

B 3025694
MACHINERY'S DATA SHEETS
REVISED AND RE-ARRANGED IN LIBRARY FORM
Reamers, Sockets, Drills
Milling Cutters
PRICE 25 CENTS
CONTENTS
Dimensions of Hand Reamers \qquad
Shell Reamers and Arbors. \qquad
Setting of Tooth-Rest for Grinding Clearance on Reamers.......... 7
Dimensions of Pipe Reamers.. . . 8
Standard Taper Pins and Reamers...................................... 9
Brown \& Sharpe Standard Sockets and Reamers........................ . 10
Morse Standard Sockets and Reamers................................... . 12
Jarno Standard Reamers.. . . . 14
Squares on Shanks of Reamers and Taps................................ 15
Centers for Reamers and Arbors... . 17
Dimensions of Twist Drills... . . 18
Table of Wire Gages.. 21
Sizes of Wire, Drill and Sheet Gages..................................... . 23
Number of Teeth and Keyways in Milling Cutters.................... 27
Dimensions of Taper Shank End Mills................................... 28
Dimensions of Shell End Mills and Arbors................................ 30
Setting Angles for Milling the Teeth in End Mills..................... . . 32
Setting Angles for Milling the Teeth in Angular Cutters.............. . 33
Dimensions of Plug and Ring Gages...................................... . 37
The Industrial Press, 49-55 Lafayette Street, New York Publishers of MACHINERY
2

MACHINERY'S DATA SHEET SERIES

COMPILED FROM MACHINERY'S MONTHLY DATA SHEETS AND ARRANGED WITH EXPLANATORY MATTER

No. 4

Reamers, Sockets, Drills and

 Milling Cutters
CONTENTS

Dimensions of Hand Reamers 4
Shell Reamers and Arbors. 6
Setting of Tooth-Rest for Grinding Clearance on Reamers 7
Dimensions of Pipe Reamers 8
Standard Taper Pins and Reamers 9
Brown \& Sharpe Standard Sockets and Reamers 10
Morse Standard Sockets and Reamers 12
Jarno Standard Reamers 14
Squares on Shanks of Reamers and Taps. 15
Centers for Reamers and Arbors 17
Dimensions of Twist Drills 18
Table of Wire Gages 21
Sizes of Wire, Drill and Sheet Gages 23
Number of Teeth and Keyways in Milling Cutters 27
Dimensions of Taper Shank End, Milis 28
Dimensions of Shell End Mills and Arbojs 30
Setting Angles for Milling the Teetir in End Mills 32
Setting Angles for Milling the 'Teeth in Agexilar' Clitters: 33
Dimensions of Plug and Ring Gages 37

In the following pages are compiled a number of concise tables relating to reamers, sockets, drills, and milling cutters, carefully selected from Machinery's monthly Data Sheets, issued as supplements to the Engineering and Railway editions of Machinery since September, 1898. A number of additional tables are also included which are published here for the first time.

In order to enhance the value of the tables, brlef explanatory notes have been provided. In these notes a complete list of references is given to articles which have appeared in Machinery, and to matter published in Machinery's Reference Series, giving additional information on the subject. These references will be of considerable value to readers who wish to make a more thorough study of the subject. In a note at the foot of each table, reference is made to the page on which the explanatory note relating to the table appears.

REAMERS, SOCKETS, DRILLS AND MILLING CUTTERS

Dimensions of Hand Reamers

On pages 4 and 5 are given dimensions for ordinary hand reamers provided with a guide of the length G. All hand reamers should be provided with a guide of this type in order to obtain a straight reamed hole. This provision is not generally made in reamers manufactured for the market, but it is of great importance in a tool expected to produce accurate work. The guide portion G at the end of the reamer is not relieved, but is left cylindrical; the flutes, of course, are cut through it in the usual manner. The amount that this pilot should be less in diameter than the reamer itself is determined by the maximum amount of metal that the reamer should be expected to remove.

While not so shown in the engraving on page 4, the diameter of the shank at the end where the square is milled should be turned down slightly below the diameter of the shank proper. The purpose of this is to prevent any burrs that may be raised on the edges of the square by the wrench by which the reamer is turned from projecting outside of the diameter of the shank. These burrs would prevent the reamer from being drawn clear through the hole reamed, or, at least, would scratch the inside of the hole when the reamer is pulled through. As seen from the table, all the reamers are made with an even number of flutes in order to facilitate the measuring of the diameter. The flutes, however, should be "broken up," that is, the cutting edges should not be equally spaced, but a slight difference in spacing of all the cutting edges
around the reamer should be introduced. This ununiformity in spacing need not be greater than two or at most three degrees, which will still permit of measuring the diameter of the reamer over two opposite cutting edges. This measurement will be nearly correct enough for all practical purposes.

The relief of the cutting edges should preferably be eccentric, that is, the land back of the cutting edge should be convex rather than flat. This makes it posstble for the reamer to hold its size longer, but an eccentrically relieved reamer should be used purely for finishing, as it cannot, with advantage, be used to remove any considerable amount of metal; for hand reamers used merely for removing stock or simply for enlarging holes, the flat relief is superior. For straight, smooth and accurate work, again, the eccentric relief is better. [Machinery, January, 1906, Hand Reamers; August and September, 1907, Reamers; May, 1910, Irregular Spacing of the Cutting Edges of Reamers.]

Shell Reamers and Arbors

Dimensions of shell reamers and arbors are given on page 6. It will be seen that one arbor can be used for a considerable number of sizes of reamers, and the material that would otherwise be used in the shank of each individual reamer is saved. The reamer has a keyway F, which fits the key on the arbor with $1 / 64$ inch play. The hole through the reamer tapers $1 / 8$ inch per foot, as shown. The tapered part of the arbor as well as the hole in the reamer must be ground after hardening to in(Continued on page 16.)

$\begin{gathered} F=\text { size } \\ \text { of Square } \end{gathered}$							
				交			$\begin{aligned} & \text { Number } \\ & \text { of } \end{aligned}$
		--b					
Diam.	$\begin{aligned} & \text { Total } \\ & \text { Length } \end{aligned}$	$\begin{aligned} & \text { Length } \\ & \text { of } \\ & \text { Flute } \end{aligned}$	$\begin{aligned} & \text { length } \\ & \text { of } \\ & \text { Shank } \end{aligned}$	$\begin{aligned} & \text { Length } \\ & \text { of } \\ & \text { squared } \\ & \text { apart } \end{aligned}$	$\begin{gathered} \text { size } \\ \text { of } \\ \text { square } \end{gathered}$	$\begin{aligned} & \text { Length } \\ & \text { of } \\ & \text { Guide } \end{aligned}$	
A	B	c	D	E	F	G	
$\frac{1}{16}$	$2{ }^{\frac{3}{16}}$	$\frac{7}{8}$	$1 / 5$	$\frac{7}{32}$	$\frac{3}{64}$	$\frac{3}{16}$	6
\%	$2{ }^{5}$	$1 \frac{18}{8}$	$1 \frac{1}{2}$	$\frac{1}{4}$	$\frac{3}{32}$	$\frac{7}{32}$	6
$\frac{3}{16}$	$3 \frac{18}{16}$	13	116	$\frac{9}{32}$	$\frac{9}{84}$	\%	6
$\frac{1}{4}$	$3 \frac{1}{2}$	15	178	$\frac{5}{16}$	$\frac{3}{16}$	$\frac{5}{16}$	6
$\frac{5}{16}$	315	18	$2 \frac{1}{16}$	$\frac{11}{32}$	$\frac{15}{64}$	$\frac{3}{8}$	6
3/8	$4 \frac{3}{8}$	$2 \frac{1}{8}$	$2{ }^{\frac{1}{4}}$	3/8	$\frac{9}{32}$	${ }_{32}^{13}$	6
$\frac{7}{16}$	416	28	$27 \frac{7}{16}$	$\frac{13}{32}$	$\frac{21}{54}$	$\frac{7}{16}$	6
$\frac{1}{2}$	$5 \frac{1}{4}$	$2{ }^{5}$	$2{ }^{\frac{5}{8}}$	$\frac{7}{16}$	3	$\frac{1}{2}$	6
$\frac{9}{16}$	$5 \frac{11}{16}$	$2 \frac{8}{8}$	$2 \frac{13}{16}$	$\frac{15}{32}$	$\frac{27}{64}$	$\frac{9}{16}$	8
$5 / 8$	$6 \frac{1}{8}$	$3 \frac{1}{8}$	3	$\frac{1}{2}$	$\frac{15}{32}$	$\frac{19}{32}$	8
$\frac{11}{16}$	$6 \frac{9}{6}$	$3 \frac{3}{8}$	$3{ }^{\frac{3}{16}}$	$\frac{17}{32}$	$\frac{33}{64}$	5/8	8
$3 / 4$	7	$3 \frac{5}{8}$	$3 \frac{3}{8}$	$\frac{9}{16}$	$\frac{9}{16}$	$\frac{11}{16}$	8
$\frac{13}{16}$	77	$3 \frac{7}{8}$	39	$\frac{19}{32}$	39	$\frac{3}{4}$	$\dot{8}$
78	$7 \frac{8}{8}$	$4 \frac{1}{8}$	$3^{\frac{3}{4}}$	$5 / 8$	$\frac{21}{32}$	$\frac{25}{32}$	8
$\frac{15}{16}$	$8 \frac{5}{16}$	48	$3 \frac{15}{16}$	$\frac{21}{32}$	$\frac{45}{64}$	$\frac{13}{16}$	8
1	8^{3}	$4 \frac{5}{8}$	$4 \frac{1}{8}$	$\frac{11}{16}$	3/4	$\overline{8}$	8
$1 \frac{1}{16}$	$9 \frac{3}{16}$	$4 \frac{7}{8}$	$4 \frac{5}{16}$	${ }_{3}^{23}$	$\frac{51}{64}$	${ }_{32}^{29}$	8
$1 \frac{18}{8}$	93	415	$4 \frac{7}{16}$	$\frac{3}{4}$	$\frac{27}{32}$	15	8
$1 \frac{3}{16}$	99	$5 \frac{1}{10}$	$4 \frac{1}{2}$	$\frac{25}{32}$	$\frac{57}{64}$	$\frac{31}{32}$	8

DIMENSIONS OF HAND REAMERS-II

Diam.	Total Length	Length flute	Length of shank	Length of squared Part	size of square	Length of Guide	Number of Flutes
A	B	C	0	E	F	G	
$1 \frac{1}{4}$	9^{3}	$5 \frac{3}{16}$	$4 \frac{9}{16}$	$\frac{13}{16}$	$\frac{15}{16}$	1	8
15	915.	$5 \frac{5}{16}$	$4 \frac{5}{8}$	$\frac{27}{32}$	${ }_{6}^{63}$	$1 \frac{1}{32}$	10
13	$10 \frac{1}{8}$	$5 \frac{3}{8}$	$4 \frac{3}{4}$	78	$1 \frac{1}{32}$	$1 \frac{1}{16}$	10
$1{ }_{16}$	$10 \frac{5}{16}$	$5 \frac{1}{2}$	$4 \frac{13}{16}$	$\frac{29}{32}$	$1 \frac{5}{64}$	$1 / \frac{3}{32}$	10
$1 \frac{1}{2}$	$10 \frac{1}{2}$	$5 \frac{5}{8}$	$4 \frac{7}{8}$	$\frac{15}{16}$	1/8	1\%	10
$1 \frac{19}{16}$	$10 \frac{11}{16}$	$5 \frac{3}{4}$	$4 \frac{15}{16}$	$\frac{31}{32}$	$1 \frac{11}{64}$	$1 \frac{5}{32}$	10
15	10\%	$5 \frac{13}{16}$	$5 \frac{1}{16}$	1	$1 \frac{7}{32}$	$1 \frac{3}{16}$	10
111	$11 / 16$	$5 \frac{15}{16}$	$5 \frac{1}{8}$	$1 \frac{1}{32}$	$1 \frac{17}{64}$	$1 \frac{7}{32}$	10
13	$11 \frac{1}{4}$	$6 \frac{1}{16}$	$5 \frac{3}{16}$	116	15	1/4	10
$1{ }^{13}$	$11 / 15$	$6 \frac{3}{16}$	$5 \frac{1}{4}$	$13 \frac{3}{32}$	123	$1 \frac{9}{32}$	12
18	115	$6 \frac{1}{4}$	$5 \frac{3}{8}$	$1 / 8$	138	15	12
$1 \frac{15}{16}$	1116	$6 \frac{3}{8}$	$5 \frac{7}{16}$	138	129	131	12
2	12	$6 \frac{1}{2}$	$5 \frac{1}{2}$	$1 \frac{3}{16}$	$1 \frac{1}{2}$	13	12
$2 \frac{1}{8}$	1238	$6 \frac{11}{16}$	$5 \frac{11}{16}$	$1 / 4$	$1 \frac{19}{32}$	i/16	12
$2 \frac{1}{4}$	$12^{\frac{3}{4}}$	615	$5 \frac{13}{16}$	15	111	$1 \frac{1}{2}$	12
$2{ }^{3} 8$	$13 \frac{18}{8}$	$7 \frac{1}{8}$	6	18	$1 \frac{25}{32}$	19	14
$2 \frac{1}{2}$	$13 \frac{1}{2}$	$7 \frac{3}{8}$	$6 \frac{18}{8}$	$1 \frac{7}{16}$	178	15	14
258	1378	79	$6 \frac{5}{16}$	$1 \frac{1}{2}$	132	116	14
$2 \frac{3}{4}$	$14 \frac{1}{4}$	$7 \frac{13}{16}$	$6 \frac{7}{16}$	$1 \frac{9}{16}$	$2 \frac{1}{16}$	13	14
27	$14 \frac{5}{8}$	8	65	15	$2 \frac{5}{32}$	$1 \frac{13}{16}$	16
3	15	$8 \frac{1}{4}$	$6 \frac{3}{4}$	$11 / 1$	$2 \frac{1}{4}$	17	16
318	$15 \frac{3}{8}$	$81 / 6$	$6 \frac{15}{16}$	13	$2 \frac{11}{32}$. 115	16
$3 \frac{1}{4}$	$15 \frac{3}{4}$	8110	$7 \frac{1}{16}$	$1 \frac{13}{16}$	$2 \frac{7}{16}$	2	18
$3 \frac{3}{8}$	$16 \frac{1}{8}$	$8 \frac{7}{8}$	$7 \frac{1}{4}$	178	$2 \frac{17}{32}$	$2 \frac{1}{16}$	18
$3 \frac{1}{2}$	$16 \frac{1}{2}$	9\%88	$7 \frac{3}{8}$	$1{ }^{15}$	258	218	18
$3 \frac{5}{8}$	16%	$9 \frac{5}{16}$	$7 \frac{9}{16}$	2	$2{ }^{23}$	$2 \frac{3}{16}$	18
$3 \frac{3}{4}$	17\%	$9 \frac{9}{10}$	7119	$2 \frac{1}{16}$	$2 \frac{13}{16}$	$2 \frac{1}{4}$	18
378	$17 \frac{5}{8}$	$9 \frac{3}{4}$	7%	$2 \frac{1}{8}$	$2 \frac{29}{32}$	$2 \frac{5}{16}$	20
4	18	10	8	$2 \frac{3}{16}$	3	$2 \frac{3}{8}$	20

SHELL REAMERS AND ARBORS

Dimensions of Shell Reamers.								
Diam. of Reamers	Diam. of Hole, Large End	Total Length	Length of Turneddown Portion	Length of Flutes	width of Keyway	Depth of Keyway	Constant for finding Diam. of Recess	Number of Flutes
A	B	C	D	E	F	G	A-H	
1/4-5/16	$1 / 8$	1/2	$3 / 8$	$1 / 8$	\%/16	$1 / 8$	0.006	6
$11 / 32-7 / 6$	3/16	$13 / 4$	$3 / 8$	$13 / 8$	3/32	1/8	0.006	6
15/32-9/16	$1 / 4$	2	$1 / 2$	$1 / 2$	764	5/32	$1 / 64$	8
$1932-11 / 6$	$3 / 8$	2/4	1/2	134	964	3/16	$1 / 64$	8
$23 / 32-15 / 16$	$1 / 2$	21/2	1/2	2	1164	$1 / 4$	1/32	10
$31 / 32-1 / 4$	$5 / 8$	$2 \frac{3}{4}$	$5 / 8$	21/8	$13 / 64$	1/4	1/6	10
$1932-158$	$3 / 4$	3.	$5 / 8$	$2 \frac{3}{8}$	$1 / 4$	5/6	$1 / 8$	12
$1^{21 / 32-2}$	1	$31 / 2$	$5 / 8$	278	$1 / 4$	5/16	$1 / 8$	12
$2 \frac{132-2 \frac{1}{2}}{}$	$1 / 4$	$3 \frac{3}{4}$	3/4	3	5/6	$3 / 8$	$1 / 8$	14
2/732-3.	$1 \frac{1}{2}$	4	$3 / 4$	$3 \frac{1}{4}$	5/16	$3 / 8$	1/8	14
31/32-3/2	13	$4 \frac{1}{2}$	1	$31 / 2$	5/16	$3 / 8$	$1 / 8$	16
$3{ }^{1 / 32} 32$	2	5	1	4	5/16	$3 / 8$	1/8	16
$4 \frac{1}{32}-4 / 2$	2/4	$5 \frac{1}{2}$	1	$4 \frac{1}{2}$	5/16	3/8	1/8	18
$4^{\prime / 3} 32-5$	$2 \frac{1 / 2}{}$	6	1	5	5/16	3/8	1/8	18
Arbors for Shell Reamers.								
F, G and H are given in Table above.								
Diam. at size Line	Length from size Line to End of Arbor	Total Length	$\begin{gathered} \text { Diam.at } \\ \text { Size } \\ \text { Line } \end{gathered}$	Length from size Line to End of Arbor	Total Length	Diam. af size Line	Length from size Line to End of Arbor	Total Length
K	L	M	K	L	M	K	L	M
1/8	1/2	6	5/8	$2 \frac{3}{4}$	10	13	4/2	15
3/16	13	7	$3 / 4$	3	$1 /$	2	5	16
1/4	2	8		31/2	12	$2 \frac{1}{4}$	$5 \frac{1}{2}$	17
$3 / 8$	2/4	9	$1 \frac{1}{4}$	$3 \frac{3}{4}$	13	$2 \frac{1}{2}$	6	18
1/2	$21 / 2$	91/2	1/2	4	14			

SETTING OF TOOTH-REST FOR GRINDING CLEARANCE ON REAMERS

$\begin{aligned} & x \\ & 0 \\ & 0 \\ & N \\ & \text { N } \\ & \text { b } \\ & 0 \end{aligned}$	Hand Reamer for: Steel Cutting Cleari ance Land 0.006" wide		II Hand Reamer tor Cast Iron and Bronze. Cutfing Clearance tand. $0.025^{\prime \prime}$ wide		III Chucking Reamer for Cast Iron and Bronze. Cutting Clearance Land $0.025^{\prime \prime}$ wide		IV Rose Chucking Reamers for steel, Clircular Ground
	For Cutting Clearance	For. Second. Clearance	For Cuifting Clearance	For second Cleararice	For Cutting Clearance	For second Clearance	For Cutting Clearance on Angular Edge at End
	0.012	0.052	0.032	0.072	0.040	0.080	0.080
	0.012	$0: 062$	0.032	0.072	0.040	0.090	0.090
$3 / 4$	0.012	0.072	0.035	0.095	0.040	0.100	0.100
$7 / 8$	0.012	0.082	0.040	0.120	0.045	0.125	0.125
1	0.012	0.092	0.040	0.120	0.045	0.125	0.125
18	0.012	0.102	0.040	0.120	$0.04,5$	0.125	0.125
$1 \frac{1}{4}$	0.012	0.112	0.045	0.145	0.050	0.160	0.160
138	0.0 .12	0.122	0.045	0.1 .45	0.050	0.160	0.175
$1 / 2$	0.012	. 0.132	0.048	0.168	0.055	0.175	0.175
$13 / 8$	0.012	0.142	$0.05{ }^{\circ}$	0.170	0.060	0200	0.200
$13 / 4$	0.012	0.152	0.052	0.192	$: 0.060$.	0.200	0.200
178	0.012	0.162	0.056	0.196	0.060	0.200	0.200
2	0.012	0.172	0.056	0.216	.0.064	0.224	0.225
$2 \frac{1}{8}$	0.012	0.172	0.059	$0.2 / 9$	0.064	0.224	0.225
$2 \frac{1}{4}$	0.012	0.172	0.063	0.223	0.064	0.224	0.225
$23 / 8$	$0.0 \% 2$	0.172	0.063	0.223	0.068	0.228	0.230
$2 \frac{1}{2}$	0.012	$0.172 \ldots$	0.065	0.225	0.072	0.232	0.230
25/8	0.012	0.172	0.065	0.225	0.075	0.235	0.235
$23 / 4$	0.012	0.1 .72	0.065	0.225	0.0 .77	0.237	0.240
$27 / 8$	0.012	0.172	0.070	0.230	0.08 .0	0.240	0.240
3	0.012	0.172	0.072	0.232	0.0880	0.240	0.240
$3 \frac{1}{8}$	0.012	0.172	0.075	0.235	0.083	0.240	0.240
$31 / 4$	0.012	0.172	0.078	0.238	0.083	0.243	0.245
3.8	0.012	0.172	0.081	0.241	0.087	0.247	0.245
$3 \frac{1}{2}$	0.012	0.172	0.084	0.244	0.090	0.250	0.250
$3 \frac{5}{8}$	0.012	0.172	0.087	0.247	0.093	0.253	0.250
$3 \frac{3}{4}$	0.012	0.172	0.090	0.250	0.097	0.257	0.255
378	0.012	0.172	0.093	0.253	0.100	0.260	0.255
4	0.012	0.172	0.096	0.256	0.104°	0.264	0.260
$4 \frac{1}{8}$	0.012	0.172	0.096	0.256	0.104	0.264	0.260
41/4	0.012	0.172	0.096	0.256	0.106	0.266	0.265
$43 / 8$	0.01 .2	0.172	0.096	0.256	0.108	0.268	0.265
$4 \frac{1}{2}$	0.012	0.172	0.100	0.260	0.108	0.268	0.265
$4 \frac{5}{8}$	0.012	0.172	0.100	0.260	0.110	0.270	0.270
$43 / 4$	0.012	0.172	0.104	0.264	0.1 .14	0.274	0.275
$47 / 8$	0.012	0.172	0.106	0.266	0.116	0.276	0.275
5	0.012	0.172	0.11 .0	0.270	$0.1 / 8$	0.278	0.275

DIMENSIONS OF PIPE REAMERS

($\begin{gathered}\mathrm{H}=\text { Size } \\ \text { of Square }\end{gathered}$									
					-	-	-		
						\%	-		
				---	-F-				
$\begin{aligned} & \text { Pipe } \\ & \text { Size } \end{aligned}$	Diam.			Length	Length	$\begin{aligned} & \text { Total } \\ & \text { Length } \end{aligned}$	$\begin{aligned} & \text { Length } \\ & \text { Square } \end{aligned}$	$\begin{gathered} \text { size } \\ \text { sof } \\ \text { square } \end{gathered}$	$\begin{aligned} & \text { Number } \\ & \text { Filutes } \end{aligned}$
	Line	Line to small	Shank	Fluted Part	Shank				
	A	B	c						
$\frac{1}{8}$	0.343	$\frac{25}{64}$	$\frac{11}{32}$	1	18	$2 \frac{5}{8}$	$\frac{1}{2}$	年	6
$\frac{1}{4}$	0.447	$\frac{9}{16}$	$\frac{7}{16}$	1/8	138	$2 \frac{7}{8}$	$\frac{9}{16}$	$\frac{5}{16}$	6
$\frac{3}{8}$	0.582	$\frac{9}{16}$	$\frac{9}{16}$	去	1\%	$3 \frac{18}{8}$	5/8	$\frac{7}{16}$	σ
$\frac{1}{2}$	0.721	$\frac{3}{4}$	$\frac{3}{4}$	$1 \frac{1}{2}$	2	$3 \frac{1}{2}$	$\frac{11}{16}$	$\frac{9}{16}$	8
$\frac{3}{4}$	0.931	$3 / 4$	$\frac{15}{16}$	158	$2 \frac{1}{4}$	$3 \frac{7}{8}$	$\frac{3}{4}$. 116	8
,	1.170	$\frac{15}{16}$	1/8	13	$2 \frac{1}{2}$	$4 \frac{1}{4}$	$\frac{13}{16}$	$\frac{13}{16}$	10
, 4	1.515	$\frac{31}{32}$	$1 / 5$	188	$2^{\frac{3}{4}}$	$4 \frac{5}{8}$	1	1	10
$1 \frac{1}{2}$	1.755	1	$1 \frac{1}{2}$	2	3	5	188	1/8	12
2	2.230	1	1\%8	$2 \frac{1}{4}$	$3 \frac{1}{2}$	$5 \frac{3}{4}$	138	138	12
$2 \frac{1}{2}$	2.667	$1 \frac{1}{2}$	$2{ }^{\frac{1}{4}}$	$2 \frac{7}{8}$	4	678	116	116	14
3	3.292	19	$2{ }^{\frac{5}{8}}$	$3 \frac{1}{4}$	$4 \frac{1}{2}$	$7 \frac{3}{4}$	$1 / 15$	170	14
$3 \frac{1}{2}$	3.792	15	$2 \frac{13}{16}$	$3 \frac{5}{8}$	$4 \frac{9}{10}$	$8 \frac{3}{16}$	$2 \frac{1}{8}$	$2 \frac{1}{8}$	16
4	4.292	116	3	$3 \frac{3}{4}$	$4 \frac{5}{8}$	88	$2 \frac{1}{4}$	$2 \frac{1}{4}$	18

STANDARD TAPER PINS AND REAMERS

DIMENSIONS OF BROWN \＆SHARPE STANDARD TAPERS

BROWN \＆SHARPE STANDARD TAPERS．										
						Length of Keyway．	Length of Tongue．			
	D	A	P	H	K	L	T	t	w	
1	． 20	． 239	9	$1 \frac{1}{16}$	$\frac{18}{18}$	8	$\frac{8}{16}$	$\frac{1}{8}$.135	． 500
2	． 25	． 299	9 1 $\frac{8}{16}$	115 $\frac{5}{16}$	111	$\frac{1}{2}$	4	$\frac{5}{82}$	． 166	． 500
3	． 312	． 385	5 1寊	17	$1 \frac{28}{88}$	$\frac{5}{8}$	$\frac{5}{16}$	$\frac{8}{18}$	． 197	． 500
3	． 312	． 395	5	218	$1 \frac{21}{\frac{1}{2}}$	$\frac{5}{8}$	$\frac{5}{16}$	$\frac{8}{16}$	． 197	． 500
4	． 35	． 402	2 1	1 \％	1184	$\frac{11}{18}$	$\frac{11}{81}$	$\frac{7}{88}$	． 228	． 500
5	． 45	． 523	3 1星	17	$1 \frac{11}{18}$	龧	8	$\frac{1}{4}$	． 260	． 500
6	． 50	． 599	9 2\％	$2 \frac{1}{2}$	$2 \frac{19}{64}$	$\frac{4}{8}$	$\frac{7}{16}$	$\frac{9}{82}$	． 291	． 500
6	． 50	． 635	5 3t	－ 3 年	311	$\frac{7}{8}$	$\frac{7}{16}$	$\frac{9}{88}$	． 291	． 500
7	． 60	． 725	53	$3 \frac{1}{8}$	$2 \frac{29}{88}$	$\frac{18}{18}$	$\frac{18}{18}$	$\frac{8}{18}$	． 322	． 500
7	． 60	． 766	6 4	$4 \frac{1}{8}$	3登	$\frac{18}{18}$	$\frac{15}{8}{ }^{5}$	$\frac{5}{16}$	． 322	． 500
8	． 75	． 898	8 39 ${ }^{\frac{9}{16}}$	$31 \frac{1}{6}$	$3{ }^{\frac{8}{64}}$	1	$\frac{1}{2}$	$\frac{11}{8}$	． 353	． 500
9	． 90	1.066	6 －	$4 \frac{1}{8}$	3 y	$1 \frac{1}{8}$	$\frac{9}{16}$	8	． 385	． 500
10	1.0446	1.260	5	$5 \frac{1}{8}$	$4 \frac{27}{83}$	18 $\frac{8}{16}$		$\frac{7}{16}$	． 447	． 5161
10	1.0446	1.289	$95 \frac{11}{18}$	$5 \frac{18}{18}$	$5 \frac{17}{88}$		$\frac{21}{81}$	$\frac{7}{16}$	． 447	． 5161
10	1.0446	1.312	2 67	$6 \frac{11}{8} \frac{1}{2}$	$6 \frac{1}{16}$	$1{ }^{\frac{5}{8}}$	$\frac{81}{88}$	$\frac{7}{18}$	． 447	． 5161
11	1.25	1.531	1 6量	6 \％	$6 \frac{1}{8} \frac{8}{2}$	$1 \frac{5}{16}$	$\frac{21}{82}$	$\frac{7}{16}$	． 447	． 500
12	1.50	1.796	6 7 7	71	$6 \frac{1}{1} \frac{6}{6}$	$1 \frac{1}{2}$	4	$\frac{1}{2}$	． 510	． 500

REAMERS FOR BROWN \& SHARPE STANDARD TAPER SOCKETS

| | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

DIMENSIONS OF MORSE TAPER SOCKETS

Dimensions of R.Reamers for Morse Standard Tapers.								Dimensions of Reamers for Jarno Tapers.								
			Finish	$--A$ hing Rea				No. of Jarno	Total Length of		Length of	Diam. at Small End,	Diam.at Small End,	Number of		
No. of Morse Standara Taper	Total Length Length of of Cutting Reamer Edges		Length of Shank	Diam. at Diam.at Small Small End, End, Finishing Roughing Reamer Reamer		Taper per foot	Number of Flutes	Taper	Reamer	Edge	C	Reamer	Roughing Reamer	Flutes		
			2			$2 \frac{5}{8}$		$13 / 8$	$1 \frac{1}{4}$	0.200	0.190	4				
			3			31/2		2	$11 / 2$	0.300	0.290	6				
	A	B		C	D			- E		4	$43 / 5$	$25 / 8$	13	0.400	0.390	6
0	4	$2 \frac{1}{2}$		$1 \frac{1}{2}$	0.252		0.242	0.625	6	5	$5 \frac{1}{4}$	$3 \frac{1}{4}$	2	0.500	0.490	8
			6			$57 / 8$				$3 \frac{3}{4}$	21/8	0.600	0.590	8		
1	$4 \frac{5}{8}$	$2 \frac{3}{4}$	178	0.369	0.359	0.600	6	7	61/2	$4 \frac{1}{4}$	$2 \frac{1}{4}$	0.700	0.690	8		
								8	$73 / 8$	478	21/2	0.800	0.790	8		
2	$5 \frac{1}{2}$	$3 \frac{1}{4}$	$2 \frac{1}{4}$	0.572	0.562	0.602	8	9	81/8	$5 \frac{3}{8}$	$23 / 4$	0.900	0.890	8		
								10	$87 / 8$	6	278	1.000	0.990	8		
3	$6 \frac{5}{8}$	4	$25 / 8$	0.778	0.768	0.602	8	11	91/2	$6 \frac{12}{2}$	3	1.100	1.090	10		
								12	101/8	7	3/8	1.200	1.190	10		
4	8	5	3	1.020	1.010	0.623	8	13	$10 \frac{3}{4}$	71/2	$3 \frac{1}{4}$	1.300	1. 290	10		
								14	$113 / 8$	8	33/8	1.400	1.390	10		
5	$9 \frac{1}{2}$	$6 \frac{1}{8}$	$3 \frac{3}{8}$	1.475	1.465	0.630	10	15	12	$81 / 2$	312	1.500	1.490	10		
								16	$125 / 8$	9	$35 / 8$	1.600	1.590	12		
6	12	$8 \frac{1}{4}$	3年	2.116	2.106	0.626	14	17	$13 \frac{3}{8}$	95/8	$3 \frac{3}{4}$	1.700	1.690	12		
								18	14	$10 \frac{1}{8}$	378	1.800	1.790	12		
7	15	$1 /$	4	2.750	2.740	0.625	16	19	14%	105/8	4	1.900	1.890	14		
								20	$15^{\frac{1}{4}}$	$11 \frac{18}{8}$	4/8	2.000	1.990	14		

SQUARES ON SHANKS OF REAMERS AND TAPS
Sizes of Squares of Tools Corresponding to certain Shank Diameters

$\begin{aligned} & \text { Diam.of } \\ & \text { Shank } \end{aligned}$	square	biam of Shank	square	$\begin{aligned} & \text { Piam.of } \\ & \text { Shank } \end{aligned}$	square	$\begin{aligned} & \text { Diam. of } \\ & \text { shank } \end{aligned}$	square	$\begin{aligned} & \text { Diam.of } \\ & \text { shank } \end{aligned}$	Square	$\begin{aligned} & \text { Diam.of } \\ & \text { shank } \end{aligned}$	square	$\begin{aligned} & \text { Diam. of } \\ & \text { Shank } \end{aligned}$	square
D	5	D	5	0	5	D	5	D	5	D	5	D	5
$\frac{1}{16}$	$\frac{3}{64}$	$\frac{27}{64}$	$\frac{5}{16}$	$\frac{25}{32}$	$\frac{19}{32}$	194	$\frac{55}{64}$	$1 \frac{1}{2}$	1/8	$2 \frac{7}{32}$	143	$2 \frac{15}{16}$	$2 \frac{13}{64}$
$\frac{5}{64}$	$\frac{1}{16}$	$\frac{7}{16}$	$\frac{21}{64}$	$\frac{51}{64}$	$\frac{19}{32}$	$1 \frac{5}{32}$	78	$1 \frac{17}{32}$	$1 \frac{5}{32}$	$2 \frac{1}{4}$	1116	$2 \frac{31}{52}$	$2 \frac{15}{64}$
$\frac{3}{32}$	$\frac{5}{64}$	$\frac{29}{64}$	$\frac{11}{32}$	$\frac{13}{16}$	$\begin{aligned} & 39 \\ & 64 \end{aligned}$	$11 /$	$\frac{7}{8}$	19	$1 \frac{11}{64}$	$2 \frac{9}{32}$	$1 \frac{23}{32}$	3	$2 \frac{1}{4}$
$\frac{7}{64}$	$\frac{5}{64}$	$\frac{15}{32}$	$\frac{23}{64}$	$\frac{53}{64}$	5	$1 \frac{3}{16}$	$\frac{57}{64}$	1900	$1 \frac{13}{64}$	$2 \frac{5}{16}$	147	$3 \frac{1}{32}$	$2 \frac{9}{32}$
$\frac{1}{8}$	$\frac{3}{32}$	$\frac{31}{64}$	$\frac{23}{64}$	$\frac{27}{32}$	$\frac{41}{64}$	$1 \frac{13}{64}$	$\frac{29}{32}$	15	$1 \frac{7}{32}$	$2 \frac{11}{32}$	149	$3 \frac{1}{16}$	$2 \frac{19}{64}$
9	$\frac{7}{64}$	$\frac{1}{2}$	3	$\frac{55}{64}$	$\frac{41}{64}$	$1 \frac{7}{32}$	$\frac{59}{64}$	$1 \frac{21}{32}$	1年	$2 \frac{3}{8}$	$1{ }^{\frac{25}{32}}$	$3 \frac{3}{32}$	$2 \frac{21}{64}$
$\frac{5}{32}$	$\frac{1}{8}$	$\frac{33}{64}$	$\frac{25}{64}$	78	$\frac{21}{32}$	$1 \frac{15}{64}$	$\frac{59}{64}$	1116	$1 \frac{17}{64}$	$2 \frac{13}{32}$	$1 \frac{13}{16}$	3\%	$2 \frac{11}{32}$
$\frac{11}{64}$	$\frac{18}{8}$	$\frac{17}{32}$	$\frac{13}{32}$	$\frac{57}{64}$	43	$1 \frac{1}{4}$	$\frac{15}{16}$	$1{ }^{\frac{25}{32}}$	$1 \frac{19}{64}$	276	153	$3 \frac{5}{32}$	$2 \frac{3}{8}$
$\frac{3}{16}$	$\frac{9}{64}$	$\frac{35}{64}$	$\frac{13}{32}$	$\frac{29}{32}$	$\frac{11}{16}$	$1 \frac{17}{64}$	$\frac{61}{64}$	$1 \frac{3}{4}$	$1 \frac{5}{16}$	$2 \frac{15}{32}$	155	$3 \frac{3}{16}$	225
$\frac{13}{64}$	$\frac{5}{32}$	$\frac{9}{16}$	$\frac{27}{64}$	$\frac{59}{64}$	$\frac{11}{16}$	19	$\frac{31}{32}$	125	$1 \frac{11}{32}$	$2 \frac{1}{2}$	$1 \frac{7}{8}$	$3 \frac{7}{32}$	$2 \frac{27}{64}$
$\frac{7}{32}$	$\frac{11}{64}$	$\frac{37}{64}$	$\frac{7}{16}$	$\frac{15}{16}$	$\frac{45}{64}$	$1 \frac{19}{64}$	$\frac{31}{52}$	$1 \frac{13}{16}$	$1 \frac{23}{64}$	$2 \frac{17}{32}$	$1 \frac{29}{32}$	3 年	$2 \frac{7}{16}$
$\frac{15}{64}$	$\frac{11}{64}$	$\frac{19}{32}$	$\frac{29}{64}$	$\frac{61}{64}$	$\frac{23}{52}$	15	$\frac{63}{64}$	$1 \frac{27}{32}$	125	$2 \frac{9}{16}$	159	$3 \frac{5}{16}$	$23 \frac{31}{64}$
$\frac{1}{4}$	$\frac{3}{16}$	$\frac{39}{64}$	$-\frac{29}{64}$	$\frac{31}{32}$	$\frac{47}{64}$	$1 \frac{21}{64}$	1	1\%	$1 \frac{13}{32}$	$2 \frac{19}{32}$	$1 \frac{61}{64}$	33	$2 \frac{17}{32}$
$\frac{17}{64}$	$\frac{13}{64}$	5	$\frac{15}{32}$	$\frac{63}{64}$	$\frac{47}{64}$	111	$1 \frac{1}{64}$	129	$1 \frac{7}{16}$	25	$1 \frac{31}{32}$	$3 \frac{7}{16}$	$2 \frac{37}{64}$
$\frac{9}{32}$	$\frac{7}{32}$	$\frac{41}{64}$	$\frac{31}{64}$	1	3	$1 \frac{23}{64}$	$1 \frac{1}{64}$	$1 \frac{15}{16}$	$1 \frac{29}{64}$	$2 \frac{21}{32}$	2	$3 \frac{1}{2}$	25
$\frac{19}{64}$	$\frac{7}{32}$	$\frac{21}{32}$	$\frac{1}{2}$	$1 \frac{1}{64}$	$\frac{49}{64}$	$1 \frac{3}{8}$	$1 \frac{1}{32}$	131	$1 \frac{31}{6.4}$	$2 \frac{11}{16}$	$2 \frac{1}{64}$	$3 \frac{1}{16}$	285
$\frac{5}{16}$	$\frac{15}{64}$	43	$\frac{1}{2}$	$1 \frac{1}{32}$	$\frac{25}{32}$	$1 \frac{25}{64}$	$1 \frac{3}{64}$	2	$1 \frac{1}{2}$	$22^{\frac{23}{35}}$	$2 \frac{3}{64}$	35	$2 \frac{23}{32}$
$\frac{21}{64}$	$\frac{1}{4}$	$\frac{11}{16}$	$\frac{33}{64}$	$1 \frac{3}{64}$	$\frac{25}{52}$	$1 \frac{13}{52}$	$1 \frac{1}{16}$	$2 \frac{1}{32}$	$1 \frac{17}{32}$	$2 \frac{3}{4}$	$2 \frac{1}{16}$	3118	249
$\frac{11}{32}$	$\frac{17}{64}$	$\frac{45}{64}$	$\frac{17}{32}$	$1 / 16$	$\frac{51}{64}$	$1 \frac{27}{64}$	$1 \frac{1}{16}$	$2 \frac{1}{16}$	$1, \frac{35}{64}$	$2 \frac{25}{32}$	$2 \frac{3}{32}$	$3 \frac{3}{4}$	$2 \frac{13}{16}$
$\frac{23}{64}$	$\frac{17}{64}$	$\frac{23}{32}$	$\frac{35}{64}$	$1 \frac{5}{64}$	$\frac{13}{16}$	$1 \frac{7}{16}$	$1 \frac{5}{64}$	$2 \frac{3}{32}$	$1 \frac{37}{64}$	$2 \frac{13}{16}$	$2 \frac{7}{64}$	$3 \frac{13}{16}$	25.5
38	$\frac{9}{32}$	$\frac{47}{64}$	$\frac{35}{64}$	$1 \frac{3}{32}$	$\frac{53}{64}$	$1 \frac{29}{64}$	$13 \frac{3}{32}$	2\%	$1 \frac{19}{32}$	$2 \frac{27}{32}$	298	$3 \frac{7}{8}$	$2 \frac{29}{32}$
$\frac{25}{64}$	$\frac{19}{64}$	3	$\frac{9}{16}$	$1 \frac{7}{64}$	$\frac{53}{64}$	$1 \frac{15}{32}$	$1 \frac{7}{64}$	$2 \frac{5}{32}$	$1 \frac{5}{8}$	$2 \frac{7}{8}$	2^{25}	$3 \frac{15}{16}$	$2 \frac{61}{64}$
$\frac{13}{32}$	$\frac{5}{16}$	$\frac{49}{64}$	$\frac{37}{64}$	1/8	$\frac{27}{52}$	$1 \frac{31}{64}$	$1 \frac{7}{64}$	$2 \frac{3}{16}$	141	$2 \frac{29}{32}$	$2 \frac{3}{16}$	4	3

sure that the reamer will run true. Referring to the use of the table, it will be seen that in the second column from the right a heading "Constant for finding diameter of recess" is given, the recess being the portion D at the end of the reamer which is turned down below the diameter over the cutting edges. The diameter H is a certain amount less than the diameter A of the reamer, according to the size, and the amount which H is less than A is given in the column referred to. For example, if A is 1 inch, then, according to the table, $A-H$ is $1 / 16$ inch, and hence H is 15/16 inch. In other words, the constant given in this table is subtracted from the diameter of the reamer in order to obtain the diameter of the turned down portion.

The arbor used for driving shell reamers consists of a stem or arbor provided with a collar which is fastened to the arbor by means of a taper pin, as shown. The collar is provided with a key, as already mentioned, which engages into the keyway of the reamer. Precaution must be taken in milling this key or tongue so that it will be exactly in the center of the collar. The same care must, of course, be used when milling the keyway in the mill, which must be exactly in the center in order that the key and keyway may fit properly together. When grinding the outside of the reamer to size it should preferably be ground on an arbor similar to that on which it is to be used. At the front end the corners are slightly rounded as shown. The arbors and driving collars should preferably be made of tool steel and the collars should be hardened. The end of the arbor is provided with a small fiat milled on the shank for the set-screws by which it is clamped in a tool-holder. [MACHINERY, October, 1907, Reamers.]

Clearance for Reamers

The table on page 7 will be found useful when grinding the clearance on
hand and chucking reamers of various sizes. These clearances were decided upon as giving the best results by experiments extending over a period of over a year, undertaken by the Cincinnati Milling Machine Co., Cincinnati, Ohio. The clearance is ground with a cup wheel three inches in diameter. The figures in the body of the table give the amount in inches which the work-holding centers should be above the toothrest.

In the cases marked I, II, and III the tooth-rest is mounted on the emery wheel head and should be set centrally with the emery wheel spindle. In the case marked IV the tooth-rest is mounted on the table of the machine. By setting the tooth-rest and the work-holding centers as called for by this table the reamers will be provided with clearance of such an amount as to ream the greatest number of smooth holes with the minimum amount of wear. It will be seen that in the table two columns of dimensions for setting the work-holding centers above the tooth-rest, are given for each class of reamer specified, except for the rose chucking reamers. The first of these columns is headed "For cutting clearance," and the second, "For second clearance." The first clearance is that on the actual land of the reamer, while the second clearance is that back of the cutting land. The chucking reamers for cast iron or bronze have 23 -degree beveled ends, and are provided with two clearances along the blades, the same as the hand reamers, but the beveled ends have only one clearance, which is ground by setting the work-holding centers to the figures in the second column under III. Chucking reamers for reaming steel are ground circular to the exact size of the hole to be reamed, and the 45 -degree beveled ends only have clearance, the setting for the grinding of which is given in the table under IV. [MAchinery, June, 1904, Reamer Clearances.]

DIMENSIONS OF CENTERS FOR REAMERS AND ARBORS

CENTERS FOR REAMERS AND ARBORS.

Formulas:

$$
\text { Arbors to } 1^{\prime \prime} \text { diam. : } B=\frac{1}{2} A ; C=\frac{1}{5} A ; D=\frac{8}{5} A ;
$$

Arbors from $11 / 8^{\prime \prime}$ diam. to $5^{\prime \prime}$ diam. $: B=\frac{1}{2}+\frac{A-1}{8} ; C=.2+\frac{A-1}{20} ; D=.6+\frac{A-1}{6}$.
APPROXIMATE VALUES FOR PRACTICAL USE.

$\stackrel{A}{\text { Dlam. of }}$ Arbor.	B Largest Dlam. of Center.	C No. of Drill.	Depth of Hole.	A Dlam. of Arbor.	B Largest Dlam. of Center.	C Letter of Drill.	D Depth of Hole.
\pm	$\frac{1}{8}$	55	$\frac{8}{82}$	27	$\frac{21}{82}$	G	$\frac{18}{18}$
- $\frac{5}{16}$	$\frac{5}{38}$	52	${ }^{8} 8$	$2 \frac{8}{8}$	$\frac{4}{8} \frac{8}{4}$	H	$\frac{87}{87}$
$\frac{8}{8}$	$\frac{8}{16}$	48	$\frac{9}{32}$	$2 \frac{1}{2}$	$\frac{11}{16}$	J	$\frac{87}{82}$
${ }^{3} 8$	$\frac{7}{88}$	43	\pm	2 咸	$\frac{45}{4}$	K	$\frac{1}{8}$
$\frac{1}{8}$	$\frac{1}{4}$	39	$\frac{5}{16}$	28	$\frac{98}{88}$	L	$\frac{88}{88}$
$\frac{2}{16}$	${ }^{\frac{8}{88}}$	33	$\frac{11}{32}$	27	$\frac{47}{84}$	M	$\frac{89}{38}$
5	$\frac{8}{16}$	30	$\frac{8}{8}$	3	8	N	${ }_{1}^{15}$
$\frac{11}{18}$	$\frac{11}{81}$	29	$\frac{18}{88}$	31	$4 \frac{4}{4}$	N	$\frac{81}{88}$
4	${ }_{8}^{8}$	25	$\frac{7}{16}$	$3 \frac{1}{4}$	$\frac{85}{38}$	0	$\frac{8}{81}$
$\frac{1}{1} \frac{8}{8}$	$\frac{18}{3} \frac{3}{8}$	20	1	$3 \frac{3}{8}$	$\frac{51}{64}$	O	1
${ }_{8}$	$\frac{7}{16}$	17	$\frac{17}{82}$	$3 \frac{1}{8}$	$\frac{1}{18}$	P	1
$\frac{1}{15}$	$\frac{18}{8 \frac{1}{2}}$	12	${ }^{9} 8$	3 3	88 84 88	Q	$1{ }_{16}^{16}$
1	$\frac{1}{2}$	8	$\frac{1}{8} \frac{1}{2}$	$3 \frac{8}{4}$	$\frac{87}{82}$	R	$1 \frac{1}{16}$
$1 \frac{1}{8}$	$\frac{88}{64}$	5	-	$3 \frac{7}{8}$	${ }^{\frac{85}{65}}$	R	11/6
$1 \frac{1}{4}$	$\frac{17}{82}$	3	$\frac{21}{82}$	4	$\frac{9}{8}$	S	$1 \frac{1}{8}$
$1 \frac{8}{8}$	$\frac{88}{68}$	2	$\frac{21}{8 \frac{1}{2}}$	$4 \frac{1}{8}$	$\frac{8}{67}$	T	118
$1 \frac{1}{8}$	$\frac{9}{18}$	1	$\frac{11}{18}$	$4 \frac{1}{4}$	$\frac{99}{88}$	T	$1 \frac{18}{8}$
		Letter.		4 용	$\frac{59}{64}$	U	$1 \frac{8}{16}$
15	$\frac{87}{64}$	A	$\frac{28}{88}$	$4 \frac{1}{2}$	$\frac{18}{16}$	V	$1 \frac{8}{18}$
$1{ }^{\frac{8}{4}}$	$\frac{1}{8} \frac{19}{2}$	B		$4 \frac{5}{8}$	81	V	118
$1 \frac{7}{3}$	$\frac{8}{69}$	C	$\frac{8}{4}$	$4 \frac{8}{4}$	$\frac{81}{88}$	W	1.
2	\%	E	4	$4 \frac{7}{8}$		X	11
$2 \frac{1}{8}$	84	F	$\frac{88}{88}$	5	1	X	14

DIMENSIONS OF TWIST DRILLS－I

$\begin{aligned} & \text { L } \\ & \text { x } \\ & \text { E } \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { rè } \\ & \text { oे } \\ & \text { oे } \\ & \text { م̀ } \\ & A \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 8 \\ & 8 \\ & 8 \end{aligned}$	$\begin{aligned} & x y \\ & x \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & \text { o } \\ & \text { ह } \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { co } \\ & \text { ob } \\ & 0 \\ & \text { o } \\ & \text { A } \\ & A \end{aligned}$		$\begin{aligned} & 0 . \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	x 0 0 0 0 0 0 0
$\frac{1}{4}$	$6 \frac{1}{2}$	4\％	1	13	$1 \frac{11}{16}$	$15 \frac{1}{8}$	105	4	$11 \frac{13}{16}$
$\frac{5}{16}$	67	43	1	$2 \frac{3}{16}$	$1 \frac{3}{4}$	15 $\frac{1}{2}$	10\％	4	12年
3.	$7 \frac{1}{4}$	$4 \frac{11}{16}$	1	$2 \frac{5}{8}$	$1 \frac{13}{16}$	15\％	$11 \frac{3}{16}$	4	$12 \frac{11}{16}$
$\frac{7}{16}$	758	$4 \frac{15}{16}$	1	$3 \frac{1}{16}$	178	164	$11 \frac{7}{16}$	4	$13 \frac{1}{8}$
$\frac{1}{2}$	8	$5 \frac{1}{4}$	1.	$3 \frac{1}{2}$	$1 \frac{15}{16}$	165	$11 \frac{3}{4}$	4	$13 \frac{9}{16}$
$\frac{9}{16}$	$8 \frac{3}{8}$	$5 \frac{1}{2}$	1	$3 \frac{15}{16}$	2	17.	12	4	14
$5 / 8$	－ $8 \frac{3}{4}$	513	2	$4 \frac{3}{8}$	$2 \frac{1}{16}$	174	$12 \frac{3}{16}$	5	$14 \frac{7}{16}$
$\frac{11}{16}$	918	$6 \frac{1}{16}$	2	$4 \frac{13}{16}$	218	$17 \frac{1}{2}$	$12 \frac{3}{8}$	5	14%
3	$9 \frac{1}{2}$	$6 \frac{3}{8}$	2	$5 \frac{1}{4}$	$2 \frac{3}{16}$	$17 \frac{3}{4}$	12.9	5	$15^{\frac{5}{16}}$
$\frac{13}{16}$	97	65／8	2	$5 \frac{11}{16}$	$2 \frac{1}{4}$	18	$12 \frac{3}{4}$	5	$15 \frac{3}{4}$
78	1014	$6 \frac{15}{16}$	2	6\％	$2 \frac{5}{16}$	$18 \frac{1}{4}$	$12 \frac{15}{16}$	5	$16 \frac{3}{16}$
$\frac{15}{16}$	1058	$7 \frac{3}{16}$	3	$6 \frac{9}{16}$	$2 \frac{3}{8}$	$18 \frac{1}{2}$	131／8	5	$16 \frac{5}{8}$
1	11.	$7 \frac{1}{2}$	3	7	$2 \frac{7}{16}$	$18 \frac{3}{4}$	$13 \frac{5}{16}$	5	$17 \frac{1}{16}$
$1 \frac{1}{16}$	1138	$7 \frac{3}{4}$	3	$7 \frac{7}{16}$	$2 \frac{1}{2}$	19	$13 \frac{1}{2}$	5	$17 \frac{1}{2}$
1／8	113	$8 \frac{1}{16}$	3	$7 \frac{7}{8}$	$2 \frac{9}{16}$	194	$13 \frac{11}{16}$	5	$17 \frac{15}{16}$
$1 \frac{3}{16}$	12\％	$8 \frac{3}{8}$	3	$8 \frac{5}{16}$	25	19\％	13%	5	$18 \frac{3}{8}$
1／4	12 $\frac{1}{2}$	85	3	83	$2 \frac{11}{16}$	$19 \frac{3}{4}$	$14 \frac{1}{16}$	5	$18 \frac{13}{16}$
$1 \frac{5}{16}$	12\％	$8 \frac{15}{16}$	4	916	$2 \frac{3}{4}$	20	14年	5	19年
$13 / 8$	$13 \frac{1}{4}$	$9 \frac{3}{16}$	4	95	$2 \frac{13}{16}$	$2.0 \frac{1}{4}$	$14 \frac{7}{16}$	5	$19 \frac{11}{16}$
$1 \frac{7}{16}$	$13 \frac{5}{8}$	$9 \frac{1}{2}$	4	$10 \frac{1}{16}$	2\％	20\％$\frac{1}{2}$	145／8	5	20\％
$1 \frac{1}{2}$	14	$9 \frac{3}{4}$	4	$10 \frac{1}{2}$	$2 \frac{15}{16}$	$20 \frac{3}{4}$	$14 \frac{13}{16}$	5	20916
$1 \frac{9}{16}$	$1.4 \frac{3}{8}$	1016	4	$10 \frac{15}{16}$	3	21	15	5	21
15	$14 \frac{3}{4}$	$10 \frac{5}{16}$	4	$11 \frac{3}{8}$					

$\begin{array}{ll} & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 \end{array}$	$\left\lvert\, \begin{gathered} -100 \\ M \end{gathered}\right.$	$\left\lvert\, \begin{gathered} m i o \\ \infty \end{gathered}\right.$	$\left\lvert\, \begin{gathered} -v \\ -w \end{gathered}\right.$	$\begin{aligned} & \text { hio } \\ & 0 \end{aligned}$	$\underset{\sim}{m i c}$	Nos	－10y	910	$\left\lvert\, \begin{gathered} 600 \\ 0 \end{gathered}\right.$	$\underset{\sim}{2}$	miv	$\underset{2}{20}$	Nó \sim
$\left\|\begin{array}{cc} 5 & 0 \\ 0 & x \\ 0 & 0 \\ 5 & 0 \\ 0 & 0 \\ v & 0 \end{array}\right\| \infty$	$\stackrel{\text { Mio }}{\nabla}$	$\stackrel{M 10}{\gamma}$	$\stackrel{N}{\gamma}$	$\underset{\sim}{x}$	$\underset{i n}{x}$	$\underset{\nabla}{910}$	$\stackrel{610}{8}$	$\left\|\begin{array}{c} 4,0 \\ \nabla \end{array}\right\|$	≥ 10	$\|\stackrel{\text { miv }}{\forall}\|$	$\underset{\gamma}{90}$	$\frac{910}{7}$	$\stackrel{N 0}{*}$
	$\frac{910}{6}$	$\begin{gathered} n \\ 0 \\ 0 \end{gathered}$	$\frac{20}{6}$	\checkmark	$\stackrel{-10}{1}$	-10	-10	mio	$-N$	hie	$\underset{i}{m 00}$	$\xrightarrow{\text { N }}$	${ }^{104}$
	$\begin{aligned} & N \\ & 0 \\ & \text { m } \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0^{\circ} \end{aligned}$	$\begin{aligned} & m \\ & N \\ & m \\ & 0 \end{aligned}$	$\begin{gathered} \text { N } \\ m \\ m \\ 0 \end{gathered}$	$\begin{aligned} & 9 \\ & m \\ & m \\ & 0 \end{aligned}$	$\begin{aligned} & \infty \\ & \alpha \\ & m \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \infty \\ & b^{2} \\ & m \\ & 0 \end{aligned}$	$\begin{aligned} & \infty \\ & 0 \\ & m \\ & 0 \end{aligned}$	$\begin{aligned} & \text { N } \\ & \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & \infty \\ & m \\ & 0 \end{aligned}$	$\begin{aligned} & n \\ & 0 \\ & m \\ & 0 \end{aligned}$	$\begin{aligned} & \nabla \\ & 8 \\ & \nabla \\ & 0 \end{aligned}$	3 \vdots 0
	＜	0	Q	σ	0	\emptyset	N	১	$>$	\pm	x	λ	N
$\begin{array}{rr} 2 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{array}$	610	三－10	三19	が	Miv	9	N10	N0	$1 \times$	20	20	N	－10
$\left\|\begin{array}{cc} x & 0 \\ 0 & 0 \\ 5 & 0 \\ j & 0 \\ v & 0 \end{array}\right\| \infty$	$\left\lvert\, \frac{10}{\gamma}\right.$	$-\frac{10}{8}$	$\frac{-10}{8}$	$\stackrel{-10}{\nabla}$	$\underset{\nabla}{-10}$	$\stackrel{m, 10}{\gamma}$	$\frac{m i o}{\gamma}$	$\left\|\frac{m i g}{\nabla}\right\|$	$\underset{~}{-1}$	$\underset{\sim}{\alpha}$	$\stackrel{-1 \nabla}{\nabla}$	$\frac{610}{\sigma}$	$\frac{b 10}{x}$
	9	10	$\left\lvert\, \begin{gathered} \mathrm{M} \\ 10 \end{gathered}\right.$	$\left\|\begin{array}{c} -10 \\ 6 \end{array}\right\|$	$\left\lvert\, \begin{gathered} -104 \\ 0 \end{gathered}\right.$	0	0	$\begin{gathered} 600 \\ 6 \end{gathered}$	$\begin{gathered} 600 \\ 6 \end{gathered}$	$\left\lvert\, \begin{gathered} -10 \\ 6 \end{gathered}\right.$	$=10$	$\underset{0}{m i t}$	mit_{0}
$\left\|\begin{array}{ll} \frac{0}{0} & 9 \\ \frac{0}{0} & 2 \\ 5 & 5 \\ 0 & 5 \\ 0 & 5 \end{array}\right\| 0$	$\begin{aligned} & 7 \\ & m \\ & N \\ & 0 \end{aligned}$	$\begin{aligned} & \infty \\ & \underset{\sim}{N} \\ & \underset{\sim}{1} \end{aligned}$	$\begin{aligned} & N \\ & \underset{\sim}{N} \\ & 0 \end{aligned}$	$\begin{aligned} & \bullet \\ & \underset{\sim}{\sim} \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & i \\ & \sim \\ & 0 \end{aligned}$	$\begin{aligned} & \hat{N} \\ & \underset{\sim}{n} \\ & 0 \end{aligned}$	$\begin{aligned} & \overline{0} \\ & \underset{N}{2} \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \sim \\ & 0 \end{aligned}$	$\begin{aligned} & N \\ & N \\ & \\ & 0 \end{aligned}$	$\begin{aligned} & N \\ & N \\ & \text { N } \\ & \hline \end{aligned}$	$\begin{gathered} \infty \\ \underset{\sim}{n} \\ 0 \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \\ & \mathrm{~N} \\ & 0 \end{aligned}$	6 0 N 0
	V	∞	\cup	0	4	4	\checkmark	さ	\cdots	＞	t	V	$₹$

DIMENSIONS OF TWIST DRILLS—III

$\begin{array}{c\|} \hline \text { No. of } \\ \text { Stee/Wire } \\ \text { Gage } \end{array}$	Diam. in Inches D	$\begin{array}{\|c\|} \hline \text { Total } \\ \text { Length } \\ \hline \end{array}$	$\begin{gathered} \begin{array}{c} \text { Length of } \\ \text { Groove } \end{array} \\ \hline B \\ \hline \end{gathered}$	$\begin{gathered} \text { Lead } \\ \text { of } \\ \text { Grooves } \end{gathered}$	No. of SteelWire Gage	$\begin{gathered} \text { Diam. in } \\ \text { Inches } \\ \hline D \\ \hline \end{gathered}$	$\begin{gathered} \text { Total } \\ \text { Length } \\ A \end{gathered}$	$\begin{gathered} \begin{array}{c} \text { Length of } \\ \text { Groove } \end{array} \\ \hline B \end{gathered}$	$\begin{gathered} \text { Lead } \\ \text { of } \\ \text { of } \\ \text { Grooves } \end{gathered}$
1	0.2280	4	$2 \frac{3}{4}$	15	31	0.1200	$2 \frac{13}{16}$	$1 \frac{9}{16}$	$\frac{13}{16}$
2	. 2210	315	2116	19	32	.1160	$2 \frac{3}{4}$	$1 \frac{1}{2}$	$\frac{13}{16}$
3	. 2130	37	$2 \frac{5}{8}$	$1 \frac{1}{2}$	33	.1130	23	$1 \frac{1}{2}$	$\frac{13}{16}$
4	. 2090	$3 \frac{13}{16}$	$2 \frac{9}{16}$	17	34	.1110	$2 \frac{3}{4}$	$1 \frac{1}{2}$	$3 / 4$
5	. 2055	$3 \frac{3}{4}$	$2 \frac{1}{2}$	176	35	.1100	$2 \frac{11}{16}$	17	$3 / 4$
6	. 2040	$3 \frac{3}{4}$	$2 \frac{1}{2}$	$1 \frac{7}{16}$	36	. 11065	$2 \frac{11}{16}$	17	$\frac{3}{4}$
7	.20,10	$3 \frac{3}{4}$.	$2 \frac{1}{2}$	1.76	37	. 1040	$2 \frac{5}{8}$	138	$\frac{3}{4}$
8	. 1990	3117	27	138	38	. 1015	2588	138	$\frac{11}{16}$
9	. 1960	3118	$27 \frac{7}{16}$	138	39	. 0995	$2 \frac{9}{16}$	$1{ }^{5}$	$\frac{11}{16}$
10	. 1935	3 5/8	$2 \frac{3}{8}$	138	40	. 0980	$2 \frac{16}{16}$	15	$\frac{11}{16}$
11	. 1910	$35 / 8$	$2 \frac{3}{8}$	$1 \frac{5}{16}$	41	. 0960	$2 \frac{3}{8}$	$1{ }^{3}$	$\frac{11}{16}$
12	1.890	$3 \frac{9}{16}$	$2 \frac{5}{15}$	$1 \frac{5}{16}$	42	. 0935	$2 \frac{5}{16}$	$1 \frac{3}{16}$	58
13	. 1850	39 16	$2 \frac{5}{16}$	$1{ }^{5}$	43	. 0890	$2 \frac{1}{4}$	1/8	5/8
14	. 1820	$3 \frac{1}{2}$	$2 \frac{1}{4}$	1/4	44	. 0860	$2 \frac{1}{4}$	1%	$5 / 8$
15	. 1800	$3 \frac{1}{2}$	2年	1年	45	. 0820	$2 \frac{3}{16}$	$1 \frac{1}{16}$	$\frac{9}{16}$
16	. 1770	$3 \frac{7}{16}$	$2 \frac{3}{16}$	1/4	46	. 0810	$2 \frac{3}{16}$	$1 \frac{1}{16}$	$\frac{9}{16}$
17	. 1730	$3 \frac{3}{8}$	218	$1 \frac{3}{16}$	47.	. 0.785	218	$1 \frac{1}{16}$	$\frac{9}{16}$
18	. 1695	33/8	218	$1 \frac{3}{16}$	48	. 0760	218	1	. 16
19	. 1660	$3 \frac{5}{16}$	$2 \frac{1}{16}$	$1 \frac{3}{16}$	49	. 0730	$2 \frac{1}{16}$	1	$\frac{1}{2}$
20	. 1610	314	2	1/8	50	. 0700	2	$\frac{15}{16}$	$\frac{1}{2}$
21	. 1590	$3 \frac{1}{4}$	2	1/8	51	. 0670	2	$\frac{15}{16}$	$\frac{1}{2}$
22	. 1570	$3 \frac{1}{4}$	2	1/8	52	. 0635	$1 \frac{15}{16}$	78	$\frac{7}{16}$
23	. 1540	$3 \frac{3}{16}$	$1 \frac{15}{15}$	$1 \frac{1}{16}$	53	. 0595	18	78	$\frac{7}{16}$
24	. 1520	$3 \frac{3}{16}$	$1 \frac{15}{16}$	$1 \frac{1}{16}$	54	. 0550	1%	$\frac{13}{16}$	3/8
25	. 1495	31/8	178	$1 \frac{1}{16}$	55	. 0520	$1 \frac{13}{16}$	$3 / 4$	3/8
26	. 1470	3/8	178	1	56	. 0465	$13 / 4$	$\frac{11}{16}$	$\frac{5}{16}$
27	. 1440	316	$1 \frac{13}{16}$	1	57	. 0430	111	$\frac{11}{16}$	$\frac{5}{16}$
28	. 1405	$3 \frac{1}{16}$	$1 \frac{13}{16}$	1	58	. 0420	$1 \frac{11}{16}$	$\frac{11}{16}$	$\frac{5}{16}$
29.	. 1360	3	13	$\frac{15}{16}$	59	. 0410	111	$\frac{11}{16}$	$\frac{5}{16}$
30	. 1285	$2 \frac{15}{16}$	116	$7 / 8$	60	. 0400	1110	$5 / 8$	$\frac{5}{16}$

WIRE GAGES

$\begin{aligned} & x \\ & 0 \\ & 0 \\ & 0 \\ & 10 \\ & 0 \\ & 0 \\ & 0 \\ & 5 \\ & 8 \\ & 8 \end{aligned}$					$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 50 \\ & \text { 20 } \\ & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 0 \\ & i \\ & 5 \\ & i \\ & 6 \\ & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 50 \\ & 50 \\ & 0 \\ & 40 \\ & 40 \\ & 0 \end{aligned}$				$\begin{array}{ll} 0 & 0 \\ 5 & 0 \\ 5 & 0 \\ 5 & 5 \\ 0 & 5 \\ 5 & 0 \\ 5 & 8 \end{array}$		$\begin{aligned} & 5 \\ & 5 \\ & 50^{\circ} \\ & \text { so } \\ & \text { s } \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & i n \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 5 \end{aligned}$	$\begin{aligned} & \text { U.S. Standard } \\ & \text { for Plate } \end{aligned}$
000000	-	-	-	-	-	0.464	0.4688	18	0.0403	0.049	0.0475	0.168	0.0450	0.0480	0.0500
00000	-	-	-	-	0.450	. 432	. 4375	19	. 0359	. 042	. 0410	. 164	. 0400	. 0400	. 0438
0000	0.4600	0.454	0.3938	-	. 400	. 400	. 4063	20	. 0320	. 035	. 0348	. 161	. 0350	. 0360	. 0375
000	. 4096	. 425	. 3625	-	.360	. 372	. 3750	21	. 0285	. 032	.0318	. 157	. 0310	. 0320	. 0344
00	. 3648	. 380	. 3310	-	. 330	. 348	. 3438	22	. 0253	. 028	. 0286	. 155	. 0280	. 0280	.0313
0	. 3249	. 340	. 3065	-	. 305	. 324	. 3125	23	. 0226	. 025	. 0258	. 153	. 0250	. 0240	. 0281
1	. 2893	. 300	. 2830	0.227	285	. 300	.2813	24	. 0201	. 022	. 0230	. 151	. 0222	. 0222	. 0250
2	. 2576	. 284	. 2625	. 219	. 265	. 276	. 2656	25	. 0179	. 020	. 0204	. 148	. 0200	. 0200	. 0219
3	. 2294	. 259	. 2437	. 212	. 245	. 252	. 2500	26	. 0159	. 018	. 0181	. 146	:0180	. 0180	. 0188
4	. 2043	. 238	. 2253	. 207	225	. 232	. 2344	27	. 0142	. 016	. 0173	. 143	. 0170	. 0164	. 0172
5	. 1819	. 220	. 2070	. 204	. 205	. 212	. 2188	28	. 0126	. 014	. 0162	. 139	. 0160	. 0149	. 0156
6	1620	. 203	. 1920	. 201	. 190	. 192	.2031.	29.	.0113	. 013	. 0150	. 134	. 0150	. 0136	. 0141
7	. 1443	. 180	. 1770	. 199	. 175	. 176	. 1875	30	. 0100	. 012	. 0140	. 127	. 0140	. 0124	. 0125
8	. 1285	. 165	. 1620	. 197	. 160	. 160	. 1719	31.	. 0089	. 010	.0132	. 120	. 0130	. 0116	. 0109
9	. 1144	. 148	. 1483	. 194	. 145	. 144	. 1563	32	. 0080	. 009	. 0128	.115	. 0120	. 0108	. 0102
10	. 1019	.134	. 1350	. 191	. 130	.128	. 1406	33.	. 0071	. 008	. 0118	.112	. 0110	0100	. 0094
11	. 0907	. 120	. 1205	. 188	. 1175	. 116	. 1250	34	. 0063	. 007	. 0104	:110	. 0100	. 0092	. 0086
12	. 0808	. 109	. 1055	. 185	. 105	. 104	. 1094	35	. 0056	. 005	. 0095	. 108	. 0095	. 0084	. 0078
13	. 0720	. 095	.0915	. 182	. 0925	. 092	. 0938	36	. 0050	. 004	. 0090	. 106	. 0090	. 0076	. 0070
14	. 0641	. 083	. 0800	. 180	. 080	. 080	. 0781	37	. 0045	-	-	. 103	. 0085	. 0068	. 0066
15	. 0571	. 072	. 0720	. 178	. 070	. 072	. 0703	38	. 0040	-	-	.101	. 0080	. 0060	. 0063
16	. 0508	. 065	. 0625	. 175	. 061	. 064	.0,625	39	. 0035	-	-	. 099	. 0075	. 0052	-
17	. 0453	. 058	. 0540	. 172	. 0525	. 056	. 0563	40	. 0031	-	-	. 097	. 0070	. 0048	

American Gage: Standard for sheet brass, copper or German silver, and for wire of the some material. Birmingham Gage: For soft iron wire or rods.
Washburn \& Moen Gage: Used for iron or copper telegraph and telephone wire.
Stubs'Steel Wire Gage: For Stubs'drill rads. Not same as Stubs'Iron Wire Gage.
U.S.Standard Gage: Recognized as standard for sheet iron and steel.

Pipe Reamers

Dimensions of pipe reamers are given on page 8. These reamers are used to precede pipe taps. They are made of the same sizes as pipe taps, except that the dimensions of the pipe reamer correspond to the root diameter of the thread of the pipe taps, the taper being, of course, the same, or $3 / 4$ inch per foot. The small end of pipe reamers is slightly chamfered in order to facilitate the entering of the reamer in holes which are of about the same size as the small diameter of the reamer. [Machinery, December, 1907, Reamers.]

Dimensions of Taper Pin Reamers

Dimensions of taper pin reamers are given on page 9. These reamers are intended for reaming holes for standard taper pins, the dimensions of which are given on the same page. These pins are made of various lengths, and the length specified in the table is the maximum length of each size. The pins and reamers taper one-fourth inch per foot. The diameter at the small end of the reamer should be made to such a dimension that the reamer will project at least $1 / 16$ inch, or on the larger sizes * $1 / 8$ inch, through the hole reamed for the longest standard taper pin of the size to which it corresponds. The length of the cutting edges should also be enough longer than the longest pin to permit the reamer to be ground a number of times without it becoming too small in diameter at the upper end of the flutes for the size of pin for which it is intended. The length of the square on the end of the shank should be about $11 / 2$ times the diameter of the shank, and the size of the square should be $3 / 4$ the diameter of the shank. The exact diameter of the shank portion, of course, is of little importance, it being usually turned down a slight amount below the diameter at the large end of the fluted portion of the reamer. [MAchinery, November, 1907, Reamers;

December, 1909, Errors in Grinding Taper Reamers.]

Sockets and Taper Reamers for Brown \& Sharpe Standard Tapers
On page 10 are given the dimensions of the various Brown \& Sharpe standard tapers. As will be seen from the table, the taper is $1 / 2$ inch per foot in all cases, except for taper No. 10, which has a taper of 0.5161 inch per foot. It will be observed that in certain cases there are several different lengths corresponding to the same number of taper, all the tapers of the same number, however, being of the same diameter at the small end. While the lengths of the taper shanks thus are different, the reamers, the dimensions for which are specified on page 11, can all be made the same for the same number of taper, inasmuch as the diameter at the small end is the same. The only thing necessary to consider is to make the length of the cutting edges of the reamers long enough for the longest or deepest taper socket of a given size, in which case they, of course, will be sufficient for the shorter lengths. The Brown \& Sharpe taper shanks are used mostly on shank end mills and T-slot cutters, as well as on several other tools for the machines manufactured by the Brown \& Sharpe Mfg. Co. The sizes of the taper sockets have been carried up to No. 12 only, larger sizes being seldom used. As will be seen on page 11, dimensions are given for the diameters at the small end both for roughing and finishing reamers, the roughing reamer being in all cases 0.010 inch smaller in diameter than the finishing reamer. [Machinery, November, 1907, Reamers; December, 1909, Errors in Grinding Taper Reamers.]

Sockets and Taper Reamers for Morse Standard Tapers

On page 12 dimensions are given for Morse standard tapers, and on page 14 dimensions for the reamers for reaming these taper sockets. As shown on page
(Continued on page 26.)

Diameter Thickness
American or B. \& S.
Birmingham or Stubbs
American Screw Gage
Steel Music Wire
Wire Gage
Drills
Letter Drill
Gage
Diameter
 Thickness
American or B. \& S.
N:
Birmingham
or Stubbs
American
Screw Gage

Steel Music
Wire

Wire Gage Drills

Letter Drill
Gage

00 ê： ャ $\underset{\sim}{\sim}$ $\stackrel{\infty}{\infty}$ ω ： is 	Diameter Thickness American or B．\＆S． Birmingham or Stubbs American Screw Gage Steel Music Wire Wire Gage Drills Letter Drill Gage
 \qquad cr： \rightarrow ∞ ： co ๒： 占：上 ©： ∞ a： os： cr 	Diameter or Thickness American or B．\＆S． Birmingham or Stubbs American Screw Gage Steel Music Wire Wire Gage Drills Letter Drill Gage

 N \square co is: er os $\stackrel{\omega}{\infty}$: ッ ↔.	Diameter or Thickness American or B. \& S. Birminghar or Stubbs American Screw Gag Steel Musi Wire Wire Gage Drills Letter Dril Gage
	Diameter or Thickness American or B. \& S. Birminghar or Stubbs American Screw Gag Steel Musi Wire Wire Gage Drills Letter Dril Gage

14, both a finishing reamer and roughing reamer are used, the latter being provided with a spiral groove cut like a thread all around the cutting edges, as shown in the top view. This thread or groove breaks up the chips in the same manner as the nicks in the cutting edges of plain "nicked" milling cutters. The thread is cut left-hand with a tool similar to a square threading tool, but having the corners slightly rounded. The width of the tool should vary from about $1 / 32$ inch for the smallest size reamer for Morse taper sockets to $3 / 32$ inch for the largest sizes, the depth of the groove being a little more than half the width of the tool. The pitch of the thread should be about $1 / 5$ inch for the smallest size, increasing up to $1 / 3$ inch for the largest sizes. On page 13 are given dimensions of Morse standard taper sockots with a Morse taper both on the inside and outside. [Machinery, November, 1907, Reamers.]

Taper Reamers for Jarno Standard Tapers

On page 14 are given dimensions for the reamers for Jarno tapers. The Jarno taper was originally proposed by Mr. Oscar J. Beale of the Brown \& Sharpe Mfg. Co. The taper per foot of all the Jarno tapers is 0.600 inch on the diameter. All the dimensions necessary for Jarno tapers are determined by the number of the taper. The diameter at the large end of the taper is as many eighths, the diameter at the small end of the taper as many tenths, and the length of the taper between the large and small diameter as many half inches as is expressed by the number of the taper. For example, the No. 7 Jarno taper is $7 / 8$ inch in diameter at the large end, $7 / 10$ or 0.7 inch in diameter at the small end, and the length is $7 / 2$ inches or $31 / 2$ inches. [Machinery, November, 1907, Reamers.]
Squares on Shanks of Reamers and Taps
On page 15 a table is given by means of which the proper size of square cor-
responding to a given diameter of shank can be seen at a glance. If the diameter of the shank D, for example, is $19 / 64$ inch, then we find directly from the table that the square S should be $55 / 64$ inch across flats. The table, extending from $1 / 16$ inch up to 4 inches, covers the whole range ordinarily met with in the machine shop. The size of the square is, on an average, $3 / 4$ times the diameter of the shank.

Centers for Reamers and Arbors

On page 17 a table of well proportioned reamer and arbor centers is given, together with the general formulas by means of which the dimensions are determined. These centers are laid out so as to be large enough for heavy duty. Care should be exercised in drilling the hole C so that it is of the full depth D, and when countersinking care should be taken not to exceed the diameter B.

Dimensions of Twist Drills

On pages 18,19 and 20 are given dimensions for twist drills. The first table gives the dimensions for drills from $1 / 4$ inch up to 3 inches in diameter, the second for the so-called letter-size drills, and the third for steel wire gage drills, from No. 1 down to No. 60 steel wire gage. Referring first to the table for drills from $1 / 4$ - to 3 -inch size, the dimensions provided give the total length and the length of the fluted portion on straight shank drills, the size of shank of Morse taper shank drills, and the lead of spiral of the grooves or flutes. In order to establish uniformity in regard to the total lengths, taper shank and straight shank drills ought to be made of the same total lengths. As the length of the taper shank always must be its regular standard length, dimensions are not given for the lengths of the grooved parts on taper shank drills, as these lengths will, when the total length is given, depend entirely upon
(Continued on page 29.)

NUMBER OF TEETH AND KEYWAYS IN MILLING CUTTERS

Number of Teeth and Lead of Spiral of Plain Milling Cutters.$\begin{aligned} \text { No. of Teeth } & =\frac{5 \times \text { Diam. }+24}{2} \\ \text { Lead of Spiral } & =9 \times \text { Diam. }+4 \end{aligned}$						Number of Teeth in Side Milling Cutters. No. of teeth $=3.1$ Diam. +11 .					
Diam. of Cutter	Number of Teeth	Lead of Spiral of Teeth, Inches	Diam. of Cutter	Number Lead of of Spiral Teeth of Teeth, Inches		Diam. of Cutter 2	Number of Teeth18		Diam. ofCutter	Number of Teeth	
						28					
2	16	22	$5 \frac{1}{2}$	26	$53 \frac{1}{2}$		$2 \frac{1}{4}$	18		6	30
$2 \frac{1}{4}$	18	24年	6	26	58	$2 \frac{1}{2}$	18		$6 \frac{1}{2}$	32	
$2 \frac{1}{2}$	18	$2.6 \frac{1}{2}$	$6 \frac{1}{2}$	28	$62 \frac{1}{2}$	23	20		7	32	
23	1.8	$28 \frac{3}{4}$	7	30	- 67	3	20		$7 \frac{1}{2}$	34	
3	20	31	$7 \frac{1}{2}$	30	$71 \frac{1}{2}$						
$3 \frac{1}{2}$	20	$35 \frac{1}{2}$	8	32	76	$3 \frac{1}{2}$	22		8	36	
4	22	40.	9	34	45	4	24		9	38	
$4 \frac{1}{2}$	24.	$44 \frac{1}{2} 1$	10	36	94	$4 \frac{1}{2}$	24		10	42	
5	24	49				5	26				
Standard Keyways for Milling Cutfers.-Square.						Standard Keyways for Milling Cutters.-Halfround.					
$\begin{array}{r} D=\operatorname{Dia} \\ \text { Hols } \end{array}$	am. of le	A = Width of Keyway	$\begin{array}{l\|l\|l\|} \hline h & B=D e p t h & C=\text { Radius } \\ \text { ay of Keyway of Coiners } \\ \hline \end{array}$			$\begin{aligned} & D= \text { Diami. of } \\ & \text { Hole } \end{aligned}$		$A=$ width of Keyway $B=$ Depth of Keyway			
$\frac{3}{8}$ to	$\frac{9}{16}$ inch	$\frac{3}{32}$		$\frac{3}{4}$	0.020	$\frac{3}{8}$ to $\frac{5}{8}$ inch		1/8		$\frac{1}{16}$	
5 s to	7 \% inch	1/8		$\frac{1}{16}$	0.030	$\frac{11}{16}$ to. $\frac{13}{16}$ inch			$\frac{3}{16}$	$\frac{3}{32}$	
$\frac{15}{16}$ to	$1 \frac{1}{8}$ inch	$\frac{5}{32}$		5	0.035	$\frac{78}{8}$ tol $\frac{3}{16}$ inch			$1 / 4$	$1 / 8$	
$1 \frac{3}{16}$ to. 1	$1 \frac{3}{8}$ inch	$\frac{3}{16}$		$\frac{3}{32}$	0.040	$1 \frac{1}{4}$ to $1 \frac{7}{16}$ inch			$\frac{5}{16}$	$\frac{5}{32}$	
$1 \frac{7}{16}$ to	$1 \frac{3}{4}$ inch	$1 / 4$		$1 / 8$	0.050	$1 \frac{1}{2}$ to 2 inch			$3 / 8$	$\frac{3}{16}$	
$1 \frac{13}{16}$ to	2 inch	$\frac{5}{16}$		$\frac{5}{32}$	0.060	$2 \frac{1}{16}$ to $2 \frac{7}{16}$ inch			$\frac{7}{16}$	$\frac{7}{32}$	
$2 \frac{1}{16}$ to	$2 \frac{1}{2}$ inch	$3 / 8$		$\frac{3}{16}$	0.060	$2 \frac{1}{2}$ to 3 inch			$\frac{1}{2}$	$1 / 4$	
$2 \frac{9}{16}$ to 3 inch		$\frac{7}{16}$		$\frac{3}{16}$	0.060	22 -					

DIMENSIONS OF END MILLS

Diam.	Length of Cut	Length of Neck	$\begin{aligned} & \text { Diam. of } \\ & \text { End Reces } \end{aligned}$	Morse Tap End	er Shank Mills	Brown \& Shank	arpe Taper d. Mills	Number
A	B	C	D	No. of Morse Taper	$\begin{gathered} \text { Total } \\ \text { Lengoth } \\ \hline \end{gathered}$	$\begin{aligned} & \text { No. of } \\ & \text { B. \& S. } \\ & \text { Toper } \end{aligned}$	$\begin{aligned} & \text { Total } \\ & \text { Length } \end{aligned}$	of Flutes
$\frac{1}{4}$	$3 / 4$	$1 / 4$	$5 / 64$	1	39/16	4	$23 / 8$	5
$1 / 4$	$3 / 4$	5/16	$5 / 64$	-	-	5	$2^{15 / 6}$	5
5/6	7/8	$1 / 4$	3/32	1	311/6	4	$21 / 2$	5
5/16	7/8	5/16	3/32	-	-	5	31/6	5
3/8	$7 / 8$	$1 / 4$	1/8	1	$3^{11} / 6$	4	21/2	6
3/8	$7 / 8$	5/16	1/8	-	-	5	$3!16$	6.
$7 / 16$	1	$1 / 4$	3/16	1	$3^{13 / 16}$	4	$25 / 8$	6
$7 / 16$	1	5/16	3/16	2	$43 / 8$	5	$3 \frac{3}{16}$	6
1/2	118	5/6	$1 / 4$	1	4	5	35/16	6
$1 / 2$	118	3/8	$1 / 4$	2	49/16	7	$5^{1 / 8}$	6
9/16	$1 \frac{1}{4}$	5/16	$1 / 4$	1	$41 / 8$	5	37/16	6
$9 / 16$	$1 \frac{1}{4}$	3/8	$1 / 4$	2	$4^{1 / 16}$.	7	$5^{\frac{1}{4}}$	6
5/8	138	5/16	$1 / 4$	-	-	5	39/16	7
5/8	$13 / 8$	3/8	$1 / 4$	2	$4^{13 / 16}$	7	$53 / 8$	7
$11 / 6$	$1 / 2$	3/8	$1 / 4$	2	$4^{15 / 16}$	7	$5^{1 / 2}$	7
11/6	$1 / 2$	1/2.	$1 / 4$	-	-	9	$63 / 4$	7.
$3 / 4$	$15 / 8$	3/8	5/16	2	51/6	7	$5 \frac{5}{8}$	7
3/4	$15 / 8$	$1 / 2$	$5 / 16$	3	57/8	9	67/8	7
7/8	$13 / 4$	3/8	$3 / 8$	2	53/15	7.	$5^{3 / 4}$	8
718	$13 / 4$	$1 / 2$	3/8	3	6	9	7	8
1	$17 / 8$	3/8	3/8	2	5//6	. 7	5\%/8	8
1	178	1/2	3/8	3	618	9	7\%	8
118	2	3/8	7/16	-	-	7	6	9
$1 \frac{18}{}$	2	$1 / 2$	7/16	3	$6 \frac{1}{4}$	9	714	9
1/4	2	1/2	1/2	3	614.	7	618	9
$1 / 4$	2	1/2	$1 / 2$	4	$71 /$	9	$7 \frac{1}{4}$	9
$13 / 8$	21/8	1/2	5/8	3	63/8	9	$73 / 8$	10
$13 / 8$	21/8	$1 / 2$	5/8	4	$73 / 8$	-	-	10
$11 / 2$	214	1/2	3/4	3	$6 \frac{1}{2}$	9	$71 / 2$	10
$11 / 2$	21/4	1/2	3/4	4	$71 / 2$	-	-	10
$15 / 8$	$2^{1 / 4}$	$1 / 2$	13,16	4	$71 / 2$	9	71/2	10
$13 / 4$	23/8	1/2	$7 / 8$	4	$75 / 8$	9	$75 / 8$	11
178	$2^{1 / 2}$	$1 / 2$	15/16	4	$73 / 4$	11	$93 / 4$	11
2	$2^{1 / 2}$	1/2	1	4	$73 / 4$	11	$93 / 4$	11

the length of the standard taper used. It is obvious that after the length of the taper shank is deducted from the total length and provision has been made for a short "neck" between the taper shank and the grooved part, the remaining portion will be the fluted length. The lead of the flutes or grooves is 7 times the diameter of the drill. In the case of the letter-size and steel wire gage drills no taper shanks are specified, as drills of these sizes are almost exclusively provided with straight shanks. The letter-size drills over $1 / 4$ inch in diameter, however, may be provided with a No. 1 Morse taper shank if required. [Machinery, August, 1905, Proportions of Twist Drills.]

Wire Gages

On page 21 is given a table by means of which the dimensions in inches may be found for given wire and plate gage numbers. The table includes all the commonly used gages. On pages 23,24 and 25 a set of tables is given by means of which the corresponding number of any wire gage may be easily found when the dimension in inches is known. These tables are, in a measure, a reversal of the table on page 21, and all the tables may profitably be used in conjunction with each other. The explanatory note on page 25 illustrates more fully the use of these tables.

Plain and Side Milling Cutters

On page 27 are given the number of teeth and the lead of spiral for plain milling cutters of diameters from 2 to 10 inches. Cutters with the width of face greater than 4 inches should preferably be made in two or more interlocking sections. Cutters larger than 5 inches in diameter should preferably be made with inserted teeth, in which case, of course, the number of teeth cannot be as large as that given in the table. A 6 -inch inserted blade cutter should not have more than about 12 teeth; an 8 inch, 16 teeth; and a 10 -inch, 18 teeth.

The number of teeth to be used in side milling cutters is somewhat greater than that used in plain milling cutters, as shown in the table to the right on page 27. On the same page tables of standard keyways to be used in milling cutters, and as adopted by leading milling cutter manufacturers, are given. In case of the square keyway shown to the left, care should be taken to have the corners at C well rounded to the radius specified. The half-round keyway is preferable, as there is less likelihood of a crack starting, as is often the case at the corner of the square keyway. [MAchinery, April, 1906, Milling Cutters.]

Dimensions of End Mills

Dimensions of end mills provided with a solid taper shank are given on page 28. The teeth on the cylindrical surface are usually cut straight, but may also be cut on a spiral. The amount of the spiral should not exceed 20 degrees. The direction of spiral should be left-hand for right-hand end mills, and vice versa, especially if the mill is to be used for cutting both with its end and with its side. If the mill is to be used exclusively as an end mill, cutting only with the teeth on its extreme end, then the spiral on a righthand end mill should preferably be right-hand, because in that case it is possible to give the teeth a positive front rake. Solid shank end mills are commonly provided with either Brown \& Sharpe or Morse taper shank. In the table of these mills, columns are given for both, and in some cases two numbers of shanks are specified for the same size of mill, indicating that in usual practice the mills in question may be provided with either of the two shanks. The numbers of shanks given, and the dimensions in general correspond to the practice of prominent end mill manufacturers. The total length, of course, differs according to the number of taper shank used, as indicated.

DIMENSIONS OF SHELL END MILLS

DIMENSIONS OF ARBORS FOR SHELL END MILLS

SETTING ANGLES FOR MILLING ANGULAR CUTTERS-I
In Fig. 1, the line $O A$ is the axis of a cone which would
result from prolonging the blank down to a point. The line
$O C$ is the intersection of the two planes which form the sides
of the tooth space, and hence the cutter must run parallel
to this line while cutting a space. The head must then be
elevated so that the line $O C$ is parallel with the table, and
in doing so we will have turned it through an angle equal to
$A O C$ or a. Line $E F$ is drawn perpendicular to oc.
From the figure,

SETTING ANGLES FOR MILLING ANGULAR CUTTERS－II

ANOLNB OF ELEVATION FOR END MILLE．

¢¢ ${ }^{\text {¢ }}$	Angle of Cutter．							
穴安	85	80	75	70	65	60	53	50
5	$74^{\circ} 23^{\prime}$	$57^{\circ} 8^{\prime}$	$84^{\circ} 27^{\prime}$					
6	8117	7213	6221	\bigcirc	$36^{\circ} 8^{\circ}$			
7	8342	7713	7022	6250	5412	$43^{\circ} 36^{\prime}$		
8	8459	$79 \quad 51$	7427	6839	6212	5444	44 ${ }^{\circ}{ }^{\circ} 7^{\prime}$	$32^{\circ} \mathrm{J} 7^{\prime}$
9	8547	8129	770	7213	6658	611	541	4515
10	8621	8288	7846	7440	7012	6512	5925	5226
11	8647	8329	80 5	${ }^{7} 768$	72 84，	6813	6315	5722
． 12	876	849	816	7752	7423	70 32	66	$61 \sim$
18	8722	8144	8154	7859	7548	7221	6826	6352
14	8785	858	8285	7954	771	7351	7017	6610
15	8746	8530	839	8040	781	756	7150	684
16	8755	8549	8338	8120	7852	7610	738	69 40，
17	$88 \quad 3$	865	848	8153	7986	77： 4	7415	$\mathrm{T}_{7} 11^{\prime}$
18	8811	8619	8424	8223	8014	7752	7514	7213
19	8817	8632	8443	8249	8047	7884	766	7815
20	8822	8643	850	$8318{ }^{\text {² }}$	8117	7911	7651	7411
21	8827	8653	8515	8383	8144	7944	7781	7459
22	8832	872	8529	$83 \quad 52$	828	8014	788	7544
23	8836	8710	8542	849	8880	8042	7841	7624
24	8839	8718	8553	8424	8249	81.6	7911	770

ANGLES OF RLTVATION FOR 5 DEGREE BLANK．

¢	Angle of Cutter．								
そ\％	90	85	80	75	70	65	60	65	80
5	$74^{\circ} 12$	$89^{\circ} 11^{\prime}$	$42^{\circ} 48^{\prime}$	$21^{\circ} 41^{\prime}$					
6	804	7129	62． 34	5858	$41^{\circ} 41^{\prime}$	$27^{\circ} 22^{\prime}$			
7	821	7547	6922	6235	55	4683	$36^{\circ} 12^{\prime}$	$21^{\circ} 86^{\prime}$	
8	8257	7758	7252	6732	6147	5523	$48 \quad 0$	3856	$25^{\circ} 40^{\prime}$
9	8329	7918	$75 \quad 2$	7035	6549	6086	5443	4746	3880
10	$83 \quad 50$	8013	7631	7241	68 35	649	5911	5327	464
11	$84 \quad 4$	8052	7786	7412	7037	6643	6224	5728	5115
12	8414	8121	$78 \quad 25$	7523	$72 \quad 10$	6842	6452	0031	$55 \quad 5$
13	8421	8144	79	7618	7823	7015	6648	6： 54	58
14	8427	828	7936	774	7424	7132	6823	6450	6028
15.	8482	8219	80	7643	7515	7280	6942	6627	6228
16	8435	8231	8025	7814	$75 \quad 57$	7330	7049	6748	$64 \quad 7$
17	8438	8242	8044	7842	7684	7416	7146	6858	6538
18	8441	8252	81.1	$79 \quad 7$	77	7457	7236	6959	6647
19	8448	830	81.16	7928	7734	7533	7320	7052	6742
20	8445	838	8129	7947	7759	76	7859	$71 \quad 39$	0850
21	8446	8314	8140	$80 \quad 3$	7721	7632	7433	72． 20	6940
22	8447	8319	8150	$80 \quad 17$	7840	7657	75	7258	7026
23	8448	8324	8159	8030	7858	7720	7532	7882	717
24	8449	8329	827	8043	7915	7740	7557	$74 \quad 3$	7144

ANGLES OF ELEVATION FOR IO DEGREE BLANK．

	Angle of Cutter．								
\％	90	85	80	75	\％0	65	－ 60	55	50
5	$60^{\circ} 16$	$46^{\circ} 45^{\prime}$	$32^{\circ} 9$	$14^{\circ} 81$					
f	7034	6211	5350	4437	$34^{\circ}{ }^{\prime}$	$20^{\circ} 57^{\prime}$			
7	7412	68	6155	5520	48	3957	$30^{\circ} 2^{\prime}$	$16^{\circ} 82$	
8		718	$6^{611} 9$	6056	5519	49	4156	${ }^{33} 12$	${ }_{33}^{20^{\circ} 39^{\prime}}$
10	$\begin{array}{ll}77 & 2 \\ 72\end{array}$	7256	6845	［6463 68 64	5921		48 58 58 82	426	338
10 11	77 78 78 18	748	$\begin{array}{ll}70 & 81 \\ 71 & 48\end{array}$	6644 63.28	62 64 48	［ 5722	53 $\begin{aligned} & 58 \\ & 56 \\ & 58\end{aligned}$	${ }^{47} 54$	4042 4556
12	7880	7540	7248	6947	6637	6312	5926	5510	4950
18	7844	769	7831	7048	6756	6451	6126	5736	5251
14	78 56	7684	749	7139	692	6812	63	5936	5518
15	795	7654	7440	7221	6956	6719	6428	6115	5720
16	7912	7710	755	7257	7041	6816	6537	6238	
17	7918	7723	7527	7327	7120	69． 4	6636	6351	6028
18	7922	7784	7545	7352	7153	6946	6727	6458	6148
19	7926	7744	761	7415	7228	7023	6812	6546	6248
20	7980	7754	7616	7435	7244	7056	6852	6634	6347
21	7938	78	7629	7453	7312	7125	6928	6717	6488
22	7985	788	7640	75	7333	7151	6959	6755	6525
23.	7937	¢8 18	7650	7523	7852	7214	7028	6829	
24	7989	7820	7659	7580	74	7235	7054		66

ANOLES＇OF ELEVATION FOR 15 DEGRER BLANE．

	Angle of Cutter．								
z\％	90	85	80	75	\％ 0	65	60	85	50
5	$49^{\circ} 4^{\circ}$	$37^{\circ} 8^{\prime}$	$24^{\text {c }} 52$	$10^{\circ} 38^{\prime}$					
6	61.49	$54 \quad 9$	4612	3740	$28^{\circ} 4$	16.96			
7	6644	$60 \quad 57$	551	4845	4157	3414	$25^{\circ} 2^{\prime}$	$12{ }^{\circ} 57$	
8	6915	6483	5946	\＄4 44	4921	4324	8634	2821	$17^{\circ} 34^{\prime}$
9	7043	6645	6241	5828	5358	498	4330	372	294
10	7140	6812	6441	61， 1	578	5255	4812	4247	3618
11	7220	6916	668	6254	$59 \quad 27$	5544	5137	4686	4124
12	72.48	70． 2	$6{ }^{7} 13$	6418	6113	5754	5414	50	4513
13	7310	$70 \quad 39$	$68 \quad 5$	$65 \quad 26$	6238	5937	56 18	5284	4814
14	7326	717	6846	6620	6346	610	5759	5435	5038
15	7839	7130	6920	675	6442	6210	592 ？	5615	$52 \cdot 39$
16	73． 50	7150	6949	6743	6530	63	6033	5740	5420
17	7388	720	7012	6814	6611	6358	61.33	5851	5546
18	74	7220	7088	． 6842	6646	6441	$62 \quad 26$	5954	570
19	7411	7232	7051	696	6717	$65 \quad 19$	6311	6049	
20	7416	7242	716	6928	6744	6553	6852	6187	59
21	7420	7251	7120	6946	$68 \quad 7$	6622	6427	． 6220	5954
22	7424	7259	7132	$70 \cdot 3$	6829	6649	650	6259	6040
23	$74 \quad 27$	736	7143	70 18	6849^{\prime}	6713	6529	63.83	6122
24	7430	7312	7153	7032	69 6	6735	6556	$64 \quad 5$	6159

ANGLES OF ELEVATION FOR 20 DEGREE BLANK．

¢5	Angle of Cutter．								
$2{ }^{2}$	90	85	80	75	70	65	60	65	80
5	$40^{\circ} 20^{\prime}$	$30^{\circ} 4$	$19^{\circ} 46^{\prime}$	$8^{\circ} 4^{\prime}$					
6	5357	4655	3939	3155	$23^{\circ} 18^{\prime}$	$13^{\circ} 11$			
7	5943	5417	4842	4251	3630	2923	$21^{\circ} 1^{\prime}$	$10^{\circ} 23^{\prime}$	
8	62.46	5818	5345	4859	4353	3816	3158	2416	$14^{\circ} 31$
9	6435	6047	5654	5252	4834	4383	8838	8282	255
10	6547	6228	59	5538	51.50	4747	4318	＇88 9	321
11	6686	6389	60.38	5730	5412	5038	4611	4212	$36 \quad 56$
12	6712	6432	6149	$59 \quad 0$	$56 \quad 2$	52.50	4918	4.519	4040
18	6739	$65 \quad 13$	6244	6011	5728	5484	5122	4747	4336
14	68． 0	6546	6329	618	58.89	5559	53 4	4947	46
15	6817	6613	$64 \quad 3$	6155	5938	5710	5428	5127	4758
16	6830	6684	6436	6234	60． 26	58	5589	L2 51	4938
17	6841	6653	65	63 8 8	618	$\begin{array}{ll}59 & 0\end{array}$	5640	548	514
18	$68 \quad 50$	678	$65 \quad 24$	6387	6144	5944	5732	55	5217
19	9857	6721	6543	$64 \quad 2$	6215	6022	5818	5559	3321
20	698	67.32	6559	6423	6243	6055	5858	5647	54 18
21	60.9	67.42	6614	6442	638	6125	5934	5780	559
22	69.14	6751	66.28	6459	6380	61.52	607	589	55 55
23	6918	6759	$\begin{array}{lll}66 & 39\end{array}$	6.515	6350	62 16	6086	5844	5636
24	6021	$68 \quad 5$	6649	65.30	$64 \quad 7$	6288	612	5914	5712

ANOLES OF ELEVATION FOR 25 DEOREE BLANK．

\％${ }^{\text {¢ }}$	Angle of Cutter．								
Z ${ }^{\text {\％}}$	90	85	80	75	70	65	60	55	50
5	$33^{\circ} 32^{\prime}$	$25^{\circ} 0$	$16^{\circ} 5^{\prime}$	$6^{\circ} 27^{\prime}$					
6	$47 \quad 0$	4088	$34 \quad 0$	2710	$19^{\circ} 38$	$10^{\circ}{ }^{\circ} 8^{\prime}$			
7	5312	4910	430	3785	3143	2517	$17^{\circ} 44^{\prime}$	$8^{p} 31$	
8	5636	5225	488	4340	3855	3341	2747	$20^{\circ} 50$	$11^{\circ} 33^{\prime}$
9	5840	55	5124	4786	4338	398	8418	2838	2115
10	602	5653	5340	5021	4647	$42: 8$	3843	8253	2747.
11	$61 \quad 0$	5811	5518	5220	4912	． 4548	424	8749	5282
12	61 42	59 9	5638	5352	512	4759	4438	40 है।	3610
18	6214	5954	5732	$\begin{array}{ll}55 & 5\end{array}$	5230	4944	46． 41	4815	892
14	6288	6029	5819	$\begin{array}{ll}56 & 3\end{array}$	5841	518	4820	4512	4122
15	6257	610	5857	5652	5489	5218	4948	4650	4818
10	68.13	6122	5929	5782	5529	${ }_{58}^{517}$	5058	4818	4457
17	6326	6142	5954	58	5611	54 8	5154	4923	4621
18	6387	8159	6019	5836	5648	5452	5246	5025	4734
19	6346	6213	6038	511	5720	5580	5381	5119	4838
20	6383	6225	6056	5923	5747	56 5	5411	526	4983
21	6359	6236	6111	5943	5811	5634	5447	5248	5023
23	$64 \quad 5$	6246	6125	60） 1	5834	57.1	5519	5326	519
23	6410	625.5	6137	60.17	5854	5725	5548	54	5150
24	6414	63 3	6147	6081	5912	5746	5613	54.80	5226

ANGLDI OF HLEVATION FOR BO DEGRE1 BLANRE．

	Angle of Cutter．								
言	90	85	80	75	70	65	60	BS	so
5	$28^{\circ} 9$	$20^{\circ} 51$	$18^{\circ} 17$						
6	4054								
7	4712 50 46	4835 46 48	87 42 42 58	82.56 88 17	$\begin{aligned} & 17 \\ & 27 \\ & 88 \end{aligned}$	21 29 48 8	15° 24 12		
$\begin{aligned} & 8 \\ & 9 \end{aligned}$	［1046	4658 4988	$\begin{array}{ll}42 & 55 \\ 4618\end{array}$	88 42 40	34 24	2986 84 48	2412 80 14	1755	$10^{\circ} 14^{\prime}$ 18
10	5429	5131	4830	45.22	428	38.29	3481	30	2444
11	5582	5258	5010	4722	4425	4118	3743	8845	298
12	5618	5358	5128	4854	4614	4821	4012	3688	8238
13	5654	5442	5227	50	4741	454	4212	8858	8515.
14	57.21	5519	5315	51	4852	4627	4849	4051	3727
15	5742	5549	5854	5155	4950	4735	459	4225	8917
16	58	5614	54.27	5236	5039	4834	$46: 9$	48.47	40 ค2
17	5814	5635	5454	53.10	5121	4924	4717		$42 \cdot 13$
18	5826	5653	5518	53.40	5157	${ }^{50} 7$	487	4583	4320
19	5836	578	5588	54	5.329	5045	4851	4648	4422
20	5844	5721	55.55	5428	5256	5118	4930	4781	4515
31	5851	5732	3610	5447	5320	5147	305	4812	468
22	6857	5742	5624	55	5342	5218	5036	4448	4646
28	59	5751	5637	5521		5237	51.4	4921	4725
24	598	5759	5648	5536	5420	5259	5130	4952	48 \％

ANGLES OF ELEVATION FOR 96 DEGREX BLANK．

ANGLEE OF ELEVATION FOR 40 DEGREE BLANK．

号够	Angle of Cutter．								
\％	90	8	80	75	70	${ }_{6}$	60	65	so．
5	$20^{\circ} 13$	$14^{\circ} 58{ }^{\prime}$	$9^{\circ} 24$	$8^{\circ} 39$					
6	3048	2621	2148	173	11 ${ }^{\circ} 58^{\prime}$	$6^{\circ} 22^{\prime}$			
7	8637	8252	292	25	2049	1612	$11^{\circ} 1^{\prime}$	$5^{\circ} 2$	
8	407	365	3336	3010	2683	2238	1816	1820	$7{ }^{\circ} 23^{\prime}$
9	4224	3934	8641	3341	3031	2726	2320	194	
10	4357	4126	3851	3611	8332	30.21	278	2316	1885
11	45.4	4248	4028	38	8582	3249	2950	2629	2888
12	4554	4350	4148	8932	87.14	3445	32.3	292	2533
18	4683	4488	4242	4041	88.35	3619	3350	81	2754
14.	47	4517	4329	4138	3941	8736	8519	3248	2951
15	4726	4547	447	4224	4035	3839	3682	8410	3128
16	4745	4618	4439	433	4121	3982	3783	3521	3250
17	481	46.84	456	4330	420	4018	3827	3623	
18	48.14	4652	4529	44	4334	4058	3913	3717	355
19	4825	478	4549	4428	438	4183	39.54	384	$85 \quad 59$
20	4885	4722	467	4450	4330	424	4030	8846	3647
21	4848	4783	4628	459	4353	4231	412	39＇23	3780
＇22	4850	4743	4636	4526	4413	4253	4130	3956	388
23	4856	4752	4648	4541	4431	4817	4155	4025	3842
34	49		4658	4555	4448	43.36	4219	4052	8915

ANGLEA OF LISVATION TOR 46 DEGREE BLANE，

농	Angle，of Cutter．								
边	90	＊	80	75	50	65	60	B5	50
5	$17^{\circ} 10^{\circ}$	12＇86＇	$7{ }^{\circ} 57^{\prime}$	$8^{\circ} 5$					
6	2684	2241	1843	1435	$10^{\circ} 11^{\prime}$	5＇23＇			
7	8156	2886	2513	2142	1756	1855	$9^{\circ} 24^{\prime}$	$4^{\circ} 15^{\prime}$	
8	8516	82.3	2925	2622	288	19.89	1548	1125	$5^{\circ} 58^{\prime}$
9	8727	8454	3217	2986	2645	2341	$20 \cdot 19$	1631	1149
10	3858	8641	3421	$81 \cdot 57$	2924	2640	$23 \quad 40$	2018	1610
11.	40	880	8553	3342	8124	28.57	2615	2314	1932
12	4064	39 0	375	$85 \quad 5$	880	8045	2818	2583	2218
13	4182	$39 \quad 47$	881	36111	8415	8212	2957	2786	2423
14	$42 \quad 1$	4024	8846	874	3517	8322	81.18	$28 \quad 58$	269
15	4225	40.55	3923	3748	869	3422	3226	3017	2740
16	4244	4120	3954	－ 8825	$36 \quad 52$	3512	3824	81.23	2857
17	480	4141	4020	88.57	8729	8555	34 14	$82 \quad 20$	804
18	4318	4158	4042	8924	$88 \quad 1$	3683	8456	3310	31
19.	4321	4218	411	8947	8828	875	8584	$83 \quad 54$	3151
20	4384	4226	4118	408	$38 \quad 53$	87 784	$\begin{array}{ll}36 & 8\end{array}$	3433	3237
21	4842	4737	4183	4026	8915	$38 \quad 0$	$\begin{array}{lll}36 & 38\end{array}$	357	3317
22	4349	4247	4146	4042	8984	8823	87.5	8588	3453
23	435.5	4256	4157	4056	8952	3843	8729	366	3526
24	440	$43 \quad 4$	427	415	407	89 1．	3750	8681	8555

ANOLES OF HLSVATION FOR 60 DEGREE BLANE．

¢	Angle of Cutter．								
\％${ }^{3}$	90	65	80	75	70	65	CO	85	80
5	$14^{\circ} 92{ }^{\prime}$	$10^{\circ} 89^{\prime}$	$6^{\circ} 42^{\prime}$	$2{ }^{\circ} 33^{\prime}$					
6	2245	1923	1538	1224	$8^{\circ} 38^{\prime}$	$4^{\circ} 82^{\prime}$			
7	2787	2442	2144	1889	1524	1184	$8^{\circ} 1^{\prime}$	$8^{\circ} 86^{\prime}$	
8	3041	288	2581	2350	$19 \quad 69$	1655	1883	945	$5^{\circ} 20^{\prime}$
9	8244	8028	$28 \quad 9$	2545	2314	2031	1782	1418	1022
10	8410	387	$30 \quad 2$	2754	2589	2312	2032	1734	149
11	8518	3822	3128	2931	2728	$25 \quad 16$	2252	2011	176
18	360	3418	3284	3047	2853	$26 \quad 54$	2442	2215	1927
13	3636	$85 \quad 2$	8326	3148	$\begin{array}{ll}30 & 3\end{array}$	$28 \quad 18$	2611	2356	2122
14	375	3588	349	3247	311	$29 \quad 18$	2726	2521	2258
15	8728	367	3444	8818	3149	8018	2828	2632	2420
16	3747	8681	8518	$33 \quad 53$	82.29	810	2922	2733	2580
17	882	3650	8587	3422	838	3138	307	2824	2629
18	3815	377	35.58	3447	$83 \quad 33$	8213	． 3046	2910	2721
19	3826	3722	3617	359	$\begin{array}{ll}33 & 59\end{array}$	3243	8121	2950	287
20	3835	3784	8682	3528	3421	33 C	8153	3025	2847
21	3843	3745	8646	3545	3441	3333	3219	3057	2924
22	3850	8755	8658	360	3459	8355	3244	3126	$29 \quad 57$
23	88． 56	38 3	879	3614	3515	3414	336	8151	8026
24	391.	3810	3719	3625	3530	3480	8325	3214	3052

ANGLES OF ELEVATION FOR B6．DMGREE BLANE．

형	Argle of Cutter．								
7\％	00	85	80	75	70	65	60	55	80
5	$12^{\circ} 18{ }^{\prime}$	$8^{\circ} 57^{\prime}$	$6^{\circ} 37^{\prime}$	$2^{\circ} 10^{\prime}$					
6	1917	1625	1380	1028	$7^{\circ} 15^{\prime}$	$3^{\circ} 48^{\prime}$			
7	2385	214	1881	1551	134	108	$6^{\circ} 44^{\prime}$	$8^{\circ} 1^{\prime}$	
8	2621	248	2152	19 81	17	1425	11．80	817	$4^{\circ} 17$
9	2813	2614	$24 \quad 18$	227	1955	17.34	1459	126	834
10	2932	2745	2555	24． 2	$22 \quad 3$	$19 \quad 35$	1736	151	1152
11	3030	2852	2712	$25 \quad 29$	2341	2145	1939	1718	1427
12.	3114	2944	$28 \cdot 12$	2888	2459	2313	21.17	19 19	1682
13.	3148	8025	$29 \quad 0$	2733	$26 \quad 2$	2424	2237	20.38	1815
14	8215	$30 \quad 58$	2989	2818	$26 \quad 53$	$25 \quad 25$	2343	2153	1940
15	3286	3124	3011	$28 \quad 55$	2735	26111	2 ± 38	2256	2052
16	3254	8147	8088	2927	$28 \quad 12$	$26 \quad 53$	2526	$23 \quad 51$	2154
17	839	326	311	$29 \quad 54$	2844	2729	$\begin{array}{ll}26 & 7\end{array}$	2438	2249
18	8321	3221	3120	$\begin{array}{lll}80 & 17\end{array}$	29.10	$28 \quad 0$	2643	2518	2335
19	3381	8284	31． 36	3036	2933	2827	2714	$25 \quad 54$	2417
20	3340	3246	8151	3054	2954	2851	2742	2625	2453
21	3347	8256	$\begin{array}{ll}32 & 8\end{array}$	818	3012	2912	$28 \quad 6$	2653	2520
22	3354	835	3215	8128	$80 \quad 29$	2931	2828	2719	2555
23	340	3318	$32 \quad 25$	3136	3044	2948	2848	2742	2622
24	345	3320	3234	3147	$30 \quad 57$	$30 \quad 4$	297	$28 \quad 8$	2646

SETTING ANGLES FOR MILLING ANGULAR CUTTERS－IV

ANGLES OF ELEVATION FOR GO DEGREE BLANK．

	Angie of Cutter．								
z＇0	90	85	80	75	\％ 0	65	60	55	50
5	$10^{\circ} 7$	$7^{\circ} 25^{\prime}$	$4^{\circ} 39 \cdot$	$1^{\circ} 47^{\prime}$					
6	166	1341	1112	842	$6^{\circ} 2^{\prime}$	$3^{\circ} 9^{\prime}$			
7	1848	1740	1530	1316	1055	822	$5^{\circ} 36$	$2^{\circ} 30^{\prime}$	
8	2213	2019	1824	1624	1419	124	937	653	$3 \cdot 44$
9	2352	2210	2026	1839	1646	1446	1234	107	719
10	$25 \quad 2$	2330	2156	2019	1837	1648	1449	1236	105
11	2554	2430	234	2135	$20 \quad 2$	1823	1634	1434	1216
12	2634	2516	2357	2236	2110	1939	1759	16	1413
13	275	2553	2440	2325	22.6	2041	198	1727	1531
14	2729	2622	2514	$24 \quad 4$	2251	2132	206	1832	1644
15	2749	2646	2543	2437	$23 \quad 29$	2215	2055	1927	1747
16	285	27.6	26.7	25.5	241	2252	2137	2014	1840
17	2818	2723	$26 \quad 27$	2529	24：28	2323	2213	2055	1926
18	$28 \quad 29$	2737	2644	2549	2452	2350	2244	2130	206
19	2838	2749	2658	26	2512	2414	2311	$22 \cdot 1$	2042
20	2846	2759	$27 \cdot 11$	2622	2530	2435	2335	$22 \quad 29$	2114
21	2853	288	2723	2636	2546	2454	$23 \quad 57$	2254	2142
22	290	$28 \quad 17$	2734	2649	$26 \quad 2$	2512	$24 \cdot 17$	2317	228
23	295	2824	2743	270	2615	$25 \quad 27$	3435	2337	2232
24	298	2830	2750	27	2626	2540	2450	2355	2252

ANGLES OF ELEVATION FOR 65 DEGREE BLANE．

동	Angle of Cutter．								
之萓	90	85	80	75	70	65	60	55	50
5	$8^{\circ} 12^{\prime}$	$6^{\circ} 0^{\prime}$	$3^{\circ} 46^{\prime}$	$1^{\circ} 27^{\prime}$					
6	137	1110	98	74	$4^{\circ} 53^{\prime}$	$2^{\circ} 33^{\prime}$			
7	1613	1428	1241	1050	854	649	$4^{\circ} 83{ }^{\prime}$	$2^{\circ} 1$	
8	1815	1640	156	1326	1142	951	750	530	$8^{\circ} 1$
9	1939	1814	1648	1519	1345	125	1016	814	557
10	2040	1923	$18 \quad 4$	1644	1519	1348	129	10.19	815
11	2125	2014	19 3	1749	1631	$15 \quad 9$	1338	1158	104
12	2159	2054	1948	1840	1728	1612	1449	1317	1132
13	2226	2126	2035	1922	1815	17	1548	1423	1246
14	2248	2152	$20 \quad 55$	1956	1854	1748	1687	1517	1848
15	$23 \quad 5$	2213	2119	2024	1926	1824	1718	164	1440
16	2318	2229	2139	2047	1953	1855	1753	1643	1524
17	2380	2243	2156	218	2017	1922	1823	1717	168
18	2340	2255	2211	2125	2087	1946	1850	$17 \cdot 47$	1637
19	2348	235	22.24	2140	2055	206	1918	1814	$17 \quad 7$
20	2355	2314	2285	8154	2110	2024	1983	1838	1734
21	211	2323	2245	226	2124	2039	1951	1858	1758
22	246	$23 \quad 29$	2253	2216	2136	2053	208	1917	1820
23	2411	2336	231	2226	2147	217	2023	1984	1889
24	2415	2348	$28 \quad 8$	2284	2157	2118	2086	1950	18 57

ANGLES OF ELEVATION FOR TO DRGREE BLANK．

$\begin{aligned} & \text { 怣: } \\ & \text { 謁 } \\ & \text { zo } \end{aligned}$	Angle of Cutter．								
	90	88	80	75	70	65	60	55	50
5	$6^{\circ} 25^{\prime}$	$4^{\circ} 42^{\prime}$	$2^{\circ} 57^{\prime}$						
6	1018	844	79	$5^{\circ} 82^{\prime}$	$3^{\circ} 48$				
7	1247	1123	959	831	${ }^{6} 58$	$5^{\circ} 21^{\prime}$	$3^{\circ}{ }^{\circ} 3^{\prime}$		
8	1426	1311	1155	1036	914	745	${ }^{6} 9$	$4^{\circ} 23{ }^{\prime}$	$2^{\circ} 21$
9	1535	1427	1818	127	1053	983	86	630	441
10	1625	1523	1421	1815	128	1055	937	8	630
11	172	165	158	148	187	12． 0	1048	928	757
12	1730	1688	1545	1450	1358	1251	1145	1081	
13	1752	174	1615	1524	1480	1333	1232	1123	$10{ }^{10} 6$
14	189	1724	1688	1551	151	148	1311		
15	1823 1835	1741	1658	1614 1683		14 15 15 8	13 14 14 13	1244	1138
$1 \begin{aligned} & 16 \\ & 17\end{aligned}$	1835 1845	1755	$\begin{array}{ll}1715 \\ 17 & 80\end{array}$	1683 1650	15 16 16	15 15	14138	1817 18 46	1218
18	1858	1817	1742	175	1626	1544	1459	1410	1313
19		1826	1752	1717	1640	161	1518	1482	1838
20	196	1835	181	1728	1653	1616	1535	1451	1359
21	1911	1841	189	1788	175	1629	1550	158	1418
22	1915	1846	1818	1746	1715	1640	16	15.22	1435
23	1919	1851	1828	1754	1725	1650	1615	1536	1451
24	1922	1855	1829	180	1783	1659	1625	1548	15.

ANGLES OF RERVATION FOR 75 DEGREE BLANZ．

¢¢	Angle of Cutter．								
乙	90	85	80	3	\％	65	60	55	50
5	$4^{\circ} 44^{\prime}$	$3^{\circ} 28^{\prime}$	$2^{\circ} 10$						
6	788	629	519	$4^{\circ} 6^{\prime}$	${ }^{\circ} 50$	$1^{\circ} 29$			
7	929	827	724	617	510	357	$2^{\circ} 38^{\prime}$	$1{ }^{\circ} 10$	
8	1044	948	851	750	651	545	434	314	$10 \% 5$
9	1186	1046	954	90	85	75	00	449	827
10	1214	1128	1040	952		87	78	63	449
11	1242	120	1116	1032	945	856	$8 \quad 2$	7． 1	554
12	184	1225	1145	11.4	1021	935	845	749	647
13	1821	1245	128	1129	1050	107	921	829	781
14	1334	130	1226	1150	1113	1033	950	92	87
15	1345	1313	1241	127	1133	$10 \quad 55$	1015	930	839
16	1354	1324	1254	1222	1150	1114	1037	954	97
17	$14 \quad 2$	1333	$13 \quad 5$	1235	125	1131	1056	1016	931
18	148	1341	1314	1246	1217	1145	1112	1034	951
19	1413	1348	1322	1255	1228	1158	1126	1050	1010
20	1418	1354	1329	13 13	1238	129	11.39	115	1087
21	1422	1859	1336	$13 \quad 12$	1246	1219	1150	1117	1041
22	1425	14	1341	1318	1253	1228	120	1129	1054
23	14.28	$14 \quad 7$	1346	1324	13 －	1236	129	1140	116
24	1431	1411	1350	1329	137	1244	1218	1150	1118

ANGLES OF ELEVATION FOR 80 DEOREE BLANK

	Anglo of Cutter．								
云＂	80	85	80	75	70	65	60	55	50
5	$8^{\circ} 7{ }^{\prime}$	$2^{\circ} 17^{\prime}$	$1^{\circ} 26^{\prime}$	$0^{\circ} 43^{\prime}$					
6	52	416	380	242	$1^{\circ} 52^{\prime}$	$0^{\circ} 58^{\prime}$			
7	${ }^{6} 16$	535	453	410	325	236	$1^{\circ} 45^{\prime}$	$0^{\circ} 46^{\prime}$	
8	76	629	551	512	431	348	32	28	$1^{\circ} 8^{\prime}$
9	742	78	634	558	521	442	359	311	217
10	87	736	75	633	559	528	444	40	311
11	826	758	729	70	628	555	519	439	354
12	841	815	748	721	652	622	548	511	429
13	853	829	84	738	712	643	612	538	459
14.	92	840	816	752	788	71	632	6	524
15	$9 \quad 9$	848	826	84	740	716	648	619	545
16	915	855	835	814	751	728	73	633	63
17	920	91	842	822	81	739	715	649	619
18	924	96	848	829	810	749	726	71	633
18	928	911	858	836	817	758	736	712	645
20	9.31	915	858	842	824	85	744	721	656
21	934	919	93	847	$8 \cdot 80$	812	752	7：30	76
22	936	922	96	851	835	818	759	738	715
23	938	924	99	855	839	823	85	745	723
24.	940	926	9.13	859	843	828	811	751	7.30

ANGLES OF HELSVATION FOR BS DEGRER BLANK．

¢ ${ }^{\text {d }}$	Angle of Cutter．								
乙\％	90	85	80	73	70	65	60	55	50
5	$1^{\circ} 33^{\prime}$	$1^{\circ} 8^{\prime}$							
0	280	27	$1^{\circ} 44^{\prime}$	$1^{\prime} 20^{\prime}$	$0^{\circ} 55^{\prime}$				
7	37	246	226	24	142	$1^{\circ} 18^{\prime}$	$0^{\circ} 50{ }^{\prime}$		
8	382	318	255	235	215	1.53	129	$1^{\circ} 8^{\prime}$	$0^{\circ} 84^{\prime}$
9	850	333	316	28	240	220	159	135	18
10	48	348	882	816	259	241	221	159	185
11	413	359	844	830	314	257	889	219	157
12	420	47	853	840	325	310	253	235	215
18	426	414	41	848	835	821	86	248	280
14	436	419	47	355	343	329	315	259	242
15	434	423	412	41	850	8 87	394	8 8 9	252
16	487	427	417	46	856	344	880	817	31
17	440	430	421	411	41	850	887	824	89
18.	442	433	4.24	415	45	355	348	830	316
19	444	485	427	418	49	359	348	886	822
20	446	487	429	421	412	48	852	841	328
21	447	439	481	423	415	46	356	845	883
22	448	441	433	425	418	49	859	349.	387
23	449	442	435	427	420	412	42	853	341
24	450	443	436	429	422	414	45	356	345

Dimenslops of Shell End Minls
Dimensions for sheli end mills are given on page 30, and for the arbors on which these mills are mounted when in use, on page 31. The head of the screw on the end of the arbor enters into the recess in the end of the mill. The keys in the arbor enter into the keyway F at the upper end of the mill and constitute the drive. It will be seen that the number of teeth in these mills is greater for the same diameters than the number in solid end mills. This is because the coarser teeth of the latter would require a deeper flute than would be possible in the thin shell of the shell end mill.

Milling the Teeth in End Mills and Angular Cutters

On page 32 is given a table of angles for setting the dividing head of the milling machine when cutting teeth in the end of end mills. The angle to which the dividing head must be set depends on two factors, the number of the teeth in the mill to be cut, and the angle of the cutter with which the teeth are to be cut. When the number of teeth in the cutter and the angle of the cutter used for milling the teeth are given, the setting angle of the dividing head is
found in the body of the table. For example, assume that 12 teeth are to be cut in the end of an end mill with a 60 degree cutter. Then by following the horizontal line from 12 teeth we read in the column under 60 degrees that the dividing head should be set to an angle of 70 degrees 32 minutes for this job. On pages 34 to 36 are given similar tables for milling angular cutters, an explanation of the formulas by which these angles are obtained being given on page 33. [Machinery, April, 1904, To Calculate the Setting of the Dividing Head when Cutting the Teeth of End Mills; November, 1908, Setting Angles for Milling Angular Cutters and Taper Reamers.]

Dimensions of Plug and Ring Gages

On page 37 are given dimensions of plain plug and ring gages for ordinary use. These dimensions are based upon the dimensions used for these gages by one of the most prominent gage makers in the country. The proportions will be found suitable for every-day use, although for special requirements some of the dimensions may have to be modified.

14 DAY USE

RETURN TO DESK FROM WHICH BORROWED

 LOAN DEPT.This book is due on the last date stamped below, or on the date to which renewed.
Renewed books are subject to immediate recall.

2Jantish	
REC'D LD	
JAN 7 1958	

$T J 72$ MR K. 4

347495
Machinuy

No. 16. Machine Tool Drives.-Speeds and Feeds of Machine Tools; Geared or Single Pulley Drives; Drives for High Speed Cutting Tools.

No. 17. Strength of Cylinders-Formulas, Charts, and Diagrams.

No. 18. Shop Arithmetic for the Ma-chinist.-Tapers: Change Gears: Cutting Speeds: Feeds; Indexing; Gearing for Cutting Spirals; Angles.

No. 19. Use of Formulas in Mechanics. -With numerous applications.

No. 20. Spiral Gearing.-Rules, Formulas, and Diagrams, etc.

No. 21. Measuring Tools.-History and Development of Standard Measurements; Special Calipers; Compasses; Micrometer Tools; Protractors, etc.

No. 22. Calculation of Elements of Machine Design.-Factor of Safety; Strength of Bolts; Riveted Joints; Keys and Keyways; Toggle-joints.

No. 23. Theory of Crane Design.-Jib Cranes; Calculation of Shaft, Gears, and Bearings; Force Required to Move Crane Trolleys; Pillar Cranes.
No. 24. Examples of Calculating De-signs.-Charts in Designing; Punch and Riveter Frames; Shear Frames; Billet and Bar Passes; ete.

No. 25. Deep Hole Drilling.-Methods of Drilling; Construction of Drills.

No. 26. Modern Punch and Dle Con-struction.-Construction and Use of Subpress Dies: Modern Blanking Die Construction; Drawing and Forming Dies.

No. 27. Locomotive Design, Part I.Boilers, Cylinders, Pipes and Pistons.
No. 28. Locomotive Design, Part II.Stephenson Valve Motion; Theory, Calculation and Design of Valve Motion; The Walschaerts Valve Motion.

No. 29. Locomotive Design, Part III. -Smokebox; Fxhanst Pipe; Frames; Cross-heads; Guide Bars; Conneeting-rods; Crank-pins; Axles; Driving-wheels.

No. 30. Locomotive Design, Part IV.Springs, Trucks, Cab and Tender.

No. 31. Screw Thread Tools and Gages.
No. 32. Screw Thread Cutting.-Lathe Change Gears; Thread Tools; Kinks.
No. 33. Systems and Practice of the Drafting-Room.

No. 34. Care and Repair of Dynamos and Motors.

No. 35. Tables and Formulas for Shop and Drafting-Room.-The Use of Formulas; Solution of Triangles; Strength of Materlals; Gearing; Screw Threads; Tap Drills; Drill Sizes; Tapers; Keys; Jig Bushings, etc.

No. 36. Iron and Steel.-Principles of Manufacture and Treatment.

No. 37. Bevel Gearing.-Rules and Formulas; Examples of Calculation;

Tooth Outlines: Strength and Durability; Design; Methods of Cutting Teeth.

No. 38. Grinding and Grinding Machines.

No. 39. Fans, Ventilation and Feating. -Fans; Heaters; Shop Heating.

No. 40. Fly Wheels.-The ir Purpose. Calculation and Design.

No. 41. Jigs and Fixtures, Part I.Principles of Jig and Fixture Design; Drill and Boring Jig Bushings; Locating Points; Clamping Devicos.

No. 42. Jigs and Fixtures, Part II.Open and Closed Drill Jigs.

No. 43. Jigs and Fixtures, Part III.Boring and Milling Fixtures.

No. 44. Machine Blacksmithing.-Systems, Tools and Machines used.

No. 45. Drop Forging. - Lay-out of Plant; Methods of Drop Forging; Dies.

No. 46. Hardening and Tempering.Hardening Plants: Treating High-Speed Steel; Hardening Gages; Hardening Kinks.

No. 47. Electric Overhead Cranes.Design and Calculation.

No. 48. Files and Filing.-Types of Files; Using and Making Files.
No. 49. Girders for Electric Overhead Cranes.

No. 50. Principles and Practice of Assembling Machine Tools, Part I.

No. 51. Principles and Practice of Assembling Machine Tools, Part II.

No. 52. Advanced Shop Arithmetic for the Machinist.
No. 53. Use of Logarithms and Logarithmic Tables.
No. 54. Solution of Triangles, Part I. -Methods, Rules and Examples.
No. 55. Solution of Triangles, Part II. -Tables uf Natural Functions.

No. 56. Ball Bearings.-Principles of Design and Construction.

No. 57. Metal Spinning.-M a chines, Tools and Methods Used.

No. 58. Helical and Elliptic Springs. Calculation and Design.
No. 59. Machines, Tools and Methods of Automobile Manufacture.
No. 60. Construction and Manufacture of Automobiles.

No. 61. Blacksmith Shop Practice.Model Blacksmith Shop; Welding; Forging of Hooks and Chains: Miscellaneous Appliances and Methods.

No. 62. Hardness and Durability Testing of Metals.
No. 63. Heat Treatment of Steel. Hardening, Tempering and Case-Hardening.

No. 64. Gage Making and Iapping.
 No. 65. Formulas and Constants for Cas Engine Design.

Machinery, the monthly mechanical journal, originator of the Reference and Data Sheet Series, is published in four editions-the Shop Edition, $\$ 1.00$ a year; the Engineering Edition, $\$ 2.00$ a year; the Railway Edition, $\$ 2.00$ a year, and the Foreign Edition, $\$ 3.00$ a year.

The Industrial Press, Publishers of Machinery,

