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PREFACE.

Writing to Professor Hilbert my desire to base

a text-book on his foundations, he answered :

M Ueber

Ihre Idee aus meinen Grundlagen eine Schul-Geo-

metrie zu machen, bin ich sehr erfreut. Ich glaube

auch, dass dieselben sich sehr gut dazu eignen wer-

den."

Geometry at last made rigorous is also thereby

made more simple.

George Bruce Halsted.
Kenyon College,

Gambier, Ohio.
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TABLE OF SYMBOLS.

We denote

triangle by A ; the vertices by A, B, C;
the angles at A, B, C by a, {3, y;

the opposite sides by a, b, c;

the altitudes from A, B, C by ha , hb, hc ;

the bisectors of a, /?, y by ta , tb, U\

the medians to a, b, c by ma , nib, mc ;

the feet of ha, hb, he by D, E, F\
the centroid by G\
the orthocenter by H ;

the in-center by /
;
the in-radius by r

;

the ex-centers beyond a, b, c by l lt I
t ,

I
3 ; their ex-radii

by r„ r„ r
s ;

the circumcenter by O; the circumradius by R;

angle by ^; angles by ^s;

angle made by the rays BA and BC by ^,4i?C;

angle made by the rays a and b both from the point O by
^ (a, b) or 2£a&;

bisector by bi'; circle by O; circles by Os;
circle with center C and radius r by ©C(r);

congruent by =
;

equal or equivalent by completion by =
;

for example [exempli gratia] by e.v. •

greater than by > ;

less than by <
;
minus by —

;

parallel by ||; parallels by ||s;
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spherical triangle by 'a ;

similar by ~
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RATIONAL GEOMETRY.

CHAPTER I.

ASSOCIATION.

The Geometric Elements.

i. Geometry is the science created to give under

standing and mastery of the external relations of

things; to make easy the explanation and descrip-
tion of such relations and the transmission of this

mastery.
2. Convention. We think three different sorts of

things. The things of the first kind we call points,

and designate them by A, B, C, . . .
;
the things of

the second system we call straights, and designate
them by a, b, c, ...

;
the things of the third set

we call planes, and designate them by a, /?, y, . . . .

3. We think the points, straights, and planes in

certain mutual relations, and we designate these

relations by words such as "lie," "between,"
"
par-

allel,"
"
congruent."

The exact and complete description of these rela-
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tiqns r is accomplished by means of the assumptions

|©f •gqcimetry:

4. The assumptions of geometry separate into five

groups. Each of these groups expresses certain con-

nected fundamental postulates of our intuition.

I. The first group of assumptions: assumptions of

association.

5. The assumptions of this group set up an asso-

ciation between the concepts above mentioned,

points, straights, and planes. They are as follows:

I 1. Two distinct points, A, B, always determine

a straight, a.

Of such points besides
" determine" we also em-

ploy other turns of phrase; for example, A "lies

on" a, A "is a point of" a, a "goes through" A
"and through" B, a "joins" A "and" or "with"

B, etc.

When we say two things determine some other

thing, we simply mean that if the two be given,

then this third is explicitly and uniquely given.

If A lies on a and besides on another straight b

we use also the expression :

' '

the straights
"
a
" and ' '

b "have the point A in common."
I 2. Any two distinct points of a straight determine

this straight; and on every straight there are at least

two points.

That is, if AB determine a and AC determine

a, and B is not C, then also B and C determine a.

I 3. Three points, A, B, C, not costraight, always

determine a plane a.
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We use also the expressions:

A, B, C "lie in" a, A, B, C, "are points of" a,

etc.

I 4. Any three non-costraight points A, B, C of a

plane a determine this plane a.

I 5. // two points A, B of a straight a lie in a

plane a, then every point of a lies in a.

In this case we say: The straight a lies in a.

16. If two planes a, /? have a point A in common,
then they have besides at least another point B in

common.

I 7. In every plane there are at least three non-

costraight points. There are at least four non-co-

straight non-coplanar points.

6. Theorem. Two distinct straights cannot have

two points in common.

Proof. The two points being on the first straight

determine (by I 2) that particular straight. If by
hypothesis they are also on a second straight,

therefore (by I 2) they determine this second

straight. Therefore the first straight is identical

with the second.

7. Theorem. Two straights have one or no point

in common.

Proof. By 6 they cannot have two.

8. Theorem. Two planes have no point or a

straight in common.

Proof. If they have one point in common, then

(by I 6) they have a second point in common, and
therefore (by I 5) each has in it the straight which

(by I 1) is determined by these two points.

9. Corollary to 8. A point common to two planes



4 RATIONAL GEOMETRY.

lies in a straight common to the two, which may be

called their straight of intersection or their meet.

10. Theorem. A plane and a straight not lying in

it have no point or one point in common.

Proof. If they had two points in common the

straight would be (by I 5) situated completely in

the plane.

11. Theorem. Through a straight and a point not

on it there is always one and only one plane.

Proof. On the straight there are (by I 2) two

points. These two with the point not on the

straight determine (by I 3) a plane, in which (by
I 5) they and the given straight lie. Any plane
on this point and straight would be on the three

points already used, hence (by I 4) identical with

the plane determined.

12. Theorem. Through two different straights with

a common point there is always one and only one

plane.

Proof. Each straight has on it (by I 2) one

point besides the common point, and (by 6) these

two points are not the same point, and (by I 2)

the three points are not costraight.

These three points determine (by I 3) a plane in

which (by I 5) each of the two straights lies. Any
plane on these straights would be on the three

points already used, hence (by I 4) identical with

the plane determined.



CHAPTER II.

BETWEENNESS.

II. The second group of assumptions: assumptions of

betweenness.

13. The assumptions of this group make precise

the idea "between," and make possible on the basis

of this idea the arrangement of points.

14. Convention. The points of a straight stand

in certain relations to one another, to describe

which especially the word "between" serves us.

II 1. If A, B, C are points of a straight, and B lies

between A and C, then B also lies between C and A,
and is neither C nor A.

4 § ?
Fig.

II 2. If A and C are two points of a straight, then

there is always at least one point B, which lies between

Fig.

A and C, and at least one point D, such that C lies

between A and D.

5
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II 3. Of any three points of a straight there is

always one and only one which lies between the other

two.

15. Definition. Two points A and B, upon a

straight a, we call a segment or sect, and designate
it with AB or BA. The points between A and B
are said to be points of the sect AB or also situated

within the sect AB. All remaining points of the

straight a are said to be situated without the sect

AB. The points A, B are called end-points of the

sect AB.
II 4. (Pasch's assumption.) Let A, B, C be three

points not costraight and a a straight in the plane
ABC going through none of the points A, B, C; if

Fig. 3.

then the straight a goes through a point within the

sect AB, it must always go either through a point of

the sect BC or through a point of the sect AC.

Deductions from the assumptions of association and

betweenness.

16. Theorem. Between any two points of a straight

there are always indefinitely many points.

[Here taken for granted, and its proof removed to

Appendix I.]

17. Theorem. If any finite number of points of
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a straight are given, then they can always be ar-

ranged in a succession A, B, C, D, E, . . .
, K, such

that B lies between A on the one hand and C, D,

E, . . .
,
AT on the other, further C between A, B

on the one hand and D, E
t

. . .
,
K on the other,

then D between A, B, C on the one hand and

E
}

. . .
,
K on the other, and so on.

Besides this distribution there is only one other,

the reversed arrangement, which is of the same
character.

[This theorem is here taken for granted, and its

proof removed to Appendix I.]

21. Theorem. If A, B, C be not costraight, any
straight in the plane ABC which has a point within

the sect AB and a point within AC cannot have a

point within BC.

Proof. Suppose F, G, H three such costraight

points.

One, say G, on AB, must (by II 3) lie between the

others. Then the straight AB must (by II 4) have

a point within the sect EC or the sect CH, which

(by 7 and II 3) is impossible.

Fig. 4.

22. Theorem. Every straight a, which lies in a

plane a, separates the other points of this plane a

into two regions, of the following character: every
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point A of the one region determines with every point

B of the other region a sect AB, within which lies a

point of the straight a; on the contrary, any two

Fig. 5.

points A, A f

of one and the same region always deter-

mine a sect AA' which contains no point of a.

Proof. Let A be a point of a which does not lie

on a. Then reckon to one region all points P of

the property, that between A and P, therefore

Fig. 6.

within AP, lies no point of a; to the other region

all points Q such that within AQ lies a point of a.

Now is to be shown :

(1) On PP' lies no point of a.

(2) On QQ' lies no point of a.

(3) On PQ lies always a point of a.
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(i) From hypothesis neither within AP nor AP'
lies a point of a. This would contradict II 4, if

within PP' were a point of a.

(2) By hypothesis there lies within AQ a point
of a, likewise within AG'

\
therefore (by 21) none

within QQ'.

(3) By hypothesis AP contains no point of a;

AQ on the other hand contains one such. There-

fore (by II 4) a meets PQ.
23. Convention. If A, A'

} }
B are four costraight

points such that is between A and B but not

between A and ^4'; then we say: the points A, A f

Fig. 7.

lie w //t£ straight a on one and the same side of the

point 0, and the points A, B lie in the straight a on

different sides of the point 0.

24. Definition. The assemblage, aggregate, or to-

tality of all points of the straight a situated on one

and the same side of O is called a ray starting from 0.

Consequently every point of a straight is the ori-

gin of two rays.

25. Convention. Using the notation of 22, we

say: the points P, P' lie in the plane a on one and

the same side of the straight a and the points P, Q lie

in the plane a on different sides of the straight a.

26. Theorem. Every two intersecting straights a,

b separate the points of their plane a not on either

into four regions such that if the end-points of a sect

are both in one of these regions, the sect contains no

point of either straight.
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Proof. Let be their common point and A
another point on b, and B another point on a.

Then two points both on the A side of a and the

B side of b make a sect which (by 22) can contain

no point either of a or of b. So also if both were

Fig. 8.

on the A side of a and the non-5 side of b
;
or both

on the non-A side of a and the B side of b
;
or both

on the non-.4 side of a and the non-B side of b.

27. Definition. A system of sects AB, BC,

CD, . . .
,
KL is called a sect-train, which joins the

points A and L with one another. This sect-train

will also be designated for brevity by ABCD . . . KL.
The points within the sects AB, BC, CD, . . .

, KL,

together with the points A, B, C, D, . . .
, K, L

are all together called the points of the sect-train.

In particular if the point L is identical with the

point A, then the sect-train is called a polygon and

is designated as polygon ABCD . . . K.

The sects AB, BC, CD, . . .
,
KA are called the

sides of the polygon. The points A, B, C, D, . . .
,

K are called the vertices of the polygon.

A sect not a side but whose end-points are ver-

tices is called a diagonal of the polygon.
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Polygons with 3, 4, 5, . . .
,
n vertices are called

respectively triangles, quadrilaterals, pentagons, . . .
,

n-gons.

28. If the vertices of a polygon are all distinct

from one another and no vertex of the polygon
falls within a side and finally no two sides of the

polygon have a point within in common, then the

polygon is called simple.

By quadrilateral is meant simple quadrilateral.

A plane polygon is one all of whose sides are co-

planar.

A convex polygon is one no points of which a e

on different sides of the straight of any of its sides

29. Theorem. Every simple polygon, whose ver-

tices all lie in a plane a, separates the points of this

plane a, which do not pertain to the sect-train of

the polygon, into two regions, an inner and an outer,

of the following character: if A is a point of the

inner {interior point) and B a point of the outer <

{exterior point), then every sect-train which joins

A with B has at least one point in common with the ^3

polygon; on the contrary if A, A' are two points bf

of the inner and B, B' two points of the outer, then ^
there are always sect-trains, which join A with A'^
and B with B' and have no point in common with

the polygon.
There are straights in a which lie wholly outside

the polygon; on the contrary no such straights

which lie wholly within the polygon.

Proof. Any simple polygon by joining its ver-

tices gives a number of triangles. For a triangle

ABC there is (by 26) a region with points on the
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A side of BC, the B side of CA, and the C side of

AB, i.e., an inner region. Moreover, the straight

determined by a point on b and a point on c both in

non-A lies wholly without the region ABC, since

it cannot again meet b or c and so cannot (by II 4)

Fig. 9.

have a point in common with BC. Moreover, if

any straight has a point within ABC, it has a. point

on a side. For the straight determined by the

point within and any point on a side has (by II 4)

a point on another side, thus making another tri-

angle, in common with one side of which the given

straight has a point, and therefore (by II 4) with

another side, that is with a side of the original tri-

angle.

30. Corollary to 29. A straight through a ver-

tex and a point within a triangle has a point within

the 'opposite' side.
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31. Theorem. Every plane a separates all points

not on it into two regions of the following character :

every point A of the one region determines with

every point B of the other region a sect AB, within

which lies a point of a\ on the contrary any two

points A and A' of one and the same region always
determine a sect AA', which contains no point of a.

Proof. Let A be a point which does not lie on

a. Then reckon to the one region all points P of

the property, that between A and P, therefore with-

in AP, lies no point of a; to the other region all

points Q such that within AQ lies a point of a.

Now is to be shown:

(1) On PP' lies no point of a.

(2) On QQ' lies no point of a.

(3) On PQ lies always a point of a.

(1) From hypothesis neither within AP nor APf

lies a point of a. Suppose now a point of a lay on

'PP' . Then the plane a and the plane APP' would

have in common this point and consequently (by

9) a straight a. This straight goes through none

of the points A, P, P'; it cuts PP'
;

it must there-

fore (by II 4) cut either AP or AP', which is con-

trary to hypothesis.

(2) By hypothesis there lies within AQ & point
of a, likewise within AQ'. The intersection straight

of the planes a and AQQ' therefore meets two sides

of the triangle AQQ' ; consequently (by 21) it can-

not also meet the other side QQ'.

(3) AP contains by hypothesis no point of a;

AQ on the other hand contains one such. The inter-

section straight of the planes a and APQ therefore
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meets the side AQ and does not meet the side AP
in triangle APQ. Therefore (by II 4) it meets the

side PQ.

32. Convention. Using the notation of 31, we

say: the points A, A' lie on one and the same side

of the plane a, and the points A, B lie on different

sides of the plane a.

Ex. i. A straight cannot traverse more than 4 of the

7 regions of the plane determined by the straights of the

sides of a triangle.

Ex. 2. Four coplanar straights crossing two and two

determine 6 points. Choosing 4 as vertices we can get
two convex quadrilaterals, one of which has its sides on

the straights.

Ex. 3. Each vertex of an n-gon determines with th :

others (n
—

1) straights. So together they determine

n(n — 1)/2.

Ex. 4. How many diagonals in a polygon of n sides.

Ex. 5. What polygon has as many diagonals as sides?
-

r



CHAPTER III.

CONGRUENCE.

III. The third group of assumptions: assumptions of

congruence.

33. The assumptions of this group make precise

the idea of congruence.

34. Convention. Sects stand in certain rela-

tions to one another, for whose description the

word congruent especially serves us.

Ill 1. If A, B are two points on a straight a, and

A' a point on the same or another straight a'
,
then

we can -find on the straight a! on a given ray from
A' always one and only one point B' such that the

sect AB is congruent to the sect A'B'.

We write this in symbols AB = A'B'.

Every sect is congruent to itself, i.e.
, alwaysAB = AB.

The sect AB is always congruent to the sect BA, i.e.,

AB = BA.
We also say more briefly, that every sect can be

taken on a given side of a given point on a given

straight in one and only one way.
Ill 2. If a sect AB is congruent as well to the sect

A'B' as also to the sect A"B", then is also A'B' con-

is
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gruent to the sect A"B", i.e., if AB = A'B' and

AB^A"B", then is also A ,B , ^-A ,,B".

Ill 3. On the straight a let AB and BC be two sects

without common points, and furthermore A'B' and

B'C two sects on the same or another straight, like-

wise without common points; if then AB = A'B' and

BC = B'C, so always also AC =A'C

Fig. 10.

35. Definition. Let a be any plane and h, k any
two distinct rays in a going out from a point 0, and

pertaining to different straights. These two rays

h, k we call an angle, and des-

ignate it by^ (h, k) or 4 (k, h)-

The rays h and k, together with

the point 0, separate the other

points of the plane a into two

regions of the following character :

if A is a point of the one region

and B of the other region, then
Fig. 11. .........

every sect-tramwhich joinsA with

B, goes either through or has with h or k at least

one point in common; on the contrary if A, A' are

points of the same region, then there is always a

sect-train which joins A with A' and neither goes

through nor through a point of the rays h, k.

One of these two regions is distinguished from

the other because each sect which joins any two

points of this distinguished region always lies wholly
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in it
;

this distinguished region is called the interior

of the angle (h, k) in contradistinction from the

other region, which is called the exterior of the

angle (h, k). The interior of ^ (h, k) is wholly on

the same side of the straight h as is the ray k, and

altogether on the same side of the straight k as is

the ray h.

The rays h, k are called sides of the angle, and

the point is called the vertex of the angle.

Ill 4. Given any angle (h, k) in a plane a and a

straight a' in a plane a!
,
also a determined side of a'

on a' . Designate by h' a ray of the straight a' start-

ing from the point 0'; then there is in the plane a f

one and only one ray k' such that the angle (h, k)

is congruent to the angle (h', k') y
and likewise all in-

terior points of the angle {h\ k') lie on the given side

of a'.

k

In symbols:

Every angle is congruent to itself, i.e., always

The angle (h, k) is always congruent to the angle

(AU), i.e., $<&*)*(*.*).
We say also briefly, that in a given plane every

angle can be set off towards a given side against a
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given ray, but in a uniquely determined way.
There is one and only one such angle congruent to

a given angle. We say an angle so taken is uniquely
determined.

Ill 5. // an angle (h, k) is congruent as well to

the angle (h\ k') as also to the angle (h" } k"), then is

also the angle (h' t k') congruent to the angle (h", k") ;

i.e., if * (h, k)=if (h' t V) and * (h, k)^4 (h", k"),

then always 4 (h\ k') = %. (h" t k").

36. Convention. Let ABC be any assigned tri-

angle; we designate the two rays going out from

A through B and C respectively by h and k. Then
the angle (h, k) is called the angle of the triangle

ABC included by the sides AB and AC or opposite
the side BC. It contains in its interior all the inner

points of the triangle ABC and is designated by
$BAC or 4 A.

Ill 6. If for two triangles ABC and A'B'O we
have the congruences

AB^A'B', AC^A'C, 4 BAC m 4 B'A'C,

then always are fulfilled the congruences

4 ABC m 4 A'B'C and *ACB s 4 A'C'B'.

Deductions from the assumptions of congruence.

37. Convention. Suppose the sect AB congruent
to the sect A'B': Since, by assumption III t, also

the sect AB is congruent to AB, so follows from

III 2 that A'B' is congruent to AB; we say: the

two sects AB and A'B' are congruent to one another.

38. Convention. Suppose a£ (h, k) m -4. (h' t k').
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Since (by III 4) 4 (h, k)=4 (h, k), therefore

(by III 5) * (h/ k') = 7f (h, k). We say then: the

two angles 4 Qh k) and ^ (#, &') are congruent to

one another.

39. Definition. Two angles having the same ver-

tex and one side in common, while the sides not

common form a straight, are called adjacent angles.

40. Definition. Two angles with a common ver-

tex and whose sides form two straights are called

vertical angles.

41. Definition. Any angle which is congruent to

one of its adjacent angles is called a right angle.

Two straights which make a right angle are said

to be perpendicular to one another.

42. Convention. Two triangles ABC and A'B'C
are called congruent to one another, if all the con-

gruences

AB = A'B\ AC**A'Ct
BC= B'C,

lA=lA' t IB^IB', IC^tC
are fulfilled.

43. (First congruence theorem for triangles.)

Triangles are congruent if they have two sides and

the included angle congruent.

In the triangles ABC and A'B'C take AB = A'B\
AC = A'C\ 4A=^-A'.
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To prove aABC = aA'B'C.
Proof. By assumption III 6 the congruences

ifB= ~^B' and ^C= ~4-C are fulfilled, and so we
have only to show that the sides BC and B'C are

congruent to one another.

Suppose now, on the contrary, that BC were not

congruent to B'C\ and take on ray B'C (by III i)

the point D'
t
such that BC = B'U. Then the two

triangles ABC and A'B'T)' will have, since ^-B =

^-B', two sides and the included angle respectively

congruent; by assumption III 6, consequently, are

in particular the two angles BAC and B'A'D* con-

gruent to one another. By assumption III 5, con-

sequently, must therefore also the two angles B'A'C
!

and B'A'T)' be congruent to one another. This is

impossible, since, by assumption III 4, against a

given ray toward a given side in a given plane

there is only one angle congruent to a given angle.

So the theorem is completely established.

44. (Second congruence theorem for triangles.)

Two triangles are congruent if a side and the two

adjoining angles are respectively congruent.

Fig. 14.

In the triangles ABC and A'B'C take AC= A'C'
%

^A^^A' % i-C^i-C.
To prove aABC^ aA'B'C .

.
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Proof. Suppose now, on the contrary, AB is not
= A'B', and take on ray A'B' the point D'

t
such

that AB^A'U. By III 6, *ACB = ^A'CD', but

by hypothesis ^ACB^ ^A'CB'. Therefore (by
III 5) 1A'C'B'= I A'CD'. But this is impossible,

since (by III 4) in a given plane against a given ray
toward a given side there is only one angle con-

gruent to a given angle.

Consequently our supposition, AB not =A 'B'
,
is

false, and so AB = A'B'.

Now follows (by 43) that aABC= aA'B'C.

45. Theorem. // two angles are congruent, so are

also their adjacent angles.

Take ^ABC= TfA'B'C.
To prove ifCBD^ ^CB'D'.
Proof. Choose the points A', C, D' on the sides

from B f

so that A'B' = AB, CB' = CB, DB = D'B'.

Jn the two triangles ABC and A'B'C then the

sides AB and CB are congruent respectively to the

sides A'B1 and CB', and since moreover the angles

included by these sides are congruent by hypothesis,
so follows (by 43) the congruence of those triangles,

that is, we have the congruences

AC^A'C and i-BAC^iB'A'C .
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Now since (by III 3) sect AD = A'D\ so follows

(again by 43) the congruence of the triangles CAD
and C'A'D', that is, we have the congruences CD =
CD' and $ADC& ifA'PC', and hence follows,

through consideration of the triangles BCD and

B'C'D' (by III 6), the congruence of the angles CBD
and C'B'U.

46. Theorem. Vertical angles are congruent.

Proof. By III 4, ^ABC^^CBA. Therefore,

by 45, their adjacent angles are congruent, ^.CBD =
4ABF.

47. Theorem. Through a point A, not on a straight

a, there is one and only one perpendicular to a.

Proof. Take any two points P, Q on a. Take

from P against the side PQ of ifAPQ, and on the

non-A side of a, *fBPQ= iAPQ. Take PB = PA,
Since A and B lie on different sides of a, there must

be a point O of sect AB on a. Then AOB is perpen-
dicular to a.

For (by 43) aBPO= aAPO, so ^BOP^^fAOP.
But these are adjacent. Therefore, by definition 41,

AOP is a right angle.

Moreover this perpendicular is unique. For sup-

pose any. straight AO' perpendicular to a at 0', and
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take on this straight on the non-^4 side of a the sect

0'B' = 0'A. Then from hypothesis i{PO'B' =

IPO*A and so (by 43) aPO'B'= aPO'A. There-

Fig. 17.

fore 4 B'PO' =^APO' and B'P ^AP. Therefore

(by III 5 and III 2), ^B'PO'= * BPO and B'P= BP.
Hence the points B and B' are not different. There-

fore no second perpendicular from A to a can exist.

48. Theorem. Let the angle (h, k) in the plane
a be congruent to the angle (/*', k') in the plane «',

and further let / be a ray of the plane a, which goes
out from the vertex of the angle (h, k) and lies in

the interior of this angle ;
then there is always a ray

/' in the plane a', which goes out from the vertex of

the angle {h\ k') and lies in the interior of this angle,

such that i. (h, l)=^f (h', V) and * (k, l)=^f (&', /')•

Proof. Designate the vertex of if (h, k) by 0, and
the vertex of 4 W* k') by 0', and then determine on

the sides h, k, h\ k f

,
the points A, B, A\ B', so that

we have the congruences

OA^O'A' and 0B = 0'B'.
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Because of the congruence of the triangles OAB
and O'A'B' (by 43)

AB = A'B', ^OAB^^fO'A'B', iOBA= ^fO'B'A'.

The straight AB (by 30) cuts /, say in C\ then

we determine on the sect &!B' the point C, such

that A'C'sAC, then is O'C the ray sought, V .

In fact, from AC = A'C and AB = A'B' we may,
by means of III 3, deduce the congruence BC= B'C.
Therefore (by III 6) %. AOC= * A'O'C' and ^BOC
^^B'O'C.

49. Theorem. Let h, k, I on the one hand and

h', k', V on the other each be three rays going out

from a point and lying in a plane ;
if then we have

the congruences ^ (h, I)
= ^ (h', /') and ^ (k, I) m

4 (k', /')> then also is always
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Proof. The rays are supposed such that either

no point is interior to ^-{h, I) and ?£(k, /), or to

"4-{h\ I') and 4 (&', /'), or else that if one of these

angles be within a second, then the angle congruent
to the first is within the fourth.

I. In the first case, if / be supposed within 4 (h, k),

take against h' toward k'
t 4 (/*', k") a 4 (h, k). By

Fig. 19.

48, take in angle (h' t k") ray I" such that 4 (h' t Z")

= l(h,l) and *(/",£")=*(/,&). But by hy-

pothesis i(h\ V)mt(h,f). Therefore, by III 5,

t(. (/*', V) = 4 (fc',/"), and so, by III 4, ray I" is iden-

tical with ray /'. Then 4 (k", /") m 4 (£", V) =

4 (&, = * (&', l')- So 4 (k", V) s 4 (k' } /'), and, by
III 4, ray k" is identical with ray k''.

But 4 (h\ k") 3 4 (h, k) . Therefore 4 (h, k) =
4(h',k').

If, however, / be supposed not within ^(/j, &),

then it will lie in 4 i)i"', k") vertical to 4 (h, k). For

it cannot lie in 4-{h,k") adjacent to ^ (/*, &), since

then 4 (I, k) would contain 4 (h* 0> contradicting the

hypothesis in this case of no point interior to these

two given angles. For like reason it cannot lie in
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i£(h", k) adjacent to £(/*, k), since then 4 (h, 1)

would contain %. (/, fe). Thus the ray m costraight

with I is within i£(h, k), and m' costraight with V

is within 4 Q1', k').

Fig. 20.

Then (by 45) ^ (&, w) = ^ (/*', m') and ^ (&, w) =

^-(k',w!) [^'s adjacent to congruent %. 's are con-

gruent], and so this sub- case is reduced to the pre-

ceding.

II. The remaining case, where one angle £(h, I)

is within another, s£ (k, I), follows at once from 48.

51. Theorem. All right angles are congruent.

Let angle BAD be congruent to its adjacent angle

CAD, and likewise let the angle B'A'D r be con-

gruent to its adjacent angle C'A'D'\ then are

4. BAD, 4 CAD, 4-B'A'D', ^CA'D' all right

angles.

To prove 4BAD= fB'A'U.
Proof. Suppose, contrary to our proposition, the

right angle B'A'D' were not congruent to the right

angle BAD, and then set off 4-B
rA'D t

against ray
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AB so that the resulting side AD" falls either in the

interior of the angle BAD or of the angle CAD ; sup-

pose we have the first of these cases.

Because $B''A'D''= 4 BAD"\ therefore,

by 45, * C'A'D' = i CAD" ;
and since by

hypothesis ^B'A'D' = 4 C'A'D', therefore,

by III 5, * BAD" = * CAD". Since further

4 BAD is congruent to ^CVIZ}, so there is (by 48)

within the angle CAD a ray AD'" such that

Df
°

,D*

C

Fig. si,

$BAD"=$CAD'" and also ^fDAD"^ 4 DAD'".
But we had ^BAD"= 4 CAD", and therefore we

must (by III 5) also have t{.CAD"= if CAD'".

This is impossible, since (by III 4) every angle can

be set off against a given ray toward a given side in

a given plane only in one way.
Herewith is the proof for the congruence of right

angles completed.

52. Corollary to 51. At a point A of a straight a

there is not more than one perpendicular to a.

53. Definition. When any two angles are con-

gruent to two adjacent angles, each is said to be the

supplement of the other.

54. Definition. If any angle can be set off against

one of the rays of a right angle so that its second
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side lies within the right angle, it is called an acute

angle.

55. Definition. Any angle neither right nor acute

is called an obtuse angle.

56. Definition. A triangle with two sides con-

gruent is called an isosceles triangle.

57. Theorem. The angles opposite the congruent
sides of an isosceles triangle are congruent.

Let ABC be an isosceles triangle,

having AB^BC.
To prove ^ A ==

if.C.

Proof. Since in the triangles

ABC and CBA we have the con-

gruences AB = CB, BC= BA,
^ABC=^f CBA ,

therefore (by
III 6) $CAB=ifACB.

58. (Third congruence theorem for triangles.)
Two triangles are congruent if the three sides of the

one are congruent, respectively, to the three sides of the

other.

Fig.

Fig. 23.

In the triangles ABC and A'B'C take ABsA'B',
ACmA'C, BCmB'C.
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To prove a ABC = a A'B'C.

Proof. In the plane of ABC toward the side of

the straight AC not containing B against the ray
AC take the angle CAB"= CA'B'. Take the

sect AB" = A'B'. Then (by 43) &AB"C = *A'B'C.
Therefore B"C = BC, and A BCB" is isosceles

;
there-

fore (by 5 7) 7f CBB" = t(.
CB"B. So also is a BAB"

isosceles and ,\ * ABB" = if AB"B. Therefore

(by 49) the angle ABC=^AB"C. But ^AB"C
=

4.A'B'C. :. (by 43) aABC^ a A'B'C.

59. If A, B, C be any three points not costraight,

then (by the method used in 58) we can construct

a point B" such that AB" =AB and CB" = CB.

Therefore a point D such that no other point

whatsoever, say D", gives AD" =AD and CD" =

CD, must be costraight with AC.
The following have been given as definitions:

If A and B are two distinct points, the straight

AB is the aggregate of points P for none of which

is there any point Q such that QA aPA and QB =
PB.

If A, B, C are distinct points not costraight,

the plane ABC is the aggregate of points P for

none of which is there any point Q such that

QA=PA t QB^PB, and QC^PC.
60. Convention. Any finite number of points is

called a figure; if all points of the figure lie in 3

plane, it is called a plane figure.

61. Convention. Two figures are called congruent

if their points can be so mated that the sects and

angles in this way coupled are all congruent.

Congruent figures have the following properties:
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If three points be costraight in any one figure their

mated points are also, in every congruent figure,

costraight. The distribution of points in corre-

sponding planes in relation to corresponding straights

is in congruent figures the same
;
the like holds for

the order of succession of corresponding points in

corresponding straights.

62. The most general theorem of congruence for'

the plane and in general is expressed as follows :

If (A, B, C, . . .) and (A' t B', C, . . .) are con-

gruent plane figures and P denotes a point in the

plane of the first, then we can always find in the

plane of the second figure a point P' such that

(A, B,C, . . .
, P) and (A', B\ C, . . .

, P') are again

congruent figures.

If each of the figures contains at least three non-

costraight points, then is the construction of P' only

possible in one way.
If (A } B, C, . . .) and (A', B', C ,

. . .) are con-

gruent figures and P any point whatsoever, then we
can always find a point P'

t
such that the figures (A,

B, C, . . . , P) and (A', B\ C, . . .
,
P f

) are congruent.

If the figure {A, B, C, . . .) contains at least four

non-coplanar points, then the construction of P' is

only possible in one way.
This theorem contains the weighty result, that

all facts of congruence are exclusively conse-

quences (in association with the assumption-groups
I and II) of the six assumptions of congruence

already above set forth.

This theorem expresses the existence of a cer-

tain reversible unique transformation of the aggre-
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gate of all points into itself with which we are

familiar under the name of motion or displacement.

We have. here founded the idea of motion upon
the congruence assumptions. Thereby we have

based the idea of motion on the congruence idea.

The inverse way, to try to prove the congruence

assumptions and theorems with help of the motion

idea, is false and fallacious, since the intuition of

rigid motion involves, contains, and uses the con-

gruence idea.

63. Exercises.

Ex. 6. Show a number of cases where two straights

determine a point. Show cases where two straights do

not determine a point. Are any of these latter pairs

coplanar?
Ex. 7. Show cases where three coplanar straights deter-

mine 3 points; 2 points; 1 point. Are there cases where

they determine no point?
Ex. 8. How many straights are, in general, deter-

mined by 3 points? by 4 coplanar points? What special

cases occur?

Ex. 9. Any part of a triangle together with the two

adjoining parts determine the 3 other parts. Explain.
Ex. 10. Try to state the first two congruence theorems

for triangles so that either can be obtained from the other

by simply interchanging the words side and angle.

Ex. 11. Principle of Duality in the Plane.

In theorems of configuration and determination we

may interchange point and straight, sect and angle.

Try to write down a theorem of which the dual is true;

is false.

Ex. 12. If two angles of a triangle are congruent it is

isosceles.

Ex. 13. If the sides of a A are ^, so are the a£s.

Dual?
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Ex. 14. In an isosceles A, sects to the sides from the

ends of the base making with it m
sfs are =

.

Ex. 15. If any two sects from the ends of a side of a

A to the other sides making = ^s are =, the A is isosceles.

64. Definition. Two parallels are coplanar

straights with no common point.

65. No assumption about parallels is necessary
for the establishment of the facts of congruence or

motion.

66. Theorem. Through a point A without a

straight a there is always one parallel to a.

Proof. Take the ray from the given point A
through any point B of the straight a. Let C be

any other point of the straight a. Then take in the

plane ABC an angle congruent to ^fABC against

AB at the point A toward that side not containing

(7. The straight so obtained through A does not

^L
B C D

Fig. 24.

meet straight a. If we supposed it to cut a in the

point D, and that, say, B lay between C and D,

then we could take on a a point D'
',
such that B lay

between D and D', and moreover AD = BD' . Be-

cause of the congruence of the triangles ABD and

BAD' (by 43), therefore 4ABD = ^BAU \
and

since the angles ABD' and ABD are adjacent

angles, so must then, having regard to 45, also the

angles BAD and BAD' be adjacent angles. But

because of 6, this is not the case.
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67. Definition. A straight cutting across other

straights is called a transversal.

68. Definition. If, in a plane, two straights are

cut in two distinct points A, B by a transversal, at

each of these points four angles are made. Of

these eight, four, having each the sect AB on a side

[e.g., 3, 4, 1', 2'], are called interior angles. The
other four are called exterior angles. Pairs of angles,

one at each point, which lie

on the same side of the

transversal, the one exterior

and the other interior, are

called corresponding angles

[e.g., 1 and 1'].

Two non-adjacent angles

on opposite sides of the
IG ' 25 *

transversal, and both interior or both exterior, are

called alternate angles [e.g., 3 and 1'].

Two angles on the same side of the transversal,

and both interior or both exterior, are called con-

jugate angles [e.g., 4 and i'].

69. Theorem. Two coplanar straights are parallel

if a transversal makes congruent alternate angles.

[Proved in 66.]

70. Theorem. If two straights cut by a trans-

versal have corresponding angles congruent they are

parallel.

Proof. The angle vertical to one is alternate to

the other.

Ex. 16. If two corresponding or two alternate angles
are congruent, or if two interior or two exterior angles
on the same side of the transversal are supplemental,
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then every angle is congruent to its corresponding and
to its alternate angle, and is supplemental to the angle
on the same side of the transversal which is interior or

exterior according as the first is interior or exterior.

Ex. 17. If two interior or two exterior angles on the

same side of the transversal are supplemental, the straights

are parallel.

Ex. 18. Two straights perpendicular to the same

straight are parallel.

Ex. 19. Construct a right angle.

Ex. 20. On the ray from the vertex of a triangle co-

straight with a side take a sect congruent to that side.

The two new end-points determine a straight parallel to the

triangle's third side.

Ex. 21. On one side of any if with vertex A take any
two sects AB, AC and on the other side take congruent
to these AB' , AC . Prove that BC and B'C intersect, say
at D. Prove BC'^B'C, aBCD^aB'CD, if

BAD =

ifB'AD.
Ex. 22. From two given points on the same side of a

given st' find st's crossing on that given st\ and making
congruent if

's with it.

Ex. 23. Construct a triangle, given the base, an angle
at the base, and the sum of the other two sides [A from

a, b, a-\-c].

Ex. 24. If the pairs of sides of a quadrilateral not con-

secutive are congruent, they are
||.

Ex. 25. On a given sect as base construct an isosceles a.

Ex. 26. If on the sides AB, BC, CA of an equilateral

a, AD =BE=CF, then ADEF is equilateral, as is A

made by AE, BF, CD.



CHAPTER IV.

PARALLELS.

IV. Assumption of Parallels (Euclid's Postulate).

IV. Through a given point there is not more than

one parallel to a given straight.

71. The introduction of this assumption greatly

simplifies the foundation and facilitates the con-

struction of geometry.

72. Theorem. Two straights parallel to a third arc

parallel.

Proof. Were 1 and 2 not parallel, then there

would be through their intersection point two par-
allels to 3, which is in contradiction to IV.

73. Theorem. // a transversal cuts two parallels,

the alternate angles are congruent.

Proof. Were say ^BAD not = ^ABC, then we
could through A (by III 4) take a straight making
^.BAU^i-ABC [D' and /

D on same side of AB], and _d a/ «'

so we would have (by 69)

through A two parallels to

a, in contradiction to IV.

74. Corollary to 73. A
perpendicular to one of two Fig. 26.

parallels is perpendicular to the other also.

35
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\
75. Theorem. If a transversal cuts two parallels,

the corresponding angles are congruent.
Proof. The angle vertical to one is alternate to

the other.

Ex. 27. A straight meeting one of two parallels meets
the other also.

Ex. 28. A straight cutting two parallels makes con-

jugate angles supplemental.
Ex. 29. If alternate or corresponding angles are un-

equal or if conjugate angles t
are not supplemental, then

the straights meet. On which side of the transversal?

76. Theorem. A perpendicular to one of two

parallels is parallel to a perpendicular to the other.

Proof. Either of the two given parallels makes

(by 74) right angles with both perpendiculars, which

therefore are parallel by 69.

77. Corollary to 76. Two straights respectively

perpendicular to two intersecting straights cannot

be parallel.

Proof. For if they were parallel, then (by 76)

the intersecting straights would also be parallel.

78. Convention. When two angles are set off

from the vertex of a third against its sides so that no

point is interior to two, if the two sides not common
are costraight, the three angles are said together to

form two right angles.

79. The angles of a triangle together form two right

angles.
Proof. Take alternate

tCBF=*C and $ABD
m gA ;

then (by 69) can

neither BF norBD cutAC.

By the parallel postulate

IV, then is FBD a straight.
Fig.
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80. Theorem. If two angles of one triangle are

congruent to two of another, then the third angles

are congruent.
Proof. Given tA=^A f and 4-B^4.B'. Take

CP parallel (||) to AB and C'P'
||
to A'B'. Then

ta^i-A and ^.p=^B y ^.a'^^A' and ^/?' =
*B'. .'.(by 49) *BCD^*B'C'D'. /.(by 45)

the adjacent angles Z ACB = $ A'C'B'.

81. Theorem. Two triangles are congruent if they

have a side, an adjoining and the opposite angle re-

spectively congruent.

Proof. By 80 and 44.

Ex. 30. Every triangle has at least two acute angles.

Ex. 31. If the rays of one angle are parallel or per-

pendicular to chose of another, the angles are congruent
or supplemental.

Ex. 32. In a right-angled triangle [a triangle one of

whose angles is a right angle] the two acute angles are

complemental (calling two angles complements which

together form a right angle).

82. Theorem. In any sect AB there is always one

and only one point C such that AC = BC.

Proof. Take any angle BAD at A against AB,
and the angle congruent to it at B against BA and
on the opposite side of a in the plane BAD] and
take any sect AD on the free ray from A, and one
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BF congruent to it on the free ray from B. The
sect DF must cut a, say in C, since D and F are on

opposite sides of a. Moreover, C is between A and

B. Otherwise one of them, say A ,
would be between

B and C. But then DA would have a point A on

Fig. 29.

BC, a side of triangle FBC, and so (by II 4) must

meet another side. But this is impossible, since it

meets FC produced at D and is parallel to BF.

Since thus ^A=^B, and i-ACD^^BCp [ver-

tical], therefore (by 81) aACD=aBCF.
Therefore AC = BC.

If we suppose a second such point C, then on

ray DC take CF' = DC. Therefore (by 43)

i CBFf =^DAC=4ABF, and BF' =AD = BF.
Therefore Ff

is F and C is C.

83. Convention. The point C of the sect AB such

that i4C=BC may be called the bisection-point of

A J5, and to fo*s£c/ A5 shall mean to take this point C.

Ex. ^t,. Parallels through the end-points of a sect

intercept congruent sects on any straight through its

bisection-point.

Ex. 34. In a right-angled triangle the bisection-point

of the hypothenuse (the side opposite the r't^!) makes

equal sects with the three vertices.

Hint. Take one acute 2^ in the r't ^.
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84. Theorem. Within any •£ (h, k) there is always
one and only one ray, /, such that •£ (h, /) = ^ (k, I).

Proof. From the vertex take OA = OA'. By
82 take C, the bisection-point

of AA'. Then aAOC=a
A'OC [As with 3 sides =

are=]. .\ ^AOC=^fA'OC.
If we suppose a second such

ray OC, then a ,40(7= a

A'OC [as with 2 sides
FlG

and the included a£ =are = ].

i.ACmA'C :. (by 82) CisC.
85. Convention. The ray /of ?{ (h, k) such that

^ (/t, /) = ^ (/, &) may be called the bisection ray or

bisector of ^ (/t, &), and to bisect a£ (/*, &) shall mean
to take this ray /.

Ex. 35. An angle may be separated into 2, 4, 8, 1 6, ... v

2M congruent angles.

Symmetry.

86. Definition. Two points are said to be sym-
metrical with regard to a straight, when it bisects

at right angles their sect. The straight is

called their axis of symmetry. Two points
have always one, and only one, symmetry
axis.

A point has, with regard to a given axis

of symmetry, always one, and only one, sym-
Fig. 31. metrical point, namely, the one which ends

the sect from the given point perpendicular to the

axis and bisected by the axis.
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Z,

Fig. S3.

87. Definition. Two figures

have an axis of symmetry when,
with regard to this straight,

every point of each has its sym-
metrical point on the other.

One figure has an
Fig. 32. axis of symmetry

when, with regard to this straight, every

point of the figure has its symmetrical

point on the figure.

One figure is called symmetrical when
it has an axis of symmetry.

Any figure has, with regard to any given straight

as axis, always one, and only one, symmetrical figure.

88. Theorem. An angle is symmetrical with re-

gard to its bisector and the end-points

of congruent sects from the vertex are

symmetrical.

Proof. Their sect is bisected at right

angles by the angle-bisector.

89. Definition. A sym-
metrical quadrilateral

with a diagonal as axis is called a

deltoid.

90. Definition.

A sect whose end-

points are the bi-

section-points of opposite sides

of a quadrilateral is called

a median. So is the sect from a

vertex of a triangle to the bisec-

tion-point of the opposite side.

Fig. 34.

Fig. 35.
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91. Definition. A symmetrical quadrilateral with

a median as axis is called a symira.
Ex. 36. In a r't A if to set off one acute £, a, in the

other, /?, bisects, so is it with /?'s sides.

Ex. 37. The st' through the bisection-point of the base

of a I- A
,
and the opposite vertex is ± to the base and

bisects
if

.

Ex. 38. The r't bi' of the base of a + A bisects
if

at the

vertex.

Ex. 39. The _L from vertex bisects base and ^ in a

•I- A.

Ex. 40. The bisector of ^ at vertex of a -I- A is r't

bi' of base.

Ex. 41. If a r't bi' of a side contains a vertex, the A
is -I-.

Ex. 42. The bisector of an exterior ^ at vertex of + a
is

||
to base, and inversely.

Ex. 43. The end of sect from intersection of congruent
sides of a + A costraight and to one determines with

end of other a ± to base.

Ex. 44. To erect a i. at the end-point of a sect without

producing the sect.

Ex. 45. A ||
to one side of an ^ makes with its bisector

and other side a -I- A.

Ex. 46. The bisectors of the ?f
s of a-l- A are =.

Ex. 47. Every symmetrical quadrilateral not a del-

toid is a symtra.
Ex. 48. The intersection point of two symmetrical

straights is on the axis.

Ex. 49. The bisector of an angle is symmetrical to the

bisector of the symmetrical angle.

Ex. 50. A figure made up of a straight and a point is

symmetrical.
Ex. 51. In any deltoid [1] One diagonal (the axis)

is the perpendicular bisector of the other. [2] One

diagonal (the axis) bisects the angles at its two vertices.

[3] Sides which meet on one diagonal (the axis) are con-
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gruent; so each side equals one of its adjacent sides. [4]

One diagonal (not the axis) joins the vertices of congruent

angles and makes congruent angles with the congruent
sides. [5] The triangles made by one diagonal (the axis)

are congruent. [6] One diagonal (not the axis) makes
two isosceles triangles.

Ex. 52. Any quadrilateral which has one of the six

preceding pairs of properties (Ex. 51) is a deltoid.

Ex. 53. A quadrilateral with a diagonal which bisects

the angle made by two sides, and is less than each of the

other two sides, and these sides congruent, is a deltoid

with this diagonal as axis.

Ex. 54. A quadrilateral with a side meeting a con-

gruent side in a greater diagonal which is opposite con-

gruent angles is a deltoid with that diagonal as axis.

Ex. 55. In any symtra [1] Two opposite sides are

parallel, and have a common perpendicular bisector.

[2] The other two sides are congruent and make con-

gruent angles with the parallel sides.

[3] Each angle is congruent to one and supplemental
to the other of the two not opposite it.

[4] The diagonals are congruent and their parts adja-
cent to the same parallel are congruent.

[5] One median bisects the angle between the two

diagonals, and also the angle between the non-parallel
sides (produced).

Ex. 56. Any quadrilateral which has one of the pre-

ceding five pairs of properties (Ex. 55) is a symtra.

92. Definition. A trapezoid is a quadrilateral

with two sides parallel.

93. Definition. A parallelogram is a quadrilateral

with each side parallel to another (its opposite).

94. Definition. A parallelogram with one angle

right is called a rectangle. A parallelogram with

two consecutive sides congruent is called a rhombus.

A rectangle which is a rhombus is called a square.
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95. Theorem. The opposite sides and angles of a

Fig. 37.

parallelogram are congruent, and its diagonals bisect

each other.

Proof. aABC= aADC [side and 2 adjoining

*ss]. :.BC= AD. .'. (as in 82) AF= FC and

BF = FD.
96. Theorem. // three parallels make congruent

sects on one transversal, they do on every transversal.

Given a||6||c, also AB =
BC.

To prove FG= GH.
Proof. Take FL\\GM\\

AB. Then FL^AB^BC
=GM [95, opposite sides of

a||gm are = ]. .*. aFLG=
aGMH [side and 2 adjoining i-s = ]. .'. FG = GH.

97. Corollary to 96. A straight through the bi-

section-point of one side of a triangle and parallel to

a second side bisects the third side. [In figure let

F coincide with A.]

98. Inverse of 97. The straight through the bi-

section-points of any two sides of a triangle is

parallel to the third side. [For, by 97, it is iden-

tical with the
||
to the third side through either

bisection- point.]

Fig. 38.
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99. Theorem. The sect whose end-points are the

bisection-points of two sides of

a triangle is congruent to each

sect made in bisecting the third

side.

Proof. By 97 GH \\
BC bi-

sects AC. Since (by 98)

Fig. 39. FG\\CH, :. (by 95) FG^CH.
100. Theorem. If two sides of a quadrilateral ore

congruent and parallel it is a parallelogram.

Given AB = and \\CD.

Proof, aABC a a ADC.

Fig. 40.

/. ^fACB= if CAD. :. CB\\AD.

Ex. 57. Every straight through the intersection of

its diagonals cuts any parallelogram into congruent

trapezoids.

Ex. 58. A quadrilateral with each side equal to its

opposite is a parallelogram.
Ex. 59. A quadrilateral with a pair of opposite sides

equal, and each greater than a diagonal, making equal
alternate angles with the other sides, is a parallelogram.

Ex. 60. A quadrilateral with a side equal to its oppo-
site, and less than a diagonal opposite equal angles, is a

parallelogram .

Ex. 61. A quadrilateral with each angle equal to its

opposite is a parallelogram.
Ex. 62. A quadrilateral whose diagonals bisect each

other is a parallelogram.
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10 1. Theorem. In any sect AB there are always

two, and only two, points, C, D, such that AC=
CD^DB.

Fig. 41.

Proof. Take on any ray from A, any sect AF,
and a sect FG = AF, and a sect GH = FG. Take

FC\\GD\\HB. Then, by 96, AC^CD^DB.
Suppose two other such points C\ D''. Then, by

98, C'F
||
D'G. Now HB'

\\
GD' (by 96) makes D'B'

s-D'C. .'. from our hypothesis and III 1, B' is

identical with B. .'. since GD\\HB (by IV) D' is

identical with D. .'. since FCJGT? (by IV) C is

identical with C.

102. The two points, C, D, of the sect AB such

that AG =CD =DB may be called the trisection-

points oi AB.

103. Theorem. 77t£ three medians of a triangle are

copunctal in that trisection-point of each remote from
its vertex.

Proof. Any median AG must meet any other

CF
}
since A and G are on dif-

ferent sides of the straight CF,
and so the cross of st' AG
with st' CF is on sect AG, and

similarly it is on sect CF. If

P, Q, are bisection-points of

OC and OA, then (by 98 and Fig. 42.

99) PQ ||
and =GF. .'. by 100 PQFG is a

|| gm and

(by 95) PF and QG bisect each other.
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104. Definition. The cointersection-point of its

medians is called the triangle's centroid.

105. Definition. A perpendicular from a vertex to

the straight of the opposite side is called an altitude

of the triangle. This opposite side is then called

the base. The perpendicular from a vertex of a

parallelogram to the straight of a side not through
this vertex is called the altitude of the parallelogram
with reference to this side as base.

Ex. 63. The bisectors of the four angles which two

intersecting straights make with each other form two

straights perpendicular to each other.

Ex. 64. If four coinitial rays make the first angle con-

gruent to the third, and the second congruent to the

fourth, they form two straights.

Ex. 65. How many congruent sects from a given point
to a given straight?

Ex. 66. Does the bisector of an angle of a triangle
bisect the opposite side?

Ex. 67. The bisectors of vertical angles are costraight.

Ex. 68. If two isosceles triangles be on the same base

the straight determined by their vertices bisects the

base at right angles.

Ex. 69. Suppose a A to be 3 bars freely jointed at the

vertices. Is it rigid? Are the ^s fixed and the joints

of no avail? Of what theorem is this a consequence?
How is it with a jointed quadrilateral? Why?

Ex. 70. Joining the bisection-points of the sides of aA
cuts it into 4 = As.

Ex. 71. Joining the bisection-points of the consecutive

sides of a quadrilateral makes a
|| g'm.

Ex. 72. The medians of a quadrilateral and the sect

joining the bisection-points of its diagonals are all three

bisected by the same point.

Ex. 73. If the bisection-points of two opposite sides
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of a
|| g'm are joined to the vertices the diagonals are tri-

sected.

Ex. 74. The J_s from any point in the base of an f A
to the sides are together an altitude.

Ex. 75. The diagonals of a rectangle are =, of a rhom-
bus are ±.

Ex. 76. If 2
||
s are cut by a transversal, the bisectors

of the interior ^ s make a rectangle.
Ex. 77. The angle-bisectors of a rectangle make a square.
Ex. 78. If the ^ s adjoining one of the

||
sides of a trape-

zoid are , so are the others.

Ex. 79. The, bisectors of the interior ^s of a trapezoid
make a quad' with 2 r't ^s.

Ex. 80. The bisection-point of one sect between ||s

bisects any through it.

Ex. 81. The = altitudes in -I- A make with the base

if
s ss to those made in bisecting the other ^ .

Ex. 82. Through a given point within an ^ draw a

sect terminated by the sides and bisected by the point.
Ex. 83. Sects from the vertex to the trisection-points

of the base of + A are =.

Ex. 84. If the ^ s made by producing a side of a A are

s, so are the other sides.

Ex. 85. If a quad' has 2 pairs of congruent consecutive

sides, the other ^s are =.

Ex. 86. Two As" are = if two sides and one's median are

respectively = .

Ex. 87. Two + As are = if one ^ and altitude are to

the corresponding.
Ex. 88. Two as are = if a side, its altitude and an

adjoining ^ are respectively = .

Ex. 89. If 2 altitudes are = the A is + .

Ex. 90. Two As are = if two sides and one's altitude are

s to the corresponding.
Ex. 91. Two as are = if a side, its altitude and median

are respectively = .

Ex. 92. Two as are = if a side and the other 2 altitudes

are respectively .



48 RATIONAL GEOMETRY.

Ex. 93. Two as are m if a side, an adjoining ^ and
its bisector are respectively = .

Ex. 94. Two equilateral as are if an altitude is =.

Ex. 95. The bisector is within the
if

made by altitude

and median.

Ex. 96. In a right A one bisector also bisects
if

be-

tween its altitude and median.

Ex. 97. Two sects from the vertices of a A to the oppo-
site sides cannot bisect each other.

Ex. 98. The ±s from 2 vertices of a A upon the median

from the third are =.

Ex. 99. Two
|| g'ms having an

if
and the including

sides = are =
.

Ex. 100. The ± from the circumcenter to a side is half

the sect from the opposite vertex to the orthocenter.

Ex. 101. The centroid is the trisection point of the sect

from orthocenter to circumcenter remote from the ortho-

center



CHAPTER V.

THE CIRCLE.

106. Definition. If C is any point in a plane a,

then the aggregate of all points A in a, for which

the sects CA are congruent to one another, is called

a circle. [qC(CA).]
C is called the center of the circle, and CA the

radius.

107. Theorem. Any ray from the center of a

circle and in its plane a cuts the circle in one, and

only one, point.

108. Theorem. Any straight through its center

and in its plane a cuts the circle in two, and only

two, points, and these are on opposite sides of its

center.

Proof. On each of the two rays determined in

this straight by the center there is (by III 1) one,

and only one, sect congruent to the radius of the

circle.

109. Definition. A sect whose end-points are on

the circle is called a chord.

no. Definition. Any chord through the center

is called a diameter.

in. Theorem. Every diameter is bisected by the

center of the circle.

49
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Fig. 43-

ii2. Theorem. No circle can have more than one

center.

Proof. If it had two, the diameter through them

would have two bisection-points, which (by 82) is

impossible.

113. Theorem. The straight through the bisection-

point of a chord, and the center of the circle, is perpen-

dicular to the chord.

Proof. A ACO = A BCO, [
a s with

3 sides = are =]; .*. if ACO =
if BCO. But they are adjacent;
.'. by definition COL to AB.

114. Corollary to 113. The cir-

cle is symmetrical with regard

to any one of its diameters as

axis.

115. Corollary to 1 1 3 . If with

the end-points of a sect each of

two points gives congruent sects

the two determine its perpen-
dicular bisector.

116. Corollary to 1 1 5 . If two

circles have two points in com-

mon their center-straight is the

perpendicular bisector of their .common chord.

117. Theorem. The perpendicular bisecting any
chord contains the center. The perpendicular from
the center to a chord bisects it.

Proof. By 113 the three properties pertain to

one straight. But any two suffice to determine that

straight.

118. Corollary to 117. Every point which taken
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with two points gives congruent sects is on the per-

pendicular bisector of their sect.

119. Theorem. Every point on the perpendicular
bisector of a sect taken with its end-points gives con-

gruent sects.

120. Theorem. A straight cannot have more than

two points in common with a circle.

Proof. If it had a third, then, "since (by 117) the

perpendicular bisecting any chord contains the cen-

ter, there would be two perpendiculars from the

center to the same straight, which (by 47) is im-

possible.

121. Theorem. Chords which mutually bisect are

diameters.

Proof. The perpendicular bisector of each con-

tains the center.

122. Theorem. Circles with three points in com-

mon are identical.

Proof. The center is on the perpendicular bi-

sectors of the chords.

123. Theorem. Any three points not costraight de-

termine a circle.

Proof. If A
,
B

y
C be not costraight, bisect (by 82)

AB at D and BC at F by
perpendiculars. [Take (by
III 4) angles = to ^C in

84.] These perpendiculars

(by 77) meet, say at 0.

Therefore (by 119) A0 =
BO = CO. Therefore A, B, Fig. 45-

C are on the circle with center and radius AO.

By 122 the three are on no other circle.
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124. Corollary to 123 and 120. [Points on the

same circle are called concyclic.'] Every three points
are costraight or concyclic. No three points are

costraight and concyclic.

125. Definition. The circle through the vertices

of a triangle is called its circumcircle, O0(R), and

the center of the circumcircle is called the circum-

center of the triangle ;
its radius, R, the circum-radius.

126. Corollary to 123. The three perpendicular
bisectors of the sides of a triangle are copunctal in

its circumcenter.

127. Theorem. The three altitudes of a triangle are

copunctal.

Given the a ABC. To prove that the straights

through A, B, C perpendicular to the straights a, b, c

respectively, are copunctal.

Fig. 46.

Proof By 66, through A, B, C take B'C, A'C,

A'B'\BC, AC, AB respectively. /. aAB'C =
aABC= aABC [as with a side and 2 adjoining

^s= are =]. .' AB'^AC, and AD is the ±bi'

of B'C [_L to 1 st of 2
||
s is 1 to 2nd].

Similarly BEA.W of A'C'\ and CFJ_bi' of A'B'.

:. AD, BE, CF axe copunctal by 126.
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128. Definition. The point of cointersection of the

three altitudes is called the orthocenter of the triangle.

129. Theorem. If any ray, /, be taken -within a

given angle, 4 (K &)> the bisectors m, n of the two

angles so made form an angle congruent to each of

the angles made in bisecting the given angle.

Proof. On the other side of h from k take

*(*,#)»*(*,*). Then since * (h, n) = $ (n, h)

and *(n f fc)
s *(*,#), .\ (by 49) *(M)^ *(»,#).

Fig. 47.

But since * (n, /) * (fc, «), ,\ * (n, /)
= ^ (£', A).

But also af (/, tn)
=

£(h, m). .*. (by 49) ^(w, m) =

£(£', w), .*. w bisects ^(w, £'). .*. (by 48) £(w, w)

= £(&, /*) where 6 bisects £(/*, fe).

130. Theorem. The bisectors of adjacent angles

make a right angle.
frtt

Fig. 48.

Proof. Extend one of the bisectors, as /, through
the vertex 0. Then *(/', *)«*(/, h') [vertical
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^s are ]. .*. (by III 5) *(l',h)=t(l,k). But

by hypothesis, £(h, m) = £(k, m). .'.(by 49)

£(/, m) = 4-V , m). .'.by definition £(l, m) is right.

Ex. 102. If a straight satisfy any two of the following
conditions it also satisfies the others:

1. Passing through the center.

2. Perpendicular to the chord.

3. Bisecting the chord.

4. Bisecting the angle at the center.

Ex. 103. Every axis of symmetry for a circle contains

the center.

Ex. 104. Where are the bisection- points of a set of

parallel chords?

Ex. 105. Where are the bisection-points of a set of

equal chords?

Ex. 106. If from any point three sects drawn to a circle

are congruent, that point is the center.

131. Theorem. If any ray / be taken without a

given angle, 4- (K k) ,
and of the two angles so

formed, one, £(k, I), be within the other, if(k, /),

then the angle formed by their bisectors, £(b, n) t

is congruent to each of the angles as 4- (k> m) made
in bisecting the given angle.

o

Fig. 49.

Proof. By 129, since k is within £(/, h),

.*. tim, n) =4-(b, I). But by hypothesis £(n,k)=-

*(/, »), .*. (by 49) £(k, m) = Z(n, b).
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132. Definition. An angle whose vertex is on a

circle of which its sides contain chords is called an
inscribed angle, and said to be upon the chord be-

tween its sides.

133. Theorem. Inscribed angles upon the same
chord and the same side of it are congruent.

Proof. 1 st. If the chord BC be a diameter the

straight through the vertex A of

any inscribed angle and the cen-

ter makes two isosceles tri-

angles. .'. bisecting £BOF we
b|

get ZDOFmtBAO. In same

way ZHOF^ZCAO. :. (by

49) *BAC=*DOH 9 which (by

130) is right.

2d. If the vertex A be on the same side of the

straight BC as the center 0,

then sect OA cannot cut BC,
and (by III 1) the center

is between A and the other

point A' of the circle on the

straight AO. If now ray OA
be costraight with a side of

ifBOC, then aAOC being isos-

Fig. 50.

Fig. 51.

celes, the bisector OF of ^ BOC
makes $F0C = ZBAC.
Again if ray OA' is within

4 BOC, then the bisectors OF
and OH make

lA'OF^ifOAB and

4A'0n=i.0AC. ;. (by 49)

%-BAC =^F0H t which Fig. 52.
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(by 129) is congruent to each angle made in bisect

ing BOC.

If, however, ray OA' is without ?{BOC, then the

bisector OD of 4- A'OB makes

^AVD=^OAB, and the bi-

sector OE of ^-A'OC makes

tA'OEs i-OAC. .'. (by 49)

^BAC = 4D0E, which (by 131)

is congruent to each angle made
Fig. 53. in bisecting BOC.

3d. If the vertex A and the center be on

opposite sides of the straight BC. Let A f be the

other point of the circle on the straight AO. Then
the six angles of the two triangles ABC, A'BC to-

gether form four right angles. But by case 1st,

the two angles at C form a right angle, likewise

the two at B. .'. ^BAC is the

supplement of ~4-BA'C.

134. Corollary to 133. The
inscribed angle upon a diameter

is right.

135. Definition. A polygon
whose sides are congruent and Fig. 54?

whose angles are congruent is called regular.

136. Definition. A polygon whose vertices are

concyclic is called cyclic.

137. Corollary to 133. In a cyclic quadrilateral

the opposite angles are supplemental.

138. Theorem. If a straight have one point in

common with a circle and be not perpendicular to the

radius to that point, it has also a second point in com-

mon with the circle.
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Let the straight a have the point P in com-

mon with the OC[CP] and

be not _L to CP.

From C drop CM _L to a.

From M on a set off MP'
mMP.

.-.CP'mCP. .'.P'ison

OC[CP]. Fig. 55.

139. Definition. A straight which has two

points in common with a circle is called a

secant.

140. Theorem. A straight perpendicular to a diam-

eter at an end-point has only this end-point in common
with the circle.

Proof. Any chord is (by 117) bisected by the

perpendicular from the center.

141. Definition. A straight which has only one

point in common with a circle is called a tangent to

the circle, and the point is called the point of

contact.

142. Theorem. If BC be perpendicular to AB
f

iC
and D any point on the

straight AB other than B,

and on ray CD we take sect

CF= CB, then F is within

sect CD.

Proof. Otherwise since

ACBF is isosceles, two an-

gles of a triangle would each be right or each obtuse,

which (by 79) is impossible.

143. Theorem. If the rays of one angle are within

another the angles are not congruent.

Fig. 56.
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Fig. 57.

144. Theorem.

Proof. For suppose £ (h, m) m % (k, I) and

k, I within 4 (h, m). On
the other side of m from

the points of h there is a

ray n such that ~4- (m, n)~
7f(ht k). ;. (by 49) *(*,»)
=

^.(h, m). .'. from our

hypothesis ^ (k, n) = ^ (k, l) 7

which (by III 4) is impos-
sible.

IfP be a point within the triangle

ABC,then angle APC is not congruent to angle ABC.
Proof. The ray BP

must (by 30} have on it a

point D within the sect

AC. :.PD is within

ifAPC. From P take

PF
||
BC. It makes

4FPD = ^CBD. From
P take P^H^E. It makes

.-. (by 49) ^-FPG = i-CBA.
If now we supposed 4 CBA = ^ CPA we should

have ^FPG = ifCPA, which (by 143) is impossible.

145. Theorem. // two triangles have a side in com-

mon and the angles opposite it

congruent, and with vertices on

the same side of it, the four ver-

tices are coneydie.

Proof. If the circle through

A, B, C did not contain D, then

(by 138) it would have a second

Fig. 59. point in common with the

D A

Fig. 58.

4GPD=^ABD.
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straight AD or CD, or else we would have OCljCD
and OALAD.
But in this last case the whole circle except

points A and C would be within ^ADC. For
the center O would be

within ifADC, being then

on the bisector of if ADC
since, aADC being isos-

celes, aAOD=aCOD [3

sides = ]. Hence the point
B would be within a ADC,
which (by 144) is impossi-
ble. But it is just as im-

possible that AD or CD
(besides A or C) should have a point
the circle other than D. For then We

Fig. 60.

onU
would

impos-have ^.ADC^^AD'C, which (by 79) is

sible.

146. Theorem. // two opposite angles of a quad-
rilateral are supplemental it is cyclic.

Proof. Given the if CDA is

the supplement of ^ B. On the

circle determined byA , B, C take

a point D' on the same side of

AC as D. Then ^D'^^D,
being each the supplement of

ifB. .'. (by 145) D is concylic

with ACD\ that is, with

ABC.
147. Corollary to 146. A quadrilateral is cyclic

if an angle is congruent to the angle adjacent to

its opposite.

Fig. 61.
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Ex. 107. Defining a tanchord angle as one between a

tangent to a circle and a chord from the point of contact,

prove it congruent to an inscribed angle on this chord.

Ex. 108. An angle made by two chords is how related

to the angles at the center on chords joining the end-

points of the given chords?
• Ex. 109. The vertices of all right-angled triangles on

the same hypothenuse are coneyclic.

Ex. no. Tangents to a circle from the same external

point are congruent, and make congruent angles with

the straight through that point and the center.

Ex. in. Two congruent coinitial chords are symmetric
with respect to the coinitial diameter.

Ex. 112. If triangles on the same base and on the same
side of it have the angles opposite it equal, the bisectors

of these angles are copunctal.
Ex. 113. The end-points of two congruent chords of a

circle are the vertices of a symmetrical trapezoid.

Ex. 114. The chord which joins the points of contact

of parallel tangents to a circle is a diameter.

Ex. 115. A parallelogram inscribed in a circle must have

diameters for diagonals.

Ex. 116. Of the vertices of a triangle and its ortho-

center, each is the orthocenter of the other three.

Ex. 117. At every point on the circle can be taken one,

and only one, tangent, namely, the perpendicular to the

radius at the point.

Ex. 118. The perpendicular to a tangent from the center

of the circle cuts it in the point of contact.

Ex. 119. The perpendicular to a tangent at the point
of contact contains the center.

Ex. 120. The radius to the point of contact is perpen-
dicular to the tangent.

Ex. 121. An inscribed ||g'm is a rectangle.

Ex. 122. The bisector of any ^ of an inscribed quad'
intersects the bisector of the opposite exterior

if
on the 0.

Ex. 123. The O with one of the m sides of a -I- A as

diameter bisects the base.
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Ex. 124. The radius is = to the side of a regular in-

scribed hexagon.
Ex. 125. If the opposite sides of an inscribed quad' be

produced to meet, the bisectors of the ^s so formed
are ±.

Ex. 126. The circles on 2 sides of a A as diameters in-

tersect on the third side (in the foot of its altitude).

Ex. 127. The altitudes of a A are the ^ bisectors of its

pedal A (the feet of the altitudes).

Ex. 128. AB a diameter; AC any chord; CD tangent;

BD±CD, meets AC on QB(BA).
Ex. 129. Find a point from which the three rays to three

given points make = ^ s.

Ex. 130. The circumOs of 3 As made by 3 points on
the sides of a A, 2 with their vertex, are copunctal.

V. The Archimedes Assumption.*

V. Let A x be any point on a straight between any

given points A and B\ take then the points A 2 ,
A 3>

A 4 ,
. . .

,
such that A

x
lies between A and A 2> further-

more A 2 between A x and A 3 ,
further A 3 between A 2

and A 4 ,
and so on, and also such that the sects AA lf

AiA 2 ,
A 2A 31 A 3A 4 ,

. . .
,
are congruent; then in the

series of points A 2t A 3 ,
A

At . . .
,
there is always such

a point A n ,
that B lies between A and A n .

148. This postulate makes possible the introduc-

tion of the continuity idea into geometry. We have

not used it, and will not, since the whole of the ordi-

nary school-geometry can be constructed with only

Assumptions I-IV.

* Archimedis Opera, rec. Heiberg, vol. I, 1880, p. 11.



CHAPTER VI.

PROBLEMS OF CONSTRUCTION.

Existence theorems on the basis of assumptions I-V,

and the visual representation of such theorems by

graphic constructions.

Graphic solutions of the geometric problems by

means of ruler and sect-carrier.

149. Convention. What are called problems of

construction have a double import. Theoretically

they are really theorems declaring that the exist-

ence of certain points, sects, straights, angles, circles,

etc., follows logically by rigorous deduction from the

existences postulated in our assumptions. Thus the

possibility of solving such problems by elementary

geometry is a matter absolutely essential in the

logical sequence of our theorems.

So, for example, we have shown (in 101) that a

sect has always trisection points, and this may be

expressed by saying we have solved the problem to

trisect a sect. Now it happens that a solution of

the problem to trisect any angle is impossible with

only our assumptions. Thus any reference to re-

sults following from the trisection of the angle would

be equivalent to the introduction of additional

assumptions.
62
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But problems of construction, on the other hand,

may have a reference to practical operations,

usually for drawing on a plane a picture which
shall serve as an approximate graphic repre-
sentation of the data and results of the existential

theorem.

Our Assumptions I postulate the existence of a

straight as the result of the existence of two points.

This may be taken as authorizing the graphic desig-

nation of given points and the graphic operation
to join two designated points by a straight, and as

guaranteeing that this operation can always be

effected. Confining ourselves to plane geometry, on

the basis of the same Assumptions I, we authorize

the graphic operation to find the intersection-point

of two coplanar non-parallel straights, and guaran-
tee that this may always be accomplished.
To practically perform these graphic operations,

that is for the actual drawing of pictures which shall

represent straights with their intersections, we grant
the use of a physical instrument whose edge is by
hypothesis straight, namely, the straight-edge or

ruler.

Thus Assumptions I give us as assumed con-

structions, or as solved, the fundamental problem
of plane geometry:

Problem 1. (a) To designate a given point of the

plane; (b) to draw the straight determined by two points;

to -find the intersection of two non-parallel straights.

150. Our Assumptions III postulate the existence

on any given straight from any given point of it to-

ward a given side, of a sect congruent to a given sect.
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This may be taken as authorizing and guarantee-

ing the graphic operation involved in what may
be called

Problem 2. To set off a given sect on a given

straight from a given point toward a given side.

A physical instrument for actual performance of

this construction in drawing might be called a sect-

carrier. Our straight-edge will also serve as sect-

carrier if we presume that the given sect may be

marked off on it, and it then made to coincide

with the given straight with one of the marked

points in coincidence with the given point of the

straight.

Notice that in these graphic interpretations we

freely use the terminology of motion, while the real

existential theorems themselves are independent of

motion, underlie motion, and explain motion. We
assume that the motion of our physical instruments

is rigid.

151. We now announce the important theorem

that in our geometry all graphic problems can be

solved, all graphic constructions effected, merely by

using problems 1 and 2.

Theorem. Those geometric construction problems

{existential theorems) solvable by employing exclu-

sively Assumptions I-V are necessarily graphically

solvable by means of ruler and sect-carrier.

The demonstration will consist in solving with

problems 1 and 2 the three following problems :

152. Problem 3. Through a given point to draw a

parallel to a given straight.

Given the straight AB and the point P.



PROBLEMS OF CONSTRUCTION. 65

Construction. Join P with any point A of AB by
Prob. 1. On the straight

PA beyond A take (by
Prob. 2) AC^AP. JoinC
with any other point B of

AB. On the straight CB
beyond B take BQ=BC.
PQ is the parallel sought.

Proof. By 98.

153. Problem 4. To draw a perpendicular to a

given straight.

Construction. Let A be any point of the given

straight. Set off from A
on this straight toward

both sides two congruent

sects, AB and AC, and

then determine on any
two other straights

through A the points E
and D, on the same side

of AB, and such that

AB = AD=AE. Since ^ABD and 4 ACE are

angles at the bases of isosceles triangles, .*. they are

acute, .'. the straights BD and CE meet in F, and

also the straights BE and CD in H. Then FH is

the perpendicular sought.
Proof. -4-BDC and ^BEC, as inscribed angles

on the diameter BC, are (by 134) right. Since (by

127) the altitudes of &BCF are copunctal, .\ FH is

1 to BC.

154. Problem 5. To set off a given angle against

a given straight, or to construct a straight cutting a

given straight under a given angle.

Fig. 63.
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Given /? the angle to be set off >
and A its

vertex.

Construction. We draw, by Prob. 3, the straight

/ through A
||

to the given

straight against which the

given angle fi
is to be

set off. By Prob. 4 draw a

straight ± to / and a straight

J_ to one side of /?. Through

any point B of the other side

of
ft draw, by Prob. 3, ||s to

these J_s. Call their feet C and D. Then (by

Probs. 4 and 3) draw from A a st' 1 to CD. Call

its foot E.

Then ^fCAE= t
9. So EA will cut the given

straight ||
to I under the given ^/?.

Proof. Since ^-ACB and ifADB are right, so

(by 146) the four points A, B, C, D are concyclic.

Consequently ^fACD= ifABD (by 133) being in-

scribed angles on the same^ chord AD and on the

same side of it. Therefore their complements

4CAE= 4 BAD.
155. This completely demonstrates our theorem,

151, since the existential theorems in Assumptions
II guarantee the solution of problems requiring no

new graphic operations, such as to find a point within

and a point without a given sect, and certain other

problems of arrangement; while Assumption V
would simply guarantee the finding of a point with-

out a given sect by repeating a certain specific ap-

plication of our Prob. 2.

156. In our geometry, though constantly using
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graphic figures, we must never rely or depend upon
them for any part of our proof. We must always
take care that the operations undertaken on a figure

also retain a purely logical validity.

157. This cannot be sufficiently stressed. In the

right use of figures lies a chief difficulty of our in-

vestigation.

The graphic figure is only an approximate sug-

gestive representation of the data. We cannot rely

upon what we suppose to be our immediate per-

ception of the relations in even the most accurate

obtainable figure.

In rigorous demonstration, the figure can be only

a symbol of the conceptual content covered by its

underlying assumptions.

The logical coherence should not be dependent

upon anything supposed to be gotten merely from

perception of the figure. No statement or step can

rest simply on what appears to be so in a figure.

Every statement or step must be based upon an

assumption, a definition, a convention, or a preced-

ing theorem.

Yet the aid from figures, from sensuous intuition,

is so inexpressibly precious, that any attempt even

to minimize it would be a mistake.- That treat-

ment of a proposition is best which connects it most

closely with a visualization of the figure, while yet

not using, as if given by the figure, concepts not

contained in the postulates and preceding propo-

sitions.

158. As an immediate result of Prob. 5, the proofs

in Chapters I-V of our existential theorems give ruler
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Fig. 65.

and sect-carrier solutions of the corresponding prob-
lems. We will now give some alternative solutions.

159. Problem 6. At a given point A to make a

right angle.

Solution. Draw through A
any straight AD, and through
D any other straight BC, and
make AD = BD = CD. Then
is ifBAC right. [Inscribed

angle on a diameter.]

160. Problem 7. From a given point A to drop a

perpendicular upon a given straight BC.

Solution. By Prob. 6, at

A construct a rt. i-BAC.
Make BD=BA. Draw DE
\\AC. Make BF=BE.
Then is AF± BC.

Proof. ^ABF= aDBE.

[2 sides and inc. % = .]

161. Problem 8. At any point A on a straight BC
to erect the perpendicular.

Solution. By Prob. 7, from any point without the

straight drop to it a perpendicular. By Prob. 3,

draw a parallel to this through A .

162. Problem 9. To bisect a given sect AB.
Construction. Draw through

B any other straight BC. Make
onitBC=CD= DE. Produce

AE^EF. Draw FDG. Then
is AG=GB.

Proof. D is the centroid

of aABF.

Fig. 66.
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163. Problem 5. At a given point in a given

straight to make an angle congruent to a given angle.

Required, against the given

ray AB of a, and toward a

given side of a, the C-side, to

make an angle = ^ D (given) .

Construction. To one side

of the given acute angle erect

(by 161) FH _L DF, meeting
the other side at H. Take AB=DF and BCLAB
and BC^FH. .-. (by III 6) t£BAC= ^-FDH.

164. Problem 10. To bisect a given angle.

Construction. On one

side of the given ~4-A

take any two points B,

C. On the other side

take AB f = AB, and AC
69- = AC. The sects BC

and B'C intersect, say at D. AD is the desired bi-

sector.

165. Problem. To join two points by an arc con-

taining a given angle.

Let A, B be the two points, a the given angle.

Make an angle BAC supplemental
to a. Erect the perpendicular to

AC at A, and to AB at the bi-

section-point. Their point of in-

tersection is the center of the

required circle. ^ AFB = a.

Proof. Their supplements

Fig.

tAOD^lBAC (complements of ^OAD).



7© RATIONAL GEOMETRY.

166. Problem. To describe a circle touching three

given intersecting but not copunctal straights.

Construction. At the

points of intersection draw

the angle-bisectors. From
the cross of any two of

these bisectors, the perpen-

dicular upon either of the

three straights is the radius

of a circle touching all

three.

167. Definition. The cointersection-point of the

three bisectors of the internal angles of a triangle, /,

is called the triangle's in-center [r, the in-radius];

Ol(r) the in-circle.

168. Definition. A circle touching one side of a

triangle and the other two sides produced is called

an escribed circle, or ex-Q. The three centers I
l9

I2y I3 of the escribed circles Oli(rg),
Ol2 {r2) t

OJ3 (r3)

of a triangle are called its ex-centers.

Ex. 131. A right angle can be trisected.

Ex. 132. To construct a triangle, given two sides and

the included angle.

Ex. 133. To construct a triangle, given two angles and

the included side.

Ex. 134. To construct a triangle, given two angles and

a side opposite one of them.

Ex. 135. To describe a parallelogram, given two sides

and the included angle.

Ex. 136. To construct an isosceles triangle, having given

the base and the angle at the vertex.

Ex. 137. To erect a perpendicular to a sect at its end-

point, without producing the sect or using parallels.

Hint. At this end-point against the given sect make



PROBLEMS OF CONSTRUCTION. 71

any acute angle. At any other point of the sect make
toward this a congruent angle.

Beyond the intersection-point of the rays, make on
this second ray a sect congruent to a side of this isosceles

triangle. Its end is a point of the required perpendicular.
Ex. 138. Construct a circle containing two given points

with center on a given straight.

Ex. 139. To draw an angle-bisector without using the

vertex.

Ex. 140. Through a given point to draw a straight

which shall make congruent angles with two given

straights.

Ex. 141. In a straight find a point with which two

given points give equal sects.

Ex. 142. From two given points on the same side of a

straight to draw two straights intersecting on it and

making congruent angles with it.

Ex. 143. To draw a straight through a given point
between two given straights such that they intercept
on it a sect bisected by the given point.

Ex. 144. Through a given point to draw a st' making
= ^s with the sides of a given •£.

Ex. 145. Construct + A from b and hb', from a and b;

from /? and a -\-b; from fi and hb; from b and /?; from p
and hb] from p and a; from 6 and r.

Ex. 146. Construct r't A from a and hc ;
from a and c;

from c and r; from a and r; from /? and r; from a and

a+ b; from R and r.

Ex. 147. Construct A from p, a, and ha ;
from p, a,

and /?; from its pedal; from b, a+ c, a; from a, hb, p\
from /„ I2t I 3 .

Ex. 148. Without prolonging two sects, to find the

bisector of the ^ they would make.

Ex. 149. Describe O through two given points with

center on given st'
;
with given radius.

Ex. 150. From one end of the hypothenuse lay off a

sect on it congruent to the ± from the end of this sect to

the other side.
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Ex. 151. From -I- A cut a trapezoid with 3 sides =.

Ex. 152. To inscribe a sq. in a given r't-l- A.

Ex. 153. Find point in side of -I-
A where J- erected

and produced to other side is = to base.

Ex. 154. To describe a O which shall pass through a

given point and touch a given st' at a given point.

Ex. 155. AB, AC, BD, CE, are chords. BD
|| AC,

CE
||
AB. Then AF

\\
DE is a tangent.

Ex. 156. To describe a O whose center shall be in one ±
side of a r't A while the O goes through the vertex of the

r't ^ and touches the hypothenuse.
Ex. 157. To describe a O of given radius with center

in one side of a given ^ and tangent to the other side.

Ex. 158. Construct A from a, a, and that to. trisects a;

from a and orthocenter; from a and centroid.

Ex. 159. Construct A from a, /?, R; from feet of medians;
of altitudes.

Ex. 160. (Brahmagupta.) If the diagonals of an in-

scribed quad' are ±, the st' through their intersection

_L to any side bisects the opposite side.



CHAPTER VII.

SIDES, ANGLES, AND ARCS.

169. Convention. When a sect congruent to CD
is taken on sect AB from A and its second end-point

falls between A and B, then AB is said to be greater

than CD; (AB>CD). When an angle congruent
to 4 (h f k\ is set off from vertex against one of

the rays of ^.AOB toward the other ray, if its

second side falls within 4-AOB, then ^.AOB is said

to be greater than ^ (h, k). In symbols, ?fAOB>

170. Theorem. // the first side of a triangle be

greater than a second, then the angle opposite the first

must be greater than the angle opposite the second.

Given BA>BC.
To prove ^C> ^A.
Proof. From B toward A take

BD = BC. The end-point D of
r IG. 72.

this sect then, because BA > BC,
is between A and B, that is within ^-ACB, as is

therefore also CD. Then is aBDC isosceles,

.-. tCDB= i-DCB. ;. ^ACB> 4 BCD or ^.CDB.
But (by 79) 4-CDB> 4 A.

73



74 RATIONAL GEOMETRY,

171. Inverse. If ^A> 7{B, .'.a>b.

Proof. [From 57 and 170.]

172. Definition. Except the perpendicular, any
sect from a point to a straight is called an oblique.

173. Theorem. From a point to a

straight any oblique is greater than the

perpendicular.

Proof. Since ^-CAB is r't, .'. (by 79)
Fig- 73. -4A> ^B. .*. (by 171) a>b.
174. Theorem. Any two sides of a triangle are

together greater than the

third side.

Proof. On st' BC, be-

yond C, take CD^CA.
•'• (by 57) i-CDA^^CAD.
But AC is within * DAB,
:. ^-DAB> ^DAC=ifD.
.'. (by 171) BD>AB.

175. Theorem. (The ambiguous case.) // two tri-

angles have two sides of the one congruent respectively

to two sides of the other, and the angles opposite one

pair of congruent sides congruent, then the angles oppo-
site the other pair are either congruent or supplemental.

Fig. 74.

c A H

Fig. 75.

Hypothesis, aABC and aFGH with ^ A = 4 F,

AB^FG, and BC^GH.



SIDES, ANGLES, AND ARCS. 75

Conclusion. ~4-C= ?fH }
or ^.C supplement of

*H.
Proof. At B against BA take, on the side toward

C, the ^ABC' = ^G. If ray BC falls on ray BC,
then (by 80) ^fC= %-H. If not on BC, suppose C
between C and A. Then (by 44) ^fBCA^^fH,
and BC'mGHmBC. .'. (by 57) ^BCC= *C.

176. Corollary to 175. Two triangles are con-

gruent if they have two sides and the angle opposite

the greater respectively congruent.

177. Definition. A triangle one of whose angles

is a right angle is called a right-angled triangle,

or more briefly a right triangle. The side opposite

the right angle is called the hypothcnuse.

178. Corollary to 176. Two right-angled trian-

gles are congruent if the hypothenuse and one side

are respectively congruent.

Ex. 161. If two triangles have two sides of the one respec-

tively congruent to two sides of the other, and the angles

opposite one pair of congruent sides congruent, then if

these angles be not acute the triangles are congruent.
Ex. 162. If two triangles have two sides of the one

respectively congruent to two sides of the other, and

the angles opposite one pair of congruent sides congruent,
then if one of the angles opposite the other pair of con-

gruent sides is a right angle the triangles are congruent.
Ex. 163. If two triangles have two sides of the one

respectively congruent to two sides of the other, and

the angles opposite one pair of congruent sides congruent,
then if the side opposite the given angle is congruent to

or greater than the other given side the triangles are

congruent.
Ex. 164. If any triangle has one of the following proper-

ties it has all:



76 RATIONAL GEOMETRY.

i. Symmetry.
2. Two congruent sides.

3. Two congruent angles.

4. A median which is an altitude.

5. A median which is an angle-bisector.

6. An altitude which is an angle-bisector.

7. A perpendicular side-bisector which contains a
vertex .

8. Two congruent angle-bisectors.

Ex. 165. The difference of any two sides of a triangle

is less than the third side.

Ex. 166. From the ends of a side of a triangle the two
sects to a point within the triangle are together less than

the other two sides of the triangle, but make a greater

angle.

Ex. 167. Two obliques from a point making congruent
sects from the perpendicular are congruent, and make

congruent angles with the straight.

Ex. 168. Of any two obliques between a given point
and straight that which makes the greater sect from the

foot of the perpendicular is the greater.

Ex. 169. Of sects joining two symmetrical points to a

third, that cutting the axis is the greater.

179. Theorem. // two triangles have two sides of

the one respectively congruent to two sides of the other,

then that third side is the greater

which is opposite the greater

angle.

Proof. Take the triangles

with one pair of congruent
sides in common, BC, and on

the same side of BC the other

pair of congruent sides, BA, BA''. The bisector

of i-ABA', being within ^fABC, meets AC at a

points. Then (by 43) aABG = aA'BG. .'.AG
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= j4'G\ But (by 174) A'G and GC are together

greater than A'C .

179''. Inverse of 179. If two triangles have two

sides of the one respectively congruent to two sides

of the other, then, of the angles opposite their third

sides, that is the greater which is opposite the

greater third side.

Ex. 170. Two right triangles are congruent if the hy-

pothenuse and an acute angle are congruent, or if a per-

pendicular and an acute angle are congruent to a per-

pendicular and the corresponding acute angle.

Ex. 171. Given AB a sect, C its bisection-point, PA m
PB.

Prove PCLAB.
Ex. 172. Inverse. Given CPJLbi' of AB. Prove PA=PB.
Ex.173. Given PM±AM=PN±AN. Prove^.PAM =

^ PAN or its complement.
Ex. 174. Inverse. Given ifPAM = ^PAN. Prove

PM±AM mPNL AN.

180. Definition. If AB is a diameter of a circle

with center C, then the two points of the circle on

any other diameter, being on opposite sides of C,

are (by 25) on opposite sides of the straight AB.
Hence the points of the circle other than the

points A
} B, are separated by AB into two

classes of points uniquely paired. One of these

classes together with the point A is called a

semicircle. The other, with B
}

is the associated

semicircle; A and B are called end-points of each

semicircle.

181. Definition. If A, D are two points on the

circle with center C, then, since (by 142) the end of
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the perpendicular from C to the straight AD falls

within a radius, therefore the

points of the circle are not all

on the same side of the secant

AD. Hence the points of the

circle other than the points

A, D are separated by AD into

two classes of points. One of

these classes, together with

the point A, is called an arc. The other, with the

point D, is called the associated or explemental arc.

A and D are called end-points of each arc.

Of these two arcs the arc on the side oi AD re-

mote from the center is called the minor arc. The

arc on the same side of AD as the center is called

the major arc. The chord AD is said to be the

chord of each of the two arcs. Thus to every arc

pertains a chord, and to every chord pertain two

arcs.

Fig. 78.

182. Definition. Two arcs AB, A'B', are called

congruent when, the end-points being mated, to

every point C of the first arc corresponds one, and

only one, point C of the second, such that AC=A'C
and BC=B'C.
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183. Corollary to 182. Congruent arcs have con-

gruent chords.

184. Definition. An angle having its vertex at

the center of the circle is called an angle at the center,

and is said to intercept the arc and chord, whose

end points are on the angle's sides and whose other

points are within the angle.

185. Theorem. In a circle or in circles with con-

gruent radii, congruent angles at the center intercept

congruent arcs.

Fig. 79.

Given tACBmtA'C'B'.
To prove the minor arc AB = minor arc A 'B'.

Proof. Since (by 43) *ACBm aA'C'B'; :.AB =
A'B'.

Moreover, if D is any point within arc AB then

ray CD is within ^ ACB. Hence (by 48) there is

within * A'C'B' a ray CD' meeting arc A'B9 in D'
,

which makes *A'CUm * ACD and i£B'CD' =

*BCD. :. (by 43) A'D'^AD and B'D' = BD.
Also any point D" of the minor arc A'B' such that

A'D" =AD would (by 58) be on the ray making

4A'CD" = 4 ACD = tA'C'D', and hence identical

with D'.
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1 86. Corollary

187. Theorem.

gruent radii.

Given arc AMB = arc A'M'B
To prove CA=C'A'.

Any arc may be bisected.

Any two congruent arcs have con-

Fig. 80.

Proof. The bisector of 4 ACB cuts arc AMB in

a point M such that, (by 43) aACM=aBCM.
.'. AM^BM and if BMC= 4 AMC. From hypoth-
esis there is a point M' of arc A'M'B' such that

a A'M'B' m aAMB. .' . A'M' m B'M'.

.-. (by 58) aA'M'C'^aB'M'C.

.'. 4A'M'C'^4B'M'C.

.'. (by 48 and 84) ifA'M'C' = 4 AMC.

.'. (by 44) the two isosceles triangles aAMC=
aA'M'C. .'.AC^A'C.

188. Inverse of 185. Congruent minor arcs are

intercepted by congruent angles at the center.

Proof. , Since from hypothesis chord AB = chord

A'B'
}

.-. (by 187 and 58) aACB^ aA'C'B'.

.'. ifACB^ifA'C'B'.

189. Theorem. In a circle or in circles with con-

gruent radii, congruent chords have congruent minor

arcs.
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For the angles at the center on the congruent
chords are congruent (by 58) [As with 3 sides = ].

.'. (by 185) the minor arcs they intercept are con-

gruent.

190. Theorem. Given a minor arc and a circle of

congruent radius. There are on the circle two and

only two arcs with a given end-point, congruent to the

given arc.

Proof. An angle at the center which intercepts
the given arc can be set off (by III 4) once and

only once on each side of the radius to the given

point.

191. Theorem. From any point of a circle there

are not more than two congruent chords, and the chords

are congruent in pairs, one on each side of the diameter

from that point.

Proof. If AB is any chord,

take at center C on the other side

of AC, the ^ACB f =^fACB,
.-.by 43, ^ACB'= &ACB.
:.ABfmAB.
Moreover, were B" the end-

point of a third chord from A
congruent to AB and to AB f

,

then B, B'
,
B" would be at once on OC(CA) and

OA(AB), which, by 122, is impossible.

192. Definition. If all the points of one arc are

points of a second, but the second has also points
not on the first, then the second is said to be greater

than the first and any arc congruent to the second

is said to be greater than any arc congruent to the

first.
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193. Theorem. In a circle or in circles with con-

gruent radii, of two angles at the center, the greater

intercepts the greater arc and chord.

Hypothesis. CA^CA'. 4ACD> 4 A'CB'.
Conclusion. Arc AD> arc A'B'.

Fig. 82.

Proof. From C against CA toward D, (by III 4)

take ifACB= ^-A'C'B'. Then from hypothesis

ray CB is within ^fACD.
.*. B is within arc AD.
.-. (by 192) arc AD > arc AB. But (by 185)

arc A fB' = avc AB. .'. (by 192) arc AD> arc

A'B'.

Moreover a A'CB' has two sides CA', CB' = CA,
CD of aACD, but ^fACD> * A'CB', ,\ (by 179)

ADyA'B'.
194. Inverse of 193. In a circle or in circles

with congruent radii the greater chord has the

greater angle at the center and the greater minor

arc.

For (by i79
&
) it has the greater angle at the cen-

ter, and .*.
, by 193, the greater minor arc.

195. Inverse of 193. In a circle or in circles

with congruent radii, the greater minor arc has
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the greater angle at the center and the greater
chord.

196. Theorem. In a circle or in circles with con-

gruent radii, congruent chords have congruent perpen-
diculars from the center, and the lesser chord has the

greater perpendicular.

Proof. Of two chords from A on the same side of

the diameter AC, one, say AD, is (by III 4) without

the angle CAB made by the

other, and hence its end-point
D is on the minor arc AB. Hence

(by 195) ^-ACB> ^ACD and

AB>AD.
Moreover, the sect from the

center to the bisection-point of

AD, since D and so every point
of AD is on the opposite side of AB from C, crosses

the straight AB and .'. (by 142) is > the perpen-
dicular from C to AB.

Moreover, congruent chords anywhere have con-

gruent perpendiculars (by 178).

197. Inverse of 196. In a circle or in circles with

congruent radii, chords having congruent perpen-
diculars from the center are congruent, and the

chord with the greater perpendicular is the lesser.

For (by 196) it cannot be greater nor congruent.

Two Circles.

198. A figure formed by two circles is symmetrical
with regard to their center-straight as axis.
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Every chord perpendicular to this axis is bisected

by it.

If the circles have a common point on this straight

they cannot have any other point in common, for

any point in each has in that its symmetrical point
with regard to this axis, and circles with three points
in common are identical.

199. Two circles with one and only one point in

common are called tangent, are said to touch, and

the common point is called the point of tangency
or contact.

200. If two circles touch, then, since there is only
one common point, this point of contact is on the

center-straight, and a perpendicular to the center-

straight through the point of contact is a common

tangent to the two circles.

Ex. 175. Two circles cannot mutually bisect.

Ex. 176. The chord of half a minor arc is greater than

half the chord of the arc.

Ex. 177. In a circle, two chords which are not both

diameters do not mutually bisect each other.

Ex. 178. All points in a chord are within the circle.

Ex. 179. Through a given point within a circle draw the

smallest chord.

Ex. 180. Rays from center to intersection points of a

tangent with || tangents are JL.

Ex. 181. A circle on one side of a triangle as diameter

passes through the feet of two of its altitudes.

Ex. 182. In + aABC HD on AB^BC, prove CD>AD.
Ex. 183. A circumscribed parallelogram is a rhombus.

Ex. 184. In &ABC, having AB> BC, the median BD
makes ^ BDA obtuse.

Ex. 185. If AB, a side of a regular A, be produced
to D, then AD> CD> BC.

Ex. 186. If BD is bisector fe, and AB> BC, thenBO CD.
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Ex. 187. How must a straight through one of the

common points of two intersecting circles be drawn in

order tha>t the two circles may intercept congruent chords

on it?

Ex. 188. Through one of the points of intersection of

two circles draw the straight on which the two circles

intercept the greatest sect.

Ex. 189. If any two straights be drawn through the

point of contact of two circles, the chords joining their

second intersections with each circle will be on parallels.

Ex. 190. To describe a O which shall pass through a

given point, and touch a given O in another given

point.

Ex. 191. To describe a O which shall touch a given

O, and touch a given st' [or another given O] at a given

point.

Ex. 192. The foot of an altitude bisects a sect from

orthocenter to circum-O.

Ex. 193. If from the end-points of any diameter of a

given O J_s be drawn to any secant their feet give with

the center sects.

Ex. 194. A, B, I, h are concylic.

Ex. 195. If tb meets circum-O in D, then DA =DC =DI.
Ex. 196. The _l_s at the extremities of any chord

make = sects on any diameter.

Ex. 197. If in any 2 given tangent Os be taken any
2

|| diameters, an extremity of each diameter, and the

point of contact shall be costraight.

Ex. 198. If 2 Os touch internally, on any chord of one

tangent to the other the point of contact makes sects

which subtend = ^ s at the point of tangency of the Os.

Ex.199. 2m > = <a according as
if
A acute, r't,

obtuse.

Ex. 200. Chords joining the end-points of
||

chords

are „'
Ex. 201. St' through point of tangency meets O at A,

OO' at A'. Prove AO II A'O'.
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Ex. 202. Intersecting Os are •!• with regard to their

center-st' and if are \ with regard to their common
chord.

Ex. 203. Find the hi* of an ^ without using its vertex.

Ex. 204. A quad' with 2 sides
||
and the others = is

either a ||g'm or a symtra.



CHAPTER VIII.

A SECT CA1CULUS.

201. On the basis of assumptions I i, 2, and II-IV,

that is, in the plane and without the Archimedes

assumption, we will establish a sect calculus or

geometric algorithm for sects, where all the oper-
ations are identical with those for real numbers.

The following proof is due to F. Schur.

202. (Pascal.) Let A,B,C and A', B', C be two

triplets of points situated respectively on two per-

pendiculars and distinct c
'

from their intersection

point 0' . If AB' is par- 4

allel to A fB and BC
parallel to B'C, then is

also AC parallel to A'C.
1

Proof. Call D' the

point where the perpen-
dicular from B upon the

straight A'C meets the

straight B'A\ Then C
is the orthocenter of the

,-//

triangle BA'D' ; therefore Jr

D'CLA'B and .'. ±ABf
.

FlG - 84-

Consequently C is also the orthocenter of the tri-

87
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angle AB'D' \
:. AD'lB'C and ,\ also ±BC. Con-

sequently B is the orthocenter of triangle AC'D'\
\\ AC'±_D'B and .'. AC'\\A'C.

203. Instead of the word "congruent" and the

sign =
,
we use, in this sect calculus, the word

"equal" and the sign =.

204. We begin by showing how from any two
sects to find unequivocally a third by an operation
we will call addition.

205. If A
, B, C are three costraight points, and B

lies between A and C, then we designate c=AC as

the sum of the two sects a=AB and b=BC, and
write to express this c = a + b.

B

j.

g. »L ft *F c=a+b

Fig. 85.

To add the two sects a and b in a determined

order, we start from any point A ,
and take the point

B such that AB =
t
that is = a. Then on the straight

AB beyond B we take the point C such that BC = b.

Then the sect AC is what we have designated as the

sum of the two sects a=AB and b=BC in the order

a + b.

206. From III 3 follows immediately that this

sum is independent of the choice of the point A,
and independent of the choice of the straight AB.

By III 1, it is independent of the order in which

the sects are added. Therefore a + b=b + a.

207. This is the commutative law for addition.

Thus the commutative law for addition holds good,
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is valid, for our summation of sects. But this law

is not at all self-evident, and expresses no general

magnitude relation, but a wholly definite geometric
fact

;
for a, b are throughout not numbers, but only

symbols for certain geometric entities, for sects.

208. The sects a and b are called less than C; in

symbols : a < c, b < c
;
and c is called greater than a

and b; in symbols c>a, c>b.

209. To add to a + b a further sect c, take on

straight AB beyond C the sect CD=c. Then the

sect AD = (a + b) +c. But this same sect AD is, by
the given definition of sum, also the sum of the sects

AB and BD, that is of the sects a and (b + c).

Thus a + (b + c)
= (a + 6) + c, and so is verified and

valid what is called the associative law for addition.

210. To define geometrically the product of a sect

a by a sect 6, we employ the following construction.

We choose first an arbitrary sect, which remains the

same for this whole theory, and designate it by 1.

This we set off from their inter-

section point on one of two per-

pendicular straights. On the

other we set off on one ray a, on

the other b. The circle through
the free end-points of 1, a, b de-

termines on the fourth ray a sect

c. Then we name this sect c the

product of the sect a by the sect b; and we write

c = ab.

By s As and 133, ab=ba. This is the commuta-

tive law for multiplication.

211. Considering the triangle of the end-points of
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i and a, it is equiangular to that of the end-points
of b and c. This gives as an easy construction for

our sect product the following:

Set off on one side of a right angle, starting from

the vertex 0, first the sect i and then, likewise from

the vertex 0, the sect b. Then

set off on the other side the

sect a. Join the end-points

of the sects i and a, and draw

a parallel to this straight

through the end-point of the

sect b. The sect which this
FlG * 87

parallel determines on the

other side is the product ab
;
or we may call it ba,

since, as we have already seen, ab=ba, which is

also given by the fact that the triangle of the end-

points of i and b is equiangular to that of the

end-points of a and c.

212. We emphasize that this definition is purely

geometric; ab is not at all the product of two num-
bers.

213. To prove for our multiplication the asso-

da=(bc) a
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dative law for multiplication a (be)
= (ab)c we con-

struct first the sect d = bc
}
then da, further the

sect e=ba, and finally ec. The end-points of da

and ec coincide (by Pascal), and by the commuta-
tive law follows the above formula for the associa-

tive law of sect multiplication.

214. Finally is valid in our sect-calculus also

the distributive law a(b + c) =ab + ac.

To demonstrate it we construct the sects ab, ac,

and a(b + c), and draw through the end-point of

the sect c (see Fig. 89) a parallel to the other side

of the right angle. The congruence of the two

right-angled triangles shaded in the figure and
the application of the theorem of the equality of

Xb+c)

b+c

opposite sides in the parallelogram give then the

desired proof.

215. If b and c are any two sects, there is always
one and only one sect a such that c = ab; this sect

c
a is designated by the notation

j-
t
and is called the

quotient of c by b.
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The Sum of Arcs.

216. Definition. If a and b are two arcs with

equal radii, their sum, a + b, is the arc obtained

by taking together as one arc the arc a and an arc

congruent to b having as one of its end-points an

end-point of a and its points taken as outside of a.

217. Theorem. In the same circle or in circles

with equal radii, if minor arc a m minor arc a! and

Fig. 90.

minor arc 6 = minor arc b'
, then arc (a + 6)= arc

(a' + 6').

Let minor arc AB = a and minor arc BD=b
f

minor arc A'B' =a! and minor arc B'D' =b r
.

To prove arc ABD= arc A'B'D'.

Proof. '*CBF=&C'B'F' (two sides and in-

cluded 4) .\*CBF=tC'B'F'. In same way
4CBH^ ^C'B'H'. .'. (by 49) ^HBF= ^H'B'F'.
;. (two sides and included ^) chord AD= chord

A'U . .'. (by 189) minor arc AD = minor arc A'D'\
and if a -j- b is minor, so (by inverse of 133) is a' + 6'.

But if a + b be not a minor arc, then if P be any
point on the semicircle or major arc a + 6, take

*D'C'P'=*DCP with P' on the same side of
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D'O with reference to A' as P of DC with reference

to A. Thus D'P'=DP
t also ^DPA^^D'P'A'

Fig. 91.

and t(DAP = $D'A'P', since ,4 and A' are on the

same side of DP and D'P'. :. aAPD= aA'P'D'.

218. Definition. If an angle at the center is

right the arc it intercepts is called a quadrant.

219. Corollary to 217. In a circle or in circles

with equal radii the sum of any two quadrants is

congruent to the sum of any other two, and all

semicircles are congruent.
A circle is the sum of two semicircles or four

quadrants.

Congruent major arcs are the sums of con-

gruent semicircles and congruent minor arcs.

220. Convention. We may look upon a semi-

circle as an arc whose chord is a diameter, and
we may look upon a whole circle as a major arc

whose two end-points coincide. The explemental
minor arc will then be one single point.

We may even think of arcs on a circle greater
than the whole circle. In such a case certain

points on the circle are considered more than once.

221. Any arc may now be expressed as a sum
of a number of quadrants and a minor arc.
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The Sum of Angles.

222. Definition. The sum of two acute angles
or of a right angle and an acute angle is the angle
obtained by setting off one against the other from

its vertex with no interior point in common, and

then omitting the common ray.

The sum of any two or more angles is an aggre-

gate of right angles and one acute angle such that,

taken as angles at the center of any one circle, the

sum of the intercepted quadrants and the arc inter-

cepted by the acute angle equals the sum of the

arcs intercepted by the angles to be added together.

223. Corollary to 79. The sum of the three

angles of any rectilineal triangle is two right angles.

The sum of two supplemental angles is two right

angles.

224. In the familiar terminology of motion

circles with equal radii are called congruent, and

we say they can be made to coincide if the center

of one be placed on the center of the other.

Since, in their congruence, any one given point of

the one can be mated with any point of the other, we

say, after coincidence the second circle may be turned

about its center, and still coincide with the first.

Hence also a circle can be made to slide along itself

by being turned about its center. This expresses a

fundamental characteristic of the circle. It allows

us to turn any figure connected with the circle about

the center without changing its relation to the circle.

Such displacement is called a rotation.

A displacement of a figure connected with a
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straight, in which the straight slides on its trace,

is called translation.

That translation can be effected without rotation

is an assumption about equivalent to the parallel

Assumption IV.

225. Theorem. The diameter perpendicular to a

chord bisects the angle at the center, and the two

arcs, minor and major, made by the chord.

226. Convention. Parallel secants or parallel

chords are said to intercept the two arcs whose

points are between the parallels.

227. Theorem. Parallel chords intercept congruent

arcs.

Given AB\\A'B'.

To prove minor AA r = minor

arc BB'.

Proof. If CD J_AB then also

(by 74) CD±A'B'. Then (by

117 and 58) ^ACD^^BCD
and t(.A'CD = ^B'CD. ;. (by

49) ^ACA'^^BCB'. :. (by

185) minor arc AA f = minor arc BB' .

228. Theorem. If a simple plane polygon be cut

into triangles by diagonals within the polygon the sum

of their angles, together with four right angles, equals

twice as many right angles as the

polygon has sides.

Proof. By a diagonal within

the polygon cut off a triangle.

This diminishes the number of

sides by one and the sum of the

angles by two right angles. So reduce the sides

Fig. 93.
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to three. We have left two more sides than pairs

of right angles.

229. Definition. The exterior angle at any ver-

tex of a polygon is the angle between a side and the

ray made by producing the other side through the

vertex.

230. Theorem. In any convex plane polygon the

sum of the exterior angles, one at each vertex, is four

right angles.

Proof. The exterior angle is the supplement of

the adjacent angle in the polygon. This pair gives

a pair of right angles for every side. But (by 228)

the angles of the polygon give a pair of right angles

for every side except two.

Ex. 205. In r'tA, he makes £s = to a and /?.

Ex. 206. Always mc <%(a-\-b).

Ex. 207. From point without acute #! a, is to sides

make ^ = a.

Ex. 208. The sect joining the bisection-points of the

non-|| sides of a trapezoid is | to the
||
sides and half their

sum.

Ex. 209. How many sides has a polygon, the sum of

whose interior ^s is double the sum of its exterior ^s?
Ex. 210. How many sides has a regular polygon, four

of whose ^s are together 7 r't ^s?
Ex. 211. The trisection-points of the sides of an equi-

lateral A form a regular hexagon.
Ex. 212. The±s from A and B upon mc are =.

Ex. 213. Find the sum of 3 non-consecutive £s of an

inscribed hexagon.
Ex. 214. Construct •!• A from b and a+hb', from fi

(or hb) and perimeter.
Ex. 215. The sum of the three sects from any point

within a A to the vertices is < the sum and > J sum
of the 3 sides.
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Ex. 216. Construct -l-r't A from b+ c.

Ex. 217. In a given st' find a point to which sects from

2 given points have the least sum.

Ex. 218. The sum of the medians in A is < the sum
and > £ sum of sides.

Ex.219. Construct A from a — /? and c. a from a, /?,

r; A from a, /?, R.

Ex. 220. The sum of 2 opposite sides of a circumscribed

quad' is half the perimeter. The sum of the £s they sub-

tend at the center is 2 r't ^s.
Ex. 22i. In r'tA, a+ b =c+2r =2R + 2r.

Ex. 222. From the vertices of A as centers find 3 radii

which give Os tangent, two and two.

Ex. 223. If H is orthocenter, the 4 circum-Os of A, B,

C, H are =.

Ex. 224. Of /, /„ 72 » ^3» each is the orthocenter of the

other 3 ,
and the 4 circum- s are m .

Ex. 225. If, of a pentagon, the sides produced meet,
the sum of the ^s formed is 2 r't ^s.

Fx. 226. If hb meets b at D, construct A from ho, a—AD,
c-CD.

Ex. 227. A quad' is a trapezoid if an opposite pair of

the 4 As made by the diagonals are .



CHAPTER IX.

PROPORTION AND THE THEOREMS OF SIMILITUDE.

231. With help of the just-given sect-calculus

Euclid's theory of proportion can in the following

manner be established free from objection and with-

out the Archimedes assumption.

232. Convention. If a, b, a', b
f are any four sects,

then the proportion a:b=a' : b' shall mean nothing
but the sect equation ab' =ba'.

233. Definition. Two triangles are called similar

if their angles are respectively congruent. Sides

between vertices of congruent angles are called cor-

responding.

234. Theorem. In similar triangles the sides are

proportional.

corresponding sides in two

similar triangles.

To prove the proportion
a:b=a':b'.

Proof. We consider first

the special case, where

the angles included by a,

b and a', b' in the two tri-

Fig. 94. angles are right, and sup-

pose both triangles on the same right angle. We

Given
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then set off from the vertex on one side the sect i,

and take through the end-point of sect i the parallel

to the two hypothenuses. This parallel determines

on the other side the sect e. Then is, by our defini-

tion of the sect-product, b=ea, b'=ea'. Conse-

quently we have ab'=ba\ that is, a:b=a' : b'.

We pass now to the general case. Construct in

each of the two similar triangles the in-center /,

respectively /', and drop
from these the three per-

pendiculars r, respect-

ively r', on the triangle's

sides. Designate the re-

spective sects so deter-

mined on the sides of the

triangles by ab} ac ,
bCi ba ,

Fig. 95.

cb , respectively ab , a/, b/ t
bc

r ' rJ The just-

proven special case of our theorem gives then the

proportions
ab :r = ab : r', bc :r=b/:r',
ac :r=ac': r', ba :r Wir*.

From these we conclude by the distributive law

a\r = a':r'
y b\r=b':r\

and consequently, in virtue of the commutative

law of multiplication,

a: a' =r:r' =b:b', and a:b = a':b'.

235. From the just-proven theorem (234) we get

easily the fundamental theorem of the theory of

proportion, which is as follows:
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Theorem. If two parallels cut off on the sides of

any angle the sects a, b, respectively a', b\ then

holds good the proportion a: b=a'': b' . Inversely,

when four sects a, b, a', b' fulfill this proportion, if

the pairs a, a' and b, b' are set off upon the respective

sides of any angle, then the straight joining the end-

points of a and b is parallel to that joining the end-

points of a' and b
f

.

Proof. First, since parallels make with the sides

of the given angle similar triangles,

therefore (by 234) a: b=a' : b
f

.

Second, for the inverse. Through
the end-point of a! draw a parallel

to the straight joining the end-

points of a and b, and call the sect

it determines on the other side b" .

Then by First a:b=a': b" . But

by hypothesis a\b=a' :b f
. .'. b" =b'.

236. Thus we have founded with complete rigor

the theory of proportion on the basis of the

Assumption-groups I-IV.

237. Corollary to 235. If straights are cut by
any number of parallels the corresponding inter-

cepts are proportional.

238. Corollary to 234. Parallels are divided

proportionally by any three copunctal transversals.

239. Corollary to 235. Two triangles are similar

if they have two sides proportional and the in-

cluded angles congruent.

240. Definition. A point P, costraight with AB,

but without the sect AB, is said to divide the

sect AB externally into the sects PA, PB.



PROPORTION AND THE Tk£GR£M$ 'OF ZIMJUT-'JDE. 101

241. Corollary to 235. A sect can be divided

nternally or externally in proportion to any two

unequal given sects. The point of internal divi-

sion is unique; likewise the point of external divi-

sion.

242. Theorem. The bisector of any angle of a

Fig. 97.

triangle or of its adjacent angle divides the opposite

side in proportion to the other two sides.

[Proof. Take AF
||

to bisector BD. Then
BF = c]

243. Definition. A sect divided internally and

externally in proportion is said to be divided har-

monically, and the four points are called a harmonic

range.

244. Theorem. A perpendicular from the right

angle to the hypothenuse divides a right-angled tri-

angle into two others similar to it, and is the mean

proportional between the parts of the hypothenuse.
Each side is the mean propor-

tional between the hypothenuse and

its adjoming part.

Proof. The r't aABC ~ r't
c

&ABD, since ^A is common. Fig. 98.
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©245.

Corollary to 244. The

perpendicular from any point
a in a circle to the diameter is the

mean proportional between the

parts of the diameter.

Fig. 99.

246. Theorem. The square of the hypothenuse

equals the sum of the squares of the two sides.

Proof. AC :AB =AB :AD, that is, AB 2 =AC-AD.
Same way BC 2 =AC-DC. Now add.

.'. AB* +BC 2 =AC(AD +DC)=AC 2
.

247. Theorem. Triangles having their sides taken

in order respectively proportional are similar.

Fig. 100.

In the triangles ABC and A'B'C let AB:A'B' =

AC:A'C=BC:B'C'.
To prove that the triangles ABC and A'B'C

are similar (~).

Proof. Upon AB take AF=A'B\ and upon
AC take AH=A'C. Then AB:AF=AC:AH.
.'.(by 239) aABC ~ to aAFH. .\AB:AF =

BC:FH. But by hypothesis AB'.AF =BC:B'C.
:.FH=B'C. :. aAFH=aA'B'C [3 sides s].

.-. aABC- a A'B'C.
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248. Theorem. The product of the sects into

which a given point divides chords of a given circle

is constant.

Fig. ioi.

Hypothesis. Let chords AB and CD intersect

in P.

Conclusion. AP-PB=CP-PD.
Proof. lPAC=tPDB (by 133), and

* tAPC=^BPD\ \\ aAPC-aBPD.
249. Corollary to 248. From a point taken on a

tangent the square on the sect to the point of con-

tact equals the product of the sects made on any
secant.

The Golden Section.

250. Problem. To divide a sect so that the product

of the whole and one part equals the square of the

other part.

Required on AB to find P such that AB-PB =

AP\
Construction. Draw BCLBA and =\AB On

the straight AC take D between A and C, and E
beyond C such that CD^CB= CE. Take AP=AD
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and AP'=AE. P and P' divide AB internally

and externally in the golden section.

Proof. By 249, AB 2 =AD-AE=AP(AP + AB)
= AP 2 +AP-AB.

.-. AB(AB -AP) =AP 2
. .\ AB-PB =AP\

Again, AB 2 = AE-AD=P'A(AE-DE)
= P'A{P,A-AB)=P'A 2 -AB-P'A.

.\AB(AB + P'A)=P'A
2

.

;.AB-P'B = P'A 2
.

p'

Fig. 102

251. Corollary to 250. If a is any sect divided

in the golden section, its greater part #=-f(5)*
—

I J

For (by 246) AC 2=AB2+BC2=a2+- =
1

v J '

4 \ 2

.-. AP=AD= AC-CD=ia(5)*---

252. Theorem. The products of opposite sides

A of a non-cyclic quadrilateral

are together greater than the

product of its diagonals.

Proof. Make ifBAF^
•4 CAD, and ^ABF^
4-ACD. Join FD.
Then aABF- aACD,
:.BA:AC=FA-AD.

Fig. 103.
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But this shows (since 4BAC=^FAD),
aBAC^aFAD.
From aABF-aACD, .'. AB-CD =BF -AC.

From aBAC-aFAD, .-. BC-AD =FD-AC.
?. AB-CD +BC-AD=BF'AC +FD-AC>BD-AC.

253. Corollary to 252 (Ptolemy). The product
of the diagonals of a cyclic quadrilateral equals
the sum of the products of the opposite sides.

(For then F falls on BD.)

254. Definition. Similar polygons are those of

which the angles taken in order are respectively

equal [i.e., congruent], and the sides between the

equal angles proportional.

255. Theorem. Two similar polygons can be

divided into the same number of triangles respect-

ively similar.

256. Theorem. If a cyclic polygon be equilateral

it is regular.

Ex. 228. If AB is divided harmonically by P, P', then

PP' is divided harmonically by A, B.

Ex. 229. If two triangles have the sides of one respect-

ively parallel or perpendicular to the sides of the other

they are similar.

Ex. 230. The corresponding altitudes of two similar tri-

angles are proportional to any two corresponding sides.

Ex. 231. To divide a sect into parts proportional to given
sects.

Ex. 232. A sect can be divided into any number of

equal parts.

Ex. 233. To find the fourth proportional to three given
sects.

Ex. 234. To find the third proportional to two given sects.

Ex. 235. If three non-parallel straights intercept pro-

portional sects on two parallels they are copunctal.



106 RATIONAL GEOMETRY.

Ex. 236. Every equiangular polygon circumscribed

about a circle is regular.

Ex. 237. Every equilateral polygon circumscribed about

a circle is regular if it has an odd number of sides.

Ex. 238. Every equiangular polygon inscribed in a

circle is regular if it has an odd number of sides.

Ex. 239. One side of a A is to either part cut off by a

st'
||
to the base as the other side is to the corresponding

part.

Ex. 240. If a straight divides two sides of a A propor-

tionally, it is
||
to the third side.

Ex. 241. The bisectors of an interior and an exterior 4-

at one vertex of a A divide the opposite side harmonically.

Ex. 242. The perimeters of two ~
polygons are pro-

portional to any two corresponding sides.

Ex. 243. A median and two sides of a trapezoid are

copunctal.
Ex. 244. The chords on a st' through a contact-point

of two Os are proportional to their diameters; and a

common tangent is a mean proportional between their

diameters.

Ex. 245. The sum of the squares of the segments of

2 J_ chords equals the sq' of the diameter.

Ex. 246. On the piece of a tangent between two
||
tan-

gents the contact-point makes segments whose product
is the square of the radius.

Ex. 247. To inscribe in and circumscribe about a given
O a A<v toa given A.

Ex. 248. The hypothenuse is divided harmonically by

any pair of st's through the vertex of the r't if making
m 4^s with one of its sides.

Ex. 249. The bisection-point of the base of a A and any

point on a
||
to the base through the vertex make a sect

cut harmonically by a side and the other side produced.
Ex. 250. / divides h as b to a~\-c.

Ex.251. Rriac =b:2(a-\-b+ c).

Ex. 252. In a r't A the X sides are as the in-radii of

As made by he.
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Ex. 253. Sects from the ends of the base of a a to the

intersections of a
||
to base with the sides intersect on a

median.

Ex. 254. A from ft, a/c, R.

Ex. 255. A quad' is cyclic if diagonals cut so that

product of segments of one equals product of segments
of the other.

Ex. 256. The sides of the pedal cut off as ~ to the

original.

Ex. 257. Three points being given, to determine an-

other, through which if any st' be drawn, Is upon it from
two of the former, shall together be equal to the ± from
the third.

Ex. 258. From two given sects to cut off two propor-
tional to a second given pair so as to leave remainders

proportional to another given pair.

Ex. 259. If one chord bisect another, and tangents from
the extremities of each meet, the st' of their intersection

points is
||

to the bisected chord.

Ex. 260. In A, if sects from the ends of the base to the

opposite sides intersect on the altitude, the joins of its

foot to their ends will make equal angles with the base.

Ex. 261. The diagonals of a regular pentagon cut one
another in the golden section, and the larger segments

equal the sides.

Ex. 262. From the vertex of an inscribed A a sect to

the base
||
to a tangent at either end of the base is a fourth

proportional to the base and two sides.

Ex. 263. Straights from the vertices of any a to the

contact-points of the in-o are copunctal.
Ex. 264. Construct a from b, ft, and that tb makes

segments as m to n.

Ex. 265. A from ft, mb, and
•£

between 6 and nib.

Ex. 266. A from tb and J_s on it from A and C.

Ex. 267. A from ft, a — c, and difference of segments
made by hb.

Ex. 268. R't A from a+ b, and b+ c.

Ex. 269. a from a -ft, a:b—ni:n, and a third propor-



Io8 RATIONAL GEOMETRY.

tional to the difference of segments made by hc and the

lesser side.

Ex. 270. a from a, a+ b, a-\-c.

Ex. 271. a from a, R, and b:c =m:n.
Ex. 272. a from a, b, a—hb.
Ex. 273. Divide a given sect harmonically as m to n.

Ex.274. In~AS, a:a f =ha :h
f
a =ma :m'a =ta :t'a =r:r' =

R:R'.

Ex. 275. Two r't As are **» if hypothenuse and a J_ are

proportional.

Ex. 276. If a chord is bisected by another, either seg-

ment of the first is a mean proportional between the seg-

ments of the other.

Ex. 277. R't A from a and the non-adjacent segment
made by hc .

Ex. 278. The diameter of a is a mean proportional
between the sides of the circumscribed regular A and.

hexagon.
Ex. 279. From the center of a given O to draw a st'

cutting off from a given tangent a sect any multiple of

the segment between O and tangent.

Ex. 280. If 2 As have two sides of the one proportional
to two sides of the other, and ^ s, one in each, opposite
one corresponding pair of these sides =

,
the ^ s opposite

the other pair are either = or supplemental.
Ex. 281. The altitude to hypothenuse is a fourth pro-

portional to it and the sides.

Ex. 282. The vertices of all as on the same base with

sides proportional are on a O with center costraight with

base and radius a mean proportional between the sects

from its center to the ends of base.

Ex. 283. To inscribe a sq. in a given A.



CHAPTER X.

EQUIVALENCE.

The theory of equivalence in the plane.

257. We take as basis for the investigations in the

present chapter the Assumptions I, 1-2, and II-IV.

We exclude the Archimedes assumption. Our

theory of proportion and sect-calculus put us in

position to found the Euclidean theory of equiva-
lence by means of the assumptions named, that is,

in the plane and independent of the Archimedes

assumption.

258. Convention. If we join two points of a

polygon P by any sect-train which runs wholly in

the interior of the polygon we obtain two new poly-

gons, P l
and P2 ,

whose inner points all lie in the

interior of P.

We say: P is separated or cut into Px and P2 ;

Pt
and P2 together compose P.

259. Definition. Two polygons are called equiv-

alent if they can be cut into a finite number of

triangles congruent in pairs.

260. Definition. Two polygons are said to be

equivalent by completion if it is possible so to annex
IOQ
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equivalent polygons to them that the two polygons
so composed are equivalent.

261. We will use the sign of equality ( =) between

polygons to denote
* '

equivalent by completion.
' '

262. From these definitions follows immediately:

By uniting equivalent polygons we get again equiv-

alent polygons. If we take away equivalent poly-

gons from equivalent polygons the remaining poly-

gons are equivalent by completion.

Furthermore, we have the following propositions :

263. Theorem. Two polygons P, and P2 equiv-
alent to a third P3 are equivalent.

Two polygons equivalent by completion to a third

are equivalent by completion.
Proof. By hypothesis there is as well for P

x as

for P2 an assignable partition into triangles such

that each of these two partitions corresponds re-

spectively to a partition of the polygon P3 into

congruent triangles.
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general be cut into polygons by sects which pertain

to the other partition. Now we introduce a suffi-

cient number of sects to cut each of these polygons
itself into triangles, and then make the two corre-

sponding partitions into triangles in P, and in P2 .

Then these two polygons P x
and P2 are cut into the

same number of triangles congruent in pairs, and

are therefore by our definition equivalent.

Again, if Q, = Q3 and Q2
=Q3 ,

then according to

definition the composite Q l + P 1
is equivalent to

Q3 +P lt and Q2 + P2 is equivalent to Q3 + P2 . There-

fore Q x +Px + P2 is equivalent to Q3 +P x + P2 ,
which

is equivalent to Q2 +P2 + Pi- •'• Qi=02-

Parallelograms and Triangles with equal bases and

altitudes.

264. Theorem. Two parallelograms with equal
bases and equal altitudes are equivalent by com-

pletion.

Proof. aBAE=aCDF. Annex aBCH and
leave out a DUE. ; . ABCD =EBCF.

Fig. 1P5. Fig. 106.

To prove these parallelograms equivalent would

require here the Archimedes assumption.
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265. Theorem. Any triangle ABC is always

equivalent to a certain parallelo-

gram with equal base and half

altitude.

Proof. Bisect AC in D and BC
in E, and then prolong BE to F,

making EF = DE. The triangles

DEC and FBE are then congruent,
and consequently the A ABC and

parallelogram ABFD are equivalent.
266. From 264 and 265 follows with help of

263 immediately:
Theorem. Two triangles of equal bases and equal

altitudes are equivalent by completion.

267. That two triangles with equal bases and

altitudes are always equivalent cannot possibly
be proven without using the Archimedes assump-
tion.

268. The remaining theorems of elementary

geometry about the equivalence by completion of

polygons, and also, in particular, the Pythagoras

equivalence theorem :

' ' The square on the hy-

pothenuse of a right triangle is equivalent to the

united squares on the other two sides," are easy

consequences of the theorems just set up.

269. But, nevertheless, in further working out

the theory of equivalence we encounter an essen-

tial difficulty.

In particular our considerations hitherto leave

undecided whether perhaps all polygons are not

always equivalent by completion to one another.

In this case all the previously established theo-
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rems would teach nothing and be without import-

ance.

The proven theorems about equivalence by com-

pletion are entirely rigorous; nevertheless we

recognize on closer investigation that they all for

the present have no content. We do not yet know
whether there are polygons at all which are not

equivalent by completion.

270. And not only must we know this, if we
would undertake anything with our theorems, but

also we need to consider the more specific question

whether two rectangles equivalent by completion,

having one common side, have also necessarily

their other sides congruent, that is, whether a

rectangle is uniquely determined by one of its

sides and its equivalence by completion.

271. As the closer consideration shows, we need

for answering the questions raised the inverse of

266, which runs as follows:

Theorem. If two triangles equivalent by completion

have equal bases then they have also equal altitudes.

This fundamental theorem is the thirty-ninth

of the first book of Euclid's Elements (Eu. I, 39).

However, to prove it Euclid invokes the general
theorem about magnitudes :

' ' The whole is greater

than its part," a procedure which amounts to the

introduction of a new geometric assumption, that

is, the tacit assumption of a new and independent

magnitude, the
"
surface" or

u
superficial content."

272. Now for the question of superficial content,

we can, on the basis of only our old assumptions,

though into them the word M content" does not in
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any way enter, prove that two polygons can be

compared as to content.

273. Thus the congruence and equality of sects

is fundamental or primitive, rooted immediately
in assumptions.

274. But the equality of polygons as to content

is a constructible idea with nothing new about it

but a definition.

275. We proceed now to establish this theorem

(Eu. I, 39) and therewith the theory of content

in the way we desire, that is, merely with help of

the plane assumptions without using the Archimedes

assumption.

276. It need not surprise us that the proof is not

wholly simple. For that two triangles are equiva-
lent by completion according to definition only says
that certain "corresponding" triangle-partitions

exist; thereby can the number of the triangles be

very great and one does not immediately see how
from that we can conclude from equality of bases

equality of the altitudes.

277. We begin by introducing the idea of area.

The area of triangles and polygons.

278. Definition. In any triangle ABC with the

sides a, b, c, if we construct

the two altitudes ha =AD,
hb =BE y

then follows from

the similarity of the tri-

angles BCE and ACD,
(by 234) the proportion
a:h b

= b:ha ,
that is, aha=bhb . fig . 10s.
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Consequently in every triangle the product of a

base and its altitude is independent of what side

of the triangle one chooses as base. Half the

product of base and altitude of a triangle a is

called the area of the triangle A, and designated

by A(A).
279. Convention. A sect which joins a vertex

of a triangle with a point of the opposite side is

called a transversal; this cuts the triangle into two

triangles with common altitude, whose bases lie

on the same straight. Such a partition is called a

transversal partition of the triangle.

280. Theorem. // a triangle A is in any way cut

by any straights into a certain finite number of tri-

angles A kt then is always the area of the triangle a

equal to the sum of the areas of all the triangles a k .

Proof. From the distributive law in our sect-

calculus follows immedi-

ately that the area of any
triangle is equal to the

sum of the areas of two

triangles which arise from

the first by any transversal

partition. Thus, for example,

A(A 1)+A(A 2)=$b 1
h + ib2h=iHb l + b2 )

= ibh= A(A).
The repeated application of this fact shows that

the area of any triangle is also

equal to the sum of the areas of

all the triangles which arise

from the first, if we make suc-

cessively however many trans-

versal partitions.

Fig. 09.
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In order now to accomplish the corresponding
demonstration for any partition of the triangle a into

triangles Ajb> we draw from one vertex A of the

triangle A through each dividing-point of the par-

tition, that is, through each vertex of the triangles

A *, a transversal
; by these transversals the triangle

a is cut into certain triangles A,. Each of these

triangles A
t is cut by the dividing-sects of the given

partition into certain triangles and quadrilaterals.
If in each quadrilateral we draw a diagonal then

each triangle A
t is cut into certain triangles A ts .

We will now show that the partition into trian-

gles Afc, as well for the triangles a, as also for

the triangles A k ,
is a chain of transversal partitions.

Fig. hi.

In fact, first is clear, that every partition of a tri-

angle into part-triangles can always be effected by
a series of transversal partitions, if, in the partition,

no dividing-points lie in the interior of the triangle,

and besides at least one side of the triangle remains

free from dividing-points.

Now these conditions are evident for the trian-

gles a
t
from the circumstance that for each of them
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the interior and one side, that opposite the point

A, are free from dividing-points.

But also for every a^ is the partition into a
/s

reducible to transversal partitions. In fact, if we
consider a triangle a k ,

then there is, among the

transversals from A in the triangle a a certain

transversal which either cuts the triangle a k into

two triangles, or else upon which a side of a k falls.

For we recall that within no At are there dividing-

points.

By construction, through every vertex of Ajt goes
a transversal from A

;
and there is always one vertex

of & k for which this transversal has a second point
not in the region exterior to A * ;

it therefore either

goes through the interior of A k or upon it is a side

of A*.

In this latter case this side of the triangle A k

remains altogether free from further dividing-points
in the partition into triangles a /5 . In the other

case the sect of that transversal within the triangle

A k is for both the triangles thus arising a side which

in the partition into triangles a ts remains surely free

from further dividing-points.

From the considerations at the beginning of this

demonstration the area A (a) of the triangle a

equals the sum of all areas A (a { ) of the triangles

A t,
and this sum is equal to the sum of all areas

A(A ts). On the other hand is also the sum of the

areas A(A k) of all triangles a k equal to the sum of

all areas A(a is ). Hence, finally, the area A (a) is

also equal to the sum of all areas A(A k ). So the

theorem is completely proven. «
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281. Definition. If we define the area A(JP) of

a polygon as the sum of the areas of all triangles

into which it is cut in a certain partition, then the

area of a polygon is independent of the way it is

cut into triangles, and consequently determined

uniquely simply by the polygon itself.

Proof. Suppose a c to be the triangles of a cer-

tain partition, and A k those of any other partition.

Considering these two partitions simultaneously, in

general is every triangle A c cut into polygons by
sects pertaining to a*. Now we introduce sects

sufficient to cut these polygons themselves into tri-

angles A s . Then the triangles a c have (by 280) for

the sum of their areas the sum of the areas of a 5 .

But so also have the triangles A &.

[This fact, that the sum named is independent of

the way of cutting up the polygon, is the kernel,

the essence of this whole investigation.]

282. Corollary to 281. Equivalent polygons have

equal area.

283. Moreover, if P and Q are two polygons equiv-
alent by completion, then there must be, from the

definition, two equivalent polygons P' and Q', such

that the polygon compounded of P and P1
is equiv-

alent to the polygon compounded of Q and Q' . From
the two equations

i4(P + P')~.4(Q + g'), A(P')=A(Q')>

we deduce at once A(P) =A(Q), that is, polygons

equivalent by completion have equal area.

284. From this latter fact we get immediately
the proof of the theorem of 271 (Eu. I, 39). For,
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designating the equal bases of the two triangle?,

by b, the corresponding altitudes by h and h\ we

then conclude from the assumed equivalence by
completion of the two triangles that they must

also have equal area; that is, it follows \bh = \bh\

and, consequently, after division by \b, h=h'\
which was to be proved.

Area and Equivalence-by-completion.

285. In what precedes we have found that poly-

gons equivalent-by-completion have always equal
area. The inverse is also true.

286. To prove the inverse, we consider first

two triangles ABC and AB'C with a common

right angle at A. The areas of these two triangles

are expresesd by the formulas

A(ABC)=iAB.AC,
A(AB'C'=iAB'-AC.
If we assume that these

two areas are equal, we
have

AB.AC=AB'-AC,
or AB:AB'=AC':AC,
and from this it follows (by 235) that the two

straights BC and B'C are parallel, and then we

recognize (from 266) that the two triangles BOB'
and BC'C are equivalent-by-completion. By an-

nexing the triangle ABC it follows that the two

triangles ABC and AB'C are equivalent-by-com-

pletion. Thus we have proved that two right-

FlG. 112.
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angled triangles with equal area are also always

equivalent-by-completion .

287. Take now any triangle, with base b and
altitude h, then this is (by 266) equivalent-by-

completion to a right-angled triangle with the two

perpendicular sides b and h\ and since the original

triangle evidently has the same area as the right-

angled triangle, so it follows that in the preced-

ing article the limitation to right-angled triangles

was not necessary. Thus we have shown that

any two triangles with equal area are also always

equivalent-by-completion.

288. Now let P be any polygon with area b.

Let P be cut into n triangles with the respective
areas blf

b2 ,
. . . bn \

then is b=b 1 + b2 + . . . + b n .

Construct now a triangle ABC with the base

AB =b and the altitude h = i and mark on the base

the points A
lt

A
2 ,

. . . A n ,
such that b

l
=AA

l ,

b2 =A 1
A

2 ,
. . . bn _ x =i„_2A„.„ bn =A n _ 1B. Since

&n b

Fig. 113.

tne triangles within the polygon P have respectively
the same area as the triangles AAlCi

A
±
A 2C, . . .

•

A n _2
A n _ xC, A n _ tBC, so they are, by what has just

been proven, equivalent-by-completion to these.
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Consequently the polygon P is equivalent-by-

completion to a triangle with the base b and the

altitude h = i.

Hence follows, with help of theorem 287, that

two polygons of equal area are always equivalent-

by-completion.

289. We may combine the two results found

in this article 288 and in 283 into the following
theorem: Two polygons equivalent-by-completion
have always the same area; and inversely, two

polygons with equal area are always equivalent-by-

completion.

290. In particular two rectangles equivalent-by-

completion which have one side in common must
also have their other sides congruent.

291. Also follows the theorem: // we cut a

rectangle by straights into several triangles and leave

out even one of these triangles, then we cannot with the

remaining triangles fill out the rectangle.

In what precedes is shown that this theorem is

completely independent of the iVrchimedes assump-
tion. Moreover, without the application of the

Archimedes assumption, this theorem 291 does

not suffice of itself for demonstrating Eu. I, 39.

292. Definition. Of two polygons P and Q, we
call P of lesser content (respectively, of equal, of

greater content) than Qf according as the area A(P)
is less (equal, greater) than A(Q).

293. From what precedes it is clear that the

concepts of equal content, of lesser content, of

greater content are mutually exclusive.

294. Further, we see that a polygon which lies
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wholly within another polygon must always be of

lesser content than this latter.

295. Herewith we have established the essential

theorems of the theory of superficial content,

wholly upon considerations of the congruence of

sects and angles, and without assuming superficial

content to be a magnitude.

296. Theorem. The area of any parallelogram is

the product of the base by the altitude.

297. Corollary to 296. The area of any rec-

tangle or square is the product of two consecutive

sides.

298. A square whose side is the unit sect has for

area this unit sect,

since 1X1=1.

Any polygon has for area as many such unit

sects as the polygon contains such squares on the

unit sect.

The number expressing the area of a polygon
will thus be the same in terms of our unit sect or in

terms of a square on this sect considered as a new

kind of unit, a unit surface, or unit of content.

Such units, though traditional, are unnecessary
and sometimes exceedingly awkward, as, for ex-

ample, the acre.

Ex. 284. If twice the number expressing the area of a

triangle be divided by the number expressing the base,

the quotient is the number expressing the altitude.

Ex. 285. One side of a triangle is 35-74, and the alti-

tude on it is 6-3. Find the area.

299. Theorem. // two triangles (or parallelograms)
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have one angle of the one congruent to one angle of the

other, their areas are proportional to the products of

their sides about the congruent angles.

then

Let 4Cm$C%

Area a ABC \AC-BB AC-BD
Area &A'B'C~ \A'C -B'U

~
A'C -B'U'

R71 BC
But in • ~ a 's BCD and B'C'D', -§rjy==g,£r.

Area aABC AC-BC
"

Area aA'B'C A'C -B'C

300. Corollary to 299. The areas of similar tri-

angles are proportional to the squares of correspond-

ing sides.

301. Problem. To construct a rectangle, given
two consecutive sides.

Construction. Take a straight and a perpendic-

ular to it. From the vertex of
?— ---—-§

the right angle take one given
sect on the straight, the other _
on the perpendicular. Through
their second end-points draw

perpendiculars. These (by 77) meet. They inter-

sect in the fourth vertex of the rectangle required.

Proof. By construction the figure is a parallelo-

gram with one right angle; .'.a rectangle.

Fig. 115.
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302. Corollary to 301. So we may construct a

square on any given sect.

303. Theorem. The square on the hypothenuse of

any right-angled triangle is equivalent to the sum of the

squares on the other two sides.

Hypothesis, a ABC, r't-

angled at C.

Conclusion. Square on AB
is equivalent to sq. on AC
+ sq. on BC.

Proof. On hypothenuse

AB, on side opposite C, con-

ABDF. From its vertices

,
and /.

||
BC. Drop BK,

A
Il6.Fig.

struct (by 302) the sq.

D, Fdrop DH, FG±CA
FL±DH, and ?..

(complements of

(complements of

(complements of

aDBK=aFDL =

||
AC. Then $ABC = tDBK

4ABK). Also ^BDK^iDFL
Also -4-DFL = ^AFG
;. (by 44), aABC =

.-. BCHK is sq. on BC,

sq. on AB =AFLKB +

^.LDF)

•4.AFL).

a FAG.
and FGHL =sq. on AC. .

2 AABC = sq. on BC + sq. on AC.

304. Problem. To construct an equilateral triangle

on a given' sect.

Construction. On the st. AB from A take the

given sect AB. At B erect to AB
a perpendicular. On this perpen-

dicular, from B take BC, the given
sect. Join AC. At C erect to the

straight AC the perpendicular CD.
On CD from C take CD, the given
sect. Join AD. Bisect AD at E,

"7- and AB at F. Erect at F to AB
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the perpendicular FG. From F take FG=AE.
ABG is the required equilateral triangle.

__Proof.
AG 2 =AF 2

+FG
2 = (iABy + ({ 3(AB)

2 =
AB\

305. Theorem. In any triangle y
the square of a

side opposite any acute angle is

less than the sum of the squares A^^
of the other two sides by twice y j* ^s^
the product of either of those sides

C
Z—! i _^

A
and a sect from the foot of that

side's altitude to the vertex of the

acute angle.

Proof. Let a, 6, c denote the sides, and h denote

6's altitude, and / the sect from its foot to the

acute angle A .

a 2 -h 2 = (b-j}
2 = b

2

-2bj + j
2 = b

2

-2bj + c
2 -h 2

;

.'.a
2 = b 2

-2bj + c
2

.

306. Theorem. In an obtuse-angled triangle the

square of the side opposite the obtuse angle is

greater than the sum of the squares of the other

two sides by twice the product of either of those

sides and a sect from the foot of that side's altitude

to the vertex of the obtuse angle.

Ex. 286. Find the area of an isosceles triangle whose
base is 60 and each of the equal sides 50.

Ex. 287. If two triangles (or parallelograms) have an

angle of one supplemental to an angle of the other, their

areas are as the products of the sides including the supple-

mentary angles.

Ex. 288. The area of any circumscribed polygon is half

the product of its perimeter by the radius of the inscribed

circle.
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Ex. 289. To find the area of a trapezoid. Rule:

Multiply the sum of the parallel sides (its bases) by half

their common perpendicular (its altitude).

Ex. 290. The area of a trapezoid equals the product of

its altitude by its median (the sect joining the bisection-

points of the non-parallel sides).

307. To find the altitudes of a triangle in terms of

its sides.

B Either ^ A or ^ C is acute.

Suppose ^ C acute,

c
2 = a 2 + b 2 —

2bj (by 305).

a 2 + ^2_ c
2

h

Fig. 119. ,\ ;

hb
2=a 2

-j
2=a

26
*

(a
2 + b

2 -c 2

)
2

4a
2b 2

-(a
2 + b 2 -c 2

)
2

4b
2

4b
2

(2ab + a 2 + b 2 -c 2
)( 2ab -a 2 -b 2 + c

2
)

4b
2

[(a + b)
2 -c 2

][c
2
-(a-b)

2
]

4b
2

(a + b + c)(a + b-c)(c + a-b)(c-a + b)

4b
2

Put (a + b + c)=2S. Then a + b-c = 2S-2C
25 2(5 —c)2(s —6)2(5 — a)

.\W:-
4b''

;.hh =l[s(s-a)(s-b)(s-c)]K

308. (Heron.) To find the area of a triangle in

terms of its sides.

b 2 $A= %bkb
= -.-[s(s-a)(s-b)(s-c)] ;

,\ A =[5(5 -a) (s -b) (s-c)f.
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Ex.291. If a 2 =b 2 +c 2
, ;.^.A=r\^.

lia 2 >b 2 +c 2
,

.'. £A>r ,

t £.

Iia2 <b 2 +c 2
, :. £A<r't£.

Ex. 292. Given for the three sides of a triangle numeri-

cal expressions in terms of a unit, compute the three

altitudes.

Ex. 293. The sum of the squares of two sides of a tri-

angle is equal to twice the square of half the third side

increased by twice the square of the median upon that

side. [a
2 +c 2 —%b 2 = 2mb 2

].

Ex. 294. The difference of the squares of two sides of

a triangle is equal to twice the product of the third side

by the sect from the foot of that side's altitude to the

foot of its median.
r. a 2 -c 2

~l

Ex. 295. Given numerical expressions for the sides of

a triangle, compute the medians.

2mc
= [2(a

2 +b 2)-c 2

]i.

309. Theorem. The product of two sides of a

triangle equals the product of two sects from thai

vertex making equal angles with the two sides ana

extending, one to the base, the other to the circle cir-

cumscribing the triangle.

Proof. aCBD-aABE.
310. Corollary I to 309. If

BD and BE coincide they bisect

the angle B;
:.AB-BC =BD-BE

=BD(BD+DE)=BD 2+ BD-DE
=BD 2 +CD-DA (by 248).

Therefore the square of a bisecto?

together with the product of the sects Fig. 120.

it makes on a side equals the product of the other two

sides.
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311. Corollary II to 309. If BD be an altitude,

BE is a diameter, for then ^.BAE is r't; there-

fore in any triangle the product of two sides equals the

product of the diameter of the circumscribed circle by

the altitude upon the third side.

Ex. 296. To find the bisectors of the angles of a tri-

angle, given the sides. tc
=

j[abs{s
—

c)]l.

Ex. 297. To find the radius of the O circumscribing a tri-

angle. Rule: Divide the product of the three sides by
four times the area of the triangle. R=abc/4A.

Ex. 298. The in-radius. equals area over half sum of

sides. [r=A/s].
Ex. 299. The side of an equilateral triangle is

Ex. 300. The radius of circle circumscribing triangle

7, 15, 20, is 12^. The in-radius is 2.

Ex. 301. • To find the radius of an escribed circle. Rule:

Divide the area of the triangle by the difference between

half the sum of its sides and the tangent side.

[*-,«*/($ -a)J.
Ex. 302. A =(rr1

r
2
r
3)i.

Ex.303. i/r 1 +i/r2 +i/r3
= i/r.

Ex. 304. The sum of the four squares on the four sides

of any quadrilateral is greater than the sum of the squares

en the diagonals by four times the square on the sect

joining the mid-points of the diagonals.

Ex. 305. The sum of the squares on the four sides of

a parallelogram is equal to the sum of the squares on the

diagonals.

Ex. 306. The product of the external segments (sects),

made on one side by the bisector of an external angle

of a triangle equals the square of the bisector together

with the product of the other two sides.

Ex. 307. Find rv r
2 ,

r3 ,
when a = 7, 6 = 15, c = 20.
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The Mensuration of the Circle.

312. We assume that with every arc is connected

a sect such that if an arc be cut into two arcs, this

sect is the sum of their sects; moreover, this sect

is not less than the chord of the arc, nor, if the arc

be minor, is it greater than the sum of the sects on

the tangents from the extremities of the arc to

their intersection. This sect we call the length of

the arc.

313. In practical science, every sect is expressed

by the unit sect preceded by a number.

From our knowledge of the number and the

unit sect it multiplies, we get knowledge of the sect

to be expressed, and we can always construct this

expression. For science, the unit sect is the centi-

meter [

cm
], which is the hundredth part of the sect

called a meter, two marked points on a special bar

of platinum at Paris, when the bar is at the tem-

perature of melting ice.

314. If an angle of an equilateral triangle be

taken at the center of a circle, the chord it in-

tercepts equals the radius. Therefore the length
of a semicircle is not less than three times its

radius.

It is in fact greater, since joining a point on

the arc of one of these chords to its extremities

gives a pair of chords together greater than the

radius.

Again, taking any diameter, then the diameter

perpendicular to this, then perpendiculars at the
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four extremities of these, we have a square of tan-

gents equal to Sr.

Therefore the length of a semicircle is not greater

than four times its radius. It is in fact less, as is

seen by drawing a tangent at any fifth point of the

circle. The number prefixed to the radius in the

expression for the length of the semicircle is desig-

nated by the symbol n.

The length of any circle is 27tr.

So the lengths of circles are proportional to their

radii.

Historical Note on n.

315. We have proved that n is greater than 3

and less than 4, but the Talmud says: "What is

three handbreadths around is one handbreadth

through," and our Bible also gives this value 3.

[I Kings vii. 23; II Chronicles iv. 2.]

Ahmes (about 1700 b.c.) gave [4/3]*
=

3- 16.

Archimedes placed it between 3^r and $\. Ptolemy
used 3TW.
The Hindoo Aryabhatta (b. 476) gave 3-1416;

the Arab Alkhovarizmi (nourished 813-833) gave

3-1416; Adriaan Anthoniszoon, father of Adriaan

Metius [in 1585] gave 355/113=3-1415929; Ludolf

van Ceulen [1540-16 10] gave the equivalent of over

30 decimal places

[71
= 3-141592653589793238462643383279+]

(the decimal fraction was not yet invented), and

wished it cut on his tomb at Leyden. Vega gave

140 cjecimal places; Dase, 200; Richter, 500.
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In 1873 Wm. Shanks gave 707 places of decimals.

The symbol it is first used for this number in

Jones's ''Synopsis Palmariorum Matheseos," Lon-

don, 1706.

In 1770 Lambert proved tz irrational, that is,

inexpressible as. a fraction. In 1882 Lindemann

proved x transcendent, that is, not a root of any

algebraic equation with rational coefficients, and

hence geometrically inconstructable.

316. Kochansky (1685) gave the following simple
construction for the length of the semicircle:

Fig. 121.

At the end-point A of the diameter BA draw

the tangent to the circle OC(CA). Take ^fACE =

half the angle of an equilateral triangle
=
J r't ^ .

On the tangent, take EF = y.
Then BF is with great exactitude the length of

the semicircle. In fact BF = r[i^ — 2(3)*]*
-s

3* 141 $r.

317. Definition. The circle with the unit sect

for radius is called the unit circle.

318. Definition. The length of the arc of unit

circle intercepted by an angle with vertex at center

is called the size of the angle.
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319. Definition. The angle whose size is the

unit sect is called a radian.

320. Theorem. A radian intercepts on any circle

an arc whose length is that circle's radius.

321. Corollary to 320.

If u denote the number of radians in an angle
and I the length of the arc it intercepts on circle

of radius r, then

u=l/r.

322. Definition. An arc with the radii to its

end-points is called a sector.

323. Definition. The area of a sector is the

product of the length of its arc by half the radius.

324. Corollary to 323 and 314.

The area of any circle, o =r 2
7r.

325. Corollary to 324.

The areas of circles are proportional to the areas

of squares on their radii.

Ex. 308. The areas of similar polygons are as the squares
of corresponding sides.

Ex. 309. Find the length of the circle when r = 14 units.

Ex. 310. Find the diameter of a wheel which in a street

19,635 meters long makes 3125 revolutions.

Ex. 311. Find the length and area of a circle when
r = 7.

Ex. 312. If we call one-ninetieth of a quadrant a degree

of arc and its angle at the center a degree of angle, find the

size of this ^ (size of ^i°).
Ex. 313. How many degrees in a radian?

Ex. 314. The angles of a triangle are as 1:2:3. Find

the size of each. Find the number of degrees in each.

Ex.315. The angles of a quadrilateral are as 2:3:4: 7.

Find each in degrees and radians.
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Ex. 316. In what regular polygon is every angle 168^°?

n
Ex. 317. If a r't^ be divided into — congruent parts,

how many of them would a radian contain?

Ex. 318. Find the length of the arc pertaining to a

central angle of 7 8° when r=i-5 meters.

Ex. 319. Find an arc of 112 which is 4 meters longer

than its radius.

Ex. 320. Calling 7:=%?-, find r when 64 are 70-4 meters.

Ex. 321. Find the inscribed angle cutting out one-tenth

of the circle.

Ex. 322. An angle made by two tangents is the differ-

ence between 180 and the smaller intercepted arc. Make
this statement exact.

Ex. 323. Find the size of half a right angle.

Ex. 324. Find the size of 30 ; 45 ; 6o°.

Ex. 325. How many radians in r°? in 240 ?

Ex. 326. Express the size of seven-sixteenths of a right

angle.

Ex. 327. How many radians in the angle made by the

hands of a watch at 5: 15 o'clock? at quarter to 8? at

3: 30? at 6: 05? »

Ex. 328. The length of half a quadrant in one circle

equals that of two-thirds of a quadrant in another. Find

how many radians would be subtended at the center of

the first by an arc of it equal in length to the radius of

the second.

Ex. 329. Find the number of degrees in an angle whose
size is i; is $; is f ;

is |[; is %n.
2 •

«t

Ex. 330. The size of the sum of two angles is —**

and their difference is 17 ;
find the angles.

Ex. 331. How many times is the angle of an isosceles

triangle which is half each angle at the base contained

in a radian?

Ex. 332. Two wheels with fixed centers roll upon each

other, and the size of the angle through which one turns

gives the number of degrees through which the other
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turns in the same time. In what proportion are the radii

of the wheels?

Ex. $3$. The length of an arc of 6o° is 36I; find the

radius.

Ex. 334. Find the circle where ^30° is subtended

by arc 4 meters long.

Ex. 335. If be area of circle, prove

i/tOA^^ + i/tO/^r^ + i/tO^Wl^iAG/Wli
Ex. 336. The perimeters of an equilateral triangle, a

square, and a circle are each of them 12 meters. Find

the area of each of these figures to the nearest hundredth.

Ex. 337. An equilateral triangle and a regular hexagon
have the same perimeter; show that the areas of their

inscribed circles are as 4 to 9.

Ex. 338. Find the number of degrees in the arc of a

sector whose area equals the square of its radius.

Ex. 339. Find area of sector whose radius equals 25 and

the size of whose angle is f,

Ex. 340. The length of the arc of a sector is 16 meters,

the angle is £ of a r't ^. Find area of sector.

Ex. 341. If 2As have a common base, their areas are

as the segments into which the join of the vertices is di-

vided by the common base.

Ex. 342. The area of a circum-polygon is half perimeter

by in-radius [%pr].

Ex. 343. The area of a rhombus is half the product of

its diagonals.

Ex. 344. If we magnify a quad' until a diagonal is

tripled, what of its area?

Ex. 345. If the sum of the squares on the three sides

of a A = 8 times the square of a median the A is r't-angled.

Ex. 346. Lengthening through A the side b of a a

by c and c by b, they become diagonals of a symtra whose

area is to that of the A as (b+ c)
2 to be.

Ex. 347. If upon the three sides of a r't A as corre-

sponding sides similar polygons are constructed that on

the hypothenuse =the sum of those on the Is.
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Ex. 348. The area of any r'tA =the sum of the areas of

the two limes or crescent-shaped figures made by de-

scribing semi- os outwardly on the jls and a semi-o on
the hypothenuse through the vertex of the r't

if [called

the lunes of Hippocrates of Chios (about 450 b.c.)].

Ex. 349. (Pappus.) Any two ||g'ms on two sides of a A
are together —to a ||g'm on the third side whose consecutive

side is = and
||
to the sect joining the common vertex of

the other ||g'ms to the intersection of their sides
||
to those

of the A (produced) .

Ex. 350. If all the sides of a quad' are unequal, it is

impossible to divide it into = a s by straights from a point
within to its vertices.

Ex. 351. The joins of the centroid and vertices of a a
trisect it.

Ex. 352. Make a symtra triple a given symtra.
Ex. 353. On each side of a quad' describe a sq' out-

wardly. Of the four as made by joining their neighbor-

ing corners, two opposite =the other two and = the quad'.
Ex. 354. If from an ^ a we cut two = as, one I- ,

the

sq' of one of the = sides of the I- a equals the product of

the sides of the other A on the arms of the 7f
a.

Ex. 355. If any point within a |!g'm be joined to the

four vertices, one pair of as with
||
bases = the other.

Ex. 356. One median of a trapezoid cuts it into =parts.
Ex. 357. Transform a given a into an — + A.

Ex. 358. Transform a given •(•
a into a regular a.

Ex. 359. Construct a polygon ~ to two given ~ poly-

gons and = to their sum.

Ex. 360. If a vertex of a a moves on a 1 to the oppo-
site side, the difference of the squares of the other sides

is constant.

Ex. 361. The ^ bi's of a rectangle make a sq', which

is half the sq' on the difference of the sides of the rectangle.

Ex. 362. The bisectors of the exterior ^ s of a rectangle

make a sq' which is half the sq' of the sum of the sides of

the rectangle.

Ex. 363. The sum of the squares made by the bisectors
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of the interior and exterior
j£

s of a rectangle equals the

sq' of its diagonal; their difference is double the rect-

angle.

Ex. 364. If on the hypothenuse we lay off from each

end its consecutive side, the sq' of the mid sect is double

the product of the others.

Ex.365. In aABC, BD-a-BF-c.
Ex. 366. In a trapezoid, the sum of the sq's on the

diagonals equals the sum of the sq's on the non-|| sides

plus twice the product of the
||

sides.

Ex. 367. Prove r
1+r2+r3

= r+4i?.
Ex. 368. To bisect a a by a st' through a given point

in a side; by a st'
||
to a side; _L to a side.

Ex. 369. Trisect a -I- a by ||s.

Ex. 370. A quad' equals a a with its diagonals and
their ^ as sides and included ^ .

Ex. 371. The areas of as inscribed in a © are as the

products of their sides.

Ex. 372. Construct an equilateral a, given the altitude.

Ex. 373. a from ^s and area.

Ex. 374. Triple the squares of the sides of a A is quad-

ruple the sq's of the medians.

Ex. 375. Any quad' is divided by its diagonals into

four as whose areas form a proportion.

Ex.376. AH-HD=BH-HE.
Ex. 377. The area of a -I- r't A is $c

2
.

Ex. 378. Construct i A =given a with same b and hb.

Ex. 379. Bisect any quad' by a st' from any vertex; from

any point in a side.

Ex. 380. Any st' through the bisection-point of a diag-

onal bisects the ||gm.

Ex. 381. 3(a
2+ 6 2+ c 2

) =4(ma
2+m 2+ wc 2

).

Ex. 382. Upon any st' the sum of the ±s from the

vertices of a a is thrice the 1 from its centroid.

Ex.383. In r't A, $c
2=4(wo ,+ Wt 2

).

Ex. 384. Trisect a quad'.
Ex. 385. Find a =aABC, but with sides m, n; with

side m and adjoining ^ d; and opposite ^ 8.
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Ex.386. Find -I- A = AABC, but with base m\ with

side m.

Ex. 387. Find a =given polygon.
Ex. 388. From any point in an equilateral a the three ±s

on the sides together =the altitude.

Ex. 389. Sects from the bisection-point of a non-|| side

of a trapezoid to oppsite vertices bisect it.

Ex. 390. If the products of the segments of two inter-

secting sects are =, their ends are concyclic.

Ex.391. Area of r't A = product of the segments of

the hypothenuse made by _|_ from /.

Ex. 392. In r't a, areas of as made by he are propor-
tional to areas of their in-os.

Ex.393. 1 /ha+ 1 /hb+ 1 /he = 1 /r.

Ex.394. hahbhc =(a+ b+ c)
3r 3

/abc.

Ex. 395. If ha, hb', he be the perpendiculars from any
point within a a, upon the sides, prove ha

f

/ha -\-hb
r

/lib

+ hc
,
/he = i.

Ex.396. r=\AI-BI-CI(a+ b+ c)/abc.

Ex. 397. abc =a{Aiy+ b{Biy+ c(CI)\
Ex. 398. (AI)

2
+(BI)

2

+(CI)
2 = ab+ ac + be- 6abc/(a +

b+c).
Ex. 399. R+ r = _Ls from on sides.

Ex. 400. In -I- a, if b =hb, then fb =R.
Ex. 401. R =2R of aDEF.
Ex.402. Area of a /,, I

2 ,
I 3 =abc/2r.

Ex. 403. If qa , qb, qc be the sides of the 3 sq's inscribed

in a a, then 1 /qa
= 1 Jha+ 1 /a ;

1 /qb
= 1 /hb + 1 /b ; i/qc

= i/he+i/c
Ex. 404. 1 /r = 1 /ha +i/hb+i/hr

;
1 /r,

= - 1 /ha + 1 /hb

+ i/hc ;
1 frt

= 1 /ha — i/hb+i/hc; 1 /r3
- 1 /ha+ 1 /hb — 1 /he.

Ex.405. 2/ha = i/r -i/r l =i/r 2 +i/r3 ;
2 /hb = i/r — 1 /r2

= 1 /r3+ 1 /r, ; 2/hc
= i/r-i /r3

= 1 /r, + 1 /r2 .

Ex. 406. Ju/ 2 =rrj{r, -r) =r
2
r
3 /(rz+ r

3 ).

Ex.407. R 2 =(IOy+2rR =
(I lOy- 2 r

l
R.

Ex. 408. Find the segments of b made by tb.

Ex. 409. The base of a a is 32 feet and its height 20 feet;
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what is the area of the a formed by drawing a st'
||
b

5 feet from B ? Where must a st'
||
b be drawn so as to

divide the a into 2 parts of m area?

Ex. 410. Upon each side a of a sq' as diameter semi-

circles are described within the sq', forming 4 leaves;

find the area of a leaf.



CHAPTER XI.

GEOMETRY OF PLANES.

326. Theorem. Two parallels determine a plane.

Proof. By definition they are coplanar. Any
plane on these parallels would be on three non-

costraight points of this given plane, hence (by I 4)

identical with it.

327. Corollary to 326. If a plane contains one

of two parallels and any point of the other, it con-

tains both parallels.

328. Theorem. Three planes which do not con-

tain the same straight cannot have more than one

point in common.

Proof. If they had two points in common
(by I 5) the straight determined by those two

points would be in each.

329. Corollary to 328. If three planes not con-

taining the same straight intersect in pairs, the

three straights of intersection [common sections, or

meets'] are either copunctal or parallel in pairs.

330. Corollary to 329. If a plane on one of two

parallels meet a plane on the other [neither that

of the
|| s], the meet is parallel to each of the two

parallels.

For (by 9) the three planes can have no point
x 39
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in common, since a point common to the three would

be common to the two parallels.

Ex. 411. If a st' cross three copunctal st's, the four

are copunctal or coplanar.
Ex. 412. If each of three st's crosses the others, the

three are coplanar or copunctal.
Ex 413. The meet of planes determined by two pairs

of st's on A is on A.

Ex. 414. If A is on a and a, it is on the intersections

of a with planes on a.

331. Problem. Through a given point A of a given

plane a to pass straights a and b in a.

Fig. 122.

Solution. There are (by I 7) in the plane at

least three non-costraight points, A, B, C. But

(by I 5) A and B determine a straight in the plane a.

So do A and C.

332. Problem. To put two planes on the straight a.

Fig. n?3.

Solution. On a (by I 2) are at least two points,

A and B. There are (by I 7) at least four non-
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costraight non-coplanar points, A, B, C, D. There-

fore A, B, and C are not costraight, otherwise

(by 11) A, B, C, D would be coplanar. Therefore

(by I 3) A, B, C determine a plane which (by I 5)

contains a.

Just so A, B, D determine a plane on a.

333. Theorem. If a straight be perpendicular

to each of two intersecting straights, it will be per-

pendicular to every other straight in their plane and

on their point of intersection.

Hypothesis. Let BP be ± to BA. and BC.

Let BD be in plane ABC.
Conclusion. BP±BD.

Fig. 124.

Proof. Take A and C on the sides of the angle

at B in which BD lies. Let D be the point where

AC crosses BD. Take BP' =BP. Then (by 43),

aPBA = aP'BA, and aPBC=aP'BC.
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:. PA = P'A and PC=P'C; . . (by 58) aPAC^
aP'AC.

/. 4PCD=4P'CD\ /. (by 43) aPCD^aP'CD.
:.PD=P'D\ .'.(by 58) aPBD= aP'DB.
/. ^PBD^^P'BD; ;.BP\_BD.
334. Definition. A straight is said to be per-

pendicular to a plane when it is perpendicular to

every straight in that plane which passes through
its foot,

—that is, the point it has in common with

the plane, called also their pass.

Then also the plane is said to be perpendicular
to the straight.

335. Definition. A straight is said to be parallel to a

plane when it has no point in common withtheplane.
Then also the plane is said to be parallel to the

straight.

336. Definition. A straight neither on the plane,

nor parallel nor perpendicular to the plane, is said

to be oblique to the plane. A sect from a point to a

plane, if it be not perpendicular, is called an oblique.

Fig. 125.

337. Problem. To construct a plane perpendicular

to a given straight a at a given point A.
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Solution. Put (by 332) through a two planes.

In each of them at A (by 161) erect a perpendicular

to a. The plane of these perpendiculars is (by 333

and 334) perpendicular to a at A.

338. Problem. To construct a plane perpendicular

to a given straight a through a given point P not on a.

Solution. By 160, drop PA±a.

By 332 and 161, erect another perpendicular AB
to a at A. Then (by 333 and 334) plane PAB\_a.

339. Problem. To erect a perpendicular to a given

plane y at a given point A .

Solution. Take (by 331) through A two straights,

a, b, in the plane y. Find (by 337) a plane a which

at A is _L to a
;
also a plane ^ which at A is _L b.

Fig. 126.

These two planes (by 329) intersect in a straight

c through A.

Since c is in a, .*. (by 334) c is _L a.

Since c is in /?, ,\ c is JL b.

.'• (by 333 and 334) c±T-
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340. Corollary to 339. Through a given point in

a plane there is only one perpendicular to that

plane.

Fig.

Else each would be JL to BC, the meet of their

plane /? with the given plane a.

341. Problem. To drop a perpendicular to a given

plane a from a given point P.

Construction. In a take any straight a.

From P (by 160) drop PA±a. In a (by 161)

erect b±a. From P drop PB±b. Then PB±a.



GEOMETRY OF PLANES. M5

Proof. Produce PB through B, taking BP' = BP.
Then (by 43) aPBA^aP'BA; /.PA=P'A.
Further, since a±AP and a_\_AB, .'. also (by 333)

a±AP'. Thus if M be a second point on a,

,\r't ^PM=^P'M.
.-. (by 43) aPM^aP'M; ;.PM=P'M.
/.(by 58) aPBM=aP'BM\ ;.^PBM is r't.

But by construction ifPBA is r't, .". (by 333
and 334) PB±a.

342. Corollary to 341. From a point P without

a plane a, there is only one perpendicular to the

plane a.

Take (by 341) PBl_a. Then if A be any other

point of a, the r't aPBA has (by 79) the 4PAB
acute.

343. Corollary to 342. From a point to a plane,

the perpendicular is less than any oblique. Equal

obliques meet the plane in a circle, whose center

is the foot of the perpendicular. If through the

center of a circle a perpendicular to its plane be

taken, then sects from a point of this perpendicular

to the circle are equal.

344. Theorem. If a straight is perpendicular to

each of three straights copunctal with it, the three

are coplanar.

Hypothesis. PB±_BA, BD, BC.

Conclusion. BC in plane BDA [a].

Proof. Let plane PBC[p] meet plane a in BC .

Then (by 333) PB±BC. By hypothesis PB1.BC.

But (by 52) in /? is only one perpendicular to PB
at B. .'. BC is identical with BC.

345. Corollary to 344. Through a given point



146 RATIONAL GEOMETRY.

in a straight there is only one plane perpendicular

to that straight.

Fig. 129.

346. Theorem. All points, A, which with two

fixed points B, C given equal sects, AB=AC, are

in the plane a bisecting at right angles the sect

BC, and inversely every

point A f
in the plane a

bisecting at right angles
the sect BC gives A'B =

A'C.

Proof. For the straight

from A to the bisection

point D of BC makes aADB
= aADC and .'.(by 344)
is in a.

Inversely every straight

A'D is ±BC and .*. makes

aA'DB=aA'DC, and ;.A'B=A'C.

347. Corollary to 338. Through a given point
without a given straight there is only one

plane perpendicular to that straight.

Take (by 33%) a through P and 1 to a at B.

Fig. 130.
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Then if A is any other point of a, the r't aPBA
has (by 79) the ifPAB
acute. So plane p through
P and 1 to a could not

pass through A, and so,

passing through B, it is (by

345) identical with a.

348. Theorem. If PB±-
BAC and BA±AC, then

PA±AC.
Proof. Make AC=BP.

.-.(by 43) aCAB =
aPBA. .-.CB=PA, .'. (by 58) aCBP
.-. tCBP^tPAC.

aPAC,

Fig. 132.

But by hypothesis %-CBP is right.

Ex. 415. If PBLBAC and PA±AC, then BAlAC.
Ex. 416. If PBLBAC and BA±AC, all is to AC from

points in PB go to A.

Ex.417. If PHLABC (// is orthocenter), then PA±
to AK H J5C.

349. Theorem. Two perpendiculars to a plane

are coplanar.
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Hypothesis. PB, P'A\_a at B, A.

Conclusion. P' is in the plane ABP.
Proof. In a erect AC±AB.
.'. (by 348) AC±AP. But by hypothesis

AC\AP'.
.'. (by 344) A y P', P, B are coplanar.

p'

/

Fig. 133.

350. Corollary to 349 and 342. Two perpen-

diculars to a plane are parallel.

351. Inverse of 350. If the first of two parallels

is perpendicular to a plane, the second is also per-

pendicular to that plane.

For the perpendicular erected to the plane from

the foot of the second is (by 350) parallel to the

first and so (by IV) identical with the second.

352. Theorem. If one plane be perpendicular

to one of two intersecting straights, and a second

plane perpendicular to the second, they meet and

their meet is perpendicular to the plane of the two

straights.

Hypothesis. Let a be ±CA at A and /? be

±CB at B.

Proof. The meet AD of a with plane ACB is

(by 334) ±AC, and likewise BD±BC; .'. (by 77).
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AD meets BD. Thus the planes a and /?, having
D in common, meet in DP, and (by 351) their

meet PD is 1 to a straight through D
||

to AC,
and also X to a straight through D ||

to BC.

Fig. 134.

353. Theorem. Two straights, each parallel to

the same straight, are parallel to one another, even

though the three be not coplanar.

For a plane J_ to the third will (by 351) be J_

to each of the others; .'. (by 350) they are
||.

Ex. 418. Are st's
||
to the same plane ||? Are planes ||

to the same st' ||?

Ex. 419. A plane ||
to the meet of two planes meets

them in ||s.

354. Definition. The projection of a point upon
a plane is the foot of the perpendicular from the

point to the plane.

The projection of a straight upon a plane is the

assemblage of the projections of all points of the

straight.

355. Theorem. The projection of a straight on

a plane is the straight through the projections of any
two of its points.
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Given A', P\ B', the projections of A, P, B,

points of the straight AB, on the plane a.

To prove P* in the straight A'B'.

Proof. A
} A', B, B r are (by 349) coplanar.

P is (by I 5) in this same plane, .'. (by 350 and

327) so is PP'
\

:. (by 9) A', P', B' are costraight.

Fig. 135.

356. Corollary to 355. A straight and its pro-

jection on a given plane are coplanar. If a straight

intersects a plane, its projection passes through the

point of intersection. A straight parallel to a plane

is parallel to its projection on that plane.

357. Theorem. A straight makes with its own

Fig. 136.

projection upon a plane a less angle than with any

other straight in the plane.
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Hypothesis. Let A' and BA' be the projection
of A and BA on a, and BC any other straight in a,

through B.

Conclusion. 4 ABA' < * ABC.
Proof. Take£C = £A'. Then AA' < AC. (The

perpendicular is the least sect from a point to a

straight.)

/. 4 ABA' <4 ABC.

(In two A's, if a=a', b=b'
y c<c', then^C< 4 C.)

358. Definition. The angle between a straight

and its projection on a plane is called the inclina-

tion of the straight to the plane.

Ex. 420. One of three copunctal st's makes = £s with

the others if its projection on their plane bisects their •£ .

Ex. 421. An oblique makes with some st' in the plane

through its foot any given ^ < the supplement of its

inclination and > its inclination.

Ex. 422. Equal obliques from a point to a plane are

equally inclined to it.

359. Definition. Parallel planes are such as

nowhere meet.

360. Theorem. Planes perpendicular to the same

straight are parallel.

Proof. They cannot (by 345 and 347) have a

point in common.

Ex. 423. A st' and a plane JL to the same st' are
||.

361. Theorem. Every plane through only one of

two parallels is parallel to the other.

Given AB\\ CD in a, and /? another plane through
AB.
To prove CD || /?.
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Since AB is in a and in
/?, it contains (by 9)

every point common to the two planes.

Fig. r37.

But CD is wholly in a. So to meet fi
it must

have a point in common with a and /?,
that is, it

must meet AB. But by hypothesis AB \\
CD.

Ex. 424. Through a given point to draw a st'
||
to two

given planes.

Ex. 425. If a
|| a, and b the meet of a with /?, /? on a

then a
\\
b.

Ex. 426. Through A determine a to cut b and c.

362. Problem. Through either of two straights not

coplanar to pass a plane parallel to the other.

Fig. 138.

If AB and CD are the given straights, take

CF
||
AB. Then (by 361) DCF

\\
AB.
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Determination. There is only one such plane.

For, through DC any plane ||
AB meets plane ABC

in the parallel to AB through C, .'.is identical

with CDF.

Ex. 427. Through a point without a plane pass any
number of st's

||
to that plane.

Ex. 428. Through a point without a st' pass any number
of planes ||

to that st'.

Ex. 429. Planes on a
\\
a meet « in

||s.

Ex. 430. If a
I|
a and a

|| p, then a
|| to the meet a/?.

363. Problem. Through any given point P to

pass a plane parallel to any two given straights,

Fig. 139.

a, b. [The plane determined by the parallel to a

through P, and the parallel to b through P.] [There
is only one such plane.]

Ex. 431. Through two non-coplanar straights one and

only one pair of
|| planes can be passed.

364. Theorem. The intersections of two parallel

planes with a third plane are parallel.

Proof. They cannot meet, being in two parallel

planes; yet they are coplanar, being in the third

plane.
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365. Corollary to 364. Parallel sects included

between parallel planes are equal.

Ex. 432. If two
|| planes meet two

|| planes, the four

meets are
||.

Ex. 433. If a
||
to the meet aft, then a

\\
a and a

\\ ft.

Ex. 434. If a
|| ft, aLa is ±ft.

Ex. 435. Through A draw a
\\ ft. [Solution unique.]

Ex. 436. If, in a, a cross a'
,
in ft, b cross b'

,
and a

|| b,

a'
|| b', then a

|| ft.

Ex. 437. Through A all st's
||
a are coplanar.

Ex. 438. Two planes ||
to a third are

||.

Ex. 439. The intercepts on ||s between a and a
\\
a are -»,

Ex. 440. If AB
|1
a and BC

|| «, then plane ABC \\
a.

Ex. 441. If three sects are = and
||,

the as of their

adjoining ends are = and
||.

Ex. 442. If A in a
|| a, AB \\

a is in a.

366. Theorem. // two angles have their sides

respectively parallel and on the same side of the

straight through their vertices
y they are equal.

Fig. 140.

Hypothesis. AB\\A'B
f with A and A' on the

same side of BBf

;
also CB

\\
C'B' with C and C

on same side of BB'.
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Proof. From A take (by 66) AA 1

1|
BB''; .\ (by

95) AA' = 5£' and A '5' =A£. In same way CC'H
and - BB' and B'C = BC. But then A A' -CC and

(by 353) AA'\\CC'\ :. (by 100) AC-A'C; /. (by

58) aabcsaa'S'c.
367. Corollary to 366. Parallels intersecting the

same plane are equally inclined to it.

368. Definition. Let two planes, a, /?, intersect

in the straight a. Let A and A' be points on a.

Erect now at A and A' perpendiculars to a in one

hemiplane a' of a, and also in hemiplane /?' of p.

Then (by 366) the angle of the perpendiculars at

A is equal to the angle of the perpendiculars at A'.

Fig. 141.

We call this angle the inclination of the two hemi-

planes a' and /?'.

When the inclination is a right angle the planes
are said to be perpendicular to each other.

369. Theorem. // a straight is perpendicular to

a given plane, any plane containing this straight

is perpendicular to the given plane.

Proof. At the foot of the given perpendicular
erect in the given plane a perpendicular to the
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meet of the planes. From the definition of a

perpendicular to a plane (334) the given perpen-

dicular makes with this a r't a£ ;
but this angle

is (by 368) the inclination of the planes.

Ex. 443. A plane _L the meet of two planes is JL to

each; and inversely.

Ex. 444. Through a in a draw fi±a.

369 (b). Corollary to 369. A straight and its pro-

jection on a determine a plane perpendicular to a.

370. Theorem. // two planes are perpendicular

to each other, any straight in one, perpendicular to

their meet, is perpendicular to the other.

371. Corollary to 370. If two planes are per-

pendicular to each other, a straight from any point
in their meet, perpendicular to either, lies in the

other.

For the perpendicular to their meet in one is

perpendicular to the other, and (by 340) there is

only one perpendicular to a plane at a point.

Ex. 445. If A in a_L/?, from A, a±fi is in a.

Ex. 446. If a st' be
||
to a plane, a plane _L to the st'

is 1 to the plane.

372. Corollary to 371. If each of two inter-

secting planes is perpendicular to a given plane,

their meet is perpendicular to that plane.

Proof. The perpendicular to this third plane

from the foot of the meet of the others is (by 371)

in both of them.

Ex. 447. Through a st*
||
a to pass /? ||

a.

Ex. 448. Through a draw «JL/9.

Ex. 449. Through A draw a±p and j.
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373. Theorem. // two straights be cut by three

parallel planes the corresponding sects are proportional.

Fig. 142.

Let A B, CD be cut by the parallel planes a,

/?, r in A, E, B and C, F, D.

To prove AE:EB =CF:FD.
Proof. If AD cut in Gt

then (by 364) EG \\
BD

and AC\\GF.
:. (by 235) AE:EB=AG:GD and ^(7:6^=

CF:FL>.

.'. AE:EB=CF:FD.
Ex. 450. Investigate the inverse of 373.

374. Theorem. Two straights not coplanar have

one, and only one, common perpendicular.

Given a and b not coplanar.
To prove there is one, and only one, straight

perpendicular to both.

Proof. Through any point A of a take c\\b.

Then (by 361) the plane ac or a
||
b. The projection
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b' of b on a cuts a, say in B'
;

else were a
||
b

f

\\
b.

Then, in plane b% B'B drawn ±b' is (by 370) ±a

Fig. 143-

and (by 74) also ±b, and is the only common per-

pendicular to a and b. For any common per-

pendicular meeting a at B" is J_ b" through B"
|| 6,

which is in a, and .\ ±«, hence -B'' is a point of

6' the projection of b on a; .'. identical with Bf

,
the

cross of b
f with a.

375. Corollary to 374. Their common perpen-

dicular is the smallest sect between two straights

not coplanar.

For (by 142) BB' <BA.
Ex. 451. No st's joining points in two non-coplanar

st's can be
||.

Ex. 452. From A, B, C, costraight, are dropped to a

non-coplanar st' JLs AD, BE, CF. Prove AB:BC
=DE:EF.
Ex. 453. A plane _L to the common _L to two st's at

its bisection-point, bisects every sect from one st' to the

other.

Ex. 454. Principle of Duality. When any figure is given

we may construct a dual figure by taking planes instead

of points, and points instead of planes, but straights where

we had straights.

The figure dual to four non-coplanar points is four

non-copunctal planes. State the dual of the following:

Two planes determine a straight.
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Three non-costraight planes determine a point.

A straight and a plane not on it determine a point.

Two straights through a point determine a plane.

Ex. 455. A polygon whose vertices are always necessarily

coplanar is what?

Ex. 456. From each point in a plane costraight with and

equally inclined to two others the two J_s to them are =.

Ex. 457. If two planes are respectively _L to two others

and the intersection of the first pair ||
to that of the second

pair, the inclinations are = or supplemental.
Ex. 458. Parallels have as projections on "any plane

parallels or points.

Ex. 459. Parallel sects are proportional to their pro-

jections on a plane.

Ex. 460. From a point, is to two planes make an

^ = or supplemental to the inclination of the planes.

Ex. 461. A st' has the same inclination to
|| planes.

Ex. 462. If three meets of three planes are
||,

the sum
of the three inclinations is two r't 2£s.

Ex. 463. If a st' is
||
to each of two planes, any plane

on it cuts them in ||s.

Ex. 464. Through a point without two non-coplanar st's

passes, in general, a sin le st' cutting both.

Ex. 465. Why does each foot of a three-legged stool

meet the floor while one foot of a four-legged chair may
be above the floor?

Ex. 466. If a, b non-coplanar, a j_ a meets /? ± b in c _L

y ||
a and b.

Ex. 467. If two projections of a trio of points on two

intersecting planes give costraight trios, the original

three are costraight. State the exception.

Ex. 468. No oblique to a plane makes equal angles with

three straights in the plane.

Ex. 469. Draw a plane with the same inclination to

two given planes.

Ex. 470. Draw a straight that shall cross three straights,

no two coplanar.
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Ex. 471. Draw a st' to cross two given non-coplanar
st's and

||
to another given st'. [Show solution, in general,

unique.]
Ex. 472. In a plane find a point which joined with three

given points without the plane gives equal sects.

Ex. 473. The projection on a of r't ^ (a, 6) is ar't^ if

a
||

a.

Ex. 474. If a perpendicular to a plane be projected
on any second plane this projection is at right angles to

the meet or intersection of the planes.

Ex. 475. From a point without a plane, if there be

drawn the perpendicular to the plane and also a perpen-
dicular to a straight in the plane, the join of the feet of

these perpendiculars is at right angles to the straight.

Ex. 476. Two planes being given perpendicular to each

other, draw a third perpendicular to both.

Ex. 477. Three planes, no two parallel, either intersect

in one point (are copunctal) or in one straight (are co-

straight) or have their three intersection-straights (meets)

parallel.

Ex. 478. If two straights be at right angles either is

in the plane through their point of intersection (cross)

perpendicular to the other.

Ex. 479. If three planes have two of their intersec-

tion-straights parallel, the third is parallel to both.

Ex. 480. All straights on two intersecting straights,

but not on their cross, are coplanar.

Ex. 481. If the vertices of a triangle give equal sects

when joined to a point without their plane, the foot of

the perpendicular from this point to the plane is the tri-

angle's circumcenter.

Ex. 482. All points which joined to three given points

give three equal sects are where?

Ex. 483. All coplanar points which joined to a given

point give equal sects are where?

Ex. 484. If a plane contains one straight perpendicular
to a second plane, every straight in the first plane per-



GEOMETRY OF PLANES. 161

pendicular to the intersection-straight (the meet) of the

planes is also perpendicular to the second.

Ex. 485. Any plane is equally inclined to two parallel

planes.

Ex. 486. If jls from a point to two intersecting planes
be = it determines with their meet a plane equally in-

clined to them.

Ex. 487. Construct a plane containing a given straight

and perpendicular to a given plane.

Ex. 48S. Two perpendiculars from a point to two inter-

secting planes determine a plane perpendicular to the

meet of the two planes.

Ex. 489. If each of three planes be perpendicular to

the other two, their three meets are also perpendicular
to the planes and to one another.

Ex. 490. If any number of planes perpendicular to a

given plane have a common point, they have a common
meet (intersection-straight).

Ex. 491. If the meets of several planes are parallel, the

perpendiculars to them from any given point are coplanar.
Ex. 492. Perpendiculars from two vertices of a parallelo-

gram to a plane through the other two are equal.

Ex. 493. Two sides of an equilateral triangle are equally
inclined to any plane through the third.

Ex. 494. If two straights be not coplanar, find a point
in one which, joined to two given points in the other,

gives equal sects.

Ex. 495. If « _1_ p and r. and the meet «/3 || ay, then p \\y.

Ex. 496. If the four sides of a quadrilateral be not co-

planar it is called skew. No three sides of a skew quad-
rilateral are coplanar, nor can its four ^s be r't.

Ex. 497. If a sect divide one pair of opposite sides of a

skew quadrilateral proportionally, and another divide

the other pair in another proportion, these two sects will

cross and each cut the other as it cuts the sides.

Ex. 498. Find that point in a given plane from which the

sum of the sects to two given points on the same side is least.
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Ex. 499. If A and a are in a, and B not, find the point
in a from which the sum of sects to A and B is least.

Ex. 500. Every plane not on a vertex cuts an even

number of the sides of a skew quad' internally and an
even number externally.

Ex. 501. If non-coplanar as ABC, A'B'C have A A',

BB'
, CO copunctal, then the three pairs of sides AB,

A'B'\ AC, A'C'\ BC, B'C intersect in three costraight

points.

Ex. 502. If two st's in one plane be equally inclined

to another plane they make = ^s with the common sec-

tion of these planes.

Ex. 503. If three planes be each _L to the other two,
the sq' of the sect from their common intersection to an-

other point equals the sum of the sq's of the three ±s
from that point to the planes.

Ex. 504. If three st's be each J, to the other two, twice

the sq' of the sect from their common intersection to

another point equals the sum of the sq's of the three _l_s

from that point to the st's.

Ex. 505. Draw a st' to cut three given non-intersecting
st's so that the intercepts may be as two given sects.

Ex. 506. If a plane cut a tetrahedron in a ||g'm, the

plane is
||
to two opposite edges.

Ex. 507. The aggregate of all points is divided by four

planes into (in general) fifteen regions.

Ex. 508. The medians of a skew quadrilateral bisect one

another.

Ex. 509. If two medians of a skew quadrilateral be _|_ the

diagonals are =
,
and sections ||

to them are llg'ms of =
pe-

rimeter.



CHAPTER XII.

POLYHEDRONS AND VOLUMES.

Polyhedrons.

376. Definition. A tetrahedron is the figure con-

stituted by four non-coplanar points, their sects

and triangles.

The four points are called its summits, the six

sects its edges, the four triangles its faces. Every
summit is said to be opposite to the face made by
the other three; every edge opposite to that made

by the two remaining summits.

A point is within the tetrahedron if it is within

any sect made by any summit and a point within

its opposite face. Points not within or on are

without.

The faces taken together are called the surface

of the tetrahedron.

377. A polyhedron is the figure formed by n plane

polygons such that each side is common to two.

The polygons are called its faces, and taken

together, its surface. Their sects are its edges;

their vertices its summits.

A convex polyhedron is one through no edge of

which pass more than two faces, and which has no

summits on different sides of the plane of a face.

163
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A polyhedron of five, six, eight, twelve, twenty
faces is called a pentahedron, hexahedron, octa-

hedron, dodecahedron, icosahedron.

378. A pyramid is a polyhedron of which all the

faces, except one, are copunctal. This one face

is called the base, and the summit not on it the

apex.

The faces which meet at the apex are called

lateral faces, and together the lateral surface; the

edges meeting at the apex are called lateral edges.

The perpendicular from the apex to the plane
of the base is called the altitude of the pyramid.

379. Euler's Theorem. In any convex polyhedron
the number of faces increased by the number of sum-

mits exceeds by two the number of edges.

To prove F+S = E + 2.

Proof. Let e be any edge joining the summits

A, B arid the faces a, /?; and let e vanish by the

approach of B to Ai If a and /? are neither of

them triangles, they both remain, though reduced

in rank and no longer collateral, and the poly-
hedron has lost one edge e and one summit B.

If p is a triangle and a no triangle, fi vanishes

with e into an edge through A, but a remains.

The polyhedron has lost two edges of
/?,

one face /?,

and one summit B.

If /? and a are both triangles, /? and a both vanish

with e
y

five edges forming those triangles are re-

duced to two through A, and the polyhedron has

lost three edges, two faces, and the summit B.

In any one of these cases, whether one edge and

one summit vanish, or two edges disappear with
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a face and a summit, or three edges with a summit

and two faces, the truth or falsehood of the equa-
tion

F+S=E+ 2

remains unaltered.

By causing all the edges which do not meet any
face to vanish, we reduce the polyhedron to a

pyramid upon that face. Now the relation is true

of the pyramid ;
therefore it is true of the undimin-

ished polyhedron.

380. Theorem. The sum of the face angles of

any convex polyhedron is equal to four right angles

taken as many times, less two, as the polyhedron has

summits.

To prove I = (S-2)4 r't if.

Proof. Since E denotes the number of edges,

2E is the number of sides of the faces.

Taking an exterior angle at each vertex, the

sum of the interior and exterior angles is 2E2 r't ^ ,

or £4 r't ^ . But the exterior angles of each face

make 4 r't $ ; ,\ the exterior angles of F faces

make F4 r't ^ .

.-. J-£4rt«* -F4 r't 4 =(£-F) 4 r't *.

But (by 379) -F+ S =E+ 2
;

.\E-F = S-2)

.'. I = (S-2)4v't 4.

Ex. 510. The number of face angles in the surface of

any polyhedron is twice the number of its edges.
Ex. t;n Tf a polyhedron has for faces only polygons
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with an odd number of sides, it must have an even num-
ber of faces.

Ex. 512. If the faces of a polyhedron are partly of an

even, partly of an odd, number of sides, there must be an

even number of odd-sided faces.

Ex. 513. The number of face angles on a polyhedron
can never be less than thrice the number of faces.

Ex. 514. In every polyhedron §S<_E.
Ex. 515. In any polyhedron E+6<^S.
Ex. 516. In any polyhedron E +6<$F.
Ex. 517. In every polyhedron E<$S.
Ex. 518. In every polyhedron E<$F.
Ex. 519. In a polyhedron, not all the summits are

more than five sided; nor have all the faces more than

five sides.

Ex. 520. There is no seven-edged polyhedron.
Ex. 521. For every convex polyhedron the sum of the face

angles is four times as many right angles as the difference

between the number of edges and faces.

Ex. 522. How many regular convex polyhedrons are

possible ?

Ex. 523. In no polyhedron can triangles and three-

faced summits both be absent; together are present at

least eight.

Ex. 524. A polyhedron without triangular and quad-

rangular faces has at least twelve pentagons; a poly-

hedron without three-faced and four-faced summits has

at least twelve five-faced.

The volume of tetrahedrons and polyhedrons.

381. Theorem. The product of an altitude of a

tetrahedron by the area of its base is independent of

what summit one chooses as apex.

Proof. From H and H', feet of altitudes from

D and C, drop perpendiculars HK y
and H'K' to

AB.
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Then KDLAB. [If two planes ABC and HKD
are at r't ^ 's, then a st' AK in one _L to their

Fig. 144.

intersection KH is also J_ to the other HDK and

In same way AK'lK'C.

.(by 366) IK^IK'.

. the r't triangles //1CX) and H'K'C are similar.

.DK:CK'=DH:CH'.
DK-CH'^CK'-DH.
±AB • DAT 'CH' -=\AB.CK' DH.

382. Definition. One-third the product of base

and altitude of a tetrahedron T is called the volume

of tetrahedron T and designated by V(T).

383. Convention. A plane through an edge of

a tetrahedron and a point of the opposite edge
is called a transversal plane; this cuts the tetra-

hedron into two tetrahedra with common altitude

whose bases are coplanar. Such a partition is

called a transversal partition of the tetrahedron.
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384. Theorem. The volume of any tetrahedron

is equal to the sum of the volumes of all the tetrahedra

which arise from the first by making successively a

set of transversal partitions.

Proof. From the distributive law in our sect-

calculus follows immediately that the volume of

any tetrahedron is equal to the sum of the volumes

of two tetrahedra which come from the first by

any transversal partition. Thus if the given tetra-

c hedron ABCD is cut by

/\\ the transversal plane ACE/ I \ \ passing through the edge/ \\\ AC, the two tetrahedra

/
I \ \ so obtained, AEBC and

/ I \ \ AEDC, have in common

^0~~~~~^J \ / the altitude h
e
from C.

^v I ~y£ Moreover, the area of the

^\IS triangle ABD is equal to
B

the sum of the areas of
FlG - I45 - AEB and AED.

Thus V(TJ + V(T2 )
= JV^(A «) + iK-M* 2)

=

Now our theorem follows merely by repeated

application of this single result.

385. Theorem. However a tetrahedron is cut by

a plane, this partition can be obtained in a set of

transversal partitions using not more than two other

planes*
Proof. Passing the case in which the plane

*See G. Veronese, Atti del R. Istituto Veneto, t. vi, s. vii;

1894-95-
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itself goes through an edge of the tetrahedron

ABCD, there remain three cases:

I. The plane passes through a single summit,
for example, A, thus cutting the tetrahedron ABCD
into the tetrahedron ABXY and the pyramid
with quadrilateral base AXYCD.

But this partition is in the set of transversal

partitions obtained by taking successively the

planes ADY and AYX.
II. The plane cuts the three edges copunctal

in a summit, for example, A, thus cutting the

tetrahedron ABCD into the tetrahedron AXYZ
and the convex polyhedron XYZBCD. But this

partition is in the set of transversal partitions

obtained by taking successively the planes BDY,
BYZ, YZX.

III. The plane cuts two pairs of opposite edges,

for example, AB, CD, and AC, BD.
Thus the tetrahedron is cut into the two poly-
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hedrons ADWXYZ and BCWXYZ. Draw the

two planes BDX and ACZ. By these at the same

time the polyhedron ADWXYZ is cut into the

Fig. 148.

three tetrahedra XZAY
y XZAD, XZDW y and

the polyhedron BCWXYZ cut into the three

tetrahedra XZBY, XZBC, XZCW
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But that these six tetrahedra form a set ob-

tainable by transversal partitions is seen by taking

first the plane BDX, and then in the tetrahedron

BDXC successively the planes CXZ and ZXW';

in the tetrahedron BDXA successively the planes

AXZ and YZX.
386. Theorem. // a tetrahedron T is in any way

cut into a certain finite number of tetrahedra 7\.,

then is always the volume of the tetrahedron T

equal to the sum of the volumes of all the tetra-

hedra Tk .

Proof. The plane a of any one face of any
one of the tetrahedra Tkl say, Tv makes in T a

partition which, by 385, can be obtained in a set

of transversal partitions of T made by introducing

two other planes /?, r, cutting T into Tt . When
a cuts any tetrahedron Tk , say T2 ,

add in this T2

the two planes d, c, making the corresponding set

of transversal partitions in this T2 .

When /?
cuts one of these new tetrahedra,

say T2a ,
add in it the requisite two planes £, 77.

So do for any tetrahedron T3 met by /?.
Then

in the same way successively for y.

Now produce a second face of Tv say d, to cut

those tetrahedra T
t
in which this face is situated.

Add in each of these T
t
the two planes to make

the transversal partition. When any plane cuts

a tetrahedron already existing, add the requisite

two planes.

Now produce a third face of T
1
to the nearest

tetrahedron transversally obtained from T. Finally

take in the fourth face of 1\. Then 7\ appears
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in a set of transversal partitions of T; while if

cut itself, it is by a set of transversal partitions

of Tv In the same way for every other Tk .

Thus after a finite number of constructions we
reach by a set of transversal partitions of la final

set of tetrahedra T
f ,
which are at the same time

also reached by transversal partitions of the tetra-

hedra Tk .

3866. Of the fundamental theorem 386:
For any partition of a tetrahedron into tetrahedra

the sum of their volumes equals its volume, the follow-

ing alternative proof is due to S. 0. Schatunovsky
of Odessa.

386c. Partition method I. Cut a face, for ex-

ample BCD (Fig. 149), of the tetrahedron in

Fig. 149.

question ABCD into a finite number n of triangles,

and join their vertices with the summit A. The
tetrahedra so obtained have a common summit A,
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and the faces opposite it coplanar. [For the sake

of distinctness, Fig. 149 shows only one such part-

tetrahedron.]

By 280, the area of the base of the original tetra-

hedron equals the sum of the areas of all the bases

of the part-tetrahedra. It and they have the same
altitude. Our multiplication of sects is distributive.

Therefore its volume equals the sum of theirs.

386J. This I contains transversal partition ($&$)

as a special case [i.e. for 11 = 2].

3866?. Partition method II. Cut the tetrahedron

ABCD so that all summits of the part-tetrahedra
lie on three edges meeting in the same apex, for

example on the edges AB, AC, AD (Fig. 150).

150.

Then on the base BCD are, besides the points B,

C, D }
no summits of the part-tetrahedra; and con-

sequently the face BCD is a face of a part-tetra-

hedron. The fourth summit E of this part-tetra-

hedron may lie on the edge AB (Fig. 150).
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Therefore this partition into n part-tetrahedra

may be obtained by first cutting the tetrahedron

ABCD by a transversal partition (here through

DC) into two tetrahedra BCDE and ECDA, and

then ECDA in the same way into n — i part-tetra-

hedra.

386/. Partition method III. Cut the given tetra-

hedron into part-tetrahedra by I, and these each

into part-tetrahedra by II.

386^. Partition method IV. {Partition with help

of Central Projection.)

Take a point either without the tetrahedron

ABCD or coincident with one of its summits, for

example A, and let the rays OA, OB, OC, OD
meet a plane a in A'

,
B'

, C, D' which cannot be

costraight since A, B, C, D are not coplanar. Call-

ing A' the central projection of A, then the figure

made by the central projections of the edges of the

tetrahedron ABCD is in general (the special cases

are hereafter exhaustively treated) a quadrilateral

with its two diagonals, which cut it into triangles.

Cut now these last triangles in any way into part-

triangles, altogether n in number. The vertices

of these part-triangles (in our figures always only
one such triangle is shown) join with the projection-

centre 0, whereby n tetrahedra OT/, 0T2', . . . QTJ
are made, which have a common summit 0, and

whose bases T/, T2', . . . Tn
' are all the part-tri-

angles of the projection-figure A'B'C'D' . If

coincides with A then the edges of the tetrahedra

0T*/, 0T2

'

y
. . . 0T n

f cut the original tetrahedron

ABCD into n part-tetrahedra.
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On the other hand, if is different from A, then

the edges of 07/, 07/, . 0Tn
' cut the tetra

hedron ABCD into a number of truncated tetra-

hedra, among which as special cases may appear
the pyramid of five summits and the complete

tetrahedron. These pyramids appear if a vertex

of the corresponding triangle T 1

falls on one of

the sects A'B\ A'C . . . Complete tetrahedra

appear if two vertices of the triangle 7' fall on one

of the said sects.

Always cut these truncated tetrahedra into three

(these pyramids into two) complete tetrahedra,

using a diagonal of each quadrilateral face [as in

385 HI.

By this last partition we get no new summits.

The partition of the original tetrahedron into

part-tetrahedra so attained is called Partition with

the aid of central projection. The different cases

may be more explicitly set forth as follows:

Case 1. coincides with A. This is Partition

method I [see 386c].

Case 2. lies on the prolongation of an edge, for

example DA (Fig. 151).

The projection-points A' and D' coincide and we

get on the plane a as projection of ABCD a tri-

angle A'B'C.

That face of the truncated tetrahedron (or pyra-

mid of five summits or complete tetrahedron) ob-

tained by the above given construction, which by
the projection of Tm r

is made in the face BCD
designate by Tm \

that in face ABC by TIm .

The tetrahedra obtained by the transversal
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partition of this truncated tetrahedron designate

respectively by tj, tj't tj". Then is the volume of

ABCD equal to the sum of
7

the volumes of all the t.

For every tetrahed on 0Tm is divided into at

most four part-tetrahedra 0TIm , tj }
tm", tj", all

Fig. 151.

of whose summits lie on the three edges meeting
in apex 0, that is every 0Tm is divided by Parti-

tion method II. Therefore

V(OTt)
- V(OTn) + V(*/) + V(t») + V(V")

V(OT2)
- V{OTl2) + V(W)+ V&") + V(tn,

V(OTn) m V{OTln) + V(U) + V(tn") + V(tn>")-

Adding these equations to one another and notic-

ing that (by 3866) on the one side

V{OTx)+ V(OT2) + . . . + V{OTn)
= V(OBCD),

on the other side

V(OTh)+V(OTl2)+ . . . + V(OTIn)
= V(OABC),
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we find, using I to mean the sum from w = i up

to n=n,

V(OBCD) = ViOABC) + T[V(tn') + V(tn") + ^(C")J-
n<= 1

Furthermore, the division of the tetrahedron

OBCD by the plane ABC into the tetrahedra OABC
and ABCD is a transversal partition, and so (by 384)

V(OBCD) - V(OA£C) + F(yl5CL>).

The last two equations give finally

V(ABCD) = "T\y(tJ) + V(tn") + V(tH'")] ; .

n = i

therefore also for this case our theorem is proven.
Case 3 . lies without the tetrahedron on one of its

boundary planes, that is in the plane of one of its

faces; for example, on the plane ABD (Fig. 152).

Fig. 152.

Then the projections A', B'
,
D' are costraight;

therefore one of them, say A'
f

lies between the

other two.
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B'
, C, D' make a triangle which is cut by the

sect A'C into two part-triangles A'B'C and A'C'D'.

Correspondingly the plane OA'C cuts the tetra-

hedron ABCD into two part-tetrahedra AA
t BC,

and AAfiD\ and since this plane goes through the

edge AC, therefore it makes a transversal partition,

and we have (by 384)

V(ABCD) = V(AA XBC) + V(AAfD).

Since, however, lies on the prolongation of the

edge A LA, therefore (by Case 2)

V{AA lBC)=IV{tb)

and

V{AA,CD)=lV{t d),

where t
b
are all the tetrahedra into which in accord-

ance with the above method the tetrahedron

AA
X
BC is divided [and td those in AA

LCD].

These last three equations give now V(ABCD) =

IV(t), where t are all the part-tetrahedra of

ABCD.
Case 4. If lies on no one of the boundary planes

of the tetrahedron ABCD, then no three of the pro-

jection-points A', B', C, D' are ccstraight.

Consider first the case in which one of these points

(say A f

) falls within the triangle B'C'D' made by

the other three (Fig. 153).

The joining sects A'B', A'C', A'D' cut the tri-

angle B'C'D' into three part-triangles, and corre-

spondingly the tetrahedron ABCD is divided into

three part-tetrahedra AAJBC. AAJ3D, AA.CD,
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giving a case of Partition method I
;

therefore

(by 386c)

V(ABCD) - V(AA XBC) + V(AA XBD) + V(AA XCD).

If we now, as above, divide the triangles A'B'C\
A'B'D'

,
A'CD' into part-triangles, project these

Fig. 153.

back upon the corresponding part-tetrahedra, and

designate the part-tetrahedra obtained in the

above given way of the tetrahedra AA XBC, AA XBD,
AA

XCD with t d ,
t
c ,

t
b respectively, then we obtain

the three equations

V{AA XBC) -IV(t4) ; V{AA XBD) = IV(tc ) ;

V(AA xCD)=ZV(tb),

since lies on the ray A XA, that is we have here

each time Case 2.

These last four equations give now V(ABCD) =

IV (t), where / are all the part-tetrahedra of ABCD.
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Case 5. If, finally, again lies in no one of the

boundary planes of the tetrahedron ABCD, but each

of the projections A', B r

, C, D' falls without the

triangle made by the remaining projection-points,

then the projections of the edges of the tetrahedron

make a convex quadrilateral with its two diagonals.

This quadrilateral is divided by its diagonals into

four triangles, M'A'C, M'A'D'
% M'B'C\ M'B'D'

(Fig. 154).

Fig. 154.

The plane OA'B' divides the tetrahedron by a

transversal partition into two parts, so that we
have (by 384)

V(ABCD) - V(AMBC) + V(AMBD) 9

where M is the point corresponding to the inter-

section point M' of the diagonals A'B r and CD'.
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If we now divide each triangle M'A'C, M'A'D',

M'B'C, M'B'D' into part-triangles and project

back upon the faces of the tetrahedron ABCD,
then the tetrahedra AMBC and AMBD are divided

each into part-tetrahedra, which, in general, may
be designated respectively t

c
and td . Since now,

moreover, lies in the plane AMB, therefore

(by Case 3) we have the equations

V{AMBC)=lV(tc )
and V(AMBD) = IV(td).

Consequently is also in this case

V(ABCD) = IV(t).

This completes the proof of the theorem that in

every partition of a tetrahedron by central projec-

tion the sum of the volumes of the part-tetrahedra

equals the volume of the whole tetrahedron.

386/1. The most general partition can be built up
from the four partition methods already given, and

this proves the fundamental theorem 386.

For let ABCD be a tetrahedron and P lt P2 ,
. . .

Pk the part-tetrahedra which arise from any par-

tition of it.

If, now, we project all these tetrahedra from the

point A upon the face BCD, then their projections,

which necessarily all fall within the triangle BCD,
overlie and overlap, in general, manifoldly, and

cut one another into polygons. When we cut these

polygons into triangles and join their vertices

with A we divide each tetrahedron, Pm(m = i,

2, . . . k), into a number of truncated tetrahedra

(including perhaps pyramids of five summits and
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complete tetrahedra) which in turn in the well-

known way we divide into further part-tetrahedra.
Since the so obtained partition of each part-

tetrahedron Pm into further part-tetrahedra, which

may be designated tm
'

t
tm
"

y . . . *£«>, is accom-

plished with the aid of central projection, for each

projection-center lies without each tetrahedron,

only that one with the summit A excepted, so is

V{Pm )
- V{tm') + F(V') + . . . + V(^J),

If we now give m successively the values i,

2, . . . k, we obtain k such equations, which added

give the following:

But, on the other hand, every tetrahedron AT,
where T is a part-triangle of BCD, cuts out from

the aggregate of part-tetrahedra t a, set, and each

tetrahedron of this set appears once and only once

in the above sum.

At the same time all summits of these last part-

tetrahedra lie on the three edges from A of the

particular tetrahedron AT; that is, AT is divided

by this set of tetrahedra according to Partition

method II.

Furthermore, the whole tetrahedron ABCD is

divided into tetrahedra AT according to Partition

method I, so that it is divided according to Parti-

tion method III into part-tetrahedra t.

Now this complex of tetrahedra / is identical
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with the complex t$ t
where / = i, 2, . . . nm \

m =
i,

2, . . . k.

Consequently

V(ABCD)-iV(Wiz;j: : *.)•

which combined with the previous equation gives

the desired proof of the fundamental theorem

m = k

V(ABCD) = 2 V(Pm).
m=i

387. Theorem. If a polyhedron P is cut into

tetrahedra in two different ways, then the sum of the

volumes of the tetrahedra of the first partition equals

that of the second.

Proof. Suppose P divided into m tetrahedra

hs t2 ,
. . . tm , and again into n tetrahedra */, t2\

. . . U.
Construct a tetrahedron T which contains the

polyhedron P, and cut the polyhedron bounded

by the surface of P, and that of T in any definite

way into tetrahedra 3T/, TV, . . .

Thus we obtain two partitions of the tetrahe-

dron T and (by 386) the equations

V(T)=V(tl ) + V(Q + ...

+ V(tm) + V(Tl') + V(T,') + ...

V(T)=V(tl') + V(t2') + ...

+ V(tn') + V(Tl') + V(T2') + ...

whence

V(tt) + V(t2) + ... + V(tm)

= V(t1') + V(t2') + ... + V(tJ).
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388. Definition. The volume of a polyhedron is

the sum of the volumes of any set of tetrahedra

into which it is cut.

389. Definition. Two polyhedra P and Q of

equal volume are said to be equal. P is called

greater than Q if the volume of P is greater than

the volume of Q ;
less if volume is less.

UV(P)=V(Q), we say P^Q.
UV(P)>V(Q), we say P>Q.
IiV(P)<V(Q), we say P<Q.
The three cases are mutually exclusive.

390. Corollary. If a polyhedron be cut into poly-

hedra, the sum of their volumes equals its volume.

391. Corollary. If a polyhedron be cut into

polyhedra, if one of these be omitted it is not

possible with the others, however arranged, to

make up the original polyhedron.

The Prismatoid Formula.

392. Definition. A prismatoid is a polyhedron

having for base and top any two polygons in parallel

planes, and whose lateral faces are triangles deter-

mined by the vertices so that each lateral edge
with the succeeding forms a triangle with one side

of the base or of the top.

The altitude of a prismatoid is the perpendicular
from top to base.

A number of different prismatoids thus have

the same base, top, and altitude.

A prismatoid with a point as top is a pyramid.
If both base and top of a prismatoid are sects, it

is a tetrahedron.



POLYHEDRONS AND VOLUMES. 185

If a side of the base and a side of the top which

form with the same lateral edge two sides of two

adjoining faces are parallel, then these two tri-

angular faces fall in the same plane, and together
form a trapezoid.

393. A prismoid is a prismatoid whose base and

top have the same number of sides, and every

corresponding pair parallel.

394. A frustum of a pyramid is a prismoid with

base and top similar.

395. Corollary. Every prismoid with triangular
base is the frustum of a pyramid.

396. A section of a prismatoid is the polygon
determined by a plane perpendicular to the alti-

tude.

397. Theorem. The area of a section of a pyramid
is to the area of the base as the square of the perpendic-
ular on it, from the apex, is to the square of the alti-

tude of the pyramid.
To prove S:B=p 2

:a
2

.

Proof. The section and base

are similar, since corresponding

diagonals cut them into tri-

angles similar in pairs because

having all their sides respec-

tively proportional, each corre-

sponding pair being as a lateral

edge to the sect on it made by
apex and section, which in turn FlG - x 55-

are as altitude to perpendicular on section. But

(by 300) the areas are as the squares of these.

398. To find the volume of any pyramid.
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Rule. Multiply one-third its altitude by the area

of its base. Formula, Y=-B.
3

Proof. Cutting this base into triangles by planes

through the apex, we have a partition of the given

pyramid into triangular pyramids (tetrahedra) of

the same altitude whose bases together make the

polygonal base.

399. To find the volume of any prismatoid.
Rule. Multiply one-fourth its. altitude by the

sum of the base and three times a section at two-

thirds the altitude from the base.

Formula, D =- (B + 35).
4

Proof. Any prismatoid may be divided into

tetrahedra, all of the same altitude as the pris-

matoid; some, as CFGO, having their apex in the

top of the prismatoid and their base within its

base; some, as OABC, having three summits

within the top and the fourth in the base of the
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prismatoid, thus having for base a point and for

top a triangle; and the others, as ACOG, having
for base and top a pair of opposite edges, a sect

in the plane of the base and a sect in the plane of

the top of the prismatoid, as OG and AC.

Fig. 157.

Therefore if the formula holds good for tetra-

hedra in these three positions, it holds for the

prismatoid, their sum.

In (1) call 5 the section at two-thirds the alti-

tude from the base B
{ ;

then 5
t

is %a from the apex.
Therefore (by 397) the areas

.-. A=^ + 3^) -fa + iBJ =$aBlf

which (by 382) equals Ylt
the volume of this tetra-

hedron.

In (2) the base B2 is a point, and S2 is \a from
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this point, which is the apex of an inverted

pyramid.
•'• (by 397) the areas52 :T2

= (fa)
2
:a

2
; .\S2 =|T2>

'• D2 =-(B2 + 3S2 ) =-(o + iT2) =iaT2
= Y2 .

4 4

In (3) let KLMN be the section S3 . Now the

areas

AANK:AAGO=AN 2

-^G
2

^(^a)
2
:a

2 = i:g;

AGNM:AGAC =GN 2

:GA
2 = (%a)

2
:a

2 == 4:9.

But the whole tetrahedron D3 and the pyramid
CANK may be considered as having their bases

in the same plane, AGO, and the same altitude,

a perpendicular from C:

.\CANK:D3
= aANK: aAGO = 1:9;

:.CANK=\D3 .

In the same way

OGNM :D 3
= aGNM : aGAC = 4:9;

.• . CAiVX + O^A^M = {P, ;

.• . CKLMN +OKLMN - *D9 .

But by (398) OKLMN +OKLMN = i-iaSt +
i

•

§aS3
= Ja53 ;

/ . ^L>3
= JaS3 ;

/.£ 3
=^3^(£3 + 3S3),
4 4

since here the area B3
= o.
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400. Corollary to 399. Since, in a frustum of a

pyramid, B and 5 are similar; .*. if b and s be corre-

sponding edges,

2\

B:S = b
2
:s

2

;
/.the volume F=-b(i+^A.

401. Definition. A prism is a prismatoid whose
base and top are congruent.
A right prism is one whose lateral edges are

perpendicular to its base.

A parallelopiped is a prism whose bases are

prallelograms.

A cuboid is a parallelopiped whose six faces

are rectangles.

A cube is a cuboid whose six faces are squares.

402. Corollary to 400. To find the volume of

any prism.

Rule. Multiply its altitude by the area of its base.

Formula, V(P)=a-B.
.-. To find the volume of a cuboid.

Rule. Multiply together any three copunctal edges,

that is, its length, breadth, and thickness.

j 03. A cube whose edge is the unit sect has for

volume this unit sect, since 1X1X1=1.
Any polyhedron has for volume as many such

unit sects as the polyhedron contains such cubes

on the unit sect.

The number expressing the volume of a poly-
hedron will thus be the same in terms of our unit

sect, or in ,terms of a cube on this sect, considered

as a new kind of unit, a unit solid. Such units,

though traditional, are unnecessary.
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Ex. 525. If the altitude of the highest Egyptian pyramid
is 138 meters, and a side of its square base 228 meters,
find its volume.

Ex. 526. The pyramid of Memphis has an altitude of

73 Toises; the base is a square whose side is 116 Toises.

If a Toise is 1-95 meters, find the volume of this pyramid.
Ex. 527. A pyramid of volume 15 has an altitude of

9 units. Find the area of its base.

Ex. 528. Find the volume of a rectangular prismoid
of 12 meters altitude, whose top is 5 meters long and
2 meters broad, and base 7 meters long and 4 meters

broad.

Ex. 529. In a prismoid 15 meters tall, whose base is

36 square meters, each basal edge is to the top edge as

3 to 2. Find the volume.

Ex. 530. Every regular octahedron is a prismatoid whose
bases and lateral faces are all congruent equilateral tri-

angles. Find its volume in terms of an edge b.

Ex. 531. The bases of a prismatoid are congruent

squares of side b, whose sides are not parallel; the lateral

faces are eight isosceles triangles. Find the volume.

Ans. £a6
2
(2 + 2*).

Ex. 532. If from a regular icosahedron we take off

two five-sided pyramids whose vertices are opposite

summits, there remains a solid bounded by two congruent

regular pentagons and ten equilateral triangles. Find

its volume from an edge b. Ans. %b\$+ 2(5)*].

Ex. 533. Both bases of a prismatoid of altitude a are

squares; the lateral faces isosceles triangles. The sides

of the upper base are parallel to the diagonals of the

lower base, and half as long as these diagonals; and b is

a side of the lower base. Find the volume. Ans. £a&
2
.

Ex. 534. The upper base of a prismatoid of altitude

a = 6 is a square of side, 62
= 7-07107; the lower base is a

square of side 6,
= 10, with its diagonals parallel to sides

of the upper base; the lateral faces are isosceles triangles.

Find volume.

Ex. 535. Every prismatoid is equal in volume to three
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pyramids of the same altitude with it, of which one has

for base half the sum of the prismatoid's bases, and each

of the others its mid-cross section:

D = *a(~T^ +2M
)
=MB 1 +4M+B 2 ).

Ex. 536. If a prismatoid have bases with angles re-

spectively equal and their sides parallel, in volume it

equals a prism plus a pyramid, both of the same altitude

with it, whose bases have the same angles as the bases of

the prismatoid, but the basal edges of the prism are half

the sum, and of the pyramid half the difference, of the

corresponding sides of both the prismatoid's bases.

Ex. 537. If the bases of a prismatoid are trapezoids
whose mid-sects are b

x
and b

2 ,
and whose altitudes are

b
l
+b2

1 a
x
—a

2
b

x
—b

2\a
t
and a

2 , the volume = a( —
Ex. 538. A side of the base of a frustum of a square

pyramid is 25 meters, a side of the top is 9 meters, and

the height is 240 meters. Required the volume of the

frustum.

Ex. 539. The sides of the square bases of a frustum

are 50 and 40 centimeters. Each lateral edge is 30 centi-

meters. How many liters would it contain?

Ex. 540. In the frustum of a pyramid whose base is

50 and altitude 6, the basal edge is to the corresponding

top edge as 5 to 3. Find volume.

Ex. 541. Near Memphis stands a frustum whose height
is 142-85 meters, and bases are squares on edges of 185-5
and 3-714 meters. Find its volume.

Ex. 542. In the frustum of a regular tetrahedron,

given a basal edge, a top edge, and the volume. Find

the altitude.

Ex. 543. A wedge of 10 centimeters altitude, 4 centi-

meters edge, has a square base of 36 centimeters perimeter.
Find volume.

Ex. 544. The diagonal of a cube is n. Find its volume.

Ex. 545. The edge of a cube is n. Approximate to

the edge of a cube twice as large.
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Ex. 546. Find the cube whose volume equals its super-
ficial area.

Ex. 547. Find the edge of a cube equal to three whose

edges are a, b, I.

Ex. 548. If a cubical block of marble, of which the

edge is 1 meter, costs one dollar, what costs a cubical block

whose edge is equal to the diagonal of the first block?

Ex. 549. If the altitude, breadth, and length of a cuboid

be a, b, I, and its volume V,

(1) Given a, b, and superficial area; find V.

(2) Given a, b, V; find /.

(3) Given V, (ab), (bl); find I and b.

(4) Given V,
l-j-J

,

l-j J ;
find a and b.

(5) Given (ab), (al), (bl); find a and b.

Ex. 550. If 97 centimeters is the diagonal of a cuboid
with square base of 43 centimeters side, find its volume.

Ex. 551. The volume of a cuboid whose basal edges
are 12 and 4 meters is equal to the superficial area. Find
its altitude.

Ex. 552. In a cuboid of 360 superficial area, the base

is a square of edge 6. Find the volume.

Ex. 553. A cuboid of volume 864 has a square base

equal in area to the area of two adjacent sides. Find
its three dimensions.

Ex. 554. In a cuboid of altitude 8 and superficial area

160 the base is square. Find the volume.

Ex. 555- The volume of a cuboid is 144, its diagonal

13, the diagonal of its base 5. Find its three dimensions.

Ex. 556. In a cuboid of surface 108, the base, a square,

equals in area the area of the four sides. Find volume.

Ex. 557. What is the area of the sheet of metal re-

quired to construct a rectangular tank (open at top) 12

meters long, 10 meters broad, and 8 meters deep?
Ex. 558. The base of a prism to meters tall is an

isosceles right triangle of 6 meters hypothenuse. Find

volume.
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Ex. 559. In a prism the area of whose base is 210 the

three sides are rectangles of area 336, 300, 204. Find

volume.

Ex. 560. A right prism whose volume is 480 stands

upon an isosceles triangle whose base is 10 and side 13.

Find altitude.

Ex. 561. In a right prism whose volume is 54, the lat-

eral area is four times the area of the base, an equilateral

triangle. Find basal edge.
Ex. 562. The vertical ends of a hollow trough are

parallel equilateral triangles with 1 meter in each side,

a pair of sides being horizontal. If the length between

the triangular ends be 6 meters, find the volume of water

the trough will contain.



CHAPTER XIII.

TRIDIMENSIONAL SPHERICS.

404. Definition. If C is any given point, then

the aggregate of all points A for which the sects

CA are congruent to one another is called a sphere.

C is called the center of the sphere, and CA the

radius.

Every point B, such that CA > CB is said to be

within the sphere. If CA < CD, then D is without

the sphere.

405. Theorem. Any ray from the center of a

sphere cuts the sphere in one, and only one, point.

406. Theorem. Any straight through its center

cuts the sphere in two, and only two, points.

407. Definition. A sect whose end-points are

on the sphere is called a chord.

408. Definition. Any chord through the center

is called a diameter. Its end-points are called

opposite points of the sphere.

409. Theorem. Every diameter is bisected by
the center.

410. Corollary to 106 and 409. A plane through
its center meets the sphere in a circle with radius

equal to that of the sphere. Such a circle is called

a great circle of the sphere.
194
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4i i. Corollary to 410. All great circles of the

sphere are congruent, since each has for its radius

the radius of the sphere.

412. Theorem. Any two great circles of a sphere

bisect each other.

Proof. Since the planes of these circles both

pass through the center of the sphere, therefore

on their intersection is a diameter of the sphere
which is a diameter of each circle.

413. Theorem. // any number of great circles pass

through a given point, they will also pass through the

opposite point.

Proof. The given point and the center of the

sphere determine the same diameter for each of

the circles.

414. Corollary to 413. Through opposite points

an indefinite number of great circles can be passed.

415. Theorem. Through any two non-opposite

points on a sphere, one, and only one, great circle

can be passed.

Proof. For the two given points and the center

of the sphere determine its plane.

416. Definition. A straight or plane is called

tangent to a sphere when it has one point, and

only one, in common with the sphere.

Two spheres are called tangent to each other

when they have one point, and only one, in com-

mon.

417. Theorem. A straight or plane having the

foot of the perpendicular to it from the center in com-

mon with the sphere is tangent.

Proof. This perpendicular, a radius, is (by 142)
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less than any other sect from the center to this

straight or plane. Therefore every point of the

straight or plane is without the sphere except the

foot of this radius.

418. Theorem. If a straight has a given point not

the foot of the perpendicular to it from the center

in common with a sphere, it has a second point on

the sphere.

Proof. This is the other end-point of the sect

from the given point bisected by this perpen-

dicular.

419. Theorem. // a plane has a point not the

©foot

of the perpendicular to it

from the center in common with a

sphere, it cuts the sphere in a

circle.

Proof. If A be the common

point and C the foot of the

perpendicular, the circle OC(CA)
Fig. 158. is on the sphere.

420. Corollary to 419. The straight through
the center of any circle of a sphere perpendicular
to its plane passes through the center of the sphere.

421. Definition. The two opposite points in

which the perpendicular to its plane, through the

center of a circle of the sphere, meets the sphere,

are called the poles of that circle, and the diameter

between them its axis

422. Theorem. Any three points on a sphere deter-

mine a circle on the sphere (I 3 and 419).

423. Theorem. The radius of any circle of the

sphere whose plane does not contain the center
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of the sphere is less than the radius of a great

circle.

Proof. The hypothenuse (by 142) is > a side.

424. Definition. A circle on the sphere whose

plane does not contain the center of the sphere is

called a small circle of the sphere.

425. Inverse of 417. Every straight or plane

tangent to the sphere is perpendicular to the

radius at the point of contact. For if not it would

have (by 418) another point on it.

426. Theorem. // two spheres have two points

in common they cut in a circle whose center is in

their center-straight and whose plane is perpendicular
to that straight.

Hypothesis. Let C and be the centers of

the spheres having the points A and B in common.
Conclusion. They have in common all points,

and only those, on a circle with center on OC and

plane _L to OC.

Fig. 159.

Proof. Since, by 58, aACO=aBCO, /.perpen-
diculars from A and B upon OC are equal and
meet OC at the same point, D. Thus all, but only,

points like A and B, in a plane J_ to OC, and points
of OD(DA), are on both spheres.
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427. Corollary to 426. If two spheres are tan-

gent, either internally or externally, their centers

and point of contact are costraight.

428. Theorem. Four points, not coplanar, deter-

mine a sphere.

Proof. Let A, B, C, D
be the four given points.

Then (by 352) the plane
a J_ to and bisecting AB
meets /? ± to and bisecting
BC in EH1 ABC, and
meets dl_ to and bisecting
BD in FOLABD.
.\EH±EG y

and F01.FG,
and (by 77) EH and FO
meet, say, at 0; .*. (by

346) is one, and the

only center of a sphere containing A, B, C, D.

429. Corollary to 428. The four perpendiculars
to the faces of a tetrahedron through their circum-

centers, and the six planes bisecting at right angles
the edges, are copunctal in its circumcenter.

430. Problem. To inscribe a sphere in a given

tetrahedron.

Construction. Through any edge and any point
from which perpendiculars to its two faces are

equal, take a plane. Likewise with the other

edges in the same face. The cointersection of

these three planes is the incenter required.

431. Theorem. The sects joining its pole to points

on any circle of the sphere are equal.

Proof (343).

Fig. 160.
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432. Corollary to 431. Since equal chords have

congruent minor arcs, .'. the great-circle-arcs join-

ing a pole to points on its

circle are congruent. Hence

if C is any point in a sphere

a, then the aggregate of all

points A in a, for which the

great-circle-arcs CA are con-

gruent to one another is a

circle. 1 Fig. 161.

433. Theorem. The great-circle-arc joining any

point in a great circle with its pole is a quadrant.

Proof The angle at the center is right.

434. Theorem. If A, B are

non-opposite, the point P is a

pole of their great circle when the

arcs PA, PB are both great-

circle -quadrants.

For each of the angles POA,
POB is right and /. PO±OAB.

435. Definition. The angle
between two great-circle-arcs on a sphere, called

a spherical angle, is the angle between tangents
to those arcs at their point of meeting.

436. A spherical angle is the inclination of the

two hemiplanes containing the arcs.

437. Theorem. Any great circle through a pole

0} a given great circle is perpendicular to the given

great circle.

Proof. Their planes (by 369) are at right angles.

438. Inverse of 437. Any great circle perpen-

Fig. 162.
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dicular to a given great circle will pass through
its poles.

439. Theorem. If a sphere be tangent to the par-
allel planes containing opposite edges of a tetrahe-

dron, and sections made in the sphere and tetra-

hedron by one plane parallel to these are of equal

area, so are sections made by any parallel plane.

D

Vr: c
""

!>--
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But (by 325)

area el(IP) :area oC(CA) =PI 2 :AC 2

-77 -ID :TC -CD (by 245);

.*. area LN = area OC(CVI).

440. Cavalieri's assumption. If the two sec-

tions made in two solids between two parallel

planes by any parallel plane are of equal area,

then the solids are of equal volume.

441. Theorem. The volume of a sphere of radius

r is fnr
3
.

Proof. A tetrahedron on edge, and a sphere
with this tetrahedron's altitude for diameter, have

(by 439) all their corresponding sections of equal

area, if any one pair are of equal area.

Hence (by 440) they are of equal volume.

• '• (by 399) vol. sphere = JaS.
. But a = 2r, and (by 245) 5 = fr-|r-7r.

.'. Vol. sphere
=
f •2r-§r-|r-7r=|^r

3
.

442. Definition. The area of a sphere is the

quotient of its volume by one-third its radius.

Area of sphere = 4^r
2

.

443. Corollary to 324. The area of a sphere is

quadruple the area of its great circle.

444. Definition. A spherical segment is the piece

of a sphere between two parallel planes. If one

of the parallel planes is tangent to the sphere,

the segment is called a segment of one base.

445. Corollary to 439 and 440. The volume of a

a
spherical segment is -7r(^i

2 + 3^3
2
), where r3 is the
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radius of the section two-thirds the altitude from

the base whose radius is rv If the segment is

of one base its volume is \anr^\ which in terms

of r, the radius of the sphere, is na 2 lr—
],

and

equals %na(r2

2
-\
—

). If we eliminate r3 by intro-

ducing r2 ,
the radius of the top, the volume of the

segment is inalsir^ + r^) + a 2

].

446. Problem. Given a portion of a sphere,

find its radius.

Construction. Take any three points of the part

given, say A, B, C. The plane A, B, C (by 419)

cuts the sphere in a circle. The straight at D,
the center of this circle perpendicular to the plane

ABC, contains the center of the sphere (by 420)

and therefore meets the sphere,

say at P. In the plane PAD
draw AP'A_ to AP and meet-

ing DO in P'. Bisect PP' in

0. Then is the center of

the sphere and OP is the radius.

Proof. is circumcenter of

PAPf
.

:.OP = OA. But since OD
is_LO(D)ZM at A ;.OA=OB = OC.

447. Corollary to 305.

Fig. 164.

OP
DA 2 +DP :

2DP that is, R = r2
+h'<

2h

Ex. 563. A circle on a sphere of 10 centimeters radius
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has its center 8 centimeters from the center of the sphere.
Find its radius.

Ex. 564. The sects from the centers of circles of equal
area on a sphere to the center of the sphere are equal.

Ex. 565. Where are the centers of spheres through
three given points?

Ex. 566. Find the volume of a sphere whose area is 20.

Ex. 567. Find the radius of a globe equal to the sum
of two globes whose radii are 3 and 6 centimeters.

Ex. 568. A section parallel to the base of a hemisphere,
radius 1, bisects its altitude. Find the volume of each

part.

Ex. 569. The areas of the parts into which a sphere is

cut by a plane are as 5 to 7. To what numbers are the

volumes of these parts proportional?
Ex. 570. The volume of a spherical segment of one

base and height 8 is 1200. Find radius of the sphere.

Ex. 571. Find the volume of a segment of 12 centi-

meters altitude, the radius of whose single base is 24

centimeters.

Ex. 572. In terms of sphere radius, find the altitude

of a spherical segment n times its base.

Ex. 573. Find volume of a spherical segment of one

base whose area is 15 and base 2 from sphere center.

Ex. 574. In a sphere of 10 centimeters radius find the

radii r
t
and r2

of the base and top of a segment whose

altitude is 6 centimeters and base 2 centimeters from the

sphere center.

Ex. 575. Out of a sphere of 12 centimeters radius is

cut a segment whose volume is one-third that of the

sphere and whose bases are congruent. Find the radius

of the bases.

Ex. 576. Find the radius of a sphere whose area equals

the length of a great circle.

Ex. 577. Find the volume of a sphere the length of

whose great circle is n.
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Ex. 578. Find the radius of a sphere whose volume

equals the length of a great circle.

Ex. 579. The volume of a sphere is to that of the cir-

cumscribing cube as n to 6.

Ex. 580. Find altitude of a spherical segment of one

base if its area is A and the volume of the sphere V.

Ex. 581. The radii of the bases of a spherical segment
are 5 and 4; its altitude 3. Find volume.



CHAPTER XIV.

CONE AND CYLINDER.

448. Definition. The aggregate of straights de-

termined by pairing the points of a circle each

with the same point not in their plane is called a

circular cone of two nappes.
This point is called the apex of the cone. Each

straight is an element.

The straight determined by the apex and the

center is called the axis of the cone.

The rays of the cone on the same side of a plane

through the apex perpendicular to the axis are

one nappe of the cone.

The sects from the apex to the circle are often

called the cone, and are meant when we speak of

the area or the volume of the cone.

When each element makes the same angle with

the axis, the cone is called a right cone.

In a right cone all sects from apex to circle are

equal, and each is called the slant height.

449. Theorem. Every section of a circular cone

by a plane parallel to the base is a circle.

Let the section D'H'B'F' of the circular cone

A-DHBF be parallel to the base.

To prove D'H'B'F' a circle.

205
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Proof. Let C be the center of the base, and
C the point of the axis AC in

the plane D'H'B'. The plane

through AC and any element AB
gives radii CB, CD, and parallel

to them the sects CB\ CD'.

.'.(by >]$)&ABC~&AB'C and
aACD-^aACD'.

;. (by 234) CB' : CB=AC:
Pig. 165, AC-CD* i CD.

But CB= CD. .'.CB'=CD'.

450- Corollary to 449.

The axis of a circular cone passes through the

center of every section parallel to the base.

451. Theorem. If a circular cone and a tetra-

hedron have equal altitudes and bases of equal area

and in the same plane, sections by a plane parallel

to the bases are of equal area.

Fig. 166.

Proof. BC : B'C-AC : AC =AL : AD'.-

- VT : VT - VH : VH' =GH : G'H'.

.'.BC 2 :B'C 2 =GH 2
: CH' 2

But (by 325)

area oC(CB) : area oC(CB')
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=BC 2
: B'C' 2 =GH 2

: (TE' 2

= area &FGH : area aF'G'H' (by 300).

But by hypothesis area OC(CB) =area aFGH.
.-. Area oC'{C'B') -area aF'G'H' .

452. Corollary to 451.

Volume of circular cone is (by 440) = volume of

tetrahedron of equal altitude and base =
-J
ar.r

2
.

453. Theorem. The lateral area of a right cir-

cular cone is half the product of the slant height by
the length of the base.

Proof. It has the same area as a sector of a

circle with the slant height as radius and an arc

equal in length to the length of the cone's base.

• ". (by 323) K = \ch = nrh.

454. Definition. A truncated pyramid or cone is

the portion included between the base and a plane

meeting all the elements.

A frustum of a cone is the portion included be-

tween the base and a plane parallel to the base.

455. Theorem. The lateral area of a frustum

of a right circular cone is half the product of its slant

height by the sum of the lengths of its bases.

Proof. It is the difference of the areas of two

sectors with a common

angle, the lengths of the

arcs of the sectors being

equal to the lengths of

bases of the frustum.

.*. F = \h(c x + c
2)

= 7ih(r l + r2). Fig. 167.

456. Corollary to 451 and 399.
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The volume of the frustum of a circular cone,

T/.F = ia 7r(r1

2 + 3r3

2

),

where r3 is the radius of 5.

457. Definition. A circular cylinder is the assem-

blage of straights each through a point of a given
circle but not in its plane, and all parallel.

The portion of this assemblage included between

two planes parallel to the circle is also called a

circular cylinder. The sects the planes cut out

are called the elements of the cylinder.

The two circles in these planes are called the

bases of the cylinder.

The sect joining their centers is called the axis.

A sect perpendicular to the two planes is the

altitude of the cylinder.

If the elements are perpendicular to the planes,

it is a right cylinder; otherwise an oblique cylinder.

A section whose plane is perpendicular to the axis

is called a right section of the cylinder. Any two

elements, being equal and parallel, are opposite

sides of a parallelogram; hence the bases and all

sections parallel to them are equal circles.

A truncated cylinder is the portion between a

base and a non-parallel section.

458. Theorem. The volume of a circular cylin-

der is the product of its base by its altitude.

Proof. If a prism and cylinder have equal
altitudes and bases of equal area, any sections

parallel to the bases are of equal area.

.*. (by 402) V'C = a7ir
2

.
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459. The lateral area of a circular cylinder is

the product of an element by the length of a right
section :

C
' = 27tra.

Fig. 168.

Proof. It is equal to the area of a parallelo-

gram with one side an element and the consecu-

tive side equal to the length of a base.

An altitude of this parallelogram equals the

length of the right section.

460. Corollary to 459. The lateral area of a

truncated circular cylinder is the prod-
uct of the intercepted axis by the

length of a right section.

Proof. For substituting an oblique
section for the right section through
the same point of the axis changes
neither the area nor the volume, since

the portion between the sections is

the same above as below either.

461. Corollary to 460. The volume of a trun-

cated circular cylinder is the product of the inter-

cepted axis by the area of the right section.

462. Archimedes' Theorem. The volume of a

sphere equals two-thirds the volume of the circum-

scribed cylinder.

Fig. 169.
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Proof. The volume of the circumscribed cylin-

der = 7rr
2 -2r = 2 nr 3

.

Ex. 582. In a right circular cylinder of altitude a,

call the lateral area C and the area of the base B.

(1) Given a and C; find r.

(2) Given B and C; find a.

(3) Given C and a = 2r; find C + 25.

(4) Given C+2B and a = r; find C.

(5) Given a and B +C,; find r.

Ex. 583. The lateral area of a right circular cylinder
is equal to the area of a circle whose radius is a mean

proportional between the altitude of the cylinder and the

diameter of its base.

Ex. 584. In area, the bases of a right circular cylinder

together are to the lateral surface as radius to altitude.

Ex. 585. If the altitude of a right circular cylinder
is equal to the diameter of its base, the lateral area is

four times that of the base.

Ex. 586. How much must the altitude of a right cir-

cular cylinder be prolonged to increase its lateral area by
the area of a base?

Ex. 587. The lateral area of a right circular cone is

twice the area of the base; find the vertical angle.

Ex. 588. Call the lateral area of a right circular cone

K, its altitude a, the basal radius r, the slant height h.

(1) Given a and r; find K.

(2) Given a and h; find K.

(3) Given K and h; find r.

Ex. 589. How much canvas is required to make a

conical tent 20 meters in diameter and 12 meters high?
Ex. 590. How far from the vertex is the cross-section

which halves the lateral area of a right circular cone?

Ex. 591. Given the volume and lateral area of a right

circular cylinder; find radius.

Ex. 592. Given lateral area and altitude of a right

circular cylinder; find volume.
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Ex. 593. A right cylinder of volume 50 has a circum-

ference of 9; find lateral area. \

Ex. 594. In a right circular cylinder of volume 8, the

lateral area equals the sum of the bases; find altitude.

Ex. 595. If in three cylinders of the same height one

radius is the sum of the other two, then one lateral area

is the sum of the others, but contains a greater volume.

Ex. 596. What is the relation between the volumes

of two cyliders when the radius of one equals the alti-

tude of the other?



CHAPTER XV.

PURE SPHERICS.

463. If, instead of the plane and straight, we
take the sphere and its great circle, that is, its

geodesic or straightest, then much of our plane

geometry holds good as spherics, and can be read

off as spherics. Deducing spherics from a set of

assumptions which give no parallels, no similar fig-

ures, we get a two-dimensional non-Euclidean geome-

try, yet one whose results are also part of three-

dimensional Euclidean.

I. Assumptions of association on the sphere.

I i\ For every point of the sphere there is

always one and only one

other point which with the

first does not determine a

straightest. This second point
we will call the opposite of the

first.

Two points, not each the

other's opposite, always deter-

mine a straightest.

Such points are said to be on or of the straightest,

and the straightest is said to be through them.

I 2'. Every straightest through a point is also

through its opposite.

Fig. 170.
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1 3'. Any two points of a

straightest, not each the

other's opposite, determine

this straightest; and on every

straightest there are at least

two points not opposites.

1 4'. There are at least

three points not on the same

straightest.

464. Theorem. If Of
is the opposite of 0,

O is the opposite of 0'.

Proof. If is not the opposite of 0', they deter-

mine a straightest. There is a point P not on this

straightest (by 1 4'), and this point is not the

opposite of 0, since it is not 0'. .*. 0, P deter-

mine (by Ii') a straightest which (by I 2') goes

through 0' . .'. O, Of do not determine a straightest.

465. Theorem. Two distinct straightests can-

not have three points in common. [Proved as in

6J

II. Assumptions of betweenness on the sphere.

466. These assumptions specify how
" between"

may be used of points in a straightest on a sphere.

II 1'. No point is between two opposites.

II 2'. No point is between its opposite and any
third point.

II 3'. Between any two points not opposites
there is always a third point.

II 4'. If B is between A and C, then B is also

between C and A, and is neither C nor A.

II 5'. If A and B are not opposites, then there
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Fig. 172.

is always a point C such that

B is between A and C.

II 6
r

. Of any three points,

not more than one can be

between the other two.

II 7'. If B is between A
and C, and C is between A
and D, then B is between ^4

and D.

II 8'. Between no two points are there two

opposites.

467. Definition. Two points A and B, not oppo-

sites, upon a straightest a, we call a s£c* and desig-

nate it with AB or BA. The points between A
and B are said to be points of the sect AB or

also situated within the sect A5. The remaining

points of the straightest a are said to be situated

without the sect AB. The points A, B are called

end-points of the sect AB.
II 9'. (Pasch's assumption.)

let A, B, C be three points,

not all on a straightest, and

no two opposites, and let a be a

straightest on which are none

of the points A, B, C\ if then

the straightest a goes through
a point within the sect AB,
it must always go either

through a point of the sect

BC or through a point of the sect AC; but it can-

not go through both.

468. Theorem. Every straightest a separates

On the sphere,

Fig. 173.
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the other points of the sphere into two regions,

of the following character:

every point A of the one re-

gion determines with every

point B of the other region,

not its opposite, a sect AB
within which lies a point of the

straightest a; on the contrary,

anv two points A and A' of;
4 ft -1 FlG - x 74-

one and the same region al-

ways determine a sect AA' which contains no point

of a.

[Proved as in 22.]

Points in the same one of these two regions are

said to be on the same side of a.

469. Theorem. The points of a straightest a

other than two opposites, 0, 0', are separated by
0, 0' into two classes such that or 0' is between

any point of the one and any non-opposite point

of the other, but neither nor f
is between two

of the same class.

Proof. Take any other straightest b through
and .'. through 0'. It (by

468) cuts the sphere into two

regions. Now (by II 5 a is

not wholly in either of these

regions; but all its points
other than and 0' are in

these regions. Two in the

same region have no point
of b between them. But

and 1 are points of b. Two
Fig. 175.
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not opposites in different regions have a point of

b between them; ,\ either or 0'.

470. Definition. The parts of a straightest

determined by a point of it (with its opposite 0')

are called rays from 0.

and 0' are called end-points of the rays.

II 10'. If C is a point of ray PP\ every other

point of the ray is between C and P or C and P' .

471. Theorem. Two opposites cannot both be

on the same ray.

Proof. II 3', II 10' and II 2'.

472. Theorem. Every straightest has a point
in common with any other.

Proof. If not, consider the straightest deter-

mined by any point of the one and a point of the

other. This would have on one ray a pair of

opposites, contrary to 471.

473. Definition. On the sphere, a system of

sects, AB, BC, CD, . . . KL is called a sect-

train, which joins the points A and L with one

another.

The points within these sects together with

their end-points are all to-

gether called the points o)

the sect-train.

In particular, if the point
L is identical with the point
A

,
then the sect-train is called

a spherical polygon. The sects

are called the sides of the
FlG - I 7 6 -

spherical polygon; their end-

points its vertices.
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Polygons with three vertices are called spherical

triangles.

Fig. 177. Fig. 178.

474. Theorem. Every spherical triangle sepa-
rates the points of the sphere not pertaining to

its sect-train into two regions, an inner and an

outer. [As in 29.]

475. Convention. On a given straightest OA,
the two rays 00\ from to its opposite 0', are

distinguished as of opposite sense. This distinc-

tion may be indicated by a qualitative use of the

signs + and -
(plus and minus), as in writing

positive and negative numbers.

Any sect PO' or ray from P through 0', or any
sect PB where B is between P and 0', has the sense

of that ray 00' on which is P.

Then also BP is of sense opposite that of PB.

III. Assumptions of congruence on the sphere.

Ill 1'. If A, B are two points, not opposite,

on a straightest a, and A' a point on the same or

another straightest a', then we can find on a given

ray of the straightest ar from A' always one and
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only one point B'
,
such that the sect AB is con-

gruent to the sect A'B f
.

Always AB =AB = BA.
Ill 2'. If AB = A'B f and ,4B = A"£", then is

also A'B'^A"B".
Ill 3

r
. On the straightest a let AB and BC be

two sects without common points, and further-

more A'B' and B'C two sects on the same or

another straightest, likewise without common

points; if then AB = A'B' and BC= B'C\ then

is also AC^A'C.
476. Definition. On the sphere, let h, k be any

two distinct rays from a point 0, which pertain

to different straightests. These

two rays h, k from we call

a spherical angle, and desig-

nate it by -4. (h, k) or ^ (&, h).

The rays /&, &, together with

the point separate the other

points of the sphere into two re-

gions, the interior of the angle
Fig. 179. anc[ the exterior. [As in 35.]

The rays h, k are called

sides of the angle, and the

point the vertex.

Ill 4'. On the sphere, given

a spherical angle ^ (h, k), and

a straightest a', also a de-

termined side of a'. Designate

by h' a ray of the straightest

a' starting from the point 0'':

then is there one and only one ray k f such that the

Fig. 180.
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%. (h, k) is congruent to the angle ?£(h\ k'),

and likewise all inner points of the angle

^ (h\ k') lie on the given side of a! .

Always ? (h, k) = ^. (h, A?)
= ? (k, h).

Ill 5'. If ? (h, k)=$ {W, k') and ? (h, fc)s

? (&", &"), then is also * (/*', £') ^ ? (/*", fe").

477. Convention. On the sphere let ABC be

an assigned spherical triangle;

we designate the twro rays

going out from A through
B and C by h and k respect-

ively. Then the angle ^ (ht k)

is called the angle of the

triangle ABC included by
the sides AB and AC, or

opposite the side BC.

It contains in its interior all the inner points

of the spherical triangle ABC
and is designated by ^.BAC
or £A.

Ill 6'. On the sphere, if for

two triangles ABC and A'B'C
we have the congruences

AB^A'B', AC^A'C, ^BAC
= ^.B'A

f

C> then also always
are fulfilled the congruences

t ABC~t A'B'C and ?ACB^ *A'CB'.
478. Convention. When the sect AB is set off

on a ray starting from A, if the point B falls

within the sect AC, then the sect AB is said to be

less than the sect AC.

Fig. 182,
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Fig. 183.

In symbols, AB<AC.
Then also AC is said to be

greater than AB.
In symbols, AC>AB.
AB>CD when E between A

and B gives Ais =CD or 5£ =

CD, using = for m .

479. Convention. When

4-AOB is set off from

vertex 0' against one of the

rays of 'ifA'O'C toward the

other ray, if its second side

falls within i$A'&G%
then the

^AOB is said to be less than

the ^A'O'C.
In symbols,

^-AOBK^A'O'C.

Fig. 184.

Then also ^A'O'C is said to be greater than

4A0B.
In symbols, ^.A'O'Cy^AOB.

480. Definition. Two spher-

ical angles, which have the

vertex and one side in common
and whose not-common sides

make a straightest are called

adjacent angles.

Fig. 185.
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481. Definition. Two spher-
ical angles with a common
vertex and whose sides make
two straightests are called verti-

cal angles.

Fig. 186.

Fig. 187.

482. Definition. A spherical

angle which is congruent to

one of its adjacent angles is

called a right angle.

Two straightests which
make a right angle are said

to be perpendicular to one

another.

483. Convention. If A, B are points which deter-

mine a straightest, then we may designate one of

the regions or hemispheres it makes as right from

the straightest AB taken in the sense of the sect

AB (and the same hemisphere as left from BA
taken in the sense from B to A).

If now C is any point in the right hemisphere
from AB, then we designate that hemisphere of

AC in which B lies as the left hemisphere of AC.
So we can finally fix for each straightest which

hemisphere is right from this straightest taken in

a given sense.

Of the sides of any angle, that is designated as

the right which lies on the right hemisphere of
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that straightest which is determined (also in sense)

by the other side, while the left side is that lying

on the left of the straightest which is determined

(also in sense) by the other side.

Two spherical triangles with all their sides and

angles respectively congruent are called congruent

if the right side of one angle is congruent to the

right side of the congruent angle, and its left side

to that angle's left; but if the right side of one

angle be congruent to the left side of the con-

gruent angle, and its left side to that angle's right,

the triangles are called symmetric.

484. Theorem. Two spheri-

cal triangles are either con-

gruent or symmetric if they
have two sides and the in-

cluded angle congruent.

[Proved as in 43.]

Fig. 188.

485. Theorem. Two spheri-

cal triangles are either con-

gruent or symmetric if a side

and the two adjoining angles
are respectively congruent.

[Proved as in 44.]

Fig. 189.
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486. Theorem. If two spherical angies are con-

gruent, so are also their adjacent angles.

[Proved as in 45.]

487. Theorem. Vertical spherical angles are

congruent.

[Proved as in 46.]

488. Theorem. All right an-

gles are congruent.

[Proved as in 50.]

Fig. 190.

489. Theorem. At a point A of a straightest a

there is not more than one perpendicular to a.

[Proved as in 52.]

490. Definition. When any two spherical angles

are congruent to two adjacent spherical angles

each is said to be the supplement of the other.

491. Definition. If a spher-

ical angle can be set off against

one of the rays of a right angle

so that its second side lies

within the right angle, it is

called an acute angle.

Fig. 191.

492. Definition. A spherical angle neither right

nor acute is called an obtuse angle.
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493. Definition. A spheri-

cal triangle with two sides

congruent is called isosceles.

Fig. 192.

494. Theorem. The angles opposite the congru-
ent sides of an isosceles triangle are congruent.

[Proved as in 57.]

495. Theorem. If two angles of a spherical tri-

angle be congruent, it is isosceles.

[Proved as in 485.]

496. Theorem. Two spher-
ical triangles are either con-

gruent or symmetric if the

three sides of the one are con-

gruent, respectively, to the

three sides of the other.

[Proved as in 58.] Fig. 193.

497. Theorem. Any two

straightests perpendicular to a

given straightest intersect in a

point from which all sects to the

given straightest are perpendic-

ular to it and congruent.

Fig. 194.
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Given r't ^A= ifC.

To prove PA=PC=PD,
and ^Drt.

Proof. By 495, PA = pC
and (by 485) PA^P'A.
;. (by 484) 4PDA= ?P'DA;
.'. (by 488) %PDA= ^.PAD;
.'.(by 495) PDmPA.

Fig. 195.

498. Definition. The two opposite points at which

two perpendiculars to a given straightest intersect

are called its poles, and it the polar of either pole.

A sect from a pole to its polar is called a quadrant.

499. Theorem. All quadrants are congruent.

Let AB and A'B' be two

quadrants.
To prove AB = A'B f

.

Proof. At A take a r't?

£AC, and also at A'. On AC
take a sect AC, and on AC
take A'C7 a AC. At C and C

Fig. 196. take straightests ±AC and

A rCr
. These contain B and

B'. :. (by 485) AB = A'B'.

500. Theorem. A ^oiw/

which is a quadrant from two

points of a straightest not oppo-
sites is its pole.

Let PA and PC be two

quadrants.

Proof, At A and C erect
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perpendiculars intersecting at P' . Then (by 499
and 496) IPAC^P'AC.

501. Theorem. // three sects from a point to a

straightest be equal, they are quadrants.

Proof. They are sides of two adjacent isosceles

triangles, and hence perpendiculars.

502. Contranominal of 501. If three equal sects

from a point be not quadrants, their three other end-

points are not on a straightest.

503. Theorem.

straightest a,

Through a point A, no' on a

there is to a always a perpendicular

straightest which, if A be not

a pole of a, is unique.

Proof. Take any sect QR
on a. Take on the other side

of a from A, ?BQR= 4-AQR,
and QB = QA.
Then (by 484) AB± a at

5.

Moreover, if there were a

second straightest perpendic-
ular to a from A, then A would (by 498) be a pole
of a.

504. Definition. A point B of a given ray 00'

such that BO s BO' will be called the bisection-point
of the ray. A point B between A and C such that

AB = BC is called the bisection-point of the sect

AC.

505. Problem. To bisect a given ray

00'.

Construction. At two points of the given ray not
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both end-points erect perpen-
diculars [take (by III 4') an-

gles
= to ^5 in 503], inter-

secting at P. Take another

ray from 0, not on the same

straightest as the given ray,

and at two points of it not

both end-points erect perpen-
diculars intersecting at Q.

The straightest PQ bisects the

given ray 00'.

Proof. Since P and Q are poles, .'. ^.B =

r't ?=?£>. A (by 485) OB = BO'.

506. Theorem. If and 0' are opposites, then

with vertex ^ (h, k) = ^ (h, k) with vertex 0' .

Proof. Bisect (by 505) ray h at A and ray k at C.

Then (by 496) %AOC= %AO'C.
507. Definition. From the vertex 0, a ray b with-

in ?(/&, k) making ^ (h, b)= £(&, k) will be called

the bisector of $ (h, k).

508. Problem. To bisect a given spherical angle.

Construction. By 505, bi-

sect the rays of the angle

?B at H and F. Take A
between H and B and from

F on FB' take FC^HA.
Then ^C intersects HF at Z),

and £D bisects ^HBF.
Proof. By 496, %ACB=

? CAS';. -.by 485, HD~FD\
.\ by 496, * tf££ = ? F££>.



228 RATIONAL GEOMETRY,

509. Problem. To bisect a

given sect.

Construction. At the end-

points erect perpendiculars

[by taking (by III 4') angles

= ?S in 503]. ^
Bisect (by 508) the £ be-

tween them.

Proof. By 497 and 484.
FlG - 2DI -

510. Corollary. In an isosceles triangle the bi-

sector of the angle between equal sides bisects at

right angles the third side.

5xx. Theorem. If two spher-

ical triangles have two sides

of the one equal respectively

to two sides of the other, and

the angles opposite one pair of

equal sides equal, then the

angles opposite the other pair

are either equal or supple-
Fig. 202. mental.

[Proved as in 175.]

512. Definition. In any spherical triangle the

sect having as end-points a vertex and the bisec-

tion-point of the opposite side is called a median.

513* Theorem. An angle adjacent to an angle of

a spherical triangle is greater than, equal to, or less

than either of the interior non-adjacent angles, accord-

ing as the median from the other interior non-adjacent

angle is less than, equal to, or greater than a quadrant.

And inversely.

Proof. Let ^ ACD be an angle adjacent to ^ACB
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Fig. 203.

of aACB. Bisect AC at F.

On straightest BF beyond F
take FH= FB. .\ (by 484)

^BAF= ^HCF. If now the

median BF be a quadrant
BFH is a ray and H is on

£CX>. If the median BF be

less than a quadrant, if' is

within IfACD.
.-. ^/fCA^JDCA .-. jDCA > ?£AC.

If BC be greater than a quadrant, if" is without

.-. 1H"CF>*DCF. .\ ?£>CV1<?£,4C\
514. Definition. Two sects respectively congru-

ent to two made by a point on a ray with its end-

points are called supplemental.

515. Theorem. The supplements of congruent
sects are congruent.

Proof. They are sums or differences of quadrants
and congruent sects less than quadrants; and (by

499) all quadrants are congruent.

516. Theorem. If a median

be a quadrant, it is an angle-

bisector, and the sides of the

bisected angle are supplemental.

Let median BD in aABC
be a quadrant.

Proof. In 2ABD and

aCB'D (by 484) AB =

CB f and ^ABD = ^CB'D =

^CBD (by 506).

Fig. 204.
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Given ^.B=^E;

517. Inverse. If two sides of a triangle are sup-

plemental, the median is a quadrant.
Proof. 2ABC = or -V 2AB'C (by 496).

.-. 2ABD = or -|. 2CB'D (by 484). ;'- BD=DB'.
518. Corollary. If two sides of a triangle are sup-

plemental, the opposite angles are supplemental.

519. Theorem. Two spherical triangles are either

congruent or symmetric if they have two angles of the

one respectively equal to two of the other, the sides oppo-
site one pair equal, and those opposite the other pair

not supplemental.

$C=^F;AB = DE.; AC not

supplemental to FD.
Proof. On ray BC take

BG = EF. G must be C, else

would we have a 'aACG with

adjacent ^-AGB = ?{ACG in-

terior non-adjacent and .*.

with median a quadrant (by

513) and .-. (by 516) with AC
supplemental to AG, that is,

to FD.

520. Theorem. Two spheri-

cal triangles are either congru-

ent or symmetric if they have

in each one, and only one,

right angle, equal hypothenuses

and another side or angle con-

gruent.

Given ifCm^Hmfi ?,
and c = h. If a=f, then if

AC>g,takeCD=g. .\BD =

Fig. 205.

Fig. 206.

h = c, and (by 510) the
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bisector of $DBA is _L to CDA. .*. ^by 498) B is

pole to CDA. .'. %-A is also r't.

If %.A m ?F, then if $ABC >?£, take $ABD =
*G. .'. (by 485) ^BDA = ?tf = ?C= r't ?. .-. £
is pole toCZM.

521. Theorem. The straight-

est through the poles of two

straightests is the polar of their

intersection-points.

Let A and B be poles of a

and b, which intersect in P.

To prove AB the polar of P.

Proof. AP and £P are
, Fig. 207.

quadrants.

522. Corollary to 521. The straightest through
the poles of two straightests is perpendicular to

both.

523. Corollary to 521. If three straightests are

copunctal, their poles are on a straightest.

524. Definition. If A, B
}
C are the vertices and

a, b, c the opposite sides of a spherical triangle, and

A f that pole of a on the same side of a as A, B' of

b as B
y
C of c as C, then A'B'C is called the polar

triangle of ABC.

525. Definition. Of a spherical triangle A } B, C,

the polar triangle is A'
', B', C where A' is that pole

of BC or a on the same side of a as A, Br
of b as £,

C of c as C
526. Theorem. If of two spherical triangles the

second is the polar of the first, then the first is the polar

of the second.

Let ABC be the polar of A'B'C
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Fig. 208.

To prove A'B'C the polar of ABC.
Proof. Since B is pole of Af

C, .'. BA' is a quad-

rant; and since C is pole of

A'B', .' . CA' is a quadrant;
• '• (by 500) A' is pole of BC.

In like manner, B' is pole of

AC, and C of AB. More-

over, since by hypothesis A
and A' are on the same side

of B'C and A is pole of B'C,
.'. sect AA' is less than a quad-

rant. .'. A and A 1 are on the same side of BC, of

which A' is pole. And so for B' and O\

527. Theorem. J« a /?<wr 0/ £<?/ar triangles, any
angle of either intercepts, on the side of the other which

lies opposite it, a sect which is the supplement of that

side.

Let ABC and A'B'C be

two polar triangles.

Proof. Call D and E re-

spectively the points where

ray A'B' and ray A'C meet

BC. Since B is pole of A'C,
.'. BE is a quadrant, and since

C is pole of A'B', .'. CD is a

quadrant.
Fig. 209.

But BE +CD=BC + CE + CB +BD =

BC + (£C +CB + £L>) =BC + £>£.

528. Theorem. Two spherical triangles are either

congruent or symmetric if they have three angles of

the one respectively equal to three angles of the other.
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Proof. Since the given triangles are respectively

equiangular, their polars are respectively equilateral.

For (by 484) equal angles at the poles of straightests

intercept equal sects on those straightests; and

these equal sects are the supplements of correspond-

ing sides of the polars Hence these polars, having
three sides respectively equal, are respectively

equiangular. Therefore the original triangles

are respectively equilateral, which was to be

proved.

529. Corollary to 511. Two spherical triangles

are either congruent or symmetric if they have two

sides of the one respectively equal to two of the

other, the angles opposite one pair equal, and those

opposite the other pair not supplemental.

530. Theorem. // two sides of a spherical triangle

are each less than a quadrant, any sect from the third

side to the opposite vertex is less than a quadrant.

Let AB and BC be each less than a quadrant.
To prove BD < quadrant.
Proof. Let FG, the polar of

B, meet BD at H. If H were

between B and D, then GHF
would (by II 9') meet CA t

and so have a point on each

of the three sides of a AB'C,
which (by II 9' ) is impossi-

ble. Hence D is between B
and H. That is BD< quad-
rant.

531. Corollary to 530 and 513. If two sides of a

spherical triangle are each less than a quadrant, the

Fig. 210.
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Fig. 211.

angle opposite either is less than the supplement of

the angle opposite the other.

532. Theorem. If two sides of a spherical triangle

be each less than a quadrant, as the third side is greater

or less than one of these, so is it with the opposite angles.

And inversely.

Let in 2 ABC, BC and

another side, AB, be each

less than a quadrant, and

AC>AB.
To prove ^fABC>^ACB.
Proof. Within AC take D

making AD = AB. Then (by

530) DB is less than a quad-
rant. .'. (by 531) 1ADB>

? C. But 2ABC > ^ABD m %ADB > ?C.
533. Theorem. If the three sides of a spherical tri-

angle are each less than a quadrant, any two are

together greater than the third.

[Proved as in 174.]

534. Definition. On the sphere, the assemblage
of points which with a given point give congruent
sects is called a circle. The given point is called a

pole of the circle. Any one of the congruent sects

is called a spherical radius of the circle.

Thus a straightest is a circle with a quadrant for

spherical radius. But henceforth, for convenience,

by circle we will mean a circle with a radius not a

quadrant.
A sect whose end-points are on a circle is called

a spherical chord, or simply a chord.

A chord containing a pole is called a diameter.

Since the supplements of congruent sects are (by
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Fig. 212.

515) congruent, therefore every circle has two poles

which are opposite points, and its spherical radius

to one pole is the supplement of that to the other.

Always one spherical radius is less than a quadrant.
Call its pole the g-pole, and it the ^-radius.

535. Theorem. Any spheri-

cal chord is bisected by the

perpendicular from a pole.

Proof. AD=BD (by 520).

536. Corollary. A straight-

est perpendicular to a diam-

eter at an end-point has only
this point in common with

the circle.

537. Definition. A straightest with one and only
one point in common with a circle is called a tangent
to the circle.

538. Theorem. // an oblique from a point to a

straightest be less than a quadrant, then there is one

and only one perpendicular sect from the point to the

straightest which meets it at less than a quadrant from
the foot of the oblique and this is less than a quadrant.

Let BA be oblique to CA
and <q, and BC J_CA.

Proof. Then CA cannot
=

q, else would BA =
q. Hence

CA may be taken <q, since

from C to its opposite = 2 q.

Now take CA f =CA. Then
BA' =BA and BC is median
where the two sides are each

<q. .;. (by 530) BC<q. :. (by 503) its prolonga-
tion BC is the only other 1_ from B to AC.

Fig. 213.
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Fig. 214.

539. Definition. If A be a point of a circle whose

g-pole is P, then P or any point between A and P is

said to be within the circle, while Q such that A is

between P and Q is said to be without the circle.

540. Theorem. Any straightest through an end-

point of a diameter, but not per-

pendicular to the diameter, has

a point within and a second

point on the circle.

Let P be the g-pole, and AC
the straightest through A, an

end-point of diameter BPA
(i-PAC not r't).

Proof. Take ( 538) PD±CA
with PD and AD each < q. Take DC = DA.

.

•

. (by 484) PC =PA\ that is, C on circle. More-

over (by 5 1 3) 2PAF > ^PCA =2PAC. . \ %PAD
acute, /.(by 532) PD<PA; that is, D within

circle.

541. Theorem. Any straightest with a point on

and a point within a circle has a second point on the

circle.

Let AB have a point A on

and B within circle with q-

pole P.

Proof. ifPAB cannot be

r't. For if so, then produc-

ing PB to meet the circle at

C, (by 531) ^PCF>1PAC
>r't $PAB. .«. If PCA ad-

jacent to obtuse ^PCF is
FlG - 2I 5-

acute. But it is also obtuse, being (by 494)
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= ifPAC. This is impossible, .-. BA not A_AP\
.'. (by 540) it has a second point on the circle.

542. Corollary. A tangent has no point within

the circle.

543. Theorem. // less than a quadrant, the per-

pendicular is the least sect from
a point to a straightest.

Proof. If any other sect

from P to AC were less than

the perpendicular PA, then

AC would have a point within

the circle with q-pole P and

^-radius PA, and .'. (by 541)

a second point on this circle,

which (by 536) is impossible.

544. Convention. In general a sum of sects is a

number of quadrants plus a sect.

545. Theorem. Any two sides of a spherical tri-

angle are together greater than the third.

Proof. Since each side is less than two quadrants,

we have only to prove AB +BC>AC when AB<q t

and BC< AC.

Fig. 216.

I. If BC =
q, then taking

CD=q, we have (by 500)

BD i. AC.

.:<y>y S43)AD<AB.

.-. AC=AD+ DC <AB +
BC.

Fig. 217.
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II. If BC<q,
(i) if CA<q, this is 533.

(2) if C4 =
q, erect _L at A.

(by 543) AByBD.
AB+BC>DB+BC= DC

-AC.

Fig. 218.

(3) If CA > <?, take on it CD = q and make CBF =
9.

Then sectsAB and Di7 cross at

K, for F is on the non-C-side

of AB, while D is on the C-side

of AB. .'. DF must have a

point on straight AB. But

all points of sect DF are inte-

rior to ^fC, .'. this intersection

point is on sect AB, which is

all of straight AB within i£C.

Then (by 543) BF<BK and AD<AK.
.'. AC =AD +DC<AK +CD

=AK +CF<CB +BK + KA.

III. If BC>q }
then in ABC all sides are less than

quadrants.
•*• (by 533) CB +BA +AC >CB +BC =CA +AC.
.'.CB +BA>CA.
546. Definition. A convex spherical polygon is

one no points of which are on different sides of the

straightest of any of its sides.

547. Theorem. A convex spherical polygon is less

than one containing it.
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548. Theorem. The sum of the sides of a convex

spherical polygon is less than four quadrants.

Proof. It is within, hence less than, any one of

its angles.

549. Theorem. If one angle

of a spherical triangle be greater

than a second, the side opposite

the first must be greater than the

side opposite the second
;
and

inversely.

Given ?C> ?£.
Proof. Take %DCB = ?£.

Then(by495)ZX7 = L>J3. But

(by 545) DC +DA > AC.

550. Theorem. In a cyclic quadrilateral, the sum of

one pair of opposite angles equals the sum of the other

pair.

Proof. By isosceles triangles.

551. Theorem. Of sects join-

ing two symmetrical points to a

third, that cutting the axis is

the greater.

Proof. BA=BD +DA
=BD + DA'>BA'.

Fig.

Fig. 221,

552. Theorem. // two spherical triangles have two

sides of the one equal to two sides of the other, but the

included angles unequal, then that third side is the

greater which is opposite the greater angle', and in-

versely.
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Fig.

Proof. Against one of the equal sides of one tri-

angle construct a triangle with elements equal to

those in the other. Bisect the angle made by the

pair of equal sides. This axis cuts the third side,

which is opposite the greater angle.

553. Theorem. // each of the two sides about a

right angle is less than a quad-

rant, then the hypothenuse is

less than a quadrant.

Proof. Extend the two

sides BA, BC, taking BF =

BD= quadrant. Then (by

500) B is pole of DF. .'. (by

498 and 497) ^Fisr't. .'.(by

495) DF is a quadrant. . \ (by

500) DA is a quadrant. /. (by 530) AC < quadrant.

554. Inverse of 553.

If the hypothenuse and a side are each less than

a quadrant, then the other side is less than a quad-
rant.

Proof. If B is r't (Fig. 222), and AB and AC
each <q, there is (by 538) on st' AB a p't H such

that CH and AH each < q while CH JL AH.
But H is B or B'.

It cannot be B' since BA<q and .*. (by II 10')

AB'yq.
555. Theorem. The straightest bisecting two sides

of a triangle meets the third side at a quadrant from its

bisection-point.

Let the straightest through A\ B\ the bisection-

points of two sides BC, CA, meet the third side pro-

duced at D and D'.
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Fig. 223.

Proof. Take (by 538) AL, BM, CN J_ A'B' and

such that each is <q, and

also B'L, B'N, A'M, A'N
each <q.

.-. in2's ALB'andCNB'

(by 519) AL = CN. Simi-

larly BM=CN. .*. in a's

AL£> and BMD' (by 519)

AD=BD'. /.if C be bi-

section-point of AB, we
have C,A+^L>=C,5 + JBJD ,

=^.

556. Theorem. The end-points of any sect taken

with any point on its perpendicular bisector give

equal sects.

557. Corollary 556. Every point on the perpen-
dicular bisector of a sect is pole of a circle through
its end-points.

558. Corollary to 557.

The perpendicular bisectors of the sides of a

spherical triangle are copunctal (in its circumcenter) .

559. Corollary I to 555.

The altitudes of a spherical triangle are copunctal

(in its orthocenter.

For, regarding A'B'C as the triangle, the perpen-
dicular to DC at C is the polar of D, and .'. J_ to

A'B'.

Similarly, the perpendicular to BA' at A' is _L

to B'C, etc.

So the three altitudes of A'B'C are copunctal in

the circumcenter of ABC.

560. Corollary II to 555. (Lexell).

The vertices of spherical triangles of the same



242 RATIONAL GEOMETRY.

angle-sum on the same base are on a circle copolar

with the straightest bisecting their sides.

For AO=BO, ^OAB =$OBA, ^.LAB = ^MBA
= i[A+B + C]. Hence aAOB is fixed, and .'. OC

[supplemental to OA].

561. Theorem. The straight-

ests through the corresponding

vertices of a triangle and its

polar are copunctal in the com-

mon orthocenter.

Proof. For AA' is J_ to

BC and B'C\ since it passes

through their poles.
Fig. 224.

Equivalence.

562. Theorem. Any angle made with a side of a

spherical triangle by joining its

end-point to the circumcenter,

equals half the angle-sum less

the opposite angle of the tri-

angle.

Proof. For ?A + ?B + ?C
- 2 £ OCA + 2 ? OCB ±
2^.0AB. .'. %OCA = \&A
+ %B + $C] - [? OCB ±
$OAB] =M $A + ?B + ?C] - ?£.

563. Corollary to 562. Symmetrical spherical tri-

angles are equivalent or equivalent by completion.
For the three pairs of isosceles triangles formed

by joining the vertices to the' circumcenters, hav-

Fig. 225.
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Fig. 226.

ing respectively a side and two adjoining angles

congruent, are congruent.

564. Theorem. Of the triangles formed by three

non-copunctal straightests, two containing vertical

angles are together equivalent to that angle.

To prove 2ABC + 2AB'C
= ^.ABA'CA.
Proof. B'C=BC, each

being supplement of CB'.

Again AC =A'C (supple-

ments of AC). Again AB' =

A'B (supplements of AB).
.-. (by 496) 2AB fC = 2BCA f

.

.-. 2 ABC + 2AB'C = a

ABC+2BCA' ^ABA'CA.
565. The spherical excess, e, of a spherical triangle

is the excess of the sum of its angles over two right

angles.

In general the spherical excess of a spherical poly-

gon is the excess of the sum of its angles over twice

as many right angles as it has sides less two.

566. Theorem. A spherical triangle is equivalent to

half its spherical excess.

Proof. Produce the sides

of the aABC until they meet

again two and two at A', B f

y

C . The aABC now appears

in three angles, if A, ^.B, %.C.

But (by 564) $A = 2aBC +
2AB'C. .-. ?A + ?£4 ?C

FlGl 227 -

=2 r't?s + 2^5C.
2AAJ3C =?A + ?£+?C-2r't ?'s=e.
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567. Corollary I to 566. The sum of the angles

of a a is > 2 r't f's and < 6 r't ?'s.

568. Corollary II to 566. Every ? of a A is >\e.

569. Corollary III to 566. A spherical polygon is

equivalent to half its spherical excess.

Ex. 597. If a spherical angle adjacent to one angle of a

spherical triangle is equal to a second angle of the

triangle, the sides opposite these are together a ray.
Ex. 598. In a spherical triangle and the spherical

triangle determined by the opposites of its vertices the

sides and angles are respectively congruent.
Ex. 599. Where are the vertices of spherical triangles

on a given base the sum of whose other sides is a ray ?

Ex. 600. Does a triangle ever coincide with its polar?
Ex. 601. The difference of any two angles of a spherical

triangle cannot exceed the supplement of the third.

Ex. 602. The bisector of an angle passes through the

pole of the bisector of the -supplemental adjacent angle.

Ex. 603. If two straightests make equal angles with

a third, the sects from their poles to its are equal.

Ex. 604. If a straightest be through the pole of a second,

so is the second through a pole of the first.

Ex. 605. If two circles be tangent, the point of contact

is on their center-straightest.

Ex. 606. The common secant of 2 intersecting 0s bisects

a common tangent.
Ex. 607. The three common secants of 3 ©s which

intersect each other are copunctal.

Ex. 608. If a quad' can have a inscribed in it, the

sums of the opposite sides are = .

Ex. 609. If two equal ©s intersect, each contains the

orthocenters of as inscribed in the other on the common
chord as base.

Ex. 610. Three equal ©s intersect at a point H, their

other points of intersection being A, B, C. Show that
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H is the orthocenter of aABC; and that the a formed

by the centers of the circles is =to aABC.
Ex. 611. The feet of ±s from A of aABC on the ex-

ternal and internal bi's of ^ s B and C are co-st' with

the bisection-points of b and c. Does this hold for a ?

Ex. 612. (Bordage.) The centroids of the 4 as de-

termined by four concyclic points are concyclic.

Ex. 613. The orthocenters of the 4 as determined by
four concyclic points, A, B, C, D, are the vertices of a quad'
= to ABCD. The incenters are vertices of an equian-

gular quad'.
Ex. 614. (Brahmegupta.) If the diagonals of a cyclic

quad' are JL, the -L from their cross on one side bisects

the opposite side.

Ex. 615. If the diagonals of a cyclic quad' are 1
,
the

feet of the ±s from their cross on the sides and the bisec-

tion-points of the sides are concyclic.

Ex. 616. If an inscribed equiangular polygon have an

odd number of sides, it is equilateral.

Ex. 617. If a circumscribed equilateral polygon have
an odd number of sides, it is equiangular.

Ex. 618. If one of two equal chords of a O bisects

he other, then each bisects the other.

Ex. 619. The tri-rectangular a is its own polar.
Ex. 620. All = as on the same side of the same base

have their two sides bisected by the same straightest.

Ex. 621. If the base of a a be given, and the vertex

variable, the straightests through the bisection-points
of the two sides always pass through two fixed points.

Ex. 622. If A and A' be opposites, then as ABC,
A'BC are called colunar. A pole of the straightest

bisecting AB and AC is also pole of the circum-O of the

colunar aA'BC.
Ex. 623. Given b and a+ r— /? to construct q-pole and

radius of circum-O-
Ex. 624. If a+ /?

=
r, the q-pole of circum-o is bisection-

point of c.
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Ex. 625. Two as with one ^ the same and the opposite
escribed Os=,have equal perimeters.

Ex. 626 The tangent at A to the circum-O of aABC
makes with AB and AC^s whose difference =/?

—
r-

Ex. 627. The q-pole of the circum-o of a a coincides

with that of the in-O of the polar *a ;
and the spherical

radii of the 2 O s are complementary.
Ex. 628. From each / of a a a 1 is drawn to the

straightest through the bisection-points of the adjacent
sides. Prove these ±s copunctal.

Ex. 629. Through each ^ of a a a straightest is drawn
to make the same ^ with one side as the -L on the base

makes with the other side. Prove these copunctal.

Ex. 630. Two birectangular as are = if the oblique ^s
are =

,
or if the sides not quadrants are = .

Ex. 631. In a, if c is fixed and a+/9=w, then C is on

a fixed straightest.

Ex. 632. (Joachimsthal.) If two diagonals of a com-

plete spherical quadrilateral are quadrants, so is the third.

Ex. 633. (1) A quad' whose diagonals bisect each

other (a cenquad) has its opposite sides = ; (2) and in-

versely.

(3) Also its opposite ^s
=

; (4) and inversely.

(5) Every straightest through this bisection-point

(spherical center) cuts the quad' into = halves.

(6) Its opposite sides make = alternate ^s with a

diagonal.

(7) Inversely, a quad' with a diagonal making with

each side a }£
= to its alternate is a cenquad. (8) So is

a quad with a pair of opposite sides — and making =

alternate ^ s with a diagonal.

(9) Also a quad' with a pair of opposite sides —
,
and a

diagonal making = alternate ^ s with the other sides

and opposite ^ s not supplemental.

(10) From the spherical center Is on a pair of opposite

sides are =.
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(11) If two consecutive ^ s of a cenquad are =, it has a

circum-o.

(12) If two consecutive sides of a cenquad are=,it
has an in-O.

(13) The polar of a cenquad is a concentric cenquad.

(14) A pair of opposite sides of a cenquad intersect on

the polar of its spherical center.

(15) Any two consecutive vertices of a cenquad and the

opposites of the other two are coneyclic.

(16) If ABCD be a cenquad, then A, B, C, D' and A\
B'

t C, D are on = Os with q-poles opposites.
Ex. 634. The sides of a a intersect the corresponding

sides of its polar on the polar of their orthocenter.

Ex. 635. The sect which a ^ intercepts on the polar of

its vertex equals a sect between poles of its sides.

Ex. 636. If a spherical quad' is inscribed, and another

circumscribed touching at the vertices of the first, the

crosses of the opposite sides of these quad's are on a

straightest .

Ex. 637. The crosses of the sides of an inscribed a
with the tangents at the opposite vertices are on a

straightest.



CHAPTER XVI.

ANGLOIDS OR POLYHEDRAL ANGLES

570. Theorem. The area of a spherical angle, L,

is 2r 2
u.

Proof. For we have the proportion, area of £:

area of J sphere = size of £ : size of r't ^=size of ^
at center : size of r't £ ;

that is,

L : r
27i=u : \iz.

.'. L = 2rht.

571. Corollary to 570 and 566. The area of a

spherical triangle is the size of its spherical excess

multiplied by its squared radius.

If e' is the u of e,

572. Corollary to 571. To find the area of a

spherical polygon, multiply its spherical excess in

radians by the squared radius.

573. Definition. Three or more rays, a, b, c,

from the same point, V, taken in a certain order

and such that no three consecutive are coplanar,

determine a figure called a polyhedral angle or an

angloid.

The common point V is the vertex, the rays a, b,

c, . . . are edges the angles ^ab tbc, . . . are faces,

248
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and the pairs of consecutive faces are the dihedrals

of the angloid.

According to the number of the rays, 3, 4, 5, . . .

the angloid is called trihedral, tetrahedral, penta-

hedral, . . .
,
and in general polyhedral.

574. If a unit sphere be taken with the vertex of

the angloid as center, this determines a spherical

polygon whose angles are of the same size as the

inclinations of the angloid's dihedrals, while the

length of each side of the polygon is the size of the

corresponding face-angle of the angloid.

Hence from any property of spherical polygons
we may infer an analogous property of angloids.

For example, the following properties of trihe-

drals have been proved in our treatment of spheri-

cal triangles:

I. Trihedrals are either congruent or symmetrical
which have the following parts congruent :

(1) Two face-angles and the included dihedral.

(2) Two dihedrals and the included face-angle.

(3) Three face-angles.

(4) Three dihedrals.

(5) Two pairs of dihedrals and the face-angles

opposite one pair equal, opposite the other pair not

supplemental.

(6) Two pairs of face-angles and the dihedrals

opposite one pair equal, opposite the other pair not

supplemental.

II. As one of the face-angles of a trihedral is

greater than or equal to a second, the dihedral oppo-
site the first is greater than or equal to that opposite
the second, and inversely.
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III. Symmetrical trihedrals are equivalent or

equivalent by completion.

IV. Any two face-angles of a trihedral are together

greater than the third.

V. In two trihedrals having two face-angles respec-

tively congruent, if the third is greater in the first,

so is the opposite dihedral, and inversely.

VI. In any trihedral the sum of the three face-

angles is less than four right angles.

VII. In any trihedral, the sum of the three dihe-

drals is greater than two and less than six right

angles.

In the same way, defin'ng a polyhedral as convex

when any polygon formed by a plane cutting every
face is convex, we have :

VIII. In any convex polyhedral any face-angle is

less than the sum of all the other face-angles.

Proof. Divide into trihedrals and apply IV re-

peatedly.

IX. In any convex polyhedral the sum of the

face-angles is less than four right angles.

X. The three planes which bisect the dihedrals of

a trihedral are costraight.

XI. The three planes through the edges and

the bisectors of the opposite face-angles of a tri-

hedral are costraight.

XII. The three planes through the bisectors of

the face angles of a trihedral, and perpendicular

to these faces, respectively, are costraight.

XIII. The three planes through the edges of a

trihedral, and perpendicular to the opposite faces,

respectively, are costraight.
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XIV. If two face-angles of a trihedral are right,

the dihedrals opposite are right.

Ex. 638. The face angles of any trihedral are propor-
tional to the sides of its a on any sphere.

Ex. 639. The area of a a is to that of the sphere as

its spherical excess is to 8 r't ifs {e'-.^n).

Ex. 640. Find the angles and sides of an equilateral a

whose area is \ the sphere.

Ex. 641. The angle-sum in a r't a is < 4 r't ^s.
Ex. 642. If one of the sects which join the bisection-

points of the sides of a a be a quadrant, the other two

are quadrants.
Ex. 643. Cut a tetrahedral by a plane so that the sec-

tion is a ||gm.

Ex. 644. To cut by a plane a trirectangular trihedral

so that the section may equal any given a.

Ex. 645. The base AC and the area of a a being given,

the vertex B is concyclic with A' and C .

Ex. 646. Given a trihedral; to each face from the

vertex erect a perpendicular ray on the same side as the

third edge; the trihedral they form is called the polar
of the given one.

If one trihedral is the polar of a second, then the second

is also the polar of the first.

Ex. 647. If two trihedrals are polars, the face angles of

the one are supplemental to the inclinations of the corre-

sponding dihedrals of the other.

Ex. 648. If two angles of a a be r't, its area varies as

the third ^ .

Ex. 649. If 1', one minute, is one sixtieth of a degree,

and 1", one second, is one sixtieth of a minute, find the

area of a a from the radius r, and the angles a =20° 9'

30", /?=55° 53' 32", r=n4° 20' 14". Ans. o.i8i 3r
2

.

Ex. 650. All trihedrals having two edges common, and,

on the same side of these, their third edges prolongations
of elements of a right cone containing the two common
edges, are equivalent.
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Ex. 651. Equivalent as on the same side of the same
base are between copolar = Os.

Ex. 652. Find the spherical excess of a a in degrees
from its area and the radius.

Ex. 653. If any angloid whose size is 1, that is, any
angloid which determines on the unit sphere a spherical

polygon whose area is 1, be called a steradian, and all

the angloids about a point be together called a steregon,

then a steregon contains 47: steradians.



APPENDIX I.

THE PROOFS OF THE TWO BETWEENNESS THEOREMS
16 AND 17, TAKEN FOR GRANTED IN THE TEXT.*

575. Theorem I. If B is between A and C, and C
is between A and D, then C is between B and D.

Proof. Let A, B, C, D be on a. Through C take

a straight c other than a. On c take a point E
other than C. On the straight

BE between B and E take F.

Thus between B and F is no

point of c. Now between A
and F there can be no point
of c

y
else c would (by II 4)

have a point between A and

B, since, by the construction of F, c cannot have a

point between B and F. Thus C would be between

A and B, contrary to our hypothesis that B is

between A and C.

Thus since c cannot have a point between A and

F, it must (by II 4) have a point between F and D.

Thus we have the three non-co-straight points F,
B

t D, and c with a point between F and D, and, by
construction, none between F and B. Therefore it

must (by II 4) have a point between B and D. So

C is between 5 and D.

* These proofs are due to my pupil, R. L. Moore, to whom I have
been exceptionally indebted throughout the making of this book.

253
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576. Theorem II. If B is between A and C, and C
is between A and D, then B is between A and D.

Proof. Let A, B, C, D be on a. Through B take

a straight b other than a. On b

take a point E other than B. On
the straight CE between C and

E take F. Thus between C and

F is no point of b. Then since

by hypothesis B is between A
and C, therefore b must (by II 4)

Fig. 229. have a point between A and F.

Thus we have the three non-co-straight points A,

F, A and 6 with a point between A and F. There-

fore b must have (by II 4) a point between A and D,
or between F and D. But it cannot have a point
between F and D, for then it must (by II 4) have a

point either between F and C, contrary to our con-

struction, or else between C and D, contrary to

Theorem I, by which C is between B and D. There-

fore it has a point between A and D. So B is be-

tween A and D.

577. Theorem. Ill Any four points of a straight

can always be so lettered, ABCD, that B is between A
and C and also between A and D, and furthermore C
is between A and D and also between B and D.

Proof. We may (by II 3) letter three of our

points B, C, D, with C between B and D. Now as

regards B and D, and our fourth point A, either A
is between B and D, or B is between A and D,or D
is between A and B.

If B is between A and D, we have fulfilled the

hypothesis of Theorems I and IL
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If D is between A and B, then interchanging the

lettering for B and D, that is calling B, D and A B,

we have the hypothesis of Theorems I and II. There

only remains to consider the case where A is be-

tween B and D.

If now C is between D and A
,
we have fulfilled the

hypothesis of Theorems I and II, by calling D, A,
and C, B, and A, C, and 5, D.

If, however, A were between C and £> we would

have fulfilled the hypothesis of Theorems I and II

by writing for A
} B, for D, A, and for B, D.

We have left only one sub-case to consider, that

where D is between A and C.

This sub-case is impossible.

Suppose ABCD on a.

Through Ctake a straight c

other than a. On c take a

point £ other than C. On
the straight DE between D
and E take F. Thus between
D and F is no point of c.

FlG - 23 °-

Then since by hypothesis C is between B and Z>,

therefore c must (by II 4) have a point between 5
and F. Therefore we have the three non-costraight

points B, F }
A

}
and c with a point between B and F.

Therefore c has (by II 4) either a point between B
and A, or a point between F and A. But it cannot

have a point between F and A, else it would (by II

4) either have a point between F and D, contrary to

our construction, or else between D and A, giving
C between D and A, contrary to our hypothesis D
between A and C,
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So C would be between B and A, but this with D
between A and C gives (by Theorem I) D between

A and B, contrary to our hypothesis A between B
and D.

Thus there is always such a lettering that B is

between A and C, and C between A and D, whence

(by Theorem I) C is between B and D, and (by
Theorem II) B is between A and D.

578. Theorem. ^4r# A, B, C, D points of a straight,

such that C lies between A and D and B between A and

C, then lies also B between A and D, but not between

C and D.

Fig. 231.

Proof. The points ABCD, in accordance with

577, have an order in which two are each between

the remaining pair and of this remaining pair neither

is between two others. But here by hypothesis C
and B are between others. So we reach the follow-

ing arrangements ACBD, BBCA, ABCD, DCBA.
Of these arrangements, however, the first two do

not satisfy the hypothesis. For in both arrang-

ments C lies between A and B, which (by II 3) con-

tradicts the hypothesis
" B between A and 67 '

In the third and fourth arrangement appears, by

577, that C lies between B and D, therefore, by II 3,

B cannot lie between C and D.

579. Theorem. Between any two points of a straight

there are always indefinitely many points.

Proof. By II 2, there is between A and B at

least one point C\ likewise there is between A and
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C at least one point O . Further, there is within

AC at least one point C", which likewise is within

AB but not within OB
;
therefore since C lies within

OB, C cannot be identical with C. In this way

liio. 232.

we get ever new points of AB without ever coming
to an end.

580. Theorem. If ABCD is an arrangement of

four points corresponding to 577, then there is

besides this arrangement only still the inverse

which fulfills 577. [The proof is essentially already

given in proving 578.]

581. Theorem. If any finite number of points of

a straight are given, then they can always be ar-

ranged in a succession A, B, C, D, E, . . .
, K, such

that B. lies between A on the one hand and C, D,

E, . . .
,
K on the other, further C between A

}
B on

one side and D, E, . . .
,
K on the other, then D

between A, B, C on the one side and E, . . .
,
K on

the other, and so on.

Besides this distribution there is only one other,

the reversed arrangement, which is of the same
character.

[This theorem is a generalization of 577.]

Fig. '33-

Proof. Our theorem holds for four points by 577
and 580,
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We may show that the theorem remains valid for

n + 1 points if it holds for n points.

Let A
1
A 2A 3 . . . A n be the desired arrangement

for n points. If further we take an additional point
then there are forthwith three cases possible :

(1) A
t lies between X and A n \

(2) A n lies between X and A 1 \

(3) X lies between A t and A n .

In the third case we prove further, that there is

one and only one number m, such that X lies between

A m and A m+l .

Finally we show that the following arrangements
in the three cases have the desired properties:

(1) XA,A 2A 3 . ..An ;

(2) A^A^^AnX;
(3) ^-1-^2^3 • • • A mXA m+l . . . A n \

and that they with their inversions are the only ones

which possess those properties.



APPENDIX II.

THE COMPASSES

582. Euclid's third postulate is: About any cen-

ter with any radius one and only one circle may be

taken. This has been understood in ordinary geom-
etries as authorizing the use of a physical instrument,

the compasses, for drawing a circle with any center

and any radius.

But this is only made fruitful, beyond the sect-

carrier, in problem solving, by two new assumptions :

Assumptions of the Compasses.

Assumption VI 1 . If a straight have a point within

a circle, it has two points on the circle.

Assumption VI 2. If a circle have a point within

and a point without another

circle, it has two points on this

other.
1

583. Problem. From a given \

point without the circle to \

draw a tangent to the circle.

Construction. Join the

given point A with the cen-

ter C, meeting the circle in

B. Erect BD±_ to CB, and (by VI 1) cutting in

259
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D the OC(CA). Join DC, meeting OC(CB) in F.

Then AF is tangent to OC(CB).
Proof. Radius CA, _L to chord HD, bisects arc

HD\ .'. if we rotate the figure until H comes upon
the trace of A, then A is on the trace of D; .'. tan-

gent HB en trace of AF.
Determination. Always two and only two tan-

gents.

584. Problem. To construct a triangle of which

the sides shall be equal to three given' sects, given
that any two whatever of these sects are together

greater than the third.

Fig. 235.

Given the three sects a, b, c, any two whatever

together greater than the third.

Construction. On a straight OF from take

OG = b. Take O0(a), and OG(c). Since a + c>b,
these (by VI 2) intersect, say at K.

a OGK is the triangle required.

585. Problem. To construct a triangle, given two
sides and the angle opposite one of them.

Given a, c, and C.
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Case i. If a<c.

On one ray of ^-C take CB = a.

This (by VI 1) has two points A'
,

A
x
on the straight of the other ray

of ^ C. The point C is between Af

and A v .*. if ^C r't, we have two

congruent triangles (Fig 236) ;
if

oblique, only one triangle (Fig. 237)

Take OB(c).
B

Fig. 236.

Case 2. Iia=c. [^fC acute.]

Then C coincides with A' or A lt

and we have only one triangle.

Fig. 237.

Case 3. If a>c. [^fC acute.J

I. If c = p, the perpendicular from B on CA, there

is only one triangle.

II. If c>p, then A t and A f are on the same side

of C and there are two different
B

triangles which fulfill the condi-

>ions, namely, A'BC and A
tBC

(Fig. 238).

This is called the ambiguous
case.

III. If c<p, no triangle.

Fig. 238.
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THE SOLUTION OF PROBLEMS.

586. A problem in geometry is a proposition ask-

ing for the graphic construction of a figure which

shall satisfy or fulfill certain given conditions or

requirements. It has been customary to use the

ruler and. compasses ;
that is, to allow our assump-

tions I-V and also VI (Appendix II), but no others.

Of these, assumptions V-VI have usually been

superfluous and unnecessary, the problems treated

not requiring the compasses, but only ruler and sect-

carrier.

587. When we know how to solve a problem, the

treatment consists of

(1) Construction: Indicating how the ruler and

sect-carrier or ruler and compasses are to be used

in effecting what is required.

(2) Proof: Showing that the construction gives a

figure fulfilling all the requirements.

(3) Determination: Considering the possibility of

the solution, and fixing whether there is only a

single solution or suitable result of the indicated

procedure, or more than one, and discussing the

limitations which sometimes exist, within which

alone the solution is possible.
262
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588. The first step toward finding a desired solu-

tion is usually what is called Geometrical Analysis.

This consists in supposing drawn a figure like the

one desired, also containing the things given, and

then analyzing the relations of the given things

among themselves and to the things or figure sought,

or the elements necessary for attaining such figure.

589. Methods of procedure in problem-solving.

I. Successive Substitutions.—We may substitute

for the required construction another from which it

would follow, and for this another, perhaps simpler,

until one is reached which we know how to accom-

plish.

Just so, in attempting to find a demonstration for

a new theorem, we may freely deduce from the de-

sired proposition by use of invertible theorems, and

if thus we reach a known proposition, the inversion

of the process will give the demonstration sought.

Fig. 239.

I Example 1 . Theorem. If from any point P on

the circumcircle of the triangle ABC be drawn PX,
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PY, PZ perpendicular to the sides, the points X,

y, Z will be eostraight, the Simson's st' of a for P.

Analysis. We will have proven X, y, Z eostraight

if on joining XY, XZ we show 4-PXY supplement-

ary to ^ PXZ. But again this is proven if we show

4.PXZ supplementary to ^ABP and i-PXY =

fABP.
But tPXZ is supplement of ^ABP since P, X,

Z, B are coneyclic. And since P, Y, C, X are con-

cyclic, £PXY is supplement of ^-PCY }
as is also

£ABP, since P, C, A, B are concyclic.

I Example 2. Problem. Construct a a, given an

angle, the side opposite and two sects proportional

to the other two sides, [a from a, a, b/c]

Analysis. By a and a is (by 165) the circumcircle

given. Bisect 4.BAC by AD
and prolong AD to meet the

circle again (by 138) in E.

Then (by 242) CD/BD =
b/c.

So (by 241) the point D is

known. Moreover, since arc

BE = arc CE
y
the point E is

(by 225) known. Therefore,

taking BC =
a, the points D

and E can be constructed, and

thus A by the prolongation of ED to the circle.

Analogous Problems: Ex. 1. Given a, P, b/c.

Ex. 2. Given a, R, b/c. Ex. 3. Given a, BD, CD.

II. Data.—The explicit giving of certain things

may involve the implicit giving of others more im-

mediately available.

Fig. 240.
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Such an implicitly given thing has been called a

datum.

For example, if a straight and a point without it

be given, the perpendicular from the point to the

straight is a datum.

If an angle and a point within it be given, then

the sect from the point to the vertex, the sect from

the point to one side drawn parallel to the other

side, and the sect this cuts off from the side are data.

With an angle a are given the constructible parts

\a, \a, etc., but not \a, \a, etc.; also the supple-

ment and complement.
If the sum and difference of two magnitudes are

given so are the magnitudes.
If in a triangle of the three things, a side, the oppo-

site angle, the circumradius, two are given, so is the

third.

So also with base, altitude, area.

II Example 1. To construct a triangle from one

side, the opposite angle, and the difference of the

other two angles, (a from a, a, ft— y.)

Analysis. Since a is known, so is also /?+ y as its

supplement. .*. /? and y are known, and we have a

side and the two adjoining angles.

III. Translation.—Again new auxiliary parts may
advantageously be introduced. Certain procedures
are found particularly fertile.

In any triangle ABC, transporting AC parallel to

itself into BD, and extending BA equal to itself to

E, we have that the sides of EDC are double the

medians of ABC and parallel to them.



266 RATIONAL GEOMETRY.

The sides of ABC are two-thirds the medians of

EDC, and A is its centroid. Two of the altitudes

of the triangles AED, AEC, ADC are equal to two
altitudes of ABC and the content of EDC is triple

that of ABC.
If we have given such elements of ABC as render

possible, through these properties, the determina-

Fig. 241.

tion of one of the triangles EDC, AED, ADC, AEC,
then the triangle ABC will always be constructible.

Ill Example 1. Problem. Construct a triangle,

given one median m
x ,
the angle between the others,

m2 and m3 ,
and two sects proportional to them :

[a from mlt ^of m2 and m3 ,
m2/m3].

Analysis. In the aEDC we know DC = 2FC =

2W
t ;

also %E and DE/EC. Therefore the problem
is reduced to I Example 2.

IV. Symmetry.
—Add to the tentatively con-

structed figure the figure symmetrical to it or to a

part of it, with respect to a chosen straight as axis.

Particularly adapted for axis is an angle-bisector

or a perpendicular. Especially does this show

differences of sects or angles.
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IV Example Problem. To construct a tri-

angle, given two sides and the

difference of the opposite an-

gles:

[a from a, b, a—fl.
E D

Fig. 242. Analysis. Take CE-vCA
with respect to perpendicular

CD. Then $AEC = a. But *AEC =^B+^ BCE
=(3+d. .-.*•*«-£
A BCE is therefore constructive (two sides and

included £).

The point D is the foot of the perpendicular from
C on BE. A +E (axis CD).
IV Example 2. Given the two straights s and I

and a point A on s. Determine

the point X on s, such that AX =

perpendicular from X on /.

Analysis. With respect to the

bisector of ifAXB as axis, the

figure symmetrical to XBC isXAC
t

and $ACB is bisected by XC. Therefore, erecting

a perpendicular at the given point A, the bisector

of the angle ACB made with / meets 5 in the required

point X.

V. Similarity.
—When the figure to be constructed

is determinable by such conditions that, omitting

one, the remaining determine a system of similar

figures, then first determine this system of figures

similar to the one sought, and secondly, by taking

account of the suppressed condition, fix the one

wMch solves the problem.

Fig. 243-



268 RATIONAL GEOMETRY.

There are two sorts of cases according as the sup-

pressed condition determines (I) the size of the

figure sought; (II) its position or place. In the

first case the data are angles and proportions (giv-

ing the system of similar figures) ,
and a sect (giving

the size of the particular figure) . In the second case

are only given angles and proportions, but also is

imposed a condition that the figure demanded must
have a determinate position with respect to some-

thing given; for example, must contain a given

point, must contain a tangent to a given circle, etc.

V Example i. To make a triangle, given an

angle a, sects proportional to the sides containing
it (b:c = tn:n), and also its bisector tt :

[A from a, b/c, t
x].

On the sides of a take m and n. On its bisector

take tv Through the foot of t
x draw a parallel to

the straight through the ends of m and n. [Similarly :

A from a, p, m a \
a from a, /?,

h a].

V Example 2. In a triangle ABC inscribe a

parallelogram of which one angle shall coincide with

angle BAC, and such that its sides are as m to n.

The vertices of the parallelogram sought must be

one at A, one on 6, one on c, one on a. Omitting
this last condition, the fourth vertices of parallelo-

grams satisfying the other conditions are on a

straight determined by A and the parallelogram

with sides m and n.

The fourth vertex sought is where this straight

crosses the base 6.
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VI. Intersection of Loci.—All points in a plane

which satisfy a single geometric condition make up
often a single straight or a single circle, in rare cases

more than one.

Neglecting these rare cases, we may call such

straight or circle the locus (place) of the points satis-

fying the given condition.

Where it is required to find points satisfying two

conditions, if we leave out one condition, we may
find a locus of points satisfying the other condition.

Thus, for each condition we may construct the

corresponding locus. If these two loci have points

in common, these points, and these only, satisfy both

conditions.

In a problem involving more than two distinct

conditions, two may be selected which give avail-

able loci, and then the remaining used to complete
the solution. If the circle occurs as locus, we may
assume the two postulates of the compasses (VI).

As preliminary it will be convenient to have a

collection of simple loci.

Loci.

1 . The locus of points which with a given point P
give the sect r is QP(r).

This is also the locus of the centers of circles with

radius r, which pass through P.

2. The locus of points P on one side of a st' / and

such that from them the perpendiculars on / are

equal to h is the parallel to / through P, one such

point.
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This is also the locus of the centers of circles with

radius r tangent to / on one side.

3. The locus of the point to which sects from two

given points are equal is the perpendicular bisector

of the sect joining them.

This is also the locus of the centers of all circles

through the two given points.

4. The locus of the vertices of all right angles on

the same side of a given sect as hypothenuse is the

semicircle on the given sect as diameter.

5. The locus of the vertices of all angles congruent
to p on a given sect AC as base is the arc on AC hav-

ing /? as inscribed angle:

This is the locus of the vertex of triangles on the

same side of given base b with given opposite angle /?.

6. The locus of the point from which perpendic-
ulars on the sides of a given angle are equal is the

angle-bisector.

This is also the locus of the centers of circles

touching both sides of the angle from within.

7. The locus of the bisection-points of all chords

equal to k in a given circle is a concentric circle with

radius equal to the perpendicular from the center

on k.

8. The locus of the bisection-points of all chords

of a circle through a given point P is the circle on

the sect from P to the given center as diameter.

9. The locus of the centers of circles touching a

given st' I at the point P is the perpendicular to /

through P.

10. The locus of the centers of circles touching
the given circle OC(CP) at P is the st' CP.
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1 1 . The locus of the centers of circles with radius

r
x touching a given circle with radius r2 from without

is a concentric circle with radius r
x + r2 . From

within, radius r2 -rv
1 2 . The locus of the end-points of tangents = t to

the circle OC(r) is the concentric circle with radius

from C to the end of one of these tangents.

This circle is also the locus of the centers of cir-

cles with radius t which cut OC(r) at right angles;

that is, so that at every intersection-point the tan-

gents to the two circles are at right angles.

13. The locus of the centers of circles of radius r

with centers on the same side of st' / and cutting

from I a chord = k is a parallel to / through the vertex

of an isosceles triangle with base k on / and side r.

14. The centers of circles of radius r, cutting from

a given circle OC(r2 ) an arc with chord =k lie on

two concentric circles with radius from C to the

vertex of an isosceles triangle with base k a chord of

OC(r2 )
and side r

x
.

15. The locus of the centers of circles with radius

r, which bisect a given circle OC(r2) is a concentric

circle with radius from C to the vertex of an isos-

celes triangle with base a diameter of OC(r2) and

side rv

16. The locus of the centers of circles with radius

r
x
which are bisected by a given circle OC(r2 ) is a

concentric circle having as radius the perpendicular
from C on any chord = 2^ in oC(r2 ).

17. The locus of the vertices of triangles of equal
content on the same side of the same base is the

parallel to the base through the top of its altitude.
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18. The locus of the vertex B of all triangles on

the same base b in which a 2 + c
2 = constant is a circle.

19. The locus of the vertex B of all triangles on

the same base b in which a 2 —c 2 = constant is a per-

pendicular to the base.

20. The locus of the bisection-point of a sect with

end-points on two straights at right angles is a circle

with their intersection as center and half the sect

as radius.

VI Example 1. To construct a triangle from

an angle and the altitudes

on the including sides (A
from a, h2 ,

h3).

Analysis. B is the inter-

section of a side of a with

the parallel to the other side

of a through the end of a

perpendicular to this side equal to h
2 .

VI Example 2. To con-

struct a triangle from one

side and the altitudes to

the other two (a from a,

Analysis. E is the inter-

section of semicircle on BC
with arc of radius = h 2 . So

for F. Then A is intersec-

tion of CE and BF.
VII. Reckoning.

— Our

sect calculus may be freely used for making and

solving equations of the first and second degree

containing expressions for sought sects.

Fig. 244.

Fig. 245'
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VII Example 1. Construct, without using the

compasses, an isosceles triangle

with the equal angles double the

third.

Construction. On one side of a

D
right angle, B, take BA equal to

half the unit sect. BA=%. On
the other side, BC =

{. Prolong

the hypothenuse AC to D, taking

Fig. 246. CD =
J. At D erect a perpendi-

cular, and on it take DF =
\.

On CA take CE =
\. Take

AA' = 2AE. At E erect the

perpendicular bisector EG,

taking EG=AF. Join AG
and A'G. The triangle AA'G
is the one required.

Proof. Take GH = AA'.

Join A'H.

fer-AF-Qa+AP+iP+tf
=
[[i[(5)*+l]]

a + i]*
FlG ' 247-

=
[TV[io + 2( 5 )*]]*.

AE =
{[( 5y -i].

.•.^ 2 = 1V[io + 2( 5 )^]+ TV[6-2(5^ = i.

GH=AA' = 2AE = i[(sy-i].

AH = i-i[(sy-i]=i[3 -(syi

/.GA:AA'=AA':AH.

.-.(by 239) aAGA'~aAA'H.

;.A'H=AA f =GH.
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.\ tAA'G=if.A'AG=tAHA' =

= $ FLGA' + 4 YLA'G - 2 * #GA'.

VIII. Partition of a Perigon.
—The four right

angles around a point, taken together, may be called

a perigon. Since any angle may be bisected, a peri-

gon can be cut into 2" congruent angles.

Since the supplement of the angle of an equilateral

triangle is one-third of four right angles, therefore a

perigon can be cut into 3-2" congruent angles.

The angles at the base of an isosceles triangle with

the equal angles each double the third are each one-

fifth of four right angles. Therefore a perigon can

be cut into 5
• 2n congruent angles.

The difference between one-third and one-fifth of

a perigon is two-fifteenths of a perigon. Hence a

perigon can be cut into 15 -2 n congruent angles.

If a perigon be cut into n congruent angles, the

rays determine on any circle about the vertex the

vertices of an inscribed regular polygon of n sides,

and the points of tangency of a regular circum-

scribed polygon of n sides.

From' the time of Euclid, about 300 b.c, no ad-

vance was made in the inscription of regular poly-

gons until Gauss, in 1796, found that a regular

polygon of 17 sides was inscriptible, and in 1801

published the following:

That the geometric division of the circle into n

equal parts may be possible it is necessary and suffi-

cient that n be 2 or a higher power of 2, or else a

prime number of the form 2
2m + 1

,
or a product of

two or more different prime numbers of that form,
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or else the product of a power of 2 by one or more

different prime numbers of that form. Below 300,

the following 38 are the only possible values of n:

2, 3, 4, 5, 6, 8, 10, 12, 15, 16, 17, 20, 24, 30, 32, 34,

40, 48, 51, 60, 64, 68, 80, 85, 96, 102, 120, 128, 136,

160, 170, 192, 204, 240, 255, 256, 257, 272.

There is only one inscriptible regular polygon
known with the number of its sides prime and

greater than 257. This number is 2
24 +1 =65,537.

For m =
5, m=6, m =

j, the numbers obtained are

not prime. Further no one has gone.

Ex. 654. Show how to trisect the central ^, the in-

terior ~4- ,
and the ( xterior ^ of a regular w-gon where

n =2m or 5.2"*.

Ex. 655. Show how to cut the % o" an equilateral
A into n equal parts if n is 2'" or 3.2'" or 5.2'".

Loci.

Ex. 656. In a, given b and p, find the locus of G\ H;
I; /»; O.

Ex. 657. In QC(r) find the locus of C:

(1) Given r and P (a point of O).

(2) Given r and a tangent.

(3) Given P, Q (two points of o).

(4) Given tangent at P.

(5) Given 2
|| tangents.

Ex. 658. In a, given b and /?, find locus of the bisection-

point of sect joining outer vertices of equilateral As on
a and c.

Ex. 659. Find locus of point the sum of the squares of

whose sects to A, B, C = k.

Ex. 660. Given an equilateral a, find the locus of the

point whose sect to one vertex is the sum of its sects to

the others.

Ex. 661. Find the locus of the point the sum of the

squares of whose Is to the sides of a r't ^ = k 2
.
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Ex. 662. Find the locus of the intersection of two
secants drawn through the ends of a fixed diameter in

a given ,
one of the secants 1 toa tangent at the second

point where the other cuts O.

Ex. 663. Find the locus of the intersection of 2 st's

drawn from the acute ^s of a r't a, through the points
where any j_ to hypothenuse cuts one opposite side and
the production of the other.

Ex. 664. Two given ©s intersect. Find the locus of

the bisection-point of the sect through one of their points
of intersection with end -points one on each circle.

Ex. 665. Given AB divided at C. Find locus of P,

if ^APC^^BPC.
Ex. 666. Any 2± chords intersect in a given point

of a given ©. Find the locus of the bisection-point of a

chord joining their ends.

Ex. 667. The locus of a point, the sum of the squares
of whose sects from the vertices of a given equilateral a

equals twice the square on one of the sides, is the circum-©.

Ex. 668. The locus of the end of a given sect from the

point of contact and on the tangent is a concentric ©.

Ex. 669. Find the locus of the foot of the _L from P on

a st' through B.

Ex. 670. Find the locus of the end of sect from P cut

by st' a into parts as m to n.

Ex. 671. Find locus of end of sect from st' a cut by P
into parts as m to n.

Ex. 672. Sects
||
and with ends in the sides of

if
a are

cut into parts as m to n. Find the locus of the cutting

points.

Ex. 673. Find the locus of a point P if PA.PB =m:n.
Ex. 674. The locus of the cross of two tangents to

©C(r), the st' of whose chord of contact rotates about a

fixed point P is a st' p±CP.
P is called the pole of p, and p the polar of P, with

respect to the given ©.

Ex. 675. If A (given) is on the polar of X (variable),

find the locus of X.
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Ex. 676. To find the locus of a point from which rays

through the ends of a given sect make a given ^ .

Ex. 677. Find the locus of the vertex B of As, given
b and a:c =m:n.

Ex. 678. [Circle of Apollonius.] If a sect is cut into

parts as m to n, and the interior and exterior points of

division are taken as ends of a diameter, this contains

the vertices of all as on the given sect, whose other two
sides are as m to n.

Ex. 679. Find the locus of those points in a plane a

from which rays to the ends of a given sect not on a are _L .

Ex. 680. Find the locus of P if PA =PB =PC.
Ex. 681. If b' is the projection of b on a\\b, and b'La

in a, find the locus of the bisection-point of a given sect

AB if A on a and B on 6.

Ex. 682. A variable st' is
||
to a given plane and meets

two non-coplanar st's. Find the locus of a point which
cuts the intercepted sect into parts as m to n.

Ex. 683. Find the locus of the point from which -Ls

to three coplanar st's are = .

Ex. 684. Find the locus of the point having one or two
of the following:

I) Equal sects to two given points;

(II) Equal i.s to two given intersecting st's;

(III) Equal _Ls
J o two given planes.

Ex. 685. Find the locus of the poles of great circles

making a given angle with a given great circle.

Ex. 686. Calling 2 3-s csmplemental wh n their sum is

a r't ^ , what is the locus of the intersection of rays from
A and B making ~4- with AB the complement of ^ with

BA?
Ex. 687. Calling a chord the chord of contact of the

point of interesection of tangents at its extremities, what
is the locus of points whose chords of contact in QC(r)

equal r?

Ex. 688. The locus of vertex of a =s 2
, on given 6,

is st'
||
b at altitude lib, where bhb =2s 2

.
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Ex. 689. The locus of vertex of A on given b, and

with a 2 -c 2 =s 2

,
is st' 1 to 6 at D, where AD 2 -CD 2 =s\

Ex. 690. Find locus of trisection points of equal chords.

Ex. 691. The locus of a point from which tangents to

two given Os are = is a st' _L to the center sect, which

so divides it that the difference of the sq's of the seg-

ments =r 2 — r 2
. This st' is. the radical axis of the 2 0s. If

they intersect it contains their common chord.

Ex. 692. The locus of P such that PA : PB = m : n is o
on DjDi as diameter, where DAB co-st' and DA : DB -tn;n.

Ex. 693. Given b and a — c, the locus of foot of _L

from A on tb is O with bisection-point of b for center and

%{a —c) for radius.

Ex. 694. Given b and a +c, the locus of foot of ± from

A on bisector of external % at B is O with bisection-

point of b for center and J(d +c) for radius

Ex. 695. The locus of P cutting sects from A to a as

m to n is a st'
||
a.

Ex. 696. The locus of P cutting a sect s from A to a

so that s-AP=k 2
is a O.

Ex. 697. The locus of P cutting a sect from OC(r) to

A as m to n is a O.

Ex. 698. If rectangles have one vertex at A and the

adjacent vertices on ©C(r), the locus of the fourth vertex

is ©C(r,) where rj
2 =2r 2 -AC 2

.
.

Ex. 699. The locus of the vertex 5 of a a of given b

and area is arc A'BC .

Ex. 700. Given b and (<x + r~P) in A, the locus of 5
is arc A5C.



INDEX.

PAGE
Abbreviations vii

Acute angle 27, 223
Addition 88

Adjacent angles 19
Adriaan Anthoniszoon. . . 130

Metius 130
Ahmes 130
Alkhovarizmi 130
Alternate angles 33
Altitude of triangle 46

of cone 206
of cylinder 208
of parallelogram 46
of pyramid 164
of triangle 46

Ambiguous case 74, 261

Analysis 263

Angle 16

acute
'

27, 223
at center 79
degree of 132
dihedral 249
exterior 96
exterior of 17

greater 73
inscribed 55
interior of 17
obtuse 28, 223
of two great circles .... 199
polyhedral 248
right 19
sides of 17
size of 131

spherical 199, 218
tanchord 60
tetrahedral 249

pa»b
Angle of triangle 18, 219

trihedral 249
vertex of 17

Angles, adjacent 19, 220
alternate exterior 33
alternate interior 33
complemental 277
corresponding 33
exterior 33
interior 33
of triangle 18
sum of 94
supplemental 27
vertical 19, 221

Angloid 248
Apex 164

of cone 205

Apollonius 276
Arab 130
Arc 78

degree of 132
greater 81

length of 129
Arcs, congruent 78
Archimedes' assumption . 6 1

theorem 209
Area 115

of circle 132
of cone 207
of cylinder 209
of parallelogram 122
of sector 132
of sphere 201

of i- 248
of spherical polygon. ... 248

279



2 8o INDEX.

,-s PAGE
Area of A . . .......... 248

of triangle 115
Aryabhatta 130
Association 1,212
Associative 89, 90
Assumptions 2,212
Axis of circle , . . . . 196

of circular cone 205
of circular cylinder. ... 209
of symmetry 39
radical 278

Base of cone 206
of cylinder 208
of frustum of cone. ... 207
of parallelogram 46
of prismatoid 184
of pyramid 164
of spherical segment.. . 201
of triangle 46

Betweenness 5, 213, 253
Bible 130
Bisection-point 38, 226

Bisection-ray 39
Bordage 245
Brahmagupta 72, 245

Calculus, sect 87
Cavalieri 201

Cenquad 246
Center of circle 49

of sphere 194
spherical 246
straight 50

Centimeter 129
Central projection 172
Centroid 46
Chord of circle 49

of contact 277
of sphere 194
spherical 234

Circle 49
of Apollonius 276
axis of 196
center of 49
circum 52
diameter of 49
division of 274
escribed 70
great 194
in- 70
mensuration of 120

Circle, radius of 49
small 197

Circles, escribed 70
tangent 84
two 83

Circular cone 205
cylinder 208

Circum-center 52
of tetrahedron 198
-circle 52
-radius 52

Circumscribed circle 52
polygon 274
sphere 198

Colunar 245
Common section 139
Commutative law. ... 88, 89
Compasses 259
Complement 37, 277
Completion 109
Concentric cenquads 247
Concyclic 52
Cone 205
apex of 205
area of 205, 207
axis of 205
circular 205
element of 205
frustum of 207
lateral area 207
nappes of 205
oblique 205
right 205
slant height of 205
truncated 207
volume of 205, 207

Congruent 15
arcs 78
figures 29
triangles 19

Construction 62, 262

Contact, point of 57
Content 114,121
Continuity 61

Convex 11, 238
Coplanar 3

Corresponding 98
Costraight 2

Cross 160
Cube '. 189
Cuboid 189



INDEX. 281

PAGE

Cyclic 56

Cylinder, altitude of 208
bases of 208
circular 208
elements of 208
lateral area 209
oblique 208

right 208

right section of 208
truncated 208, 209
volume of 208

Dase 130
Data 264
Degree of angle 132

of arc 132
Deltoid 40
Determination 262
Determine 2

Diagonal of polygon 10
Diameter of circle 49

of sphere 194
spherical 234

Dihedral 249
Distributive 91
Division 91

external 100
internal 100

Dodecahedron 164
Dual 31, 158
Duality, principle of. . 31, 158

Edges of angloid 248
of polyhedron 163

Element of cone 205
of cylinder 208

Elements, the geometric. 1

End-points 214
Equal 88

polyhedrons 184
sects 88

Equilateral triangle 123

Equivalence 109, 242

Equivalent 109
by completion 109

Escribed circle 70
Ex-center 70

-radius 70
Excess, spherical 243
Explemental 78
Exterior angle 96

PAGE
Exterior angles 33

of angle 17

point 11

Euclid 113, 259
Euclid's postulate 35
Euler 164

Face 248
Faces of polyhedron 163

of tetrahedron 163
Figure 29

plane 29
Foot of perpendicular . ... 142
Frustum, area of 207

of cone 207
of pyramid 185
volume of 208

Gauss 274
Geodesic 212
Geometric elements 1

Geometry 1

Golden section 103

Graphics 64
Great circle 194
Greater angle 73

arc 81

sect 73

Harmonic division 101

range 10 1

Heron 126
Hexahedron 164
Hilbert iii

Hindoo 130
Hippocrates of Chios .... 135
Historical note on tz 130
Hypothenuse 38, 75

Icoshahedron 164
In-center 70

-radius 70
of tetrahedron 198

Inclination of hemiplanes 155
of straight to plane .... 151

Inscribed angle 55

polygon 274
sphere 198

Instruments 63

Intercept 79
Interior angles 33

of angle 17

point 11



282 INDEX.

PAGE
Intersection of loci 269
Isosceles triangle 28

Joachimsthal 246
Jones 131

Kochansky 131

Lambert 131
Lateral area of cone 207

edge 164
face 164
of cylinder 209
of truncated cylinder. . 209
surface 164

Left 221

Length of arc 129
of circle 130

Less 89, 220
Lexell 241

Leyden 130
Lindemann 131
Loci 269, 275
Locus 269
Ludolph van Ceulen 130

Major arc 78
Mean proportional 102

Median of quadrilateral. . 40
of triangle 40, 228

Meet 139
Meter 129
Methods 263
Minor arc 78
Minus 217
Minute 251
Moore 253
Motion 31

Multiplication 89

Nappes 205

Oblique 74
cylinder 208
to a plane 142

Obtuse angle 28, 223
Octahedron 164
Opposite 12, 18, 212

points 194
side 12

PAGB

Opposite summit 163
Orthocenter 53

Pappus 135
Parallelogram 42

altitude of 46
base of 46

Parallelopiped 189
Parallel planes 151

straights 32
to a plane 142

Parallels 32
Paris 129
Partition of perigon 274

transversal. ...... 115, 167
Pascal 87
Pasch 6, 214
Pass 142
Pedal 61

Pentagon n
Pentahedral 249
Pentahedron 164
Perigon 274

partition of 274
Perimeter viii

Perpendicular planes. ... 155
straights 19
to plane 142

Pi («) 13°
Plane 29

figure 29
tangent 195

Planes 1

parallel 151

perpendicular 155
Plus 217
Points 1

of contact 57

opposite 194
Polar 225, 251, 276

straightest 225
triangle 231
with respect to a circle . 276

Pole 276
of circle 196

Poles 196, 225
Polygon 10

area of 118
convex it

cyclic 56
diagonal of 10



INDEX. 283

PAGE

Polygon, plane 11

regular 56
simple 11

spherical 216

Polygons, similar 105
Polyhedral angles 248
Polyhedron 163
convex 163
edges of 163
faces of 163
summits of 163
volume of 184

Postulate, Euclid's 35
Principle of duality 158
Prism 189

right 189
Prismatoid 184

altitude of 184
base of - 184
formula 186
section of 185
top of 184

Prismoid 185
Problems 62, 262
Product 89
Projecting plane. ....... 156
Projection, central 174

of point on plane 149
sect on plane 149

Proof 262

Proportion 98
Ptolemy 105, 130
Pure spherics 212

Pyramid 164
altitude of 164
apex of 164
base of 164
frustum of 207
lateral edges of 164
lateral faces of 164
lateral surface of 164
truncated 207
volume of 185

Pythagoras 112
q-pole 235
q-radius 235
Quadrant of circle 93

of straightest 225
Quadrilateral 11
median of 40

Quotient 91

PAGEK - •

; 52
Radian x ^ 2

Radical axis 278
Radius of circle 49

of sphere Ig4
spherical 234

Ray 9>2I 6

Reckoning 272
Rectangle 42
Regions 7

Regular polygon 56
Rhombus 42
Richter 130
Right 221

angle 19
circular cone 205
circular cylinder 208
section of cylinder 208

triangle 37,75
Rotation 94
Ruler 63
Scalene 87
Schatunovsky 172
Schur 87
Secant 57
Second 251
Sect 6, 213

-calculus 87
-carrier 64
greater 73

Section 73
common 139
right 208

Sector 132
area of 132

Sect-train 10, 216

Segment, base of 201
of circle 201
of one base 201
of sphere 201
of straight 201

top of 202
volume of 201

Semicircle 77
Sense 217
Shanks 131
Side of angle 17

of plane 14
of point on straight. . . 9
of polygon 10
of straight 9



284 INDEX.

PAGE
Similar 98
polygons 105

Similarity 267
Simson 264
Size of angle 131
Skew 161

Slant height of cone 205
Small circle 197
Solution of problems .... 262

Sphere i94
area of 201

center of 194
circumscribed 198
diameter of 194

great circle of 1 94
inscribed 198
radius of 194
small circle of 197

tangent 195
volume of 201

Spherical angle 199
center 246
chord 234
excess 243

polygon 216

radius 234

segment 201

tangent 235

triangle 217

Spherics 212

Square 42
Steradian 252

Steregon 252

Straight 29

edge 63

Straights 1

Straightest 212

Successive substitutions.. 263
Sum of angles 94

of arcs 9 2

of sects 88, 237
Summits 163

Supplement. 27, 223

Supplemental sects 229
Surface 163

Symbols vii

Symmetry 39, 266

Symmetrical points 39

Symtra 41

Talmud 130
Tanchord angle 60

PAGE

Tangent 57, 235
circles 84

Tangent, plane 195
spheres 195
straight 57. 1 95
straightest 235

Tetrahedral 249
Tetrahedron 163

circumcenter of 198
edges of 163
faces of 163
summits of 163
volume of 167

Theorem 3
of Archimedes 209
of Bordage 245
of Brahmegupta. ... 72, 245
of Euler 164
of Heron 126
of Hippocrates of Chios. 135
of Joachimsthal 246
of Lexell 241
of Moore 253
of Pappus 135
of Pascal 87
of Ptolemy 105
of Pythagoras 112

Top of prismatoid 184
of segment 202

Trace 90
Translation 94, 265
Transversal 33

partition 115, 167

plane 167

Trapezoid 4 2

Triangle 11

altitudes of 46

angle bisectors of 70
angle of 18, 219
area of 115
base of 46

equilateral 123
isosceles 28, 224
medians of 40

polar 231

right 37.75
spherical 217

Triangles, congruent 19
similar 98

symmetric
222

Trihedral , , 249



INDEX. 285

PAGE

Trisection-points 44
Truncated cone 207

cylinder 20S
Truncated pyramid 207

tetrahedra 175

Unit 89, 122, 129, 189
circle 131

Vega 130
Veronese 168
Vertex of angle 17
Vertical angles 19
Vertices of polygon 10
Volume 166

of cone 205
of cuboid 189

PAGE
Volume of cylinder 208

of polyhedron 184
of prism 189
of prismatoid 186
of pyramid 185
of sphere 201

of spherical segment. . . 201

of tetrahedron 167
of truncated cylinder. . 209

Within 6

the sphere 194
tetrahedron 163

Without 6

the sphere 1 94
tetrahedron 163





SHORT-TITLE CATALOGUE
OF THE

PUBLICATIONS
OF

JOHN WILEY & SONS,
New York.

London: CHAPMAN & HALL, Limited.

ARRANGED UNDER SUBJECTS.

Descriptive circulars sent on application. Books marked with an asterisk are

sold at net prices only, a double asterisk (**) books sold under the rules of the

American Publishers' Association at net prices subject to an extra charge for

postage. All books are bound in cloth unless otherwise stated.

AGRICULTURE.
Armsby's Manual of Cattle-feeding nrao, Si 75

Principles of Animal Nutrition 8vo, 4 00

Budd and Hansen's American Horticultural Manual:

Part I.—Propagation, Culture, and Improvement nmo, 1 50
Part II.—Systematic Pomology nmo, 1 50

Downing's Fruits and Fruit-trees of America 8vo, 5 00

Elliott's Engineering for Land Drainage nmo, 1 50

Practical Farm Drainage nmo, 1 00

Green's Principles of American Forestry nmo, 1 50
Grotenfelt's Principles of Modern Dairy Practice. (Woll.) nmo, 2 00

Kemp's Landscape Gardening nmo, 2 50

Maynard's Landscape Gardening as Applied to Home Decoration nmo, 1 50
Sanderson's Insects Injurious to Staple Crops nmo, 1 50

Insects Injurious to Garden Crops. (In preparation.)
Insects Injuring Fruits. (In preparation.)

Stockbridge's Rocks and Soils 8vo, 2 50
Woll's Handbook for Farmers and Dairymen i6mo, 1 50

ARCHITECTURE.
Baldwin's Steam Heating for Buildings nmo, 2 50
Berg's Buildings and Structures of American Railroads 4to, 5 00

Birkmire's Planning and Construction of American Theatres 8vo, 3 00

Architectural Iron and Steel. 8vo, 3 50

Compound Riveted Girders as Applied in Buildings 8vo, 2 00

Planning and Construction of High Office Buildings 8vo, 3 50
Skeleton Construction in Buildings 8vo, 3 00

Briggs's Modern American School Buildings 8vo, 4 00

Carpenter's Heating and Ventilating of Buildings 8vo, 4 00

Freitag's Architectural Engineering. 2d Edition, Rewritten 8vo, 3 50

Fireproofing of Steel Buildings 8vo, 2 50
French and Ives's Stereotomy 8vo, 2 50
Gerhard's Guide to Sanitary House-inspection i6mo, 1 00

Theatre Fires and Panics nmo, 1 50

Holly's Carpenters' and Joiners' Handbook i8mo, o 75

Johnson's Statics by Algebraic and Graphic Methods 8vo, 2 00

1



Kidder's Architect's and Builder's Pocket-book. Rewritten Edition.

i6mo, morocco, 5 00

Merrill's Stones for Building and Decoration 8vo, 5 00

Monckton's Stair-building 4to, 4 00

Patton's Practical Treatise on Foundations 8vo, 5 00

Peabody's Naval Architecture 8vo, 7 50
biebert and Biggin's Modern Stone-cutting and Masonry 8vo, 1 50
Snow's Principal Species of Wood 8vo, 3 50
Sondericker's Graphic Statics with Applications to Trusses, Beams, and Arches.

8vo, 2 00

Wait's Engineering and Architectural Jurisprudence 8vo, 6 00

Sheep, 6 50
Law of Operations Preliminary to Construction in Engineering and Archi-

tecture 8vo, 5 00

Sheep, 5 5o
Law of Contracts 8vo, 3 00

Wood's Rustless Coatings: Corrosion and Electrolysis of Iron and Steel . . .8vo, 4 00

Woodbury's Fire Protection of Mills 8vo, 2 50

Worcester and Atkinson's Small Hospitals, Establishment and Maintenance,

Suggestions for Hospital Architecture, with Plans for a Small Hospital.

i2mo, 1 25

The World's Columbian Exposition of 1893 Large 4to, 1 00

ARMY AND NAVY.

Bernadou's Smokeless Powder, Nitro-cellulose, and the Theory of the Cellulose

Molecule i2mo, 2 50
* Bruff's Text-book Ordnance and Gunnery 8vo, 6 00

Chase's Screw Propellers and Marine Propulsion 8vo, 3 00

Craig's Azimuth 4to, 3 50

Crehore and Squire's Polarizing Photo-chronograph 8vo, 3 00

Cronkhite's Gunnery for Non-commissioned Officers 24mo, morocco, 2 00
* Davis's Elements of Law 8vo, 2 50
* Treatise on the Military Law of United States 8vo, 7 <x>

Sheep, 7 50

De Brack's Cavalry Outpost Duties. (Carr.) 24mo morocco, 2 00

Dietz's Soldier's First Aid Handbook i6mo, morocco, 1 25
* Dredge's Modern French Artillery 4to, half morocco, 15 00

Durand's Resistance and Propulsion of Ships 8vo, 5 00
* Dyer's Handbook of Light Artillery i2mo, 3 00

Eissler's Modern High Explosives 8vo, 4 00

* Fiebeger's Text-book on Field Fortification Small 8vo, 2 00

Hamilton's The Gunner's Catechism i8mo, 1 00
* Hoff's Elementary Naval Tactics 8vo, 1 50

Ingalls's Handbook of Problems in Direct Fire 8vo, 4 00
* Ballistic Tables 8vo, 1 50
* Lyons's Treatise on Electromagnetic Phenomena. Vols. I. and II . . 8vo. each, 6 00

* Mahan's Permanent Fortifications. (Mercur.) 8vo, half morocco, 7 5©

Manual for Courts-martial 1611x0, morocco, 1 50
* Mercur's Attack of Fortified Places i2mo, 2 00
* Elements of the Art of War 8vo, 4 00

Metcalf's Cost of Manufactures—And the Administration of Workshops, Public

and Private 8vo, 5 oc
* Ordnance and Gunnery. 2 vols i2mo, 5 00

Murray's Infantry Drill Regulations i8mo. paper, xo

Peabody's Naval Architecture 8vo, 7 50
* Phelps's Practical Marine Surveying 8vo, 2 50

Powell's Army Officer's Examiner i2mo, 4 00

Sharpe's Art of Subsisting Armies in War , x8mo, morocco, 1 5c



* Walke's Lectures on Explosives Svo 4 00
* Wheeler's Siege Operations and Military Mining 8vo, 2 00

Winthrop's Abridgment of Military Law nmo, 2 50
Woodhull's Notes on Military Hygiene i6mo, 1 50

Young's Simple Elements of Navigation i6mo morocco, 1 00

Second Edition, Enlarged and Revised i6mo, morocco, 2 00

ASSAYING.
Fletcher's Practical Instructions in Quantitative Assaying with the Blowpipe.

1 2 mo, morocco, 1 50
Furman's Manual of Practical Assaying 8vo, 3 00
Miller's Manual of Assaying i2mo, 1 00
O'Driscoll's Notes on the Treatment of Gold Ores 8vo, 2 00
Ricketts and Miller's Notes on Assaying 8vo, 3 00
Ulke's Modern Electrolytic Copper Refining 8vo, 3 00
Wilson's Cyanide Processes nmo, 1 50

Chlorination Process nmo, 1 50

ASTRONOMY.
Comstock's Field Astronomy for Engineers .8vo, 2 50
Craig's Azimuth 4to, 3 50
Doolittle's Treatise on Practical Astronomy 8vo, 4 00

Gore's Elements of Geodesy 8vo, 2 50
Hayford's Text-book of Geodetic Astronomy 8vo, 3 00
Merriman's Elements of Precise Surveying and Geodesy 8vo, 2 50
* Michie and Harlow's Practical Astronomy 8vo, 3 00
* White's Elements of Theoretical and Descriptive Astronomy nmo, 2 00

BOTANY,
Davenport's Statistical Methods, with Special Reference to Biological Variation.

i6mo, morocco, z 25
Thom^ and Bennett's Structural and Physiological Botany x6mo, 2 25
Westermaier's Compendium of General Botany. (Schneider.) 8vo, 2 00

CHEMISTRY.
^driance's Laboratory Calculations and Specific Gravity Tables nmo, 1 25
Allen's Tables for Iron Analysis 8vo, 3 00

Arnold's Compendium of Chemistry. (Mandel.) Small 8vo. 3 50
Austen's Notes for Chemical Students nmo, 1 50
* Austen and Langworthy. The Occurrence of Aluminium in Vegetable

Products, Animal Products, and Natural Waters Svo. 2 00
Bernadou's Smokeless Powder.—Nitro-cellulose, and Theory of the Cellulose

Molecule nmo, 2 50
Bolton's Quantitative Analysis 8vo, 1 50
* Browning's Introduction to the Rarer Elements , .8vo, x 50
Brush and Penfield's Manual of Determinative Mineralogy 8vo ? 4 00

Classen's Quantitative Chemical Analysis by Electrolysis. (Boltwood.) .... 8vo, 3 00
Conn's Indicators and Test-papers nmo, 2 00

Tests and Reagents 8vo, 3 00

Copeland's Manual of Bacteriology. (In preparation.)
Craft's Short Course in Qualitative Chemical Analysis. (Schaeffer.). . .nmo, x SC
Dolezalek's Theory of the Lead Accumulator (Storage Battery). (Von

Ende). 1 2mo. 2 50
Drechsel's Chemical Reactions. (Merrill.) nmo, 1 25
Duhem's Thermodynamics and Chemistry. (Burgess. ) 8vo, 4 00
Eissler's Modern High Explosives. . 8vo, 4 o©

EfEront's Enzymes and their Apphcations. (Prescott.) . . 8vo, 3 oo

Erdmann's Introduction to Chemical Preparations. (Dunlap.) nmo, x 25
3



Fletcher's Practical Instructions in Quantitative Assaying with the Blowpipe

i2mo, morocco, i

Fowler's Sewage Works Analyses i2mo, 2

Fresenius's Manual of Qualitative Chemical Analysis. (Wells.) 8vo, 5
Manual of Qualitative Chemical Analysis. Parti. Descriptive. (Wells.)

8vo, 3

System of Instruction in Quantitative Chemical Analysis. (Cohn.)
2 vols 8vo, 12

Fuertes's Water and Public Health nmo, 1

Furman's Manual of Practical Assaying 8vo, 3
Getman's Exercises in Physical Chemistry i2mo, 2

Gill's Gas and Fuel Analysis for Engineers i2mo, 1

Grotenfelt's Principles ofModern Dairy Practice. (Woll.) i2mo, 2

Hammarsten's Text-book of Physiological Chemistry. (Mandel.) 8vo, 4
Helm's Principles of Mathematical Chemistry. (Morgan.) i2mo, 1

Hering's Ready Reference Tables (Conversion Factors) i6mo, morocco, 2

Hinds's Inorganic Chemistry 8vo, 3
* Laboratory Manual for Students i2mo,
Holleman's Text-book of Inorganic Chemistry. (Cooper.) 8vo, 2

Text-book of Organic Chemistry. (Walker and Mott.) 8vo, 2
* Laboratory Manual of Organic Chemistry. (Walker.) i2mo, 1

Hopkins's Oil-chemists' Handbook 8vo, 3

Jackson's Directions for Laboratory Work in Physiological Chemistry. . 8vo, 1

Keep's Cast Iron 8vo, 2

Ladd's Manual of Quantitative Chemical Analysis nmo, 1

Landauer's Spectrum Analysis. (Tingle.) 8vo, 3

Lassar-Cohn's Practical Urinary Analysis. (Lorenz.) nmo, 1

Leach's The Inspection and Analysis of Food with Special Reference to State

Control, (In preparation.)
Lob's Electrolysis and Electrosynthesis of Organic Compounds. (Lorenz.) i2mo, 1

Mandel's Handbook for Bio-chemical Laboratory i2mo, 1

* Martin's Laboratory Guide to Qualitative Analysis with the Blowpipe . . i2mo,
Mason's Water-supply.

*

(Considered Principally from a Sanitary Standpoint.)

3d Edition, Rewritten 8vo, 4

Examination of Water. (Chemical and Bacteriological.) i2mo, 1

Meyer's Determination of Radicles in Carbon Compounds. (Tingle.). . i2mo, 1

Miller's Manual of Assaying i2mo, 1

Mixter's Elementary Text-book of Chemistry i2mo, 1

Morgan's Outline of Theory of Solution and its Results i2mo, 1

Elements of Physical Chemistry i2mo, 2

Morse's Calculations used in Cane-sugar Factories i6mo, morocco, 1

Mulliken's General Method for the Identification of Pure Organic Compounds.
Vol. I Large 8vo, 5 00

Nichols's Water-supply. (Considered mainly from a Chemical and Sanitary

Standpoint, 1883.) 8vo, 2 50

O'Brine's Laboratory Guide in Chemical Analysis 8vo, 2 00

O'Driscoll's Notes on the Treatment of Gold Ores 8vo, 2 00

Ost and Kolbeck's Text-book of Chemical Technology. (Lorenz—Bozart.)

(In preparation.)

Ostwald's School of Chemistry. Part One. (Ramsey.) (In press.)

* Penfield's Notes on Determinative Mineralogy and Record of Mineral Tests.

8vo, paper, 50

Pictet's The Alkaloids and their Chemical Constitution. (Biddle.) 8vo, 5 00

Pinner's Introduction to Organic Chemistry. (Austen.) i2mo» 1 50

Poole's Calorific Power of Fuels 8vo, 3 00

Prescott and Winslow's Elements of Water- Bacteriology, with Special Refer-

ence to Sanitary Water Analysis i2mo, 1 2s
* Reisig's Guide to Piece-dyeing 8vo, 25 00
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Richards and Woodman's Air.Water, and Food from a Sanitary Standpoint . 8vo,
Richard8's Cost of Living as Modified by Sanitary Science i2mo,

Cost of Food a Study in Dietaries i2mo,
* Richards and Williams's The Dietary Computer 8vo,
Ricketts and Russell's Skeleton Notes upon Inorganic Chemistry. (Part I.—

Non-metallic Elements.) 8vo, morocco,
Ricketts and Miller's Notes on Assaying 8vo,

Rideal's Sewage and the Bacterial Purification of Sewage 8vo,
Disinfection and the Preservation of F*ood 8vo,

Ruddiman's Incompatibilities in Prescriptions 8vo,
Sabin's Industrial and Artistic Technology of Paints and Varnish. (In press.)

Sclkowski's Physiological and Pathological Chemistry. (Orndorff.). . . .8vo,

Scnimpf's Text-book of Volumetric Analysis nmo,
Essentials of Volumetric Analysis nmo,

Spencer's Handbook for Chemists or" Beet-sugar Houses i6mo, morocco.
Handbook for Sugar Manufacturers and their Chemists. . i6mo, morocco,

Stockbridge's Rocks and Soifs 8vo,
* Tillman's Elementary Lessons in Heat 8vo,
* Descriptive General Chemistry 8vo,
Treadwell's Qualitative Analysis. (HalL) 8vo,

Quantitative Analysis. (Hall.) 8vo,
Turneaure and Russell's Public Water-supplies 8vo,
Van Deventer's Physical Chemistry for Beginners. (Boltwood.) nmo,
* Walke's Lectures on Explosives 8vo,
Wassermann's Immune Sera: Haemolysins, Cytotoxins, and Precipitins. (Bol-

duan.) nmo,
Wells's Laboratory Guide in Qualitative Chemical Analysis 8vo,

Short Course in Inorganic Qualitative Chemical Analysis for Engineering
Students nmo,

Whipple's Microscopy of Drinking-water 8vo,
Wiechmann's Sugar Analysis Small 8vo.

Wilson's Cyanide Processes nmo,
Chlorination Process nmo.

Wulling's Elementary Course in Inorganic harmaceutical and Medical Chem-
istry nmo, a oo

CIVIL ENGINEERING.
BRIDGES AND ROOFS. HYDRAULICS. MATERIALS OF ENGINEERING

RAILWAY ENGINEERING.

Baker's Engineers' Surveying Instruments nmo, 3 00

Bixby's Graphical Computing Table Paper 19^X24^ inches. 35
** Burr's Ancient and Modern Engineering and the Isthmian Canal. (Postage,

27 cents additional.) 8vo, net 3 50
Comstock's Field Astronomy for Engineers 8vo, 2 SO
Davis's Elevation and Stadia Tables 8vo, I 00
Elliott's Engineering for Land Drainage nmo, z so

Practical Farm Drainage , nmo, 1 00
Folwell's Sewerage. (Designing and Maintenance.) 8vo, 3 00

Freitag's Architectural Engineering. 2d Edition, Rewritten 8vo, 3 50
French and Ives's Stereotomy 8vo, a 50
Goodhue's Municipal Improvements nmo, 1 75
Goodrich's Economic Disposal of Towns' Refuse 8vo, 3 SO
Gore's Elements of Geodesy 8vo, 2 50

Hayford's Text-book of Geodetic Astronomy 8vo, 3 00

Hering's Ready Reference Tables (Conversion Factors) i6mo, morocco, 2 50
Howe's Retaining Walls for Earth nmo, 1 25

Johnson's Theory and Practice of Surveving Small 8vo, 4 00

Statics by Algebraic and Graphic Methods , 8vo, a 00

5
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Kiersted's Sewage Disposal nmo, i 25

Laplace's Philosophical Essay on Probabilities. (Truscott and Emory.) nmo, 2 00

Mahan's Treatise on Civil Engineering. (1873O (Wood.) 8vo, 5 00
* Descriptive Geometry 8vo, 1 50
Merriman's Elements of Precise Surveying and Geodesy 8vo, 2 50

Elements of Sanitary Engineering 8vo, 2 00

Merriman and Brooks's Handbook for Surveyors i6mo, morocco, 2 00

Nugent's Plane Surveying 8vo, 3 50

Ogden's Sewer Design nmo, 2 00

Patton's Treatise on Civil Engineering 8vo half leather, 7 50

Reed's Topographical Drawing and Sketching 4to, 5 00

Rideal's Sewage and the Bacterial Purification of Sewage 8vo, 3 50

Siebert and Biggin's Modern Stone-cutting and Masonry 8vo, 1 50

Smith's Manual of Topographical Drawing. (McMillan.) 8vo, 2 50

Sondericker's Graphic Statics, wuti Applications to Trusses, Beams, and

Arches 8vo, 2 00
* Trautwine's Civil Engineer's Pocket-book i6mo, morocco, 5 00

Wait's Engineering and Architectural Jurisprudence * 8vo, 6 00

Sheep, 6 50

Law of Operations Preliminary to Construction in Engineering and Archi-

tecture. 8vo, 5 00

Sheep, 5 50

Law of Contracts 8vo, 3 00

Warren's Stereotomy—Problems in Stone-cutting 8vo, 2 50

Webb's Problems in the U?e and Adjustment of Engineering Instruments.

i6mo, morocco, 1 25
* Wheeler's Elementary Course of Civil Engineering 8vo, 4 00

Wilson's Topographic Surveying 8vo, 3 So

BRIDGES AND ROOFS.

Boiler's Practical Treatise on the Construction of Iron Highway Bridges . . 8vo, 2 00
* Thames River Bridge 4to, paper, 5 00

Burr's Course on the Stresses in Bridges and Roof Trusses, Arched Ribs, and

Suspension Bridges 8vo, 3 5<>

Du Bois's Mechanics of Engineering. VoL II Small 4to, 10 00

Foster's Treatise on Wooden Trestle Bridges 4to, 5 00

Fowler's Coffer-dam Process for Piers 8vo, 2 50

Greene's Roof Trusses .". 8vo, 1 25

Bridge Trusses 8vo, 2 so

Arches in Wood, Iron, and Stone 8vo, 2 50

Howe's Treatise on Arches 8vo, 4 00

Design of Simple Roof-trusses in Wood and Steel 8vo, 2 00

J#hnson, Bryan, and Turneaure's Theory and Practice in the Designing of

Modern Framed Structures Small 4to, 10 00

Merriman and Jacoby's Text-book on Roofs and Bridges:

Parti.—Stresses in Simple Trusses 8vo, 2 -50

Part n.—Graphic Statics 8vo, 2 50

Part m.—Bridge Design. 4th Edition, Rewritten 8vo, 2 50

Part IV.—Higher Structures 8vo, 2 50

Morison's Memphis Bridge 4to, 10 00

Waddell's De Pontibus, a Pocket-book for Bridge Engineers. . . i6mo, morocco, 3 00

Specifications for Steel Bridges i2mo, 1 25

Wood's Treatise on the Theory of the Construction of Bridges and Roofs . 8vo, 2 00

Wright's Designing of Draw-spans:
Part L —Plate-girder Draws 8vo, 2 50

Part II.—Riveted-truss and Pin-connected Long-span Draws 8vo, 2 50

Two parts in one volume **vo, 3 50



HYDRAULICS.

Bazin's Experiments upon the Contraction of the Liquid Vein Issuing from an
Orifice. (Trautwine.) 8vo,

Bovey's Treatise on Hydraulics 8vo,

Church's Mechanics of Engineering 8vo,

Diagrams of Mean Velocity of Water in Open Channels paper,

Coffin's Graphical Solution of Hydraulic Problems i6mo, morocco,
Flather's Dynamometers, and the Measurement of Power nmo,
FolwelTs Water-supply Engineering 8vo,

Frizell's Water-power 8vo,

Fuertes's Water and Public Health nmo,
Water-filtration Works nmo,

Ganguillet and Kutter's General Formula for the Uniform Flow of Water in

Rivers and Other Channels. (Hering and Trautwine.) 8vo,

Hazen's Filtration of Public Water-supply 8vo,

Hazlehurst's Towers and Tanks for Water-works 8vo,

Herschel's 115 Experiments on the Carrying Capacity of Large, Riveted, Metal

Conduits 8vo,

Mason's Water-supply. (Considered Principally from a Sanitary Stand-

point.) 3d Edition, Rewritten 8vo,

Merriman's Treatise on Hydraulics. 9th Edition, Rewritten 8vo,
* Michie's Elements of Analytical Mechanics 8vo,

Schuyler's Reservoirs for Irrigation, Water-power, and Domestic Water-

supply Large 8vo,
•* Thomas and Watt's Improvement of Riyers. (Post., 44 c. additional), 4to,

Turneaure and Russell's Public Water-supplies 8vo,

Wegmann's Desien and Construction of Dams 4to,

Water-supply of the City of New York from 1658 to'1895 4to,

Weisbach's Hydraulics and Hydraulic Motors. (Du Bois.) 8vo,

Wilson's Manual of Irrigation Engineering ,Small 8vo.

Wolff's Windmill as a Prime Mover 8vo,

Wood's Turbines 8vo,

Elements of Analytical Mechanics 8vo,

MATERIALS OF ENGINEERING.

Baker's Treatise on Masonry Construction 8vo,
Roads and Pavements 8vo,

Black's United States Public Works Oblong 4to,

Bovey's Strength of Materials and Theory of Structures 8vo,
Burr's Elasticity and Resistance of the Materials of Engineering. 6th Edi-

tion, Rewritten 8vo,

Byrne's Highway Construction 8vo,

Inspection of the Materials and Workmanship Employed in Construction.

i6mo,
Church's Mechanics of Engineering 8vo,

Du Bois's Mechanics of Engineering. Vol. I Small 4to,

Johnson's Materials of Construction Large 8vo,

Keep's Cast Iron 8vo,

Lanza's Applied Mechanics 8vo,
Martens's Handbook on Testing Materials. (Henning.) 2 vols 8vo,

Merrill's Stones for Building and Decoration 8vo,
Merriman's Text-book on the Mechanics of Materials 8vo,

Strength of Materials nmo,
Metcalf's Steel. A Manual for Steel-users nmo,
Patton's Practical Treatise on Foundations 8vo,

7
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Hill's Text-book on Shades and Shadows, and Perspective 8vo, 2 00

Jamison's Elements of Mechanical Drawing. (7n press.)

Jones's Machine Design:
Part I.—Kinematics of Machinery 8vo, 1 50

Part n.—Form, Strength, and Proportions of Parts 8vo, 3 00

MacCord's Elements of Descriptive Geometry . , , 8vo, 3 00

Kinematics; or, Practical Mechanism , 8vo, 5 00

Mechanical Drawing , . . . , 4to, 4 00

Velocity Diagrams 8vo, 1 50
* Mahan's Descriptive Geometry and Stone-cutting , 8vo, 1 50

Industrial Drawing. (Thompson.) 8vo, 3 5©

Reed's Topographical Drawing and Sketching 4to, 5 00

Reid's Course in Mechanical Drawing 8vo, 2 00

Text-book of Mechanical Drawing and Elementary Machine Design . . 8vo, 3 00

Robinson's Principles of Mechanism 8vo, 3 00

Smith's Manual of Topographical Drawing. (McMillan.) 8vo, 2 50

Warren's Elements of Plane and Solid Free-hand Geometrical Drawing. . i2mo, 1 00

Drafting Instruments and Operations i2mo, 1 25

Manual of Elementary Projection Drawing i2mo, 1 50

Manual of Elementary Problems in the Linear Perspective of Form and 5

Shadow i2mo, 1 00

Plane Problems in Elementary Geometry i2mo, 1 25

Primary Geometry i2mo, 75

Elements of Descriptive Geometry, Shadows, and Perspective 8vo, 3 50

General Problems of Shades and Shadows 8vo, 3 00

Elements of Machine Construction and Drawing 8vo, 7 50

Problems. Theorems, and Examples in Descriptive Geometrv 8vo, 2 50

Weisbach's Kinematics and the Power of Transmission. (Hermann and

Klein.) 8vo, 5 00

Whelpley's Practical Instruction in the Art of Letter Engraving i2mo, 2 00

Wilson's Topographic Surveying 8vo, 3 50

Free-hand Perspective 8vo, 2 50

Free-hand Lettering 8vo. 1 00

Woolf's Elementary Course in Descriptive Geometry Large 8vo, 3 00

ELECTRICITY AND PHYSICS.

Anthony and Brackett's Text-book of Physics. (Magie.) ... .Small 8vo, 3 °°

Anthony's Lecture-notes on the Theory of Electrical Measurements i2mo, 1 00

Benjamin's History of Electricity 8vo. 3 00

Voltaic Cell. 8vo, 3 00

Classen's Quantitative Chemical Analysis by Electrolysis. (Boltwood.). ,8vo, 3 0°

Crehore and Squier's Polarizing Photo-chronograph 8vo, 3 00

Dawson's "Engineering" and Electric Traction Pocket-book. . i6mo, morocco, 5 00

Dolezalek's Theory of the Lead Accumulator (Storage Battery). (Von
Ende.) i2mo,"

7
2 50

Duhem's Thermodynamics and Chemistry. (Burgess.) 8vo, 4 00

Flather's Dvnamometers, and the Measurement of Power i2mo, 3 00

Gilbert's De Magnete. (Mottelay.) 8vo, 2 50

Hanchett's Alternating Currents Explained i2mo, 1 00

Hering's Ready Reference Tables (Conversion Factors) i6mo, morocco, 2 50
Holman's Precision of Measurements 8vo, 2 00

Telescopic Mirror-scale Method, Adjustments, and Tests.. .. .Large 8vo, 75

Landauer's Spectrum Analysis. (Tingle.) 8vo, 3 00

Le ChateUer's High-temperature Measurements. (Boudouard—.Burgess. )i2mo, 3 00

Lob's Electrolysis and Electrosynthesis of Organic Compounds. (Lorenz.) i2mo. 1 00
• Lyons's Treatise on Electromagnetic Phenomena. Vols. I. and II. 8vo, each, 6 00
* Michie. Elements of Wave Motion Relating to Sound and Light 8vo, 4 00
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Niaudet's Elementary Treatise on Electric Batteries. (FishDack. ) lomo, 2 50
• Rosenberg's Electrical Engineering. (Haldane Gee—Kinzbrunner.). . . .8vo, 1 50
Ryan, Norris, and Hoxie's Electrical Machinery. VoL L 8vo, 2 50
Thurston's Stationary Steam-engines 8vo, 2 50
* Tillman's Elementary Lessons in Heat . 8vo, 1 30
Tory and Pitcher's Manual of Laboratory Physics Small 8vo, 2 00

Ulke's Modern Electrolytic Copper Refining 8vo, 3 00

LAW.
* Davis's Elements of Law 8vo, 2 50
* Treatise on the Military Law of United States 8vo, 7 00
*

Sheep, 7 50
Manual for Courts-martial i6mo, morocco, 1 50
Wait's Engineering and Architectural Jurisprudence 8vo, 6 00

Sheep,' 6 50
Law of Operations Preliminary to Construction in Engineering and Archi-

tecture 8vo, 5 00

Sheep, s 5o
Law of Contracts 8vo, 3 00

Winthrop's Abridgment of Military Law nmo, 2 50

MANUFACTURES.

Bernadou's Smokeless Powder—Nitro-cellulose and Theory of the Cellulose

Molecule i2mo, 2 50
Bolland's Iron Founder i2mo, 2 50

** The Iron Founder," Supplement i2mo, 2 50
Encyclopedia of Founding and Dictionary of Foundry Terms Used in the

Practice of Moulding i2mo, 3 00
Eissler's Modern High Explosives 8vo, 4 00

Effront's Enzymes and their Applications. (Prescott.) 8vo, 3 00

Fitzgerald's Boston Machinist i8mo, 1 00
Ford's Boiler Making for Boiler Makers i8mo, 1 00

Hopkins's Oil-chemists* Handbook 8vo, 3 00

Keep's Cast Iron 8vo, 2 50
Leach's The Inspection and Analysis of Food with Special Reference to State

Control. (In preparation.)
Metcalf's Steel. A Manual for Steel-users i2mo, 2 00

Metcalfe's Cost of Manufactures—And the Administration of Workshops,
Public and Private 8vo, 5 00

Meyer's Modern Locomotive Construction 4to, 10 00

Morse's Calculations used in Cane-sugar Factories i6mo, morocco, 1 50
* Reisig's Guide to Piece-dyeing 8vo, 25 00

Smith's Press-working of Metals 8vo, 3 00

Spalding's Hydraulic Cement i2mo, 2 00

Spencer's Handbook for Chemists of Beet-sugar Houses i6mo, morocco, 3 00

HandbooK tor sugar Manutacturers and their Chemists.. ,i6mo, morocco, 2 00

Thurston's Manual of Steam-boilers, their Designs, Construction and Opera-
tion 8vo, 5 00

* Walke's Lectures on Explosives 8vo, 4 00

West's American Foundry Practice i2mo, 2 50
Moulder's Text-book i2mo, 2 50

Wiechmann's Sugar Analysis Small 8vo, 2 50
Wolff's Windmill as a Prime Mover 8vo, 3 00

Woodbury's Fire Protection of Mills 8vo, 2 50

Wood's Rustless Coatings: Corrosion and Electrolysis of Iron and Steel. . .8vo, 4 00
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MATHEMATICS.

Baker's Elliptic Functions 8vo, i 50
* Bass's Elements of Differential Calculus i2mo, 4 00

Briggs's Elements of Plane Analytic Geometry *2mov x °°

Compton's Manual of Logarithmic Computations i2mo, 1 50
Davis's Introduction to the Logic of Algebra 8vo, 1 50
* Dickson's College Algebra Large i2mo, 1 50
* Answers to Dickson's College Algebra 8vo, paper, 25
* Introduction to the Theory of Algebraic Equations Large i2mo, 1 25
Halsted's Elements of Geometry 8vo, 1 75

Elementary Synthetic Geometry 8vo, 1 50
Rational Geometry nmo, x 75

•Johnson's Three-place Logarithmic Tables: Vest-pocket size paper, 15
100 copies for 5 00

* Mounted on heavy cardboard, 8 X 10 inches, 25
10 copies for 2 00

Elementary Treatise on the Integral Calculus Small 8vo, 1 50
Curve Tracing in Cartesian Co-ordinates i2mo, 1 00
Treatise on Ordinary and Partial Differential Equations Small 8vo, 3 50

Theory -of Errors and the Method of Least Squares i2mo, 1 50
* Theoretical Mechanics i2mo, 3 00

Laplace's Philosophical Essay on Probabilities. (Truscott and Emory.) i2mo, 200
* Ludlow and Bass. Elements of Trigonometry and Logarithmic and Other

Tables 8vo, 3 00

Trigonometry and Tables published separately Each, 2 00
* Ludlow's Logarithmic and Trigonometric Tables 8vo, 1 00

Maurer's Technical Mechanics 8vo, 4 00
Merriman and Woodward's Higher Mathematics 8vo, 5 00

Merriman's Method of Least Squares $vo, 2 00

Rice and Johnson's Elementary Treatise on the Differential Calculus . Sm., 8vo, 3 00
Differential and Integral Calculus. 2 vols, in one Gmall 8vo, 2 50

Sabin's Industrial and Artistic Technology of Paints and Varnish. (7n press.)

Wood's Elements of Co-ordinate Geometry 8vo, 2 00

Trigonometry: Analytical, Plane, and Spherical nmo, x 00

MECHANICAL ENGINEERING.

MATERIALS OF ENGINEERING, STEAM-ENGINES AND BOILERS.

Baldwin's Steam Heating for Buildings nmo, 2 50
Barr's Kinematics of Machinery 8vo, 2 50
* Bartlett's Mechanical Drawing 8vo, 3 00
* " " "

Abridged Ed 8vo. 1 50
Benjamin's Wrinkles and Recipes i2mo, 2 00

Carpenter's Experimental Engineering 8vo, 6 00

Heating and Ventilating Buildings 8vo, 4 00

Cary's Smoke Suppression in Plants using Bituminous CoaL {In prep-

aration.)

Clerk's Gas and Oil Engine Small 8vo, 4 00

Coolidge's Manual of Drawing 8vo, paper, 1 00

Coolidge and Freeman's Elements of General Drafting for Mechanical En-

gineers. (In press.)

Cromwell's Treatise on Toothed Gearing i2mo, 1 50
Treatise on Belts and Pulleys i2mo, 1 50

Durley's Kinematics of Machines 8vo, 4 00

Flather's Dynamometers and the Measurement of Power nmo, 3 00

Rope Driving l2mo, 2 00

U



Gill's Gas and Fuel Analysis for Engineers « . i2mo, i

Hall's Car Lubrication i2mo, i

Hering's Ready Reference Tables (Conversion Factors) i6mo, morocco, 2

Hutton's The Gas Engine 8vo, 5

Jones's Machine Design:
Part I.—Kinematics of Machinery 8vo, 1

Part IL-^-Form, Strength, and Proportions of Parts 8vo, 3
Kent's Mechanical Engineer's Pocket-book i6mo, morocco, 5

Kerr's Power and Power Transmission 8vo, 2

MacCord's Kinematics; or, Practical Mechanism 8vo, 5

Mechanical Drawing 4to, 4

Velocity Diagrams 8vo, 1

Mahan's Industrial Drawing. (Thompson.) .8vo, 3

Poole's Calorific Power of Fuels 8vo, 3
Reid's Course in Mechanical Drawing „ 8vo. 2

Text-book of Mechanical Drawing and Elementary Machine Design. .8vo, 3
Richards's Compressed Air nrao, 1

Robinson's Principles of Mechanism 8vo, 3
Smith's Press-working of Metals 8vo t 3
Thurston's Treatise on Friction and Lost Work in Machinery and Mill

Work * •• 8vo , 3
Animal as a Machine and Prime Motor, and the Laws of Energetics . nmo, 1

Warren's Elements of Machine Construction and Drawing 8 <ro, 7

Weisbach's Kinematics and the Power of Transmission. Herrmann—
Klein.) 8vo, 5

Machinery of Transmission and Governors. (Herrmann—Klein.). .8vo, 5

HydrauLcs and Hydraulic Motors. (Du Bois.) 8vo, 5

Wolff's Windmill as a Prime Mover 8vo, 3

Wood's Turbines 8vo, 2

MATERIALS OF ENGINEERING.

Bovey's Strength of Materials and Theory of Structures 8vo, 7

Burr's Elasticity and Resistance of the Materials of Engineering. 6th Edition,

Reset 8vo. 7

Church's Mechanics of Engineering 8vo, 6

Johnson'? Materials of Construction Large 8vo, 6

Keep's Cast Iron 8vo, 2

Lanza's Applied Mechanics 8vo, 7

Martens's Handbook on Testing Materials. (Henning.) 8vo, 7

Merriman's Text-book on the Mechanics of Materials 8vo, 4

Strength of Mater»als i2mo, 1

Metcalf's Steel. A Manual for Steel-users i2mo. 2

Smith's Materials of Machines nmo. 1

Thurston's Materials of Engineering 3 vols., Svo, 8 00

Part H.— Iron and Steel 8vo, 3 so

Part IH.—A Treatise on Brasses, Bronzes, and Other Alloys and their

Constituents 8vo 2 50

Text-book of the Materials of Construction 8vo, 5 00

Wood's Treatise on the Resistance of Materials and an Appendix on the

Preservation of Timber 8vo, 2 00

Elements of Analytical Mechanics 8vo, 3 00

Wood's Rustless Coatings: Corrosion and Electrolysis of Iron and Steel.. .8vo, 4 00

STEAM-ENGINES AND BOILERS.

Carnot's Reflections on the Motive Power of Heat. (Thurston.) i2mo, x 50

Dawson's "Engineering" and Electric Traction Pocket-book. ,i6mo, mor., 5 co

Ford's Boiler Making for Boiler Makers i8mo, 1 00

13



Goss's Locomotive Sparks 8vo, 2 00

Hemenway's Indicator Practice and Steam-engine Economy i2mo, 2 00

Hutton's Mechanical Engineering of Power Plants 8vo, 5 00
Heat and Heat-engines 8vo, 5 00

Kent's Steam-boiler Economy 8vo, 4 00
Kneass's Practice and Theory of the Injector 8vo 1 50
MacCord's Slide-valves 8vo, 2 00

Meyer's Modern Locomotive Construction 4to, 10 00

Peabody's Manual of the Steam-engine Indicator i2mo, 1 50
Tables of the Properties of Saturated Steam and Other Vapors 8vo, 1 00

Thermodynamics of the Steam-engine and Other Heat-engines 8vo, 5 00

Valve-gears for Steam-engines 8vo, 2 50

Peabody and Miller's Steam-boilers 8vo, 4 00

Pray's Twenty Years with the Indicator Large 8vo, 2 50

Pupln's Thermodynamics of Reversible Cycles in Gases and Saturated Vapors.

(Osterberg.) nmo, 1 25

Reagan's Locomotives : Simple, Compound, and Electric nmo, 2 50

Rontgen's Principles of Thermodynamics. (Du Bois.) 8vo, 5 00

Sinclair's Locomotive Engine Running and Management i2mo, 2 00

Smart's Handbook of Engineering Laboratory Practice i2mo, 2 50
Snow's Steam-boiler Practice 8vo, 3 00

Spangler's Valve-gears 8vo, 2 50
Notes on Thermodynamics nmo, 1 00

Spangler, Greene, and Marshall's Elements of Steam-engineering 8vo, 3 00

Thurston's Handy Tables 8vo, 1 50
Manual of the Steam-engine 2 vols.. 8vo, 10 00

Part I.—History, Structuce, and Theory 8vo, 6 00

Part H.—Design, Construction, and Operation 8vo, 6 00

Handbook of Engine and Boiler Trials, and the Use of the Indicator and

the Prony Brake 8vo 5 00

Stationary Steam-engines 8vo, 2 50
Steam-boiler Explosions in Theory and in Practice nmo 1 50
Manual of Steam-boilers , Their Designs, Construction, and Operation . 8vo, 5 00

Weisbach's Heat, Steam, and Steam-engines. (Du Bois.) 8vo, 5 00

Whitham's Steam-engine Design 8vo, 5 00

Wilson's Treatise on Steam-boilers. (Flather.) i6mo, 2 50
Wood's Thermodynamics Heat Motors, and Refrigerating Machines. . . .8vo, 4 00

MECHANICS AND MACHINERY.

Barr's Kinematics of Machinery 8vo,

Bovey's Strength of Materials and Theory of Structures 8vo,

Chase's The Art of Pattern-making nmo,
Chordal.—Extracts from Letters nmo,
Church's Mechanics of Engineering 8vo,

Notes and Examples in Mechanics 8vo,

Compton's First Lessons in Metal-working nmo,
Compton and De Groodt's The Speed Lathe nmo,
Cromwell's Treatise on Toothed Gearing nmo,

Treatise on Belts and Pulleys i2mo,
Dana's Text-book of Elementary Mechanics for the Use of Colleges and

Schools nmo,
Dingey's Machinery Pattern Making nmo,
Dredge's Record of the Transportation Exhibits Building of the World's

Columbian Exposition of 1893 4to, half morocco, 5 00
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Du Bo s's Elementary Principles of Mechanics:

Vol. I.—Kinematics '. 8vo,
Vol II.—Statics 8vo,
Vol. III.—Kinetics 8vo,
Mechanics of Engineering. Vol. I Small 4to,

Vol II Small 4to,

Durley's Kinematics of Machines 8vo,

Fitzgerald's Boston Machinist i6mo,
Flather's Dynamometers, and the Measurement of Power i2mo,

Rope Driving i2mo,
Goss's Locomotive Sparks 8vo

Hall's Car Lubrication i2mo,
Holly's Art of Saw Filing i8mo,
* Johnson's Theoretical Mechanics i2mo,

Statics by Graphic and Algebraic Methods 8vo,

Jones's Machine Design:
Part I.—Kinematics of Machinery 8vo,
Part H.—Form, Strength, and Proportions of Parts '. 8vo,

Kerr's Power and Power Transmission 8vo,

Lanza's Applied Mechanics 8vo,

MacCord's Kinematics; or, Practical Mechanism 8vo,

Velocity Diagrams 8vo,

Maurer's Technical Mechanics 8vo,
Merriman's Text-book on the Mechanics of Materials 8vo,
* Michie's Elements of Analytical Mechanics 8vo,

Reagan's Locomotives: Simple, Compound, and Electric i2mo,
Reid's Course in Mechanical Drawing. 8vo,

Text-book of Mechanical Drawing and Elementary Machine Design. .8vo,

Richards's Compressed Air i2mo,
Robinson's Principles of Mechanism 8vo,

Ryan, Norris, and Hoxie's Electrical Machinery. Vol. 1 8vo,

Sinclair's Locomotive-engine Running and Management i2mo,
Smith's Press-working of Metals 8vo,

Materials of Machines nmo,
Spangler, Greene, and Marshall's Elements of Steam-engineering 8vo,

Thurston's Treatise on Friction and Lost Work in Machinery and Mill

Work 8vo,

Animal as a Machine and Prime Motor, and the Laws of Energetics. i2mo,
Warren's Elements of Machine Construction and Drawing 8vo,

Weisbach's Kinematics and the Power of Transmission. (Herrmann—
Klein.) 8vo,

Machinery of Transmission and Governors. (Herrmann—Klein.). 8vo,

Wood's Elements of Analytical Mechanics 8vo,

Principles of Elementary Mechanics nmo,
Turbines 8vo,

The World's Columbian Exposition of 1893 , 4to,

METALLURGY.

Egleston's Metallurgy. of Silver, Gold, and Mercury:
Vol. I.—Silver 8vo, 7 50

Vol H.—Gold and Mercury 8vo, 7 S©
** Iles's Lead-smelting. (Postage 9 cents additional.) i2mo, 2 50

Keep's Cast Iron 8vo, 2 50

Kunhardt's Practice of Ore Dressing in Europe 8vo, 1 50

Le Chatelier's High-temperature Measurements. (Boudouard—Burgess.) . i2mo, 3 00

Metcalf's Steel. A Manual for Steel-users i2mo, 2 00

Smith's Materials of Machines i2mo, 1 00
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Thurston's Materials of Engineering. In Three Parts 8vo,
Part II.—Iron and Steel 8vo,
Part III.—A Treatise on Brasses, Bronzes, and Other Alloys and their

Constituents 8vo,
Ulke's Modern Electrolytic Copper Refining 8vo,

MINERALOGY.

Barringer's Description of Minerals of Commercial Value. Oblong, morocco,
Boyd's Resources of Southwest Virginia 8vo,

Map of Southwest Virginia Pocket-book form.
Brush's Manual of Determinative Mineralogy. (Penfield.) 8vo,
Chester's Catalogue of Minerals 8vo, paper,

Cloth,

Dictionary of the Names of Minerals 8vo,
Dana's System of Mineralogy Large 8vo, half leather,

First Appendix to Dana's New "System of Mineralogy." Large 8vo,
Text-book of Mineralogy 8vo,
Minerals and How to Study Them nmo,
Catalogue of American Localities of Minerals Large 8vo,
Manual of Mineralogy and Petrography i2mo,

Eakle's Mineral Tables 8vo,

Egleston's Catalogue of Minerals and Synonyms 8vo,
Hussak's The Determination of Rock-forming Minerals. (Smith.) Small 8vo,

Merrill's Non-metallic Minerals: Their Occurrence and Uses 8vo,
* Penfield's Notes on Determinative Mineralogy and Record of Mineral Tests.

8vo, paper,

Rosenbusch's Microscopical Physiography of the Rock-making Minerals.

(Iddings.) 8vo,
• Tillman's Text-book of Important Minerals and Docks 8vo,
Williams's Manual of Lithology 8vo,

MINING.

Beard's Ventilation of Mines nmo, a 50

Boyd's Resources of Southwest Virginia 8vo, 3 00

Map of Southwest Virginia Pocket-book form, 2 00
• Drinker's Tunneling, Explosive Compounds, and Rock Drills.

4to, half morocco, 25 00

Eissler's Modern High Explosives 8vo, 4 00

Fowler's Sewage Works Analyses nmo, 2 00

Goodyear's Coal-mines of the Western Coast of the United States i2mo, 2 50

Ihlseng's Manual of Mining 8vo, 4 00
** Iles's Lead-smelting. (Postage 9c. additional) i2mo, 2 50
Kunhardt's Practice of Ore Dressing in Europe 8vo, 1 50

O'Driscoll's Notes on the Treatment of Gold Ores 8vo, 2 00
* Walke's Lectures on Explosives 8vo, 4 00

Wilson's Cyanide Processes! ismo, 1 50

Chlorination Process i2mo, 1 50

Hydraulic and Placer Mining 121110, 2 00

Treatise on Practical and Theoretical Mine Ventilation 12mo z 25

SANITARY SCIENCE.

Copeland's Manual of Bacteriology. (In preparation,)

Folwell's Sewerage. (Designing, Construction and Maintenance.; 8vo, 3 00

Water-supply Engineering 8vo, 4 00

Fuertes's Water and Public Health Z2mo, 1 50
Water-filtration Works lamo, 2 50

15

8



Gerhard's Guide to Sanitary House-inspection i6mo, i oo
Goodrich's Economical Disposal of Town's Refuse Demy 8vo, 3 50
Hazen's Filtration of Public Water-supplies 8vo, 3 00
Kiersted's Sewage Disposal i2mo, 1 25
Leach's The Inspection and Analysis of Food with Special Reference to State .

Control. (In preparation.)
Mason's Water-supply. (Considered Principally from a Sanitary Stand-

point.) 3d Edition, Rewritten 8vo, 4 00
Examination of Water. (Chemical and Bacteriological.) i2mo, 1 25

Merriman's Elements of Sanitary Engineering . . , 8vo, 2 00
Nichols's Water-supply. (Considered Mainly from a Chemical and Sanitary

Standpoint.) (1883.) 8vo, 2 50
Ogden's Sewer Design i2mo, 2 00
Prescott and Winslow's Elements of Water Bacteriology, with Special Reference

to Sanitary Water Analysis. . nmo, 1 25
* Price's Handbook on Sanitation i2mo, 1 50
Richards'. Cost of Food. A Study in Dietaries. : i2mo, 1 00

Cost of Living as Modified by Sanitary Science 12mo, 1 00
Richards and Woodman s Air, Water, and Food from a Sanitary Stand-

point 8vo, 2 00
* Richards and Williams's The Dietary Computer 8vo, 1 50
Rideal's Sewage and Bacterial Purification of Sewage 8vo, 3 50
Turneaure and Russell's Public Water-supplies 8vo, 5 00

Whipple's Microscopy of Drinking-water 8vo, 3 50
WoodhulTs Notes and Military Hygiene i6mo, x 50

MISCELLANEOUS.

Barker's Deep-sea Soundings 8vo, 2 00

Emmons's Geological Guide-book of the Rocky Mountain Excursion of the

International Congress of Geologists , Large 8vc 1 50
Ferrel's Popular Treatise on the Winds 8vo 4 00

Haines's American Railway Management i2mo„ 2 50
Mott's Composition, Digestibility, and Nutritive Value of Food. Mounted chart. 1 25

Fallacy of the Present Theory of Sound i6mo 1 00

Ricketts's History of Rensselaer Polytechnic Institute, 1824-1894. Small 8vo, 3 00

Rotherham's Emphasized New Testament Large 8vo, 2 00

Steel's Treatise on the Diseases of the Dog 8vo, 3 50
Totten's Important Question in Metrology 8vo 2 50

The World's Columbian Exposition ot 1893 4to, 1 00

Worcester and Atkinson. Small Hospitals, Establishment and Maintenance,
and Suggestions for Hospital Architecture, with Plans for a Small

Hospital i2mo, x 25

HEBREW AND CHALDEE TEXT-BOOKS.

Green's Grammar of the Hebrew Language 8vo, 3 00

Elementary Hebrew Grammar i2mo, 1 25

Hebrew Chrestomathy 8vo, 2 00

Gesenius's Hebrew and Chaldee Lexicon to the Old Testament Scriptures.

(Tregelles.) Small 410, half morocco, 5 00

Lett* ris's Hebrew Bible 8vo, 2 25
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