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PREFACE.

Algebra is justly regarded one of the most interesting and

useful branches of education, and an acquaintance with it is now

sought by all who progress beyond the more common elements.

To those who would know Mathematics, a knowledge not merely

of its elementary principles, but also of its higher parts, is essen-

tial ; while no one can lay claim to that discipline of mind which

education confers, who is not familiar with the logic of Algebra.

It is both a demonstrative and a practical science— a system

of truths and reasoning, from which is derived a collection of

Rules that may b , used in the solution of an endless variety of

problems, not only interesting to the student, but many of which

are of the highest possible utility in the arts of life.

The object of the present treatise is to present an outline of

this science in a brief, clear, and practical form. The aim

throughout has been to demonstrate every principle, and to fur-

nish the student the means of understanding clearly the rationale of

every process he is required to perform. No eiSbrt has been made

to simplify subjects by omitting that which is difficult, but rather

to present them in such a light as to render their acquisition

within the reach of all who will take the pains to study.

To fix the principles in the mind of the student, and to show

their bearing and utility, great attention has been paid to the

preparation of practical exercises. These are intended rather to

illustrate the principles of the science, than as difficult problems
to torture the ingenuity of the learner, or amuse the already skill-

ful Algebraist.

An effort has been made throughout the work, to observe a

natural and strictly logical connection between the different parts,

80 that the learner may not be required to rely on a principle, or
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employ a process, with the rationale of which he is not already

acquainted. The reference by Articles will always enable him

to trace any subject back to its first principles.

The limits of a preface will not permit a statement of the pecu-

liarities of the work, nor is it necessary, as those who are in-

terested to know, will examine it for themselves. It is, however,

proper to remark', that Equations of the Second Degree have re-

ceived more than usual attention. The same may be said of

Radicals, of the Binomial Theorem, and of Logarithms, alJ of

which are so useful in other branches of mathematics.

On some subjects it was necessary to be brief, to bring the

work within suitable limits. For example, what is here given of

the Theory of Equations, is to be regarded merely as an outline

of the more practical and interesting parts of the subject, which

alone is sufficient for a distinct treatise, as may be seen by refer-

ring to the works of Young or Hymers in English, or of DeFourcy
or Reynaud in French.

Some topics and exercises deemed both useful and interesting

will be found here, not hitherto presented to the notice of stu-

dents. But these, as welJ as the general manner of treating the

subject, are now submitted, with deference, to the intelligent

educational public, to whom the author is already greatly in-

debted for the favor with which his previous works have been

received.

WooDWAED School, May, 1852.

NOTICE.
05" A Key to this work, containing solutions to the more dif-

ficult problems, with remarks and suggestions, intended princi

pally for private students, is now published.

The Key also embraces the Diophantine and Indeterminate

Analysis, with the Notation of Numbers, «fec., subjects not

usually contained in the ordinary course of instruction ia^ Higher

Algebra.
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RAY'S

ALGEBRA;
PART SECOND.

CHAPTER I.

DEFINITIONS AND NOTATION.

Article 1. Quantity is anything capable of being increased

or diminished ;
such as numbers, lines, space, time, motion, &c.

Remark.— If the pupil does not already know, let the instructor here

explain to him what is meant by unit of quantity^ the numerical value

of quantity, &c. See Ray's Algebra, Part First, Arts. 2 to 10.

Art. 2, Mathematics is the science of quantity, and of the

symbols by which quantity is represented.

Art. 3. Algebra is that branch of Mathematics which relates

to the solution of problems and the demonstration of theorems,

when any of the quantities employed are designated by letters.

Art. 4, A problem is a question proposed for solution ; a theo-

rem is a proposition to be proved by a chain of reasoning.

Art. 5. The operations of Algebra are conducted by means of

figures, letters, and signs. The letters and signs are often called

symbols.

Art. 6. Known quantities are generally represented by the

first letters of the alphabet, as a, b, c, &c. ;
and unknown quanti-

ties by the last letters, as t, v, x, y, z.

Art. H. The principal signs used in Algebra are the following :

=, +, —
, X, -^, (), > V-

Each sign is the representative of certain words
;
and is used for

the purpose of expressing the various operations in the most clear

and brief manner.
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Art. 8. The sign =, is termed the sign of equality. It is read

'^qudl tSj6v\efiMht &nd denotes that the quantities between which
'

'it is pla'ced sire* e'cjaal to each other. Thus, a;=5, denotes that the
*

e(tiasit>ty j'^pre:?ei?ted % x is equal to 5.

•'
A'et. 9/ The* s'igTi -~f-, is termed the sign of addition. It is read

phiSy and denotes that the quantity to which it is prefixed is to be

added.

Thus, a-\-l) denotes that h is to be added to a. If a=3, and

6=5, then a-l-&=3-j-5, which are =8.

Art. 10. The sign
—

, is termed the sign of subtraction. It is

read minus, and denotes that the quantity to which it is prefixed
is to be subtracted. Thus, a—h denotes that h is to be subtracted

from a. If a=7 and 5=4, then 7—4=3 .

Art. 11. The signs -\- and — are called tlie signs ; the former

js called the positive, and the latter the negative sign ; they are

said to be contrary, or opposite.

Art. 12. Every quantity is supposed to have either the positive

or negative sign. Quantities having the positive sign are called

positive; those having the negative sign are called negative.

When a quantity has no sign prefixed to it, the sign -|- is under-

stood, and it is to be considered positive.

Art. 13. Quantities having the same sign are said to have lile

signs ; those having different signs are said to have unlike signs.

Thus, -j-a and -\-h, or —a and —b have like signs ; while -\-c and
—d have unlike signs.

Art. 14. The sign X? is termed the sign of multiplication. It

is read into, or multiplied by, and denotes that the quantities

between which it is placed are to be multiplied together.

A dot, or period, is sometimes used to denote multiplication.

Thus, aX^i and a.b, each denote that a and b are to be multiplied

together. The dot is not often employed to denote the multipli-

cation of figures, since it is used, by some authors, to separate
whole numbers and d^mals.
The product of two or more letters is generally denoted by

writing them in close succession. Thus, ab denotes the same aa

aXb, or a.h
;
and abc means the same as aXbXc, or a.b.c ; each

signifying the continued product of the numbers designated by
a, b, and c.

Art. 15. When two or more quantities are to be multiplied

together, each of them is called a factor. Thus, in the product
ab there are two factors, a and b; in the product 3X^X7 there

are three factors, 3, 5, and 7.
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Art. 16, The sign -f-, is termed the sign of division. It is

read divided by, and denotes that the quantity preceding it is to be

divided by that following it. The most common method of repre-

senting the division of two quantities is to place the dividend as

the numerator, and the divisor as the denominator of a fraction.

Thus, a-r-&j or -, signifies that a is to be divided by b,

b

Division is also represented thus, a\b, where a denotes the

dividend, and b the divisor.

Art. 1l7, The sign ]>, is termed the sign of inequality. It

denotes that one of the two quantities between which it is placed

is greater than the other, the opening of the sign being turned

toward the greater quantity.

Thus, a^b, denotes that a is greater than b. It is read, a

greater than b. If fl=7 and J=2, then 7>2.
Also c<Cd, denotes that c is less than d. It is read, c less than

d. If c=3 and d=5, then 3<5.
Art. 18, a coefficient is a number or letter prefixed to a quan-

tity, to show how often it is taken.

Thus, if a is to be taken 4 times, instead of WTiting a-\-a-{-a

-^-a, we write 4a5; in like manner, az-\-az-{-az=daz.
The coefficient is called numeral, or literal, according as it is a

number or a letter. Thus, in the quantities bx and mx, 5 is a

numeral and m a literal coefficient.

In ^az, 3 may be considered as the coefficient of az, or 3 a may
be considered as the coefficient of z.

When no numeral coefficient is expressed, 1 is always under-
stood. Thus, a is the same as la, and ax is the same as lax.

Art. 19, A power of a quantity, is the product arising from

multiplying the quantity by itself one or more times. When the

quantity is taken twice as a factor, the product is called the second

power ; when taken three times, the third power, and so on. Thus,

2x2=4, is the second power of 2.

2X2X2=8, is the third power of 2.

2X2X2X2=16, is the fourth power of 2.

Also, aXct=cia, is the second power of a.

ay^ay,a=aaa, is the third power of a; and so on.

The second power is often termed the square, and the third

power, the cube. To avoid repeating the same quantity as a fac-

tor, a small figure, termed an eocponent, is placed on the right, and

a little above it, to denote the number of times the quantity is

taken as a factor. Thus, aa is written a^ ; aaa is written a^
;

aabbb is written a^^.
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When no exponent is expressed, 1 is always understood. Thus,
a 15 the same as a^, each signifying the Jii'st power of a.

Art. 20. A root of a quantity is a factor, which multiplied by
itself a certain number of times, will produce the given quantity.
The root is called the square or second root, the ciibe or third

root, the fourth root, &c., according to the number of times it

must be taken as a factor to produce the given quantity. Thus,
2 is the second or square root of 4, since 2x2=4. In like

manner, a is the fourth root of a^, since aX«X«X«=«^.
Art. 21. The sign jj, or J, is called the radical sign.

When prefixed to a quantity, it denotes that its root is to be

extracted. Thus,

fja, or ^a, denotes the square root of a.

%/S, or ^8, denotes the cube root of 8, which is 2.

ija, or jja, denotes the fourth root of a.

The number placed over the radical sign is called the index of

the root. Thus, 2 is the index of the square root, 3 of the cube

root, 4 of the fourth root, and so on. When the radical sign has
'

no index over it, 2 is understood ; thus ^9 and ^9 signify the

same thing.

Art. 22. An algebraic quantity, or an algehraic expression, is

Any quantity written in algebraic language, that is, by means of

symbols. Thus,

5a, is the algebraic expression of 5 times the number a ;

35+4c, is the algebraic expression for 3 times the number h

increased by 4 times the number c;

3a2—lab, is the algebraic expression for 3 times the square of

a, diminished by 7 times the product of the number a

by the number b.

Art. 23. a monomial is a quantity not united to any other by
!!ie sign of addition or subtraction ; as 4g5, a'^bc,

—
Axy, &lc.

A monomial is often called a simple quantity, or term.

Art. 24. A polynomial, or compound quantity, is an algebraic

<^xpression composed of two or more terms ;
as a-\-b, c—x-\-y, &c.

Art. 25. a binomial is a quantity having two terms
; as

a-\-b, x'^+y, &c.

A binomial, of which the second term is negative, as a—h, is

sometimes called a residual.

Art. 26. A trinomial is a quantity consisting of three terms ;

as, a-\-b
—c.

Binomials and trinomials are polynomials.
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Art. 2'}'. The numerical value of an algebraic expression is the

number obtained by giving a particular value to each letter, and

then performing the operations indicated. Thus, in the algebraic

expression 4fl—3c, if a=5 and c=6, the numerical value is

4X5-^3x6=20—18=2.
Art. 2§. The value of a polynomial is not affected by chang-

ing the order of the terms, provided each term retains its respect-

ive sign. Thus h"^—2db-\-c is the same as b^-\-c
—2ab, This is

self-evident.

Art. 29. Each of the literal factors of any term is called a

dimension of that term. The degree of any term is equal to the

number of literal factors which it contains. Thus,
5a is of \X\e first degree ;

it contains one literal factor.

ax is of the second degree ; it contains two literal factors.

1^a^l'^c='^aaabbc is of the sixth degree ; it contains six literal

factors.

It is obvious, that the degree of any term is equal to the sum of the

exponents of the letters which compose that term.

Thus, ba^c"^ is of the seventh degree, since 2-[-l+4=:7.

Art. 30, A polynomial is said to be homogeneous, when each

of its terms is of the same degree. Thus,

a-\-b
—3c is of the first degree ;

it is homogeneous.
x'^—7a^2 jg Qf the second degree ; it is homogeneous.
x"^—^xy"^ is not homogeneous.

Art. 31. An algebraic quantity is said to be arranged accord-

ing to the dimensions of any letter it contains, when the expo-
nents of that letter occur in the order of their magnitudes, either

increasing or decreasing. Thus,

ax'-\-a'^x
—

a^x^, is arranged according to the ascending powers
of a. bx^—¥x^-\-Px, is arranged according to the descending

powers of x.

Art. 32. A parenthesis, ( ), is used to show that all the terms

of a polynomial are to be considered together, as a single term.

Thus,
10—(a—b) means that a—b is to be subtracted from 10 ;

b(a-]-b
—

c) means that a-{-b
—c is to be multiplied by 5 ; while

ba-\-{b
—

c) means that &—c is to be added to da.

When the parenthesis is used, the sign of multiplication is gen-

erally omitted. Thus, (a-—b)X(a+b) is the same as (a
—

b)(a-\-b),

A vinculum, ,
is sometimes used instead^of a parenthesis.

Thus, a-\-bXb means the same as b{a-\-b). Sometimes the vincu-

lum is placed vertically ;
it is then called a bar. Thus,



16 RAY'S ALGEBRA, PART SECOND.

-\-c.

a?2, is the same as (a
—

h-\-c)x^>

Aet. 33. Similar i
or like quantities, are such as differ only in

their signs, or numerical coefficients, or both. Thus, 2al) and
—2ahi da^b and 5a^bf da^b and —ba^by are respectively similar.

Unlike quantities are different combinations of letters. Thus,

2ab^, and Sa^b, are unlike or dissimilar.

Remark.— An exception, however, must be made in those cases

where letters are taken to represent coefficients. Thus, ax^ and bx^ are

like quantities, when a and b are taken as coefficients of x'^

Art. 34. The reciprocal of a quantity is unity divided by that

quantity. Thus,
1 1

The reciprocal of a-\-b is ~tt> and of 3, is «.

Art. 35. The same letter, accented, is often used to denote

quantities which occupy similar positions in different equations
or investigations. Thus, a, a', a", a'", represent four different

quantities, of which a is read, a prime ; a" is read, a second ;
a'"

is read, a third ; and so on.

Art. 36. The following signs are also used, for the sake of

brevity :

00 ,
a quantity indefinitely great, or infinity,

,
•

. , signifies therefore, or consequently,
•

.
•

, signifies 5mce, or because.

/N^, is used to represent the difference between two quantities,

as c^^d, when it is not known which is the greater.

EXERCI SES

ON THE DEFINITIONS AND NOTATION.

Each example is intended to furnish to the pupil two distinct

exercises. First, to be copied on the slate, or blackboard
; and

then read, that is, expressed in common language. Second, the

numerical value to be found, supposing a=2, Z;=3, c=4, a;=5,

y=Q>.
1. ft+c

—X. Ans. 2. ex—ay
2. nb+x--^. Ans, 20.

^'
"l^IT

^'^' ^•

3. abx—cy. Ans. 6. ^c ai/

4. a%—3a:2. Ans. —3. ^- ~+7 ^ns, 5.

5. c+aXc—a, Ans. 10. iq. 2c^--a(x+y)(y—oc)
6. (c+a)(c—a.) Ans. 12. Ans. 10.

fl2
! J I g—y ab(c—a)
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12. Find the difference between dbx, and a-\-h-\-Xj when a=4,
J=i , a;=3 ; and when a=5, J=7, a;=12. Am. 1 1 and 396.

13. Required the values of a'^-{-2db-\-'b'^, and c^—
2aJ-}-Z>^,

when a=7 and 5=4. Ans. 121 and 9.

14. What is n{n—1) (n—2) (n—3), when 71=4, and when
w=10 ] Ans, 24, and 5040.

15. Find the difference between Qdbc—2ab, and Qahc-^^ah,
when a,5,c, are 3, 5, and 6 respectively. Ati^. 492.

16. When a=3, what is the difference between a"^ and 2a
;

a^ and 3a; a^ and 4a; a^ and 5a 1 A/is. 3, 18, 69, and 228.

a2—52

17. Find the value of TT1J> when a=5 and 5=3. Ans. 2
.

18. Find the difference between each pair of the following

expressions, when a=6 and 5=8 : {a-\-hy and a^-f-js
.

5(^_|_j)
and 5a+5; a+5 and V(«^+^^); (^+5)3 and a+53 ; ^(a2_|_j2)
and Ja^+^P. Ans. 96, 32, 4, 2226, and 4.

19. What is ^^c+2a^(2a+h'-x) when a=6, 5=5, c=4,
and a:=ll Atw. 54.

20. What is n(n^l) (71—2) (tz—3) (n—-4), if n be 1, 2, 3,

4, 5, and 6, in succession 1 Ans. 0, 0, 0, 0, 120, and 720.

The pupil may verify the following expressions, by giving to each

letter any value whatever.

21. a(m-{-n')(m
—

Ti)-=aw?
—an"^.

x^—ifi

23. (a;4-|-a;2+l)(a;2—l)=x6—1.

a-\-h a—5 4a5
^^*

a^~'a+5'=a2—52*

EXAMPLES
TO BE EXPRESSED IN ALGEBKAIC SYMBOLS.

1. Five times a, plus the second power of 5.

2. x, plus y divided by 3z.

3. X plus y, divided by %z.

4. 3 into X minus n times y, divided by m minus n.

5. m into x sqiuired, minus m plus x squared, plus c into the

cube of X.

6. a third power minus a: third power, divided by a second

power minus x second power.
7. a minus x third power into a plus x second power, divided by

a second power plus x second power.
2
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8. m squared plus n squared, into the square of m plus n,

9. The square root of m minus the square root of 7i,

10. The square root of m minus n.

11. The square root of m, minus n.

12. The square root of h squared, minus m plus n into c.

1. 5a+&2.

2, .+£.

3 a:—ny
m—n

*

5. mx'^—{m-\-xy-\-cx^,
a^—x^

6,
—

5 9

ANSWERS.

8. (m2+w2)(7?2+7i)2.

9. ^m—^7^.

10. ^(m—n),

11. ^m—n.

12. 7 J62_(;^_|.^)cj,

ADDITION.
" Art. 3*y.* Addition in Algebra, is the process of finding the

simplest expression for the sum of two or more algebraic

quantities.

There are three cases of algebraic addition :

1st. When the quantities are all similar, and have the same

sign, either positive or negative.

2d. When the quantities are all similar, but part positive, and

part negative.

3d. When the quantities are dissimilar, or part similar and part

dissimilar.

Art. 38. First Case.— Let it be required to find the sum of

?>x^y, bxhj, and Ix'^y.

Here x'^y is taken, in the first term, 3 tim^s ; in operation.

the second, 5 times
; and in the third, 7 times ; + 2x'^y

hence, in all, it is taken 15 times. Since adding -|- bx'^y

the quantities together cannot change their charac- + Ix'^y

ter, and since each term is positive, therefore their -{-Ibx'^y

sum is positive.
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Next, let it be required to find the sum of —3a;-y,
—

Sjc^z/, and—
7a;2y.

Here x^y is taken, in the first term,—3 times ; in operation.

the second, —5 times ;
and in the third,

—7 times ;
—

^x^y
hence, in all, it is taken —15 times. —

bx'^y

Therefore, To add together quantities having tJie —
Ix'^y

same sign ; find the sum of their coefficients , and prefix
—

Ibx'-y

it, with the common sign, to the literal part.

Art. 39. Second Case.— Let it be required to find the sum of

-l-9a,
—5a, +4a, and—2a,

Before solving this example, the pupil must understand the fol-

lowing principle. Since the sign plus denotes that the quantity
before which it is placed is to be added, and the sign minus, that

the quantity before which it is placed is to be subtracted ; there-

fore, the sum of two equal quantities, of which one is positive and the

other negative, is zero, or 0. Thus, -{-a
—a=0 ; -\-5a^

—5a^=0;
and so on.

Here -^-da-^-Aa is Ida; and —ba—2a is —7a. operation

Now, —la will cancel -^la in the quantity -\-lSa, -^9a

and leave -\-6a for the aggregate, or result of the —5a
four quantities. +4a

In like manner, if it be required to obtain the —2a

sum of —9a, +5a, —4a, and -\-2a, we find the sum -p^
of—9a and —4a is —13a, and the sum of -^5a
and -\-2a is -^-la. Now, -(-7a will cancel —7a in operation,
the quantity

—13a ; which leaves —6a for the —9a

aggregate, or sum of the quantities. -[-5a
Therefore, To add similar quantities having dif- 4a

feixnt signs ;find the sum of the positive quantities and -\-2a
tlie sum of tlie negative quantities, then take tJie dif- Qa

ference of their coefficients, and prefix it, with the sign of
the greater quantity, to tlie literal part.

Art. 40. Third Case.—Let it be required to find the sum of

Qa'^Qh+c, -1-Z?—a2, and 5^>+3a2.

In writing the quantities, we place those which operation.
are similar under each other, for the sake of con- 5a^ Sb-\-c
veriieiwe in performing the operation. We then —

a^-\- b

find, as in the preceding case, that the sum of Sa^-\-5b
the quantities in the first column is -l-7a2, and 7a2~-2Zi+c
in the second, —2b; and there being no term
similar to c, it is connected to the other quantities by its proper
sign.
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Art. 41, From the preceding, we derive the following

General rule for the addition of algebraic quantities.—
Write tJie quantities to be added, placing those that are similar

under each other ; then reduce each set of similar terms, hy taking

the difference of the positive and negative coefficients, and prefix-

ing it, with the sign of the greater, to the literal part; after this,

annex the other terms with their proper signs.

Remarks.— 1. Ills immaterial in what order the quantities are set

down, if care is taken to prefix to each its proper sign.

2. It will often happen that the sum of two or more quantities is less

than eithar. See Observations on Addition and Subtraction, page 24.

EXAMPLE S.

1. Add together ^ax-\-Zl)y, bax-\-Shy, Sax-\-%hy, and 2Qax-\-hy,
Ans. ^lax-^-lShy.

2. Add together lOcz—2ax^, Ibcz—Sax^, 24ccz-^9ax^, and

2cz—Sax^, Ans. b2cz—22ax'^.

3. Find the sum of S^y—lOyS —a;y+5yS SxY'—^y'^y and

AxY+^y"^' Ans. lAxY—^y^'
4. Add together a+J-j-c+c?, a-\-'b-{-c

—
d, a-\-h

—
c-\-d, a—h-\-c

+d, and —a+b+c+d. Ans. Sa+^b+Sc+2d,
5. Add together Z(x^—y^), S^x^^y'^), and —5 (x'^—y^).

Ans. 6(x^
—

y^).

6. Required the sum of 10a^b^l2a^bc—l5Pc'^+10, --Aa%

j^Sa^bc^lOb^c'^^4., —2a'^b—Sa^bc+20b^c'—S, and 2a^b+12a^c
+bb^c^+2. Ans. ba^b+baH^c+5.

7. Add together a^J^b^J^c^J^d^, ab-^2a^+ac--2c''+ad^2d^,

a^-^2ab-\-¥-^2ac+c^—Sad, and 2ah—a-\-2ac—b-\-2ad—c.
Ans. a^-\~b^-\-c^-\-b^

—a^—c^—d^—a—h—c.

8. Add together a"^—&"+3a:P, 2a"'—3Z>"—a;?, and a^+U^'—x^.
An^. 4:a^'\-2xP

—x'^.

SUBTRACTION.
Art. 42. Subtraction, in Algebra, is the process of finding the

simplest expression for the difference between two algebraic

quantities.

The quantity to be subtracted is called the Subtrahend.

The quantity from which the subtraction is to be made is called

the Minuend,
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The quantity left, after the subtraction is performed, is called

the Difference, or Remainder.

The explanation of the principles on which the operations

depend, may be divided into two cases.

1st. Where all the terms of the quantity to be subtracted are

positive.

2d. Where the quantity to be subtracted is either partly or

wholly negative.

Art. 43. To explain the first case, let it be required to subtract

4 a from la.

It is evident that 7 times any quantity, operation.

less 4 times that quantity, is equal to 3 la Minuend
times the quantity ; therefore, la less 4a is 4a Subtrahend

equal to 3a. Hence, to find the diff'erence 3a Remainder

between two similar quantities, we take the

difference between their coefficients, and prefx it to the common letter

or Utters.

If it be required to subtract h from a, operation.

unless we know the number of units repre- a Minuend
sented by each, we can only indicate the ope- h Subtrahend

ration, which is done by placing the sign a—h Remainder
minus before the quantity to be subtracted.

Art. 44. To explain the second case, let it be required to

subtract h—c from a.

If we subtract h from a, the result, a—h, operation.

is obviously too little, for the quantity Z>, a Minuend
taken from a, ought to be diminished by c h—c Subtrahend

before the subtraction is effected. We a—h-\-c Remainder

have, in fact, subtracted a quantity too

great by c, and, therefore, to obtain a true result, the difference

a—h must be increased by c; this gives, for the true remainder,
a—h-^-c.

This operation may be explained by figures, thus :

Let a=9, &=5, and c=3; and let it be required to subtract

5—3 from 9.

If we subtract 5 from 9, the remainder is 9—5; but the quan-

tity to be subtracted is 3 less than 5, therefore we have subtracted

3 too much ; hence, we must add 3 to 9—5, which gives 9—5-|~3,
or 7, for the true remainder.

The operation and illustration may be compared, thus :

From a From 9 =9
Take 5~c Take 5^3 =2
Rem. a-^-{-c Rem. 9-^+3 =7
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The same principle may be further illustrated by the following

examples :

a—(c
—

a)=-a
—

c-\-a=^2a—c.

a—{a
—

c)=^a
—

a-|-c=c.

a-\-c
—{a—c)=^a-\-c

—a^c=-2c.

In all these cases, we see that the same remainder would have

been obtained, by changing the signs of the quantity to be

subtracted, and then adding it.

Art. 45, Hence we have the following

Rule for the subtraction of algebraic quantities.— Write

the quantity to he subtracted under that from which it is to he taken,

placing similar terms under each other.

CoTiceive the signs of all the terms of the svhtraliend to he changed,

from -\- to —, or from — to -\-, and then reduxx the result to its

simplest form.

Remarks.—1 . Beginners may solve a few examples by actually chang-

ing the signs of the subtrahend. After this, it is better merely to con-

ceive the signs to be changed ;
that if it becomes necessary to refer to

the operation, we may be in no doubt with regard to the signs of the

terms originally.

2. Subtraction in Algebra may be proved in the same manner as in

Arithmetic, by adding together the remainder and the subtrahend; the

sura should equal the minuend.

(1) (1)

From Sa^h—'Scx^
Z^^ The same, with the f 8a^b—2cx— z^

Take 2a^b+4:CxSz^ Ligns of the
sub-^

^^a^h-^cx-\-2z^
Rem. 5a26—7ca;+2z2j

trahend changed, l^^, da''b^l'c~x~+2V^

(2) (3)

From 5<2^—Smz-\-5y* From ax"^—
'Scy^
—z^

Take —2a^-]-^mz-\-6y^ Take hx^—2cy^-\-y^
Rem. la^—6mz— y^ Rem. (a

—
h)x^
—

y^^^^

EXAMPLES FOR PRACTICE.

4. From 4a—2h-\-2c take 3a+4&—c. A7is. a—65+4c
5. From Oa;^—4^+9 take 7a:2-f5?/—14. Ans. 2a;2—9y+23.
6. From 2Zxnp-Ay^\\x'^ take Wxy'^-^^y^^x'^ .

Ans. 12a:7/2_2y_|_20a;2
7. From 12a;+18 take 12a7—-IS+i/. Ans, 36—

j/

8. From x^—y^ take —4—y^-\-^x'^. Aixs. 4—^x"^

9. From \a3i?-\-hx-\-c take 3a?^—2x-\-h,

Ans. (4a—3)a:3.f(2+&)a:+c—5,
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10. From -^l'7x^-^9ax^—'7a^x+15a^ take—19x^+9 ax''—9a^~ji

+l'7aK Ans. 2x'+2a''x—2aK
11. From a;3-|-3a;2-[-3a^+l take a;3—3a:2-f3a:—l. Ans. 6x^+2.
12. From 9ar'x^—l^+20ah^x—4b"'cx^ take Sb"'cx'^+9a"'x'—Q

']-^a¥x, Ans. 1^7a¥x-^lb'^cx^^l.

13. From a—x—(x—2a)-\-2a—x take a—2x— (2a— x) -{-

{x
—

2a), Ans. 6a—3a:.

14. From 4a"'+2a;P—a:*? take a"^—Z>"+3a:P and 2a'"—36"—.r?'.

Ans. a^+46"—a;«.

Remark.— The number of exercises in both Addition and Subtrac-

tion is purposely small, as ample practice of the best kind will bo found

in the operations of Multiplication and Division.

THE BRACKET, OR VINCULUM.

As the Bracket, or Vinculum, is frequently employed, it is

proper that the pupil should become acquainted with the rules

which govern its use in relation to Addition and Subtraction.

Art. 46. 1st. Where the sign plus precedes a vinculum, it may
he omitted without affecting the expression. This principle is self-

evident.

Thus, a-\-{h
—

c) is the same as a-\-'b
—c. The first shows that

b is to be diminished by the number of units in c, and the

remainder added to a ; the second shows that a is to be increased

by the number of units in Z>, and the result diminished by the

number of units in c. Or, if c^G, 6=5, and c=3,

Then6+(5—3)= 6+2=8;
And 6+5—3=11—3=8.
From this it follows, that any number of terms of an algebraic

expression may be included within a vinculum, if it be preceded

by the sign plus.

Thus, 07+3/
—

z=x-\-{y
—

z).

2d. Where the sign minus precedes a vinculum, it may be omitted

if the signs of all the terms within it be changed. This is evident*

because the sign minus indicates subtraction, which is effected

by changing the signs of all the terms of the quantity to be

subtracted. Thus,

a—(6
—c)=a—6+c.

a-^{x—y+z)=a-^x+y—z.
Sometimes several brackets, or vinculums, are employed in the

same expression ; by this principle they may all be removed.

Thus,
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a^\ a-{-h—[a+b—c—(a—b+c)] I
.

=a—
{ a-{-b

—
[a-\-h

—c—a-]-h
—

c] \
.

=a—
\ a-]-h

—a—b-\-c-{-a
—

b-\-c ]
.

=a—a—b-]-a-\-b
—c—a-(-J

—c=b—2 c.

3d. Any quantity may be inclosed in a vinculum, and preceded by
tJie sign minus , provided the signs of all the terms in the vinculum be

changed. This is evident from the preceding principle. Thus,
a—b-\-c=a

—
(b—c)=c—(b-

—
a) .

This principle often enables us to express the same quantity
under several different forms. Thus,

a—b-]-c-\-d=:a
—

\
b—c—d

]
.

=a—lb—(c-{-d)l,

EXAMPLES FOR PRACTICE.

Simplify, as much as possible, the following expressions.

1. (i^2a:+3a;2)+(3+2a>—a;2). Ans. 4+2x\
2. 5a—4&-i-3c+(—•3a+2&—c). Ans. 2a—2b-{-2c.
3. (a_-2,__c)+(J+c~-Q5)+(<i—6+/)+(e—/—^). Ans. a—g.
4. 2{x^+y^)^](x''+2xy+y^)-^(2xy^x^—y^)l Ans. x'^+y^.
5. a—(x—a)

—
Ix
—

(a—x)]. Ans. 2a—3a\

6. 1—Jl—[1—(1—a:)]|. Ans.x.
7. a—(b—c)

—
(a—c)-|-c

—
(a
—

b). Ans. 2c—a.

S. a—\ a+b-^[a+h+c^{a+b-{-c+d)] ]
. Ans. —b--d.

OBSERVATIONS ON ADDITION AND SUBTRACTION.

In order that the pupil may have clear and precise ideas con-

cerning the various operations in Algebra, it is important to

understand the meaning of the signs plus (-[-) and minus (
—

),

and their relation to each other.

Art. 4*7. All quantities are to be regarded as positive, unless,

for some special reason, they are otherwise designated. Negative

quantities embrace those that are, in some particular respect, the

opposite of positive quantities.

Thus : If the sums of money put into a drawer be considered

positive, those taken out would be negative ; if a merchant's gains
are positive, his losses are negative ;

if latitude north of the equa-
tor is reckoned -J-, then latitude south is —

;
if distance to the

right of a certain line be reckoned -[-, then distance to the left

would be — ;
if elevation above a certain point, or plane, be

regarded as +, then distance below would be —
; if time after a

certain hour is -|-, then time before that hour is —
;

if motion

in any given direction be -{-, then motion in the opposite direction

would be —
;
and so on.
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Art. 48. This relation ef the signs gives rise to some im-

portant particulars.

1st. The addition, to any quantity, of a negative number, pro-

duces a Uss result than adding zero. Thus, if we take any num-

ber, for example, 10, and add to it the numbers 3, 2, 1, 0,—1
.

—2, —3, we have

10 10 10 10 10 10 10
3 2 1 —1 —2 —a

13 12 11 10 9 "8 7

We see from this, that adding a negative number produces the

same result as subtracting an equal positive number. Thus,

adding
—3 to 10 gives the same result as subtracting -|~^

from 10.

2d. The subtraction of a negative quantity produces a greater
result than subtracting ziero. Thus, take any number, for exam-

ple, 10, and subtract from i\ the numbers 3, 2, 1, 0, —1, —2,
—3, we have

10 10 10 10 10 10 10

-^ -? — —1 --2 —^
7 8 9 10 11 12 13

We see, also, from this, that subtracting a negative number

produces the same result as adding an equal positive number.

Aet. 49, When two negative quantities are considered alge-

braically, that is called the least which contains the greatest num-
ber of units. Thus, —3 is said to be less than—2, But, of two

negative quantities, that which contains the greatest number of

units is said to be numerically the greatest ; thus, —3 is numer-

ically greater than —2,

Art. 50. The sum of two positive quantities is always greater

than either of them ;
and the sum of two negative quantities,

algebraically considered, is less than either of them. But the sum
of a positive and negative quantity is always less than the

positive quantity.

Ex. A merchant gains 3a (+30) dollars, but soon after loses

2a (
—

^20) dollars ; how much will his property be increased by
the two operations 1

3a+(—2a)=+a;
Or, +30+(--20)=+10.

That is, his property will be increased a (10) dollars.

Had he gained 3a, and lost 5a dollars, then the sum would have

been —20 dollars, and his property would, evidently, Iiave been

diminished.

3
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Art. 51, The difference of two positive quantities, as in

Arithmetic, is always less than the greater quantity. Thus, 5a

The difference of two negative quantities is always greater,

algebraically considered, than the minuend. Thus, —5a—(
—2a)=—3 a.

The difference between a positive and a negative quantity,

found by subtracting the latter from the former, is always grealei
than either of them. Thus, 2a—(

—a)=2a.

Examples: 1. The latitude of A is 10° N. (+); the latitude

of B is 5° S. (
—

); what is their difference of latitude ] Ans, 15^,

2. At 7 A. M. of a certain day, the thermometer stood at —9^

that is, 9 degrees below zero ; at 2 P. M., at +15°, that is, 15

degrees above zero ; w^hat was the change of temperature betweeA

these hours 1 Ans. 24°.

MULTIPLICATION.
Art. 52, Multiplication, in Algebra, is the process of taking

one algebraic quantity as often as there are units in another.

The quantity to be multiplied is called the Multiplicand.
The quantity by which we multiply is called the Multiplier.

The result of the operation is called the Product.

The multiplicand and multiplier are generally called factors.

Art. 53. To understand the subject of algebraic multiplica-

tion, it is necessary that the pupil should be made acquainted with

the following preliminary prinx^iple :

The product of two factors is the same, whichever be made the

multiplier.

To prove this, suppose we have a sash containing a vertical

and b horizontal rows. It is evident that the whole number of

panes in the sash will be equal to the number in one row, taken

as many times as there are rows.

Since there are a vertical rows and b panes in each row, the

whole number of panes will be represented by b taken a times ;

that is, by ab.

Again, since there are b horizontal rows, and a panes in each

row, the whole number of panes will be represented by a taken b

times
;
that is, by ba. Hence, ab is equal to ba ; that is, the 'pro-

duct of two factors is the same, whichever be made the multiplier.
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If we have three factors, a, h, and c, by the preceding principle,

the product of two of them, as a and b, will be either ab or ba ;

if, then, we regard this product as a single factor, and multiply it

by c, the product may be written either abc, cab, bac, or cba, all of

which, by the preceding principle, are equal to each other. From

this, it is evident that Vie product of three factors is the same, in

whatever order they are taken. Thus, 2x3x4=4x2x3=3x2
X4=4x3x2; the product in each case being 24.

In a similar manner, it may be shown that the product of any
number of factors is the same, in whatever order they are taken.

It follows from this principle, that acy^Q^^Qac, zyx^y^b=bx-yz,
and so on.

It also follows from this principle, that when either of tlie factors

of a product is multiplied, the product itself is multiplied. Thus, if

we take the product of two factors, as 2x3, and multiply it by 5,

the product may be written 5x2x3, or 5x3x2; that is, 10x3,
or 15x2, either of which is equal to 30.

RexMark.— In the multiplication of numbers, since each figure of the

multiplicand is multiplied by the multiplier, pupils sometimes suppose
that in multiplying the product of two or more factors, as ab, by a third

factor, that each of the factors ought to be multiplied. That this would
be erroneous is evident from the preceding principle.

Art. 54. In multiplication there are four things to be coi>

sidered in relation to each term, viz :

The sign ;

The coefficient;

The exponent ;

The literal part.

Remark.— In writing a monomial product, we generally write, first

the sign, then the coefficient, and then the literal part ; but, in explain-

ing the principles, it is most convenient to consider the sign last.

Art. 55, Of the Coefficient.— To determine the rule of the

coefficients, let it be required to find the product of 2a by 36.

To indicate the multiplication, we may write operation

the product thus, 2flX3&. But, by Art. 53, this 2a
is the same as 2x3Xa^) and 2x3=6, therefore 3&

the product is Qtab. Hence, the coefficient of tJie Qab product.

product is obtained by multiplying together the coeffi-

cients of the factors. This is termed, the rule of the coefficients.

From this example we see, also, that the literal part of the pro-
diict is obtained by annexing to the coeffix^ient all the letters in the two

factors.
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EXAMPLES.
2. 3«cX55=rt Idahc. I 4. 5aX4«a;= 20aar.

3. 2amXcn= 2acmn.
\

5. '^cyy?>yz= 2\cyyz.

Abt. 56. Of the Exponent.— To determine the rule of the

exponents, let it be required to find the product
of 2^2 l)y 3a^ OPERATION.

Since 2^^ is the same as 2aa, and 3a' the 2a^=2flfl5

same as 2taaa, the product will be 2aay,2aaa, 2a^=^aa/j,

or Qaaaaa, which, for the sake of brevity, is Qa^=Qaaaaa
written 6a^. Hence, the exponent of a letter in

the product is equal to the sum of its expon£nts in the two factors.

This is termed the rule of the exponents,

E XAMP LE S.

2. abXa= «^^-

3. x^yXxy= oc^y^,

4. a^x^zX(^^^= a'^x^z^.

5. a"^X«"= fl*"+".

7. a;'"+^Xa;""''= af^".

Art. Sy. From the two preceding articles we derive the

following

Rule for multiplying one positive monomial by another.—
Multi'ply the coefficients of the two terms together, and to the product
ann£x all the letters in both quantities, giving to each letter an

exponent equal to the sum of its exponents in the two factors.

Note.— Although the product is the same, in whatever order the let-

f^rs are placed (Art. 53), yet, for the sake of convenience, they are

generally written alphabetically.

EXAMPLE S.

1 . Multiply he by z. Ans. Icz

2. Multiply ^ax by by, Ans. Zabxy,
3. Multiply ^am by ^hn, Ans. \2dbmn.

4. Multiply ba'^x by lax^y. Ans. 2>ba^x^y,

5. Multiply 3a"»a7" by 9a"af". Ans. 27a"'+"a7^".

Art. 58. Let it be required to find the product of a-\'l} by m
Here, the sum of the units in a and h is to be

taken m times. The units in a taken m times operation

z=rma, and the units in h taken m, times =mh ; a-\-b

hence, both together taken m times :=:ma-\-ml). m
Hence, when the sign of each term is positive, ma-\-mh
we have the following

Rule for multiplying a polynomial by a monomial.—Multi*

ply each term of the multiplicand by the multiplier.
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E XAMPLE S.

2. Multiply x-\-y by n. Am. nx-\-ny,

3. Multiply ax'^-\-cz by 3ac. Ans. Za^cx^-{-2ac^z,

4. Multiply 2a^+Sb^ by dab. Ans. lOa^b+ldabK
5. Multiply 7nx-{'ny-\-vz by m^w. Ans. m^nx-\-mVy-{-m?nvz.

Art. 59. Let it be required to find the product of a-\-b by

m-\-n. Here, a-\-b is to be taken as many times as there are

units in m-\-n, which is evidently as many times as there are units

in 771, plus as many times as there are units in n. Thus,

a+b
m-\-n

ma+m6=the multiplicand taken in times.

.na-\-nb==th.e multiplicand taken n times.

ma-\-mb-\-na-\-nb=the multiplicand taken (w-j-n) times.

Hence, when all the terms in each are positive, we have the

following

Rule for multiplying one polynomial by another.—Multi-

ply each term of the multiplicand by each term of the multiplier, and

add the products together.

E X AM PL ES.

2. Multiply x-\-y by a-\-c. Ans. ax-^ay-^-cx-^cy.
3. Multiply 2a:+32; by ^x-^2z. Ans. Qx'^+\^xz-\-C^z^.
4. Multiply 2a+c by flf-|-2c. Ans. 2a'^-\-bac-\-2c'^.

5. Multiply x'^-{-xy-\-y^ by x-\-y. Ans.
x^-\-2x'^y-\-2xy'^-\-y^

6. Multiply a2-|-2a&+62 by ^_|_5, ^^^ a^+'^a'^b-Y^ab'^-\-bK

Art. 60, Of the Signs.— In the preceding article it was as^

Bumed that the product of two positive quantities is also positive.
It may, however, be shown, as follows :

1st. Let it be required to find the product of -\-b by a.

The quantity b, taken once, is -(-&; taken twice, is evidently

-\-2h] taken 3 times, is 4-3Z>, and so on. Therefore, taken a

times, it is -\-ab. Hence, the product of two positive quantities
is positive ; or, as it may be more briefly expressed, ^/^^ multiplied

by plus gives plus.

2d. Let it be required to find the product of —b by a.

The quantity
—

b, taken once, is —b
; taken twice is —2b ;

taken 3 times, is —36 ; and hence, taken a times, is —ab
; that

is, a negative quantity, multiplied by a positive quantity, gives a

mgative product. This is generally expressed by saying, that

minus f multiplied by plus, gives minv^.
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3d. Let it be required to multiply h by
—a.

Since, when two quantities are to be multiplied together, either

may be made the multiplier (Art. 53), this is the same as to mul-

tiply
—a by b, which gives

—ah. That is, a positive quantity

multiplied by a negative quantity, gives a negative product ; or

more briefly, plus multiplied by minus, gives minus.

4th. Let it be required to multiply
—h by —a.

The negative multiplier signifies that the multiplicand is to be

taken positively as many times as there are units in the multi-

plier, and then subtracted.

The product of—b by a, is —ab, and then changing the sign to

subtract, it becomes -^ab. Hence, the product of two negative

quantities is positive ; or, more briefly, minus multiplied by
minus, gives plus.

Note.— The following proof of the last principle, that the product
of two negative quantities is positive, is generally regarded by mathe-

maticians as more satisfactory than the preceding, though it is not quite
80 simple. Either method may be used.

5th. To find the product of two negative quantities.

To do this, let it be required to find the product of c—d by
a—b. Here it is required to take c—d as many times as there

are units in a—b. It is obvious that this will be done by taking
c—d as many times as there are units in a, and then subtracting,
from this product, c—d taken as many times as there are units

in b.

Since plus, multiplied by plus, gives plus, and minus, multiplied

by plus, gives minus, the product of c—d by a is ac—ad. In

the same manner, the product of c—d by b is be—bd ; changing
the signs of the last product to subtract it, it becomes —bc-{-bd ;

hence, the product of c—d by a—b, is ac—ad—bc-\-bd. But the

last term, -}-bd, is the product of —d by —b; hence, the product
of two negative quantities is positive; or, more briefly, minus

multiplied by minus, produces plus.

The multiplication of c—d by a—b may be written thus :

c—d

a—b

ac—ad=c—d taken a times.

—
hc-\-bd=c

—d taken b times, and then subtracted.

ac—ad—bc-{-bd

To illustrate the operation by figures, let it be required to find

the product of 9—1 by 5—3.
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orERATioN. We first take 5 times 9—4; this gives a

9—4 product too great by 3 times 9—4, or 27
5—3 —12; subtracting this from the first product,

45—20 we have, for the true result, 45—47-f-12,—^27+12 which reduces to +10. This is evidently

45—47+12 correct, for 9—4=5, and 5—3=2, and the

product of 5 by 2 is 10 .

From the preceding illustrations, we derive the following

General rule for the signs.— Plus multiplied hy plus, or minus

multiplied hy minus, gives plu^. Plus multiplied by minus, or

minus multiplied hy plus, gives minus.

Or, tJie produx^t of like signs gives plus, and of unlike signs gives

minus.

Art. 61, From the preceding, we derive the following

General rule for the multiplication of algebraic quan-

tities.— Multiply every term of tlie multiplicand hy each term of
the multiplier, observing,

1st. That the coefficient of any term is equal to the product of tJie

coefficients of its factors.

2d. That the exponent of any letter in the product is equal to the sum

of its exponents in the two factors.

3 d. That the product of like signs gives plus in tJie product, and unlike

signs gives minus. Then, add tJie several partial products together.

NUMERICAL EXAMPLES TO VERIFY THE RULE OF THE SIGNS.

1. Multiply 7~^ by 5. Ans. 35—20=15=3x5.
2. Multiply 8+3 by 6—4. Ans. 48—14—12=22=11x2.
3. Multiply 5—8 by 4—9.

Ans. 20—77+72=+15=—3X--5.
4. Multiply 7—3 by 8—2. Ans. 56—38+6=24=6x4.

GENERAL EXAMPLES.

1. Multiply 4a2_3ac+2 by 5ax. Ans. 20a^x—l5a^cx+l0ax.
2. Multiply 5a—2a&+10 by —9ab.

Ans. —46a^h+lSa^b^—90ab,
3. Multiply 2x+3^ by 2a:—3z. Ans. Ax^—9zK
4. Multiply 4a2—6a+9 by 2^+3. Ans. 8a3+27.
5. Multiply a—b-\-c

—d by a-\-h
—c—d.

Ans. a2_2,2__^2_|_^2_2ad^-2te.
6. Multiply a:3+2/2+2;2 by x^-\-y^.

Ans. x^-]'X^y^'^x^z^-\'X^y'^-\-y^'^yh^,
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7. Multiply a^+2a^b+dah^+¥ by a^—2a^b+daP—hK
Ans. «6—3a462_j_3^2j4_j6

8. Multiply Ux^Sx^y+ldxy^-^lOy^ by ^x+2y.
Ans, d6x^+29xy—20y*,

9. Multiply a^-\-aX'\-x^ by a^—ax -\-x^. Ans. a'^-^-aV+x^,
10. Multiply a2-i-2a&+262 by a2—2a&+2J2. Atis. a'+U\
11 . Multiply a;2-j-2a)y

—
Sy^ by a;^—bosy-^-Ay^.

Ans, x^'-2x^y--9xY+^^^^—'^^y*'
12. Multiply l-\-x-\-x^-]-x^-{'X^ by 1—a:. Ans. 1—^a:^

13. Multiply 27ar3+9a?2y+3a^2_jly3 by 3a:—y. A7i5. Sla?^—^^^
14. Multiply ar'»+2a?3y4-4a;23^2_|_8a;^3^162/4 by a;—2y.

Ans. a;5—32y5.
15. Multiply a*—2a36_|-4a2Z,2__8a53_|_i6j4 by a4.2&.

Ato5. a5_^32&*.

16. Multiply a^+2a^b+2al)'^+¥ by aS_2a25^2a&2»_53.
Ans. a^—6*.

17. Multiply / 2_|-.2,2_[_g2
—^j—ac—be by a-\-b-\-c.

Ans. a^-\-¥-{-c^
—Sabc.

18. Multiply x"^—
^a;3-J-a;2

—
^a;-|-l by a;2-)-a:—1 .

Ans. x^—x^-^-x^
—x^-]-2x—1.

19. Multiply l+a;4-^''+^^ by 1—a:-f-a;2
—^a;^ Ans. 1—x^.

20. Mult'ply 1—2a:+3a;2--4a?3+5a:4—6a;5+7a;6—8a;7by l+2ar

+a:2 Ans. 1—9a;8—.8a;9.

21. Multiply together a;—3, a7-l-4, a:—5 , a,nd x-\-6 .

Ans. a;4+2a;3—41a;2—42a:+360.
22. Multiply together a^+ab-^b^, a^^a^b-^-b^, and a—b.

Ans. a^—a^b-\-a^¥
—b^.

23. Multiply together a-\-b, a—b, a^-\-ab'\-b^, and a^—ab-\-b^.

Ans. a^—¥,

24. Prove that

a;(a;+l )(a;+2)-|-a7(a;—1 )(a;—2)-l-4(a7—1 )a:(a:+l )=6x^.

25. Find the value of the expression

(x+aXx+bXx+c)Ma+b+c){x+a)(x+b)+(a^+ab-{-b^)(ix-{-a).
Ans. x^-\-a^.

MULTIPLICATION BY DETACHED COEFFICIENTS.

Art. 62. In the multiplication of polynomials, it is evident

that the coefficients of the product depend on the coefficients of

the factors, and not upon the literal parts of the terms.

Hence, by detaching the coefficients of the factors from the

literal parts, and multiplying them together, we shall obtain the

coefficients of the product. If to these coefficients the proper
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letters are then annexed, the whole product will be obtained.

This method is applicable where the powers of the same letter

increase or decrease regularly.

1. Multiply a^—2 ah-^-b"^ hy a-\-b. operation.

After finding the coefficients, it is obvious 1—^2-f-l

that a^ will be the first term and h^ the last 1+1
term ; hence, the entire product is a^—a^b—ah^ 1—^2-f-l

+bK +1—2+1

2. Multiply a^—^a^b+¥ by a^—hK

In this example, supposing the powers operation.

of a to decrease regularly toward the 1—3+0+1
left, it is obvious that there is a term 1+0—1

wanting in each factor. In such cases 1—3+0+1
the coefficient of each absent term must —1+3— —1

be consMered zero, and supplied before 1—3—1+4— —1

commencing the operation.

This method, termed multiplication by detached coefficients, is

useful in leading the
j)upil

to consider the properties of coefficients

by themselves.

EXAMPLES.
3. Multiply m^+m2?i+mn2+7i^ by m—n Ans. m*—n*,
4. Multiply l+22;+322-|-423-|-52;4 by 1—-z.

Ans, l-\-z+z'^+z^+z^—ljzK
The pupil may also solve, by this method, the general examples,

Art. 61, from 7 to 20 inclusive, except example 17.

REMARKS ON ALGEBRAIC MULTIPLICATION.

Art. 63. The degree of the product of any two monomials, is

equal to the sum of the degrees of the multiplicand and multi-

plier. This is evident, since all the factors of both quantities

appear in the product. Thus, 2a^b, which is of the 3d degree,

multiplied by dab^ which is of the 4th degree, gives Qa^b"^, which

is of the 7th degree. Hence, if two polynomials are homogeneous^
their product will be homogeneous. Thus, in example 7, Art,

61, both multiplicand and multiplier are homogeneous, each term

being of the 3d degree, and the product is homogeneous, each

term being of the 6th degree.

Art. 64, In the multiplication of two polynomials, when the

partial products do not contain similar terms, the whole number of

terms in the final product will be equal to the number of terms in

the multiplicand^ multi/jlied by the number of terms in the multi-
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plier. Thus, if there be m terms in the multiplicand, and n terms

in the multiplier, the number of terms in the product will be

my^n. Thus, in example 6, Art. 61, there are 3 terms in the

multiplicand, 2 in the multiplier, and 3x2=6 in the product.

Art. 65. If the partial products contain similar terms^ the

number of terms in the reduced product will evidently be less

than mXn; see examples 7 to 21 inclusive, Art. 61. It is

important to note that there are two terms which can never be

reduced with any others ;
these are,

1. That term which is the product of the two terms in the

factors which contain the highest power of the same letter.

2. That term which is the product of the two terms in the

factors which contain the lowest power of the same letter.

Art. 66. The multiplication of two polynomials is indicated

by inclosing each in a parenthesis, and writing them in succes-

sion. Thus, the multiplication of the polynomials m-\-n and p—9,

is indicated by (m-\-n)(p
—

q.)

When the operation is actually performed, the expression is

said to be expanded, or developed.

DIVISION.

Art. G7, Division, in Algebra, is the process of finding how
often one algebraic quantity is contained in another. Or, having
the product of two factors, and one of them given, divisiwi teaches

the method of finding the other.

As in Arithmetic, the quantity by which we divide is called the

divisor; the quantity to be divided, the dividend; the result of the

operation, the quotient.

Art. 68. In division, as in multiplicatiofi, there are four things

to be considered, viz :

The sign ;

The coefficient ;

% The exponent ;

The literal part.

Art. 69. To ascertain the rule of the signs.

Since -\-ay^-\-b=-\'air\ r-\-ah^-{-h=-\-a—flX+^=—cd) I ^, ^ J —ab-^-{-h=:—a
I w 7 1 y therefore < 7.7 ,

-j-^X—u=-—ao
I

)

—
ao-^, o=-l-a—aX—l=-{-ahj L+^H J=—a
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From which we derive the following

Rule of the signs.—When loth divisor and dividend have the

sa7ne sign, the quotient will have the sign -\- ; when they have

different signs, the quotient will have the sign
—

.

Art. ho. To ascertain the rule of the coefficients, the rule of
the exponents, and the rule of the literal part. These may all be

derived from the solution of a single example.
Let it be required to find how often 2a'^ is contained in Qa^h,

6a^b 6
—--=a'-2i,^2a'b,
2a^ 2

Since division is the reverse of multiplication, the quotient,

multiplied by the divisor, must produce the dividend ; hence, to

obtain this quotient, it is obvious,

1st. That the coefficient of the quotient must be such a num-

ber, that when multiplied by 2 the product shall be 6 ; therefore,

to obtain it, we divide 6 by 2. Hence, w^e have the following

RtTLE OF THE COEFFICIENTS.— To oUain the coefficient of tlie quo-

tient, divide the coefficient of the dividend hy the coefficient of the

divisor.

2d. The exponent of a in the quotient must be such a number,

that when 2, the exponent of a in the divisor, is added to it, the

sum shall be 5; hence, to obtain it, we must subtract 2 from 5;

that is 5—2=3, is the exponent of a in the quotient. This

gives the following

Rule of the exponents.— From the exponent of any letter in the

dividend subtract its exponent in the divisor, the remainder will be

its exponent in the quotient.

3d. The letter b, which is a factor of the dividend, but not of

the divisor, must be found in the quotient, in order that the pro-

duct of the divisor and quotient may equal the dividend. Hence,

every letter found in the dividend, and not in the divisor, must be

found in the quotient, with the same exponent as in the dividend.

This, in connection with the rule of the exponents, furnishes the

rule of the literal parts.

Art. 71. The preceding rules taken together, give the following

Rule for dividing one monomial by another.— Divide the

coefficient of the dividend by that of the divisor; observing, that like

sig?is give plus and unlike signs give minus.

After the coefficient, write the letters common to both divisor and divi-

dend, giving to each an exponent, equal to the excess of the exponent

of the same letter in the dividend, over that in the divisor-
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In the quotient write the letters ^
with their respective exponentSy thai

are found in the dividend, but not in the divisor,

EXAMPLES,
1 . Divide Aa^ by 2a^ and by

—2a^, Ans, 2a^ and —2a^

2. Divide SOa^^?^ ^y 5^2^, ^^,,^ (5^2^

3. Divide —2Sx^y^z^ by —7xy^z. Ans. 4jc'^y^z^-

4. Divide —26a'^b^c by dab^. Ans. —lobe-

5. Divide ^2xyz by Socy. Ans. —42.

6. Divide A:2c^m^n by —3cmw. Ans. —14c^m.

7. Divide a;'"+" and a?"""" each by a:". Am. x"" and a;*"^^/.^

8. Divide v"M-» by v"'+''. Atw. v'^'K

Note.— In solving the following examples, the pupil must recollect,

that the quantities included within the vinculum are to be considered

together, as a single quantity.

9. Divide (a+by by (a+by. Ans. (a+h),
10. Divide (m—ny by (m—ny. Ans. (m—ny.
11. Divide S(a—byx^y by 2{a^b)xy. Ans. ^{a—byx.
12. Divide Q{x-\-zy{a—by by 2^(x-\-z){a-^by. Ans. 2{x-\-zy.

13. Divide a^^(x—y)(y
—zy by ab\y—zy, Ans. ab{x—y).

14. Divide (a-{-bx'^y^^ by {a-\-bx'^)i^K Ans. {a\-bx'^y.

Art. "72. It is evident that one monomial cannot be divided by
another in the following cases :

1st. When the coefficient of the dividend is not exactly divisi-

ble by the coefficient of the divisor.

2d. When the same literal factor has a greater exponent in the

divisor than in the dividend.

3d. When the divisor contains" one or more literal factors not

found in the dividend.

In each of these cases the division is to be indicated by Virfitsng

the divisor under the dividend, in the form of a fraction. This

fraction may often be reduced to lower terms. See Art. 119.

Art. "yS. It has been shown, in Art. 53, that any product is

multiplied by multiplying either of its factors; hence, conversely,

any dividend will be divided by dividing either of its factors.
' 6x9

Thus, -g—=2X9=18, by dividing the factor 6.

6X9
Or, -g— =6x3=18, by dividing the factor 9.

DIVISION OF POLYNOMIALS BY MONOMIALS.

Art. '74. In multiplying a polynomial by a monomial, we

multiply each term of the multiplicand by the multiplier. Thus,
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{ab—h^)Xa=a'^h—db^ \ hence , (a^b^ab^)'i'a=^-=ab
—b^ ; therefore,

we have the following

Rule for dividing a polynomial by a monomial.— Divide each

term of the dividend by the divisor, according to the rule for the

division of monomials.

EXAMPLES FOR PRACTICE.

1 . Divide a^-\-ab by a. Ans. a-\-b

2. Divide dxy-\-2x^y by —xy. Ans. —3—2x.

3. Divide 10a^z—lc>z^—25z by 5z. Ans. 2a^—2z—o.

4. Divide ^ab+12abx—9a^b by —2ab. Ans. —1—i:X-{-Sa.

5. Divide 5x^y^
—

i0a^xY^-\-25a'^xy by —dxy.
Ans. —x^y^-{-Sa^ocy

—ba^.

6. Divide Aabc—'24:ab^—'^2abd by —-4a&. Ans. —c+Qb+Sd.
7. Divide a'"b^+a'^^b^+a'''-^b by ab. Ans. a'^-^b^-l-a'^b+a'^'K

8. Divide Aa\a-{-x)+6a{x+y) by 2a.

Ans. 2a{a-^x)-\-^(x-\-y).

0. Divide ^a(^x+y)-\-c\x+yy by x-{-y. Ans. da-{-c\x-\-y).

10. Divide b^c(m-\-n)
—

bc^(m-\-n) by bc(jn-\-n). Ans. b—c.

a. Divide (&+c)(Z^-c)2—(6—c)(6+c)2 by (bJ^c)(b—c).
Ans. (b-^)—(b+c)=—2c

12. Divide (m—7i)2(a:4-2)3—(m—-7z)3(a;+z)2 by (m—ny{x+zy.
Ans. {x-\-z)

—(m—n).

DIVISION OF ONE POLYNOMIAL BY ANOTHER.

Art, 75. To explain the method of dividing one polynomial

by another, we may regard the dividend as a product, of which

the divisor and the quotient are the two factors. We shall first

form a product, and then, by a reverse operation, explain the

process of division.

Division, or decomposition of a product.Multiplication, or forma-

tion of a product.

a^—ba^b

a^J^2a b—b^

a'-^ia'^b

+2a'*6—10a362

^5—3a4Z,_l la352_J.5^2^3

i8trr+2^—1 1 a352^5a2j3

2d remainder, —
d^b'^-\-ba^h^—
fl3^2_(_5^2^,3

i^—ba-'b

a^^2ab—b^
Quotient.

a^.^a'^b^Ua^b^+^aW Sd remainder,

By comparing the product with the two factors, each being

'arranged according to the decreasing powers of the letter a, we
see that the 1st term a^ of the total product, is the product of the

1st term a^ of the multiplicand, by a^ the 1st term of the divisor ;
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that the last term -\-5a^b^ of the total product, is the result of the

product of —ba'^b the last term of the multiplicand, by —h^ the

]ast term of the multiplier ; and that the other terms of the total

product are the result of the reduction of the similar terms of the

partial products. See Arts. 64 and G5.

Consequently, the division of aS the first term of the dividend

by a^y the first term of the divisor, will give a^^ the first term of

the quotient.

The dividend expresses the sum of the partial products of the

divisor by the different terms of the quotient ; therefore, if we
subtract from the dividend a^—ba'^b, which is the product of the

divisor a^—ba^b by a^ the first term of the quotient, the remaiJider

'-\-2a'^b
—11 a^b^-\-ba^b^, will be the product of the divisor by the

other terms of the quotient.

Knowing the 1st term a^ of the quotient, and the 1st remainder,

it is now required to find the other terms of the quotient. We
remark, that the 1st remainder expresses the product of the divi-

sor by the unknown terms of the quotient, and that, consequently,
the 1st term -{-2a'^bof the 1st remainder, is the product of the 1st

term a^ of the divisor by the 1st of the unknown terms of the

quotient ; therefore we shall obtain the 1st of these terms, that is,

the 2d term of the required quotient, by dividing the 1st term

-\-2a^b of the 1st remainder, by the 1st term a^ of the divisor; this

gives -{-2ab the 2d term of the required quotient.

Lastly, to find the 3d term of the quotient, we subtract from

the 1st remainder, the product of the divisor by -\-2ab, the 2d

term of the quotient ; the 2d remainder is the product of the

divisor by the 3d term of the quotient ; hence, the division of the

1st term —a^b^ of this 2d remainder, by the 1st term a^ of the

divisor, must give the 3d term of the quotient, which is thus found

to be —b^.

^ Subtracting from the 2d remainder, the product of the divisor

by —f?2, the remainder zero, shows that the quotient a^-\-2ab
—b^

is exact ;
for we have arrived at this remainder by subtracting

from the dividend and the several remainders, the partial products

of the divisor by the terms a^, -^2ab,
—b^ of the quotient.

Since there is no remainder when we subtract from the divi-

dend the product of the divisor by a^-]-2ab
—

b^, therefore the divi-

dend is the exact product of the divisor by a^-\-2ab
—

b^, which is,

therefore, the required quotient.

Since each term of the quotient is found, by dividing that term

of the dividend containing the highest power of a particular let-

ter, by the term of the divisor containing the highest power of the
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same letter, the divisor and dividend should always he arranged

(Art. 31) with reference to a certain letter.

The situation of the divisor in regard to the dividend, is a mat-

ter of arbitrary arrangement ; by placing it on the right it is more

easily multiplied by the respective terms of the quotient.

Art. 7S* From the preceding we derive the following

Rule for the division of one folynomial bt another.—
Arrange tJie dividend and divisor loith reference to a certain letter,

and place the divisor on the right of the dividend.

Divide the first term of the dividend hy the first term of the divisor ;

the result will he thefirst term of the quotient. Multiply the divisor

ly this term, and subtract the product from the dividend.

Divide the first term of the remainder hy the first term of the divisor;

the result will he the second term of the quotient. Multiply the divi-

sor by this term, and subtract the product from the last remainder.

Proceed in the same manner, and ifyou obtain for a remainder, the

division is said to be exact.

Remarks.— 1st. When there are more than two terms in the quotient,
it is not necessary to bring down any more terms of the remainder, at

each successive subtraction, than have corresponding terms in the quan-
tity to be subtracted.

2d. It is evident that the exact division of one polynomial by another

will be impossible, when the first term of the arranged dividend is not

exactly divisible by the first term of the arranged dinsor
; or when any

remainder is not divisible by the first term of the divisor.

1. Divide l^x^+Wxy-^ldy^ by 5x—Sy.

operation.

ldx^-\-16xy^ldy^\6x-^y
Idx^— 9ocy ^x-\-dy Quotient.

+25^—15^2
j^25xy—lby^

2. Divide m^—n'^ by m-\-n.

operation.

771
2 ^2

|772._j-7l

m^-\-mn m—n Quotient.
—mn—n^
—mn—n^

3 . Divide x^-\-y^ by x-\-y.

operation.

x^+y^ \x+y

x^-\-x^y x^—^y+y^ Quot.

—^''y+ y^
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4. Divide '7x^i/-\-dxf-]-2x^-\-y^ by dxy+x'^-\-y^,

OPERATION.

2x^+1x^i/-^5xf-{-y^ \x^J^Sxi/+y^

2x^-\-6xhj+2xy^ 2x+y Quotient.

I x^y+dxy^+y^
x^y-\-2xy^-\-y^

In this example, neither divisor nor dividend being arranged
with reference to either x or

jr,
we arrange them with reference

to 07, and then proceed to perform the division.

5. Divide x^-^x^
—

loc^-{-bx^ by x—x^.

Division performed, by arranging
both quantities according to the

ascending powers of x.

a;2_^a,3_7a;4_J.5^5 \^_^2
x^—x^ a:+2a;2

—hx^

2^—Ta;-* Quotient.

2a;3—2a;4

—
5a:4+5a?5

Division performed, by arranging
both quantities according to th^

descending powers of x.

5a75—7a?4-fa;3-|-a;2|—a:24-a?
hx^—hx'^ —

5a;3-f-2a;2+a?—
2x^-\- x^ Quotient.
—2ar^+2a;3

—
x^-^-x"^—
x^-\-x'^

The learner will perceive that the two quotients are the same, but

liifFerently arranged.

EXAMPLES FOR PRACTICE.

6. Divide ^x'^-\-hxy
—

4y2 by *6x-\-^y, Ans. 2x—y.

7. Divide a;^—40a:—63 by x—1. Ans. a;2-|-7a7+9.

8. Divide 3A5+16A4A:—33A3P+14A2A-3 by h^+lhk.
Ans. 3A3_5A2^4-2M2.

9. Divide a5—243 by a—3. Ans. a'-{-Sa^+9a^+27a-{-Sl,
10. Divide x^—2a^x^-\-a^ by x^—2ax-\-a^.

Ans. x^-\-2ax^-\'2^aW-\-2a^x-\-a^.
11. Divide 1—6a:5+5a:6 by 1—.2a?+a;2.

Ans. 14-2a:+3a;2-f4a;3+5a:^
1 2 . Divide f-\rpq-\-2pr—2q'^+lqr—% r ^

by jp—^+3 r.

Ans. p-{-2q
—r.

13. Divide A:X^-^^x—x^ by 3a:+2a;2+2. Ans. 2x'^-^?>x'^\-2x.

14. Divide x^—a^ by x^-\-2ax'^-\-2a'^x-\-a'^.

Ans. x^—2ax'^-\-2a^x
—a^.

15. Divide m'^-^2mp
—n^—2nq-\-p'^

—
q^ by m—n-\-p

—
q.

Ans. m-\-n-\-p-{-q.

16. Divide a^-\-h^-c^-^2ahc by a+h-]-c.

Ans* a^-^-P-^-c^
—ab—ac^^c.
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17. Divide a;"^+«+a;"«/"+a;^V'"+2/"'+" ^y a;"+?/^^ Ans. x^'+y^.

18. Divide ax^—iia'^-{-b)x^-\-b- by ax—b. Ans. x^—ax—b.

19. Divide mpx^-\-(mq
—

np)x'^
—

{mr-{-nq)x-[-nr by mx—n.

Ans. px'^-\-qx
—r.

20. Divide a^'"—3a'"c"+2c2" by a"*—c". Ans. a"*—2c".

21. Divide x^-^x'"^
—x^—x~^ by x—x~^, Ans. x^—x^^.

22. Divide a»-\-a^b^+a^b^+^^b^+^^ ^Y a^+a^b+a^b^+ab^->rb\
Ans. a^—a^b-\-a^b^—ab^-\-¥.

23. Divide a2+(«—l)a;2+(a—l)a;3+(a—l)a;4—a;^ by a—x.
Ans. a-{-x-{-x^-{-x^-\-x'^ .

24:, Divide x(x-'l)a^+ix^+2x—2)a^+(2x^—x^)a—x'^ by a'^x

-\-2a
—x"^. Ans. (x—l)a-\-x^.

25. Divide x^'Sy^+125z^+^0xyz by x—2y+5z.
Ans. x^-\-2xy

—
5xz-^4:y^-\-10yz-\-2oz^,

26. Divide l—9x^—Sx^ by l+2a:+a^2.
Ans. l^2x+2x^—4x^+5x^-^6x'+'7x^—Sx\

27. Divide l+2a? by 1—3a; to 5 terms in the quotient.

Ans. l+5a:+15a;2+45a;3+135a;^-|-&c.
28. Divide 1—3a:—2x^ by 1—Ax to 6 terms in the quotient.

Ans. l+a;+2a;2+8a:3_(_32a:4_|.i28a;5+&c.

DIVISION BY DETACHED COEFFICIENTS.

Art. 77 • From Art. 62, it is evident that division sometimes

may be conveniently performed, by operating on the coefficients

detached from the letters, and afterwards supplying the letters.

Thus, if it be required to divide x^-{-2xy-\-y^. by x-\-yj we may
perform the operation as follows :

14-2-[-lil+l Hence the coefficients of the quotient

1-4-1 1+1 are 1 and 1. A\sOjx'^-^3c=x,3iudy^-^y=y;

-|-1-|-1 therefore the quotient is la;-[-ly, or x-\-y.

1+1

2. IMvide 12a^—2Qa^b-^a^b^+l0ab^—S¥hy2a^—2ab+b\
12-~26--8+10—8|3—2+1 Hence the coefficients of the

12— 8+4 4—6—8 quotientare4—6—8. Also,

_«18—12+10 a^-^a2^a^ and b'.^b^=b^ ;—18+12— 6 therefore the quotient is Aa^

_24+16—8 __6aJ~852.

—26+16—8
When any of the intermediate powers of the letters are want*

ing, the coefficients of the corresponding terms must be supplied
with zero, as in the following example.

4
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3. Divide a^-{-x^ by a-\-x.

1+0+0+1 |1+1
1+1 1—1+1—1 a^—ax-^x^ Quotient.

—1—1
+1+1
+1+1

EXAM PLE S.

4. Divide 6x'^+4:X^y'^9x^y^-'Sxy^+2y* by 2x^-]-2xy--y^.
Ans. 2x^—

ocy
—

2y^.

5. Divide m^—bm^n-\-10mV—10m^n^ -\-dmn^
—n^ by m^

—
2mn-{-n^. Ans. m^—'^mPn-^-^m'n?

—n^.

6. Divide a^—3a452_|.3^254_j6 i^y a}—.'>,a^b-\-Zab'^-^hK

Ans. «3+3a25+3a&2_[_j3.

Most of the examples in the preceding article may be solved by
this method.

CHAPTER II.

ALGEBRAIC THEOREMS,
DERIVED FROM MULTIPLICATION AND DIVISION.

Remark.— One of the chief objects of Algebra is to establish certain

general truths. The pupil has now obtained the necessary knowledge
to prove the following theorems, which may be regarded as the simplest

application of Algebra.

Art. "78, Theorem I.— TTie square of (he sum of two quantities

is equal to the square of the first, plus twice the product of the first by
iJie second, plus the square of the second.

Let a represent one of the quantities, and & the other ;

then a+5=their sum ;

and (a+i)X(«+^)> or (a+&)2=the square of their sum.

But ((X+&)X(<2+^)=^^+2a6+&2, which proves the theorem.

APPLICATION.
1. (2+5)2=4+20+25=49.
2. (27w+3?2)2=4wi2+i27n7i+9n2.
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3. {ax-\-hyy=a'^x^-^2abxy-\-hY'

Art. 79. Theorem II.—The square of the difference of tico

quantities is equal to the square of the first, minus twice the product

of the first by the second, plus the square of the second.

Let a represent one of the quantities, and h the other ;

then a—&=their difference ;

and {a
—6)X(«—^)j or (a—5)2=:the square of their difference.

But {a
—b)X{^—h')=a^

—
2ab-\-b^, which proves the theorem.

APP LI CATION.

1. (5—3)2=25—30+9=4.
2. (2x-^y=^x^—4:xy+y^,
3. (SxSzy=9x^—^0xz+^5z^
4. {az

—2cxy=a^z^—dacxz-\-9cV»

Art. 80. Theorem III.—The product of the sum and difference

of two quantities, is equal to the difference of their squares.

Let a represent one of the quantities, and h the other ;

then a-|-J=their sum,
and a—&=their difference.

And {a-\-y)(a
—h)=a^—b^, which proves the theorem.

APPLICATION.

1. (7+4)(7—4)=49—16=33=11X3.
2. (2a;+3/)(2a;—y)=4a:2—y2.
3. (^a^+U^)i3a^—Ab^)=9a^—16b*,
4. (2ax+5by){^ax--5by)=9a^x^-'25bY.

Art. 81. Theorem IV.—The reciprocal of a quantity, is equal
to the same quantity with the sign of its exponent changed.

If we divide a' by a^, the quotient is expressed by ^,or by
a^

a3-«=a-2, since the rule for the exponents in division (Art. 70)
requires that the exponent of the same letter in the divisor should

be subtracted from that of the dividend. But ^ is a fraction, and
a^

if we divide both terms' by a^, which does not alter its value

(Ray's Arith., part 3d, Art. 147), it becomes i-; hence ar^=-~

since each is equal to _.
a'
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In the same manner, ^=fl"^", by subtracting the exponents;

or -=-: , by dividing both terms by d!^ \ hence, a"*-'»= ,

which proves the theorem.

EXAMPLES,

1. a"»=l—
2. a-"'=L.

4. ?!!=a*"5-".

6. L=a-iJ-2.
a&2

We see also from this, that any factor may he transferred from
one term of a fraction to the other y if at the same time the sign of
its exponent he changed. Thus,

z ^1 orh; ¥ ~^P~'^2*

Art. 82, Theorem V.— Any quantityi whose exponent is 0, is

equal to unity.

If we divide a^ by a'^, and apply the rule for the exponents

(Art. 70), we find —=a^~^=a^
; but, since any quantity is con-

tained in itself once, —=1.

Similarly, ^=a"'-"*=aK But, —=^l.
a"* a"* ^

Hence, a°=l, since each is equal to -^; which proves the

theorem.
^

This notation is used, when we wish to preserve the trace of a

letter, which has disappeared in the operation of division. Thus,

if we divide a^h by ah, the quotient is ^t=a^~^¥~^=a^h^=a.
ah

Now the quotient is expressed correctly, either by a^¥, or by a,

since both have the same value. The first form is used when we
wish to show that t}>^ letter h was originally a factor, both of the

dividend and divisor.

Art. §3. Theorem VI.— TJie difference of the same power of

two quantities is always divisihle hy the difference of the quantities.

1 . If we divide a^—^^ by a—h, the quotient is a-\-h.

. 2. If we divide a^—¥ by a—h, the quotient is a^-\-ah-\-h^.

In the same manner, we would find by trial, that the difference

of the same power of any two quantities is divisible by the
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difference of the quantities. The general and direct proof of this

theorem is as follows :

Let us divide a'^—b"^ by a—h.

a"'—h^' la
—h

-'+ a^ Quotient.

=Z,(am-l_Jm-l).

In performing this division, we see that the first term of the

quotient is a"*~S and the first remainder, 5(a"*~^
—

b""''^).

The remainder consists of two factors, b and a"*~*—Z>"*~^ Now
it is evident, that if the second of these factors is divisible by a—b,

then will the quantity a"*—b^ be divisible by a—b. Thus, if a—b

is contained c times in a"*~^—&"*~^, the entire quotient of a^—b^,

divided by a—by would be a'^~^-\-bc.

This proves, that if d^~'^—&*""' is divisible by a—Z>, then will

d^—b'^,he divisible by a—b. That is, if the difference of the same

poioers of two quantities is divisible by the difference of the quantities

themselves^ then will the difference of the next higher powers of the

same quantities, be divisible by the difference of the quantities.

But we have seen, already, that a"^—b^ is divisible by a—b ;

hence, it follows, that d^—&^ is also divisible by a—b. Again,
since a"^—b^ is divisible by a—5, it follows that a^—b^ is divisible

by it. And so on, without limit, which proves the truth of the

theorem generally.

Note.— In dividing the dilFerence of the same powers of two quan-
tities by the difference of those quantities, the quotients ^follow a simple

law. Thus,

{a'''-i'')^{a—b)=a+b ;

Qj,^^b^)^{a—b)=za^^a''b+ab^-\-b^ ;

(^a'^b^)^{a—b)=::a'^-\-a'^b-]-a%^+ab^-{-b\

The law is, that the exponent of the first letter decreases by unity,

while that of the second increases by unity.

Art. 84. Lemma.— In proving the next two theorems, it is

necessary to remind the student, that the even powers of a nega-
tive quantity are positive, and the odd powers negative. Thus,

—
a, the 1st power of —a, is negative.—aX—a-=a'^, the 2d power, is positive.—aX—flX—fl=—«^ the 3d power, is negative.—aX—«X—flX—«=a'*,the 4th power., is positive ;

and so on.
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Art. §5. Theorem VII.— Tlw difference of the even powers of
the same degree of two quantities ,

is always divisible by the sum of the

quantities.

If we take the quantities a—&, and a'"—b^, and put —c instead

of b, a—b will become a—(
—

c)=a-\-c, and, when m is even^

h^ will become c"S and a"*—5*" will become a"*—(-)-c"')=a"'
—c"* :

but a"*—h"^ is always divisible by a—b
; therefore,

/ flw—c"* is always divisible by a-\-c when m is even, which is the

theorem.

E X AMPL E S.

1. (a2—62)_j_(a_|_5)=,^__j.
2. (^a^^b^)^{a+b)=a^—a''b-\'ab'^'^K
3 . (^a^^¥)^{a-\-b)z=ia'---a'b+a^b^—a'^¥-\-a¥^¥.

Art. 86. Theorem VIII. -^ T^ sum of the odd powers of•the

same degree of two quantities, is always divisible by the sum of the

quantities.

If we take the quantities a—b, and a""—b"*, and put
—c instead

of b, a—b will become a—(
—c)=a+Cj ^^^ when m is odd, b^

will become —C" (Art. 84), and d^—&'" will become a"*—(
—

c"")

z=:a"^-{-c^ : but a"^—6"* is always divisible by a—b ; therefore,

^m_|_gm jg always divisible by a-\-c when m is odd, which is the

theorem.

E X AMPLES.

1. (a^+^^)^(a+b)=a^-'ab+b^.
2. (a'+b')^(a+b)=a*^a^b+a^P-'a¥+bK
3 . (a7_i-&7)^(^2,)_a6_^5J_|_a452_^3^3_|_a254_fl^,5_|_J6^

FACTORING.
Note.— Previous to studying the factoring of algebraic quantities,

the pupil should be well acquainted with factoring numbers. See

Ray's Arith., Part 3d, Arts. 121 to 124.

Art. 8'y. The following is a summary of the principles and the

most useful rules employed in factoring numbers.

1 St Principle. A factor of a number is a factor of any multiple

of that number.
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2d Principle. A factor of any two numbers is also a factor of

their sum.

Propositions deduced from these principles :

1. Every number ending with 0, 2, 4, 6, or 8, is divisible by 2.

2. Every number is divisible by 4, when the number denoted

by its two right hand digits is divisible by 4.

3. Every number is divisible by 5, whose right hand digit

is or 5.

4. Every number whose first digits are 0, 00, &c., is divisible

by 10, 100, &LC.

The converse of each of the preceding propositions is also true.

Thus, no number is divisible by 2, unless it ends with 0, 2, 4, 6,

or 8.

5. Every composite number is divisible by the product of any
two or more of its prime factors.

6. Every prime number, except 2 or 5, ends with 1, 3, 7, or 9.

Rule for resolving a composite number into its prime fac-

tors.— Divide the given number hy any prime number that will

exactly divide it ; divide the quotient again in the same manner^ and

so continue to divide until a quotient is obtained which is a prime
number ;

then the last quotient and the several divisors are tlw prime

factors of the given number.

FACTORING OF ALGEBRAIC aUANTITIES.

Art. 88, a divisor , or factor of a quantity, is a quantity that

will exactly divide it ; that is, without a remainder. Thus, a is a

factor or divisor of db, and a-\-x is a divisor or factor of a^—x^.

Art. 89. A prime quantity is one which is exactly divisible

only by itself and by unity. Thus, a:, y, and x-\-z, are prime

quantities ;
while xy, and ax-\'aZf are not prime.

Art. 90, Two quantities, like two numbers, are said to be

prime to each other, or relatively primes "when no quantity except

unity will exactly divide them both. Thus, ab and cd are prime
to each other.

Art. 91. A composite quantity, is one w^hich is the product of

two or more factors, neither of which is unity. Thus, a^—x^ is

a composite quantity, of which the factors are a-{-x and a—x.

Art. 92. To separate a monomial into its prime factors.

Rule.— Resolve the coefficient into its prime factors; then, these with

the literal factors of the monomials, will be the prime factors of the

given quantity. The reason of this rule is self-evident.
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Find the prime factors of the following monomials.

2. 2Sx^t/zK Ans. 2x2X'^Xoo.x.y,z.z.z,

3. SQa^byz. Ans. 2x2X^X^'a,a.h.b.y.y.y.z,

4. 210ax^yz^. Ans. 2x^X5 X'^-a.x.x.x.y.z.z.

Art. 93. To separate a polynomial into its factors, when one

of them is a monomial.

Rule.— Divide the given quantity by the greatest monomial that will

exactly divide each of its terms. Then the monomial divisor will

be one factor, and the quotient the other. The reason of this rule

is self-evident.

Separate the following expressions into factors.

1. a-{-ax, Ans. a(l+a:).

2. xz-\-yz. Ans. z(x-\-y),

3. x^y-\-xy^. Ans, xy(x-\-y).

4. 6aZ>2_j_9fl2jc. Ans. dab(2b+Zac),
5. 4:a^bc+6ab^c--10abcK Ans. 2abc(2a-\-2b—5c).
6. a^bx^y

—
ab^xy^-\-abcocyz^, Ans. abxy{ax^

—
l)y-{-cz^).

7. 2x'^y^QxY+9xy, Ans. Sxyi—2xy+2y'') .

8. 12am^n—l&amV-\-20amn^. Ans, 6amn(2m^—^mn-\-d?i^)

Art. 94. To separate any binomial or trinomial which is the

product of two or more polynomials, into its prime factors.

1st. Any trinomial can be separated into two binomial factors,

when the extremes are squares and positive, and the middle term

is twice the product of the square roots of the extreme terms.

The factors will be the sum or difference of the square roots of

the extreme terms, according as the sign of the middle term is

plus or minus. (See Arts. 78, 79.)

Thus, a^-{-2ab+b^=:(a+b)(a+b) ;

a^—2ab-{-b'-=:(a—b){a—b).
2d. Any binomial, which is the difference of two squares, can

be separated into factors, one of which is the sum and the other

the difference of their roots. (See Art. 80.)

Thus, a^—b^=(ia+b)(ia—b).
3d. Any binomial which is the difference of the same powers

of two quantities, can be separated into at least two factors, one
of which is the difference of the two quantities. (See Art. 83).

Thus, a"'—b'"=(a—b)(a'^'^-{-a'^-^b , , , , ^ab"''^-\-b'''~\ where

a, by and m, may be any quantities whatever.

In this case, one of the factors is the difference of the quanti-

ties, and the other may be found by dividing the given expression

by this difference.
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Thus, to find the other factor of x^—y^, we divide by x—y, and

the quotient is x'^-\'Xy-{-y'^ ; hence,

Similarly, x^'—y^=^{x
—

y)ix^-\-x^y-\'»^y^-\-xy^'\^^),

4th. Any binomial which is the difference of the even powers of

two quantities, higher than the second degree, can be separated
into at least three factors, one of which is the surriy and another

the difference of the quantities. (See Art. 85.)

Thus, by Art. 84, a^—V, is divisible by a+&, and, by Art. 85,
it is divisible by a—h ; hence it is divisible by both a-\-b and a—&,

and the other factor will be found by dividing by their product.

Or, it may be separated into factors, thus,

5 th. Any binomial which is the sum of the odd powers of two

quantities, can be separated into at least two factors, one of

which is the sum of the quantities. (Art. 86.) The other factor

will be found by dividing the given binomial by this sum. Thus,

a^j^-h^=(^a-{-h){a''^ab-\-h^).

Separate the following expressions into their simplest factors.

1. c2-J-2c£Z+f^2.

2. a''x^+2ax'^y-\-y^.

3. 25a7y+20a:2/22;-|-4z3.
4. ^x^^QxH^-\-z\
5. ^m^x"^—^mn^X'\'n^,
6. x''--z^.

7. 9aV—25.
8. 16—a2ft4««.

9. 4m2a;2—9712^4.

10. a^—a;4.

11. Z3+1.
12. y3__i.
13. l+c3.
14. a^x^—&y.
15. x^+yK
16. a;«-^«.

ANSWERS.

1. (c+(?)(c+(?).

2. (fla:2+2/)(aa:2+y).

3. (5a:y2_j-22)(5a:y2+2^).

4. (3a;2—z2)(3a;2—;?2).

5. l27nx'-n^)(2mx^n^),
6. lx+z)(x^z).
7. (3aa;2+5)(3aa;2—5).

8. (4-|-fl&22;3>)(4_flJ2^3).

9. (2ma;+37iz2)(2ma:—371^2),
10. (a2_|-a;2)(a2~-a;2)

=(fl2_|_a;2)(a-|_a;)(a
—

x),

11. (^+1)(^2_,^1J.

12. (y^l)(f+y+l).
13. (l+c)(l—c+c2).
14. (ax

—
by)(aV-{'ahxy-\-b^y^),

15 . (x-{-y){x^
—

a^y-{-x^y^
—

xy^

16. (x^+y^) (x^—y^)= (x^+y^)

(,x—y){x^+xy+y^)=(x+y)
(x^—xy+y^) (x-^y) (x^+xy

+y^)=(x+yXx'-^)(x^'-^
+y'Kx'+xy+y')=
(x^^y'Xx^+x^f+y'.)
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Art. 945 To separate a quadratic trinomial into its factors.

A quadratic trinomial is of the form, x^-\-ax-\-b, in which the

sign of the second term may be either plus or minus.

To explain the method of performing this operation, let us

examine the relation that exists between two binomial factors and

their product.

1. (x-\'a)ix-\-h)=:x^+(a+h)x+ah.
2. (x—a)(x

—
5)=;=a;2

—
(a-\-b)x-\-ab,

3. (x-\-a){x
—

b)=x^-\-{a—h)x
—ab,

4. (x
—

a)(x-{-b)=x^-\-(b
—

a)x
—ab.

From this we see that any trinomial may be resolved into two

factors, when the first term is a square, and the coefficient of the

second term equal to the sum of any two quantities, whose product
is equal to the third term.

Remark.— In Equations of the Second Degree (Art. 234), it will be

shown how to perform this operation by a direct method ;
it is, however,

a useful exercise for the pupil to do it by inspection, the only difficulty

being to find two quantities whose sum is equal to the coefficient of the

second term, and product equal to the third term.

Trinomials to be decomposed into binomial factors.

1. x^+2x+2. Ans. (x+l)(x-\-2).
2. a^-\-6a+Q. Ans. (a+2)la+S).
3. a;2—7a;4-12. Ans. (cc-^){x—A).
4. a?2—8a:4-15. Ans. (a:—3)(a:—5).
5. 372—0;—2. Ans. (a;4-l)(a;—2).

6. a?2-(-a:—12.
'

Ans. (a?—3)(a;+4).
7. a;2_^_i2. Ans. (a?+3)(a7—4).
8. a?2—5a;+6.

-
Ans. (a:—2)(a:—3).

9. x^+2x--^d. Ans. (a?—5)(a:4-7).
10. a;2+a:—56. Ans. (a:—7)(a;+8).

Art. 05. Examples of binomials and trinomials that may be

separated into factors, by first separating the monomial factor,

and then applying the principles in Art. 93.

Ex. 1. ax^y
—

aocy^=axy(x'^
—

y'^)-=axy{x-\-y){x
—

y).

2. Zax'^-\-Qaxy^Zay'^. Ans. 2fa{x-\-y){x-\-y'),

3. 2ca;2—12ca?+18c. Ans. 2c(a;—3)(a:—3).
4. 27a—18aa;-f3aa:^ Ans. 3^(3—a:)(3—.t).

5. 3m'7i—3m7i^ Ans. 2tm7i{7n-\-n){m
—

n).

6- Sz^2zK Ans. 22(2+2)(2—z).
7. 2x^y

—
2xy^. Am. 2ocy(x'^'\-y^)(x-\-y)(x

—
y),

8. 2a:2+6a;--8. Ans. 2(ix-{A)(x--l).
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9. 2x^+4:x^--'70x. Ans. 2x(x-\-l)(x—5),
10. Za'b^Sa^SOab. Ans. 3a6(a—5)(a+4).
Solve the following questions by first indicating the operations

to be performed, and then canceling the factors common to the

dividend and divisor.

1 1 . Multiply 4a;—12 by 1—x^, and divide the product by 2-|-2a;.

(i^zl^Xizf!) 4(a:^)(l+:g)(l-a:)

2+2^
-

2(1+^) =2(a;-3)(l~a;)=

8a:—6--2a;2.

12. Multiply x^-\'2xy-{'y^ by x—y, and divide the product by
x^—y^. Ans. x-]-y.

13. Multiply Gam^—6an^ by m-j-?ij and divide the product by

2m2-j-477171+2 71^. Ans. 2a(m—n).

14. Multiply together 1—c, 1—c^, and l-\-c^, and divide the

product by 1—2c-\-c^. Ans. l+c+c^-J-c^.
15. Multiply together x^-\'X

—2 and x^—x—6, and divide the

product by a;2-|-4a;+4. Ans. x^—4a:-f-3.

16. Multiply together a?^—3:2—3 Oa: and a;2-flla:+30, and di-

vide the product by the product of x^—36 and a;2-|-10a;4-25.

Ans. x.

GREATEST COMMON DIVISOR.

Art. 96. Any quantity that will exactly divide two or more

quantities, is called a common divisor , or common measure, of those

quantities. Thus, ah is a common divisor of ab^ and abx.

Remark.— Two quantities, like two numbers, often have more than

one common divisor. Thus, a^cx and abdx have three common divisors,

a, X, and ax.

Art. 97. That common divisor of two quantities which is the

greatest, both with regard to the coefficients and exponents, is

called their greatest common divisor, or greatest common measure.

Thus, the greatest common divisor of 6a^x^ and Oa^cxz is 2a^x,

Art. 98. Quantities that have a common divisor are said to be

commensurable, and those that have no common divisor are said to

be incommensurable.

Art. 99. To find';the greatest common divisor of two or more

monomials.
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1. Let it be required to find the greatest common divisor of the

two monomials, 14a^cj; and 21 a^bx.

By separating each quantity into its prime factors, we have

14:a^cx=lX^Xaaacx, and 2la^x='7 X^Xaabx.

By examining these quantities we find that 7, aa or a^, and x,

are the only factors common to both ; hence, both the quantities

can be exactly divided by either of these factors, or by their pro-

duct, la^Xi and by no other quantity whatever ; therefore, la^x is

their greatest common divisor. This gives the following

Rule for finding the greatest common divisor of two or

MORE Monomials.— Resolve the quantities into their prime fac-

tors ; then the proditct of those factors that are common to all the

terms f will form their greatest common divisor.

Note.— The greatest common divisor of the literal parts of the quan-
tities may generally be found most easily by inspection, by taking each

letter that is common to two or more of the quantities, with its least

exponent.

2. Find the greatest common divisor of Ga^xy, 9a^x^, and

Here we find that 3 is the only nu-

oPERATioN. merical factor, and a and x the only

Ga^xy =3x2a^a:2/ letters common to all the quantities. The
9a^x^ =3x3a3a?' least powers of a and x, in either of the

i5a^x*y^=^X^<i^x^y^ quantities, are a^ and x; hence, the

greatest common divisor is Sa^x»

Find the greatest common divisor of the following quantities.

3. Ibabc^, and 2W2cd. Ans. Sbc,

4. 4a'Z>, lOa^c, and 14:a'^bc. Ans. 2a^.

5. Idax^yflSx^y'^, and 21x^y^. Ans. 2x^y,
6. 4aa;y, 20x^y'^z, and I2a^y^z^, Ans. 4tx^y^,

7. 2a^b^cXf Sa^b^c^z, and ba^^cy. Ans. a^b^c.

8. 12a^x^z'^, ISax^z"^, 300^0:^2;, and 6ax^z^, Ans. Qax^z.

Aki, 100. Previous to investigating the rule for finding the

greatest common divisor of two polynomials, it is necessary to

demonstrate the following

Proposition. — Any common, divisor of two quantities, will

always exactly divide tlieir remainder after division.

Let AD and BD be either two monomials, or polynomials, of

which D is a common divisor, and let AD be greater than BD.
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Divide AD by BD, and if BD is not con-

tained an exact number of times in AD, BD)AD(Q,
suppose it is contained Q, times with a BDQ,

remainder, which may be called R. Then, AD—BDQ,=R
since the remainder is found, by subtract-

ing the product of the divisor by the quotient from the dividend,

we have, R=AD^—BDQ,. Dividing both sides by D, we get
R~=A—BQ ; but A and BQ, are each entire quantities, therefore

their difference, fi,
must be an entire quantity. Hence, any com-

mon divisor of two quantities (and of course the greatest common

divisor), will always exactly divide their remainder after division.

Remark.— In the preceding demonstration it is assumed that the

pupil understands the following axioms :

First. If two equal quantities be divided by the same quantity the quotients

will be equal.

Second. The difference of ttoo entire quantities is also an entire quantity.

Art. 101, Let it be required to find the greatest common
divisor of two polynomials, A and B, of which A is the greater.

If we divide A by B, and there is

no remainder, B is, evidently, the B)A(Q,

greatest common divisor, since it can BQ,
have no divisor greater than itself. A—BQ,=:R, 1st Rem.

Divide A by B, and call the quo-
tient Q, then if there is a remainder R)B(Q,'
R, it is evidently less than either of RQ'
the quantities A and B

;
and by the B—RQ'=R', 2d Rem.

preceding theorem it is also exactly
divisible by the greatest common A=BQ-(-R Sinco the

divisor
; hence, the greatest common B=RQ,'-4-R'

^^^^^'^'^'"^

J^

divisor must divide A, B, and R, and product of the divisor by the

cannot be greater than R. But if R quotient, plus the remainder.

will exactly divide B, it will also

exactly divide A, since A=BQ,-|"-^> ^^^ therefore will be the

greatest common divisor sought.

Suppose, however, that when we divide R into B, to ascertain

if it will exactly divide it, we find that the quotient is Q,', with a

remainder R'.. Now, it has been shown that whatever exactly
divides two quantities, will divide their remainder after division

(Art. 100) ;
and since the greatest common divisor of A and B, has

been shown to divide B and R, it must also divide their remainder
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R', and therefore cannot be greater than R'. And, if R' exactly

divides R, it will also divide B, since B=RQ,'+R'; and whatever

exactly divides B and R, will also exactly divide A, since A=BQ
-j-R ; therefore, if R' exactly divides R, it will exactly divide both

A and B, and will be their greatest common divisor.

In the same manner, by continuing to divide the last divisor by
the last remainder, it may always be shown, that the greatest

common divisor of A and B will exactly divide every new

remainder, and, of course, cannot be greater than either of them.

It may also always be shown, as above, in the case of R', that any
remainder, which exactly divides the preceding divisor, will also

exactly divide A and B. Then, since the greatest common divisor

of A and B cannot be greater than this remainder, and as this

remainder is a common divisor of A and B, it will be their

greatest common divisor sought.

The same principle may be illustrated by numbers, by calling

A. 55, and B, 15, and proceeding to find their greatest common
divibor.

Art. 102. When the remainders decrease to unity, or when
we arrive at a remainder which does not contain the letter of ar-

rangement, it is evident that there is no common divisor of the

two quantities.

Art. 103. If either quantity contains a factor not found in the

other, that factor may be canceled without affecting the common
divisor. Thus, in the two quantities, x(x^

—
y"^) and y{x^-\-2xy-{-y^),

of which the greatest common divisor is x-f-y, we may cancel x in

the first, or y in the second, or both of them, and the greatest

common divisor of the resulting quantities will still be x-{-y.

Art. 104. We may multiply either quantity by a factor not

found in the other, without changing the greatest common divi-

sor. Thus, in the two quantities, x(x^—y^) and y(.x^-\-2xy-\-y^)f

if we multiply the first by m and the second by ?z, we have

mx(x^—y^) and ny(^x^-\-2xy-\-y^), of which the greatest common
divisor is still x-\-y.

Art. 105. But if we multiply either quantity by a factor found

in the other, we change the greatest common divisor. Thus, in

the two quantities, x{x^—y'^)
and y(x^-\-2xy-{-y^)f if we multiply

the second by x, the two quantities become x(x^
—

y^) and xy(x^

'^2xy-\-y^)f of which the greatest common divisor is x(x-{-y)

Instead of x-{-y as before. In like manner, if we multiply the

first quantity by y, the greatest common divisor of the two result-

ing quantities will be yix-{-y)
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Art. 106. From Art. 101 it is evident that the greatest com-
mon divisor of two quantities will exactly divide each of the suc-

cessive remainders; therefore, the principles of the three pre-

ceding articles apply to the successive remainders that arise in

finding the greatest common divisor.

Art. lOY. It is evident that any common factor of two quan-

tities, must also be a factor of their greatest common divisor.

Where such common factor is easily seen, as when it is a mono-

mial, it simplifies the operation to set it aside, and find the great-
est common divisor of the remaining quantities.

We shall now show the application of these principles.

1 . Find the greatest common divisor of x^—2' and x^—x^z^.

Here the second quantity contains x^ as a fac-

tor, but it is not a factor of the first ; we may operation.

therefore cancel it (Art. 103), and the second

quantity becomes x^—z^. Then divide the first

by it. After dividing, we find that z^ is a factor

of the remainder, but not of x^^—z^, the next

dividend. We therefore cancel it (Art. 103),
and the second divisor becomes x—z- Then,

dividing by this, we find there is no remainder ;

therefore x—z is the greatest common divisor.

x^—^2^10:^
—

2;-*

x^—xz^ \x

xz^—z^

or {x
—

z)z^

x^—z^ \x
—z

x^—xz \x-{-z

2. Find the greatest common divisor of x^

-^-x^z^ and x^—x^z^.

The factor x^ is common to both quantities ;

it is, therefore, a factor of the greatest divisor

(Art. 107), and may be taken out and reserved.

Doing this, the quantities become x^-\-z^ and

x^—xz'^. The second quantity still contains a

common factor, Xy which the first does not ;

canceling this, it becomes x^—z^. Then pro-

ceeding as in the first example, we find that

x-\-z divides without a remainder ; therefore,

x'^{x-\-z) is the required greatest common divisor.

8. Find the greatest common divisor of lOaV—ia^x—6a',

niid 5bx^—llbx+6b.

IJy separating the monomial factors, we find

l0aV—4a^x^^a^=2a\5x^--2x—^),
and dbx^-^lUx+6b=bibx^—Jlx-{-6).

[over.]

x^—xz^ \x

xz^-\-z^

or (X'\-z)z'^

x^—z^ \x-\-z

x^-{-xz \x
—z

—xz—z^

—xz—z^
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The factors 2a and h have no com-

mon measure, and therefore are not

factors of the common divisor* We
may therefore suppress them (Art.

103), and proceed to find the great-

est common divisor of the remain-

ing quantities, which is found to be

07—1.

OPERATION-

5a?2—-1 1x+6 |5a?^--2a;—3
5a;2^ 2a:—3

|1_—9a:+9
or—9(a;—1)

5a?2—2a;—31^—1_
5a;^—5a; |5a?+3

'

3a;—3

3a:—3

OPERATION.

-3 a^y-\-ay^
—

y^ \

4a^—5
ay-^-y'^

4

4. Find the greatest common divisor of ^a?—5ay-}~y^ ^^^

3 a^—3 a^y-\-ay^
—

y^.

In solving this exam-

ple, there are two in- 3a'-

stances in which it is ne-

cessary to multiply the 12a^—12a^y-\-4:ay^
—

iy^ |3a-|-3y

dividend, in order that

the coefficient of the

first term may be exactly

divisible by the first

term of the divisor (Art.

104).

12^3—1 2a^y-\-4:ay^--^y^

12aS—15fl^3/4-3ay2
3a2y_|-a2/2_4y3

4

l2a^y-\- 4ay2_i63/3

I2a^y^l5ay^+ 2y^

19ay^—l9y^
or IQy^a-^)

4a^—5ay-]-y^\a
—y greatest com. divisor.

4^2—4:ay |4a
—
y

—ay+y^

We find 19i/2 is a

factor of the first re-

mainder, but it is not a

factor of the first divisor,

and, therefore, cannot

be a factor of the great-

est common divisor ; it

must, therefore, be suppressed.

Art, 108. From the preceding demonstrations and examples,
we derive the following

Rule for finding the greatest common divisor of two
POLYNOMIALS.— 1. Divide the greater polynomial hy the less, and

if there is no remainder, the less quantity will he the divisor

sought,

. If there be a remainder, divide the first divisor hy it, and continue

to divide the last divisor hy the last remainder, until a divisor is

obtained which leaves no remainder ; this will he the greatest com*

mon divisor of the two given polynomials
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Notes.— 1. When the highest power of the leading letter is the same

In both, it is immaterial which of the quantities is made the dividend.

2. If both quantities contain a common factor, let it be set aside, as

forming a factor of the common divisor, and proceed to find the greatest

common divisor of the remaining factors, as in Example 2.

3. If either quantity contains a factor not found in the other, it may
be canceled before commencing the operation, as in Example 3. See

Art. 103.

4. Whenever it is necessary, the dividend may be multiplied by any

quantity which will render the first term exactly divisible by the first

term of the divisor. See Art. 104.

5. If, in any case, the remainder does not contain the leading letter,

there is no common divisor.

6. To find the greatest common divisor of three or more quantities,

first find the greatest common divisor of two of them ; then of that divi-

sor and one of the other quantities, and so on. The last divisor thus

found will be the greatest common divisor sought.

7. Since the greatest common divisor of two quantities contains all the

factors common to both, it may be found most easily by separating the

quantities into factors, where this can be done by the rules for factoring.

Arts. 92 to 95.

Find the greatest common divisor of the quantities in each of

the following

EXAMPLES.
1. 5a;2--2a:—3 and 6x^—llx+6. Ans. x—1,
2. 9a;2—4 and 9a?2—15a;—14. Ans, dx+2.
3. a2__fl&—1252 and a^-]-5ab+Gb^,

'

Ans, a+Sb,
4. 4a2—52 and 4:a^+2ab^2b^, Ans, 2a-—b.

5. a^—x^ and a^-{-a^x
—ax^—x^. Ans. a^—x^,

6. a;3—5a;2+13a;—9 and x^^2x^+4x—S. Ans. x-^l.

7. a;3—50:2+1 6a;—12 and a;^—2a72—15a;-l-16 . Ans. ar—1 .

8. 21a;3—26a72-f8a; and 6a;2—a;—2. Ans. 3a;—2.

9. 2a;^+lla;3—13a;2—99a;—45 and 2a;3—7a;2—46a;—21.

Ans. 2x^+7x-\-S,

10. a;^-|-2a;24.9 and 7a;3—lla;2+15a;+9. Ans. a;2—2a;+3.
11. 48a;2+16a;—15 and 24a;3_22a;2-f-17a;—5. Ans, 12a;—5.

12. a;2+5a;+4, a;2_|-2a;—8, and a;2+7a;+12. Ans. x-\-4,

13. x^-\-a^x^-\-a^ Sindx*-{-ax^—a^x—a^, Ans, x^-^ax+a^.
14. 2b'—10ab^+8a^b and Qa'—'Sab^+da^b^—da'b, Ans. a-^-b.

15. x^-—px'-]-(^q
—

l)x^-\-px
—

q and x"^—q^-\-(p
—

l)x^-\-qx—p,
Ans. X-—1 .
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LEAST COMMON MULTIPLE.
Art. 109. A multiple of a quantity is any quantity that con-

tains it exactly. Thus, 6 is a multiple of 2 or of 3
; and ah is a

multiple of a or of 5 ; also, a(h—c) is a multiple of a or of (6
—

c).

Art. 110. A common multi-ple of two or more quantities, is a

quantity that contains either of them exactly. Thus, 12 is a

common multiple of 2 and 3; and 20xy is a common multiple of

2a7 and by.

Art. 111. The hast common multiple of two or more quanti-

ties, is the least quantity that will contain them exactly. Thus,
6 is the least common multiple of 2 and 3; and \^ocy is the least

common multiple of 2x and by.

Remark.— Two or more quantities can have but one least common

multiple, while they may have an unlimited number of common mul-

tiples.

Art. 112. To find the least common multiple of two or more

quantities.

From the nature of the least common multiple of two or more

quantities, it is evident that it contains all the prime factors ot

each of the quantities once, and does not contain any prime fac-

tor besides ; for, if it did not contain all the prime factors of any

quantity, it would not be divisible by that quantity ; and if it con-

tained any prime factor not found in either of the quantities, it

would not be the least common multiple. Thus, the least common

multiple of db and he must contain the factors «, h, c, and no other

factor. Hence,

The least common multiple of two or more quantities, contains all

the prime factors of those quantities once, and does not contain any
other factor.

With this principle let us find the least common multiple of

mx, 7ix, and m^nz.

Arranging the quantities as in the

OPERATION. margin, we see that m is a prime factor

m\mx nx m^nz common to two of them. It must,

V 11X mnz therefore, even if found in only one of

\: X mz the quantities, be a factor of the least

1 mz common multiple, and we place it on

mX^i'X^X'inz=m^nxz the left of the quantities. Then, since
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the same factor can occur but once in the least common multiple,

we cancel m in each of the quantities in which it is found, which

is done by dividing by it.

We next observe that w is a factor common to two of the re-

maining quantities ;
we therefore place it on the left, as another

factor of the least common multiple, and cancel it in each of the

terms in which it is found.

By examining the remaining quantities, we find that a? is a fac-

tor common to two of them. We then place it on the left, as

another factor of the least common multiple, and cancel it in each

of the terms in which it is found.

We thus find that the least common multiple must contain the

factors m, n, and x ; it must also contain the factor mz, otherwise

it would not contain all the prime factors found in one of the

quantities. Hence the products, 7ny,ny^xy^mz=zmhixz, contains

all the prime factors of the quantities once, and does not contain

any other factor ; it is, therefore, the required least common

multiple. Hence we have the following

Rule for finding the least common multiple of two or

MORE quantities.— 1 . Arrange the quantities in a horizontal

lin£, and divide them by any prime factor that will divide two or

more of them without a remainder, and set the quotients and the

undivided quantities in a line beneath,

2. Continue dividing as before, until no prime factor, except unity,

will divide two or more of the quantities without a remainder,

S. Multiply the divisors and the quantities in the last line together,

and the prodv^ct will be the least common multiple required.

Or, Separate the given quantities into their prime factors, and then

multiply together such of these factors as are necessary to form a

product that will contain all the prime factors in each quantity :

this product ivill be the least common multiple required.

Art. 113. Since the greatest common divisor of two quanti-

ties contains all the factors common to both, it follows, that if we

divide the product of two quantities by their greatest common divisor,

the quotient will be their least common multiple.

Find the least common multiple of the quantities in each of

the following

EX AM PLE S.

1. 6a2, Qax\ and 2^xK Ans. 72aV.
2. 32a;22/2, ^()axhj, and ba'^x(x-^j'), Ans, leOa^x'yXx--^),
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3. ^x-\-6y and 2x^-Sy^, Ans. 6a;2—24?/^
4. a^-\-x^ and a^—x^. Ans. a^—a}x-^ax^

—x'^*

5. Ma?J^ax\ 12(ffa;2—x3),andl8(a2—a:2).

Ans, 36aa;^(fl2
—

a;^).

6 . 2a;—1 , 4a;2—1 , and 4a?24-l . Ans. 1 60;^—1 .

7. X—1, x"^—1, X—^2, and a;^—4. Ans. x'^—5a72-[-4.

8. a;2—1, a;2+l, (x—1)2, (a?+l)2, a?'—1, and a;3+l.
An5. a;io—^6—a;4_j_i^

9. 4(1—^)2, 8(1—a;), 8(1 +a;), and 4(l+a;2).
Ans. 8(1—a;)(l—a;^).^

10. 3a:2—lla:+6, 2a:2—7a:+3, and 6072—7a;+2. (See Art.

113.) Ans. 6x3—25a;2-f23a;—6.

CHAPTER III.

ALGEBRAIC FRACTIONS.

DEFINITIONS.

Art. 114. Algebraic fractions are represented in the same
manner as common fractions in Arithmetic. The quantity below
the line is called the denominator ^ because it denominates, or shows
the number of parts into which the unit is divided ; and the quantity-

above the line is called the numerator^ because it numbers, or shows

how many parts are taken. Thus, in the fraction, ^^—, if a=b
c-\-d

&==3, c=2, and <?=1, the denominator c-\-d shows that a unit is

divided into 3 equal parts, and a—h shows that 2 of those parts
are taken.

Art. 115. The terms proper, improper, simple, compo^md, and

complex, have the same meaning when applied to algebraic frac-

tions, as to common numerical fractions.

Art. 116, Every quantify not expressed under the form of a

fraction, is called an entire algebraic quantity. Thus, ex—d is an

entire quantity.

Art. ll'y. Every quantity composed partly of an entire quan-

tity and partly of a fraction, is called a mixed quantity. Thus,

a-\--, is a mixed quantity.
b
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Note.— The same principles and rules are applicable to algebraic and

to common numerical fractions. However, as a good knowledge of frac-

tions is of great importance to the student, we shall present a concise

demonstration of the fundamental principles and rules of operation.

In these demonstrations the pupil is supposed to be acquainted with this

self-evident principle : If we perform the same operations on tiao equal

quantities the results will be equal.

Art. 118, Proposition.— The value of a fraction is not

altered, if we multiply or divide both terms by the same quantity.

Let — be a fraction whose value is Q.
B
A

Then —=Q ; but, from the nature of fractions, A represents

a dividend, B the divisor, and Q the quotient ;

and by the nature of division,

A=BQ.
If m represents any number, then

mA=mBQ,; dividing these equals by mB, we have

—=Q; w^hich proves the 1st part of the proposition.mB

Again, take the equals

A=BQ„ and divide each by m, we have (Art. 73),
AT? Ti

_=_Q,; divide each of these equals by _, thenmm m

r- =0, ; which proves the 2d part of the proposition.B
m

Case I.— To reduce a fraction to its lowest terms.

Art. 119. Since the value of a fraction is not changed by

dividing both terms by the same quantity (Art. 118), we have the

following

Rule.— Divide both terms by their greatest common divisor.

Or, Resolve both terms into their prime factors, and then cancel those

factors which are common.

EXAMPLES.

10 acx'^
1 . Reduce to its lowest terms.

Idbcx^
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Fractions to be reduced to their lowest terms.

2.

3. ax-\-x'^

Ans.
2ab

2bx—ex
Ans, a-\-x

8.

Sa^-^ab
21 a^b^X'-dab^x^

3&—c

Ans,''+^
a—b

5.

mnp—m^p

m?p-\-mp'^
2ax—^ax"^

Ans. .

Ans. 'aH-
m-\-p
1—2a:

Qax
Ans.

1—a;2'

10 5^H:5f!?

Atis,

3

7^2—35a7

9.

11.

12.

13.

x'2J^2x—^

a;2_|_5x+6*

a;3—39a:+70*
jj3—4a;2-|-5

Ans,

ba—a^b'^x

Ans, .

1+x
Ans. 1^,

a—X

Ans, ^,
x+2

a^-10

x^+1

j^ 4tx^^l2ax+9a
^

8x^—21a^

15a:3+35a;24-3a:4-7

x^—lx+lO

Ans, ^'-:^^^+^

r+1

Ans,
2x^2 a

15

16.

27x4+63a;3~.12a;2—28a:

2a;3-[-8a;2y+l 6a;y2_[.i 6^3

8x^+4.xy--24.y^

4x^-\-6ax-{-9a

Ans. 5-=+l
9a;3 ^^

2(,2x-9y)

Remark.— Instead of finding the greatest common divisor by the rule,

Art. 119, it is often preferable to separate the quantities into factors by
the rules for factoring (Arts. 87 to 95), and then cancel those factors

common to both terms. The following examples should be solved in

this manner.

17. Reduce ^I'tiTf^}^'^?^ to its lowest terras.

x^-{-(J)-\-c)x-\-bc

x^-\-(^a-\-c)x-\-ac=x^-\-ax-\-cx-]-ac

=x(x-\-a)-\-c{x-\-a)=(x-\-c) (x-\-a) ,

Also, x^-{-(b-\-c)x-\-bc=(x-\-c)(x-\-b) ;

.-. the fraction becomes (^+c)(x+a) x+a ^^^^
ix+c)(x+b) x+b'

18 ac+by+ay+bc ^^^ c+y
'

af+2bx+2ax+bf' '/+2ar

6c2-|-.9cx—2c—3a:
' ^*

3c—1
'
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20. ^j±^y''+^^J±y\ Ans. ^'+3^

x^—y^ x^—
y'-

21 ^^+Cg+^)«^+^^^ j^^s ^+^

22. ^'-^^-^\ Ans.
^"'"

a^bx—¥x^ hia+bx)

a^x^—b'
'

ax-

24. a'+ah^-a'b--h^ Ans, ^'+^'

4^4—2a262_4a3^,_|_2fl&« 2a(2a2~&2)

25. ^^!±±I^. An..^J!Z:^,

Art. 120. Exercises in Division (see Art. 72), in which the

quotient is a fraction, and capable of being reduced to lower

terms.

1. Divide 2a^x'^ hj 5a^x^b. Ans. —,
5b

2. Divide Ubc^x^ by 20acV. Ans. ^-!z

oax

3. Divide ax+x^ by 3Z;a:—ca?. Atzs. -^^.ob—c

4. Divide a^--b^ by a^^-ja. yl^^. ^'+^^+^' .
^

a+b

5. Divide a3__j3 by (a—6)2. Ans. ^'+«^+^',
a—6

6. Divide 7i^—2n^ by n^—in-\-A. Ans,
^2

7. Divide dx^—dx^—6dx +135 by 3a:2—.2a?—21.

Ans, 3^^+6a:--45
^

3a;+7

CiSElI.— To EEDUCE A FRACTION TO AN ENTIRE OR MIXED

QUANTITY.

Art. 121, Since the numerator of the fraction may be re-

garded as a dividend, and the denominator the divisor, this ia

merely a case of division. Hence we have the following

Rule.— Divide the numerator by iJie denominator, for the entire part,

and if there be a remainder, place it over the denominator, for the

fractional part.

Note.— The fractional part should be reduced to its lowest terms.
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1. Reduce
^

"* - ~-' to an entire or mixed quantity.
a 2—ax

o?—ax OL^—OLX a—x

Reduce the following fractions to entire or mixed quantities.

r^ ax—x^ A x^

4.«J±?i'. Ans.a+1^^.
a—h a—b

5. i±??. >l«s.l+5x+l^.1—3a; 1—3a;

6. ^!+^'. Ans. cc+^^Ji.
x^—hx X—h

^a£-a^-x^^ >lws.x-l.
ax—a a

a;2^1 x-\-\

Case III.— To reduce a mixed quantity to the form of a

FRACTION.

Art. 122. Let it be required to reduce a-\-- to the form of a

fraction.

(1 ft ft N^ (^ tl(*

It is evident that a is the same as _, and _= ^ = — Art. 118.
1 1 IXc c

Hence, a+^=l^+^=^^
c c c c

Similarly, a—-=. . Hence we have the following
c c

Rule.— Multiply the entire part by the denominator of the fraction ;

then add the numerator to the product, and place the result over the

de7iominator.

Before proceeding to the application of this rule, it is necessary
for the learner to consider

THE SIGNS OF FRACTIONS.

Art. 123. Each of the several terms of the numerator and

denominator of a fraction, is preceded by the sign plus or minus,

expressed or understood, and the fraction taken as a whole, is also

preceded by the sign plus or minus, expressed or understood.
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Thus, \\\ the fraction — ,
the sign of a^, the first term of the

numerator, is plus ; of the second, Z>2, minus
; while the sign of

each term of the denominator is plus ; but the sign of the fraction,

taken as a whole, is minus. The pupil must always recollect,

that the signs of the several terms relate only to those terms to

which they are prefixed, while the sign placed before the fraction

relates to it as a whole.

Art. 124. It is often convenient to change the signs of the

numerator or denominator of a fraction, or of both. We will now
show the law regulating these changes.

By the rule for the signs, in Division (Art. 69), we have,

"^ =4"^ ; or, changing the signs of hoih terms, =-|-5.

But, if we change the sign of the numerator, we have =—h,

+a
And, changing the sign of the denominator, we have Jl_ =—l,—a

Hence, The signs of both terms of a fraction may he changed,
without altering its valice or changing its sign, as a whole ; but, if
the sign of either term be changed, the sign of the fraction will be

changed.

Hence, also. The signs of either term of a fraction may be changed,
without altering its valu£, if the sign of the fraction be changed at the

same time.

Thus, ?!z:f =-Z:^!±^ =-^!=^=-(-a-x)=a+a:.
a—X a—X —

a-\-x

And, a—lZ:^=a+II^_±? =a-
a—x —

a-\-x

EXAMPLES.
Reduce the following quantities to a fractional form.

1. aJr=^+—~ Am. ?!±1^'.
X X

a-\-x a-\-x

8. 2<^-x+^^Z:^l Alis.?L.
X X

4
0^ . ab

. a— -—7. Ans. Jz- .

a-\-o a-{-b

5. a:+y-l- J!_. Ans. ——
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6. a-x-«-l±l'. Ans.-^.
a-{-x a-{-x

7. a^-\-ax^4- Ans.
a?—x'^ a?-\-x^

Case IV.— To reduce fractions of different denominators

TO EQUIVALENT FRACTIONS HAVING A COMMON DENOMINATOR.

Art. 125. 1. Let it be required to reduce ~, _, and ?., to a

common denominator.
m. n r

It is evident that we may multiply both terms of each fraction

by the same quantity, since this (Art. 118) will not change its

value. Now, if we multiply both terms of each fraction by the

denominators of the other two fractions, the new denominators

of each will be the same, since, in each case, they will consist of

the product of the same factors ; that is, of all the denominators.

Thus,
« X^Xr^^r
my^ny.r mnr
h X^X^ ^r
my^my^r mnr

cX'mXn__cmn
ry^my^n mnr

It is evident that the value of each fraction is not changed,
and that they have the same denominator. Hence, we have the

following

Rule for reducing fractions to a common denominator. —
Multiply both terms of each fraction by the product of all the

denominators, except its ovm.

Remark.— Since each denominator of the new fractions will consist

of the product of all the denominators of the given fractions, it is

unnecessary to perform the multiplication more than once.

EXAMPLES.
Reduce the fractions in each of the following examples, to

others having a common denominator.

Ans.yi, ^, 5^y _
xyz xyz xyz

Ans. —. and _.

2.
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Atit. 126, It frequently happens, that the denominators of the

fractions to be reduced, contain a common factor. In such cases

the preceding rule does not give the least common denominator.

1. Let it be required to reduce — ,
— ,and_, to their least

common denominator.
^ ^^ ^^

Since both terms of a fraction may be multiplied by the same

quantity without altering its value, the first fraction may have any
denominator that is a multiple of m ; the second, any denomina-

tor that is a multiple of mn ; and the third, any denominator

that is a multiple of nr. Hence, any common denominator of the

three fractions must be a multiple of m, mrii and nr, and their

least common denominator must be the least common multiple of

the three given denominators.

The least common multiple of the three denominators is easily

found (Art. 112) to be mnr. It now remains to reduce each frac-

tion to another whose denominator shall be mnr.

a
The first fraction is

--
; in order to change this to another,

whose denominator shall be mnr, we must multiply both terms by
the same quantity, and by such a quantity that when multiplied

by m the product shall be mnr. But this multiplier will evidently

be obtained by dividing mnr by m ; that is, by dividing the least

common multiple of the given denominators, by the denominator.

of the first fraction. It is evident that the other fractions may be

reduced in the same manner ; the operation is as follows :

J a y,nr anr
mnr-i-m^nr, and = .

m y^nr mnr

mny^r mnr

mnr^nr=m, and -£. ^^= —,
nr y^m mnr

The process of multiplying the denominators by the quotients

may be omitted, since the product in each case will be equal to

the least common multiple. This gives the following

Rule for reducing fractions of different denominators to

equivalent fractions having the least common denomina-

TOR.— 1 . Find the least common multiple of all the denominators;
this will he the common denominator.

2. Divide the least common multiple hy thefirst of the given denomi-

nators, and multiply the quotient hy the first of the given numerators;

iheprodu/:t will he the first of tJie required numerators.

3. Proceed, in a similar manner, to find each of the other numerators.
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Note.— Before commencing the operation, each fraction must be in

its lowest terms.

EXAMPLES.
Reduce the fractions, in each of the following examples, to

equivalent fractions having the least common denominator.

6ocy Sx 2y' Qxy Qxy Qxy

3 >_?_ JL ^
Arts ^^-~^) y(^+<^) g

•

a-\-h' a—h' a^—b'^'
'

a^-—h^
'

a^-^b^
'

a^^b^'

M m—n m-\-n mV a (m—ny (m-f-n)^ mV
m-\-n m—n rn?—w^* ^—^2 ^1—^^2 ^1—j^r

Other exercises will be found in the Addition of Fractions.

Note.— The two following articles depend on the principles explained
in the preceding article, and are therefore introduced here. They will

both be found of frequent use, especially in completing the square in

the solution of equations of the second degree.

Art. 127. To reduce an entire quantity to the form of a

fraction having a given denominator.

Rule. — Multiply the entire quantity by the given denominator, and

vyrite tJie product over it.

EXAMPLE S.

1. Reduce a? to a fraction whose denominator is a, Ans, —.

2. Reduce 2az to a fraction whose denominator is z^.
^

Ans. . .

22
•

3. Reduce a:+y to a fraction whose denominator is x—y.

Ans. ^2izt

4. Reduce m—n to a fraction whose denominator is a(m—ny.

Ans. "(."'-^y

a(m—ny
Art. 12s. To convert a fraction to an equivalent one, having

a given denominator.

Rule.— Divide the given denominator by the denominator of the

given fraction, and multiply both terms by the quotient.

Remark.— This rule is perfectly general, but it is never applied except
when the required denominator is a multiple of the given one. In

other cases it would produce a complex fraction. Thus, if it were

required to reduce § to an equivalent fraction with a denominator 5, the

numerator of the new fraction would be 3J.
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EXAMPLES.

1 . Convert f to an equivalent fraction, having for its denomi-

nator, 49. Ans.
|-i.

2. Convert - and _ to equivalent fractions having the denomi-

.02^^ A 3ac2 45c
nator 9c^. Ans. ,

—
9c2 9c2-

3. Convert —L- and -iZl to equivalent fractions having the

denominator a^—b^, Ans. o
^2

'

^2 ^72
•

Case V.— Addition and subtraction of fractions.

Art. 129. It is self-evident that two algebraic fractions, like

two arithmetical fractions, must have a common denominator^,

before we can find either their sum or their difference.

1. Let it be required to find the value of ?, -, and _.
7 d d d

Let -=m, _=w, and _=r.
d d d

Then a=mdf b=nd, and c=rd ;

and a-\-b-{-c=md'-\'nd-\-rd ;

or, a-\-b-\-c=(m-{-n-\-r)d ;

hence ^IIlJX?=m+w+r.
d

This gives the following

Rule for the addition of fractions.— Reduce the fractions , if

necessaryf to a common denominator ; add tlie numerators together^

and place their sum over the common denominator.

Art. 130. 2. Let it be required to subtract _ from ?.

a b
d d

Let _=7n, and -=n.
d d

Then a=md, and b=nd ;

and a—b=md—nd, =-{m—n)d ;

1 a—b
hence =m—71.

d

This gives the following

Rule for the subtraction of fractions.— Reduce the fractions,

if necessary, to a common denominator ; then subtract the numtra^

tor of the fraction to be subtracted from the numerator of the other%

and place the remainder over the common denominator.
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EXAMPLES IN ADDITION OF FRACTIONS.

1. Add - and — together.

2. Add - and - together.
b a

3 . Add and together.
l-\-x 1—^0?

Find the value

4. Of^l+^

5. Of-i-^ + - ^+^
s(i—xys(i+x+x^y

6. Of--U?t-^
d~d{c+dxy

7. OfZ+i.+I
ab ac be

8. Of^

9. Of.

X x-^-l X—S'

1 1
10. Of -r^ -^

4(l+x)^4:(l^x)^2(l+x^y

ii.Of?=?+^-i:^_i.?=!'.
pq

^

pr
^

qr
2 2a 3flf—2ar

12. Of

13. Of

14. Of

4b

ab

Ans,
1—0:2

X'

Ans.
1—a:3*

Ans.'tt^
c-\-dx'

abc

4a;2-~3a;—3
Ans,

a;3—2a:2—3a;'

Ans. '.

a;2+i/2

Ans,

Ans,

x+a'^(x+ay'^x^—'2ax-fSa^'

! + 1—+ L..
.

^ —^

1-sc^*

An5. 0.

18a3

x'^Ji-Aa^x+'Sa^'

1

Ans.
abc

EXAMPLES IN SUBTRACTION OF FRACTIONS.

In the first ten examples the second fraction is to be subtracted

from the first.

1. ^and^
7a 7'

2. J_ and Jl-.
a—b a-^-b

3.-P+?and^=?
p^q p+q

Ans.^^^Z:^
la

'

2b
Ans,

Ans,

a^-^b^'

^2
—

q2'
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4. and . Ans.
.

n n—1
*

n^—n

r 1 J 2 4 a;—1 1
5. and Ans.

6. 1 and 1
. Ans. .

7. I and
(a;+l)(a:+2) (a;+l)(a:+2)(a;+3)-

Ans.
(a;+l)(x+2)(x+3)-

8. ? and (ft:^. Ans. ?dt^.
c c(c-\-dx) c-\-dx

g
1 3m+2yt ^^^

1 3m~27i ^^ ^mri
'

2'3m—27i 2'37w+2?i'

*

dm^-An^'

10. ^+" and —±tl—. Ans. ^+^
(a—i)(a;

—
a) (a

—
6)(a;
—

ft) (x
—

fl)(a;
—

Zj)*

Find the value

11. Of 477i--37^_ m+37i 271
^^^^ _^

3(1—71) 3(1—7lV 1—» 1—71*

12. Of ^_?=:? . ^_r?. A7Z5. 0.
ab ac "^

6c

13. Of _i I—i -^^^ Atw.
^

2a;+y^2a;—y Ax^-^y^ A.x'^—y'^'

14. Of Hi?__iL_^_!z:?!F. A7Z5. 1 .

y x-\-y x'^y—y^

15. Of J__l___^-L.. A715. .d::?^
a;~l 2(a;+l) 2(a;2+l)' a:^—1*

16. Of -ij_l_i+^=l i_. Ans. ^'+^+V

Case VI.—Multiplication of fractions.

Art. 131. 1. Let it be required to find the product of ? by £
b d'

Let -=.m. and i=7^.
h d

Then a=:bmj and c=dn

,
•

. €ic=bmdny=bdyimn; or, dividing by Jf?, —=mn.
bd

Hence, to find the product of two or more fractions, we have

the following

Rule.—Multiply the numerators together for a new numerator ^
and

the denominators together for a new denominator.
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Remarks.—1st. This rule is general, and embraces all the cases in

which a fraction is a factor. Thus, if it be required to multiply a frac-

tion by an integral quantity, the latter may be placed under the form of

a fraction, by writing unity beneath it.

2d. If either of the factors is a mixed quantity, it is best to reduce it

to an improper fraction, before commencing the operation.

3d. When the numerators and denominators have common factors,

the process may be abbreviated by indicating the operation, and then

canceling the factors common to both terms.

Thus
2a^

{a+hy^a^Xia+hXa+h) _ a+h

E XAMPLE S.

Find the products of the fractions in each of the following

exercises, expressed in their simplest forms.

1. ^ by if and ^^ by ^ Ans, ?\nd^A^

2. 1^, '^-y' An. Mcoc-y)
cy Qx'^-\-Qxy

<
^c{x-\-y)

^ x^ a
,
X . a^—X'

3. a J >+-. Ans. -—-

6

a X a

4. 1-5=1^ and 2+^. An.. .^J^
x-\-y X—y x^—

2/2

5. l±?±^\nd Iz:? Ans.lz:^
l—h+h'^ 1+6* l-\-h^

a^—a^x-{-ax^
—x^ a-\-x

'

a^—x*

^^ a;2_9a'+20 ^^^ x^-lSx+^2
^

^^^^ a:2~lla:+28
x^—6 a; x^-^-^x

'

x^

8. '^'^+^^+^ and ^^+^^-H Ans. ^^
a;2+2x+l a;24-7a;+12* a?+3

q 4:ax a^—x^ hc-\-bx a 4x(a-^x)

2by c^—x^ a?—ax' 83/(0
—

x)

10. ?i^, "1=1, -^— An,. ?!(^dl)
x-\-y a—h {x—y^ x—

ij

1 1 . x'>-^x-\-\ by -—+1 . Ans, a;2+l+i

12. a:4-l+- by a;—1+-. Ans. 0:2+14. A
'a: X ' '

a:2

13. l?+?5 by ?^?? Ans. ?^+2+?^
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X4. pr+{pq-\-qr)x-\-q'x^
^^

ps+jpt-^syie-^tx
^

p--qx p+qx

Find the value

\a hi c^\a c Jh^\b c la

An

"•°'(l+n(s+^)-(?4)(s-;)

b \ a c /

-^^ 2bc.2ad
Ans, -f-^.ad be

Case VII.—Division of fractions.

Art. 132. i: Let it be required to find the quotient of - by -
,

a

Let -=m, and j==7j. Then,Da
a=bm, and c=:dn.

Multiplying both terms of the first equality by d, and of the

second by 6, we find

ad=bdmj and bc=bd7i,

therefore ^J^J^.
be bdn n '

.1 . . m a d

Hence, to find the quotient of one fraction divided by another,

we have the following

Rule.—Invert the divisor, and proceed as in multiplication of

fractions.

Remark.— This rule is general, and embraces not only all the cases

in which either divisor or dividend is a fraction, but is also applicablo
when both are integral quantities, since any integral quantity may bo

placed under the form of a fraction, by writing unity beneath it.

Thusa~6=^xi=-16 b'

Remarks 2 and 3, Art. 131, apply equally well to division as to multipli-

cation of fractions.

E XAMPLES.

Required, in their simplest forms, the quotients

1. Of?^^?!^ Aru.'X

2, Of ?+*^?=:!'. A»*.f!=*!.
a+c

'

a—b a'—c*
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3 Of
^'-°'^

•

'^^°'. Ans.t±^,

4.0f(n-l)-^(l-l). A«.._^.

5. Of ^!±y!^^'-^+y'. Am. 1.
a;2—^2

•

ar*—^

6. Of
"'-^'

^a;g+x'_ ^^, tt^Ca^+ax+o;^).
a^—2ax-\'X^

*

a^—x^

rr.of iJ-+^)^(-l ^). Ans.i.

9. Of ( ?+y+^^-y ) ^ ( ?±y_5r2( ) Am.
\ X—y X'\-y / V X—y x-\-y f •

2xy
'

10. Of '-

. Ans. _
2a?—2 x—1 4

a:-~l

a;—5*
11. Of (x+^)^(x-'^), Ans.

\ a:—3 / \ a;—3 /

12 Of 4g(g'—a;2) ^
a^^aa; ^ ^^ 4(fl+a:)

32,(c2-.a?2)
•

Z>c+Z^a;'

*

3(c—a;)'

13.0f(.^_^)-^(a:-l). Ans.x'+l^+x+l.

Art. 133. To reduce a complex fraction to a simple one.

This is merely a case of division, in which the dividend and
divisor are either fractions or mixed quantities.

Thus — is the same as to divide a4— by m .

m—-
r

(a-li
^ -i- / m—? \ _^ctC'^h_^

mr—n__ac+hy r acr-{-br

c / \ r I c
'

r c mr—n cmr—en'

Let the following examples be solved in the same manner.
3a:

Ans. _1.
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3. ~rz -i-r ^^- ^
^1 ^"^ 2a

• %
a—1 a+l

4. ^ An.. I.

Ans,

ARt. 134. Resolution of fractions into series.

Def.—An infinite series consists of an unlimited number of

terms which observe the same law.

The law of a series is a relation existing between its terms,

80 that, when some of them are known, the succeeding terms

may be easily obtained.

Thus, in the infinite series 1—- 4-- -+&c., any term may

be found by multiplying the preceding term by— ,

X

Any proper algebraic fraction, whose denominator is a polyno-

mial, may, by division, be resolved into an infinite series ; for the

numerator is a dividend, and the denominator a divisor, so related

to each other that the division can never terminate, and the quo-
tient will therefore be an infinite series. After finding a few

terms of the series, the law of continuation is, in general, easily

seen, and the succeeding terms may be found without continuing

the division.

EXAMPLES.
1 T

1. Convert the fraction into an infinite series.

1—^a:|l+a?

1+^ 1—2j:+2a;2—2*3+ &c. It is evident that the law of

—2x this series is, that each term,—2x—2j;^ after the second, is equal to

-{-2a;* the preceding term, multi-

+2x^+2x^ plied by —a;.

—2«»
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In a similar manner, let the fractions in each of the following

examples be resolved into an infinite series.

# 2. -JL_=l—r2-j-r<—r«+r8—&c., to infinity.

'

1—r-{'r^

4. _i =1—r-f-H—r<+r8—r7+r»—f10+ Slc.

a-j-6 a '

a^ a'

MISCELLANEOUS PROPOSITIONS IN FRACTIONS.

Of the forms 9, ^, and 9.
.^ &

When the two terms of a fraction ? are finite determinate
b

quantities, the fraction has necessarily a finite determinate value,

which is, the quotient of a divided by b.

Let us now examine the cases where the numerator or denom-

inator, or both, reduce to zero.

Art. 135. To prove that -=0.
b

While the denominator J is a constant number, if the numera-

tor a diminishes, the value of the fraction diminishes. Thus, in

the fi-actions
J-, |, |,

and i, each is less than the preceding.

Hence, as the numerator a diminishes, and approaches to zero,

the value of ^ diminishes and approaches to zero; and finally,
b

when a=0, the expression - reduces to zero.

Or thus: Since the product of zero, by any number, is zero,

therefore the quotient of zero, divided by any number, is zero.

That is, since Ox2>=0, therefore -=0 .

b

Art. 136. T^o prove that -=qo.

If the numerator a, of a fraction, remains constant, and the

denominator diminishes, the value of the fraction increases.

Thus : 1st. Suppose the denominator 1; then ?=:a.
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2nd. Suppose the denominator — ; then ^=10a.

3rd. Suppose the denominator ; then .—=100 a.

4th. Suppose the denominator ; then --^=1000a.

From this it is evident, that if the denominator is less than

any assignable quantity, that is 0, the value of the fraction is

greater than any assignable quantity, that is infinitely great, or

infinity. This is designated by the sign oo ; that is

a

0=*-

Art. 137. To prove that - is indeterminate in value.

When both numerator and denominator are zero, the fraction

- becomes _. Now since the divisor zero, multiplied by any

number whatever, produces the dividend zero; therefore the quotient

of zero, divided by zero, may be taken any number whatever; that

is, the fraction _ is indeterminate.

It is important, however, for the pupil to know, that the form

-. is often the result of a particular supposition, when both terms

of a fraction contain a common factor.

«2 J2 fl2 ^2 Q
. Thus, if x= , and we make 2>=«,it becomes =- ;

a—b a—a

but if we cancel the common factor, a—h, and then make b=a,

we have a?=2a.

Similarly, the fraction x= ^ . ^ becomes - when a=l ; but
a^-{-a

—2 Q

if we divide both terms by their common factor, a—1 , we have

a:=^^i^, which reduces to - when a=l.
a+2 3

These examples show, that if the value of any quantity is _ i

before we decide that it is really indeterminate, we must see that

the apparent indetermination has not arisen from the existence

of a factor, which, by a particular supposition, became equal to

zero.
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Art. 138, Theorem.— If the same quantity he added to both

terms of a proper fraction, the new fraction resulting will be greater

than thefirst; but if the same quantity be added to both terms of an

improper fraction, the new fraction resulting will be less than thefirst.

Let f be a proper fraction, a being less than b,

b

Let m represent the quantity to be added to each term, then

the resulting fraction is ^"'^
^

b-{-m'

To determine which of the fractions, f and
^

' ^, is the great-
h b-\-m,

er, we must reduce them to a common denominator;

this gives ?=?H:f?,

and a+^_g&+^
Z>+m P-{-bm

'

Since the denominators are the same, that fraction is the

greatest which has the greatest numerator.

When ? is a proper fraction, a is less than b;
b

therefore am is less than bm,

and ab-]~am<jib-\-bm;
that is, the resulting fraction is greater than the first.

But if - is an improper fraction, it is evident that
b

ab-}-am'^ab-\-bm ;

that is, the resulting fraction is less than the first.

Art. 139. Theorem.— If the same quantity be subtracted from
both terms of a proper fraction, the new fraction resulting will be less

than the first; but if the same quantity be subtracted from both terms

of an improper fraction, the new fraction resulting will be greater

than thefirst.

Let - be a proper fraction, a being less than b. Let m repre-
h

sent the quantity to be subtracted from each term, then the re-

sulting fraction is
^

. To determine which fraction is the
b—m

greater, we reduce them to a common denominator, and compare
their numerators: ,^1 . . a ab—am

this gives _ =z ,

b b^—bm
ah—bm

b—m 6 2—bm
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If a<^y then am<^bm; and if arrKChniy then

uh—aTTi^ah
—hm

;

that is, the resulting fraction is less than the first.

But if a^hy then arn^hm\ and if arn^lm, then

ah—am<^ab-^-^m ;

that is, the resulting fraction is greater than the first.

MISCELLANEOUS EXERCISES IN FRACTIONS.

X jg—3 X x+S_ 18
1. Prove that

X—3 X a;4-3 x x^—9'

2. Prove that a^+^+l ^ ^^+^+1 . c^+c+l .^i,

3. Find the value of ( x-\-^ \ ^ ( x-^—- ) ,whena:==5^

Ans, 9.

4 . Find the value of f _|2a>~B_3a:--.l|^^ ^ ^hen a:=4 1
.

Ans. 2§

5. Find the value of ax-\-ht/, when x=SSZlI. and y=^^ ^.
a^
—

Z>p a^
—

6p'

il7i5. c.

6. Find the value of -+^-U^+^^, when a?=— . Aw5. 2.
x--2a^x^2b a+b

7. Find the value of ?^!
1

^
, when a:=^!±^.

2na"—2nx '

2?i6«—2?zx 2

71*

8. Prove that the sum or difference of any two quantities divi-

ded by their product, is equal to the sum or difference of their

reciprocals.

9. If two fractions are together equal to 1, prove that their

difference is the same as the difference of their squares.

10. If the difference of two fractions is equal to ?, show that

9

f times their sum is equal to q times the difiference of their

fiquares.

11. Prove that -'+^' + ''+^'
H

''+'' =1:

that when the terms are multiplied respectively by b-{-Cy a~\-c, and

fl-J-i, the sum =0 : and that when multiplied respectively by be,

acy and ahy it is -^K^,
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CHAPTER IV.

EQUATIONS OF THE FIRST DEGREE.

DEFINITIONS AND ELEMENTARY PRINCIPLES.

Art. 140. An equation is an algebraic expression, stating

the equality between two quantities. Thus
a?—5=3,

is an equation stating that if 5 be subtracted from x, the remain-

der will be 3.

Art. 141. Every equation is composed oflwo parts, separated
from each other by the sign of equality. The quantity on the

left of the sign of equality, is called the Jirst member or side of

the equation. The quantity on the right, is called the second

member or side. The members or quantities are composed of one

or more terms.

Art. 142. There are generally two classes of quantities in

an equation, the known and the unknown. The known quantities

are represented either by numbers, or the first letters of the

alphabet, as a, b, c, &c. ; and the unknown quantities by the last

letters of the alphabet, as ss, y, «, ^.

Art. 143. Equations are divided into degrees, called firsts

second, third, and so on. The degree of an equation depends on

the highest power of the unknown quantity which it contains.

Thus, an equation which contains no power of the unknown

quantity higher than the first, is termed an equation of the first

degree, or a simple equation.

An equation in which the highest power of the unknown

quantity is of the second degree, is called an equation of the secona

degree, or a quadratic equation.

Similarly, we have equations of the third degree, fourth degree,
and so on; those of the third degree are generally called cu^i^.

equations, and those of the fourth degree, biquadratic equations.

Thus,
ax—b=c, is an equation of the 1st degree.

x'^-\-2px=q,
" " " 2d " or quadratic equation.

x^—•px=^q,
" " "3d " or cubic equation.

x^-\-a3^-\-'px=q,
" " 4 th " or biquadratic eq.

3it^'\-ax''-'^-\-bx^-^=^c,
" nth degree.
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When any equation contains more than one unknown quantity,
its degree is equal to the greatest sum of the exponents of the

unknown quantity, in any of its terms. Thus,

xy-^ax
—
hy=c, is an equation of the 2nd degree.

x^y'\'X^
—cx:=a, is an equation of the 3rd degree.

Aet. 144. An equation of any degree is said to be complete,

when it contains all the powers of the unknown quantity, from

up to the given degree. When one or more terms are wanting,
the equation is said to be incomplete.

Thus, x^-{-px-{-q=0 , is a complete equation of the second

degree, the term q being equivalent to qx^, since x°=l . (Art. 82.)

x^-}-px^^qx-{'r=0 , is a complete equation of the third degree.

ax^=q, is an incomplete equation of the second degree.

ci^-\-px=qf is an incomplete equation of the third degree.

Art. 145* An identical equation, is one in which the twe

members are identical; or, one in which one of the members is

the result of the operations indicated in the other.

Thus, ax—b=ax—6,

8 a:—3a;=5ar,

(a;+3)(a:
—3)=x^—9, are identical equations.

Equations are also distinguished as numerical and literal.

A nwmerical equation is one in which all the known quantities

are expressed by numbers.

Thus 2a72-|-3a:=10a:-|-15, is a numerical equation.

A literal equation is one in which the known quantities are

represented by letters, or by letters and numbers.

Thus, ax-\-b-=cx-\-d,

and ax-\-b=.Zx—5, are literal equations.

Art. 146. Every equation may be regarded as the statement,

in algebraic language, of a particular question.

Thus, X—5=9, may be regarded as the statement of the fol-

lowing question:
—To find a number from which, if 5 be sub-

tracted, the remainder shall be 9.

If we add 5 to each member, we shall have

a:—54.5=9+5, or a;=14.

To solve an equation, is tofind the value of the unknown quantity;

or, to find a number or expression, which, being substituted for

the unknown quantity, will render the two members identical.

Remark.— The solution of equations is the most useful and interest-

ing part of algebra.

An equation is said to be verified, when the value of the

unknown quantity being substituted for it, the two members are

rendered equal to each other.
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Thus, in the equation a:—5=9, if 14, the value of a?, be sub-

Btituted instead of it, we have

14—5=9;
or, 9=9.

Art. 14'7. The value of the unknown quantity, in any equa-

tion, is called the root of that equation.

EaUATIONS OF THE FIRST DEGREE, CONTAINING BUT ONE

UNKNOW^N aUANTITY.

Art. 14§. The operations employed to find the value of the

unknown quantity in any equation, are founded on this evident

principle:

If we perform the same operatwn on two equal quantities, the re-

sults will he equal.

This principle or axiom may be otherwise stated, as follows :

1 . If, to two equal quantities, the same quantity he added, the sums

will he equal
2. If from two equal quantities, the same quantity he subtracted,

the remainders will he equal,

3 . If two equal quantities he multiplied hy the same quantity, the

products will he equal.

4. If two equal quamtiiies he divided hy the same quantity, the

quotients will he equal.

5. If two equal quantities he raised to the same power, the results

will he equal.

6 . If the same root of two equal quantities he extracted, the results

will he equal.

Remark.— An axiom is a self-evident truth. The preceding axioms

are the foundation of a large part of the reasoning in mathematics.

Art. 149. There are two operations of frequent use in the

solution of equations. These are, first, to clear an equation of

fractions; and second, to transpose the terms in order to find the

value of the unknmvn quantity.
These are named in the order in which they are used in the

solution of an equation; we shall, however, 'first consider the

subject of

TRANSPOSITION.

Art, 1.50. Suppose we have the equation

ax-\-h=c—dx.

Since, by the preceding principle, the equality will not be

affected by adding the same quantity to both members ; or, by
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subtracting the same quantity from both members ; if we add dx

to each side, we have

ax-\-h-\-dx=c
—

dx-\-dx.

If we subtract b from each member, we have

ax-\-h
—h-{-dx=c—dx-{~djc

—b.

But -\-b
—b cancel each other, so do —dx-\-dx; omitting these,

we have ax-\-dx=c—b.

But this result is the same as if we had removed the terms ~\-b

and —dx to the opposite members of the equation, and at the

fiame time changed their signs. Hence,

Any quantity may be transposed from OTie side of an equation to

the other, if, at the same time, its sign be changed.

This is termed the Rule of Transposition.

TO CLEAR AN EQUATION OF FRACTIONS.

Art. 151. 1. Let it be required to clear the following equa-
tion of fractions.

X X ,

db be

Since the first term is divided by ab, if we multiply it by aJ, the

divisor will be removed; but if we multiply the first term by ab,

we must multiply all the other terms by ab, in order to preserve
the equality of the members. Again, since the second term is

divided by be, if we multiply it by be, the divisor will be removed;
but if we multiply the second term by be, we must multiply all

the other terms by be, in order to preserve the equality of the

members. Hence, if we multiply all the terms on both sides by
abxbc, the equation will be cleared of fractions.

Instead, however, of multiplying every term by abyjjc, it is

evident, that if each term be multiplied by such a quantity as

will contain the denominators without a remainder, that all the

denominators will be removed. This quantity is evidently the

least common multiple of the denominators, which, in this case, is

abc] then, multiplying both sides of the equation by dbc, we
have

ex—ax=abcd.

From which w^e derive the following

Rule for clearing an equation of fractions.—Find the least

common multiple of all the denominators, and multiply each term of
the equation by it.
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EXAMPLES FOR PRACTICE,

In clearing equations of fractions.

2. -—-==1. Atw. 4a;—3a:=12.
3 4

3. f+5=5. Arts. 3a?+2a:==60.4^6 ^

4. f-.f+-^==3l. Arts, 6a;--3a;+2a:=84.
4 8^12 * ^

5. 2ar+^=?±?. ^rw. 20a:+2a?—6=5a;+45.

6. 2a>-?:;:?=^. Ans. 20aH-2a;+6=5a>-.15.
5 2

7.
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By dividing each side by a, we have

4. Let it be required to find the value of a?, in the equation

a

where the unknown quantity is connected by division*

By multiplying each side by a, we have

From the solution of these examples, we see that

When the unknoim quantity is connected by addition, it is to be

separated by subtraction. When it is connected by subtraction, it is

to be separated by addition. When it is connected by multiplication,

it is to be separated by division. And, when it is connected by divi-

non, it is to be separated by multiplication.

5. Let it be required to find the value of x, in the equation

Clearing the equation of fractions, we have

21a:—(24—2a;)=7a;+56,
or 21a:—24+2a;=7a;+56.

Transposing the terms 7x and —^24, we have

21a;+2x—7a:=56+24 ;

reducing, 16a:=80;

dividing by 16, a:=fg=5.

It will be readily seen that this solution consists of three

steps, viz. :

1st. Clearing the equation of fractions.

2nd. Transposition.

3rd. Reducing like terms, and dividing by the coefficient of x.

Let this value of x be substituted instead of x in the original

equation, and, if it is the true value, the two members will be

equal to each other.

24 2a:
Original equation, 3a:— =a:-l-8.

Substituting 5 in place of x, it becomes

3x5-?i::^=5+8,
^

or 15—2=5+8,
or 13=13.
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The operation of substituting the value of the unknown quan-

tity instead of itself, in the original equation, to see if it will

render the two members equal to each other, is called verification,

6* Find the value of a;, in the equation

db be

1st step . . . abcx—ex—ac=abcd-}-ax,
2nd step . . . obex—ex—ax=^abed-\-ac.

Factoring . . . (abe—c—a)x=ae{bd-]-l),

Srdstep ^ac(M+l)
_

Art. 153. From the solution of the precedi^ig examples, we
derive the following

Rule for the solution of an equation of the f^rst degree.—
1 . If neeessary, elear the equation of fractions; and perform all the

operations indicated,

2 . Transpose all the terms containing the unkn^own quantity to one

side, and the known quantities to the other,

3. Reduce each member to its simplest formj and divide hnth sides by
the coefficient of the unkTWwn quantity.

Remark.— This rule gives the method of proceeding most generally

advantageous, but in some cases it is best to perform the operations

indicated, and transpose the necessary terms, before clearing of fractions.

Experience can alone determine the best method in particular cases.

EXAMPLES FOR PRACTICE.
Note.— Let the pupil verify the value of the unknown qup'»tity in

each example.

Find the value of the unknown quantity in each of the foUow--

ing examples.

*

14 21
"^ 4 ~4"'

Utstep . . . 18a:+42—807+28+231=2 la:--84;
2nd 5^^ . . . 18a;—8a;—21ar=—231—42—28--84;
Zrd step . . .

—lla;=—385,
a;=35.

Verification. 3x35+7 2x35-7 ,^35-4
14 21

^ * 4

8~3+23=7|,
'7|='7|.

8. 6(a;+l)—2==3(a;+5). Ans, x=Q,
9. 3(a;-2)+4=4(3-a;). Ans, x^2.
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10. 5—3(4—a;)+4(3—2a:)=0. Arts. x=l .

11. 3(a;—3)—2(0?—2)+a;—l=a;+3+2(a:+2)+3(a;-J-l).
Ans» 07==:—4.

12. 5(5a:—6)—4(4a>-5)+3(3a>-2)—2a>~16=0.
Ans. x=2,

13.
1+1=1+7 Am. ^=12.

14.
|+|-J+|=7|.

Ans. 0^10,

15. 1+-1_1.==^. Ans. a:=J.
a:^2a: 3a?

^ ^

2 3 ^6
,«- a:—^7i 3a;—9

,
27—5a? . „ ^

IT^. ~^=_^-+-^^. An.. a:=7/^.

18. 5aj—?^+l=3x+^+7. An.. a:=8.

Trt 3a:—1
,
6—x 2x—4 o «+2 . k

-g 7 4 14-.
Ans. a;_9.

21. i(2x—10)—t\(3x-40)=15—J(57-a:). Am*. a=17,

22. K^s)—s(|-^)=liS- Ans. X=::il.

23. iC4+|a:)-4(2a>-i)=i|. Am. x=l
24.

^(2a;+4)-Ik::f=| {?-l )
Ans. ^3.

25.
3|x{28- (1+24 ) 1=31 x{2|+|j..

Ans. x=i.

^^'
^-l { ^-£ ) =i ( ^-¥ ) +^i^-

^"* "=^-i-

Ans. x=ll,

28. 5a:+2a:—a=3a;—2c Ans. x==^—^

29. a^x+¥=b^x+aK Ans. .t^^'+^^+^'
,

a+6
30. flx+ft^zrraa+Jar. ^^^5. a:=a+&.

81. L^^^=^_^. Ans. x=^.
a c d be
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32. ^—1=^2—R Ans. a;=l.
hx ax CLO

33. <^^.^^ Atw. :^^(3a-.6).
a;—b a:+2c 26

34. ?-l-^+3«i=0. An*. «=f<i=3^,

35.

a c c—a(^

^+ff=qx+y(fh-cx).
Ans,

h V ' ^ ^ •

/"•' af+2bc—bfg

36. -^=3+-i^ ^ns. a:=2a—5&+?^,a—2& ^ 2a—6 a

87. |(a;—a)-~|(2a?—36)—^(a—af)=:10a+l 16.

Atw. a:=25a+246,

QQ 3a:—a^X'\-2h 7x a a 86^—4ac+a6c
""6

'

c T 4*
'

12(26—c.)

39.
ab—ax be—bx ac—ax'

Ans. ^*if=^±£;

dUESTIONS PRODUCING EQUATIONS OP THE FIRST DEGREE,
CONTAINING ONLY ONE UNKNOWN QUANTITY.

Art. 154. The solution of a problem by algebra, consists of

two distinct parts:

1st. To express ike conditions of the problem in algebraic Ian-

guage; that is, toform the equation,

2nd. To solve the equation; that is, to find the value of the un^

known quantity.

Sometimes the statement of the question proposed, furnishes

the equation directly; and sometimes it is necessary, from the

conditions given, to deduce others, from which to form the equa-
tion. When the conditions furnish the equation directly, they
are called explicit conditions. When the conditions are deduced

from those given in the question, they are called implied conditions.

It is impossible to give a precise rule by means of which every

question may be readily stated in the form of an equation. The
first step is, to understand fully the nature of the question, so as

to be able to prove the correctness or incorrectness of any pro-

posed answer. After this, the equation, by the solution of which

the value of the unknown quantity is to be found, may generally
be formed by the following

Rule.— Denote the required quantity by one of the final letters of
the alphabet; then, by means of signs, indicate the same operations

thai it vxmld be necessary to make on the answer, to verify it.
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E X AM PL E S.

1. Find two numbers such, that their sum shall be 50, and

their difference 12.

Let X denote the least of the two required numbers.

Then will . . ir-|-12= the greater.

And a?-|-^+12=50, by the question.

Transposing, . a:-|-a;=50
—12.

Reducing, . . 2a:=38.

Dividing, . . . a:r=19, the less number;
And a:-|-l2=19+12=31, the greater number.

Verification. 31+19=50, and 31—19=12.

2. What number is that whose \ part exceeds its \ part by 6]

Let xz=. the required number.

Then will its | part be denoted by -
, and its J part, by ?

,

Therefore, . . . ?—?=6.
3 5

Clearing, . . . 5a:—3a:=90.

Reducing, . . . 2a:=:90.

Dividing, . . . a;=45, the number required.

Verification. \ of 45=15, \ of 45=9; 15—9=6.
3. Divide $500 among A, B, and C, so that B shall have $20

more than A, and C $75 more than A.

Let . . . a;=A's share,

Then . . a;+20=B's share,

And , . . a;+75=C's share.

Then a:+i+20+i+75=500, by the question.

Reducing, . . . 3a:+95=500.
Transposing, . . 3a;=500—95=405.

Dividing, .... a:=135, A's share.

a:+20=155, B's share.

a:+75=210, C's share.

Verification. 135+155+210=500.
4. Out of a cask of wine which had leaked away J, 35

gallons were drawn, and then, being guaged it was \ full;

how much did it hold]

Let a?= the number of gallons it held;

then ?= " " « leaked out.
5

There had been taken away ? +35 gallons,
5

8
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and there remained a:—
j

- -{-^d j gallons.

...^(1+35 )=|.
Clearing, .... 15a:—3a;—35xl5=5a7;

Transposing, . . 15a:—3a:—5a:=35Xl5;

Reducing, . . . 7a:=35xl5;
.-. a:=5xl5=75.

5. A laborer was engaged for 20 days. For each day that he

worked, he received 50 cents and his boarding; and for each day
that he was idle, he paid 25 cents for his boarding. At the expi-

ration of the time, he received $4; how many days did he workj.

and how many days was he idle ?

Let . . a:= the number of days he worked;

Then, . 20—a:= " « " " was idle.

Also, . 50a:= wages due for work.

And . 25(20—oc)=: the amount to be deducted for boarding.

... 50a:—25(20—a:)=400;
50a:—500+25a:=400;
75a:=400+500=900;
a:=12= the number of days he worked.

20—a:=8= " « " " " was idle.

Proof. 50x12=600 cents= wages;
25X 8=200 " = boarding.
Biff. =400 " or $4.

In solving this example, we reduce the $4 to cents, in order

that all the quantities on both sides of the equation, may be of

the same denomination, it being regarded as a self-evident prin-

ciple, that we can only compare quantities of the same name.

Hence, all the quantities in loth members of an equation, must he of
the same denomination,

6. What two numbers are as 3 to 5, to each of which, if 9 be

added, the sums shall be to each other as 6 to 7.

If we put X to represent the first number, the second will be

5a;—-. But we may avoid fractions by putting 3a: for the first num-
o

ber, and 5a: for the second, which fulfills the first condition.

Then, 3a:+9 : 5a:+9 : : 6 : 7.

But in every proportion, the^ product of the means is equal to

the product of the extremes. (Arith. Part 3rd, Art. 209.)
Hence, 6(5a:+9)=7(3a:+9).

30a:+54=21a:+63,
30a:—21a:=83—54,
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9a;=9,

.». 3aj=3, and 5a:=5.

The method of representing the quantities by dx and 5ar, so as

to avoid fractions, is of general application, and may be expressed

thus:— When two or more unknown quantities, in any problem , have

to each other a given ratio, it is best to assume each of them a mul-

tiple of some other unknmon quantity, so that they shall have to each

other the given ratio.

7. A courier who traveled at the rate of 31 J miles in 5 hours,

vi^as dispatched from a certain city; 8 hours after his departure,

another courier v^^as sent to overtake him. The second courier

traveled at the rate of 22| miles in 3 hours. In what time did

he overtake the first, and at what distance from the place of

departure]

Let x= the number of hours that the second courier travels.

Then, since the first courier travels at the rate of 31^ miles in 5

hours, that is, ^g miles in 1 hour, he will travel miles in x

hours, and since he started 8 hours before the second courier, the

whole distance traveled by him will be (S-l-a:)^-^.

Again, since the second courier travels at tlie rate of 22 J

miles in 3 hours, that is, -^- miles in 1 hour, he will travel -%^x

miles in x hours.

But the couriers are supposed to be together at the end of the

time X, and, therefore, the distance traveled by each must be the

same; hence

450a;=(8+a;)378;
.-. 7207=378 X8; divide each side by 8;

0a:=378;
a:=42.

Hence the second courier will overtake the first in 42 hours,

and the whole distance traveled by each is -g^-X42=315 miles.

8. A smuggler had a quantity of brandy, which he expected
would sell for 198 shillings; after he had sold 10 gallons, a

revenue officer seized one third of the remainder, in consequence
of which he sells the whole for only 162 shillings. Required ths

number of gallons he had, and the price per gallon.
Let x= the number of gallons;
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then _ is the price per gallon, in shillings;
X

? is the quantity seized, the value of which is

3

198—162=36 shillings.

... ^Zi^x—=36.
3 a;

(a:—10)66=36a?, by clearing of fractions;

66a;—660=36a;;
30a;=660;

... a;=22, the number of gallons;
1Q8

and -—-=J^?2^=9 shillings, the price per gallon.
X

9. There are three numbers whose sum is 133; the second is

twice the first, and the third twice the second. Required the

numbers. Ans, 19, 38, and 76.

10. There are three numbers whose sum is 187; the second is 3

times, and the third 4^ times, the first. Required the numbers.

A7is,^22, 66, and99.

11. There are two numbers, of which the first is 3^ times the

second, and their difference is 100. Required the numbers.

Ans. 40 and 140.

12. There are three numbers, whose sum is 156; the second

is 3 1 times the first, and the third is equal to the remainder left,

after subtracting the difference of the first and second from 100.

Required the numbers. Ans. 28, 98, and 30.

13. What number is that, whose half, third, and fourth part*?,

taken together, are equal to 52] Ans. 48.

14. What number is that, which being increased by its six-

sevenths, and diminished by 20, shall be equal to 451 Ans. 35.

15. What number is that, to which if its third and fourth parts

be added, the sum will exceed its sixth part by 51] Ans. 36.

16. Find a number which, being multiplied by 4, becomes as

much above 40 as it is now below it. Ans. 16.

17. What number is that, to which if 16 be added, 4 times

the sum will be equal to 10 times the number increased by 1]

Ans. 9.

18. The sum of two numbers is 30; and if the less be sub-

tracted from the greater, one-fourth of the remainder will be 3.

Required the numbers. Ans. 9 and 21.

19. A laborer was engaged for 28 days, upon the condition

that for every day he worked he was to receive 75 cents, and for
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every day he was abserit, to forfeit 25 cents. At the end of his

time he received $12. How many days did he work] Ans. 19.

20. A has three times as much money as B, but if B give A
$50, then A will have four times as much as B. Find the money
of each. Ans. A, $750; B, $250,

21. From a bag of money which contained a certain sura,

there was taken $20 more than its half; from the remainder,

$30 more than its third part; and from the remainder, $40 more
than its fourth part, and then there was nothing left. What sum
did it contain! Ans. $290.

22. A merchant gains the first year, 15 per cent, on his cap-

ital; the second year, 20 per cent, on the capital at the close of

the first; and the third year, 25 per cent, on the capital at the

close of the second; when he finds that he has cleared $1000.50.

Required his capital. Ans. $1380.

23. A is twice as old as B; 22 years ago, he was three times

as old. What is A's agel Ans. 88 .

24. A person buys 4 houses; for the second, he gives half as

much again as for the first; for the third, half as much again as

ior the second; and for the fourth, as much as for the first and

third together: he pays $8000 for them all. Required the cost

of each. Ans. $1000, $1500, $2250, and $3250.
25. A cistern is filled in 24 minutes by 3 pipes, the first of

which conveys 8 gallons more, and the second 7 gallons less,

than the third every 3 minutes. The cistern holds 1050 gal-

lons. How much flows through each pipe in a minute]

Ans. 17/g, 123^5, im.
26. A can do a piece of w^ork in three days, B in 6 days, and

C in 9 days. Find the time in which all together can perform it.

Let a;= the required number of days;

then - = part of the work performed by all in one day.
X

But A does \, B g, and C \, in one day.

l+l+\=\ Aft.. 1/^ days.

27. If A does a piece of work in 10 days, which A and B can

do together in 7 days; how long would B take to do it alone'?

Ans. 231 days.

28. A performs ^ of a piece of work in 4 days; he then re-

ceives the assistance of B, and the two together finish it in ^>

days. Required the time in which each can do it alone.

Ans. A, 14 days; B, 21 days.
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29. A person bought an equal number of sheep, cows, and

oxen, for $330; each sheep cost $3, each cow $12, and each ox

$18. Required the number of each. Arts. 10.

30. A sum of money is to be divided among five persons; A^

B, C, D, and E. B received $10 less than A^ C, $16 more than

B; D, $5 less than C; E, $15 more than D; and the shares of

the last two are equal to the sum of the shares of the othe;*

three. Required the share of each.

Ans, A, $21; B, $11; C, $27; D, $22; E, $37.
31. A bought eggs at 18 cents a dozen, but had he bought 5

more for the same money, they would have cost him 2\ cents a

dozen less. How many Qgg& did he buy] Ans. 31.

32. A person bought a certain number of sheep for $94;

having lost 7 of them, he sold one-fourth of the remainder at

prime cost, for $20. How many sheep had he at first]

Ans. 47.

33. There are two places, 154 miles distant from each other,

from which two persons, A and B, set out at the same instant, to

meet on the road. A travels at the rate of 3 miles in 2 hours,

and B at the rate of 5 miles in 4 hours. How long, and how far,

did each travel before they metl

Ans. 56 hours, and A traveled 84, and B, 70 miles.

34. Find that number, which, multiplied by 5, and 24 taken

from the product, the remainder divided by 6, and 13 added to

the quotient, will still give the same number. Ans. 54.

35. In a bag containing eagles and dollars, there are three

times as many eagles as dollars ; but if 8 eagles and as many
dollars be taken away, there will be left five times as many
eagles as dollars. How many were there of each)

An^. 48 eagles, 16 dollars.

36. If 10 apples cost a cent, and 25 pears cost 2 cents, and

you buy 100 apples and pears for 9^ cents, how many of each

will you have? Ans. 75 apples and 25 pears.
37. Suppose that for every 8 sheep a farmer keeps, he should

plough an acre of land, and allow one acre of pasture for every
5 sheep, how many sheep may he keep on 325 acres!

Ans, 1000.

38. A person has just 2 hours spare time; how far may he ride

In a stage which travels 12 miles an hour, so as to return home
in time, walking back at the rate of 4 miles an hour.

Ans. 6 miles.

39. If 65ib of sea-water contain 21b of salt, how much fresh

water must be added to these 651b, in order that the quantity of
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salt contained in 25fti of the new mixture, shall be reduced to

4 ounces, or ^ of a flj. Ans. 135ib.

40. A mass of copper and tin weighs SOib; and for every 7ib

of copper, there are 3ftr of tin. How much copper must be

added to the mass, that for every 11 ftj of copper, there may bt

4ftJ of tin) Ans. lOftj.

41. A merchant maintained himself for 3 years, at a cost of

$250 a year; and in each of those years, augmented that part of

his stock which was not so expended, by | thereof. At the end

of the third year his original stock was doubled. What was that

stock! Ans. $3700.

SLMULTANEOUS EaUATIONS OF THE FIRST DEGREE, CONTAINING

TWO UNKNOWN aUANTITIES.

Art. 155, From what we have already seen, it is evident that

the value of any one of the symbols concerned in an equation, is

entirely dependent on the rest, and it can become known, only
when the values of the rest are given, or kjiown Thus, in tho

equation

the value of x depends on the values of y and a, and can only
become known when they are known; therefore, to find the valtie

of any unknown quantity, we must obtain a single equation oontain-

ing it and knoum quantities. Hence, when we have two or more

equations containing two or more unknown quantities, we must

obtain from them a single equation containing only one unknown

quantity. The method of doing this is termed elimination, which

may be defined briefly, thus:—Elimination is the process of deduc-

ing, from two or more equations containing two or more un-

known quantities, a single equation containing only one unknown

quantity.

There are three principal methods of elimination:

1st. Elimination by substitution.

2nd. Elimination by comparison.

3rd. Elimination by addition and subtraction.

ELIMINATION BY SUBSTITUTION.

Art. 156. Elimination by substitution consists in finding the

value of one of the unknown quantities in one of the equations,
in terms of the other unknown quantity and known terms, and

substituting this, instead of the quantity, in the other equation.
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To explain this method, let it be required to find the values of a:

and y, in the following equations.

2a;+3^=33, (1)

4a;+5y=59. (2)

From eq. (1), by transposing Sy and dividing by 2, we have

2

Substituting this value of x, instead of x in eq. (2), we have

4(?^^)+5,=59;
or, 66—62/+53/=59;

and a:= 3 3-3X7^e^

The following is the general form to which two equations of

the first degree, containing two unknown quantities, may always
be reduced. The signs of the known quantities, a, b, c, &c., may
be eitiier plus or minus.

ax-\-hy=c, (1)

a'x-\-b'y=c'. (2)

From eq. (1), by transposing hy, and dividing by a, we have

a

Substituting this value of x in eq. (2), we have

ac—a'by-\'ab'y=ac' ;

{ab'
—

a'b)y=ac'
—

a'c;

ac'—a'c

2/=-7; 77-.
ab—a ^

7 / ac'—a'c \

But x=£=^= \ aU=^ ) ^"b-o-a'bc-alc'+a'bc

fl a(aZ>'
—

a'b)

b'c—be'

ab'—a'b'

Hence, when we have two equations, containing two unknown

quantities, we have the following

Rule for elimination by substitution.— Find an expression

for the valiie of one of the unknown quantities in either equation,

and substitute this value, instead of the same unknown quantity, in

the other equation; there will thus be formed a new equationj con-

taining only one unknown quantity.
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ELIMINATION BY COMPARISON.

AjiT, 15'7. Elimination by comparison consists in finding the

value of the same unknown quantity in two different equations,
and then placing these values equal to each other.

To illustrate this method, we will take the same equations as

in the preceding article.

2j:+32/=33, (1)

4a?+5y=59. (2)

Prom eq. (1), by transposing and dividing, we have x=—ZlJ^,

From eq. (2), by transposing and dividing, we have «=-- U
4

Placing these values of x equal to each other,

59—5y 33—3y
"'~4-==~2— '

59—5y=66—6y, by clearing of fractions;

V=7, by transposition.

The value of x may be found similarly, by first finding the

values of
T/y

aivd placing them equal to each other. But after

finding the value of one of the unknown quantities, that of the

other may generally be found most readily by substitution. Thus,

4a;+5x'7=59,-
whence x=^^^=6.4

General equations, aa:+Jy=c, (1)

a'x-\-b'y=c\ (2)

From eq. (1), by transposing and dividing, a;= ^,
a

From eq. (2), by transposing and dividing, a:=lllJ';
a'

equating these values of x,

c—hy c'—h'y,

—a ?-'
a'c—a'lnp=ac'

—
ab'y, by clearing of fractions;

(ah'—a'h)y=ac'—a'c, by transposing;
ad—a'c

ah'—ah
*

From eq. (1), y=^"~^

Prom eq. (2), y.

b
'

c'—a'x
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equating these values of y,

c'—a'x c—ax

b' b
'

be'—a'bx=b'c—ab'x;

{ab'
—

a'b)x=b'c
—be' ;

b'c—be'^=—
; T .

ab'—a'b

Hence, when we have two equations, containing two unknown

quantities, we have the following

Rule for elimination by compaeison.— Find an expression

for the value of the same unknown quantity in each of the given

equations, and place these values equal to each other; there will thus

beformed a new equation, containing only one unknown quantity.

ELIMINATION BY ADDITION AND SUBTRACTION.

Art. 15§. Elimination by addition and subtraction consists

in multiplying or dividing two equations, so as to render the co-

efficient of one of the unknown quantities, the same in both;

and then, by adding or subtracting, to cause the terms containing
it to disappear.

Taking the same equations as in the preceding articles,

2a:+3y=33, (1)

4a:+5y=59. (2)

It is evident that if we multiply eq. (1) by 2, that the coeffi-

cient of X will be the same in the two equations.

4a:+6y=66 (3), by Xing eq. (1) by 2.

4a;-j-5j/=59, eq. (2) brought down.

Since the coefficients of x have the same sign in these equa-

tions, if we subtract, the terms containing x will cancel each other,

and the resulting equation will contain only y, the value of which

may then be found. It is evident that if the signs of the coeffi-

cients of x had been different, that by adding, it would have been
canceled.

Having obtained the value of y, that of x may be obtained by
substitution, or similar to that of y, as follows:

It is evident that if we multiply eq. (1) by 5, and eq. (2) by 3,

that the coefficients of y will be the same in both.

l0x-\-15y=lQ5, (4) by Xing eq. (1) by 5.

12j?4-15y==177, (5) by Xing eq. (2) by 3.

2x=12, by subtracting eq. (4) from (5).
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General equations, ax-\-bi/:=c, (1)

a'x+b'y=:c\ (2)

It is evident that we shall render the coefficients of x the same

in both equations, by multiplying eq. (1) by a', and eq. (2) by a,

aax+a'by^a'Cy (3) by Xing eq. (1) by a';

aax+ab'y=ac\ (4) by Xing eq. (2) by a;

(jib'
—

a'b)y=ac'
—aCj by subtracting;

ac'—a'c

y'^ab'—a'b'

The coefficients of y in the two equations will evidently be-

come equal by multiplying eq. (1) by 5', and eq. (2), by b,

ab'x-\-bb'y=b'c, (5) by Xing eq. (1) by b';

a'bx-\-bb'y=bc', (6) by Xing eq. (2) by b;

{aV—a'b)x=b'c
—

be', by subtracting;
b'c—be'x=
ab'—a'b

It is evident that after we have rendered the coefficients of the

quantity to be eliminated the same in both equations, if the signs

are alike we must subtract ; but if they are unlike we must add.

Hence, when we have two equations containing two unknown

quantities, we have the following

Rule, for elimination by addition and subtraction.— Multi-

ply, or divide the eqxiations, if necessary, so that one of the unknown

quantities will have the same coefficient in both. Then take tJie dif-

ference, or the sum of the equations, according as the signs of the

equal terms are alike or unlike, and the resulting equation will con-

tain only one unknown quantity.

Remark.—When the coefficients of the quantity to be eliminated are

prime to each other, they may be equated by multiplying each equation

by the coefficient of the unknown quantity in tne other. When the

coefficients are not prime, find their least common multiple, and multiply
each equation by the quotient obtained by dividing the least common

multiple by the coefficient of the unknown quantity to be eliminated in

the other equation.

If the equations have fractional coefficients, they ought to be cleared,

before applying the rule.

EXAMPLES FOR PRACTICE.
Note.— It is recommended to the pupil to solve several of the fol-

lowing examples, by each of the preceding rules.

1. x+2y=l0, Ans. x=l, I 2; 2x+3j^=18, Ans. a;=3,

2x-{-2y.-9. 3/=3.| 3:c—2y=l. y=4.

^
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3. 207—9^=11,

4. 3:c—7y=7,

llx+5y=S7.
5. 9^_4j^=8,

13a;+7^=101.

Ans. 07=1,

Ans. x=7i

y=2.
Ans. a;=4,

y=7.

6. a;—4(y
—

2)=5, Aw5. x=5f

7. -4-1^=8, Ans. x=^l8,3^5

9 10
y=10.

8. 1^:^=:.-^,
40

^ A715. 07=^,

^=^

12. 2^-~3H:?=7+?^tf?,
4

^
5

'

3
•

-^v 2- ^5
9. i(a7+y)+l(^~2/)=59,

5a:—332/=0.

i/=15.

10. -±-==
^

, AtW. 37=2,
5+2/ 12+a;

^=¥-
An5. 07=5,

An5. 07=5,

11.

2a7+5y=35.

2jt7+6_

Zy+2'
^'

807—4=9t/.

4y+
07—2 =261-^1+1
3 ^^2 2

•

J 3 3a7-f4y+3 2o7+7—y_^ , y-8
10 15

^
5

'

9j^4.5j;-^ a7+y__7a7+6
12 ~4 11

•

14. ax=by3

15. x-{'ay=bf

ax—by^=c.

16. 3ao7—2by=zCf

a^x-\-Py=5bc,

17. (a
—

b)x-{-{a-\-b)y=c,

y=5

Ans. 07=7

Ans. 07=

2/=9.

y=

Ans»

a+b
ac

^+b'
ac+b^

a^+b
ab—c

Ans, x=-
a^+b'
llbc

(ia^-b^Xx+y)=n,

18. ^+^=«,
X y K Apply Rule, /

n
,
m . \ Art, 158. S

-H—=^-
X y

"2fl2_^3a6'

c/lS^^X
&\2a+3Z»/*

iln5.07=lf JL-c),

^""26 I ^~^ /
'

y=
y^2 ^2

mb-^na
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19. ?+^=l-.?,
'

Arts. ^^Hah+ac^hc)

^ a?^ y ahc(ac^ab-'hc)

a'^b ~^c
^

a^b^+a^c^—b^c^'

a-\-b

a^y-^—+(a+b+c)bx=b^y+(^a+2b)ab. y=—.
a-^b a—b

Remark.— Transpose b^y in eq. (2), multiply by 3 and subtract, there

will then result an equation involving x.

QUESTIONS PRODUCING SIMULTANEOUS EQUATIONS CONTAIN-

ING TWO UNKNOWN QUANTITIES.

Art. 159. The questions contained in Art. 154, are all capa-

ble of being solved by using one unknown quantity; although in

some of the examples, the number of unknown quantities was

two or more. But in those questions where there was more than

one unknown quantity, there was such a relation existing between

the several quantities, that it was easy to express each one in

terms of the other. It frequently happens, however, that in a

problem containing more than one unknown quantity, there may
be no direct relation existing between them, by means of which

either may be found in terms of the other. In such a case it

becomes necessary to use a separate symbol for each unknown

quantity, and then to find equations containing these symbols, on

the same principle as when there was but one unknown quantity;

that is, in brief, regard the symbols as the answer to the question,

and then proceed in the same manner which it would be necessary to

do to prove the answer. After the equations are obtained, the

values of the unknown quantities may be found, by either of the

three different methods of elimination.

We shall now give an example, to show that the same question

may sometimes be solved by using either one or two unknown

quantities.
'

I

"
', :

1. The difference of two numbers is a, and tlie'leesls feo the'

greater as m to n; required the numbers. :
'*

*^
- >

j,

. ,

,
,

^ ^

.
,

-

Solution by using one unknown quantity.
' '''!..*! '

>
' **'.

Let mx=^ the less number, then nx= the greater;

And nx—mx=a.
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the less number;

the greater number.

n—m
na

n—m
Solution by using two unknown quantities.

Let a;= the less number, and y= the greater.

Then, j^
—x=at (1)

and X : y : : m : n; or my=7ix, (2)

Since my=nx, we have y=— ;m
substituting this value of x in eq. (1),

nx

whence x=-
n—m

and y=— i

m m(n—m) n—m'

2. The hour and minute hands of a watch are opposite at 6

o'clock; when are they next opposite]

Let x= minute spaces moved over by the hour hand, and y=
minute spaces moved over by the minute hand. Then since the

minute hand moves 12 times as fast as the hour hand,

x:y ::1 : 12, or ?/=12a7. (1)

But the minute hand must evidently pass over 60 minutes more

than the hour hand; hence

y=x+QO. (2)

Substituting, 12a;=a7-}-60,

lla?=60,

a:=5y\ min.

y=65yymin.=lh., 5i\m.

Hence, the hands are next opposite at 5 j\m. past 7.

In a similar manner the period of coincidence of the hands

may be found.

3. Tnere. lie 4 ?iutnber consisting of two digits, which divided

by the sum of its d'iguts, gives a quotient 7; but if the digits be

*>trj):t<en iJi an mvbrse yrder, and the number thence arising be

divided by't'ne'^u'm of the digits increased by 4, the quotient =3.

Required the number. Ans. 84. "^

In solving questions of this kind, the pupil must observe that

any number consisting of two places of figures, is equal to 10

times the figure in the ten's place plus the figure in the unit's
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place. Thus, 35 is equal to 10x3-f-5. In a similar manner,
453 is equal to 100x4+10x5+6.

Let x= the digit in ten's place, and y= the digit in unit's

place.

Then 10x-\-y=the number.

And lOi/-{-x=the number when the digits are reversed.

Also, lOoo±y^^ 10y+^_3
xi-y

'

a;+3/+4

From these equations we readily find a:=8, and y=4.
4. A farmer sells to one man 5 sheep and 7 cows for $11 1»

and to another, at the same rate, 7 sheep and 5 cows for $93.

Required the price of a sheep and that of a cow.

Ans, Sheep, $4; cow, $13.
5. If 7Kj of tea and 9ib of coffee cost $5.20, and at the same

rate 4ib of tea and 111b of coffee cost $3.85; it is required to

find the price of a pound of each. Ans. Tea, 55c.; coffee, 15c.

6. A andB are in trade together with different sums; if $50
be added to A's money, and $20 be taken from B's, they will have

the same sum; but if A's money were 3 times, and B's 5 times

as great as each really is, they would have together $2350.
How much has each] Ans, A, $250; B, $320.

7. A and B have together $9800; A invests the sixth part of

hihj money in business, and B the fifth part, and then each has the

same sum remaining. How much has eachi

Ans. A, $4800; B, $5000.
Let 6a:=A's money, and 5y=B's.
8. What fraction is that, such that if the numerator and de-

nominator be each increased by 1, the value is 2; but if each be

diminished by 1, the value is |l Ans. f.

9. Find two numbers, such that one-third of the first exceeds

one-fourth of the second by 3, and one-fourth of the first and one-

fifth of the second are together equal to 10. An^. 24 and 20.

10. A grocer knows neither the weight nor the first cost of a

box of tea which he had purchased. He only recollects that if

he had sold the whole at 30 cts. per ib, he would have gained $1,
but if he had sold it at 22 cts. per ib, he would have lost $3.

Required the number of pounds in the box, and the first cost

per lb. Ans. 60^ at 28 cts.

11. The rent of a field is a certain fixed nUmber of bushels of

wheat, and a fixed number of bushels of corn. When wheat is

55 cents, and corn 33 cents per bushel, the portions of rent by
wheat and corn are equal; but when wheat is 65 cents and corn
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41 cents per bushel, the rent is increased by fl.40. What ia

the grain rent!

Ans. 6 bushels of wheat and 10 bushels of com.

12. The quantity of water which flows from an orifice is pro-

portional to the area of the orifice, and the velocity of the water.

Now there are two orifices in a reservoir, the areas being as 5 to

13, and the velocities as 8 to 7, and from one there issued in a

certain time 561 cubic feet more than from the other. How
much water did each orifice discharge in this timel

Ans. 440 and 1001 cubic feet.
' 13. Find two numbers in the ratio of 5 to 7, to which two

other required numbers in the ratio of 3 to 5 being respectively

added, the sums shall be in the ratio of 9 to 13; and the differ-

ence of those sums =16. Ans. 30 and 42, and 6 and 10.

14. A boy spends 30 cents in apples and pears, buying his

apples at 4 and his pears at 5 for a cent; he then finds that half

his apples and one-third of his pears cost 13 cents. How many
of each did he buy] Ans. 72 apples and 60 pears.

15. A farmer rents a farm for $245 per year; the tillable land

being valued at $2 per acre, and the pasture at $1.40; now the

number of acres of tillable, is to half the excess of the tillable

above the pasture, as 28 to 9. How many acres are there of

each] Ans. 98 acres tillable, and 35 of pasture.
16. Find that number of 2 figures to which, if the number

formed by changing the places of the digits be added, the sum is

121; and if the less of the same two numbers be taken from the

greater, the remainder is 9. Ans. 65.

17. To determine three numbers such that if 6 be added to the

first and second, the sums will be in the ratio of 2 to 3
;

if 5 be

added to the first and third, the sums will be in the ratio of 7 : 11 ;

but if 36 be subtracted from the second and third, the remainders
will be as 6 to 7. Ans. 30, 48, 50.

Suggestion.— Let 2x—6, 3a?—6, and y be the numbers.

18. Two persons, A and B, can perform a piece of work in 10

days. They work together for 4 days, when A being Ccilled.ofl^,

B is left to finish it, which he does in 36 days more. In whnt
time could each do it separately] Ans. A in 24, B in 48 days.

19. A and B drink from a cask of beer for 2 hours, after which
A falls asleep, and B drinks the remainder in 2 hours and 49

minutes; but if B had fallen asleep and A had continued to drink,

it would have taken him 4 hours and 40 minutes to finish the

cask. In what time could each singly drink the whole]

A71S. A in 10 hrs., B in 6 hrs. ^
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20. Divide the fraction | into two parts, so that the numera-

tors of the two parts taken together shall be equal to their

denominators taken together. Ans. ^ and [/).

21. A purse holds 19 crowns and 6 guineas. Now 4 crowns

and 5 guineas fill g| of it. How many of each will it holdl

Ans. 21 crowns or 63 guineas.

22. When wheat was 5 shillings a bushel, and rye 3 shillings,

a man wanted to fill his sack with a mixture of rye and wheat

for the money he had in his purse. If he bought 7 bushels of

rye and laid out the rest of his money in wheat, he would want

2 bushels to fill his sack; but if he bought 6 bushels of wheat,

and filled his sack with rye, he would have 6 shillings left. How
must he lay out his money, and fill his sack]

Ans. He must buy 9 bushels of wheat, and 12 bushels of rye.

SIMULTANEOUS EaUATIONS OF THE FIRST DEGREE, INVOLVING

THREE OR MORE UNKNOWN aUANTITIES.

Art. 160. Simultaneous equations of the first degree involv-

ing three or more unknown quantities, may be solved by either

of the three methods of elimination, explained in Arts. 155 to

159; but the method most generally applicable, is that of elim-

ination by addition and subtraction, which we shall now proceed

to apply in the solution of a problem containing three unknown

quantities.

1. Given 5a7—4i/+22=48, (1)

2x+2y-Az=24:^ (2)

2a:—5?/-|-32=19, (3) to find x, y, and z.

To eliminate z from the first two equations, we may multiply

eq. (1) by 2, and then add this to eq. (2); thus,

10a:—8y+4z=96, by Xing eq. (1) by 2,

2x+2y-^z=:2^ , (2)

13a:—5?/ ^120" (5) by adding.

We may eliminate z from equations (1) and (3), by multiplying

eq. (1) by 3, and eq. (3) by 2, and then subtracting; thus,

15a:—12^+62=144, by Xing eq. (1) by 3,

4.x—l0y-\-6z= 38, by Xing eq. (3) by 2,

llx— 2y =106, (6) by subtracting.

We may now eliminate y from equations (5) and (6), by mul-

tiplying eq. (5) by 2, and eq. (6) by 5, and then subtracting; thus,

26a:—10y=240, by Xing eq. (5) by 2,

55a:—10^=530, by Xing eq. (6) by 5,

29^^ =290;
a'=10.
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110—2y=106, by substituting 10 for x in eq. (6);

whence y=2.
50—8-4-22^=48, by substituting for x and y in eq. (1);

whence 2=3.
It is evident that the same method may be applied when the

number of equations is four or more. Hence we derive the

following

General kule for elimination by addition and subtrac-

tion.— 1st. Combine any one of the equations with each of the

others, so as to eliminate the same unknown quantity; there will

thus arise a new class of equations, containing OTie less unknown

quantity.

2nd. Combine any one of these new equations with each of the others,

so as to eliminate another unknown quantity; there will thus arise

another class of equations, containing two less unknown quantities,

3rd. Continue this series of operations until a single equation is

obtained, containing but one unknown quantity, from which its

value may be easily found; then by going back, and substituting

this value in the derived equations, the values of the other unknown

quantities may be readilyfound ,

Remark.— Although the method of elimination by addition and sub-

traction is generally the best when the number of unknown quantities

is three or more, yet in some particular instances, solutions may be ob-

tained more easily and elegantly by other means, which the pupil must

acquire by experience and tact. As a specimen, we present the follow-

ing question and solution.

2. Given —x-\-y-\-zz=a, (1)

x—y-^-z—b, (2)

xJ^y—z=^c, (3) to find X, y, and z.

By adding the three equations together, and calling a-{-b-\-c=s,

we find

x+y+z^s, (4)

Then by subtracting eqs. (1), (2), and (3), respectively from

(4), and dividing by 2, we find.

x=l(s—a),

z=l(s—c).

EXAMPLES,
To be solved by either of the different methods of elimination.

3. x-\-y-\-z=Q, ^
Ans. x=l,

2x—yJ^2z=l,> y=2,
4a;+3y--2=7.5 2=3.
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4. 3a:+43/—5z==32,^
4a:—5y+3^=18>
5x'-^y—4z=z 2.)

5. x—9y+Sz-^10u=21,
2x+ly^z-^=6SS,
3x+y+bz+2u=195y
Ax'-^y--2z--9u=516,

6. x+y=io-^iz,
l(x+z)=9—y,

i(x^z)=2y^l.

t
z a;

,
-

^+3=5+^'

}

Ans. a:=10,

z=(i.

Ans, a:=100,

y=60,
2;=—13,

8. 9a:—22r+w=41,

4y—3a:+2w=5,

.^ Iz—5w=

Examples, to be solved by special methods.

9. --j—=fl, I Am. x=

1 .1=.(
X z

2/
2;

S

a+J—c

2
y=—n— *

a—b-{-c

2

b-\-c
—a

Suggestion.— Subtract eq. (3) from (2), then combine the

resulting equation with (1), to find x and y; z may be found

similarly.

10. ?+?_!=X y z

3 4,5
r--X y z

4,5. 6
y-.X y

=1)

Ans, x=6,

y=i2,
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Ax y z

^ 1
• ^—4 3 3 A ^—1

6x y z

12. —a;+y+2;+v=a, '\ Ans. x=l(s—a),

x-\-y—z-\-v—c,
I

2=1(5—c),

where 5=2(a+&+c+cZ).

aUESTIONS PRODUCING SIMULTANEOUS EQUATIONS CONTAIN-

ING THREE 9R MORE UNKNOWN QUANTITIES .

Art. 161. When a question contains three or more unknown

quantities, equations involving them can be found on the same

principle as in questions containing one or tioo unknown quanti-

ties. (See Arts. 154 and 159.) The values of the unknown

quantities may then be found, in the same manner as in the pre-

ceding examples.

1. The stock of three traders amounts to $760; the shares of

the first and second exceed that of the third by $240 ;
and the

sum of the second and third exceeds the first by $360: what is

the share of each] Ans. $200, $300, and $200.

2. What three numbers are there, each greater than the pre-

ceding, whose sum is 20, and such that the sum of the first and

second is to the sum of the second and third, as 4 is to 5; and

the difference of the first and second, is to the difference of the

first and third, as 2 to 3? Ans, 5, 7, and 8.

3. Find four numbers, such that the sum of the first, second, and

third, shall be 13; the sum of the first, second, and fourth, 15;

the sum of the first, third, and fourth, 18; and lastly, the sum of

the second, third, and fourth, 20. Ans. 2, 4, 7, 9.

4. The sum of three digits composing a certain number is lO*

tlie sum of the left and middle digits, is to the sum of the middle

and right ones as 3 to 3|; and if 198 be added to the number,
the digits will be inverted. Required the number. Ans. 547.

5. At an election where each elector may give two votes to

different candidates, but only one to the same, it is found on

counting the votes, that of the candidates A, B, C, A had 158

votes, B hud 132, and C 58. Now 26 voted for A only, 30 for
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B only, and 28 for C only. How many voted for A and B
jointly; how many for A and C; and how many for B and C]

Ans. For A and B, 102; A and C, 30; B and C, 0.

6. It is required to find three numbers such, that ^ of the first, ^

of the second, and ^ of the third, shall together make 46; g of

the first, I of the second, and ^ of the third, shall together

make 35; and
|-

of the first, J of the second, and | of the third,

Bhdl together make 28|. Ans, 12, 60, and 80.

7. The sum of three numbers, taken two and two, are a, h,

and c. What are the numbers'?

Ans. l(a-{-b
—

c), ^(a-\-c
—

h), and |(6+c—a).

8. A person has four casks, the second of which being filled

from the first, leaves the first four-sevenths full. The third being
filled from the second, leaves it one-fourth full; and when the

third is emptied into the fourth, it is found to fill only nine-six-

teenths of it. But the first will fill the third and fourth and have

fifteen quarts remaining. How many quarts does each hold]

Ans. 140, 60, 45, and 80, respectively.

9. In the crew of a ship consisting of sailors and soldiers,

there were 22 sailors to every 3 guns, and 10 sailors over; also

the whole number of hands was 5 times the number of soldiers

and guns together; but after an engagement, in which the slain

were one-fourth of the survivors, there wanted 5 men to be 13

men to every 2 guns. Required the number of guns, soldiers,

and sailors. Ans, 90 guns, 55 soldiers, 670 sailors.

CHAPTER V.

SUPPLEMENT TO EQUATIONS 0^ THE
FIRST DEGREE.

I. GENERALIZATION.

Art. 162. Equations are termed Z^7eraZ when the known quan-
tities are represented, either entirely or partly, by letters. Quan-
tities represented by letters are termed general, values— because

the solution of one problem furnishes a general solution which

embraces all others, where the letters have specified numerical

values.
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The answer to a problem, where the known quantities are

represented by letters, is termed a formula; and a formula ex-

pressed in ordinary language, furnishes a rule.

^ By the application of algebra to the solution of general ques-

tions, a great number of useful and interesting truths and rules

may be established. We shall now illustrate this subject by an

example.

Art. 163. It is required to divide a given number a into three

parts, having to each other the same ratio as the numbers tw, tz,

and^.

Let mx, nXi and px, represent the required parts, since these

are evidently to each other as m, n, and p.
Then mx-\-iix-\-poc^=^a,

and a:= 2—
,

m-\-n-{-p

.•. mx= ,

m-\-n-\'p

„,, _ na

m-\-n-{-p

pa
px=:

m-^-n-^-p'

This formula translated into ordinary language, gives the

following

Rule foe dividing a given number into parts having to each
OTHER A given RATIO.— Multiply the given number by each term

of the ratios respectively, and divide the products by the sum of the

numbers expressing the ratios* The respective quotients will be

the required parts.

The pupil may solve the following examples by this rule, and

test its accuracy by verifying the results.

2. Divide 69 into three parts, having to each other the same

ratio as the numbers 5, 7, and 11. Ans, 15, 21, and 33.

3. Divide 38^ into four parts, having to each other the same

ratio as the fractional numbers ^, 4, ^, and |.

Ans. 15, 10, 7i, and 6.

The pupil may now solve the following general examples, and.

express the formula in ordinary language, so as to form a general
rule.

4. The sum of two numbers is «, and their difference b. Re-

quired the numbers. ^ e^^^^^
a b

^ a_h
2^2 3 2-
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5. The difference of two numbers is a, and the greater is to

the less as m to w. find the numbers. . ma , na

m—n m—n

6. The sum of two numbers is a, and their sum is to their dif-

ference as wi to n: required the numbers.

Am. Greater =(!!L±^, less ^"^^""^
2m 2m

'

7. Divide the number a into three such parts, that the second

shall exceed the first by h, and the third exceed the second by c.

M a—2h—c a-\-h
—

c, a-\-b-\-2c

3
'

3
'

3
•

8. Divide the number a into four such parts, that the first in-

creased by m, the second diminished by m, the third multiplied by

771, and the fourth divided by m, shall be all equal to each other.

Suggestion.— The simplest method of solving questions of

this kind, is to make such a supposition for the values of the un-

known quantities as will fulfill one or more of the conditions.

In this question the last four conditions will be fulfilled by repre-

senting the four parts by x—m, a:-[-m, — , and mx,
m

. ma ^ ma
, ^ " ^''-

/I ISO '/i-iso' '

(771+1)2 (771+1)2 (W+1)2 (771+1)2*

9. A person has just a hours at his disposal; how far may he *

ride in a coach which travels h miles an hour, so as to return

home in time, walking back at the rate of c miles an hour]

Ans, miles.

&+C
10. Given the sum of two numbers =a, and the quotient of

the greater divided by the less =6; required the numbers.

Ans, Less =_fL_, neater = ^
.

6+1'
^

h-\-r

This formula gives the following simple rule:— To find the lesi

number i divide the sum of the numbers by their quotient increased by

unity.

11. A person distributed a cents among n beggars, giving h

cents to some, and c to the rest. How many were there of each!

Ans. "^i:^ at b cts., and ^^ at c cts.
b—c b—c

12. Divide the number n into two such parts, that the quotient
of the greater divided by the less shall be q, with a remainder r.

1+q 1+q
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13. If A and B together can perform a piece of work in a days,

A and C together the sg^me in h days, and B and C together in c

days: find the time in which each can perform it separately.

Ans. A in , B in , C in days.
ac-\-bc

—ah ah-^-hc
—(k, ab-\-ac—^c

14. A, B, and C, hold a pasture in common, for which they

pay P$ a year. A puts in a oxen for m months; B, h oxen for n

months; and C, c oxen for ^months: required each one's share

of the rent.

An^. A's, 1^ P$; B's,
^^

'ma-\-nb-\-jpc 7na'\-7ib-\-'pc

C's, ?! P$.'

ma-^nb^pc
From these formula is derived the rule of Compound Fellowship.

15. A mixture is made of aflj of tea at m shillings per ih, Z?lb

at n shillings, and citr at j9 shillings: what will be its cost per ih.

Ans. '"«+«''+yc
^

a-\-b-\-c

From this formula is derived the rule termed Alligation Medial.

16. A waterman rows a given distance a and back again in h

hours, and finds that he can row c miles with the current for d miles

against it: required the times of rowing down and up the stream,

also the rate of the current and the rate of rowing.

Ans. Time down, ; time up, —— ;

c-\-d c-\-d

rate of current,
<(^^-^''). j-ate of rowing, ^S^±^

2bcd 2hcd

II. NEGATIVE SOLUTIONS.

Art. 164. It has been stated already (Art. 12), that when a

quantity has no sign prefixed, the sign plus is understood; and

also (Art. 47), that all numbers or quantities are regarded as

positive, unless they are otherwise designated. Hence, in all

problems it is understood that the results are required in positive

numbers. It sometimes happens, however, in the solution of a

problem, that the result has the minus sign. Such a result is

termed a negative solution. We shall now examine a question
of this kind.

1. What number must be subtracted from 3 that the remainder

shall be 71

Let x= the number.

Then 3—a:=7,
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whence —x==l—3,

or oc=—4.

Now —4 subtracted from 3, according to the rule for algebraic

subtraction, gives a remainder equal to 7; thus 3—(
—4)=7.

The result,
—4, is said to satisfy the question in an algebraic

sense: but the problem is evidently impossible in an arithmetical

sense^ since any positive number subtracted from 3 must diminish

instead of increasing it; and this impossibility is shown by the re-

sult being negative. But, since subtracting
—4 is the same as

adding -|-4 (Art. 48), the result is the answer to the following

question:
—What number must be added to 3, that the sum shall

be equal to 7]

Let the question now be generalized, thus:

What number must be subtracted from a, that the remainder

shall be 63

Let 0:= the number.
Then a—x=b,
whence x=a—J.

Now, since a—(a
—b)=b, this value of x will always satisfy the

question in an algebraic sense.

While b is less than a, the value of x will be positive; and

whatever values are given to a and &, the question will be con-

sistent, and can be answered in an arithmetical sense. Thus,
if a=10, and 6=4, then x=6.
But if 6 becomes greater than a, the value of a: will be negative;

and whatever values are given to a and 6, the result obtained will

satisfy the question in its algebraic, but not in its arithmetical

senf^e.

Thus if a=8 and 6=10, then x=—2. Now 8—(—2)=8+2
=10; that is, if we add 2 to 8, the sum will be 10. We thus see

that when 6 becomes greater than a, the question, to be consistent

in an arithmetical sense, should read:—What number must be

added to a that the sum shall be equal to 6]

From this we derive the following important general principles:

1 St. A negative solution indicates some inconsistently or absurdity

in the question from which the equation was derived.

2nd. When a negative solution is obtained, the question, to which

it is the answer, may be so modified as to be consistent.

The pupil may now read carefully the " Observations on Ad-

dition AND Subtraction," page 24, and then modify the follow-

ing questions so that they shall be consistent, and the results true

in an arithmetical sense.

10
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2. What number must be added to the number 80, that the

sum shall be 19] (a:=--l 1).

3. The sum of two numbers is 9, and their difference 25,

required the numbers. Ans. 17 and —8.

4. What number is that whose half subtracted from its third

leaves a remainder 15] (a:=—90).

5. A father's age is 40 years; his son's age is 13 years; in

how many years will the age of the father be 4 times that of the

eon] (a:=—4).

6. The triple of a certain number diminished by 100, is equal
to 4 times the number increased by 200. Required the number

(a:=~300).

III. DISCUSSION OF PROBLEMS.

Art. 165* After a question has been generalized and solved,

we may inquire what values the results will have, when particular

suppositions are made with regard to the known quantities. The
determination of these values, and the examination of the various

results, to which different suppositions give rise, constitute the

discussion of the 'problem.

The various forms which the value of the unknown quantity

may assume, are shown in the discussion of the following ques-
tion.

1. After subtracting h from a, what number, multiplied by the

remainder, will give a product equal to c]

Let a:= the number.

Then (a—&)a?=c,

and x=J—,
a—1)

Now, this result may have five different forms, depending on

the different values that may be given to a, h, and c.

Remark.— In the following forms, A denotes merely some quantity.

1 St. When h is less than a. This gives positive values of the

form +A.
2nd. When h is greater than a. This gives negative values of

the form —A.

3rd. When h is equal to a. This gives values of the form - .

4th. When c is 0, and h either greater or less than «. This

gives values of the form —
.
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5. When h is equal to a, and c is equal to 0. This gives values

of the form §.

We shall now examine each of these cases,

I. Values of the form +A, or when h is less than a.

In this case, a—b is positive, and the value of x is positive.

To illustrate this form, let a=10, 6=3, and c=35, then a:=5.

II. Values of the form —A, or when b is greater than a.

In this case, a—b is a negative quantity, and the value of x will

be negative. This evidently should be so, since minus multiplied

by minus, gives plus; that is, if a—b is minus, x must be minus, in

order that their product shall be equal to c, a positive quantity.

To illustrate this form by numbers, let a=5, Z>=8, and c=12;
then a—&=—3, a;=—4, and —3X—4=+12.

A
III. Values of the form —

, or when b is equal to a.

In this case x becomes equal to -. But the value of a fraction

of which the numerator is any finite quantity, and the denomina-

tor zero (Art. 136), is infinite; that is, -^=Q0
.

This is interpreted by saying, that no finite value of x will sat-

isfy the equation; that is, there is no number, which being multi-

plied by 0, will give a product equal to c.

IV. Values of the form —
, that is, when c is and b is either

A
greater or less than a.

If we put a—b=dj then x=- =0, since 0^X0=0; that is, when
d

the product is zero, one of the factors must be zero .

V. Values of the form §, that is, when b=:a, and c=0.

In this case we have a?=-_^=g, or a;XO=0. But g is the
a—b

symbol of indetermination (Art. 137); hence any finite value of a;

whatever will satisfy this equation; that is, x is indeterminate.

The discussion of the following problem, originally proposed

by Clairaut, will serve to illustrate further the preceding princi-

ples, and show that the results of every correct solution corres-

pond to the circumstances of the problem.
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PROBLEM OF THE COURIERS.

Art. 166, Two couriers depart at the same time, from two

places, A and B, distant a miles from each other; the former

travels m miles an hour, and the latter n miles: where will they
meet]

There are two cases of this problem, according as the couriers

are traveling toward each other, or in the same direction.

I. When the couriers travel toward each other.

Let P be the point where they meet, A '
i

"
1 B

and a=AB, the distance between the
"

two places.

Let a7=AP, the distance which the first travels.

Then a—a;=BP, the distance which the second travels.

But the distance each travels, divided by the number of miles

traveled per hour, will give the number of hours he was traveling.

Therefore, —= the number of hours the first travels.
m

And a—x_, „ ,j „ „ second travels.
n

But they both travel the same number of hours, therefore

X a—x^

m n
nx=ma—mx, by clearing of fractions;

whence ar=-??^ ;

m-\-n

and a—ar=
^^

,

1st. Suppose ?n=w, then a:=^= ?, and «—x=-\ that is, if

the couriers travel at the same rate, each travels precisely half

the distance.

2nd. Suppose 7J=0, then a;=^=a; that is, if the second
m

courier remains at rest, the first travels the whole distance from

A to B.

Both these results are evidently true, and correspond to the cir-

cumstances of the problem.
IL When the couriers travel in the same direction.

As in the first case, let P be the point >
i

<

of meeting, each traveling from A toward A B r

P, and let a=AB, the distance between the places;

a:=AP, " " the first travels;

then x—a=BP, " " " second travels.
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Then, reasoning as in the first case, we have

X X—a,

m n

nx^=mx—ma;

whence a;=-^^:

and X—a-

m—n

na

m—n

1st. If we suppose m greater than n, the value of a? will be

positive; that is, the couriers will meet on the right of B. This

evidently corresponds to the circumstances of the problem.

2nd. If we suppose n greater than m, the value of a:, and

also that of x—a, will be negative. This value of x being nega-

tive, shows that there is some inconsistency in the question

(Art. 164). Indeed, where m is less than n, it is evident that

the couriers cannot meet, since the forward courier is traveling
faster than the hindmost.

Let us now inquire how the question may be modified, that the

value obtained for x shall be consistent.

If we suppose the direction changed in which the couriers travel,

that is, that the first travels from A, and P' I
i

' 1

the second from B, toward P'; and that fl:;=AB,
^ ^

x=hV,
a+a;=BP', we have,

reasoning as before, —=—!—
;

ni n

whence a:= , and a-\-x-=-
n—m n—m

The distances traveled are now both positive, and the question

will be consistent, if we regard the couriers, instead of traveling

toioard P, as traveling in the opposite direction, toward P'. The

change of sign thus indicating a change of direction (Art 47).

8rd. Let us suppose m equal to n.

In this case x is equal to — , and x—a=—^
0*

But it has been shown already (Art. 136), that when the un-

known quantity takes this form, it is not satisfied by any finite

value, or, it is infinitely great. This evidently corresponds to the

circumstances of the problem; for, if the couriers travel at the

same rate, the one can never overtake the other. This is some-

times otherwise expressed, by saying they only meet at an infinite

distance from the point of starting.
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4th. Let us suppose a=0.

Then x= , and x—a=
m—n m—n

When the unknown quantity takes this form, it has been

shown already (Art. 135) that its value is 0. This corresponds

to the circumstances of the problem; for, if the couriers are no

distance apart, they will have to travel no (0) distance to be

together.

5th. Let us suppose m=n, and a=0.

In this case, a:=g, and x—a=§. But when the unknown

quantity takes this form, it has been shown (Art. 137) that it

may have any finite value whatever. This, also, evidently corres-

ponds to the circumstances of the problem; for, if the couriers

are no distance apart, and travel at the same rate, they will be

always together; that is, at any distance whatever from the point

of starting.

6th. Let us suppose w=0.

In this case x=—=^a\ that is, the first courier travels from
m

A to B, overtaking the second at B.

7th. Lastly, let us suppose n=—.

In this case a:=-^=2«; that is, the first travels twice the dis-
m

tance from A to B, before overtaking the second. The results

in the last two cases evidently correspond to the circumstances

of the problem.

IV. CASES OF INDETERMINATION IN EaUATIONS OF THE FIRST

DEGREE, AND IMPOSSIBLE PROBLEMS.

Art. 16'y. An equation is termed independent ^ when the rela-

tion of the quantities which it contains, cannot be obtained

directly from others with which it is compared. Thus, the

equations

a;+3y==19,
and 2a;+5y==33,

are independent of each other, since the one cannot be obtained

from the other in a direct manner.

The equations a:-4-3^=19,

2aH-6^=38,
are not independent of each other, the second being derived

directly from the first, by multiplying both sides by 2.
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Art. 108. An equation is said to be indeterminate, when it

can be verified by different values of the same unknown quantity.

Thus, if we have the equation

X—y==^i by transposition we find

If we make y=\, then a?=4; if we make y=2, then a:=:5

and so on; from which it is evident, that an unlimited number of

values may be given to x and y, that will verify the equation.

If we have two equations containing three unknown quantities,

we may eliminate one of them; this will leave one equation con-

taining two unknown quantities, which, as in the preceding ex-

ample, will be indeterminate. Thus, if we have the following

equations,

a;+3y—5z=20,
a:—y+3z=16.

If we eliminate x, we have, after reducing,

y-2z=l;
whence y=\-\-2z.

If we make z=\, then i/=3, and a:=20-j-52;
—3y=16. If we

make z=2, then ^=5, and a:=15.

In the same manner, an unlimited number of values of the

three unknown quantities may be found, that will verify both

equations. Other examples might be given, but these are suffi-

cient to establish the following general principle.

When the number of unknoion quantities exceeds the number of in-

dependent equations, the problem is indeterminate.

A question is sometimes indeterminate that involves only one

unknown quantity; the equation deduced from the conditions

being of that class denominated identical. (Art. 145.) The fol-

lowing is an example:

What number is that, whose \ increased by the \ is equal to

the Jo diminished by the f^'\

Let x= the number.

Then ?4-?=:Llf—?f ;4^6 20 15

clearing of fractions, 15a?-|-10a:=33a:
—Sx\

or, 2bx=2bx)
which will be verified by any value whatever of x.

A more simple example is the following:
—What number is

that whose half, third, and fourth, taken together, is equal to the

number itself increased by its one-twelfth.
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Art. 169. The reverse of the preceding case requires to be

considered; that is, when the number of equations is greater than

the number of unknown quantities. Thus, we may have

2a:+33/==23, (1)

Zx—2y=2, (2)

5a7+4?/=40. (3)

Each of these equations being independent of the other two,

one of them is unnecessary, since the values of x and y, which

are 4 and 5, may be found from either two of them.

When a problem contains more conditions than are necessary
for determining the values of the unknown quantities, those that

are unnecessary are termed redundant.

The number of equations may exceed the number of unknown

quantities, so that the values of the unknown quantities shall be

incompatible with each other. Thus, if we have

07+3^=12, (1)

2a;+2/==17, (2)

3a7+23/=30. (3)
The values of x and y, found from equations (1) and (2), are

a:=5, y=7; from equations (1) and (3), a:=6, and 3/=6; and

from equations (2) and (3), a;=4, and j/=9. From this, it is

manifest that only two of these equations can be true at the same'

time.

A question is sometimes impossible that involves only one un-

known quantity. The following is an example:

What number is that whose y'^ diminished by 5 is equal to the

difference between its | and \ increased by 7.

i X 3^ X
Let a;=the number, then ——5=_— _+7:

12 4 6^
clearing of fractions, 7a;—60=9a?—2a;4-84,

reducing, 0=144,
which shows that the question is absurd.

Remark.— Problems from which contradictory equations are deduced,

are termed irrational or impossible. The pupil should be able to detect the

character of such questions when they occur, in order that his efforts

may not be wasted in attempting to perform an impossibility.

EXAMPLES TO ILLUSTRATE THE PRECEDING
PRINCIPLES.

1 . What number is that, which being divided successively by
m and n, and the first quotient subtracted from the second, the

remainder shall be
q']

a __ mnq
m—n
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What supposition will give a negative solution? An infinite solution?

An indeterminate solution? Illustrate by numbers.

2. Two boats, A and B, set out at the same time, one from C to

L, and the other from L to C; the boat A runs m miles, and the

boat B, n miles per hour. Where will they meet, supposing it to

be a miles from C to L] ^

Arts, miles from C, or miles from L.
m-\-n m-\-n

Under what circumstances will the boats meet half way between C
and L? Under what circumstances will they meet at C? At L? Un-
der what circumstances will they meet above C? Below L? Under
what circumstances will they never meet? Under what circumstances

will they sail together? Illustrate each of these questions by using
numbers.

3. What number is that which, being multiplied by 8, the pro-
duct increased by 16, and the sum divided by 4, will give a quo-
tient equal to twice the number diminished by 7)

Resulting eq. 11=0.
What does this result show? (Art. 169.)

4. There are three persons. A, B, and C, whose ages are so re-

lated, that B is 6 years younger than A and 4 years older than

C; and \ of A's age increased by \ of C's, is equal to y'^ of B's,

increased by one year. Required their ages.

Resulting equation. 0=0.
If A's age was 15 years, B's was 9, and C's 5; if A's was 16,

B's was 10, and C's 6.

5. Given 2x—y=2,
5ar—3y=3,
3^+2y=17,

^^- ^3' y=4.

4a:+3y=24;
to find X and y, and show how many equations are redundant.

(Art. 169.)
6. Given a?+2y=ll,

2a;—y=7,
3a:—y=17,
07+3^=19;

to show that the equations arc incompatible. (Art. 169.)

V. AN EaUATION OF THE FIRST DEGREE HAS BUT
ONE ROOT.

Aet. lYO. In any equation of the first degree involving only
one unknown quantity (a;), if a represents the sum of the positive,

and —c the sum of the negative coefficients of x', b the sum of
11
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the positive, and —d the sum of the negative known quantities, it

will evidently reduce to the following form;

ax—0x^=^1)—d,

or (a—c)x=.h
—d.

Let a—c=mj and h—d=ni we then have

mx=n,

whence x^=—,m
Now since n divided by m can give but one quotient, we infer

that, an equation of the first degree has but one root; that is, in an

equation of the first degree, involving but one unknown quantity-,

there is but one value that will verify the equation.

VI. EXAMPLES INVOLVING THE SECOND POWER OF

THE UNKNOWN QUANTITY.

Art. ITl. It sometimes happens in the solution of an equa-
tion of the first degree, that the second or some higher power of

the unknown quantity occurs, but in such a manner that it is

easily removed, after which the equation may be solved in the

usual manner.

The following equations and problems belong to this calss.

1. (4.-\-xXx—d)=(ix—2y.

Performing the operations indicated, we have
a;2—a;—20=a;2—4a;+4 .

Omitting x^ on each side and transposing, we have

3a;=24, or x=S,

2. (?^±!>+JL=a:+l . Ans. x=.l .

2;r+l
' Sx

4:x 20--4a;__15
5—X X X

' Ans. x=3~

Scc^^2x+l__ax^2)iSx--S) , , .^.
g

__
-^_Q. Ans.x—i^^'

5 3+2^ 5+2x_^_ 4x^^2
^^^^ ^^,

l-f2a; l+2x 7+16a:+4a;2'
*

^'

6. i^ (2x--19)=2x+W. Ans. x=S.

7. 5a:-f-_ -J— =94- . Ans. a;=3 .^
4a:+3

^
2a;+3

8. ^^^!+^==ac+^, Av^.xJL.
bx b c*

a-\-bx e-\-fx' cf—^d'
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10. (fl+ar)(6+ar)—fl(&+c)=^^+a;2. Ans, a;=^.

11. It is required to find a number which being divided into

two, and into three equal parts, four times the product of the

two equal parts, shall be equal to the continued product of the

three equal parts. Ans. 27.

12. A rectangular floor is of a certain size. If it were 5 feet

broader and 4 feet longer, it would contain 116 feet more; but

if it were 4 feet broader and 5 feet longer, it would contain 113

feet more. Required its length and breadth.

Ans, Length, 12 feet; breadth, 9 feet.

CHAPTER VI.

FORMATION OF P OWERS—EXTRACTION
OF ROOTS—RADICALS—INEQUALITIES.
I. INVOLUTION OR FORMATION OF POWERS.

Art. 172. The power of a number is the product obtained by

multiplying it a certain number of times by itself.

Any number is the Jirst power of itself.

When the number is taken twice as a factor, the product is

called the second power or square of the number.

When the number is taken three times as a factor, the product
is called the third power or cube of the number.

In like manner, the fourth, ffih, &,c., powers of a number, are

the products arising from taking the numberfour times, j^ve times,

&c., as a factor, the power being always denoted by the number

of times the number is taken as a factor.

The number which denotes the power is called the index or ex"

ponent of the power, and is written to the right of the number
and a little above it.

Thus, 3=3»= 3,isthelstpower of 3.

3x3=32=r 9," «
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From the preceding we see, that the nth power of a quantity is

the product of n factors each equal to the quantity. Hence we have

the following

Rule for eaising a quantity to any required power. —3M-
ti'ply the given quantity by itself until it is taken as a factor as

many times as there are units in the exponent of the required

power.

Remark.— This rule is perfectly general, and applies either to mono-

mials or polynomials, whether integral or fractional.

EXAMPLES FOR PRACTICE.
1. Find the square of 6axh^. Ans. 25a'^x*z^,

2. Find the square of -^Sb^cd. Ans. Qb'^c^d^,

3. Find the cube of 2x^z. Ans. Sx^zK

4. Find the cube of —^a^c^, Ans, —21a^c^.

5. Find the fourth power of —^xz"^. Ans. IQx^z^.

6. Find the fifth power of —2>a^b\ Ans. —243aio5'^

7. Find the seventh power of —mH. Ans. —m^Hi^''.

8. Find the square and the cube of ^a^af^-^^yP'K

(1) Ans. T^ga^x^'^+YP-K (2) j^^a^x^'^+Y^^-

9. Find the square of a—x. Ans. a^—2ax-}-x^.

10. Find the square of mx—nx^. Ans. m^x^—2mnx^-\-n'^x'^ .

11. Find the cube of 2x—z. Ans. 8a:'—12x^z-^6xz^
—z^.

12. Find the cube of 3a;+2y.
Ans. 27x^+d4x^y+^6xy^+SyK

13. Find the fourth power of m—n.

Ans. m^~^m^n-^6mV—imn^-^-n"^.

14. Find the square of a-{-b
—c.

Ans. a^-\-2ab-{'b^—2ac—2bc-{-c\

15. Find the cube of a—b-]-c.

Ans.a^^^a'^b+^ab^—b^+Sa^c^eabc+Sb^c+^ac^-^bc^+cK
16. Find the square of a-]-b

—
C'\-d.

Ans. a^+2ab+b^-^2ac-^2bc+c^+2ad+2bd---2cd-}rd^.

17. Find the square of — Ans.—
V bz^' bh^'

18. Find the square of ?=?. Ans, ^'—^^^+^\
fl-j-x' a^-\'2ax-\-x^

19. Find the cube of ^ Ans. —,
cd^' cH^

20. Find the cube of — .
Ans.^ ,

3c8 27c9
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22. Find the square of la—lh Ans. ^s<^'^—loh+\h'^

23. Find the cube of |a—fi. Ans. la^^^^¥—la'^b-{-lab'^

24. Find the square of a;— 1—1. Ans, a;^-—2x+l+?—1
X x^ X

25. Find the cube of x—\, Ans. a;'—i-—3 ( a;— I )
X x^ \ X /

20. Find the cube of a?w—l. Ans. x^p^—Sx^J^+^af^—l
27. Find the cube of e^—e~'. Ans. e^*—g-^x—^(^^^^-xy

28. If a:+l=;7, show that x^+1 ==«3~3o.
X x^

29. If two numbers differ by unity, prove that the difference

of their squares is equal to the sum of the numbers.

SO. Show that the sum of the cubes of any three consecutive

integral numbers is divisible by the sum of those numbers.

Note.— For a more general method of raising a binomial to any re-

quired power, see the Binomial Theorem, Art. 310, page 264.

II. EXTRACTION OF THE SaUARE ROOT.

EXTRACTION OF THE SQUARE ROOT OF NUMBERS.

Aet. JL73, The root of a number, is a factor which multiplied

by itself a certain number of times will produce the given
number.

The second root or square root of a number, is that number which

multiplied by itself, that is, taken twice as a factor, will produce
the given number.

The process of finding the second root of a number, is called

the extraction of the square root.

Art. 174, To show the relation that exists between the num-
ber of figures in any given number, and the number of figures in

its square root.

The first ten numbers are

1, 2, 3, 4, 5, 6, 7, 8, 9, 10;
and their squares are

1, 4, 9, 16, 25, 36, 49, 64, 81, 100.

The numbers in the first line are also the square roots of the

numbers in the second line.

We see, from this, that the square root of a number between 1

and 4, is a number between 1 and 2; the square root of a num-
ber between 4 and 9, is a number between 2 and 3; the square
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root of a number between 16 and 25, is a number between 4

and 5, and so on.

Since the square root of 1 is 1, and the square root of any
number less than 100 is either one figure, or one figure and a frac-

tion, it is evident that when the number of places of figures in a

number, is not more than two, the number of places of figures in

tJie square root will be one.

Again, take the numbers

10, 20, 30, 40, 50, 60, 70, 80, 90, 100;
their squares are

100,400,900,1600,2500, 3600, 4900, 6400, 8100, 10000.

From this we see, that the square root of 100 is 10; and of

any number greater than 100 and less than 10000, the square
root will be less than 100, that is, it will consist of two places of

figures; hence, when the number of places of figures is more than

TWO, and not more than four, the number of places of figures in the

square root will be two.

In the same manner it may be shown, that when the number

of places of figures in a given number is more than/owr, and not

more than six, the number of places in the square root will be

three, and so on.

Or, as the same principle may be expressed otherwise, thus:—
When the number of places in the given number is either oTze- or

two, there will be one figure in the root; when the number of

places is either three or four, there will be two figures in the root;

when the number of places is either^ve or six, there will be three

figures in the root, and so on.

Art. 175» Investigation of a rule for extracting the square
root.

Every number may be regarded as being composed of tens

and units. Thus, 76 consists of 7 tens and 6 units; and 576
consists of 57 tens and 6 units. Therefore, if we represent the

tens by t, and the units by u, any number will be represented by

t-\-u, and its square by the square of t-\-u, or (,t-{-uy.

(^t+uy=t^-\-2tu+u^=t^+(2t+u)u.

Hence, the square of any number is composed of two quantities,

one of which is the square of the tens, and the other twice the tens phis
the units multiplied by the units.

Thus, the square of 25, which is equal to 2 tens and 5 units, ig

2 tens squared =(20)2=400
(4 tens -I-

5 units) multiplied by 5=(40-[-5)5==225
625
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1. Let it now be required to extract the square root of 625.

Since the number consists of three places 625 125
of figures, its root will consist of two places, 400

j

according to the principle established in Art. 20 X2=40 225
174; we, therefore, separate it into two pe- 5 225
riods, as in the margin. 45

Since the square of 2 tens is 400, and of 3 tens is 900, it is

evident that the greatest square contained in 600 is the square
of 2 tens (20); the square of 2 tens (20) is 400; and subtract-

ing this from 625, the remainder is 225.

Now, according to the preceding theorem, the remainder 225,
consists of twice the tens plus the units, multiplied by the units;

that is, by the formula, it is (2t-\-u)u, of which t is already found

to be 2, and it remains to find u. Now the product of the tens

by the units cannot give a product less than tens; therefore, the

unit's figure (5) forms no part of the double product of the tens

by the units. Hence, if we divide the remaining figures (22) by
the double of the tens (4), the quotient will be the unit's figure,

or a figure greater than it.

We, therefore, double the tens, which makes 4 (2/), and divide

this into 22, which gives 5 (u) for a quotient; this is the unit's

figure of the root. This unit's figure (5) is to be added to the

double of the tens (40), and the sum multiplied by the unit's

figure. The double of the tens plus the units. is 40+5=45
(2t-\-u); multiplying this by 5 {u), the product is 225, which is

the double of the tens plus the units, multiplied by the units. As
there is nothing left after subtracting this from the first remainder,

we conclude that 25 is the exact square root of 625.

In squarinof the tens, and also in doubling them, . .

625125
it is customary to omit the ciphers, though they u^ui^
are understood. Also, the unit's figure is added ^^^

to the double of the tens, by merely writing 451225

it in the unit's place. The actual operation is 1^^^

usually performed as in the margin.
2. Let it be required to extract the square root of 59049.

Since this number consists of five places of figures, its square
root will consist of three places. (Art. 174.) We, therefore,

separate it into three periods.
59049|243

1, we find the square
the same principle _

as in the preceding example.

In performing this operation, we find the square
root of the number 590, on the same principle _ 190

176

48311449
1449
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We next consider 24 as so many tens, and proceed to find

the unit's figure (3) in the same manner as in the preceding

example.
From these illustrations, we derive the following

Rule for the extraction of the square root of numbers.—
1 St Separate the given number into periods of two places each, be-

ginning at the unifs place. (The left period will often contain

but one figure.)

2nd. Find the greatest square in the left period, and place its root on

the right, after the manner of a quotient in division. Subtract

the square of the root from the left period, and to the remainder

bring down the next period for a dividend,

3rd. Dovhle the root alreadyfound, and place it on the left for a divi-

sor. Find how many times the divisor is contained in the divi-

dend, exclusive of the right handfigure, and place the figure in the

root and also on the right of the divisor.

4th. Multiply the divisor thus irvcreased by the last figure of the root;

subtract the product from tlie dividend, and to the remainder bring

down the 'next period for a new dividend.

5 th. Dovhle the whole root already found for a new divisor ^
and con-

tinue the operation as before, until all the periods are brought down.

Note.— If, in any case, the dividend will not contain the divisor, the

right hand figure of the former being omitted, place a cipher in the

root and also at the right of the divisor, and bring down the next period.

Art. lYG. In division of numbers, when the remainder is

greater than the divisor, the last quotient figure may be increased

by at least 1
; but in extracting the square root of numbers, the

remainder may, sometimes, be greater than the divisor, while the

last figure of the root cannot be increased. To know when any

figure may be increased, the pupil must be acquainted with the

relation that exists between the squares of two consecutive

numbers.

Let a and a-f-l , be two consecutive numbers.

Thus, (a-|-l)2==a2_j_2a-|-l, is the square of the greater,

and (ay=a^,
" " " " "

less.

Their difference is 2a-\-l.

From which we see, that the difference of the squares of two con-

secutive numbers, is equal to twice the less number, increased by

ttnity.

Consequently, when any remainder is less than twice the part

of the root already found, plus unity, the last figure cannot be

increased.
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EXAMPLES,
In extracting the square root of whole numbers.

7.553536. Ans.'lU.
8. 5764801. Ans. 24:01.

9. 43046721. At^^. 6561.

10. 49042009. Ans. 7003.
11. 1061326084. A7i5. 32578.

12.943042681. Ati^. 30709.

1. 2601. Ans. 51.

2. 7225. Ans. 85.

3. 9801. Ans. 99.

4. 47089. Ans. 217.

5. 138384. Ans. 372.

6. 390625. Ans. 625.

EXTRACTION OF THE SUUARE ROOT OP FRACTIONS.

Art. IVV, Since fX|=2%, therefore, the square root of .2S

is I ; that is V5'*5=J^=i-
He«^^'

When both terms of a fraction are perfect squares^ its square root

will he found by extracting the square root of both terms.

Before attempting to extract the square root of a fraction, it

should be reduced to its lowest terms, unless both numerator and

denominator are perfect squares. The reason for this will be

seen by the following example.
Find the square root of

|o.

Here |^=1^. Now, neither 20 nor 45, are perfect squares;

but, by canceling the common factor 5, the fraction becomes I, of

which the square root is f.

When both terms are perfect squares, and contain a common

factor, the reduction may be made either before, or after the

square root is extracted.

Thus, Vlf=|=|; or, |f=|, and J^=l
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squares between them. Thus, between the square of 5 (25) and

the square of 6 (36), there are 10 (2a=2x^) imperfect squares.

A root v;hich cannot be expressed exactly, is called a radical,

or surd, or irrational root. The root obtained is also called an

approximate valiie, or approximate root. Thus, ^2 is an irrational

root; it is 1.4144-.
The sign -]- is sometimes placed after an approximate root, to

denote that it is less than the true root; and the sign
—

, that it is

greater than the true root.

Art. 1'79. To prove that the square root of an imperfect

square cannot be a fraction.

Remark.— It might be supposed, that when the square root of a

whole number cannot be expressed by a whole number, that it might be

found exactly equal to some fraction. That it cannot, will now be

Bhown.

Let c be an imperfect square, such as 2, and, if possible, let its

square root be equal to a fraction ?, which is supposed to be in
b

its lowest terms.

Then aJc= -; and c=_, by squaring both sides.
b b^

Now, by supposition, a and b have no common factor, therefore

their squares, a^ ^^d b^, can have no common factor, since' to

square a number, we merely repeat its factors. Consequently,

— must be in its lowest terms, and cannot be equal to a whole

number. Therefore, the equation c=— , is not true; and hence
b^

the supposition on which it is founded is false, that is, the suppo-

sition that ^c= - is not tru£; therefore, the square root of an
b

imperfect square cannot be a fraction.

ArPROXIMATE SaUARE ROOTS.

Art. 180. To explain the method of finding the approximate

square root of an imperfect square, let it be required to find the

square root of 5 to within |.

If we reduce 5 to a fraction whose denominator is 9 (the square

of 3, the denominator of the fraction J), we have 5=-\^-.

Now the square root of 45 is greater than 6 and less than 7 i

therefore the square root of -V" is greater than |, and less than|;

hence |, or 2, is the square root of 5 to within 3.
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To generalize this explanation, let it be required to extract the

square root of a to within a fraction -.
n

We may write a (Art. 127) under the form ^, and if we de-

note the entire part of the square root of ari^ by r, the number

av? will be comprised between r^ and (r+l)^; therefore —-

will be comprised between — and ^ "^ ^
; hence the square

root of — will be comprised between - and !!lt-.

?i2 n n

But the difference between !^ and !llt- is _
,
therefore - rep-

n n n n

resents the square root of a to within — From this we derive
n

the following

Rule for extracting the square root of a whole number

TO WITHIN A GIVEN FRACTION. — Multiply the given number by

the square of the denominator of the fraction which determines the

degree of approximation; extract the square root of this product to

the nearest unit, and divide the result by the denominator of the

fraction.

EXAMPLES FOR PRACTICE.

1. Find the square root of 3 to within J. Ans, if.

2. Find the square root of 10 to within ^, Ans, 3.

3. Find the square root of 19 to within g. Ans. 4|.

4. Find the square root of 30 to within jj^, Ans. 5.4.

5. Find the square root of 75 to within j^q. Ans, 8.66.

Since the square of 10 is 100, the square of 100, 10000, and

60 on, the number of ciphers in the square of the denominator of

a decimal fraction, is equal to twice the number in the denomina-

tor itself. Therefore, when the fraction which determines the degree

of approximation is a decimal^ it is merely necessary to add two

ciphers for each decimal place required; and, after extracting the

square root, to point off from the right one place of decimals for each

two ciphers added.

0. Find the square root of 3 to five places of decimals.

An5. 1.73205.
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7. Find the square root of 7 to live places of decimals.

Ans. 2.64575.

3. Find the square root of 50. Ans. 7.071067+.
9. Find the square root of 500. Ans. 22. 360679+.

Art. 181. To find the approximate square root of a fraction.

1. Let it be required to find the square root of I to within 4*

Now, since the square root of 28 is greater than 5 and less

than 6, the square root of |f is greater than f and less than 4 J

therefore f is the square root of 4 to within less than 4-

From this it is evident, that if we multiply the numerator of a

fraction by its denominator, then extract the square root of the pro-
duct to the nearest unit, and divide the result by the denominator, the

quotient will be the square root of the fraction to within one of its

equal parts.

2. Find the square root of y'y to within ^j. Ans. -fj.

3. Find the square root of y| to within yg. Ans.
-}-|.

4. Find the square root of U to within ^x^. Ans. j%.

It is obvious that any decimal may be written in the form of a

common fraction, and having its denominator a perfect square, by

adding ciphers to both terms. Thus .3=y%=-/0^o; .156=yVcP(ftj»

and so on. Therefore, the square root of a decimal may be

found, as in the method of finding the approximate square root of

a whole number (Art. 180), by annexing ciphers to the given deci-

mal, until the number of decimal places shall be equal to double the

number required in the root. Then, after extracting the root, point-

ing off from the right the required number of decimal places.

5. Find the square root of .4 to six places. Ans. .632455-[-.
6. Find the square root of .35 to six places. Ans. .591607+.

The square root of a whole number and a decimal may be

found in the same manner. Thus, the square root of 1.2 is the

same as the square root of 1.20=y|§, which, extracted to five

places, is 1.09544+.
7. Find the square root of 7.532 to five places.

Ans. 2.74444+.

When the denominator of a fraction is a perfect square, its

square root may be found by extracting the square root of the

numerator to as many places of decimals as are required, and

dividing the result by the square root of the denominator.
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Or, by reducing the fraction to a decimal, and then extracting
its square root. When the denominator of the fraction is not a

perfect square, the latter method should be used.

8. Find the square root of /^ to five places.

V5=2.23606+, V16=4, V^=^^^-^-^^—55901+.
Or, /g=.3125, and V-3125=.55901+.

9. Find the square root of |. Ans, .774596-]-.

10. Find the square root of 1\. Ans. 1.11803+.
11. Find the square root of 3|. Aiis. 1.903943+.
12. Find the square root of llf . Am. 3.349958+.
13. Find the square root of -f^. Ans. 0.645497+.
14. Find the square root of 17|. Ans. 4.168333+.

EXTRACTION OF THE SQUARE ROOT OF ALGEBRAIC
aU ANTITIES.

EXTRACTION OF THE SQUARE ROOT OF MONOMIALS.

^ Art. 182, From Art. 172, it is evident that to square a

monomial, we must square its coefficient, and multiply the expo-
nent of each letter by 2. Thus,

(3 ?7i?i2)2_3^^2^ 3mn'^^^^mH^ .

Therefore ^dm^n^=Smn^. Hence, we have the following

Rule for extracting the square root of a monomial.—Ex^
tract the square root of the coefficient and divide the exponent oj

each letter by 2 .

Since +aX+^=+a2, —aX—a=+a^;
therefore, ^a^=-\-a, or —a.

Hence the square root of any positive quantity is either pliiSf

or minus. This is generally expressed by writing the double

sign before the square root. Thus, >y/4a2=zfc2a; which is read

plus or minu^ 2a.

If a monomial is negative, the extraction of the square root is

impossible, since the square of any quantity, either positive or

negative, is necessarily positive. Thus ,J
—4, jj

—
a^b^, J—^,

are algebraic symbols, which indicate impossible operations.
Such expressions are termed imaginary quantities. An example
of their occurrence always arises, in proceeding to find the value

of the unknown quantity in an equation of the second degree,
when some absurdity, or impossibility exists in the equation, or

in the problem from which it was derived.
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EXAMPLES FOR PRACTICE.

1. 16x^y^, Ans. zkAxy'^.

2. 2dmV, Ans. zt^rnn.

3. S6x^z^ Ans, d=6a;V.

4. Sla^b^c\ Ans. -^dahc^.

5. jn^x^y^z^. Ans^zmx^y^z*.
6. 1024a2i6^io. Ans. 32a¥zK

^'"'•(f)"=fx^:-:^''•'*•^/^:=^:=*l^
Hence, tofind the square root of a monomial fraction, extract tJw

square root of both terms.

7. Find the square root of . Ans. db—^ cW cd^

8. Find the square root of ^Vl^ Ans. ±-^

EXTRACTION OF THE SaUAEE ROOT OF POLYNOMIALS.

Art. 1§3, In order to deduce a rule for extracting the square
root of polynomials, let us first find the relation that exists be-

tween the several terms of any quantity and its square.

(^a+b+ c)2
= a2+ 2a6+ b^-]-2ac-\-2bc-\-c'^=a'^-^{2a'\-b)b-\-{2a

+26+c)c.
(a 4- b^c+ dy= a2 _|- 2ab-YP-\-2ac^2bc^c'^-{-2ad-\-2bd^2cd

4-c?2=a2_|_(2^_^5)5_|_(2a-j-2&-|-c)c+(2a4-26+2c+c/)(^.

Or, by calling the successive terms of a polynomial, r, r', r",

r'", and so on, we shall have {r-\-r'-\-r"-\-r"y=^r^'\-(^r-\-r')r'

4-(2r+2/+r")r"+(2r+2r'+2r"+r"')r"', where the law is

manifest.

In this formula, r, r', r'\ r'", may represent any algebraic quan-
tities whatever, either integral or fractional, positive or negative.

This formula gives the following law:

The square of any polynomial is equal to the square of the first

term — plus twice the first term, plus the second, multiplied by the

second — plus twice the first and second terms, plv^ the third, multi-

plied by the third— plus twice the first, second, and third terms, plus
the fourth, multiplied by the fourth, and so on. Hence, by reversing
the operation, we have the following

Rule, for extracting the square root of a polynomial.

1 St. Arrange the polynomial with reference to a certain letter; theji

find the first term of the root by extracting the square root of the

first term of the polynomial; place the result on the right, and sub'

tract its squarefrom the given quantity.



EXTRACTION OF THE SQUARE ROOT. 135

2nd. Divide the first term of the remainder hy double the part of the

root already found, and annex the result to both the root and the

divisor. Multiply the divisor thus increased by the second term

of the root, and sMract the product from the remainder.

3rd. Double the terms of the root already foundfor a partial divisor,

then divide the first term of the remainder by the first term of the

divisor, and annex the result to both the root and the partial divisor.

Multiply the divisor thus increased by the third term of the root,

and subtract the product from the last remainder. Then proceed in

a similar manner to find the other terins.

Remark.— If in the course of the operations in any example, we find

a remainder of which the first term is not exactly divisible by double

the first term of the root, we may conclude that the polynomial is not a

perfect square.

1. Find the square root of 4xy+12a:22/+9a;2—30a:^2__20a:z/3

+253/4.

Arranging the polynomials with reference to y, we have

ROOT.

25«/4—20a:?/3-f4ir23/2_30a:^2_j_i2a:2y+9a:2|5y2—2a?3/—3 a;

25y4

10y2«.2ary -^^Oxy^^^x'^y'^' —
20a:t/3-t-4a?y

lOy^-^xy—Sx --^0xy^+12x^y+9x^
-^0xy^+'^2x^y-\-9x^

The square root of the first term is dy^, which we write as the

first term of the root. We next subtract the square of 5y^ from

the given polynomial, and then divide the first term of the re-

mainder, —20xy^, by lOy^, which gives
—

2xy, the second term

of the root. We then place
—

2an/ in the root and also in the

divisor, and multiply the divisor, thus increased, by —2xy, and

subtract the product from the first remainder. We then double

5?/2
—

2an/, the terms of the root already found, for a partial divi-

sor, and divide the first term, lOt/^ of the divisor, into—30a?t/2, the

first term of the remainder, which gives
—3a; for the third term

of the root. Completing the division, multiplying by
—dx, and

subtracting, we find there is nothing left.

Note.— The first remainder consists of all the terms after the

first subtraction, and the second, of all the terms after the second

subtraction. It is useless to bring down more terms than have

corresponding terms in the quantity to be subtracted.

If the preceding example be arranged according to the powers
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«f X, the root found will be dx-{'2xi/
—

Sy'. This is correct, also^

AS may be shown generally, thus,

jj(polynomial)2=±(polynomial).
Thus, ^(a^+2ax+x^)=:J(^a+xy=:dt(a+x)=a+x or •

EXAMPLES FOR PRACTICE.

2. x^-^6ax-{-9a^. Ans. x-^-da.

3. 16a;2—40a^-f-25y2. Ans. 4a>~5y.
4. 4:X^z^—12xi/z-\-9y^, Ans, 2xz—3y.
5. 49a4"»-6--42a6"»-2-4-9a««+2. Atis. 7a2m-3_3a4m+i.
6. l+2x-y!x^+6x^+9x*. Ans, l+x+2x\
7. 9a^—12a^b+2Aa''b^'-^20ah^+2bb\ Ans. Sa^--'2ab-\-bb\
8. x^+4tx'+10x^+20x^+26x^+2^x+16,

Ans. x^-\-2x^-{-Sx+A.
9 . 9a?2—6x^+30xz+6xt+y^—l0yz^2yt+2bz^+1Ozt+P ,

Ans. 3a;—y-^bz-^-t,

10. x^^2x^+—^-+i. Ans. x^-^-x+i,
2 2 ^^ ^

4 3 "^9*
'

2 3'

12. x-^+^^x+^-^bx^-lah+^l Ans. x+^^-

13. l2^'^^^l^+9+A9x\ Ans. W^'^+S:25 5 5
^ ^^ 5^

16. Reduce the following expression to its simpler o form, and

extract the square root.

(^a-^y^2(a^+b^)(a-^y+2(^a*+¥). Ans. a^+b^.

17. Find the square root of 1—x^ to five terms.

Ans. 1—^—?!_^—.^~. &c.
2 8 16 128

18. Find the first five terms of the square roots of x^-{-a^, and

^2x 8a;3^16a;5 128a;7^

and X—a— &c.
2x 2x^ Sx^

Art. 184.. The following remarks will be found useful.

1st. No binomial can he a perfect square; for the square of a

monomial is a monomial, and the square of a binomial is a tri-
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nomial. Thus a^-{-b^ is not a perfect square, but if we add to it,

or subtract from it, 2ab, it becomes the square of a-\-h or of a-^h.

2nd. In order that a trinomial may be a perfect square, the two

extreme terms must be perfect squares, and the middle term the

double product of the square roots of the extreme terms. Hence,

to find the square root of a trinomial when it is a perfect square,

extract the square roots of the extreme terms, and unite them by the

sign plus or minus, according as the second term is plus or minus.

Thus, a^"*—4a"»+"-f-4a^" is a perfect square, since Ja'^'^=a^3

^4a2n=2a", and -|-a"»X—2a"X2=—4a"*-f ". But 4072+80:3^+9^2
is not a perfect square, since jJ4,x^=2x, jJ9y^z=Sy, and 2xX^!/

X2=12o7y, which is not equal to the middle term Sxy.

III. EXTRACTION OF THE CUBE ROOT.

EXTRACTION OF THE CUBE BOOT OF NUMBERS.

Art. 185. The cvhe or third power of a nuniber, is the pro-

duct arising from taking it three times as a factor. (Art. 172.)
The cyi)e root, or third root is one of three equal factors into which

it may be resolved; hence, to extract the cube root of a number, is

to find a number which, taken three times as a factor, will produce
the given number.

Art. 186, To show the relation that exists between the num-

ber of figures in any given number, and the number of figures in

its cube root.

The first ten numbers and their cubes are:

roots, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10;

cubes, 1, 8, 27, 64, 125, 216, 343, 512, 729, 1000.

The numbers in the second line are the cubes of those in the

first; and, reciprocally, the numbers in the first line are the cube

roots of those in the second. We see from this that the cube of

a number consisting of one place, of figures, does not exceed

three places.

Again, comparing the numbers 10 and 100 with their cubes,

we have,

numbers, 10, 100;

cubes, 1000, 1006006.

Since the cube of 10 is i006, and the cube of 99, which is

less than 100, is less than iOOOOOO; therefore, the cube of a

number concisting of two places of figures, has more than three

places and not more than six places of figures.
12
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Again, since the cube of 100 is 1000000, and the cube of

1000 is iOOOOOOOOO; therefore, the cube of a number consist-

ing of three places of figures has more than six places, and not

more than nine places of figures. Therefore, if we begin at the

unit's place of a number, and separate it into periods of three

places each, the number of periods will show the number of places
of figures in the root. The left period will often contain only
one or two figures.

Art. 187. To investigate a rule for the extraction of the cube

root. •

The first step in this investigation is to show the relation that

exists between any number composed of units and tens, and its

cube.

Let t= the tens and u= the units of a given number.

Then t-\-u= the number,
and (t-\-uy= the cube of the number.

Hence, the cube of any number consisting of tern and units, is

equal to the cube of the tens,
—

plus three times the square of the tens,

plus three times the produx^t of the tens and units, plus the square of
the units, all three multiplied by the units.

With this principle, let us proceed to extract the cube root of

13824.
. tu

13824|24
8
—

3/2=1200
Stu= 240
u^= 16

1456

5824

5824

We commence, by separating the number into periods, by

placing points over the figures in unit's and thousand's places;

and as there are two periods, there will be two figures in the root.

We find the greatest cube in 13 (thousand), which is 8 (thousand);

the cube root of this is 2 (t); and its cube, 8 (thousand), corres

ponds to i^ in the formula.

We then subtract this from the given number, and find a re

mainder 5824, which corresponds to (^t^-\-^tu-]-u^)u in the for-

mula. The first term, 3/^, of this formula, is sometimes termed

the trial divisor, as it is used to find the unit's figure u.

If the remaining terms were only St^u, we could readily find u

by dividing by 3^^^ |)ut if we divide by 3/^, we may obtain a figure
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too large, on account of omitting the terms 2tu-\-u^, of which u
is as yet unknown. But if we first obtain a figure too large, at a

second trial we must take one that is less.

Since the square of tens is hundreds, therefore, in using three

times the square of the ten's figure as a trial divisor, we must

omit the figures (24) in the unit's and ten's places of the

dividend.

In this case we find 12 is contained in 58 four times. This

gives 4 (u) for the required unit's figure, and we now proceed to

oomplete the divisor by first adding to 2t^, three times the pro-
duct of the tens by the units (3/?^), and writing the product in

ten's place, since the product of tens by units gives a pro-

duct of tens. We next write the square of the unit's figure

(u-)f and then taking the sum, find the complete divisor 1456,
which corresponds to SP-\-Stu-{-u^. Multiply this by 4 (u)
the product is 5824, which subtracted from the first remain-

der leaves zero (0), and shows that 24 is the exact cube root

required.

In cubing the tens, it is customary to omit the ciphers; but in

taking three times the square of the tens, also in taking three

times the product of the tens by the units, it is best to write

ciphers in the vacant orders.

2. Let it be required to find the cube root of 44361864.

. htu
443618641354

•

27

3/^2=2700
2ht= 450
^2= 25

3175

17361

15875

3(A+02=367500
3(A-f-0^= 4200

u^= 16

371716

1486864

1486864

After separating the number into periods, we find the cube root

(35) of 44361 on the same principles as in the preceding example.
Then considering 35 (lO/t+O as so many tens, we find the unit's

figure (4), as in the preceding example.

In dividing by the trial divisor 27, to find the second figure (5),
we first obtain 6, but as this is found by trial to b(> too large, we
take a less number.
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From the preceding we derive the following

Rule for the extraction of the cube root of numbers.—
1 St. Separate the given number into periods of three places each, begin'

ning at the uniVs place, (The left period will often contain but

one or two figures.)

2nd. Find the greatest cube in the left period, and place its root on

the right, as in division, Subtract the cube of the root from the

left period, and to the remainder bring down the next period for a

dividend.

3rd. Square the root already found, and multiply it by S for a trial

divisor. Find how many times this divisor is contained in the

dividend, omitting the unites and ten's figures, and write the result

in the root. Add together, the trial divisor with two ciphers an/*

nexed; three times the product of the last figure of the root by the

rest, with one cipher annexed; and the square of the last figure; tJw

sum will be the complete divisor,

4th. Multiply the complete divisor by the last figure of the root, and

subtract the product from the dividend, and to the remainder bring
down the next period for a new dividend, and so proceed until all the

periods are brought doum.

Extract the cube root of the following numbers.

3. 12167. Ans. 23
4. 39304. Ans. 34
5. 493039. Ans. 79.

6. 2097152. Ans. 128.

7. 14348907. Ans. 243.

8. 43614208. Ans. 352.

9. 127^63527. Ans. 503.

10. 403,683419. Ans, 739.

11. 1883652875.
Ans. 1235.

12. 158252632929.
Ans. 5409.

Since a fraction is cubed by cubing its numerator and denomi-

nator, therefore, the cube root of a fraction may be found by ex-

tracting the cube root of both terms, the fraction being in its

lowest terms before commencing the operation, for reasons similar

to those given in Art. 177.
13. Find the cube root of y%%. Ans. f . .

14. Find the cube root of ^VA* -^^^' I-

Art. 188, a number whose cube root can be exactly ascer-

tained is Si perfect cube. Thus, 8, 27, 64, &c., are perfect cubes.

These numbers, like perfect squares, are comparatively few.

A number whose cube root cannot be exactly ascertained is

termed an imperfect cube. Thus, 2, 3, 4, &c., are imperfect cubes.

It may be shown, by a course of reasoning precisely similar to

that employed in Art. 179, that the cube root of an imperfect cube

cannot be a fraction.
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-^'^APPROXIMATE CUBE ROOTS.

Art. 189. To illustrate the method of finding the approxi-

mate cube root of an imperfect cube, let it be required to find the

cube root of 6 to within -},

Reducing 6 to a fraction whose denominator is 64 (the cube of

4 the denominator of the fraction :|), we have 6=-^g\^-.

Now the cube root of 384 is greater than 7 and less than 8;

therefore the cube root of ^^:^- is greater than J and less than |;

hence | is the cube root of 6 to within less than |.

To generalize this method, let it be required to extract the

cube root of a number a, to within a fraction -.
n

Let r be the root of the greatest cube contained in an^; then

.— is comprised between and ^ '^ ^
.

; hence its cube root is

72,3
^

y^3 ^3

comprised between - and "*
.; and since the difference of these

n n
1 r . 1

fractions is ^, therefore _ is the cube root of a to within -.

n n n
From this we derive the following

Rule for extracting the cube root of a whole number to

WITHIN A given FRACTION.— Multiply the given number by the

cube of the denominator of the fraction ivhich determines the degree

of approximation; extract the cube root of this product to the nearest

unit, and divide the result by tJw denominator of the fraction.

2. Find the cube root of 5 to within |. Ans. If.

3. Find the cube root of 10 to within g. Ans. 2|.

Since the cube of 10 is 1000, the cube of 100, 1000000, and

so on, the number of ciphers in the cube of the denominator of

a decimal fraction, is equal to three times the number in the de-

nominator itself. Therefore, when the fraction which determines

the degree of approximation is a decimal, it is merely necessary to

add three ciphersfor each decimal place required; and after extracting

the root, to point off from the right one place of decimals for each

three ciphers added,

4. Find the cube root of 2 to five places. Ans. 1.25992.

5. Find the cube root of 9 to five places. An^. 2.08008.

6. Find the cube root of 37 to six places. Ans. 3.332222.
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By adding ciphers to both terms, any decimal may be written

in the form of a fraction, having its denominator a perfect cube;

thus, .2=f\Po^(J> •25=yVA> ^^^ so on. Therefore the cube root

may be found, as in the preceding examples, hi/ annexing ciphers

to the given decimal, until the number of decimal places shall be equal

to three times the number of decimal places required in the root.

Then, after extracting the root, pointing offfrom the right the required

number of decimal places,

I. Find the cube root of .4 to four places. Ans, .7368.

8. Find the cube root of .25 to five places. Ans. .62996.

The cube root of a whole number and a decimal may be found

in the same manner. Thus, the cube root of 6.4, is the same as

the cube root of f^gg, which is 1.85663+.
9. Find the cube root of 12.5 to five places. Ans. 2.32079.

10. Find the cube root of 34.3 to six places. Ans. 3.249112.

To find the cube root of a fraction or a mixed number, reduce

tht fraction to a decimal, and then proceed as in the preceding

examples.

I I . Find the cube root of |. Ans. .82207+.
I '^. Find the cube root of 5-]-g|. Ans. 1.816+.
13. Divide the cube root of ^W^^H^ by the square root of the

square root of 8.3521. Ans. .25.

14. Add together the cube roots of .059319 and 4.173281;
and multiply the sum by the square root of 105yg. Ans. 20.5.

EXTRACTION OF THE CUBE ROOT OF ALGEBRAIC QUANTITIES .

EXTRACTION OF THE CUBE ROOT OF MONOMIALS.

Art. 190. If we cube a monomial, for example, 2ax^, we
have

(2axy==2ax^X2ax^X2ax^==2^aV>^^=:Sa^x^.
That is, to cube a monomial, we must cube the coefficient, and

multiply, the exponent of each letter by 8. Hence, by a converse

operation we have the following

Rule for extracting the cube root of a monomial.— Extract

the cuhe root of the coefficient, and divide the exponent of each

letter by 3.

Find the cube root of each of the following monomials.

1. Qs^z^. Ans.2xz^.

2. 27a;V5 Ans. 2xY.
3. -Sa^. Ans. —2a^.

4. —64:a^m^. Ans. —iam^.

5. a3m4-3c-j,5. Ans. a"' + <=ar2,

6. -—aj^H^s. Ans. --ocsmz^.
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Since ( ?
) =?x-X-=-; therefore,

« K, a

""b

Hence, to find the cube root of a monomial fraction, extract the

cxihe root of both terms.

7. Find the cube root of
. Arts. —

8. Find the cube root of— .51^V_ j^^s,— ^'
l2bmH^ bmn^'

EXTRACTION OF THE CUBE ROOT OF POLYNOMIALS.

Art. 191. To investigate a rule for extracting the cube root

of polynomials.

Let us first examine the relation that exists between a poly-

nomial and its cube.

{a+ b-\-cy=\{a-\-b)^cY= {a-\-by-{- \
3 (^+5)^+3 {a-\-b)c

\
3(a+6+c)2+3(a+&+ c)d-\-d^ \

d.

Hence, the cube of a polynomial is formed according to the

following law :

The cube of a polynomial is equal to the cube of the first term—
plus three times the square of the first term, plus three times tlie pro-

duct of the first term by the second, plus the square of the second, all

three multiplied by the second—plus three times the square of the first

two terms, plus three times the product of the first two terms by the

third, plus tlie square of the third, all three multiplied by the third*

and so on.

From this law, by reversing the process, we derive the fol-

lowing

Rule for the extraction of the cube root of a polyno-

mial.— 1st. Arrange tite polynomial with reference to a certain

letter. Extract tJie cube root of thefirst term, this will give thefirst

term of the root, and subtract its cubefrom the given polynomial.

2nd. Take three times the square of thefirst term of the root, and call

it a trial divisor for finding each of the remaining terms of the

root. Find how often the trial divisor is contained in thefirst term

of the remairider, this will give the second term of the root. Tlien

form a complete divisor by adding together three times the square of
thefirst term of the root, plus three times theproduct of thefirst term by

the second, plus the square of the second. Midtiply these by Vie
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second term of the root and subtract the product from the first

remainder.

3rd. Again find how often the trial divisor is contained in the first

term of tJie remainder, this will give the third term of the root.

Then form a complete divisor as before, by adding together three

times the square of the first and second terms, plus three times the

product of the first and second terms by the third, plus the square

of the third. Multiply these by the third term of the root and sub-

tract the product from the last remainder.

4 th. Continue this process till all the terms of the root arefound.

Note.— The remainder in each case, is all the terms left after each

subtraction.

1. Find the cube root of x^—ex^+12x^+2a^x^Sx^—-12a^x^
+l2a^x^-+2aV-Sa'x+a^.

x^^6x^+l2x^+^a^x^—Sx^—l2a^x^-i-l2a^x^Jr'^a^x^—da'x+a^
x^ \x^-^2x+a^

3^4__6a;3+4a?2)—6a:5+12a;4—8a;3

—6x^+'^2x^'Sx^

2x^—12x^+l2x^-\-^ a'^x^—6a''x+a'^)+^a^x'-^l2a^x^+'^2aV

To bring the work within the page, the last •--• _„„..-__'
remainder and subtrahend are each written in

two lines.

J^2a^x*—12a^x^-\-12a^x^
4-3a4^2_6 a'^x+a^

"We first extract the cube root of x^, which gives x^ for the

first term of the required root. Then 3 times the square of this,

3(a;2)2=3a;4, constitutes the trial divisor for finding the remaining
terms. To find the second term of the root we divide 3a:'* into

—Qx^, the first term of the remainder, which gives
—2x, the sec-

ond term of the root. We then form the complete divisor by-

adding together ^ixy+S(xX—2x)+('^2xy=Sx^—6x'+4x\
Multiplying this by the second term,—2x, and subtracting the pro-

duct from the first remainder, the first term of the second remain-

der is '^Za^x'^, which, divided by the trial divisor, gives -\-a^, for

the third term of the root. We next find the complete divisor by

adding together S(ix^^2xy+ ^ix^^2x)a^+ (ay=dx^-—12x^
^12x^+2 a^x^~-6a^x+a\ Multiplying this by a^ and subtract-

ing, there is no remainder ; hence the root obtained is exact.

Find the cube root

2. Of a^+24:a''b+l92ab^+bl2bK Ans. a-\-8b.

3. Of Sa^SAa^x+294:ax^-^M2xK Ans. 2a-—Ix.

4. Of a«—6a5+15a4—20a8+15a2—6a+l.
Ans. a"^—2a-\-\, .
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5. Of a;«—9a;5-f39a;''—99a;3+156a;2—144a?+64.
Ans. x^—3a:-|-4.—

6. Of (a+l)6"a:3—6caP(a+l)4"a;24-12c2a2^(a+l)2"a:—8c3a3p

Ans, {a-\-\y-'^x—2caP,

7. i^ind the first three terms of the cube root of 1—x.

Ans. 1—5—?!—&c. ^
3 9

IV. EXTRACTION OF THE FOURTH ROOT, SIXTH
ROOT, N^^ ROOT, &C.

Art. 192. The fourth root of a number is one of four equal

factors, into which the number may be resolved ; and in general,
the n^^ root of a number is one of the n equal factors into which

the number may be resolved.

When the degree of the root to be extracted is a multiple of

two or more numbers, as 4, 6, &c., the root can he obtained by ex-

tracting the roots of more simple degrees.

To explain this we remark, that

and in general

Hence, the n*^ power of the id}^ power of a number, is equal to

the mn^^ power of the number.

Reciprocally, the mn^'^ root of a number, is equal to the n^ root

of the m^^ root of that number ; that is

To prove th^'s, let *ij1!^a=a^ ;

raising both members to the n^ power, we have

and by raising both members of the last equation to the ot'*

power, a=a'"»» ;

extracting the mn^^ root of both members,

But, by supposition y'^a^a* ;

therefore, '^Ja=y^^,
It may be proved similarly, that "V^=aI/V^-

From this it follows that X/a=\jya; and ^/a^^yj tja, or

\iya; in like manner ^a=\fA/^fl?, and so on.

13
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EXAMPLES FOR IRACTICE.

1. Find the 4th root of 65536. Ans, 16.

2. Find the 4th root of 1500625 Ans. 35.

3. Find the 4th root of 13107,9601. Ans, 10-7.

4. Find the 6th root of 29859^^ . A7i5. 12.

5. Find the 6th root of 11390625. Ans. 15.

6. Find the 8th root of 214358881. Ans. 11.

7. Find the 4th root of 81 aV. Ans. Sax^'

8. Find the 4th root of l^jVl, An^. ^\
0. Find the 4th root of a^-\'^a^hx-\-^a:^}Px^-\-^ab'^3?-\-'b^xK

Ans. a-\hx,

10. Find the 4th root of ^+i^+?!'-(-!^4-6. Ans. ?+^.

11. Find the 4th root of a8--4x«+10a;4—16a:?+l9—15+1^
x^ x^

^i-!-L 1
a;8

'

a;8- Ans. a;2--l+_-.
x^

12. Find the 6th root of a^-\^^ [ a^+L \ -fl5
(
a^-^^- \

—20. 1
Ans. a—_.

a

Akt. 193, It has been shown already (Arts. 182, 183,) that

the square root of a monomial, or a polynomial, may be preceded
either by the sign -}-> or —

; we shall now explain the. law in

regard to the roots generally.

If we take the successive powers of +«, we have

4-a, 4-a2, ^^3^ J^f^^^

the successive powers of —«, are

—
tf, +«^ —a', +aS . . . ^-a^'*, ^a?^-^\

From this we see that every evm power is positive, and that an

oM power has the same sign as the root.

In general, let n be any whole number, then every power of

an even degree, as 2?^, may be considered as the r^^ power of

the square, that is, a?'^-={a?y^*

Hence, e'^^ery power of an even degree is essentially positive^

whether the quantity itself he positive or negative.

Thus, (±3ffl)^=4-81aS- i±:2b^y=z+QWK
Again, as every power of an odd degree (2n-{-l) is the product

of a power of an even degree, 2n, by the first power, it follows,
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that every power of an uneven degree of a monomial has the same

sign as the monomial itself.

Thus, (-\-2ay=+8a^, (—2ay=—SaK
Hence, it is evident,

1 St. That every odd root of a monomial must have the same sign
as the mxmomial itself.

Thus, s/+8a3=+2a, %f^^^z=—2a, «/—32aio=—2a2.

2nd. That an even root of a positive monomial may he eitJier posi-

tive or negative.

Thus, iJSla'¥=±:dab\ X/Q^a'^==±:2a^.

3rd. That every even root of a negative monomial is impossible ;

since no quantity raised to a power of an even degree can give

a negative result. Thus, ij
—

a*, ^—b, jj
—

c, are symbols of

operations which cannot be performed. They are imaginary

expressions like ^—a, ,J^^, (Art. 182.)

TO EXTRACT THE N^^ ROOT OF A MONOMIAL.

Art. 194. In raising any monomial to the n^ power accord-

ing to the rule. Art. 172, it is obvious that the process consists

in raising the numeral coefficient to the n^^ power, and multiply-

ing the exponent of each letter by n, thus, (2a^by=2a'^VX'^a^b^
X2a^^=2^a^x^b*x3—Sa^b^K

Hence, conversely, to find the n^^ root of a monomial,

Extract the n'* root of the coefficient, and divide the exponent of
each letter by n.

Remark.— In the following examples, the pupil is expected to find

the root of the numeral coefficient by inspection, as we have given no
rules for extracting the 5th, 7th, &c., roots of numbers. Indeed, in the

present state of science such rules are useless, for when the operations
are required they are readily performed by means of Logarithm*.

1. Find the 5th root of —32a5a;io. Ans. —2ax^.

2. Find the 6th root of '729b^c^K Ans. ±.ShcK

3. Find the 7th root of 128a;Y^ Ans. 2xy^.
4. Find the 8th root of 65eia^b^^. Ans. dt^ab\
5. Find the 9th root of —512x^z^^. Ans. —2xzK
6. Find the 10th root of 10245^^^ Ans. ±2Jz3.

7. Find the m'^ root of ay^c"^. Ans,
bc'f{'lfa).

8. Extract ;;ya^^W". Ans. a^bcK
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V. RADICAL aUANTITIBS.

JloTE.—These quantities are generally called surds by English writers ;

while the French more properly term them radicals, from the Latia

word radixf
a root, because they express the roots of quantities. The

Germans also distinguish them by a synonymous term, vmrzd ^rossen,

(root quantities).

Art. 195. A rational quantity is one either not affected by the

radical sign, or of which the root indicated can be exactly ascer-

tained ; thus, 2, o, ^4, and J/8 are rational quantities.

A radical quantity is one of which the root indicated cannot be

exactly expressed in numbers ; thus, ^5 is a radical ; its value is

2.23606797 nearly.

Radicals are frequently called irrational quantities, or surds.

Art. 196. From Art. 193 it is evident that when a monomial

is a perfect power of the n^^ degree, its numeral coefficient is a

perfect power of that degree, and the exponent of each letter is

divisible by n. Thus Aa^ is a perfect square, and Sa^ is a per-

fect cube ; but 6a^ is not a perfect square, because 6 is not a per-

fect square, and 3 is not divisible by 2
; also, 8a'* is not a perfect

cube, for, although 8 is a perfect cube, the exponent 4 is not

divisible by 3.

In extracting any root, when the exact division of the expo-

nent cannot be performed, it may be indicated by writing the

divisor under it in the form of a fraction. Thus, Ja^ may be

written a^, and ^a'* may be written a^ ; and in general the w'*

root of the m^* root of any quantity, is expressed either by \fa'^,
m

or fl'».

Since a is the same as a^ (Art. 19), the square root of a may

be expressed thus, a* ; the cube root thus, a» ; and the n^ root

thus, a". Hence, the following expressions are to be considered

equivalent :

tja and a*,

5/a and a^,

*jja and a".
t

Also, %/a^ and a^,

^^a"^ and a^'

From this we see, that the numerator of the fractional eocponent

denotes the power of the quantity ^
and the denominator the root of thai

power to he extracted.
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Art. 197, Theorem. Any quantity affected with a fractional

exponent, may be transferred from one term of a fraction to the other,

if at the same time, the sign of its exponent he changed. This pro-

position has already been established (Art. 81) when the ex-

ponent is integral ; we will now prove it when the exponent is

fractional.

1
Let it be required to extract the cube root of —3, and of its

equivalent a~^.

To extract the cube root of a fraction, we extract the cube root

s /T_i
of each term (Art. 190), hence, \/~2~"^- But, to extract the

cube root of ar^ we must divide the exponent—2 by 3 (Art.

194), hence,

Similarly, —=a~"*.
a"*

Extracting the n^^ root of each side,

m
^"

which establishes the theorem.

Art. 198. The quantity which stands before the radical sign
is called the coefficient of the radical. Thus, in the expressions

a^h, and 23/c, the quantities a and 2 are called coefficients.

Radicals are said to be of the same degree when they have the22 — —
same index ; thus, a^ and 5^, or IJ a"^ and ^5 2, are of the same

degree.

Similar radicals are those which have the same index, and the

same quantity under the radical sign ; thus, ajh and cJJ) are

similar radicals ; so, also, are 2>%Ja'^ and 5^a^.

REDUCTION OF RADICALS

Case I.— To reduce radicals to their most simple form.

Art. 199. Reduction of radicals consists in changing the form

of the quantities, without altering their value. Reduction of

radicals of the second degree is founded on the following prin-

ciple :
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The square root of the product of two or more factors is equal to

the product of the square roots of those factors :

That is, Jah=JayitJh ; which is thus proved ;

{Jaby=ab,
And (VflX V'^)'=(V«^X V^)X(>/^X ^/^)=^/^X J^ X

^bX^bz=ab.

Hence, tjab and ^Ja^Jb, are equal to each other ; since the

square of each is equal to ab.

By this principle, ^26=^4X9=2x3; ^144=^^X16
=3X4.
Any radical of the second degree can be reduced to a more

simple form when it can be separated into factors, one of which

is a perfect square.

Thus, V8=J4X2=V4XV2=2V§.

J2Sa^^=V4aVX'7a=V4^'X sj'^a—2acj7a.

Hence, we have the following

Rule for the reduction of a radical of the second degree

TO its simplest form. 1st. Separate the quantity to be reduced,

into two parts, one of which shall contain all the factors that are

perfect squares, and the other the remaining factors,

2nd. Extract the square root of the part that is a perfect square, and

prefix it as a coefficient to the other part placed under the radical

sign.

To determine if any quantity contains a numeral factor that is

a perfect square, ascertain if it is divisible by either of the per-

fect squares 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, &c. If

not thus divisible, it contains no factor that is a perfect square,

and the numeral factor cannot be reduced.

Reduce to their simplest forms, the radicals in each of the fol-

lowing

EXAMPLES FOR PRACTICE.

1. V12, n/18, V45, V32, V^OaS J'72a^bK

Ans. 2^3, 3^2, 3 J5, 4^2, 5a^'2i, 6ahJ2b.

2. ^245 ^448, ^^10, JbOUh^, J1805a'b\

Ar^ 7^5, SjY, 9V10, ISbcJSb, 19a^hJ5
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In a similar manner polynomials may sometimes be simplified.

Thus,

J(3a3__6a2c-|-3ac2)=^3<a2_2ac+c2)=(a—c)V3a.

3. sj {a^—a'^h), Jax^-^^ax-\-Qa, sj(x^—y^){x+y).

Ans. aJ {a—h), (x—3)^/^, (x-{-y)J(a:—y).

To reduce a fractional radical to its most simple form by the

same principle : Render the denominator of the fraction a per-

fect square by multiplying or dividing both terms by the same

quantity. Then separate the fraction into two factors, one of

which is a perfect square. Extract the square root of this fac-

tor, and write it as a coefficient to the other factor placed under

the radical sign.

4. Reduce ^^, and . p, to their simplest forms.

5. Vl s/h ^hh 6^/T'2' SOVyV 18J^.
Ans. y\ ijQ, |V2, ^/3, 3 J30, | jTO.

6 /Z ^ P^ { ^^ \
^

'

\T' \Eb' V4.c^y \ 98z4 /
'

Art. 200. To reduce radicals of any degree to the most sim«

pie form.

The principle of Art. 199 may be generalized thus :

The n^^ root of the product of two or more factors^ is equal to the

prodiLct of the n'^ roots of those factors.

That is, ']Jab=yaX\f'b ; which is thus proved :

(JJahY'=ab ;

and (Va^XV^)"=(V«)"X(V^)"=a&.
Since the n^^ powers of these expressions are equal, tlie quanti-

ties themselves are equal, that is,

^^'ab=yaXVb.
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1. Reduce ^54 to its most simple form.

8/54=V27X2=3/27X V5=3 s/2.

Similarly, V"|=V|X|X|=Vi|=V2^^Xl8=i V18-

Hence, for the simplification of monomial radicals, we have the

following

General rule.— Separate the quantity into two factors, one of
which is a perfect power of the given degree ; extract its root and

prefix the result as a coefficient to the other factor placed under the

radical sign.

Reduce the radicals in each of the following examples to the

most simple form :

2. V^40, %IQOa'h\ USlc\ V128aV, %JlQ2m'n\

Ans. 23/5j 2ah%fl0a^, 3c8/3c, 4^a^c^2c^y 2mn%/6mn^.

3. V320, 8/2808, ^Ja'b^ X/^2, jJlU, jjT28.

Ans, 4 3/5, 6V"T3, ab^'a^, 2^/2, 24/9, 2V4.

4. Vl, VT, VI, Vl, Vh ill^'

Ans. ixfl, 1%IQ, 1^36, lljlb,
i V^, 1^45.

5. t/162, 4/'768, i/1250, V3888.

Ans. 3V2, 4V3, 5^2, 6^3.

6. V64a5, 4/320^6% %J^SmH\ X/'j,

Ans. 2ai/U, 2ahiJ2ab^, 2mH%fZn, \ij'bi.

7. y64, U12^a\ fJl, «/|, V|.
Ans. 2V"2", 3flV3^, ^^32, \%j'4M:{ijl^.

Art. 201. Since the mn^^ root of a is equal to the m^^ root of

the n^^ root, or the tz^^ root of the m^^ root (Art. 192), therefore the

mn^^ root of any algebraic expression may be simplified when it

is a complete power of the m^* or n^^ degree.

Thus, iJ9a^=yi^9a^=J2a.

Also, ^a2__2ai+62=yVa2_2a5+62==8/^Z:j.

In general, *"'i|/^"==' \f y«"=V^.
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Reduce each of the following radicals to its most simple form :

1. V36a2c2, iJQ\mH\ %J2ba'h\ fj4:aK

Arts, JQaCf Zn^m, a^bh, %]2a.

2. ^IGflV, %/2'7a\ %l\2bh\ %JQ^a}.

Ans. ^I^, V3fl, Jbby 2j^.

Case II. To reduce a rational quantity to the form of a rad-

ical.

Art. 202.— If we square a, and then extract the square root
2

of the square, the result is evidently a ; that is, a=tja^=a^'

In like manner the cuhe root of the cube of a, is a; that is,

m
Generally, a='iya"^=a"»'

Hence, to reduce a rational quantity to the form of a radical of

any degree, we have the following

Rule.— Raise the quantity to a power corresponding to the given

root, and lorite it under the radical sign.

E X AM PLE S.

1. Reduce 6 to the form of the square root. Ans. J^Q.
2. Reduce 2 to the form of the cube root. Ans. %/S.

3. Reduce 2ax to the form of the square root. Ans. J^aV.
4. Reduce —3a to the form of the cube root.

Ans. %l^21a\ or (—27a3)5*
5. Reduce m—n to the form of the square root.

Ans. tjm?
—

2mn-\'n^.

By the same principle the coefficient of a radical may be passed
under the radical sign.

Thus, 2 ^"3=V^X n/3=V1^.

So, also, a^b=Ja^X Jb=: tja^b.

Generally a'liJ'b='^~a^'^X'^b='liJ^.

6. Express ZaJQ entirely under the radical sign. Ans. ^JdA,

7. Express 5^7, and a^^b, entirely under the radical sign.

Ans. ^/175, and ^a^b.
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8. Pass the coefficient of the quantity 2^/5, under the radical

sign. Ans, 2/40.

Case III.—To reduce radicals having different indices to equiva-
lent radicals having a common index.

Art. 203. Since '];/G=^J^a" (Art. 192), or an>=a^^^ (Art.

118) ; therefore, we may multiply the index of a radical by a?iy

numher, provided we elevate the quantity under the sign to a power of

the same degree denoted ly the radical. This is really only multi-

plying both terms of the fractional exponent by the same num-

ber, which does not change its value. (Art. 118.)

Let it be required to reduce 5/2«> and Xj^h, or (2a)
^ and (3Z>)*

to quantities of equal value, having the same index.

Reducing the fractional exponents to the same denominator, we

haveA=/2» andl=33^; hence, (2a)* =(2a)T\ or ^\l{2a)\ and

(3?,)i=(3Z;)A or 'VW?-
Hence, we have the following

Rule.— Reduce the fractional exponents to a common denominator ;

then the numerator of each fraction will represent the power to which

the corresponding quantity is to be raised, and the common denom-

inator the index of the root to be extracted.

EXAMPLES FOR PRACTICE.

1. Reduce ^3 and ^2, or 3^ and 23", to a common index.

Ans. «/27 and 6/4, or 27* and 4*.

2. Reduce ^5 and ^4 to a common index.

Ans, 6/25, and ^'6i,

3. Reduce a^ and h^ to a common index. Ans. J a* and ^b,

4. Reduce Xfa, %/Eb, and %f^y to a common index.

Ans. ^\Ja^ 24y625M, and 24^/216^.

5. Reduce ^a', %la^, and ija^ to a common index.

Ans. ^XfaT^ »2y^> and ^yd^.

6, Reduce 3^, 2*, and 5* to a common index.

Ans. 3t\ 2T^y, and 5^2, or ^V'esai, »V"512, and ^lJlbQ2b
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ADDITION AND SUBTRACTION OF RADICALS.

Art. 204, Let it be required to find the sum of 3 J/ a, and

It is evident that 3 times and 5 times any quantity whatever,
must make 8 times that quantity ; therefore,

3s/a+5«/^=83/^

But, if it were required to find the sum of 3^a and 5^a, since

the square root of a and the cube root of a are different quantities,

we cannot add them together and cal] them by the same name.

Therefore, we can only indicate their addition ; thus,

^Ja-\'b%Ja,

From this we see that to add similar radicals we must find the

sum of their coefficients, and place it before the common radical,

and that to add radicals which are not similar, they must be con-

nected by their proper signs.

Radicals that are not similar may often be rendered similar ;

thus, ,yi2 and ^27 are equal to 2^3 and 3^3, and their sum

is 5J 3".

It is evident that the subtraction of radicals may be performed
in the same manner as addition, except that the signs of the sub-

trahend must be changed. (Art. 44.)

From the preceding we derive the following

Rule for the addition of radicals.— 1st. Reduce the radicals

to their simplestforms,

2nd. If the radicals are similar ,find the sum of their coefficients and

prefix it to the common radical ; hut if they are not similar, connect

them hy their proper signs.

Rule for the subtraction of radicals,— CAa?i^e the sign of
the subtrahend and proceed as in addition of radicals,

EXAMPLES FOR PRACTICE.

1. Find the sum of J448 and ^/TT2. Ans, 12^1,

2. Find the sum of 8/24 and V^i- ^^- ^l/^- .

3. Find the sum of %fiS and s/162. Ans, 5 ^'6.
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4. Find the sum of ^ISa^b^ and JdOa^bK

Ans. (2a^h+6ah)j2ab.

5. Subtract ^180 from ^405. Ans. 2jd.

6. Subtract ^Jo from ^1^- Ans. l/'E.

Perform the operations indicated in each of the following ex-

amples :

7. ^"243+^27+^48. Ans. 16^3.

8. ^24+V54—V96. Ans. J6.

9. ^"128—2V50+V"72—Jl8. Ans. J2.

10. 2^8—7^18+5^72—^50. Ans. Sj'2.

11. V48aZ>2+6^75a+V3fl(a—96)2. Ans.a^'da.

12. 2V|+JV"^+Vi5+V|. ^n^' -VVTs.

13. ^128—8/686—8/16+43/250. Ans. 15
8/2".

14. 28/14.88/:^.
A715. 38/2.

15. 78/54+3 8/16+8/2"—5 s/128. Atz^. 8
8/2".

16. 66/4^+2^2^+^8^- ^^^- 9 8/2^.'

17. 3VI+7VII-V54. ATI.. ,i^V6.

18. 2V3—1712+4V27—2V^. Ans. \^ ^'^

1 9 . s/40— 1
8/"320+ 8/"i35. Aws. 3 8/5.

20. V16+V81—V—^12+^192—7«/9. Atij. 10.

21. 8(|)i+iXl2^~|X27*-2(/^)i Ans, |V"3.

22. &(8a6Z^)*+4a(a3J4)i_(i25a«60*- ^^^- a^^*-

23. /^^+iv(a3i—4a262+4a63). Ans. ±j'Sf.

MULTIPLICATION AND DIVISION OF RADICALS.

Art. 205. The rule for the multiplication of radicals is founded

on the principle (Art. 200) that the product of the n'* root of two

or more quantities^is equal to the n'^ root of their product ; that is,
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Hence, (Art. 53), aj^h^cljd=aXcXUhy^^Jd=zacllhd.

The rule for division is founded on the principle that the qao»
tient of the n^ roots of two quantities is equal to the n^* root of their

quotient ; that is,

^="/?; which is thus proved.

^h ^*

Va
If we raise „yr

to the n'* power, we have

(Va)" a

and if we raise " /- to the n^^ power, we have

Since the same powers of the two quantities are equal, we in-

fer that the quantities themselves are equal ; that is.

Hence, acjfd-:^ajb^'^^j^=:^±^ l^^^cjd,
ajb « ^ ^

Therefore, we have the following

Rules for the multiplication and division of radicals.—
I. If the radicals have different indices, reduce them to the same
index.

II. To Multiply.— Multiply the coefficients together for the coeffi-

cient of the product, and also the parts under the radical for the

radical part of the product.

III. To Divide.— Divide the coefficient of the dividend hy the coeffi-

cient of the divisor for the coefjicient of the quotient, and the radical

part of the dividend hy the radical part of the divisor for the radi-

cat part of the quotient.

examples for practice.

1. Multiply 2 Jab by Sajabc.

2JabX^(^^abc=2X^ciJabXahc=QaJa-b^c=:Qa^bJc,
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2. Divide 4a^a6 by 2^ac.

3. Multiply 2S/3 by 3 V2.

2s/3=2V"32; 3V2=3«/2^

2^3^x3 6/23=2x35/3'X2»=6?/'72,

4. Divide 6^2 by 33/2. ^

6V2=6;5/'23=6«/8

3s/2=3«/22=3V4.

*

3V4

5. Multiply 3 V12 by 5 ^18. ^
Aw5. 90^6 ,

6 . Multiply 4 5/12 by 3 s/4. Ans. 24^6 .

7. Multiply 1 5/18 by 7 ylW. Ans. 7 s/IO .

8. Multiply together 5^3, 7^/"|, and ^2. Ans, 140.

9. Multiply Jd by s/2. An5. «/'l08.

10. Multiply 3 V^ by 44/a. Ans, \2^yM^,

11. Multiply together ^2, %f^, and */^- ^715. ^V648000.

12. Multiply ^2X ?/3 by V^X Vf ^^^- V2.

13. Multiply together «V^ >/^j and 3«/^. An^. «V^-

14. Divide ^40 by J2, Ans, 2^5.

15. Divide 6J54 by 3 ^2. Ans. 6^3 .

16. Divide lO^/TOS by 5s/4. Ans, 6.

17. Divide 70S/9 by 78/18. Atw. 5 3/4.

18. Divide %p2 by ^2. Ans, 5/3.

19. Divide 4s/9 by 2^3. Ans, 2%/d,

20. Divide 20^/200 by 4^2. -Ans. 5V5.

21. Divide 4/72 by s/3. ilTw. ^2.
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Therefore, when the denominator of the fraction is a monomial^

multiply both terms by such a factor as will render the exponent of the

given radical equal to unity.

Since the sum of two quantities, multiplied by their difference,

is equal to the difference of their squares (Art. 80) ;
if the frac-

tion is of the form
b+Jc

the denominator will be rational.

, and we multiply both terms by I—Jc^

Thus,
a(b—^c) ah—ajc

For the same reason, if the denominator is b—tjc, the multi-

plier will be b-\-»Jc, If the denominator is iJb-\-Jc, the multi-

plier will be Jb—Jc ; and if the denominator is ^b—^c, the

multiplier will be Jb-\'^c.

If the denominator is of the form iJa-^t^b-^-Jc, it may be

rendered rational by two successive multiplications. Thus, {J a

Let 2d=a-\-b—c, then 2d^2tjab will become rational if it be

multiplied by d—^ab ;

.-.the whole multiplier is (Ja-\-Jb—Jc) ( ^^I —^ab
j

.
.

Reduce the following fractions to equivalent ones having ra-

tional denominators.

1. —
.

Ans

V3
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8.
1—V5

9. 3>/5—2^2

2V5—V18*

10.

V2+V3—V^'

11. 3+V^

12.
1

x-\-^x^
—1 ^—>/^—1

13^ V(a:+a)+V(a:—a)

J{x+a)—J(x—ay

Ans. 2—^6

A715. 9+1710

12

Ans. V6+V2+V^-

Am. 2x,

Ans.^+jJS^t:^

A^. 2a:2.

Remark.— The utility of most of the preceding transformations con-

sists in shortening the calculations necessary to find the numerical value

of a fractional radical. Thus, if it be required to find the value of

-^, we may divide 2 by the square root of 5. But is equal to

?^/5, where it is merely necessary to extract the square root of 5 and

take two-fifths of the result. A comparison of the two methods of oper-
ation will show that the latter is much shorter than the former.

Reduce each of the following fractions to its simplest form, and

find the numerical value of the result.

15. 4=r, and JL

16. -J^^
2+V3

17. l±^
2—J2'

18. J20+jr2

V5-V3
'

Ans. .894427+, and .707106+.

Ans. .2679494 .

Ans. 4.12132+.

Ans. 15.745966+

14
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POWERS OF RADICALS.

Art. 207. Let it be required to raise "Ijato the n*^ power.

By the rule for the multiplication of radicals (Art. 205), we

have Ciyfl)"=V^X "iJaXV^ to w factors,

=:'^aXO'Xa to 72 factors =*jya".

Hence, to raise a radical quantity to any power, we have the

following

Rule.— Raise the quantity under the radical to the given power, and

affect the result with the primitive radical sign.

Thus, (iJAa^y=:iJ(Aa^y=iJlQa^=2aiJa^=2aJa.

If the quantity have a coefficient, it must also be raised to the

given power. Thus,

If the index of the radical is a multiple of the exponent of the

power, the operation may be simplified. Thus,

(%/2ay=(\}j2ay (Art. 192);

and since the operation of squaring removes the first radical, we
have

(V2a)2= ( V V2^ / '=J2'a,

In general, ("»;y^)«= ( -/^a ) «='jy7.

Hence, if the index of the radical is divisible by the exponent of
the power, we may perform this division, and leave the quantity under

the radical sign unchanged,

E XAMPLE S.

1. Raise %l2a to the 4th power. Ans. 2ay2a,

2 . Raise 3 l/2ab^ to the 4th power. An^. l62ah^l/2~ahK

3. Riiise2Jxy^ to the bth^ower. Ans.2>2x'^y'^ Jxy,

4. Raise ijac'^ to the 2nd power. Ans. cjlt,

5. Raise Jac"^ to the 4th power. Ans, a^c^,

6. Raise 3s/2a to the 5th power. Ans, 486ay4a^
T. Raise ^3c2 to the 3rd power. Ans. c^S]

8. Raise Jx—y to the 3rd power. Ans, (x—y)tjx^.
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ROOTS OF RADICALS.

Art. 208. Since
*^ya=z*^ya (Art. 192), therefore, to ex-

tract the roots of radicals, we have the following

Rule.— Multiply the index of the radical hy the index of the root to

he extracted, and leave the quantity under the radical sign unr

changed.

Thus, the square root'of %/2a is ^l%/2a=^2a

If the radical has a coefficient, its root must he extracted by the

rule (Art. 194). Thus,

^9a2y3^=^9^xJV^=3a«/5c.
If the quantity under the radical is a perfect power of the same

degree as the root to be extracted, the process may be simplified.

Thus,

s/*/8a5 is equal (Art. 192) to \l^8a^=i/2a.

EXAMPLES.

1. Extract the cube root of ^a^. Ans. %/a^b

2. Extract the 4th root of 16^83^207 Ans, 2a^ ^%/2c,

3. Extract the cube root of \J2/fa^. Ans, 4/3fl.

4. Extract the square root of l5/49a^ Ans. %/Ta.

5. Extract the cube root of 64*/8a«. Ans, AX/2a^'

6. Extract the cube root of (m'\-'n)^m-]-n. Ans. ^m-\-n,

IMAGINARY, OR IMPOSSIBLE aUANTITlES.

Art. 209. An imaginary quantity (Arts. 182, 193,) is an even

root of a negative quantity.

Thus, ^—a, and \J
—

h^, are imaginary quantities.

The rules for the multiplication and division of radicals (Art

205) require some modification when imaginary quantities are to

be multiplied or divided.

Thus, by the rule (Art. 205), V—«X V—«=V~^X—a=
,Ja^=dzci. But, since the square root of any quantity multiplied
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by the square root itself, must give the original quantity, there-

fore, J—flXV—^=—«•

Art. 210. Every imaginary quantity may he resolved into two

factors, one a real quantity, and the other the imaginary expression,

J—1
;
or an expression containing it.

This is evident if we consider that every negative quantity may
be regarded as the product of two factors, one of which is —1 .

Thus, —a=aX—1? —h^z=b^x—1> and so on.

Hence, ^—a—^aX—l=iJaX^—l.

^—as^^a^x—l=Va2xV—l=±aV—1-

Since the square root of any quantity, multiplied by the square
root itself, must give the original quantity ;

therefore, (^3ri)2==^IZixV^=—1.

also, (^IIi)3=(^i:5)2xV^=-W^=—V^-

Attention to this principle will render all the algebraic opera-

tions, with imaginary quantities, easily performed.

Thus, v^ X V^=V«^x J—i X JhX V^= V«^x

OPERATION.

If it be required to find the product of a-^-bjJ
—1

a-\-hJ
—1 by a—hj—1, the operation is a—hj—1

performed as in the margin. a^-\-abjJ
—1

-^ahj^+b^
a^+b\

Since (ia+ b^^^lXa—bJ^)= a^+ b^; therefore, a2_]_2,2

^a-\-bJ^^){a—bjj^^); hence, any binomial whose terms

are positive, may be resolved into two factors, one of which is the

sum and the other the difference of a real and an imaginary quan-

tity. Thus,

m-\-n=(y/m+^nJ^)i,Jm—'jJnJ—-l).
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EXAMPLES.

1. Find the sum and difference of a-\-bjJ
—1, and a—b^J

—1.

Ans, 2a, and 2b^J
—1.

2. Multiply ^—a^ by ^—b^. Ans, —db,

3 . Find the 3rd and 4th powers of aJ—1 .

Ans. —d^^—1, and d^,

4. Multiply 2V^ by 3V^^. Ans. —6 V¥.

5. Find the cube of — i+ i
^1l3, and —

|--|-nA--^-
-Atw. 1 .

6. Divide 6^"^ by 2V^. Ans. |^3,

7. Simplify the fraction ^^'J^^ Ans. J—I.

8. Find the continued product of x-^-a, x-\-aJ
—

1, x—a', and

x--aj—1. Ans. x^—a^.

9. Of what number are 24+7 ^^^1, and 24—7J~^, the im-

aginary factors 1 Ans. 625.

VI. THEORY OF FRACTIONAL EXPONENTS.

Art. 211. The rules for the exponents in multiplication and

division (Arts. 56 and 70), have been demonstrated, under the

supposition that the exponents were integral. These rules, as

well as those which relate to the formation of powers (Art. 172),
and the extraction of roots (Art. 194), are equally applicable
when the exponents ^re fractional.

Fractional exponents have their origin (Art. 196) in the ex-

traction of roots, when the exponent of the power is not divisible

by the index of the root. Thus, in extracting the 7i'^ root of a"^,

the operation requires that the exponent m should be divided by
the index n. When m is divisible by n the exact root of a"^ is

obtained, but when m is not divisible by n, the operation is indi-

cated by indicating the division of the exponents. Thus,

As has been shown already (Art. 196), every radical quantity

may be represented by the same quantity with a fractional ex-

ponent, the numerator of the exponent denoting the power of the
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given quantity, and the denominator the index of the required

root.

Thus, 8/^=a*, V«'=«^ r/-i=V^=«~^*

As flP is called a to the p power, when p is a positive whole

number ; so, by analogy, a^, a^ and a~ ", are called respectively,

a to the I power, a to the | power, and a to the minus — power.

But it would, perhaps, be more accurate to say, a exponent |, a

exponent I , a exponent
—^; and reserve the term power to de-

note the product arising from multiplying a quantity by itself one

or more times (Art. 19).

MULTIPLICATION AND DIVISION OF aUANTITIES WITH FRAC-

TIONAL EXPONENTS.

Art. 212. It has been shown (Art. 56) that the exponent of

any letter in the proditct is equal to the sum of its exponents in ihi

two factors. It will now be shown that the same rule applies

when the exponents are fractional.

1 . Let it be required to multiply a^ by a^*

a^=%/a^=^%/a^ ; a'^^Sja^^^'Ja^, (Art. 205.)

^Jf
But this result is the same as that obtained by adding the ex-

ponents together. Thus,

2. Let it be required to multiply a~* by a^.

And in general, the product of a~^ by a- is,

_^ £_ ——J- ^ np—mq
a ny^aq=a »'*'9 =a n?

*

Hence, to multiply quantities affected with fractional exponents,

apply the rule given (Art. 56) in the case of entire exponents.
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Aet. 213. In the preceding article (212) it has been shown

that when the exponents oxe fractional, the exponent of any letter

in the product is equal to the sum of its exponents in the two fac-

tors ;
and since division is the reverse of multiplication, there-

fore the exponent of any letter in the quotient must be equal to

the excess of its exponent in the dividend over that in the divisor.

That is, an^ai=a» i =a~m~*

Perform the operations indicated in each of the following

E XAMPL E S.

1. a^Xa^, and cT^Xa^' Arts, a^, and a*'

2. a*c~'X^^c^* Ans. a^c^^'

5 . ix^y-{-y^)(x^
—

y~ ^) . Ans, x^y—y^ .1111 'm-\-n

(j. (a+&)mX(a+6)"X(a—^)^X(a—•Z')«. Ans. (a^—b^)-^^n,

. . a:^~a;*, and xmy^-^-xny"^, Ans. x^^, and x ^nn
y«-»».

6. (a^—Z,l)-^(ai—&i). Ans. a^+A^+J*
'

9. {a--h^)^{aij^ah^-\-ah+h^). Ans. a^—6*

POWERS AND ROOTS OF QUANTITIES WITH FRACTIONAL

EXPONENTS.

Art. 214. Since the m}^ power of a quantity is the product
of m factors, each equal to the quantity (Art. 172) ; thereto^

to raise an to the m'* power, we must find the product
i I 1-

fl" Xfl" X«" . • . • to m factors.

Here it is evident the exponent i must be taken m times ,

hence, (a")"*=a«*

Therefore, to raise a quantity affected with a fractional expo-
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nent to any power, multiply the exponmt of the quantity by the

exponent of the power.

Thus, {ah^y=ah^=a^b^.

Art. 215. We have just seen in the preceding article, that in

finding the m^^ power of any quantity, we must multiply the ex-

ponent of the quantity by the exponent of the power. Hence,

conversely, in extracting the m^^ root, we must divide the ex-

ponent of the quantity by the exponent of the root ; that is,

1 i -
Since (a«)'"=anX»"=an

.

therefore,

/ t5 m
=a" »"=a"'

From the preceding it is obvious that the rules in Arts. 172
and 1 94 apply, without any change, to quantities having frac-

tional exponents.

EXAMPLES.

1 . Raise aH^ to the 4th power. Am. a^b^.

2. Raise —2x^y^z^ to the 3rd, 4th, and 6th powers.
8 3 4 3

•

Ans. --^x^yz* ; 16x^y^z ; QAx^yH"^.

3. Find the square of a—{ax—a^y, Ans. ax—2a{ax—a^y,

4. Find the square of
(
1±!!^

)
V

(
i=^

)

^'

Ans, 1+(1—7n2)i

5. Find the cube of a^x'^-^a'^x.

Ans. ax~^-\-2a^x~^-\-Sa'~^x-\-a'^x^ ,

G . Find the square roots of 3(5)^ ; and —_i?£__.

9(343Z/2)i

Ans. (135)^; L^.
2b^

7. Find the cube roots of (27a5a:)^ and (27a3a;)^.

Ans. Sh^x^ or (3flra:*)* ;
and (Saxi)K
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8. Find the square root of 5x^—4a7(5ca:)'-f4c.

9. Find the square root of l+^a-^^lt^J+aK

Ans, l—^+(z.
4

10. Find the cube root of la^—^a^^+eab—Sb^.

Ans, la'-2bK

Remark.— In solving examples 8, 9, and 10, the pupil is expected to

combine the rules, Arts. 183 and 191, with those for fractional

exponents.

Vir. EaUATIONS CONTAINING RADICALS.

Note to Teachers.— This part of the subject of Equations of the

First Degree could not be treated till after Radicals, as the operations

necessarily involve the formation of powers and the multiplication of

radicals.

Art. 216. In the solution of questions containing radicals,

the method to be pursued will often depend on the judgment of

the pupil, as many of the questions can be solved in different

ways, and the shortest processes can only be learned from prac-

tice.

1st. When the equation to be solved contains only one radical

expression, transpose it to one side of the equation and the ra-

tional terms to the other
;
then involve both sides to a power cor-

responding to the radical sign.

Ex. Given, lf(a^-\-x')
—a=c, to find x.

Transposing, ^(a'-|-x)=c+a ;

Cubing, a^-\-x=c^-{Sac^-\-da^C'{-a'^ ;

Whence, x=c^-\'Sac^-\-^a^c.

2nd. When a radical expression occurs under the radical sign,

the operation of involution must be repeated.

Ex. Given \a?—>yi—a:=l—Jx, to find a?.

Squaring, x—^1—a;=l—^2^i+ar;
15
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Canceling x on each side and squaring again,

1—^a;=l—4 Jx-\-4x.

Canceling 1 on each side, transposing, squaring, and reducing

We find, a:=|f.

3rd. When there are two or more radical expressions, it is

generally preferable to make one of them stand alone, before per-

forming the process of involution.

Ex. Given, Jx-\-9—^oc=l , to find x.

Transposing
—

jjx, we have Jx-\-9=l'\-jJx,

Squaring each side, x-^9=:l-{-2jJx-\-x ;

Canceling x on each side, transposing and dividing by 2,

Jx=4: ; hence, a:=16.

In some cases, however, it is preferable, when an equation con-

tains two radical expressions, to retain them both on the same

side. Thus, the equation

will be cleared of radicals at once, by squaring each side, the

ab

value of X being /TtZZa'

EXAMPLES FOR PRACTICE.

4. V(^+^)+3=8-.VS: Ans,x=4..

5. \f 1+V(3+V^)=2. Ans.x=6.

6. ^x-\'a:=Jx-X-a. Ans. x=^—L2.
.

4

7. ^2x'-Sa-\-^2x=:^Ja. Ans. x=2a.

8. JI13+V[7+J(3+V'^)]H^- Ans.x=:l.

4
9.

\/2+a7+V^«^^2+^-
^^' ^»=f •

10. V5+S+J?=V^. Ans ^-r§^.\x a-f-2^a



INEQUALITIES. 171

11. V^+13—Va>—11=2.

12. ajx+h^x—cjx=d.

X—ax Jx

Ans.

14. x+a^^a^+x^(b^+x^).

X—a ^x—Ja _
/i= 3 ^+2V«-

Ans, x=S6^

1_
l—a*

16.

3x—1

V3x+1 ^
^/3x—1

4a

An$. a:=l|4»

Aw. a:=16a.

Atw. a:=3.

18. »j4:a+x=2Jb'\-x—i^ar.

19. /A_4. /_f_=i/_i^

20.
Jx-^a-\-Jx

»Jx-{-a
—Jx~

Ans,

Ans,

Sh-ay
20—b'

Ans, x=^^^ ^

4c

21.
^V^+3-^Vx-3=^2Vx.

An*. a:=9.

4g&3

23. V(l+«)'+(l--a)a:+V(l—a)^+(l+fl)«=2a.
Atw. a:=8.

VIII. INEaUALITIES.

Art. 217. In the discussion of problems it often becomes

necessary to compare quantities that are unequal, and to operate

upon them so as to determine the values of the unknown quanti*

ties, or to establish certain relations between them.

In most cases the methods of operating on equations apply to

inequalities ; still there are some exceptions, which render it

expedient to present the principles and rules of operation in one

view.
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Art. 218. Def.— In the theory of inequalities, it is conven-

ient to consider negative quantities less than zero. Also, in com-

paring two negative quantities, that is considered the least which

contains the greatest number of units; thus, 0>—1, and

-~3>—5.

Two inequalities are said to subsist in the same sense when the

greater quantity stands on the right in both, or on the left in

both ; thus,

5>3, and 2<5,

7>4, 3<8.
are said to subsist in the same sense.

Two inequalities are said to subsist in a contrary sense, when
the greater stands on the right in one and on the left in the other ;

thus, 5^1 and 4<^8 are inequalities which subsist in a contrary
sense.

Art. 219. Prop. I.— The same quantiti/i or equal quantities,

may he added to or subtracted from both members of an inequality,

and the resuLting inequality will continue in the same sense.

Thus, 7>5, and by adding 4 to each member,

11>9 ; or by subtracting 4 from each member,

3>1.
Also, —5<^—3, and by adding 4 to each member,

—
1<^-|-1 ; or by subtracting 4 from each member,

-.9<—7.
Similarly, if a>&, then

a-J-c^^+c, or a—c>6—<;.

It follows from this proposition, that any quantity may he trans^

posedfrom erne side of an inequality to the other, if at the same time

its sign he changed. Thus, if

or o2«_2a5_}_52>c2.

Art. 220. Prop. II.^— If two inequalities exist in the same sense,

tJie corresponding members may be added together, and the resulting

inequality vdll exist in the same sense. Thus,

7>6, and 5>4, and

74.5>6+4, or 12>10.
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But when two inequalities exist in the same sense, if we sub-

tract the corresponding members, the resulting inequality will

sometimes exist in the same sense, at other times in a contrary

sense.

First, 7>3 By subtracting, we find the resulting inequality

45>1 exists in the same sense.

3>2
Second, 10>9 In this case, after subtracting, we find the

8'>3 resulting inequality exists in a contrary

2<;6 sense.

In general, if ct^h and c^:>d, then, according to the particular

values of a, h, c, and d^ we may have a—c>6—d, a—c<^—d, or

a—c=h—d.

Art. 221. Prop. III.— If the two members of an inequality he

multiplied or divided by a positive number, the resulting inequality

will exist in the same sense. Thus,

8>4 and 8x3>4x3, or 24>12.

Also, 8-^2>4-i.2, or 4>2.

This principle enables us to clear an inequality of fractions by

multiplying both sides by the least common multiple of the

denominafors.

But, if the two members of an inequality be multiplied or

divided by a negative number, the resulting inequality will exist

in a contrary sense. Thus, —3<—1, but —3X—^2>—Ix
—2, or 6>2.
From this principle we derive

Art. 222. Prop. IV.— The signs of all the terms of both mem-

bers of an inequality may be changed, if at the same time we establish

the resulting inequality in a contrary sense, because this is the same as

multiplying both members by
—1 .

Art. 223. Prop. V.— Both members of a positive inequality

may he raised to the same power, or have the same root extracted, and

the resulting inequality will exist in the same sense. Thus,

2<3 and 23<32, 23<33 ;
or 4<9, 8<27 ; and so on.

Also, 25>16, and J^yjlQ, or 5>4 ; and so on.

But if the signs of both members of an inequality are not pos-

itive, after raising both members to the same power, or extracting
the same root, the resulting inequality will sometimes exist in the

same sense, and at others in a contrary sense.
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Thus, 3>--.2, and 32>(—2)2, or 9>4.
But, —3<—2, and (—3)2>(—2)2, or 9>4.

EXAMPLES INVOLVING THE PRINCIPLES OF
INE QUALITIES.

1. Five times a certain whole number added to 4 is greater

than twice the number added to 19 ; and 5 times the number

diminished by 4 is less than 4 times the number increased by 4

Required the number.

Let a:= the number.

Then, 5a;+4>2a:+19, (1)

and 5a:--4<4a;+4. (2)

5a?—2a:>19—4, from eq. (1) by transposing,

3jp>15, by reducing,

a?>5, by dividing both members by 3.

5a>—4a<^4-f4, from eq. (2) by transposing,

a:<^8, by reducing.

Hence, the number is greater than 5 and less than 8, conse-

quently either 6 or 7 will fulfill the conditions.

2. If 4a?—7<2aH-3, and 3a?+l>13—a;, find a?.
.

Ans, a?=4.

3. Find the limit of a? in the equation 7a?—3^32.
Ans. a?>5 .

4. Find the limit of x in the equation 5-|-Ja<8+|^.

Ans. a:<36.

5. Show that ^+^+g y the least, and < the greatest of the

h+d+f

fractions, ?, £, 1, each letter representing a positive quantity.
b d f

Let G be a quantity greater, and ff a quantity less than any of

ace
V d' f

the fractions, ?, ^, -. Then,

»<G,"-<G,;_<G.
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.-. a<l)G, c<^dG, e</G.

«>^y> c>^^, e>/^.
.-. a+c+e<{b+d+f)G,

and a-\-c-\-e^(b~\-d-\-^)g,

.-. ?±^<Gand>^.

6. It is required to prove that the sum of the squares of any two

unequal magnitudes is always greater than twice their product.

Since the square of every quantity, whether positive or nega-

tive, is positive, it follows that

(a—5)2, or a2__2a&4-J2>0 ;

Adding, +2ab to each side (Art. 219),

a^^2ab'\'b^+2aby0+2ab,

or fl'+&2>2a6, which was required to te proved,

Most of the inequalities usually met with, are made to depend

ultimately upon this principle.

T. Which is greater, JB+JTi or jJ+S^21
Arts, the former. -«^

8. Given |(a7+2)+-Ja<|(a?^4)+3 and >|(a:+l)+-|, to

find a:. Ans, x=f),

9. The double of a certain number increased by 7 is not

greater than 19, and its triple diminished by 6 is not less than

13. Required the number. Ans. 6.

10. Show that 7i^+l is greater than n'^-\-n, unless ?i=l.

11. Show that every fraction + the fraction inverted is greater

than 2 ; that is, that ^+->2-
-^

a

12. If xyy, show that a^-y>( VJ^Vy)'- -^

13. Show that _?-+4>-+r' ""^^^^ «=^- ^

14. Show that a^+'b'^-\'C'^'ydb-\-ac-\-bc,\xn\e^Q
a=b=c.

15. Show that the ratio of a^-\-b^ to a^+¥ is greater than the

ratio of a+6 to a^-^-b"^,

16. If x^=a^-\-b^, and y'^z=c^-\-d^y
which is greater, xy, or ac

J{-bd 1 Ans. xp.

a7. Show that aZ;c>(a-f5—c)(a +c—5)(J+c--fl), unless a

z=:b=C,



176 RAY'S ALGEBRA, PART SECOND.

CHAPTER VII.

EQUATIONS OF THE SECOND DEGEEE

Article 224. An Equation of the Second Degree (see Art.

143) is one in which the greatest exponent of the unknown

quantity is 2. Thus,

a;2=a, and

ax^-^bx^c, are equations of the second degree.

An equation containing two or more unknown quantities, in

which the greatest exponent, or the greatest sum of the expo-
nents of the unknown quantities in one term is 2, is also an

equation of the second degree.

Thus, xi/=a, x^-\-ocy=hf xy
—x—y=c, are equations of the

second degree.

Equations of the Second Degree are frequently termed Quad-
ratic jpqaations.

Art. 225. Equations of the second degree, containing only
one unknown quantity, are divided into two classes ; viz. : incom-

plete, and complete.

An incomplete equation of the second degree contains only the

second power of the unknown quantity and known terms. Thus,

a^i+2=47—4a;2, and

ax^-\-b=cx^—d,

are incomplete equations of the second degree.

A complete equation of the second degree contains the first as

well as the second power of the unknown quantity, and known
terms. Thus,

6x'^+'7x=M, and

ax^—bx^-\-cx
—dx=e-—f,

are complete equations of the second degree.

Remark.— Incomplete equations are sometimes termed Pure Quadrat-

ics; and complete equations, Affected, or Adjected Quadratics.

Art. 226. The general form of an incomplete equation of the

second degree is ax^=b.

The general form of a complete equation of the second degree
is ax'^^bx=c.
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Every equation of the second degree containing only one

unknown quantity may be reduced to one of these forms. For,

in the case of an incomplete equation, all the terms containing

a?2 may be collected together, and then, if the coefficient of x^

contains more than one term, it may be assumed equal to a single

quantity, as a, and the sum of the known quantities to another

quantity, 5; and the equation then becomes,

ax^=zb, or ax"^—&=0.

A complete equation may be reduced in like manner ; for, all

the terms containing x^ may be reduced to one term, as ax'^
;

and those containing x to one, as hx ; and the known terms to

one, as c ; the equation then is,

ax^-\-boi:=^c, or ax'^-\-hx
—c=0.

Hence, we infer, that every equation of the second degree contain-

ing only one unknoum quantity, may he reduced to an incomplete equa-

tion containing two terms, or to a complete equation containing three

terms.

Frequent illustrations of these principles will occur hereafter.

INCOMPLETE EaUATIONS OF THE SECOND DEGREE.

Art. 227. 1. Let it be required to find the value of x in the

equation,

Clearing of fractions, 4a;2—36+5a;2=153—12a:2
.

Transposing and reducing, 21a?2=:189 ;

Dividing, a;2=9 ;

Extracting the square root of both members ;

a:=d=3, that is, a:=+3, or a:=—3»

Venfication, I(+3)2-3+/5(+3)2=12|—(+3)2.

or, 3—3+3|=12|—9 ;

3|=33.4 4

Since the square of —3 is the same as the square of +3, the

value x=—^3, will give the same result as a;=+3.

2. Given ax^-\-b=d-\-cx^y to find the value of x.

Transposing, ax^—cx^==d—b ;

Factoring, (a
—c)x^=d—b ;

Dividing, x^= ;

a—c

'=-^/l̂a—c
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From the preceding examples, we derive the following

Rule for the solution of an incomplete equation of the
SECOND DEGREE.— Reduce the equation to the form ax2=b.
Divide by the coefficient of x^, arid extract the square root of both

members.

Art. 228. If we solve the equation ax^=b, we have,

a

and
a?=dz^/- ; that is,

If we substitute each of these values of x in the equation aoc^

c=&, we find,

ax(+^/^) =^oraX^=&;

and aX ( —J- ) ^==b, or aX-=2'.

Since each of these roots or valves of Xj verifies the equation,

and since the square root of - can only be-}-./-, or — /-
a \a \a

therefore we infer,

1 St. That every incomplete equation of the second degree has two

roots, and only two.

2nd. That these roots are equal in value, but have contrary signs.

Note.— Let the pupil recollect that the term root, in reference to an

equation, is equivalent to the value of the unknown quantity,

EXAMPLES FOR PRACTICE.

1. lla:2—44=5a;2+10. Ans.x=±:Z,

2. -1(0:2—12)= ia;2—l. Ans.x=±^,^
3. (a?+2)2=4a:-|-5. Ans, x=±:l.

4. 3«2—(2a;2—3)=15^±?. Ans. a:=±V||.

5. 8a?+1=5^. Ans, a:=±2i
X 1
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Ans. a7=±.3.

Ans, a:=dz:5 1.

Ans, a:=zh2.

^ Atw. a:=±9.
a;2—7a; x^+lx a;^—73*

6.
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3. There is a certain number, which being subtracted from 10
and the remainder multiplied by the number itself, gives the same

product as 10 times the remainder left after subtracting 6| from

the number. Required the number. Atis. 8.

4. What number is that, the third part of whose square beinj;

subtracted from 30, leaves the same remainder as one-fourth oi

the square increased by 9 ? Ans, 6.

5. There are two numbers whose difference is |ths of the

greater, and the difference of cheir squares is 128 ; find them.

Am. 18 and 14.

6. Divide the number 21 into two such parts, that the square
of the less shall be to that of the greater as 4 to 25.

Let a; and 21—x= the parts.

Then, x^ : (21—a?)2::4 : 25 ;

or, ( Arith., Art. 209,) 25a;2=4(21—a;)^ ;

Extracting the square root of both sides,

5a;=2(21—a?) ;

Whence, x=Q, and 21—^a:=15.

7. Divide the number 14 into two such parts, that the quotient
of the greater divided by the less, shall be to the quotient of the

less divided by the greater, as 16 to 9. Ans. 6 and 8.

8. What number is that which being added to 20 and subtracted

from 20, the product of the sum and difference shall be 319 '?

Ans. 9.

9. What two numbers are they, whose product is 126, and
the quotient of the greater divided by the less, 3^1

Ans, 6 and 21.

10. The product of two numbers is p^ and their quotient q.

Required the numbers. , ,
—

j /p^ Ans, fjjpq and i^

yiq'

11. The sum of the squares of two numbers is 370, and the

difference of their squares 208. Required the numbers.

Ans. 9 and 17.

12. The sum of the squares of two numbers is c, and the differ-

ence of their squares, d. Required the numbers.

Ans. -yW+d), and y2(^^).
13. A certain sum of money is lent at 5 per cent, per annum.

If we multiply the number of dollars in the principal by the
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number of dollars in the interest for 3 months, the product is 720.

What is the sum lent 1 Ans. $240.

14. It is required to find three numbers, such that the product

of the first and second =flf, the product of the first and third =&,

and the sum of the squares of the second and third =c.

-•^/(•-^")•^/(,-=V)•»-'^/(^)
15. The spaces through which a body falls in difierent periods

of time, being to each other as the squares of those times, in how

many seconds will a body fall through 400 feet, the space it falls

through in one second being 16.1 feef?

Let x= the required number of seconds, then

16.1 :400 ::V:x^; whence, a;=4.97+ sec.

In what time will a body fall through a hight of 1000 feet 1

Ans, 7.88+ sec.

16. What two numbers are as 3 to 5, and the sum of whose

cubes is 1216 1

Let 3 a? and 5x= the numbers ;

Then 27a;3+125a:3== 152a;'=1216,

whence, a:'=8,

and a:=3/8=2.

Hence, the numbers are 6 and 10.

Remark.— This is properly a pure equation of the third degree ; but

questions producing such equations are generally arranged with those of

the second degree.

17. A money safe contains a certain number of drawers. In

each drawer there are as many divisions as there are drawers, and

in each division there are four times as many dollars as there are

drawers. The whole sum in the safe is $5324 ; what is the

number of drawers } Ans, 1 1 .

18. Two travelers, A and B, set out to meet each other ; A
leaving the town C at the same time that B left D. They trav-

eled the direct road from C to D, and on meeting it appeared
that A had traveled 18 miles more than B ;

and that A could

have gone B's journey in 15| days, but B would have been 28

days in performing A's journey. What is the distance between

C and D 1 Ans. 126 miles.

19. Two men, A and B, engaged to work for a certain number

of days at different rates. At the end of the time, A, who had
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played 4 of those days, received 75 shillings ; but B, who had

played 7 of those days, received only 48 shillings. Now had B

played only 4 days, and A played 7 days, they would have received

the same sum. For how many days were they engaged 1

Arts, 19 days.

20. A vintner draws a certain quantity of wine out of a full

vessel that holds 256 gallons ; and then filling the vessel with

water, draws off the same number of gallons as before, and so

on for four draughts, when there were only 81 gallon^ of pure
wine left. How much wine did he draw each time %

Am, 64, 48, 36, and 27 gallons.

COMPLETE EQUATIONS OF THE SECOND DEGREE.

Art. 230, 1. Let it be required to find the value of x in the

equation,

a;2--6a?+9=4.

It is evident, from Art. 184, that the first member of this equa-

tion is a perfect square. By extracting the square root of both

members, we find

a>—3=zh2;

Whence, a:=3zh2=3+2=5, or 3—2=1.

Verification. (5)2—6(5)+9=4, that is, 25—30+9=4.
(1)2—6(1)4-9=4, that is, 1—6+9=4.

Hence, x has tivo values, +5, and +1, either of which verifies

the equation.

2. Let it be required to find the value of x in the equation,

a;2—6a:=27.

If the left member of this equation were a perfect square, we

might find the value of x by extracting the square root, as in the

preceding example. To ascertain what is necessary to render

the first member a perfect square, let us compare it with the

square of x—a, which is,

a;2—2ax-\-a^,

We have, x^—6a; =27.

From this we see that 2a corresponds to 6 ; hence, a corres-

ponds to 3, and a^ to 9. Hence, by adding 9, which is the square
of half the coefficient of ar, to each member, the equation becomes

x^-^Qx+9=S6.

Extracting the square root, x—3=dz6.
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Whence, ax=3±6=-}-9, or —3, either of which values of x

will verify the equation.

Art. 231. We will now proceed to explain the method of

completing the square.

Since every complete equation of the second degree (Art. 226)
may be reduced to the form,

ax^'\-bx=c ; if we divide both sides

by a, we have x^'\--oc=-
a a

For the sake of simplicity, let _=2;?, and S.=zq, The equa-

tion then becomes

x^+2px=:q. (1)

b c
If - is negative, and - positive, the equation becomes

a a

x^'-2px=q, (2)

h . c
If _ is positive, and - negative, the equation becomes

a a

x^+2px='-q, (3)

b c
Lastly, if - and - are both negative, the equation becomes

a a

aP—2px=—q, (4)

Hence, every complete equation of the second degree, may he reduced

to the form x2-4-2px=q, m which 2p and q may he either positive or

negative, integral or fractional quantities.

We will now proceed to explain the principle by which the

first member of this equation may always be made a perfect

square.

Since the square of a binomial is equal to the square of the

first term, plus twice the product of the first term by the second,

plus the square of the second ;
if we consider x'^-\-2px as the

first two terms of the square of a binomial, we find x'^ is the square
of the first term ; hence, the first term must be a:

; we next

observe that 2px is the double of the product of the first term by
the second ; therefore, if we divide 2px by x, the quotient 2p is

double the second term. Hence p, which is half the coefficient of

X, is the second term of the binomial
-, therefore, its square, ^2,

added to x^-\-2px, will render it a perfect square. But, to preserve
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the equality, we must add the same quantity to both sides. This

gives,

Extracting the square root, X'^p=dt»Jq+p^ ;

Transposing, a;=—;pdr>/9+?^'

It is obvious that in each of the remaining three forms, the

square may be completed on the same principle ; that is, by tak-

ing half the coefficient of the first power of x, squaring it, and

adding it to each member.

Solving equations (2), (3), and (4), and collecting together the

four different forms, and the values of x in each, we have the fol-

lowing table.

(1) x^+2px=:q. x=—pdLiJq+p^'

(2) a?'—2poc=:q, !>'^=-\-p-:t.»J q-^p^'

(3) a;2_|_2^a;=
—

q,
a:=—p±>/—q+p'^*

(4) x"^—2px=i—q, x^-^-pzt^—9+P^-

Although the method of finding the values of x is the same in

each of these forms, it is convenient to distinguish between them.

See Art. 235.

From the preceding we derive the following

Rule for the solution of a complete equation of the sec-

ond DEGREE.— 1st. Reduce the equation, by clearing of fractioTis

and tramposition, to theform ax2-j-bx=c.

2nd. Divide each side of the equation hy the coefficient of x^, and add

to each member the square of half the coefficient of the first power

of X.

3rd. Extract the square root of both sides, and transpose the knovm

term to the second member.

Remarks.— 1st. When the coefficient of a^ \s negative, as in the

equation —x'^-\-mx=n, the pupil may not perceive that it is embraced

in the four general forms. This difficulty is obviated by multiplying
both sides of the equation by —1.

2nd. Since the sign of the square root of a;2, or of {x-\~pY, is zfc> it

might seem that when x'^=m^, we should have -\-oc=-k-mj that is, -^a;=

•\-m{\), -\-x=
—

w(2), —a:=4-m(3), and —j;=—m(4). But it is evi-

dent that equations (1) and (4) are the same equation, as also (2) and

(3). Hence, -)-x=zbwT, embraces all the values of x. For the same

reason it is necessary to take only the plus sign of the square root of
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1. Given 17a:—2a?2=32—So:, to find a?.

Transposing,
—

2a;2-|-20a;=32 ;

Reducing, x^—10a:=—16 ;

Completing the square by adding (y)'=25 to both sides of

the equation,

a;2-_10a;+25=—16+25=9;

Extracting the root, x—5=d:3;

Whence, a:=5=h3=8, or 2.

Verificatim, 17(8)—2(8)2=32—3(8), or +8=+8.
17(2)—2(2)2=32—3(2), or +26=+26.

2. Given Sa:'—2a7=65, to find x.

Dividing by 3 , «'—far=^ ;

Completing the square, a:'—|x+(|)2=^fi+(|)2=:lH.

Extracting the root, x—|=±y.
Whence, a:=|±i_4=5, or—4|.

Both of which values verify the equation.

3. Given 4^2—2a;2+2fla:=18a6—18Z>2, to find x.

Transposing, —2ar2-f2aa:=—4^2+18a&—18&2 ;

Dividing by —2, a;2_flj^2a2—9a6+962 ;

Completing the square, a:2—ax-\-—=——9a^-962 ;

Whence, ar=?zfc
(
——35

)
;

x=^-\- 1 ^—35
)
=2a—36 ;

4. Given a:+^(5a:+10)=8, to find x.

By transposition, ^(5a?-}-10)=8—x;

By squaring, 5a;-|-10=64—16a:+a:2 ;

or, a:2—21ar=—54 ;

10
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Completing the square, a;^—21a:+( 2^1)
2=111—54=226

Extracting the root, x—^J=dz^j^ ;

Whence, x=y±:i^5=::3^e=^is, or |=3.

These two values of x are the roots of the quadratic equation,
x^—21a;=—54 ; but they will not both verify the proposed equa-
tion x-\-jJ(5x-\-10)=S, from which the former was derived, for

the following reasons. Since the square root of a quantity may
have either the sign -f- or — prefixed to it, the proposed equation

might have been xzizj (px-\-10)=^8 ; because by the operations
which have been employed, the same resulting equation, x^—21a;

=—54, would be obtained, whether the sign of the radical part
be + or — .

Hence, in the equation x-\'jJ(6x-{-10)=Sj the value of a? is 3 ;

but in the equation x—^(5a:+10)=8, the value of a? is 18.

EXAMPLES FOR PRACTICE.

5. a;2+4a:=60. Ans, a;=6, or —10.

6. a:2—4a:=60. Ans. a:=10, or -—6.

7. a;2+16a:=—60. Ans. a;=--6, or —10.

8. a?2—16a;=—60. Ans. a;=6, or lO.

9. a;2—6a:=6a:+28. Ans. x=lA, or —2.

10. ^+350—12a:=0. Ans. a;=70, or 50.
10^

11. l^+8ay-50|=429|. Ans. a:=20, or —30.

12. 2an=4+?. Ans. a:=3, or —1
07

13. 3a;2+10a;=57. Ans. a;=3, or —6|

14. (a:—l)(a:—2)=1 Ans. a:=i(3drV5).

15. 4x2—3a:—5=80. Ans. a?=5, or —41.

16.
-|a;2—ia?+2=9. Ans. a:=4, or —3-J-.

17. a;=14-H2. Ans. a:=ll, or —10.
X

18. 3(a>—2)2=8(a;—2)+3. Ans. ar=5, or 1|

19. ?+??_l=?^, An,. ^2, or ^13 OP 2 '*°
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20. ?^+3|=?+8. Ans. a;=3, or ~2f
u 2

21. 17a;2+19:B=1848. Ans.
oc=9-\^y

or —11.

23. 3a;—
|a;2=10. Atis. a;=6rh2V^^

24. 2^dt^_^_2, ^^. ^^^ ,, 4

8—a: a;—2 ^

25. _gg_ ,
23:—5^Q^ ^ g ^^ 31

a;—4^ a;—3 3 T3

26. Jl_--._L_= 1 . Atw. ar=ll, or —13.
a;_l a;+3

3 5

27. — +—1—=-?.. Ans. ar=4, or —3|.
a;2—3a; a;2+4a; 8a? .

' ^

28. iL=J^5 5. Ans. x=6?., or 5,;>

a;+3 a:+10
'6»

29. ?±i-!=:?=l^-l. An.. ;c=21, or 5.
3 a;—3 9

30. l?±^+?=^=if Ans. a;=3, or -8.7.
19 ^3+a; 9'

31-

''+i=^-
Atw. a:=V3, or Ij^.

'+1 ^+1 13
32. —

^-1 y==—, Ans. a:=3, or —J.
X— - 1—-

X X

33. ?+«_-.?=o. Atw. a:=ldbV(l—a2).
a X a

34. 2.r(fl^—a:)^a ^^^^ ^^3 ^^
,

3a—2a? 4 -4 ' i •

35. *!!zi'=2ar-ca:2 Atis. a:=^i^.
c

*

c

36. ar^—(a-f-^)a;+ai=0. Aw^. a?=a, or 6.

37. Ca—5)a?2—(a+&)ar+2&:=0. An5. a:=l, or -^.
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38. rnqx"^
—

mnx-^pqx—7ip=0. Ans, a;=^, ox —?
q m'

a 2

40.
^'

_(a^-H!>*)a;=-

Arw. a;=fl5, or —6.

41. flk^—acx^=:hcx—hd, Ans, x=A, or —-
c a/

42. J(a:+5)=-^|^ Atw. x=:4, or -21.

43. Va;+V(«-^)=V*. An*, :^.f5^^^^f!b±•

44
^—^-. _ « Aw5. a:=4.

45. ^x^—2^x=x, Ans.x=i.

46. V^-^/H^=^/2i• Atw. x=--^dby2a'+2b\

47. (a?
—c)Jdb—(a

—
h)tjcx=0, Ans, j?=f£, or ~

i a*

12a 4a 3a
48. V«+^+V«—^=5j-^-

^^- 5' 5"-

Art. 232. Hindoo method of solving quadkatics.—When
an equation is brought to the form ax^-\-bx=c, it may be reduced

to an equation of the first degree, without dividing by the coeffi-

cient of x^ ; thus avoiding fractions.

If we multiply every term of the equation ax^-\-bx=c, by four
times the coefficient of the Jlrst term, and add to both sides the

square of the coefficient of the second term, we shall have,

AaV+4:abx+b^=4:ac+bK

Now the first member of this equation is a perfect square, and

by extracting the square root of both sides, we have

2aX'\'b=dbiJ4:aC'^b^, which is an equation

of the^rs^ degree. This gives the following, called the
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Hindoo hule for the solution of equations of the second

DEGREE.— Reduce the equation to theform ax^-|-bx=c. Multiply
both sides by four times the coefficient of x^. Add the square of
the coefficient of x to each side, and then extract the square root.

This will give an equation of the first degree, from which the value

of X is easily found.

1. Given 2x^—5a:=3, to find x.

Multiplying both sides by 8, which is four times the coefficient

of x^, we have 16a:'—40a^=24.

Adding to each side 25, which is the square of the coefficient

of X, we have

16a?2—40a:+25=49 ;

Extracting the root, 4a;—5=db7 ;

Whence, a:=3, or — i.

Find the value of the unknown quantity in each of the follow-

ing examples by the Hindoo rule.

2. 3a?2-f5a:=2. Ans, a:=|, or —2.^
3. a:2-|-a:=30. Ans. a:=5, or —6,

4. x^—x='72. Ans. x=9, or —8.

6. _i^-f??=13. Am. x=9, or if.
X—5 X ^^

PROBLEMS PRODUCING COMPLETE EaUATIONS OF THE SECOND

DEGREE.

Art. 233. 1. A person bought a certain number of sheep for

40 dollars, and if he had bought 2 more for the same sum they
would have cost a dollar apiece less ; required the number of

sheep, and the price of each.

Let X be the number of sheep, then — is the price of one,
X

and is the price of one on the second supposition.

.*. =——1 , by the question.
x-{-2 X

Solving this equation, we find x=—ldb9=8, or —10, the

number of sheep ; and —=4^0=5 dollars, the price of each.

Also, 1?=^=_4.
X —10
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Now either of these values of x satisfies the equation, but the

negative value, —10, does not fulfill the conditions of the ques-

tion in an arithmetical sense. But, since the subtraction of a

negative quantity produces the same result as the addition of a

positive quantity of the same numerical value, the question may
be so modified that the value, — 10, will be a correct answer to

it, the 10 being reckoned positive. The question thus modified

is : A person sells a certain number of sheep for 40 dollars. If

he had sold 2 fewer for the same sum he would have received a

dollar apiece more for them ; required the number sold.

Remark.— In the preceding, and in many other cases, especially in

the solution of philosophical questions, we derive answers which do not

correspond with the conditions. The reason is that the algebraical

expression is more general than the common language ; and the equa-

tion, which is a proper representative of the conditions of the given

question, also expresses other conditions ; and hence, when it is solved,
answers should be obtained, fulfilling all the conditions expressed by the

equation.

2. Find a number such, that if 17 times the number be dimin-

ished by its square, the remainder shall be 70.

Let x= the number.

Then 17a;—a?2=70.

or, a;2—17a?=--70.

Whence, x=l, or 10.

In this case both values of x satisfy the question in its arith-

metical sense. Thus,

17x7—72=119—49=70.
or, 17x10—102=170—100=70.

3. Of a number of bees, after eight-ninths, and the square root

of half of them, had flown away, there were two remaining;
what was the number at first ?

To avoid radicals, let 2x^ represent the number of bees at first ;

then.

Whence, x=6, or —1^ ; but the latter value, being fractionalj

is excluded by the nature of the question ; the number of beea

is 2X62=72.
4. Divide a into two parts, whose product shall be b^.

Let x= one part, then a—a:= the other ;

.'. x(a—x), or flw;—x2=62.
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Whence, ar=K«=±=V^'—^62) ;
that is,

a:=|(flitVa2—4Z>2), and a—a:=i(a=FV«^—4^^)» are the

parts required, and the two parts are the same, whether the upper
or lower sign of the radical quantity be used. Thus, if the num-

ber a is 20, and 5 8, the parts are 16 and 4, or 4 and 16.

TYiQ forms of these results enable us to determine the limits

under which the problem is possible ; for it is evident that if 45^

be greater than a^, ^a^—45^ becomes imaginary^ and thus the

two parts are unassignable, according to the principles of arith-

metic ; that is, no such parts can be found. It is also easily seen

that the extreme possible case will be, when jja^
—46^=0, in

which case x=^a, and a—x=ya ; also, b^=ia^.

Remark.— In the following examples, that value of the unknown

quantity only is given, which satisfies the conditions of the question in

an arithmetical sense.

5. What two numbers are those whose sum is 20 and product
36 ] Ans. 2 and 18.

6. Divide the number 15 into two such parts that their product
shall be to the sum of their squares, in the ratio of 2 to 5.

Ans. 5 and 10.

7. Find a number such, that if you subtract it from 10, and

multiply the remainder by the number itself, the product shall hp
21. Ans.lorS.

8. It is required to divide the number 24 into two such parts

that their product shall be equal to 35 times their difference.

Am. 10 and 14.

9. Divide the number'346 into two such parts that the sum of

their square roots shall be 26. Ans, IP and 15 2.

Suggestion.
— Let x= the square root of one of the parts, and

26—X, the square root of the other part.

10. What number added to its square root gives 132 1

Ans. 121.

11. What number exceeds its square root by 48| 1

Ans. 561.
4

12. What two numbers are those, whose sum is 41, and the

sum of whose squares is 901 1 Ans. 15 and 26.

13. What two numbers are those, whose difference is 8, and

the sum of whose squares is 544 1 Ans. 12 and 20.
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14. A merchant sold a piece of cloth for 24 dollars, and gained
as much per cent, as the cloth cost him. Required the first cost.

Ans, 20 dollars.

15. Two persons, A and B, had a distance of 39 miles to travel,

and they started at the same time ; but A, by traveling |
of a

mile an hour more than B, arrived one hour before him ; find

their rates of traveling. Ans, A 34, B 3 miles per hour.

16. A and B distribute 1200 dollars each among a number
of persons ; A gives to 40 persons more than B, and B gives 5

dollars apiece to each person more than A ; find the number of

persons. Ans, 120 and 80.

17. From two towns, distant from each other 320 miles, two

persons, A and B, set out at the same instant to meet each other

A traveled 8 miles a day more than B, and the number of days
in which they met was equal to half the number of miles B went

in a day ; how many miles did each travel per day 1

Ans, A 24, and B 16 miles.

18. A set out from C towards D, and traveled 7 miles a day.

After he had gone 32 miles, B set out from D towards C, and

went every day y*^ of the whole journey ; and after he had trav-

eled as many days as he went miles in one day, he met A. Re-

quired the distance of the places C and D.

Atis, 76, or 152 miles.

19. A grazier bought a certain number of oxen for $240
and after losing 3, sold the remainder for $8 a head more than

they cost him, thus gaining $59 by his bargain. What number

did he buy ? Ans, 16.

20. Divide the number 100 into two such parts that their pro-

duct may be equal to the difference of their squares.

Ans. 38.197, and 61.803 nearly.

21. Two persons, A and B, jointly invested $500 in business,

each contributing a certain sum ; A let his money remain 5

months, and B only 2, and each received back $450, capital and

profit. How much did each advance]

Ans, A $200, B $300.

22. It is required to divide each of the numbers 11 and 17

into two parts, so that the product of the first parts of each may
be 45, and of the second 48. Ans, 5, 6, and 9, 8.

23. Divide each of the numbers 21 and 30 into two parts, so

that the first part of 21 may be three times as great as the first
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part of 30
;
and that the sum of the squares of the remaining

parts may be 585. Ans. 18, 3, and 6, 24.

24. Divide each of the numbers 19 and 29 into two parts, so

that the difference of the squares of the first parts of each may-

be 72, and the difference of the squares of the remaining parts

180. An5. 7, 12, and 11,18.

DISCUSSION OF TiJE^j^NERAL EQUATION OF THE SECOND

DEGREE.

Art. 234. The discussion of the general equation of the sec-

ond degree, consists in investigating the general 'properties of the

equation y and in interpreting the results, which are d^ived from

making particular suppositions on the different quantrl^s which

it contains.

The general form, to which every complete equation of the sec-

ond degree, containing one unknown quantity, may be reduced

(Art. 226), is

x'^-\-2px=zq,

in which 2p and q may be either both positive or both negative,

or one positive and the other negative.

Completing the square, we have

x'^-\-2px-\-p'^=q'{:p'^.

Now, x'^-{-2pxh\-p^={x-^'py. For the sake of simplicity, put

q-\-p'^-=im'^ , that is, ^q-\-p'^=im, then

Transposing, («^+J3)^
—m2=0.

But, since the left member of this equation is the difference of

two squares, it may be resolved into two factors (Art. 93); this

gives (^+i'+^)(^+jP—m)=0.

Now this equation can be satisfied in two ways, and in only two ;

that is, by making either of the factors equal to 0. If we make
the second factor equal to zero, we have

x-\-p
—m=0 ;

Or, by transposing, a:=—p+?n=—p+^^+P'*
If we make the first factor equal to zero, we have

17
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.

__^_
.

Or, by transposing, x=^^—m=—p—aJq+P^'

Hence, we have

Property 1 st. Every equation of the second degree has two roots

(or values of the unknovm quantity), and only two.

From the equation {x-{-f-\-m)(x-\-p
—m)=0, we derive

Property 2nd. Every complete equation of the second degree,

reduced to the form x2+2px=q, may be decomposed into two bino-,

mial factors, of which the first term in each is x, and the second, the

tivo roots with the signs changed.

Thus, the two roots of the equation, x^—^7a:4-10=0, are a;=2,

anda?=5; hence, a?^—^7x+10=(a:—2)(x
—

5).

It is now evident that the direct method of resolving a quad-
ratic trinomial into its factors, is, to place it equal to zero, and then

find the roots of the resulting equation.

In this manner let the learner solve the examples in Art. 94,

page 50.

By reversing the operation, we can readily form an equation
whose roots shall have any given values.

Thus, let it be required to form an equation whose roots shall

be —3 and 4.

We must have
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aj'=—P+V^+P'j

Adding, x'-\-x"^
—

2p. But, —2p is the

coefficient of Xy taken with a contrary sign. Hence, we have

pROPERTT 3rd. Tlie sum of the two roots of an equation of the

second degree^ redttced to the form x2+2px=q, is equal to the coeffi'

cient of the first power of x, taken with a contrary sign*

If we take the product of the roots, we have

«'=—P+V^+i''*

g"=—P—Vg+y'
P^--p^q+p''

+pjq+p''—(q+p'')

x'af' =p^ .... —(?4-p2)=-^.

But —q is the known term of the equation, taken with a con-

trary sign. Hence, we have

Property 4th. The product of the two roots of an equation of
the second degree, reduced to the form x2-|-2px=q, is equal to tht

known term taken with a contrary sign.

Note.— In the preceding demonstrations, we have regarded 'Up and q

as both positive ; but the same conclusions will be obtained by taking
them both negative, or one positive and the other negative.

Art. 235. We shall now proceed to determine the essential

sign of the roots in each of the four different forms, and to com-

pare the two roots in each form, in regard to their numerical mag-
nitude.

To do this, it is necessary first to compare p with Mjq-\-p^, and

also with ^—q-\-p^'

If we examine *Jq-\-p^, we see that its value must be a quan-

tity greater than p, since the square root of p^ alone, is p.

But the value of J—q+p^j must be less than p, since it is the

square root of a quantity less than p^.

With these principles, a careful consideration of the roots, or

values of x in each of the four different forms will render the fol-

lowing conclusions evident :
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1st form x'^-^2jpx=q.

^'=-^+\/q+p^

The first root is essentially positive, and the second essentially

negative ;
and the first root is numerically less than the second.

2nd form, x^—2px-=q.

x'=p+s/q+p^;

The first root is essentially positive, and the second essentially

negative ; and the first root is numerically greater than the

second.

3rd form, x^-\-2px==
—

q.

a:'=—p+V—9+?'
»"=—P—v—^+i^'-

Both roots are essentially negative, and the first root is numeri-

cally less than the second.

4th form, x^—2px=—q.

x"=p—J—q+p^.

Both roots are essentially positive, and the first root is numeri-

cally greater than the second.

It is obvious that in each of the forms, the exact numerical

value of the roots can be found, only when tjq+p^i or J—q-^-p"^

is a perfect square.

Note.— Questions 5, 6, 7, 8, page 186, are specially adapted to illus-

trate the four difierent forms. See, also, Ray's Algebra, Part 1st,

Art. 217.

Akt. 236. We shall now proceed to show when the roots

become imaginary, and why.

In the third and fourth forms, the radical part is ^—q+p"^*

Now when q is greater than p"^, this is essentially negative, and

we are required to extract the square root of a negative quantity,

which is impossible (Art. 193). Hence, when q is greater than

p"^, that is, when the hnown term is negative, and greater than the

square of half the coefficient of the first power of x, the roots are

imaginary.
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To show why the roots are imaginary, we must inquire, into .

what two parts a number must be divided, that the product of the

parts shall be the greatest possible.

Let 2jp represent any number, and let the parts, into which it

is supposed to be divided, be p-^-z^ and jp
—z. The product of

these parts is

Now this product is evidently the greatest, when 2;^ js the least ;

that is, when 2^=0, or z=0. But when z is 0, the parts are p
and^. Hence,

When a number is divided into two equal parts, their product is

greater than that of any other two parts into which the number can be

divided. Or, as the same principle may be otherwise expressed,

The product of any two unequal numbers, is less than the square of

half their sum.

Now it has been shown (Art. 234, Properties 3rd and 4th),

that 2p, the coefficient of the first power of x, is equal to the sum
of the two roots, and that q is equal to their product. But, when

q is greater than p^, we have the product of two numbers, greater

than the square of half their sum, which, by the preceding princi-

ple, is impossible. If, then, any problem furnishes an equation of

the form x'^zh'2poc=
—

q, in which the known term is negative and

greater than the square of half the coefficient of the first power
of the unknown quantity, we infer, that the conditions of the

problem are incompatible with each other. The following is an

example.

Let it be required to divide the number 8 into two parts, whose

product shall be 18.

Let X and 8—x represent the parts.

Then, a;(8—a:)=18; or a:^--8x=—18;

Whence, a:=4+V^=^, or 4—V^.
These expressions for the values of a:, show that the problem is

impossible. This we also know from the preceding theorem,
since the number 8 cannot be divided into any two parts whose

product will be greater than 16. Thus, the algebraic solution

renders it manifest that the problem is impossible.

Art. 2 37. Examination of particular cases.

1st. If, in the third and fourth forms, where q is negative, we

suppose q=p^, the radical, mJ
—

q-\-p^t becomes 0, and x-=—p, in

the third form, or -{-p in the fourth form. It is then said, the two

roots are equal.
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In fact, if we substitute f"^ for 9, the equation in the third form

becomes x^-\-'^'px-\-'p^=.{S ,

Hence, ix-^'pY, or, (a;-|-p)(a:4-;?)=0.

In this case, the first member is the product of two equal factors.

Hence, the roots of the equation are equal, since either of the

two factors, being placed equal to zero, gives the same value for

X. A similar conclusion is obtained by substituting p^ for q in

the fourth form.

2nd. If, in the general equation, x^-^2px=q, we suppose ^=0,
the two values of x reduce to,

x=^p-\-p=0, and x=—p-'-p^—2p,

In fact, the equation is then of the form

x'^-\-2px=Q, or a?(x+2^)=0,

which can be satisfied only by making

a:=0, or x-\-2p=Q;

Whence, a:=0, or x= —
2p,

3rd. If, in the general equation, x'^-\-2px=q, we suppose 2jp=0,

we have x^=q,

Whence, x=dizjq*

In this case, the two values of x are equal and have contrary signs ^

real, if q is positive, as in the first and second forms, and imagin-

ary, if q is negative, as in the third and fourth forms.

Under this supposition the equation contains only two terms,

and belongs to the class treated of Art. 228.

4th. If we suppose 2jo=0, and ^=0, the equations reduce to

aj2=0, and give the two values of x, in all the forms, each e'qual

toO.

Art. 2S8. There remains a singular case to be examined,
which is sometimes met with in the solution of problems produc-

ing equations of the second degree.

To discuss it, take the equation

ax'^-\-l)oc=iC,

Solving this equation, the values of x are

2^
^

2a
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If, now, we suppose a=0, these values become

That is, one value of a: is indeterminate and the other infinite

(Arts. 136, 137).

But if we suppose a=0 in the given equation, we have

hx=^c, and a;=-.
h

But X can have only two values, (Art. 234) ; hence, there is at

least an apparent contradiction ; how can it be reconciled 1

Let us first examine the value of a;=-.

If we multiply both terms of the second member of the equa-

tion x=r-b+^h^-]rA.ac ^^ _i_^-^j^^ ^e have
2a

J2_(j2_(.4ac)
—4ac

2a(^6—V^'+4flc) 2a(—-!>—^62_f^ac)*

or, by dividing both terms by 2a

—2c

Whence, a;=-, by making a=0.
h

c
Hence we see, that the value of a;=_, is really -, and arise*^

h

from having made a factor zero, that was common to the numera-
tor and denominator.

We shall now examine the value of a:=——=ao

By supposing a=0, the equation ax'^-{-hx=ie, reduces to &»=(?,

an equation of the^rs^ degree.

It is, therefore, impossible that it can have more than one root

(Art. 170.) Hence, the supposition that it has two^ gives one
value infinite, which is equivalent to saying, the equation has but
one finite root.

If we had at the same time

a=0, 6=0, c=0, the equation would be

altogether indeterminate. This is the only case of indetermina-

tion presented by the equation of the second degree.
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Art. 239. We shall now apply the preceding principles in the

discussion of a problem, which presents most of the circum-

stances commonly met with, in problems producing equations of

the second degree.

PROBLEM OF THE LIGHTS.

It is required to find, in a line BC, which joins two lights, B anc

C, of different intensities, a point which is illuminated equalljr

by each.

P 5 p c p'

It is a principle in optics that, the intensity of the same light a,

different distances, is inversely as the square of the distance.

Let a be the distance BC between the two lights.

Let b be the intensity of the light B at the distance of one foot

from B.

Let c be the intensity of the light C at the distance of one foot

from C.

Let P be the point required.

Let BP =x, then CP =a—x.

By the optical principle above stated, since the intensity of the

light B at the distance of 1 foot, is 6, its intensity at the distance

of 2, 3,4,. . . . feet, must be -, -, — . . . . ; hence, the
4 9 16

intensity of B, at the distance of x feet, must be _ In like man-
x^

.ner, the intensity of the light C, at the distance of a—x feet,

must be —-— But, by the conditions of the problem, these
(a
—xy

two intensities are equal ; hence, we have for the equation of the

problem,

__= . which ftasilv rpdnr.ps tn 1_~"**''' =£. •
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We shall now proceed to discuss these values.

I. Let 5>c.

Thefirst value of x, .-j- , /-,
is positive and less than a, for

_ V^~rv^

.-r
,-

is a proper fraction ; hence, this value gives for the

point illuminated equally, a point P situated between B and C.

We perceive, also, that the point -P is nearer to C than B ; for

since i>c, we have Jb+Jby>Jb+^c, or 2^b^^b-\-^c

_jjb_ a^b a

and .'.
fY_. /--^5> and, consequently, .t_.

.- -^2* T^^^^ is

manifestly correct, for the required point must be nearer the light

aye

of less intensity. The corresponding value of a—x, ,r7^7^

is positive, and evidently less than -.

ajb
The second value of x, rr_^ ?-, is positive, and greater than a

for Jbyjh^Jc, .-.

J^ZJ>^^
and

j^><^'
This value gives a point P', situated on the prolongation of

BC, and to the right of the two lights. In fact, we suppose that

the two lights emit rays in all directions
; there will, therefore,

be a point P^ to the right of C, and nearer the light of less inten-

sity, which is illuminated equally by the two lights.

It is easy to perceive, why the two values thus obtained, are

expressed by the same equation. If, instead of assuming BP for

the unknown quantity x, we take BP', then CP'=a:—a, and the

equation of the problem is

x'^ (x—ay
but (x—ay=(a—xy. Hence, the new equation is the same as

that already found, and, consequently, ought to give BP', as well

as BP.

—ajc

The second value of a—x,
,j-

.-
, is negative, as it ought

to be, because x'^a, but changing the signs of the equation
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— — fr

" ^
^ ^e find X—a=—:= —> and this value of x—a,

represents the distance CP'.

II. Let &<c.

P" B PC F

Tkefirst value of X, /T\r is positive, and less than -, foi

Jb+J'c>^l+Jb, or >2Vli; .-.

^J^:j-<h
'"^

ajb a

The corresponding value of a—a:, .7-, .-, is positive, and

greater than _. These values of x, and of a—x, show that the

point P is situated between B and C, but nearer to B than C.

This is evidently a true result, since, under the present supposi-

tion, the intensity of the light B is less than that of the light C.

ajh —ajh
The second value of x, .f-__

.-
, or ~T^= ^, is essentially neg-

ative. To interpret this result, we must recollect that if distance

to the right of a certain point is reckoned positive, then distance

to the left is negative (Art. 47); hence, if we consider P" on the

left of B, as the point illuminated equally, we ought to represent
the distance BP" by —x, and then the distance CP" would be

represented by BP"+BC==—x-\-a=a—x. Under this supposi-

tion, the equation of the problem would be

b c 4.\. ,.
' b c=

, that IS, _= ,

(
—xy (a—xY x^ (a

—xy
and the solution of this equation, which is the same as that ob-

tained for P, ought to give the point P".

—ajc a^c
The corresponding value of a—x, is .7- .-= .-^ .-j. It is

positive and greater than a, for ^Jc^^Jc—Jb .-. "7= jC^^'

and .- n:^^' This represents the distances CP", and is
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merely the sum of the distances CB and BP". These results are

manifestly correct, and correspond to the circumstances of the

problem.

III. Let &=c.

The first values of ar, and of a—x. reduce to -
, which shows

2

that the point illuminated equally, is at the middle of the line

BC, a result manifestly true, upon the supposition that the inten-

sities of the two lights are equal.

The other two values are reduced to ?L^L.=qo . (Art. 136).

This result is manifestly true, for the intensities of the two lights

being supposed equal, there is no point at any finite distance,

except the point P, which is equally illuminated by both.

IV. Let J==c, and a=0.

The first system of values of x and a—x, become 0. This is

evidently correct, for when the distance BC becomes 0, the dis-

tances BP and CP also become 0.

The second system of values of x and a—Xy become 5
; this is

the symbol of indetermination (Art. 137).

This result is also correct, for if the two lights are equals and

placed at the same point, every point on either side of them will

be illuminated equally by each.

V. Let a=0, h not being =c.

In this case, all the values of x and of a—x reduce to 0, which

shows that there is only one point equally illuminated by each ;

viz : the point in which the two lights are placed.

The preceding discussion, affords an example of the precision

with which algebra answers to all the circumstances included in

the enunciation of a problem.

Art. 239". Examples for the discussion and illustration of

principles.

1 . Required a number such, that twice its square, increased by
8 times the number itself, shall be 90. Ans. 5^ or —9.

How may the question be changed, that the negative answer, taken

positively, shall be correct in an arithmetical sense ?

2. The difference of two numbers is 4, and their product 21.

Required the numbers. Ans. -|-3, +7, or —3 and —7.
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3. A man bought a watch, which he afterward sold for 16 dol-

lars. By the sale his loss per cent, on the first cost of the watch,
was the same as the number of dollars which he paid for it.

What did he pay for the watch ]

Ans. 20 dollars, or 80 dollars.

4. Required a number such, that the square of the number
increased by 6 times the number, and this sum increased by 7,

the result shall be 2. Ans. x=— 1, or —5.

What do the values of x show ? How may the question be changed
to be possible in an arithmetical sense ?

5. Divide the number 10 into two such parts, that the product
shall be 24. Ans. 4 and 6, or 6 and 4.

Is there more than one solution ? Why ?

6. Divide the number 10 into two such parts that the product

shall be 26. An^. d+J^^l, and 5—V-~f •

What do these results show ?

7. Divide the number a into two such parts, that their squares
shall be to each other as 1 to n.

a»Jn fi.

Ans. 00= =r, and a—x
1+^n l+^/n

ajn
Or x=— zz , and

l—Jn I—Jn
What are the parts when a=12 and «=4? W^hen a=10 and n=l 1

8. The mass of the earth, according to astronomers, is 80 times

that of the moon, and their mean distance asunder 240000 miles.

Now the attraction of gravitation being directly as the quantity
of matter, and inversely as the square of the distance from the

center of attraction, it is required to find at what point on the

line passing through the centers of these bodies the forces of

attraction are equal ?

Ans. 21586.5.5+ miles from the earth,

and 24134.5— « " " moon.

Or, 270210.4+
" " «

earth,

and 30210.4+
"

beyond the moon from the

earth*

This question involves the same principles as the Problem of

the lights, and may be discussed in a similar manner. The

required results, however, may be obtained directly from the

values of a?, page 200, calling ^=240000, Z;=80, and c=l.
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TRINOMIAL EaUATIONS.

Art. 240. A trinomial equation is one consisting of three

terms. The general form is aoif^-\-hx'^-=c, in which all the quan-
tities are supposed to be known, except x.

Every trinomial equation of the form

a;2"-|-2paf=9, that is, every equation of

three terms containing only two powers of the unknown quantity,

and in which one of the exponents is double the other, can be

solved in the same manner as a complete equation of the second

degree. Thus,

let a;"=y, then a;2«=?/2, and the equation becomes

Whence (Art. 231), y=—pzt^q+P^;
Substituting a;" for y, and extracting the w'^ root of both sides.

As an example, let it be required to find the value of x in the

equation x^—2px^=q.

Let x^=y, the equation then becomes

y2___2py=q.

Whence, t/=+p±V?+i^^=^^'

r=±^i?dbV?+?'
Art. 241. Binomial Surds.— Expressions of the form Azb

^B, or JAdzJ B, like the value of x just found, are called

Binomial surds
; they are sometimes found in the solution of

Trinomial equations of the fourth degree, and as it is sometimes

possible to reduce them to a more simple form by extracting the

square root, it is necessary to consider them here.

We shall first show that it is sometimes possible to extract the

Bquare root of Adz^jB, or tjAdzjJB.

(2dtzjWy=7dz4:JS I
.-.

^7zh4V3=2zfcV3.

U/2±V^)'=5±2V6 ; .-.

^5d=2V6=V2±^3'.
We shall now proceed to show that it is always possible to

extract the square root of AzizJ B, or JAdzjB, if A^—B is a

perfect square. To do this it is necessary to prove the following
theorems.
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Theorem I. — The square root of no quantity can he partly

rational and partly a radical of the second degree.

For, if possible, let ^oc=a-\-^b; .*. squaring both sides,

x=a^-\-2a^b-\-b ; .*. ^6=^
^

, that is, an irra-
2a

tional quantity is equal to a rational quantity, which is impossible;

hence, the supposition is impossible and the theorem is true.

Theorem II.— In any equation consisting of rational quantities

and radicals of the second degree, the rational quantities on each sid6

are equal, and also the irrational quantities.

If x-\-Jy=a-\-^b, then x=a, and ^y=:^h.
For if X does not =a, let x=a-\-m ;

.-. a-\-m-\-Jy==a-{-Jh', ,\ m-\-^y:=^b;

that is, the square root of a quantity is partly rational and partly

irrational, which has been shown by Th. I, to be impossible ;

hence, x=a, and Jy=Jb.
We shall now proceed to find a formula for extracting the square

root of A+VB.

Assume
'^

-jA4-^B=V^+>/y>

A-|-VB==a;-f-3/+2^a^, by squaring.

By Th. II, a:+y=A(l) ;
and 2j^==zjB{2) ;

Squaring equations (1) and (2), we have

x^+2xy+7f=A\

4:xy =B ;

Subtracting, x^-'2xy+y^=A'^—B ;
or

(a?—y)2=A2--B^

Let A2-—B be a perfect square =C^, then C=^A^—B.
••• (^—y)^=C2, or x--y=C ;

But x-{-y=A ;

Whence, x=^d^ ; and v=:^Z:5.
2 ^2

and V^±^^;and Jy=±^:

.-. V-+V^V^+VB=±J^±^^
'A—C
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Similarly, ^x-^y=^A-^B=±^^^^^.

and Vwf=±(^^-^^^). (L).

These formulas are easily verified by squaring each side, and

substituting A^—B for C^.

EXAMPLES FOR PRACTICE.

1. Extract the square root of 31+10^6.
Here A=31, JB=10V6'; .-. A^—B=C2=961--600=361,

and C=19. -

.-. A+C==50, A—C=12; .-. x=2b, y=6;

...

^7+V^==^A+VB=>/25+J6"===5+V^.

2. Reduce
l7vp-{-2m^

—
2mjJnp-\-m^, to its simplest form.

Here A=np-{-2m^, and B=4:m%np-\'m^),

A^—B= n^p^f and C=np, (formula L).

.-. A4-C=2nj5+2m^ A--C=2m2 .-. x=np+m^, y=m\

Formula (L) gives Jx—^y=^±{^np-\-7n?
—

m).

Proof. zt:(Jnp-\-m^
—my=np-\'2m^—2m^np-{-m^.

3. Find the square root of 11+6^2. Ans. 3+^2.

4. Find the square root of 7—4^3. Ans. 2—^3.

5. Find the square root of 3it2V2'. Am. jj2dzl.

6. Find the square root of 13+2^30. Ans. ^TO+Jd,
7. Find the square root of 174-2760. Ans. 2^S+^5i'.

8. Find the square root of x—2^0;—1. Ans. Jx—1—1.

9. Find the square root of 2aJ—1. (A=0).

Ans. J^(\+JZa).
10. Find the square root of x-\-y-\-z-\-2 >Jxz-\-yz.

Ans. Joc-\-y-\-^z,
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1 1 . Reduce to its simplest form ^ bc-\-2bJbc
—b^+

lbc—2bjbc'^\ Ans. zh2Jbo^,

Art. 242. We shall now resume the subject of Trinomial

Equations. The general form of Trinomial equations iB

; a;2«_|_2j9a;"=5 ; but there are several varieties of this form, of which

the following are the principal : viz ; x-\-jJx=q ; x'^-\-px^=q,
n Sn

a;" -1^072=5, a;3«-|-jpa;2=^, x'^''-\-px^"=qy (x^-]-px-\-qy'\-b{x^^px

~\-q)=r, and (x'^-{-px-]-qy"--\-b{x^--\'px-]-qy=k.

It is easily seen that some of these varieties, if developed,
would produce very complicated expressions. Yet they may all

be solved by the general method given above, that is, by plac-

ing the lowest power of the compound term equal to an un-

known quantity, and then substituting the latter in the given

equation. In some cases it is necessary to substitute more than

once, as in the following, which is one of the most complicated
forms :

(x^+px-^qy"-{-b(x'^+px-\-qy=k.

Let x^-\-px-\-q=i/y then {x^-{-px-\-qy"=y^'', and the equa-

tion becomes y^"-{-by^=k.

Let y'^=z, the equation then becomes z^-\-bz=k, from which z

. found ^-?>d=V6^+4Z: . ^,.., /-^±V6^+4/c
2

^ V 2

Calling this last expression h, for
simplicity, and we have

x^-\-px-\-q=h,

Whence, x=--^±:Jh—q+
't

;

E X AMPL E S,

1 . Given, x^—6a:3=16, to find the value of a?.

Assume,. a;'=y, then x^=i/^, and

y'-^y =16;
Whence, y =8, or — 2.

Therefore, a;^=8, or —2.

and X =2, or —%/2.
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It will be shown hereafter, (Art. 396), that every equation has

as many roots as there are units in the exponent of the highest

pov^er of the unknown quantity. We do not, therefore, by this

method, in all cases, obtain all the values of the unknown quan-

tity. Thus, in the preceding example, there are four values of x
not determined.

2. Given 5a;—4^x^33, to find the value of x.

Assume, ^x=y, then x=^y'^, and

5i/2-4y=33 ;

Whence, -

y=3, or —y ;

Consequently, 07=9, or ^y.

3. Given, ^^+12+^^+12=6, to find the value of x.

Assume, iJx-\-\2=y; then ^a:-j-12=:^2, and

y^+3/=6;

Whence, y=2, or —3;

.-. V«+12=2, or —3;
Whence, ar+12=16, or 81;

and a:=4, or 69.

Or, without introducing a new letter y, we may consider the

whole expression under the radical as the unknov/n quantity, and

proceed to complete the square thus,

V^r2+i/^+i2+l=6+i=V ;

Extracting the root, V^+12+l=dzi ;

V^+12=—5±i=+2, or -^.

a?+12=16, or 81.

Whence, a:=4, or 69.

The principle of both operations is the same, but the use of

the new letter renders the process more easily understood by

befjinners.

4. Given 3a:2-|-^3a;2+l=55, to find the value of x.

Adding 1 to each member, the equation becomes

3a:2+l+73a:2+l=56.
The equation may now be solved like the preceding.

The values of x are +4, —4, +*y21, and —Ay21.
18
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^ Find the values of x in each of the following examples.

5. 0?*—25a;2=—144. Ans. x=±:d, or dz4.

6. 5a;^+7a?2=6732. Ans, x=±:Q, or ±10^—3740.
1. 9a;6—11073=488. Atz^. a:=2, or ^s/ZITsS.

8. a;3—0:^=15500. Ans. a:=25, or (—124)*.

9. a;^+a;W056. Aw5. a:=64, or (—33)?.

10. a;-j-5=,ya;-j-5+6. Ans. ax=4, or —1.

11. 2 Va;2—3a:+l 1 =a;2—3a:-f8.

Atjs. a:=2, 1, or |d=iV—^l-

12. a;2—7a:+Va:2—7a;+18=24.

An5. a;=9, —2, or 5(7^^173).
13. (a:2—9)2=3+11(0:2—2). Ans, a;=rb5, or ±2.

14. lx-\.^ )'+a:=42—?.
\ X / X

Ans, a:=4, 2, or |(—7ztVl^)-

15. x'
(
1+i-

)

—
(3a;2+a;)=70.

Ans, 07=3, —3|, or |(—Izb^—251).

(6
\ 1 I j;2

-—a;
) =~T^.

^^^- ^=±V(1±^V2).

Art. 243. In the preceding examples the form of the trino-

mial equation, is either given or easily ascertained
; but it some-

times happens that questions are given, in which the compound
term is not presented to view, but which may be reduced to the

form of a trinomial equation by the following method :

If the greatest exponent of the unknown quantity is not everiy

it must be made even, by multiplying both members of the equa-
tion by the unknown quantity. Then extract the square root to

two or three terms, and if we find a remainder (omitting known
terms if necessary), which is any multiple or any part of the root

already found, the given equation may be reduced to a trinomial,

of which the compound term will be the root already found.

Example. Given, x^—iax^—2a^x-{-12a^=——, to find x,
X

Multiplying both sides by x, and transposing, we have

x^-^ax^-^2aV+12a^x--'lQa^=^0,
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Proceeding to extract the square root, we have the following

OPERATION.

a;4__4aa;3—2a2aj2-j-12a3a;—16a4|a;2—.2aa?.

a;4

2x^—2ax\ —4aa;3—2a2a;2
"~ —

4aa;'+4a2a?2

Remainder ^^a^x^+12a^x^l6a^ ;

or, -^aXx^—2ax)—lQa\
Hence, the given equation may be written thus :

(x^—2axy—Ga\x''—2ax)'-16a^=0.
^

Assuming x^—2ax=y, we find y^Sa^, or —2a? ; then from

the equation x^—2aoc=Sa^f or —2a^, we find

a:=4a, —2aj or azhaj—1.

2. a?4—2a:3_2a?2-(-3a:=108.

Ans. a;=4, —3, or i(l=bV""35).

3. a?4—2a:3-fa:=30. Ans.x=2, —2, or 2(1±V--19-
4. x^-Sx^+llxS^O, Ans. x=l, 2, or 3.

5. a:^—6a;'+5a;2+12a:=60.

il7i5. a:=5, —2, or |(3zbV—1^).
6. a?4—8a;3^10ar2+24x=—5. Ans, x=5, —1, or 2itV5.

X
7. 4ar4+^=4a:3+33. Atw. a:=2, —|, or i(litV--43).

2 '^ 4

14 7x3"^ dx 2x2"^
*'

Ans. a?=4, 3, or i(7zbV^)-

SIMULTANEOUS EaUATIONS OF THE SECOND DEGREE CON-

TAINING TWO OR MORE UNKNOWN aUANTITIES.

Art. 244. Equations of the second degree, containing two or

more unknown quantities, may be divided into two classes.

1st. Pure Equations.

2nd. Adfected Equations.

The first class embraces those equations that may be solved

without completing the square ; the second, those in the solution

of which it is necessary to complete the square. The same

equations, however, may sometimes be solved by both methods.
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Art. 245. Pure Equations.— Pure equations may in general

be reduced to the solution of one of the following forms, or pairs

of equations.

(i.)^+^?S. (20^35. ^=^->S±?'3j.

We shall explain the general method of solution in each of

these cases.

1. To solve x-^y=a (1), and ocy=b (2), we must find x—y.

Squaring Eq. (1), x'^-{-2xy-\-y^=:=a^ ;

Multiplying Eq. (2) by 4 , Axy =45
;

Subtracting, x^—2xy-\-y^=a'^
—46,

or, (x—yyz=^a?
—46

;

Whence, x—y=^±Ja'^—46 ;

But, x-{-y=a ;

Adding and dividing by 2, x=^^a-±:\ ,Ja^^-^l*

Subtracting and dividing by 2, y==^a=p^tja^
—46.

The pair of equations (2) is solved in the same manner, except
that in finding x-]-y we must add 4 times the second equation
to the square of the first.

The pair of equations (3) is solved merely by adding and sub-

tracting, then dividing by 2 and extracting the square root.

EXAMPLES IN PURE EaUATIONS.

1 . Given, a;2_|_y2—j (1)^ and x-\-y=a (2), to find x and y.

Squaring Eq. (2), x^-^2ocy-\-y^=za^ ;

But, a;2 +y^=d (1).

Subtracting, 2ocy=a^
—

d, (3).

Take (3) from (1) ; x^—2xy+y^=2d—a^,

r. x-^=±:^2d--a^.

Whence, x=ha±:h^2d^a^, yz=la^^hj2d^aK

2. Given, x^+xy+y^=9l(l), and x+jVy-\-y=lS(2), to find

X and y.

Divide Eq. (1) by (2), x—jVy+7j= 7. (3).

But, x+J^+y=lS, (2).

By subtracting, 2Jocy=S. (4).
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By adding, x-\-y=10. (5)

Squaring, (5), x''+2xj/+y^=100:

Squaring, (4), Axy = 36;

x^—2xy-{-y^=64t, .•. x—y=±8.
But, x-\-y=10j whence, x=9 or 1, and y=l or 9.

Equations of higher degrees than the second, that can be

solved by simple methods, are usually classed with pure equations
of the second degree.

3. Given, x*-\-y'^=6, and a;*-f-y^=126, to find x and y.

In all cases of fractional exponents, it renders the operations

more simple to learners, to make such substitutions as will render

the exponents integral. In this example, let a7*=P, and y^=Q,;
3 S

then a7*=P', and 3/^=0,^. The given equations then become,

P+Q=6 (1),

P3+Q3=i26 (2).

Dividing Eq. (2) by (1), P^— PQ+Q,2=21;
Squaring Eq. (1), P2+2PC14-Q,2^36;

^

Subtracting, 3PQ=15, .-. PQ=5.

Having P4-Q=6, and PQ,=5, by the method explained in

form (1), we readily find P=5 or 1, and Q=l or 5.

Whence, a:=625 or 1, and y=l or 3125.

4. Given, (x^y)(x^^y^)=160 (1),

(x+y)(x^+y^)=bSO (2), to find x and y,

j;3—^7y
—
ocy^-^y^=160 (1), by multiplying.

x^+x^y-\-xy^+y^=dQO (2),
«

2x^y-{-2xy^=^20 (3), by subtracting.

Add (3) to (2), x^+2x^y-{-Zxy^+y^=l000.
Extract cube root, a:+y=10.
From (3), xz/(x+y)=210; .-. xy=21.
From x-\-y=lOy and a;^=21, we readily find x^l or 3, and

^=3, or 7.

Let the following examples be solved by the preceding or simi«

lar methods.

5. x—^=2, Ans. a:=15, or —13;

ar24.y2=394. ^^=13, or —15.

6. a;24.y2~ai3, Ans, a;=d:3;

xy = 6.
^ y=±2.
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7. ^x-^-y =7, Ans, oc=2, or »-;

4x^+y^=26. 2/==3» or 4.

8. a72__^2_i6^ ^7i5. a:=5;

x—y=: 2, » S^=3.

9. a;+3/= 11, Am. a;=7, or 4;

a;34-3/3=:407. ^=4, or 7.

10. '7ix^+y^)=:9(x^'-^^)y Ans. a:=4;

a?^2/
—y^x=lQ, y=2.

1 1 . x^+xy=S4:, Ans, a?=it7 ;

12. a:3_]_y3--.i52,
Atw. a?=5, or 3;

a;2—0^4-3/2=19. ^=3, or 5.

13. x^+y^+xy=2QS,^ Ans, x=12, or 4;

^ a;+2/
= 16, y= 4, or 12.

14. a;3—yz—riysy^
Ans, a;=4, or —2;

a; —
3/
= 2. 3^=2, or —4.

15. a;4+a?y+3/'»=91, Ans. a:=zh3, or d=l;

a;24-a;y +2/2=13. y=ddl, or d=3.

16. x-—y=^x-\-»Jy, Ans, x=lQ, or 9;

a;?—/=37. y= 9, or 16.

17. a?i+yi=5, Ans. a:=16, or 81;

a;^+/=13. 5^27, or 8.

18. 3,t_|_y7= 5 Atw. a:= 8, or 27;

X -\-y =35. 2/=27, or 8.

19. a:^-l-y^= 4, Ans, a:=9, or 1
;

a??+y^=28. y=l, or 9.

20. a;3+2/3=351, Ans. a:=7, or 2;

a;^/
= 14. ?/=2, or 7.

21. a; +3/= 4,
' Ans. a:=3, or 1;

a;4-1-3/4—82. y=l, or 3.

22. aj(3/+z)-a, Ans.
a:-±^ 2(5+c-a)

'

, ,
.

'

,
KaA-h—c)(h-\-c

—a)

,(,+,)«. .=::b/J+^
-)^-+--^)-

2(a+c—J)
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Art. 246. Adfected Equations.— The most general form

of an equation of the second degree, containing two unknown

quantities, is,

ax^-\-bocy-{-cx-\-dy'^-\-ei/-{-f=0 .

By arranging the terms according to the powers of x, and divid-

ing by the coefficient of the first term, two equations of the sec-

ond degree containing^wo unknown quantities, may be reduced

to the following forms :

a;2+(a y+b )x+cf+d y+e =0 (1),

x^+(a'y+b')x+cy+d'y+e'=:0 (2).

To find the values of either of the unknown quantities, we
must eliminate the other. We shall now show that this operation

produces an equation of the fourth degree.

By subtracting the second equation from the first, and mak-

i'^g a—a'=a", b—b'=b", &c., we have

(^a"y+b")x+c'y+d"y+e"=0.

Whence, ^^_S'y+^''y+'\
a"y-\-b

Substituting this value of x in the first equation, we get

(a y-\-b y a 'y-{-b"

and multiplying by (a"y-\-b"yi

{a"y+b"y=^,
an equation of Xhe fourth degree.

Hence, in general, Uie solution of two equations of the second

degree, containing two unknown quantities, depends upon the solution

of an equation of the fourth degree, containing one unknown

quantity.

Aet. 24'y. There are, howeverj Mo cesea in v/hich two equa-
tions of the second degree, containing two unknown quantities,

may always be solved as equations of the second degree ; viz :

Case I.— When one of the equations, containing two unknown

quantities, rises only to \hQ first degree, and the other to the sec*

ond degree, the values of the unknown quantities may be found

by the solution of an equation of the second degree.

Given, ax-\-by=c (1),

dx^-]-eocy-{-fy^-\-gx-\-hy=k (2), to find x and y.
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Here equation (1) is evidently the general equation of the first

degree between x and y, and equation (2) the general equation of

the second degree between x and y.

From eq. (1), we have x= ^
;
and substituting this value of

a

X in equation (2), and multiplying every term by a^ we have

d(c2
—

2bcy-\-h'^y^)-\-aey(c
—

hy)-\-a^fy^-]-ay{c
—

by)-\-a^hy^=a'^ky

an equation of the second degree, from which the value of y may
be found by the rule (Art. 231). Having the value of y, that of

X may be found from the equation x=-I—^,
a

Case II.— When both equations of the second degree are

homogeneous^ that is, have the sum of the indices of the unknown

quantities the same in every term which contains unknown quan-

tities, they may be solved by an equation of the second degree.

Given, ax^'\-bxy-\'Cy'^=d (1),

a'x^-\-Vxy-\-c'y^=d' (2), to find x and y.

Let yz=tx, where Ms a third unknown quantity, termed an

auxiliary quantity. Substituting this value of x in the two equa-

tions, we have

ax^+htx^+ctV=x%a+M+ct^)—d (3),
•

a'x^+h'tx^'{-c't^x^=x\a'+h't+c't^)=zd' (4).

d
From eq. (3) we find

x^=a+ht-\-ct^'

d'

and from eq. (4)
^^=a'+h't+c't^'

'
d _ d'

aJ^bt+ct^ a'-^-b't+cV

or, d{a'+b't+cV)=dXa+bt+ct^)y

an equation of the second degree, from which the value of t may
be found, (Art. 231), and thence x from the equation

^2-_ , and thence y from the equa-
a-\-bt-{-ct^

tion y=tx.
^

} Art. 248. When two equations of the second degree are sym-
metrical with respect to the two unknown quantities, that is, when

the two unknown quantities are similarly involved, they may fre-

quently be solved by substituting for the unknown quantities, the

sum and difference of two others.
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Example. Given x -^-y =a (1),

x^-{-y^=b (2), to find x and y

Let oc=s-\-z, and y=s—z, then 5=?.

By substituting the value of 5=-> and reducing, we find

^2 80a
•

From this equation, by completing the square, we find

Art. 249. An artifice that is often used with advantage, con-

Bists in adding such a number to both members of an equation, as

will render the side containing the unknown quantities, a trino-

mial equation that can be resolved by completing the square,

(Art. 240). The following is an example :

2.GUen.^l^;+1+y=^^ (1),
y^ x^ y X 4

and a:'-4-y^==20 (2), to find x and y.

Since, ( ?+? ) =^+2+?^ ; add 2 to each side of
\ y X / y^ x^

eq. (1), and then l to complete the square.

\ y X f \ y X / 4 *

• Whence, f+y=:±3--i=f or —?.
y X 2

Let -+^=6 ; then, ""1^1, or £?=§ ;

y X ^
xy ^

whence, a:y=8, and 2otn/=16
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From the equation x'^-]-y^=20, and 2ocy=16, we readily find

X'=±4, and 3/=zh2.

By taking ?-f-^=—^, two other values of x and y may be
"

y X -

found.

Art. 250. Another artifice consists in considering- the sum,

difference, product, or quotient of the two unknown quantities, as

a single unknown quantity, and first finding its value. Thus in

example 9 following, the value of xy should be found from tho

first equation ;
and in example 10, that of _

y
Other unknown auxiliaries may also sometimes be employed

with advantage, but their use, as well as that of various other

expedients that may be employed, can only be learned by experi-

ence, while much will always depend on the judgment and tact

of the operator.

EXAMPLES FOR PRACTICE.

Note.— In some of the examples all the values of the unknown

quantities are not given ; those omitted are generally imaginary.

3. x^+y^+x+y=^SO, A7is, x=ld, or —16;
x^—y'^-^oo

—
2/= 150. y= 9, or —10.

4. x-\-4:y=14, Ans. x=2f or —46;

y^+4tx=2y+l 1 . 3/=3 , or 15.

5. 2y—3a; =14, Ans. x= 2, or 1
J ;

3a;2+2(y—11)2=14. 5^=10, or
8|.

4 96. X—y^=2j Ans. a:=5, or

?--^==1tV- 2/=3, or -11
y X ^

7. 2x^+ a^=18, (Art. 247J Ans. x=±:2, or rfcS^^S;

4.y^-\-^xy=64:. ( Case II. i 2/=±3, or =f3 ^3.

8. x^+xy =10, Ans. x=±:2, or ±3^2;
ocy+2y^=24. 2/=dz3, or ±4^2.

9. 4a^=96—a;y,
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11.
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the sum of the digits be multiplied by the same digit, the pro-

duct is only 10. Required the number. Ans, 23.

3. What two numbers are those whose difference multiplied by
the difference of their squares, will produce 32, and whose sum

multiplied by the sum of their squares, is 272] Ans. 5 and 3 .

4. The product of two numbers is 10, and the sum of their

cubes 133. Required the numbers. Ans. 2 and 5.

5. If the sum of two numbers be multiplied by the greater,
and that product be divided by the less, the quotient will be 24;
but if their sum be multiplied by the less, and that product be

divided by the greater, the quotient will be 6. Required the

numbers. Ans. 4 and 8.

Note.— The preceding problems may be solved by pure equations.

6. The difference of two numbers is 16, and half their product
is equal to the cube of the less number ; find them.

Am. 18 and 3.

7. The product of two numbers is 24, and their sum multiplied'

by their difference is 20; find them. Ans. 4 and 6.

8. What two numbers are those whose sum multiplied by the

greater is 120, and whose difference multiplied by the less is 161

Ans. 2 and 10.

9. What two numbers are those whose sum added to the sum
of their squares is 42, and whose product is 15]

,
Ans. 3 and 5.

10. Find two numbers such, that their product added to their

Bum shall be 47^ and their sum taken from the sum of their

squares shall leave 62. Ans. 5 and 7.

1 1 . Find two numbers such, that their sum, their product, and

the difference of their squares shall be all equal to each other.

Ans. i+lV^> and h+l^b'.

12. Find two numbers whose product is equal to the difference

of their squares, and the sum of their squares equal to the differ-

ence of their cubes. Ans. hj^, and i(^+V^)-

13. A grocer sold 80 pounds of mace and 100 pounds of

cloves for 65 dollars ; but he sold 60 pounds more of cloves for

20 dollars than he did of mace for 10 dollars. Required the

price of a pound of each. Ans. Mace 50 cts, cloves 25 cts.

14. A and B gained by trading 100 dollars. Half of A's stock

was less than B's by 100 dollars, and A's gain was three twen-*
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tieth's of B's stock. Supposing the gains in proportion to the

stock, required the stock and gain of each.

Ans. A's stock $600, B's $400;
A's gain $60, B's $40.

15. The product of two numbers added to their sum is 23;
and 5 times their sum taken from the sum of their squares leaves

8. Required the numbers. Ans.2a.Tid7,

16. There are three numbers, the difference of whose differ-

ences is 5; their sum is 44, and continued product 1950; find

the numbers. Ans. 25, 13, 6.

17. Divide the number 26 into three such parts that their

squares shall have equal differences, and that the sum of those

squares shall be 300. Ans. 14, 10, 2.

18. The number of men in both fronts of two columns of

troops, A and B, where each consisted of as many ranks as it had

men in front, was 84; but when the columns changed ground,
and A was drawn up with the front that B had, and B with the

front that A had, then the number of ranks in both columns was
91. Required the number of men in each column.

Ans. 2304, and 1296.

Art. 252. Formul-e— General Solutions.— A general so-

lution to a problem producing an equation of the second degree,
like one of the first degree, gives rise to sl formula (Art. 162),
which expressed in ordinary language, furnishes a rule. We shall

illustrate the subject by a few examples.

1. Two men, A and B, bought 300 (a) acres of land for 600

(b) dollars, of which A paid 300 (c) dollars, and B 300 (ft—c)
dollars. For certain reasons they agreed to divide the land so

that B should pay 75 cents {d dollars) per acre more than A.

How much land did each man get, and what did he pay per acre 1

General solution.
'

Let x= cost of A's land per acre,

then x-{-d=: cost of B's land per acre ;

c h—c

also, -= acres A gcft, and Zjri== acres B got.

c h—c
•*•

i+^^4^=^' ^y ^^® problem.

Clearing of fractions and reducing,

b—ad cd

a a

I—ad (b--ady^(b—ad)^+4:acd
^'-

a ^+ 4a2 4^ >
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h—ad J (b—^ad) 2-|-4acd

or, x=2^l^(b^ady-{-4.cad-\-h—adl.

This formula gives the following rule for finding the amount

paid per acre, by him who paid least per acre :

Rule.— Find the cost of the whole numher of acres at the difference ,

between the prices per acre of the different pieces of land ; svhtract

this from the amount paidfor the whole land ; square this remain-

der and add to it the cost of the whole numher of acres at the dif-

ference between the prices per acre^ multiplied by four times the sum

of money paid by him who paid least per acre ; extract the square

root of this sum^ add to the square root thus found, the remainder

that was squared, and divide the sum by twice the whole number of

acres; the quotient will be the amount paid per acre by him who

paid least per acre. Having this, every other requirement in the

question is easilyfound.

For the particular case the results are,

A paid $2,443 per acre, and got 122.8 acres nearly.

B paid $1,693 per acre, and got 177.2 acres nearly.

2. Investigate a formula for finding two numbers, x and y,of
which the sum of the squares is 5, and difference of the squares d,

Ans.x=l\/W+^'y y=hs/^(.s—d),

3. Investigate a formula for finding two numbers, x and y, of

which the difference is d, and the product p.

Ans. x==l(d+^d^+4:p);

y=k--d+^d^Ap),
4. Investigate a formula for finding a number, x, of which the

«um of the number and its square root is s.

5. The same when the difference of the number x, and its

square root is d. Ans. x^d-^^-^-^d+i .

6. Given a:+y=5, and xy=Pf to find the value of x^-^-y^

ic^'-\-y^,
and x^-\-y^, in terms of 5 and^.

Ans. x^-\-y^=s^
—2p ;

x^-\-y^=s^
—

^ps ;

a:^-|-3/'»=s4
—

ips^+2p^.
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Let the student express eacli of the preceding formulae in the

form of a Rule, and exemplify its use, by forming examples with

particular numbers, and then solving them.

Note.— In the great variety of equations that occur, which may be

solved as equations of the second degree, it is not to be supposed that

Rules can be given for every operation necessary for their solution.

The artifices by which algebraic calculations are abridged, are numerous,
and their successful application can be learned only by practice. In the

following article, which is intended only for advanced students, we shall

exhibit some of these artifices.

Art. 253, Special solutions and examples.— If an equa-
tion can be placed under the form

in which X represents an expression involving x, the unknown

quantity ;
since the equation will be satisfied by making either

factor =0, we have x-{-a=0, and X=0. Therefore, x=—a,
is one solution of the equation, and the other values of x will be

found by solving the equation X=0. Hence, whenever an equa-
tion is simplified by division, or the omission of a factor, if the

divisor or factor contains the unknown quantityyone solution, at

least, of the equation will be found by putting that divisor or

factor equal to 0. Thus, the equation x^—x^--Ax-]-4:=0 , may
be placed under the form (x

—
2)(x"-\-x

—2)=0. Hence, x—2=0,
or x=-{-2, and from the other factor we find a;=-|-l, or —2.

The difficulty to be overcome in applying this artifice, consists

in finding the factors of the given equation, or in transforming it

so that it can be readily separated into factors.

2
Ex. 1. Given, a;—l=2+-^j to find x.

>Jx

- — 2 2 —
Since, x—lz=(Jx+l)(^x—l) and 2+-^=--r:(Va;+l},

Jx Jx

'-' (n/^+1)(^A-i)=4^(V'^+1);
jjx

.. ^"^+1=0, and a;=(—1)2=1.
_ 2 _

Also, ^x—1= —=, by dividing by ^x-\-l.
*Jx

Whence, ,Jx=2, or —1; and a;=4, or 1.

2. aj3—3a;=2. (Add 2x to ea?.h side.) Ans, a;=:—1, or 2.
^
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3.
a?2—|_=l|. ( Transpose -J

and ^, )

Ans.xz=-^l, or ^(IzhVTO).

4. 2a;3—a?2=:l. Atw. a?=;l, or i(-—ld=V^^^.

5. a;3—3a;24-a:+2=0. Atw. a:=2, or {{Izhjb).

6. a;3=6a?4-9. -Ans. a;=3, or ^(—SitV^).

7. a;+7a;*=22. Arts, x=:S, or 29±7V^=Il0.

a:4-7a:*—22=(a:—8)+7(a:*—2). a?*--2 is a divisor.

8. a;4+V«3_39a:=:8L
Ans. «=db3, or ^(—13d=^/—155-

An artifice that is frequently employed, consists in adding to

each side of the equation, such a number or quantity as will ren-

der both sides perfect squares.

9. Given, a:==?:l±i^^^, to find x,
X—5

Clearing of fractions, x"^—5a:=12-)-8^a?.

Add x-\-4: to each side, and extract the square root.

a;—2=dz(4+^^).

From which we easily find x=9, 4, or |(
—3zh^^^).

10. a>--3=?i±^. A?w.a:=i(7drV13), |(—1±V'==3>

11. i?^+l?—49=9+?. Add 1 to each side.
4 a?2 X x^

Arts. a:=2, —f , or 4(—3dbV^3)

12. a?'»+lZ^—34a:=16. Ans, a:=:db2, —8, or — ^
.

—
J

to each side.

13. o:^

(
1+1

)

'—
(3a:3+a:)=70.

Ans. a:=3, —3|, or i(—IzbV^^^^^ST).
9

Diride by x^ and add — to each side.
4a?^
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14. l^Jl:r^==^±:^ Multiply by 2, and add |f+f i

to each side. Ans. 9, —4, or —9.

15. 27a;2—®il+y=?^__L.5.

Multiply both sides by 3, transpose and — and add 1
*

x^ a;2'

to each side to complete the square.

Ans. ar=2, —-V^ or i(—2dbV—266).
We shall now present a few solutions giving examples of other

artifices.

16. i+^=a; to find a:.

(1+^)S
1+x^=a(l+xy=a(l +4a:+6a;2-f4a;3+a?4),

(1—fl)(l+a;4)=4a(a;+a;3)+6ar2,

dividing by x^, (1—a)
( x^+\ )

=4a ( x+l ) J^Qa,

x^+L^^(^+l)=l^,
a?2 1—a \ X / 1—a

( x+l )
'-J^ ( x+l ) ==1^+2Jtt^.\ ^xf l—aV ^xl l—<t 1—a

Complete the square, and find the value of a;-f— > which is
X

2azfcV2(l+fl)^ call this 2p, and we then find x=pdiy/p^—l.
1—a

17. a5+y=2/^", and 3/*+y=a;«, to find x and y.

x+y
From 1 Bt equation y^=x 4a

'

a
" 2nd "

yz=ioc^y;^ _fL J a:4-i/ a
.\ X4a =a;x-fy, and —L£= ;

4a a;4-y

(a:-}-y)^=4a2, or X'{-y=2a ;

but a:«=y2o^ since a:-|-y=2fl,

x=y^, and 2/2-|-y=2<z.

Whence, y=K—l±V8a+l). and a:=K4a+l=FVS«+l)-
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When two unknown quantities are found in an equation, in the

form of x-\-y and
xj/, it is generally expedient to put their sum

x-\~y=s, and tlieir product xy=^p.

18. Given {x+yXxy-\-l)=\Qxy (1),

(^'+2/')(^'^'+l)=208a72_z/3 (2), to find x and y.

Let x-\-y=s, and xy=p, then

s(j>+l)^lSp (1),

and (52—2j9)(p2_(_i)=208j92 (2).

From the square of (1) take (2), and after dividing by 2j9, we
have s'^-^p'^-\-l=:zbSp, (3),

but 25(p+l)=36j9 for (2),

and 2;?= 2p,

Adding, (5+^3+1)^=96^?,

but j.+l=l^;
s

s

which, 5=3^6^, or ^/6J9.

But, p+l=s, =3V6^, or ^Wp,

Whence, ;?=26±^675, or 2diV^
and s==±3V^6(26±V"675)f, or ±3 Vj6(2±V3)|.

Having a:+y, and
ocy,

the values of a: and y are easily found

(Art. 246) ; two of the values are :r=7d=4 ^3", y=2=F^3".
A similar substitution may be used in solving the following

example :

19. 2ix+yy+l={x'+y^)(xy+x^+f) (1)>

x+y=^ (2). ,

. Ans\ x=2, yz=.\J .

20. l+a;s=fl(l+a;)3. Arts. .^^1+2^±V12^—3 ^

2(1—a)

5=4^6jD—i^, or 52--45V6i)=:—18jp, from

^1- -^,-\Ma~«=l.

22. a:+3/+a;?/(a' }-3/)+a;22/2—85, Ans. 07=6, or 1.

^^Z-i-C^-i-f +xy(x-\-iJ)=z^l , y=l, or 6.
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d^ d d d

Arts. a:=-Jl— , or

{a-\-b)d {a'-^)d*

24. (a:3+l)(a?2+l)(ar+l)=:30a:«. Ans. a:=|(3±>s/5).

25. a;3+3/3=35, Ans. a:=3, 2, or Iztksl^'y

a;2_^2-=i3. y^2, 3, or 1=F5V22.

26. 5^=fl, A715. :p= / \
2afcc(ac+^c-a5) >

.

ar+y M i(a&-l~^^
—

ic)(aZ>4-fec
—acp

xyz 1 /J 2dbc{ah-\-bc
—

ac) >
,

ar+z
'

\ ({ac-\-hc
—

ah)(ab-\-ac
—

bc)S

xyz /J 2a'bc{db-\-ac
—

he) >

y-j-z

*

\ \ac-\-hc
—

ab^ab-^-hc
—acp

27. (a:«+l)y=:(y2+l)a;3,

(y«+l)a:=9(a:24-l)y9.

^^^- ^=i ^ ^/V3+3+^y3-1 J ;

CHAPTER VIII,

RATIO, PROPORTION", AND PROGRESSIONS.

Art. !254* Two quantities of the same kind, may be compared
in two ways :

1st. By considering how much the one exceeds the other.

2nd. By considering how many times the one is contained in the

other.

The first method is termed comparison by Difference ; the sec-

ond, comparison by Quotient. The first is sometimes called Arith-

metical ratio, the second, Geometrical ratio*

If we compare 2 and 6, we find that 2 is four less than 6, or

that 2 is contained in 6 three times.
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Also, the arithmetical ratio of a to 5 is b—a, the geometrical

ratio of a to Z> is _. The term Ratio, unless it is otherwise
a'

stated, always signifies geometrical ratio.

Art. 255, Ratio is the quotient which arises from dividing one

quantity by another of the same kind. Thus, the ratio of 2 to 6

is 3, and the ratio of a to ma is m.

Art. 256. When two numbers, as 2 and 6, are compared, the

^flrst is called the antecedent, and the second the consequent. An
antecedent and consequent, when spoken of as one, are called a

couplet. When spoken of as two, they are called the terms of

the ratio. Thus, 2 and 6 together form a couplet, of which 2 is

the first term, and 6 the second term*

Art. 257, Ratio is expressed in two ways :

1st. In the form of a fraction, of which the antecedent is the

denominator, and the consequent the numerator. Thus, the ratio

of 2 to 6 is expressed by g ; the ratio of a to b, by -
^ a'

2nd. By placing two points vertically between the terms of

the ratio. Thus, the ratio of 2 to 6, is written 2:6; the ratio

of a to Z?, a : b, &c.

Art. 258. The ratio of two quantities, may be either a whole

number, a common fraction, or an interminate decimal.

Thus, the ratio of 2 to 6 is f , or 3.

The ratio of 10 to 4 is y%, or |.

The ratio of 2 to Jb is ^, or ^•^^^+, or 1.118+.
"it /i>

We see, from this, that the ratio of two quantities cannot al-

ways be expressed exactly, except by symbols ; but, by taking a

sufficient number of decimal places, it may be found to any

required degree of exactness.

Art. 259. Since the ratio of two numbers is expressed by a

fraction, of which the antecedent is the denominator, and the con-

sequent the numerator, it follows, that whatever is true with

regard to a fraction, is true with regard to the terms of a ratio.

Hence,

1 St. To multiply the consequent, or divide the antecedent of a ratie

by any number, multiplies the ratio by that number, (Arith., Part

8rd,Arts. 142,145.)
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2nd. To divide the consequeiit, or to multiply tlie antecedent of a

ratio hy any number, divides the ratio hy that number. (Arith., Part

3rd., Arts, 143, 144.)

3rd. To multiply, or divide, both the antecedent and consequent of
a ratio hy any number, does not alter the ratio, (Art. 118.)

Art. 260* When the terms of a ratio are equal to each other,

the ratio is said to be a ratio of equality. When the second term

is greater than the first, the ratio is said to be a ratio of greater

inequality, and when it is less, the ratio is said to be a ratio of

less inequality.

Thus, the ratio of 2 to 2 is a ratio of equality.

The ratio of 2 to 3 is a ratio of greater inequality.

The ratio of 3 to 2 is a ratio of less inequality.

Hence, a ratio of equality may be expressed by 1 ; a ratio of

greater inequality, by a number greater than 1
; and a ratio of

less inequality, by a number less than 1.

Aet. 261. When the corresponding terms of two or more

ratios are multiplied together, the ratios are said to be com-

pounded, and the result is termed a compound ratio. Thus, the

ratio of a to b, compounded with the ratio oi cXo d is _X-=—
a c ac*

A ratio compounded of two equal ratios is called a duplicate ratio.

Thus, the duplicate ratio of - is _X-=~.
a a a a^

A ratio compounded of three equal ratios is called a triplicate

ratio. Tihus, the triplicate ratio of - is _X-X-=-.
a a a a a^'

The ratio of the square roots of two quantities is called a sub-

duplicate ratio. Thus, the subduplicate ratio of 4 to 9 is f ; and

sib
the subduplicate ratio of a to 6 is —n.

»Ja

The ratio of the cube roots of two quantities is called a subtrip-

licate ratio. Thus, the subtriplicate ratio of 8 to 27 is | ; and

%[b
the subtriplicate ratio of a to 5 is -^.

%la

Art. 202. Ratios may be compared with each other by reduc«

ing the fractions which represent them to a common denominator.

Thus, to ascertain whether the ratio of 2 to 7 is less or greater

than the ratio of 3 to 10, we have the two fractions \, and-'^'^-,
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which being reduced to a common denominator are ^ and \^ ;

and &inco the first is greater than the second, we conclude that

the ratio of 2 to 7 is greater than the ratio of 3 to 10.

PROPORTION.

Art. 263. Proportion is an equality of ratios. That is,

ichen two ratios are equal, their terms are said to be proportional.

Thus, if the ratio of a to 5, is equal to the ratio of c to d, that is,

h A
if _=_, then a, 5, c, d, form a proportion, and we say that a is to

a c

Z> as c is to d.

Proportion is written in two ways :

1st. By placing a double colon between the ratios ; thus>

a :b : :c :d.

2nd. By placing the sign of equality between the ratios ; thus,

a : h=c : d.

The first method is the one commonly used.

From the preceding definition, it follows, that when four quan-

tities are in proportion, the second, divided by the first, must give

the same quotient as the fourth divided by the third. This is the

primary test of the proportionality of four quantities. Thus, if

3,5,6, 10, are the four terms of a proportion, so that 3 : 5 : : 6 : 10,

we must have 1= V*
If these fractions are equal to each other, the proportion is

true ; if they are not equal to each other, it is false. Thus, let it

be required to determine whether 3 : 8 : : 2 : 5. The ratios are

1 and |, or V ^^^^ V 5 hence, the proportion is false.

Remark.— In common language the words ratio and proportion arf

sometimes confounded with each other. Thus, two quantities are saia

to be in the proportion of 2 to 3, instead of in the ratio of 2 to 3. A
ratio subsists between two quantities, a proportion only between four.

It requires two equal ratios to form a proportion.

Art. 264. Each of the four quantities in a proportion is called

a term. The first and last terms are called the extremes ; and the

second and third terms, the means.

The terms of a proportion may be either monomials or polyno-
mials.

Art. 265. Of four quantities in proportion, the first and third

are called the antecedenls, and the second and fourth, the conse*



RATIO AND PROPORTION. 231

quents (Art. 257) ;
and the last is said to be a fourth proportional

to the other three taken in their order.

Art. 266. Three quantities are in proportion when the first

has the same ratio to the second, that the second has to the third.

In this case the middle term is called 2t, mean proportional between

the other two. Thus, if we have the proportion

a '.b : :h :c,

then h is called a mean proportional between a and c ; and c is

called a third proportional to a and h.

When several quantities have the same ratio between each two

that are consecutive, they are said to form a continued proportion.

Art. 26'y. Proposition I.— In every proportion, the product of
the means is equal to the product of the extremes.

Let a'.h \:c :d.

Since this is a true proportion, the ratio of the first term to the

second, is equal to the ratio of the third term to the fourth (Art.

263). Therefore, we must have

h_^d_
a c'

Multiplying both sides of this equality by ac, to clear it of frac-

tions, we have ^^ad^,
a c

or, bc=ad.

Illustration by numbers. 2 : 6 : 5 : 15 ; and 6x5=2x15.

From the equation hc=ad, we find d=-y c=_, &=_, and
a b c

be
a=~. Hence, if any three terms of a proportion are giv^n, the

d

fourth may be found.

Ex. 1 . The first three terms of a proportion are x-\-i/, x^—
j/2^

and X—y ; what is the fourth ] Ans. x^—^^y-{-y^'

2. The first, third, and fourth terms of a proportion are

(m—ny, m^—n^, and m-\-n ; required the second.

Ans. m—n.

Remark.— This proposition furnishes a more convenient test of the

proportionality of four quantities, than the method given in Art. 263.

Thus, to ascertain whether 2 ; 3 : : 5 : 8, it is merely necessary to com-

pare the product of the means and extremes ; and since 3X5 is not

equal to 2X8> we infer that 2, 3, 5, and 8, are nat in proportion.
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Art. 26§. Proposition II. Conversely, If the 'product of two

quantities is equal to the jproduct of two others, two of them may be

made the means, and the other two the extremes of a proportion.

Let bc=^ad.

Dividing each of these equals by ac, we have

be ad

ac ac

or -=-
a c'

That is, (Art. 263), a:b::c:d.

By dividing each of the equals by ab, we may prove that

a :c : :b :d,

Illust. 3X12=4X9, and 3 : 4 : : 9 : 12 ; also, 3 : 9 : : 4 : 12.

Art. 269. Proposition III. If three quantities are in propor^

tion, tJie product of the extremes is equal to the square of the mean.

If a:b::b:c,

then (Art. 267), ac=M=b^.

It follows from Art. 268, that the converse of this proposition

is also true. Thus, if ac=b^,

then, a :b : :b :c.

That is, if the product of thefirst and third of three quantities is

equal to the square of the second^ thefirst is to the second, as the second

to the third.

Note.— It is recommended to the teacher to require the pupils to

Illustrate all the propositions by numbers. (See Ray's Algebra, Part

1st,, Proportion.)

Art. 270. Proposition IV.— If four quantities are in propor-

tion, they will be in proportion by Alternation ; that is, the first

will be to the third, as the second to the fourth.

Let a :b : :c id.

b d
Then, (Art. 263),

a

be
Multiply both sides by c, _=d ;

divide both sides by b,

a

a b*

That is (Art. 263), a:c::b:d.

Note.— This proposition is true, only when the four quantities are of

the same kind.
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Art. SYl, Proposition V.— If four quantities are in propor-

tioiiy they will he in proportion by Inversion ; that is, the second will

he to thefii'st, as the fourth to the third.

Let a :b : :c :d.

Then (Art. 263), -=-
;

a c

dividing 1 by each side, :^=- I

d

a c

That is, (Art. 263), h:a::d:c.

Art. 272. Proposition VI.— If two sets of proportions have

an antecedent and consequent in the one, equal to an antecedent and

consequent in (lie other, the remaining terms will he proportional.

Let a :h : :c\ d (1),

and a:h : :e :f (2) ;

then will c:d : :e:f.
7 1

7l f
From the 1st proportion -=-, from the 2nd, _=Z^

a c a e

Hence, _=Z
; which gives c\d\\e\f.

c e

Art. 2'y3. Proposition VII.— If four quantities are in pro-

portion, they will be in proportion by Composition ; that is, the sum

of the first and second will be to the second, as the sum of the third and

fourth is to the fourth.

Let a :b : :c:d,

Then will a+h :b:: c+d : d.

From the 1st proportion, hc^ad, (Art. 267) ;

bd=bd ;

Adding the two equations together, bc-\'hd=ad-\'bd ;

factoring, b(c-^d):=:d(a-\'b) ;

dividing each side by c+5 Zc= ^^TL^
;

c-\-d

bya+6 4j=4-,-
This gives, a-\-b :b : : c-^d : d.

Note.— In a similar manner let the student prove that the sum of the

first and second of two quantities fe to thefret, as the sum of the third

and fourth is to the third.

20



234 RAY'S ALGEBRA, PART SECOND.

Art. 274:. Proposition VIII.— If four quantities are in pro^

portion, they will be in proportion hy Division ; that is, the difference

of the first and second will he to the second, as the difference of the

third and fourth is to the fourth.

Let a :h : :c :d (1),

then will a—h :b : : c—d : d.

From the 1st proportion, bc=ad (Art. 267).

bd=bd ;

subtracting, he—bd=ad^-bd ;

factoring, b(c
—d)=d(a—b).

Dividing each side by c—d, b=J^—?
;

c—d

a— c—a

This gives a—b :b : : c—d : d.

Note.— In a similar manner, let the student prove that the difference

of the first and second is to the first, as the difference of the third and

fourth is to the third.

Art. 275. Proposition IX.— If four quantities are in propor-

tion, the sum of the first and second will be to their difference, as the

sum of the third and fourth is to their difference.

Let a :b : :c :d (1),

then will a-\-b : a—-b : : c-^d : c—d.

From the 1st, by Composition, (Art. 273),

0+6 :b : : c-^-d : d ;

By Alternation. a+Z> : c-^-d ::&:<?;

this gives, --ri=r-
a-f-b

From the 1st, by Division,

a—b : & : : c—d : d ;

by Alternation, a—b : c—d wbxd;

.1 • • c—d d t^„„^ c-\-d c—d
this gives, —::=,-> hence, —^=—-.

a—b o a-\-b a—o

That is, a+b : c-\-d : : a-^b : c—d,

or by Alternation, a+6 : a—b : : c-\-d : c—d.
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Art. 276. Proposition X.— If four quantities are in propor-

tiojif like powers or roots of those quantities will also be in proportion.

Let a :b : :c : d,

then will a" : 5* : : c« ; d\

From the Ist, -=-. Raising each of these equals
a c

J» d»

a" c"*

That is,
' «»»:&»:: c« : (^,

where n may be either a whole number or a fraction.

Art. SYV. Proposition XI.— If two sets of quantities are in

proportion, the products of the corresponding terms will also be in

proportion.

Let a:b::c:d, (1),

and m :n: :r :s (2),

then will am :bn : :cr : ds.

For from the 1st, -=A;
a c

and from the 2nd, ^=!.. Multiplying these equalsm r

^, b .yfi d^.s bn ds
together, - X ~=-X -» or —=_ ;

a m c r am cr

this gives am \bn : '.cr : ds.

Art. 278. Proposition XII.— In any number of proportions

having the same ratio, any antecedent is to its consequent, as the sum

of all the antecedents is to the sum of all the consequent»*

Let * axh \ \c',d \ im :n, &c.

Then a:b\: a-\-c-\-m : b-\'d-\-n.

Since a:b:\c \d, we have bc=ad (Art. 267).

Since a:b::m:njwe have bm=an
ab=ab. The sum of these equal-

ities gives ab-{-bc-\-bm=ab-\-ad-\-an.

Factoring, b(a-]'C-\-m)=a(b-\'d-\-n).

Dividing by a+c+m, t=<H^±?)^
a-{-c-\-m

Dividing both sides by a, ^=H^^
a a+c-f-w

This gives a ;b : : a-|-c+m : b-{-d-\-n.
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Remark.— In most of the preceding demonstrations, the conclusion

has been derived directly from the equality of ratios. In several cases,

however, it may be derived more easily from Art. 268, Proposition II ;

but the method here given is considered the most satisfactory, as it keeps
before the student, the principle on which proportion depends.

EXERCISES IN RATIO AND PROPORTION.

1. Which is the greater ratio, that of 3 to 4, or 3 ^ to 4 ^
]

Ans, last.

2. Compound the duplicate ratio of 2 to 3; the triplicate ratio

of 3 to 4; and the subduplicate ratio of 64 to 36.

Ans. 1 to 4.

3. What quantity must be added to each of the terms of the

ratio m : w, that it may become equal top '.q') Ans, ^^ ^•?
,

4. If the ratio of a to & is 2|, what is the ratio of 2a to b,

and of 3a to 4& 1 Ans. 1|, and 3f .

5. If the ratio of a to lb is 5|, what is the ratio of a tob, and

of 6a to 4& 1 Ans, |, and |.

6. If the ratio of a to & is if, what is the ratio of a-]-b to h
and of b—a to a? Ans. f , and j.

7. If the ratio of m to 7i is 4> what is the ratio ofm—n to 6m,

and also to 6n 1 Ans. 14, and 6|.

8. If the ratio of m to 2m-}-3n is 2|, what is the ratio of m to

n 1 Ans. 5 to 1 .

9. If the ratio of m to w is 3^j what is the ratio of 127n to

m-\-n, and of 12n to 7i—2m. Ans. |, and 55.

10. If the ratio of 5y—8a; to 7a?—by is 6, what is the ratio of

a; toy] Ans. T toll.

11. What is the proportion deducible from the equation

ab=a^—x^. Ans. a : a+a; : : a—x : b.

12. What is the proportion deducible from the equation

x^J^y^=2ax 1 Ans. x :y : :y : 2a—x.

13. Four given numbers are represented by a,byC,d; what

quantity added to each will make them proportionals 1

Ans.
^^-^

a—b—c-\-d

14. If four numbers are proportionals, show that there is no

number which, being added to each, will leave the resulting four

numbers proportionals.
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15. Find x in terms of y from the proportions x:y :\a^ :h^,

and a :h : : %/c-\-x : l/d-\-y, Ans, x=^M.^
d'

16. Prove that equal multiples of two quantities are to each

other as the quantities themselves.

17. Prove that like pajrts of two quantities are to each other as

tlie quantities themselves.

18. Prove that in any proportion, if there be taken equal piul-

tiples of the antecedents, and equal multiples of the consequents,
the resulting quantities and the antecedents will be proportional.

19. If a :b : :c :d, prove that ma :mb : :nc : ndj and also that

ma :nb : :mc : nd, m and n being any multiples.

20. li a :h : : c : d, prove that - :_::_;_; and also thatmm n n
a ,1) , ,

c ,d

m n m n

21. Prove that the quotients of the corresponding terms of

two proportions are proportional.

22. Prove that if two sets of proportions have their antece*

dents proportional, their consequents will also be proportional.

23. Prove that if the antecedent and consequent of a ratio be

increased or diminished by like parts of each, the resulting quan-
tities and the antecedent and consequent will be proportional.

24. If (a-l-6)2 : (a—hy : : b+c : b—c, show that

a :b : : J2a—c : jjc.

Art. 2Y9. The preceding exercises are designed merely to

make the student acquainted with the principles of ratio and pro-

portion. The following are intended as exercises in the applica-

tion of the principles of proportion to the solution of problems.

1 . Resolve the number 24 into two factors, so that the sum of

their cubes may be to the difference of their cubes, as 35 to 19.

Let a; and y denote the required factors ; then xy=24:, and

^3_|_^3 :x^--y^ : : 35 :19;

.-. (Art. 275), 2x^ : 2/ : : 54 : 16;

or, x^:y^::27:8;
or, (Art. 276), x:y::d :2.

From which ^=|a;; then substituting the value of y in the

equation a;y=24, we find a:=±6; hence, 3/=±4.
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2. Given, ?/^±H:>/^=2, to find ^.

Resolving this equation into a proportion, we have

V^l—V^^l • V'^+V^^^ : : 1 : 2;

.-. (Art 275), 2VH^ : 2J/^^ : : 3 : 1;

or, %/l^l:^l^l::^:l;
or, (Art. 276), a:+l : a?—1 : : 27 : 1 ;

(Art. 275), 2a?:2::28 :26;

whence, 52ar=56, or a:=lj^.

3.
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We have, a:x\: a—h : h—x ;

.-. (Art. 267), a(b--x)=xia'—b) ;

whence,
ab

2a—b'

2. Find a third harmonical proportional to 3 and 5. Ans. 15.

3. Find a fourth harmonical proportional a?, to three given num-

bers, a, bf and c. Ans.
2a—b'

VARIATION.

Art. 281. Variation^ or as it is sometimes termed, General

Proportion, is merely an abridged form of common Proportion.

Variable quantities are such as admit of various values in the

same computation. Constant, or invariable quantities have only
one fixed value.

One quantity is said to vary directly as another, when the two

quantities depend upon each other in such a manner, that if one

be changed the other is changed in the same proportion.

Thus, if A and B are two variable quantities, mutually de-

pendent on each other, in such a way, that if A be changed to

any other value a, B must be changed to another value b, such

that A : a : : B : J, then A is said to vary directly as B.

This relation is expressed thus, A ocB, the symbol oc being
used instead of varies, or varies as.

From this it will be seen that variation is merely an abridg-
ment of Proportion, and that four quantities are understood,

although only two are expressed.

Note.— When it is simply stated that one quantity varies as another.

It is always meant that the one varies directly as the other.

Art. 282. There are four different kinds of Variation, which

are distinguished as follows :

(1). AocB. Here A is said to vary directly as B.

Ex. If a man works for a certain sum per day, the amount of

his wages varies as the number of days in which he works.

(2). Acx _, Here A is said to vary inversely as B.
B

Ex. If a man has to perform a journey of a certain number of

miles, the time in which he performs it will vary inversely as the

rate of traveling. Thus, if he doubles his speed, he will perform
the journey in hay the time.
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(3). AocBC. Here A is said to vary as B and C jointly.

Ex. The wages to be received by a workman will vary jointly

as the number of days he works, and the wages per day,

p
(4). Aa_^ Here A is said to vary directly as B, and inversely

asC.

Ex. The base of a triangle varies as the area directly, and the

altitude inversely.

Let the pupil give other examples of each kind of Variation.

In the following articles, A, B, C, represent corresponding
values of any variable quantities, and a, 6, c, any other corres-

ponding values of the same quantities.

Art. 283* If OTie quantity vary as a second, and that second as a

third, thefirst varies as the third.

Let AocB, and BccC, then shall AocC. For A:a::B:h,
and B : 6 : : C : c, therefore, (Art. 272), A : a : : C : c

; that
is,

AaC.
In a similar manner it may be proved that if AaB, and

Ba-^ , that Aa I..
C O

Aet. 284. If each of two quantities vary as a third, their sum,

or their difference, or the square root of their product, will vary as

the third.

Let AaC, and BaC, then A±BocC; also, ^ABocC.

By the supposition, A :a : :C :c: iB :b;

.-. AiaiiBib;

alternately, (Art. 270), A:B::a:b;

by Composition or Division, A±B : B : : adzb : b
;

alternately, Ad=B : a±:b ::B:b::C :c;

that is, AzfcBocC.

Again, A:a::C :c;

and B : & : : C : c ;

.-. (Art. 277), AB : a& : : C2 : c2 ;

and, (Art 276), VAB : ^ab: : C : c ;

that is, JABccC.

Aet. 285. If one quantity vary as another, it will also vary as

any multiple, or any part of the other.
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Let AocB, and m be any constant quantity, then since

A : a : : B :
Z>, A : a : wB : m&, or A : a : : ?^ : ^, (Art. 260, 3rd) ;m m

that is» AccTnB, or oc._w
Art. 286. If one quantity vary as another, any power or root of

the former will vary as the same power or root of the latter.

Let AocB, then A : a : : B : 6, and (Art. 276), A" : a" : : B" : 6";

that is, A"aB", where n may be integral or fractional.

Art. 2§7. If one quantity vary as another, and each of them be

multiplied or divided by any quantity, variable or invariable, the

. products, or quotients, will vary as each other.

Let A vary as B, and let T be any other quantity. Then, by
the supposition, A : a : : B ; & ;

.-. AT : a^ ; : BT : 5^ ; that is, ATocBT.

AT K a B&., ,.AB
Also, _:_:::_; that is, -oc-.T t T t T T

Art. 288. If one quantity vary as two others jointly, either of
the latter varies as the first directly, and the other inversely.

V FT V
Let VaFT, then (Art. 287), -a—, or Fa_, and simi-

larly, TaY
r ^

Art. 289. If h vary as B, A t$ equal to B multiplied by some

constant quantity.

. Since, by supposition, A : a : : B : 5, therefore, A=?B ; but a
b

and b are supposed to be constant, being certain corresponding

values of A and B. Hence, if we denote - by m, we have
b

A=wB.
It is evident that if we know any corresponding values of A

and B, that the constant quantity m may be found.

Art. 290. In general the simplest method of treating varia^

iions, is to convert them into equations.

Ex. 1. Given, that yoc the sum of two quantities one of which

varies as x, and the other as x^, to find the corresponding

equation.
21



242 RAY'S AL(JEBRA, PART SECOND.

Because one part oca:, let this =77zx,

and the other "
ozx^,

" " =nx^ ;

y=zmx-\-7ix^ i where m and n are two un-

known invariable quantities which can only be found when we
know two pairs of corresponding values of x and y.

2. If y=r4-5, where rccx and soc-, and if, when a;=l,
X

y=Q, and when x=2, y=9, what is the equation between x

and y 'f

Let r=mx, and s=- .*. y=mx-\--,
X x'

But if a:=l, 5/=6, .•. 6=m-j-w ;

and if a;=2, 2/=9, .-. 9=2wi+^.

Hence, «i=4; w=2, and y=^x-\--,
X

EXAMPLES FOR PRACTICE.

3. If yaa?; and when a:=2, y^^^a; find the equation -be-

tween X and y.
Arts. y=2ax.

4. If yoc i
;
and when a?=|, y=8; find the equation between

X

X and y.
^^5. ?/=-.

a;

^2
5. If y^o^a^

—x^ ; and when x=^Ja?—h"^, y=— \ find tho
a

equation between x and y. Am, y=-^a^—x^,
a

6. If y is equal to the sum of two quantities, one of which

varies as x, and the other varies inversely as x^ ; and when x=l ,

y=6, and when x=2, y=5; find the equation between x and y,
4 '*

Ans. y=2x-\-—
x^'

7. Given that y is equal to the sum of three quantities, of

which the 1st is invariable, the second varies as x, and the third

varies as x^. Also when a?=l, 2, 3, y=6, 11, 18, respectively ;

find y in terms of x, Ans, ^'=3-j-2a;-f a:^.
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8. Given that s oct^, when f is constant; and 5a/, when /

is constant ; also, 2s=/, when ^=1. Find the equation between

/, 5, and t. Ans. s=^ft^.

9. U y=r-\-s where rax, and socjx; and if when a:=4,

y=5, and when a:=9, y=10; find y in terms of x,

Ans, y=i(^+>/^)'

10. Given that a?a— , and ya_ ; also, when a;=a, 2r==c ;

ytn 2,^

find the equation between x and z. Atw. fl2;"*"=c*""a;.

ARITHMETICAL PROGRESSION.

Art. 291. Quantities are said to'be in Arithmetical Progress

«i07i,when they increase or decrease by a Common Difference,

Thus, 1, 3, 5, 7, 9, &c., a, a+(i, fl+Sci, &.C., a, a—J, a—2dy

&c., are quantities respectively in Arithmetical Progression.

The series is said to be increasing or decreasing, according as d

is positive or negative.

Art. 292. To investigate a rule for finding any term of an

arithmetical progression, take the following series, in which the first

line denotes the number of each term, the second an increasing

arithmetical series, and the third a decreasing arithmetical series.12 3 4 5

a, a-\-d, a-\-2dy a-\Sdf a~\-4:d, &c.,

a, a—d, a—2df a—3c?, a—4c?, &c.

It is manifest that the coefficient of d in any term is less by

unity than the number of that term in the series ; therefore, the

n^ term z=a-\'{n
—1 )d.

If we designate the n'^ term by I, we have

lz=za-\-{n
—

l)d, when the series is increasing,

and l=a—{n—l)d, when the series is decreasing.

Hence, we have the following

Rule, for finding any term of an arithmetical series.—

Multiply the common difference hy the number of terms less ont

and add the product to the first term when the series is increasiny
hut subtract it from the first term when the series is decreasing.

The equation Z=a-f-(^—1)^> contains four variable quantities,

any one of which may be found when the other three are known
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Art. 29 3, Having given the first term cf, the common differ-

ence dy and the number of terms w, to find S, the sum of the

series.

If we take any arithmetical series, as the following, and write

the same series under it in an inverted order, we have

S= 1+3 + 5+ 7+ 9+11,

S=ll+9 + 7+ 5+ 3+ 1.

Adding, 28=12+12+12+12+12+12.
2S=12X the number of terms.

28=12X6=72.

Whence, 8=^ of 72=36, the sum of the series.

To render this method general, let 1= the last term, and write

the series both in a direct and inverted order.

Then, S=a+{a+d)+(ia+2d)+(a+Sd), . . +Z,

and S=Z+ (Z-^)+(Z—2cZ)+(Z—3f?). . . +a.

By adding the corresponding terms, we have

2S=(l+a)+(l+a)+(l+a)+(l+a), . . +(Z+«),

2S=(Z+fl) taken as many times as there are terms (n) in

the series.

Hence, 2S=(l-\-a)n;

S=G+a)|=(!±?)„.
This formula gives the following

Rule, for finding the sum of an arithmetical series.—
Multiply half the sum of the two extremes, by the number of
terms.

From the preceding it appears, that the sum of the extremes is

equal to the sum of any other two terms equally distant from the

extremes.

Art. 294* The equations Z=a+(n—ly,

and
S=(a+Z)|,

furnish the means of solving this general problem : Knowing any
three of the Jive quantities^ a, d, Z, w, 8, which enter into an arith-

metical series, to determiiie the other two.

The following table contains the results of the solution of all

the different cases. These formulae should be verified by the

ptudenU
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1.

2.

3.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

a, d, n

a, df S

a, n, S

d, n, S

a, d, n

a, d, I

a, n, I

d, n, I

a, n, I

a, n, S

a, I, S

n, I, S

a, df I

a, d, S

a, Z, S

dy Z, S

d, rif I

dy Thy S

d, Z, S

n, I, S

Required.

l=a-\-{n
—

l)d,

l=^^ldd^J {2(iS+(a—i£Z)2 J,

Z=^-.a

^^S,(n--iy
71 2

•

S=|nJ2a+(7i-~l)(Z|,

2
^

2d

S=|n^2Z—(n—iy{.
_7 Z—a
d=z -,

n—1

,__2(S—aw)

n{n—1)

2S—Z—a
^_2{nl^S)

n{n—1 )

'

n=?=?+l,

_zfc:V(2a—fZ)2+8(ZS—2fl+<Z
2d

_2S

_2Z4-cZd=V(2^+^)'—8<^S

2d

a=:l—(n
—ly,

_S (71—ly
n

a=^—Z.

EXAMPLES FOR PRACTICE.

1. Find the 15'* term of the series 3, 7, 11, &c. Atis. 59.

2, Find the 20" term of the series 5, 1, —3, &c.

A;w. —71.
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3. Find the 8^* term of the series |j j^^ ^j <^c. Arts, -^a-

4. Find the 30'^ term of the series —27, --20, —13, &c.

Ans, 176.

5. Find the ?i"^ term of 1+3+5+7. . . . Ans. 2n—l,

andof 2+2i+2|+. . . . Ans. l(ji-\-b),

andof 13+12f+12|+. . . , Ans. i(40—w).

Find the sum of

6. 1+2+3+4 &c., to 50 terms. (See Formula 5).

Ans. 1275.

7. 7+Y+y+, &c., to 16 terms. Ans. 142.

8. 12+8+4+, &c., to 20 terms. Ans. —520.

9. 2+23+2f+, &c., to n terms. Ans,
g(7i+ll)-

10. 13+12|+12|+, &c., to tT terms. Ans. ^(79—w).

11. i_»|—
1 1_, &c., to n terms. Ans. ^(13—7n).

12. ^+^^-"^^
+, &c., to n terms.

a-\-b a-\-b

Ans.^ \na-S]^:^aA-h \ 2 $
•

3+6

13. ?ld+^Z:?+^!:Z::?+, &c., to n terms. Ans. !^2.www 2

14. If a falling body descends IBy'^ ^eet the first second,

three times this <listance the next, five times the next, and so on,

how far will it fall the 30th second, and how far altogether in

half a minute ] Ans. 948{i, and 14475 ft.

15. Two hundred stones being placed on the ground in a

straight line, at the distance of 2 feet from each other
;
how far

will a person travel who shall bring them separately to a basket,

which is placed 20 yards from the first stone, if he starts from the

Bpot where the basket stands ] Ans. 19 miles, 4 fur., 640 ft.

16. Insert 3 arithmetical means between 2 and 14.

To solve this problem generally, let it be required to insert m
arithmetical means between a and h.

Since the required terms, and those which are given, form an

arithmetical series, if we insert m terms between a and hj we
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shall have a series consisting of (m+2) terms. Then to find rf,

the common difference, substitute m-(-2 instead of n in Formula

9, page 245, and we have fj=—= ^"^^ .^ ^-^^
There-

n—1 m-|-2
—1 m-f-1

'

fore, the common difference (d) will be equal to the difference of the

extremes (jb
—

a) divided by the number of terms plus one.

In the particular example we find d=d
; hence, the terms are

5, 8, and 11.

17. Insert 4AR. means between 3 and 18.

Ans. 6, 9, 12, 15.

18. Insert 9AR. means between 1 and —1.

Ans. |, I, &c., to —f .

19. How many terms of the series 19, 17, 15, &c., amount

to 911 Ans. 13, or 7.

Explain this result.

20. How many terms of the series .034, .0344, .0348, &c.,

amount to 2.748? Ans. 60.

21. The sum of the first two terms of an arithmetical pro-

gression Is 4, and the fifth term is 9; find the series.

Ans. 1,3,5,7, 9, &c.

22. The fir§t two terms of an arithmetical progression being

together =18, and the next three terms =12, how many terms

must be taken to make 28'? Ans. 4, or 7.

23. The n^^ term of an arithmetical series is g(3n—1), find

the first term, the common difference, and the sum of n terms.

Ans.
-I, h and ~(2n+l).

24- In the series 1, 3, 5, &c., the sum of 2r terms : the sum
of r terms : :x :1; determine the value of x. Ans. 4.

25. Find the ratio of the latter half of 2n terms of any AR.
series, to the sum of Sn terms of the same series. Ans. 3.

26. The sum of n arithmetical means between 1 and 19 :

sum of the first n—2 of them : : 5 : 3; required n. Ans. 8.

h 27. A traveler sets out for a certain place, and travels 1 mile
'

the first day, 2 the second, and so on. In 5 days afterward

another sets out, and travels 12 miles a day. How long and how
for must he travel to overtake the first?

Ans. 3 days or 10 days, and travel 36 miles, or 120 miles.

Explain these results^
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GEOMETRICAL PROGRESSION.

Art. 295. A Geometrical Progression is a series of terms

each of which is derived from the preceding, by multiplying it by
a constant quantity termed the ratio.

Thus, 1, 2, 4, 8, 16, &c., is an increasing

geometrical progression, whose common ratio is 2.

54, 18, 6, 2, &c., is a decreasing geometrical

progression, whose common ratio is \ .

In general, a, ar, ar^, ar^, &c., is a geometrical progression,
whose common ratio is r, and which is an increasing series when
r is greater than 1 ; but a decreasing series when r is less than 1.

It is evident that in any given geometrical series, ike common
ratio will he found ly dividing any term by the term next preceding.

Remark.— An Arithmetical Progression may be defined to be a series

in which the difference between any two consecutive terms is the same ;

and a Geometrical Progression a series in which the ratio of any two

consecutive terms is the same. Hence, a geometrical progression is a

continued proportion. (Art. 266.)

Art. 296. To find the last term of a geometrical progression.

Let a denote the first term, r the common ratio, I the n^^ term,

and S the sum of n terms
; then the respective terms of the series

will be

1, 2, 3, 4, 5 ... . n—3, n—2, n—1, n,
'

a, cr, a?'^ ar^, ar^ , , , , ar"^"^, ar^~^, ar"^'^, ar^~^.

That is, the exponent of r, in the second term is 1 , in the third

term 2, in the fourth term 3, and so on ; hence, the n^^ term of

the series will be l=ar"~^ ; that is, any term of a geometrical

series is equal to the product of the first term, iry
the ratio raised to a

power, whose exponent is one less than the number of terms.

Ex. Let it be required to find the 6^^ term of the geometrical

progression whose first term is 7, and common ratio 2.

25=2X2X2X2X2=32; and 7x32=224, the 6^Merm.

Art. 29*7. To find the sum of all the terms of a geometrical

progression.

If we multiply any geometrical series by the ratio, the product

will be a new series, of which every term, except the last, will

have a corresponding term in the first series.
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Thus, take the series, 1, 3, 9, 27, 81, and represent its sum

by S ; then

8=1+3+9+27+81.
Multiplying each term by the ratio 3, we have

3S= 3+9+27+81+243.
The terms of the two series are identical, except the first term

of the first series, and the last term of the second series. If,

then, we subtract the first equation from the second, all the other

terms will disappear, and we shall have

3S—S=243—1;

whence, S=121.

To generalize this method, let a, ar, ar^, ar^, &c., be any

geometrical series, and S its sum
; then,

S=a+ar+ar2+aH . . . . +ar"~2+ar"~*.

Multiplying this equation by r, we have

rS= ar-\-ar^-\-ar^ +ar"~^+ar".

Subtracting, rS—S=ar"—a ;

or, S(r—l)=a(r«—1) ;

whence, S= ^^^ ^

r—1

Since, Z=flr*»~S we have rl=ar" ;

^, - c« ctf"^—^ ^^—^
therefore, b= =—-.

r—1 r—1

This formula gives the following

Rule, for finding the sum of a geometrical series.—
Multiply the last term ly the ratio, from the product subtract the

first term,and divide the remainder hy the ratio less one.

Ex. Find the sum of 6 terms of the progression 3,12,48.
&c.

The last term =3x4^=3x1024=3072.

S=?!:=.«=?5^Za><lzi=4095. Ans.
r—1 4—1

Art. 298. If the ratio r is less than 1, the progression is de-

creasing, and the last term Z, or ar'''^ is less than a. In order

that both terms of the fraction ^-H?, or ?!^!ll? may be positive,
r—1 r—1
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the signs of the terms may be changed, (Art. 124), and we have

S= , or =
. Therefore, the sum of the series, when

1—r 1—r
*

the progression is decreasing, is found by the same rule, as when
it is increasing, except that the product of the last term by the

ratio, is to be subtracted from the first term, and the ratio sub-

tracted from unity.

Art. 299. The formula S=—"^^^— ,by separating the numera-
1—r

tor into two parts, may be placed under the form

^ a flrr"

1—r 1—r'

Now when r is less than 1 , it must be a proper fraction, which

may be represented by -?
; then r"=

(
? I =?-.

q \ q / (p

Since p is less than 9, the higher the power to which the frac-

tion is raised, the less will be the numerator compared with the

denominator ; that is, the less will be the value of the fraction ;

therefore, when n becomes very large^ the value of ?-, or r", will

r
be very small ; and when n becomes infinitely great, the value of

•^jorr", will hQ' infinitely small; that is, 0. But, when -the

ft

numerator of a fraction is zero (Art. 135) its value is 0. This

reduces the value of S to —?—
1—r*

Hence, when the number of terms of a decreasing geometrical

series is infinite, the last term is zero, and the sum is equal to thefirst

term divided by one minus the ratio.

Ex. Find the sum of the infinite series l+2+l+B"+> &;c.

Here a=l, r=l, and S= -^= =2. Ans,

That the sum of an infinite number of terms of a geometrical

progression may be finite, will easily appear from the following
illustration :

Take a straight line, AK, and bisect it in B ; bisect BK in C
;

CK in D, and so on continually ;
then will

B CD
A ! ^ = K

AK=AB+BC+CD+, &c., in infinitum, =AB+|AB+-|AB
&c., in infinitum, =2AB, which agrees with the example.
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Art. 3<>0. The two equations, l=iar'^~\ and S= , fur-
r— 1

nish this general problem : Knowing any three of the Jive quantities

a, 7*, 7z, I, and S, of a geometrical progressionf to determine the other

two. The following table contains all the values of each unknown

quantity, or the equations from which it may be derived.

No
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:

^j

Remark.— To determine the value of the unknown quantity in Noa.

3, 12, 14, and 16, may require the solution of an equation higher than

the second degree. The values of n in the last four Nos. are ob-

tained from the solution of an exponential equation (see Art. 382).

Although the method of solving these equations has not been given, it

was deemed proper to complete the table for the convenience of refer-

ence. The pupil should be required to verify all the values except those

here referred to.

EXAMPLES FOR PRACTICE.

1. Find the 8<^ term of the series 5, 10, 20, &c. Am. 640.

2. Find the 7'^^ term of the series 54, 27, 13^, &c.

3. Find the 6'^ term of the series 3|, 2^, 1|, &c. Ans. |.

4. Find the 7^^ term of the series —21 14, —9|, &c.

An^ 44 8
JkTlS. —543.

371-2

5. Find the 'n}^ term of the series i, 3, |, &c. -^^^-
^^y

Find the sum

6. Of 1+3+9+, &c., to 9 terms. Ans. 9841.

7. Of 1+4+16+, (fee, to 8 terms. Ans. 21845.

8. Of 8+20-f50+, (fee, to 7 terms. Ans. 3249|.

9. Of 5+20+80+, &c., to 8 terms. Ans. 109225.

10. Of 1+3+9+, &c., to n terms. Ans. |(3«—1).

11. Of 1—2+4—8+, &c., to n terms. Ans. K1=F2").

12. Of a;—y-{-^—
—^ +, &c., to n terms.

X x^

x-\-y ( \ X / )
'

13. The first term is 4, the last term 12500, and the numbrt

of terms 6. Required the ratio and the sum of all the terms.

Ans. Ratio =5; Sum =15624.

4. Find the geometrical progression, when the sum of the first

and second terms is 9, and the sum of the first and third 15.

Ans. 3+6+12+, &c., 13^—4|+1^—, &c.

Find the sum of an infinite number of terms of each of the

following series :

15. Of l+i+i+,&C. A725. |.
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16. Of 9+6+4+, &c. Ans. 27.

17. Of 6+2+f+, &c. Ans, 9.

18. Of 1—1+^—, &c. Am. |.

19. Of 100+40+16+, «&c. A715. 166|.

20. Of a+6+-+^+, &c Ans. _?!_.
a a' a—b

21. Of l+2a+2a2+2a3^_, &c. Ans. 1±?.
1—a

22. The sum of an infinite geometric series is 3, and the sum

of its first two terms is 2§ ;
find the series.

Ans. 2+1+1+ . . or 4-|4-|~. . .

23. Find a geometric mean between 4 and 16. Ans, 8.

Let fl=4, c=16, and m the required mean ; then a im : :m :c;

whence m=jjac,

24. The first term of a geometric series is 3, the last term 96,

and the number of terms 6
; find the ratio, and the intermediate

terms.

By formula 13, page 251, we find r="-|' /_, which in this case

becomes r=^32=2; hence, the intermediate terms are 6,12,
24,48.

If it be required to insert m geometrical means between two
numbers a and b, we have n, the whole number of terms, =m+2;

hence, n—l=m+l, and r="*+W_,

25. Insert two geometric means between if, and 2.

Atw. |,|.
26. Insert seven geometric means between 2 and 13122.

Ans. 6, 18, 54, 162, 486, 1458, 4374.

^Art. 301, To find the value of Circulating Decimals^ that is,

decimals in which one or more figures are continually repeated.

Circulating decimals are quantities in geometrical progression,

where the common ratio is
y*(j, yj^j t(/^ o> <^^-> according as one,

two, or three figures recur ; thus the circulating decimal

.253131. . . . is equalto 25 + (
?i+?l_|_iL+,&c. ];100 »

\ 10^^106 108^ /

and the part within the bracket is a geometrical series, of which
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1 31
the common ratio is —= i • we have, therefore, a= ;

102 1(5^' 104'

''^tU'^ fZ:;:=1^4'^TVo=^MoJ
^^^ ^^^ s^«^ of the whole

„^«„„ 25 1 31 2506 1253
series =xoiJ+^^TJl)—^^^o—4^5TJ-

This operation may be performed more simply, as follows :

Let S=.253131. . . . Multiply by 100, in order to remove

the decimal point to the commencement of the first period of

decimals, we have

100S=25.313l. ...

Again, multiplying by 100 to remove the decimal point to the

commencement of the second period of decimals, we have

100008=2531.3131. . . .

Subtracting the preceding equation from the last, we get

99008=2506; .-. S=||8J.

1. Find the value of .636363. . . . Ans, ^j.
^

2. Find the value of .54123123. . . . Ans^lHU -

HARMONICAL PROGRESSION.

Art. 302. Three or more quantities are said to be in Har-

monical Progression, when their reciprocals are in arithmetical

progression. ;

Thus, l,hhh &;c. ; and |, f , |, f , &c.

are in harmonical progression, because their reciprocals

1, 3, 5, 7, &c.
; and 4, 3^, 3, 2 J, &c.

are in arithmetical progression.

Art. 303. Proposition.— If three quantities are in harmonical

progression) the first term is to the third, as the difference of the first

and second, is to the difference of the second and third.

For if a, b, c, are in harmonical progression, _, -, i, are in
a b c

arithmetical progression,

.*. -—-=-—-. Hence, multiplying by dbc,
b a c b

ac—bc=ab—ac ; or c(a—6)=a(6—c).
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Dividing both sides by a—J, and by a, we have

c h—c

a a—h

this gives a : c : : a—h : h—c.

Therefore, a Harmonical Progression is a series of quantities in

harmonical proportion (Art. 280) ;
or such that if any three con-

secutive terms be taken, the first is to the third, as the difference

of the first and second is to the difference of the second and

third.

From this proposition it follows, that all problems with respect

to numbers in harmonical progression, may be solved by inverting

them, and considering the reciprocals as quantities in arithmeti-

cal progression. This renders it unnecessary to give any special

rules for the solution of problems in harmonical progression.

EXAMPLES FOR PRACTICE.

1 . Given the first two terms of a harmonical progression, a

and h, to find the »'* term.

Let I be the n*^ term, then (Art. 802), _ and - are the first

a b

two terms of an arithmetical progression, and it is required to

find _, the ti'* term.
I

d=l—-='^^ and l=I+(7i-.l)d,(Art. 292);
h a ah la

la ab ab

whence, Z=r-
^

(71—.l)a—(71—2)&'

By means of this formula, when any two successive terms of a

harmonical progression are given, any other term may be found.

2. Insert m harmonic means between a and b.

Here, if d be the common difference of the reciprocals of the

terms, we have

b a (n—l)ab (m-\-l)ab

whence the arithmetical progression is found ;
and by inverting

its terms, the harmonicals are also found.
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3. Insert two harmonic means between 3 and 12.

Ans, 4 and 6.

4. Insert two harmonic means between 2 and J.

Ans,
2-
and f .

5. The first term of a harmonic series is |, and the G''^ ^^ ;

find the intermediate terms. Ans. |, |, g, y^^.

6. a, 5, c, are in arithmetical progression, and &, c, d, are in

harmonical progression ; prove that a '.h wc '.d,

PROBLEMS IN ARITHMETICAL AND GEOMETRICAL PRO-

GRESSION.

Art. 304. The sum of five numbers in arithmetical progres-

sion is 35, and the sum of their squares 335; find the numbers.

Ans. 1,4,7,10,13.

Let X—2y, x—t/, x, x-]-y, x-{-2y, be the numbers.

2. There are four numbers in arithmetic progression, and the

fium of the squares of the extremes is 68, and of the means 52;
find them. A/is. 2, 4, 6, 8.

Let X—Sy, x—y, x-\-yf x-{-Sy, be the numbers.

Suggestion.— When the number of terms in an arithmetic progression
Is oddy the common difference should be called y, and the middle term x;
bat when the number of terms is even, the common difference must be

2y, and the two middle terms x—y^ and x-\-y.

3. The sum of 3 numbers in arithmetical progression is 30,
and the sum of their squares 308; find them. Ajis. 8, 10, 12.

4. There are 4 numbers in arithmetical progression, their sum
is 26, and their product 880; find them. Ans. 2, 5, 8, 11.

5. There are 3 numbers in geometrical progression, whose sum
is 31; and the sum of the 1st and 2nd : sum of 1st and 3rd : :

3 : 13; find them. Ans. 1, 5, 25.

6. The sum of the squares of three numbers in arithmetic pro-

gression is 83; and the square of the mean is greater by 4 than

the product of the extremes. Required the numbers.

Ans. 3, 5, 7

7. Find 4 numbers in arithmetical progression, such that the

product of the extremes =27; of the means =35.
Ans. 3,5,7,9.

8. There are 3 numbers in arithmetical progression, who.s©
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sum is 18; but if you multiply the first term by 2, the second by
3, and the third by 6, the products will be in geometrical pro-

gression ;
find them. Ans. 3, 6, 9.

9. The sum of the 4'^ powers of three successive natural num-

bers is 962; find them. Ans. 3, 4, 5.

10. The product of four successive natural numbers is 840;
find them. A/is. 4, 5, 6, 7.

11. The product of four numbers in arithmetical progression
is 280, and the sum of their squares 166; find them.

Ans. 1,4,7,10.

12. The sum of 9 numbers in arithmetical progression is 45,
and the sum of their squares 285; find them.

Ans. 1, 2, 3, &c., to 9.

13. The sum of 7 numbers in arithmetical progression is 35,
and the sum of their cubes 1295; find them.

Ans. 2, 3, &c., to 8.

14. Prove that when the arithmeiical mean of two numbers

is to the geometric mean : : 5 : 4; that one of them is 4 times

the other.

15. The sum of 3 numbers in geometrical progression is 7;

and the sum of their reciprocals is | ; find them. Ans. 1, 2, 4.

16. There are 4 numbers in geometrical progression, the sum
of the first and third is 10, and the sum of the second and fourth

is 30; find them. Ans. 1, 3, 9, 27.

17. There are 4 numbers in geometrical progression, the sum
of the extremes is 35, the sum of the means is 30; find them.

Ans. 8, 12, 18,27.

18. There are 4 numbers in arithmetical progression, which

being increased by 2, 4, 8, and 15 respectively, the sums are in

geometrical progression ; find them. Ans, 6, 8, 10, 12.

19. There are 3 numbers in geometrical progression whose
continued product is 64, and the sum of their cubes 584; find

them. Ans. 2, 4, 8.

Suggestion.— In solving difficult problems in geometrical progression,
instead of denoting the terms by ar, xy, xif-^ &c., it is sometimes preft^r-

able to express them by other forms. Thus, three terms may be ex-

pressed by ar, Vary, Vi or, a;^, xy^ if- ; four terms by _, x^ y^ -i- ; fivo

y X

terms by —, x^, xy, y^f±-; six terms by __, _, a:, y, rL, £_^ In all

y X y'^ y X x"^'

these cases the product of the first and third of any three consecutive

terms, is equal to the square of the middle terra.
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CHAPTER IX.

PERMUTATIONS, COMBINATIONS, AND
BINOMIAL THEOEEM.

Art. 305. The different orders in which quantities can be

arranged, are called their Permutations. Quantities may be ar-

ranged in sets of one and one, two and two, three and three, and

80 on. Thus, if we have three quantities, a, h, c, we may arrange
them in sets of one, of two, or of threes thus :

Of one «, h, c.

Of two ahf ac ; ha, be
; ca, ch.

Of three ahc, acb
; hac, bca ; cab, cba.

Remark.— Some writers, confine the term permutations to the clasa

where the quantities are taken all together, and give the title of ar-

rangementSf or variations, to those groups of one and one, two and two,
three and three, &c., in which the number of quantities in each group is

less than the whole number of quantities.

Art. 306. To find the number of permutations that can be

formed out of n letters, taken singly, taken two together, three

together. . . . and r together.

Let a,b,c,d,, . . . A:, be the^n letters; and let Pj denote

the whole number of permutations where the letters are taken

singly; P^ the whole number of permutations taken 2 to-

gether .... and Pr the whole number of permutations taken

r together.

The number of permutations of n letters taken singly, or one

and one, is evidently equal to the number of letters, that is n
;

therefore,

p.=«.
The number of permutations of n letters, taken two together,

is n(n—1). For since there are n quantities

a, b, c, d, , . . . k,

if we remove a, there will remain (n—1) quantities,

b, c, d, , , , , k.

Writing a before each of these (n—1) quantities, we shall

have

ab, ac, ad , . . . ak.

That is, (n—1) permutations in which a stands^rs^
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In the same manner there are (n—1) permutations in which h

stands first, and so of each of the remaining letters Cy d . . . k.

And since there are n letters, there are n(n—1) permutations
taken two together ; that is,

P3=7Z(7l-l).

Hence, the number of permutations of n letters taken two togetherj

is equal to the number of letters, multiplied by the number less one.

For example, if n=4, the number of permutations of the four

letters, a, Z), c, t^, taken two together, is 4X(4—1)=4X3=12.
Thus, ab, ac, ad, \\ ba, be, bd, \\ ca, cb, cd, \\ da, db^ dc.

The number of permutations of n letters, taken three together,
is n(n—l)(?i

—
2). For if we take (n—1) letters

b, c, d, . . . , k, the number of permuta-

tions taken two together, by the last paragraph, is

(„_1)(„_2).

Let a be placed before each of these permutations ; then there

are (w
—

1)(7Z
—2) permutations of n letters, taken three together,

in which a stands first. Proceeding in the same manner with b,

tht^re are {n
—

l)(n
—

2) permutations in which b stands first ; and"

so for each of the n letters. Hence, the whole number of per-
mutations of n letters, taken three together, is n(n—l)(n

—
2);

that is,

P3=7l(7i-l)(7l-2).

Hence, the number of permutations of n letters taken three togetherj

is equal to the number of letters, multiplied by the number less one,

multiplied by the number less two.

For example, if 7i=4, the number of permutations of the four

letters, a, b, c, d, taken three together, is 4(4—1)(4
—2)=4x3 X2

=24. Thus,

abc, abd, acb, acd, adb, ado, bac, bad, bca, bed, bda, bdc, cab, cad,

cba, cbd, cda, cdb, dab, dac, dba, dbc, dca, deb.

By following the same method, we can prove that the number
of permutations of n letters taken /o^^r together, is

P^=7i(n—l)(7i--2)(n-^).

By examining each of the preceding results, we see that the

negative number in the last factor is less by unity, than the num-
ber of letters in e-ach permutation. Thus,

P,=7l= 7i—1^.

Pj=n(7i—1)= . n(n—2"^IT).
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Pg=7i(7i—l)(7i—2)== n(n—l){n—2^).

P^=72(n—l)(7i—2)(7i—3)= 7i(w—l)(n—2)(n—4=4).

Hence, from analogy, we conclude, that the number of permu«
tations of n things taken r together, is

j>—n{n—l)(n—2) (n-^f^l).

Art. 300fl, Corollary. If all the letters be taken together^

then r becomes equal to n, and the last factor becomes 1 ; that is,

p^=n(n^l)(7i—2) (7i—T^ZIi),

or P,=7l(7l—l)(7l—2) 1.

Or, inverting the order of the factors,

P„=1X2X3 (n—l)n.

Hence, the number of permutations of n letters taken n together^

is equal to the product of the natural numbersfram 1 up to n.

Ex. The permutations of three letters, a, J, c, taken three

together, is 1x2x3=6.
Art. soy. If the same letter occur p times, the number of

permutations in n letters, taken all together, is

1X2X3 (71—1>
1X2X3 . , . p

Suppose these p letters to be all different. Then for any par-

ticular position of the other letters, these p quantities, taken p
together, will form (1X2X3 . . . p) permutations from their

interchange with each other ; and when these letters are alike,

these permutations are all reduced to one. And as this is true for

every position of the other letters, there will be altogether

(1X2x3 . . . p) times fewer permutations when they are alike

than when they are all different.

Thus, in the letters A, I, D, there are 1x2x3=6 permuta-
tions taken all together, but if I becomes D, then three of these

permutations become identical with the remaining three, and the

whole number of permutations of the letters ADD taken all

together, is 1X2x3^3^

Art. 30Ya, Corollary. In like manner, if the same letter oc-

cur p times, another letter q times, a third letter r times, and so

on, the number of permutations taken all together, is

1X2X3 . . (71—1)71

(1X2 . . rtax2 . . 9)(1X2 . r)X,&c-
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For by the last article, if p letters be alike, there will be

(1X2X3 . . . J5) fewer permutations than when they are all differ-

ent
;

also if q other letters be alike, but different from the first,

there will be (IX^X^ . . q) times fewer permutations, and so

on; hence, there will be altogether (1X2X3 • • •i?)(lX2

X3 . . . 9), &c., times fewer permutations than when the letters

are all different, and consequently the general expression will be

as announced.

Art. 308, Combinations.— The Combinations of quantities

are the different collections that can be formed out of them, with-

out reference to the order in which they are placed. Thus, ab, ac,

he, are the combinations of the letters cf, b, c, taken two together ;

ab and ba, though different permutations, forming the same com-

bination.

Proposition.— To find the number of combinations that can be

formed out of n letters, taken singly, taken two together, three togethert

and r together.

Let C, denote the number of combinations of n things taken

singly ; Cj the number of combinations taken two together,

and C, the number of combinations taken r together.

The number of combinations of n letters taken singly is evi-

dently n ; that is,

Ci=n,

The number of permutations of n letters, taken two together, ia

^(tj
—

1) ;
but each combination, as ab, admits of (1X2) permuta-

tions, ab, ba ; therefore there are (1X2) times as many permuta-
tions as combinations. Hence,

C =^^^^)
'

1X2"

Again, in n letters taken three together, the number of permu-
tations is n(n—l)(n

—2) ; but each combination of three letters,

as abc, admits of 1x2x3 permutations; therefore, there are

1 X2x3 times as many permutations as combinations. Hence,

_n(n---lXn—2)
1X2X3

•

And in the same manner it appears that in n letters, the num-

ber of combinations, each of which contains r of them, is

^_n(n—l)(yi—2) . . . [yi~(r—1) ]

1X2X3 r
•
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Ex. The number of combinations of 5 letters, taken three

together, is 5><i><^=10.
1X2X3

Art. 309. The number of cornbinations of n things taken r to-

gether, is the same as the number of combinations of n things taken

n—r together.

The truth of this proposition is evident from the following con-

sideration : if out of n things r be taken, (?i
—

r) things will al-

ways be left
;
and for every different parcel containing r things,

there will be a different one left containing (n—r) ; therefore, the

number of parcels containing r things, must be equal to the num-
ber containing (n—r).

For example, in the letters abode, for each combination of three

letters, there is a different one of two letters. Thus,

abc, abd, abe, acd, ace, ade, bed, bee, bde, cde.

de, ce, cd, be, bd, be, ae, ad, ac, ab.

Hence, in finding the number of combinations taken r together,

when r^\n, the shorter method is to find the number taken

(n—r) together.

EXAMPLES FOR PRACTICE.

1. How many permutations of two letters each, can be formed

out of the letters a, b, c,d,e1 How many of three ] How many
of four 1 Ans. (1) 20. (2) 60. (3) 120.

2. How many combinations of two letters each, can be formed

out of the letters a, b, c,d,e1 How many of three 1 How many
of four 1 How many of five 1

Ans. (1) 10. (2) 10. (3) 5. (4) 1.

3 . In how many ways, taken all together, may the letters in

the word NOT be written '? In the word HOME.
Ans. 6, and 24.

4. How often can 6 persons change their places at dinner so

as not to sit twice in the same order 7 Ans. 720.

5. In how many different ways, taken all together, can the

seven prismatic colors be arranged 1 Ans. 5040.

6. In how many different ways can six letters be arranged
when taken singly, two by two, three by three, and so on, till

they are all taken 1 Ans. 1956.

Suggestion.— Take the sum of the different permutations.
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7. How many different products can be formed with any two

of the figures 3, 4, 5, 61 Ans. G.

8. How many different products can be formed with any three

of the figures 1, 3, 5, 7, 9] Ans. 10.

9. The number of permutations of n things taken four to-

gether = six times the number taken three together ; find 7i.

Ans. n=9.

10. The number of permutations of 15 things taken r together
= ten times the number taken (r

—
1) together ;

find r.

An^. r=6.

11. How many diflferent sums of money can be formed with a

cent, a three cent piece, a half dime, and a dime I

Suggestion.— Take the sum of the different combinations of four

things taken singly, two together, three together, and four together.

Ans. 15.

12. With the addition of a twenty-five cent piece, and a hatf

dollar,. to the coins in the last example, how many difierent sums

of money may be formed ] Ans. 63.

13 . At an election, where every voter may vote for any num-

ber of candidates not greater than the number to be elected, there

are 4 candidates and only 3 persons to be chosen
;
in how many

ways may a man vote 1 Ans. 14.

14. Of the combinations of 5 letters, a, b, c, d, e, taken three

together, in how many will a occur ]

Suggestion.— First find the combinations of four letters taken Um
together ?

Ans. 6.

15. On how many nights may a different guard be posted of 4

men out of 16] and on how many of these will any particular

man be on guard ] Ans. 1820, and 455.

16. The number of combinations of 72 quantities /owr together,

is to the number two together, as 15 to 2; find n. Ans. n=12.

17. How many changes may be rung with 5 bells out of 8, and

how many with the whole peal ] Ans. 6720, and 40320.

18. Find the number of permutations taken all together, that

can be made out of the letters of the word Algebra. (See Art.

307.) Ans. 2520.

19. In how many ways can we write the term a^¥c^ 1

Suggestion.— There are 3 a^s 4 6'«, and 2 c's. (See Art. 301a.)

Ans. 1260.
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20. In how many terms in the preceding example, will a^ stand

first T

Suggestion.— The number will be equal to the permutations taken all

together, of the letters in h^c^.

Ans. 15.

21. In the permutations formed out of a, &, c, dy e,f, g, taken

all together, how many begin with ah '? How many with abc "*

How many with aW ] Ans. (1)120. (2)24. (3)6.

22. Out of 17 consonants and 5 vowels, how many words can

be formed, having two consonants and one vowel in each 1

Ans, 4080.

23. Find the number of combinations that can be formed out

of the letters of the word "
iVb/a/io7i," taken 3 together.

Ans, 22.

BINOMIAL THEOREM,

WHEN THE EXPONENT IS A POSITIVE INTEGER.

Art. 310. We have already explained (Art. 172) the method

of finding any power of a binomial, by repeated multiplication ;

and we shall now proceed from the theory of Combinations (Art.

308), to derive a general rule, which is called the Binomial Theo-

rem, and sometimes Sir Isaac Newton^s Theorem, from the name

of the inventor.

In its most general form the Binomial Theorem teaches the

method of developing into a series any binomial whose index is

either integraf or fractional, positive or negative ; that is, quanti-

ties of the form

n —
(fl+a;)", (a+a;)-", (a-^-xy, (a+a:)""*,

where a or x may be either plus or minus.

The following investigation applies only to the case where the

exponent is positive and integral, the other cases will be considered

hereafter. (See Art. 319.)

By actual multiplication it appears that

(x-\-d)(x-\'h)=x'^-\-a\x-\-ab.

In like manner {x-^a)(x-\-V)(x-\-c)

x'^-\-db x-\-ahc.
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. Also, (x+a)(x-{-h)(x-\-c)(x+d)

=a;'*+ a x^-\- ahx^-l-ahc

-\- b -\- ac\ -\-abd

x-^'obcd.

-\-acd

+hcd

Arr examination of either of these products, shows that it is com-

posed of a series of descending powers of a;, and of certain coeffi-

cients, formed according to the following law :

1st. The exponent of the highest power of x is the same as the

number of binomial factors, and the other exponents of a; decrease

by 1 in each succeeding term.

2nd. The coefficient of the first term is 1
; of the second, the

sum of the quantities a, b, c, &c.; of the third, the sum of the pro-

ducts of every two of the quantities a, b, c, &c. ; of the fourth, the

sum of the products of every three, and so on
;
and of the last,

the product of all the n quantities a, b, c, &c.

. Suppose, then, this law to hold for the product of n binomial

factors x-\-a, x-\-bf x-\-Cf x-\-k ;
so that (x-\-a)(x-^b')

(x+c) (a;+A;)=a;«+Aa;^-i+Ba:"-2_|_Ca;«-3_]^ . , . . _j_K,

where A=a+i+c4- .... +^.

'B=ab-\-ac-\-ad-\-

C=abc+abd-{'
"

&c. = &c
K=abcd k.

If we multiply both sides of this equation by a new factor x-\-l,

«ve have

(x+a)(ix+b){x-\-c) (x+k)(x+l)

=af»+i+A|a;"+Bb'»-»-J-C|a:"-2 ....
+ l\ +Al\ Bl\ .... +KZ.

Here A+l =a+b-\-c+ .... +k+l ;

B+Al=ab-{-ac+ad . . . A-al+bl . . . +kl
&c. = &,c

Kl =.abcd . . . . /cZ.

It is evident the same law still holds ; that is,

Ist. The exponent of the highest power of x is the same as the

vxtmber of binomial factors
; and the other exponents of x decrease

by 1 in each succeeding term.
23
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2»d. The coefficient of the first term is 1 .

A-|-Z. the coefficient of the second term, is the sum of the sec

ond terms, a, Z>, c, . . . . A:, and I of the binomial factors.

B-f-AZ, the coefficient of the third term, is the sum of the pro-
ducts of the second terms of the binomial factors taken tico to-

gether ; for by hypothesis, B is the sum of the products of n
binomial factors, taken two together, and Al is the product of the

second terms of the preceding n binomials by the second term I

of the new binomial ; therefore, B-f-AZ is the product of the

second terms of all the binomial factors taken two together.

KZ, the last term, is the product of all the second terms of the

n-\-l binomial factors.
v^

Hence, if the law holds when n binomial factors are multiplied

together, it will hold when n-\-l factors are multiplied together ;

but it has been shown by actual multiplication to hold up to 4
factors

; therefore it is true for 44-1 j that is 5; and if for 5, then

also for 54-1 3 that is 6 : and so on generally, for any number
whatever.

Now let &, c, d, &c., each =0,

then A=a-\-a-\'a-\-a-\-, &c., to n terms =7ia.

B=a2_]-a2_^&c., =a2 taken as many times as
^

,
^. 2

is equal to the No. of combinations of n things> ^==-^
—^— •

taken two together, which is (Art. 308), 5

C=a^-|-^^+» ^c-j ==^^ taken as many ^
Umes as is equal to the No. of combinations I __w(?i—l){n—^2)a*

of the things taken three together, which is
|

1 • 2 • 3
'

(Art. 308), J

&c. = &c.

K=aaa .... to n factors =a".

Also, {x-^a)(x-\-'b){x-{-c ) (^+Z) becomes

{x-^d){x~\-aXx-\-d) {X'\-a)^{x-\-aY,

.-. (.r+^)"=.rn+^...rn-l1-<^.^-l)..2.^n-2.
^<n~l)(7l---2)^3 3

1-2 1-2-3

+ +«".

By changing a: to a and a to x, we have

(a+a?)"=a"+7ia»-ia:+^:^!Lrl)a'»-2a;2+
1-2

^
^ n(?i~l)(7i—2) , , ,

1>2»3
^ ^ +^"-



BINOMIAL THEOREM. 267

Let a=l, then since every power of 1 is 1,

Cor. 1 .
— It is obvious that the sum of the exponents of a and x

in each term =n.

Cor. 2.— If either term of the binomial is negative, every odd

power of that term will be negative (Art. 193) ; therefore the

signs of the terms in which the odd powers are found will be

negative.

^ ^ ^1-2 1.2-3 ^

Cor. 3 .
— The general term of the series is

^(^1)(^2) (n-^+2)^^_,^,^,
1.2.3 (r—1)

For the 1st term is a*»,

2nd « " nar-%

3rd « « 5^?Zi)a»-2a;2,

4th " « nC7i~l)(7i~2)^„_3^3
1.2.3

&c., &c.

Here it is evident the coefficient of any term is formed of the

product of the factors -, , , &c., in number, one less

\ /I o

than the number which denotes the place of the term ; therefore,

the coefficient of the r** term will be

n{n—l){n—2) [^^^(r—2)]
1.2-3 (r—1)

•

Also, the exponent of x is the same as the denominator of the

last factor of the coefficient ; and the exponent of a is equal to n

minus the exponent of x, (Cor. 1) ; therefore, the whole r^ terra

is,

^(^-1)(^2) (y,^+2)^,_,^ ,^,
1.2-3 (r—1)

This is called the general term, because by making r=2, 3, 4

&c., all the others can be deduced from it.

Ex. Required the 5'* term of (a—xy.
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% i^ ..

Here r=5, and 7i=7;

.•. term required = (ay(—xY=d6a^x^,

Cor. 4.— If n be a positive integer, and r=w+2, then

(n
—

r-\-2) becomes 0, and the (n-\-2) term vanishes ; therefore,

the series consists of (n-\-l) terms altogether ; that is, in raising
a hinomial to any given power, the number of terms is one greater

than the exponent of the power to which the binomial is to be raised.

Cor. 5.—When the index of the binomial is a positive integer,
the coefficients of the terms taken in an inverse order from the

end of the series, are equal to the coefficients of the correspond-

ing terms taken in a direct order from the beginning.

If we compare the expansion of (a-^xy , and (a:~[-a)'*, we have

v^> ^ ^1-2 ^l-2-3 ^

Since the binomials are the same, the series resulting from

their expansion must be the same, except that the order of the
'

terms will be inverted. It is clearly seen that the coefficients

of the corresponding terms are equal.

Hence, in expanding a binomial, whose index is a positive inte-

ger, the latter half of the expansion may be taken from the first

half.

Ex. Expand (a—by.

Here the number of terms (n-\-l) is equal to 6; therefore, it

will only be necessary to calculate the coefficients of the first

three, thus :

{a-^y=a'-^a^b+^J^a^b^-^10a%^+6ab^—bK

Cor, 6.—The sum of the coefficients of any expanded bino-

mial whose index is n, and where both terms are positive, is

always equal to 2"".

For if a:=a=l, then (a;+a)"=(l+l)«=2'»

—1 _i_^_L.^(^
—1 ) I ^(^^

—1 )('"'
—2) , n(7i

—1 )(n
—2)(n—3 ) ,

«

"~^"^rTr2~"^ 1.2-3 "^ 1.2.3-4 +' *''
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Thus, the coefficients of

a+x =1+1=2=2',
(a+a?)2=l+2+l=4=22,
ra+:c)3=l-f.3+3+1=8=23,

(a+a:)4=l+4+6+4+l=16=2S
&c., &c.

Art. 311. In the application of the Binomial Theorem, it ia

convenient to observe, that if the coefficient of any term be muUi^

plied by the exponent of the first letter of the binomial in that term,

and the product be divided by the number of the term, the quotient
will be the coefficient of the next term. Thus, in raising a—x to the

1^^ power, the terms without tlie coefficients, are

a^, a^x, a^x^, a^s?, a^x^, a^x^, ax^, x"^ ;

and the coefficients are

, IXT 7x6 21X5 35X4 35x3 21x2 7x1
1,

-J-, -^, -3-, -^-, -^, -g-, -^.

And since the signs of the terms are alternately plus and

minus, (Art. 310, Cor. 2), we have

(a—a;)7=a7__7a«x+21 a5a;2__35Q54^3_[_35^3^4_21 flSjcS

+7ar«—x^.

Art. 312. If the terms of the given binomial are affected

with coefficients, or exponents, they must be raised to the re-

quired powers, by the rule for the involution of monomials (Art.

172). Thus,

(2a^—3&3)^=(2a2)<—l(2a5)3(3Z,3)-|-ll^(2a2)2(3^,3)2,
X X * ^

—il?JL?(2a2)(363)s_L.i_l?_lll-^(3&3)41-2-3 ^^ ^ ^1 • 2 • 3 • 4^
^ •

=16a8—4x8a6X3i5+6X4a^X9J^—4x2fl2x27i9+81^>»2
=16a8~96a663+216fl4Z,6_216a2i9_|.8iz,i2.

Art. 313. By means of the Binomial Theorem we can raise

any polynomial to any power. Thus, let it be required to raise

a—b-\-c to the third power.

Let a—&=m, then {a
—

b-\-cy^=(jn-\-cy-=m^-\-2>m'^c-\-^mc'^-\-c*»

Substituting for m its equal a—5, we find

(a_J4_c)3=(a—J)3_j_3(a__j)2c_j_3(a_j)c2-f.c3.
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Developing the powers of a—h, and performing the operations

indicated, we finally obtain

—
3ic2+c3.

EXAMPLES FOR PRACTICE.

1. Expand (a+&)S (a—&)^ (2a;—32/)S and (5—4a;)^

(1) Atis, a8+8a75+28a6Z,a_i-56a»Z?3_^70a^64+56a365-|-28a2i«

+8fl67+68.

(2) Ans. a7—7a6Z>+21a5Z>2—35fl^Z)3+ 35a364--21a2Z>5_[-7a2,8
-^^

(3) Ans. 32«*—240a:<y+720a;3y2_i080a;2^3_[_8i0a2/4
—243^^

(4) Ans, 625—2000a;+2400a?2—1280a;34.256a:^
2. Required the coefficient of x^ in the expansion of {x-\-yy^.

Ans, 210.

3. Find the 5'* term of the expansion of (c^
—

d?y^.

Ans. 495ci6 dK

Suggestion.— (See Cor. 3; Art. 310.) Instead of a, x, n, and r, sub-

Btitute c2,
—d^, 12, and 5.

4. Find the 7<* term of (a^+Saby. Ans. 61236ai«6«.

5. Find the 5^^^ term of (3a2—7a?3)«. Ans. 13613670a8a;^2.

6. Find the 6^* term of {ox+h/yK Ans. 2d2a^b^xY.

7. Find the middle term of (a^+a;")^^, ^^^ 924a6ma;5".

8. Find the two middle terms of (fl+a:)'^.

Ans. 1716a7a;«, and lllda^xL

9. Find the 8^^ term of (l+xyK Ans. 330a;7.

10. Find the 6'^ term of Qc—yy^ A71S. —142506a;25^5.

11. Expand (Sac--2bdy. Ans. 243aV
—810a4c4W+1080a3c3W2—720a2c263^3_|_240ac5''d:'*—32iS£i^
12. Expand (a+26—c)». A71S. a^+^a^b-\-12ab^+8b^—3a2a—12a5c—1252c-|-3ac2+6Z^c2—c3.

13. Prove that the sum of the coefficients of the odd terms of

(fl+«)", is equal to the sum of the coefficients of the even terms.



INDETERMINATE COEFFICIENTS. 271

CHAPTER X.

Indeterminate Coefficients: Binomial The-
orem, General Demonstration: Summa-
tion AND Interpolation of Series.

indeterminate coefficients.

Art. 314. The method of developing algebraic expressions
into series, by assuming a series with unknown coefficients, and

then, by equating the coefficients of the like powers of a?, finding
the values of the assumed coefficients, is termed the method of

Indeterminate Coefficients. It depends on the following

theorem.

If A+Ba;+Ca;2+Da:3-|-, «&c.', =A'+B'a7+C'a;24-D'a:3+, &c.,
for every possible value of a? (A, B, A', B', &c., not containing x);

then shall A=A', B=B', C=C', &lc.
; that is, the coefficients of

the terms involving the same powers of x in the two series, are respect-

ively equal.

For, by transposing all the terms into the first member, we
have A—A'+(B—B')a:+(C—C')a;2+(D—D')a;3-f-, &c., =0.

If A—A' is not equal to 0, let it be equal to some quantity^ ;

then we have (fi—W)x+{C'-^C')x'^-\-{jy—D')x^-\-y &c., =—p.

Now since A and A' are constant quantities, their difference,

j9, must be constant ; but —p=^(fi
—

B')a;+(C
—

C')a;2+, &c., a

quantity which may evidently have various values, depending on

the different values of the variable x ; therefore, p must be varia-

ble ; that is, we have proved the same quantity {p) to be both

fixed and variable, which is impossible. Therefore, there is no

possible quantity (p) which can express the difference A—A' ; or

in other words

A—A'=0 .-. A=A'.

Hence, (B^B')x+{C—C')x'^-\-(J)-^D')x^+, &c., =0.

By dividing each side by x, we have

B_B'+(C—C')a:+(D—D')^'+, ^c, =0.
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By a process of reasoning, exactly similar to that used in the

case of A—A', we may show that B=B'. And so on for the

remaining coefficients of the like powers of x.

Cor.— If we have an equation of the form

A+Ba;+Ca?2_|-D^^+Ea;4-(-, &c., =0, which is true

for any value whatever of x, then A=0, B=0, C=Oj &c.
; that is,

each coefficient is separately equal to zero.

For the right hand member may evidently be put under the

form 0-|-0a;-|-0a;2-|-0a?'-(-, &c. ; then comparing the coefficients

of the like powers of x, we have A=0, B=0, C=0, &c.

Remark.— As the values of the coefficients assumed are at first un-

known, this method might more properly be termed, the method of

undetermined coefficients, or the method of unknown coefficients.

Art. 315. Let it be required to develope into a series

a-{-bx
without a resort to division.

It is obvious that the series will consist of the powers of x

multiplied by certain undetermined coefficients, depending on

either a or b, or both of them, and that x may not enter into the

first term
; therefore, let us assume —=A-{-'Bx-\-Cx^-\-'Dx^

+.&C.
"+'''

Multiply both sides by the denominator a-\-hXy and arrange the

terms according to the powers of a; ; we thus obtain

a=Aa-\-Ba\x-{-Ca\x^^'Da\x^-\-, &c.

+Ab\ +m +^^\
But by the preceding theorem, the coefficients of the same

powers of x in each term are equal to each other ; therefore,

fl=Aa
; hence, A=l;

Ba+Ah=0; « B=—-,*

a^

T>a+Cb=0;
" D=~^-, &c.

a^

Substituting these values of the coefficients in the assumed-

Beries, we find

-—-=l—-x-\--x^-'-x^-\-x\ &c., the eame as
a-\-bx a a^ a^ a^

would be obtained by actual division.
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Remark.— Lest the learner may not see that the left member a, is of

the same form as the assumed series on the right, it is proper to observe

that a is the same as a-l-0^-f'0a;2-[-0a;3-}-, &,c.

Art. 316, A series with indeterminate coefficients, is gener-

ally assumed to proceed according to the ascending integral and

positive powers of a?, beginning with x^
; but in many series this

is not the case ; the error in the assumption will then be shown,
either by an impossible result, or by the coefficients of those

terms which do not exist in the actual series, being found equal to

zero.

Thus, if it be required to develope , and we assume the
3 a;—a?2

series to be A+Ba?+Ca;2-|-Da;3-|-Ea;''4-j &c., we have, after

clearing of fractions,

l=3Aa:+(3B—A)a;2-|-(3C—B)a;3+, &c. ;

from which, by equating the coefficients of the same powers of a:,

1=0;

3A=0, &c.

But the first equation, 1=0, is absurd, from which we infer

that the expression cannot be developed under the assumed form.

But -i—=-X—, and if we put -A_=A+ Ba7+ Ca;2-4-Da;3
3a;—a;2 x 3—x 3—a?

+, &c. ; after clearing of fractions, and equating the coefficients

of the like powers of a?, we find A=3, B=g, C=J^, D=gV> &^c.

Therefore, — =1 / l+^+f!+^*+, &c. )

that is, the development contains a term affected with a negative

exponent. Hence, at the outset we ought to have assumed

--—-=Aa:-'+B+0a;+Da;2+, &c.

Again, if we assume

,J-;^=A+Ba:+Ca;2+Da;3+Ea;^+Fa;5+Ga;6+, &c. ;
1 -\'X^

—x^

we shall find the true series to be

1—2a;2_|_3^4_5^6^8a;8— &c.,
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the coefficients B, D, F, &c., of the odd powers of x becoming
zero. We might, therefore, have assumed

^~^'
,=A+Ca;2+Ea;4+Ga;6+, &c.

Art. 317. Evolution by indeterminate coefficients.

Ex. Extract the square root of a^-^x^.

Assume ^(a^+o(^)=A+'Bx+Cx^+'Dx^+Ex^+, &c.

Squaring both sides so as to obtain quantities of the same

form, v^e find

a^-\-x^=A^+2A'Bx+2AC\x^-{-2A'D\x^+2AE x^+y &c.

+B2| +2BC| +2BD

From which, by equating the corresponding coefficients, we

get

A'=a\ 2AB=0, 2AC+B2=1, 2AD+2BC=0, &c.

From which we find A=a, B=0, C=-L, D=0, E=— JL,

&c.

Hence, J(a^+aP)=^a+^-^A-, &c.
2a oa^

Art. 31§. Decomposition of rational fractions.— Frac-

tions whose denominators can be separated into certain factors,

may often be decomposed into other fractions whose denomina-

tors shall consist of one or more of these factors. We shall

illustrate the method of operation by an example.

5-v, \A
Decompose into two other fractions whose denom >

inators shall be the factors of x^—6X'\-S .

Since a;^—6a;+ 8=(a:—2)(a?—4), (Art. 234, Prop. 2nd),
assume

bx—U __ A ,
B

a;2__6-p_[_8 s;—2x-^'

Reducing the fractions to a common denominator,

we have -^^tI^ ^A(a:~4)+B(a:~2)

sc^^Qx+S (a;—2)(a;—4)

or 5a:—14=A(a;-4)+B(a:—2)=(A+B)a:—4A—2B.

Now since this equation is true for any value whatever of a?,
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we may equate the coefficients of the corresponding terms,

(Art. 314) ;
this gives

A+B=5; —4A—2B=—14; whence, A=2, and B=3.

^
5a:—14 _^ 2

,
3

a;2—6a?-[-8 oo—2 x—4'

EXAMPLES FOR PRACTICE.

By the method of Indeterminate Coefficients show that,

1. Li:|5==l+5a:+15a:2+45a;'+, &c.
1—oX

2.
Jd:?^^=14^a:+4a;2+7a;»4-lla7^+18a:*+, &:c.

3. lz::?^±?^'=l—4a?+5a:2—a;3_^a,4_]_^c.

5-1-7^ 5 52
^

5» 54
^

55
^'

5+7x 5 5

(l-o:)

5 . _1+^=1 2-[-2 2x4-3 2a?2-|-4 2a^+52a:4+, &c.

o. ,71—ar=l—-— — — —
, &c.^

2 2-4 2-4-6 2-4'6-b

7.
V(l+^*')=l+|+?|'-|J+,&c.

9. l±^=l+_?_
X—a;2 a; 1—x'

10 8a;-^_ 5,3
•

a;2__4 a;4.2^a;—2*

11 a?+l — 5 __ 4
•

a;2—7a:+12 a;—4 a>-3*

12.

13.

(x2_i)(a;_2) 3(a;—2) 2(a:—1) 6(a:+l)'1111
a;4__a4 4a3(a;__^) 4a3(a:-j-a) 2a\x'^-\-a^y

14 _L_=^ 5
1 _ 1

,
^-~2 _ a;+2

^•

a;6_i 6 ?^__i a:+l^a?2—x+l a;2+a;+lV
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BINOMIAL THEOREM,

WHEN THE EXPONENT IS FRACTIONAL OE
NEGATIVE.

Art. 319. We shall now proceed to prove the truth of the

Binomial Theorem generally ; that is, to show that

whether n be integral or fractional, positive or negative.

First, a+h=:a(l+-);

... (a+&)«=^ ( 1+^ ) ^=a\l+xy, if x=^i,
\ a f a

Hence, if we can find the law of the expansion of {l-\-xY, we

may obtain that of (a+6)", by writing - for x, and multiplying
a

by fl". We shall, therefore, first prove that

The proof may be divided into two parts :

1st. To show that {l-\'xY=\+nx-\-, &c.

2nd. To find the general law of the coefiicients.

First. To prove that the coefficient of the second term of the

expansion of {\-\-xy is n, whether n be integral or fractional,

positive or negative.

Let the index be positive and integral ; then, since by multipli-

cation we know that

(l+ar)2=l-l-2a:+, &c.,

(l-fa7)3=l+3a?+, &c. ;

let us assume that Q.-\-xy"^=^l-\-(ji
—l)a:+, &c.

Multiply both sides of this equality by 1+a;, then

(l+a:)« '(l+x)=Jl+(n-l)a;+, &c.)|(l+a:) ;

of; (14-^)"=l+7w;+j <fcc., by multiplication.

Hence, if the proposition is true for any one index n—1, it

it will be true for the next higher index n. Now, by multiplica-

tion, it is true for the index 3, it is therefore true for the index

3-|-l=4; and therefore true for the index 4+1=5, and so on.
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Hence, by continued induction, it is always true for n when it is

integral and positive.

Next let 71 be a fraction =?.

Also, let (l+^)«=l+flw;+> &c., =1+Aa?, where hx is put
to represent all the terms after the first.

Since (l+o:)? =1-|-Aa?, .*. by raising both sides

to the q power (l-f-a:)''=(l-|-Aa?)9 ;

.*. l+par-f-j &c., =l-|-?Aa7-|-, &c.,

=l+^(aa;+, &c.,)+, &c.,

By equating the coefficients of the like powers of a? (Art. 314),

and (1 +a:)^ =1+2a:+, &c.

Lastly, let n be negative ; then, (Art. 81),

(l+a:)-«===—___==--- —^_=:1—720;+, &c., by division.

(l+a:)» l-l-7w?+, &c.

.*. (l+a;)"=l+72j:+, &c., whatever be the value of n

'. (a+J)«=:a» ( 1+^ ) "=fl"(l+n^+, &c.),

=a"-|-na"~'&-|-, &c.,

and the first two terms of the series are determined.

Second. To find the general law of the coefficients.

Let (l+xy=l+nx+Bx^+Cx'+I)jc^+, &c., where B, C, D,
&c., depend upon n.

For X, put x-\-z, and consider ix-\-z) as om term, then

\
1 +ix+z) }

^=1+n(x+z)+'B(x+zy+Cix-\-zy+, «Szx5.

But (a~\-by=a''+na''-^b-\-, &c. ;

.-. (x+zy=x^+2xz+, &.C. ;

{x+zy=zx^+Sx^z+, &c. ;

(a;+2r)^=a;^+4a;32-f-, &c. ;

.-. \l+ix+z)l"=l+nx+Bx^+Cx^+Dx^+y &,c.,

+(n+2Bx+SCx^+4'Dx^+, Sic.)z+, &c.,

=a+xy+(n+2Bx+3Cx'^+iDx^+, &.c.)z+, &c., (A).
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But, considering (1+^) as one term, (l+^+^)"=Kl+^)+^ ^";

and
\ (l+a:)+2^«=(l+a:)^+w(l+a;)'^-'2+, &c. (B).

Equating the coefficients of z in (A) and (B),

w+2Ba;4-3Ca;2+4Da;3+, &c., =7i(l+a?)«-i ;

multiplying both sides by 1+^j we have

n+2Ba;4-3Ca;2+4Da;34., &c.> z^nil-^-xy

4- ?w;-i-2Ba;24-3 Ca;3-j-, &c.$ =7z(l-i-^+Ba;24-Ca;3+, &c).

By equating the coefficients of the same powers of x, we have

2B+n=»3 ... 2B=n2—7i=7i(?i—1).

p^n(?i--l) ,

1 -2
'

3C+2B=B7i .-. 3C=B(w—2),

n^B(y^-2)^yi(n—l)(n—2) .

3 1 • 2 • 3
'

also, 4D+3C=nC .-. 4D=C(?i—3) ;

n^C(n—3)^y^(n~-l)(n—2)(y^—3)
4 1 -2 -3 -4

Similarly 5E=D(7i—4) ;

P._DCy^--4)^y^(n—l)(n—2)(y^—3)(n~4)
5 1 -2 -3 -4 -5

Hence, generally, if N is any coefficient, M the one which next

precedes it, and r—1 the largest factor in the denominator of M,

we have N=Ml^=^!^i)i=M(!Hzlz=r.)
;

r r

^1-2 ^l-2-3 ^

and .-. putting _ for x, (a+^>)«=a" 1+- ) ,

^ ^
a 1 • 2 a2^ 1 • 2 • 3 a3^ '5 >

1-2 ^l-2-3 ^

If —& be put for b, then since the odd powers of —h are nega-
tive (Art. 193) and the even powers positive,

(a^hr=a--^na--^b+'!^^^^1 *
-* 1*^*3
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which establishes the Binomial Theorem in its most general

form.

Remark.— From the preceding formula and demonstrations, corol-

laries, similar to those in Art. 310, may be drawn, but it is not neces-

sary to repeat them. The following additional proposition is sometimes

useful.

'

Art. 320, To find the greatest term in the expansion of

From Cor. 3, Art. 310, we have seen that the r'* term is

^^^-"^^ (^"+^W+i6-Shence,
1-2 (r—1)

from the general law, the (r+iy* term is

niTV—l) (;^-,r+l)^„_,^,
1-2 r

Therefore, the (r+l)** term is derived from the r'* by multiplying

the latter by ^^^+\J
r a

While this multiplier is greater than 1, each term must be

greater than the preceding. Hence, the r^ term will be the great-

est when ^-^+^'- Jlrst <1;
r a

or, (7i__r+l)5<ar, (Art. 221) ;

or, r(a+&)>(w+l)J, (Art. 219) ;

or, rXn+D-l-' (Art. 221).
a-\-o

Take r, therefore, the Jlrst whole number greater than

(n+l) » and the r^^ term will be the greatest of the series.

a-\-h

If (n-\-l) is a whole number, then two terms are equal,
a-\-b

each of which is gj^ater than any of the other terms.

10
Ex. 1. Find the greatest term in the expansion of (1+|)

^
•

Here (n+1) l-^{i-^^)A-=:^^ ; .-. r>2; hence r=3.
a-\-b l-\-g

2. Find the greatest term in the expansion of (l+y^^)
•

Ans,2'^.

3. Find the greatest term in the expansion of (3-|-5^)^ when

a:=i . Ans. 5^.
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Cor. 1 . By finding the greatest term of a series, we determine

the point at which the series begins to converge ; that is, the point
from which the terms become less and less.

Cor. 2. It is also evident that when
^ ^~r

is first less than
r

1 , that the coefficient of the preceding term is the greatest.

- But when ^"-^+^>1,
r

71—r+l>r, (Art. 221),

or, 2r>n+l , (Art 219) ;

or, r>!^, (Art. 221).

Hence, the whole number next greater than VlL^ , or next less

than !yi_4-l=^^i-> denotes the term having the greatest

coefficient.

If n is an odd integer, there will be two coefficients, the

(
^LLz. \

, and the ( ^"'~

j , each greater than any other.

Ex. Find the term having the greatest coefficient in the expan-
sion of {a-\-by^ 'y

and the two terms having the greatest coeffi- -

cients in the expansion of {x—yy. Ans. 6^\ and 4^^^ and 5**.

Art. 321, In the application of the Binomial Theorem, it is

merely necessary to take the general formula {a-\-hY=d^-\-na'^-'^h

+, A'C, and substitute the given quantities instead of the sym-
bols to which they correspond in the formula, and then reduce

each term to its most simple form.

Ex. 1. Find the expansion of (1+a?)*.

Here «=!, &==«, w=2.

,. (l+a;)*=l+i:c+i^5*»+i^fc^^
&c.

^^ 2 • 4 ^2 • 4 • 6 2 • 4 • 6 • 8
^

Ex. 2. Develope (1
—

x)-^. Here a=l, ft=—a;, n==.— *.
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.-. (l^)-i=l-i(-x)+tlll(=i=±)(-x)=^ 1 • ^

^
1 • 2 • 3

^ ^ -r>

^^ ^2 -4 ^2 • 4 • 6
^'

In making these developments it will assist the pupil, to recol-

lect that every root and every power of 1 , is 1 .

Ex. 3. Develope Ja-\-b into a series.

Since a+l==a
(
1+^ \ , .-. J^b=^a

(
1+- ) *

Here a=l, J=-, w=4.
a ^

• •
^ ^a / ^^a^ 1 • 2 'a^^ 1 • 2 • 3 'a'^

=14.1 ^--JL ^^4JL1_ ^- &c
^^•a 2 • 4'a2^2 • 4 • Ca^

'

Hence, ^/^*=^/^a+2^,-8?,+J^-TS+. &c.).

EXAMPLES FOR PRACTICE.

2. —i =::(l-^x)-^=^l+2x+2x^+4tx^+6x*+y &c.
(1—a;)2

3. .
,

=a\a+x) 2=i__4. 4- _, &C.

'^
3 9 81

5a;4

6. ((^3
—xvz=.a— ——— — —

J cfcc.^ ^
3a2 9a5 81^8 243aii

7. (l+2a:)^=l+a;—ia;2+^a:3_6a;44_,&c.
24
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8. V^2i:^^^^^_^__^_
5a?8 ^^

2a 8a^ 16a' l2Sa^

9. £/a4-a:=i/a(l+———+ — +, &c.\

10. (a3-fa?3)J^=a(l-t-i^—
2^?^ ^ 2 -

Sa:^
V -r >' ^

^3a3 3 • 6a«^3 • 6 • Qa^
^

li. 5/9=V8+i=2+? ,
1—?

. 1+12 . i—, &c.V V -r ^3*89 82^81 8^

12. (a3
—^x3)3=a(l—— 4-.J — +, &c.).

13. ^-_«i_=a+?^+?.i^+?_LL:^V,&c.
(a3_^)^

"^3a^^3 • 6a^^3 • 6 • 9a«^'

Art. 322. To find the approximate roots of numbers by the

Binomial Theorem.

Let N represent any proposed number whose n^^ root is

required, take a such that a" is the nearest perfect n*^ power to N,
BO that N=a"iii&, b being small compared with a , and + or —,

according as N^ or <[a" ;

then ^N=a f Idb— )
» =, by writing ~ for b in the general

\ a" / a"

formula ;

n a"" n
'

2n \ a"" / n' 2n
'

^n \ a"" /

Of this series a few terms only, when b is small with regard
to a", will give the required root to a considerable degree of

accuracy.

Ex. Required the approximate cube root of 128.

Here %/128=yd^+2=::6%/l+-^^ ;

^ ^3 125 3
•

3 \ 125 / ^S^ 9 V 125 /
^ *

=54-1—14-1 1— =54-l!.-.£^4-l 51—

=5-f0.04—0.00032-1-0.0000042— . . .

=5.0396842.

Art. 323. In the preceding example, since the series con-

tinues to infinity, we obtain only an approximate value ^ for the
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required root, and as the denominators increase more rapidly than

the numerators, a few terms only need be taken for practical pur-

poses ;
still it may be required to find what is the limit in the

error occasioned by neglecting the remaining terms of the series.

To do this let R be the true root, and as the terms are alternately

positive and negative, let

R =a—l}-\-c
—

d-\-e—f-\-g
—

h-\-k
—

1-\-, &c., and let

R' =a—^-{-c
—

d-\-e-^f,

K"=a—h-\-c
—

d-^-e—-/ -f-^.

Then since the terms continually decrease, a—h, c—d, e—f,

g—hf (fcc, are all positive, and therefore R', which contains three

only of those differences, will be less than R. For the same rea-

son all the pairs of terms after g, as —h-\-k,
—

Z-|-m, &c., will be

all negative, and R'' will be greater than R ; therefore, the true

value of the series lies between R' and R", or

a—b-\-c
—

d-}-e—f,

and a—b-\-c
—c^+e—/-f-^.

Hence, the error committed by the omission of any number of the

terms of a converging series, is less than the first term of the omitted

part of the series.

Thus, in the preceding example, if we had stopped at the sec-

ond term, the error would have been less than .0000042.

15. Find the 5^^ root of 35. Ans. 2.036172-f.

Here N=35=32+3=25 /
1-f^^ )

.

16. The student may solve the following examples :

(1). ViO =j9+i =3.16227 . . . true to 0.00001.

(2). s/30 =3/27+3 =3.10723

(3). 3/24 =3/27—3 =2.88449

(4). V260=V256+4 =4.01553

(5). V108=X/128—20=1.95204

true to 0.00001.

true to 0.00001.

true to 0.00001.

true to 0.00001.

Remark.— Instead of extracting the nth. root by the formula in Art.

322, the operation may be performed by the general formula of the pre-

ceding article, the number whose root is to be extracted being divided

into any two parts whatever. The advantage of the formula in Art.

322 consists in the rapid convergence of its terms. Thus in finding th&

4th root of 260 true to five places of decimals, it is only necessary to

take two terms of the series.
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THE DIFFERENTIAL METHOD OF SERIES.

Art. 324. A Series consists of a number of terms, each of

which is derived from one or more of the preceding terms, accord-

ing to some determinate law, (Art. 134.)

The use of the differential method is, 1st, to find the successive

differences of the terms of a series ; 2nd, any particular term of

the series; or, 3rd, the sum of a finite number of its terms.

If, in any series, we take the first term from the second, the

second from the third, the third from the fourth, and so on, the

new series thus formed is called the First order of differences.

If we proceed with this new series in the same manner, we
shall obtain another series termed the Second order of differences.

In a similar manner we find the thirds fourth, &c., orders of

differences.

Thus,
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Here the coefficients of a, b, c, d, &.C., in the n^^ order of differ-

ences are evidently the coefficients of the terms of a binomial

raised to the n^^ power ; and their signs are alternately positive

and negative ; hence, when n is even, the first term of the t*^

order of differences is

a^^&+^(^-l)c^^(^l)(^-2)j+, &c., and^1-2 1
• 2 • 3

^

-^4.;,Z;_
^(^-l

)c-[,^(^-l)(^-^)^.^, &c., When n is odd.

Cor. It is evident from the coefficients that when 71=1, the

value of D„ has only two terms, for then n—1=0; when n=2,
this value has only three terms, for then n—2=0, and so on.

Ex. 1 . Find the first term of the fourth order of differences of

the series 13,23,33,43,53, .... or 1, 8, 27, 64, &c., ....
Here 7i=4, hence take five terms of the first value of D^, and

a=l, b=S, c=27, «if=64, e=125, and J)^==

l^X8+^><gx27-i><^><gx64+^X^X^X^Xl25=
^1X2 1X2X3 ^1X2X3X4

1--32+162—256+125=0, Ans,

Remark.— It is evident the first term of any particular order of dif-

ferences may be found by continued subtraction. It is important, how-

ever, that the learner should be acquainted with the general law as

expressed in the above series.

EXAMPLES FOR PRACTICE.

2. Find the first term of the second order of differences of the

series 12, 2^, S^, 42, .... or 1,4,9, 16,25. . . . Ans. 2.

3. What is the first term of the third order of differences of

the series 1, 3, 6, 10, 15, &c. 7 Ans. 0.

4. Required the first term of the fifth order of differences of

the series 1, 3, 32, 33, 3S «fec. Ans. 32.

5. Find the first term of the fifth order of differences of the

series 1, 2» 4» i> tV> ^c. Ans. —j^j.

Aet. 326. Problem II.-— To find the n^^ term of the series

a, &, c, d, e, &c.

From the preceding article we have seen that
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Dj=—a-^b ; whence h=a-\-I>^ ;

1)3=—a+36—3c+J ;
«

d=a+2'Di+SJ)^+J) ^ ;

D4=a—4&+6c—4(^+e ;
" e=a+4Di+6D2+4D3+D4.

It is evident from inspection that the coefficients of the first

terms of the different orders of differences, in the value of any
term of the series, as of e the fifth term, are the coefficients of the

terms of a binomial involved to a power whose exponent is one

less than the number denoting the place of the term ; that is, the

coefficients of the n^^ term of the series, are the coefficients of

the (n—1) power of a binomial. Hence, writing n—1 instead

of 71, in the coefficients of the n^^ power of a-\-by (Art. 319), the

n^'* term of the series is

Ex. 1. Find the 12^ term of the series 1, 3, 6, 10, 15, 21, . .

1 , 3 , 6 , 10 , 15, . . . . .

2,3,4 , 5, hence D,=2;
1,1,1, " D2=
0,0, " D3=

and the succeeding orders of differences are also evidently 0;
hence 12'* term

=«+(;^1)D,+('»-1)(^2)d -1+11X2+11^^X1

=l_}-22+55=78. Ans,

2. Find the w'* term of the series 2, 6, 12, 20, 30,

2
, 6 , 12 , 20 , 30, . . . .

4,6,8 10, hence Di=4;
2,2,2 « D,=2;
0,0, "

D3=0;

hence n'^ term ==2+(«--l)4+(j?zi2^!^)x2==7i2-|-7i. Ans.
X *

-o

From the formula n^-{-n, or w(7i+l), any term of the series

is readily found
; thus the 20<* term =20(20+l>=:420.

It is also evident that the n'* term of a series can be found

exactly only when some order of differences is zero.
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EXAMPLES FOR PRACTICE.

3. Find tne 16'* term, and the vP^ term of the series 1, 2^, 3^

42, ... or, 1, 4, 9, 16, ... . Ans, 225, and v?.

4. Find the 12'* term of the series 1, 5, 15, 35, 70, 126, &c
Ans, 1365.

5. Find the w'* term of the series 1, 3, 6, 10, &c.

Ans, <!H:1)
2

6. Find the 7i'* term of the series 1, 4, 10, 20, 35, 56, &.c.

Ans n(n+l)(^+2)
2X3

7. Find the 9'* term of the series 2-5-7, 4-7-9, 6-9-11,
8 -11 -13, &c. Aw5. 8694.

8. What is the 7i'* term of the series 1 X2, 3X4, 5x6, &c. 1

Ans, 4:71^—2n.

Art. 327. Problem III.— To find the sum of n terms of the

series a, h, c, d, e, &c.

Assume the series 0, a, a+&, a-\-h-\-c, a-\-h-\'C-\-d, ....

Subtracting each term from the next succeeding, we have

fl, i, c, df e, &c.,

which is the series whose sum it is proposed to find. Hence, the

sum of n terms of the proposed series, which it is now required
to find, is the (n-\-iy^ term of the assumed series.

It is evident the n'* order of differences in the given series, is

equal to the (n-\-iy^ order in the assumed series. Hence, if we
compare the quantities in the assumed series, with those of the

formula for finding the to'* term of a series (Art. 326), we have

for a,

n-\-l for n,

a for D
J ,

D, for Dgj &c.

Substituting these values in the formula,we have 0+(w+l—1 )a

(;,-j,l„l)(n+l~2)p _^(n+l-l)(n+l--2)(TO+l-3)^ ,-r p-2 '^
1 2-3 '"^'
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^1-2 '^
1 • 2 • 3

'^

the sum of n terms of the proposed series.

Ex. 1. Find the sum of n terms of the odd numbers 1,3,5,

7, 9

Here a=l, Di=2, l>z=0; hence,

Sum =:na+^^'^'^^^Di=nXl+^^'^r^\2=n+n^—n=n\

2. Find the sum of 7i terms of the series 1^, 2 2, 3^, 4 2, 5 2, ... .

Here a=l, Di=3, Dj=2, ©3=0; hence,

^1-2 *^l-2-3 ^ ^
2

'ji{n—\ )(y^—2)^n(7i+l )(2yi+l )^3 6
•

EXAMPLES FOR PRACTICE.

3. Find the sum of n terms of the series 14-3+6+10+15,

6

4. Find the sum of 20 terms of the series 3+11+31+69
+131, &c. An5. 44330.

5. Find the sum of 20 terms of the series

1 • 2 • 3+2 • 3 • 4+3 • 4 •

5+, &.c. Ans. 53130.

6. Find the sum of n terms of the series of cube numbers

13^23+33+, &c. Ans. [^n(n+l)]2.

7. Find the sum of n terms of the series 1+4+10+20

+35 Ans. ^(n+l)(n+2)(n+3)

8. Find the sum of 25 terms of the series whose riP^ term is

^2(^37j_-.2). Ans, 305825.

Art. 328. Piling of Cannon Balls and Shells.

Balls and shells are usually piled by horizontal courses, either

in the form of a pyramid or a wedge ;
the base being either an

equilateral triangle, or a square, or a rectangle. In the triangle

and square, the pile terminates in a single ball, but in the rectan-

gle it finishes in a ridge, or single row of balls.
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Art. 329. To find the number of halls in a triangular pile,

V
A triangular pile, as V—ABC, is formed of

successive horizontal courses of the form of an

equilateral triangle, such that the number of

balls in the sides of these courses, decreases con-

tinually by unity, from the bottom to the single
ball at the top.

If we commence at the top, the number of balls in the

respective courses will be as follows :

•••• ••••#
• • ••• ••• ••••

• • •• #• •••
• • ••

and so on. Hence, the number of balls in the respective courses

is 1, 1+2,1+2+3, 1+2+3+4, 1+2+3+4+5, and soon:
orl, 3 6 10 15

Hence, to find the number of balls in a triangular pile, is to

find the sum of the series 1, 3, 6, 10, 15, &c., to as many terms

(ji) as there are balls in one side of the lowest course.

By applying the formula (Art. 327) to finding the sum of n
terms of the series 1,3, 6, 10, &c., we have a=l, Di=2,
I),==l,and D3=0.

Hence, the formula yig+^^^—
-^

)d .j^jn—l)(^—2)^ 1^^^^^^^
1-2 ^^

1 -2 • 3
*

n+^igl±)x2+^(^""^X^--2)
7^3.--3n^+2n^

2
^

2X3
^ ^

6

^n3+3n^+27i^n(yt^+3n+2)_n(n+l)(n+2) .

6 6 6

Aet. 330, To find the number of halls in a square pile,

A square pile, as V—EFH, is formed of V
successive square horizontal courses, such

that the number of balls in the sides of

these courses, decreases continually by unity,

from the bottom to the single ball at the

*"P- 25

(A)

*€)€)€)€)«)€
H
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If we commence at the top, the number of balls in the

respective courses will be as follows :

l**. 2"^. 3'"'*. 4'*.

^^ #•• ••••
• •• •O^ ••••

• •••
and so on. Hence, the number of balls in the respective courses

is 12, 22, 32, 42, 52, &c., or 1,4, 9, 16, 25, and so on. There-

fore, to find the number of balls in a square pile, is to find the

sum of the squares of the natural numbers l,2,3,&c., to as

many terms (n) as there are balls in one side of the lowest

course.

But the sum of the series 1,4,9, 16, &c. (see example 2,

page 288), is

n(n+l)(2n+l) .^
6

• ^ ^

Art. 331. To find the number of halls in a rectangular pile.

A rectangular pile, as EFDBCA, is E A
formed of successive rectangu-
lar courses, such that the number
of balls in each of the sides of

these courses, decreases contin-

uously by unity, from the bottom D B
to the single row of balls at the top.

If we commence at the top, the number of balls in the breadth

of the first row is 1, of the second 2, of the third 3, and so on.

Also, if m+1 denotes the number of balls in the top row, the

number in the length of the second row will be m-\-2, in the third

row 771-J-3, and so on. Hence, the number of balls in the

respective courses, commencing with the top, will be l(m-|-l),

2(m-(-2), 3(w-f-3), and in the n'* course n(m-\-n). Therefore,
the number of balls (S) in a complete rectangular pile of n
courses will be

8=1(771+1 )4-2(m-|-2)+3(m+3)+ +n{m+n)

=771(1+2+3+4 . . . +7i)+(12+22+32+42+ . . . +^2);

but the sum of n terms of the series in the first parenthesis,

(Art. 327,) is ^T t and the sum of n terms of the series in
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ihe second parenthesis has just been found (Art. 330) to be

^ ' ^^—IIl_Z
; hence, by substitution, we have

6

2 6 6

Here m-\-n represents the number of balls in the length of the

lowest course. If we put m-{-n=l, we have Sm-{-2?i=Sl—n;

substituting this for 3m-(-2n, in the preceding formula, it becomes

6

It is evident that the number of courses in a triangular or

square pile, is equal t© the number of balls in one side of the

base course, and in the rectangular pile to the number of balls in

the breadth of the base course.

Art. 332. Collecting together the results of the three pre-

ceding articles, we have for the number of balls

in a Triangular pile -n(ji-\-l)(n-{-2) (A);
6

in a Square pile -n{n-{-l)(2n-^l) (B) ;

6

in a Rectangular pile ~n(n-{-l)(Zl
—n+1) (C)

6

In formulae (A) and CB), n denotes the number of courses, or

the number of balls in the base course. In formula (C) n denotes

the number of balls in the breadth of the base course, and I the

number in the length.

The number of balls in an incomplete pile is evidently found

by subtracting the number in the pile which is wanting at the

top, from the whole pile considered as complete.

EXAMPLES FOR PRACTICE.

1. Find the number of balls in a triangular pile of 15 courses.

Here n=15, and substituting this value instead of n in formula

A, (Art. 332), we have the number

_15(15+l)(15+2)_15Xl6Xl7_^^n Ans
2X3 6

•
' •

2. Find the number of balls in an incomplete triangular pile

of 15 courses, having 21 balls in the upper course.



293 RAY'S ALGEBRA, PART SECOND.

Here we must first find the number of shot in one side of the

upper course. From the illustrations in Art. 329, it is evident

that the number of balls in any triangular course, is equal to the

sum of the natural numbers 1, 2, 3, &c., to the number {n) in one

side. Now the sum of the numbers 1, 2, 3, &c., to n, is (Art.

327) !5^^±1); hence, ^^!5±11=21, or ?i2^_7i=42, from which

(Art. 231) we find ?2=6, and therefore 5 courses have been

removed from the pile ; hence, by formula A, (Art. 332), the

number of balls in the pile considered as complete, is

20v2lv22—'^'^ "^— =1540, and the number in the pile removed is

2X3
^

5 V 6V 7
L'^—^=35 .•. the number in the incomplete pile is 1540—35
2X3

c=1505.

3. Find the number of balls in a square pile of 15 courses.

Ans. 1240.

4. Find the number of balls in a rectangular pile, the length
Rud breadth of the base containing 52 and 34 balls respectively.

Ans. 24395.

5. Find the number of balls in an incomplete triangular pile,

a side of the base course having 25 balls, and a side of the top
13. Ans. 25QI.

6. Find the number of balls in an incomplete triangular pile

of 15 courses, having 38 balls in a side of the base.

Ans. 7580.

7. Find the number of balls in an incomplete square pile, a

side of the base course having 44 balls, and a side of the top 22.

Ans. 26059.

8. The number of balls in the base and top courses of a square

pile are 1521 and 169 respectively ; how many are in the incom-

plete pile. A71S. 19890.

9. The number of balls in a complete rectangular pile of 20
courses is 6440; how many balls are in its base ] Ans. 740.

10. The number of balls in a triangular pile is to the number

in a square pile having the same number of balls in the side of

the base, as 6 to 11
; required the number in each pile.

Ans. 816, and 1496.

11. How many balls are in an incomplete rectangular pile of
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8 courses, having 36 balls in the longer side, and 17 in the

shorter side of the upper course. A7is, 6520.

Art. 333. Interpolation of Series.

Each of the various tables employed in the different depart-

ments of science, may be regarded as the terms of a mathemati-

cal series. These tables are generally calculated from particular

formulae, but in many cases the computations are so very laborious,

that only certain terms at regular intervals, are calculated, and

the intermediate ones are derived from these by a process termed

Interpolation* Also, in many investigations values of the quanti-

ties in the tables are required, intermediate between those given,
or extending beyond them. These, likewise, are determined by

Interpolation.

The principle on which Interpolation is founded is that ex-

plained in Art. 326; that is, having certain terms of a series

given, to find the n^ term. To do this with entire accuracy, re-

quires that we should have such a number of terms of the series

given, that we can obtain an order of differences equal to zero.

In most cases, however, the differences, Dj, Dg, Dg, &c., do not

vanish, but become so small that their omission after D^j or Dg,
causes no sensible error in the result, and we obtain what is

termed, approximate values of the required quantities.

Art. 334. When the 3rd order of differences of any given
series of quantities vanishes, or becomes very small, then (Art.

326) we have the equation —a-\-Sb
—Sc-\-d=0, and any of the

quantities a, b, c, or d, may be found, when the other three are

given. Similarly, if the fourth differences vanish, then

a—45_|-6c—4c^-fe=0 .

Ex. Given V25=2.92401, s/26=2.96249, s/27=3,

8/29=3 .07231 , to find the cube root of 28.

Here four quantities are given to find a fifth, therefore, sup-

posing the fourth order of differences to vanish, we have

a—4:b-\-6c
—

4cZ-[-e=0, where d is the term to be

interpolated ; hence,

46Z=a+6c+c—4Z>=2.92401+18+3.07231—11.84996

=12.14636,

where d, or ^28=3.03659, which is true to .00001.
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Art. 335, When the terms are equidistant, and it is required
to interpolate a term intermediate to any two of them, we may
put p to represent the distance of the required term (t) from a,

the first term of the series, in which case ^=71—1 in the formula

Art. 326, and the required term is

^=a+pD.+g^D,+Py)y)D,+, &c.

The interval between the given numbers is always to be con-

sidered as unity, and p is to be reckoned in parts of this interval ;

hence, p will be fractional.

Interpolation is of extensive application in Astronomy ;
and in

most instances sufficient accuracy is obtained by making use of

first and second diiferences only. The correction to be applied to

the first term then is

In practice, however, the method generally adopted is, to take

the two terms of the series which precede, and the two terms

which follow the term required, and find from them the three first

differences, and the two second differences. Then, taking the sec-

ond of the three first differences and calling it d, and the mean of

the two second differences and calling it d', and denoting the

fractional part of the interval by /, the correction to be applied to

this second term is

Kd+^-^dy

Ex. Having given the logarimths of 102, 103, 104, and 105
let it be required to find the logarithm of 103.55.

Nog.
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EXAMPLES FOR PRACTICE.

1. Find the 2"'* term of the series of which the 4^^^ differences

vanish, the I'S 3''^ 4<^ and 5*^^ terms being 3,15,30,55; and

find the 6'\ "1'^ and 8"^ terms. Ans. 7
;
and 93, 147, and 220.

2. Find the 5'^ term of the series of which the 6''* differences

vanish, and the 1^ 2"^ ^'^, 4'\ 6^ and 7'^ terms are 11, 18, 30,

50, 132, 209. Ans. 82.

3. Given the logarithms of 101,102, 104, and 105; viz.:

2.0043214, 2.0086002, 2.0170333, and 2.0211893, to find the

logarithm of 103. Ans, 2.0128372.

4. Given the cube roots of 60, 62, 64, and 66; viz. : 3.91487,

3.95789, 4, and 4.04124, to find the cube root of 63.

Ans. 3.97905.

5. Having given the squares of any two consecutive whole

numbers, show how the squares of the succeeding whole numbers

may be obtained by addition.

INFINITE SERIES.

Art. 336. An infiiiite series is a series consisting of an un-

limited number of terms, each of which is derived from the pre-

ceding term or terms, according to some law. For examples see

Art. 134, and page 253.

The sum of an infinite series, is the U7nit to which we approach
more nearly by adding together more terms, but which cannot be

exceeded by adding together any number of terms whatever.

A convergent series is one which has a sum or limit. Thus,

is a convergent series, whose limit is 2, since the sum of any
number of terms whatever cannot exceed 2, but will approach it

more nearly as the number of terms taken is greater.

A divergent series is one which has no sum or limit, as

l_l_2+4-f8+16+32+, &c.

An ascending series is one in which the powers of the leading

quantity continually increase ;
and a descending series is one in

which the powers of the leading quantity continually diminish.

Thus, a-\-bx-\-cx'^-\-dx^-\-i is an ascending series, and

a-\-hx~'^-\'Cxr'^-\'dx~^-\-t
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or a-\---{-—-\-—'\-, is a descending series.
X x^ x^

Art. SSy. There are four general methods of converting an

algebraic expression into an infinite series of equivalent value,

each of which has been already exemplified ; viz. :

1st. By Division. See Art. 134.

2nd. By Extraction of Roots. See examples 17, 18, page
136.

3rd. By Indeterminate Coefficients. See Art. 314, and exam-

ples, page 275.

4th. By the Binomial Theorem. See Art. 319, and examples,

pages 281, 282.

Art. 33§. The summation of a series is the finding a finite

expression equivalent to the series.

The general term of a series is an expression from which the

several terms of the series may be derived according to some de-

terminate law. Thus, in the series _-|-_-|- -[-_-(-. the

general term is ?, because by making a;=l, 2, 3, &c., each term
X

of the series is found.

Again, in the series 2 • 2+2 • 3+2 • 4+2 -5+ .... the

general term is 2(a;+l).

As different series are in general governed by different laws,

the methods of finding the sum, which are applicable to one class,

will not apply universally.

We shall now explain two of the methods of most general

application.

First Method.— If the series is a regular decreasing geomet-

rical series, whose first term is a, and ratio r, its sum is —?_
1—r

(Art. 299.)

Second Method.— By subtraction. To find the sum of a

series whose general term is —?—
,

Since i-_i_=_??_- ...
g =1 5i-_i_? .

n n-\'p n(n-\-p) n(n-\-p) p (n n-\-p)
'

or, any fraction of the form —-?— is equal to _
^^, the difier-

n(n+p) p
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ence between the two fractions ±. and —i_
; that is^ any term

of the series whose general term is —?— is equal to the dif-

ference between the corresponding terms of the two series whose

general terms are ? and —J—
; hence, the sum of the former

n n-\-p

series is equal to the difference between the sums of the two

latter. Therefore, if the sums of the two latter were known, by

taking their difference the sum of the former series would be

found. The sums of these two series, however, are not known,

but their difference can be found, when, after a certain number

of terms of the series £, the succeeding terms are identical with
n

those of -?— In general, this certain number is after p terms

n+p
of the n-\-p former series.

Ex. 1. Required the sum of the series -—
--(-___+__;^-f-,1*0 o ' o o • 7

&c., ad infinitum, that is, to infinity.

Here ^=1, jp=2, and w=l, 2, 3, &.c. ; and the two series are

jl+i+R4+»&c.,adinf.
.

^ L=l==sum.

The sum of n terms of the same series is found in a manner

nearly similar. Thus,

1 "i

=:
, and i of this sum is

2n+l p 27i+l

2. Find the sum of the sejies ,_^+___+-__+&c., ad inf.

Here 9=1, ^=1, and w=l, 2, 3, &c. Ans. 1.

3. Find the sum of the above series to n terms.

A ns.Ans.
^
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4. Find the sum of the series 4--i-+—i-+-±-4-,&c.

1 • 4^2 • 5^3 • 6^4 7^
ad infinitum.

Here ^=1, and ^=3. Ans. \^.

5. Find the sum of the series -X- -4- -I-, &c., ad
1 • 3^2 • 4^3 • 5^

infinitum.

V Here 5=1, J3=2, and n==l, 2, 3, &.c. Ans. |.

6. Find the series whose general term is . .

; also find its

w(?^+4)
sum continued to infinity.

Ans, Series =-i_+_L.+_i_+_L +, &c., sum =?5,
1 •5^2-6^3 -7^4-8 48*

The sums of series may often be found by reducing them, by

multiplication or division, to the forms of other series whose sums

are known.

7. Find the sum of the series 1+|+|+tV+j &^c., ad infini-

tum. Atw. 2.

Suggestion.— By dividing by 2 this series becomes the same as that

in example 2nd.

8. Find the sum of the series -4- + +, &c.,
3 -8^6 -12^9 -16^

ad infinitum. (Multiply by 3*4). Ans. i
.

Remark.— The preceding examples afford an illustration of the man-

ner in which the sums of certain classes of infinite series may be found.

The sums of a great variety of series may be found by other and more

complicated methods. But the subject is more curious than useful, and

is too complex and extensive for an elementary work.

RECURRING SERIES.

Art. 339. A Recurring Series is a series so constituted that

every term is connected with one or more of the terms which

precede it by an invariable law, usually dependent on the opera-

tions of addition, subtraction, &c. Thus, in the series

lJ^2x+Sx^+bx^+8x^+lSx'+21x^+, Sic,

the sum of the coefficients of any two consecutive terms is equa



RECURRING SERIES. 299

lo the coefficient of the next following term. If the series be

expressed by

A+B+C+D+E+F+G+H+, &c., then

the I'' term A= 1;

the 2"'^ « B= 2x]

theS'-'' ** C= dx^=Bx+Ax^;
the 4'* « D= 5x^=Cx+Bx^ ;

theS'A « £^ g^4^]r)^_|_Ca;2.

the 6'^ «
F=13a;5=Ea:+Da;2, &c.

That is, each term after the second is equal to the one next

preceding, multiplied by x, plus the second next preceding, multi-

plied by x^
; hence, all the terms after the first two recur accord-

ing to a definite law.

Art. 340. The particular expression by means of which any
term of the series may be found when the preceding terms are

known, is called the scale of the series, and that by means of which

the coefficients may be found, the scale of the coefficients. Recur-

ring series are said to be of the first order, second order, &c.,

according to the number of terms contained in the scale. Thus

in the expansion of , (Art. 315), we find ^

a-{-bx

-

=l_^+*J:c=-lV+*^x^-^^'+, &c.,
a-\-hx a a^ a^ a'^ a^

where each term after the first is equal to the preceding, multi-

plied by —-X, In this case —-x is termed the scale of the
a a

series, —_ the scale of the coefficients, and the series is said to
a

be of the first order. This is the most simple form of a recurring

series.

Art. 341. To find the scale of a series.

When the series is of the first order, the scale is easily deter-

mined, being the ratio of any two consecutive terms.

When the series is of the second order, the law of the series

depends on two terms, and the scale consists of two parts. Let

p-{-q represent the scale of the r^Cf'»rring series

A+B4-C+D+E+F+, &c.
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Then the S^'^ term C ='Bpx+Aqx^ ;

the 4^A term D=Cpx-{-'Bqx^ ;

the 5'^^ term E='Dpx-{-Cqx^ ;
&c.

The values of p and q may be found from any two of these

equations. Taking the last two, and making x=l, since the

scale of the series is the same, whatever be the value of x, we
have

D=Ci?+B5,

E—Bp+Cq ; whence, (Art. 158),

CD—BE CE—D^o= , q= ,

C2-—BD C2—BD

Since these formulae were obtained by supposing ar=l, there-

fore, in substituting the values of B, C, D, &c., x must be con-

^ sidered 1,

Ex. Find the scale of the series l'{-2x-\-2x^-^4:X^-\-bx*-{'t

&c.

Here A=l, B=2a;, C=3a;2, D=4a:3, E=dx\ Slc.

Making x=l, and substituting the values of B, C, D, &c.,

3X4—2x5_c> 3X5—4X4___^^
3X3—2X4

'^
3x3—2x4

Thus, the 4.^ term, Ax^=2XxX^x^+2xX—l X^^-

Other exercises will be had in finding the sums of recurring
series.

Art. 342. In a recurring series of the third order the law of

the series depends on three terms. If we let ^+9+r represent
the scale of the series

A+B+C+D+E+F+, &c.,

then the 4'* term I>=Cpx-\-B qx^-\-Arx^ ;

the 5'A term E=Dpx-\-C qx^+Brx^ ;

the 6^^ term F =Epx+I) qx^+Crx^ ; &c.

Making x=l, the values of p, q and r, are readily found, (Art.

158) ; and in a similar manner the scale may be determined in

the higher orders of recurring series.

In finding the scale of a series we may first make trial of two

terms. If the results thus obtained do not reproduce the series

we may try three terms, four terms, and so on, till a correct result

is obtained. If in any case we assume too many terms, the

redundant terms will be found equal to zero.



RECURRING SERIES. 301

Art. 343. To Ji7id ike sum of an infinite recurring series whose

scale of relation is known.

Let A+B+C+D+E-j-j &c., be a recurring series whose scale

of relation is p-\-q ; then

the 1'^ term A=A;
the 2«'* « B =B ;

the 3'-''
« C=B 'px-\-Aqx'^ ;

the 4^ «
D=Cpa;+B^a;2;

the 5^* «
'E==Dpx-\-Cqx'^', &c.

If the series be continued to infinity, the last term may be con-

sidered zero. Then if S represent the required sum, by adding

together the corresponding members of the preceding equalities,

and observing that B-J-C-f-D+j &c., =S—A, we have

S=A+B+jpa:(S—A)+?a;2x S ;

or, S—joxS
—9a;2S=A+B—Apx\

or, S(l—^a;
—

qx~):=K-{-B
—Kpx;

or, g^A+B-Ap^^

1—px—qx"^

If we make ^=0, the formula becomes

S=4+2z:^, which is the formula for
1—px

finding the sum of an infinite recurring series of the first order.

In a manner similar to the preceding, the sum may be found

when the scale of the series consists of three, four, &c., terms.

Remark.— Every summable infinite series, of which recurring series

are only a particular class, may be supposed to arise from the develop-

ment of a rational fraction ; hence, to find the sum of an infinite re-

curring series, is to find the generating fraction of the series.

EXAMPLES FOR PRACTICE.

1. Find the sum of the infinite recurring series l-|-3a;-|-5a:2

+7a;3+9a;4-l-lla?54-, &c.

Here A=l, B=3a:, C=5a;2, D=7a;3, E=9a;^ &c.

Making a:=l, and substituting in the formula (Art. 341), we

have ^=^><1=3><9^2, ,^J<^Z^^^-l.^
5X5-3X7 5X5-3X7
g_A+B—Ayj;_l-\-Zx—2x_ \-\-x

1—px—qx'' 1—2a;+a;^ (1
—xy'
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In each of the following" series find the scale of relation, and

the sum (S) of an infinite number of terms.

2. l+6a;+12a;2+48a;3-f120a?^+, &c

Ans.p=ly

3. lJ^2x+dx^+4:X^+5x*+6x'+, &c.

^„,.,^l,,=6;S=ji±g-,.

Am.p=2, q=-^l; S=.^^J--2.
(1-^)^'

r. r^ r3 r.^

A7i5.jp=— ^,^=0; S=—^.
c c-\-hx

5. a:+a;^+a?5+, &rC. Atw. ;)=1, y=0; S= ^

1—^a;

6. x—ar^+a:'—a?4+, &c. An5.jp=—1, 5=0; S= ^

7. l+2a;+8a?2+28a;34-100a:<+356j:54., &c.

A7W.j9=3, 5=2; S=- ^""^

1—3a>-2a;2*

8. l+3a^4-5ar2+7a;»+9a?^+, &c.

Atw. jr,=2, 9=—1, s— 1+^
1—2a;+a;2*

9. 124-22a;+3V+4V+52a;4+6V+, &c.

Atw. ;)=3, 5=—3, r=l; 8=- ^+^
(l-a:)»'

REVERSIONOF SERIES.

Art. 344. To revert a series is to express the value of the

unknown quantity in it by means of another series involving the

powers of some other quantity.

Let X and y represent two indeterminate quantities, and let the

value of y be expressed by a series involving the powers of x
;

thus,

y=.ax-\-'bx'^-\-cx^'\-dx'^'\-y &c., (1).

in which a, 6, c, cZ, &c., are known quantities ; then to revert this

series is to express the value of a; in a series containing the

known quantities «, ib, c, d^ &c., and the powers of y.
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To revert this series, assume

x=Ay+By^-\-Cy^+'Dy^, &c. (2), in which the

coefficients A, B, C . . . . are undetermined.

Find the values of y^, y^,y^ , , , , from (1), thus,

j^2_a2^2_[_2a&x3+(&2-(-2ac)a:4+ ....

y= a^x^+^a'^bx^-^' . . .

y^z= a^ a;''+ . . . &c.

Substituting these values in (2), and arranging, vi^e have

0=Aala;+A61a;2+ Ac
—1 Ba?\ 4-2Ba6

4- CflS

; oi?-\- Ad x^+i &c.

+ B52

+ 2Bflc

+3Cfl2^
+ Da^

and since this is universally true, whatever be the value of a;, the

coefficients of x, x^, x^, &c., will each =0. (Art. 314, Cor.)

Hence, we have

Aa—1 =0, .

A6+Ba2 =0, .

Ac+2BaZ>+Ca3 =0,

A(i+B(i2-(-2Bac+3Ca36+Da4=:=0, .

a

C= 2h^—ac

p.
aH—bahc-^-bV^

Hence, a;=_y— -2/2-1- —y^-^ ,

^
y^+> &c. (3;

Art. 345. If the given series has a constant term prefixed,

thus, y=a'-\-ax-\-bx'^-\-cx^-\-dx^-\'

assume y—a'=Zy and we have

z=ax-\-b3?-\-cx'^-\-dx^-\-, &c.

But this is the same as (1) in the preceding article, except that

z stands in the place of y ; hence, if z be substituted for y in

[(3), Art. 344], the result will be the required development of a?;

and then y
—a' being substituted for z, the result is

262.

a a^
-{y
—

a'y
—

, &c.
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Art. 346. When the given series contains the odd powers of

X, assume for x another series containing the odd powers of y.

Thus, if

y=ax-\-hx^-{-coc^-\-dx'^-\'

to develope x in terms of i/, assume

a:=Ay+By^+Cy^+Bf+ ....
Then by substituting the values of y, t/^, &c., derived from the

former equation, in the latter, and equating the coefficients to

zero, we find

If both sides of the equation be expressed in a series, as

ay-\-'by'^-\-cy^-\-i &c., =ax-\-b'x^-\-c'x^-\-i &c.,

and it be required to findy in terms of a;, we must assume, as

before,

2/=Aa:-|-Ba;2-fCa;3+Dx^+, «kc.,

and substitute the values of y, y"^^ y^, &c., derived from this last

equation, in the proposed equation ; we shall then, by equating
the coefficients of the like powers of a;, determine the values of

A, B, C, &c., as before.

EXAMPLES FOR PRACTICE.

The following exercises may be solved either by substituting

the values of a, &, c, &c., in the equations obtained in the preced-

ing articles, or by proceeding according to the methods by which

those equations were obtained.

1. Given the series y=x—x'^-^x^
—

x^-\- .... to find the

value of X in terms of y, Ans. x=y-\-y^-\-y^-\-y^-\-i &lc.

Find the value of x, in an infinite series in terms of y :

2. When y=x^x'^-\-x^+, &c.

Ans, x=:y
—

y^-\-y^
—

y^-\-y^
—

> ^-c

3. When y=2x+2x^+4.x^+bx'+, &c.

Ans. x=y'-'j%y^+j^^%y''-, &c.

4. When y=l—2x-\-dxK
Ans. x=-l(y^l)+Uy--iy-^j%(y^iy+, &c.

5. When y=l-\-x-^2x^+xK
Ans. 0:=?/—l4-2(i/~l)2+7(7/—1)54-30Q/~1)4.
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6. When y=x+lx^+lx^+ji\x*+y &c.

Ans. x=y—^y^+ly^-'ly*+, &c.

7. When y-{-ciy^-\'^y^-{-cy'^ . . • =yx-\-hx^-\-kx^-{-lx^ , . .

^^,, ^y^{a9'-h)y^
_^
[bg^-^g^2h iay'-h)]f

_^ _ .

9 9^ 9^

CHAPTER XI.

Continued Fractions: Logarithms: Expo^
NENTiAL Equations: Interest, and An-
NUITIE s .

continued fractions.

Art. 347, A continued fraction is one whose denominator is

continued by being itself a mioced number, and the denominator

of the fractional part again continued as before, and so on
; thus,

11 1

a-\'- a-\- a-
'

In which a, b, c, d, &c., are positive whole numbers, are called

continued fractions.

Continued fractions are useful in approximating to the values

of ratios expressed by large numbers, in resolving exponential

equations, in resolving indeterminate equations of the first degree,
&c.

Art. 34§• To express a rationalfraction in the form of a con-

tinuedfraction,

30
Let it be required to reduce to a continued fraction.^

157

If we divide both terms of the fraction by the numerator, we

find
30 =1

^30
26
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Since the value of a fraction is the quotient arising from dividing
the numerator by thedenominator(Arith.,Part 3rd, Art. 136),ifv^e

7 1
omit — , the denominator will be too small, and consequently -*

the value of the fraction, will be too large.
rt

Aerain, if we divide both terms of the fraction bv the nu-

- J 30 1
merator, we find = ^

2 14
If we omit -, the value will be expressed by

^4
2

By omitting _, the denominator 4 will be less than the true

denominator, and _ will be larger than the number which ought

to be added to 5; hence, 1 divided by 5+-, or — will be less^ ^4 21
than the true value of the fraction.

We see from this, that by stopping at the first reduction, and

omitting the fractional part, the result is too great ; but by stop-

ping at the second reduction and omitting the fractional part, the

result is too small. Hence, generally,

By stopping at an odd reduction and neglecting the fractional

part, the result is too great ; hut by stopping at an even reduction, and

neglecting the fractional part, the result is too small.

2 1
Since -= , we find

^
3+1

2

-—- =: . • 1'* reduction, too great ;

^^^
5+i— 2"'' « too small;

4+1 ^^^ " too great;

3+1 4^* « true value.

It is evident that the process of reducing a fraction to a con-

tinued fraction, is the same as that of finding the greatest common
divisor of the two terms of the fraction. (See Arith., Part 3rdt

Art. 128.)
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B7 this process we find

13^1 49 _1

3+1* 6+1^4 ^8

Art. 349. The different quantities

1 1 1

fl+ a-l ,&c.,
*

h+l
c

are called converging fractions, because each one in succession,

gives a nearer value of the given expression.

The fractions -, -, _, &,c., are called integral fractions.
a b c

Art. 350. To explain the manner in which the converging frac'
tions arefoundfrom the integral fractions.

1. - =- 1** conv. fraction.
a a

1

*6

2.
•

I
1 •••••. = 2"^ conv. fraction.

«+r ab+1

1

3. a-l.- =—^^ii S'* conv. fraction.

^b+l c{ab+l)+a
c

By examining the third converging fraction, we find it is formed

from the l'^ and 2"^, and from the 3^^^ integral fraction as follows:

Snum.
=3'''^quot. Xnum.of 2"''conv.fract.+num.of I'^conv.fract.

denom.=3'"'^quot.Xden. of 2"''conv.fract.+den. of I'^conv.fract.

To prove the general law of formation, let _^, -?L, _
^
be the

P Q, R'

three converging fractions corresponding to the three integral

fractions -, -, and _, and, as has already been shown,
a b c

R^Qc+P
R' QVhP"
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1 S
Let us now take the next integral fraction -, and let _ ex-

press the 4^ converging fraction. Then it is obvious that —
R'

S 1
will become —^ by substituting c-|--, instead of c ; hence,

S' d

Ct(c+1)+P __(Q, c+P )cZ4-Q _R J+Q

Q'[c+1)+F
Wc+PO^H-Q' R'ti+Q'-

From this we see that the fourth converging fraction is deduced

from the two immediately preceding it, according to the same law

by which the third was deduced from the 1'^ and 2"*^, and it is evi-

dent the fifth converging fraction may be deduced in the same

manner. Hence, to find the 7i'* converging fraction,

Multiply the denominator of the n'* integral fraction hy the numer-

ator of the (n—1 y^ converging fraction, and add to the product the

numerator of the (n—^2)''^ converging fraction. This will give the

numerator of the n'* converging fraction.

Multiply the denominator of the n^* integral fraction hy the denom-

inator of the (n—1)'^ converging fraction, and add to the product the

denominator of the (n—^2)^* converging fraction. This will give the

denominator of the n'^ converging fraction.

Ex. To find a series of converging fractions for ^j^.

The integral fractions are 5? |> \i ^j {» -3? \.

The converging fractions are 2? i> |j t^> 2?> yV^> !zVt*

Art. 351. To show that the difference between any two consecutive

converging fractions is always a fraction having -|-1, or—1,/or

its numerator, according as the fraction subtracted is in an even or

odd place.

'

1_ b _ah+l—ah ^ +1
a ab-{-l a{ab-\-l) a(ab-\-l)

I ^ lcJ[-\ _lc{ab+l)-\-ab---{ab+l)(l)c-\-l )

ab+\ c(^ab+\)-\-a (a&+l)[c(a6-(-l)+fl]

_, --1

(a^;+l)[c(a6+l)+aj*
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To prove the property in ^a general manner, let

P Q R

be three consecutive converging fractions, corresponding to the

, three integral fractions _, _, _, Then
a b c'

P__Cl_PQ^—P^Q
P' Q' P'Q'

'

and a_R _r/q---rq; ,

Q' R' "TrTQ?
'

but R=Qc+P, and R'=Q'c+P', (Art. 350.)

Substituting these values in the last equation, we find

Q_R ^(Q^c+PQQ—(Qc+P)Cl^^P^Q-~PCl'
Q' R' R'Q' R'Cl'

•

But the numerator of this result P'Q—PQ' is the same with a

P Q
contrary sign as the numerator of ——~, which we have before

shown is +1. Hence, the difference between the numerators of

any two consecutive approximating fractions, when reduced to a

common denominator, is the same with a contrary sign, as that

which exists between the last numerator and the numerator of

the fraction immediately following.

But it has been already shown that the difference of the nu-

merators of the 1** and 2"** fractions is +1 ; the difference of the

numerators of the 2"'^ and 3"^ fractions is —1 ; therefore, the dif-

ference of the numerators of the S'"'^ and 4^ is -\-l, and so on.

And since (Art. 348) any converging fraction of an even order is

less than the true value, and of an odd order greater than the true

value
; therefore, if a converging fraction of an even order be

subtracted from the consecutive converging fraction of an odd

order, the numerator of the difference will be -\-l ; and, con-

versely, if a converging fraction of an odd order be subtracted

from the consecutive converging fraction of an even order, the

numerator of the difference will be —1 .

Art. 352. To show that every converging fraction is in its lowest

terms ; and to find the limit of error in taking any convergent for

ike true fraction -,
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A C
If _ and _ be any two consecutive converging fractions, byB D

Art. 351
A_C^^.^,or

-
J^^

; that is, AD-BC=+1, or

—1 . Now if A and B have a common divisor greater than 1 , it

will divide AD and BC, and consequently their difference

rhl ; that is, a quantity greater than 1 is a divisor of 1,
A

which is impossible ; hence, _ is in its lowest terms.
B

A C
Again, if _ and _ be any two consecutive convergents, as

A C
has just been shown, AD—BC=±1 ; and of _ and _ we know

B D
that ?< one and > the other (Art. 348) ; therefore, the difFer-

b

ence between ?, and either of them, is less than the difference

between 4: and £; that is, <-!_, since 4^?., or ^^2^
B D ^BD B D BD

""BD*

But, since D is greater than B, — is greater Ji
; hence,BD D2

since the result is true to within — , it is certainly true to within
BD

_
; that is, the approximate result which is obtained, is true to

within unity, divided by the square cf the denominator of the last

converging fraction.

Thus, in the example, (Art. 348,) 1 differs from .^ by a
5 157

-^

quantity less than — ;
-_ differs from _- by less than —

52 21 157 212

t=
, and so on.

441

Aet. 353. To express ^N, when 'N=a^-}-l, in the form of a

continued fraction.

^a'-f-l-f-a
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1

1

2a4-L

2^+t+,&c.

(*) Va2+l-a=
Ja'+l+a

because (V«^+l—a)(V«^+l+«)=l-

Ex. V17=J42+1=4+ r ;

+8+, &c.

the converging fractions to be added to 4, are _, — , ___, &c.
8 65 528

Art. 354. To convert ^N, where N=a2_|_j, into a continued

fraction.

let r, be the nearest integer to -(^/N+a) ;

6 6 6

. ». .
1—

___^
.

by making fl{j=r,6
—a ; 6j=-(N—a\),

h

Similarly, \.{^'^-{.a,)=^r^

and we must proceed till we get a quotient 2a, after which the

quotients will recur in the same order
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Thus, ^19=4-
^

2+L

The quotients are 4, 2, 1, 3, 1, 2, 8;

A.Q/.fi'r.Tic! Q1.0 4 9 13 22 79 101 281
.*. iractions are y? 2> 3 , ^ , jg, 53 ? g$ .

Art. 355. To find the value of a continued fraction^ when the

denominators q, r, s, 4'C.> of the integral fractions recur ad infinitum

in a certain order »

Ex.1. Let \

^"1
y.-|-, &c., ad infinitum.

then —,=a;, or ,^ ,
-=3?;

o_i_i ^+?H-1

hence, r-l-^'?=5^^+?^^+^> and a;2-|-ra?
—-=0,

From the solution of this equation, the value of x is easily

found.

Aet. 356* To find in the form of a continued fraction, the

value of X, which satisfies Hue equation a^=b.

Substitute for x the numbers 0, 1, 2, 3, &c., until two consecu-

tive numbers are found n, and n-{-l , such that

a"<&, and a"+i>&;
then it is evident that a;<[^i+l, and >n.

Let a:=7i-j--, where 2/>l.
y

1 1

then a"+y =&, or a".ay =6 ;

hence, a^ =- » or
(
—

)
y=a.

a" \ a" /

•

Again, since —>1, and <[a, by substituting the numbers be-
a^

tween 1 and a for y in the last equation, two consecutive num-

bers, jo,
and jo-f-1 » will be found, such that y^p and <J'+1 , so
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1 1
that y=p-\-- ;

and .-. x^=^n-\- r
;
and *jy continuing the pro-

P+-
X

cess in the same inanner, the fraction expressing the value of x

may be continued.

Ex. Required the value of x in the equation 10*=2.

By substituting and 1 for a:, it appears that a;'>0 and <[1 ;

let ar=l, then 10^^=2, or 2^=10.
y

Since 23=8, and 2 ''=16, one of which is less and the other

greater than 10, therefore, y>3, and <^4; let ^=3+- \

z

then 23+i-=10,

or 2».2z=10, or 2^ =l^o=l.25,•

.•. (1.25)^=2.

Again, it appears that 2;>3, and <^4j let z=3-l-_, then
u

(1.25)Hii =(1.25)3(1 .25)^ =2 .-. (1.25>=—5^^=1.024 ;

.-. (1.024)«=1.25, and by trial w>9 and <10.

Hence, a:=

3+9+, &c.

This gives ar=|—, y^^-f-, ||—=.30107 nearly, &c.

EXAMPLES FOR PRACTICE.

Reduce each of the following fractions to a continued fraction,

and find the successive integral and converging fractions.

1
130 Alls. Integral fractions 3> 1» i? g«

421' Converging fractions \i y^3> ||> ||j,

2
130 Ans, Integral fractions s' i» i' ^'

291' Converging fractions J» 4» |^» sf?*

Q 157 Ans, Integral fractions g» J» ?» h\»
972* Converging fractions g> -g j, yVu» A\» ifl*
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4. The hight of Mt. Etna is 10963 feet, and of Vesuvius 3900
feet ; required the approximate ratio of the hight of the former

to that of the latter.

47.0 1 -1 _6_ J 6 3 7 9 127 _3 9 00

5. The hight of Mt. Perdu, the highest of the Pyrenees, is 11283
feet ; that of Mt. Hecla is 4900 feet ; required the approximate
ratio of the hight of the former to that of the latter.

4770 i 3 JO _3 3 _7 6_ /irn

6. When the diameter of a circle is l,the circumference is

found to be greater than 3.1415926, and less than 3.1415927;

required the series of fractions converging to the ratio of tlie

circumference to the diameter. Arts.
-|j ^'^j |g|, and J If.

Show that this last ratio, g^f , is true to within less than three

ten millionths of the circumference.

Suggestion.— In examples of this kind the integral fractions, corres-

ponding to both fractions, should be found, and then the converging
fractions calculated from those integral fractions that are the same in

both series.

7. Express approximately the ratio of 24 hours to 5 hours, 48

minutes, 49 seconds, the excess of the solar year above 365 days.
j„^ 1 7 8 31 39 655 694 1349 20929.AnS, 4} 2^J 33> T28' T6T' 2704» !28g5» 6&'59' 864^0'

Hence, after every 4 years, we must have had 1 intercalary day,

as in leap year ;
after every 29 years, we ought to have had 7 in-

tercalary days ;
after every 33 years we ought to have had 8 inter-

calary days. This last was the correction used by the Persian

astronomers, who had seven regular leap years, and then deferred

the eighth until the fifth year, instead of having it on the fourth.

8. Find the least fraction with only two figures in each term,

approximating to -^yfl. Ans. y-g.

9. The lunar month, calculated on an average of 100 years, is

27.321661 days. Find a series of common fractions approxi-

mating nearer and nearer to this quantity.

An<i 27 8 2 7 6_5 3_9_^0 7 *^J\.ns.
J , 3 , 28 ' 143 > ^C'

10. Find a series of fractions converging to J2,

Ans, \, |, |, \l, llf,,
&c.

11. Show that tjb is greater than |o§ and less than ||||.

12. If 8=^=32, find x. Ans, |.

13. If 3^=15, find a?. ^ns. '2.465.
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LOG A RITHMS.

Art. 357. In a system of logarithms, all numbers are con-

sidered as the powers of some one number, arbitrarily assumed,
which is called the hase of the system ; and the exponent of that

power of the base, which is equal to any given number, is called the

Logarithm of that number.

Thus, if a is the base of a system of logarithms, N any num-

ber, and X such that

then X is called the logarithm of N, in the system whose base

is a.

For particular examples suppose we have the equations o2=N,
and a^=N'j then 2 is the logarithm of N, and 3 is the "logarithm
of N'.

The base of the common system of logarithms (called from

their inventor "
Brigg's Logarithms") is the number 10. If we

designate the logarithm of any number in this system by I. or

log., we shall have

(10)0=1
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Thus, the logarithm of 123 is 2 plus a fraction ;
the logarithm

of 1234 is 3 plus a fraction, and so on.

Art. 359. The computation of the logarithms of numbers in

the common system, consists in finding the values of x in the

equation

10*=N, when N is successively 1, 2, 3, Slc.

One method of finding an approximate value of x has been ex-

plained in Art. 356, but other methods more expeditious will be

given hereafter.

The following table contains the logarithms of numbers from

I to 100 in the common system :

N.

1
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GENERAL PROPERTIES OF LOGARITHMS.

Art. 360. Let N and N' be any two numbers, x and x' their

respective logarithms, and a the base of the system. Then, by
the definition of logarithms (Art. 357),

a*=N . . . . a)>

a«'=N'. . . . (2).

Multiplying equations (1) and (2) together, we find

But, by the definition of logarithms, x-\-x'i the exponent of a,

is the logarithm of NN'
; hence, we have

Property I.— The sum of the logarithms of two numbers is

equal to the logarithm of their product.

It may be shown similarly that the sum of the logarithms of

three or more factors, is equal to the logarithm of their product.

Hence, to multiply two or more numbers together, add their logarithms

together, and the product will be the number corresponding to this

sum.

Art. 361. Taking the same equations, (Art. 360), we have

ax=N. . . . (1),

a«'=N'. . . . (2).

Dividing equation (1) by equation (2), we find

But, by the definition of logarithms, x—oi/, the exponent of a

N
is the logarithm of — ; hence,

Property II.— The logarithm of the dividend, minus the loga-

rithm of the divisor, is equal to the logarithm of the quotient.

The same principle may be expressed otherwise thus, the log-

arithm of a fraction is equal to the logarithm of the numerator

minus the logarithm of the denominator.

From this article, and the preceding, we see that by means of

logarithms, the operation of Multiplication is performed by Addi-

tion, and of Division by Subtraction.

Ex. 1 . Find the product of 9 and 6 by means of logarithms.
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By the table (page 316) the log. of 9 is ... . 0.954243

the log. of 6 is . . . . 0.778151

The sum of these logarithms is 1.732394

and the number corresponding in the table is 54,

2. Find the quotient of 63, divided by 9, by means of log*

arithms.

The log. of 63 is . . . 1.799341
"

log. of 9 is 0.954243

The difference is ••.... 0.845098
and the number corresponding to this log. is 7.

By means of logarithms

3. Find the product of 7 and 8.

4. Find the continued product of 2, 3, and 7.

5. Find the quotient of 85 divided by 17.

6. Find the quotient of 91 divided by 13.

Art. 362. Resuming equation (1), (Art. 360), we have

Raising both sides to the rn}^ power, we find

But, by the definition (Art. 357), mx is the logarithm of N"» ;

that is, m times log. N= log. N"'. Hence,

Property III.— // we multiply the logarithm of a number by

any eocponent, the product will be the logarithm of that power of tike

given number.

Art. 363, Taking the same equation

a*=N,

and extracting the n'* root of both sides, we have
X 1

an =N»

But, by the definition, (Art. 357), _ is the logarithm of N» ;

n

that is, _ of log. N= log. N» . Hence,
n

Property IV.— If we divide the logarithm of a number by any
index, the quotient will be the logarithm of that root of the given

number.

From this article and the preceding, we see that by means of

logarithms, the operation of raising a number to any given power
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is performed by a simple muUipUcatio?i, and the extraction of any

root, by a simple division.

Ex. 1 . Find the third power of 4 by means of logarithms.

The logarithm of 4 is 0.602060

Multiply by the exponent 3 3

The product is 1.806180

which is the logarithm of 64.

2. Extract the fifth root of 32 by means of logarithms.

The logarithm of 32 is 1.505150

Dividing by the index 5, the quotient is ... . 0.301030
which is the logarithm of 2, the required root.

Solve the following examples by means of logarithms :

3. Find the square of 7.

4. Find the fourth power of 3.

5. Extract the cube root of 27.

6. Extract the sixth root of 64.

The preceding properties and examples will suffice to show the

great utility of logarithms in mathematical calculations. It is,

however, rather the province of algebra, to explain the principles

of logarithms, than their use in actual calculations, as the latter

requires a set of logarithmic tables, which are usually inserted

in works on Trigonometry, Surveying, &c.

Art. 364. By means of negative exponents, we can also ex-

press the logarithm of fractions less than 1. Thus, in the com-

mon system, since

(10)-' =y^^ =.1 , therefore —1 is the log. of .1

aor^==jh =-01 .
"

(10)-3=jxjVu =-001 ,
"

(10r-'=T^ixy^=.0001

&c.,

The logarithm of any fraction between one and one-tenth, for

example, seven-tenths, may be expressed thus,

log. (/o)= log. (A-X7)= log. yV+ log. 7=-l+ log. 7.

In like manner the logarithm of any fraction between one-tea th

and one-hundredth, may be expressed thus,

log. (t5i))= log. (to^X3)= log. jh+ log. 3=-2+ log. 3.

2
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Similarly, for fractions between
-j ^ (j

and y o^^, thus,

log- (to%o)= log. ToV^+ log- 4=—3+ log. 4.

It is customary not to perform the subtraction thus indicated

but to unite the logarithm of the numerator of the decimal con-

sidered as a whole number, to the negative characteristic. Thus,

log. 0.7 =—1+ log. 7=—1.845098

log. 0.03 =—2+ log. 3=—2.477121,

log. 0.004=—3+ log. 4=—3.602060.

Since the logarithm of .1 is —1, of .01 is —2, of .001 is —3,

and so on ; therefore,

The characteristic of the logarithm of a decimal fraction is a

negative number, and is one more than tJie number of zeros immedi-

ately following the decimal point.

Art. 305. To explain the principle generally, by means of which

the logarithms of decimals are represented.

Let a represent a decimal fraction containing m zeros immedi-

ately following the decimal point, and n other places of figures ;

then the number of zeros in the denominator will be m-\-n, and

by the nature of decimals the fraction will be represented by

(10)"»+»*

log.
^QQ^n+nl

^
^^^' «—(^+^) log. 10= log. fl—(m-f-n),

since log. 10=1.

But, by supposition, a contains n figures ; hence, the character-

istic of its logarithm (Art. 358,) is n—1; and if d represent the

decimal part of the log., the entire log. of a will be n—1-^d,

Substituting this instead of log. a, we have

log. |p^4 =n-l+d-(.m+n)=-(.m+l)+d.

Hence, to find the logarithm of any decimal fraction, find the

decimal part of the logarithm from the tables, as if the fraction were

a whole number, and unite to it a negative characteristic, greater by

unity than the number of zeros immediately following the decimal

point.

Art. 366. It is of the highest importance to the student to

nake himself familiar with the application of the properties ef
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logarithms (Arts. 360 to 364) to algebraic calculations. The *

following examples will afford a useful exercise :

1. log. (a ,b . c . d, . )== log. a-{- log. 5+ lo^* ^~\' ^^S- ^ • •

2. log. (—) = log. a-{- log. b-{- log. c— log. d— log. e.

3 . log. (a"^ . Z>" . cP . )=m log. a-\-n log. J-f-i' l^S* ^•

—:—
J
=m log. a-{-n log. i—

-p. log. c.

5. log. (a^
—x^)= log. [(a-\-x){a

—x)]= h (^a-\-x)^ I (a—x).

6. log. ^a^—^^=h ^^S' (^+^)+2 log" («
—

^a?).

7. log. (flS X V^)=3| log. a.

8. log. ^^^=|{log. (a-a;)-3 log. ia+x)\.

Art. 36*7. Let us resume the equation

in which x is the logarithm of N.

1st. If we make a:=l, we have

ai=N=a, hence log. a=l ;

that is, whatever he the base of ike system , its logarithm in that system
is 1.

2nd. If we make x=Oj in the equation a^='N, we have

aO=:N=i, hence log. 1=0 ;

that is, in any system the logarithm of 1 is 0.

Art. 368. In the equation a=^=N, consider a>l,as in the

common system, and suppose x negative, we then have

As X increases the value of the fraction — will diminish ; and
a""

when X is infinite, the value of the fraction becomes 0; that is,

_=a-'»=0; or, log. 0==—X .

a^

Hence, the logarithm of in a system whose base is greater than

1 is an infinite number and negative.

In the Naperian, as well as the common system of logarithms,

the base is greater than 1 ; but it may be shown that in a system
whose base is less than 1, the logarithm of is infinite Q.nd positi^-^.
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Art. 369. In the equation a^=N, every positive value of x

gives a corresponding positive value of N.

If X is negative, we have a-*=__=N. Hence, for every nega^

iive value of x the corresponding value of N is also positive.

Therefore, whether x is positive or negative, the corresponding
value of N is positive ; hence, Negative numbers have no real loga-

rithms.

COMPUTATION OF LOGARITHMS.

Art. 3*70. Before proceeding to explain the methods of com-

puting logarithms, we may observe that it is only necessary to

compute the logarithms of the prime numbers.

This is obvious when we consider that every composite number
is the product of two or more prime numbers, and that the loga-

rithm of any product is equal to the sum of the logarithms of its

factors. (Art. 360.)

For example, if we have the logarithms of 1, 2, 3, 5, 7, we can

find the logarithms of all composite numbers produced by the mul-

tiplication of two or more of these numbers together. Thus,

4=22 ; hence, log. 4=2 log. 2, (Art. 362) ;.

6=2X3; "
log. 6= log. 2-t- log. 3 ;

8=23 . it

log. 8333,3 log, 2 ;

9=32 ;

«
log. 9=2 log. 3;

10=2X5 ;

"
log. 10= log. 2+ log. 5 ;

12=3 X4 ;

"
log. 12= log. 3+ log. 4 ;

We can proceed in a similar manner to find the logarithms of

14, 15, 16, 18, 20, 21, 24, 25, 27, 28, 30, and so on.

Exercise 1. Suppose the logarithms of the numbers 2,3,5
and 7 to be known ; show how the logarithms of the numbers

just named may be found.

2. Of what numbers between 30 and 100, may the logarithms
be found from those of 2, 3, 5, and 7; and why ]

Ans. Of 23 different numbers, from 32 to 98.

Art. 371. In the common system the equation a=^=N (Art

357) becomes 10^=N.

Jf we multiply both sides by 10, we have

10='XlO=10«+i=10N;

also, 10'^X100=10«X102=10«+2=100N.
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Hence, in the common system, the logarithm of any number
will become the logarithm of 10 times that number, by increasing
the characteristic by 1; of 100 times by increasing the charac-

teristic by 2, and so on.

Thus, the log. of 3 is 0.477121,

30 " 1.477121,
« « 300 « 2.477121.

Also, the log. of .2583 is —1.412124,
« 2.583 « 0.412124,

25.83 « 1.412124.

Art. STS, If we compare the different powers of 10 with

their logarithms in the common system, we have

numbers 1 , 10 , 100, 1000, 10000,

logarithms , 1 , 2,3, 4
, and so on.

Hence, in the common system, while the numbers are in geo-

meirical pi'ogression, their logarithms are in arithmetical progres-

sion. Therefore, if we take a geometrical mean between two

numbers, and an arithmetical mean between their logarithms, the

latter number will be the logarithm of the former. Thus, the

geometrical mean between 10 and 1000 is ^10x1000=100,
and the arithmetical mean between their logarithms, 1 and 3, is

(l_|_3)-^2=2.

In general, if N and N' are two numbers, and x and x' their

logarithms in the common system, then the

log. of ^NN' is x-\-x'
o

By means of this principle, the common, or Briggean, system
of logarithms was originally calculated. To exemplify the

method of operation, let it be required to calculate the logarithm,
of 5.

First.— The proposed number lies between 1 and 10; hence,

its logarithm will lie between and 1 .

The geometrical mean between 1 and 10 is 1^(1x10)
2=3.162277; the arithmetical mean between and 1 is (0+1)
-r-2=0.5.

Hence, the log. of 3.162277 is 0.5.

Secondly.
— Take the numbers 3.162277 and 10, and their

logarithms .5 and 1, w^e find
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the geometrical mean is ^(3.162277xl^)=5.623413;
the arithmetical mean is (.5-1-1)-t-2==0.75.

Hence, the log. of 5.623413 is 0.75.

Thirdly.— Tvike the numbers 3.162277 and 5.623413, and

their logarithms 0.5 and 0.75, we find

the geometrical mean is V(3.162277x5.623413)=4.2I6964 ;

the arithmetical mean is (.5-]—'75)-7-2=0.625.

Hence, the logarithm of 4.216964 is 0.625.

Fourthly.— l^sAie the numbers 4.216964 and 5.623413, and

their logarithms 0.625 and 0.75, we find

the geometrical mean is V(4-216964x5.623413)=4.869674;
the arithmetical mean is (.625-(-.75)-r-2=0.6875.

Hence, the logarithm of 4.869674 is 0.6875.

By continuing this process, observing always to take the two
numbers nearest to 5, one of which is less and the other greater,

and finding their geometrical mean, and the corresponding arilh-

metical mean of their logarithms, at each step we shall obtain a

number nearer to 5 than either of the preceding, with its corres-

ponding logarithm. And after twenty-two operations we ob-

tain the number 5.000000-}-} and its corresponding logarithm

0.698970+.

Having the logarithm of 5 we readily find that of 2,

since 2=^, and log. 2== log. 10— log. 5 =1—0.698970
=0.301030.

We might now proceed to find the logarithm of 3 by taking
the numbers 2 and 3.162277, and their logarithms 0.301030,
and 0.5, and pursuing a process similar to that used in finding
the logarithm of 5. But the method of series is much shorter,

and is the one now generally used.

. Art. 3'y3. Logarithmic Series.— The most convenient

method of computing logarithms is by means of Series, which we
shall now proceed to explain.

Let a: be a number whose logarithm is to be expressed in a series,

and let us apply the method of Indeterminate Coefficients (Art.

314). If we assume

log. x=A+Bx-\-Ca^+'Px^-\-, &c.,

and make x=0, we have

log. 0=A. But log. 0=00 (Art. 368) ; hence,

QO=A, which is absurd.
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If we assume log. x=Ax-\-'Bx^-\-Cx^-\-, &c., and make x=0,
we have log. 0=0 ; that is, (Art. 368),

(X)=0, which is also absurd.

Hence, it is impossible to develop the logarithm of a number in

powers of that number.

But if we assume

log. (l+x)=Ax+Bx^+Caf'+I>x'+, &c. . . (1)

and make a;=0, we have

log. 1=0, which is correct, (Art. 367).

In like manner, also assume

log.(l+z)=Az+Bz^+Cz'+'Dz*+,&.c. . .(2)

Subtracting equation (2) from (1 ) we get

log. (l+a)— log. (l+z)=A(x—2;)+B(a?2—22)
4.C(a;3—^3)^, &c. . . (3).

The second member of this equation is divisible by x—z (Art.

83) ; let us reduce the first member to a form in which it shall

also be divisible by the same factor.

Since the logarithm of a fraction is equal to the logarithm of

the numerator, minus the logarithm of the denominator (Art.

361), therefore,

log. (l+o;)- log. (1+^)= log.
( i±f )

.

But, by division, we find -IL^=1-|-^
^

I therefore,
l-\-z l-\-z

,„..(i±--)=,.,.(,+55).

Now regarding as a single quantity, we may assume
1+z

Substituting this development in the place of log. (l-\-x)—
log. (1+2^), in equation (3), and dividing both sides by x—z,

we obtain

A.J_+B.±=f_+C.(^=fl+, &c.,

=A+B(a;+r)+C(a;2+a:z+2')4-, &c.,
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Since this equation, like the preceding, is true for all values of

X and Zy it must be true when x=z. Making this supposition, we
have

A.-J—=A+2Ba;+3Ca;2+4Da;3+5Ea;^+, &c. ;

l-\-x

or, performing the division of 1 by 1+a;, we have

A(l—a;+a;2—a;3-(-a;4— . . . )=:A+2Ba;+3 0.^2+4Da;3+ . . .

Equating the coefficients of the like powers of x (Art. 314),
we obtain

A=A, —A=2B, A=3C, —A=4D. . . .

whence,

A=A, B=^:^, C=^, D=~^. . . .

2 a 4

The law of this series is obvious, the coefficient of the v}^ term

A
being -+-- > according as n is odd or even.

n

Hence, log. {}.+x)=zAx—-x'^+-x^^-x^+. . . .
y B \ -r J 2*3 4

'

<yi2 lyO <vi4 fvtb 'r>v

=A(a:—5.+^—^+1—^+. . . . ) (4)^ 2^3 4^5 6^
There still remains one quantity, A, undetermined. This is as

it should be, for the question to find the logarithm of a given
number is indeterminate, unless the base of the system be given.

The value of the quantity A may be considered as dependent on

the base of the system, so that when A is given the base may be

determined ; or, when the base is known, A may be determined.

If we denote the series in the parenthesis in equation (4) by
a?', we may write

log. (l-\-x)=Ax'.

Hence, the logarithm of a number consists of two factors, one

of which depends on the number itself, and the other on the base

of the system in which the logarithm is taken. That factor

which depends on the base is called the Modulus of the system of

logarithms.

Lord Napier, the inventor of logarithms, assumed the modulus

equal to unity, and the system resulting from such a modulus, is

called the Naperian system.

Designating the logarithms in this system by log'., we have

log'. (1+:<:)=P^+^-JH-,
&c. (5)
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By making a;=0, 1, 2, 3, &c., we may obtain from this equa-

tion the Naperian logarithms of all numbers.

Thus, if x=0, we find log'. 1=0, as in Art. 367.

If we make x=l , we have

log. 2=l-^+|-i+i-, &c.

Art. 374. The preceding series converges so slowly that it

would be necessary to take a great number of terms to obtain a

near approximation. But we may obtain a more converging

series in the following manner :

Resuming equation (5),

log'.(l+a;)=?-|V—+'^-.&c.
. . (5).

Substituting
—x for x, in this equation, we obtain

log'.(l-^)=-?-^-|-^-^-,&c.
. (6).

Subtracting equation (6) from (5), and observing that

log'. (1+a;)— log'. (1—a:)= log'. (
1+?

) , we have
V 1—X f

^ 1-^ Vl^3^5^7^9^ J'

Since 1+?=!+-^, let 1±?=1+1, .-. ^-
l^sc

' 1—a; 1—or z 2z-\-l

and log'. J+^ log'.
( 1+^ )

==
log'.

(^ )

=
log'. (^+1)— log', z.

By substitution, the preceding series becomes

log'. (.+1)- log'. .=2{^^+g.^^+_i__+
. .

j
;

or, log/

(^+1)= log', z+2 \ _J_+ I + I + . . I (7).^ ^ ^ ^ ^
l2z+l^^(2z+iy^d(2z+iy^ S

^ ^

Art. 375. By means of this series the Naperian logarithm
of any number may be computed, when the logarithm of the

preceding number is known. But the log', of 1 is 0, (Art. 367) ;

therefore, making 2^=1, 2, 4, 6, &c., we obtain the following
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Napekian, or Hypeebolic Logarithms.

log'.2=log'.l+2 11+^,+,-^+^+- -l
=0.693147

log'. Solos'. 2+2 g+3^3+545i+7-^+- -i
=1-09^«12

log'. 4=2. log. 2 =1.386294

log'. 5=log'. 4+2 ^l+J_+jL_+JL+..i =1.609438^ ^
<9^3 • 93^5 95^7 • 97^ )

log'. 6=log'.2+ log'. 3 =1.791759

log'. 7=log'. 6+2 ^i-+—L-+_i_+. . . I =1.945910

log'. 8=3 log'. 2, or log'. 2+ log'. 4 =2.079442

log'. 9=2 log'. 3 =2.197225

log'. 10= log'. 2+ log'. 5 =2.302585

In this manner the Naperian logarithms of all numbers may
be computed.

When the numbers are large their logarithms are computed
more easily than in the case of small numbers. Thus, in calcu-

lating the logarithm of 101, the first term of the series gives the

result true to seven places of decimals.

Art. 376. To explain the method of computing common loga-

rithms from Naperian logarithms.

We have already found (Art. 373, Equation 4),

(M
<yi2 <yt3 7^4 /y«5 <yi6 \—
+1-^+5- 6+- • •

)•

Denoting the Naperian logarithm by an accent, we have

log'.(l+^)=A'/?-5?+^-l+?!-.^+. . . ).^ ^ ^
\1 2^3 4^5 6^ /•

Since the series in the second members are the same, we have

log. (l+a;):log'. (l+a:)::A:A'.

Therefore, the logarithms of the same number, in two different

systems, are to each other as the moduli of those systems.

But in Napier's system the modulus A'=l . Therefore,

log. (l+a:)=A log', (l+o;).
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Hence, tofind the common logarithm of any number^ multiply the

Naperian logarithm of the number by the modulus of the common

system.

It now remains to find the Modulus of the common system.
From the equation, log. (l+a;)=A. log', (l+a?),

log'. (l+:r)-

Hence, the modulus of the common system is equal to the common

logarithm of any number divided by the Naperian logarithm of the

same number.

But the common logarithm of 10 is 1, and we have calculated

the Naperian logarithm of 10, (Art. 375) ; therefore,

A =)2?lJ^= \ =.4342944,
log.' 10 2.302585

which is the modulus of the common system.

Hence, if N is any number, we have

com. log. N= .4342944X Nap. log. N.

On account of the importance of the number A, its value has

been calculated with great exactness. It is

A=.43429448190325182765.

Art. 37*7. To calculate the common logarithms of numbers

directly.

Having found the modulus of the common system, if we multi-

ply both members of equation (7), Art. 374, by A, and recollect

that AX Nap. log. N= com. log. N, the series becomes

log. (z+l)=: log. 2+2A ^-i-+ ^ + ^ +. .^

Or, by changing z into P, for the sake of distinction, and put-

ting B, C, D, &.C., to represent the terms immediately preceding
tliose in which they are used, we have

2A ,
B

,
3C

log. (P+l)= log. P-
2P+1

'

3(2P+1)2
•

5(2P-f1)2

5D
,

7E
.

9F
,

.
^^

7(2P+1)2
'

9C2P+1)2
'

ll(2P-j-l)2

We sliall now exemplify its use in finding the logarithm of 2,

Here P=l, and 2P+1=3.
28
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log. P =
log. 1 =.00000000;

2A^ ^.86858896 =.28952965; (B.)

_B_ ^.28952965 =.01072332; (C.)
3(2P-j-l)2 3X32

^ ^

__3C_ 3X.01072332
=.00071489; (D.)

5(2P+1)2 5X32
' ^ ^

-^P ^5X.00071489
^^ ^ ^^ ^ =.00005674; (E.)

7(2P+1)2 7X3* '
^

__7E_ ^7X.00005674
=.00000490; (F.)

9(2P+1)2 9X32
^

9F _9X.OO000490 . _ =.00000045; (G.)
11(2P+1)2"" 11X32

^

IIG __11X.00000045 /^ ^ ^ =.00000004; (H.)
13(2P4-1)2 13X32

^

^ common logarithm of 2 =.30102999.

Exercise. In a similar manner let the pupil calculate the com-

mon logarithms of 3, 5, 7, and 11.

For the results to 6 places of decimals, see the Table, page 316.

Art. SYS. To find the base of the Naperian system of logu'

rithms.

If we designate the base by e, we have, (Art. 376),

log. e : log', e : : A : A'.

But A=.4342944, A'=l, and log'. e=l, (Art. 367) ;

hence, log. e:l : : .4342944 : 1,

whence log. e=.4342944,

But since we have explained the method of calculating common

logarithms, they are supposed to be known, and we may use them

to obtain the number of which the logarithm is .4342944, which

we shall find to be

6=2.71828128.

We thus see that in both the common and the Naperian sys-
'

tems of logarithms, the base is greater than unity.
*

Brigg's logarithms are used in the ordinary operations of multi-

plication, division, &c., and hence are called common logarithms.

Napier's logarithms are used in the applications of the Calculus*

These are the only systems much used.
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Art. S^9, The student may prove the following theorems :

1. No system of logarithms can have a negative base, or have

unity for its base.

2. The logarithms of the same numbers in two different sys-

tems have the same ratio to each other.

3. The difference of the logarithms of two consecutive num-
bers is less as the numbers themselves are greater.

SINGLE AND DOUBLE POSITION.

Note.— On account of the use made of Double Position in the solu-

tion of exponential and other equations, it becomes necessary to explain
the principles on which it is founded. We shall also explain Single
Position.

Art. 3§0. Single Position.— The Rule of Single Position

is applied to the solution of those questions in which there is a

result which is increased or diminished in the same ratio with

some unknown quantity which it is required to find. Of this

class are all questions which give rise to an equation of the form

ax=m (1).

If we assume x' to be the value of ar, and denote by m' the

result of the substitution of x' for x, we have

ax'=m' (2).

Comparing equations (1) and (2), we have

m' :m : :ax' :ax :x' :x ;

that is, As the result of the supposition is to the result in the question,

so is the supposed number to the number required.

Art. 381. Double Position.— The Rule of Double Position

is applied to those questions in which the result, although it is

dependent on the unknown quantity, does not increase or dimin-

ish in the same ratio with it. The class of questions to which it

is particularly applicable, gives rise to an equation of the form

ax-\-b=m (1).

If we suppose x' and x" to be near values of a?, and e' and e"

to be the errors, or the differences between the true result and

the results obtained by substituting x' and x" for x, we have

ax' -\-b=m-\-e' (2),

ax"+b=m+e" (3).

If we subtract equation (1) from (2), and (3) from (2), we have

a(x'—X )=e' (4).

a(a/—x")=e'—e" (5).
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From these equations, we easily obtain

X ' ' X X X fC^\

e'—e" e'

By subtracting equation (1) from (3) we also find

aix"—x)=e"j and thence,

_ /T >

e'— e" e"

Hence (Art. 263), The difference of the errors is to the differ-

ence of the two assumed numbers, as the error of either result is to

the difference between the true result and the corresponding assumed

number,

When the question gives rise to an equation of the form

ax-\-b=mi this rule gives a result absolutely correct
; but when

the equation is of a less simple form, as in exponential equations

(Art. 383), the result obtained is only approximately true.

Cor, The value of x, found either from equation (6) or (7), is

a;=
, This, expressed in ordinary

e'—e"

language, furnishes the common arithmetical rule.

EXPONENTIAL EQUATIONS.

Aet. 382. An exponential equation is an equation in which the

unknown quantity appears in the form of an exponent or index, as

a''=b, x^=ai aP^=^c, &,c.

Such equations are most easily solved hy means of logarithms.

Thus, in the equation
a^—h

if we take the logarithms of both members,

we have x log. a= log. 6,

loff. h
or, a;=—2—

.

log. a

Ex. 1. What is the value of x in the equation 2*=64'J

Here x log. 2= log. 64.

whence, :.= ^-5fl^=l:^-^ll-0==6. Ans,
log. 2 .301030

Art. 383, If the equation is of the form a;*=fl, the value of

X may be found by Double Position as follows :

Find by trial two numbers nearly equal to the value of x ; sub-
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stitute them for x in the given equation, and note the results.

Then,

As the difference of iJie errors ;

Is to the difference of the two assumed numbers ;

So is the error of either result ;

To the correction to be applied to the corresponding assumed num"
ber,

Ex. 1. Given ar^=100, to find the value of x.

The value of x is evidently between 3 and 4, since 3^=27, and

4^=256; hence, taking the logarithms of both sides of the equa-

tion, we have

x log. a:= log. 100=2.

By trial, we readily find that x is greater than 3.5, and less

than 3.6; then let us assume 3.5 and 3.6 for the two numbers.

First Sujpposition.

a;=3.5; log. a:=.544068

multiply by 3.5 we find

X. log. X =1.904238
true no. =2.000000

error =—.095762

Second Supposition,

07=3.6; log. a:=.556303

multiply by 3 .6 we find

07. log. a: =2.002690
true no.

.
=2.000000

error + .002690

DiJfF. results : Diff*. assumed nos. : : Error 2nd result : Its cor.

.098452 : 0.1 : : .002690 : .00273

Hence, o;=3.6—.00273=3.59727 nearly.

By trial we find that 3.5972 is less, and 3.5973 gi-eater than
the true value ; and by repeating the operation with these num-
bers we would find o;=3 .5972849 nearly.

EXAMPLES FOR PRACTICE.

2. Given 20=^=100, to find x, Ans. o:=l .53724.

3. Given 100=^=250, to find x, Ans. o:=l.19897.

4. Given of==5, to find x. Ans, 07=2.129372.

5. Given of=42.8454, to find 07. A7^s. 07=3.2164.

6 . How many places of figures will there be in the number

expressing the 64^^* power of 2] Ans, 20.

7. Given a^^^-'^^c, to find x, Ans, 07= ^^g' ^'^' ^^^' ^

h, log. a
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8. Given a"*^.&^^=c, to find x

Ans, x=-- — ^^'

m . log. a+ n. log. h'

9. Given c"»^=fl.6"*~^ to find x.

Ans, x=. log'^-^og'A-,
m, log. c—n, log. 6

10. Given a;+^=fl5, and m*~y=7i, to find a; and
3/.

An5. x=|(a-(- log. 7i-~ log. w), ^=2(0— log. n-^ log. m).

11. Given a'^.W^c, and my=^nx, to find x and y,

. m. loff. c. w. loff. c
^715. a:= °

, y= °
.

m. log. a-\-n. log. h m. log. a-|-w. log. h

12. Given 2^3^=2000, and 32=5a?, to find the values of a; and 2?.

Ans ..= 3(3+ log. 2) ^,_ 5(3+ log. 2)

3 log. 2+5 log. 3' 3 log. 2+5 log. 3*

13. Given a2r_2a^=8, to find x, Ans, x P̂'}^^'^ ,

log. a

Suggestion.— This is a quadratic form, therefore let a*=y and com-

plete the square.

14. Given 22'+2="=12, to find x, Ans. a:=l .58496.

15. Given 2a^»'+a2«=aes to find x.

^^,^^log.(V2+l)
-

2 log. a

16. Given a=^+-l=6, to find x.

Ans. .^^og- kh^Jb^^)
log. a

17. Given xy=y', and x^=y^, to find a; and y.

A7i5. a?=2|, 3/=3|.

18. Given (a2--.j2)2(x-i)--(a_2,)2x^ to find x.

Ans. ^=l+^2Il.^?=i)
log. (a+by

19. Given (a^—2a2Z,2_|_2,4)x-i_(^__2,)2x(^_|.j)-2^ to Anj ^^

Ans. x=^^^L^^I±
log. (a+i)-

20. Given a?v=3/*, and a^^y'i, to find a? and ^.

A7i5. a:=f ^
jF?,y=f^ jA.

21. Given 3^^—^^+^)=1200, to find ar.

Atw. a;=4.33, or —0.33.
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INTEREST AND ANNUITIES.

Art. 384. The solution of all questions connected with inter-

est and annuities, may be simplified, and also generalized, by means
of algebraical formulae.

We shall employ the following notation :

Let P= the principal, or sum at interest in dollars.

r= the interest of 1 $ for oTie, year.

iz=. the time in years that P draws interest.

A= the amount of principal and interest, at the end of t

years.

Note.— It must be recollected that r is not the rate 'per cent., but only
the hundredth part of it. Thus, at 5 per cent., r=.05$, at 6 per cent.

r=.06$ ; and so on.

Art. 385. Simple Interest.— Since the interest of the same
sum for 2 years, is twice the interest for 1 year ; for 3 years, threp.

times the interest for 1 year, and so on ; therefore, if

r= the interest of 1 $ for one year,

tr= the interest of 1 $ for t years,

Pir= the interest of P$ for t years,

.-. A=P+P/r=P(l+^r) (1).

From this equation, any three of the quantities P, r, /, A, being

given, the fourth may be found. Thus,

T,_ A /^A--P ^^A—P
l+tr Pr P^

•

Examples may be taken from any treatise on arithmetic to

illustrate these formulae.

Art. 386. Compound Interest.— Let R=l+r, the amount

of 1 $ for one year ;
then at the end of the first year, R may be

considered as the principal or sum due, and since the amount is

proportional to the principal, that is, the amount of R$ for 1

year is R times the amount of 1 $ for the same time ; therefore,

1 : R : : R : R^, the amount of 1$ in 2 years.

1 : R : : R2 : R3, the amount of 1$ in 3 years.

And in like manner R' is the amount of 1 $ in ^ years.

Then, since for the same time the amount is proportional to
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the principal, the amount of P$ will be P times the amount of

1$. Hence,

A=P.R^=P(l+ry ; whence,

log. A= log. P+/. log. (1+r) (1).

log. P= log. A-/, log. (1+r) (2).

^— ^og' A— log. P

log. (1+r)
(3).

log. (1+0= ^^g-

^7
^^g'^

(4).

Cor. 1.— The interest =A—P=PR^—P=P(R^—1).

Cor. 2.— If the interest is paid half-yearly, then 2t will be the

number of payments, and - the rate of interest ; hence, in this

case we have

^=p(i+i)' ^^>

If paid quarterly, A=P 1 1+^ V\ . . . . (6).

Cor. 3.— From the equation A=P.RS we can readily find the

time in which any sum at compound interest, will amo-unt to

twice, thrice, or m times itself.

Thus, if A=2P ; then 2P=PR^ .-. R'=2, and /= J^?Ill.
log. R

if A=3P ; then R' =3, and t= log. 3 -e- log. R ;

if A=mP ; then R* =?n, and ^= log. m-^ log. R.

Ex. Let it be required to find the time in which any sum will

double itself at 10 per cent, compound interest.

Here r=.10, R=l+r=l+.10=1.10;

hence, ,^ lgg^^-301030^^ ,^^ ^^^
log. R .041393

^

Art. 38*7. The increase of the population of a country may
be computed on the same principles as compound interest. Thus

if we know the population at two different periods, we may find

the rate of increase ; or, if we know the population at any given

period, with the rate of increase, we may determine the popula-

tion at any future period.
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Ex. The population of the United States in 1790 was

3900000, and in 1840, 17000000. Required the average rate

of increase for each 10 years.

Here there are 5 periods of 10 years each. Hence, by com-

paring* the quantities given, with those in equation (4), Art. 386,
we have A=17000000, P=3900000, and t=d,

log. A, (see table, page 316), 7.230449

log. P 6.591065

Divide by 5 5)0.639384

log. (1+r) 1.342 0.127877

Hence r=l .342—1=.342=34^ per cent. Am.

Art. 38§. Compound Discount.— The present value of a

sum P, due t years hence, reckoning compound interest, is easily

obtained from Art. 386.

Let P'= the present worth, then in t years, P' at compound
interest, will amount to P, .-.

p=P'Ci+ry, .-. P
=^r|-^. (1).

Let D= Comp. Discount, then D=P—P'=P——?— (2).
{l+ry

From equation (1), log. P'= log. P—t log. (1+r) (3).

Art. 389. Annuities Certain.— An Annuity is a sum of

money which is payable at equal intervals of time.

When the annuity has already commenced, it is said to he in

possession ; but should it not begin until some particular event

has happened, or a certain number of years has elapsed, it is

then called a deferred annuity, or an annuity in reversion.

An annuity certain is one which is limited to a certain number

of years ; a life annuity is one which terminates with the life of

any person, and a perpetuity, or perpetual annuity, is one which is

entirely unlimited in its duration.

All the computations relating to annuities are made according

to compound interest.

Art. 390. To find the amount of, an annuity in any numder of

years f at compound interest.

Let a denote the annuity, p the present value, m the amount ;

and r, R, t, the same as in the preceding articles.

29
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The first annuity a, becomes due at the end of the year, and

thus, in t—1 years, will amount to aW-^ (Art. 386). The sec-

ond annuity becomes due at the end of two years, and in t—2

years it will amount to aR^"^. In like manner, the third annuity
will amount to aR'"', and so on to the last annuity, which is sim-

ply a. Hence, the entire amount is the sum of a geometrical

series, whose first term =aK*~^, common ratio =R, and last term

K=a
; therefore, by reversing the order of the terms, we have

w=a+flR+aR3-fflR3+. . , , +«R<-24-aR^-i.

.*. (Art. 297), m=a =a^ ^ ^
.R—1 r

If the annuity is to be received in half-yearly installments,

then we have 7n=-.i_I-i_i a=a. ^ ' - ^
.

2 ir

U quarterly, ,,^a (l+lQ--! ^,. (1+J0----1^
4 ir r

4

Car. If d dollars are placed out annually for n successive years,

and the whole be allowed to accumulate at compound interest,

then will the amount A=6ZR+^R2-1-^R3-|-. . . . -^-^^R".

A=t^R(l+R+R2-f-. . . -fR^-')=(^R.?LZ:l^

Art. 391. To find the present value of an annuity to he paid t

years, at compound interest.

Let p denote the present value of the annuity a
; then the

amount of j9$ in t years =/?R* (Art. 386), and the amount of the

annuity a in the same time is (Art. 390) a, ; but these two
*R—1

amounts must be equal to each other ; hence, we get

J., R<—1 . R'—1 a I ^ I \
«R<=(Z , and p=a..- = / 1—jL^ R—1

^
R^(R--l) R—1\ R'/-

Cor. If the annuity is to continue forever, t is infinite, and

therefore R^ is infinitely great, and _- vanishes ;

hence, p=—^=_R—1 r*

Art. 392. To find the present value of an annuity in reversion ;

that isy an annuity which is to commence at the end of n years, and to

continue t years.
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By Art. 391, the present value of the annuity for 7i-\-t years, is

I
1—

I , and the present value

of the annuity for n years is
[

1—
j

;
and the difference

of these two sums is obviously the value in reversion,

R—1 \ R" R"+' / rR« \ R^ /
•

If the annuity is payable /orever after the expiration of 7i years,
then the value of the reversion of the perpetuity is (since t is

infinite), «==—

EXAMPLES IN INTEREST AND ANNUITIES.

1. What is the amount of 1$ for 100 years, at 6 per cent, per

annum, compound interest ] Am, $339.30.

2. How many figures will it require to express the amount of

1$ for 1000 years, at 6 per cent, per annum, compound interest ]

Ans, 26.

3. How many years will it require for. any sum of money to

double itself at compound interest, at the rates of 5, 6, 7, and 8

per cent, per annum respectively !

Ans. 14.2066, 11.8956, 10.2447, and 9.0064 yrs.

4. Find in what time, at compound interest, reckoning 5 per
cent, per annum, $10 will amount to $100. Atis. 47.14 yrs.

5. If P$, at compound interest, amount to M$ in t years, what

sum must be paid down to receive P$ at the end of t years ]

M
6. Three children. A, B, C, who come of age at the end of

(Z, h, c, years, are to have a sum of money $P divided among them,

so that their shares being placed at compound interest, each shall

receive at coming of age the same sum. Find the share of A,
p

the youngest. Ans. —
.^ ^

l+R^-^+R'^
«

7. To what sum will an annuity of $120 for 20 years amount

to at 6 per cent, per annum 1 Ans. $4414.27.
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8. What is the present worth of an annuity of $250, payable

yearly for 30 years, at 5 per cent, per annum ]

A7?,5. $3843.1135.

9. What is the present value of an annuity of $112.50, to

commence at the end of 10 years, and to continue 20 years, at 4

per cent. ] Ans. $1032.877.

10. A debt of flf$, accumulating at compound interest, is dis-

charged in n years, by equal annual payments of h$ ; find the

value of n, Ans. n^ ^^'S- h- log, (b-^ra)

log. (1+r)
•

CHAPTER XII

GEISTERAL THEORY OF EQUATIONS.
Art. 393. An equation is the statement of equality between

two algebraic expressions. Equations are of different degrees.

From what, has been already shown (Art. 113), it is obvious

that

ax-\-h=0, is an equation of the 1st degree.

x'^-\-hx-{'C=0 , is an equation of the 2nd degree.

x^-\-bx^-\-cx-{-d=0 , is an equation of the 3rd degree ;

and in general,

xnj^Ax^-^+Bx^-^+Csf"^+, . . . +Ta;+V=0,
is an equation of the n^^ degree. The coefficients, A, B, C, &c.,

may be positive or negative, integral or fractional
;
and either of

them may be equal to zero. The coefficient of the highest power
of X is represented by unity, because if it is not unity, the equa-

tion may be reduced to this form by dividing by such coefficient.

Art. 394. The root of an equation is such a number, or

quantity, that being substituted for the unknown quantity, the

equation will be verified. Thus, in the cubic equation x^-\-2x^—14a:—3=0, the root is 3, because when this number is substi-

tuted for X, the first member becomes equal to the second.

Every equation must have at least one root, for if there is no quan-

tity ivhatever that will satisfy the equation when substituted for

the unknown quantity, then is the equation itself not true.
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K function of a quantity is any expression dependent on that

quantity. Thus, 2x-\-2> is a fiinction of x,

5x^f is a function of x,

Ix—3y2, is a function of x and y.

In a series, when the signs of two successive terms are alike,

they constitute a permanence, when they are unlike, a variation.

Thus, in the polynomial, —r—s-\-t-\-u,

the signs of the first and second terms constitute a permanence,
of the second and third a variation, and of the third and fourth a

permanence.

Aet. 395. Prop. I.— If a is a root of any equation,

af'+Ax"-»+Baf»-24-Cx»-»+. . . . +Ta:+V=0, (w),

then will the equation be divisible by x
—a.

For if a is one value of x, the equation will be verified when a

is substituted for x. This gives

a"+Aa"-^+Ba"-2+Ca"-3+. . . . J^Ta+Y=0;
or, V=—a"-—Aa"-»--Ba"-2—Ca"-3_, . , . ___Ta.

Substituting this value of V in the given equation, and arrang-

ing the terms according to the same powers of x and a, we have

(a?"—a")+A(a;"-'—a"-')+B(a;"--2—a"-2)_J-. . . 4-T(a7—fl)=0.

Now, (Art. 83), each of the expressions (af^
—

a"), (x^"^
—a" "0>

&c., is divisible by x—a, therefore the given equation is divisible

by X—a.

Cor. Conversely, if the equation

x^+Ax»-^-\-Boc^-^+, . . . +Tx+V=0, (71) is divisible

by X—a, then a is a root of the equation.

For if the equation (n) is divisible by x—a, if we call the quo-

tient Q, we have (a:
—«)Q=0 (n),

which may be satisfied by making x—a=0, whence x=a.

D'Alembert's proof of Prop. I.—If said division leave a re-

mainder, let it be called R, and the quotient Q, ;
then the equation

(n) becomes

(a:—ff)Q+R=0.
But X—a=0, .'. R=0; that is, there is no remainder on divid-

ing equation (n) by x—a.

Illustration 1 . In the equation x^—9x^-{'26x
—24=0, the



342 RAY'S ALGEBRA, PART SECOND.

roots are 2, 3, and 4
; and the equation is divisible by x—2

X—3, and x—4.

2. In the equation x^-^-x"^
—14a:—24=0, the roots are —2,—3, and 4; and the equation is divisible by a?-{-2, a;4-3, and

X—4.

Art. 396, Prop. II.— Every equation containing hut one un-

known quantity, has as many roots as tJiere are units in the number

denoting its degree ; that is, an equation of the i\^^ degree has n roots^

Let a be a root of the equation

a:"4-Aa:--»+Ba;»-2+Ca;''-3+. . . . +Ta:+V=0 (n)

By Art. 395 this equation is divisible by x—a. If we perform
the division, and denote by A,, B,, &c., the coefficients of the

powers of x in the quotient after the highest, equation (n)

becomes

(a:—fl)(a:"-i+Aia;^2_j_B^a;^-3_|_. . . . _}_T^^^yj^O.
This equation will be satisfied by making

a;"-i-J-Aja?"-2+Biaf^-3^. . . . +T,a7+V,=0.
Now this equation must also have a root, which may be denoted

hy b ; it is therefore (Art. 395) divisible by x—h, and may be

placed under the form

(a;_-.Z,)(af-2_|_A2af'-3+B2af»-'»+. . . . 4-T2a:+V^)=0.

This equation will be satisfied by placing the second member

equal to zero, which gives another equation of a degree still

lower by a- unit, and as x must here also have some value, as c,

this equation must be divisible by x—c
;
and if the division be

performed we shall have an equation of a degree still lower by a

unit.

It is evident that if this operation be continued, the exponent
n will be exhausted, and the last quotient will be unity ; hence,

calling the last root I, we shall have

(x—a)(x
—

b)(x
—

c)(^x
—

d),, . . . (x—Z)=0, which is satisfied

by making x=a,b,c,d,, . . . or Z ; that is, there are n

quantities, either of which, when substituted for x, will satisfy

the conditions of the equation ; or, in other words, the equation
has n roots, a, b, c, d, &c.

Cor. 1. From this theorem it follows that if we know one root

of an equation rve may, by dividing (Art. 395), find the equation

containing the remaining roots. Hence, when all the roots of an

equation but two are known, it may be reduced to a quadratic by
division, and the remaining roots found by methods already given.
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Thus, one root of the equation x^^—l2x^-\-^7x
—60=:0, is 5, and

by dividing it by x—5, the quotient is a;^—7a;-l-12=0, of which
the roots are found to be -\-3 and -1-4.

Cor. 2. From the preceding, it is obvious that vi^hen any equa-

tion, whose right hand member is zero, can be separated into fac-

tors, the roots of the equation may be found by placing each of

the factors equal to zero. Thus, in the equation x^—1=0, by

factoring we have (x-{-l)(x
—1)=0, .*. a;-l-l=0, and x—1=0,

whence x=—1
, and x=-\-l .

Again if x^-\-4:X=0, we have a?(a;-}-4)=:0, whence a;=0, and

a=—4. (See Art. 254.)

EXAMPLES FOR PRACTICE.

1. One root of the equation a;'—lla;2-f23x-|-35=0 is—1;

find the equation containing the remaining roots.

Ans. a;2—12a:-|-35=0.

2. One root of the equation a:3__9j;2^26a;—24=0 is 3; find

the remaining roots. Ans. 2 and 4.

3. One root of the equation x^—7x-{-Q=0 is 2; find the

remaining roots. Ans. 1 and —3 .

4. Two roots of the equation x^+2x^—41x^—4:2x-\-^90=0,
are 3 and -—^1

; required the remaining roots. A71S. 5 and —6 .

5. Two roots of the equation x^—dx^—bx^-\-9x
—2=0,. are

4-1, and —2; find the remaining roots.

Ans. 2+^3, and 2—^F.
Remarks. 1. When it is stated, for example, that ;r=4 and x=3, in

the same equation, it is not to be understood that x is equal to 4 and 3 at

the same time, but tliat x is equal either to 4 or 3.

2. This proposition proves that an equation of the nth degree is com-

posed of n binomial factors, but these are not necessarily unequal. Two
or more of them may be equal to each other. Thus, the equation
x3— 6x2-f-]2a;—8=0, is the same as (x—2){x—2)(x—2)=0, or (a;—2)3

=0, from which, by placing each factor equal to zero, we find the three

roots to be x=2, x=2, and x=2.

Art. 397. Prop. III.— No equation can have a greater mimher

of roots than there are units in the number denoting its degree, that

is an equation of the n''' degree can have only n roots.

If it be possible let the equation

af«-fAx"-i+Ba;"-2_|_Cx- 3_^. . . . -1-Ta:+V=0.
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Besides the n roots a, &, c, d, Sic, have another root, r, not iden-

tical with either of the roots a, b, c, d, &c.
; then since r is a root

of the equation it must he divisible by x—r (Art. 395) ; this

gives

a?"+Aa7"-'+Ba;"-2+, &c., ={x—r)(x'''-^+K'x^-^-\-, &c.,^

ox {x—a)(x—-h)(x—<), . {x--l)={x—r)(x''-^'\-A'x^^-\-,SLC.)

But since r is a value of x, we have, by substitution,

{r—aXr—lXr^c). . . (r—Z)=(r—r)(a?«-i+AV-24-, &c.)

Now the second member of this equation is =0, because

(r
—r)=0; but the other side cannot be 0, since r is not equal to

any of the quantities a, h, c, &c. ; hence the supposition is absurd

that X can have any value other than a, b, c, d,. . I.

Art. 398, Prop. IV.— To discover the relations between the

coefficients of an equation, and its roots.

Let x=a, \ Then, rx—'a=0,
oc=b, \ J X—b=0,
x=c, r

j
X—c=0,

x=d,&LC.J \,x—d=0,6LC.

By multiplying together the corresponding terms of the last

set of equations, we have (x—a){x-—b){x
—

c){x
—d)=OxOxO

xo=o.
If we perform the actual multiplication of the factors, we find

—d

x^'\-ab

•\-ac

-^ad

-^bd
-\-cd

d^—abc \x-\-Q'bc,d''—abd\—
acd\

—bcd\
=0.

Similarly, in the equation of the n^^ degree,

af»+Aa?"-i+Baf»-2_^, &c., =(a:-—a)(a:—fe)(a;—c). . (a:—Z)=:0.

If we perform the multiplication of the n factors, we shall have

—a—b—c. . . . —/c—Z=A ;

abA^ac-\-, , , . -|-/cZ=B ;

—dbc—abd, . . . akl=^Q ;

±iabcd. kl=Y.

The double sign is placed before the last term, because the

product
—aX—^X—c. . . . X—h will be plus or minus, ac^

cording as the degree of the equation is even or odd. Hence,
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1 . The coefficient of the second term of any equation, is equal to

the sum of all the roots, with their signs chaiiged.

2. The coefficient of the third term is equal to the sum of the pro-

ducts of all the roots taken two and two.

3. The coefficient of the fourth term is equal to the sum of the pro-

ducts of all the roots taken three and three, with their signs changed.

And so on, and

4. The last, or absolute term, is equal to the product of all the roots.

Cor. 1 . If any term of an equation is wanting it is because its

coefficient is 0.

2. If the 2'"* term of any equation is wanting, the sum of the

roots is equal to 0.

3. If the ^t""^ term of any equation is loanting, the sum of the pro-

ducts of the roots, taken two and two in a product, is equal to .

4. If the absolute term is wanting, the product of the roots must

he 0, and hence one of the roots must be 0.

5 . Since the last term is the product of all the roots, therefore it

must be divisible by each of them ; that is, every rational root of an

equation is a divisor of the last term.

EXAMPLES ILLUSTRATINa THE PRECEDINQ PRINCIPLES.

1. Form the equation whose roots are 3, 4, and —5.

The equations x =3, a:=4, and x=—5, give x—3=0, x—4=0,
and x-\-5=0;

hence, (a;—3)(a:--4)(a;+5)=a;3—2a;2—23a;+60=0.
Here 3+4—5=+2, the coefficient of the 2'"^ term with a

contrary sign.

3X44-3X—5+4X—5=—23, the coefficient of the ^"^ term.

Sx^X—5=—60, the last term, with the minus sign, because

the degree of the equation is odd.

2. What is the equation whose roots are 2, 3, and —5 1 (See

Cor. 2.) Ans. a;^—19a;+30=0.

3. Find the equation whose roots are 3, —2, and 7.

Ans. a?3—8a;2-l-a;+42=0.

4. Form the equation with roots 0, —1, 2, and —5.

Ans. x'^-]-4x^
—7a;2—10a;=0.

5. Form the equation whose ropts are —2, +4, and -\-4

(See Cor. 3.) Ans. x^Sx^+S2--=0.
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6. Find the equation whose roots are l-f->y/3, and 1—^3.
Ans. a;2—2a:—2=0.

7. Find the equation whose roots are ld=V2 and 2it^3.

8. What is the 4'^ term of the equation whose roots are —2,

—1,1,3,4] A7is.29xK

9. Find the middle term of the equation whose roots are 5, 3^

1,-1, —2, --4. Ans. 28jd3.

10. Form an equation of the 4'^ degree, when two of the roots

are —J2, and ~|-^
—3. Ans. x'^-\-x^

—6=0.

Art. 399. Prop. V.— iVb equation having unity for the coeffi-

cient of the first term, and all the other coefficients integers, can have

a root equal to a rational fraction.

Take the general equation of the n-^ degree, and suppose all

its coefficients integers,

a;n+Aa;«-i+Ba?"-2-l- . . . . +Ta:+V=0.

If possible, let -, a fraction in its lowest terms, be a root of

this equation ;
then by substituting it for x we have

^+A^—+B^—+, . . . +i5+V=0.

Reducing all the terms to a common denominator,

Transposing all the terms to the second member, except the

first, and omitting the common denominator,

a"=—Aa^-i/^—Ba"-262^. . . .
—TaZ>"-i—V^^

Dividing both members by b,

?!=—.Aa"-»—Ba^-22^. . . .
—Tai"-2_V5"-».

b

But, by hypothesis, a and b contain no common factor, therefore

- is an irreducible fraction, and the right member is a series of
b

integral quantities ; therefore, an irreducible fraction is equal to

a series of integers, which is absurd. Hence, the supposition

which leads to this conclusion is absurd, namely that the equation

has a fractional root.
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Remark.— This proposition only proves that in an equation of the

form described, the real roots must be integers, otherwise they cannot
be exactly expressed in numbers. It often happens that the roots of an

equation can be expressed approximately by fractions. Thus, in the

equation x^—^x-—5x-)-l0=0, one of the roots is —2, and the other

two are expressed nearly by 1.382, and 3.618.

When a real root cannot be expressed exactly in numbers it is

termed incommensurable.

Art. 400, Prop. VI.— If the sign^ of the alternate terms of an

equation be changed^ the signs of all the roots will be changed.

Let a be a root of the equation

a:"+Ax«-»+Ba:«-2+Ca;"-»+. . . . +V=0, (1)

then a"-|-Aa^-i+Ba^-2+Ca»-34-. . . . +V=0, (2)

By changing the signs of the alternate terms of equation (1)
it becomes

a7"~Aa;"-^+Baf^2_Ca;"-3+. . . . d=V=0. (3)

By substituting
—a for x in this equation, we have

a"--Aa"-»+Ba^-2—Ca"-3 zhV=0. (4)

Now if n be even, the 2"^^, 4'\ &c., terms will contain odd

powers of fl, which will be negative (Art. 193), and the signs of the

terms being negative, the results of each term will be positive ;

hence, the whole result will be the same as that produced by the

substitution of a for x in equation (1).

But if n be odd, the odd powers of a will be negative, and the

even powers positive ; and the signs of the same terms being

negative, these terms will be negative, which will render all the

terms of (4) negative.

But this result is the same as that which would be produced by

multiplying all the terms of (2) by —1 . Hence, if a is a root

of equation (1),
—a is a root of (3), whether n be odd or even.

Remark.— If the signs of all the terms be changed, the signs of the

roots will remain unchanged, because this is the same as multiplying
both members by —1. (Art. 148.)

Ex. 1. The roots of the equation x^-\-2x
—24=0, are 4 and

—6
;
what are the roots of the equation x^—2x—24=0 ]

Ans. —4 and 6.

2. The roots of the equation x^^doi^—-10x-{-2^=0, are 2,

—3, and 4; what are the roots of the equation x^-\-dx'^
—10a;

—24=0.
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Art. 401. Prop. VII.— When the coefficients of an equation
are real, if it contains imaginary roots, the numher of these roots

must be even.

If a-{-h^
—1 be a root of the equation

then a—h^—1 is also a root.

In the equation substitute a-\-hjJ
—1 for x^ and the result wili

consist of two parts : 1*^ possible quantities which involve the

odd and even powers of a, and the even powers of bjj
—1

; and

2"^, impossible quantities which involve the odd powers of b^—l;
call the sum of the possible quantities P, and of the impossible

QJ—1, then P+Q^—^ ^^ ^^^ whole result ; hence,

P+QV^=0.
But the first quantity being real, and the second imaginary, in

order to satisfy the equation, each of the quantities must be 0;

this gives P=0, and Q,jJ
—1=0.

Again, let a—bj—1 be substituted for x, and the 1^^ part of

the result will be the same as before, and the 2"*^ part, which

arises from the odd powers of bj—1, will differ from the former

imaginary part only in its sign ; therefore, the result will be

P—QV—1; but since P=0, and Q,^—1=0, we must have

Hence a—bjj
—1 is a root of the equation, since its substitu-

tion for X gives a result equal to .

Cor 1.— If for bJ—1 we put ,Jb, it is evident that in the re-

sult we must put jJQ, instead of Q,^—1, so that P+^Q,=0
and therefore P—^Q==0; hence, surd roots of the form a-±2^h,
enter an equation by pairs.

Cor. 2.— In the same manner it may be proved that roots of

the form zb^V—1, or dzijb enter equations by pairs, for in both

cases we have only to make a=0.

Cor. 3 .
— Since irrational and imaginary roots always occur ii

pairs where the coefficients are real, it follows that every equa-

tion of an odd degree must have at least one real root.

Cor. 4.— Corresponding to any pair of imaginary roots

adzh^—1, we shall have in the equation, the quadratic factor

lx^(^a+bj^l)llx+{a--bj^l)i=ix-^ay+b^ ;
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therefore every equation of an eve7i order, with real coefficients,

is composed of real factors of the second degree.

Ex. 1. One root of the equation x^—26a:-[-60=0 is —6 ;

required the other roots. Ans. SzhfJ
—1.

Ex. 2. One root of the equation x^—15a;-|-4=0 is —4
; re-

quired the other roots. A7is. 2d=V*^-

Ex. 3. Two of the roots of the equation x^—ix^—lx^-\-2(5x

—14=0 are 3+^2, and 3—^2; required the remaining roots.

Ans. —ld=V^.

Ex.4. Onerootof a;3—7a;2^13a;—3=0,is 2-^j3; find the

other roots. Ans. 2-f-V^ ^^^ ^'

Ex. 5. One root of a:^—3a;2—42a;—40=0 is —2(3+V-~31);
find the other roots. Ans. —^(3—V—31)? 4, and —1.

Ex. 6. Two roots of a;^—10a?'»+29a;3—lOa;^—62a:+60=0 are

3 and ^^2; find the other roots. Ans. —tJ2, 2, and 5.

Art. 402. Prop. VIII.— Descartes' Rule of the Signs.—
No equation can have a greater number of positive roots than there

are variations of sign ; nor a greater number of negative roots

than there are permanences of sign.

In the equation x—fl=0, where the value of x is -|-a, there is

one variation, and one positive root.

In the equation x-\-a=0, where the value of x is —a, there is

one permanence, and one n£gative root.

In the equation x"^—{a-\-h)X'{-ah^=0 , where the values of x are

•^a and -{-b, there are two variations and two positive roots.

In the equation x^-{-(a-\-b)x-{-ab=0 , where the values of x are

—
a, and —b, there are two permanences, and tioo negative roots.

In the equation x^—x—12=:0, where a7=-[-4, and —3, there

is 07ie variation, and orx positive root, and one 'permanence, and one

negative root.

If we forfh an equation of the third degree, (Art. 397), whose
roots are +2, -f-3,+4, we shall have x^—^x'^--\-2Qx

—24=0,
where there are three variations, and three positive roots.

But if we form an equation whose roots are —2, —3, -[-4, we
shall have o(^-\-x'^

—14a;—24=0, where there i^one variation, and

one positive root, and two permanences, and two negative roots.
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To prove the proposition generally, let the signs of the terms

in their order, in any complete equation, be

-\- ~\ 1 [- -|
—

\-,
and let a new factor

X—fl=0, corresponding to a new positive root be introduced, the

signs in the partial and final products will be

-!- + -" + - + + +
+ -

+ it — -1 1-±±—.

Now in this product, it is obvious, that each permanence is

changed into an ambiguity ; hence, the permanences, take the am-

biguous sign as you will, are not increased in the final product by
the introduction of the positive root ~\-a ; but the number of signs

is increased by one^ and therefore the number of variations must

be increased by one. Hence, the introduction of any positive

root introduces, at least, one additional variation of sign.

Now the equation x—fl!=0, contains one positive root, and has

one variation of sign. Therefore, since every additional positive

root introduces, at least, one additional variation of sign, the num-
ber of positive roots can never exceed the number of variations of

sign.

Again, if we change the signs of the alternate terms, the roots

will be changed from positive to negative, and conversely (Art.

400). Hence, the permanences in the proposed equation will be

replaced by variations in the changed equation, and the variations

in the former by permanences in the latter ;
and since the

changed equation cannot have a greater number of positive roots

than there are variations of sign, the proposed equation cannot

have a greater number of negative roots than there are permanences

of sign.

Cor. 1 . Since the whole number of variations and permanences
is evidently equal to the degree of the equation, (the equation if

not complete being rendered so by the introduction of ciphers)

Therefore, if the roots of an equation be all real^ the* number of

positive roots must be equal to the number of variations, and the

number of negative roots to the number of permanences. (See

examples, pages 343, 345.)

2. By means of this theorem we can often determine whether

there are imaginary roots in an equation.
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For example, the equation

a;2-4-16==0,

may be written x^ztOx-\-16=0,

Now, if we take the upper sign there are no variations, hence

there is no positive root ; and if we take the lower sign there are

no permanences, hence there is no negative root. But since the

equation has two roots (Art. 396), they must, therefore, both be

imaginary.

In like manner the cubic equation

a;3+Ba:+C=0,

may be written x^:±:Ox^-\-Bx-{^C=0 .

Now if we take the upper sign there are no variations, and

consequently no positive root. But if we take the lower sign,

there is one permanence, hence there can be but one negative

root. Therefore, the other two roots must be imaginary.

Art. 403. Prop. IX.— If two numbers, when substituted for

the unknown quantity in an equation, give results affected with differ-

ent signs, oTie root at least of this equation lies between these numbers.

Let the equation, for example, be

a;'—a;24-a;—8=0.

If we substitute 2 for x in this equation, the result is —2; and

if we substitute 3 for x, the result is +13. These results have

different signs, and it is required to show that there must be one

real root, at least, between 2 and 3.

The equation may evidently be written thus,

(a:3_|-a:)—(x2+8)=0.
Now in substituting 2 for x, x^-^x-==\0, and x'^-\-S=12,

.-. ar'+a:<a;2-l-8;

also, in substituting 3 for x, a73-|-x=30, and a;2+8=17,

.-. a;3+a;>a;2+8.'

Now both these quantities increase while x increases, but the

first increases more rapidly than the second, since when x=.2, it

is less than the second, but when a?=3 it is greater. Consequently,
for some value of x between 2 and 3, we must have x^-\-x=x--\-S,

and this value of x is, therefore, a real root of the equation.

In general, suppose we have an equation X=0, where X rep-

resents a polynomial involving x, and that two numbers, j>
and q,

when substituted for x, give results with contrary signs. Let P
be the sum of the positive, and N the sum of the negative terms ;
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also suppose that when x=Pi P—N is negative, or P<^N, and

that when x=q, P—N is positive, or P^N.
Suppose X to change by imperceptible degrees from p to 9,

then P and N must also change by imperceptible degrees, and

both increase, but P must increase faster than N, otherwise from

having been less it could never become greater ; there must,

therefore, be some value of x between p and q, which renders

P=N, or satisfies the equation X=0, and this value of x is, there-

fore, a real root of the equation.

Cor. If the difference of the two numbers,^ and g, which give

results with contrary signsi, is equal to unity, it is evident th«,t we
have found the integral part of one of the roots.

Ex. 1 . Find the integral part of one value of x in the equation

a;4_4^3_i_3 a;2_|-a;-^5=0 .

If x=-2>, the value of the equation is —2, but if x=^, the

value is 47. Hence, a root lies between 3 and 4; that is, 3 is

the first figure of one of the roots.

2. Required the first figure of one of the roots of the equation

a;3—5a;2_^_[_l_0. Ans. 5.

TRANSFORMATION OF EaUATIONS.

Art. 404. The transformation of an equation is the changing
it into another of the same degree, whose roots shall have a speci-

fied relation to the roots of the given equation.

Thus, in the general equation of the 7^'^ degree

a;"+Aa;"-i+Ba;"-2. . . . +Ta?+V=:0; (1)

;f —y be substituted for x, the equation will be transformed into

another whose roots are the same as those in (1), but with con-

trary signs, for y=-
—x.

If - be substituted for x, the roots of the new equation in y
y

will be the reciprocals of those of equation (1), for y=-,
X

Art. 405. Prop. I.— To transfor^n an equation into one whose

roots are the roots of the given equation multiplied or divided hy any

given quantity.

Let a, hi c, &-C., be the roots of the equation

x^+Ax^-'+Bx^^-K . , . +Ta:+V=0;
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assume y=kx, or x=^ ; then substitute this vahie for x, and the
fc

proposed equation becomes

rj^A^lL+By— +5V+v=0;

then, multiplying by A;", we have

Since y=Jcx, the roots of this equation are ka, kb, kc, &c.

It is evident this equation may be derived from the proposed

equation, by multiplying the successive terms by 1, Z^, k"^, k^, &c.,
and changing x into y.

In the case of division, assume y=-, or x=ky, and substitute.
k

Cor, By this transformation an equation may be cleared of

fractions, or if the first term be affected with a coefficient, that

coefficient may be removed.

Ex. Let it be required to transform the equation

into ona which is clear of fractions, and which has unity for the

coefficient of the highest term.

By multiplying by 6, we have

6aP+2px^+2qx-\-Qr=:0,

Let y=Qxj or x=ly, and the equation becomes

and multiplying by 6 2, we have

y'+^py'+l2qy+2Wr=:0,

an equation of the required form.

Ex. 1 . Find the equation whose roots are those of the equation

x^^^x^—4:X-\-S=0 multiplied by 3.

Ans. J/4-J-633/2—108t/+243=0.

2. Find the equation whose roots are each 5 times those of

the equation x'^-\-2x^
—Ix—1=0.

Ans. y'+10y^—Sldy-^625z=z:0,

3. What is the equation whose roots are each ^ of those of

a;3—3a;2_j-4x+l0=0 1 Ans. 4y^—6f-\-Ay+o=0.
30
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4. What is the equation whose roots are each J of those of

ar5+18a;2-f99a;+81=0 taken negatively 1

Ans. 3/3—02/2-1-1 1 2/—3=0 .

5. Transform the equation x^—2x^-}-lx
—10=0, into one hav-

ing integral coefficients. Ans. y^
—

^y^-\-^y
—270=0.

Art. 406. Prop. II.— To transform an equation into one whose

roots are greater or less by any given quantity than the corresponding

roots of the proposed equation.

Let the proposed equation be

whose roots are a, h, c, &c.

The relation between x and y will be expressed by the equation

y=xztr. As the principle is the same, whether x is increased or

diminished, we will consider the case where y=x—r. This gives

a?=y-|-r, and by substituting this for x in the proposed equation,

we have

(y+rr+A(y+r)^^+B(y+r)--'^. . . . +T(2/+r)+V=0.
Developing the different powers of y-\-r by the Binomial the-

orem, and arranging the terms according to the powers of y, we
have

2/"+ nr r"

+(7i—l)Ar

i/"-2 -{-r"

+Ar'^-i

+Br»-2

+Tr

Now since y=:x
—

r, the values of y in this equation are a—r,

b—r, c—r, &c.

Art. dOY. Cor.— By means of the preceding transformation

we may remove any intermediate term of an equation. Thus,

to transform an equation into one which shall want the second

term, r must be assumed, so that 7ir+A=0, or r=—-. To take
n

away the third term, ln(n--l)r^-]-(n
—l)Ar+B must be put =0,

and the value of r derived from the solution of this equation.

The pupil may solve the following examples b> <he preceding

principles :
^
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1. Transform the equation x^—^7a;-l-7=0 into another whose
roots shall be less by 1 than the corresponding roots of this

equation. Ans. y^-\-Sy^
—

4y-|-l=0.

2. Find the equation whose roots are less by 3 than those of

the equation a?''—3a;3—15a?2-l-49x-~12=0.
Ans. y^J^9y'-\-l2y^'-Uy=0.

3. Transform the equation x^—Qx^-\-Sx
—^2=0 into another

whose second term shall be absent.

Here A=—6, w=3, .*. r=2; hence, x=y-{-2.
Ans. 3/3—4^—2=0.

4. Transform the equation x^-\-2j)x
—$=0 into another want-

ing the second term. Ans. y^
—

p^
—q=0.

Art. 408. There is a more easy and elegant method of per-

forming the operation of transformation, so as to increase or

diminish the roots of an equation, than by direct^ substitution,

which w^e will now proceed to explain.

Let the proposed equation be

Ax'+Bx^+Cx^-{-I)x+E=:0, (1)

and let it be required to transform it into another, whose roots

shall be less by r ; then y=x—r and x=y-\-r.

By substituting y-\-r, instead of x, we have

A(y+ry+B(y+ry+C(y+ry+D(j/+r)+E=0.
By developing the powers of y+r, and arranging the terms ac-

cording to the powers of y, as in Art. 406, the transformed equa-
tion will take the form

Ay^+'^,f+C,y^+J),y-\-E,==0. (2)

where the coefficient A must evidently be the same as in equation

(1), while the coefficients Bi, Ci, D^, and E^, are unknown

quantities, whose values are now to be determined. For y/suh-
stitute its value x—r, and equation (2) becomes

A{x^ry+B , (x-^ry+C , (a:-r)2+D , (x-r)+E ,
=0 (3)

Now since the values of x are the same in equations (1) and

(3), it is evident these equations are identical. Hence, whatever

operation is performed on equation (1), the result will be the

same as if this process had been applied to equation (3). Now
as the object is to obtain the values of the coefficients Bj, Cj,

&.C., let equation (3) or (1) be divided by x—r, and it is evident

that the quotient will be

A(x-ry+B ,(x-ry+C , (x-r)+l) ,
,
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and the remainder will be the last coefficient E
j ; hence, E j

is

determined.

Again, divide this quotient by x—r, and the next quotient will

be

A{x—r)2-}-Bj(a:
—

r)-(-C, with a remainder Dj ;

hence, D, is determined. Dividing again by x—r we get the re-

mainder C, ; and lastly, by another division, we obtain the

remainder B
, ;

and thus we find all the coefficients of equation

(2).

To illustrate this method we will now proceed to solve Ex- 1 ,

Art. 407; that is, to find the equation whose roots are less by 1,

than those of the equation x^—'7x-]-l=0.

Here y=x—1, and we proceed to divide the proposed equation
and the successive quotients, by x—1. The successive remain-

ders will be the coefficients of y in the transformed equation, ex-

cept that of the highest power, which will have the same coeffi-

cient as the highest power of x in the proposed equation.

x^l )a;3_7^_|.7 (a;2^a^~6 x—1 )x^+x-'Q (a:+2
X^—X^ 1st. quot. j;2—X Slid. quot.

a;2— X
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Divisor 1«.2)5—12+3+4—5(5—2—1+2 Quotient

5—10 or 5a;3—2a;2—a;+2.

—2+3—2-

—1+4
-1+2

+2—5
2—4

1 Rem.

By changing the signs of the terms of the divisor, except that

of th6 first term, which must not be changed, as by means of

that we determine the signs of the respective terms of the quo-

tient, and adding each partial product instead of subtracting it,

except the first term, which being always the same as the first

term of each dividend, may be omitted, the operation may be

represented thus :

1+2)5—12+3+4—5(5—2—1+2
*+10
—2+3

* 4

-1+4*—2
~+2—5

*+4
—1

Let it be observed that the figures over the stars are the coeffi-

cients of the several terms of the quotient. It will also be seen

that it is unnecessary to bring down the several terms of the

dividend. Hence, the last operation may be represented as fol-

lows :

+2)5—12+3+4—5
+10,-4—2+4
_- 2—1+2—1

In this operation 5 is the first term of the quotient, +10 is the

product of +2, the divisor, by 5; the sum of +10 and —12

gives
—2, the second term of the quotient,

—4 is the product of

+2, the divisor, by
—2, the second term of the quotient, and the

sum of —4 and +3 gives
—l,the third term of the quotient,

and so on. The last term, —1, is the remainder.

Supplying the powers of a:, the quotient is bsi^—2x'^—a:+2,
with a remainder —1.
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A similar method may be used when the divisor contains three

terras ;
and if the coefficient of the first term of the divisor is

not unity, it may be made unity by dividing both dividend and

divisor by the coefficient of the first term of the divisor. The

method, however, is rarely used except when the divisor is a bino-

mial, the coefficient of whose first term is 1 .

In the application of Synthetic division, when any term of an

equation is absent, its place must be supplied with a zero.

Art. 410. We shall now illustrate the use of Synthetic

division in the transformation of equations, by the method

described in Art. 408.

1. Let it be required to find the equation whose roots are less

by 1 than those of the equation x^—7a;+7.

To effect this transformation, it is required to find the suc-

cessive remainders which arise from dividing x^—^7a?-{-7, and the

successive quotients, by x—1.

Since the second term is wanting, its place must be supplied

with 0. Also, in arranging the operation, it is customary to

place the second term of the changed divisor on the right, as in

division.

OPERATION BY SYNTHETIC DIVISION.

±0



TRANSFORMATION OP EQUATIONS. 359

5 +28 +51
—10 —36
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Akt. 411. Pkop. III.— To determine the law of Derived Poly^
nomials.

Let X represent the general equation of the n^^ degree ; that is,

If we substitute x-\-h for ^, and put Xj to represent the new-

value of X, we have

and if we expand the different powers of x-\-'h by the Binomial

theorem, we have X^=

-fAa;^-i+ (nr—\ )Aa:"-^ +(7i—l)(7i~2)Aaf»-3
+(7i—2)(7i—3) Bx"--*

1 -2^

But the first vertical column is the same as the original equa-

tion, and if we put X', X", X'", &c., to represent the succeeding

columns, we have

X =a;"+Aa:"-J4-Ba;"-2_|_, &c.,

X' =?w;"-i+(7^—l)Aa;"-2+(TO—2)Ba;"--3^, &c.,

X"=?iC7i—1 )a;"-24-(7i—1 )(7^—2)Ax'^-3+, &c.,

&c., &c.

By substituting these in the development of Xp we have

X.=X+X'A+-^^2_[__X;i_ ^3 . &c.

The expressions X', X", X'", &c., are called derived polynomi-
als of X, or derived functions of X. X' is called the first derived

polynomial of X, or first derived function of X ; X" is called the

^fxond, X'" the thh'dy and so on.

It is easily seen that X' may be derived from X, hy multiplying
each term hy the exponent of x in that term, and diminishing the ex-

ponent by unity. And each succeeding polynomial may be derived

from that which precedes it by the same law.

Art. 412, Cor. If we transpose X we have Xj—X=X'h
No

31

X"
+-— A'+j &c. Now it is evident that h may be taken so small
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X"
that the sign of the sum 'K'h-\- ^^+3 &^c., will he the same as

the sign of the first term X'h. For, since

X'h+^X"h^+, &c., z=zh(X'+lX' h+, &c.),

if A be taken so small, that JX"A+iX'"P_j_,&c., becomes less

than X' (their magnitudes alone being considered), the sign of

the sum of these two expressions must be the same as the sign

of the greater X'.

Aet. 413. By comparing the transformed equation in Art.

406, with the development of Xj in Art. 411, it is easily seen

that Xj may be considered the transformed equation, y corres-

ponding to Xf and r to h. Hence, the transformed equation may
be obtained by substituting the values of X, X', &c., in the devel-

opment of Xj. As an example, let it be required to find the

equation whose roots are less by 1 than those of the equation

a?3—7a:-l-7=0.

Here X = a;3—7a?+7,

X' =3a?2—7,

X" =6a;,

X'"=6,

X'^ =0.

Observing that A=l, and substituting these values in the

equation X^=X+X'h+—h^+
^"'

h'+, &c., we have
1

*
<w 1 *

.^
* o

Xi=(a;3—7a;+7)+(3a;2—7)l+(6a;)--^
'

^

'1 -2
'

1 •2- 3*

=a;'4-3a;2
—

4:X-\-li in which the value of x is equal

to that of X in the given equation diminished by 1 .

By this method the learner may solve the examples in Art,

410.

EQUAL ROOTS.

Art. 414. To determine the equal roots of an equation.

We have already seen (Art. 896, Rem. 2,) that an equation

may have two or more of its roots equal to each other. Thus
the equation a;3__6^2^i2a;—-8 =0, or (a;~-.2)(a:—2)(a:—2)

=(a;—2)3=0, has three roots, each of which is 2. We now pro-
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pose to determine when an equation has equal roots, and how to

find them.

If we take the equation (x—^2)^=0 (1)

Its first derived polynomial is 3 (a;
—2)2=0.

Hence, we see that if any equation contains the same factor

taken three times, its first derived polynomial will contain the

same factor taken twice ; this last factor is, therefore, a common
divisor of the given equation, and its first derived polynomial.

In general, if we have an equation X=0, containing the fac-

tors {x
—

ay^{x
—

i)", its first derived polynomial will contain the

factors m(x—ay^~^n{x
—

t)""^ ; that is, the greatest common divisor

of the given equation, and its first derived polynomial will be

{x^-ay-^x—5)"-', and the given equation will have m roots,

each equal to a, and n roots, each equal to h.

Therefore, to determine whether an equation has equal roots,

find the greatest common divisor between the equation and its first

derived polynomial. If there is no common divisor the equation has

no equal roots.

If the greatest common divisor contains a factor of the form

X—a, then it has two roots equal to a ; if it contains a factor of

the form {x—ay it has three roots equal to a, and so on.

If it has a factor of the form (x—a)(x
—

h) it has two roots

equal to a, and two equal to h ; and so on.

Ex. 1. Given the equation xi^—x^—8a;-}-12=0, to determine

whether it has equal roots, and if so, to find them.

We have for the first derived polynomial (Art. 411),

3a;2—2a:—8.

The greatest common divisor of this and the given equation

(Art. 108) is a?—.2.

Hence x—2=0, and a;=+2.

Therefore, the equation has two roots equal to 2.

Now since the equation has two roots equal to 2, it must be

divisible by (a;—2)(a;—2), or (a;—2)2. (Art. 395.)

Whence, a:^—a;^—8a:+12=(a>-2)2(a;+3)=0,

and a;+3=0, or a:=—3.

It is evident that when an equation contains other roots be-

sides the equal roots, that these may be found, and the degree of

the equation depressed by division (Art. 395), after which the

unequal roots may be found by other methods.
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The following equations have equal roots
;
find all the roots.

2. a;3—2a;2—15a;+36=0. Ans. 3, 3, —4.

3. a;^—9a;2+ 4a:+12=0. Ans. 2, 2, —1, -.-3.

4. a?"—6a;3+12a;2—10a;+3=0. Ans. 1, 1, 1, 3.

5. a;4--7a;3_[_9^2_|.27a;—54=0. Ans. x=2, 3, 3, —2.

0. a;4-f2a;3—3a72—4a;4-4=0. A«5. —2, —2, +1, +1.
7. a;^—12a;'+50a;2—84a:+49=0. Ans. 3zfcV2, SzbV^.
8. a;5—2a;'»+3a:3—.7a?2+8a;—3=0.

An^. 1,1,1,—l±iV'^=^-
^

9. a;6+3a?5-~6a?<—6a;5+9a:2+3a:—4=0.
Ans. 1, 1, 1, —1, —1,—4.

Suggestion.—When the greatest common divisor of the given equa-
tion and its first derived polynomial, contains a factor of the form

(x
—

a)2, or of any higher degree than the first, it is evident that the

first and second derived polynomials will also contain a common divisor,

of which the first or some higher power of x—a is also a factor. This

principle may be sometimes used, as in the last example, to simplify the

solution.

LIMITS OF THE ROOTS OF EaUATIONS.

Art. 415. Limits to a root of an equation are any two num-

bers between which that root lies. A superior limit to the pos-

itive roots is a number numerically greater than the greatest posi-

tive root
;
and an inferior limit to the negative roots, is a number

greater without regard to its sign, than the greatest negative root.

The characteristic of a superior limit is, that when it or any
number greater than it, is substituted for x in the equation, the

result is positive.

The characteristic of an inferior limit is, that its substitution

for X produces a negative result, as likewise do all negative num-

bers numerically greater, provided the equation is of an odd degree.

The object of ascertaining the limits of the roots is to diminish

the labor necessary in finding them.

Art. 416. Prop. I.— The greatest negative coefficient^ increased

hy unity, is greater than the greatest root of the equation.

Take the general equation

af'+Aa;"-'+Ba;"-^ . . . -fTa;+V=0,

and let us suppose A to be the greatest negative coefficient.
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The reasoning will not be affected if we suppose all the coeffi-

cients to be negative, and each equal to A.

It is required to find what number substituted for x, will make

af^>A(a:"-^+a;"-2+a;"-3. . . . +07+1).

By Art. 297, the sum of the series in the parenthesis is ;

ar—1

hence, we must have

^>A(?!l4).or^>^-A\ X 1 / X 1 X 1

But if a;"= , we find x=A+l ; therefore, A+1 substituted
X—1

for X will render a?"= , and consequently
X—1

-1 a;—1*

It is evident that by considering all the coefficients after the

first negative, we have taken the most unfavorable case
;

if either

of them, as B, were positive, the sum of the terms in the paren-
^n I

thesis would be less than
a;—1*

Art. 41 7. Prop. II.— If we increase by unity that root of the

greatest jiegative coefficient, whose index is equal to the number of
terms preceding the first negative term^ the result will be greater than

the greatest positive root of the equation.

Let Ca:'*"'' be the first negative term, C being the greatest neg-
ative coefficient, then any value of x which makes

a;">C(a;"-^+af^'-' . . . . +a:+l) (1)

will evidently render the first member of the equation >0, or

positive ; because this supposes all the coefficients after C nega-

tive, and each equal to the greatest, which is evidently the most

unfavorable case.

By Art. 297, the series in the parenthesis is equal to r
j

hence, by substitutioa, the inequality (1) becomes

a:"^U I
I ,

or a;*p>
—

,

\ X—1 / X—1 X—1'

But this inequality will be true if

a?"= , or >- ;

X—1 X— 1
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or, by multiplying both members by x—1, and dividing by j:"*'^+*,

when (x^l)x'-'=C, or >C (2).

But X—1 is <Cx, and .-. (x
—

l)'-i<a;'"~^ ;

therefore, (2) will be true, if we have

(a?—l )(a;—1 )^', or (a?—1 )'-=C, or >C ;

ora;—1=^C, or>VC";

or x=l+V C, or >1+ </ C.

Find superior limits of the roots of the following equations :

1. a:^-^a;3+37a?2—3a:+39=0.

Here C=5, and r=l /. 1+VC"=14-51=6. Ans.

2. a^+'^x*'^12x^-A9x^+62x—lS=^0.

Here 1+^C=1+ 2/49=1+7=8. Ans.

3. a:4+lla;2-.o5a;2_67=0.

By supposing the second term -^-Ox^, we have r=3; hence,

the limit is 1+^67, or 6.

4. 3x3—2a;2—lla;+4=0.

Dividing by 3, a;»--|a;2—Va;+|=0.

Here the limit is l+V , or 5.

Art. 418. To determine the inferior limit to the negative

roots, change the signs of the alternate terms ; this will change
the signs of the roots (Art. 400) ; then the superior limit of the

roots of this equation, by changing its sign, will be the inferior

limit of the roots of the proposed equation.

Art. 419. Prop. IH.—If the real roots of an equation, taken

in the order of their magnitudes, be a, b, c, d, &c., a being greater

than b, b greater than c, and so on; then if a series of numbers, a',

b^ c', d', dhc, in which a' is greater than a, b' a number between a

and b, c' a number between b and c, and so on, be substituted for x

in the proposed equation, the results will be alternately positive and

negative.

The first member of the proposed equation is equivalent to

{x—a)(x
—

b){x
—

c)(x
—

d), . . . =0.

Substituting for x the proposed series of numbers a', b\ c', &c.|

we obtain the following results :
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{a—d){a'
—

h){(i
—

c)(a'
—

d), &c. . =-]- product, since all the

factors are -\-.

{b'
—

a)(b'
—

b){b'
—

c)(jb'
—

d).6LC. , =— product, since only
one factor is — .

(c'
—

a)(c'
—

h){c'
—

c)(c'
—

rf), &c. . =-[- product, since two fac-

tors are —
, and the rest -f-*

(^d'
—

a)(J'
—

h)(d'—c)(d'
—

d), &c. . =— product, since an odd
number of factors is —, and so on.

Cor, 1. If two numbers be successively substituted for x, in

any equation, and give results with contrary signs, then between
these numbers there must be am, threeyfivey or some odd number
of roots.

Cor. 2. If two numbers, when substituted successively for x,

give results affected with the same sign, then between these num-
bers there must be two, four, or some even number of real roots,

or no roots at all.

Cor. 3. If a quantity q, and every quantity greater than.^., ren-

der the results continually positive, q is greater than the greatest
root of the equation.

Cor, 4. Hence, if the signs of the alternate terms be changed,
and if p, and every quantity greater than

f>,
renders the result

positive, then —p is less than the least root of the equation.

Illustration.— If we form the equation whose roots are 5, 2,

and —3, the result is x^—ia?^—lla:-(-30=0. Now if we substi-

tute any number whatever for x, greater than 5, the result is

positive. When we substitute 5 for x, the result is zero, as it

ehould be.

If we substitute for x, any number less than 5, and greater

than 2, the result is negative. When we substitute 2 the result

is zero.

When we substitute for x, any number less than 2, and greater

than —3, the result is positive. When we substitute —3, the

result is zero.

If we substitute for x, any number less than —3, the result is

negative.

By means of Corollaries 3 and 4, it is easy to find when we
have passed all the real roots, either in the ascending or descending
scale.
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STU rm's the OREM .

Art. ^20. To find the number of real and imaginary roots of
an equation.

In 1834 M. Sturm gained the mathematical prize of the Frencli

Academy of Sciences, by the discovery of a beautiful theorem,

Dy means of which the number and situation of all the real roots

of an equation can, with certainty, be determined. This theorem

we shall now proceed to explain.

Let X=a;"+Aaf^-^+Ba:"-2. . . . +Ta:+V=0,
be any equation of the n'* degree, which we may suppose con-

tains no equal roots ; for if the given equation contains equal
roots these may be found (^Art. 414), and the degree of the equa-
tion diminished by division.

Let the first derived function of X (Art. 411) be denoted b> Xj.

Divide X by Xj until the remain-

der is of a lower degree with respect ^^^ '^
to X than the divisor, and call this J^^

remainder —X^g ; that is, let the re- X—XjQ,i=—Xj
mainder with its sign changed, be

-^ n^ /q
denoted by Xg. Divide Xj by X^ X Q
in the same manner, and so on, as -—

^^~7\"~ v
in the margin, denoting the succes- i *^« 3

sive remainders with their signs Xg)X2 (Qg
changed by Xg, X4, &c., until we XgQg
arrive at a remainder which does ^ -^ 07= X
not contain ar, which must always

happen, since the equation having no equal roots, there can be no

factor containing a?, common to the equation and its first derived func-

tion. Let this remainder, having its sign changed, be called X^-m .

In making these successive divisions, we may either multiply
or divide the dividends and divisors by any positive number, for

the purpose of avoiding fractions, as this will not affect the signs

of the functions X, Xj, Xg, &c.

By this operation we obtain the series of quantities

X, Xj, Xg, Xg. . . . Xp+i (1),

which, for the convenience of reference, we shall call series (1).

Each member of this series is of a lower degree with respect to

X than the preceding, and the last does not contain x. We shaL*

also call X the primitive function, and Xj,X2, &c., auxiliary

functions.
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The following, then, is Sturm's Theorem :

If p and q he any two numbers, of which p is less than q, a^d if

these numbers be substituted for x in the functions X, Xj, X2, cfcc, in

the series (I), we shall have two series of signs, the oTie resulting from
the substitution of ^p for x, giving k variations of signs, and the other

resulting from the substitution of q for x, giving k' variations of

signs ; then the exact number of real roots of the given equation
between the limits p and q will be k—k'.

To simplify the demonstration of this theorem we shall employ
the following Lemmas :

Art. 421. Lemma I.— Two consecutive functions, X^, Xg, for

example, cannot both vanish for the same value of x.

From the process by which Xj, X^, &c., are obtained, we have

the following equations :

X =X,Q,-X, (1)

X, =X,Q,-X3 (2)

X, =X3Q3-X, (3)

X,_, =X,Clr—X,+ ,. . . . (r—1).

If possible let Xj==0, and X2=0, then by eq. (2) we have

X3=0; hence, since X2=0, and X3=0, then by eq. (3) we have

X^^O; and proceeding in the same way we shall find X^^O,
Xg=0, and finally Xr-i-i=0. But this is impossible, since X^-f 1

does not contain x, and therefore cannot vanish for any value

of X.

Art. 422. Lemma H.— If one of the auxiliary functions van-

ishes for any 'particular value of x, the two adjacent functions must

have contrary signs for the same valu£ of x.

Let us suppose that X3=0, when x=a
; then because

X2=X3Q3—X4, and X3=0, therefore X2=—X^^ ; that is, X^
and X4 have contrary signs.

Art. 423. Lemma IIL— If any of the auxiliary functions va?i'

isJ/es when x=a, and h be taken so small that no root of any of the

other functions in series (1) lies between a—h, and a-f h, then will

the number of variations and permanences when a—h and a-fh are

substituted for x in this series, be precisely the same.

Suppose, for example, the substitution of a for x causes the

function X3 to vanish, then by Art. 421 neither of the functions
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Xg or X4 can vanish for the same value of x; and since when

Xg vanishes, Xg and X^ have contrary signs, (Art. 422), there-

fore, the substitution of a for x in the three functions X2, X3, X^
must give

Xg , X3 , X4 , or Xg, Xg, X4.

+ -
,

_ +
And since h is taken so small that no root either of Xg=0, or

X4=:0, lies between a—h and a-\-hf the signs of these functions

will continue the same whether we substitute a—h, or a-^h for x

(Art. 419). Hence, whether we suppose Xg to be -|- or — by
the substitution of a—h and a-\-h for x, there will be one varia-

tion and one permanence. Thus we shall have either

Xg , Xg J X4, or Xg , Xg, X.

+ ± - - ± +
So that no alteration in the number of variations and perma-

nences can be made in passing from a—h to a-{-h.

Art. 424. Lemma IV.— //" a is a root of the equation X=:0,
then the series of functions X, Xj, Xo, &c.,'will lose one variation

of signs in passingfrom a—h to a+h ; h being taken so small thai

710 root of the function Xi=0, lies between a—h and a+h.

For X substitute a-^-Ti in the equation X=0, and denote the re-

sult by H. Also put A, A', A" for the values of X and its derived

functions, when a-\-h is substituted for x ; we shall then have

(Art. 411)

H=A+A'A+^A"A2-|-, &c.

But since a is a root of the equation X=0, we shall have

A=0, while A' cannot be 0, since the equation X=0 has no

equal roots. Therefore,

H=A'A+iA"A2_|_^ &.C., =^(A'+JA"A+, &c).

Now h may be taken so small that the quantity within the

parenthesis shall have the same sign as its first term A', (since

A' expresses the first derived function of X, corresponding to X,

in Art. 412), therefore, the sign of X, when x=a-\-h, will be the

same as the sign of Xj.

If we substitute a—h for x in the equation X=0, and denote

the result by H', we then have, by changing h into —h, in the

expression for H,

H'=—A(A'—|A"A+, &c).
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Now it is evident that for very small values of A, the sign of

H' will depend upon the first term —A'A, and consequently will

be contrary to that of A'. Hence, when x=za—h, there is a varia-

tion of signs in the first two terms of the series X, Xj ; and

when x=a-\-h, there is a continuation of the same sign. There-

fore, one variation of signs is lost in passing from x=-a—h to

a-\-h.

If any of the auxiliary functions should vanish at the same
time by making a7=a, the number of variations will not be

affected on this account (Art. 423), and therefore, one variation

of signs will still be lost in passing from a—li to a+A.

Art. 425. Sturm's Theorem.—If any two numbers ^ p and q,

(p being less than q) be substitutud for x in the series of functions

X, Xi, X.;, (fc, the substitution of p for x giving k variation.^, and

that of q for x, giving 1^ variations, then k—k' will be the exact num-
ber of real roots of the equation X=0, which lies between p and q.

Let us suppose that — od is substituted for x, (by which sign is

meant any quantity so great that the signs of the different func-

tions X, Xj, X2, &c., depend on the sign of the first term only),

and suppose that x continually increases and passes through all

degrees of magnitude till it becomes 0, and after this let it con-

tinually increase till it becomes -(-Qo .

Now it is evident, that so long as x, with its minus sign, is

less than any of the roots of X^=0, Xj=0, &c., no alteration

will take place in the signs of any of these functions (Art.

419); but w^hen x becomes equal to the least root (with its

sign) of any of the auxiliary functions, although a change may
occur in the sign of this function, yet we have seen (Art. 423)
that it is the order only, and not the number of variations which

is affected. But when x becomes equal to any of the roots of^the

primitive function, then one variation of signs is always lost.

Since, then, a variation is always lost whenever the value of x

passes through a root of the primitive function X=0, and since

a variation cannot be lost in any other way, nor can one be ever

introduced, it follows that the excess of the number of variations

given by x=p, above that given by x=q, {p<^q) is exactly equal to

the number of real roots of X=0, which lie between jo and q.

^ Cor. If the equation is of the w'* degree, and m represents the

number of real roots, then (Art. 396) the number of imaginary
roots will be n—m.
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Art. 426. To determine merely the number of real roots,

we may substitute — oo and -\- x for x in the several functions.

Tn this case the sign of each function will be that of its first

term.

If we substitute for x, the number of variations lost from
— OD to 0, will be the number of negative roots ; and from to

-\- OD, the number of positive roots.

Art. 427. To determine the situation of each real root ; that is,

the figures between which it lies.

Substitute the numbers 0, —1, —2, —3, &c., for x, in series

(1), till we find a number which produces as many variations as

x=— OD produced. This number will be the limit of the greatest

negative root.

We then substitute the numbers 1,2,3, &.C., till we find a

positive number which gives the same number of variations that

x=-\- QD does. This will be the limit of the greatest positive

root. By observing where one or more variations is lost, we find

the situation of the roots. If two or more variations are lost be-

tween two of the substitutions, we must substitute smaller num-

bers, until only one variation is lost between two substitutions.

This operation is termed the separation of the roots.

Ex. 1. Find the number and situation of the real roots of the

equation 4a:3—12a;2+lla?—3=0.

Here we have X = 4a?3--12a:24-lla;—3,

and (Art. 411) Xj=12a;2—24a; +11.

Multiplying X by 3, to render the first term divisible by the first

term of Xj, and proceeding as in the method of finding the

greatest common divisor (Art. 108), we have for a remainder

—
2a?-l-2. Canceling the factor +2, and changing the signs

(Art. 420) we have X^=x—1. Dividing Xj by X^ we have for

a remainder —1; hence, X^=-\-l, Therefore, the series of

functions are

X = 4a;3—120^2+11a:—3.

X,==12a;2—24ar+ll.

X,= a:-l.

Put — 00 and -|-
od for a? in the leading terms of these func-

tions, and the signs of the results are
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For x=— 00, 1 1- three variations, .-. k=3
x=-\- 00, -] 1 1 1- no variation, .*. k'=0

.'. k—k'=3—0=3, the number of real roots.

Next, to find the situation of the roots, we must employ nar-

rower limits than — oo and -\- oo. But if we substitute in each

of the functions, we find three variations, the same number aa

for — 00 ; hence, there is no real root between and — oo. This

we might also have learned from Art. 402, Cor. 1, since there is

no permanence in the proposed equation.

In practice it is customary to substitute integral numbers first,

and afterward fractional ; particularly where two or more roots

lie between two whole numbers. In the present example, how-

ever, for the sake of illustration, we shall at once substitute frac-

tions.

Jv A| A-jj J\.e^

For x=— 00 the signs are — + — + giving 3 var.

x= —. 4. —
_(-

" 3 *•

^=+1 - + - + " 3 "

x=+h + — +
x==+l + — — + « 2 «

x=+l — +
a;=+li — —

-1- + cc 1 «

x=+H + + +
a:=+l| + + + + " «

X=:+CD ^ _|- _[- _|_
« «

Here we see that the roots are ^, 1, and l|, but if these num-
bers had not been substituted, we would have noticed that one

variation was lost in passing from ^ to | ; one in passing from ^
to 1|, and lastly, o?ie in passing from 1^ to 1|, which would
have given the situation of the roots.

A careful study of this example will serve to illustrate the

theorem. Thus we see that there are three changes of sign of

the primitive function, two of the first auxiliary function, and one

of the second. We observe, however, that no variation is lost

by the change of sign of either of the auxiliary functions, while

each change of sign of the primitive function occasions a loss of

one variation.



374 RAY'S ALGEBRA, PART SECOND.

2. How many real roots has the equation

Here, X = x^-^dx^+x—S

X, =3072—6 a? +1
X,= X +2

'

X3=-25.
For a;=— oo the signs are

1 ,2 variations, .*. k =2
a:=4- 00 the signs are + + H , 1 variation, .\ k'=l

.*. k—k'=2—1=1, the number of real roots.

The root is +3, and by substitution it will be found that one

variation is lost in passing from 2 to 4.

Find the number and situation of the real roots in each of the

following equations :

3. a;3—2a;2—x+2=0. Ans. Three, —1, +1, +2.
4. 8a;3—36a;2+46ic—15=0. Ans, Three. One between and

1, one between 1 and 2, and one between 2 and 3.

5. jc^
—3ic^—4x4-11=0. Ans. Three, one between —2 and
—

1, one between 1 and 2, and one between 3 and 4.

6. y?—2a?—5=0. Ans, One between 2 and 3. .

7. o;^—15ic—22=0. Ans, Three. One root is —2, one be-

tween —2 J and —2|, and one between 4 and 5.

8. a;*+a:^—ic'^—2a:4-4=0. Ans, No real roots.

9. a;*—4x5—3x+23=0. ^^, ^wo. One between 2 and 3

and one between 3 and 4.

10. a*—2x3—7a;2+10a;+10=0. ^^^^ Four. The limits are

(-3,-2); (0,-]); (2,3); (2,3).

11. OT^—10x3+6x+l=0. Ans, Five. The limits are (—4,

-3); (-1,0); (-1,0); (0,1); (3,4).

CHAPTER XIII.

RESOLUTION OF NUMERICAL EQUATIONS

Art. 428. In the preceding Articles we have demonstrated

the most important propositions in the theory of equations, and

in some cases have shown how to find their roots. The general

solution of an equation higher than the fourth degree has never

yet been effected, but the class of equations which most frequently
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occurs in philosophical investigations is numerical ; that is, those

that have numerical coefficients. When the roots of these are

real, we can find them either exactly, or approximately, as near

as we please. The way for doing this has been prepared in the

preceding articles, by finding the limits of the roots, and separat-

ing them from each other.

RATIONAL ROOTS.

Art. 429. Prop. I.— To determine the integral roots of an

equation.

If a be an integral root of the equation

Aa;4-fBa?3+Ca;2+Da;-[-E=0 ,

we shall have Aa^+Ba3+Ca2-}-Da+E=0;

.-. 5=—Aa3—Ba2—Ca—D.
a

Now since the second member of the last equation is evidently
E

a whole number, E is divisible by a. Put _=E' ; transpose D
a

to the first member, and divide by a
; this gives

E+?=:-.Aa2-.Ba-C;
a

therefore, a is also a divisor of E'+D.
Put E'-|-D=D', transpose C, and divide by a; this gives

—II1_=—Ka—B ; .•. a is a divisor of D'+C

Again put —IL_=C', transpose B, and divide by a, we find
a

a

Lastly, making C'+B=B', and transposing A, we have

B'+A=0.
If then, all these conditions are satisfied, a is a root of the pro-

posed equation ; but if any one of them fails, a is not a root.

Hence, we have the following

Rule for finding the integral roots of an equation.—
Divide the last term of the equation hy any of its divisors a, and
add to the quotient the coefficient of the term containing x.

Divide this sum hy a, and add to the quotient the coefficient of x^.
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Proceed in this manner unto the Jirst terra, and if a. be a root of
the equation, all these quotients will be whole numbers, and the result

will be .

Cor. 1 . It will be more easy to substitute the divisors +1 and

— 1 , at once in the given equation, and therefore they may be

omitted in the operation. Also, by ascertaining the limits to the

positive and negative roots (Art. 417), w^e shall frequently find

that several of the divisors fall beyond the limits j and therefore,

these may be omitte^.

Cor. 2. If the coefficient of the first term be not unity, the

equation may have a fractional root. To determine if this be the

case, transform the equation into one in which the coefficient of

the first term shall be unity (Art. 405, Cor. 1), and then all the

rational roots will be integers (Art. 399).

Cor. 3. When all the roots except two are integral, the inte-

gral roots may be found by the rule, and then the proposed equa-

tion reduced to one of the second degree by division (Art. 396,
Cor. 1), and solved as a quadratic.

Ex. 1. Find the rational roots of the equation

a;3_^3a;2—4a:--12=0.

Here, by Art. 417, no positive root can exceed 1-4-^12, or 4,

and the limit of the negative roots is 14-3=4.

It is also found, by trial, that +1 > and —1 are not roots.

We then proceed to arrange the divisors of—12, among which

it is possible to find the roots, and proceed with the operation as

follows :

Last term —12

Divisors + 2 , +3 , +4 ,
—2 ,

—3 ,
—4

Quotients . . . .
— 6 ,

—4 ,
—3 , +6 , -|-4 , -|-3

Add —4 ... . —10 ,
—8 ,

—7 , +2 ,
—

,
—1

Quotients ....—5, *, *,—1, *

Add +3 .... — 2 , +2 , +3 ,

Quotients .... — 1 —1 ,
—1 ,

Add +1 ... . , 0,0.
Since —8 is not divisible by -|-3, we proceed no further with

this divisor, as it is evident that it is not a root of the equation ;

in like manner +4 and —4 cannot be roots. But we find that

-|-2,
—2, and —3 are roots of the proposed equation.
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Find the roots of the following equations :

2. a:3—7a;2+36=0. Ans. 3, 6, and —2.

Suggestion.— When any term is wanting, as the third term in this

example, its place must be supplied with 0.

3. a:3-~6a;2-flla;—6=0. Ans, 1, 2, 3.

4. or'+ajs—4a:-4=0. Ans. 2, —1, —2.

5. a:^—3a;2~46a:—72=0. Ans. 9, —2, —4.

6. a;3-^a:2—18a:+72=0. Aw^. 3, 6, —4.

7. a:^—10a;3+35a?2—50a?+24=0. Ans. 1, 2, 3, 4.

8. a;^+4a;3—a;2—16a:--12=0. Ans. 2, —1, —2, —3.

9. a:4—4a;3—19a;2+46a;+120=0. Ans. 4, 5, —2, —3.

10. a;4—27a;2-|-14a;+120=0. Ans. 3, 4, —2, —5
11. a;4+a;3—29a;2—9x4-180=0. Ans. 3, 4, —3, -~5.

12. a:'—2x2—407+8=0. Ans. 2, 2, —2.

13. x^+2x^Sx+lO=0. (See Cor. 3.) Am.-^yl±:J^.
14. a;4—9x3+17a?2+27a?—60=0. Ans. 4, 5, db^S".

15. 2x3—3x2+2a:—3=0. (See Cor. 2.) Ans. |, d=V^-
16. 3x3—2x2—6x+4=0. ^^s. |, ^J2.
17. 8x3—26x2-f-lla;+10=0. ^^. 5, 1(3^^/41).

18. ex"—25x3+26x2+4x--8=0. Ans. 2, 2, |,
—

^.

19. x^—9x^-1-\^x2+yx--V=0. Ans. j, |, 3zt3^"2.

IRRATIONAL ROOTS METHODS OF APPROXIMATION.

After we have found all the integral roots of an equation, we
i must have recourse to the methods of approximation, the best of

^' which is Horner's, by which we can always obtain the numerical

values of the real roots, to any required degree of accuracy.

Aet. 4SO. Horner's Method of Approximation.

The principle of this method depends on the successive trans-

formation of the given equation, so as to diminish its roots at each

step, and the operation is performed by Synthetic Division, as

explained in Art. 410.

Let the equation, one of whose roots is to be found, be

Px"+Qx«-'. . . . +Tx+V=0.
32
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Suppose a to be the integral part of the root required, and r, 5,

t, . the decimal digits taken in order, so that x^=a-\-r-\-s-\-t , . .

Let a be found by trial, or by Sturm's theorem (Art. 427), and

transform the equation into one whose roots shall be diminished

by a, by the method explained in Art. 410.

Let Pf/"4-Qy-^ . . . +T'^+V'=0 be the transformed

equation, then the value of y is the decimal r-\-s-\-t. . . ; and

since this root is contained between and 1, we may easily find

its first digit r. Again, let the roots of this equation be dimin-

ished by r, and let the transformed equation be

P2"+a"z^-'. . . . +T"z+V"=0.
Now the value of z in this equation is s-\-t . . .

, and the value

of 5 lies between .00 and .1; that is, it is either .00, .01, .02,

. . . or .09. But since the figure s is in the second place of

decimals, the terms containing z^^ 2^. . . will be small, and we

may generally find s, the next figure of the root, from the equa^.

tion T"2-|-V"=0; that is, s is nearly equal to the quotient of

-V" divided by T".

Having found 5, we next proceed to diminish the roots of the

last equation by s, and then from the last two terms, ^"'z'-\-'^"\

of the resulting equation, find t the next decimal figure, and

so on.

Art. 431. The absolute number, or last term of the equation,

is sometimes called the dimdend^ and the coefficient of the first

power of the unknown quantity,(for example T") the incomplete

or trial divisor.

The correctness of the values of the figures s, t, &c., obtained

by means of the trial divisor, will always be verified in the next

operation. For when we multiply by 5, in the operation of

transformation, to obtain the product to be subtracted from V",
the number multiplied by s (sometimes called the complete divisor)

ought to be contained in V" only s times. But if it should be

contained a greater or less number of times, then s must bo

increased or diminished.

In some cases, where it is small, and when the equation does

not exceed the third degree, r, the first decimal figure of the root,

may be found by dividing V by T'. The accuracy with which

each succeeding decimal figure may be found, increases as the

value of the figure decreases. In general, after threeor four dec-

imal figures have been found, the next three or four figures may
be obtained accurately by division, as in the method of finding

each previous figure.
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Aet. 432. To find the negative roots of the proposed equa-

tion, change the signs of the alternate terms (Art. 400) and find

the positive roots of the resulting equation ; these will be the

negative roots of the proposed equation.

Remark.— Instead of finding the first decimal figure of the root by

trial, or by division, it may be found from the transformed equation by
Sturm's theorem ; but in general it can be obtained more easily by
trial.

Art. 433. To illustrate this method, let it be required to find

the positive root of the equation a:^—^^—10.768649=0.

We readily find that x must be greater than 5 and less than 6

therefore a=5. We then proceed to transform this equation
into another whose roots shall be less by 5. (See Art. 410.)

a
1—4 —10.768649 (5

+5 +5
4-1 — 5.768649

+5
+6

1 St Trans, eq. f+Qy —5.768649=0 .

Here we may find the value of y nearly, by dividing 5.7 by 6,

which gives .9; but this is too great because we neglected the

square of y. If we assume y=.S, and deduct ?/2=.64 from 5.7,

and then divide by 6, we see that y must be .8. Let us now
transform the equation into another whose roots shall be less

by .8.

8

1 4-6 —5.768649 (.8

.8 +5.44

+6.8 — .328649

^
7.6

2nd Trans, eq. ^2.+7.6;r—.328649=0.

The approximate value of z in this equation is the second deci-

mal figure of the root. This is readily found by dividing the

absolute term by the coefficient of Zy the first term, z^, being now
so small that it may be neglected. Thus, .328-^7.6=.04=5.

We next proceed to diminish the roots of the last equation

by .04.
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+7.6
.04
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1 ±0
A .16

+2
—1.936

.8

.4

1.2

+
[.84

.32

f.52

+ .064

"T"

r

(.4

.064
~

4.52

This gives 23+ 1.222—4.522;+.064=0, for the 2nd trans-

formed equation ;
and for 5 the next figure of the root .01. The

next step is to transform this equation so as to diminish its roots

by .01.

+1.2
.01

1.21

.01

1.22

.01

1.52

.0121

L5079

.0122

+.064 (.01

--.045079

+.018921

.4957

1.23
t=l

.0189

T'" 4.495
=.004

This gives 2'3+1.23/2-4.49572'+.018921=0, for the 3rd

transformed equation ; and for the next figure of the root /=.004.

The next step is to transform this equation so as to diminish its

roots by .004.

hl.23
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to make some abridgments. Thus, by marking with a * the co-

efficients of the unknown quantity in each transformed equation,

it is not necessary to rewrite it. Also, when the root is required

only to five or six places of decimals we need not use more than

this number in the operation.

We shall now give the solution of an equation of the 4th

degree, presenting the operation in a concise form.

3. Given x^—Sx^-{-l4x^-\-4:X
—8=0, to find a value of x.

—8
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five decimal places; this divisor is 66.50915, which multiplied

by .006, gives eight decimal places, and the dividend ought to be

carried to seven or eight decimal places, in order that the figure

in the sixth decimal place of the root may be correct. So the

divisor, 66.825, for the fifth figure of the root, requires to be car-

ried only to three decimal places, for the product of this number

by .00006 gives eight decimal places as it ought to do. So the

divisor for the last figure (8) of the root would require to be car-

ried only to two decimal places. The numbers in the vertical

columns preceding the divisors, require to be carried to still fewer

places, as the pupil will readily perceive.

After obtaining the third figure of the root, the next three may
be obtained merely by division; thus, .00454269-r-66.82571
=.000068 nearly.

The pupil must observe that where decimals are omitted, we

always take the figure next to the omitted places, to the nearest

unit. Thus, .07752 is nearer .08 than .07; therefore, the former

is taken.

Art. 434. The process illustrated in the preceding examples

may be extended to equations of any degree, and is justly re-

garded as the most elegant method of approximating to the roots

of equations yet discovered. It may be briefly expressed by the

following

Rule.— 1 . Find hy trial, or by Sturm^s theorem, tlie integral part

of the required root.

2. Transform the equation (Art. 410) into another whose roots shall

be those of the proposed equation, diminished by the part of the

root already found.

3 . With the absolute term in the first transformed equation for a

dividend, and the coefficient of x for a divisor, find the first deci-

mal figure of the root.

4. Transform the last equation into another whose roots shall be di-

minished by the part of the root already found, and from the first

two terms of this equation,fiiid the secondfigure of tJie root.

5. Continue this process, till the root is found to tlie required degree

of accuracy.

6. To find the negative roots, change the signs of the alternate terms,

and proceed as for a positive root.

Remarks.— 1. If any figure, found by trial, is either too great or too

small, it will be made manifest in the next transformation. (See Art.

431.)
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2. In general, after three figures of the root have been found accu-

rately, the next three may be obtained by dividing the absolute term by
the coefficient of x.

EXAMPLES FOR PRACTICE.

Let the pupil find at least one value of x in each of the follow-

ing equations :

1. a;2-|-5a;—12.24=0.

2. a;2^-12a:—35.4025=0.

3. 4a;2—28a:—61.25=0.

4. 8a;2—120a;+394.875=0.

5. 5a;2—7.4a:—16.08=0.

6. x^+x—l=0.
7. 0:2—6a:+6=0.

8. a:3+4a?2—9a:—57.623625=0.

9. 2a:3—50a:+32.994306=0.

10. a:3+a:2-fa;—1=0.

11. a?34-4a:2—5a:—20=0.

12. a:3_2a:—5=0.

13. a;3+10a:2—24a:—240=0.

14. a:3+12a:2—18a:=216.

15. a:*—8a:34.20a:2—15a:+.5=0.

16. a;^4-a:2—8a:—15=0.

17. a:^—59a;2+840=0.

18. 2a:*+5a;3+4a:2+3a:=8002.

19. a:5+4a:4—3a:3_|_i0a:2—2a:=962.

20. a:54-2a:^+3a:3_|_4^2_|_5-^^5432l.

Ans. a;=1.8.

Ans. a;=2.45.

Ans. a:=8.75

Ans. a:=10.125

Ans. a;=2.68.

Ans. a^.618034.

Ans. a:=4 .73205.

Ans. a:=3.45.

Ans. x=4.63.

Ans. a;=.543689.

Ans. a:=2.23608.-

A?Z5. a:=2.0945515.

Ans. a:=4.8989795.

Ans. a:=4.2426407.

An5.a:=l.284724.

Ans. 07=2.302775.

Ans. a:=4.8989795.

A71S. a;=7.335554.

Ans. a;=3.385777.

Ans. a:=8.414455.

Art. 435. To extract the roots of numbers by Hor7ier''s Method.

The extraction of any root of a number is only a particular

case of the solution of an equation of the same degree ; for if we
call the number N, the root x, and the index of the root n, we
shall have a:"=N, or a:"—N=0; an equation of the n^^ degree
in which all the terms are wanting except the first and last.

In performing the operation we may find the successive integral

figures in the same manner as the successive decimal places were
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found in the preceding article. It is only necessary to bear in

mtid that any two figures in consecutive integer places, have the

same relation to each other as if they were in consecutive deci-

mal places. In extracting any root, the cube root for example,
it is nei:essaiy to point ofi* the given number into periods, as in

the operation by the common rule. We shall now illustrate the

meth'xJ of operation by finding the cube root of 12977875; that

is, by Bading one root of the equation x^—12977875=0.

(235
2

2
2

4
2
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when substituted for x, give results, the one too small, and the

other too (/reat, so that one root of this equation lies between a

and 6. (Art. 403.)

Let A and B be the results arising from the substitution of a

and b for x, in the equation X=0 . Let x=a-\-h, and b=a-\-k .

then if we substitute a-^-h, and a-\-k for Xj in the equation X=0,
we shall have

X=A+A'A+iA"A2+, &c.

B =A+A'^+|A"A;2+, &c.

Here A', A", «Sz.c., are the derived functions of A (Art. 411).
Now if h and k be so small that their second and higher powers

may be neglected without much error, we shall have

X—A=A'A nearly ;

B—A=A'^ "
.

Whence, B—A : X—A : : A'k : Ah :k :h ;

or B—A :k : : X—A : h, (Art. 270) ;

or B—A : b—a : : X—A : A, since k=b—a.

Hence we have the following

Rule.— Find by trial, two numbers which substituted for x in the

proposed equation, give one a result too small, and the other

too great. Then say.

As the difference of the results;

Is to the difference of iJie suppositions ;

So is the difference between the true result and either of the former
results ;

To the correction of the corresponding supposition.

This correction is to be added to the corresponding supposition

when it is too little, and subtracted when it is too great, and the

result will be the first approximation.

Substitute this root for the unknown quantity, and the result

will show whether the supposition is too small or too great ; then

take another number such that the true root may lie between it

and the last supposition, and proceed, as before, to obtain a

second approximate value of the required root; and so on.

It is generally best to begin with two integers which difFei

from each other by unity, and to carry the first approximation

only to one place of decimals. In the next operation the differ-

ence of the suppositions may be 0.1, and the second quotient

may be carried to two places, and so on, doubling the number of

place* of decimals at each approximation.
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Ex 1. Given a;3-fx2-fa;=100, to find a;.

It is easily found that x lies between 4 and 5. We then sub-

stitute these two numbers for x in the given equation, and the re-

Bnlt is as follows :

4 X 5

64 x^ 125

16 x^ 25

4. X ....... 5

84 results 155

"155 5 100

S^ _4 _84
71 : 1 : : 16 : 0.22;

theiefoie, a:=4.2, the first approximation.

Again, substituting 4.2 and 4.3 for x in the given equation,
and proceeding as before, we get for a second approximation
a:=4.264. By assuming 37=4.264, and a:=4.265, and repeating
the operation, we obtain for a third approximation 37=4.2644299

nearly.

Find one root of each of the following equations :

2. a:3+30a:=420. Ans. a:=6.170103.

3. 144a:3—973a7=319. Ans. a;=2.75.

4. a^+10x^+5x=2Q00, Atw. a;=l 1.00679.

5. 2x^-\-Sx^-^x^lO. ^715.07=1.62482.

6. a;4_a:3_|_2a;2+x=4. Ans. 07=1.14699.

7. 074+373+2072—07=4. Ans. x=l.09059.
8. 07^—1207+7=0. Ans, 07=2.04727.

9. 207^—13372+1007—19=0. Ans. 07=2.4573.

10, V^^'+4^'+J10o7(2o7—1)=28. An5. 07=4.51066.

Art. 43*7. Newton's Method of approximation.— This

method of approximation is but little used, yet it is so often re-

ferred to, that it is desirable the learner should be acquainted with

the principle on which it is founded.

Find by trial, two numbers which, substituted for the unknown

quantity, give results with different signs ; then (Art. 403) one

Teal root, at least, lies between these two numbers. Now by in-

creasing one of the limits, and diminishing the other, an approxi-
mation may be made to the root. When the quantity a thus

found is within 0.1 of the value of the root, we may substitute

a-\-y for 07 in the given equation, and it will be of this form
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A+A'y+^A'y+|A''y+, &c., =0 (Art. 411),

where A, A', A", &c., are known quantities dependent on a.

From this equation, by transposing and dividing, we find

A A" A'"
^

A' ^A'^ ^A'
-^ ' '

and since y is <^0.1,y2 will be <:^0.01, 3/2<^0.001, and so on.

Therefore, if the sum of the terms containing y^, y^, &c., be lesa

than .01, we shall, in neglecting them, obtain a value oiy within
A

.01 of the truth. Let, then, y=—— , which gives for a? the value
A'

A
a——

.
This will differ from the true value of x by less than .01.

A'
^

It is not necessary, however, to carry on the division of A by A
beyond the second place of decimals, as the accuracy of the fig-

ure in the third place, could not be relied on.

Now, put h for this approximate value of a?, and let x=^})-\-z ;

we have then as before

B+B';^+iB'V+|B"V+, &c., =0;
and as z is supposed to be less than .01, z^ will be <;.0001. If

then we neglect the terms containing z"^, z^, &c., we shall obtain

a probable value of z within .0001 ;
and so on.

Since A is what the proposed equation becomes when a:=fif,

and A' what the first derived function becomes when x=a, there-

A B
fore the corrections ^-—,,

—
,? &c., are easily found.

Newton gave but a single example, viz. ; to find the value of x
in the equation x^—2x—5=0. Ans. a:=2 .09455 149.

The pupil desirous of additional exercises may solve the exam-

ples in the preceding article by this method.

cardan's rule for solving cubic EaUATIONS.

Art. 438. In its most general form, a cubic equation may be

represented by

x^-\-px^-{-qx-\-r=0 ;

but as we can always take away the second term by the method

described in Art. 407, we will suppose, in order to avoid fractions^

that it is reduced to the form

x^+2qx+2r=0.

Assume x=y-{-z, and the equation becomes

y'+z^+^yziy+z)+dq(7/+z)+2r=^0.
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Now since we have two unknown quantities in this equation,

y and 2;, and have made only one supposition respecting them,

namely, that !/+2;=a;, we are at liberty to make another. Let,

therefore, y2=—q ; then, by substituting this in the equation, it

becomes y^-\-z^-\-^r='^ \
but since yz=.

—
9, we have z^=^—£

;

hence y^
—?_-f-2r=0,

or y^-\-^Ty^-=.f .

whence y3=—r+^r^-f-^a—^a^

and similarly 2;'=—r—^r^-f-^s—^s
.

the radical quantity being taken positive in one of these expres-

sions, and negative in the other, to render them different. And
since a;=y+2;, we have

^V(-r+V^^MY)4-V(-'—V'^^H?)-
This formula would appear to give but one of the roots. But

since the values of y and z are found by extracting the cube roots

of A^ and B^ it will now be shown that each of them must have

three values.

Since y^=A^, we have y^
—A^=0, or, by factoring (Art. 83),

(y
—

A)(T^^-\-Ay-{'A^)=0 ; putting each of these

factors equal to 0, and solving the resulting equations, we have

y=A, y=T±b/=?A. and
y=Z±^L=±A.

Similarly, from the equation 2'=B', we find

* z=B, z=""^+>/~^B, and z=~^~">/—^B
2 2

•

By combining each value of y with the three values of z, it

might appear that x had 9 values ; that is, that an equation of the

third degree has nine roots, which is impossible (Art. 397).

That this is impossible from the solution is thus shown :

We supposed that y z ==—
q.

But six of the products of the values of yz give imaginary

values, and since yz=—q, a real negative quantity, therefore,

the combinations giving imaginary products must be rejected, and

the three values of x are

1" A+B,

2^2
33*
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Art. 439. If r^+q^ be negative, that is, if r^+q^<CO, the

values of x become apparently imaginary w^hen they are actually

real, and we shall now show that

Cardan's Method of Solution does not extend to those cases in which

the equation has three real and unequal roots.

Since every cubic equation has at least one real root (Art. 401,
Cor. 3), we may suppose this to be a

; and the other two roots

arising from the solution of a quadratic, may be represented by

'b'\-jJ'dCi and h—^3c, in which, if 3c be positive, the roots are

real, and if 3c be negative they are imaginary ; and because the

second term of the equation is 0, we have (Art. 395, Corollaries)

0=a+(6+V3c)+(^^—V3"c)=a+26 ;

3g=aX2&+62—3c=—3&2—3c ;

2r=—a(62—3c)=2&3—65c.
Hence we have

r^J^f=zQ)^^Ucy—Q^-\-cy

=:>_954c^662c2—C3=—C(352—c)2 ;

.-. Jr^+q'=(SP'^)^'-c.

Now this expression is real when c is negative, and imaginary
when c is positive, or when the equation has three real roots.

If we suppose c to become zero, the value of slr^-\-q^ ceases

to be imaginary. But this supposition reduces the roots to g, 5,

and h
; hence. Cardan's Rule is applicable to equations of the

third degree containing two equal roots.

Art. 440. From the last article we see that when the roots

of the quadratic equation in Art. 438 are imaginary, the roots of

the cubic equation are all real. As this appears paradoxical, we
will show by the direcl solution of a particular example, that the

value of X, in this case, is a real quantity.

Ex. To find the three roots of the equation x^—15a?—4=0.
By substituting y-\-z for x, we have

and, therefore, as in Art. 438,

32/z=15, y8+23—4=0.
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From the solution of these equations we obtain y^=:2-\'

11;^—1; and it may be proved, by actual multiplication, thai

^=2+ ^"^; likewise, z^=2—'ll^~^, and 2=2-^ j"-^.

Hence, a;=y+2;=(2+V^+(2—V^=4.
By dividing the given equation by x—4, and placing the resull

equal to 0, we find the other two roots are a;=—2-[-V^> ^^<^

—2—J3.
As no means have yet been discovered for reducing the imag-

inary forms to real values. Cardan's rule fails when all the roots

are real.

This is termed the irreducible case of cubic equations, and has

been a subject of great perplexity to mathematicians.

Art. 441. We shall present some examples for solution in

the case to which Cardan's rule applies ; that is, when the pro-

posed equation contains one real and two imaginary roots.

When the proposed equation contains the second term it must
first be removed (See Art. 407), and the equation reduced to the

form x^+Sqx+2r=0.

Then x=%/(i—r+ *Jr^+q')+ IKr-^—^r'^+q^), will be the

real root of the proposed equation.

Having the real root, the imaginary roots may be found from

the formula in Art. 438, or by reducing the proposed equation to

a quadratic.

Ex. 1. Solve the equation t;'+3tj2-j-9u--13=0.

If we transform this equation into another which shall want its

second term, by substituting x—1 for v (Art. 407), we have

a;3_|.6a?~.20=0.

Comparing this with the equation x^-\-^qx-{'2r=0 , we find

^=2, r=—10; hence,

a:=V(10+^/i08)+V(10—^/108)=2.732—.782=2.
Whence v=x—1=2—1=:1.

The other two roots are easily found to be —ldz3^—1.

Solve the following equations by Cardan's Rule :

2. ar3—9a?+28=0. Ans. a;=—4, 2±V-^.
3. a;3-|-6a?—2=0. Ans, a;=V4—V^=.32748.
4. a^—6a;2+13x-.10=0. Ans, ax=2, 2dtJ^l .

5. a:3+6a;2—32=0. Ans, x=2, —4, -4.
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6. 00^+6x^+21x—2Q==0, Ans, x=.S012Ab,

7. x^—9x'^+Qx—2=0, A7is.a:=8.306674.

Remark.— It is not deemed necessary to introduce tlie Rules of

Ferrari, Euler, Descartes, or Simpson, for the Solution of Equations
of the fourth degree, since they are applicable only to special cases,

tmd, together witli Cardan's Rule for the solution of cubic equations, are

regarded, since the discovery of Horner's method, and Sturm's theorem,

as little more than analytical curiosities.

RECIPROCAL OR RECURRING EQUATIONS.

Art. 442. A recurring or reciprocal equation is one such that

if a be one of its roots, the reciprocal of a, that is _ , will be
a

another.

Prop. 1. In a recurring equation the coefficients j when taken in a

direct and in an inverse order, are the same.

Let a;«+Aa?"-'4-Ba;"-2. . . . +Sa;2-|-Ta:+V=0,
be a recurring equation ; that is, one that is satisfied by the sub-

stitution of - for a; ; this gives
X

L+^+1 . . . +?4.T+v=o,

and multiplying by af».

1+Aa?+Ca;2. . . . +S3if'-^+Tx^^+Yx''=0,
which proves the proposition.

Note.— Equations of this kind are called Recurring equations from the

forms of their coefficientSf and Reciprocal equations from the forms of their

roots.

Prop. IL A recurring equation of an odd degree has one of its

roots equal to +\, when the signs of the like coefficients are different,

hut equal to —1 , when their signs are alike.

Since every power of +1 is positive ; when the signs of the

like coefficients are different, if we substitute +1 for x, the cor-

responding terms will be equal, but of different sighs ; hence,

they will destroy each other. But when the signs of the like

coefficients are the same, then since one of them will belong to an

odd power, and the other to an even power, if we substitute —1

for X, the corresponding terms will be equal, but of different signs ,

and, therefore, they will destroy each other. Hence, in either
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case the equation will be satisfied, and may be reduced one degree
lower by dividing by x—1 , or 07+1 .

Prop. III. A recurring equation of an even degree^ in which the

like coefficients have opposite signs, and whose middle term is wanting,
is divisible by x^—\,and therefore, two of its roots are-\-l,and
—1.

Let a:2«+Aa;2"-i+Ba?2"-^ . . .
—Ba:^—-Aa;—1=0,

be an equation of the kind specified. It may evidently be

arranged thus

which is divisible by x^—1 (Art. 83).

Cor. An equation of this form may therefore be reduced two

degrees lower by division.

The most convenient method of reduction, either in this caso

or the preceding, is by means of Synthetic Division (Art.

409).

Prop. IV. Every recurring equation of an even degree above the

second, may be reduced to an equation of half that degree.

For, a;^'*—Aa;2n-i+Ba?2"-2—, &c. . . +Ba:2—Aa;+1=0, by

dividing by af*, and collecting the pairs of terms equi-distant from

the extremes, becomes of the form

(."4)-a{."-.+L^)+b(.-+^J-,&c.,=o.

Let x-\--=z, then x^-\-—=z^—2, by squaring ; also,
X x^

(x.+^)=(.^+;-).-(«+i)=(.^-2)^.-

and generally
(
^+\-

)
=

( ^-'+^ )
^-

( *""'+^j )
•

Hence, each of the binomials may be expressed in terms of z,

and the resulting equation will be of the n^^ degree.

If the signs of the terms from the beginning and end be differ-

ent, let z=x—-, and a similar result will be obtained.
X

Ex. 1. Given x*—6x^-\-Qx^Sx+l=0, to find x.

Here x^-^x+Q—^+l-^O, or ( x'+\ )
—5 f a^+l) +6=0

X x^ V a;2 / \ X /
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Let x-\--=z, then z^—5z-\-4:=0, and 2r=:4 or 1;
X

also a;+_=4, gives x=2dzj^;
X

and a:+-=l, gives a;=i(l±V-~^).X

Hence, a:=24-VF 2—^3,

2— >

^2—.

The learner may not see readily that the second of these values

is the reciprocal of the first, and the fourth of the third, wo will,

therefore, explain.

2—J3 2—V3_9 /-o

2+V3 2+V3 2—V3 ^"^

2 1—V^=3
In like manner

;

—~= o •

EXAMPLES IN RECURRING EQUATIONS.

1. a?<—10a:»+26a;2—10a:+l=0
Ans. a:=3zb2 V2", 2±V3.

2. a;4-|-5a;34-2x2+5a;+l=0.

3. a?^-—|a:5+2a?2—fa:+l=0.
Aw5. a;=2, ^ ; d=V—1.

4. a;^—3x3+3a?—1=0. Aws. a:=zhl, 2(3±V5).

5. a?5—lla;4+17a;5+17a;2~lla:+l==0^ _ _
An. ^--1 Q+V"^ 9-V^^ 3+V5 3-V5
ATI., a;--!, —3— '

"T" '

~"2~' "~2— "

6. 4a:«—24a:5+57a?*—73a:5+57a;2—24a:+4=0

Ans. x=-<J, ^, ^, J, ^
, .

BINOMIAL EQUATIONS.

Art. 443. Binomial equations are those of the form

2r±A=o.
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Let "ijA^^a ; that is, A=a".

Then i/"=t:a"==0.

Let y=ax, then a"a:"zta"=0,

or a;"dbl=0,

which is a recurring equation.

Art. 444. L— The roots of the equation

a"±l=0, are all unequal; for the first

derived polynomial nx^^\ evidently has no divisor in common
with a;"±l, and therefore there are no equal roots (Art. 414).

IL— If n be even the equation af*—1 =0, or a;"=l , has two real

roots, -f-1 and —1, and no more. That it has these two roots is

evident from Art. 442, Prop. Ill ; and that it has no other real

root is evident because no other number can by its involution pro-

duce 1.

By dividing a;"—1=0 by (x-^l)(x
—l)=x^—'l, we have

a;"-2+a:"-^+. . . . +x^+x^+l=0,
a recurring equation in which all the n—2 roots must be imag-

inary.

For example, the equation x^=l, or x^—1=0 divided by a;^—1

gives x^~\-x^-{- 1=0 ;

whence x=ztJ S—'idzJ—'^)
^

This gives for the six roots of 1

+1, _ -1,
/^l+7-^ /-^i+y-~3

-^^} 2
'

^/ 2
'

III.— If 7i be odd, the equation x^—1=0 has only one real

root, viz. : -|-1 ; for +1 is the only real number of which the odd

powers are -f-l • Dividing a;"—1=0 by x—1 , we have the recur-

ring equation

a7"-»+a;^-2+a;^-54-. . . . ^x^-^x+l=0,
of which the n—1 roots are imaginary.

For example, the equation x^=l, or x^—1=0, divided by x—1

gives x^-{-x-\-l=0 ;

whence x=^IL^^^^ZIz
2
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Hence the three third roots of 1 are

1,
—1+V—3 —l~V--3

2 2'
IV.— If n be even, the equation x'^-\-\=S), or af*=—1, has no

real root, since ^—-1 is then impossible. Hence, all the roots

of this equation are imaginary. For example, the four roots of

the equation a;''-|-l=Oj as determined by the method explained in

Art. 442, are

^l-l-jTZi ^i^JZa 1+V^, i—V^^T

V.— If n be odd, the equation a?"-|-l=0, or a;"=—1, has one

real root, viz. :
—

1, and no more, because this is the only real

number of which an odd power is —1. For example, the

equation

x^-\-l =0, divided by x-\-\ gives

a?2—a?+l=0,

whence os= V .•. the three third roots
2

of—l,are—1, l+V-~3 ^^^ l-->/-3
2 2

•

Binomial equations have other properties, but somei of them can-

not be discussed without a knowledge of Analytical Trigonometry.

For exercises the pupil may find

1 . The four fourth roots of unity.

Ans. +1,-1, +V--1» —V—1-

2. The five fifth roots of unity.

Ans, 1,

ljVB-i+V(-io-2V5)?,

|{^/5-l-^/(-10-2V5)!,

-il^/5+l+^/(-10+2V5)^

-|JV5+l-V(-10+2V5)f.

THE END.
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