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Quadratic Involutions on the Plane Rational Quartic.

By T. B. Ashcraft.

§ I . The General Theory of Involution Curves of a Plane Rational Curve of Order n.

Let R" denote a plane rational curve of order n, and let it be given by
the equation

Xo = Oo<" + a,^""' + ajr' +— - + a„

(i) x^^bjf+b.t"-^ +bjr-'+—- +Z>„

x^ = c^ +c,^-' +cjr' +— - +c.

If we join the parameters t^ and /j by a line, where /, and /j are in an involu-

tion of the form

(2) A t^, + 5(/, + /j) + C =
o,

we shall show that the locus of this line is a rational curve of class n-i which

touches R' 2){n-2) times and meets it in 2(n-2){n-T,) other points. This class

curve will be called an involution curve, and will be denoted by r*"'.

Cut the curve R" by any line

(3) (fx) =fo»o + fi»i +^2^2=0

and we have

(4) («„$) r + (« .0 /- + + {aJ) = o.

For convenience suppose we choose the involution with o and 00 as double

points. Then / and -t must satisfy the last equation, and we have for n even,

say n = 2 m,

263424



2 T. B. Ashcraft: Quadratic Involutions on the Plane Rational Quartic

(5) («oO t"' + («iO ^•»-' +--- + (a„f)
=

o,

(6) («of ) f ""— (« .f ) /'"-' +-— + (««0 = o.

Whence by addition and then subtraction we get

(7) («oO i"' + («2f) t""-' + ----- + («„f)
=

o,

(8) («.f) f^-' + .(«3f) ^^"-^ + — + («„-xf)
= o.

Since only even powers occur we can divide the exponent by 2 and write

(9) («of) i" + («20 t"-' +--- + (««f)
=

o,

(10) («.f) r-' + («30 /«-' + ----- + (a„-.e)
= o.

EHminating $„, f „ f 2 from equations (3), (9) and (10), we have the locus re-

quired in determinant form

(11) /o(r) , /.(/") , /,(r)

Or written parametrically its equation is

and since n = 2w we have as the representation of the involution curve

(12) f,
= F,(r'),

which is a rational class curve of order n-i. Similar argument holds for n
odd.

The point to be emphasized is that the parameter may be replaced by a

new one which reduces the degree by one half; that is a T replaces a quadratic
in t. This new parameter may be chosen in a triple infinity of ways depend-

ing on the ratios of a, ^, v, 5 in a transformation of the form

ctt + ?>

1 =
vi + S .

If the double points of the involution are given by (a ty, then we choose any
two quadratics apolar to (a t)', say (a/)* and (^ /)'; then any convenient mem-
ber of the pencil (« t)' + X (p i)' will serve as a new parameter T.

To find the number of contacts of the r"'' with the R", we shall consider

first the R* and its involution cubic r^. The R"* is of class six so there are 18

common lines. There are three ways in which we may have common lines.

A line meets the curve in four points, /„ ^2, t}, tt. Let ^, and /j come together
so that line is a tangent. We have common lines when
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i) Points ty and t^ are a pair of the involution,

2) Points t^ and /< are a pair of the involution,

3) Points /, and t^ are a pair of the involution.

Case i) can happen twice, viz. when the line cuts out either of the double

points of the involution. This accounts for two common lines.

In case 2) a tangent at t meets the curve again, say at t^. For a given

t there are two /,'s, and for a given ^, there are 4 i's, since there are four tangents

from a point on the curve, the curve being of class six. The relation connecting

t and ti is

/. (<*) t* + f, (t*) t, + f, (t^)
= o.

The condition that the roots /, be in an involution is of the fourth degree

in t, which means four common lines for case 2). Case 3) must contain all

the other common lines, that is twelve. This case happens when /j and tj

are a pair of the involution, but ^2 and ^3 are as well a pair of the involution;

therefore the twelve common lines are six repeated. In other words the R*

has six contacts with the r^.

This is easily extended to the general case of R". The R" is of class

2(«-i), so the R" and the r"'' have 2(«-i)^ common lines.- There will always

be two of these accounted for in case i), corresponding to the double points

of the involution.

For case 2) the equation connecting a point of tangency / and a point of

intersection of the tangent at /, is of degree 2W-4 in t and n-2 in /„ and is of the

form

/ (/"-^ /i"-») =0.

For two values of ti to be in a given involution is a condition of degree

n-2, in the coefficients of ^, and hence of degree 2(w-2)(«-3) in t; this then is

the number of common lines for case 2). Subtracting the common lines for

case i) and case 2) from the total number we have for case 3) 2(«-i)»—
2(n-2)(n-3)

—2 = 6n-i2. But since these pair ofif we have in general 2>n-6

contacts of R" and r""'.

The order of r""' is 2 « -
4, so the R" and its involution curve intersect in

2 n (n -
2) points. The contacts count for 6 n - 12 intersections, so there are

2(«-2)(«-3) remaining intersections.

If the parameters of a node of R" are in the involution, then the node is a

factor of the involution curve, and the remaining factor is an r"''. This

part of the locus being a double point of the R" will count for two contacts;
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hence the remaining part, r"'', will have only 3 « - 8 contacts. If n-T, nodes are

made a part of the locus then we always get for the remaining part of the locus

an r' with n contacts or full contact, that is a conic all of whose intersections

are contacts. Since two sets of the involution determine the involution

it is a condition on the R" for n-3 nodes to be in the involution for n greater

than 5.*

We shall now consider the R^ and find the involution conic. We found

that there are in general 3W-6 contacts, so in this case we get three contacts

and no extra intersections. Let the double points of the involution be o

and 00
, and let the reference triangle be the tangents at the double points and

their join. Then the equation of R^ may be

(I)

Xo = aat^+bat'

Xi =Cit +di

X, = b,t' +cd.

If o and 00 are the double points of the involution it is of the form

<2) ^,+^2=0,

and the line whose locus is the involution conic will join t and -t of the R'.

Such a line is given by

= 0.^0
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It is seen that only even powers of t occur so we replace the parameter t'

by a new one, t' say. For convenience we drop the primes and write the

equation in the form

f = —
biCit + Cidi

(6) $i=a„b2t'— 60^2^

$2= {b^Ci
—

a^di) t

This is the involution conic in line form but we want the point form. We
have

^0 = ^0^2 ((^odi—boCi) t'

(7) ^1 =
Cidi {aod^—boC^)

X2 = —
aJ)2Cit' + 20062^2^^1^

—
bgCldi.

Now in order to get the intersections of this involution conic with the R'

we must eliminate the parameter from the equation of the conic and thus get

an equation of the second degree in x. If we then substitute for the x^'s their

values in the equation of the R^ we obtain a sextic in t which will give the

intersections of the two curves.

Eliminating / from (7) w e get

bi'Ci'Xg' + b^c^x' + {a^d' — 2a^gCyd^ + b^c^) x*

(8) + 2 {aJbaCidi
—

bg'c^c^ XyXi + 2 {aab^c^d^
—

60^2^1*) ^0*2

+ 2 ( bobiCiCi
— 2 aobiCidi) ^o^i = O-

If we now substitute for the x/s their values in equation (i) we get

ao'b^'Ci't^ + 2 a^'b^'c^dfi + (ao'b^'di'
—

2ag'b2C,C2di) t*

(9)
—

(2 ao'b^Ctdi'
— 2 aobobiCiCjdi ) t^ + {a^'c^'d'

— 2 aobJbiC^d^') f

+ 2 ajy^f^d^t + b^c^d* = o.

This sextic is seen to be the square of the cubic

(10) aJb^Cit^ + ajb^dif
—

agCidit
—

60^2^1
=

o,

which gives the parameters of the three points of contact of the R' and its

involution conic.

We shall now prove that the points of contact of an R^ and its involution

conic are given by the Jacobian of the cubic giving the parameters of the three

flexes of R^ and the quadratic which gives the double points of the involution.
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We shall consider the R^ given by equation (i), and the involution whose
double points are o and oo . The cubic giving the flexes is the fundamental

cubic, that is, the unique cubic apolar to each of the three binary cubics in (i).

Calculating that cubic in the usual way we have

(ii) a^biCtt^ + 2>ciob2dit' + scoCa^i^ + b^Cidi
= o.

The quadratic giving the double points under consideration is

(12) t = o.

The Jacobian of (11) and (12) is

(13) agbiCit^ + ajb^dit""
—

a^Cidit
—

5o^2^i
=

o,

and is just the same cubic as (10), and the theorem is proved.

We shall now consider R'* and its involution cubic r^. The number of

contacts we found to be in general 3«-6 which is just the number of flexes of

an R". Since the Jacobian of the flex cubic and the quadratic of the double

points of the involution gave the contacts of R^ and r^ it seems natural to look

for some such relation in the case of R'*. The Jacobian of the flex equation
in general and the quadratic giving the roots of the involution will always be

of the right degree in t, 3W-6, to give the points of contact of R" and r""'.

But in the case of R'* we find the degree in the coefficients not the same as those

of the contact equation. We shall find by a symbolic method the degree of

the contact equation in the coefficients of the fundamental involution, as well

as in the coefficients of the quadratic of the involution.

Suppose the fundamental involution of R* is given by

(i) (aty + 1 i^ty = o.

Let the double points of the involution be (Qty =
o, and let one set of the

involution /, and t^ be given by (at)'. Let the line on /i and ^2 meet the R*

again at T, and Tj.

Since every line section is apolar to the fundamental involution we have

(2) \aa\ (aT,) (aTj) = o and

(3) M (^TO (^T,) = o.

Eliminating Tj from (2) and (3) we get
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(4) |«^||«aMM.'|(«T,) (PT.) =0.

Since every set of the involution is apolar to (Qt)', we have,

(5) \aQ\'
= o.

Again, since when /, or /^ is T,, there is a contact, we have

(6) (aT,)»=o.

Solving for the a's in (5) and (6) we find them to be of the first degree in

the Q's and of the second degree in the T's. If these values of the a's are put
in (4) we get an equation of the first degree in the determinants of the funda-

mental involution, of the first degree in the Q's, and of the sixth degree in T.

This is the contact equation.

The flex sextic is the first transvectant of the fundamental involution and

is of the first degree in the determinants of the fundamental involution. The

Jacobian of the flex sextic F and the quadratic Q giving the roots of the in-

volution is a sextic Ji which is of the first degree in the determinants of the

fundamental involution, but only of the first degree in the Q's. Taking the

Jacobian of J, and Q we get a sextic J 2 which is of the second degree in the

Q's and the first degree in the determinants of the fundamental involution.

Now we propose to show that K, the sextic giving the points of contact

of R* and r^, can be built from F, Q, J2, A, and q, where F, Q, J2 have the

meaning just given, and where A is the discriminant of Q, and q is the third

transvectant of the two members of the fundamental involution. The possi-

ble combinations that are of the same degree as K are easily seen. We shall

show that

K = X A ¥ +^]2+vgQ\

where X, iJi, v are constants to be determined. Let the R* be referred to two
flex tangents and the line joining these flexes whose parameters are o and 00 .

Its parametric equation will be

Xq = at* + bt^ -It c1^

(l) x^ = bt^ + ct' + dt

Xj = cf + dt + e
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We shall choose the involution whose sets are t and -/, hence whose double

points are given by

(2) Q -2/ o.

Since we are not interested in the equation of r^, we proceed to find the

equation giving the points of contact with the R*. Calculating the funda-

mental involution of R*, that is two quartics which are apolar to the three

binary quartics in (i), we get

(3) bet*— 6b ef — 4 c e / =
o, and

(4) ^act^+6adf — c d = o.

The polarized form of (3) and (4), that is where S refers to f,, t^, t,, t^, is

(5) be St
— beSi— ceSi=o and

(6) aeS3 + adS2— ed=o,

which is known to be the condition that four points lie on a line. Now let two

of the t's, say t^ and /j be equal to /, and let a" refer to t^ and 1^ Then (5) and

(6) become

(7) (bet'
— b e) 2

—
(2 6e^+ce)<T, — bet' — 2 c e t =

o,

(8) {2act + ab)<s2 + {act' + 2adt) o^ + a d t' — c d = 0.

Taking also the equation

(9) TJ, + X' o,

and eliminating the j's from (7), (8), (9) we have

(10)

bet'— be
,

— 2b e t
— e e

,

— bet' — 2 c e t

2 a c t + a d
,
a c t' + 2 a d t

,
a d t' — c d

= o.

This is an equation which is obviously the equation giving the para-

meters of the six flexes when x is t, and giving the parameters of the six points

of contact of R* and r^ when t is -t. Putting x = t and developing (10)

we get
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(11) F = abc't:^ + sabcdt^ + 6 ab c e t* + (8 ac' e — b c* d) t^

\-6acdei'+2^bcdet-\-c'de=o.

If T = — t
, (10) becomes

(12) K ^ abc'f" + abcdt^ + 2abcet* + be" dt^

+ 2 acdet' + b cde t + c' d e = o.

The Jacobian of F and Q is v

(13) J, ^ ab c' f + 2 ab c dt^ +2abcet*— 2acdet'
— 2 b c d e t— c' d e =0.

The Jacobian of J ,
and Q is

(14) J2 = ^ab c' ^ + ^ab cdt^ + 2 ab c e t* + 2 a c d e f

+ /\.b c d e t + 2)
C d e = 0.

The quadratic ^ is the third transvectant of the members of the funda-

mental involution.

Taking the third transvectant of (3) and (4) we have

(15) ^ = T,abcet' + {2 ac' e + b c' d) t + ;^
a c d e =0.

Forming the product of ^ and Q', we get

(16) fQ' = J 2abcet* + {8ac' e + ^bc' d) t^ + 1 2 a c d e t' =0.

The discriminant of Q is

(17) A = I.

Writing down now

we find that K is given for

. >^ = —
1/5, V-

=
2/5. > =

i/5-

Or to avoid fractions we have finally

(18) 5K =i.Q' +2j,-AF.
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If two nodes are in the involution, these two nodes are a factor of the r'

and the remaining factor is some other point. We shall show that the re-

maining factor of r^ is the third node.

Let the parameters of one node be given by /' + a, a second by /* + h,

and the third by a general quadratic c^t' + Cit + Cj. The R* referred to

its nodes has the equation

x^ = {f + a) (co t" + c^t + Cj)

(19) X, = [f + b) (co t' + c^t + cj

«2 =
(/' + a ) {f + b)

The sets of the involution are, if two nodes are in it, t and -/. The equation

of a line joining t and -/ is given by the determinant

Xa X. X, = o.

{f + a) {cJ." + c,^ + Cj) , (/' + b) (cot' +c,t+C2) , (f + a) (f + b)

(t'+a) Ic^t'—c^t+c,) , it' +b) Icot'—c^t+c^) , (f +a) (f +b)

If now we take the sum of the second and third rows for a new second

row, and their difference for a new third row, and remove the factor Ci^ from

the third row, we have

(20)

x„

(f + a) (co t' + c,)

t' + a
it' + b) (Co t' + c) ,' (f + a) It' +b)

t' + b . o

= 0.

Replacing f by T and expressing this equation in terms of f,'s we have after

removing common factors

f = - (T + 6)

(21) e.
= T + a

f J
= o

which shows on the face of it the other node to be the rest of r».
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§ 2. Involutions Determined by Two Double Lines of the Plane

Rational Quartic.

If lines are drawn on the meet of any two double lines of the rational

quartic, we obtain a quadratic involution. That is to say, while such a line

meets the curve in four points the parameters pair off, /j and t^ say.

By choosing o and oo as the points of contact of one double tangent we

may write the curve

(i) x^ = {aif + 2 bit + c^y

X2 =
(oj r + 2 62 / + C2)' .

Any line on the meet of Xg and Xi is of the form x^
— X' a;,

=
o, or

(2) /^t'
— X' {aj' + 2b it + CiY = o

which breaks into factors

(3) [
2 /— X (a, f + 2 Z>, / + c,)] [

2 / + X ( a, /' + 2bit + c,)]
= o.

If ti is a root of the first factor, then

(4) X =

a, /' + 2bit + Ci

Substituting this value we have, after removing the factor t -/, ,

(5) -^(0,1)
= ai^^2— Ci

= o,
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and this is the quadratic involution from the meet of x^ and Xi.

We shall denote the double lines by o, i, 2, 3, and /„;^-)
will denote the

quadratic involution obtained by drawing lines on the meet of any two double

lines * and j.

We shall show that the double points of I
,0.,)

are given by the points of

contact of the two remaining tangents from the meet of the double lines o and i.

The double points of /(o,i) are given by

(6) a, ^— c, =0.

It is easily seen that the Jacobian of the quadratics which give the points

of contact of the double lines give the points of contact of the two remaining

tangents from their meet; for the Jacobian of two squared quadratics is the

product of the quadratics and their Jacobian. Forming the Jacobian of the

double lines o and I we have

(7) a,/'
—

c,
= o

,

which gives precisely the roots of /(o.d-

We shall next prove that the points of contact of the two tangents that may
be drawn to the quartic from the meet of any two double lines are on a line

through the meet of the other two double lines. Having proved that the

roots of the involution I (o,,) are the points of contact of the other two tangents

from the meet of o and i, we have only to show that the points of contact

of tangents from the meet of the double lines 2 and 3 are in the involution

7(0.1),
that is to say, that the roots of

I^2,))
are in

/(o,i)-

Not having the equation of the double line 3, we make use of the well-

known fact that the three catalectic sets of the fundamental involution give

the three sets of two tangents from the meets of double lines, such as from o

and I, and 2 and 3. The fundamental involution of the quartic given by (i)

takes the form

(8) |a, bi b^c.lt* +
I a, 6, c,' \

t> + {b^c, c," |

t

+ X ( I o, &, 0/
I

/3 +
I 62C2 a,' I

^ +
I
a, ft, 6jCj|) =0,

where
|
a, Z), 63 C2

|

denotes the determinant

a, bi , a^ 62

6,c, , 62 C2

and
I
a, &, c*\ is a, bi , a^ 62

and so on.
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Writing down the g^ of (8) we have

(9) a, 6,^2* I

+ X
I a, 6,a/I, o , j&jCjC," 1

+>> IftzCi^i' I

o ,|62C2C,»| + Xl&jCja.'l, X|a, 6,6,^2!

= 0.

This is a cubic in X whose roots are at once found to be

c,' c,' {biC,
— b,c,y

a,* at' (o, &2
— a^biY

Substituting X = in (8) we get, after removing the factor

a'
biia^c^ — a^Ci),

(10) o," 6j t* + a, (a, Cj + ^2 c, ) /3 — c, (a, c^ + aj c, ) /— 62 c,'
= o.

This factors into

(11) [a^f — Ci] [ fli 62 ^' + ( <*i ^2 + ^2 c, ) ^ + ^2 ^1 1
= o.

the first factor giving the points of contact of tangents from (o, i) and the

second factor giving the points of contact of the two tangents from (2, 3),

where (o, i) means the meet of o and I, and so on. We have now to show that

the roots of

(12) a, &2 f + (a, Cj + O2 c, ) / + 62^1 =0

are in
/,o_,). The only condition necessary is that the product of the roots

shall be c '/a,, and this is obviously so in the case of (12).

We get 7(2,3) by polarizing (12). Thus

(13) -^(2,3)
= 2 a, Z)j /i ^2 + ( ^1 C2 + a^ c^) (ti + t^) +2 bj c,

= o.

It is then also readily seen that the roots of
/,o.i)

are a set of 7,2,3). The
fact that the double points of

7,0,,) are in
7,2,3, and also that the double points

of
7(2.3, are a set of 7,o.i) says the two involutions are commutative, that is

•^(0,1) -^(2,3)
=

-^(2.3) Ao.D- Thus there are a single infinity of four-points on
the curve for which (o, 1) and (2,3) are diagonal points. If we allow this four-

point to run around the curve, (o, i) and (2, 3) will be fixed diagonal points
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and the third diagonal point will have a locus. There will be three such loci

corresponding to the three ways in which we may pair off the double lines.

This question will be considered in a subsequent paragraph of this paper.

We have proved that the points of contact of the two remaining tangents

from the meet of any two double lines lie on a line through the meet of the other

two. There are then six such lines and we shall prove they are on four

points. We shall denote by L,o,,) the line on the points of contact of tangents
from (o, i), that is from the meet of the double lines o and i. The other

five lines are similarly named. It is obvious that if three lines are on a point

they must be such as
L(o,i).. L,(o,2) L(o,3)- To get these three lines we need the

double points of
/(o,i), /(0.2)

and /(o,3). We have found the roots of /(o,i)tobe

(14) a^t"
—

c,
= o.

From symmetry the roots of 7, 0,2)
are

(15) a^f — c,
= o.

Now finding the roots of 7, ,,2)
and again making use of the catalecttc sets

we find the roots of 7(o,3) to be

(16) (ai&2— Ojft,)/'
— {biC^

—
b^c\) = o.

The roots in these three involutions are given by equations with no middle

term; hence the three lines wanted are in each case on parameters t and -t.

From equation (i) we get the line joining / and -/ as the determinant

(17)

X n 4 X 1

4f,{a,t'+2bit + c,y , (aj f + 2 62 / + c^ )'

d^f ,{aif — 2 Z), / + cy , (a^ t' — 2b^t + c^Y

- o.

Expanding and removing extraneous factors and placing /'=Ci/a,

we have

(18) L(oi,)
= [ai'biCi' + a'b^c^—la^b^cfii

—2a^a^iC' -\-2 a^aJbiC^Ci

+ 4 a, 61 62* c,
— 20, 61' 62 Cj

— 2 ^2 ^1' ^2 c^ Xq

+
[
2 Z)2 («! C2 + a^ c,)] Xi

—
4 a^ bi c^ X2 = o.

If t' =
c-i/a-i we have

(19) L(o.2)
-

[

—
a^b^c^—a^b-fi^* ^2a.^b^c^c.,+2a^a^yC^—2a^a^.f^Ci

— 4 02 ^1 *^2 C2 + 2 a, 6, 62* C2 + 2 aj &, b^ c, ] x^

+ 4 aj &j C2 «!
—

[
2 &, ( a, Cj + flj c, ) ] acj

= o.
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lit' =
(5i Cj

—
^2 ^1 )/(«^i ^2

—
02^1) we have

(20) L(o,3)
= b^'Xi

—
bi'x2 = o.

If
L(o,i), L,o,2), L,o,3) are on a point the determinant of their coefficients must

vanish. The determinant may be written

bi{alcl+alcl)
—

2ai&2Ci(aiC2 +^2^1) + 2^16 [^.^(ajCi—6162) +2bfi2Ci{2afi2
—

a^b^^a^c^ +a2Ci,2a,Ci

-b 2{a\cl + alc'^ -V2a.})^C2{a^c.^+a2C^—2a.i)2Cy{ayC2
—bp^—2b})2C2{2a]3^

—a^^,2a2C2,a^C2-Va2C^

o , ij . *i

This expanded is readily seen to vanish which proves the theorem that the six

lines on the points of contact of tangents from the meets of any two double lines

form a complete four-point.

These six lines together with the four double lines form a Desargues

Configuration B. That is we have two triangles perspective from a point

and having homologous sides meeting in three collinear points.

We shall now study the four-point more in detail. The one point ob-

tained was that determined by the fines L(o,i), L(o,2) and L(o,3)-
Thus the

point is paired off with the double line o. In the same way each of the four

points is paired with a double line. Now there is reason to believe from other

considerations, that these points are in some way related to the Stahl conic N,

which is the locus of the flex lines of cubic osculants of the rational quartic.

We shall show that the four points are the polar points of the four double lines

as to the conic N.

If the quartic is written

(21) X,
=

a,- 1* + ^ bi /3 + 6 Ci f + 4 ^,- f + e.- , [i
=

I, 2, 3],

it is known that N takes the form

(22)
—

36( bcx) (cdx) +12 {ad x) (c d x) +12 {b e x)(b c x) +4 (b d x)'

+ {aexY + 4 {ab x) {dex) — 8 (adx) (b ex) =0,

where (b c x)

Cq Ci C2

and so on.

bo
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Taking the quartic as given by (i) N is

(23 )xo'[
—

4|oiii(a2C2+2&/) I |62C2(a,c,+2fe,*) | +4|62C2(aiC, +25,") | {ai't^c^l

+ 4 I o, ft, (flj C2 + 2 b^') 1 1
a, 6, C2' I +4 |a, ft, ^2 C2 1'

+
I
a,' ^2' 1'

+ 4 I a," ^2 ^2 II by CyCi'
I

— 8
I
a," ^2^2

I I
o, ft, C2'

| ]

+ Xi' [i6a2b2'c2] + x'
[ i6aift,'Ci] + x, ^2 [

—
i6ft,ft2(a^iC2 + Oz^i)]

+ Xo Xj [

— 8 6, c,
I
a, 6, (02 C2 + 2 62') I

+ 8 a, 6,
I
^2 C2 ( <ii c, +2 6,') |

+ 8 ft, c,
I
a," &2 <^2

I

— 8 a, ft, | a, ft, C2'
| ]

+ a^o:*;, [
8 ft2 Cj I a, ft, (aj C2 + 2 ft2') |

— ^a^h^
|

ft2 C2 (aiC, +2ft,") j

— 8 biCi
I
a," ft2 ^2

I

+ 8 ^2 ^2
I
^1 ^1 ^^2' I ]

=
o,

where
|
c, ft, ( Oj ^2 +2 ft,') j

=
a, ft, ( 02 C2 +2 ft2'')

—
a^ b, (a, c, +2 ft,'),

and so on.

The coordinates of the point in question are found by getting the inter-

section of any two of the three Hnes, say Ljo,,) and L(o,3). We have at once

Xo= 2 ft, ftj (c, I a, ft2
I

—
«! I fti C2

I )

(24) x,=ft,* [
2 c,| a, ft,(a2C2+2 ftj') I +2ft,'ft2|a2Ci| +a,"c2|ftiC2| +c, |a,'ft,c, |]

X2=ft2'' I
2 c, I a,ft,(a2C2 + 2 ft2') I

+2 ft,'ft2|a2<^i| +a,'C2|ft, C2I +Ci |ai"ft,c,|]

where the expressions within the bars have the same meaning as in (23).

The question now is whether this point and the double line o are pole and polar

with regard to N. To prove this we only have to find the derivative of N as

to Xi, and then as to X2, and see if the two resulting lines pass through the

point represented by (24).

(25) Da:,N s Xo [biCil o, ft, (aj C2 +2 ft2") I

—
aj ftz

j
ft2 Cj (a, c, +2 ft,*) j—

ft2 C2
I a,' ft2 C2

I

+ a2 ft2
I fli fti C2'

I ]

+ Xi [ 4 O2 bi' C2] + X2 [

— 2 a, ft, ftj C2
— 2 ^2 bi bi c,]

= o.

(26) D»2N = Xo [

—
ft, c, I a, ft, (^2^2 +2 bi') I

+a, ft, | ft2C2(a,c, +2ft,') |

+ ft, c, I
a," ftj C2

I

—
o, ft,

I
a, ft, C2'

I ]

+ Xi[
— 20, ft,ft2C2

— 202^1^2^1] + ^2 [ 4 a, fti'c,] =0.

Substituting the coordinates of the point given by (24) in (25) and (26) we
find that each of them is satisfied, and the theorem is proved.
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We have seen that there is a single infinity of four-points on the curve

for which (0,1) and (2,3) are fixed diagonal points, and we now want to find

the locus of the third diagonal point. Dr. J. R. Conner has suggested and

kindly given me the proof that the projection of the intersection of two cir-

cular cylinders touching and intersecting at right angles is a general rational

quartic. The general rational plane quartic may be considered as a projec-

tion of a space quartic with a node.

A quartic in space is the intersection of two quadric cones. Let Aj and

Bi be the vertices of two quadric cones on the curve. Choose the plane at

infinity as a plane on A, B,. This plane meets each cone in a pair of lines.

Take the absolute as a conic touching the four lines and apolar to the pair

of points A, and B,. Then the curve is the intersection of two circular cylinders

touching and intersecting at right angles*

We shall denote this space quartic with one node by the symbol S*, and

the plane rational quartic into which S* projects by R''. Now consider S*.

Take the line normal to the two cylinders at the node. The osculating planes
of the two branches through the node contain this line. There is a single

infinity of planes on this line, each of which meets S* in two points other than

the node. We have thus a quadratic involution. Its double points will be

given when the plane osculates one of the branches at the node; that is to say
the nodal parameters give the double points of the involution. That tells us

that all these planes cut out from S* quadratics apolar to the quadratic giving
the node. Projecting from a point M of space, the two tangent planes to each

cylinder from M go into the four double lines of R*, thus giving two pairs of

double lines. The involutions, which we have previously discussed, on the

meets of pairs of double lines of R* are cut out of S* by the generators of the

cylinders. Hence the double points of such an involution are given by the

generators that touch S*. It is then easy to see that the parameters of the

isolated node are apolar to the double points of each involution; that is the

Jacobian of these pairs of points gives the nodal parameters. Also it is here

obvious that the double points of one involution are a set of the other, and that

the node is in both involutions. This shows again the paring off of the double

lines by choosing a node.

The involutions on the meets of double lines of R* are the projections of

points cut out on S'* by the generators of the cylinder. We have on S* a

*Cf. Marletta: Stiidio geometrico della guartiea golba razionale. Annali di Ma. Series 3,
Vol. 8, pp. Ulff.
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system of corners of rectangles cut out by planes on A; and B,; these groups
of four points on R* are obtained from any pair of involutions, such as /,o,,)

and /(2,3)- We may remark in passing that it is obvious that the parameters
of the groups of four points of which we are speaking are a pencil of quartics,

—
precisely a syzygetic pencil, being built on a quartic and its Hessian—,as it

is easily seen from the space figure that the pencil contains three perfect

squares.

The diagonals of the rectangles intersect in a point whose locus is just

that of the third diagonal point which we started out to find. It is seen that

this locus is a line, and it is the normal to the cylinders at the node. This line

projects into a line in the plane which passes through a node and cuts out a

pair of parameters from R* harmonic to the nodal parameters. It is evident

there is only one such line for each node. We thus get three such lines, and

Professor Morley has proved that these three lines are on a point. We have

then the theorem: With each pairing of the double lines of R* we obtain groups

of four-points on R*, which have the meets of the pairs of double lines as fixed

diagonal points, and whose third diagonal point has for a locus the line on the

isolated node and meeting R* in harmonic pairs.
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§ 3. The Case with Three Flex Tangents on a Point.

It is well known that the locus of lines which meet a rational quartic

in sets of four self apolar points is a conic, g^. In particular the flex tangents

are such lines; hence the six flex tangents touch the gj conic. Now if gj

breaks up, it breaks up into two points. Then three flex tangents are on one

point and three are on the other necessarily.

First take a quartic curve referred to two flex tangents and the line

joining the two flexes:

Xa =^ at* +46/'
(i) X, = 46 ^^ + 6c/*+4i/

Xi = ^ d t + e

We now have two flex tangents on the meet of x^ and x^. If a = 2 6, and

e = 2 dwe shall have a third on that point, and the curve takes the form:

Xa = 2bt*+ ^bt*

(2) x^=4bt^+6ct'+^dt
X2 = 4^d t + 2 d

The three flexes have the parameters o, 00
,

—• i.

The cubic giving them is then

(3) t' +t =0.

The flex tangents meet the curve again, and the cubic giving the para-

meters of these three points is

(4) 2 /3 + 3 f — 3 /
— 2 =

o,

which is seen to be the cubicovariant of the flexes given by (3).
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We wish to find the cubic giving the parameters of the other three flexes.

The Jacobian of the two members of the fundamental involution gives the

sextic of flexes. Calculating the fundamental involution of (2) we have

(5) 2bt''+2ct + c = o, and

(6) c i* + 2 c t^ + 2 d t' = o.

The Jacobian of (5) and (6) is

(7) 2bt^ + {:ic + 2b)t^+6ct^ + i3C + 2d)t'+2dt=o.

The factors of (7) are

(8) t' + t = o
,
and

(9) 2 5 ^3 + 3 c f + 3 c ^ + 2 (i = o.

We shall speak of the two points on each of which are three flex tangents

as the g2 points, and the line on them as the g2 line. Now the six tangents from

one of these points is a cubic squared, say [(« /)^]^ and the six on the other is

say [(& / )3 ]^ The six tangents from any point on the gj line will be in the

pencil

[(«/)3]._X»[(M)3]> =
o, or

(10) [ (a O' + ^ ( M )M [ ( « O' — ^ ( M )M = o.

This shows that the tangents all along the gi line pair oflF into two sets of

three. In our notation the pencil of cubics is

(11) 2bt^ + 2,ct'+2,ct + 2d + \{t'+t)=o,

which is readily seen to be a set of apolar cubics.

The equation of the gj liiie is x^
—

X2 — o. Hence the parameters of

the four points in which this line meets the curve are given by

(12) bt* + 2bt^— 2dt— i = o.

At these points two of the six tangents to the curve come together. The

pairing of the tangents must be this tangent at the point with two of the

remaining four, and this same tangent with the other two; or, the tangent at
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the point taken twice with one of the four, and then the remaining three paired.

The latter is the case, as is proved by taking the Jacobian of the two members

of (11) and obtaining (12). We note too that (12) is a self-apolar quartic

which tells us again that the pencil of cubics are apolar, since they have a self-

apolar quartic for Jacobian.

The pencil of cubics has a unique apolar quartic and its Hessian is the

Jacobian of the cubics. Finding the quartic we have

(13) Q ^ b't* + 4bdt^ + 6bdt' + ^.bdt + d' =0.

The Hessian of this quartic is at once verified to be (12).

At the four points in which the g2 line meets the curve two tangents come

together and we have just seen that one other tangent is paired with this one

taken twice. There are then four such tangents. They are given by the

Steinerian of Q to which the system is apolar, for if the Hessian has a root

that is a double root of the cubic, the other root of the cubic is a root of the

Steinerian. The Steinerian of a quartic Q is known to be gj Q + X giH =0,
when g2 and g, are the invariants of Q, and H is its Hessian. But g^ of our Q
is zero, so the Steinerian is the quartic over again.

We assert further that Q is the quartic of which the system of cubics are

the first polars. Salmon tells us how to find the quartic when the cubics

are given. It is 12 H (J) + g^ J, where J is the Jacobian of the cubics, H
the Hessian of J, and ^2 the self apolarity condition of J. But

(14) ]^b^^ + 2bt^ — 2dt— d=o,

and g2
-

o, and

(15) H (J) ^ b't* + 4bdt3 + 6bdt^ + ^bdt + d' =0.

This is just Q over again.

Q is then the quartic to which the system of cubics is apolar, as well as the

quartic of which they are the first polars, and besides it is its own Steinerian, and

gives the points of contact of the four tangents which are paired with the tangents
counted twice at the points where the gj ^ine meets the curve.

Consider now the pencil of cubics. To any one of the pencil we have a

definite corresponding point /, on the curve, viz. the point with regard to which
the cubic is the polar of Q. But paired with that cubic there is a second cubic,
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and we get a point /j on the curve from it in a similar way. We have then a

quadratic involution set up on the curve. Since the two cubics come together

at the g2 points, these points correspond to the double points of the involu-

tion. We can find the quadratics giving the double points in the following

manner. The coefficients of the polarized form of Q must be proportional

to the coefficients of the pencil of cubics. We can thus determine X in terms

of /,.

Polarizing Q we have

(i6) (b't^+bd) t^+3ibdt,+bd) t'-h2,(bdt^+bd) t+bdti+d' =o.

The pencil of cubics is

(17) 2bt^ + {sc+\)t'+{3c + \)t + 2d=o,

hence

(6bd— ^b c) ti+6b d— ^cd
(18) X =

b ti + d

Since our base cubics are those at the gj points, the double points of the

involution will be given for X =
o, and X = 00

;
that is one is given by the

numerator of (18) and the other by the denominator of (18).

We now look for this pair of points on the curve. The conic on the

flexes meets the curve again in two other points q. If the fundamental in-

volution of the curve is (a t)* + X (^ /)* then

(19) g ^ («^)3(aO(M) =0.

Using the fundamental involution as given by (5) and (6) we get

(20) q = {b — c)t' — ct + (d— c) =0.

Now operating with q on the pencil of cubics we obtain

(36c— 6 b d) ti + 3cd— 6 b d

(21) X = ~
.

bti+ d
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It is to be noticed that X in (21) is just the negative of X in (18). This

shows a sort of cross working of the quartic of which the cubics are the first

polars, and the quadratic g; that is if C, is the polar cubic as to /„ and Cj
is the polar cubic as to ti, then q operating on C, gives ^2 and q operating on

Cj gives /j.

The double points of the quadratic involution are the points with regard
to which the polars of the quartic are taken to give the two base cubics of the

pencil, that is the flex cubics. Now at these double points we have a tangent
from some point on the 52 line; that is each of these belong to one of the cubics

of the pencil. We seek the relation of this cubic to the flex cubic.

The polar of (13) as to the double point b t + d gives the flex cubic

(22) t" + t = o.

We can find the cubic to which bt+d belongs by equating coefficients in the

identity

(23) 2 b t^ + {2,c+-k)t' + {2>c+'>^)t+2d^{bt+d) (a^t'+a.t+a,),

and we get

(24) {bt+d){t'+t + i) =0.

The last factor gives the pair of tangents to which bt+d belongs, and it is

seen to be the Hessian of (22).

Now the cubic /* + / = o which we have considered is special only geo-

metrically; it is one of the pencil and behaves as any other member of the

pencil. So any two of the three tangents given by (24) are the Hessian of some
cubic of the pencil. We look for the three cubics thus obtained from (24).

The factored form of (24) is

(25) (bt + d) (t
— w) (t

—
w') =0.

We assert that the three cubics, of which any two of the three tangents given by
(25) are the Hessian, are just the cubics which are the polars of the quartic Q as
to the three roots of (25). The polar of Q as to / = w is

(26) {b'w + bd) t^ — T)bdw'f--2)bdw't + bdw + d' =0.
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The Hessian of (26) is

(27) (bt ^- d) {t
— w') = o,

and our assertion is proved. That is we have a system of cubics which are the

first polars of a quartic, such that if the roots of any one be, /,, /j, t,, then the cubic

which is the polar of the quartic a^ to any one of the /'s, and is therefore one of the

pencil, has the other two t's for its Hessian.
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§ 4. The Case with Three Double Lines on a Point.

First of all we shall find the parametric equation of a quartic curve with

a syzygetic point, that is with three double lines on a point. We may choose

three points of the curve, say o, 00
,

i. Let o and 00 be the points of contact

of one double tangent, say «, = t".

Let «o be a double tangent with points of contact i and a
;
then

X, = (t—lYit—a)'.

If there is another double tangent on the meet of x^ and Xi, it is of the form

a;o + ^ ^1 = o, and we find that « =
i, and X =

4.

The fourth double tangent will be written generally, and the equation of the

curve is

x,=^{t— iy{t + iy
(1) x,=t'

Xt = (/*— 5,/ + s^y.

By transformation we can write the curve in the better form

x^ = t* + I

(2) X. = 6 /' 2(5,
'—

i)

X2 = ^fi + ^Sjt + m. [m =
]

The three double lines on a point are

X, =
O, 3 ATo + », =

o, 3 »o— », = o.

The Hessian of the three double lines is
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(3) 3 Xo' + X,' = o.

The cubicovariant of the three double lines is

(4) x^ {x^'
—

Xo') = o.

If we cut (2) by any line

(5) (^ x) = $^x + ^,Xi + eja;^
=

o,

we have a quartic in t

(6) fo ^* +4 f 2
t^ + 6 ^ 1

1' + /^ ^ 2 Sz t + m $ , + $ = o.

Now if we form the two invariants, gi and g,, of (6) we get a line conic and

a line cubic.

We shall prove that the lines to the gi conic from the syzygetic point are the

Hessian pair of the three double lines on that point; and that the three lines to

the gi cubic from the syzygetic point are the cubicovariant of the three double lines.

Writing the gi of (6) we get

(7) fo' + 3f."— 4^2f2" + Wf 0^2
= o.

Put 62=0 and we get the tangents to g^ from the syzygetic point. Changing
the result into points we have

(8) 3 X,' + X." = o.

Next writing the g^ of (6) we have

(9) f,3+^f^3_f^»f^ + (5^^ + l) f„3f^=.+2 52f,f3»+mfoflf2 = o.

Setting f 2
=

o, and changing the result into points we have as the tangents

from the syzygetic point

(10) x^ ( x^"
—

x^') =-
o,

and our theorem is proved.
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The Stahl conic N was defined in section 2 of this paper. The cubic

osculant at a point t of the quartic (2) is

Xo = T /' + I

(11) X, = 3i' + 3 ^ t

X2 = t^ + 3 -: t' + 3Sjt + S2 : + m.

Cut this cubic by two lines {u x) and (vx). Making them cut in sets of

apolar points we get the equation

(12) :«i (3^2— 3 -f') + x^is^x' + rtfz — i)
= o. .

For a given t this a line, the line of flexes of the cubic osculant at the point
T of the quartic. For a varying x we get the locus of this line, which locus is

the Stahl conic N. Its parametric equation is

^0 = 3^2 — 3^'

(13) $1
=

S2 x' + m X — I.
.

f 2
= o

Since fj = o all the flex lines of the cubic osculants pass through that

point, which is the syzygetic point. That is N is the syzygetic point counted

twice.

The cubic osculants at the points of contact of double tangents have

interesting properties. Consider the double tangent with points of contact

I and — I. The cubic osculant at t = i is

x^ = t^ + I

(14) ^1 = 3 ^' + 3 ^

X2 = t^ + 3f + 3S2t -{ S2 + m.

This curve passes through N and of course has a flex there. The flex

tangent is

(15) Xa + x^ = o. •

The cubic osculant at t = — i is

Xo = — t^ + I

(16) x, =^ St' + 3t
X2 = t^ — 3 /* +3^2^ — ^2 + m
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It also passes through N, and has then the same flex tangent as (14). Hence

the theorem: When three double lines are on a point the cubic osculants at the

two points of contact of any one of these three double lines pass through the syzy-

getic point, each having ajlex there, and both have the same flex tangent.

The three such tangents are also the three tangents tog, from the syzygetic

point.

We have seen that a line on the points of contact of the two tangents from

the meet of any two double tangents passes through the meet of the other two
double tangents. In the syzygetic case the six such lines are on the syzygetic

point, three of them being the double lines themselves. The equations of

the other three may be found by use of the catalectic sets of the fundamental

involution.

Again the Jacobians of the factors of the fundamental involution give

the nodes, and thus we can get the equation of the lines to the nodes from the

syzygetic point.

We have then four sets of three lines on the syzygetic point, viz..

The three double lines

Xi =
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We have already seen that the second set is the cubicovariant of the first

set. We say furthermore that the lines marked (A) are harmonic, because it is

readily seen that they are of the form

{<x x) =0, (Prv) =
o,( '^ x) + X (i^ x) =o,(ax) — X(^x) =0.

The same is true of those marked (B), and of those marked (C).

In conclusion we may add that the study of the syzygetic case of the

rational quartic is the same as that.of a conic and four points such that conies

on them cut out a syzygetic pencil from the given conic. For if we call the

nodes do,di, dj, and the syzygetic point N, and then invert the quartic into a

conic a by the transformation
j,-

=
i/xf, the four points all behave alike.

The double lines become conies which touch the conic a twice. Three of

these meet at N. The conic on d^, di, d^^, and bitangent to a would corres-

pond to the fourth double line. We have four points dg, d!„ d-^, N, such that

conies on them cut out a syzygetic pencil from a, that is such that three con-

ies can be drawn on them bitangent to a.

Johns Hopkins University, April 1911.
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