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PREFACE

AN apology for the appearance of another text on
railroad field geometry may be demanded by some
persons.

The author can only say that after teaching the subject
for twenty-five years he has tried to supply his own need
for a text prepared for classroom use. He hopes that his
methods will be found useful by others as well.

In making the series of books of which this volume is
one, an effort has been made to keep the idea in mind
that a text-book should be neither a treatise nor a
manual of practice.

The plan of the book is wholly different from that of any
book covering the same field with which the author is
familiar. An attempt has been made to depart from the
usual brief formal statement of problem and solution, with
the hope that the student will be led to reason for himself
from a knowledge of how the problem arises, rather than
to commit problems and solutions simply as exercises in
geometry. Some of the less commonly used problems have
been wholly worked out, but in general a considerable
portion of the work has been left for the student to do by
methods indicated.

The chapters on rerunning old lines and making right-of-
way descriptions and maps are new, and may be thought
by some to be out of place. The author has seen the time
when he would have been glad of some such hints as are
contained in these chapters.

The treatment of spirals follows Talbot, but contains
some work of Mr. J. B. Jenkins and some original work in
the development of short formulas for practical use.

204799



iv PREFACE

Portions of the chapter on turnouts contain original
methods that it is hoped will prove acceptable.

The earthwork chapters are essentially a revised repro-
duction of the author’s “Notes on Railway Earthwork,”
published in 1894 by the Rensselaer Society of Engineers.
The discussions of haul and mass diagram are fuller than
any the author has seen, and he hopes that these discussions
will lead to a clearing up of the troublesome question of
overhaul, and a general adoption of some rational method
of procedure.

The author wishes to acknowledge his indebtedness for
advice and assistance to Prof. Shelby S. Roberts formerly
of the University of Illinois, Prof. B. J. Dalton of the
Kansas State University, Prof. O. V. P. Stout of the Uni-
versity of Nebraska, Prof. W. D. Pence of the University
of Wisconsin, and Mr. Jenks B. Jenkins, Assistant Engineer
of the Baltimore and Ohio Railroad. He also acknowledges
the courtesy of William Wharton, Jr., & Co. for permis-
sion to use reproductions from their catalogue.

Although not intended for a field-book, this book is
published in pocket-book form for the convenience of
students in classroom and field.

In the near future the author hopes to bring out a field-
book on a somewhat new plan, and containing some new
matter, as a companion to this volume. Those who use
this volume for study will use some one of the numerous
field-books now published for tabular quantities needed in
computations.

WILLIAM G. RAYMOND.

SraTE UNIVERSITY OF lowa,
Iowa CiTY, Sepiember, 1910
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Railroad Field Geometry

CHAPTER 1.
INTRODUCTION.

The Railroad Line and Surveys. — The projection of
the center line of a railroad on a horizontal plane consists
of a series of straight lines joined by ares of circular curves
tangent to the stralght lines. The straight lines are called
tangents.

The object of a railroad survey is to seek a suitable
route between two proposed termini, and to lay out —
locate — the center line on the ground. When this is
done subsequent surveying operations are necessary to
“gtake out”’ the work for construction, to determine when
it is built to line and grade, to secure descriptions and maps
of the necessary right of way and station grounds, for
water supply, ete.

A suitable route is a route which, all things considered, is
the cheapest that can be found between the termini. Were
it possible to construct it, the cheapest line in first cost
might be that one in which the center line would lie
altogether on the surface of the ground, requiring only
leveling across to prepare the roadbed for the track. It
would be this one unless the detour made necessary to
keep the line on the surface and within the maximum
allowable rate of grade should so increase the length over
that of a line requiring cutting into the hills and filling
across the valleys, that the cost of this additional length
would more than balance the saving in earthwork and
bridging. This line of cheapest first cost is not always the

1



2 RAILROAD FIELD GEOMETRY

cheapest line, and moreover it is practically impossible to
keep the center line on the surface, as in ordinary wagon
road building, because of the irregularity that would result.
Hence the line that is run lies between the straight line
joining successive traffic centers and the surface lines that
might be run.

The work of the engineer — previous to construction —
consists in going over the various possible routes on foot
or on horseback and selecting that general route that he
deems best,* conducting a preliminary survey over the
route selected, and subsequently making a location survey.

The preliminary survey consists in establishing and prop-
erly connecting a series of consecutive lines forming one
broken line, on the ground, the lines being chosen to lie,
as nearly as may be judged by the engineer, where the final
center line of the constructed road will lie. The lengths
of these lines and the angles they make one with another
are noted, and a profile is made considering the several
lines as one continuous broken line. A grade line is drawn
on the profile for the purpose of making a preliminary
estimate of the quantity of earth to be moved, the height
and length of bridges, ete. This preliminary line also
serves as the base for a topographical map of a narrow belt
on either side of the line, and on this map, more or less
extensive and precise, the final line, consisting of tangents
and curves, is drawn. The line is afterwards laid out on
the ground from notes taken from the map, and this con-
stitutes the location survey. Where the ground is com-
paratively flat and the position of the line evident, little
topography is needed and the line may be located by a
trial method, 7.e., the line is run ahead for a distance, a
profile taken and examined to see what changes can be
made that will lessen the earthwork or better the aline-
ment, and, if any appear, the line may be rerun on better
ground.

* The conditions affecting his decision are di d in “El ts of
Railroad Engineering.”




INTRODUCTION 3

The lengths of the straight lines and curves are usually
expressed in stations of 100 feet. In land and other surveys
a station is a corner or point in the survey occupied by the
instrument; but in American railroad surveys it is 100 feet
of any line that is being run. Stakes are placed not only
at the points occupied by the instrument, as in land sur-
veys, but at the end of each 100 feet from the beginning
of the line. The stake at the beginning is numbered 0; the
stake at the end of the first 100 feet or station is numbered
1, at the end of the second 100 feet, 2, and so on. The
numbering does not begin anew from each point where the
direction of the line changes nor from each point occupied
by the instrument, but is continuous, so that at any point
the number on the stake indicates.the number of 100-feet

-units from the beginning of the line. These stakes are
often called stations, the térm being applied indiscrimi-
nately to the 100-foot length and the stake that marks
itsend. The context will usually indicate what is intended.
Frequently the point that must be occupied by the instru-
ment is not at the end of a full station. When this occurs
the stake marking this point is marked with the number
of the preceding stake plus the number of feet from that
point to the instrument point; thus, if the instrument must
be set seventy-five feet ahead of stake number thirty-six
the stake at the instrument would be marked 36 + 75.
The next stake would be driven twenty-five feet ahead of
the instrument point and numbered 37. An instrument
point is marked by a stout hub driven almost flush with
the ground, “centered’’ with a tack and referenced with
a guard stake driven alongside. Stations which are not
instrument points are marked only by stakes.

It was formerly customary to connect the curves directly
with the tangents as indicated in the first paragraph of
this chapter. It is now more usual to introduce a short
piece of what is known as an easement curve or transition
curve, or spiral, between the tangent and the main curve.
It will be first assumed that the curves are simple circular
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arcs connected directly with the tangents, and the subject
of spirals will be introduced later.

Curves are of three general classes: 1, Simple curves;
2, compound curves; 3, reverse curves.

(<]
Fig. 1.

A simple curve is the arc of a circular circumference.
Common B Tangent

Fig. 2.

A compound curve consists of two or more contiguous
simple curves of different radii which have a common
direction of radius at the points of junction, and centers
on the same side of the common tangent.

Fig. 3.
A reverse curve consists of two contiguous simple curves
of the same or different radii having a common direction
\

!



INTRODUCTION b

of radius at their point of junction and whose centers lie

on opposite sides of the common tangent.

Thus, Fig. 1 is a simple curve, Fig. 2 is a compound
curve, and Fig. 3 is a reverse curve.

Reverse curves are used only in laying out sidetracks
and yards. Compound curves are used when in laying
out a line around a hill or bend of a shore line of a river,
lake, or sea, a series of arcs of different radii will fit the
contour of the ground better than a single arc of one
radius.

The methods of laying out curves on the ground and of
solving the numerous problems that arise are all based on
the principles of geometry and trigonometry, and the
student or young surveyor familiar with these principles
should find no difficulty in handling any problem likely
to arise in his practice.



CHAPTER 1I.

élMPLE CURVES.
1. Fundamental Formulas. — The elements of a simple
curve useful to_the railway surveyor are the following:
The angle I, known as the intersection angle, or total

deflection angle, or central angle. It is the deflection
angle of the two tangents.

The “tangent distance” T =R tan } I. (1)
The “long chord” C=2Rsin } 1. )
The “middle ordinate” 'M =R vers } I. 3)

The “external distance” E= R ex sec } 1. (4)

(The external secant is the secant —1, and it is tabulated
like other trigonometric functions in railroad field books.)
6



SIMPLE CURVES : 7

The angle VFE = GBC = 1 I, and GF.being drawn tan-
gent at G, the middle point of the curve, equals AV;
hence ‘

E=Ttan}l. )

Also C=2Mcot il 6)
C=2Tcos}l, @

GA=gsec}I. ®)

For any portion of a curve subtending an angle A at
the center, the same equations give the corresponding
elements if A be substituted for 7.

Curves are known by their “degrees.” The degree of a
curve is the angle subtended at the center by a chord of
100 feet. Thus, in a four-degree curve a chord of 100 feet
subtends four degrees at the center of the curve; in a
‘ four-thirty ”’- curve a chord of 100 feet. subtends four
degrees and thirty minutes at the center.

From the above definition and equation (2), if D be the
degree of any curve,

50
k- sin D ®)

Hence, when D is known R may be found, and, con-
versely, if R is known, D may be found. Values of R
found by equation (9) and the corresponding logarithms
are tabulated in most engineering field books.

In Spanish American states and countries the metric
system is used and what are called metric curves. While
the practice varies, it is most common to define the degree
of curve as the number of degrees subtended by a chord
of 20 meters, this being the ordinary length of chain or
tape used. The chain or tape is divided into 100 links
or parts each 0.2 m. long.

Any circular curve in which a chord of 100 units sub-
tends 1° will have a radius of 5729.65 of those units, there-
forea 1° metric curve will have a radius of 5729.65 X 0.2 m.,
or 114593 m. As in ordinary United States practice, the
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radii of other curves will be approximately inversely as the
degrees, or exactly '
R 50x02 __ 10
™ gniD sin}D
In general, since the link unit of the metric tapeis 5 of the
meter — the measuring unit —so any linear quantities of
the first power computed in feet for the United States curve
system can be converted into meters for metric curves of
equal numerical degree by dividing by 5. But tables of
these functions giving values directly in meters are more
convenient and will be included in a succeeding volume.
Ezxamples. 1. Find the radii, length, tangent distance,
long chord, middle ordinate and external distance for
1°,2° 5° 10° and 15° curves having central angles of 30°.
2. From the foregoing find the linear elements of metric
curves of the same degrees.
2. Field Determination of ¥ and I. It may be that
the broken line ABDEF has been run on the ground and

(9a)

Fig. 6.

it is found that the straight lines AB and EF lie about
right and should be adopted for two tangents to be con-
nected with a curve. The two tangents may be produced
in the field to intersection at V, or the position of V may
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be computed from the notes of the line ABDEF. With
the transit at V the angle I may be measured. It is not
necessary so to measure J, since it equals the sum of the
deflection angles at B, D, and E.* ' ‘

If V is determined by running the lines to intersection,
the process is as follows: With the transit over a con-
venient point in the line AB, the line of sight is directed
in AB produced, and two stakes are driven and centered
close to but on opposite sides of the extension of the line
FE. The approximate position of this extension is deter-
mined by eye from two flags set at two stakes respectively
on the line EF. A string is now stretched between the
two centered stakesin’ AB produced while the transit is
being set over a convenient point in EF. With the transit
pointing in the line FE produced, a stake is set and centered
under the string for the point V.

If the point V is to be determined by computation, as is
frequently necessary owing to inaccessibility, the process
depends on the number of short lines between B and E.
If there is but one, the line being straight from B to E,

UNIVERSITY
OF

CALIFORNES

Fig. 6.

BEYV is solved as a triangle for BV, which reduced to
stations and added to the station of B gives the station of
V. If there are several lines it will be better to com-
pute by latitudes and longitudes, the line A B being assumed
a meridian.

Be= BD cos a+ DE cos (a+ B),

Ee = BD sin o+ DE sin (a+ 8),

eV = FEecot I,

BV = Be — ¢V.

* The student may prove this to fix it in his memory.
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3. Determination of D. The degree of the curve is
determined by judgment or by topography. If thereis no
topograghical limitation, the curve the engineer thinks
best is used, generally the smallest degree curve that will
fit in. If speeds of 50 miles an hour are not to be ex-
ceeded, a 3° 45’ curve may be freely used and will be
cheaper for a given central angle than a less degree, since
there will be less curved track to maintain, though actually
more total feet of track. If 60 miles an hour is to be real-
ized, the maximum degree should be about 2° 40’. This
is because 60 miles an hour on a 2° 40’ curve requires the
maximum advisable cant of the track, as does also 50 miles
an hour on a 3° 45’ curve. The maximum cant allowed
in the foregoing is 6 inches, which is sometimes exceeded,
and when so exceeded the curve can be correspondingly
sharpened.

If the topography fixes the radius, the speed must be
adapted to the curves.

On high-speed, heavy-traffic lines, it may be proﬁtable
to disregard the topographical limitations and by heavy
work in bridging, tunneling and earthwork, obtain the
larger radius required for high speed.* Occasionally the
degree is so fixed by physical conditions that it must be
computed, as will appear in the problems, but it may be
fairly said that as a rule it is determined by the judgment
of the engineer based on many considerations of differ-
ences in cost of construction and operation which cannot
be discussed here.

Ezample. The following data are taken from the notes
of a preliminary survey.

Line straight from sta. 376 to sta. 397. At 397 deflect
12° left; at sta. 401 deflect 14° 30’ left; at sta. 406 deflect

* The Baltimore and Ohio Railroad is reducing (1909) all its curves
sharper than 1° on its line between Washington and Philadelphia to 0° 30/
curves for the sole purpose of permitting fast running. One-degree curves
are allowed to remain. Six inches elevation of the outer rail on a 1° curve
would’ allow for a speed of 92+ miles an hour, which is not likely to be made
in the near future.
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13° left from where line is straight to sta. 421. Find a
curve that will be tangent to the first and last lines, and
approximately follow the line run. Hint: — To determine
the approximate degree, note that 39° 30’ are turned in
9 stations with two short stretches of 4 and 5 stations,
respectively, between the first and final tangents. Adding
half of these gives a length of 13} stations for an approxi-
mate length of curve which indicates about a 3° curve
which may be tried. The line should be sketched to make
‘the solution clear. The line may be carefully drawn to
scale and a curve fitted by trial, the radius being measured
and the nearest round-number degree or half degree
selected.

Let the student put the solution of this and all follow-
ing examples in a good note book. The results in the
earlier examples of the book are referred to and used in
the solution of the later examples.

4. Location by Deflection Angles. — The curve be-
gins and ends at whole stations. Curves are usually
laid out on the ground by ‘“deflection angles.” If the
station V of intersection of tangents is known, and the
angle I, T is computed by
Egq. (1), and the station of A
is obtained by subtracting the
number of stations in 7 from
the station of V. The be-"
ginning of the curve is known
as the P. C. (point of curve)
and the end as the P. T.
(point of tangency). In this
article it is assumed that A4,
the P. C, Fig. 7, falls at the end of a station. The
transit is set at A and with zeros together is clamped with
its telescope in the line AV; since by Geometry VAd =
4 AOd, thé transit is turned to the right through an angle
equal to § D, thus directing the transit telescope in line
with the end of the first full station on the curve. Simi-

Fig. 7.
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larly, if Ad, de, ¢f and fB are 100-feet chords, dAe = eAf =
fAB=dAV =} D.

Hence, having } D set off from AV, the chain or tape is
stretched in the line Ad and a stake driven at d. Next,
the angle dAde= 4 D is turned from Ad and the chain
stretched from d putting the forward end in the line Ae,
and a stake is driven at e. The process is continued
around the curve to B. When B is located the instrument
is placed over it and with zeros together is clamped on A.*
From the line BA the angle VBA = } I is turned to the
right and the line of sight should fall on V. This checks
the work. When V is not established on the ground, the
telescope is transited and should point in the line BC.

5. Location by Deflection Angles.— The curve begins
and ends with fractional or sub-stations. Curves do not
usually begin or end with a whole station.

For all curves under 10° it is usual to assume that any
chord less than 100 feet will subtend an angle at the center
proportional to its length; thus, a 50-foot chord will sub-
tend an angle of % D, a 25-foot chord an angle of 1 D, a
1-foot chord an angle of 145 D, etc. Assuming this pro-
portionality, the length in stations of a curve of degree D
is approximately . ’ .

;o
L= D | (10)

Equation (10) will usually give a mixed number.

The station of the P. T. is found by adding the length
of curve in stations to the station of the P. C. The
station numbering proceeds on the tangent to the P. C.,
thence around the curve to the P. T., thence on the for-
ward tangent; it does not proceed on the tangent up to .
the point of intersection and from there on.

No matter whether a fractional or ‘“sub-chord” is at
the beginning of the curve at the end, or in the middle,
lamped in asimuth with

* This expression means that the instr t is

the telescope pointing toward A.
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the deflection angle for it is } d, i.c., one-half the angle it
subtends at the center. .
If it is found that V falls at sta. 30 + 10 and I is 23° 0,
and it is required to locate a 5° curve, then
(R) 1)
T =1146.28 X tan 11° 30’ = 233.2,
and 30+ 10—(2+ 33.2) = 27+ 76.8,
which is the station of the P. C.
The first chord to sta. 28 will then be 23.2 feet and the

: o232 GD) :
deflection angle will be m X 24°=0° 34.8". The deflec-

tion to sta. 29 will be 0° 34.8’ +23° = 3° 04.8’. The de-
flections to the succeeding stations will be

Station Deflection.
30 5° 34.8’
31 8° 04.8'
32 10° 34.8’

32 +36.8P.T. 11°30.00

The length of the curve is found from Eq. (10) and added
to the station of P. C. to determine the station of the P. T.

As a check on the work the computed deflection for the
last sub-chord, 36.8 feet, is added to the deflection to
sta. 32, and the work is correct if the sum is half the
angle I. The field measurements may be checked as
before by setting at B and turning the angle } I from BA,
when the line of sight should lie in the tangent,BV.

Ezxample. Compute and tabulate the deflection angles
from the tangent at the P. C. to each station on the curve
of the example of Art. 3.

6. The Whole Curve cannot be run from the P.C. —
The instrument must be moved to the farthest stake that
can be set from the P. C., — which stake, since it is to be an
instrument point, should be a centered plug.with a guard
stake,— and the remainder of the curve run in from that
point. Sometimes several points must be occupied.
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There are two common methods of setting the vernier
when the instrument is on an intermediate station. These
are: 1. The vernier is set at zero when pointing to the
back sight. 2. The vernier is set to read the deflection

from the P.C. to the station used as a back sight. The’

second is the better method. Let it be supposed that in
the last example, Fig. 8, it is necessary to occupy stations
29 and 31. Station 29 hav-

ing been located with de-

flection angle of 3° 04.8,
the instrument is set there.
The vernier is brought to
. read zero (the deflection for
the P. C.) and a back sight
taken on the P.C. If now
the telescope be turned to
the right till the vernier
reads 0° 34.8’, it will point
to sta. 28, and if turned to a reading of 3° 04.8" it
will be tangent to the curve at sta. 29, occupied. The
telescope is now transited and the vernier brought to
5° 34.8', when the telescope will point to sta. 30, which is
now located by measuring one hundred feet from sta. 29.
Another hundred feet and a vernier reading of 8° 04.8’
locates sta. 31. With the instrument at sta. 31 the vernier
is brought to read to the right 3° 04.8’ (the deflection at
the P. C. to sta. 29) and the telescope is set on sta. 29.
If now the vernier be brought to read 0° 34.8" or zero,
the telescope will point to sta. 28 or the P. C. respectively.
If brought to read 5° 34.8’ it will poiat to sta. 30, and at
8° 04.8’ it will be in the tangent at sta. 31, occupied. If
the telescope is now transited and turned to a reading of
10° 34.8’, it will point to sta. 32, which may be located
and the work completed as usual.
It will be observed that by this method the telescope is
always pointing to any given stake when the vernier reads
the deflection from the tangent at the P. C. to that stake.

_Fig. 8.
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Ezxample. A 3° curve begins at sta. 368 + 75 and has
a central angle of 22° 30’. In running in the curve it is
necessary to set the instrument at stations 371 and 374.
Determine the readings to all stations serving as back
sights, or located from each setting of the instrument
including those at the P.C. and P. T.

7. The Curve is of Short Radius, or Large Degree.—
When it is desirable to locate a curve of comparatively
small radius with considerable precision, requiring chords
shorter than 100 feet, a convenient deflection angle may
be assumed and the length of corresponding chord com-
puted from ¢ = 2 R sin } d, }d being half the angle sub-
tended at the center by the chord. Thus, if it is desired
to locate a ten-degree curve with approximately twenty-
five-foot chords, } d is assumed to be 1 of 3 of D or 14°, and

R id
¢ =2 X 573.69 sin 1° 15’ = 25.02+ feet.

Since 135 of a foot equals about 1 of an inch, a 10° curve
run in with actual 25-foot chords and deflection angles
of 1}° would be out of position at its end by about one
inch per station.

A convenient chord length could be assumed and the
corresponding deflection angle computed from the same
equation, but as it is easier to measure distances to
fractions of a foot than to turn angles to fractions of a
minute, it is better to assume the angle.

Ezxamples. 1. Find the deflection angle necessary to
locate a 12° curve by 25-foot chords.

2. Find the chord necessary to locate a 12° curve by
deflection angles of 14°.

3. A curve is located with 25-foot chords and deflec-
tion angles of 13°. What is its radius? degree?

8. The. Curve is through a Wood. —In locating a
curve through woods, unless the transit is set at each
station, the ordinary method of deflection angles requires
a number of lines to be cleared, one from the instrument to.
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each station as well as the line of the curve for the chain-
men. To avoid so much work -the curve is located by
offsets from one or more long chords. The deflection
angle for two, three, four, or more stations is turned off
and the length of the long chord and distances on it to
points opposite the intermediate stations, and lengths of
v offsets to those stations, are

computed This may usually

be done by the aid of tables

B ‘;7\ 3 while the line of the long chord

S T is being cleared. '
- b e e ' In Fig. 9 the curve is sup-
Fig. 9. posed to begin at a full station,

The deflection angle VAF = 4 X 4 D is turned from AV
and the following computations made:

AF=2Rsin4 X 3D,
Ab=100X cos 3X 3D (4x $D-4D),
Bb= 100X sin 3X } D,
be= B¢’ =100cos § D (4Xx3D-3xiD),
Cec= Bb+ Cc’ = Bb+ 100 sin 4 D,
ce = be, eF = Ab, ¢E = bB.

Care must be taken not to use a chord so long that the
offsets become too long to permit close location of the sta-
tion stakes. Two or three stations are about all that should
be used. The principle is the same when the curve begins
and ends with sub-chords, but the work is not symmetrical
about the middle point for the first and last long chords.

When full stations are used the work of computationmay
be lessened by taking the values of long chords and middle
ordinates for the necessary number of stations from tables
of these quantities,* and using them as indicated below.

In the example given AF is the 'ong chord for four
stations, BE is the long chord for two stations, and

Ab=eF = } (AF - BE),
be=ce= } BE.
* See any field book.
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Similarly, C¢ is the middle ordinate for four stations, C¢’
the middle ordinate for two stations, and
bB = eE = Cc— CC'.

Another method of computing long chords and ordinates
is as follows: In Fig. 10, BY is } long chord for two sta-
tions, Cc’ is } long chord for four stations, etc. Bb is
the middle ordinate for two
stations, Cc¢ is the middle ordi-
nate for four stations, etc.

BY = Rsin D,
Ccd’=Rsin2D,

E¢’' = R sin 3 D, ete.
Bb = R vers D,

Cc =Rvers2D,

Ee = R vers 3 D, etc.

Because in the first method
the multiplication is very simple (only the moving of the
decimal point), the work is shorter for full stations than
in the second method. The use of the tables is best.

Ezxamples. 1. Find the necessary quantities to locate a 4°
curve of 40° beginning at sta. 768, from 3 long chords. Let
this example be solved by each of the three methods given.

2. A 3° 30’ curve begins at sta. 463+ 333 and has a
central angle of 30°. Find the necessary quantities, 50
far as practicable by each of the three methods, to locate
the curve from 3 long chords.

Fig. 10.

APPROXIMATIONS AND SHORT METHODS.

9. Approximate Relation of B and D. If a curve were
measured on the arc instead of by chords, then, since by
geometry equal arcs of unequal circumferences subtend
angles inversely as the radii, any two curves of degrees
D and D’ would have radii inversely proportional to their
degrees, or

R _D,

¥-D ()
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But since the measurement is by chords, this proportion is
not strictly true. It is so nearly true up to, say, a five-
degree curve, that it is frequently used as correct for field
work. If a ten-degree curve be considered as a curve in
which two chords of 50 feet subtend 10° at the center,
then the proportion given is still sufficiently exact for
practical field use; and if a 14° or 16° curve be one in which
four chords of 25 feet subtend 14° or 16° at the center, then
the proportion is still sufficiently exact for field use. That .
is to say, if all curves between a five-degree curve and a
ten-degree curve be measured with 50-foot chords subtend-
ing half the nominal degree of the curve, and if for curves
of greater degree than ten, 25-foot chords subtending one-
fourth the nominal degree be used, the proportion given
is sufficiently precise for field use, but the curves run are
not of the supposed degrees under the generally accepted
definition.

By Eq. (9) the radius of a 1° curve is found to be 5729.65
feet. If this be taken as 5730 feet, Eq. (11) shows that the
radius of any curve of D degrees may be said to be

5730,

R=D

(12)
This value is used in the derivation of a number of valuable
approximate formulas. In almost all problems of an exact
nature the correct value of R as determined by Eq. (9)
is used.

The author firmly believes that American practice should
be changed and the degree of curves defined as being the
number of degrees subtended by an arc of 100 feet. Al-
most all computations would be greatly simplified. The
one disadvantage would be that the chord lengths that
must be used in location would be fractional. But a table
of chord lengths which would not be extensive would
largely offset the disadvantage, and many problems would

be solved by simple arithmetic that are now solved by
trigonometry.
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10. Approximate General Functions.— It will be seen
from Equations (1) to (4) that the principal curve fune-
tions all vary directly as B, and therefore, since R is as-
sumed to vary inversely as D, these functions vary inversely
as D. If, then, the several functions for a 1° curve be
tabulated for all probable central angles, the values of the
functions for any curve of degree D may be found by
dividing the values for a 1° eurve by D. Expressed as
an equation: .

Tp°= Tlv;ox
ED°= %’ )
13
Mo Mo (
D
Cro.

Cpe=

Conversely, if the function itself be known, the cor-
responding degree of curve may be found by dividing
the given value by the value of the function for a 1° curve,
as may be seen by transposing the several equations (13).

Ezamples. 1. Find the several functions of a 1° eurve
for a central angle of 30° by
Equations (1) to (4); then for
2°, 5° 10° and 15° curves by
Equations (13), and compare
the results with those of the
examples of Art. 1. The close
correspondence of M and E
should be noticed. If the curve were a parabola they
would be equal.

2. It is desired to join the two tangents o Fig. 11 bya
curve that will lie about right for the hill if E is approxi-
mately 50 feet. What degree of curve should be used ?
Solve by Equation (13) and get the nearest whole degree.

Fig. 11.
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.11, Tangent Offsets.— It sometimes becomes convenient,
when no transit is at hand to locate a curve approxi-
mately by the use of the chain and flags. This may
occur on construction work when an engineer out with a
level, rod, and tape line, is asked by some foreman to
reset some stakes he has lost on a curve. Stakes marking
the tangent will usually exist or can be set by tape measure-
ment from side reference points, and generally the P. C.
or P. T. may be thus set. One method of setting the
stakes on the curve is called the method by tangent offsets
and is as follows:

Refemng to Fig. 10, the tangent X4 is produced by eye,
using an extemporized flag pole or simply the stakes,
and the points b, ¢, ¢, f, etc., are set, the distances being
obtained as in Art. 8. The offsets bB, ¢C, etc., are ob-
tained in the same. way and measured in to establish the
stations B, C, E, etc. The right angle is established at
b, ¢, ¢, f, etc., either by eye alone if the
work need not be very precise and the
offsets are short, or by forming three
lengths of tape into a right triangle of
sides in the proportion of 3, 4, 5.

Another method of determining the
tangent offsets for any chord length C
-from the point of tangency is as follows:
In Fig. 12, the similarity of triangles will give

C: 4
t=2% (14)
The ¢ for a chord of 100 feet is the middle ordinate for two
stations, and since in (14) ¢ varies as the square of the
chord length, the ¢ for any sub-chord c is given by
te = oo ‘ﬂf&o‘—o * (15)
For approximate values see Art. 13.

12. Offsets from a Chord Produced.—A second

method for approximately locating the stakes on a curve
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is called the chord offset method and is as follows: As in
the preceding article, if the curve begins at a whole station,
the distances Ab and bB are computed and laid off for the
station B; the chord AB is then produced 100 feet to c.
If a tangent be drawn at B bisecting cC in ¢/, c¢’ evidently
equals bB, and ¢C is twice this; hence the chord offset is
twice the tangent offset for one station. Therefore ¢
being located, the chain is swung about B as a center to
C, found by making cC equal to 2 bB, or twice the tangent
offset for one station, or middle ordinate for two sta-
tions. BC is then produced to ¢ and E located as was C.

Fig. 18. Fig. 14.

When the curve begins with a sub-chord the tangent
offset, bB, for the sub-chord and its distance, Ab, are
computed and B established; then the tangent offset and
distance for a chord of 100 minus the sub-chord are com-
puted and measured to k and K respectively. KB is then,
a full chord of 100 feet and may be produced to ¢ and C
established as before.

Ezxample. A 3°30 curve of 35° begins at sta. 373 + 663.
Find the quantities necessary, and describe the procedure,
to locate the curve by offsets from the chord produced.
Let the full descnptlon of the procedure be entered in the
note book.



22 RAILROAD FIELD GEOMETRY

13. Valuable Approximate Formulas.— The tangent
offset at the end of n stations of any curve of degree D
- is approximately

T O= 3nD. (16)

Two arcs of different radii having
a common tangent depart from each
other approximately by the same
law, if the difference of their degrees

P\ Z—— be substituted for D. This formula
should be memorized. It is derived
Fig. 15. thus:

E being the end of the nth station on the curve,
Angle ¢eAE = 3 nD.
eE = AE sin-i nD.
AE = 100 » (approx.).
el = 100 n sin 4 nD.
Assuming that the sines of small angles are as the angles
themselves,
sin p° = p sin 1°,
sin }uD°= i nDsin 1°
¢E = 3 X 100 X sin 1° X n2D.
sin 1° = 0.017453.
100 sin 1° = 1% approx.
4% 100 sin 1° = § approx.
' eE =0= inD.

The tangent offset for n stations of D° curve being  n2D
and for n stations of D,° curve } n2D,, the difference of
these or approximate separation of two curves having a
common P. C. after n stations have been run is

§n* (D —Dy). (16a)

It should be remembered that 100 times the sine of 1° is
12 approximately, and hence that two straight lines n
stations long starting from one point and with an angle
of A degrees between them, are apart approximately
1 na feet.

It should also be remembered that 100 times the sine of
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0° 01’ is 15 of a foot, and that two lines diverging at an
angle of m minutes separate at the rate of v§s m feet per
100 feet of length.

Ezamples. 1. By Eq. (16) find the tangent offset at
the third station of a 4° curve.

2. A 3° curve begins at sta. 373+ 20. Find the tangent
offset at sta. 376.

3. What is the approximate distance at sta. 376 between
the curve of example 2 and a 4° curve beginning at the
same P.C.?

14. Deflection Angles for Sub-chords. — Assuming that
the deflection angle for a sub-chord is proportional to the
length of the chord, and letting I be the length of any sub-
chord whose deflection angle is % d,

L o
%d—mx iD.

If D be 1° expressed as 60 minutes,
4 d in minutes = 0.3,

and for any curve of degree D
1 d in minutes = 0.3 ID. (A7)

This is a handy formula to remember.
Ezamples. Find the deflections for sub-chords of 20,
25, 333, 50, 62.5, 75 and 834 feet for curves of 1°, 3°, 5°, 10°,
15. Middle Ordinate in Terms of Chord and Radius.
— While it is usually convenient to determine the middle
ordinate for any chord of any curve of
degree D or radius £ by Eq. (3), since the M
central angle for a given chord of a given w
curve is readily found, still it is sometimes ’
convenient to determine the middle ordi-
nate from the chord and radius without reference to tables.
From Fig. 16 it may easily be shown that

M=R- \/Rz—@', (18)
or remembering that the product of the sum and difference

Fig. 16.
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of two quantities is the difference of the squares of
the quantities, Eq. (18) may be put in better form for
logarithmic computation, thus:

M=R—\/(R+92—)(R—%). (19)
A useful approximate value is found thus:
m—My=m—Gy
Ri—2RM+ M:= R*— (g)’

Neglecting M? as small in comparison with the other
quantitiés and reducing,

cﬁ
M= 3R (20)
Equation (20) may also be derived from Eq. (18) by ex-
8 panding the radical of that equation to two

» terms by the binomial formula. The geo-
w" metrical significance of the approximation

may be seen by the following derivation:

Fig. 17. In Fig. 17,

4B

M _ 2,
AB R

—2

AB

M=3%

If, now, AB be assumed equal to g’ which it is very
nearly for short chord lengths,
c? c

M=ix2E"3EF
Hence the approximation of the formula consists in
considering the chord of half the arc as equal to half the

chord of the arc.
Equation (20) may be altered in form so as to make
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less work in computation, though the new form is not so
easily memorized. If §7339 be substituted for B in Eq. (20),
and the fraction reduced to a decimal, the result is

For c in stations of 100 feet M = 0.2182 ¢2D,

For ¢ in feet M = 0.00002182 ¢2D, 1)

and the value from these equations is correct to within
0.001 ft. for any chord not exceeding one station of any
curve not exceeding 10°. It is slightly in excess for curves
under 6° and a little too small for sharper curves.

It is sufficiently precise for determining the middle
ordinate of a 33-foot rail for any curve likely to be laid
out, even in the yard, for a steam railroad. It is custom-
ary to bend the rails for curves sharper than from 2° to
4°, according to the custom of the particular road, before
laying, and the sufficiency of the bend- R
ing is determined by measuring the <
middle ordinate of the bent rail. S,

For all curves of 6° and under Eq. ‘ .
(21) is sufficiently precise for locating Fig. 18.
through woods by offsets from a long
chord of not more than 4 stations. The error for a 6°
curve is less than 1 inch.

Having the middle ordinate for 100 feet or other chord,
the middle ordinate of the chord of half the are is found to

be approximately %l .
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Ezamples. 1. Using Equations (19) and (20), find the
error of Eq. (20) for the following chords and curves:

(a) 10° curve, chords of 33 feet, 100 feet, 200 feet.
(b) 5° curve, chords of 33 feet, 100 feet, 200 feet.
(¢) 1° curve, chords of 33 feet, 100 feet, 200 feet.

2. Find the error of Eq. (21) for a

A
M R '20° curve and chords of 33 feet and 100
A feet.
4 16. Ordinates at any Point of a

@™ Chord.—The student may show that
Fig. 19. at any point L distant from F by a
distance a, on the known chord c,

K-vVETaE-a-\/(r+§ (r-5) @

An approximate value may be found by considering the
curve to be the. arc of a parabola in which the tangent
offset (abscissa) varies as the square of the tangent length
(ordinate).

M is the tangent offset for a tangent ﬂA\ ™

length of ;— and, as has been shown, is (S o ; 7
¥ .

M=2 F
=25 ig. 20,

The tangent offset ¢ for the tangent length a is then
found, thus:

given by

K=M-t=M-2M% =M(1—4%:) approx.  (24)
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If a be successively at the quarter and eighth points
of the chord,
s a=}e, K=1 M approx.
a=tc, K=3%M  approx.
a=4c¢, K=1sM approx.

Again from Eq. (24),
‘“”(”’ ) FEre)G-e)
st

And since M= §72 approx.,

K= Q2X—R approx. (25)

Or, the ordinate at any point of a chord approximately
equals the product of the segments of the chord on either
side of the point divided by twice the radius of the curve.

Substituting -5;7% for R gives the value in terms of the

degree of the curve,

_ 812X QX SxD
K= 10,000,000 = . 26)



CHAPTER III.
FIELD PROBLEMS IN SIMPLE CURVES.

17. The Point of Curve or Point of Tangent is Inacces-
sible. — Let it be supposed that the point of curve only is
inaccessible, but that the line of the two tangents and the
angle I have beep obtained
and the station of the P.C.
has been computed. There
are many ways of overcom-
ing the difficulty

1. If the vertex V is
readily accessible, the tan-
gents may be run to inter-
section, the P. T located
and the curve run back-
wards as far as possible.

Fig. 21. 2. If it is not convenient

to run the tangents out, the

ordinary surveying methods for passing an obstacle may be
used to recover the tangent line beyond the obstruction at
the nearest convenient point to the P. C., as K in Fig. 21:
The d'stance from the P. C. will be known, and this dis-
tance is the tangent distance T for some central angle d
wh'ch may be found from Eq. (1), p. 6. This angle d
may be turned from the advance point on the tangent
and the distance T; run ahead to a point®on the curve.
The station of the point will be known from the station
of the P. C. and the angles d and D, and the curve may be
run backward and forward from this point as necessary.

3. If the obstacle to setting the instrument at the P. C.
is not such as to prevent chaining, a point may be located

28




-

FIELD PROBLEMS IN SIMPLE CURVES 29
on what would be the curve produced back of the P. C.
a8 in method 2, and the curve run ahead from this point.

In either method 2 or 3 a point on the curve could be
located by tangent offsets at the subvertexes K or K’, or,
bisecting the angle at K or K’, the external distances for
the angle d might be set out to the curve, but these dis-
tances being short, some other method is better.

4. Such another method, using the tangent offsets, is to
assume for the purpose of computation a distance on the
curve that will clear
the obstruction; to
compute the tan-
gent distance and
offset; and to lay
these off forwardand
back of the P.C. by
the method of 2;
then, with the tran- -
sit on the forward

Point. the long chord .
joining the two -
points is used for a o
back sight, and the Fig. 22.

curve run in for whatever stations may be reqmred back
and forward.

If the P. T. is inaccessible, the same methods are
used as for the P. C., with such modifications as may be
necessary.

Ezxamples. 1. Let Fig. 21 represent a case in which the
P. C. is at sta. 263 + 60, D = 4° 00, [ = 33°00". It is
50 + feet from the P. C. to dry ground forward and 60 feet
backward. Make the necessary computations and deter-
mine the steps to be taken to recover the curve at, say, sta.
265, and to locate from there sta. 264 4 50, 266, etc., to the
P.T.

2. Determine what to do to pass the obstructed P. T.
of the curve of Example 1, the obstruction being a small
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building about 20 feet square at about the center of which
the P. T. falls.

18. An Obstruction on the Curve. — If an obstruction
occurs on the curve, Fig. 22, a distance Bb that will clear
the obstruction may be measured normal to the tangent
at a convenient station, B. Letting this distance be a
middle ordinate, the corresponding arc and long chord
may be computed and the half chord laid off at right
angles to the offset to @. The direction of the tangent at
@G is obtained by turning an angle from the long chord
equal to half the arc subtended. Any stations between B

and G and beyond G may then

be located in the ordinary way.

Other methods will suggest

themselves, as running out the

tangents AV’and VC, or running

an inverted curve from 4 to C.

Ezample. Let the curve of

Example 1, Art. 17, be clear

except for a building 20 feet

square covering sta. 266. As-

Fig. 23. sume a method for passing

the obstacle, make the neces-

sary eomputations and determine the steps in the field
work.

19. To Change the P.T. or P. C. — Let it be supposed
that the curve has been run in or computed and found to
end in a fairly wide stream, hence on a bridge, which is
undesirable, and that the tangents lie about as they should.
If Fig. 23 represents the condition, the radius may be short~
ened to R, giving the curve AB, or lengthened to R, giving
the curve CD. If there is nothing but the alinement to
consider, the longer radius is the better, since if the shorter
is used the beginning of the spiral is very likely to fall on
the bridge, and in general a longer radius curve is to be
preferred.

There are two methods of attacking the problem: 1. A
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distance PT — D, sufficient to clear the stream, may be
assumed to be added to the already known tangent dis-
tance for a new tangent distance by which, since I dees not
change, the new radius, Rs, may be found from Egq. (1), p. 6.
2. A new degree, D, greater than the original degree, D,
may be assumed such that the increase in tangent distance
will probably be sufficient, and the correctness of the
assumpt on tested by finding the new tangent distance.
The second method is probably the better, since it gives a
round-number degree rather than a fractional degree,
troublesome to lay out. It is true that a round-number
degree may be found by the first method by assuming the
nearest convenient number to the precise value found
from the new tangent distance, but this would require the
computation of a new tangent distance, hence the second
method involves less labor. As the curve must be run in
anew, the P. C., C, must be found. The movement of the
P.C., m, is found from the difference in the two tangent
distances, thus:

T=Rtan}1.
T:= R.tan 3 I.

m= Tg—T=(R2—R)taD§I. (27)

The work is shortened by finding 7 and 7', from a table of
tangent distances for a 1° curve.

Ezxamples. 1. A 3° curve begins at sta. 367 + 70 and
ends at sta. 374 + 20 in a stream. If the P. T. were moved
ahead about 80 feet the stream would be cleared; what
curve shall be used ?

Suggested solution, which the student should verify:
From a table of tangents to a 1° curve it is found that a
3° curve for a central angle of 19° 30’ has a tangent dis-
tance of about 328 feet, while a 2° curve for the same cen-
tral angle hasa tangent distance of about 492 feet or 164 feet
more than that of the 3° curve. The tangent distance be-
ing about proportional inversely to the degree, the tangent
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distance of a 2° 30’ curve would be about a mean ot those
of 3° and 2° curves, and hence would give the required
80 feet more or less. Therefore a 2° 30’ curve may be used.
The student may complete the example, getting the exact
change in station of P.C. and P.T. It should be noted
that while the rough approximation to the required curve
gives ample precision for most cases, the approximating
must cease with the selection of the curve, the computa-
tions from this point on being carried to the limit of pre-
cision of measurement. It may be said here that in general
all computations of quantities to be laid out, as a.ngles or
distances, must secure results of the degree of precision

Fig. 24. Fig. 25.

possible in the measurement. This means the nearest
one-hundredth foot in lineal measurement and at least
the nearest minute in.angle work. The student must
learn to distinguish between what may be approximated
and what must be precisely determined.

2. In example 1, what is the difference in total length
of line via the 3° curve and the 2° 30’ curve; and what is
the change in position at the middle of the curve ? :

20. To move a Tangent of a Located Curve a Given Dis- |
tance Parallel to Itself. — Reference to Figs. 24 to 26 will
show that there may be three general cases: 1. Fig. 24,
there are no conditions other than that the tangent is to
be moved the given distance K; 2. Fig. 25, the tangent
is to be moved through the distance K, and the P.C. is
to remain fixed; 3. Fig. 26, the tangent is to be moved ‘
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through the distance K, and the curve is to end at a point
directly opposite the former ending. It will be noted that
gince the changing tangent re-
mains parallel to its first posi-
tion, there is no change in the
angle I. In the first case the
curve may be imagined moved
along the first tangent until it
becomes tangent to the second
tangent in its new position, and
since the degree does not change,
it is only necessary to find the
new stationing. The new P. C. is found by computing the
distance AA’ =VV’ = BB’ = 00’, through which the curve
is moved. The student may show that this is given by
K
AA = wnl . (28)
In the second case it is to be noted that since neither
the central angle nor the position of P.C. is changed, the
long chords of whatever curves may be run will all lie in
the same straight line; hence, if the original curve AB — 0
and the new tangent be drawn, the new P. T. will be found
at the intersection of the new tangent and the long chord
produced if necessary. The new center will then be found
by drawing a final radius through the new P.T. parallel
to the original final radius, and noting the intersection
with the radius from the P. C., produced, if necessary. It
will be evident that the degree of curve is changed and
the problem is to find the new radius (i.e., the new degree).
There are several methods of solution. Perhaps the sim-
plest considers the triangle BB'm, the construction of
- which will be evident. The student may show that it is
an isosceles triangle and that from it the relation between
the radii is found to be, according as the tangent is moved
in (toward the center) or out:

rR-RT-E-. 29)
vers 1

Fig. 26.
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That is, the change in radius is
K .
vers [
The student should find at least one other method of
solution. -

In the third case the radius (or degree) also changes as
does the position of the point of curve. Since the new
final radius is to lie in the same line as the original final
radius, and the first tangent is not changed in position, if
the new tangent be drawn, the new vertex is found at V’
and the tangent distance is fixed at V’B’. Since the
tangent distances of a curve are equal, the distance V’'B’
may be laid off from V' to A’ and the new P. C. is estab-
lished through which the new first radius may be drawn to
an intersection with the final radius (produced if neces-
sary) for a new center 0’. The problem here, then, is to
find the new radius and the movement AA’ of the P. C.
As before, there are several methods of solution. One
of the simplest uses the external secant found by extending
the final radius to M. The student may show that the
relation of the radii is given by

R'=R

) (30)
ex sec
according as the change in tangent is toward or from the
center, and that the change in P. C. is given by )
AA’= (R—R')tanl (31)
and also by AA’=Kecot 1. (32)
The P. C. is moved ahead when R’ is less than R, which
occurs when the change in tangent is outward, and back
when the change in tangent is inward, and this will be
shown by the sign of the parenthesis of Eq. (31).
The student should develop one other method of solution.
Ezxamples. 1. A 5° curve has been run from sta. 367
-+ 80 to sta. 372, where it is found that the forward tangent
will lie better if it be moved 15 feet toward the center.
Find the new stations of P. C.and P. T. and the deflection
angles to each full station of the curve.
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2. In example 1 let it be supposed that the P. C. must
remain fixed. Find the necessary quantities to relocate
the carve.

3. In example 1 let it be supposed that the curve must
end on the same radial line as before. Find the necessary
quantities to locate the curve.

21. The Forward Tangent Changes its Direction.—
(a.) Let it be supposed that a curve of degree D, radius R,
had been run for a central angle of I° from A to B, and
that it is found desirable to
change I by a given angle P,
the vertex to remain fixed. There
are two possibilities: (1.) There
are no other conditions, (2.) The
P. C.is to remain fixed. Under
the first condition the curve is
imagined moved along the first
tangent until it becomes tangent
to the new position of the final
tangent. Since the angle has changed the tangent distance
will change and the P. C. will be moved ahead or back by
the difference in tangent dis-
tances (Eq. 1) for the two
central angles. Under the
second condition the "tan-
gent distance remains fixed
and a new degree curve must
be computed from this tan-
gent distance and the new
central angle.

(b.) Let it be supposed
that the forward tangent
is to' change its direction

Fig. 27.

Fig. 28,

by the angle P at the P. T., which is to remain fixed in

position. Reference to Fig. 28 will show that it is
necessary to find a new degree (radius) and the new
P. C., and that both curves have the same versed sine

Y



36 RAILROAD FIELD GEOMETRY

for the whole central angle, which furnishes the clue to
the solution for the new radius. It will also be noted that
the difference in the sines of the two curves is the change
in the P. C.

The student may show that
y_ pversl
k= RversI ’ ‘ 33)
AA’=4+ (Rsinl—-R'sinl’). (34)

I’ is known from I and P and the + sign refers to the
direction of change of P. C. forward or back.

Ezxamples. 1. A 3° 00’ curve begins at sta. 7464 25
and ends at sta. 752 + 75. It is found desirable to in-
crease the deflection angle I at the vertex by 3°; what
change is required in the P.C. and what will be the new
station of P. T.?

2. Inexample 1 it is required to retain the original P. C.
What is the new degree of curve and station of P. T ?

3. In example 1 the change of direction is to be made
at the P. T., which is to be retained. Find the quantities
necessary to relocate the curve.

22. Other Methods of Changing Tangents. — Let it be
supposed that a curve of degree D has been run from A to
B and that it is found that the line will lie on better ground
if it 'be shifted over K feet (inside in the Figure). If B
is the end of the curve and the tangent lies in the right
direction, the change may be made
by the methods of Art. 20. If the
direction of the forward tangent
is not fixed, or B is not the end of
the curve, the change may be
made by the approximate method
of Art. 13, using Eq. (16a), the
P. C. remaining fixed and the

Fig- . degree changing. Indeed, by this
method the direction of the forward tangent may be pre-
served by putting in the same total angle I instead of the
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same number of stations. The resulting movement of the
tangent will not be exactly K.

- What is perhaps a better way, since it will not result in
troublesome fractional degree of curve, is to assume a new
degree, less or greater than the original degree, according
_ as the curve is to be thrown out or in, and from this to
determine by Eq. (16a) the number of stations of the curve
to be changed. If the first assumption of a degree proves
impracticable, a second can be made. This method
would be used when the curve is long, the necessary change
not great, and the first part of the curve lies well on the
ground. )

The problem may be exactly solved as follows: —
From Fig. 29 it is seen that 00’ =R — R’ and that there-
fore Om = (R— R')cosa. It is also apparent from the
figure that R= B’4+ Om+ K. Therefore
R—-R =0m+K
=(R—R')cos a+ K.
Whence

cosa=1- o, (35)

The degree of curve D’ is assumed, which gives R’, and
when a is determined, n, the number of stations to be

changed, is given by n = Ba + The result of these last two

methods is a compound curve. The second branch is
run in by establishing the P.C.C. (Point of Compound
Curve) on the first simple curve, setting the transit at
this point, and, after getting the line of collimation in the
tangent at the P. C. C,, running the second branch as a
simple curve from the P.C.C. The method of setting the
deflection angles is exactly as explained in Art. 6, but
should the transit be set on the second branch at any other
station than the P. C. C., the line of collimation will not
point to stations of the first branch when the vernier is
set to read the deflection from the P. C. to those stations.
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Ezamples. 1. A 4° 30’ curve has been run from sta.
538 + 75 to sta. 546 + 25, and it is found desirable to
ghift the forward tangent about 25 feet outward and to
keep it parallel with its present position without changing
the first few stations of the curve. Using Eq. (16a) and
assuming that a 2° 30" curve will answer the purpose, find
the stations of P.C.C. and P.T.

2. Solve example 1 by the exact method, using Eq. (35),
and note the variation from the approximate results.

. 23. To pass a Curve Through a Given Point. — 1. The
point is given by the offset K from a given station H on the
known tangent ST, the forward tangent and angle I being
undetermined. It will perhaps be evident without demon-
stration that an indefinite number of curves can be passed
through P and tangent to AV. A curvé determined from
any other consideration, as convenient degree, or approxi-

Fig. 30.

mate position of P. C., desired, may therefore be assumed
and other quantities computed. If D is assumed, R is
known, whence « and L may be computed, giving the sta-
tionof P.C. If the P. C. is assumed, again « and B may be
computed, knowing L and K. If approximate results are
sufficient, Eq. (16) may be used. Again K is the middle
ordinate of twice the number of stations from 4 to P,
and a table of middle ordinates may be used to find D or
AH (approx.) = n.

2. The point P is given as before, but I and V are
determined. There is now but one curve that will join
the two given tangents and pass through P. It will be
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convenient first to find AV, the tangent distance, from
which and I the radius is found. Let it be imagined that
. the curve is drawn in, as it may be by trial on the drawing
board, and let a line be drawn through P, making an angle
41 with ST at V’. This line will be perpendicular at F to
the bisecting line from V, and FG will equal PF. From
the triangle V'HP, V'P and V'H may be found, giving
V'V, and hence V'F and PF and FG and PG. Then from
the geometric relation of a tangent and secant drawn from
a point without a circle, AV’ may be found, giving the
station of P. C. and the tangent distance AV from which,
with I, R is determined. If the determined D is a trouble-
some fraction and P need not be exactly on the line, the
nearest value of D to that determined that can be expressed
by an even* number of minutes may be assumed, a new
tangent distance, or the change in tangent distance, com-
puted, from which the P. C. is found and the curve run in.

Ezamples. 1. Opposite sta. 367 and 31.3 feet distant
is a point through which it is desired to pass a curve that
shall begin approximately at sta. 364. What curve will
answer and what will be the station of P.C.? Solve by
three methods, one of which shall use a table of middle
ordinates. -

2. Opposite sta. 367 and 31.3 feet distant is a point
through which it is desired to pass a curve that shall meet
the two tangents that make an angle of 36° at sta. 368 +
67.7. Find the station of P. C., degree of curve, and
station of P. T. '

24. Miscellaneous Problems.—1. A 4° curve to the
right begins at sta. 752 and ends at sta. 760 in a tangent
which it is found would lie better at sta. 765 if it were 17
feet to the right measured at right angles. It is required
to determine how much to add to the 4° curve that the
tangent may pass through the required point. The new
tangent is not parallel to the old one.

* An even number is assumed that the deflection angle which is half
the degree need not be fractional.
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2. A 2° curve to the right begins at sta. 373 and ends at
sta. 384, from where the line is tangent to sta. 400, where a
4° curve to the right begins and continues to sta. 408. It -
is found that the line will lie much better if, in the vicinity
of the P.T. of the 2° curve, it can be thrown out to the
left about 14 feet. Application of Eq. (16) shows that
this may be ‘accomplished if the 2° curve be compounded
to a 1° curve at sta. 380. It is required to find the new
total I of the 2° and 1° curves, and therefore the sta. of
the P.T. that the new forward tangent may come tangent
somewhere on the 4° curve, and the station of the point
of tangency which will be the new P.C. The portion of
line here indicated is part of a long located line, hence
the stationing must not be disturbed further than neces-
sary. It will therefore be advisable to introduce a long
station (i.e., more than 100 feet) just after the P. T. of the
1° curve or just preceding the new P. C. of the 4° curve.

It is suggested that a part of this problem be solved by
the use of coordinates (latitudes and longitudes) and that
the origin of coordinates be taken at the center of the 2°
curve, with the meridian in the original final radius. It is
also suggested that the solution be first by the use of
letters for the several quantities, and that the problem be
drawn by trial before an algebraic solution is attempted.

3. The following are notes of a part of a located line.

Sta. 367 + 50 P:C. 4°30’ R. (4° 30’ curve to the right)
Sta. 373 P.T.

Sta. 376 P. C. 5° R.

Sta. 382 +- 50 P.T.

This gives what is known as a broken-back curve, which
is considered less desirable than a continuous curve, even
though the middle portion be considerably flatter than the
two ends. It is required to replace the three hundred
feet of tangent by a 1° curve. The quantities to be found
are the stations of junction of the 1° curve with the
4° 30’ and 5° curves. The length of line will be slightly
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changed, hence to retain the old station numbering a long
station will be introduced at the end of the 1° curve. This
problem introduces compound curves, but requires no
further knowledge of them than that joining curves have
" common directions of tangents and radii at the points of
junction. The best method for avoiding the broken-back
curve of this problem is the introduction of spiral ease-
ment curves, but for this the student is not yet pre-
pared.

4. An existing 3° 30’ curve is to be connected with a
straight line which intersects the curve at a point deter-
mined in the field and at an angle of 20° with the tangent
at the point-of intersection. Reference to Fig. 31 will
show that within limits any curve may be used for the
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connection which may be inside or outside the existing
curve as shown at QF and Q'F’, or in either of two other
positions that the student may discover, for it will appear
that any curve of not too great radius can be drawn on a
piece of tracing paper and then moved until it becomes
tangent.to the line and curve. Let a radius be assumed for
the connecting curve less than that of the 3° 30’ curve,
say that of a 5° curve, and let the connection be inside.
The problem is to find the distance PQ or, what is the same
thing, the angle ¢. The lines of the figure suggest the
method of solution. The student may also solve an out-
side connection.
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5. From a point P, Fig. 32, it is required to run a line
that shall be tangent to the 4° 30’ curve of center 0. In
the field a line is run to intersect the curve, say at K, and

Fig. 32.

the angle « is measured between the line and a tangent
at the point of intersection. Let the length of the line PK
be 600 feet and the angle « be 3°. The problem is to find
the length of curve K@ from K to point of tangency, the
angle ¢ to be turned at P, and, if desired, the length PQ.
The line PK is not run to L but KM and KL may be
computed from the known data, and PQ determined from
the geometrical relation of tangent and secant,.

6. Let it be required to connect an existing straight
track and curve. The degree and radius of the curve will
be known. Setting a transit at any convenient point P on

[

Fig. 33.

the curve, find the direction of the radius at that point
and run a line in the radius extended to an intersection
with the straight track, measuring the angle of intersection
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« and the distance PQ. It will be evident that any number
of curves (within limits) may be fitted in as a connection,
therefore aradius for the connecting curve must be assumed.
The problem is to find the distance PA or equivalent
angle POA, the distance @B, if desired, and the angle
BO'A.

7. Let it be required to connect a curve and external
straight line as in Fig. 34, the exist- '
ing curve being of center O, radius
R; the connecting curve being AB
of radius R’ to be assumed.

It should be noted in problems 4,
6, and 7 that the assumned radius of
the connecting curve must be prac-
ticable. It is not possible to assume Fig. a8,
any radius at will, but in any giver. case the existing data
will suggest a rational
value for a radius.

8. A curve AB of de-
gree D and central angle
I leaves a tangent ST
at A and joins a tan-
gent BM at B. It is
required to find where a
curve of degree D shall
start on the tangent BM
to join the tangent ST, where it will end on ST and its
length.

9. In Fig. 36 let it be required ®
to connect the curve ABM of given
radius R with the tangent ST by a
curve of given radius R’. The
student should find all quantities
necessary to make the connection.

10. In Fig. 37 it is required to connect the two given
lines ABM and AEF by a curve of given radius R".

Problems 8, 9 and 10 are called Y problems, and arise

A

Fig. 35.

A
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when two tracks at a junction point are to be connected,
or where a Y for reversing engines or trains is to be laid out

Fig. 37.

temporarily or permanently at small branch terminal sta-
tions in place of a turntable.




CHAPTER 1V.

COMPOUND CURVES.

25. To Find the Elements of a Located Curve. —
Compound curves are usually fitted to the ground by trial
on the ground or on a topographical map. They may be
of several branches, and when so, the problems that arise
may usually be solved by an extension of the methods here
suggested for a curve of two branches If a compound
curve ABC (Fig. 38) has been located on the ground and
it is desired to compute its tangent distances AV and VC
(always unequal, with the longer tangent next the arc of
longer radius), it may be done
as follows: Draw the common
tangent at B, the P. C. C,, and
note that AV, =V.B is the
tangent distance for a simple
curve of radius Ry, and central
angle A,, and that BV,= V,C
is the tangent distance for a
simple curve of radius R; and
central angle A.. These two
radii and central angles are
known. The sum of the two
tangent distances, VB and BYV,, is V,V,, and the sum of
A; and A, is I, therefore in the triangle VV,V, there are
known the side V,V, the three angles A, A; and the
supplement of I.

The triangle may be solved for V.V and VV, which
added to # and &, respectively, give AV and VC, the
required tangents.

If the long chord AC is required, it may be obtained by

45

Fig. 88.
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solving the triangle AVC, in which two sides and the
included angle are known, and by the same solution the
angles VAC and VCA may be had if desired.

Ezxample. The notes of a compound curve are

P.C. at Sta. 346+ 50 4°30' R
P.C.C. at Sta. 351 70 R
P.T. at Sta. 356+ 50.

Required the two tangent distances, the long chord and
the angle between tangent and chord at the P. C. and
P.T. :

26. Some Limitations. — In the solution of the prob-
lem of the preceding article the following equations,
which can be readily obtained by reference to Fig. 38, are
used:

I= A1+ Ay (36)
L= R1 tan '} Al,
2= R, tan } A,
Vive=ti+ 8,
VV.= sin A; (R, tan :m Al] + R, tan } Ay) , @7
VVie= sin A; (B, tan s%inAll‘l" Ri tan 3 As) R (38)
Tl = tl +VV1
To=t+VV.) (39)

Consideration of Eq. (36) shows that if the initial and
final tangents are fixed in direction, u.e., if I is fixed, only
one of the A’s may be assumed at will, since the sum of
the two A’s must equal 1.

It is evident, therefore, that there are some limitations
in the assumptions that may be made when fitting a curve
to the ground by trial. For instance, considering Fig. 39,
it is evident that a compound curve of a short radius fol-
lowed by a longer radius will best fit the hill and join the
two tangents. VX, VY, which may be supposed to be fixed
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in direction and position. It has already appeared that
the two A’s may not be assumed at random or at will,
because if they are they may not equal . Just what ele-
ments may be assumed it is the purpose of this article to
show.

It will be considered that there are seven elements of
" the curve, I, Ay, Ay, T, T, Ry, Rs. Four of these, including
only two angles, may be assumed at will. This is true only
mathematically. Prac- e
tically four, mcludmg
only two angles, may
be assumed if the as-
sumptions are within
certain practical limits.

Considering the tri-
angle VV1V2, if two
angles are fixed, the
third is fixed and
therefore the form of
the triangle. If one 4
gide is also fixed, the triangle is determined in all di-
mensions. , If the two radii be assumed, then, since the
two A’s are determined, the two subtangent distances
VB and BV, are determined, fixing V,V, and the triangle
VV,.V.and also T, and T, since these are respectively made
up of sides of the triangle and the fixed subtangent dis-
tances. Four elements have been assumed, 7, one 4, and
the two R’s, and the other ¢lements have followed. If T,
R, Arand I be assumed, A, is at once fixed and the form of
the triangle VV,V. determined, the subtangent V.B=
AV, is determined and hence V.V, and hence the triangle
VV.V,, and hence BV, and hence R, and 7. The student
may make other assumptions. If R, R; A, and A, are
assumed, giving the problem of Art. 25, I is fixed, but so
long as the curve remains simply a mathematical con-
ception it may be shifted in any direction to fit the
ground.

Fig. 39.
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In compound-curve problems other than those like
that of Art. 25, the initial and final tangents are usually
fixed in position, thus fixing I, when but three other ele-
ments of the curve may be assumed at will

Sometimes the tangent distances T\ and T are fixed,
when but one more assumption, usually that of a radius,
may be made. Not infrequently the first curve is assumed
and run for some distance, thus fixing also the first tangent
distance, and it is required 4o find what central angle and
radius will complete the curve.

Some of these problems may be best solved by reference
to Figs. 38 and 39 and the transposition and composition
of equations (36) to (39) inclusive; others are better
solved by means of the quantities considered in the next
article.

27. A Fundamental Proposition. If two or more circular
arcs of equal angle begin at the same point on a common

tangent, their chords

lie in the same straight
/ line.

Since the angles be-
tween the chord of an
e LS arc and the tangents at
its extremities are equal
------- S —Xg and each is half the
R angle subtended by the
arc, the chords of the

o equiangular arcs, AB,
\ AC, AD, make equal
0Oy angles with the com-

Fig. 40. mon tangent at A, and

hence lie in the same

straight line. If T, T, and T, be the respective tangent
distances AV, AV, AV,:; R R. and R; the respective
radii, and if Bp:p. and Cps be drawn parallel to 40,0:0,,
and Azzsxs parallel to-V.B, V,C, and VD and hence
perpendicular to each of the three final radii, and if

Vs,

Yal-----—l- ————————
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Ayyays be drawn parallel to the three final radii and
hence perpendicular to the three final tangents, the fol-
lowing relations may be established, noting that Cp.D,
Bp,C and Bp.D are igosceles triangles — which the stu-
dent may prove:

2, B=R,versI = Ay, = T, sin I,
2L =R.versI = Ay,=T,sin I, (40)
zD =Ry vers I = Ay, = Tssin I.
k:C = Bp, vers I = (R, — Ry )vers I = yyy» = (T.— Th) sin ],

ksD = (R;— R,) vers I = (Ty— T\) sin I, (41)
k:D = (Rs— R) vers I = (T3 — T») sin I.
"AB=2R,sin}I BC=2(R:~ Ry)sin } 1,
AC=2R;sin}I} .. {BD=2(R:—R))sin%l, (42)
AD=2R,sin I CD=2Rs—Ry)sin}l. _. °
\ Oy =Ry cos I,
O3 = Ry cos I, - (\ (43)
0.3:.=R,cosl./ Ll : s
ypVi=Ticos I,/ ()%
y:Va=Tsycos I, K - ‘.k.(44)
ysVa=T cosI. L
Any=RisinI= T+ Ticos I =T, (14cos I), *
Azs=R:sin I = T+ Tocos8 I = T, (14 cos I), (45)

Axy= Rysin I = Ts+ Ty cos I = T5 (1+ cos I).
Z@:=Bky= (R:—R)sinl =T, —~ T+ (T; — T) cos 1

= (T:— T1) 1+ cos I),
Tixy= Bky= (Rs— R)sinI = (Ts— T)) 1+ cosI), (46)
Zsty = kiks = (Ry— Ro)sin I = (Ts —T.) (1+ cosI).

In solving the problems that follow, a general figure of a
compound curve should be drawn, and that branch about
which the most is known (there will always be at least
one more item known about one branch than is known
about the other) should be produced till it ends in a tangent
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parallel to the ending tangent of the other branch. One
or two construction lines will then suggest themselves and a
“1bereadily obtained.
lems.
T, and T’ are given,
nd the compound
nnect A and B, Fig.
er element must be

hat element be R,.

d the two A’s must

In this problem R,

. to C, the construc-
1 y be shown that

(R:— Ry) sin A= T+ T1cos I — RysinI, (47)
(R:— R,) vers As= Ty sin I — R, vers I, (48)
Then, since vs—;:s‘ji = cot } A (Trigonometry), i
T2+ Ticos I — Ry sin ]
cot § 4. = T.sin I — R, vers [ (49)
Having As, A, is known, and R, may be found by substi-—
tution in (47) or (48). Using (48), <
Bo= R+ TysinI— R, versI (50)
Vers A,
There are two practical limits in the choice of R,: first,
it must not be larger than that of a simple curve joining
the tangents, at which limit R, becomes infinite; second, it
must not besmaller than the allowable curvature of the road.
b. Let the assumed element be R.. The student may
show from a new figure, producing R,, that
(Rg— Rl) sin A= Rz sinI— Tl— Tg Cco8s I, (51)
(R:— R,) vers A1= R vers I — T, sin I, (52)

_RzSillI—Tl— TgCOSI
cot $4: = RiversI— Tysinl 3)
R,=R,—R’Vem1— TasmI, (54)

vers Ay
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The practical limits of choice for R; lie between infinity
and that value which can be used with the minimum
practical value of B;. The student should draw some
figures showing the effect of varying the values of R,
and R..

¢. The assumption A, or A, is never made, and while
the computation of the other quantities from this
assumption is possible and not difficult, it is tedious
and will not be given, since it has only mathematical .
interest.

Ezamples. 1. At station 763+ 62 a deflection angle
of 54° 30’ is made to a new tangent. A six-degree
curve begins at sta. 758 and the curve is expected to
end on the new tangent 685 feet beyond the intersection
point. What will be the 'station of the P. C. C. and
what the radius of the second branch and the station of
the P.T.? "

2. a. If no radius is assumed in the foregoing example,
how many possible curves can be located between the two
tangent points ? b. If the first curve be made less or more
than six degrees, what will be the effect on the second
curve and the two central angles ? ¢. What is the smallest
degree that can be used for the first curve ? d. Neglect-
ing the item of direction of motion, can the two tangents
be connected by a compound curve when the first branch
is of less degree than found above, and if so, what will be
the form of the curve? e. By experimental diagrams
* find whether there are other ways that are possible geo-
metrically, even if not practical, of connecting the two
tangents when the first degree is smaller thép the minimum
computed.

II. If I, T\ and R, are given, gither A, Ay, R: or T.may
be assumed. As the problem would most likely occur
either A, or T; would be known or assumed. If the latter,
the problem is the same as I, a; if the former, it remains to
find A; and R,. T, may also be found, but would not be
needed for anything but a possible check or for platt'ng,
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for which it may or may not be necessary, according to the
method of platting.
From Fig. 41,

Tysin I — R, vers I = (R.— R)) vers A,.
A is known, since A1+ 4: = I; therefore, Eq. (50),

Ri=Ri+ T,sin I — R, versI,
vers A,

solves for R,. T» may be found from Eq. (47) to be
T.= (R:— R)) sin A+ Rysin I — T, cos I, (55)
or T; may be found from Eq. (52) to be

T, = R. vers I — (R,— R,) vers A
T ginl ~

(56)

"

,III. The student may show tha,t 1f I, Ty, R: and A, are
the given quantities, Eq. (54) gives
Ry vers I — TasinI,
vers A
m which 4, is known because I A+ Ag; and that

Ri= R~

\
= Rssin I — T, cos I (R:— R)) sin 4, . 67

Ryvers I — (R:— Ry) vers A,
sin 1

or T\= (58)
Examples. 1. At station 7824 50 a deflection of 60°

to the right is made, and at station 777 a 6° 30’ curve
begins and extends to station 782. Using station 782 as a
P.C. C., what curve will complete the connection with the

{ Torward tangent and what will be the station of the P. T.?
2. The result of the foregoing computation will be a
fractional degree. Assuming a curve for the second
branch that shall approximate the required curve to the
nearest half degree, what changes will result? Suggestion:
This example means that the two R’s are assumed with I
and T known, and the student may show from Fig. 41 that

T.sin A— Ry vers I

vers Ay = Ri_R, ’ (59)
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and from a new figure, producing curve R; instead of curve
R, that R I Tosin I
, vers ] — T sin
Ri-Ri (50)
IV. If a compound curve has been located and the for-
ward tangent is later moved parallel to itself, either out
(from the center) orin, the curve
may be changed to meet the new
tangent in any one of several ways. -
a. It may be moved along the first
tangent as a simple curve is moved,

& distance A4’ = .L’ when only
sin /

the stationing will change, but the
whole curve must be rerun on new
ground. b. If the first branch of the curve lies well, the
second branch only may be changed from the P. C. C. as if
it were a simple curve, the new R: being found by Equation

Vers Ay =

Ry= Ry —&
vers Az

or Ry= R+ —%
vers A

according as the curve ends with the larger or smaller
radius. c¢. Approximately accomplishing the same result
both radii may be retained and the two central angles
changed, the P. C. C. being moved back or forward as the
case may be. If the proposed tangent lies inside the located
one and the curve ends with the longer radius, the P. C. C.
will be advanced; if outside, the P.C. C.will be moved back.
If the curve ends with the shorter radius, the movement
of the P.C.C. will be reversed. The student may make a
diagram showing this, and that the following equations give
the new values for the final A for the several conditions:

(60)

k
! =
va’—vemA’iR,—Rl

(602)

k
vers A’ = vers A
S l:FRz—-Rx
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V. The problem here presented is not now common but
formerly occurred frequently. It is to substitute a three-
centered compound curve
for a simple curve and be-
tween the same two extrem-
ities. The curve as shown
in Fig. 43 will be symme-
trical about a central axis
OV, and is a double com-
pound curve in which the
two longer radii are equal,
as are the two correspond-
ing A’s. The given quan-
tities on either side of the
center are one tangent dis-
tance, T, and I,, which is
4 I. There being but two
quantities given, two may be assumed. Two methods
have prevailed in practice: a. The first radius R; and A,
have been assumed, R, and A, being computed. b. The
two radii have been assumed.

With the first method it has been usual to assume one or
two stations of 0° 30’ or 1° 00" curve at the beginning;
with the second method a curve of approximately half the
degree of the curve to be replaced is assumed for the end
and one slightly in excess of the curve to be replaced for
the central arc. It is probable that the first is the better
method. By the first method R, is given by Eq. (54),
and if the second method is used A, is given by Eq. (59).
The rest of the solution will be evident.

An independent solution may be had from the triangle
0,00, or 0,00, giving the following equation which the
student may derive: )

' R-p=E-REnil g
sin } A,
in which two of the three unknowns may be assumed and
the other found.

Fig. 43.
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The object of this three-centered curve was to ease the
transition from tangent to curve, but this result is now
much better obtained by introducing * transition” or
“easement” curves, often called spirals, since they begin
at the tangent with a radius of infinity, which radius
is reduced in proportion to the length of the curve to
that of the connecting central curve at the ends of the
spirals. ,

Ezamples. 1. A 6° curve begins at station 762 50
and ends at station 770. It is desired to substitute a three-
centered curve having one station of 1° 00’ curve at each
end. Find the quantities necessary to locate the curve.

2. Let it be required to substitute for the curve of
example 1 a three-centered curve of degrees 3 and 63%.
Find the quantities necessary to locate the curve.

It should be noted in both examples that the length of
line between P. C. and P. T. is changed, and hence not only
the stations of P. C. C. are to be found, but also the new
station of P. T. If the line has been already located, a
““long” station would be introduced at the P. T., so that
the station numbering forward of that point need not be
disturbed. By a “long” station is meant that a note
will be put on -tlie map, on the profile and in the notes
stating, for instance, “ station 71 to 72 is 102.5 feet,” or
¢ From station 72 +30 to station 73 is 73.36 feet.”

VI. It may be found desirable to change the direction
of the final tangent of a compound curve without disturb-
ing the curve more than necessary. This is perhaps best
done by changing the tangent at the P. T'., keeping that
point fixed. The angular change «, Fig. 44, will be known,
and hence in the triangle VV’C all the angles and one side
are known and the new tangent distances AV’ and V'C
and the angle I’ are known for the new curve. The
first radius may be retained and the new second radius
and central angles computed by the equations already
found.

A very neat graphical solution is possible and a
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discussion of this solution discloses some limitations of the
" problem.

Whatever compound curve is drawn, if the shorter
radius be laid off on the final
longer radius from the P. T.,
say to D in Fig. 45, the remain-
der of the longer radius will
equal the distance between
the two centers, and the tri-
angle formed by joining the
center 0, with the point D,
Fig. 45, will be isosceles. There-
fore, if O.D be bisected and
a perpendicular erected at its
mid point, that perpendicular
will pass through the second center.

Therefore, if V' C be the new tangent, the new center of
the second branch of the
revised curve must lie on CK
drawn normal to V'C at C;
and if CD’ be made equal to
R;, O\D’ connected, and the
distance bisected and a per-
pendicular erected at its mid
point, this perpendicular will
pass through the new center
0': on CK. 0':0, produced
to B’ gives the new P. C. C., and AO,B’ and B'0’,C are
the new A’s.

If in Fig. 45 the tangent be swung just enough to make
the two tangent distances AV’ and V’C equal, a simple
curve will result, A; will become I and A, will vanish. If
the tangent is swung still further, R, cannot be retained,
since it now becomes adjacent to the longer tangent, is
consequently R, and is not long enough for a practical
curve between the fixed points of curve and tangency.

The student should draw figures for such problems,

Fig. 44.

1
|
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and should also apply the same method of solution to a
problem in which it is the tangent adjacent to the arc of
shorter radius that is swung. In this case it is the longer
radius that is retained, and this must be laid off on the line
of the new shorter radius produced. The student may also
discuss the limitations for this case.

Ezamples. 1. Let the final tangent of example 1,
Art. 25, be changed so as to increase I by 1°. Retaining:
the 4° 30’ curve, find the new stations of the P. C. C. and
P.T. and the new degree of the second branch of ‘the
curve.

2. Let the change in direction be in the beginning
tangent and such as to decrease [ by 1°,



CHAPTER V.
CANTING THE TRACK ON CURVES.

* 29. Central Deviating Force required to Cause a Body

to move in a Circular Path. — When a body P is revolved

about a center C, as when a ball attached to a string is

swung, there is a force required to keep

the body in its circular path, since when

p started the body tends at every instant to

move straight ahead in the direction in

which it is moving at the instant. It is

Fig. 46. the pull on the string attached to the ball

that makes it move in the curve, and the faster the ball

swings the harder the pull on the string must be, as may
be easily demonstrated experimentally.

It may be shown by mechanics that the central deviat-

ing force (force acting toward the center and causing the

body to deviate from a straight to a circular path) produces

2
an acceleration toward the center given byvl—?,, in whichvis

the velocity of the moving body and R is the radius of the
circular path in which it moves. The force of gravity
acting on a falling body produces an acceleration of ap-
- proximately 32.2 feet per second in each second, and it
is also true (Newton’s second law of motion) that forces
producing varying accelerations on the same body are
proportional to the accelerations they produce. There-
fore, calling the central force C, the acceleration it produces
%, the force of gravity W (the weight of the body) and
the acceleration it gives, g, there results

58



CANTING THE TRACK ON CURVES 59

<
%

?

or -
gR

The force necessary to hold the body in its circular
path, therefore, varies with the square of the speed and
the weight of the body, and inversely with the radius of
the circle.

30. Application to a Train on a Curve. — When a train
enters a curve there is no string to make it take the cir-
cular path, but if the track is level across, the train is con-
strained in this path by the pressure of the outer rails on
the flanges of the outer wheels of the trucks.

If a train were to take a flat curve at some speed so that a
considerable force would be required to hold it in its curved
path, two dangers would result: 1. There would be danger
that the rails would spread or the wheels climb over the
rails because the pressure of the wheels on the rails (the
reaction from the pressure of the rails on the wheels —
Newton’s law of motion) would become very great. 2. An
overturning moment would be generated tending to throw
the train from the track. This last is explained thus:

In Fig. 47, the car whose center
of gravity is at C is supposed to c
be rounding a curve to the left
going from the reader. A pressure pl
P constrains the car to move in the ﬂﬂ—?%ﬂf__p
curved path. The inertia of the
car may be said to act against this
in an equal amount P, and through the center of gravity
of the car, which is a distance d above the track. There
is therefore the force P’ with the leverage d tending to
overturn the car, or, stated in terms of mechanics, there
is an overturning moment P X d.

It is pecessary for safety, therefore, that the deviating
force be supplied in some other way than by the pressure of

Sla
UYET

>p’
F

Fig. 47.
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the rails on the wheel flanges, and it is provided by cant-~
ing the track so that the resultant of the force of gravity
acting vertically, and the resistance of the track acting
normal to the plane of the track, shall be the necessary
unbalanced horizontal deviating force. Thus, in Fig. 48
(car running on a curve to the right away from the reader),
W is the weight of the car, force of gravity, R is the resist-
ance of the track,-and C the resultant of these two. The .
track is supposed to be tipped just enough so that C
shall be the necessary deviating force. Perhaps it would be
better to say that R is the resultant of W and a central
force equal and opposite to C — commonly called the cen-
trifugal force. This is the same as saying, as is sometimes
said, that the rmultant of the weight of the car and the
centrifugal force must be
normal to the surface through
the tops of the rails.

31. Derivation of Formula
for Difference in Level of
Two Rails. — From the rela-
tions of the lines in Fig. 48
it will be seen that if 6 is the
angle of cant of the track,

This is the value of the tan-
gent from the mechanics of
the problem.
The track level placed on
the rails to determine when
the cant is right rests on points approximately the gage
plus one rail head apart measured in the inclined plane
of the track. It would be better if track levels were so
made that the distance determining the difference in level
should always be the gage — a fixed quantity — rather
than the distance between bearing points on rails, which
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is a variable depending on the weight, pattern, and wear
of the rails. Substituting G for the

gage + one rail head of Fig. 49, e‘“G"e;e
) o
g€ 7

VG- ¢ Fig. 49.

This may be called the value of the tangent from the con-
struction of the problem. These two values of the tangent
placed equal to one another give

®_ e
g VE@E-¢
The difference in level of the two rails, or what is commonly
called the “ elevation of the outer rail ” ¢, is then found by
solving the foregoing equation for e, getting
- vG
. Vo + @R

But in this equation v is in feet per second, and it is
desirable to speak of railroad speeds in miles per hour, S.

‘ ,. 52808
3600
. (5280 s~

€

3600

Substituting this value, using 32.16 for g and 4.9 for
G = gage + one rail head,

e= -—4_—.9.____.. (62)
\/ 1+ 223.5%

If it be considered that v/G* = ¢ = G, which will not be

more than vs of 1 per cent out of the way for an average
elevation,

H

Qle

v!
gR

]"u
"-TJ

e =

«
&
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Converting v into speed in miles per hour gives
 5280°8%G
 32.16 X 3600°R
_ 32188

e (©3)

The American Railway Engineering and Maintenance
of Way Association uses G'= 4.708, or the exact gage of
the track, for the formulas from which its tables are com-
puted. This gives a formula

oo 31498
R

or an elevation about 4 per cent less than should theo-
retically be used with usual track methods, but the revised
manual states that this is the elevation at the gage line.
In these formulas the elevation e is in feet. Trackmen
usually work in feet and inches, and in inches for all meas-

(64)

urements less than a foot. Letting ¢ = % and substitut-
ing % for R, Equations (63) and (64) become

E inches = 0.000686 S*D, (65)
E inches = 0.00066 S*D, (66)

which may be put into words as a

RuLi: The difference of level in inches of the two rails of
a curved track of standard gage is from two-thirds to seven-
tenths of one-thousandth of the square of the speed of passing
trains multiplied by the degree of the curve.

Which of the two formulas, (65) or (66), should be used
depends on the form of the track level used. All level
boards known to the author require (65), while accepted
tables for the use of trackmen are based on formula (66).
When there is nothing to be gained for simplicity or con-
venience by the use of inconsistent quantities, even though
the error be considered practically negligible, it would
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seem more reasonable to use consistent quantities. Track-
men’s tables of elevation of the outer rail are evaluated to
the nearest } inch, and the difference between the two
formulas is as much as } inch for the higher speeds requir-
ing maximum allowable elevation. Hence the difference
in this case is not negligible and the formula more rigidly
conforming to the work, formula (65), should be used.
But better still, track levels should be designed to give the
difference in level at gage lines and then Equation (66),
which is better than (65), may be used.

32. The Practice.— 1. Speed Assumed. On single-
track roads difficulty is experienced in applying the rule
because of the considerable variation in speed of the trains
using the track. Freight trains move much slower than
passenger trains, neither class of trains moves with the
same speed at all points in both directions because of the
difference in grades. The difficulty of variation in speed
with direction is overcome by double-tracking, and of
variation in class of trains largely by four-tracking. There
are still some difficulties owing to some differences in speed
of various trains of the same class, but these are not so
considerable. :

On single-track roads recommended practice is to cant
the track for the fast passenger trains as a measure of
safety. On double-track roads allowance can be made for
the probable usual differences in speed at a given curve
due to its position with reference to a grade — whether
near the top of a steep hill, where it would be taken slower,
or near the bottom, where it would probably be taken
faster, than if on a level or light grade. Near a station that
is a stopping place for all trains the speed will be slower
than out on the road, and the canting of the track should
be determined accordingly. On four-track roads the best
possible arrangement can be made, and the plan that should
be followed is to determine the proper cant for each curve
on the line and make a table of these for the trackmen.
Probably the best way on an operating road is to find the
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speed of the various fast trains at the several curves and
determine the cant accordingly.

2. Maxtmum Cant— The practice as to the maximum
cant that will be used is not uniform, but the American
Railway Engineering and Maintenance of Way Asso-
ciation advises an ordinary maximum of 8 inches and that
the speed of trains should be regulated accordingly. Sub-
stituting 8 for E in formulas (65) and (66), and solving
for S, will give the maximum speeds allowable on various
curves. Higher speeds are dangerous.

§= = (67)
_ 110
/D ©8)

3. Outer Rail versus Both Rails. — The foreign practice
is to raise the outer rail and lower the inner rail equal
amounts, thus keeping the center line at grade. While it
has been customary in America to follow this practice on
new construction, it has also been customary to keep the
inner rail at grade on maintenance, elevating the outer
rail through the entire required difference in elevation.
This latter practice is recommended by the American
Railway Engineering and Maintenance of Way Associa-
tion, but the author has never been convinced that this is
the better way. The fact that it introduces a slight grade
at the beginning of the curve may interfere seriouslty
with the movement of heavy freight trains near the top
of a maximum grade and makes a longer spiral necessary
to comfortable riding of passenger trains. The author
knows of no argument for it except convenience of track
surfacing, which he thinks is a small matter after the track
has been once surfaced. If curve compensation* be
increased by the amount of the grade introduced by

* Curve p ti reducing the grade on which a curve
occurs by a determined amount to make the resistance on the curve no
greater than on straight track. The subject is discussed in ‘‘Elements
of Railroad Engineering.”
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keeping the inner rail at grade, this would be the better
method.

33. The Pressure on the Rails. — From Fig. 48 it will

be seen that the normal pressure on the rails (which is
equal to the resistance of the rails) is more than the weight
of the train. The excess is not much, varying from noth-
ing plus to a probable maximum of a little more than one
per cent on sharp curves taken at high speed.
" Providing the central deviating force by canting the
track does not remove all the pressure of the outer rail
on the flanges of the outer wheels. Not only must the
train be constrained to move in the circular path, but also
the direction of its axis must be changed by the central
angle of the curve. Thisis accomplished for each car axis
by the trucks acting through their center pins, and for the
trucks by the pressure of the outer rail on the flanges of
the front outer wheels. The trucks revolving about their
center pins must slide across the tops of the rails, and as
the contact between wheels and rails is not frictionless,
a very considerable pressure between rail and front outer
wheel flange is necessary to twist the truck. This pres-
sure is largely independent of speed or degree of curve,
and is just that necessary to slide the wheels on the rails.
Because the coefficient of friction is less for rapid than for
slow motion, and because the rate of sliding is greater for a
given .speed over a sharp curve than over a flat curve, it
is probable that the pressure is less on a sharp than on a
flat curve. The wear on the rail is more, because the
distance slid is greater per unit of length, and the angle
between wheel and rail is greater. This means also that
the work necessary to slide the wheels and wear the rails
is greater per unit of length but probably less per degree
of curve on a sharp curve than on a flat curve. This work
is what causes curve resistance, which must be overcome
by the locomotive, which, however, is not concerned in
producing the central deviating force which is obtained
by canting the track. .
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34. Connecting with the Tangent, — It will be evident
that the full deviating force must be provided the instant
the train enters the curve; hence at the point of tangency
theory requires two different conditions of surface, one for
the tangent — level — and one for the curve — inclined.
This being practically impossible, it was formerly the cus-
tom to begin the canting some distance back on the tangent,
bringing it up to its full amount at the beginning of the
curve. This practice was not satisfactory, and with
medium high speeds there is but one satisfactory method,
namely, the introduction of a spiral curve between tangent
and main curve, which spiral curve begins on the tangent
with an infinite radius (zero degree), the radius varying ex-

actly, or practically, inversely as the length to the radius

of the main curve at the point of junction. The track
canting may then begin with nothing at the beginning
of the spiral, and be increased uniformly with the length of
the spiral till the full amount is reached at the junction
with the main curve, and be everywhere as nearly as
practicable theoretically correct in amount. The run-off
from curve to spiral and tangent is of course equally uni-
form and correct.

Flat curves taken at slow speed are not spiraled, and for
these curves the elevation is ““ run off ’ on the tangent,
experience seeming to show that it may be run out safely
at a rate of 1 in 100 to 1 in 150, or 1 inch in from 10 to
124 feet.



CHAPTER VI.
SPIRALS.

35. Object and Forms of Spirals.— The spiral is in-
troduced between a curve and tangent to provide easy
change from straight to circular motion of the train and to
provide a correct method for introducing the necessary
cant of the track for the curve.

The spiral is of several mathematical forms, but all
result in practically |
the same curve,
none of them vary-
ing more than a few
inches from amy of
the others, except
possibly in the ex- N
treme cases rarely
met with.

The theoretically
proper curve is one

o

)3

-

e
0
lpi\\

P

Radius Infinite

which begins (say
at F, Fig. 50) with an
infinite radius (zero

Fig. 50.

degree) which is re-
duced gradually and uniformly with the increasing length
of the curve (i. ., varies inversely as the length of the
curve) to that of the main curve at the junction of
spiral and curve (say at K, Fig. 50). The discussion of
this spiral, though not difficult, involves infinite series,
and requires somewhat awkward formulas for determining
deflections to points on it when precision is required and
the angle consumed by the spiral is fairly large. Very
simple ‘approximate formulas may be derived that are
67
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sufficiently precise for probably ninety per cent of the
cases arising in practice. But the spiral must be laid out
by chords as is any simple curve, and when the central
angle is large, the chord measurement near the curve end
of the spiral does not agree with the curve as precisely
as some practice demands, and hence a curve which is
developed by chords instead of as a continuous curve has
been favored by some engineers. This curve has taken
two forms, the compound transition curve, most fully
developed by Searles, and the n-chord spiral. The
compound transition curve of Searles consists of a
curve laid out as successive equal chords of curves of
uniformly changing radii, .e., the first chord may be that
of a 0° 30’ curve, the second of a 1° curve, etc., each suc-
ceeding chord being of a curve of 0° 30’ greater degree
than that of the preceding chord. These curves may be
made to change by varying amounts per chord, as 0° 30/,
1° 00, 2° 30’, which are the commonest rates.

The 10-chord spiral has been developed by Mr. Jenks
B. Jenkins, of the Baltimore and Ohio Railroad, for the
American Railway Engineering and Maintenance of Way
Association.

The 10-chord spiral is the locus of a point at the end of a
series of consecutive equal lines (chords) making angles -
with another line (the tangent), varying in the proportion
of 1,7, 19, 37, 61, 91, 127, 169, 217 and 271. This curve
approximates closely to the true spiral, but is consideied
to have the advantage that its ends may be definitely
fixed by coérdinates having definite finite values. The
reason for the numerical proportion given above will
appear later.

No attempt will be made to go into the history of the
development of the Railroad Spiral, but a few names that
have become well known in connection with it may be
mentioned. Rankine described the curve briefly and
ascribed it to Froude. Wellington developed. simple
approximate formulas for it that are sufficiently exact for
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much work. Crandall, Holbrook, Searles, Kellogg, and
Talbot are perhaps the American names best known in
connection with the spiral, though several others have
published discussions of it.

86. Conditions Determining the Spiral. — The particu-
lar spiral to be used with any curve may depend onm, 1.
Topography, t.e., the way the curve and tangents fit the
ground. 2. Possible shift in an existing unspiraled track.
3. The speed of trains. The last named condition usually
governs and determines the length of the spiral. The length
being fixed, the other elements are computed from special
spiral equations or tables using the known elements of
the curve to be spiraled.

The rate at which it is possible to cant a track, or develop
a central deviating force, without discomfort to the pas-
senger, has been the controlling consideration. This rate
varies, some persons being much more sensitive to slight
variations of normal conditions than others. On the New
York Central Railroad, it is estimated that the track can
be canted on a tangent approach to a circular curve so
that a train will be canted at a rate of about  in. per
second. It is estimated by the officers of ‘this same road
that on a spiral approach, the canting may be much faster.
- It is entirely probable that the precise rate of cant on a
spiral, if the spiral is taken at the speed for which it is
designed, is comparatively unimportant, because at this
speed the resultant forces are normal to the surface of the
track, and if the passenger were at the level of the rails
he would have no peculiar sensation. But since he is not -
at this level, he is raised or lowered or thrown to one side,
depending on his position and the method of canting the
track, and the car is being twisted.

It is thought that a deficiency in canting produces a
more disagreeable sensation than an excess. It is probably
true that a continued deficiency of cant on a circular curve
produces a much more disagreeable sensation — in that it
is lasting — than the momentary sensation due to too rapid

’ 3 Of THE \
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canting on a short spiral. This question is an unsettled
one and one may follow his own ideas.

From an investigation conducted for the Track Com-
mittee of the American Railway Engineering and Main-
tenance of Way Associatior, Mr. Jenkins has concluded
that a perfectly safe practice, and one that will result
in no discomfort to passengers, even if the speed for
which the track is canted be exceeded by not more than
15 per cent, is to make the length in feet of spiral per inch
of cant not less than % of the speed in miles per hour for
which the track is canted. Whether or not one agrees
with the method of analysis, the conclusion seems to be
in accord with the practice on the Pittsburgh and Lake
Erie Railroad, the officers of which, including Mr. Holbrook,
have studied the matter experimentally for many years.

If r be the allowable rate of canting per second in inches,

and E be the inches of total cant to be given, then%' will

be the number of seconds that must be consumed in passing
the spiral on which the cant is attained.
If L be the length of the spiral in feet, and V the speed of

the train in feet per second, = L wﬂl be the seconds required

to pass the spiral which must equal %‘ , therefore,

Substituting for V its equivalent in miles per hour, S,
5280 S .

V= "3600
5280 JE
L_3600S r
and L _5280 8 _ 228,

E 3600 r 157
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%’,is the length of spiral per inch of cant.

To mak %, = %S, r must be 2.2 inches per second, which

is probably entirely allowable on a spiral approach.

It is considered unnecessary to put in a spiral approach
where the shifting of the track from where it would be
without a spiral would amount to an insignificant fraction
of an inch. A practical limit is said to be reached when a
curve, by reason of long radius or slow speed of trains over
it, requires not more than 2 inches of cant. Curves requir-
ing less cant are frequently spiraled.

Following the rule that makes% =§S gives shorter
spirals for sharp curves than are considered good practice,
even though they may be perfectly safe and without dis-
comforting effect. For instance, the maximum cant
assumed at 8 inches gives an allowable speed of from
27 to 27.5 miles an hour on a 16° curve, according to the
formula used. (See Art. 32.) Two-thirds of 27 is 18, and
a cant of 1 inch in 18 feet is considered too rapid, the
highest limit considered as good practice being 1 inch in
30 feet. This low limit is said to be not so much on
account of the speed with which the curve is canted as
because of the rigidity of some cars which prevent the
equal distribution of their weight to wheels resting on a
warped surface. Three halves of 30 are 45 miles, which,
with 8 inches cant, corresponds to a curve of about 6°.
Hence, for curves sharper than about 6°, which are to be
taken at full speed, the spiral-should be not less than
8 X 30 =240 feet long, to be in accord with recom-
mended practice.

If the spirals are to be a part of the permanent alinement,
not to be changed with ordinary changes in traffic condi-
tions, then, since as increasing speed requires the lengthen-
ing of spirals originally designed for slow speed, they
should be designed in the first instance for the fastest
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speed ever likely to regularly occur on them. There-
fore, those curves of less than 6° which may sometime
limit the speed of trains, and which therefore may some-
time require the maximum cant of 8 inches, should have
spirals designed for 8 inches cant though they be longer
than necessary for present conditions. For such curves

L_2

8 3 S,

L=5%8.

Substituting for S from equations (67) and (68)

576

L = 69
D ©9)
587

or =—, 70

VD @0)

according as Eq. (67) or (68) be used for S. If the round
number 600 be used for the numerator, the approximation
will be on the safe side and will not add materially to the
length of the spiral, therefore the value

= (71)

is suggested for all curves less than 6° likely ever to limit
the speed of trains. '

For all minor curves not likely to limit the speed of
trains, the minimum length of spiral required may be
found by

L=3%S8E (72)
or L=30E. (73)
in which E is in inches, S, miles per hour, and L, in feet.
The minimum lengths of spirals are therefore given by the
following rules:

For curves of 6° or over, on which the track is canted
8 inches, L = 240 feet. '

600

F ° likel imi L=——
'or curves flatter than 6°likely to limit speed, VD
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For minor curves'not likely to limit speed, L= % SE or
30 E.
For a maximum cant of 6 inches,

L 2
6 —38D,
L=48,
432
L'—"‘—’
vD
440
or L=——.
D

Six inches is perhaps more generally adopted for maxi-
mum cant than is eight inches. If six inches is the maxi-
mum cant the minimum spiral length for curves of degrees
of over 4° 30’ would be 180 feet.

37. Fundamental Relations. — Referring to Fig. 5], it
will be seen that, since the spiral flattens the main curve
at its ends, longer tangents will be required for the spiraled
curve than for the simple curve, and the radius of the main
curve must be shortened or the whole curve thrown in
along its middle radius to provide room for the flattening.
The space between the tangents and parallel tangents to
the smaller radius curve or offsetted curve is designated
by O in Fig. 51.

Let the spiral F S K be a curve, of length L, whose
radius of curvature is inversely as its length. Let it con-
nect the tangent FV with the circular curve of radius B

and degree D= 5—7;—07 hich relation of D and R will be

considered exact.
By the assumed property of the curve the radius r at any
point distant ! from F is

r=

~I|t

R. (74)

‘
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The average degree of the spiral is g
The central angle consumed will, therefore, be

D
A= 100 X 3" (75)
The degree, d, at a distance  from F, is
=1 \
=1 D. (76)
i
i
N
\
\
ﬁw\

”

O.V\‘:‘:“::":‘f‘_“g—“""- "

Fig. 51.
The central angle consumed by the length [ is
) 1 d
6= 100 X 2 77)
Substituting the value of d from (76),
5= LD, (78)

200 L
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or the central angle varies as the square of the length,
and therefore
5= I—l; A. (79)

It is not necessary that the two spirals of any central
curve be equal. In general, they will be, and always
when the length is determined by speed. When unequal
they will have unequal central angles. Therefore, the
central angle I’ of the spiraled curve will be given by one
of the two following equations:

I'=1-2a, (80)
I'=sI—-A—A. (81)_

The only reason for making the spirals unlike will be a
better fitting of the ground in new location, or in revising
alinement under difficult limitations as to movement of
tracks. That is to say, the central curve may be shifted
around within the tangents to lie most advantageously,
and a spiral then fitted to each end, the spiral depend-
ing on the offset 0. It is desirable to know what this
offset is in moving existing unspiraled track so that the
shift of the track on the roadbed may be found. It is
frequently more expeditious to locate the offsetted simple
curve for the full angle I and put in the spiral by offsets
from this and the tangents than to locate the spiral by
deflection angles.

It is therefore necessary to find expressions for O, L, 4,
deflection angles to the spiral, tangent distances of the
spiraled curve, coérdinates of the point of curve of the
offsetted simple curve referred to axes through the begin-
ning of the spiral, and intermediate offsets from tangent
and curve to spiral, in terms of the determined beginning
quantity (usually L, sometimes O), and the radius or degree
of the connecting central curve.

Ezamples : Find the proper lengths of spirals and the
values of A for

1. A 1° curve taken at 60 miles an hour.

2. A 3° curve taken at 60 miles an hour.
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3. A 4° curve taken at the highest proper speed for 8 in.
cant.

4, A 6° curve taken at the highest proper speed for 8 in.
cant.

5. A 10° curve taken at the highest proper speed for 8 in.
cant.

6. A 20° curve taken at the highest proper speed for 8 in.
cant.

38. The Cobrdinates of the Spiral.— Let the tangent
FV be the axis of X, and the infinite ra,dlus -at F be the
axis of Y. From calculus:

dx dl cos 5, (a)
=dlsin 3. )
Expandmg cos & and sin § in series,
82 8¢
coss—1—§+24—etc., (c)
sm6—6—6—+f2—0—etc., )
in which 5 is in arc and equals573
o_ _PD _ 5730
But = 200L and D= R
Substituting these values,
sarc= ——
2RL

Substituting this value in (c¢) and (d) and placing the re-
sults in (a) and (b) and integrating,

B p
*=1l- orrt s o (82)

B r m
V=S8Rl s RD T pr e 6D

/

{
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If X and Y be the codrdinates of the point K, ! becomes

L and s s

X=L- 40R’+3456R‘ ete., (84)
L? Lt Lt
6R 336R L 4240B O ®5)

Ezamples. 1. Find X and Y for the examples of Art. 37,
computing each term separately. Tabulate them, using
A for the argument, and note what terms of each formula
are necessary to give the codrdinates to a precision of 1
in 100,000.

2. Plat curves on cross-section paper, with values of
A for abscissas and corrections to the first terms of the for-
mulas necessary to make those terms correct within 1 in
100,000 for ordinates. Study the results.

39. The Deflection Angle for the Spiral.— The deflec- -
tion angle from the tangent at F to any point on the spiral
is given by

Y=

tanay

and substituting in this the values of y and z, in equations
(82) and (83), gives

P » 13 0

tana=gpr + S0l T 2apasp0 L T @

Tan % & expressed in a series, giving &° its value m, is

DR S S AW
6RL T 6B RL T 58320 B T oW

Comparing (@) and (b) it will be seen that a is almost
exactly 1 5, and since 5 varies as the square of I, Eq. (78),
a varies approximately as the square of [, and if A be the
deflection for the whole spiral,

A=1}a. (86)

a= % A, (87) { (Approx.)
a=1%3. (88)



78 RAILROAD FIELD GEOMETRY

The relation of (86) is so nearly true that a correction of
00005 A* (A in degrees, the correction in minutes) will
give a result correct to a very few seconds when a is 40°,
a practically unknown case.

Still more exact expressions are given in the following
equations:

A =134~ .000054% (correction in minutes).

or A=3%4—.0034% (correction-in seconds).
more exactly. 89

A=1A—.00297 A* (correction in seconds).

a=%6—.000058 (correction in minutes).

or a=1%56-.0038 (correction in seconds).
or more exactly (90)

a=%56—.002975  (correction in seconds).

Except for the first two examples following, it will be
considered in all subsequent discussions that 4 = } A and
a=1}53.

Ezxamples. 1. Find the values of 4 for the examples
of Art. 37. '

2. From these values of 4, find the angles B between
long chord of spiral and common tangent at the junction
of spiral and central curve.

3. Assuming A = } A, what is B in terms of A ?

. 4. Find the numerical values of a to the middle points

of the spirals of examples of Art. 37, assuming 4 and q
to be 3 A and % &, respectively.

5. Suppose a spiral to be divided into 6 equal parts
(they will be measured as chords), and that a = } 5, what is
the deflection angle a in seconds expressed in terms of I and
D, to the end of the first chord ? From the result, and the
known law for a, formulate a rule for deflection angles
when the spiral is divided into (1) six parts, (2) twelve
parts. .

6. Let the work of example 5 be performed assuming
the spiral divided into ten equal chords, the first deflec-
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tion being required in minutes. Note the simplicity of
the expression if the chord length, ¢, is given in sta-

tions =% = m
100 )

40. Coordinates of the P. C. of the Offsetted Simple
Curve. The coordinates of the point M of Fig. 51 are
required. They are

FP=Z=FG- HK,

Z=X-— Rsina. 91)
PM=0=KG-HM,
O=Y~-RversA 92)

Ezample. Find the values of Z and O for the spirals of
Art. 37.
41. Approximate Expressions for 0. — Since the average

degree of the spiral isla)s the length of the spiral to cover

an angleA must be twice that of the simpie curve (measured
~ in chords) to cover the same angle; therefore, it is very

nearly true that KM of Fig. 51 equals %’: and K8 closely

approximates g; ‘and hence SF.

The spiral is supposed to separate from the simple curve
KM at the same rate that it separates from the tangent
FP, and hence, since S is approximately at the middle of
the spiral, MS is approximately equal to SP, or, approxi-
mately, the offset O at P bisects the spiral and is bisected
by it. For a large proportion of work this approximation
is sufficiently precise for field or office use.

Using only the first term of Eq. (83), it is seen that the
tangent offset to the spiral varies as the cube of the length,
hence if S is at the middle point, PS= 3 Yand 0= %Y.

A correction found by inspection and experiment gives
a sufficiently exact formula for O for any probable value
of A. The corrected expression is,

_Y A
0=2* 150,000 ®3)
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Since the deflection angles vary approximately as B
and are nearly } 3, the deflection angle at F to S may be
considered as a,= 1 X }4A, and assuming FS= 4L and
straight, PS= } L siny; 4, and since O is approximately
twice PS, O= Lsin 3 A. This is not close enough for a
wide range of practice, but by experiment and inspection,
the following empirical formulas that are sufficiently pre-
cise are found:

O=3Lsin}a (94)
_u, 5

0= rsnla (95)

0=1£0(sinu +sin 3 4). (96)

Equations (94) and (95) are the simplest for logarithmic
computation, (94) being sufficiently precise where A does
not exceed 20° and (95) being precise enough if A does
not exceed 40°. Equation (96), devised by Mr. Jenkins,
is simplest for use with natural functions, is very readily -
handled, and is sufficiently precise for all probable values
of A. .

Ezxamples. Find values for O for the examples of Art.
37, by the approximate formulas (94) to (96), and com-
pare with the values found by Eq. (92).

42, Approximate Expressions for Z. For very many
cases it is sufficiently exact to consider

_L ‘
=3 97)
When not sufficiently exact, one of the following empirical
formulas found by trial will answer:
Z= -2’—’cos (f +044 minutee)- (98)
Z=L(l—-l-versA)- (99)
2 30

Ezamples. Find Z for the examples of Art. 37, and
compare with the values found from Eq. (91).
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43. The Tangent Distance and External Secant. —
From Fig. 51 the tangent distance for the spiraled curve
is VF =VW+ WP+ PF. VP =V'M = tangent distance
for the simple curve with central angle I, or, R tan 4 I.
The angle WMP is 4 I and WP=0tan }I. PFis Z.
Therefore, calling the tangent distance T,

Ts=(R+0)tan § I+ Z. (100)

The external distance VN'= VN4 NN'= VN+MW.
But VN is the external distance for the simple curve for
angle I and MW is Osec 41 or O exsec 4 + O. Therefore,

calling the external distance Es,
E,=(R+0)exsec}I + 0, (101)
or E;,=RexseciI+Osecil. (102)

Example. Find T, for the spirals of the example of
Art. 37.
44, Other Functions. — The long chord FK, Fig. 51, is

evidently v

Tsind’
and an approximate formula derived by Mr. Jenkins and
correct to 1 in 1,000,000 is

C =L (cos s A + .004 ex sec $4), (104)

which is much simpler than it looks when used with natural
functions or even with logarithms.

The spiral tangents may sometimes be desired, though
neither the long chord nor these tangents are usually
required. The spiral tangents KJ=V and FJ=U are
given respectively by .

(103)

Y
V-1, (105)
yCsind (106)

sSiIn A

U=X-7Ycota, (107)
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or U= Y (cot A — cota), (108)
U-= C“‘A_A_“_AL (109)
sinA
Also, in terms of C, when it is known,
X=CcosA, (110)
Y=CsinA, (111)
and from (93)
8
Y=40 ~ 20,000 (112)

45. Laying Out the Spiraled Curve. — The following no-
menclature has been used (referring to Fig. 50 and con-
mdenng the curve to be located from F to F'):

T. S. (Tangent-Spiral) for the point F.
S. C. (Spiral-Curve) for the point K.
C. S. (Curve-Spiral) for the point K’.
S. T. (Spiral-Tangent) for the point F"'.
P. C. for the point M.*

P.T. for the point M’.

The spiral may be laid out by offsets. When this
method is used, the procedure is as follows: The point P,
Fig. 51, is found, the offset O measured to M, the instru-
ment set over M and with a fore- or back-sight on a point
previously set a distance O from the tangent F'V, the simple
curve is run in for the full angle 7, to M’, where the opera-
tion at PM is reversed to get on to the tangent VF’.
Afterwards, when staking out for construction begins, off-
sets as many as are desired are measured from the tangent
to the spiral between F and P and P’ and F’, and from the
curve to the spiral between M and K and K’ and M’. It
is considered that the spiral departs from the simple curve
for its half length adjacent to the curve exactly as it

* Mr. Richard Mansfield Merriman suggests leaving the “P"” for
‘‘ point "’ out of all notation. The author received this suggestion too late
for general use in this volume, but thinks it a good one. P. C.becomes
T. C. (tangent curve), P.T. becomes C. T. (curve tangent), and P. C. C.
and P. R. C. become C. C. (curve to curve), the context showing whether

the curve is compound or reversed. S. S. is used where two spirals join. as
they sometimes do.
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does from the tangent for the half length adjacent to the
tangent, and therefore offsets computed for distance I
on the half length FP are used for the half length MK,
measuring ! from K toward M. It is usually considered
that S is midway between P and M, and a stake may be
placed at S. The offsets at the quarter points are taken as
§ PSorvs 0. (Ordinates vary approximately as P.) If
it is desired to set a particular station that occurs on the
spiral, its offset from tangent or curve is determined by
noting its distance from T.S. or S. C. and applying the
rule that the offsets vary as #. The points T.S,, S.C,,
C.8S,, and 8. T. should be monumented.

The spiraled curve may be laid out by deflection angles,
and there are several procedures. The simple curve may be
run as described in the last paragraph, the previously deter-
mined 8. C. and C. S. being set on the curve and the spirals
run in by computed deflection angles for equal or unequal
chord lengths, the transit being set at the S.C. and the
spiral run backward from the T.S., or the transit set at
the T.S. and the spiral run backward from the S.C., or
the transit set at the T. 8. and the spiral run forward to the
S.C. Or the spiral may be run from T.S. to S.C. by
deflection angles, the central curve from S. C. to'C. S., and
the second spiral from C.S. to S. T. by deflection angles.
This last is the more direct method, but the author’s expe-
rience leads him to favor the location by offsets as likely
to prove quicker and freer from accidental errors carried
beyond the curve.

Another method is to establish the P. I. of the spirals
at the intersection of the tangents U and V, set the in-
strument at the P. I., turn the angle A from the tan-
gent, and establish the S. C. and C. S. by measuring V.
Spirals and simple curves may then be run by deflec-
tion angles with the instrument at the S. C. and C. S.
The student may make a program for an assumed case.

When the deflection angle method is used, it is advised
that the simple curve be run in as for the offset method,
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the S. C. and C. S. being set, and the spirals subsequently
run in from T. 8. to S. C., with the transit at the S.C. To
know how to do this, it is necessary to discuss deflection
angles measured at the S. C. to points on the spiral.

468. Deflection Angles at the S. C. — The deflection angle
from the tangent for a length ! measured frqm F, Fig. 52, is

N 6(l):)DL’ and since the spiral
"is assumed to depart from
the central curve at K
just as it does from the

. £ :::::—‘hg———-;,/ tangent at F, the deflec-
] tion angle from the central
Fig. 52. curve to the spiral, for a

. BED
length ! measured from K, is also B0 L

The deflection angle from the tangent KJ to a point on

the simple curve distant ! from K is ~— ib therefore, the

200°
deflection angle from the tangent KJ to a point on the
spiral distant [ from K is approximately
ID BD
200 600L°
It has been already shown in the examples that the
angle B, tangent to long chord at the S.C., is

B = % A (approx.),

and substituting L for ! in Eq. (113) gives, simply for
illustration,

8= (113)

LD LD _2LD LD

200 600 600
or B=-—"=-4A
The deflection angle from the tangent at the S. C. to any

point on the spiral distant ! from the S. C. may be found, in
practically all cases likely to arise, from Eq. (113).
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But when the spiral is divided into a nu

85
mber of equal

chords, it is simpler to compute the deflection angle to the
chord points from the long chord, and approximate expres-

sions for these angles will be developed.

If the spiral be divided into n equal chords of length c,
then n = -i—'and the deflections to the several chord points

from the tangent at the T.S. are given by

a= czD - cD , )
600L 600n

Ga= 4cD’
600 n
9¢cD

as

~600n

> (114)

_neD _neD LD _ A
9 =800n~ 600 600 3
Referring now to Eqgs. (113) and (114),

the deflection

from the tangent at theé S. C. to the first chord point on the
spiral from the T. S. would be, since the distance from the

S.C. will be (n—1)¢,
(mn—1)eD (n—1)*cD

=

200 600 n
_3n(n—1)cD (n—1)cD
- 600 n 600 n
=a;83n(n—-1) — (n —1))
=a1(2n2—n-—1).

. ncD  nxD

But Bo= B is .2—0?—60070
_3n*D _ nxD
T 600n 600m
_2nLD
T 6007
: =2'n’a|.

Subtracting 8: from 8, gives
Bo—Bi=a (2 n— (2 nt—n— 1),
=a(n+1).
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Proceeding similarly for the angle 8 — 81, ete., we find
for the series
Bo—Bi=(n+1)a,
Br— B2= (n+3) ay,
B2— Bs = (n+ 5) &, etc. (115)

ﬂn—l “ﬁn = (3” —_ 1) dl,
and adding these to get the deflection angle from the long
chord to the successive chord points,

b= (n+1)a,

b= 2n+4) a,
bs= (3 n+ 9) a,, ete. (116)
bn = B = 27!201.

Ezample. Find the deflection angles in terms of a,
from the long chord at the S. C. to the chord points on
the spiral, assuming a division into, @, 6 equal chords;
b, 10 equal chords.

47. Deflection Angles at any Point on the Spiral. — It
may be necessary to locate the spiral in more than one
section, setting the instrument on one or more interme-
diate points. The following discussion will indicate how
to proceed. )

The degree, d, of the spiral at any point distant ! from

the T.S. is% » and from this point the spiral departs

from the curve of degree Ii, D, just as it does from the tan-
gent or from the simple curve at the S. C. Between the
point and the T.S. the spiral lies outside the curve % D,
and between the point and the S. C. the spiral lies inside
the curve. Therefore, assuming the transit at the point 1
from the T. 8. back-sighted on the T.S., the deflection to
the tangent at the point is 2a, a being the deflection from
tangent at the T.S. to the point, and the deflection to
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any point I beyond the point would be found by adding
the spiral tangent deflection for a length I’ to the deflec-

tion for the same length of curve %D,

,_ ¥ 1D 1D

T100L 2 T 600L an
If the spiral be divided into n equal chords of ¢ feet each

the degree of the spiral at the end of the several chords

will be respectively (approximately)

di==,
n

dy=

2 D, ete. (118)
n
dn=D,

If the transit be set at the end of the sth chord, the

degree of spiral at that point is %: the deflection at the

point from the long chord for that point to the tangent at
or 2 s%a;, and from this tangent to

2 s2c¢D
h
tepomtlsmo

the following chord points in succession,

)

o _ sDc cD ‘ 3
17 90100 T 6007

=2':‘D1‘;)0 +a=3sm+a=a@s+1)
, 2 sDc
Qs+2= In 100+4al 01(68+4)=2ax(38+2)

@ ors = 23n8D" +9m=0(9s+9)=3a(3s+3) (119

asri= 4a,(3s+4),ete.

, (n —s!sDc _
n = 27100 +m-2ra
=(n—3) Bs+n—3s)a. J
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The nth point is the S. C.

Deflections from the tangent at the point occupied to
points on the spiral between the T.S. and the point occu-
pied are found by subtracting the second terms of the
foregoing formulas, thus:

, sDc

a}s—1=2n100—-al=al(3s—- 1)

2 sD
a'H=2n810;—4a1=2a.(3s—-2) (120)
, ~ __8Dc ~ 9.
Ag—s = 271100 s2a, 280,,.

Examples. 1. Assuming D =4° L =300 ft., and the
T.S. at Sta. 3644 57.35, find the deflections to stations
365, 366, and 367.

2. Assume the spiral of Example 1 to be divided into
6 chords. (a) Find the deflection angle to each chord
point; (b) Suppose the transit set on the middle point;
find the deflection to the following points up to the S. C.;
(¢) Find the deflections to the preceding points.

For the two following examples the deflection angles
are to be taken as proportional to the square of the chord
number, and the angles are to be determined in terms of
the first chord angle a,, which is to be found in n and A.
It must be remembered that the assumption here made
is an approximation.

3. Assuming any spiral divided into 6 chords, find the
angles made by each chord (produced where necessary)
with the main tangent to the spiraled curve.

4. Assuming any spiral divided into 10 chords, find the
angles made by each chord (produced when necessary)
with the main tangent to the spiraled curve.

5. Construct a table showing multiples of the first
chord deflection that are to be used with the transit at
each successive chord point. Make the table for 20
chords and arrange it as follows:
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Factors by which first chord de-
flections are multiplied to give
Instru- | deflections to chord points num-
ment bered :
at
0 1 2 3 4 5 6 ete.
0 0 1 4 9 16 25 36 etc.
1 |2 4 10,18 28 40 ete.
2 |8 5 0.7 16 27 40
3 18 14 8 O
4 [32 27 20 ete. ®
5 50 44 36
6 72 65 56
ete.

After the table is started note the simple arithmetical
work necessary to continue it.

48. General Examples in the Use of the Spiral. —1.
The 4° curve of example 4 of Art. 37 is to be located be-
tween tangents, making an angle of 54° at temparary
station 476. Find all the quantities necessary to lay out
the curve by offsets, locating any stations that may come
on the spirals.

For the following examples, use the data of Ex. 1.

2. Find the quantities necessary to locate the curve,
using deflection angles and dividing the spiral into 6 equal
chords.

3. Find the quantities necessary to locate the curve,
using deflection angles, and dividing the spiral into 10
equal chords.

4. Suppose it necessary to set the transit at the fourth
chord point, find the necessary deflection angles to the
points beyond, using (a) 6 chords, and (b) 10 chords.

5. Find the deflection angles supposing the spirals to
be wholly located from the S.C. and C. S.
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49. The Chord Spiral. — As the spiral is laid out by
chords, when deflection angles are used, and as the theory
has been developed for the curve measured on the are,
it has been suggested that the development would better
accord with the practice if it were by chords, and Mr.
Jenkins’ 10-chord spiral has been developed in this way.
The development is such that practically all the equa-
tions except those for « and y and tangent A that have
been developed for the spiral may be used for the 10-chord
spiral, with perhaps even greater precision in some cases
than for the true spiral, because they are really approxi-
mate expressions for the true spiral based on chord meas-
urements. Finding that the angles of successive equal
chords of the true spiral with the tangent are approxi-
mately as found in examples 3 and 4, Art. 47, Mr. Jenkins
conceived a curve which is the locus of the end of 10
equal chord lines which make exactly the angles with the
tangent found to be approximate angles for the true
spiral.

By the examples mentioned, it will already have ap-
peared that a series of equal chords closely approximating
the spiral will make angles with the tangent of, respec-
tively, beginning at the T. S,, 1, 7, 19, 37 61, 91, 127, 169,

217, 271, ete. timeés a,. But

@ ixs—l2 XAandforn= 10.
n

3
a=-2.
'~ 300
Therefore,
A 74 2714\
IX (cos 300+co.=;300+ ete. .. . €08 200 ) (121)
_L A 74 2714\ :
(sm 300+sm300+etc 300 ) (122)
tand = L. (123)

X
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The foregoing assumes that the degree of curve of the
spiral at any chord point s from the S.T. isi D. As the

curve that would be laid would be continuous and pass
through these chord points, it would not be theoretically
- a.curve of uniformly varying radius or degree, but it
. would approach as near to it as it is possible to have it by
any practicable method, and for probably ninety-nine
per cent of the cases in practice the difference between
chord and arc measurements for the spiral is negligible.

The advantage of dividing the spiral into 10 or 20 chords,
rather than 6, 12, or 18, is not apparent to the
author. .
* If the spiral is divided into 6 equal chords, the deflec-
tion angle for the first chord has been shown by a pre-
vious example to be as many seconds as there are feet
in the chord times the degree of the central curve, and
the deflections to succeeding chord points are 4, 9, 16, 25,
and 36 times the first deflection. This rule is easy to
remember, and nothing but mental computations are re-
quired for the deflections. If 12 chords are used, the first
deflection is } that when 6 chords are used, and when 18
chords are necessary, the deflection is 3 that for the first
of 6 chords. .

For this simplicity, when deflection angles are to be used,
the author advises the selection of L to be the length
divisible by 6, 12, or 18, that most nearly corresponds to
the requirements of Eq. (71), (72), or (73), whichever is
used.

No matter what the number of chords, it is always
approximately true that the first deflection angle, a,, is
3—Ar;, and the several angles made by the chords with
the tangent are 1, 7, 19, 37, 61, 91, 127, 169, 217, 271,
ete., times @, as may be shown thus:

The angle between the long chord to the sth point and the
tangent at that point is twice the angle at the P.S. The



92 RAILROAD FIELD GEOMETRY

degree of curve at the sth point is D and the deflection

D
angle for a length ¢ of this curve ISE—O X S 2 2’ or,
. L LD A .
since ¢ = nand200 =Aand a,= pyery the deflection angle

is 3sa;. The angle 6 between the tangent and sth chord .
is the difference between 3 sa; and a,, hence the angle
between the long chord and the sth chord is

28, —~ 3 s+ a4y
and the angle ¢ is the sum of s%, and this last angle,
or ¢ =3 s?a; — 3sa+ ay
=a;(3s2—3s+1).

This is an equation of the second degree and the second
difference is a constant and is 6 a;. Therefore by adding
second differences we have

s=1, 2 3 4 5 6, etc
d=a, 7Ta;, 19a;, 37 a,, 61a,, 9a, etec.
Istdiff.= 6 12 18 24 30 36 etc.
2d diff. = 6 6 6 6 6 |etc
If n is 6, n? is 36, and reducing A to seconds gives

. _ 36004 _100A _100LD _LD
tseconds = 3736~ 3 3x200 6

But L_ ¢, the length of the chord, hence, in seconds,
a1= 1004 or ¢D, (124)

either of which is easily remembered and computed.

When the spiral is divided into 10 chords and the chord
length is reduced to stations, m, the first deflection has
been shown by previous examples to be a, = MD in
minutes, which is as eagy to remember as a, = ¢D. As
the transitman deals with minutes on his instrument
the division into 10 chords is also convenient.

As A is readily found when L and D are known, it is
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desirable that tables of spiral quantities be given in terms
of Aand L.*

50. Spirals for Compound Curves.— Spirals uniting the
different branches of a compound curve are computed
practically as those for simple curves. They will be
required when the change in degree at the P.C.C. is such
as to make a change of 2 inches or more in the cant. When
the change is less than 2 inches, it is run out on the are
of longer radius just as it is on the tangent of a simple
curve. When the change is more than 2 inches the length
of spiral is computed by Eq. (71),

(72), or (73), as desired, using the /"—_ ‘-N{

difference in degrees for the D of Eq.
(71), and the change of elevation for \‘
the E of Eqgs. (72) and (73). \
Assuming that the spiral runs \
from the C. 8. to the 8. C. in Fig. 53, A
it may be considered a portion of a
spiral beginning on a tangent some-
where back of the C.S., the 8. C.
being the S. C. of such a spiral end-
ing with degree D,, that of the
shorter radius curve. If so considered, and if
= length of spiral C.8."to S.C.,
n = number of chords into which it is divided,
¢ = length of each chord,
L, = length of spiral from S.C. to T. S,,
n, = number of chords into which L, is divided, then

N,
N,
\

——
e e e o o e e e e

-
—

-

Fig. 53.

L __D _ DL_
L1 D-p & L=p-p
me =L, ividi m_ Ly
ne=L Dividing =1
‘nLl

n1=—L——

The point C.S. would then be the sth chord point of
* Such tables will be found in the field book to follow this volume.
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the spiral, T.S.—8.C,, and 8 is n. — n. Therefore, from
the tangent at C.S. the deflection to the several chord
points on the spiral may be computed by the methods of
Art. 47. If this spiral is considered, the functions would
all be computed for D,, L,, ¢ and n,, the laying out of the
spiral beginning at the sth chord point, 7.c., the C.S. of
Fig. 53. The field procedure would then be to locate
the arc of longer radius to the C.S., then the spiral by
deflection angles to the S.C., and then the second branch
to the C.S. of the ending spiral, or to the P. T. of the
second branch.

But a simpler method is to consider the spiral between
the two branches as a complete spiral connecting a tangent
with a curve of degree D, — D, computing all functions
accordingly. The distance Z (measured on the arc of
greater ra.dms), the offset O, and other elements will be thus

A given with no error of
7\ consequence. The two
branches of. the curve
may then be located up
to the P.C.C. with the
offset O betweer them,
and the spiral laid out
by any method desired,
the method by offsets
being recommended.

The change in degree
at the P.C.C. of a com-
pound curve is never as
great as the change from
tangent to curve of maxi-
mum degree and is rarely
such as to require more
than the simplest of the approximate formulas that have
been developed.

Considering the whole spiraled curve, and referring to
Fig. 54, the compound curve is supposed connected first

\
\
\
\
\
\
\
\
\
\




SPIRALS 95

directly to the tangents. To introduce the spirals, the arc
of shortest radius must be thrown in along the common
radius line, a distance PP, necessary to produce the re-
quired offset O, for the proper length of spiral L,.

PP,= O,secI,.

The arc of longer radius must be thrown in along the
same line a distance PP, necessary to produce the required
O: for the proper length of spiral L,.

PP 2 = Oz sec I 2

PP, — PP, must at least equal O, the proper offset
for the connecting spiral L’. Therefore, after computing
tangent distance for the curve connected directly to the
- tangents, L, is found and from this O; and PP;; to the latter
O', previously found, is added for PP,, and from this a
trial value of O, is determined. If found to be larger than
necessary, no harm is done, and it cannot well be reduced.
If found too small, O, and PP; may be increased, or O’
may be increased enough to make O, correspond to the
computed proper quantity. If O,is increased, a new L.
will result longer than required, but not, therefore, unde-
sirable, unless the shift in the line is too much, in which
.case other methods may be employed, as indicated in Art.
51.

Ezxample. The following are notes of a temporary
compound curve:

Sta. 768 +50 P.C. 8°R.
Sta. 775 P.C.C. 4°R.
Sta. 783 +50 P.T.

Change the notes to conform to a spiraled curve for a
maximum speed for the 8° curve, determining the sta-
tions of T. S,, 8.C,., C..8,, 8. C.., C: S. and S.T.

Formulate the procedure for laying out the curve.

51. Spiraling Existing Track. — There are several ways
of converting an existing simple curve and tangents into
a spiraled curve and tangents.
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1. The radius may be shortened by the eomputed O
for the determined length L, keeping the same center.
The shift of the track will then be O throughout the cen-
tral curve, and from this to
nothing at the T.S.and S.T,

This method usually
causes too much shift, and
shortens the track, requir-
ing the cutting of a rail
when O is a considerable
quantity. The cutting of a
rail is not a serious matter
" and can rarely be avoided if

Fig. 56. a spiral of much length is
introduced.

2. A better way is to maintain the same vertex of the
curve, and shorten the radius by

__ 0
R-F- vers } I
The greatest shift of track will be a little less than } O
and the tangent points will be moved toward the P.1. by
a distance AA’ Fig. 55.
t=(R-R)sin}l. (126)
3. Still less maximum shift at one point will occur if
the middle point of the curve is moved outward along
the central line about $ O before the radius is changed.
The student may show that the new radius must then be

(125)

R-Rp-10cs3l+0

vers 3 1 az7)

and that the movement of the tangent points toward the
P.Lis

t=(R—-R'+10)sin}l. (128)

When the existing curve is a compound curve, and the
track is to be shifted as little as possible, the following
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method may be used: Referring to Fig. 56, find the O’
of the connecting spiral; conceive the arc of larger radius
shifted outward along the common radius line, and the
arc of smaller radius inward along the same line, each by
half O’. The tangent point of the larger radius curve will
be moved outside its tangent by an amount 3 0’ cos I,

A

VY

Fig. 56.
and the smaller radius eurve will be moved inside its tan-
gent by 3 O’ cos I,.

Find a new radius for R, such that
/
Rlz =R3— (0] COSIz +02’ (129)
vers I,
and for R, a new value,
R\ =R, — 0 —30'cos I

vers I, (130)
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The movements of the tangent points toward the vertex
are
tt=(R: — R':+ 3 0') sinl,, (131)
b= (Rx ~-R/ - i 0’) sin I. (132)

The extremities of the two arcs being thus located, the
curve may be run in by any method already given.

Slightly less maximum shift of track at any one point
may be had by shifting the P. C. C. a small amount out-
ward along the common radius line, say,  O’. The
student may work out the remaining procedure.




CHAPTER VIL
RIGHT OF WAY DESCRIPTION.

52. General Statement. — Right of way descriptions
are frequently difficult to prepare and the surveys may be
difficult to make. Many of the older lines have had very
imperfect descriptions and have suffered from many
encroachments of adjoining owners, who by long undis-
turbed possession have gained title to property that later
becomes necessary to the purposes of the railroad com-
pany, which may find itself obliged to purchase a part of
its property a second time. :

The surveys and the writing of the descriptions require
the utmost care, and descriptions should never be pre-
pared by a right of way agent, unless he has a good knowl-
edge of surveying, never by an attorney, but always by a
careful and methodical engineer or surveyor.

The student being supposed to be familiar with ordinary
surveying methods, this matter will be treated by giving
a few illustrative examples.

53. The Taking is a Parallelogram. — Let it be sup-
posed that the located center line passes through the lands
of George Brown which lie between those of Calvin Jones
and Peter Smith, and that the line is straight. Let it be
supposed that the right of way is 100 feet wide, 50 feet on
either side of the center line. For a single track road this
is usually the case, but it may occur that a single track
is first located with the expectation that a second track
will soon follow, when it is well to have an equal space on
the two sides of the center line between the two tracks,
the first located line lying about 64 feet (for 13 feet center
to center) to one side of the center line of the right of way

99
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strip. Let it be first supposed that the line lies in that
part of the United States covered by the public land sur-
veys, and is in Section 11, of Township 6 N. R. 3 W. of the
5th Principal Meridian. A loose description very likely
to have been written some years ago would be:

“ A strip of land 100 feet wide, 50 feet on either side of
. the located line of the A.B.C. R.R. where the same passes
through the land of the party of the first part, con-
taining acres, more or less.”

This is a wholly bad description. Some engineers would
not say wholly bad because they believe the located line

3
Calvin Jones %s George Brown
S Sec. 11, Twp. 6 N., R. 3 W., 5th P.M,

Location Line
Sta. 382 +22/9
A.B.C. R.R. M 0;008L 'S
Distorted Scale '

Calvin

Jones George Brown

Peter Smith

Fig. 57.

to be a more permanent and certain monument and mark
than any ordinary land monument or line likely to be
found. And when the property is farm land of little
value, perhaps this contention is correct. Others would
say, “the line will vary a little from time to time’’; this is a
good description, precisely because it is indefinite and the
company may shift the line a little from time to time, the
right of way shifting with the shift of the track. But it
may be fairly said that it is desirable from the standpoint
of both parties that the description be definite and such
that the property line can be re-run at any future time with
no uncertainty. It is of particular value to have these rec-
ords complete and definite near and through cities where
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the land already is or is becoming of considerable value.
A better description would be as follows:

A strip of land 100 feet wide, 50 feet on either side of the
located center line of the A. B. C. R. R. where the same
passes through the lands of the party of the first part ; the
said located center line being described as follows: to wit —
Beginning at the intersection of the located center line of
the A.B.C. R.R. with the easterly line of section 11, Twp.
6 N. R.3 W. 5th Prin. Merid., distant northerly on said
section line 726.2 feet from the S.E. corner of said section
11, and running thence S.75° W., true bearing, 1460.5
feet more or less to the intersection of said located center
line with the westerly line of the S. E. } of the 8. E. 1 of
the said section 11; containing —— acres more or less.

This description gives a permanent starting point fixed
by a reference to an established public survey line. -

If the property does not lie in that part of the country
covered by the public land surveys, then, adopting the same
figures so far as they are applicable, the description might
be as follows:

A strip of land 100 feet wide, 50 feet on either side of
the located center line of the A.B.C. R.R. where the same
crosses the lands of the party of the first part, the descrip-
tion of said center line being as follows, to wit: Beginning
at a point on the line between the lands of Peter Smith
and George Brown, distant on said line northerly 726.2
feet from the southeast corner of the lands of the said
George Brown, which southeast corner is marked by a
stone set in the ground and from which a hard maple tree
12 inches in diameter bears N. 26° W. 25 feet, and a chest-
nut tree 15 inches in diameter bears S. 42° W. 53 feet;
and running thence S. 75° W., true bearing, 1460.5 feet
more or less to the line between the lands of George Brown
and Calvin Jones, intersecting said line at a point distant
southerly thereon 478.3 feet from a corner stone in said
line, from which corner stone the N. E. corner of the house
of the said George Brown bears S. 36° 40’ E. 176.4 feet.



102 RAILROAD FIELD GEOMETRY

(This corner would be better defined if there was another
reference point.) The said strip of land contains —
acres more or less.

54. The Taking is Irregular. — If the line had crossed
at a somewhat sharper angle in the preceding case the strip
would not be quite regular. The damage to the small
triangular piece of section 11 cut off from the rest of the’
section may be considered so great that the company may
purchase it with the rest, in which case the description

> Ad
Calvin Jones /© George Brown [
~
g . 7 707, 7777 ~ 7
. /Sta. 382+22.9 Location Line [ta. 367 + 62.5
A.B.C. R.R. *M 0;0009 '8
Distorted Scale

Peter Smith

Fig. 58.

would be fairly simple, being: all that portion of the S. E.
1 of the S.E. 1 of Sect. 11, Twp. 6 N. R. 3 W, ete., lying
south of a line parallel with and 50 feet measured at right
angles northerly from the located center line, ete., . . .
followed by a description of the line and a statement of
acreage.

If the triangular piece is not to be purchased the descrip-
tion will be by ““ metes and bounds,” thus: Beginning at a
point on the easterly line of Sec. 11, Twp. 6 N. R. 3 W. of
the 5th Principal Meridian, where the said section line is
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crossed by the located center line of the A.B.C. Railroad,
which point is distant northerly on said section line 762.2
feet from the southeast corner of said section 11, and
running thence S.0°40’ E. along said section line 57.3
feet more or less to a point 50 feet distant southerly and at
right angles from the said located center line of said A.B.C.
Railroad; thence S. 60° W. parallel with said located
center line 1409.7 feet more or less to the southerly line of
said section 11; thence due west along said southerly line
of said section 11, 44.2 feet more or less to the westerly line
of the S.E. 1 of the S.E. 1 of the said section 11, being the
westerly line of the lands of the party of the first part;
thence N. 0° 40’ W. along said westerly line 89.3 feet more
or less to a point distant 50 feet northerly at a right angle
from the said located center line of the said A.B.C. Rail-
road; thence N. 60° E. parallel with said located center
line 1460.4 feet more or less to the easterly line of said
section 11; thence S. 0° 40’ E. along said easterly section
line 57.3 feet more or less to the point of beginning, con-
taining —— acres more or less.

A description of an irregular piece of land not a part of
the surveyed public lands would be similar to the fore-
going, the boundary lines between individual owners,
and the corners in those boundaries, taking the place of
section lines, fractional section lines, and section and
fractional section corners.

55. The Description involves a Curve. — A. The strip
18 of uniform width, both sides being parallel with the center
line of the railroad. If the strip has parallel sides it may
be described as such a strip with a description of the center
line as a base tied to some existing monument. Thus in
the case shown in the figure: A strip of land 100 feet wide
50 feet on either side of the located center line of the A.B.C.
Railroad where the same crosses the lands of the party
of the first part, and bounded on its westerly and southerly
ends by the westerly and southerly boundary lines respec-
tively of the lands of the party of the first part, containing
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—— acres more or less. Said center line through said
property is described as follows, to wit: — Beginning at a
point in the easterly line of the lands of George Brown
distant northerly on said easterly line 362.3 feet from the
southeasterly corner of said property, and running thence
N. 89° 42’ W, 337.5 feet; thence by a spiral curve to the
left 300 feet through an angle of 12°; thence by a curve to
the left, of 716.78 feet radius, 262.4 feet more or less
measured by chords of 78.3 feet, 100 feet, and 84.1 feet
- more or less to the intersection of said located center line
with the southern boundary line of the lands of the said
‘George Brown.

Fig. 59.

B. The strip is not of uniform width. One side may be
parallel with the railroad line or neither side may be. In
the foregoing case let it be supposed that the entire corner’
cut off from Mr. Brown’s property by the railroad is to
be taken as right of way or for station grounds or other
purposes. The description will be by metes and bounds.
The quantities to be determined before the description
can be written will be: 1. The cross half width on the
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westerly boundary line, which is 50 sec. 22° 12’ *; 2. The
length AB, which is 337.5+ 50 tan 22° 12’; 3. The length
B.C., the ratio of which to the length of center line spiral
may be assumed to be the same as the ratio of the average
radius of the spiral plus fifty feet to the average radius.
In this case the average radius is that of a 4° curve.
4. The length of CD or its central angle. This can
be determined in the field, or by solution of the tri-
angle DFG—an ill-conditioned triangle. The solution
would give the angle DGF, which added to the known
angle FGC gives CGD; 5. DE, which may be measured in
the field or computed as a defective course whose length
is wanting, after the other quantities have been obtained.

Another way of describing the taking would be as fol-
lows: All that certain piece or parcel of land situated in
the town of —— County of —— and State of ——, and
bounded on the west by the westerly line of the lands of
George Brown, on the south by the southerly line of the
said lands of George Brown, and on the north and east by a
line parallel with and 50 feet distant northerly and east-
erly from the located center line of the A.B.C. Railroad,
which center line is deseribed as follows, to wit: — (Here
follows the description of the center line as already given.)
Containing acres more or less.

56. A Practical Example. — One method of describing
a boundary by metes and bounds where the line runs
parallel to a curved and spiraled center line is shown in
Fig. 60. Considering the 7° curve to the right of the
middle on the side away from the river, the right of way
line at the spiral and curve is not strictly parallel with the
center line, but is made up of a 3 center compound curve
having P. C. and P. T. opposite the T. S. and S. T. of the
center line. The end curves are of a length % the spiral,
and central angle 4 the spiral angle. The radius used is
about } that of the central curve.

* Let the student show the correctness or incorrectness of the figures
given.
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Another method suggested by Mr. Jenkins who furnished
the description in Fig. 60 is to make the right of way lines
parallel and concentric with an imaginary center line con-
sisting of two tangents each approximately } the length
of the spiral it in part replaces, two simple curves, each
of 4 the length of the spiral it in part replaces, and a simple
curve of the degree of the main curve. The two simple
curves at the ends will each have a central angle equal to
that of the spiral, and the radius of the simple curves
will be approximately # that of the central curve.

Ezxample : Let the quantities mentioned as necessary to
a description by metes and bounds be found for the case
shown in Fig. 58 and the description written beginning
at E.

Problem. Show that a tangent of 4 the length of a
given spiral, and a simple curve of 4 the length of the
spiral covering the same angle as the spiral, will have ap-
proximately the same coordinates at the end of the simple
curve as the S. C., and show also that the radius of the
simple curve will be approximately 4 that of the central
curve with which the spiral connects, or its degree will be
3 of the degree of the central curve. It will be simpler
to find the relation of the degrees first using the fact
that the spiral and the simple curves subtend the same
angle.

§7. City Property. — In going through city property
great care is required in making the necessary surveys,
the measurements being always to hundredths of a foot
and the angles being read to the least count of the vernier.
It practically always happens that the company takes the
whole lot or all of one end or side or corner of any lot crossed
or lying within the necessary width of the right of way.
When the line is a curve, it is usual to draw a straight line
across each lot of which a part is taken, approximately
where the curved line would lie, when the piece taken is
easily described by metes and bounds, the corners of the
lot, which will be numbered in a numbered or lettered



RIGHT OF WAY DESCRIPTION 107

block, being with the street lines sufficient reference points
or lines.

In the case shown in Fig. 61 it is probable that the whole
of lot 1 and perhaps lot 2 would be taken, although the
company might again sell the unused portions of the lots;
the portion, A, making an irregular lot facing First avenue
and the small triangle, B, may be wished by someone for
a small stand. The back portion of lot 3 may be sold to
the owner of lot 10 if there is no alley, or if there is, it may
be used for warehouse or barns with access from the alley.
It may even be necessary to purchase lot 4 and dispose of
the back portion.
Lot 5 need not be
touched unless there
isnotsufficient clear-
ance at the S. W.
corner. In any event
the surveys will es-
tablish the points K. Street
of intersection, and
angles of the rail-
road line with the
lot lines, when the
description becomes
simple. Bearings
are not given but Fig. 61.
angles with established lines, as street lines or lot lines
are stated.

58. Suggestions. — When one line of a plot is supposed
to extend to another line, point, or object, its length should
be stated “ more or less ”” ““ to ”’ the described line, pomt
or object.

It is well to monument the intersections of right of way
line with private property lines by some sort of permanent
marks as soon as possible after the line is located, and
while the lines are still known and agreed to by adjoining
owners.

1st Avenue
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It is well to prepare a careful map of each piece pur-
chased, as, for instance, Fig. 60, binding the map into the
deed. The form shown in Fig. 60 has a stub containing
the description worked up by the engineering department.
When this has served its purpose, the descriptions being
written into the deed, the stub is taken off and the map,
which is made on a sheet the width of legal paper and of
whatever length necessary, is attached to the deed.

The right of way through cities is usually only as wide
as is absolutely necessary and is often as little as 30 feet,
or even less, for single track.

When embankments are so high or excavations so deep
that the usual width of right of way is insufficient, the
bounding line is surveyed as any irregular field to take in
the necessary area, which will vary in width with the varia-
tion in width of embankments and excavations.

The bearings of the boundaries on maps should be written
to read from left to right along the several lines in the
direction of the description. Fig. 60 is a good example.




CHAPTER VIII.
SWITCHES AND FROGS,

59. Occurrence and Forms of Switches and Frogs. —
When one track leaves another, it is by means of a switch
and frog. The switch serves to turn a train from one
track to the other,
and the frog isa ¢ - [Ha.
device permitting ;N‘
the car wheels to T
cross one rail of \Q\\K

either track. In g

Fig. 62 the switch

is shown at S and Fig. 62.

the frog at F. The form of switch shown is a stub
switch not now much used. The rails r are spiked to the
ties near one end only, and the other end is thrown at H
from main line rail to turnout rail by the lever L. The

Fig. 63.

rails bend to an elastic curve which is considered for

purposes of computation to .be a part of the turnout

curve tangent to the main line at ¢ where the spiking

begins. The rails g and g are guard rails to hold the
109
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wheel flanges away from the point of the frog, thus
lessening danger of derailment.

Fig. 63 shows a split switch, the usual form. In this,
one main line rail and one turnout rail are movable about
ends a, the rails in Fig. 63 being set for the main line.
The two switch rails are beveled off to a long blunt point
at the ends H and lie up close against the fixed rails next
them, making with those rails a small angle of approxi-
mately 14 degrees, more or less. This angle is called the
switch angle. The switch rail of the turnout track is
placed so as to be in the tangent to the outer rail of the
turnout curve at @ when set for the turnout hard against
the main line rail. The opposite main line rail is bent near
H to the switch angle, and is tangent to the inner rml of
the turnout curve where they connect.

The construction of a split switch is shown in Fig. 64.
The plates 1, 2, 3, 4, 5, and 6 are called friction plates,
and the four pieces at and opposite 1 and 3 are rail braces.

Fig. 64.
The rods connecting the rails are connecting rods, the one
nearest the movable end is the main rod or head rod, to
which the switch rod and lever are connected. The spring
(not always included) attached to the head rod makes the
switch partly automatic in that a train may enter the main
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line from the siding when the switch is set for -the mmain
line, the switch rails being thrown over against the spring
by the wheels, and returned to position by the spring.
The outline form of an ordinary stiff frog iz shown in
Fig. 65, the different parts being named. There are also

Fig. 65.

spring rail frogs; one is shown in Fig. 66. The main line
wing is held against the frog point by the spring S, which
returns the wing rail to position after the passing flanges

Fig. @6.

of the wheels of a train entering or coming from the siding
have thrown it over.

Double turnouts or three-throw switches are used when
two turnouts leave the main track at the same point.
They may leave on opposite sides or on the same side of
the main track. Both stub and split switch forms are
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shown in Fig. 67. The points of the switch rails in the
split switch are separated by about two feet, but all are
thrown by the same switch rod by the aid of suitable con-
necting rods. Perhaps more frequently the second switch
is advanced beyond the end of the first one far enough
to get good clearance, when one or two levers may be
used to throw them, but usually one. The frog at C is
known as the crotch frog. In England, and sometimes

Stub \

/
—
o N0\

Fig. 67.

in America, switch rails are called “ points.” A switch
is a “facing point ” if main line traffic is in the direction
switch-frog, and a ‘“ trailing point "’ if main line traffic is
_ in the opposite direction. Trailing points are the safer.
The frog number is a quantity now less frequently used
than formerly in formulas, but still used to distinguish
frogs of different angles. The number of a frog is the
length for a spread of one unit; thus a No. 10 frog spreads
1 foot in 10 feet, or 1 inch in 10 inches. The length is
sometimes measured on the gage side of the rails, and
sometimes along the middle line or bisector of the angle.
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The latter method is that adopted by the American Rail- .
way Engineering and Maintenance of Way Association.
By it, if F is the frog angle and N the frog number,

tan } F = half spread _ 1

length 2N
-
Whence N = Ttn3F - dcot 3 F. (133)

If the measurement of length be along the gage line

N=m=%00&0}p. (134)

Certain makers of frogs use Eq. (134) because it is the
length along the gage line that is used in calculating lengths
of connecting rails.

The frog has a blunt point § in. to % in. thick. The
switch rail of a split switch has also a blunt end at the
point of switch usually %1 in. thick. In Figs. 62 and 63
H is called the point of switch, and ¢ and a respectively
heel of switch. The distance from point of switch to point
of frog is usually called the lead of switch, or simply lead,
sometimes frog distance. The distance -apart of the
two rails at a, Fig. 63, is called the spread or heel spread,
and the distance apart of rail heads at H in Fig. 62, the
throw.

The sine of the switch angle of the split switch is
obtained by dividing the spread less the thickness of the
point by the length of the switch rail.

The spread and length of rail depend on the pattern and
weight of the rail, the heavier rails requiring more spread,
and consequently greater length to keep the angle small.
The track leaving the main track is called a turnout as
far as the frog, and may be a turnout to a branch road
track, to a siding, to a yard, or to a crossover between two
tracks. |

In laying out a turnout, the quantities that will be
known will be,
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1. The number (or angle) of the frog, its point thickness,
and its length, both toe and heel, i.e., distances from point
of frog along the rails to toe and heel.

2. The length, spread, and point thickness of the switch
rail.

3. The gage of the track, and its radius if a curve.

The quantities to be found are, 1. The lead, or frog
distance. 2. The radius of the turnout curve. 3. The
point at which to bend the rail that is part main line and
part turnout. It is desirable to arrange the turnout so
as to make the least possible wasteful cutting of rails.

With the stub switch the length of switch rail free to
move is not known, but is computed from the known
throw and other elements to be developed.

Ezxamples. 1. Find the angles of frogs numbered 4,
8, 11, 16.

2. If the point thickness is # in., find the distance from
the theoretic to the actual point for the frogs of example 1.

60. Frog Distance. — Let F be the frog angle, f the toe
length from theoretic point of frog,.T the heel spread, and
t the point thickness of the switch, rail, and G the gage
of the track. Then referring to Fig. 68,

T-t

sinS = —l— (135)

PU=G— (T+fsinF).

Considering the chord P’E, the angle P’EU is 4 (F + S)
because P'CE = F — 8, the angle between a tangent at E
and EP’ would be } (F— S), and between that tangent
and EU is F; therefore,

PEU=F-3(F-8)=3%F+8).
The chord P’E is then

PE= PU _G-(T +fsinF)
sin § (F 4+ 8) sin } (F+ S)

(136)
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UE = P'U cot 4 (F+8)
=[G~ (T+ fsin F)] cot 3 (F+ S) (137)

-——~Frog Distance--—

A H P T
C
l DPU E & G
——A& A
77 MF
1 s
. si
F,
o]

Fig. 68,

The chord length of P’E will usually be sufficiently
precise, but for very sharp turnouts it may be necessary
to compute the length of the arc, which may be easily
done when the angle and radius are known.

From actual point of switch to actual point of frog,

Frog distance = I+ UE + MF + FF'
=14+[G— (T+fsin F)] cot 3 (F+ 8)
+fecos F+ (N. (138)

The term tN is an approximation (the student may tell
why), but the quantity is small and the difference between
true and approximate values is negligible.

Ezxamples. 1. The frog number, toe length to theo-
setic point, and point thickness are respectively 8, 4 ft.
) in., and % in.; the switch rail has a length of 16 ft. 6 in.,
3 heel spread of 64 inches and a point thickness of 1 inch.
The gage is 4 ft. 8} in. Find the frog distance.

2. The frog number, toe length, and point thickness
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are respectively 11, 6 ft. 0 in., and % in.; the switch rail
has a length of 22 ft., a heel spread of 6% in., and a point
thickness of 1 in. The gage is 4 ft. 84 in. Find the frog
distance.

3. The frog number, toe length, and the point thick-
ness are respectively 16, 8 ft. 0 in., and } in.; the switch
rail has a length of 33 feet, a heel spread of 61 in., and a
point thickness of 1 in. The gage is 4 ft. 84 in. Find the
frog distance.

61. The Radius of the Turnout Curve. — Considering
that the curve is tangent to the switch rail at P’ and to
the frog at E,

. e pr _G—gT+tsinF)’
2(R+3@)sin3 (F-8)=PE= sn1F+9)

G—(T+fsin F) ,
2sin} (F—8)sin} (F+ 8)

R+%G=M~ (140)

cos S —cos F

R+3G=

(139)

Equation (140) may be derived directly from the figure,
since CD=(R+3G@)cosS—(R+:G)cosF=PU.

But equation (140) is not likely to give quite such con-
sistent results as (139). The difference is not ordinarily
of moment, particularly when it is remembered that frogs
are rarely precisely of the angle intended. (R4 } @) and
(R — % @) are more frequently required than R, which may
be had from (139) or (140) when desired.

The formulas may be somewhat simplified by con-
sidering the length, f, curved and part of the turnout
curve. The student may find these simplified formulas.

Ezxamples. 1,2,and 3. Find the radius of the turnout
curve for each of the turnouts of the examples 1, 2, and 3
of Art. 60.
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62. Length of Bent Main Line Rail. — The length v
of main line rail that is to be bent to the tumout is found
by considering similar triangles, thus:

r__t |
T=T—1
v =-,!% (141)

Ezxamples. These examples are for the application of
the discussions of Arts. 59-62 inclusive.

Given frog number 11, toe length 6 ft. 0 in., thickness
of point } in., length of switch rail 22 ft., thickness of
point % in., heel spread 64 in., gage 4 ft. 8} in.

1. Find the length of curved connecting rail.

2. Considering rails 28 to 33 feet long varying by whole
feet, lay out the turnout on the drawing board, using
4 in. spacing between ends of rails, so as to make the
least wasteful cutting of rails. Remember that rail pieces
of good length, or proper length for another turnout, are
not wasted.

3. If some cutting of small pieces seems necessary in
example 2, try whether lengthening the lead a little, say
1 to 3 feet, and extending the switch rail and frog toe
tangents, will make a better fit, and if so find the best lead,
and corresponding lengthening of switch rail and frog
toe tangents, and the degree of the connecting curve.

This does not mean that the switch rail or frog is
lengthened.

63. Crotch Frog Number and Distance.— In a three-
throw switch the crotch frog will be considered part of the
turnout curves. This is not necessary, but as the number
is usually small and the frog consequently short, the
approximation is sufficiently close.

The frog distance, radius of turnout curve, length of
lead rail (including length of crotch frog) for the side
frogs, are computed as already explained for a simple
turnout, the given quantities being the same as there noted
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and the two side frog angles being usually equal. It
remains to find the number or angle, and the frog dis-
tance, of the crotch frog, and the length of the connect-
ing rails P’f” and f.f’ (Fig. 69).

c

Fig. 60.
The angle F'Cf' = (F — % F").
Therefore the angle

F'f'K=4(F + } F").
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Hence
F'K =G~ fsin F
=2(0+1G)sn3(F—-3}F")sin} (F+ 4 F"),
or, from trigonometry,
}1G—fsinF=(r+31Q) (cos : F"’' — cos F).
Whence

cos%F"=cosF+ﬁr;+%E%E- (142)

Having the angle, the number may be obtained.

The angle P'CF"' =3 F"’" - 8.
Whence the chord P'F” is given by

L"=PF'=2(r+4G)sin} G F’"~8). (143)

If necessary to compute the actual length of the arc the
method is obvious.

In this switch the turnout switch points are advanced
a distance a (usually about 2 feet) from the head block
carrying the main line points. The frog distance HF”
from turnout points is given by

Frog distance = l+L"cos}(%F"+S)+3—A;- (144)

The length of connecting rail may be taken as P’F”
less the toe length of the frog, or the arc P'F” may be
computed if the turnout is so sharp as to require it. The
length of connecting rail fif’ equals the length of connect-
ing rail for simple turnout less that for crotch frog, less the
length of crotch frog.

When one set of points is advanced farther beyond the
other, the crotch frog does not fall in the center line of the
main track, its angle varies a trifle from that of the crotch
frog of a symmetrical double turnout and the computations
of angle and lead are a little more laborious. Letting
Fig. 70 represent a part of such turnout and letting K be
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Fig. 70.
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the distance between points, it will be seen that moving
one point ahead a distance K moves the center of that
curve ahead the same distance, so that

AC' = K,
also AC=2R+ 3G cosF+G—-2fsinF.

Another method of deriving AC is as follows: Consider
the two turnout arcs produced back to end in tangents
parallel to the main track at 2 and A’ respectively.

Then hm=T- (R+ % G) vers S = in.

Since this quantity can be used to advantage in other
problems, and since for a given frog and switch angle it is
always the same, it will be given a character, O, by which it
will be hereafter known.

Then AC = Ai+Ch — he.
But h=G-20.
Hence AC=R+i1®D+R+1@ —(G-20),
AC=2(R+0). ‘

Since O must be computed, there is no value in this
expression over that of the preceding paragraph for a
single computation in which O is not wanted for any other
purpose, but it is the more convenient for use where a
number of problems are to be solved, or a table com-
puted in which O is a factor.

From AC’ and AC, CC” is computed, and in the isosceles
triangle CC'F”’ the angles are readily obtained, since the
triangle may be divided into two equal right triangles
with base and hypotenuse known. The angle at F” is
the supplement of the angle F”’ of the crotch frog.

The crotch frog distance PF” is PE+ EF”, or, since
PE=1-(R+1@sin8, and EF"” = (R+ }G@) sin ECF”,
then calling ECF” ¢,

Crotch frog distance from first point .

= (B+}6) (sin$—sin 5) +1, (145)
which holds whether ! or (R+ } @) sin S is the larger.



- 122 RAILROAD FIELD GEOMETRY

For logarithmic computation,

Crotch frog distance
=2(R+4@cos}(p+8)+cosd(6—~8) +1. (146)

From the second point the lead is this quantity less K.
The angle ¢ is readily obtained from C’CF” and C’'CA
obtained from the triangles CF"’C’ and AC’C respectively.

Theangle F'CF=F-—¢ and F'C'F=F-o.
The student may show how 6 is obtained.

Ezamples. 1. Find the angle of crotch frog and its
lead for a double, opposite, symmetrical turnout from a
straight main track, using a number 11 frog and a switch
rail of 22 ft. with other elements as given or determined
in the examples of Arts. 53 and 54.

2. Find the several quantities necessary to lay out the
turnout with one pair of points advanced 28 feet beyond
the other. This means leads, crotch frog angle, and
lengths of all separate pieces of connecting rail. The
theoretic toe length of the crotch frog is 3 ft. 9 in. and
the heel length 6 ft. 8 in. Compare the frog angles found
in examples 1 and 2.

84. Crossovers. — A crossover is a track connecting
two other tracks usually parallel. It may be laid out in
one of two common- forms: (a) straight between frog
points, or (b) as a reversed curve.

(@) The track between frog points is straight. To lay
out such a crossover the point of switch will be fixed, the
number and dimensions of frog — the two frogs will be
alike — and the length, heel spread, and point thickness
of the switch rail will be known, and hence all the elements
of each turnout will be determined. The perpendiculsr
distance between track centers and the gage will be known.
The point of one switch being fixed and the elements of
the turnout determined, the point of frog is fixed, and it
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remains only to determine the distance along the track,
BD, Fig. 71, to the second frog from which the second
turnout may be laid out. The distance BD — theoretic
point of frog to theoretic point of frog — may be readily
shown to be
(&

BD=(W-@) cotF—siTF—,- (147)
From actual point of frog to actual point of frog the dis-
tance is that of Eq. (147) less 2 KN, in which K is the
point thickness and N the number of the frog. The
lengths of connecting rails depend on the heel lengths of

”

[} S A

¢

Fig. 71.

the frogs and the arrangements of the inner rails of the
two turnouts. The length ED may be shown to be
ED=U=8) _geotF. (148)
sin F

The total length of crossover measured along the straight
track is gvidently

L =BD + 2 X frog distance to theoretic point.

(b) The crossover is a reversed curve. In this case a
trifle of distance is saved, but the practice is not advised.
The radius of the turnout curve is used for the reverse
curve. The frog may be considered part of the curve
or straight. If the frog is considered straight, the follow-
ing discussion results:
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In Fig. 72
O+ R vers (F+0) +dsinF=%-

¥ —dsinF—0

Whence vers (F 4 0) = 7

(149)

F being known 6 is now known.

It will be remembered that O is the heel sprea.d of the
switch rail less (R+ 4 G) vers switch angle.

If p represent the difference between (R + 3 @) sin S and
the length of the switch rail, then the distance along the
straight track from point of switch to point of switch
will be L = Length of crossover

=2{R sin (F+06)+dcos F ¥p} (150)
and the distance between theoretic points of frogs will be
L — 2 X frog distance to theoretic points. And as before,
this less 2 KN is the distance between actual points. In
the foregoing p will usually be negative, sometimes posi-
tive. It is negative when (R+%G) sin S>1. The length
of rail between frogs is

Length of connecting rail=2 R m (151)

If the frog is considered part of the curve some of the
expressions are simplified. The student may discuss this
case.

Ezample. Using a No. 8 frog, a switch point of 16 ft.
6 in., a heel spread of 6} in., toe length of frog 4 ft.
9 in., heel length 8 ft. 9 in., point thickness of frog % in.,
and of switch rail } in., find all the elements necessary
to plan and lay out a crossover between parallel tracks
13 feet apart center to center, the gage being 4 ft. 84 in.
Let the track between frog points be a, straight; b, a re-
verse curve.

85. Connecting a Turnout with a Parallel Side Track. —
If a turnout is for a siding the radius and length of the
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connecting curve must be determined. From Fig. 73 it

may be readily shown that the central angle must be F, and
(R-3@)versF=W—-G~f sinF,

in which f” is the theoretic heel length of the frog. From

this relation ¢ -
_W-G-—fsin
R vors F + 3G (152)
The length of the curve is R§-3and the distance along

the straight track from point of frog to a point opposite
the beginning of the straight portion of the siding is
ffeos F4+ (R— 3@ sinF. A high degree of precision in
laying out ordinary sidings is not usual, and the frog may
be considered a part of the curve, when the expression will
¢ be somewhat simpli-

fied. The student
e may discuss this case.

Ezample. Using
the turnout elements
of the example, of Art.
64, find the quanti-
ties necessary to lay
out a curve connect-
ing the turnout with
a parallel siding 13
feet distant center to center from the main track.

66. Lead or Ladder Tracks. — At the beginning of a
yard or cluster of tracks, one track leads out from the main
track and the several tracks of the yard or cluster branch
from this lead or ladder track. Sometimes the main lead-
out track will branch into two lead or ladder tracks, and
the two lead tracks may in turn branch again into two
ladder tracks, as in Fig. 74.

These yard tracks are usually spaced from 12 to 13 feet
center to center, the spacing between ladder track and
thoroughfare track being wider. Where tracks are yard

Fig. 73.
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. tracks for loading from or unloading to wagons, they are in
pairs, each pair having its tracks from 12 to 13 feet apart

_% Thorafare

a e

Fig. 74.

and the pairs separated by about 24 feet between centers
of nearest tracks. Stub tracks, for wagon loading and un-

Fig. 75.

loading where wagons must be turned, may be 39 feet
between centers of nearest tracks of adjoining pairs.
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The usual problem is to find the distance from point of
frog of the first ladder to point of switch of the first yard
track, or from point of frog to point of frog, the distance
to point of switch being this less the lead of the turnout.
The known elements are the distance between tracks and
the elements of the turnout. The distance from frog to

frog is evidently WF , whether the distance from the frog

of the lead and main track to the first yard track frog or
between frogs of successive yard tracks from the ladder
track is required. The distance from switch point to

switch point along the

ladder track 1is the
same.

1 67. A Branching
) Track. — When one
\ track branches into two
Fg. 76 symmetrically, as at
t the beginning of a yard
cluster, the lead is given by the following expression which
it is thought the student can verify:

Lead=1+ (3G—T)cot 4 3 F+8) +fcos 4 F, (153)

in which ! is the length of the switch rail; G, the gage;
T, the heel spread of the switch rail; F, the frog angle;
S, the switch angle; and f the toe length of the frog.

The radius of the curves to be used is found to be

3G—fsin3yF—-T .
gin} (3F+ 8)sin§ 3 F - 8)

Ezample. Using the turnout elements of the example,
Art. 60, and a No. 4 frog for the branching tracks, lay out
the beginning end of a 40-track cluster with 4 ladder tracks
and three thoroughfare tracks in the shortest practicable dis-
* tance. Make the body tracks 12 feet center to center, the
thoroughfare tracks 15 feet center to center of adjacent
tracks. The layout should be essentially asin Fig. 74. Note

R= (154)
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that a No. 4 frog has not exactly twice the angle of a No. 8
frog and that hence a fudging or adjustment of the
body tracks parallel to the central thoroughfare will be
necessary. This will amount to only about 1} min-
utes. If thought of sufficient importance, a special frog
of just twice the main frog angle could be made for the
branching tracks.

68. Turnouts from Curved Tracks. — A. Stub switch
formulas.

1. Turnout on the inside: When a turnout leaves a
curved track a mathematically exact solution of the frog
distanceis not simple
if the frog is con- ~ |-
sidered straight and —j
connected to a rail
tangent at its toe.
Moreover, it would
have to be considered
straight on its main
line side as well.
Turnoutsfrom curves
are unsatisfactory,
but sometimes neces-
sary. When in im-
portant places, as at
stations, the switch Fig. 77.
rails and frogs should
be curved to secure smoothness of track; but when in com-
paratively unimportant places and little used, there is no
need of great refinement and approximate methods of lay-
ing out will answer. Considering both frog and switch
rail curved and the latter tangent at the point of switch,
as it would be in a stub switch at the heel, the following
comparatively simple expressions may be found for a turn-
out on the inside of the main track.

In Fig. 77 the lead or frog distance is BF measured either
as a chord or along the rail, to get which the angle C must

cl
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be determined. Considering the triangle AFC and calling
R the radius of the main track, and G the gage,

AC=R+16,
CF=R-}G,

and since in the isosceles triangle C’AF the angle at A equals
the angle at F, and since F = CFA — C'FA,

CFA—-CAF=F.
Solving for the angle C by the tangent formula, since
CFA+ CAF =180°- C,

cotan}C _ 2R

tan 3 F G
and since cot 3 F = twice the frog number, N, (Eq. 133),
inverting the expression and substituting 2 N for cot } F
gives

tan 3 = Z¥. (155)
The chord BF=2(R-%#G)siniC. (156)
The arc c

BF=(R—1} 3= .0175C (R - 3 @) approx. (157)

The radius r of the turnout may be obtained from
either of the triangles BFC’ or C'FC. From the former,
using the tangent formula and noting that C' = C+ F,

GN

T F+0) (158)
From the latter
_(R-3@)sinC,
TG-S F 0 (159)

If in (156) 4 G be neglected as small in comparison with
R, and if sin } C be considered equal to tan } C, which is
nearly true for small angles, then approximately

Chord BF=2Rtan 4 C,
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and substituting the value of tan 4 C from (155),
Chord BF = 2 GN.

It will be found later that this is the same as the frog dis-
tance of a stub switch turnout from a straight track. It
is the expression generally used for field work, but not for
carefully worked out values in the drawing room of the frog
maker. The expression is, however, a closer approximation
to the arc BF than to the chord, ¢
since both factors (R — 3 &) and
gsin 4 C are slightly increased
in calling them respectively
R and tan 4 C.

Moreover, it has been shown
that a curve departs from its
tangent at the approximate rate
of §n2D, in which n is the dis-
tance in stations from point of
tangency and D is the degree of
the curve, and that two curves
of degrees D, and D, depart from
each other by the same approxi-
mate law if the difference of
degrees be substituted for D of
the formula. Therefore, since a
stub switch turnout departs from
its tangent an amount @ in the

frog distance, and since the frog
" distance for a turnout from a curved main track is closely
approximate to that from a straight main track, and since
a curved main track and turnout separate G feet in the
frog distance, therefore the difference of degrees of main and
turnout tracks is the same as the degree of the turnout
curve from a straight main track, or, letting D., D,, and D
stand for degree of curved main track, turnout from
straight track, and turnout from curved track, respectively,

D = D.+ Ds. (approx.) (160)

Fig. 78.
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2. Turnout on the outside: When the turnout is to the
outside of the main track, as in Fig. 78, in which C is the
center of the main track and C’ that of the turnout curve,
the frog distance is BF measured on the outer rail instead
of the inner, and solutions like the preceding, using the
triangles CAF, BCF, BC'F, AFC, and CC'F, give

tan $C = %vas before, (161)
chord BF =2 (R+ 4 @) sin 3 C, (162)
arc BF = .0175C (R+ 3 @), (163)
6N

"t (F-0) (164

_(R+1G)sin C’
r+ 4G Gn (F— C) (165)

and approximately

BF = 2GN, . (166)
D= D,—- D.. (167)

There is a second case for this turnout which occurs
when the center of the turnout on the outside lies on the
inside of the curve of the main track. Let the student
construct a figure and by reasoning similar to the foregoing
discover the following equations:

tan 30 =4, (168)
R
chord BF = 2(R+ 4 @) sin 4 C, (169)
arc BF = 0175 C (R+ 1 @), (170)
_ GN

T—t—“———‘——*an *(C— F)’ (171)

_ _(B+ 1@ sin C',
e L (172)

and approximately
BF = 2GN,

D=D.- D, (173)
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B. Split Switches.

Since the frog distances for stub switches are essentially
the same whether the main track be straight or curved,
it may be assumed (and demonstrated by trial) that split
switch frog distances obey the same law. And it is suffi-
ciently exact for practically all unimportant cases of split
switch turnouts from curved track to assume that the
frog distance is the same as that for the same frog and
switch rail from a straight track, and that the degree of
the turnout curve is the sum or difference of the degrees
of the main curve and the turnout from straight track.

Moreover the O and p of Arts. 63 and 64 may be taken
as equal to the corresponding quantities for a split switch
turnout from a curved track.

But it must be remembered that the frogs have been
considered curved, and if they are straight, this introduces
a small but measurable error, so that when the positions
of head block or point of switch and frog have been deter-
mined, it will usually be necessary to fit in the connecting
rails on the ground, unless they have been determined from
large scale drawings.

The following discussion of one case of split switch turn-
out from curved track will indicate how these problems
may be handled when the switch rail is made straight and
the frog curved. The practice varies, but when the curves
are anything but flat, it is perhaps the most usual practice
to make the frogs curved and the switch rail also, except
the planed portien, which remains straight. The heel
spread is therefore increased, but that to be used in the
computations is diminished, since it must be that at
the end of the planed portion of the rail. This planed
portion must also be used for the switch rail length in the
computations. In important complicated curved work
switches and frogs are always made curved, so that com-
putations are made comparatively simple, and quantities
not possible of computation are scaled from a large scale
drawing.
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The lead will be found to the theoretic point of frog, and
the frog must be placed so that the actual point is the
proper distance from the computed theoretic point.

In Fig. 79, C is the center of the main curved track and
C’ that of a turnout on the outside. The switch rail AH,
being planed to the switch angle for straight track, will
fit close against the curved rail only by putting the planed
edge in the line of a tangent to the main curve at A. The
spread BH will then be that usual for a turnout from a
straight track (if we consider the whole rail straight) plus

Fig. 79.

the tangent offset for the main curve for the angle M
covered by the length of switch rail. This is an approxi-
mation practically exact. If only the planed portion of
the switch rail is straight, the spread to be used will be less
in proportion to the lessened length of rail used for com-

putation.
M is given with sufficient exactness by
M= 57.3%, (174)
T"=T +Rvers M. (175)

To find the lead HF, the auxiliary angle K is first found.
From the triangle FCH
CF +CH _ tan } (CHF + CFH)
CF —CH ~ tan } (CHF — CFH)’
but CHF 4+ CFH =180° — K,
and tan } (180° — K) = cot 4 K.

(176)
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Also CHFis90°+ (S + M) +1Q

and CFH is90°—-F + 4 Q.

Hence CHF —CFH =F +8 + M, allknown.
Therefore, from (176)

2R+ T _ cot 4 K
G-T tani(F+S+M)
G-T
and mn%K—(2R+T’)tani(F+S+M) a7
From the triangle EHC’

Q=F-K)—-(S+M)=F-(K+8+M). (178)
Therefore CHF =90°+4(S+M) + §[(F - K) —(S+M)]
=90°+3(F —K+8 +M).
In the triangle CFH
H = CF sin K
sin[90° + 3 (F — K+ S + M)]
(R+ 3@ sin K
= cos} F —K +S+M) (179)
FH )
2sin(F—-K -8 — M)
69. To Connect a Curved
Main Track with a Parallel
Siding. — In Fig.80isshown |\
a side track parallel to and
W feet distant from the
main track of center C, which
is left by a turnout on the
outside with frog angle F. \ !
To connect the turnout with - N
the side track it is necessary ;
to know the angle C giving
the position of B and A4, the
end of the connecting curve, ‘vé
and the radius and central
angle C” of that curve. By
a method of analysis similar to that of the preceding

Then r+1G = (180)

!
v/
v

1

)

Fig. 80.
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article, and using first. the tna.ngle CFA, the following
results can be obtained:
CA=R+W-14G, CF=R+1G.
The angle A = C'FA, and therefore
CFA—-A=F and CFA + A=180°-C.
Therefore, as the student may determine,

tan (=W =6 oi3p DN g

2R+ W' P
2

From the triangle FBC, the radius 7’ of the connecting
curve is

W__(W-G&N_

’J_2—tani(F+C) (182)

The length of FB, chord or
arc, may be found when the
angle C is known, and since

=F + C, the length of
curve FA may be determined
when its radius or degree is
known.

But the centers of the turn-
out curve and the main track
may lie on the same side of

Fig. 81. the main track. Then from
the triangles shown in Fig. 81,
let it be demonstrated that
tan } ¢ = T=GK, (183)
and s 9 _ M (184)

2 tani(F +C)
That is, if the siding is on the outside, the connecting track
is the same on whichever side of the main track the center
of the turnout curve may lie, which is perhaps plain with-
out demonstration, since the frog angle is the same.
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If the siding is on the inside, it may be shown from the
triangle of Fxg 82 that

tan §C = $—U-V (185)
B-5
_W_W-GN
"2 Tt F-0) (186)
and FB and FA may be determined
as before. It is approximately true d

in all these cases that the length of
connecting curve is the same as for
straight track sidings with the same
spacing, and the degree of the con- - !
necting curve is the sum or difference ,/
of the straight track connecting curve ,"

and the curved main track degrees. :

. 70. A Crossover between Curved
Tracks. — If a crossover is to be laid

//
’/
-
"""
————

7/

&
[+]

Fig. 82.

as a reversed curve be-
tween two parallel curved
tracks (Fig. 83), and the
radius R, or degree D, of
the main track, the track
spacing W, and the frog
. angles F and F’ or radii of

Fig. 83. ) o

turnout curves ¢’ and r
are known, the crossover may be laid out. If F and F’,
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equal or unequal, are known, their respective radii may be
found. To lay out the crossover it will be necessary to
know the angles C’ and C"’, and a beginning point A or E
and the angle C, which will locate the other extremity,
when the twe branches of known radius may be run from
these extremities to connect at B. Or if the angle FCF’
is determined, the spacing of the two frogs along the main
track is found, and with their respective frog distances
the points A and E may be found, and the crossover laid
in by eye, as is quite common.

If the turnouts are assumed tangent at £ and A as in
a stub switch,

C’'A=1, AC=R, C'B=+, BC"=7r", EC" =1",
EC=R+W, and C"C=R+ W —1".

Then in the triangle C’C”’C the sides are known and the
angles may be found. With the angle C' known, the angles
FCA and FCE may be had by the methods of previous
articles and thus FCF’ determined, which fixes the frog
spacing along the main track.

If split switches be considered, and great precision
required, and A and E be the points where the turn-
out curve produced backward comes parallel to the
main track, the offsets O’ and O” must be considered.
Thus

CC=r+R+0 and CC"=R+W-0—1".

And the quantities p’ and p” must also be considered,
since the points of switch are not at A and E but p’ and p”’
from these points.

In making assumptions about such a crossover, it is
necessary to know that B falls between F’ and F.

71. Stub Switch. — In the stub switch (Fig. 84) the
switch rail, I, is alternately part of main line and siding.
It is spiked down to the left of A and when thrown over
from main line to eurve forms an elastic curve considered
to be part of the turnout curve. The frog is considered
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curved, though this is not necessary except to the simple
formulas that are derived. It will be evident that
(187)

Frog distance = BF = G cot 4 F = 2GN,
(R+3G)?*-2GN* = (R - 4@)?,

R =2GN2

(188)

whence

The throw ¢ is usually - \
given, and the corre- TN

sponding length of switch ,' L——

rail unspiked is computed i

by the approximate rela- i

;"

/

{

tion that the offsets vary

as the squares of the dis-
tances along the tangent

(true of the parabola). s"

Thus i

B /

BF?

’

Qe
9

I'= 4 GN, Fig. 84.

1 =2NVGtL. (189)

More exactly
i
vers S = B+1¢

. l=(R+31@sinS.

Or since both rails are made the same length, while the
radius of one is B + } G and of the other R — 1 G,

= Rsin 8. (190)
Simple formulas may also be had for the crotch frog num-
ber, namely, N
N, = —= =.707 N (approx.), (191)
v (approx.)

and crotch frog distance, namely,
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Crotch frog distance =Rtan } F,, (192)
_ R
=3N. (193) -

72. Crossings. — When two tracks cross, there are
four points of intersection, hence four frogs. The angle
of the crossing is obtained, the crossing constructed in the
shop and brought to the site for placing. One form is
shown in Fig. 85. There are two acute-angled frogs and

Fig. 85.

two obtuse-angled, being in angle supplementary. When
the crossing is at a right angle the frogs are all alike in angle.
The crossing is sometimes made in special manganese or
nickel steel, or the frog points may be so made.

When the crossing is of a straight and a curved track,
or of two curved tracks, the tangent angles at the center
line intersections are determined, and from these and the
radii the frog angles and spacing can be had as follows
(Fig. 86):

GO=Rcosl,
OH=RcosI 4+ 3G,
OK =RcosI - 1G.
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The frog angles at B, C, D, and E are found by

cos B =R—%%~(—;,
cos C =RO—H;G’
cosD=Rg_I§G,
cosE'=R2K%G-

o

N

3
\
X

NN

AES NEAN
9 e?:K
—
)
‘/"
o

Fig. 86.
The length BC = BH — €H

=(R+1G@)sinB—(R—- $@)sinC.
The length DE is obtained similarly.
The length DB = (R + 3 ) 2.=B,
57.3
and the length EC is similarly obtained. Out of these
lengths are taken the slots or flangeways for passing wheel
flanges.

When two curves cross, the angle of intersection of center
lines is found and, referring to Fig. 87, the triangle 0AQ’,
in which are known two sides and the included angle, is
solved for the side OO’. Then in the triangles O0’'B,
00'C, 00’D and OOQ’E, the three sides are known, to find
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the angles at B, C, D and E, which are the frog angles,
and the angles at O and O’.
! The length of rail

- (R - 16 EOD.
ED = (R - 16) 573

The length
, co'D
DC=(R'+1@) 73
The other lengths
are found similarly.
Out of these lengths
are taken the slots or
flangeways for the pass-
ing wheel flanges.
When crossings are at very small angles or are on curves,
the- movable-point pattern shown in Fig. 88 may be used

Fig. 87.

Fig. 88.

to advantage. It is alse a good design to use in place of
a stiff double-pointed frog with slip switches.

73. Slip Switches. — Slip switches are switches intro-
duced in a crossing to permit a train to pass from ome
track to the other. They can be introduced only when the
crossing angle is between about 4° and 9.30°, or when the
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frogs are between numbers 15 and 6. The slip switch
is shown in Fig. 89.

A. Straight track. So much depends on getting clear-
ances in the construction of slip switches that formulas

Fig. 89.
are not very satisfactory. A general method of comput-
ing them is as follows:

In Fig. 90, I is the angle of intersection of the straight
tracks. CD and AB are assumed as short as the con-
struction will allow. The switch rails are assumed curved,
but they may be straight. It is desired to find the radius
and length of the curved rails.
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VC=VB=VD-cD = -%. _cp,
gin I

Fig.90,
VC=(r+3i@tandl,
(r+3@ =VCecot %1,

I
BC—m(T-{-*G),

£ L _
EF ~ 573 (r-1@G.

B. Curved and straight track. Fig. 91.

~/

Fig. 91.
F'G={R+3Q) cosF,
AG= (R + 1@ cosF.
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5134B _
R+1¢™"

B’ = (R 4 1 @) cos (F —0),

BV = (B +1G) (cos F’ — cos (F — 6))
sin (F — 6)

BVcot}(F—o)—r+§G,
BC - 573 Lo +10),

AOB =

ks=Z

573 8o - 1.

C. Curved tracks. Fig. 92. Let the frog angle D and
the radii of the two curves be known and the clearance
distance DF assumed. Then in the triangle 0.D0; are

found 0,0; and the angle at O,. The angle

FD
R +1G

This gives the angle F0,0,. Since FO; and BO; must be
equal, 050, — 0:0; =R, — R.. Imagine 0.Q drawn to make
050: = 0,Q; then 0,Q =R, — R,, and in the triangle Q0,0
are known two sides and the included angle. Solve for

QO: &nd OAQOz- O:QO: = 180° — 01Q02,

FOD = 57.3.
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0.0 = 310Q
and 0sQ c08 0:Q0,
The radius FO, is then given by
FO; =BO;=T =Rz+%G—O;Q.

The radius HO; =1 — Q.
The angle BO;F =0 = 180° -2 X Oawz
=9
and the arc BF = 573 r.
o -
JH = w3 G.

It must be known that a proper value for AB remains.
Such computations are not of great value, and a much
better method of getting these quantities is to make a
drawing to large scale.



CHAPTER IX.

RERUNNING OLD LINES.

74. The Problem. — The tracks of many railroads that
have been long built are badly out of original line and very
frequently the records have been lost. When it is pro-
posed to spiral such track or even simply to improve the
alinement, or make records, or establish permanent centers
for future use, it becomes necessary to rerun the old line to
find either what the curves were and where they were,
or new curves of uniform or regular curvature that may be
established on the present roadbed with or without spirals,
avoiding all obstacles, as signal peles, etc.

The problem is likely to be not so much to determine
and rerun the old curve as to find a new curve that may be
located with proper spirals, but it may be necessary to
rerun the old curve first, or at least to compute its ele-
ments to have a working basis for determining the new
curve with spirals.

The straight lines are not difficult to establish, but it
is difficult and generally impossible to establish by eye the
exact position of beginning or end of curves, and it is
sometimes difficult to determine just what a given curve
was even with the help of instrumental work.

There are in general two cases: 1. The P.I. is readily
accessible and may be established by extending tangents
at both ends of the curve to an intersection. 2. The P.T.
is not readily accessible.

75. The P. 1. is Readily Accessible.— When the P. 1.
may be readily found, the central angle I and the exter-
nal distance may be measured. If the track is in good
alinement, these will give the degree of curve and therefore

147
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the length. The curve may be run both ways from the
center to its P. C. and P. T. Referring to Fig. 93 the P. I.

180 — I
2

at V is occupied, the angle turned from the tan-

gent and VE measured to the center of the track. The
point E is then occupied, a tangent obtained by turning
90° from EV, and the curve run in toward the P. C. and

P.T. for the dista.ncezé = % If the point E is in
proper position the P. C. and P. T. will fall on the tangent
lines already established; if
not, they will fall inside or
outside these tangents. Again,
if the curve was originally
spiraled, the measured E will
be too large for the simple
curve that was run originally,
and as the new line is run
around it will gradually leave

Fig. 93. the center of the constructed
line, moving outward from that line. If this result is
found and the variation seems fairly regular, the best way
to proceed is to measure the deflection from the tangent at
E to successive station points along the curve for two or
three stations either side of E, if the curve is so long. By
averaging the results a close determination of the original
curve may be made. It may then be run for } L both ways,
L being found by dividing I by the degree found by trial.
The two ends will then fall inside the tangents. The
offsets to the tangents may be measured and the spiral
probably used determined, when the method of rerunning
the curve will be clear. The central portion should be
rerun from E, establishing the SC and CS. The spiral
may be located by offsets or deflection angles. The track

will not conform exactly to the new line and should be
relined.
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If in figuring or measuring the degree of curve it is found
to be 4° 03" or 3° 28 or otherwise close to some round
number, it is probable that the round number was the
original degree. VE may then be computed for the sup-
posed degree, the transit moved over the required amount
and the curve run in. If necessary to keep the curve fairly
on the roadbed, a curve of fractional degree may be used.
76. The P. L is not Readily Accessible. — When the P. I.
is not easily accessible, an application of the methods of
Art. 2 may be used. Thus in Fig. 94, beginning well back
on the tangent at A a random
line ABCD is run to the final
tangent, all the angles and dis-
tances being measured. Then
if there are few points, as in
Fig. 94, AV and DV may be
computed through the triangles
ABG, GCH and HDV (the
student may show how); the
degree of the curve may be
determined by setting the in- Fig. 04.
strument at random on the
curve, measuring a few deflections to successive 100-
foot points on the curve, and averaging the results; the
tangent disvances may be computed from the determined
D and I, I being the sum of the deflections turned on the
random line from A to D inclusive; and the distance of
P. C. and P. T. from A and D respectively are found by
subtracting the tangent distance from VA and VD. The
curve may then be run in and the track relined.

If the number of courses in the random line is more than
two or three it is better to work with latitude and longitude
differences to find VA and DV, as in Art. 2.

" When the curve is a compound curve, probably the best
method of procedure is to run a line around the curve, by
deflection angles and measurements, taking measurements
also to the edges of the roadbed or other objects that will
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control the final position of the track, as signal posts,
platforms, buildings, etc., plot the survey on a large scale
and apply curve templets to the plot to find by trial
what curves most nearly fit the present track and govern-
ing objects. When the curves and their compounding
point have been determined, the four elements R,, R,
A, Or A, and I are known, the tangent distances may be
computed and reckoned back or forward from the P.I.
of the extreme tangents, found as in the preceding cases,
to find the P.C. and P.T. A; or A, is known from I,
found as before, and a definite assumption of one of the
A’s approximating that found by trial with the templets.
The templet may be made by drawing a series of con-
centric ares of varying radii on tracing paper or cloth to
the same scale as the plot. This templet is probably
better than fixed wooden, rubber, or celluloid curves
which are often used. When the P. C. has been found
the curve may be run in from the additional data now
known, and the track relined.

In running the random line from tangent to tangent
around the curve the following method has some advan-
tages: —extend the tangent a convenient distance, keeping
well on the roadbed and using the outer edge of the outer
rail for the line instead of the center line of the track;
set up over the end of the extended tangent and run a
line that shall pass just tangent to the outer rail some dis-
tance ahead; measure the deflection angle, and extend the
line to a convenient point ahead, where the operation is
repeated; continue the procedure until a tangent is run
that intersects the final tangent on the roadbed, when
the point of intersection is established and the angle
there measured. The method has the advantage of sav-
ing the time required to measure carefully to the center of
the track for each point required on the curve, and helps
to locate approximately a compounding point. Whether
much time is saved by this method may be a question;
it is preferred by some engineers.
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77. An Approximate Determination of Degree. — A con-
venient method of roughly determining the degree of a
curve i8 the following:

From A, Fig. 95, at a rail joint, sight is taken along a
line just tangent to the inner
rail — as at B — and the point of D
intersection, C, with the outer rail
is noted ; the number of rail lengths,
whole and fractional, in ADC is
determined and used in one of the
following formulas, according as
the rails are 30 feet or 33 feet long,
D being the degree of curve and
N the number of rails in ADC.

For 30-foot rails
240
D = N (194)
For 33-foot rails
3
D= -1]%- (195)

The demonstration is simple. Equation (20), Art. 15,
gives the middle ordinate as
M-
“ 78R’
The middle ordinate of the arc ADC is the gage of the track,
4.708 feet, and C may be taken equal to ADC and will

hence be 30 N or 33 N. Assuming R = —7§9 and sub-
stituting in equation (20) gives the round number values
of equations (194) and (195). It is the degree of the outer
rail curve that is obtained by these expressions. This is
slightly less than the degree of the center line, and the C
is taken larger than it is, apparently increasing the error.
But equation (20) is approximate and the approximation
consists in assuming that the chord of an arc is twice the
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chord of half the are, or smaller than a true formula would
require. The result is a partial compensation, and the
equations give results as close as any requirement warrant-
ing so crude a method of measurement demands. If the
rails are not 30 feet or 33 feet, the equivalent number of
30-foot rails may be used in (194).

78. Rerunning Straight Lines. — It has been said that
there is not much trouble with straight lines, but not in-
frequently these give more trouble than curves. Long
tangents are frequently not straight, but the track must
be kept on the roadbed in readjusting. Probably the
best procedure is to rerun the entire tangent between points
of adjacent curves or points near these before rerunning
the curves. To do this two points in the center of the
straight track and within clear seeing distance are selected
and the line so determined may be plugged through.* If it
lies practically in the center of the track throughout the
length of the tangent, the tangent may be called straight and
centers may be set as often as desired for track lining.
If the line does not lie practically in the center of the
track throughout, the beginning line may still be plugged
through if it lies wholly on the roadbed. The discrep-
ancy at the end of the tangent may be noted, the length
measured, and an angle computed which turned from the
beginning line at the beginning point will give a line that
will lie in the center of the track at both ends and nearly
80 throughout. This line may be plugged through and
track centers set as often as desired for lining.

If the first line follows the track for some distance and
then departs from it, an angle in the track is indicated.
Two points may be determined in the apparently straight
line ahead, giving a line which may be run to an intersec-
tion with the first line where the angle will be measured.
This may be done as many times as necessary. The dis-

* By * plugging through " is meant establishinz transit points on hubs at

convenient seeing distances without setting int diate stati tak
and with or without measurement.
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tances must be measured and lateral measurements taken
at frequent measured intervals to determine the lateral
variation of the track from the traverse line being run.
When the complete line has been run it may be platted
with a much exaggerated lateral scale, and an attempt
made to draw a straight line that will average the discrep-
ancies and lie well enough on the roadbed to be established
as the adopted line. The angle that it makes with any
one of the courses run cannot be measured on the drawing
but may be computed from measured lateral discrepancies
and known lengths. This line may then be established
on the roadbed and track centers set.

It may be that a satisfactory average line cannot be
found. If so, then an attempt will be made to draw two
such lines and establish their intersection point and angle.
These lines would be so established that they would
intersect enough off center of the track to permit running
a short flat curve to connect them that will lie on the road-
bed. Very flat curves of a degree expressed by a small
number of minutes are considered undesirable by many
trackmen, but are sometimes necessary. For this reason
the discrepancies of a long tangent that must be met by
the introduction of curves should be concentrated at one
point if possible,



CHAPTER X.
STAKING OUT.

79. Preliminary Statement. — When a railroad center
line has been laid out on the ground, levels are taken at
all stations and points of change of slope between stations,
and a profile is constructed from the level notes. On this
profile a “grade line” is drawn. This line shows the
level to which the low places are to be filled and the high
places cut down in order that the roadbed may be practi-
cable for the running of trains. The principles governing
the choice of the steepest allowable rate of grade — known
as the ruling grade — are discussed in ‘“ Elements of Rail-
road Engineering.”. For the present it is sufficient to say
that a grade line is drawn that will provide a safe road-
way, with the lightest practicable grades and with the
minimum possible expense for grading. This frequently
means that the grade lines will be so placed as to make
equal quantities of excavation and embankment. The
elevation of the grade will be written at each point of
change of rate of grade, and the rate of the grade will be
written along each stretch. The profile is drawn on profile
paper, Plate A being generally preferred. Fig. 96 shows
a small portion of a profile and grade line much reduced
in scale, and Fig. 97 shows the appearance of the same
ground after the work indicated on the profile has been
done. Fig. 98 shows the design of Plates A and B pro-
file paper. Plate B may be used for condensed profiles
or when the country is rough. Plate A having a greater
vertical scale will show small irregularities better than
Plate B. The grade line is best fitted to the profile by
stretching a piece of black thread and shifting it so as

154
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Elevations

Fig 96.
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Plate A, 4 X 20 to the inch.

!
]
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Plate B, 4 X 30 to the Inch.

Fig. 98.
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to get the longest and lightest rate grade lines possible
that will somewhere nearly, as judged by eye, equalize
the cut and fill. - Long level stretches should always be
raised by embankment in order to drain the roadbed
properly, and cuts should be as few as possible, because
they are troublesome to drain and are likely to collect
snow. Hence the rule to equalize cut and fill may be
departed from as occasion warrants. This rule usually
results, after the location of the line is fixed, in & minimum
of work, and hence is likely to give the cheapest grade
line.

The work of making the excavations and embankments
is usually paid for at an agreed rate per cubic yard of
earth or rock moved. In addition to this, if the earth
is moved farther than a certain distance specified in the
agreement between the railway company and the con-
tractor who does the work, an additional sum per cubic
yard per station of “ overhaul ” is paid. The limit of
free haul is usually five hundred feet, byt is sometimes
made one thousand feet. Hence it is usually necessary
to measure the earth excavated and the distance it is
hauled. This is done from the notes that are taken when
the work is staked out for construction.

80. Form of Cross Section. — The usual cross-sectional
form of a railroad cutting is one of the two shown in Figs.

Fig. 99. Fig. 100.

99 and 100. Ballast is placed between E and F, and the
ties are bedded in the ballast. .

The dimensions of cross sections are determined at each
station and oftener as may be deemed necessary. The
area determined is ABCD. The excess for ditches is a
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uniform quantity per station, and may be added to each
station volume or may be added in a lump for the entire
length of each cut. ’

The slopes of the sides of the cutting depend on the
material through which the cutting is made. The follow-
ing are common:

Solid Rock, vertical or 1 horizontal to 1 vertical.

Loose Rock, % horizontal to 1 vertical or  to 1 or 3 to 1.

Compact Clay or Earth, 1 horizontal to 1 vertical at
first; but the sides will not stand long at this slope, and
in some cases the slopes are made 14 to 1, and this is con-
gidered the best practice when money is sufficient.

Loose Earth or Sand, from 14 to 1to 3 to 1.

In embankments, earth slopes are usually made 14 to 1,
and with light materials sometimes flatter. Rock slopes
may be made somewhat steeper. There are two general
classes of railroad cutting— “through” or ‘thorough”
cut, Fig. 101, and * side-hill ” cut, Fig. 102.

Since embankments may be treated, so far as laying out
and computing are concerned, as inverted cutting, the
g method of crosssectioning
and determining areas and
volumes will be given for
cutting alone. The volume of
1 ' |1 earthwork moved is deter-
mined by finding the areas of
successive cross sections, and
using them, with the lengths between them, as elements
of prisms, wedges, or prismoids (prismatoids).

It is necessary to mark the edges of cuttings and embank-
ments to guide the graders, and it is necessary to know
the heights of these edge points above or below grade,
and their distances from the center in order to calculate
the area of the section. If the section is quite irregular
in surface slope across the line of the road as indicated by
the dotted line AJHB, it is necessary to know the heights
of the points J and H, and any others where the cross

Fig. 101.
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slope changes, in order to approximate the cross-sectional
area closely. The area ACFE could be considered that
of a trapezoid of altitude ¢ and ks, and base K,F, less the
triangle ACK,, and the right-hand side could be treated
similarly. With ¢, &, h,, d, d;, and w known the com-
putation is possible. If the cross slope is absolutely
uniform the whole may be considered as one trapezoid
of altitudes h and k. and base K.,Kj, less the two ex-
terior triangles. But the slope is not usually uniform and
the methods of computation do not assume it to be. If
the cross slope is irregular the area is considered to be a
series of trapezoids, the sum of which, less the two ex-
terior triangles, gives the area. Sections having cross
slopes sufficiently regular to require height at the center
and two side points only are called * three-level ”’ sections
and are computed as triangles rather than as trapezoids,
as will appear later. The same data already indicated to be
necessary are used, and these data are found in the course
of staking out or cross-sectioning. If the section is level
across it is called a “level ” section. CD or W is the
width of roadbed, commonly about 20 feet for excavation
and 14 feet for embankment for light single track first
construction, but frequently in standard construction
20 feet for embankment and the same plus the width of
ditches for excavation.

81. Method of Cross-sectioning. — Cross-sectioning, or
staking out, consists in finding the points A and B where
the surface is intersected by the planes of the sides and
placing stakes at these points, on which stakes are marked
the station and vertical distance above the bottom of the
cut, or “ grade,” with the letter “ C ” to indicate “ cut.”
For embankment sections the stake is marked “ F ”’ for
“ fill,” with the distance of the point below grade. The
“ center cut ’ EF is also determined and in the case of
side-hill work the “ grade point,” G, Fig. 102, or point
where the surface intersects the roadbed.

The cut or fill is always marked on the center stake in
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feet and tenths, and at the grade point a  grade plug ”
is sometimes driven, the top of which is driven to be ‘“ at
grade ” and then chalked with
keel or marking chalk.

The heights above or below
grade of all the points in the cross-
section where stakes are driven
Fig. 102 or where changes in slope occur

T are found together with the dis-
tances of the points from the center, and both heights
and distances are recorded in the notebook.

The work is all done to the nearest one-tenth of a foot,
except the setting of grade plugs, which are driven to be
within a few thousandths of a foot of ¢ grade.”

The method of determining the points A, B and G is
as follows:

The elevation of grade for each station is known from the
profile of the center line on which the grade line has been
drawn.

The slope of the sides of the cut and the width of the
roadbed CD are known from the general instructions of the
chief engineer of the road and the nature of the ground.

The height of a level, so set as to command the station
or stations whose section or sections may be desired, is
determined from the nearest bench mark, and a rod then
read on the center line at the required station, as at E.
The elevation of the station is thus determined.

The difference between the elevation of the station and
the ‘“ grade " is the cut or fill at that point, and this cut
or fill is marked on the stake and recorded in the book.

hor.

1 f ide = —=
If s represent the slope of the side vort.”

then d1 = ;219 + th.

Hence to find the point B, the rodman, knowing the cen-
ter cut, estimates the value of &, mentally computes d,,
and holds his rod at the computed distance from E. The
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leveler reads it and determines the value of & where the
rod is held. If it is the same as has been estimated by
the rodman, the stake is driven and marked, the record of
height and distance made in the notebook, and the process
repeated on the other side of the center. If the % is found
to differ from the rodman’s estimate, it is known at once
whether the rodman is too far out or not far enough,
according as the h proves larger or smaller than his esti-
mate, and he tries again. An expert rodman will not
make more than one change in ordinary ground, and fre-
quently places his rod right at the first trial. After the
point B is found, the rodman goes to A and the operation
is repeated.

The rodman is usually assisted by an axman, or an axman
and tapeman; arid sometimes the engineer carries the rod
and keeps the notes, the rodman merely manipulating the
level. Sometimes the work is done with a cross-section
rod from level notes of the center line previously taken.
The author prefers the method given. Convenient or
necessary modifications will suggest themselves to the
practicing engineer.

One detail should be mentioned. It is better to carry
the level work from station to station by heights above or
below grade rather than by heights above some datum

3

4

g °
P 8

Fig. 103.

surface. Thus: An instrument set up as in Fig. 103 with
line of sight at elevation 465.26 (465.3 for ordinary cross-
section work) is 1.3 above grade at sta. 786, and this
being determined, the difference between 1.3 and a rod
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reading obtained at sta. 786 is at once the cut at the
station. The elevation 465.26 is forgotten for the time,
and when the work is completed at sta. 786, the rod is
carried to 787, which, as shown by the profile, is to be 0.8
lower than sta. 786, therefore the H. 1. above grade at
787 18 1.3 +0.8 = 2.1, and so on. At 790 the H. I. above
grade is found to be 4.5, and as the profile indicates, the
rod-reading will be more than this, hence the ground is
lower than grade and there is a depth of fill of the differ-
ence between the rod and 4.5. When it becomes necessary
to change the position of the instrument, return is made to
the datum elevations for the new elevation of the instru-
ment, from which is found a new H. I. above grade at the
first station to be cross-sectioned after the change, and the
work proceeds as before.

In case the ground be irregular as shown by the dotted
line BHJA, Fig. 101, the heights H and J above grade,
together with their distances from E, will also be determined
and recorded. For a side-hill section the process is the
same as for a thorough-cut section, but the section may have
different slopes on the two sides, and different widths
of half roadbeds. The grade point is always found and
its distance from the center recorded.

82. Notes. There are many forms for keeping notes.
Two forms are shown:

Center Line.
Sta. Left. C. Right.
Elev. Grade.

-56 -3.6

18 564.2 560.0 134 —4.2 5.4
-9.2 - 8.6 -60 -52
19 568.4 5610 (7238 "120/-74|110 17.8

6.4 +4.2

86 564.2 570.0 166 +5.8 133
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Center Line.
Sta. Left. C. Right.
Elev. Grade. .
36
18 | 5642 560.0 $ —42 2%
9.2 86 60 52
19 | sesa | sero |52 BY. 74 |27 22

The first form is the more common and makes rather
the neater notebook. In the second the character of the
work — whether cut or fill —is indicated by the inclina-
tion of the lines separating the A’s and d’s; a slope down-
ward toward the center indicating a cut, downward from
the center a fill. Station 18 is in cut, Station 19 an irregu-
lar section in cut, Station 86 is in fill, Station 102 is a .
side-hill section.

In both forms the 2’s are above the dividing lines and
the d’s below. Some engineers reverse this order. In both
forms the minus sign indicates a cut (something to be
taken away — an order) and the plus sign a fill (some-
thing to be added). Some engineers reverse these signs,
considering the minus to indicate ground too low —a
statement rather than an order — and the plus sign ground
too high.

The foregoing forms represent the left page; the right
page is used for remarks or for computations to be shown
hereafter. :

The character of material, rock, earth, or hardpan,
should be written along the station column. .

83. Sections Required at a Grade Point. — At the place
where a fill and a cut join, a surface grade line runs across
the roadbed and usually diagonally. A plan of such a



164

RAILROAD FIELD GEOMETRY

junction with the resulting cross-sections is shown in Figs.

104 and 105.

In Fig. 104, K is the nearest station in fill to the grade

L
Fig. 104.

prismoid of cut from ED
to L. The notes required,
therefore, are those of a cross-
section at K, a cross-section

Assuming a 14-foot road-

bed in filland a 20-foot road-
bed in cut with slopes of 1% S
to 1, the notes for the cross-

sections of Fig. 105 might be

point @, and L the nearest station in
cut, the distance LK being one station
length. The center line is “ at grade ”
at G. The fill runs to grade at B and
C, and the cut at A and D. The vol-
umes to be considered are a prismoid of
fill from K to BF, the last point where
a full section of fill can be had, the
pyramid of fill BFC having a base of
the area at BF and an altitude MC, a
pyramid of cut AED having a base of
area at ED and altitude AN, and a

ST
SECTION AT K

- of the fill at BF, the distance \B\N M b
MC, the distance AN, the cut -
. SECTION AT B
cross-section at ED, and the «H
cross-section at L. G ¢
The point G'is us?ally found sEcTION AT G
and a grade plug driven, but it N o
is not needed in computing. N a
8ECTION AT D

()

BECTION AT L
Fig. 105,

as in table on opposite page.

It is not uncommon when the surface grade line is nearly
at right angles to the axis of the roadbed, and the work
not too heavy, to assume that both fill and cut have a
zero area at (7, and the points A B C D apd sections BF

and ED are ignored.
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Center Line.
Sta. Left. C. Right.
Elev. Grade.

+34 +2.0
1 . K —_— 2. Tex
2 462.2 465.0 21 +2.8 100
+40 464.6 0.0
10.0
. +1.6 0.0
+50 463.5 464.5 94 +1.0 75

0.0

+70 464.3 70
0.0 -20
+75 465.4‘ 464 25 100 -1.2 130
-2.0 - 4.0
22 467.0 464.0 130 -3.0 6.0

84. Vertical Curves.— Where two grades of different
rates join, the angle is rounded off by introducing a vertical
curve, which because of its convenient characteristics is
a parabola. The length of this curve depends on the
difference in rate of joining grades and on the length of
train passing the curve.

Mr. Wellington has developed the statement that there
will be no danger of ‘bunching cars and pulling out suddenly
when a sag is passed, if the difference in grades on which
the two ends of the train may be at any moment is not
more than the rate of the grade of repose, which is probably
from 0.3%, to 0.4%. To follow this rule would make
very long curves where the grade rates differ much and
would probably increase the earthwork more than would
be considered desirable. A much greater difference may
be assumed with reasonable safety, and the recommended
practice of the American Railway Engineering and Main-
tenance of Way Association is: For first-class railways,
curves changing by a rate not greater than 0.1 ft. per
station on summits and 0.05 ft. per station in sags.
For second-ciass roads, a rate not more than 0.2 per
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station on summits nor more than 0.1 per station in
sags.

Very simple formulas. can be devised that may be fol-
lowed as a rule, but as these require rather blind following
and close attention to signs of the terms, it is thought best
to illustrate the determination of vertical curve points by
working four examples covering the usual cases, and stat-
ing a general rule that will be apparent from the examples
worked.

In Fig. 106 two grades of rates, 1.09, and 0.8%,, meet at
a summit at sta. 376, where the elevation of the meeting

point is 428.0. A The change in the rate in passing the
summit is 1.8%, or 1.8 feet per station, since it is from an
up 1.0%, to a down 0.89,. If the curve connecting these
two grade tangents, as they may be called, is to change

its rate not more than 0.1 per station, it must belT8 =18

stations long, nine on either side of the summit. This
puts the beginning of the curve at 376 — 9 = 367 and the
end at 376 + 9=385. The elevation at 367 is 428.0 -9.0 =
419.0 and at 385 is 428.0 — (9 X 0.8) = 4280 - 7.2 =
420.8. A curve properly computed should then begin
at sta. 367 at an elevation of 419.0 and end at sta. 385
with an elevation of 420.8, and a computation station
by station that does so begin and end is checked by the
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coincidence of the ending quantities. If the curve is to
be a parabola its chords will be bisected by diameters
drawn from the intersection of tangents at the extremities
of the chords. Since the measurements are made on the
horizontal, the projection of AV = that of VF or AE =
EB. Also, from the parallelism of the lines, AD= DF,
or the chord is bisected by VD, which is thus a diameter.
Moreover the diameter is bisected by the curve, so that
VC = CD. The elevation at D is a mean of the elevations
at A and F, or 22044208 _ 4199, The vertical dis-
tance from D to V is, then, 428.0 — 419.9 = 8.1, which
divided by 2 is 4.05, which added to 419.9 or subtracted
from 428.0 gives 423.95 for the elevation of C, the middle
of the curve.

By another property of the parabola the offsets from
the tangent parallel to the diameter are as the squares of
the distances along the tangent. Therefore the offset from
tangent to curve at station 369 (3 the distance from A
to V) is ﬁ X 4.05, or 0.05. The offset at sta. 369 is
4 X 0.05 =02; at 370 is 9 X .05 = 0.45; at 371, 0.8;
at 372, 1.25; at 373, 1.8; at 374, 2.45; at 375, 3.2; at
376, 4.05; at 377 is 5.0 from the same tangent; and so on
to the end, where it is 18 X 0.05 = 16.2 from G. The
elevation of G is 419 + 18 X 1.0 = 437.0.  437.0- —
16.2 = 420.8 as before.  The elevations of inter-
mediate stations are obtained by subtracting the
offsets from the tangent elevations for the several
stations.

But this method is used only when the curve is short
— not more than four stations. When it is long the fol-
lowing procedure is used: It will be noted that the change
in rate for the first station of the curve is only half of the
assumed station change of 0.1, being the change from
tangent to chord instead of the change from chord to
chord. That is to say, the rate of the first station of the
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curve is § X 0.1, or 0.05 less than the tangent grade.
The rate of the second station should be 0.1 less than that
of the first and so on. Thus:

The rate of the 1st station is + 1.00 — 0.05= + 0.95

s | “  “ 34095 —-01 = +0.85

¢« “ o« o« g4 1] “ 4085 —01 = +0.75

S L gth 4 4075 - 01 = +0.65
and so on.

The elevations of several stations would be found as
follows:

The elevation of sta. 367 is 419.00 = 419.00
.« « « 368 “ 419.00 + 0.95= 419.95
« «“ « o« 369 ¢ 419.95 + 0.85 = 420.80
« «“ « <« 370 “ 420.80 + 0.75 = 421.55
«“ « « o« 371 “ 421.55 + 0.65 = 422.20
« « « o« 372 ¢ 42220 4 0.55 = 422.75
“ « « o« 373 ¢ 422,75 + 0.45 = 423.20
« « « o« 374 “ 423.20 + 0.35 = 423.55
« « « « 375 “ 423.55 + 0.25 = 423.80
“ « “ oo« 376 “ 423.80 + 0.15 = 423.95
“ «“ « « 377 ““ 423.95 + 0.05 = 424.00
« « « « 378 “ 424.00 — 0.05 = 423.95

T « « o« 379 ¢ 423.95 — 0.15= 423.80
« 7 « « 380 ‘“ 423.80 — 0.25 = 423.55
« « « « 381 ¢ 423.55 — 0.35 = 423.20
« «“ « o« 382 ¢ 423.20 — 0.45= 422.75
« « « o« 383 ‘42275 — 0.55 = 422.20
“« « « o« 384 ¢ 42220 — 0.65 = 421.55
I « « « 385 ‘“ 421.55 — 0.75 = 420.80

as before.
It should be noted that after the summit is passed the

elevations are repeated in inverse order. It should also be
noted that the summit is not sta. 376. Perhaps the
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rule can be formulated now and applied to three other
examples.

To determine the elevations of a vertical curve:

1. Assume a rate of change of grade per station.

2. Divide the total change of rate at the apex of the
intersecting straight grades by the assumed rate of change,
the quotient being the length of the curve in stations.

3. Half the curve being on either side of the apex, find
the station and elevation of the beginning and end of the
curve.

4. Find the rate of grade of each station of the curve by
subtracting (or adding) half the assumed station change
from (or to) the tangent grade for the rate of the first
station, and the whole assumed station change from (or
to) the rate of the first station and from (or to) that of
each succeeding station to the end of the curve.

5. Add (or subtract) the determined rate for any station
to (or from) the elevation

of the preceding station ¥ S
point for the elevation of 3 Bev. o4 B 4

the station point in ques- %~ m‘%-\ < Hlev. S74.8
tion. The final elevation

should agree with that pre- Fig. 107.

viously determined.
In Fig. 107 the total grade change is 0.6. Let the rate

of change be 0.05. The curve will be% = 12 stations

long. Six stations being on each side of the vertex, the
station of beginning is 866 and of ending 878. The eleva-
tion of 866 is 373.00 + (6 X 0.4) = 375.4 and of 878 is

373.00 + (6 x 0.2) = 374.2.
The rate of the first stationis —0.4 +40.025=—0.375

“ G« 4 gecond “ “ —0.375+0.05 =—0.325
“ s« thild ¢ Y -032540.05 =-0.275
“ ¥« fourth “ ¢ —027540.05 =-—0.225

and so on; the rates can be carried mentally.

- N
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The elevation of sta. 866 is - 875.400
“ « « o« 867 ¢  375.400-0.375=375.025
« « « o« 868 ¢ 375.025—0.325=374.700
«“ “ « o« 869 ¢ 374700 -0.275=374.425

“ “ « o« 870 “  374.425-—0.225 =374.200
« I « o« 871  374.200-0.175=374.025
« “ « o« 872“  374.025-0.125=373.900
« « « o« 873 ¢ 373.900-0.075=373.825

T « “« « 874 “  373.825-0.025=373.800
« « « « 875  373.800+0.025 =373.825
“« “« « “ 876 “ Repeating in 373900
« « « « 877 “  reverse order 374.025
« o« « « 878 “ beyondthe vertex 374.20

which checks with the elevation previously found. It is
thought the student can work the two other cases which
are included in the examples at the end of the article.

If the length determined is an odd number of stations
the same principles hold, but the numerical work is a trifle
more complex, and such a result may be frequently avoided
by selecting a rate of change that will give an even number
for the station length of the curve. If the curve is short
the first method of offsets proportional to the squares of
the distances may be the simplest.

Ezamples. 1. The third case
g B nentioned —two ascending
4 4 grades. Let the rate of change

W be assumed at 0.05, giving an

even number for curve length.

Sta. 77

Fig. 108.
. N Having made the computations,
let 0.1 be assumed as the rate of
. . E
change giving a short curve of an i

odd number of stations. This will
bebest handled by the first method.

2. The fourth case mentioned —
two descending grades. Let the
same assumptions and methods be used as in example 1. -

X Elov. 4680
Fig..109.

Sta. ¥
ta.
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8. A descending grade of 0.5 is followed by a descending
grade of 0.8 at sta. 746, the elevation of which is 572.0.
Find the elevations of the stations of a vertical curve,
(a) three stations long; (b) changing at the rate of 0.05
per station. '

4. An ascending grade of 0.5 is followed by an ascend-
ing grade of 0.8 at sta. 496, the elevation of which is
853.0. Find the elevations of the stations on a vertical
curve, (a) three stations long; (b) changing at the rate of
0.05 per station.

Note. — Examples 2 and 4 are essentially sags in the
grade line and should have the minimum change rate,
while examples 1 and 3 are essentially summits and the
greater change rate may be used.



'CHAPTER XI

COMPUTING THE QUANTITIES.
AREA.

TaE greatest work involved in computing the volumes
lies in getting the areas of the cross sections. Some
methods will be indicated. One that is not infrequently
used with very irregular areas and occasionally with sim-
pler areas is to draw the area to scale on cross-section
paper and measure it with a planimeter. The method is
not advised as economical.

85. Level Section. — If s be the slope ratio = ;%(;%: let

it be shown that
A =cw + sc.

%“mi

Fig. 110

Examples. 1. Compute the area of the sections shown
in the following notes.

Sta. Left. C. " Right.
+5.8 +5.6

167 154 +5.6 15.4
+4.2 +4.2 Roadbed 14 feet.
- 4.2 =

168 13.3 + 133 Slope 14 to 1.
+0.6 +0.6

169 9 0.6 9

2. From the notes of the three middle columns show,
172
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by inspection and computation, that the roadbed is 14
feet and the slope 14 to 1.

86. Three-Level Section. — The area is evidently equal
to the sum of four triangles, indicated by the dotted lines,
and may be shown to be

E
N G
FONN
Shg—rev—W—-H3h;
RN % o
bt ] 1
Fig. 111,
A=Z@d+d) +5 0 +h). Q97
-2
Since h] = 2:
s
d -2
and hs = 2,

we may, by substituting these values and placing (d:+ ds)

= D, get
D, w\_w
- 2( +2s) 4s’ (198)

. 4%’ is the area of the triangle ABD, Fig. 111, and the first
term is the area of the figure EDFGE.

21':; and 42; are constant quantities for any given

ength of cut or fill, equation (198) will give results with
less work than equation (197), but the latter is most fre-
quently used and the mental effort is probably not more
with it than with equation (198). Equation (198) is best
for use in diagrams and tables, and may be obtained

Since
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directly by considering EDF to be two triangles with com-
mon base GD = ¢ + ;U—sand altitudes d; and d; respectively.
From their combined areas is to be taken the area of the
triangle A BD, which should be shown to equal %.

Ezxamples. 1. Compute the areas of the following sec-
tions by both formulas and compare the time required.

Sta. | Left. C. Right. |
+24 448
378 10.6 +3.6 14.2
+31 +53 | Roadbed 14 feet.
379 11.7 +4.2 15.0 Slope 14 to 1.
+4.6 +6.5
380 13.9 +51 16.8

2. Show from the notes that the roadbed is 14 feet and

the slope 13 to 1.
87. Irregular Section. — The area equals the sum of the

areas of the trapezoids (Fig. 112),

Fig. 112

ALKJ, JKME, EMNH, HNOB,
less the triangles ALC and DOB.
This gives for the right side
_c+h’ (h + M _g)lﬂ...
A.—(z) )(d &) — (dl 5)%
and for the left side

A, (c"'h )d" (h +h’)(d d")_(d,_.'_%).’kz Cee e
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The principle applies to any irregulaf section however
many points there may be.
These equations may be written as follows:

Ar = % C+H)d +H +h)(d —d) -(dl - %)hl,

A, = % C+RN" + (1 +ha) (ds— d”) —(dz - %)h,.

By multiplying out the parentheses and arranging the
terms, the following may be obtained:

4= (cd’ + Wy~ hud + by ‘—;) (a)
Ay = e+ K'dy — " B 2) (b)

The above equations indicate that this is merely a special
case of areas by codrdinates; thus, if the origin for the
right half be at M, the coordinates for the points

Ordinates Abscissas
M 0 0
E c 0
H are 4 and d
B hy dy
w
D 0 >

The field may be considered to be the polygon MEHBDM
and the following rule* may be used to determine the area
of either side:

RuLE: From the sum of the products obtained by multi-
plying the ordinate of each point into the abscissa of the fol-
lowing povnd, sub'ract the sum of the products obtained by
multiplying the ordinate of each point into the abscissa of
the preceding point, and divide the result by 2.

The rule is particularly applicable to this kind of work,
because the field notes have the ordinates and abscissas

* See Raymond’s Plane Surveying, Arts. 144-146.
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conveniently arrailged for the process. Thus, for the right
side the field notes would be

C R

b

d 4

c

It is easy to imagine a zero under the ¢ and to supply the
0 ..
last term - ‘Writing these as they may be mentally seen,

2

they appear as follows:

ORI

o d dy %
The rule is applied thus: multiply each numerator by the
succeeding denominator and add the products; multiply
each numerator by the preceding denominator and add
the products. Subtract the second sum from the first
and divide by 2. It should be shown that this operation
produces equations (a) and (b).

Ezample. Compute the areas of the sections shown in
the following notes by both systems and compare the time
required. It will be well to make a rough sketch of the
first section at least to bring the trapezoids out clearly.
After one plotting the sections should be seen mentally.

To make the time test fair the problems should be gotten
clearly in mind before a start is made in the computations.

Sta. L. C. R.
-26 -35 -24 -38 —-46 -40 -52
836 |39 104 85 -36—60 114 140 178
g3y |40 —44 -84 -52  1-62 -75 -66 -76
160 126 126 9.0 75 12.2 154 21.6
838 ~-92 —-66 -55 —64 _galz 80 -96 ~-108 ~11.2
23.8 200 154 2.6 l 116 21.0 214 26.8

Roadbed 20 feet. Slope 1% to 1.
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88, Side-hill Section. — Reference to Fig. 102 will
show that the area may be considered as two triangles,
AGC in fill and GDB in cut, or the right side may be con-
sidered as one side of a three-level section and the remainder
two triangles, GFE in cut and ACG in fill. It is unneces-
sary to write here the equations for these areas. The area
may be irregular, when it will be computed by the method
of the preceding article. If the section is such that the
grade point would be found on one side only a little beyond
the roadbed width of a cut, a slope stake would not be
set marking a cut on that side, but the grade point would
be found and the roadbed graded off level.to the inter-
section with the hill surface. Likewise if the grade point
falls only a little inside the edge of a fill roadbed, no small
addition of fill would be staked or constructed.

Ezample.

COMPUTING THE QUANTITIES

Sta. L. c. R.

+24 -32 | ‘Roadbed 14 feet in
164 106 0.0 13.2 S{ill, 22 feet in cutﬁn

ope to 1l in

65 | L2 00 | 1-18 20 o 1t out, ™ B

88 34 | ~%6|702 120

0.0 -46
166 72 14 T

Find the areas in cut and fill.

VOLUMES.

89. General Methods. — It is frequently convenient

to know the amount of cut or fill in each one hundred feet
or station, and hence a cut or fill is usually computed one
station at a time. When, in any particular case, there is
no reason for this, considerable time and labor may be
saved by computing the entire cut or fill at once.
Having computed the areas at the ends of each station
and at each cross section, the volume of material in cubie
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-yards in the length between sections may be obtained by
the method of average end areas from
_ A+ A, A
Ve = I X 27" (199)

in which A, and 4. are the areas at the two ends of the
volume, and [ is the distance between sections. When
1 is 100 feet,

50
V., = o7 (4 + A4s). _ (200)

By using the means of the dimensions of the end areas
a middle area may be computed, and the volume by the
method of mean areas is, for a whole station,
Vi = An D2,
or, by the prismoidal formula the volume for a whole
station is

(201)

Vp = (i +4s +44p) 10 (202)

If it is desire® to compute by either equation (201)
- or (202) and the sections are irregular, the middle section
should be taken in the field; or the center height of level
sections having the same areas as the end areas may be
determined and the middle area assumed to be equal to a
level area having a mean of these two heights for its center
height. This might be called a method of equivalent mean
heights.

In irregular earthwork, and in fact in any earthwork, it
may be said that any one of the methods assumed gives
only an approximate result, and in any special case that
method should be employed which, with the least expendi-
ture of time, will secure a sufficiently precise result.

The method of mean areas, entailing almost as much
work as the prismoidal formula and being less accurate in
result, is rarely used. '

The method of average end areas, being the simplest
and accurate — on light work, or heavy work having
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succeeding areas differing by small amounts — to within
probably less than one per cent, is generally used. It is
the legal method in some states.

On very heavy mountain work where slopes are steep,
the error of this method may probably reach or exceed two
per cent, and in particular instances much more, and in
such work the prismoidal formula should be used.

By what is known as the graphical method (see Chapter
XIII), the application of thisformula is attended with very
little labor, and indeed the use of properly prepared tables
makes the work comparatively easy.

There are other methods for approximating to the
volume in special cases, but those given are considered
sufficient for practical use.*

Ezample. Find the volumes between successive cross
sections as they appear in the examples of Arts. 84 to 88
inclusive, noting that there are pyramids involved in the
notes of Art. 84. The cut and fill should be determined
separately in the notes of Arts. 84 and 88, and in each case
computations should be by both the method of average
end areas and the prismoidal formula, and the actual error
and percentage of error noted for each station.

It must also be remembered that the middle area used in
the prismoidal formula is not an average of the two end
areas but has linear dimensions that are averages of the
two corresponding end dimensions.

90. Computation by Average End Areas and Prismoidal
Correction. — When the prismoidal formula is to be used
it is customary and best to compute by average end areas
first and apply a correction which is never large, the total
effort being less than for computatlons by the prismoidal
formula direct.

To determine the correction it is necessary to find an
expression for the difference -between the average end

* For an interesting discussion of various methods and their relative

accuracy reference may be made to Wellington’s ‘‘ Computation from
Diagrams of Railway Earthwork.”
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area volume and the prismoidal volume of the same
solid.

The following expressions give the volumes by average
end area and prismoidal formulas respectively.

V. = 1 (111_"'432, (203)
Vp = 6)(27(‘4‘ +4:+4A4Am). (204)
The difference is

Voo V=l (i + 4= 240).  (209)

A. Application to three-level solids.
When the sections are three-level sections, and the
dimensions of the middle area are not measured, they are

assumed to be means of the corresponding end dimen-
sions. Therefore if for 4,, A, and A, in Eq. (205) there

be substituted
B 2)-2
2 l+2s 45

D, w?
2 ( 1+ 23) 1s’
D, +D2(Cl + . _'_ﬂ)__ui’
2%x2 2 2s/ 4s
respectively, equation (205) may be reduced to

l
Ve —Vp = I2X_2'7 (¢1 — ¢2) (D, — Dy). (206)

When [ is 100 feet, equation (206), which is the prismoidal
correction to average end area volumes, becomes
Cp for three-level sections = 3—121 (1 — c2)(Di— D). (207)
It will be noticed that neither w nor s appear in the formula
except as they are included in D; hence the formula may
be used for any values of w and s.

Ezample. 1. By the prismoidal correction method find
the volumes indicated by the notes in Arts. 85 and 86.

and
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2. After solving the foregoing example recompute these
volumes by the -prismoidal formula and then by the pris-
moidal correction method and note the time required for
each. Also note by what percentage the time of the aver-
age end area method is increased by the application of the
prismoidal correction.

B. Application to level section.

The level section areas may be represented by

A, =wey + scrt,
As = wes + 8¢,

A, =& +c +s(cl +c,)’_

2 2
And these substituted in (205) give
ls
Ve—=Vyp = m (€1 — ), (208)

or for a length of one station

C, for level section = (1 — ¢2)t. (209)

s
1.62

C. Application to any triangular pyramid frustum.

If corresponding bases and altitudes of the triangular
end sections of the frustum of a triangular pyramid be
by, bs, b1, and h., respectively, the areas of the two ends
and at the mid-section respectively are

M, %’ d l(bl + bs Xhl"l'h?).
2 2 2 2 2

If these be substituted for A,, 4,, and 4,, in Eq. (205)
there results
1
Vem Vo = oo
If 1 is 100 feet, then for the frustum of a triangular pyr-
amid

oo (b1 = b)) ( —ha).  (210)

Cp = ﬁ (b = b2) (hy = ha). (211)

It is apparent from this that tables of prismoidal correc-
tions for three-level sections and for frustums of triangular
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pyramids would be identical, since in each case the correc-
tion is the product of two variables (the two parentheses)
and a constant which is the same for both cases. The
same table would answer for level sections, since these are
simply special cases of three-level sections and the field
notes are the same as for three-level sections, thus giving
the same data for computation.

SPECIAL FORMS.

91. Embankment Toe. — When an embankment ends
at a trestle bridge the end of the bank is sloped as at the
sides and the cor-
ners naturally
round off asshown
in Fig. 113. The
stakes would be set
at C and G and at
H and D or only at
the middle point
between them, the
notes should show
the height at A and
B, the height or distance below grade at G, C, D, H, and
the distances EC, ED, FG, and FH. It will then be suffi-
ciently precise to compute the corners as the quarters of
cones whose altitudes are BE and AF respectively, or
averages of the three heights at E, C and D and F, G
and H respectively, and whose circular bases have for
radii averages of the distances EC and ED and FG and
FA, respectively; and the portions between the corner
quarter cones as a triangular prism or frustum of a
pyramid of height w and end bases BED and AFH. The
result is not mathematically exact, neither is the work of
construction. The method is sufficiently exact for use.

92. Widening Earthwork. — When a roadway is to be
widened for a siding or second track, the area of any sec-
tion in excavation would be of the general form shown in

Fig. 113
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Fig. 114. A stake would be set at B and the heights at
A and B determined. Then if w is the width to be added

to the existing excavation or embankment — if the work
is in embankment — the area will be

A= "—;’—"w ©212)
which the student should demonstrate.

Near the beginning and end of a siding the tracks will
not be parallel and the width w will vary, and if the work
is of sufficient magnitude the corrections for curvature
discussed in article 94 must be applied. Usually this will
. be unnecessary, and the volumes will be computed as

- prisms (average end area methods) or as prismoids.

93. Borrow Pits. — When an embankment is built
from material taken alongside, as it is when adjacent
excavation is insufficient or too far away to be used econom-
ically, the material is excavated from what are called
borrow pits. These are wide shallow trenches excavated
within the right of way if this is wide enough and by ar-
rangement with adjacent owners if the right of way be not
wide enough. The general form of the cross profile of the
right of way through a completed bank and accompanying

Edge oil‘ glgh_tkof waY pome
TN,
Borrow Pit

Fig. 115.

borrow pits is as shown in Fig. 115. The pit should begin
not less than 6 feet — the usually specified distance —
from the toe of the bank, — the space between- the toe of
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the bank and the edge of the pit being called a berm —
and should be sloped down at the slope used for the bank.
" The material should be excavated so that the pit will have
a regular form.
When the specifications call for payment to be made for
quantities measured in excavation only, it is necessary to
measure the borrow pits, although sometimes the bank
measure affected by an agreed per-cent factor is used.
Sometimes borrow pits are made in near-by hills of gravel
or other suitable material excavated by steam shovel in
such irregular fashion as to make precise measurement
almost impossible. In such cases bank - measurement
affected by a per-cent factor is probably the best method
to follow. Borrow pits may be measured by taking cross
profiles before and after excavation at as frequent intervals
as may be judged necessary to secure good results, and as
the pits are usually fairly regular the average end area
method for volumes may be used.
When the material is to be measured by bank measure-
ment and a per-cent factor, the following facts will be
helpful:
Ordinary earth when excavated and placed in em-
bankment first swells and afterward shrinks, so that from
4 per cent to 10 per cent more excavation is needed to
form a given bank than is called for by the bank measure-
" ment. The excess depends on the character of the ma-
terial and the method of making. Made with carts or
wheel scrapers an embankment will measure from 3 per
cent to 10 per cent less than the excavation from which
its material was taken, immediately upon the completion
of the work, and the bank may shrink slightly afterward.
If the embankment is made with wagons or dump ecars,
rapidly in dry weather without water, it may shrink from
3 per cent to 10 per cent in the year following its con-
struction and not much afterward.*

Some bottom land and banks of cemented gravel or

* See Gillette's ** Earthwork and its Cost.”
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hardpan may swell somewhat unless rolled, and the latter
even if rolled.

If one has doubt as to the allowance to be made he should
make some experiments to determine the allowance by
excavating known volumes and subjecting the excavation
to packing as nearly similar as possible to that of the con-
structed embankments, and noting the results.

Rock swells permanently, though there is some settle-
ment of a rock bank with age. The amount of the swell-
ing depends on the sizes of the fragments into which the
rock is broken and the care used in building the bank.
The material is usually dumped from carts over the end
of the growing bank, and when so dumped swells a maxi-
mum, but at the same time the pieces are very irregular in
size, a condition that tends to make the bank more solid
by decreasing the voids. It is probable that a solid yard
of rock will make not less than from 13 to 1% yards of em-
bankment. If broken as fine as for macadam or concrete
it may make nearly two yards, particularly if the frag-
ments are nearly uniform in size.

94. Correction on Curves. — The methods thus far given
when properly applied are sufficient for the computation of °
all earthwork executed in straight stretches in connection
with the construction of roads, railroads, or canals.

When a road is built on a curve, a correction must be
applied to the quantities obtained by the preceding
methods, in order to approximate the truth more closely.

This correction, called correction for curvature, arises
from the fact that cross sections are taken in a plane
perpendicular to the tangent to the curve at each station,
while the computations suppose them taken in planes

perpendicular to the chord between them The effect
of this is shown in Fig. 116.

The cross section will be taken on the line QB (plan),
while in computing it will be considered as taken on the
line JT for the station PP’, and on the line HG for the
station PP”. 'This results in omitting a doubly truncated
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prism GIP (plan) or GIPC (section) of right base PCDB
(section) and in including twice a doubly truncated prism
JHP (plan) of right base
QPCA (section).

In the figure the ground
slopes towards the -center
of the curve; hence the
omitted prism is greater
than the twice included
prism by a doubly trun-
cated triangular prism of
right base BNP (plan or
section) and whose alti-
tudes are—referring to the
plan or the section — GI
at B, MO at N, and 0 at
P. In the case shown, then,
there should be added to
each station a quantity
equivalent to the volume
of this prism. Half the
- volume will be added if

Fig. 116. volumes are required by
stations, each station be-
ing increased by half the correction prism at each end.

This volume may be said to be

GI + MO +0
3

Ve = area BNP X (213)
‘Area PNB = PCDB — PCDN
= PCDB — PCAQ, from which the student
may show '
Area PNB =}c(di —ds) + 1w (b — k).
Letting D be the degree of the curve, and considering full
stations,
GI = 2 d, sin } D (approx.).
MO =2 d; sin 4 D (approx.).
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Substituting these values for PNB, GI, and MO, in
Eq. (213) and remembering that sin D=%y R being

the radius of the curve, there results after a slight re-
duction,

V. =§,%’{4c(df— #) + 1w (i~ ha) (1 + o)}

— d’, there results

Substituting for k, —h, its value 4 73

V.= 5‘9 D (@ - d) (c ¥ 5“1) (214)

Substituting for R its approxlmate value —— 5730

Ve =.00291 D (& — ) (o +2—”’s) 215)
or reducing to cubic yards,
C. =.00011 D (di* — d?) (c~+ 5“’;) (216)

The altitudes of the prisms considered being proportional
to the sines of the angles, and the sines of small angles
being approximately proportional to those angles, it will
be sufficiently accurate when less than full stations are
involved to use that percentage of C, that the sum of the
two chords meeting at the point of cross section is of two
stations; thus if one of the chords is 50 feet and the other
75 feet, the correction would be 333 C, as given by Eq. (216).

This correction is additive when the higher ground is on
the convex side of the curve and subtractive when the
higher ground is on the concave side.

The correction will be practically nothing in level sec-
tions, will increase as the slope of the ground across the
road increases, and will be relatively of most importance
in side-hill work, sidings, and double track.

The three forms of side-hill sections that may arise are
as shown in Figs. 117, 118, 119.
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Since it is usual to measure only excavation, the correc-
tion prism for Fig. 117 will have a base CDB, for Fig. 118
BDN, and for Fig. 119 the base may be taken as BDN
with altitude at N negative.

Fig. 118. ) Fig. 119.
The several altitudes may be taken as:

Fig. 117, .0175 Dd,, .0175%D, 0.

Average .0058 D (d, + %)

Fig. 118, .0175 Ddy, .0175 ’2i’ D, .0175d'D.

Average .0058 D(d; + 1—02 +d )

Fig. 119, .0175 Ddy, .0175 % D, -.0175d'D.

Average .0058 D(dl + 22 - d’).

These values are found by assuming the sine of 1° to
be .0175 and that the sines of small angles are proportional
to the angles. The student may try to get the results given.
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Again, if the chords meeting at the cross section are less
than full stations the fraction of the correction to use is
found as in the preceding paragraph.

Ezxample. Find the correction for curvature at the
cross-section points that gave the following notes, on a
10° curve to the right. The roadbed is 20 feet in exca-
vation, the side slopes 14 to 1.

Sta. Let. C. Right.
—46 -26
146 16.9 -36 139
-108 -14
147 -42 =2 Full station
26.4 121
226 36 [omeams SUie
— 22, _ - 3. preceding 146.
148 —139 122 154 -
~182 00 +42
+60 371 =21 | 70 133
-100 00 76
149 260 60| 132 184




CHAPTER XII.

EARTHWORK TABLES.

95. Tables for Level Section Volumes. — Tables of
earthwork quantities have been made and published to
lessen the work of computation. Mention may be made
of Allen’s, Crandall’s, Johnson’s, Pullen and Chandler’s,
Hudson’s, Trautwine'’s, and Rice’s. These tables are for
computation of level section volumes, or triangular prism
volumes used for three-level sections, and are based on both
average end area and prismoidal methods of computation.
If one finds himself in the field without such tables and is
required to make a considerable number of computations,
a saving of time will result if tables are computed covering
the range of work to be estimated. This is a simple and
rapid process, for the most part involving only addition.

By the average end area method

vditdl Lyila o

Referring now to Fig. 120, A, B, C, D and E are station
points on the profile shown. When estimates are being

Fig. 120.

made from a preliminary or location profile before the work

is staked out for construction, it is customary to measure

the center height on the profile midway between two

stations as at H and G, and compute the volumes for the

full stations, as BC or CD, from areas based on the

measured center heights at the middle of the stations, thus
190
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assuming in effect the mean area method rather than the
average end area method, and giving an equation
1
V=A4n T
For 'such a table ! should be 100, the full station length,
and Hudson’s and Rice’s tables were so made. When
computations are made from cross-section notes, the center
heights at the station points are used, and since the volume
between two station points is generally required, the ! used
in making the tables should be 50. Thus from (217) and
(218) the volume for the station is given by either

50 100
V= Al +A,27 V= Am27

It will be understood that the volumes obtained by these
two methods will not be identical, even if the center heights
are equally well obtained and the slope from station to
station is uniform. The mean area method always gives
volumes less than the prismoidal formula,* while, as has
been shown, the average end area method gives results
greater than the prismoidal formula.

To make a table for level sections, values are determined

(218)

and tabulated for the general equation V = 3 A using

7
100 or 50 for [ according to the purpose of the table, and
using the center height as the argument — since for a given
piece of earthwork it is the only variable on which V de-
pends — thus: for level sections A = cw + s¢® in which for
a given piece of work — excavation or embankment —
w and s are constants.

Since for level sections V = 21—7A and 4 = cw + sc?,

l
= (cw + sc?).

* By the method of Art. 177, the student may show that the mean
area method gives results less than the prismoidal formula, and that the
difference is half as great as that between the prismoidal and average
end area methods.
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Those familiar with the calculus will recognize this as an
equation of the second degree which has a constant second
difference. This may be shown by a figure, Fig. 121.
Since 21—7 is a constant factor, only the expression for area
“will be considered.

R i NG
.\\.\ RN i /: /:
] 1NNy R VA R
TS IR | 7y
1 7
RN |y
\r Y nd 5/ ,
NN '
3

Fig. 121.

c=0 Ao=0,
- le. =k, A= kw +2aq,
When c=2k, A, =2kw +8a,
c=3kF, A; =3kw +18aq,
c =4k, Ay =4kw +32a.

Subtracting A4, from A,, A: from A,, etc., gives a series of
quantities called first differences, which are seen to be

1st Difference. 2nd Difference.
A1 — Ao = kw + 2a 4
A, — A, =kw+6a a
Ay~ Ay =kw +10a :“ (219)
A4—-A3=kw+l4a 42

and so forth

and are variable in value, each being the constant quan-
tity 4a greater than the preceding. Thus the second
difference, being the difference between successive first
differences, is a constant when ¢, the variable of the area
expression, varies uniformly. From any one of the ex-
.pressions for A and the formula for level section areas
it is seen that @ of Fig. 121 is

a =3}k (220)
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and 4 a, the constant second difference, is

Area 2nd Diff. =4 a = 2 sk?,
! 21

o= LN X
Volume 2nd Diff. 2 4a 2 sk (221)

From (219) it is seen that if the constant second difference
be added to any first difference a new first difference is
obtained which added to the preceding area or volume
gives the next succeeding area or volume. It is usual to
tabulate volumes with ¢ as the argument varying by
tenths of a foot, so that & of 219, 220, etc., will be 0.1.
The first first difference obtained from (219) and (220) is

Fw 4ok = (0.1w +.018) 5 i.

ls
The second difference from (220) is 27 ><.<>'Ic2 2—— 2700°

Values for w and s may then be assumed and separate
tables made for each combination of w and s desired.
To begin such a table let w =20, s =34, and I = 50.
The first first difference, which is also the volume for
c=01,is

1 _ ( _)__
0.1w +.01s) 27 2+200 27 3.73 cu. yd.

The second difference is

l s 2 3 50 1
257 %700 "100°2°27 " 18
Computations will then be arranged as follows:
c=0 v = 0.000
0.1 »= 3.73 3.73 1st st diff.
.06 2nd diff.
0.2 v= 7.52 3.79 2nd l1st diff.
3.84 .05 2nd diff.
0.3 »=11.36  3.84 3rd 1st diff.
3.90 .06 2nd diff.
0.4 »=15.26  3.90 4th 1st diff.
and so forth.

=.0555 cu. yd.

(<Y
-
©
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Nothing but the bare numerical work need be recorded
and much of that may be done mentally. It will be neces-
sary occasionally to check by computation from the full
volume formula to see that no cumulative error due to
the omission of the final places of the endless decimal
has reached a figure worth considering. Every 2 feet
0.01 yd. should be added for this particular table and at
20 feet an additional .01 yd. This is not a case where
work to any particular number of significant figures is
required, but rather the results should be correct to the
nearest ¥5 cu. yd., that in summing up, the final results
of an estimate may appear to be accurate to the nearest
whole yard. The final quantities will be arranged in a
table as follows:

TABLE OF VOLUMES IN CUBIC YARDS FOR LEVEL
SECTIONS WITH VARYING CENTER HEIGHTS.

Roadbed 20 feet. Side Slopes 3/2.  Sections 50 feet long.
C |0.0|0.1 0‘2|0.3’ 0.4|105(0.6 ’ 0.7 ; 0.8 ‘ 0.9 |C
0| 0.0] 3.7{ 7.5|11.4] 15.3| 19.2| 23.2| 27.3| 31.4| 35.6| O
1 |39.8(44.1|48 .4|52.8| 57.3| 61.8| 66.4| 71.0| 75.7| 80.4| 1
2 (85.2|90.0(94.9(99.9(104.9|110.0{115.1{120.2(125.5|130.8| 2
and so forth

The student may verify the values given.

Level section volumes are used only in preliminary esti-
mates, but are a good deal used for this purpose and hence
are valuable.

Since this table is made for a length of 50 feet, it must
be entered twice to get the volumes for a full station, once
with the center height for one end and again for the center
height at the other end. If the volume for a fractional
station of ! feet is required, the volume for 100 feet is

found and multiplied by I(l)—d Since level sections are

used mostly for preliminary estimates, tables of level
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section volumes are more useful if made directly for 100-
foot lengths.

96. Tables for Three-Level Sections.—As before, by aver-
age end areas the volume for a whole station is

V= 27A1 +o7 Az,

A= _CD +- (hl +h2)y

D being the total surface width, ¢ the center height, and
the h’s the respective side heights.

\lso Y UAY L

4= (c"' 2s) 2 74

All four terms of these two equations represent areas of
triangles. In general the area of a triangle of base and
altitude z and y is } zy, and the volume of a triangular
prism of length [ is, in cubic yards,

1wy _ 1

27 X 2 sz. (222)
In the first equation above given ¢ may be z, and D
may be y for the first term while 4@ isz, and (hy + hs) isy

for the second term. Similarly (c + 21—0;) is z for the

2
first term of the second equation, and D is y, whileﬁ is a

constant quantity and need not be tabulated, as it may
be quickly computed once for all for any given piece of

work. Since % in the parenthesis of the first term is also
constant, the use of the second equation may involve less
work than the use of the first. For either equation a table
of volumes of triangular prisms fifty feet long will suffice.
It will be arranged thus;
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VOLUMES OF TRIANGULAR PRISMS 50 FEET LONG
WHOSE RIGHT SECTIONS HAVE BASES AND
HEIGHTS z AND y.

Y
3456789/
. xz

8

/
=]
-
[

=HOO0OO000O0000O
HOOOID U W -

Since such a table must be gotten on the page of a book,
it will be convenient to use only whole units for one dimen-
sion, while tenths may be used for the other.

If in a given prism one dimension is 7.3 and the other
is 24.6, two quantities would be sought both opposite z =
24.6, one under column 7 and the other under column 3.
The whole of the first and 4; of the second would be added

for the full volume. This gives 24.6 (7 + 0.3) g—g If one

has not such a table it is very rapidly made by simple ad-
dition. Such a table is found in Allen’s ‘ Field and Office
Tables ”’ and will be in the *“ Field Book "’ to follow this
volume. One must enter such a table as many times as
may be necessary to get the volume for both parts of each
100-foot station. If the station is fractional, of length I,
the volume is first obtained for 100 feet and then multi-

. l
plied by 100"

Ezamples. 1. Compute a table of triangular prisms for
values of z from 6.0 to 12.0 with y from 0 to 9, the length
being 50 feet. Let x vary by tenths.

2. If the student has either Allen’s or the author’s
tables, let him, remembering that the volumes are those
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of triangular prisms, compute the volumes from the irreg-

ular section notes of the example of Art. 87. Compare the

result with that obtained by average end areas in the ex-

ample of Art. 89. B
96 a. Allen publishes e TT™

another table for three-

level sections based on S

the following discussion. . { )
The area ABED is the ) £

level area FGED, with Pig. 122.

center height that of the

three-level section, less the triangle FHA and plus the

triangle HBG. The area can thus be shown to be

(we + s¢*) +%(’§+sc) (i + br —2¢).

Considering a prism of 50 feet length,
50 25 (w _
V=27(wc +sc’)+27(2+sc)(hz+hm 2¢).

The first term is the volume of a level section of height c,
and is evaluated as in the table for level sections; the
numerical coefficient and first parenthesis of the second
term is evaluated for varying values of ¢ and tabulated
with the level section volumes as a factor by which the
second parenthesis is to be multiplied. Calling this factor
K, the table would take the following form:

VOLUMES IN CUBIC YARDS FOR 50-FOOT PRISMS

L. K.
¢ Volume level Factor in L K Etec.
section. K+ b —2¢)
50 25 (w
0 ﬁ(wc+ 8c?) -2—7(5 + ac)
1.0
ete.

The table would be entered with a given ¢, L and K found,
K multiplied by (h + k- — 2c¢), usually computed mentally,
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and the product added to L for the volume of one end
of the station. The process is repeated at the next sec-
tion for the other end and the two sums added for the
full station. If the volume is less than a station long, the
volume for a full station is first obtained, then multiplied
by the factor I(l)—(;’ ! being the length of the volume in feet.
For use as a table of level sections this table is not so con-
venient as one for 100-foot prisms, and it is doubtful if it
excels a table of triangular prisms for three-level sections.

97. Tables for Prismoidal Correction. — The pris-
moidal correction formula may be considered to repre-
sent the volume of a triangular prism whose right section
has base and altitude (¢, — ¢z) and (D, — Ds) respectively,
the correction in cubic yards being

Cr= 5122 (¢1 —¢2) (D1 — Dy),

when the volume is 100 feet long. This cannot be taken
from the table already described for three-level sections
since the numerical factor of the xy product is not the
same. A special table must be made for it.




CHAPTER XIII.
DIAGRAMS.

98. Diagrams in General. — Every equation of the first
or second degree may be represented by a curve in one
plane, and this curve may be platted so that values of one
of the variables of the equation may be scaled from the
drawing for given values of the other variable. Many
equations that seem to involve several variables and to be
of higher than the second degree may be separated into
parts that will permit representation on a single sheet of
paper. Thus all of the equations thus far given for volumes
may be represented by lines on paper, and the required
volumes may be scaled from the drawings when the usual
field notes are given. Before discussing these, some general
diagrams of use in making various estimates will be shown.

Let the equation y = ax be considered. Y may be
simply the product of two numbers, one a constant and
the other a variable, or it may be the area of each of a
series of rectangles of equal bases a and varying altitudes
z, or it may be the area of each of a series of triangles of
constant base or altitude, 2 a and variable altitude or base
z. The equation is of the vy
first degree and is represented
by a straight line through the (3
origin when drawn with refer-
ence to two coordinate axes {

X and Y intersecting at the g !

origin O. If various values

of z be laid off from O on the

axis X and corresponding values of ¥ be computed and

laid off at right angles to X at the points marking
199

b3

Fig. 123.
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the values of z, the extremities of these lines will all lie
in the straight line OP, which will pass through O,
because when zis 0, y is 0. When z is 1, y is a, and from
the considerations of trigonometry a is therefore the tan-
gent of the angle that the line OP makes with the axis of
z. Having drawn the line on, say, a piece of cross-section
paper, a required value of y for a given value of z is found
by measuring the perpendicular from OX to the line at the
point on X representing z.

" Let it be required to make a diagram for computing
acres of right of way taken from various owners. The
usual width is 100 feet, and a strip one station long would
100X 100 _ 0.2295 acre. If there are n sta-

43560
tions on the land of one owner the acreage taken from him
is A =0.22957n. To construct a diagram for rapid esti-
mation of a considerable number of takings, a point of origin
is selected near one corner of a piece of cross-section paper;
' a distance along one inter-
secting line is laid off to rep-
resent n to scale — say } inch
to the.station — as long as is
likely to be needed to repre-
sent the greatest number of
stations taken from one
owner —say 40 stations, or 20
inches. On the perpendicular at this point to a scale of,
say, 1 inch per acre (which will permit estimation to about
the nearest tds acre), sufficiently close for preliminary
estimates, the corresponding acreage, from A = 0.2295 X
40 = 9.18 acres or inches, is laid off and a line drawn
through the point and the origin.

An ordinate to this line at any given point x on the axis
of n gives the acreage due to z stations when the ordinate
is measured to the scale used in laying off acres at the
extreme end of the diagram. Thus in Fig. 124 the ordi-
nate at n = 10 is one-quarter that at n = 40, or 2.295

contain

Fig. 124.
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inches or acres. The scale will not always be unit for
unit or half unit for unit as in this case. The scales will
be so selected that within the limits of the sheet as many
calculations as possible may be made to the required
degree of precision, whatever that may be.

An equation of the form y = azz, while an equation
between three variables, requiring three axes for its repre-
sentation, can be conceived to be made up of a number of
equations of the form y = abz, b having different values
in the several equations. Any one of these equations may
be represented by a straight line as in the preceding case
and the series of equations by a series of straight lines. .
Thus in Fig. 125,
if one equation be
y=abz and b be
zero, the value of y
will be zero what-
ever the value of z
or a, and the line
representing the
equation will be
the axis of z. If
b=z=1, a line
representing y = az will be the diagram. If b=2=2 a
line representing y = 2 az will be the diagram, and so on.
Therefore, a diagram for the equation y = axz may be
constructed as a series of straight lines with varying
values of 2, and when a given value of z is fractional,
falling between two values that have been assumed
in constructing the diagram, the reading must be made
by interpolation. For a value of z represented by OA,
Fig. 125, and of z= 2.6 the value of y would be the
ordinate AB. Such a diagram in which a is 1 may be
made to give the areas of a series of rectangles of varying
sides.

Let a diagram be desired for reading the volumes of
cubical stones delivered for some mason work. The

Y

T Fig. 125.
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dimensions may be taken in feet and decimals, and the
volume in cubic yards of any stone will be V = :5'21,175 First,
let 4 = zz and let a diagram of areas of rectangles be con-
structed using convenient values for z and z. A little
inspection will show that z = 10, 2 = 9, and y = 6 will
give a volume of 20 cubic yards, which will scale con-
veniently on cross-section paper. Let these values be
assumed as the maximum values for constructing the
diagram — larger than is likely to be needed. Let 10

Axis ofeV
10

[

~1

3

8 8 3
Axisof XZ

=
o

[o] T 1 1 1
4
Axisof X

Fig. 126.

units be laid off from O to B in Fig. 126. Forz =1, u=
10, and so on. From the points thus found on BA, lines
are drawn to O, and ordinates to these lines at points on
OB representing varying values of z give the values of »
corresponding to the given values of z and z when read
to the scale used in laying off « on BA. Convenient
scales to use will be 1 foot per inch for z and 10 square
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feet per inch for . Now V= g'!zl and this is diagramed

on the axis of u as a base. When u is 90 and y is 6, the
volume is 20 cubic yards and the space CA which is 10
inches is called 20 cubic yards, giving 2 yards to the inch
for the scale. Since the volume varies directly as y, the
space CA may be divided into 6 equal parts and lines drawn
from the points of division to 0. These lines will represent
the several values of y and ordinates to them from the
axis of u will represent cubic yards when read to the
scale 2 yards to the inch. Let a stone 8.2 X 5.9 X 3.4
be measured. Its cubic content is determined by find-
ing 8.2 on the axis of z following up the perpendicular
line to approximately 5.9 as determined by interpolating
between z lines 5 and 6, following horizontally to the
left to a point y = 3.4 found by interpolating between
the y lines 3 and 4, and then reading the volumes verti-
cally above on the line CA.

Ezxamples. 1. Let a diagram for estimating acres be
drawn on cross-section paper to a scale that will permit
reading results directly to 75 and by estimation to 134
acre.

2. Let a diagram for cubic contents of rectangular
solids be made to a scale that will permit reading by esti-
mation to 18z cubic yard, and directly to 0.2 cubic yard.
Before making the diagram read Art. 105.

99. Diagram for Level Section Volumes. — The equa-
tion for level section volumes may be diagramed in two
ways. The first that will be given being the less convenient
is given only to show how an equation may be divided.

= —— C’ = — —
| %4 (cw + sc?) cw + 27 sct.
* The whole equation is that of a parabola of axes V and C
through the origin and with its vertex at
50 w?

w
¢= -5, ad V=-o o
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But splitting it into two, V = 4% cw is a straight line and
V = 34 sc* is a parabola with vertex at the origin. If the
two can be so arranged that the corresponding ordinates
measuring V are auto-
matically or graphical-
ly added, the diagram
will be reasonably con-
venient. In Fig. 127
let the axes be as
shown, with positive
values of V measured
up for the parabola
and down for the
straight line. There
would be as many
straight lines as there
are different widths of
Fig. 127, roadbed to be used,

and as many parabolas

as there are values of s. The straight line is laid out
as in the previously described diagrams. The greatest
probable value of ¢ is laid out along OB to B and a per-
pendicular erected and made equal — at some scale of
cubic yards per inch of diagram — to the corresponding
cubic yards, using one of the values of w, as for instance
BF. The line FO is drawn, constituting the diagram for
the one assumed value of w. For the same value of ¢
and one value of s, the term %% sc® is computed and laid off
from B to, say, G, to the same scale used for BF. A parab-
ola is then drawn through G and O constituting the dia-
gram for the parabola term with one value of s. The total
ordinate GF is then the total volume for the given c, 8,
and w; and for any other value of ¢, as OD, and the same
values of s and w, the double ordinate EE’ is the volume.
There are several ways of drawing the parabola, but
probably the best way is to compute volumes for several
different values of ¢, plot these in their proper positions,

Axisof V
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and draw the curve through the plotted points by the aid
of ship curves or other irregular curves.
But the better way to diagram this equation is to treat

>

ol

H Y

: Y/

. o o
{4
w
R —z5 0
Axisof C
Fig. 128.

. it as one parabola as in Fig. 128. The vertex need not be
found. The curve can be plotted by points as in the last
case. As many curves must be drawn as there are combi-
nations of w and s. The diagram is rarely made by itself,
but is usually drawn on a diagram of three-level sections.

Ezxample. Let a diagram be drawn on cross-section
paper for s = §, w = 20, using a maximum value of ¢
of 10 feet, and making the volume scale such that single
yards may be obtained by estimation and 10 yards read
directly.

100, Diagram for Three-Level Sections. — When the
prism has a three-level section the expression for volume is

_5 (D &)_E.
V‘27§2(."+2s s
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This may be divided into three equations,
50 D

V1=2—7—20, (A)
50D w

Vi=5r 22, (B)
_ _5 v

Va= 27 4 ©

and each diagramed separately so as to make the sum-
mation of V;, + V; + Vs = V automatic.

A complete separate diagram is required for every com-
bination of s and w. For any one combination terms
containing only numerals and s and w are constants.

V, is a constant negative quantity, and no matter what
the value of ¢ or D it is the same. It may be represented
by the constant ordinates to a straight line parallel to the
axis of D.

Fig. 129.

The term V. is a single straight line, and for the purpose
of mz?,king the subtraction of V, graphically the origin will
be shifted temporarily to O’. At D’, the largest likely value
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of D, a perpendicular is erected to B equal tog—g 1—2) Euis'
Then ordinates from the axis OD to the line O’'B give the
2
net volume 272 2s 2748 The term V,, having three
variables, must be diagramed as a series of straight lines,
one for each assumed value of ¢. If ¢ be 1, V, = g—g 22,
and this is laid off from B to C. If now a line be drawn
from C to O’, the part of the ordinate lying between the
lines O’C and O’B at any plotted value of D, as OJ, gives
the term V, for that value of D, and ¢c=1. And the whole
ordinate JL gives V, the algebraic sum of the three terms,

as follows:

- JH + HK + KL
_ 0w  0Dw , 50D,
27 45 2712 2s 2727
For ¢ = 2, BE is twice BC, for ¢ = 3, BF is three times
BC, etc., and from each of these plotted points lines are
drawn and numbered with the respective values of c.
It should be clear that the ordinate at any point from the
original axis of D, OD, to any inclined line gives the volume
for the corresponding D and c¢. In all these diagrams
there will be more lines drawn than those corresponding
to whole units. Between these lines, corresponding to
whole unit values, additional lines will be drawn correspond-
ing to tenths of units, or two-tenths, as the scale and size
of the diagram may permit. The diagram is used just as a
table to determine quantities for fifty-foot prisms, and each
quantity is used twice, once on one side of the section and
oncc on the other. The values from two adjacent sections
are added to get the volume for a station. For a substation

of length l,l—éaof the diagram quantity is used and the

factori&is applied either separately to both quantities
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obtained for the sections at the two ends, or once to the
sum of these two quantities. The latter way makes less
work.

To be useful, a diagram like that of Fig. 129 must be
made to so large a scale as to be unwieldy, and, moreover,
only a portion of the diagram, that portion lying near the
curve of level sections, if it were drawn, would ever be
used. That is to say, there would rarely be a large D with
a small ¢ or vice versa,and the volumes of three-level sections
do not ordinarily differ widely from volumes of level
sections of the same center heights. Therefore this dia-
gram is cut up into pieces which are shifted, each piece
being given sufficient numbers to indicate what part of
the diagram it is and how it is to be used. Thus if Fig. 130
represents a three-level section diagram on which a curve
of level sections for the same s and w has been drawn, only

—
>
N\

Axis of Volume
\g
o
-

c=}

Fig. 130.
that portion of the diagram within the dotted curves

would ordinarily be used. This may be approximately
marked off into blocks and a new diagram made contain-
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ing only these blocks arranged one over the other on a
single sheet or each one on a page by itself, or two or more
together on an inset double page in a book. Such_are
Wellington’s diagrams. Diagrams not too unwieldy can be
made to read directly to the nearest 2 cubic yards and by *
estimation to the nearest cubic yard, which in general
is as close as the staking out or the excavation of earth-
work warrants.

Ezxzample. Let a diagram be made to read volumes, for
fifty-foot prisms with three-level sections having side slopes
of 3/2, roadbed width of 20 feet and center heights vary-
ing from 0 to 10 feet and total widths from 20 feet to 60
feet. (It is suggested that metric paper having the centi-
meter divided into 5 parts be used, that the scale for D
be 1 foot per centimeter, and for cubic yards 10 cubic
yards per centimeter. The curve of level sections should
be drawn on, as it may be without computation, by noting
the points of intersection of the several ¢ lines and corre-
sponding level section D lines. The useful part of the
diagram should be blocked out and the blocks traced on
tracing paper, cloth, or section paper, one block above or
beside another so as to reduce the diagram to its smallest
practicable size. It will be noted that the numbering of
the coordinate lines of the section paper will be different
on the different blocks. Inclined lines drawn for the
various values of ¢ should be drawn for each 0.2 foot
variation, the whole number lines being heavier than the
intermediate lines.)

101. Diagram for Prismoidal Computation. — No con-
venient diagram for direct computation by the prismoidal
formula has been devised as yet. The diagram for three-
level sections is used in connection with a diagram for the
prismoidal correction. The diagram for prismoidal cor-
rection is like that of Fig. 125, since the equation

Cp= 557 (o — ) (D= Dy)
is of the form y = azxy,
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a being L i x, (i —¢); and y, (D) — D).
3.24

Ezample. Let a diagram be made for the prismoidal
correction with (¢, — ¢z) a maximum of 10 feet and
(D1 — D) of 40 feet. The paper may be the same as
for the example in Art. 98, and the scale may be much
enlarged, to, say, 1 cubic yard per centimeter and } foot
per centimeter for the difference of the D’s. The lines
for the various values of (¢; — ¢:) should be drawn for
each 0.2 foot, the whole foot lines being heavier than the
intermediate lines.

102. Diagram for Triangular Prisms.— The formula for
the volume of a triangular prism 50 feet long is

=~ 50 zy
14 27 2’
in which « and y are base and altitude of the section.
Three-level sections may be computed from a diagram of
such an equation just as from a table of such quantities.
The diagram would be exactly like that for prismoidal
corrections except that the inclination of the lines would
be different because of the different numerical coeflicients
and the larger values of the variables. The scale must
be reduced to, say, that used for the three-level section
diagram.

One axis would represent D = y of equation (222), p. 195,

for three-level section, and separate inclined lines would be

plotted for varying values of z =¢ + ls The constant

quantity 3—7 f’z— must be computed separately and sub-

tracted from the diagram quantities. Since it is the grade

100 »?
97 s —and subtracted

from the sum of the two volumes that give the whole
station volume, and ﬁ of it subtracted from the diagram

prism it may as well be doubled to —--

volumes for any substation.
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In the equation to be diagramed the quantities are as
follows:

2—"’8 is a constant to be added mentally to ¢ when entering

the diagram. The diagram is made by assuming the maxi-
mum value for D, and at this point on the axis of y erect-
ing a perpendicular, to an adopted scale of volumes, equal
to 0

27-2
c+ %must be treated as a single quantity, and it is the

X D. To make the diagram perfectly general,

line corresponding to this value and not to ¢ alone that
must be found in using the diagram. The diagram may
be used for the other three-level equation

50 50 w
V=oraP+sr3 -5 hith),
entering the diagram twice, once for each term.

Example. Let a diagram be constructed for volumes
of triangular prisms to a scale that will permit entering
with units given to tenths of feet and reading to 2 yards
directly and to 1 yard by estimation.

103. Diagram for Correction for Curvature. The equa-
tion for the correction for curvature expressed in cubic yards
per station is

C. = 00011 D (& — ds) (e +2ﬂs)
For a 1° curve this is
= 00011 (ds* — d¥) (c +2)
which may be divided into two parts each a parabola with
vertex at the origin, thus:
€, = 00011 (c+ %)d,’,
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2s
A separate diagram must be constructed for each com-

C, = —.00011 (c+ﬂ)df.

bination of 2—%and will consist of a series of parabolas on

axes C; and d, one parabola for each assumed value of c.
The diagram would be entered twice, once for each d,
and the difference of the results taken. It must be
remembered that the sign has no significance and that
the correction is to be added when the higher ground
is on the convex side of the center and subtracted when
the higher ground is on the concave side of the center.
The diagram may be perfectly general, good for any

combination of w and s if éuls be always mentally added to
¢ before entering the diagram and if the parabolas be

drawn simply for varying whole-number values of (c + 21%)
as 1,2, 3, etc. Thuswhen (c + %) =1 there is an equation
C = 00011 az.
When (c +%) =2
C = .00022 d?, ete.
Each of these represents a parabola. This is the better
way to make the diagram. Since the correction is dia-
gramed for a 1° curve the diagram quantities must be
multiplied by the degree of curve in any case.

Ezample. Let a diagram be drawn for correction
for curvature for a 1° curve and one for a 10° curve to
determine which gives the better combination of scales
and reasonable correctness of reading. When the dia-
gram gives the correction for a 10° curve its quantities
must be multiplied by that number that expresses the
decimal part of 10 that a given curve degree is of 10.

Thus for an 8° curve the factor is 0.8 and for a 14° curve
the factor is 1.4. :
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But a simpler diagram may be constructed. Thus the
term
€, = 00011 (c + ﬂ) dg
28
may be considered a straight line if d be assumed to be a

constant and either ¢ or ¢+ % be assumed to be the vari-

Axisof Cy

d=10
X0 AxI50f C

Fig. 131,

able. If cisthe variable then the diagram is constructed on
axes C; and ¢ and separate lines are drawn for all different

valuesof d. WhenC, =0 ¢ = — éls » and all the lines

pass through this point. For d =1 a line will be drawn
through the points

0 0.00011((: +l),
23
- % and c
2s

¢ being assumed the largest probable value. The d lines
will not be separated by uniform intervals, since for a given
¢ the volume varies as the square of d. In this diagram
the length of the ordinate at a given ¢ between the two
inclined lines corresponding to d; and d, is the correction.
This may be taken in a pair of dividers or on a piece of paper
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and applied to the axis of volumes, or a piece of cross-sec-
tion paper marked on its edge to the scale of volumes
may be applied to the diagram and the volume between
two d lines read at once.

Ezample. Let such a diagram be made withc¢ = 30 feet
as a maximum.

If the horizontal axis be that of ¢ 4 %0;’ the lines will

all pass through the origin, one diagram will do for all
combinations of w and s and the diagram may be kept a

. . w
convenient size because ¢ + 2s need not be assumed at

more than say 20 feet, or even 10 feet, since the result
varies directly with this quantity and the correction for

c +% = 20 feet is twice that for ¢ +§% = 10 feet and

w
for ¢ + 2s :
10 feet or 4 times that for 9 feet, ete.
When the correction is to be applied to side-hill work,
. the diagram of triangular prisms may be used, the average
length being found as in Art. 94.

104. Diagram for Preliminary Estimates. — One of the
most useful of earthwork formulas has not yet been derived
in this book. It is a formula for estimating volumes
from center heights and- cross-surface slopes rather than
from center heights alone— considering the section level
across — or from cross-section notes, which are not avail-
able for preliminary estimates since the work is not cross-
sectioned until the line is located and construction is about
to begin.

On preliminary surveys it is often customary for the
rodman to carry a clinometer and to lay his rod down
across the line at each station or point where the rod is
held, place the clinometer on it, read the cross slope in
angle or fall per unit of length, and call this slope to the
levelman, who records it in his book. If this is not done,

= 36 feet the correction is 3.6 times that for




DIAGRAMS 215

the cross slope should be known approximately from the
topographer’s contour map and will then be known by the
distance required to fall a contour interval — usually 5 feet.

It is desirable, therefore, to have an expression that will
give areas of sections and therefore volumes when only
the center height, which may be scaled from the profile,

d.

hy oy

hs

Fig. 132,

and the cross-surface slope are known. In Fig. 132 if s
be the slope ratio of the sides and r that of the surface

. hor.
expressed in the same way, vert.”
d -2
c -I-d*2 =hy = 2
r s
(c + 22) 8
Whence de =8 280,
r—38
(c + é-uis) r8
Similarly d, = e

These may be substituted for D = (d, + d») in the equa-
tion for three-level areas and there results

w w\(_1 , 1 \rs_w
A—(c+2s)(c+2s)(r—s+r+s)2 4s

Letting ¢ + é% = (' and reducing there is obtained

_Crs w
A_r'—s“ 43

Loy L v
Vegi\e—s) 277 " 14" (223)
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If both numerator and denominator of the first term of
the right-hand member of equation (223) be divided by r%s,

ﬁ(l_i)_2745
s r
And if R be the surface slope angle with the horizontal
and S be the side slope angle, then since r and s are re-
spectively the cot R and cot S,
l Cc l w
V,_ 27 tanS —stan’R 27 4s (224)
Equation (224) is as Mr. Wellington develops it.*
Either (223) or (224) may be used for computing the
quantities necessary to make a diagram. Choosing (223),
a separate diagram must be made for each different value
of s, since the first term is all that is diagramed. For a
given value of s the first term may be written,
(o)
Tor\p ¢
If I be 100 and s be §,
v () on
9 \r?-¢ 9 472 -9
If r be assumed a constant, this is the equation of a pa-
rabola with vertex at the origin, on axes VandC. Assum-
ing several values for C and one value for r such a parabola
is drawn. With the same values of C and another value
of r a second parabola is drawn, and so on for as many
values of r as are desired. One of the values of C will be
the maximum required. It must be remembered that

1

Cis ety

The r’s may be marked on the several parabolas in
degrees as r = 1°,2° ete., if the slopes are to be taken in
degrees, and in this case perhaps it would be better to_

* * Computation from Diagrams of Railway Earthwork,” A. M. Wel-
Engton,
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compute the several values for plotting from equation
(224). 1If the slopes are read as slopes, so many feet for
a fall of 5 feet or 1 foot, the parabolas may be marked
5in 100, 5 in 40, ete.,or 1 in 20,1 in 8, etec. As contours
are usually drawn at 5-foot intervals and the distance
from one to another may be scaled from a map, 5 in z units
would be the better marking where such maps are to be
used. :

In using the diagram it must be remembered that the
quantities are too great by the volume of the grade prism.
If, as is usual, the quantities are not wanted for each
station separately but only for each whole cut or fill, the
volume for each station is taken from the diagram, the
quantities added for the whole cut or fill, and the grade
prism for the entire length of cut or fill subtracted at once.
It would be 12070 . Z’lmultiplied by the number, whole or
fractional, expressing the number of stations in the cut or
fill. If it is desired to have the volumes of the stations
separately, as it may be in preparing a preliminary mass
diagram, * the diagram should be made for 50-foot lengths
instead of 100-foot lengths, and each volume taken from the
diagram would be used twice, once on one side of the
station and once on the other side. From the two parts
making the whole station the grade prism for a station
would be subtracted.

When only the sum of a series of volumes, as a whole
cut or fill, is required, the best way to use this or any other
of the diagrams is to lay off the several volume ordinates
in succession on a strip of paper, the total length marked
being then applied to a long strip on which there has been
drawn a scale of volumes like that of the diagram.

Ezxample. Let a diagram of the first term of equation
(223) be made for ¢ = §, maximum C' = 20 feet and val-
ues of r = 5 in 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100,
and let a curve of level section volumes be drawn on it,

* See Chapter XV.
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remembering that the expression for level section may be
written,
l w\? I w
Veglergi)o-m i

Only the first term of the right-hand member will be drawn.

105. Suggestions for Making Diagrams. — Diagrams
drawn on crogs-section paper can be made by ordinary
geometrical methods for drawing the lines or curves.
Thus, if the diagram is a series of straight lines passing
through an origin, but one other point need be found for
each line. If the lines are parabolas and the common
vertex and one point on each are found, the parabolas
may be drawn. But these are not the best ways. The
cross-section paper is never uniform in ruling and it is best
to compute values for the quantities so that independent
plottings can be made at intervals of from 2} to 4 inches.
The lines for whole values of the variable should be drawn
first and the intermediate lines interpolated afterward,
the work being almost always mechanical. Successive
equal values should not be stepped in with dividers, as the
result is a cumulative error. . Each point should be plotted
independently. Owing to the unevenness of the paper,
points that should lie in a straight line may not do so, and
the drawing-pen must be swayed a trifle back and forth
to make the drawn line pass through the required points.
The quantities that are to be used in plotting should be first
computed and arranged in a table before beginning the
diagram. Consideration must be given to the scale of the
diagram before beginning it, to the end that on the avail-
able paper the quantities with which the diagram is entered
and those to be read from it may be found with sufficient
precision for the purpose in hand. The diagram must not
be too bulky, and two or three sheets of moderate size
are better than one sheet of awkward dimensions.

The making of all diagrams may be much simplified by
a choice of values; thus the equation for triangular prisms is
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50
V= n ¢D.

If this is made on a base axis of D,values should be chosen
for D that are multiples of 54 to lessen computation. If
D is taken as 54, V.= 50 ¢, and nothing but easy mental
effort is required to find the values for ¢ =1, 2, 3, ete.
The results will always be whole numbers, which may
be more accurately plotted than fractional numbers. In
the case given, if the volume scale is 100 cubic yards to the
inch and cross-section paper divided into inches and tenths
is used, values for ¢ varying by single units will be 5
divisions apart, and intermediate values varying by 0.2
of a unit will fall on the graduation points of the paper.
Other series of points may be computed by making D
successively 5.4 10.8, 16.2, 21.6, 27.0, 32.4, 37.8, 43.2,
48.6, or as many of these values as may be desired.
Similarly for the diagram for correction for curvature,
if (d — d) is made a multiple of 3.24, the computation is
much facilitated. The student will note what values to
use for other diagrams to make the computation mechan-
ical, or easy mental work.



CHAPTER XIV.

HAUL.

106. Overhaul Defined. — Railroad earthwork is usually
paid for in excavation only, and good practice requires
that the fills be made from the adjacent cuts as far as
possible. Should the adjacent cuts contain more material
than is required in the fill, the latter may be widened
with the waste material. The surplus material is called
“waste” and the irregular heaps in which it is sometimes
piled alongside the cuts are called “ spoil banks.” It is
better to widen adjacent banks than to waste in spoil banks.

When the distance that the material must be hauled
from the cut to its new position in the bank exceeds a
certain limit (varying with the material, road over which
it is hauled, and the kind of vehicle in which it is hauled)
it becomes cheaper for the contractor to waste from the
cut and build the bank from adjacent or near-by borrow
pits. But this practice is not usually permitted by the
specifications, which generally require that all the material
in the cuts shall be placed in the adjacent banks.

Evidently it would be unfair to company and contractor
alike that a stipulated sum per cubic yard should be paid
for all material of a given class regardless of the distance
it must be hauled, and so it is customary to specify that the
price paid for excavation shall include payment for placing
the material in the adjacent bank wherever the distance
hauled is less than a certain specified limit — varying from
200 feet to 500 feet or even 1000 feet — and that for all
material hauled beyond this distance a specified sum per
cubic yard per station (100 feet), hauled beyond the limit
of free haul, shall be paid in addition to the regular price
per cubic yard for excavation.

220
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The quantity on which extra payment is based is called
overhaul. It may be explained by the aid of Fig. 133,

Fig. 133.

which represents a portion of a railroad profile, the straight
line being the grade line and the irregular line the surface
-along the center line of the road. It may be supposed that
the portion of cut DE will make the portion of bank EF
and that the distance DF is the limit of free haul. It may
also be supposed that the portion of cut BC is placed in
the bank to the left and that CD is equivalent to FG.
Very likely not all of CD gets into the space between F
and G and quite likely some of DE does get into this space,
but the computations are made on the basis suggested.
The positions of the transverse planes D and F are found
in various ways to be mentioned hereafter. If V, be any
small portion of the volume DC, V,, V,, etc., other equal
small portions, and if I, b, ls, ete., be the several distances
these portions are hauled from their respective positions
in CD to their respective positions in F@, then the dis-

tance in stations- that V, is overhauled isl—lﬁ.é)i—' ; Vais
l,-DF , ..
overhauled 100 stations, ete.

If there be n such small portions in CD the total overhaul
is the sum of all the partial products,

| - DF LW+bLete....Iln—nDF 2zl — nDF
Voo~V 100 =V 00
and this quantity multiplied by the specified price per
cubic yard per station overhauled will give the extra
sum due the contractor for moving CD to FG. But it
is practically impossible to determine the distance any’
particular portion is moved, and it is unnecessary, for
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the same result may be obtained by multiplying the aver-
age distance that the whole quantity CD is overhauled by
its volume in cubic yards. This average distance is the
distance L, Fig. 133, from the transverse plane containing
the center of gravity of the volume CD to the transverse
plane containing the center of gravity of the volume FG,
less DF, the free haul limit.

Some specifications allow no overhaul until the average
haul exceeds the haul limit. Thus in Fig. 133, if the
center of volume of the portion from C to E is not more
than the limit of free haul from the center of volume of”
EG, there will be no overhaul even though some material
has been hauled beyond the specified limit. When this
specification obtains, the free haul limit should be shorter
than when the method first given is used. Overhaul is
somewhat more easily computed by the second method
than by the first. The specifications should make clear
which method is to obtain.

107. Algebraic Method of Computation. — The only dif-
ficulty involved is that of determining the positions of
the transverse planes containing the centers of gravity
of the two solids. This is readily done when it is known
that the distance from one end of any prismoid to the
transverse section containing its center of gravity is ex-
pressed by the following simple formula:

L P(A—A)s

in which [ is the length of the prismoid, 4, the area of
the end farthest from that assumed as the origin, A, the
area of the end assumed as the origin, and V the volume

* This valuable formula licable to all pri ids, including all regu-
lar solids of revolution, was first developed by J. Woodbridge Davis,
C. E. A demonstration may be found in the author’s ‘‘Notes on Rail-
way Earthwork,” published in 1894, and in Allen’s * Railway Curves and
Earthwork.” '

It may be demonstrated in the following manner for a frustrum of)a
triangular pyramid, and the demonstration may be extended if desired by
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of the prismoid. If the volume is given in cubic yards,

the second term, 1L22 (A’—;é‘), must be divided by 27. .

using the expressions for areas of three-level sections instead of those for
triangular sections.

The moment of the volume about an axis through O perpendicular to ! is
VX, in which V is the volume of the solid and X is the distance of its
center of gravity from O. The moment of any thin slice at a distance z
from O is rAedz, in which A, is the sectional area at z, dz is the small
thickness of the slice and z is the distance from O. The sum of the

moments of all of such slices makes the moment of the whole solid, and by
calculus this is

1
M= f zAd, = VX,
0

and x = ¥.
The signfl z means “ the sum between zero and ! of.” An expression
or A, must ;e found to use in the equation for M.
C,=Ci 47 (€1 = Cy).
D,= D, + % (D2 — D).
4,=300,
4= { c+2@-cy } {D. +% (D1 -Dy }

Expanding this, multiplying by zdz and summing between the limits
0 and ! by the methods of the calculus gives

1
M=jo' zA.d-=l£2(g.‘ilﬁ +02;)l+01;)z+30;D3)
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Probably the volume CD will be made up of several
stations and possibly some substations, each of which.is
a prismoid. The center of gravity of a series is found by
the principle of moments. Referring to Fig. 134 let it be

Fig. 134,

supposed first that the center of gravity of each prism is
at its mid-section, then the moment of V; about O will

be V, g that of V, about O will be V,(i, +—l22) and of

Vo Vs (l. b+ g) The sum of these will give the total

moment about O, and this divided by the sum of the
and this divided by V gives X.
If the center of gravity is assumed to be at the mid length, the erroneous

moment would be V X -é * But

1
Ve 8 (A+4,+44),

hence M= 2 (4 +4s+44,),
2

a= G0, OGPy
Substituting these values
2C,Dy , 2CiDs | CiDy | CiD1y,
( g t—7 t% *t3

1 (OFEx 2R,

»
M; = v
2
and this divided by V of course gives !2 Therefore the distance of the

center of gravity from the mid point is
M- My
2

which is readily shown to be

(o),
vV
. n(f5 ),

If V is in cubic yards the expression must be divided by 27.
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volumes will give the average lever arm or distance of
the center of gravity of the series from 0. If the volumes
are all of equal length the sum of the moments is

’5 (Vi + 3V, +5V,, ete),

and the average lever arm or distance of the center of
gravity from O is given by

X, = 2(V1 +3;’;,+5V3)

and it may be shown that the distance from this erroneous
center of gravity to the real center of gravity is given by
an expression like (225), namely,

xox-BAgA)

2

which shows that the same correction holds good for a
series of volumes as for a single volume provided the lengths
are equal. This gives the following rule for finding the
center of gravity of a prismoid or a series of prismoids of
equal length.
Determine the distance of the center of gravity from one end
* For the series of volumes of Fig. 134 the center of gravity of the

whole found by assuming the center of each volume to be at its mid-
section is

x - (A5

The true center of gravity is at a section whose distance from O is .

v, £+£ (4s — A'))+V (31 b (45 — At)) Vs (5l L (AI_AS)

PABY)
:V
and B (A — Ay) B (4 —A) 2 (A — A)
2 — A, 3 — A») 2 -
v, t"E v T
X -Xi= 3V
2
B (A4 -4)
=1 3V

which was to be shown.
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assuming that the center of gravity of each prismoid is in the
mid-section. To the resull thus found add the product, one-
twelfth the square of the length of a single prismoid times the
difference of the extreme end areas (always subtracting the
first from the last) divided by the total volume of all the pris-
moids. If the volumes are given in cubic yards divide
again by 27.

If the sign of the correction is minus, the real center is
nearer the origin than the false center.

The formulas developed involve the areas of the cross
sections. Where tables or diagrams are used these areas
are not computed and the formulas must be modified to
avoid the computation. For a single prismoid of a full
station computed by average end areas as prisms

50
V= 27 a7 4v
Va= 27 274
A= 50 3V
= 5_0 V,,
Vi+V.=V.
Then substituting in
-1y L (i)
X =5 +335(%57
and making ! = 100, a full station, there results
X =50 + 100 100 V.-V, Vl
vV
and in general for length 1
1,1 %=V
X = 2 + 6 . V ’ (2258')

in which the V’s are the full values for half and for whole
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lengths respectively. Stated otherwise, the correction to

be applied to the half length is
Cro = % V. ; V.
-1
Ci =150 * O

in which V;and V, are tabular or diagram values for 50-
foot prisms and V is their sum.

For a series of volumes of equal length it may also be
shown that if V, is the volume for the first half length and
V. that for the last half length, [ is the length of a single
volume and ZV the sum of the volumes, the correction
to the center of gravity distance found by assuming each
volume to be centered at its mid-section is
X —X,=6“i’"—ziv—v'lor x =X£J¢éﬂ’"2;vvll- (2268)

2

In the series of prismoids shown in Fig. 134, if the lengths
are not equal and the position of the plane containing the
true center of gravity is wanted, the position of this plane
for each prismoid must be found, the moment of each
volume about one end, as O, determined by multiplying
the volume by the distance of its center of gravity from
the end assumed as the center of moments, and the several
moments must be summed and divided by the sum of the
volumes, the quotient being the distance of the center of
gravity from the end assumed as the center of moments.

The positions of the planes D and F, Fig. 133, are found
by trial. Two points distant apart the limit of free haul
are chosen and the quantities of cut and fill between them
computed. They will probably not balance, and a second
choice of points is made, and a third if necessary until
the two points are found between which the cut and fill
balance. If the cut is rock, allowance must be made for its
swelling, a solid yard of rock excavation making probably
12 yards of embankment.

Ezamples. 1. Apply equation (225) to a hemisphere
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of radius r, getting the distance of the center of gravity
from the center of the sphere.

2. Apply the same equation to a cone of altitude 4 and
radius of base r.

3. Find the position of the center of gravity of any of
the volumes in the examples of articles 85 and 86.

108. Practical Methods of Computation. — A skilled com-
puter can tell very nearly where the centers of gravity
should be by inspection of the quantities, and a rough
computation generally suffices, since great precision is not
requisite, the price paid being usually from 1 cent to 2
cents a cubic yard per station (100 feet) overhauled. An
error of 10 feet in locating the center of gravity of a 1000~
yard volume would involve an error of from $1.00 to $2.00
in the total payment, and it is doubtful if such a volume
is ever executed or measured to the nearest dollar’s worth.

One practical way is as follows:

Find the free haul limiting points, and the point bound-
ing the portion of cut to be overhauled and the portion of
bank it is assumed to make; make separate profiles of
quantities for the overhauled cut and the portion of bank
it makes. To do this the volume of each station is laid
off on a piece of profile paper as an ordinate at the middle

_of the station, and a curved line drawn through the extremi-
ties of the ordinates. It may be better to erect the ordi-
nates through what appear to be the centers of gravity of
the several stations. Cut out each profile thus made and
balance it on a knife-edge to find the line through the center
of gravity. The positions of the verticals through the
centers of gravity of the volume in its two positions being
determined, the problem is solved. Somewhat greater
precision will result if the scale of distances is considerably
enlarged, say to 200 feet to the inch or even 100 feet to
the inch according to the length of the volume to be esti-
mated.

109. A Graphical Method. — On the profile the extremi-
ties of the portion of cut for which the center of gravity
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is wanted are marked, as C and D in Fig. 135. Vertically
above or below points C and D two profiles are begun, the
ordinates to them being measured at each station point

Fig. 135.

proportional to the sum of the volumes to that point;
thus at 5 the ordinate is proportional to V,, at 4 to Vs +
Vs, at 3to Vs + V; 4+ V,, ete.; at 1 the ordinate is propor-
tional to Vy, at 2 to V) + Vs, ete. Curves are drawn
through the tops of these ordinates and their point of
intersection will be approximately vertically over or under
the center of gravity of the portion of cut plotted. The
same thing may be done for the fill.



CHAPTER XV.
MASS DIAGRAMS.

110. General Statement. — It is very desirable that
before a contract is let the engineer shall determine the
quantities of earth to be moved in each cut and fill,
the disposition to be made of the excavation, and the
source of the necessary “ borrow.” This is not always
possible, since it seems frequently necessary for a con-
tract to be let covering several hundred miles. This
is done under general specifications to secure rapid con-
struction, often following close on the location, by com-
petent contractors of large means and ample equipment.

But even if not determined before the letting of the
contract, it is desirable to study the effect of changes of
the grade line on the relative quantities of excavation
and embankment, and the amount of overhaul, that the
most etonomical arrangement may result. As material
is rarely hauled very far beyond the free haul distance, and
as material from an excavation on one side of a moderate
stream crossing is rarely carried to the other side, exami-
nation of the profile for quantities and overhaul is made
on comparatively short stretches at a time. Such a study
is best made by the use of what is usually called the mass
diagram. The mass diagram is a profile of volumes made
as was the profile of Art. 109 except that it is made con-
tinuous from one end of a given section of work to the other
covering both cuts and fills. An ordinate at any given
point from the base line on which the profile is constructed
to the profile is proportional to the total net volume (ex-
cavation being considered plus and embankment minus,
or vice versa) from the beginning of the section to the
point in question,

230
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111. Construction of Mass Diagram. — The method of
constructing a mass diagram is best shown by explaining
the construction for a special case. In Fig. 136 is shown
a portion of the profile of a constructed railroad, the surface
and grade lines shown being those of a real survey and
construction. Above the profile is shown a. mass diagram
for a portion of the profile. It was constructed as follows:
The station quantities were taken from a table of level
sections for the center heights shown on the profile and
tabulated in the table shown on p. 241, the excavation
being considered plus and the embankment minus. (This
is what would be done for a preliminary estimate, or an
estimate would be made by the method of Art. 104. For
a final estimate the notebook quantities from the cross
sections would be used and the ditch quantities included.)
These station quantities were then summed algebraically
and the sums appear in the fourth and fifth columns.
Beginning at station 146 these sums were laid off as or-
dinates to a base line at the points marking the respective
stations and plusses, and the irregular line constituting the
mass diagram was drawn through the plotted points (only
the extremities of the ordinates being plotted). The curve
is plotted just as a profile is plotted, using quantities instead
of elevations. The curves are drawn on the same paper as
the profile, and this scale will be sufficient for a general
study of the earthwork; but if overhaul is to be computed
from it as explained later, the scale should be enlarged to
secure high precision, though in many cases this is not
necessary. While tenths of yards are shown in the table,
they are useless, since the plotting cannot be done to the
nearest yard, and with the scale used in Fig. 136 hardly
to the nearest 10 yards.

112. Interpretation of the Mass Diagram. — A knowl-
edge of the method of construction and an inspection of
the diagram and corresponding profile will make evident
the following characteristics of the mass diagram.

1. The ordinate at any point from the base line on which
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the curve is constructed to the curve is to scale the net
total volume either plus or minus from the beginning sta-
tion to the point where the ordinate is taken.

2. Downward slope in the direction of progress of
profile construction indicates embankment, and upward
slope indicates excavation.

3. Grade points of the profile correspond with maximum
and minimum points of the mass curve, the end of an
embankment (referring to the direction of progress) and
beginning of an excavation always being a minimum
point, as KK’, Fig. 136, while the end of an excavation
and beginning of an embankment is always a maximum
point, as LL’, Fig. 136.

4. On a given slope — excavation or embankment —
the algebraic difference of any two ordinates represents
the volume between them.

5. A line parallel to the base line (practically always
horizontal) intersecting the mass curve in two points is
a balancing line, there being between the two points of
intersection equal volumes of excavation and embankment.

When the excavation is rock, which when placed in
embankment swells to from 1509, to 1679, of its original
volume, the balancing line is not parallel to the base line,
but its direction may be found by making the ordinate
from the level of the maximum or minimum points between
its extremities to the embankment intersection 1} to 13
that to the excavation intersection. The balancing line
is not then a line balancing volumes as computed but
does balance volumes as constructed. Thus the 1350 +
yards of cut between A and J, Fig. 136, would make
about 2160 yards of bank if the material were rock. The
balancing line from A, then, should be drawn to a point
between B and D such that the distance below J is 2160
yards to the scale of the drawing.

6. The embankment is not always made from the
excavation between the two extremities of any balancing
line that may be drawn, because the haul may be too
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great for economy, or a stream too wide to be temporarily
bridged may occur. But when the embankment is made
from the excavation the haul will be forward — referring
to the direction in which the profile proceeds — when a
“ surmit ”’ or “ hill ” or maximum point is cut off and
lies above the balancing line, and backward if a * valley,”
‘““sag’’ or minimum point is cut off and lies below the
balancing line. For instance, the haul is forward from A
to B and backward from T to S if the lines AB and ST
are used as balancing lines.

7. The extreme haul of any particle in a section cut off
bya balancing line is the station length between extremities,
though no particle may be hauled so far, since the portion
of excavation next the embankment may be hauled some
distance into the bank, leaving space in the bank near the
cut for the most distant part of the cut.

Whether this is done or not the average haul is the same,
and the total haul — the total quantity times the average
haul — is given by the area of the diagram cut off by the
balancing line.

This area must be taken with respect to the scale of the
drawing; thus, if the distance scale is 4 stations (400 ft.)
per inch and the volume scale is 2000 cubic yards per inch,
a square inch of paper represents 8000 cubic yards hauled
100 feet or 1 station, or 8000 yard-stations of haul. This
is not overhaul. It is total haul.

113. Computation of Overhaul by Mass Diagram. —
Referring to Fig. 136, let it be assumed that the cut from
station 177 + 50 is hauled into the bank to about station
196 4+ 50. As indicated by the two intersections of the
base line, which may be considered for the present as a
balancing line, the cut and fill (without allowance for
shrinkage) are equal between these points; and let it be
assumed that under the specifications the limit of free haul
is 1000 feet. It is required to find the overhaul.

A balancing line is found, as AB, such that its length is
1000 feet. This indicates that the cut from station 184 4 25
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makes the bank to station 194 + 25, and as this distance
is the limit of free haul, all the material between station
177 + 50 and 184 + 25, and which is represented by the
ordinate to 184 + 25, is overhauled. The total haul for
this material may be had by measuring the area ABDC.
The average haul is found by dividing the area by the
volume hauled, and this less 1000 feet is the average
length of overhaul, which multiplied by the volume hauled
is the overhaul to be paid for. More simply stated, the
area representing total haul less 1000 times the volume
‘hauled is the overhaul. The area may be estimated by
dividing it into small trapezoids or better by the use of a
planimeter.

Again, the total area CJD represents total haul, the area
EAJBF free haul, leaving the overhaul in two pieces CEA
and FBD, which may be measured directly with the pla-
nimeter, or by division into trapezoids, and added. An
approximate method of getting the haul is to multiply
the yards hauled, scaled from the diagram, by the average
distance hauled, assumed to be the length of a horizontal
line drawn through the middle of the yard ordinate to
intersection with the mass curve on either side.

Ezample. Let the student compute the overhaul on
the given diagram with the given assumption of free haul
and balancing line. It will be shown in the next paragraph
that this is not the best arrangement for the work.

114. Other Uses of the Mass Diagram.— There are
two principal uses of the mass diagram beside the compu-
tation of overhaul: A. The study of the most economical
disposition of excavated material when the grade line is
fixed; B. The study of the details of the grade line.

A. Let it be supposed that excavation costs the
“ Company”’ 21 cents and the free haul is 1000 feet with an
overhaul price of 1} cents; then it is cheaper for the “ Com-
pany ”’ to move all material from necessary excavations
into embankments so long as the maximum haul does not
exceed 24 stations, since when the extreme haul equals 24
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stations the extreme overhaul is 14 stations, and a yard
hauled 14 stations costs as much for hauling as the excava-
tion of a yard * borrowed ’’ within 1000 feet of its place
in the bank. Therefore when the extreme overhaul is
more than 14 stations, or the total extreme haul is more
than 24 stations, it is cheaper to waste surplus material
from an excavation, if it can be wasted within 1000 feet,
and borrow the necessary extra earth for the bank, than
to haul the surplus earth of the necessary excavation to
its place in the distant bank. For ultimate economy,
therefore, balancing lines should not be longer than the
limit of free haul plus the limit of economical overhaul.
As has been seen the limit of economical overhaul depends
on the relation of the prices for excavation and overhaul.
It is true, too, that if some of the necessary excavation that
would be wasted by this rule must itself be -hauled more
than the limit of free haul, the limit of economical overhaul
is increased because the price of excavation is in effect
increased, for the amount of bank equivalent to the waste,
by the cost of the overhaul on the waste. Again, extra
right of way may be required from which to excavate
‘ borrow.” If this is true, the justifiable length for over-
haul is increased up to the point where the cost per yard
overhauled equals the cost within the free haul limit plus
the cost of the purchased material, which is the cost of
the extra property, - divided by the number of yards
obtained from it.

From the contractor’s standpoint that arrangement is
most economical that limits the maximum haul to that
equaling the cost (not price) of excavation. General
specifications made for a contract to be let before the
disposition of the material is determined should contain ‘a
provision that the engineer is to determine the disposition.

Let Fig. 136 be examined for the most advantageous dis-
position of material. It will be assumed that no material
will be hauled across the creek at sta. 150 +. Therefore
a mark may be made on the mass curve at, say, 150+ 40,
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and the computation will begin there. Let a balanc-
ing line be drawn from there to the right clear through to
sta. 197475 (about). It will pass above the two small
hills at stas. 158+ and 168+ and will intersect the next
cut at sta. 176 +25 (about). The excavation and em-
bankment between 150 + 40 and 176 4 25 are equal,
but the maximum haul is more than 2400 feet, while to
the right of 176 + 25 the cut and fill balance and there is
no excess over the economical haul limit. If the balancing
line is dropped about 600 yards till it just touches the top
of the hill at sta. 168+, there will be no excess over eco-
nomical haul on either end and there will be about 600 yards
of borrow at the left end. If the line is dropped still far-
ther till it touches the top of the hill at. 158+, there will
be no overhaul at all to the left of the long cut inter-
section at 175 + 50 (about), and the limit of economical
haul will not be quite reached to the right, while there will
be about 900 yards of borrow at the left end. The whole
of the first cut will be moved to the left, backward, and
most of the second cut. Only a little (about 1050 yards)
of the long cut will be moved to the left. With change of
the balancing line downward, the borrow on the left has
been increased and that on the extreme right diminished
by equal amounts, and the overhaul apparently reduced,
first, to a limit within the maximum economieal haul, and,
second, to none at all on the left of the long cut.

But let the disposition of material and the computation
of overhaul be further considered. Let the balancing line
OPQR be adopted. In general a contractor wishes to open
a cut at both ends and work both ways. Assuming that
he will do so, some of the cut VP will go to the right and
some to the left, although the cut WQ is sufficient to make
the bank PW and all of VP and K’L’ is needed to make the
fills to the left to O. This will necessitate some borrow at
the left end near 0. And if more than 300 yards of VP —
say MP — are put in PW there must be more borrow for
L'V or OK' or both, according to the method of disposing
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of K'L’. It is a reasonable specification that the engineer
may direct the disposition of material, and may require
it to be hauled through or around intermediate work or
over streams if the hauling is reasonably favorable and the
distance not greater than that making the overhaul price
equal the excavation price. Therefore, since there is no
haul beyond the economic limit, it will be assumed that the
excavation between O and P will make the embankment
between the same two points; that W Q will be hauled
into PW and QJ into JR. The overhaul from Q to R is
easily determined by the methods already given, but there
are several possible ways of considering the overhaul to
the left of P. The first suggestion would perhaps be that,-
since MV will make VL’ and L’K’ will make K'I, these
two cuts will be so disposed of and M P will be hauled into
0I, making 300 yards overhauled about 700 feet, or 2100
yard-stations of overhaul.

But this is not what would be done. L'K’ would
probably be hauled into OK’, not quite filling it, and VP
would be hauled into VL’ and K’O. Considering that
the fill to the left of O is to be borrowed, it is reasonable
to require that L’K’ be put into K’O; that MV be put
into VK, filling it up for a road on which MP may be
hauled to K’O and distributed over the length K’O. This
would give 300 yards overhauled an average distance of
about 500 feet, or 1500 yard-stations of overhaul.

Another assumption is also reasonable.

The fill L'V may not be quite completed from VM,
but VP may be drawn partly into VL’ and partly into K’O.
This is what would be most likely to happen, and it is
reasonable to assume that the three hundred yards excess
of OK’ over K'L’ will be taken from no particular part
of VP but from all along VP, making its center of mass
at about sta. 165 4 60 and its center in the bank OK’
at about sta. 153 + 25, or a distance apart of centers
of 1235 feet, apparently giving 300 yards overhauled
275 stations or 705 yard-stations of overhaul. But as a
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matter of fact not all this 300 yards is hauled 1000 feet.
That near to V is only about 700 feet from K’. It would
be useless to attempt to locate the 300 yards more pre-
cisely.

But K’L’ could be hauled so as to complete the bank
near O, leaving the 300 yards excess to be built near K’,
say between sta. 153+ and K’. If this were done,
then the 300 yards from an average point of sta. 165 +4- 60
would be deposited in a space with an average point of
about sta. 154 + 50, or a total distance of 1110 feet or 300
yards overhauled 17y stations, or 330 yard-stations of
overhaul. But this last method is not quite reasonable,
since it would be unnecessarily difficult to haul K’'L’ to
the left and complete the bank from O to 153+ with an
abrupt steep end to climb at 1534-. The best that could
be done would be to make a long incline with its middle
point at about 153 +, which would somewhat increase the
overhaul.

No fixed method of estimating overhaul under such
conditions has been established, and there is a large dif-
ference between 330 yard-stations and 2100 yard-stations
for a 300-yard volume. The excavation may cost $66.00;
2100 yard-stations at 1} cents will increase the cost nearly
50 %, while 330 yard-stations will add only about 7% %,.

From the method of estimating already given for adjoin-
ing cut and fill by which is found the free-haul limit, within
which computed volumes of excavation and embankment
are equal, and overhaul is computed for the volumes lying
outside the free-haul limit, it might be inferred that a simi-
lar procedure should be had here, and that K'L’ and VM
should be assumed to make the fills next them as far as
they would reach, namely, to I and L’ respectively, and
that MP should be assumed to make OI. There is another
consideration that seems to point to this solution. Since
L’K’ will make IK’ and MV will make L'V, MP would
seer to be essentially “ borrow ”’ for OI, particularly as it
naturally belongs in PS. Of course the average haul is the
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same, whatever method is used for estimating the over-
haul, and while the contractor would seek to have that
method used that would make a maximum pay overhaul,
the author thinks that method should be used that corre-
sponds most nearly with what is actually done, and in this
case it would probably be the method by which 705 yard-
stations are estimated. For the earth taken from a distant
cut is essentially borrow, and when borrow is taken from a
borrow pit and placed in an embankment the distance
from the center of volume in the borrow pit, as nearly as
it can be determined, to the center of volume in the bank
is found, the free-haul limit subtracted, and the excess
multiplied by the volume, for the yard-stations of pay
haul. This is what should be done in the case that has
been studied.

This case has been considered to show that when the
work between the two extremities of a single balancing
line includes more than one cut or fill, and possibly some
borrow or waste, each portion of excavation must be con-
sidered by itself, as will appear more fully in the following.
~ Measuring roughly from the diagram, the average haul
between O and U is 0.27 stations less for the balancing
line OR than for IU, and the overhaul yard-stations in JU
are about 5800 more than in QR, the total yardage from
O to U being of course unchanged by any change of bal-
ancing lines. The borrow is simply changed in position.
Therefore what seemed the better balancing line may not
be the better. If 705 yard-stations be added for the
overhaul in OP, then the line OR seems to be better for
the company by 5095 yard-stations, or about $75.00,
than the line IU. Whether it is better for the contractor
depends on the cost of hauling. The average haul on 9090
yards, being 0.27 stations less by OR than IU, makes 2454
yard-stations less of haul. Even if 2100 yard-stations
be allowed in OR, OR seems to be still the better line.

These rough measurements were determined as follows:
Assuming the line IU, OI, 300 yards, was assumed to be
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hauled one station — being borrowed probably near by;
the ordinate at K’, 600 yards, was multiplied by the hori-
zontal line through its mid-point for the yard-stations of
IK'L'; L'VM, MPS, SWT, and TJU were similarly
treated; the results were added and divided by the sum of
the volume ordinates, 9090 yards, for the average haul.
The same method was followed for the line OR, the process
giving approximately the areas of the several figures
cut off by the balancing line, which areas measure the
total haul in yard-stations. This method will in gemeral
be sufficiently exact for first estimates; final estimates
should be made with a knowledge of where a given lot of
material was moved from and to. The volume in the
ditches must not be forgotten.

This whole discussion, which brings out the possible
differences that may arise between contractor and com-
pany, shows clearly that whenever possible the disposition
of material and the average haul of each lot should be
plainly indicated on the profile submitted to contractors for
bids; that there should be no provision for overhaul except
for material borrowed outside the right of way from places
not possible to determine in advance; and that the speci-
fication should provide that the contract price is to include
payment for excavating, hauling, and placing in embank-

" ment, as indicated on the profile.

Examples. 1. Let the student determine the most
economical position for the balancing line and mark on
the profile the division lines be-
tween material to be hauled Mer Way. way
in different directions from the
excavations, indicating it _thus:

2. Let the limit of free haul be only 500 feet and let
the most economical position of the balancing line be found.
This should show some waste on the left end of the long cut.
Let the student determine how much.

B. Let the student study the effect of a slight alteration
in the grade line, for instance, making it + 0.5 from sta.
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152 to 172, or an even greater change. To do this he will
need to recompute the volumes throughout the change
and correct the totals beyond the change, and construct
a new mass curve. By doing this he will see more clearly
what is meant by a study of grade details than he will
through any general explanation. If the free haul is only
500 feet a change of . the grade line on the right may be
advisable to avoid waste.

TABLE OF VOLUMES FOR PLOTTING MASS CURVES.

Taken from a portion of railroad profile, Stations 146 to 200.
+ indicates Excavation; —, Embankment.

Station volumes from Sums of station volumes,
Sta notebook or profile. ordinates to mass curves.
tion. |—-- -
T + -
146 o 0 . 0
7 i 71.2 71.2
8 1 1056 176 .8
9 294 .0 470.8
+80 298 .4 769 .2
150 192.1 961.3
+25 414 .4 1375.7
+85 834.1 2209.8
1 98 .9 2308.7
2 294.0 2602 .7
3 96.8 2699 .5
4 -105.68 2805 .1
5 151 .4 2056 .5
+60 52.9 3009 .4
6 37.0 | 2972 .4
7 312.4 2660 .0
8 244 4 2415.6
+10 3.4 ... 2412 .6
9 f.......... 87.1 2499.3
160 |. AN 142.0 |.. ......... 2641 .3
1 e 272.2 | ... 2913.5
2 R 361.8 |............ 3275.3
+80 R 989 |............ 3374.2
3 20.8 3353 .4
4 57.0 |............ 3296 .4
5 285 | e 3267 .9
6 166.4  |............ 0. ... 3101.5
7 354.6 ..., .ewweebeal..... ... 2746 .9
8 472 .0 2274.1
+50 156 .2 2118.7
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TABLE OF VOLUMES FOR PLOTTING MASS CURVES.

(Continued.)
Station volumes from Sums of station volumes,
Sta- notebook or profile. ordinates to mass curves.
tion.
+ - + -

9 152.5 2271 .2
170 361.8 |............ 2633.0
338.6 |............ 2971.6
............ 272.2 3243 .8
.......... 170 .4 3414.2

30.2  |............ 3444 4
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INDEX

Angle:
flection, location by, 11
For sub-chords, approx., 12, 23
exact, 15
Intersection, how found, 8
Arig;oximatiom:
2ﬂ:;wtion angles for sub-chords,
Degree of ourve, 151
General functions, 19
R and D, relations of, 17
Separation of two lines, 22, 23
Tangent offset, formula for, 22
Areas, in earthwork: See Earthwork

Borrow pits:
Computation of, 183
Branching track, 128

Canting the track on curves, Chap.

ting with 66
Deviating force requiregd, 58
Formulas for, 61, 62 ‘
Maximum cant, 64
Quter rails vs. both rails, 64
Practice, 63
Pressure on the rails, 65
Speed assumed, 63

Chord:
Long offsets from, 16
Offsets, 20, 21
Offsets at any point of, 26, 27
Spiral, 90
Compound curve:
Def

Elements of, 45
Fundamental formulas, 49
Limitations of assumptions, 46, 50
Problems in, 50-57
Sgirals for, 93
% reﬁ-oenter, 54
'o change tangents, 53, 55, 56
When used, 5
Correction on curve: see Earthwork

Crossings:
Curved track, 142
Movable point, 142
Straight and curved track, 141
Straight track, 140
Crossovers:
Between curved ttacks, 137
Defined, 132
Formulas, 123, 124

Cross sections: see Earthwork
Crotch frogs: see Frogs
Curves:
Broken back, 41
Compound: see Compound curve
Correction for, in earthwork: see
Earthwork
Length of, 12
Maximum, for speed, 10
Metric, 7
Point of: see Point of curve
Problems in, see Problems
Reversed, defined, 4
Simple, defined, 4

Deflection angle:

For sub-chords, approx., 12, 23
exact, 15
From point on curve, 14
Location by, 11
Degree of curve, and radius, approx.
relation, 17
fined, 7
Determined from external dis-
tance, 19
Formula for, 7, 8
How determined, 10
Proposed definition, 18
Diagrams: see Earthwork

Eaé'thwork.: b
t the
KL 152 ¢

Areas:
Irregular sections, 174
Level sections, 172
Side-hill sections, 177
Three-level sections, 173
Volumes:
Average end area and .pris-
moidal corrections, 179
Borrow pits, 183
Correction on curves, 185
Embankment toe, 182
General methods, 177
Widening earthwork, 182
Diagrams: Chap, XIII,199
Correction for curvature, 211
Level section volumes, 203
Preliminary estimates, 214
Prismoidal formula, 209
Suggestions for making, 218
Three-level section volumes, 205

ies, Chap,
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Earthwork, diagrams (continued)
na.ngular prisms, 210

zyz
27" 202
y = az, 199
Y = azz,
Haul: Cha XIV 220
Overha
Comgutatlon of, algebraic,

By mass diagr: 233

Graphical method 238
Practlcnl method, "228
Defined:
Dmcusslon of, from mass dia-
gram, 236-242
Economical, 235
Prisgxzoid, center of gravity of,

Mass diagram, Chap. XV, 230
Comgutation of overhaul from,

Construction of, 231
Interpretation of 231
Study of,
For details of grade line, 241
Economical dxsposmon of
materials, 2
Overhaul, 236-241
Staking out, Chnp. X, 154

Cross section, form of 157
Crm—sechomng. methods of,

Grade point sections, 163
Notes, 1
Slopes, 158
Vertical curves, 165
Tables: Chap. XIII, 190
Level section volumes. 190
Prismoidal correction, 198
Three-level section, 195
Triangular prisms, 196
Elevation of outer rail: 58, etec.
C ting with tangent, 66
Deviating force required, 58
Formula derived, 60
Maximum cant, 64
Outer rails vs. both rails, 64
Pressure on rails, 65
Rate of elevation, 69
Rule for, 62
The practice, 63
External secant:
Apgroximate formula, 19

Formula for, 6

Field problems in simple curves,

Chap.
Formulas see subject in question

Crotoh defined, 112
dlstance. 117, 119, 121, 122
number, 117, 119
Distance, formula for, 115
Movsble, 143

INDEX

Frog (contin

ued)
Number. deﬁned 112
formula, 1
Spring rail, 1 11
Stiff, parta named, 111
Grade point sections: see Earth-
wor!

Haul: see Earthwork

Intersection angle, how found, 8
Point, how found, 8

Ladder track:
Branching track, 128
Defined, 126
Formula, 128
Lead, Switch, see Switch leads
Lead tracks: see Ladder tracks
Length of curve: see Curve
Line, railroad, defined, 1
Location:
By chord offsets, 20, 2]
By deflection anzles.
By offsets from long chord 15, 16
By tangent offsets, 20
Of curve from intermediate point,
13
Of sh curves, 15
woods, 15, 25

Formula for, 6
Approximate, 19
Of curyes of equal central angle
and common P. C., 48
Offsets from, 15, 16
Mass Diagram: see Earthwork
Metric curve, defined, 7
Middle ordmate'
Defined,
Formulas for, 6, 19, 23, 24

Notes: see Earthwork

Obstruction on curves, 29
Oﬂsets
pomt of chord, 26, 27
Chordy

From Long Chord 15, 16
Tangent, 20
Approximate formula, 22
Old lines:
Dete;'r&ination of degree of curve

Approxim ? , 151
P.I. accessible, 147
P.1. not accessible, 149
Rerunning, Chap. IX, 147
Straight lines, 1 2
Ordinate:
At any point of chord, 26, 27
For bending rails, 25
Middle, defined, 6
formula, 6, 23, 24
Overhaul: see Earthwork
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Point of curve:
Defined, 11
Inaccessible, 28
fTo change, 30
of tangent:
Defined, 11
Inaccessible, 28
To change, 30
Precision required in general, 32
Preliminary estimate: see Earth-

work
Survey, defined, 2
Prismoidal correction: see Earth-
work
Formula: see Earthwork.
Prismoid, center of gravity of, see
hwork.
Problems:
Compound curves, 50-57
Simple curves, Chap. I1I, 28

Quantities, Computing: see Earth-
work

Radius and degree, approximate
relation of, 17
Formula for, 7
Metric curve, 8
How determined, 10
Rail, elevation of outer, Chnp V, 58
Railroad survey, object of, 1
Rails, pressure on, on curves, 65
Rerunning old lines: see Old lines
Right of wa.y:
elogram covered by U.S.
Surveys
Noltoizovemd by U.S. Surveys,

City property, 106

Curved lines, 104

General Statement, 99

Irregular plat, 102

Practical example, 105

Suggestions, 107
Route:

Chea; , 1

Suitable, 1

Side track:
Connecting turnout curved track,

Straight track, 125
Slmple curves, hap I1, 6
free (ieﬁned
Field problems in, Chap. 1II, 28
Fundamental formulas, 6
ghp switches: see Switch

peed :
Adapted to curves when, 10
Assumed in canting track, 63
Determining length of spirals, 70
Fifty to sixty miles an hour,
maximum curve suitable for, 10
Governing feature in determining
degree of curve, 10
Safe:lfor given elevation of outer
rail,

245

Sp(i)r;l:d d sub
ord and subtangents, 81
Chord, 90
Conditions determining, 69
Coordinates, 76
of P.C., 79
Approximate formula for O,

Approximate formula for Z,

Deflection angle, 77
Deflections at S.C., 84
Any point, 86
External secant, 81
For c&mpound curves, new track,

Existing track, 97
For existing traci{ 95
Fundamental relations, 73
General examples, 89
Luymg out, 82
Length, determined by speed, 70
Object and forms, 67
Tangent distance, 81
Ten-chord, defined, 68
Split switch: see Switch
Staking out: see Earthwork
Station, defined, 3
Numbering, 3
Stub switch: see Switch
Sub-chords:
Deflection for, approximate, 12
exact,

Survey:
R&i{mad location, defined, 2
Object of, 1
Preliminary, defined, 2
Switch:
le, defined, 110
ormula for, 113
Facmg point, 112
Lead, defined, 113
Formulas, 115
Slip, curved track, 145
and straight, 144
Straight track, 143
Split, defined, 109, 110
Formulas for, 115, 117
Stub, defined, 109
Formulas for, 139
Three-throw, described, 111
Formulas for, 119, 122
Switches and fr Chnp VIII, 109
Occurrence an forms, 109

Tables: see Earthwork
Tangent:
Distance, defined, 6
Formula for, 6
Formula for approx., 19
Offsets, approx. formulas, 22
Determination of, 20
Location by, 20
. Point of, defined, 11
Problems, in change of: see
problems
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Three-center compound curves, 54
%oe embankment: see Earthwork

Branching: see Branching track
Canting on curve, Chap. V, 58
Ladder: see Ladder track
Lead: see Ladder track
Y, 43, 44
D aseting sid Side track
onnecting siding: see Side trac]
Defined, 113 X
From curved track, stub switch
inside, 129
outside, 132
Split switch, 123

INDEX

Turnout (continued)
Lead: see Switch lead
Radius of, 116

Vertical curves, 165

Volumes of earthwork: see Earth-
work

Widening earthwork: see Earth-
worl .
oods: .

Location through, 15
Approximate formulas, 28

Y-track problems, 4:", 44
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