69 16.74 16.58	39947.328 40705.468 40705.285 39945.210 40736.379 39947.568 40705.223 39945.372 40706.394	0.6850240 0.7092735 0.3779938 0.2942387 0.3415476 0.7858598 0.4015471 0.2966414 0.3701037	 cst cst + -, +
8 9 10 11 12 13 14 15 16 17 18	$\begin{array}{r} + 31 \\ + 85 \\ +117 \\ + 17 \\ - 49 \\ - 47 \\ +223 \\ -149 \\ - 60 \\ + 44 \end{array}$	$\begin{array}{r} + 15 \\ + 46 \\ + 68 \\ - 88 \\ - 73 \\ + 52 \\ + 20 \\ -175 \\ - 30 \\ + 41 \end{array}$	$15.74 \\ 15.87 \\ 16.09 \\ 16.09 \\ 16.10 \\ 15.86 \\ 16.31 \\ 16.04 \\ 16.05 \\ 16.0$	16.77 16.90 16.70 16.66 16.80 16.70 16.69 16.74 16.58 16.7	39947.328 40705.468 40705.285 39945.210 40736.379 39947.568 40705.223 39945.372 40706.394 30519.697	0.6850240 0.7092735 0.3779938 0.2942387 0.3415476 0.7858598 0.4015471 0.2966414 0.3701037 0.37406	 cst cst + , + - +
8 9 10 11 12 13 14 15 16 17 18 19	$\begin{array}{r} + 31 \\ + 85 \\ +117 \\ + 17 \\ - 49 \\ - 47 \\ +223 \\ -149 \\ - 60 \\ + 44 \\ +157 \end{array}$	$\begin{array}{r} + 15 \\ + 46 \\ + 68 \\ - 88 \\ - 73 \\ + 52 \\ + 20 \\ -175 \\ - 30 \\ + 41 \\ -166 \end{array}$	$15.74 \\ 15.87 \\ 16.09 \\ 16.09 \\ 16.10 \\ 15.86 \\ 16.31 \\ 16.04 \\ 16.05 \\ 16.0 \\ 14.40 \\ 14.40 \\ 15.86 \\ 14.40 \\ 15.86 \\ 15.86 \\ 16.0 \\ 14.40 \\ 16.05 \\ 16.0 \\ 14.40 \\ 10.05 \\$	$\begin{array}{c} 16.77\\ 16.90\\ 16.70\\ 16.66\\ 16.80\\ 16.70\\ 16.69\\ 16.74\\ 16.58\\ 16.7\\ 14.95\\ \end{array}$	39947.328 40705.468 40705.285 39945.210 40736.379 39947.568 40705.223 39945.372 40706.394	0.6850240 0.7092735 0.3779938 0.2942387 0.3415476 0.7858598 0.4015471 0.2966414 0.3701037	 cst cst + + + Hop 216, f
8 9 10 11 12 13 14 15 16 17 18 19 20	$\begin{array}{r} + 31 \\ + 85 \\ +117 \\ + 17 \\ - 49 \\ - 47 \\ +223 \\ -149 \\ - 60 \\ + 44 \\ +157 \\ - 228 \end{array}$	$\begin{array}{r} + 15 \\ + 46 \\ + 68 \\ - 88 \\ - 73 \\ + 52 \\ + 20 \\ -175 \\ - 30 \\ + 41 \\ -166 \\ + 45 \end{array}$	$15.74 \\ 15.87 \\ 16.09 \\ 16.09 \\ 16.10 \\ 15.86 \\ 16.31 \\ 16.04 \\ 16.05 \\ 16.0 \\ 14.40 \\ 16.42 \\ 16.42 \\ 16.42 \\ 1000 \\ 1$	$\begin{array}{c} 16.77\\ 16.90\\ 16.70\\ 16.66\\ 16.80\\ 16.70\\ 16.69\\ 16.74\\ 16.58\\ 16.7\\ 14.95\\ 16.72\\ \end{array}$	39947.328 40705.468 40705.285 39945.210 40736.379 39947.568 40705.223 39945.372 40706.394 30519.697	0.6850240 0.7092735 0.3779938 0.2942387 0.3415476 0.7858598 0.4015471 0.2966414 0.3701037 0.37406	 cst cst + + + Hop 216, f Cuffey
8 9 10 11 12 13 14 15 16 17 18 19 20 21	$\begin{array}{r} + 31 \\ + 85 \\ +117 \\ + 17 \\ - 49 \\ - 47 \\ +223 \\ -149 \\ - 60 \\ + 44 \\ +157 \\ - 228 \\ + 47 \end{array}$	$\begin{array}{r} + 15 \\ + 46 \\ + 68 \\ - 88 \\ - 73 \\ + 52 \\ + 20 \\ -175 \\ - 30 \\ + 41 \\ -166 \\ + 45 \\ - 10 \end{array}$	$\begin{array}{c} 15.74\\ 15.87\\ 16.09\\ 16.09\\ 16.10\\ 15.86\\ 16.31\\ 16.04\\ 16.05\\ 16.0\\ 14.40\\ 16.42\\ 16.53\end{array}$	$\begin{array}{c} 16.77\\ 16.90\\ 16.70\\ 16.66\\ 16.80\\ 16.70\\ 16.69\\ 16.74\\ 16.58\\ 16.7\\ 14.95\\ 16.72\\ 16.74\\ 16.74\\ \end{array}$	39947.328 40705.468 40705.285 39945.210 40736.379 39947.568 40705.223 39945.372 40706.394 30519.697 40705.737	0.6850240 0.7092735 0.3779938 0.2942387 0.3415476 0.7858598 0.4015471 0.2966414 0.3701037 0.37406 0.8212879	- cst cst + - -, + - + Hop 216, f Cuffey Cuffey
8 9 10 11 12 13 14 15 16 17 18 19 20	$\begin{array}{r} + 31 \\ + 85 \\ +117 \\ + 17 \\ - 49 \\ - 47 \\ +223 \\ -149 \\ - 60 \\ + 44 \\ +157 \\ - 228 \end{array}$	$\begin{array}{r} + 15 \\ + 46 \\ + 68 \\ - 88 \\ - 73 \\ + 52 \\ + 20 \\ -175 \\ - 30 \\ + 41 \\ -166 \\ + 45 \end{array}$	$15.74 \\ 15.87 \\ 16.09 \\ 16.09 \\ 16.10 \\ 15.86 \\ 16.31 \\ 16.04 \\ 16.05 \\ 16.0 \\ 14.40 \\ 16.42 \\ 16.42 \\ 16.42 \\ 1000 \\ 1$	$\begin{array}{c} 16.77\\ 16.90\\ 16.70\\ 16.66\\ 16.80\\ 16.70\\ 16.69\\ 16.74\\ 16.58\\ 16.7\\ 14.95\\ 16.72\\ \end{array}$	39947.328 40705.468 40705.285 39945.210 40736.379 39947.568 40705.223 39945.372 40706.394 30519.697	0.6850240 0.7092735 0.3779938 0.2942387 0.3415476 0.7858598 0.4015471 0.2966414 0.3701037 0.37406	 cst cst + + + Hop 216, f Cuffey

Baade nos. 3, 4, 5 in corona considered probable members by Kukarkin and Kholopov. Cuffey 3-5-2-72 is considered field variable.

Kukarkin, VS 12.50 (1959); Cuffey, AJ 66.71 (1961), Letters (1961); Kurochkin, VS 13.248 (1961), VS 13.331 (1961); Kholopov, VS 14.71 (1962); Kurochkin, VS 14.196 (1962); Bartolini, Biolchini and Mannino, Bologna Pubbl 9, 4 (1965); Gryzunova, AC 526.8 (1969), VS Suppl 1.253 (1972)

S55a, S57, S59, S61, R62a, S62, S64, L65, R65, S67, C&S69, S69

No.	x''	у′′	Max.	Min.	Epoch	Period	Remarks
NGC 5	5634 a14h	27 ^m .0, δ –0)5° 45′				
		- 19.5	16.41	17.39		0.65872	
1	-56.5					0.05072	
2	-25.4	+ 83.1	16.19	17.38			
3	-45.1	+ 41.9	16.48	17.47			
4	+54.2	- 65.2	16.55	17.39			
5	-11.6	-162.9	16.72:	17.19			
6	+43.4	- 52.6	16.69	17.05:			
7	- 0.4	- 4.0					
	, Mt Wils Co S59, S62, Le		1945)				
	5694 a14h		26° 19′				
Baade	riables found , ASP 46.52 859, R62c, 1	(1934)					
C 449	99 a 14h52	m.7, δ –82°	02'				
1	+ 84.15	- 3.03					
2	+ 41.53	- 96.25					
2	-90.75	-104.50					
	= 90.73 = 33.55						
4		-14.03					
5	- 38.23	- 47.58					
6	- 2.75	+ 34.38					
7	+ 24.75	+203.50					
8	+ 88.00	+ 97.08					
9	+ 72.60	+105.60					
10	+ 11.00	+ 68.75					
11	+ 95.15	- 29.98					
12	+112.75	+ 62.15					
13	+ 44.28	- 17.33					
1.4	+ 22.83	19.25					
14	- 6.88	- 9.08					
14	- 6.88						
	- 66.00	+ 52.25					
15		+ 52.25 + 14.58					
15 16 17	- 66.00	+ 14.58					
15 16 17 18	- 66.00 - 22.00 - 62.15	+ 14.58 - 22.28					
15 16 17 18 19	- 66.00 - 22.00 - 62.15 -159.50	+ 14.58 - 22.28 - 21.73					
15 16 17 18 19 20	- 66.00 - 22.00 - 62.15 - 159.50 - 22.27	+ 14.58 - 22.28 21.73 +159.23					
15 16 17 18 19 20 21	$\begin{array}{rrrr} - & 66.00 \\ - & 22.00 \\ - & 62.15 \\ - & 159.50 \\ - & 22.27 \\ + & 85.53 \end{array}$	+ 14.58 - 22.28 21.73 +159.23 +145.75					
15 16 17 18 19 20 21 22	$\begin{array}{r} - \ 66.00 \\ - \ 22.00 \\ - \ 62.15 \\ -159.50 \\ 22.27 \\ + \ 85.53 \\ + 270.33 \end{array}$	$\begin{array}{r} + & 14.58 \\ - & 22.28 \\ & 21.73 \\ + & 159.23 \\ + & 145.75 \\ + & 6 & 4.35 \end{array}$					
15 16 17 18 19 20 21 22 23	$\begin{array}{r} - \ 66.00 \\ - \ 22.00 \\ - \ 62.15 \\ -159.50 \\ - \ 22.27 \\ + \ 85.53 \\ + \ 270.33 \\ + \ 93.50 \end{array}$	$\begin{array}{r} + & 14.58 \\ - & 22.28 \\ 21.73 \\ + 159.23 \\ + 145.75 \\ + & 64.35 \\ 38.50 \end{array}$					
15 16 17 18 19 20 21 22 23 24	$\begin{array}{rrrr} - & 66.00 \\ - & 22.00 \\ - & 62.15 \\ - & 159.50 \\ - & 22.27 \\ + & 85.53 \\ + & 270.33 \\ + & 93.50 \\ - & 35.75 \end{array}$	$\begin{array}{r} + & 14.58 \\ - & 22.28 \\ 21.73 \\ + 159.23 \\ + 145.75 \\ + & 64.35 \\ 38.50 \\ 31.63 \end{array}$					
15 16 17 18 19 20 21 22 23 24 25	$\begin{array}{rrrr} - & 66.00 \\ - & 22.00 \\ - & 62.15 \\ - & 159.50 \\ - & 22.27 \\ + & 85.53 \\ + & 270.33 \\ + & 93.50 \\ - & 35.75 \\ - & 118.25 \end{array}$	$\begin{array}{r} + & 14.58 \\ - & 22.28 \\ 21.73 \\ +159.23 \\ +145.75 \\ + & 64.35 \\ 38.50 \\ 31.63 \\ 6.32 \end{array}$					
15 16 17 18 19 20 21 22 23 24 25 26	$\begin{array}{rrrr} - & 66.00 \\ - & 22.00 \\ - & 62.15 \\ - & 159.50 \\ - & 22.27 \\ + & 85.53 \\ + & 270.33 \\ + & 93.50 \\ - & 35.75 \\ - & 118.25 \\ - & 168.58 \end{array}$	$\begin{array}{r} + & 14.58 \\ - & 22.28 \\ 21.73 \\ + 159.23 \\ + 145.75 \\ + & 64.35 \\ 38.50 \\ 31.63 \\ 6.32 \\ + 159.50 \end{array}$					
15 16 17 18 19 20 21 22 23 24 25	$\begin{array}{rrrr} - & 66.00 \\ - & 22.00 \\ - & 62.15 \\ - & 159.50 \\ - & 22.27 \\ + & 85.53 \\ + & 270.33 \\ + & 93.50 \\ - & 35.75 \\ - & 118.25 \end{array}$	$\begin{array}{r} + & 14.58 \\ - & 22.28 \\ 21.73 \\ +159.23 \\ +145.75 \\ + & 64.35 \\ 38.50 \\ 31.63 \\ 6.32 \end{array}$					

Catal	logue
-------	-------

No.	x"	у"	Max.	Min.	Epoch	Period	Remarks
C 44	99 (continue	ed)					
29	+ 41.25	- 13.75					
30	+ 85.25	- 33.55					
31	+ 35.75	+ 95.70					
32	+ 77.00	- 11.28					
33	+ 59.12	-273.35					
4	+ 88.00	-123.75					
5	+ 73.98	+101.75					
6	+159.78	+ 6.33					
7	+ 15.95	- 56.10					
8	- 85.25	+ 56.38					
39	+ 1.10	+ 39.05					
0	+128.98	+280.50					
41	+ 40.43	+178.75					
2	+115.50	- 22.83					
3	+ 64.90	-233.75					
4	- 62.98	+ 61.88					
5	+105.33	+250.53					
6	-133.10	-236.50					
7	+ 37.40	-230.50 -93.50					
.8	+ 64.90	-2.75					
9	+ 04.90 + 11.55	- 99.28					
i0	+11.33 +102.03						
1	+ 68.20						
2	+ 63.20 + 63.53	+ 9.90 + 178.20					
3	+121.55	-110.00					
4	+121.33 + 93.78	-237.33					
5	- 46.75	-237.33 - 31.08					
6		- 9.63					
7	-31.63 -6.05	+ 55.00					
58	-58.30	- 67.65					
9	+ 71.23	-42.08					
50	+ 2.75	+ 54.45					
51	+ 2.73 + 1.93	+ 54.43 + 57.48					
52	+258.23	- 88.23					
3	- 99.00	-68.20					
54 54	+ 94.60	+ 57.20					
55	+ 34.00 + 30.25	- 93.50					
5 6	+30.23 +132.00	= 93.30 + 79.48					
57	+132.00 + 51.70	+ 13.75					
i / i 8	+ 31.70 - 25.03	= 13.73 +221.10					
	-113.30	+221.10 + 19.25					
i9 10							
71	+ 66.28 - 30.80	-18.15 -25.03					
72		-25.03 -69.03					
	- 8.25						
73 74	+234.58	-280.50					
	+ 22.00	+ 66.28					
75	+ 16.50	- 63.25					

No.	x''	у"	Max.	Min.	Epoch	Period	Remarks
IC 44	99 (continue	ed)					
76	+333.30	+293.15					
77	+ 79.20	+ 52.25					
78	-187.00	+104.50					
79	-159.50	+316.25					
80	+ 33.00	-283.80					
81	+ 45.10	- 11.00					
82	+ 22.55	+ 8.25		•			
83	+ 19.53	+ 31.08					
84	- 24.48	- 41.53					
85	- 91.30	+309.93					
86	+ 69.85	+ 13.20					
87	+ 34.93	+ 73.98					
88	+ 85.25	+ 50.60					
89	- 68.75	- 0.83					
90	+ 3.30	- 19.25					
91	- 61.05	- 24.75					
92	+123.48	+138.05					
93	+ 35.75	- 32.18					
94	+ 15.50	+ 55.83					
95	- 37.40	+ 38.78					
96	- 8.53	+ 29.98					
97	- 45.93	- 88.28					
98	+251.08	- 44.55					
99	-292.05	+ 4.68					
00	+ 72.60	-266.20					
01	+ 35.75	- 20.35					
02	+ 36.03	+ 7.15					
03	+ 35.48	+ 52.25					
04	+ 63.80	+ 32.23 + 30.53					
05 06	+ 72.60 + 30.25	-3.30 + 133.93					
07	+ 30.23 +159.23	- 81.68					
08	+139.23 +121.28						
08	+121.28 -96.53	+ 6.33 + 97.63					
10	-96.53 + 38.50						
		+ 82.23					
11	+ 49.50	-158.13					
12	-30.25	+ 63.25					
13	+156.75	+226.88					
14	- 7.98	- 13.75					
15	+ 33.28	+119.08					
16	+ 30.25	- 31.90					
17	-242.28	+234.85					
18	+168.03	+181.50					
19	- 71.50	+ 13.50					
20	+ 85.53	-220.00					
21	- 96.25	- 31.63					
22	+ 11.00	- 20.63					

Catal	logue

No.	x"	у"	Max.	Min.	Epoch	Period	Remarks
IC 449	99 (continue	d)					
123	+164.45	+ 17.33					
124	+ 10.73	+197.73					
125	+130.35	+131.18					
126	+ 18.98	- 59.95					
127	+ 49.50	- 10.45					
128	+ 77.00	- 38.78					
129	- 13.20	- 39.60					

All variables found by Fourcade and Laborde, who also have suspected variables nos. 130-169 with coordinates, and no. 170.

Fourcade and Laborde, Cordoba Repr 126 (1965); Fourcade, Laborde and Albarracin, Atlas y Catalogo, Cordoba (1966); Fourcade and Laborde, Cordoba Repr 173 (p) (1969) S55b, R62b, F&L63, S67, S69, S70

NGC 5824 a 15h00m.9, $\delta - 32^{\circ}53'$

		· · ,					
1	- 72.8	+ 35.5	16.8	18.3	35638.20	0.597	
2	+ 11.3	+113.1	17.1	18.2	35635.48	0.651	
3	+124.7	+ 32.0	17.1	18.2	35636.42	0.641	
4	+186.5	+ 74.0	17.1	18.0			RRc?
5	- 9.5	+108.0	17.0	18.1	35638.21	0.634	
6	+ 98.6	- 34.2	17.2	18.1			RRc
7	- 36.9	- 71.6	17.4	18.0			RR
8	- 8.7	- 69.4	17.7	18.3			RR
9	+ 75.8	+ 72.2	16.9	18.3			RRa
10	+155.9	-113.0	17.3	18.0			RR
11	- 10.1	- 50.8	16.9	17.9			
12	- 73.3	- 40.0	17.0	18.2	35661.30	0.592	
13	+ 14.0	-106.1	17.4	18.0			RR
14	+ 19.0	+ 51.0	17.1	17.9		0.35?	RRc
15	+ 82.5	- 58.1	17.2	18.3			RR
16	+ 4.1	- 63.4	17.5	18.3			RR
17	+ 33.7	- 90.3	17.3	18.2			RRc
18	+132.9	- 3.6	17.1	18.2			RR
19	- 29.1	- 42.6	17.0	18.3	35636.22	0.635	RRa
20	- 82.1	- 19.8	17.5	18.1			
21	+ 45.2	+ 71.1	17.6	18.2			RR
22	+ 48.5	- 15.9	17.1	18.0		0.6	RRa
23	-125.6	-243.2	17.0	18.1	35630.23	0.618	
24	+ 96.3	-305.6	17.2	18.0			RRc
25	-333.4	+ 6.5	17.3	18.1			RR
26	+401.5	+362.9	17.0	18.1	35635.45	0.744?	RRa
27	+326.1	- 24.5	17.2	18.1			RR
All va	riables foun	d by Rosino					
Rosin	o, ASP 73.3	809 (1961)					
S55b,	R57, S61, S	562, S64, Re	5, FLA6	6, S69			

No.	x''	y''	Max.	Min.	Epoch	Period	Remarks
Palor	nar5 a 15h	13m.5, δ +(00°05′				
1	- 97	+ 25	17.50	17.92	33741.651	0.293230	
2	- 85	-246	17.61	18.01	34456.084	0.332467	
3	+143	-166	17.45	17.95	34182.801	0.329953	
4	+ 35	-238	17.45	17.93	34234.522	0.286362	
5	- 84	+ 94	17.55	17.85	34833.520	0.252395	
ASP	a, Bologna Pi 74.500 (196 5a, R57, S59	2); Rosino a	nd Pinto,	1AU Coll		17 (1956); Kini	man and Rosin
		hiam c S	20% 5.0/				·
	5897 a 15 ¹			171	41100 606	0 4420/05	
1	-109	-201	16.15	17.1	41100.695	0.4430685	105
2	- 57	- 97	16.25	16.9	36752.627	0.454149	var
3	- 40	- 4	16.3	17.1	33481.615	0.419455	+
4	+ 71	+ 20	15.7	16.2	40807.611	0.42	
5	-136	+215	14.85	15.2	40807.611	64.5 irr	
6	+ 16	+ 59	16.4	16.9	41124.663	0.3325?	Alt 0.485
7	+ 20	+ 58	16.2	16.8	40803.536	0.511710	
Vars. Sar and I	5-7 found b	item, ApJ 15 66.72 (197	53.569 (19 2), unpub	968); Egg	pected variables en, ApJ 172.63	s. 9 (1972); Wehlz	uu, Sawyer Hog
Vars. Sar and I S5:	5-7 found b ndage and Ka Potts, JRASC 5a, S57, S59,	item, ApJ 15 66.72 (197 862, 869, 8	53.569 (19 2), unpub 70	968); Egg (1972)	•		uu, Sawyer Hog
Vars. Sar and I S5:	. 5-7 found b ndage and Ka Potts, JRASC	item, ApJ 15 66.72 (197 862, 869, 8	53.569 (19 2), unpub 70	968); Egg (1972)	•		uu, Sawyer Hog
Vars. Sar and I S5: NGC	5-7 found b ndage and Ka Potts, JRASC 5a, S57, S59, 5904 (Messi	ttem, ApJ 15 66.72 (197 562, S69, S er 5) <i>a</i> 15 ^h +161.1	53.569 (19 2), unpub 70 16 ^m .0, δ 14.66	968); Egg (1972) +02°16' 15.69	en, ApJ 172.63	9 (1972); Wehla	
Vars. Sar and I S5: NGC	5-7 found b hdage and Ka Potts, JRASC 5a, S57, S59, 5904 (Messi + 27.7	er 5) a 15 ^h	53.569 (19 2), unpub 70 16 ^m .0, δ 14.66 14.17	968); Egg (1972) +02°16' 15.69 15.57	en, ApJ 172.63 13715.588 39256.416	9 (1972); Wehla 0.5217865 0.5262679	+
Vars. Sar and I S5: NGC 1 2	5-7 found b hdage and Ka Potts, JRASC 5a, S57, S59, 5904 (Messi + 27.7 - 343.5 + 160.1	er 5) a 15h +161.1 - 31.5 +113.7	53.569 (19 2), unpub 70 116 ^m .0, δ 14.66 14.17 14.62	968); Egg (1972) +02°16' 15.69 15.57 15.47	en, ApJ 172.63 13715.588 39256.416 36762.676	9 (1972); Wehla 0.5217865 0.5262679 0.6001888	+ BQ
Vars. Sar and H S5: NGC 1 2 3 4	5-7 found b hdage and Ka Potts, JRASC 5a, S57, S59, 5904 (Messi + 27.7 - 343.5 + 160.1 - 12.3	er 5) a 15h +161.1 - 31.5 +113.7 + 73.8	53.569 (19 2), unpub 70 16m.0, δ 14.66 14.17 14.62 14.65	968); Egg (1972) +02°16' 15.69 15.57 15.47 15.89	13715.588 39256.416 36762.676 27627.708	9 (1972); Wehla 0.5217865 0.5262679 0.6001888 0.4496402	+ BQ
Vars. Sar and H S53 NGC 1 2 3	5-7 found b hdage and Ka Potts, JRASC 5a, S57, S59, 5904 (Messi + 27.7 - 343.5 + 160.1 - 12.3	er 5) a 15h +161.1 - 31.5 +113.7	53.569 (19 2), unpub 70 116 ^m .0, δ 14.66 14.17 14.62	968); Egg (1972) +02°16' 15.69 15.57 15.47	en, ApJ 172.63 13715.588 39256.416 36762.676	9 (1972); Wehla 0.5217865 0.5262679 0.6001888	+ BQ
Vars. Sar S5: NGC 1 2 3 4 5	5-7 found b hdage and Ka Potts, JRASC 5a, S57, S59, 5904 (Messi + 27.7 - 343.5 + 160.1 - 12.3 - 7.8	er 5) a 15h +161.1 - 31.5 +113.7 + 51.6	53.569 (19 2), unpub 70 16m.0, δ 14.66 14.17 14.62 14.65 14.83	968); Egg (1972) +02°16' 15.69 15.57 15.47 15.89 16.06 15.61	13715.588 39256.416 36762.676 27627.708 27567.929 27567.856	9 (1972); Wehla 0.5217865 0.5262679 0.6001888 0.4496402 0.545903 0.5488311	+ BQ
Vars. Sar S5: NGC 1 2 3 4 5 6	5-7 found b hdage and Ka Potts, JRASC 5a, S57, S59, 5904 (Messi + 27.7 - 343.5 + 160.1 - 12.3 - 7.8 + 27.2	er 5) a 15h +161.1 - 31.5 +113.7 + 51.6 - 46.6 - 191.3	53.569 (19 2), unpub 70 16 ^m .0, δ 14.66 14.17 14.62 14.65 14.83 14.55	968); Egg (1972) +02°16' 15.69 15.57 15.47 15.89 16.06 15.61 15.69	13715.588 39256.416 36762.676 27627.708 27567.929	0.5217865 0.5262679 0.6001888 0.4496402 0.545903 0.5488311 0.494396	+ + +
Vars. Sar and I S5: NGC 1 2 3 4 5 6 7	5-7 found b hdage and Ka Potts, JRASC 5a, S57, S59, 5904 (Messi + 27.7 - 343.5 + 160.1 - 12.3 - 7.8 + 27.2 - 5.1	er 5) a 15h +161.1 - 31.5 +113.7 + 51.6 - 46.6	53.569 (19 2), unpub 70 116 ^m .0, δ 14.66 14.17 14.62 14.65 14.83 14.55 14.03 14.67	968); Egg (1972) +02°16' 15.69 15.57 15.47 15.89 16.06 15.61 15.69 15.75	13715.588 39256.416 36762.676 27627.708 27567.929 27567.856 27601.730 39942.309	9 (1972); Wehla 0.5217865 0.5262679 0.6001888 0.4496402 0.545903 0.5488311 0.494396 0.5462306	+ + +
Vars. Sar and I S5: NGC 1 2 3 4 5 6 7 8	5-7 found b hdage and Ka Potts, JRASC 5a, S57, S59, 5904 (Messi + 27.7 - 343.5 + 160.1 - 12.3 - 7.8 + 27.2 - 5.1 + 134.0 + 195.0	ttem, A pJ 15 66.72 (197 562, S69, S er 5) a 15h +161.1 - 31.5 +113.7 + 73.8 + 51.6 - 46.6 -191.3 -133.2 + 88.0	53.569 (19 2), unpub 70 116 ^m .0, δ 14.66 14.17 14.62 14.65 14.83 14.55 14.03 14.67 14.57	968); Egg (1972) +02°16' 15.69 15.57 15.47 15.89 16.06 15.61 15.69 15.75 15.50	13715.588 39256.416 36762.676 27627.708 27567.929 27567.856 27601.730 39942.309 27610.686	9 (1972); Wehla 0.5217865 0.5262679 0.6001888 0.4496402 0.545903 0.5488311 0.494396 0.5462306 0.6988972	+ + +
Vars. Sar and I S5: NGC 1 2 3 4 5 6 7 8 9	5-7 found b hdage and Ka Potts, JRASC 5a, S57, S59, 5904 (Messi + 27.7 - 343.5 + 160.1 - 12.3 - 7.8 + 27.2 - 5.1 + 134.0	er 5) a 15h +161.1 - 31.5 +113.7 + 51.6 - 46.6 -191.3 -133.2	53.569 (19 2), unpub 70 14.66 14.17 14.62 14.65 14.83 14.55 14.03 14.67 14.57 14.23	968); Egg (1972) +02°16' 15.69 15.57 15.47 15.89 16.06 15.61 15.69 15.75	13715.588 39256.416 36762.676 27627.708 27567.929 27567.856 27601.730 39942.309 27610.686 36762.591	0.5217865 0.5262679 0.6001888 0.4496402 0.545903 0.5488311 0.494396 0.5462306 0.6988972 0.5306602	+ + + +
Vars. Sar and I S5: VGC 1 2 3 4 5 6 7 8 9 10	5-7 found b hdage and Ka Potts, JRASC 5a, S57, S59, 5904 (Messi + 27.7 - 343.5 + 160.1 - 12.3 - 7.8 + 27.2 - 5.1 + 134.0 + 195.0 + 107.4	er 5) a 15h +161.1 - 31.5 +113.7 + 51.6 - 46.6 -191.3 -133.2 + 88.0 +382.0	53.569 (19 2), unpub 70 14.66 14.17 14.62 14.65 14.83 14.55 14.03 14.67 14.57 14.23 14.27	968); Egg (1972) +02°16' 15.69 15.57 15.47 15.89 16.06 15.61 15.69 15.75 15.50 15.45	13715.588 39256.416 36762.676 27627.708 27567.929 27567.856 27601.730 39942.309 27610.686 36762.591 36762.605	9 (1972); Wehla 0.5217865 0.5262679 0.6001888 0.4496402 0.545903 0.5488311 0.494396 0.5462306 0.6988972 0.5306602 0.5958939	+ + + +
Vars. Sar and I S5: NGC 1 2 3 4 5 6 7 8 9 10 11	5-7 found b hdage and Ka Potts, JRASC 5a, S57, S59, 5904 (Messi + 27.7 - 343.5 + 160.1 - 12.3 - 7.8 + 27.2 - 5.1 + 134.0 + 195.0 + 107.4 - 154.5	ttem, ApJ 15 66.72 (197 562, S69, S er 5) a 15h +161.1 - 31.5 +113.7 + 73.8 + 51.6 - 46.6 -191.3 -133.2 + 88.0 +382.0 + 84.5 - 17.3	53.569 (19 2), unpub 70 14.66 14.17 14.62 14.65 14.83 14.55 14.03 14.67 14.57 14.23 14.27 14.20	968); Egg (1972) +02°16' 15.69 15.57 15.47 15.89 16.06 15.61 15.69 15.75 15.50 15.45 15.60 15.78	13715.588 39256.416 36762.676 27627.708 27567.929 27567.856 27601.730 39942.309 27610.686 36762.591 36762.605 27601.762	9 (1972); Wehla 0.5217865 0.5262679 0.6001888 0.4496402 0.545903 0.5488311 0.494396 0.5462306 0.6988972 0.5306602 0.5958939 0.467716	+ + + + +
Vars. Sar and H S5: VGC 1 2 3 4 5 6 7 8 9 10 11 11 12	5-7 found b hdage and Ka Potts, JRASC 5a, S57, S59, 5904 (Messi + 27.7 - 343.5 + 160.1 - 12.3 - 7.8 + 27.2 - 5.1 + 134.0 + 195.0 + 107.4 - 154.5 - 175.5 + 11.0	ttem, ApJ 15 66.72 (197 562, S69, S er 5) a 15 ^h +161.1 - 31.5 +113.7 + 73.8 + 51.6 - 46.6 -191.3 -133.2 + 88.0 +382.0 + 84.5 - 17.3 - 65.4	53.569 (19 2), unpub 70 16 ^m .0, δ 14.66 14.17 14.62 14.65 14.83 14.55 14.03 14.67 14.57 14.23 14.27 14.20 14.75	968); Egg (1972) +02°16' 15.69 15.57 15.47 15.89 16.06 15.61 15.69 15.75 15.50 15.45 15.60 15.78 15.64	13715.588 39256.416 36762.676 27627.708 27567.929 27567.856 27601.730 39942.309 27610.686 36762.591 36762.605 27601.762 27567.800	9 (1972); Wehla 0.5217865 0.5262679 0.6001888 0.4496402 0.545903 0.5488311 0.494396 0.5462306 0.6988972 0.5306602 0.5958939 0.467716 0.5131223	+ + + + + + +
Vars. Sar and I S5: VGC 1 2 3 4 5 6 7 8 9 10 11 12 13	5-7 found b hdage and Ka Potts, JRASC 5a, S57, S59, 5904 (Messi + 27.7 - 343.5 + 160.1 - 12.3 - 7.8 + 27.2 - 5.1 + 134.0 + 195.0 + 107.4 - 154.5 - 175.5 + 11.0 - 145.6	ttem, ApJ 15 66.72 (197 562, S69, S er 5) a 15 ^h +161.1 - 31.5 +113.7 + 73.8 + 51.6 - 46.6 -191.3 -133.2 + 88.0 +382.0 + 84.5 - 17.3 - 65.4 +103.7	53.569 (19 2), unpub 70 14.66 14.17 14.62 14.65 14.83 14.55 14.03 14.67 14.57 14.23 14.27 14.20 14.75 14.30	968); Egg (1972) +02°16' 15.69 15.57 15.47 15.89 16.06 15.61 15.69 15.75 15.50 15.45 15.60 15.78 15.64 15.64 15.62	13715.588 39256.416 36762.676 27627.708 27567.929 27567.856 27601.730 39942.309 27610.686 36762.591 36762.605 27601.762 27567.800 27610.358	9 (1972); Wehla 0.5217865 0.5262679 0.6001888 0.4496402 0.545903 0.5488311 0.494396 0.5462306 0.6988972 0.5306602 0.5958939 0.467716 0.5131223 0.4871724	+ + + + + + + + + + + + + + + + + + +
Vars. Sar and I S53 NGC 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	5-7 found b hdage and Ka Potts, JRASC 5a, S57, S59, 5904 (Messi + 27.7 - 343.5 + 160.1 - 12.3 - 7.8 + 27.2 - 5.1 + 134.0 + 195.0 + 107.4 - 154.5 - 175.5 + 11.0 - 145.6 + 192.0	ttem, ApJ 15 266.72 (197) 562, 569, S er 5) $a 15h$ +161.1 - 31.5 +113.7 + 73.8 + 51.6 - 46.6 -191.3 -133.2 + 88.0 +382.0 + 84.5 - 17.3 - 65.4 +103.7 + 3.6	53.569 (19 2), unpub 70 16m.0, δ 14.66 14.17 14.62 14.65 14.83 14.55 14.03 14.67 14.57 14.23 14.27 14.20 14.75 14.30 14.70	968); Egg (1972) +02°16' 15.69 15.57 15.47 15.89 16.06 15.61 15.69 15.75 15.50 15.45 15.60 15.78 15.64 15.62 15.28	13715.588 39256.416 36762.676 27627.708 27567.929 27567.856 27601.730 39942.309 27610.686 36762.591 36762.605 27601.762 27567.800 27610.358 27567.908	9 (1972); Wehla 0.5217865 0.5262679 0.6001888 0.4496402 0.545903 0.5488311 0.494396 0.5462306 0.6988972 0.5306602 0.5958939 0.467716 0.5131223 0.4871724 0.336763	+ + + + + + + + + + + + + + +
Vars. Sar and H S53 NGC 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	5-7 found b hdage and Ka Potts, JRASC 5a, S57, S59, 5904 (Messi + 27.7 - 343.5 + 160.1 - 12.3 - 7.8 + 27.2 - 5.1 + 134.0 + 195.0 + 107.4 - 154.5 - 175.5 + 11.0 - 145.6 + 192.0 + 91.0	ttem, ApJ 15 266.72 (197) 562, 569, S er 5) $a 15h$ +161.1 - 31.5 +113.7 + 73.8 + 51.6 - 46.6 -191.3 -133.2 + 88.0 +382.0 + 84.5 - 17.3 - 65.4 +103.7 + 3.6 + 83.9	53.569 (19 2), unpub 70 16m.0, δ 14.66 14.17 14.62 14.65 14.83 14.55 14.03 14.67 14.57 14.23 14.27 14.20 14.75 14.30 14.70 14.29	968); Egg (1972) +02°16' 15.69 15.57 15.47 15.89 16.06 15.61 15.69 15.75 15.50 15.45 15.60 15.78 15.64 15.62 15.28 15.53	13715.588 39256.416 36762.676 27627.708 27567.929 27567.856 27601.730 39942.309 27610.686 36762.591 36762.605 27601.762 27567.800 27610.358 27567.908 27567.781	9 (1972); Wehla 0.5217865 0.5262679 0.6001888 0.4496402 0.545903 0.5488311 0.494396 0.5462306 0.6988972 0.5306602 0.5958939 0.467716 0.5131223 0.4871724 0.336763 0.6476223	+ + + + + + + + + + + + + + + + + + +
Vars. Sar and H S55 NGC 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	5-7 found b hdage and Ka Potts, JRASC 5a, S57, S59, 5904 (Messi + 27.7 - 343.5 + 160.1 - 12.3 - 7.8 + 27.2 - 5.1 + 134.0 + 195.0 + 107.4 - 154.5 - 175.5 + 11.0 - 145.6 + 192.0 + 91.0 - 26.1	ttem, ApJ 15 266.72 (197) 562, 569, S er 5) $a 15h$ +161.1 - 31.5 +113.7 + 73.8 + 51.6 - 46.6 -191.3 -133.2 + 88.0 + 382.0 + 84.5 - 17.3 - 65.4 +103.7 + 3.6 + 83.9 + 44.3	53.569 (19 2), unpub 70 16m.0, δ 14.66 14.17 14.62 14.65 14.83 14.55 14.03 14.67 14.57 14.23 14.27 14.20 14.75 14.30 14.70 14.29 14.80	968); Egg (1972) +02°16' 15.69 15.57 15.47 15.89 16.06 15.61 15.69 15.75 15.50 15.45 15.60 15.78 15.64 15.62 15.28 15.53 15.91	13715.588 39256.416 36762.676 27627.708 27567.929 27567.856 27601.730 39942.309 27610.686 36762.591 36762.605 27601.762 27567.800 27610.358 27567.908 27567.781 27567.723	9 (1972); Wehla 0.5217865 0.5262679 0.6001888 0.4496402 0.545903 0.5488311 0.494396 0.5462306 0.6988972 0.5306602 0.5958939 0.467716 0.5131223 0.4871724 0.336763 0.6476223 0.601354	+ + + + + + + + + + + + + + + +
Vars. Sar and H S55 NGC 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	5-7 found b hdage and Ka Potts, JRASC 5a, S57, S59, 5904 (Messi + 27.7 - 343.5 + 160.1 - 12.3 - 7.8 + 27.2 - 5.1 + 134.0 + 195.0 + 195.0 + 107.4 - 154.5 - 175.5 + 11.0 - 145.6 + 192.0 + 91.0 - 26.1 + 151.7	ttem, ApJ 15 66.72 (197 562, S69, S er 5) a 15h +161.1 - 31.5 +113.7 + 73.8 + 51.6 - 46.6 -191.3 -133.2 + 88.0 +382.0 + 84.5 - 17.3 - 65.4 +103.7 + 3.6 + 83.9 + 44.3 -107.7	53.569 (19 2), unpub 70 16 ^m .0, δ 14.66 14.17 14.62 14.65 14.83 14.55 14.03 14.67 14.57 14.23 14.27 14.20 14.75 14.30 14.70 14.29 14.80 14.33	968); Egg (1972) +02°16' 15.69 15.57 15.47 15.89 16.06 15.61 15.69 15.75 15.60 15.75 15.60 15.78 15.64 15.62 15.28 15.53 15.91 15.55	13715.588 39256.416 36762.676 27627.708 27567.929 27567.856 27601.730 39942.309 27610.686 36762.591 36762.605 27601.762 27567.800 27610.358 27567.800 27610.358 27567.781 27567.723 38911.175	9 (1972); Wehla 0.5217865 0.5262679 0.6001888 0.4496402 0.545903 0.5488311 0.494396 0.5462306 0.6988972 0.5306602 0.5958939 0.467716 0.5131223 0.4871724 0.336763 0.6476223 0.601354 0.464098	+ + + + + + + + + + + + + + + + + +
Vars. Sar and H S55 NGC 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	5-7 found b hdage and Ka Potts, JRASC 5a, S57, S59, 5904 (Messi + 27.7 - 343.5 + 160.1 - 12.3 - 7.8 + 27.2 - 5.1 + 134.0 + 195.0 + 107.4 - 154.5 - 175.5 + 11.0 - 145.6 + 192.0 + 91.0 - 26.1	ttem, ApJ 15 66.72 (197 562, S69, S er 5) a 15h +161.1 - 31.5 +113.7 + 73.8 + 51.6 - 46.6 -191.3 -133.2 + 88.0 +382.0 + 84.5 - 17.3 - 65.4 +103.7 + 3.6 + 83.9 + 44.3 -107.7 -129.9	53.569 (19 2), unpub 70 16m.0, δ 14.66 14.17 14.62 14.65 14.83 14.55 14.03 14.67 14.57 14.23 14.27 14.20 14.75 14.30 14.70 14.29 14.80 14.33 14.38	968); Egg (1972) +02°16' 15.69 15.57 15.47 15.89 16.06 15.61 15.69 15.75 15.50 15.45 15.60 15.78 15.62 15.28 15.62 15.28 15.53 15.91 15.55 15.57	13715.588 39256.416 36762.676 27627.708 27567.929 27567.856 27601.730 39942.309 27610.686 36762.591 36762.605 27601.762 27567.800 27610.358 27567.800 27610.358 27567.781 27567.723 38911.175 27601.706	9 (1972); Wehla 0.5217865 0.5262679 0.6001888 0.4496402 0.545903 0.5488311 0.494396 0.5462306 0.6988972 0.5306602 0.5958939 0.467716 0.5131223 0.4871724 0.336763 0.6476223 0.601354 0.464098 0.469965	+ + + + + + + + + + + + + + + + + + +
Vars. Sar and F S5: NGC 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	5-7 found b hdage and Ka Potts, JRASC 5a, S57, S59, 5904 (Messi + 27.7 - 343.5 + 160.1 - 12.3 - 7.8 + 27.2 - 5.1 + 134.0 + 195.0 + 107.4 - 154.5 - 175.5 + 11.0 - 145.6 + 192.0 + 91.0 - 26.1 + 151.7 + 233.7	ttem, ApJ 15 66.72 (197 562, S69, S er 5) a 15h +161.1 - 31.5 +113.7 + 73.8 + 51.6 - 46.6 -191.3 -133.2 + 88.0 +382.0 + 84.5 - 17.3 - 65.4 +103.7 + 3.6 + 83.9 + 44.3 -107.7	53.569 (19 2), unpub 70 16 ^m .0, δ 14.66 14.17 14.62 14.65 14.83 14.55 14.03 14.67 14.57 14.23 14.27 14.20 14.75 14.30 14.70 14.29 14.80 14.33	968); Egg (1972) +02°16' 15.69 15.57 15.47 15.89 16.06 15.61 15.69 15.75 15.60 15.75 15.60 15.78 15.64 15.62 15.28 15.53 15.91 15.55	13715.588 39256.416 36762.676 27627.708 27567.929 27567.856 27601.730 39942.309 27610.686 36762.591 36762.605 27601.762 27567.800 27610.358 27567.800 27610.358 27567.781 27567.723 38911.175	9 (1972); Wehla 0.5217865 0.5262679 0.6001888 0.4496402 0.545903 0.5488311 0.494396 0.5462306 0.6988972 0.5306602 0.5958939 0.467716 0.5131223 0.4871724 0.336763 0.6476223 0.601354 0.464098	+ + + + + + + + + + + + + + + + + +

Catalogue

No.	x''	у''	Max.	Min.	Epoch	Period	Remarks
NGC	5904 (conti	nued)					
23	- 253.4	- 10.9	not var				
24	- 46.8	- 71.7	14.77	15.65	27567.821	0.4783771	
25	- 28.9	-128.0	13.83	14.73	27567.766	0.508	
26	+ 21.8	+101.5	14.42	15.46	27601.761	0.6225642	
27	- 6.7	- 59.2	14.37	15.74	27888.894	0.4703	
28	+ 132.2	-121.1	14.49	15.59	36762.271	0.5439272	_
29	- 374.7	- 76.6	14.42	15.53	27567.700	0.451433	–, Sp F
30	+ 22.8	-212.8	14.55	15.55	39942.454	0.5921739	_
31	+ 151.7	-141.7	14.77	15.48	13715.209	0.30058294	cst
32	+ 201.9	-150.6	14.10	15.67	13715.596	0.45778654	cst
33	- 21.1	+127.5	14.57	15.63	27610.270	0.5014750	+
34	+ 84.3	+ 59.5	14.65	15.52	27567.727	0.5681431	cst
35	- 12.2	-114.7	14.80	15.39	27610.406	0.3081255	+
36	- 8.4	- 52.2	14.96	15.91	27563.868	0.6277229	cst
37	+ 44.7	- 67.0	14.49	15.60	27605.762	0.4887941	est
38	- 44.2	+117.2	14.49	15.90	27889.937	0.470441	
39	- 125.3	-205.2	14.08	15.63	27610.368	0.5890374	+
40	-123.3 + 124.8	+113.5	14.84	15.45	27610.308	0.3173299	+
41	+ 124.3 + 19.3	+113.3 +231.4	14.19	15.57	27567.879	0.488572	т
42	-123.2	-120.8	11.20	12.24	27567.8	25.738	Sp, V, mem
42 43	-125.2 -201.8	-120.8 +154.3	14.70	12.24	27610.364	0.6602289	
44	-102.5	+134.3 + 31.1	14.70	15.61	27610.125	0.3296024	+
45	-102.3 - 116.7		14.97		27567.774		+
46	-80.0	+ 65.7 + 69.1	not var	15.90	27507.774	0.6166364	cst
47	-75.3	+ 59.1 + 58.1	14.84	15.96	27563.861	0.5397295	
48	-62.5	+106.3	not var	15.70	27505.801	0.3377273	_
49	= 62.3 + 52.7	+100.3 +177.5	not var				
50	+ 32.7 + 38.0	+109.1	14.00:	14.54:		irr?	Sp
51	+ 0.3	+105.1 +135.5	var?	14.34.		111:	sþ
52	+ 107.9	+ 35.3	14.49	15.57	27563.804	0.5017848	Bl
53	+ 68.9	+ 19.2	14.98	15.28	27601.70	0.37360	Dx
54	+ 30.3	+ 19.2 + 57.2	14.58	15.68	27001.70	0.57500	
54	+ 30.3 + 80.1	+37.2 -163.2	14.82	15.88	36762.219	0.3289013	+
55 56	- 68.9	+ 96.5	14.87	15.86	27889.931	0.5346903	Τ Γ
50 57	-30.6	+ 90.3	14.73	15.86	27889.931	0.28467869	
58	-605.1	+168.2	14.94	15.43	36762.274	0.4912489	+
58 59	-150.0	-35.5	14.86	15.67	13715.490		+
59 60	- 130.0 - 109.7		14.70	15.67	27567.75	0.5420257	T
61	- 109.7 - 254.9	+ 8.2 - 31.4				0.285218?	4
			14.42	15.62	27610.472	0.5686267	+
62	+ 166.8	-216.8	14.78	15.36	36762.543	0.2814154	+ + B0
63 64	+ 212.9	+ 51.8	14.10	15.50	13384.553	0.4976783	+, B0
64 65	- 51.2	-248.9	14.43	15.55	27610.553	0.5445006	
65	- 159.9	- 93.8	14.07	15.02	36385.522	0.4806936	+
66	+ 218.3	+406.8	14.83	15.42	27610.242	0.3507086	+
67	-1028.2	- 59.8	14.36	15.13	13715.314	0.3490944	
68	+ 897.5	+ 47.6	14.87	15.47	27610.347	0.3342667	
69 70	+ 653.3	+751.6	14.10	15.68	27610.320	0.4948729	
70	+ 393.8	+626.4	14.54	15.70	27610.365	0.5585490	

No.	x''	у"	Max.	Min.	Epoch	Period	Remarks
NGC	5904 (conti	nued)					
71	+ 664.1	+290.3	14.25	15.86	27610.357	0.5024724	_
72	+ 689.7	+ 38.3	14.66	15.71	27610.318	0.5622722	—, Sp F
73	+ 17.3	+604.7	14.66	15.23	19533.289	0.3401261	+
74	+ 202.8	+162.8	14.83	15.18	36762.379	0.4539887	_
75	+ 78.6	-412.8	14.80	15.38	27610.523	0.6854171	+, Sp F
76	+ 80.5	-309.2	14.69	15.18	13524.125	0.3018963	_
77	- 171.5	-184.8	14.39	15.25	36762.596	0.845146	+
78	+ 65.5	+159.7	14.90	15.46	39942.389	0.26481739	cst
79	- 133.5	- 32.2	14.88	15.42	39942.316:	0.33313838	cst
80	- 48.6	+111.6	15.05	15.54	27562.986	0.3365424	_
81	- 72.2	-121.7	14.61	15.58	34131.439	0.5572965	_
82	- 67.8	+ 12.4	14.86	15.72	27563.798	0.5584455	
83	- 84.7	- 87.8	14.80	15.66	27567.783	0.5533073	cst
84	+ 43.7	- 31.9	11.54	12.61	27602	26.42 ±	Sp, V, mem
85	+ 38.3	- 34.4	14.80	15.70	27567.970	0.52741	
86	+ 34.6	- 33.0	14.50	15.83	27567.856	0.56733	
87	+ 122.0	- 1.8	15.00	15.38	21350.182	0.7383992	+
88	+ 65.2	+ 61.8	15.08	15.48	27563.832	0.32808270	
89	+ 60.0	+ 64.7	14.79	15.69	27626.707	0.55844189	
90	- 44.7	+ 15.3	14.67	15.88	27540.828	0.5571527	
91	- 36.0	+ 35.0	15.04	15.96	27567.927	0.584944	
92	- 56.6	-123.5	14.28	15.58	27567.963	0.4635789	
93	+ 44.0	- 35.7	14.54	15.81	27567.771	0.55231	
94	- 23.5	+ 17.4	15.26	16.11	27601.728	0.53141	
95	- 47.2	+102.8	15.13	15.80	27626.689	0.29082	
96	- 12.4	+ 32.9	14.96	16.15	27563.778	0.51225	
97	+ 48.9	- 92.5	14.18	15.61	27601.754	0.54466	
98	+ 37.3	+ 20.0	15.26	15.71	27605.737	0.3063857	
99	+ 34.4	- 0.1	15.32	15.89	27567.739	0.32134	
100	+ 2.8	+ 48.7	15.30	16.01	27628.710	0.29434	
101	- 281.6	+ 36.0	17.15	22			UG?
102	+ 14.8	- 14.8					prob RR
103	+ 20.5	- 8.8					prob RR

Five suspected variables, Voroshilov (1971); one suspected, Osborn (1971).

Arp, AJ 60.1 (1955), AJ 62.129 (1957); Wallerstein, ApJ 127.583 (p) (1958), ApJ 129.356 (1959); Kraft, Camp and Hughes, ApJ 130.90 (1959); Preston, ApJ 134.651 (1961); Williams, AJ 71.615 (1966); Coutts, Doctoral Thesis, Toronto (1967); Sturch, ApJ 148.477 (1967); Wilkens, Inf Bull So Hemis 12.17 (1968); Coutts, Non-Periodic Phenomena in Variable Stars, ed. L. Detre, Budapest, p. 313 (1969); Coutts, Margoni and Stagni, AAS Bull 1.238 (1969); Coutts and Sawyer Hogg, Toronto Publ 3, 1 (1969); Kukarkin and Kukarkina, AC 541.1 (1969); Sturch, AJ 74.82 (1969); Zhukov, Soviet Astr AJ 13.306 (1969); Coutts Toronto Publ 3.81 (1971), IBVS 572 (1971); Kukarkin, AC 646 (1971); Kukarkin and Kukarkina, VS Suppl 1, 1 (1971); Osborn, IBVS 598 (1971); Voroshilov, AC 623.7 (1971); Coutts, Bamb Veröff 9, 100.238 (1972); Coutts and Sawyer Hogg, AAS Bull 4.217 (1972); Eggen, ApJ 172.639 (1972) S55a, R57, S57, S59, S61, A62, R62a, S62, P64, S64, L65, R65, St66, S67, S69, S70, F72

36

No.	x''	у''	Max.	Min.	Epoch	Period	Remarks
NGC	5927 a15h	24m.4, δ-5	50° 29′				
1	+141.90	+129.25					L&F 4, f?
2	- 45.38	0.0					L&F 14
3	- 4.6	- 4.1				300:	Osborn
4			14.6	15.3			V3, LE&M
5			14.7	15.2			V6, LE&M
6			14.7	15.3			V7, LE&M
7			14.7	15.3			V8, LE&M
8			15.0	15.6			V9, LE&M
9			15.1	16.0			V10, LE&M
10			14.7	15.1			L43, LE&M
11			14.7	15.1			L17, LE&M,

V mags. for vars. 4-11, Lloyd Evans and Menzies, unpub. (1972). 13 field variables, Laborde and Fourcade.

Laborde and Fourcade, Cordoba Repr 138 (p) (1966); Osborn, Obs 88.26 (p) (1968), Letter (1968); Lloyd Evans, Letter, V3 (1972); Lloyd Evans and Menzies, IAU Coll 21 (1973) S55b, R62b, FLA66, S69, S70

NGC 5	946 a15h	31m.8, 8 -	50° 30′				
1	+178.75	-118.25					F&L 1
2	- 56.37	- 19.25					F&L 2
3	+ 83.87	- 38.50					F&L 4
Fourca S55b,	ade, Labord R62b		acin, Atl		ogo, C ordoba (1	1966)	
NGC 5	5986 a 15 ^r	^{142m} .8, δ –	37° 37′				
1	+60.0	- 8.3	15.2	16.9			RR?
2	- 8.0	- 2.1	16.1	17.2			RR
3	+23.2	+110.5	16.0	17.0			RR
4	-82.5	+ 18.7	13.6	14.3			Slow
5	+58.6	- 2.8	16.1	17.1			RR
All var	iables foun	d by Rosino					
Rosina	o, Asiago Co	ontr 132 (p)	(1962)				
S55a,	R57, S59, S	61, R62c, S	62, F&L	63, <mark>S</mark> 64, F	LA66, S69		
NGC 6	093 (Messi	er 80) a 16	h14m.1,	$\delta - 22^{\circ}52$			
1	-137	+ 49	13.1	14.6	32356.718	16.304	Sp F-G
2	+ 22	- 19	13.7	14.8	34889.704	24.9?	
3	+104	+ 56	15.5	16.15			Short P
4	- 85	+ 61	15.5	16.1			Short P
5	+ 14	- 67	15.4	16.3			Short P

6

+520

+296

12.1

16.1

177.90

32741.67

S Sco. f

No.	x''	У"	Max.	Min.	Epoch	Period	Remarks
NGC	5093 (conti	nued)					
7 Nova	+502 + 4.0	+112 + 2.7	11.9 6.8	16.3	32770.60 00551	223.50	R Sco, f T Sco
(1961 Nov); Kukarkin a bibliograp		72); Sawy Toronto	ver Hogg a Comm 1	and Wehlau, ur (1938)	Eggen, Royal C npub (1972))bs Bull 29.E73

NGC 6101 a $16^{h}20^{m}.0$, $\delta - 72^{\circ}06'$

Searched by Fourcade and Laborde, but no variables found. Fourcade, Laborde and Albarracin, Atlas y Catalogo, Cordoba (1966) S55b, R62b

NGC 6121 (Messier 4) $a 16^{h} 20^{m} .6, \delta - 26^{\circ} 24'$

••••••		, _				
- 281	+ 42	13.46	13.97	30000.08	0.2888545	0
- 248	-195	13.05	14.10	30000.03	0.5356832	0
- 208	-507	12.92	14.08	38500.16	0.506651	+
- 185	-340	11.0	12.5		50-70	Sp G, V
- 185	- 93	13.57	13.99	30000.05	0.622398	0
- 115	+318	13.54	14.09	30000.27	0.320516	0
- 113	+231	12.99	14.28	30000.13	0.4987743	0
- 110	+111	12.88	14.22	30000.18	0.508187	+
- 104	+105	12.75	14.16	30000.04	0.5718975	0
- 68	+159	12.68	14.18	30000.07	0.4907173	0
- 64	-297	13.32	14.14	33500.25	0.4930721	
- 53	-207	13.04	14.38	33000.40	0.4461239	
- 47	+270	12.37	13.08		40:	SpG-K,V
- 47	-244	12.96	14.40	32500.35	0.4635338	+
- 32	+436	12.98	14.25	27500.35	0.4437857	_
- 29	+ 69	13.05	14.18	30000.02	0.5425421	0
- 8	+ 20	13.40	13.74			
+ 4	+ 27	12.84	14.20	30000.14	0.4787924	0
+ 11	+358	12.76	14.18	30000.41	0.4678111	0
+ 13	- 63	13.24	13.60	30000.27	0.309383	0
+ 19	- 4	12.73	14.10	29500.11	0.4719831	+
+ 34	+ 80	13.40	13.98	31000.43	0.6029436	+
+ 38	- 26	13.26	13.77	30000.02	0.2985502	+
+ 49	+ 48	13.12	14.06	31500.53	0.5467797	+
+ 70	+ 70	13.08	14.08	30000.25	0.6127346	
+ 94	- 72	12.80	14.14	35000.45	0.5412163	_
+ 118	+255	12.90	14.09	30000.52	0.6120191	0
+ 259	+ 84	12.60	14.02	31000.05	0.5223405	_
+ 326	+598	12.88	14.02	34000.19	0.5224824	-
+ 340	- 69	13.29	13.87	31000.12	0.2697490	
+ 353	+ 45	12.72	14.03	31000.18	0.5053039	_
	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Catalogue

No.	x''	у"	Max.	Min.	Epoch	Period	Remarks
GC	5121 (cont	inued)					
32	+ 746	- 40	12.98	13.96	30000.21	0.5791092	0
33	+ 805	+630	12.70	13.96	30000.39	0.6148303	0
34	- 820	+416	13.16	14.36	29723.338	0.554843	
35	- 377	+ 62	13.44	14.15	29705.441	0.627042	
36	- 208	-259	13.26	14.18	29676.370	0.541310	
37	- 39	+ 2	13.46	13.76	29522.064	0.247352	
38	- 23	+ 49	13.38	14.09	29496.053	0.577848	
39	+ 1	- 80	13.62	14.06	29676.463	0.623980	
40	+ 25	+ 49				0.40151	
41	+ 65	-150	13.53	13.97	29676.402	0.2517311	
42	+ 377	+558	13.33	13.78	29526.164	0.303708	
43	+1263	+332	12.92	13,48	29748.245	0.320637	

Joy, ApJ 110.105 (1949); Hoffmeister, Sonn Veröff 6, 1 (1963); Wilkens, La Plata Bol 7.14 (1964), MVS 2.101 (1964); Oosterhoff and Walraven, BAN 18.387 (1966); Ponsen and Oosterhoff, BAN Suppl 1.3 (1966); Eggen, ApJ 172.639 (1972)

S55a, S57, S59, S61, R62a, S62, S64, L65, R65, S67, C&S69, S69, S70

NGC 6139 a 16^h24^m.3, δ – 38°44′

Observed by Fourcade and Laborde. No variables found. Fourcade, Laborde and Albarracin, Atlas y Catalogo, Cordoba (1966) \$55b, R62b

NGC 6144 a 16^h24^m.2, δ – 25° 56'

1 + 481 - 117 15.3 16.3

Sawyer, JRASC **47**.229 (1953) S55a, S57, S59, S62, S69

NGC 6171 (Messier 107) $a 16^{h}29^{m}.7, \delta - 12^{\circ}57'$

1		112.8	-522.0	14.0	17.0	40504.	332	V720 Oph, V, f
2	+	148.8	-388.8	15.6	16.4	40389.502	0.5710205	
3		224.4	-183.6	15.55	16.25	40389.595	0.566343	
4	_	99.6	-156.6	15.5	16.15	40389.628	0.2821317	
5	+	231.0	-161.4	15.7	16.25	40389.709	0.70238	+
6	_	10.8	- 67.2	15.7	16.25	40389.740	0.2602558	
7	+	42.0	- 61.2	15.6	16.55	40389.696	0.499728	+
8	+	12.0	- 42.0	15.4	16.45	40389.957	0.559921	
9		26.4	- 19.8	15.95	16.35	40389.583	0.3206025	+ ?
10		57.0	+ 8.4	15.4	16.6	40389.532	0.4155329	+
11	+	9.6	+ 33.0	15.8	16.45	40389.611	0.592835	•)
12	+	58.8	+ 61.2	15.25	16.5	40389.593	0.4729722	
13	—	27.0	+ 72.0	15.35	16.6	40389.596	0.466797	
14	+	17.4	+ 82.2	15.4	16.5	40389.763	0.4816129	+
15	+	19.2	+120.0	15.6	16.25	40389.687	0.2885895	

No.	x''	У"	Max.	Min.	Epoch	Period	Remarks
NGC	6171 (conti	nued)					
16	- 67.2	+113.4	15.65	16.5	40389.853	0.5228709	_
17	- 99.0	+ 71.4	15.4	16.45	40389.761	0.561154	
18	+ 77.4	+215.4	15.75	16.5	40389.898	0.564378	
19	+ 232.8	+162.6	15.75	16.3	40389.822?	0.2787622	
20	+ 31.2	+ 51.0	15.65	16.4	40389.653	0.578113	
21	+ 81.0	-144.6	16.3	16.6	40389.704	0.258125	
22	-1354.2	-183.0					prob f
23	- 263.4	+ 19.2	15.5	16.2	40389.725	0.3233436	
24	0.0	+ 8.4	15.65	16.45	40389.615	0.3462153	
25			14.8			red	SK217, L&M

Kukarkin, AC 216.17 (1960); van Agt, BAN 508.327 (1961); Kukarkin, VS 13.384 (1961); Mannino, Bologna Pubbl 7, 18 (1961); Kurochkin, VS 14.15 (1962); Kukarkin, VS 14.21 (1962); Coutts, Master's Thesis, Toronto (1964); Kurochkin, VS 15.164 (1964); Sandage and Katem, ApJ 139.1088 (1964); Sturch, ApJ 148.477, Abs. AJ 72.321 (1967); Dickens, ApJ Suppl 22.249 (1970); Coutts and Sawyer Hogg, Toronto Publ 3.61, Abs. AAS Bull 3.242 (1971); Dickens, Letter, VI (1972); Lloyd Evans, Letter, V25 (1972); Lloyd Evans and Menzies, IAU Coll 21 (1973) S55a, S57, S59, S61, R62a, S62, S64, L65, R65, S67, S69, S70, F72

NGC 6205 (Messier 13) $a 16^{h}39^{m}.9, \delta + 36^{\circ}33'$

1	+ 73.06	- 24.86	13.6	15.1	39691.720	1.458997	Sp A-F, V, mem
2	- 54.10	- 3.04	12.8	14.3	39672.177	5.110939	+, Sp, V, mem
3	-127.70	+ 16.52	15.58	15.79	prob not var		
4	- 47.34	+ 58.18	15.04	15.23	prob not var		
5	+ 71.62	- 14.06	14.33	14.94	40046.7820	0.38177	
6	+ 92.68	+ 76.60	14.0	15.1	39664.923	2.112867	Sp F, V, mem
7	- 39.78	- 82.72	14.72	15.17			f
8	- 93.02	+ 11.29	14.2	15.6	39679.821	0.7503158	mem
9	+ 71.62	- 14.06	14.0	15.1	40038.8121	0.39265	
10	- 5.40	-70.73	13.1	14.0		SR	Sp, V, mem
11	- 45.78	- 75.88	12.9	13.8		92.5	Sp, V, mem
12	-105.88	+ 53.46	15.0	15.35	prob not var		
13	- 45.37	- 31.30	14.26	14.50	prob not var		
14	+ 3.18	+207.64	16.16	16.45	prob not var		
15	+ 79.03	-115.34	13.32	13.67		irr	mem
16	+349.40	+207.90					Tsoo Yu-hua

Variable 16 = Savedoff A 18, probably Ludendorff 1113. One field variable, Tsoo Yu-hua.

Joy, ApJ 110.105 (1949); Arp, AJ 60.1 (1955); Brown, ApJ 122.146 (1955); Savedoff, AJ 61. 254 (1956); Wallerstein, ApJ 127.583 (1958); Kraft, Camp and Hughes, ApJ 130.90 (1959); Kurochkin, VS 13.248 (1961); Arp, La Plata Symp p. 87 (1962); Tsoo Yu-hua, Letter (p) (1964); Kadla, Pulk Mitt (1sw) 24.93 (1966); Osborn, Letter (1968), AJ 74.108 (1969), 1BVS 350 (1969); Demers, AJ 76.445 (1971); Osborn, Letter (1972)

S55a, S57, S59, S61, R62a, S62, P64, S64, L65, R65, S67, S69, S70

Catalogue

No.	x''	у''	Max.	Min.	Epoch	Period	Remarks
NGC	6218 (Messi	er 12) a 16	5h44m.6,	δ -01°52			
1	+34	-62	11.9	13.2	27306.708	15.508	Sp F-G, V
	er, Toronto 1 S57, S59, R		•	, ApJ 110	.105 (1949)		
NGC	6229 a16 ¹	145m.6,δ+	47° 37′				
1	- 24.6	-105.5	16.78	17.94	35630.542	0.5856908	
2	- 71.9	+ 4.9	16.95	17.93	35631.521	0.5552380	
3	-195.7	+ 41.3	17.21	17.82			
4	- 56.8	- 14.3	17.36:	17.89			
5	+ 14.5	+ 44.1	17.25	17.95	35633.555	0.5336051	
6	+ 44.1	+ 41.5	17.28:	17.96	27953.930	0.559385	
7	- 41.7	- 49.9	16.84	18.01	27978.840	0.506980	
8	- 4.1	- 42.1	15.47	16.51	35573.461	14.845093	Cep
9	- 38.9	+ 38.3	17.08	17.88	35629.516	0.5428497	
10	- 29.5	+ 72.7	17.20	18.00	35629.535	0.5547785	
11	+ 23.9	- 25.0]17.44	18.01			
12	+ 34.2	- 23.6	17.12	18.02			
13	+140.2	+ 61.3	17.20	17.96	35630.552	0.5473432	
14	- 15.5	- 50.7	16.76	17.86	35631.565	0.4659161	
15	+ 34.2	+ 27.5	17.39	17.92	35611.460	0.2713783	
16	+ 47.0	- 24.2	17.31	17.94	35637.500	0.322784	
17	- 96.3	- 75.0	17.08	17.72	27979.830	0.324880	
18	- 36.1	+ 32.2	17.34	18.00			
19	+ 53.4	- 44.4	16.96	18.00	35629.546	0.4759609	
20	- 27.5	- 36.1	16.91	18.05	35631.524	0.4659728	
21	+117.3	- 61.6	17.12	17.94			
22	+ 4	- 7	15.2	16.3			prob slow

For variables with periods by both Mannino and Mayer, those of Mannino are tabulated because they are based on more observations.

Baade, ApJ 102.17 (p) (1945); Sawyer, JRASC 47.229 (1953); Mannino, Bologna Pubbl 7, 13 (1960); Mayer, BAC 12.167 (1961)

S55a, S57, S59, R62a, S62, S64, L65, R65, S69

NGC 6	5235 a16	h50m.4,δ-	-22°06′					
1 2		$^{+}$ 39 -211		17.2 17.3				
-	r, JRASC 4 S57, S59, S	47.229 (p) (662, 869	1953)					
NGC 6	5254 (Mess	ier 10) a 1	6 ^h 54m.5,	δ -04°02	1			
1 2	+ 5 + 30	+ 22 + 120	13.2 11.91	13.8 13.34	34907.0	18.728	Sp G, V Sp F -G, V	

No.	x"	у"	Max.	Min.	Epoch	Period	Remarks
NGC 6	5254 (contin	nued)					
3 4	-209	+106	13.10	13.82	34905.64	7.908	Min Voroshilov Arp 1V–37
(1958)); Voroshilo	(1948); Arg v, AC 623.7 R62a, S62,	(1971)	,320 (195	55), AJ 62 .129	(1957); Waller	stein, ApJ 127.583
Palom	ar 15 a 16	h57m.6, δ -	-00° 28'				
	iables found in and Rosir	1. 10, ASP 74.4	199 (1962	!)			
NGC 6	5266 (Messi	er 62) a 16	h58m.1,	δ-30°03	t.		
1 2	+ 41.0 - 26.6	+ 6.1 - 68.9					Sp F-G
3	- 88.9	- 6.8			33421.41	0.49158	
4	- 93.9	- 39.3	15.68	16.85	33419.49	0.54113	
5	-163.2	+123.5	15.50	16.53	33417.51	0.46049	
6	- 81.7	+ 34.0			33419.30	0.49191	
7	+ 22.1	+169.4	15.86	17.06	33419.38	0.56389	
8	- 93.2	+162.4			33423.44	0.53200	
9	- 92.6	+213.1	15.40	16.68	33423.48	0.55662	
10	-454.0	+157.7	15.58	16.93	33418.45	0.53259	
11	-457.1	+126.7	16.06	16.85	33421.56	0.59823	
12	-204.4	+268.9			33421.39	0.48799	
13	+ 1.6	+ 30.2				0.44016	
14	- 92.2	+265.8	15.27	16.83	33421.41	0.44216	
15	+123.0	+303.4	16.01	16.91	33423.60	0.63024	
16	- 74.5	+ 93.9	15.35	16.51	33421.55	0.59591	
17	- 22.1	+102.4	15.00	16.90	33423.51 33423.58	0.5251 0.52616	
18	- 33.3	+ 92.3	15.90	16.80	33421.53	0.52271	
19	- 14.5	+ 65.5	15 60	17.00	33423.52	0.32271	
20 21	+131.6 +105.9	+159.4 + 79.7	15.68 15.75	17.14	33421.42	0.45045	
21	+ 103.9 + 61.9	+ 11.9	15.75	1/.14	33421.48	0.49925	
22	+ 61.9 - 73.2	+ 11.9 - 37.4			33417.56	0.44821	
23	-73.2 + 58.1	-37.4			33417.59	0.52267	
24	+152.5	-72.8	16.35	17.71	33421.45	0.44584	
26	-182.9	-303.1	10.50				
20	-6.8	- 59.8			33423.40	0.44916	Vars. 27-42
28	+154.0	+ 19.3	16.81	17.45	33423.52	0.49749	discovered by
29	+154.0 +153.4	+ 14.5	15.96	17.35	33423.44	0.56	van Agt
	- 61.7	-181.9	16.69	17.36	33418.54	0.30440	e
	- 01.7						
30 31	-46.4	-143.0			33419.37	0.48500	

Catalogue

No.	x''	У''	Max.	Min.	Epoch	Period	Remarks
NGC	6266 (cont	inued)					
33	- 13.7	-117.9	16.79	17.71	33422.51	0.57438	
34	- 61.0	- 4.9			33422.54	0.58372	
35	-113.2	+ 14.1	15.56	16.82	33418.48	0.5288	
36	- 41.2	+125.6	15.84	16.66	33423.49	0.6530	
37	- 53.2	+ 6.5			33423.38	0.5852	
38	- 22.1	- 44.8			33421.56	0.77083	
39	-121.4	+ 59.0	16.02	16.89	33421.51	0.64020	
40	-122.0	+ 45.6			33423.52	0.30131	
41	-118.4	+ 40.7			33423.46	0.55848	
42	-130.0	+ 50.0	16.00	16.35	33421.56	0.24765	
43	- 62.8	-223.1	16.36	17.40	33423.37	0.56356	Vars. 43-82
44	- 47.6	-122.7	16.48	17.99	33423.54	0.44575	discovered by
45	+ 59.0	-187.7	16.72	17.95	33417.60	0.51688	Oosterhoff
46	+130.9	+477.9	16.65	17.63	33418.45	0.53874	Costemon
47	- 22.0	+241.6	16.34	16.93	33422.39	0.61211	
48	- 86.1	-130.8	16.35	17.29	33421.49	0.74360	
49	+139.0	-104.7			33423.35	0.54360	
50	+281.7	- 34.4	16.38	17.65	33421.56	0.50264	
51	+294.3	+193.7	16.40	17.01	33421.50	0.26181	
52	+ 75.9	-181.5	16.58	17.87	33423.59	0.50538	
53	-111.8	-101.0			00.20107	0.000000	
54	-150.5	-671.7			33423.51	0.38591	
55	+422.7	+278.4	16.07	17.11	33417.50	0.47872	
56	+ 37.1	+118.9	16.22	17.00	33423.47	0.5654	
57	+ 51.1	+121.1	16.00	17.03	33423.61	0.55636	
58	- 98.6	+ 32.2	10.00		33423.40	0.48100	
59	+122.1	+ 94.1	16.15	17.23	33421.46	0.57931	
50	+308.8	+ 395.5	15.99	16.53	33423.63	0.28662	
51	+215.9	+190.7	16.57	17.25	33421.48		
52	+238.5	+104.9	15.99	17.26		0.26602	
53	+105.4	-102.4	16.75	17.55	33419.45	0.54807	
54	-124.6	-266.4	16.10	17.08	33418.59 33422.37	0.64313	
55	- 86.6	+137.5	10.10	17.00	55444.51	0.47299	
56 56	-316.8	+ 17.5	16.19	16.74	33423.60	0 22282	
57	+ 399.1	+621.4	16.12	17.14	33423.60	$0.33383 \\ 0.56488$	
58	+146.5	+417.6	16.05	16.57	33419.50	0.23529	
59	+122.3	+109.9	16.39	16.94	33423.55	0.23329	
70	-725.2	- 86.9	10.57	10.74	33423.55	0.51569	
71	- 87.6	-482.4			33422.34		
2	-182.7	-104.5	16.09	17.29	33422.34	0.70452	
3	-203.5	-104.5 -105.5	10.09	11.27	55421.45	0.46751	
4	- 21.4	- 53.6			33423.60	0 16616	
75	+396.5	+237.5	16.57	17.10	33423.60	0.46646	
76	+178.1	+237.3 +629.6	15.81	16.55		0.33429	
77	+275.3	+ 331	16.82	16.35	33421.50	0.61523	
78	+273.3 +338.4	+ 33 1 +174.1	16.82	17.30	22121 40	0 (3170	
79	+694.3	- 81.0	10.70	17.43	33421.49	0.62170	
	1074.3	- 81.0			33423.40	0.31896	

No.	x''	у''	Max.	Min.	Epoch	Period	Remarks
NGC	6266 (conti	nued)					
80	- 85.3	+ 90.4	15.90	16.74	33422.54	0.58858	
81	-110.5	+ 97.3	15.65	16.95	33419.39	0.53093	
82	- 39.4	- 68.0			33421.58	0.56481	
83	- 38.3	- 9.9					van Agt
84			16.55	17.53			G&F
85			16.68	17.55			G&F
86			16.38	17.69			G&F
87			15.80	16.70			G&F
88			16.04	16.75			G&F
89			16.45	17.66			G&F

S55a, S57, S59, S61, R62a, S62, R65, FLA66, S69, S70

NGC	6273 (Mess	tier 19) a 1	6h59m.5,	$\delta - 26^\circ 11'$	
1	+ 4	+ 48	14.1	15.1	
2	+14	+123	13.4	14.7	Cep?
3	-28	- 6	14.2	15.2	
4	-2	- 24	15.1	15.7	
	field variabl	es, Sawyer. Publ 1, 14 ((m) (1042)		
		561, R62a, S			
NGC	6284 a17	h01m.5,δ-	-24°41 ′		
1	- 24	+ 36	15.6	16.1	
2	- 47	- 17	16.1	17.0	
3	- 28	- 13	15.3	15.7	
4	+ 22	- 18	15.4	16.3	
5	+109	-205	16.4	17.0	
6	+139	+221	15.9	16.4	
Fourt	field variabl	les, Sawyer.			
Sawye	er, Toronto	Publ 1, 14 (p) (1943)		
S55a,	\$59, \$62, \$	569			
NGC	6287 a17	h02m.1,δ-	-22° 38′		
1	-152	-40	16.2	17.1	
2	+ 46	-26	15.7	15.9	
3	+ 26	+44	16.1	16.8	
Sawye		oles, Sawyer. Publ 1, 14 (
2004,	~~~,				

/

No.	x''	у''	Max.	Min.	Epoch	Period	Remarks
NGC	6293 a 17 ¹	n07m.1,δ-	26° 30'				
1	+ 81.0	+49.5	15.9	16.6			
2	-135.6	+64.5	15.8	16.7			
3	+ 48.6	+18.6	15.5	15.8			
4	+ 92	- 81	16.1	17.1			
5	+ 78	-83	15.7	16.5			
GCe	5304 a17h	11m 4 8 -	29° 24'				
1	+102.0	-114.4	16.5	18.0			
2	-168.9	-114.4 +169.6	16.5 15.7	17.5			RR?
2 3	-168.9 + 200.5	-114.4 +169.6 + 60.2	16.5 15.7 16.5	17.5 17.5			RR? RR
2 3 4	-168.9 +200.5 -272.4	-114.4 +169.6 + 60.2 -154.9	16.5 15.7 16.5 16.0	17.5 17.5 16.9			RR
2 3 4 5	-168.9 +200.5 -272.4 +235.5	-114.4 +169.6 + 60.2 -154.9 - 7.8	16.5 15.7 16.5 16.0 16.7	17.5 17.5 16.9 17.6			
2 3 4 5 6	-168.9 +200.5 -272.4	-114.4 +169.6 + 60.2 -154.9	16.5 15.7 16.5 16.0 16.7 16.6	17.5 17.5 16.9			RR
2 3 4 5 6 7	-168.9 +200.5 -272.4 +235.5	-114.4 +169.6 + 60.2 -154.9 - 7.8	16.5 15.7 16.5 16.0 16.7	17.5 17.5 16.9 17.6			RR RR
2 3 4 5 6 7 8	-168.9 +200.5 -272.4 +235.5 +304.7	-114.4 +169.6 + 60.2 -154.9 - 7.8 -191.7	16.5 15.7 16.5 16.0 16.7 16.6	17.5 17.5 16.9 17.6 17.8			RR RR
2 3 4 5 6 7	-168.9 +200.5 -272.4 +235.5 +304.7 + 0.8	-114.4 +169.6 + 60.2 -154.9 - 7.8 -191.7 -293.5	16.5 15.7 16.5 16.0 16.7 16.6 17.5	17.5 17.5 16.9 17.6 17.8 18.3			RR RR RR
2 3 4 5 6 7 8	-168.9 +200.5 -272.4 +235.5 +304.7 + 0.8 +486.7	-114.4 + 169.6 + 60.2 - 154.9 - 7.8 - 191.7 - 293.5 + 49.9	16.5 15.7 16.5 16.0 16.7 16.6 17.5 16.7	17.5 17.5 16.9 17.6 17.8 18.3 17.7			RR RR RR RR

11	-244.8	-534.6	16.4	17.2	
12			13.95	14.30	Terzan 28
13			11.00	12.52	Terzan 29
14			10.75	13.25	Terzan 30
15			12.90	13.88	Terzan 32
16			13.70	13.80	Terzan 33
17			15.25	15.40	Terzan 40
18			13.60	[14.60	Terzan 43
19			13.38	13.78	Terzan 68
20			13.91	14.15	Terzan 69
21			13.87	14.40	Terzan 72

Vars. 1-11 found by Rosino, 12-21 by Terzan on red plates. Many field variables by Terzan. Rosino, Asiago Contr 132 (p) (1962); Terzan, Haute Prov Publ 9, 1 (1966), Haute Prov Publ 9, 24 (1968)

S55b, R57, S61, R62e, S62, F&L63, S64, FLA66, S69, S70

NGC 6316 $a 17^{h}13^{m}.4, \delta - 28^{\circ}05'$

S55b, R62b

NGC 6325 $a 17^{h}15^{m}.0, \delta -23^{\circ}42'$

\$55b,R62b

No.	x''	У''	Max.	Min.	Epoch	Period	Remarks
NGC	6333 (Messie	er9) a17h	16 ^m .2, δ	-18° 28′			
1	+ 91	- 76	15.6	16.9	29427.886	0.585727	
2	+ 40	-31	15.6	16.4	29436.854	0.628191	
3	+207	-210	15.7	16.85	32000.735	0.605397	
4	+207 + 23	-35	15.8	16.95	30520.749	0.670076	
5	+ 23 + 34	- 33 - 7	16.0	16.8	29435.870	0.274708	
6	- 70	- 14	15.7	16.95	29435.870	0.607795	
7	-111	-14 - 80	15.95	10.23	29434.860	0.628456	
8	- 73	- 80 - 99	16.05	16.9	27737.000	0.020100	
9	+ 334	-191	16.0	16.75	30933.704	0.322990	
10	+ 37	+ 26	16.2	16.9	30553.653	0.242322	
11	+ 37 - 4	- 7	15.7	16.8	20000.000	3.2.2522	
12	-275	-136	15.85	16.95	29408.951	0.571784	
13	+259	+ 11	16.7	17.8	30554.694	0.47985	f
Sawye	er, Toronto	Publ 1, 24 (j S62, L65, R	p) (1951)				
Sawye S55a,	er, Toronto S59, R62a,	Publ 1, 24 (j	p) (1951) 465, 869	e			
Sawye S55a,	er, Toronto S59, R62a,	Publ 1, 24 (j S62, L65, R	p) (1951) 465, 869	e	24410.198	0.7028015	
Sawye S55a, NGC	er, Toronto S59, R62a, 6341 (Messi	Publ 1, 24 (j S62, L65, R er 92) a 17	p) (1951) 65, S69 h15m.6,	δ +43°12′ 15.30 15.25		0.7028015 0.6438829	BQ
Sawye S55a, NGC (1	er, Toronto S59, R62a, 6341 (Messi +127.5	Publ 1, 24 (j S62, L65, R er 92) a 17 + 41.3	p) (1951) 65, S69 h15m.6, 14.35	δ +43°12′ 15.30	24410.198		B¢ –, Sp
Sawye S55a, NGC (1 2	er, Toronto S59, R62a, 6341 (Messi +127.5 + 91.2	Publ 1, 24 (j S62, L65, R er 92) a 17 + 41.3 + 69.2	p) (1951) .65, S69 	δ +43°12′ 15.30 15.25 15.35 15.20	24410.198 24409.347	0.6438829	
Sawye S55a, NGC 0 1 2 3	er, Toronto S59, R62a, 6341 (Messi +127.5 + 91.2 + 53.7	Publ 1, 24 (j S62, L65, R er 92) a 17 + 41.3 + 69.2 +252.7	p) (1951) 65, S69 h15m.6, 14.35 14.55 14.20	δ +43°12′ 15.30 15.25 15.35	24410.198 24409.347 24410.377	0.6438829 0.6375010	
Sawye S55a, 	er, Toronto S59, R62a, 6341 (Messi +127.5 + 91.2 + 53.7 - 76.0	Publ 1, 24 (j S62, L65, R er 92) a 17 + 41.3 + 69.2 +252.7 + 58.0 - 53.7 + 43.3	p) (1951) 65, 869 h15m.6, 14.35 14.55 14.20 14.45 14.50 14.53	δ +43°12' 15.30 15.25 15.35 15.20 15.25 15.40	24410.198 24409.347 24410.377 24433.262 24428.315 27340.360	0.6438829 0.6375010 0.6289128 0.6196963 0.600001	-, Sp
Sawye S55a, 	er, Toronto S59, R62a, 6341 (Messi +127.5 + 91.2 + 53.7 - 76.0 + 81.6 + 38.7 + 1.6	Publ 1, 24 (j S62, L65, R er 92) a 17 + 41.3 + 69.2 +252.7 + 58.0 - 53.7 + 43.3 - 50.5	p) (1951) 65, 869 h15m.6, 14.35 14.55 14.20 14.45 14.50 14.53 14.45	δ +43°12' 15.30 15.25 15.35 15.20 15.25 15.40 15.70	24410.198 24409.347 24410.377 24433.262 24428.315 27340.360 37871.517	0.6438829 0.6375010 0.6289128 0.6196963 0.600001 0.5149114	-,Sp B0
Sawye S55a, NGC 1 2 3 4 5 6 7 8	er, Toronto S59, R62a, 6341 (Messi +127.5 + 91.2 + 53.7 - 76.0 + 81.6 + 38.7 + 1.6 + 208.9	Publ 1, 24 (j S62, L65, R er 92) a 17 + 41.3 + 69.2 +252.7 + 58.0 - 53.7 + 43.3 - 50.5 +208.0	p) (1951) 65, 869 h15m.6, 14.35 14.55 14.20 14.45 14.50 14.53 14.53 14.45 14.50	δ +43°12' 15.30 15.25 15.35 15.20 15.25 15.40 15.70 15.20	24410.198 24409.347 24410.377 24433.262 24428.315 27340.360	0.6438829 0.6375010 0.6289128 0.6196963 0.600001 0.5149114 0.6732769	-, Sp
Sawye S55a, MGC 1 2 3 4 5 6 7 8 9	er, Toronto S59, R62a, 6341 (Messi +127.5 + 91.2 + 53.7 - 76.0 + 81.6 + 38.7 + 1.6 +208.9 + 18.0	Publ 1, 24 (j S62, L65, R er 92) a 17 + 41.3 + 69.2 +252.7 + 58.0 - 53.7 + 43.3 - 50.5 +208.0 - 48.1	p) (1951) 65, 869 h15m.6, 14.35 14.55 14.20 14.45 14.50 14.53 14.45 14.50 14.50 14.80	δ +43°12' 15.30 15.25 15.35 15.20 15.25 15.40 15.70 15.20 15.60	24410.198 24409.347 24410.377 24433.262 24428.315 27340.360 37871.517 24410.289	0.6438829 0.6375010 0.6289128 0.6196963 0.600001 0.5149114 0.6732769 0.61 var	-,Sp B0
Sawye S55a, NGC 1 2 3 4 5 6 7 8	er, Toronto S59, R62a, 6341 (Messi +127.5 + 91.2 + 53.7 - 76.0 + 81.6 + 38.7 + 1.6 + 208.9	Publ 1, 24 (j S62, L65, R er 92) a 17 + 41.3 + 69.2 +252.7 + 58.0 - 53.7 + 43.3 - 50.5 +208.0 - 48.1 + 36.3	p) (1951) 65, 869 h15m.6, 14.35 14.55 14.20 14.45 14.50 14.53 14.53 14.45 14.50	δ +43°12' 15.30 15.25 15.35 15.20 15.25 15.40 15.70 15.20 15.60 15.20	24410.198 24409.347 24410.377 24433.262 24428.315 27340.360 37871.517 24410.289 24410.454	0.6438829 0.6375010 0.6289128 0.6196963 0.600001 0.5149114 0.6732769 0.61 var 0.3773182	–, Sp BQ Sp, BQ
Sawye S55a, 	er, Toronto S59, R62a, 6341 (Messi +127.5 + 91.2 + 53.7 - 76.0 + 81.6 + 38.7 + 1.6 +208.9 + 18.0 + 83.0 + 71.2	Publ 1, 24 (j S62, L65, R er 92) a 17 + 41.3 + 69.2 +252.7 + 58.0 - 53.7 + 43.3 - 50.5 +208.0 - 48.1 + 36.3 - 67.1	p) (1951) 65, 869 h15m.6, 14.35 14.55 14.20 14.45 14.50 14.53 14.45 14.50 14.50 14.50 14.80 14.75 14.80	δ +43°12' 15.30 15.25 15.35 15.20 15.25 15.40 15.70 15.20 15.60 15.20 15.20 15.20	24410.198 24409.347 24410.377 24433.262 24428.315 27340.360 37871.517 24410.289 24410.454 24466.213	0.6438829 0.6375010 0.6289128 0.6196963 0.600001 0.5149114 0.6732769 0.61 var 0.3773182 0.3084409	-,Sp B0
Sawye S55a, NGC 1 2 3 4 5 6 7 8 9 10 11 12	er, Toronto S59, R62a, 6341 (Messi +127.5 + 91.2 + 53.7 - 76.0 + 81.6 + 38.7 + 1.6 + 208.9 + 18.0 + 83.0 + 71.2 - 29.9	Publ 1, 24 (j S62, L65, R er 92) a 17 + 41.3 + 69.2 + 252.7 + 58.0 - 53.7 + 43.3 - 50.5 + 208.0 - 48.1 + 36.3 - 67.1 - 97.8	p) (1951) 65, 869 h15m.6, 14.35 14.55 14.20 14.45 14.50 14.53 14.45 14.50 14.50 14.50 14.50 14.75	δ +43°12' 15.30 15.25 15.35 15.20 15.25 15.40 15.70 15.20 15.60 15.20	24410.198 24409.347 24410.377 24433.262 24428.315 27340.360 37871.517 24410.289 24410.454	0.6438829 0.6375010 0.6289128 0.6196963 0.600001 0.5149114 0.6732769 0.61 var 0.3773182	–, Sp BQ Sp, BQ
Sawye S55a, NGC 1 1 2 3 4 5 6 7 8 9 10 11 12 13	er, Toronto S59, R62a, 6341 (Messi +127.5 + 91.2 + 53.7 - 76.0 + 81.6 + 38.7 + 1.6 + 208.9 + 18.0 + 83.0 + 71.2 - 29.9 +153.4	Publ 1, 24 (j S62, L65, R er 92) a 17 + 41.3 + 69.2 + 252.7 + 58.0 - 53.7 + 43.3 - 50.5 + 208.0 - 48.1 + 36.3 - 67.1 - 97.8 - 60.1	p) (1951) 465, 869 24155, 869 14.35 14.35 14.50 14.45 14.50 14.53 14.50 14.53 14.50 14.50 14.75 14.80 14.70	δ +43°12' 15.30 15.25 15.35 15.20 15.25 15.40 15.70 15.20 15.60 15.20 15.20 15.20 15.20 15.20 15.20	24410.198 24409.347 24410.377 24433.262 24428.315 27340.360 37871.517 24410.289 24410.454 24466.213 38905.364	0.6438829 0.6375010 0.6289128 0.6196963 0.600001 0.5149114 0.6732769 0.61 var 0.3773182 0.3084409 0.409939	-, Sp BQ Sp, BQ BQ
Sawye S55a, NGC 1 2 3 4 5 6 7 8 9 10 11 12	er, Toronto S59, R62a, 6341 (Messi +127.5 + 91.2 + 53.7 - 76.0 + 81.6 + 38.7 + 1.6 + 208.9 + 18.0 + 83.0 + 71.2 - 29.9	Publ 1, 24 (j S62, L65, R er 92) a 17 + 41.3 + 69.2 + 252.7 + 58.0 - 53.7 + 43.3 - 50.5 + 208.0 - 48.1 + 36.3 - 67.1 - 97.8	p) (1951) 65, 869 h15m.6, 14.35 14.55 14.20 14.45 14.50 14.53 14.45 14.50 14.50 14.50 14.80 14.75 14.80	δ +43°12' 15.30 15.25 15.35 15.20 15.25 15.40 15.70 15.20 15.60 15.20 15.20 15.20	24410.198 24409.347 24410.377 24433.262 24428.315 27340.360 37871.517 24410.289 24410.454 24466.213	0.6438829 0.6375010 0.6289128 0.6196963 0.600001 0.5149114 0.6732769 0.61 var 0.3773182 0.3084409	–, Sp BQ Sp, BQ

V15 in Second Catalogue is same as V12 (Kukarkin, Letter, 1972) so V16 renumbered 15. Nine field variables, Mnatsakanian and Sahakian.

Walker, AJ 60.197 (1955); Preston, ApJ 134.651 (1961); Kheylo, 1BVS 43 (1964), 1BVS 104 (1965), Voprosy Astrofiziki, Kiev, p.124 (1966), VS 16.213 (1967); Sturch, AJ 72.321, ApJ 148.477 (1967); Bartolini, Battistini and Nasi, Bologna Pubbl 9, 15 (1968); Mnatsakanian and Sahakian, AC 528.5 (1969); Eggen, ApJ 172.639 (1972); Kukarkin, AC 707.7 (c) (1972) S55a, S57, S59, S61, R62a, S62, P64, S64, L65, R65, St66, S67, C&S69, S69, S70

NGC 6342 $a 17^{h}18^{m}.2, \delta - 19^{\circ}32'$

S55b, R62b

No.	x"	y''	Max.	Min.	Epoch	Period	Remarks
NGC 6	5352 a17h	21 ^m .6, δ -	48°26′				
1	+226.33	-158.13					F&L 1
2	+130.63	+ 58.30					F&L 4, f?
3	286.00	+139.91					F&L 8
4			12.7	13.4			HII 113

Fourcade and Laborde nos. 2, 3, 5, 6, 7, 9-12 considered field. V4 found by Lloyd Evans and Menzies (1973), who also have one field variable.

Fourcade and Laborde, Cordoba Repr 117 (1964), Cordoba Repr 126 (1965); Fourcade, Laborde and Albarracin, Atlas y Catalogo, Cordoba (1966); Hartwick and Hesser, ApJ 175.77 (1972); Lloyd Evans, Letter (1972); Lloyd Evans and Menzies, IAU Coll 21 (1973)

\$55b, R62b, F&L63, \$67, \$69

NGC 6355 $a 17^{h}20^{m}.9$, $\delta \sim 26^{\circ}19'$

S55b, R62b

NGC 6356 $a 17^{h}20^{m}$.7, $\delta = 17^{\circ}46'$

ł	15	- 24	16.3	17.2			
2	+101	-110	16.8	17.1			
3	24	+ 45	16.0	17.5			
4	+187	+ 47	15.9	[17.5	32328.	208:	
5	255	+152	15.7	[17.5			
6*	575	+114	15.6	[17.3			
7			15.4V	15.6V			SW 34
8			15.6V	16.0V			SW 72
9			15.3V	15.7V			SW 30
10			15.4V	15.7V			SW 46

*Formerly Sawyer F1, which Wilkens says should be included in the cluster. Vars. 7-10 discovered by Lloyd Evans and Menzies (unpub).

Sawyer, JRASC 47.229 (p) (1953); Sandage and Wallerstein, ApJ 131.598 (p) (1960): Lloyd Evans, Letter (1972); Sawyer Hogg, unpub (1972); Wilkens, Letter (1972); Lloyd Evans and Menzies, IAU Coll 21 (1973)

\$55a, \$57, \$59, R62c, \$62, P64, R65, \$69, F72

NGC 6	362 a 17	^h 26 ^m .6, δ	67°01′				
1	00	00					
2	26	100					
3	83	90					
4	79	88					
5	E 81	15					
6	- 54	+ 174	14.9	15.3	36565.999	0.2628878	VH 15
7	+ 22	+ 104	13.7	14.5	36565.724	0.5215674	VH 6
8	263	+108	14.8	15.3	36566.080	0.3810811	VH 17
9	207	± 1.38					

No.	x"	у''	Max.	Min.	Epoch	Period	Remarks
NGC	6362 (conti	inued)					
10	+186	+353	14.5	14.9	36566.024	0.3617240	VH 10
11	- 29	+ 48					
12	-246	-103	14.5	15.5	36565.817	0.5328711	VH 3
13	-234	-120	14.4	15.4	36565.811	0.5800254	VH 1
14	+ 369	+ 28	15.0	15.3	36565.865	0.2463744	VH 16
15	+ 49	00					
16	+ 16	-270	14.2	15.5	36565.939	0.5256730	VH 4
17	+201	- 68	14.9	15.3	36566.026	0.3149808	VH W1
18	+110	+ 72	14.2	15.2	36566.074	0.5128892	VH 13
19	+123	- 25					
20	+ 45	- 15					
21	+160	-108					
22	+182	-313	14.8	15.3	36566.058	0.3639867	VH 14
23	+ 30	- 23					
24	+ 71	- 36					
25	-356	-212	14.0	15.5	36566.150	0.4558950	VH 2
26	+ 22	- 38					
27	-193*	+384	14.7	15.4	36566.061	0.3860821	VH 9
28	+ 24	+ 37					
29	- 15	- 35					
30	- 89	+ 74	14.2	15.4	36566.162	0.6133787	VH 5
31	- 33	+ 80					
32	+ 40	+ 31					L&F
33	+316	+364	14.7	15.3	36566.028	0.4412499	VH 11

* Coordinate corrected.

Vars. 16-31 found by van Agt (1961) seven of them independently by Van Hoof. One field variable, 58' from centre, Shapley.

Shapley, HB 777 (1922); van Agt, BAN 508.329 (1961); Van Hoof, Louv Publ 14, 131 (1961); Rosino and Sawyer Hogg, IAU Trans 11B.301 (1962); Fourcade, Laborde and Albarracin, Atlas y Catalogo, Cordoba (1966); Laborde and Fourcade, Cordoba Repr 138 (1966); van Agt, Priv comm (1971)

S55a, S59, R62c, S62, F&L63, S64, L65, R65, S69

NGC 6366 $a 17^{h}25^{m}.1, \delta - 05^{\circ}02'$

1	- 26	- 42	15.5	17.0
2	+ 305	-390	15.7	16.8
	er, Toronto S59, S62, S	Publ 1, 5 (p 869, 870) (1940)	

Haute Provence 1 $a 17^{h}28^{m}.5, \delta - 29^{\circ}57'$

1	T248, 1964
2	T249, 1964
3	T 361, 1965
4	T362, 1965

Catal	ogue
-------	------

No.	x''	У''	Max.	Min.	Epoch	Period	Remarks
HP 1 (continued)						
5							T363, 1965
6							T364, 1965
7							T126, 1966
8							T130, 1966
9							T247, 1966
10							T251, 1966
11							T136, 1966
12							T137, 1966
13							T139, 1966
14							T142, 1966
15							T143, 1966
Cailli p) (19	atte, Lyon	Publ 5, 3	3 (1962), H				ute Prov Publ 7, 3, 3)) (1966)
NGC 6	380 a 17 ⁴	131m.9, δ	-39°02′				
1	-14.85	+131.4	5				F&L
_				las y Catalo	vao Cordoba (066)	
_	de, Labord			las y Catalc	ego, Cordoba (1966)	
Fourca S55b, I	de, Labord	e and Alb	arracin, At	ilas y Catalo	go, Cordoba (1966)	
Fourca S55b, I MGC 6	de, Labord R62b	e and Alb	arracin, At	as y Catalc	go, Cordoba (1966)	V1. M
Fourca S55b, I NGC 6 1	de, Labord R62b	e and Alb	arracin, At	las y Catalc	go, Cordoba (1966)	V1, M V2, M
Fourca 555b, I NGC 6 1 2	de, Labord R62b	e and Alb	arracin, At	las y Catalo	go, Cordoba (1966)	V1, M V2, M V3
Fourca S55b, I NGC 6 1	de, Labord R62b	e and Alb	arracin, At	las y Catalo	go, Cordoba (1966)	V2, M
Fourca 555b, F NGC 6 1 2 3	de, Labord R62b	e and Alb	arracin, At	las y Catalo	go, Cordoba (1966)	V2, M V3
Fourca S55b, I NGC 6 1 2 3 4	de, Labord R62b	e and Alb	arracin, At	las y Catalo	go, Cordoba (1966)	V2, M V3 V4, M
Fourca S55b, I NGC 6 1 2 3 4 5	de, Labord R62b	e and Alb	arracin, At	las y Catalo	go, Cordoba (1966)	V2, M V3 V4, M V6
Fourca 555b, F NGC 6 1 2 3 4 5 6	de, Labord R62b	e and Alb	arracin, At	las y Catalo	go, Cordoba (1966)	V2, M V3 V4, M V6 V7
Fourca S55b, F NGC 6 1 2 3 4 5 6 7	de, Labord R62b	e and Alb	arracin, At	las y Catalo	go, Cordoba (1966)	V2, M V3 V4, M V6 V7 V8
Fourca S55b, H NGC 6 1 2 3 4 5 6 7 8 9 9 All var Four (1972)	de, Labord R62b 388 a 17 ^t iables foun- cade, Labo ; Lloyd Ev	d by Lloy and Alb	arracin, A t 	d Menzies,	identified on p alogo, Cordoba	rint.	V2, M V3 V4, M V6 V7 V8 V10
Fourca 555b, H NGC 6 1 2 3 4 5 6 7 8 9 All var Four (1972) S55b	de, Labord R62b 388 a 17 ^h 388 to 17 ^h 388 to 17 ^h to	d by Lloy rde and A ans and M 2	d Evans an Ibarracin, IA	d Menzies, Atlas y Cat U Coll 21 (d	identified on p alogo, Cordoba	rint.	V2, M V3 V4, M V6 V7 V8 V10 V11
Fourca S55b, H NGC 6 1 2 3 4 5 6 7 8 9 All var Four (1972) S55b	de, Labord R62b 388 a 17 ^t iables foun- cade, Labo ; Lloyd Ev	d by Lloy rde and A ans and M 2	d Evans an Ibarracin, IA	d Menzies, Atlas y Cat U Coll 21 (d	identified on p alogo, Cordoba	rint.	V2, M V3 V4, M V6 V7 V8 V10 V11
Fourca 555b, H NGC 6 1 2 3 4 5 6 7 8 9 All var Four (1972) S55b Tonan 1	de, Labord R62b 388 a 17 ^h 388 to 17 ^h 388 to 17 ^h to	d by Lloy rde and A ans and M 2	d Evans an Ibarracin, lenzies, 1Α	d Menzies, Atlas y Cat U Coll 21 (d	identified on p alogo, Cordoba	rint.	V2, M V3 V4, M V6 V7 V8 V10 V11
Fourca S55b, I NGC 6 1 2 3 4 5 6 7 8 9 All var Four (1972) S55b Tonan	de, Labord R62b 388 a 17 ^h 388 a 17 ^h iables foun- cade, Labo ; Lloyd Ev o, R62b, F7 tzintla 2 c	d by Lloy rde and A ans and M 2	d Evans an Ibarracin, lenzies, 1Α .7, δ – 38°	d Menzies, Atlas y Cat U Coll 21 (d	identified on p alogo, Cordoba	rint.	V2, M V3 V4, M V6 V7 V8 V10 V11

	x"	У"	Max.	Min.	Epoch	Period	Remarks
NGC 6	6397 a 17 ¹	h36m.8,δ-	53°39'				
1	+210.7	+448.4	12.73	17.53	13727.6	314.6	Sp, M, V, f
2	-279.0	-424.6	14.30	15.24		45 or 60?	prob f
3	-220.0	- 33.5	15.51	16.65	33119.320	0.330667	f
Swo 43 (19 Swope	ope and Gre 961); Feast, e, Letter (19	Obs 86.120 969)	(1966); 8	Strohmeie	olley, Alexande r, Bauernfeind 66, S67, S69	r, Mather and E and Ott, Bamb	pps, Royal Obs Bu Veröff 6.9 (1966)
NGC 6	6401 a 17 ¹	h35m.6,δ-	23°53′				
1			14.8r	15.2r			T&R 41
2			15.9r	16.5r			T&R 157
3			15.2r	15.9r			T&R 164
S55b,	R62b				2), IAU Coll 21	(1973)	
NGC 6	6402 (Mess	ier 14) a 17	h35m.0,	δ-03°13	1		
1	+ 17	+ 47	14.65	16.1	38191.8	18.734	-, Sp G, V
2	-116	-119	15.8	17.0	38198.58	2.794708	Sp F, V
3	- 3	- 90	16.65	17.55	38199.823	0.522455	_
4	+169	+ 73	17.2	18.6	38199.23	0.651313	
5	-136	+ 90	17.1	18.7	38199.61	0.548796	
6	+ 34	- 77	15.8	16.4	00100 57	12 (02	
7	+ 62	- 97	15.4	16.5	38189.56	13.603	+, Sp F-G, V
8	+ 96	+ 35	17.8	18.6	38199.496	0.686071	
9	+151	- 39	17.0	18.4	38199.47	0.538831	
10	- 51	-205	17.1	18.5	38199.34	0.585914	
11	+196	-223	16.4	18.0	38199.59	0.604417	
	+224	-177	17.1	18.6	38199.918	0.503952	
12	20	110					
13	- 29	-118	17.0	18.6	38199.690	0.535215	+
13 14	+ 54	+ 1	17.2	18.1	38199.931	0.471857	Ŧ
13 14 15	+ 54 -135	+ 1 +147	17.2 16.9	18.1 18.6	38199.931 38199.51	0.471857 0.557727	÷
13 14 15 16	+ 54 -135 - 79	+ 1 +147 - 36	17.2 16.9 16.8	18.1 18.6 18.2	38199.931 38199.51 38199.40	0.471857 0.557727 0.600617	
13 14 15 16 17	+ 54 135 - 79 228	+ 1 + 147 - 36 + 122	17.2 16.9 16.8 15.5	18.1 18.6 18.2 16.15	38199.931 38199.51 38199.40 38204.72	0.471857 0.557727 0.600617 12.085	+ +, Sp, V, f?
13 14 15 16 17 18	+ 54 135 - 79 228 + 61	+ 1 + 147 - 36 + 122 - 22	17.2 16.9 16.8 15.5 16.9	18.1 18.6 18.2 16.15 18.15	38199.931 38199.51 38199.40 38204.72 38199.885	0.471857 0.557727 0.600617 12.085 0.479065	
13 14 15 16 17 18 19	+ 54 -135 - 79 -228 + 61 -128	+ 1 + 147 - 36 + 122 - 22 + 2	17.2 16.9 16.8 15.5 16.9 17.0	18.1 18.6 18.2 16.15 18.15 18.6	38199.931 38199.51 38199.40 38204.72 38199.885 38199.34	0.471857 0.557727 0.600617 12.085 0.479065 0.545671	
13 14 15 16 17 18 19 20	+ 54 135 - 79 228 + 61 128 145	$ \begin{array}{r} + & 1 \\ + & 147 \\ - & 36 \\ + & 122 \\ - & 22 \\ + & 2 \\ + & 98 \end{array} $	17.2 16.9 16.8 15.5 16.9 17.0 17.9	18.1 18.6 18.2 16.15 18.15 18.6 18.55	38199.931 38199.51 38199.40 38204.72 38199.885	0.471857 0.557727 0.600617 12.085 0.479065	
13 14 15 16 17 18 19 20 21	$\begin{array}{r} + 54 \\ -135 \\ - 79 \\ -228 \\ + 61 \\ -128 \\ -145 \\ + 72 \end{array}$	$ \begin{array}{r} + & 1 \\ + & 147 \\ - & 36 \\ + & 122 \\ - & 22 \\ + & 2 \\ + & 98 \\ + & 125 \end{array} $	17.2 16.9 16.8 15.5 16.9 17.0 17.9 16.3	18.1 18.6 18.2 16.15 18.15 18.6 18.55 17.4	38199.931 38199.51 38199.40 38204.72 38199.885 38199.34 38198.734	$\begin{array}{c} 0.471857\\ 0.557727\\ 0.600617\\ 12.085\\ 0.479065\\ 0.545671\\ 0.263721 \end{array}$	
13 14 15 16 17 18 19 20 21 22	$\begin{array}{r} + 54 \\ -135 \\ - 79 \\ -228 \\ + 61 \\ -128 \\ -145 \\ + 72 \\ + 70 \end{array}$	$ \begin{array}{r} + & 1 \\ + & 147 \\ - & 36 \\ + & 122 \\ - & 22 \\ + & 2 \\ + & 98 \\ + & 125 \\ + & 95 \end{array} $	17.2 16.9 16.8 15.5 16.9 17.0 17.9 16.3 17.3	18.1 18.6 18.2 16.15 18.15 18.6 18.55 17.4 18.5	38199.931 38199.51 38199.40 38204.72 38199.885 38199.34 38198.734 38199.23	0.471857 0.557727 0.600617 12.085 0.479065 0.545671 0.263721 0.655916	
13 14 15 16 17 18 19 20 21 22 23	$\begin{array}{r} + 54 \\ -135 \\ - 79 \\ -228 \\ + 61 \\ -128 \\ -145 \\ + 72 \\ + 70 \\ + 74 \end{array}$	$ \begin{array}{r} + & 1 \\ + & 147 \\ - & 36 \\ + & 122 \\ - & 22 \\ + & 2 \\ + & 98 \\ + & 125 \\ + & 95 \\ + & 281 \end{array} $	17.2 16.9 16.8 15.5 16.9 17.0 17.9 16.3 17.3 17.1	18.1 18.6 18.2 16.15 18.15 18.6 18.55 17.4 18.5 18.5	38199.931 38199.51 38199.40 38204.72 38199.885 38199.34 38198.734 38199.23 38199.72	$\begin{array}{c} 0.471857\\ 0.557727\\ 0.600617\\ 12.085\\ 0.479065\\ 0.545671\\ 0.263721\\ \end{array}$	
13 14 15 16 17 18 19 20 21 22 23 24	$\begin{array}{r} + 54 \\ -135 \\ - 79 \\ -228 \\ + 61 \\ -128 \\ -145 \\ + 72 \\ + 70 \\ + 74 \\ - 2 \end{array}$	$\begin{array}{r} + & 1 \\ + 147 \\ - & 36 \\ + 122 \\ - & 22 \\ + & 2 \\ + & 98 \\ + 125 \\ + & 95 \\ + & 281 \\ + & 75 \end{array}$	17.2 16.9 16.8 15.5 16.9 17.0 17.9 16.3 17.3 17.1 17.0	18.1 18.6 18.2 16.15 18.15 18.6 18.55 17.4 18.5 18.5 18.5 18.7	38199.931 38199.51 38199.40 38204.72 38199.885 38199.34 38198.734 38199.23 38199.72 38199.64	0.471857 0.557727 0.600617 12.085 0.479065 0.545671 0.263721 0.655916 0.552342 0.519901	
13 14 15 16 17 18 19 20 21 22 23	$\begin{array}{r} + 54 \\ -135 \\ - 79 \\ -228 \\ + 61 \\ -128 \\ -145 \\ + 72 \\ + 70 \\ + 74 \end{array}$	$ \begin{array}{r} + & 1 \\ + & 147 \\ - & 36 \\ + & 122 \\ - & 22 \\ + & 2 \\ + & 98 \\ + & 125 \\ + & 95 \\ + & 281 \end{array} $	17.2 16.9 16.8 15.5 16.9 17.0 17.9 16.3 17.3 17.1	18.1 18.6 18.2 16.15 18.15 18.6 18.55 17.4 18.5 18.5	38199.931 38199.51 38199.40 38204.72 38199.885 38199.34 38198.734 38199.23 38199.72	$\begin{array}{c} 0.471857\\ 0.557727\\ 0.600617\\ 12.085\\ 0.479065\\ 0.545671\\ 0.263721\\ \end{array}$	

Catalogue

No.	x''	у''	Max.	Min.	Epoch	Period	Remarks
NGC	5402 (cont	inued)					
28	-465	+372	15.0	16.0			E, f?
29	- 68	-152	15.7	16.2			
30	+ 76	- 12	16.9	18.3	38199.72	0.534226	
31	- 41	+ 32	16.8	17.7	38199.383	0.619636	
32	+ 36	+147	17.0	18.1	38199.55	0.655975	
33	-138	+ 12	17.3	18.3	38199.59	0.479946	
34	- 70	+ 26	17.8	18.8	38199.854	0.606627	+
35	-112	- 49	16.2	17.4			
36	+204	-346	17.2	18.3	38199.33	0.677990	
37	+ 5	+ 18	17.65	18.9	38199.654	0.489060	
38	+ 11	- 17	16.0	17.0			
39	+ 46	- 2	16.1	17.6			
40	+253	+310	16.4	17.1			
41	- 13	- 3	16.0	17.1			
42	+ 36	+ 12	15.9	17.1			
43	+ 68	+ 23	17.0	18.2	38199.46	0.521747	
44	+ 20	+116	16.3	17.5			
45	- 90	+ 94	15.7	16.4			
46	+ 91	- 66	16.4	17.4			
47	- 89	+ 26	16.5	17.6			
48	- 4	+ 40	16.3	17.7			
49	- 98	- 19	16.0	16.9			
50	- 15	- 38	16.1	17.0			
51	+104	-305	17.6	18.15	38198.709	0.367606	
52	+ 82	+ 39	16.5	17.0			
53	+134	+129	16.4	17.3			
54	+121	+113	16.6	17.6			
55	+ 33	+106	16.5	17.5			
56	- 68	-184	16.4	17.4			
57	+134	-116	16.3	17.6			
58	-123	- 34	16.4	17.3			
59	- 32	+ 30	17.4	18.75	38199.561	0.555634	
60	+ 41	+ 54	16.2	17.7			
61	+ 12	- 43	16.6	17.7	38199.610	0.569824	
62	-232	-154	18.0	18.5	38235.444	0.638460	
63	+122	- 63	16.5	17.4			
64	-51	-169	16.5	17.5			
65	-125	+ 13	16.4	17.2			
66	-133	+ 37	16.6	17.4			
67	+ 34	+ 14	16.1	17.5			
68	+ 10	- 19	17.1	18.7	38199.958	0.507217	
69	+140	+ 26	16.6	17.3			
70	+ 43	- 23	16.0	17.2			
71	-116	- 50	17.05	18.3	38199.602	0.525925	
72	+122	-119	16.5	17.5			
73	+ 05	+ 07	16.5	18.0		irr?	
		+ 91	16.5	17.2		irr?	
74	+ 07						

•

No.	x"	у"	Max.	Min.	Epoch	Period	Remarks
NGC	6402 (cont	tinued)					
76	-105	+ 03	16.1	17.0	38199.466	1.89003	
77	-110	+ 55	17.55	18.10			
78	-137	- 5	17.50	18.50			
79	- 12	- 18	17.40	18.50			
80	- 35	-145	17.50	18.45			
81	- 38	-138	17.65	18.10			
82	79	-122	17.65	18.20			
83	- 65	- 34	17.70	18.50			
84	- 44	- 38	17.80	18.60			
85	- 21	+ 48	17.65	18.25			
86	+ 64	+ 22	17.85	18.75			
87	- 74	+ 11	17.60	18.60			
88	- 78	+ 10	17.55	18.55			
ova	+ 30	+ 04	16		29071		Only on plates of 1938

Vars. 73-77 and Nova, Sawyer Hogg and Wehlau; 77-88, Wehlau and Potts.

Joy, ApJ 110.105 (1949); Sawyer Hogg and Wehlau, AJ 69.141, Toronto Comm 97 (p) (1964); Rep, Sky Tel 27.147 (p) (1964); Sawyer Hogg and Wehlau, AJ 70.678 (1965), Toronto Publ 2, 17 (1966), Toronto Publ 2, 19 (1968); Demers and Wehlau, AJ 76.916 (1971); Wehlau and Sawyer Hogg, unpub (1972); Wehlau and Potts, unpub (1972)

S55a, S57, S59, S61, R62a, S64, R65, S67, C&S69, S69, S70

Palomar 6 a 17^h40^m.6, δ 26°12'

28 variables found in environs by Terzan, who says none is a probable cluster member. Terzan, Haute Prov Publ 9, 1 (1966), Priv comm (1969)

S70

NGC 6426 a 17^h42^m.4, δ +03°12'

1	- 170	+ 44	17.30	18.25	35638.528	0.61784	
2	-204	- 53	17.60	18.10	35638.475	0.35545	Alt P 0.262
3	- 94	- 33	17.10	17.50	35660.484	0.40385	
4	- 77	74	17.70	18.15	35640.468	0.42586	
5	68	- 22	17.25	18.15	35638.460	0.70906	
6	46	+ 52	17.30	18.25	35638.449	0.68197	
7	+ 10	4	17.4:	18.1:			RRa?
8	- 15	53	17.4:	18.2:			RRa?
9	39	85	17.55	18.05	35638.460	0.29009	
10	+ 46	+ 11	17.55	18.05	35638.430	0.36503	
11	+285	- 7	15.40	16.30	35638.506	0.46164	V979 Oph, f
12	+ 33	2	17.60	18.00	35640.550	0.23679	Alt P 0.191
13	+137	215	17.20	18.10	35634.437	0.65190	

Three field variables also. Boyce and Hurahata 333109.19 (1972) (11037); Grubissich, Asiago Contr 94 (p) (1958) 855a, 859, 861, 862, 165, R65, 869

No.	x"	у"	Max.	Min.	Epoch	Period	Remarks
NGC 6	5440 a 17h	45 m.9, δ -	20°21′				
S55b,	R62b						
NGC 6	5441 a 17h	46 ^m .8, δ –	37°02′				
1	+ 46.20	- 44.83					
2	+ 36.85	+ 23.93					
3	+350.63	- 90.75					
4	+ 58.85	-176					
5 6	+206.25 + 30.53	+225.50 + 48.68					
7	- 38.50	+485.10					f?
8	-243.10	-444.68					f?
9	- 27.50	- 47.30					
10	+ 74.25	- 60.50					
					ogo, Cordoba (1	966)	
	453 a 17 ^h 4 ed by Fourc			o variables	found.		
Observ Fourca	ed by Fourc ide, Laborde	ade and La	borde. No		found. go, Cordoba (1	966)	
Observ Fourca S55b, I	ed by Fourc ide, Laborde	ade and La and Albarr	borde. No acin, Atla			966)	
Observ Fourca S55b, J NGC 6 Observ Fourca	ed by Fourc ide, Laborde R62b 496 a 17 ^h 5 ed by Fourc ide, Laborde	ade and La and Albarr $55m.5, \delta = 4$ ade and La	borde. No racin, Atla 44°15' borde. No	o variables	go, Cordoba (1		
Observ Fourca S55b, 1 NGC 6 Observ Fourca S55b, 1	ed by Fourc ide, Laborde R62b 496 a 17 ^h 5 ed by Fourc ide, Laborde	ade and La and Albarr 55m.5, δ –4 ade and La and Albarr	borde. No racin, Atla 44° 15' borde. No racin, Atla	o variables	go, Cordoba (1		
Observ Fourca S55b, 1 NGC 6 Observ Fourca S55b, 1 	ed by Fourc ide, Laborde R62b 496 a 17 ^h 5 ed by Fourc ide, Laborde R62b 517 a 17 ^h 5	ade and La and Albarr 55m.5, δ –4 ade and La and Albarr	borde. No racin, Atla 44° 15' borde. No racin, Atla	o variables	go, Cordoba (1		
Observ Fourca S55b, 1 NGC 6 Observ Fourca S55b, 1 	ed by Fourc ide, Laborde R62b 496 a 17 ^h 5 ed by Fourc ide, Laborde R62b 517 a 17 ^h 5	ade and La and Albarr $55m.5, \delta = 4$ ade and La and Albarr $59m.1, \delta = 6$	borde. No racin, Atla 44° 15' borde. No racin, Atla 08°57'	o variables	go, Cordoba (1		
Observ Fourca S55b, I NGC 6 Observ Fourca S55b, I NGC 6 S55b, I	ed by Fourc ide, Laborde R62b 496 a 17h5 ed by Fourc ide, Laborde R62b 517 a 17h5 R62c	ade and La and Albarr $55m.5, \delta = 4$ ade and La and Albarr $59m.1, \delta = 6$	borde. No racin, Atla 44° 15' borde. No racin, Atla 08°57'	o variables	go, Cordoba (1	966)	G222, mem
Observ Fourca S55b, J NGC 6 Observ Fourca S55b, J NGC 6 NGC 6	ed by Fourc ide, Laborde R62b 496 a 17h5 ed by Fourc de, Laborde R62b 517 a 17h5 R62c	ade and Lai and Albarr $55m.5, \delta = 4$ ade and Lai and Albarr $59m.1, \delta = 6$ $00m.4, \delta = 6$	borde. No racin, Atla 44° 15' borde. No acin, Atla 08° 57' 30° 02'	o variables y Catalo	go, Cordoba (1 found. go, Cordoba (1		G222, mem G133
Observ Fourca S55b, 1 NGC 6 Observ Fourca S55b, 1 NGC 6 S55b, 1 NGC 6	ed by Fourc ide, Laborde R62b 496 a 17h5 ed by Fourc ide, Laborde R62b 517 a 17h5 R62c -522 a 18h(-67.5	ade and Lai and Albarr $55m.5, \delta = -4$ ade and Lai and Albarr $59m.1, \delta = -6$ $00m.4, \delta = -$ +34.4 +39.7 +37.2	borde. No racin, Atla 44° 15' borde. No racin, Atla 08°57' 30°02' 17.08	17.74 17.74 17.74	found. go, Cordoba (1 go, Cordoba (1 32416.672	0.270	
Observ Fourca S55b, 1 NGC 6 Observ Fourca S55b, 1 	ed by Fource ide, Laborde R62b 496 a 17h5 ed by Fource ide, Laborde R62b 517 a 17h5 R62c 522 a 18h0 -67.5 + 0.5 +14.7 +25.6	ade and Lai and Albarr $55m.5, \delta = -4$ ade and Lai and Albarr $59m.1, \delta = -6$ $00m.4, \delta = -$ +34.4 +39.7 +37.2 + 8.3	borde. No racin, Atla 44° 15' borde. No acin, Atla 08°57' 30°02' 17.08 16.79 17.24 17.27	17.74 17.74 17.74 17.74 18.59	go, Cordoba (1 found. go, Cordoba (1 32416.672 32740.861 32705.874 32387.747	0.270 0.47398 0.289 0.563826	G133 G44, mem G170, mem?
Observ Fourca S55b, 1 NGC 6 Observ Fourca S55b, 1 	ed by Fource ide, Laborde R62b 496 a 17h5 ed by Fource ide, Laborde R62b 517 a 17h5 R62c -67.5 + 0.5 + 14.7 + 25.6 + 66.0	ade and Lai and Albarr $55m.5, \delta = -4$ ade and Lai and Albarr $59m.1, \delta = -6$ $00m.4, \delta = -$ +34.4 +39.7 +37.2 + 8.3 -42.6	borde. No racin, Atla 44° 15' borde. No acin, Atla 08°57' 30°02' 17.08 16.79 17.24 17.27 17.41	17.74 17.74 17.74 17.74 18.59 18.19	go, Cordoba (1 found. go, Cordoba (1 32416.672 32740.861 32705.874 32387.747 32349.871	0.270 0.47398 0.289 0.563826 0.28684	G133 G44, mem G170, mem? G37, mem
Observ Fourca S55b, 1 NGC 6 Observ Fourca S55b, 1 	red by Fource ide, Laborde R62b 496 a 17h5 ed by Fource ide, Laborde R62b 517 a 17h5 R62c -67.5 + 0.5 + 14.7 + 25.6 + 66.0 + 96.5	ade and Lai and Albarr $55m.5, \delta = -4$ ade and Lai and Albarr $59m.1, \delta = -6$ $00m.4, \delta = -$ +34.4 +39.7 +37.2 + 8.3 -42.6 +30.5	borde. No racin, Atla 44° 15' borde. No acin, Atla 08°57' 30°02' 17.08 16.79 17.24 17.27 17.41 17.77	17.74 17.74 17.74 17.74 18.59 18.19 18.23	go, Cordoba (1 found. go, Cordoba (1 32416.672 32740.861 32705.874 32387.747	0.270 0.47398 0.289 0.563826 0.28684 0.192392	G133 G44, mem G170, mem? G37, mem G247, mem?
Observ Fourca S55b, 1 NGC 6 Observ Fourca S55b, 1 	red by Fource ide, Laborde R62b 496 a 17h5 ed by Fource ide, Laborde R62b 517 a 17h5 R62c -67.5 + 0.5 + 14.7 + 25.6 + 66.0 + 96.5 - 51.5	ade and Lai and Albarr $55m.5, \delta = -4$ ade and Lai and Albarr $59m.1, \delta = -6$ $00m.4, \delta = -$ +34.4 +39.7 +37.2 +8.3 -42.6 +30.5 +62.7	borde. No racin, Atla 44° 15' borde. No acin, Atla 08°57' 30°02' 17.08 16.79 17.24 17.27 17.41 17.77 17.02	17.74 17.74 17.77 17.74 18.59 18.19 18.23 17.61	go, Cordoba (1 found. go, Cordoba (1 32416.672 32740.861 32705.874 32387.747 32349.871 32416.753	0.270 0.47398 0.289 0.563826 0.28684 0.192392 irr	G133 G44, mem G170, mem? G37, mem G247, mem? G172, f
Observ Fourca S55b, 1 NGC 6 Observ Fourca S55b, 1 	red by Fource ide, Laborde R62b 496 a 17h5 ed by Fource ide, Laborde R62b 517 a 17h5 R62c -67.5 + 0.5 + 14.7 + 25.6 + 66.0 + 96.5	ade and Lai and Albarr $55m.5, \delta = -4$ ade and Lai and Albarr $59m.1, \delta = -6$ $00m.4, \delta = -$ +34.4 +39.7 +37.2 + 8.3 -42.6 +30.5	borde. No racin, Atla 44° 15' borde. No acin, Atla 08°57' 30°02' 17.08 16.79 17.24 17.27 17.41 17.77	17.74 17.74 17.74 17.74 18.59 18.19 18.23	go, Cordoba (1 found. go, Cordoba (1 32416.672 32740.861 32705.874 32387.747 32349.871	0.270 0.47398 0.289 0.563826 0.28684 0.192392	G133 G44, mem G170, mem? G37, mem G247, mem?

No.	x"	у''	Max.	Min.	Epoch	Period	Remarks	

NGC 6522 (continued)

G numbers those assigned by Baade and Gaposchkin. Clube's var. 7 identified on Plate 2 (1965) where some other numbers do not correspond with text. Membership comments from Clube (1972).

Gaposchkin, VS 10.337 (p) (1955); Nassau, Spec Vat Ric 5.171 (1958); Woolley, Report of the Astronomer Royal (1964); Alexander, Obs 80.110 (1965); Clube, Royal Obs Bull 95.E383 (p) (1965); Terzan, Haute Prov Publ 8, 12 (p) (1965); Clube, Letter (1972); Kukarkin, Letter (1972) S55a, S59, S61, R62a, S62, P64, L65, R65, FLA66, S67, S69, F72

NGC 6528 a 18h01m.6, $\delta - 30^{\circ}04'$

A few variables from rich galactic field projected against this cluster, but Baade considered none of them a cluster member. S55a.

Gaposchkin, VS 10.337 (1955) S59, S61, R62a, S62, FLA 66, S69

NGC 6535 a 18h01m. 3, $\delta - 00^{\circ}18'$

1 - 197 + 65 16.3 17.3

Sawyer, JRASC 47.229 (p) (1953) S55a, S57, S59, R62c, S62, S69

NGC 6539 a $18^{h}02^{m}$.1, $\delta - 07^{\circ}35'$

One unpublished variable, Baade. S55a. S57, S59, R62c, S62, S69

NGC 6541 a 18h04m.4, $\delta - 43^{\circ}44'$

1 -18.0 -126.0 12.5 [16

Alcaino, Astr and Ap 13.399 (1971) S55a, S57, S59, R62c, S62, F&L63, FLA66, S69

NGC 6544 $a \, 18^{h}04^{m}.3, \, \delta - 25^{\circ}01'$

R62b

NGC 6553 a $18^{h}06^{m}$.3, $\delta - 25^{\circ}56'$

1	+186	+ 20	0.5642	
2	+ 75	-152	0.5818	prob f
3	- 23	- 38	0.4886	
4	+ 16	- 2	270:	Μ
5	- 71	- 12]100	
6				LE&M A1
7				LE&M A2

long

Alcaino 127, prob mem

Catalogue

No.	x"	У″	Max.	Min.	Epoch	Period	Remarks
NGC	6553 (conti	nued)					
8							LE&M 3
9							LE&M 6
10							LE&M 7
11							LE&M 13
12							LE&M 14
13							LE&M 24
14							LE&M 33
ova	-131:	-281:	8	[12	30955		N Sgr 1943
Shaple	ey's two sus	pected varia	bles are d	oubtful, T	pected by Lloy `hackeray, Lette	er (1956).	
		1 Menzies, L , R62a, S62,			73). Nova: May	all, AJ 54.191	(1949)
NGC 6	6558 a 18 ¹	n07m.0, δ -	31°47′				
1	- 24.9	- 3.2	16.1	17.5		RR	Rosino
2	- 15.6	+ 46.6	15.0	15.8			Rosino
3	+ 52.1	+ 32.2	16.2	17.5		RR	Rosino
4	- 55.5	- 24.2	16.6	17.7		RR	Rosino
5	- 48.1	+124.7	17.0	17.6		RR?	Rosino
6	- 23.3	- 50.2	16.8	17.5			Rosino
7	+113.5	+132.4	14.4	15.4			Rosino
8	- 2.2	-183.6	16.3	17.4		RR	Rosino
			16.3	17.8			Rosino
9	-339.2	- 36.6					
9							
9 Fourte	een variable:	s in field, Ro	sino.		32 (p) (1962)		
9 Fourte Rosine	een variable: 0, Asiago Co	s in field, Ro	osino. 4), Asiago	o Contr 1.	32 (p) (1962) 66, S69		
9 Fourte Rosine S55b,	een variables o, Asiago Co S57, R57, S	s in field, Ro ontr 52 (195	osino. 4), Asiago 2c, S62, S	o Contr 1.			
9 Fourte Rosine S55b,	een variables o, Asiago Co S57, R57, S	s in field, Ro ontr 52 (195 59, S61, R6	osino. 4), Asiago 2c, S62, S	o Contr 1.		SR?	S11
9 Fourte Rosine S55b, IC 127	een variable: o, Asiago Cc S57, R57, S 	s in field, Rc ontr 52 (195 59, S61, R6 	osino. 4), Asiago 2c, S62, S °14'	o Contr 13 864, FLA6		SR? 0.548	
9 Fourte Rosine 555b, IC 127	een variable: o, Asiago Cc S57, R57, S 	s in field, Ro ontr 52 (195 59, S61, R6 	osino. 4), Asiaga 2c, S62, S °14' J20.2	22	56, S 69		K&R
9 Fourte Rosine 555b, IC 127 1 2	een variable: o, Asiago Co S57, R57, S 76 a 18h08 + 86.9 - 15.2	s in field, Re ontr 52 (195 59, S61, R6 $3m.0, \delta -07$ +115.0 + 23.7	osino. 4), Asiag 2c, S62, S °14' J20.2 18.9	22 20.0	56, S 69	0.548	K&R K&R
9 Fourte Rosine S55b, IC 127 1 2 3	een variable: o, Asiago Co S57, R57, S 76 a 18 ^h 08 + 86.9 - 15.2 + 74.2	s in field, Rc ontr 52 (195 59, S61, R6 3 $m.0, \delta -07$ +115.0 + 23.7 - 51.4	osino. 4), Asiaga 2c, S62, S °14' J20.2 18.9 17.8	22 20.0 22	56, S 69	0.548 SR?	K&R
9 Fourte Rosine 555b, IC 127 1 2 3 4 5	een variable: o, Asiago Cc S57, R57, S 76 a 18 ^h 08 + 86.9 - 15.2 + 74.2 + 41.7 - 204.4	s in field, Rc ontr 52 (195 59, S61, R6 $3^{m}.0, \delta - 07$ + 115.0 + 23.7 - 51.4 + 136.1 + 230.3	osino. 4), Asiago 2c, S62, S °14' J20.2 18.9 17.8 18.8 18.8	22 20,0 22 19.5 19.6	37468.96	0.548 SR? SR? SR?	K&R K&R K&R K&R
9 Fourte Rosine S55b, IC 127 1 2 3 4 5 Sawye	een variable: o, Asiago Cc S57, R57, S 	s in field, Rc ontr 52 (195 59, S61, R6 $3^{m.0}$, $\delta - 07$ +115.0 + 23.7 - 51.4 +136.1 +230.3 ASC 53.97 (osino. 4), Asiago 2c, S62, S °14']20.2 18.9 17.8 18.8 18.8 18.8 p) (1959)	22 20,0 22 19.5 19.6 ; Kinman	37468.96	0.548 SR? SR? SR?	K&R K&R K&R K&R
9 Fourte Rosine S55b, IC 127 1 2 3 4 5 Sawye Sawye	een variable: o, Asiago Cc S57, R57, S 	s in field, Rc ontr 52 (195 59, S61, R6 $3^{m.0}$, $\delta -07$ +115.0 + 23.7 - 51.4 +136.1 +230.3 ASC 53.97 (J Trans 11B	osino. 4), Asiago 2c, S62, S °14']20.2 18.9 17.8 18.8 18.8 18.8 p) (1959)	22 20,0 22 19.5 19.6 ; Kinman	37468.96	0.548 SR? SR? SR?	K&R K&R K&R
9 Fourte Rosine S55b, IC 127 1 2 3 4 5 Sawye Sawye Sawye S551	een variable: o, Asiago Cc S57, R57, S 76 a 18h08 + 86.9 - 15.2 + 74.2 + 41.7 - 204.4 er Hogg, JR/ er Hogg, JAU b, S57, S62,	s in field, Rc parts 52 (195 59, S61, R6 3m.0, δ -07 +115.0 + 23.7 - 51.4 +136.1 +230.3 ASC 53.97 (J Trans 11B S64, S69	osino. 4), Asiag 2c, S62, S °14' J20.2 18.9 17.8 18.8 18.8 18.8 p) (1959) 301 (196	22 20,0 22 19.5 19.6 ; Kinman	37468.96	0.548 SR? SR? SR?	K&R K&R K&R K&R
9 Fourte Rosine S55b, IC 12 ² 1 2 3 4 5 5 Sawye S551 Sawye S551 NGC 6	een variable: o, Asiago Cc S57, R57, S 76 a 18 ^h 08 + 86.9 - 15.2 + 74.2 + 41.7 - 204.4 er Hogg, JR/ er Hogg, JAU b, S57, S62, 5569 a 18 ^h	s in field, Rc ntr 52 (195 59, S61, R6 $3^{m.0}$, $\delta - 07$ + 115.0 + 23.7 - 51.4 + 136.1 + 230.3 ASC 53.97 (J Trans 11B S64, S69 $3^{m.0}$, $\delta - 07$	osino. 4), A siago 2c, S62, S °14']20.2 18.9 17.8 18.8 18.8 18.8 p) (1959) 301 (196 31°50'	22 20.0 22 19.5 19.6 ; Kinman	37468.96	0.548 SR? SR? SR?	K&R K&R K&R K&R
9 Fourta Rosina S555b, IC 122 1 2 3 4 5 Sawye S551 NGC 6 1	een variable: o, Asiago Ccc S57, R57, S 	s in field, Rc ntr 52 (195 59, S61, R6 $3^{m.0}$, $\delta - 07$ + 115.0 + 23.7 - 51.4 + 136.1 + 230.3 ASC 53.97 (J Trans 11B S64, S69 $3^{m.0}$, $\delta - 4$ + 28.9	osino. 4), A siage 2c, S62, S °14']20.2 18.9 17.8 18.8 18.8 p) (1959) 301 (196 31°50' 17.3	22 20.0 22 19.5 19.6 ; Kinman 22	37468.96	0.548 SR? SR? SR? SP 74.501 (19	K&R K&R K&R 62); Rosino an Rosino
9 Fourta Rosina S55b, IC 122 1 2 3 4 5 Sawye S55l NGC 6 1 2	een variable: o, Asiago Cc S57, R57, S 76 a 18 ^h 08 + 86.9 - 15.2 + 74.2 + 41.7 - 204.4 er Hogg, JR/ er Hogg, JR/ er Hogg, JR/ er Hogg, JAU b, S57, S62, - 95.1 - 91.9	s in field, Rc pntr 52 (195 59, S61, R6 $3^{m}.0, \delta -07$ +115.0 + 23.7 - 51.4 +136.1 +230.3 ASC 53.97 (U Trans 11B S64, S69 $710^{m}.4, \delta -$ + 28.9 + 0.3	osino. 4), A siage 2c, S62, S °14']20.2 18.9 17.8 18.8 18.8 p) (1959) 301 (196 31°50' 17.3 17.0	22 20.0 22 19.5 19.6 ; Kinman 22)	37468.96	0.548 SR? SR? SR? SP 74.501 (19	K&R K&R K&R K&R 62); Rosino an
9 Fourta Rosina S555b, IC 122 1 2 3 4 5 Sawye S551 NGC 6 1 2 3	een variable: o, Asiago Cc S57, R57, S 	s in field, Rc pntr 52 (195 59, S61, R6 $3^{m}.0, \delta -07$ +115.0 + 23.7 - 51.4 +136.1 +230.3 ASC 53.97 (U Trans 11B S64, S69 	osino. 4), Asiage 2c, S62, S 14' 120.2 18.9 17.8 18.8 18.8 18.8 19) (1959) 301 (196 31°50' 17.3 17.0 16.6	22 20.0 22 19.5 19.6 ; Kinman 2) 18.1 18.0 17.5	37468.96	0.548 SR? SR? SR? SP 74.501 (19	K&R K&R K&R 62); Rosino an Rosino
9 Fourta Rosina S55b, IC 122 1 2 3 4 5 Sawye S55l NGC 6 1 2	een variable: o, Asiago Cc S57, R57, S 76 a 18 ^h 08 + 86.9 - 15.2 + 74.2 + 41.7 - 204.4 er Hogg, JR/ er Hogg, JR/ er Hogg, JR/ er Hogg, JAU b, S57, S62, - 95.1 - 91.9	s in field, Rc pntr 52 (195 59, S61, R6 $3^{m}.0, \delta -07$ +115.0 + 23.7 - 51.4 +136.1 +230.3 ASC 53.97 (U Trans 11B S64, S69 $710^{m}.4, \delta -$ + 28.9 + 0.3	osino. 4), A siage 2c, S62, S °14']20.2 18.9 17.8 18.8 18.8 p) (1959) 301 (196 31°50' 17.3 17.0	22 20.0 22 19.5 19.6 ; Kinman 22)	37468.96	0.548 SR? SR? SR? SP 74.501 (19	K&R K&R K&R 62); Rosino an Rosino Rosino

No.	x''	у''	Max.	Min.	Epoch	Period	Remarks
NGC	6569 (conti	nued)					
Three	field variab	les, Rosino.					
Rosin	o, Asiago Co	ontr 132 (p)	(1962)				
S55b,	R57, S61, R	862c, F&L63	3, S64, F	LA66, S6	9		
NGC 6	5584 a 18 ¹	14m.6,δ-	52°14′				
1	-82.5	-24.75					F&L
	ield variable						
Bailey	, HB 801 (1	924); Fourc	ade, Lab	orde a nd .	Albarracin, Atla	s y Catalogo, Co	ordoba (1966)
S55a,	S59, R62c,	S62, F&L63	3, S69				
NGC 6	5 624 a 18 ¹	¹ 20 ^m .5, δ -	30°23'				
1	+167.75	+176.00					F&L 1
2	+114.13	+226.88					F&L 2
3	- 9.63	+ 49.50					F&L 11
							F&L 14
Labo y Cata	orde and Fo llogo, Cordo	urcade, Coro ba (1966)				29 are considered ade, Laborde and	
Only f Labo y Cata S551	four of the v orde and Fo llogo, Cordo b, R62b, S6	variables in F urcade, Coro bba (1966) 7, S69	doba Rep	or 127 (p)	(1966); Fourca		field stars.
Only f Labo y Cata S551 NGC (four of the v orde and Fo llogo, Cordo b, R62b, S6	variables in F urcade, Coro oba (1966) 7, S69 er 28) a 18	doba Rep h21m.5,	or 127 (p) δ -24°54	(1966); Fourca		field stars.
Only f Labo y Cata S551 NGC (four of the v orde and Fo llogo, Cordo b, R62b, S6 6626 (Messi +174.0	variables in F urcade, Cord oba (1966) 7, S69 er 28) a 18 +188.5	doba Rep h21m.5, 15.1	δ -24°54 16.4	(1966); Fourca		field stars.
Only f Labo y Cata S551 NGC (1 2	Four of the v orde and Fo llogo, Corde b, R62b, S6 6626 (Messi +174.0 - 47.3	variables in F urcade, Cord oba (1966) 7, S69 er 28) a 18 +188.5 + 63.1	doba Rep h ₂₁ m.5, 15.1 14.3	$\delta = 24^{\circ}54^{\circ}$ 16.4 14.8	(1966); Fourca		field stars.
Only f Labo y Cata S551 NGC (four of the v orde and Fo llogo, Cordo b, R62b, S6 6626 (Messi +174.0	variables in F urcade, Cord oba (1966) 7, S69 er 28) a 18 +188.5	doba Rep h21m.5, 15.1	δ -24°54 16.4	(1966); Fourca		l field stars. d Albarracin, Atk
Only f Labo y Cata S551 NGC (1 2 3	Four of the v orde and Fo logo, Cordo b, R62b, S6 6626 (Messi +174.0 - 47.3 - 32.9	variables in F urcade, Coro oba (1966) 7, S69 er 28) a 18 +188.5 + 63.1 +111.0	doba Rep h21m.5, 15.1 14.3 14.6	$\delta = 24^{\circ}5^{2}$ 16.4 14.8 15.4	(1966): Fourca	ide, Laborde and	field stars.
Only f Labo y Cata S551 NGC (1 2 3 4	Four of the v orde and Fo logo, Cordo b, R62b, S6 6626 (Messi +174.0 - 47.3 - 32.9 - 34.5	$\begin{array}{c} \text{variables in F} \\ \text{urcade, Core} \\ \text{oba (1966)} \\ 7, 869 \\ \hline \\ \text{er 28)} \alpha 18 \\ +188.5 \\ + 63.1 \\ +111.0 \\ + 33.6 \end{array}$	h21m.5, 15.1 14.3 14.6 13.6	$\delta = 24^{\circ}5^{2}$ 16.4 14.8 15.4 14.8	(1966): Fourca (' 32759.765	12.937	l field stars. d Albarracin, Atk
Only f Labo y Cata S551 NGC (1 2 3 4 5	Four of the v orde and Fo logo, Cordo b, R62b, S6 6626 (Messi +174.0 - 47.3 - 32.9 - 34.5 - 44.8	$\begin{array}{c} \text{variables in F} \\ urcade, Corole of the correlation of the $	h21m.5, 15.1 14.3 14.6 13.6 14.8	δ -24°54 16.4 14.8 15.4 14.8 15.6	(1966): Fourca (' 32759.765	12.937	l field stars. d Albarracin, Atk
Only f Labo y Cata S551 NGC (1 2 3 4 5 6	Four of the v orde and Fo logo, Cordo b, R62b, S6 6626 (Messi +174.0 - 47.3 - 32.9 - 34.5 - 44.8 + 34.1	$\begin{array}{c} \text{variables in F} \\ \text{urcade, Corological Corological (1966)} \\ \text{7, S69} \\ \hline \\ \text{er 28)} \alpha 18 \\ +188.5 \\ + 63.1 \\ +111.0 \\ + 33.6 \\ + 16.4 \\ + 50.4 \\ \end{array}$	h21m.5, 15.1 14.3 14.6 13.6 14.8 14.3	δ -24°54 16.4 14.8 15.4 14.8 15.6 15.2	(1966): Fourca (' 32759.765	12.937	l field stars. d Albarracin, Atk
Only f Labo y Cata S551 NGC (1 2 3 4 5 6 7	Four of the v orde and Fo logo, Cordo b, R62b, S6 6626 (Messi +174.0 - 47.3 - 32.9 - 34.5 - 44.8 + 34.1 +172.2	$\begin{array}{c} \text{variables in F}\\ \text{variables in F}\\ \text{variables in F}\\ \text{variables (1966)}\\ 7, 869 \\ \hline \\ \text{er (28)} \alpha 18 \\ + 188.5 \\ + 63.1 \\ + 111.0 \\ + 33.6 \\ + 16.4 \\ + 50.4 \\ + 102.7 \\ \end{array}$	doba Rep h21m.5, 15.1 14.3 14.6 13.6 14.8 14.3 15.9	δ -24°54 16.4 14.8 15.4 14.8 15.6 15.2 17.0	(1966): Fourca 4' 32759.765 36040.674	12.937 0.644360	field stars. d Albarracin, Atla Sp F-G
Only f Labo y Cata S551 NGC 0 1 2 3 4 5 6 7 8	Four of the v orde and Fo alogo, Corde b, R62b, S6 6626 (Messie +174.0 - 47.3 - 32.9 - 34.5 - 44.8 + 34.1 +172.2 +227.3	$\begin{array}{c} \text{variables in F}\\ vari$	doba Rep h21m.5, 15.1 14.3 14.6 13.6 14.8 14.3 15.9 15.6	δ -24°54 16.4 14.8 15.4 14.8 15.6 15.2 17.0 16.6	(1966): Fourca 4' 32759.765 36040.674 25474.346	12.937 0.644360 0.56600	field stars. d Albarracin, Atla Sp F-G Hoff 63c
Only f Labo y Cata S551 NGC 0 1 2 3 4 5 6 7 8 9	Four of the v orde and Fo alogo, Corde b, R62b, S6 6626 (Messie +174.0 - 47.3 - 32.9 - 34.5 - 44.8 + 34.1 +172.2 +227.3 -158.6	$\begin{array}{c} \text{variables in F}\\ vari$	doba Rep h21m.5, 15.1 14.3 14.6 13.6 14.8 14.3 15.9 15.6 14.75	δ -24°54 16.4 14.8 15.4 14.8 15.6 15.2 17.0 16.6 15.7	(1966): Fourca 4' 32759.765 36040.674 25474.346	12.937 0.644360 0.56600	field stars. d Albarracin, Atla Sp F-G Hoff 63c
Only f Lab y Cata S551 NGC (1 2 3 4 5 6 7 8 9 10 11 12	Four of the v orde and Fo alogo, Corde b, R62b, S6 6626 (Messi +174.0 - 47.3 - 32.9 - 34.5 - 44.8 + 34.1 +172.2 +227.3 -158.6 + 96 - 14 +148	$\begin{array}{c} \text{variables in F}\\ \text{variables in F}\\ \text{varcade, Corolation (1966)}\\ 7, 869\\ \hline \\ \text{er } 28) a \ 18\\ + \ 188.5\\ + \ 63.1\\ + \ 111.0\\ + \ 33.6\\ + \ 16.4\\ + \ 50.4\\ + \ 102.7\\ - \ 222.3\\ - \ 252.4\\ - \ 79\\ + \ 35\\ - \ 49\\ \end{array}$	doba Rep h21m.5, 15.1 14.3 14.6 13.6 14.8 14.3 15.9 15.6 14.75 13.5	δ -24°54 16.4 14.8 15.4 14.8 15.6 15.2 17.0 16.6 15.7 14.6	(1966): Fourca 32759.765 36040.674 25474.346 35696.652 35373.660	12.937 0.644360 0.56600 1.965 0.578254	field stars. d Albarracin, Atla Sp F-G Hoff 63c
Only f Labo y Cata S551 NGC 0 1 2 3 4 5 6 7 8 9 10 11 12 13	Four of the v orde and Fo logo, Corde b, R62b, S6 	$\begin{array}{c} \text{variables in F}\\ \text{variables in F}\\ \text{varcade, Corolation (1966)}\\ 7, 869\\ \hline \\ \text{er } 28) a \ 18\\ + 188.5\\ + \ 63.1\\ + 111.0\\ + \ 33.6\\ + \ 16.4\\ + \ 50.4\\ + 102.7\\ - \ 222.3\\ - \ 252.4\\ - \ 79\\ + \ 35\\ - \ 49\\ - \ 24\\ \end{array}$	doba Rep h21m.5, 15.1 14.3 14.6 13.6 14.8 14.3 15.9 15.6 14.75 13.5 15.0 15.0 15.1	$\frac{\delta - 24^{\circ}5^{\prime}}{16.4}$ 16.4 14.8 15.4 14.8 15.6 15.2 17.0 16.6 15.7 14.6 16.3 16.1 16.7	(1966): Fourca 32759.765 36040.674 25474.346 35696.652	12.937 0.644360 0.56600 1.965 0.578254 0.504027	field stars. d Albarracin, Atla Sp F-G Hoff 63c
Only f Labo y Cata S551 NGC 6 1 2 3 4 5 6 7 8 9 10 11 12 13 14	Four of the v orde and Fo ologo, Corde b, R62b, S6 	$\begin{array}{c} \text{variables in F}\\ \text{variables in F}\\ \text{varcade, Corolation (1966)}\\ 7, 869\\ \hline \\ \text{er } 28) a \ 18\\ + \ 188.5\\ + \ 63.1\\ + \ 111.0\\ + \ 33.6\\ + \ 16.4\\ + \ 50.4\\ + \ 102.7\\ - \ 222.3\\ - \ 252.4\\ - \ 79\\ + \ 35\\ - \ 49\\ - \ 24\\ - \ 100\\ \end{array}$	doba Rep h21m.5, 15.1 14.3 14.6 13.6 14.8 14.3 15.9 15.6 14.75 13.5 15.0 15.0 15.1 15.6	$\frac{\delta - 24^{\circ}5^{\prime}}{16.4}$ 16.4 14.8 15.4 14.8 15.6 15.2 17.0 16.6 15.7 14.6 16.3 16.1 16.7 16.1	(1966): Fourca 32759.765 36040.674 25474.346 35696.652 35373.660	12.937 0.644360 0.56600 1.965 0.578254	field stars. d Albarracin, Atla Sp F-G Hoff 63c
Only f Labo y Cata S551 NGC 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	Four of the v orde and Fo orde and Fo ordego, Corde b, R62b, S6 	$\begin{array}{c} \text{variables in F}\\ \text{variables in F}\\ \text{varcade, Corolation (1966)}\\ 7, 869\\ \hline \\ \text{er } 28) a \ 18\\ + 188.5\\ + \ 63.1\\ + 111.0\\ + \ 33.6\\ + \ 16.4\\ + \ 50.4\\ + \ 102.7\\ - \ 222.3\\ - \ 252.4\\ - \ 79\\ + \ 35\\ - \ 49\\ - \ 24\\ - \ 100\\ - \ 186\\ \end{array}$	doba Rep h21m.5, 15.1 14.3 14.6 13.6 14.8 14.3 15.9 15.6 14.75 13.5 15.0 15.0 15.1 15.6 15.1 15.6 15.8	$\frac{\delta}{\delta} = 24^{\circ}5^{2}$ 16.4 14.8 15.4 14.8 15.6 15.2 17.0 16.6 15.7 14.6 16.3 16.1 16.7 16.1 17.0	(1966): Fourca 32759.765 36040.674 25474.346 35696.652 35373.660 34893.807	12.937 0.644360 0.56600 1.965 0.578254 0.504027 0.330918	field stars. d Albarracin, Atla Sp F-G Hoff 63c
Only f Labo y Cata S551 NGC 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	Four of the v orde and Fo ologo, Corde b, R62b, S6 	$\begin{array}{c} \text{variables in F}\\ \text{variables in F}\\ \text{varcade, Corolation (1966)}\\ 7, 869\\ \hline \\ \text{er } 28) a \ 18\\ + \ 188.5\\ + \ 63.1\\ + \ 111.0\\ + \ 33.6\\ + \ 16.4\\ + \ 50.4\\ + \ 102.7\\ - \ 222.3\\ - \ 252.4\\ - \ 79\\ + \ 35\\ - \ 49\\ - \ 24\\ - \ 100\\ \end{array}$	doba Rep h21m.5, 15.1 14.3 14.6 13.6 14.8 14.3 15.9 15.6 14.75 13.5 15.0 15.0 15.1 15.6 15.1 15.6 15.8 15.9	$\frac{\delta}{\delta} = 24^{\circ}5^{\prime}$ 16.4 14.8 15.4 14.8 15.6 15.2 17.0 16.6 15.7 14.6 16.3 16.1 16.7 16.1 17.0 17.0	(1966): Fourca 32759.765 36040.674 25474.346 35696.652 35373.660 34893.807 36067.656	12.937 0.644360 0.56600 1.965 0.578254 0.504027 0.330918 0.5220278	l field stars. d Albarracin, Atla Sp F-G Hoff 63c Alt 0.6627
Only f Labo y Cata S551 NGC 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	Four of the v orde and Fo orde and Fo ordego, Corde b, R62b, S6 	$\begin{array}{c} \text{variables in F}\\ \text{variables in F}\\ \text{varcade, Corolation (1966)}\\ 7, 869\\ \hline \\ \text{er } 28) a \ 18\\ + 188.5\\ + \ 63.1\\ + 111.0\\ + \ 33.6\\ + \ 16.4\\ + \ 50.4\\ + \ 102.7\\ - \ 222.3\\ - \ 252.4\\ - \ 79\\ + \ 35\\ - \ 49\\ - \ 24\\ - \ 100\\ - \ 186\\ \end{array}$	doba Rep h21m.5, 15.1 14.3 14.6 13.6 14.8 14.3 15.9 15.6 14.75 13.5 15.0 15.0 15.1 15.6 15.1 15.6 15.8	$\frac{\delta}{\delta} = 24^{\circ}5^{2}$ 16.4 14.8 15.4 14.8 15.6 15.2 17.0 16.6 15.7 14.6 16.3 16.1 16.7 16.1 17.0	(1966): Fourca 32759.765 36040.674 25474.346 35696.652 35373.660 34893.807	12.937 0.644360 0.56600 1.965 0.578254 0.504027 0.330918	field stars. d Albarracin, Atla Sp F-G Hoff 63c

Joy, ApJ 110.105 (1949); Sawyer, AJ 54.193 (1949); Hoffleit, AJ 70.307 (1965); Deery, AAVSO Abstr Oct. p. 3 (1968): Hoffleit, IBVS 312 (1968), IBVS 387 (1969), IBVS 660 (1972); Sawyer Hogg and Moorhead, unpub (1972)

\$55a, \$57, \$59, \$62, \$67, \$69, \$70

No.	x"	y"	Max.	Min.	Epoch	Period	Remarks
NGC	6637 (Messi	er 69) a 18	h28m.1,	$\delta = 32^{\circ}22$	3'		
1	- 20	- 9	13.0	15.0			red, mem
2	-228.8	+201.3	15.9	17.3			RR, f
3	- 36.6	- 78.5	14.6	15.8			red, mem
4	- 17.5	- 90.7	14.3	17.2	28433	196	mem
5	+ 8	+ 7	13.0	14.5		195	mem
6							11 37, red
7							111 43, red
8							lV 11, red

Vars. 1, 2, 3, 5 found by Rosino. V5 is Rosino 10, V4 is Ponson V1894. Rosino considers his variables 5-9 as field stars. Wilkens (Letter) suggests they may be cluster members. Identifications of new vars. 6-8, Lloyd Evans and Menzies (1973) from Hartwick and Sandage (1968).

Ponson, Leiden Ann 20.431 (Star 69) (1957); Rosino, Asiago Contr 132 (p) (1962); Hartwick and Sandage, ApJ 153.715 (p) (1968); Catchpole, Feast and Menzies, Obs 90.63 (1970); Lloyd Evans and Menzies, Obs 91.35 (1971); Wilkens, Letter (1972); Lloyd Evans and Menzies, 1AU Coll 21 (1973)

S55b, S57, R57, S61, R62c, F&L63, S64, R65, FLA66, S69, S70, F72

NGC 6638 a $18^{h}27^{m}.9$, $\delta - 25^{\circ}32'$

1	Terzan 9
2	Terzan 10
3	Terzan 11

Terzan's new variables identified on print. Six unpublished variables, Sawyer Hogg and Terzan (1972).

Terzan, Haute Prov Publ 9, 24 (p) (1968) S55b, S57, R62b, S70

NGC 6642 a $18^{h}28^{m}.4$, $\delta - 23^{\circ}30'$ 1 14.5 16.0 2 14.9 16.0 Two field variables, Hoffleit 137a and 137b. Hoffleit, 1BVS 660 (c) (1972) S55b, R62b

Hoff 145a, M Hoff 145b

NGC 6652 a 18h32m.5, $\delta - 33^{\circ}02'$

Observed by Fourcade and Laborde, 1966; no variables found. Fourcade, Laborde and Albarracin, Atlas y Catalogo, Cordoba (1966) \$55b, R62b

No.	x"	у"	Max.	Min.	Epoch	Period	Remarks
NGC	6656 (Messi	er 22) a 18	h33m.3,	$\delta - 23^{\circ}58$,		
1	- 54.0	- 10.0	14.2	15.4	36070.678	0.615543	
2	+ 158.6	+ 69.2	13.45	14.25	37113.784	0.641717	
3	+ 214.7	+420.2	15.4	16.6	40063.702	0.515485	f
4	- 4.0	- 68.0	13.9	15.1	40058.727	0.716393	
5	- 178.2	- 33.8	12.5	13.4	40027.818	92.6	SpG, V, mem
6	- 74.4	-100.0	13.65	14.5	35279.755	0.638548	
7	- 342.4	+411.2	13.65	15.0	35279.755	0.649520	
8	- 39.5	- 64.8	12.0	13.0		irr.	Sp G, V, mem
9	- 211.2	- 35.0	12.8	13.8	32740.781	87.71	Sp G, V, mem
10	- 39.0	-125.0	13.75	14.7	36069.643	0.646018	-
11	- 14.4	+ 14.0	13.1	13.9	36073.656	1.69049	Sp, V, mem
12	+ 0.8	- 77.8	14.2	14.6	Prob. not va	r.	
13	+ 76.4	+158.9	13.9	14.85	35309.730	0.672523	
14	+ 250.8	+486.4	14.5	17.5	34983.6	199.7	Sp M, V, f
15	+ 115.3	- 83.2	14.25	14.75	35279.755	0.373248	
16	+ 185.0	- 17.8	14.25	14.85	35335.645	0.325348	
17	- 438.0	+126.0	15.3	16.7	35338.7	113.2	f?
18	- 86	+433	14.3	14.7	34927.766	0.324960	
19	- 33	+130	14.3	14.8	35313.669	0.384009	
20	- 120	-123	13.9	14.6	34927.766	0.430060	
21	+ 36	+ 88	14.0	14.5	34922.732	0.327530	
22	-1089	+213	14.1	15.8	34927.766	0.6245374	
23	- 5	- 14	13.9	14.65	35341.635	0.355195	+
24	- 26	+ 10	14.4	15.5			
25	+ 326	+375	14.35	14.85	32006.740	0.402367	+
26			15.6	17.6	36051.7	309.0	Hoff 8, 181a, f?
27			14.0	15.1	35280.720	0.342811	Hoff 10, 181b, f?
28			13.8	14.8	34920.7	424.5	Hoff 16, 173a, f?
29			14.5	15.3			Hoff 187b
30			12.8	13.4			Hoff 191
31			12.8	13.5			Hoff 185
32	- 631	-331	15.4	18.0	34932.7	233.35	Watt, f?
33	- 149	-794	14.4	17.0	35308.8	250.3	Watt, f?

Sawyer, Toronto Publ 1, 15 (p) (1944); Joy, ApJ 110.105 (1949); Hoffleit, AJ 69.301 (1964), Sky Tel 27.274 (1964), AJ 70.307 (1965), AJ 72.711 (1967); Eggen, ApJ 172.639 (1972); Hoffleit, IBVS 660 (c) (1972); Sawyer Hogg and Wehlau, unpub (1972) S55a, S57, S59, R62a, S62, L65, R65, S67, S69, S70

NGC 6681	l (Messi	er 70) a 18	h40m.0, δ -32°21'		
1 +	46.1	-113.0	16.2 17.2	RR?	Rosino 1
2 –	104.5	-581.3	16.1 17.1	RR?	Rosino 3
		es, Rosino (1	/		
Rosino, A	siago Co	ontr 132 (p)	(1962)		
\$55b, \$61	, R62c,	F&L63, S64	, FLA66, S69		

No.	x''	у''	Max.	Min.	Epoch	Period	Remarks
NGC 6	5712 a18	h50m.3,δ	-08°47′				
1	- 63	- 17	16.18	17.32	35284.988	0.512030	
2	+ 69	+ 15	14.70	16.00	35007.4	104.6	AP Sct, mem
3	- 28	- 93	16.66	17.34	35285.235	0.655680	
4	+179	- 27	16.96	17.62	35285.082	0.611741	
5	+ 67	- 71	16.00	17.40	35285.350	0.545390	
6	+ 18	- 41	16.10	17.62	35285.344	0.510849	
7	-129	- 18	13.10	18.20	35327	190.48	CH Sct, V, mem
8	+ 24	+ 60	14.55	16.20	35400	117.0	
9	- 4	+285	16.80	19:			UG?, f
10	- 99	+ 30	15.45	15.95	35287	174	
11	-116	-333	16.7	17.5			E, f
12	+ 29	+ 39	16.00	17.54	35285.298	0.502776	
13	- 93	+ 25	15.98	17.36	35285.193	0.562651	Ros, San
14	-426	+ 31	15.30	17.90	35690.5	202.2	Sawyer F1
15	+247	- 38	15.60	16.60		100?	Har 160
16	-138	+175	16.8	17.5			Har 141, E
17	+ 27	+ 49	15.5				Har 151
18	- 25	- 1	16.64	17.26	35285.123	0.345044	Sandage
19	- 13	+ 34	16.50	16.92	35285.162	0.423900	Sandage
20	+ 1	+ 9	16.60	17.14	35285.031	0.330870	Sandage
21			13.5	13.8			LE&M

Sawyer, JRASC 47.229 (1953); Harwood, Priv comm (1956), Leiden Ann 21.387 (1962); Smith, Sandage, Lynden-Bell and Norton, AJ 68.293 (1963); Rosino, Bamb Kl Veröff 4, 40.202 (1965); Sandage, Smith and Norton, ApJ 144.894 (1966); Rosino, ApJ 144.903 (1966); Feast, Obs 87.35 (1967); Lloyd Evans, Letter (1972); Lloyd Evans and Menzies, IAU Coll 21 (1973) S55a, S57, S59, S61, R62a, S62, S64, R65, S67, S69, F72

NGC 6715 (Messier 54) $a 18^{h}52^{m}.0, \delta -30^{\circ}32'$

	0,10 (0 00 0	2		
1	+ 83	+ 10	15.8	16.9	35661.45	1.34956	Cep
2	- 6	+ 90	16.3	17.3	35635.60	0.5111	
3	- 14	+ 179	16.5	17.6	35630.44	0.5010	
4	- 38	+ 311	16.6	17.8	35630.40	0.4803	
5	- 129	+ 45	16.5	17.8	35636.34	0.5780	
6	+ 194	- 188	16.6	17.8	35630.50	0.5417	
7	+ 54	- 165	16.6	17.5		0.46?	RR
8	+ 365	- 330	15.7	16.7			E? f?
9	- 67	- 637	16.8	17.7			RR
10	+ 115	- 530	16.9	17.6			RR?
11	- 106	-1086					f
12	- 220	- 248	15.4	16.4	35630.64	0.3220	prob f
13	- 238	+ 451	16.5	17.5			RR
14	+ 240	+ 213	16.2	17.4	35630.44	0.6892	
15	+ 124	- 63	16.6	17.5	35639.64	0.5869	
16	+ 87	- 917					f
17	+ 697	- 435	16.6	17.6	35665.30	0.4660?	

No.	x"	У''	Max.	Min.	Epoch	Period	Remarks
NGC	6715 (coi	ntinued)					
18	+ 511	+ 382	16.5	17.2			RR?
19	-1260	- 190					f
20	+ 106	+ 95	16.8	17.2			
21	+ 85	- 231		17.8	var?		
22	- 21	- 167	16.4 .	16.7			
23	+ 362	+ 170	16.8	17.6	35638.60	0.5286	
24	+ 453	+ 55	16.5:		var?		
25	- 65	+ 74	15.4	17.2	35628	$101\pm$	SR
26	+ 201	- 159	16.8	17.4			RR?
27	+ 209	- 306	16.75 r				
28	+ 68	+ 161	16.3	17.6	35630.45	0.5128	
29	- 134	- 43	16.6	17.7	35638.44	0.5893	
30	+ 2	+ 80	16.6	17.7			RR
31	- 104	- 66	16.8	17.7	25626.26	0.0010	RR
32	- 181	+ 69	16.5	17.7	35636.36	0.5210	
33	+ 72	- 112	16.3	17.5	35629.58	0.4922	
34	- 61	- 153	16.4	17.6	35636.32	0.5053	
35	- 83	+ 54	16.6	17.6	35665.36	0.5266	
36	+ 129	+ 51	16.5	17.6	35629.58	0.5977	
37	+ 41	- 44	17.3	17.9			
38	- 69	+ 37	17.1	17.8			2.5
39	- 105	- 63	16.7	17.7	25620 44	0.596	RRa
40	- 56	- 112	16.5	17.5	35630.44	0.586	
41	+ 128	+ 45	16.4	17.6	35630.45	0.6187	DD
42	+ 70	+ 57	16.8	17.8	25620 44	0.2012	RR
43	- 154	+ 54	16.8	17.5	35630.44	0.3913	D.D.
44	+ 10 + 117	- 81 - 109	16.6	17.8	25(20 (2	0 1990	RRa
45 46		- 109 - 39	16.25 17	17.6 17.8?	35630.62	0.4889	
+0 47	- 38 - 29	- 39 + 96	16.7	17.8.	35635.60	0.5069	
+/ 48	- 29 + 254	+ 96 - 47	16.7	17.7	35635.58	0.6849	
+o 49	- 101	- 134	16.8	17.6	35035.58	0.0049	RR
+9 50	- 101 + 104	- 134	16.7	17.4	35630.64	0.5635	KK
51	+ 104	+ 208	16.85	17.55	55050.04	0.5055	RR?
52	+ 222	-50	16.85	17.55			RR
53	- 66	- 76	16.8?	17.55			RR
54	- 113	+ 327	16.5	17.6	35629.57	0.5713	
55	+ 146	-205	16.6	17.6	35629.58	0.4259	
56	- 336	- 124	16.65	17.4	55025.50	0.1207	RRc
57	+ 293	- 31	16.7	17.7		0.64?	RRa
58	+ 80	+ 282	16.5	17.5	35630.50	0.6148	
59	- 218	- 254	16.8	17.75	35630.63	0.5993	
60	- 269	-247	16.8	17.6	35629.57	0.570?	RR
61	- 43	+ 107	17.05	17.85	00020.01	0.070.	RR
62	- 92	+ 107	17.05	17.8			RR c?
63	- 40	-132	16.9	17.6			RR
~ -	+ 259	- 498	16.7	17.5			SR

Catalogue

No.		x''		у"	Max.	Min.	Epoch	Period	Remarks
NGC	671	5 (coi	ntinue	d)					
65	+	243	+	165	16.25	17.05	35638.36	0.4481	f
66	+	234	+	207	15.6	17.1			SR
67		0	+	69	16.85	17.55			RR
68		643	+	337	16.8	17.7	35630.65	0.5414	
69	_	328	+	283	16.45	17.25			RR?
70	+	128	_	426	16.8	17.4			RR
71	_	32	+	106	14.8	16.2		77:	SR
72	_	61	+	149	15.6	16.7			E?
73	+	26	+	62	17.0	17.5			
74	+	113	_	141	16.7	17.5			RR
75	+	18	+	79	16.5	17.7	35638.36	0.5797	
76		106		22	16.5?	17.5?			RR
77	_	112	_	42	16.5	17.5			RR
78	+	73		13					
79	+	30	-	46	16.9	17.5			RR?
80	+	51	-	25	16.7?	17.5			
81	+	45	+	12					
82	_	49	-	46	16.7?	17.5?			
Rosi	no a	nd No	bili, A	siago C	o and Nobi ontr 97 (p) 62a, S62, 1	(1959)	, FLA66, S69		

NGC 6717 $a 18^{h5}2^{m}.1, \delta - 22^{\circ}47'$

\$55b, \$61

NGC 6723 $a 18^{h}56^{m}.2, \delta - 36^{\circ}42'$

1	+ 75.1	-199.5	15.76	16.25	38993.793	0.538177
2	+135.7	- 78.3	14.71	16.47	38993.951	0.503539
3	-244.4	+ 7.5	14.78	16.57	38994.131	0.494097
4	+ 16.8	+ 77.4	14.55	15.90	38993.855	0.451060
5	- 4.7	+ 51.0	15.20	16.00		0.57264
6	+ 7.2	+ 48.3	14.90	16.05	23618.80	0.4814
7	+197.5	- 71.3	15.53	16.14	38994.037	0.307672
8	+ 15.9	+ 10.8	14.75	15.60		0.53
9	+ 74.0	+ 15.7	14.70	15.80	38994.101	0.575803
10	+148.6	+ 83.9	15.39	16.03	38993.996	0.252325
11	+133.3	+228.8	14.85	15.65	38993.922	0.534283
12	+ 43.2	- 45.7	14.95	15.85	23618.53	0.4694
13	- 46.2	- 71.3	14.69	16.22	38993.930	0.507867
14	+ 38.2	- 43.2	14.95	15.80	23618.91	0.6190
15	- 93.4	+167.5	14.72	16.43	38993.847	0.435439
16	- 46.5	+ 93.3	14.55	15.69	38994.104	0.696273
17	+ 43.1	-102.5	15.27	16.66	38994.135	0.530179
18	-137.8	-18.2	15.40	16.27	38994.091	0.526455
19	-169.4	-112.5	15.24	16.63	38994.018	0.534111

No.	x''	у"	Max.	Min.	Epoch	Period	Remarks
NGC	6723 (conti	nued)					
20	+ 3.5	+ 39.9				0.49293	F&L
21	- 79.0	- 28.2	14.50	15.72	38993.760	0.594863	
22	- 70.8	+ 38.1	15.18	15.72	38994.19	0.30844	
23	+ 53.4	- 10.0			38994.08	0.6259	
24	+117.5	-112.0	15.50	16.11	38993.999	0.300143	
25	+ 98.6	+203.1	12.1V	13.0V		SR?	
26	-197.0	+155.9	12.2V	13.1V		SR?	
27	-219.1	+101.6	15.50	16.33	38994.093	0.619249	
28	+ 10.8	- 79.0				0.4863	
29	+ 12.4	+ 63.6				0.53:	
			,	. ,	, who discovere		las y Catalogo. Cor

Innes, UOC 37.300 (UY Cr A) (1917); Fourcade, Laborde and Albarracin, Atlas y Catalogo, Cordoba (1966); Menzies, Proc Astr Soc Aust 1.16 (1967), Doctoral Thesis, Australian Nat'l Univ (1967); Lloyd Evans, Letter (1972); Lloyd Evans and Menzies, 1AU Coll 21 (1973); Menzies, 1AU

```
Coll 21 (1973)
```

S55a, S59, S62, L65, R65, S69

NGC 6	752 al9h	06 ^m .4, δ –60°04'	
1	+236.5	+143.0	F&L
2	+ 44.0	+ 82.5	F&L

V1 considered the same as that mentioned in S55a.

Fourcade, Laborde and Albarracin, Atlas y Catalogo, Cordoba (1966); Eggen, ApJ 172.639 (1972)

S55a, S57, S59, R62c, S62, F&L63, S69

NGC 6760 a 19^h08^m.6, δ +00° 57'

1	+57	- 57	15.7	17.0
2	- 6	-100	16.7	17.2
3	+31	- 10	15.5	[17.4
4	+42	+ 39	15.4	[17.5

Taffara has new eclipsing variable in field, and gives periods for it and two other field eclipsers. Sawyer Hogg, IAU Agenda and Draft Reports, p. 560 (1967); Taffara, SA1 43.481 (1972) S55a, S57, S59, R62a, S62, S69

NGC 6779 (Messier 56) $a 19^{h}14^{m}.6, \delta + 30^{\circ}05'$

1	+ 44.69	+ 74.10	15.0	16.2	30899.341	1.510019	Cep, Sp, V, mem
2	+ 18.16	+ 33.09	15.1	15.6		SR	
3	+ 25.10	+ 91.69	14.4	15.1		SR	Sp, V, mem
4	-112.13	-159.46	15.9	16.4			
5	+ 6.79	-134.78	14.4	15.2		SR	
6	- 2.02	+ 37.06	12.9	14.8	30172.7	90.02	RV, Sp, V, mem
7	+293.48	-213.24	15.6	16.3		irr	

No.	x"	у''	Max.	Min.	Epoch	Period	Remarks
NGC	6779 (conti	nued)					
8	- 97.63	-335.90	15.9	16.7		SR	
9	+177	+525	15.6	16.1		SR	
10	-431.53	+ 88.33	16.4	17.4	30967.473	0.5988948	RR, f?
11	-415.58	+283.80	15.5	16.3	34239.516	0.0756252	RRs, f?
12	-243.96	- 95.41	15.6	16.4			

Field variables found by Kurochkin, 20 (1968), 21 (1970), 30 (1971).

Joy, ApJ 110.105 (1949); Sawyer, JRASC 43.38 (1949); Balázs, Budapest Mitt 30 (1952); Rosino, Asiago Contr 117 (1961); Preston, Krzeminski and Smak, ApJ 137.401 (p) (1963); Barbon, Asiago Contr 175 (p) (1965); Kurochkin, VS 16.460 (c) (1968), VS 17.186 (c) (1970), VS 17.620 (c) (1971)

S55a, S57, S59, R62a, S62, S64, R65, S67, S69, S70

Palomar 10 $a 19^{h}16^{m}.0, \delta + 18^{\circ}28'$

V1 found by Rosino (1972) on red plates, centre of cluster, large amplitude. Rosino, Letter (1972) R61, S61

NGC 6809 (Messier 55) $a 19^{h}36^{m}.9, \delta - 31^{\circ}03'$

1	+304.2	- 55.6	32413.39	0.57997286
2	-214.9	- 26.0	32467.18	0.4061601
3	+ 78	-304	32413.22	0.6619023
4	+108	+ 59	32413.34	0.3841702
5	- 41	- 74		0.2?
6	+111	- 20	32413.32	0.388904
Dailar	UA 20 24	(n)(1002). King 1	UR 920 (1951)	

Bailey, HA 38.243 (p) (1902); King, HB 920 (1951) S55a, S57, S59, S61, R62a, S62, R65, FLA66, S69

Palomar 11 a 19h42m.6, δ -08°09'

No variables found. Abell suggests this may be very rich open cluster. Kinman and Rosino, ASP 74.499 (1962) R61, S61

NGC 6838 (Messier 71) a 19h51m.5, $\delta + 18^{\circ}39'$

1	+140	+ 24	13.5	14.9		193	Z Sge, SR
2	+ 44	-146	13.8	14.7			Slow
3	+ 44	- 70	15.2	17.0	33481.78	3.7907	E, Min, mem
4	+266	+ 31	14.7	15.3			RR?

Silbernagel, AN 192.450 (1912); Sawyer, JRASC 47.229 (1953); Prochazka, Letter (1967); Ilartwick, Priv comm (1972); Kukarkin, Letter (1972); Sawyer, unpub (1972) S55a, S57, S59, S61, R62a, S62, P64, R65, S166, S69

No.	x"	y"	Max.	Min.	Epoch	Period	Remarks				
NGC	NGC 6864 (Messier 75) $a 20h03m.2, \delta -22^{\circ}04'$										
1	+ 15.6	-83.4									
2	- 9.0	+54.0									
3	+ 18.0	+85.5									
4	- 18.0	-84.6									
5	+108.0	-36.0									
6	+ 8.4	-81.0									
7	- 24.6	+780									
8	- 13.5	-41.4									
9	+ 45.6	-24.0									
*10	- 43.5	+50.4									
11	+121.2	+84.0									
12	+ 39.6	+75.0									
* Su sp	*Suspected. Four additional suspected variables, numbered 13-16, are omitted.										

Shapley, Mt Wils Contr 190 (p) (1920) S55a, S57, R57, S59, S61, S62, S64, S69, S70

NGC 6934 a 20^h31^m.7, δ +07°14'

1	- 45	- 39	16.5	17.7	27307.968	0.568099	
2	- 40	- 14	16.4	17.9	27658.930	0.48195	+
3	0	+ 58	16.6	17.8	27275.882	0.539806	
4	+ 39	+ 58	16.3	17.8	27275.882	0.616422	
5	+ 59	+221	16.7	17.8	26923.943	0.564560	
6	- 27	- 33	16.7	18.0	27275.941	0.5558418	
7	+ 92	+ 59	16.65	17.7	28038.833	0.644049	
8	+100	+ 50	16.75	17.5	27715.760	0.623989	
9	+ 63	+ 18	16.5	17.8	27308.844	0.549156	
10	-135	+ 72	16.4	17.8	27275.882	0.519959	
11	+ 17	+ 28	17.1	18.15			
12	+ 29	- 44	16.3	17.4	27309.955	0.464215	
13	- 47	+ 25	16.55	17.8	26915.956	0.551334	
14	- 7	- 90	16.5	17.8	27659.902	0.52199	
15	+ 10	- 53	15.65	16.3			not RR
16	+ 36	+ 18	16.7	17.9	26915.956	0.604853	
17	- 73	-107	16.7	17.9	27309.955	0.598272	
18	+ 49	- 8	16.6	17.7			RR
19	+ 30	+ 1	16.4	17.9	21515.710	0.480550	
20	- 26	+ 17	16.5	17.6	27307.886	0.548225	
21	- 35	- 3	16.6	18.15			RR
22	-240	-173	16.5	17.8			RR
23	- 31	- 16	16.85	18.05			RR
24	+ 37	- 53	16.8	17.95			RR
25	+ 50	+ 37	16.5	17.9	27275.795	0.509086	
26	+ 31	-196	16.9	17.8			RR
27	-148	+180	16.7	17.8	27272.914	0.592204	
28	-234	+100	16.3	17.8	27715.760	0.485151	+

Catalogue

No.	x''	у"	Max.	Min.	Epoch	Period	Remarks
NGC	6934 (cont	inued)					
29	- 85	-183	16.4	17.8	26628.689	0.454818	
30	+161	+127	16.6	17.65	27714.745	0.589853	
31	+146	-101	16.5	17.8	21481.825	0.505070	
32	- 10	+ 51	16.4	17.7	21481.825	0.511948	
33	+ 37	+ 12	16.5	17.7	27309.920	0.518445	
34	- 21	+ 16	16.6	18.05			RR
35	+157	-142	16.6	17.85	27664.870	0.544222	
36	+ 10	- 35	16.05	17.55			RR
37	+ 23	+ 10	16.5	17.95			RR
38	+ 12	- 18	16.6	18.0	21543.702	0.523562	
39	+ 8	- 16	16.6	17.95			
40	- 8	+ 26	16.15	16.8			RR
41	+ 30	- 39	16.6	17.9	27275.882	0.520404	
42	+ 55	+ 20	16.5	17.9	27659.975	0.524251	
43	+ 21	+ 27	16.4	17.4			
44	- 43	- 30	17.0	17.9	26925.933	0.630384	
45	- 32	- 9	16.3	17.8			
46	+ 14	- 24	16.9	18.05			
47	+ 10	- 26	16.8	17.95			RR
48	+ 33	+ 52	16.5	18.05			RR
49	+ 13	- 55	16.7	17.95			RR
50	+ 15	- 37	16.9	17.95			
51	+ 7	- 25	15.85	16.6			RR

Sawyer, Toronto Publ 7, 5 (p) (1938); Sawyer Hogg and Wehlau, unpub (1972); Harris, AJ 78, in press (1973)

\$55a, \$57, \$59, \$61, \$62, \$64, R65, \$67, \$69, \$70

NGC 6981 (Messier 72) $a 20h50m.7, \delta - 12^{\circ}44'$

			,				
1	+ 43.5	- 54.0	16.45	17.25	33129.400	0.619818	
2	+ 99.0	+194.4	16.29	17.95	33126.405	0.46526213	
3	- 52.5	- 58.5	16.16	17.74	33809.553	0.4976052	_
4	-106.5	+ 37.5	16.56	17.74	33147.462	0.5524863	
5	- 38.4	- 21.6	16.40	17.43	22163.738	0.4991	
6	+ 78.0	+ 78.6	16.70	17.10			
7	- 3.6	+ 55.5	16.36	17.53	39318.997	0.524630	
8	- 6.6	+ 89.4	16.73	17.74	33145.372	0.5683752	
9	+ 11.4	+ 50.4	16.73	17.54	39319.660	0.60296	
10	- 48.6	- 73.5	16.69	17.77	33857.504	0.5581814	+
11	+ 57.0	- 36.6	16.81	17.72	39319.478	0.51997	
12	+ 9.0	- 21.6	16.31	17.17	22163.90	0.4111	
13	+ 13.5	+ 17.4	15.77	16.85	39319.330	0.55114	f?
14	- 13.5	+ 36.0	16.40	17.06	22163.90	0.5904	
15	- 64.5	- 21.0	16.63	17.56	39318.917	0.55044	
16	- 4.5	- 19.5	16.31	17.21	39319.490	0.585497	
17	+ 3.6	- 43.5	16.57	17.62	33215.483	0.5735404	+
18	- 26.4	- 37.5	15.70	16.28	22162.88	0.52016	

No.	x"	У''	Max.	Min.	Epoch	Period	Remarks
NGC (5981 (contin	nued)					
19	+ 3.0	+112.5	17.15	17.30	not var		
20	- 54.6	+ 15.0	16.50	17.40	33857.420	0.595046	
21	- 82.5	+ 12.6	16.56	17.86	33145.370	0.5311636	+
22	-113.4	+ 1.5	17.10	17.25	not var		
23	- 99.0	+116.4	16.95	17.73	39319.437	0.585083	irt
24	- 15.6	- 24.0	16.20	16.55	22161.92	0.4973:	
25	133.5	+ 67.5	16.92	17.48	33481.810	0.3533739	+
26	- 91.5	- 45.0	16.90	17.20			
27	+ 209.4	-234.0	16.30	17.78	39319.557	0.673774	f?
28	+ 65.4	+ 81.0	16.83	17.64	33853.437	0.56724873	_
20	+ 36.0	- 52.5	16.68	17.48	39319.295	0.605497	
30	+ 71.4	- 97.5	16.50	16.90			
31	+ 5.4	+ 30.6	16.44	17.36	39319,110	0.53249	
32	-138.0	- 42.0	16.84	17.78	39319.440	0.52834	
33	+ 2.4	- 60.0	16.95	17.25			
34	- 6.0	+ 7.5	16.06	16.73			
35	+ 231	+ 27	16.78	17.75	39319.772	0.543771	
36	- 12	0	16.0	16.8			
37	+ 7	8	15.5	16.5			
38	+ 5	_ 9	16.6	17.3			
30	+195	+243	16.8	17.0			
40	+ 18	+ 16	16.4	17.4			
41	15	- 20	16.7	17.5			
42	- 12	+ 3					red

Nobth, Astago Contr 83 (1957); Dickens and Flinn, MN 158.99 (1972); Dickens, Preprint (p) (1972), Letter, V42 unpub (1972) 855a, 857, 859, R62a, 862, 864, L65, R65, 867, 869

NGC 7006 a 20h59m.1, 8 + 16° 00'

1	-19	+114.8	18.20	19.00	26918.939	0.402720
2	- 35.3	- 37.3	18.25	19.50	35453.245	0.586986
3	- 24.4	- 34.2	18.55	19.65	27209,945	0.560557
4	- 21.0	- 41.1	not var			
5	- 20.9	- 38.4	18.45	19.50	35419.240	0.534713
0	- 13.5	- 44.5	18.40	19.00	27039.626	0.498030
-	- 32	- 30-9	not var			
8	- 34.4	- 13.5	18.70	19.50	35342 700	0.608289
S	- 39 4	- 10.0	notvar			
10	- 42.8	- 11.8	18.45	19.80	35403.638	0.542907
11	-148	- 50	18.35	19.65	35428.232	0.576036
12	-122.0	- 64.0	18.35	19.55	35419,410	0.574039
1.3	-102.7	+ 40.2	18.30	1000	35453.274	0.551647
14	55.3	+128.3	18.35	19.55	35459.269	0.560358
15	- 11.5	+114.8	18:40	19.50	35429 250	0.588067
10	39 0	-135.5	18.35	10.55	35429 240	0.537582

Catalogue

No.	x''	у″	Max.	Min.	Epoch	Period	Remarks
GC	7006 (conti	inued)					
17	- 99.3	+ 85.5	18.35	19.60	35429.201	0.511494	
18	- 29.6	- 89.5	18.55	19.65	35034.330	0.603706	
9	- 0.6	- 25.3	16.70	17.90	35630.93	92.17	red SR
20	- 21.2	- 24.4	18.70	19.45	35003.270	0.577476	
21	- 21.5	- 18.4	18.60	19.50	34978.700	0.568968	2 Alt Ps
22	- 12.6	-15.8	18.40	19.60	35727.400	0.526927	2711017
23	- 27.6	- 7.5	18.50	19.60	27274.873	0.608042	
4	- 25.8	- 2.9	10.50	17.000	2727	0.000012	blended
5	- 19.2	+ 5.2	18.80	19.60	26975.580	0.532792	olended
26	- 10.6	- 2.9	18.55	19.60	34978.710	0.607364	Alt 0.540
27	- 11.8	+ 0.3	18.30	19.25	26975.650	0.522321	7110 0.5 10
28	- 15.8	+ 0.3 + 4.3	18.75	19.60	35657.925	0.560987	Alt 0.5619
. o !9	+ 35.0	+ 31.6	18.40	19.60	27033.640	0.559195	
.9	+ 5.2	+ 16.6	18.70	19.70	21033.040	0.007170	
1	+ 10.0	+ 10.0 + 11.2	18.65	19.55	26891.945	0.563126	
2	+ 10.0 + 20.9	+ 11.2 + 13.8	18.50	19.50	36376.920	0.585572	
3	+ 20.9	+ 13.8	18.50	19.50	34978.735	0.556812	
4	+ 26.4	+ 9.2	18.75	19.30	prob not var	0.550,012	
5	+ 36.2	- 2.0	18.60	19.55	35419.260	0.596309	P var'
6	+ 25.5	- 3.7	18.75:	19.35	27274.850	0.437847	2 Alt Ps
7	+ 18.9	- 3.4	18.40:	19.45	37274.860	0.567920	blended
8	+ 21.5	- 18.4	18.70	19.50	26919.700	0.608599	Alt 0.622
9	+ 11.5	- 25.3	18.50:	19.55	36426.865	0.577261	Alt 0.565
0	+ 9.7	- 14.3	19.15:	19.60:	517429.005	0.5772.01	not RR
1	+ 1.4	- 11.2	18.70	19.60	34978.725	0.495330	Alt 0.499
2	+ 9.5	- 7.5	18.80:	19.30:	54719.725	9.175559	711C 0. 1777
13	4.0	28.7	18.75	19.50	26975.650	0.596656	
4	+133.9	-174.0	18.55	19.41	35017.632	0.58779	
15	- 190.0	- 74.4	18.70	19.38	35419.398	0.583858	
16	-125.6	- 54.7	18.85	19.31	35719.429	0.666320	Alt P'
17	183.4	- 22.1	18.60	19.35	35428.253	0.568294	
18	-100.0	+ 90.3	18.70	19.28	35428.240	0.611975	
19	+ 4.8	+ 40.5	18.65	19.60	26891.947	0.581897	
0	42.9	- 7.6	18.60	19.45	35034.300	0.590428	
51	+ 54.3	+ 46.0	18.90	19.35	26918.700	0.642709	
52	1.0	+ 85.5	18.60	19.34	35419.290	0.621746	
53	+ 47.5	9.1	18.75	19.25	55417.270	0.021740	
54	+ 3.2	- 30.0	16.95	17.75			red SR
55	254.4	+ 304.4	18.40	19.60	35017.663	0.537740	100 010
6	- 10.7	+ 304.4	18.40	19.60	36376.920	0.520202	Alt 0.549
57	6.2	12.1	18.65	19 35	26918.890	0.637235	7111 912 47
58	+ 14.8	+ 16.2	18.85	19.45	26920.735	0.514982	Alt 0.525
59 59	+ 14.6		18.55	19.45	35657.875	0.314962 0.463454	Alt 0.480
		+ 9.6			210.1000	U 403434	WILLING A 201
60 61	10.9	+ 7.7	18.85:	19.50	26918 865	0.589141	
61 62	36.2	+ 18.8	18.45	19.50			
62	21.6	+ 3.0	18.75	19 55	26975.650	0.495233	
63	+ 14.1	+ 22.2	18.65	19.50	27274.860	0 527996	

No.	x″	у"	Max.	Min.	Epoch	Period	Remarks
NGC	7006 (contin	ued)					
64	+ 21.4	+ 6.2	18.80	19.45			
65	- 8.7	+ 9.9	18.70	19.50	36376.920	0.544081	Alt 0.515
66	+ 28.1	- 2.5	18.75	19.50	26918.730	0.617159	Alt 0.603
67	- 14.1	- 1.1	18.85	19.45			
68	+ 12.7	+ 5.8	18.60	19.50			
69	+ 10.0	+ 3.9	18.90:	19.30:			
70	+ 8.7	0.0	18.40	18.85:			
71	- 3.2	- 13.6	18.80	19.40			
72	+ 26.0	- 0.5	18.80	19.40	26919.675	0.2610439	Alt 0.318
73	- 15.5	0.0	18.40	19.30	35456.600	0.577966	
74	+ 1.2	- 10.8	18.40	19.60	27033.635	0.566850	
75	+152.2	-156.7	18.40	19.00:	27300.600	0.518750	

New vars. 44-52 Rosino and Mannino, 53, 54, Sandage and Wildey, 55-75 Rosino and Ciatti. Sandage, ASP 66.324 (p) (1954); Rosino and Mannino, Asiago Contr 59 (p) (1955); Mannino, Asiago Contr 84 (1957); Rosino and Ciatti, Asiago Contr 199 (p) (1967); Sandage and Wildey, ApJ 150.469 (p) (1967); Pinto, Priv comm (1972)

S55a, S57, S59, S61, R62a, S62, L65, R65, S67, S69, S70

NGC 7078 (Messier 15) $a 21^{h}27^{m}.6, \delta + 11^{\circ}57'$

1	-118.6	+ 24.4	14.48	15.52	20724.394	1.437523	+, Sp
2	-171.7	+ 6.0	15.44	16.00	40442.58	0.6842736	
3	-248.0	- 46.8	15.70	16.29	40072.500	0.3887407	
4	-112.6	-163.6	15.58	16.24	40442.553	0.3135758	
5	-100.3	-212.5	15.66	16.24	40442.510	0.3842142	
6	+ 24.4	+ 76.5	14.93	15.68	25900.190	0.6659671	
7	+ 10.1	+ 73.2	15.56	15.98	25900.102	0.3675643	
8	- 0.6	+126.8	15.18	16.01	20725.103	0.6462446	
9	+ 15.6	+138.7	15.18	16.09	20724.993	0.7152819	
10	+125.6	+ 1.7	15.61	16.18	20724.967	0.3863931	
11	+172.3	- 21.8	15.52	16.22	20725.008	0.3432527	
12	+163.0	- 50.7	15.35	16.12	20724.930	0.5928844	Bl
13	+126.6	- 68.8	15.25	16.36	20725.068	0.5749536	
14	+ 84.1	-256.2	15.76	16.35	20725.167	0.3820024	
15	+ 81.7	-304.1	15.26	16.50	20724.991	0.5835687	Вб
16	+101.9	+129.8	15.50	15.97			
17	+ 83.7	+110.6	15.62	16.17	20725.001	0.4288924	+, BQ
18	+ 77.3	+100.4	15.47	16.05	20725.101	0.3677379	
19	+111.3	+160.4	15.11	16.42	20725.038	0.5723030	Bø
20	+ 81.2	- 9.8	15.04	16.07	25900.236	0.6969598	
21	+ 34.4	- 57.5	15.25	16.20			
22	-330.8	- 45.8	15.35	16.36	20724.719	0.7201510	
23	+192.0	+256.1	15.53	16.33	20724.891	0.6326959	Sp, Bl
24	-106.7	- 6.1	15.38	15.96	25900.534	0.3696955	
25	+302.9	- 10.7	15.49	16.52	20724.674	0.6653286	
26	+ 23.5	+331.9	15.83	16.37	20725.058	0.4022695	
27	+222.5	+248.2	not var				

Catalogue

No.	x''	у''	Max.	Min.	Epoch	Period	Remarks
NGC	7078 (conti	nued)					
28	+ 309.9	+534.2	15.53	16.53	20724.739	0.6706464	
29	+163.3	+212.2	15.52	16.37	20725.128	0.5749761	+
30	-165.0	- 3.4	15.55	16.01	40442.479	0.4059796	Be
31	-112.6	+245.6	15.74	16.30	20725.044	0.4081781	
32	- 50.4	+107.8	15.01	15.93	25900.589	0.6054003	
33	- 41.2	- 29.4	15.15	15.95	24409.065	0.5839452	
34	- 55.4	- 54.5	prob va		211071000	0.0007.02	
35	- 34.0	-163.6	15.70	16.32	20725.143	0.3839986	
36	- 27.7	-81.6	15.10	16.31	25900.141	0.6241424	
30 37	-25.2	- 77.4	15.12	10.51	20900.111	0.0211121	
38	+ 7.6	-146.2	15.47	16.09	20725.100	0.3752769	
38 39	+ 20.5	-124.8	15.58	15.98	20725.184	0.3895696	Вб
39 40			15.36	16.32	20724.834	0.3773302	DC
40 41	+131.8 + 62.9	-116.7 - 55.4	15.40	16.15	24409.010	0.6452282	
			15.68	16.36	20725.086	0.3601745	
42	+227.5	- 36.8			20725.808	0.3959928	
43	+416.7	+103.2	15.74	16.40		0.5955547	
44	+ 91.3	+ 3.0	15.00	16.02	20725.128		
45	+ 66.9	- 31.0	15.20	16.15	24409.224	0.6773992	
46	+ 56.0	+ 33.2	15.40	16.32	25000 280	0 (02700	
47	+ 45.7	- 4.3	15.0	16.2	25900.380	0.602799	
48	+ 59.7	+150.6	15.4	15.9	25900.346	0.3649762	
49	+ 40.3	+166.6	14.83	15.42	25000 120	0.6552054	
50	+165.0	+100.0	15.52	16.12	25900.173	0.2980583	+
51	+ 6.2	+ 91.4	15.56	16.10	25900.280	0.3969565	
52	+192.4	- 22.6	15.36	16.44	20724.800	0.5756132	+
53	- 92.6	-111.0	15.60	16.07	20725.202	0.4141270	
54	+ 10.8	+ 88.4	15.55	16.05	25900.078	0.3995683	
55	+ 65.3	- 18.8	15.49	16.30			
56	+ 57.4	0.0	15.19	16.11			
57	+ 75.2	- 56.4	15.51	16.06	20724.891	0.3492988	
58	- 55.6	+ 8.8	15.5:	16.10			
59	+ 41.3	+ 41.5	15.10	15.95	24409.520	0.5547922	
60	+ 53.4	- 59.3	15.29	16.00			
61	- 67.3	- 40.2	15.2:	15.8:			
62	- 71.6	+ 39.6	15.3:	15.8:		0.3882:	
63	+ 49.8	+ 31.0	15.54	16.44		0.0000	
64	- 46.2	+ 19.1	15.5	16.0	25900.211	0.355624	
65	-102.4	- 38.7	15.55	16.05	24409.366	0.7183491:	
66	- 68.4	-112.4	15.61	16.13	20725.179	0.3793488	
67	- 86.6	- 10.4	15.5:	16.2:			
68	- 31.8	+ 12.6					
69	- 37.0	- 25.2					
70	- 34.0	- 19.2					
71	- 34.8	- 12.6					
72	- 2.2	+ 34.8	15.0:	15.8:	24409.042	1.1386:	
73	- 3.7	+ 20.0					
74	+ 36.3	- 85.8	15.45	16.30	24409.188	0.296071	
75	+ 2.2	- 30.3					

No.	x"	y''	Max.	Min.	Epoch	Period	Remarks
NGC '	7078 (contir	nued)					
76	+ 0.7	- 28.9					
77	- 11.8	- 22.9					
78	- 6.7	+ 47.4	15.15	15.8:	24409.421	0.398879	
79	+ 21.5	- 23.7					
80	- 47.4	- 26.6	15.1:	15.8:			
81	- 21.5	- 5.9					
82	- 20.7	+ 1.5					
83	+ 16.3	- 7.4					
84	+ 18.5	- 16.3					
85	+ 20.7	+ 2.2					
86	+ 12.6	+ 4.4	13.9	14.8	24410.62	17.109	
87	+ 23.7	- 23.7					
88	+ 2.2	+ 26.6					
89	- 23.7	- 6.7					
90	+ 31.1	+ 4.4					
91	+ 67.3	+ 28.9	15.3:	16.0:			
92	+ 9.6	- 25.2					
93	+ 27.4	- 33.3	15.5:	16.0:			
94	+ 3.7	+ 28.9					
95	+ 5.2	- 40.0					
96	+165.6	+215.0	15.85	16.30	24409.242	0.396046	
97	- 79.5	+ 29.3	15.50	16.25	24409.548	0.696333	
98	- 67.1	+ 46.1	15.4:	15.95	24409.07	0.4701:	
99	+ 29.2	+195.4	15.70	16.10	24410.435	0.277995:	
100	+ 12.5	- 35.8	15.5	16.3	24409.058	0.406114	
101	-104	+540	15.75	16.30	24409.292	0.400360	
102	+ 68.8	+ 31.5	15.70	16.15	24409.119	0.7589:	
103	- 251.5	-273.3	15.7	16.4	36070.16	0.368126	
104	-151.6	-642.5	15.6	16.4	36070.22	0.414124	£9
105	-376.4	-737.3	15.6	17.1	36070.11	0.571155	f? PP c
106	- 30.3	+ 12.8	15.5	16.0			RRc RRc
107	- 32.5	-21.8	15.5	15.9 15.9			RRC
108	- 32.4	- 51.1	15.5				RRC
109	+ 12.7	- 31.3	15.5	16.1			RRc
110	+ 31.7	- 37.4	15.5	16.0			RR
111	+ 41.7	- 0.7	15.3	16.2			RR
112	+ 55.5	+ 35.0	15.3	16.3			IX IX

New vars. 96-98 Izsák, 99 Mannino, 100-102 Notni and Oleak, 103-105 Tsoo Yu-hua, 106-112 Rosino. Three of the corona stars of Kurochkin (1963) are similar to cluster members.

Izsák, Budapest Mitt 28 (1952); Arp, AJ 60.1 (1955); Kholopov, VS 10.253 (1955); Grubissich Asiago Contr 76 (1956); Mannino, Asiago Contr 74, 75 (1956); Izsák, Budapest Mitt 42.63 (1957) Nobili, Asiago Contr 81 (1957); Notni and Oleak, AN 284.49 (1958); Bachmann, AN 284.191 (1958); Mannino, Asiago Contr 110 (1959); Bronkalla, AN 285.181 (1960); Preston, ApJ 134.651 (1961); Yu-hua, Acta Astr Sinica 9.65 (1961); Fritze, AN 287.79 (1963); Kurochkin, VS 14.457 (1963); Makarova and Akimova, VS 15.350 (1965); Rosino, IBVS 327 (1969): Mironov, AC 637.1 (1971); Barlai, Priv comm (1972) S55a, S57, S59, S61, A62, R62a, S62, P64, S64, L65, R65, St66, S67, C&S69, S69, S70

Catalogue

No.	x''	у''	Max.	Min.	Epoch	Period	Remarks
NGC '	7089 (Messi	er 2) a 21	h30m.9, 8	δ-01°03′			
1	+ 25.6	+ 79.4	13.2	14.8	26607.800	15.583	Sp F-G
2	- 45.8	+ 71.1	14.6	16.1	21454.971	0.527858	-
3	+222.9	- 39.6	15.1	16.4	26921.952	0.6197006	
4	- 26.8	+ 31.5	15.2	16.6	26628.644	0.564247	
5	- 44.4	+ 2.1	13.2	14.9	26628.644	17.606	Sp F-G
6	+ 11.8	- 45.4	13.2	14.9	22162.928	19.295	Sp F-G
7	+153.0	-189.2	15.1	16.4	27274.901	0.594609	
8	- 66.9	- 56.8	15.1	16.4	27273.896	0.643677	
9	-173.2	-128.2	15.2	16.4	27274.901	0.609291	
10	+ 90.6	+ 38.8	15.2	16.4	27275.909	0.466910	Sp
11	+ 85	+ 8	12.5	14.0	31259.8	67.0	Sp F-G, Min
12	62	+ 43	15.1	16.5	26628.776	0.665616	
13	- 77	+ 73	15.1	16.4	26924.972	0.706616	
14	+ 83	- 68	15.4	16.4	20749.843	0.693785	
15	+ 80	- 76	15.7	16.4	26944.880	0.430152	
16	- 31	- 27	15.3	16.5	27275.950	0.655917	
17	+ 2	- 63	15.2	16.3	27274.901	0.636434	
18	-189	-707	15.95	16.85	40088.467	0.36226	P var
19	+235	-502	16.00	17.05	39089.384	0.319403	P var
20	+400	+ 74	16.00	16.75	37162.281	0.2863224	
21	+315	+208	15.75	16.85	39789.516	0.712178	P var

New vars. 18-21, Margoni and Stagni.

Arp, AJ 60.1 (1955); Arp and Wallerstein, AJ 61.272 (1956); Wallerstein, AJ 62.168 (1957), ApJ 127.583 (1958); Kulikov, VS 13.400 (1961); Mantegazza, Bologna Pubbl 8, 5 (1961); Preston, Krzeminski and Smak, ApJ 137.401 (p) (1963); Margoni and Stagni, IBVS 239 (1967); Kukarkin, IBVS 253, 254 (1968); Poole, Master's Thesis, Toronto (1968); Demers, AJ 74.925 (1969); Margoni and Stagni, Asiago Contr 213 (1969); Kukarkin, IBVS 422 (1970); Voroshilov, AC 623.7 (1971); Eggen, ApJ 172.639 (1972)

S55a, S57, S59, S61, R62a, S62, P64, S64, R65, S67, C&S69, S69, S70

NGC 7099 (Messier 30) $a 21^{h}37^{m}.5, \delta - 23^{\circ}25'$

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15.0 16.5 14.92 16.04 14.91 16.06 16.1 [18	32060.525 32060.46 32039.59 32450	0.743608 0.6535049 0.69632 9-10	UG Terzan 1 Terzan 2 Terzan 3 Terzan 4 Terzan 5 Terzan 6 Terzan 7 Terzan 8
--	---	--	--	--

No.	x''	у''	Max.	Min.	Epoch	Period	Remarks
NGC 7	099 (conti	nued)					
		in (1968) id Contr 117 (te Prov Publ 9.	24 (p) (1968):	Dickens, Preprint
(1972)					56, S69, S70		,
Paloma	r 12 a 21	h43m.7,δ	-21°28′				
1	-97.4	+129.8	20.3	21.1			Zwicky, RR
2	-80.8	+136.8	20.3	21.5			RR, K&R
3	-51.2	+102.0	18.5	22			103a-D plate K&
	, Morpholo 51, S64, S6		nomy, p. 2	205 (p) (1	957); Kinman a	nd Rosino, AS	P 74.503 (p) (1962)
Paloma	r 13 a 23	h04m.2,δ+	+12° 28′				
1	-32	+ 32	17.35	18.55	35759.505	0.538158	P var
2	+11	- 10	17.45	18.60	35782.381	0.597111	
3	- 8	+ 21	17.35	18.55	36455.770	0.578168	
4	+76	-300	17.55	18.65	35721.615	0.575340	
		bles, Rosino					
				atti, Rosi	no and Sussi, Ba	mb Kl Veröff	4, 40.228 (1965)
R57, S5	59, R61, S6	51, S62, S67	, S69				
NGC 7	492 a 23 ¹	ⁿ 05 ^m .7,δ-	-15°54′				
1	+19.5	+ 96.0	17.07	17.67	37499.603	0.804873	
2	-19.5	+ 49.5	16.91	17.31		0.292045	
3	+30.0	-253.5	17.39	17.79		0.270998	
4	-36.5	-116.0	15.66	15.96		17.9	red
Kinm 73.579	an and Ro (1968)	sino, ASP 7		62); Barn	ound variables 2 es, Priv comm (91 (1967), AJ

INDEX OF ABBREVIATIONS USED IN REFERENCES, LISTED CHRONOLOGICALLY

- S55a Sawyer, H., Toronto Publ 2, 2: A Second Catalogue of Variable Stars in Globular Clusters, Table II, Summary of Variable Stars in 72 Globular Clusters (1955)
- S55b Sawyer, H., Toronto Publ 2, 2: Table 1, Thirty-Four Globular Clusters Not Searched for Variables (1955)
- R57 Rosino, L., Budapest Mitt 42: Problems of Variable Stars in Globular Clusters (1957)
- S57 Sawyer Hogg, H., IAU Trans 9.548, Table 3a: Fifty-Nine Globular Clusters (1957)
- S59 Sawyer Hogg, H., Handbuch der Physik, ed. S. Flügge (Berlin: Springer Verlag), p. 181; Star Clusters (1959)
- R61 Rosino, L., IAU Trans IIB. 300: Work Being Carried Out at the Asiago Observatory (1962)
- S61 Sawyer Hogg, H., IAU Trans 11A.271: Report of Sub-Commission 27b, Variable Stars in Clusters (1962)
- A62 Arp, H.C., Symposium on Stellar Evolution, 1960, La Plata (1962)
- R62a Rosino, L., Pad Com 29, Tables 3 and 4: Clusters Observed for Variables (1962)
- R62b Rosino, L., Pad Com 29, Table 1: Clusters Never Observed for Variables (1962)
- R62c Rosino, L., Pad Com 29, Table 2: Clusters Insufficiently Observed for Variables (1962)
- S62 Sawyer Hogg, H., Bamb Kl Veröff 34.8: Numbers and Kinds of Variables in Globular Clusters (1962)
- F&L63 Fourcade, C. R., and Laborde, J. R., La Plata Bol 6.111: Estrellas variables en cumulos globulares (1963)
- P64 Preston, G., Ann Rev Astr Ap 2.23: The RR Lyrae Stars (1964)
- S64 Sawyer Hogg, H., IAU Trans 12A.390: Variable Stars in Star Clusters (1965)
- L65 Lohmann, W., AN 289.99; Perioden-Helligkeits-Beziehungen von RR Lyrae-Sternen in Kugelförmigen Sternhaufen (1965)
- R65 Rosino, L., Bamb Kl Veröff 4.40.98: Characteristics and Absolute Magnitudes of the RR Lyrae Variables in Globular Clusters (1965)
- FLA66 Fourcade, C. R., Laborde, J. R., and Albarracin, J., Atlas y Catalogo de estrellas variables en cumulos globulares al sur de -29°, Cordoba (1966)
- St66 Stothers, R., AJ 71.943: The Ultraviolet Dwarfs: A New Class of Degenerate Stars (1966)
- S67 Sawyer Hogg, H., IAU Trans 13A.555: Report of the Committee on Variable Stars in Clusters (1967)
- C&S69 Coutts, C., and Sawyer Hogg, H., Toronto Publ 3.1: Period Changes of RR Lyrae Variables in the Globular Cluster Messier 5 (1969)
- S69 Sawyer Hogg, H., Non-Periodic Phenomena in Variable Stars, ed. L. Detre, p. 475: The Third Catalogue of Variable Stars in Globular Clusters (1969)
- S70 Sawyer Hogg, H., IAU Trans 14A.291: Report of the Committee on Variable Stars in Clusters (1970)
- F72 Feast, M., Preprint: Red Variables in Globular Clusters, in the Galactic Centre and in the Solar Neighbourhood (1972)

INDEX OF ABBREVIATIONS OF PUBLICATIONS

AAS Bull	Bulletin of the American Astronomical Society
AAVSO Abstr	Abstract of the American Association of Variable Star Observers
AC	Astronomical Circular. Bureau of Astronomical Information of the Academ of Sciences of USSR, Moscow
Acta Astr Sinica	Acta Astronomica Sinica
AG Mitt	Mitteilungen der Astronomischen Gesellschaft
AJ	The Astronomical Journal. Published by the American Astronomical Society
AN	Astronomische Nachrichten. Akademie-Verlag, Berlin
Ann Aph	Annales d'Astrophysique. Revue Internationale trimestrielle
Ann Rev Astr Ap	Annual Review of Astronomy and Astrophysics. Palo Alto
ApJ	The Astrophysical Journal, An International Review of Spectroscopy and Astronomical Physics, Chicago
ApJ Suppl	The Astrophysical Journal. Supplement Series
Asiago Contr	Contributi dell' Osservatorio Astrofisico dell' Università di Padova in Asiago
ASP	Publications of the Astronomical Society of the Pacific. San Francisco
Astr Abh Hoffmeister	Astronomische Abhandlungen Prof. Dr. C. Hoffmeister zum 70. Geburtstag Gewidmet. Leipzig
Astr and Ap	Astronomy and Astrophysics
BAC	Bulletin of the Astronomical Institutes of Czechoslovakia. Prague
Bamb Kl Veröff	Kleine Veröffentlichungen der Remeis-Sternwarte zu Bamberg
Bamb Veröff	Veröffentlichungen der Remeis-Sternwarte zu Bamberg
BAN	Bulletin of the Astronomical Institutes of the Netherlands. Haarlem
BAN Suppl	Bulletin of the Astronomical Institutes of the Netherlands. Supplement Series
Berg Abh	Abhandlungen aus der Hamburger Sternwarte. Hamburg-Bergedorf
Bologna Pubbl	Pubblicazzioni dell' Osservatorio astronomico universitario di Bologna
Budapest Mitt	Mitteilungen der Konkoly-Sternwarte zu Budapest-Svábhegy
Cordoba Repr	Observatorio de Cordoba. Reprint Series
НА	Annals of the Astronomical Observatory of Harvard College. Cambridge, USA
Haute Prov Publ	Publications de l'Observatoire de Haute Provence
HB	Bulletin of the Harvard College Observatory. Cambridge, USA
HC	Harvard College Observatory. Circular. Cambridge, USA
lAU Coll	International Astronomical Union, Colloquium
IAU Draft Reports	International Astronomical Union. Agenda and Draft Reports
IAU Trans	Transactions of the International Astronomical Union
1BV S	Information Bulletin on Variable Stars of Commission 27 of the Inter- national Astronomical Union. Budapest
Inf Bull So Hemis	Information Bulletin for the Southern Hemisphere. La Plata
JRASC	The Journal of the Royal Astronomical Society of Canada
JO	Journal des Observateurs. Marseilles
La Plata Bol	Asociacion Argentina de Astronomia. Boletin. La Plata
La Plata Bol La Plata Symp	Symposium on Stellar Evolution, 1960. La Plata
La Flata Symp Leaflet	Publications of the Astronomical Society of the Pacific. Leaflet. San Fran-
Leaffer	cisco
Leiden Ann	Annalen van de Sterrewacht te Leiden

Publications du Laboratoire d'Astronomie et de Géodésie de l'Université de Louvain
Publications de l'Observatoire de Lyon. Série 1. Astronomie
Monthly Notices of the Royal Astronomical Society. London Contributions from the Mount Wilson Observatory Mitteilungen über veränderliche Sterne. Herausgegeben von der Sternwarte Sonneberg
National Aeronautics and Space Administration, USA. Technical Translation
The Observatory. Monthly Review of Astronomy. Oxford
Osservatorio Astronomico di Padova. Comunicazioni Proceedings of the Astronomical Society of Australia. Sydney Mitteilungen (Istwestija) der russischen Hauptsternwarte zu Pulkovo
The Quarterly Journal of the Royal Astronomical Society
Russian Astronomical Journal (until 1931). Astronomical Journal of Soviet Union
Royal Observatory Annals. Herstmonceux: Royal Greenwich Observatory Royal Observatory Bulletins. Joint Publications of the Royal Greenwich Observatory, Herstmonceux: Royal Observatory, Cape of Good Hope
Contributions from the Rutherfurd Observatory of Columbia University, New York
Memorie della Società Astronomica Italiana Sky and Telescope. Harvard College Observatory, Cambridge, USA Veröffentlichungen der Sternwarte zu Sonneberg Soviet Astronomy AJ. A translation of the Astronomical Journal of the Academy of Sciences of USSR. Published by the American Institute of Physics, Inc., New York
Specola Astronomica Vaticana. Richerche Astronomiche
Communications from the David Dunlap Observatory, University of Toronto
Publications of the David Dunlap Observatory, University of Toronto
Circular of the Union Observatory
Variable Stars. Academy of Sciences of USSR, Moscow Variable Stars. Supplement Series. Moscow
Zeitschrift für Astrophysik. Berlin-Göttingen-Heidelberg

