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PEEFACE 

rilHE  purpose  of  the  present  treatise  is  to  give  a  brief  account 

of  the   leading   properties,  at  present  known,   of  quartic 

surfaces  which  possess  nodes  or  nodal  curves. 

A  surface  which  would  naturally  take  a  prominent  position 

in  such  a  book  is  the  Kummer  surface,  together  with  its  special 

forms,  the  tetrahedroid  and  the  wave  surface,  but  the  admirable 

Avork  written  by  the  late  R.  W.  H.  T.  Hudson,  entitled  Kummer's 
Quartic  Surface,  renders  unnecessary  the  inclusion  of  this  subject. 

Ruled  quartic  surfaces  have  also  been  omitted. 

For  the  convenience  of  readers,  a  brief  summary  of  all  the 

leading  results  discussed  in  this  book  has  been  prefixed  in  the 
form  of  an  Introduction. 

I  have  to  express  my  great  obligation  to  Prof  H.  F.  Baker, 

Sc.D.,  F.R.S.,  who  has  given  much  encouragement  and  valuable 

criticism.  Finally  I  feel  greatly  indebted  to  the  staff  of  the 

University  Press  for  the  way  in  which  the  printing  has  been 
carried  out. 

C.  M.  JESSOP. 

March,  1916. 
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ADDENDA 

Throughout,    the    vertices    of    the    tetrahedron    of    reference    are    denoted    by 
Ai,  Ao,  As,  A^:  see  p.  50. 

pp.  38,  45.     The  ooi  quadrics  \l/  +  2\<l>  +  \^w^=0  touch  the  surface  (f>-  =  tv^f  along 
quadri-quartics.     They  are  the  quadrics  mentioned  on  p.  59. 

CORRIGENDA 

p.  38,  line  6,  for  4?t)"'^i/'  read  w^f. 
line  9,  for  close-points  read  pinch-points, 

p.  40,  last  line  but  one,  for  be  read  be  taken  to  be. 
omit  foot-note. 

p.  76,  foot-note,  insert  fourth  edition. 



INTRODUCTION 

Ch.  I.     Quartic  surfaces  with  isolated  singular  points. 

This  chapter,  which  is  based  on  the  results  of  Cay  ley*  and 
Rohn,  gives  a  method  of  classification  of  quartic  surfaces  which 

possess  a  definite  number  of  isolated  nodes  and  no  nodal  curves. 
The  number  of  such  nodes  cannot  exceed  sixteen.  Rohn  has 

given  a  mode  of  classification  for  the  surfaces  having  more  than 

seven  nodes,  based  on  the  properties  of  a  type  of  seven-nodal  plane 
sextic  curves. 

The  equation  of  a  quartic  surface  which  has  a  node  at  the  point 

x  =  y  =  z  =  0,  will  be  of  the  form 

u^w^  +  2U3W  +  U4,  =  0, 

where  u^  =  0,  U3  =  0,  M4  =  0  are  cones  whose  vertex  is  this  point. 
The  tangent  cone  to  the  quartic  whose  vertex  is  the  point  is 

therefore 

ii-2Ui  —  u.^  =  0. 

The  section  of  this  cone  by  any  plane  gives  a  plane  sextic  curve 

having  a  contact-conic  U2,  i.e.  a  conic  which  touches  the  sextic 
where  it  meets  it.  When  the  surface  has  eight  nodes  the  tangent 

cone  whose  vertex  is  any  one  of  them  will  have  seven  double  edges 

which  give  seven  nodes  on  the  plane  sextic. 
Such  sextics  are  divided  into  two  classes,  viz.  those  for  which 

there  is  an  infinite  number  of  cubics  through  the  seven  nodes,  and 

two  other  points  of  the  curve,  and  those  for  which  there  is  only 
one  such  cubic.  When  a  quartic  surface  is  such  that  it  has  eight 

nodes  consisting  of  the  common  points  of  three  quadrics,  the 

tangent  cone  from  any  node  to  the  surface  gives  rise  to  a  plane 
sextic  of  the  first  kind :    such  a  quartic  surface  is   said  to   be 

*  Recent  researches,  etc.,  Proc,  Lond,  Math.  Soc.  (1869-71 
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syzygetic  :  the  equation  of  the  surface  is  represented  by  an  equation 
of  the  form 

{a:^A,  B,  Of  =  0, 

where  A  =  0,  B-0,  C  =  0  represent  quadrics  whose  intersections 
give  the  eight  nodes. 

The  second,  or  general  kind  of  sextic,  arises  from  the  general 

type  of  eight-nodal  quartic  surface  which  is  said  to  be  asyzygetic. 

Similarly  in  the  case  of  nine-nodal  and  ten-nodal  quartic 
surfaces  we  have  two  kinds  of  plane  sextics  distinguished  as 

above,  giving  rise  to  syzygetic  and  asyzygetic  surfaces. 

For  ten-nodal  surfaces  there  are  two  varieties  of  asyzygetic 
surfaces,  one  of  which,  the  symmetroid  (see  Ch.  ix),  arises  when 

the  sextic  curve  consists  of  two  cubic  curves.  The  tangent  cone 
from  each  of  the  ten  nodes  of  this  surface  then  consists  of  two 

cubic  cones.  There  are  also  two  varieties  of  ten-nodal  syzygetic 
surfaces. 

Seven  points  may  be  taken  arbitrarily  as  nodes  of  a  quartic 

surface,  but  if  there  is  an  eighth  node  it  must  either  be  the 

eighth  point  of  intersection  of  the  quadrics  through  the  seven 

points,  or,  in  the  case  of  the  general  surface,  lie  upon  a  certain 
sextic  surface,  the  dianodal  surface,  determined  by  the  first  seven 

nodes ;  hence  it  may  not  be  taken  arbitrarily. 

When  an  eight-nodal  surface  has  a  ninth  node  the  latter  must 
lie  on  a  curve  of  the  eighteenth  order,  the  dianodal  curve. 

Plane  sextics  with  ten  nodes  and  a  contact-conic  are  divided 

into  three  classes  according  as  they  are  the  projections  of  the 

intersection  of  a  quadric  with  (1)  a  cubic  surface,  (2)  a  quartic 
surface  which  also  contains  two  generators  of  the  same  set  of  the 

quadric,  (3)  a  quintic  surface  which  also  contains  four  generators 
of  the  same  set  of  the  quadric. 

The  first  and  second  types  of  sextics  are  connected  with  eleven- 
nodal  surfaces  which  are  respectively  asyzygetic  and  syzygetic ; 
the  third  type  gives  a  symmetroid  with  eleven  nodes.  A  fourth 

surface  arises  when  the  sextic  breaks  up  into  two  lines  and  a  nodal 

quartic. 
Twelve  nodes  on  the  quartic  surface  give  rise  to  eleven  nodes 

on  the  sextic,  which  must  therefore  break  up  into  simpler  curves ; 

this  process  of  decomposition  goes  on  until  we  arrive  at  six  straight 
lines,  which  case  corresponds  to  the  sixteen-nodal  or  Kummer 
surface. 
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There  are  four  varieties  of  surfaces  with  twelve  nodes  of  which 

one  is  a  symmetroid :  there  are  only  two  varieties  of  surfaces  with 

thirteen  nodes  and  only  one  with  fourteen  nodes,  viz.  that  given 

by  the  equation 

\/xx'  +  \/yy  +  \'zz'  =  0. 

An  additional  node  arises  for  a  surface  having  this  equation, 

when  there  exists  between  the  planes  x  ...  z'  the  identity 

Ax  +  Bi/+  Cz  +  A'x  +  By  +  C'z'  =  0, 
with  the  condition 

AA'  =  BB'=CG'. 

If  another  such  relation  exists  between  the  planes  x  ...  z',  there 
is  a  sixteenth  node. 

Ch.  II.     Desmic  surfaces. 

A  surface  of  special  interest  which  possesses  nodes  and  no 

singular  curve  is  the  desmic  surface.  Three  tetrahedra  Aj,  A„,  A3 
are  said  to  form  a  desmic  system  when  an  identity  exists  of  the 
form 

cAi  +  i3X  +  7A3  =  0, 

where  A^  is  the  product  of  four  factors  linear  in  the  coordinates. 

It  is  easily  deducible  from  this  identity  that  the  tetrahedra  are 

so  related  that  every  face  of  A3  passes  through  the  intersection  of 

faces  of  Ai  and  Aoj  hence  we  have  sixteen  lines  through  each 

of  which  one  face  of  each  tetrahedron  passes.  It  is  deducible  as 

a  consequence,  that  any  pair  of  opposite  edges  of  Aj  together  with 

a  pair  of  opposite  edges  of  Ao  form  a  skew  quadrilateral ;  and  so 
for  Ai  and  A3,  A2  and  A3. 

It  also  follows  that  if  the  edges  A^A^,  ̂ 1^.3,  AiA^  of  Ai  meet 

the  respective  edges  of  A^  in  LL',  MM',  NN' ;  then  A^,  L,  Ao,  L' 

are  four  harmonic  points;  and  so  for  A^MA^M',  A-^NA^N'.  The 
relationship  between  the  three  tetrahedra  is  entirely  sym- 
metrical. 

Hence  we  may  construct  a  tetrahedron  desmic  to  a  given 

tetrahedron  A,  by  drawing  through  any  point  A  the  three  lines 

which  meet  the  three  pairs  of  opposite  edges  of  A,  then  if  the 

intersections  of  these  three  lines  with  the  edges  of  A  be  LL',  MM', 

NN'  respectively,  the  fourth  harmonics  to  A,  L,  L'  \  A,  M,  M'\ 
A,  N,  N'  will,  with  A,  form  a  tetrahedron  desmic  to  A. 
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The  join  of  any  vertex  of  Aj  and  any  vertex  of  Ag  passes 

through  a  vertex  of  A3:  there  are  therefore  sixteen  lines  upon 
each  of  which  one  vertex  of  each  tetrahedron  lies.  Hence  any 

two  desmic  tetrahedra  have  four  centres  of  perspective,  viz.  the 
vertices  of  the  third  tetrahedron. 

If  Ai  be  taken  as  tetrahedron  of  reference  the  identity  connect- 
ing Ai,  A2,  A3  is  given  by  the  equation 

16xy  zt 

—  (a;  +  y  +  z  + 1)  (x  +  y  —  z  -  t)  (x  —  1/  +  z  —  t)  (    x  —  y  —  z  +  t) 

-{x  +  y-Vz-t){x-\-y-z-^t){x-y  +  z-\-t){-x  +  y  +  z-\-t)  =  0. 

Closely  connected  with  the  system  of  tetrahedra  A;  is  a  second 

desmic  system  of  three  tetrahedra  Di.  They  are  afforded  by  the 
identity 

The  sixteen  lines  joining  the  vertices  of  the  A;  are  the  sixteen 
intersections  of  the  faces  of  the  Di. 

A  desmic  surface  is  such  that  a  pencil  of  such  surfaces  contains 
each  of  three  such  tetrahedra  Di  in  desmic  position.  The  surface 

has  as  nodes  the  vertices  of  the  corresponding  tetrahedra  A^; 

hence  the  sixteen  lines  joining  the  vertices  of  the  latter  tetrahedra 
lie  on  the  surface :  along  each  of  them  the  tangent  plane  to  the 

surface  is  the  same,  i.e.  the  line  is  torsal ;  the  tangent  plane  meets 
the  surface  also  in  a  conic,  and  hence  there  are  sixteen  conies  on 

the  surface  lying  in  these  tangent  planes. 

There  is  a  doubly-infinite  number  of  quadrics  through  the 

vertices  of  any  two  tetrahedra  Ai,  the  surface  is  therefore  syzy- 

getic ;  these  quadrics  meet  the  surface  in  three  singly-infinite  sets 

of  quadri-quartics ;  one  curve  of  each  set  passes  through  any  point 
of  the  surface. 

The  coordinates  of  any  point  on  the  surface  can  be  expressed 
in  terms  of  two  variables  u,  v  as  follows : 

o-i(m)  0-2(11)  cr^{u)  <t{u) 

p^  =  a;(v)'    py^^^jv)'    ̂ '^'^Av)'    ̂ ^  =  y(vV 
since  this  leads  to 

(ea  -  e,)  (xy-  +  zH')  +  (e,  -  e,)  {c,?z'  -^  yH') 

which  is  one  form  of  equation  belonging  to  the  surface. 
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The  three  systems  of  twisted  quartics  are  obtained  by  writing 

respectively 

V  =  constant,     u  —  v  =  constant,     u  +  v  =  constant. 

The  generators  of  the  preceding  doubly-infinite  set  of  quadrics 
form  a  cubic  complex  which  depends  merely  on  the  twelve  desmic 

points ;  all  the  lines  through  these  points  belong  to  the  complex. 

Any  line  of  this  complex  meets  the  surface  in  points  whose  argu- 
ments (u,  ?;)  are  respectively 

(yS  +  fi,  a),     (0  -  fji,  a),     (a  -l-  /^,  0),     (a  -  ,x,  /S). 

The  tangents  to  the  three  quadri-quartics  which  pass  through 
any  point  of  the  surface  are  bitangents  of  the  surface,  and  their 

three  other  points  of  contact  are  collinear. 

The  curves  «  =  constant,  w  =  constant  form  a  conjugate  system 

of  curves  on  the  surface  :  the  system  conjugate  to  u  +  v  =  constant 

is  3y  —  ?t  =  constant ;  the  system  conjugate  to  m  —  v  =  constant 
is  Sv  +  u  =  constant;  hence  we  derive  the  differential  equation  of 
conjugate  tangents  as 

dudui  +  Sdvdvi  =  0. 

The  points  of  any  plane  section  of  the  surface  are  divided  into 

sets  of  sixteen  points,  lying  upon  three  sets  of  four  lines  belonging 
to  the  cubic  complex,  where  each  line  contains  four  of  the  sixteen 

points;  denoting  these  twelve  lines  by  ai...a^,  h^.-.b^,  C1...C4, 
then  if  G  is  the  curve  enveloped  by  the  lines  of  the  cubic  complex 

in  the  plane,  the  points  of  contact  of  the  lines  a  lie  on  a  tangent  a 

of  C,  those  of  the  lines  6  on  a  tangent  /?,  and  those  of  the  lines  c 

on  a  tangent  7 ;  where  a,  j3,  7  are  three  concurrent  lines. 

If  p,  q,  r  are  three  lines  of  a  cubic  surface  forming  a  triangle, 

then  any  three  planes  through  p,  q,  r  respectively  meet  the  cubic 
surface  in  conies  which  lie  on  the  same  quadric ;  the  locus  of 

the  vertices  of  such  of  these  quadrics  as  are  cones  is  a  desmic 
surface. 

Ch.  III.     Quartic  surfaces  with  a  double  conic. 

The  equation  of  a  quartic  surface  with  a  nodal  conic  has  the 
form 

This  may  be  written 
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and  hence  can  be  brought  to  the  form 

where  V=0  is  a  quadric  cone,  in  five  Avays.  Each  tangent  plane 
of  the  cones  Vi  meets  the  surface  in  a  pair  of  conies.  Among  the 

conies  arising  from  any  particular  cone  Vi  there  are  eight  pairs  of 
lines ;  hence  the  surface  contains  sixteen  lines.  The  relationship 

of  these  lines  as  regards  intersection  is  the  same  as  that  of  sixteen 

lines  of  the  general  cubic  surface  obtained  by  omitting  any  of  its 

twenty-seven  lines,  ̂ j,  together  with  the  ten  lines  which  inter- 
sect p. 

The  coordinates  of  any  point  on  the  surface  can  be  expressed 
as  cubic  functions  of  two  parameters  by  the  equations 

P^i=fi(^u  ̂ .,  U  (z  =  1,2,  3,4); 

so  that  every  plane  section  of  the  surface  is  represented  by  a 
4 

member  of  the  family  of  curves  Scifj/^  =  0;  where  /i  =  0,  ...,fi=0 
1 

are  plane  cubic  curves  which  have  five  common  points;  hence  the 

surface  is  rational  and  is  represented  on  a  plane.     Each  of  these 

five  points,  the  base-points  of  the  representation,  is  the  image  of  a 
line  of  the  surface.    The  other  lines  of  the  surface  are  represented 

in  the  plane  by  the  conic  through  the  base-points  and  by  the  ten 

lines  joining  pairs  of  base-points. 
This  method  enables  us  to  determine  the  varieties  of  curves 

of  different  orders  which  can  exist  on  the  surface,  by  use  of  the 

equation 
N  =  3n  -  Sdi, 

where  iV  is  the  order  of  the  curve  on  the  surface,  n  that  of  its 

image  in  the  plane,  and  ctj  the  number  of  times  the  curve  on  the 

surface  meets  one  of  the  lines  represented  by  the  base-points.  It 
is  found  that  the  sixteen  lines  previously  mentioned  are  the  only 

lines  on  the  surface ;  the  only  conies  on  the  surface,  apart  from 
the  double  conic,  are  those  in  the  tangent  planes  of  the  cones  Vi. 

We  obtain  oo  -  twisted  cubics  on  the  surface,  and  also  oo  * 

quadri-quartics  together  with  oo  ̂   twisted  quartics  of  the  second 
species.     It  is  seen  that  the  quadrics 

■yfr  +  2\(f>  +  \Hu-  =  0 
touch   the   surface   along  quartics.     The   class  of  the   surface  is 
twelve. 
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The  surface  may  also  be  obtained  by  aid  of  any  two  given 

quadrics  Q  and  H  and  any  given  point  0,  as  follows :  the  surface 

is  the  locus  of  a  point  P  such  that  the  points  0,  P,  K,  P'  are  har- 

monic, P  and  P'  conjugate  for  H,  and  K  any  point  of  Q;  P'  also 
lies  on  the  surface. 

The  twenty-one  constants  of  the  surface  are  seen  to  arise  from 
those  of  Q  and  H,  and  the  coordinates  of  0.  This  point  is  the 
vertex  of  one  of  the  five  cones  F,: ;  the  vertices  of  the  other  four 

cones  are  the  vertices  of  the  tetrahedron  which  is  self-polar  for 
Q  and  H.  The  double  conic  is  the  intersection  of  H  with  its 

polar  plane  for  0. 

From  the  foregoing  mode  of  origin  of  the  surface  0  is  said  to 

be  a  centre  of  self-inversion  of  the  surface  with  regard  to  the 
quadric  H. 

The  surface  may  be  related  to  the  general  cubic  surface  by 

a  (1,  1)  correspondence  in  two  ways,  the  relationship  being  a 

perspective  one  in  each  case. 

The  surface  is  connected  with  the  general  quartic  curve  as 

follows :  the  tangent  cone  drawn  to  the  surface  from  any  point  P 

of  the  double  conic  is  of  the  fourth  order,  its  section  being  the 

general  quartic  curve ;  the  tangent  planes  from  P  to  the  five 

cones  Vi,  and  the  tangent  planes  to  the  surface  at  P,  meet  the 

plane  of  the  quartic  curve  in  lines  bitangent  to  this  curve. 

The  other  sixteen  bitangents  arise  from  the  planes  passing 

through  P  and  the  sixteen  lines  of  the  surface.  The  cone  whose 

vertex  is  P  and  base  a  conic  of  the  surface  meets  the  plane  of  the 

quartic  curve  in  a  conic  which  has  four-point  contact  with  the 
quartic. 

The  general  quartic  surface  with  a  double  conic  is  obtained  by 

Segre  as  the  projection  from  any  point  A  of  the  intersection  V  of 

two  quadratic  manifolds  or  varieties  P  =  0,  ̂   =  0,  in  four  dimen- 
sions, upon  any  given  hyperplane  ̂ ;j.  Among  the  varieties  of  the 

pencil  F  +  X<P  =  0  there  are  five  cones,  i.e.  members  of  the  pencil 
containing  only  four  variables  homogeneously ;  each  cone  possesses 

an  infinite  number  of  generating  planes  consisting  of  two  sets, 

and  each  generating  plane  meets  F  in  a  conic.  These  generating 

planes  are  projected  from  A  upon  *Sr  as  the  tangent  planes  of  a 
quadric  cone.  Hence  arise  the  five  cones  of  Kummer,  and  the 

conies  lying  in  their  tangent  planes. 

The  double  conic  is  obtained  as  the  projection  from  ̂   on  *S^  of 
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the  quadii-quartic  which  is  the  intersection  with  T  of  the  tangent 
hyperplane  at  A  of  the  variety  which  passes  through  A.  When  A 

lies  on  one  of  the  five  cones  of  the  pencil  i^+X<l>  =  0,  this  quadri- 
quartic  becomes  two  conies  in  planes  whose  line  of  intersection 

passes  through  A.  Hence  the  conies  are  projected  into  inter- 
secting double  lines  of  the  quartic  surface.  By  this  projective 

method  the  lines  and  conies  of  the  quartic  surface  may  be 

obtained,  as  also  its  properties  generally. 

Ch.  IV.     Quartic  surfaces  with  a  nodal  conic  and  additional 
nodes. 

A  quartic  surface  with  a  nodal  conic  may  also  have  isolated 
nodes,  but  their  number  cannot  exceed  four.  Each  such  node  is 

the  vertex  of  a  cone  of  Kummer,  and  for  every  node  the  number 

of  these  cones  is  reduced  by  unity.  There  are  two  kinds  of 
surfaces  with  two  nodes,  in  one  case  the  line  joining  the 
nodes  lies  on  the  surface,  and  in  the  other  case  it  does  not. 

Nodes  arise  when  the  base-points  of  the  representation  of  the 
surface  on  a  plane  have  certain  special  positions;  if  either  two 

base-points  coincide,  or  if  three  are  coUinear,  there  is  a  node  on 

the  surface.  If  either  a  coincidence  of  two  base-points  or  a 

collinearity  of  three  base-points  occurs  twice,  the  quartic  surface 
has  two  nodes  and  is  of  the  first  kind  just  mentioned;  if  there  is 

one  coincidence  together  with  one  collinearity,  the  quartic  surface 
is  of  the  second  kind. 

There  are  three  nodes  when  two  base-points  coincide  and  also 

two  of  three  collinear  base-points  coincide ;  finally,  when  the  join 

of  two  coincident  base-points  meets  the  join  of  two  other  coincident 

base-points  in  the  fifth  base-point,  there  are  four  nodes. 

Three  coincident  base-points  give  rise  to  a  binode,  four  coinci- 
dent base-points  give  rise  to  a  binode  of  the  second  kind,  i.e.  when 

the  line  of  intersection  of  the  tangent  planes  lies  in  the  surface, 

and  Jive  to  a  binode  of  the  third  species,  ie.  when  the  line  of 
intersection  is  a  line  of  contact  for  one  of  the  nodal  planes. 

When  four  base-points  come  into  coincidence  in  an  indeter- 
minate manner  we  have  a  ruled  surface ;  a  special  variety  occurs 

when  the  fifth  base-point  coincides  with  them  in  a  determinate 
manner. 

The  double  conic  may  be  cuspidal,  i.e.  when  the  two  tangent 

planes  to  the  surface  at  each  point  of  it  coincide ;  the  class  of  this 
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surface  is  six.  The  equation  of  the  surface  may  in  this  case 
be  reduced  to  the  form 

U-  +  x^^x^  =  0. 

The  surface  has  two  close-points  C,  C  given  by 

^1  =  ̂ 2  =  U  =0. 

If  K  be  any  point  of  CC  and  ir  the  polar  plane  of  K  for  U  =  0, 
then  if  any  line  through  K  meets  tt  in  L,  it  will  meet  the  surface 

in  four  points  P,  P';  Q,  Q'  such  that  the  four  points  K,  P,  L,  P' 
and  K,  Q,  L,  Q'  are  harmonic. 

The  double  conic  may  consist  of  two  lines ;  the  necessary 

condition  for  this  is  that  three  cubics  of  the  system  representing 

plane  sections  should  be 

au  =  0,     av  =  0,     /3u  =  0, 

where  a  =  0,  /3  =  0  are  lines,  and  w  =  0,  v  =  0  are  conies.  Either 
or  both  of  the  double  lines  may  be  cuspidal. 

Segre's  method  (Ch.  in)  affords  a  means  of  complete  classifica- 
tion of  quartic  surfaces  with  a  double  conic,  by  aid  of  the  theory 

of  elementary  factors.  We  thus  obtain  seven  types,  each  type 

leading  to  sub- types. 

There  exists  in  the  case  of  certain  of  these  sub-tjrpes  a  cone  of 

the  second  order  in  the  pencil  (F,  <t>),  i.e.  a  cone  whose  equation 
contains  only  three  variables,  say  x^,  x^,  x^;  if  the  line  Xi  =  X2  =  x^, 
which  may  be  termed  the  edge  of  this  cone,  lies  upon  F,  the  surface 

is  ruled.  If  the  point  of  projection,  A,  is  so  chosen  that  the 

tangent  hyperplane  for  A,  of  the  variety  which  passes  through  A, 

is  also  a  tangent  hyperplane  of  this  cone  of  the  second  order,  the 

double  conic  is  cuspidal. 

When  the  pencil  {F,  $)  consists  entirely  of  cones  of  the  first 

order  having  a  common  generator,  and  a  common  tangent  hyper- 
plane along  this  generator,  the  surface  is  that  of  Steiner. 

Segre's  table,  which  distinguishes  each  surface  that  can  arise, 
is  given  on  pp.  82-85. 

Ch.  V.     The  eyelids. 

When  the  double  conic  is  the  section  of  a  sphere  by  the  plane 

at  infinity,  we  obtain  the  cyclide.  The  equation  of  the  cyclide 

is  therefore  S'^  +  11  =0,  where  aS  =  0  is  a  sphere  and  U  =0  is  a 
quadric. 
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This  equation  may  be  written  in  the  form 

+  2B,x  +  2Boy  +  2B,z  +  C  -  \-}  =  0. 

The  second  member  of  the  left  side  will  give  a  cone  when  \  is 

a  root  of  the  quintic  F(k)  =  0,  where  F{X)  is  the  discriminant  of 
the  second  member.  We  thus  obtain  as  in  Ch.  iii  five  cones  Vi ; 

the  tangent  planes  of  each  cone  meet  the  surface  in  pairs  of 
circles. 

There  are  five  sets  of  bitangent  spheres  of  the  surface ;  each 

sphere  of  any  set  cuts  a  fixed  sphere  orthogonally,  and  its  centre 
lies  on  a  fixed  quadric.  The  centres  of  the  five  fixed  spheres  are 
the  vertices  of  the  cones  Vi. 

These  five  spheres  Si...  S5  are  mutually  orthogonal,  and  the 

centres  of  any  four  of  them  form  a  self-polar  tetrahedron  for  the 
fifth  sphere  and  its  corresponding  quadric  Q. 

The  equations  of  a  pair  St,  Qi  are  respectively 

+    ,  ,  ..  ,     2A^     ,     '2B,y    ,     ^B,z     ̂   2\  =  0- -^  1  +  ̂i      Ao  +  A-i      -A3  +  Xj 

X-
 

-+^^^  +  -7-^  +  1  =  0; 
oc'  y'  z 

-a.1  +  A-i       -a.2  +  A,i       .4.3  +  Xi 

where  X;  is  one  of  the  roots  of  i'^(X)  =  0. 
The  five  quadrics  Qi . . .  Q5  are  confocal ;  the  curve  of  intersection 

of  a  pair  >S'i,  Qi  is  a  focal  curve  of  the  surface. 
The  centre  of  a  sphere  Si  is  a  centre  of  self-inversion  for  the 

surface. 

Three  of  the  quadrics  Qi  are  necessarily  real  together  with 

their  corresponding  spheres :  one  is  an  ellipsoid,  one  a  hyperboloid 

of  one  sheet  and  one  a  hyperboloid  of  two  sheets. 
The  surface  is  also  obtained  as  the  locus  of  the  limiting  points 

defined  by  Si  and  the  tangent  planes  of  Qj.  Taking  Qi  as  an 

ellipsoid,  this  shows  the  shape  of  the  surface  to  be  one  of  the 
following : 

(i)     two  ovals,  one  within  the  other,  when  Si,  Qi  do  not 
intersect ; 

(ii)    two  ovals,  external  to  each  other,  or  a  tubular  surface 

similar   to    the    anchor-ring,  when    the    focal   curve 
{Si,  Qi)  consists  of  two  portions ; 

(iii)   one  oval,  when  the  focal  curve  {Si,  Qi)  consists  of  one 

portion. 

I 
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When  (X  -\-  AiY  is  a  factor  of  F(\),  one  of  the  cones  V  is 
a  pair  of  planes.  If  two  roots  of  F  (X)  are  equal,  one  of  the 

principal  spheres  is  a  point-sphere.  In  a  real  cyclide  only  one 

principal  sphere  can  be  a  point-sphere.  Real  cyclides  must  possess 
at  least  two  principal  spheres  which  are  not  point-spheres. 

If  8^  =  0, ...  8^  =  0  are  any  five  spheres,  there  is  a  quadratic 
identity  between  the  quantities  Si  ...  S^,  viz.  that  given  by  the 

equation 
0         Si    05 

81     -2ri' 

82 

7^12 

TTis 

8, 

7ri2 

TTlS 

-2r2' 

2r,^ 

=  0, 

where  Ti  ...r^  are  the  radii  of  the  spheres,  and  TTy  is  the  mutual 

power  of  the  spheres  Si  =  0,  Sj  —  0. 
By  solution  of  the  equations 

Si  =  x''+if  +  z^  +  2fiX  +  2giy  +  2hiZ  +  Ci,  etc., 

it  is  seen  that  x^  +  y^  +  z^,  x,  y,  z,  and  unity,  can  be  expressed 
as  linear  functions  of  Si  ...  S^\   hence  the  equation  of  a  cyclide 

appears  as  a  quadratic  function  of  —,...—,  which  are  themselves 
Vi  7*5 connected  by  a  quadratic  identity.  This  gives  rise  to  seven  chief 

types  of  cyclide,  by  application  of  the  theory  of  elementary  factors ; 

but  only  three  of  them  give  real  cyclides,  viz. 

[11111],     [2111],     [311], 

Each  of  these  types  and  the  corresponding  sub-types,  with  the 
exception  of  the  general  cyclide,  arise  as  the  inverses  of  quadrics. 

The  sub-type  [(11)  111]  can  be  expressed  in  terms  of  three 
variables.  It  is  the  envelope  of  spheres  which  pass  through  a 
fixed  point  and  whose  centres  lie  on  a  conic ;  contact  with  the 

envelope  here  occurs  along  a  circle.  It  has  also  two  systems  of 

bitangent  spheres,  as  in  the  general  case.  A  variable  sphere  of 

one  of  these  systems  makes  with  two  fixed  spheres  of  the  first 

system  angles  whose  sum  or  whose  difference  is  constant.  The 

inverse  of  this  cyclide  is  a  cone. 

The  cyclide  [(11)  (11)1]  is  known  as  DwpiVs  cyclide.  There 

are  two  systems  of  spheres  which  touch  the  cyclide  along  circles ; 
the  spheres  of  each  system  cut  one  of  the  principal  spheres  at 

J.  Q.  s.  h 
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a  constant  angle.     The  spheres  of  either  system  are  obtained  as 

those  which  touch  any  two  fixed  spheres  of  the  other  system  and 

have  their  centres  on  a  given  plane. 
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The  system  of  cyclides  1  — ^-  =  0  is  confocal  with  the  first 

cyclide.  Three  confocals  pass  through  any  point  and  cut  ortho- 
gonally. 

The  system  of  quadrics  V=0,  where  V=U  +  kS  —  k",  which 

touch  the  cyclide  >S''-  +  4  C/"  =  0  along  sphero-conics  are  such  that 
two  of  them  pass  through  any  point,  three  touch  any  line,  four- 
touch  any  plane.  The  four  points  of  contact  of  the  surfaces  V 

which  touch  any  given  plane  ir  are  the  centres  of  self-inversion  for 
the  section  of  the  cyclide  by  tt. 

The  locus  of  points  of  contact  of  common  tangent  planes  of 

the  cyclide  and  any  given  quadric  F  is  a  line  of  curvature  on  the 

cyclide. 
The  Cartesian  equation  of  the  system  of  confocals  is 

{A,+\)  (A,  +  \)  {A,  +  \)S'  +  4>F{X)  Q  =  0, 

where  S,  Q  have  the  same  form  as  the  Si,  Qi  when  X  is  substituted 
for  \j. 

The  confocals  to  the  given  cyclide  S^  +  4>U'=0,  where 

S  =  x^  +  2/=  +  z-  -  2X, 

may  be  obtained  as  follows :  when  >Sf  +  2X  =  0  is  a  point-sphere 

and  U  +  L"  =  0  is  a  cone,  the  locus  of  the  centres  of  these  point- 

spheres  is  a  cyclide  confocal  with  S''^  +  4>U  =  0. 

Ch.  VI.     Surfaces  with  a  double  line :    Pliicker's  surface. 

The  quartic  surface  with  a  double  line  is  cut  by  any  plane 

through  the  double  line  in  a  conic  also.  In  eight  cases  this  conic 

breaks  up  into  a  pair  of  lines,  giving  sixteen  lines  on  the  surface. 
There  is  no  other  line  on  the  surface  with  the  exception  of  the 
double  line. 

There  are  sixty-two  planes  not  passing  through  the  double 
line  each  of  which  meets  the  surface  in  a  pair  of  conies,  one  of 

whose  intersections  lies  on   the  double  line.     By  aid  of  one  of 
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these  conies  c-  the  surface  may  be  represented  on  a  plane ;  for 
through  any  point  x  of  the  surface  one  line  can  be  drawn  to 

meet  &  and  also  the  double  line,  so  that  with  each  point  of  the 
surface  one  such  line  is  associated.  This  line  is  determined  as 

the  intersection  of  two  planes,  each  of  whose  coefficients  contains 

linearly  and  homogeneously  three  parameters  ̂ i,  fa,  fs'  A  third 
equation,  arising  from  the  equation  of  the  surface,  is  that  of  a 

plane  whose  coefficients  are  quadratic  in  the  f^,  and  the  inter- 

section of  these  three  planes  is  a  point  on  the  surface ;  hence  we 

obtain  a  (1,  1)  correspondence  between  the  points  x  of  the  surface 
and  the  points  f  of  a  plane. 

There  are  nine  base-points  in  the  plane,  eight  of  which  we 
represent  by  Bi...  B^;  they  correspond  to  the  points  of  eight 

non-intersecting  lines  of  the  surface,  together  with  a  point  A 

which  corresponds  to  any  point  of  the  conic  coplanar  with  c-. 
These  nine  points  cannot  constitute  the  complete  intersection 
of  two  cubic  curves. 

To  any  plane  section  of  the  surface  there  corresponds,  in  the 

plane  of  ̂ ,  a  quartic  curve  having  a  node  at  A  and  passing  through 

the  points  Bi.  The  cubic  through  the  nine  base-points  corresponds 
to  the  double  line. 

The  plane  image  of  any  curve  of  order  M  on  the  surface  is 
a  curve  of  order  m,  where 

31  =  4^m  -  2/3  -  ta, 

/3  being  the  number  of  times  the  curve  on  the  surface  meets  the 

conic  corresponding  to  A,  and  la.  the  total  number  of  passages  of 

the  image  through  the  points  Bi. 

By  applying  Rohn's  method  to  the  surface,  using  any  point 
on  the  double  line  as  that  from  which  a  tangent  cone  is  drawn, 

it  is  easy  to  see  the  modifications  which  arise  when  isolated  nodes 
exist. 

The  section  of  the  tangent  cone,  whose  vertex  is  any  point 
of  the  double  line,  is  a  sextic  curve,  meeting  the  double  line  in 

a  quadruple  point ;  with  each  additional  node  of  the  surface  this 

curve  acquires  an  additional  node :  when  there  are  seven  nodes 
the  sextic  becomes  a  nodal  cubic,  meeting  the  double  line  in  one 

point  together  with  three  lines  through  this  point.  When  the 
surface  has  eight  nodes,  the  sextic  curve  becomes  a  conic  together 
with  four  lines  concurring  at  a  point  of  the  double  line. 

62 
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In  the  case  of  seven  nodes  there  are  three  torsal  lines  meeting 
the  double  line,  and  each  containing  two  nodes;  also  there  are 

four  tropes  meeting  in  the  seventh  node,  and  each  containing  four 

nodes.  If  there  are  eight  nodes  we  have  Plticker's  surface  which 
has  also  eight  tropes.  The  nodes  form  two  tetrahedra,  each  of 

which  is  inscribed  in  the  other.  The  nodes  lie  in  pairs  on  four 

torsal  lines  meeting  the  double  line.  Through  any  two  nodes  not 

on  the  same  torsal  line  there  pass  two  tropes.  The  tropes  can  be 

arranged  in  four  pairs  so  that  the  line  of  intersection  of  a  pair 

meets  the  double  line  in  a  pinch-point. 

Plane  sections  of  Plticker's  surface  are  represented  by  quartic 
curves  having  a  common  node  and  touching,  at  fixed  points,  four 
concurrent  lines. 

Ch.  VII.     Quartic    surfaces   containing    an   infinite   number 

of  conies :    Steiner's  surface :   the  quartic  monoid. 

The  nature  of  the  quartic  surfaces  which  contain  an  infinite 

number  of  conies  was  investigated  by  Kummer.  He  showed  the 
existence  of  the  following  classes :  surfaces  with  a  double  conic  or 

a  double  line ;  ruled  quartic  surfaces ;  the  surface  <l>^  =  aiSyB, 

where  <I>  =  0  is  a  quadric  and  a,  /3,  7,  8  coaxal  planes ;  Steiner's surface. 

To  these  surfaces  discussed  by  Kummer  must  be  added  the 
surface  whose  equation  is 

{xw  +f{y,  z,  w)Y  =  {z,  wJaY. 

The  surface  <t»*  =  a^'yh  has  two  tacnodes  at  the  intersection 
of  the  common  axis  of  the  planes  with  ̂  ;  it  is  birationally  trans- 

formable into  a  cubic  cone.  The  conies  of  the  surface  can  be 

arranged  in  sets  of  four  lying  on  the  same  quadric ;  the  quadric 

cone  whose  vertex  is  on  the  axis  of  the  planes  a ...  8,  and 
whose  base  is  any  conic  of  the  surface,  meets  the  surface  in  four 
conies. 

Steiner's  surface  is  of  the  third  class  and  has  four  tropes ;  the 
coordinates  of  any  point  of  the  surface  are  expressible  as  homo- 

geneous quadratic  functions  of  three  variables;  conversely  any 
surface,  the  coordinates  of  whose  points  are  so  expressible,  is  a 
Steiner  surface.  The  surface  has  a  triple  point,  three  double 
lines  meeting  in  the  triple  point,  and  a  node  on  each  double  line. 

A  characteristic  property  of  the  surface  is  that  its  section  by  any 
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tangent  plane  breaks  up  into  two  conies.  Every  algebraic  curve 
on  the  surface  is  of  even  order. 

The  surface  being  determined  by  the  equations 

poci  =fi  (771 ,  rjo,  773)  (i  =  1,  2,  3,  4), 

we  are  enabled  to  map  the  surface  on  the  plane  of  the  ri{. 

Any  conic  of  the  surface  is  represented  on  the  7;-plane  by 
a  straight  line,  the  pair  of  lines  representing  two  conies  in  the 

same  tangent  plane  of  the  surface  are  represented  by  the 

equations 11a 

tiL  ft 

The  surface  contains  00  "*  quartic  curves  of  the  second  species, 
which  are  represented  by  the  general  conic  in  the  plane  of  77 ; 

also  00  *  quadri-quartics  having  a  node  on  one  of  the  double  lines ; 
they  lie  on  quadrics  passing  through  two  double  lines,  and  are 

represented  by  conies  Xai)cr)irjk  =  0,  in  which  two  of  the  quantities 

ttn,  «22>  (^33  E^i's  equal. 
The  conies  apolar  to  the  four  conies  yi^  =  0  form  the  pencil 

tU^  +  \up^  =  0  ; 

the  conies  of  this  pencil  are  inscribed  in  the  same  quadrilateral, 

and  form  the  images  on  the  plane  of  77  of  the  asymptotic  lines  of 
the  surface. 

A  form  of  the  preceding  property  of  the  surface,  that  its 

coordinates  are  expressible  as  homogeneous  quadratic  functions 

of  two  variables,  is  the  following :  in  the  general  quadric  trans- 
formation 

p.ri=fi{a,,  a.,,  as,  a,), 

the  locus  of  a;  is  a  Steiner  surface  when  the  locus  of  a  is  a  plane. 

From  this  we  derive  the  fact  that  Steiner's  surface,  and  the  cubic 
polar  of  a  plane  with  reference  to  a  general  cubic  surface,  are 

reciprocal. 
Another  mode  of  origin  of  the  surface,  given  by  Sturm,  is  that 

if  a  pencil  of  surfaces  of  the  second  class  is  projectively  related 

to  the  points  of  a  line  in  such  a  way  that  the  line  meets  one 

conic  c^  of  the  system  in  a  point  corresponding  to  c^  and  another 

conic  c'^  in  a  point  corresponding  to  c'^  then  the  envelope  of  the 
tangent  cones  drawn  from  the  points  of  the  line  to  the  corresponding 
surfaces  is  a  Steiner  surface. 
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Weierstrass  and  Schroter  have  shown  that  a  Steiner  surface 

arises  as  a  locus  connected  with  a  known  theorem  for  the  quadric. 

The  theorem  is  that  if  through  any  given  point  A  of  a  quadric 
any  three  mutually  perpendicular  lines  are  drawn,  meeting  the 
quadric  again  in  L,  M,  N,  then  the  plane  LMN  meets  the  normal 
at  -4  in  a  fixed  point. 

This  theorem  may  be  generalized  as  follows :  if -4  be  joined  to 

the  vertices  of  any  triangle  self-polar  for  a  given  conic  c-  in  a  given 
plane  a,  and  the  joining  lines  meet  the  quadric  again  in  X,  M,  N, 

then  the  plane  LMN  meets  the  line  AR  m  a  fixed  point  S,  where 

R  is  the  pole  for  c"  of  the  trace  on  a  of  the  tangent  plane  to  the 
quadric  at  A. 

If  now  c"-  is  a  member  of  the  oo  ̂   conies 

T/iC^+T^oF+T^sTf  =0, 

where  17=0,  V=0,  Tr=0  are  given  conies,  we  have  a  point  8 
determined  for  each  set  of  values  of  Vi'V^'-Vs-  On  giving  these 
ratios  all  values  the  locus  of  >S  is  a  Steiner  surface;  for  it  can.be 
shown  that  if  the  coordinates  of  S  are  2/i . . .  ̂ 4,  we  have 

Vi  ■■  2/2 :  2/3 :  y4  =/i  (v)  -fi  (v)  :/.  (v)  -A  (v), 

where  the  fi  are  quadratic  functions  of  the  rji. 

Properties  of  Steiner's  surface  may  be  deduced  by  aid  of  the transformation 

^il/i  =  P  ( t  =  1,  2,  3,  4), 

applied  to  any  plane  Sa,a^v  =  0,  giving  the  cubic  surface 

yi 

which  is  the  reciprocal  of  Steiner's  surfiice. 

Steiner's  surface  is  one  example  of  a  type  of  surfaces  known  as 
monoids,  viz.  surfaces  of  the  nth  order  Avhich  have  an  (n  -  l)-fold 

point.     The  equation  of  the  quartic  monoid  may  be  written 

WUs  +  M4  =  0, 

Avhere  2/3  =  0,  ̂4  =  0  are  cones  having  their  vertices  at  the  triple 
point.  The  surface  contains  twelve  lines,  the  intersections  of 

113  =  0  and  ̂ 4  =  0.  The  surface  is  projectively  related  to  any 
plane,  e.g.  the  plane  w  =  0,  in  a  (1,  1)  manner,  except  that  every 
point  of  each  of  these  twelve  lines  is  represented  by  one  point 
only,  viz.  where  the  line  meets  the  plane  w=  0. 
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The  surface  contains  conies  in  planes  through  two  of  the 

twelve  lines,  and  twisted  cubics  on  quadric  cones  passing  through 

five  of  the  twelve  lines.  The  oo  ̂   quadric  cones  passing  through 
any  four  of  the  twelve  lines  meet  the  surface  in  quartic  curves 

having  a  node  at  the  triple  point ;  the  ao '  cubic  cones  passing 
through  any  eight  of  the  twelve  lines  meet  the  surface  in  quartic 
curves  without  double  points.  If  the  lines  corresponding  to  a 

curve  of  each  type  together  make  up  the  twelve  lines,  these  two 

curves  lie  on  one  quadric.  All  these  quartic  curves  are  quadri- 
quartics. 

Quartic  curves  of  the  second  species  arise  as  the  intersection 

with  the  surface  of  cubic  cones  having  six  of  the  twelve  lines  as 

simple  lines  and  one  of  them  as  double  line ;  there  are  5544  such 

quartic  curves  on  the  surface.  The  surface  will  have  a  line  not 

passing  through  the  triple  point  provided  that  three  of  the  twelve 
lines  are  coplanar. 

The  cases  of  the  quartic  monoid  of  special  interest  are  those 
in  which  there  are  six  nodes;  here  the  twelve  lines  coincide  in 

pairs  six  times. 
There  are  two  cases  of  such  surfaces ;  in  the  first  case  the  six 

nodes  may  have  any  positions,  this  surface  is  a  special  case  of  the 

symmetroid ;  for  the  symmetroid  being  the  result  of  eliminating 

the  Xi  fi-om  the  equations 

doi  002  uS-i  _       Boi      _  , .     T    -^   .-V    J  \ 

"■as;  +  "^35;  +  °'a;:  +  "'ai;  =  0'       <'  =  ̂'  ̂'  ̂'  *>• 

where  the  a^  are  regarded  as  point-coordinates,  the  surface  con- 
sidered is  the  special  case  in  which  one  of  the  quadrics  Si  =  0  is 

a  plane  taken  doubly.  The  tangent  cone  to  the  surface  whose 

vertex  is  one  of  the  six  nodes  breaks  up  into  two  cubic  cones.  In 

the  other  case  the  six  nodes  lie  on  a  conic  whose  plane  is  a  trope 
of  the  surface.  Each  kind  of  surface  has  the  same  number  of 

constants,  viz.  twenty-one. 

Ch.  VIII.     Rational  quartic  surfaces. 

The  quartic  surfaces  with  a  triple  point  or  with  a  double  curve 

have  been  seen  to  be  rational,  i.e.  the  coordinates  of  the  points  of 

such  a  surface  are  expressible  as  rational  functions  of  two  para- 
meters. Nother  has  shown  that  there  are  only  three  rational 

quartic  surfaces  apart  from  them.  The  first  of  these  surfaces  has 

a  tacnode,  i.e.  is  such  that  every  plane  through  the  node  meets  the 
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surface  in  a  quartic  curve  having  two  consecutive  double  points 
at  the  node.  The  coordinates  of  any  point  x  of  the  surface  are 

projectively  related  to  the  points  y  of  a  double  plane  by  the 

equations 
-  Vo  (v)  ±  Vli(?/) 

pxi  =  yi,    pXi  =  yz,    px3  =  y^,    px,=     "^  '  '   ^, 

where  %.2  (3/)  =  0  is  a  conic  and  H  (?/)  =  0  is  a  general  quartic 
curve. 

Clebsch  showed  that  the  points  y  can  be  expressed  as  rational 

functions  of  new  variables  zi  in  such  a  way  as  to  render  VO  (y) 
a  rational  function  of  the  zi,  viz.  by  equations  of  the  form 

<^yi=Mz\  (t  =  i,  2.  3), 

where  the  curves  fi  {z)  =  0  are  cubics  having  seven  points  in 
common.  The  plane  sections  of  the  surface  have  then  as  their 

images,  in  the  field  of  the  Zi,  sextic  curves  having  the  seven  points 

as  nodes  and  also  four  other  common  points ;  the  eleven  points  lie 
on  the  same  cubic. 

If  the  quartic  surface  has  the  equation 

;r,y,  + 20-4/3+74  =  0, 
we  obtain 

-f^  (y)  ±  VXl(y) 
^1  ■  X2 .  Xg .  Xi  —  y^ :  y2 :  ys :  -f  /   \   ' 

where  fl(y)  =  0  is  a  sextic  curve.  It  is  shown  that  \/n(t/)  is 
capable  of  rationalization  only  in  the  following  two  cases,  viz. 

(1)  when  O,(y)  =  0  is  a  sextic  with  a  quadruple  point;  (2)  when 

^(y)  =  0  is  a.  sextic  with  two  consecutive  triple  points. 
The  transformation  to  the  simple  plane  is  effected  by  the 

consideration  that  to  plane  sections  through  the  double  point 
there  must  correspond,  in  the  simple  plane,  curves  of  order  n  of 

the  same  genus  as  these  sections,  viz.  two,  and  intersecting  each 
other  in  two  variable  points.     This  gives  the  equations 

n^  —  2  =  Qti  +  40(2  +  . . .  +  r^a,., 

n(n  +  S)      ̂   .,  r(r  +  l) 

-^ — ^  -l  =  a,  +  Sa,+  ...+    ̂   ̂      ̂  (Xr, 

where  a^  is  the  number  of  points  the  curves  in  the  ̂ --plane  have 
in  common,  a^  the  number  of  double  points  they  have  in  common, 

and  so  on.    By  aid  of  Cremona  transformations  repeatedly  applied. 
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it  is  seen  that  these  curves  of  order  n  are  capable  of  being  replaced 

by  one  of  the  following  types  :  (1)  the  curves  d  (a^bi ...  bio),  (2)  the 

curves  Ceiai' ...  a^hib^;  i.e.  quartic  curves  with  one  common  node 
and  ten  common  points,  or  sextic  curves  with  eight  common  nodes 

and  two  common  points.  In  each  case  the  fixed  points  lie  on  one 
cubic. 

The  substitutions  py  =  C4  {z),  py  =  Cg  {z)  will  then  rationalize 

Vft  (y)  in  the  two  cases  respectively  mentioned,  and  hence  lead 

to  two  rational  quartic  surfaces. 

Ch.  IX.     Determinant  surfaces. 

The  quartic  surface  whose  equation  is  A  =  0,  where  A  is  a 
determinant  of  four  rows  whose  elements  are  linear  functions  of 

the  coordinates,  depends  upon  thirty-three  constants,  one  less  than 
the  general  quartic  surface.     Taking  as  its  equation =  0, 

it  is  seen  that  the  surface  contains  two  sets  of  sextic  curves, 
viz.  the  curves 

Px 

<lx 

rx 
Sx 

Px 
q^ 

K'
 

pr 
•  ■  ■  • •  ■  •  • 

Px 

Px 
a 

=  0, 

Poi 

P2 

T, 

A 

B 

G 

D 

=  0. 

Denoting  these  two  kinds  of  curves  by  Cg  and  k^,  it  is  found 

that  any  two  curves  of  the  same  kind  meet  in  four  points,  any 

two  curves  of  different  kinds  in  fourteen  points.  Any  two  curves 
of  different  kinds  lie  on  a  cubic  surface. 

The  surface  can  be  birationally  transformed  into  itself  by  aid 
of  the  three  sets  of  equations 

\Px     +   =  0, 
^iPx 

\Px 

'+ 

0, 

0; f^iPy  +  ̂ ipy   +  ̂ iPy"  +  ̂ iPy"  =  0, 
aW2/+   =0, 
airy+   =  0, 

oiiSy  +   =0; 
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\,P,  +  KQi  +  '^,Ri  +  \S,  =  0, 
X,Paf   =0, 

\P,+   =0, 
\P.+   =0; 

where  Pi  =  a^pi  +  a„pi'  +  oc^pi"  +  a^Pi 

III 

If  we  regard  the  \i  and  the  a^  as  point-coordinates  we  pass,  by 
aid  of  these  equations,  from  a  point  x  of  A  to  a  point  X  of  a 

surface  S,  thence  to  a  point  a  of  a  surface  1!  and  finally  to  a  point 

y  of  A. 
From  the  preceding  equations  we  deduce  that  if  x  is  any 

point  of  a  curve  Cg,  the  point  x  determines  a  trisecant  of  Cg  whose 

fourth  intersection  with  A  is  the  point  y,  which  corresponds  to  x. 
These  trisecants,  as  x  describes  Cg,  form  a  ruled  surface  of  the 

eighth  order,  whose  intersection  with  A  is  Cs  taken  triply  together 

with  a  curve  of  the  fourteenth  order,  the  locus  of  the  points  y  on 

A  corresponding  to  the  points  x  of  Cg. 

When  the  determinant  A  is  symmetrical,  i.e.  if 

p  =  q,    p"  =  r,     p"  =  s,  etc., 

the  surfaces  2  and  2'  coincide ;  and  the  quantities  Pi,  Qi,  etc.  are 
in  this  case  the  partial  derivatives  of  a  quantity  which  is  quadratic 

in  the  af,  if,  changing  the  notation,  we  represent  this  quantity  by 
Si,  the  last  set  of  equations  take  the  form 

^^i^  =  0       (1), t=i     dyi 

on  replacing  X  and  a  by  x  and  y  respectively. 

Thus  the  surface  2  is  the  Jacobian  /,  of  four  quadrics.  The 

surface  A  =  0,  where  A  is  a  symmetrical  determinant,  is  known  as 
the  symmetroid ;  if  in  the  first  set  of  preceding  equations  we 

replace  x,  \,  y  and  a  by  a,  x,  ̂   and  y  respectively,  and  express 

that  q  =  p',  etc.,  these  equations  assume  the  form 

2a,^  =  0,      2,8.p  =  0,     (i=l, 2,3,4)   (2). 
,•=1     oxj  i=i     oyj 

The  surface  A,  the  locus  of  the  points  a,  is  obtained  by 

eliminating  the  xi,  or  the  yi,  from  these  equations.  The  surface 
J  is  seen  to  be  the  locus  of  vertices  of  cones  of  the  system 

kaiSi  =  0. 1 
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The  equations  (1)  express  that  the  polar  planes  of  any  point  x 

of  J,  with  regard  to  each  of  these  quadrics  S^ ...  S^,  are  concurrent 

in  the  point  y  of  J ;  the  points  x,  y  are  said  to  be  corresponding 
points  on  J. 

The  surface  A  has  ten  nodes ;  the  tangent  cone  of  A  whose 
vertex  is  any  of  its  nodes  breaks  up  into  two  cubic  cones ,  a 

characteristic  property  of  this  surface. 

The  surface  J  has  ten  lines ;  every  point  of  a  line  of  J  is 

associated  with  the  same  point  a  of  A,  by  equations  (2),  which 
is  a  node  of  A. 

The  tangent  plane  of  J  at  any  point  P  is  the  polar  plane  of  P', 4 

the  point  corresponding  to  P,  for  the  cone  of  the  system  ̂ Ea^Si 1 

whose  vertex  is  P. 

When  X  describes  a  line  of  the  Jacobian,  its  corresponding 

point  y  describes  a  twisted  cubic ;  the  point  /S  on  the  syrametroid 

describes  a  curve  of  the  ninth  order  having  double  points  at  each 

node  of  the  symmetroid  except  the  one  which  is  connected  with 
the  locus  of  X. 

As  the  point  y  describes  the  section  of  the  Jacobian  made  by 

the  plane  ciy  =  0,  the  corresponding  locus  of  x  is  the  sextic 

dSi        dSi 

dxi  '"  oxi 

=  0, 

which  has  the  ten  lines  of  the  Jacobian  as  trisecants.  The  locus 

of  the  associated  points  a  on  the  syrametroid  is  a  curve  of  the 

fourteenth  order,  passing  three  times  through  each  node ;  that  of 

the  associated  points  /3  is  a  sextic  curve  which  passes  through  the 

ten  nodes.  To  a  plane  section  through  two  nodes  of  the  sym- 
metroid there  corresponds  a  quadri-quartic  on  the  Jacobian. 

If  the  quadrics  S^ ...  S^  have  a  common  point,  the  Jacobian 

has  a  node  and  an  additional  node  arises  on  the  symmetroid. 

Each  additional  common  point  of  *Si . . .  ̂ ^4  will  give  rise  to  a  node 
on  both  the  Jacobian  and  the  symmetroid.  If  there  are  six  such 

common  points,  the  Jacobian  becomes  the  surface  known  as 

Weddle's,  and  the  symmetroid  becomes  Kummer's  surface. 

Weddle's  surface  has  thus  the  six  points  common  to  S^  ...  S^  as 
nodes,  and  contains  twenty-five  lines,  viz.  the  fifteen  lines  joining 
the  nodes  and  the  intersections  of  the  ten  pairs  of  planes  through 
the  six  points. 
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The  line  joining  any  two  corresponding  points  P,  P'  of  the 
surface  meets  the  twisted  cubic  through  the  six  nodes  in  two 

points  L,  M  such  that  the  four  points  P,  P',  L,  M  are  harmonic. 
It  follows  that  this  cubic  is  an  asymptotic  line  of  the  surface. 

If  6^,  6^,  6,  1  be  the  coordinates  of  any  point  on  this  twisted 

cubic,  then  the  coordinates  of  the  preceding  points  P,  P'  are 
obtained  as  follows :  let  6,  (f)  denote  the  points  L,  M ;  the 

coordinates  of  P,  P'  are  given  by  the  equations 

6 

where  /(a)  =  IT  (a  —  6^,  and  6^ ...  dg  are  the  values  of  6  relating  to 1 

the  six  nodes. 

Any  two  points  6,  cb  of  the  twisted  cubic  thus  determine  two 

points  P,  P'  on  the  surface ;  any  three  points  6,  (p,  yjr  determine 
three  pairs  PP',  QQ',  RR'  of  corresponding  points  which  form  the 
vertices  of  a  complete  quadrilateral ;  any  four  points  0,  (f>,  ̂fr,  ̂  
determine  twelve  points  which  form  three  desmic  tetrahedra, 
viz. 

PP'SS\    QQ'TT,    RR'UU'. 

If  in  the  preceding  expression  of  the  points  of  the  surface  in 
terms  of  6,  cfy  we  suppose  6  to  be  constant,  i.e.  take  all  chords 

through  a  given  point  of  the  twisted  cubic,  the  resulting  locus  of 

points  of  the  surface  is  a  quintic  curve ;  these  curves  form  a  con- 
jugate system  on  the  surface.  If  the  tangent  to  the  twisted  cubic 

at  the  point  6  meets  the  surface  again  in  the  point  T,  then  the 

locus  of  points  of  contact  of  the  tangents  from  T  to  the  surface  is 
one  of  these  curves. 

The  surface,  being  defined  as  the  locus  of  vertices  of  cones 

which  pass  through  six  given  points,  is  seen  to  have  an  equation 
of  the  form 

PiiP42~  qnq^' provided  that  four  nodes  are  taken  as  vertices  of  the  tetrahedron 

of  reference,  and  p/jf,  que  are  the  coordinates  of  the  lines  joining 
any  point  of  the  surface  to  the  two  remaining  nodes. 

This  equation  expresses  that  the  lines  p,  q  meet  the  faces  of 
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the  tetrahedron  formed  by  the  four  nodes  in  two  sets  of  four 

points  which  have  the  same  anharmonic  ratio. 

It   can   be   deduced    that   a   form   of    the    equation   of    the 
surface  is 

rti6i       0362       O^sh       «4^4 

«1 
0C2 

X^ ^■4 

X, 

Suf^ 

tf^2 

^4 

cti 

^2 

«3 

04 

h h 

63 

h 

0. 

Any  point  F  of  the  surface  determines  a  closed  set  of  thirty- 
two  points  on  the  surface  as  follows:  if  P  be  joined  to  the  six 

nodes  iVj  ...N^,  then  calling  the  point  of  second  intersection  of 

PNi  with  the  surface  (Ni),  etc.,  we  thus  obtain  the  six  points 

(i\^i)  ...  (Nq);  secondly,  by  joining  such  a  point  (Ni)  to  the  nodes, 
we  obtain  five  points  of  second  intersection  {N1N2),  etc.;  there  are 

fifteen  such  points;  lastly,  by  joining  the  points  (N^N^)  to  the 

nodes,  we  obtain  the  points  (iN^jiVa^s)  which  are  only  ten  in 
number,  since 

{A\N,N,)  =  (N,N,N,\  etc. 

The  surface  may  be  shown  to  be  a  linear  projection  in  four 

dimensions,  and  therefore  projectively  related  to  a  Kummer  sur- 
face. For  the  Weddle  surface  arises  as  the  interpretation  in  three 

dimensions  of  the  twofold  of  contact  of  the  enveloping  cone  of 

a  cubic  variety  in  four  dimensions,  whose  vertex  is  any  point  of 

the  variety.  Now,  since  the  intersection  of  this  cone  with  any 

arbitrary  hyperplane  is  a  Kummer  surface,  we  are  again  led  to 
a  birational  transformation  between  the  Weddle  and  the  Kummer 

surface. 

The  coordinates  of  any  point  of  the  surface  can  be  expressed 

as  being  proportional  to  the  ratios  of  the  products  of  four  double 
theta  functions  :  viz.  the  substitutions 

a?! :  X2  •.Xi:Xi  =  Coi  ̂01  ̂3  ̂02  ̂04  '■  Ca  ̂2  ̂1  ̂3  ̂04  '■  Cos  ̂03  ̂1  ̂02  ̂04  :  C4  di  Bi  Os  ̂02 . 

Ctl  '.  Q/2 '•  (Is '•  CI4  '^^  C01C0C23C34  '.  C2C5C12C23  '■  C03C0C12C14  :  C4CgCnC34, 

Oi '.  U2  '•  O3 '.  O4  =  CqiC^Ci^Cu  '•  C2CoC]4C34 :  C03C5C23C34 :  C4C0C12C2J, 

satisfy  the  equation  of  the  surface. 

We  obtain  two  sets  of  quadri-quartics  on  the  surface ;  the  first 
set  is  given  as  the  intersection  of  two  cones  passing  through  the 
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same  four  nodes  and  having  the  other  two  nodes  as  respective 
vertices,  viz.  the  cones 

Pi'iPzi  =  '^Pi3P^2 ,    qvi  qu  =  ̂^13  ?42 ; 

the  second  set  is  given  as  the  intersection  of  the  quadrics 

P12P34  =  /^^12?34J        Pl3i>42  =  fiqi3qi2  ', 

each  of  these  curves  passes  through  four  nodes;  the  equation  of 

the  last  set,  expressed  in  terms  of  double  theta  functions,  is 

The  coordinates  of  the  fifteen  points  (iVjiVa),  etc.  are  obtained 

from  those  of  any  point  for  which  the  argument  is  u  by  the  addition 

of  one  of  the  fifteen  half-periods.  The  coordinates  of  the  point 
(Ni)  in  which  the  join  of  P  to  J.i  meets  the  surface  again  are 
found  to  be 

Col  02  ̂03  ̂4  '•  Co  60  ds  9oi  :  Co;,  ̂03  ̂02  ̂04  '■  C4  ̂4  ̂S  ̂02  • 

The  fifteen  other  points  (iVo),  etc.  and  (N^N^Ns),  etc.  are 

obtained  by  addition  of  one  of  the  fifteen  half-periods  to  the 
argument  of  ii  in  these  last  expressions. 

The  equation  of  a  plane  section  of  the  surface,  referred  to  the 
three  points  in  which  the  plane  of  section  meets  the  twisted  cubic 

through  the  six  nodes,  assumes  a  simple  form.  The  tangents  to 

the  curve  at  the  vertices  of  the  triangle  of  reference  meet  in  one 
point ;  an  invariant  of  the  curve  is  seen  to  vanish ;  the  curve 

contains  an  infinite  number  of  configurations  of  points,  each 

configuration  being  formed  by  twenty-five  points. 
Bauer  has  investigated  the  surface  whose  equation  is 

X,  -  a^/ai 

0C(^ 

Xs 

Xi 

X.2  —  bx/hz 

X., 

a\ 

fct/O 

X., 

X, 

ti/Q 

Xs 

=  0; 

Xi 

Xi 

'^•i       Cx/Cs      X^ 

X^       Clx/(f'4 

its  origin  is  as  follows :  a  point  P  is  joined  to  the  vertices  of 

a  tetrahedron  (taken  as  that  of  reference)  and  the  joining  lines 
meet  the  faces  of  another  tetrahedron  (whose  faces  are  a^  =  0, 

bx  =  0,  CjB  =  0,  dx  =  0)  in  four  points ;  if  these  latter  points  are 
coplanar,  we  obtain  as  locus  of  P  the  surface  whose  equation  has 

just  been  given. 
When  the  two  tetrahedra  are  in  perspective,  the  surface  is  the 

Hessian  of  the  general  cubic  surface  ;  it  has  ten  nodes. 
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When  the  preceding  connection  mentioned  in  the  beginning 

of  the  chapter,  between  the  points  x  and  y  which  gives  rise  to  the 
surface  A,  reduces  to  a  collineation,  we  obtain  a  surface,  discussed 

by  Schur,  whose  equation  is 

in  which  a  ...t>  are  linear  in  the  variables ;  and  the  collineation  is 

such  as  to  permute  cyclically  the  planes  a  . . .  S  and  the  planes 

o' , . .  S'.     This  surface  contains  thirty-two  lines. 
If,  in  addition,  the  faces  of  both  tetrahedra  are  subject  to 

a  collineation  which  leaves  one  face  of  each  tetrahedron  unaltered 

and  permutes  cyclically  the  other  three,  the  surface  contains  fifty- 
two  lines. 





CHAPTER   I 

QUARTIC    SURFACES    WITH    ISOLATED    SINGULAR   POINTS 

1.  The  singular  points  possessed  by  a  quartic  surface  may 

consist  either  of  a  certain  number  of  isolated  nodes  or  may  form 
double  curves. 

In  the  present  chapter  we  discuss  the  quartic  surfaces  which 

have  an  assigned  number  of  nodes,  beginning  with  those  which 
have  four  nodes,  and  give  a  definite  method  of  classification  for  all 
the  cases  in  which  the  number  of  nodes  exceeds  seven. 

The  number  of  isolated  nodes  of  a  quartic  surface  cannot 
exceed  sixteen;  for  the  class  of  a  surface  of  order  n  which  has 

h  double  points  is  n  {71  —  Vf  —  28,  since  this  is  the  number  of  points 
of  intersection  of  the  surface  and  its  first  polars  for  two  points  A 

and  B,  diminished  by  the  number  2S  of  these  intersections  arising 
from  each  double  point  (a  simple  point  on  the  polars  of  both  A 
and  B).     Hence  if  n  is  four,  h  cannot  exceed  sixteen. 

2.  Quartic  surfaces  with  four  to  seven  nodes. 

Since  the  equation  of  the  general  quartic  surface  contains  thirty- 
four  constants,  the  surface  with  four  given  nodes  should  contain 

34 -  16  =  18  constants ;  if  then  ̂   =  0,  5  =  0,  (7=  0,  2)  =  0,  £'  =  0, 
F=0  are  six  linearly  independent  quadrics  through  the  four 
nodes,  the  equation 

{a'^A,B,G,D,E,Fy~  =  0, 
containing  apparently  twenty  constants,  is  a  quartic  surface  having 
the  given  nodes. 

The  number  of  constants  is  really  eighteen,  since  there  are  two  quadratic 

relations  between  the  six  quadrics,  as  may  be  seen  by  taking  the  four  given 

points  as  vertices  of  the  tetrahedron  of  reference,  in  which  case  the  quadrics 
may  be  taken  to  be 

12)      *^l*^3j      tA/i^A^      "'3^4)      "^^^     4 )      tX'owO) 

between  which  there  exist  the  identities 

J.  Q.  S.  1 
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For  fi'^e  nodes,  taking  A...E  as  quadrics  passing  through  the 
given  nodes,  the  equation 

{alA,B,G,D,Ef  =  0, 

containing    fourteen    constants,    represents    the    general    quartic 
having  these  given  nodes. 

The   general  quartic  with   six  nodes   is   represented   by  the 

equation 

{a'^A,B,G,Df  +  pJ=0, 
where  A,  B,  G,  D  are  quadrics  through  the  six  nodes,  and  J  is  the 

Jacobian  of  the  four  quadrics.  For  this  equation  contains  ten  con- 
stants and  J  has  the  given  points  D^.-.D^  as  nodes,  moreover  J 

cannot  be  expressed  as  a  quadratic  function  oi  A,  B,  G,  D. 

The  following  properties  of  J  may  be  used  to  establish  these  results. 

The  surface  J=  0  is  the  locus  of  vertices  of  cones  of  the  system 

A+XB+ixC+vD  =  0; 

now  each  point  of  the  line  joining  any  two  double  points,  e.g.  D^D^,  is  the 

vertex  of  such  a  cone,  hence  J" contains  the  join  of  any  two  double  points; 
also  since  DiD^.-.BiDq  lie  on  ./  it  follows  that  Di  is  a  node  of  J;  similarly 

for  D<i...Di^.  Again  there  are  ten  pairs  of  planes  passing  through  the  points 
Di...Dq,  and  each  point  of  the  line  of  intersection  of  such  a  pair  of  planes 
satisfies  the  condition  of  being  the  vertex  of  a  cone  of  the  system.  Hence 

such  a  line  lies  upon  J^  which  thus  contains  15  +  10  =  25  lines.  Again,  since 
any  quadric  of  the  system  is  linearly  expressible  in  terms  of  any  four 
members  of  the  system,  it  is  so  expressible  in  terms  of  any  four  of  the 

previous  pairs  of  planes  ;  hence  if  J  were  expressible  as  a  quadratic  function 
of  A,  B,  C  and  D,  we  should  necessarily  have  a  relation  of  the  form 

J={alaa',  13^',  yy',  88')% 

in  which  we  may  take  the  planes  a,  /3,  y  to  contain  the  line  DiD2,  while  8,  8' 
do  not  contain  it,  e.g., 

a  =  {D„I)2,Ds\    a'={Di,D„De),   etc., 

while  8={DuD„D,\     8'^{D„  B^,  D^). 
Hence  since  J  contains  Z>i  B^  such  a  relation  is  impossible. 

The  general  quartic  with  seven  nodes  is  represented  by  the 

equation 

(a$J.,5,a)^  +  p2==0, 
where  A,  B,  G  are  quadrics  through  the  given  nodes  and  S  is  any 

quartic  surface  having  the  seven  nodes*. 

*  This  quartic  surface  may  also  be  expressed  in  terms  of  the  quartic  surfaces 
which  have  one  of  the  given  points  as  a  triple  point  and  the  other  six  as  double 
points;  if  Ti...Ti  are  these  surfaces,  the  required  general  quartic  surface  is 
i:aiTi  =  0,  t  =  l,...7. 
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3.     Quartic  surfaces  with  more  than  seven  nodes. 

The  equation  of  a  quartic  surface  having  a  node  at  the  point 

x  =  y  =  z  =^0  will  be  of  the  form 

ii^W'  +  ̂ u^w  +  ̂ 4  =  0, 

where  u^  =  0,  u^  =  0, 1*4  =  0  are  cones  whose  vertex  is  the  node. 

The  equation  of  the  tangent  cone  drawn  to  the  surface  from 
this  node  is 

1*2^4  —  u^  =  0. 

The  section  of  this  cone  by  any  plane,  e.g.  the  plane  w  =  0,  is 

a  sextic  curve  with  a  "  contact-conic/'  i.e.  a  conic  which  touches  it 
wherever  it  meets  it. 

If  the  surface  has  any  other  node,  the  tangent  cone  will  have 

a  double  line  passing  through  this  new  node  and  giving  rise  to  a 

node  on  this  sextic ;  we  obtain  the  different  varieties  of  quartic 

surfaces  possessing  nodes  by  consideration  of  all  special  cases  of 

sextic  curves  with  a  contact-conic*. 

It  is  to  be  noted  that  the  existence  of  a  contact-conic  U2  =  0  of 

a  sextic  implies  also  a  contact-quartic  u^  =  0^,  if  a  sextic  has  another 
contact-conic  v^  =  0,  and  hence  another  contact-quartic  Vi  =  0,  an 
identity  exists  of  the  form 

Now  by  multiplying  the  equation  of  the  surface  by  Wg  we  derive 

{u^w  +  u^y  +  u.2Hi  —  ui  =  0, 
hence  in  the  present  case 

{u.^W  +  I's)"  +  Vo,Vi  —  v-i"  =  0   (1). 
Denoting  by  Cg  the  intersection  of  the  quartic  surface  with 

the  cone  V2  =  0,  it  is  clear  that  1^2  =  0  meets  the  surface  (1)  in  the 

curve  Cg  and  in  the  four  lines  U2  =  V2  =  0;  but  Vg  meets  (1)  where 
it  meets  the  two  nodal  cubic  surfaces 

V2W  +  Us  -  -Ws  =  0, 

UqIU  +  U3  +  Vs  =  0, 

hence  in  general  Cg  must  break  up  into  two  quartic  curves,  either 

of  which  is  the  partial  intersection  of  V2  with  a  cubic  surface  which 

contains  also  two  generators  of  V2.      These  curves  are  therefore 

quadri-quarticsf.     Hence  the  surface  contains  an  infinite  number 

*  This  method  is  due  to  Eohn,  see  Die  Fldchen  vierter  Ordnung  hinsichtlich 
Hirer  Knotenpunkte  imd  ihrer  Gestaltung,  Leipzig,  1886. 

t  We  denote  by  quadri- quartic  the  type  of  twisted  quartic  through  which  an 
infinite  number  of  quadrics  pass. 

1—2 
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of  quadri-quartic  curves  which  are  projected  from  the  node  into 
quartic  curves  which  touch  the  sextic  u^Ui  —  u^=Q  at  each  point 
of  intersection*. 

Hence  if  the  curve  u,Ui  -u^  =  (i  has  more  than  one  contact- 
conic  it  has  an  infinite  number  of  contact-conies. 

4.     Nodal  sextics-f-. 

For  the  purpose  of  classification  of  nodal  quartic  surfaces 
we  discuss  various  properties  of  sextic  curves  with  a  contact-conic. 

In  the  first  place  it  may  be  seen  that  sextic  curves  with  six  nodes 

lying  on  a  conic  c^  can  have  their  equation  expressed  as  above. 

For  if  C3  =  0  is  any  cubic  through  the  six  points,  any  other  cubic 

through  them  is  of  the  form  c^  -t-  CoL  =  0  ;  and  any  sextic  through 
the  complete  intersection  of  Co  and  Cg  being 

C2C4  +  C3C3'  =  0, 
if  the  six  points  are  nodes  on  this  sextic  c^  and  c^  must  be  of  the 

form  Csif-t-CgiV,  c^  +  CzR  respectively. 
Hence  the  required  sextic  takes  the  form 

ci  +  c.,c.,A+ciB  =  0, 

i.e.  the  form  Z^^- -ciV=  0, 

and  hence  has  a  contact-conic. 

The  corresponding  quartic  surface  is  w'^V+  2wK^  +  Cg^  =  0 ;  this 
has  the  plane  w  =  0  as  a  singular  tangent  plane  or  trope,  which 
touches  the  surface  along  a  conic. 

Sextics  with  seven  nodes. 

There  are  two  different  kinds  of  seven-nodal  sextics,  viz.  that 

for  which  it  is  possible  to  find  a  pair  of  points  P,  P'  on  the  curve, 
such  that  through  the  seven  nodes  D^...D^  and  P,  P'  there  pass 
an  infinite  number  of  cubics,  and  the  one  for  which  it  is  not 

possible  ;  considering  the  former  kind,  then  if  one  such  pair  of 
points  exists  there  is  an  infinite  number  of  such  pairs ;  for  taking 

C3  and  C3'  as  two  such  cubics,  then  Cg,  the  given  sextic,  since  it 
passes  through  the  complete  intersection  of  c-^  and  c^,  has  an 
equation  of  the  form 

C3r3-f-C3T3'=0. 

*  For  such  a  point  of  intersection  P  is  the  projection  of  an  actual  intersection 
Q  of  the  quadri-quartic  and  the  curve  of  contact  of  the  tangent  cone,  and  the 
tangents  to  these  curves  at  Q  lie  in  the  tangent  plane  of  the  surface. 

+  See  Eohn,  I.e. 
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Now  C3  meets  Cg  only  in  D^ ...  Dy,  P,  P'  and  two  further  points 

Q,Q',  hence  T^  passes  through  D^...Dy  and  also  through  Q  and  Q'; 
so  that  two  and  therefore  an  infinite  number  of  cubics  pass  through 

Di ...  Dr,  Q  and  Q'.  By  varying  the  cubic  through  the  nine  points 

Di ...  Dy,  P,  P'  we  form  an  involution  of  points  Q,  Q'  on  Cg.  If  Q 
coincides  with  P,  Q'  will  coincide  with  P' ;  therefore  every  cubic 
through  the  seven  nodes  which  touches  c^  once  will  touch  it 
twice. 

Since  Fs  is  seen  to  pass  through  D^ ...  D^  and  since  only  three 

linearly  independent  cubics  pass  through  seven  points,  there  is  a 

linear  connection  between  C3,  c/,  Fg  and  F3',  hence  the  sextic  which 
has  the  property  considered  is  represented  by  an  equation  of  the 
form 

where  ̂ ,  -yjr,  ̂   are  any  three  cubics  through  the  given  nodes. 
This  class  of  sextic  always  has  a  contact-conic ;  for  if  the  sextic 

is  C6=  Cs^  —  c^'cs",  let  the  chord  joining  the  intersections  Pi,  Pj  of 

c-i  and  Cs",  apart  from  the  nodes,  be  f—0,  and  /' =  0,  /"  =  0 
similar  chords  for  C3",  C3  and  C3,  C3';  then  fcs,  f'cs,  f"c^'  all  pass 

through  the  thirteen  points  B^  ...  D^,  Pj,  Pgj.-.Pa",  and  hence 
through  three  other  fixed  points*.  Hence  we  have  a  linear 
relation  of  the  form 

where  A,  B,  G  are  definite  constants. 

Now  if        C4  =  -  i4/c3  -  Bf'c:  =  \Afc,  +  (7/'V, 

we  have  c^^  -  Wf-'c^-  +  BGf'f'c^c^'  =  0 ; 

that  is  404^  -  A^f-c,  +  C3V  {^BCf'f"  -  A'/')  =  0. 

Hence  the   conic   4<BCf'f"—AY'  =  0   touches  Cg,  viz.  at  six  of 
its    intersections    with    C4,    the    other    two    being    the    points 

This  conic  is  touched  by  /'  and  /",  hence  the  tangents  of  the 
contact-conic  are  the  chords  of  contact  of  c^  and  its  hitangent 
cubics. 

We  observe  that  in  this  case  there  is  a  doubly  infinite  number 

of  quartic  curves  c^  which  pass  through  the  seven  nodes  and  the 

six  points  of  contact  of  Cg  and  its  contact-conic. 

*  Since  all  quartics  through  thh'teen  points  which  do  not  all  lie  on  a  curve  of 
lower  degree  pass  through  three  other  fixed  points  and  hence  belong  to  a  pencil. 
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Sextics  luith  eight  or  with  nine  nodes. 

If  /=0  is  amj  sextic  with  eight  nodes  A  •••A  and  ̂   =  0, 

yfr  =  0  any  two  cubics  through  them,  the  general  sextic  with  the 

eight  given  nodes  is 

If  this  curve  has  a  ninth  node  it  either  degenerates  into  two 

cubics  through  the  nine  points  (which  are  then  the  complete 
intersection  of  two  cubics)  or  the  ninth  node  lies  on  the  curve 

J(f>  <^'  'v|^)  =  0.  This  is  of  the  ninth  degree  and  will  be  denoted 

by  Cg;   it  has  each  of  the  eight  nodes  as  a  triple  point*. 
The  curve  /=0  and  the  eight  nodes  completely  determine  Cg;  if  we  take 

any  point  P  of  intersection  of  /  and  Cg,  and  suppose  (f)  to  pass  through  P, 

then  any  sextic  with  the  eight  given  nodes  is  of  the  form  f+p(f)(f)'  =  0  where 
(f)'  does  not  pass  through  P. 

Since  P  lies  on  Cg  it  follows  from  the  equation  of  that  curve  that  the 

linear  polars  of  P  for  /,  (p  and  <^'  concur ;  but  the  first  two  are  the  tangents 
at  P  to  /  and  ̂ ,  and  the  third  cannot  pass  through  P,  hence  /  and  (p  touch 
at  P,  and  0  touches  every  sextic  with  the  eight  given  nodes  which  pass 

through  P.  Now  /and  Cg  meet  in  9x6-8x6=6  points  apart  from  the 
nodes,  hence  every  sextic  ̂ o^th  eight  nodes  is  touched  hy  six  cubics  through 
these  nodes. 

If  y  =  0  is  any  sextic  with  nine  nodes  and  <^  =  0  the  cubic 

through  them,  /+  p^^  =  0  is  the  equation  of  the  general  sextic 
with  the  given  nine  nodes.  If  there  is  a  tenth  node  it  will  be 

included  among  the  points  determined  by  the  equations 

/i      A      /a 

4>1        (f>2        ̂ 3 

The  number  of  solutions  given  by  these  equations  is  thirty- 
nine,  but  each  of  the  given  nine  nodes  occurs  as  a  triple  solution. 

Hence  the  pencil  of  sextics  f+p(}>'^=0  contains  twelve  curves 
which  have  a  tenth  node  (see  Art.  9). 

The  foregoing  result  as  to  contact-cubics  is  modified  as  follows  :  through 
any  eight  nodes  of  a  sextic  with  nine  nodes  there  pass  four  tangent  cubics ; 

through  any  eight  nodes  of  a  sextic  with  ten  nodes  there  pass  two  tangent 
cubics. 

5.     Sextics  with  ten  nodes. 

The  following  result  for  ten-nodal  sextics  is  important  for  our 

purpose:  every  plane  sextic  with  ten  nodes  and  a  contact-conic  is  the 
projection  of  a  twisted  sextic  on  a  quadric :  for  choosing  any  centre 

*  As  may  be  seen  by  taking  any  one  of  them  as  x=0,  y  =  0,  z  —  0. 

=  0. 
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of  projection  0  and  any  quadric  whose  section  by  the  polar  plane 

of  0  for  the  quadric  projects  into  the  given  contact-conic,  the 
sextic  cone  whose  base  is  the  given  sextic  meets  the  quadric  in 

a  curve  Cia  which  has  twenty-six  actual  double  points,  since  each 
node  of  the  plane  sextic  gives  rise  to  two  nodes  on  Cia,  and  each 

point  of  contact  of  the  contact-conic  and  the  sextic  is  the  projection 
of  a  point  at  which  two  branches  of  Cjo  touch  each  other.  Moreover 

Ci2  has  thirty  apparent  double  points*,  hence  the  projection  of  Ci2 
from  any  point  has  30  -h  26  =  56  nodes,  and  this  is  one  more  than 
can  be  possessed  by  a  curve  of  order  12  which  does  not  break  up 

into  simpler  curves.  Hence  Ci2  must  break  up  into  two  sextic 
curves. 

There  are  th7^ee  varieties  of  twisted  sextics  on  a  quadric : 
(1)  its  intersection  with  a  cubic  surface,  (2)  its  partial  intersection 

with  a  quartic  surface  which  also  contains  two  generators  of  the 
quadric  of  the  same  species,  (3)  its  partial  intersection  with  a 

quintic  surface  which  also  contains  four  generators  of  the  quadric 
of  the  same  species. 

The  following  result,  which  may  be  easily  proved  f,  is  of  frequent 

application:  through  every  point  P  of  space  there  pass  n{n—  1) 
double  secants  of  the  complete  curve  of  intersection  of  a  quadric 

with  any  surface  of  order  n ;  these  double  secants  form  the  inter- 
section of  a  cone  of  order  n  with  a  cone  of  order  n  —  1,  the  former 

cone  passes  through  the  2/1  intersections  of  the  polar  plane  of  P 
and  this  curve. 

Let  us  now  consider  the  plane  ten-nodal  sextic  which  is  the 
projection  of  the  first  of  these  three  varieties.  This  has  six 

apparent  double  points  and,  since  its  plane  projection  has  ten 

*  Salmon,  Geom.  of  three  dimensions  (fifth  ed.  1912),  vol.  i.  p.  356. 
+  If  F=0  is  the  surface  and  t7=0  the  quadric,  it  is  easy  to  see  that  the  section 

of  the  curve  of  intersection  by  the  polar  plane  of  P  for  JJ  is  given  by  the 
equations 

/         V  AW         \2      U 

Af/  =  0,     ̂ F-^-^+...)   +_,(AF-...)-0, 

where  AU=I.Xi'  J-U, 

and  x/  are  the  coordinates  of  P.  Relatively  to  its  plane  the  equation  of  this  curve 
is  of  the  form 

this  curve  contains  n{n~l)  nodes  which  arise  solely  from  apparent  double  points 

of  the  curve  17=0,  V=0;  also  v^=0  is  seen  to  pass  through  the  common  inter- 
sections of  V=0,  U=0,  AU=0. 
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nodes,  it  must  have  four  actual  double  points ;  by  the  last  result 

six  of  the  nodes  of  the  plane  sextic  lie  on  a  conic ;  it  is  therefore 

represented  by  an  equation  of  the  form 

KJ'-c,'V=0.  (Art.  4.) 

The  second  species  of  twisted  sextic  lies  on  a  quadric  and  a 

quartic  surface,  their  intersection  being  completed  by  two  gene- 
rators of  the  quadric.  This  curve  has  seven  apparent  double 

points*;  and  therefore,  to  complete  the  number  of  nodes  of  the 
plane  quartic,  must  have  three  actual  double  points.  Each 

generator  of  the  given  species  meets  the  curve  four  times.  There 

is  an  infinite  number  of  quartic  surfaces  passing  through  the 

sextic  and  any  two  generators  of  the  quadric.  For  any  quartic 

surface  through  five  points  of  each  generator  and  any  seventeen 

points  of  the  sextic  will  meet  the  sextic  in  8  +  17  =  25  points, 
and  therefore  contain  it  altogether:  it  will  also  contain  the  two 

generators.  Let  us  denote  the  twisted  sextic  by  Ce,  its  plane 

projection  by  c^',  and  take  any  generator  p  and  its  consecutive 
generator  as  the  pair  of  generators  just  mentioned  ;  then  the  cubic 

cone  which  contains  the  seven  double  secants  of  Cg  will  touch  Cg' 

twice  j";  hence,  varying  p,  we  obtain  an  infinite  number  of  cubics 
through  seven  nodes  of  c^  and  bitangent  to  it. 

In  the  third  type  of  twisted  sextic  Cg  is  the  partial  intersection 

of  a  quadric  and  a  quintic,  the  residual  intersection  being  formed 

by  four  generators  of  the  quadric  of  the  same  species.  Each 

generator  of  this  species  meets  the  sextic  five  times.  It  may  be 

shown  as  before  that  there  is  an  infinite  number  of  quintic  surfaces 

passing  through  the  given  sextic  and  any  four  generators  of  the 

given  species.     The  curve  Cg  has  ten  apparent  double  points. 

We  may  select  the  four  generators  as  follows :  let  p  and  p'  be  those 
generators  which  are  projected  from  the  centre  of  projection  0  into  the 

tangents  of  the  contact-conic  of  Cq  drawn  from  some  node  D  of  Cg' ;  we  then 

take  as  our  four  generators  p,  p'  and  the  generators  consecutive  to  them. 
The  line  OD  thus  meets  Cg  twice,  and  serves  as  join  of  apparent  intersections 

for  Cg,  p  and  for  Cg,  p'.  The  compound  curve  of  intersection  of  order  10  has 
twenty  apparent  double  points,  of  which  nine  are  projected  into  D,  viz.  one 

point  arising  from  Cg,  two  from  (cg,  p)  (cq,  p  +  dp),  two  from  (cg,  p')  (cg,  p'  +  dp') 
and  four  from  p  and  p'. 

Hence  the  two  cones  of  orders  4  and  5  through  the  double  secants  must 

*  After  deduction  of  five  apparent  double  points  arising  from  the  two  lines, 
t  Since  p  gives  rise  to  two  apparent  double  points  of  the  compound  curve. 



5,  6]  WITH   ISOLATED   SINGULAR   POINTS  9 

each  have  a  common  triple  edge ;  we  therefore  obtain  the  following  results : 

if  D  is  any  one  of  the  ten  nodes  there  exists  a  quartic  curve  which  has 

a  triple  point  in  D  and  passes  through  the  nine  other  nodes  and  the  points  of 

contact  of  the  tangents  drawn  from  D  to  the  contact-conic ;  also  there  exists 
a  quintic  curve  which  has  a  triple  point  in  Z),  passes  through  the  nine  other 

nodes  and  touches  the  contact-conic  where  it  is  touched  by  its  tangents 
drawn  from  D.     This  holds  for  each  node. 

6,     Quartic  surfaces  with  eight  nodes. 

Returning  to  the  sextic  curve  u^ih  —  ih"  =  0,  derived  fi-om  the 
surface  UqW^  +  2usW  +  u^  =  0,  any  quadric  through  the  node  is 

if  the  quartic  surface  has  any  other  node  which  also  lies  upon 
this  quadric,  since  this  node  also  lies  on  the  surface 

ii^w  +  Us  =  0, 

it  is  clear  that  the  curve  ^/j^  —  S^Mj  =  0  will  pass  through  the 

resulting  node  on  U2U4  —  u-,^  =  0  or  Cg. 
This  quartic  curve  passes  through  the  points  of  contact  of  Cg 

with  its  contact-conic  Mg,  and  also  through  the  nodes  of  Cg  which 
result  from  nodes  on  the  quartic  surface.  If  therefore  the  surface 

has  eight  nodes  we  have  seven  nodes  on  Cg :  to  each  quartic 

through  these  seven  nodes  and  the  points  of  contact  B^...  Bq  of 

Cg  and  U2,  there  corresponds  one  quadric  through  the  eight  nodes, 
and  vice-versa. 

Now  it  was  stated  (Art.  4)  that  plane  sextics  with  seven  nodes 

form  two  classes ;  in  the  more  general  case  there  is  a  singly 
infinite  number  of  quartic  curves  through  the  nodes  and  5i ...  B^, 

and  we  obtain  corresponding  to  this  case  a  singly  infinite  number 
of  quadrics  through  the  eight  nodes.  For  the  more  special  case 

where  there  is  a  doubly  infinite  number  of  quartic  curves  through 

the  thirteen  points  we  have  a  doubly  infinite  number  of  quadrics 

through  the  eight  nodes,  which  therefore  form  eight  associated 

points.     Such  a  surface  is  represented  by  an  equation  of  the  form 

{a\A,B,Cf  =  0. 
It  follows  that  any  quadric  through  the  eight  nodes  meets  the 

quartic  surface  in  two  quadri-quartic  curves  which  are  projected 

from  any  node  into  two  of  the  oo  -  cubics  which  pass  through  the 
seven  nodes  of  Cg. 
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These  two  classes  of  quartic  surfaces  will  be  termed  asyzygetic 

and  syzygetic  respectively*. 
The  equation  of  the  general  seven-nodal  surface  being 

F={ci^A,B,  Gy  +  p^  =  0  (Art.  2),  where  A,  B,  G  are  quadrics 
through  the  seven  nodes,  if  there  is  an  eighth  node  we  obtain, 
to  determine  it,  the  equations 

Ai^+Bi^+Gi;^  +  pti  =  ̂,     (t  =  l,  ...4); 

hence  the  eighth  node  lies  on  the  surface 

=  0. 

The  eighth  node  may  therefore  not  be  taken  arbitrarily,  as  in 
the  case  of  the  first  seven  nodes. 

1^  A,  B  are  two  quadrics  through  the  eight  nodes  and  T  any 

eight-nodal  asyzygetic  surface,  the  general  asyzygetic  surface  is 
represented  by  the  equation 

aA^  +  j3R"  +2yAB  +  2pT  =  0. 

The  surface  J  is  called  the  dianodal  surface^,  and  is  the  locus 

of  a  point  whose  polar  planes  for  A,  B,  G  and  %  are  concurrent, 

and  therefore  also  concurrent  for  every  quartic  surface  with  the 

given  seven  nodes ;  thus  if  P  is  any  point  of  the  dianodal  surface, 

all  the  quartics  through  P  have  a  common  tangent  line  thereat, 

which  touches  the  quadri-quartic  through  P  and  the  seven  nodes, 
as  is  seen  by  taking  as  the  quartic  a  doubled  quadric  through  P 
and  the  seven  nodes. 

The  dianodal  surface. 

The  dianodal  surface  contains  the  line  joining  any  two  nodes 

Di,  A;  for  if  P  be  any  point  on  this  line  then,  since  we  may  take 

the  surfaces  A,  B,  X  which  appear  in  the  equation  of  the  seven- 
nodal  quartic  to  pass  through  P,  they  will  necessarily  contain 

the  line  D^D.2,  hence  the  tangent  planes  at  P  to  A,  B,X  all  pass 

through  A  A  and  therefore  the  point  P  satisfies  the  equation  of 

*  The  general  syzj'getic  surface  is  the  envelope  of  the  quadrics  \^D  +  \E  +  F=(i, 
where  D,  E,  F  are  quadrics  through  the  eight  nodes. 

+  Cayley. 
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the  dianodal  surface.  This  surface  thus  contains  the  twenty-one 
lines  which  join  any  two  of  the  nodes  A  ...D7. 

Again  taking  S,  A  and  B  to  pass  through  any  given  seventh 
point  of  the  twisted  cubic  determined  hj  D^ ...  D^,  this  cubic  lies 

entirely  in  S  as  meeting  it  in  thirteen  points,  and  also  on  A  and  B  as 

meeting  them  in  seven  points,  hence  the  tangent  planes  at  P  to  S, 

A  and  B  will  meet  in  the  tangent  line  at  P  to  the  twisted  cubic : 

hence,  as  before,  the  point  P  lies  on  the  dianodal  surface.  This 

surface  thus  contains  the  seven  twisted  cubics  which  pass  through 

any  six  of  the  points  D^ ...  Dj. 

The  dianodal  surface  contains  thirty-five  plane  cubics  lying  on 
the  planes  which  contain  three  of  the  given  nodes ;  for  let  L  be 
the  plane  of  three  nodes  and  S  the  cubic  surface  which  passes 
through  these  three  nodes  and  has  the  four  other  nodes  as  double 

points ;  if  we  then  write  L  .  S  for  %  in  the  equation  of  the  dianodal 
surface  it  becomes 

J  (A,  B,C,L.S)  =  LJ{A,  B,  C,  S)  +  SJ(A,  B,  C,  L)  =  0, 

which  clearly  contains  the  cubic  L  =  0,  S  =  0.  This  shows  that 

the  lines  A  A)  etc.  are  simple  lines  of  the  dianodal  surface. 
The  twisted  sextic  which  is  the  locus  of  the  vertices  of  the 

cones  which  pass  through  the  seven  given  nodes,  lies  on  the 

surface ;  for  this  sextic  is  obtained  by  elimination  of  X,  /x  from 
the  equations 

Ai  +  \Bi  +  ,^C,  =  0,  (t  =  l,...4), 

which  clearly  lies  upon  J  (A,  B,  C,  2)  =  0. 

Each  of  the  seven  nodes  is  a  triple  point  of  J,  for  the  lines 

DiB.2, ...  DiDy  do  not  lie  on  the  same  quadric  cone. 

7.     Quartic  surfaces  with  nine  nodes. 

From  the  two  varieties  of  surfaces  with  eight  nodes  we  derive 

two  with  nine  nodes.     Considering  first  syzygetic  surfaces,  viz. 

aA'~  +  ...  +  2fiAB^0, 

if  this  surface  has  a  ninth  node  it  must  lie  upon  the  twisted  sextic 

Ai ...  A4 

B,...B,     =0. 
C^  ...  U4 

This  curve  is  the  locus  of  the  vertices  of  the  cones  of  the  system 
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A  +  XB  +  /i(7;  hence,  if  a  ninth  node  exist,  there  is  a  quadric  cone 

K  whose  vertex  is  Dg  which  passes  through  the  points  D^...  Dg. 

Taking  J)^  as  the  point  from  which  the  surface  is  projected  by 

a  tangent  cone  (giving  rise  to  the  curve  v^Ui  —  ui  —  0),  this  latter 
curve  must  have  eight  nodes  lying  on  a  conic,  and  must  therefore 

break  up  into  this  conic  and  a  quartic  curve.  Therefore  K^  the 

quadric  cone  whose  vertex  is  J)^,  forms  part  of  the  tangent  cone 

from  Dj,  and  touches  the  quartic  surface  along  a  twisted  quartic. 

The  equation  of  the  surface  is  therefore  of  the  form 

A^  +  pKB  =  0, 

where  yl  =  0  is  a  quadric  through  the  nine  nodes  and  5  =  0  a 
quadric  through  the  eight  associated  points  D^.-.B^.  There  is 

a  triply  infinite  number  of  nine-nodal  syzygetic  quartic  surfaces. 

Considering  next  asyzygetic  nine-nodal  surfaces,  from  the 

equation  of  the  general  eight-nodal  surface  it  is  seen  that  a 
ninth  node  must  lie  on  the  curve 

A^...  A^ 

B,...B,     =0, 

which  is  of  the  eighteenth  order,  the  dianodal  curve ;  the  ninth 

node  being  taken  arbitrarily  on  this  curve,  there  is  a  singly  infinite 

number  of  surfaces  with  the  nine  given  nodes  represented  by  the 

equation 
A^  +  pP  =  0, 

where  A  is  the  quadric  through  the  nine  nodes  and  P  any  quartic 
surface  with  these  nodes. 

The  dianodal  cu7've. 

The  dianodal  curve  lies  on  each  of  the  eight  dianodal  surfaces 

obtained  from  the  eight  given  nodes;  moreover  the  dianodal 

surfaces  corresponding  to  D^.-.D^D^  and  D^.-.D^D^  intersect  in 

the  fifteen  lines  joining  any  two  of  the  points  Dj...  Dq,  in  the 
dianodal  curve,  and  in  the  twisted  cubic  through  D^.-.D^. 

Through  Dj,  as  being  a  triple  point  on  each,  there  pass  nine 
branches  of  the  curve  of  intersection  of  the  two  dianodal  surfaces, 

but  of  these,  six  branches  arise  from  the  lines  D^Dr,...  D^ Dg  and 

the  tangent  at  Dj  to  the  cubic  Di ...  D^',  the  remaining  three 
branches  arise  from  the  dianodal  curve  which  has  therefore  a 

triple  point  in  each  of  the  eight  nodes  D^.-.D^. 
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Moreover  since  six  of  the  intersections  of  the  tangent  cubic 

cones  at  D^  to  the  two  dianodal  surfaces  lie  on  the  quadric  cone 

of  vertex  D^  and  passing  through  D2...Dq,  it  follows  that  the 

remaining  three  intersections  must  lie  in  a  plane,  hence  the 

tangents  to  the  three  branches  of  the  dianodal  curve  at  D^  are 

coplanar. 
The  dianodal  curve  is  seen  from  its  equation  to  be  the  locus 

of  a  point  whose  polar  planes  for  A,  B  and  T  are  coaxal.  In  its 

equation  we  may  take  A  to  be  the  quadric  through  the  eight 

nodes  and  any  assigned  point  P,  then  B  will  not  pass  through  P, 
and  if  T  is  a  quartic  of  the  system  which  passes  through  P,  then 

if  P  is  on  the  dianodal  curve,  since  the  polar  plane  of  B  for  P 

cannot  pass  through  P,  it  follows  that  A  and  T  have  the  same 

tangent  plane  at  P. 

We  may  also  note  the  following  results :  (1)  the  dianodal 

curve  meets  each  of  the  lines  A-D2  twice,  apart  from  D^  and 
Do,  (2)  it  meets  each  of  the  seven  twisted  cubics  D^.-.D^,  etc. 

twice,  apart  from  the  nodes.  For  we  may  take  the  quadric 

A  and  the  quartic  T  as  passing  through  any  point  P  of  the  line 
D^D^  which  will  then  lie  on  each  of  them,  hence  we  have  at  each 

point  of  D^D.2  a  (1,  1)  correspondence  of  tangent  planes  which 

involves  two  coincidences,  say  at  the  points  Q  and  Q',  thus  both 

Q  and  Q'  satisfy  the  equation  of  the  dianodal  curve.  Next  take 
A  and  T  as  passing  through  some  assigned  point  P  of  the  cubic 
through  Dj ...  D^;  this  cubic  will  then  lie  on  each  of  these  surfaces, 

so  that  they  will  also  meet  in  a  residual  quintic  curve  which  passes 

through  the  points  D^ ...  D^.  Now  the  number  of  points  of  apparent 

intersection  of  these  curves  is  seen  to  be  seven*  and  hence  their 

actual  intersections  are  eight  in  number,  and  deducting  the  six 
points  D^ ...  Dg  we  obtain  two  as  the  number  of  their  intersections 

apart  from  the  nodes ;  at  each  of  these  points  A  and  T  touch,  and 
hence  each  point  lies  on  the  dianodal  curve. 

8,     Quartic  surfaces  with  ten  nodes. 

We  have,  as  before,  two  classes  of  irreducible  sextics  with  nine 

nodes,  viz.  according  as  the  points  of  the  curve  are  or  are  not 

conjugate  in  pairs  with  regard  to  any  seven  of  the  nine  nodes.  We 
have  also  the  sextic  arising  from  two  cubics  or  two  lines  and  a 

quartic.     We  consider  in  the  first  place  these  last  two  cases. 

*  Salmon,  Geom.  of  three  dimensions  (fifth  ed.),  vol.  i.  p.  358. 
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It  may  be  shown  that,  if  the  tangent  cone  from  one  node  of  a 

ten-nodal  quartic  surface  breaks  up  into  two  cubic  cones,  this 
will  also  occur  for  each  node.  For  let  the  tangent  cone  from  Di 

break  up  into  the  cubic  cones  V  and  V,  touching  the  surface  along 
the  curves  Cg  and  Ce  respectively,  then  Di  is  a  triple  point  on  both 

Cg  and  Ce'*,  and  A  •••  -Dio  are  ordinary  points  on  Cg  and  c^'.  Now 
the  cubic  surface  which  has  D^  and  D2  for  nodes  and  which  passes 

through  B3...D10  and  also  through  any  other  three  points  on  Cg, 

will  meet  Cg  in  6  +  2  +  8  +  3  =  19  points  and  therefore  contain  Cg ; 
it  therefore  meets  the  quartic  surface  in  another  curve  kg  which 

has  1)2  as  triple  point  and  D1D3...  Djo  as  ordinary  points.  Hence 

ke  is  projected  from   D2  by  a  cubic   cone  which  passes  through 
■^1)  -^2)  -^3  •••  -^lo- 

in the  same  manner,  by  aid  of  Cg',  we  obtain  another  sextic 
curve  ks  which  projects  from  D^  by  a  cubic  cone.  Hence  the  lines 

B^Di,  D2D3...  D.,D^^^  form  the  complete  intersection  of  two  cubic 
cones,  so  that  the  sextic  tangent  cone  to  the  quartic  surface  from 

D2  has  as  double  edges  the  complete  intersection  of  two  cubic 

cones:  it  must  therefore  break  up  into  two  cubic  cones.  Applying 
the  same  reasoning  to  each  node  it  is  seen  that  the  tangent  cone 
from  each  of  them  must  break  up  into  two  cubic  cones.  This 

surface  is  called  the  symmetroid'\. 
In  the  next  place,  when  the  sextic  splits  up  into  two  lines  and 

a  quartic  curve,  we  see  that  through  the  node  x  —  y  =  z  =  0  there 
pass  two  planes,  each  touching  the  surface  along  a  conic ;  each  is 

a  trope.     The  equation  of  the  surface  is  of  the  form 

A""  +  pxyB  =  0, 

where  A  and  B  are  any  two  quadrics. 

*  Since  any  plane  through  Dj  meets  cg  in  three  points  apart  from  Di  and 

so  for  cg'. 
t  See  chap.  ix.  It  is  seen  from  the  foregoing  that  any  cubic  cone  whose 

vertex  is  a  node  and  which  passes  through  the  nine  other  nodes,  meets  the  surface 

in  two  sextic  curves  having  the  vertex  as  triple  point  and  passing  through  the  nine 
nodes. 

We  thus  obtain  ten  sets  of  sextic  curves  on  the  surface. 

Since  the  equation  of  the  surface  may  be  written 

0  =  M-^  +  VV'^U2.F, 

where  F=w'^U2  +  'i'iou3  +  u^,     M=wu2-\-u^,     VV'  —  U2Ui-u^, 
it  follows  that  the  cubic  surfaces 

touch  F  along  the  sestics  jF=0,  pW+V'^0. 
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The  nodes  lie  on  two  conies :  the  tangent  cone  from  each  of 

the  eight  associated  nodes  breaks  up  into  a  plane  and  a  quintic 
curve  with  four  double  points. 

We  now  pass  to  irreducible  sextics,  first  those  whose  points 

are  conjugate  in  pairs  giving  syzygetic  surfaces  with  ten  nodes. 
Such  surfaces  are  represented  by  an  equation  of  the  form 

A'  +  pK,K,  =  0, 
where  K^  and  Ko  are  cones  whose  vertices  lie  on  the  quadric  A. 

Next  if  P  =  0  is  any  asyzygetic  surface  with  nine  nodes,  then 

among  the  surfaces 
A-'  +  pP  =  0, 

there  are  thirteen  which  have  a  tenth  node ;  for  such  a  node  is  an 
intersection  of  the  dianodal  surface  of  Dj  ...  DeDg  and  the  dianodal 

curve  of  Dj ...  Dg;  there  are  6  x  18  =  108  such  intersections,  but 

of  these  Di ...  Be  being  triple  points  on  both  the  surface  and  the 

curve  count  as  9  x  6  =  54  intersections,  and  the  points  Dg,  JDj,  Dg 
each  count  as  three,  also  the  two  intersections  of  the  fifteen  lines 

D^D.2,  etc.  with  the  dianodal  curve  give  thirty  points,  and  its  two 

intersections  with  the  twisted  cubic  D^ ...  D^^  give  two  more  points 
which  are  not  solutions ;  this  leaves 

108  -  54  -  9  -  30  -  2  =  13*  solutions. 

*  Of  these  thirteen  solutions  one  gives  a  symmetroid  ;  for  if  P  and  A  have  the 
equations 

where  Di  is  the  point  x  =  2/  =  2  =  0,  we  may  write  the  equation  ̂ 1^  +  pP  =  0  in  the  form 

M)2  (tj2  ̂   2pM2)  +  2W  (ti  ti  +  2pUs)  +  t^  +  2/91*4  =  0 ; 
the  sextic  curve  is  therefore 

2p(M2M4-M3^)  +  C6  =  0, 

where  c^=t-^U!^-\-t'^u<i-'i,t-^t<iU^ 
is  the  projection  of  the  curve  of  intersection  of  A  and  P.  All  these  curves  have 

as  double  points  the  projections  D.^...D^  of  D2...Dg,  and  cq  has  also  as  double 

points  those  in  which  the  generators  of  A  through  D  meet  the  plane  of  projection. 
All  these  curves  touch  cq  twice. 

Now  all  sextics  having  as  nodes  D-i  ...Dq  and  which  touch  cq  twice  must  have 

an  equation  either  of  the  form 

where  ̂ 3  is  a  cubic  through  1)2... Dg,  or  of  the  form 

ce  +  ff  03X3=0, 

where  ̂ 3,  xs  are  two  cubics  through  the  nodes  D/...Dq'  of  Cq  which  touch  it. 
But  the  first  form  is  excluded,  since  no  doubled  cubic  can  occur  in  the  pencil  of 

sextics;  and  the  second  form  shows  that  as  one  curve  of  the  pencil  we  have  two 

cubics,  i.e.  for  one  of  the  surfaces  A'^  +  pP^O  the  tangent  cone  from  Dj  breaks 
up  into  two  cubic  cones,  and  we  have  a  symmetroid. 
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9.     Quartic  surfaces  with  eleven  nodes. 

The  three  varieties  of  plane  sextics  with  ten  nodes  (Art.  5) 
lead  to  three  types  of  quartic  surface  with  eleven  nodes.  The 

equation  of  the  first  variety  was  seen  to  be  of  the  form 

u-i  —  uiK  =  0 ; 

this  sextic  arises  from  the  quartic  surface 

Kw-  4-  2^3  w  +  ui  =  0. 

The  six  nodes  which  lie  on  a  conic  are  given  by  the  equations 

w  =  0,  z<2  =  0,  Wg  =  0  ;  the  plane  w  =  0  is  a  trope. 
The  tangent  cone  drawn  to  the  surface  from  any  one  of  these 

nodes  breaks  up  into  the  plane  w  =  0  and  a  quintic  cone,  the 
tangent  cones  from  the  remaining  five  nodes  are  irreducible. 

If  P  =  0  be  a  quartic  surface  having  the  six  coplanar  points  as 
nodes  and  also  five  other  nodes,  and  A  a  quadric  passing  through 
four  of  these  last  five  nodes  and  also  the  conic  containing  the  six 
nodes,  then 

P  +  p^2  =  0 
is  a  pencil  of  quartic  surfaces  having  ten  nodes :  the  equations 

Pi 

A, 

I 

=  0 

give  forty  solutions,  but  the  given  ten  nodes  count  triply  among 

them,  leaving  ten  surfaces  of  the  pencil  having  eleven  nodes  and  of 

the  type  just  mentioned.     This  surface  may  be  called  Xlg. 
The  second  kind  of  plane  sextic  with  ten  nodes  has  an  infinite 

number  of  bitangent  cubics  through  seven  of  its  nodes  (Art.  5) ; 

the  quartic  surface  to  which  it  corresponds  must  therefore  be 

syzygetic ;  the  equation  of  the  ten-nodal  syzygetic  surface  being 

A^  +  PK1K2  =  0  (Art.  8)  it  may  be  shown  that  in  this  pencil  there 
are  twelve  surfaces  which  have  an  eleventh  node.  It  is  easy  to 
see  that  the  equation  of  such  a  surface  has  the  form 

where  K^  =  0,  iTa  =  0,  ̂ 3  =  0  are  cones,  and  such  that  the  vertex 

of  K^  lies  upon  K^  —  Ki  =  0,  etc.     This  surface  is  called  XIj, 
There  remain  two  cases  in  which  the  sextic  curve  breaks  up 

into  simpler  curves :  either  into  two  lines  and  a  nodal  quartic  or 
into  two  cubic  curves. 
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In  the  first  case  the  equation  of  the  surface  is 

^2  +  pKxy  =  0, 

where  ̂   is  a  quadric  and  K  a  cone  whose  vertex  lies  on  A.  This 
is  Xld. 

In  the  second  case  we  have  a  symmetroid,  hence 

Here  either  v^  or  v^  has  a  nodal  line,  arising  from  an  eleventh 

node  on  the  surface.  The  tangent  cone  from  this  eleventh  node 

to  the  surface  gives  a  plane  sextic  of  the  third  variety.     This  case 
is  Xla. 

10.     Quartic  surfaces  with  twelve  nodes. 

A  surface  with  twelve  nodes  gives  rise  to  a  sextic  curve  with 

eleven  nodes :  this  sextic  must  therefore  break  up  into  simpler 

curves.     The  cases  which  provide  eleven  nodes  are  the  following  i 

(1)  a  quintic  with  six  nodes,  and  a  straight  line, 

(2)  a  quartic  with  two  nodes,  and  two  straight  lines, 

(3)  two  nodal  cubics, 

(4)  a  cubic,  a  conic  and  a  straight  line, 

(5)  a  quartic  with  three  nodes,  and  a  conic. 

It  may  be  shown  that  a  plane  quintic  with  six  nodes  and 

a  contact-conic  may  be  regarded  as  the  projection  of  a  twisted 
quintic  on  a  quadric.  The  proof  is  exactly  similar  to  that  for  the 

plane  sextic  with  ten  nodes.  By  addition  of  a  generator  it  is 

easy  to  see  that  we  obtain  a  special  case  of  the  second  class  of 

twisted  sextics  on  a  quadric* ;  hence  the  quartic  surface  corre- 
sponding to  case  (1)  must  be  syzygetic.  Moreover  it  will  contain 

six  nodes  on  a  conic.  If  D^  . . .  Dg  are  the  intersections  of  the 

plane  quintic  and  the  line,  then  D^...  D^  lie  on  a  conic. 
Two  cases  occur  according  as  four  or  two  of  the  associated 

nodes  lie  on  this  plane ;  in  the  first  case  since  four  of  the 

associated  nodes  are  coplanar,  so  also  are  the  other  four,  and 

the  equation  of  the  surface  is  of  the  form 

A'-  +  pxyK  =  0; 

it  is  a  case  of  XI^.     This  surface  is  XII^. 

*  A  quartic  surface  through  three  generators  of  a  quadric  meets  it  also  in 
a  quintic ;  each  generator  of  this  set  meets  the  quintic  four  times,  hence  (Salmon, 

p.  358)  H^Z  and  therefore  h' =  &. 
J.  Q.  S.  2 
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The  surface  has  two  tropes  each  containing  six  nodes :  taking 

them  as  D^.-.D^  and  D^D-iD-, ...  D^q  it  is  clear  that  the  tangent 
cones  from  the  points  DiDi...  D^q  break  up  into  a  plane  and  a 

quintic  cone ;  the  tangent  cones  from  D^  and  D^  into  two  planes 

and  a  quartic  cone ;  the  tangent  cone  from  Dn  includes  K,  and 

therefore  breaks  up  into  a  quadric  cone  and  a  quartic  cone  with 

three  double  edges. 

When  only  two*  of  the  points  D^...  D^  are  among  the  eight 
associated  nodes,  if  e.g.  they  are  D^  and  A,  then  the  tangent  cones 

from  Ds...  De  break  up  into  a  quadric  cone  and  a  quartic  cone, 

but  this  quartic  cone  must  consist  in  part  of  the  plane  Di . . .  Dgf, 
thus  the  tangent  cone  splits  up  into  two  cubic  cones  and  we  have 

a  symmetroid  with  twelve  nodes.     This  is  XII^. 

The  second  case,  a  binodal  quartic  curve  and  two  straight  lines, 

leads  in  general  to  XIIj^,  i.e.  A^+  pxyK^O,  but  if  K  breaks  up 
into  two  planes  we  obtain  the  surface 

A^  +  pxyzw  =  0 ; 

this  is  a  twelve-nodal  surface  in  which  the  tangent  cone  from 
each  node  breaks  up  into  two  planes  and  a  quartic  cone  with  two 
double  edges.     This  surface  is  Xllg. 

The  cases  (3)  and  (4)  lead  to  the  surface  XII^.  Case  (5)  may 

lead  to  XII(j,  but  if  in  more  than  two  cases  the  tangent  cone  from 

a  node  breaks  up  into  a  quadric  cone  and  a  trinodal  quartic  cone, 

we  have  a  special  case  of  XIj.  In  this  case  euery  tangent  cone 

must  split  up  into  such  a  quadric  and  quartic  cone,  otherwise 
we  should  obtain  one  of  the  preceding  cases,  which  are  excluded. 

The  twelve  nodes  form  three  sets  of  eight  associated  points. 

11.     Quartic  surfaces  with  thirteen  nodes. 

The  plane  sextics  with  twelve  nodes  divide  themselves  into 
the  following  classes : 

(1)  three  conies, 

(2)  a  nodal  cubic,  a  conic  and  a  straight  line, 

(3)  a  trinodal  quartic  and  two  straight  lines, 

(4)  a  cubic  and  three  straight  lines. 

*  The  case  in  which  three  of  the  six  points  belong  to  the  associated  nodes 
cannot  occur. 

t  The  quadric  cone  cannot  split  up,  as  giving  two  tropes. 
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Three  conies  u,  v,  w  with  a  common  contact-conic  form  a 

degenerate  sextic  of  the  first  kind  arising  as  the  projection  of 

three  conies  Wj,  Wj,  lu^  upon  the  same  quadric.  The  cone  whose 

vertex  is  D^  which  stands  on  u  meets  this  quadric  in  the  pair 

of  conies  Ml,  w/.  Similarly  we  have  the  pair  Vj,  v/  and  w^,  w-[\ 
since  u^  and  Vj  have  two  apparent  points  of  intersection,  the  three 

conies  Wi,  Vx  and  w^  have  six  which  lie  on  a  quadric  cone. 

This  applies  also  to  the  conies 

Wi^y/w;/;     ii-[v-^w^\     u-[v{w-^\ 

hence  we  have  from  the  conies  w,  v,  w  four  new  conies  upon  which 

their  twelve  intersections  lie  by  sixes.  Hence  there  are  four 

tropes*,  and  the  surface  is  a  case  of  Xllg,  viz. 

A'^  +  pxyzw  =  0. 

The   thirteenth   node  is   one  of  the   eight   solutions  of  the 

equations 
Ai.x  =  A^.y  =  A^.z  =  Ai.w. 

The  tangent  cones  at  each  of  the  first  twelve  nodes  break  up 

in  each  case  into  two  planes  and  a  quartic  cone  with  three  double 

edges.     This  surface  is  Xllla, 

The  plane  sextic  (2)  consisting  of  a  line,  a  conic  and  a  nodal 

cubic  (all  having  a  common  contact-conic),  is  the  projection  of 
the  complete  intersection  of  a  quadric  and  a  cubic  surface  which 
have  a  line  and  a  conic  in  common.  Let  D^  be  the  node; 

DiI)it'Di2  the  intersections  of  the  line  and  cubic;  D^Di  the 

intersections  of  the  line  and  conic ;  D^. . .  Ao'  those  of  the  conic 
and  cubic. 

Considering  the  three  loci  on  the  quadric  it  is  clear,  since  the 

generator  meets  the  conic  once  and  the  cubic  twice,  while  the 

conic  and  cubic  meet  three  times,  that  there  are  five  apparent 

intersections  of  these  curves.  Let  their  projections  from  Dy^  be 

Di'Ds'Ds'Dq'D.;'  ;  then  these  five  points  lie  on  a  conic  with  Dz, 
hence  D^D^D^D^D^D^  lie  on  a  conic. 

The  cone  joining  any  point  to  the  conic  on  the  quadric  meets 
the  quadric  in  another  conic ;  by  associating  this  new  conic  with 

the  generator  and  twisted  cubic  it  is  easily  seen  that  the  points 

lie  on  a  conic. 

*  See  the  first  variety  of  surfaces  with  eleven  nodes. 
2—2 
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Hence  we  have  that 

DiDzDsDsD^D^    lie  on  a  conic,  let  a;  =  0  be  its  plane. 

D,D,D,D,D,D,o       3^  =  0     

D,D,D,DnD,,D,,    z  =  0     

It  follows  that  three  tropes  pass  through  Dj. 

Since  Dj.,.Dio  lie  on  two  conies  intersecting  in  D^  and  D2, 

a  quadric  S  through  D^ ...  Djo  has  an  equation  of  the  form 

ayii  +  yv  —  zw  =  0; 

hence  since  x  =  0,  y  =  0  are  tropes  meeting  the  surface  in  two 

conies  lying  on  *S',  the  equation  of  the  surface  has  the  form 

(xu  +  yv  —  zwf  +  ̂ xy  F  =  0. 

But  since  ̂   =  0  is  also  a  trope  it  follows  that  Y  =  zw'  —  uv ; 
hence  the  equation  of  the  surface  is 

x^u^  +  y'^iP'  +  z^W"  —  lyzvw  —  Izxivu  —  2xyuv  +  4ixyzw'  =  0. 

This  may  be  written  in  the  form 

0     z     y     u 

z     0     X     V 

y     X     0     w 

u     V     w    w' This  surface  is  XIII^. 

The  tangent  cone  from  Dj  consists  of  three  planes  and  a  cubic 

cone ;  the  cones  from  DoD^D^  of  two  planes  and  a  quartic  cone 

with  three  double  edges ;  the  cones  from  Dg . . .  As  of  a  plane,  a 

quadric  cone  and  a  cubic  cone  with  a  double  edge. 

Hence  if  the  plane  sextic  consists  of  three  lines  and  a  cubic 

we  have  XIIIj ;  if  it  consists  of  two  lines  and  a  trinodal  quartic 
we  have  Xllla  or  XIIIj. 

12.     Quartic  surfaces  with  fourteen  nodes. 

The  plane  sextic  with  thirteen  nodes  is  formed  either  by  two 
lines  and  two  conies  or  by  three  lines  and  a  nodal  cubic ;  it  will 

be  seen  that  either  leads  to  the  same  fourteen-nodal  quartic 
surface.  For  in  Xllla  the  tangent  cone  from  one  node  splits  up 
into  three  quadric  cones ;  if  there  be  another  node  one  of  these 

cones  must  consist  of  two  planes  a^  which  pass  through  the 

additional  node  D^.      Since  ayS  is  a  tangent  cone  it  will  pass 

=  0. 
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=  0, 

through  eight  associated  points  of  the  nodes  D^ ...  D^ ;  if  the 

equation  of  the  surface  is  J.-  +  pxyzw  =  0,  let  these  eight  points 
be  taken  as  the  intersections  of 

A=0,     xy  =  0,    zw  =  0\ 

then  A  =  a/3  -\-pxy  +  qzw, 

and  the  equation  of  the  surface  is 

{a^  +  pxy  +  qzwf  +  pxyzw  =  0. 

But  since  a^  is  a  pair  of  tropes  it  follows  that  p  =  —  ̂ pq,  hence 
the  surface  is,  with  a  slight  change  of  notation, 

a^x'^  +  y'^y'^  +  z^z'"^  —  ̂ yzy'z  —  Izxz'x'  —  Ixyx'y  =  0, 

or  0  z  y  x' 

z  0  X  y' 

y  X  0  z' 

X  y'  z'  0 

or  again  i^ xx'  +  "Jyy  +  "J zz  =  0. 

Also  the  pencil  of  surfaces  included  in  XIIIj,  viz. 

x-'x'^  +  f-y'^'  +  z-z'-'  -  ̂ yzy'z  -  2zxz'x  -  Ixyxy'  +  pxyzw  =  0, 

includes  the  preceding  surface.  Thus  the  addition  of  one  node  to 

Xlllg  or  to  XIIIj  leads  to  the  same  fourteen-nodal  surface.  It  is 
to  be  observed  that  the  surface  has  as  tropes  the  planes 

x  =  0,    x'  =  0,     y  =  0,     y'=0,     z  =  0,     z'=0, 

and  has  as  nodes  the  points 

(xyz),    (xy'z),    (xyz),    (x'yz),    (xy'z'),    (x'y'z),    {x'yz),    {x'y'z') 
  (1). 

together  with  the  six  points 

x  =  x  =  yy  —  zz'  =0,     y  =  y' =  zz  —  xx  =0,     z  =  z'  =  xx  —  yy'  =  0   (2). 

The  tangent  cone  from  any  one  of  the  first  eight  nodes  consists 

of  three  planes  and  a  cubic  cone  with  a  double  edge ;  the  tangent 
cone  from  either  of  the  last  six  nodes  consists  of  two  planes  and 
two  quadric  cones. 
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Surfaces  with  fifteen  or  with  sixteen  nodes. 

Between  the  six  planes  x...z'  there  exists  a  singly  infinite 
number  of  linear  identities ;  if  one  of  them  is  of  the  form 

Ax-\-By^-Gz^A'x'-^B'y'^G'z'^^      (3), 
with  the  condition 

AA'=BB'=GG\ 

then  one  condition  is  imposed  upon  the  system  of  six  planes ;  and 
if  this  condition  is  satisfied  the  point  given  by  the  equations 

Ax  =  AV,     By  =  B'y',     Gz  =  G'z' 

is  a  node  of  the  surface.  For  this  point  is  seen  to  lie  on  the 
surface,  and  at  this  point  the  differential  equation 

xdx  +x'dx     ydy'  +y'dii     zdz' +  z'dz 
wxx  vyy  N  zz 

giving  consecutive  points  on  the  tangent  plane  thereat,  becomes 

dx'     dx     dy'     dy     dz'     dz  _ 
~A  ̂ a:''^ ^ '^ W^ ~G  ̂ W^  ' 

which  vanishes  identically,  as  is  seen  by  differentiating  the 

equation  (3)  and  using  the  condition  AA'  =  BB'  =CG'.  Hence 
this  point  is  a  node  of  the  surface.  The  surface  is  therefore 
fifteen-nodal  if  this  condition  is  satisfied. 

The  sextic  cone  from  any  node  now  splits  up  into  four  planes 

and  a  quadric  cone.  There  are  ten  tropes,  viz.  the  planes  x ...  z 
and  the  four  planes 

Gz  +  Ax  +  B'y'=0,       Gz  +  A'x'  +  By    =0, 

G'z  +Ax  +  By  =0,     G'z'  +  ̂  V  +  B'y'  =  0. 

These  planes  are  seen  to  be  tropes  since,  for  instance,  the  plane 

A'x'  +  B'y'+G'z'=0 

passes  through  the  fifteenth  node,  the  points  (xyz),  (x'y'z'),  and 
through  one  of  each  of  the  three  pairs  of  nodes  (2);  it  thus 
contains  six  nodes  and  is  therefore  a  trope. 

If  a  second  linear  identity  between  the  planes  x ...  z'  exists, 
the  constants  of  which  are  connected  by  a  similar  equation,  there 

will  be  a  sixteenth  node*,  and  we  have  the  sixteen-nodal  surface 
of  Kummer. 

*  See  also  a  paper  by  the  author,  Quarterly  Journal  of  Mathematics,  1900. 
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The  surfaces  which  have  been  discussed  in  this  chapter  are  the 
following : 

Surface Number  of 
nodes 

(a-^A,  B,  G,  D,  E,  Fy- 
4> 

(a-^A,  B,  C,  D,  Ef 
5 

{a\A,B,G,Dy  +  pJ 6 

{alA,B,Cy-\.p^ 7 

{a\A,  B,  Cy 8 

{a\A,By  +  pT 8 

A'  +  pKB 9 

K  being  a  cone  whose  vertex  is  on  A 

A'  +  pP 9 

Thirteen  of  the  pencil  of  surfaces  A^  +  pP 

10 

where  P  is  any  quartic  surface  with  nine   nodes 
and  A  passes  through  them ;  one  of  these  surfaces 
is  a  symmetroid 

A^  +  pxyB 

10 

A'  +  pK,K, 

10 

where  K^  and  K2  are  cones  whose  vertices  lie  on  A 

Symmetroid  with  eleven  nodes,     XI^ 11 

Kw^  +  2wus  +  ui,     XIc 

11 

A'  +  pK,K,,     XI,, 
11 

a  case  of  preceding, 

A^  +  pKxi/,     Xla 
11 

A"^  +  pxyzw,     XIIc 
12 

A^  +  pK,K„     Xllfe, 
12 

a  case  of  preceding, 

Symmetroid  with  twelve  nodes,     XII,, 12 

A-"  4-  pKxy,     Xlla 

12 

A^  +  pxyzw 

13 

a?v?  +  yH"^  +  z'^w^  —  2yzvw  —  2zxwu  —  2xyuv  +  4!xyzw' 

13 

'^xx'  +  ̂ lyy'  +  V^r/ 
14 

The  same,  where    Ax-^By^Gz^- A'x  +  B'y'  +  G'z'  =  0, 

15 

with  the  condition     AA'  =  BB'  =  CG' 
The  same,  where  an  additional  condition  of  this  form 

exists. 

16 



CHAPTER   II 

DESMIC    SURFACES 

13.  An  interesting  type  of  quartic  surface  which  possesses 
nodes  but  not  singular  curves  is  afforded  by  desmic  surfaces. 

Desmic*  surfaces  are  such  that  a  pencil  of  such  surfaces  contains 
the  special  quartics  formed  by  three  tetrahedra.  The  equation 
of  a  desmic  surface  is 

XAi  +  //.A2  +  z'As  =  0,  where   Ai  =  11  (aj^j  +  a(x^  +  al'x^  +  afx^,  etc., 1 

and  where  an  identity  exists  of  the  form 

«Ai  +  /SAs  +  7A3  =  0. 

Such  tetrahedra  are  called  desmic.  They  are  shown  to  exist 
by  consideration  of  such  an  identity  as 

{(t?  -  y")  {f  - 1~)  +  {x^  -  f)  {y~  -  Z-)  +  {x^  -  z")  (t^  -  y^)  =  0. .  .(1 ). 
Writing  the  preceding  identity  in  the  form 

111 

it  is  clear  that  any  face  of  Aj  and  any  face  of  Ao  are  coaxal  with 

some  face  of  A..    Hence  Ao  may  be  written  in  any  one  of  the  forms 

U(C,  +  KiAi),     U{C,  +  K/Ai),     U(C,  +  KrAA     U(C,  +  KrAi). 

It  follows  that  the  edge  (^1,  A2)  of  Ai  meets  Ag  in  edges  of  the 

latter,  viz.  at  the  points  Ai  =  A2  =  Oi  =  0,  (i  =  l,  2,  3,  4),  and  two 
of  these  points  are  necessarily  distinct  since  the  faces  of  A3  are  not 

concurrent.  These  two  edges  of  Ag  do  not  intersect,  for  otherwise 

(^1,  ̂ o)  would  lie  in  a  face  of  A^.  Also  since  A2  =  11  (Cj  +  KiAi) 

it  is  clear  that  (A^,  A2)  and  (^43,  ̂ 4)  meet  opposite  edges  of  Ag, 

i.e.  (^1,  Aq)  and  {A^,  A^)  meet  the  same  pair  of  opposite  edges  of 

Ag.  Hence  any  pai?'  of  non-intersecting  edges  of  one  tetrahedron 
meet  a  pair  of  non-intersecting  edges  of  either  of  the  other  two 

*  5e(r/i6s  =  pencil.     See  Humbert,  Sur  les  surfaces  desmiques,  Liouville  (1891). 
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tetrahedra ;  also  we  obtain  siccteen  lines  through  each  of  which  a 
face  of  each  tetrahedron  passes. 

Taking  Aj  as  tetrahedron  of  reference  and  one  face  of  Ag  as 

SB  +  y  +  z  +  t  =  0,  the  identity  becomes 

xyzt  +  (x  +  y  +  z  +  t)  B.,B^B^  +  GfJ^G^d  =  0 ; 

and  the  fact  that  any  two  opposite  edges  of  Aj  meet  two  opposite 

edges  of  A.^  leads  at  once  to  the  form  of  B^,  Bj  and  B^.     Finally 
the  identity 

Idxyzt  —  (x+y  +  z  +  t){x  +  y  —  z-t)(x-y  +  z  —  t)(x  —  y  —  z+t) 

-(x  +  y  +  z-t){x  +  y-z  +  t)(x-y  +  z  +  t)(-x  +  y  +  z  +  t)  =  0 
  (2) 

shows  the  form  of  C^ ...  C4. 

The  form  obtained  for  Ao  shows  that  any  edge,  e.g.  (xy),  of  Aj 
meets  opposite  edges  of  Aj  in  two  points  harmonic  with  the  points 
(xyz),  (xyt),  hence  any  two  vertices  of  Aj  are  harmonic  with  the 

points  in  ivhich  their  join  meets  opposite  edges  of  Ag.  Hence  if  Aj 
is  given,  a  tetrahedron  Ag  desmic  with  it  is  obtained  as  follows : 

if  P  he  any  point,  draw  through  P  a  line  to  intersect  a  pair  of 

opposite  edges  of  Aj  and  let  P'  he  the  fourth  harmonic  to  P  and  the 

points  of  intersection,  also  let  P",  P'"  he  the  two  other  points  similarly 
determined,  then  the  tetrahedron  pp'p"p"'  is  desmic  to  Aj. 

The  identity 

^  {x"  +  y'' +  z"- +  t^) 

=  {x  -i-  y  ̂-  z  +  ty  +  {x  -\-  y  -  z  - 1)-  +  {x  -  y  +  z  -  tf  -Y  {x  -  y  -  z  +  tf 

=  {x  +  y  +  z  -tf  ̂-  {x  -\-  y  -  z  +  t)-  +  {x-y  +  z  +  tf  +  {-  x  +  y  +  z-\-ty 

shows  that  Aj,  A.,  A3  are  self-polar  for  the  quadric 

x^  +  y'  +  ̂ "  +  i-  =  0. 
Hence  since  the  intersection  of  any  two  faces  of  Aj  and  A3  lies 

in  a  face  of  Aj,  it  follows  by  reciprocation  that  the  join  of  any 
two  vertices  of  Aj  and  A3  passes  through  a  vertex  of  Aj ;  we  thus 
obtain  sixteen  lines  each  of  which  contains  a  vertex  of  each  tetra- 

hedron. Therefore  three  desmic  tetrahedra  are  such  that  any  pair 
of  them  have  four  centres  of  perspective,  viz.  the  vertices  of  the 

third  tetrahedron.  Conversely  if  two  tetrahedra  have  four  centres 

of  perspective  they  are  in  desmic  position.  For  it  is  easy  to  see 
that  two  such  tetrahedra  have  the  property  that  each  pair  of 

opposite  edges  of  one  tetrahedron  meets  a  pair  of  opposite  edges 
of  the  other  tetrahedron,  and  this  necessarily  involves  that  the 
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tetrahcdra  are  in  desmic  position,  as  may  be  seen  by  expressing 
the  latter  conditions. 

The  identity  (1)  affords  another  system  of  desmic  tetrahedra 

Dj,  D2,  JD3  closely  related  to  that  given  by  (2):  the  faces  of 

Bi,  D2,  D-i  are  respectively 

X  —  y  =  0,     X  +  y  —  0,     z  —  t  =  0,     z  +  t  =  0; 

X—  z  =  0,     X  +  z  =  0,     y  —  t  =  0,     y  +  t  =  0; 

X-  t  =  0,     x+  t  =  0,     y-z  =  0,     y  +  z  =  0. 

The  vertices  of  the  three  tetrahedra  A^  which  arise  from  (2) 

being  respectively 

I  (0001)         (0010)         (0100)         (1000) 

II  (1111)         (Ull)         (llll)         (1111) 

III  (1111)         (llll)         (1111)        (Till) 

it  may  be  observed  that  the  preceding  sixteen  lines  joining  the 
vertices  of  A^  are  the  intersections  of  the  faces  of  two  tetrahedra 

Di  (e.g.  the  planes  x  —  y  =  0,  x  —  z  =  0  contain  the  three  points  in 
the  first  column) ;  and  that  the  join  of  two  vertices  of  a  A  meets 

two  opposite  edges  of  another  A  in  two  vertices  of  a  D. 

14.     Desmic  surfaces. 

We  may  therefore  take  as  the  equation  of  the  general  desmic 

surface  the  equation 
aD,  +  hD,  +  cDs  =  0, 

where  A  +  A  +  A  =  0. 

This  may  be  written  in  the  form 

(«2  _  y^)  (^2  _  ̂ 2)  +  ]^  (^2  _  ̂ 2)  (^2  -  P)  =  Q  -^ 

it  has  the  twelve  points  I,  II,  III,  the  vertices  of  the  A^,  as  nodes; 

and  contains  each  of  the  sixteen  lines  joining  the  vertices  of  Af  by 
threes. 

The  equation  of  the  surface  may  be  written  in  the  form 

«      /3     7 

where  a  =  x'^  —  y-,     ̂   =  x-  —  z-,     <^  =  x'^  —  t^. 
Now  any  quadric  through  the  eight  points  II,  III  is  clearly 

^a  +  i?/S  +  (77  =  0, 

whence  it  follows  that  this  quadric  meets  the  desmic  surface  in  two 

quadri-quartics;  and  that  these  curves  form  a  simply  infinite  system. 
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Again  the  desmic  surface  may  be  written 

\  {x'y^  +  z'tF)  +  fx  {x^z''  +  yH')  +  v  (xW  +  y'z"~)  =  0,     \  +  ijl  +  v  =  0; 

or  \  {xy  -  ztf  +  fjL(xz-  ytf  +  v  (xt  -  yzf  =  0. 

This  surface  is  intersected  by  the  quadrics 

A  {xy  -zt)  +  B  (xz  -yt)  +  G  (xt  -yz)  =  0 

in  pairs  of  quadri-quartics.  These  quadrics  pass  through  the 
points  I,  II.     Similar  considerations  apply  to  the  quadrics 

A  {xy  +  zt)  +  B  {xz  +  yt)  +  G  {xt  +  yz)  =  0, 

which  are  those  passing  through  the  points  I,  III.     Hence  there 

exist  three  systems  of  quadri-quartics  on  the  surface.     Through 
each  point  of  the  surface  there  passes  one  curve  of  each  system. 

It  is  known  that  the  generators  of  the  system 

Aa+Bi3  +  Gj  =  0, 

as  belonging  to  the  quadrics  through  eight  associated  points,  form 

a  cubic  complex.  The  quadrics  contain  four  systems  of  cones 

having  their  vertices  at  the  points  I,  and  any  line  through  any 

one  of  these  four  points  belongs  to  one  cone  of  its  system.  Hence 

every  line  through  the  points  I  belongs  to  the  cubic  complex,  and 

it  is  clear  that  every  line  through  the  points  II  and  III  belongs 

to  this  complex,  which  is  thus  determined  by  the  twelve  points  I, 

II,  III  (for  the  join  of  any  point  P  to  these  points  gives  twelve 

lines  of  the  complex  through  P).  The  complex  is  therefore  the 
same  whichever  system  of  quadrics  be  used. 

Considering  any  line  p  of  this  complex,  p  is  thus  a  generator 

of  a  quadric  of  each  of  the  three  systems,  hence  it  is  a  chord  of 

each  of  three  pairs  of  quadri-quartics  :  thus  if  p  meets  the  desmic 
surface  in  the  points  a^,  a.^,  a-s,  a^,  then 

OiCio  and  asa^  belong  to  a  quadri-quartic  of  the  system  I,  II, 

Oitta  and  a^a^   I,  III, 

a^Qi  and  a^a^   II,  III. 

15.     Expression  of  the  surface  in  terms  of  a  functions. 

Consider  the  surface  defined  by  the  equations 

o-iOO  o-2(w)  o"3(w)  ,      a-(u) 

'^  (T,{V)'        ̂      ̂        O-o  {V)  '         ̂   (73  (V)  '         ̂   (7  {V) 
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.,     .CO      o-i(u)       ai(v)        -.1      •     •,  ■         r      y SO  that  T  =  -  7  X  -■   tH-  ,  with  similar  expressions  for  -  , 
t      a-{u)       a{v)  ^  * 

the  functions  a  are  defined  as  follows : 

z 
r  t 

[CH.  II where 

It  follows  that 

x^ 

(u)  +  e-, f___         g>(^)  +  g2 

z^-t'     iO{u)-<^o{vy 

whence  eliminating  ̂   (w),  <^  (v)  we  obtain 

1     cc-     ei  (^2  _  ̂ 2) 

1     ̂ f     e.,(f-t')    =0. 

1     z^     e3(^^-^^) 

This  gives  on  expansion 

(e,  -  e.)  (afy'  +  zH-)  +  {e,  -  e,)  {a^z-  +  y-'f)  +  (e,  -  e^)  (xH'  +  y^z')  =  0 ; 

which  is  the  form  of  the  equation  of  the  desmic  surface  previously 
obtained. 

Nodes,  lines  and  quadri-quartics  of  the  surface. 

If  2(Oi,  2(02  are  the  periods  of  ̂ J (0)  and  if  (Wj  +  co.  +  coo^O,  then 
smce 

o;{0  +  2a},)_a,{O)       o-i  (d  +  2cOo)  _      a,  (0) 

a-l0  +  2(o\)  ~  <t{0)'      <r{0  +  2(o,)  ~      a-{0) 

etc., 

it  follows  by  considering  the  ratios  - ,  f ,  ̂ ,  that  to  any  point  of v  Zr        V 

the  surface  there  corresponds  an  infinite  number  of  arguments  of 
the  form 

eu  +  2^&)i  +  2^''&)2  +  4Aft)i  +  Ww^, 

ev  +  2kcOi  +  2k' w^  +  4/?i&)i  +  4/^i'&)2 ;  e  =  +  1. 
We  obtain  the  nodes  I  when  v  has  the  values  0,  w^,  w^,  w^, 

   II   XI  — V   0,  2ft)i,  2w.2,  2ft)3, 

  Ill   u-\-v   0,  2a)i,  2a)2j  2<o^. 

The  sixteen  lines  of  the  surface  correspond  to  the  equations 

It  =  0,       v  =  2A;(Di  +  2h'w^\  ti  =  Wi,     v  =  coi  +  2ka)i  +  2k'co2', 

u  =  W2,     V  — a)2-\-2k(ii^-\-2k'(Oi;         u  =  cOi,     v=]ci)s  +  2k(i)i  +  2k'o}s', 

where  k,  k'  are  zero  or  unity. 
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The  well-known  relations* 

a  {u  +  v)  a-  {u  —  v)  =  (t"^  {u)  a^  {v)  —  <x^  (v)  a^^  (u), 

o-A  {u-v)a{u  +  v)  =  <T^  (ii)  cr^  (u)  o-^  (v)  a  (v)  +  a^  (v)  cr^  (v)  (Tk{u)(7{u), 

o-A  {u  +  v)(t{u-v)  =  (Tk  (u)  a  (u)  <r^  (v)  a^  {v)  -  a^  (u)  <r^  (u)  cr^  (v)  a  (v), 

lead  to  the  following  identities  when  the  values  of  x,  y,  z,  t  are 

inserted,  viz. 

_     a{u  +  v)(T{u  —  v)  [    A  B  G    \ 

A  {xy  +  zt)  +  B{xz-ir  yt)  +  C(yz  +  xt) 

_  Q-  {U  +  V)  \A<7z  (U  —  V)  +  Ba-2  (^  —  V)+  C<Ti  {u  —  v)] 

~  p"  o-  {v)  o-i  {v)  0-2  {v)  0-3  {v)  ' 
A  {xy  —  zt)  +  B  (xz  —  yt)+C  (yz  —  xt) 

__  a(u-v)  [Aa-i  (u  +  v)  +  Ba-^  {u  ■\- v) -\-  Ccr^  {u  +  v)] 
pV  (v)  o-i  (v)  0-2  (w)  0-3  (v) 

Hence  it  follows  that  for  the  quadri-quartics  II,  III 
V  =  constant ; 

for  the  quadri-quartics  I,  III 
u  —  v  =  constant ; 

and  for  the  quadri-quartics  I,  II 
u-{-  V  =  constant. 

It  is  to  be  observed  that  the  curve  y  =  a  is  identical  with  the 

curve 

v=  ±0L-{-  2hwi  +  2h'wo ; 

and  that  u  —  v  =  ais  identical  with 

u  —  v=  ±  a  +  4Awi  +  4>h'w2. 

16.  Intersection  of  a  line  of  the  cubic  complex  with  the 
surface. 

Any  line  p  of  the  preceding  cubic  complex  is  a  chord  of  three 

pairs  of  quadri-quartics  :  if  (u^Vi) ...  (UiV^)  are  the  arguments  of  its 
four  points  of  intersection  with  the  surface,  let  a  pair  of  curves  of 

the  system  II,  III  he  v  =  a,  v  =  ̂ ,  then  we  may  take 

v^  =  Vi  =  a,        ̂ 2  =  W3  =  /3 ; 

*  See  Harkness  and  Morley,  Theory  of  Functions,  p.  315, 
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the  Ui  are  then  connected  by  the  equations 

Wi  +  a  =  e,  (u2  +  /3),     Ui  +  a  =  €..  (ih  +  ̂), 

u^-a  =  e,  {1(3  -  ̂),     Ui-a  =  e^  {u.  -  /3), 
where  e;  =  +  1. 

Since  p  is  any  generator  of  the  quadric  containing  the  curves 

V  =  a,  V  =  ̂ ,  the  Ui  each  involve  one  indeterminate,  hence  on  sub- 

tracting the  third  equation  from  the  first  and  the  fourth  from  the 

second  and  identifying  the  results  we  obtain 

^1  ~  ̂2  J     f  3  =  ̂ 4 )     ̂ 1  ~      f  4  j 

hence  taking  fj  =  1  *  and  writing  Ui  =  j3  +  jx,  the  arguments  of  the 
points  of  intersection  are  given  as 

u^=^  +  IJb,     W4  =  /3-/i,     i/2  =  a  +  /x,     Us  =  ci  —  fi; 

Vi  =  ci,  Vi  =  a,  V2  =  /3,  V3  =  /S. 

17.      Bitangents  of  the  surface. 

The  tangents  to  the  quadri-quartics  of  the  three  systems  which 
pass  through  the  point  {u,  v)  are  bitangents  of  the  surface ;  for 

{ui,  V,)  B  {u„  Vi)  if  yu,  =  0       and  then  {u^,  v^)  =  {u^,  v^) ; 

(wi,  Vi)  =  (^2,  ̂ 2)  if  a  =  /3         (ws,  %)  =  {Ui,  Vi) ; 

(Ml,  Vi)  =  (wg,  ■Wj)  if  a  =  -  /3                (w2,  V2)  =  (W4,  '^4)- 

It  also  follows  that  the  three  bitangents  of  the  surface  deter- 

mined by  the  point  {u,  v)  touch  it  at  the  points  {v,  u),  {2v  —  u,  v), 

{—2v—u,  v).  These  three  points  are  collinear,  since  the  join  of 

the  points  (2?;  —  u,  v),  (—  2v  —  u,  v)  by  the  preceding  Article  meets 

the  surface  in  the  points  {v,  u),  (—  3v,  u). 
If  2)  touches  curves  of  the  system  II,  III  at  P  and  Q  so 

that  P  is  the  point  {a,  jB)  and  Q  the  point  (/3,  a),  then,  as  Q  moves 

to  a  consecutive  position  on  the  curve  v  =  a,  P  takes  a  consecutive 

position  on  the  curve  u  =  a;  thus  the  tangent  plane  to  the  surface 

at  P'  passes  through  PQ,  so  that  the  tangents  at  P  to  the  curves 
u  =  a,  V  =  ̂   are  conjugate,  and  the  curves  u  =  constant,  v  =  constant 
form  a  conjugate  network  on  the  surface. 

Similarly  it  is  seen  that  the  system  conjugate  to  u  +  v  =  const, 

is  3v  —  M  =  const.,  and  that  the  system  conjugate  tou  —  v  =  const,  is 
Sv  +  u  =  const. 

We  can  now  determine  the  relation  connecting  any  pair  of 

conjugate  tangents  at  any  given  point  of  the  surface ;  for  if  du,  dv ; 

*  Taking  ei=  -  1  gives  the  same  form  of  result. 



16-18]  DESMIC   SURFACES  31 

diij,  dvi  correspond  to  this  pair  of  conjugate  tangents  we  have  an 
involutive  equation  of  the  form 

dudui  +p{dudvi  +  du^dv)  +  qdvdv^  =  0, 

where  p  and  q  are  functions  of  u  and  v. 

Expressing  that  this  equation  is  satisfied  by  du  =  dvi  =  0  and 

by  du  —  dv  =  Sdv^  +  dui  =  0,  we  obtain  that 

p  =  0,   q  =  S; 

and  the  equation  assumes  the  form 

dudui  +  Sdvdvi  =  0. 

The  asymptotic  lines  correspond  to  the  assumption  du  =  dui, 

dv  =  dvi  and  their  differential  equation  is  therefore 

du-  +  Sdv'=0, 

whose  integrated  form  is 

u  +  VSiw  =  constant,     u  —  VStv  =  constant. 

18.     Plane  sections  of  the  surface. 

The  plane 

(e.  -  63)  <Ti  (a)  0-1  (13)  0-1  (7)  0-1  (S)  a;  +...  +  .. . 

-  (ei  -  62)  (^2  -  63)  (€3  -  e,)  a  (a)  a  (/3)  a  (7)  a-(S)t  =  0 
passes  through  the  sixteen  points  whose  arguments  are 

l3  +  y  +  8,  a;     i3-y-8,  a;      a  +  j  +  8,  fS ;      a-y-B,  /3: 

7-8-/3,  a;      8-y-^,a;      S-a-7,  /9;      7-8- a,  /3 

a  +  yS  +  8,  7;      8-a-/3,7;      a+^  +  y,  8;      y-  ol-  ̂ ,8 

a  —  ̂   —  8,  y,      /3  —  8  —  a,  y;     ̂   —  y  —  a,  8;      a—  ̂   —  y,  8. 

For   two    forms   of  the    "  equation   of   three   terms "   of  the 
0-- functions  are* 

(e^  -  e^)  o-^  (a)  o-^  (&)  o-;,  (c)  a^  (d)  +  (e^  -  e^)  a^  (a)  a^  (b')  a^  (c)  cr^  {d') 

+  (e.  -  e^)  a,  (a")  cr,  {¥)  a,  (c")  o",  id!')  =  0  ; 

o-A (a)  o-x {h)  o-A (c)  o-A {d)  -  a^ (a)  a^ (b')  a>, (c')  a^ (d') 

+  (e,  -  e^)  (e^  -  e.)  a  (a")  a  (b")  a  (c")  a  {d")  =  0  ;  ' 
where  2a'  =     a  +  6  +  c  +  c?,     2a"  =  a  +  b  -{-c  —  d, 

2b'  =     a  +  b-c-d,     2b"  =  a  +  b-c  +  d, 

2c'  =     a-b  +  c-d,     2c"  =  a-6  +  c  +  <^, 

2c?'  =  -  a  +  6  +  c - f/,      2d:'  =  a-b-c-d. 

*  See  Harkness  and  Morley,  Theory  of  Functions,  p.  313. 
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In  the  first  formula  taking 

a   =0,  b   —      a  +  /3,     c=      a  +  7,     d   =     0  +  y, 

a'  =  a  +  /3  +  7,     b'  =-y,  c   =-  ̂ ,  d'  =     a, 

a"  =  0L,  b"=     /8,  c"=     7,  d"  =  -{a  +  ̂   +  y\ 
we  obtain 

{e^  -  e.)  cx  (a  +  /3)  o-x  (a  +  7)  ca  (/3  +  7) 

+  (e,  -  ex)  o-^  (a  +  /3  +  7)  cr^  (a)  o-^  (^)  o-^  (7) 

+  (ex  -  e^)  0-,  (a  +  /3  +  7)  a^  (a)  o-,  (/3)  o-,  (7)  =  0. 
In  the  second  formula  let 

a,    =a  +  /S  +  7,      b   =-  cc,  c   =-/3,  d   =  -  y, 

a'=0,  6'=      /3  +  7>      C  =      7+a,      rf'=-(a  +  /S), 

a"  =  7,  b"=      A  c"=      a,  c?"=     a+/3  +  y, 
we  then  obtain 

o-A(a  +  yS  +  7)  o-x  (a)  a-x(/3)  o-x  (7)  -  o-x  (/3  +  7)  ctx  (7  +  a)  o-x  (a  +  y8) 

+  (^A  -  e^)  (ex  -  e,)  a  (a)  a  (/3)  a  (7)  o-  (a  +  ̂   +  7)  =  0. 

On  substitution  from  the  previous  result  it  follows  that 

(e^  -  e,)  o-x  (a  +  /3  +  7)  o-x  («)  o-x  (/3)  o-x  (7) 

+  (e,  -  ex)  o-M  («  +  ̂  +  7)  o"f^  («)  o-M  (/3)  o-M  (7) 

+  (e^  -  e^)  0-,  (a  +  ̂   +  7)  o-,  (a)  o-,  (^)  o-,  (7) 

-  (ex  -  e^)  (e^  -  e^)  (e^  -  ex)  o-  (a  +  /3  +  7)  o-  (a)  a  (/9)  o-  (7)  =  0. 

This  shows  that  the  preceding  plane  passes  through  the  point 

o-i  (a  +  /3  +  7)  0-0  (a  +  /3  +  7)         _  0-3  (a  +  /3  +  7) 
^^ — ::r?x^   '    y=   ^^^^ — ^'    ̂ ^ 

o-  (a  +  yS  +  7) 

o-(S)  • Since  the  function  o-^  (m)  is  an  even  function,  it  follows  that  the 
plane  passes  through  the  four  points  in  the  above  table  for  which 

V  =  B;  similarly  it  must  pass  through  the  other  twelve  points. 
The  fact  that  these  sixteen  points  are  coplanar  may  also  be 

seen  as  follows* :  denote  the  points  by  the  notation  ai^,  where  the 
first  suffix  relates  to  the  row  and  the  second  to  the  column:  on 

comparing  with  the  arguments  of  the  four  points  on  a  line  of 

the  cubic  complex,  it  follows  that  the  four  points  aii,  ai^,  ai^,  ai^ 

*  See  Humbert,  loc.  cit. 
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are  on  such  a  line  and  also  the  points  a„-,  a^i,  a^i,  a4i;  and  four 
lines  are  given  by  the  following  groups  of  four  points,  viz. 

ftl4,  a.23,  C(,32)  ̂ 41  > 

^13  >  ̂^24,  Ct-si,  0/42) 

tti2,  CI21,  dzii  ̂ 43j 

(Xjl,  (X225  ̂ 33  >  '^44* 

Also  the  four  points  a„,  ajo,  0^21,  ao2  are  coplanar,  since  they 
have  the  same  argument  for  v  and  the  sum  of  the  arguments  for  u 

is  zero*. 
It  follows  that  the  sixteen  points  are  coplanar.  They  lie  upon 

three  sets  of  four  lines  of  the  cubic  complex.  Varying  a  we  obtain 

an  infinite  number  of  such  sets  of  sixteen  points  on  any  given 

plane. 
The  three  systems  of  four  lines  touch  a  curve  of  the  third  class,, 

to  each  of  its  tangents  there  corresponds  an  elliptic  argument  of 

periods  O,  O'  say.  Let  the  three  sets  of  four  lines  have  arguments 
ai,  hi  and  d  respectively,  then  expressing  that  through  each  point 

aik  there  pass  three  lines,  one  of  each  set,  we  have 

«!  +  &1  +  C4  =  0, 

«!  +  62  +  C3  =  0, 

ai  +  63  +  C2  =  0, 

«!  +  &4  +  Ci  =  0, 

*  Consider  the  determinant 0-1  (Hi) 

<T(Ml)' 

0-1  ("2) 

(T  (M2)  ' 

(To  (Ml) 

<7(Mi)' 

0-3  (Ml) 

(r{«i)' 

0-1  (W4) 

a  (W4)  ' regarded  as  a  function  of  wi  it  is  doubly  periodic  with  periods  4wi,  4w2,  and  has 
four  poles  in  a  parallelogram  of  periods  which  are  congruent  to 

0,    2a)i,    2w2,    2wi  +  2w2; 

hence  it  has  four  zeros  congruent  to 

U2, ,     M3 ,      Ui,     -  (lt2  +  M3  +  M4) . 

Hence,    expressed  in    terms    of    c- functions,   the    determinant  has   a  factor 
4 

ff  («i  +  ?i2  +  W3  +  "4)'     Therefore,  if  ZUi=0,  four  points  for  which  the  v  is  the  same 1 

are  coplanar. 

J.  Q.  s.  3 
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<^2  +  ̂1  +  c-..  =  0,     «:.  +  6i  +  Co  =  0,     a4  +  6,  +  Ci  =  0, 

aa  +  ̂2  +  C4  =  0, 

a. 

+  h  +  Ci 

=  0, 

^4  +  60  +  Co 

=  0, 

ao  +  63  +  Ci  =  0, 

«3 

+  h  +  Ci 

=  0, 

di  +  h  +  c^-- 

=  0, 

«2  +  &4  +  c.  =  0, 

tts 

+  h  +  C-i 

^0, 

tti  +  64  +  C4 

=  0, 

whence  we  deduce  that 

2ai  =  2a2  = 

2a3 
~2a„ 

«!  +  04 =  ft2  "1"  ̂^3  > 

26i  =  262  = 

263 

=  26,, 
h,  +  b. =   62  +  ̂3, 

2ci  =  2c2  = 

2c3 

-2c„ 
C1  +  C4 =   Co  "T   C3. 

The  solution  of  these equations  is  seen to  be 
a, 

=  -  a,     a^  =  -  a  +  "2^ 
> 

a' 

^3=      a+  9  , «^  =  -«+2 + 

2'          j 

h L             7                      7           ̂  
3 

64= -6 

0 

+  2 

+ 

2  ' 

Ci 

=  - 

12' 

■c+2, 

C3  = 

-c+2' 

C4  = 

— 

c; 

with  the  condition  a  +  6  +  c  =  0. 

Now  the  arguments  of  the  lines  a^  are  seen  to  be  those  of  the 

four  tangents  at  the  points  in  which  the  tangent  of  argument  2a 

meets  the  curve* ;  similarly  for  the  lines  hi,  Ci,  hence  we  have  the 
result  that  if  C  is  the  curve  of  the  third  class  which  is  touched  by 

the  twelve  lines  a^,  hi,  Ci,  the  three  sets  of  four  points  of  contact 

with  G  of  the  lines  Ui,  hi  and  Ci  lie  on  three  tangents  to  G  which  are 
concurrent. 

Hence  we  derive  a  desmic  configuration  as  follows.  From  any 

point  P  of  the  plane  draw  three  tangents  to  a  given  curve  G  of  the 
third  class ;  each  tangent  meets  G  in  four  points  in  addition  to  its 

points  of  contact ;  the  tangents  at  these  points  give  rise  to  a  desmic 
configuration  of  sixteen  points  Q ;  conversely  if  G  and  one  of  the 

points  Q  are  given,  the  point  P  is  uniquely  determined. 
If  P  describes  a  straight  line  the  points  Q  describe  a  curve  K 

of  order  /u,;  and  since  two  different  points  P  cannot  give  rise 

to  the  same  point  Q,  two  curves  K  can  only  have  in  common  the 

sixteen  points  Q  arising  from  the  point  of  intersection  of  the  two 

lines  which  give  rise  to  these  curves ;  hence  fi-^  =16,  i.e.  K  is  of 
the  fourth  order. 

*  Clebsch,  Vorlesungen  liber  Geometrie,  p.  607. 
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Conversely,  every  quartic  curve  through  the  sixteen  points  of 

a  configuration  can  be  generated  in  this  manner.  For  if  P  be  the 

point  of  the  plane  which  corresponds  to  the  given  sixteen  points, 
then  one  line  through  P  can  be  chosen  such  that  the  quartic  curve 

deduced  from  the  line  by  this  method  meets  the  given  quartic 

curve  in  any  assigned  point  of  the  latter ;  the  two  quartics  hence 
intersect  in  seventeen  points  and  are  therefore  identical. 

19.  Sections  by  tangent  planes. 

We  now  consider  the  form  of  the  section  of  the  surface  by 

a  plane  which  touches  the  surface  at  any  point  P. 

From  P  six  tangents  can  be  drawn  to  touch  the  curve  of 

section ;  it  has  been  seen  that  the  points  of  contact  of  three  of 

these  tangents  are  collinear,  viz.  the  tangents  to  the  three  quadri- 
quartics  through  P. 

Hence  the  curve  must  have  an  equation  of  the  form 

z^xy  +  OL^y  {ax  +  hy  +  cz)  =  0, 

where  the  inflexional  tangents  at  P  and  the  line  joining  the 

points  of  contact  of  the  above  three  tangents  form  the  triangle 

of  reference.     If  (xyz)  is  a  point  near  P,  we  may  (Art.  17)  take 

x  —  Bu  —  i\/3  Sv,     y  =  8u  +  i^S  Sv, 

and,  since  the  directions  of  a,  /3,  y  are  respectively  given  by 

Bv  =  0,     Su  —  Sv  =  0,     8u  +  8v  =  0, 

it  follows  that 

a^y  =  (x  —  y)(x  —  coy)  (x  —  (o-y),     co^  —  1. 
Hence    the  equation  of  the  curve  of  section  by  a  tangent 

plane  is 

z^xy  +  {a?  —  y^)  {ax  +  hy  +  cz)  =  0*. 

20.  If  p,  q,  r  are  three  lines  of  a  cubic  surface,  forming  a 

triangle,  any  three  planes  through  p,  q,  r  respectively  meet  the 
surface  also  in  conies  which  lie  on  a  quadric.  Cremona  has  shown 

that  the  locus  of  the  vertices  of  such  of  these  quadrics  as  degenerate 

into  cones  is  a  desmic  surface.     This  will  now  be  proved. 

The  points  of  contact  of  the  other  three  tangents  from  P  to  the  curve  are 

3—2 

seen  to  lie  on  the  line  ax+by-'r^z  =  0 
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For  let  the  cubic  surface  be 

ft  +  xyz  —  0, 

then,  if  x  =x-at,     y'  =  y  -  ̂t,     z  =  z  -  7^, 

the  equation  of  the  surface  may  be  written 

M/+  ̂ y^  +  /^^^  +  'y^2/  ~  °^^^  ~  ̂ '^y^  ~  ̂^^^  +  a^'yt^]  +  x'y'z'  =  0. 
Denoting  by  F  the  coefficient  of  ̂ ,  jP=  0  is  the  quadric  which 

contains  the  three  conies ;  if  jP  is  a  cone  the  coordinates  of  its 

vertex  are  given  by  the  equations 

f^  +  ̂ z  +  yy-0yt  =  O 

fy+  az  +  ryx—  ajt  =  0, 

f,+^x+  ay-  a^t  =  0, 

/;;  —  a^z  —  ayy  —  jSr^x  +  2(x/3'yt  =  0. 

Eliminating  a,  yS,  7,  we  obtain  as  the  required  locus 

t^p-  yzfyf,  -  zxfj^  -  xyfjy  -  tf^fyfz  +  xyzft  =  0. 

If  8  =  ft  +  xyz,  we  have  the  identity  S-  —  SxSySz=%.t". 
This  shows  that  S  has  as  nodes  the  points  of  contact  of  tangent 

planes  to  >Si  drawn  through  the  lines  x  =  t  =  0,  y  =  t  —  0,  z  =  t  =  () ; 

provided  that  such  points  of  contact  do  not  lie  on  t  =  0.  Now 
there  are  twelve  such  points  of  contact,  since  through  any  line 

of  S  five  such  tangent  planes  can  be  drawn.  We  have  to  show 

that  these  twelve  points  of  contact  form  a  desmic  system.  This  is 

seen  as  follows :  it  is  known  that  the  equation  of  any  cubic  surface 

may  be  written  in  the  form 

abt  +  xyz  =  0 

in  120  ways  ;  if  n  be  the  number  of  cases  in  which  any  particular 

tritangent  plane  t  appears,  we  have,  since  the  number  of  tritangent 

planes  is  forty-five, 

71  X  45  =  120  X  6,     hence   n  =  16. 

Hence  we  may  write  the  equation  of  the  cubic  surface  in  the 
form 

aht  +  {x-  at)  (y  -  ̂ t)  (z  -  7^)  =  0 

in  sixteen  ways ;  the  point  of  contact  of  the  tangent  plane  x  —  at 

lies  on  the  line  (a,  b)  ;  and  so  for  the  planes  y  —  ̂ t,  z—  <yt.  We 
therefore  have  twelve  points  arranged  in  three  groups  of  four 

points  such  that  there  are  sixteen  lines  each  containing  one  point 

of  each  group. 
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Hence  the  tetrahedra  formed  by  the  points  of  any  two  groups 

have  four  centres  of  perspective,  viz.  the  points  of  the  third  group ; 

the  twelve  points  therefore  form  a  desmic  system  (Art.  13). 

21.     The  sixteen  conies  of  the  surface*. 

Along  any  one  of  the  sixteen  lines  of  the  surface  three  of  the 

coordinates  have  the  same  absolute  value.  Take  e.g.  the  line 

y  =  z  =  t;  it  is  easy  to  see  that  along  this  line  the  tangent  plane 

to  the  surface  is  \y  +  fjLZ+ vt  =  0;  the  line  is  therefore  torsali*  and 
the  tangent  plane  meets  the  surface  also  in  a  conic.  The  surface 
therefore  contains  sixteen  conies.  If  the  sixteen  lines  are  given, 

and  also  the  tangent  plane  along  one  of  them,  the  surface  is 
determined. 

If  p  is  any  one  of  the  sixteen  lines  and  tt  a  plane  through  it, 
three  nodes  of  the  surface  lie  on  p  and  through  each  node  there 

pass  three  of  the  sixteen  lines  other  than  p ;  thus  six  of  the  six- 
teen lines  do  not  meet  p;  if  y  =  z  =  t  is  the  line  p,  these  six  lines 

lie  on  the  quadric 

x^  +  y2  +  yt  +  zt  =  0; 

this  quadric  is  the  locus  of  the  conic  corresponding   to  p   for 
different  surfaces  of  the  pencil. 

The  two  conies  corresponding  to  two  of  the  sixteen  lines  which 

pass  through  the  same  node  meet  in  two  points,  for  the  line  of 

intersection  of  their  planes  passes  through  the  node  and  meets 

the  surface  in  two  other  points  lying  on  these  conies.  It  follows 
that  the  four  conies  which  correspond  to  four  lines  which  intersect 

each  other  lie  on  a  quadric ;  since  these  lines  may  intersect  in  the 

same  node  or  lie  in  the  same  plane,  there  are  twenty-four  quadrics 
each  of  which  meets  the  surface  in  four  conies. 

*  Bioche,  Sur  les  surfaces  desmiques  du  quatrieme  ordre,  Bull.  Soc.  math,  de 
France  (1909). 

t  A  line  at  each  point  of  which  the  tangent  plane  is  the  same  is  said  to  be 
torsal. 



CHAPTER   III 

QUARTIC    SURFACES    WITH    A    DOUBLE    CONIC 

22.  In  Chapter  I  we  investigated  the  quartic  surfaces  which 

possess  a  certain  number  of  isolated  singular  points ;  we  now 
consider  quartic  surfaces  which  have  a  double  conic. 

Any  quartic  surface  with  a  nodal  conic  is  represented  by  an 

equation  of  the  form  * 

where  (j)  =  0,  yjr  —  0  are  quadrics  and  w  =  0  is  the  plane  of  the 
double  conic.  This  surface  is  a  variety  of  syzygetic  surface,  but 

the  four  points  given  by  (f)  =  yfr  =  w  =  0  are  here  close-points  on 
the  double  conic.  At  each  of  them  the  two  tangent  planes  of 

the  surface  coincide  with  the  tangent  plane  of  ̂   =  0. 
This  equation  may  be  written 

where  X  is  arbitrary. 

The  system  of  quadrics  yjr  +  2X(f)  +  \~W'  includes  five  cones  ; 
every  tangent  plane  of  each  cone  meets  the  quartic  surface  in  a  pair 

of  conies :  for  each  generator  of  such  a  cone  is  bitangent  to  the 
quartic  surface,  and  hence  any  one  of  its  tangent  planes  meets 

the  surface  in  a  quartic  curve  having  four  nodes,  viz.  two  on  the 

generator  of  the  quadric  cone  and  two  where  this  tangent  plane 
meets  the  double  conic ;  this  quartic  curve,  therefore,  breaks  up 
into  two  conies,  two  of  whose  intersections  are  collinear  with  the 
vertex  of  the  cone. 

This  may  also  be  seen  analytically:  for  ii  B^  —  AC=0  is  the 
equation  of  one  of  these  cones  Fj,  the  equation  of  the  surface  is 

where  C/'i  =  </>  +  \w^. 
*  Kummer,  Ber.  Akad.,  1863. 
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It  is  seen  that  the  equation  of  the  surface  involves  twenty-one 
independent  constants. 

The  surface  arises  as  the  intersection  of  two  corresponding 
members  of  the  pencils  of  quadrics 

U^  -  wB  =  pwA,      Ui  +  wB  =  —  wG. 
P 

Each  of  these  quadrics  passes  through  the  double  conic ;  the 

quadrics  therefore  intersect  in  another  conic,  whose  plane  a  is 

given  by 
p-'A  +2pB+C=0, 

and  this  plane  is  tangent  to  Fj.     The  surface  is  also  generated  as 

the  intersection  of  the  quadrics 

Ui  —  wB  =  -  wC,     Ui  +  wB  —  —  pwA, P 

giving  the  other  conic  in  the  plane  a. 

Hence  the  tangent  planes  of  Fj  meet  the  surface  in  pairs 
of  conies.  A  similar  result  arises  in  connection  with  each  of  the 

cones  V2 ...  F5.  Thus  the  surface  contains  five  sets  of  00  ̂   pairs  of 
conies.  The  conies  which  lie  in  the  tangent  planes  a  of  Fj  belong 

to  two  classes,  viz.  those  given  by 

a  =  0,     U,  =  w(B  +  pA), 

and  those  given  by  the  equations 

a  =  0,     U,  =  -w(B  +  pA). 

It  is  clear  that  two  points  of  intersection  of  the  conies  in  the 

plane  a  lie  on  the  double  curve ;  the  other  two  points  lie  on  the 

line  a  =  B  +  pA  =  0,  hence  they  lie  on  the  generator  along  which 
a  touches  F,. 

By  considering  the  conies  in  two  different  tangent  planes 
a,  ̂   of  Fi  it  is  seen  that  the  conies  of  the  same  class  do  not 

intersect,  and  that  therefore  two  conies  of  different  classes  inter- 

sect twice  in  points  lying  on  the  line  (a,  /8).  Among  each  class 
of  conies  which  lie  in  the  planes  a  there  are  four  pairs  of  lines, 

arising  from  those  planes  a  which  touch 

U,-w(B  +  pA)  =  0   and    U,  + tv(B  +  pA)  =  0 

respectively.     For  the  condition  of  tangency  gives  a  quartic  for  p 
in  each  case.     Hence  the  surface  contains  sixteen  lines. 

Each  cone  V^...  F5  gives  rise  to  eight  pairs  of  lines,  but  as  will  be  seen, 

these  sets  of  sixteen  lines  are  the  same  as  the  foregoing  but  differently 
arranged. 
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23.  Expression  of  the  coordinates  in  terms  of  two 

parameters. 

If  the  cone  Fj  has  as  its  equation  B'^  —  A'C  =  0,  we  obtain  as 
before  two  classes  of  conies  on  the  surface,  viz.  the  intersection  of 

the  plane  a  or  a'^A'  +  2aB'  +  C"  =  0  with  the  quadrics 

m  =  to  (B'  +  aA'),      U2  =  -w(B'  +  a  A'), 

where  fTo  =  ̂   +  XoW-. 
There  cannot  be  more  than  one  point  common  to  a  conic  in 

the  plane  a  and  a  conic  in  the  plane  a',  and  therefore  each  conic  in 
a  meets  each  conic  in  a!  in  one  point.  For  instance,  a  point 
common  to  the  conic 

a  =  p-'A  +  2pB  +  C=0,     U,  =  w(B  +  pA), 
and  to  the  conic 

a  =a'A'  +  2aB'  +  C'  =  0,      U,  =  w  (B'  +  a  A '), 

must  also  lie  in  the  plane 

(Xi  -X^w  =  B-B'  +  pA-  aA', 

and  since  this  plane  is  not  in  general  coaxal  with  a  and  a'  there  is 
only  one  common  point. 

The  coordinates  of  this  point  can  thus  be  expressed  in  terms 

of  two  parameters  p  and  cr  by  aid  of  the  last  equation  and  the 

equations  a  =  0,  a'  =  0.  Also  the  ratios  of  p,  a,  and  unity  are  those 
of  three  rational  functions  of  the  coordinates  Xi*. 

We  thus  obtain  equations  of  the  form 

KXi  =  Fi (p'a^  p-a,  pa%  ...);  {i  =  1,  2,  S,  4)  ; 

the  Fi  being  thus  polynomials  of  the  fourth  degree  in  p  and  <t. 

These  equations  in  general  assign  to  any  given  pair  of  values 
for  p  and  a  one  point  Xi  on  the  quartic  surface,  but  for  such 

a  pair  of  values  of  p  and  o-  as  make  the  three  planes 

a  =  0,     a'  =  0,     {\,-X^tu  =  B-B'  +  pA-crA', 
coaxal  we  have  a  line  on  the  quartic  surface,  which  is  the 

intersection  of  a  and  a.  The  condition  that  these  planes  should 

be  coaxal  gives  eight  sets  of  values  for  (p,  a) ;  so  that  if  A  and  A' 
be  a  pair  of  pianos  which  meet  in  a  line  of  the  quartic  surface, 

then  p  =  CO  ,  a=  cc  gives  a  line  on  the  surface,  and  hence  in  each 

*  For  another  proof  that  a  quartic  surface  with  a  double  conic  is  rational,  see 
Baker,  Proc.  Loud.  Math.  Soc.  1912,  p.  36. 
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of  the  equations  KXi  =  Fi,  the  coefficient  of  p^a-^  must  be  zero*, 
thus  giving  four  equations 

KCCi  =  Fi{p,  (t) 

in  which  the  Fi  are  cubic  functions  of  p  and  cr. 

Making  these  expressions  homogeneous,  we  obtain 

'cXi=M^„^,,  ^,),  (^■  =  1,  2,  3,  4), 

wherein  the  fi  are  of  the  thii-d  degree  in  the  fi,  which  we  may- 
regard  as  the  coordinates  of  the  points  of  a  plane.  Since  any  line 

meets  the  quartic  surface  in  four  points  it  follows  that  the  curves 

of  the  set  2a,;/j-  =  0  can  have  only  four  variable  points  of  inter- 
section, and  hence  must  have  five  points  in  common. 

We  therefore  obtain  a  (1,  1)  correspondence  between  the  points  a; 

of  the  surface  and  the  points  ̂   of  the  plane,  in  which  plane  sections 

of  the  surface  correspond  to,  or  have  as  their  images,  2)lane  cubic 
curves  with  five  common  points f. 

The  surface  belongs,  therefore,  to  the  class  of  rational  surfaces. 

24.     Mapping  of  the  surface  on  a  plane. 

Conversely,  starting  with  the  quartic  surface  which  is  deter- 
mined by  the  equations 

where  the  curves  fi  have  five  points  in  common,  we  can  show 

that  it  possesses  a  double  conic;  for  these  equations  establish  a 

correspondence  of  such  a  character  that  to  a  plane  section  there 

corresponds  a  plane  cubic  curve,  and  since  the  deficiency  of  the 

plane  cubic  is  unity,  so  also  is  that  of  the  plane  section;  the 
surface,  therefore,  possesses  a  double  curve  of  the  second  order, 

which  must  be  a  conic,  since,  if  it  were  a  pair  of  non-intersecting 
straight  lines,  the  surface  would  be  ruled  J. 

To  each  of  the  five  common  points  of  the  cubic  curves,  the 

base-points  of  the  representation,  there  corresponds  a  line  on  the 
surface ;  to  the  points  of  such  a  line  correspond  the  points 

indefinitely  near  to  its  corresponding  base-point ;  hence  these 
five  lines  cannot  intersect. 

*  Otherwise  /3=qo  ,  a—cc  would  give  a  point  of  the  surface. 
t  This  correspondence  is  taken  by  Clebsch  as  the  starting  point  of  his  investi- 

gation of  the  surface,  see  Crelle's  Journal,  1868. 
X  For  in  this  case  the  line  drawn  through  any  point  P  of  the  surface  to  meet 

these  two  lines  would  meet  the  surface  in  five  points  and  therefore  lie  wholly  on 
the  surface. 
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If  a  curve  in  the  plane  passes  through  the  five  base-points 
respectively  ttj . . .  Og  times,  its  image  on  the  surface  meets  the  five 

lines  a^ ...  a^  times  respectively.  Let  n  be  the  order  of  any  plane 
curve  and  iV  the  order  of  its  image  on  the  surface,  then  since  the 

image  of  any  plane  section  of  the  surface  is  a  cubic  through  the 

base-points,  and  since  to  each  point  of  intersection  of  the  plane 

curves  (not  a  base-point)  there  corresponds  a  point  of  intersection 
of  their  images,  we  obtain  the  equation 

This  equation  enables  us  to  determine  the  curves  of  different 
orders  which  can  exist  on  the  surface. 

If  the  curve  considered  on  the  surface  is  a  line,  N=  1,  hence 

1  =  3w  -  la, 

but  each  a.  is  either  unity  or  zero,  so  that  the  following  cases  are 

possible : 
72  =  1,     2a  =  2;  n  =  2,     ̂ a=5. 

In  the  first  case  the  image  of  a  line  on  the  surface  is  a  line 

joining  two  base-points ;  this  gives  ten  lines  on  the  surface.  In 

the  second  case  the  image  is  the  conic  through  the  base-points. 
There  are,  therefore,  sixteen  and  only  sixteen  lines  on  the 

surface. 
Each  of  the  sixteen  lines  is  seen  to  intersect  five  others, 

viz.  those  with  which  it  is  paired  in  the  five  cones  respectively. 

These  five  lines  do  not  intersect,  as  is  seen  by  taking  as  the  image 

of  the  first  line  the  conic  through  the  five  base-points.  It  is  easy 
to  see,  from  consideration  of  the  images  of  the  sixteen  lines,  that 

they  form  forty  pairs  of  intersecting  lines  and  forty  pairs  of 
twisted  quadrilaterals. 

25.     Conies  on  the  surface. 

If  in  the  previous  equation  we  have  iV  =  2,  we  obtain  a  conic 
on  the  surface.  Now  since  none  of  the  a^  can  be  greater  than  2, 

n  =  4i  would  give  a  plane  quartic  with  five  nodes,  so  that  this  case 

must  be  rejected.  Similarly  n  =  3,  giving  2a  =  7,  requires  that 
at  least  two  of  the  «£  should  be  greater  than  unity,  giving  a 

plane  cubic  with  two  nodes ;  hence  the  only  cases  which  can 
arise  are  : 

(i)     n  =  2,  one  0^  equal  to  zero,  the  remainder  equal  to  unity  ; 

(ii)    ?i  =  1,  one  cti  equal  to  unity,  the  remainder  equal  to  zero. 
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Hence  the  image  of  a  conic  on  the  surface  is  either  a  conic 

through  four  base-points  or  a  line  through  one  base-point. 
This  gives  the  ten  varieties  of  conies  on  the  surface  previously 

considered.  The  two  conies  in  a  tangent  plane  of  a  cone  V  cor- 

respond to  a  conic  through  four  base-points  and  a  line  through  the 
remaining  base-point. 

The  circumstances  of  intersection  of  these  various  conies  are 

easily  deducible  from  this  mode  of  representation. 

The  double  curve. 

The  double  conic  is  the  only  plane  section  of  the  surface  whose 

points  are  not  uniquely  represented  on  the  plane  ;  its  image  is 

a  cubic  of  the  family  2aj/j  =  0.  The  line  p  whose  image  is  the 

conic  (f  through  the  base-points  meets  the  double  curve  in  a  point 

Q  which  has  two  images,  one  P'  on  c^  and  the  other  F  not  on  c^ 
Every  plane  section  through  p  meets  the  surface  in  a  residual 

cubic  through  Q:  the  image  of  this  cubic  is  a  line  through  P, 

which  forms  with  c^  the  image  of  p  and  the  residual  cubic.  Hence 
to  the  cubic  in  plane  sections  through  p  there  corresponds  the 
pencil  of  lines  through  P. 

26.     Cubic  curves  on  the  surface. 

Any  plane  through  one  of  the  sixteen  lines  meets  the  surface 

also  in  a  plane  cubic  whose  image  is  seen  to  be  either  a  line 

through  P,  or  a  conic  through  three  base-points,  or  a  cubic 

thi'ough  four  base-points. 
To  find  the  twisted  cubics  on  the  surface  we  again  use  the 

equation 

since  none  of  the  sixteen  lines  can  meet  such  a  cubic  in  more 

than  two  points  none  of  the  a^  can  be  greater  than  two ;  hence,  if 

iV=3,  n  is  at  most  equal  to  four,  which  would  require  that  four 
of  the  Oi  should  be  equal  to  two,  thus  giving  a  plane  quartic  with 

four  nodes.     Hence  the  only  cases  are : 

(i)     n  =  3,  one  oc^  equal  to  two,  the  remaining  Oj  equal  to  unity ; 

(ii)     n  =  2,  three  a;  equal  to  unity,  the  remaining  a,  equal  to  zero; 

(iii)    n  =  1,  each  Oi  zero. 

This  gives  sixteen  sets  of  oo  -  twisted  cubics  on  the  surface ; 
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viz.  five  in  the  first  system,  ten  in  the  second  and  one  in  the 

third,  each  set  consisting  of  oo  ̂   cubics. 
Two  cubics  of  the  same  system  meet  once,  cubics  of  the  first 

and  third  systems  meet  three  times,  cubics  of  the  second  and  third 

systems  meet  twice. 

27.     Quintic  and  sextic  curves  on  the  surface. 

By  consideration  of  the  equation  N=Sn  —  Soi  we  obtain  the 
curves  of  various  orders  on  the  surface.  A  quadric  through 
a  twisted  cubic  of  the  first  system  meets  the  surface  also  in  a 

quintic  curve  whose  image  (a  curve  ?i  =  3,  2a  =  1  +  1  +  1  -f- 1)  has 

deficiency  unity ;  there  are  go  ̂   such  systems  of  quintics ;  we 
denote  them  by  A.  The  cubics  of  the  second  and  third  systems 

similarly  give  rise  to  systems  of  quintics,  B  and  C  respectively ; 
their  images 

(n  =  4,  Sa  =  2  +  2  +  1  +  1  +  1)  and  (w  =  5,  2a  =  2  +  2  +  2  +  2  + 2) 

are  of  deficiency  unity. 

There  are  also  three  types  of  go  *  quintics,  A',  B'  and  C'*, such  that  there  is  one  cubic  surface  which  contains  a  member 

of  ̂ ',  a  conic  of  the  surface  and  also  a  member  oi  A:  so  also 

for  the  systems  B'  and  C  A  system  D  of  qc^  quintics  exists 
such  that  one  cubic  surface  can  be  determined  to  contain  a 

quintic  of  this  system  and  also  two  non-intersecting  lines  of  the 
surface. 

One  cubic  surface  exists  which  contains  any  sextic  curve  on  the 

quartic  surface ;  it  will  meet  the  surface  in  another  sextic.  We 
obtain  three  varieties  of  sexticsf,  viz. : 

GO  ̂   sextics  lying  in  pairs  on  the  cubic  surface  whose  images 
have  deficiency  zero, 

oc  ®  sextics  lying  in  pairs  on  the  cubic  surface  whose  images 
have  deficiency  unity, 

00  '  sextics  lying  in  pairs  on  the  cubic  surface  whose  images 
have  deficiency  two. 

*  Their  images  are  respectively  given  by 

t  Their  images  are 

7t  =  2,  Sa  =  0;     /j  =  3,  Sa=l  + 1 +  1 ;     n=:4,  Sa  =  2  +  1  +  1  +  1  +  1. 
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28.     Quartic  curves  on  the  surface. 

Assuming  the  existence  of  a  twisted  quartic  curve  on  the 

surface,  an  infinite  number  of  quadrics  will  pass  through  it  if  it 

is  of  the  first  species  and  one  quadric  if  it  is  of  the  second  species ; 
thus  at  least  one  other  twisted  quartic  exists  on  the  surface. 

Each  quartic  on  the  surface  gives  rise  to  an  image  and  since  the 

order  of  the  image  of  the  complete  curve  of  intersection  of  the 

surface  and  any  quadric  is  six  *,  the  sum  of  the  orders  of  the  images 
of  the  two  quartics  is  also  six ;  therefore  the  image  of  a  twisted 

quartic  is  of  the  order  2,  3  or  4. 

Since  no  a^  can  be  greater  than  two,  the  equation  4  =  Sn  —  -a 
allows  of  the  following  solutions  : 

(1)  n  =  2,  two  (Xi  equal  to  unity,  the  rest  equal  to  zero ; 

(2)  n  =  4,  three  a^  equal  to  two,  two  ofj  equal  to  unity ; 

(.3)     n  =  3,  three  a^  equal  to  unity,  one  ftj  equal  to  two,  one  a^ 

equal  to  zero ; 

(4)     n  =  3,  each  a^  equal  to  unity. 

This  gives  rise  to  forty-one  sets  of  twisted  quartics ;  viz.  from 
(1)  and  (2)  arise  ten  sets,  (3)  gives  twenty,  (4)  gives  1.  The 

quartics  in  (1)  and  (2)  lie  in  pairs  on  a  quadric,  those  in  (3)  lie 
in  pairs  on  a  quadric.  The  quartics  (4)  arise  as  the  intersections 
with  the  surface  of  the  quadrics  through  the  double  conic. 

Each  class  consists  of  oo  ̂   members  except  class  (4)  which 
contains  oo  \ 

In  each  of  the  first  three  classes  the  corresponding  quartics 
are  of  the  second  species ;  for  through  three  points  of  intersection 

4 

(not  base-points)  of  any  two  curves  of  the  system  "Xkif  =  0  one 1 

curve  of  each  of  the  first  three  systems  can  be  drawn ;  hence  the 

corresponding  quartic  curves  possess  a  trisecant  and  therefore 

belong  to  the  second  species.  But  any  cubic  of  the  fourth  class 

which  passes  through  three  points  of  intersection  of  two  curves 
4 

of  the  system  'Xkft  =  0  must  itself  belong  to  this  system  and 1 

therefore  correspond  to  a  plane  curve ;  hence  the  fourth  class  does 

not  possess  trisecants. 

From  consideration  of  the  curves  whose  images  belong  to  either  of  the 
cases  (1),  (2),  or  (.3)  it  is  clear  that  two  curves  belonging  to  the  same  set 

*  Since  if  n  and  n'  are  the  orders  of  the  two  images,  8=3  (n  +  n')  -  10. 
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intersect  in  two  points,  two  curves  on  the  same  quadric  in  six  points.  Two 

quadri-quartics  on  the  same  quadric  intersect  in  eight  points,  but  since  their 
images  intersect  in  only  four  points,  it  is  clear  that  they  meet  on  the  double 
curve,  but  on  different  sheets  of  the  surface,  four  times. 

29.  Class  of  the  surface. 

The  class  of  the  surface  is  twelve :  for  if  a  plane  through  a 
given  line  touches  the  surface  its  curve  of  intersection  with  the 

surface  has  a  node  at  the  point  of  contact ;  hence  the  corresponding 
cubic  curve  has  a  node,  therefore  the  number  of  tangent  planes  of 
the  surface  through  a  given  line  is  equal  to  the  number  of  nodal 

cubics  of  the  family 

X^fi  =  0 
subject  to  the  two  conditions  Sx^aj;  =  0,  XXibt  =  0 ;  that  is  to  the 

number  of  nodal  cubics  of  the  pencil  S  +  pS'  =  0,  where  S  =  0,  S'  =  0 

are  two  members  of  the  family.  Now  if  ̂S*  +  pS'  =  0  has  a  node  its 
discriminant  vanishes,  and  this  discriminant  is  of  degree  twelve  in 

p ;  hence  the  required  class  of  the  surface  is  twelve. 

30.  The  sixteen  lines  of  the  surface. 

It  will  now  be  shown  that  the  relationship  between  the  sixteen 

lines  of  the  surface,  as  regards  mutual  intersection,  is  identical  with 

that  which  exists  between  sixteen  lines  selected  in  a  certain  manner* 
of  the  general  cubic  surface. 

For  the  equation  of  the  general  cubic  being 

a      b      c 

a'      h'      c      —  0, 

a"     h"     c" 

where  a,  b,  ...  are  linear  in  the  variables,  is  equivalent  to  the 
following : 

lift   +^.b   +lsc   =0, 

^la'  +  ̂ ,6'  +  ̂,c'  =  0, 

^,a"  +  ̂,b"  +  ̂ ,c"=0. 
The  last  equations  lead,  on  solving  for  sci  ...  x^,  to  the  equations 

*  See  Geiser,  Ueber  die  Fldchen  vierten  Grades  welche  eine  Doppelcurve  zweiten 
Grades  haben,  Crelle,  lxx. 
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in  which  the  fi  are  of  the  third  degree,  and  the  curves  fi  =  0  have 
six  points  in  common  (this  follows  from  the  fact  that  any  line 

meets  the  cubic  surface  in  three  points,  and  therefore  any  two 

members  of  the  family  Xkifi  =  0  have  three  variable  points  of 
intersection). 

We  thus  establish  a  (1,  1)  correspondence  between  the  points 

of  the  cubic  surface  and  those  of  the  plane,  and  since  such  a 

correspondence  is  already  established  between  the  plane  and  the 
quartic  surface  the  points  of  the  cubic  and  quartic  surfaces  are 
themselves  so  connected. 

In  the  transformation  expressed  by  the  last  equations  there 

are  thus  six  base-points  P^  ...  Pg,  the  first  five  of  which  we  may 

suppose  to  be  base-points  in  the  transformation  connected  with 
the  quartic  surface  :  denoting  the  surfaces  by  Cg  and  C^  respectively, 
to  the  points Pj  ...  P^  there  coiTespond  in  the  two  surfaces  the  lines 

•TTi . . .  TTg  and  2h  ••'  Ps  respectively ;  since  the  equation  N  ='3n  —  Sa 
holds  also  for  the  cubic  surface  we  deduce  as  in  the  case  of  C^  that 

to  the  joins  of  Pj  . . .  P5  there  respectively  correspond  the  lines 

X12...X43  in  C3,  and  l^-.-ha  iu  Ci',  finally  to  the  conic  through 
Pi  ...  Ps  there  correspond  the  lines  Ag  and  Lg. 

Hence  the  sixteen  lines  on  the  two  surfaces  are  connected  as 
follows :  to 

Pl  •  •  •  Ps  )      ̂12  •  '  •  '45  5       -^6 

there  correspond 
TTj . . .  TTg ;  X12 . . .  X45 ;  Afi. 

Thus  the  relationship  of  the  sixteen  lines  on  C3  as  regards 

intersection  is  the  same  as  that  of  the  corresponding  lines  on  C^, 

being  deduced  in  both  cases  from  the  relationship  of  the  base- 
points  and  lines  in  the  plane. 

Now  the  sixteen  lines  of  C3  are  obtained  by  omitting  from  its 

twenty-seven  lines,  ttq  and  the  ten  lines  which  meet  ttq,  hence  the 
sixteen  lines  of  the  quartic  surface  are  obtained  by  omitting  from 

the  twenty-seven  lines  of  a  general  cubic  surface  any  one  of  these 
lines  and  the  ten  lines  ivhich  intersect  it. 

31.  Determination  of  the  surface  by  aid  of  two  quadrics 

and  a  given  point. 

The  surface  may  be  obtained  by  aid  of  any  two  given  quadrics 

and  a  given  point,  a^.     For  let  P,  P'  be  two  points  Xi,  x/  collinear 
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with  Oi  and  conjugate  for  a  given  quadric  H,  let  K  be  the  fourth 

harmonic  point  for  Oi,  P,  P' ;  then  if  K  is  the  point  yi  we  have 

Xi  =  era,;  +  T}ji,     Xi  =  a-ai  —  ryi ; 

^i  =  iTzT °^i  ~  ̂ i'    where   All  =  2 a^  ̂ —  . isJU  I      dxi 

These  equations  lead  to 

pyi  =  XiAH  -  aiH,  (i  =  1,  2,  3,  4). 

If  now  K  describes  the  quadric  Qy  =  0,  we  have 

Q, (AHy  -  H^AHAQ  +  H^^Q,  =  0, 

which  may  be  written  in  the  form 

(2HQ.  -  AHAQy  =  {AHf  {{AQy  -  4Q,Q„}. 

This  represents  a  general  quartic  surface  with  a  double  conic 

whose  plane  is  the  polar  plane  of  a^  for  H;  one  of  the  cones  of 
Kummer  is  the  tangent  cone  to  Q  whose  vertex  is  aj. 

Writing  this  equation,  as  before,  in  the  form 

{2HQ^  -  AHAQ  -  X  (AHf]' 

=  (AHy  {{AQy  -  4Q,Q„  -  2X  {2HQ^  -  AHAQ)  +  X^  (AHfl 

then  if  XH  +  Q  =  TT,  we  obtain  finally  an  equation  of  the  form 

U-'  =  {AHy{{AWy-4>Q^W]. 
If  W  is  one  of  the  four  cones  through  the  intersection  of  H 

and  Q,  the  last  factor  is  a  quadric  touching  W  along  two  lines, 

i.e.  it  is  a  cone  with  the  same  vertex:  hence,  the  vertices  of  the  four 

remaining  cones  of  Kummer  are  those  of  the  tetrahedron  self-polar 

for  Q  and  Id  *. 
The  following  result  may  be  deduced  :  the  five  lines  joining  any 

point  P  on  the  double  conic  to  the  ve^-tices  of  the  cones  of  Kummer 
and  the  tangent  to  the  double  conic  at  P,  lie  on  a  quadric  cone. 

If  Q  and  H  touch,  the  point  of  contact  is  a  node  of  the  quartic 

surface,  for  the  equation  of  the  latter  being 

AH  (QAH  -  HAQ)  +  H'Q^  =  0, 

if  Q  and  H  touch,  their  point  of  contact  is  a  node  of  the  cubic 

surface  QAH  —  HAQ  =  0,  and  hence  a  node  on  the  quartic 
surface  f. 

*  Bobek,  Ueber  Flachen  vierter  Ord.  mit  einem  Doppelkegelschnitte,  Sitzb.  d.  K. 
Akad.  Wien,  1884. 

t  It  is  easy  to  sec  that  this  cubic  surface  is  the  locus  of  points  P,  P'  which  are 
coUinear  with  a^  and  conjugate  for  both  Q  and  H. 
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From  the  foregoing  method  it  is  seen  that  both  P  and  P'  lie 
on  the  quartic  surface. 

When  K  describes  a  line  p  of  one  regulus  belonging  to  Q,  then 

P  and  P'  lie  on  a  conic  for  which  p  is  the  polar  line  of  a^ ;  when 

K  describes  the  line  p'  lying  in  the  plane  (p,  a)  and  belonging  to 

the  other  regulus  of  Q,  the  points  P,  P'  describe  another  conic  in 
this  plane.  We  thus  obtain  the  two  sets  of  conies  lying  in  the 

various  tangent  planes  to  Q  which  pass  through  a^-.  These  planes 
envelop  the  tangent  cone  to  Q  whose  vertex  is  a^. 

Coincidence  of  the  points  P,  P'  occurs  at  the  points  in  which 
p  meets  the  conic ;  both  these  points  lie  on  Q  and  on  H.  If  p 
touches  H  it  will  follow  that  the  intersections  of  the  conic  and  its 

polar  line  for  a  come  into  coincidence ;  hence  the  conic  must  in 

this  case  become  a  pair  of  lines.  Since  four  of  the  lines  of  any 

regulus  touch  any  quadric,  we  obtain  the  sixteen  lines  of  the 
surface. 

Three  pairs  of  lines  belonging  to  one  of  the  two  classes  asso- 
ciated with  a  cone  of  Kummer  determine  the  surface ;  for  every 

conic  of  the  other  class  meets  each  of  the  six  lines  (Art.  25),  hence 

the  00  ̂   planes  through  the  intersection  of  the  planes  of  the  three 
pairs  of  lines  such  that  each  plane  meets  the  lines  in  six  points  on 
a  conic  will  envelop  the  corresponding  cone  of  Kummer,  and  the 
surface  is  determined. 

Assuming  the  six  lines  to  have  general  positions,  the  number 

of  constants  involved  is  twenty-one*  (Art.  22). 

The  quadric  Q  meets  the  surface  in  two  quadri-quartic  curves,  one  of 
them  Q  =  H=0  is  the  curve  of  contact  of  the  residual  tangent  cone  drawn  to 
the  surface  from  the  vertex  of  the  cone  of  Kummer. 

32.     Perspective  relation  with  a  general  cubic  surface. 

It  has  been  seen  (Art.  23)  that  a  (1,  1)  correspondence  can  be 

established  between  a  quartic  surface  with  a  nodal  conic  and  a 

plane. 
Two  methodsf  have  been  given  of  establishing  a  (1,  1)  per- 

spective correspondence  between  the  points  of  a  general  cubic 

surface  and  the  quartic  surface.     Two  points  x,  x'  are  collinear 

*  Weiler,  Veher  Fldchenvierter  Ord.  mit  Doppel-  und  mit  Cuspidal-Kegelschnitten, 
Schlomilch  Zeitsch.  xxx. 

t  Geiser,  I.e.;  Cremona. 

J.  Q.  S.  4 
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4 

with  At  and  conjugate  for  the  quadric  Sa7i-  =  0  if  the  coordinates 1 

are  connected  by  the  equations 
/    /  /    /        /    / 

pOC-y  ̂ —  OOi  OC^  ,        P^2  —  ̂ 2  ̂ 4  3        P     3  —      3      4  } 

px^  =       \  fl?i     +  X^     4"  X^   J. 

Taking  any  cubic  surface  through  the  curve 

which  does  not  pass  through  ̂ 4,  and  whose  equation  is  therefore 
of  the  form 

xJJ  ̂   {x^  +  xi  +  x;-)  Z  =  0, 

where  f/"=  0  is  any  quadric  and  Z  =  0  any  plane ;  on  transformation 
x-^  +  xi  +  x^-  becomes  xl^  {x^^  +  x^"^  +  a^j'^),  X  =  0  becomes  a  quadric 
through  the  conic 

and  ̂ 7=0  becomes  a  quartic  surface  having  this  conic  as  double 

curve ;  omitting  the  factor  x('-  +  x^"^  +  x^"^  we  therefore  obtain  a 
quartic  surface  with  the  double  conic 

rp        ̂ —    /y»      2       I        /yi     2    ,  I       /yi      2   _    (I 

The  second  transformation  is  the  following :  the  points  Xy  x'  are 
connected  by  the  equations 

x-i^:  x^:  x^:  x^  =  Si {x)  :  S^ (x')  :  *S^3 (x')  :  S^ {x'), 
where  the  quadrics  Si  (x)  =  0  all  pass  through  a  given  conic  and 
touch  each  other  at  a  given  point  on  this  conic. 

By  linear  combination  it  is  seen  that  this  is  equivalent  to  the 
transformation 

/y»       »     /Y*       •    'T*       *     T*     -~*    *7*2»/vi/yi         */Y*'Y*         •     rp      fp       ̂ _    /v»     2  • 
**^1    •  »^2   *       3   •       4  —       1       •  *^1  *^2     •  *^\  **'3     •   ̂ ^'Q      4  3      ? 

from  which  we  deduce  that 

rp         '     rp         •     /r>         •     /y>       -— -    rp    rp       •     rp  ̂    •     fp    rp       *     fp     fp      JL.    ff*  ** 
tX/j      •    tA.2     •    *^3     •    **'4    —  tvjfcvg    ■   tt/rt      •   »*'2**'3    •   WIW4  T^  wQ  • 

In  this  case  the  centre  of  projection,  the  point  A^,  lies  on  the 

conic.  This  transformation  is  of  the  (1, 1)  character,  the  exceptions 

being  that  to  the  point  A^  for  x  there  corresponds  the  plane  x^,  to 

the  point  A^  for  x  there  corresponds  the  plane  x<^,  and  to  any 

point  on  x^,  which  is  not  also  on  the  conic  x<2,  =  x^x^  +  x^  =  0,  there 
corresponds  the  same  point  A^  in  the  field  of  x. 

To  the  planes  in  the  field  of  x  there  correspond  quadrics  which 

pass   through   the  fixed  conic  in  the  field  of  x,  but  to  a  plane 

*  Here,  and  elsewhere,   the  vertices  of  the  tetrahedron  of  reference  will  be 
denoted  by  A^...  A^. 
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through  Ai  in  one  field  there  corresponds  the  same  plane  in  the 
other  field. 

Having  given  a  general  cubic  surface  /  in  the  field  of  x  which 

contains  the  conic  X2  =  XiXi  +  Xs^  =  0,  it  is  seen  as  before  that  /  is 

projected  into  a  general  quartic  surface  F  with  the  nodal  conic 

Xi    •"—  X^  X^  ""  w/g     ̂ -'  V/. 

The  section  of/ by  x^  consists  of  the  given  conic  together  with 
a  line  a  to  which  the  point  A^  corresponds  in  the  field  of  x.  Let 
the  ten  lines  of  /  which  meet  a  be  denoted  by 

{K  Ci),      (62,  C2),       (63,  C3),      (64,  C4),       (65,  Cg). 

Consider  the  plane  through  h^  and  d;  it  corresponds  to  a 
quadric  through  the  double  conic  in  the  field  of  x  which  therefore 

meets  i^  in  a  twisted  quartic  which  accordingly  must  consist  of  two 
conies,  each  passing  through  ̂ 4. 

Hence  to  the  sections  of  /  by  the  planes  (J.4,  61),  (^4,  Ci) 

correspond  four  conies  through  A^ ;  hence  we  have  twenty  conies 

through  Ai.     But  if  c^  is  a  line  of /which  meets  the  conic 

then  to  the  section  of /by  the  plane  {Ai,d)  there  corresponds  the 

section  of  F  by  the  same  plane  which  therefore  meets  F  m.  b.  line 

and  a  cubic,  since  all  the  sections  through  A^  consisting  of  two 

conies  are  given  by  the  twenty  preceding  conies. 
Since  there  are  sixteen  lines  such  as  d,  it  follows  that  the 

sixteen  lines  of  the  quartic  surface  are  thus  projectively  derived 
from  the  sixteen  lines  of  / 

The  ten  sets  of  conies  on  F  are  the  images  of  the  conies  of/  in 

the  ten  pencils  of  planes  whose  axes  are  the  lines  61 ...  Cg. 

33.     Projective  formation  of  the  surface. 

Bobek*  has  developed  a  method  of  treatment  of  the  sm-face  depending 
upon  its  formation  from  two  pencils  of  quadrics  projectively  related.     If 

\ab  +  ad->r  U=  0,     ̂ lac  +  ae—U=0, 

represent  two  pencils  of  quadrics  each  passing  through  a  fixed  conic  (a,  U) 
and  through  two  other  fixed  conies  respectively,  then  any  two  members  of 

these  pencils  intersect  in  another  conic  whose  plane  is 

\b  +  jxc  +  d-\-e  =  0; 

this  plane  passes  through  the  fixed  point  h  =  c  =  d+e  =  0. 

If  the  pencils  are  connected  by  a  given  lineo-linear  relation  between  X  and  fi, 
it  is  clear  that  the  locus  of  intersection  of  corresponding  members  of  the  two 

*  Loc.  cit. 

4—2 
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pencils  is  a  quartic  surface  with  (a,  U)  as  double  conic.  Moreover  the  above 

planes  will  in  this  case  touch  a  cone  whose  vertex  is  the  aforesaid  fixed  point, 
and  the  conies  in  these  planes  will  form  the  conies  on  the  quartic  surface. 

Taking  the  equation  of  the  quartic  surface  in  the  form 

a^{bc+d^)=U\ 

the  foregoing  two  pencils  are 

\ah=U—ad,     iiac=  U+ad, 

with  the  relation  'Kfi=l. 
Any  line  through  the  point  b=c  =  d=0,  the  vertex  of  the  cone  of  Kummer 

selected,  meets  the  first  pencil  of  quadrics  in  pairs  of  points  in  involution  ;  if 

U=aK+V,  the  double  points  of  this  involution  are  obtained  from  the 

equation 

which  is  also  the  locus  of  double  points  of  the  involution  determined  on  lines 

through  the  vertex  by  quadrics  of  the  second  pencil.  It  is  the  surface  3 

previously  given. 
The  surface  Q  appears  as  the  locus  of  the  line  of  intersection  of  the  polar 

planes  of  a  pair  of  corresponding  quadrics  for  the  vertex  of  the  given  cone. 

34,  Connection  of  properties  of  the  surface  with  those 

of  plane  quartics. 

Zeuthen*  has  investigated  the  plane  quartic  which  is  the 
section  of  the  tangent  cone  to  the  surface  from  any  point  of  the 

double  conic,  and  showed  its  relationship  to  the  surface. 

Taking  the  equation  of  the  surface  as  being  U^  +  2'^W  =  0  we 
may  assume  any  point  P  on  the  double  conic  as  that  through 
which  the  coordinate  planes  cc,  y,  z  pass,  and  take  the  polar  plane 

of  P  for  W  as  the  fourth  coordinate  plane  t  =  ̂ \  let  the  tangent 

plane  to  f/  at  P  be  the  plane  2/  =  0. 
The  equation  of  the  surface  then  becomes 

a  (>/r  +  xjtf  4-  hz"-  (</)  +  f )  =  0. 

Writing  this  in  the  form 

f  (bz-  +  ay-)  +  2tay\ry  +  a^\r"  +  hj>z''  =  0, 
the  tangent  cone  from  P  to  the  surface  has  as  its  equation 

</)  (ay"~  +  hz"~)  +  ay^"-  =  0. 

This  is  a  general  quartic  cone,  having  the  planes  ay"-  +  hz"^  =  0, 
the  tangent  planes  to  the  surface  at  P,  as  bitangent  planes. 

Hence  any  plane  quartic  may  be  regarded  as  the  "  projection  " 
of  a  nodal  quartic  surface  from  any  point  on  the  double  conic. 

*  Sulle  superficie  di  quarto  ordine  con  conica  doppia,  Ann.  di  Mat.  ii.  xiv.  (1887). 
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Now  having  given  any  pair  of  bitangents  ay"-  +  62^  =  0  of  a 
quartic  curve,  the  equation  of  the  curve  may  be  written  in  the 
form 

{ay"  +  hz")  OL^  =  V^ 
in  five  ways  *,  giving  a  group  of  six  bitangents,  and  in  consequence 
the  equation  of  the  surface  may  be  written  in  the  form 

a{^|r  +  yt)-+b^■'{a/3  +  f-)  =  0, 
giving  five  pairs  of  planes  a,  yS  through  P  which  meet  the  surface 
in  a  pair  of  conies.     They  are  the  tangent  planes  from  P  to  the 

five  cones  of  Kummer,  and  bitangent  planes  of  the  tangent  cone 
of  vertex  P. 

There  remain  sixteen  of  the  twenty-eight  bitangents  of  the 
quartic  curve,  giving  rise  to  sixteen  bitangent  planes  of  the  cone ; 

each  plane  meets  the  surface  in  a  quartic  curve  having  four  double 

points  (of  which  one  is  at  P,  and  another  is  the  second  intersection 

of  the  plane  with  the  nodal  conic).  This  curve  will  consist  of 

a  line  and  a  cubic  curve  having  a  node  at  P ;  thus  the  existence 
of  the  sixteen  lines  of  the  surface  becomes  manifest. 

If  again  three  coordinate  planes  be  taken  as  passing  through 

the  vertex  of  one  of  the  cones  of  Kummer,  the  plane  x  being  that 

which  does  not  pass  through  the  preceding  point  P,  the  equation 

of  the  surface  may  be  taken  to  be 

{(f)  +  ccL)-  =  z^(yt  +  a;''). 
The  equation  of  the  preceding  tangent  cone  of  vertex  P  is  then 

yt{z^~-L^')  =  cl,^'   (1). 
Now  the  cone 

p'~y(L  +  2)-2p4>-t{L-z)  =  0   (2) 
touches  the  cone  (1)  along  four  lines,  and  the  plane 

p^y  +  2px-t  =  0 
meets  the  cone  (2)  in  a  conic  which  is  seen,  by  elimination  of  p, 
to  lie  on  the  quartic  surface. 

Regarding  the  equations  (1)  and  (2)  as  representing  curves,  it 

is  seen  that  the  four-point-contact  conies  (2)  are  the  projections 
from  P  of  a  system  of  conies  of  the  surface. 

The  other  system  connected  with  this  cone  of  Kummer  gives  rise  to  the 

four-point-contact  conies 

p^i/(L-z)-2p(f)-t{L  +  z)  =  0. 

Theorems  relating  to  the  four-point-contact  conies  of  a  quartic 
curve  are  thus  connected  ^vith  theorems  concerning  this  quartic 

*  See  Salmon,  Higher  Plane  Curves. 
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surface;  e.g.  take  the  theorem:  the  eight  points  of  contact  luith  the 

quartic  of  any  two  conies  of  such  a  system  lie  on  one  conic*. 
We  obtain  the  theorem  for  the  quartic  surface:  the  two 

pairs  of  principal  tangents  at  a  point  P  of  the  double  conic  and 

the  points  of  contact  with  the  surface  of  the  two  planes  through  P 

which  touch  the  same  cone  of  Kummer,  lie  on  a  quadric  cone-f. 
Again  in  Art.  31  it  was  seen  that  the  intersection  of  the 

tangent  planes  at  P  to  the  surface  and  the  vertices  of  the  five 

cones  of  Kummer  lie  on  a  quadric  cone  whose  vertex  is  P ;  hence 
we  derive  the  result  for  quartic  curves  that  the  six  intersections 
of  pairs  of  hitangents  of  a  group  lie  on  a  conic. 

It  has  been  seen  that  the  group  of  six  pairs  of  bitangents 
determined  by  the  tangent  planes  to  the  surface  at  P  gives  four- 
point-contact  conies  which  are  the  projections  from  P  of  the  conies 
of  the  surface.  It  will  now  be  shown  that  the  other  four-point- 
contact  conies  are  projections  of  cubics  on  the  surface. 

Refer  the  surface  to  coordinate  planes  consisting  of  the  plane  of 
the  double  conic  and  three  tangent  planes  of  a  cone  of  Kummer  of 
which  one,  x,  contains  two  lines  of  the  quartic  surface;  the  equation 
of  the  surface  is  then  of  the  form 

[AB->rz{y  -t)  +  xLY==z-  [x''  +  y^  +  t^-2xy  -  2xt-2yt]. 
The  equation  of  the  quartic  tangent  cone  whose  vertex  is  P  is  then 

{y(z  +  L)  +  t{z-L)  +  ABY'  =  4ABt{z-L); 
of  which  a  four-line-contact  cone  is 

p''At  +  p  {y(z  +  L)  +  t(z - L)  +  AB]  +  B (z  -  L)  =  0. 
This  meets  the  cubic  surface 

2Aztp  =  {L-z)  [x  {L  +  z)-\-  AB] 

in  the  line  L-\-z=0,    pt  +  B  =  0, 

which  passes  through  P,  and  also  in  a  quintic  curve  having  a  triple 
point  at  P  and  which  lies  on  the  quartic  surface. 

Hence   the   preceding  quadric   cone   also   meets   the  quartic 
surface  in  a  cubic  curve  passing  through  P. 

*  For  the  quartic  {z^-L^)  \j/  =  <j)'^  may  be  written 

The  points  of  contact  are  given  as  the  intersections  of  the  conies 

X2>/'  + 2X0  +  22-1,2^0,       X0  +  22-L2  =  O; 
moreover  the  conic  \ij.\p  +  (X  +  ̂ )  0  +  z^  _  i2_  o  passes  through  them  and  also  through 
the  four  points  similarly  obtained  on  replacing  X  by  fx. 

t  The   principal  tangents  being  z'^-L^=(i)  =  0,   and  taking  -^^yt  and  X  =  oo, 
X  =  0  successively. 
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35.  Segre's  method  of  projection  in  four- dimensional 
space. 

Segre  has  shown*  that  if  ̂ =0,  <^  =  0  are  two  quadratic 
manifolds  or  varieties  in  flat  space  of  four  dimensions  8^,  the 

projection  upon  any  hyperplane  S-^  of  their  intersection  F,  is  a 

quartic  surface  with  a  double  conic.  For  if  A,  or  x',  be  any  point 
of  ̂ 4  the  substitution  of  x{  +  pxi  for  Xi  in  ̂   =  0  gives  the  two 
intersections  of  the  line  {x,  x)  with  F.  The  elimination  of  p 

between  the  equations 

F,-  +  pDF^p"-F,  =  0, 

^^■  +  pD^  +  p;'^^  =  o, 

gives  the  "cone"  joining  A  to  the  points  of  F.     The  intersec- 5 

tion  of  this  cone  with  the  hyperplane  S^  or  2  diXi  =  0,  gives   a 1 

surface  in  S^  represented  by  the  equation 

(i^cj)'  _  F'^y  -  {^DF  -  FD^){F'D^  -  ̂ 'DF)  =  t  UiXi  =  0. 1 

Taking  F  to  be  /,  that  member  of  the  pencil  {F,  <l>)  which  passes 

through  A,  since  f{x')=  0,  we  may  write  as  the  equation  of  the 
projected  surface 

/^</>'  -  DfifDc^  -  4>Df)  =  I  a,Xi  =  0; 1 

that  is 

(2/</)'  -  Df.  Dcf^y  -  (D/y  {(D<j,y  -  4</,0'}  =  i  o^^,  =  o  f. 
This  is  a  quartic  surface  with  the  nodal  conic 

Bf=f=ioiiXi  =  Q. 1 

It  is  seen  that  the  double  conic  is  obtained  as  the  intersection 

of/  and  Df,  since  the  only  cases  in  which  the  line  joining  A  to 

any  point  x  meets  F  in  two  points  are  when  the  foregoing  quadratics 
in  p  become  identical,  we  then  have 

F^-^^  -  ̂ ^  F^  =  0,    F'D  ̂   -  ̂ 'DF  =  0. 

These  equations  represent  respectively  the  variety  /  through  A 
and  its  tangent  hyperplane  Df.  Their  intersection  gives  a  quadric 
cone  in  three  dimensions  which  meets  any  variety  of  the  pencil 

*  Surfaces  du  quatrilme  ordre  a  conique  double,  Math.  Ann.  xxiv.     For  many 
details  the  reader  is  referred  to  this  important  memoir, 

t  Compare  with  Art.  31. 
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(F,  <I>),  and  therefore  T,  in  a  twisted  quadri-quartic  k*.  This 

quartic  k*  is  projected  upon  S3  as  a  conic ;  any  generator  of 
the  cone  meets  k^  in  two  points  P,  Q ;  the  tangent  planes  to  V  at 
P  and  Q  are  projected  into  the  tangent  planes  of  the  quartic 

surface  at  a  point  of  this  conic. 

Among  the  generators  of  the  cone  (/,  Df)  there  are  in  general 

four  which  touch  k'^  (viz.  at  the  points  where  the  plane  Df=  0, 
D(f>  =  0  meets  F).  It  follows  that  there  are  four  pinch-points  on 
the  double  conic. 

There  are  in  general  five  cones  in  the  pencil  {F,  ̂ ).  For  if 

F  and  ̂   are  not  specially  related  to  each  other  we  may  take 

F=%a;i\     ̂   =  XaiXf; 
1 

the  pencil  therefore  contains  the  five  cones 

(a.2  —  ai)  x^^  +  (as  —  a^)  xi  +  {a^,  —  a^  x^  +  {a^  —  a^  x^  =  0,  etc. 

If  /  is  a  cone,  i.e.  if  A  lies  on  one  of  the  cones  of  the  pencil 

{F,  <l>),  we  have  two  double  lines  instead  of  a  double  conic.  For 

the  hyperplane  Pf  meets  f  in  two  planes*,  the  intersection  of 
these  planes  with  F  will  consist  of  two  conies  having  two  common 

points  lying  on  a  line  through  x .  These  conies  are  projected  from 

x'  into  two  intersecting  double  lines  of  the  quartic  surface. 
Any  one  of  the  five  cones  of  the  pencil  {F,  <l>)  may  be  represented 

by  an  equation  of  the  form  S  diXi-  =  0,   whence   by   comparison 1 

with  the  general  three-dimensional  quadric  it  is  seen  that  this 
cone  possesses  two  sets  of  generating  planes,  each  generating 

plane  of  one  set  meets  each  generating  plane  of  the  other  set  in 

a  line,  the  two  planes  therefore  lie  in  the  same  hyperplane,  while 

two  generating  planes  of  the  same  set  intersect  only  at  the  vertex 
of  the  conef. 

4 

*  For  we  may  take  the  cone  /  to  be  Sa^a;i^  =  0,  the  tangent  hyperplane  to  this 1 
4 

cone  at  a  point  x'  is  Sa^Xj-T/^O;   interpreting  these  equations  to  represent  a 1 

quadric  and  its  tangent  plane  at  x',  since  the  plane  meets  the  quadric  in  tivo  lines, 
the  hyperplane  Df  will  meet /in  two  planes  whose  intersection  contains  x'. 

t  It  will  be  seen  hereafter  (see  Art.  49),  that  the  pencil  (F,  <l>)  may  contain,  in 
certain  cases,  a  cone  of  the  second  species,  i.e.  a  cone  whose  equation  contains  only 

three  variables,  e.g.  Xj ,  x^,  2:3  ;  in  this  case  the  generating  planes  consist  of  a  simply 
infinite  set  of  planes  passing  through  the  line  xi  —  x^=x^  =  0. 
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Each  generating  plane  of  a  cone  meets  F  in  a  conic;  con- 

versely each  conic,  c",  of  F  lies  in  a  generating  plane  of  a  cone  of  the 
pencil  (F,  $);  for  the  variety  of  a  pencil  which  passes  through  any 

point  P  in  the  plane  of  c^  and  not  upon  c^  must  contain  the  plane 
entirely,  and  a  variety  which  contains  a  plane  is  necessarily  a 

cone"^. 
Hence  F  contains  oo  ̂  conies  belonging  to  five  sets,  each  set  con- 

taining two  classes  (corresponding  to  the  two  systems  of  generating 

planes  of  a  cone). 

The  hyperplane  through  any  generating  plane  a  of  a  cone  and  A 

meets  the  cone  in  another  generating  plane  a' ;  for  taking  the  cone 
as  0)1X2  —  x^Xi  —  0,  and  the  generating  plane  as 

the  hyperplane  is 

{X^  —  /JI,X3)(lJiX.2  —  Xi)  -  {/JLX2  —  Xi)(Xj'  —  flXs)  =  0   (1 ). 

By  comparison  with  the  three-dimensional  quadric  it  follows 
that  this  hyperplane  also  contains  another  generating  plane  of 

belonging  to  the  other  system.  Since  a  and  a  belong  to  the 

same  hyperplane  (through  A),  it  follows  that  they  are  projected 

from  A  into  the  same  plane  ̂   of  Ss,  and  in  /3  there  lie  two  conies 

of  the  quartic  surface.  The  envelope  of  /3  is  seen  from  (1)  to 

be  a  quadric  cone  whose  vertex  is  the  projection  of  the  vertex 

(00001).  Thus  we  regain  the  pair  of  conies  in  each  tangent 

plane  of  a  cone  of  Kummer;  the  points  of  intersection  of  such 

a  pair  lying  on  the  generator  of  the  cone  along  which  the  plane 
touches  the  cone. 

Other  leading  properties  of  the  quartic  surface  considered  are 

readily  obtained  by  the  method  of  Segre.  We  obtain  the  sixteen 
lines  of  the  surface  as  follows : 

The  surface  F  is  determined  by  the  equations 
5  5 

2  (ai  —  ctj)  Xi^  =  0,   %Xi^=0; 2  1 

by  a  change  of  the  coordinate  system  these   equations   may  be 
replaced  by 

X^X.-XsX,  =  0      (a) 
X 

■■^  +  (a^^X,,X,,X„X,y=0    (b). 

*  Since  its  equation  is  expressible  in  the  form  xiA+X2B  =  0,  if  a;i  =  a;2=0  is  the 
given  plane. 
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Every  plane  Xj  =XX3,  X^  =  XXo  (a  generating  plane  of  {a)), 
will  meet  (6)  in  a  conic,  which  reduces  to  two  lines,  if 

{a~^x„  x„  x„  x,y 
is  reduced  to  a  perfect  square ;  this  leads  to  a  biquadratic  in  X.. 

Hence  four  generating  planes  of  this  system  meet  F  in  two 

lines,  and  similarly  four  generating  planes  of  the  other  system 
meet  T  in  two  lines ;  this  gives  sixteen  lines  on  F,  and  therefore, 

by  projection,  on  the  nodal  quartic  surface. 

It  follows  also  that  eight  tangent  planes  of  each  cone  of 
Kummer  contain  a  pair  of  these  lines. 

Each  of  the  sixteen  lines  p  on  F  lies  on  each  of  the  five  cones 

of  the  system ;  the  plane  through  })  and  a  vertex  of  one  of  these 

cones  is  a  generating  plane  of  that  cone  and  therefore  meets  F 
in  another  line,  hence  each  of  the  sixteen  lines  is  met  by  five 
others. 

Cuhics  and  Quartics  on  the  surface. 

Any  hyperplane  through  one  of  the  sixteen  lines  meets  F  in 

a  cubic  curve,  and  since  there  are  oo  ̂   hyperplanes  through  any  line 
we  thus  obtain  sixteen  sets  of  oo  -  cubic  curves  on  the  surface. 

In  ̂5^4  there  are  oo  '^  hyperplanes  and  each  of  them  meets  F 
in  a  quadri-quartic,  any  two  of  these  quadii-quartics  intersect  in 
four  points,  lying  in  the  plane  common  to  the  two  hyperplanes ; 

through  these  four  points  there  pass  oo  ̂   quadri-quartics  deter- 
mined by  the  pencil  of  hyperplanes  through  the  plane  of  the 

four  points. 

Since  four  non-coplanar  points  determine  one  hyperplane,  it 

follows  that  one  quadri-quartic  of  the  surface  passes  through  any 

four  non-coplanar  points  of  a  nodal  quartic  surface. 

Any  hyperplane  ̂   =  0  cuts  the  quadri-quartic  k*  whose  projection 
is  the  double  conic,  in  four  points  lying  in  the  plane  of  intersection 

of  this  hyperplane  with  Df,  the  tangent  hyperplane  at  A. 
Let  Qi . . .  Q4  be  these  four  points  and  a  their  plane,  and  Qi  ...  Qi 

the  points  in  which  AQ,  etc.  again  meet  M  Let  ̂   be  the  polar 

plane  of  A  for  the  system  of  quadrics  through  k*  and  p  the  line 
(a/3);  then  the  planes  (pA),  a,  l3,  (pQi)  are  harmonic  and  the  plane 

(pQi)  must  pass  through  Q2  ...Qi',  i.e.  the  points  Q^  ...Qi  are 
coplanar.  Hence  we  have  00  ̂   quadri-quartics,  arising  from  the 

hyperplanes  %  +  '^Df—  0,  through  Qi  ...  (^4,  and  00  ̂   quadri-quartics 
through  Qi  ...Qi'.     It  follows  on  projection  that  each  of  the  00* 
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quadri-quartics  of  the  projected  surface  cuts  the  double  conic  in  four 
points  of  which  three  determine  the  fourth;  and  through  four  such 

points  there  pass  oo  ̂   quadri-quartics  on  one  sheet  of  the  surface  and 
00  ̂   quadri-quartics  on  the  other  sheet  of  the  surface. 

Among  the  qo  *  hyperplanes  of  ̂ ^4,  00  ̂   pass  through  A ;  these 
hyperplanes  meet  T  in  quadri-quartics  which  are  projected  into 
plane  sections  of  the  projected  surface. 

Quadrics  inscribed  in  the  surface. 

Let  jP=0  be  any  variety  of  the  pencil  (F,  <l>);  its  intersection 
with  the  polar  hyperplane  of  A  for  F  is  given  by  DF=  0,  F=0, 

and  is  a  quadric  A;  the  intersection  of  V  with  A  is  a  quadri- 

quartic  &.  Let  X  be  any  point  of  c^;  the  tangent  plane  to 
r  at  X  is  given  by  the  equations 

^-<-'' 

the tangent  plane  to  A  at  X is  given  by 

^^'ir'' I)F=0; 

dF each  of  these  tangent  planes  lies  in  the  hyperplane  2Xi  ̂   =  0, 

which  passes  through  A  since  X  is  a  point  on  DF=0.  Hence 

the  tangent  planes  to  T  and  to  A  at  X  lie  in  the  same  hyper- 
plane through  A,  they  are  therefore  projected  into  the  same 

plane  oi  S^. 

Thus  the  projection  of  A  touches  the  projection  of  T  along 

a  quadri-quartic,  the  projection  of  c^ 

Now  F  is  any  member  of  the  pencil  (F,  <I>),  hence  cc  ̂   quadrics 
touch  the  quartic  surface  along  quadri-quartic  curves. 

36.     Fundamental  inversions. 

As  in  the  case  of  the  quadric  in  three  dimensions  where  the 

points  of  contact  of  the  tangent  lines  to  a  quadric  <^  which  pass 

through  a  point  lie  on  a  plane,  so  the  points  of  contact  of  tangents 

passing  through  a  point  of  S^  lie  on  a  hyperplane,  the  polar  hyper- 
plane of  the  point.  If  C  is  the  vertex  of  a  cone  of  the  pencil 

{F,  4>),  the  polar  hyperplane  of  G  is  the  same  for  each  member  of 
the  pencil,  e.g.  if  the  system  is  determined  by  the  two  equations 

5  5 

^Xi-  =  0,   ̂ aiXi^  =  0, 
1  1 

the  polar  hyperplane  of  the  point  (10000)  is  Xi  =  0,  and  so  on. 
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Let  a  be  the  polar  hyperplane  of  C,  A  the  centre  of  projection, 

and  /  the  member  of  the  pencil  which  passes  through  A.  Then 

any  plane  through  the  line  (C,  A)  meets  /  in  a  conic  passing 

through  A  :  this  conic  is  met  by  a  =  0  in  two  points  B,  B'  whose 
join  is  the  polar  line  of  G  for  this  conic ;  so  that  if  any  line 

through  G  meets  the  conic  in  two  points  Q,  Q'  then,  by  elementaiy 
geometry,  {A,  BB'QQ']  =  -l. 

Now  there  are  two  generators  of  the  cone  whose  vertex  is  G 

which  lie  in  the  plane  of  this  conic ;  each  of  these  generators  meets 

the  conic  in  two  points  of  F,  since  the  points  lie  both  on  /=  0 
and  on  the  cone,  and  the  conic  is  projected  from  A  into  a  line 

of  *Si3,  hence  denoting  by  a  the  quadric  which  is  the  projection  of 

the  quadric  a  =  0,  /=  0,  and  the  projection  of  C  by  C"  (which  is  the 

vertex  of  a  cone  of  Kummer),  it  follows  that  any  line  through  C" 
meets  a  in  two  points  B^,  By  and  the  projected  quartic  surface  in 

two  pairs  of  points  Q^,  Q/;  R^,  R^'  such  that  both  Q^,  Qi  and 
Ri ,  Ri  are  harmonic  with  regard  to  B^ ,  B^. 

Hence  G'  is  said  to  be  a  centre  of  self-inversion  of  the  projected 
quartic  surface*. 

37.     Plane  representation  of  the  surface. 

To  represent  V,  and  therefore  the  projection  of  F,  upon  a  plane, 

we  take  the  oo  -  planes  through  a  line  p  of  F,  any  one  of  these 
planes  meets  any  two  varieties  of  the  pencil  {F,  ̂ )  in  p  and  two 
other  lines  respectively,  the  intersection,  Q,  of  these  latter  lines  lies 

on  F  ;  hence  the  plane  through  p  meets  F  in  one  other  point,  viz.  Q. 

Moreover  it  meets  any  given  plane  K  in  one  point  Q',  thus  there 
arises  a  (1,  1)  correspondence  between  the  points  of  F  and  K. 

The  five  lines  of  F  which  meet  p  have  as  images  the  five 

base-points ;  if  ̂   be  one  of  the  ten  lines  which  do  not  meet  p, 
the  hyperplane  through  p  and  q  meets  ̂   in  a  line,  and  since  this 

hyperplane  meets  F  in  two  non-intersecting  lines  p  and  q,  it  must 
also  meet  it  in  two  other  lines  which  meet  both  p  and  q.  Hence 

the  image  of  g-  is  a  line  passing  through  two  base-points. 
If  iCi  =  0,  a?2  =  0  are  tangent  hyperplanes  to  F  at  any  two 

points  of  p,  and  a?3  =  0,  Xi  =  0  the  tangent  hyperplanes  to  ̂   at 

these  points,  the  tangent  plane  to  F  at  any  point  of  p  is  repre- 
sented by 

Xi  H-  \x„  —  0,    it'j  -|-  \Xi  =  0. 

*  The  quadric  a-  is  the  quadric  H  of  Art.  31. 
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As  \  varies,  the  intersection  of  this  plane  with  the  given  plane 

K  is  clearly  a  conic ;  hence  the  points  of  F  contiguous  to  p  are 

represented  by  the  points  of  a  conic  which  passes  through  the  five 

base-points,  i.e.  the  image  ofp  is  this  conic. 

Again  the  oo  ̂   hyperplanes  through  p  meet  F  in  oo  ̂   cubics 

and  jff  in  00  ̂   lines,  i.e.  the  lines  of  K  are  the  images  of  oo  ̂   cubics 
of  F. 

Any  hyperplane  meets  F  in  a  quadri-quartic  and  also  meets 
each  of  the  five  lines  which  meet  p,  moreover  it  meets  any  cubic 

of  F  in  three  points,  hence  the  image  of  the  section  of  F  by  this 

h3rperplane  is  such  that  it  is  met  by  any  line  of  K  in  three  points ; 

it  is  therefore  a  cubic  which  passes  through  the  five  base-points. 

The  00  2  hyperplanes  through  A  which  give  rise  to  the  plane 
sections  of  the  projected  surface  (Art.  35)  meet  F  in  quadri-quartics 
such  that  through  any  three  points  of  F  there  passes  one  such 

quadri-quartic,  hence  among  the  oo  *  cubics  of  K  through  the 
base-points  there  are  oo  ̂   cubics  forming  a  net  or  linear  set ;  these 
are  the  images  of  the  plane  sections  of  the  projected  surface. 



CHAPTER  IV 

QUARTIC    SURFACES    WITH    A   NODAL    CONIC   AND 

ALSO    ISOLATED    NODES 

38.  A  quartic  surface  with  a  nodal  conic  may  have  in  addition 
one  or  more  isolated  nodes ;  such  a  node  is  the  vertex  of  a  cone  of 

Kummer,  for  taking  the  node  as  a  vertex  of  the  tetrahedron  of 

reference,  the  equation  of  the  surface  is 

where  A  =  0,  U=0  are  cones  whose  vertex  is  the  node,  and  L  =  0 

is  a  plane  through  the  node;  we  may  write  this  equation 

(U  +  x,L)- =  cc,' {L' -  A), 
hence  the  node  is  the  vertex  of  a  cone  of  Kummer. 

This  result  may  also  be  seen  from  the  fact  that  any  tangent  plane  drawn 
to  the  surface  from  the  node  meets  the  surface  in  a  quartic  curve  with  four 

nodes,  and  if  the  surface  is  not  ruled  this  section  must  consist  of  two  conies. 

The  sextic  tangent  cone  whose  vertex  is  the  node  D,  here 
consists  of  the  cone  V  of  Kummer  of  vertex  D  and  the  cone  U 

(counted  twice);  the  latter  cone  meets  the  surface  in  the  double 

conic  and  in  the  four  lines  given  hy  A  =  U  =  0. 
The  surface  contains  twelve  lines;  for  if  the  foregoing  four  lines 

meet  the  double  conic  in  Pj ...  P4,  through  the  line  DP  we  can  draw 

two  tangent  planes  to  V  each  of  which  meets  the  quartic  surface 

in  two  conies,  and  in  each  plane  there  is  therefore  one  other  line 

in  addition  to  DP^:  similarly  for  the  tangent  planes  drawn  to 

V  through  the  lines  DPg,  -DP3,  DP^.  Hence  we  have  in  all 
4  +  8=12  lines  on  the  surface. 

There  are  only  three  cones  of  Kummer  in  addition  to  V,  for  if 

we  take  the  vertices  of  the  triangle  self-polar  for  the  sections  of 
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U  and  V  by  x^  as  vertices  of  reference,  the  equation  of  the  surface 

may  be  written 

[aw-^^  +  hxi  +  cxi  +  2xi  {olx^  +  ̂ x^  +  r^x^)  +  ̂ Xx^^Y 
=  4a;/  [x^^  (1  +  \a)  ->rxi{l-\-  \h)  ■\-x^^{\+  \c) 

+  2X^4  (ax^  +  /Sa::,  +  r^x^)  +  X^aJi^}; 
and  the  values  of  \  for  which  the  quadric  on  the  right  is  a  cone 

are  given  by  the  cubic  equation 

1  +  Xa      \+\h      1  +  Ac  ' 

If  there  is  a  second  node  D',  then  if  the  cone  Y  contains  B' 
it  will  have  a  double  edge  and  therefore  consist  of  two  planes,  and 

the  equation  of  the  surface  is 
era  =  4w2p5. 

If  y  does  not  contain  B'  then  JJ  must  contain  it,  and  since  the 
line  DD'  meets  the  double  conic  it  therefore  lies  on  the  surface. 
The  equation  of  the  surface  may  be  written  in  either  of  the  forms 

where  Z),  the  vertex  of  V,  lies  upon  U=0,  and  D',  the  vertex  of  V, 

lies  upon  U'  =  0. 
In  this  case  two  of  the  lines  DP^ ...  DP^  must  coincide,  since  otherwise 

2)'  could  not  be  a  double  j)oint  of  the  curve  of  intersection  of  U  and  the 
quartic  surface,  consisting  of  four  lines.  In  fact  the  tangent  plane  at  any 

point  of  Biy  meets  the  surface  in  a  section  which  contains  four  nodes  lying 

on  Dfy,  hence  the  section  consists  of  the  line  DD'  taken  doubly  together  with 
a  conic.  The  tangent  plane  at  an^/  point  of  DB'  is  the  same  since  otherwise 
this  line  would  be  a  double  line  of  the  surface.     The  line  is  torsal. 

If  there  are  three  nodes  the  section  of  the  surface  through 

these  nodes  contains  five  double  points  and  therefore  consists  of  two 

lines  and  a  conic ;  one  line  joining  a  pair  of  nodes  does  not  lie  on 

the  surface,  whose  equation  may  be  written  in  either  of  the  forms 

(w^  +  F  -  pqf  =  4w2  F,     (V-pq-  w^)-  =  4^w^pq, 

where  the  vertex  of  Flies  upon  w-  —pq  =  0.  The  lines  joining  the 
vertex  of  F  to  the  two  nodes  each  meet  the  double  curve,  hence 

the  plane  through  these  two  lines  meets  the  surface  in  each  of 
them  doubly. 

If  there  is  a  fourth  node  two  lines  joining  a  pair  of  nodes  do 

not  lie  on  the  surface,  and  four  lines  joining  pairs  of  nodes  lie  on 

the  surface,  whose  equation  is  therefore 

(w-  -f  rs  —  pqf  =  ̂vfirs. 
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If  the  nodes  on  the  lines  (p,  q)  and  (r,  s)  are  Di,  D^.,  and  D^,  2)4  it  is  clear 
that  the  lines  A-^sj  -^lA?  AA'  A  A  lie  on  the  surface. 

There  cannot  be  more  than  four  nodes,  for  if  D  be  the  node 
which  is  the  vertex  of  a  cone  V,  then  V  cannot  contain  more  than 

one  other  node,  hence  the  remaining  nodes  must  lie  on  U,  and  it 
was  seen  that  each  node  on  U  causes  the  coincidence  of  a  pair  of 

the  lines  DPi  . . .  DP4 :  hence  U  cannot  contain  more  than  two 

nodes  of  the  quartic  surface  apart  from  its  vertex  D*. 

39.     Special  positions  of  the  base-points. 

It  will  now  be  shown  that  singularities  of  the  surface  arise 

from  special  relative  positions  of  the  base-points.  If  a  node 
exists,  any  line  through  it  meets  the  surface  in  two  points  apart 
from  the  node,  hence  any  two  cubic  curves  fi  which  correspond 

to  plane  sections  of  the  surface  through  the  node  meet  in  two 

variable  points  only. 
In  order  that  this  may  be  possible  one  of  the  two  following  cases 

must  arise :  Either,  in  the  first  case,  these  cubics  must  have  a 

common  node  and  intersect  in  three  other  fixed  points,  e.g.  if 

pa^i  =  ̂ 3^-^+  Is Li  +  Xi,     POS2  =  ̂3  Xo  -I-  iSa, 

p^3  =  I3X3 -f  23,  /ja;4  =  1^3  Z4  +  ̂4, 

where  the  Li  are  quadratic  in  |i,  |o  and  the  S^  cubic  in  |i,  ̂ a-  The 

point  (1000)  will  then  be  a  node  to  which  the  point  fi  =  ̂ 2=  0  will 
correspond.  The  system  of  cubic  curves  will  touch  at  the  point 

^j  =  I2  =  0,  so  that  two  base-points  coincide.  Thus  the  coincidence 

of  two  base-points  leads  to  a  node  on  the  quartic  surface. 
The  four  lines  through  the  node  correspond  to  the  following : 

the  point  consecutive  to  |i  =  ̂o  =  0  upon  ̂   =  0,  and  the  joins  of 

this  point  to  the  three  other  base-points. 
Or,  in  the  second  case,  three  base-points  are  collinear,  and  we 

may  take  as  equations  of  Clebsch 

pxi  =fi ,     px2  =  CLUo,     px^  =  CLu^,     pXi  =  au^, 

where  Wj  =  0,  1^3  =  0,  u^  =  0  are  conies  having  two  common  points, 

which  also  lie  upon  f  =  0.  The  base-points  are  then  given  by 
f^  =  a=0  and  the  two  other  common  points  of  the  system. 

*  These  surfaces  have  been  investigated  by  Korudorfer,  Die  Abbildung  einer 
Fldche  vierter  Ord.,  etc.,  Math.  Ann.  i.  and  11. 
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The  point  (1000)  is  seen  to  be  a  node,  for  if 

iCj       OCg       x^ 

be  any  line  through  it,  the  points  in  which  this  line  meets  the 

surface  have  as  their  images  the  intersections  of  the  conies 

«2  _  ̂'3  _  Mf 

A~  B~  C 

which  are  two  in  number,  apart  from  the  two  base-points. 

Hence  if  three  base-points  are  collinear  the  surface  has  a  node. 

The  image  of  the  node  is  here  the  line  a  =  0. 

Two  nodes  on  the  surface  may  arise  in  three  ways :  first  if 

the  base-points  are  doubly  collinear,  e.g.  when  the  join  of  the 

base-points  1,  5  meets  the  join  of  the  base-points  2,  4  in  the 
point  3;  secondly  when  two  base-points  are  coincident  and  three 

are  collinear ;  thirdly  if  there  is  a  double  coincidence  of  two  base- 

points. 

Considering  the  first  case,  let  a  =  0,  /3  =  0  be  the  lines  (1,  5) 
and  (2,  4) ;  the  equations  of  Clebsch  are  here 

px^  =  0.U ,     pXo  =  ct-^L^ ,     pxs  =  a^L^,     px^  =  /3v, 

where  w  =  0,  v=0,  are  conies  through  two  base-points ;   ij  =  0 
and  X2  =  0  are  any  lines. 

Thus  as  in  the  case  of  one  node  the  points  J-i,  Ai  are  nodes,  the 

line  /S  corresponds  to  A-^  and  a  to  ̂ 4;  to  the  point  a  =  /3  =  0  corre- 
sponds the  line  ̂ 1^14  which  lies  on  the  surface. 

There  are  nine  lines  on  the  surface  whose  images  are  the  base- 
points  and  the  lines  12.  45,  14,  25 ;  those  which  correspond  to  the 

base-points  1,  3,  5  pass  through  one  node  and  those  to  2,  3,  4 
through  the  other  node. 

There  are  three  sets  of  pairs  of  conies:  first  those  which  have  as 

their  images  the  pencils  of  lines  whose  centres  are  the  base-points 
1  and  5,  these  conies  pass  through  a  node  of  the  surface  which 

is  the  vertex  of  a  cone  of  Kummer;  secondly  those  correspond- 
ing to  the  pencils  of  lines  whose  centres  are  2  and  4,  these 

conies  also  pass  through  a  node  which  is  the  vertex  of  a  cone 

of  Kummer :  lastly  those  which  are  represented  by  the  conies 

through  the  base-points  1,  2,  4,  5  and  the  pencil  of  lines  whose 
centre  is  3. 

J.  Q.  s  5 
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That  there  are  only  three  cones  of  Kummer  may  also  be  seen  thus: 
referring  to  the  equation  of  Art.  38  ;  if  Z)  is  the  vertex  of  the  cone 

.r2+,y2  +  22  =  0, 
and  D'  the  vertex  of 

a:2(H-Xa)+?/2(l  +  Xi)  +  f^(l+Xc)  +  2wX(«rr  +  ̂j/  +  y2)  +  X2«;2=0, 

the  line  i)i)' is 
x{l  +  \a)  _y{l+\b)  _z{l-\-\c) 

and  since  DD'  meets  the  double  conic  we  have 

(1+Xa)2"*'(l+X6)2^(l+Xc)2       ' 
which  is  the   condition  that  the  cubic  equation  for  X  should  have  a  pair 

of  equal  roots. 

40.  When  three  base-points  are  collinear  and  two  are  coin- 
cident the  appropriate  equations  are 

pxi  =  ai^,'^,  +  ̂,Li  +  hiS,  (i  =  1,  2,  3,  4), 

where  the  Li  are  quadratic  and  S  cubic  in  ̂ 2>  ̂z- 

Here  the  node  hi  corresponds  to  the  line  ̂ i  =  0,  and  the  node 

«£  to  the  point  ?2  =  ̂s  =  0.  Thus  the  join  of  the  nodes  does  not  lie 
on  the  surface.  The  number  of  lines  of  the  surface  is  easily  seen 

to  be  eight.  There  are  three  cones  of  Kummer,  as  is  seen  by 

forming  the  discriminant  of 

the  surface  being  U-  =  'iw'^pq. 
When  a  coincidence  of  two  base-points  occurs  twice  we  obtain 

the  same  surface  as  in  the  first  case,  for,  as  before,  if  a  and  h  are 

the  points  at  which  coincidence  occurs,  each  of  these  points  will 

correspond  to  a  node  of  the  surface,  and  the  line  joining  them  is 

the  image  of  a  line  on  the  surface. 
The  case  of  three  nodes  arises  when  the  join  of  two  consecutive 

base-points,  say  1  and  5,  passes  through  another  base-point,  say  3, 
the  points  2  and  4  being  coincident.  The  three  nodes  correspond 

to  the  line  (1,  5)  and  to  the  points  1  and  2.  There  are  six  lines 
on  the  surface. 

When  the  join  of  the  (coincident)  points  2  and  4  passes 

through  3  we  have  four  nodes.  The  only  lines  on  the  surface  are 

the  four  which  respectively  correspond  to  the  point  3,  the  line  12 

and  the  base-points  consecutive  to  1  and  2, 
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41.     Coincidence  of  more  than  two  base-points. 
When  three  of  the  cubics  have  a  common  node  and  a  common 

tangent  thereat,  e.g.  if 

fi=^,ccLi  +  ̂ yPi  (1  =  1,2,3), 

where  the  Li,  Pi,  a,  /5,  y  represent  lines  through  the  point 

|i  =  |.  =  0; 

this  common  node  counts  as  five  intersections  of  any  two  of  these 

three  cubics.  If  ̂S'  be  any  cubic  passing  through  the  points  (^3,  /3), 
(I3,  7)  and  having  a  as  its  tangent  at  (|i,  I2),  the  system  of  cubics 

S+i.Xifi  =  0 1 

intersect  in  three  consecutive  points  at  (^1,  I2)  and  pass  through 

two  other  fixed  points.  Here,  therefore,  three  base-points  are 
coincident. 

Among  the  curves  of  the  system  appear  (i)  /SyP  =  0,  where  P 

is  a  line  through  the  point  ̂ ^  =  ̂2  =  0;  and  (ii)  a  (^3a-|-C;S7)  =  0. 
Each  of  these  curves  is  intersected  by  any  curve  fi  in  one  point  only 

apart  from  the  base-points ;  hence  the  node  is  hiplanar  with  the 
planes  (say  x^,  x^  corresponding  to  (i)  and  (ii)  as  tangent  planes 
thereat. 

When  the  nodal  cubics  fi  have  three  consecutive  points 

common  at  (^1,  ̂ 2)  on  the  branch  whose  tangent  is  a,  and  one 
other  common  point,  they  are  of  the   form 

^33  {Pi^  -F  a)  +  7  {qi^'  +  riulS  -h  SiO?)  =  0  ; 
where  we  have  ptlqt  the  same  for  each  cubic. 

Hence  the  preceding  cubic  (i)  is  ayP  —  0  and  the  planes  Xo^,  x^ 

intersect  in  the  line  of  the  surface  given  by  a  =  0:  the  binode  is 
therefore  of  the  second  species. 

If  *S  =  0  is  a  cubic  through  the  three  consecutive  points  and 
3 

the  additional  point,  the  cubics  S  +  '^  \ifi  =  0  intersect  in   four 1 

consecutive  points  at  (|i,  ̂ 2);  here,  therefore,  four  base-points  are 
coincident. 

Lastly  when  the  nodal  cubics  fi  have  four  consecutive  points 

common  at  (^1,  fo)  on  the  branch  whose  tangent  is  a,  they  are  of 
the  form 

laa  {pi/3  +  a)  +  qi^^  +  n/S'-a  +  Si  /Sol'  +  tiO?  =  0, 

with  the  conditions,  qi  =  Api,  ri  =  B+  Cpi. 
5—2 
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Hence  the  curve  (i)  is  a^P,  and  the  plane  ̂ o  therefore  touches 
the  quartic  surface  along  the  line  {x^,  x-^.     The  binode  is  of  the 

3 

third   species.     The  cubics  6'  +  S  Xj/j  =  0  have   five   consecutive 

points  in  common,  and  the  base-points  all  coincide. 
The  equation  of  a  surface  with  a  binode  is  of  the  form 

F^  -  2  Vx,x,  +  x^^x^x^  =  0, 

where  V=  0  is  a  quadric  cone  whose  vertex  is  the  binode. 

From  consideration  of  the  base-points  the  surface  is  seen  to 
contain  eight  lines. 

If  there  is  a  further  node  Q,  then  as  in  Art.  38,  the  line  joining 
Q  to  the  biplanar  node  P  lies  in  the  surface,  and  hence  in  one  of 

the  planes  x^,  x-^,  say  x^;  also  as  before  the  lines  of  intersection  of 
x^  and  V  coincide,  and  hence  x.^  touches  both  V  and  the  surface 

along  the  line  PQ. 

Conversely  if  x^  touches  the  surface  along  a  line  the  surface 
has  a  further  node  on  that  line  *. 

42.  Uniplanar  node. 

When  four  base-points  coincide  in  one  point  A,  and  the  fifth 

base-point  lies  on  the  tangent  at  A  to  the  cubics  of  the  system, 
we  have  a  uniplanar  node.  For  let  ;S^  be  any  particular  cubic  of 

the  system  and  /3  the  tangent  to  ̂   at  ̂ ,  then  any  cubic  of  the 
system  is  represented  by 

where  Pi  =  0  is  a  pair  of  lines  through  A. 

The  line  /3  =  0  corresponds  to  the  node ;  the  equations 

io^'i  = /3  (|3/3  +  Pi),  (^'=1,  2,  3) 
represent  plane  sections  through  the  node. 

One  derivable  equation  is  px  =  ̂ ^a,  and  the  line  a;  =  0,  .ri  =  0, 
meets  the  surface  in  one  point  only;  this  holds  only  for  the  plane 

x=0,  hence  the  node  is  uniplanar,  with  a;  =  0  as  its  tangent  plane. 

43.  Ruled  surfaces. 

If  all  the  cubic  curves  of  the  system  have  a  common  node  and 

one  other  common  point,  three  of  the  base-points  become  indeter- 
minate, viz.  three  of  them  come  into  coincidence  with  the  fourth 

*  If  .Tj  also  touches  V  we  have  a  second  node. 
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in  an  indeterminate  manner.  The  equations  of  Clebsch  are  of 
the  form 

where  Li,  Mi  are  quadratic  in  fi,  ̂2  and  where  we  must  assume  two 
linear  relations  between  the  Li  to  secure  that  the  four  cubics  have 

all  the  four  consecutive  points  in  common.  We  may  therefore 

take  as  equivalents  of  these  equations  the  following,  viz. 

p^r-i  =  Is  Zi ,     pxo  =  Is  Lo  +  f  1  Mo ,     pxs  =  |i  M, ,     px^  =  f  1 M^ . 

It  follows  that  to  each  line  of  the  pencil  I2  =  ̂ ^1  there  corre- 
sponds a  line  on  the  surface,  which  is  therefore  ruled.  Since  each 

cubic  is  nodal  and  has  therefore  zero  deficiency  the  surface  must 

possess  a  double  line  in  addition  to  the  double  conic. 

To  the  line  |i  =  0,  however,  there  corresponds  the  line 

573  =  3^4=0,  which  is  such  that  any  plane  through  it  meets  the 
surface  in  two  lines;  hence  the  line  {x3,Xi)  is  the  double  line; 

through  each  point  of  the  double  line  there  pass  two  generators, 

viz.  those  obtained  by  giving  any  constant  value  to  L^jL^. 

If  the  fifth  base-point  coincides  in  a  definite  way  with  the 

point  in  which  the  other  four  base-points  become  coincident,  the 
equations  of  Clebsch  are  of  the  form 

pxi  =  ̂ saLi  +  PiQiRi. 

Hence  if  we  join  any  point  on  the  line  p  determined  by  the 

equation  pXi  =  Li,  to  the  corresponding  point  on  the  cubic  curve 

given  by  the  equations  pXi  =  PiQiRi,  we  obtain  a  generator  of  the 
surface ;  hence  through  each  point  of  p,  the  double  line,  there 

passes  one  generator  of  the  surface. 

44.     Cuspidal  double  curve. 

We  now  consider  special  cases  of  the  quartic  surface  with  a 

nodal  conic  arising  from  peculiarities  of  the  double  curve.  Taking 

the  surface  to  be  x^^^  V+  U-  =  0,  we  obtain  the  two  tangent  planes 
at  any  point  of  the  double  curve  by  writing  Xi  +  |j  for  Xi  in 
this  equation  and  selecting  the  terms  of  the  second  order  in 

the  |i:    this  gives  as  their  equation  ff  7"+ (AIT)' =0,  where 

These  planes  coincide  at  each  point  of  the  double  curve  when  U 

is  a  cone  of  which  x^  =  0  is  a  tangent  plane ;  the  double  curve  is 
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then  a  line  which  is  said  to  be  hidouhle  (Segre);  the  corresponding 

equation  of  the  quartic  surface  being  then 

This  may  be  written  in  the  form 

Xi^  V+Xi  x^A  +  V = 0- 
There  are  two  triple  points  on  the  bidouble  line,  viz.  those  given  by 

Xi  =  x.2—  V=Q. 

The  sections  through  this  line  consist  of  conies  passing  through  the  triple 
points  which  in  a  number  of  cases  reduce  to  a  pair  of  lines.  Take  the  plane 
X2  as  containing  such  a  pair  and  the  tangent  planes  to  V  at  the  triple  points 
as  the  planes  x^,  Xi  ;  the  equation  of  the  surface  is  then 

x^  {x^xn  +  aX'^  +  hx^x-^ -\- x-^x.^A  +^"2^  =  0  ; 

which  may  also  be  written 
3 

{x^^Xx - 0^X2^)  (x^Xi - ^iX^)  =  X2 n {aiXx-\- ^iX^. 1 

This  shows  that  there  are  four  planes  through  the  bidouble  line  which 
contain  a  pair  of  lines  of  the  surface. 

Again  the  tangent  planes  will  coincide  at  each  point  of  the 
double  curve  for  the  case  in  which  V  contains  the  double  curve : 

the  surface  is  then 

Xx^{xxXo  +  aU)^-  U'  =  0, 

which  may  be  reduced  to  the  form 

Xi^x^  +  U-  =  0. 

The  tangent  planes  at  each  point  of  the  cuspidal  double  conic 

also  touch  U  and  hence  meet  in  the  pole  of  U  for  the  plane  Xi. 

The  plane  X2  is  a  trope. 

The  surface  has  two  "close-points"  G,  C ,  viz.  those  given 

by  Xx=  X2=  U  =0.  Taking  the  planes  B,  8'  which  touch  U  at 
C  and  C  as  the  planes  Xs,  x^,  U  takes  the  form 

It  is  clear  that  the  planes  S,  h'  each  contain  four  lines  of  the 

surface,  those  in  S  passing  through  G,  those  in  B'  passing 

through  G'. 

45.     Involutory  properties  :  class  of  the  surface*. 

Let  us  take  any  point  x  in  CC  and  its  polar  plane  a  for  U, 

<T  being  then  the  plane  x^^^^-^-  x^^i  =  0;  so  that  if  X  be  any  point 

*  See  Bela  Totossy,   Ueber  die  Fldchen  vierter   Ordnung  mit   Cuspidalkegel- 
schnitt.  Math.  Ann.  xix.  (1882). 
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of  a  the  line  \Xi  +  Xi  meets  the  surface  in  the  points  given  by 
the  equation 

Denoting  these  points  by  P,  P' ;  Q,  Q'  it  is  clear  that  we  thus 

obtain  two  sets  of  four  harmonic  points,  viz.,  x,  X,  P,  P'  and 

x,X,Q,Q';  hence  the  surface  is  in  involutory  central  collineation 
with  itself  for  any  point  K  of  CC  as  centre,  and  with  the  polar  plane 
of  K  for  U  as  plane  of  collineation.  From  consideration  of  a 

quadric  which  touches  the  surface  at  P  and  P',  it  is  clear  that 

the  tangent  planes  at  P  and  P'  meet  in  a  line  of  a:  If  the  line 

through  X  touches  the  surface,  the  points  P,  P'  and  X  all  coincide  ; 
hence  the  point  of  contact  of  any  tangent  line  to  the  surface 

through  X  lies  on  a  plane  section  of  the  surface ;  any  such  section 

is  of  class  six  since  it  possesses  two  cusps.  Now  the  class  of 

a  tangent  cone  is  equal  to  the  class  of  its  plane  section,  which  is 

in  this  case  six;  and  the  complete  tangent  cone  from  x  to  the 

surface  consists  of  the  plane  x^,  the  plane  x^  taken  thrice,  and  a 

quartic  cone  of  class  six ;  hence  six  must  be  the  class  of  the 

tangent  cone  from  any  point  to  the  surface ;  the  surface  is  there- 
fore of  class  six. 

46.     Cuspidal  conic  and  additional  node. 

Any  plane  through  the  hne  CC  meets  the  surface  in  a  pair  of  conies 
touching  at  C  and  C  ;  if  there  exists  a  node  D  of  the  surface  outside  the 

cuspidal  conic,  one  of  these  conies  must  reduce  to  the  lines  DC,  DC  which 

touch  the  residual  conic  of  the  section  by  the  plane  {DCC)  at  C  and  C 

Two  of  the  lines  in  S  coincide  and  j)ass  through  i>,  similarly  for  5',  hence  the 
surface  is  a  special  case  of  those  represented  by  the  equation 

{x^  —  kx2y-{x\,  x.^^af + XzXi{x^x\  +  {x-^^,  x^fby}  =0. 

The  planes  S,  S'  touch  the  surface  along  the  lines  DC,  DC  respectively 
and  cut  it  also  along  two  pairs  of  lines  passing  respectively  through  C  and  C 

and  meeting  on  the  line  (S,  S'). 

The  equation  of  the  tangent  cone  of  the  surface  at  D  is 

{x-^  —  kx^"^  {k,  l\a)'^  X^  +  ̂3  a;^  F;^ = 0, 

where  Xj  is  the  point  D  ;  if  the  node  is  biplanar  we  must  have  {h,  IJa)^  =  0,  and 
the  equation  of  the  surface  reduces  to 

(a.'i  -  kx<^^  L  +  ̂ 3^4  {.^3.^4  +  (a'i  ,  x^Y)  =  0, 

where  Z  =  0  is  a  plane  through  C,  C. 

Hence  the  planes  8,  b'  osculate  the  surface  along  the  lines  CD,  CD'  and 
each  contains  one  other  line  of  the  surface. 
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47.  Double  conic  consisting  of  two  lines. 

When  the  double  conic  is  a  pair  of  lines  the  surface  is  repre- 
sented by  an  equation  of  the  form 

V=0  being  a  cone ;  if  x.^  is  any  tangent  plane  of  V,  the  foregoing 

may  be  written 

(«3^^'4  +  XiA)-  =  x^  (C^  +  x^B). 

Let  x<2,  be  one  of  the  tangent  planes  of  V  which  meets  the 

surface  in  a  pair  of  lines  and  a  conic ;  one  of  these  lines  will  meet 
one  double  line  and  the  other  will  meet  the  second  double  line. 

Taking  these  four  lines  as  edges  of  the  tetrahedron  of  reference 

and  expressing  that  the  lines  {x.^,  Xg),  (x^,  x^)  lie  on  the  surface,  the 

equation  of  the  latter  may  be  written  in  the  form 

(x^Xi  +  Xi  ay  =  Xi"  (a-  +  x,^). 

If  any  point  on  a  double  line  be  joined  to  any  point  on  a 

simple  line  of  the  surface,  this  join  meets  the  surface  in  one 

further  point ;  this  affords  a  means  of  representation  of  the  surface 

on  a  plane  ;  for  if  we  write 

h .      _^ 

the  equation  of  the  surface  shows  that 

px,  =  f  1 V,     px.^  =  ̂2  u,      pX3  =  |i  V,      pXi  =  ̂ sV, 

where  u  =  0,  v  =  0  are  conies  such  that  one  of  their  intersections  is 

the  point  (^.,,  ̂3),  and  where  u  passes  through  the  point  (|^i,  ̂ 3).  The 

five  base-points  consist  of  the  points  {u,  v)  and  the  point  (^1 ,  ̂3). 
The  case  of  additional  nodes  arises  as  in  the  case  of  the  surface 

with  a  nodal  conic. 

Either  or  both  of  these  lines  may  be  cuspidal.  The  equation  of  the 
surface  in  the  latter  case  is 

[x^x^  —  Xi  (axi  +  6^2)}  ̂ = ^1^  ̂2  • 
An  additional  node  exists  if  4a6  =  l. 

48.  Classification  of  quartic  surfaces  with  a  nodal  conic. 

The  method  of  Segre  (Art.  35)  affords  a  means  for  the  classifi- 

cation of  quartic  surfaces  with  a  nodal  conic.  The  two  four- 

dimensional  varieties  F=^,  <I>  =  0  are  reduced  by  the  method  of 

Elementary  Factors*   of  Weierstrass   to   their   canonical   forms, 

*  See  Quadratic  Forms,  etc.,  Bromwich,  Camb.  Math.  Tracts;  or  the  Author's 
Treatise  on  the  Line  Complex. 

tVJL           e^  i>  *A^O    "~"      j^       *^3  J 
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leading  to  various  types  and  each  type  to  sub-cases.  Each  pair 
of  forms  thus  arising  affords  one  species  of  the  quartic  surface 
considered. 

An  elementary  factor  (A.  —  \i)V  of  ̂   +  X^  gives  rise,  if  Cp  is 
greater  than  unity,  to  a  group  of  terms  in  ep  variables,  viz., 

Aj  yXiCCg    +  X^^Xg      I  +  .  . .  +  Xg   X-y)  +  XyXg      I  +  . . .  +  Xg      iXi, 

{XyXg    +  . . .  +  ̂ ep^l)) 

in  F  and  ̂   respectively,  so  that  F  +\i<^  is  a  cone  of  the  pencil 

{F,  <I>)  whose  vertex  lies  on  each  variety  of  the  pencil ;  at  this  point 
the  varieties  have  a  common  tangent  hyperplane  Xi ;  this  point  is 
therefore  a  double  point  of  T. 

We  now  consider  the  principal  types,  indicating  them  as  in 

Segre's  notation  by 

{11111},     {2111},     {221},     {311},     {23},     {41},     {5}. 

The  surface  which  is  the  projection  of  V  is  denoted  by 

[11111],  etc.,  but  if  the  point  of  projection  A  lies  on  a  cone  of 

(F,  <J>)  the  projected  surface  is  represented  by  [11111],  and  so  on. 
The  general  type  [11111]  has  been  already  considered  in  the 

preceding  chapter ;  we  may  find  its  class  by  aid  of  this  method. 

Taking  F=kxi\     ̂   =  i  aixf, 
1  1 

the  required  class  is  equal  to  the  number  of  tangent  planes  of  the 

projected  surface  which  can  be  drawn  through  any  line  ̂   of  ̂ , ; 

but  if  the  projection  of  a  plane  tt  from  A  on  S3  passes  through  p, 

then  A,  p  and  tt  must  lie  in  the  same  hyperplane  ;  our  problem  is 

therefore  to  find  the  number  of  hyperplanes  through  the  plane 

(A,  p)  which  contain  tangent  planes  of  F.  If  the  plane  (A,  p)  is 
given  by  the  equations 

5  5 

^AiXi  =  0,     tBiXi  =  0, 
1  1 

the  condition  requires  that 

where  ai  =  Ai  +  \Bi.     Thus  we  obtain 

Oj  =  Xi(p+  a-ai),  (i  =  1 ,  2,  3, 4,  5), 
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whence               ^         a,--         _  ̂      ̂        «,- «/-       _  ̂  

and  therefore  S   ■ —  =  0. 
1+  -  Oi 

P 

These  equations  show  that  the  last  equation,  considered  as  a 

quartic  in  -  ,  has  equal  roots ;  and  forming  its  discriminant,  which r 

is  of  degree  six  in  a^^  we  obtain  an  equation  of  degree  twelve  in  \. 
The  class  of  the  projected  surface  is  therefore  twelve. 

We  now  proceed  to  consider  the  remaining  six  principal  types. 
The  canonical  forms  corresponding  to  the  type  {1112}  are 

At  the  point  (00001)  which  is  a  double  point  of  T,  F  and  ̂  

have  the  common  tangent  hyperplane  x^  =  0.  The  tangent  cone 
of  r  at  this  point  is 

Xi  =  (o-i  —  a'4)  ̂1^  +  («2  —  «4)  ̂2"  +  («3  -  ̂ 4)  ̂3"  =  0. 

This  cone  contains  the  four  lines 

^4  =  -'^1'^  +  ̂ /  +  ̂V^  =  ct-io;!^  +  0,2^2  +  «3^/  =  0, 

which  also  belong  to  T. 

If  there  is  any  additional  line  on  r>  the  plane  through  it  and 

the  vertex  of  the  cone  <I>  —  a^F  must  lie  on  this  cone.  Now 

through  any  generating  line  of  a  cone  in  St  we  can  draw  two 

generating  planes  (one  of  each  set),  Art.  35,  and  hence  through 
each  of  the  preceding  four  lines  ;  such  a  plane  meets  F  in  a  conic 
which  therefore  reduces  to  two  lines.  Hence  corresponding  to 

each  of  the  four  lines  through  the  double  point  we  have  two  other 
lines  of  T.  Therefore  the  surface  [1112]  has  a  conical  node  with 

four  lines  passing  through  it,  and  eight  other  lines.  The  class  of 

the  surface  is  ten,  being  diminished  by  two  from  that  of  [11111] 

owing  to  the  additional  node. 

In  [1112]  the  same  applies,  the  double  conic  being  here  two 
intersecting  lines. 

In  [1112]  the  point  of  projection  lies  on  the  cone  ̂   —  a^F;  the 
double  point  of  T  is  projected  into  the  intersection  of  the  two 
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double  lines,  and  this  point  is  now  triple*;  the  tangent  cone  at  it 
consists  of  the  plane  of  the  double  lines  and  the  projection  of  the 
tangent  cone  of  T  at  its  node. 

If  r  is  of  the  type  fl22},  F  and  ̂   have  the  forms 

<l>  =  a^x^  +  2a2^2^3  +  la-^x^x^  +  x^  +  x^. 

Here  V  has  two  nodes,  viz.  (00100),  (00001) ;  the  tangent  cones 
thereat  being 

^2  =  (o^i  —  0^2)  ̂\  +  2  {ih  —  cr-2)  ̂4a''5  +  a;/  =  0 ; and 

X^  =  (Ui  —  tts)  X^^  +  2  (tta  —  Us)  X2X3  +  x}  =  0. 

The  line  joining  the  nodes  belongs  to  F,  and  along  this  line 
the  plane  x..  =  x^  =  Qi  touches  both  F  and  ̂   and  therefore  F. 

Through  the  first  point  there  pass  the  two  lines 

Xo,  =  x^  +  2x^x^  =z  a^x^  +  la^x^x--,  +  a;/  =  0  ; 

similarly  two  lines  pass  through  the  second  point. 

As  in  the  case  {1112}  each  of  these  additional  four  lines  gives 
rise  to  a  line  of  F;  hence  F  contains  nine  lines  in  all. 

The  nature  of  the  surfaces  [122],  [l22],  [122]  is  therefore 
determined. 

For  the  type  {113}  we  have 

F=x^--V  xi  +  xi-  +  IxzX^, 

<t>=  a^x^  +  a.^xi  +  tts  (^/  +  2/^3 a^s)  +  Ix^x^. 

The  point  (00001)  is  a  double  point  of  F;  the  tangent  cone  at 
it,  which  is  represented  by 

^3  =  0,     (ai  —  tts)  x^  +  (c/o  —  fla)  X.?  =  0, 

breaks  up  into  two  planes  /ij,  }jb^,  whose  intersection  does  not  lie 

on  F.  The  point  is  therefore  hiplanar.  It  is  easily  seen  that 
through  the  double  point  there  pass  four  lines  of  F,  of  which  two 

ri,  r/  lie  in  ̂ 1  and  two  r.^,  i\  in  yttg-  Through  r-^  there  passes  a 

generating  plane  of  the  cone  ̂   —  a^F  =  0,  of  the  same  system  as  /ig ', 

*  For  any  plane  a  passing  through  A  and  the  vertex  K  of  the  cone  corresponding 
to  2  meets  that  cone  in  two  lines,  and  each  of  these  meets  F  in  one  other  point 

giving  two  points  Q,  R  ot  V  on  a.  The  plane  a  is  projected  from  A  on  S^  into 

a  line  r  passing  through  K'  the  projection  of  K ;  and  Q,  R  are  projected  into  the 
two  other  points  in  which  r  meets  the  surface.  If  however  A  lies  on  the  cone,  one 
of  the  two  previous  lines  must  pass  through  A ,  and  r  thus  meets  the  surface  in  one 

point  only  (apart  from  K'}  ;  the  point  K'  is  therefore  triple. 
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and  so  for  the  three  other  lines  r^,  r.,,  ?-./;  hence  each  of  these  four 
planes  meets  F  in  an  additional  line,  giving  rise  to  four  new  lines 

Si,  Sj  ,   ̂2,  S2  . 

Hence  applying  to  the  surface  [113]  we  have  a  surface  of 

the  ninth  class*  which  has  a  biplanar  node  and  contains  eight 
lines. 

For  the  type  {23}  we  have 

From  consideration  of  the  cases  {1112},  {113}  it  is  seen  that  F 

possesses  a  conical  node  at  D  and  a  biplanar  node  at  D'  at  which 
the  tangent  cone  breaks  up  into  two  planes  /Ai  and  fx...  The  line 

DD'  is  given  by  Xi  =  x-i  =  Xi  =  0;  and  the  plane  ̂ tj  is  x■^  =  x■i=^0^, 

this  touches  F  along  the  line  DD'.  As  in  {113}  there  are  two  lines 
r2,  r^  in  the  plane  fX2. 

The  section  of  F  by  its  tangent  hyperplane  x-^  at  D  is 

and  is  therefore  the  line  DD'  together  with  one  other  line.  The 
two  generating  planes  of  the  cone  whose  vertex  is  D  which  pass 

through  the  latter  line,  meet  the  surface  in  two  new  lines.  These 
six  lines  constitute  all  the  lines  of  the  surface. 

The  nature  of  the  surfaces  [23],  [23],  [23]  follows  immediately; 

they  are  of  the  seventh  class,  the  first  has  a  conical  node  and  a 

biplanar  node,  the  second  has  a  conical  node  and  a  triplanar  point, 

the  third  has  a  biplanar  node  and  the  intersection  of  the  double 

lines  as  a  triplanar  point. 

For  the  type  [14}  we  have 

F  =  x^-  +  2x.2X6  +  "^x^x^, 

<3>  s  a^x^  +  2a2  (^2^5  +  ̂ 3^4)  +  '^.x^x^  +  x^. 

The  double  point  D,  or  (01000),  is  here  biplanar,  and  the  two 

nodal  planes  intersect  in  a  line  which  lies  on  F ;  the  biplanar  point 

is  therefore  of  the  second  kindf. 

The  nodal  planes  meet  F  also  in  two  lines  1\,  r^  through  D. 

In  the  two  other  generating  planes  of  the  cone  whose  vertex  is  D 

which  pass  through  r^  and  ?^,  respectively  there  are  two  other  lines 

*  A  biplanar  node  of  the  first  kind  reduces  the  class  of  the  surface  by  three. 
Salmon,  Geom.  of  three  dimensions,  p.  489. 

t  See  Salmon,  I.e. 
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of  r  (say)  Si  and  ̂ 2,  which  meet  r^  and  rg  respectively ;  and  since 
the  line  of  intersection  of  these  latter  planes  meets  Si  and  Sg  it 

must  therefore  meet  them  in  the  same  point.  Hence  we  have 

four  lines  on  T  forming  a  skew  quadrilateral,  together  with 

another  line  through  D. 

The  preceding  defines  the  surfaces  [14],  [14],  [14]  which  are 
of  the  eighth  class. 

For  the  type  (5}  we  have 

The  (one)  cone  of  the  pencil  meets  iCi  in  the  two  planes 

Xi  =  X2  ̂^^  u  5        Xi  ̂   x^  =  u  \ 

and  these  planes  meet  in  a  line  r  of  F.  The  first  plane  touches  F 

along  r  ;  thus  since  one  of  the  nodal  planes  touches  F  along  r,  the 

biplanar  point  is  of  the  third  species. 
The  other  nodal  plane  meets  F  in  a  line  r,  through  D. 

Another  generating  j)lane  of  the  cone  passes  through  r'  which 
meets  F  in  a  line  s.     The  lines  r,  r  and  s  are  the  only  lines  on  F. 

The  properties  of  the  surfaces  [5]  and  [5]  follow  ;  they  are  of 

the  seventh  class ;  the  latter  has  two  double  lines  meeting  in 

a  triplanar  point. 

49.     Cones  of  the  second  species. 

In  the  preceding  types  the  pencil  {F,  ̂ )  contains  cones,  the 

equation  of  each  cone  being  expressible  in  terms  of  four  variables. 

When,  however,  two  elementary  factors  are  equal,  the  equation  of 

the  corresponding  cone  0  —  a^  F  =  0  contains  not  more  than  three 
variables  and  the  cone  is  said  to  be  of  the  second  species ;  e.g.  in 

{(11)  111]  we  have 

<J>  -  a^F  =  (tts  -  Oi)  x^^  +  (04  -  ai)  a;/  +  {a^  -  a^  x^. 

This  cone  has  00  ̂   generating  planes  through  the  line 

In  the  previous  types  there  were  seen  to  be  two  systems  of 

generating  planes  given  as  the  intersection  of  a  cone  with  its 

tangent  hyperplanes.  In  the  present  case  we  have  one  system  of 
generating  planes  obtained  as  the  intersection  of  the  cone  with  its 

tangent  hyperplanes  which  all  pass  through  the  line 

x^  =  x^  =  ajg  =  V, 



78  QUARTIC   SURFACES   WITH    A   NODAL   CONIC  [CH.  IV 

the  edge  of  the  cone.    In  each  generating  plane  there  is  one  conic 
of  r. 

Each  of  these  conies  passes  through  the  two  points  of  inter- 
section of  the  edge  of  the  cone  with  F.  At  either  of  these  points 

there  is  a  tangent  hyperplane  common  to  the  pencil ;  these  points 
are  therefore  double  points  of  T. 

If  the  group  considered  is  (11)  there  are  two  such  double 

points;  if  it  is  (21),  (31),  (41)  the  points  coincide,  as  is  seen  by 
reference  to  the  coiTCsponding  forms. 

In  the  cases  {1  (22)},  {(23)}  the  edge  itself  is  seen  to  lie  on  F; 
in  these  cases  since  each  generating  plane  of  the  cone  meets  F  in 

the  edge  and  one  other  line,  there  arise  oo  ̂   lines  on  F,  which  is 
therefore  a  ruled  surface,  having  the  edge  as  a  double  line. 

We  can  easily  determine  the  number  of  lines  on  F  in  the 

other  cases  ;  for  any  line  of  F  must  lie  on  this  cone  of  the  second 

species  and  therefore  meet  the  edge  in  one  of  the  double  points  of 

F  upon  it.  The  tangent  hyperplane  at  either  of  these  double 

points  meets  the  pencil  {F,  ̂ )  in  a  pencil  of  ordinary  quadric  cones 

having  the  double  point  as  vertex ;  the  lines  of  intersection  of 

two  of  these  cones  will  be  the  lines  of  F  through  the  point.  Hence 

these  surfaces  cannot  have  more  than  eight  lines. 

Projecting  F  on  >S'3  gives  us  the  surface  we  are  investigating. 
In  this  case,  however,  the  point  of  projection  A  may  lie  on  a  cone 

of  the  pencil  {F,  ̂ )  of  the  second  species.  Here  only  one  generating 
plane  of  this  cone  passes  through  A,  which  cuts  F  in  a  conic 

which  is  projected  from  A  on  S^  into  a  line  which  will  be  a  double 

line  of  the  projected  surface.  Reference  to  Art.  35  shows  that 

if  y=  0  is  a  cone  of  the  second  species,  the  double  line  of  the 

projected  surface,  given  by /=  Z)/=  ScTj^i  =  0,  is  therefore  to  be 

regarded  as  arising  from  the  coincidence  of  two  double  lines*. 
This  line  contains  two  triple  points  (distinct  or  coincident),  the 

projections  of  the  two  double  points  of  F  which  lie  on  the  edge  a 

of  F.  For  the  generating  planes  of  /  cut  F  in  conies  through  the 
two  double  points,  hence  their  projections  from  A  meet  ̂ 3  in  conies 

through  the  projections  of  these  points  which  are  therefore  triple f. 

Each  of  the  00  -  hyperplanes  through  the  edge  of  the  cone 
meets  the  cone  in  two  planes  ;  each  tangent  hyperplane  of  the 

*  Segre  calls  this  line  bidouble,  see  page  70. 
+  Since  any  line  through  one  of  these  points  on  the  projected  surface  meets  the 

surface  in  one  other  point  only ;  see  page  75,  footnote. 
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cone  meets  it  in  a  generating  plane  counted  tAvice,  and  hence 

touches  r  in  a  conic.  If /=  0  is  the  variety  of  the  pencil  {F,  ̂ ) 

which  passes  through  A,  and  c^  =  0  any  hyperplane,  the  inter- 

section of  y  and  Cx  is  projected  from  A  upon  ̂ S'^  into  the  quadric .5  5 

CxBf  —  Cx'f  =  0,  %aiXi  =  0 ;  where  Saf^i  =  0  represents  S^.     This 1  1 

quadric  passes  through  the  double  conic  /=  Df=  0.  Now  let  Cx 

be  one  of  the  preceding  hj^perplanes  through  the  edge  of  the  cone 

of  the  second  order;  we  obtain  on  projection  co  -  quadrics  through 
ike  double  conic  and  the  two  double  points ;  each  meets  the  quartic 

surface  in  two  conies. 

If  Cx  is  one  of  the  x '  tangent  h\^erplanes  of  the  cone  of  the 

second  species  we  obtain  on  projection  x  ̂   quadrics  touching  the 
quartic  surface  along  a  conic  and  passing  through  the  double  conic. 

Through  any  point  of  Si  there  pass  two  of  these  tangent 

hyperplanes,  hence  through  any  point  of  *S^3  there  pass  two  quadrics 
containing  the  double  curve  which  touch  the  quartic  surface  along 
a  conic.  Thus  the  quartic  surface  is  the  envelope  of  a  system  of 

quadrics  simply  infinite  and  of  the  second  order  which  pass  through 

the  double  conic  and  the  two  double  points  of  the  quartic  surface*. 
The  existence  of  this  set  of  quadrics  is  peculiar  to  those 

surfaces  which  have  a  cone  of  the  second  species.  For  such  a 

quadric  is  the  projection  from  A  of  the  intersection  of  some  hyper- 
plane Cx  with/,  the  variety  through  A.  This  hyperplane  therefore 

touches  r  along  a  conic,  and  hence  Cx  meets  the  pencil  {F,  <I>)  in 
a  pencil  of  quadrics  which  touch  along  this  conic;  among  these 

quadrics  is  therefore  included  the  plane  of  the  conic  counted 

twice ;  if  Cx  =  dx  =  0  is  this  plane,  it  is  seen  that  among  the 

varieties  of  the  pencil  {F,  <I>)  there  is  one  of  the  form  dx'  +  c^e^, 
and  this  is  a  cone  of  the  second  species. 

50.     Quartic  surfaces  with  a  cuspidal  conic. 

It  was  seen  (Art.  35)  that  if  /  =  0  is  the  variety  of  the  pencil 

{F,  <J>)  which  passes  through  A  (or  cc),  and  ̂   any  variety  of  the 
pencil,  the  equations  of  the  projection  of  V  from  A  on  S^  are 

W4>'  -  DfD<pY  =  {Dff  [(Dcj>y  -  4(^f  1, 
t'^iXi  =  0. 

*  For  the  surface  0-  =  iic'^pq,  the  quadrics  are  /x-u-p  +  iJ.<f>  +  wq  =  0.  We  have  also, 
as  in  the  general  case,  the  quadrics  X-ic-  +  X0  +pq  =  0,  which  touch  the  surface  along 
quadri-quartics. 
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Let  X  be  any  point  on  the  double  conic  and  x  +  ̂   a.  point  on 

the  surface  contiguous  to  x ;  substituting  a'  +  |  for  x  and  retaining 
only  terms  of  the  second  order  in  |,  we  obtain  as  one  of  the 

equations  of  the  two  tangent  planes  to  the  surface  at  x, 

{2L(f>'  -  MDcf)}^  =  M'  {(D(f)y  -  4</)f }, 

where  L  and  M  are  the  terms  of  the  first  order  in  |i  arising  from 

/and  i)/ respectively. 
If  these  planes  coincide  we  have 

(2)^)2  _  ̂ ^'  =  0. 

This  equation  together  with  /=  0,  Df=  0,  ]Sa,a;,:  =  0,  gives  the 

four  pinch-points  on  the  double  conic.  These  planes  coincide  at 

each  point  of  the  double  curve  if  the  tangent  cone  to  <^  =  0  from 

x'  contains  the  three-dimensional  cone  f=  0,  -£}/=  0.  Hence  we 
have  an  identity  of  the  form 

4.cf>4>'-(D4>r^Af+XDf, 

i.e.  4</)</)'  -Af=  {D(t>y  +  XDf. 

This  shows  that  the  pencil  must  contain  a  cone  of  the  second  species. 

Thus  having  given  a  pencil  {F,  ̂ )  which  contains  a  cone  i/r  of 

the  second  species,  the  surface  V  projected  from  A  on  S^  has  a 

cuspidal  conic  provided  that  A  is  so  chosen  that  the  tangent 

hyperplane  at  A  of  the  variety  through  A  is  also  a  tangent 

hyperplane  of  t/t. 
The  equations  of  the  surface  given  at  the  beginning  of  this 

article  may  therefore,  when  a  cuspidal  conic  exists,  be  written 
in  the  form 

koiiXi  =  0,    {2fcf>'  -  DfD^f  =  (Dfr  [Af+  XDf} ; 1 

the  latter  equation  is 

{2fx'-DfDxy  =  (DfyL, 

where  %=  <^  +  7~n/>  ̂ ^^d  L  is  linear  in  the  variables.     This  is  the 

equation  obtained  in  Art.  44. 

The  close-2')oiiits. 
The  two  intersections  of  the  edge  of  a  cone  of  the  second 

species  with  T  were  seen,  in  the  general  case,  to  give  rise  to  two 

nodes  on  the  projected  surface ;  when  a  cuspidal  conic  exists,  since 
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the  tangent  hyperplane  of  the  variety  through  P  passes  through 

the  edge  of  this  cone,  these  two  intersections  are  therefore  pro- 
jected into  two  points  on  the  cuspidal  conic ;  they  are  the  two 

close-'points. 

Quartic  surfaces  with  a  bidouble  line. 

If  A  (or  x')  lies  on  a  cone  of  the  second  order  i^  =  0,  then 
j[)v^  =  0  touches  -v/r  along  a  plane  tt,  also  tt  meets  cf>  (any  variety  of 

the  pencil)  in  a  conic  c-  on  T.  The  tangent  plane  to  T  at  any 

point  X  of  c*  is  given  by  the  equations 

3 

If  we  suppose,  as  is  permissible,  yjr  to  be  of  the  form  Xai^i-  =  0, 1 

it  is  seen  that  the  first  of  these  hyperplanes  is  identical  with 

D-yjr  =  0,  since  for  each  point  a;  of  tt  we  have 
iCj        CC2        oc^ 

7  —       7  ~"       1  • 
M? J  Xt^  Xg 

Hence  the  tangent  plane  of  F  at  any  point  of  c'  lies  in  the 
fixed  hyperplane  i)>/r  =  0,  and  is  therefore  projected  from  A  into 

the  same  plane  of  S3,  viz.  Dyfr  =  0,  Xa.iXi  =  0.  The  pair  of  tangent 
planes  at  each  point  of  the  bidouble  line  coincide. 

51.  Of  the  sub-types  arising  from  the  equality  of  elementary 
factors  the  first  is 

{(11)111}. 
As  stated  in  Art.  49  we  have  two  nodes  on  T ;  the  line  joining 

them  does  not  belong  to  F.  Hence  there  arises  the  surface 

[(11)  111],  treated  in  Art.  38,  possessing  two  nodes  whose  join 
does  not  lie  on  the  surface.  This  includes  the  special  case  of 

a  cuspidal  double  conic.  __ 

Other  special  cases  are  [1(11)11],  [(11)111]  having  respec- 
tively two  double  lines  and  two  nodes,  and  a  cuspidal  line  containing 

two  triple  points. 

The  characteristics  of  the  various  other  sub-types  are  given  in 

the  table  at  the  end  of  this  chapter*. 

52.  Steiner's  surface. 

The  pencil  (F,  <l>)  may  consist  entirely  of  cones  of  the  first 

order  having  a  common  generator  and  a  common  tangent  hyper- 
plane along  this  generator. 

*  For  many  details  see  Segre,  loc.  cit. 

J.  Q.  s.  6 
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Such  a  system,  for  instance,  arises  from  the  cones 

The  line  upon  which  the  vertices  of  these  cones  lie  is 

fct'i   ~—  4//0  ~^  *^3  ~~"  ̂ ) 

this  lino  is  a  double  line  of  F.  Through  A,  the  point  of  projec- 
tion, there  passes  one  cone  of  the  system,  its  two  generating 

planes  through  A  intersect  on  a  line  which  meets  the  double  line 

of  r  in  the  vertex  of  this  cone.  Hence  the  projected  surface  has 
three  concurrent  double  lines,  viz.  the  projection  of  the  double  line 

of  r  and  the  projections  of  the  conies  in  the  two  generating 
planes  through  A. 

Each  of  the  00  ̂   cones  has  two  sets  of  generating  planes 
meeting  F  in  conies,  hence  arise  00  ̂   pairs  of  conies  in  plane 
sections  of  the  projected  surface.  Three  of  the  points  of  inter- 

•section  of  such  a  pair  of  conies  lie  on  the  three  double  lines,  the 
fourth  point  is  a  point  of  contact  of  the  plane  with  the  surface. 

'The  surface  is  therefore  a  Steiner's  surface  (Chapter  vii). 

53.  We  add  Segre's  Table  which  contains  a  complete  list 
of  the  different  kinds  of  quartic  surfaces  with  a  double  conic 

(including  two  lines  or  a  bidouble  line). 

Character  of  the  surface 

General  surface 

One  node 

Biplanar  point  of  the  first  species 
Two  nodes ;  the  line  joining  them  belongs  to  the 

surface 

Biplanar  point  of  second  species 
One  node  and  a  biplanar  point  of  first  species 

Biplanar  point  of  third  species 
Two   nodes  ;    the  line  joining  them   does  not 

belong  to  the  surface 
A  biplanar  point  of  the  second  species 

Three  nodes ;   the  lines  joining  two  of  them  to 

the  third  belong  to  the  surface 

A  node  and  a  biplanar  point  of  the  second  species 

A  uniplanar  point  of  the  first  species 

Two  nodes  and  a  biplanar  point   of  the  first 

species 
[(41)]  5  A  uniplanar  point  of  the  second  species 

Index 
Class  of  the 

surface 

[11111] 

[2111] 
[311] 

[221] 

12 

10 

9 

8 

[41] 

[32] 
[5] 

[(11)  111] 

8 

7 

7 
8 

[(21)  11] 

[(11)  21] 

8 

6 

[(21)  2] 
[(31)  1] 

[(11)  3] 

6 

6 
5 
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Class  of  the 
Index  surface  Character  of  the  surface 

[(11)  (11)  1]  4  Two  pairs  of  nodes 

[(21)  (11)]  4  A  pair  of  nodes  and  a  biplanar  point  of  the 
second  species 

[(22)  1]  4  Ruled  surface  (class  II  of  Cremona) 

[(32)]  4  Ruled  surface  (class  IV  of  Cremona) 

Surfaces  with  a  cuspidal  conic. 

[(11)111]  6  General  case 

[(21)  11]  6  The  close-points  of  the  double  conic  coincide 
[(11)  21]  4  One  node 

[(21)  2]  4  The  close-points  coincide,  one  node 

[(31)  1]  4  There  is  a  point  in  which  the  two  close-points 
coincide  with  a  node 

[(11)3]  3  A  biplanar  point  of  the  first  species 

[(41)]  3  A  singular  point  of  coincidence  of  the  close-points 
with  a  biplanar  point 

Surfaces  with  two  double  lines  {meeting  in  a  point 
which  is  not  a  triple  point). 

General  case 

One  node 

A  biplanar  point  of  the  first  species 

Two  nodes ;  the  line  joining  them  belongs  to  the 
surface 

A  biplanar  point  of  the  second  species 
Two  nodes 

A  biplanar  point  of  the  second  species 
Three  nodes 

A  uuiplanar  point  of  the  first  species 

Two  pairs  of  nodes 
Ruled  surface  with  three  double  lines 

Surfaces  with  a  double  line  and  a  cuspidal  line. 

General  case 

The  close-points  coincide 
One  node 

The  preceding  node  lies  on  the  cuspidal  line 
Two  nodes 

Ruled   surface  with    two    double   lines   and  a 

cuspidal  generator 

[I  (22)]  4  Ruled  surface  with  two  coincident  directrices 

and  a  double  generator 

6—2 

[Hill] 12 

[1211] 10 

[131] 9 

[122] 8 

[14] 8 

[i  (11)  11] 8 

[1  (21)  1] 8 

[1  (11)  2] 6 

[T  (31)] 6 

[1  (11) (11)] 4 

[1  (22)] 4 

[122] 8 

[14] 8 

[1  (11)  2] 6 

[1  (31)] 6 

[1  (11)  (11)] 4 

[1  (22)] 4 



[311] 9 

[221] 8 

[41] 8 

[23] 7 

[32] 7 

[5] 7 

[2  (11)  1] 6 

[2  (21)] 6 

[3  (11)] 5 
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Surfaces  with  tiuo  cuspidal  lines. 
Class  of  the 

Index  surface  Character  of  the  surface 

[1(11)  2]  6  General  case 

[1  (31)]  6  Particular  case 

[1(11)  (11)]  4  One  node 

Surfaces  vjiih  a  triple  point  through  which  two  double  lines  pass. 

[2111]  10  General  case;    the  tangent  cone  at  the  triple 

point  consists  of  the  plane  of  the  double 
lines  and  a  quadric  cone 

The  triple  point  is  triplanar 
One  node 

The  triple  point  is  a  special  triplanar  point 
A  biplanar  jjoint  of  the  first  species 

One  node  ;  the  triple  point  is  triplanar 

The  triple  point  is  a  special  triplanar  point 
Two  nodes 

A  biplanar  point  of  the  second  species 

The  triple   point  is   triplanar;    there  are  two 
nodes 

Surfaces  with  a  triple  point  through  which  there  pass  a  double 
line  and  a  cuspidal  line,  or  two  cuspidal  lines. 

[32]  7  One  double  and  one  cuspidal  line 

[5]  7  The  close-point  coincides  with  the  triple  point 
[3  (11)]  5  One  node 
[3  (11)]  5  Two  cuspidal  lines 

Steiner's  surface. 
3  General  case 

3  Two  of  the  double  lines  coincide 

3  The  three  double  lines  coincide 

Surfaces  with  a  bidouhle  line  (containing  two  triple  points 
distinct  or  coincident). 

[(IT)  111]  8  General  case;   the  tangent  cone  at  each  triple 
point  breaks  up  into  a  plane  and  a  quadric 
cone 

[(2T)  11]  8  The  triple  points  coincide  in  a  triplanar  point 

[(TT)  21]  6  One  node 

[(2l)  2]  6  The  triple  points  coincide ;  one  node 

[(IT)  3]  5  A  biplanar  point  of  the  first  species 
[(41)]  5  The  double  nodal  plane  of  the  triple  point  of  the 

last  case  but  one  touches  along  a  simple  line 

[(IT)  (11)  1]  4  Two  nodes 

[(Tl)  (21)]  4  A  biplanar  point  of  the  first  species 

[(21)  (11)]  4  The  two  triple  points  coincide ;  two  nodes 
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Surfaces  with  a  cuspidal  line  of  the  second  species. 

Character  of  the  surface 

General  case ;  the  cuspidal  line  contains  a  triple 

point  and  a  point  of  osculation  of  the  two 
sheets 

The  points  just  mentioned  coincide  in  a  triple 

triplanar  point 
One  node 

Ruled  surfaces  with  a  triple  line. 

General  case  (class  III  of  Cremona) 

Ruled  surface  (special  case  of  class  X  of  Cremona) 

Index 
Class  of  the 

surface 

[(21)  2] 6 

[(41)] 5 

[(21)  (11)] 4 

Ruled  . 

[(22)  1] 
[(32)] 

4 
4 



CHAPTEK  V 

THE    CYCLIDE 

54.  When  the  double  conic  is  the  section  of  a  sphere  by  the 

plane  at  infinity  we  obtain  the  surface  known  as  the  cy elide*. 
The  equation  of  a  cyclide  in  Cartesian  coordinates  is  therefore 

S^  +  u  =  ();  where  S=0  represents  a  sphere,  and  w  =  0  is  a quadric. 
Taking  the  centre  of  S  as  the  origin  and  the  axes  in  the 

directions  of  the  principal  axes  of  u,  we  obtain  as  the  equation  of 
the  surface 

{x"  +  2/2  +  z'^y  +  4  {A^a^  +  A^tf  +  A^z^"  +  ̂ B^x  +  2B.y  +  2B^z  +  C)  =  0. 
As  in  Chapter  iii  we  may  write  this  equation  in  the  form 

{x'^y'^  +  z'-  2xy  +  4  {(^1  +  \)x^  +  (A.  +  \)y^  +  {As  +  \)z^ 

+  2B,x  +  2B„y  +  W^z  +  0-  X^}  =  0. 

The  second  member  of  the  left  side  will  be  a  cone,  V=  0,  if  its  discri- 
minant is  zero :  this  condition  may  be  written  in  either  of  the 

forms 

F (X)  =  {A,  +  \)(A,  +  \)(A,  +  \){C- X') -  {B'^ {A,  +  \)(A,  +  X) 

+  B.J'{A,  +  X){A,  +  \)  +  B,'{A,  +  X){Ao  +  X)]  =  0. 

We  thus  obtain  five  values  for  X,  giving  five  cones.  If  one  such 

cone  F  be  XY  —  L^=0,  where  i  =  0  is  any  plane  through  its 
vertex,  the  equation  of  the  surface  is 

(a;--r2/^  +  ̂ --2X)-  +  4(ZF-i2)=o   (1). 

As  before  (Chapter  iii)  any  tangent  plane  of  the  cone  meets 
the  surface  in  two  circles,  and  every  circle  on  the  surface  lies  in  a 

tangent  plane  to  one  of  the  five  cones. 

*  For  an  extensive  discussion  of  this  surface  see  the  work  by  Darboux  entitled 
Sur  tme  classe  remarquable  de  courhes  et  de  surfaces  quelconqxies. 

The  intrinsic  interest  of  this  surface  justifies  a  special  discussion  by  use  of 
Cartesian  coordinates,  showing  the  various  real  forms  of  the  surface. 
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Again  the  sphere 

ar'  +  2/2  +  ̂ 2^2(X  +  X)       (2) 

meets  the  surface  in  a  pair  of  circles  lying  on  X=0,  F=0  re- 
spectively ;  the  points  of  intersection  of  these  circles  being  points 

of  contact  of  the  sphere  and  surface.  Hence  the  surface  is  the 

envelope  of  these  hitangent  spheres.  Moreover  every  bitangent 

sphere  must  arise  in  this  manner ;  for  if  o:-  +  3/^  +  ̂^  =  2  (X  +  M) 
be  a  bitangent  sphere  it  will  meet  the  surface  in  a  pair  of  circles 

and  we  may  take  the  plane  of  one  of  them  to  be  X  =  0,  whence 

M  =  ±  (L  +  kX),  i.e.  the  surface  may  be  written  in  the  form 

(a;2  +  y2+22-  2\y  +  4>(XY'-  3P)  =  0. 

If  L  =  ax  +  I3y  +  yz  +  8,  the  condition  that  X  =  0  passes  through 
the  vertex  of  V  gives 

+  ̂ Ff^+V^".  -S  =  0; 

and  this  is  the  condition  that  this  bitangent  sphere  should  cut 

orthogonally  the  sphere  whose  equation  is 

,       ,      2B^x        2B.y         2B,z       ̂ ,       „      ,.„ 

Again  since 

{A^  +\)a^  +  (A,^  +  \)y^  +  (A,  +  X)  z- 

+  2B,x  +  2B,y  +  2B^z  +  (7-  V  =  XY-  L\ 

considering  only  terms  of  the  second  degree  it  follows  that 

(^1  -V\)c(?^{A^+  X)  f'  +  (.43  +  X)  2^  +  {p,x  +  ̂ y  +  7^)» 

must  break  up  into  linear  factors,  hence 

"'      '      ̂'      +--^  +  1  =  0*      (4). xli+A,      ̂ o  +  X      ̂ 3-1-X 

Hence  the  cyclide  may  he  generated  in  five  ways  as  the 
envelope  of  a  sphere  whose  centre  lies  on  one  of  five  fixed  quadrics 

Qi...Qi  and  which  cuts  a  fixed  sphere f  orthogonally. 

The  quadrics  Qi  are  seen  to  be  confocal.  At  each  point  of 

intersection  of  a  quadric  Qi  with  the  corresponding  sphere  Si  we 
have  a  bitangent  sphere  of  zero  radius ;  its  centre  is  therefore  a 
fociLS  of  the  surface ;  hence  arise  five  focal  curves. 

*  The  cone  V  is  the  reciprocal  of  the  asymptotic  coue  of  this  quadric. 
t  This  sphere  is  one  of  the  quadrics  H  of  Art.  31 ;  ils  centre  is  the  vertex  of  the 

cone  V. 
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55.  The  five  spheres  S^ ...  S^  are  mutually  orthogonal ;  for  the 

condition  that  any  two  of  them,  corresponding  say  to  Xj  and  Xj, 
should  be  orthogonal  is 

(Ai  +  \)(A,  +  x;)     (A.,  +  \){A^  +  \) 

25.2 + a;T^(i;Tx:)  -  ̂̂ ^  -  ̂̂  = ^ ' 
which  follows  at  once  from  the  equation 

<f)  (\x)  -  (p  (Xo)  =  0. 

Consideration  of  the  equation  F  (X)  =  0  shows  that  it  has  in 

general  at  least  three  real  roots;  since,  taking  —  A^,  —  A2,  —A3  as 
in  ascending  order  of  magnitude,  there  lie  an  odd  number  of  roots 
in  each  of  the  three  intervals 

—  00...  —  -oLj,        -~Xlj,.,  —  -"-g?        —  -^2  •  •  •  —  -^3' 

Hence  there  are  in  general  at  least  three  real  pairs  Si,  Qi  and 

there  may  be  five. 

Important  relationships  between  the  spheres  Si  and  the 

quadrics  Qi  are  the  following :  the  centres  of  any  four  of  the  spheres 

form  a  self-polar  tetrahedron  for  the  remaining  sphere  and  for 
its  corresponding  quadric.  For  expressing  that  the  spheres 

corresponding  to  Xi  and  X3  are  orthogonal  we  obtain  an  equation 

similar  to  the  last ;  subtraction,  and  division  by  Xg  —  Xj  gives  us 

+ 
{A,  +  Xi)  (A,  +  X2)  (A,  +  X3)     {A^  +  Xi)  (^2  +  7^){A,  +  \) 

+   ^    .  1  =  0 
{A,  +  \,)(As  +  \,){A,  +  \,y 

which  is  the  condition  that  the  centre  of  the  sphere  Ss  should  lie 
in  the  plane 

  BjX   ^2^  BsZ  _ 

(A,  +  \,)(A,+-\.)^  {A,  +  \)(A,  +  X,)'^  (A,  +  \){A,  +  \,)^   ' 
But  the  last  equation  represents  the  polar  plane  of  the  centre  of 

>Si2  with  regard  to  Q^.  Similarly  this  plane  passes  through  the 

centres  of  S^  and  S^;  and  the  centres  of  S.....  S^  form  a  self-polar 
tetrahedron  with  regard  to  Qi. 

Again  representing  any  one  of  the  spheres  Si  by  the  equation 

x^-  +  y'  +  z'+  2fiX  +  2giy  +  2hiZ  +  a  =  0, 
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we  derive,  from  the  fact  that  the  spheres  are  mutually  orthogonal, 

the  equations 
C2  +  C5 

M^  +  gig^  +  Kh 

2 

C1  +  C2 

C1-C5 

hence  /, (/  -f,)  +  g.^  {g,  - g,)  +  h^ {\ -  h,)  =  ̂ ^      , 

which  is  the  condition  that  the  polar  plane  of  the  centre  of  85  for 
Si,  i.e. 

-/s  (^  +/i)  -gAv  +  gi)  -h{z  +  K)  +f,x  +giy  +  Ihz  +  Ci  =  0 

should  pass  through  the  centre  of  S.2 . 

Similarly  this  plane  passes  through  the  centres  of  S^  and  Si. 

Thus  the  tetrahedron  formed  by  the  centres  of  S.^...  S^  is  self- 
polar  for  /Sj. 

56.     Inverse  points  on  the  surface. 

It  is  obvious  from  the  form  of  its  equation  that  the  cyclide  is 

inverted  from  any  general  point  into  another  cyclide.  If  the  centre 

of  inversion  be  the  centre  of  one  of  the  principal  spheres  Si, 

then  since  the  surface  is  the  envelope  of  spheres  which  cut  Si 

orthogonally,  it  is  clear  that  the  bitangent  spheres  are  inverted 
into  themselves  (if  the  constant  of  inversion  be  the  radius  of  Si). 

Hence  it  follows  that  the  two  points  of  contact  of  a  bitangent 

sphere  of  this  system  are  collinear  with  the  centre  of  Si,  and  the 
surface  is  inverted  into  itself.  This  can  also  be  seen  as  follows : 

the  centres  of  the  bitangent  spheres  in  the  neighbourhood  of  a 

point  P  of  the  quadric  Qi  lie  in  the  plane  tt  tangent  to  Qi  at  P, 

and  these  spheres  all  pass  through  the  same  two  points  M,  M'  of 
the  cyclide ;  since  Si  cuts  all  these  spheres  orthogonally  its  centre 

0  must  be  collinear  with  M  and  M',  and  the  line  OMM'  is  per- 
pendicular to  the  plane  of  their  centres,  i.e.  tt,  and 

OM .  OM'  =  Ri\ 
if  Ri  is  the  radius  of  Si. 

Thus  M  and  M'  are  inverse  points  on  the  surface. 
Again,  all  the  spheres  whose  centres  lie  in  ir  and  which  cut 

the  sphere  Si  orthogonally,  will  also  cut  orthogonally  every  sphere 

through  the  intersection  of  Si  and  tt,  and  in  particular  the  two 
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point-spheres  which  pass  through  the  intersection  of  Si  and  tt. 

The  centres  of  these  point-spheres  are  therefore  the  points  M  and 

M'.  Hence  the  surface  may  he  defined  as  the  locus  of  the  limiting 
points  determined  by  Si  and  the  tangent  planes  to  Qi. 

The  points  of  Qi  which  give  rise  to  real  points  of  the  cyclide 

are  therefore  those  the  tangent  planes  at  which  do  not  meet  Si  in 

real  points.  Taking  the  tangent  planes  common  to  Si  and  Qi  we 

have  a  curve  or  curves  determined  on  Qi  defining  the  region  on  Qi 

which  gives  rise  to  real  points  of  the  cyclide. 

Bitangent  spheres  luhose  centres  lie  on  the  same  generator  of  a 

principal  quadric. 

The  spheres  which  cut  Si  orthogonally  and  whose  centres  lie 

on  a  line  p,  a  generator  of  Qi,  will  pass  through  the  points  of 

contact  P,  P'  of  the  tangent  planes  to  Si  through  p\  hence  if  0 
is  the  point  of  intersection  of  p  and  a  plane  through  the  centre  0 

of  Si  perpendicular  to  p,  each  of  these  spheres  will  pass  through 

the  circle  whose  centre  is  C  and  radius  GP  (or  GP').  The  circle 
lies  on  the  cyclide ;  for  considering  all  the  planes  through  p,  the 

limiting  points  M,  M'  which  arise  in  connection  with  Si,  lie  in  the 

plane  of  this  circle,  also  GM  =  GM'  =  GP  =  GP'. 
Hence  real  circles  arise  from  those  generators  of  Qi  which  do 

not  meet  Si  in  real  points. 

Taking  all  the  planes  through  0  perpendicular  to  each  generator  of  the 

system  to  which  p  belongs  we  obtain  oo  ̂   sections  of  the  cyclide  consisting  of 
two  circles. 

Conversely  all  the  spheres  which  meet  the  cyclide  in  the  same 
real  circle  will  meet  it  again  in  circles  and  will  be  bitangent 

spheres ;  since  their  centres  lie  on  the  same  real  line,  the  quadric 

to  which  they  belong  must  be  a  hyperboloid  of  one  sheet ;  hence 

this  type  of  quadric  alone  will  give  rise  to  real  circles  on  bitangent 

spheres.  We  observe  that  of  the  three  real  quadrics  Qi  which  in 

all  cases  exist,  one  is  an  ellipsoid,  one  a  hyperboloid  of  one  sheet 

and  07ie  a  hyperboloid  of  two  sheets,  corresponding  respectively  to 
the  three  real  values  of  X.  mentioned  in  Art.  54. 

57.     Roots  of  fundamental  quintic.     Focal  curves. 

It  has  already  been  seen  (Art.  55)  that  in  the  general  case  in 

which  F  (\)  =  0  does  not  possess  equal  roots,  it  has  an  odd 
number  of  real  roots  in  each  of  the  intervals 

—   00...  —  A-i,         —jSli...   —  A.2,        — -A2...  —  -^3, 
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where  we  suppose  —A^,  —  A^,  —A3  arranged  in  ascending  algebraic 
order  of  magnitude. 

If  three  roots  only  are  real  then  two  are  conjugate  imaginary; 

it  may  be  shown  that  any  two  corresponding  real  surfaces  St,  Qi 

meet  each  other  in  a  curve  consisting  of  one  portion  only ;  for 
since  three  centres  of  spheres  Si  are  real  and  two  conjugate 

imaginary,  we  may  in  three  ways  select  a  real  pair  Si,  Qi  so  that 

their  self-polar  tetrahedron  has  two  vertices  real  and  two  conj  ugate 
imaginary.  If  ̂S^^,  Qi  form  such  a  pair,  it  may  easily  be  seen  that 
two  of  the  four  cones  passing  through  their  curve  of  intersection 

have  equations  of  the  form 

^2"  +p'  {^i  —  ̂ /)  +  "^q'xzXi  =  0. 
Each  generator  of  the  first  cone  meets  this  curve  in  two  points, 
which  coincide  if 

p'  {x^-  —  x^)  +  ̂q'x^Xi  =  0. 

If  the  two  real  planes  thus  determined  be  x^,  =  (x-^x-i,  x^=  0.2X3  where 

«i«2=  —  1>  substituting  in  the  first  equation  we  have  four  solutions, 
viz.  those  given  by 

x,'  +  X3^p{l-a,-)  +  2qci,}  =  0, 

and  by  xi"  +  xi  [p  (1  -  a/)  +  ̂ot^]  =  0, 

i.e.  by  x,^  -  %  {p  (1  -  a,0  +  2qa,]  =  0. a 

Hence  we  have  two  real  solutions  only,  i.e.  there  are  only  two 

real  tangents  to  the  curve  of  intersection  from  the  vertex  of  either 
cone  on  which  it  lies.  Hence  the  curve  consists  of  one  portion  only. 

In  the  case  therefore  in  which  only  three  roots  of  F  (X,)  =  0  are  real 
three  focal  curves  are  real  and  consist  in  each  case  of  only  one  portion. 

If  five  roots  of  F  (X)  =  0  are  real,  any  pair  Si,  Qi  have  a  real 

self-polar  tetrahedron ;  by  the  method  immediately  preceding  it 
can  be  at  once  seen  that  their  intersection  is  either  imaginary  or 

consists  of  two  detached  portions.     Two  focal  curves  are  real  *. 

58.     Different  forms  of  the  cyclide. 

It  was  seen  (Art.  54)  that  there  is  always  one  real  pair  of  surfaces 

Si,  Qi  consisting  of  a  sphere  and  an  ellipsoid.  It  will  now  be 

shown  that  if  this  sphere  and  ellipsoid  have  no  real  intersections 
*  See  Alt.  63. 
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the  cyclide  consists  of  two  ovals,  one  within  the  other.  For  since 

the  points  of  the  surface  are  the  limiting  points  of  Sc  and  the 

tangent  planes  to  Qi  (Art.  56),  if  Si  lies  wholly  within  Qi  we 

obtain  two  sets  of  points  M,  M'  one  within  Si  and  the  other 
without  Qi,  each  set  forming  an  oval  surface. 

When  Si  lies  wholly  without  Qi  let  cti  be  the  curve  along  which 

the  transverse  common  tangent  planes  of  >S^i  and  Qi  touch  Qi,  and 

<T.2  the  corresponding  curve  for  direct  common  tangent  planes ; 

then  the  region  between  o-j  and  o-o  gives  rise  to  no  real  points  of 
the  cyclide ;  the  region  enclosed  by  a^  gives  rise  to  an  oval  which 

cuts  Si  orthogonally,  the  region  enclosed  by  cto  gives  rise  to  an 

oval  cutting  Si  orthogonally  and  enclosing  the  first  oval,  since  the 
tangent  planes  in  the  case  of  do,  are  more  remote  from  Si  than 

those  for  o-j,  so  that  if  a  line  through  0  meets  the  surface  in  the 

pairs  of  points  ifj,  M^';  M^,  M./  it  is  seen  that  M^  is  nearer  0 
than  either  M^  or  il//,  and  il/g'  is  more  distant  from  0  than  either 

ilfi  or  Ml'.     Hence  one  oval  encloses  the  other. 
If  the  focal  curve  {Si,  Qi)  is  real  and  consists  of  two  portions 

o-i,  0-2,  the  portion  of  Qi  included  within  Si  may  consist  of  one 
connected  portion  (as  in  the  case  of  a  sphere  meeting  a  spheroid 

whose  axis  of  revolution  is  its  greater  axis),  the  portions  of  Qi 
giving  rise  to  real  points  of  the  cyclide  are  entirely  separated,  and 
it  consists  of  two  separated  ovals  (each  meeting  Si  orthogonally) ; 
or  the  portion  of  Qi  within  Si  may  consist  of  two  separate  portions 

(as  in  the  case  of  a  sphere  meeting  a  spheroid  whose  axis  of 

revolution  is  its  minor  axis) ;  here  the  portion  of  Qi  giving  rise  to 

real  points  of  the  cyclide  is  one  connected  region ;  the  cyclide 

consists  of  a  tubular  surface  similar  to  an  anchor-ring  or  tore. 
Finally,  if  the  focal  curve  {Si,  Qi)  consists  of  one  portion  only,  we 

have  one  oval  cutting  Si  orthogonally. 

59.     Equal  roots  of  the  fundamental  quintic. 

If  (X  +  Ai)-  is  a  root  of  F  (\),  then  V  (Art.  54)  is  a  pair  of  planes ; 
for  if  the  Ai  are  all  unequal,  then  we  must  have 

5i  =  0, A^-Ai         0  £2 

0         A,- A,        B, 

B,  B,         C-Ai' 

=  0, 

which  makes  V  a  pair  of  planes  when  \  +  Ai  =  0. 
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The  equation  of  the  surface  is  >S^  +  a/3  =  0 ;  inverting  from  one 
of  the  points  (S,  a,  /3)  we  obtain  a  cone  K;  three  sets  of  bitangent 

spheres  of  the  surface  are  therefore  the  inverses  of  spheres  passing 
through  a  pair  of  circular  sections  of  K. 

Again,  if  A^  =  A^,  then  if  (X,  +  ̂i)^  is  a  factor  of  F{\),  we  must 

have  Bi^  +  Bi  =  0,  i.e.  5i  =  i?o  =  0  in  a  real  cyclide,  and  the  surface 
has  an  equation  of  the  form 

S^  +  aa!  =  0, 

where  a  and  a!  are  parallel  planes. 

The  CO  2  spheres  8  +  \ol-\-  /xa'  =  0  meet  the  surface  in  pairs  of 
circles.  These  spheres  consist  of  all  spheres  having  their  centres  on 

a  given  line.     The  surface  has  also  three  sets  of  bitangent  spheres. 

When  j4i  =  ̂ 2  =  ̂ 3)  the  equation  of  the  surface  may  be  written 

S^^k0L  =  0. 

The  00  ̂   spheres  8  =  \o.  -{-  jx,  which  are  all  spheres  having  their 
centres  on  a  given  line,  meet  the  surface  in  pairs  of  circles. 

In  each  of  these  cases,  therefore,  one  of  the  five  cones  F  is  a 

pair  of  planes*. 
In  a  real  cyclide  only  one  of  the  principal  spheres  can  he  a  point- 

sphere.  For  it  has  been  seen  (Art.  55)  that  if  the  Ai  are  unequal 

there  lie  an  odd  number  of  roots  of  ̂ (X)  =  0  in  each  of  the  three 
intervals 

—  00  ...  —  -n.1,     —  Ax ...  —  A<^,     —  A^ ...  —  A^. 

Hence  coincidence  of  roots  of  F{X)  =  0  can  only  occur  once. 

Again,  if  two  of  the  Ai  are  equal,  say  Ax  =  A2,  then,  excluding 

the  case  which  has  been  already  considered  in  which  (A,  +  J.i)-  is  a 
factor  of  ̂ (\),  we  have 

F{X)  =  {X  +  A,)^^{X), 

where  y^  (X.)  is  seen  as  before  to  have  an  odd  number  of  real  roots 
in  each  of  two  intervals.  It  therefore  follows  that  F  (\)  may  have 

one  double  root  or  one  triple  root ;  in  each  of  these  cases  the 

remaining  roots  are  real. 
If  Ri  be  the  radius  of  the  principal  sphere  Si, 

^''  =  -  2^'-  +  d^r  +  (&y  ̂  (AThr  =  *'  ̂̂ ^  ■ 

*  The  surface  is  of  the  type  [(11)  111],  see  Art.  67. 
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[CH.  V and  since  F(\)  does  not  possess  (X  +  A^y  as  a  factor,  a  principal 

point-sphere  will  arise  from  equal  roots  of  F{X),  which,  it  has 
been  seen,  can  occur  for  only  one  value  of  X. 

In  all  cases,  therefore,  a  real  cyclide  can  have  only  one  principal 

point-sphere ;  the  case  in  which  one  of  the  cones  F  is  a  pair  of 
planes  will  be  discussed  later  (Arts.  66,  67). 

60.     Power  of  two  spheres. 

If  Si  =  0,  ...  Ss=0  are  any  five  spheres,  the  system  of  five 
equations 

a;2  +  2/'  +  ̂'  +  2/i^?^  +  2g,yw  +  2h^zw  +  CiW^  =  pS^, 

x^  +  y^  +  z'  +  2f,xw  +  2g,yw  +  2h^ziu  +  c^  w^  =  pS^, 

wherein  w  =  1,  enables  us  to  solve  for  x^  +  y'^-\-  z-,  xw,  yw,  zw,  w*  in 
terms  of  ̂ j  ...>S^5;  this  gives  rise  to  a  quadratic  identity  between 

the  quantities  >S^i ...  >S^5.  These  five  quantities  may  be  employed  as 
coordinates  to  determine  the  position  of  a  point,  a  homogeneous 

quadratic  relationship  existing  between  the  coordinates.  These 
coordinates  are  known  as  the  pentaspherical  coordinates  of  a 

point.  The  nature  of  this  quadratic  relationship  can  be  most 

readily  determined  from  considerations  relating  to  the  mutual 

power  of  two  spheres.  If  two  spheres  of  radii  rj,  r^  cut  one 

another  at  an  angle  0,  we  have 

2r,r,  cos  6  =  ̂ '  +  r,'  -  (/  -f,y  -  (g,  - g.;f  -  {h,  -  h,Y 

=  2/1/2  +  '^gig-i  +  2^1  ̂2  —  Ci  —  Co. 

The  right-hand  side  of  these  equations  is  real  for  real  spheres 
whether  their  intersection  be  real  or  otherwise ;  taken  negatively 

it  is  known  as  the  mutual  poiuer,  ttjo,  of  the  two  spheres,  thus 

TTjo  =  Ci  +  Co  -  2/1/  -  2^1(72  -  2A1A2. 

Forming  the  product  of  the  two  determinants* 
0 

2/ 

25'. 
2/ii 

Ci 

0 

C7 -/. 
-9i 

«7         1 0 

2/ 

25^2 

2h, 
Co 

0 

Cs 
-/s 

-9^ 

—   /ig           1 

0 

2/3 
25'3 

2h 

Cz 

0 

C9 -/. 
-9^ 

"9          -•- 0 

2/ 

25'. 

2K 

C4 

3 

0 

Cio 

-f. -9io 

■~  'ho     J- 

0 
2/. 

25^5 

2h 

C5 

0 

Cii 

-fu 
-9n 

''11     ̂  

0 

2/a 2^e 

2K 

Ce 

0 

^12 

-fv. -5^12 

"12       ̂  

*  Lachlan,  On  systems  of  circles  and  spheres, 'Roy.  Soc.  Trans.  (1886). 
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we  obtain 
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7ri,7       TTi^g       7ri,9  TTj^io       TTj^ii  TTj^ig 

7r2,7         """S.S         7^2,9  7r2,l0        TTo,!!  TTo^  ja 

''''3,7      TTa.s         .              .              .  • 

95 

'7'"6,7        TTe.S 

TT, 

6,12 

=  0. 

(1
  ̂

\ 

7  '"  12)  ~^' 
Now,  denoting  the  spheres  S,  and  ̂ 7  by  x  and  y,  and  supposing 

that  the  spheres  S.-.-S^  are  respectively  identical  with  the  spheres 

Sg...  S12,  we  have  on  slightly  altering  the  notation 

TT 

X  1  ...  5 

,y  1...5 
which,  expanded,  is  equivalent  to 

)=0, 
TT. 

xy 

IT. 

yi 

TTji  ...  TTis 

TT. '1/5        """is 

TT, 

55 

=  0 

•(!)• 

If  we  now  suppose  Sx  =  Sy,  we  obtain  the  relationship  existing 

between  the  powers  of  any  sphere  S^  with  regard  to  five  fixed 

spheres,  viz. 

-2r' 

TT*! 

• • 
TTzi 

-  2r,^ 

77*12 

• 

. 

""12 

-2r,^ • 

• • • 

-2r/ 

TT a:5 

=  0...(2). 

—  2r.'' 

9^'  2 

77x5  •  '  •  •  ~  ̂ '5 

If  this  equation  is  such  that  itxi  occurs  only  in  the  term  involving 

tcxx,  the  sphere  S^  cuts  S.^...  S^  orthogonally ;  for  the  coefficients  of 

7ra;i7ra;2,  •••  TT-jiTTa-s  all  involve  ttjo,  ...  ttl,  linearly  and  homogeneously, 

hence  if  they  all  vanish  we  have  either 

7''l2  =  7^13  =  '^li  —  TTis  =  0, 

or  TTsa       TTss       7r24       TTas 
TTas '7r24 =  0. 
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But  the  last  condition  cannot  be  fulfilled  since  the  determinant 

on  the  left  side  is  equal  to  the  coefficient  of  iVxx-,  taken  negatively, 
and  this  is  by  hypothesis  not  zero. 

If  the  sphere  8^  is  a  point-sphere,  its  powers  with  respect  to  the 
spheres  S^ ...  S^  are  obtained  by  substituting  the  coordinates  of  its 
centre  {cc,  y,  z)  in  the  expressions  Sj ...  S^;  hence  we  obtain  the 

required  identical  relation  between  any  five  spheres  Si  =  0, ...  8^  =  0, 
which  is  therefore 

0 

'S', 

• • • 

s. 

>S', -  2/- 

'77'l2 

• • 

•n-16 

• 

TTia 
-  2r/ 

• • • 

• , • -2rs^ , • 

s. 

-  2?^ 

5  • 

-  2r- 

=  0. 

It  follows,  as  in  the  case  just  above,  that  if  Si  occurs  only  in  the 

form  Si^,  the  sphere  Si  cuts  orthogonally  the  remaining  four  spheres. 
If  all  the  quantities  TTy  (i  ̂j)  vanish,  the  identical  relation  becomes 

and  the  five  spheres  are  mutually  orthogonal. 

By  virtue  of  this  equation,  the  equation  of  the  sphere  Sj  (say) 
may  be  written  in  the  form 

fS,-8,v  _^  ̂s,-s,y  _^  /s,  -  s,y  _^  ̂s,-s,y  ̂   ̂ 

This  shows  that  the  planes  of  intersection  of  ̂S^i  with  S2,  Ss,  St 

and  ̂ 5  form  a  self-polar  tetrahedron  for  Si.  Now  the  radical  plane 
of  Si  and  ̂ 2  contains  the  centres  of  S3,  S^  and  ̂ 5,  and  so  on  ;  hence 

we  again  obtain  the  result  of  Art.  55  that  the  centres  of  any  four 

spheres  form  a  self-polar  tetrahedron  for  the  fifth  sphere. 

AVe  observe  that  if  foiu'  of  the  spheres  Si,  supposed  mutually  orthogonal, 
are  real,  the  fifth  sphere  is  also  real  but  the  square  of  its  radius  is  negative. 

Also  we  see  that  on  inverting  from  any  point  not  upon  one  of  the  spheres 
Si,  the  form  of  the  relationship  is  not  altered,  since 

Si     Si —  oc  — 7. 
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But  if  the  centre  of  inversion  be  a  point  of  intersection  of  three  spheres 

A^i,  »S'2,  S3,  the  J  are  inverted  into  three  planes  which  we  may  take  to  be 

coordinate  planes,  and  since  — *  x  2k'^x,  etc.,  we  obtain  the  identity 

where  R^  and  —  R^  are  the  squares  of  the  radii  of  the  spheres  into  which  *S'4 
and  S^  are  inverted. 

When  the  identical  relation  has  the  form 

AS,S,  +  BS,'  +  OS,'  +  DS,'  =  0, 

it  follows  from  the  preceding  case  that  ri=r2=  0,  hence  Si  and  S^ 
are  point-spheres  whose  centres  are  the  intersections  of  the  spheres 
^83,  S4  and  >S^5. 

When  the  relation  is 

ASiS,+  BS,S,+  CS,'  =  0; 

Sy  and  S2  are  point-spheres,  and  also  Ss  and  ;S'4.    The  centres  of  one 
pair  of  point-spheres  lie  on  the  intersections  of  the  other  pair; 
hence  one  pair  is  real,  the  other  is  conjugate  imaginary;   the 

centres  of  all  four  point-spheres  lie  on  ̂ 5. 

61.     Sphere  referred  to  five  orthogonal  spheres. 

The  equation  of  any  sphere  S  may  be  expressed  in  terms  of 

any  five  mutually  orthogonal  spheres,  thus  if 

S  =  x''  +  y''  +  z^  +  2fx  +  2gy  +  c  =  0, 
5 

and  also  ii  S=  %aiSi;  then,  denoting  by  tt^^  the  power  of  >S'  with 

regard  to  the  sphere  Si,  we  have 

-  ̂ ..  =  2rn  cos  fl<  =  S^?3t±^2^2£±^^£2aA  _  ,,  _  22^ . 

hence,  from  the  fact  that  Si ...  S^  are  mutually  orthogonal 

Hence  77^,.  =  pctiV^,      cos  di  =  aa^ri. 

Introducing  into  equation  (1)  the  angles  ̂ j,  (pi  at  which  two  spheres 

intersect  any  five  spheres  Si ...  S^,  then  if  ̂ j/  be  the  angle  at  which  the  two 
spheres  intersect,  we  obtain 

cosi//'      cos  ̂ x          cos  ̂ 5 

cos  01  1        cos  12              _Q 
cos  05 

J.  Q.  S. 
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If  the  spheres  Si ...  S^  are  mutually  orthogonal  this  reduces  to 

5 
cos  \//'  =  2  cos  ds  COS  0j. 

1 
5  5 

If  the  two  spheres  are  identical  we  obtain  2  cos^di  =  l;  if  they  are  2a(*S'i=0, 1  1 
5  5 

26j/S'i=0,  and  cut  orthogonally  we  have  from  above  taibiVi^^O. 1  1 

If  S   is  orthogonal    to  one  sphere  of  the  orthogonal  system 
4 

S^  ...  Ss,  say  to  ̂ 5,  the  equation  of  S  is  '^aiSi  =  0.     In  this  case 1 

the  volume  of  the  tetrahedron  whose  base  is  the  triangle  formed 

by  the  centres  of  S.2,  S3,  S^  and  whose  vertex  is  the  centre  of  S^  is 
4 

1 

4 

1 

4 

1 

4 

1 A 

91    fh 

1 

A 

9^ 

h 1 
_        a, 4 A 

92    h 

1 

/a 9^ 

hs 

1 
1 

A 
9z    K 

1 

A 

9^ 

k 1 A 
94    K 

1 

2a 

Hence  if  ̂ 1 ...  ̂ 4  are  the  tetrahedral  coordinates  of  the  centre 

■of  S  with  regard  to  the  tetrahedron  formed  by  the  centres  of 

^i...Si,  we  have  that  ̂ i<^ai. 

5  5  7r„.2  5 

When  the  sphere  '2aiSi=0  is  a  point-sphere,  we  have  2  — ^  =  4r^2cos^di, 
1  1    ̂ i  1 5 

which  is  zero  since  2cos2^i=l  and  r  =  0.     In  this  case  2ai^ri"  —  0,  so  that  if 1 

S-  ^ 
Xi=  — ,  the  equation  of  a  point-sphere  is  2af^i=0,  with  the  condition  2042=0. 
ft  1 

62.     Pentaspherical  coordinates. 

It  has  been  seen  (Art.  60)  that  the  quantities  x-  +  y'^  +  Z',  x,  y,  z 
and  unity  which  occur  in  the  equation  of  any  cyclide  may  be  replaced 

by  linear  functions  of  Si-.-S^;   the  equation  of  the  cyclide  then 

appears  as  a  quadratic  in  the  Si  which  are  themselves  connected  by  a 

S- 

qua
dra

tic
  

iden
tity

.   
  

The
  

qua
nti

tie
s  

—  ,  or  Xi,  are 
 
ter

med
  

the 
 
pen

ta-
 

spherical  coordinates  of  a  point. 

If  the  equation  of  the  surface  expressed  in  pentaspherical 

coordinates  contains  only  four  of  the  variables,  say  x-^...  Xi,  so  that 

its  equation  is  XaikXiXk  =  0,  the  surface  is  clearly  the  envelope  of 
1 

4 

the  sphere  XcciXi  =  0,  where  the  coefficients  cfi  are  subject  to  the 



61-63]  THE   CYCLIDE  99 

4 

condition  2-4i^aiajfc  =  0.     Since  by  the  last  article  the  a;  are  the 
1 

coordinates  of  the  centre  of  this  sphere,  we  obtain  the  cyclide  as 

the  envelope  of  a  sphere  which  cuts  a  fixed  sphere  orthogonally  and 
whose  centre  lies  on  a  quadric. 

63.     Canonical  forms  of  the  equation  of  the  cyclide. 

The  equation  of  the  cyclide  being  quadratic  in  five  variables 
Xi ...  0)5  which  are  themselves  connected  by  an  identical  equation ; 

we  may  use  the  method  of  Elementary  Factors*  to  obtain  the 
various  types  of  canonical  forms  of  the  cyclide. 

Denoting  by  <I>  =  0  the  equation  of  the  cyclide  and  by  12  =  0 
the  identical  relation  connecting  the  coordinates,  we  obtain  by 

this  method  seven  types,  viz. 

[11111],  [2111],  [311],  [221],  [41],  [32],  [5]; 

each  type  giving  rise  to  sub-types.  It  will  also  be  seen  that  only 
the  first  three  forms  relate  to  real  cyclides. 

Writing  these  forms  at  length,  we  obtain  by  the  usual  method 

n  n  111  1^  ~  ̂i«i'  +  ̂2^
2'  +  ̂3a^3^  + 2 

5 ) 

(i^  =:    ̂ XiX2  "T  X^    -(-  X^    -T  X^  , 

r221 1  J*^  ~  ̂\0SiX^  +  x^^  +  2X3^^33^4  +  x^  +  X^x^^, 

.         (4>  =  2X1  {x^Xi  +  x^x^)  +  "Ix-^x^  +  xi  +  Xga^s^ 
^     -"[0=2  {x^Xi  +  x^x^)  +  x^ 

1 2 

^5  • 

J-        j<l>  =  \  (2a;,  x^  +  xi)  +  ̂x^x^  +  ̂^X^x^x^  +  x^, 

j4)  =  X  (2a;i«5  +  ̂x^Xi  +  x^)  +  2x-^x^  +  "Ix.^x^, 

We  now  pass  to  consideration  of  the  type  [11111];  the  form 
of  n  shows  that  here  the  coordinate  spheres  form  an  orthogonal 

*  For  discussion  of  the  method  see  Bromwieh,  Quadratic  forms  aiid  their 

classification  by  means  of  invariant  factors  (Cambridge  Tracts),  or  the  Author's 
Treatise  on  the  Line  Complex.     See  also  Bocher's  Potential  Theorie. 

7—2 



100  THE   CYCLIDE  [CH.  V 

system:   eliminating  one  of  the  variables,  say  x^,,  we  obtain  an 

equation  of  the  form 

t{Xi-\,)xi^=^0       (1). 1 

The  surface  is  therefore  the  envelope  of  the  spheres 

subject  to  the  condition 

4 

Sa^a-i  =  0 1 

4       a. 

tr-^  =  0         (2). 1  A.J  —  A5 

The  generating  sphere  is  orthogonal  to  a-s  =  0 ;  and  since  the  Oi 
are  the  coordinates  of  its  centre  for  the  tetrahedron  formed  by  the 

centres  of  Si-.-S^  (Art.  61),  the  equation  (2)  represents  the 

quadric  Q^. 
We  obtain  similarly  the  other  four  sets  of  generating  bitangent 

spheres.  Moreover,  assuming  the  cyclide  to  be  real,  and  since  it 
was  seen  (Art.  54)  that  the  only  bitangent  spheres  are  those 

arising  from  a  pair  Si,  Qi  of  this  cyclide,  it  follows  that  the  spheres 
a;i  =  0  can  be  no  other  than  the  spheres  >S^i  which  a  real  cyclide 

possesses.  Hence  it  follows  that  of  these  spheres  at  least  three  are 
real,  while  two  may  be  either  real  or  conjugate  imaginary;  so  that 

this  applies  to  the  variables  a?^;  and  if  e.g.  ̂ 4  and  x^  are  conjugate 

imaginary,  so  also  are  ̂ 4  and  Xg  5  if  all  the  Xi  are  real,  so  also  are 
the  \i. 

The  five  focal  curves  are  determined  by  the  equations 

1    A-i  —  A5  1 

together  with  four  other  similar  pairs  of  equations. 

It  was  seen  (Art.  57)  that  if  two  of  the  principal  spheres  are  conjugate 

imaginary  three  of  the  focal  curves  are  real  and  consist  of  one  portion. 

Consider  now  the  case  iu  which  all  the  principal  spheres  a"j  are  real  and  let 
;r6=0  be  that  sphere  the  square  of  whose  radius  is  negative,  SD  that  ax  ...04  are 

real  and  a6  =  a5?'6  is  imaginary.     One  of  the  focal  curves  is  then  given  by 

X2  — Xi      X3  — Ai      X4  — Aj      A5  — Ai 

•2 

This  curve  is  then  real  or  imaginary  according  as  the  cone 

^ X2  —  X5         2^3~^5  ,      2 ^*~^^=o 
Aj-Ag  Ai  — A3  Aj  — A4 

does  or  does  not  contain  real  points  apart  from  its  vertex. 
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We  obtain  in  this  way  criteria  for  the  reality  or  otherwise  of  four  focal 
curves  ;  the  fifth,  which  lies  upon 

1 

is  of  course  imaginary. 
To  discriminate  in  the  four  cases  we  may  suppose  the  quantities  Xi ...  X4  to 

be  in  algebraic  order  of  magnitude  and  moreover  we  have  as  a  condition 
of  reality  of  the  surface  that  the  quantities 

cannot  all  have  the  same  sign.  We  may  take  X5  equal  to  unity,  in  which  case 

Xi  -  X5  must  be  positive,  and  then  the  three  possible  distributions  of  signs  to 

X2  —  1,  X3  —  1,  X4  —  1  are 

+  +  -,     +  -  -,   . 
Inserting  these  signs  in  the  equations  of  the  four  cones  obtained  as  above  it 
is  seen  that  in  all  cases  two  of  them  are  real  and  two  are  imaginary. 

64.     Form  of  the  cyclide. 

In  the  case  in  which  the  variables  are  all  real,  x^  being  that 

principal  sphere  the  square  of  whose  radius  is  negative,  the 

equation  of  the  surface  is 

1 

If  we  invert  the  surface  from  one  point  of  intersection  of  the 

spheres  Xi,  x^,  x^  and  take  as  new  coordinate  planes  those  into 

which  these  spheres  are  inverted,  the  equation  of  the  new  surface 

is  (Art.  60) 

4(Xi-\5)a;^  +  4(X.3-^5)/  +  4(X3-^5)2' 

+  ̂-^"^^^^^^  +  2/' +  ̂' -  ̂ T  =  0, 

or  F+(\4-X5)-Sf^  =  0. 

We  may  assume  X4  —  X,  to  be  positive  ;  different  forms  of  the 
surface  will  then  arise  according  as  one,  two,  or  three  of  the  remaining 

coefficients  are  negative. 

If  one  of  them  is  negative  then  every  line  through  the  origin 

and  within  the  cone  V  meets  the  surface  in  four  real  points ;  hence 

the  surface  consists  of  two  ovals,  one  within  each  portion  of  V.  If 

two  of  them  are  negative,  then  every  line  through  the  origin  and 

without  the  cone  V  meets  the  surface  in  four  real  points;  the 

surface  is  ring-shaped.  If  all  are  negative,  then  every  line 

through  the  origin  meets  the  surface  in  four  real  points;  hence 



102  THE   CYCLIDE  [CH.  V 

the  surface  consists  of  two  ovals,  one  within  the  other,  and  each 

surrounding  the  origin. 
Hence  the  form  of  the  original  surface  is  also  determined  in 

this  manner  by  the  signs  of  the  quantities  \i  —  Xg.  When  all  the 
variables  are  real,  the  inverted  surface  is  seen  to  be  derived  from 

the  general  cyclide  by  taking  Bi ,  B2  and  B^  all  zero  and  G  positive 
(Art.  54).    This  is  one  form  of  cyclide  with  three  planes  of  symmetry. 

The  other  form  in  which  C  is  negative  corresponds  to  the  case 

when  two  of  the  variables  are  imaginary ;  for  in  this  case  we  have 

3 

in  which  we  may  take 

a^i  =  ̂i  +  »|2,     a;.=  ̂ ^-i^.,; 

substituting   these   values   for  Xi   and   X2  the  identical  relation 
assumes  the  form 

Hence  f ,  +  ̂2  and  |i  —  ̂ ^  are  point-spheres. 
If  we  make  the  same  substitution  in  the  equation  of  the 

cyclide,  it  assumes  the  form  (in  which  only  real  quantities  occur), 

A  (li^  -  m  +  4^  li  I,  +  I  \xe  =  0, 3 

that  is 

■4  i^i'  -  m  +  B  {(f,  +  ̂,)^  -  (^,  -  ̂.y]  +  i  \ix^'  =  0. 3 

Inverting  from  an  intersection  of  the  spheres  x^,  Xi,  Xs,  i.e. 

from  the  centre  of  one  of  the  point-spheres  ̂ 1-1-^2,  ̂ i  —  ̂ i,  the 
equation  of  the  inverse  surface  is  seen  to  be  of  the  form 

{a?  +  2/2-1-  z-y  +  (X3  +  k)  X-  -h  (^4  +  «)  v/2  4-  (X5  +  /c)  2"  -  m^  =  0. 
In  this  case  every  line  through  the  origin  meets  the  surface  in 

two  real  and  in  two  imaginary  points. 

65.     The  type  [2111]. 

The  equations  determining  the  second  type  show  that  it 

represents  a  cyclide  which  can  be  generated  in  four  ways ;  viz.  in 

three  ways  by  bitangent  spheres  orthogonal  to  three  given  spheres 

respectively,  and  once  by  a  sphere  passing  through  a  given  point, 
which  is  one  of  the  intersections  of  the  spheres  x^,  x^  and  x^. 

Two  of  the  principal  spheres,  Si  and  ̂ 2  of  the  general  case,  here 
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come  into  coincidence  with  the  point-sphere  a:^.     It  follows  from 
Art.  59  that  the  principal  spheres  are  all  real. 

That  this  is  a  degenerate  case  of  the  general  case  may  be  seen  as  follows : 
let  us  change  the  notation  and  write 

5  5 

1  1 

and  let  X2=Xi  +  e,  .^2=^:1 +  6:^2',  where  e  is  small. 
5 

Then  Q  =  {ai  +  a2)xi^+2a2  fXi  x{  +  Sa^  x^^ 3 
5 

$ = Ai  (051  +  02)  00^ -Va^^  (■^1^+  2X1 0^1  .^2')  +  iXiaiX^. 3 
If  we  now  assume  that 

«i  +  «2  =  0,     a2f  =  l,     a3=a4  =  a5  =  l, 

we  obtain  the  second  type.     See  Bocher,  Potential  Theorie. 

The  surface  has  a  node,  the  centre  of  the  point-sphere  x^. 
If  we  invert  the  surface  from  this  node,  we  obtain  the  quadric 

(\3  -  XO  a?  +  {\,  -  \,)  y-  +  (X3  -  Xi)  z"  -i-  A-  =  0. 
Hence,  if  the  node  is  isolated  the  surface  is  the  inverse  of  an 

ellipsoid ;  otherwise  it  will  be  ring-shaped  if  it  is  the  inverse  of 
a  hyperboloid  of  one  sheet ;  it  will  consist  of  two  sheets  united  at 
the  node  if  it  is  the  inverse  of  a  hyperboloid  of  two  sheets. 

That  the  cyclide  is  the  inverse  of  a  quadric  when  one  of  the 

principal  spheres  reduces  to  a  point,  may  also  be  seen  as  follows : 

if  Q  is  the  quadric  associated  with  the  point-sphere  0,  the  surface 
is  the  envelope  of  spheres  passing  through  0  and  having  their 

centres  on  Q ;  all  the  spheres  whose  centres  are  consecutive  to  any 

point  P  of  Q  will  pass  through  the  point  0'  which  is  the  image 
of  0  for  the  tangent  plane  of  Q  at  P.  Hence  the  surface  is  similar 

to  the  pedal  surface  of  Q  for  0,  and  is  therefore  similar  to  the 

inverse  of  the  reciprocal  polar  of  Q  for  0. 

66.     The  type  [311]. 

The  equations  connected  with  this  type  of  cyclide  show  that 

it  is  generated  in  three  ways ;  twice  as  the  envelope  of  a  sphere 

cutting  orthogonally  two  given  spheres  respectively ;  and  once  as 

the  envelope  of  a  sphere  passing  through  a  given  point ;  the 

spheres  x^,  x^  of  the  general  case  come  into  coincidence  with  the 

point-sphere  x^. 
The  equation  of  the  surface  being 

(X4  -  Xi)  x^  +  (X5  -  Xi)  x^  +  Ix^x^  =  0, 
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the  centre  of  the  point-sphere  x^  is  seen  to  be  a  node,  and  since 
the  spheres  x^,  x^,  x^  pass  through  this  point  and  cut  orthogonally, 
the  tangent  cone  of  the  cyclide  at  the  point  consists  of  two  planes. 

Inverting  the  surface  from  the  node,  we  obtain  as  the  inverse 
surface,  the  paraboloid 

(Xo  -  Xi)  a;-  +  (X3  -  \i)  1/  +  2hz  =  0 ; 

which  is  elliptic  or  hyperbolic  according  as  the  biplanar  node  has 
imaginary  or  real  tangent  planes. 

The  four  remaining  types  give  rise  to  cyclides  which  are 

imaginary ;  for  the  quintic  F  (X)  =  0  may  have  either  one  double 
root  or  one  triple  root,  but  no  other  coincidence  of  roots  can  occur 

in  a  real  cyclide  (Art.  59)*. 

67.     The  sub-type  [(11)111]. 

The  sub-types  arising  from  the  above  three  chief  types,  as  for 
instance  [(11)  111],  are  such  that  the  equation  of  the  surface  can 

be  expressed  in  terms  of  only  three  variables  ;  thus  [(11)  111]  has 

an  equation  of  the  form 

Ax^^  -1-  Bx^  +  Cxi  =  0. 

The  common  characteristic  of  all  the  sub-types  is  that  one  of 
the  five  cones  V  should  be  a  pair  of  planes,  real  or  imaginary. 

For,  if  in  the  equation 

we  substitute    aS^,  =  «2'S'i  +  a,    8^  =  a^S^  +  /3,  where  a  and  ̂    are 
linear  in  the  coordinates,  we  obtain  an  equation  of  the  form 

7  being  linear  in  the  variables. 
The  surface  [(11)  111]  has  two  nodes  which  may  be  either  real 

or  imaginary.  If  the  nodes  are  real,  on  inverting  the  surface  from 
one  of  them  we  obtain  a  quadric  cone. 

The  cyclide  Ax.^  4-  Bxi-  -t-  Cx^-  =  0  is  the  envelope  of  the 
spheres  ci.^Xz+ a^x^^- a^x^=0,  subject  to  the  condition 

''1^^1  +  ̂-1  =  0  (1) 

The  contact  of  these  spheres  and  their  envelope  occurs  along 
a  circle  instead  of  at  two  points. 

*  The  cyclide  S^  =  ttjS  (A.rt.  59)  is  always  expressible  in  the  form  {S-^,S2,S^aY=0, 
where  S-y,  S2,  S^  are  three  mutually  orthogonal  spheres ;  hence  it  cannot  belong  to 
one  of  the  types  [221],  [41],  [32],  [5]. 
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These  spheres  cut  both  x^  and  Xo  orthogonally,  hence  they  pass 

through  the  two  limiting  points  of  x^ ,  x^,  so  that  their  centres  lie  in 

a  plane ;  since  they  also  lie  on  the  cone  (1)  they  lie  on  a  conic.  This 
surface  is  therefore  the  envelope  of  a  sphere  which  passes  through  a 

fixed  point  and  whose  centre  lies  on  a  conic. 

Two  systems  of  bitangent  spheres  coincide  with  this  system, 

the  other  three,  which  may  be  called  the  proper  systems,  remaining 

as  before.  They  are  obtained  by  writing  the  equation  of  the 

cyclide  in  the  form 

(B-A)x,'  +  {C-A)x,^-A  {x,'  +  x,^)  =  0, 
showing  that  the  surface  is  the  envelope  of  the  spheres 

subject  to  the  condition 

A^A~B^^~C^rA-^    ^^^' 

Now  in  the  preceding  equation  (1)  we  may  assume 

hence  it  is  equivalent  to 

a    -t*         -A  „    (^         -^  -,  /0\ 

a.' —^  +  o!,' -—(T-  =1    (3). 

Also  in  equation  (2)  we  may  assume  that 

ttf  +  a/  +  a/  +  0/  =  1 ; 

hence  it  is  equivalent  to 

'-b^^^'g-^a"'   W- 
These  equations  (3)  and  (4)  hold  respectively  for  generating 

spheres  of  the  special  system  and  a  proper  system. 
Now  take  two  fixed  generating  spheres  of  the  special  system 

whose  coordinates  are  (0, 0,  v^jZ^,  w^),  (0,  0,  v^,  z^,  w^,  and  a  variable 

sphere  of  the  system  to  which  (4)  relates  whose  coordinates  are 

(a?,  y,  0,  z,  w);  then  if  ̂ j,  ̂ 2  respectively  are  the  angles  at  which 
the  variable  sphere  cuts  the  fixed  spheres,  we  have  (Art.  61) 

cos  ̂ 1  =  ZZi  +  WWj 

B  IB-A  I     C  IC-A 

cos  </)2  =  ZZ2.  +  WWo 

='\I-^a'^N^^'^\I  g^a'^-^N 
0-A 

G    ■ 
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Hence  by  virtue  of  equations  (8)  and  (4)  we  may  take  </>!  and 

^2  to  be  the  angles  which  a  variable  line  makes  with  two  fixed 

lines  in  its  plane ;  hence 

01  ±  <^2  =  constant. 
Therefore  the  sum  or  difference  of  the  angles  which  a  variable 

sphere  of  one  of  the  three  proper  systems  makes  with  two  fixed 

spheres  of  the  special  system  is  a  constant. 

The  corresponding  result  for  the  general  cyclide  is  the  following:  the 
angles  which  any  generating  sphere  of  one  set  makes  with  three  fixed 
generating  spheres  of  another  set,  are  equal  to  the  angles  which  a  variable 
line  makes  with  three  fixed  lines. 

68.     Dupin's  cyclide. 

The  surface  [(11) (11)1]  is  known  as  Dupin's  cyclide;  its 
equation  takes  either  of  the  forms 

(\  -  X3)  (oc-^  +  X,')  +  {\,  -  X3)  ̂5'  =  0, 

(X3  -  \)  (ocs'  +  a;/)  +  (X3  -  Xi)  x,'  =  0. 

It  has  four  nodes,  of  which  at  least  two  are  conjugate 

imaginary,  since  at  least  two  lie  upon  that  sphere  the  square  of 

whose  radius  is  negative. 

Inverting  from  a  node  (supposed  real)  we  obtain  a  cone  of 
revolution. 

The  spheres  which  touch  the  surface  along  circles  form  two 

systems,  one  of  the  systems  is  given  by  the  equations 

hence  0(5  is  constant  and  equal  to*/  — ^- — -^,  so  that  these  spheres V    A,5  —  A3 

cut  the  sphere  x^  at  a  constant  angle.     If  they  lie  within  x^,  a^  is 

positive  and  greater  than  unity,  say  equal  to  sec  /3 ;  the  spheres 

will  therefore  touch  each  of  the  fixed  spheres  (sin  /?,  0,  0,  0,  cos  /3), 

(0,  sin  13,  0,  0,  cos  yS).     Hence  Dupin's  cyclide  is  the  envelope  of 
spheres  having  their  centres  on  a  fixed  plane  and  touching  each 

of  two  fixed  spheres.     The  fixed  spheres  are  not  unique,  since 

they  are  any  two  of  the  singly  infinite  set  (A^,  A^,  0,  0,  cos  yS)  where 

Ai^  + A^^  =  sm^/3;  whose  centres  lie  in  the  radical  plane  of  X3 
and  x^. 

We  obtain  the  same  cyclide  as  the  envelope  of  spheres  cutting 

x-i  and  X4,  orthogonally ;  they  have  their  centres  on  a  second  conic 
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.whose  plane  is  perpendicular  to  the  line  joining  the  centres  of 

£€3  and  0)4.  Since  the  join  of  the  centres  of  x^  and  a:^  is  perpen- 
dicular to  the  join  of  the  centres  of  x^  and  x^  these  two  conies  lie 

in  perpendicular  planes.  These  spheres  form  the  previous  set 

(Ai,  A2,  0,  0,  cos  yS)  ;  for  they  are  a-^x-^^  +  a^x^  +  a^x^=  0,  with  the 
condition 

^Xg   —  Xj 

CtjS   +    0^2  =   o;^2 
Xj  —  X3 l]  =  a^-  tan=  /3. 

This  cyclide  was  originally  defined  as  the  envelope  of  a  sphere  touching 

three  fixed  spheres,  but  such  spheres  form  four  distinct  sets,  each  set 
enveloping  a  cyclide. 

The  equation  of  the  tore  or  anchor-ring  is 

{^2  +  2/-  +  ̂ 2  -f  c^  -  a^Y  =  4c'  {x-^  +  f-), 
where  c  is  the  distance  of  the  centre  of  the  revolving  circle  from 

the  axis  of  revolution,  and  a  its  radius ;  inverting  from  any  point 
we  obtain 

x,"^  +  A  {xi  -t-  xf)  =  0. 
If  c  is  greater  than  a,  then  x^  is  a  sphere  the  square  of  whose 

radius  is  negative  and  the  cyclide  is  a  Dupin's  cyclide  with  no 

real  nodes ;  if  c  is  less  than  a  we  then  obtain  a  Dupin's  cj-clide 
two  of  whose  nodes  are  real. 

69.  We  add  a  list  of  the  various  distinct  real  types  of  cyclide ; 

the  remaining  forms  consist  merely  of  pairs  of  spheres,  etc. 

[11111] General  cyclide : 
Surface  either  has 

two  sheets  or  is 

ring-shaped 

Surface    has    one 

Inverse  surface 

Cyclide     with     three 
planes  of  symmetry 

(constant term  posi- 
tive) 

Cyclide     with     three 

Nodes 

[(11)  111] 

sheet planes  of  symmetry 

(constant  term  ne- 
gative) 

Cone 2 

[(11)  (11)  1] Cone  of  revolution 4  (two  imaginary) 

[2111] Ellipsoid 

Hyperboloid    of    one 
sheet 

Hyperboloid    of    two 
sheets 

1 (isolated) 
1 

1 

[2  (11)  1] Ellipsoid  or  hyperbo- 
loid of  revolution 

3  (two  imaginary) 
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Lc 

Inverse  surface Nodes 

[(21)  11] Elliptic  or  hyperbolic  cylinder 1 

[(21)  (11)] Circular  cylinder 3  (two  imaginary) 

[311] Paraboloid 1  (biplanar) 

[3  (11)] Paraboloid  of  revolution 3  (two  imaginary) 

[(31)  1] Parabolic  cylinder 1  (uniplauar) 

70.     Tangent  spheres  of  the  cyclide. 
5 

The  equation  S  {ai  -h  X.)  x^yi  =  0,  where  the  xi  are  the  coordi- 
5 

nates  of  a  point  of  the  cyclide  S  ttii^i^  =  0,  represents  the  cjo  ̂   tangent 1 

spheres  of  the  cyclide  at  the  point  Wi. 

Hence*  if  2  rriiyi  =  0  is  a  tangent  sphere  of  the  cyclide,  we  have 

'    =0,     2^^?4v.  =  0. 
Eliminating  X  between  these  equations,  we  have  the  relation 

fulfilled  by  the  coordinates  m^  of  a  tangent  sphere  of  the  cyclide. 

It  arises  by  expressing  that  the  equation  X  — —-  =  0  should  have 

a  double  root.  The  equation  being  of  the  fourth  degree  in  \  its 
discriminant  will  be  of  the  twelfth  order  in  the  ??ii. 

Let  ■x/r  (ni)  =  0  represent  this  equation,  nii  +  pm/  represents  the 

00  ̂   spheres  passing  through  the  intersection  of  any  two  spheres 
mi  and  m/,  and  we  obtain  those  spheres  which  touch  the  cyclide 

by  means  of  the  equation 

yfr{m  +  pm!)  =  0, 

which  is  of  the  twelfth  degree  in  p.     Hence  through  any  given 

circle  twelve  spheres  may  be  drawn  to  touch  the  cyclide. 

If  the  spheres  m  and  m'  are  concentric, 

TUi  =  KW-i  +  -  T. 

and  the  equation  yfr  (m  +  pni)  =  0  gives  the  twelve  spheres  having 
the  given  point  as  centre,  which  can  be  drawn  to  touch  the 

cyclide,  i.e.  twelve  normals  can  be  drawn  from  any  given  point  to 
a  cyclide. 

*  See  Darboux,  Sur  une  classe  remarquable,  etc.,  p.  275. 

S  ■ 

t  Since  S -^  =  constant. 

rr 
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Bitangent  spheres. 
5 

If  in   the   spheres  S  (ttj  +  X)  xiyi  =  0   we   take  X  to  be  suc- 
1 

cessively  —  ai ...  -aj,  we  obtain  the  five  bitangent  spheres  which 
touch  the  cyclide  at  the  point  x ;  e.g.  if  X  +  o^  =  0,  the  corre- 

sponding sphere  touches  the  cyclide  in  the  two  points  ±x-^,X2...  x^. 
5 

The  Cartesian  coordinates  of  the  centre  of  the  sphere  S  miXi  =  0 
1 

are  clearly  equal  to  the  expressions 

n  I     Ti'       ̂   n  I     Vi'  Ti  I     Vi' 

where  the  point  {  — fi,  —  Qi,  —hi)  is  the  centre  of  the  fundamental 
sphere  S^. 

Hence  the  coordinates  of  the  centres  of  the  set  of  spheres 

TTii  +  Xm/  are  each  of  the  form  ̂  — — ^ ,  i.e.  the  cross-ratio  of  any 

four  of  these  points  is  equal  to  the  cross-ratio  of  the  corresponding 
values  of  X. 

Applying  this  to  the  spheres  -'  {ai  +  X)  xiyi  =  0,  and  taking  X 
to  be  successively  —  oo  ,  —  a-^ ...  —  a^,  the  corresponding  centres  are 
the  point  x  and  five  points  in  which  the  normal  to  the  cyclide  at 

the  point  x  meets  the  five  fundamental  quadrics  Qi  ...  Q^;  it 

follows  that  the  cross-ratio  of  any  four  of  the  folloiuing  six  points 
on  the  normal  at  any  point  P  of  a  cyclide  is  constant,  viz.  the  yoint  P 

and  the  centres  of  the  bitangent  spheres  which  lie  on  the  normal  at  P. 

71.     Confocal  cy elides. 

If  the  bitangent  sphere  is  also  a  point-sphere  zi,  its  centre  is 
a  focus  of  the  surface.     Taking  one  system  we  have  for  instance 

Zx  =  0,      Zi  =  (ai  -  Oi)  Xi,  (*  =  2,  ...  5), 
5 

with  the  condition  2  Zi^  =  0. 
1 

5  ^.2 

The  equations  ̂ 'i  =  0,  S  — ^ —  =  0,  give  the  focal  curve. 
2  <Xi  —  Oi 

If    is  substituted  for  a^  in  the  last  equation,  its  form  is 
ai  +  fjb 

not  thereby  altered,  since  a^  —  a^  is  transformed  into 

1  1         _  Oi  —  tti 

ai-\-  jx     ai  +  fM     (ai  +  /m)  (a^  +  /j,)' 
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Hence  the  equation  becomes 

2  Cti  —  Cti 

which  leads  to  the  original  equation 

2-^^  =  0. 

2  ai  — «! 

Hence  the  cyclides  S  — - —  =  0  are  confocal  with  the  original Cli  +\ 

cyclide  S  aixf  =  0.  They  form  therefore  a  confocal  system  in 
which  the  original  cyclide  is  included  as  corresponding  to  the 

value  infinity  for  X. 

Through  any  point  there  pass  three  confocal  cyclides,  since  the 
5  -T^  ,2 

equation  S  — ^  =  0,  regarding  the  Xi  as  given,  constitutes  a  cubic 
5 

in  X,  (since  %  x^  =  0). 
1 

These  cyclides  cut  each  other  orthogonally,  for  if  X,j,  Xo  refer  to 

two  cyclides  through  the  point  x,  then  since  tangent  spheres  at 

this  point  to  them  respectively  are 

ai  +  Xi  tti  +  Xi 

if  these  spheres  are  orthogonal  we  have 

^''  =  0,  (Art.  61). (ai  +  Xi)  (ai  +  Xo) 

But  this  is  merely  another  form  of  the  equation 

/y»  .2  /y»  .2 

_S_J^  =  0. 
tti  +  Xi         Oi  +  X 

The  three  cyclides  through  any  real  point  are  all  real ;  for  the 

variables  xf  may  be  all  real,  in  which  case  the  square  of  one  of  them, 

say  Xs^,  is  negative,  so  that  if  we  suppose  the  quantities  ai . . .  a4  in 
order  of  magnitude,  the  cubic  determining  X  has  a  root  in  each  of 

the  intervals  —  a^ ...  —  a^,  —  a^ ...  —  a^,  —a^...—ai.  Again,  if 
x-i  and  x^,,  and  consequently  a^  and  a^,  are  conjugate  imaginary,  the 
cubic  has  a  real  root  in  each  of  the  intervals  —  a^...  —  ai,  —  ai...  —  a^, 
and  therefore  possesses  three  real  roots. 
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Corresponding  'points  on  confocal  cyclides. 

The  equations 

^i=T=^>  (*  =  1,...5), 
va^•  4-\ 

establish   a  (1,  1)  correspondence  between  the  point  x  on  the 

cyclide  S  aixi  =  0  and  the  point  y  on  the  cyclide  S  —^ —  =  0. 
5 

Denoting  by  f(\)  the  product  IT  (A,  +  «»),  by  resolving  into 

partial  fractions  the  expressions 

X^  V  \  1 

/(\)'  f{\y  f{\)'  /(x)' 
it  is  seen  that 

■o  (^i    •o  ̂ i   ■^  Q^r     ■^  l     /N 

Hence  the  equations  2  aia;^^  =  0,  S  a;^^  =  0,  are  identically  satis- 
fied by  the  substitutions 

These  equations  express  the  coordinates  of  any  point  x  of  the 

cyclide  in  terms  of  two  parameters  Xj  and  Xg,  so  that  if  we  take 

_       Vi Xi  —    .   _  , vaj  +  Xs 

it  follows  that 

/(a^  +  Xi)  (ai  +  X,)  (tti  +  X3) 

pyi  =  \l   Tv^ot)   '  (*  =  ̂""^)' 
The  quantities  Xj,  etc.  are  seen  to  be  the  roots  of  the  cubic  in 

X  giving  the  three  confocals  through  the  point  y. 

The  above  expressions  for  the  j/j  in  terms  of  Xj,  X2,  X3  may  be  directly 

obtained  by  considering  the  cubic  in  the  form 

/*        2  M+aj-ai 
and  hence  it  follows  that 

yi  V  ( -  «i) = 2«iyi' («i + ^i)  K + ̂ 2)  («i + ^3) ; 1 

four  other  equations  of  like  form  are  obtained  similarly. 
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The  curves  Xj  =  constant,  X^  =  constant  are  the  lines  of  curva- 

ture on  the  surface  2  aix^  =  0,  for  from  the  equation 

_     /{aj  +  XQ  (gj  +  ̂ 2) 

it  follows  that  if  Xi  +  dxi  be  the  consecutive  point  on  the  curve 
Xj  =  constant,  we  have 

,  ,        lp.r,rfXi 

hence 

(tti  +  Xi  -  ̂   c^  \i)  {xi  +  dxi)  =  (tti  4-  Xi)  a^i  ( 1   j  , 

neglecting  quantities  of  the  second  order;  therefore  a  tangent  sphere 

at  a;^,  viz.  2  (ttj +  Xi)  a^i^/i  =  0,  is  also  one  of  the  tangent  spheres 

at  the  consecutive  point  on  the  curve  A2  =  constant,  and  is  there- 
fore a  principal  sphere  at  the  point  x. 

Thus  the  two  confocals  through  any  point  of  the  surface 

2  aiX^  =  0  intersect  it  in  its  lines  of  curvature ;  which  is  other- 

wise manifest  from  Dupin's  theorem. 

72.     The  sixteen  lines  of  the  surface. 

It  is  known  that  every  general  quartic  surface  with  a  double 
conic  contains  sixteen  lines  (Art.  24).  The  existence  of  these 

lines  on  the  cy elide  is  made  evident  by  the  equations 

^^_     /(c^J^)K+^)^    (i=l,...5)   (1). 

For  if  we  suppose  Xi  =  Xg,  we  obtain  for  any  point  x  of  the 

curve  Xi  =  X2  the  equations 

pXi  =  Ai\^-\-  Bi,  (t=I,  ...5); 

whence  if  ̂ ,  77,  ̂   are  the  corresponding  Cartesian  coordinates  of 

the  point  x, 

^     G'Xi  +  i> '       '^      CX.  +  D  '      ̂      CX,  +  D  ' 
hence  the  curve  is  a  straight  line. 

By  taking  all  combinations  of  signs  in  the  ambiguities  in 
equations  (1)  we  obtain  the  sixteen  lines.  These  lines  are  all 

imaginary,  since  as  in  the  general  case  of  the  quartic  surface  with 
a  nodal  conic,  a  line  on  the  surface  must  form  part  of  a  conic  on 
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the  surface,  and  in  the  case  of  the  cyclide  all  such  conies  are 
circles. 

73.     Centre  of  a  cyclide. 

The  locus  of  mean  distances  of  points  of  intersection  of  a  series 

of  parallel  chords  with  an  algebraic  curve  of  degree  n  is  called  a 

diameter ;  when  the  terms  of  degree  n  -  1  in  the  equation  of  the 

curve  f{x,  y)  =  0  are  lacking,  all  diameters  pass  through  the 

origin,  the  centre  of  the  curve.  The  equation  of  a  cyclide  being 
\vritten  in  the  form 

(a^+ if +  2-^  +  4^11  =  0, 

we  proceed  to  consider  the  centres  of  its  sections.  Since  the 

coordinate  planes  may  have  any  directions,  we  may  consider 

the  section  of  the  surface  by  the  plane  z  =  h;  it  is  seen  that 

the  diameter  corresponding  to  chords  of  the  section  parallel  to 

the  axis  of  x  is  the  axis  of  y,  and  vice-versa.  Hence  the  line 

x  =  y=0  is  the  locus  of  centres  of  sections  parallel  to  the  plane 
^  =  0,  so  that  the  locus  of  centres  of  sections  parallel  to  any  plane 

is  a  line  through  the  origin  perpendicular  to  that  plane.  The 

origin  is  therefore  termed  the  centre  of  the  surface. 

Sphero-conics  on  a  cyclide*. 

The  sphere  8  =  2L  (where  L  =  ax  + /Sy  +  yz  +  S,  S^x^  +  y"- +  z^) 
meets  the  cyclide  S^  +  4<U=  0  in  a  curve  given  as  the  intersection 

of  the  sphere  and  the  quadric  U  +  L^  =  0;  it  is  therefore  a  sphero- 
conic  a ;  the  centre  of  the  sphere  is  termed  the  centre  of  cr.     Now 

denote  by  H  the  quadric  U  +  L- +  ~(S  -  2L)  =  0 ;  the  inter- 

section of  H  with  the  cyclide  consists  of  a  together  with  another 

sphero-conic  a'  which  lies  on  the  sphere  S  +  2L  —  X  =  0. 
Hence  a7iy  quadric  through  <t  meets  the  cyclide  in  another 

sphero-conic  a'.  The  line  joining  the  centres  of  cr  and  o-'  is 
bisected  at  the  centre  of  the  surface,  hence  all  quadrics  through 

a  given  sphero-conic  cut  the  cyclide  in  another  sphero-conic  whose 
centre  is  fixed. 

If  Z  is  a  constant  k,  the  centres  of  a  and  a'  coincide  with  the 

origin  ;  if  4^'  =  X,  the  spheres  and  therefore  a  and  cr'  coincide,  and 
H  becomes  the  quadric  V,  where 

V=U+kS-k^\ 
*  The  results  of  the  present  and  following  Articles  were  given  by  Humbert, 

Sur  les  surfaces  cycUdes,  Journal  de  I'ecole  polytechnique,  nv.  (1884). 

J.  Q.  S.  8 
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this  quadric  V  touches  the  cyclide  along  a  sphero-conic  lying  on  the 

sphei^e  S  —  2k  =  0.  For  these  quadrics  V  it  is  easy  to  see  that 
in  general  two  pass  through  any  jJoiiit,  three  touch  any  given  line 

and  four  touch  any  given  plane*. 

If  Fcorrespond  to  any  given  value  of  A.-,  and  if  in  the  equation  of 
H  previously  given  we  suppose  the  quantity  X  to  be  4k,  it  is  seen 
that 

H=V+(L-ky; 

hence  H  touches  V  along  a  conic. 

The  spheres  2^,  Sg  which  contain  the  curves  a;  a'  of  inter- 
section of  H  and  the  cyclide  are  then 

1,  =  S-2L,      '2.,  =  S+2L-4>k; 
while  the  sphere  Sj  passing  through  the  curve  of  contact  of  V 

and  the  cyclide  is   %  =  S-  2k. 

These  three  spheres  have  a  circle  in  common  in  the  plane 

Jj  —  k=  0 ;  hence,  every  quadric  H  which  cuts  a  cyclide  in  two 

■sphero-conics  a,  a  touches  one  of  the  quadrics  V  along  a  conic ;  the 
spheres  which  respectively  contain  a,  a  and  the  curve  of  contact  of  V 

and  the  cyclide  have  a  circle  in  common  whose  plane  is  that  of 
■contact  of  V  and  H. 

Now  take  a  generator  of  H  through  any  point  P  of  the  conic 

L  —  k  =  V=0;  this  lies  in  the  tangent  plane  of  ̂   at  P  and  meets 

the  curves  <t,  cr'  in  points  A,B  ;  C,  D;  also 

PA.PB  =  power  of  P  for  S^ ,      PC.PD  =  power  of  P  for  2^, 

and  since  P  lies  on  the  common  radical  plane  of  2i,  ̂ 2,  ̂ s  we 
have 

PA.PB  =  PG.PD  =  ̂ ovfQv  of  P  for  ̂ .=  x'^  f- +  z^ -2k; 

where  {x,  y,  z)  are  the  coordinates  of  P. 

By  giving  different  values  to  the  constants  in  L  we  obtain  all 

quadrics  H  which  touch  F  at  P ;  hence  the  result  holds  for  any 
tangent  line  to  F  at  P,  from  which  we  deduce  the  result :  the 

point  of  contact  of  V  with  any  of  its  tangent  planes  tt  is  a  centre  of 

self-inversion  for  the  section  of  the  cyclide  by  tt  ;  and  since  four 
quadrics  F  can  be  drawn  to  touch  any  given  plane  we  thus  obtain 

the  four  centres  of  self-inversion  of  the  section  of  the  cyclide  by 

any  plane. 

*  The  quadrics  Fcorrespond  to  the  quadrics  \l/  +  2\^  +  X^w'^=0  for  the  general 
quartic  surface  <p^  =  w'''\f/. 
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74,     Conjugate  points. 

Two  such  points  A,  B  on  a.  tangent  to  V  are  called  conjugate 

for  the  system  F.  Any  two  points  of  the  cy elide  are  conjugate  for 

one  quadric  V  and  for  one  only ;  for  since  three  quadrics  V  touch 

any  given  line  which  meets  the  cyclide  in  the  points  A,  B,  G,  D, 

these  points  can  be  arranged  in  two  pairs  in  three  ways,  each 
arrangement  corresponding  to  one  quadric   V. 

If  from  any  point  A  of  the  cyclide  tangents  be  drawn  to  a  given 

quadric  V  the  conjugates  of  A  lie  upon  the  cone  and  also  upon  the 

cyclide ;  since  the  cone  has  as  its  equation  VV  —  P^  =  0  where  P  is 

the  polar  plane  of  A  (or  x',  y ,  z'),  it  follows  that  this  cone  meets  the 
cyclide  in  two  sphero-conics  er,  a  but  only  one  of  them  is  formed  by 

the  conjugates  of  A.  For  since  V=U+k8  —  k'^  we  obtain  the 

intersection  of  this  cone  with  the  surface  S'^  +  4iU'  =  0  by  writing 
in  the  equation  of  the  cone  4<V=  —  {S—2ky,  giving  as  the  two 

spheres  through  the  curves  or,  a' 
(8-2k)(S'-2k)=±4>P; 

one  of  these  spheres  passes  through  (x',  y',  /),  since 

p.^y,_    (S'-2ky 
4 

Let  iSj  be  the  sphere  which  passes  through  A,  then  if  Q  is  any 

point  {x,  y,  z)  on  the  conic  along  which  the  cone  touches  V,  and 

therefore  lying  on  the  plane  P  =  0,  the  line  AQ  meets  2i  in 
a  second  point  B  such  that 

QA.QB  =  power  of  Q  for  l^  =  x^^  +  y^  +  z^^  -  2k. 
Hence  B  is  conjugate  to  A  ;  and  a  is  composed  of  the  conjugates 
of  A. 

The  direction  cosines  of  the  normals  to  the  cyclide  and  the 

sphere  Si,  at  A,  are  easily  seen  to  be  the  same.  Hence  the  locus  of 

the  conjugates  of  a  point  A  for  a  given  quadric  V  lies  on  a  sphere 
touching  the  surface  at  A. 

75.     Cartesian  equation  of  the  system  of  confocal  cyclides. 

The  equation  S^  +  ̂ ^,  +  ̂ ^fX^j^^^  +  ̂)  =  ».  where 
a      ,       .      .      2B,«:        2B,M        2B,z 

*  See  Art.  54. 

8—2 
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represents  in  Cartesian  coordinates  the  system  confocal  to  the 

given  cyclide.     For  it  is,  when  reduced,  of  degree  eight  in  X,  and 
since 

F{-A,)=-B,^(A,-A,)(A,-A,), 
it  is  seen  that  X,  +  ̂ i  is  a  factor  of  the  reduced  equation;  similarly 

for  X,  4-  -4 2,  \  +  As.  Moreover  the  coefficients  of  \^  and  X'  vanish, 
hence  we  have  a  resulting  cubic  X,  of  the  form 

VSi  +  X^  +  XSs  +  S.^O, 

where  the  2i  are  cyclides.  Since  for  the  roots  Xj . . .  X4  of  ̂ (X)  =  0 

the  surface  reduces  respectively  to  >S^i^ . . ,  S^^,  it  follows  that  the 
cubic  in  X  can  be  expressed  in  the  form 

1 

where  the  o^  are  cubic  in  X ;  and  therefore  in  the  form 

X  —  Xj  X  —  X4 

But  since  S5  is  included,  for  X  =  Xg,  it  follows  that 

Ki  :  Ko  '■  K'^ '.  K^  =  \^  —  Xj  :  Xg  —  Xo :  X5  —  X3 :  Xj  —  X4, 

■^    Vr,' 

whence  we  finally  obtain     S  — ^--  =  0. 
1  X  —  X^ 

The  following  result  is  given  by  Humbert*;  tuhen  the  sphere 
S  +  2L  =  0  is  a  point-sphere,  and  the  quadric  U  +  L^=0  is  a  cone, 

the  locus  of  the  centre  of  tJtis  point-sphere  is  a  cyclide  confocal  with 
/S"-  +  4f7=0. 

Let  S  =  x' -]- y- -\-  z^  +  d, 

U=a-^x^->r  a.y"'  +  a^z^  +  2piC  +  2qy  +  ̂rz  +  c, 
i  =  aa;  +  ySy  +  7^  +  S. 

Then  >S  +  2Z  =  0  is  a  point-sphere  if 

a'^+/3'-'+7--fZ-2g=0; 

the  quadric  U  -\-  L'~—0  is  a  cone  if 

a2A„  +  2a/3A,,  +  ...  + A  =  0, 

where  A  is  the  discriminant  of  U,  and  A^ ,  etc.  its  first  minors. 

*  Sur  les  surfaces  cyclides,  Journal  de  I'ecole  polytechnique,  liv.  (1884). 



75,  76]  THE   CYCLIDE  117 

Now  denoting  by  (x,  y,  z)  the  centre  of  the  point-sphere  so  that 
x  =  —  a,  etc.  the  last  equation  becomes 

On  inserting  the  value  of  S  we  obtain  as  the  required  locus 

/  2px     lay     2r2       X       4A    fx""     y"     z^      t\     a 

On  writing  a^  =  ̂ ^  +  X,  p  =  B^,  q  =  B2,  r  =  B3,  d=  —  2X,  c  =  G-X^y 

the  cyclide  ̂ '^  +  4  CT  =  0  takes  the  form  given  (Art.  54)  and  the 
locus  is  seen  to  be  a  confocal  cyclide. 

76.  Conunon  tangent  planes  of  the  cyclide  and  a  tangent 

quadric. 

If  we  take  any  plane  touching  the  cyclide  at  a  point  0  and  an 

inscribed  quadric  F  at  a  point  P,  the  line  PO  touches  a  line  of 

curvature  of  the  cyclide  at  0.  For  if  the  plane  be  taken  as  the 

plane  2  =  0  and  the  line  PO  as  the  axis  of  x,  the  equation  of  the 
surface  assumes  the  form 

(a?  +  y'  4-  ̂ '  +  2ax  +  26?/  +  2cz  +  kf 

+  4>(Ax'  +  Bif  +  Gz^-  +  2Dyz  +  2Ezx  +  2Fxy 

—  kax  —  khy  +  2rz  —  t  )  =  0, 

with  the  conditions  P  +  a6  =  0,  J.  -|-  a-  =  0 ;  the  second  member  of 
the  left  side  representing  V. 

But  in  the  equation  of  the  indicatrix  of  the  surface  at  0  the 
coefficient  of  the  term  involving  xy  i&  F+  ah,  hence  the  line  PO 

is  a  tangent  to  a  line  of  curvature  at  0.  The  tangent  to  the 
other  line  of  curvature  is  OQ,  where  Q  is  the  point  of  contact  of 

the  other  inscribed  quadric  V  which  can  be  drawn  to  touch  the 

plane  (the  two  other  inscribed  quadrics  which  touch  the  plane 
coincide  here  with  that  which  touches  the  cyclide  at  0  taken 
doubly). 

Thus  the  locus  of  the  points  of  contact  with  a  cyclide  of  a 

plane  which  touches  the  cyclide  and  a  fixed  quadric  V,  is  a  line 

of  curvature  of  the  cyclide,  the  intersection  with  it  of  a  confocal 

cyclide. 



CHAPTER  VI 

SURFACES   WITH   A   DOUBLE    LINE  :    PLUCKER's   SURFACE 

77.  The  equation  of  a  quartic  surface  with  a  double  line  may 
be  written  in  the  form 

^1^  U+2x,w,V+  xi  W=0, 

where  ?7=  0  is  a  quadric  and  F=  0,  W ^0  are  cones  whose  vertex 

is  the  point  A^.  Since  twenty-two  constants  enter  linearly  into 
this  equation,  and  since  four  conditions  determine  a  line,  the 

surface  depends  upon  twenty-five  constants. 

The  section  of  the  surface  by  a  plane  x-^  =  \Xo  through  the 

double  line  consists  of  the  double  line  together  with  a  conic ;  the 

cone  of  vertex  A^  through  this  conic  has  as  its  equation 

V^'-f  2A.7-f  Tf  =0, 

where  U'  is  the  result  of  substituting  Xx^,  for  x^  in  U.  The  co- 
efficients of  xi,  x^-,  x^,  X0X3,  x\Xi,  XsX^  in  the  last  equation  are 

functions  of  X,  of  degrees  4,  2,  2,  3,  3  and  2  respectively;  hence  it  is 

a  pair  of  planes  for  eight  values  of  X,  eight  of  the  sections  through 
the  double  line  consisting  of  a  pair  of  lines.  The  surface  thus 
contains  sixteen  lines ;  it  contains  no  line  which  does  not 

intersect  the  double  line,  unless  U,  V,  W  have  a  common 

generator. 

78.  In  addition  to  the  conies  in  planes  through  the  double 

line  the  surface  contains  certain  other  conies.  The  origin  of  these 

conies  is  seen  by  application  of  the  following  theorem :  if  seven 

lines  pyp2---P7  are  all  intersected  by  an  eighth  line  p,  there  is  one 
conic  which  intersects  the  eight  lines. 

This  result  may  be  proved  as  follows:  consider  five  lines 

_Pi . . .  Pb  all  intersected  by  p  which  we  may  take  as  the  edge 

A^A^,  any  arbitrary  line  p'  being  A-^A^,  then  there  are  three  planes 

through  p'  which  meet  the  lines  pi ...  p^,  AsA^  in  points  of  a  conic ; 
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for  the  plane  x^  —  X^4  =  0  meets  any  one  of  the  lines  ̂ i ...  ̂ 5  in  a 
point  whose  coordinates  are 

Aoi,  Boi,  \,  1, 

where  a  =  a\  +  b  and  a,h,A,B  are  constants  connected  with  the  line; 

project  these  five  points  from  Ai  upon  the  plane  a.^,  giving  points 

AiCLi,  BiO.1,  X,  (i=l,  2,  3,  4,  5); 

the  condition  that  these  five  points  and  A3  should  lie  upon  a 
conic  is  then 

Ai'oci'     Bi^a,^     X"     A^Xa^     B.Xj^     A,B,a,^ 
_  A 

•  •  •  •  "  "  —  V/, 
•  •  a  •  •  . 

0  0         10  0  0 

Omitting  the  irrelevant  factor  X-  we  obtain  an  equation  of 
degree  eight  in  X.  But  five  of  these  values  of  X  relate  to  the  five 

planes  through  p'  and  the  points  (j^i,  ̂ 3^4)-  hence  we  have 

finally  three  planes  through  p'  meeting  p^.-.p^,  A3A4  in  points of  a  conic. 

Hence  the  planes  meeting  p,  Pi-..  Ps  in  points  of  a  conic 
envelop  a  surface  of  the  third  class. 

This  surface  contains  each  of  the  lines  pi ...  p^]  for  the  plane 

through  pi  and  the  second  transversal  of  pi,  p^,  ps,  Pi,  meets  the 
lines  p,  pi-.-ps  in  six  points  lying  on  two  lines. 

Similarly  for  p^  and  the  lines  jj3,|>4,/?5,  etc.;  hence  four  tangent 
planes  of  the  surface  can  be  drawn  through  pi,  i.e.  pi  lies  on  the 

surface;  similarly  for  p.^.-.p^-  For  the  same  reason  p  lies  on 
the  surface.  Now  consider  the  three  surfaces  thus  formed  with 

P,  Pi,  P2,  Ps,  Pi  and  p„  2h,  p?  respectively;  applying  the  known 
results*  for  the  intersections  of  three  cubic  surfaces  which  have 

four  lines  in  common,  it  is  seen  that  there  is  one  tangent  plane 
common  to  the  three  surftxces. 

Construct,  therefore,  the  conic  which  meets  the  double  line  and 

also  one  line  of  each  pair  out  of  seven  pairs  of  lines  ;  this  conic  meets 

the  surface  in  nine  points  and  therefore  lies  upon  it.  The  plane  of 
this  conic  meets  the  surface  in  another  conic,  the  two  conies  have 

one  intersection  upon  the  double  line ;  each  conic  meets  one  of  the 
two  lines  forming  the  eighth  pair  of  lines. 

By  taking  all  possible  selections  of  seven  lines  in  accordance 

with  the  foregoing  method,  we  obtain  2^  =  128  conies  lying  in 
64  planes;  each  plane  being  a  tri tangent  plane  of  the  surface. 

*  Salmou,  Geom.  of  three  dimensions,  5th  Ed.,  Vol.  i.  p.  371. 
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79.     Mapping  of  the  surface  on  a  plane. 

Any  one  of  the  foregoing  conies  affords  a  means  of  representing 

the  points  of  the  surface  upon  a  plane *.  For  if  0=0  is  such  a 
tritangent  plane,  the  equation  of  the  surface  may  be  written 

(x,  A  -  x^B)  {x^A'  -  Xo  B')  -  G  [Px^~  -  2Nx^x^  +  Mxi\  =  0, 
where  A,  B,  ...  ilf  are  linear  functions  of  the  coordinates. 

We  may  therefore  express  any  point  of  the  surface  in  terms  of 
two  parameters,  viz.  the  ratios  of  ̂ i,  ̂2,  ̂3,  as  follows: 

(1)         liA'iH-  |2-^2  =  0, 

(2)  ̂ ,B  +  ̂ ,A+^,C=0, 

(3)  ̂ 3  (B'^,  +  A'^,)  +  i/^r  +  ̂ NU,  +  P^,^  =  0 ; 
giving  a  (1,  1)  correspondence  between  any  point  x  of  the  surface 

and  a  point  ̂   of  any  assumed  plane. 

For  any  assigned  point  ̂ ,  the  first  two  equations  give  a  line 
which  intersects  the  double  line  and  also  the  conic 

C  =  0,     x^A-x„^B  =  0, 

its  fourth  point  of  intersection  with  the  surface  being  the  point 

x  which  corresponds  to  ̂ .  Conversely  each  point  x  of  the 

surface  determines  such  a  line  and  hence  one  point  ̂ .  For  any 
point  X,  however,  of  one  of  the  eight  lines  of  the  surface  which 

intersect  this  conic,  the  same  point  f  is  determined ;  we  have 

therefore  eight  principal  points  ̂   of  the  correspondence  which  we 

denote  by  B^  ...  B^,  each  of  them  corresponds  to  all  the  points  of 

one  of  the  eight  lines. 

If  in  the  preceding  equations  connecting  x  and  ̂   we  have 

(7  =  0,  then  either  x-^^A  —  XoB=0,  or  ̂ i  =  0,  ̂2  =  0;  hence  to  the 

points  of  the  conic  in  the  plane  C  =  0  which  does  not  meet  the 
line  determined  by  (1)  and  (2),  there  corresponds  the  single  point 

^1  =  0,  ̂2  =  0,  which  we  denote  by  A. 
To  any  plane  section  of  the  surface  there  corresponds  in  the 

field  of  I  a  quartic  curve :  since  this  section  meets  each  of  the 

above  eight  lines,  and  also  twice  meets  the  conic  just  referred  to, 

it  follows  that  this  quartic  curve  passes  through  the  eight  principal 
points  and  also  passes  twice  through  the  point  A.  Hence  we  have 

a  system  of  quartics  having  a  common  node  and  eight  common 

points  f. 
*  Clebsch,    Ueher  die  Abhildung  aUieh.  FUichen,  Math.  Ann.  i. 
t  The  condition  of  possessing  a  node  at  a  given  point  and  eight  fixed  points  is 

equivalent  to  eleven  conditions,  leaving  a  linear  system  triply  infinite  of  quartic 
curves. 
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To  the  conic  C  =  0,  fi^i  +  f2^2  =  0,  ̂ i5  +  ̂2^  =  0  there  corre- 
sponds a  quartic  curve  obtained  by  substituting  for  the  coordinates 

X  their  values  in  (3),  in  terms  of  |^i :  faJ  hence  this  quartic  possesses 
a  triple  point  at  A. 

The  pencil  of  lines  through  the  point  A  corresponds  to  the  conies 

in  sections  through  the  double  line;  the  cubic  curve  through  the 

nine  principal  points  corresponds  to  the  double  line.  This  cubic  is 

obtained  by  writing  x^  =  a;.,  =  0  in  (2)  and  (3),  and  hence  is  given  as 

the  intersection  of  a  pencil  of  lines  x^K-\-x^K'  =  0,  and  a  pencil  of 

conies  x^JJ  ■\-xJJ'  =  ̂ \  to  any  given  point  x^^jx^  of  the  double  line 
correspond  two  points  P,  P'  of  this  cubic  collinear  with  the  point 
^:^ir'  =  0,  or  0. 

Writing  x^=^x<^  —  ̂   in  (2)  and  (3)  and  eliminating  ̂ 3  we  obtain 

in  which  Pq  is  the  result  of  writing  x^  =  a^o  =  0  in  P,  etc. 

This  gives  the  pair-  of  lines  joining  P,  P'  to  the  point  ̂ 1  =  ̂2  =  0 ; 
the  corresponding  pair  of  planes  through  the  double  line  is 

(^1^0 - XoB,) {x^A^ - x,B^) -  Co (F,x^' -  2N,x,x.  +  M,xi)  =  0, 

which  is  the  pair  of  tangent  planes  at  the  stated  point  Xs/x^  of 

the  double  line.  Hence  the  conies  in  these  tangent  planes  are  so 

related  that  their  corresponding  lines  meet  the  cubic,  the  image  of 

the  double  curve,  in  points  P,  P'  collinear  with  the  point  0. 
From  0  four  tangents  can  be  drawn  to  this  cubic,  hence  at  four 

points  of  the  double  line  the  tangent  planes  coincide,  giving  four 

pinch-points. 

80.     We  add  a  table  containing  the  preceding  results : 

Oa  the  surface  In  the  field  of  ̂  

Eight  lines  of  the  surface  which  meet      Eight    principal    points   lying   on    a 

the  conic  6'=;rx^— ^■0  5=0,  or  C2^  quartic   having  a   triple  point  at 

ll  =  ̂2  =  0 
The  second  conic  in  the  plane  C=0,      A  principal  point  A  (|i  =  |2=0) 

or  Ci^ 

The  conies  in  the  planes  through  the      Lines  of  the  pencil  whose  centre  is 

double  line  the  point  A 

The  double  line  A  cubic   passing   through   the   nine 

principal  points 

A  point  Q  on  the  double  line  Two  points  P,  P'  in  this  cubic  collinear 
with  a  fixed  point  0  on  the  cubic 
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On  the  surface  In  the  field  of  t 

The  conies   in   the   pair  of  tangent      Two  lines  AP,  AP' 
planes  to  the  surface  at  Q 

Four  pinch-points  on  the  double  line       The  four  points   of  contact   of  the 
tangents  from  0  to  the  cubic 

The  nine  principal  points  cannot  be  the  complete  intersection 

of  two  cubic  curves  « =  0,  -y  =  0 ;  for  if  so  the  image  of  every 
plane  section  would  be  of  the  form  Lu  +  Mv  =  0,  where  L,  M,  u,  v 
concur  at  A.  Hence  the  equations  connecting  x  and  f  would  be  of 
the  form 

pxi  =  Pu,     pxo  =  Pv,     pxs  =  Qu,     pXi  =  Qv, 

leading  to  the  quadric  surface  XiXi  =  X2Xs. 
The  curve  on  the  surface  which  corresponds  to  any  line  in  the 

plane  of  ̂   is  a  twisted  quartic  of  the  second  species.  For  to 

any  line  %  =  0  of  the  plane  there  will  coiTespond  a  curve  lying  on 
the  quadric 

0; 

this  quadric  meets  the  quartic  surface  in  the  double  line  and  also 

in  the  conic  c..^ ;  hence  it  also  meets  it  in  a  twisted  quartic.  Since 
the  line  a^  =  0  meets  the  cubic  corresponding  to  the  double  line 
three  times,  the  double  line  meets  the  quartic  curve  three  times ; 

this  quartic  is  therefore  of  the  second  species. 

To  any  line  of  the  pencil  whose  centre  is  the  point  0  of  the 

cubic  curve  corresponds  a  quartic  which  passes  through  the  point 

of  the  double  line  corresponding  to  0  and  which  has  a  double  point 

in  the  single  point  corresponding  to  the  points  P,  P' . 

81.     Curves  on  the  surface. 

By  aid  of  this  representation  of  the  surface  on  a  plane  the 

various  algebraic  curves  on  the  surface  can  be  readily  deter- 
mined. 

If  M  and  m  are  the  orders  of  a  curve  Cx  on  the  surface  and 

the  corresponding  curve  c^  in  the  plane,  Cx  is  met  by  any  plane 
section  ax  in  M  points,  and  c^  is  met  by  a^  in  4/?i  points ; 

while  if  Cx  meets  Ci  /3  times*  and  the  eight  lines  flj  ...  Wg  times 

*  Excluding  an  intersection  at  the  point  where  c^  meets  the  double  line. 

«'l 

Cti 

as 

^1 

tA'2 

0 

B A G 
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respectively,  these  points,  though  not  intersections  of  c^  and  a^, 

give  rise  to  intersections  of  Cf  and  a|,  hence 

ilf  =  4m  -  2/3  -  2a. 

By  aid  of  this  equation  we  can  obtain  the  various  species  of  curves 

on  the  surface*. 
The  sixteen  lines  are  represented  by  the  eight  principal  points 

Bi  and  the  lines  joining  the  point  A  to  these  eight  points. 

The  conies  of  the  surface  are  obtained  by  taking  ̂   =  0,  1,  2,  3 
successively : 

y3  =  0  requires  that  m=l,  Sa  =  2;  this  gives  the  joins  of  the 

eight  principal  points  Bi,  which  are  twenty-eight  in  number. 
/3  =  1  requires  that  in=\  or  m  =  2;  in  the  first  case  2a  =  0 

and  we  have  the  pencil  of  lines  through  the  point  A  ;  in  the 

second  case  2a  =  4  and  we  have  conies  through  A  and  four 

principal  points;   there  are  seventy  such  conies. 

/3  =  2  requires  that  m  =  3  ;  this  gives  2a  =  6,  and  we  have  thus 
cubics  having  a  node  at  A  and  passing  through  six  principal 

points;  there  are  twenty-eight  such  cubics. 
/3  =  3  requires  that  m  =  4  and  hence  2a  =  8 ;  this  gives  a 

quartic  having  a  triple  point  at  A  and  passing  through  the 

eight  principal  points.     This  quartic  corresponds  to  ci. 

The  case  /3  =  4  cannot  arise.  We  have  thus,  counting  the 
point  A,  obtained  the  images  of  all  the  conies  of  the  surface, 

including  those  in  sections  through  the  double  line ;  apart  from 
the  latter  there  are 

1 -I- 28 -f- 70  4- 28 -1- 1  =  128 

conies  on  the  surface ;  i.e.  there  are  no  conies  other  than  those 

already  obtained. 

*  Limits  within  which  m  must  lie  are  derived  from  the  fact  that  m^|8  +  l  and 
from  the  equation 

{m-l)(m-2)      /3(^-l)     ̂ a(a-l) 
P=   2   2   ^"^—  ' 

where  p  is  the  deficiency  of  the  plane  curve,  if  we  suppose  the  curve  on  the  surface 
not  to  possess  multiple  jDoints  ;  and  also  from  the  inequality 

{m  +  l)im  +  2)      ̂ (/3+l)     ̂ a{a+l) 
1<   2   2   ^       2        • 

It  follows  that 

hence  vi^M+p-l  +  ̂ . 
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Cubics  on  the  surface. 

The  case  i¥=3  gives  rise  to  curves  in  the  plane  of  which 
particulars  are  stated  in  the  following  table.  We  notice  that 
since  the  coordinates  of  a  point  on  a  twisted  cubic  are  expressible 

as  cubic  functions  of  a  parameter,  the  corresponding  curve  in  the 

plane  is  unicursal,  so  that  for  it  p  =  0. 

Eight  pencils  of  lines  through  Bi...Ba 

56  conies  through  five  of  the  points  Bj, 

56  sets   of  00 1  conies  through   A   and  three 
points  Bi 

IV  1  7  3        168  eubies  through  A  and  five  points  Bi  and 

having  a  sixth  point  Bi  as  node 

V  2  5  3         56   sets  of  cc  i  cubics  with  a  node  at  A  and 

passing  through  five  points  Bi 

VI  2  9  4         168  quarties  having  nodes  at  A  and  at  two 

points  Bi  and  passing  through  five  other 

points  Bi 

VII         3  7  4         Eight  sets  of  co  ̂   quarties  having  a  triple  point 
at  A  and  passing  through  seven  points  B^ 

VIII        3  11  5         56  quintics  having  a  triple  point  at  A,  passing 

through  five  points  Bi  and  having  nodes  at 
three  points  Bi 

Any  conic  of  class  III  intersects  the  cubic  corresponding  to  the  double 

line  in  two  points*  apart  from  the  principal  points,  hence  the  corresponding 
cubic  on  the  surface  meets  the  double  line  twice.  The  same  applies  to  the 

cubics  corresponding  to  class  V.  And  any  conic  of  class  III  meets  any  cubic 

of  class  V  in  four  points  apart  from  A,  if  they  together  pass  through  the 

eight  points  Bi .  Hence  if  c^,  c'^  are  any  two  such  cubics  on  the  surface  repre- 
sented in  classes  III  and  V  respectively,  we  can  pass  one  quadric  through 

the  double  line,  their  points  of  intersection,  and  one  point  on  each  re- 
spectively t ;  this  quadric  will  contain  each  cubic.  It  follows  therefore  that 

anT/  two  cubics  thus  represented  hy  classes  III  and  V  respectively  lie  on  the  same 

quadric  ;  there  are  ao  ̂   quadrics  which  meet  the  surface  in  the  double  line  and 
two  tvxisted  cubics. 

Similarly  any  two  curves  of  classes  I  and  VII  which  together  pass  through 

the  eight  points  Bi  will  intersect  in  four  points  and  meet  the  cubic  corre- 
sponding to  the  double  line  in  two  points.  Hence  they  also  lie  on  one  of 

CO  2  quadrics.  The  448  simple  cubics  in  classes  II,  IV,  VI  and  VIII  arise  as 
the  intersection  with  the  surface  of  tlie  448  quadrics  which  pass  through 

three  non-intersecting  lines  of  the  surface  and  the  double  line. 

*  These  two  points  are  not  coUinear  with  0  as  is  seen  by  taking  the  pair  of  lines 
^Cj,  B.^B^  and  the  corresponding  line  and  conic  on  the  surface. 

t  Any  quadric  through  the  double  line  contains  six  available  constants. 
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Quartic  curves  of  each  species  exist  on  the  surface :  their 

images  in  the  plane  will  have  deficiency  either  zero  or  unity. 

The  following  table  gives  the  varieties  of  such  images: 

^--
 

=  0 

^-~
 

=  1 

/3  =  2 m==l, 
2a  =  0 

m  =  2, 

2a  =  2 m  =  S,     2a  =  4 

m=2, 
2a=4 

w  =  3, 

2a  =  6 m  =  4,     2a=8 

m  =  3, 
2a  =  8 

m  =  4, 

2a=10 m  =  5,     2a  =  12 

m  =  6,     2a  =  16 

The  quartics  which  arise  for  /3  =  4,  yS  =  3,  are  similar  to  those  for 

which  /3  =  0,  ;S  =  1   respectively.     The  quartics  lie  in  pairs  on ' 

quadrics ;  if  /3,  in,  2a  and  /3',  m,  Sa'  correspond  to  such  a  pair  of 
quartic  curves  lying  on  the  same  quadric,  we  have 

/3  +  /3'  =  4,     m  +  m'  =  8,     2a  +  2a'  =  16. 

By  appljring  the  method  to  quintic  curves  it  is  seen  that  the 
image  of  every  quintic  curve  on  the  surface  meets  the  cubic  which 
is  the  image  of  the  double  line  in  at  least  one  point  apart  from 

the  principal  points :  hence  every  quintic  curve  on  the  surface 
meets  the  double  line  at  least  once.  Since  a  triply  infinite 

number  of  cubic  surfaces  can  be  drawn  through  any  quintic 

curve,  it  follows  that  at  least  one  cubic  surface  passes  through  the 
double  line  and  any  quintic  on  the  surface,  which  it  therefore 

meets  also  in  another  quintic  curve.  Hence  the  quintics  lie  in 

pairs  on  cubic  surfaces  through  the  double  line. 

Since  one  cubic  surface  passes  through  any  twisted  sextic 

curve  the  sextics  on  the  surface  lie  in  pairs  on  cubic  surfaces. 

82.     Nodes  on  the  surface. 

Many  of  the  preceding  results,  and  also  the  modifications 

which  arise  when  the  surface  contains  nodes  apart  fi:om  the 

double  line,  may  be  investigated  by  means  of  Rohn's  method. 
Chap.  I.     Taking  the  equation  of  the  surface  as  being 

where  the  double  line  is  the  join  of  J.1^2;   U,  V,  W  are  quadratic 

in  x^yXi',  and  X2  appears  in  the  first  degree  in  V  and  in  the  second 
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degree  in  W.  The  tangent  cone  to  the  surface  from  A^  is  then 

V- —  UW=0;  its  section  by  a^i  =  0  is. a  sextic  curve  having  a 
quadruple  point  at  A2.  The  class  of  this  sextic  is  30  —  12  =  18, 
hence  ten  tangents  can  be  drawn  to  it  from  A2.  The  two 

tangents  from  A^  to  the  conic  in  any  plane  section  through  the 

double  line  touch  it  in  points  P,  P'  which  are  projected  from  A^ 

into  points  Q,  Q'  collinear  with  A^;  such  a  pair  of  points  Q,  Q' 
coincide,  as  just  seen,  ten  times;  such  a  coincidence  arises  from 

the  pair  of  conies  which  pass  though  A^,  these  two  tangents  are 

the  lines  U=^0,  they  lie  in  the  two  tangent  planes  to  the  surface 
at  J-i ;  and  also  when  a  conic  becomes  a  pair  of  lines ;  hence  there 
are  eight  pairs  of  lines  meeting  the  double  line. 

If  the  surface  has  a  node  external  to  the  double  line,  a  node 

arises  on  this  sextic  curve,  hence  its  class  is  reduced  by  two,  and 

the  number  of  pairs  of  lines  is  reduced  by  unity. 

If  there  are  five  nodes  the  sextic  necessarily  breaks  up  into 

a  quintic  having  a  triple  point  at  A2  and  three  nodes,  together 

with  a  line  through  A^;  for  it  cannot  break  up  into  a  quartic  with 
a  triple  point  and  a  conic,  or  into  two  oubics  with  a  common 

double  point,  since  in  both  cases  no  tangent  can  be  drawn  to  the 
compound  curve  to  touch  it  at  a  point  outside  A2,  while  there 

should  be  two,  corresponding  to  the  two  conies  through  A^. 

Hence  two  nodes  must  lie  in  a  plane  through  the  double  line,  and 

their  join  meets  the  double  line.  The  tangent  cone  from  .4 1  breaks 

up  into  a  quintic  cone  together  with  the  plane  through  the  double 

line  and  the  line  p  joining  the  nodes.  This  plane  touches  the 

surface  along  the  line  p :  there  is  no  part  of  the  surface  in  this 

plane  except  the  double  line  and  ]) ;  for  any  line  in  the  plane 

meets  the  surface  twice  where  it  meets  p  and  twice  where  it  meets 

the  double  line  and  therefore  at  no  other  point ;  the  line  p  is 
therefore  tarsal. 

If  there  are  six  nodes  the  sextic  becomes  a  trinodal  quartic 

having  one  of  its  nodes  at  A.2  and  two  lines  through  A„;  here  we 
have  two  torsal  lines.  If  there  are  seven  nodes  the  sextic  becomes 

a  nodal  cubic  through  A.^  and  three  lines  through  A.;  finally,  if 
there  are  eight  nodes,  we  have  a  conic  and  four  lines  through  A^. 

It  should  be  noticed  that  if  there  are  four  coplanar  nodes  their 

plane  is  a  trope  of  the  surface.  For  the  conic  through  the  four 

nodes  and  the  point  in  which  the  plane  meets  the  double  line 

meets  the  surface  in  ten  points,  and  hence   lies   wholly  on  the 
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surface.  The  two  conies  of  the  section  here  become  coincident, 

and  the  plane  is  a  trope, 
Consider  next  the  case  of  seven  nodes ;  six  of  them,  as  has 

been  seen,  lie  in  pairs  on  three  lines  meeting  the  double  line,  let 

them  be  A,  5/  lying  on  h,,  B.^,  BJ  lying  on  h^,  B^,  B^  lying  on  h.„ 
and  a  seventh  node  B^.  Take  as  the  point  A^  that  in  which  the 

plane  BoB^B^  meets  the  double  line;  the  sextic  curve  consisting 
as  above,  of  a  cubic  through  A^  with  one  node,  the  projection  of 

Bi,  together  with  three  lines  through  A.2,  will  for  this  position 

of  Ai  have  its  node  collinear  with  the  projections  of  B2  and  Bs', 
hence  it  must  consist  in  part  of  the  line  joining  these  two  points, 

and  upon  this  line  the  projection  of  another  node,  B^,  must  lie. 
The  residual  part  of  the  cubic  is  a  conic.  Hence  it  follows  that 

the  nodes  BiBoB-^B^  are  coplanar. 

Taking  the  other  combinations 

B,B,B,'B„     B,B,'B,B„     B,'B,'B,'B„ 

we  obtain  in  all  four  planes,  each  containing  four  nodes.  The 
surface  has  therefore  four  tropes. 

If  there  is  an  eighth  node  i^/,  then  the  sextic  curve,  consisting 

in  the  previous  case  of  three  lines  through  A.,  and  a  nodal  cubic, 
here  receives  an  additional  double  point,  the  projection  of  5/, 

hence  the  sextic  consists  of  four  lines  through  A.^  and  a  conic. 
There  are  therefore  four  torsal  lines,  viz.  B^,  B^  on  h^,  Bo,  B.^  on  63 , 

Bs,  B/  on  bs,  and  B4,  B^  on  64. 

By  combining  5/  with  the  nodes  B1...B3  as  before,  we  obtain 

four  more  tropes,  viz.  the  planes 

b,b,Bsb:,  b,'b,Bs'b:,  b,'b,'Bsb:,  b.bxb:. 

It  follows  that  the  points  Bi  and  the  points  B/  form  two  tetrahedra, 
each  of  which  is  inscribed  in  the  other. 

If  we  take  as  the  point  A^  that  in  which  B^B-sB/  meets  the 
double  line,  the  sextic  curve  consisting  of  four  lines  through  A^ 
and  a  conic  will  have  three  collinear  nodes  on  the  latter,  viz.,  the 

projections  of  B.^,  Bs,  and  B^',  hence  this  conic  will  consist  of  two 
lines,  each  containing  four  nodes,  viz.  those  lying  in  the  tropes 

(B,B,BsB:)  and   (B/BJBs'B,). 

The  line  of  intersection  of  these  tropes  thus  meets  the  double 

line  in  A^;  and  since  the  tangents  from  A^  to  this  (degenerate) 

conic   coincide,    it    follows    that   the    tangent   planes  at  A^  will 
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coincide  and  J.i  is  a  pinch-point.  Hence  we  have  four  pairs  of 
tropes  whose  four  lines  of  intersection  meet  the  double  line  at 

pinch-points. 

83.     Pliicker's  surface. 

The  surface  with  a  double  line  and  eight  nodes  is  known  as 

Plucker's  surface.  One  form  of  its  equation  may  be  obtained  as 
follows :  through  two  nodes  on  different  torsal  lines  there  pass 
two  tropes,  and  there  is  one  quadric  8  which  contains  the  conies 
in  which  these  tropes  meet  the  surface  and  also  the  double  line. 

If  the  double  line  is  A^An  and  the  tropes  are  taken  as  the 

planes  Xy  and  Xo,  the  equation  of  the  surface  is  necessarily  of 
the  form 

*S'"  -1-  co-^x.^'yh  =  0, 

where  7  =  0,  S  =  0  are  two  planes  through  the  double  line  also 
meeting  the  surface  in  torsal  lines. 

Taking  the  two  nodes  as  the  vertices  A3  and  A^  of  reference 

we  obtain  the  equation  of  the  surface  in  the  form 

(x-^a  +  x^^  +  nxsX^Y  +  x^x^^h  =  0, 

where  a,  /3,  7,  B  are  planes  through  the  double  line. 
There  are  two  further  conditions  to  be  satisfied,  viz.  that  each 

of  the  planes  x^  and  x^  meets  the  surface,  apart  from  the  double 
line,  in  a  torsal  line ;  hence  if 

a  =  a3X3  +  aiXi,     13  -biX-i  +  b^Xi,     'y  =  C3X3  + c^x^,     S  =  d3X3  +  diX4, 

then  writing  successively  x^  =  0  and  Xg  =  0,  we  obtain  as  the 
required  conditions 

4a3  63  =  —  03(^3,     4>aihi  =  —  Cidi, 

giving  two  torsal  lines  as 

Juf^  —  jui t'3 "~"  ocou^  ——  yjj     cc^  —  cc-^Oj^  ̂ ~  cCoOa  ̂ —  \j  - 

the  other  two  being 

,y  =  0  =  ̂,      8  =  0  =  S. 

The  above  form  of  equation  of  the  surface  shows  that  the 

plane  x-y  =  0  touches  the  conies  lying  in  sections  through  the 
double  line. 

Hence  each  trope  touches  each  of  these  conies. 

By  aid  of  this  form  of  the  equation  of  the  surface  we  can 

obtain  the  form  assumed  in  the  case  of  Pliicker's  surface  by  the 
previous   equations   connecting   a   point   x  of  the   surface   with 
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a  point  ̂   of  a  plane ;  for  the  equation  of  the  surface  is  seen  to  be 
identically  satisfied  if  we  write 

px,=  ̂ ,{^iB  +  ̂ ,CD-AGD], 

where  A,  B,  C,  D  are  the  results  of  substituting  ̂ ^  and  ̂ o,  for 
a^  and  x^  respectively  in  a,  /3,  7  and  Z. 

The  cubic  corresponding  to  the  double  line  is 

^,'B-\-^,CD-AGD  =  (d- 

it  touches  the  lines  C  =  0,  D  =  0,  and  by  aid  of  the  preceding 
conditions  it  follows  that  it  also  touches  the  lines 

^1  =  0,     ̂ ,  =  0. 

The  quartic  representing  any  plane  section  has  a  node  at 

the  point  ̂ 1  =  |.2  =  0,  and  touches  the  lines  ̂ 1  =  0,  ̂2  =  0  in  given 

points.  It  also  touches  the  lines  C  =  0,  D  =  0  where  they 

respectively  meet  ̂ 3  =  0.  If  E^EoE^  is  the  triangle  of  refer- 
ence in  the  field  of  |  and  the  principal  points  on  E^E^,  EoE^  are 

Qi  and  Q.2,  those  on  E^E.^  are  Qs  and  Q^',  the  correspondence 
between  points  x  and  ̂   is  of  the  (1,1)  character  with  the  following 

exceptions:  any  point  on  ̂ s^'o  corresponds  to  the  node  A^  with 
the  exception  of  Q^,  which  corresponds  to  a  torsal  line,  and  the 

point  E3  which  corresponds  to  a7iy  point  of  the  conic  in  the  trope 

ajj;  similarly  for  E^E^  and  the  point  Qo]  while  to  any  point  of 

G  =  0,  D  =  0  correspond  the  other  two  nodes  in  Xj^  respectively,  but 
to  Qs  and  Q3  the  other  two  torsal  lines  respectively  correspond. 

The  equation 
il/=4m-2/3-2a 

as  before  connects  the  order  of  a  curve  on  the  surface  and  the 

corresponding  curve  in  the  plane,  where  /9  is  the  number  of 

intersections  of  the  former  curve  with  the  conic  in  the  plane  Xi 

exclusive  of  intersections  at  nodes  in  that  plane. 

It  is  easily  seen  from  this  equation  that  no  line  can  exist  on 
the  surface  except  the  four  torsal  lines,  which  are  represented  by 

the  four  principal  points  Q,  and  the  double  line.  To  obtain  the 

conies  of  the  surface  we  may  take  /8  =  0  giving  m  =  1,  Sa  =  2 ;  so 
that  six  conies  are  represented  by  the  lines  joining  the  principal 

points    Qi,  Qo,  Q3,  Qs  ;    or   we   may   take   /3  =  1,   giving   either 
J.  Q.  s.  9 
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m  =  1,  Sa  =  0,  so  that  the  conies  in  planes  through  the  double 
line  are  represented  by  the  pencil  of  lines  through  E^ ;  or 

m  =  2,  Sa  =  4,  which  gives  the  conic  through  the  five  principal 
points.  If  we  add  the  conic  represented  by  E^  we  obtain  all 
the  conies  on  the  surface. 

The  existence  on  the  general  surface  with  a  double  line,  of 

conies  whose  planes  do  not  contain  the  double  line,  and  the  fact 

that  the  surface  is  rational,  have  been  shown  very  simply  by  Baker* 
as  follows :  consider  the  quadric  cones 

2/=-'    ̂ =-      (1)' 

where  u  =  0,  v  =  0  are  pairs  of  planes  through  the  double  line 

x=-z  =  ();  and  w  =  0  is  a  plane  through  it ;  these  cones  intersect 
in  a  conic  which  meets  the  double  line  at  one  point  only. 

The  equation  of  the  surface  being 

if  in  A,  B,  G  we  substitute  for  y  and  t  from  (1),  we  obtain  a  sextic 

in  xjz ;  and  the  seven  arbitrary  constants  va.  u,  v  and  w  may  be  so 
chosen  as  to  make  this  sextic  vanish  identically.  Hence  the 
surface  contains  at  least  one  conic  which  meets  the  double  line 

once  only. 

The  substitution  t=  —-\-T\y   j  enables   us  to  express  y 

rationally  in  terms  of  r  and  - ;  and  hence  also  t\  i.e.  we  can  express 

the  coordinates  of  any  point  on  the  surface  as  rational  functions  of 
two  variables. 

*  Some  recent  advances  in  the  theory  of  algebraic  surfaces,  Proc.  Lond.  Math. 
Soc,  Series  2,  Vol.  xn.  p.  36. 



CHAPTER  VII 

QUARTIC    SURFACES   WITH    AN    INFINITE    NUMBER    OF 

coNics :   steiner's  surface  :   the  quartic  monoid 

84.  The  property  of  containing  an  infinite  number  of  conies 

has  been  seen  to  be  possessed  by  all  quartic  surfaces  with  a  double 

conic  or  a  double  line ;  in  the  present  chapter  we  consider  all 

surfaces  which  have  this  property. 
The  determination  of  the  quartic  surfaces  which  contain  an 

infinite  number  of  conies  was  made  by  Kummer*. 
The  following  is  a  brief  account  of  his  investigation.  If  the 

plane  section  of  a  quartic  surface  has  four  double  points  it  will 

consist  either  of  two  conies  or  of  a  line  together  with  a  nodal 
cubic,  in  the  latter  case  three  double  points  are  collinear.  If  the 

section  consists  of  two  conies,  each  of  their  points  of  intersection 

is  either  a  double  point  of  the  surface  or  a  point  of  contact  of  the 

surface  and  the  plane  section. 
Consider  first  the  ease  in  which  no  point  is  a  point  of  contact. 

Let  two  of  the  double  points  be  fixed  f;  the  surface  must  then 

possess  a  double  conic,  the  equation  of  such  a  surface  is 

where  <!>  =  0,  ̂   =  0  are  quadrics.  If  the  surface  contain  also  two 

double  points  whose  join  does  not  lie  on  the  surface,  "^  must 
break  up  into  two  linear  factors  (Art.  38),  and  the  surface  is  then 

whose  sections  by  planes  through  the  line  {q,  r)  are  pairs  of  conies. 

If  the  surface  has  another  pair  of  nodes,  its  equation  will 
be  (Art.  38) 

(_p2  j^qr-  sty  =  4^p''qr, 

or  (p2  -  qr  +  stf  =  4,p^st. 

*  Ueber  die  Fldchen  vierten  Grades  auf  welchen  Schaaren  von  Kegelschnitte 
liegen,  Crelle,  lxiv. 

t  The  cases  in  which  none  or  only  one  of  the  double  points  are  fixed  lead  only  to 
a  quartic  surface  consisting  of  two  quadrics,  or  a  cone. 

9—2 
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In  this  case  we  have  two  sets  of  conies  lying  in  planes  whose  axes 

are  {q,  r)  and  (s,  t). 
If  three  of  the  double  points  are  fixed  they  necessarily  lie  on 

a  double  line ;  the  sections  of  a  surface  having  a  double  line  by 

planes  through  the  double  line  form  a  set  of  conies. 
If  certain  of  the  double  points  coincide  we  are  led  to  special 

cases  of  the  surface  ̂ '^  =  '^jfqr,  except  in  one  case,  viz.  that  in 
which  the  surface  touches  itself  at  two  points ;  any  plane  section 

through  these  points  gives  a  quartic  curve  which  touches  itself 

twice,  and  therefore  necessarily  consists  of  two  conies  having 
double  contact. 

The  equation  of  such  a  quartic  surface  is  ̂ -  =  a/SyB  where 
a  =  0,  /3  =  0,  7  =  0,  S  =  0  are  four  coaxal  planes ;  the  intersection 

of  their  axis  with  ̂   =  0  gives  the  two  double  points  having  the 
above  property ;  they  are  usually  called  tacnodes. 

Consider  next  the  case  in  which  one  of  the  four  double  points 

is  a  point  of  contact  of  the  plane  and  the  surface ;  if  none  of  the 

three  remaining  points  are  fixed  the  surface  possesses  a  double 
curve  of  the  third  order,  which,  when  a  twisted  cubic,  a  line  and 

a  conic,  or  three  lines,  gives  rise  to  a  ruled  surface,  and  the  section 

by  a  tangent  plane  to  a  line  and  a  cubic,  excepting  only  in  the 
case  in  which  the  three  lines  are  concurrent.  The  surface  then 

has  the  equation 

Aq^r-  +  BrY  +  Gp-q^  +  2pgrs  =  0. 
This  surface  is  known  as  that  of  Steiner. 

If  next  one  of  the  double  points  is  fixed,  the  surface  must  have 

a  double  conic  and  one  node.     Its  equation  is  then  (Art.  38) 

where  ̂   =  0  is  a  cone  whose  vertex  lies  upon  ̂   =  0.  This  cone 

touches  the  surface  along  the  curve  (<I>,  ̂ ),  the  tangent  planes 
of  ̂   thus  meet  the  surface  in  pairs  of  conies. 

Lastly  let  two  of  the  points  be  points  of  contact,  the  surface 

has  a  double  conic,  its  equation  may  be  written 

(<I)  +  'iXif'f  =  ̂ p-  (^  +  X(I>  +  Vp2). 

We  may  determine  \  in  five  ways  so  that 

^  +  X43  +  \Y  =  0 

is  a  cone  V  (Art.  22);  V  has  double  contact  with  the  surface; 

hence  the  tangent  planes  of  five  cones  are  bitangent  planes  of  the 
surface  and  meet  it  in  pairs  of  conies. 
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In  the  case  of  ruled  quartic  surfaces,  the  bitangent  planes 

contain  two  generators  and  therefore  meet  the  surface  also  in 
a  conic. 

85.  The  quartic  surfaces  which  have  respectively  a  double 

conic  and  a  double  line  are  discussed  in  Chapters  ill — VI,  that 

which  has  three  concurrent  double  lines  (Steiner's  surface)  in  the 
course  of  this  chapter. 

To  return  to  the  surface  cE)^  =  a^yS,  where  a,  yS,  y,  B  are  coaxal 

planes ;  this  surface  has  been  shown  by  Nother*  to  be  birationally 
transformable  into  a  cubic  cone.  For  if  the  axis  of  the  planes 

a,  /3,  7,  8  be  the  line  z  =  0,  w  =  0,  and  the  planes  x=0,  y  =  0  are 

the  tangent  planes  to  ̂   where  the  line  {z,  w)  meets  ̂ ,  then  <I> 
may  be  written  xy  +  {z,  w\af,  and  the  surface  becomes 

[xy  +  {z,iul^a)"Y  =  {z,w\h)\ 

Choose  as  new  variable  w  one  of  the  factors  of  {z,  iv'^by,  the 

quartic  surface  becomes  {xy  +  (z,  w'^afY  —  '^  (■^>  w'^bf  ;  then  by  aid of  the  transformation 

x:y:z:iu  =  x'lv'  —  (z,  w'^a)" :  y'- :  y'z  :  y'w', 

X  :  y  :  z' :  w'  =  xy  +  (z,  w'^af :  yw  :  zw  :  W", 

we  obtain  x'^w'  =  {z\  w'^bf ;   a  non-singular  cubic  cone. 
The  system  of  conies  on  the  surface  may  be  represented  as 

follows  f : 

Writing  the  equation  of  the  surface  in  the  form 

then  if        (z,  w'^ay  =  aoZ*  +  a^zhv  +  a^z^vf-  +  a^zw^  +  a^w*, 

{z,  w'^by  =  boZ^  +  bizw  +  62 w^ 
the  system  of  conies  is 

f^       .        [^     boZ-  +  biZW  +  b2iv'^\     „ z  +  \w  =  0,     z'  +  f^i^--   ^2        )^    ' 
with  the  condition 

(ctf^fj?  +  bofjb  —  1)  X^  —  (ttiyu.-  +  bi/j,)  \^  +  (ciofi-  +  Kfi)  A.2 

—  ttsfjL^X  +  a^/jr  =  0. 

From  these  equations  it  is  seen  that  the  conies  of  the  surface 

can  be  arranged  in  sets  of  four,  lying  on  the  same  quadric.     By 

*  Eindeutige  Raumtransformation,  Math.  Ann.  iii. 
t  Sisam,  Concerning  si/stems  of  conies  lying  on  cubic,  quartic  and  quintic  surfaces, 

American  Jour.  Math.  1908. 
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suitable  choice  of  bo,  h,  h  we  may  replace  the  first  two  of  the 

preceding  equations  by 

z-\-\io  =  0,     z^  +  fixy  =  0, 

and  we  obtain  the  result:  the  quadric  cone  luhose  vertex  is  any 

point  of  the  line  x  =  y  =  0*  and  which  contains  any  conic  of  the 
system  will  meet  the  surface  in  four  conies. 

To  the  foregoing  surfaces  described  by  Kummer  we  must  add 

the  surface  whose  equation  is 

{xw  +f(y,  z,  w)Y  =  (^,  w'^ay. 

This  may  be  regarded  as  a  geometrically -f  limiting  case  of  the 
last  surface  when  the  two  tacnodes  coincide  in  the  point  (y,  z,  w). 

Its  sections  by  planes  through  (z,  w)  consist  of  pairs  of  conies. 

The  equation  of  the  surface  may  be  written 

{xw  -  2/-)'  +  2{xw-  2/2)  {z,  w\ay  +  z  (z,  w'^bf  =  0  ; 
and  by  application  of  the  transformation 

x:y:z:w  =  y''^  +  z'x' :  y'w' :  z'w  :  w'^, 

x  -.y  :  z  :  lu'  =  xw  —  y"^ :  yz  :  z- :  zw 
the  surface  is  transformed  into  the  cubic  cone 

/^'2  +  ̂ x  (/,  iu'\ay  +  {z\  w'\bf  =  0|. 

86.     Steiner's  surface. 

The  surface  of  the  third  class  with  four  tropes  was  first 

investigated  by  Steiner  §.  In  accordance  with  this  definition  we 

may  take  as  its  equation  in  plane-coordinates 
1111. 
—  +  —  +  -+-  =  0. 
i(l  U.2  U3         Ui 

*  Since  z=0,  w  =  0  are  any  two  planes  through  the  given  Hne  2  =  0,  w=0. 

t  It  cannot  be  derived  from  it  by  giving  any  particular  values  to  the  constants. 

See  Berry,  On  quartic  surfaces  which  admit  of  integrals  of  the  first  kind  of  total 
differentials,  Camb.  Phil.  Soc.  Trans.  1899. 

X  This  quartic  surface  is  discussed  by  de  Franchis,  Le  superficie  irrazionali  di 

quarto  ordine  di  genere  geometrico-superficiale  nuUo,  Eend.  Circ.  Mat.  di  Palermo,  xiv. 

It  is  there  shown  that  the  irrational  quartic  surfaces  for  which  pg  (the  geometrical 

genus)  is  zero  are  either  cones  or  birationally  transformable  into  cones:  they 

include  the  two  surfaces  last  discussed,  also  the  ruled  quartic  surface  with  two 

non-intersecting  double  lines,  the  surface  {xw+f(y,  z,  w)}^  =  {z,  wfa)*  where  /  con- 

tains y  only  to  the  first  degree  (this  is  a  ruled  quartic  with  a  tacnodal  line),  and  also 
two  special  quartic  surfaces.     See  also  Berry,  loc.  cit. 

§  The  surface  is  also  known  as  Steiner's  Roman  Surface. 



85, 86]  steiner's  surface  135 

The  equation  of  the  surface  in  point-coordinates  is  seen  to  be 

s/xi  +  Va.g  +  Vfl^s  +  ̂ /xi  =  0. 

The  coordinates  of  the  points  of  the  surface  may  therefore  be 

expressed  in  terms  of  the  coordinates  Vi  of  the  points  of  a  plane 
by  means  of  the  equations 

P^i  =  {-Vi  +  V2  +  VsY,     P^2  =  (Vi  -V2  +  Vsf, 

P^3  =  (    '7i  +  '72  -  VsY,     p^i  =  iVi  +  '72  +  '73)^. 
By  changing  to  a  second  tetrahedron  of  reference,  desmic  to 

the  first  (Chap,  11),  i.e.  by  writing 

2/4  =  a?!  +  ̂ 2  "I"  ̂ 3  ~r  X4, 

U\  -^  1^2  ̂ ~  Xc^  ̂ ~  X^  "^  x^ , 

2/2  ̂ ^^  Xi  "T  X2         Xg  T  X^, 

1/3  =  Xi        X2  "T  X^  "T  X^, 

we  finally  obtain 

0-2/1  =2?72773,     0-2/2  =  2'73'7i»     0-2/3  =  2?7i772,     0-2/4  =  77i' + '72' + '73'- 

This  method  of  representing  the  surface  on  a  plane  was  first 

given  by  Clebsch*.     Eliminating  the  iji  we  obtain  as  the  equation 
of  the  surface 

y2%'  +  yiyi  +  y^-yi  -  ̂yiy^y^y^  =  0. 
This  latter  form  of  the  equation  of  the  surface  shows  the 

existence  of  a  triple  point  A^  (3/1  =  2/2  =  3/3  =  0),  three  double  lines, 
and  three  nodes.  The  section  of  the  surface  by  any  tangent  plane 

contains  four  nodes,  and  hence  breaks  up  into  two  conies',  a 
characteristic  property  of  this  surface. 

There  are  no  lines  on  the  surface  other  than  the  three  double 

lines;  for  there  is  clearly  no  other  line  passing  through  ̂ 4,  and  if 

there  were  a  line  not  passing  through  A4  then  the  section  by  the 

plane  through  this  line  and  J. 4  would  possess  a  triple  point  at  ̂ 4, 

i.e.  would  consist  of  this  line  together  with  three  other  lines 

through  Ai. 

The  correspondence  between  a  point  yi  of  the  surface  and 

a  point  T)i  of  the  '/7-plane  is  of  the  (1,  1)  character,  the  only 
exceptions  to  this  being  for  points  of  the  three  double  lines;  to 

such  a  point  there  correspond  tiuo  points  of  the  7^-plane,  e.g.  for 
a  point  of  the  line  2/1  =  2/2  =  0  we  have 

^..  =  0    y^^vl  +  v^. 
3/3         ̂ '7i'72 

giving   two   points   on   t]^  =  0,   for   which   the    values   of  —    are 

'72 

reciprocal. 
*  Ueber  die  Steinersche  Fldche,  Crelle,  lxvii. 
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87.     Curves  on  the  surface. 

To  a  curve  (f)(Tj)  =  0  of  order  n  on  the  7;-plane  there  corresponds 
a  twisted  curve  of  order  2n  on  the  surface,  this  being  the  number 

of  points  in  which  ̂   (77)  meets  any  conic 

l.rjc  +  21aikViVk  =  0. 

To   the   straight   lines  of  the  77-plane  there  correspond  the 

00  2  conies  of  the  surface ;    to  conies  in  the  7;-plane  correspond 
twisted  quartics  which  are  either  of  the  second  species  or  are 

nodal  and  of  the  first  species ;  this  is  seen  from  consideration  of 

the  rank  of  such  curves,  i.e.  the  number  of  their  tangents  which 

meet  any  given  straight  line,  e.g.  a.y  =  /3y  =  0,  i.e.  the  number  of 

planes  oty  +  \^y  =  0  which  touch  the  curve.     Denoting  the  results 
of  substitution  for  the  yi  in  terms  of  the  rji  in  Oy,  ̂ y  by  u  and  v, 

we  have  to  determine  the  number  of  conies  u  +  \v  which  touch  (f>, 

giving  the  equations 
du  dv  d<f> 
^—  +  X  ̂ —  =  o-  ̂   (i  =  1,  2,  3). OVi  ̂ Vi  ̂ Vi 

The  required  points  of  contact  are  given  as  the  intersections  of 
du  dv  d(f) 

drji  drji  drji <t>  =  o, 

=  0; 

and  are  n(n  +  l)  in  number  if  0  has  no  singular  points.  We  thus 
obtain  six  as  the  rank  of  twisted  quartics  on  the  surface,  which 

therefore  belong  to  one  of  the  two  classes  previously  mentioned. 

88.     The  equations 

P^i  =fi  (Vi,  V2,  Vs)  (*"=  1,  2,  3,  4) 

determine  a  Steiner's  surface,  if  the  curves  /i  =  0  are  conies. 
This  may  be  seen  as  follows : 

The  conies  apolar  to  each  of  four  conies 

a,2=0,     V  =  0,     c,^  =  0,     c?,^  =  0    (1), 

form  the  pencil 

Ua-  +  \U^-  =  0         (2), 

the  members  of  which  are  all  inscribed  in  the  same  quadrilateral ; 

if  pr,  is  one  side  of  this  quadrilateral  then  p,^  =  0  is  apolar  to 

Wa^  and  u^',  and  therefore  belongs  to  the  linear  system  (1),  or 
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hence  this  system  includes  the  squares  of  four  lines;  by  proper 

selection  of  the  triangle  of  reference  these  lines  may  be  repre- 
sented by  the  equations 

%  +  ̂72  + '/s  =  0,    -^i  +  »72  +  '?3  =  0,    •^i  -  "V^  + '/s  =  0,    ■^i  +  »72  - '/s  =  0, 

whence  we  again  arrive  at  the  equations  connecting  a  point  x  of 

Steiner's  surface  and  a  point  ij  of  the  plane. 
The  conies  of  the  pencil  (2)  are  the  images  of  the  asymptotic 

lines  of  the  surface* ;  this  may  be  seen  as  follows: 
The  pairs  of  tangents  drawn  from  each  point  P  of  the  plane  rj 

to  the  conies  (2)  form  an  involution;  if  p,  p'  are  the  double  lines 
of  this  involution,  then  since  they  are  harmonic  with  each  pair  of 

tangents,  the  line-pair  pp'  belongs  to  the  system  (1),  hence  its 
image  is  a  pair  of  coplanar  conies  on  the  surface.  These  conies 

intersect  on  each  of  the  three  double  lines,  and  their  fourth  inter- 

section Q  corresponds  to  P.  Moreover,  since  p,  p'  are  the  tangents 
at  P  to  the  two  conies  of  (2)  which  pass  through  P,  it  follows 

that  the  line-elements  of  the  asymptotic  lines  at  Q  correspond  to 

the  line-elements  at  P  of  the  pair  of  conies  belonging  to  (2)  which 
pass  through  P.  This  being  true  of  every  pair  of  corresponding 
points  Q,  P  the  result  follows  as  stated  above  f. 

*  See  Cotty,  Swr  les  surfaces  de  Steiner,  Nouv.  Ann.  1908 ;  Lacour,  Nouv.  Ann. 
de  Math.  1898. 

t  Analytically  we  may  proceed  as  follows :  let 

{vi  +  mv2  +  nrii){vi  +  -V-2  +  ~Vi]  =  u.v 

3 

be  a  line-pair  belonging  to  the  system  S7jj'^  +  2Saj-j.T7^T?fc=0  ;  if  ti  +  du  be  the  line 1 

consecutive  to  u  passing  through  the  point  on  u  consecutive  to  (w,  v)  we  have 

X(Ui  +  dUi){7ii  +  dr,i)^0, 

and  hence  since  'ZUidvi  =  0,  it  follows  that  277^dwj  =  0  so  that  the  lines  u,  v,  du  are 
concurrent,  i.e. 

Vi  =  (TUi  +  pdUi. 

From  comparison  with  the  values  of  u^,  v^  given  above  we  have 
1 

m — dm 
m dn 

1 
n 

n 

This  gives  m^  -l  =  k  {n-  -  1), 

k  being  an  arbitrary  constant.     Hence  the  image  of  an  asymptotic  line  is  a  conic 
touching  the  four  lines 

m=  ±1,     n=  ±1. 
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We  obtain  sub-cases  of  Steiner's  surface  when  the  conies 

Wa^  %^  of  (2)  are  related  in  certain  ways,  the  four  sub-cases  which 
arise  are  the  following  : 

(i)  When  two  common  tangents  of  the  pencil  (2)  coincide, 
i.e.  the  conies  of  the  pencil  touch  two  lines  and  touch  a  third  line 
at  a  fixed  point ; 

(ii)  three  common  tangents  coincide,  i.e.  the  conies  osculate 
at  a  fixed  point  and  also  touch  a  fixed  line ; 

(iii)  the  conies  touch  two  lines  where  a  third  line  meets 
them  ; 

(iv)    the  conies  have  four  consecutive  points  common. 

The  cases  (iii)  and  (iv)  lead  to  cubic  surfaces. 
In  case  (i)  take  the  intersection  of  the  two  lines  as  vertex 

Ai  of  the  triangle  of  reference,  the  fixed  point  as  As  and  the  fourth 

harmonic  to  AiAs  and  the  two  lines  as  the  third  side,  the  equation 
of  the  pencil  is  then 

2\uw  +  W'-v"  =  0. 
The  conies  apolar  to  this  pencil  are 

Av,'  +  B  {7)i  +  7).,')  +  2Cv^V2  +  ̂D'n.rjs  =  0. 

The  equations  connecting  a  point  x  of  the  quartic  surface  with 
the  point  77  of  the  plane  are  therefore 

giving  as  the  equation  of  the  surface 

Xs*  -  41X1X2X3^  +  ̂x^^x^  =  0. 

The  surface  has  a  triple  point  through  which  there  pass  two 
double  lines,  along  one  of  which  one  sheet  of  the  surface  touches 

the  plane  x^.  The  surface  has  two  tropes  ̂ 2  =  ±  ̂ 4;  the  plane  x-i 
meets  the  surface  in  the  line  (i^i,  x.^  alone,  this  line  is  thus 
torsal. 

In  case  (ii)  the  conies  (2)  are 

v"  —  2uw  +  2\vw  =  0, 

giving  as  the  apolar  conies 

At},-  +  B  (vi  4  2v^vs)  +  Gvi  +  ̂DviV2  =  0. 
The  connecting  equations  are  here 

P^i  =  Vi">     p^2  =  vi  +  2?7i?73 ,     pXi  =  7)3^,     pXi  =  2771772 . 
The  equation  of  the  surface  is 

{^ex^x^  —  x^y  —  Q'^iX^Xs  =  0. 
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The  surface  has  one  trope,  the  plane  x^.  Along  the  double  line 

x-i^  =  Xi=  0,  the  surface  touches  the  plane  ajj  =  0. 
As  previously  stated,  when  the  conies  of  the  pencil  (2)  touch 

two  lines  at  given  points,  or  have  four  consecutive  points  in  common, 

we  obtain  a  cubic  surface :  this  is  easily  seen,  by  application  of  the 

present  method. 

89.     Modes  of  origin  of  the  surface. 

The  connection  of  the  previous  mode  of  representation  of  the 

surface  and  the  method  of  treatment  of  the  surface  by  Reye*  by 
pure  geometry  is  shown  as  follows : 

If  we  have  any  quadric  transformation 

pxi  =fi  («! ,  Ha,  a^ ,  a,),  (i=l,  2,  3,  4), 

it  has  been  seen  that  the  locus  of  the  point  x  as  the  point  a 
describes  a  plane  is  a  Steiner  surface. 

Now    the   preceding    equations   place    two    spaces   1,    Sj    in 
4 

correspondence,  so  that  to  each  set  of  quadrics  SXi/j  =  0  in  S 

there  corresponds  a  plane  in  Sj,  to  each  pencil  of  quadrics  in  2  a 

pencil  of  planes  in  2i,  and  to  each  set  of  eight  associated  points 
in  S  a  point  in  Sj. 

From    the   foregoing   we   deduce   also   the    following   result : 

Steiner  s  surface  and  the  cubic  polar  of  a  plane  tuith  reference 

to  a  general  cubic  surface  are  7-eciprocal ;    for  if    Z7  =  0   is   any 
cubic  surface,  from  the  equations 

7)  TT 

pui=^_,  (i  =  l,  2,  3,  4), 

we  deduce  by  aid  of  the  preceding  that  as  x  describes  a  plane, 

u  envelops  a  surface  which  is  the  reciprocal  of  a  Steiner  surface, 

and  the  Ui  are  the  coordinates  of  the  polar  plane  of  x  with  regard 
to  U. 

The  following  method  of  derivation  of  the  surface  is  due  to 

Sturm f.  Having  given  a  pencil  of  quadrics  and  a  pencil  of 

planes  projective  to  it,  the  locus  of  intersection  of  a  plane  and 

quadric  which  are  in  correspondence  is  a  general  cubic  surface. 

If  we  make  the  further  assumptions  that  the  axis  of  the  planes 

touches  two  of  the  cones  contained  in  the  pencil  of  quadrics,  and 

*  Geom,  der  Lage. 
t  R.  Sturm,  Ueber  die  Rdmische  Fldche  von  Steiner,  Math.  Ann.  iii. 
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that  each  plane  through  the  axis  and  the  vertex  of  one  of  these 
two  cones  corresponds  to  that  cone,  the  surface  becomes  the 

general  cubic  surface  with  four  nodes.  For  these  conditions 

are  seen  to  be  satisfied  by  assuming  as  equations  of  the  two 

pencils 
V^  +  \Vi  =  0,     ccr, +  7^1  =  0, 

where  F,,  V^  are  the  cones  considered  and  where 

Fi  =  a^  +  x,^,     F„  =  7^  +  x,S. 

The  surface  is  therefore 

Xi  (ry^  +  X.28)  —  x.,  (a-  +  a?i/3)  =  0, 
which  has  the  four  nodes 

a  =  iTi  =  7-  +  a;.2  (8  —  /3)  =  0,     7  =  a?2  =  a"  -  x^  (8-/3)—  0. 

Reciprocating,  it  follows  that  if  a  pencil  of  surfaces  of  the 

second  order  is  projectively  related  to  a  row  of  points  on  a 

straight  line,  the  envelope  of  the  tangent  cones  drawn  from  the 

various  points  of  the  line  to  the  corresponding  quadrics  is  a 
surface  of  the  third  class  with  four  tropes,  provided  that  the  line 

meets  one  conic  c^  belonging  to  the  system  in  a  point  A  and  one 

conic  c'"^  in  a  point  A',  and  so  that  A  corresponds  to  c-  and  A' 

to  c'-. 
Curves  on  the  surface. 

The  following  theorem  regarding  Steiner's  surface  is  specially 
noticeable : 

i 

Every  algebraic  curve  on  the  surface  is  of  even  orde 
.* 

Let  a  curve  c"*  of  order  m  on  the  Steiner  surface  8^  pass  ̂   times 

through  the  triple  point  and  let  r,  r,  r"  branches  respectively 
touch  the  double  lines  of  S^  at  the  triple  point,  and  if  jh,  P2,  Ps 

other  branches  respectively  touch  the  three  tangent  planes  at  the 

triple  point,  then 

p  =  r  +  r'  +  r"  +pi  +  p-z  +  Pi- 

Denoting  the  double  lines  by  a,  a,  af'  it  is  seen  that  in  the  plane 

(a,  a)  p  +  r  +  r'  +|)i  points  of  c"*  lie  at  the  triple  point,  the  other 

m  —  p  —  r  —  r'—pi  points  of  intersection  of  *S^4  with  this  plane 
must  therefore  lie  on  a  and  a,  suppose  that  q  lie  on  a,  and  hence 

q' =  m  —  p —r —  r' —pi  —  q  lie  on  a'.  Similarly  on  a"  there  lie 

q"  =  m—p —  r  — r"  —  P2  — q  points.     The  cone  which  projects  c' 

*  See  Sturm,  loc.  cit. 

m 
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from  the  triple  point  is  of  order  m  —  p  and  has  a  as  (q+  r)-fold 

line,  a'  as  (q'  -t-  r')-fold  line,  a"  as  (q"  +  r")-fold  line ;  these  lines 

being  double  on  S^  count  2  (q  +  r  +  q  +  r'  +  q"  +  7^")  times  in  the 
intersection  of  the  cone  and  S^,  hence 

4 (m -p)  =  m+2  {q  +  r  +  q'  +  r'+q"  +  r"], 
hence  from  the  preceding 

111=2  {r+|>i  +p2  +  q\. 

If  the  curve  c'"-  does  not  pass  through  the  triple  point  then 
^  =  0,  and  hence 

i?i  =JP2  =^3  =  r  =  ?■'  =  r"  =  0, 
and  we  have  m  =  2q. 

Thus  a  curve  of  order  2n  which  does  not  pass  through  the  triple 

point  meets  each  double  line  in  n  points.  Hence  a  curve  of  the 

fourth  order  meets  each  double  line  twice  ;  if  these  points  of  inter- 
section coincide  we  have  a  quartic  curve  of  the  first  species  with  a 

double  point  (Art.  87). 

90.     Quartic  curves  on  the  surface. 

We  now  consider  further  the  quartic  curves  on  the  surface. 

Every  quartic  curve  c*  which  does  not  pass  through  the  triple 

point  meets  each  double  line  twice ;  through  c*  there  passes  at 
least  one  quadric  which  meets  the  surface  in  another  quartic 

curve  c'^  which  also  meets  the  double  lines  twice  and  necessarily  in 
the  same  pairs  of  points,  excluding  at  present  the  case  in  which 

the  quadric  contains  one  of  the  double  lines. 

If  the  conic  Xai^rjirjic  =  0  represents  c\  the  conic  which  repre- 

sents c'^  must  be 

For  if  P,  P'  are  the  points  in  which  c*  meets  a  double  line,  the 
first  conic  passes  through  one  of  the  two  points  corresponding  to  P 

and  one  of  the  points  corresponding  to  P',  while  the  conic  repre- 
senting c'^  passes  through  the  other  two  points  corresponding  to 

P  and  P'  respectively.  But  if  e.g.  the  double  line  is  that  which 
is  represented  by  tj-^  =  0,  it  was  seen  that  the  values  of  771/% 

corresponding  to  P  are  reciprocals  (Art.  86),  and  so  also  for  P' 
hence  the  form  of  the  second  conic  follows. 

Each  of  these  quartic  curves  is  of  the  second  species,  since  each 

has  three  apparent  double  points. 
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If  we  form  the  product  of  the  left  sides  of  the  equations  repre 

senting  these  conies  the  terms  which  arise  are  of  the  type 

(St;^)^     Vi'Vf,     Vi%Vk, II 
hence  on  substitution  we  obtain  the  equation  of  the  quadric  which 

contains  both  c*  and  c'^  *. 

Unless  two  of  the  quantities  an  are  equal,  the  conies  c",  c'^  do 
not  intersect  on  a  side  of  the  triangle  of  reference.     From  this  it 

follows  that  the  quadric  containing  c^  and  c'^  cannot  be  a  cone.    For 

if  possible  let  such  a  cone  he  AC  —  B'-  =  0,  where  A,  B  are  common 
tangent  planes  of  the  cone  and  quartic  surface  at  two  intersections 

of  c*,  c'* ;  on  substituting  in  this  equation  for  the  Xi  in  terms  of  the 
rii  we  obtain 

aa' .  hh'  -  ic-  =  0 

as  the  equation  of  the  pair  of  conies  c^  c'^ ;  where  a,  a'  and  6,  h'  are 
tangents  to  the  respective  conies  at  two  of  their  intersections; 

but  from  the  form  of  this  equation  the  lines  a ...  h'  must  be 

bitangents  of  the  quartic  curve  c^ .  c'^  which  is  impossible. 
If  for  the  curve  c^  we  have  aii  =  akk,  it  meets  one  double  line 

in  two  coincident  points.  The  quadric  cone  having  its  vertex  at 

this  point  and  passing  through  c*  will  meet  the  surface  in 

another  quartic  curve  c'^  These  quartics  are  of  the  first 
species  f . 

Any  quadric  through  two  double  lines  meets  the  surface  also 
in  a  quartic  curve  of  this  latter  variety,  having  a  double  point  on 
the  third  double  line.  There  is  a  quadruply  infinite  number  of 

such  nodal  quartics  on  the  surface. 

In  the  first  case  the  quadric  containing  a  pair  of  quartic  curves  touches 
the  surface  four  times ;  in  the  second  case  the  cone  touches  the  surface  twice. 

Let  U  and  V  be  two  quadrics  through  a  quartic  c*  of  the  first 

species ;  if  the  conic  c'^  corresponds  to  c*  and  if  c'^,  c"'-  be  the  conies 

*  This  quadric  is  found  to  be  422  +  2Jjj.A'jXj.=:0,  where 

Z  =  Xi  +  -^  \a^A  —  ■\   ]x^  +  a-^A   1-  —  )a;2  +  ao3( —  H   l^ih. 
2   {  12^0,1      a.J  ^^\a^^      a.J  -^\a.^_     a^^J    ̂  

the  Ai^  are  the  minors  of  the  discriminant  of  liajjcViVki  ̂ ^^ 

t  For  if  e.g.  an  =  030  =  1  the  curve  c*  will  also  lie  on  the  quadric 

X3  (Xi  +  ai2  0:3  +  ai3  X2  +  023  Xi)  +  \X1X2  (033  -  1 )  =  0. 
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related  to  the  residual  intersections  of  the  surface  by  U  and  V, 
we  have  from  above 

U^c". c\     V=cK  c"\ 
(where  in  the  conies  the  tji  are  replaced  by  the  a;^). 

Hence  U  +  \V=c^  (c'^  +  Xc"'), 

so  that  the  quadri-quartics  associated  with  the  pencil  of  quadrics 
are  thus  represented  by  a  pencil  of  conies  and  therefore  pass 

through  four  fixed  points.  This  is  a  characteristic  property  of  these 
curves. 

The  conic  through  one  vertex  of  the  triangle  of  reference 

u  =  a^Tji  +  a^^T]^  +  2Xaik'r]ir]k  =  0,  {i  4=  k), 

represents  a  quartic  curve  through  the  triple  point ;  it  is  clear  that 

if  in  the  product 
/        2ai2         2^13      \ 

'7ih7i+-— '72  +  -— '^s  )  u 
\  1^22  "'33  / 

we  substitute  for  the  rji  in  terms  of  the  yi  we  obtain  an  equation 

containing  the  latter  variables  only,  and  in  the  second  degree. 

This  quadric  hence  passes  through  a  double  line,  a  conic  of  the 

surface  and  a  curve  c*  through  the  triple  point ;  this  curve  is  of 
the  second  species,  since  one  set  of  generators  of  the  quadric 

meet  c^  in  three  points.  There  exist  oo  ̂   curves  c*  passing  through 
the  triple  point. 

If  the  representative  conic  passes  through  two  vertices  of  the 
triangle  of  reference,  i.e.  is  of  the  form 

773^  +  2XaikViVk  =  0,  (i  ̂  k), 

we  obtain  as  a  quadric  which  contains  it  the  cone 

2/i2/2  +  2^/3  (ai22/3  +  aizy-2  +  a^iVi)  =  0. 

These  curves  are  the  intersection  with  the  surface  of  cones  through 

two  of  the  double  lines ;  there  are  oo  ̂   such  curves. 
Finally,  the  conies  through  each  vertex  of  the  triangle  of 

reference  correspond  to  the  plane  sections  through  the  triple 

point. 

91.  A  mode  of  origin  of  Steiner's  surface  is  obtained,  as 
shown  by  Weierstrass*,  from  consideration  of  a  well-known  pro- 

perty of  a  quadric.  This  property  is  the  following :  if  through  any 

given  point  ̂ 4  of  a  quadric  Q  three  mutually  perpendicular  lines 

*  Schroter,  Ueber  die  Steinersche  Fldche  vierten  Grades,  Crelle,  lxiv. 

I 
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are  drawn  to  meet  Q  again  in  points  L,  M,  N ;  the  normal  at  A^, 

to  Q  meets  the  plane  LMN  in  a  fixed  point.  The  theorem  may 

be  restated  in  a  general  form  as  follows:  if  A^  be  joined  to  the 

vertices  of  any  triangle  self-polar  to  a  conic  c^  in  a  given  plane  Xi^ 
and  the  three  joining  lines  meet  the  quadric  again  in  points 

L,  M,  N,  then  the  plane  LMN  meets  the  line  ̂ 4^  in  a  fixed 

point  8,  if  R  is  the  pole  for  c^  of  the  trace  on  x^  of  the  tangent 
plane  to  Q  at  A^. 

If  c^  is  a  member  of  the  set  of  00  ̂   conies  a?  =  0,  where 

then  by  giving  all  values  to  the  rji  the  resulting  locus  of  /S  is  a 
Steiner  surface. 

Let  the  equation  of  Q  be 
3 

x^a^  +  'S.UikXiXk  =  0,  {i  4=  ̂)- 1 

Also  let  two  vertices  A^,  A 2  of  the  tetrahedron  of  reference  be 

self-conjugate  *  for  each  of  the  conies   U,    V,    W,  and  therefore 

for  a";  let 
333 

U  =  ̂ aikXiXj, ,     V  =  l^bijcXiXk ,     W  =  l^CikXiXk . 
1  1  1 

Now  if  X  is  the  point  which  forms  with  ̂ 1  and  A<,  a  self-polar 

triangle  for  a-,  we  have 
^l«ll  +  ̂ 3«13  =  0,        a7oO(oo  +  a^3  023  =  0       (1)> 

where  ^k=Vi  (^ik  +  ̂2  hk  +  Vs  Cik  • 

Let  R,  or  y,  be  the  pole  of  a-e  for  <^^  then 

«liyi  +  Otiays  ̂   «222/2  +  «23y3  ̂   «133/l+0f233/2+«33y3  /g) 
ttj  tto  ^3 

It  will  now  be  shown  that  if  AiX  meets  Q  in  «',  and  A^y  meets 

the  plane  (^1.^2^')  in  y'  (S),  then  the  locus  of  y'  is  a  Steiner surface. 

For,  from  equations  (1)  and  (2)  we  obtain  the  Xi  and  yi  as 

quadratic  functions  of  the  rji,  thus 

yr-y2-  y-i  =/i  {v)  -Mv)  -A  (v) ; 

also,  it  is  easy  to  see  from  equations  (1)  and  (2)  that  —=*--?   . X^        CCii  OCqo 

*  If  ̂ 1 ,  ̂2  do  not  both  lie  on  the  section  of  Q  by  the  plane  of  c",  we  can  replace 
them  by  the  intersections  of  A^A^,  A^A^  with  Q,  and  c-  by  its  projection  on  any 
plane  through  these  two  new  points. 
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Again 
s  3 

17^  ~  ;r"'   ' — ' —   =  J-  /  ( ;  from  (1), 

where /^  (77)  is  a  quadratic  function  of  the  Vi-     Hence 

2/1'  :  2/2'  :  y:  :  2//  =A  (v)  :A(v):fs  (v)  ■  /.  (v)- 

92.     Eckhardt's  method. 

A  method  of  point-transformation  applied  by  Eckhardt*  leads 
easily  to  properties  of  the  cubic  surface  with  four  nodes,  and 
hence  by  reciprocation  to  the  surface  of  the  third  class  with  four 

tropes,  which  is  Steiner's  surface.  This  transformation  is  the 
following : 

ociyi  =  p,  (i=l,  2,  3,  4). 

By  use  of  this  method  there  corresponds  to  any  given  plane 

Sttj^j  =  0, 

the  surface  2  —  =  0, 

which  is  a  cubic  surface  having  the  vertices  of  the  tetrahedron 

of  reference  as  nodes.  The  equation  of  the  surface  in  plane 
coordinates  being 

S  ̂/a^Ui  =  0, 

it  is  seen  to  be  of  the  fourth  class. 

The  four  tangent  cones  of  the  surface  at  the  nodes  are 

--2:-*  =  0,  (z  =  l,2,3,4). 
Vi      iVk  V        .    .    >    / 

They  are  the  tangent  cones  from  the  nodes  to  the  quadric 

vhich  touches  the  edges  of  the  tetrahedron  of  reference;  the 

ntersection  of  this  quadric  with  the  plane 

Vl  j^lh  _yi  _yi  ̂   Q 
Or,      cu     a,     a. 

*  Math.  Ann.  v. 

J.  Q.  S.  10 

I 
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is  a  conic  c^  which  lies  on  the  cubic  surface ;  for  by  squaring 
and  subtracting  from  the  equation  of  the  quadric  we  obtain 

M3  +  ̂Ma  =  0, 

as  a  quadric  through  c",  and  this  quadric  is  easily  seen  to  arise  by 
combining  the  equation  of  the  plane  with  that  of  the  cubic  surface. 
Hence  the  curve  of  intersection  of  the  quadric  and  the  cubic 

surface  consists  of  three  conies  lying  respectively  in  this  plane  and 
in  two  others  of  similar  form. 

To  a  quadric  through  the  vertices  of  the  tetrahedron  of 

reference  corresponds  a  quadric  through  the  same  points,  and 

if  one  quadric  is  a  cone  so  also  is  the  other  (since  the  discriminant 

of  ̂ ai2XiX2  is  equal  to  that  of  'Za3iXia;2).  Now  through  four  points 
two  quadric  cones  can  be  draivn  to  touch  a  given  plane  and  to  have  their 

vertices  at  a  given  point  of  that  plane*,  we  therefore  obtain  for  the 
cubic  surface  as  the  corresponding  theorem :  through  any  point  of  the 

surface  two  quadric  cones  can  be  drawn  to  have  their  vertices  at  the 

point  and  to  touch  the  surface :  otherwise,  the  tangent  cone  to  the 
surface  having  its  vertex  at  any  point  of  it  breaks  up  into  two 

quadric  cones.  Reciprocating,  we  again  obtain  the  result  for 

Steiner's  surface  that  its  curve  of  intersection  with  any  tangent 
plane  consists  of  two  conies. 

Again  we  have  the  theorem  that  eight  quadrics  can  be  drawn 

through  any  four  given  points  to  touch  a  given  quadric  along  a 
conic ;  for  taking  the  given  points  as  vertices  of  the  tetrahedron  of 

reference  and  the  given  quadric  as  SaikXiXk  =  0,  the  latter  may  be 
written  in  the  form 

(l^/auocif  +  2t  {aik  -  "Jauakk)  sciXj,  =  0 ; 

whence  the  eight  planes  of  the  conies  of  contact  are  seen  to  be 

Xxi  ̂ au  =  0, 

taking  all  combinations  of  the  ambiguities. 

If  the  given  quadric  consists  of  two  planes,  the  conies  oi 
contact  break  up  into  pairs  of  lines,  and  hence  the  tangent 

quadrics  must  be  cones  whose  vertices  lie  upon  the  line  o) 
intersection  of  the  two  planes;  it  follows  therefore  that  through 

*  For  the  cones  which  pass  through  the  four  points  and  have  their  vertices  a' 
a  given  point  form  the  pencil  Fi  +  \F2=0  where  Fj  and  V2  are  two  cones  fulfiUinf 
these  conditions,  and  the  cones  of  this  pencil  which  touch  a  given  plane  are  givei 

by  a  quadratic  in  X. 
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four  given  joints  there  pass  eight  quadric  cones  which  touch  two 

given  planes ;  by  application  of  the  transformation  it  is  seen  that 
if  two  cubic  surfaces  have  four  nodes  in  common  there  are  eight 

quadric  cones  which  touch  each  surface  along  two  twisted  cubics ; 
otherwise,  the  common  tangent  developable  of  two  cubic  surfaces 
with  four  common  nodes  breaks  up  into  eight  quadric  cones  whose 

vertices  lie  upon  the  curve  of  intersection  of  the  cubic  surfaces. 

By  reciprocation  we  obtain  that  if  two  Steiner's  surfaces  have  four 
tropes  in  common,  their  curve  of  intersection  consists  of  eight 

conies  whose  planes  touch  the  common  tangent  developable  of  the 
two  surfaces. 

93.     Quartic  surfaces  with  a  triple  point. 

The  quartic  surface  with  a  triple  point  has  been  discussed  by 

Rohn*;  it  belongs  to  the  type  known  as  the  monoid,  i.e.  the 
surface  of  order  n  with  an  (n  —  l)-fold  point. 

We  may  take  as  its  equation 

wus  +  W4  =  0, 

where  1/3  =  0,  u.i  =  0  are  cones  of  orders  3  and  4  respectively, 

having  their  vertices  at  the  triple  point  x  =  y  =  z  =  0. 
These  cones  intersect  in  twelve  lines  lying  on  the  surface. 

These  lines  meet  the  plane  w  =  0  in  twelve  points  which  we 

may  call  principal  points  in  the  representation  of  the  points  of  the 

surface  by  their  projections  on  this  plane  from  the  triple  point. 

This  gives  a  (1,  1)  correspondence  of  points  between  the  surface 

and  the  plane,  in  which,  however,  all  the  points  of  one  of  the 

twelve  lines  are  represented  by  one  principal  point. 

In  the  general  case  there  is  no  conic  on  the  surface  whose 

plane  does  not  pass  through  the  triple  point  A^;  for  this  would 

require  the  quadric  cone  of  vertex  Ai  and  base  the  conic,  to  contain 

six  of  the  twelve  lines  of  the  surface,  in  order  to  complete  its  curve 

3f  intersection  with  the  surface.  There  are  sixty-six  conies  lying 

in  the  planes  passing  through  two  of  the  twelve  lines ;  they  are 

represented  by  the  lines  joining  pairs  of  principal  points. 

The  quadric  cone  through  five  of  the  twelve  lines  meets  the 

surface  also  in  a  twisted  cubic  passing  through  A^;  we  obtain 

792  such  cubics  which  are  represented  by  conies  through  five  of 

bhe  principal  points.     The  system  of  go  ̂   conies  through  any  four 

*  Ueber  die  Flachen  vierter  Ordnung  viit  dreifachem  Punkte,  Math.  Ann.  xxiv. 

10—2 
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of  the  principal  points  represents  a  system  of  quartic  curves  on 
the  surface,  each  quartic  having  a  node  at  A^.  Such  a  quartic 

must  have  two  apparent  double  points,  since  its  plane  projection 

from  any  point  must  have  zero  deficiency,  being  in  (1,  1)  corre- 
spondence with  a  conic.  Hence  it  is  of  the  first  species  (a 

quadri-quartic  with  one  node). 

The  00 1  cubics  through  eight  principal  points  represent 
twisted  quartics  without  a  node,  which  pass  through  A^  and 

have  the  same  tangent  at  that  point ;  they  have  two  apparent 

double  points,  their  plane  projections  being  in  (1,  1)  correspond- 
ence with  non-nodal  plane  cubics;  hence  they  are  of  the  first 

species. 
Any  quartic  of  the  first  type  and  any  quartic  of  the  second 

type  lie  on  the  same  quadric,  provided  that  the  twelve  lines  with 

which  they  are  associated  are  all  different.  For  the  conic  and 

plane  cubic  respectively  corresponding  to  them  intersect  in  six 

points  (none  of  which  coincide  with  principal  points),  hence  if 

we  take  that  member  of  the  pencil  of  oo  ̂   quadrics  through  the 
quartic  of  the  second  type  which  also  contains  any  given  point 

of  the  first  quartic,  it  will  meet  the  latter  in  6-f2-Hl  =  9  points, 
i.e.  will  contain  it. 

We  also  have  quartics  of  the  second  species,  obtained  as  the 
intersection  with  the  surface  of  cubic  cones  having  six  of  the 

twelve  lines  as  simple  lines  and  a  seventh  as  double  line ;  they 

are  represented  by  the  plane  cubics  through  six  principal  points 
which  have  a  node  at  a  seventh  principal  point  and  are  5544  in 

number.  These  cubics  pass  through  A^  and  are  seen  to  be  of  the 

second  species,  since  they  have  three  apparent  double  points. 
The  surface  will  also  possess  a  line  not  passing  through  the 

double  point  if  three  of  the  twelve  lines  are  coplanar.  The 

maximum  number  of  such  lines  is  nineteen*. 
The  surface  may  possess  a  node  D ;  in  that  case  the  line 

joining  it  to  A^  must  lie  on  the  surface  and  hence  is  one  of 
the  twelve  lines  of  the  surface.  Moreover,  in  this  case,  two  of 

the  twelve  lines  must  coincide.  For  in  this  case  any  section 

through  A^D  consists  of  this  line  together  with  a  cubic  passing 

through  D;  we  may  take  A^D  as  the  line  y  =  z  =  0  and  the 
equation  of  the  surface  as 

w  [y  {ax-  +  ...)^-z  (baf'  +  ...)}+ y  (cx^  +...)  + z  (dx"  +  ...)  =  0  ; 
*  See  Kobn^  loc.  cit. 



93]  THE   QUARTIC   MONOID  149 

the  condition  that  all  such  cubics  should  meet  on  y  =  z—0  is 
ad  —  be, 

which  is  the  condition  that  the  curves  Us  =  0,  W4  =  0  should  have 

the  same  tangent  at  the  point  where  A^D  meets  the  plane  w  =  0. 
Hence  two  of  the  twelve  lines  coincide.     It  is  also  easily  seen 

that  if  these  curves  touch,  there  is  a  node  at  the  point 

y  =  z  =  wa  -\-  cx  =  0. 

The  surfaces  with  six  nodes  are  of  special  interest :  they  are  of 

two  types ;  in  the  one  type  the  nodes  have  any  position,  in  the 

other  they  lie  on  a  conic. 

The  equation  of  a  surface  of  the  first  type,  which  has  a  triple 

point  at  A  and  nodes  at  six  points  which  we  may  represent  by 
1,  2,  3,  4,  5,  6,  is  of  the  form 

KF-pPV  =  Q, 

where  A''  =  0  is  a  quadric  cone  whose  vertex  is  A  and  which  passes 
through  the  points  1  ...  5;  ̂ ^^=0  is  a  quadric  through  the  seven 
points  A,\  ...  Q,  P  =  0  is  the  plane  through  the  points  A,  4,  5; 
V  =  0  is  the  cubic  surface  with  four  nodes,  viz.  at  A,  1,  2,  3 

respectively,  and  which  passes  through  the  points  4,  5,  6. 
There  remain  three  undetermined  constants,  viz.  two  in  F, 

together  with  p.  It  can  easily  be  shown  that  they  can  be  deter- 
mined so  as  to  give  the  required  surface.  For  the  conditions  that 

the  point  6  should  be  a  node  are  seen  to  reduce  to  the  following : 

dF  dV  _dF   dV^ _dF   dV_  _dl[   d^  _     P 

dx  '  dx      dy  '  dy       dz  '  dz      diu  '  dw      ̂   K' 
wherein  the  coordinates  of  the  point  6  are  substituted. 

These  conditions  express  that  F=0,  V  =  0  should  touch  at  the 
point  6,  and  the  two  undetermined  constants  in  F  are  thus  found ; 

finally  p  is  uniquely  determined. 
We  thus  obtain  one  surface  whose  equation  depends  only  on 

the  coordinates  of  its  singular  points. 

A  remarkable  property  of  the  surface  is  that  the  sextic  tangent 

cone,  whose  vertex  is  any  one  of  the  six  nodes,  breaks  up  into  two 

cubic  cones,  each  having  a  double  edge  passing  through  the  triple 

point. 
For  the  equation  of  the  surface  may  be  written 

x^wA  +  B)  +  2x{wG  +  D)  +  wE  +  F=0, 

if  the  node  considered  is  the  point  (1000). 
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The  tangent  cone  whose  vertex  is  this  point  is  then 

{ivG  +  Df  =  {to  A  +B)(wE  +  F); 

this  is  seen  to  have  a  fourfold  edge  passing  through  J  4.  It  also 

has  five  double  edges  passing  through  five  nodes.  Now  one  cubic 
cone  whose  vertex  is  this  node  can  be  drawn  to  contain  these  five 

edges,  to  have  the  other  edge  as  double  edge,  and  to  contain  any 

other  edge  of  the  sextic  cone.  It  therefore  intersects  the  latter 
cone  in4x2  +  2x5  +  l  =  19  edges,  and  hence  forms  part  of  it. 

The  foregoing  property  is  also  possessed  by  the  symmetroid 
(Art.  8).  It  is  easy  to  see  that  the  surface  we  have  just  considered 

is  a  special  case  of  the  symmetroid.  For  the  latter  surface  is  seen 

(Chap,  ix)  to  arise  when  from  the  equations 

a^  '  +  yS^'  +  7^  +  8^'  =  0,     (t  =  l, 2,3,4), dxi         cxi         oxi        oxi 

expressing  that  the  quadric  (xS^  +  /3>So  +  ̂ ^^  +  S>S4  =  0  should  be  a 
cone,  we  eliminate  the  variable  xi,  and  regard  the  a,  /3,  7,  S  as 

point-coordinates. 

If  we  now  take  the  special  case  in  which  ̂ 1  is  a  plane  a^  =  0, 
taken  doubly,  we  obtain  as  the  required  surface 

aaj- + /36ii  +  . . .     aa2ai+/^^2i+   

aaiaaH- /36j2+ ...       aao"  + /3i22  +   

=  0. 

This  surface  has  the  point  (1000)  as  triple  point,  since  for  this 
point  all  the  second  minors  of  the  determinant  vanish. 

The  surface  has  a  node  for  such  values  of  a ...  S  as  make 

Oi{a^x-^...y  +  /S&  +  7'53  +  3^4  =  0 

a  pair  of  planes  XY \  and  for  such  points  we  have 

yS^Sfa  +  7^3  +  §'^4  =  XY-  mar, 

i.e.  I3S2  +  ySs  +  BS4  —  0  represents  a  cone  whose  vertex  lies  on  Gx  ', 
and  there  are  six  such  cones  since  the  vertices  of  all  cones  which 

pass  through  the  eight  fixed  points  Si  =  82  =  83  =  0,  lie  on  the 
sextic  curve 

^a^.+'^a^  +St=^'        (^=^l,2,3,4). 
Ut^l  V/iX/j  ijif."i 

Moreover  the  preceding  surface  represents  the  most  general 

quartic  monoid  with   a  give^i   triple  point  and  with   six  nodes. 
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For  the  equation  of  such  a  surface  involves  34  — 10  —  6  =  18 

constants;  and  the  determinant  involves  thirty-four  constants 

which  can  be  reduced  to  eighteen  on  multiplying  by  an  arbitrary 
determinant  of  four  rows. 

The  second  type  of  quartic  monoid  with  six  nodes  is  repre- 
sented by  the  equation 

K'-pPF=0, 

where  K=0  is  a  quadric  cone,  ̂   =  0  a  cubic  cone  with  the  same 

vertex,  and  P  =  0  any  plane. 
For  this  surface  has  clearly  a  triple  point  and  has  the  six  nodes 

given  by  the  equations  P  =  F  =  K  =  0. 
It  contains  twenty-one  constants,,  the  same  number  as  the 

surface  last  considered*  when  the  triple  point  is  arbitrary. 

*  For  a  full  discussion  of  many  special  cases  of  the  quartic  monoid  the  reader 
is  referred  to  the  memoir  by  Rohn  recently  quoted. 



CHAPTER  VIII 

THE    GENERAL    THEORY    OF    RATIONAL    QUARTIC    SURFACES 

94.  The  quartic  surfaces  so  far  considered,  with  a  double 
curve,  have  been  found  to  be  rational,  i.e.  the  coordinates  of  a 

point  on  such  a  surface  are  expressible  as  rational  functions  of 

two  parameters.  Surfaces  with  a  triple  point  are  rational,  as  is 

seen  by  projecting  the  surface  from  the  triple  point  on  any  plane. 

We  shall  now  investigate  the  other  types  of  quartic  surfaces  with 

a  double  point  which  are  rational*.  If  the  double  point  0  be  a 
tacnode,  i.e.  such  that  every  plane  through  0  meets  the  surface  in 

a  quartic  curve  having  two  consecutive  doable  points  at  Of,  the 

equation  of  the  surface  has  the  form 

Projecting  the  points  x  of  the  surface  by  lines  through  0  to 

meet  the  plane  Xi  in  points  y,  we  obtain 

-%2(2/)±\/lW) 

2/1 

p^i  =  2/i,     poc2  =  y2,     pa^s  =  ys,     pa^i 

where  H  (y)  =  [x^  {y)Y  -  ̂X^  (y)- 

The  points  x  of  the  surface  are  thus  related  to  points  y  of  a  double 

plane;  we  now  obtain  rational  expressions  of  the  yi  in  terms  of 

new  variables  Zi  which  render  Vll  {y)  rational  in  the  Zil. 

The  equation  of  the  general  quartic  curve  O  {y)  —  0  may  be 
taken  as 

=  0, 

where  Uijc  =  Uki,  the  m,j;  being  linear  functions  of  the  2/i§. 

*  Nother,  Ueher  die  rationalen  Flachen  vierter  Ordnung,  Math.  Ann.  xxxiii. 
t  Selbstberuh rungspun k t . 
X  Clebsch,  Ueber  Fldchenabbildungen,  Math.  Ann.  iii. 

§  Hesse,  Crelle's  Journal,  xlix. 
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A  system  of  cubic  curves  having  six-point  contact  with  11  is 

=  0. 

Wii 

Wjo 

Wl3 

Uu 

«! 

^21 

^22 
W23 

W24 

a2 

"31 
^'32 

Ws3 

«34 

«3 

W.4]       W42      W43      W44       0(4 
Qt, 

a9 

0(3      a4     0 

Denoting  this  system  by  cj)  {y,  a),  there  are  eight  systems  of 

00  *  nodal  eubics ;  through  every  point  hi  of  the  plane  there  passes 
one  member  of  each  system  having  a  node  at  hi.  For  if  ̂ {y,  a) 

has  a  node  at  hi,  the  equations 

d<^  (b,  a) dhi 

=  0, 

(*=1.  2,  3), 

give  eight  sets  of  values  for  the  a^. 
Again  consider  the  quadrics 

F(y,  X)  ~  lui,XiX,  --y,F,+  y,F,  +  y,F,  =  0 ; 

if  f  i  be  one  of  the  eight  points  of  intersection  of  F^  =  0,  i^a  =  0,  F^  =  0, 
the  coordinates  of  the  tangent  planes  to  the  quadric  F(h,  X)  at  the 

eight  points  ̂ ,forni  the  preceding  eight  sets  of  values  of  the  oli. 

For  let  quantities  7);,  a.i  be  connected  by  the  equations 

Oi  =  Wii  {h)  Vi  +  Ui-j  (h)  7),  +  Uis  (6)  173  -t-  Uii  (6)  Tji,     (i  =  1,  2,  3,  4), 

then  it  is  seen  that 

<P(h,a)  =  -Fib,v)n(b), 

If  now  77;  =  ̂i,  the  plane  ttj  touches  F(h,  X)  at  the  point  |,  and 
since  F{b,  f)  vanishes  for  all  values  of  the  hi  we  have 

dhi 

=  0, 

{i  =  h  2,  3). 

Thus  the  eight  different  sets  of  00  -  nodal  eubics  belonging  to 
the  curves  (f>  (y,  a)  are  obtained  by  taking  for  the  quantities  a^  the 

coordinates  of  the  oo  ̂   planes  through  the  eight  points  ̂ . 
We  now  select  one  of  these  eight  points  ̂ ,  and  denote  the 

others  by  ̂',  |", ....  It  is  seen  that  to  each  quadric  F  {y,  X)  there 
corresponds  one  point  y  and  conversely ;  and  since  there  is  one 

quadric  F  which  contains  a  line  s  through  |,  therefore  to  each 

such  line  s  there  corresponds  one  point  y ;  but  each  point  y 

determines  one  quadric  F  which  has  two  generators  s  through  f, 
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i.e.  to  each  point  y  there  correspond  two  lines  s.  These  two  lines 
coincide  if  F  is  a  cone,  i.e.  if  we  have 

wa A'l  +  Ui^Xo  +  u^X^  +  UuXi  =  0,       (r  =  1,  2,  3,  4), 

giving  the  points  y  of  fl. 
Considering  the  points  z  the  sections  of  the  sheaf  of  lines  s 

by  the  plane  Avhich  is  the  field  of  y,  we  thus  obtain  the  following 
relationship  between  the  points  y  and  z ;  to  each  point  z  there 

corresponds  one  point  y,  to  each  point  y  there  correspond  two 
points  z,  which  coincide  when  y  lies  on  fl. 

To  the  quadrics  F  which  touch  a  given  plane  a^-,  but  not  at  ̂ , 
correspond  points  y  lying  on  the  curve  <^  (y,  a),  and  these  quadrics 

give  rise  to  a  pencil  of  lines  s  lying  in  a ;  hence  to  points  z  lying 

on  a  line  p  correspond  points  y  lying  on  the  curve  <f)  (y,  a).  To 

points  y  lying  on  a  line  p'  correspond  points  z  lying  on  a  curve  c 
of  order  k;  since  p'  meets  cj)  in  three  points,  c  must  meet  p  in 
the  corresponding  points,  i.e.  k  =  S. 

Hitherto  s  has  been  taken  as  a  line  through  ̂   which  does  not 

pass  through  any  of  the  seven  points  |',  |",  etc.  But  if  s  passes 

through  I'  then  to  s  will  correspond  a  pencil  of  quadrics  F  which 
determine  a  line  of  points  y.  Denoting  by  Ai  the  points  in 

which  If,  ̂ ^",  etc.  meet  the  plane  of  reference,  then  to  each  point 

Ai  there  coiTesponds  a  line,  this  line  meets  p'  in  one  point,  hence 
c  passes  through  each  of  the  seven  points  Ai. 

Thus  the  curves  c  which  correspond  to  lines  in  the  field  of  y 

form  a  system  of  go  -  cubics  through  seven  fixed  points.  Such  a 
system  is  represented  by  the  equation 

where  f^,fi,fz  are  three  cubics  having  seven  points  in  common. 
The  relationship  between  the  points  y  and  z  is  therefore  expressed 

by  the  system 

^yi=fi{^\  (t  =  1,2,3), 

where  the  seven  points  have  a  general  position.  Any  curve  of 

the  system  which  passes  through  a  given  point  Q  will  also  pass 

through  a  point  Q',  where  Q,  Q'  correspond  to  the  same  point  y ; 
the  pair  of  points  z  which  correspond  to  a  point  y  lie  on  the 

same  cubic  through  the  seven  fixed  points. 

This  transformation  rationalizes  4il  {y) ;  for  if  A  (^r)  =  0  be  the 

curve  which  corresponds  to  H  {y)  =  0,  since  11  is  the  locus  of 

points  y  for  which  the  corresponding  pair  of  points  z  coincide, 
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i.e.   for   which   curves    of the system   /i touch    each   other,  we 
have 

9/ 

.9A 

9/ 

dzi dz^ 

dz. 
A  {z)  = 

8/2 
dzi dz2 

dzs 

=  0; 

d/s 
a/a d/s 

dzi dz2 dz; 

a  sextic  curve  having  nodes  at  the  seven  points. 

When  a'*n(y)  is  expressed  in  terms  of  the  variables  z  we 
obtain  an  expression  of  order  12  in  the  Zi;  hence  it  must  be 

identical  with  {A{z)Y  save  as  to  a  constant  factor. 

The  required  expression  of  the  surface  is  therefore 
—  i/r  ±  /cA 

P^4  = 
M^) 

P^l  =  /l  (^),        P'X.2  =/2  {Z),        pX^  =/  {Z) 

where  '^  =  ̂ ^(/i,/^,/),  and  «  is  a  constant. 

Since  VL  (y)  =  xi  (v)  "  4%4  (y), 

we  have  «^  |  A  (^)  |^  -  [x,  {f(z)]J  =  -  4^4  {/(^)}, 

or  («^  -  Xd  («^  +  %2)  =  -  4^4  {/(^)} . 

The  plane  sections  of  the  surface  are  represented  by  two  sets 
of  sextic  curves,  viz. 

/3i/i^  +  MA  +  MA  +  M-f±  '^A)  =  0. 
Also/i(^)  =  0  meets  %4{/('2^)}  =  0  in  eight  points,  apart  from  the 

seven  fixed  points,  of  which  four  lie  upon  /cA  —  %  =  0,  and  four 
lie  upon  kA.  +  ̂   =  0 ;  hence  the  preceding  sextic  curves  are  seen 
to  have  the  seven  fixed  points  as  nodes  and  to  pass  through  four 
other  fixed  points,  all  of  which  lie  on  one  cubic  curve. 

This  surface  may  be  referred  to  as  S^'^^K 

95.     The  rational  quartic  surfaces  /S^4<^'  and  S^^^'. 

In  addition  to  the  rational  quartic  surface  just  considered 

there  are  two  others  only,  apart  from  the  surfaces  which  have 

a  double  curve  or  a  triple  point*.     For  if  the  surface  is 

^//,  +  2x,A  +/  =  0, 
as  before  its  points  may  be  projected  from  A^  upon  a  double  plane, 
the  plane  a^ ;  if  the  surface  is  rational  the  points  yi  of  a^  are  such 

*  Nother,  Ueber  die  rat.  Fldchen  vierter  Ordnung,  Math.  Ann.  xxxiii. 
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rational  functions  of  the  coordinates  Zi  of  a  simple  plane,  as 
rationalize 

In  this  mapping  of  the  surface  upon  the  plane  of  the  Zi,  to  plane 

sections  through  A^,  or  lines  in  the  ?/-plane,  will  correspond,  in 
the  simple  plane,  curves  of  order  n,  of  the  same  genus  as  the 

plane  sections,  viz.  two,  and  intersecting  each  other  in  two  variable 
points  only.  Hence  if  these  curves  have  in  common  Oj  points, 

tta  double  points,  ...  a^  points  of  multiplicity  r,  we  have 

w2-2  =  «i  +  4a2+  ...+r=a,   (1), 

^  2        -l=«i  +  3ao+...  +  -^ —  a,   (2), 
whence  we  derive 

3w  =  ai  +  2of2+  ...  ■\-roi,   (3). 

By  use  of  the  quadratic  transformation 

Zi'.  Zo'.  2^^:=  Z2,  Z-^   '.  Z2  Zi   '.  Zi  Z2  , 

where  the  vertices  of  the  triangle  of  reference  are  the  three 

multiple  points  of  highest  order  7;  s  and  t,  these  curves  are 

transformed  into  curves  of  order  2n  —  r  —  s  —  t,  of  genus  two,  and 
which  meet  in  two  variable  points.  The  transformed  curves  have 

three  corresponding  multiple  points  of  orders 

n  —  s  —  t,     n  —  r  —  t,     n  —  r  —  s 

respectively,  and  other  multiple    points    of  the    same  orders  as 

those  of  the  original  curve.     Since  r  +  5  +  <  is  in  all  cases*  greater 

*  For  from  equations  (1)  and  (3)  we  have 

3nr-(n2-2)  =  (r-l)ai  +  2(r-2)ao+...  +  (r-l)o,._i. 

tx 

If  r ^3  it  is  seen  that  the  right-hand  side  is  greater  than  2,  i.e.  t:=>-.     If  r=2  one o 

solution  of  (1)  and  (3)  is  n  =  6,  ai  =  2,  02  =  8;  if  n>6  there  is  no  solution.  Next  let 

r,  s  and  t  be  not  all  equal,  then  ii  r  =  t  +  a,  s  =  t  +  P,  a  +  0,  we  have 

7j2  _  2  -  r2  -  s'-i  =  oj  +  4ao  +  . . .  +  t'^a, , 
3?(  -r-s  =  ai  +  1<Xn  +  . . .  +  fa< ; 

hence  (3r  -  r  -  s)  t  >  n^  -  2  -  ?'2  -  s^^ 

(3w-2£-a-;8)(>n2-2-2«2-2f  (a  +  ;S)-a2-/32, 
n2-2-a2-|82 

whence  t  >  — ^   -p-  , 3n  +  a  +  |3 

therefore 

^  3n  +  a  +  /3  ^  3n  +  a  +  j8 
If  /3  =  0  the  numerator  of  the  fraction  is  positive  when  n>4;   if  /3#=0,  since 

n-^r-^s  it  follows  that  n>2(  +  a+/3  and  the  numerator  is  positive,  i.e. 
r^-s-^t>n. 
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than  n,  by  repeated  application  of  the  process  we  finally  arrive 

at  curves  Cf,{a^^ ...  a^h-i^b^  or  at  curves  c^{a'hJ)2...hio)*.  It  will 

now  be  seen  that  the  curves  Ci{a-hi  ...h^^)  rationalize  VH  when 
n  =  0  is  a  sextic  curve  with  a  quadruple  point,  and  the  curves 

Cs{(h^  •••  a^-biho)  rationalize  VO  when  H  =0  is  a  sextic  curve  with 
two  consecutive  triple  points. 

The  curves  c^  (a'^bi  ...  bio). 

By  hypothesis  these  curves  form  a  linear  system  of  oo  ="  curves, 
hence  there  is  one  member  of  the  system  which  has  a  node  at 

bi  (say),  this  curve  cannot  be  irreducible,  for  then  its  genus  Avould 

be  unity  and  not  two  as  required.  Hence  it  consists  of  a  cubic  and 

a  straight  line ;  this  requires  that  the  eleven  points  ab^ ...  b^  should 

lie  on  the  same  cubic.  The  system  of  curves  consists  therefore  of 

linear  combinations  of  the  curves  z^c,  z^c  and  /,  where  /  is  any 

quartic  of  the  system,  c  the  cubic  through  the  eleven  points, 

and  Zi,  2-0  any  two  lines  through  the  point  a. 
It  can  be  shown  that  this  system  rationalizes  VH  when  H  =  0 

is  a  sextic  curve  with  a  quadruple  point.  For  let  0  =  0  be  such  a 

sextic  with  a  quadruple  point  at  A^,  K  =  0  a  conic  passing 

through  As  and  having  four-point  contact  with  fl,  i=0  a  cubic 

having  a  node  at  A-^  and  passing  through  the  four  points  of 

contact  of  K  and  Q. ;  L  thus  contains  two  parameters.  The 

curves  fl  —  aL^=  0  have  ̂ 3  as  quadruple  point  and  touch  K  in  the 

previous  four  points ;  if  now  a  be  so  determined  that  n  —  aD  =  0 

passes  through  an  additional  point  of  K  =  0,  it  must  contain  K 
as  a  factor,  i.e.  we  have 

n  =  D-  KM, 

Avhere  M=0  is  a  quartic  curve  having  a  triple  point  at  A3  and 

touching  n  in  six  points. 

Taking  A^  as  the  point  2/1  =  0,  3/2  =  0,  we  have 

K  =  K^y,  +  K„     L  =  L.y^  +  4 ,     M  =  M^y^  +  M„ 
where  K^  is  linear  in  y^,  y.^,  etc. 

Now  if  pj/i  =  z-i  (z-iKi  —  2^3X2  +  fJ'3)  =  ̂ 1^, 

Py2  =  ■2^2  (•2'3"«l  —  2^3X2  +  H-s)  =   Z^N, 

where  acj,  A2, ...  are  the  result  of  substituting  Zi,Z2  for  y-^,  y.  in  K^, 

*  Nother,  XJeher  eine  Classe  von  Doppelebenen,  Math.  Ann.  xxxiii. 
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Xo,  . . . ,  W3  have  such  a  transformation  ;  so  that  to  the  lines  of  the 

2/-plane  correspond  curves  C4  (a-b^  ...  610)  in  the  ̂ -plane,  the  point  a 
being  A^  and  the  points  bt  the  other  intersections  of  the  curves 

^3^1  -  2z._,\o  +  fi,  =  0,     z.fK.^  -  2z.,\^  +  fi^  =  0. 

This  transformation  rationalizes  Vfi,  for  if  A  (^)  =  0   be   the 
curve  corresponding  to  D,  =  0,  then  since 

J  (z,N,  2.,  N,  ziK.,  -  2z,\,  +  /x,)  =  iYA  {z), 

it  follows  that  A  (2)  =  0  is  a  sextic  curve. 
Moreover,  since 

we  have  p^Vl  {y)  =  N*  x  power  of  A  (z) ; 

and  the  transformation  shows  that  this  power  is  the  square ;  hence 

p^\/n{y)=N'A(z)*. 

The  cut^es  Cs{a^  ...  a^bjj^. 

As  before,  since  there  are  00  ̂   curves  forming  a  linear  system 
/i  +  of/fl  +  ̂ fi  =  0>  the  system  will  contain  one  curve  having  a  node 
at  bi  (say),  i.e.  a  curve  of  genus  unity,  this  curve  must  therefore 

break  up  and  consist  of  two  cubics  of  which  one  passes  through 

the  ten  points  a^...  ajj^b^  and  the  other  through  the  points 

61,  tti  ...  ttg.  If/  is  the  former,  and  /'  any  cubic  of  the  pencil 
through  the  points  a^...  a^,  and  ̂   any  sextic  of  the  family,  the 

00  2  sextics  are  included  in  the  system 

p  +  aff  +  ̂ 0. 
The  transformation  effected  by  means  of  this  system  is 

py^  =f-  {z\      py.,  =f{z)f'  {z),      py.  =  <f>  (z). 
The  curve  H  (y)  is,  as  before,  the  locus  of  points  y  for  which  the 

pairs  of  points  z  come  into  coincidencef.  The  curve  A(z)  which 

corresponds  to  12  (y)  is  the  Jacobian  of/,/'  and  (f>;  it  is  a  curve  of 
order  9  having  ai ...  as  as  triple  points  and  not  passing  through 
61  or  bo.     Since  any  curve  of  the  above  system  meets  A  (z)  in 

54  -  48  =  6  points, 

any  line  will  meet  fl  (y)  in  six  points,  hence  fi  (y)  is  a  sextic 

*  li  a  —  X^/J-i  -  \-)iJ^ ,  26  =  K2M3  -  KifJi-4,  c  =  X3/CJ  -  X2K2 1  we  find  that 

p^K=2N{cz3  +  b),    p'^L  =  m{czs^-a),    pm  =  -2N^{hz^^  +  az^), 

hence  p^s/Q=p^  Jl^  -  KM^ N^(a  +  2623 + cz^^ 
t  Uehergangscurve,  Clebsch. 
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curve.     Since  fl  (y)  and  A  (z)  have  the  same  genus,  that  of  the 
former  is  seen  to  be  four. 

Moreover,  the  point  yi  =  0,  2/2=0  is  a  triple  point  on  fl  {y), 

because  the  pencil  /+  of'  =  0  meets  A  {z)  in  three  variable  points 

only;  and  since /^  +  ot//"  =  0  meets  A  (^)  in  three  variable  points 
and  fixed  points  (corresponding  to  3/1  =  0,  y^  =  0),  /-  meets  A  in  the 
latter  points  only,  hence  the  line  2/1  =  0  touches  each  of  the  three 
branches  of  fl  {y)  at  the  triple  point  and  hence  meets  H  (y)  only 

at  that  point ;  therefore  £l  (y)  has  an  equation  of  the  form 

where  Qi  is  of  order  i  in  y^,  y^*. 
Applying  the  transformation  to  H  (y)  we  find  that 

p^Cl  (y)  is  equal  tof^  (z)  x  some  power  of  A  (z), 

and  this  power  is  seen  to  be  the  square,  hence 

p'-'n{y)={f(z)Y[/i{z)Y.      
The  transformation,  therefore,  rationalizes  Vll  (y). 

96.     The  surfaces  S,^-^  and  ;S4'". 

It  remains  to  determine  the  surfaces  ;Si4  which  arise  from  the 

two  preceding  cases  for  O  (y),  i.e.  S^  being 

the   preceding  results  require  that  the  curve   O  should  either 

have  a  quadruple  point  or  two  consecutive  triple  points,  where 

^{y)^fny)-fAy)A{y)- 
Now  writing 

/2=  ax^^  +i»3^i  +-4o, 

/3  =  ̂ xi  +  x^-B^  +  x^B.,  +  B,, 

fi  =  yx,''  +  x,'C,  +  xiC^  +  x,C,  +  C, ; 

(1)    If  n  has  Xi=  0,  a;2  =  0  as  a  quadruple  point  the  following 
identities  must  hold : 

^2  _  a,y  =  0, 

2/3B,-aC,-yA,  =  0, 

B^-  +  2yS5,  -  aC,  -A,C,-  yA,  =  0, 

2/3B,  +  2B,B,  -  aC,  -  A.C.,-  A^G,  =  0. 

*  The  absence  of  the  term  y-iV^y'i'  gives  rise  to  two  consecutive  triple  points; 
thus  making  the  genus  of  ̂ {y)  four,  as  required. 

I 
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By  considering  the  possible  values  for  a,  /3,  7  we  obtain  *  when 
a  ̂0,  ;S  =  0,  7  =  0,  the  surface 

>Sf,<^)  =  X.}  {x,  +  B,y  +  X,  (x,  +  B,) (A,' -A,x,+  2B,) 
+  xM2  +  ̂ x!,B,+  C,  =  0; 

a  surface  having  a  tacnode  in  Xi  =  X2  =  Xi  =  0,  i.e.  the  surface 
already  arrived  at. 

For  a  =  /3  =  <y  =  0  we  have  surfaces  with  either  a  double  line 
or  a  triple  point  and  therefore  excluded. 

For  a  =  /3=0,  7=fO  we  obtain  either  a  surface  with  a  triple 
point  or  the  surface 

^,'=)  =  (x^B,  +  x.?y  +  (^4  A  +  xi)  x^G^ 

+  2x,B,  +  xiG^  -I-  a^sCj  +  C4  =  0. 

(2)  When  H  has  two  consecutive  triple  points,  and  hence  an 

equation  of  the  form  previously  given,  we  obtain  the  identities 

/8^  -  ̂ 7  =  0, 

WB,  -  aC,  -  yA,  =  0, 

B,'  +  2i3B,  -  aC,  -  A,C\  -  jA.,  =  0, 

2I3B,  +  2B,B,  -  aC,  -A,C,-  AM,  =  ̂ ^^ 

B,'  +  2B,B,  -  aC,  -  Afi,  -  A,C,  =  x^'Q,, 

2BoB.  -  A,C,  -  A^C,  =  X,  Q,. 

By  examining  the  various  possible  cases  we  are  led  to  the  one 
surface 

S^^^^  =  xix;-  +  2x^  {x.,XjD,  +  B.) 

-  x.?x,  +  x^^C^  +  x.,G^  +  C^=  0. 

The  surfaces  ̂ 4'^',  Si^-\  S^^'^^  are  thus  the  only  rational  quartic 
surfaces  apart  from  such  surfaces  as  have  a  multiple  curve  or  a 

triple  point. 

*  See  Nother,  loc.  cit.,  p.  152.     The  reader  is  referred  to  this  important  memoir 
for  details  of  the  mapping  of  these  surfaces  on  the  plane. 



CHAPTER   IX 

DETERMINANT     SURFACES 

97.  The  surfaces  of  the  second  and  third  orders  may  have 

their  equations  expressed  in  the  form  A  =  0,  where  A  is  a  deter- 

minant having  respectively  two  and  three  rows,  and  whose  con- 
stituents are  linear  functions  of  the  coordinates.  In  the  case, 

however,  of  surfaces  of  the  fourth  order,  the  surface  A  =  0,  i.e.  the 
surface  whose  equation  is 

P.
' 

=  0, 

where  the  px,  etc.  are  linear  functions  of  the  coordinates,  depends 

upon  thirty-three  constants,  one  less  than  the  number  connected 

with  the  general  quartic  surface.  For  A  contains  sixty-four 
constants,  of  which  one  may  be  taken  to  be  unity,  and  if  we 

multiply  A  by  two  determinants  of  four  rows,  whose  elements  are 

arbitrary  constants,  first  by  rows  and  then  by  columns  respectively, 
we  introduce  thirty  new  arbitrary  constants ;  the  number  of 

disposable  constants  contained  in  A  is  thus  seen  to  be 

63  -  30  =  33. 

The  surface  A  =  0  may  be  obtained  in  two  ways  as  the  locus 
of  points  common  to  four  collinear  systems  of  space,  viz.  either  by 

aid  of  the  equations 

'^iPx     +     =0 

\Px'    + 

=  0 

=  0 
\ 

J.  Q.  S. 

.(l), 

11 
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[CH.  IX by  elimination  of  Xj ...  X4,  or  similarly  by  elimination  of  Oj  ...  04 
from  the  equations 

«xr,+     =0        ^^^' 
OiiSy    +               =0, 

the  resulting  surface  being  in  each  case 

I  pq;r"s"'  I  =  0. If  we  introduce  an  additional  equation 

Xift  +  Xg^  +  ̂ aC  +  X4C?  =  0, 

where  a...d  are  constants,  the  equations  (1)  give  rise  to  four 

collinear  sheaves  of  planes ;  the  points  in  which  four  corresponding 

planes  intersect  form  a  sextic  curve  lying  upon  A,  viz. 

Px      ̂ x      fx        ̂ x 

Px 

a 

Sx 

d 

=  0. 

This  set  of  00  ̂   sextics  will  be  denoted  by  Cg. 

Similarly  we  obtain  the  00^  sextics  kg,  viz. 

Py     Py     Py      Py =  0. 

A      B      G       D 

Any  two  curves  Cg,  k^  lie  on  the  same  cubic  surface,  viz. 

Px     ••• 
Px'     •" 

P^ 

Pa 

a h    c 

Sx 

A 

Sx 

B 

sj'
 

G 

Sx
" 

D 

d 0 

0. 

Any  two  curves  Cg  intersect  in  four  points,  since  this  is  the 
number   of    solutions   common    to    the    equations   (1)   and   the 

equations 

\a+  ...  +\id  =  0,    XiCi' +  ...  +  X4d'  =  0; 

for  eliminating  the  Xi  from  equations  (1)  we  obtain  what  may 



•(3) ; 
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be  regarded  as  a  quartic  surface  in  the  X^-  which  meets  the  line 
given  by  the  last  two  equations  in  four  points. 

Similarly  any  two  curves  k^  meet  in  four  points. 

Any  two  of  the  preceding  cubic  surfaces  will  meet  A  in  curves 

Ce,  ̂6 ;  Ce',  Ic^ ;  hence  if  m  is  the  number  of  intersections  of  c^  and  k^, 
we  have  2m  +  8  =  36  ;   hence  m  =  14. 

98.  Correspondence  of  points  upon  the  surface. 

The  preceding  equations  (1)  and  (2)  establish  a  (1,  1)  corre- 
spondence of  points  upon  the  surface ;  for  by  aid  of  the  equations 

Xi  Px      +  X,  ga;  +  Xj^a;  +  X4  Sj;  =  0,        OL^  Py  +  CL,^Py'  +  a^Py"  +  C^^Py"  =  0, 
\px     +      =0,      c^iqy -^     =  0, 

\Px'  +     =0,      cL^ry+     =0, 

\Px"  +     =0,      cL^Sy+     =0; 
and  also  of  the  equations 

XiPi  +  X2Q1  +  Xji^i  +  X^S^  =  0' 
\P.+        =0 
X1P3+        =0 

X:P,+         =0) 

where  Pi  =  ct^p^  +  ttojy-^  +  a^p-^'  +  ctip^",  etc. ; 

having  given  any  point  x  of  the  surface,  a  set  of  values  of  the  X^- 
are  determined  and  hence  one  set  of  values  for  the  a^,  and  finally  a 

point  y  of  the  surface. 

Regarding  the  X^  as  point-coordinates,  and  also  the  a^,  it  is 
seen  that  by  aid  of  these  equations  we  pass  from  a  point  a;  of  A  to 

a  point  X  of  a  quartic  surface  2,  and  thence  to  a  point  a  of  a 

similar  surface  2',  and  finally  to  a  point  y  of  A, 
Hence  as  the  point  X  describes  a  plane  section  of  the  surface  %, 

the  point  x  describes  a  curve  Cg  of  A,  and  the  point  a  describes  a 

curve  Ce'  of  %'.    The  point  y  describes  on  A  a  curve  which,  as  seen 
in  the  next  Article,  is  of  the  fourteenth  order. 

If  A  is  a  symmetrical  determinant,  i.e.  if 

p'  =  q,     p"  =  r,     p"  =  s,  etc., 
the  surfaces  2,  2'  coincide,  A  becomes  the  surface  known  as  the 
symmetroid  (Art.  8),  and  2  the  Jacobian  of  four  quadrics. 

99.  Trisecants  of  Cg*. 

Effecting  any  linear  substitution  for  the  Xj  merely  alters  the 

form  of  the  j^x,  etc.,  hence  any  curve  Cg  will  be  represented  by  the 

*  Schur,  Math.  Ann.  xx. 

11—2 
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[CH.  IX curve  obtained  by  taking  X4  =  0  as  the  linear  relation  connecting 
the  \i ;  this  gives  the  sextic  curve 

P 

9 
r 

P 

r 

=  0. 

.(4) Now  the  three  planes 

CCiPy  +  (XzPy    +  CCsPy'  +  OL^Py"  =  0' 

Ciiqy+     =0[   
airy+     =0, 

will  be  coaxal  if  equations  (3)  are  satisfied  with  X^  equal  to  zero  ; 

and  since  Cg  may  be  written  in  the  form 

a,p+. +  OL,p"'  p'  p"  p" 

=  0, 

the  axis  of  the  three  planes  will  intersect  Cg  in  three  points,  viz. 
where  it  meets  the  cubic  surface 

p'i^'r" 

=  0. 

This  axis  meets  A  in  a  fourth  point  y  for  which,  in  addition  to 

equation  (4),  we  have  the  equation 

ttiSy  +  ...  +aiSy"  =  0. 
So  that  any  point  x  of  Cg  determines  one  set  of  values  (Xj,  X^,  X^,  0), 

and  hence  one  set  of  values  for  the  cci  which  makes  the  planes  (4) 

coaxal,  and  therefore  one  trisecant  of  c^;  this  line  meets  A  in  a 

fourth  point  y,  viz.  the  point  which  corresponds  to  x. 
As  X  describes  Cg,  these  trisecants  form  a  ruled  surface  of  the 

eighth  order  whose  intersection  with  A  is  Cg  counted  thrice,  together 

with  a  curve  of  the  fourteenth  order,  the  locus  of  the  points  y. 

For  two  of  the  planes  (4)  being 

y,P,  +  y.R,  +  y,P,  +  y,P,  =  0, 

2/1Q1+     =0, 
their  intersection  will  meet  any  line  pik  if 

pAP.Q.-PM'tp,,{P,Q,-PM  +  ...=^o, 
where  the  ai  which  occur  in  the  Pi,  Qi  satisfy  the  equation 

P 

Q    =0. R 
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Hence  the  points  a  which  give  the  number  of  trisecants  which 

meet  the  line  pije  are  apparently  twelve  in  number,  but  of  these 

points  four  are  those  determined  by  the  equations 
P 

Q 

=  0, 

and  these  points  do  not  in  general  satisfy  the  equation 

and  hence  must  be  excluded.  The  ruled  surface  is  therefore  of 

the  eighth  order.  It  meets  A  in  Cg,  and  also  in  a  curve  a  whose 

intersection  with  any  plane  ̂ ^^  =  0  is  equal  to  the  number  of 
intersections  of 

P 

Q 

R 

=  0, 

and  I  PQSA  \  =  0, 

excluding  again  the  four  points 
P 

Q 

=  0; 

since  the  four  planes 

1111 

in  which  the  coordinates  of  one  of  these  latter  four  points  a  are 

substituted  in  the  Pi,  Ri,  Si,  do  not  in  general  concur. 

Hence  the  order  ofo-is  18  —  4=14;  and  Cg  is  a  triple  curve  on 
the  surface  formed  by  the  trisecants. 

100. 

metroid. 
The    Jacobian    of    four    quadrics   and    the    sym- 

The  determinant  A  becomes   a  symmetrical  determinant  if 
between  its  constituents  there  exist  the  identities 

Px  —  ̂xi    Px    —  "^'xj 

III          // 

The  surface  2'  or  |  PiQiRiSi  |  =  0,  is  the  Jacobian  of  four  quadrics, 
for  it  is  seen  to  be  a  consequence  of  the  above  identities  that 

-Pi.  Qi,  Ri,  Si  are  the  respective  partial  derivatives  of  a  quadratic 

expression  in  the  quantities  a.  The  surface  S  is  easily  seen  to  be 

identical  with  S.     By  change  of  notation,  replacing  \i  and  «»  by 
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[CH.  IX Xi  and  yi  respectively,  the  preceding  equations  (3)  may  therefore 

be  written,  if  Pv  =  ;r-^,   Qi  =  :^,  etc., 
^=4     dS- 

(j=l,2,3,4); 

they  express  that  the  polar  planes  of  the  point  xi  for  the  four 

quadrics  Si,  8^,  S^,  Si  meet  in  the  point  y,  and  reciprocally;  we 
have  therefore  determined  on  the  Jacobian  of  four  quadrics  a 

connection  between  pairs  of  its  points ;  they  are  termed  corre- 

sponding points  on  the  Jacobian.  The  previous  equations  (1)  and 

(2)  may  be  then  written,  replacing  Xi,  \i,  yi,  a^  by  a^,  Xi,  ̂ i,  yi 
respectively, 

dSi  ZSn  dSs 

dxj        ̂   dxj  dxj        ' 

dS, 

dXj 

0,    (i=l,2,3,4); 

Regarded  as  arising  from  these  last  equations  the  Jacobian 
may  be  defined  as  the  locus  of  vertices  of  the  cones  included  in  the 

set  of  00  ̂   quadrics  'ZoiiSi  =  0 

The  surface  A  arising  from  elimination  of  the  Xi  (or  yi)  is 

called  the  symmetroid  * ;  its  equation  may  be  written  in  the 
form 

Jn     Ji-2     Jvi     Ju 

Jl2       J22       ̂ 23       Jii 

Jl3       /23       JsZ       Ju 

JU     J-ii     JU     J44 

being  derived  from  the  last  equations,  which  may  be  written 

=  0, 

i  =  l 

j  =  4 

^  =  l 
'ixiMa)  =  0,     %yifji(^)  =  0,      0"  =  1,2,  3, 4). 

It  is  to  be  noticed  that  these  equations  establish  a  (1,  1) 

correspondence  between  points  a,  /3  of  the  symmetroid  through 

the  intervention  of  a  pair  of  corresponding  points,  x,  y,  on  the 
Jacobian. 

The  Jacobian  has  ten  lines  and  the  symmetroid  ten  nodes. 

To  show  that  this  is  the  case,  if  we  write  XcCiSi  =  ̂ aikXiX^,  the 
*  Cayley. 
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condition  that  SffjS'i  =  0  should  be  a  pair  of  planes  requires  a 
threefold  condition  between  the  coefficients  ai^,  and  the  number  of 

solutions  in  the  quantities  a,-  is  equal  to  the  number  of  pairs 
of  planes.  Establishing  between  the  aik  six  arbitrary  linear 

relations  gives  a  ninefold  relation  sufficient  to  determine  the 

quantities  a,jfc.  Taking  these  six  relations  to  express  that  the 

quadric  should  pass  through  any  six  given  points,  the  problem  is 

reduced  to  determining  the  number  of  plane-pairs  which  pass 

through  six  given  points  and  this  is  clearly  ten*. 
The  axis  of  such  a  plane-pair  clearly  lies  on  the  Jacobian,  hence 

this  surface  contains  ten  lines. 

For  such  a  point  a^  the  four  planes 
CCDj    I 

or ''^ijji  —  ̂' 

are  coaxal,  hence  all  the  first  minors  of  |  fijc  \  vanish  for  this 

point,  which  is  therefore  a  node  on  the  symmetroid  f;  hence  the 

symmetroid  has  ten  nodes ;  to  each  node  a  one  line  of  J  corresponds. 

101.     Distinctive   property  of  the  symmetroid. 

The  tangent  cone  of  the  symmetroid  whose  vertex  is  at  a  node 

splits  up  into  two  cubic  cones.  For  taking  a  node  as  the  vertex  A^ 
of  the  tetrahedron  of  reference  for  the  a^,  the  equations  giving  the 

surface  may  without  loss  of  generality  be  taken  to  be 

^  {«!  {x,^  +  xi)  +  a^'S^s  +  oi,S,  -t-  oi,8,]  =  0,     (i  =  1,  2,  3,  4). 

The  equation  of  the  surface  is  then 

ai+/n     /i2        /i 13 

=  0, 

/l2        ̂ 1  +/22    Jos. 

JlS  JsS  J3i 

/14  J24  J34 

wherein  the  fug  are  linear  functions  of  the  coefficients  of  S^,  S3,  S4 
and  the  variables  oco,  cc.j,  a^. 

'23 

'33 

'34 

/24 

This  is,  when  expanded, 

733       /34 

^1^
 

JH         744 
+  a,  {Fn  +  F^]  +  A  =  0, 

Cayley. 

t  Since  the  tangent  plane  of  the  surface  at  the  point  is  seen  to  be  indeter- 
minate. 
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where  A  is  the  determinant   |  fi^  \   and  Fij  is  the  coefficient  of /-^ 
in  A.     The  tangent  cone  from  A^  is  therefore 

yss    734 

but  from  a  known  property  of  determinants 

{Fn  +  F^Y  =  4A 

fsi     Ju 
FiiF^  —  Fxi  =  A 

hence  the  tangent  cone  is 

{Fn  -  F^y  +  ̂F,.:  =  0, 

and  thus  consists  of  two  cubic  cones*. 

It  was  seen  that  if  the  tangent  cone  whose  vertex  is  one  node 
of  a  ten-nodal  quartic  surface  breaks  up  into  two  cubic  cones,  then 
the  tangent  cone  for  every  other  node  will  also  break  up  into  two 
cubic  cones  (Art.  8). 

In  forming  the  Jacobian  surface  determined  by  any  four  quadrics 
we  may  suppose  these  quadrics  replaced  by  any  four  pairs  of 
planes  belonging  to  the  system ;  and  the  general  Jacobian  surface 
is  formed  by  aid  of  any  four  pairs  of  planes.  The  surface  there- 

fore contains  twenty-four  constants;  hence  so  also  does  the 
symmetroid.  The  number  of  constants  determining  the  sym- 
metroid  is  also  seen  to  be  twenty-four  from  the  fact  that  this  is 
the  number  of  arbitrary  constants  remaining  after  expressing  that 
the  surface  has  ten  nodes. 

102.  Construction  for  the  tangent  plane  at  any  point 
of  the  Jacobian  of  four  quadrics. 

The  vertices  of  the  cones  included  in  the  system  ̂ oaSi  are 
given  by  the  equations 

dS,  ,      dS^        dS,        dS,     ̂  

«^8^  +   -^' 

* 
Caylej',  Coll.  Math.  Papers,  vii. 
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Let  y  be  the  point  corresponding  to  x  on  the  Jacobian; 

differentiate  these  equations  and  multiply  the  results  respectively 

by  3/1  ...  2/4,  then  by  addition  we  have,  since 

i=l       0X{ 

which  is  seen  to  be  the  same  as 

V  7    9*9i        .^  ,    38.2  ,      V  J    9<S^3        .^^  7    9*^14 

dyi  dyi  dyt  dyi 

But  the  polar  plane  of  y  for  the  cone  of  the  system  whose  vertex 
is  X  is 

^  ay,-  ̂   dyi  "  dyi  dyi 

it  passes  through  x,  and,  from  the  preceding  equation,  through 

every  point  on  the  Jacobian  consecutive  to  « ;  it  is  therefore  the 

tangent  plane  to  the  Jacobian  at  the  point  a?*. 
Hence,  the  tangent  plane  of  the  Jacobian  at  any  point  P  is 

the  polar  plane  of  P',  the  corresponding  point,  for  the  cone  of  the 
system  of  quadrics  whose  vertex  is  P. 

Two  geometrical  definitions  of  the  Jacobian  of  four  quadrics 

have  been  already  obtained:  since  the  line  joining  two  corre- 

sponding points  is  divided  harmonically  by  any  quadric  of  the 

system,  then  assuming  arbitrarily  any  six  pairs  of  corresponding 

points,  the  surface  may  also  be  defined  as  the  locus  of  vertices  of 

cones  which  divide  harmonically  six  given  segments  f.  Two  other 
definitions  arise  as  interpretations  of  the  equations 

-ofi-- =a2^  +  a3^  +  a4^-  ,     (t  =  l,  2,3,  4), dxi  dxi  oxi         dXi 

viz.  that  the  surface  is  the  locus  of  points  of  contact  of  quadrics 

of  the  system,  or  that  it  is  the  locus  of  points  which  have  the 

same  polar  plane  for  any  two  quadrics  of  the  system. 

103.     Cubic  and  quartic  curves  on  the  Jacobian. 

When  the  point  x  describes  any  line  of  the  Jacobian  surface, 

its  corresponding  point  y  describes  a  twisted  cubic  on  the  surface : 

*  See  Baker,  Multiply  Periodic  Functions,  p.  68. 
t  Cayley. 
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for  let  Xi  =■  at  +  phi,  and  Pg},  Pa^,  P^'*  be  the  polar  planes  for  any 
point  a  of  three  quadrics  of  the  system ;  the  locus  of  y  as  given 

by  the  preceding  equations  is  derived  from 

Pa'  +  pPl'-(i,         Pa'  +  pPb'=0,         Pa'  +  pP,'=0; 

giving  a  twisted  cubic :  this  cubic  will  not  intersect  the  locus  of  x 

but  is  seen  to  intersect  any  other  line  on  the  surface  twice*. 
There  are  ten  of  these  cubics ;  they  are  connected  with  the 

preceding  (1,  1)  relationship  between  points  a,  /3  of  the  symme- 
troid,  which  is  seen  to  have  exceptional  points  in  that  to  each 

node  oci  of  the  symmetroid  there  corresponds  a  curve  the  locus  of 
J3i,  which  is  of  the  ninth  order  and  has  double  points  at  each  of 

the  other  nodes.  For,  taking  the  node  as  the  vertex  A^  of  the 
tetrahedron  of  reference,  to  A^  there  corresponds  a  line  on  the 

Jacobian,  to  this  a  cubic  on  the  Jacobian,  and  finally  to  the  latter 

a  curve  passing  through  each  of  the  other  nodes  twice.  To  find 

the  order  of  the  curve,  the  locus  of  /8,  we  may  take  its  section  by 

the  plane  ySj  =  0 ;  the  number  of  points  of  section  is  equal  to  the 
number  of  intersections  of  the  cubic  curve 

Xi  =  ai  +  pbi,     S  Xi  ̂   =  0,  ( j  =  2,  8,  4), 

with  the  sextic  curve 

dSi     dSi     dSi     dSi 

S^/i'   ̂ 2/2'  9^3'  dy. 
=  0,         (i  =  2.  3,  4); 

and  these  are  seen  to  be  the  nine  points  of  intersection  of  this 
cubic  curve  with  the  cubic  surface 

=  0,  {i,  j  =  2,  3,  4). 

Another  set  of  cubic  curves  on  the  Jacobian  arise  as  corre- 

sponding to  plane  sections  of  the  symmetroid  through  three 
nodes ;  these  curves  intersect  the  three  corresponding  lines  on  the 
Jacobian  twice  ;  there  are  thus  120  cubics  of  this  kind. 

To  a  plane  section  through  two  nodes  of  the  symmetroid 

correspond  on  the  Jacobian  two  lines  and  a  twisted  quartic,  inter- 
secting the  two  lines  twice.  These  quartics  may  be  determined 

analytically  as  follows :  taking  the  plane-pairs  which  respectively 

*  This  is  seen  by  taking  the  quadric  S^  as  the  pair  of  planes  intersecting  in 
another  line  of  the  surface. 
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meet  on  the  two  lines  as  uv,  u'v  and  S^,  Si  any  two  quadrics  of  the 
system,  the  Jacobian  is  derived  from  the  equations 

dS-i         dSi 

«3  3 — I-  a4  ̂ - ou  ou a,v         4-  as  ̂   +  "4  o-  =  0, 

3*^3   ,      dSi      „ 

a,u        +«3g^+a.-^=0, 
,         dSs         dSi      „ 

CI2V  +  as  ̂ /  +  a4  ̂ -7  =  0, 

If  in  addition  we  have  the  relation  04  =  kos,  then  writing 

d  d       ̂          ,  d         /  9    _  s^' 
dv         ou  ov  ou 

the  foregoing  may  be  written 

SS,  +  kSS,  =  0,       B'S,  +  kS'S,  =  0. 

This  gives  the  Jacobian  as  the  locus  of  00  ̂   quadri-quartics,  each  of 

which  twice  meets  the  lines  (u,  v),  {u',  v')  (and  no  other  line  of 
the  Jacobian). 

Any  quadric  through  such  a  quartic  meets  the  Jacobian  in 

another  quartic  which  twice  intersects  each  of  the  remaining 

hnes  of  the  surface.  In  this  manner  we  obtain  forty-five  pairs  of 
systems  of  quartics  on  the  surface. 

104.     Sextic  curves  on  the  surfaces. 

The  points  yt  of  the  section  of  the  Jacobian  by  the  plane  ciy  =  0 
have  as  corresponding  points  xi,  the  points  of  the  curve 

dSi    dS^    dSs    dSi 
'^  )^  3^  3^  >         i 

oxi     dXi     oxi     oxi 
=  0,     (1  =  1,2,3,4). 

J 'his  curve  has  the  ten  lines  of  the  surface  
as  trisecants*. 

The  locus  of  associated  points  a^  on  the  symmetroid  is  a  curve 

f  the  fourteenth  order  passing  three  times  through  each  nodef. 

For  the  number  of  points  of  section  of  this  curve  by  any  plane 
5>a  =  0  is  the  number  of  intersections  of  the  preceding  sextic  with 
the  sextic 

oc     CO      ^.0      :ie_ 

=  0,    (i  =  l,  2,  3,  4); "dSi    dSi    dSi    doj    , 

dxi '  dx2 '  dx^ '  dx^ ' 

*  This  is  easily  seen  by  taking  S^  to  be  the  pair  of  planes  which  intersect  in  one 
)f  the  ten  lines. 

+  See  Art.  99  for  the  case  of  cu  in  the  general  surface  A. 
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and  the  number  of  intersections  of  these  curves  was  seen  to  be 

fourteen  (Art.  97).  Since  the  sextic  curves  lie  on  the  same  cubic 

surface,  the  latter  sextic  does  not  meet  any  of  the  ten  lines. 

dSi       dSi 

^ 

Again  the  curve 

dxi  '"  dXi ' 

=  0 

may  be  represented  by  the  equations  (Art.  99) 

dSo  dS-i  dSi      ̂  

d^i  oxi  dxi 

a2  5   1-         +   ̂ 4  ;r—   =  0, 

hence  it  is  the  locus  of  vertices  of  cones  of  the  system 

i.e.  the  locus  of  vertices  of  cones  which  pass  through  eighl 
associated  points. 

The  locus  of  the  points  0i  when  ay  —  0,  is  the  sextic 

II  Jill  JiZi  J 13 J  Ju>  ̂ i  il  ̂  '-'> 

which  passes  once  through  each  of  the  ten  nodes.  On  the  sym- 
metroid  the  curves  Cg  and  k^  are  of  the  same  kind,  each  passef 

through  the  ten  nodes,  they  therefore  intersect  in  four  othei 

points. 

105.     Additional  nodes  on  the  synametroid. 

If  Si,  S2,  S3  and  Si  have  a  common  point,  by  taking  it  as  i 
vertex  of  the  tetrahedron  of  reference  we  may  write 

an  =  bn  =  Cn  =  C^n  =  0 

in  the  equations  of  the  respective  quadrics,  so  that  the  highesi 
power  of  Xi  involved  in  the  Jacobian  is  the  second,  hence  this 

point  is  a  nodo  on  the  surface.  Moreover  f^  =  0  in  the  equatior 
of  the  symmetroid,  so  that  each  term  of  the  equation  of  thif 
surface  contains  as  factors  two  of  the  expressions  f^o,  fn  and  fu 

hence  the  intersection  of  these  planes  is  an  additional  node  on  the 

symmetroid. 
Similarly  if  Si...  Si  have  two,  three  or  four  points  in  commor 

we  have  additional  nodes  arising  on  the  symmetroid.  Take  the  cas( 

in  which  the  quadrics  have  two  points  in  common ;  if  they  are  th( 
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vertices  A^jAzof  the  tetrahedron  of  reference  we  have/n  =^22  =  0, 

xnd  it  is  seen  that  the  plane  /12  =  0  is  a  trope  of  the  symmetroid, 
ilso  that  the  line  joining  the  two  nodes  on  the  Jacobian  lies  on 

the  surface.     Hence  if  the  Si  have  k  common  points  (k  =  l,  2,  3,  4) 
k  (k—  1) 

the  Jacobian  has    additional  lines  and  the  symmetroid 

y^  tropes. 

If  k  =  4>  the  equation  of  the  symmetroid  assumes  the  form 

V/1^4  +  ̂ //l3/24  +  <7^  =  0. 

The  condition  that  this  surface  should  have  an  additional  node 

was  seen  to  be  the  existence  of  an  identity  of  the  form 

4A.  +  A%  +  Bf,,  +  B'U  +  Gf,,  +  G'f.^  =  0, 

where  AA'  =  BR=  GC  (Art.  12). 
This  condition  may  be  written  in  the  form 

A  :  A' :  B  :  B'  :  C  :  C  =  c^Co  :  C3C4  :  CjCs  :  C0C4  :  C1C4  :  C0C3, 

the  d  being  constants. 

On  reference  to  the  values  of  the  fn;,  if  we  take  S^  =  "ZancCCiXky 
i  ̂  k,  etc.,  the  preceding  identity  is  seen  to  lead  to  the  equation 

Qil2^1^2  "T  ̂ ^340304  +  (X13C1C3  +  d^A^Z^i     1     0-14 C1C4  +  ttosCoCy  =  U, 

with  three  others  obtained  by  writing  respectively  h^,  Cijc,  dik 

for  aik ;  and  these  equations  express  that  the  quadrics  S^ ...  84, 

have  an  additional  point  Ci  in  common ;  hence  the  Jacobian  has 
an  additional  node.  If  the  number  of  common  points  of  the  Si 

is  six,  the  symmetroid  has  sixteen  nodes  and  is  therefore  a 

Kummer  surface ;  the  Jacobian  has  then  twenty-five  lines  in  all, 
viz.  the  original  ten  and  the  joins  of  the  six  additional  nodes 

(Art.  2). 

106.     Waddle's  surface. 

The  Weddle  surface  is  the  locus  of  vertices  of  cones  of  the 
4 

system  2  UiSi  =  0,  where    ̂ S^i  =  0, . . . ,   8^  =  0  are   quadrics  havmg 
1 

six  points  in  common.     Hence  the  surface  is  the  locus  of  vertices 

of  cones  which  pass  through  six  given  points.    From  the  definition 
it  is  clear  that  the  surface  contains  the  fifteen  lines  joining  the 

six  points  in  pairs  and  also  the  intersections  of  the  ten  pairs  of 
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planes  which  can  be  drawn  through  the  given  points.  The  surfac( 

therefore  contains  twenty-five  lines  *.  Since  through  each  of  the  sij 
given  points  five  lines  of  the  surface  pass,  each  of  these  points  is  £ 
node  of  the  surface.  Since  the  quadrics  have  six  common  points 

there  are  three  linearly  independent  quadrics  containing  the  twisted 

cubic  through  the  six  points ;  through  P  any  point  of  the  surface 

draw  a  chord  of  the  cubic  meeting  it  in  L  and  M,  the  chord 

will  meet  the  polar  plane  of  P  for  each  of  these  three  quadrics 

in  the  same  point  P',  viz.  the  fourth  harmonic  to  P,  L  and  M : 
hence  the  line  joining  two  corresponding  points  (Art.  100)  P  and 

P'  of  the  surface  is  a  chord  of  the  twisted  cubic  and  is  cut 
harmonically  by  it. 

Since  any  chord  of  the  cubic  is  cut  harmonically  by  the 

surface,  any  tangent  to  the  cubic  meets  the  surface  in  three 

consecutive  points,  and  hence  the  cubic  is  an  asymptotic  line  of 
the  surface. 

107.     Parametric  representation  of  the  surface. 

The  coordinates  of  any  point  on  the  twisted  cubic  may  be 

represented  in  terms  of  a  parameter  0  by  the  relations 

cci  :  Xo  :  Xs  :  Xi  =  6^  :  0-  :  6  :  1. 

If  A,  B  are  any  two  points  on  the  twisted  cubic  having  parameters 

0,  <f>,  then  if  L,  M  are  the  two  corresponding  points  of  the  surface 
on  A,  B  their  coordinates  are  given  by  the  relations 

Xi  :  X2  ■  x-i  :  Xi  =  m0^  ±  n(f)^  :  m6'-  ±  ncf)'^  :  m0  ±  n(f>  :  m  ±  nf ; 

since  L,  M  divide  A,  B  harmonically. 

Let  %ai]cXiXk  =  0  be  any  quadric  through  the  six  points,  then 
L,  M  are  conjugate  points  for  this  quadric ;  expressing  this  fact 
we  at  once  derive  the  equation 

fn?  (a„^«  +  2a^^0'  +...)  =  n^  (aii<^«  +  2a^^4>'  +  ...); 

also  if  ̂ 1 ...  ̂fi  are  the  parameters  of  the  six  points,  then 

with  five  similar  equations ;  it  follows  that 

m^^/(0) 
n-     f(0)' 

where  /(a)  =  (a  -  0^)  (o  -  0.^  (a  -  0,)  (a  -  0,)  (a  -  0,)  (a  -  0,). 

*  See  Art.  2.  f  Richmond. 
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Hence  the  points  of  the  surface  are  parametrically  represented 

by  the  equations 

&'  6'  e-  6-661  1 
+     /         :   ±  —-^ —  :     .  4-  — -^1 —  •    +        ̂       ' 

108.     Systems  of  points  on  the  surfacef. 

If  we  represent  the  quantity  (7^^  +  jyid-  +  ne  +  j))-  '/{&)  hyF{d), 
then  F(6)  —  i^(<;6)  =  0  is  the  tangential  equation  of  a  pair  of  coiTe- 

sponding  points  on  the  surface.  Let  0.  cf).  \//-  be  the  parameters 
of  any  three  points  on  the  twisted  cubic ;  they  give  rise  to  three 

pairs  of  points 

aa'  =  F(cf>)-F(^jr\     /3^' =  F(f)  -  F{d),     yy' =  F  (6)  -  F  (cf>) 
connected  by  the  relation 

aa'  +^^+  77  =  0. 

This  shows  that  the  six  points  lie  by  threes  on  four  coplanar  lines, 

i.e.  are  the  vertices  of  a  plane  quadiilateral.  Moreover  if  aa, 

yS/S'  are  two  pairs  of  corresponding  points  in  a  plane,  they  are 
conjugate  for  all  quadrics  of  the  system ;  hence  the  remaining 
two  vertices  of  the  complete  quadrilateral  of  which  they  are 

vertices  are  also  conjugate,  and  therefore  are  corresponding  points 

on  the  surface.  Any  plane  meets  the  twisted  cubic  in  three  points, 

showing  that  there  are  only  three  pairs  of  corresponding  points 
on  the  surface  in  any  given  plane. 

If  6,  <p,  yjr,  X  are  parameters  of  any  four  points  on  the  cubic, 
we  obtain  six  pairs  of  points 

aa'  =  F(6)-F{ylr),     o:x' =  F  (6)  -  F(x), 

^8'  =  F{f)-F{e),     yy=F{cb)-F{x), 

77'  =  F[e)-  F{<pi      zz  =  Fk<^)-F{:x)^ 
whence  arises  the  relation 

aaixx  +  ̂^'yy'  +  yy' zz'  =  0, 

showing   that   the    tetrahedra   whose   vertices    are    (a,  a,  x,  x), 

(0,  /3',  y,  y'),   {y,  y ,  z,  z')    respectively   form   a   desmic    system 
(Art.  13). 

*  For  another  method  of  obtaining  these  equations  see  Bateman,  Proc.  Lond. 

Math.  Soc,  Series  2,  Vol.  iii.  p.  '221. 
t  See  Bateman,  loc.  cit. 
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Conjugate  quintic  curves  on  the  surface. 

Let  S,  S'  be  two  consecutive  points  on  the  twisted  cubic 
through  the  six  nodes,  R  any  other  point  on  this  cubic;  then 

the  sides  of  the  triangle  RSS'  will  meet  the  surface  again  in  three 

pairs  of  points  PQ,  P'Q',  TT'  lying  by  threes  on  four  lines.  Hence 
PP'  and  QQ'  which  are  ultimately  tangents  at  P  and  Q  intersect 
in  a  point  T  on  the  surface,  and  since  the  corresponding  point  T' 
ultimately  coincides  with  S,  the  polar  planes  of  8  with  regard  to 
quadrics  through  the  six  nodes  meet  in  the  point  T  which  lies 
upon  the  tangent  at  S. 

As  R  moves  along  the  cubic  the  point  T  remains  fixed,  the 

points  P,  Q  describe  the  curve  of  contact  of  the  tangents  from  T 
to  the  surface. 

Again  if  U  be  the  point  derived  from  R  in  the  same  way  that 
T  was  derived  from  S,  and  R  is  fixed  while  S  varies,  the  points 
P,  Q  will  describe  the  curve  of  contact  of  the  tangent  cone  from  U; 
TP,  TQ  are  the  tangents  at  P  and  Q  to  this  curve  of  contact. 

Now  UP,  UQ  are  generators  of  this  cone;  hence  PU,  PT  are 
conjugate  tangents  to  the  surface  at  P;  thus  the  curves  obtained 

by  keeping  one  point  on  the  cubic  fixed  form  a  conjugate  system. 
To  find  their  order  we  insert  the  coordinates  of  P  in  any  plane 
%aiXi  =  0  ;  if  ̂   be  constant  we  obtain 

{a^e- +  a^O'' +  a.e  +  a,y  ̂   {a,4>' +  a.-,<lr  ■\- a,4>  +  a.f 

which  is  a  sextic  in  <^,  but  rejecting  the  solution  6=(f>  we  obtain 
five  as  the  number  of  points  of  intersection  with  any  given 

plane. 
As  in  the  case  of  the  Jacobian  of  any  four  quadrics  the  tangent 

plane  at  any  point  P  of  the  surface  is  the  polar  plane  of  the 

corresponding  point  P'  for  the  cone  of  the  system  whose  vertex 
is  P.     It  is  determined  analytically  as  follows  :  the  plane 

Ixi  +  mxz  +  nxs  +  pXi  =  0 

will  pass  through  the  point  (0,  j))  on  the  surface  if 

W' +  m9^  +  nd  +  p _  l^jhmcf)-  +  n^  +  p 

It  will  pass  through  the  consecutive  point  (6  +  80,  (b  +  B(f>)  for  all 
values  of  86  :  8(fi  provided  that 



108]  DETERMINANT  SURFACES  177 

m        y/p)        J"  ' d_  /l(f)^  +  mxf)-  +  n(f)  +  p\  _r. 

and  will  then  be  the  tangent  plane  at  (6,  <J3). 
These  equations  show  that  if  6  has  a  given  value  and  0  varies, 

the  tangent  plane  always  passes  through  the  point 

If  in  the  preceding,  S  is  the  point  ̂ ,  then  the  coordinates  just 

given  are  those  of  the  point  T.  It  is  easily  seen  that  the  locus  of  T 
is  a  rational  curve  of  the  seventh  order. 

It  follows  from  the  preceding  equation  of  the  tangent  plane 

that  the  equation  of  Weddle's  surface  in  plane  coordinates  is 
obtained  by  expressing  that  the  equation 

{W  4-  mO'  +  nd  +  pf  -  kfiO)  =  0 

should  have  two  pairs  of  equal  roots  for  some  value  of  k. 

The  differential  equation  of  the  asymptotic  lines  may  be 

arrived  at  in  the  following  manner :  the  tangent  plane  at  {6,  <j>) 

will  pass  through  a  consecutive  point  (0 -\- 86,  <f)+8(f))  if 

^^"  ̂̂   \ — WW)     i  ̂  ̂  ̂'  I      WW)      i  • Also,  since  (Imnp)  is  a  tangent  plane,  we  may  write 

\lcfi  +  nix^  +  iix  +  pY'      ,  _  A-  (a;  -  Of  (x  -  (py  (x  -  a)  (x  -  /3) __  —   ̂     __  . 

Differentiate  this  equation  twice  with  respect  to  x  and  then  write 
x  =  d ;  since 

d_  {W'  +  me^  +  nO+p]  _ 

we  obtain 

W^  +  m0'-  +  nO+p  d^  [16^  +  7ne- +  ne  +  p\ 

-^^  fi6) 

together  with  a  similar  equation  in  <f> :    hence   the  differential 
equation  of  the  asymptotic  lines  becomes 

(^-a)(^-/3)  (,|>-c)(<i>-^) 

— W)  7W         *' 
J.  Q.  s.  12 
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where  a  and  ̂   may  be  regarded  as  defined  in  terms  of  6  and  ̂   by 
the  fact  that 

kf  {x)  +  \{x-  ey  (x  -  (py  (x  -a){x-  13) 
is  a  perfect  square. 

109.     Forms  of  the  equation  of  the  surface. 

The  surface  being  defined  as  the  locus  of  the  vertices  of  cones 

through  six  given  points,  let  pijc  denote  the  coordinates  of  the  line 

joining  x  to  the  point  a,  and  qtk  the  coordinates  of  the  line  joining 

X  to  the  point  b,  the  other  given  points  being  the  vertices  of  the 

tetrahedron  of  reference.  Then  since  the  six  lines  (x,  a),  {x,  b), 

(x,  Ai)  ...  (x,  A^)  lie  on  a  quadric  cone,  the  anharmonic  ratio  of  the 

pencil  formed  by  the  planes  {p,  Ai)...(p,  A^)  is  equal  to  the 
anharmonic  ratio  of  the  pencil  (q,  Ai)...(q,  A^).  But  these  two 
anharmonic  ratios  are  determined  by  the  ratios 

P12P34   ■PuP42   --PuP'^ 
and  ^12  qu  ■  ̂is  ?42  :  qu  q^ 

respectively  ;  hence  the  equation  of  the  surface  is 

Pi2Pzi_qi2qu (ir 

The  surface  may  therefore  be  defined  as  follows :  if  Bi ...  Bg  are 

six  given  points,  then  the  locus  of  a  point  P  such  that  the 
anharmonic  ratio  of  the  four  planes 

(PB,B,),    {PBM,    (PBM,    (PB.B,) 

is  equal  to  that  of  the  four  planes 

(PB,B,),     {PB,B,),    (PB,B,),    (PB,B,) 

is  a  Weddle  surface  which  has  B^  ...  B^as  nodes.  By  von  Staudt's 
theorem,  this  may  also  be  stated :  if  the  anharmonic  ratio  of  the 
four  points  in  which  PB^  meets  the  faces  of  the  tetrahedron  B.^...  B^ 

is  equal  to  that  of  the  points  in  tvhich  PB^,  meets  this  tetrahedron., 

the  locus  of  P  is  a  Weddle  surface  with  B^ ...  Be  as  nodes. 

The  point  -^ ,  or  x,  is  seen  to    lie  on  the  surface ;   since 

Xi 

writing  x'  for  x  in  the  pi^,  qik  of  equation  (1)  merely  interchanges 
the  right  and  left  sides  of  the  equation  (1). 

*  See  also  Hierholzer,  Veher  Kegelschnitte  im  Raume,  Math.  Ann.  11.,  and  Uebet 
eine  Fldche  vierter  Ordnung,  Math.  Ann.  iv. 
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aiajc 

The  coordinates  of  the  line  joining  a  and  x  are  seen  to  be 

qik;  if  this  line  intersects  the  line  joining  h  and  x,  or  q,  we 

+  ...  =  0; 

XiX]( 

must  have 

^12^34  {a^a^x^^Xi  +  a..aiXiX^)  + 

which  we  may  write  in  the  form 

Fuqi2qM  +  Fy^q^sq^.,  +  F.^q^^q.^  =  0. 

Now  expressing  the  pa,  in  terms  of  the  Xi  and  a^  in  equation  (1) 
we  obtain 

quq,,  (Fu  -  F,,)  -  q,,q^  (F,,  -  F,.;)  =  0, 

that  is  F^^q,.q,^  +  F,^q,.q^  +  F^quq^z  =  0, 

since  §'12^34  + g-is  ̂ 42  +  ̂ 14  ?23  =  0. 

Hence  the  line  (a,  x')  intersects  the  line  (b,  x).  Expressing 
that  these  four  points  are  coplanar  we  obtain  as  the  equation 
of  the  surface 

Oih 

aj)» 

a  A a  A *i 

W2 

Xg so* 

Xi 

X2 

X:j 

^4 

«1 

(h 
«3 

«4 

hr 

b. 
bs 

&4 
=  0 

.(2). 

The  surface  is  thus  seen  to  be  completely  determined  when  the 

six  nodes  are  given.  It  therefore  depends  upon  eighteen  constants. 

The  conditions  of  possessing  six  nodes  and  of  containing  the  joins 

of  five  of  them  require  a  surface  to  be  a  Weddle  surface ;  for  the 

number  of  constants  of  the  surface  remaining  arbitrary  is 

34  -  6  X  4  -  10, 
which  is  zero. 

On  the  surface  there  lie  two  systems  of  quadri-quartics,  viz. 
those  given  by  the  equations 

P12PU  =  '^Pu i>42 ,    qi-  q-M  =  '^qi.;  q^ ; 

and  therefore  the  intersection  of  two  cones  passing  through  four 

nodes,  and  having  their  vertices  at  a  and  b  respectively ;  and  those 
given  by  the  equations 

i^i2i'34  =  fj-q^qu,   PnPi2  =  H-qnq^ ; 

which  represent  two  quadrics  through  four  nodes. 

12   2 
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The  point  x'  lies  on  the  curve  of  the  first  system  determined 
by  the  point  x.  The  curves  of  the  first  system  include,  as  a  special 

case,  the  line  joining  the  nodes  a  and  h,  together  with  the  twisted 

cubic  through  the  six  nodes. 

110.     Group  of  thirty-two  points  on  the  surface. 

It  was  seen  (Art.  109)  that  the  lines  (a,  x)  and  (6,  x)  intersect; 

denote  their  point  of  intersection  by  X,  so  that  we  have 

pai  -I-  KXi  =  Xi ,     abi  +  rXi  =  X-,     (i  =  1 , . . .4 ) ; 

and  since  xiXi  =  aihi,  it  follows  that 

(ptti  +  KXi)  (a-hi  +  rXi)  =  aibi,       (i  =  1, . . .  4). 

These  last  equations  express  that  the  point  X  lies  on  the  surface. 

Similarly,  the  lines  (a,  x)  and  (6,  x)  meet  in  a  point  X'  on  the 
surface,  such  that  XiXi=aihi.  This  leads  to  a  system  of  twenty-  | 

two  points  on  the  surface;  viz.  the  point  x,  six  points  such  as 

X,  X'  on  the  lines  joining  the  six  nodes  to  x,  and  fifteen  points 
such  as  x,  viz.  one  in  each  plane  through  a  pair  of  nodes  and  the 

point  X.  From  any  one  of  these  points  the  remainder  may  be 
derived. 

Another  system  of  ten  points  connected  with  these  twenty-two 

points  is  obtained  as  follows:  the  nodes  being  N-^...N^,  then 
denoting  the  remaining  intersection  of  the  line  {N■^,  x)  with  the 

surface  by  (iVi),  and  the  remaining  intersection  of  the  line  {iY2,(A''i)} 
with  the  surface  by  {h\N^),  and  of  [N„  {N.N,)}  by  (N,N,N,), 

it  will  be  shown  that  the  points  (NiN.Xs)  and  (N^N-.Ns)  are 
identical. 

To  show  this  we  have  to  find  the  coordinates  of  the  point  in 

which  the  line  joining  a  vertex  of  the  tetrahedron  of  reference 

meets  the  surface  again.     Denoting  by  Ayi  (x)  the  determinant 

Xi  Xj  Xf; 

tti  ttj  ttk 

hi     hj     hk 

it  is  easy  to  see  that  Ayi {x)  :  Ap (x)  has  the  same  value  for  each 

set  of  suffixes  i,j,  k;  denote  its  value  by  —H{x). 

The  equation  to  determine  the  point  x^^,  in  which  the  line 

(a;,  ̂ i)  meets  the  surface,  is 

a^i^  A234  {x')  +  x^[...]-  tti^i  An34  (a;)  =  0 ; 

I 
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hence  the  coordinates  of  xj^^  are  as  the  quantities 

H{x)  -^  :x.,:x.^:  x„ 

X, 

also  since  H (x)  =  H (a^^J,  the  line  (x^^yA^)  meets  the  surface  in 
the  point 

x^'H  {x)  :  X2'H  (x)  :  Xs  :  x^; 
finally  the  point  (A^,  Ao,  A^)  has  the  coordinates 

XiH(x)  :  X2H{x)  :  x^H{x)  :  x^. 

Moreover  the  line  (J.4,  x)  meets  the  surface  in  a  point  whose 
coordinates  are 

Hence  (A^,  An,  ̂ 3)  =  (a,  b,  A^),  since  H{x)  H{x')  =  1.  We  thus  arrive 
at  a  closed  system  of  thirty-two  points  on  the  surface,  fi:om  any 
one  of  which  the  others  may  be  derived. 

111.     Cartesian  equation  of  the  surface*. 

If  we  take  four  nodes  as  being  situated  at  the  origin  and  at 
the  points  at  infinity  of  the  (Cartesian)  axes  of  coordinates,  the 
others  being  A  and  B,  the  equation  of  the  surface  assumes  the  form 

a  J  61      a^b-i 
b, 

Xo 

x.. 1 

1 

1 

=  0. 

If  the  point  P,  or  x,  be  joined  to  the  points  at  infinity  on  the 
axes  and  to  the  origin,  these  joining  lines  will,  as  has  been  seen, 

meet  the  surface  again  in  the  points 

\^H(x),  Xo,  xA,     \x^,  '^H(x),  x^y, 
cub a 

<x„  X2,—^H(x)\-,     {xJH,  xJH,  Xs/H]. 

Let  X  be  the  point  in  Avhich  the  line  PB  meets  the  surface 

again,  then  transferring  the  origin  of  coordinates  to  A,  the  new 
coordinates  of  x,  0,  and  B  respectively  are 

CCi        Hi 

—  a; 

h  -  tti 

*  Baker,  Elementary  note  on  the  Weddle  quartic  surface,  Proc.  Lond.  Math.  Soc, 
Ser.  2,  Vol.  i.  (1903). 



182 DETERMINANT   SURFACES 

[CH.  IX Hence,  for  the  former  origin,  the  coordinates  of  the  point  in 
which  OX  meets  the  surface  again  will  be 

-  aj  {hi  -  aj)         _  Qi  {xi  -  hi)  _ "T  Cli  — 
Xi  (tr 

Xi       (li 

also  {Xi  -  «i)  f  J  -  « <■)  =  «»■  («i  -  h) ; 

from  which  we  find 

Xi  =  (ii\-ff~hi H 

ai 

Now  denoting  by  6{x),  (f){x),  -^{x)  the  three  points  derived 
from  Xi  by  the  transformations 

^{^)  =  -Z^ '     ̂   (^)  =  -^-^  >     ■^{x)  =  hi  {xi  -  ai)l{xi  -  hi), Xi  Xi 

it  is  seen  that  these  points  all  lie  on  the  surface,  and  the  eight 

points  derived  from  P  by  its  projection  from  the  nodes  0,A  and  B 
form  the  four  couples 

X  {Oah) 
X    (j)  {x) 

or X 

{ha)         (0) 

e{x)  e{ci>{x)] 

ahH    I    ah      x 

~     
H 

X X 

(6)         {aO) 

^[<^{x)]    -^{x) 
h  {x  —  a) 

X  —  h 
X 

{a)  (bO) 
e{ylr{<f>{x))}    d{f{x)] 

ah     a{x  —  b) 
X X  —  a 

These  show,  as  above,  that  the  point  {0,  a,  h)  is  identical  with 

(P,  Q,  R),  where  the  latter  point  is  that  obtained  by  successive 
projections  of  x  from  the  points  P,  Q,  R,  at  infinity  on  the  axes. 

112.     Geiser's*  method  of  obtaining  the  surface. 

Let  Ui  =  0,  . . .  Wg  =  0  be  the  tangential  equations  of  the  six  given 

nodes,  then  the  six  quadrics  u^^  ■=  0, ...  w/  =  0  are  linearly  inde- 
pendent and  are  apolarf  to  any  quadric  through  the  six  points. 

Hence  the  genoral  equation  of  a  quadric  apolar  to  the  system 

of  quadrics  through  the  six  points  is 

%kiVi"=0. I 

*  Geiser,  Crelle's  Journal,  lxvii.  (1867). 
t  Two  quadrics  whose  equations  in  point  and  plane  coordinates  are  ISajj..Tj.T;(.  =  0, 

2aiJtMjWj.=  0  are  said  to  be  apolar  when  the  invariant  ^a^j^a^^  is  zero.  When  the 

second  equation  represents  two  points,  it  easily  follows  that  they  are  conjugate. 
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When  this  equation  represents  two  points  they  are  conjugate 

for  all  quadrics  through  the  six  points  and  are  therefore  corre- 
sponding points  on  the  Weddle  surface.  We  then  have  an  equation 

of  the  form 

Now  let  M  =0,  N=0  be  two  points  which  divide  the  points 

L,  L'  harmonically,  hence  an  identity  exists  of  the  form 

It  is  easily  seen  that  this  is  the  necessary  condition  in  order 

that  any  quadric  through  seven  of  the  eight  points  M,  N^u^  . . .  Wg 

should  pass  through  the  eighth  point*;  hence  every  quadric  through 
Wi . . ,  We  and  M  will  pass  through  N,  and  every  pair  of  points  on 

LL'  which  possesses  this  property  divides  LL'  harmonically.  Such 

a  pair  of  points  can  only  coincide  at  one  of  the  points  L.  L'.  It 
is  therefore  seen  that  the  Weddle  surface  arises  as  the  locus  of 

points  M  such  that  the  point  conjugate  to  M  in  this  manner  for 

the  six  given  points  Ui  coincides  with  M\.  From  this  point  of 
view  the  surface  has  been  shown  as  a  linear  projection  in  four 

dimensions  J;  and  projectively  related  to  Kummer's  surface. For  if  we  write 

^  =  yz',     ̂ '  =  y'z,     r]  =  zx',     ri'  =  z'x,      K=xy',     ̂ '  =  x'y, 

0L  =  hc',      a'  =  b'c,     ̂ =ca',     ̂ ' =  c'a,     y  =  ab',     y  =  a'b, 

the  equation  of  the  general  quadric  surface  through  the  six  nodes 
of  the  Weddle  surface  in  Cartesian  coordinates  (Art.  Ill),  wherein 

we  write  a,  b,  c  for  a^,  a^,  a^;  1,  1,  1  for  6i,  b.^,  bi,  also  x,  y,  z  for 

a^i,  Xo,  X..  and  x\  y ,  z\  a ,  b',  c  for  1  —  a;,  1  —y,  1  —  2,  1  —  a,  1  —  b, 
1  —  c,  is 

Now         ^+^  +  ̂ =1'+^'+^',  ̂ 7?^=ivr, 

so  that  if  we  interpret  (f,  t],  ̂,  |',  rj',  f ')  as  homogeneous  point- 
coordinates  in  four  dimensions,  we  have  a  (1,  1)  correspondence 

between  the  points  of  our  original  space  and  those  of  a  cubic 

variety  in  four  dimensions.     Again  those  of  the  quadric  surfaces 

*  Serret,  Geometric  de  Direction,  Nouv.  Ann.  iv.  (18G5). 
t  See  Bateman,  loc.  cit.  p.  228. 

X  Baker,  loc.  cit.,  also  Hudson,  Kummer's  Quartic  Surface. 
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which  pass  through  a  seventh  point  {x^,  y-^,  Zi)  or  Pj,  have  as  their 

equation 

[A  (ar  -  a'^)  +  B  W  -  ̂'v)  +  C  {y^'  -  y'0\  (|-£^'  -  |^^/) 

=  {|E|'  -  ̂]  {^  («^>'  -«'?.)  +  5  (0v/  -  ̂%)  +  C  (7^/  -  y%)]  ■ 
where  |^i  =  y^ z^,  ---Ki  =  ̂ iVx • 

These  quadrics  all  pass  through  an  eighth  point  {x,  y,  z)  or  P, 
such  that 

V-  v'  _  K-K' 

a^/-«'r:  ̂ '//-/sv  7r/-7'ri  '?i^'7/_ri:iri" ^-^'       7-7 
These  three  equations   determine   the   four- dimensional  line 

joining  (of/S,...)  to  {^x'^i,  •••)',  the  remaining  intersection  of  this  line 
with  the  cubic  variety  is  the  point  (a  +  X.|i, ...)  where  \  is  given 
by  the  equation 

+  ̂i/37  +  ̂i7«  +  ri«/3  -  ̂i'/3'7'  -  »7/7'«'  -  r/a'/S'  =  0 
and  corresponds  to  the  eighth  intersection  P  of  the  quadrics.  The 

points  P,  Pi  therefore  coincide  when  this  straight  line  touches 
the  cubic  variety,  this  requires  that  \  should  be  infinite,  so 
that 

li      Vi      ̂1      h       Vi        ti 

/  J 

if  we  insert  ̂ i  =  yi  Zi,  etc.  we  obtain  another  form  of  equation  of  the 
Weddle  surface. 

This  surface  thus  arises  as  the  interpretation  in  three  dimen- 

sions of  the  twofold  of  contact  of  the  enveloping  cone  of  a  cubic 

variety  in  four  dimensions,  whose  vertex  is  an  arbitrary  point  of 

the  variety.  It  has  been  shown*  that  the  intersection  of  this 
cone  with  an  arbitrary  planar  threefold  in  space  of  four  dimensions 
is  a  Kummer  surface.  We  are  therefore  led  to  a  birational  trans- 

formation between  the  Weddle  and  Kummer  surfaces  in  the 

form  of  a  projection ;  the  point  (x,  y,  z)  of  the  Weddle  surface 

being  birationally  connected  with  the  point  (^,  77,  ̂,  |',  77',  ̂')  of  the 
twofold  of  contact  which  is  projected  into  a  point  of  the  Kummer 
surface. 

*  Richmond,  Quarterly  Journal,  xxxi.,  xxxiv. 
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113.  Sextic  curves  on  the  surface. 

Any  quadric  through  the  six  nodes  meets  the  Weddle  surface 
W  in  an  octavic  curve.  This  quadric  corresponds,  as  just  seen, 

to  a  planar  threefold  and  hence  the  octavic  curve  to  a  plane 
section  of  the  Kummer  surface  K.  If  the  quadric  is  a  cone  its 
vertex  P  lies  on  the  Weddle  surface  W,  hence  the  octavic  has  a 

node  at  P,  and  therefore  the  plane  section  of  ̂   is  a  tangent  plane 

whose  point  of  contact  Q  corresponds  to  P.  It  Avas  also  seen  that 

a  system  of  quadrics  through  the  six  nodes  and  one  other  point 

corresponds  to  planar  threefolds  passing  through  a  line,  and  hence 

to  plane  sections  of  K  through  a  fixed  point  A  (the  intersection 
of  this  line  with  the  planar  threefold  containing  K).  Hence  the 
sextic  curve  which  is  the  locus  of  vertices  of  cones  of  the  system 

will  therefore  correspond  to  the  curve  of  contact  of  the  tangent 
cone  from  A  to  K. 

Since  to  any  two  quadrics  S,  S'  through  the  six  nodes  there 
correspond  two  planes  in  the  space  in  which  K  exists,  it  follows 

that  the  vertices  of  the  four  cones  determined  by  S  and  S'  corre- 
spond to  the  points  of  contact  of  four  coaxal  tangent  planes  of  K. 

When  the  quadric  contains  the  twisted  cubic  through  the 

six  nodes,  the  octavic  breaks  up  into  this  cubic  and  a  quintic 

curve.  If  the  quadric  is  a  cone  these  quintics  become  identical 

with  those  discussed  in  Art.  108*. 
Another  set  of  sextic  curves  is  seen  to  arise  as  the  inter- 

section with  W  of  any  cubic  surface  having  nodes  at  four  nodes 

of  W  and  therefore  containing  the  lines  joining  those  nodes  in  pairs; 
for  the  curve  of  intersection  consists  of  the  six  joins  of  the  four 
nodes  and  a  sextic  curve. 

114.  Expression  of  the  coordinates  as  double  Theta 
functions. 

The  coordinates  of  any  point  on  a  Weddle  surface  can  be 

expressed  in  terms  of  double  Theta  functions  f.  For  the  equation 

of  the  surface  (Art.  109)  is  satisfied  by  the  substitutions 

x^ :  X.2,  •.X3:x^  =  Cqi  ̂01^3^02^04 :  Cg  ̂2  ̂1^3  ̂ 04 :  Cos  ̂03  ̂1^02  ̂ 04  '■  C4^4^i^3^o2» 

a^ '.  a<i :  (1% '•  di '=  C01C0C03C34 :  C2C5Cj2C2a :  Cq^CqCi^Cu  '■  C4C5C14C34, 

61 :  h^-.h^-.hi^  C01C5C12C14 :  C2C0C14C34 :  C03C5C23C34 :  C4C0C12C23, 

*  This  is  seen  at  once  siuce  the  point  whose  coordinates  are     ,   ±       — ,  etc., 

vy(^)      n//(0) 

for  &  =  constant,  lies  on  the  cone  {x.^  -  ex.^Y  =  (xi  -  dx.^)  {x^  -  0.v^). 

t  Caspary,  Ueber  Thetafunkdonen  mit  zwei  Argumenten,  Crelle,
  xciv. 
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[CH.  IX where  Cq  is  the  result  of  attributing  zero  values  to  the  variables  in 
60  (u),  etc.,  as  will  now  be  shown. 

In  the  first  place  we  see  that  the  coordinates  of  the  point  x' 

are  derived  from  those  of  x  by  increasing  the  argument  by or 

tVj* 

l(TC  +  d)*;  since  this  interchanges  6^,  Ooi]  62,  ̂02,  etc.  Again, 
as  before,  let  pik  denote  the  coordinates  of  the  line  (a,  x)  and  5^1^ 
those  of  the  line  (6,  x) ;  we  find  on  substitution 

\(^b^\2"m  "02         Co  034(72  U2)  (  <^5  C34  1/03  "04  C!o  ̂^12  "3  "4)  C23C14 PiiPz 
.(1). 

P13P42         (C]2C]4C'oiC'3         C23C34l7„3C'ij  (0x2  0231/4 1702         0140341/21704)0005 

If  q'ik  denote  the  line  joining  x'  to  a,  it  is  easily  seen  that 
9^12^34     $  12^  34 

^13^42  <Z'l39'42 
 ' 

and  the  latter  ratio  is  formed,  as  stated   above,  from  ̂ ^-^  by 

increasing  the  argument  of  the  ̂ 's  by  ̂   (re  +  d). 
It  will  now  be  shown  that  this  change  does  not  affect  the  right 

side  of  equation  (1).     For,  as  is  well  kno\\T3,  the  determinant 

c,e,         0  0  0 

0  C4^4  -Ci4^ii  034^34 

U  Co  "o  Oqi  "ox  Oo3  "oa 

\}  ^~  Oo  t/ 2  0^2  ̂ 12  ^23  ̂ 23 

forms  an  orthogonal  matrix,  from  which  we  may  therefore  derive 

the  equations 

O5  O22  "5  t/12       Co  O34  c7q  (734  =       C4  Cos  "4  "03 

O5   O34  "5    "34  Cfl   C12  C7{,   t/jo  =^         C2  Coi  "2    "01 

Ci2C]4l7]2f/]4  C23  C34  1/23  1/34  =  C2   O4    t/.i    1/4 

Cy^Coz  if  11  tf-2a         C14  O34  C7j4  1/34  =         Coi  Co3  "01  "03  ' 

Increasing  the  arguments  in  each  of  these  equations  by  the 

respective  half-periods 

^(rd  +  fe),     l^{ra  +  a),     ̂ {ra^-h),     h{ra-¥a), 
the  left  sides  are  transformed  into  the  quantities  which  appear  on 

*  Using  the  notation  of  Hudson,  Kummer^s  Qiiartic  Surface,  p.  178.     We  com- 

pare for  convenience  Hudson's  notation  with  that  just  given 
^6  ̂12  ̂ n  ̂34         ̂ 23  ̂13  ̂J4  ̂ 24  ̂ 4  ̂03  ̂04  ̂ 3  ̂ 0]  ̂02  ̂1    ̂2 
dd  ad  cd  bd       dc  ac  cc  be       da  aa.  ca  ba       dh  ab  cb  bb. 

The  equations  for  the  addition  of  characteristics  being 

a+a—b+b=c+c=d+d—d; 

b  +  c  —  a  =  a  +  d,         c  +  a  =  b  —  b  +  d,         a  +  b  =  c  =  c  +  d. 

.(2). 
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the  right  side  of  equation  (1),  save  as  to  an  exponential  factor  in 
each  case,  and  we  therefore  derive  that 

P12PM  _  _  ̂23^13-  ̂ 13^14  _  _  ̂23^14 

Pl3P4,~  OAz-e^,e,~  606,' 
the  exponential  factors  having  cancelled  out. 

Now  the  increase  of  the  argument  of  the  ̂ 's  by  ̂  (to  +  d)  does 

not  affect  the  value  of  -#^ ,  hence 

puPu  ̂   qv2qs4 

P\3p^  5'l3  9^42 
and  the  point  x  is  seen  to  lie  on  the  Weddle  surface. 

By  considering  the  expressions  of  the  pik  and  qik  it  is  seen  that 

the  two  systems  of  quadri-quartics  on  the  surface  are  given  by  the 
equations 

(i)     ̂ j3  =  \9.^, 

(ii)         ̂ 23^14  =  /i^O^S,         ̂ 12^34  =  vO^O-^,        ̂ 12^34  =  0'^23^14- 

The  quantity  H  is  seen  to  have  the  value 

"1  e'en  "2  L' 02  "i  "qs  "4  1/04  -r-  Co  C5  C12  C34  Cj4  C23  . 

The  thirty-two  points  forming  a  closed  system  are  derived  as 
follows :  fifteen  of  them  arise  from  adding  to  the  argument  u  for  P, 

the  fifteen  half- periods  ̂   (ra  +  b),  etc.  These  are  the  fifteen  points 
(N1N2).  The  other  sixteen  points  arise  in  the  following  manner : 
since  the  coordinates  of  iVj,  the  other  intersection  of  the  line  PA^ 
Avith  the  surface,  are 

-tlX-i    '.  X.2  '.  X-^  '.  x^, 

it  follows,  from  the  above  value  of  H,  that  the  coordinates  of 

JVi  are 

Coi  6  0302^4   '■   C2^2^3^04   '■   C03  ̂03  ̂02  ̂04   •   0^6^6^602, 

since  6-^  divides  out. 

The  other  five  points  {Ni)  and  the  ten  points  {N-^N^Ns)  are 
derived  from  {Ny)  by  the  addition  to  its  argument  of  the  fifteen 

half-periods  *. 

*  Weddle's  surface  is  a  case  of  a  class  of  surfaces  investigated  by  Humbert, 
Theorie  generale  des  surfaces  hypereUiptiques,  Journal  de  Math.,  s^rie  4,  t.  ix.  (1893). 

These  surfaces  are  termed  hyperelliptic  surfaces,  the  coordinates  of  any  point  are 

uniform  quadruply  periodic  functions  of  two  parameters ;  see  also  Hudson, 

Kummer^s  Quartic  Surface,  pp.   182-187. 
Baker  has  shown  that  the  coordinates  of  any  point  on  the  Weddle  surface  may 

be  expressed  as  derivatives  of  a  single  variable  [Miiltiphj  Periodic  Functions,  pp.  39, 

40,  77). 
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115.     Plane  sections  of  the  surface. 

The  equation  of  the  plane  section  of  a  Weddle  surface  may  be 

simply  expressed.  Take  as  triangle  of  reference  the  three  points 
in  which  the  given  plane  meets  the  twisted  cubic  through  the  six 
nodes.  Each  side  of  this  triangle  meets  the  curve  of  section  in 

two  vertices  and  also  in  two  points  harmonic  with  these  vertices. 

Hence  we  obtain  as  the  equation  of  the  surface 

a^x^y  +  a^ot^z  +  h-^y^z  +  hiy^x  +  CiZ^x  +  c^z^y 
4  Zxyz  {lx-\-  my  +  nz)  =  0. 

Also,  since  the  three  pairs  of  points  lying  on  the  sides  of  the 
triangle  of  reference  lie  by  threes  on  four  lines  (Art.  108),  we  have 
the  condition 

aJj^c^  +  ttsbiCo  =  0. 

From  the  last  condition  we  infer  that  the  tangents  at  the 
vertices  of  the  triangle  of  reference  are  concurrent. 

If  we  form  for  this  quartic  the  invariants  A  and  B*  we  find 

A  =  —  12hin  +  12  (IbiCi  +  mc^a^  +  naj}^, 

B  =  —     I     tts     a.2  K 

63     m     hi 

Cg     Ci     n 

Hence  for  any  plane  section  we  have  the  invariant  condition 

A-+  1445  =  0. 

An  infinite  number  of  configurations  of  points  can  be  obtained 

on  the  plane  section  as  follows  :  let  the  Weddle  surface  be  deter- 

mined by  four  quadrics  ;S^i,  8^,  Sg,  S^,  of  which  we  may  suppose  the 
first  three  to  contain  the  same  twisted  cubic.  Then  the  section 

considered  contains  the  following  set  of  twenty-five  points,  viz. 
the  fifteen  points  in  which  the  join  of  two  of  the  nodes  N^...  Ns 

meets  the  plane,  and  the  ten  points  in  which  the  ten  lines 

(N^NnNs,  N,N,Ne)  meet  the  plane.  The  first  set  of  fifteen 
points  lie  by  threes  on  twenty  lines,  viz.  the  intersection  with  the 

given  plane  of  the  planes  (N^JS^Ns),  etc. 

Now  consider  the  Weddle  surfaces  formed  by  aid  of  S^,  S^,  St 

and  »Si4-|-A.a-,  where  a  =  0  is  the  plane  of  the  section.  These 
surfaces  form  a  pencil  whose  nodes  lie  on  the  same  twisted  cubic, 

and  all  containing  the  same  section  lying  in  a  =  0 ;  from  each  surface 

*  Salmon,  Higher  Plane  Curves,  3rd  Ed.  p.  264. 
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one  configuration,  of  the  kind  just  mentioned,  arises, 

have  an  infinite  number  of  such  configurations*. 

189 

Hence  we 

116.     Bauer's  surfaces. 

If  in  the  foregoing  four  collinear  systems  (Art.  97)  each  plane 

system  reduces  to  a  sheaf,  and  is  such  that  each  plane  joining  the 

centres  of  three  sheaves  is  a  self-corresponding  plane  for  three 
systems,  we  obtain  the  surface  discussed  by  Bauer f.  The  equation 
of  such  a  surface  is  accordingly 

Wl     ̂
^ 

tAy-\ 

a. 

X. 

X. 

Xa 

^^      6, 
Xo. 

Xv 

Xo 

Xf>  — 

t/yiy 

X. 

X, 

WA 

X,— 

d. 

=  0. 

This  equation  may  also  be  written  in  the  form 

d-^X-^       O^X^       CaX-^       tt4^4 
  r  -T   r   h  —7—  =  1  ; 
da-  Ox  Cx  Clz 

wherein  a^,  h^,  Cx,  dx  are  linear  functions  of  the  coordinates. 

The  foregoing  equation  may  also  be  obtained  as  follows :  a 

point  P  (or  x)  is  joined  to  the  vertices  of  a  given  tetrahedron  A 

(taken  as  that  of  reference)  and  the  joining  lines  P^i,  etc.,  meet 

the  faces  of  any  other  given  tetrahedron  A'  (whose  faces  are 
ax  —  0,...dx  =  0)  in  points  Qi  ...  Qi]  then  if  the  points  Qi  are 

coplanar  the  locus  of  P  is  the  surface  just  given.  For  the  coordi- 

nates of  Qi  are  seen  to  be  a'i   -,  x„,  x^,  x^,  and  expressing  that  the 

points  Qi  are  coplanar,  we  obtain  the  foregoing  equation. 
The  second  form  of  equation  of  the  surface  shows  that  the 

edges  of  A'  lie  on  the  surface  and  also  the  intersections  of  corre- 

sponding faces  of  A  and  A',  as  x-^  =  0,  ax  =  0,  etc. ;  the  vertices 
of  A'  are  seen  to  be  nodes  of  the  surface.  The  surface  therefore 
possesses  ten  lines  and  four  nodes. 

Denoting  the   lines   {x-^,  ax),  etc.  by  pi,  etc.,  if  two  lines  p 

*  See  Morley  and  Conner,  Plane  sections  of  a  Weddle  surface,  Amer.  Journ.  of 
Math.  XXXI. 

t  Bauer,  Veber  Flachen  4.  Ordnung  deren  geom.  Erzeugung  sich  an  2  Tetraeder 

knilpft,  Sitz.  d.  Konig.  Akad.  d.  Wiss.  Miinchen,  1888. 
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intersect,  their  point  of  intersection  is  seen  to  be  a  node  of  the 

surface ;  if  each  line  p  meets  every  other  line  p,  then  the  lines 

p  lie  in  one  plane,  say  the  plane  z  =  (),  also  each  edge  of  A  meets 

the  corresponding  edge  of  A'  and  the  two  tetrahedra  are  in  per- 
spective. In  this  case  the  equation  of  the  surface  assumes  the 

form 

z  [kihxCxdx  +  'k2Cxdxax  +  \idxaxhx  +  X.4«x&.rCa;}  =  axhxCxdx, 

where  the  Xj  are  constants.     For  in  this  case  we  may  write 

The  surface  is  the  Hessian  of  the  general  cubic  surface ;  it  has 
ten  nodes  of  which  six  lie  in  z  =  0. 

Let  now  an  edge  of  A  intersect  the  edge  of  A'  opposite  to  the 
corresponding  edge,  e.g.  let  the  line  (xi,^^)  intersect  the  line  (cx,  dx) ; 
in  this  case  it  is  easily  seen  that  (x^,  x^  lies  on  the  surface ;  if  this 

occurs  in  every  case  the  surface  will  contain  also  the  six  edges  of 

A  and  have  the  vertices  of  A  as  nodes*. 
Lastly  we  may  assume  that  both  sets  of  conditions  are  satisfied, 

viz.  that  each  edge  of  one  tetrahedron  intersects  a  pair  of  opposite 

edges  of  the  other.  The  tetrahedra  are  then  in  desmic  position 
(Art.  13). 

The  equation  of  this  surface,  viz. 

X-\  Xq 

—  Xi  +  X2  +  Xs  +  Xi        Xj  —  X2  +  X3  +  Xi 

+   +   +1=0, 

may  be  reduced  either  to  the  form 

where  z  =  Xxi,  or  to  the  form 

\/Z,  +  ̂Z  +  V  J3  =  0, 

where 

2i  =  (Xi  +  X2)  (X;  +  Xi),  Z2  =  (X^  +  X3)  (X2  +  Xi), 

Zi  =  (a'l  +  x^  ixo  +  x^. 

*  The  equation  of  this  surface  may  be  written  in  the  form 

AZ^^  +  BZ;^  +  CZ32  +  DZiZo  +  EZ.Z^  +  FZ^Z^  =  0, 

where  the  Z.  are  pairs  of  planes  through  opposite  edges  of  A'. 
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117.     Schur's  surfaces. 

A  particular  case  of  the  surface  A  arises  when  the  foregoing 
correspondence  between  points  x,  y  of  A  is  reduced  to  a  collinea- 

tion*.  It  has  been  seen  (Art.  99)  that  as  x  describes  a  curve 
Cg  the  corresponding  point  y  describes  a  curve  which  is  the  locus 
of  the  fourth  intersection  with  A  of  the  trisecants  of  Cg,  but  since 

the  points  x,  y  are  to  be  in  this  case  linearly  connected,  y  must 
also  describe  a  curve  of  order  six,  hence  the  intersection  with  A  of 

the  surface  formed  by  the  trisecants  must  include  eight  of  these 

trisecants  di-.-ag,  in  order  to  complete  the  order,  14,  of  the 

complete  intersection  of  the  surfaces  apart  from  Cg.  Similarly 
every  k^  has  eight  trisecants  hi  ...h^  which  lie  upon  A. 

The  lines  a  and  h  are  distinct  and  no  two  lines  a  intersect 

each  other ;  similarly  no  two  lines  h  intersect.  For,  in  this  case, 

to  the  point  x  of  Cg  which  gives  rise  to  a  line  a^  there  corresponds 

an  infinite  number  of  points  y,  viz.  the  points  of  ai]  hence  the 

four  planes 

Oii?  +  <^2V  +  as?"  +  '^iP'"  =  0, 
  =0, 

  =  0, 

«!«  +     +a4s'"=0, 

must  be  coaxal ;  by  effecting  a  linear  transformation  of  the  Of  we 

may  take  four  of  these  points  a  as  vertices  of  the  tetrahedron  of 
reference,  in  which  case  the  four  planes  p,  q,  r,  s  are  coaxal ; 

similarly  for  the  four  planes  p,  q',  r ,  s',  etc. 
The  eight  lines  b  arise  from  such  values  of  the  \f  as  make  the 

following  four  planes  coaxal : 

Kp   +  '^■zq  +  >^3^  +  ̂4^  =  0, 
  =0, 

   =0, 

\y'+   =  0. 
It   is   clear   that   any    line    b   must    meet   each   of  the   four 

preceding  lines  a  except  e.g.  when  the  Xi  are  such  that 

\ip  +  \^_q  +  Xsr  +  ̂ 4*  =  0 ; 

and  there  cannot  be  more  than  two  such  identities,  for  in  that 

case  the  four  planes  p,  q,  r,  s  would  coincide,  and  A  would  break 

*  F.  Schur,   Ueber  eine   hesondre  Classe  von  FUichen  vierter  Ordiiung,  Math, 
Ann.  XX. 



192  DETERMINANT  SURFACES  [CH.  IX 

up  into  factors.  Hence  it  follows  that  the  line  {p,  q,  r,  s)  must 

meet  at  least  six  lines  b ;  so  that  if  the  lines  (p,  q,  r,  s),  {p,  q,  r',  s') 
intersect  there  must  be  at  least  four  lines  b  which  meet  each  of 

them,  which  is  impossible  since  the  order  of  A  is  four. 
Hence  no  two  lines  a  can  intersect ;  it  follows  that  the  lines  a 

are  different  from  the  lines  b.  Moreover  a  line  a  cannot  meet 

more  than  six  lines  b,  for  suppose  it  meets  seven  lines  6,  then  since 

any  three  lines  a  would  meet  a  common  set  of  five  lines  6,  the 

quadric  through  these  eight  lines  would  meet  any  kf  in  fifteen 

points,  since  every  bi  is  a  trisecant  of  every  k^,  and  hence  would 

contain  it.  Therefore  any  line  a  meets  exactly  six  lines  b ;  simi- 
larly any  line  b  meets  exactly  six  lines  a.  In  a  case  in  which  a 

line  b  does  not  meet  a  line  a,  e.g.  (p,  q,  r,  s),  an  identity  exists  of  the 
form 

Ai/)  +  A^q  +  AsV  +  A4S  =  0, 

so  that^  may  be  replaced  by  zero  in  equations  (1),  Art.  97. 
Take  therefore  four  lines  61  ...  64  such  that  each  of  them  does 

not  meet  two  of  the  lines  a^.-.ttt,  e.g.  ag  and  Os,  «3  and  a^, 

tti  and  tti,  tti  and  ag,  respectively,  then  equations  (2),  Art.  97, 

may  be  reduced  to  the  form 

ajp+   -I-  a^p'"  =  0, 
a.q  +  a-zq    =  0, 
  a„7''  +  a^r"   =  0, 

  a3s"+  045'"  =  0. 

The  required  surface  is  therefore 
/     tf    fit  ///         /    // 

pqr  s    =p   qrs  . 

This  surface  being  susceptible  of  collineation  into  itself,  if  it  be 

represented  by  A  +  A'  =  0,  then  either  A  and  A'  are  interchanged 
by  the  collineation,  or  the  planes  which  constitute  A  are  cyclically 

permuted :  similarly  for  A'.  An  instance  of  the  former  is  given 
by  the  surface 

16a?ia;oir3a;4  \- {x^  +  X2  +  0^3  +  x^)  (x^  +  x.^  —  x.^  —  x^) 
X  (x-i  —  X2  +  X3-  Xi)  (xi  —  X2  —  Xs  +  Xi)  =  0; 

if  this  be  written  in  the  form 

it  is  seen  to  be  unaltered  by  the  collineation 

The  surface  is  desmic. 
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In  the  latter  case,  viz.  when  the  faces  of  A  are  cyclically 

permuted  by  the  collineation,  the  latter  must  be  of  period  four; 
taking  A  as  tetrahedron  of  reference  the  collineation  is  then  of 
the  form 

pxi^k^yo,    poc.2  =  hy3,     px3  =  ksy^,     px^  =  hyi. 

By  a  change  of  the  coordinate  system  we  may  take  each  ki  to  be 
unity. 

The  equation  of  the  surface  is  now  seen  to  be 

A  +  A'  =  Kx-^x^x-^Xi  +  a^a2a3a^  =  0, 

where  «!  =  u^Xi  +  lux.,  +  u^x^  +  u^Xi, 

\jL^  ̂   Uj^  OCi  ~f~   t*4  ̂ 2  ~i~  ̂ 1  ̂ 3  ~l~  "^2  ̂ 4  7 

Conjugate  tetrahedra. 
4 

Denoting  by  ̂ 1  the  quadric  'ZuiSi  =  0,  where 1 

>S^3  =  ajg^  +  a?/  +  2a;ia;3,         8^=2  (x^x^  +  x^x.^), 

it  is  clear  that  the  planes  Oj  ...  0^4  are  the  polar  planes  of  the 

vertices  A^.-.A^  of  A  for  the  quadric  <l>i.  Two  tetrahedra  such 
that  the  faces  of  one  are  the  polar  planes  for  a  quadric  of  the 

vertices  of  the  other,  may  be  termed  conjugate.  Again  it  is  easily 

seen  that  A  and  A'  are  conjugate  for  the  quadric 

O2  =  U■^S2+  U2S3  +  UsSi  +  UiSi  =  0, 

and  hence  for  each  of  the  quadrics 

(i>3  =  UiSs  +  u^Si  +  UsSi  +  u^Sq  =  0, 

^i  =  UiSi  +  u.^Si  +  U3S2  +  ̂ l4Ss  =  0 ; 

since  <l>3,  ̂ 4  are  the  quadrics  obtained  by  submitting  <I>i  and  4>2  to 
the  given  collineation. 

Hence  A  and  A'  are  conjugate  in  four  ways. 

Now  it  can  be  shown  that  when  the  tetrahedra  A,  A'  are 

J.  Q.  S.  13 
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conjugate,  four  foces  of  A  meet  four  faces  of  A'  in  four  lines 
which  belong  to  the  same  regulus*  of  a  quadric. 

Now  since  A,  A'  are  conjugate  with  regard  to  each  of  four 
quadrics,  it  occurs  four  times  that  four  intersections  of  their  faces 

are  co-regular.  But  if  a  quadric  S  meet  a  non-ruled  quartic 

surface  F*  in  four  lines  of  a  regulus,  it  will  meet  F^  in  four  other 
lines  of  the  complementary  regulus ;  since  if  d  be  this  residual 

curve  of  intersection,  from  each  point  of  C4  a  line  can  be  drawn  to 

meet  the  four  given  lines,  this  line  therefore  lies  upon  F^,  hence 
C4  must  consist  of  four  lines  of  the  other  regulus  of  S.  Therefore 

corresponding  to  each  way  in  which  A,  A'  have  four  intersections 
co-regular  we  obtain  four  lines  of  A,  giving,  in  addition  to  the 

sixteen  lines  of  intersection  of  A  and  A',  sixteen  other  lines  upon the  surface. 

The  existence  of  these  thirty-two  lines  upon  the  surface  may 
also  be  seen  from  the  expression  of  the  surface  in  the  form 

pq'r"s'"  =  p"'qr's"; 

for  this  shows  the  existence  of  eight  lines  not  included  in  the 

eight  lines  a  or  the  eight  lines  b,  e.g.  p  =  r  =  0,  etc. 
If  we  had  started  vdth  the  other  four  lines  a  and  b  we  should 

have  obtained  a  second  form  of  the  equation  of  the  surface  in  the 
form 

A,  +  A/=0, 

where  Aj,  A/  are  two  new  tetrahedra;    they  again  yield  eight 
lines  not  included  in  the  eight  lines  a  and  b. 

*  For  A  being  the  tetrahedron  of  reference,  and  the  quadric  with  regard  to 
which  A  and  A'  are  conjugate  being  2a^x^a;j=0,  the  four  lines  just  referred  to  are 

If  the  join  of  two  points  X,  Y  meets  this  line  we  have 

Xj   <ij2A2  +  o-igAj  +  Oj^A^ 

Yi  ~  Oi;  F,  +  (hi  Y3  +  ai4  Fj ' 
hence  if  Pi^  =  XiY^.-  A\. Fj,  it  follows  that 

The  conditions  that  2^^.  should  meet  the  other   three  lines  are  seen  to  be, 
similarly, 

P2I  «21  +P23  "23  +P2t  "24  =  0, 

1*31  «31  +1^32  a32  +PU  «34  =  0, 

Pil  041  +P42.  «42  +i'43  «43  =  0 ; 

and  since  p^^.^  -p/.^,  (iik  =  aki!  tbe  four  equations  are  equivalent  to  three;  hence 
an  infinite  number  of  lines  p  meet  the  four  given  lines  which  therefore  belong  to 
the  same^regulus. 



117,  118]  DETERMINANT  SURFACES  195 

118.     Tetrahedra  subject  to  two  collineations. 

We  now  consider  the  case  in  which  a  collineation  of  period 

four  permutes  the  faces  of  A,  and  a  collineation  of  period  three 

permutes  three  of  these  faces  and  leaves  the  fourth  unaltered ;  the 

tetrahedron  A'  being  similarly  affected. 
Taking  the  collineations  as 

pXi  =  y2,     pxo  =  y^,     px,  =  y^,     px^  =  y^      (I), 

a-Xi  =  y^,     <jx.  =  y.,     (TX.  =  y^,     ax^^yo   (II), 
it  is  seen  that  the  surface 

Ax^x^x^Xi  +  {mx-i  +  x.2-\-x..  +  x^ (x^  +  7nx2  +  x^-\-  x^ {...){...)  =  0 

is  unaffected  by  each  collineation. 

There  are  six  planes  each  containing  two  intersections  of  faces 

of  A  and  A'  and  two  other  lines,  viz.  the  planes 

fl7i  +  Xo  +  111  {Xs  +  X^)  =  0. 

The  surface  therefore  possesses  16  +  12  =  28  lines;  it  has  six 

coplanar  nodes,  viz.  the  points  x^  =  Xo  =  Sa^,-  =  0,  etc. 

Next  consider  the  collineation 

pXi  =  yo,     px.  =  -y„     px.,  =  y„     px^  =  y,    (Ill), 

the  collineation  (II)  being  as  before. 
The  surface 

AxiX^XsX^  +  {xo.  +  a^s  4-  x^  {x-^  —  x..  +  x^)  {x\  —Xs  +  x^)  (xi  -^  x.,  —  Xi)  =  0 

is  unaffected  by  the  collineations  (II)  and  (III). 

The  tetrahedra  A,  A'  are  conjugate  in  nine  ways;  in  six  ways 
arising  from  the  six  quadrics 

^3^  —  ̂ i  +  2a;i  {xs  +  Xi)  —  2xo  {x^  —  x^)  +  Ix-^Xo  =  0,  etc., 

and  in  three  ways  arising  from  the  three  quadrics 

x^  —  Xn-  +  xi  -  x^  +  ̂XiXo  +  2x.:^Xi  +  Ix.iX^  —  2x^x^  =  0,  etc. ; 

each  manner  in  which  A  and  A'  are  conjugate  gives  rise  to  four 
lines  on  the  surface,  which  is  thus  seen  to  possess  16  +  9x4  =  52 

lines  in  all.  Each  of  the  tetrahedra  A,  A'  is  inscribed  in  the 
other. 
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