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Summary

In this study we apply the results obtained in Rosberg [2] for an
exponential queueing network, with different classes of customers under
the class of stationary service policies and with the mean cost per
unit time as the loss function. A subclass of service policies which
is used to reduce the loss function, as well as a heuristic service
policy which is found to work well in the examples presented in the

paper, are derived. An interactive computer program which uses the

subclass of service policies and simulation for finding a service
policy which yields a low value for the loss function is also presented.
This program is applied to several examples of computer models.





In this paper we consider an exponential queueing network,

with different classes of customers under the class of stationary

service policies and the mean loss per unit time as the loss func-

tion. Here, we apply the results obtained in [2]. The model and

the main results from [2] are given in section 1. In section 2,

we derive a subclass of service policies ('t^-priority service policies)

which is used to ro'^'ice the loss function. A heuristic service

policy which is a '|)-priority policy and found to work well in the

examples presented in section 3, is also given. Furthermore, we

present an interactive computer program which uses the 'j'-priority

policies and simulation for finding a service policy which yields

a low value of the loss function. The program is applied in section

3 to several examples of computer models.

1. THE MODEL, NOTATIONS AND EARLIER RESULTS

As in Rosberg [2] we consider an exponential queueing network

with different classes of customers and cost for staying in the system,

which is defined by the set of parameters

r = (A,B,A,q^(g),M^(e),R(3),c^(3)|aeA,eeB) , where

A denotes a finite set {1,2,..., a} of service stations

serving customers independently and simultaneously.

Each service station allows an unbounded queue.

B is a finite set {l,2,...,b; of classes of customers.

A is the total arrival rate of customers from out-

side the system to all the stations. The arrival

process is assumed to be Poisson.
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q (g) is the probability that an arriving customer belongs

to class S and joins to station a, aeA, SeB and

I q (B) = 1.

a,g
u (g) is the service rate of customers of class g,geB, when
a

they are provided service at the service station a,

aeA. The service requirements are exponential

r.v.'s, mutually independent and independent of the

arrival process. (From [2], we may assume, without

loss of generality, that u (g) = u for any aeA, BeB.)

R(B) is a sub-stochastic matrix, which describes the

transition probabilities among the service stations

of a customer of class g, geB. The (a,s) element of

R(g) , denoted bv r (B) , a,seA, is the probability
as

that a customer of class g, geB, who has been

provided service at station a, will move next to

station s. The probability that a customer will

leave the system is 1 - Z r (g)

.

as
s

c (B) is the cost of staving a unit of time at the service
a

station a, aeA, for customers of class g, geB.

Let B* = Bu{0}, where stands for one dummy customer present in each

service station, whose parameters are c (0) = q (0) = 0, u (0) = p
a a a

and r (0) = 1, for anv aeA.

To complete the definition of the queueing system, we must

still define the service policy, i.e., a decision rule indicating

which customer is served at each of the service stations at anv
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moment of time. Let n = {n (3)|aeA,SeB} be the characterization, at

any moment of time, of the queues in system Y, where n (3) is the

number of customers of class 6 at service station a at that moment.

Furthermore, let any instant of time be a potential decision epoch.

We consider any service policy which statisfies the following

properties

:

(i) At any moment of time the decision rule is a function of

the state n only,

(ii) The servers are not allowed to be idel when there are

customers at their stations. (I.e., the dummy customer,

0, is being served only when the queue is empty.)

(iii) The service of customers at each service station may be

interrupted without losing any service duration which

has already been provided.

The mean loss per unit time is taken as the loss function, L. From

[2] , section 2 we have that under stationary condition

L = (c,n)
,

where n = {n (3)|a£A,6eB} and n (3) is the expected number of customers
a ' a

of class S at service station a under stationary conditions for a given

service policy.

To ensure stability of the system, under any given service

policy we make the following two assumptions about the relative

traffic intensity at each service station.
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ASSUMPTION 1. For any aeA, (SeB, there exists an integer k ^ 1, such

k. k k
that, 1 - <L r (tB) > 0, where r (S) are the elements of R (3),

•*
. as as

seA

the k— pojer of R(e).

From assumption 1, it follows that, for any 3eB, there is

a unique nonnegative solution X(B) = (X (3) , A (S) , . . .
, A (3)) to the

equation

A(S)(I - R(B)) = X q(B) ,

where q(3) = (q, (3) ,q^(S) , . • . ,q (3)) and I is the identity matrix of
J- ^ cL

order a. (See [2], section 2.)

Let (3) = A (3)/u.
a a

ASSUMPTION 2. For any aeA, Z p (3) < 1.

3eB
'^

For further results, we shall need the following notations

and results appearing in Rosberg [2]. For any i,k£A and j ,meB* let

y. . (k,m) be the expected number of customers of class j at station i,

under stationary conditions, given that a customer of class ra is

provided service at station k, times the probability that a customer

of class m is provided service at station k, under any given service

policy. Define the matrices Y = (y(i,j)) and T = (t(i,j)), the

column vectors q = (q(i)) and c = (c(i)) as follows:

jy. . (k,m) if l<_i,k<_a and l^j ,m<_b
,

y((m-l)a+k,(j-l)a+i)) =^y. .(k,0) if 1 <_i , k^a ; l£j £b and m=b-^l ,

!0 if l<i,k<a;l<m<^b+l and j=b+l ,C
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I

t(i,j,k,m) if l<_i,k_<a and l<_j ,m_<b ,

t((j-l)a+i, (m-l)a+k) =
-^ if l^i,k^a; l^j^b and m=b+l

,

if l<i,k<a;l<m<b+l and j=b+l ,

where

if i=k and j=m<b
,

t(i,j,k,m) = < - (p^. (m)r^. ,^(m) + Pj^(m)r .(m)) if ifk and j=Tn^b ,

2D,(j)(l-r..(j))

1
~ i,k

lO otherwise

c((m-l)a+k) =<

c, (m) if 1 ^ k ^ a and 1 <_ m <_ b ,

if 1 < k < a and ra = b + 1 ,

q, (m) if 1 IL k <_ a and 1 <_ m ^ b
,

q((in-l)a+k) = <!

if 1 < k < a and m = b + 1

Let U = {(a,6)IaEA, SeB*}. Any (oi,6)efi represents a phase

of ser>/ice in the system i. For any phase of servic3 (a,3)er^, define

an order index

(a, 6)
max -,

MCA
aeM

c (8) - L r (M)c (8)i1 ,„ a,s s
sfM '

~^a,e)
(M)

(1)

(the maximum is taken over all subsets M C_ A containing a), where r (M)

is the probability that a customer of class 3, starting service at sta-

tion :ieM, will enter first to station s^M at his first exist from M

and Y/ on(M) is the mean total number of visits to stations in M of
V2', D j

a customer of class S, starting service at station "i, up to his first
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exit from the set M. Note that the numerator in (1) is the expecta-

tion of the difference between the staying cost of a customer of class

3 who is present in station a and the staying cost of this customer

immediately after leaving first the set M. It is clear that different

phases (a, 6), may attain the same value I , and that I,
ni

~ ^

for any aeA, which is the lowest value attained.

Define a complete order, <, henceforth "Klimov order" among

the phases of service in Q.

DEFINITION 1.

(i) For any (a,B), (a',S')efi , {a,Q)< (a',B') iff I. „s > I,
, .,.

KO.,(i) {.a ,ii )

(ii) For any set of phases in { (a,3) |
cteA, BeB} which obtain the same

value in (IJ, the order <, is ahosen arbitrarily.

(Hi) For the set of phases { (ct,0) |aeA} , (a,0) < (ci',0) iff a < a' ,

From [1], it follows that the order on the set Q, which is

defined in [2], section 3, is the same as the order defined in defini-

tion 1 here.

Let (a,g)- < (a,S)„ -< ... < (a,B)-, ,,v , be the ordered phases
i I (b+i;a

in Q. Rename the phases in \i. such that (a, 6). e fi will be denoted by i.

With this notation the rows and the columns of Y, T, q and c will be

permutated accordingly. For any azk, BeB, the row (6-l)a+ct in Y, T, q

and c will replace the row (a,B). and similarly for the columns of

Y and T. Henceforth the notations Q = {1,2, . .
. , (b+l)a} , Y, T, q and

c will be used to denote the appropriate reordered phases, matrices
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For any i, I ±i ± (b+l)a let CI. = {l,2,...,i}. Further,

for any pen. let v (."i.) be the mean total nunber of visits to phases
1 p 1

of service in 'Si., of a customer starting with phase p, up to his first

exit from the set Q.. Furthermore, for any p e Q . define recursively

the elements c (H.) in the following way:

S^"(b+l)a^ = ^^^^
' ^°^ ^"^ P " "(b+l)a = " '

c.(Q.)
c (il. ,) = c (il.) - Y C^-) /o s for anv p e ii . , and i, 1 < i < (b+l)a.
p 1-1 p i' 'p' i' -r.(2^) "^ 1-1 -

Let,

u = (y^(M ),Y2(M ),..., y(M),0,...,0) '

and

Vp = (0,0,. ..,0, 1,1,. ..,1)'
,

where u , v have (b+l)a elements, v has p zeros preceding the one's
p p p

and v' is the transpose of the vector v.

Further, let

z = c (M )/y (M^) ,

P p p p p

hp = (v ,YUp)/(l-A(q,Up)/au)
,

gp = (TUp,Up)/2(l-X(q,Up)/ay) , (2)

z = (z ,z ,...,z )'
, h = (h h ,...,h )'12 ab 12 ab

and

S ^Si>S')'*'''8tU'' '
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where (x,y) = I x.y., for any two vectors x - (x ,x^,...,x ) and
i=l

y = iyj_,Y2'---
^y-c?

•

Still further, let

LBl = (z,g)/a ,

LB2 be the value obtained in [2], section 3, by solv-

ing the appropriate linear programming problem

defined there,

LB3 = : (min c^(S)) S p,^(6)/(l - P^(B)) ,

BgB icA aeA

UB = z c (6)p (e)/(l - E p (j))
aeA jeB
6eB

and Lj-j be the value of the loss function L, under the optimal service

policy. (Note that UB is the value of L under the Service-Sharing

service policy. See [2], section 3.) The main results obtained in

[2] are given in the following two theorems.

THEOREM 1. Under any service policy

L = (z,g) /a + (z,h) /a .

In addition, z>_0 and h>_0.

THEOREM 2.

UB ^ Lq 1 max{LBl,LB2,L33}



-9-

2. REDUCING THE LOSS FUNCTION

From (2) and theorem 1 it follows that the loss function L

will be reduced if and only if (z,h) will be reduced.

From (2) we have

(z,h) = Z w
, (p)y(p,p') ,

p,p'eP. P

P'<P

where y(p,p') are the elements of the matrix Y and

ab
w ,(p) = Z (cj^(Mj^)y , (\)/Yj^(I\)(l-Uq,u^)/au)) :< I(k<p) x I(p'^ab)
^ k=p

'

Here, I(x < y) =

1 X < y ,

X > y .

I

Note that from theorem 1 we have w , (p) 2. 0'

Using the original notation for the phases of service p, p' in (3) we

have

(3)

(4)

(z,h) = T.

(a',6')<(a,B)
"(a',S')^^'^^\'.6'^"'^^

Furthermore, from (4) it follows that for any phases of service (a, 3),

(a', 3'), a,a'eA, S.S'eB*

'^(a',S')*''"'-^-' - "^(a* 6')^"'^-* for any (a,3)<(i,j)

The expressions w,
, ,

(a,8) are indpendent of the service

policy chosen in system T. Thus, they can be considered as weights

of the expectations y ,
,(a,S) which do depend on the service policv.
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It is easy to check that for systems with more than one service sta-

tion, none of the service policies can reduce (z,h) to zero.

To improve a service policy we need to reduce some of the expectations

y ,
,(a,ti), but in doing so some others are increased. Thus, the goal

will be to find service policies which reduce the expectations y ,
,(a,3)

with higher weights w,
,

,,(a,3) at the expense of those with lower

weights.

Let n = {n (3)ja£A, 6eB} be any state of the system at any given, but

arbitrary, moment of time t. In order to define a service policy we

need to indicate the class of the customer which is served at station

a, for any aeA at this state n.

By providing service at station a to a customer from a specific class

6, whenever the system is in state n = {n ,(6')|ct'eA, 6'eB} (at any

moment of time t, independent of the specific moment t), the values

n ,(S'), a'eA, S'eB determine in the long run the expectations

y ,
,(a,3). Obviously, by choosing the class to be served at any

station aeA, we specify which of the expectations v
,

,(a,3) will be
' ct ,3

affected.

In order to attain the goal mentioned above, it follows from

(5) and (6) , that we must choose the customers for service in the

following way:

At any state of the system n = in ,(3')|ot'eA, B'eB}, for any station aeA

and for any two classes of customers j ,meB such that (n,m) < (c,j),
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a customer of class j will be preferred for service to a customer of

class m, whenever the values n ,(B') for (a', 3') < (a,j), are

relatively small. If they are not, a customer of class m will be pre-

ferred to a customer of class j

.

This preference of customers can be obtained by a parameterized

class of service policies defined as follows.

For any azk, SeB let '\)'a,^) = {ij;,
, , . (a, B) |

a' eA, 6 ' eB and (a',e') < (a, 3)},

where ij;, , pT\(^»3) are nonnegative integers and for any cteA, j ,me;B such

that (a,m) < (a,j),

'''(ct' B')^"'^^ - '^(a' g')*^"'™^ ^°^ ^"^ a'eA,6'eB
. (7)

The set i|;(a,6) will define a service domain for customers of class B

at station a.

DEFINITION 2.

For any aeA, 3eB and any set 'Ka,3), a customer of class 6 present at

station a is in the ^P (a, B>) -service domain when the system is in state

n = {n ,(S') |a'£A,3'£B}, iff

^-(1^') 1 *(cj'
3')^'^'^) for any (a' ,3'

) < (a,3) .

Let 'P = {'J^CajB) |aeA,8eB} . Any set ^, satisfying (7) is a

set of parameters which will determine a service policy in the class

of service policies defined below.

For any set of parameters 'V , state of the system n and service station

aeA, let
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^^(V, = { 3 |6eB,n (3) > and customer of class S is in the
"1^ (a, 6) -service domain.)

,

b" = { 6 |6eB* and n (6) > 0} o {(a,0)} ^ ^ . (8)

For any set 'Jj, we shall define a 'J^-priority service policy.

DEFINITION 3.

At any state n and at each of the serviae stations azk, the customer

which is being served at station a according to the ii-priority

service policy is any customer of class 6 , where 6 is determined

as follows:

(i) If B {\\)) 5^ 4), then 6 is the class which satisfies

6 z^^{^)
a a

and

(a,6 ) > (a,e) for any ^z'sP'O))

(ii) If B (^) =
(J), then 6 is the class which satisfies

6 e B^

and

(a,3j < (a,B) for any g e b"
a

For any station asA, if there are customers in the phases

of service (a, 3), 6eB, which are in the sj; (a, 8) -service domain, then

the 't^-priority policy preferred for service the highest "Klimov
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ordered" phase among them. If there are no customers in their service

domain, then the lowest "Klimov ordered" nonempty phase is preferred.

The problem in hand now, is how to select a set of parameters

^, which will yield a low value for the loss function L. Analytically,

this is extremely difficult because of the complicated form of the

service policies involved. However, this can be done by using a

simulation of the model. For that purpose we wrote an interactive

computer program, programmed in the APL programming language and

running in an IBM/370 computer machine.

The program has two major parts. In the first part the

program performs:

(i) A data entry of the system parameters T by the user.

(ii) A computation of the intensities p (6), aeA, S>e'&, which are

defined in section 1.

(iii) A computation of the bounds LBl , LB2, LB3 and UB which are

defined in section 1.

(iv) A computation of the "Klimov order" among the phases of service

(a, 3), aeA, 3eB.

(v) A computation of the weights w
, ,,(a,S), a,a't:A, 6,3*eB which

are defined in (4).

In the second part the program performs:
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(i) A simulation of the system T under any given stationary service

policy, which may be entered or altered by the user at any

moment during the program life.

T T T
(ii) A computation of the values p (S) , L and y ,

,(a,6) at

any moment T of the simulation, where

\,i'''

1 if a customer of class 6 is being served at

station a at time t of the simulation ,

otheirwise ,

'>^ =f /X,,3(t)dt ,

L^ = ^ / L c^(3)n^(6)dt .

aeA
BeB

Here, n (B) is the number of customers of class 6 at station a, at time
a

t of the simulation.

n ,(B') if at time t of the simulation, a
customer of class 6 is being served
at station a and n'-,(B') = n ,(B')>

a aya',B'^"'^^ =1

otherwise.

^a',S'^"'^^ =?^ ^a-.B'^"'^^*^^ •

Under stationary conditions we have

L ^L ; y ,
,(a,6) ^y

, ,(a,B)

and in addition, from theorem 3.1.2 in [2] we have

P,(3) -- P^(B)
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The stopping time of the simulation, under a given service policy,

T
is determined from the convergence of the values p (3), aeA, SeB,

to the values p (3), azA, 8eB, which are found analytically in the

the first part of the program and from the convergence of the

sequence L .

The parameters
'Jj

.
,

,,(a,6), for the <p-priority service policy

under which the simulation of the model will run, are always chosen

with respect to the values w,
, ,, (a,3) so that higher values of

W/ I oi\(c,3) impose lower values on 'I' - , „,,(a,3). There are not
{a' ,e> )

^
(.a ,3') '

as many practical possibilities of choosing the set ^p as it seems,

since in ergodic systems (see [2], section 2), the value of the

loss function L, is mainly affected by the rules of the service

policy at the states n, with small numbers of customers. (How small

depends on the intensities p (3).)

An improvement of a chosen '/^-priority service policy is made by

trial and error after any simulation. This improvement is based

T T
on the values L , y ,

,(a,g) obtained at the stopping time of the
c

,
-^

simulations under all the previous service policies.

Define two measures for evaluating a service policy which

T
provide a loss L at the stopping time of the simulation,

E^ = max{LBl,LB2,LB3}/L'^ ,

I = (UB-L-^)/(L^-maxiLBi,LB2,LB3})
,
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T
where the bounds LBl, LB3 and UB are calculated from the values p (6)

rather than from the theoretical values p (S) . The measure < E. < 1
a — r —

is an efficiency measure. The measure < I < '^ is an improvement
^ — m

measure in comparison to the service-sharing policy.

We terminate the improvement process of the service policies when

E^ is satisfactory enough (e.g., above 0.95) or when the simulations

results do not leave possibilities of further improvement using the

class of 'p-priority service policies.

In the examples that we analyzed, some of which are presented in section

3 below, 2-5 simulations were enough to determine a satisfactory

service policy.

REMARK. We don' t have as yet an algorithm which determines the best

policy in the class of '^I'-priority policies. Individual consideration,

using the guidelines above, should be given for each particular system

r

.

We shall employ the similarity between the system F and

Klimov's model (see [1]), to obtain a heuristic service policy

which provides the best results in all the examples that we have

analyzed. Consider the original set of the system parameters F, in

another form, i.e.,

(n, \, q, y, R, c) ,

where Q = { (a,6) | aeA, 3eB} is the set of phases of service, q, c

are the vectors defined in section 1, X, y are the arrival and service
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R =

R(l)

R(2)

R (b2J

Now, instead of having b service stations each of which provide

service simultaneously to another set of phases, supoose there is

only one server providing service at any moment of time to one phase

only. Denote this revised system by F'.

The differences between the system F' and Klimov's model are: (i) In

Klimov's model, only non-preemptive service policies are allowed

and in the system F' preemption resume policies are also allowed,

(ii) The service requirements in F' are exponential rather than general

as in Klimov's model.

However, the optimal service policy in F' is the same as the optimal

service policy in Klimov's model. (This can be seen in the same way as

Klimov's model was analyzed.)

Thus from [1], the optimal service policy in F' is: if •'-, o\ ^ '"/
i oin'

then the phase (a, 3) has preference to receive service over phase

(a', 6'); but if 1, o\ = •'-/
i o i \ > ^^e service order among (a, 6) and

(,a, fcs; (.a , D ;

(a',B') may be chosen arbitrarily.

The similarity between the system V and the original system

F, described above and the optimal service policy in system F', suggests

the following heuristic policy which will be referred as "Klimov policy."
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DEFINITION 4

At any state n and at each of the service stations a£A, the customer

which is being served at station a according to "Klimov policy" is any

customer of class S e B , where B is defined in (8) and 6 is any

class which satisfies 1, „ , > I, ^, for any 6 e B .

Note that "Klimov policy" is a special case of a i|^-priority

policy, when 'j; ,
,

,.(a,6) = for any a,a'EA and 3,6't:B.
\^ ,v )

3 . EXA>rPLES

We shall apply the method and the computer program presented

in section 2, to several examples of computer models. In each example,

any service station is one of two types, a Central Processing Unit (CPU)

or a Data Transmission Unit (DTU) . The customers are the programs

running in the computer, which are classified according to their

service requirements. In our examples, there are three possible

classes of customers. Class 1 is a class of CPU bounded customers.

That is, programs for which the service requirement of each program

from the CPU, once the program is in the CPU, is relatively higher

than the service requirement from the DTU, once the program is in

the DTU. Class 2 is a class of DTU bounded customers, which is

defined in the same manner as class 1, but the relative amount of

service in the CPU and the DTU is reversed. Class 3 is a class of

CPU and DTU bounded customers. That is, programs, which have high

demand of service from the CPU and the DTU, once they are there.
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EXAMPLE 1.

We consider two service stations, station number 1 is the

CPU and station number 2 is the DTU. Two classes of programs are

running through the servers, class 1 consists of CPU bounded programs

and class 2 consists of DTU bounded programs. The staying cost of

all the customers are equal. Such a system is modeled by the follow-

ing set of parameters F.

A = {1,2} ; B = {1,2} ; A = 0.1 ; M = 1 ;

q3_(l) = q^(2) = 0.5 ; q2(l) = q2(2) = ; c^(6) = 1 for any aeA, geB.

R(l) =

0.6 0.1

; R(2) =

0.6

0.2 0.8

The results are summarized in the following tables.

The intensities and Klimov order are given in Table 1.1

The phases (a, 6), aeA, 8eB (1,1) (1,2) (2,1) (2,2) (1,0) (2,0)

p (S)
a

0.16667 0.125 0.01667 0.375 0.70833 0.60833

Klimov order rank

Table 1.1

The row of Klimov order ranks means that (1,2) •< (1,1) < (2,1)

<

< (2,2) < (1,0) < (2,0) and (1,0), (2,0) are phases where station 1

and station 2 respectively are empty.
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The weights w,
, ,

(a,g) are given by the appropriate ele-

ments in table 1.2.

^\(a',B')
(a, 6) ^\^ (1,2) (1,1) (2,1) (2,2)

(1,2)

(1,1) .1026

(2,1) .1965 .2348

(2,2) .3636 .8476 .7799

(1,0) 1.3763 1.2189 1.2524 1.5190

(2,0) 1.3763 1.2189 1.2524 1.5190

Table 1.2

The analytical bounds and the simulation results are given

in table 1.3.

UB L LBl LB2 LB3
^f ^m

T

Analytical values 1 0556 — 0.4828 0.917 0.9598 — — —

Analytical values under
the service-sharing — 1.0556 0.4828 0.917 0.9598 9093 —
policy

Values from simulation
under policy 1

1 .0488 0.9960 0.4819 0.917 0.9540 95 1.25 2867.5

Values from simulation
under policy 2

1 .1168 1.0243 0.4993 0.917 1.0141 99 9.06 20868.5

Table 1.3
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T is the stopping time of the simulation and policies 1 and 2 are

tiz-prioritv service policies, where the parameters ii . , „,,(a,3) are

given by the appropriate elements in tables 1.4 and 1.5

^\!a',6 )

(a,3) \^\
(1,2) (1,1) (2,1) (2,2)

(1,2) OS 00 OO 00

(1,1) 00 00 00

(2,1) 3 2 00 OO

(2,2) 2 1 1 OO

Table 1.4 (Policy 1)

(c(,S)^
,8')

(1,2) (1,1) (2,1) (2,2)

(1,2) 00 OO OO 00

(1,1) OO 00 00

(2,1) 00 00

(2,2) OO

Table 1.5 (Policy 2)

The best results were obtained with policy 2, which the reader can

recognize as the heuristic service policy. The evaluation measures

for it are E^ = .99 and I = 9.06. Policy 2 gives absolute priority

in the DTU to the CPU bounded customers and an absolute priority in
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the CPU to the DTU bounded customers. This policy seems very reasonable

when the staying costs of the customers are the same.

EXAMPLE 2.

Let us change slightly the system given in example 1 to a

system where the staying cost of customers of class 2 is five times

more expensive than the staying cost of customers of class 1. That

is, c (1) = 1, c (2) = 5 for any aeA. The heuristic service policy
a a

used in this case, gives absolute priority to customers of class 2

at both of the service stations. This heuristic policy, with E, = 0,97,

again gives the best results in this example. Moreover, it also

provides the best results when we increase X from 0.1 to 0.2.

EXAMPLE 3.

We consider two service stations; station number 1 is the

CPU and station number 2 is the DTU. There are three classes of

customers; class 1 is a class of CPU bounded customers, class 2 is

a class of DTU bounded customers and class 3 is a class of CPU and

DTU bounded customers. The staying cost of all the customers are the

same. The parameters of the system are:

A = {1,2} ; B = {1,2,3} ; A = 0.3 ; p = 1

q, (g) = 1/3 , q^iS:) = , c (S) = 1 for any aeA and 3eB .

R(l) =

0.6 0.1

J

; R(2) =

0.6

0.2 0.

; R(3) =

0.6 0.1

0.4 0.6
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The intensities and Klimov order are given in table 3.1.

The phases (ct,6) (1,1) (1,2) (1,3) (2,1) (2,2) (2,3) (1,0) (2,0)

P,(6) 0.3333 0.25 0.3333 0.0333 0.75 0.0833 0.0834 0.1334

Klimov order rank

Table 3.1

The weights w, , ., (a,6) are given in table 3.2.
(a ,[S'

)

^v^'.B')
(a,6)^v. (1,2) (1,3) (1,1) (2,1) (2,3) (2,2)

(1.2)

(1,3) 0.1053

(1,1) 0.1053

(2,1) 0.2277 0.3061 0.3061

(2,3) 0.3279 0.5565 0.6734 0.4675

(2,2) 0.4771 1.1784 1.2207 1.1640 0.9950

(1,0) 6.6310 3.7425 3.4771 4.0358 5.0975 9.2307

(2,0) 6.6310 3.7425 3.4771 4.0358 5.0975 9.2307

Table 3.2

The analytical bounds and the simulation results are given

in table 3.3.
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Analytical values

Analytical values under
service-sharing policy

From simulation under
policy 1

From simulation under
policy 2

UB

17.5

17.5

LBl LB2 LB3
m

5.7734 11.594 4.4587

5.7734 11.594 4.4587 0.66

18.39 17.65 5.6830 11.594 4.2091 0.65 0.12 5077.6

16.52 11.97 5.6567 11.594 4.2530 0.97 11.97 9201.6

Table 3.3

Policy 2 is the heuristic service policy and policy 1 is a 'i^-priority

policy, where the parameters 'i; ,
,

,,(a,6) are given in table 3.4.

^"Ma',B')
(a, 6) ^\^ (1,2) (1,3) (1,1) (2,1) (2,3) (2,2)

(1,2) CO oo UO OO oo oo

(1,3) 00 00 oo 00 oo

(1,1) oo GO 00 oo

(2,1) 3 2 2 00 00 oo

(2,3) 2 1 1 1 oo 00

(2,2) 1 oo

Table 3.4 (Policy 1)

The heuristic service policy with E, = 0.97 gives the best

results. The most preferred customers in the CPU, by the heuristic
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policy are the DTU bounded customers and the least preferred are the

CPU bounded customers. In the DTU, the preference order by the heuristic

policy is reversed.

EXAMPLE 4.

In this example there are four service stations; station

number 1 is the CPU and stations number 2, 3, 4 are DTU's, where

stations numbers 1 and 2 are Channel + Disk devices and station 3

is a Channel + Tape device. The classes of customers are as in example

3, where customers of classes 1 and 2 use Disk devices only and

customers of class 3 use the Tape device only. The parameters of

the system are:

A= {1,2,3,4} ; B ={1,2,3};A = 0.2
; u = 1

q (e) = 1/3 ; qA^) = for any geB and a, 2 _< ct £ 4
;

c (1) = 1 ; c (2) = 4 ; c (3) = 2 for any aeA ;

R(l) =

R(3)

0.6 0.05 0.05

1

; R(2)

1

1 0_

0.6

0.2 0.8

0.2 0.8

0.2 0. 8

0.3 0.3

0.2 0.8

0.2 0.8

0.2 0.8
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The intensities and Klimov order are given in table 4.1.

The phases (t,!-*) (I. I) (1,2) (1,0 (2,1) (2,2) (2,3) (3,1) (3,2) (i,i) (4,1) (4,2) (4,3) (1,0) (2,0) (3,0) (4,0)

n. (iO 1J.222 0. 167 0.222 O.OI 1 0.: 0.011 0.25 O.Ul 0.389 0.739 0.739 0.889

Kllnov order rank 11 10 13 15 16

Table 4.1

The weights w , , (a,i3) are given in table 4.2.
\^ ,p )

('<,L-)\^^ (1,2) (1,3) (1,1) (3,2) (4,2) (2,2) (3,1) (4,1) (2,1) (4,3) C .3) C-.3)

(1,2) 1)

(1,3) 1.017

(1,1) 1.335 0.796

(3,2) 1.372 0.889 0.096

(4,2) 1.372 0.889 0.096

(2,2) 1.372 0.889 0.096 n

(3,1) 2.07 1.063 0.267 1.047 1.047 1.047

(4.1) 2.07 1.063 0.267 1.047 1.047 1.047

(2,1) 2.07 1.063 0.267 1.04 7 1.047 1.047

(4,3) 2.266 1.112 0.339 1.341 1.341 1.341 0.091 0.091 0.091

(3,3) 2.266 1.112 0.339 1.341 1.341 1.341 0.091 0.091 0.091

(2,3) 2.266 1.112 0.339 1.341 1.341 1.341 0.091 0.091 0.091

(1.0) 5.169 2.564 1.40 3 5.695 5.695 5.695 1 . 446 1.446 1.446 2.903 2 .903 2 .903

(2,0) 5.169 2.564 1.403 5.695 5.695 5.69 5 1.446 1.446 1.446 2.903 2 .903 2 .903

(3,0) 5.169 2.564 1.403 5.h95 5.69 5 5.695 1.446 1 . 4-iO 1 . 440 2.903 2 .903 1 .903

(4,0) 5.169 2.564 1.403 5.695 5.695 5.695 1.446 1.446 1.446 2.903 ~ .903 .903

Table

The analytical bounds and the simulation results are given

in table 4.3.
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UB L LBl LB2 LB3
^f ^m

T

Analytical values 6.415 — 1.236 4.718 4.596 — — —

Analytical values under
service-sharing policy

— 6.415 1.236 4.718 4.596 0.73 —

From simulation under
policy 1

6.791 5.921 1.241 4.718 4.611 0.79 0.72 12583.1

From simulation under
policy 2

6.344 5.439 1.232 4.718 4.599 0.85 1.2 4392

Table 4.3

Policy 2 is the heuristic service policy and policy 1 is a i(j-priority

policy, where the parameters it,
,

,.(a,S) are given in table 4.4.
(,0. ,ii )

(...H)\
,•'•)

(1.2) (L.i) (1,1) (3.2) (A, 2) (2.2) (3.1) (4.1) (2.1) (4.3) (3.3) (2.3)

(1,2) no ^ ^ * ^ J> UQ ^ ^ ^ JD «

(1,3) - - JO 00 « oo „ « a n 00

(1,1) 2 n <JD *» iJO =• CO ,. m . »

(3.2) 2 3 JO 00 « « « . JO ^ -

(4,2)
-1

5 J3 - A ID ga 0,1 « ,. A

(2.2) 1 5 oo ,. « ^ oo ., O) „ «

(3,1) 1 4 JO •a .. 00 •» -

(4,1) 1 4 » 00 " oo A> m

(2,1) 1 4 .. ^ - Jl .JO ,.

(4.3) 1 5 5 5 UD JO .»

(3.3) 1 5 5 5 a. - ^

(2.3) 1 5 5 5 ^ » -

Table 4.4 (Policy 1)

The heuristic service policy with E, = 0.85 gives the best results.

The most preferred customers in the CPU, by this policy are customers

of class 2 (with the highest staying cost) and the least preferred

are the customers of class 1 (with the lowest staying cost).
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In all the DTU stations, customers of class 2 are still the most pre-

ferred and customers of class 3 are the least preferred.

From the examples presented above and from other examples that we

analyzed, we found

a) The heuristic service policy always gave the best results,

b) Neither of the bounds LB2, LB3 is better. (In [2] we show

that LB2 >_ LBl, but LBl is easier to compute.)

c) In the simulation process, the quality of a service policy can

be detected right at the beginning.
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