UC-NRLF

 \$B 530 6?

IN MEMORIAM FLORIAN CAJORI

(27)

\square

Hlaian Cajori. Aug., 1904.

Digitized by the Internet Archive in 2008 with funding from Microsoft Corporation

RATIONAL GEOMETRY

A TEXT-BOOK FOR

THE SCIENCE OF SPACE

BASED ON HILBERT'S FOUNDATIONS

By
GEORGE BRUCE HALSTED
A.B. and A.M., Princeton; Ph.D.,., Johns Hopkins

FIRST EDITION
FIRST THOUSAND

Copyright, 1904,

BY
GEORGE BRUCE HALSTED.
CAJORI

PREFACE.

Writing to Professor Hilbert my desire to base a text-book on his foundations, he answered: " Ueber Ihre Idee aus meinen Grundlagen ene Schul-Geometric $z u$ machen, bin itch sehr erfreut. Itch glaube auch, dass dieselben sech sehr gut dazu eignen werden."

Geometry at last made rigorous is also thereby made more simple.

George Bruce Halsted.
Kenyon College, Gambier, Ohio.

CONTENTS.

CHAPTER I. fage
Association. I
CHAPTER II.
Betweenness 5
CHAPTER III.
Congruence. 15
CHAPTER IV.
Parallels. 35
CHAPTER V.
The Circle 49
CHAPTER VI.
Problems of Construction. 62
CHAPTER VII.
Sides, Angles, and (Arcs.) 73
CHAPTER VIII.
A Sect Calculus 87
CHAPTER IX.
Proportion and the Theorems of Similitude. 98
CHAPTER X.
PAGB
Equivalences. 109
CHAPTER XI.
Geometry of Planes. I39
CHAPTER XII.
Polyhedrons and Volumes 163
CHAPTER XIII.
Tridimensional Spherics. 194
CHAPTER XIV.
Cone and Cylinder. 205
CHAPTER XV.
Pure Spherics. 212
CHAPTER XVI.
Angloids or Polyhedral Angles. 248
APPENDIX I.
Proofs of Betweenness Theorems 253
APPENDIX II.
The Compasses. 259
APPENDIX III.
The Solution of Problems. 262

TABLE OF SYMBOLS.

We denote
triangle by Δ; the vertices by A, B, C;
the angles at A, B, C by α, β, γ;
the opposite sides by a, b, c;
the altitudes from A, B, C by h_{a}, h_{b}, h_{c};
the bisectors of α, β, γ by t_{a}, t_{b}, t_{c};
the medians to a, b, c by m_{a}, m_{b}, m_{c};
the feet of h_{a}, h_{b}, h_{c} by D, E, F;
the centroid by G;
the orthocenter by H;
the in-center by I; the in-radius by r;
the ex-centers beyond a, b, c by I_{1}, I_{2}, I_{3}; their ex-radii by r_{1}, r_{2}, r_{3};
the circumcenter by O; the circumradius by R;
angle by \Varangle; angles by \nsucceq;
angle made by the rays $B A$ and $B C$ by $\Varangle A B C$;
angle made by the rays a and b both from the point O by $\Varangle(a, b)$ or $\Varangle a b$;
bisector by bi'; circle by \odot; circles by \odot s; circle with center C and radius r by $\odot C(r)$; congruent by \equiv;
equal or equivalent by completion by $=$;
for example [exempli gratia] by e.g.
greater than by $>$;
less than by $<$; minus by - ;
parallel by $\|$; parallels by $\| \mathrm{s}$;
parallelogram by $\| . g$ ' m; perimeter [sum of sides] by p; perpendicular by \perp; perpendiculars by \perp;
plus by + ;
quadrilateral by quad';
right by r't;
spherical angle by $\widehat{\text { § }}$
spherical triangle by $\overparen{\Delta}$;
similar by \sim;
symmetrical by $小$ therefore by \therefore

RATIONAL GEOMETRY.

CHAPTER I.

ASSOCIATION.
The Geometric Elements.

1. Geometry is the science created to give understanding and mastery of the external relations of things; to make easy the explanation and description of such relations and the transmission of this mastery.
2. Convention. We think three different sorts of things. The things of the first kind we call points, and designate them by A, B, C, \ldots; the things of the second system we call straights, and designate them by a, b, c, \ldots; the things of the third set we call planes, and designate them by α, β, r, \ldots
3. We think the points, straights, and planes in certain mutual relations, and we designate these relations by words such as "lie," "between," "parallel," "congruent."

The exact and complete description of these rela-
tions is accomplished by means of the assumptions of: geometry:
4. The assumptions of geometry separate into five groups. Each of these groups expresses certain connected fundamental postulates of our intuition.
I. The first group of assumptions: assumptions of association.
5. The assumptions of this group set up an association between the concepts above mentioned, points, straights, and planes. They are as follows:

I r. Two distinct points, A, B, always determine a straight, a.

Of such points besides "determine" we also employ other turns of phrase; for example, A "lies on" a, A "is a point of" a, a "goes through" A "and through" B, a "joins" A "and" or "with" B, etc.

When we say two things determine some other thing, we simply mean that if the two be given, then this third is explicitly and uniquely given.

If A lies on a and besides on another straight b we use aIso the expression: "the straights" a " and" b " have the point A in common."

I 2. Any two distinct points of a straight determine this straight; and on every straight there are at least two points.

That is, if $A B$ determine a and $A C$ determine a, and B is not C, then also B and C determine a.

I 3. Three points, A, B, C, not costraight, always determine a plane α.

We use also the expressions:
A, B, C "lie in" α, A, B, C, "are points of" α, etc.

I 4. Any three non-costraight points A, B, C of a plane α determine THis plane α.

I 5. If two points A, B of a straight a lie in a plane α, then every point of a lies in α.

In this case we say: The straight a lies in α.
I 6. If two planes α, β have a point A in common, then they have besides at least another point B in common.

I 7. In every plane there are at least three noncostraight points. There are at least four non-costraight non-coplanar points.
6. Theorem. Two distinct straights cannot have two points in common.

Proof. The two points being on the first straight determine (by I 2) that particular straight. If by hypothesis they are also on a second straight, therefore (by I 2) they determine this second straight. Therefore the first straight is identical with the second.
7. Theorem. Two straights have one or no point in common.

Proof. By 6 they cannot have two.
8. Theorem. Two planes have no point or a straight in common.

Proof. If they have one point in common, then (by I 6) they have a second point in common, and therefore (by I 5) each has in it the straight which (by I I) is determined by these two points.
9. Corollary to 8. A point common to two planes
lies in a straight common to the two, which may be called their straight of intersection or their meet.
10. Theorem. A plane and a straight not lying in it have no point or one point in common.

Proof. If they had two points in common the straight would be (by I 5) situated completely in the plane.
11. Theorem. Through a straight and a point not on it there is always one and only one plane.

Proof. On the straight there are (by I 2) two points. These two with the point not. on the straight determine (by I 3) a plane, in which (by I 5) they and the given straight lie. Any plane on this point and straight would be on the three points already used, hence (by I 4) identical with the plane determined.
12. Theorem. Through two different straights with a common point there is always one and only one plane.

Proof. Each straight has on it (by I 2) one point besides the common point, and (by 6) these two points are not the same point, and (by I ${ }_{2}$) the three points are not costraight.

These three points determine (by I 3) a plane in which (by I 5) each of the two straights lies. Any plane on these straights would be on the three points already used, hence (by I 4) identical with the plane determined.

CHAPTER II.

BETWEENNESS.
II. The second group of assumptions: assumptions of betweenness.
13. The assumptions of this group make precise the idea "between," and make possible on the basis of this idea the arrangement of points.
14. Convention. The points of a straight stand in certain relations to one another, to describe which especially the word "between" serves us.

II ı. If A, B, C are points of a straight, and B lies between A and C, then B also lies between C and A, and is neither C nor A.

Fig. 1.
II 2. If A and C are two points of a straight, then there is always at least one point B, which lies between

Fig. 2.
A and C, and at least one point D, such that C lies between A and D.

II 3. Of any three points of a stranght there is always one and only one which lies between the other twe.
15. Definition. Two points A and B, upon a straight a, we call a segment or sect, and designate it with $A B$ or $B A$. The points between A and B are said to be points of the sect $A B$ or also situated within the sect $A B$. All remaining points of the straight a are said to be situated without the sect $A B$. The points A, B are called end-points of the sect $A B$.

II 4. (Pasch's assumption.) Let A, B, C be three points not costraight and a a straight in the plane $A B C$ going through none of the points A, B, C; if

Fig. 3.
then the straight a goes through a point within the sect $A B$, it must always go either through a point of the sect $B C$ or through a point of the sect $A C$.

Deductions from the assumptions of association and betweenness.
16. Theorem. Between any two points of a straight there are always indefinitely many points.
[Here taken for granted, and its proof removed to Appendix I.]
17. Theorem. If any finite number of points of
a straight are given, then they can always be arranged in a succession A, B, C, D, E, \ldots, K, such that B lies between A on the one hand and C, D, E, \ldots, K on the other, further C between A, B on the one hand and D, E, \ldots, K on the other, then D between A, B, C on the one hand and E, \ldots, K on the other, and so on.

Besides this distribution there is only one other, the reversed arrangement, which is of the same character.
[This theorem is here taken for granted, and its proof removed to Appendix I.]
21. Theorem. If A, B, C be not costraight, any straight in the plane $A B C$ which has a point within the sect $A B$ and a point within $A C$ cannot have a point within $B C$.

Proof. Suppose F, G, H three such costraight points.

One, say G, on $A B$, must (by II 3) lie between the others. Then the straight $A B$ must (by II 4) have a point within the sect $F C$ or the sect $C H$, which (by 7 and II 3) is impossible.

Fig. 4.
22. Theorem. Every straight a, which lies in a plane α, separates the other points of this plane α into two regions, of the following character: every
point A of the one region determines with every point B of the other region a sect $A B$, within which lies a point of the straight a; on the contrary, any two

Fig. 5.
points A, A^{\prime} of one and the same region always determine a sect $A A^{\prime}$ which contains no point of a.

Proof. Let A be a point of α which does not lie on a. Then reckon to one region all points P of the property, that between A and P, therefore

Fig. 6.
within $A P$, lies no point of a; to the other region all points Q such that within $A Q$ lies a point of a.

Now is to be shown:
(1) On $P P^{\prime}$ lies no point of a.
(2) On $Q Q^{\prime}$ lies no point of a.
(3) On $P Q$ lies always a point of a.
(1) From hypothesis neither within $A P$ nor $A P^{\prime}$ lies a point of a. This would contradict II 4, if within $P P^{\prime}$ were a point of a.
(2) By hypothesis there lies within $A Q$ a point of a, likewise within $A Q^{\prime}$; therefore (by 21) none within $Q Q^{\prime}$.
(3) By hypothesis $A P$ contains no point of a; $A Q$ on the other hand contains one such. Therefore (by II 4) a meets $P Q$.
23. Convention. If A, A^{\prime}, O, B are four costraight points such that O is between A and B but not between A and A^{\prime}; then we say: the points A, A^{\prime}

Fig. 7.
lie in the straight a on one and the same side of the point O, and the points A, B lie in the straight a on different sides of the point O.
24. Definition. The assemblage, aggregate, or totality of all points of the straight a situated on one and the same side of O is called a ray starting from O.

Consequently every point of a straight is the origin of two rays.
25. Convention. Using the notation of 22 , we say: the points P, P^{\prime} lie in the plane α on one and the same side of the straight a and the points P, Q lie in the plane α on different sides of the straight a.
26. Theorem. Every two intersecting straights a, b separate the points of their plane α not on either into four regions such that if the end-points of a sect are both in one of these regions, the sect contains no point of either straight.

Proof. Let O be their common point and A another point on b, and B another point on a. Then two points both on the A side of a and the B side of b make a sect which (by 22) can contain no point either of a or of b. So also if both were

Fig. 8.
on the A side of a and the non- B side of b; or both on the non- A side of a and the B side of b; or both on the non- A side of a and the non- B side of b.
27. Definition. A system of sects $A B, B C$, $C D, \ldots, K L$ is called a sect-train, which joins the points A and L with one another. This sect-train will also be designated for brevity by $A B C D \ldots K L$.

The points within the sects $A B, B C, C D, \ldots, K L$, together with the points A, B, C, D, \ldots, K, L are all together called the points of the sect-train.

In particular if the point L is identical with the point A, then the sect-train is called a polygon and is designated as polygon $A B C D \ldots K$.

The sects $A B, B C, C D, \ldots, K A$ are called the sides of the polygon. The points A, B, C, D, \ldots, K are called the vertices of the polygon.

A sect not a side but whose end-points are vertices is called a diagonal of the polygon.

Polygons with $3,4,5, \ldots, n$ vertices are called respectively trianglcs, quadrilaterals, pentagons,..., n-gons.
28. If the vertices of a polygon are all distinct from one another and no vertex of the polygon falls within a side and finally no two sides of the polygon have a point within in common, then the polygon is called simple.

By quadrilateral is meant simple quadrilateral.
A plane polygon is one all of whose sides are coplanar.

A convex polygon is one no points of which a e on different sides of the straight of any of its sides.
29. Theorem. Every simple polygon, whose vertices all lie in a plane α, separates the points of this plane α, which do not pertain to the sect-train of the polygon, into two regions, an inner and an outer, of the following character: if A is a point of the inner (interior point) and B a point of the outer (exterior point), then every sect-train which joins A with B has at least one point in common with the polygon; on the contrary if A, A^{\prime} are two points of the inner and B, B^{\prime} two points of the outer, then there are always sect-trains, which join A with $A^{\prime} \breve{C}^{2}$ and B with B^{\prime} and have no point in common with the polygon.

There are straights in α which lie wholly outside the polygon; on the contrary no such straights which lie wholly within the polygon.

Proof. Any simple polygon by jeining its vertices gives a number of triangles. For a triangle $A B C$ there is (by 26) a region with points on the
A side of $B C$, the B side of $C A$, and the C side of $A B$, i.e., an inner region. Moreover, the straight determined by a point on b and a point on c both in non- A lies wholly without the region $A B C$, since it cannot again meet b or c and so cannot (by II 4)

Fig. 9.
have a point in common with $B C$. Moreover, if any straight has a point within $A B C$, it has a point on a side. For the straight determined by the point within and any point on a side has (by II 4) a point on another side, thus making another triangle, in common with one side of which the given straight has a point, and therefore (by II 4) with another side, that is with a side of the original triangle.
30. Corollary to 29. A straight tnrough a vertex and a point within a triangle has a point within the 'opposite' side.

3r. Theorem. Every plane α separates all points not on it into two regions of the following character: every point A of the one region determines with every point B of the other region a sect $A B$, within which lies a point of α; on the contrary any two points A and A^{\prime} of one and the same region always determine a sect $A A^{\prime}$, which contains no point of α.

Proof. Let A be a point which does not lie on α. Then reckon to the one region all points P of the property, that between A and P, therefore within $A P$, lies no point of α; to the other region all points Q such that within $A Q$ lies a point of α.

Now is to be shown:
(1) On $P P^{\prime}$ lies no point of α.
(2) On $Q Q^{\prime}$ lies no point of α.
(3) On $P Q$ lies always a point of α.
(1) From hypothesis neither within $A P$ nor $A P^{\prime}$ lies a point of α. Suppose now a point of α lay on $P P^{\prime}$. Then the plane α and the plane $A P P^{\prime}$ would have in common this point and consequently (by 9) a straight a. This straight goes through none of the points A, P, P^{\prime}; it cuts $P P^{\prime}$; it must therefore (by II 4) cut either $A P$ or $A P^{\prime}$, which is contrary to hypothesis.
(2) By hypothesis there lies within $A Q$ a point of α, likewise within $A Q^{\prime}$. The intersection straight of the planes α and $A Q Q^{\prime}$ therefore meets two sides of the triangle $A Q Q^{\prime}$; consequently (by 21) it cannot also meet the other side $Q Q^{\prime}$.
(3) $A P$ contains by hypothesis no point of α; $A Q$ on the other hand contains one such. The intersection straight of the planes α and $A P Q$ therefore
meets the side $A Q$ and does not meet the side $A P$ in triangle $A P Q$. Therefore (by II 4) it meets the side $P Q$.
32. Convention. Using the notation of 31 , we say: the points A, A^{\prime} lie on one and the same side of the plane α, and the points A, B lie on different sides of the plane α.

Ex. I. A straight cannot traverse more than 4 of the 7. regions of the plane determined by the straights of the sides of a triangle.

Ex. 2. Four coplanar straights crossing two and two determine 6 points. Choosing 4 as vertices we can get two convex quadrilaterals, one of which has its sides on the straights.

Ex. 3. Each vertex of an n-goo determines with th: others ($n-1$) straights. So together they determine $n(n-1) / 2$.

Ex. 4. How many diagonals in a polygon of n sides.
Ex. 5. What polygon has as many diagonals as sides?

CHAPTER III.

CONGRUENCE.

III. The third group of assumptions: assumptions of congruence.

33. The assumptions of this group make precise the idea of congruence.
34. Convention. Sects stand in certain relations to one another, for whose description the word congruent especially serves us.

III i. If A, B are two points on a straight a, and A^{\prime} a point on the same or another straight a^{\prime}, then we can find on the straight a^{\prime} on a given ray from A^{\prime} always one and only one point B^{\prime} such that the sect $A B$ is congruent to the sect $A^{\prime} B^{\prime}$.

We write this in symbols $A B \equiv A^{\prime} B^{\prime}$.
Everysect is congruent to itself, i.e., always $A B \equiv A B$. The sect $A B$ is always congruent to the sect $B A$, i.e., $A B \equiv B A$.

We also say more briefly, that every sect can be taken on a given side of a given point on a given straight in one and only one way.

III 2. If a sect $A B$ is congruent as well to the sect $A^{\prime} B^{\prime}$ as also to the sect $A^{\prime \prime} B^{\prime \prime}$, then is also $A^{\prime} B^{\prime}$ con-
gruent to the sect $A^{\prime \prime} B^{\prime \prime}$, i.e., if $A B \equiv A^{\prime} B^{\prime}$ and $A B \equiv A^{\prime \prime} B^{\prime \prime}$, then is also $A^{\prime} B^{\prime} \equiv A^{\prime \prime} B^{\prime \prime}$.

III 3. On the straight a let $A B$ and $B C$ be two sects without common points, and furthermore $A^{\prime} B^{\prime}$ and $B^{\prime} C^{\prime}$ two sects on the same or another straight, likewise without common points; if then $A B \equiv A^{\prime} B^{\prime}$ and $B C \equiv B^{\prime} C^{\prime}$, so always also $A C \equiv A^{\prime} C^{\prime}$.

Fig. 10.
35. Definition. Let α be any plane and h, k any two distinct rays in α going out from a point O, and pertaining to different straights. These two rays h, k we call an angle, and des-

Fig. if. ignate it by $\nrightarrow(h, k)$ or $\Varangle(k, h)$. The rays h and k, together with the point O, separate the other points of the plane α into two regions of the following character: if A is a point of the one region and B of the other region, then every sect-train which joins A with B, goes either through O or has with h or k at least one point in common; on the contrary if A, A^{\prime} are points of the same region, then there is always a sect-train which joins A with A^{\prime} and neither goes through O nor through a point of the rays h, k.

One of these two regions is distinguished from the other because each sect which joins any two points of this distinguished region always lies wholly
in it; this distinguished region is called the interior of the angle (h, k) in contradistinction from the other region, which is called the exterior of the angle (h, k). The interior of $\nvdash(h, k)$ is wholly on the same side of the straight h as is the ray k, and altogether on the same side of the straight k as is the ray h.

The rays h, k are called sides of the angle, and the point O is called the vertex of the angle.

III 4. Given any angle (h, k) in a plane α and a straight a^{\prime} in a plane α^{\prime}, also a determined side of a^{\prime} on α^{\prime}. Designate by h^{\prime} a ray of the straight a^{\prime} starting from the point O^{\prime}; then there is in the plane α^{\prime} one and only one ray k^{\prime} such that the angle (h, k) is congruent to the angle (h^{\prime}, k^{\prime}), and likewise all interior points of the angle (h^{\prime}, k^{\prime}) lie on the given side of a^{\prime}.

Fig. 12
In symbols:

$$
. \Varangle(h, k) \equiv \Varangle\left(h^{\prime}, k^{\prime}\right) .
$$

Every angle is congruent to itself, i.e., always

$$
\nvdash(h, k) \equiv \Varangle(h, k) .
$$

The angle (h, k) is always congruent to the angle (k, h), i.e., $\Varangle(h, k) \equiv \Varangle(k, h)$.

We say also briefly, that in a given plane every angle can be set off towards a given side against a
given ray, but in a uniquely determined way. There is one and only one such angle congruent to a given angle. We say an angle so taken is uniquely determined.

III 5. If an angle (h, k) is congruent as well to the aingle (h^{\prime}, k^{\prime}) as also to the angle ($h^{\prime \prime}, k^{\prime \prime}$), then is also the angle (h^{\prime}, k^{\prime}) congruent to the angle $\left(h^{\prime \prime}, k^{\prime \prime}\right)$; i.e., if $\nvdash(h, k) \equiv \Varangle\left(h^{\prime}, k^{\prime}\right)$ and $\nvdash(h, k) \equiv \nsucceq\left(h^{\prime \prime}, k^{\prime \prime}\right)$, then always $\Varangle\left(h^{\prime}, k^{\prime}\right) \equiv \Varangle\left(h^{\prime \prime}, k^{\prime \prime}\right)$.
36. Convention. Let $A B C$ be any assigned triangle; we designate the two rays going out from A through B and C respectively by h and k. Then the angle (h, k) is called the angle of the triangle $A B C$ included by the sides $A B$ and $A C$ or opposite the side $B C$. It contains in its interior all the inner points of the triangle $A B C$ and is designated by $\Varangle B A C$ or $\Varangle A$.

III 6. If for two triangles $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$ we have the congruences

$$
A B \equiv A^{\prime} B^{\prime}, \quad A C \equiv A^{\prime} C^{\prime}, \quad \Varangle B A C \equiv \Varangle B^{\prime} A^{\prime} C^{\prime},
$$

then always are fulfilled the congruences

$$
\Varangle A B C \equiv \Varangle A^{\prime} B^{\prime} C^{\prime} \quad \text { and } \quad \Varangle A C B \equiv \Varangle A^{\prime} C^{\prime} B^{\prime} .
$$

Deductions from the assumptions of congruence.

37. Convention. Suppose the sect $A B$ congruent to the sect $A^{\prime} B^{\prime}$. Since, by assumption III r , also the sect $A B$ is congruent to $A B$, so follows from III 2 that $A^{\prime} B^{\prime}$ is congruent to $A B$; we say: the two sects $A B$ and $A^{\prime} B^{\prime}$ are congruent to one another.
38. Convention. Suppose $\Varangle(h, k) \equiv \Varangle\left(h^{\prime}, k^{\prime}\right)$.

Since (by III 4) $\Varangle(h, k) \equiv \Varangle(h, k)$, therefore (by III 5) $\quad \Varangle\left(h,{ }^{\prime} k^{\prime}\right) \equiv \Varangle(h, k)$. We say then: the two angles $\Varangle(h, k)$ and $\dot{孔}\left(h^{\prime}, k^{\prime}\right)$ are congruent to one another.
39. Definition. Two angles having the same vertex and one side in common, while the sides not common form a straight, are called adjacent angles.
40. Definition. Two angles with a common vertex and whose sides form two straights are called vertical angles.
41. Definition. Any angle which is congruent to one of its adjacent angles is called a right angle.

Two straights which make a right angle are said to be perpendicular to one another.
42. Convention. Two triangles $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$ are called congruent to one another, if all the congruences

$$
\begin{array}{lll}
A B \equiv A^{\prime} B^{\prime}, & A C \equiv A^{\prime} C^{\prime}, & B C \equiv B^{\prime} C^{\prime}, \\
\Varangle A \equiv \Varangle A^{\prime}, & \Varangle B \equiv \Varangle B^{\prime}, & \Varangle C \equiv \Varangle C^{\prime}
\end{array}
$$

are fulfilled.
43. (First congruence theorem for triangles.)

Triangles are congruent if they have two sides and the included angle congruent.

Fig. 13.
In the triangles $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$ take $A B \equiv A^{\prime} B^{\prime}$, $A C \equiv A^{\prime} C^{\prime}, \Varangle A \equiv \Varangle A^{\prime}$ 。

To prove $\triangle A B C \equiv \triangle A^{\prime} B^{\prime} C^{\prime}$.
Proof. By assumption III 6 the congruences $\Varangle B \equiv \Varangle B^{\prime}$ and $\Varangle C \equiv \Varangle C^{\prime}$ are fulfilled, and so we have only to show that the sides $B C$ and $B^{\prime} C^{\prime}$ are congruent to one another.

Suppose now, on the contrary, that $B C$ were not congruent to $B^{\prime} C^{\prime}$, and take on ray $B^{\prime} C^{\prime}$ (by III r) the point D^{\prime}, such that $B C \equiv B^{\prime} D^{\prime}$. Then the two triangles $A B C$ and $A^{\prime} B^{\prime} D^{\prime}$ will have, since $\Varangle B \equiv$ $\Varangle B^{\prime}$, two sides and the included angle respectively congruent; by assumption III 6 , consequently, are in particular the two angles $B A C$ and $B^{\prime} A^{\prime} D^{\prime}$ congruent to one another. By assumption III 5, consequently, must therefore also the two angles $B^{\prime} A^{\prime} C^{\prime}$ and $B^{\prime} A^{\prime} D^{\prime}$ be congruent to one another. This is impossible, since, by assumption III 4, against a given ray toward a given side in a given plane there is only one angle congruent to a given angle. So the theorem is completely established.
44. (Second congruence theorem for triangles.)

Two triangles are congruent if a side and the two adjoining angles are respectively congruent.

Fig. 14.
In the triangles $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$ take $A C \equiv A^{\prime} C^{\prime}$, $\Varangle A \equiv \Varangle A^{\prime}, \Varangle C \equiv \Varangle C^{\prime}$ 。
To prove $\triangle A B C \equiv \triangle A^{\prime} B^{\prime} C^{\prime}$.

Proof. Suppose now, on the contrary, $A B$ is not $\equiv A^{\prime} B^{\prime}$, and take on ray $A^{\prime} B^{\prime}$ the point D^{\prime}, such that $A B \equiv A^{\prime} D^{\prime}$. By III $6, \nvdash A C B \equiv \Varangle A^{\prime} C^{\prime} D^{\prime}$, but by hypothesis $\Varangle A C B \equiv \Varangle A^{\prime} C^{\prime} B^{\prime}$. Therefore (by III 5) $\Varangle A^{\prime} C^{\prime} B^{\prime} \equiv \Varangle A^{\prime} C^{\prime} D^{\prime}$. But this is impossible, since (by III 4) in a given plane against a given ray toward a given side there is only one angle congruent to a given angle.

Consequently our supposition, $A B$ not $\equiv A^{\prime} B^{\prime}$, is false, and so $A B \equiv A^{\prime} B^{\prime}$.

Now follows (by 43) that $\triangle A B C \equiv \triangle A^{\prime} B^{\prime} C^{\prime}$.
45. Theorem. If two angles are congruent, so are also their adjacent angles.

Take $\Varangle A B C \equiv \Varangle A^{\prime} B^{\prime} C^{\prime}$.
To prove $\Varangle C B D \equiv \Varangle C^{\prime} B^{\prime} D^{\prime}$.
Proof. Choose the points $A^{\prime}, C^{\prime}, D^{\prime}$ on the sides from B^{\prime} so that $A^{\prime} B^{\prime} \equiv A B, C^{\prime} B^{\prime} \equiv C B, D B \equiv D^{\prime} B^{\prime}$.

Fig. 15.
In the two triangles $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$ then the sides $A B$ and $C B$ are congruent respectively to the sides $A^{\prime} B^{\prime}$ and $C^{\prime} B^{\prime}$, and since moreover the angles included by these sides are congruent by hypothesis, so follows (by 43) the congruence of those triangles, that is, we have the congruences

$$
A C \equiv A^{\prime} C^{\prime} \quad \text { and } \quad \Varangle B A C \equiv \Varangle B^{\prime} A^{\prime} C^{\prime} .
$$

Now since (by III 3) sect $A D \equiv A^{\prime} D^{\prime}$, so follows (again by 43) the congruence of the triangles $C A D$ and $C^{\prime} A^{\prime} D^{\prime}$, that is, we have the congruences $C D \equiv$ $C^{\prime} D^{\prime}$ and $\Varangle A D C \equiv \Varangle A^{\prime} D^{\prime} C^{\prime}$, and hence follows, through consideration of the triangles $B C D$ and $B^{\prime} C^{\prime} D^{\prime}$ (by III 6), the congruence of the angles $C B D$ and $C^{\prime} B^{\prime} D^{\prime}$.
46. Theorem. Vertical angles are congruent.

Proof. By III 4, $\Varangle A B C \equiv \Varangle C B A$. Therefore, by 45 , their adjacent angles are congruent, $\Varangle C B D \equiv$ $\Varangle A B F$.

Fig. 16.
47. Theorem. Through a point A, not on a straight a, there is one and only one perpendicular to a.

Proof. Take any two points P, Q on a. Take from P against the side $P Q$ of $\Varangle A P Q$, and on the non $-A$ side of $a, \Varangle B P Q \equiv \Varangle A P Q$. Take $P B \equiv P A$. Since A and B lie on different sides of a, there must be a point O of sect $A B$ on a. Then $A O B$ is perpendicular to a.

For (by 43) $\triangle B P O \equiv \triangle A P O$, so $\Varangle B O P \equiv \Varangle A O P$. But these are adjacent. Therefore, by definition 4 I , $A O P$ is a right angle.

Moreover this perpendicular is unique. For sup. pose any. straight $A O^{\prime}$ perpendicular to a at O^{\prime}, and
take on this straight on the non- A side of a the sect $O^{\prime} B^{\prime} \equiv O^{\prime} A$. Then from hypothesis $\Varangle P O^{\prime} B^{\prime} \equiv$ $\Varangle P O^{\prime} A$ and so (by 43) $\triangle P O^{\prime} B^{\prime} \equiv \triangle P O^{\prime} A$. There-

Fig. 17.
fore $\Varangle B^{\prime} P O^{\prime} \equiv \Varangle A P O^{\prime}$ and $B^{\prime} P \equiv A P$. Therefore (by III 5 and III 2), $\Varangle B^{\prime} P O^{\prime} \equiv \Varangle B P O$ and $B^{\prime} P \equiv B P$. Hence the points B and B^{\prime} are not different. Therefore no second perpendicular from A to a can exist.
48. Theorem. Let the angle (h, k) in the plane α be congruent to the angle (h^{\prime}, k^{\prime}) in the plane α^{\prime}, and further let l be a ray of the plane α, which goes out from the vertex of the angle (h, k) and lies in the interior of this angle; then there is always a ray l^{\prime} in the plane α^{\prime}, which goes out from the vertex of the angle (h^{\prime}, k^{\prime}) and lies in the interior of this angle, such that $\Varangle(h, l) \equiv \Varangle\left(h^{\prime}, l^{\prime}\right)$ and $\Varangle(k, l) \equiv \Varangle\left(k^{\prime}, l^{\prime}\right)$.

Proof. Designate the vertex of $\Varangle(h, k)$ by O, and the vertex of $\Varangle\left(h^{\prime}, k^{\prime}\right)$ by O^{\prime}, and then determine on the sides $h, k, h^{\prime}, k^{\prime}$, the points $A, B, A^{\prime}, B^{\prime}$, so that we have the congruences

$$
O A \equiv O^{\prime} A^{\prime} \quad \text { and } \quad O B \equiv O^{\prime} B^{\prime} .
$$

Because of the congruence of the triangles $O A B$ and $O^{\prime} A^{\prime} B^{\prime}$ (by 43) $A B \equiv A^{\prime} B^{\prime}, \quad \Varangle O A B \equiv \Varangle O^{\prime} A^{\prime} B^{\prime}, \quad \Varangle O B A \equiv \Varangle O^{\prime} B^{\prime} A^{\prime}$.

The straight $A B$ (by 30) cuts l, say in C; then we determine on the sect $A^{\prime} B^{\prime}$ the point C^{\prime}, such that $A^{\prime} C^{\prime} \equiv A C$, then is $O^{\prime} C^{\prime}$ the ray sought, l^{\prime}.

Fig. 18.

In fact, from $A C \equiv A^{\prime} C^{\prime}$ and $A B \equiv A^{\prime} B^{\prime}$ we may, by means of III 3 , deduce the congruence $B C \equiv B^{\prime} C^{\prime}$. Therefore (by III 6) $\Varangle A O C \equiv \Varangle A^{\prime} O^{\prime} C^{\prime}$ and $\Varangle B O C$ $\equiv \Varangle B^{\prime} O^{\prime} C^{\prime}$.
49. Theorem. Let h, k, l on the one hand and $h^{\prime}, k^{\prime}, l^{\prime}$ on the other each be three rays going out from a point and lying in a plane; if then we have the congruences $\Varangle(h, l) \equiv \Varangle\left(h^{\prime}, l^{\prime}\right)$ and $\Varangle(k, l) \equiv$ $\Varangle\left(k^{\prime}, l^{\prime}\right)$, then also is always

$$
\Varangle(h, k) \equiv \Varangle\left(h^{\prime}, k^{\prime}\right) .
$$

Proof．The rays are supposed such that either no point is interior to $\Varangle(h, l)$ and $\Varangle(k, l)$ ，or to $\Varangle\left(h^{\prime}, l^{\prime}\right)$ and $\Varangle\left(k^{\prime}, l^{\prime}\right)$ ，or else that if one of these angles be within a second，then the angle congruent to the first is within the fourth．

I．In the first case，if l be supposed within $\Varangle(h, k)$ ， take against h^{\prime} toward $k^{\prime}, \nsucceq\left(h^{\prime}, k^{\prime \prime}\right) \equiv \Varangle(h, k)$ ．By

Fig． 19.
48，take in angle（ $h^{\prime}, k^{\prime \prime}$ ）ray $l^{\prime \prime}$ such that $\ngtr\left(h^{\prime}, l^{\prime \prime}\right)$ $\equiv \Varangle(h, l)$ and $\Varangle\left(l^{\prime \prime}, k^{\prime \prime}\right) \equiv \Varangle(l, k)$ ．But by hy－ pothesis $\not 千\left(h^{\prime}, l^{\prime}\right) \equiv \Varangle(h, l)$ ．Therefore，by III 5 ， $\Varangle\left(h^{\prime}, l^{\prime}\right) \equiv \Varangle\left(h^{\prime}, l^{\prime \prime}\right)$ ，and so，by III 4 ，ray $l^{\prime \prime}$ is iden－ tical with ray l^{\prime} ．Then $\not 千\left(k^{\prime \prime}, l^{\prime \prime}\right) \equiv \Varangle\left(k^{\prime \prime}, l^{\prime}\right) \equiv$ $\Varangle(k, l) \equiv \Varangle\left(k^{\prime}, l^{\prime}\right)$ ．So $\not 千\left(k^{\prime \prime}, l^{\prime}\right) \equiv \Varangle\left(k^{\prime}, l^{\prime}\right)$ ，and，by III 4 ，ray $k^{\prime \prime}$ is identical with ray k^{\prime} ．

But $\quad \Varangle\left(h^{\prime}, k^{\prime \prime}\right) \equiv \Varangle(h, k)$ ．Therefore $\nexists(h, k) \equiv$ $\Varangle\left(h^{\prime}, k^{\prime}\right)$ ．

If，however，l be supposed not within $\Varangle(h, k)$ ， then it will lie in $\Varangle\left(h^{\prime \prime}, k^{\prime \prime}\right)$ vertical to $\Varangle(h, k)$ ．For it cannot lie in $\Varangle\left(h, k^{\prime \prime}\right)$ adjacent to $\nvdash(h, k)$ ，since then $\Varangle(l, k)$ would contain $\Varangle(h, l)$ ，contradicting the hypothesis in this case of no point interior to these two given angles．For like reason it cannot lie in
$\Varangle\left(h^{\prime \prime}, k\right)$ adjacent to $\Varangle(h, k)$, since then $\nvdash(h, l)$ would contain $\Varangle(l, k)$. Thus the ray m costraight with l is within $\Varangle(h, k)$, and m^{\prime} costraight with l^{\prime} is within $\Varangle\left(h^{\prime}, k^{\prime}\right)$.

Fig. 20.
Then (by 45) $\Varangle(h, m) \equiv \Varangle\left(h^{\prime}, m^{\prime}\right)$ and $\Varangle(k, m) \equiv$ $\Varangle\left(k^{\prime}, m^{\prime}\right)$ [\Varangle 's adjacent to congruent \Varangle 's are congruent], and so this sub-case is reduced to the preceding.
II. The remaining case, where one angle $\Varangle(h, l)$ is within another, $\Varangle(k, l)$, follows at once from 48 .
51. Theorem. All right angles are congruent. Let angle $B A D$ be congruent to its adjacent angle $C A D$, and likewise let the angle $B^{\prime} A^{\prime} D^{\prime}$ be rongruent to its adjacent angle $C^{\prime} A^{\prime} D^{\prime}$: then are $\Varangle B A D, \Varangle C A D, \Varangle B^{\prime} A^{\prime} D^{\prime}, \Varangle C^{\prime} A^{\prime} D^{\prime}$ all right angles.

To prove $\Varangle B A D \equiv \Varangle B^{\prime} A^{\prime} D^{\prime}$ 。
Proof. Suppose, contrary to our proposition, the right angle $B^{\prime} A^{\prime} D^{\prime}$ were not congruent to the right angle $B A D$, and then set off $\Varangle B^{\prime} A^{\prime} D^{\prime}$ against ray
$A B$ so that the resulting side $A D^{\prime \prime}$ falls either in the interior of the angle $B A D$ or of the angle $C A D$; suppose we have the first of these cases.

Because $\quad \Varangle B^{\prime} A^{\prime} D^{\prime} \equiv \Varangle B A D^{\prime \prime}$, by $45, \quad \nvdash C^{\prime} A^{\prime} D^{\prime} \equiv \Varangle C A D^{\prime \prime} ; \quad$ and since by hypothesis $\quad \Varangle B^{\prime} A^{\prime} D^{\prime} \equiv \Varangle C^{\prime} A^{\prime} D^{\prime}, \quad$ therefore, by III $5, \quad \Varangle B A D^{\prime \prime} \equiv \Varangle C A D^{\prime \prime}$. Since further $\Varangle B A D$ is congruent to $\Varangle C A D$, so there is (by 48) within the angle $C A D$ a ray $A D^{\prime \prime \prime}$ such that

Fig. 21.
$\Varangle B A D^{\prime \prime} \equiv \Varangle C A D^{\prime \prime \prime}$ and also $\Varangle D A D^{\prime \prime} \equiv \Varangle D A D^{\prime \prime \prime}$ 。 But we had $\Varangle B A D^{\prime \prime} \equiv \Varangle C A D^{\prime \prime}$, and therefore we must (by III 5) also have $\Varangle C A D^{\prime \prime} \equiv \Varangle C A D^{\prime \prime \prime}$. This is impossible, since (by III 4) every angle can be set off against a given ray toward a given side in a given plane only in one way.

Herewith is the proof for the congruence of right angles completed.
52. Corollary to 5 I. At a point A of a straight a there is not more than one perpendicular to a.
53. Definition. When any two angles are congruent to two adjacent angles, each is said to be the supplement of the other.
54. Definition. If any angle can be set off against one of the rays of a right angle so that its second
side lies within the right angle, it is called an acute angle.
55. Definition. Any angle neither right nor acute is called an obtuse angle.
56. Definition. A triangle with two sides congruent is called an isosceles triangle.
57. Theorem. The angles opposite the congruent sides of an isosceles triangle are congruent.

Let $A B C$ be an isosceles triangle,

Fig. 22. having $A B \equiv B C$.

To prove $\Varangle A \equiv \Varangle C$.
Proof. Since in the triangles $A B C$ and $C B A$ we have the congruences $\quad A B \equiv C B, \quad B C \equiv B A$, $\Varangle A B C \equiv \Varangle C B A$, therefore (by III 6) $\Varangle C A B \equiv \Varangle A C B$.
58. (Third congruence theorem for triangles.) Two triangles are congruent if the three sides of the one are congruent, respectively, to the three sides of the other.

Fig. ${ }^{23 .}$
In the triangles $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$ take $A B \cong A^{\prime} B^{\prime}$, $A C \equiv A^{\prime} C^{\prime}, B C \equiv B^{\prime} C^{\prime}$.

To prove $\triangle A B C \equiv \triangle A^{\prime} B^{\prime} C^{\prime}$.
Proof. In the plane of $A B C$ toward the side of the straight $A C$ not containing B against the ray $A C$ take the angle $C A B^{\prime \prime} \equiv C^{\prime} A^{\prime} B^{\prime}$. Take the sect $A B^{\prime \prime} \equiv A^{\prime} B^{\prime} . \quad$ Then (by 43) $\triangle A B^{\prime \prime} C \equiv \Varangle A^{\prime} B^{\prime} C^{\prime}$. Therefore $B^{\prime \prime} C \equiv B C$, and $\triangle B C B^{\prime \prime}$ is isosceles; therefore (by 57) $\Varangle C B B^{\prime \prime} \equiv \Varangle C B^{\prime \prime} B$. So also is $\triangle B A B^{\prime \prime}$ isosceles and $\therefore \Varangle A B B^{\prime \prime} \equiv \Varangle A B^{\prime \prime} B$. Therefore (by 49) the angle $A B C \equiv \Varangle A B^{\prime \prime} C$. But $\Varangle A B^{\prime \prime} C$ $\equiv \Varangle A^{\prime} B^{\prime} C^{\prime}$. $\therefore($ by 43$) \quad \triangle A B C \equiv \triangle A^{\prime} B^{\prime} C^{\prime}$.
59. If A, B, C be any three points not costraight, then (by the method used in 58) we can construct a point $B^{\prime \prime}$ such that $A B^{\prime \prime} \equiv A B$ and $C B^{\prime \prime} \equiv C B$.

Therefore a point D such that no other point whatsoever, say $D^{\prime \prime}$, gives $A D^{\prime \prime} \equiv A D$ and $C D^{\prime \prime} \equiv$ $C D$, must be costraight with $A C$.

The following have been given as definitions:
If A and B are two distinct points, the straight $A B$ is the aggregate of points P for none of which is there any point Q such that $Q A \equiv P A$ and $Q B \equiv$ $P B$.

If A, B, C are distinct points not costraight, the plane $A B C$ is the aggregate of points P for none of which is there any point Q such that $Q A \equiv P A, Q B \equiv P B$, and $Q C \equiv P C$.
60. Convention. Any finite number of points is called a figure; if all points of the figure lie in a plane, it is called a plane figure.

6r. Convention. Two figures are called congruent if their points can be so mated that the sects and angles in this way coupled are all congruent.

Congruent figures have the following properties:

If three points be costraight in any one figure their mated points are also, in every congruent figure, costraight. The distribution of points in corresponding planes in relation to corresponding straights is in congruent figures the same; the like holds for the order of succession of corresponding points in corresponding straights.
62. The most general theorem of congruence for the plane and in general is expressed as follows:

If (A, B, C, \ldots) and ($A^{\prime}, B^{\prime}, C^{\prime}, \ldots$) are congruent plane figures and P denotes a point in the plane of the first, then we can always find in the plane of the second figure a point P^{\prime} such that (A, B, C, \ldots, P) and $\left(A^{\prime}, B^{\prime}, C^{\prime}, \ldots, P^{\prime}\right)$ are again congruent figures.

If each of the figures contains at least three noncostraight points, then is the construction of P^{\prime} only possible in one way.

If (A, B, C, \ldots) and ($A^{\prime}, B^{\prime}, C^{\prime}, \ldots$) are congruent figures and P any point whatsoever, then we can always find a point P^{\prime}, such that the figures (A, $B, C, \ldots, P)$ and $\left(A^{\prime}, B^{\prime}, C^{\prime}, \ldots, P^{\prime}\right)$ are congruent.

If the figure (A, B, C, \ldots) contains at least four non-coplanar points, then the construction of P^{\prime} is only possible in one way.

This theorem contains the weighty result, that all facts of congruence are exclusively consequences (in association with the assumption-groups I and II) of the six assumptions of congruence already above set forth.

This theorem expresses the existence of a certain reversible unique transformation of the aggre-
gate of all points into itself with which we are familiar under the name of motion or displacement.

We have here founded the idea of motion upon the congruence assumptions. Thereby we have based the idea of motion on the congruence idea.

The inverse way, to try to prove the congruence assumptions and theorems with help of the motion idea, is false and fallacious, since the intuition of rigid motion involves, contains, and uses the congruence idea.
63. Exercises.

Ex.6. Show a number of cases where two straights determine a point. Show cases where two straights do not determine a point. Are any of these latter pairs coplanar?

Ex. 7. Show cases where three coplanar straights determine 3 points; 2 points; I point. Are there cases where they determine no point?

Ex. 8. How many straights are, in general, determined by 3 points? by 4 coplanar points? What special cases occur?

Ex. 9. Any part of a triangle together with the two adjoining parts determine the 3 other parts. Explain.

Ex. io. Try to state the first two congruence theorems for triangles so that either can be obtained from the other by simply interchanging the words side and angle.

Ex. ir. Principle of Duality in the Plane.
In theorems of configuration and determination we may interchange point and straight, sect and angle. Try to write down a theorem of which the dual is true; is false.

Ex. 12. If two angles of a triangle are congruent it is isosceles.

Ex. I3. If the sides of a Δ are \equiv, so are the \nless s. Dual?

Ex. 14. In an isosceles Δ, sects to the sides from the ends of the base making with it $\equiv \nless \mathrm{s}$ are \equiv.

Ex. 15. If any two sects from the ends of a side of a Δ to the other sides making $\equiv \Varangle \mathrm{s}$ are \equiv, the Δ is isosceles.
64. Definition. Two parallels are coplanar straights with no common point.
65. No assumption about parallels is necessary for the establishment of the facts of congruence or motion.
66. Theorem. Through a point A without a straight a there is always one parallel to a.

Proof. Take the ray from the given point A through any point B of the straight a. Let C be any other point of the straight a. Then take in the plane $A B C$ an angle congruent to $\Varangle A B C$ against $A B$ at the point A toward that side not containing C. The straight so obtained through A does not

Fig. 24.
meet straight a. If we supposed it to cut a in the point D, and that, say, B lay between C and D, then we could take on a a point D^{\prime}, such that B lay between D and D^{\prime}, and moreover $A D \equiv B D^{\prime}$. Because of the congruence of the triangles $A B D$ and $B A D^{\prime}$ (by 43), therefore $\Varangle A B D \equiv \Varangle B A D^{\prime}$; and since the angles $A B D^{\prime}$ and $A \breve{B D}$ are adjacent angles, so must then, having regard to 45 , also the angles $B A D$ and $B A D^{\prime}$ be adjacent angles. But because of 6 , this is not the case.
67. Definition. A straight cutting across other straights is called a transversal.
68. Definition. If, in a plane, two straights are cut in two distinct points A, B by a transversal, at each of these points four angles are made. Of these eight, four, having each the sect $A B$ on a side [e.g., 3, 4, $\mathrm{I}^{\prime}, 2^{\prime}$], are called interior angles. The other four are called exterior angles. Pairs of angles, one at each point, which lie on the same side of the transversal, the one exterior and the other interior, are called corresponding angles [e.g., I and I^{\prime}].

Two non-adjacent angles on opposite sides of the

Fig. 25. transversal, and both interior or both exterior, are called alternate angles [e.g., 3 and I^{\prime}].

Two angles on the same side of the transversal, and both interior or both exterior, are called conjugate angles [e.g., 4 and $\left.\mathrm{I}^{\prime}\right]$.
69. Theorem. Two coplanar straights are parallel. if a transversal makes congruent alternate angles. [Proved in 66.]
70. Theorem. If two straights cut by a transversal have corresponding angles congruent they are parallel.

Proof. The angle vertical to one is alternate to the other.

Ex. 16. If two corresponding or two alternate angles are congruent, or if two interior or two exterior angles on the same side of the transversal are supplemental,
then every angle is congruent to its corresponding and to its alternate angle, and is supplemental to the angle on the same side of the transversal which is interior or exterior according as the first is interior or exterior.

Ex. 17. If two interior or two exterior angles on the same side of the transversal are supplemental, the straights are parallel.

Ex. 18. Two straights perpendicular to the same straight are parallel.

Ex. 19. Construct a right angle.
Ex. 20. On the ray from the vertex of a triangle costraight with a side take a sect congruent to that side. The two new end-points determine a straight parallel to the triangle's third side.

Ex. 21. On one side of any \Varangle with vertex A take any two sects $A B, A C$ and on the other side take congruent to these $A B^{\prime}, A C^{\prime}$. Prove that $B C^{\prime}$ and $B^{\prime} C$ intersect, say at D. Prove $B C^{\prime} \equiv B^{\prime} C, \quad \triangle B C D \equiv \triangle B^{\prime} C^{\prime} D, \quad \Varangle B A D \equiv$ $\Varangle B^{\prime} A D$ 。

Ex. 22. From two given points on the same side of a given st' find st's crossing on that given st', and making congruent \Varangle 's with it.

Ex. 23. Construct a triangle, given the base, an angle at the base, and the sum of the other two sides [Δ from $\alpha, b, a+c]$.

Ex. 24. If the pairs of sides of a quadrilateral not consecutive are congruent, they are $\|$.

Ex. 25. On a given sect as base construct an isosceles Δ.
Ex. 26. If on the sides $A B, B C, C A$ of an equilateral $\triangle, A D \equiv B E \equiv C F$, then $\triangle D E F$ is equilateral, as is \triangle made by $A E, B F, C D$.

CHAPTER IV.

PARALLELS.

IV. Assumption of Parallels (Euclid's Postulate).

IV. Through a given point there is not more than one parallel to a given straight.

7 r . The introduction of this assumption greatly simplifies the foundation and facilitates the construction of geometry.
72. Theorem. Two straights parallel to a third are paraliel.

Proof. Were 1 and 2 not parallel, then there would be through their intersection point two parallels to 3 , which is in contradiction to IV.
73. Theorem. If a transversal cuts two parallels, the alternate angles are congruent.

Proof. Were say $\Varangle B A D$ not $\equiv \Varangle A B C$, then we could through A (by III 4) take a straight making $\Varangle B A D^{\prime} \equiv \Varangle A B C\left[D^{\prime}\right.$ and D on same side of $A B$], and so we would have (by 69) through A two parallels to a, in contradiction to IV.
74. Corollary to 73. A perpendicular to one of two

Fig. 26. parallels is perpendicular to the other also.
75. Theorem. If a transversal cuts two parallels, the corresponding angles are congruent.

Proof. The angle vertical to one is alternate to the other.

Ex. 27. A straight meeting one of two parallels meets the other also.

Ex. 28. A straight cutting two parallels makes conjugate angles supplemental.

Ex. 29. If alternate or corresponding angles are unequal or if conjugate angles are not supplemental, then the straights meet. On which side of the transversal?
76. Theorem. A perpendicular to one of two parallels is parallel to a perpendicular to the other.

Proof. Either of the two given parallels makes (by 74) right angles with both perpendiculars, which therefore are parallel by 69 .
77. Corollary to 76. Two straights respectively perpendicular to two intersecting straights cannot be parallel.

Proof. For if they were parallel, then (by 76) the intersecting straights would also be parallel.
78. Convention. When two angles are set off from the vertex of a third against its sides so that no point is interior to two, if the two sides not common are costraight, the three angles are said together to form two right angles.
79. The angles of a triangle together form two right angles.

Fig. 27.
Proof. Take alternate $\Varangle C B F \equiv \Varangle C$ and $\Varangle A B D$ $\equiv \not \subset A$; then (by 69) can neither $B F$ nor $B D$ cut $A C$. By the parallel postulate IV, then is $F B D$ a straight.
80. Theorem. If two angles of one triangle are congruent to two of another, then the third angles are congruent.

Proof. Given $\Varangle A \equiv \Varangle A^{\prime}$ and $\Varangle B \equiv \Varangle B^{\prime}$. Take $C P$ parallel (\|) to $A B$ and $C^{\prime} P^{\prime} \|$ to $A^{\prime} B^{\prime}$. Then

$\Varangle \alpha \equiv \Varangle A$ and $\Varangle \beta \equiv \Varangle B, \Varangle \alpha^{\prime} \equiv \Varangle A^{\prime}$ and $\Varangle \beta^{\prime} \equiv$ $\Varangle B^{\prime} . \quad \therefore$ (by 49) $\Varangle B C D \equiv \Varangle B^{\prime} C^{\prime} D^{\prime} . \quad \therefore$ (by 45) the adjacent angles $\Varangle A C B \equiv \Varangle A^{\prime} C^{\prime} B^{\prime}$.
81. Theorem. Two triangles are congruent if they have a side, an adjoining and the opposite angle respectively congruent.

Proof. By 80 and 44.
Ex. 30. Every triangle has at least two acute angles.
Ex. 3r. If the rays of one angle are parallel or perpendicular to chose of another, the angles are congruent or supplemental.

Ex. 32. In a right-angled triangle [a triangle one of whose angles is a right angle] the two acute angles are complemental (calling two angles complements which together form a right angle).
82. Theorem. In any sect $A B$ there is always one and only one point C such that $A C \equiv B C$.

Proof. Take any angle $B A D$ at A against $A B$, and the angle congruent to it at B against $B A$ and on the opposite side of a in the plane $B A D$; and take any sect $A D$ on the free ray from A, and one
$B F$ congruent to it on the free ray from B. The sect $D F$ must cut a, say in C, since D and F are on opposite sides of a. Moreover, C is between A and B. Otherwise one of them, say A, would be between B and C. But then $D A$ would have a point A on

Fig. 29.
$B C$, a side of triangle $F B C$, and so (by II 4) must meet another side. But this is impossible, since it meets $F C$ produced at D and is parallel to $B F$. Since thus $\Varangle A \equiv \Varangle B$, and $\Varangle A C D \equiv \Varangle B C F$ [vertical], therefore (by 8r) $\triangle A C D \equiv \triangle B C F$.

Theréfore $A C \equiv B C$.
If we suppose a second such point C^{\prime}, then on ray $D C^{\prime}$ take $C^{\prime} F^{\prime} \equiv D C^{\prime}$. Therefore (by 43) $\Varangle C^{\prime} B F^{\prime} \equiv \Varangle D A C \equiv \Varangle A B F$, and $B F^{\prime} \equiv A D \equiv B F$. Therefore F^{\prime} is F and C^{\prime} is C.
83. Convention. The point C of the sect $A B$ such that $A C \equiv B C$ may be called the bisection-point of $A B$, and to bisect $A B$ shall mean to take this point C.

Ex. 33. Parallels through the end-points of a sect intercept congruent sects on any straight through its bisection-point.

Ex. 34. In a right-angled triangle the bisection-point of the hypothenuse (the side opposite the r't \Varangle) makes equal sects with the three vertices.

Hint. Take one acute \Varangle in the r't \nless.
84. Theorem. Within any $\Varangle(h, k)$ there is always one and only one ray, l, such that $\Varangle(h, l) \equiv \Varangle(k, l)$.

Proof. From the vertex O take $O A \equiv O A^{\prime}$. By 82 take C, the bisection-point of $A A^{\prime}$. Then $\triangle A O C \equiv \triangle$ $A^{\prime} O C$ [$\triangle \mathrm{s}$ with 3 sides \equiv are \equiv]. $\quad \therefore \Varangle A O C \equiv \Varangle A^{\prime} O C$.

If we suppose a second such ray $O C^{\prime}$, then $\triangle A O C^{\prime} \equiv \Delta$ $A^{\prime} O C^{\prime} \quad[\Delta \mathrm{s}$ with 2 sides and the included $\Varangle \equiv$ are $\equiv]$.

Fig. 30.
$\therefore A C^{\prime} \equiv A^{\prime} C^{\prime} . \quad \therefore($ by 82$) C^{\prime}$ is C.
85. Convention. The ray l of $\Varangle(h, k)$ such that $\Varangle(h, l) \equiv \Varangle(l, k)$ may be called the bisection ray or bisector of $\Varangle(h, k)$, and to bisest $\Varangle(h, k)$ shall mean to take this ray l.

Ex. 35. An angle may be separated into $2,4,8,16, \ldots$, 2^{n} congruent angles.

Symmetry.

86. Definition. Two points are said to be symmetrical with regard to a straight, when it bisects at right angles their sect. The straight is called their axis of symmetry. Two points have always one, and only one, symmetry axis.

A point has, with regard to a given axis of symmetry, always one, and only one, symFig. ${ }^{31}$. metrical point, namely, the one which ends the sect from the given point perpendicular to the axis and bisected by the axis.

Fig. 32.
87. Definition. Two figures have an axis of symmetry when, with regard to this straight, every point of each has its symmetrical point on the other.

One figure has an axis of symmetry when, with regard to this straight, every point of the figure has its symmetrical point on the figure.

One figure is called symmetrical when

Fig. 33. it has an axis of symmetry.

Any figure has, with regard to any given straight as axis, always one, and only one, symmetrical figure.
88. Theorem. An angle is symmetrical with re-

Fig. 34. gard to its bisector and the end-points of congruent sects from the vertex are symmetrical.

Proof. Their sect is bisected at right angles by the angle-bisector.
89. Definition. A symmetrical quadrilateral with a diagonal as axis is called a deltoid.

Fig. 36. 90. Definition. A sect whose endpoints are the bi-

Fig. 35. section-points of opposite sides of a quadrilateral is called a median. So is the sect from a vertex of a triangle to the bisec-tinn-point of the opposite side.
91. Definition. A symmetrical quadrilateral with a median as axis is called a symtra.

Ex. 36. In a r't Δ if to set off one acute \Varangle, α, in the other, β, bisects, so is it with β 's sides.

Ex. 37. The st' through the bisection-point of the base of a $+\Delta$, and the opposite vertex is \perp to the base and bisects \Varangle.

Ex. 38. The r't bi' of the base of a $r \Delta$ bisects \Varangle at the vertex.

Ex. 39. The \perp from vertex bisects base and \Varangle in a н Δ.

Ex. 40. The bisector of \nleftarrow at vertex of $a * \Delta$ is r't bi' of base.

Ex. 4r. If a r't bi' of a side contains a vertex, the Δ is 4 .

Ex. 42. The bisector of an exterior \Varangle at vertex of $\downarrow \Delta$ is \| to base, and inversely.

Ex. 43. The end of sect from intersection of congruent sides of a $\psi \Delta$ costraight and \equiv to one determines with end of other a \perp to base.

Ex. 44. To erect a \perp at the end-point of a sect without producing the sect.

Ex. 45. A \|| to one side of an \Varangle makes with its bisector and other side a $\psi \Delta$.

Ex. 46. The bisectors of the $\equiv \nless \mathrm{s}$ of $\mathrm{a} \psi \Delta$ are \equiv.
Ex. 47. Every symmetrical quadrilateral not a deltoid is a symtra.

Ex. 48. The intersection point of two symmetrical straights is on the axis.

Ex. 49. The bisector of an angle is symmetrical to the bisector of the symmetrical angle.

Ex. 50. A figure made up of a straight and a point is symmetrical.

Ex. 5r. In any deltoid [r] One diagonal (the axis) is the perpendicular bisector of the other. [2] One diagonal (the axis) bisects the angles at its two vertices. [3] Sides which meet on one diagonal (the axis) are con-
gruent; so each side equals one of its adjacent sides. [4] One diagonal (not the axis) joins the vertices of congruent angles and makes congruent angles with the congruent sides. [5] The triangles made by one diagonal (the axis) are congruent. [6] One diagonal (not the axis) makes two isosceles triangles.

Ex. 52. Any quadrilateral which has one of the six preceding pairs of properties (Ex. 5 I) is a deltoid.

Ex. 53. A quadrilateral with a diagonal which bisects the angle made by two sides, and is less than each of the other two sides, and these sides congruent, is a deltoid with this diagonal as axis.

Ex. 54. A quadrilateral with a side meeting a congruent side in a greater diagonal which is opposite congruent angles is a deltoid with that diagonal as axis.

Ex. 55. In any symtra [r] Two opposite sides are parallel, and have a common perpendicular bisector. [2] The other two sides are congruent and make congruent angles with the parallel sides.
[3] Each angle is congruent to one and supplemental to the other of the two not opposite it.
[4] The diagonals are congruent and their parts adjacent to the same parallel are congruent.
[5] One median bisects the angle between the two diagonals, and also the angle between the non-parallel sides (produced).

Ex. 56. Any quadrilateral which has one of the preceding five pairs of properties (Ex. 55) is a symtra.
92. Definition. A trapezoid is a quadrilateral with two sides parallel.
93. Definition. A parallelogram is a quadrilateral with each side parallel to another (its opposite).
94. Definition. A parallelogram with one angle right is called a rectangle. A parallelogram with two consecutive sides congruent is called a rhombus. A rectangle which is a rhombus is called a square.
95. Theorem. The opposite sides and angles of a

Fig. 37.
parallelogram are congruent, and its diagonals bisect each other.

Proof. $\triangle A B C \equiv \triangle A D C$ [side and 2 adjoining $\not \mathrm{s} \equiv] . \quad \therefore B C \equiv A D . \quad \therefore($ as in 82$) A F \equiv F C$ and $B F \equiv F D$.
96. Theorem. If three parallels make congrucnt sects on one transversal, they do on every transversal.

Given $a\|b\| c$, also $A B \equiv$ $B C$.

To prove $F G \equiv G H$.
Proof. Take $F L\|G M\|$ $A B$. Then $F L \equiv A B \equiv B C$ $\equiv G M$ [95, opposite sides of a $\|$ gm are $\equiv] . \quad \therefore \triangle F L G \equiv$

Fig. 38. $\triangle G M H$ [side and 2 adjoining $\Varangle \mathrm{s} \equiv$]. $\quad \therefore F G \equiv G H$.
97. Corollary to 96. A straight through the bi-section-point of one side of a triangle and parallel to a second side bisects the third side. [In figure let F coincide with A.]
98. Inverse of 97 . The straight through the bi-section-points of any two sides of a triangle is parallel to the third side. [For, by 97 , it is identical with the || to the third side through either bisection-point.]
99. Theorem. The sect whose end-points are the

Fig. 39. bisection-points of two sides of a triangle is congruent to each sect made in bisecting the third side.

Proof. By $97 G H \| B C$ bisects $A C$. Since (by 98) $F G \| C H, \therefore$ (by 95) $F G \equiv C H$.
100. Theorem. If two sides of a quadrilateral are congruent and parallel it is a parallelogram.

Given $A B \equiv$ and $\| C D$.
Proof. $\triangle A B C \equiv \triangle A D C$.

Fig. 40.
$\therefore \Varangle A C B \equiv \Varangle C A D . \quad \therefore C B \| A D$.
Ex. 5_{7}. Every straight through the intersection of its diagonals cuts any parallelogram into congruent trapezoids.

Ex. 58. A quadrilateral with each side equal to its opposite is a parallelogram.

Ex. 59. A quadrilateral with a pair of opposite sides equal, and each greater than a diagonal, making equal alternate angles with the other sides, is a parallelogram.

Ex. 60. A quadrilateral with a side equal to its opposite, and less than a diagonal opposite equal angles, is a parallelogram.

Ex. 6r. A quadrilateral with each angle equal to its opposite is a parallelogram.

Ex. 62. A quadrilateral whose diagonals bisect each other is a parallelogram.
101. Theorem. In any sect $A B$ there are always two, and only two, points, C, D, such that $A C \equiv$ $C D \equiv D B$.

Fig. $4^{1 .}$
Proof. Take on any ray from A, any sect $A F$, and a sect $F G \equiv A F$, and a sect $G H \equiv F G$. Take $F C\|G D\| H B$. Then, by $96, A C \equiv C D \equiv D B$.

Suppose two other such points C^{\prime}, D^{\prime}. Then, by 98, $C^{\prime} F \| D^{\prime} G$. Now $H B^{\prime} \| G D^{\prime}($ by 96$)$ makes $D^{\prime} B^{\prime}$ $\equiv D^{\prime} C^{\prime}$. \therefore from our hypothesis and III i, B^{\prime} is identical with $B . \quad \therefore$ since $G D \| H B$ (by IV) D^{\prime} is identical with D. \therefore since $F C \| G D$ (by IV) C^{\prime} is identical with C.
102. The two points, C, D, of the sect $A B$ such that $A C \equiv C D \equiv D B$ may be called the trisectionpoints of $A B$.
103. Theorem. The three medians of a triangle are copunctal in that trisection-point of each remote from its vertex.

Proof. Any median $A G$ must meet any other $C F$, since A and G are on different sides of the straight $C F$, and so the cross of st' $A G$ with st' $C F$ is on sect $A G$, and similarly it is on sect $C F$. If P, Q, are bisection-points of $O C$ and $O A$, then (by 98 and

Fig. 4^{2}. 99) $P Q \|$ and $\equiv G F$. \therefore by $100 P Q F G$ is a $\|$ gm and (by 95) $P F$ and $Q G$ bisect each other.
104. Definition. The cointersection-point of its medians is called the triangle's centroid.
105. Definition. A perpendicular from a vertex to the straight of the opposite side is called an altitude of the triangle. This opposite side is then called the base. The perpendicular from a vertex of a parallelogram to the straight of a side not through this vertex is called the altitude of the parallelogram with reference to this side as base.

Ex. 63. The bisectors of the four angles which two intersecting straights make with each other form two straights perpendicular to each other.

Ex. 64. If four coinitial rays make the first angle congruent to the third, and the second congruent to the fourth, they form two straights.

Ex. 65. How many congruent sects from a given point to a given straight?

Ex. 66. Does the bisector of an angle of a triangle bisect the opposite side?

Ex. 67. The bisectors of vertical angles are costraight.
Ex. 68. If two isosceles triangles be on the same base the straight determined by their vertices bisects the base at right angles.

Ex. 69. Suppose a Δ to be 3 bars freely jointed at the vertices. Is it rigid? Are the $\Varangle \mathrm{s}$ fixed and the joints of no avail? Of what theorem is this a consequence? How is it with a jointed quadrilateral? Why?

Ex. 70. Joining the bisection-points of the sides of a Δ cuts it into $4 \equiv \Delta$ S.

Ex. 71. Joining the bisection-points of the consecutive sides of a quadrilateral makes a \| g'm.

Ex. 72. The medians of a quadrilateral and the sect joining the bisection-points of its diagonals are all three bisected by the same point.

Ex. 73. If the bisection-points of two opposite sides
of a \| g'm are joined to the vertices the diagonals are trisected.

Ex. 74. The \perp s from any point in the base of an $\downarrow \Delta$ to the sides are together an altitude.

Ex. 75. The diagonals of a rectangle are \equiv, of a rhombus are 1 .

Ex. 76. If $2 \| \mathrm{s}$ are cut by a transversal, the bisectors of the interior $\Varangle \mathrm{s}$ make a rectangle.

Ex. 77. The angle-bisectors of a rectangle make a square.
Ex. 78. If the $\Varangle \mathrm{s}$ adjoining one of the $\|$ sides of a trapezoid are \equiv, so are the others.

Ex. 79. The bisectors of the interior $\Varangle s$ of a trapezoid make a quad' with 2 r't $\Varangle s$ s.

Ex. 80. The bisection-point of one sect between $\| s$ bisects any through it.

Ex. 81. The \equiv altitudes in $\downarrow \Delta$ make with the base $\Varangle \mathrm{s} \equiv$ to those made in bisecting the other \Varangle.

Ex. 82. Through a given point within an \Varangle draw a sect terminated by the sides and bisected by the point.

Ex. 83. Sects from the vertex to the trisection-points of the base of $\psi \Delta$ are \equiv.

Ex. 84. If the $\Varangle s$ made by producing a side of a Δ are \equiv, so are the other sides.

Ex. 85. If a quad' has 2 pairs of congruent consecutive sides, the other $\Varangle \mathrm{s}$ are \equiv.

Ex. 86. Two Δs° are \equiv if two sides and one's median are respectively \equiv.

Ex. 87. Two $\psi \Delta s$ are \equiv if one \Varangle and altitude are \equiv to the corresponding.

Ex. 88. Two Δs are \equiv if a side, its altitude and an adjoining \Varangle are respectively \equiv.

Ex. 89. If 2 altitudes are \equiv the Δ is ψ.
Ex. 90. Two $\Delta \mathrm{s}$ are \equiv if two sides and one's altitude are \equiv to the corresponding.

Ex. 91. Two Δs are \equiv if a side, its altitude and median are respectively \equiv.

Ex. 92. Two $\Delta \mathrm{s}$ are \equiv if a side and the other 2 altitudes are respectively ${ }^{\boldsymbol{a}}$.

Ex. 93. Two Δs are \equiv if a side, an adjoining \nvdash and its bisector are respectively \equiv.

Ex. 94. Two equilateral $\Delta \mathrm{s}$ are \equiv if an altitude is \equiv.
Ex. 95. The bisector is within the \Varangle made by altitude and median.

Ex. 96. In a right Δ one bisector also bisects \nvdash bctween its altitude and median.

Ex. 97. Two sects from the vertices of a Δ to the opposite sides cannot bisect each other.

Ex. 98. The \perp s from 2 vertices of a Δ upon the median from the third are \equiv.

Ex. 99. Two $\| g$ 'ms having an \nvdash and the including sides \equiv are \equiv.

Ex. roo. The \perp from the circumcenter to a side is half the sect from the opposite vertex to the orthocenter.

Ex. ior. The centroid is the trisection point of the sect from orthocenter to circumcenter remote from the orthocenter

CHAPTER V.

THE CIRCLE.

106. Definition. If C is any point in a plane u, then the aggregate of all points A in α, for which the sects $C A$ are congruent to one another, is called a circle. [$\odot C(C A)$.]
C is called the center of the circle, and $C A$ the radius.
107. Theorem. Any ray from the center of a circle and in its plane α cuts the circle in one, and only one, point.
108. Theorem. Any straight through its center and in its plane α cuts the circle in two, and only two, points, and these are on opposite sides of its center.

Proof. On each of the two rays determined in this straight by the center there is (by III I) one, and only one, sect congruent to the radius of the circle.
109. Definition. A sect whose end-points are on the circle is called a chord.
ir. Definition. Any chord through the center is called a diameter.

1II. Theorem. Every diameter is bisected by the center of the circle.
112. Theorem. No circle can have more than one center.

Proof. If it had two, the diameter through them would have two bisection-points, which (by 82) is impossible.
113. Theorem. The straight through the bisectionpoint of a chord, and the center of the circle, is perpendicular to the chord.

Fig. 43.

Proof. $\triangle A C O \equiv \triangle B C O,[\triangle \mathbf{s}$ with 3 sides \equiv are $\equiv] ; \quad \therefore \Varangle A C O \equiv$ $\Varangle B C O$. But they are adjacent; \therefore by definition $C O \perp$ to $A B$.
114. Corollary to in3. The circle is symmetrical with regard to any one of its diameters as axis.
115. Corollary to In3. If with the end-points of a sect each of two points gives congruent sects the two determine its perpendicular bisector.
116. Corollary to 1 15. If two circles have two points in common their center-straight is the

Fig. 44. perpendicular bisector of their common chord.
117. Theorem. The perpendicular bisecting any chord contains the center. The perpendicular from the center to a chord bisects it.

Proof. By 113 the three properties pertain to one straight. But any two suffice to determine that straight.
118. Corollary to 117 . Every point which taken
with two points gives congruent sects is on the perpendicular bisector of their sect.
119. Theorem. Every point on the perpendicular bisector of a sect taken with its end-points gives congruent sects.
120. Theorem. A straight cannot have more than two points in common with a circle.

Proof. If it had a third, then, since (by 117) the perpendicular bisecting any chord contains the center, there would be two perpendiculars from the center to the same straight, which (by 47) is impossible.
121. Theorem. Chords which mutually bisect are diameters.

Proof. The perpendicular bisector of each contains the center.
122. Theorem. Circles with three points in common are identical.

Proof. The center is on the perpendicular bisectors of the chords.
123. Theorem. Any three points not costraight determine a circle.

Proof. If A, B, C be not costraight, bisect (by 82) $A B$ at D and $B C$ at F by perpendiculars. [Take (by III 4) angles \equiv to $\Varangle C$ in 84.] These perpendiculars (by 77) meet, say at O. Therefore (by irg) $A O \equiv$ $B O \equiv C O$. Therefore A, B,

Fig. 45. C are on the circle with center O and radius $A O$. By 122 the three are on no other circle.
124. Corollary to 123 and 120. [Points on the same circle are called concyclic.] Every three points are costraight or concyclic. No three points are costraight and concyclic.
125. Definition. The circle through the vertices of a triangle is called its circumcircle, $\odot O(R)$, and the center O of the circumcircle is called the circumcenter of the triangle; its radius, R, the circum-radius.
126. Corollary to 123. The three perpendicular bisectors of the sides of a triangle are copunctal in its circumcenter.
127. Theorem. The three altitudes of a triangle are copunctal.

Given the $\triangle A B C$. To prove that the straights through A, B, C perpendicular to the straights a, b, c respectively, are copunctal.

Fig. 46.
Proof By 66, through A, B, C take $B^{\prime} C^{\prime}, A^{\prime} C^{\prime}$, $A^{\prime} B^{\prime} \| B C, \quad A C, \quad A B$ respectively. $\therefore \triangle A B^{\prime} C \equiv$ $\triangle A B C \equiv \triangle A B C^{\prime}$ [$\triangle \mathrm{s}$ with a side and 2 adjoining $\Varangle \mathrm{s} \equiv$ are $\equiv \mathrm{]} . \quad \therefore A B^{\prime} \equiv A C^{\prime}$, and $A D$ is the \perp bi' of $B^{\prime} C^{\prime}[\perp$ to ist of $2 \| \mathrm{s}$ is \perp to 2 nd].

Similarly $B E \perp$ bi' of $A^{\prime} C^{\prime}$; and $C F \perp$ bi' of $A^{\prime} B^{\prime}$. $\therefore A D, B E, C F$ are copunctal by 126 .
128. Definition. The point of cointersection of the three altitudes is called the orthocenter of the triangle.
129. Theorem. If any ray, l, be taken within a given angle, $\Varangle(h, k)$, the bisectors m, n of the two angles so made form an angle congruent to each of the angles made in bisecting the given angle.

Proof. On the other side of h from k take $\Varangle\left(h, k^{\prime}\right) \equiv \Varangle(k, n)$. Then since $\nexists(h, n) \equiv \Varangle(n, h)$ and $\Varangle(n, k) \equiv \Varangle\left(h, k^{\prime}\right), \quad \therefore($ by 49 $) \nsucceq(h, k) \equiv \Varangle\left(n, k^{\prime}\right)$.

Fig. 47.
But since $\nexists(n, l) \equiv \Varangle(k, n), \quad \therefore \nsucceq(n, l) \equiv \Varangle\left(k^{\prime}, h\right)$. But also $\Varangle(l, m) \equiv \Varangle(h, m), \quad \therefore($ by 49) $\quad \Varangle(n, m) \equiv$ $\Varangle\left(k^{\prime}, m\right), \therefore m$ bisects $\Varangle\left(n, k^{\prime}\right) . \quad \therefore$ (by 48) $\Varangle(m, n)$ $\equiv \Varangle(b, h)$ where b bisects $\Varangle(h, k)$.
130. Theorem. The bisectors of adjacent angles make a right angle.

Fig. 48.
Proof. Extend one of the bisectors, as l, through the vertex O. Then $\nsucceq\left(l^{\prime}, h\right) \equiv \Varangle\left(l, h^{\prime}\right) \quad$ [vertical
\Varangle s are \equiv]. $\therefore\left(\right.$ by III 5) $\Varangle\left(l^{\prime}, h\right) \equiv \Varangle(l, k)$. But by hypothesis, $\Varangle(h, m) \equiv \Varangle(k, m) . \quad \therefore$ (by 49) $\left.\Varangle(l, m) \cong \Varangle l^{\prime}, m\right) . \quad \therefore$ by definition $\Varangle(l, m)$ is right.

Ex. ro2. If a straight satisfy any two of the following conditions it also satisfies the others:

1. Passing through the center.
2. Perpendicular to the chord.
3. Bisecting the chord.
4. Bisecting the angle at the center.

Ex. ro3. Every axis of symmetry for a circle contains the center.

Ex. 104. Where are the bisection-points of a set of parallel chords?

Ex. 105. Where are the bisection-points of a set of equal chords?

Ex. ro6. If from any point three sects drawn to a circle are congruent, that point is the center.
r3r. Theorem. If any ray l be taken without a given angle, $\Varangle(h, k)$, and of the two angles so formed, one, $\Varangle(k, l)$, be within the other, $\Varangle(h, l)$, then the angle formed by their bisectors, $\Varangle(b, n)$, is congruent to each of the angles as $\Varangle(k, m)$ made in bisecting the given angle.

Fig. 49.
Proof. By 129, since k is within $f(l, h)$, $\therefore \Varangle(m, n) \equiv \Varangle(b, l)$. But by hypothesis $\Varangle(n, k) \equiv$ $\Varangle(l, n), \therefore$ (by 49) $\Varangle(k, m) \equiv \Varangle(n, b)$.
132. Definition. An angle whose vertex is on a circle of which its sides contain chords is called an inscribed angle, and said to be upon the chord between its sides.
133. Theorem. Inscribed angles upon the same chord and the same side of it are congruent.

Proof. ist. If the chord $B C$ be a diameter the straight through the vertex A of any inscribed angle and the center O makes two isosceles triangles. \therefore bisecting $\Varangle B O F$ we get $\Varangle D O F \equiv \Varangle B A O$. In same way $\Varangle H O F \equiv \Varangle C A O$. $\quad \therefore$ (by 49) $\Varangle B A C \equiv \Varangle D O H$, which (by 130) is right.

Fig. 50.

2d. If the vertex A be on the same side of the

Fig. ${ }^{1}$. straight $B C$ as the center O, then sect $O A$ cannot cut $B C$, and (by III 1) the center O is between A and the other point A^{\prime} of the circle on the straight $A O$. If now ray $O A$ be costraight with a side of $\Varangle B O C$, then $\triangle A O C$ being isosceles, the bisector $O F$ of $\Varangle B O C$ makes $\Varangle F O C \equiv \Varangle B A C$.

Again if ray $O A^{\prime}$ is within $\Varangle B O C$, then the bisectors $O F$ and OH make
$\Varangle A^{\prime} O F \equiv \Varangle O A B$
$\Varangle A^{\prime} O H \equiv \Varangle O A C$.
\therefore (by 49)
$\Varangle B A C \equiv \Varangle F O H$,
which

Fig. 52.
(by 129) is congruent to each angle made in bisect ing BOC.

If, however, ray $O A^{\prime}$ is without $\Varangle B O C$, then the

Fig. 53. bisector $O D$ of $\not A^{\prime} O B$ makes $\Varangle A^{\prime} O D \equiv \Varangle O A B$, and the bisector $O E$ of $\Varangle A^{\prime} O C$ makes $\Varangle A^{\prime} O E \equiv \Varangle O A C . \quad \therefore$ (by 49) $\Varangle B A C \equiv \Varangle D O E$, which (by 13 r) is congruent to each angle made in bisecting $B O C$.
3 d. If the vertex A and the center O be on opposite sides of the straight $B C$. Let A^{\prime} be the other point of the circle on the straight $A O$. Then the six angles of the two triangles $A B C, A^{\prime} B C$ together form four right angles. But by case ist, the two angles at C form a right angle, likewise the two at $B . \quad \therefore \Varangle B A C$ is the supplement of $\Varangle B A^{\prime} C$.
134. Corollary to 133 . The inscribed angle upon a diameter is right.
135. Definition. A polygon whose sides are congruent and

Fig. 54. whose angles are congruent is called regular.
136. Definition. A polygon whose vertices are concyclic is called cyclic.
r37. Corollary to 133 . In a cyclic quadrilateral the opposite angles are supplemental.
138. Theorem. If a straight have one point in common with a circle and be not perpendicular to the radius to that point, it has also a second point in common with the circle.

Let the straight a have the point P in common with the $\odot C[C P]$ and be not \perp to $C P$.

From C drop $C M \perp$ to a. From M on a set off $M P^{\prime}$ $\equiv M P$.
$\therefore C P^{\prime} \equiv C P . \quad \therefore P^{\prime}$ is on $\odot C[C P]$.

Fig. 55.
139. Definition. A straight which has two points in common with a circle is called a secant.
140. Theorem. A straight perpendicular to a diamcter at an end-point has only this end-point in common with the circle.

Proof. Any chord is (by II7) bisected by the perpendicular from the center.
141. Definition. A straight which has only one point in common with a circle is called a tangent to the circle, and the point is called the point of contact.
142. Theorem. If $B C$ be perpendicular to $A B$,

Fig. 56. and D any point on the straight $A B$ other than B, and on ray $C D$ we take sect $C F \equiv C B$, then F is within sect $C D$.

Proof. Otherwise since $\triangle C B F$ is isosceles, two angles of a triangle would each be right or each obtuse, which (by 79) is impossible.
143. Theorem. If the rays of one angle are within another the angles are not congruent.

144. Theorem. If P be a point within the triangle $A B C$, then angle $A P C$ is not congruent to angle $A B C$. Proof. The ray $B P$ must (by 30) have on it a point D within the sect $A C . \quad \therefore P D$ is within $\Varangle A P C$. From P take $P F \| B C$. It makes $\Varangle F P D \equiv \Varangle C B D$. From

Fig. 5^{8}.
P take $P G \| A B$. It makes $\Varangle G P D \equiv \Varangle A B D$. \therefore (by 49) $\Varangle F P G \equiv \Varangle C B A$.

If now we supposed $\Varangle C B A \equiv \Varangle C P A$ we should have $\Varangle F P G \equiv \Varangle C P A$, which (by 143) is impossible.
145. Theorem. If two triangles have a side in com-

Fig. 59. mon and the angles opposite it congruent, and with vertices on the same side of it, the four vertices are concyclic.

Proof. If the circle through A, B, C did not contain D, then (by I 38) it would have a second point in common with the
straight $A D$ or $C D$, or else we would have $O C \perp C D$ and $O A \perp A D$.

But in this last case the whole circle except points A and C would be within $\Varangle A D C$. For the center O would be within $\Varangle A D C$, being then on the bisector of $\Varangle A D C$ since, $\triangle A D C$ being isosceles, $\triangle A O D \equiv \triangle C O D \quad[3$ sides \equiv]. Hence the point B would be within $\triangle A D C$, which (by 144) is impossible. But it is just as impossible that $A D$ or $C D$

Fig. 60. (besides A or C) should have a point D^{\prime} on the circle other than D. For then we would have $\Varangle A D C \equiv \Varangle A D^{\prime} C$, which (by 79) is impossible.
146. Theorem. If two opposite angles of a quadrilateral are supplemental it is cyclic.

Proof. Given the $\Varangle C D A$ is

Fig. 6i. the supplement of $\Varangle B$. On the circle determined by A, B, C take a point D^{\prime} on the same side of $A C$ as D. Then $\Varangle D^{\prime} \equiv \Varangle D$, being each the supplement of $\Varangle B . \therefore$ (by 145) D is concylic with $A C D^{\prime}$, that is, with $A B C$.
147. Corollary to 146 . A quadrilateral is cyclic if an angle is congruent to the angle adjacent to its opposite.

Ex. 107. Defining a tanchord angle as one between a tangent to a circle and a chord from the point of contact, prove it congruent to an inscribed angle on this chord.

Ex. 108. An angle made by two chords is how related to the angles at the center on chords joining the endpoints of the given chords?
Ex. ro9. The vertices of all right-angled triangles on the same hypothenuse are concyclic.

Ex. ino. Tangents to a circle from the same external point are congruent, and make congruent angles with the straight through that point and the center.

Ex. ifi. Two congruent coinitial chords are symmetric with respect to the coinitial diameter.

Ex. ir2. If triangles on the same base and on the same side of it have the angles opposite it equal, the bisectors of these angles are copunctal.

Ex. ir3. The end-points of two congruent chords of a circle are the vertices of a symmetrical trapezoid.

Ex. r14. The chord which joins the points of contact of parallel tangents to a circle is a diameter.

Ex. if5. A parallelogram inscribed in a circle must have diameters for diagonals.

Ex. ir6. Of the vertices of a triangle and its orthocenter, each is the orthocenter of the other three.

Ex. ir7. At every point on the circle can be taken one, and only one, tangent, namely, the perpendicular to the radius at the point.

Ex. ir8. The perpendicular to a tangent from the center of the circle cuts it in the point of contact.

Ex. irg. The perpendicular to a tangent at the point of contact contains the center.

Ex. i20. The radius to the point of contact is perpendicular to the tangent.

Ex. i21. An inscribed $\| g$ 'm is a rectangle.
Ex. 122. The bisector of any \Varangle of an inscribed quad' intersects the bisector of the opposite exterior \Varangle on the \odot.

Ex. 123. The \odot with one of the \equiv sides of a $\psi \Delta$ as diameter bisects the base.

Ex. 124. The radius is \equiv to the side of a regular inscribed hexagon.

Ex. 125. If the opposite sides of an inscribed quad' be produced to meet, the bisectors of the $\Varangle \mathrm{s}$ so formed are 1 .

Ex. 126. The circles on 2 sides of a Δ as diameters intersect on the third side (in the foot of its altitude).

Ex. 127. The altitudes of a Δ are the \Varangle bisectors of its pedal Δ (the feet of the altitudes).

Ex. 128. $A B$ a diameter; $A C$ any chord; $C D$ tangent; $B D \perp C D$, meets $A C$ on $\odot B(B A)$.

Ex. 129. Find a point from which the three rays to three given points make $\equiv \Varangle \mathrm{s}$.

Ex. 130. The circum $\odot s$ of $3 \Delta s$ made by 3 points on the sides of a $\Delta, 2$ with their vertex, are copunctal.

V. The Archimedes Assumption.*

V. Let A_{1} be any point on a straight between any given points A and B; take then the points A_{2}, A_{3}, A_{4}, \ldots, such that A_{1} lies between A and A_{2}, furthermore A_{2} between A_{1} and A_{3}, further A_{3} between A_{2} and A_{4}, and so on, and also such that the sects $A A_{1}$, $A_{1} A_{2}, A_{2} A_{3}, A_{3} A_{4}, \ldots$, are congruent; then in the series of points $A_{2}, A_{3}, A_{4}, \ldots$, there is always such a point A_{n}, that B lies between A and A_{n}.
148. This postulate makes possible the introduction of the continuity idea into geometry. We have not used it, and will not, since the whole of the ordinary school-geometry can be constructed with only Assumptions I-IV.

[^0]
CHAPTER VI.

PROBLEMS OF CONSTRUCTION.

Existence theorems on the basis of assumptions I-V, and the visual representation of such theorems by graphic constructions.

Graphic solutions of the geometric problems by means of ruler and sect-carrier.
149. Convention. What are called problems of construction have a double import. Theoretically they are really theorems declaring that the existence of certain points, sects, straights, angles, circles, etc., follows logically by rigorous deduction from the existences postulated in our assumptions. Thus the possibility of solving such problems by elementary geometry is a matter absolutely essential in the logical sequence of our theorems.

So, for example, we have shown (in ror) that a sect has always trisection points, and this may be expressed by saying we have solved the problem to trisect a sect. Now it happens that a solution of the problem to trisect any angle is impossible with only our assumptions. Thus any reference to results following from the trisection of the angle would be equivalent to the introduction of additional assumptions.

But problems of construction, on the other hand, may have a reference to practical operations, usually for drawing on a plane a picture which shall serve as an approximate graphic representation of the data and results of the existential theorem.

Our Assumptions I postulate the existence of a straight as the result of the existence of two points. This may be taken as authorizing the graphic designation of given points and the graphic operation to join two designated points by a straight, and as guaranteeing that this operation can always be effected. Confining ourselves to plane geometry, on the basis of the same Assumptions I, we authorize the graphic operation to find the intersection-point of two coplanar non-parallel straights, and guarantee that this may always be accomplished.

To practically perform these graphic operations, that is for the actual drawing of pictures which shall represent straights with their intersections, we grant the use of a physical instrument whose edge is by hypothesis straight, namely, the straight-edge or ruler.

Thus Assumptions I give us as assumed constructions, or as solved, the fundamental problem of plane geometry:

Problem I. (a) To designate a given point of the plane; (b) to draw the straight determined by two points; to find the intersection of two non-parallel straights
150. Our Assumptions III postulate the existence on any given straight from any given point of it toward a given side, of a sect congruent to a given sect.

This may be taken as authorizing and guaranteeing the graphic operation involved in what may be called

Problem 2. To set off a given sect on a given straight from a given point toward a given side.

A physical instrument for actual performance of this construction in drawing might be called a sectcarrier. Our straight-edge will also serve as sectcarrier if we presume that the given sect may be marked off on it, and it then made to coincide with the given straight with one of the marked points in coincidence with the given point of the straight.

Notice that in these graphic interpretations we freely use the terminology of motion, while the real existential theorems themselves are independent of motion, underlie motion, and explain motion. We assume that the motion of our physical instruments is rigid.
151. We now announce the important theorem that in our geometry all graphic problems can be solved, all graphic constructions effected, merely by using problems I and 2.

Theorem. Those geometric construction problems (existential theorems) solvable by employing exclusively Assumptions $I-V$ are necessarily graphically solvable by means of ruler and sect-carrier.

The demonstration will consist in solving with problems i and 2 the three following problems:
152. Problem 3. Through a given point to draw a parallel to a given straight.

Given th.e straight $A B$ and the point P.

Construction. Join P with any point A of $A B$ by Prob. I. On the straight $P A$ beyond A take (by Prob. 2) $A C \equiv A P$. Join C with any other point B of $A B$. On the straight $C B$ beyond B take $B Q \equiv B C$. $P Q$ is the parallel sought.

Proof. By 98.
153. Problem 4. To draw a perpendicular to a given straight.

Construction. Let A be any point of the given straight. Set off from A

Fig. 63.

Fig. 62. on this straight toward both sides two congruent sects, $A B$ and $A C$, and then determine on any two other straights through A the points E and D, on the same side of $A B$, and such that $A B \equiv A D \equiv A E$. Since $\Varangle A B D$ and $\Varangle A C E$ are angles at the bases of isosceles triangles, \therefore they are acute, \therefore the straights $B D$ and $C E$ meet in F, and also the straights $B E$ and $C D$ in H. Then $F H$ is the perpendicular sought.

Proof. $\Varangle B D C$ and $\Varangle B E C$, as inscribed angles on the diameter $B C$, are (by 134) right. Since (by 127) the altitudes of $\triangle B C F$ are copunctal, $\therefore F H$ is \perp to $B C$.
154. Problem 5. To set off a given angle against a given straight, or to construct a straight cutting a given straight under a given angle.

Given β the angle to be set off, and A its vertex.

Construction. We draw, by Prob. 3, the straight

Fig. 64. l through $A \|$ to the given straight against which the given angle β is to be set off. By Prob. 4 draw a straight \perp to l and a straight \perp to one side of β. Through any point B of the other side of β draw, by Prob. 3 , $\|$ s to these Ls. Call their feet C and D. Then (by Probs. 4 and 3) draw from A a st' \perp to $C D$. Call its foot E.

Then $\not 千 C A E \equiv \beta$. So $E A$ will cut the given straight || to l under the given $\Varangle \beta$.

Proof. Since $\Varangle A C B$ and $\Varangle A D B$ are right, so (by 146) the four points A, B, C, D are concyclic. Consequently $\Varangle A C D \equiv \Varangle A B D$ (by 133) being inscribed angles on the same chord $A D$ and on the same side of it. Therefore their complements $\Varangle C A E \equiv \Varangle B A D$.
155. This completely demonstrates our theorem, ${ }^{151}$ I, since the existential theorems in Assumptions II guarantee the solution of problems requiring no new graphic operations, such as to find a point within and a point without a given sect, and certain other problems of arrangement; while Assumption V would simply guarantee the finding of a point without a given sect by repeating a certain specific application of our Prob. 2.
156. In our geometry, though constantly using
graphic figures, we must never rely or depend upon them for any part of our proof. We must always take care that the operations undertaken on a figure also retain a purely logical validity.
157. This cannot be sufficiently stressed. In the right use of figures lies a chief difficulty of our investigation.

The graphic figure is only an approximate suggestive representation of the data. We cannot rely upon what we suppose to be our immediate perception of the relations in even the most accurate obtainable figure.

In rigorous demonstration, the figure can be only a symbol of the conceptual content covered by its underlying assumptions.

The logical coherence should not be dependent upon anything supposed to be gotten merely from perception of the figure. No statement or step can rest simply on what appears to be so in a figure. Every statement or step must be based upon an assumption, a definition, a convention, or a preceding theorem.

Yet the aid from figures, from sensuous intuition, is so inexpressibly precious, that any attempt even to minimize it would be a mistake. That treatment of a proposition is best which connects it most closely with a visualization of the figure, while yet not using, as if given by the figure, concepts not contained in the postulates and preceding propositions.
158. As an immediate result of Prob. 5, the proofs in Chapters I-V of our existential theorems give ruler
and sect-carrier soluticns of the corresponding problems. We will now give some alte native solutions.
159. Problem 6. At a given point A to make a right angle.

Fig. 65.

Solution. Draw through A any straight $A D$, and through D any other straight $B C$, and make $A D \equiv B D \equiv C D$. Then is $\Varangle B A C$ right. [Inscribed angle on a diameter.]
160. Problem 7. From a given point A to drop a perpendicular upon a given straight $B C$.

Solution. By Prob. 6, at A construct a rt. $\Varangle B A C$. Make $B D \equiv B A$. Draw $D E$ $\| A C$. Make $B F \equiv B E$. Then is $A F \perp B C$.

Proof. $\triangle A B F \equiv \triangle D B E$.

Fig. 66.
[2 sides and inc. $\Varangle \equiv$.]
161. Problem 8. At any point A on a straight $B C$ to erect the perpendicular.

Solution. By Prob. 7, from any point without the straight drop to it a perpendicular. By Prob. 3, draw a parallel to this through A.
162. Problem 9. To bisect a given sect $A B$.

Construction. Draw through B any other straight $B C$. Make on it $B C \equiv C D \equiv D E$. Produce $A E \equiv E F$. Draw $F D G$. Then is $A G \equiv G B$.

Proof. D is the centroid of $\triangle A B F$.
163. Problem 5. At a given point in a given straight to make an angle congruent to a given angle. Required, against the given ray $A B$ of a, and toward a given side of a, the C-side, to make an angle $\equiv \Varangle D$ (given).

Construction. To one side of the given acute angle erect (by 161) $F H \perp D F$, meeting

Fig. 68. the other side at H. Take $A B \equiv D F$ and $B C \perp A B$ and $B C \equiv F H . \quad \therefore$ (by III 6) $\Varangle B A C \equiv \Varangle F D H$.
164. Problem 10. To bisect a given angle.

Fig. 69. Construction.

On one side of the given $\nvdash A$ take any two points B, C. On the other side take $A B^{\prime} \equiv A B$, and $A C^{\prime}$ $\equiv A C$. The sects $B C^{\prime}$ and $B^{\prime} C$ intersect, say at $D . A D$ is the desired bisector.
165. Problem. To join two points by an arc containing a given angle.

Let A, B be the two points, α the given angle. Make an angle $B A C$ supplemental to α. Erect the perpendicular to $A C$ at A, and to $A B$ at the bi-section-point. Their point of intersection is the center of the required circle. $\Varangle A F B=\alpha$.

Proof. Their supplements

Fig. 70.

$$
\Varangle A O D=\Varangle B A C \text { (complements of } \Varangle O A D) \text {. }
$$

166. Problem. To describe a circle touching three given intersecting but not copunctal straights.

Construction. At the

 points of intersection draw the angle-bisectors. From the cross of any two of these bisectors, the perpendicular upon either of the three straights is the radius of a circle touching all three.167. Definition. The cointersection-point of the three bisectors of the internal angles of a triangle, I, is called the triangle's in-center [r, the in-radius]; $\odot I(r)$ the in-circle.
168. Definition. A circle touching one side of a triangle and the other two sides produced is called an escribed circle, or ex-๑. The three centers I_{1}, I_{2}, I_{3} of the escribed circles $\odot I_{1}\left(r_{1}\right), \odot I_{2}\left(r_{2}\right), \odot I_{3}\left(r_{3}\right)$ of a triangle are called its ex-centers.

Ex. i3r. A right angle can be trisected.
Ex. i32. To construct a triangle, given two sides and the included angle.

Ex. 133. To construct a triangle, given two angles and the included side.

Ex. 134. To construct a triangle, given two angles and a side opposite one of them.

Ex. 135. To describe a parallelogram, given two sides and the included angle.

Ex. i36. To construct an isosceles triangle, having given the base and the angle at the vertex.
Ex. 137. To erect a perpendicular to a sect at its endpoint, without producing the sect or using parallels.

Hint. At this end-point against the given sect make
any acute angle. At any other point of the sect make toward this a congruent angle.

Beyond the intersection-point of the rays, make on this second ray a sect congruent to a side of this isosceles triangle. Its end is a point of the required perpendicular.

Ex. r38. Construct a circle containing two given points with center on a given straight.

Ex. I 39. To draw an angle-bisector without using the vertex.

Ex. 140. Through a given point to draw a straight which shall make congruent angles with two given straights.

Ex. 14I. In a straight find a point with which two given points give equal sects.

Ex. 142. From two given points on the same side of a straight to draw two straights intersecting on it and making congruent angles with it.

Ex. 143. To draw a straight through a given point between two given straights such that they intercept on it a sect bisected by the given point.

Ex. 144. Through a given point to draw a st' making $\equiv \Varangle s$ with the sides of a given \Varangle.

Ex. 145. Construct $\psi \Delta$ from b and $h b$; from α and b; from β and $a+b$; from β and h_{b}; from b and β; from p and h_{b}; from p and α; from b and r.

Ex. 146. Construct r't Δ from α and h_{c}; from α and c; from c and r; from a and r; from β and r; from α and $a+b$; from R and r.

Ex. 147. Construct Δ from p, α, and h_{a}; from p, α, and β; from its pedal; from $b, a+c, \alpha$; from $\alpha, h b, p$; from I_{1}, I_{2}, I_{3}.

Ex. 148. Without prolonging two sects, to find the bisector of the \Varangle they would make.

Ex. 149. Describe \odot through two given points with center on given st'; with given radius.

Ex. 150. From one end of the hypothenuse lay off a sect on it congruent to the \perp from the end of this sect to the other side.

Ex. 151. From $\psi \Delta$ cut a trapezoid with 3 sides \equiv.
Ex. 152. To inscribe a sq. in a given r 't $\psi \Delta$.
Ex. 153. Find point in side of $\Vdash \Delta$ where \perp erected and produced to other side is \equiv to base.

Ex. i54. To describe a \odot which shall pass through a given point and touch a given st' at a given point.

Ex. 155. $A B, A C, B D, C E$, are chords. $B D \| A C$, $C E \| A B$. Then $A F \| D E$ is a tangent.

Ex. I56. To describe a \odot whose center shall be in one \perp side of a r't Δ while the \odot goes through the vertex of the r 't \Varangle and touches the hypothenuse.

Ex. 157. To describe a \odot of given radius with center in one side of a given \Varangle and tangent to the other side.

Ex. 158. Construct Δ from a, α, and that t_{a} trisects a; from a and orthocenter; from a and centroid.

Ex. I 59. Construct Δ from α, β, R; from feet of medians; of altitudes.

Ex. r6o. (Brahmagupta.) If the diagonals of an inscribed quad' are \perp, the st' through their intersection \perp to any side bisects the opposite side.

CHAPTER VII.

SIDES, ANGLES, AND ARCS.

169. Convention. When a sect congruent to $C D$ is taken on sect $A B$ from A and its second end-point falls between A and B, then $A B$ is said to be greater than $C D ;(A B>C D)$. When an angle congruent to $\nvdash(h, k)$, is set off from vertex O against one of the rays of $\Varangle A O B$ toward the other ray, if its second side falls within $\Varangle A O B$, then $\Varangle A O B$ is said to be greater than $\Varangle(h, k)$. In symbols, $\Varangle A O B>$ $\Varangle(h, k)$.
170. Theorem. If the first side of a triangle be greater than a second, then the angle opposite the first must be greater than the angle opposite the second.

Given $B A>B C$.
To prove $\Varangle C>\Varangle A$.
Proof. From B toward A take $B D \equiv B C$. The end-point D of this sect then, because $B A>B C$, is between A and B, that is within $\Varangle A C B$, as is therefore also $C D$. Then is $\triangle B D C$ isosceles, $\therefore \Varangle C D B \equiv \Varangle D C B . \therefore \Varangle A C B>\nvdash B C D$ or $\Varangle C D B$. But (by 79) $\Varangle C D B>\Varangle A$.
171. Inverse. If $\Varangle A>\Varangle B, \therefore a>b$.

Proof. [From 57 and i70.]
172. Definition. Except the perpendicular, any sect from a point to a straight is called an oblique.

Fig. 73.
173. Theorem. From a point to a straight any oblique is greater than the perpendicular.

Proof. Since $\Varangle C A B$ is r't, \therefore (by 79)子 $A>\Varangle B . \quad \therefore$ (by ı71) $a>b$ 。
174. Theorem. Any two sides of a triangle are together greater than the third side.

Proof. On st' $B C$, beyond C, take $C D \equiv C A$. \therefore (by 57) $\Varangle C D A \equiv \Varangle C A D$. But $A C$ is within $\Varangle D A B$, $\therefore \Varangle D A B>\Varangle D A C \equiv \Varangle D$. \therefore (by І7г) $B D>A B$.

Fig. 74.
175. Theorem. (The ambiguous case.) If two triangles have two sides of the one congruent respectively to two sides of the other, and the angles opposite one pair of congruent sides congruent, then the angles opposite the other pair are either congruent or supplemental.

Fig. 75.

Hypothesis. $\triangle A B C$ and $\triangle F G H$ with $\Varangle A \equiv \Varangle F$, $A B \equiv F G$, and $B C \equiv G H$.

Conclusion. $\Varangle C \equiv \Varangle H$, or $\Varangle C$ supplement of $\Varangle H$.

Proof. At B against $B A$ take, on the side toward C, the $\Varangle A B C^{\prime} \equiv \Varangle G$. If ray $B C^{\prime}$ falls on ray $B C$, then (by 8o) $\Varangle C \equiv \Varangle H$. If not on $B C$, suppose C^{\prime} between C and A. Then (by 44) $\Varangle B C^{\prime} A \equiv \Varangle H$, and $B C^{\prime} \equiv G H \equiv B C . \quad \therefore($ by 57$) \nvdash B C^{\prime} C \equiv \Varangle C$.
176. Corollary to 175 . Two triangles are congruent if they have two sides and the angle opposite the greater respectively congruent.
177. Definition. A triangle one of whose angles is a right angle is called a right-angled triangle, or more briefly a right triangle. The side opposite the right angle is called the hypothenuse.
178. Corollary to 176 . Two right-angled triangles are congruent if the hypothenuse and one side are respectively congruent.

Ex. 161. If two triangles have two sides of the one respectively congruent to two sides of the other, and the angles opposite one pair of congruent sides congruent, then if these angles be not acute the triangles are congruent.

Ex. 162. If two triangles have two sides of the one respectively congruent to two sides of the other, and the angles opposite one pair of congruent sides congruent, then if one of the angles opposite the other pair of congruent sides is a right angle the triangles are congruent.

Ex. 163. If two triangles have two sides of the one respectively congruent to two sides of the other, and the angles opposite one pair of congruent sides congruent, then if the side opposite the given angle is congruent to or greater than the other given side the triangles are congruent.

Ex. ı64. If any triangle has one of the following properties it has all:
I. Symmetry.
2. Two congruent sides.
3. Two congruent angles.
4. A median which is an altitude.
5. A median which is an angle-bisector.
6. An altitude which is an angle-bisector.
7. A perpendicular side-bisector which contains a vertex.
8. Two congruent angle-bisectors.

Ex. 165. The difference of any two sides of a triangle is less than the third side.

Ex. r66. From the ends of a side of a triangle the two sects to a point within the triangle are together less than the other two sides of the triangle, but make a greater angle.

Ex. 167. Two obliques from a point making congruent sects from the perpendicular are congruent, and make congruent angles with the straight.

Ex. i68. Of any two obliques between a given point and straight that which makes the greater sect from the foot of the perpendicular is the greater.

Ex. 169. Of sects joining two symmetrical points to a third, that cutting the axis is the greater.
179. Theorem. If two triangles have two sides of the one respectively congruent to two sides of the other, then that third side is the greater

Fig. 76. which is opposite the greater angle.

Proof. Take the triangles with one pair of congruent sides in common, $B C$, and on the same side of $B C$ the other pair of congruent sides, $B A, B A^{\prime}$. The bisector of $\Varangle A B A^{\prime}$, being within $\Varangle A B C$, meets $A C$ at a point G. Then (by 43) $\triangle A B G \equiv \triangle A^{\prime} B G$. $\therefore A G$
$\equiv A^{\prime} G$. But (by 174) $A^{\prime} G$ and $G C$ are together greater than $A^{\prime} C$.

179". Inverse of 179. If two triangles have two sides of the one respectively congruent to two sides of the other, then, of the angles opposite their third sides, that is the greater which is opposite the greater third side.

Ex. 170. Two right triangles are congruent if the hypothenuse and an acute angle are congruent, or if a perpendicular and an acute angle are congruent to a perpendicular and the corresponding acute angle.

Ex. ifi. Given $A B$ a sect, C its bisection-point, $P A \equiv$ $P B$.

Prove $P C \perp A B$.
Ex. 172. Inverse. Given $C P \perp$ bi' of $A B$. Prove $P A \equiv P B$.
Ex. 173. Given $P M \perp A M \equiv P N \perp A N$. Prove $\Varangle P A M \equiv$ $\Varangle P A N^{N}$ or its complement.

Ex. 174. Inverse. Given $\Varangle P A M \equiv \Varangle P A N$. Prove $P M \perp A M \equiv P N \perp A N$.
180. Definition. If $A B$ is a diameter of a circle with center C, then the two points of the circle on any other diameter, being on opposite sides of C, are (by 25) on opposite sides of the straight $A B$. Hence the points of the circle other than the points A, B, are separated by $A B$ into two classes of points uniquely paired. One of these classes together with the point A is called a semicircle. The other, with B, is the associated semicircle; A and B are called end-points of each semicircle.

18r. Definition. If A, D are two points on the circle with center C, then, since (by 142) the end of
the perpendicular from C to the straight $A D$ falls

Fig. 77. within a radius, therefore the points of the circle are not all on the same side of the secant $A D$. Hence the points of the circle other than the points A, D are separated by $A D$ into two classes of points. One of these classes, together with the point A, is called an arc. The other, with the point D, is called the associated or explemental arc. A and D are called end-points of each arc.

Of these two arcs the arc on the side of $A D$ remote from the center is called the minor arc. The arc on the same side of $A D$ as the center is called the major arc. The chord $A D$ is said to be the chord of each of the two arcs. Thus to every arc pertains a chord, and to every chord pertain two arcs.

Fig. 78.
182. Definition. Two arcs $A B, A^{\prime} B^{\prime}$, are called congruent when, the end-points being mated, to every point C of the first arc corresponds one, and only one, point C^{\prime} of the second, such that $A C \equiv A^{\prime} C$ and $B C \equiv B^{\prime} C^{\prime}$.
183. Corollary to 182 . Congruent arcs have congruent chords.
184. Definition. An angle having its vertex at the center of the circle is called an angle at the center, and is said to intercept the arc and chord, whose end points are on the angle's sides and whose other points are within the angle.
185. Theorem. In a circle or in circles with congruent radii, congruent angles at the center intercept congruent arcs.

Fig. 79.
Given $\Varangle A C B \equiv \Varangle A^{\prime} C^{\prime} B^{\prime}$.
To prove the minor arc $A B \equiv$ minor arc $A^{\prime} B^{\prime}$.
Proof. Since (by 43) $\triangle A C B \equiv \triangle A^{\prime} C^{\prime} B^{\prime} ; \therefore A B \equiv$ $A^{\prime} B^{\prime}$.

Moreover, if D is any point within arc $A B$ then ray $C D$ is within $\Varangle A C B$. Hence (by 48) there is within $\Varangle A^{\prime} C^{\prime} B^{\prime}$ a ray $C^{\prime} D^{\prime}$ meeting arc $A^{\prime} B^{\prime}$ in D^{\prime}, which makes $\Varangle A^{\prime} C^{\prime} D^{\prime} \equiv \Varangle A C D$ and $\Varangle B^{\prime} C^{\prime} D^{\prime} \equiv$ $\Varangle B C D . \quad \therefore($ by 43$) A^{\prime} D^{\prime} \equiv A D$ and $B^{\prime} D^{\prime} \equiv B D$.

Also any point $D^{\prime \prime}$ of the minor arc $A^{\prime} B^{\prime}$ such that $A^{\prime} D^{\prime \prime} \equiv A D$ would (by 5^{8}) be on the ray making $\Varangle A^{\prime} C^{\prime} D^{\prime \prime} \equiv \Varangle A C D \equiv \Varangle A^{\prime} C^{\prime} D^{\prime}$, and hence identical with D^{\prime}.
186. Corollary. Any arc may be bisected.
187. Theorem. Any two congruent arcs have congruent radii.

Given arc $A M B \equiv \operatorname{arc} A^{\prime} M^{\prime} B^{\prime}$.
To prove $C A \equiv C^{\prime} A^{\prime}$.

Fig. 80.
Proof. The bisector of $\Varangle A C B$ cuts arc $A M B$ in a point M such that, (by 43) $\triangle A C M \equiv \triangle B C M$. $\therefore A M \equiv B M$ and $\Varangle B M C \equiv \Varangle A M C$. From hypothesis there is a point M^{\prime} of arc $A^{\prime} M^{\prime} B^{\prime}$ such that $\triangle A^{\prime} M^{\prime} B^{\prime} \equiv \triangle A M B . \quad \therefore A^{\prime} M^{\prime} \equiv B^{\prime} M^{\prime}$.
\therefore (by 58) $\triangle A^{\prime} M^{\prime} C^{\prime} \equiv \triangle B^{\prime} M^{\prime} C^{\prime}$.
$\therefore \Varangle A^{\prime} M^{\prime} C^{\prime} \equiv \Varangle B^{\prime} M^{\prime} C^{\prime}$.
\therefore (by 48 and 84) $\Varangle A^{\prime} M^{\prime} C^{\prime} \equiv \Varangle A M C$.
\therefore (by 44) the two isosceles triangles $\triangle A M C \equiv$ $\triangle A^{\prime} M^{\prime} C^{\prime} . \quad \therefore A C \equiv A^{\prime} C^{\prime}$.
188. Inverse of 185 . Congruent minor arcs are intercepted by congruent angles at the center.

Proof. . Since from hypothesis chord $A B \equiv$ chord $A^{\prime} B^{\prime}, \therefore$ (by 187 and 58) $\triangle A C B \equiv \triangle A^{\prime} C^{\prime} B^{\prime}$.
$\therefore \Varangle A C B \equiv \Varangle A^{\prime} C^{\prime} B^{\prime}$.
189. Theorem. In a circle or in circles with congruent radii, congruent chords have congruent minor arcs.

For the angles at the center on the congruent chords are congruent (by 58) [$\Delta \mathrm{s}$ with 3 sides \equiv]. \therefore (by 185) the minor arcs they intercept are congruent.
190. Theorem. Given a minor arc and a circle of congruent radius. There are on the circle two and only two arcs with a given end-point, congruent to the given arc.

Proof. An angle at the center which intercepts the given arc can be set off (by III 4) once and only once on each side of the radius to the given point.
191. Theorem. From any point of a circle there are not more than two congruent chords, and the chords are congruent in pairs, one on each side of the diameter from that point.

Proof. If $A B$ is any chord, take at center C on the other side of $A C$, the $\Varangle A C B^{\prime} \equiv \Varangle A C B$; \therefore by $43, \triangle A C B^{\prime} \equiv \triangle A C B$.

$$
\therefore A B^{\prime} \equiv A B .
$$

Moreover, were $B^{\prime \prime}$ the endpoint of a third chord from A congruent to $A B$ and to $A B^{\prime}$,

Fig. 81. then $B, B^{\prime}, B^{\prime \prime}$ would be at once on $\odot C(C A)$ and $\odot A(A B)$, which, by $\mathbf{1} 22$, is impossible.
192. Definition. If all the points of one arc are points of a second, but the second has also points not on the first, then the second is said to be greater than the first and any arc congruent to the second is said to be greater than any arc congruent to the first.
193. Theorem. In a circle or in circles with congruent radii, of two angles at the center, the greater intercepts the greater arc and chord.

Hypothesis. $\quad C A \equiv C^{\prime} A^{\prime} . \quad \Varangle A C D>\Varangle A^{\prime} C^{\prime} B^{\prime}$.
Conclusion. Arc $A D>\operatorname{arc} A^{\prime} B^{\prime}$.

Fig. 82.
Proof. From C against $C A$ toward D, (by III 4) take $\Varangle A C B \equiv \Varangle A^{\prime} C^{\prime} B^{\prime}$. Then from hypothesis ray $C B$ is within $\Varangle A C D$.
$\therefore B$ is within arc $A D$.
\therefore (by 192) arc $A D>$ arc $A B$. But (by 185) $\operatorname{arc} A^{\prime} B^{\prime} \equiv \operatorname{arc} A B . \quad \therefore$ (by 192) arc $A D>\operatorname{arc}$ $A^{\prime} B^{\prime}$.

Moreover $\triangle A^{\prime} C^{\prime} B^{\prime}$ has two sides $C^{\prime} A^{\prime}, C^{\prime} B^{\prime} \equiv C A$, $C D$ of $\triangle A C D$, but $\Varangle A C D>\nvdash A^{\prime} C^{\prime} B^{\prime}, \therefore$ (by 179) $A D>A^{\prime} B^{\prime}$.
194. Inverse of r93. In a circle or in circles with congruent radii the greater chord has the greater angle at the center and the greater minor arc.

For (by 179^{b}) it has the greater angle at the center, and \therefore, by 193, the greater minor arc.
195. Inverse of 193. In a circle or in circles with congruent radii, the greater minor arc has
the greater angle at the center and the greater chord.
196. Theorem. In a circle or in circles with congruent radii, congruent chords have congruent perpendiculars from the center, and the lesser chord has the greater perpendicular.

Proof. Of two chords from A on the same side of the diameter $A C$, one, say $A D$, is (by III 4) without the angle $C A B$ made by the other, and hence its end-point D is on the minor arc $A B$. Hence (by 195) $\Varangle A C B>\Varangle A C D$ and $A B>A D$.

Moreover, the sect from the center to the bisection-point of $A D$, since D and so every point

Fig. 83. of $A D$ is on the opposite side of $A B$ from C, crosses the straight $A B$ and \therefore (by 142) is $>$ the perpendicular from C to $A B$.

Moreover, congruent chords anywhere have congruent perpendiculars (by 178).
197. Inverse of 196. In a circle or in circles with congruent radii, chords having congruent perpendiculars from the center are congruent, and the chord with the greater perpendicular is the lesser. For (by 196) it cannot be greater nor congruent.

Two Circles.

198. A figure formed by two circles is symmetrical with regard to their center-straight as axis.

Every chord perpendicular to this axis is bisected by it.

If the circles have a common point on this straight they cannot have any other point in common, for any point in each has in that its symmetrical point with regard to this axis, and circles with three points in common are identical.
199. Two circles with one and only one point in common are called tangent, are said to touch, and the common point is called the point of tangency or contact.
200. If two circles touch, then, since there is only one common point, this point of contact is on the center-straight, and a perpendicular to the centerstraight through the point of contact is a common tangent to the two circles.

Ex. 175. Two circles cannot mutually bisect.
Ex. 176. The chord of half a minor arc is greater than half the chord of the arc.

Ex. 177. In a circle, two chords which are not both diameters do not mutually bisect each other.

Ex. 178. All points in a chord are within the circle.
Ex. 179. Through a given point within a circle draw the smallest chord.

Ex. 180. Rays from center to intersection points of a tangent with $\|$ tangents are \perp.

Ex. 181. A circle on one side of a triangle as diametcr passes through the feet of two of its altitudes.

Ex. 182. In $+\triangle A B C$ if D on $A B \equiv B C$, prove $C D>A D$.
Ex. i83. A circumscribed parallelogram is a rhombus.
Ex. 184. In $\triangle A B C$, having $A B>B C$, the median $B D$ makes $\Varangle B D A$ obtuse.

Ex. 185. If $A B$, a side of a regular Δ, be produced to D, then $A D>C D>B C$.

Ex. 186. If $B D$ is bisector t_{b}, and $A B>B C$, then $B C>C D$.

Ex. 187. How must a straight through one of the common points of two intersecting circles be drawn in order that the two circles may intercept congruent chords on it?

Ex. 188. Through one of the points of intersection of two circles draw the straight on which the two circles intercept the greatest sect.

Ex. 189. If any two straights be drawn through the point of contact of two circles, the chords joining their second intersections with each circle will be on parallels.

Ex. 190. To describe a \odot which shall pass through a given point, and touch a given \odot in another given point.

Ex. r91. To describe a \odot which shall touch a given \odot, and touch a given st' [or another given ©] at a given point.

Ex. 192. The foot of an altitude bisects a sect from orthocenter to circum-๑.

Ex. 193. If from the end-points of any diameter of a given $\odot \perp s$ be drawn to any secant their feet give with the center \equiv sects.

Ex. 194. A, B, I, I_{c} are concylic.
Ex. 195. If t_{b} meets circum- \odot in D, then $D A \equiv D C \equiv D I$.
Ex. 196. The $\perp \mathrm{s}$ at the extremities of any chord make \equiv sects on any diameter.

Ex. 197. If in any 2 given tangent $\odot s$ be taken any $2 \|$ diameters, an extremity of each diameter, and the point of contact shall be costraight.

Ex. 198. If $2 \odot s$ touch internally, on any chord of one tangent to the other the point of contact makes sects which subtend $\equiv \Varangle \mathrm{s}$ at the point of tangency of the $\odot \mathrm{s}$.

Ex. 199. $2 m_{a}>=<a$ according as $\Varangle A$ acute, r't, obtuse.

Ex. 200. Chords joining the end-points of \|| chords are \equiv.

Ex. 201. St' through point of tangency meets $\odot O$ at A, $\odot O^{\prime}$ at A^{\prime}. Prove $A O \| A^{\prime} O^{\prime}$.

Ex. 202. Intersecting $\odot s$ are ψ with regard to their center-st' and if \equiv are \downarrow with regard to their common chord.

Ex. 203. Find the $\mathrm{t} i \prime$ ' of an \Varangle without using its vertex.
Ex. 204. A quad' with 2 sides $\|$ and the others \equiv is either a \|g'm or a symtra.

CHAPTER VIII.

A SECT CALCULUS.

201. On the basis of assumptions I 1,2 , and II-IV, that is, in the plane and without the Archimedes assumption, we will establish a sect calculus or geometric algorithm for sects, where all the operations are identical with those for real numbers. The following proof is due to F. Schur.
202. (Pascal.) Let A, B, C and $A^{\prime}, B^{\prime}, C^{\prime}$ be two triplets of points situated respectively on two perpendiculars and distinct from their intersection point O^{\prime}. If $A B^{\prime}$ is parallel to $A^{\prime} B$ and $B C^{\prime}$ parallel to $B^{\prime} C$, then is also $A C^{\prime}$ parallel to $A^{\prime} C$. ' Proof. Call D^{\prime} the point where the perpendicular from B upon the straight $A^{\prime} C$ meets the straight $B^{\prime} A^{\prime}$. Then C is the orthocenter of the triangle $B A^{\prime} D^{\prime}$; therefore $D^{\prime} C \perp A^{\prime} B$ and $\therefore \perp A B^{\prime}$.

Fig. 84.

Consequently C is also the orthocenter of the tri-
angle $A B^{\prime} D^{\prime} ; \therefore A D^{\prime} \perp B^{\prime} C$ and \therefore also $\perp B C^{\prime}$. Consequently B is the orthocenter of triangle $A C^{\prime} D^{\prime}$; $\therefore A C^{\prime} \perp D^{\prime} B$ and $\therefore A C^{\prime} \| A^{\prime} C$.
203. Instead of the word "congruent" and the sign \equiv, we use, in this sect calculus, the word "equal" and the sign $=$.
204. We begin by showing how from any two sects to find unequivocally a third by an operation we will call addition.
205. If A, B, C are three costraight points, and B lies between A and C, then we designate $c=A C$ as the sum of the two sects $a=A B$ and $b=B C$, and write to express this $c=a+b$.

Fig. 85.
To add the two sects a and b in a determined order, we start from any point A, and take the point B such that $A B \equiv$, that is $=a$. Then on the straight $A B$ beyond B we take the point C such that $B C=b$. Then the sect $A C$ is what we have designated as the sum of the two sects $a=A B$ and $b=B C$ in the order $a+b$.
206. From III 3 follows immediately that this sum is independent of the choice of the point A, and independent of the choice of the straight $A B$.

By III r , it is independent of the order in which the sects are added. Therefore $a+b=b+a$.
207. This is the commutative law for addition. Thus the commutative law for addition holds good,
is valid, for our summation of sects. But this law is not at all self-evident, and expresses no general magnitude relation, but a wholly definite geometric fact; for a, b are throughout not numbers, but only symbols for certain geometric entities, for sects.
208. The sects a and b are called less than C; in symbols: $a<c, b<c$; and c is called greater than a and b; in symbols $c>a, c>b$.
209. To add to $a+b$ a further sect c, take on straight $A B$ beyond C the sect $C D=c$. Then the sect $A D=(a+b)+c$. But this same sect $A D$ is, by the given definition of sum, also the sum of the sects $A B$ and $B D$, that is of the sects a and $(b+c)$.

Thus $a+(b+c)=(a+b)+c$, and so is verified and valid what is called the associative law for addition.

2 10. To define geometrically the product of a sect a by a sect b, we employ the following construction. We choose first an arbitrary sect, which remains the same for this whole theory, and designate it by 1 . This we set off from their intersection point on one of two perpendicular straights. On the other we set off on one ray a, on the other b. The circle through the free end-points of r, a, b determines on the fourth ray a sect c. Then we name this sect c the

Fig. 86. product of the sect a by the sect b; and we write $c=a b$.

By $\equiv \Delta \mathrm{s}$ and $\mathrm{I} 33, a b=b a$. This is the commutative law for multiplication.
211. Considering the triangle of the end-points of
r and a, it is equiangular to that of the end-points of b and c. This gives as an easy construction for our sect product the following:

Set off on one side of a right angle, starting from the vertex O, first the sect I and then, likewise from

Fig. 87. the vertex O, the sect b. Then set off on the other side the sect a. Join the end-points of the sects I and a, and draw a parallel to this straight through the end-point of the sect b. The sect which this parallel determines on the other side is the product $a b$; or we may call it $b a$, since, as we have already seen, $a b=b a$, which is also given by the fact that the triangle of the endpoints of I and b is equiangular to that of the end-points of a and c.
212. We emphasize that this definition is purely geometric; $a b$ is not at all the product of two numbers.
213. To prove for our multiplication the asso-

Fig. 88.
ciative law for multiplication $a(b c)=(a b) c$ we construct first the sect $d=b c$, then $d a$, further the sect $e=b a$, and finally $e c$. The end-points of $d a$ and ec coincide (by Pascal), and by the commutative law follows the above formula for the associative law of sect multiplication.
214. Finally is valid in our sect-calculus also the distributive law $a(b+c)=a b+a c$.

To demonstrate it we construct the sects $a b, a c$, and $a(b+c)$, and draw through the end-point of the sect c (see Fig. 89) a parallel to the other side of the right angle. The congruence of the two right-angled triangles shaded in the figure and the application of the theorem of the equality of

Fig. 89.
opposite sides in the parallelogram give then the desired proof.
215. If b and c are any two sects, there is always one and only one sect a such that $c=a b$; this sect a is designated by the notation $\frac{c}{b}$, and is called the quotient of c by b.

The Sum of Arcs.

216. Definition. If a and b are two arcs with equal radii, their sum, $a+b$, is the arc obtained by taking together as one arc the arc a and an arc congruent to b having as one of its end-points an end-point of a and its points taken as outside of a.
217. Theorem. In the same circle or in circles with equal radii, if minor arc $a \equiv$ minor $\operatorname{arc} a^{\prime}$ and

Fig. 90 .
minor arc $b \equiv$ minor arc b^{\prime}, then arc $(a+b) \equiv \operatorname{arc}$ ($a^{\prime}+b^{\prime}$).

Let minor arc $A B=a$ and minor arc $B D=b$, minor $\operatorname{arc} A^{\prime} B^{\prime}=a^{\prime}$ and minor arc $B^{\prime} D^{\prime}=b^{\prime}$.

To prove arc $A B D \equiv \operatorname{arc} A^{\prime} B^{\prime} D^{\prime}$.
Proof. $\triangle C B F \equiv \triangle C^{\prime} B^{\prime} F^{\prime}$ (two sides and included $\Varangle) ~ \therefore \Varangle C B F \equiv \Varangle C^{\prime} B^{\prime} F^{\prime}$. In same way $\Varangle C B H \equiv \Varangle C^{\prime} B^{\prime} H^{\prime} . \quad \therefore\left(\right.$ by 49) $\Varangle H B F \equiv \Varangle H^{\prime} B^{\prime} F^{\prime}$ 。 \therefore (two sides and included \Varangle) chord $A D=$ chord $A^{\prime} D^{\prime} . \quad \therefore$ (by 189) minor arc $A D \equiv$ minor arc $A^{\prime} D^{\prime}$; and if $a+b$ is minor, so (by inverse of 133) is $a^{\prime}+b^{\prime}$. But if $a+b$ be not a minor arc, then if P be any point on the semicircle or major arc $a+b$, take $\Varangle D^{\prime} C^{\prime} P^{\prime} \equiv \Varangle D C P$ with P^{\prime} on the same side of
$D^{\prime} C^{\prime}$ with reference to A^{\prime} as P of $D C$ with reference to A. Thus $D^{\prime} P^{\prime}=D P$, also $\Varangle D P A \equiv \Varangle D^{\prime} P^{\prime} A^{\prime}$

Fig. 91.
and $\Varangle D A P \equiv \Varangle D^{\prime} A^{\prime} P^{\prime}$, since A and A^{\prime} are on the same side of $D P$ and $D^{\prime} P^{\prime} . \therefore \triangle A P D \equiv \triangle A^{\prime} P^{\prime} D^{\prime}$.
218. Definition. If an angle at the center is right the arc it intercepts is called a quadrant.
219. Corollary to 217 . In a circle or in circles with equal radii the sum of any two quadrants is congruent to the sum of any other two, and all semicircles are congruent.

A circle is the sum of two semicircles or four quadrants.

Congruent major arcs are the sums of congruent semicircles and congruent minor arcs.
220. Convention. We may look upon a semicircle as an arc whose chord is a diameter, and we may look upon a whole circle as a major arc whose two end-points coincide. The explemental minor arc will then be one single point.

We may even think of arcs on a circle greater than the whole circle. In such a case certain points on the circle are considered more than once.
221. Any arc may now be expressed as a sum of a number of quadrants and a minor arc.

The Sum of Angles.

222. Definition. The sum of two acute angles or of a right angle and an acute angle is the angle obtained by setting off one against the uther from its vertex with no interior point in common, and then omitting the common ray.

The sum of any two or more angles is an aggregate of right angles and one acute angle such that, taken as angles at the center of any one circle, the sum of the intercepted quadrants and the arc intercepted by the acute angle equals the sum of the arcs intercepted by the angles to be added together.
223. Corollary to 79. The sum of the three angles of any rectilineal triangle is two right angles.

The sum of two supplemental angles is two right angles.
224. In the familiar terminology of motion circles with equal radii are called congruent, and we say they can be made to coincide if the center of one be placed on the center of the other.

Since, in their congruence, any one given point of the one can be mated with any point of the other, we say, after coincidence the second circle may be turned about its center, and still coincide with the first.

Hence also a circle can be made to slide along itself by being turned about its center. This expresses a fundamental characteristic of the circle. It allows us to turn any figure connected with the circle about the center without changing its relation to the circle. Such displacement is called a rotation.

A displacement of a figure connected with a
straight, in which the straight slides on its trace, is called translation.

That translation can be effected without rotation is an assumption about equivalent to the parallel Assumption IV.
225. Theorem. The diameter perpendicular to a chord bisects the angle at the center, and the two arcs, minor and major, made by the chord.
226. Convention. Parallel secants or parallel chords are said to intercept the two arcs whose points are between the parallels.
227. Theorem. Parallel chords intercept congruent arcs.

Given $A B \| A^{\prime} B^{\prime}$.
To prove minor $A A^{\prime} \equiv$ minor $\operatorname{arc} B B^{\prime}$.

Proof. If $C D \perp A B$ then also (by 74) $C D \perp A^{\prime} B^{\prime}$. Then (by 117 and 58) $\Varangle A C D \equiv \Varangle B C D$ and $\Varangle A^{\prime} C D \equiv \Varangle B^{\prime} C D . \quad \therefore$ (by 49) $\Varangle A C A^{\prime} \equiv \Varangle B C B^{\prime}$. \therefore (by

Fig. 92. 185) minor arc $A A^{\prime} \equiv$ minor arc $B B^{\prime}$.
228. Theorem. If a simple plane polygon be cut into triangles by diagonals within the polygon the sum of their angles, together with four right angles, equals

Fig. 93. twice as many right angles as the polygon has sides.

Proof. By a diagonal within the polygon cut off a triangle. This diminishes the number of sides by one and the sum of the angles by two right angles. So reduce the sides
to three. We have left two more sides than pairs of right angles.
229. Definition. The exterior angle at any vertex of a polygon is the angle between a side and the ray made by producing the other side through the vertex.
230. Theorem. In any convex plane polygon the sum of the exterior angles, one at each vertex, is four right angles.

Proof. The exterior angle is the supplement of the adjacent angle in the polygon. This pair gives a pair of right angles for every side. But (by 228) the angles of the polygon give a pair of right angles for every side except two.

Ex. 205. In r't Δ, h_{c} makes $\npreceq \mathrm{s} \equiv$ to α and β.
Ex. 206. Always $m_{c}<\frac{1}{2}(a+b)$.
Ex. 207. From point without acute $\not \subset \alpha, \perp s$ to sides make $\Varangle \equiv \alpha$.

Ex. 208. The sect joining the bisection-points of the non-\| sides of a trapezoid is \| to the \| sides and half their sum.

Ex. 209. How many sides has a polygon, the sum of whose interior $\npreceq s$ is double the sum of its exterior $\nsucceq s$?

Ex. 210 . How many sides has a regular polygon, four of whose \Varangle s are together 7 r't \Varangle s?

Ex. 2II. The trisection-points of the sides of an equilateral Δ form a regular hexagon.

Ex. 2I2. The $\perp \mathrm{s}$ from A and B upon m_{c} are \equiv.
Ex. 2I3. Find the sum of 3 non-consecutive $\not \mathrm{s}$ of an inscribed hexagon.

Ex. 214. Construct $\downarrow \Delta$ from b and $a+h_{b} ;$ from β (or h_{b}) and perimeter.

Ex. 215. The sum of the three sects from any point within a Δ to the vertices is $<$ the sum and $>\frac{1}{2}$ sum of the 3 sides.

Ex. 216. Construct \downarrow r't Δ from $b+c$.
Ex. 217. In a given st' find a point to which sects from 2 given points have the least sum.

Ex. 218. The sum of the medians in Δ is $<$ the sum and $>\frac{1}{2}$ sum of sides.

Ex. 219. Construct Δ from $\alpha-\beta$ and c. Δ from α, β, $r ; \Delta$ from α, β, R.

Ex. 220. The sum of 2 opposite sides of a circumscribed quad' is half the perimeter. "The sum of the \nvdash s they subtend at the center is 2 r't $\Varangle \mathrm{s}$.

Ex. 22 I. In r't $\Delta, a+b=c+2 r=2 R+2 r$.
Ex. 222. From the vertices of Δ as centers find 3 radii which give \odot s tangent, two and two.

Ex. 223. If H is orthocenter, the 4 circum- $\odot s$ of A, B, C, H are \equiv.

Ex. 224. Of I, I_{1}, I_{2}, I_{3}, each is the orthocenter of the other 3 , and the 4 circum- \odot s are \equiv.

Ex. 225. If, of a pentagon; the sides produced meet, the sum of the $\nless \mathrm{s}$ formed is 2 r 't $\not \mathrm{y}^{\mathrm{s}}$.

Fx. 226. If h_{b} meets b at D, construct Δ from $h \iota, a-A D$, $c-C D$.

Ex. 227. A quad' is a trapezoid if an opposite pair of the 4Δ s made by the diagonals are \equiv.

CHAPTER IX.

FROPORTION AND THE THEOREMS OF SIMILITUDE.

231. With help of the just-given sect-calculus Euclid's theory of proportion can in the following manner be established free from objection and without the Archimedes assumption.
232. Convention. If $a, b, a^{\prime}, b^{\prime}$ are any four sects, then the proportion $a: b=a^{\prime}: b^{\prime}$ shall mean nothing but the sect equation $a b^{\prime}=b a^{\prime}$.
233. Definition. Two triangles are called similar if their angles are respectively congruent. Sides between vertices of congruent angles are called corresponding.
234. Theorem. In similar triangles the sides are proportional.

Given a, b and a^{\prime}, b^{\prime} corresponding sides in two

Fig. 94. similar triangles.

To prove the proportion $a: b=a^{\prime}: b^{\prime}$.

Proof. We consider first the special case, where the angles included by a, b and a^{\prime}, b^{\prime} in the two triangles are right, and suppose both triangles on the same right angle. We
then set off from the vertex on one side the sect r , and take through the end-point of sect i the parallel to the two hypothenuses. This parallel determines on the other side the sect e. Then is, by our definition of the sect-product, $b=e a, b^{\prime}=e a^{\prime}$. Consequently we have $a b^{\prime}=b a^{\prime}$, that is, $a: b=a^{\prime}: b^{\prime}$.

We pass now to the general case. Construct in each of the two similar triangles the in-center I, respectively I^{\prime}, and drop from these the three perpendiculars r, respectively r^{\prime}, on the triangle's sides. Designate the respective sects so determined on the sides of the triangles by $a_{b}, a_{c}, b_{c}, b_{a}$,

Fig. 95. c_{a}, c_{b}, respectively $a_{b}{ }^{\prime}, a_{c}{ }^{\prime}, b_{c}{ }^{\prime}, b_{a}{ }^{\prime}, \dot{c}_{a}{ }^{\prime}, c_{b}{ }^{\prime}$. The justproven special case of our theorem gives then the proportions

$$
\begin{array}{ll}
a_{b}: r=a_{b}^{\prime}: r^{\prime}, & b_{c}: r=b_{c}^{\prime}: r^{\prime}, \\
a_{c}: r=a_{c}^{\prime}: r^{\prime}, & b_{a}: r=b_{a}^{\prime}: r^{\prime} .
\end{array}
$$

From these we conclude by the distributive law

$$
a: r=a^{\prime}: r^{\prime}, \quad b: r=b^{\prime}: r^{\prime},
$$

and consequently, in virtue of the commutative law of multiplication,

$$
a: a^{\prime}=r: r^{\prime}=b: b^{\prime}, \quad \text { and } a: b=a^{\prime}: b^{\prime} .
$$

235. From the just-proven theorem (234) we get easily the fundamental theorem of the theory of proportion, which is as follows:

Theorem. If two parallels cut off on the sides of any angle the sects a, b, respectively a^{\prime}, b^{\prime}, then holds good the proportion $a: b=a^{\prime}: b^{\prime}$. Inversely, when four sects $a, b, a^{\prime}, b^{\prime}$ fulfill this proportion, if the pairs a, a^{\prime} and b, b^{\prime} are set off upon the respective sides of any angle, then the straight joining the endpoints of a and b is parallel to that joining the endpoints of a^{\prime} and b^{\prime}.

Proof. First, since parallels make with the sides of the given angle similar triangles, therefore (by 234) $a: b=a^{\prime}: b^{\prime}$.

Second, for the inverse. Through the end-point of a^{\prime} draw a parallel to the straight joining the endpoints of a and b, and call the sect it determines on the other side $b^{\prime \prime}$.

Fig. 96.
 Then by First $a: b=a^{\prime}: b^{\prime \prime}$. But by hypothesis $a: b=a^{\prime}: b^{\prime} . \quad \therefore b^{\prime \prime}=b^{\prime}$.
236. Thus we have founded with complete rigor the theory of proportion on the basis of the Assumption-groups I-IV.
237. Corollary to 235. If straights are cut by any number of parallels the corresponding intercepts are proportional.
238. Corollary to 234. Parallels are divided proportionally by any three copunctal transversals.
239. Corollary to 235 . Two triangles are similar if they have two sides proportional and the included angles congruent.
240. Definition. A point P, costraight with $A B$, but without the sect $A B$, is said to divide the sect $A B$ externally into the sects $P A, P B$.
241. Corollary to 235. A sect can be divided internally or externally in proportion to any two unequal given sects. The point of internal division is unique; likewise the point of external division.
242. Theorem. The bisector of any angle of a

Fig. 97.
triangle or of its adjacent angle divides the opposite side in proportion to the other two sides.
[Proof. Take $A F \|$ to bisector $B D$. Then $B F=c$.]
243. Definition. A sect divided internally and externally in proportion is said to be divided hormonically, and the four points are called a harmonic range.
244. Theorem. A perpendicular from the right angle to the hypothenuse divides a right-angled triangle into two others similar to $i t$, and is the mean proportional between the parts of the hypothenuse.

Each side is the mean proportional between the hypothenuse and its adjoining part.

Proof. The ret $\triangle A B C \sim$ rt $\triangle A B D$, since $\Varangle A$ is common.

Fig. 98.

245. Corollary to 244. The perpendicular from any point in a circle to the diameter is the mean proportional between the parts of the diameter.

Fig. 99.
246. Theorem. The square of the hypothenuse equals the sum of the squares of the two sides.

Proof. $A C: A B=A B: A D$, that is, $A B^{2}=A C \cdot A D$. Same way $B C^{2}=A C \cdot D C$. Now add.

$$
\therefore A B^{2}+B C^{2}=A C(A D+D C)=A C^{2} .
$$

247. Theorem. Triangles having their sides taken in order respectively proportional are similar.

Fig. 100.
In the triangles $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$ let $A B: A^{\prime} B^{\prime}=$ $A C: A^{\prime} C^{\prime}=B C: B^{\prime} C^{\prime}$.

To prove that the triangles $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$ are similar (\sim).

Proof. Upon $A B$ take $A F=A^{\prime} B^{\prime}$, and upon $A C$ take $A H=A^{\prime} C^{\prime}$. Then $A B: A F=A C: A H$. \therefore (by 239) $\triangle A B C \sim$ to $\triangle A F H . \quad \therefore A B: A F=$ $B C: F H$. But by hypothesis $A B: A F=B C: B^{\prime} C^{\prime}$. $\therefore F H=B^{\prime} C^{\prime} . \quad \therefore \triangle A F H \equiv \triangle A^{\prime} B^{\prime} C^{\prime}[3$ sides $\equiv]$. $\therefore \triangle A B C \sim \triangle A^{\prime} B^{\prime} C^{\prime}$.
248. Theorem. The product of the sects into which a given point divides chords of a given circle is constant.

Fig. iot.
Hypothesis. Let chords $A B$ and $C D$ intersect in P.

Conclusion. $A P \cdot P B=C P \cdot P D$.
Proof. $\quad \Varangle P A C=\Varangle P D B$ (by 133), and

$$
\text { - } \Varangle A P C=\Varangle B P D ; \quad \therefore \triangle A P C \sim \triangle B P D \text {. }
$$

249. Corollary to 248 . From a point taken on a tangent the square on the sect to the point of contact equals the product of the sects made on any secant.

The Golden Section.

250. Problem. To divide a sect so that the product of the whole and one part equals the square of the other part.

Required on $A B$ to find P such that $A B \cdot P B=$ $A P^{2}$.

Construction. Draw $B C \perp B A$ and $=\frac{1}{2} A B$ On the straight $A C$ take D between A and C, and E beyond C such that $C D=C B=C E$. Take $A P=A D$
and $A P^{\prime}=A E . \quad P$ and P^{\prime} divide $A B$ internally and externally in the golden section.

Proof. By 249, $A B^{2}=A D \cdot A E=A P(A P+A B)$ $=A P^{2}+A P \cdot A B$.
$\therefore A B(A B-A P)=A P^{2} . \quad \therefore A B \cdot P B=A P^{2}$.
Again, $A B^{2}=A E \cdot A D=P^{\prime} A(A E-D E)$ $=P^{\prime} A\left(P^{\prime} A-A B\right)=P^{\prime} A^{2}-A B \cdot P^{\prime} A$.
$\therefore A B\left(A B+P^{\prime} A\right)=P^{\prime} A^{2}$.
$\therefore A B \cdot P^{\prime} B=P^{\prime} A^{2}$.

Fig. 102
251. Corollary to 250 . If a is any sect divided in the golden section, its greater part $x=\frac{a}{2}\left[(5)^{\frac{1}{2}}-\mathrm{I}\right]$.

For, (by 246) $A C^{2}=A B^{2}+B C^{2}=a^{2}+\frac{a^{2}}{4}=\left(\frac{a(5)^{\frac{1}{2}}}{2}\right)^{2}$.
$\therefore A P=A D=A C-C D=\frac{1}{2} a(5)^{\frac{1}{2}}-\frac{a}{2}$.
252. Theorem. The products of opposite sides of a non-cyclic quadrilateral

Fig. 103. are together greater than the product of its diagonals.

Proof. Make $\Varangle B A F \equiv$ $\Varangle C A D$, and $\Varangle A B F \equiv$ $\Varangle A C D$. Join $F D$.

Then $\triangle A B F \sim \triangle A C D$, $\therefore B A: A C=F A \cdot A D$.

But this shows (since $\Varangle B A C=\Varangle F A D$), $\triangle B A C \sim \triangle F A D$.

From $\quad \triangle A B F \sim \triangle A C D, \therefore A B \cdot C D=B F \cdot A C$.
From $\quad \triangle B A C \sim \triangle F A D, \therefore B C \cdot A D=F D \cdot A C$.
$\therefore A B \cdot C D+B C \cdot A D=B F \cdot A C+F D \cdot A C>B D \cdot A C$.
253. Corollary to 252 (Ptolemy). The product of the diagonals of a cyclic quadrilateral equals the sum of the products of the opposite sides. (For then F falls on $B D$.)
254. Definition. Similar polygons are those of which the angles taken in order are respectively equal [i.e., congruent], and the sides between the equal angles proportional.
255. Theorem. Two similar polygons can be divided into the same number of triangles respectively similar.
256. Theorem. If a cyclic polygon be equilateral it is regular.

Ex. 228. If $A B$ is divided harmonically by P, P^{\prime}, then $P P^{\prime}$ is divided harmonically by A, B.

Ex. 229. If two triangles have the sides of one respectively parallel or perpendicular to the sides of the other they are similar.

Ex. 230. The corresponding altitudes of two similar triangles are proportional to any two corresponding sides.

Ex. 23r. To divide a sect into parts proportional to given sects.

Ex. 232. A sect can be divided into any number of equal parts.

Ex. 233. To find the fourth proportional to three given sects.
Ex. 234. To find the third proportional to two given sects.
Ex. 235. If three non-parallel straights intercept proportional sects on two parallels they are copunctal.

Ex. 236. Every equiangular polygon circumscribed about a circle is regular.

Ex. 237. Every equilateral polygon circumscribed about a circle is regular if it has an odd number of sides.

Ex. 238. Every equiangular polygon inscribed in a circle is regular if it has an odd number of sides.

Ex. 239. One side of a Δ is to either part cut off by a st' $\|$ to the base as the other side is to the corresponding part.

Ex. 240. If a straight divides two sides of a Δ proportionally, it is $\|$ to the third side.

Ex. 24I. The bisectors of an interior and an exterior \Varangle at one vertex of a Δ divide the opposite side harmonically.

Ex. 242. The perimeters of two \sim polygons are proportional to any two corresponding sides.

Ex. 243. A median and two sides of a trapezoid are copunctal.

Ex. 244. The chords on a st' through a contact-point of two \odot are proportional to their diameters; and a common tangent is a mean proportional between their diameters.

Ex. 245. The sum of the squares of the segments of 21 chords equals the sq' of the diameter.

Ex. 246. On the piece of a tangent between two \|tangents the contact-point makes segments whose product is the square of the radius.

Ex. 247. To inscribe in and circumscribe about a given \odot a $\Delta \sim$ to a given Δ.

Ex. 248. The hypothenuse is divided harmonically by any pair of st's through the vertex of the r't \nvdash making $\equiv \Varangle$ s with one of its sides.

Ex. 249. The bisection-point of the base of a Δ and any point on a \| to the base through the vertex make a sect cut harmonically by a side and the other sìde produced.

Ex. 250. I divides t_{b} as b to $a+c$.
Ex. 25I. Rr: $a c=b: 2(a+b+c)$.
Ex. 252. In a r't Δ the \perp sides are as the in-radii of $\Delta \mathrm{s}$ made by h_{c}.

Ex. 253. Sects from the ends of the base of a Δ to the intersections of a $\|$ to base with the sides intersect on a medłan.

Ex. 254. Δ from $\beta, a / c, R$.
Ex. 255. A quad' is cyclic if diagonals cut so that product of segments of one equals product of segments of the other.

Ex. 256. The sides of the pedal cut off $\Delta s \sim$ to the original.

Ex. 257. Three points being given, to determine another, through which if any st' be drawn, $\perp \mathrm{s}$ upon it from two of the former, shall together be equal to the \perp from the third.

Ex. 258. From two given sects to cut off two proportional to a second 'given pair so as to leave remainders proportional to another given pair.

Ex. 259. If one chord bisect another, and tangents from the extremities of each meet, the st' of their intersection points is \| to the bisected chord.

Ex. 260. In Δ, if sects from the ends of the base to the opposite sides intersect on the altitude, the joins of its foot to their ends will make equal angles with the base.

Ex. 261. The diagonals of a regular pentagon cut one another in the golden section, and the larger segments equal the sides.

Ex. 262. From the vertex of an inscribed Δ a sect to the base $\|$ to a tangent at either end of the base is a fourth proportional to the base and two sides.

Ex. 263. Straights from the vertices of any Δ to the contact-points of the in- \odot are copunctal.

Ex. 264. Construct Δ from b, β, and that t_{b} makes segments as m to n.

Ex. 265. Δ from β, m_{b}, and \nLeftarrow between b and m_{b}.
Ex. 266. Δ from t_{b} and $\perp \mathrm{s}$ on it from A and C.
Ex. 267. Δ from $\beta, a-c$, and difference of segments made by h_{b}.

Ex. 268. R't Δ from $a+b$, and $b+c$.
Ex. 269. Δ from $\alpha-\beta, a: b=m: n$, and a third propor-
tional to the difference of segments made by h_{c} and the lesser side.

Ex. 270. Δ from $\alpha, a+b, a+c$.
Ex. 27I. Δ from α, R, and $b: c=m: n$.
Ex. 272. Δ from $\alpha, b, a-h b$.
Ex. 273. Divide a given sect harmonically as m to n.
Ex. 274. In $\sim \Delta \mathrm{s}, a: a^{\prime}=h_{a}: h^{\prime} a^{\prime}=m_{a}: m^{\prime} a^{\prime}=t_{a}: t^{\prime} a^{\prime}=r: r^{\prime}=$ $R: R^{\prime}$.

Ex. 275. Two r't $\Delta \mathrm{s}$ are \sim if hypothenuse and a \perp are proportional.

Ex. 276. If a chord is bisected by another, either segment of the first is a mean proportional between the segments of the other.

Ex. 277. R't Δ from a and the non-adjacent segment made by $h c$.

Ex. 278. The diameter of a \odot is a mean proportional between the sides of the circumscribed regular Δ and hexagon.

Ex. 279. From the center of a given \odot to draw a st' cutting off from a given tangent a sect any multiple of the segment between \odot and tangent.

Ex. 280. If $2 \Delta s$ have two sides of the one proportional to two sides of the other, and $\Varangle s$, one in each, opposite one corresponding pair of these sides $=$, the $\Varangle s$ opposite the other pair are either $=$ or supplemental.

Ex. 28r. The altitude to hypothenuse is a fourth proportional to it and the sides.

Ex. 282. The vertices of all $\Delta \mathrm{S}$ on the same base with sides proportional are on a \odot with center costraight with base and radius a mean proportional between the sects from its center to the ends of base.

Ex. 283. To inscribe a sq. in a given Δ.

CHAPTER X.

EQUIVALENCE.

The theory of equivalence in the plane.

257. We take as basis for the investigations in the present chapter the Assumptions I, i-2, and II-IV. We exclude the Archimedes assumption. Our theory of proportion and sect-calculus put us in position to found the Euclidean theory of equivalence by means of the assumptions named, that is, in the plane and independent of the Archimedes assumption.
258. Convention. If we join two points of a polygon P by any sect-train which runs wholly in the interior of the polygon we obtain two new polygons, P_{1} and P_{2}, whose inner points all lie in the interior of P.

We say: P is separated or cut into P_{1} and P_{2}; P_{1} and P_{2} together compose P.
259. Definition. Two polygons are called equivalent if they can be cut into a finite number of triangles congruent in pairs.

26́o. Definition. Two polygons are said to be equivalent by completion if it is possible so to annex
equivalent polygons to them that the two polygons so composed are equivalent.
261. We will use the sign of equality ($=$) between polygons to denote "equivalent by completion."
262. From these definitions follows immediately: By uniting equivalent polygons we get again oquivalent polygons. If we take away equivalent polygons from equivalent polygons the remaining polygons are equivalent by completion.

Furthermore, we have the following propositions:
263. Theorem. Two polygons P_{1} and P_{2} equivalent to a third P_{3} are equivalent.

Two polygons equivalent by completion to a third are equivalent by completion.

Proof. By hypothesis there is as well for P_{1} as for P_{2} an assignable partition into triangles such that each of these two partitions corresponds respectively to a partition of the polygon P_{3} into congruent triangles.

Fig. 104.
If we consider these two partitions of P_{3} simultaneously every triangle of the one partition will in
general be cut into polygons by sects which pertain to the other partition. Now we introduce a sufficient number of sects to cut each of these polygons itself into triangles, and then make the two corresponding partitions into triangles in P_{1} and in P_{2}. Then these two polygons P_{1} and P_{2} are cut into the same number of triangles congruent in pairs, and are therefore by our definition equivalent.

Again, if $Q_{1}=Q_{3}$ and $Q_{2}=Q_{3}$, then according to definition the composite $Q_{1}+P_{1}$ is equivalent to $Q_{3}+P_{1}$, and $Q_{2}+P_{2}$ is equivalent to $Q_{3}+P_{2}$. Therefore $Q_{1}+P_{1}+P_{2}$ is equivalent to $Q_{3}+P_{1}+P_{2}$, which is equivalent to $Q_{2}+P_{2}+P_{1} . \quad \therefore Q_{1}=Q_{2}$.

Parallelograms and Triangles with equal bases and altitudes.

264. Theorem. Two parallelograms with equal bases and equal altitudes are equivalent by completion.

Proof. $\triangle B A E \equiv \triangle C D F$. Annex $\triangle B C H$ and leave out $\triangle D H E . \quad \therefore A B C D=E B C F$.

Fig. 105.

Fig. 106.

To prove these parallelograms equivalent would require here the Archimedes assumption.
265. Theorem. Any triangle $A B C$ is, always

Fig. ro7. equivalent to a certain parallelogram with equal base and half altitude.

Proof. Bisect $A C$ in D and $B C$ in E, and then prolong $D E$ to F, making $E F=D E$. The triangles $D E C$ and $F B E$ are then congruent, and consequently the $\triangle A B C$ and parallelogram $A B F D$ are equivalent.
266. From 264 and 265 follows with help of 263 immediately:

Theorem. Two triangles of equal bases and equal altitudes are equivalent by completion.
267. That two triangles with equal bases and altitudes are always equivalent cannot possibly be proven without using the Archimedes assumption.
268. The remaining theorems of elementary geometry about the equivalence by completion of polygons, and also, in particular, the Pythagoras equivalence theorem: "The square on the hypothenuse of a right triangle is equivalent to the united squares on the other two sides," are easy consequences of the theorems just set up.
269. But, nevertheless, in further working out the theory of equivalence we encounter an essential difficulty.

In particular our considerations hitherto leave undecided whether perhaps all polygons are not always equivalent by completion to one another. In this case all the previously established theo-
rems would teach nothing and be without importance.

The proven theorems about equivalence by completion are entirely rigorous; nevertheless we recognize on closer investigation that they all for the present have no content. We do not yet know whether there are polygons at all which are not equivalent by completion.
270. And not only must we know this, if we would undertake anything with our theorems, but also we need to consider the more specific question whether two rectangles equivalent by completion, having one common side, have also necessarily their other sides congruent, that is, whether a rectangle is uniquely determined by one of its sides and its equivalence by completion.
271. As the closer consideration shows, we need for answering the questions raised the inverse of 266, which runs as follows:

Theorem. If two triangles equivalent by completion have equal bases then they have also equal altitudes.

This fundamental theorem is the thirty-ninth of the first book of Euclid's Elements (Eu. I, 39). However, to prove it Euclid invokes the general theorem about magnitudes: "The whole is greater than its part," a procedure which amounts to the introduction of a new geometric assumption, that is, the tacit assumption of a new and independent magnitude, the "surface" or "superficial content."
272. Now for the question of superficial content, we can, on the basis of only our old assumptions, though into them the word "content" does not in
any way enter, prove that two polygons can be compared as to content.
273. Thus the congruence and equality of sects is fundamental or primitive, rooted immediately in assumptions.
274. But the equality of polygons as to content is a constructible idea with nothing new about it but a definition.
275. We proceed now to establish this theorem (Eu. I, 39) and therewith the theory of content in the way we desire, that is, merely with help of the plane assumptions without using the Archimedes assumption.
276. It need not surprise us that the proof is not wholly simple. For that two triangles are equivalent by completion according to definition only says that certain "corresponding" triangle-partitions exist; thereby can the number of the triangles be very great and one does not immediately see how from that we can conclude from equality of bases equality of the altitudes.
277. We begin by introducing the idea of area.

The area of triangles and polygons.

278. Definition. In any triangle $A B C$ with the sides a, b, c, if we construct the two altitudes $h_{a}=A D$, $h_{b}=B E$, then follows from the similarity of the triangles $B C E$ and $A C D$, (by 234) the proportion $a: h_{b}=b: h_{a}$, that is, $a h_{a}=b h_{b}$.

Fig. 108.

Consequently in every triangle the product of a base and its altitude is independent of what side of the triangle one chooses as base. Half the product of base and altitude of a triangle Δ is called the area of the triangle Δ, and designated by $A(\triangle)$.
279. Convention. A sect which joins a vertex of a triangle with a point of the opposite side is called a transversal; this cuts the triangle into two triangles with common altitude, whose bases lie on the same straight. Such a partition is called a transversal partition of the triangle.
280. Theorem. If a triangle Δ is in any way cut by any straights into a certain finite number of triangles Δ_{k}, then is always the area of the triangle Δ equal to the sum of the areas of all the triangles Δ_{k}.

Proof. From the distributive law in our sectcalculus follows immediately that the area of any triangle is equal to the sum of the areas of two triangles which arise from the first by any transversal

Fig. 109. partition. Thus, for example, $A\left(\Delta_{1}\right)+A\left(\Delta_{2}\right)=\frac{1}{2} b_{1} h+\frac{1}{2} b_{2} h=\frac{1}{2} h\left(b_{1}+b_{2}\right)=\frac{1}{2} b h=A(\Delta)$.

The repeated application of this fact shows that

Fig. ifo. the area of any triangle is also equal to the sum of the areas of all the triangles which arise from the first, if we make successively however many transversal partitions.

In order now to accomplish the corresponding demonstration for any partition of the triangle Δ into triangles Δ_{k}, we draw from one vertex A of the triangle Δ through each dividing-point of the partition, that is, through each vertex of the triangles Δ_{k}, a transversal; by these transversals the triangle Δ is cut into certain triangles Δ_{t}. Each of these triangles Δ_{t} is cut by the dividing-sects of the given partition into certain triangles and quadrilaterals. If in each quadrilateral we draw a diagonal then each triangle Δ_{t} is cut into certain triangles $\Delta_{t s}$.

We will now show that the partition into triangles $\Delta_{t s}$, as well for the triangles Δ_{t} as also for the triangles Δ_{k}, is a chain of transversal partitions.

Fig. itif.
In fact, first is clear, that every partition of a triangle into part-triangles can always be effected by - a series of transversal partitions, if, in the partition, no dividing-points lie in the interior of the triangle, and besides at least one side of the triangle remains free from dividing-points.

Now these conditions are evident for the triangles Δ_{t} from the circumstance that for each of them
the interior and one side, that opposite the point A, are free from dividing-points.

But also for every Δ_{k} is the partition into $\Delta_{t s}$ reducible to transversal partitions. In fact, if we consider a triangle Δ_{k}, then there is, among the transversals from A in the triangle Δ a certain transversal which either cuts the triangle Δ_{k} into two triangles, or else upon which a side of Δ_{k} falls. For we recall that within no Δ_{k} are there dividingpoints.

By construction, through every vertex of Δ_{k} goes a transversal from A; and there is always one vertex of Δ_{k} for which this transversal has a second point not in the region exterior to Δ_{k}; it therefore either goes through the interior of Δ_{k} or upon it is a side of Δ_{k}.

In this latter case this side of the triangle Δ_{k} remains altogether free from further dividing-points in the partition into triangles $\Delta_{t s}$. In the other case the sect of that transversal within the triangle Δ_{k} is for both the triangles thus arising a side which in the partition into triangles $\Delta_{t s}$ remains surely free from further dividing-points.

From the considerations at the beginning of this demonstration the area $A(\Delta)$ of the triangle Δ equals the sum of all areas $A\left(\Delta_{t}\right)$ of the triangles Δ_{t}, and this sum is equal to the sum of all areas $A\left(\Delta_{t s}\right)$. On the other hand is also the sum of the areas $A\left(\Delta_{k}\right)$ of all triangles Δ_{k} equal to the sum of all areas $A\left(\Delta_{t s}\right)$. Hence, finally, the area $A(\Delta)$ is also equal to the sum of all areas $A\left(\Delta_{k}\right)$. So the theorem is completely proven.
281. Definition. If we define the area $A(P)$ of a polygon as the sum of the areas of all triangles into which it is cut in a certain partition, then the area of a polygon is independent of the way it is cut into triangles, and consequently determined uniquely simply by the polygon itself.

Proof. Suppose Δ_{c} to be the triangles of a certain partition, and Δ_{k} those of any other partition. Considering these two partitions simultaneously, in general is every triangle Δ_{c} cut into polygons by sects pertaining to Δ_{k}. Now we introduce sects sufficient to cut these polygons themselves into triangles Δ_{s}. Then the triangles Δ_{c} have (by 280) for the sum of their areas the sum of the areas of Δ_{s}. But so also have the triangles \triangle_{k}.
[This fact, that the sum named is independent of the way of cutting up the polygon, is the kernel, the essence of this whole investigation.]
282. Corollary to 281. Equivalent polygons have equal area.
283. Moreover, if P and Q are two polygons equivalent by completion, then there must be, from the definition, two equivalent polygons P^{\prime} and Q^{\prime}, such that the polygon compounded of P and P^{\prime} is equivalent to the polygon compounded of Q and Q^{\prime}. From the two equations

$$
A\left(P+P^{\prime}\right)=A\left(Q+Q^{\prime}\right), \quad A\left(P^{\prime}\right)=A\left(Q^{\prime}\right),
$$

we deduce at once $A(P)=A(Q)$, that is, polygons equivalent by completion have equal area.
284. From this latter fact we get immediately the proof of the theorem of 27 I (Eu . I, 39). For,
designating the equal bases of the two triangles by b, the corresponding altitudes by h and h^{\prime}, we then conclude from the assumed equivalence by completion of the two triangles that they must also have equal area; that is, it follows $\frac{1}{2} b h=\frac{1}{2} b h^{\prime}$, and, consequently, after division by $\frac{1}{2} b, h=h^{\prime}$; which was to be proved.

Area and Equivalence-by-completion.

285. In what precedes we have found that polygons equivalent-by-completion have always equal area. The inverse is also true.
286. To prove the inverse, we consider first two triangles $A B C$ and $A B^{\prime} C^{\prime}$ with a common right angle at A. The areas of these two triangles are expresesd by the formulas

$$
\begin{aligned}
A(A B C) & =\frac{1}{2} A B \cdot A C \\
A\left(A B^{\prime} C^{\prime}\right. & =\frac{1}{2} A B^{\prime} \cdot A C^{\prime} .
\end{aligned}
$$

If we assume that these. two areas are equal, we have

$$
A B \cdot A C=A B^{\prime} \cdot A C^{\prime}
$$

or $A B: A B^{\prime}=A C^{\prime}: A C$,

Fig. ili.
and from this it follows (by 235) that the two straights $B C^{\prime}$ and $B^{\prime} C$ are parallel, and then we recognize (from 266) that the two triangles $B C^{\prime} B^{\prime}$ and $B C^{\prime} C$ are equivalent-by-completion. By annexing the triangle $A B C^{\prime}$ it follows that the two triangles $A B C$ and $A B^{\prime} C^{\prime}$ are equivalent-by-completion. Thus we have proved that two right-
angled triangles with equal area are also always equivalent-by-completion.
287. Take now any triangle, with base b and altitude h, then this is (by 266) equivalent-bycompletion to a right-angled triangle with the two perpendicular sides b and h; and since the original triangle evidently has the same area as the rightangled triangle, so it follows that in the preceding article the limitation to right-angled triangles was not necessary. Thus we have shown that any two triangles with equal area are also always equivalent-by-completion.
288. Now let P be any polygon with area b. Let P be cut into n triangles with the respective areas $b_{1}, b_{2}, \ldots b_{n}$; then is $b=b_{1}+b_{2}+\ldots+b_{n}$.

Construct now a triangle $A B C$ with the base $A B=b$ and the altitude $h=\mathrm{I}$ and mark on the base the points $A_{1}, A_{2}, \ldots A_{n}$, such that $b_{1}=A A_{1}$, $b_{2}=A_{1} A_{2}, \ldots b_{n-1}=A_{n-2} A_{n-1}, \quad b_{n}=A_{n-1} B . \quad$ Since

Fig. ifis.
the triangles within the polygon P have respectively the same area as the triangles $A A_{1} C, A_{1} A_{2} C, \ldots$, $A_{n-2} A_{n-1} C, A_{n-1} B C$, so they are, by what has just been proven, equivalent-by-completion to these.

Consequently the polygon P is equivalent-bycompletion to a triangle with the base b and the altitude $h=\mathrm{r}$.

Hence follows, with help of theorem 287, that two polygons of equal area are always equivalent-by-completion.
289. We may combine the two results found in this article 288 and in 283 into the following theorem: Two polygons equivalent-by-completion have always the same area; and inversely, two polygons with equal area are always equivalent-by'completion.
290. In particular two rectangles equivalent-bycompletion which have one side in common must also have their other sides congruent.
291. Also follows the theorem: If we cut a rectangle by straights into several triangles and leave out even one of these triangles, then we cannot with the remaining triangles fill out the rectangle.

In what precedes is shown that this theorem is completely independent of the Archimedes assumption. Moreover, without the application of the Archimedes assumption, this theorem 291 does not suffice of itself for demonstrating Eu. I, 39.
292. Definition. Of two polygons P and Q, we call P of lesser content (respectively, of equal, of greater content) than Q, according as the area $A(P)$ is less (equal, greater) than $A(Q)$.
293. From what precedes it is clear that the concepts of equal content, of lesser content, of greater content are mutually exclusive.
294. Further, we see that a polygon which lies
wholly within another polygon must always be of lesser content than this latter.
295. Herewith we have established the essential theorems of the theory of superficial content, wholly upon considerations of the congruence of sects and angles, and without assuming superficial content to be a magnitude.
296. Theorem. The area of any parallelogram is the product of the base by the altitude.
297. Corollary to 296. The area of any rectangle or square is the product of two consecutive sides.
298. A square whose side is the unit sect has for area this unit sect,
since

$$
I \times I=I .
$$

Any polygon has for area as many such unit sects as the polygon contains such squares on the unit sect.

The number expressing the area of a polygon will thus be the same in terms of our unit sect or in terms of a square on this sect considered as a new kind of unit, a unit surface, or unit of content. Such units, though traditional, are unnecessary and sometimes exceedingly awkward, as, for example, the acre.

Ex. 284. If twice the number expressing the area of a triangle be divided by the number expressing the base, the quotient is the number expressing the altitude.

Ex. 285. One side of a triangle is $35 \cdot 74$, and the altitude on it is $6 \cdot 3$. Find the area.
299. Theorem. If two triangles (or parallelograms)
have one angle of the one congruent to one angle of the other, their areas are proportional to the products of their sides about the congruent angles.

Fig. 114.
Let $\Varangle C \equiv \Varangle C^{\prime}$,
then $\frac{\text { Area } \triangle A B C}{\text { Area } \triangle A^{\prime} B^{\prime} C^{\prime}}=\frac{\frac{1}{2} A C \cdot B D}{\frac{1}{2} A^{\prime} C^{\prime} \cdot B^{\prime} D^{\prime}}=\frac{A C \cdot B D}{A^{\prime} C^{\prime} \cdot B^{\prime} D^{\prime}}$.
But in ${ }^{\circ} \sim \triangle$'s $B C D$ and $B^{\prime} C^{\prime} D^{\prime}, \frac{B D}{B^{\prime} D^{\prime}}=\frac{B C}{B^{\prime} C^{\prime}}$.
$\therefore \frac{\text { Area } \triangle A B C}{\text { Area } \triangle A^{\prime} B^{\prime} C^{\prime}}=\frac{A C \cdot B C}{A^{\prime} C^{\prime} \cdot B^{\prime} C^{\prime}}$.
300. Corollary to 299. The areas of similar triangles are proportional to the squares of corresponding sides.
301. Problem. To construct a rectangle, given two consecutive sides.

Construction. Tàke a straight and a perpendicular to it. From the vertex of the right angle take one given sect on the straight, the other on the perpendicular. Through their second end-points draw

Fig. 115. perpendiculars. These (by 77) meet. They intersect in the fourth vertex of the rectangle required.

Proof. By construction the figure is a parallelogram with one right angle; \therefore a rectangle.
302. Corollary to 301. So we may construct a square on any given sect.
303. Theorem. The square on the hypothenuse of any right-angled triangle is equivalent to the sum of the
 squares on the other two sides.

Hypothesis. $\triangle A B C$, r'tangled at C.

Conclusion. Square on $A B$ is equivalent to sq. on $A C$ + sq. on $B C$.

Proof. On hypothenuse $A B$, on side opposite C, construct (by 302) the sq. $A B D F$. From its vertices D, F drop $D H, F G \perp C A$, and $\therefore \| B C$. Drop $B K$, $F L \perp D H$, and $\therefore \| A C$. Then $\Varangle A B C \equiv \Varangle D B K$ (complements of $\Varangle A B K$). Also $\Varangle B D K \equiv \Varangle D F L$ (complements of $\Varangle L D F)$. Also $\Varangle D F L \equiv \Varangle A F G$ (complements of $\Varangle A F L$). \therefore (by 44), $\triangle A B C \equiv$ $\triangle D B K \equiv \triangle F D L \equiv \triangle F A G . \quad \therefore B C H K$ is sq. on $B C$, and $F G H L=$ sq. on $A C . \therefore$ sq. on $A B \equiv A F L K B+$ $2 \triangle A B C \equiv$ sq. on $B C+$ sq. on $A C$.
304. Problem. To construct an equilateral triangle on a given sect.

Construction. On the st. $A B$ from A take the given sect $A B$. At B erect to $A B$

Fig. 117. a perpendicular. On this perpendicular, from B take $B C$, the given sect. Join $A C$. At C erect to the straight $A C$ the perpendicular $C D$. On $C D$ from C take $C D$, the given sect. Join $A D$. Bisect $A D$ at E, and $A B$ at F. Erect at F to $A B$
the perpendicular $F G$. From F take $F G=A E$. $A B G$ is the required equilateral triangle.

Proof. $\overline{A G}^{2}=\overline{A F}^{2}+\overline{F G}^{2}=\left(\frac{1}{2} A B\right)^{2}+\left(\frac{1}{4} 3(A B)^{2}=\right.$ $\overline{A B}^{2}$.
305. Theorem. In any triangle, the square of a side opposite any acute angle is less than the sum of the squares of the other two sides by twice the product of either of those sides and a sect from the foot of that side's altitude to the vertex of the

Fig. 118. acute angle.

Proof. Let a, b, c denote the sides, and h denote b 's altitude, and j the sect from its foot to the acute angle A.

$$
\begin{gathered}
a^{2}-h^{2}=(b-j)^{2}=b^{2}-2 b j+j^{2}=b^{2}-2 b j+c^{2}-h^{2} \\
\therefore a^{2}=b^{2}-2 b j+c^{2}
\end{gathered}
$$

306. Theorem. In an obtuse-angled triangle the square of the side opposite the obtuse angle is greater than the sum of the squares of the other two sides by twice the product of either of those sides and a sect from the foot of that side's altitude to the vertex of the obtuse angle.

Ex. 286. Find the area of an isosceles triangle whose base is 60 and each of the equal sides 50 .

Ex. 287. If two triangles (or parallelograms) have an angle of one supplemental to an angle of the other, their areas are as the products of the sides including the supplementary angles.

Ex. 288. The area of any circumscribed polygon is half the product of its perimeter by the radius of the inscribed circle.

Ex. 289. To find the area of a trapezoid. Rule: Multiply the sum of the parallel sides (its bases) by half their common perpendicular (its altitude).

Ex. 290. The area of a trapezoid equals the product of its altitude by its median (the sect joining the bisectionpoints of the non-parallel sides).
307. To find the altitudes of a triangle in terms of its sides.

Fig. 1 ig.

Either $\Varangle A$ or $\Varangle C$ is acute. Suppose $\Varangle C$ acute,

$$
\begin{gathered}
c^{2}=a^{2}+b^{2}-2 b j(\text { by } 305) . \\
\therefore j=\frac{a^{2}+b^{2}-c^{2}}{2 b} .
\end{gathered}
$$

$$
\begin{aligned}
h_{b}^{2} & =a^{2}-j^{2}=a^{2}-\frac{\left(a^{2}+b^{2}-c^{2}\right)^{2}}{4 b^{2}}=\frac{4 a^{2} b^{2}-\left(a^{2}+b^{2}-c^{2}\right)^{2}}{4 b^{2}}= \\
& =\frac{\left(2 a b+a^{2}+b^{2}-c^{2}\right)\left(2 a b-a^{2}-b^{2}+c^{2}\right)}{4 b^{2}}= \\
& =\frac{\left[(a+b)^{2}-c^{2}\right]\left[c^{2}-(a-b)^{2}\right]}{4 b^{2}}= \\
& =\frac{(a+b+c)(a+b-c)(c+a-b)(c-a+b)}{4 b^{2}} .
\end{aligned}
$$

Put $(a+b+c)=2 s$. Then $a+b-c=2 s-2 c$.

$$
\begin{aligned}
& \therefore h_{b}{ }^{2}=\frac{2 s \quad 2(s-c)_{2}(s-b)_{2}(s-a)}{4 b^{2}} ; \\
& \therefore h_{b}=\frac{2}{b}[s(s-a)(s-b)(s-c)]^{\frac{1}{2}} .
\end{aligned}
$$

308. (Heron.) To find the area of a triangle in terms of its sides.

$$
\begin{aligned}
\Delta & =\frac{1}{2} b h_{b}=\frac{b}{2} \cdot \frac{2}{b}[s(s-a)(s-b)(s-c)]^{\frac{1}{2}} ; \\
\therefore \Delta & =[s(s-a)(s-b)(s-c)]^{\frac{1}{2}} .
\end{aligned}
$$

$$
\begin{aligned}
\text { Ex. 291. If } a^{2}=b^{2}+c^{2}, & \therefore \not \subset A=\text { r't } \Varangle . \\
& \text { If } a^{2}>b^{2}+c^{2}, \\
\text { If } a^{2}<b^{2}+c^{2}, & \therefore \not \forall A>\text { r't } \nmid \Varangle .
\end{aligned}
$$

Ex. 292. Given for the three sides of a triangle numerical expressions in terms of a unit, compute the three altitudes.

Ex. 293. The sum of the squares of two sides of a triangle is equal to twice the square of half the third side increased by twice the square of the median upon that side.

$$
\left[a^{2}+c^{2}-\frac{1}{2} b^{2}=2 m_{b}^{2}\right] .
$$

Ex. 294. The difference of the squares of two sides of a triangle is equal to twice the product of the third side by the sect from the foot of that side's altitude to the foot of its median.

$$
\left[j=\frac{a^{2}-c^{2}}{2 b}\right] .
$$

Ex. 295. Given numerical expressions for the sides of a triangle, compute the medians.

$$
2 m_{c}=\left[2\left(a^{2}+b^{2}\right)-c^{2}\right] t .
$$

309. Theorem. The product of two sides of a triangle equals the product of two sects from that vertex making equal angles with the two sides and extending, one to the base, the other to the circle circumscribing the triangle.

Proof. $\triangle C B D \sim \triangle A B E$.
310. Corollary I to 309. If $B D$ and $B E$ coincide they bisect the angle B;
$\therefore A B \cdot B C=B D \cdot B E$ $=B D(B D+D E)=B D^{2}+B D \cdot D E$ $=\overline{B D}^{2}+C D \cdot D A$ (by 248).

Therefore the square of a bisector together with the product of the sects

Fig. 120. it makes on a side equals the product of the other two sides.

3II. Corollary II to 309 . If $B D$ be an altitude, $B E$ is a diameter, for then $\Varangle B A E$ is r’t; therefore in any triangle the product of two sides equals the product of the diameter of the circumscribed circle by the altitude upon the third side.

Ex. 296. To find the bisectors of the angles of a triangle, given the sides. $\quad t_{c}=\frac{2}{a+b}[a b s(s-c)]^{\ddagger}$.

Ex. 297. To find the radius of the \odot circumscribing a triangle. Rule: Divide the product of the three sides by four times the area of the triangle. $\quad R=a b c / 4 \Delta$.

Ex. 298. The in-radius. equals area over half sum of sides.

$$
[r=\Delta / s] .
$$

Ex. 299. The side of an equilateral triangle is

$$
b=R(3)^{\frac{1}{2}}=2 r(3)^{\frac{1}{2}} .
$$

Ex. 300. The radius of circle circumscribing triangle $7,15,20$, is $12 \frac{1}{2}$. The in-radius is 2 .
Ex. 30 r. To find the radius of an escribed circle. Rule: Divide the area of the triangle by the difference between half the sum of its sides and the tangent side.

$$
\left[r_{1}=\Delta /(s-a)\right] .
$$

Ex. 302. $\Delta=\left(r r_{1} r_{2} r_{3}\right)^{\frac{1}{2}}$.
Ex. 303. $1 / r_{1}+1 / r_{2}+1 / r_{3}=1 / r$.
Ex. 304. The sum of the four squares on the four sides of any quadrilateral is greater than the sum of the squares on the diagonals by four times the square on the sect joining the mid-points of the diagonals.

Ex. 305. The sum of the squares on the four sides of a parallelogram is equal to the sum of the squares on the diagonals.

Ex. 306. The product of the external segments (sects). made on one side by the bisector of an external angle of a triangle equals the square of the bisector together with the product of the other two sides.

Ex. 307. Find r_{1}, r_{2}, r_{3}, when $a=7, b=15, c=20$.

The Mensuration of the Circle.

312. We assume that with every arc is connected a sect such that if an arc be cut into two arcs, this sect is the sum of their sects; moreover, this sect is not less than the chord of the arc, nor, if the arc be minor, is it greater than the sum of the sects on the tangents from the extremities of the arc to their intersection. This sect we call the length of the arc.
313. In practical science, every sect is expressed by the unit sect preceded by a number.

From our knowledge of the number and the unit sect it multiplies, we get knowledge of the sect to be expressed, and we can always construct this expression. For science, the unit sect is the contimeter [$\mathrm{cm} \cdot$.], which is the hundredth part of the sect called a meter, two marked points on a special bar of platinum at Paris, when the bar is at the temperature of melting ice.
314. If an angle of an equilateral triangle be taken at the center of a circle, the chord it intercepts equals the radius. Therefore the length of a semicircle is not less than three times its radius.

It is in fact greater, since joining a point on the arc of one of these chords to its extremities gives a pair of chords together greater than the radius.

Again, taking any diameter, then the diameter perpendicular to this, then perpendiculars at the
four extremities of these, we have a square of tangents equal to $8 r$.

Therefore the length of a semicircle is not greater than four times its radius. It is in fact less, as is seen by drawing a tangent at any fifth point of the circle. The number prefixed to the radius in the expression for the length of the semicircle is designated by the symbol π.

The length of any circle is $2 \pi r$.
So the lengths of circles are proportional to their radii.

Historical Note on π.

315. We have proved that π is greater than 3 and less than 4, but the Talmud says: "What is three handbreadths around is one handbreadth through," and our Bible also gives this value 3 . [I Kings vii. 23; II Chronicles iv. 2.]

Ahmes (about 1700 B.c.) gave $[4 / 3]^{4}=3 \cdot 16$. Archimedes placed it between $3 \frac{10}{\frac{1}{1}}$ and $3 \frac{1}{7}$. Ptolemy used $3 \frac{17}{120}$.

The Hindoo Aryabhatta (b. 476) gave 3.1416; the Arab Alkhovarizmi (flourished 813-833) gave 3.1416; Adriaan Anthoniszoon, father of Adriaan Metius [in 1585] gave 355/ェi3=3•1415929; Ludolf van Ceulen [1540-1610] gave the equivalent of over 30 decimal places

$$
[\pi=3 \cdot 141592653589793238462643383279+]
$$

(the decimal fraction was not yet invented), and wished it cut on his tomb at Leyden. Vega gave 140 decimal places; Dase, 200; Richter, 500.

In 1873 Wm . Shanks gave 707 places of decimals. The symbol π is first used for this number in Jones's "Synopsis Palmariorum Matheseos," London, r 706.

In 1770 Lambert proved π irrational, that is, inexpressible as. a fraction. In 1882 Lindemann proved π transcendent, that is, not a root of any algebraic equation with rational coefficients, and hence geometrically inconstructable.
316. Kochansky (1685) gave the following simple construction for the length of the semicircle:

Fig. 12 I .
At the end-point A of the diameter $B A$ draw the tangent to the circle $\odot C(C A)$. Take $\Varangle A C E=$ half the angle of an equilateral triangle $=\frac{1}{3}$ r't \Varangle. On the tangent, take $E F=3 r$.

Then $B F$ is with great exactitude the length of the semicircle. In fact $B F=r\left[{ }^{3} 3^{\frac{1}{3}}-2(3)^{f}\right]^{\dagger}=3 \cdot 1415 r$
317. Definition. The circle with the unit sect for radius is called the unit circle.
318. Definition. The length of the arc of unit circle intercepted by an angle with vertex at center is called the size of the angle.
319. Definition. The angle whose size is the unit sect is called a radian.
320. Theorem. A radian intercepts on any circle an arc whose length is that circle's radius.

32I. Corollary to 320 .
If u denote the number of radians in an angle and l the length of the arc it intercepts on circle of radius r, then

$$
u=l / r .
$$

322. Definition. An arc with the radii to its end-points is called a sector.
323. Definition. The area of a sector is the product of the length of its are by half the radius.
324. Corollary to 323 and 314.

The area of any circle, $\odot=r^{2} \pi$.
325. Corollary to 324 .

The areas of circles are proportional to the areas of squares on their radii.

Ex. 308. The areas of similar polygons are as the squares of corresponding sides.

Ex. 309. Find the length of the circle when $r=14$ units.
Ex. 3 ro. Find the diameter of a wheel which in a street 19,635 meters long makes 3^{125} revolutions.

Ex. 3 ir. Find the length and area of a circle when $r=7$.

Ex. 312. If we call one-ninetieth of a quadrant a degree of arc and its angle at the center a degree of angle, find the size of this \Varangle (size of $\Varangle \mathrm{I}^{\circ}$).

Ex. 313. How many degrees in a radian?
Ex. 314. The angles of a triangle are as $1: 2: 3$. Find the size of each. Find the number of degrees in each.

Ex. 315 . The angles of a quadrilateral are as $2: 3: 4: 7$. Find each in degrees and radians.

Ex. 316. In what regular polygon is every angle $168 \frac{1}{2}^{\circ}$?
Ex. 317. If a r't \Varangle be divided into $\frac{n}{4}$ congruent parts, how many of them would a radian contain?

Ex. 318. Find the length of the arc pertaining to a central angle of 78° when $r=1 \cdot 5$ meters.

Ex. 319. Find an arc of 112° which is 4 meters longer than its radius.

Ex. 320. Calling $\pi=\frac{22}{7}$, find r when 64° are 70.4 meters.
Ex. 32 I. Find the inscribed angle cutting out one-tenth of the circle.

Ex. 322. An angle made by two tangents is the difference between 180° and the smaller intercepted arc. Make this statement exact.

Ex. 3^{22}. Find the size of half a right angle.
Ex. 324. Find the size of $30^{\circ} ; 45^{\circ} ; 60^{\circ}$.
Ex. 325. How many radians in π° ? in 240° ?
Ex. 326. Express the size of seven-sixteenths of a right angle.

Ex. 327. How many radians in the angle made by the hands of a watch at $5: 15$ o'clock? at quarter to 8 ? at 3:30? at 6:05?

Ex. 328. The length of half a quadrant in one circle equals that of two-thirds of a quadrant in another. Find how many radians would be subtended at the center of the first by an arc of it equal in length to the radius of the second.

Ex. 329. Find the number of degrees in an angle whose size is $\frac{1}{2}$; is $\frac{2}{3}$; is $\frac{3}{4}$; is $\frac{1}{2} \frac{1}{1}$; is $\frac{2}{3} \pi$.

Ex. 330. The size of the sum of two angles is $\frac{2 \cdot 5}{12} \pi$ and their difference is 17°; find the angles.

Ex. 331. How many times is the angle of an isosceles triangle which is half each angle at the base contained in a radian?

Ex. 332. Two wheels with fixed centers roll upon each other, and the size of the angle through which one turns gives the number of degrees through which the other
turns in the same time. In what proportion are the radii of the wheels?

Ex. 333. The length of an arc of 60° is $36 \frac{2}{3}$; find the radius.

Ex. 334. Find the circle where $\forall_{3} 0^{\circ}$ is subtended by arc 4 meters long.

Ex. 335. If \odot be area of circle, prove

$$
\mathrm{I} /\left[\odot I_{1}\left(r_{1}\right)\right]^{\frac{1}{2}}+\mathrm{I} /\left[\odot I_{2}\left(r_{2}\right)\right]^{\frac{1}{2}}+\mathrm{r} /\left[\odot I_{3}\left(r_{3}\right)\right]^{\frac{1}{2}}=\mathrm{x} /[\odot I(r)]^{\frac{1}{2}} .
$$

Ex. 336. The perimeters of an equilateral triangle, a square, and a circle are each of them I_{2} meters. Find the area of each of these figures to the nearest hundredth.

Ex. 337. An equilateral triangle and a regular hexagon have the same perimeter; show that the areas of their inscribed circles are as 4 to 9 .

Ex. 338. Find the number of degrees in the arc of a sector whose area equals the square of its radius.

Ex. 339. Find area of sector whose radius equals 25 and the size of whose angle is $\frac{3}{4}$.

Ex. 340. The length of the arc of a sector is 16 meters, the angle is $\frac{1}{6}$ of a r’t \Varangle. Find area of sector.

Ex. 34 r . If $2 \Delta \mathrm{~s}$ have a common base, their areas are as the segments into which the join of the vertices is divided by the common base.

Ex. 342. The area of a circum-polygon is half perimeter by in-radius [$\frac{1}{2} p r$].

Ex. 343. The area of a rhombus is half the product of its diagonals.

Ex. 344. If we magnify a quad' until a diagonal is tripled, what of its area?

Ex. 345. If the sum of the squares on the three sides of a $\Delta=8$ times the square of a median the Δ is r't-angled.

Ex. 346. Lengthening through A the side b of a Δ by c and c by b, they become diagonals of a symtra whose area is to that of the Δ as $(b+c)^{2}$ to $b c$.

Ex. 347. If upon the three sides of a r't Δ as corresponding sides similar polygons are constructed that on the hypothenuse $=$ the sum of those on the 1 s .

Ex. 348. The area of any r't $\Delta=$ the sum of the areas of the two lunes or crescent-shaped figures made by describing semi-®s outwardly on the is and a semi-ఠ on the hypothenuse through the vertex of the r't \Varangle [called the lunes of Hippocrates of Chios (about 450 b.c.)].

Ex. 349. (Pappus.) Any two $\| s$ 'ms on two sides of a Δ are together = to a \|y'm on the third side whose consecutive side is $=$ and $\|$ to the sect joining the common vertex of the other $\| g$ 'ms to the intersection of their sides $\|$ to those of the Δ (produced).

Ex. 350. If all the sides of a quad' are unequal, it is impossible to divide it into $=\Delta s$ by straights from a point within to its vertices.

Ex. 351. The joins of the centroid and vertices of a Δ trisect it.

Ex. 352. Make a symtra triple a given symtra.
Ex. 353. On each side of a quad' describe a sq' outwardly. Of the four Δs made by joining their neighboring corners, two opposite $=$ the other two and $=$ the quad'.

Ex. 354. If from an $\Varangle \alpha$ we cut two $=\Delta s$, one \downarrow, the sq' of one of the $=$ sides of the $\downarrow \Delta$ equals the product of the sides of the other Δ on the arms of the $\Varangle \alpha$.

Ex. 355. If any point within a $\|$ 'g'm be joined to the four vertices, one pair of Δs with $\|$ bases $=$ the other.

Ex. 356. One median of a trapezoid cuts it into =parts.
Ex. 357. Transform a given Δ into an $=\psi \Delta$.
Ex. 358. Transform a given $\psi \Delta$ into a regular Δ.
Ex. 359. Construct a polygon \sim to two given \sim polygons and $=$ to their sum.

Ex. 360. If a vertex of a Δ moves on a \perp to the opposite side, the difference of the squares of the other sides is constant.

Ex. 36r. The \Varangle bi’s of a rectangle make a sq", which is half the sq' on the difference of the sides of the rectangle.

Ex. 362. The bisectors of the exterior $\Varangle \mathrm{s}$ of a rectangle make a sq' which is half the sq' of the sum of the sides of the rectangle.

Ex. 363 . The sum of the squares made by the bisectors
of the interior and exterior $\Varangle s$ of a rectangle equals the sq' of its diagonal; their difference is double the rectangle.

Ex. 364. If on the hypothenuse we lay off from each end its consecutive side, the sq' of the mid sect is double the product of the others.

Ex. 365 . In $\triangle A B C, B D \cdot a=B F \cdot c$.
Ex. 366. In a trapezoid, the sum of the sq's on the diagonals equals the sum of the sq's on the non- $\|$ sides plus twice the product of the $\|$ sides.

Ex. 367. Prove $r_{1}+r_{2}+r_{3}=r+4 R$.
Ex. 368. To bisect a Δ by a st' through a given point in a side; by a st' $\|$ to a side; \perp to a side.

Ex. 369. Trisect a $\psi \Delta$ by $\| s$.
Ex. 370. A quad' equals a Δ with its diagonals and their \Varangle as sides and included \Varangle.

Ex. 371. The areas of $\Delta \mathrm{s}$ inscribed in a \odot are as the products of their sides.

Ex. 372. Construct an equilateral Δ, given the altitude.
Ex. 373. Δ from $\Varangle \mathrm{s}$ and area.
Ex. 374. Triple the squares of the sides of a Δ is quadruple the sq's of the medians.

Ex. 375. Any quad' is divided by its diagonals into four $\Delta \mathrm{s}$ whose areas form a proportion.

Ex. 376. $A H \cdot H D=B H \cdot H E$.
Ex. 377. The area of a $\%$ r't Δ is $\frac{1}{4} c^{2}$.
Ex. 378. Construct $\psi=$ given Δ with same b and $h b$.
Ex. 379. Bisect any quad' by a st' from any vertex; from any point in a side.

Ex. 380. Any st' through the bisection-point of a diagonal bisects the $\| g m$.

Ex. 38r. $3\left(a^{2}+b^{2}+c^{2}\right)=4\left(m a^{2}+m b^{2}+m c^{2}\right)$.
Ex. 382. Upon any st' the sum of the \perp s from the vertices of a Δ is thrice the \perp from its centroid.

Ex. 383. In r't $\Delta, 5 c^{2}=4\left(m_{a}^{2}+m_{\iota}{ }^{2}\right)$.
Ex. 384. Trisect a quad'.
Ex. 385. Find $\Delta=\triangle A B C$, but with sides m, n; with side m and adjoining $\Varangle o$; and opposite $\Varangle \delta$.

Ex. 380. Find $+\triangle=\triangle A B C$, but with base m; with side m.

Ex. 387. Find $\Delta=$ given polygon.
Ex. 388. From any point in an equilateral Δ the three $\perp \mathrm{s}$ on the sides together $=$ the altitude.

Ex. 389. Sects from the bisection-point of a non-\| side of a trapezoid to oppsite vertices bisect it.

Ex. 390. If the products of the segments of two intersecting sects are $=$, their ends are concyclic.

Ex. 39r. Area of r't $\Delta=$ product of the segments of the hypothenuse made by \perp from I.

Ex. 392. In r't Δ, areas of Δs made by h_{c} are proportional to areas of their in- \odot s.

Ex. 393. $\mathrm{I} / h_{a}+\mathrm{I} / h_{b}+\mathrm{I} / h_{c}=\mathrm{I} / r$.
Ex. 394. $h_{a} h_{b} h_{c}=(a+b+c)^{3} r^{3} / a b c$.
Ex. 395. If $h_{a^{\prime}}, h_{b^{\prime}}, h_{c}{ }^{\prime}$ be the perpendiculars from any point within a Δ, upon the sides, prove $h_{a}{ }^{\prime} / h_{a}+h_{b}{ }^{\prime} / h_{b}$ $+h_{c}{ }^{\prime} / h_{c}=\mathrm{I}$.

Ex. 396. $r=\frac{1}{2} A I \cdot B I \cdot C I(a+b+c) / a b c$.
Ex. 397. $a b c=a(A I)^{2}+b(B I)^{2}+c(C I)^{2}$.
Ex. 398. $(A I)^{2}+(B I)^{2}+(C I)^{2}=a b+a c+b c-6 a b c /(a+$ $b+c$).

Ex. 399. $R+r=\perp \mathrm{s}$ from O on sides.
Ex. 400. In 小 Δ, if $b=h_{b}$, then $\frac{5}{8} b=R$.
Ex. $401 . R=2 R$ of $\triangle D E F$.
Ex. 402. Area of $\Delta I_{1}, I_{2}, I_{3}=a b c / 2 r$.
Ex. 403. If q_{a}, q_{b}, q_{c} be the sides of the 3 sq's inscribed in a Δ, then $\mathrm{I} / q_{a}=\mathrm{I} / h_{a}+\mathrm{I} / a ; \mathrm{I} / q_{b}=\mathrm{I} / h_{b}+\mathrm{I} / b ; \mathrm{I} / q_{c}$ $=1 / h_{c}+1 / c$.

Ex. 404. $\mathrm{I} / r=\mathrm{I} / h_{a}+\mathrm{I} / h_{b}+\mathrm{I} / h_{c} ; \quad \mathrm{I} / r_{1}=-\mathrm{I} / h_{a}+\mathrm{I} / h_{b}$ $+\mathrm{I} / h_{c} ; \mathrm{I} / r_{2}=\mathrm{I} / h_{a}-\mathrm{I} / h_{b}+\mathrm{I} / h_{c} ; \mathrm{I} / r_{3}=\mathrm{I} / h_{a}+\mathrm{I} / h_{b}-\mathrm{I} / h_{c}$.

Ex. 405. $2 / h_{a}=1 / r-\mathrm{I} / r_{1}=\mathrm{I} / r_{2}+\mathrm{I} / r_{3} ; \quad 2 / h_{b}=\mathrm{I} / r-\mathrm{I} / r_{2}$ $=\mathrm{I} / r_{3}+\mathrm{I} / r_{1} ; 2 / h_{c}=\mathrm{I} / r-\mathrm{I} / r_{3}=\mathrm{I} / r_{1}+\mathrm{I} / r_{2}$.

Ex. 406. $h_{a} / 2=r r_{1} /\left(r_{1}-r\right)=r_{2} r_{3} /\left(r_{2}+r_{3}\right)$.
Ex. 407. $R^{2}=(I O)^{2}+2 r R=\left(I_{1} O\right)^{2}-2 r_{1} R$.
Ex. 408. Find the segments of b made by t_{b}.
Ex. 409. The base of a Δ is 32 feet and its height 20 feet;
what is the area of the Δ formed by drawing a st' $\| b$ 5 feet from B ? Where must a st' $\| b$ be drawn so as to divide the Δ into 2 parts of $=$ area?

Ex. 4 ro. Upon each side a of a sq' as diameter semicircles are described within the sq', forming 4 leaves; find the area of a leaf.

CHAPTER XI.

GEOMETRY OF PLANES.

326. Theorem. Two parallels determine a plane.

Proof. By definition they are coplanar. Any plane on these parallels would be on three noncostraight points of this given plane, hence (by I 4) identical with it.
327. Corollary to 326. If a plane contains one of two parallels and any point of the other, it contains both parallels.
328. Theorem. Three planes which do not contain the same straight cannot have more than one point in common.

Proof. If they had two points in common (by I 5) the straight determined by those two points would be in each.
329. Corollary to 328 . If three planes not containing the same straight intersect in pairs, the three straights of intersection [common sections, or meets] are either copunctal or parallel in pairs.
330. Corollary to 329 . If a plane on one two parallels meet a plane on the other [neither that of the $\| \mathrm{s}]$, the meet is parallel to each of the two parallels.

For (by 9) the three planes can have no point
in common, since a point common to the three would be common to the two parallels.

Ex. 4 II. If a st' cross three copunctal st's, the four are copunctal or coplanar.

Ex. 412 . If each of three st's crosses the others, the three are coplanar or copunctal.

Ex 4 I 3 . The meet of planes determined by two pairs of st's on A is on A.

Ex. 4I4. If A is on a and α, it is on the intersections of α with planes on a.
331. Problem. Through a given point A of a given plane α to pass straights a and bin α.

Fig. 122.
Solution. There are (by I 7) in the plane at least three non-costraight points, A, B, C. But (by I 5) A and B determine a straight in the plane α. So do A and C.
332. Problem. To put two planes on the straight a.

Fig. riz.
Solution. On a (by I 2) are at least two points, A and B. There are (by I 7) at least four non-
costraight non-coplanar points, A, B, C, D. Therefore A, B, and C are not costraight, otherwise (by ir) A, B, C, D would be coplanar. Therefore (by I 3) A, B, C determine a plane which (by I 5) contains a.

Just so A, B, D determine a plane on a.
333. Theorem. If a straight be perpendicular to each of two intersecting straights, it will be perpendicular to every other straight in their plane and on their point of intersection.

Hypothesis. Let $B P$ be \perp to $B A$ and $B C$. Let $B D$ be in plane $A B C$.

Conclusion. $B P \perp B D$.

Fig. 124.
Proof. Take A and C on the sides of the angle at B in which $B D$ lies. Let D be the point where $A C$ crosses $B D$. Take $B P^{\prime}=B P$. Then (by 43), $\triangle P B A \equiv \triangle P^{\prime} B A$, and $\triangle P B C \equiv \triangle P^{\prime} B C$.
$\therefore P A=P^{\prime} A$ and $P C=P^{\prime} C ; \cdot($ by 58$) \triangle P A C \equiv$ $\triangle P^{\prime} A C$.
$\therefore \Varangle P C D \equiv \Varangle P^{\prime} C D ; \therefore\left(\right.$ by 43) $\triangle P C D \equiv \triangle P^{\prime} C D$.
$\therefore P D=P^{\prime} D ; \therefore($ by 58$) \quad \triangle P B D \equiv \triangle P^{\prime} D B$.
$\therefore \Varangle P B D \equiv \Varangle P^{\prime} B D ; \therefore B P \perp B D$.
334. Definition. A straight is said to be perpendicular to a plane when it is perpendicular to every straight in that plane which passes through its foot,--that is, the point it has in common with the plane, called also their pass.

Then also the plane is said to be perpendicular to the straight.
335. Definition. A straight is said to be parallel to a plane when it has no point in common with the platue.

Then also the plane is said to be parallel to the straight.
336. Definition. A straight neither on the plane, nor parallel nor perpendicular to the plane, is said to be oblique to the plane. A sect from a point to a plane, if it be not perpendicular, is called an oblique.

Fig. 125.
337. Problen. To construct a plane perpendicular to a given straight a at a given point A.

Solution. Put (by 33^{2}) through a two planes. In each of them at A (by 16 r) erect a perpendicular to a. The plane of these perpendiculars is (by 333 and 334) perpendicular to a at A.
338. Problem. To construct a plane perpendicular to a given straight a through a given point P not on a .

Solution. By 160, drop $P A \perp a$.
By 332 and 161, erect another perpendicular $A B$ to a at A. Then (by 333 and 334) plane $P A B \perp a$.
339. Problem. To erect a perpendicular to a given plane r at a given point A.

Solution. Take (by 331) through A two straights, a, b, in the plane γ. Find (by 337) a plane α which at A is \perp to a; also a plane β which at A is $\perp b$.

Fig. 126.

These two planes (by 329) intersect in a straight c through A.

Since c is in α, \therefore (by 334) c is $\perp a$.
Since c is in $\beta, \therefore c$ is $\perp b$.
\therefore (by 333 and 334) $c \perp r$.
340. Corollary to 339. Through a given point in a plane there is only one perpendicular to that plane.

Fig. 127.

Else each would be \perp to $B C$, the meet of their plane β with the given plane α.
341. Problem. To drop a perpendicular to a given plane α from a given point P.

Construction. In α take any straight a.

Fig. 128.
From P (by 160) drop $P A \perp a$. In α (by 161) erect $b \perp a$. From P drop $P B \perp b$. Then $P B \perp \alpha$.

Proof. Produce $P B$ through B, taking $B P^{\prime}=B P$. Then (by 43) $\triangle P B A \equiv \triangle P^{\prime} B A ; \quad \therefore P A=P^{\prime} A$. Further, since $a \perp A P$ and $a \perp A B, \therefore$ also (by 333) $a \perp A P^{\prime}$. Thus if M be a second point on a, \therefore r't $\Varangle P A M=\Varangle P^{\prime} A M$.
\therefore (by 43) $\triangle P A M \equiv \triangle P^{\prime} A M ; \quad \therefore P M=P^{\prime} M$.
\therefore (by 58) $\triangle P B M \equiv \triangle P^{\prime} B M ; \therefore \Varangle P B M$ is r't.
But by construction $\Varangle P B A$ is r’t, \therefore (by 333 and 334) $P B \perp \alpha$.
342. Corollary to 341. From a point P without a plane α, there is only one perpendicular to the plane α.

Take (by 341) $P B \perp \alpha$. Then if A be any other point of α, the r’t $\triangle P B A$ has (by 79) the $\Varangle P A B$ acute.
343. Corollary to 342 . From a point to a plane, the perpendicular is less than any oblique. Equal obliques meet the plane in a circle, whose center is the foot of the perpendicular. If through the center of a circle a perpendicular to its plane be taken, then sects from a point of this perpendicular to the circle are equal.
344. Theorem. If a straight is perpendicular to each of three straights copunctal with it, the three are coplanar.

Hypothesis. $P B \perp B A, B D, B C$.
Conclusion. $B C$ in plane $B D A[\alpha]$.
Proof. Let plane $P B C[\beta]$ meet plane α in $B C^{\prime}$. Then (by 333) $P B \perp B C^{\prime}$. By hypothesis $P B \perp B C$. But (by 5^{2}) in β is only one perpendicular to $P B$ at $B . \therefore B C^{\prime}$ is identical with $B C$.
345. Corollary to 344. Through a given point
in a straight there is only one plane perpendicular to that straight.

Fig. 129.
346. Theorem. All points, A, which with two fixed points B, C given equal sects, $A B=A C$, are in the plane α bisecting at right angles the sect

$B C$, and inversely every point A^{\prime} in the plane α bisecting at right angles the sect $B C$ gives $A^{\prime} B=$ $A^{\prime} C$.

Proof. For the straight from A to the bisection point D of $B C$ makes $\triangle A D B$ $\equiv \triangle A D C$ and \therefore (by 344) is in α.

Inversely every straight $A^{\prime} D$ is $\perp B C$ and \therefore makes $\triangle A^{\prime} D B \equiv \triangle A^{\prime} D C$, and $\therefore A^{\prime} B=A^{\prime} C$.
347. Corollary to 338. Through a given point without a given straight there is only one plane perpendicular to that straight.

Take (by 338) α through P and \perp to a at B.

Then if A is any other point of a, the ret $\triangle P B A$ has (by 79) the $\Varangle P A B$ acute. So plane β through P and \perp to a could not pass through A, and so, passing through B, it is (by 345) identical with α.
348. Theorem. If $P B \perp-$ $B A C$ and $B A \perp A C$, then $P A \perp A C$.

Proof. Make $A C=B P$.

Fig. 131.
\therefore (by 43) $\triangle C A B \equiv$
$\triangle P B A . \therefore C B=P A, \therefore$ (by 58) $\quad \triangle C B P \equiv \triangle P A C$, $\therefore \Varangle C B P \equiv \Varangle P A C$.

Fig. 132.
But by hypothesis $\Varangle C B P$ is right.
Ex. 415. If $P B \perp B A C$ and $P A \perp A C$, then $B A \perp A C$.
Ex. 416. If $P B \perp B A C$ and $B A \perp A C$, all $\perp \mathrm{s}$ to $A C$ from points in $P B$ go to A.
Ex. 417. If $P H \perp A B C$ (H is orthocenter), then $P A \perp$ to $A K \| B C$.
349. Theorem. Two perpendiculars to a plane are coplanar.

Hypothesis. $\quad P B, P^{\prime} A \perp \alpha$ at B, A.
Conclusion. P^{\prime} is in the plane $A B P$.
Proof. In α erect $A C \perp A B$.
\therefore (by 348) $A C \perp A P$. But by hypothesis $A C \perp A P^{\prime}$.
\therefore (by 344) A, P^{\prime}, P, B are coplanar.

Fig. 133.
350. Corollary to 349 and 342. Two perpendiculars to a plane are parallel.
351. Inverse of 350 . If the first of two parallels is perpendicular to a plane, the second is also perpendicular to that plane.

For the perpendicular erected to the plane from the foot of the second is (by 350) parallel to the first and so (by IV) identical with the second.
352. Theorem. If one plane be perpendicular to one of two intersecting straights, and a second plane perpendicular to the second, they meet and their meet is perpendicular to the plane of the two straights.

Hypothesis. Let α be $\perp C A$ at A and β be $\perp C B$ at B.

Proof. The meet $A D$ of α with plane $A C B$ is (by 334) $\perp A C$, and likewise $B D \perp B C ; \therefore$ (by 77)
$A D$ meets $B D$. Thus the planes α and β, having D in common, meet in $D P$, and (by 351) their meet $P D$ is \perp to a straight through $D \|$ to $A C$, and also \perp to a straight through $D \|$ to $B C$.

Fig. 134.
353. Theorem. Two straights, each parallel to the same straight, are parallel to one another, even though the three be not coplanar.

For a plane \perp to the third will (by 35 I) be \perp to each of the others; \therefore (by 350) they are $\|$.

Ex. 4 18. Are st's || to the same plane \|? Are planes || to the same st' $\|$?

Ex. 419. A plane \| to the meet of two planes meets them in $\| \mathrm{s}$.
354. Definition. The projection of a point upon a plane is the foot of the perpendicular from the point to the plane.

The projection of a straight upon a plane is the assemblage of the projections of all points of the straight.
355. Theorem. The projection of a straight on a plane is the straight through the projections of any two of its points.

Given $A^{\prime}, P^{\prime}, B^{\prime}$, the projections of A, P, B, points of the straight $A B$, on the plane α.

To prove P^{\prime} in the straight $A^{\prime} B^{\prime}$.
Proof. $A, A^{\prime}, B, B^{\prime}$ are (by 349) coplanar. P is (by I 5) in this same plane, \therefore (by 350 and 327) so is $P P^{\prime} ; \therefore$ (by 9) $A^{\prime}, P^{\prime}, B^{\prime}$ are costraight.

Fig. 135 .
356. Corollary to 355 . A straight and its projection on a given plane are coplanar. If a straight intersects a plane, its projection passes through the point of intersection. A straight parallel to a plane is parallel to its projection on that plane.
357. Theorem. A straight makes with its own

Fig. 136.
projection upon a plane a less angle than with any other straight in the plane.

Hypothesis. Let A^{\prime} and $B A^{\prime}$ be the projection of A and $B A$ on α, and $B C$ any other straight in α, through B.

Conclusion. $\Varangle A B A^{\prime}<\Varangle A B C$.
Proof. Take $B C=B A^{\prime}$. Then $A A^{\prime}<A C$. (The perpendicular is the least sect from a point to a straight.)
$\therefore \Varangle A B A^{\prime}<\Varangle A B C$.
(In two \triangle 's, if $a=a^{\prime}, b=b^{\prime}, c<c^{\prime}$, then $\Varangle C<\Varangle C^{\prime}$.)
358. Definition. The angle between a straight and its projection on a plane is called the inclination of the straight to the plane.

Ex. 420. One of three copunctal st's makes $=\not \boxed{s}$ with the others if its projection on their plane bisects their \Varangle.

Ex. 42 I. An oblique makes with some st' in the plane through its foot any given $\Varangle<$ the supplement of its inclination and $>$ its inclination.

Ex. 422. Equal obliques from a point to a plane are equally inclined to it.
359. Definition. Parallel planes are such as nowhere meet.
360. Theorem. Planes perpendicular to the same straight are parallel.

Proof. They cannot (by 345 and 347) have a point in common.

Ex. 423. A st' and a plane \perp to the same st' are \|.
361. Theorem. Every plane through only one of two parallels is parallel to the other.

Given $A B \| C D$ in α, and β another plane through $A B$.

To prove $C D \| \beta$.

Since $A B$ is in α and in β, it contains (by 9) every point common to the two planes.

Fig. 137.
But $C D$ is wholly in α. So to meet β it must have a point in common with α and β, that is, it must meet $A B$. But by hypothesis $A B \| C D$.

Ex. 424. Through a given point to draw a st' || to two given planes.

Ex. 425. If $a \| \alpha$, and b the meet of α with β, β on a, then $a \| b$.

Ex. 426. Through A determine a to cut b and c.
362. Problem. Through either of two straights not coplanar to pass a plane parailel to the other.

Fig. 138.
If $A B$ and $C D$ are the given straights, take $C F \| A B$. Then (by 361) $D C F \| A B$.

Determination. There is only one such plane. For, through $D C$ any plane $\| A B$ meets plane $A B C$ in the parallel to $A B$ through C, \therefore is identical with $C D F$.

Ex. 427. Through a point without a plane pass any number of st's $\|$ to that plane.

Ex. 428. Through a point without a st' pass any number of planes \| to that st'.

Ex. 429. Planes on $a \| \alpha$ meet α in $\|$ s.
Ex. 430. If $a \| \alpha$ and $a \| \beta$, then $a \|$ to the meet $\alpha \beta$.
363. Problem. Through any given point P to pass a plane parallel to any two given straights,

Fig. 139.
a, b. [The plane determined by the parallel to a through P, and the parallel to b through P.] [There is only one such plane.]

Ex. 431. Through two non-coplanar straights one and only one pair of $\|$ planes can be passed.
364. Theorem. The intersections of two parallel planes with a third plane are parallel.

Proof. They cannot meet, being in two parallel planes; yet they are coplanar, being in the third plane.
365. Corollary to 364. Parallel sects included between parallel planes are equal.

Ex. 432. If two || planes meet two || planes, the four meets are $\|$.

Ex. 433. If $a \|$ to the meet $\alpha \beta$, then $a \| \alpha$ and $a \| \beta$.
Ex. 434. If $\alpha \| \beta, a \perp \alpha$ is $\perp \beta$.
Ex. 435. Through A draw $\alpha \| \beta$. [Solution unique.]
Ex. 436. If, in α, a cross a^{\prime}, in β, b cross b^{\prime}, and $a \| b$, $a^{\prime} \| b^{\prime}$, then $\alpha \| \beta$.

Ex. 437. Through A all st's $\| \alpha$ are coplanar.
Ex. 438. Two planes || to a third are \|.
Ex. 439. The intercepts on $\|$ s between α and $a \| \alpha$ are $=$.
Ex. 440. If $A B \| \alpha$ and $B C \| \alpha$, then plane $A B C \| \alpha$.
Ex. 441. If three sects are $=$ and $\|$, the Δs of their adjoining ends are \equiv and $\|$.

Ex. 442. If A in $\alpha\|a, A B\| a$ is in α.
366. Theorem. If two angles have their sides respectively parallel and on the same side of the straight through their vertices, they are equal.

Fig. 140.
Hypothesis. $A B \| A^{\prime} B^{\prime}$ with A and A^{\prime} on the same side of $B B^{\prime}$; also $C B \| C^{\prime} B^{\prime}$ with C and C^{\prime} on same side of $B B^{\prime}$.

Proof. From A take (by 66) $A A^{\prime} \| B B^{\prime} ; \quad \therefore$ (by 95) $A A^{\prime}=B B^{\prime}$ and $A^{\prime} B^{\prime}=A B$. In same way $C C^{\prime} \|$ and $=B B^{\prime}$ and $B^{\prime} C^{\prime}=B C$. But then $A A^{\prime}=C C^{\prime}$ and (by 353) $A A^{\prime} \| C C^{\prime} ; \therefore$ (by ıо०) $A C=A^{\prime} C^{\prime} ; \therefore$ (by 58) $\triangle A B C \equiv \triangle A^{\prime} B^{\prime} C^{\prime}$.
367. Corollary to 366 . Parallels intersecting the same plane are equally inclined to it.
368. Definition. Let two planes, α, β, intersect in the straight a. Let A and A^{\prime} be points on a. Erect now at A and A^{\prime} perpendiculars to a in one hemiplane α^{\prime} of α, and also in hemiplane β^{\prime} of β. Then (by 366) the angle of the perpendiculars at A is equal to the angle of the perpendiculars at A^{\prime}.

Fig. 141.
We call this angle the inclination of the two hemiplanes α^{\prime} and β^{\prime}.

When the inclination is a right angle the planes are said to be perpendicular to each other.
369. Theorem. If a straight is perpendicular to a given plane, any plane containing this straight is perpendicular to the given plane.

Proof. At the foot of the given perpendicular erect in the given plane a perpendicular to the
meet of the planes. From the definition of a perpendicular to a plane (334) the given perpendicular makes with this a r't \Varangle; but this angle is (by 368) the inclination of the planes.

Ex. 443. A plane \perp the meet of two planes is \perp to each; and inversely.

Ex. 444. Through a in α draw $\beta \perp \alpha$.
369 (b). Corollary to 369 . A straight and its projection on α determine a plane perpendicular to α.
370. Theorem. If two planes are perpendicular to each other, any straight in one, perpendicular to their meet, is perpendicular to the other.
371. Corollary to 370 . If two planes are perpendicular to each other, a straight from any point in their meet, perpendicular to either, lies in the other.

For the perpendicular to their meet in one is perpendicular to the other, and (by 340) there is only one perpendicular to a plane at a point.

Ex. 445. If A in $\alpha \perp \beta$, from $A, a \perp \beta$ is in α.
Ex. 446. If a st' be $\|$ to a plane, a plane \perp to the st' is \perp to the plane.
372. Corollary to 371 . If each of two intersecting planes is perpendicular to a given plane, their meet is perpendicular to that plane.

Proof. The perpendicular to this third plane from the foot of the meet of the others is (by 371) in both of them.

Ex. 447. Through a st' $\| \alpha$ to pass $\beta \| \alpha$.
Ex. 448. Through a draw $\alpha \perp \beta$.
Ex. 449. Through A draw $\alpha \perp \beta$ and γ.
373. Theorem. If two straights be cut by three parallel planes the corresponding sects are proportional.

Fig. 142.
Let $A B, C D$ be cut by the parallel planes α, β, γ in A, E, B and C, F, D.

To prove $A E: E B=C F: F D$.
Proof. If $A D$ cut β in G, then (by 364) $E G \| B D$ and $A C \| G F$.
\therefore (by 235) $A E: E B=A G: G D$ and $A G: G D=$ $C F: F D$.
$\therefore A E: E B=C F: F D$.
Ex. 450. Investigate the inverse of 373 .
374. Theorem. Two straights not coplanar have one, and only one, common perpendicular.

Given a and b not coplanar.
To prove there is one, and only one, straight perpendicular to both.

Proof. Through any point A of a take $c \| b$. Then (by 36I) the plane $a c$ or $\alpha \| b$. The projection
b^{\prime} of b on α cuts a, say in B^{\prime}; else were $a\left\|b^{\prime}\right\| b$. Then, in plane $b^{\prime} b, B^{\prime} B$ drawn $\perp^{\prime} b^{\prime}$ is (by 370) $\perp a$

Fig. 143.
and (by 74) also $\perp b$, and is the only common perpendicular to a and b. For any common perpendicular meeting a at $B^{\prime \prime}$ is $\perp b^{\prime \prime}$ through $B^{\prime \prime} \| b$, which is in α, and $\therefore \perp \alpha$, hence $B^{\prime \prime}$ is a point of b^{\prime} the projection of b on α; \therefore identical with B^{\prime}, the cross of b^{\prime} with a.
375. Corollary to 374 . Their common perpendicular is the smallest sect between two straights not coplanar.

For (by I42) $B B^{\prime}<B A$.
Ex. 45 r. No st's joining points in two non-coplanar st's can be $\|$.

Ex. 452. From A, B, C, costraight, are dropped to a non-coplanar st' is $A D, B E, C F$. Prove $A B: B C$ $=D E: E F$.
Ex. 453. A plane \perp to the common \perp to two st's at its bisection-point, bisects every sect from one st' to the other.

Ex. 454. Principle of Duality. When any figure is given we may construct a dual figure by taking planes instead of points, and points instead of planes, but straights where we had straights.

The figure dual to four non-coplanar points is four non-copunctal planes. State the dual of the following:

Two planes determine a straight.

Three non-costraight planes determine a point.
A straight and a plane not on it determine a point.
Two straights through a point determine a plane.
Ex. 455. A polygon whose vertices are always necessarily coplanar is what?

Ex. 456. From each point in a plane costraight with and equally inclined to two others the two 1 s to them are $=$.

Ex. 457. If two planes are respectively \perp to two others and the intersection of the first pair $\|$ to that of the second pair, the inclinations are \equiv or supplemental.

Ex. 458. Parallels have as projections on any plane parallels or points.

Ex. 459. Parallel sects are proportional to their projections on a plane.

Ex. 460. From a point, \perp s to two planes make an $\notin \equiv$ or supplemental to the inclination of the planes.

Ex. 46r. A st' has the same inclination to \| planes.
Ex. 462. If three meets of three planes are \|, the sum of the three inclinations is two $r^{\prime} t \Varangle$ s.

Ex. 463. If a st' is $\|$ to each of two planes, any plane on it cuts them in $\| s$ s.

Ex. 464. Through a point without two non-coplanar st's passes, in general, a sin le st' cutting both.

Ex. 465. Why does each foot of a three-legged stool meet the floor while one foot of a four-legged chair may be above the floor?

Ex. 466. If a, b non-coplanar, $\alpha \perp a$ meets $\beta \perp b$ in $c \perp$ $r \| a$ and b.

Ex. 467. If two projections of a trio of points on two intersecting planes give costraight trios, the original three are costraight. State the exception.

Ex. 468. No oblique to a plane makes equal angles with three straights in the plane.

Ex. 469. Draw a plane with the same inclination to two given planes.

Ex. 470. Draw a straight that shall cross three straights, no two coplanar.

Ex. 471. Draw a st' to cross two given non-coplanar st's and || to another given st'. [Show solution, in general, unique.]

Ex. 472. In a plane find a point which joined with three given points without the plane gives equal sects.

Ex. 473. The projection on α of r't $\Varangle(a, b)$ is a r't \Varangle if $a \| \alpha$.

Ex. 474. If a perpendicular to a plane be projected on any second plane this projection is at right angles to the meet or intersection of the planes.

Ex. 475. From a point without a plane, if there be drawn the perpendicular to the plane and also a perpendicular to a straight in the plane, the join of the feet of these perpendiculars is at right angles to the straight.

Ex. 476. Two planes being given perpendicular to each other, draw a third perpendicular to both.

Ex. 477. Three planes, no two parallel, either intersect in one point (are copunctal) or in one straight (are costraight) or have their three intersection-straights (meets) parallel.

Ex. 478. If two straights be at right angles either is in the plane through their point of intersection (cross) perpendicular to the other.

Ex. 479. If three planes have two of their intersec-tion-straights parallel, the third is parallel to both.

Ex. 480. All straights on two intersecting straights, but not on their cross, are coplanar.

Ex. 48 r . If the vertices of a triangle give equal sects when joined to a point without their plane, the foot of the perpendicular from this point to the plane is the triangle's circumcenter.

Ex. 482. All points which joined to three given points give three equal sects are where?

Ex. 483. All coplanar points which joined to a given point give equal sects are where?

Ex. 484. If a plane contains one straight perpendicular to a second plane, every straight in the first plane per-
pendicular to the intersection-straight (the meet) of the planes is also perpendicular to the second.

Ex. 485. Any plane is equally inclined to two parallel planes.

Ex. 486. If \perp s from a point to two intersecting planes be $=$ it determines with their meet a plane equally inclined to them.

Ex. 487. Construct a plane containing a given straight and perpendicular to a given plane.

Ex. 488. Two perpendiculars from a point to two intersecting planes determine a plane perpendicular to the meet of the two planes.

Ex. 489. If each of three planes be perpendicular to the other two, their three meets are also perpendicular to the planes and to one another.

Ex. 490. If any number of planes perpendicular to a given plane have a common point, they have a common meet (intersection-straight).

Ex. 491. If the meets of several planes are parallel, the perpendiculars to them from any given point are coplanar.

Ex. 492. Perpendiculars from two vertices of a parallelogram to a plane through the other two are equal.

Ex. 493. Two sides of an equilateral triangle are equally inclined to any plane through the third.

Ex. 494. If two straights be not coplanar, find a point in one which, joined to two given points in the other, gives equal sects.

Ex. 495. If $\alpha \perp \beta$ and γ. and the meet $\alpha \beta \| \alpha \gamma$, then $\beta \| r$.
Ex. 496. If the four sides of a quadrilateral be not coplanar it is called skew. No three sides of a skew quadrilateral are coplanar, nor can its four $\not \subset \mathrm{s}$ be r't.

Ex. 497. If a sect divide one pair of opposite sides of a skew quadrilateral proportionally, and another divide the other pair in another proportion, these two sects will cross and each cut the other as it cuts the sides.

Ex. 498. Find that point in a given plane from which the sum of the sects to two given points on the same side is least.

Ex. 499. If A and a are in α, and B not, find the point in a from which the sum of sects to A and B is least.

Ex. 500. Every plane not on a vertex cuts an even number of the sides of a skew quad' internally and an even number externally.

Ex. 501. If non-coplanar $\triangle \mathrm{s} A B C, A^{\prime} B^{\prime} C^{\prime}$ have $A A^{\prime}$, $B B^{\prime}, C C^{\prime}$ copunctal, then the three pairs of sides $A B$, $A^{\prime} B^{\prime} ; A C, A^{\prime} C^{\prime} ; B C, B^{\prime} C^{\prime}$ intersect in three costraight points.

Ex. 502. If two st's in one plane be equally inclined to another plane they make $=\not \boxed{s}$ with the common section of these planes.

Ex. 503. If three planes be each \perp to the other two, the sq' of the sect from their common intersection to another point equals the sum of the sq's of the three $\perp \mathrm{s}$ from that point to the planes.

Ex. 504. If three st's be each \perp to the other two, twice the sq' of the sect from their common intersection to another point equals the sum of the sq's of the three $\perp s$ from that point to the st's.

Ex. 505. Draw a st' to cut three given non-intersecting st's so that the intercepts may be as two given sects.

Ex. 506. If a plane cut a tetrahedron in a $\| g^{\prime} m$, the plane is \|| to two opposite edges.

Ex. 507. The aggregate of all points is divided by four planes into (in general) fifteen regions.

Ex. 508. The medians of a skew quadrilateral bisect one another.

Ex. 509. If two medians of a skew quadrilateral be \perp the diagonals are $=$, and sections $\|$ to them are $\| g ' m s$ of $=$ perimeter.

CHAPTER XII.

POLYHEDRONS AND VOLUMES.

Polyhedrons.

376. Definition. A tetrahedron is the figure constituted by four non-coplanar points, their sects and triangles.

The four points are called its summits, the six sects its edges, the four triangles its faces. Every summit is said to be opposite to the face made by the other three; every edge opposite to that made by the two remaining summits.

A point is within the tetrahedron if it is within any sect made by any summit and a point within its opposite face. Points not within or on are without.

The faces taken together are called the surface of the tetrahedron.
377. A polyhedron is the figure formed by n plane polygons such that each side is common to two.

The polygons are called its faces, and taken together, its surface. Their sects are its edges; their vertices its summits.

A convex polyhedron is one through no edge of which pass more than two faces, and which has no summits on different sides of the plane of a face.

A polyhedron of five, six, eight, twelve, twenty faces is called a pentahedron, hexahedron, octahedron, dodecahedron, icosahedron.
378. A pyramid is a polyhedron of which all the faces, except one, are copunctal. This one face is called the base, and the summit not on it the apex.

The faces which meet at the apex are called lateral faces, and together the lateral surface; the edges meeting at the apex are called lateral edges.

The perpendicular from the apex to the plane of the base is called the altitude of the pyramid.
379. Euler's Theorem. In any convex polyhedron the number of faces increased by the number of summits exceeds by two the number of edges.

To prove $F+S=E+2$.
Proof. Let e be any edge joining the summits A, B and the faces α, β; and let e vanish by the approach of B to A. If α and β are neither of them triangles, they both remain, though reduced in rank and no longer collateral, and the polyhedron has lost one edge e and one summit B.

If β is a triangle and α no triangle, β vanishes with e into an edge through A, but α remains. The polyhedron has lost two edges of β, one face β, and one summit B.

If β and α are both triangles, β and α both vanish with e, five edges forming those triangles are reduced to two through A, and the polyhedron has lost three edges, two faces, and the summit B.

In any one of these cases, whether one edge and one summit vanish, or two edges disappear with
a face and a summit, or three edges with a summit and two faces, the truth or falsehood of the equation

$$
F+S=E+2
$$

remains unaltered.
By causing all the edges which do not meet any face to vanish, we reduce the polynedron to a pyramid upon that face. Now the relation is true of the pyramid; therefore it is true of the undiminished polyhedron.
380. Theorem. The sum of the face angles of any convex polyhedron is equal to four right angles taken as many times, less two, as the polyhedron has summits.

To prove $\Sigma=(S-2) 4$ r't \neq.
Proof. Since E denotes the number of edges, $2 E$ is the number of sides of the faces.

Taking an exterior angle at each vertex, the sum of the interior and exterior angles is $2 E_{2}$ r't \Varangle, or $E_{4} r$ 't \nvdash. But the exterior angles of each face make 4 r't $\Varangle ; \therefore$ the exterior angles of F faces make F_{4} r’t \nrightarrow 。

$$
\therefore \Sigma=E_{4} \text { r't } \cdot \nless-F_{4} \text { r't } \nmid=(E-F)_{4} \text { r't } \nmid .
$$

But (by 379)

$$
\begin{aligned}
& F+S=E+2 ; \\
\therefore & E-F=S-2 ; \\
\therefore & \Sigma=(S-2) 4 \text { r't } \neq .
\end{aligned}
$$

Ex. 510. The number of face angles in the surface of any polyhedron is twice the number of its edges.

Ex. 5II If a polyhedron has for faces only polygons
with an odd number of sides, it must have an even number of faces.

Ex. 512. If the faces of a polyhedron are partly of an even, partly of an odd, number of sides, there must be an even number of odd-sided faces.

Ex. 513. The number of face angles on a polyhedron can never be less than thrice the number of faces.

Ex. ${ }^{114}$. In every polyhedron $\frac{3}{2} S \overline{<} E$.
Ex. ${ }^{1} 5$. In any polyhedron $E+6 \leq 3 S$.
Ex. 516. In any polyhedron $E+6 \overline{<}{ }_{3} F$.
Ex. 517. In every polyhedron $E<3 S$.
Ex. 518. In every polyhedron $E<3 F$.
Ex. 519. In a polyhedron, not all the summits are more than five sided; nor have all the faces more than five sides.

Ex. 520. There is no seven-edged polyhedron.
Ex. 52I. For every convex polyhedron the sum of the face angles is four times as many right angles as the difference between the number of edges and faces.

Ex. 522. How many regular convex polyhedrons are possible?

Ex. 523. In no polyhedron can triangles and threefaced summits both be absent; together are present at least eight.

Ex. 524. A polyhedron without triangular and quadrangular faces has at least twelve pentagons; a polyhedron without three-faced and four-faced summits has at least twelve five-faced.

The volume of tetrahedrons and polyhedrons.

381. Theorem. The product of an altitude of a tetrahedron by the area of its base is independent of what summit one chooses as apex.

Proof. From H and H^{\prime}, feet of altitudes from D and C, drop perpendiculars $H K$, and $H^{\prime} K^{\prime}$ to $A B$.

Then $K D \perp A B$. [If two planes $A B C$ and $H K D$ are at r't ł's $^{\prime}$, then a st' $A K$ in one \perp to their

Fig. 144.
intersection $K H$ is also \perp to the other $H D K$ and $\therefore A K \perp K D$.]

In same way $A K^{\prime} \perp K^{\prime} C$.
\therefore (by 366$) \nvdash K \equiv \Varangle K^{\prime}$.
\therefore the r't triangles $H K D$ and $H^{\prime} K^{\prime} C$ are similar.
$\therefore D K: C K^{\prime}=D H: C H^{\prime}$.
$\therefore D K \cdot C H^{\prime}=C K^{\prime} \cdot D H$.
$\therefore \frac{1}{2} A B \cdot D K \cdot C H^{\prime}=\frac{1}{2} A B \cdot C K^{\prime} \cdot D H$.
382. Definition. One-third the product of base and altitude of a tetrahedron T is called the volume of tetrahedron T and designated by $V(T)$.
383. Convention. A plane through an edge of a tetrahedron and a point of the opposite edge is called a transversal plane; this cuts the tetrahedron into two tetrahedra with common altitude whose bases are coplanar. Such a partition is called a transversal partition of the tetrahedron.
384. Theorem. The volume of any tetrahedron is equal to the sum of the volumes of all the tetrahedra which arise from the first by making successively a set of transversal partitions.

Proof. From the distributive law in our sectcalculus follows immediately that the volume of any tetrahedron is equal to the sum of the volumes of two tetrahedra which come from the first by any transversal partition. Thus if the given tetra-

Fig. 145. hedron $A B C D$ is cut by the transversal plane $A C E$ passing through the edge $A C$, the two tetrahedra so obtained, $A E B C$ and $A E D C$, have in common the altitude h_{c} from C. Moreover, the area of the triangle $A B D$ is equal to the sum of the areas of $A E B$ and $A E D$.
Thus $V\left(T_{1}\right)+V\left(T_{2}\right)=\frac{1}{3} h_{c} \cdot A\left(\Delta_{1}\right)+\frac{1}{3} h_{c} \cdot A\left(\Delta_{2}\right)=$ $\frac{1}{3} h_{c}\left[A\left(\Delta_{1}\right)+A\left(\Delta_{2}\right)\right]=\frac{1}{3} h_{c} \cdot A(\Delta)=V(T)$.

Now our theorem follows merely by repeated application of this single result.
385. Theorem. However a tetrahedron is cut by a plane, this partition can be obtained in a set of transversal partitions using not more than two other planes.*

Proof. Passing the case in which the plane

[^1]itself goes through an edge of the tetrahedron $A B C D$, there remain three cases:
I. The plane passes through a single summit, for example, A, thus cutting the tetrahedron $A B C D$ into the tetrahedron $A B X Y$ and the pyramid with quadrilateral base $A X Y C D$.

Fig. 146.
But this partition is in the set of transversal partitions obtained by taking successively the planes $A D Y$ and $A Y X$.
II. The plane cuts the three edges copunctal in a summit, for example, A, thus cutting the tetrahedron $A B C D$ into the tetrahedron $A X Y Z$ and the convex polyhedron $X Y Z B C D$. But this partition is in the set of transversal partitions obtained by taking successively the planes $B D Y$, $B Y Z, Y Z X$.
III. The plane cuts two pairs of opposite edges, for example, $A B, C D$, and $A C, B D$.

Thus the tetrahedron is cut into the two poly-
hedrons $A D W X Y Z$ and $B C W X Y Z$. Draw the two planes $B D X$ and $A C Z$. By these at the same time the polyhedron $A D W X Y Z$ is cut into the

Fig. 147.

Fig. 148.
three tetrahedra $X Z A Y, X Z A D, X Z D W$, and the polyhedron $B C W X Y Z$ cut into the three tetrahedra $X Z B Y, X Z B C, X Z C W$

But that these six tetrahedra form a set obtainable by transversal partitions is seen by taking first the plane $B D X$, and then in the tetrahedron $B D X C$ súccessively the planes $C X Z$ and $Z X W$; in the tetrahedron $B D X A$ successively the planes $A X Z$ and $Y Z X$.
386. Theorem. If a tetrahedron T is in any way cut into a certain finite number of tetrahedra T_{k}, then is always the volume of the tetrahedron T equal to the sum of the volumes of all the tetrahedra T_{k}.

Proof. The plane α of any one face of any one of the tetrahedra T_{k}, say, T_{1}, makes in T a partition which, by 385 , can be obtained in a set of transversal partitions of T made by introducing two other planes β, γ, cutting T into T_{t}. When α cuts any tetrahedron T_{k}, say T_{2}, add in this T_{2} the two planes δ, ε, making the corresponding set of transversal partitions in this T_{2}.

When β cuts one of these new tetrahedra, say $T_{2 a}$, add in it the requisite two planes ζ, η. So do for any tetrahedron T_{3} met by β. Then in the same way successively for r.

Now produce a second face of T_{1}, say θ, to cut those tetrahedra T_{t} in which this face is situated. Add in each of these T_{t} the two planes to make the transversal partition. When any plane cuts a tetrahedron already existing, add the requisite two planes.

Now produce a third face of T_{1} to the nearest tetrahedron transversally obtained from T. Finally take in the fourth face of T_{1}. Then T_{1} appears
in a set of transversal partitions of T; while if cut itself, it is by a set of transversal partitions of T_{1}. In the same way for every other T_{k}.

Thus after a finite number of constructions we reach by a set of transversal partitions of T a final set of tetrahedra T_{f}, which are at the same time also reached by transversal partitions of the tetrahedra T_{k}.

386b. Of the fundamental theorem 386:
For any partition of a tetrahedron into tetrahedra the sum of their volumes equals its volume, the following alternative proof is due to S. O. Schatunovsky of Odessa.

386c. Partition method I. Cut a face, for example $B C D$ (Fig. 149), of the tetrahedron in

Fig. 149.
question $A B C D$ into a finite number n of triangles, and join their vertices with the summit A. The tetrahedra so obtained have a common summit A,
and the faces opposite it coplanar. [For the sake of distinctness, Fig. I49 shows only one such parttetrahedron.]

By 280, the area of the base of the original tetrahedron equals the sum of the areas of all the bases of the part-tetrahedra. It and they have the same altitude. Our multiplication of sects is distributive. Therefore its volume equals the sum of theirs.

386 d. This I contains transversal partition (383) as a special case [i.e. for $n=2$].

386e. Partition method II. Cut the tetrahedron $A B C D$ so that all summits of the part-tetrahedra lie on three edges meeting in the same apex, for example on the edges $A B, A C, A D$ (Fig. 150).

Fig. 150.
Then on the base $B C D$ are, besides the points B, C, D, no summits of the part-tetrahedra; and consequently the face $B C D$ is a face of a part-tetrahedron. The fourth summit E of this part-tetrahedron may lie on the edge $A B$ (Fig. 150).

Therefore this partition into n part-tetrahedra may be obtained by first cutting the tetrahedron $A B C D$ by a transversal partition (here through $D C$) into two tetrahedra $B C D E$ and $E C D A$, and then $E C D A$ in the same way into n - part-tetrahedra.

386f. Partition method III. Cut the given tetrahedron into part-tetrahedra by I, and these each into part-tetrahedra by II.

386g. Partition method IV. (Partition with help of Central Projection.)

Take a point O either without the tetrahedron $A B C D$ or coincident with one of its summits, for example A, and let the rays $O A, O B, O C, O D$ meet a plane α in $A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}$ which cannot be costraight since A, B, C, D are not coplanar. Calling A^{\prime} the central projection of A, then the figure made by the central projections of the edges of the tetrahedron $A B C D$ is in general (the special cases are hereafter exhaustively treated) a quadrilateral with its two diagonals, which cut it into triangles. Cut now these last triangles in any way into parttriangles, altogether n in number. The vertices of these part-triangles (in our figures always only one such triangle is shown) join with the projectioncentre O, whereby n tetrahedra $O T_{1}{ }^{\prime}, O T_{2}{ }^{\prime}, \ldots O T_{n}{ }^{\prime}$ are made, which have a common summit O, and whose bases $T_{1}{ }^{\prime}, T_{2}{ }^{\prime}, \ldots T_{n}{ }^{\prime}$ are all the part-triangles of the projection-figure $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$. If O coincides with A then the edges of the tetrahedra $O T_{1}{ }^{\prime}, O T_{2}{ }^{\prime}, \ldots O T_{n}{ }^{\prime}$ cut the original tetrahedron $A B C D$ into n part-tetrahedra.

On the other hand, if O is different from A, then the edges of $O T_{1}{ }^{\prime}, O T_{2}{ }^{\prime}, \ldots O T_{n}{ }^{\prime}$ cut the tetra hedron $A B C D$ into a number of truncated tetrahedra, among which as special cases may appear the pyramid of five summits and the complete tetrahedron. These pyramids appear if a vertex of the corresponding triangle $T^{\prime \prime}$ falls on one of the sects $A^{\prime} B^{\prime}, A^{\prime} C^{\prime} \ldots$ Complete tetrahedra appear if two vertices of the triangle T^{\prime} fall on one of the said sects.

Always cut these truncated tetrahedra into three (these pyramids into two) complete tetrahedra, using a diagonal of each quadrilateral face [as in 385 II].

By this last partition we get no new summits.
The partition of the original tetrahedron into part-tetrahedra so attained is called Partition with the aid of central projection. The different cases may be more explicitly set forth as follows:

Case 1. O coincides with A. This is Partition method I [see 386c].

Case 2. O lics on the prolongation of an edge, for example $D A$ (Fig. 151).

The projection-points A^{\prime} and D^{\prime} coincide and we get on the plane α as projection of $A B C D$ a triangle $A^{\prime} B^{\prime} C^{\prime}$.

That face of the truncated tetrahedron (or pyramid of five summits or complete tetrahedron) obtained by the above given construction, which by the projection of $T_{m}{ }^{\prime}$ is made in the face $B C D$ designate by T_{m}; that in face $A B C$ by $T_{I m}$.

The tetrahedra obtained by the transversal
partition of this truncated tetrahedron designate respectively by $t_{m}{ }^{\prime}, t_{m}{ }^{\prime \prime}, t_{m}{ }^{\prime \prime \prime}$. Then is the volume of $A B C D$ equal to the sum of the volumes of all the t.

For every tetrahed.on $O T_{m}$ is divided into at most four part-tetrahedra $O T_{I m}, t_{m}{ }^{\prime}, t_{m}{ }^{\prime \prime}, t_{m}{ }^{\prime \prime \prime}$, all

Fig. 15 I .
of whose summits lie on the three edges meeting in apex O, that is every $O T_{m}$ is divided by Partition method II. Therefore

$$
\begin{aligned}
& V\left(O T_{1}\right)=V\left(O T_{I_{1}}\right)+V\left(t_{1}^{\prime}\right)+V\left(t_{1}^{\prime \prime}\right)+V\left(t_{1}^{\prime \prime \prime}\right) \\
& V\left(O T_{2}\right)=V\left(O T_{I_{2}}\right)+V\left(t_{2}^{\prime}\right)+V\left(t_{2}^{\prime \prime}\right)+V\left(t_{2}^{\prime \prime \prime}\right),
\end{aligned}
$$

$$
V\left(O T_{n}\right)=V\left(O T_{I n}\right)+V\left(t_{n}^{\prime}\right)+V\left(t_{n}^{\prime \prime}\right)+V\left(t_{n}^{\prime \prime \prime}\right) .
$$

Adding these equations to one another and noticing that (by $386 c$) on the one side

$$
V\left(O T_{1}\right)+V\left(O T_{2}\right)+\ldots+V\left(O T_{n}\right)=V(O B C D)
$$

on the other side
$V\left(O T_{I_{1}}\right)+V\left(O T_{I_{2}}\right)+\ldots+V\left(O T_{I n}\right)=V(O A B C)$,
we find, using $\sum_{n=1}^{n=n}$ to mean the sum from $n=1$ up to $n=n$,
$V(O B C D)=V(O A B C)+\sum_{n=1}^{n=n}\left[V\left(t_{n}{ }^{\prime}\right)+V\left(t_{n}^{\prime \prime}\right)+V\left(t_{n}^{\prime \prime \prime} \backslash\right)\right]$.
Furthermore, the division of the tetrahedron $O B C D$ by the plane $A B C$ into the tetrahedra $O A B C$ and $A B C D$ is a transversal partition, and so (by 384)

$$
V(O B C D)=V(O A B C)+V(A B C D) .
$$

The last two equations give finally

$$
V(A B C D)=\sum_{n=1}^{n=n}\left[V\left(t_{n}^{\prime}\right)+V\left(t_{n}{ }^{\prime \prime}\right)+V\left(t_{n}^{\prime \prime \prime}\right)\right] ;
$$

therefore also for this case our theorem is proven.
Case 3. O lies without the tetrahedron on one of its boundary planes, that is in the plane of one of its faces; for example, on the plane $A B D$ (Fig. 152).

Fig. 152.
Then the projections $A^{\prime}, B^{\prime}, D^{\prime}$ are costraight; therefore one of them, say A^{\prime}, lies between the other two.
$B^{\prime}, C^{\prime}, D^{\prime}$ make a triangle which is cut by the sect $A^{\prime} C^{\prime}$ into two part-triangles $A^{\prime} B^{\prime} C^{\prime}$ and $A^{\prime} C^{\prime} D^{\prime}$. Correspondingly the plane $O A^{\prime} C^{\prime}$ cuts the tetrahedron $A B C D$ into two part-tetrahedra $A A_{1} B C$, and $A A_{1} C D$; and since this plane goes through the edge $A C$, therefore it makes a transversal partition, and we have (by 384)

$$
V(A B C D)=V\left(A A_{1} B C\right)+V\left(A A_{1} C D\right) .
$$

Since, however, O lies on the prolongation of the edge $A_{1} A$, therefore (by Case 2)

$$
V\left(A A_{1} B C\right)=\Sigma V\left(t_{b}\right)
$$

and

$$
V\left(A A_{1} C D\right)=\Sigma V\left(t_{d}\right),
$$

where t_{b} are all the tetrahedra into which in accordance with the above method the tetrahedron $A A_{1} B C$ is divided [and t_{d} those in $A A_{1} C D$].

These last three equations give now $V(A B C D)=$ $\Sigma V(t)$, where t are all the part tetrahedra of $A B C D$.

Case 4. If O lies on no one of the boundary planes of the tetrahedron $A B C D$, then no three of the pro-jection-points $A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}$ are costraight.

Consider first the case in which one of these points (say A^{\prime}) falls within the triangle $B^{\prime} C^{\prime} D^{\prime}$ made by the other three (Fig. I53).

The joining sects $A^{\prime} B^{\prime}, A^{\prime} C^{\prime}, A^{\prime} D^{\prime}$ cut the triangle $B^{\prime} C^{\prime} D^{\prime}$ into three part-triangles, and correspondingly the tetrahedron $A B C D$ is divided into three part-tetrahedra $A A_{1} B C . A A_{1} B D, A A_{1} C D$,
giving a case of Partition method I; therefore (by 386c)
$V(A B C D)=V\left(A A_{1} B C\right)+V\left(A A_{1} B D\right)+V\left(A A_{1} C D\right)$.
If we now, as above, divide the triangles $A^{\prime} B^{\prime} C^{\prime}$, $A^{\prime} B^{\prime} D^{\prime}, A^{\prime} C^{\prime} D^{\prime}$ into part-triangles, project these

Fig. 153.
back upon the corresponding part-tetrahedra, and designate the part-tetrahedra obtained in the above given way of the tetrahedra $A A_{1} B C, A A_{1} B D$, $A A_{1} C D$ with t_{d}, t_{c}, t_{b} respectively, then we obtain the three equations

$$
\begin{gathered}
V\left(A A_{1} B C\right)=\Sigma V\left(t_{d}\right) ; V\left(A A_{1} B D\right)=\Sigma V\left(t_{c}\right) ; \\
V\left(A A_{1} C D\right)=\Sigma V\left(t_{b}\right),
\end{gathered}
$$

since O lies on the ray $A_{1} A$, that is we have here each time Case 2.

These last four equations give now $V(A B C D)=$ $\Sigma V(t)$, where t are all the pari-tetrahedra of $A B C D$.

Case 5. If, finally, again O lies in no one of the boundary planes of the tetrahedron $A B C D$, but each of the projections $A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}$ falls without the triangle made by the remaining projection-points, then the projections of the edges of the tetrahedron make a convex quadrilateral with its two diagonals. This quadrilateral is divided by its diagonals into four triangles, $M^{\prime} A^{\prime} C^{\prime}, M^{\prime} A^{\prime} D^{\prime}, M^{\prime} B^{\prime} C^{\prime}, M^{\prime} B^{\prime} D^{\prime}$ (Fig. I54).

Fig. ${ }^{54}$.
The plane $O A^{\prime} B^{\prime}$ divides the tetrahedron by a transversal partition into two parts; so that we have (by 384)

$$
V(A B C D)=V(A M B C)+V(A M B D)
$$

where M is the point corresponding to the intersection point M^{\prime} of the diagonals $A^{\prime} B^{\prime}$ and $C^{\prime} D^{\prime}$.

If we now divide each triangle $M^{\prime} A^{\prime} C^{\prime}, M^{\prime} A^{\prime} D^{\prime}$, $M^{\prime} B^{\prime} C^{\prime}, M^{\prime} B^{\prime} D^{\prime}$ into part-triangles and project back upon the faces of the tetrahedron $A B C D$, then the tetrahedra $A M B C$ and $A M B D$ are divided each into part-tetrahedra, which, in general, may be designated respectively t_{c} and t_{d}. Since now, moreover, O lies in the plane $A M B$, therefore (by Case 3) we have the equations

$$
V(A M B C)=\Sigma V\left(t_{c}\right) \text { and } V(A M B D)=\Sigma V\left(t_{d}\right) .
$$

Consequently is also in this case

$$
V(A B C D)=\Sigma V(t) .
$$

This completes the proof of the theorem that in every partition of a tetrahedron by central projection the sum of the volumes of the part-tetrahedra equals the volume of the whole tetrahedron.

386h. The most general partition can be built up from the four partition methods already given, and this proves the fundamental theorem 386.

For let $A B C D$ be a tetrahedron and P_{1}, P_{2}, \ldots P_{k} the part-tetrahedra which arise from any partition of it.

If, now, we project all these tetrahedra from the point A upon the face $B C D$, then their projections, which necessarily all fall within the triangle $B C D$, overlie and overlap, in general, manifoldly, and cut one another into polygons. When we cut these polygons into triangles and join their vertices with A we divide each tetrahedron, $P_{m}(m=\mathrm{r}$, $2, \ldots k$), into a number of truncated tetrahedra (including perhaps pyramids of five summits and
complete tetrahedra) which in turn in the wellknown way we divide into further part-tetrahedra.

Since the so obtained partition of each parttetrahedron P_{m} into further part-tetrahedra, which may be designated $t_{m}{ }^{\prime}, t_{m}{ }^{\prime \prime}, \ldots t_{m}^{\left(n_{m}\right)}$, is accomplished with the aid of central projection, for each projection-center lies without each tetrahedron, only that one with the summit A excepted, so is

$$
V\left(P_{m}\right)=V\left(t_{m}{ }^{\prime}\right)+V\left(t_{m}^{\prime \prime}\right)+\ldots+V\left(t_{m}^{\left(n_{m}\right)}\right)
$$

If we now give m successively the values I , $2, \ldots k$, we obtain k such equations, which added give the following:

But, on the other hand, every tetrahedron $A T$, where T is a part-triangle of $B C D$, cuts out from the aggregate of part-tetrahedra t a set, and each tetrahedron of this set appears once and only once in the above sum.

At the same time all summits of these last parttetrahedra lie on the three edges from A of the particular tetrahedron $A T$; that is, $A T$ is divided by this set of tetrahedra according to Partition method II.

Furthermore, the whole tetrahedron $A B C D$ is divided into tetrahedra $A T$ according to Partition method I, so that it is divided according to Partition method III into part-tetrahedra t.

Now this complex of tetrahedra, t is identical
with the complex $t_{m}^{(l)}$, where $l=\mathrm{I}, 2, \ldots n_{m} ; m=1$, 2, . . . k.

Consequently

$$
V(A B C D)=\Sigma V\left(t_{m}^{(D)}\right)\left(\begin{array}{c}
m=1,2, \\
l=1,2
\end{array}, . \begin{array}{c}
k \\
l=2
\end{array}\right),
$$

which combined with the previous equation gives the desired proof of the fundamental theorem

$$
V(A B C D)=\sum_{m=1}^{m=k} V\left(P_{m}\right)
$$

387. Theorem. If a polyhedron P is cut into tetrahedra in two different ways, then the sum of the volumes of the tetrahedra of the first partition equals that of the second.

Proof. Suppose P divided into m tetrahedra $t_{1}, t_{2}, \ldots t_{m}$, and again into n tetrahedra $t_{1}^{\prime}, t_{2}{ }^{\prime}$, . . . $t_{n}{ }^{\prime}$.

Construct a tetrahedron T which contains the polyhedron P, and cut the polyhedron bounded by the surface of P, and that of T in any definite way into tetrahedra $T_{1}{ }^{\prime}, T_{2}{ }^{\prime}, \ldots$

Thus we obtain two partitions of the tetrahedron T and (by 386) the equations

$$
\begin{aligned}
V(T)=V\left(t_{1}\right)+V\left(t_{2}\right) & +\ldots \\
& +V\left(t_{m}\right)+V\left(T_{1}^{\prime}\right)+V\left(T_{2}^{\prime}\right)+\ldots \\
V(T)=V\left(t_{1}^{\prime}\right)+V\left(t_{2}^{\prime}\right) & +\ldots \\
& +V\left(t_{n}^{\prime}\right)+V\left(T_{1}^{\prime}\right)+V\left(T_{2}^{\prime}\right)+\ldots
\end{aligned}
$$

whence

$$
\begin{aligned}
V\left(t_{1}\right)+V\left(t_{2}\right)+\ldots+V\left(t_{m}\right) & \\
& =V\left(t_{1}{ }^{\prime}\right)+V\left(t_{2}{ }^{\prime}\right)+\ldots+V\left(t_{n}^{\prime}\right) .
\end{aligned}
$$

388. Definition. The volume of a polyhedron is the sum of the volumes of any set of tetrahedra into which it is cut.
389. Definition. Two polyhedra P and Q of equal volume are said to be equal. P is called greater than Q if the volume of P is greater than the volume of Q; less if volume is less.

If $V(P)=V(Q)$, we say $P=Q$.
If $V(P)>V(Q)$, we say $P>Q$.
If $V(P)<V(Q)$, we say $P<Q$.
The three cases are mutually exclusive.
390. Corollary. If a polyhedron be cut into polyhedra, the sum of their volumes equals its volume.
391. Corollary. If a polyhedron be cut into polyhedra, if one of these be omitted it is not possible with the others, however arranged, to make up the original polyhedron.

The Prismatoid Formula.

392. Definition. A prismatoid is a polyhedron having for base and top any two polygons in parallel planes, and whose lateral faces are triangles determined by the vertices so that each lateral edge with the succeeding forms a triangle with one side of the base or of the top.

The altitude of a prismatoid is the perpendicular from top to base.

A number of different prismatoids thus have the same base, top, and altitude.

A prismatoid with a point as top is a pyramid. If both base and top of a prismatoid are sects, it is a tetrahedron.

If a side of the base and a side of the top which form with the same lateral edge two sides of two adjoining faces are parallel, then these two triangular faces fall in the same plane, and together form a trapezoid.
393. A prismoid is a prismatoid whose base and top have the same number of sides, and every corresponding pair parallel.
394. A frustum of a pyramid is a prismoid with base and top similar.
395. Corollary. Every prismoid with triangular base is the frustum of a pyramid.
396. A section of a prismatoid is the polygon determined by a plane perpendicular to the altitude.
397. Theorem. The area of a section of a pyramid is to the area of the base as the square of the perpendicular on it, from the apex, is to the square of the altitude of the pyramid.

To prove $S: B=p^{2}: a^{2}$.
Proof. The section and base are similar, since corresponding diagonals cut them into triangles similar in pairs because having all their sides respectively proportional, each corresponding pair being as a lateral edge to the sect on it made by apex and section, which in turn

Fig. 155. are as altitude to perpendicular on section. But (by 300) the areas are as the squares of these.
398. To find the volume of any pyramid.

Rule. Multiply one-third its altitude by the area of its base. Formula, $Y=\frac{a}{3} B$.

Proof. Cutting this base into triangles by planes through the apex, we have a partition of the given pyramid into triangular pyramids (tetrahedra) of the same altitude whose bases together make the polygonal base.
399. To find the volume of any prismatoid.

Rule. Multiply one-fourth its altitude by the sum of the base and three times a section at twothirds the altitude from the base.

Formula, $D=\frac{a}{4}(B+3 S)$.

Fig. 156.
Proof. Any prismatoid may be divided into tetrahedra, all of the same altitude as the prismatoid; some, as $C F G O$, having their apex in the top of the prismatoid and their base within its base; some, as $O A B C$, having three summits within the top and the fourth in the base of the
prismatoid, thus having for base a point and for top a triangle; and the others, as $A C O G$, having for base and top a pair of opposite edges, a sect in the plane of the base and a sect in the plane of the top of the prismatoid, as $O G$ and $A C$.

Fig. 157.
Therefore if the formula holds good for tetrahedra in these three positions, it holds for the prismatoid, their sum.

In (i) call S the section at two-thirds the altitude from the base B_{1}; then S_{1} is $\frac{1}{3} a$ from the apex. Therefore (by 397) the areas

$$
\begin{gathered}
S_{1}: B_{1}=\left(\frac{1}{3} a\right)^{2}: a^{2}, \therefore S_{1}=\frac{1}{9} B_{1} \\
\therefore D_{1}=\frac{a}{4}\left(B_{1}+3 S_{1}\right)=\frac{a}{4}\left(B_{1}+\frac{1}{3} B_{1}\right)=\frac{1}{3} a B_{1},
\end{gathered}
$$

which (by 382) equals Y_{1}, the volume of this tetrahedron.

In (2) the base B_{2} is a point, and S_{2} is $\frac{2}{3} a$ from
this point, which is the apex of an inverted pyramid.
\therefore (by 397) the areas $S_{2}: T_{2}=\left(\frac{2}{3} a\right)^{2}: a^{2} ; \therefore S_{2}=\frac{4}{9} T_{2}$;

$$
\therefore D_{2}=\frac{a}{4}\left(B_{2}+3 S_{2}\right)=\frac{a}{4}\left(0+\frac{4}{3} T_{2}\right)=\frac{1}{3} a T_{2}=Y_{2} \text {. }
$$

In (3) let $K L M N$ be the section S_{3}. Now the areas

$$
\begin{aligned}
& \triangle A N K: \triangle A G O=\overline{A N}^{2}: \overline{A G}^{2}=\left(\frac{1}{3} a\right)^{2}: a^{2}=\mathrm{I}: 9 ; \\
& \triangle G N M: \triangle G A C=\overline{G N}^{2}: \overline{G A}^{2}=\left(\frac{2}{3} a\right)^{2}: a^{2}=4: 9 .
\end{aligned}
$$

But the whole tetrahedron D_{3} and the pyramid CANK may be considered as having their bases in the same plane, $A G O$, and the same altitude, a perpendicular from C :

$$
\begin{aligned}
& \therefore C A N K: D_{3}=\triangle A N K: \triangle A G O=\mathrm{I}: 9 ; \\
& \therefore C A N K=\frac{1}{9} D_{3} .
\end{aligned}
$$

In the same way

$$
\begin{aligned}
& O G N M: D_{3}=\triangle G N M: \triangle G A C=4: 9 ; \\
& \therefore O G N M=\frac{4}{9} D_{3} ; \\
& \therefore C A N K+O G N M=\frac{5}{3} D_{3} ; \\
& \therefore C K L M N+O K L M N=\frac{4}{9} D_{3} .
\end{aligned}
$$

But by (398) CKLMN $+O K L M N=\frac{1}{3} \cdot \frac{1}{3} a S_{\mathbf{3}}+$ $\frac{1}{3}-\frac{2}{3} a S_{3}=\frac{1}{3} a S_{3} ; \quad \therefore \frac{4}{9} D_{3}=\frac{1}{3} a S_{3} ;$

$$
\therefore D_{3}=\frac{a}{4} S_{3}=\frac{a}{4}\left(B_{3}+3 S_{3}\right),
$$

since here the area $B_{3}=0$.
400. Corollary to 399. Since, in a frustum of a pyramid, B and S are similar; \therefore if b and s be corresponding edges,

$$
B: S=b^{2}: s^{2} ; \quad \therefore \text { the volume } F=\frac{a}{4} B\left(\mathrm{I}+\frac{3 s^{2}}{b^{2}}\right)
$$

401. Definition. A prism is a prismatoid whose base and top are congruent.

A right prism is one whose lateral edges are perpendicular to its base.

A parallelopiped is a prism whose bases are prallelograms.

A cuboid is a parallelopiped whose six faces are rectangles.

A cube is a cuboid whose six faces are squares.
402. Corollary to 400 . To find the volume of any prism.

Rule. Multiply its altitude by the area of its base. Formula, $V(P)=a \cdot B$.
\therefore To find the volume of a cuboid.
Rule. Multiply together any three copunctal edges, that is, its length, breadth, and thickness.
403. A cube whose edge is the unit sect has for volume this unit sect, since $\mathrm{I} \times \mathrm{I} \times \mathrm{I}=\mathrm{I}$.

Any polyhedron has for volume as many such unit sects as the polyhedron contains such cubes on the unit sect.

The number expressing the volume of a polyhedron will thus be the same in terms of our unit sect, or in terms of a cube on this sect, considered as a new kind of unit, a unit solid. Such units, though traditional, are unnecessary.

Ex. 525. If the altitude of the highest Egyptian pyramid is 138 meters, and a side of its square base 228 meters, find its volume.

Ex. 526. The pyramid of Memphis has an altitude of 73 Toises; the base is a square whose side is II6 Toises. If a Toise is I .95 meters, find the volume of this pyramid.

Ex. 527. A pyramid of volume 15 has an altitude of 9 units. Find the area of its base.

Ex. 528. Find the volume of a rectangular prismoid of 12 meters altitude, whose top is 5 meters long and 2 meters broad, and base 7 meters long and 4 meters broad.

Ex. 529. In a prismoid 15 meters tall, whose base is 36 square meters, each basal edge is to the top edge as 3 to 2. Find the volume.

Ex. 530. Every regular octahedron is a prismatoid whose bases and lateral faces are all congruent equilateral triangles. Find its volume in terms of an edge b.

Ex. 53I. The bases of a prismatoid are congruent squares of side b, whose sides are not parallel; the lateral faces are eight isosceles triangles. Find the volume.

$$
\text { Ans. } \frac{1}{3} a b^{2}\left(2+2^{\frac{1}{2}}\right) .
$$

Ex. 532. If from a regular icosahedron we take off two five-sided pyramids whose vertices are opposite summits, there remains a solid bounded by two congruent regular pentagons and ten equilateral triangles. Find its volume from an edge b.

Ans. $\frac{1}{6} b^{3}\left[5+2(5)^{\frac{1}{2}}\right]$.
Ex. 533. Both bases of a prismatoid of altitude a are squares; the lateral faces isosceles triangles. The sides of the upper base are parallel to the diagonals of the lower base, and half as long as these diagonals; and b is a side of the lower base. Find the volume. Ans. $\frac{5}{6} a b^{2}$.

Ex. 534. The upper base of a prismatoid of altitude $a=6$ is a square of side, $b_{2}=7.07107$; the lower base is a square of side $b_{1}=10$, with its diagonals parallel to sides of the upper base; the lateral faces are isosceles triangles. Find volume.

Ex. 535. Every prismatoid is equal in volume to three
pyramids of the same altitude with it, of which one has for base half the sum of the prismatoid's bases, and each of the others its mid-cross section:

$$
D=\frac{1}{3} a\left(\frac{B_{1}+B_{2}}{2}+2 M\right)=\frac{1}{6} a\left(B_{1}+4 M+B_{2}\right) .
$$

Ex. 536. If a prismatoid have bases with angles respectively equal and their sides parallel, in volume it equals a prism plus a pyramid, both of the same altitude with it, whose bases have the same angles as the bases of the prismatoid, but the basal edges of the prism are half the sum, and of the pyramid half the difference, of the corresponding sides of both the prismatoid's bases.

Ex. 537. If the bases of a prismatoid are trapezoids whose mid-sects are b_{1} and b_{2}, and whose altitudes are a_{1} and a_{2}, the volume $=a\left(\frac{a_{1}+a_{2}}{2} \cdot \frac{b_{1}+b_{2}}{2}+\frac{1}{3} \frac{a_{1}-a_{2}}{2} \cdot \frac{b_{1}-b_{2}}{2}\right)$.

Ex. 538. A side of the base of a frustum of a square pyramid is 25 meters, a side of the top is 9 meters, and the height is 240 meters. Required the volume of the frustum.

Ex. 539. The sides of the square bases of a frustum are 50 and 40 centimeters. Each lateral edge is 30 centimeters. How many liters would it contain?

Ex. 540. In the frustum of a pyramid whose base is 50 and altitude 6 , the basal edge is to the corresponding top edge as 5 to 3 . Find volume.

Ex. 54I. Near Memphis stands a frustum whose height is 142.85 meters, and bases are squares on edges of 185.5 and 3.714 meters. Find its volume.

Ex. 542. In the frustum of a regular tetrahedron, given a basal edge, a top edge, and the volume. Find the altitude.

Ex. 543. A wedge of 10 centimeters altitude, 4 centimeters edge, has a square base of 36 centimeters perimeter. Find volume.

Ex. 544. The diagonal of a cube is n. Find its volume.
Ex. 545. The edge of a cube is n. Approximate to the edge of a cube twice as large.

Ex. 546. Find the cube whose volume equals its superficial area.

Ex. 547. Find the edge of a cube equal to three whose edges are a, b, l.

Ex. 548. If a cubical block of marble, of which the edge is I meter, costs one dollar, what costs a cubical block whose edge is equal to the diagonal of the first block?

Ex. 549. If the altitude, breadth, and length of a cuboid be a, b, l, and its volume V,
(1) Given a, b, and superficial area; find V.
(2) Given a, b, V; find l.
(3) Given $V,(a b),(b l)$; find l and b.
(4) Given $V,\left(\frac{a}{b}\right),\left(\frac{b}{l}\right)$; find a and b.
(5) Given ($a b$), (a_{i}^{\prime}), ($b l$); find a and b.

Ex. 550. If 97 centimeters is the diagonal of a cuboid with square base of 43 centimeters side, find its volume.

Ex. 551. The volume of a cuboid whose basal edges are 12 and 4 meters is equal to the superficial area. Find its altitude.

Ex. 552. In a cuboid of 360 superficial area, the base is a square of edge 6 . Find the volume.

Ex. 553. A cuboid of volume 864 has a square base equal in area to the area of two adjacent sides. Find its three dimensions.

Ex. 554. In a cuboid of altitude 8 and superficial area 160 the base is square. Find the volume.

Ex. 555. The volume of a cuboid is 144 , its diagonal I 3, the diagonal of its base 5 . Find its three dimensions.

Ex. 556. In a cuboid of surface 108 , the base, a square, equals in area the area of the four sides. Find volume.

Ex. 557. What is the area of the sheet of metal required to construct a rectangular tank (open at top) 12 meters long, io meters broad, and 8 meters deep?

Ex. 558. The base of a prism to meters tall is an isosceles right triangle of 6 meters hypothenuse. Find volume.

Ex. 559. In a prism the area of whose base is 210 the three sides are rectangles of area $336,300,204$. Find volume.
Ex. 560. A right prism whose volume is 480 stands upon an isosceles triangle whose base is 10 and side I_{3}. Find altitude.

Ex. ${ }^{661}$. In a right prism whose volume is 54 , the lateral area is four times the area of the base, an equilateral triangle. Find basal edge.

Ex. 562. The vertical ends of a hollow trough are parallel equilateral triangles with 1 meter in each side, a pair of sides being horizontal. If the length between the triangular ends be 6 meters, find the volume of water the trough will contain.

CHAPTER XIII.

TRIDIMENSIONAL SPHERICS.

404. Definition. If C is any given point, then the aggregate of all points A for which the sects $C A$ are congruent to one another is called a sphere. C is called the center of the sphere, and $C A$ the radius.

Every point B, such that $C A>C B$ is said to be within the sphere. If $C A<C D$, then D is without the sphere.
405. Theorem. Any ray from the center of a sphere cuts the sphere in one, and only one, point.
406. Theorem. Any straight through its center cuts the sphere in two, and only two, points.
407. Definition. A sect whose end-points are on the sphere is called a chord.
408. Definition. Any chord through the center is called a diameter. Its end-points are called opposite points of the sphere.
409. Theorem. Every diameter is bisected by the center.
410. Corollary to io6 and 409. A plane through its center meets the sphere in a circle with radius equal to that of the sphere. Such a circle is called a great circle of the sphere.

4ir. Corollary to 4ro. All great circles of the sphere are congruent, since each has for its radius the radius of the sphere.
412. Theorem. Any two great circles of a sphere bisect each other.

Proof. Since the planes of these circles both pass through the center of the sphere, therefore on their intersection is a diameter of the sphere which is a diameter of each circle.
413. Theorem. If any number of great circles pass through a given point, they will also pass through the opposite point.

Proof. The given point and the center of the sphere determine the same diameter for each of the circles.
414. Corollary to 413. Through opposite points an indefinite number of great circles can be passed.
415. Theorem. Through any two non-opposite points on a sphere, one, and only one, great circle can be passed.

Proof. For the two given points and the center of the sphere determine its plane.
416. Definition. A straight or plane is called tangent to a sphere when it has one point, and only one, in common with the sphere.

Two spheres are called tangent to each other when they have one point, and only one, in common.
417. Theorem. A straight or plane having the foot of the perpendicular to it from the center in common with the sphere is tangent.

Proof. This perpendicular, a radius, is (by 142)
less than any other sect from the center to this straight or plane. Therefore every point of the straight or plane is without the sphere except the foot of this radius.
418. Theorem. If a straight has a given point not the foot of the perpendicular to it from the center in common with a sphere, it has a second point on the sphere.

Proof. This is the other end-point of the sect from the given point bisected by this perpendicular.
419. Theorem. If a plane has a point not the

Fig. 158. foot of the perpendicular to it from the center in common with a sphere, it cuts the sphere in a circle.

Proof. If A be the common point and C the foot of the perpendicular, the circle $\odot C(C A)$ is on the sphere.
420. Corollary to 419. The straight through the center of any circle of a sphere perpendicular to its plane passes through the center of the sphere.

42I. Definition. The two opposite points in which the perpendicular to its plane, through the center of a circle of the sphere, meets the sphere, are called the poles of that circle, and the diameter between them its axis
422. Theorem. Any three points on a sphere determine a circle on the sphere (I 3 and 419).
423. Theorem. The radius of any circle of the sphere whose plane does not contain the center
of the sphere is less than the radius of a great circle.

Proof. The hypothenuse (by 142) is $>$ a side.
424. Definition. A circle on the sphere whose plane does not contain the center of the sphere is called a small circle of the sphere.
425. Inverse of 417 . Every straight or plane tangent to the sphere is perpendicular to the radius at the point of contact. For if not it would have (by 4r8) another point on it.
426. Theorem. If two spheres have two points in common they cut in a circle whose center is in their center-straight and whose plane is perpendicular to that straight.

Hypothesis. Let C and O be the centers of the spheres having the points A and B in common.

Conclusion. They have in common all points, and only those, on a circle with center on $O C$ and plane \perp to $O C$.

Fig. 159.
Proof. Since, by $58, \triangle A C O \equiv \triangle B C O, \therefore$ perpendiculars from A and B upon $O C$ are equal and meet $O C$ at the same point, D. Thus all, but only, points like A and B, in a plane \perp to $O C$, and points of $\odot D(D A)$, are on both spheres.
427. Corollary to 426 . If two spheres are tangent, either internally or externally, their centers and point of contact are costraight.
428. Theorem. Four points, not coplanar, determine a sphere.

Fig. 160.

Proof. Let A, B, C, D be the four given points. Then (by 35^{2}) the plane $\alpha \perp$ to and bisecting $A B$ meets $\beta \perp$ to and bisecting $B C$ in $E H \perp A B C$, and meets $\delta \perp$ to and bisecting $B D$ in $F O \perp A B D$.
$\therefore E H \perp E G$, and $F O \perp F G$, and (by 77) EH and FO meet, say, at O; \therefore (by 346) O is one, and the only center of a sphere containing A, B, C, D.
429. Corollary to 428 . The four perpendiculars to the faces of a tetrahedron through their circumcenters, and the six planes bisecting at right angles the edges, are copunctal in its circumcenter.
430. Problem. To inscribe a sphere in a given tetrahedron.

Construction. Through any edge and any point from which perpendiculars to its two faces are equal, take a plane. Likewise with the other edges in the same face. The cointersection of these three planes is the incenter required.
431. Theorem. The sects joining its pole to points on any circle of the sphere are equal.

Proof (343).
432. Corollary to 43 I . Since equal chords have congruent minor arcs, \therefore the great-circle-arcs joining a pole to points on its circle are congruent. Hence if C is any point in a sphere α, then the aggregate of all points A in α, for which the great-circle-arcs $C A$ are congruent to one another is a circle.

Fig. i6i.
433. Theorem. The great-circle-arc joining any point in a great circle with its pole is a quadrant.

Proof The angle at the center is right.
434. Theorem. If A, B are non-opposite, the point P is a pole of their great circle when the arcs $P A, P B$ are both great-circle-quadrants.

For each of the angles $P O A$, $P O B$ is right and $\therefore P O \perp O A B$.
435. Definition. The angle

Fig. 162. between two great-circle-arcs on a sphere, called a spherical angle, is the angle between tangents to those arcs at their point of meeting.
436. A spherical angle is the inclination of the two hemiplanes containing the arcs.
437. Theorem. Any great circle through a pole of a given great circle is perpendicular to the given great circle:

Proof. Their planes (by 369) are at right angles.
438. Inverse of 437 . Any great circle perpen-
dicular to a given great circle will pass through its poles.
439. Theorem. If a sphere be tangent to the parallel planes containing opposite edges of a tetrahedron, and sections made in the sphere and tetrahedron by one plane parallel to these are of equal area, so are sections made by any parallel plane.

Fig. 163.
Hypothesis. Let $K J$ be the sect \perp to the edges $E F$ and $G H$ in the $\|$ tangent planes. Then $K J=$ $D T$, the diameter.

Let $\odot I(I P)=M O$, sections made by the plane $\perp D T$ at I and $\perp K J$ at R, where $K R=D I$.

Let $A B C L S N$ be any parallel plane through a point A of the sphere.

Conculsion. $L N=\odot C(C A)$.
Proof. Since
$\triangle L E U \sim \triangle M E W$, and $\triangle L H V \sim \triangle M H Z$,
$\therefore M W: L U=E M: E L=J R: J S$ (by 373).
$M Z: L V=H M: H L=K R: K S$.
But (by 366) $\Varangle Z M W=\Varangle V L U$.
\therefore (by 299) area $M O$:area $L N=W M \cdot M Z: U L \cdot L V$ $=J R \cdot R K: J S \cdot S K$.

But (by 325)

$$
\begin{aligned}
& \text { area } \odot I(I P): \text { area } \odot C(C A)=\overline{P I}^{2}: A C^{2} \\
&=T I \cdot I D: T C \cdot C D(\text { by } 245)
\end{aligned}
$$

\therefore area $L N=$ area $\odot C(C A)$.
440. Cavalieri's assumption. If the two sections made in two solids between two parallel planes by any parallel plane are of equal area, then the solids are of equal volume.
441. Theorem. The volume of a sphere of radius r is $\frac{4}{3} \pi r^{3}$.

Proof. A tetrahedron on edge, and a sphere with this tetrahedron's altitude for diameter, have (by 439) all their corresponding sections of equal area, if any one pair are of equal area.

Hence (by 440) they are of equal volume.
\therefore (by 399) vol. sphere $=\frac{3}{4} a S$.
But $a=2 r$, and (by 245) $S=\frac{2}{3} r \cdot \frac{4}{3} r \cdot \pi$.
\therefore Vol. sphere $=\frac{3}{4} \cdot 2 r \cdot \frac{2}{3} r \cdot \frac{4}{3} r \cdot \pi=\frac{4}{3} \pi r^{3}$.
442. Definition. The area of a sphere is the quotient of its volume by one-third its radius.

Area of sphere $=4 \pi r^{2}$.
443. Corollary to 324 . The area of a sphere is quadruple the area of its great circle.
444. Definition. A spherical segment is the piece of a sphere between two parallel planes. If one of the parallel planes is tangent to the sphere, the segment is called a segment of one base.
445. Corollary to 439 and 440. The volume of a spherical segment is $\frac{a}{4} \pi\left(r_{1}{ }^{2}+3 r_{3}{ }^{2}\right)$, where r_{3} is the
radius of the section two-thirds the altitude from the base whose radius is r_{1}. If the segment is of one base its volume is ${ }_{4}^{3} a \pi r_{3}{ }^{2}$; which in terms of r, the radius of the sphere, is $\pi a^{2}\left(r-\frac{a}{3}\right)$, and equals $\frac{1}{2} \pi a\left(r_{2}{ }^{2}+\frac{a^{2}}{3}\right)$. If we eliminate r_{3} by introducing r_{2}, the radius of the top, the volume of the segment is $\frac{1}{6} \pi a\left[3\left(r_{1}{ }^{2}+r_{2}{ }^{2}\right)+a^{2}\right]$.
446. Problem. Given a portion of a sphere, find its radius.

Construction. Take any three points of the part given, say A, B, C. The plane A, B, C (by 419) cuts the sphere in a circle. The straight at D, the center of this circle perpendicular to the plane $A B C$, contains the center O of the sphere (by 420)

Fig. 164. and therefore meets the sphere, say at P. In the plane $P A D$ draw $A P^{\prime} \perp$ to $A P$ and meeting $D O$ in P^{\prime}. Bisect $P P^{\prime}$ in O. Then O is the center of the sphere and $O P$ is the radius. Proof. O is circumcenter of $P A P^{\prime}$.
$\therefore O P=O A$. But since $O D$ is $\perp \odot(D) D A$ at $D, \therefore O A=O B=O C$.
447. Corollary to 305 .

$$
O P=\frac{\overline{D A}^{2}+\overline{D P}^{2}}{2 D P} \text {, that is, } R=\frac{r^{2}+h^{2}}{2 h} .
$$

Ex. 563. A circle on a sphere of io centimeters radius
has its center 8 centimeters from the center of the sphere. Find its radius.

Ex. 564. The sects from the centers of circles of equal area on a sphere to the center of the sphere are equal.

Ex. 56.5. Where are the centers of spheres through three given points?

Ex. 566. Find the volume of a sphere whose area is 20.
Ex. 567. Find the radius of a globe equal to the sum of two globes whose radii are 3 and 6 centimeters.

Ex. 568. A section parallel to the base of a hemisphere, radius I , bisects its altitude. Find the volume of each part.

Ex. 569. The areas of the parts into which a sphere is cut by a plane are as 5 to 7 . To what numbers are the volumes of these parts proportional?

Ex. 570. The volume of a spherical segment of one base and height 8 is 1200 . Find radius of the sphere.

Ex. 571 . Find the volume of a scgment of 12 centimeters altitude, the radius of whose single base is 24 centimeters.

Ex. 572. In terms of sphere radius, find the altitude of a spherical segment n times its base.

Ex. 573. Find volume of a spherical segment of one base whose area is 15 and base 2 from sphere center.

Ex. 574. In a sphere of 10 centimeters radius find the radii r_{1} and r_{2} of the base and top of a segment whose altitude is 6 centimeters and base 2 centimeters from the sphere center.

Ex. 575. Out of a sphere of 12 centimeters radius is cut a segment whose volume is one-third that of the sphere and whose bases are congruent. Find the radius of the bases.

Ex. 576. Find the radius of a sphere whose area equals the length of a great circle.

Ex. 577. Find the volume of a sphere the length of whose great circle is n.

Ex. 578. Find the radius of a sphere whose volume equals the length of a great circle.

Ex. 579. The volume of a sphere is to that of the circumscribing cube as π to 6 .

Ex. 580. Find altitude of a spherical segment of one base if its area is A and the volume of the sphere V.

Ex. 581. The radii of the bases of a spherical segment are 5 and 4 ; its altitude 3 . Find volume.

CHAPTER XIV.

CONE AND CYLINDER.
448. Definition. The aggregate of straights determined by pairing the points of a circle each with the same point not in their plane is called a circular cone of two nappes.

This point is called the apex of the cone. Each straight is an element.

The straight determined by the apex and the center is called the axis of the cone.

The rays of the cone on the same side of a plane through the apex perpendicular to the axis are one nappe of the cone.

The sects from the apex to the circle are often called the cone, and are meant when we speak of the area or the volume of the cone.

When each element makes the same angle with the axis, the cone is called a right cone.

In a right cone all sects from apex to circle are equal, and each is called the slant height.
449. Theorem. Every section of a circular cone by a plane parallel to the base is a circle.

Let the section $D^{\prime} H^{\prime} B^{\prime} F^{\prime}$ of the circular cone $A-D H B F$ be parallel to the base.

To prove $D^{\prime} H^{\prime} B^{\prime} F^{\prime}$ a circle.

Proof. Let C be the center of the base, and

Fig. 165. C^{\prime} the point of the axis. $A C$ in the plane $D^{\prime} H^{\prime} B^{\prime}$. The plane through $A C$ and any element $A B$ gives radii $C B, C D$, and parallel to them the sects $C^{\prime} B^{\prime}, C^{\prime} D^{\prime}$.
\therefore (by 75) $\triangle A B C \sim \triangle A B^{\prime} C^{\prime}$ and $\triangle A C D \sim \triangle A C^{\prime} D^{\prime}$.
\therefore (by 234) $C^{\prime} B^{\prime}: C B=A C^{\prime}$: $A C=C^{\prime} D^{\prime}: C D$.
But $C B=C D . \quad \therefore C^{\prime} B^{\prime}=C^{\prime} D^{\prime}$.
450. Corollary to 449 .

The axis of a circular cone passes through the center of every section parallel to the base.
451. Theorem. If a circular cone and a tetrahedron have equal altitudes and bases of equal area and in the same plane, sections by a plane parallel to the bases are of equal area.

Fig. 166.
Proof. $B C: B^{\prime} C^{\prime}=A C: A C^{\prime}=A L: A L^{\prime}=$ $=V T: V T^{\prime}=V H: V H^{\prime}=G H: G^{\prime} H^{\prime}$.
$\therefore \overline{B C}^{2}: B^{\prime} C^{\prime 2}=G H^{2}: \overline{G^{\prime} H^{\prime 2}}$
But (by 325)
area $\odot C(C B)$: area $\odot C^{\prime}\left(C^{\prime} B^{\prime}\right)$

$$
\begin{aligned}
& =\overline{B C}^{2}: B^{\prime} C^{\prime 2}=\overline{G H}^{2}:{\overline{G^{\prime} H^{\prime}}}^{2} \\
& =\text { area } \triangle F G H: \text { area } \triangle F^{\prime} G^{\prime} H^{\prime}(\text { by } 300)
\end{aligned}
$$

But by hypothesis area $\odot C(C B)=$ area $\triangle F G H$.
\therefore Area $\odot C^{\prime}\left(C^{\prime} B^{\prime}\right)=$ area $\triangle F^{\prime} G^{\prime} H^{\prime}$.
452. Corollary to 45 I .

Volume of circular cone is (ivy 440) = volume of tetrahedron of equal altitude and base $=\frac{1}{3} a \pi r^{2}$.
453. Theorem. The lateral area of a right circular cone is half the product of the slant height by the length of the base.

Proof. It has the same area as a sector of a circle with the slant height as radius and an arc equal in length to the length of the cone's base.
\therefore (by 323) $K=\frac{1}{2} c h=\pi r h$.
454. Definition. A truncated pyramid or cone is the portion included between the base and a plane meeting all the elements.

A frustum of a cone is the portion included between the base and a plane parallel to the base.
455. Theorem. The lateral area of a frustum of a right circular cone is half the product of its slant height by the sum of the lengths of its bases.

Proof. It is the difference of the areas of two sectors with a common angle, the lengths of the arcs of the sectors being equal to the lengths of bases of the frustum.

$$
\begin{aligned}
\therefore F & =\frac{1}{2} h\left(c_{1}+c_{2}\right) \\
& =\pi h\left(r_{1}+r_{2}\right) .
\end{aligned}
$$

Fig. 167.
456. Corollary to 45 I and 399.

The volume of the frustum of a circular cone,

$$
V \cdot F=\frac{1}{4} a \pi\left(r_{1}^{2}+3_{3}^{2}\right),
$$

where r_{3} is the radius of S.
457. Definition. A circular cylinder is the assemblage of straights each through a point of a given circle but not in its plane, and all parallel.

The portion of this assemblage included between two planes parallel to the circle is also called a circular cylinder. The sects the planes cut out are called the elements of the cylinder.

The two circles in these planes are called the bases of the cylinder.

The sect joining their centers is called the axis.
A sect perpendicular to the two planes is the altitude of the cylinder.

If the elements are perpendicular to the planes, it is a right cylinder; otherwise an oblique cylinder.

A section whose plane is perpendicular to the axis is called a right section of the cylinder. Any two elements, being equal and parallel, are opposite sides of a parallelogram; hence the bases and all sections parallel to them are equal circles.

A truncated cylinder is the portion between a base and a non-parallel section.
458. Theorem. The volume of a circular cylinder is the product of its base by its altitude.

Proof. If a prism and cylinder have equal altitudes and bases of equal area, any sections parallel to the bases are of equal area.
\therefore (by 402) $V \cdot C=a \pi r^{2}$.
459. The lateral area of a circular cylinder is the product of an element by the length of a right section:

Fig. 168.
Proof. It is equal to the area of a parallelogram with one side an element and the consecutive side equal to the length of a base.

An altitude of this parallelogram equals the length of the right section.
460. Corollary to 459. The lateral area of a truncated circular cylinder is the product of the intercepted axis by the length of a right section.

Proof. For substituting an oblique section for the right section through the same point of the axis changes neither the area nor the volume, since the portion between the sections is the same above as below either.
461. Corollary to 460 . The volume of a truncated circular cylinder is the product of the intercepted axis by the area of the right section.
462. Archimedes' Theorem. The volume of a sphere equals two-thirds the volume of the circumscrabed cylinder.

Proof. The volume of the circumscribed cylinder $=\pi r^{2} \cdot 2 r=2 \pi r^{3}$.

Ex. 582. In a right circular cylinder of altitude a, call the lateral area C and the area of the base B.
(1) Given a and C; find r.
(2) Given B and C; find a.
(3) Given C and $\dot{a}=2 r$; find $C+2 B$.
(4) Given $C+2 B$ and $a=r$; find C.
(5) Given a and $B+C$; find r.

Ex. 583. The lateral area of a right circular cylinder is equal to the area of a circle whose radius is a mean proportional between the altitude of the cylinder and the diameter of its base.

Ex. 584. In area, the bases of a right circular cylinder together are to the lateral surface as radius to altitude.

Ex. 585. If the altitude of a right circular cylinder is equal to the diameter of its base, the lateral area is four times that of the base.

Ex. 586. How much must the altitude of a right circular cylinder be prolonged to increase its lateral area by the area of a base?

Ex. 587. The lateral area of a right circular cone is twice the area of the base; find the vertical angle.

Ex. 588. Call the lateral area of a right circular cone K, its altitude a, the basal radius r, the slant height h.
(1) Given a and r; find K.
(2) Given a and h; find K.
(3) Given K and h; find r.

Ex. 589. How much canvas is required to make a conical tent 20 meters in diameter and 12 meters high?

Ex. 590. How far from the vertex is the cross-section which halves the lateral area of a right circular cone?

Ex. 591. Given the volume and lateral area of a right circular cylinder; find radius.

Ex. 592. Given lateral area and altitude of a right circular cylinder; find volume.

Ex. 593. A right cylinder of volume 50 has a circumference of 9 ; find lateral area.

Ex. 594. In a right circular cylinder of volume 8, the iateral area equals the sum of the bases; find altitude.

Ex. 595. If in three cylinders of the same height one radius is the sum of the other two, then one lateral area is the sum of the others, but contains a greater volume.

Ex. 596. What is the relation between the volumes of two cyliders when the radius of one equals the altitude of the other?

CHAPTER XV.

PURE SPHERICS.

463. If, instead of the plane and straight, we take the sphere and its great circle, that is, its geodesic or straightest, then much of our plane geometry holds good as spherics, and can be read off as spherics. Deducing spherics from a set of assumptions which give no parallels, no similar figures, we get a two-dimensional non-Euclidean geometry, yet one whose results are also part of threedimensional Euclidean.

I. Assumptions of association on the sphere.

I I^{\prime}. For every point of the sphere there is

Fig. 170. always one and only one other point which with the first does not determine a straightest. This second point we will call the opposite of the first.

Two points, not each the other's opposite, always determine a straightest.
Such points are said to be on or of the straightest, and the straightest is said to be through them.

I 2'. Every straightest through a point is also through its opposite.

I 3 ' Any two points of a straightest, not each the other's opposite, determine this straightest; and on every straightest there are at least two points not opposites.

I 4 ${ }^{\prime}$. There are at least three points not on the same straightest.

Fig. 17 I .
464. Theorem. If O^{\prime} is the opposite of O, then O is the opposite of O^{\prime}.

Proof. If O is not the opposite of O^{\prime}, they determine a straightest. There is a point P not on this straightest (by $\mathrm{I} 4^{\prime}$), and this point is not the opposite of O, since it is not $O^{\prime} . \therefore O, P$ determine (by I r') a straightest which (by I 2') goes through $O^{\prime} . \therefore O, O^{\prime}$ do not determine a straightest.
465. Theorem. Two distinct straightests cannot have three points in common. [Proved as in 6.]

II. Assumptions of betweenness on the sphere.

466. These assumptions specify how "between" may be used of points in a straightest on a sphere.

II I^{\prime}. No point is between two opposites.
II 2^{\prime}. No point is between its opposite and any third point.

II 3^{\prime}. Between any two points not opposites there is always a third point.

II 4^{\prime}. If B is between A and C, then B is also between C and A, and is neither C nor A.

II 5^{\prime}. If A and B are not opposites, then there

Fig. 172.
is always a point C such that B is between A and C.

II 6^{\prime}. Of any three points, not more than one can be between the other two.

II 7^{\prime}. If B is between A and C, and C is between A and D, then B is between A and D.
II 8^{\prime}. Between no two points are there two opposites.
467. Definition. Two points A and B, not opposites, upon a straightest a, we call a sect and designate it with $A B$ or $B A$. The points between A and B are said to be points of the sect $A B$ or also situated within the sect $A B$. The remaining points of the straightest a are said to be situated without the sect $A B$. The points A, B are called end-points of the sect $A B$.

II 9'. (Pasch's assumption.) On the sphere, let A, B, C be three points, not all on a straightest, and no two opposites, and let a be a straightest on which are none of the points A, B, C; if then the straightest a goes through a point within the sect $A B$, it must always go either through a point of the sect

Fig. 173. $B C$ or through a point of the sect $A C$; but it cannot go through both.
468. Theorem. Every straightest a separates
the other points of the sphere into two regions, of the following character: every point A of the one region determines with every point B of the other region, A^{\prime} not its opposite, a sect $A B$ within which lies a point of the straightest a; on the contrary, any two points A and A^{\prime} of one and the same region al-

Fig. 174. ways determine a sect $A A^{\prime}$ which contains no point of a.
[Proved as in 22.]
Points in the same one of these two regions are said to be on the same side of a.
469. Theorem. The points of a straightest a other than two opposites, O, O^{\prime}, are separated by O, O^{\prime} into two classes such that O or O^{\prime} is between any point of the one and any non-opposite point of the other, but neither O nor O^{\prime} is between two of the same class.

Proof. Take any other straightest b through O and \therefore through O^{\prime}. It (by

Fig. 175. 468) cuts the sphere into two regions. Now (by II 5') a is not wholly in either of these regions; but all its points other than O and O^{\prime} are in these regions. Two in the same region have no point of b between them. But 0 and O^{\prime} are points of b. Two
not opposites in different regions have a point of b between them; \therefore either O or O^{\prime}.
470. Definition. The parts of a straightest determined by a point of it O (with its opposite O^{\prime}) are called rays from O.
O and O^{\prime} are called end-points of the rays.
II ro'. If C is a point of ray $P P^{\prime}$, every other point of the ray is between C and P or C and P^{\prime}.
471. Theorem. Two opposites cannot both be on the same ray.

Proof. II 3^{\prime}, II ro' and II 2^{\prime}.
472. Theorem. Every straightest has a point in common with any other.

Proof. If not, consider the straightest determined by any point of the one and a point of the other. This would have on one ray a pair of opposites, contrary to 47 I .
473. Definition. On the sphere, a system of sects, $A B, B C, C D, \ldots K L$ is called a secttrain, which joins the points A and L with one another.

The points within these sects together with their end-points are all to-

Fig. 176. gether called the points of the sect-train.

In particular, if the point L is identical with the point A, then the sect-train is called a spherical polygon. The sects are called the sides of the spherical polygon; their endpoints its vertices.

Polygons with three vertices are called spherical triangles.

Fig. 177.

Fig. 178.
474. Theorem. Every spherical triangle separates the points of the sphere not pertaining to its sect-train into two regions, an inner and an outer. [As in 29.]
475. Convention. On a given straightest $O A$, the two rays $O O^{\prime}$, from O to its opposite O^{\prime}, are distinguished as of opposite sense. This distinction may be indicated by a qualitative use of the signs + and - (plus and minus), as in writing positive and negative numbers.

Any sect $P O^{\prime}$ or ray from P through O^{\prime}, or any sect $P B$ where B is between P and O^{\prime}, has the sense of that ray $O O^{\prime}$ on which is P.

Then also $B P$ is of sense opposite that of $P B$.

III. Assumptions of congruence on the sphere.

III I^{\prime}. If A, B are two points, not opposite, on a straightest a, and A^{\prime} a point on the same or another straightest a^{\prime}, then we can find on a given ray of the straightest a^{\prime} from A^{\prime} always one and
only one point B^{\prime}, such that the sect $A B$ is congruent to the sect $A^{\prime} B^{\prime}$.

Always $A B \equiv A B \equiv B A$.
III 2^{\prime}. If $A B \equiv A^{\prime} B^{\prime}$ and $A B \equiv A^{\prime \prime} B^{\prime \prime}$, then is also $A^{\prime} B^{\prime} \equiv A^{\prime \prime} B^{\prime \prime}$.

III 3^{\prime}. On the straightest a let $A B$ and $B C$ be two sects without common points, and furthermore $A^{\prime} B^{\prime}$ and $B^{\prime} C^{\prime}$ two sects on the same or another straightest, likewise without common points; if then $A B \equiv A^{\prime} B^{\prime}$ and $B C \equiv B^{\prime} C^{\prime}$, then is also $A C \equiv A^{\prime} C^{\prime}$.
476. Definition. On the sphere, let h, k be any two distinct rays from a point O, which pertain

Fig. 179. to different straightests. These two rays h, k from O we call a spherical angle, and designate it by $\widehat{\Varangle}(h, k)$ or $\widehat{孔}(k, h)$. The rays h, k, together with the point O separate the other points of the sphere into two regions, the interior of the angle and the exterior. [As in 35.]
The rays h, k are called sides of the angle, and the point O the vertex.

III 4^{\prime}. On the sphere, given a spherical angle $\Varangle(h, k)$, and a straightest a^{\prime}, also a determined side of a^{\prime}. Designate by h^{\prime} a ray of the straightest a^{\prime} starting from the point O^{\prime} :

Fig. 180. then is there one and only one ray k^{\prime} such that the
$\bar{\Varangle}(h, k)$ is congruent to the angle $\widehat{孔}\left(h^{\prime}, k^{\prime}\right)$ ， and likewise all inner points of the angle $\bar{千}\left(h^{\prime}, k^{\prime}\right)$ lie on the given side of a^{\prime} ．

Always $\bar{\Varangle}(h, k) \equiv \bar{子}(h, k) \equiv \bar{子}(k, h)$ ．
III 5^{\prime} ．If $\widehat{チ}(h, k) \equiv \widehat{\Varangle}\left(h^{\prime}, k^{\prime}\right)$ and $\widehat{\not}(h, k) \equiv$千 $\left(h^{\prime \prime}, k^{\prime \prime}\right)$ ，then is also $\widehat{子}\left(h^{\prime}, k^{\prime}\right) \equiv \widehat{チ}\left(h^{\prime \prime}, k^{\prime \prime}\right)$ 。

477．Convention．On the sphere let $A B C$ be an assigned spherical triangle； we designate the two rays going out from A through B and C by h and k respect－ ively．Then the angle $\widehat{孔}(h, k)$ is called the angle of the triangle $A B C$ included by the sides $A B$ and $A C$ ，or opposite the side $B C$ ．

Fig．i8i．

It contains in its interior all the inner points

Fig． 182. of the spherical triangle $A B C$ and is designated by $\widehat{\Varangle} B A C$ or $\bar{\Varangle} A$ ．

III 6^{\prime} ．On the sphere，if for two triangles $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$ we have the congruences $A B \equiv A^{\prime} B^{\prime}, A C \equiv A^{\prime} C^{\prime}, \widehat{\Varangle} B A C$ $\equiv \bar{\Varangle} B^{\prime} A^{\prime} C^{\prime}$ ，then also always are fulfilled the congruences $\widehat{子} A B C \equiv \overparen{子} A^{\prime} B^{\prime} C^{\prime}$ and $\widehat{子} A C B \equiv \widehat{子} A^{\prime} C^{\prime} B^{\prime}$ ．

478．Convention．When the sect $A B$ is set off on a ray starting from A ，if the point B falls within the sect $A C$ ，then the sect $A B$ is said to be less than the sect $A C$ ．

Fig. 183.

In symbols, $A B<A C$.
Then also $A C$ is said to be greater than $A B$.

In symbols, $A C>A B$.
$A B>C D$ when E between A and B gives $A E=C D$ or $B E=$ $C D$, using $=$ for \equiv.
479. Convention. When $\bar{\Varangle} A O B$ is set off from vertex O^{\prime} against one of the rays of $\bar{\xi} A^{\prime} O^{\prime} C$ toward the other ray, if its second side falls within $\widehat{\Varangle} A^{\prime} O^{\prime} C$, then the $\bar{\Varangle} A O B$ is said to be less than the $\overparen{\Varangle} A^{\prime} O^{\prime} C$.

Fig. 184.

In symbols,

$$
\widehat{F} A O B<\overparen{F} A^{\prime} O^{\prime} C .
$$

Then also $\mathscr{千} A^{\prime} O^{\prime} C$ is said to be greater than $\Varangle A O B$.
In symbols, $\mathscr{\Varangle} A^{\prime} O^{\prime} C>\Varangle A O B$.

480. Definition. Two spherical angles, which have the vertex and one side in common and whose not-common sides make a straightest are called adjacent angles.

Fig. 185.
481. Definition. Two spherical angles with a common vertex and whose sides make two straightests are called vertical angles.

Fig. 186.

Fig. 187.
482. Definition. A spherical angle which is congruent to one of its adjacent angles is called a right angle.

Two straightests which make a right angle are said to be perpendicular to one another.
483. Convention. If A, B are points which determine a straightest, then we may designate one of the regions or hemispheres it makes as right from the straightest $A B$ taken in the sense of the sect $A B$ (and the same hemisphere as left from $B A$ taken in the sense from B to A).

If now C is any point in the right hemisphere from $A B$, then we designate that hemisphere of $A C$ in which B lies as the left hemisphere of $A C$. So we can finally fix for each straightest which hemisphere is right from this straightest taken in a given sense.

Of the sides of any angle, that is designated as the right which lies on the right hemisphere of
that straightest which is determined (also in sense) by the other side, while the left side is that lying on the left of the straightest which is determined (also in sense) by the other side.

Two spherical triangles with all their sides and angles respectively congruent are called congruent if the right side of one angle is congruent to the right side of the congruent angle, and its left side to that angle's left; but if the right side of one angle be congruent to the left side of the cungruent angle, and its left side to that angle's right, the triangles are called symmetric.

Fig. 188.
484. Theorem. Two spherical triangles are either congruent or symmetric if they have two sides and the included angle congruent.
[Proved as in 43.]
485. Theorem. Two spherical triangles are either congruent or symmetric if a side and the two adjoining angles are respectively congruent.
[Proved as in 44.]

Fig. 189.
486. Theorem. If two spherical angies are congruent, so are also their adjacent angles.
[Proved as in 45.]
487. Theorem. Vertical spherical angles are congruent.
[Proved as in 46.]
488. Theorem. All right angles are congruent.
[Proved as in 50.]

Fig. 190.
489. Theorem. At a point A of a straightest a there is not more than one perpendicular to a.
[Proved as in 5^{2}.]
490. Definition. When any two spherical angles are congruent to two adjacent spherical angles each is said to be the supplement of the other.

491. Definition. If a spherical angle can be set off against one of the rays of a right angle so that its second side lies within the right angle, it is called an acute angle.

Fig. igi.
492. Definition. A spherical angle neither right nor acute is called an obtuse angle.

493. Definition. A spherical triangle with two sides congruent is called isosceles.

Fig. 192.
494. Theorem. The angles opposite the congruent sides of an isosceles triangle are congruent. [Proved as in 57.]
495. Theorem. If two angles of a spherical triangle be congruent, it is isosceles.
[Proved as in 485.]
496. Theorem. Two spherical triangles are either congruent or symmetric if the three sides of the one are congruent, respectively, to the three sides of the other.
[Proved as in 58.]

Fig. 193.

Fig. 194.
497. Theorem. Any two straightests perpendicular to a given straightest intersect in a point from which all sects to the given straightest are perpendicular to it and congruent.

Given r't $\widehat{\Varangle} A \equiv \widehat{\Varangle} C$.
To prove $P A \equiv P C \equiv P D$, and $\bar{\xi} D \mathrm{rt}$.

Proof. By 495, $P A \equiv P C$ and (by 485) $P A \equiv P^{\prime} A$. \therefore (by 484) $\widehat{\not} P D A \equiv \widehat{\Varangle} P^{\prime} D A$;
\therefore (by 488) $\widehat{\Varangle} P D A \equiv \widehat{\Varangle} P A D$;
\therefore (by 495) $\quad P D \equiv P A$.

Fig. 195.
498. Definition. The two opposite points at which two perpendiculars to a given straightest intersect are called its poles, and it the polar of either pole.

A sect from a pole to its polar is called a quadrant. 499. Theorem. All quadrants are congruent.

Fig. 196.

Let $A B$ and $A^{\prime} B^{\prime}$ be two quadrants.

To prove $A B \equiv A^{\prime} B^{\prime}$.
Proof. At A take a r't \bar{y} $B A C$, and also at A^{\prime}. On $A C$ take a sect $A C$, and on $A C^{\prime}$ take $A^{\prime} C^{\prime} \equiv A C$. At C and C^{\prime} take straightests $\perp A C$ and
$A^{\prime} C^{\prime}$. These contain B and $B^{\prime} . \quad \therefore$ (by 485) $A B \equiv A^{\prime} B^{\prime}$.
500. Theorem. A point which is a quadrant from two points of a straightest not opposites is its pole.

Let $P A$ and $P C$ be two quadrants.

Proof, At A and C erect

Fig. 197.
perpendiculars intersecting at P^{\prime}. Then (by 499 and 496) $\overparen{\Varangle} P A C \equiv \overparen{\Varangle} P^{\prime} A C$.
501. Theorem. If three sects from a point to a straightest be equal, they are quadrants.

Proof. They are sides of two adjacent isosceles triangles, and hence perpendiculars.
502. Contranominal of 501. If three equal sects from a point be not quadrants, their three other endpoints are not on a straightest.
503. Theorem. Through a point A, no on a straightest a, there is to a always a perpendicular straightest which, if A be not

Fig. 198. a pole of a, is unique.

Proof. Take any sect $Q R$ on a. Take on the other side of a from $A, \widehat{\Varangle} B Q R \equiv \widehat{\Varangle} A Q R$, and $Q B \equiv Q A$.

Then (by 484) $A B \perp a$ at S.

Moreover, if there were a second straightest perpendicular to a from A, then A would (by 498) be a pole of a.
504. Definition. A point B of a given ray $O O^{\prime}$ such that $B O \equiv B O^{\prime}$ will be called the bisection-point of the ray. A point B between A and C such that $A B \equiv B C$ is called the bisection-point of the sect $A C$.
505. Problem. To bisect a given ray $O O^{\prime}$.

Construction. At two points of the given ray not
both end－points erect perpen－ diculars［take（by III 4＇）an－ gles \equiv to $\widehat{\Varangle} S$ in 503 ］，inter－ secting at P ．Take another ray from O ，not on the same straightest as the given ray， and at two points of it not both end－points erect perpen－ diculars intersecting at Q ． The straightest $P Q$ bisects the

Fig． 199. given ray $O O^{\prime}$ ．

Proof．Since P and Q are poles，$\therefore \overparen{\nexists B \equiv}$ r＇t $\widehat{\not} \equiv \widehat{\Varangle} D . \quad \therefore($ by 485$) O B=B O^{\prime}$ ．

506．Theorem．If O and O^{\prime} are opposites，then with vertex $O \widehat{\Varangle}(h, k) \equiv \widehat{\Varangle}(h, k)$ with vertex O^{\prime} ．

Proof．Bisect（by 505）ray h at A and ray k at C ． Then（by 496）$\widehat{\Varangle} A O C \equiv \widehat{\Varangle} A O^{\prime} C$ ．

507．Definition．From the vertex O ，a ray b with－ in $\widehat{孔}(h, k)$ making $\widehat{子}(h, b) \equiv \widehat{子}(b, k)$ will be called the bisector of $\Varangle(h, k)$ ．

508．Problem．To bisect a given spherical angle．
Construction．By 505，bi－

Fig． 200. sect the rays of the angle $\bar{\Varangle} B$ at H and F ．Take A between H and B and from F on $F B^{\prime}$ take $F C \equiv H A$ ． Then $A C$ intersects $H F$ at D ， and $B D$ bisects $\widehat{\Varangle} H B F$ ．

Proof．By 496，孔 $A C B \equiv$ $\Varangle C A B^{\prime} ; \therefore$ by $485, H D=F D$ ； \therefore by $496, \Varangle H B D \equiv \widehat{\Varangle} F B D$ ．
509. Problem. To bisect a given sect.

Construction. At the endpoints erect perpendiculars [by taking (by III 4') angles $\equiv \bar{\Varangle} S$ in 503].

Bisect (by 508) the $\widehat{7}$ between them.

Proof. By 497 and 484.

Fig. 201.
510. Corollary. In an isosceles triangle the bisector of the angle between equal sides bisects at right angles the third side.

Fig. 202.

5II. Theorem. If two spherical triangles have two sides of the one equal respectively to two sides of the other, and the angles opposite one pair of equal sides equal, then the angles opposite the other pair are either equal or supplemental.
[Proved as in 175.]
512. Definition. In any spherical triangle the sect having as end-points a vertex and the bisec-tion-point of the opposite side is called a median.
513. Theorem. An angle adjacent to an angle of a spherical triangle is greater than, equal to, or less than either of the interior non-adjacent angles, according as the median from the other interior non-adjacent angle is less than, equal to, or greater than a quadrant. And inversely.

Proof. Let $\widehat{\Varangle} A C D$ be an angle adjacent to $\bar{\Varangle} A C B$
of $\triangle A C B$. Bisect $A C$ at F. On straightest $B F$ beyond F take $F H \equiv F B$. \therefore (by 484) $\widehat{\Varangle} B A F \equiv \widehat{\Varangle} H C F$. If now the median $B F$ be a quadrant $B F H$ is a ray and H is on $B C D$. If the median $B F$ be less than a quadrant, H^{\prime} is within $\widehat{\not} A C D$.

Fig. 203.

$$
\therefore \overline{4} H^{\prime} C A<\bar{y} D C A . \quad \therefore \bar{y} D C A>\widehat{\Varangle} B A C .
$$

If $B C$ be greater than a quadrant, $H^{\prime \prime}$ is without $\Varangle A C D$.

$$
\therefore \widehat{\Varangle} H^{\prime \prime} C F>\bar{\Varangle} D C F . \quad \therefore \bar{\not} D C A<\widehat{\Varangle} B A C .
$$

514. Definition. Two sects respectively congruent to two made by a point on a ray with its endpoints are called supplemental.
515. Theorem. The supplements of congruent sects are congruent.

Proof. They are sums or differences of quadrants and congruent sects less than quadrants; and (by 499) all quadrants are congruent.
516. Theorem. If a median

Fig. 204. be a quadrant, it is an anglebisector, and the sides of the bisected angle are supplemental.

Let median $B D$ in $\widehat{\triangle A B C}$ be a quadrant.

Proof. In $\triangle A B D$ and $\widehat{\triangle} C B^{\prime} D$ (by 484) $A B=$ $C B^{\prime}$ and $\widehat{\Varangle} A B D \equiv \widehat{チ} C B^{\prime} D \equiv$千 $C B D$ (by 506).

517．Inverse．If two sides of a triangle are sup－ plemental，the median is a quadrant．

Proof．$\triangle A B C \equiv$ or 小 $\triangle A B^{\prime} C$（by 496）．
$\therefore \triangle A B D \equiv$ or $\downarrow \overparen{\triangle} C B^{\prime} D$（by 484）．$\therefore B D=D B^{\prime}$ ．
518．Corollary．If two sides of a triangle are sup－ plemental，the opposite angles are supplemental．

519．Theorem．Two spherical triangles are either congruent or symmetric if they have two angles of the one respectively equal to two of the other，the sides oppo－ site one pair equal，and those opposite the other pair not supplemental．

Given $\overparen{\Varangle} B \equiv \widehat{\Varangle} E ; \widehat{\Varangle} C \equiv \widehat{\Varangle} F ; A B \equiv D E$ ；$A C$ not supplemental to $F D$ ．

Fig． 205.

Proof．On ray $B C$ take $B G=E F$ ．G must be C ，else would we have a $\triangle A C G$ with adjacent $\widehat{\Varangle} A G B \equiv \widehat{子} A C G$ in－ terior non－adjacent and \therefore with median a quadrant（by 513）and \therefore（by 516）with $A C$ supplemental to $A G$ ，that is， to $F D$ ．
520．Theorem．Two spheri－ cal triangles are either congru－ ent or symmetric if they have in each one，and only one， right angle，equal hypothenuses and another side or angle con－ gruent．

Given $\widehat{\Varangle} C \equiv \widehat{\Varangle} H \equiv$ r＇t $\widehat{子}$ ， and $c=h$ ．If $a=f$ ，then if

Fig． 206. $A C>g$ ，take $C D=g . \quad \therefore B D=h=c$ ，and（by 5 10）the
bisector of $\widehat{\Varangle} D B A$ is \perp to $C D A . \therefore$ (by 498) B is pole to $C D A . \therefore \widehat{\not} A$ is also r't.

If $\widehat{\Varangle} A \equiv \widehat{\Varangle} F$, then if $\widehat{\Varangle} A B C>\widehat{\Varangle} G$, take $\widehat{\Varangle} A B D \equiv$
 is pole to $C D A$.

52 I . Theorem. The straightest through the poles of two straightests is the polar of their intersection-points.

Let A and B be poles of a and b, which intersect in P.

To prove $A B$ the polar of P.
Proof. $A P$ and $B P$ are quadrants.

Fig. 207.
522. Corollary to 52 I . The straightest through the poles of two straightests is perpendicular to both.
523. Corollary to 52 I. If three straightests are copunctal, their poles are on a straightest.
524. Definition. If A, B, C are the vertices and a, b, c the opposite sides of a spherical triangle, and A^{\prime} that pole of a on the same side of a as A, B^{\prime} of b as B, C^{\prime} of c as C, then $A^{\prime} B^{\prime} C^{\prime}$ is called the polar triangle of $A B C$.
525. Definition. Of a spherical triangle A, B, C, the polar triangle is $A^{\prime}, B^{\prime}, C^{\prime}$ where A^{\prime} is that pole of $B C$ or a on the same side of a as A, B^{\prime} of b as B, C^{\prime} of c as C.
526. Theorem. If of two spherical triangles the second is the polar of the first, then the first is the polar of the second.

Let $A B C$ be the polar of $A^{\prime} B^{\prime} C^{\prime}$.

To prove $A^{\prime} B^{\prime} C^{\prime}$ the polar of $A B C$.
Proof. Since B is pole of $A^{\prime} C^{\prime}, \therefore B A^{\prime}$ is a quad-

Fig. 208. rant; and since C is pole of $A^{\prime} B^{\prime}, \therefore C A^{\prime}$ is a quadrant; \therefore (by 500) A^{\prime} is pole of $B C$. In like manner, B^{\prime} is pole of $A C$, and C^{\prime} of $A B$. Moreover, since by hypothesis A and A^{\prime} are on the same side of $B^{\prime} C^{\prime}$ and A is pole of $B^{\prime} C^{\prime}$,
\therefore sect $A A^{\prime}$ is less than a quadrant. $\therefore A$ and A^{\prime} are on the same side of $B C$, of which A^{\prime} is pole. And so for B^{\prime} and C^{\prime}.
527. Theorem. In a pair of polar triangles, any angle of either intercepts, on the side of the other which lies opposite it, a sect which is the supplement of that side.

Let $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$ be two polar triangles.

Proof. Call D and E respectively the points where ray $A^{\prime} B^{\prime}$ and ray $A^{\prime} C^{\prime}$ meet $B C$. Since B is pole of $A^{\prime} C^{\prime}$, $\therefore B E$ is a quadrant, and since C is pole of $A^{\prime} B^{\prime}, \therefore C D$ is a quadrant.

Fig. 209.

But $B E+C D=B C+C E+C B+B D=$

$$
B C+(E C+C B+B D)=B C+D E .
$$

528. Theorem. Two spherical triangles are either congruent or symmetric if they have three angles of the one respectively equal to three angles of the other.

Proof. Since the given triangles are respectively equiangular, their polars are respectively equilateral. For (by 484) equal angles at the poles of straightests intercept equal sects on those straightests; and these equal sects are the supplements of corresponding sides of the polars Hence these polars, having three sides respectively equal, are respectively equiangular. Therefore the original triangles are respectively equilateral, which was to be proved.
529. Corollary to 5 II. Two spherical triangles are either congruent or symmetric if they have two sides of the one respectively equal to two of the other, the angles opposite one pair equal, and those opposite the other pair not supplemental.
530. Theorem. If two sides of a spherical triangle are each less than a quadrant, any sect from the third side to the opposite vertex is less than a quadrant.

Let $A B$ and $B C$ be each less than a quadrant.
To prove $B D<$ quadrant.
Proof. Let $F G$, the polar of B, meet $B D$ at H. If H were between B and D, then $G H F$ would (by II 9') meet CA, and so have a point on each of the three sides of $\triangle A B^{\prime} C$, which (by II 9^{\prime}) is impossible. Hence D is between B and H. That is $B D<$ quad-

Fig. 210. rant.
531. Corollary to 530 and 513 . If two sides of a spherical triangle are each less than a quadrant, the
angle opposite either is less than the supplement of the angle opposite the other.
532. Theorem. If two sides of a spherical triangle be each less than a quadrant, as the third side is greater or less than one of these, so is it with the opposite angles. And inversely.

Fig. 21 I.

Let in $\widehat{\triangle} A B C, B C$ and another side, $A B$, be each less than a quadrant, and $A C>A B$.

To prove $چ A B C>\widehat{\xi} A C B$.
Proof. Within $A C$ take D making $A D=A B$. Then (by 530) $D B$ is less than a quadrant. \therefore (by 53I) $\Varangle A D B>$. $\widehat{\Varangle} C$. But $\widehat{\Varangle} A B C>\widehat{\not} A B D \equiv \widehat{\Varangle} A D B>\widehat{ళ} C$.
533. Theorem. If the three sides of a spherical triangle are each less than a quadrant, any two are together greater than the third.
[Proved as in 174.]
534. Definition. On the sphere, the assemblage of points which with a given point give congruent sects is called a circle. The given point is called a pole of the circle. Any one of the congruent sects is called a spherical radius of the circle.

Thus a straightest is a circle with a quadrant for spherical radius. But henceforth, for convenience, by circle we will mean a circle with a radius not a quadrant.

A sect whose end-points are on a circle is called a spherical chord, or simply a chord.

A chord containing a pole is called a diameter.
Since the supplements of congruent sects are (by
515) congruent, therefore every circle has two poles which are opposite points, and its spherical radius to one pole is the supplement of that to the other.

Always one spherical radius is less than a quadrant.
Call its pole the q-pole, and it the q-radius.
535. Theorem. Any spherical chord is bisected by the perpendicular from a pole.

Proof. $A D=B D$ (by 520).
536. Corollary. A straightest perpendicular to a diameter at an end-point has only this point in common with the circle.

Fig. 212.
537. Definition. A straightest with one and only one point in common with a circle is called a tangent to the circle.
538. Theorem. If an oblique from a point to a straightest be less than a quadrant, then there is one and only one perpendicular sect from the point to the straightest which meets it at less than a quadrant from the foot of the oblique and this is less than a quadrant.

Fig. 213.

Let $B A$ be oblique to $C A$ and $<q$, and $B C \perp C A$.

Proof. Then $C A$ cannot $=q$, else would $B A=q$. Hence $C A$ may be taken $<q$, since from C to its opposite $=2 q$. Now take $C A^{\prime}=C A$. Then $B A^{\prime}=B A$ and $B C$ is median where the two sides are each $<q . \quad \therefore$ (by 530) $B C<q . \therefore$ (by 503) its prolongation $B C^{\prime}$ is the only other \perp from B to $A C$.
539. Definition. If A be a point of a circle whose q-pole is P, then P or any point between A and P is said to be within the circle, while Q such that A is between P and Q is said to be without the circle.
540. Theorem. Any straightest through an end-

Fig. 214. point of a diameter, but not perpendicular to the diameter, has a point within and a second point on the circle.

Let P be the q-pole, and $A C$ the straightest through A, an end-point of diameter BPA ($\bar{\Varangle} P A C$ not r't).

Proof. Take (538) $P D \perp C A$ with $P D$ and $A D$ each $<q$. Take $D C=D A$.
\therefore (by 484) $P C=P A$; that is, C on circle. Moreover (by 5 13) $\widehat{\Varangle} P A F>\overparen{\Varangle} P C A \equiv \overparen{\Varangle} P A C . \quad \therefore \widehat{\Varangle} P A D$ acute. \therefore (by 532) $P D<P A$; that is, D within circle.
541. Theorem. Any straightest with a point on and a point within a circle has a second point on the circle.

Let $A B$ have a point A on and B within circle with q pole P.

Proof. $\widehat{\Varangle} P A B$ cannot be r't. For if so, then producing $P B$ to meet the circle at C, (by 531) $\widehat{\Varangle} P C F>\widehat{子} P A C$ $>$ r't $\Varangle P A B . \quad \therefore \overparen{子} P C A$ adjacent to obtuse $\widehat{\Varangle} P C F$ is

Fig. 215. acute. But it is also obtuse, being (by 494)
$\equiv \widehat{\Varangle} P A C$. This is impossible, $\therefore B A$ not $\perp A P$; \therefore (by 540) it has a second point on the circle.
542. Corollary. A tangent has no point within the circle.
543. Theorem. If less than a quadrant, the perpendicular is the least sect from a point to a straightest.

Proof. If any other sect from P to $A C$ were less than the perpendicular $P A$, then $A C$ would have a point within the circle with q-pole P and q-radius $P A$, and \therefore (by 541) a second point on this circle,

Fig. 216. which (by 536) is impossible.
544. Convention. In general a sum of sects is a number of quadrants plus a sect.
545. Theorem. Any two sides of a spherical triangle are together greater than the third.

Proof. Since each side is less than two quadrants, we have only to prove $A B+B C>A C$ when $A B<q$, and $B C<A C$.

I. If $B C=q$, then taking $C D=q$, we have (by 500) $B D \perp A C$.
\therefore (by 543) $A D<A B$.
$\therefore A C=A D+D C<A B+$
$B C$.
Fig. 217.

$$
\begin{aligned}
& \text { II. If } B C<q, \\
& \\
& \text { (I) if } C A<q \text {, this is } 533 . \\
& \text { (2) if } C A=q \text {, erect } \perp \text { at } A . \\
& \therefore \quad \text { (by } 543) A B>B D . \\
& \therefore A B+B C>D B+B C
\end{aligned}=D C .
$$

Fig. 218.
(3) If $C A>q$, take on it $C D=q$ and make $C B F=q$.

Fig. 219. Then sects $A B$ and $D F$ cross at K, for F is on the non- C-side of $A B$, while D is on the C-side of $A B . \quad \therefore D F$ must have a point on straight $A B$. But all points of sect $D F$ are interior to $\widehat{子} C, \therefore$ this intersection point is on sect $A B$, which is all of straight $A B$ within $\Varangle C$.
Then (by 543) $B F<B K$ and $A D<A K$.
$\therefore A C=A D+D C<A K+C D$

$$
=A K+C F<C B+B K+K A .
$$

III. If $B C>q$, then in $A B C^{\prime}$ all sides are less than quadrants.
\therefore (by 533) $C B+B A+A C^{\prime}>C B+B C^{\prime}=C A+A C^{\prime}$.
$\therefore C B+B A>C A$.
546. Definition. A convex spherical polygon is one no points of which are on different sides of the straightest of any of its sides.
547. Theorem. A convex spherical polygon is less than one containing it.
548. Theorem. The sum of the sides of a convex spherical polygon is less than four quadrants.

Proof. It is within, hence less than, any one of its angles.
549. Theorem. If one angle of a spherical triangle be greater than a second, the side opposite the first must be greater than the side opposite the second; and inversely.

Given $\widehat{\Varangle} C>\widehat{\Varangle} B$.
Proof. Take $\widehat{\Varangle} D C B \equiv \widehat{子} B$. Then (by 495) $D C=D B$. But

Fig. 220. (by 545) $D C+D A>A C$.
550. Theorem. In a cyclic quadrilateral, the sum of one pair of opposite angles equals the sum of the other pair.

Proof. By isosceles triangles.

551. Theorem. Of sects joining two symmetrical points to a third, that cutting the axis is the greater.

$$
\begin{array}{cc}
\text { Proof. } & B A=B D+D A \\
= & B D+D A^{\prime}>B A^{\prime} .
\end{array}
$$

Fig. 22 I .
552. Theorem. If two spherical triangles have two sides of the one equal to two sides of the other, but the included angles unequal, then that third side is the greater which is opposite the greater angle; and inversely.

Proof. Against one of the equal sides of one triangle construct a triangle with elements equal to those in the other. Bisect the angle made by the pair of equal sides. This axis cuts the third side, which is opposite the greater angle.
553. Theorem. If each of the two sides about a

Fig. 222. right angle is less than a quadrant, then the hypothenuse is less than a quadrant.

Proof. Extend the two sides $B A, B C$, taking $B F=$ $B D=$ quadrant. Then (by 500) B is pole of $D F . \quad \therefore$ (by 498 and 497) $\bar{\Varangle} F$ is r 't. \therefore (by 495) $D F$ is a quadrant. \therefore (by $500) D A$ is a quadrant. \therefore (by 530) $A C<$ quadrant.
554. Inverse of 553 .

If the hypothenuse and a side are each less than a quadrant, then the other side is less than a quadrant.

Proof. If B is r't (Fig. 222), and $A B$ and $A C$ each $<q$, there is (by 538) on st' $A B$ a p't H such that $C H$ and $A H$ each $<q$ while $C H \perp A H$.

But H is B or B^{\prime}.
It cannot be B^{\prime} since $B A<q$ and \therefore (by II ro') $A B^{\prime}>q$.
555. Theorem. The straightest bisecting two sides of a triangle meets the third side at a quadrant from its bisection-point.

Let the straightest through A^{\prime}, B^{\prime}, the bisectionpoints of two sides $B C, C \hat{A}$, meet the third side produced at D and D^{\prime}.

Proof. Take (by 538) $A L, B M, C N \perp A^{\prime} B^{\prime}$ and such that each is $<q$, and also $B^{\prime} L, B^{\prime} N, A^{\prime} M, A^{\prime} N$ each <q.
\therefore in \triangle 's $A L B^{\prime}$ and $C N B^{\prime}$ (by 519) $A L=C N$. Similarly $B M=C N . \quad \therefore$ in $\widehat{\triangle}^{\prime}$'s $A L D$ and $B M D^{\prime}$ (by 519) $A D=B D^{\prime} . \quad \therefore$ if C^{\prime} be bi-section-point of $A B$, we

Fig. 223. have $C^{\prime} A+A D=C^{\prime} B+B D^{\prime}=q$.
556. Theorem. The end-points of any sect taken with any point on its perpendicular bisector give equal sects.
557. Corollary 556. Every point on the perpendicular bisector of a sect is pole of a circle through its end-points.
558. Corollary to 557.

The perpendicular bisectors of the sides of a spherical triangle are copunctal (in its circumcenter).
559. Corollary I to 555.

The altitudes of a spherical triangle are copunctal (in its orthocenter.

For, regarding $A^{\prime} B^{\prime} C^{\prime}$ as the triangle, the perpendicular to $D C^{\prime}$ at C^{\prime} is the polar of D, and $\therefore \perp$ to $A^{\prime} B^{\prime}$.

Similarly, the perpendicular to $B A^{\prime}$ at A^{\prime} is \perp to $B^{\prime} C^{\prime}$, etc.

So the three altitudes of $A^{\prime} B^{\prime} C^{\prime}$ are copunctal in the circumcenter of $A B C$.
560. Corollary II to 555. (Lexell).

The vertices of spherical triangles of the same
angle－sum on the same base are on a circle copolar with the straightest bisecting their sides．

For $A O=B O, \widehat{\Varangle} O A B=\widehat{\Varangle} O B A, \widehat{孔} L A B=\widehat{\Varangle} M B A$ $=\frac{1}{2}[A+B+C]$ ．Hence $\widehat{\triangle} A O B$ is fixed，and $\therefore O C$ ［supplemental to $O A$ ］．

Fig． 224.

561．Theorem．The straight－ ests through the corresponding vertices of a triangle and its polar are copunctal in the com－ mon orthocenter．

Proof．For $A A^{\prime}$ is \perp to $B C$ and $B^{\prime} C^{\prime}$ ，since it passes through their poles．

Equivalence．

562．Theorem．Any angle made with a side of a spherical triangle by joining its end－point to the circumcenter， equals half the angle－sum less the opposite angle of the tri－ angle．

Proof．For $\widehat{\Varangle} A+\widehat{y} B+\widehat{\Varangle} C$ $=2 \widehat{チ} O C A+2 \widehat{\text { 子 }} O C B \pm$ 2 $\widehat{\xi} O A B . \quad \therefore \widehat{\xi} O C A=\frac{1}{2}[\widehat{\not} A$ $+\widehat{\Varangle} B+\widehat{孔} C]-[\widehat{\Varangle} O C B \pm$

Fig． 225. $\widehat{\Varangle} O A B]=\frac{1}{2}[\widehat{y} A+\widehat{y} B+\widehat{\Varangle} C]-\widehat{y} B$.

563．Corollary to 562．Symmetrical spherical tri－ angles are equivalent or equivalent by completion．

For the three pairs of isosceles triangles formed by joining the vertices to the circumcenters，hav－
ing respectively a side and two adjoining angles congruent, are congruent.
564. Theorem. Of the triangles formed by three non-copunctal straightests, two containing vertical angles are together equivalent to that angle.

To prove $\overparen{\triangle} A B C+\triangle A B^{\prime} C^{\prime}$ $=\widehat{7} A B A^{\prime} C A$.

Proof. $\quad B^{\prime} C^{\prime}=B C$, each being supplement of $C B^{\prime}$. Again $A C^{\prime}=A^{\prime} C$ (supplements of $A C$). Again $A B^{\prime}=$ $A^{\prime} B$ (supplements of $A B$). $\therefore\left(\right.$ by 496) $\widehat{\triangle} A B^{\prime} C^{\prime}=\widehat{\triangle} B C A^{\prime}$.
$\therefore \widehat{\triangle} A B C+\overparen{\triangle} A B^{\prime} C^{\prime}=\widehat{\triangle}$

Fig. 226. $A B C+\widehat{\triangle} B C A^{\prime}=\widehat{\not} A B A^{\prime} C A$.
565. The spherical excess, e, of a spherical triangle is the excess of the sum of its angles over two right angles.

In general the spherical excess of a spherical polygon is the excess of the sum of its angles over twice as many right angles as it has sides less two.
566. Theorem. A spherical triangle is equivalent to half its spherical excess.

Fig. 227.

Proof. Produce the sides of the $\triangle A B C$ until they meet again two and two at A^{\prime}, B^{\prime}, C^{\prime}. The $\triangle A B C$ now appears in three angles, $\widehat{\not} A, \widehat{\Varangle} B, \widehat{\not} C$. But (by 564) $\widehat{\Varangle} A=\triangle \triangle A B C+$ $\widehat{\triangle} A B^{\prime} C^{\prime} . \therefore \widehat{\xi} A+\bar{\xi} B+\bar{\xi} C$ $=2$ r't $\widehat{\text { 's }}+2 \widehat{\triangle} A B C$.

567. Corollary I to 566. The sum of the angles of a \triangle is >2 r't $\overparen{\text { ' }}$, and <6 r't $\widehat{\ngtr}$'s.
568. Corollary II to 566. Every $\widehat{\forall}$ of a $\widehat{\Delta}$ is $>\frac{1}{2} e$.
569. Corollary III to 566. A spherical polygon is equivalent to half its spherical excess.

Ex. 597. If a spherical angle adjacent to one angle of a spherical triangle is equal to a second angle of the triangle, the sides opposite these are together a ray.

Ex. 598. In a spherical triangle and the spherical triangle determined by the opposites of its vertices the sides and angles are respectively congruent.

Ex. 599. Where are the vertices of spherical triangles on a given base the sum of whose other sides is a ray?
Ex. 600 . Does a triangle ever coincide with its polar?
Ex. 6ог. The difference of any two angles of a spherical triangle cannot exceed the supplement of the third.

Ex. 602. The bisector of an angle passes through the pole of the bisector of the supplemental adjacent angle.
Ex. 603. If two straightests make equal angles with a third, the sects from their poles to its are equal.

Ex. 604. If a straightest be through the pole of a second, so is the second through a pole of the first.

Ex. 605. If two circles be tangent, the point of contact is on their center-straightest.

Ex. 606. The common secant of 2 intersecting \odot s bisects a common tangent.

Ex. 607. The three common secants of $3 \odot s$ which intersect each other are copunctal.

Ex. 608. If a quad' can have a \odot inscribed in it, the sums of the opposite sides are $=$.

Ex. 609. If two equal \odot s intersect, each contains the orthocenters of $\widehat{\Delta}$ inscribed in the other on the common chord as base.

Ex. 610. Three equal \odot s intersect at a point H, their other points of intersection being A, B, C. Show that
H is the orthocenter of $\triangle A B C$; and that the \triangle formed by the centers of the circles is \equiv to $\triangle A B C$.

Ex. 6ri. The feet of $\perp \mathrm{s}$ from A of $\triangle A B C$ on the external and internal bi's of $\Varangle \mathrm{s} B$ and C are co-st' with the bisection-points of b and c. Does this hold for $\overparen{\Delta}$?

Ex. 612. (Bordage.) The centroids of the $4 \overparen{\Delta} \mathrm{~s}$ determined by four concyclic points are concyclic.

Ex. ${ }^{1}$ I3. The orthocenters of the $4 \overparen{\Delta} \mathrm{~s}$ determined by four concyclic points, A, B, C, D, are the vertices of a quad' \equiv to $A B C D$. The incenters are vertices of an equiangular quad'.

Ex. 614. (Brahmegupta.) If the diagonals of a cyclic quad' are \perp, the \perp from their cross on one side bisects the opposite side.

Ex. 615. If the diagonals of a cyclic quad' are 1 , the feet of the $\perp \mathrm{s}$ from their cross on the sides and the bisec-tion-points of the sides are concyclic.

Ex. 616. If an inscribed equiangular polygon have an odd number of sides, it is equilateral.

Ex. 617. If a circumscribed equilateral polygon have an odd number of sides, it is equiangular.

Ex. 6r8. If one of two equal chords of a \odot bisects he other, then each bisects the other.
Ex. 6rg. The tri-rectangular \triangle is its own polar.
Ex. 620. All $=\widehat{\Delta} \mathrm{s}$ on the same side of the same base have their two sides bisected by the same straightest.

Ex. 62 I . If the base of a \triangle be given, and the vertex variable, the straightests through the bisection-points of the two sides always pass through two fixed points.

Ex. 622. If A and A^{\prime} be opposites, then $\triangle \bar{s} A B C$, $A^{\prime} B C$ are called colunar. A pole of the straightest bisecting $A B$ and $A C$ is also pole of the circum- \odot of the colunar $\triangle A^{\prime} B C$.

Ex. 623 . Given b and $\alpha+\gamma-\beta$ to construct $q-$ pole and radius of circum- \odot.

Ex. 624. If $\alpha+\beta=\gamma$, the q-pole of circum-® is bisectionpoint of c.

Ex. 625. Two $\widehat{\Delta}$ s with one \Varangle the same and the opposite escribed $\odot_{s}=$, have equal perimeters.

Ex. 626 The tangent at A to the circum- \odot of $\triangle A B C$ makes with $A B$ and $A C \widehat{\zeta} \mathrm{~s}$ whose difference $=\beta-\gamma$.

Ex. 627. The q-pole of the circum-® of a \triangle coincides with that of the in $-\odot$ of the polar $\overparen{\Delta}$; and the spherical radii of the $2 \odot s$ are complementary.

Ex. 628. From each $\widehat{\not}$ of a $\triangle a \perp$ is drawn to the straightest through the bisection-points of the adjacent sides. Prove these \perp s copunctal.

Ex. 629. Through each $\grave{\Varangle}$ of a \triangle a straightest is drawn to make the same $\not \subset$ with one side as the \perp on the base makes with the other side. Prove these copunctal.

Ex. 630. Two birectangular $\overparen{\Delta} \mathrm{s}$ are \equiv if the oblique $\not \mathrm{f}_{\mathrm{s}}$ are \equiv, or if the sides not quadrants are $=$.

Ex. $6_{3} \mathrm{I}$. In $\overparen{\Delta}$, if c is fixed and $\alpha+\beta=\pi$, then C is on a fixed straightest.

Ex. 632. (Joachimstha1.) If two diagonals of a complete spherical quadrilateral are quadrants, so is the third.

Ex. 633. (1) A quad' whose diagonals bisect each other (a cenquad) has its opposite sides =; (2) and inversely.
(3) Also its opposite $\widehat{\Varangle} \mathrm{s}=$; (4) and inversely.
(5) Every straightest through this bisection-point (spherical center) cuts the quad' into \equiv halves.
(6) Its opposite sides make =alternate $\underset{\text { § }}{ }$ with a diagonal.
(7) Inversely, a quad' with a diagonal making with each side a $\bar{\Varangle}=$ to its alternate is a cenquad. (8) So is a quad with a pair of opposite sides $=$ and making $=$ alternate $\widehat{\mathrm{y}} \mathrm{s}$ with a diagonal.
(9) Also a quad' with a pair of opposite sides $=$, and a diagonal making $=$ alternate $\not \subset \mathrm{s}$ with the other sides and opposite $\Varangle \mathrm{s}$ not supplemental.
(10) From the spherical center \perp s on a pair of opposite sides are $=$.
(II) If two consecutive $\widehat{\mathrm{z}}$ s of a cenquad are $=$, it has a circum-๑.
(12) If two consecutive sides of a cenquad are $=$, it has an in-๑.
(13) The polar of a cenquad is a concentric cenquad.
(x4) A pair of opposite sides of a cenquad intersect on the polar of its spherical center.
(15) Any two consecutive vertices of a cenquad and the opposites of the other two are concyclic.
(16) If $A B C D$ be a cenquad, then $A, B, C^{\prime}, D^{\prime}$ and A^{\prime}, B^{\prime}, C, D are on $=\odot \mathrm{s}$ with q-poles opposites.

Ex. 634. The sides of a \triangle intersect the corresponding sides of its polar on the polar of their orthocenter.

Ex. 635. The sect which a \Varangle intercepts on the polar of its vertex equals a sect between poles of its sides.

Ex. 636. If a spherical quad' is inscribed, and another circumscribed touching at the vertices of the first, the crosses of the opposite sides of these quad's are on a straightest.

Ex. 637. The crosses of the sides of an inscribed ${ }_{\triangle}$ with the tangents at the opposite vertices are on a straightest.

CHAPTER XVI.

ANGLOIDS OR POLYHEDRAL ANGLES

570. Theorem. The area of a spherical angle, L, is $2 r^{2} u$.

Proof. For we have the proportion, area of $\widehat{\not}$: area of $\frac{1}{4}$ sphere $=$ size of \widehat{x} : size of r't $\widehat{x}=$ size of $\not x$ at center : size of r 't \Varangle; that is,

$$
\begin{aligned}
L: & r^{2} \pi=u: \frac{1}{2} \pi . \\
\therefore L & =2 r^{2} u .
\end{aligned}
$$

571. Corollary to 570 and 566. The area of a spherical triangle is the size of its spherical excess multiplied by its squared radius.

If e^{\prime} is the u of e,

$$
\widehat{\Delta}=e^{\prime} r^{2} .
$$

572. Corollary to 57 I . To find the area of a spherical polygon, multiply its spherical excess in radians by the squared radius.
573. Definition. Three or more rays, a, b, c, from the same point, V, taken in a certain order and such that no three consecutive are coplanar. determine a figure called a polyhedral angle or an angloid.

The common point V is the vertex, the rays a, b, c, \ldots are edges the angles $\Varangle a b \not \Varangle b c, \ldots$ are faces,
and the pairs of consecutive faces are the dihedrals of the angloid.

According to the number of the rays, $3,4,5, \ldots$ the angloid is called trihedral, tetrahedral, pentahedral, . . . , and in general polyhedral.
574. If a unit sphere be taken with the vertex of the angloid as center, this determines a spherical polygon whose angles are of the same size as the inclinations of the angloid's dihedrals, while the length of each side of the polygon is the size of the corresponding face-angle of the angloid.

Hence from any property of spherical polygons we may infer an analogous property of angloids.

For example, the following properties of trihedrals have been proved in our treatment of spherical triangles:
I. Trihedrals are either congruent or symmetrical which have the following parts congruent:
(r) Two face-angles and the included dihedral.
(2) Two dihedrals and the included face-angle.
(3) Three face-angles.
(4) Three dihedrals.
(5) Two pairs of dihedrals and the face-angles opposite one pair equal, opposite the other pair not supplemental.
(6) Two pairs of face-angles and the dihedrals opposite one pair equal, opposite the other pair not supplemental.
II. As one of the face-angles of a trihedral is greater than or equal to a second, the dihedral opposite the first is greater than or equal to that opposite the second, and inversely.
III. Symmetrical trihedrals are equivalent or equivalent by completion.
IV. Any two face-angles of a trihedral are together greater than the third.
V. In two trihedrals having two face-angles respectively congruent, if the third is greater in the first, so is the opposite dihedral, and inversely.
VI. In any trihedral the sum of the three faceangles is less than four right angles.
VII. In any trihedral, the sum of the three dihedrals is greater than two and less than six right angles.

In the same way, defin'ng a polyhedral as convex when any polygon formed by a plane cutting every face is convex, we have:
VIII. In any convex polyhedral any face-angle is less than the sum of all the other face-angles.

Proof. Divide into trihedrals and apply IV repeatedly.
IX. In any convex polyhedral the sum of the face-angles is less than four right angles.
X. The three planes which bisect the dihedrals of a trihedral are costraight.
XI. The three planes through the edges and the bisectors of the opposite face-angles of a trihedral are costraight.
XII. The three planes through the bisectors of the face angles of a trihedral, and perpendicular to these faces, respectively, are costraight.
XIII. The three planes through the edges of a trihedral, and perpendicular to the opposite faces, respectively, are costraight.
XIV. If two face-angles of a trihedral are right, the dihedrals opposite are right.

Ex. $6_{3} 8$. The face angles of any trihedral are proportional to the sides of its \triangle on any sphere.

Ex. 6_{39}. The area of a \triangle is to that of the sphere as its spherical excess is to $8 \mathrm{r}^{\prime} \mathrm{t} 夕 \mathrm{~s}\left(e^{\prime}: 4 \pi\right)$.

Ex. 640 . Find the angles and sides of an equilateral \triangle whose area is $\frac{1}{4}$ the sphere.

Ex. 64r. The angle-sum in a r't $\widehat{\Delta}$ is <4 r't $\Varangle \mathrm{s}$.
Ex. 642. If one of the sects which join the bisectionpoints of the sides of a \triangle be a quadrant, the other two are quadrants.

Ex. ${ }^{433}$. Cut a tetrahedral by a plane so that the section is a \|gm.

Ex. 644 . To cut by a plane a trirectangular trihedral so that the section may equal any given Δ.

Ex. 645 . The base $A C$ and the area of a \triangle being given, the vertex B is concyclic with A^{\prime} and C^{\prime}.

Ex. 646. Given a trihedral; to each face from the vertex erect a perpendicular ray on the same side as the third edge; the trihedral they form is called the polar of the given one.

If one trihedral is the polar of a second, then the second is also the polar of the first.

Ex. 647 . If two trihedrals are polars, the face angles of the one are supplemental to the inclinations of the corresponding dihedrals of the other.

Ex. 648. If two angles of a $\widehat{\Delta}$ be r't, its area varies as the third $\overline{7}$.
Ex. 649. If r^{\prime}, one minute, is one sixtieth of a degree, and $\mathrm{r}^{\prime \prime}$, one second, is one sixtieth of a minute, find the area of a $\widehat{\Delta}$ from the radius r, and the angles $\alpha=20^{\circ} 9^{\prime}$ $30^{\prime \prime}, \beta=55^{\circ} 53^{\prime} 32^{\prime \prime}, \gamma=114^{\circ} 20^{\prime} 14^{\prime \prime}$. Ans. $0.1813^{2} r^{2}$.

Ex. 650. All trihedrals having two edges common, and, on the same side of these, their third edges prolongations of elements of a right cone containing the two common edges, are equivalent.

Ex. 65 I . Equivalent $\triangle \mathrm{S}$ on the same side of the same base are between copolar $=\odot s$.

Ex. 652. Find the spherical excess of a $\widehat{\Delta}$ in degrees from its area and the radius.

Ex. 653. If any angloid whose size is I , that is, any angloid which determines on the unit sphere a spherical polygon whose area is 1 , be called a steradian, and all the angloids about a point be together called a steregon, then a steregon contains 4π steradians.

APPENDIX I.

THE PROOFS OF THE TWO BETWEENNESS THEOREMS 16 AND 17, TAKEN FOR GRANTED IN THE TEXT.*
575. Theorem I. If B is between A and C, and C is between A and D, then C is between B and D.

Proof. Let A, B, C, D be on a. Through C take a straight c other than a. On c take a point E other than C. On the straight $B E$ between B and E take F. Thus between B and F is no point of c. Now between A and F there can be no point of c, else c would (by II 4) have a point between A and

Fig. 228. B, since, by the construction of F, c cannot have a point between B and F. Thus C would be between A and B, contrary to our hypothesis that B is between A and C.

Thus since c cannot have a point between A and F, it must (by II 4) have a point between F and D. Thus we have the three non-co-straight points F, B, D, and c with a point between F and D, and, by construction, none between F and B. Therefore it must (by II 4) have a point between B and D. So C is between B and D.

[^2]576. Theorem II. If B is between A and C, and C is between A and D, then B is between A and D.

Proof. Let A, B, C, D be on a. Through B take

Fig. 229. a straight b other than a. On b take a point \dot{E} other than B. On the straight $C E$ between C and E take F. Thus between C and F is no point of b. Then since by hypothesis B is between A and C, therefore b must (by II 4) have a point between A and F.
Thus we have the three non-co-straight points A, F, D, and b with a point between A and F. Therefore b must have (by II 4) a point between A and D, or between F and D. But it cannot have a point between F and D, for then it must (by II 4) have a point either between F and C, contrary to our construction, or else between C and D, contrary to Theorem I, by which C is between B and D. Therefore it has a point between A and D. So B is between A and D.
577. Theorem. III Any four points of a straight can always be so lettered, $A B C D$, that B is between A and C and also between A and D, and furthermore C is between A and D and also between B and D.

Proof. We may (by II 3) letter three of our points B, C, D, with C between B and D. Now as regards B and D, and our fourth point A, either A is between B and D, or B is between A and D, or D is between A and B.

If B is between A and D, we have fulfilled the hypothesis of Theorems I and II.

If D is between A and B, then interchanging the lettering for B and D, that is calling B, D and D, B, we have the hypothesis of Theorems I and II. There only remains to consider the case where A is between B and D.

If now C is between D and A, we have fulfilled the hypothesis of Theorems I and II, by calling D, A, and C, B, and A, C, and B, D.

If, however, A were between C and D we would have fulfilled the hypothesis of Theorems I and II by writing for A, B, for D, A, and for B, D.

We have left only one sub-case to consider, that where D is between A and C. This sub-case is impossible. Suppose $A B C D$ on a. Through C take a straight c other than a. On c take a point E other than C. On the straight $D E$ between D and E take F. Thus between D and F is no point of c.

Fig. 230.

Then since by hypothesis C is between B and D, therefore c must (by II 4) have a point between B and F. Therefore we have the three non-costraight points B, F, A, and c with a point between B and F. Therefore c has (by II 4) either a point between B and A, or a point between F and A. But it cannot have a point between F and A, else it would (by II 4) either have a point between F and D, contrary to our construction, or else between D and A, giving C between D and A, contrary to our hypothesis D between A and C.

So C would be between B and A, but this with D between A and C gives (by Theorem I) D between A and B, contrary to our hypothesis A between B and D.

Thus there is always such a lettering that B is between A and C, and C between A and D, whence (by Theorem I) C is between B and D, and (by Theorem II) B is between A and D.
578. Theorem. Are A, B, C, D points of a straight, such that C lies between A and D and B between A and C, then lies also B between A and D, but not between C and D.

Fig. 23 I.
Proof. The points $A B C D$, in accordance with 577, have an order in which two are each between the remaining pair and of this remaining pair neither is between two others. But here by hypothesis C and B are between others. So we reach the following arrangements $A C B D, D B C A, A B C D, D C B A$. Of these arrangements, however, the first two do not satisfy the hypothesis. For in both arrangments C lies between A and B, which (by II 3) contradicts the hypothesis " B between A and C."

In the third and fourth arrangement appears, by 577 , that C lies between B and D, therefore, by II 3, B cannot lie between C and D.
579. Theorem. Between any two points of a straight there are always indefinitely many points.

Proof. By II 2, there is between A and B at least one point C; likewise there is between A and
C at least one point C^{\prime}. Further, there is within $A C^{\prime}$ at least one point $C^{\prime \prime}$, which likewise is within $A B$ but not within $C^{\prime} B$; therefore since C lies within $C^{\prime} B, C^{\prime \prime}$ cannot be identical with C. In this way

Fig. 232.
we get ever new points of $A B$ without ever coming to an end.
580. Theorem. If $A B C D$ is an arrangement of four points corresponding to 577 , then there is besides this arrangement only still the inverse which fulfills 577 . [The proof is essentially already given in proving 578 .]
581. Theorem. If any finite number of points of a straight are given, then they can always be arranged in a succession A, B, C, D, E, \ldots, K, such that B, lies between A on the one hand and C, D, E, \ldots, K on the other, further C between A, B on one side and D, E, \ldots, K on the other, then D between A, B, C on the one side and E, \ldots, K on the other, and so on.

Besides this distribution there is only one other, the reversed arrangement, which is of the same character.
[This theorem is a generalization of 577.]

Fig. 233.
Proof. Our theorem holds for four points by 577 - and 58 o,

We may show that the theorem remains valid for $n+1$ points if it holds for n points.

Let $A_{1} A_{2} A_{3} \ldots A_{n}$ be the desired arrangement for n points. If further we take an additional point then there are forthwith three cases possible:
(1) A_{1} lies between X and A_{n};
(2) A_{n} lies between X and A_{1};
(3) X lies between A_{1} and A_{n}.

In the third case we prove further, that there is one and only one number m, such that X lies between A_{m} and A_{m+1}.

Finally we show that the following arrangements in the three cases have the desired properties:
(1) $X A_{1} A_{2} A_{3} \ldots A_{n}$;
(2) $A_{1} A_{2} A_{3} \ldots A_{n} X$;
(3) $A_{1} A_{2} A_{3} \ldots A_{m} X A_{m+1} \ldots A_{n}$;
and that they with their inversions are the only ones which possess those properties.

APPENDIX II.

THE COMPASSES.

582. Euclid's third postulate is: About any center with any radius one and only one circle may be taken. This has been understood in ordinary geometries as authorizing the use of a physical instrument, the compasses, for drawing a circle with any center and any radius.

But this is only made fruitful, beyond the sectcarrier, in problem solving, by two new assumptions:

Assumptions of the Compasses.

Assumption VI r. If a straight have a point within a circle, it has two points on the circle.

Assumption VI 2. If a circle have a point within and a point without another circle, it has two points on this other.
583. Problem. From a given point without the circle to draw a tangent to the circle.

Construction. Join the given point A with the center C, meeting the circle in

Fig. 234. B. Erect $B D \perp$ to $C B$, and (by VI) cutting in
D the $\odot C(C A)$. Join $D C$, meeting $\odot C(C B)$ in F. Then $A F$ is tangent to $\odot C(C B)$.

Proof. Radius $C A, \perp$ to chord $H D$, bisects arc $H D ; \therefore$ if we rotate the figure until H comes upon the trace of A, then A is on the trace of $D ; \therefore$ tangent $H B$ on trace of $A F$.

Determination. Always two and only two tangents.
584. Problem. To construct a triangle of which the sides shall be equal to three given sects, given that any two whatever of these sects are together greater than the third.

Fig. 235.

Given the three sects a, b, c, any two whatever together greater than the third.

Construction. On a straight $O F$ from O take $O G=b$. Take $\odot O(a)$, and $\odot G(c)$. Since $a+c>b$, these (by VI 2) intersect, say at K.
$\triangle O G K$ is the triangle required.
585. Problem. To construct a triangle, given two sides and the angle opposite one of them.

Given a, c, and C.

Case I. If $a<c$.
On one ray of $\Varangle C$ take $C B=a$. Take $\odot B(c)$. This (by VI r) has two points A^{\prime}, A_{1} on the straight of the other ray of $\Varangle C$. The point C is between A^{\prime} and $A_{1} . \therefore$ if $\nvdash C$ r't, we have two congruent triangles (Fig 236); if

Fig. 236. oblique, only one triangle (Fig. 237).

Case 2. If $a=c$. [$\Varangle C$ acute.] Then C coincides with A^{\prime} or A_{1}, and we have only one triangle.
Fig. 237.
Case 3. If $a>c$. [$\Varangle C$ acute.]
I. If $c=p$, the perpendicular from B on $C A$, there is only one triangle.
II. If $c>p$, then A_{1} and A^{\prime} are on the same side of C and there are two different triangles which fulfill the condiions, namely, $A^{\prime} B C$ and $A_{1} B C$ (Fig. 238).

This is called the ambiguous case.

Fig. 238.
III. If $c<p$, no triangle.

APPENDIX III.

THE SOLUTION OF PROBLEMS.

586. A problem in geometry is a proposition asking for the graphic construction of a figure which shall satisfy or fulfill certain given conditions or requirements. It has been customary to use the ruler and. compasses; that is, to allow our assumptions I-V and also VI (Appendix II), but no others. Of these, assumptions V-VI have usually been superfluous and unnecessary, the problems treated not requiring the compasses, but only ruler and sectcarrier.
587. When we know how to solve a problem, the treatment consists of
(1) Construction: Indicating how the ruler and sect-carrier or ruler and compasses are to be used in effecting what is required.
(2) Proof: Showing that the construction gives a figure fulfilling all the requirements.
(3) Determination: Considering the possibility of the solution, and fixing whether there is only a single solution or suitable result of the indicated procedure, or more than one, and discussing the limitations which sometimes exist, within which alone the solution is possible.
588. The first step toward finding a desired solution is usually what is called Geometrical Analysis.

This consists in supposing drawn a figure like the one desired, also containing the things given, and then analyzing the relations of the given things among themselves and to the things or figure sought, or the elements necessary for attaining such figure.

589. Methods of procedure in problem-solving.

I. Successive Substitutions.-We may substitute for the required construction another from which it would follow, and for this another, perhaps simpler, until one is reached which we know how to accomplish.

Just so, in attempting to find a demonstration for a new theorem, we may freely deduce from the desired proposition by use of invertible theorems, and if thus we reach a known proposition, the inversion of the process will give the demonstration sought.

Fig. 239.
I Example r. Theorem. If from any point P on the circumcircle of the triangle $A B C$ be drawn $P X$,
$P Y, P Z$ perpendicular to the sides, the points X, Y, Z will be costraight, the Simson's st' of \triangle for P.

Analysis. We will have proven X, Y, Z costraight if on joining $X Y, X Z$ we show $\Varangle P X Y$ supplementary to $\Varangle P X Z$. But again this is proven if we show $\Varangle P X Z$ supplementary to $\Varangle A B P$ and $\Varangle P X Y \equiv$ $\Varangle A B P$.
But $\Varangle P X Z$ is supplement of $\Varangle A B P$ since P, X, Z, B are concyclic. And since P, Y, C, X are concyclic, $\Varangle P X Y$ is supplement of $\Varangle P C Y$, as is also $\Varangle A B P$, since P, C, A, B are concyclic.

I Example 2. Problem. Construct a Δ, given an angle, the side opposite and two sects proportional to the other two sides. [Δ from $a, \alpha, b / c$.]

Analysis. By a and α is (by 165) the circumcircle given. Bisect $\Varangle B A C$ by $A D$

Fig. 240. and prolong $A D$ to meet the circle again (by 138) in E. Then (by 242). $C D / B D=b / c$. So (by 24I) the point D is known. Moreover, since arc $B E=\operatorname{arc} C E$, the point E is (by 225) known. Therefore, taking $B C=a$, the points D and E can be constructed, and thus A by the prolongation of $E D$ to the circle.

Analogous Problems: Ex. i. Given $a, R, b / c$. Ex. 2. Given $\alpha, R, b / c$. Ex. 3. Given $\alpha, B D, C D$.
II. Data.-The explicit giving of certain things may involve the implicit giving of others more immediately available.

Such an implicitly given thing has been called a datum.

For example, if a straight and a point without it be given, the perpendicular from the point to the straight is a datum.

If an angle and a point within it be given, then the sect from the point to the vertex, the sect from the point to one side drawn parallel to the other side, and the sect this cuts off from the side are data.

With an angle α are given the constructible parts $\frac{1}{2} \alpha, \frac{1}{4} \alpha$, etc., but not $\frac{1}{3} \alpha, \frac{1}{6} \alpha$, etc.; also the supplement and complement.

If the sum and difference of two magnitudes are given so are the magnitudes.

If in a triangle of the three things, a side, the opposite angle, the circumradius, two are given, so is the third.

So also with base, altitude, area.
II Example r. To construct a triangle from one side, the opposite angle, and the difference of the other two angles. (Δ from $a, \alpha, \beta-\gamma$.)

Analysis. Since α is known, so is also $\beta+\gamma$ as its supplement. $\therefore \beta$ and γ are known, and we have a side and the two adjoining angles.
III. Translation.-Again new auxiliary parts may advantageously be introduced. Certain procedures are found particularly fertile.

In any triangle $A B C$, transporting $A C$ parallel to itself into $B D$, and extending $B A$ equal to itself to E, we have that the sides of $E D C$ are double the medians of $A B C$ and parallel to them.

The sides of $A B C$ are two-thirds the medians of $E D C$, and A is its centroid. Two of the altitudes of the triangles $A E D, A E C, A D C$ are equal to two altitudes of $A B C$ and the content of $E D C$ is triple that of $A B C$.

If we have given such elements of $A B C$ as render possible, through these properties, the determina-

Fig. 24 i.
tion of one of the triangles $E D C, A E D, A D C, A E C$, then the triangle $A B C$ will always be constructible.

III Example i. Problem. Construct a triangle, given one median m_{1}, the angle between the others, m_{2} and m_{3}, and two sects proportional to them:

$$
\left[\Delta \text { from } m_{1}, \nsucceq \text { of } m_{2} \text { and } m_{3}, m_{2} / m_{3}\right. \text {]. }
$$

Analysis. In the $\triangle E D C$ we know $D C={ }_{2} F C=$ $2 m_{1}$; also $\Varangle E$ and $D E / E C$. Therefore the problem is reduced to I Example 2.
IV. Symmetry.-Add to the tentatively constructed figure the figure symmetrical to it or to a part of it, with respect to a chosen straight as axis. Particularly adapted for axis is an angle-bisector or a perpendicular. Especially does this show differences of .sects or angles.

IV Example r. Problem. To construct a triangle, given two sides and the

Fig. 242. difference of the opposite angles:

$$
[\Delta \text { from } a, b, \alpha-\beta] .
$$

Analysis. Take $C E+C A$
with respect to perpendicular
$C D$. Then $\Varangle A E C=\alpha$. But $\Varangle A E C=\Varangle B+\Varangle B C E$ $=\beta+\delta . \quad \therefore \delta=\alpha-\beta$.
$\triangle B C E$ is therefore constructible (two sides and included \Varangle).

The point D is the foot of the perpendicular from C on $B E$. $A \cdots E$ (axis $C D$).

IV Example 2. Given the two straights s and l and a point A on s. Determine the point X on s, such that $A X=$ perpendicular from X on l.

Analysis. With respect to the bisector of $\Varangle A X B$ as axis, the figure symmetrical to $X B C$ is $X A C$,

Fig. 243. and $\Varangle A C B$ is bisected by $X C$. Therefore, erecting a perpendicular at the given point A, the bisector of the angle $A C B$ made with l meets s in the required point X.
V. Similarity.-When the figure to be constructed is determinable by such conditions that, omitting one, the remaining determine a system of similar figures, then first determine this system of figures similar to the one sought, and secondly, by taking account of the suppressed condition, fix the one which solves the problem.

There are two sorts of cases according as the suppressed condition determines (I) the size of the figure sought; (II) its position or place. In the first case the data are angles and proportions (giving the system of similar figures), and a sect (giving the size of the particular figure). In the second case are only given angles and proportions, but also is imposed a condition that the figure demanded must have a determinate position with respect to something given; for example, must contain a given point, must contain a tangent to a given circle, etc.

V Example 1. To make a triangle, given an angle α, sects proportional to the sides containing it ($b: c=m: n$), and also its bisector t_{1} :

$$
\left[\Delta \text { from } \alpha, b / c, t_{1}\right] .
$$

On the sides of α take m and n. On its bisector take t_{1}. Through the foot of t_{1} draw a parallel to the straight through the ends of m and n. [Similarly: Δ from $\alpha, \beta, m_{a} ; \Delta$ from $\left.\alpha, \beta, h_{a}\right]$.

V Example 2. In a triangle $A B C$ inscribe a parallelogram of which one angle shall coincide with angle $B A C$, and such that its sides are as m to n.

The vertices of the parallelogram sought must be one at A, one on b, one on c, one on a. Omitting this last condition, the fourth vertices of parallelograms satisfying the other conditions are on a straight determined by A and the parallelogram with sides m and n.

The fourth vertex sought is where this straight crosses the base b.
VI. Intersection of Loci.-All points in a plane which satisfy a single geometric condition make up often a single straight or a single circle, in rare cases more than one.

Neglecting these rare cases, we may call such straight or circle the locus (place) of the points satisfying the given condition.

Where it is required to find points satisfying two conditions, if we leave out one condition, we may find a locus of points satisfying the other condition.

Thus, for each condition we may construct the corresponding locus. If these two loci have points in common, these points, and these only, satisfy both conditions.

In a problem involving more than two distinct conditions, two may be selected which give available loci, and then the remaining used to complete the solution. If the circle occurs as locus, we may assume the two postulates of the compasses (VI).

As preliminary it will be convenient to have a collection of simple loci.

Locr.

r. The locus of points which with a given point P give the sect r is $\odot P(r)$.

This is also the locus of the centers of circles with radius r, which pass through P.
2. The locus of points P on one side of a st' l and such that from them the perpendiculars on l are equal to h is the parallel to l through P, one such point.

This is also the locus of the centers of circles with radius r tangent to l on one side.
3. The locus of the point to which sects from two given points are equal is the perpendicular bisector of the sect joining them.

This is also the locus of the centers of all circles through the two given points.
4. The locus of the vertices of all right angles on the same side of a given sect as hypothenuse is the semicircle on the given sect as diameter.
5. The locus of the vertices of all angles congruent to β on a given sect $A C$ as base is the arc on $A C$ having β as inscribed angle:

This is the locus of the vertex of triangles on the same side of given base b with given opposite angle β.
6. The locus of the point from which perpendiculars on the sides of a given angle are equal is the angle-bisector.

This is also the locus of the centers of circles touching both sides of the angle from within.
7. The locus of the bisection-points of all chords equal to k in a given circle is a concentric circle with radius equal to the perpendicular from the center on k.
8. The locus of the bisection-points of all chords of a circle through a given point P is the circle on the sect from P to the given center as diameter.
9. The locus of the centers of circles touching a given st' l at the point P is the perpendicular to l through P.
io. The locus of the centers of circles touching the given circle $\odot C(C P)$ at P is the st' $C P$.
ir. The locus of the centers of circles with radius r_{1} touching a given circle with radius r_{2} from without is a concentric circle with radius $r_{1}+r_{2}$. From within, radius $r_{2}-r_{1}$.
12. The locus of the end-points of tangents $=t$ to the circle $\odot C(r)$ is the concentric circle with radius from C to the end of one of these tangents.

This circle is also the locus of the centers of circles with radius t which cut $\odot C(r)$ at right angles; that is, so that at every intersection-point the tangents to the two circles are at right angles.
13. The locus of the centers of circles of radius r with centers on the same side of st' l and cutting from l a chord $=k$ is a parallel to l through the vertex of an isosceles triangle with base k on l and side r.
14. The centers of circles of radius r_{1} cutting from a given circle $\odot C\left(r_{2}\right)$ an arc with chord $=k$ lie on two concentric circles with radius from C to the vertex of an isosceles triangle with base k a chord of $\odot C\left(r_{i}\right)$ and side r_{1}.
15. The locus of the centers of circles with radius r_{1} which bisect a given circle $\odot C\left(r_{2}\right)$ is a concentric circle with radius from C to the vertex of an isosceles triangle with base a diameter of $\odot C\left(r_{2}\right)$ and side r_{1}.
16. The locus of the centers of circles with radius r_{1} which are bisected by a given circle $\odot C\left(r_{2}\right)$ is a concentric circle having as radius the perpendicular from C on any chord $=2 r_{1}$ in $\odot C\left(r_{2}\right)$.
17. The locus of the vertices of triangles of equal content on the same side of the same base is the parallel to the base through the top of its altitude.
18. The locus of the vertex B of all triangles on the same base b in which $a^{2}+c^{2}=$ constant is a circle.
19. The locus of the vertex B of all triangles on the same base b in which $a^{2}-c^{2}=$ constant is a perpendicular to the base.
20. The locus of the bisection-point of a sect with end-points on two straights at right angles is a circle with their intersection as center and half the sect as radius.

VI Example i. To construct a triangle from an angle and the altitudes on the including sides (Δ from α, h_{2}, h_{3}).

Analysis. B is the intersection of a side of α with the parallel to the other side of α through the end of a

Fig. 244. perpendicular to this side equal to h_{2}.

Fig. 245 .

VI Example 2. To construct a triangle from one side and the altitudes to the other two (Δ from a, h_{2}, h_{3}).

Analysis. E is the intersection of semicircle on $B C$ with arc of radius $=h_{2}$. So for F. Then A is intersection of $C E$ and $B F$.
VII. Reckoning. - Our sect calculus may be freely used for making and solving equations of the first and second degree containing expressions for sought sects.

VII Example r. Construct, without using the

Fig. 246. compasses, an isosceles triangle with the equal angles double the third.

Construction. On one side of a right angle, B, take $B A$ equal to half the unit sect. $B A=\frac{1}{2}$. On the other side, $B C=\frac{1}{4}$. Prolong the hypothenuse $A C$ to D, taking $C D=\frac{1}{4}$. At D erect a perpendicular, and on it take $D F=\frac{1}{2}$.

On $C A$ take $C E=\frac{1}{4}$. Take $A A^{\prime}=2 A E$. At E erect the perpendicular bisector $E G$, taking $E G=A F$. Join $A G$ and $A^{\prime} G$. The triangle $A A^{\prime} G$ is the one required.

Proof. Take $G H=A A^{\prime}$. Join $A^{\prime} H$.

$$
\begin{aligned}
E G=A F & =\left[\left[\left(\frac{1}{4}+\frac{1}{16}\right)^{\frac{1}{t}}+\frac{1}{4}\right]^{2}+\frac{1}{4}\right]^{\frac{1}{4}} \\
& =\left[\left[\left[\frac{1}{4}\left[(5)^{t}+1\right]\right]^{2}+\frac{1}{4}\right]^{\frac{1}{4}}\right. \\
& =\left[\frac{1}{16}\left[10+2(5)^{\frac{1}{1}}\right]\right]^{\frac{1}{2}} .
\end{aligned}
$$

Fig. 247 .

$$
A E=\frac{1}{4}\left[(5)^{\mathrm{t}}-\mathrm{r}\right] .
$$

$\therefore A G^{2}=\frac{1}{16}\left[10+2(5)^{\frac{1}{2}}\right]+\frac{1}{16}\left[6-2(5)^{\frac{t}{2}}\right]=\mathrm{I}$.

$$
\begin{aligned}
& G H=A A^{\prime}=2 A E=\frac{1}{2}\left[(5)^{\frac{1}{2}}-\mathrm{x}\right] . \\
& A H=1-\frac{1}{2}\left[(5)^{\frac{1}{2}}-\mathrm{I}\right]=\frac{1}{2}\left[3-(5)^{\frac{1}{2}}\right] . \\
& \therefore G A: A A^{\prime}=A A^{\prime}: A H .
\end{aligned}
$$

\therefore (by 239) $\triangle A G A^{\prime} \sim \triangle A A^{\prime} H$.
$\therefore A^{\prime} H=A A^{\prime}=G H$.

$$
\begin{aligned}
\therefore \Varangle A A^{\prime} G & =\Varangle A^{\prime} A G=\Varangle A H A^{\prime}= \\
& =\Varangle H G A^{\prime}+\Varangle H A^{\prime} G=2 \Varangle H G A^{\prime} .
\end{aligned}
$$

VIII. Partition of a Perigon.-The four right angles around a point, taken together, may be called a perigon. Since any angle may be bisected, a perigon can be cut into 2^{n} congruent angles.

Since the supplement of the angle of an equilateral triangle is one-third of four right angles, therefore a perigon can be cut into $3 \cdot 2^{n}$ congruent angles.

The angles at the base of an isosceles triangle with the equal angles each double the third are each onefifth of four right angles. Therefore a perigon can be cut into $5 \cdot 2^{n}$ congruent angles.

The difference between one-third and one-fifth of a perigon is two-fifteenths of a perigon. Hence a perigon can be cut into $15 \cdot 2^{n}$ congruent angles.

If a perigon be cut into n congruent angles, the rays determine on any circle about the vertex the vertices of an inscribed regular polygon of n sides, and the points of tangency of a regular circumscribed polygon of n sides.

From the time of Euclid, about 300 b.c., no advance was made in the inscription of regular polygons until Gauss, in 1796, found that a regular polygon of 17 sides was inscriptible, and in 1801 published the following:

That the geometric division of the circle into n equal parts may be possible it is necessary and sufficient that n be 2 or a higher power of 2 , or else a prime number of the form $2^{2^{m}}+\mathrm{r}$, or a product of two or more different prime numbers of that form,
or else the product of a power of 2 by one or more different prime numbers of that form. Below 300, the following 38 are the only possible values of n : $2,3,4,5,6,8$, 10, 12, 15, 16, 17, 20, 24, 30, 32, 34, 40, 48, 51, 60, 64, 68, 80, 85, 96, 102, І20, 128, І36, 160, 170, 192, 204, 240, 255, 256, 257, 272.

There is only one inscriptible regular polygon known with the number of its sides prime and greater than 257. This number is $2^{24}+\mathrm{r}=65,537$. For $m=5, m=6, m=7$, the numbers obtained are not prime. Further no one has gone.

Ex. 654. Show how to trisect the central \Varangle, the interior \Varangle, and the (xterior \Varangle of a regular n-gon where $n=2^{m}$ or $5 \cdot 2^{m}$.

Ex. 655. Show how to cut the $\Varangle 0^{\circ}$ an equilateral Δ into n equal parts if n is 2^{m} or $3 \cdot 2^{m}$ or $5 \cdot 2^{m}$.

Loci.
Ex. 656. In Δ, given b and β, find the locus of $G ; H$; $I ; I_{1} ; O$.

Ex. 657. In $\odot C(r)$ find the locus of C :
(1) Given r and P (a point of \odot).
(2) Given r and a tangent.
(3) Given P, Q (two points of \odot).
(4) Given tangent at P.
(5) Given $2 \|$ tangents.

Ex. 658. In Δ, given b and β, find locus of the bisectionpoint of sect joining outer vertices of equilateral Δs on a and c.

Ex. 659. Find locus of point the sum of the squares of whose sects to $A, B, C=k$.

Ex. 660. Given an equilateral Δ, find the locus of the point whose sect to one vertex is the sum of its sects to the others.

Ex. 661. Find the locus of the point the sum of the squares of whose $\perp \mathrm{s}$ to the sides of a r't $\Varangle=k^{2}$.

Ex. 662. Find the locus of the intersection of two secants drawn through the ends of a fixed diameter in a given \odot, one of the secants \perp to a tangent at the second point where the other cuts \odot.

Ex. 663. Find the locus of the intersection of 2 st's drawn from the acute $\Varangle s$ of a r't Δ, through the points where any \perp to hypothenuse cuts one opposite side and the production of the other.

Ex. 664. Two given \odot s intersect. Find the locus of the bisection-point of the sect through one of their points of intersection with end-points one on each circle.

Ex. 665. Given $A B$ divided at C. Find locus of P, if $\Varangle A P C=\Varangle B P C$.

Ex. 666. Any $2 \perp$ chords intersect in a given point of a given \odot. Find the locus of the bisection-point of a chord joining their ends.

Ex. 667. The locus of a point, the sum of the squares of whose sects from the vertices of a given equilateral Δ equals twice the square on one of the sides, is the circum- \odot.

Ex. 668. The locus of the end of a given sect from the point of contact and on the tangent is a concentric \odot.

Ex. 669. Find the locus of the foot of the \perp from P on a st' through B.

Ex. 670 . Find the locus of the end of sect from P cut by st' a into parts as m to n.

Ex. 67 I. Find locus of end of sect from st' a cut by P into parts as m to n.

Ex. 672. Sects \| and with ends in the sides of $\Varangle \alpha$ are cut into parts as m to n. Find the locus of the cutting points.

Ex. 673. Find the locus of a point P if $P A: P B=m: n$.
Ex. 674. The locus of the cross of two tangents to $\odot C(r)$, the st' of whose chord of contact rotates about a fixed point P is a st' $p \perp C P$.
P is called the pole of p, and p the polar of P, with respect to the given \odot.

Ex. 675. If A (given) is on the polar of X (variable), find the locus of X.

Ex. 676. To find the locus of a point from which rays through the ends of a given sect make a given \Varangle.

Ex. 677. Find the locus of the vertex B of $\Delta \mathrm{s}$, given b and $a: c=m: n$.

Ex. 678. [Circle of Apollonius.] If a sect is cut into parts as m to n, and the interior and exterior points of division are taken as ends of a diameter, this \odot contains the vertices of all Δs on the given sect, whose other two sides are as m to n.

Ex. 679. Find the locus of those points in a plane α from which rays to the ends of a given sect not on α are 1 .

Ex. 680. Find the locus of P if $P A=P B=P C$.
Ex. 68r. If b^{\prime} is the projection of b on $\alpha \| b$, and $b^{\prime} \perp a$ in α, find the locus of the bisection-point of a given sect $A B$ if A on a and B on b.

Ex. 682. A variable st' is $\|$ to a given plane and meets two non-coplanar st's. Find the locus of a point which cuts the intercepted sect into parts as m to n.

Ex. 683. Find the locus of the point from which 1 s to three coplanar st's are $=$.

Ex. 684. Find the locus of the point having one or two of the following:
I) Equal sects to two given points;
(II) Equal \perp s to two given intersecting st's;
(III) Equal \perp s 'o two given planes.

Ex. 685. Find the locus of the poles of great circles making a given angle with a given great circle.

Ex. 686. Calling $2 \not \leq \mathrm{s}$ cimplemental wh n their sum is a r't \Varangle, what is the locus of the intersection of rays from A and B making \nvdash with $A B$ the complement of \nvdash with $B A$?

Ex. 687. Calling a chord the chord of contact of the point of interesection of tangents at its extremities, what is the locus of points whose chords of contact in $\odot C(r)$ equal r ?

Ex. 688. The locus of vertex of $\Delta=s^{2}$, on given b, is st' $\| b$ at altitude h_{b}, where $b h_{b}=2 s^{2}$.

Ex. 689. The locus of vertex of Δ on given b, and with $a^{2}-c^{2}=s^{2}$, is st' \perp to b at D, where $A D^{2}-C D^{2}=s^{2}$.

Ex. 690. Find locus of trisection points of equal chords.
Ex. 69 r . The locus of a point from which tangents to two given $\odot \mathrm{s}$ are $=$ is a st' \perp to the center sect, which so divides it that the difference of the sq's of the segments $=r^{2}-r_{1}{ }^{2}$. This st' is the radical axis of the $2 \odot \mathrm{~s}$. If they intersect it contains their common chord.

Ex. 692. The locus of P such that $P A: P B=m: n$ is \odot on $D_{1} D_{2}$ as diameter, where $D A B$ co-st' and $D A: D B=m: n$.

Ex. 693. Given b and $a-c$, the locus of foot of \perp from A on t_{b} is \odot with bisection-point of b for center and $\frac{1}{2}(a-c)$ for radius.

Ex. 694. Given b and $a+c$, the locus of foot of \perp from A on bisector of external \nvdash at B is \odot with bisectionpoint of b for center and $\frac{1}{2}(a+c)$ for radius

Ex. 695. The locus of P cutting sects from A to a as m to n is a st' $\| a$.

Ex. 696. The locus of P cutting a sect s from A to a so that $s \cdot A P=k^{2}$ is a \odot.

Ex. 697. The locus of P cutting a sect from $\odot C(r)$ to A as m to n is a \odot.

Ex. 698. If rectangles have one vertex at A and the adjacent vertices on $\odot C(r)$, the locus of the fourth vertex is $\odot C\left(r_{1}\right)$ where $r_{1}{ }^{2}=2 r^{2}-A C^{2}$.

Ex. 699. The locus of the vertex B of a $\overparen{\Delta}$ of given b and area is arc $A^{\prime} B C^{\prime}$.

Ex. 700. Given b and $(\alpha+\gamma-\beta)$ in $\widehat{\triangle}$, the locus of B is arc $A B C$.

INDEX.

Abbreviations AGE
Acute angle 27,223
Addition 88
Adjacent angles 19
Adriaan Anthoniszoon 130
Metius. 130
Ahmes. 130
Alkhovarizmi I 30
Alternate angles 33
Altitude of triangle 46
of cone 206
of cylinder. 208
of parallelogram 46
of pyramid 164
of triangle. 46
Ambiguous case 74, 261
Analysis. 263
Angle 16
acute 27,223
at center 79
degree of 132
dihedral 249
exterior 96
exterior of. 17
greater. 73
inscribed. 55
interior of 17
obtuse 28, 223
of two great circles 199
polyhedral 248
right 19
sides of. 17
size of. I 31
spherical. 199, 218
tanchord 60
tetrahedral 249
PA
Angle of triangle 18, 2 fi9
trihedral 249
vertex of. 17
Angles, adjacent. 19, 220
alternate exterior 33
alternate interior 33
complemental 277
corresponding 33
exterior. 33
interior 33
of triangle 18
sum of 94
supplemental 27
vertical 19, 22 I
Angloid 248
Apex. I64
of cone 205
Apollonius. 276
Arab ${ }^{1} 30$
Arc. 78
degree of. 132
greater. 8 I
length of. 129
Arcs, congruent. 78
Archimedes' assumption 61
theorem. 209
Area II 5
of circle. I 32
of cone 207
of cylinder. 209
of parallelogram 122
of sector. 132
of sphere 201
of $\widehat{7}$ 248
of spherical polygon 248
ค ${ }^{\text {PAGE }}$ 248
Circle, radius of 49
of triangle. II5
Aryabhatta I 30
Association I, 2 I2
Associative. 89,90
Assumptions 2, 212
Axis of circle 196
of circular cone 205
of circular cylinder. 209
of symmetry 39
radical 278
Base of cone. 206
of cylinder 208
of frustum of cone 207
of parallelogram 46
of prismatoid 184
of pyramid I64
of spherical segment. 201
of triangle. 46
Betweenness. 5, 2 I 3, 253
Bible I 30
Bisection-point. 38, 226
Bisection-ray. 39
Bordage 245
Brahmagupta. 72, 245
Calculus, sect. 87
Cavalieri 201
Cenquad. 246
Center of circle. 49
of sphere. 194
spherical 246
straight 50
Centimeter I 29
Central projection. 172
Centroid. 46
Chord of circle. 49
of contact. 277
of sphere 194
spherical 234
Circle. 49
of Apollonius. 276
axis of. 196
center of 49
circum. 52
diameter of. 49
division of 274
escribed. 70
great. I 94
in- 70
mensuration of120
small. 197
Circles, escribed 70
tangent 84
two 83
Circular cone 205
cylinder 208
Circum-center 52
of tetrahedron 198
-circle. 52
-radius. 52
Circumscribed circle 52
polygon 274
sphere. 198
Colunar. 245
Common section. 139
Commutative law 88, 89
Compasses. 259
Complement 37,277
Completion. 109
Concentric cenquads 247
Concyclic. 52
Cone 205
apex of. 205
area of. 205, 207
axis of. 205
circular. 205
element of. 205
frustum of. 207
lateral area. 207
nappes of. 205
oblique. 205
right 205
slant height of 205
truncated 207
volume of 205, 207
Congruent I 5
arcs 78
figures 29
triangles. 19
Construction. 62, 262
Contact, point of 57
Content. II4, I2I
Continuity. 61
Convex II, 238
Coplanar. 3
Corresponding. 98
Costraight. 2
Cross 160
Cube 189
Cuboid 189
Cyclic. AGE 56
Cylinder, altitude of 208
bases of. 208
circular. 208
elements of. 208
lateral area 209
oblique 208
right. 208
right section of.
truncated 208, 209
volume of 208
Dase. 130
Data. 264
Degree of angle. I 32
of arc. I 32
Deltoid. 40
Determination 262
Determine. 2
Diagonal of polygon 10
Diameter of circle 49
of sphere. 194
spherical 234
Dihedral 249
Distributive. 91
Division. 91
external 100
internal 100
Dodecahedron. 164
Dual 31, 158
Duality, principle of $3^{1}, 5^{8}$
Edges of angloid 248
of polyhedron 163
Element of cone 205
of cylinder. 208
Elements, the geometric I
End-points 214
Equal 88
polyhedrons. 184
sects 88
Equilateral triangle 123
Equivalence 109, 242
Equivalent 109
by completion. 109
Escribed circle. 70
Ex-center. 70
-radius. 70
Excess, spherical 243
Explemental. 78
Exterior angle. 96
Exterior angles. PAGB
of angle 33 I 7
point. II
Euclid 259
Euclid's postulate 35
Euler. 164
Face. 248
Faces of polyhedron 163
of tetrahedron. I63
Figure 29
plane 29
Foot of perpendicular 142
Frustum, area of 207
of cone 207
of pyramid 185
volume of 208
Gauss 274
Geodesic. 212
Geometric elements. I
Geometry. I
Golden section. 103
Graphics 6.
Great circle 194
Greater angle. 73
arc 81
sect. 73
Harmonic division IOI
range. IOI
Heron I26
Hexahedron 164
Hilbert iii
Hindoo I 30
Hippocrates of Chios 135
Historical note on π 130
Hypothenuse. 38, 75
Icoshahedron 164
In-center 70
-radius 70
of tetrahedron. 198
Inclination of hemiplanes 155
of straight to plane 151
Inscribed angle. 55
polygon 274
sphere. 198
Instruments 63
Intercept. 79
Interior angles. 33
of angle I 7
point. I I
Intersection page
Isosceles triangle. 28
Joachimsthal. 246
Jones I3I
Kochansky I3I
Lambert. $13 I$
Lateral area of conc 207
edge. 164
face. 164
of cylinder 209
of truncated cylinder 209
surface. 164
Left 221
Length of arc 129
of circle. 130
Less. 89, 220
Lexell 241
Leyden I 30
Lindemann. I 31
Loci. 269,275
Locus. 269
Ludolph van Ceulen 130
Major arc. 78
Mean proportional 102
Median of quadrilateral 40
of triangle. 40, 228
Meet I 39
Meter 129
Methods 263
Minor arc 78
Minus. 217
Minute 251
Moore. 253
Motion 31
Multiplication. 89
Nappes. 205
Oblique 74
cylinder. 208
to a plane. I42
Obtuse angle 28,223
Octahedron. 164
Opposite 12, 18,212
points 194
side. I 2
Polygon plane........ Page II
regular 56
Radian 52
simple II
spherical 216
Polygons, similar 105
Polyhedral angles 248
Polyhedron. 163
convex 163
edges of. 163
faces of 163
summits of 163
volume of. 184
Postulate, Euclid's 35
Principle of duality 158
Prism I89
right 189
Prismatoid 184
altitude of 184
base of 184
formula. 186
section of. 185
top of. 184
Prismoid 185
Problems 62, 262
Product. 89
Projecting plane ${ }^{1} 56$
Projection, central 174
of point on plane 149
sect on plane. 149
Proof 262
Proportion 08
Ptolemy 105, 130
Pure spherics 212
Pyramid. 164
altitude of. 164
apex of. 164
base of. 164
frustum of. 207
lateral edges of I64
lateral faces of. I64
lateral surface of. 164
truncated. 207
volume of I85
Pythagoras. 112
q-pole 235
q-radius
235
235
Quadrant of circle 93
of straightest. 225
Quadrilateral II
median of 40
Quotient 91
132
Radical axis 278
Radius of circle 49
of sphere 194
spherical 234
Ray 9, 216
Reckoning 272
Rectangle. 42
Regions 7
Regular polygon 56
Rhombus 42
Richter 1.30
Right 221
angle. 19
circular cone 205
circular cylinder. 208
section of cylinder 208
triangle 37, 75
Rotation
94
94
Ruler 63
Scalene. 87
Schatunovsky 172
Schur 87
Secant 57
Second 2 I
Sect 6, 2 I 3
-calculus 87
-carrier. 64
greater. 73
Section 73
common 139
right. 208
Sector 132
area of. 132
Sect-train IO, 216
Segment, base of 201
of circle 201
of one base. 201
of sphere. 201
of straight 201
top of. 202
volume of. 201
Semicircle 77
Sense. 217
Shanks. 131
Side of angle I 7
of plane. 14
of point on straight 9
of polygon. 10
of straight. 9
Similar.
page 98
polygons 105
Similarity 267
Simson 264
Size of angle. 131
Skew 161
Slant height of cone 205
Small circle 197
Solution of problems 262
Sphere 194
area of 201
center of 194
circumscribed 198diameter of.
194
great circle of. I 94
inscribed 198
radius of 194
small circle of. 197
tangent. 195
volume of. 201
Spherical angle 199
center. 246
chord 234
excess. 243
polygon. 216
radius 234
segment 201
tangent 235
triangle 217
Spherics 212
Square 42
Steradian 252
Steregon 252
Straight. 29
edge 63
Straights. I
Straightest 212
Successive substitutions 263
Sum of angles. 94
of arcs. 92
of sects 88, 237
Summits 163
Supplement 27,223
Supplemental sects 229
Surface 163
Symbols. vi1
Symmetry 39, 266
Symmetrical points 39
Symtra. 41
Talmud I 30
Tanchord angle. 60
Tangent page
circles 84
Tangent, plane 195
spheres. 195
straight 57, 195
straightest 235
Tetrahedral 249
Tetrahedron 163
circumcenter of 198
edges of. 163
faces of 163
summits of 163
volume of 167
Theorem 3
of Archimedes. 209
of Bordage. 245
of Brahmegupta. 72, 245
of Euler. 164
of Heron 126
of Hippocrates of Chios. 135
of Joachimsthal 246
of Lexel1 241
of Moore 253
of Pappus. I35
of Pascal 87
of Ptolemy 105
of Pythagoras. 112
Top of prismatoid. 184
of segment. 202
Trace 90
Translation 94, 265
Transversal 33
partition II5, 167
plane 167
Trapezoid 42
Triangle II
altitudes of. 46
angle bisectors of 70
angle of. 18, 219
area of. II5
base of. 46
equilateral 123
isosceles 28,224
medians of 40
polar 231
right. 37,75
spherical 217
Triangles, congruent. 19
similar 98
symmetric. 222
Trihedral 249
INDEX. 285
Trisection-points
PAGE 44
Volume of cylinder PAGE 208
Truncated cone.
207
cylinder. $20 S$
Truncated pyramid. 207
tetrahedra 175
Unit. 89, 122, 129, 189
circle.
circle. 131 131
Vega. 130
Veronese. 168
Vertex of angle. 17
Vertical angles. 19
Vertices of polygon 10
Volume 166
of cone. 205
of cuboid. 189
of polyhedron. I 84
of prism 189
of prismatoid I 86
of pyramid 185
of sphere. 201
of spherical segment. 201
of tetrahedron 167
of truncated cylinder. 209
Within 6
the sphere. 194
tetrahedron. 163
Without. 6
the sphere 194
tetrahedron. 163

$$
\begin{gathered}
\\
.
\end{gathered}
$$

11

SHORT-TITLE CATALOGUE OF THE PUBLICATIONS JOHN WILEY \& SONS, New York. London: CHAPMAN \& HALL, Limited.

ARRANGED UNDER SUBJECTS.

Descriptive circulars sent on application. Books marked with an asterisk are sold at net prices only, a double asterisk (**) books sold under the rules oif the American Publishers' Association at net prices subject to an extra charge for postage. All books are bound in cloth unless otherwise stated.

AGRICULTURE.

Armsby's Manual of Cattle-feeding.Principles of Animal Nutrition8vo, 400
Budd and Hansen's American Horticultural Manual:
Part I.-Propagation, Culture, and Improvement. 12 mo , 50
Part II.-Systematic Pomology. 12 mo , 150
Downing's Fruits and Fruit-trees of America 8vo, 500
Elliott's Engineering for Land Drainage. 12 mo, I 50
Practical Farm Drainage. $12 \mathrm{mo}, 100$
Green's Principles of American Forestry. $.12 \mathrm{mo}, 150$
Grotenfelt's Principles of Modern Dairy Practice. (Woll.) $12 \mathrm{mo}, 200$
Kemp's Landscape Gardening $12 \mathrm{mo}, 250$
Maynard's Landscape Gardening as Applied to Home Decoration. 12 mo , I 50
Sanderson's Insects Injurious to Staple Crops. 12 mo , 150Insects Injurious to Garden Crops. (In preparation.)Insects Injuring Fruits. (In preparation.)
Stockbridge's Rocks and Soils. 8vo, 250
Woll's Handbook for Farmers and Dairymen. $16 \mathrm{mo}, 150$
ARCHITECTURE.
Baldwin's Steam Heating for Buildings.Berg's Buildings and Structures of American Railroads.4to, 500
Birkmire's Planning and Construction of American Theatres. 8vo, 300
Architectural Iron and Steel 8vo, 350
Compound Riveted Girders as Applied in Buildings. 8vo, 200
Planning and Construction of High Office Buildings. 8vo, 350
Skeleton Construction in Buildings. 8vo, 3 oo
Briggs's Modern American School Buildings. 8vo, 4 oo
Carpenter's Heating and Ventilating of Buildings. 8vo, 4 oo
Freitag's Architectural Engineering. 2d Edition, Rewritten 8vo, 350
Fireproofing of Steel Buildings. 8vo, 250
French and Ives's Stereotomy. 8vo, 250
Gerhard's Guide to Sanitary House-inspection. 16mo, 100
Theatre Fires and Panics 12 mo , 150
Holly's Carpenters' and Joiners' Handbook. 18mo, o 75
Johnson's Statics by Algebraic and Graphic Methods 8vo, 200
Kidder's Architect's and Builder's Pocket-book. Rewritten Edition.
16mo, morocco, 500
Merrill's Stones for Building and Decoration. 8vo, 500
Monckton's Stair-building 4to, 400
Patton's Practical Treatise on Foundations 8vo, 500
Peabody's Naval Architecture. 8vo, 750
Siebert and Biggin's Modern Stone-cutting and Masonry 8vo, I 50
Snow's Principal Species of Wood 8vo, 350
Sondericker's Graphic Statics with Applications to Trusses, Beams, and Arches. 8vo, 200
Wait's Engineering and Architectural Jurisprudence $8 \mathrm{vo}, 6$ oo
Sheep, 650
Law of Operations Preliminary to Construction in Engineering and Archi- tecture 8vo, 500
Law of Contracts 8vo, 300Sheep, 550
Wood's Rustless Coatings: Corrosion and Electrolysis of Iron and Steel 8vo, 4 oo
Woodbury's Fire Protection of Mills 8vo, 250
Worcester and Atkinson's Small Hospitals, Establishment and Maintenance, Suggestions for Hospital Architecture, with Plans for a Small Hospital.
12 mo , 125
The World's Columbian Exposition of 1893 Large 4to, 100
ARMY AND NAVY.
Bernadou's Smokeless Powder, Nitro-cellulose, and the Theory of the Cellulose Molecule 250

* Bruff's Text-book Ordnance and Gunnery $8 \mathrm{vo}, 6$ oo
Chase's Screw Propellers and Marine Propulsion $8 \mathrm{vo}, 300$
Craig's Azimuth 4to, 350
Crehore and Squire's Polarizing Photo-chronograph 8vo, 3 oo
Cronkhite's Gunnery for Non-commissioned Officers 24 mo , morocco, 200* Davis's Elements of Law870,
* Treatise on the Military Law of United States 8vo, 700250
Sheep,De Brack's Cavalry Outpost Duties. (Carr.).24mo morocco,200
Dietz's Soldier's First Aid Handbook. 16mo, morocco, 125
* Dredge's Modern French Artillery 4to, half morocco, 1500
Durand's Resistance and Propulsion of Ships 8vo, 500
* Dyer's Handbook of Light Artillery $2 \mathrm{mo}, 300$
Eissler's Modern High Explosives 8vo, 400
* Fiebeger's Text-book on Field Fortification Small 8vo, 200
Hamilton's The Gunner's Catechism. 18 mo , 100
* Hoff's Elementary Naval Tactics. 8vo, 150
Ingalls's Handbook of Problems in Direct Fire 8vo,- Ballistic Tables.8vo, I 50
* Lyons's Treatise on Electromagnetic Phenomena. Vols. I. and II. .8vo. each, 600
* Mahan's Permanent Fortifications. (Mercur.). 8vo, half morocco, 750
Manual for Courts-martial 16mo, morocco, 150
* Mercur's Attack of Fortified Places 200
* Elements of the Art of War. 8vo, 400
Metcalf's Cost of Manufactures-And the Administration of Workshops, Public and Private 500
- Ordnance and Gunnery. 2 vols. 500
Murray's Infantry Drill Regulations. 10
Peabody's Naval Architecture. 750
* Phelps's Practical Marine Surveying 250
Powell's Army Officer's Examiner 400
Sharpe's Art of Subsisting Armies in War. 8 mo, morocco, 156
* Walke's Lectures on Expiosives -ิvo 400
* Wheeler's Siege Operations and Military Mining. 8vo, 200
Winthrop's Abridgment of Military Law 12 mo 50
Woodhull's Notes on Military Hygiene 16mo, 150
Young's Simple Elements of Navigation 16mo morocco, I 00
Second Edition, Enlarged and Revised. 16 mo , morocco. 00
ASSAYING.
Fletcher's Practical Instructions in Quantitative Assaying with the Blowpipe. 12 mo , morocco, 50
Furman's Manual of Practical Assaying 8vo, 300
Miller's Manual of Assaying 12 mo , 100
O'Driscoll's Notes on the Treatment of Gold Ores 870, 200
Ricketts and Miller's Notes on Assaying 8vo, 300
Ulke's Modern Electrolytic Copper Refining. 8vo, 300
Wilson's Cyanide Processes. 12 mo , 50
Chlorination Process 12 mo 150
ASTRONOMY.
Comstock's Field Astronomy for Engineers. 870, 50
Craig's Azimuth 4to, 50
Doolittle's Treatise on Practical Astronomy 8vo. 00
Gore's Elements of Geodesy 8vo,Hayford's Text-book of Geodetic Astronomy8vo, 300
Merriman's Elements of Precise Surveying and Geodesy 8vo, 250
* Michie and Harlow's Practical Astronomy 8vo, 3 on
* White's Elements of Theoretical and Descriptive Astronomy 12 mo, 00
BOTANY.
Davenport's Statistical Methods, with Special Reference to Biological Variation. 16 mo , morocco, 125
Thomé and Bennett's Structural and Physiological Botany. 16mo, 25
Westermaier's Compendium of General Botany. (Schneider.) 8vo, 00
CHEMISTRY.
Adriance's Laboratory Calculations and Specific Gravity Tables. 12 mo 125
Allen's Tables for Iron Analysis. 8vo, 300
Arnold's Compendium of Chemistry. (Mandel.). Small 8vo. 350
Austen's Notes for Chemical Students I 50
* Austen and Langworthy. The Occurrence of Aluminium in Vegetable Products, Animal Products, and Natural Waters 200
Bernadou's Smokeless Powder.-Nitro-cellulose, and Theory of the Cellulose Molecule 12 mo , 250
Bolton's Quantitative Analysis 8vo, 50
* Browning's Introduction to the Rarer Elements 8vo, 50
Brush and Penfield's Manual of Determinative Mineralogy 8vo, 400
Classen's Quantitative Chemical Analysis by Electrolysis. (Boltwood.) 8vo, 300
Cohn's Indicators and Test-papers. .12 mo 200
Tests and Reagents. 8vo, 300
Copeland's Manual of Bacteriology. (In preparation.)
Craft's Short Course in Qualitative Chemical Analysis. (Schaeffer.). . . 12 mo , 150
Dolezalek's Theory of the Lead Accumulator (Storage Bactery). (Von
Ende). 12 mo .250
Drechsel's Chemical Reactions. (Merrill.) 12 mo , 125
Duhem's Thermodynamics and Cheraistry. (Burgess.) 8vo, 400
Eissler's Modern High Explosives. 8vo, 400
Effront's Enzymes and their Applications. (Prescott.) 8vo, 300
Erdmann's Introduction to Chemical Preparations. (Dunlap.) 12 mo , $\times 25$
Fletcher's Practical Instructions in Quantitative Assaying with the Biowpipe
I2mo, morocco,150
Fowler's Sewage Works Analyses 12 mo , 200
Fresenius's Manual of Qualitative Chemical Analysis. (Wells.) 500
Manual of Qualitative Chemical Analysis. Part I. Descriptive. (Wells.)$8 \mathrm{vo}, 300$
System of Instruction in Quantitative Chemical Analysis. (Cohn.) 2 vols. 8vo, 1250
Fuertes's Water and Public Health $12 \mathrm{mo}, 150$
Furman's Manual of Practical Assaying. $.8 \mathrm{vo}, 300$
*Getman's Exercises in Physical Chemistry $12 \mathrm{mo}, 200$
Gill's Gas and Fuel Analysis for Engineers 12 mo , $1 \quad=5$
Grotenfelt's Principles of Modern Dairy Practice. (Woll.) 12 mo 200
Eammarsten's Text-book of Physiological Chemistry. (Mandel.) 8vo, 400
Eelm's Principles of Mathematical Chemistry. (Morgan.) 12 mo , I 50
Hering's Ready Reference Tables (Conversion Factors). 6 mo , morocco, 250
Hinds's Inorganic Chemistry 8vo, 300
* Laboratory Manual for Students 75
Holleman's Text-book of Inorganic Chemistry. (Cooper.) 8vo, 250
Text-book of Organic Chemistry. (Walker and Mott.) 8vo, 50
* Laboratory Manual of Organic Chemistry. (Walker.). $12 \mathrm{mo}, 100$
Hopkins's Oil-chemists' Handbook. $8 \mathrm{vo}, 300$
Jackson's Directions for Laboratory Work in Physiological Chemistry $8 \mathrm{vo}, \mathrm{I} 25$
Keep's Cast Iron 8vo, 250
Ladd's Manual of Quantitative Chemical Analysis 12 mo , 100
Landauer's Spectrum Analysis. (Tingle.) 8vo, 300
Lassar-Cohn's Practical Urinary Analysis. (Lorenz.). 100
Leach's The Inspection and Analysis of Food with Special Reference to State Control. (In preparation.)
Löb's Electrolysis and Electrosynthesis of Organic Compounds. (Lorenz.) 12mo, 100
Mandel's Handbook for Bio-chemical Laboratory 12 mo , 150
* Martin's Laboratory Guide to Qualitative Analysis with the Blowpipe . . 12 mo , 60
Mason's Water-supply. © (Considered Principally from a Sanitary Standpoint.) 3d Edition, Rewritten 8vo, 400
Examination of Water. (Chemical and Bacteriological.). I 25
Meyer's Determination of Radicles in Carbon Compounds. (Tingle.). . 12 mo , 100
Miller's Manual of Assaying 12mo, 100
Mirter's Elementary Text-book of Chemistry 12 mo , 150
Morgan's Outline of Theory of Solution and its Results 12mo, 100
Elements of Physical Chemistry. 200
Morse's Calculations used in Cane-sugar Factories I 50
Mulliken's General Method for the Identification of Pure Organic Compounds. Vol. I. Large 8vo, 500
Nichols's Water-supply. (Considered mainly from a Chemical and Sanitary Standpoint, 1883.) 8vo, 250
O'Brine's Laboratory Guide in Chemical Analysis 8vo, 200
0^{\prime} 'Driscoll's Notes on the Treatment of Gold Ores. 8vo, 200
Ost and Kolbeck's Text-book of Chemical Technology. (Lorenz-Bozart.)(In preparation.)
Ostwald's School of Chemistry. Part One. (Ramsey.) (In press.)
* Penfield's Notes on Determinative Mineralogy and Record of Mineral Tests.8vo, paper,50
Pictet's The Alkaloids and their Chemical Constitution. (Biddle.)....... .8vo, 5 500
Pinner's Introduction to Organic Chemistry. (Austen.). 2mo, 50
Poole's Calorific Power of Fuels. 8vo, 300
Prescott and Winslow's Elements of Water-Bacteriology, with Special Refer- ence to Sanitary Water Analysis. I2mo, 125
* Reisig's Guide to Piece-dyeing 8vo, 2500
Richards and Woodman's Air, Water, and Food from a Sanitary Standpoint. 8vo, 200
Richards's Cost of Living as Modified by Sanitary Science 12 mo , 100
Cost of Food a Study in Dietaries 12mo, 100
* Richards and Williams's The Dietary Computer 150
Ricketts and Russell's Skeleton Notes upon Inorganic Chemistry. (Part I.- Non-metallic Elements.) 8vo, morocco, 75
Ricketts and Miller's Notes on Assaying 8vo, 300
Rideal's Sewage and the Bacterial Purification of Sewage 8vo, 350
Disinfection and the Preservation of Food. $8 \mathrm{vo}, 400$
Ruddiman's Incompatibilities in Prescriptions. 870, 200
Sabin's Industrial and Artistic Technology of Paints and Varnish. (In press.)
Sclkowski's Physiological and Pathological Chemistry. (Orndorff.)... . 8vo, 50
Schimpf's Text-book of Volumetric Analysis 50
Essentials of Volumetric Analysis 25
Spencer's Hancibook for Chemists of Beet-sugar Houses. 16 mo, morocco, 00
Handbook for Sugar Manufacturers and their Chemists. . 16 mo , morocco, 00
Stockbridge's Rocks and Soils $8 \mathrm{vo}, 250$
* Tillman's Elementary Lessons in Heat 8vo, 150
- Descriptive General Chemistry 8vo, 300
Treadwell's Qualitative Analysis. (Hall.) $8 \mathrm{vo}, 300$
Quantitative Analysis. (Hall.) 8vo, 400
Turneaure and Russell's Public Water-supplies $8 \mathrm{vo}, 500$
Van Deventer's Physical Chemistry for Beginners. (Boltwood.) $12 \mathrm{mo}, 150$
* Walke's Lectures on Explosives 8vo, 400
Wassermann's Immune Sera: Hæmolysins, Cytotoxins, and Precipitins. (Bol- duan.). 12 mo
Wells's Laboratory Guide in Qualitative Chemical Analysis. 8vo, 150
Short Course in Inorganic Qualitative Chemical Analysis for Engineering Students 150
Whipple's Microscopy of Drinking-water. $8 \mathrm{vo}, 350$
Wiechmann's Sugar Analysis Small 8vo. 50
Wilson's Cyanide Processes. 12 mo , 50
Chlorination Process 50
Wulling's Elementary Course in Inorganic harmaceutical and Medical Chem- istry. 12 mo , 00
CIVIL ENGINEERING.
BRIDGES AND ROOFS. HYDRAULICS. MATERIALS OF ENGINEERING RAILWAY ENGINEERING.
Baker's Engineers' Surveying Instruments 12 mc 300
Bixby's Graphical Computing Table. Paper $19 \frac{1}{3} \times 24 \frac{1}{2}$ inches. 25
** Burr's Ancient and Modern Engineering and the Isthmian Canal. (Postage, 27 cents additional.) 350
Comstock's Field Astronomy for Engineers. 8vo, 250
Davis's Elevation and Stadia Tables 880, 00
Eliott's Enginecring for Land Drainage 12 mo , I 50
Practical Farm Drainage. 100
Folwell's Sewerage. (Designing and Maintenance.) 8vo, 300
Freitag's Architectural Engineering. 2d Edition, Rewritten 350
French and Ives's Stereotomy. 8vo, 250
Goodhue's Municipal Improvements
Goodrich's Economic Disposal of Towns' Refuse 8vo, 350
Gore's Elements of Geodesy 8vo, 250
Hayford's Text-book of Geodetic Astronomy 300
Hering's Ready Reference Tables (Conversion Factors).........x6mo, morocco, 50
Howe's Retaining Walls for Earth $12 \mathrm{mo}, 125$
Johnson's Theory and Practice of Surveving Small 8vo, 00
Statics by Algebraic and Graphic Methods 8vo, 200
Kiersted's Sewage Disposal 12 mo , 125
Laplace's Philosophical Essay on Probabilities. (Truscott and Emory.) 12mo, 200
Mahan's Treatise on Civil Engineering. (1873.) (Wood.) 500
- Descriptive Geometry 8vo,
Merriman's Elements of Precise Surveying and Geodesy 8vo,
Elements of Sanitary Engineering 8vo, 200
Merriman and Brooks's Handbook for Surveyors. .16mo, morocco, 200
Nugent's Plane Surveying 8vo, 350
Ogden's Sewer Design. 12 mo ,Patton's Treatise on Civil Engineering8vo half leather, 750
Reed's Topographical Drawing and Sketching 4to,Rideal's Sewage and the Bacterial Purification of Sewage8vó,350
Siebert and Biggin's Modern Stone-cutting and Masonry 8vo, 150
Smith's Manual of Topographical Drawing. (McMillan.) 8vo, 250
Sondericker's Graphic Statics, witn Applications to Trusses, Beams, and Arches. 200
* Trautwine's Civil Engineer's Pocket-book 16mo, morocco, 500
Wait's Engineering and Architectural Jurisprudence. 8vo, 600
Sheep, 650
Law of Operations Preliminary to Construction in Engineering and Archi- tecture. 8vo, 500
Sheep, 550
Law of Contracts 8vo, 300
Warren's Stereotomy-Problems in Stone-cutting. 8vo, 250
Webb's Prdblems in the Use and Adjustment of Engineering Instruments. 16 mo , morocco, 125
* Wheeler's Elementary Course of Civil Engineering. 400
Wilson's Topographic Surveying. 8vo, 350
BRIDGES AND ROOFS.
Boller's Practical Treatise on the Construction of Iron Highway Bridges. .8vo, 200
* Thames River Bridge 4to, paper, 4to, paper, 500 500
Burr's Course on the Stresses in Bridges and Roof Trusses, Arched Ribs, and Suspension Bridges. $8 \mathrm{vo}, 350$
Du Bois's Mechanics of Engineering. Vol. II. Small 4to, 1000
Foster's Treatise on Wooden Trestle Bridges 4to, 500
Fowler's Coffer-dam Process for Piers 8vo, 250
Greene's Roof Trusses. 8vo, I 25
Bridge Trusses. 8vo, 2 5n
Arches in Wood, Iron, and Stone 8vo, 250
Howe's Treatise on Arches. $8 \mathrm{vo}, 4$ по
Design of Simple Roof-trusses in Wood and Steel. 8vo, 200
Johnson, Bryan, and Turneaure's Theory and Practice in the Designing of Modern Framed Structures Small 4to, 1000
Merriman and Jacoby's Text-book on Roofs and Bridges:
Part I.-Stresses in Simple Trusses 8vo,
8vo, 250
Part II.-Graphic Statics.
8vo, 250
8vo, 250
Part III.-Bridge Design. 4 .
Part IV.-Higher Structures. 8vo, 250
Morison's Memphis Bridge. 4to, 1000
Waddell's De Pontibus, a Pocket-book for Bridge Engineers. . . 16mo, morocco, 300
Specifications for Steel Bridges 125
Wood's Treatise on the Theory of the Construction of Bridges and Roofs.8vo, 200
Wright's Designing of Draw-spans:
Part I. -Plate-girder Draws. 8vo, 250
Part II.-Riveted-truss and Pin-connected Long-span Draws $8 \mathrm{vo}, 250$
Two parts in one volume $8 \mathrm{vo}, 350$

HYDRAOLICS.

Bazin's Experiments upon the Contraction of the Liquid Vein Issuing from an Orifice. (Trautwine.) .8vo, 200
Bovey's Treatise on Hydraulics. 8vo, 500
Church's Mechanics of Engineering. 600
Diagrams of Mean Velocity of Water in Open Channels paper, 150
Coffin's Graphical Solution of Hydraulic Problems. r6mo, morocco, 250
Flather's Dynamometers, and the Measurement of Power. 12 mo , 300
Folwell's Water-supply Engineering. 400
Frizell's Water-power. 8vo, 500
Fuertes's Water and Public Health 12 mo , 50
Water-filtration Works. 12 mo , 250
Ganguillet and Kutter's General Formula for the Uniform Flow of Water in Rivers and Other Channels. (Hering and Trautwine.).........8vo, 400
Hazen's Filtration of Public Water-supply 870, 300
Hazlehurst's Towers and Tanks for Water-works. 8\%o, 50
Herschel's 115 Experiments on the Carrying Capacity of Large, Riveted, Metal Conduits 8vo, 200
Mason's Water-supply. (Considered Principally from a Sanitary Stand- point.) 3d Edition, Rewritten 8vo, 400
Merriman's Treatise on Hydraulics. 9th Edition, Rewritten 500

* Michie's Elements of Analytical Mechanics. 8vo, 400
Schuyler's Reservoirs for Irrigation, Water-power, and Domestic Water- supply Large 8 vo , 500
* Thomas and Watt's Improvement of Riyers. (Post., 44 C. additional), 4to, 600
Turneaure and Russell's Public Water-supplies. 8vo, 500
Wegmann's Design and Construction of Dams. 4to, 500
Water-supply of the City of New York from 1658 to 1895 4to, 10 oo
Weisbach's Hydraulics and Hydraulic Motors. (Du Bois.). 8vo, 5 oo
Wilson's Manual of Irrigation Engineering. Small 8vo, 400
Wolff's Windmill as a Prime Mover 8vo, 300
Wood's Turbines 8vo, 250
Elements of Analytical Mechanics 8vo, 300
MATERIALS OF ENGINEERING.
Baker's Treatise on Masonry Construction. 8vo,
500
Roads and Pavements. 8vo, 500
Black's United States Public Works. 500
Bovey's Strength of Materials and Theory of Structures. 750
Burr's Elasticity and Resistance of the Materials of Engineering. 6th Edi- tion, Rewritten 750
Byrne's Highway Construction 500
Inspection of the Materials and Workmanship Employed in Construction.$16 \mathrm{mo}, 300$
Church's Mechanics of Engineering 600
Du Bois's Mechanics of Engineering. Vol. I. Small 4to, 750
Johnson's Materials of Construction Large 8vo, 6 oo
Keep's Cast Iron. 8vo, 250
Lanza's Applied Mechanics 8vo, 750
Martens's Handbook on Testing Materials. (Henning.) 2 vols. 8vo, 750
Merrill's Stones for Building and Decoration. 8vo, 500
Merriman's Text-book on the Mechanics of Materials 8vo, 400
Strength of Materials. $12 \mathrm{mo}, 100$
Metcalf's Steel. A Manual for Steel-users 12mo, 200
Patton's Practical Treatise on Foundations. 8vo, 500
Rockwell's Roads and Pavements in France 12 mo , 天 25
Smıth's Materials of Machines 12 mo , I 00
Snow's Principal Species of Wood 350
Spalding's Hydraulic Cement. 200
Text-book on Roads and Pavements 200
Thurston's Materials of Engineering. 3 Parts. $8 \mathrm{vo}, 800$
art I.-Non-metallic Materials of Engineering and Metallurgy $8 \mathrm{vo}, 200$
Part II.-Iron and Steel. 8vo, 350
Part III.-A Treatise on Brasses, Bronzes, and Other Alloys and their Constituents 870, 250
Thurston's Text-book of the Materials of Construction 500
Tillson's Street Pavements and Paving Materials 400
Waddell's De Pontibus. (A Pocket-book for Bridge Engineers.). . 16mo, mor., 300
Specifications for Steel Bridges 12 mo , 125
Wood's Treatise on the Resistance of Materials, and an Appendix on the Pres- ervation of Timber 8vo, 200
Elements of Analytical Mechanics $8 \mathrm{vo}, 300$
Wood's Rustless Coatings: Corrosion and Electrolysis of Iron and Steel 8vo 400
RAILWAY ENGINEERING.
Andrews's Handbook for Street Railway Engineers. 3×5 inches. morocco, 125
Berg's Buildings and Structures of American Railroads .4to, 5 500
Brooks's Handbook of Street Railroad Location. r6mo, morocco, 1.50
Butts's Civil Engineer's Field-book. 16mo, morocco, 250
Crandall's Transition Curve 16mo, morocco, 150
Railway and Other Earthwork Tables 8 vo , 150
Dawson's "Engineering" and Electric Traction Pocket-book. 16mo, morocco, 500
Dredge's History of the Pennsylvania Railroad: (1879) Paper, 500
* Drinker's Tunneling, Explosive Compounds, and Rock Drills, 4to, half mor., 25 00
Fisher's Table of Cubic Yards Cardboard, 25
Godwin's Railroad Engineers' Field-book and Explorers' Guide. r6mo, mor., 50
Howard's Transition Curve Field-book 16 mo , morocco. 50
Hudson's Tables for Calculating the Cubic Contents of Excavations and Em- bankments 8vo, 100
Molitor and Beard's Manual for Resident Engineers 100
Nagle's Field Manual for Railroad Engineers. 16mo morocco. 300
Philbrick's Field Manual for Engineers 16 mo , morocco, 300
Searles's Field Engineering 16mo, morocco, 300
Railroad Spiral. 16mo, morocco, 150
Taylor's Prismoidal Formulæ and Earthwork 8vo, 50
* Trautwine's Method of Calculating the Cubic Contents of Excavations and Embankments by the Aid of Diagrams. 8vo, 200
The Field Practice of Laying Out Circular Curves for Railroads. 12 mo, morocco, 250
Cross-section Sheet Paper, 25
Webb's Railroad Construction. 2d Edition, Rewritten 16 mo . morocco, 500
Wellington's Economic Theory of the Location of Railways. Small 8vo, 500
DRAWING.
Barr's Kinematics of Machinery 8vo, 250
* Bartlett's Mechanical Drawing $8 \mathrm{vo}, 3$ oc
Coolidge's Manual of Drawing 8vo, paper, 100
Durley's Kinematics of Machines8vo,400
Hill's Text-book on Shades and Shadows, and Perspective.8vo, 200
Jamison's Elements of Mechanical Drawing. (In press.)
Jones's Machine Design:
Part I.-Kinematics of Machinery 8vo, I 50
Part II.-Form, Strength, and Proportions of Parts 8vo,MacCord's Elements of Descriptive Geometry8vo, 300
Kinematics; or, Practical Mechanism 8vo,Mechanical Drawing4to, 400
Velocity Diagrams 8vo, 150
- Mahan's Descriptive Geometry and Stone-cutting. 8vo,
Industrial Drawing. (Thompson.) 8vo, 350
Reed's Topographical Drawing and Sketching 4to, 500
Reid's Course in Mechanical Drawing. $8 \mathrm{vo}, 200$
Text-book of Mechanical Drawing and Elementary Machine Design 8vo, 300
Robinson's Principles of Mechanism. 8vo, 300
Smith's Manual of Topographical Drawing. (McMillan.). 8vo, 250
Warren's Elements of Plane and Solid Free-hand Geometrical Drawing. . 12mo, 00
Drafting Instruments and Operations. 12mo, I 25
Manual of Elementary Projection Drawing. 12 mo , 150
Manual of Elementary Problems in the Linear Perspective of Form and Shadow. $12 \mathrm{mo}, 100$
Plane Problems in Elementary Geometry. .12mo, 25
Primary Geometry 75
Elements of Descriptive Geometry, Shadows, and Perspective. 870, 350
General Problems of Shades and Shadows. 8vo. 3 оc
Elements of Machine Construction and Drawing 8vo, 750
Problems. Theorems, and Examples in Descriptive Geometrv. $8 \mathrm{vo}, 250$
Weisbach's Kinematics and the Power of Transmission. (Hermann and Klein.) 8vo,
500
Whelpley's Practical Instruction in the Art of Letter Engraving. 12 mo , 0
Wilson's Topographic Surveying 8vo, 350
Free-hand Perspective 8vo, 250
Free-hand Lettering. 8vo, 100
Woolf's Elementary Course in Descriptive Geometry. Large 8vo, 300
ELECTRICITY AND PHYSICS.
Anthony and Brackett's Text-book of Physics. (Magie.)......... Small 8vo, 300
Anthony's Lecture-notes on the Theory of Electrical Measurements. 12mo, 100
Benjamin's History of Electricity 8vo. 300
Voltaic Cell. 300
Classen's Quantitative Chemical Analysis by Electrolysis. (Boltwood.). .8vo, 300
Crehore and Squier's Polarizing Photo-chronograph. 8vo, 300
Dawson's "Engineering" and Electric Traction Pocket-book..16mo, morocco, 500Dolezalek's Theory of the Lead Accumulator (Storage Battery). (Von
Ende.). $12 \mathrm{mo}, 250$
Duhem's Thermodynamics and Chemistry. (Burgess.). 400
Flather's Dvnamometers, and the Measurement of Power 12mo, 300
Gubert's De Magnete. (Mottelay.) 8vo, 250
Hanchett's Alternating Currents Explained. 100
Hering's Ready Reference Tables (Conversion Factors).......16mo, morocco, 250
Holman's Precision of Measurements 8vo, 200
Telescopic Mirror-scale Method, Adjustments, and Tests..... .Large 8vo, 75
Landauer's Spectrum Analysis. (Tingle.). 8vo, 300
Le Chatelier's High-temperature Measurements. (Boudouard-Burgess.) $\mathbf{2 m o} 3$ 00
Löb's Electrolysis and Electrosynthesis of Organic Compounds. (Lorenz.) 12mo. I 00
- Lyons's Treatise on Electromagnetic Phenomena. Vols. I. and II. 8vo, each, 600
- Michie. Elements of Wave Motion Relating to Sound and Light. $8 \mathrm{vo}, 400$
Niaudet's Elementary Treatise on Electric Batteries. (Fishoack.).......ı2mo, 250
- Rosenberg's Electrical Engineering. (Haldane Gee-Kinzbrunner.). . . .8vo, 150
Ryan, Norris, and Hoxie's Electrical Machinery. Vol. I. 8vo, 250
Thurston's Stationary Steam-engines. .8vo, 250
* Tillman's Elementary Lessons in Heat. 8vo, 150
Tory and Pitcher's Manual of Laboratory Physics. Small 8vo, 200
Ulke's Modern Electrolytic Copper Refining 8vo, 300
LAW.
* Davis's Elements of Law 8vo, 250
* Treatise on the Military Law of United States 8vo, 7 oo
Sheep, 750
Manual for Courts-martial 16 mo , morocco, 150
Wait's Engineering and Architectural Jurisprudence 600
Law of Operations Preliminary to Construction in Engineering and Archi- tecture 8vo, 500
Sheep, 550
Law of Contracts. 300
Winthrop's Abridgment of Military Law 250
MANUFACTURES.
Bernadou's Smokeless Powder-Nitro-cellulose and Theory of the Cellulose Molecule 12 mo , 250
Bolland's Iron Founder 12 mo , 250
"The Iron Founder," Supplement. 12 mo , 250
Encyclopedia of Founding and Dictionary of Foundry Terms Used in the Practice of Moulding. 300
Eissler's Modern High Explosives. 8vo, 400
Effront's Enzymes and their Applications. (Prescott.) 8vo, 300
Fitzgerald's Boston Machinist $18 \mathrm{mo}, 100$
Ford's Boiler Making for Boiler Makers 18 mo , 100
Hopkins's Oil-chemists' Handbook 300
Keep's Cast Iron. 8vo, 50
Leach's The Inspection and Analysis of Food with Special Reference to State Control. (In preparation.)
Metcalf's Steel. A Manual for Steel-users.
Metcalf's Steel. A Manual for Steel-users. 200
Metcalfe's Cost of Manufactures-And the Administration of Workshops, Public and Private .8vo, 500
Meyer's Modern Locomotive Construction. 4to, 1000
Morse's Calculations used in Cane-sugar Factories. r6mo, morocco, 150
* Reisig's Guide to Piece-dyeing. 8vo, 2500
Smith's Press-working of Metals. 8vo, 300
Spalding's Hydraulic Cement 200
Spencer's Handbook for Chemists of Beet-sugar Houses. 16 mo , morocco, 300
Handbook for Sugar Manufacturers and their Chemists.. . 16 mo , morocco, 200
Thurston's Manual of Steam-boilers, their Designs, Construction and Opcra- tion. 8vo, 500
- Walke's Lectures on Explosives 8vo, 400
West's American Foundry Practice 12 mo , 250
Moulder's Text-book 250
Wiechmann's Sugar Analysis Small 8vo, 250
Wolff's Windmill as a Prime Mover. 300
Woodbury's Fire Protection of Mills $8 \mathrm{vo}, 250$
Wood's Rustless Coatings: Corrosion and Electrolysis of Iron and Steel. . . 8vo, 400

MATHEMATICS.

Baker's Elliptic Functions 8vo,* Bass's Elements of Differential Calculus12 mo ,
400
Briggs's Elements of Plane Analytic Geometry . 12 mo 100
Compton's Manual of Logarithmic Computations. 12 mo , 150
Davis's Introduction to the Logic of Algebra 8vo, 150

- Dickson's College Algebra Large 12 mo , 150
* Answers to Dickson's College Algebra 8vo, paper, 25
- Introduction to the Theory of Adgebraic Equations Large 12 mo , 125
Halsted's Elements of Geometry 8vo, 75
Elementary Synthetic Geometry. 8vo, 50
Rational Geometry. 75
* Johnson's Three-place Logarithmic Tables: Vest-pocket size. 15
100 copies for 500
Mounted on heavy cardboard, $8 \times$ ro inches, 25
10 copies for 200
Elementary Treatise on the Integral Calculus Small 8vo, 150
Curve Tracing in Cartesian Co-ordinates. 12 mo ,Treatise on Ordinary and Partial Differential EquationsSmall 8vo,350
Theory of Errors and the Method of Least Squares 150
- Theoretical Mechanics 300
Laplace's Philosophical Essay on Probabilities. (Truscott and Emory.) 12mo, 200
* Ludlow and Bass. Elements of Trigonometry and Logarithmic and Other Tables 8vo, 300
Trigonometry and Tables published separately Each,
* Ludlow's Logarithmic and Trigonometric Tables 8vo,Maurer's Technical Mechanics.8vo,
Merriman and Woodward's Higher Mathematics 8vo,400
500
Merriman's Method of Least Squares 8vo, 200
Rice and Johnson's Elementary Treatise on the Differential Calculus.Sm., 8vo, 300
Differential and Integral Calculus. 2 vols. in one. 250
Sabin's Industrial and Artistic Technology of Paints and Varnish. (In press.)Wood's Elements of Co-ordinate Geometry . 8vo,200
Trigonometry: Analytical, Plane, and Spherical....................... 12 mo , 10
MECHANICAL ENGINEERING.
MATERIALS OF ENGINEERING, STEAM-ENGINES AND BOILERS.
Baldwin's Steam Heating for Buildings. 12 mo , 250
Barr's Kinematics of Machinery 8vo,
- Bartlett's Mechanical Drawing 8vo,* " " Abridged Ed.8vo.
$12 \mathrm{mo}, 50$
Benjamin's Wrinkles and Recipes.
8vo, 600
Carpenter's Experimental Engineering8vo,400
Cary's Smoke Suppression in Plants using Bituminous Coal. (In prep-aration.)
Clerk's Gas and Oil Engine Small 8vo, 400
Coolidge's Manual of Drawing 8vo, paper, 1×0
Coolidge and Freeman's Elements of General Drafting for Mechanical En- gineers. (In press.)
Cromwell's Treatise on Toothed Gearing 12 mo 50
Treatise on Belts and Pulleys. 12 mo , 50
Durley's Kinematics of Machines. $8 \mathrm{vo}, 400$
Flather's Dynamometers and the Measurement of Power 12 mo , 300
Rope Driving 12 mo , 00
Gill's Gas and Fuel Analysis for Engineers I2mo, 125
Hall's Car Lubrication. 12 mo , 1 on
Hering's Ready Reference Tables (Conversion Factors).......16mo, morocco, 250
Hutton's The Gas Engine 8vo, 5 oo
Jones's Machine Design:
Part I.-Kinematics of Machinery 8vo, I 50
Part II.-Form, Strength, and Proportions of Parts 8vo, 300
Kent's Mechanical Engineer's Pocket-book 16 mo , morocco, 500
Kerr's Power and Power Transmission $8 \mathrm{vo}, 200$
MacCord's Kinematics; or, Practical Mechanism. 8vo, 500
Mechanical Drawing 4to, 400
Velocity Diagrams. $8 \mathrm{vo}, \mathrm{I} 50$
Mahan's Industrial Drawing. (Thompson.) $8 \mathrm{vo}, 350$
Poole's Calorific Power of Fuels $8 \mathrm{vo}, 300$
Reid's Course in Mechanical Drawing 8vo, 200
Text-book of Mechanical Drawing and Elementary Machine Design. .8vo, 300
Richards's Compressed Air 150
Robinson's Principles of Mechanism 870, 300
$\mathrm{S}_{\text {mith's }}$ Press-working of Metals. $8 \mathrm{ro}, 300$
Thurston's Treatise on Friction and Lost Work in Machinery and Mill Work. 8vo, 3∞
Animal as a Machine and Prime Motor, and the Laws of Energetics. 1 ∞
Warren's Elements of Machine Construction and Drawing $8 \mathrm{ro}, 750$
Weisbach's Kinematics and the Power of Transmission. Herrmann-Klein.).8vo, 500
Machinery of Transmission and Governors. (Herrmann-Klein.)..8vo, 5 500
Hydraul.cs and Hydraulic Motors. (Du Bois.) $8 \mathrm{vo}, 500$
Wolff's Windmill as a Prime Mover $8 \mathrm{vo}, 3$ oo
Wood's Turbines 8vo, 250
MATERIALS OF ENGINEERING.
Bovey's Strength of Materials and Theory of Structures 8vo, 750
Burr's Elasticity and Resistance of the Materials of Engineering. 6th Edition,
Reset 8vo,
Church's Mechanics of Engineering 8vo, 600
Johnson's Materials of Construction Large 8vo, 600
Keep's Cast Iron 8vo, 250
Lanza's Applied Mechanics 8vo, 750
Martens's Handbook on Testing Materials. (Henning.) 8vo, 750
Merriman's Text-book on the Mechanics of Materials. 400
Strength of Materials 100
Metcalf's Steel. A Manual for Steel-users 200
Smith's Materials of Machines 100
rhurston's Materials of Engineering. 800
Part II.-Iron and Steel 350
Part III.-A Treatise on Brasses, Bronzes, and Other Alloys and their Constituents. 8vo 250
Text-book of the Materials of Construction 880,
Wood's Treatise on the Resistance of Materials and an Appendix on the Preservation of Timber. 8vo, 200
Elements of Analytical Mechanics. 00
Wood's Rustless Coatings: Corrosion and Electrolysis of Iron and Steel.. .8vo, 400
STEAM-ENGINES AND BOILERS.
Carnot's Reflections on the Motive Power of Heat. (Thurston.).........12mo,150
Dawson's "Engineering" and Electric Traction Pocket-book..16mo, mor., 5 co
Ford's Boiler Making for Boiler Makers 18 mo, 100
Goss's Locomotive Sparks 8vo, 200
Hemenway's Indicator Practice and Steam-engine Economy $12 \mathrm{mo}, 200$
Hutton's Mechanical Engineering of Power Plants 8vo, 500
Heat and Heat-engines 8vo, 5 vo
Kent's Steam-boiler Economy 8vo, 4 oo
Kneass's Practice and Theory of the Injector 8vo 150
MacCord's Slide-valves 8vo, 200
Meyer's Modern Locomotive Construction 4to, 1000
Peabody's Manual of the Steam-engine Indicator 12mo, I 50
Tables of the Properties of Saturated Steam and Other Vapors $8 \mathrm{vo}, \mathrm{x} 00$
Thermodynamics of the Steam-engine and Other Heat-engines. $8 \mathrm{vo}, 500$
Valve-gears for Steam-engines. 8vo, 250
Peabody and Miller's Steam-boilers 8vo, 400
Pray's Twenty Years with the Indicator Large 8vo, 250
Pupln's Thermodynamics of Reversible Cycles in Gases and Saturated Vapors. (Osterberg.) $12 \mathrm{mo}, ~ I$ 25
Reagan's Locomotives: Simple, Compound, and Electric $12 \mathrm{mo}, 250$
Rontgen's Principles of Thermodynamics. (Du Bois.) 8vo, 500
Sinclair's Locomotive Engine Running and Management $12 \mathrm{mo}, 200$
Smart's Handbook of Engineering Laboratory Practice $12 \mathrm{mo}, 250$
Snow's Steam-boiler Practice 8vo, 300
Spangler's Valve-gears 8vo, 250
Notes on Thermodynamics. $12 \mathrm{mo}, 100$
Spangler, Greene, and Marshall's Elements of Steam-engineering 8vo, 300
Thurston's Handy Tables 8 vo , 150
Manual of the Steam-engine 2 vols. 8 vo , 10 00
Part I.-History, Structuce, and Theory 8vo, 600
Part II.-Design, Construction, and Operation. 8vo, 600
Handbook of Engine and Boiler Trials, and the Use of the Indicator and the Prony Brake 8vo 500
Stationary Steam-engines 8vo, 50
Steam-boiler Explosions in Theory and in Practice 12 mo 50
Manual of Steam-boilers, Their Designs, Construction, and Operation.8vo, 500
Weisbach's Heat, Steam, and Steam-engines. (Du Bois.). $8 \mathrm{vo}, 500$
Whitham's Steam-engine Disign $8 v o, 500$
Wilson's Treatise on Steam-boilers. (Flather.) $16 \mathrm{mo}, 250$
Wood's Thermodynamics Heat Motors, and Refrigerating Machines. .8vo, 400
MECHANICS AND MACHINERY.
Barr's Kinematics of Machinery 8vo, 250
Bovey's Strength of Materials and Theory of Structures. 8vo, 750
Chase's The Art of Pattern-making $12 \mathrm{mo}, 250$
Chordal.-Extracts from Letters $12 \mathrm{mo}, 200$
Church's Mechanics of Engineering 8vo, 600
Notes and Examples in Mechanics 8vo, 00
Compton's First Lessons in Metal-working 12 mo , 150
Compton and De Groodt's The Speed Lathe 12 mo , 150
Cromwell's Treatise on Toothed Gearing 12 mo , 150
Treatise on Belts and Pulleys. 150
Dana's Text-book of Elementary Mechanics for the Use of Colleges and Schools. 150
Dingey's Machinery Pattern Making 200
Dredge's Record of the Transportation Exhibits Building of the World'sColumbian Exposition of $1893 . . .$. 4to, half morocco,500
Du Bo s's Elementary Principles of Mechanics:
Vol. I.-Kinematics 8vo, 350
Vol II.-Statics 8vo, 400
Vol. III.-Kinetics. 8vo, 350
Mechanics of Engineering. Vol. I. Small 4to, 750
Vol. II. Small 4to, 1000
Durley's Kinematics of Machines 8vo, 400
Fitzgerald's Boston Machinist. $16 \mathrm{mo}, 100$
Flather's Dynamometers, and the Measurement of Power $12 \mathrm{mo}, 300$
Rope Driving $12 \mathrm{mo}, 200$
Goss's Locomotive Sparks 8 vo 200
Hall's Car Lubrication $12 \mathrm{mo}, 100$
Holly's Art of Saw Filing 18mo, 75
* Johnson's Theoretical Mechanics 12 mo , 300
Statics by Graphic and Algebraic Methods. 8vo, 200
jones's Machine Design:
Part I.-Kinematics of Machinery $8 \mathrm{vo}, \mathrm{I} 50$
Part II.-Form, Strength, and Proportions of Parts 8vo, 300
Kerr's Power and Power Transmission 8vo, 200
Lanza's Applied Mechanics 8vo, 750
MacCord's Kinematics; or, Practical Mechanism 8vo, 500
Velocity Diagrams 8vo, 150
Maurer's Technical Mechanics. 8vo, 400
Merriman's Text-book on the Mechanics of Materials. 8vo, 400
- Michie's Elements of Analytical Mechanics 8『o, 400
Reagan's Locomotives: Simple, Compound, and Electric 12 mo , 250
Reid's Course in Mechanical Drawing 8vo, 200
Text-book of Mechanical Drawing and Elementary Machine Design. 300
Richards's Compressed Air. 150
Robinson's Principles of Mechanism 8vo, 300
Ryan, Norris, and Hoxie's Electrical Machinery. Vol. I. 8vo, 250
Sinclair's Locomotive-engine Running and Management $12 \mathrm{mo}, 200$
Smith's Press-working of Metals 8vo, 300
Materials of Machines 12 mo , 100
Spangler, Greene, and Marshall's Elements of Steam-engineering 8vo, 300
Thurston's Treatise on Friction and Lost Work in Machinery and Mill
8vo,300
Animal as a Machine and Prime Motor, and the Laws of Energetics. 12mo, 100
Warren's Elements of Machine Construction and Drawing 750
Weisbach's Kinematics and the Power of Transmission. (Herrmann- Klein.). 8vo, 500
Machinery of Transmission and Governors. (Herrmann-Klein.).8vo 500
Wood's Elements of Analytical Mechanics $8 \mathrm{vo}, 300$
Principles of Elementary Mechanics 12mo, 125
Turbines 8vo, 250
The World's Columbian Exposition of 1893 4to, 100
METALLURGY.
Egleston's Metallurgy of Silver, Gold, and Mercury:
Vol. I.-Silver. 8vo, 750
Vol. II.-Gold and Mercury. 8vo, 750
* Iles's Lead-smelting. (Postage 9 cents additional.) $12 \mathrm{mo}, 250$
Keep's Cast Iron $8 \mathrm{vo}, 250$
Kunhardt's Practice of Ore Dressing in Europe 8vo, 150
Le Chatelier's High-temperature Measurements. (Boudouard-Burgess.). 12mo, 3 00
Metcalf's Steel. A Manual for Steel-users $12 \mathrm{mo}, 200$
Smith's Materials of Machines. 12 mo , 100
Thurston's Materials of Engineering. In Three Parts $8 \mathrm{vo}, 8$ оо
Part II.-Iron and Steel 8vo, 350
Part III.-A Treatise on Brasses, Bronzes, and Other Alloys and their Constituents 250
Ulke's Modern Electrolytic Copper Refining 8vo, 300
MINERALOGY.
Barringer's Description of Minerals of Commercial Value. Oblong, morocco, 50
Boyd's Resources of Southwest Virginia 8vo, 300
Map of Southwest Virginia. Pocket-book form, 00
Brush's Manual of Determinative Mineralogy. (Penfield.) 00
Chester's Catalogue of Minerals 8vo, paper, 100
Cloth, 25
Dictionary of the Names of Minerals 8vo, 50
Dana's System of Mineralogy Large 8vo, half leather, 12 50
First Appendix to Dana's New "System of Mineralogy."Large 8vo, 00
Text-book of Mineralogy 8vo, 00
Minerals and How to Study Them 50
Catalogue of American Localities of Minerals Large 8vo, 00
Manual of Mineralogy and Petrography 00
Eakle's Mineral Tables. 25
Egleston's Catalogue of Minerals and Synonyms 50
Hussak's The Determination of Rock-forming Minerals. (Smith.) Small 8vo, 00
Merrill's Non-metallic Minerals: Their Occurrence and Uses. 00
* Penfield's Notes on Determinative Mineralogy and Record of Mineral Tests. 8 vo , paper 50
Rosenbusch's Microscopical Physiography of the Rock-making Minerals. (Iddings.) 8vo, 500
* Tillman's Text-book of Important Minerals and Docks 200
Williams's Manual of Lithology 8vo, 300
MINING.
Beard's Ventilation of Mines 12 mo 250
Boyd's Resources of Southwest Virginia 8vo, 300
Map of Southwest Virginia Pocket-book form, 200
- Drinker's Tunneling, Explosive Compounds, and Rock Drills.
4to, half morocco, 2500
Eissler's Modern High Explosives 400
Fowler's Sewage Works Analyses $12 \mathrm{mo}, 200$
Goodyear's Coal-mines of the Western Coast of the United States 12 mo , 250
Ihlseng's Manual of Mining 400
** Iles's Lead-smelting. (Postage 9c. additional.) 250
Kunbardt's Practice of Ore Dressing in Europe 8vo, 150
O'Driscoll's Notes on the Treatment of Gold Ores 200
* Walke's Lectures on Explosives 8vo, 400
Wilson's Cyanide Processes 12 mo, 150
Chlorination Process 12 mo , 150
Hydraulic and Placer Mining 12mo, 200
Treatise on Practical and Theoretical Mine Ventilation. I 25
SANITARY SCIENCE.
Copeland's Manual of Bacteriology. (In preparation.)
Folwell's Sewerage. (Designing, Construction and Maintenance.).......8vo, 300
Water-supply Engineering. 8vo, 400
Fuertes's Water and Public Health 150
Water-filtration Works 12mo, 250
Gerhard's Guide to Sanitary House-inspection 16 mo,Goodrich's Economical Disposal of Town's Refuse.Demy 8vo,350
Hazen's Filtration of Public Water-supplies 8vo, 300
Kiersted's Sewage Disposal 125
Leach's The Inspection and Analysis of Food with Special Reference to State Control. (In preparation.)
Mason's Water-supply. (Considered Principally from a Sanitary Stand- point.) 3d Edition, Rewritten 400
Examination of Water. (Chemical and Bacteriological.) 125
Merriman's Elements of Sanitary Engineering 200
Nichols's Water-supply. (Considered Mainly from a Chemical and Sanitary Standpoint.) (1883.) 250
Ogden's Sewer Design 200
Prescott and Winslow's Elements of Water Bacteriology, with Special Reference to Sanitary Water Analysis. I 25
* Price's Handbook on Sanitation. I 50
Richards'. Cost of Food. A Study in Dietaries. 100
Cost of Living as Modified by Sanitary Science 100
Richards and Woodman's Air, Water, and Food from a Sanitary Stand- point 8vo, 200
* Richards and Williams's The Dietary Computer 8vo,
Rideal's Sewage and Bacterial Purification of Sewage. 8vo, 350
Turneaure and Russell's Public Water-supplies. 8vo, 500
Whipple's Microscopy of Drinking-water 8vo, 350
Woodhull's Notes and Military Hygiene 16 mo , 150
MISCELLANEOUS.
Barker's Deep-sea Soundings 8vo,
Emmons's Geological Guide-book of the Rocky Mountain Excursion of the International Congress of Geologists. Large 8vo
Ferrel's Popular Treatise on the Winds 400
Haines's American Railway Management. 250
Mott's Composition, Digestibility, and Nutritive Value of Food. Mounted chart. 125
Fallacy of the Present Theory of Sound 100
Ricketts's History of Rensselaer Polytechnic Institute, 1824-1894. Small 8vo, 300
Rotherham's Emphasized New Testament Large 8vo, 200
Steel's Treatise on the Diseases of the Dog 350
Totten's Important Question in Metrology 8vo 50
The World's Columbian Exposition ot 1893 100
Worcester and Atkinson. Small Hospitals, Establishment and Maintenance, and Suggestions for Hospital Architecture, with Plans for a Small Hospital 12 mo , I 25
HEBREW AND CHALDEE TEXT-BOOKS.
Green's Grammar of the Hebrew Language. 8vo, 300
Elementary Hebrew Grammar. 125
Hebrew Chrestomathy 200
Gesenius's Hebrew and Chaldee Lexicon to the Old Testament Scriptures. (Tregelles.) .Small 4to, half morocco, 500
Lett ris's Hebrew Bible 8vo, 225
.
-

$|x+\operatorname{sen}| B$.
Le $1=$ =ante
 vuler?

UNIVERSITY OF CALIFORNIA LIBRARY

This book is DUE on the last date stamped below.

- Fine schedule: 25 cents on first day overdue
 50 cents on fourth day overdue One dollar on seventh day overdue.

[^0]: * Archimedis Opera, rec. Heiberg, vol. I, r880, p. II.

[^1]: *See G. Veronese, Atti del R. Istituto Veneto, t. vi, s. vii; 1894-95.

[^2]: * These proofs are due to my pupil, R. L. Moore, to whom I have been exceptionally indebted throughout the making of this book.

