


## PARTXIV.

## REPORT

## THE COMMISSIONER

FOR

## 1886.

A.-INQUIRY RESPECTING FOOD-FISHES AND THE FISHING GROUNDS.
B.-PROPAGATION OF FOOD-FISHES.


WASHINGTON:
GOVERNMENT PRINTING OFFICE. 1889.
S. Mis. $90-\mathrm{I}$

Resolved by the Senate (the House of Representatives concurring), That the report of the Commissioner of Fish and Fisheries for the year 1886 be printed; and that there be printed 11,000 extra copies, of which 3,000 shall be for the use of the Senate, 6,000 for the use of the House of Representatives, 1,500 for the use of the Commissioner of Fish and Fisheries, and 500 for sale by the Public Printer, under such regulations as the Joint Committee on Printing may prescribe, at a price equal to the additional cost of publication and 10 per cent. thereto thereon added, the illustrations to be obtained by the Public Printer, under the direction of the Joint Committee on Printing.

Agreed to by the Senate February 26, 1887.
Agreed to by the House March 2, 1887.

## CONTENTS

## I．－REPORT OF THE COMMISSIONER．

Page．
1．Inthonuctory note ..... IX
2．Inquify hespreting food－Fishes and the fishise giounds ..... $\pi$
A．－Fiedd work ..... X
B．－Special investiqations ..... NIV
C．－Preparation of reports，etc ..... XVV
D．－Proposed extension of the inquiry to the Pacific coast． ..... XV
3．Inquili hesmecting the fishemes ..... XVI
A．－Office and field work． ..... XTI
B．－The macherel fishery during 1880 ..... NVII
C．－The schooner Grampus ..... SIX
4．Fishery relations of the United States with Canada： ..... NXI
Information furnished the Secretary of the Treasury by the Commissioner ..... SXI
5．Propagation of food－fishes ..... xXVII
Distribution of fish and eggs ..... xivir
Notes on the species propagated and distributed ..... NXVIII
a．The Sole（Solea solea） ..... x゙xVIII
 ..... NXVIII
c．The Coafish（Gadus morrtuat） ..... XXIX
d．The Mackerel（Scomber scombrts） ..... XXX
e．The EBIrek 路ass（ATicroptents dolomici） ..... NXX
f．The Ibed－eye（ 1 mbloplites ripestris） ..... XXX
g．The Sunsins（Lepomis gibberus） ..... NXX
h．The WEnite Perch（Roccus anericanus） ..... XXX
i．The EPochnish or stripes Esass（ Roccus lineatus） ..... XXX
j．The Sgacit（Osmerus mordax） ..... NXXI
k．The Thhitefis？（Corcgonus chupeiformis）． ..... XXXI
l．Tise Dwarf Whaitefish（Coregonus albuta）． ..... XXXI
 ..... N゙XXII
n．The Gaibling（Salvelinus al ${ }_{2}$ inues）． ..... xxyif
－．The Take Troat（Salvelinus namaycish） ..... XXXII
p．The TE ainbove Trout（Salmo irideus） ..... XXXIII
 ..... XXXIII
r．＇定he Euch Hicver Troast（Salmo levenensis） ..... N゙XNI
s．＇The Atlamic Salmoba（Salmo salar）． ..... XXXIV
$t$ ．The Enandlocked Salnioon（Salmo salar var．sebago） ..... xxyv
$u$ ．The Shad（Clupea sapidissima）． ..... XXXVI
$v$ ．Tlue Carp（Chprinus carpio） ..... XXXVIII
w．The Collfish（Carassius auratus） ..... XXXVIII
$x$ ．The Tench（Tincr tinca） ..... NXAVIII
$y$ ．The Hiobster（Homarus americanus） ..... XXXVIII
\％．＇The Oyster（Ostrea virginica） ..... XXXIS
Page.
6. I'he stations of the Fisil Commishion ..... XXXIX
A.-Marino statious ..... XXXIX
Gloncester, Blass ..... XXXIX
Wood's Holl, Mass ..... XXXIX
Saint Jerome, Md ..... XL
B.-Stations for moparation of the Salmonide ..... XL
Grand Lake Strean and Bucksport, Mo ..... XL
Cohl Spring Harbor, N. I ..... XLI
WStherille, Va ..... XLI
Northville and Alpena, Mich ..... $\mathrm{XL}_{\mathrm{I}}$
MeClond River, Cal ..... XLI
C. -Stations for proparation of shad ..... XLII
Battery Island, MId ..... NLII
Washington, D.C ..... XLII
Fort Washington, Md ..... XLII
Delaware River ..... XLII
D.-Stations for propagation of carp ..... NLIII
Washington, D.C ..... XLIII
E.-Now hatching stations proposed ..... XLIII
At Duluth, Minn ..... NLIII
On the Clackamas River, Oremon ..... XLIV
7. Tue tessels of the Fisil Commision ..... XLV
A. - The steamer Illuatross. ..... XLV
1.-Thesteamer Fish Havk ..... XLVI
C.-Thes stamer Iletcyon ..... XLVI
1).-The sehomer Crampus ..... XLVII
Assignments of naral officers ..... XLVII
8. Courtegies and assistance received iby tief Fish Commesion ..... XLVIII
A. - From the Thited States Government ..... XLVIII
B.-From railroad companies of the Unitad States ..... XLIX
C. -From steam-ship empanies ..... L
1.- From foreign goveraments ..... L
9. Conrtesies anid Assistance hendered hy the Fisil Cominssion ..... LI
A. - To foreign countries ..... LI
B.-To others ..... LII
10. Public eximbitions of the methods and meselats of the Commission ..... LII
At Lonisville, Ky ..... LII
At Lincoln, Nebr ..... LIII
At Chicago, Ill ..... LIII
At Wilmington, Del ..... LIII
11. Visits fhom representatives of foreign govelimaents ..... LIII
Mr. Fadzutka Ito, of Japan ..... LIII
Dr. Filip Trshom, of Sweden ..... LIIII
12. Deatis muring the yeirs ..... LIIII
Notice of Capt. Iublard C. Chester ..... LIIII
Notice of Capt. Nathaniel F. Atwoot ..... LIV
13. Publications by the Fisil Commasion during 188 g ..... LIV
Anmual reports ..... LIV
Quarto reports ..... LV
lulletin ..... LV
Pamphets ..... LV
14. Digmet of the arpenbles when accompany the mproit ..... LVI
A.-The fishertes ..... L.V I
B.-Sciontific investigation ..... LVI
C.-Fish-culture ..... LVII
D.-Reports of vessels and stations ..... LVII
E. - Miscellaneons ..... LVII

## II.-LIST OF PAPERS IN THE APPENDICES.

## A.-THE FISHERIES.

Page.
I. Baird. The sea fisheries of Eastern North America. By Spencer F. Baird. Special index ..... 3
B.-SCIENTIFIC INVESTIGATION.
II. Jordan and Goss. A review of the flounders and soles (rleuronectidef) of America and Eurore. By David Starr Jordan and David Kop Goss. Nine plates. Special index ..... 295
III. Joxdan and Cigenmann. A neview or tie sclenide of Amemica and Eubore. By David Starr Jordan and Carl II, Eigenmann. Four plates. Special index ..... 343
IV. Linton. Notes on entozoa of marine fishes of New England, witi descrip- tions of several new species. By Edwin Linton. Six plates. Special index. .-
V. Fewkes. Report on the meduse collected by the U. S. Fish Commission steamer Aibatross in the region of the Gulf Streami, in 1885-'86. By J. Walter Fewkes. Oue plate. Special index ..... 513
C.-FISH-CULTURE.
VI. Rettoni and Vinciguerra. Ox the fish-cultural establisiments of Cex- tral Eurore. By Eugenio Bettoni and Decio Vinciguerra. Special index....... ..... 539
D.-REPORTS OF VESSELS AND STATIONS.
VII. Tanner. Refort on the work of the U. S. Fish Commission steamer Alba- tross for the year ending December 31, 1886. By Lieut.-Commander Z. L. Tanner, U. S. Navy, commanding. Ten plates. Special inder. ..... 605
VIII. Smith. Report of operations of the U. S. Fisi Commssion smismer Fisil Hawk for the tear ending December 31, 1886. By Mate James A. Smith, U. S. Nars, commanding ..... 693
IX. -- Refort on the onerations of tie steamer Halcyon for tie tear end- ing December 31, 1886 ..... 693
X. Collins. Reioht ubon the oremations of the U. S. Fish Commission schooner Grampus from Juae 5, 1886, to March 15, 1887. By Capt.J. W. Collins. One plate. Special index ..... 701
XI. Mather. Report of oferations at Cold Spreg Habbor, New Tork, during tile season of 1886. By Fred Mather. ..... 721
XII. Clark. Report of obleatioxs at the Michigan stations of the U. S. Fish Commission for the year 1886-'87. By Frank N. Clark. ..... 729
XIII. Stone. Report of oherations at the United States salmon and thout stations on the McCloud River, Califoria, fol the yealis 1885-87. By Liv- ingston Stone ..... 737
XIV. Aikims. Refort on the phopagation of Penobscot salmox in 1886-'87. By Charles G. Atkins. ..... 747
XV. Ahkins. Iefort on the moragation of Schoodic sadmon at Grand Lake Stream, Mane, in 1886-'87. By Charles G. Atkins. ..... 751
XVI. 1Savenel. Repont of operations at Battery Statiox, Hayme de Grace, Md., for tie yealr ending December 31, 1880. By W. de C. Ravenel ..... 761
XVII. Ravenel. Refort of operations at Saint Jerome oister-bremeding station for tile year 1886. By W. de C. Ravenel ..... 765
XVILI. Carswell. Report on the artificial propagation of the codfishat Wood's Holl, Mass., for 'rie season of 1885-'86. By James Carswell ..... 779
X゙LX. Akins. Report on the arthficlal propagation of codfisif at Wood's holl, Mass., for the season ov 1886-'87. By Charles G. Atkins ..... 783
XX. MeDonald. Report of orerations at the Witheville station, Tirginia, from Jaxuary 1, 1885, to June 30, 1887. By Marshall McDonald. Six plates. ..... 793
XXI. MeDonald. Reloht of shad distribution for the season of 1886. By Mar- shall MeDonalit ..... 801
XXII. Grabill. Report of orerations at the shad-ifatcimyg station on Battery Island, near Mayre de Grace, Md., during the season of 1886. By L. Ir. Grabill ..... 807
Page.
XXIII. Decmonald. Report of shad propagation on the Potomac River dubing the season of 1886. By Marshall McDonald ..... 815
XXIV. Sienith. Report on the silad work of the steamer Fisil hawk during the season or 1886. By Mate James A. Smitb, U. S. Nary, commanding ..... 819
SXV. Gith. Report on the shad work of the steamer Lookout during the season of 1886. By Mato James $\Delta$. Smith; U. S. Nars, commanding. ..... 825
XXVI, Tlather. Report of eggs shmped to and recmivel from foreign counthies at the Cold Sphing Harioh, New York station, during the season of 1886-'87. By Fred Mather. ..... 820
 mission from January 1, 1886, zo Juye 30, 1887. By Marshall McDonald ..... 833
XXVIII. - Distribution of duplicate sets of marine invertebrates, 1879-1889. Special index ..... 843
E-MISCELLANEOUS.
XXIX. Smitit. List of the dredeing stations of the U. S. Figh Commission, the U. S. Coast Sulvey, axd the Bmitis steamel: Challenger, in Nomti american waters, from 1867 to 1887, together witil those of the principal European Goverxmext fexpelions in the Atlantic anil Afetic Oceaxs. By Sanderson Smith, Five charts. ..... 871
XXX. 取ostyrschent. Chmacal composition of fisul poonucts, with some remarks on their nuthitive value. By Prof. P. Kostytscheff. ..... 1019
XXXI. Diamriae. Review of cases of poisoning caused hy sholled codfisif, and the unnecessary prohmbition of the sale of reddened codfisif. By Dr. E. Mauriac. ..... 1027
XXXif. Kizer. Notes on the Norwegian fisueries of 1885. By A. N. Kime ..... 1055
Generaliminex ..... 1065

## list of illustrations in THE APPENDICES.

FLOUNDERS AND SOLES.*
Page.
Fig. 1.-Atheresthes stomias. The Arrow-toothed Halibut ..... 336
2.-Platysomatichthys hippoglossoides The Greenland Halibut. ..... 336
3.-Hippoglossus hippoglossus. The Halibat ..... 336
4.-Hippoglossoides platessoides. The Sand Dab ..... 336
5.-Hippoglossoides elassodon. The Alaska Sand Dab. ..... 336
6.-Psettichthys melanostictus. The San Francisco Sole ..... 336
7.-Paralichthys lethostigma. The Southern Flounder. ..... 336
8.-Paralichthys oblongus. The Four-spotted Flounder ..... 336
9, 10.-Pleuronectus maximus. The Turbot ..... 336
11.-Lepidopsetta bilineata. The California Sole ..... 336
12.-Limanda ferruginea. The Rusty Dab ..... 336
13.-Limanda aspera. The Alaska Rusty Dab ..... 336
14.-Pseudoplearonectes americanus. The Common Elatfish or Winter Flounder. ..... 336
15.-Platessa platessa. The Plaice ..... 336
16.-Liopsetta putnami. The Eel-back Flounder ..... 336
17.-Liopsetta glacialis. The Alaska Eel-back Elounder ..... 336
18.-Platichthys stellatus. The California Flounder ..... 336
19.-Glyptocepbalus ${ }^{\prime}$ cynoglossus. The Craig Fluke ..... 336
20,21.-Solea solea. The Common Sole ..... 336
22,23.-Achirus fasciatus. The American Sole, or Hog-choker. ..... 336
SCIENIDE. (DRUMFISH.) $\dagger$
Fig. 1.-Cynoscion regale. The Weakfish, or Squeteague ..... 446
2.-Cynoscion nebulosum. The Spotted Weakfish ..... 446
3.-Bairdiella chrysura. The Madomoiselle, or Yellow-tail. ..... 446
4.-Scirna ocellata. The Red Drum, or Channel Bass ..... 446
5.-Roncador stearnsi. The Roncador ..... 446
6.-Leiostomus xanthurus. Tho Spot, Goody, Oldwife, or Lafayette. ..... 446
7.-Micropogon undulatus. The Croaker ..... 446
8.-Menticirrhus americanus. The Carolina Whiting. ..... 446
9.-Menticirrhus saxatilis. The Kingfish, or Sea-mink ..... 446
10, 11.-Pogonias cromis. The Drum ..... 446
12.--Aplodinotus grunniens. The Fresh-water Drum, or Gaspergou ..... 446
ENTOZOA. $\ddagger$
Plate I.-Dibothrium manubriforme, Dibothrium alutere, and Echeneibothrium variabile, details of ..... 500
II.-Phyllobuthrium thysanocephalum, and Spongiobothrium variabile, details of ..... 502
III.-Orygmatobotbrium angustum, and Crossobothrium laciniatum, details of. ..... $50 \pm$
IV.-Calliobothrium verticillatum, Rhynchobothrium bisulcatum, and Phoreioboth- rium lasium, details of ..... 50 G
V.-Echinorhynchus agilis, Echinorhynchus acus, Tænia dilatata, and Rhyncho- bothriam tenuicolle, details of. ..... 508
VI.-Echinorhynchus sagittifer, and Echinorhynchus proteus, details of. ..... 510

* In Jordan and Goss's Review of the Flounders and Soles of America and Europe. $\dagger$ In Jordan and Eigenmann's Review of the Sciænidæ of America and Europe. $\ddagger$ In Linton's Notes on Entozoa of Marine Fishes of New England.
MEDUSE.*
Page.
Fig. 1.-View of Pegantha from the side ..... 534
2.-View of Pegantha from the aboral region ..... 534
FISH-CULTURE. $\dagger$
Fig. 1.-Method of supplying hatching-boxes with water at Neuhausen ..... 546
2.-Method of supplying liatching-boxes with water at Dachsen ..... 547
3.-Zenk trough ..... 552
4.-Section of Zenk trough ..... 553

5.     - Modification of California hatching-trough used at Seewiese, flat view ..... 553
6.-Modification of California hatching-trough used at Seewiese, upright view ..... 553
7.-Contrivance for protecting fish in tanks ..... 560
8.-Eel-way at Neubausen ..... 570
THE ALBATROSS. $\ddagger$
Plate I.-Ylan of reported position of Hope Bank ..... 680
II.-The Tanner soanding-machine mounted on steam-cut:er ..... 686
III.-Improvement in tleep-sea sounding-machine ..... 686
IV.-'The Tanner improved thermometer-case ..... 686
V.-Counter-balance wheels. ..... 686
V I.-Baird's pneumatic indicator. ..... 686
VII.-Blower for the Baird pneumatic indicator. ..... 686
VIII.-Baird's automatic steam-trap ..... 686
IX, X.-Proposed new boilers ..... 686
THE GRAMPUS.
Plate I.-The U. S. Fish Commission schoonet Grampus. ..... 701
WYTHEVILLE STATION.||
Plate I.-Water supply and ponds for brood fish ..... 800
II.-General viow of buildings and grounds ..... 800
III.-Plan of hatchery, tirst tloor ..... 800
IV.- Plan of hatchery, second floor ..... 800
V.-View of interior, showing details of equipment ..... 800
Vr.-General view of ponds ..... 800
DREDGING STATIONS. $\cdot$
No. 1.-Chart showing the positions of the dredgings made by the U. S. Fish Commission in the Gulf of Maine, Massachusetts and Cape Cod Bays, and in Vineyard and Nantacket Sounds and adjacent waters from 1871 to 1887 ..... 1018
2.-Chart showing the positions of the dredgings made by the U. S. Fish Commission iu Long Island, Vineyard, and Nantucket Sounds and adjacent waters from 1871 to 1887 ..... 1018
8.-Chart showing the positions of the dredgings made by the U.S. Fish Commission in the Atlantic Ocean from 1871 to November, 1837, including also the deep-sea dredgings of the U.S. Const Survey and the British steamer Challenger in the region mapped ..... 1018
4.-Chart showing positions of all the dredgings mado by the U. S. Fish Commission and tho U. S. Coast Survey in the Gulf of Mexico and adjacent parts of tho Atlantic Ocean and Caribbean Sea from 1897 to November, 1887 ..... 1018
5.-Chart showing the positions of all the dredgings matle by the U. S. Fish Commission, U. S. Coast Survey, and the British steamer Challenger in the Caribbean Sea and adjacent parts of the Atlantic Ocean from 1867 to Nosember, 1837 ..... 1018
[^0]
## REPORT OF THE COMMISSIONER.

## 1.-INTRODUCTORY NOTE.

During the period of time covered by this report the work of the United States Fish Commission was under the direction of Prof. Speucer F. Baird. In cousequence of his declining health and the pressure of administrative duties as Secretary of the Smithsonian Institution, as well as Commissioner of Fisheries, the preparation of a report proper to accompany the various reports and papers constituting the appendix was prevented.

The following digest of the operations of the year, which has been prepared from data compiled mainly by Mr. C. W. Smiley, editor, for the convenience of the Commissioner in the preparation of his annual report, aims to present briefly, from an impersonal standpoint, the principal features of interest in connection with the work accomplished.

The personality of the distinguished naturalist who founded the United States Fish Commission, and under whose wise and broad administration it has grown to be the custodian and conservator of one of our most important food resources is, however, fitly represented by his important posthumous paper on the sea fisheries of eastern North America, which appears in the appendix. This monograph, after some introductory account of the fisheries, follows with a list of the food and bait fishes aud invertebrates, together with biographical notices of the most important species. The food aud the reproduction of the sea fishes, their migrations and movements, numbers and abundance, and the dangers and fatalities to which they are subject from enemies in the sea, from man, and through physical canses or changes are discussed at length. The important fishing grounds are described in detail, as well as the apparatus of capture, from the primitive bow and arrow to the elaborate nets and pounds of the present time. The rarious kinds of bait, the methods of preserring fish and bait, ant the disposition of offal are considered. The statistics of the value of the American fisheries are given, and followed by a review of the economical applications of the products of the fisheries as food for man and animals, and for use in the arts and industries in the form of oils, fertilizers, medicines, etc. The maintenance and improvement of the fisheries by legislation, artificial propagation, and the transfer of species from one region to another are subjects which receive the attention warranted by their importance.

## 2.-INQUIRY RESPECTING FOOD-FISHES $\triangle N D$ THE FISHING GROUNDS.

> A.-Field-worr:

In this branch of inquiry field-work was carried on in a thorough manner along the Eastern coast of North America from the Straits of Florida to Newfomdland. From February 20 to May 10 the steamer Albatross, Lieut. Commander Z. L. Tanner, U. S. Navy, commanding, was engaged in a survey of the region about the Bahama Islands, in the joint iuterests of the Fish Commission and the Nary Department, the expenses of the cruise being shared by the two. The purpose of the voyage, on the part of the Fish Commission, was to ascertain, if possible, the winter range and habits of certain important food-fishes, which resort to the Eastern coast of North America during the warmer months, but whose first appearance in the spring and whose abundance during the fishing season vary from year to year. The principal species concerning which information of this character was desired were the mackerel, meuhaden, and bluefish; but attention was also to be paid to other economic forms, such as the Spauish mackerel, sheepshead, and drum, if found to occur abundantly in those waters. On behalf of the Nary Department several lines of soundings were to be made to the northward and castward of the islands and in the deeper channels which separate them, the hydrography of this important region being but little known. Mr. James E. Benedict was in charge of the civilian scientific staff, and was assisted by Mr. Thomas Lee, Mr. Charles H. Townsend, Mr. Willard Nye, jr., and Mr. F. L. Washburn, the tro last mentioned being volunteers.
The work of sounding was begun to the north of Great Abaco Island, and was carried thence southeastward along the Atlantic side of the islands as far as San Salvador or Watling's Island, and offshore in some places to a distance of over 100 miles. The greatest depth of water discovered was 3,196 fathoms, in latitude $2 S^{\circ} 34^{\prime} 42^{\prime \prime}$ north, longitude $76^{\circ} 10^{\prime} 25^{\prime \prime}$ west, or about 110 miles northeast of Great Abaco. Several lines were run betreen the five islands lying at the mouth of Exuma Sound, namely, Cat Işland, Long Islaud, Watling's Island, Concepcion Island, and Rum Cay, showing that the intervening channels are of great depth, the depth in one place exceeding 2,400 fathoms. From this point the soundings were carried throngh Exuma Sound to its upper end, and thence by way of the open sea on the eastern side of Eleuthera Island to the tomn of Nassan, New Providence Island. Subsequently the work was continued through the Northeast and Northwest Providence channels and the Tongue of Ocean. On the homeward journey soundings were also made to the east and north of Great Abaco Island and Little Bahama Bank, and off the coast of the Southern Atlantic States as far as Cape Hatteras. During these explorations one trip was made to Key West and Havana for the purpose of
obtaining coal and other supplies, giving opportunity for a limited amount of work in the Straits of Florida. The customary physical observations were made at all of the sounding stations, in order to determine the currents, temperatures, and densities of the water and the character of the bottom. The dredge, beam trawl, and tangles were also occasionally employed to ascertain the abundance of bottom life, but generally with poor results, the white coral ooze which predominates in the deeper waters about the Bahama Islands being comparatively barren and the shallower spots generally too rough for the successful working of the dredging appliances. Surface collecting in the same region with the towing nets was equally unproductive, but by allowing the naturalists to land upon the islands and work along the shore very important results were obtained. The shore work was vig. orously pushed at every place where the steamer made a harbor, and parties of two were occasionally left upon the islands while the steamer coutinued its sounding operations in the neighboring region. The fisheries which center at Nassau, including the important sponge fishery, were carefully studied, but no traces were found of the pelagic fishes, whose winter abode, it was thought, might be in this region. In the Straits of Florida and along the line of the Gulf Stream farther north the results of dredging were exceedingly rich.
From July 8 to October 28 the steamer Albatross was at work upon the offshore fishing grounds of Eastern North America, between New York and Newfoundland, with headquarters at Wood's Holl, Mass. Mr. Benedict having resigned his position, Mr. Thomas Lee acted as chief naturalist during these explorations, and was assisted by Mr. Sanderson Smith. From July 15 to 18 a short trip was made to the outer edge of the submerged contineutal plateau south of Martha's Vineyard, where the tilefish was formerly abundant. On August 2 the Albatross started east ou a second cruise to the great cod and halibut banks lying off the coasts of the British Provinces, the purpose of which was to study the character and resources of the banks in general, and of those areas specially which are but little known; to search for new or reported banks, the existence or location of which was uncertain; and, partly in the interests of the Nary Department, to investigate certain reported dangers lying in the track of ocean steamers and fishing vessels. Diligent search was made for the mythical Hope Bank, supposed to be located south of Halifax, some distance off Le Have Bank; but although numerous soundings were made over a wide area inclosing its reported position, and thence to Sable Island Bank, no unusual inequalities in the bottom were discovered. A line of soundings was run betreen Bauquerean and the Grand Bank to develop the contour of the intervening galley in which halibut abound. Trials were made for codfish on the eastern part of Grand Bank, the eastern edge of which was found to be incorrectly represented on the published charts. Fruitless search was made for a reported bank of great promise
to the tishermen, which was supposed to be located about 200 miles east of the Grand Bank in about $45^{\circ}$ north latitude. Soundings were made from this point to the Flemish Cap, which was partly explored, and thence to the northeastern edge of the Grani Bank. St. John's, Newfoundland, was theu visited for supplies, giving the naturalists an opportunity to study some important salmon streams, the steamer starting homeward from this place on August 21. During the trip to the westward the explorations were continued off the southern end of Green and St. Pierre Banks, between the latter bank and Eanquereau, across Banquereau aud Sable Island Bank, past the reported position of Hope Bank, and thence along the edge of George's Bank to Vineyard Sound, the steamer arriving at Wood's Holl August 29. Subsequently two trips were made to the deep-water area lying between latitude $36^{\circ} 30^{\prime}$ aud $39^{\circ}$ north, and longitude $70^{\circ}$ and $.44^{\circ} 33^{r}$ west.

The steamer Fish Hawk was engaged but little in this branch of inquiry during 1886. In August a few of the light-ships at which temperature observations are taken for the Commission were visited, and the keepers instructed as to the proper methods of immersing and reading the thermometers, especially during extremes of temperature. In October a few casts of the beam trawl were made in the region off Sandy Hook, N. J., where specimens of the English sole had been planted several years before, but without finding any trace of them.
The schooner Grampus, Capt. J. W. Collins commanding, made many important investrgations respecting the fishing grounds and food-fishes off the New England and adjacent coasts, but these were mostly undertaken in the interest of fish culture. In August, a cruise was made to the tilefish grounds sonth of Martha's Vineyard, and six days were spent in fishing with cod trawls and hand lines in depths of from 60 to 160 fathoms, over an area about 120 miles in length. Only a few fish, mostly hake, were captured. From September 22 to October 9 the Grampus was engaged in an attempt to carry living specimens of halibut from the fishing grounds to Wood's Holl, for the purpose of securing their spawn in suitable condition for hatching. Fishing for this species was mainly carried on off Le Have Bank, in depths of 200 to 300 fathoms. A number of halibut were taken and transferred to the schooner's well, apparently without receiving serious injury from the hooks or subsequent handling. None of them lived, however, more than thirtysix hours, and the conclusion was reached that the fish could not surrive the great change of temperature and pressure incident to their transfer from deep water to the surface. As it was probable, however, that halibut taken in shallow water could be successfully transported, a search was made for them in other localities, but none were found. With other species less difficulty was encountered. On this and the previous cruise, Mr. Raymond L. Newcomb acted as naturalist, and Mr. James Carswell accompanied the Grampus as fish culturist, in the search for halibut. During most of the remainder of the
year the Grampus continued her fishing trips in Massachusetts Bay andi off Cape Ann, carrying several cargoes of live fish, principally cod, in good condition, to the Wood's Holl station.

In December, Mr. Charles I. Townsend, an assistant of the Commission, was sent to the western part of the Caribbean Sea for the purpose of studying the fisheries of that region in the interests of the American fishermen. One of the oljects of his trip was to ascertain if that region was to any extent the winter home of pelagic fishes which resort to the eastern coast of the United States in summer. His work extended into 1887. Free transportation as far as Swan Island was furnished by Mr. J. M. Glidden, president of the Pacific Guano Company.

The Wood's Holl station was occupied in the interests of scientific inquiry from early in July until the middle of October, becoming during this period the headquarters for the steamer Albatross. The Commissioner, Professor Baird, was in attendance during the entire season, and personally directed the work as in previous years. Prof. A. E. Verrill was in charge of the laboratory, assisted by Mr. Richard Rathbun. The regular force of workers in the biological laboratory was constituted as follows: Prof. S. I. Smith, of Yale College; Prof. John A. Ryder, of Washington ; Mr. Sanderson Smith, of New York; Prof. Leslie A. Lee, of Bowdoin College; Prof. Edwin Linton, of Washing. ton and Jefferson College; Prof. B. F. Koons, of the Storr's Agricultural School; Mr. J. H. Blake, of Cambridge, as artist; Mr. Peter Parker, jr., of Washington; Miss K. J. Bush, and Miss. C. E. Bush, assistants of Professor Verrrill ; and Mr. A. H. Baldwin and Miss M. J. Rathbun, assistants in the National Museum. The chemical and physical laboratory was in charge of Dr. J. H. Kidder, and the aquaria were managed by Mr. William P. Seal, of Philadelphia. Tables in the biological laboratory were also occupied by the following college representatives: Prof. S. F. Clarke, of Williams College; Prof. E. B. Wilson, of Bryn Mawr College, and Dr. A. T. Bruce, of Johns Hopkins University. Mr. Vinal N. Edwards, a permanent observer and collector for the Fish Commission in the Vineyard Sound region, worked in conjunction with the summer party, and assisted it in various ways.

Although acting as superintendent of the station during the summer, Professor Ryder was able to devote much time to the problems of lobster and oyster culture, which were then being carried on, especially with reference to the care and rearing of the young. During the spring hatching season for cod and lobsters he also made elaborate studies of the development of those two species from their earliest stages. The other naturalists were mostly engaged in preserving, assorting, and studying the large collections brought in by the steamer Albatross from its several cruises to the fishing grounds. Much field work was also done in the neighboring region, in continuance of the investigations of former years, for the purpose of obtaining informa-
tion respecting the times of occurrence, the abundance, life histories, habits, diseases, parasites, etc., of the useful fishes and marine invertebrates. The Roosen process of preserving fresh fish, which bas attracted much attention in Europe, was giveu several trials, with the expectation of finding it adapted to the preservation of bait for the offshore fishing vessels, a problem of unusual importance at the pres. ent time. It proved to be entirely unsuited to this purpose, however, the fish piaced in it becoming too sott either for bait or for food, though generally free from the offensive odors of decomposition. Many large aquaria were added to the equipment of the lower floor of the laboratory and fish-hatching building, and under Mr. Seal's arrangements gave excellent opportunities to observe the habits of even large sized fishes, of which an abundant supply for that purpose was always kept ou hand. During the hatching seasou it was intended that these aquaria should be used for the temporary storage of the fry.

> B.-Special Investigations.

Temperatures and densities.-One of the most important scientific problems before the Fish Commission has been the determination of the temperature and density of the water along the sea-coasts and in all inland lakes and rivers which afford valuable fisheries, or might be suited to that purpose. The object in studying these physical characteristics is at least twofold: First, to ascertain the influence of temperature and density on the morements of those migratory fishes which form so large a proportion of the fishery production of the country, and the appearance and abundance of which during any fishing season may possibly, in a measure, be predicted by a thorough knowledge of the physical conditions essential to their well-being; second, to furnish a guide in the transplanting of fishes and the stocking of any region with the species most likely to survive and propagate. General results are not so important or so applicable to this study as special series of obserrations continued from year to year. In the fiutherance of this object, observations of temperature, and where expedient determinations of density, were made at all of the stations of the Commission during the entire year, or while operations were in progress. The same observations were made with great care by the ressels of the Commission, whether in port or cruising, and generally at intervals of one hour. The bottom and serial temperatures, and other physical data obtained by the steamer Albutross, on the fishing banks and in deep water, are of special value in the same connection. The most important continuous series of surface temperatures, however, are those taken for the Commission by employés of the Light-IIouse Board and Signal Service along both sea-boards of the United States, at several stations on the Great Lakes, and upon some of the most important shad and salmon rivers on both sides of the continent. This co-operation between the two bureaus just mentioned and the Fish Commission
has continued for many years, and has resulted in the accumulation of a large amount of valuable information. During 1886, these observations were carried on at thirty-six light-ships and light-houses, and at forty-eight stations of the Signal Service.

Rusty mackerel.-The rusting of mackerel, which sometimes occurs when, through the leaking out of the brine in which they are preserved in barrels, they are left more or less exposed to the air, has been a source of frequent loss to the fish dealers. The character and precise cause of this peculiar change being unknown, specimens of rusty mackerel were obtained during the year and submitted to Prof. W. O. Atwater, of Middletown, Conn., for examination. His report upon the subject has not yet been received.

Disease among trout.-The investigations by Prof. S. A. Forbes, of Illinois, of specimens of trout from Baird Station, Cal., affected by a disease hitherto unknown in that region, proves that the disease is identical with that found among the herring in Madison Lakes, Wisconsin, where it was very wide spread and destructive in 1884. Mr. Forbes's report will be found in the account of McCloud River station, by Livingston Stone.

> C.-Preparation of Reports, etc.

The study of materials and the reduction and compilation of observations made by the field parties, including the preparation of reports upon the same, was continued during the year at the Washington and Wood's Holl stations of the Commission and at many college laboratories. As heretofore this class of work was done mostly by volunteers, among whom are some of the most accomplished naturalists of the country. Prof. A. E. Verrill has had general charge of the collections of marine invertebrates obtained aloug the Eastern coast, north of Cape Hatteras, which he is studying in their relations to the fishing grounds. The fishes were being treated in a similar manuer by Prof. G. Brown Goode and Dr. T. H. Bean. Other special subjects were intrusted to the following persons: The crustacea to Prof. S. I. Smith; the bottom deposits to Prof. L. A. Lee; the internal parasites of fishes to Prof. Edwin Linton and Prof. B. F. Koons ; the crustacean parasites of fishes and the temperature results to Mr. R. Rathbun; special groups of the mollusca and the preparation of charts to illustrate the marine investigations of the Commission to Mr. Sauderson Smith; embryological work respecting the cod, lobster, and oyster and other economic species to Prof. John A. Ryder; the preservation of bait to Dr. J. H. Kidder and Mr. Rathbun.
D.-Proposed Extension of the Inquiry to the Pacific Coast.

The first extensive fishery investigations made upon the Pacific coast of the United States were undertaken by the U.S. Fish Commission in connection with the Tenth Census, beginniug in 1879 and extending
through two or three years. Although these were mainly limited to a study of the history of the fisheries and of their condition at that time, large collections of fishes, containing many new and interesting species, were also obtained and described. An important result of these researches was to furnish conclusive proof of the value and extent of the fishery resources of the Western coast, which were then developed and atilized only to a very limited extent in the vicinity of the large settlements, and especially about San Fraicisco. A few fishing yessels, however, were in the habit of visiting, each season, certain rich cod and halibut banks off the central and sonthern Alaskan coasts, but the extent and character of these banks was unknorn. The adrantages which the Eastern fisheries have derived from the investigations of the steamer Albutross seemed to warrant the extension of the survey to the Pacific coast, and upon the solicitation of many persons interested in the matter the Commissioner decided to detail the Albatross for that purpose as soon as Congress could make provision for her royage around and for the necessary alteratious in her machinery. Appropriations for this purpose were passed in August, 1886, and before the close of the calendar year new boilers for the steamer were under construction. The plans for the Pacific work contemplated a thorough survey of the entire coast from southern California to the upper limit of the extensive cod and halibut banks in Alaska, upon the basis of the East coast explorations ; but considering how little has been done to make known the contour and character of the bottom in that region, exerpt near the shore, it was expected that hydrographic work in laying out and defining the fishing banks would demand a larger share of attention than hitherto. The study of the fishery resources will, however, be kept up at thie same time, with the view of completing results as the explorations continue.

## 3.-INQUIRY RESPECTING THE FISHERIES.

Considerable progress was made during the year in the study of several of the more important fisheries, with respect both to their methods and their statistics. An event of more than usual interest was the completion of the fishing schooner Grampus, which has been coustructed upon an entirely new plau proposed by Capt. J. W. Coliins. While intended to serve as the model of a type of off-shore fishing smack, which it is thought will insure greater speed and safety to this class of vessels, she has also been specially adapted to certain branches of marine work for the prosecution of which no adequate means hare hitherto been provided.
A.-Office and Field Work.

The office and field work in charge of Mr. R. E. Earll had reference mainly to the following subjects:
(1) The mackerel fishery.-The extent of the southern spring fishery and the condition of the fish, both fresh and salt, when placed upon the
market. The effect of the spring fishery upon the demand for and the average price of salted mackerel caught later in the season. As to whether the continuance of the spring fishery is tending seriously to affect the abundance of mackerel, or, as is often claimed, has any influence'in breaking up or scattering the schools of fish.
(2) The menhaden fishery.-The present extent and location of this fishery. As to whether the methods of the fishery are in any way connected with the continued absence or scarcity of menhaden on the New Eugland coast.
(3) The sardine industry.-The statistics of the industry, and the changes which have taken place in the methods of capture and of preparation of the fish since the investigations of 1880 . The influence of the abrogation of the Treaty of Washington and of the proposed duties upon the supply of fish and upon the cost of producing the canned goods.
(4) The fisheries of the Great Lakes, respecting which a report, based upon the investigations of 1885 , has nearly been completed.
(5) A general and statistical review of the ressel fisberies of the United States, material for which is being collected by means of circulars filled out at the custom-houses located at fishing ports.
(6) The compilation of national aud State laws relating to the fisheries.

Mr. W. A. Wilcox was employed at Gloucester, Mass., during the entire year, as an agent of the Commission in collecting data relative to the statistics and methods of the New England fisheries. He was assisted by Capt. S. J. Martin, and rendered monthly reports which have been published in the Fish Commission Bulletin for 1886. During September and October the Senate Committee on Fisheries visited Gloucester for the purpose of giving personal consideration to the different phases of the industry, and also took testimony of the fishermen. The facilities of the station were placed at its disposal.

The sturgeon fisheries of Delaware Bay and River were made the subject of an investigation by Mr. S. G. Worth, who reported over two bundred and fifty boats, carrying from 200 to 500 fathoms of net each, engaged in the industry. Mr. Worth's inquiries also had reference to the expediency of propagatiug sturgeou by artificial methods. The statistics of the salmon canning establishments of the Pacific coast, from 1883 to 1886, were collected by Mr. Loren W. Green, an assistant at the California stations of the Fish Commission. Mr. Green, in the course of this work, visited all of the canneries of fish on the Sacramento River. His report on the subject is contained in the Fish Commission Bulletin for 1886.

$$
\text { B.-The Mackerel Fisifery during } 1886 .
$$

The following summary of the mackerel fishery for 1886 was prepared by Mr. W. A. Wilcox:

The work of the season began earls, the first vessels sailing from Gloucester on March 11. A large fleet was soon cruising off the Delaware coast. On March 28, the S. Mis. $90-$ II
first mackerel were seen and caught in latitude $37^{\circ} 30^{\prime}$, longitude $75^{\circ} 35^{\prime}$. Au inmense body of fish, in large schools, was seen extending some 25 miles. The fish remained in this location up to April 20. A small catch was made, 25 miles north of where they were first seen, up to May 15. For a week during the middle of May quite a large body of fish was seen, and some good fares were secured in latitude $38^{\circ}$ $30^{\prime}$, longitude $74^{\circ}$, off Fenwick's Inlet. The weather was unfavorable for fishing much of the time, the carly catch small, and the fishing followed at a loss. May 15, part of the fleet were off Block Island taking some mackerel, but no large body of fish was again seen off the United States coast until fall. The early catch was noticcable as being all large fish, and, as usual in the spring, of poor quality. Tho body of fish appear to have crossed the southern part of George's Bank, and were next found off the Nova Scotia coast, between Cape Sable and Canso, mackerel having beon caught there between May 25 and June 5, passing on into the Gulf of St. Lawrence, being found June 15 off North Cape, Prince Edward's Island. On July 8 they were found 15 miles N. by E. from North Cape, soon disappearing. From July 8 to August 1 was the only time mackerel were found in abundance in the Gulf of St. Lawrence, and not always during that time, yet vessels that were on the grounds of Orphan and Bradley Banks, and off Escumenac Point, hat a fair catch. The fish wero mostly taken from 10 to 25 miles from shore.

The early catch came to a close abruptly. Only the first arrivals secured fares, later arrivals spent weeks and months, taking very few if any fish. Vessels witì a fair catch came home, selling their catch at the extremely low price of $\$ 4.50 \mathrm{a}$ harrel, and at once returned in hopes of securing another fare of better fish and realizing more for them; in most cases they were disappointed, catching only a few barrels of fish.
Returning from the disastrous trips to the Gulf of St. Lawrence, the fleet cruised off the home shore, from the Bay of Fundy to Cape Cod, adding a small amount to the catch which was continued up to the middle of December. Quite a body of five mackerel were off Block Island, and in Barnstable Bay as lato as December; they seldom schooled, yet quite an amount was taken by small boats and net fishermen. The work of the season is remarkable for the scarcity of fish, they having been seen ouly occasionally in any amount either in American or provincial waters. The amount taken is the smallest since 1843, and with three exceptions, since 1818. The catch often shows great ductuations, years of small production being followed by abundance. As late as 1883 , the catch of Massachusetts was ouly 154,140 barrels, followed the next year by 304,933 . The rapid and great advance in prices is noticeable, yet under the circumstances not remarkable.

The American catch of mackerel for 1886.

| State. | Apparatus. | Vessels. | Tonnago. | Crows. |
| :---: | :---: | :---: | :---: | :---: |
| Massachusetts... | Vessels . | 220 | 16,350. 69 | 3,313 |
| Do .. | Weirs and traps |  |  | , 243 |
| Maine. | Vessels. | 99 | 5, 944.36 | 1,3i7 |
|  | Weirs and traps |  |  |  |
| New Hampshi | Vessels .-....... | 4 | 186. 91 | 60 |
| Conode Island | Yeirs and traps | 2 | 88.13 |  |
| New York. | ...... do | 1 | 77.00 | 19 |
| Pennsylrania |  | 1 | 79.15 | 17 |
| Total |  | 327 | 22, 720. 24 | 5, 016 |

The American catch of mackerel for 1886-Continued.

| State. | Apparatus. | Southern. |  | $\underset{\text { shore. }}{\text { New }} \underset{\text { England }}{ }$ |  | Nora Scotia shore and Gulf of St. Lawreuce. |  | $\begin{gathered} 1886 . \\ \text { Total barrels. } \end{gathered}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Cured. | Fresh. | Cured. | Fresh. | Cured. | Fresh. | Cured. | Fresh. |
| Massachusetts .. | Vessels ...... | 2,612 | 9,928 | 8, 126 | 10,032 | 51,633 |  | 65, 401 | 19,900 |
|  | Weirs and traps - |  |  |  |  |  |  |  | 5,991 |
| Maine ........... | Vessels ........ | 95 | 2,550 | 6,604 | 2, 528 | 10, 727 | 780 | 17, 426 | 5, 898 |
| New Hampshiro. | Veirs and traps . |  |  | 80 | ${ }^{950}$ |  |  | 80 | 950 |
| New Hampshire. | Vessels ........ |  | .... | 125 | 1,500 |  |  | 125 | 1, 500 |
| Rhode Island.... | Weirs and traps |  | . | 9.0 | 1,100 | . | ..... | 650 | 1,100 |
| New York....... | . do.. |  |  | -50 |  | 100 |  | 150 |  |
| Pennsylrania |  |  | 68 | 200 |  | 148 |  | 348 | 68 |
| Total |  | 2,737 | 12,586 | 17, 409 | 22,101 | 65,608 | 780 | 85,754 | 35,467 |

## C.-The Schooner Grampus.

In previous reports allusion has been made to the building of a sailing vessel for the work of the Commission, which was to be named the Grampus. The ressel was completed and went into commission on June 5th of the present year. Her operations are fully discussed in a report published in the appendix.

The purposes for whicl this ressel was constructed are raried and important. For some time the Commission has felt the necessity of having a suitable sailing vessel, provided with a well, in which marine fishes can be kept alive and transported from the fishing grounds to the hatching stations on the coast where the eggs may be obtained for the purpose of artificial propagation.

Such a ressel can also serve a useful purpose by bringing in alive marine species, not perhaps in a gravid condition, which can be put into large aquaria and thus afford to biologists an opportunity to study the habits of our ocean fauna under conditions that can not possibly be otherwise afforded.

Another important duty which it is believed may be performed by a welled vessel, that is seaworthy and swift, is to visit European waters and bring therefrom alive certain species of marine fishes which are held in high repute for food and do not occur in American waters. Among these may be mentioned the sole, turbot, plaice, and brill. The introduction and propagation of these species in our waters must be of great advantage to the United States, not only in giving to our people additional species of delicate food fishes, but in introducing for their capture the method of fishing with a beam trawl, which is not now in vogue here and might, perhaps, profitably employ many ressels and men.

The Grampus has been fitted for using a beam trawl to test its utility in American waters in a commercial way. Although we have not the species of flat fishes which constitute the principal objects of the beam trarl fishery in Europe, there are several kinds in our waters
that are nearly as good, and it is possible that on the sandy and muddy bottoms frequented by these off our coast the beam trawl may be very effectively used.
It is also of the highest importance that the movements of the migratory fishes should be followed in the spring and autumu, when they are approaching and learing the feeding gromds which they frequent in summer.

Hitherto less has been done in this direction than is desirable, and a sailing vessel which is able to remain at sea in all weathers is especially well adapted to carrying on such investigation, since she is not dependent upon a supply of coal, and may, if necessary, cruise for weeks or months in succession. The Grampus being especially fitted for carrying on fishing operations can use all the appliances and methods for the capture of fish much better than they can be used on larger and more expensive stean ressels. In connection with these researches to ascertain the movements aud habits of the migratory species, various forms of apparatus will be used to ascertain their presence, as well as the occurrence of crustacea or other forms of minute life that may constitute the food of fishes. Observations of the temperature, density of water, and the influence of winds and currents upon the movements of fish can also be studied.

She is especially adapted to making researches at sea for the discovery and investigation of fishing grounds, as well as for collecting the fama of the localities visited, and thus determining the value of certain regions for the purposes of commercial fishing.

The Grampus is a two-masted, schooner-rigged vessel, 90 feet long, over all ; 81 feet 6 inches on load-water line; 22 feet 2 inches beam, and 10 feet depth of hold ; her registered tonnage is 83.30 tons. In model and rig she is a radical departure from the vessels commonly in use in the New Englaud fisheries; and an additional important object sought in building her was to produce a type of fishing vessel which will be safer and better adapted in varions ways to the exigencies required of a schooner employed in the ocean fisheries.

In the cruises made the present jear she has shown remarkable seagoing qualities, and has demonstrated the fact that in safety, speed, and "handiness" she is far superior to the clipper fishing schooners of New England. Her influence is already being felt, and the principal features in her model and rig, which have been alluded to in a prerious report, are being copied by the New England builders.

It is reasonable, therefore, to suppose that marked innovations may be caused by her advent, and that a few years will witness a change for the better in the form and rig of our fishing vessels. Such a change will result in the obtainment of greater safety and other scarcely less desirable qualities that must prove very beneficial to the fishing interests, and especiaily in preventing the sacrifice of life aud property which has heretofore serionsly handicapped these industries.

## 4.-FISHERY RELATIONS OF TIE UNITED STATES WITH CANADA.

The treaty of Washington, defining the fishery relations between Canada and the United States, terminated July 1, 1886, but, by courtesy of the British Government, the privileges which it had granted to American tishermen were extended to the 1st of January following. In connection with the correspondence which ensued between the representatives of the two Governments relative to this subject, the U.S. Fish Commissioner was occasionally called upon for information. In December, 1886, he made the following report to the honorable Secretary of the Treasury, in reply to several questions which the latter had presented for his consideration. This report is of special interest as giving in concise form a comprehensive view of the fishery question based upou the evidence in the possession of the Fish Commission. The questions and replies are as follows:
Question 1. "What do you estimate to have been the value of the products of the British North American fisheries for 1885 ?"
The Canadian fisheries in 1885, as shown by tables compiled by the Canadian goverument, furnished occasional or continuous employment to 59,493 persons, with 1,177 vessels and 28,4z2 boats. The value of these, together with that of the other apparatus and capital, including shore property, gives a total of $\$ 6,69 \pi, 459$ cmployed in the fisheries industries, with a total value of products amounting to $\$ 17,722,973.18$. The tables from which the summary is obtained have been compiled from the annual report of the Deparment of Fisherics, Dominion of Canada, for the year 1885.

In using the figures, it should be remembered that the tables include not only the commercial fisheries, but also the persons, apparatus, and capital employed in fishing for local supply, and probably a large number who fish ouly to furnish food for their own families. This class, owing to the lack of manufacturing interests and the character of the soil, composes in many localities a large part of the population.
Question 2. "What are the descriptions of the fish-in consequence of the present habits of the fish, the present methods of catching, drying, curing, and preserv-ing-American fishermen desire to take either in the jurisdictional waters of British North America, or in the open sea or open bays near the British colonial possessious?"
Prior to, and during the first half of the present century, many of the New England vessels engaged in the offshore col fisheries, being of small size, found it desirable to fish in the vicinity of the shore, where they could make a harbor in case of severe storms. Owing to their small tonnage, they found it difficult to carry sufficient quantities of codfisb to make a trip to the more distant fishing grounds profitable, and many of them found it desirable to land and dry their fish upon the shores, thus enabling them to bring home a much larger quantity as a result of the voyage. At that time the majority of the fish were exported to Spain and the West Indies, and the methods which our fishermen found it necessary to adopt in drying their fish on the provincial shores made them especially adapted for these markets.

Since 1850 the small vessels engaged in the offshore fisheries have been gradually replaced by larger ones, and thas the privilege of fishing for cod in the vicinity of the shore has become less important, and as the codfish are more abundant on the offshore banks, 20 to 200 miles from laud, vessels engaged in this fishery now prefer to vistt these localities; and they have been doing so, with comparatively few exceptions, for the past fifteen or twenty years. The catch of these vessels, instead of being exported, is now to a great extent consumed in this country, and our market at present calls for fish curel in a different way, so that the privilego of drying and curing fish
on Canadian soil, now that the vessels are large enough to rendily carry the undried fish, is no longer of any advantage whatever to our fishermen.

Formerly vessels employed in the mackerel fisheries were provided only with handlines, and the crews canght the fish from the vessel's decls. When fishing in this way they found it desirable to grind up fish and clams, which they threw in large quantities into the water to attract the mackerel and keep them in the vicinity of the vessel. The best results were then obtained by fishing in shoal water, as the bait thrown overboard could not sink to any great depth, and the eutire body of fish were thins kept near the surface, where they were within reach of the hook and line. About 1,865 purse-seines were introduced for the capture of mackerel, and in a few jears they came to bo generally adopted by ressels employed in the mackerel fishery. These are fished to best advantage at some distance from the shore, and the fishermen usually aroid shoal water, as the seines are liable to be ruined when set in depths where the lead lines may chance to come in contact with the bottom.

During earlier years the halibut fishery in the vicinity of Provincial shores was of some slight importance to the American fishermen, but this has been confined wholly to deep water, many miles from ladd, since 1875.

The shore herring fisheries, and the occasional capture of certain species for bait, were also at one time of value to fishermen from the United States; but such a decided opposition on the part of the resident Provincial fishermen was manifested to the exercise of the privilege of taking fish, accorded by the Treaty of Washington, that the practice of catching their own supply was practically abandoned, and the fishermien have almost without exception, since the well-known difficulty at Fortune Bay, Newfoundlaud, about ten years ago, purchased their cargoes of herring from the local fishermen, and, where these had no suitable apparatus for obtaining the same, have carried their own apparatus and hired the provincial fishermen to manipulate it.

The mackerel is, then, the only species of any importance visiting Provincial waters which American fishermen at present desire to catch within 3 miles of the shore, or indeed within a much greater distance. This is practically the ouly Provincial shore fishery in which our fishermen have had any considerable interest since the ratification of the Treaty of Washington, as the great majority of our vessels cmployed in other fisheries on the banks off the Provincial coast seldom fish nearer than 25 or 30 miles from land, and a majority of them secure their cargoes from 100 to 200 miles from shore.

At the present time the advantage to be derived from any privilege of fishing within 3 miles of the Canadian coasts, even for mackerel, is comparatively insigniticant, as the results of the season which has just closed show conclusively that our vessels which have fished wholly outside of the 3 -mile limit have done fully as well as the Canadian vessels which have had the opportunity of fishing everywhere, without restriction as to distance from shore.
Question 3. In the method of fishing on that open sea, or in those open bays, of preserving the catch and sending it to our ports for a market now desirable for our American fishermen, of what importance is the right to enter, in a commercial way, British colonial ports in the neighborhood?
The nature of the occupation of fishing, when the size of the ressel is considered, renders it impossible for a fishing vessel to provide against all contingencies. On learing the home ports the vessels are ordinarily provided with what is supposed to be a full outfit of provisions and apparatus, but a scarcity of fish may render it desirable that it should remain on the fishing grounds longer than was expected, or it may be delayed by head-winds, storms, or floating ice, until the supply of provisions or water is exhausted. It then becomes conveuient, in order to prevent actual suffering, that the vessel should make a harbor and obtain additional quantities. Instances have occurred during the present year when vessels short of provisions have attempted to reach one of our own ports to obtain a supply rather than incur the risk of seizure by entering those of Canada for that purpose.

Again, portions of the vessel's equipment, such as auchors, cables, fishing-boats, and apparatus of capture, are liable to be lost during stormy wenther, and it is a great convenience to be able to purchase new material in the nearest Provincial port rather than to incur the loss which must be sustained, provided the vessel is obliged to return to American markets to purchase them. This is true both in the fisheries carried on near the land aud also in those on the more distant fishing grounds. This season much inconvenience was experienced by many of the vessels engaged in the mackerel ishery from the tearing of their seines and the loss of their seine-boats in heavy weather, owing to the refusal of certain Canadian officials to allow them to land their seines for purposes of repair or to buy new boats for continuing their fishing operations. Many of them were provided with two boats, and some carried two seines to guard against such contingencies, but in a number of cases vessels so equipped were equally inconvenienced with the others.

The only occasion that vessels would have for entering the harbor, due to the methods of preserving fish, would be for the purpose of obtaining either salt, barrels, or ice. It sometimes happens that the salt is damaged by a leak in the vessel, or that a detention beyond the expected time causes the melting of the ice, and it is importaut that our fishermen should be permitted to purchase additional quantities in Canadian ports, rather than run the risk of losing the eutire cargo of fish or of returning with only a partial trip. The present interpretation given to the treaty of 1818 by the Canadian authorities, while it might allow a leaking vessel to enter a port for repairs, would not allow it to replace the salt that might have been rendered worthless by the leak.

The privilege of landing cargoes of fish at Provincial ports for shipment to the United States is of considerable importance to vessels engaged in the mackerel fishery, but of little value to those employed in the capture of other species. Vessels are thus enabled to land trips for shipment and to immerliately resume their fishing operations, thus saving the two to four weeks necessary for making the bomeward and return passage; but with the privilege of transshipping cargoes should be coupled that of refitting at the port where the fish are landed, otherwise the vessel might be short of provisions or apparatus, which would render it impossible for it to continue its fishing operations.

Most of the vessels from Gloncester, Mass., engaged in the off-shore cod fisheries have made a practice of obtaining fresh bait in Provincial ports; but a majority of vessels similarly employed from other places carry salt bait, thus being entirely independent of the Canadian supply. The chief difference between the two classes is that the Gloucester vessels fish with trawls, while the crews of most of the other vessels catch their fish with hand-lines. It is claimed by certain of the Gloucester fleet that they get more and larger fish by the use of fresh bait, but the fishermen from other ports lave found their own methods profitable and have not felt disposed to follow Gloucester's example even when they had free s.ccess to Canadian ports for the purpose of obtaining bait.

A few of the vessel-owners in Gloncester have long maintained that the time lost in going to and from Provincial ports to secure bait, and the temporary demoralization of the crews resulting from a visit to these ports more than offset any advantages that are to be derived by the use of fresh bait, and urge that salt bait would be found, on the whole, more profitable; but as a considerable percentage of the men employed on the vessels have families or relatives in the Provinces, they have continued to urge upon the owners the necessity of obtaining bait in these localities, and it has been difficult to dissuade them. After the experience of the present year quite a number of other Gloucester owners and fishermen as well are convinced that it is on the whole better to substitute salt bait than to continue the old practice of leaving the Banks in the midst of the fishing season to obtain other kinds in the Provinces. That this opinion is shared by the Nova Scotia fishermen is proven by the fact that for some years they have been in the habit of purchasing large quantities of salt
clams from dealers at Portland and otber towns in the State of Maine, to be used by them in the cod fisheries.

Since the introduction of the purse-seine the mackerel fishermen have required no bait.

In the halibut fishery it is only necessary to take a sufficient quantity to last one or two days, as the remaiuder of the catch can be obtained on refuse fish taken on the trawls with the halibut, or, if necessary, small halibut can be cut up and used for baiting the hooks.

In the past the cod-fishermen frequenting George's Banks have at certain seasons of the year oltained their bait from Canadian ports, but the experience of the present year has proven that they are not dependent upon them, as most of the vessels have obtained their supply on our own coast with comparatively little difficulty, and frequently with less loss of time than was customary wheu visiting localities in New Brunswick and Nova Scotia.
It will thus be seen that though the privilege of obtaining bait and the ice necessary for preserving it in British North American ports has been in the past and may even still be considered a convenience to certain classes of vessels, it is not of vital importance.
The agitation of the question of bait supply has had a very beneficial influence upon our own fishermen, and has resulted in the development of extensive shore-bait fisheries along the coasts of Maine and Massachusetts, which give promise of being able to supply in large part, if not wholly, the demands of our entire fleet. During the past summer the experiment of shipping bait to Boston from the more remote localities on the coast of Maine has been made with success, and the cost of transportation is not high enough to be a barrier to the continuance of the business. If this practice increases, as at present seems probable, it will donbtless result in a great saving of time to our fleet, which has often in the past been seriously inconvenienced in its fishing operations, owing to the time consumed in sailing from port to port in search of a supply. The U. S. Fish Commission has recently begun a series of experiments with a view to determining the praticability of preserving fresh bait long enough to admit of its shipment from New England ports to the fleet fishing on the more distant banks, but the work is not yet sufficiently advanced to warrant an opinion as to the probable result.
Question 4. "The same question in regard to the fishing on the permitted coasts and the commercial entry in the prohibited bays and harbors, but not for fishing."
There is at present comparatively little fishing by American vessels on that portion of the coast to which free access is given by the treaty of 1818; but vessels fishing in that vicinity should have the same privileges in other ports as are accorded to other vessels, as it would seem unwise to discriminate, and it wonld, perhaps, owing to the few settlements of any importance on the permitted coast, be more convenient for the vessel to enter ports in the prohibited districts to purchase the necessary articles than to go out of their way in an opposite direction, where there might be any uncertainty of securing them.
Question 5. "What is your estimate of the total tounage of the American vessels, the number of fishermen thereon, engaged in the Canadiau and North Atlantic fisheries in 1886, and the total value of their catch?"
A careful estimate of the extent and importance of our Ner England vessel fisheries indicates that during the present jear there have been 1,956 vessels, aggregating 115,130 tons, with crews numbering 17,996 men, employed in the various sea fisheries. The fleet is estimated to have been divided as follows: 1,530 vessels in the food-fish fisheries, 215 in the shell-fish and lobster fisheries, $13 \%$ in the capture of whales and seals, and 34 in the menhaden fishery.

The 1,530 food-fish vessels aggregated $\mathbf{7 1 , 2 0 0}$ tons and furnished employment to 14,240 men. The vessels, with their equipment, were valued at nearly $\$ 5,000,000$, and their catch is estimatod to have sold at prices to fishermen for $\$ 4,590,000$. Of this
fleet 350 sail were engaged in the off-shore mackerel fishories, 200 in the cod fisheries on Querean, Grand, and Western Banks, 165 others in the cod fisheries of George's and Brown's-Banks, 65 in the off-shore halibut fisheries, and the remaining 750 in the miscellaneous shore and off-shore fisheries.
The off-shore mackerel vessels are the only ones that have engaged to any extent in catching fish in the vicinity of waters under British jurisdiction. Of this fleet about one-half, or possibly a slightly larger percentage, have fished in the Gulf of St. Lawrence during a portion of the mackerel season, the remainder of these vessels having remained off our own coast.

Below are given two tables, showing in detail the extent and character of our New Englaud vessel fisheries in 1883. The figures as there explained are estimated from partial statistics furnished by collectors of customs on Treasury circular No. 63, Bureau of Navigation, and from special, but as jet unfinished, investigations by the U. S. Fish Commission. The statements in both tables are therefore subject to revision; but, as due allowance has been made for the statistics not yet received, it is believed the totals will not be materially changed by the final compilations.

Table estimating by fisherios the totel number, tomnage, and value of New England vessels employed in the North Allentic food-fish fisheries in 1836, with the number of men and value of apparatus and ouffit on same, and the total value of their catch.
[These estimates are based upon partial returns from collectors of customs on Treasury Circular No. 63, current series, and upon special investigations by the U. S. Fish Commission.]

| Fisheries. | Number. | Tonuage. | Talue. | Value of apparatus and outfit. | Number of men. | Value of catel. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Off-shore mackerel fisheries. | 350 | 30,000 | \$1,325, 000 | \$520, 000 | 5,500 | \$875, 000 |
| Cor-fisheries on Quereau, Grand, and Western Banks | 200 | 16,500 | 765, 000 | $330, \mathrm{cos}$ | 2, 800 | 930, 000 |
| Cod-fisheries on George's and Brown's Bauks | 163 | ]0,000 | 640, 009 | 200, 000 | -2,000 | 850, 000 |
| Off-shore hahbut fisheries | 65 | 5,000 | 400, 000 | 110,000 | 901 | 750, 000 |
| Miscellaneous shore and off-shore fisheries | 750 | 9, 700 | 430, 000 | 260,000 | 3, 040 | 1,125,000 |
| Total | 1,530 | 71,200 | 3,560,000 | 1,420,000 | 14, 240 | 4, 590,030 |

Table estimating by fisheries the total mumer, tomage, and value of New England vessels, with the number of men thereon, employed in the various fisheries in 1886.
[Based upon partial returns from collectors of customs on Treasury Circular No. 63, current series, and information obtained from other sources. I

| State. | No. | Tons. | Value. | $\begin{aligned} & \text { No of } \\ & \text { men. } \end{aligned}$ | State. | No. | 'Tons. | Value. | No. of men. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Food-fish. |  |  |  |  | Lobster and shell. fish. |  |  |  |  |
| Maine | 52.5 | 18,000 | \$900, 000 | 3,600 | Maine | 40 | 750 | \$30, 000 | 100 |
| New Hampshire. | 20 | -600 | 30,000 | 120 | New Hampshire |  |  |  |  |
| Massachusetts... | 860 | 50,000 | ${ }^{2}, 500,000$ | 10,000 | Massachusetts.. | 15 | 8.50 | 8,000 | 40 |
| Rhode Island.... | 35 | - 400 | 20,000 | 80 | Rhorde Istand... | 110 | -100 | 7,000 | 25 |
| Connecticut | 100 | 2, 200 | 110,000 | 440 | Comnecticut | 150 | $\xrightarrow{2}, 600$ | 200, 000 | 400 |
| Total | 1,530 | 71,200 | 3, 560, 000 | 14, 240 | Cotal | 215 | 4,300 | 245,000 | 565 |
| Whale and seal. |  |  |  |  | Menhaden. |  |  |  |  |
| Maine. | 2 | 100 | \$10,000 | 20 | Maino. |  |  |  |  |
| New Hampshire. |  |  | 10,00 |  | New Hampshire |  |  |  |  |
| Massac̉husetts... | 160 | 36,000 | 1,500,000 | 2,500 | Massachusetts.. |  |  |  |  |
| Rhode Island |  |  |  |  | Rhole Island | 19 | 960 | \$161, 000 | 291 |
| Connecticut | 15 | 2,000 | 100, 000 | 240 | Connecticut | 15 | 570 | 66,550 | 140 |
| Total | 177 | 38, 100 | 1,610,000 | 2, 760 | Total | 34 | 1,530 | 227, 550 | 431 |

Table estimating by fisheries the total number, tomage, and value of New E'ngland vessels, with the mumber of men thereon, etc.-Continued.

SUMMARY.

| State. | No. | Tous. | Valne. | No. of men. |
| :---: | :---: | :---: | :---: | :---: |
| Maine | 567 | 18,850 | \$940, 000 | 3,720 |
| Now Hampshire | 20 | ${ }^{600}$ | 30,600 | 120 |
| Massachusetts. | 1, 025 | 86,850 | 4,008,000 | 12,540 |
| Rliorle Island. | 67 | 1, 460 | 188,000 | 396 |
| Connecticut | 280 | 7,370 | 476,550 | 1,220 |
| Total | 1,956 | 115, 130 | 5,612,550 | 17,996 |

Question 6. "What change has, in your view, come to American fisheries since the last full year of the Washington treaty in regard to the character, quantity, and general features of that industry?"
There has been little change in the fisheries other than the mackerel fishery during the past year. In this fishery the scarcity of mackerel has been very marked and the catch has been much below that of the average year. The decrease, however, can be in vo way attributed to the abrogation of the Treaty of Washington, but must rather be accounted for by natural causes which have affected the abnudance, movements, and locality of the species.

For several years prior to 1886 mackerel appeared in more than average quantities, and for eight or ten years, ending with 1885, they have been much more pleniful on our own coast than on any portion of that of British North America. For this reason the fleet of American mackerel vessels visiting waters in the vicinity of British territory has of late been very small. In 1885, out of a total of about 380,000 barrels canght by our fleet, only 26,000 barrels, or less than 7 per cent., were taken in the vicinity of Cauada, the quantity obtained within the 3 -mile limit being only 3,564 barrels. The fact that, during a season when permission had been given to allow American vessels to fish anywhere in the waters of British North America without restriction as to distance from shore, less than 1 per cent. of the catch of our mackerel fleet was secured within 3 miles of British territory, and that more than 93 per cent. of the total catch of mackerel was obtained in the vicinity of our own coast, is certainly significant.
During the present year mackerel have been peculiarly scarce in all localities, thongh for the first time in eight or ten years they have been more abundant in the Gulf of St. Lawrence than off the New England coast, and a large percentage of the American vessels employed in the fishery have visited that locality. The catch has, as a rule, been unusually small, but the price has increased in proportion, so that the season for some of the vessels has not been wholly unprofitable. The limited catch can not in any way be accounted for by the restrictions placed upon our vessels within the 3 -mile limit, for their catch, as previously stated, has been equal to that of the Canadian ressels that fished without restriction as to distance from the shore.
The ressels engaged in the cod-fishery have met with more than average success. This is partially attributed to the fact that the squid, used for bait, have been very plenty during the summer and fall months on the fishing-grounds. It has, not infrequently occurred that vessels have sailed without any bait, depending upon the supply that they could catch on the Banks upwards of a hundred miles from shore. Question 7. "Your Commission has, in its annual reports, alluded to the diminished necessity on the part of American fishermen to go to British North American ports or waters for bait. What are the new features of that necessity?"
A few years ago the United States Fish Commission obtained from Norway a number of gill-nets suitable for catching codfish, aud used them with success in the codfisheries about Gloncester, Mass. Similar nets are now made in this country, and are extensively employed by the shore cod-fishermen of that vicinity, who obtain large
catches by their use. These fishermen formerly depended in large part for their bait upon frozen herring, brought from New Brunswick and Nowfoundland, but where gillnets are used bait is no longer required. Thas far, however, gill-nets have not been extensively employed in the capture of codfish on the moro distant fishing-banks.
The development of our shore bait fisherics, referred to in answer to a previous question, also renders our people less dependent upon the Provincial supply, and the growing sentiment upon the part of certain Gloucester owners in favor of substituting salt clams purchased in American markets for fresh bait obtained in the Provinces, seems destined to decrease still further our dependence upon the Canadian supply. It can not be denied, however, that there are still a large number of vessels that would consider it a convenience to obtain bait in the Provinces, provided commercial privileges, under proper restrictions, are accorded to our vessels.
Question 8. "Your Commission has also alluded to inquiries presented by it in respect to the general value of the inshore Canadian waters to American fishermen, and the yearly value of the liberties given to American fishermen by the Washingtou treaty. Have you ascertained new facts of public interest in that regard which you can conveniently commauicate to me?"
The decreased importance to American vessels of the inshore Canadian fisheries has resulted-
(1) From the increased size of our vessels, which did away with the necessity of fishing close to land, where harbor could be made in case of storms, and of landing in the vicinity of the fishing grounds to dry their fish before sailing for home;
(2) From the substitution of the purse-seine for the hand-lines in the capture of mackerel, which has necessitated the fishing in deeper water and at a greater distance from shore; and
(3) From the change in the location of the mackerel fisheries, which has for the past few years enabled our vessels to obtain full cargoes in the vicinity of our own coast, instead of going to the Gulf of St. Lawrence, where they formerly met with better success, but where of late years-prior to the present season-they have found fishing unsatisfactory.

This recent return of the mackerel to the more northern waters should, however, not be considered as indicating a permanent change in the location of the fishery, for within a short time, and possibly next season, they mas again appear in greater abundance on our own coast; and, indeed, the study of the movements of other fishes renders it not wholly improbable that mackerel may at no distant day disappear entirely from the Gulf of St. Lawrence and from other portions of the Provincial shores, where they are now abundant.

## 5.-propagation of Food Fishes.

## Distribution of Fisif and Eggs.

The cars of tho Commission have been extensively used in trarsportation. Some changes have been made in methods of distribution. Carp and other fishes of the same family are shipped during the fall and early winter, and not in the spring, which is the season of their greatest emaciation. Eggs intended for shipment to foreign countries were packed at the stations for the entire trip, and not repacked in New York. The boxes containing them were transferred from the non-conducting material surrounding them in the outer shipping cases to the refrigerating-rooms of ocean steamers.

Trout have been shipped by express, without a messenger, from Washington to New York and back, with no loss. A shipment to

## XXVIII REPORT OF COMMISSIONER OF FISH AND FISHERIES

Natural Bridge, Va., under less favorable couditions, was not so satisfactory; but these experiments indicate that it is possible to send trout moderate distances without attendants.

Below is a summary of the distribution for eighteen months, including 1856 and ove-half of 1857 ; it covers, also, the distribation of 1885-'86 from the McCloud River and Cold Spring Marbor Stations not previously reported. The total number is somewhat too large, since the eggs of the Salmonide, after being counted as distributed from the station where they were obtained, were hatched at other stations, and the fry produced were sometimes agaiu reported. The distribution of whitefish $(94,670,000)$ is the largest that has been made up to this time.

Summary of distribution from January 1, 1886, to June 30, 1887.

| Kind of fish. | Eggs. | Fry. | Large fisl. | Mis- <br> cellaneous. |
| :---: | :---: | :---: | :---: | :---: |
| Whitefish | 32,600,000 | 62, 070, 000 |  |  |
| Grayling.... |  |  | 2 |  |
| Smelt...... | 18, 1019 | $2,100,(60)$ |  |  |
| Brook trout... | 18, 82,1000 | 7. 488 | 1, 711 |  |
| Lake tront . | 8,, 0 | 155, 800 | 6,923 |  |
| Atlanticsalmon. | 754,000 | 416,5 508 |  |  |
| Laut-locked salmon | 377, 500 | 44, 017 |  |  |
| Rainbow trout.. | 429, 000 | 49,930 | 16,483 |  |
| Brown trout... | 84, 500 | 26, 500 |  |  |
| Eels..... |  |  |  | 200 |
| Shad. | 10, 718,000 | 99, 7:2, 006 |  |  |
| Carp. | ........... | 136, 163 |  |  |
| Tench ${ }_{\text {Gold }}$.f.... |  |  |  | 1,202 |
| Brook pickerel |  | -, 810 |  | 14 |
| Rockfish...... |  | 75,000 |  |  |
| White perch. |  |  |  | 68 |
| Black bass. |  | 48 |  |  |
| Suntish.. |  |  |  | 125 |
| Rerleye. <br> Codtish |  | 662, ${ }^{2}$, 0 ¢0 |  |  |
| Sole.... |  |  |  | 19 |
| Lobsters. |  | 5,000 |  |  |

The grand total of the distribution is $210,628,413$.

## Notes on the Species Propagated and Distributed.

a. The Sole (Solea solea).

During 1856 sereral consiguments of soles were bronght across from Liverpool in the White Star steamer Britannic. Lanly in the year 24 were brought in one shipment without loss. From two later consignments 37 fish out of 49 sent were safely received at Wood's Holl, where they were kept with the hope of using them for breeding purposes.

The hanging ish-ghobes now employed for carrying soles across the Atlantic give better results than any other form of apparatus as yet devised for the purpose.

## b. The सFalibut (Hippoglossus hippoglossus).

As the fishing for this important species in moderate depths has become unprofitable because of the scarcity of the fish it was earnestly desired to begin its artificial propagation during the present year. The

Grampus was accordingly sent to the fishing-banks in the latter part of September in search of halibut. It was found that the spawning seasou was near at haud. The fish were canght in deep water, from 200 to 350 fathoms, and placed in the ressel's well apparently in good condition; but all of them died within twenty-four hours, probably on account of the difference in pressure and temperature. Attempts will be made to get halibut from shallow water in the Gulf of St. Lawrence or on the west coast of Newfoundland for future experiments, when it is expected that they will better eudure transportation in the vessel.
c. The Codfish (Gadus morrhua).

The apparatus which proved most satisfactory for hatching the float. ing eggs of the cod was the tidal box devised by Colonel McDonald in 1881, modified by Capt. H. C. Chester's addition of inverted glass cylinders, haring the mouth closed by cheese cloth and the bottom perforated for ventilation.

During January and February eggs were hatched easily in the apparatus above mentioued, but owing to the severe weather it was very difficult to obtain spawning fish.

On the 25 th of January two acid carbors, each containing 40,000 codfish just hatched, were forwarded by express from Wood's Holl to Washington. After being forty-four hours in transit, about 7 per cent. of them reached Washington alive. On the next day 50,000 fish were sent in a carboy. After a journey of forts-four hours fully 50 per cent. of them reached the station in good condition. On Jannary 28 a shipment of 500,000 fish in ten carboys was taken from Wood's Holl by messengers. They reached Washington on the 29th with a loss of less than 10 per cent., and were sent forward the same day to Pensacola, Fla., where they arrived shortly after midnight, February 1, with an additional loss of about 10 per cent. At Pensacola they were transferred to the revenue steamer Forword, which had been placed at the service of the Commission by order of the Secretary of the Treasury, and carried to the place selected by Mr. Silas Stearus for their final destination in the Gulf of Mexico, southeast by east from Pensacolit Bar, in 100 fathoms of water. This experiment was made to determine whether or not the cod can be successfully transferred to Southern waters and become the object of a profitable fishery there.

In February a shipment of 500,000 young cod was forwarded from Wood's Holl through Washington to Old Point, to be deposited in Hampton Roads, with the hope of forming a celony in Chesapeake Bay.

Work of the Grampus.-During the winter of 1886-'87 the Grampus was engaged in obtaining eggs of the corlish for hatching at the Wood's Holl Station. In many cases the fish were taken with the gear of the Grampus and carried alive in the well to the station. Between 600 and 700 live fish were thus secured. Over $43,000,000$ eggs were obtained; $20,000,000$ were hatched and planted in the immediate vicinity of the station. Frequently eggs were obtained by sending men to collect
them on board fishing vessels on the grounds. Owing to the cold and inclement weather during much of the winter cod were unusually scarce and fishing, even under the most favorable circumstances, was poorly remunerated. The work of collecting, lowever, was continued whenever opportunity offered until the middle of March.

Work of the Fish Hawk.-Early in January, 1887, the crew and some of the hatching apparatus of the vessel were utilized in the work at Wood's Holl. Late in February and till near the end of March the Fish Hawk was engaged in making short trips off Portsmonth and in Ipswich Bay, boarding fishing vessels to collect coditish spawn for shipment to Wood's Holl.

## d. The Mackerel (Scomber scombrus).

In the month of May Captain Chester secured three gravid mackerel at Wood's Holl, and from them eggs were taken and placed in the apparatus which had been used for eggs of the cod. The fish commenced hatching in ninety-four hours after the eggs had been placed in the jars. This adds another very important species to the list of fishes that may be propagated at the Wool's Holl Station.

## e. The Black Bass (Micropterus dolomiei).

11 breeders and 100 yearlings were collected during the summer at the Wytheville Station. 48 vearlings were sent away during the year.
f. The Red-eye (Ambloplites rupestris).

At the Wytheville Station, during the fiscal year $1586-37,77$ breeders and 2,125 yearlings were obtained. 18 breeders were sent to the Central Station and 2,085 yearlings were distributed, including 586 in Cacapon River and 600 in Cowpasture River. Un March 1, 1S87, 25 redeges, about in inch in length, were sent to Max von dem Borne, Berneuchen, Germany, 20 of which reached their destination in safety.

The red-eye is a good pan fish, gamey, and weighs a half pound on the average; it is likely to do well in ponds.
g. The Sunfish (Lepomis giblosus).

Daring the summer of 1886,125 sunfish, about 1 inch in length, were taken at Cold Spring IIarbor and forwarded, though Mr. E. G. Blackford, to Max ron dem Borne, Bernenchen, Germany, who was fully advised of their predatory character.
h. The White Perch (Rocous americanus).

Three shipments of the young of this fish were sent from the Cold Spring Harbor Station to Max von dem Dorne, in October and December, 1886, and March, 1887, of which only three, from the last shipment, reached Germany alive.
$i$. The Rockfish or Striped Bass (Rocous Tineatus).
600,000 egss were obtainel at the Battery Station, near Harre de
Grace, Md., but owing to pressure with the shad work, few of them were
hatched. 75,000 fry were successfully planted in Lake Ontario, near Oswego, N. Y.
j. The Smelt (Osmerus mordax).

Large numbers of smelts were hatched at the Cold Spring Harbor Station, the parent fish having been obtained on the south side of Long Island. The hatching was rendered difficult by the glatinous nature of the eggs, but about one-half were developed. Over $2,000,000$ young were planted in Cold Spring Harbor and 50,000 were deposited in Saranac Lake, in northeastern New York.

About the first of April a lot of eggs were sent to Northville Station, where they arrived in bad condition and apparently dead, but upon digging into the mass about 15 or 20 per cent. were found to be good.

## k. The Whitefish (Coregonus clupeiformis).

Notwithstanding the stormy and very cold weather $129,400,000$ whitefish eggs were obtained during November and December for the hatching stations at Northville and Alpena, Mich. The first eggs were received from Lake Erie November 7; the last from Lake Michigan December 13. On November 23 about 30,000 eggs were taken from two whitefish which had been hatched and reared at the Northville Station; this is believed to be the first record of their breeding in captivity. The hatching seasou at Northville lasted from March 11 to April 12; at Alpena, from April 22 to May 8.
$32,600,000$ eggs were distributed, mostly to ueighboring state fish commissions; $62,070,000 \mathrm{fry}$ were planted in waters of Michigan, Ohio, Indiana, and New York; 2,500,000 eggs were sent to England, 1,000,000 to Germany, and $1,500,000$ to New Zealand; $5,000,000$ were forwarded to the Central Station at Washington; $10,000,000$ each to the State hatcheries of Pennsylvania and Minnesota; $1,000,000$ to New York, and $1,600,000$ to Delaware. From the $1,000,000$ eggs sent to the Cohl Spring Harbor Station nearly 950,000 young were obtained, and these were deposited in deep, cold lakes on Long Island.
l. The Dwarf White fish (Coregonus albula).

In January, 1886, Max von dem Borne sent 80,000 eggs of this species as a gift from the Deutsche Fischerei-Verein, by Herr von Behr, to the United States Fish Commission. These were received at the Cold Spring Harbor Station, and Mr. Mather was directed by the Commissioner to forward 70,000 eggs to Bucksport and 10,000 to Northville. Mr. Atkins received his allotment February 1. The first fish hatched out March 24, and about 51,000 young were obtained; these were planted April 21, 1856, in Heart Pond, a small lake near Bucksport which empties into the Eastern River, a small tributary of the Penobscot. Some of the eggs sent to Northville were hatched March 7, but no healthy young were secured from them.
m. The Brook Trout (Salvelimes fontinalis).

The Forthville Station.- It the Northville ponds 186,750 eggs were takeu. From December 2s, 18S6, to February 9, 1857, 82,000 eggs were shipped away, 10,000 to England, the remainder to Minnesota, Delaware, and Pemnsylyania, and to the Central and Wstheville Stations. 527 young fish were sent away and 4,000 fry were retained for breeding purposes.

The Wytheville Station.-In December, 1886, 193 breeders were received from the Northville Station. In April 5,000 fry came from the Central Station. In January, 1857, 26,508 eggs were received from Northville and ' 5,000 from Mr. R. E. Follett, of Windham, Conn. During May and June, 1887, 750 yearlings and $\because, 488$ fry were planted in suitable streams in Maryland and Virginia.
n. The Saibling (Salvelinus alpinus).

The Cold Spring Herbor Station.-In Febrnary and March, 1857, three shipments, each containing about 20,000 eggs of the saibling, were received from Bernetichen, Germany, 3,000 eggs from the first lot were repacked and sent to the State hatchery at Plymouth, N. II., where they arrived in good condition. The sound eggs of the second shipment were mixed by mistake with eggs of the brown tront received from Germany at the same time, and were distributed in this state to the hatcheries at Corry, Pa., Wytheviile, Northville, and Cold Spring Harbor. 15,000 good eggs from the last shipment were sent safely to the Northville Station March 17, and hatched soon after; but the fry refused to eat, and most of them died of "blue sac" and starvation.
0. The Lake Irout (Salvelinus namaycush).

The Nortluille Station.-6,150 lake tront, hatehed in January and February, 1886, were sent to Ohio, Indiana, Kentucky, and Tennessee. Owing to a lack of available funds no eggs were taken.

The Wytheville Station.-During the fiscal year 1886-'s7, 800 yearlings were sent to the Central Station, 50 to the Gasconade River, Missouri, and 350 were planted in streams near the station.

The Cold Spring ILarbor Station.-150,000 eggs were received from Northville December $19,185 \overline{3}$. 80,000 fry were distributed to waters in and near the Adirondacks; 5,000 to Monroe, N. Y. $; 5,000$ to Gloncester, Mass.; and 20,000 to Long Island waters. An attempt to rear some of the fry at the hatchery was unsuccessful, on account of the high temperature of the water. In June, when it reached $60^{\circ}$ Fahrenheit, the young began to die, and none lived until September.

The Buchsport station.- 100,000 fry were obtained from eggs received from Northrille. Of this numbor $3 \check{5}, 000$ were kept for rearing; 1,439 were placed in Craig's Pond June 17; and 2,113 in Pond B June 22. Upward of 31,000 were kept in the troughs and fed on liver, refuse meats, salt codfish, insects, and entomostraca.
p. The Rainbow Trout (Salmo irideus).

The MlcCloud River Station.-The first eggs for the season of 1885-'86 were taken on December 26, 1885, which was somewhat earlier than usual. The species seem to spawn sooner than formerly. The spawning season closed May 10. 221,425 eggs were taken from 226 fish. $30,000 \mathrm{eggs}$ were lost because of high and muddy water; 15,000 were hatched for the trout ponds and the river, and 131,000 were distrib. uted, chiefly to State fish commissions and to Central Station. During the spawning season of 1886-'87, which lasted from December 26 to April 11, 268,400 eggs were taken from 299 fish. 84,100 of these were lost from various causes; 39,300 were hatched and the fry planted in the McCloud River; the remaining 145,000 were sent to State commissions and to Central Station.

The Northville Station.-The spawning season in the ponds lasted from January 9 to April 25. 196,350 eggs were obtained from 375 fish; 25,000 were sent to the Michigan Fish Commission ; 25,000 to Mr. Blackford, for shipment to France; while 25,000 fry were hatched out and nearly all of them kept at the station. 4,920 young fish were shipped away from the station.

The Wytheville Station.-During April and May, 1S87, 8,000 fry were received from the Central Station, and 220,500 eggs were collected at Wytheville. During the fiscal year 1886-'87, 12,095 yearlings, 271 two years old or older, and 98,000 eggs were shipped away. 40,000 eggs were sent to Germany, 10,000 to England, and 5,000 to France. The remaining eggs and fry were distributed to private applicants, to suitable streams for stocking, and to various hatcheries. Mr. Max von dem Borne, writing from Berneuchen, Germany, on April 11, 1887, stated that the fry hatched from the eggs received were in excellent condition.
q. The Brown Trout (Salmo fario).

The Cold Spring Harbor Station.-64,000 eggs were received in very bad condition from the Deutsche Fischerei-Verein March 1, 1886, and 40,000 came from the same source, in good coudition, March 20 . On April 16, 50,000 eggs arrived in good order from Max von dem Borne. 13,000 eggs were repacked and sent to the Northville Station, and 1,000 to the Wisconsiu Fish Commission. During April and May, 23,500 young tront were planted in suitable waters in New York.
In July a brown tront was caugit in Allen's Creek, a tributary of the Genesee River, New York, which weighed 3 pounds. This must have been hatched from the first lot of eggs received in America. One of this first shipment, which was hatched and reared at Cold Spring Harbor, weighed 3. 2 pounds in October, 1886, at the age of three and onehalf years.

During March, 1837, 103,000 brown trout eggs were received from Germany, but 60,000 of them were unfit to be developed. The last shipment of 50,000 eggs contained 13,000 dead ones. The good eggs of this S. Mis. 90 - III
xXXIV REPORT OF COMMISSIONER OF FISH AND FISHERIES.
lot were mised by mistake with 14,500 saibling eggs, which arrived the same day, and 50,000 mixed eggs were sent to several State and National fish commission hatcheries. 10,000 eggs were received, also, on account of the New York Fish Commission, from Herr vou Behr.

The Northville Station.-20,000 eggs were received March 17 from the Cold Spring Harbor Station, having come originally from Germany. 2,500 of these were sent to the Michigan Fish Commissiou and 5,000 to the Wisconsin Commission. The remaining eggs yieided uearly $\mathbf{9 , 0 0 0}$ fry, which were kept at the station. During Norember and December $9,400 \mathrm{eggs}$ were taken from stock-fish in the Northville ponds, but only 1,500 fry were obtained from them.

The Wytheville Station.-2,165 brown tront eggs were received in March, 1886. They were hatched at a very unfavorable time, the water being muddy during incubation and remaining so until the surviving fish were several weeks old. 286 were reared, and in November they were between $2 \frac{1}{2}$ and 3 inches long. In March, 1887, 9,100 eggs were received from Cold Spring Harbor, and in May, 3,000 fry arrived from the Central Station.

## $r$. The Loch Leven Trout (Salmo levenensis).

Ou January 14, 1887, the Cold Spring Harbor Station received 48,000 eggs of the Loch Leven trout from the Howietoun tishery in Scotland, but nearly one-half of them were dead. Stroug and healthy fry were hatched from the remainder.

## 8. The Atlantic Salmon (Salmo salar).

The Bucksport Station.-205 salmon were purchased from the Penobscot River fishermen, from May 29 to June S, and placed in the inclosure at Dead Brook. Only 147 of these lived throngh the summer. $1,155,776$ eggs were taken from 101 females, an average of 11,473 each. Of these eggs, $1,099,000$ were distributed, 320,000 being awarded to Massachusetts and 779,000 to the U. S. Fish Commission, the work having been conducted by these two commissions conjointly. 25,000 eggs were reserved for experiments at the station, and the fry were afterwards liberated in Craig's Pond. The remaining eggs were sent during February, 1887, to the following places:

Cold Spring Harbor, 300,000; F. A. Walters, Bloomingdale, N. Y., 250,000 ; E. B. Hodge, Piymouth, N. H., 100,000; Grand Lake Stream, 104,000.

The Grand Lake Stream Station.-About the 1st of March, 1857, 104,000 eggs were received from Bucksport. These were hatched with a loss of only 255 eggs and young, and the fry were planted in tributaries of the St. Croix River about the middle of 'June.

Tho Cold Spring Harbor Station. - 240,000 eggs were received from Bucksport January 7, 1S86, and 260,000 on the 7 th. 446,573 fry were planted in tributaries of the Hudson and St. Lawrence Rivers and Lake Ontario. During 1886 small numbers of young salmon were taken
in the streams in which they were planted in May, 1885. From infor. mation furnished by Mr. A. N. Cheney of Glens Falls, N. Y., and from other sources, it appears that more than 24 salmou were taken in the Hudson during 1886.
$t$. The Landlocked Salmon (Salmo salar, var. scbago).
The Grand Lake Stream Station.-The spawning season lasted from October 29 to November 18. 752 fish were taken, the females yielding 942,500 eggs, or au arerage of 1,935 each. ( 641,501 eggs were distruuted and 214,000 were reserved for Grand Lake Stream. The distribution, according to the contributions for the expenses of the year, was as follows:

| Contributor. | Money contributed. | Eggs dis. tributed. |
| :---: | :---: | :---: |
| The U. S. Fish Commission | \$860. 00 |  |
| The Massachusetts tish commission | 300.00 | 132.000 |
| The New Hampshire fisl commission | 300.00 | 132, 000 |
| Total. | 1,460.00 | 641,500 |

The eggs allotted to the U. S. Fish Commission were distributed is March, 1887, to various State commissious, to England, France, and Germany, and to the Wytheville and Cold Spring Harbor Stations. The 214,000 reserved for Grand Lake Stream were hatched and planted with a very small loss.
On March 8, 1886, 19,000 eggs were sent from the Grand Lake Stream Station to the Penusylvania commission at Corry, Pa. Near the end of June about 12,000 fry developed from these eggs were planted in streams flowing into the lake of the South Fork Fishing and Hunting Club, in Cambria County, Pa.

The Wytheville Station.-50,000 eggs were received on March 13, 1887, from Grand Lake Stream ; 12,997 yearlings were liberated in tributaries of the Shenaudoah River, in the hope that this would establish a run in the Potomac River.

The Northville Station.-29,000 eggs were received from Grand Lake Stream on March 19, 1886, and on April 14 they hatched, with a loss of only 575. On April 27, 10,000 fry were planted in a lake of Clare County, and 12,000 in Rapid River, in Kalkaska and Autrim Counties, both places of deposit being in the northern central portion of Michigan.

The Cold Spring Harbor Station.-34,000 eggs were received from Grand Lake Stream ou March 18, 1886. After a small loss in shipping and hatching, 31,020 fry were placed in two lakes of the Adirondack region. On April 1, 1857, 25,000 eggs received from the Grand Lake Strean Station were repacked and shipped to Leon d'Halloy, vice-president of the fish commission of the Lower Seine, France.

## XXXVI REPORT OF COMMISSIONER OF FISII AND FISHERIES.

## u. The Shad (Clupea sapidissima).

During the season of 1886 orer $90,000,000$ shad fry were distributed. Now, as the number of shad taken for market was less than $6,000,000$ it will be seen that for every adult shad captured 15 young shad, artiticially hatched, were placed in the waters. As the cost of this production and distribution was less than $\$ 20,000$ the young fish were obtained and distributed all over the United States at the rate of about $\$ 215$ for a million, or about 46 fry for a cent. In 1885, which showed a great improvement over previous years, the rate was about 30 fry for a cent. The total number of eggs collected and fry planted have also greatly increased over the results of previous years, as from the beginning up to and including $185 \%$ the total number of young shad obtained was only about $200,000,000$, while in 1885 less than $35,000,000$ fry were sent out from the stations.

Shad fry for distribution in 1886 were derived from the following sources:


The following statement shows the general planting summarized by the streams or drainage basins in which the fish were deposited:

| To tributaries of Narragan | 2,534,000 |
| :---: | :---: |
| To tributaries of Long Island So und | 749,000 |
| To Hudson River | 2,312, 000 |
| To Delaware River | 21,618, 000 |
| To tributaries of Chesapeake Bay | 52,835,000 |
| To tributaries of Albemarle Sound | 1,990, 000 |
| 'To tributaries of the Atlantic south of Albemarle Somal | 4, 18:3, 000 |
| To Mississippi River and minor tributaries of the Gulf of Mexico | 4, 758,000 |
| To Colorado River, tributary of the Gulf of Califormia | 850,000 |
| To Columbia River basin. | 850,000 |
| Total.. | 92,679, 000 |

The Fort Washington Station.-The first ripe sbad was taken April 16. From that time until near the end of May the run of fish was abundant and reasonably steady. The maximum number of eggs taken in one day was $3,503,000$, on $\Lambda_{1}$ pril 22 ; the period of greatest activity, was from April 20 to 27 , inclusive, when $16,017,000$ were procured, being nearly one-half of the entire number obtained during the season. In all, $36,362,000$ eggs were collected. The number hatched and pianted from the station in waters near by, was $3,154,000$. The number forwarded to the Central Station was $33,208,000$.

The Central Station.-The number of eggs received alive from Fort Washington was $28,283,000$. Of these, $1,586,000$ were trausferred to other stations, and the number of fry sent out to be planted was
$24,997,000$. The cost of collecting, developing, and transporting the eggs at this and the Fort Washington stations was $\$ 3,796.45$, which is at the rate of $\$ 127.66$ per million, or 78 shad for one cent.' There has been a marked gradual increase in efficiency of the force in transporting and hatching eggs, the perceutage of loss diminishing year by year from 1883 , when it was 29 per cent., to 1884 , when it was 26 per cent., to 1885 , when it was 10 per cent., while in 1886 it was only 7 per cent.

The Battery Station.-The work of the shad season began April 18 and ended June 10. The first run of fish continued for a week. All the runs of the seasou were very large. The number of eggs collected was $60,766,000$. The supply of hatching apparatus was inadequate to meet the requirements. The number of fry hatched was $45,231,000$, the percentage of hatching being $74.4 ; 43,776,000$ fry were shipped away and deposited mainly in the Susquehanna River and other tributaries of the northern part of Chesapeake Bay; $1,000,000$ fry were sent to Oregon, besides 585,000 eggs, resulting in a deposit of 850,000 fry in the Columbia River.

Work of the Fish Hawk.-From April 26 to May 1 the Fish Hawk visited the fishing shores and gillers in the northern end of Chesapeake Bay, and obtained 2,192,500 eggs for the Battery Station. During most of May the vessel was engaged on the Delaware in transporting sparntakers, and in collecting, transferring, and depositing eggs. 34,454,500 eggs were obtained, from which $23,190,000$ fry were hatched on board and $21,018,000$ deposited in the Delaware River.

Work of the Halcyon.-From April 27 to May 23 the steamer Halcyon was occupied in Chesapeake Bay and in the Delarrare River in gathering, transferring, aud hatching eggs, and depositing the young shad. $4,561,000$ eggs were taken; most of them were transferred to Battery Station or to the Fish Hank, while some were hatched on board and depositel. 3,000,000 fry were received from Battery Station and deposited in the tributaries of the Upper Chesapeake.

The Cold Spring LIarbor Station.-Late in April 1,796,000 shad eggs were received from the Central Station at Washington. Only 100,000 fry were obtained from these, and deposited in the Ifudson River, near Albany.

Experiments in planting shad.-Attempts have been continued to acclimate shad in the Colorado River of the West, and thus to establish fisheries on the Colorado, Gila, and other tributaries of the Gulf of California. This experiment was begun in 1884 by the deposit of 983,000 fish, followed by 998,000 eggs in 1885 and 850,000 eggs in 1886 , making a total of $2,531,000$, all of which were planted at the Needles. If successful, the fry deposited in 1884 should return as mature fish in 1888.
The effort to transfer shad to the Columbia River basin was repeated also. $1,000,000$ fry $, 200,000$ eggs on trays, and 355,000 eggs in hatching jars were sent out from Harre de Grace on May 9, 1886. The eggs in jars gave the best results, and this may indicate the proper method of

## XXXVIII REPOR'T OF COMMISSIONER OF FISH AND FISHERIES.

shipping them across the Atlantic. 8 s̃0,000 fry were deposited in the river basin.

Plantings hare been made during the present season in streams of all the Atlantic coast States from Massachusetts to Florida. Particular localities selected for planting are chosen with a view to the general distribution of shad in all waters of the Atlantic coast.

## v. The Carp (Cyprinus carpio).

The total distribution for the season aggregated 133,769, of which 38,634 were delivered to State commissioners and 95,135 to individual applicants. 589 applications had to be carried over until another sear, and the number of fish given to each applicant was reduced from 12 to 15 , instead of 20 as in preceding years.

The Washington Station.-The yield of the ponds was small, possibly, in part, on account of the low temperature of the entire season. Inability to drain them in the spring, because of the filling in of the Potomac flats, had an injurious effect on the carp, as it was impossible to kill the eels, sunfish, perch, and other predaceous fish that prey upon them.

The Wytheville Station.-During the fiscal year 1856-87, 452 scale carp and 3,017 leather carp were receised from the Central Station. 450 scale carp were planted in south fork of Reed Creek, in Wythe County, Va., and 1,925 leather carp were distributed to 91 applicants in southwestern Virginia and eastern Tennessee.
w. The Gold-fish (Carassius auratus).

The Washington Station.-During the season 2,75r gold-fish were sent out, in lots of 4 to 10 each, to applicants in 22 States and 2 Territories. 260 of the Japanese fan-tail variety were issued in small lots in December, 1856.

The Wytheville Station.-During the fiscal year 1856-"87, 50 gold-fish were distributed to 9 applicants in Virginia, North Carolina, Mississippi, and Texas

## $x$. The Tench (Tinca tinca).

Less than 1,000 tench were reared at the Washington Station, their number being reduced by the ravages of cels. At the Wytheville Station 2 breeders and 450 yearlings were received from the Central Station, and the yearlings were planted in the south fork of Reed Creek, in Wythe County, Va.

## y. The Lobster (Homarus americanus).

The Tood's Holl station.-During the season the experiments were continned in the artificial propagation of the lobster. Eggs were obtained and placed in hatching jars, the number in the apparatus sometimes reaching nearly $1,000,000$, and the young were deposited in Vineyard Sound and arljacent waters. In April and May Cipt. H. C. Ches.
ter made some experiments with a view to keeping lobsters alive with the use of a rery small quantity of sea water. These experiments seemed to demonstrate the feasibility of transporting the species across the continent. On May 29, 5, 000 lobsters, 2 or 3 weeks old, were sent to the Cold Spring Harbor Station. These were planted off Rocky Point, in Cold Spring Harbor, June 5.
z. The Oyster (Ostrea virginica).

At the Saint Jerome Station experiments were continued in the artificial propagation of the oyster, according to the system devised by Prof. John A. Ryder, and by other methods. The work lasted from April to November $\mathcal{Z 0}$, and was in charge of Mr. W. de C. Ravenel. On June 23 ripe oysters were found in sufficient numbers to begin spawning regularly. Collectors were put out and afterwards placed in ponds. Spat first appeared July 29. Sand and slime were depösited so rapidly and extensively as to interfere with the success of the undertaking.
6.-TIE STATIONS OF THE FISH COMMISSION.
A.-Marlne Stations.

Gloucester, Mass.-This station was occupied mainly in the interests of the Gloucester fisheries and for the purpose of obtaining continuous and accurate returns of their statistics. It was in charge of Mr. W. A. Wilcox, a special agent of the Commission, assisted by Capt. S. J. Martin.

Wood's Holl, Mass.-Operations were carried on daring the entire year at this important station, which is located on Vineyard Sound, at the southwestern extremity of Cape Cod and opposite the northern end of the Elizabeth Islands. It is now thoroughly equipped both for the propagation of marine fishes and for the purposes of scientific inquiry. The hatching of codfish, begun in November, 1885, was continued through the winter and into the spring of 1886 , and was again taken up in November of the same year. The propagation of lobsters was carried on from May until July, and experiments with reference to the planting and breeding of oysters were conducted during the spring and summer. From early in July until the middle of October the station was occupied in the interest of the sea-coast investigations respecting food-fishes and the fishing grounds, under the immediate direction of the Commissioner, and during this period it was also the headquarters for the steamer Albatross.

Capt. H. C. Chester, who had served as superintendent of the station since its foundation, was obliged to relinquish his position in June, on account of ill health, and was succeeded by Prof. John A. Ryder, as acting superintendent, until Uctober 1 , when the station was placed in charge of Mr. Charles G. Atkins.

A frame store-house and a short section of wharf in front of the coal
shed were finished during the summer, completing the principal structures required at this locality for the purposes of the Fish Commission. The final work upon the stone pier was also completed during this year by the Engineer Corps of the Army, and an appropriation of $\$ 14,000$ was made by Congress to euable the Revenue Marine Bureau to construct a coal shed and wharf adjacent to the buildings of the Commission. This work, however, was not begun until the following year.

The system for supplying salt water to the laboratory building was entirely reorganized by the substitution of wooden and hard rubber pipes for the iron oues preriously in use, thas obviating the uconveniences resulting from the accumulation of iron rust in the water. In the present arrangement wooden mains, having a 6 -inch bore, lead from the harbor to the water tower, and thence to the lower story of the laboratory, the elistributing pipes from this point being entirely of hard rubber with brass fittings. A standard Gardner clock, comnected by telegraph wire with the Naval Observatory at Washington, was placed in the headquarters building for the convenience of Government vessels touching at the station, and a time ball, working in the same circuit, was arranged on top of the water tower where it could be seen by the many ressels passing through Vineyard Sound. Wood's Holl having been selected as one of the principal stations of the Signal Service, and the shore terminus of the Government cable comecting the main-land with the Elizabeth Islands, Martha's Vineyard, and Nantucket, the necessary accommodations were furnished that Burean by the Commission. An office room in the laboratory building was assigned to their use, the exposed instruments were placed upon the roof of the storehouse, and permission was given to use the flag. staff for displaying the usual weather signals.

Saint Jerome, Md.-This station is located on the west shore of Chesapeake Bay, abont 6 miles above the month of the Potomac River. The experiments in ofster culture, described in former reports, were continned here during a large part of the year, under the direction of Mr. W. de C. Ravenel, and upon a much larger scale than in previous years. Careful observations relative to the temperature and density of the water were made in comection with the work.
B.-Stations for Propagation of the Salmonide.

Mainc.-The two stations located in this State, one at Bucksport, the other at Grand Lake Stream, are operated conjointls by the United States, the State of Maine, and one or two other of the New Eugland States. They are both in charge of Mr. Charles G. Atkins as superintendent. At the Grand Lake Stream Station, under the direction of Assistant Superintendent W. O. Buck, 855,500 schoodic or land-locked salmon eggs were obtainel in good condition. Of this number 377,500 were allotted to the United States, and were distributed in March, 1887, while 214,000 , reserved by the State of Maine, were hatched and
planted in Grand Lake Stream. Of sea salmon or Penobscot salmon eggs a net stock of $1,099,000$, resulting from the winter's work, were arailable for division among the contributors to the fund. Of the assignment made to the United States, 779,000 , nearly all were distributed in February, 1887, 25,000, however, being retained at the station for hatching, in order to make experiments in the rearing and feeding of the young during the following spring and summer.
New York-At the fish-cultural station located at Cold Spring Harbor, Long Island, and owned and operated by the State of New York, certain privileges have been granted to the United States Commission gratuitously from year to year. During 1836 considerable work was done under this agreement by Mr. Fred Mather, superintendent, in hatching the eggs and disfributing the fry of the following species to the rivers and lakes of New York, namely: Lake whitefish, lake tront, brown trout, shad, and Penobscot and land-locked salmon. Experiments were also made in the hatching of smelt and tom-cod.

Virginia.-The Wytheville Station, located on the summit of the AIleghany Mountains in sonthwestern Virginia, is leased from that State, and has been in charge of Col. Marshall McDonald, with Mr. George A. Seagle as superinteudent. Many improrements and additions made to the station in 1885 rendered it practically complete in all its appointments for the scason of 1886 , and more extensive operations were carried on this year than hitherto. The following species were under cultivation: The rainbow, brook, and brown tront, land-locked salmon, red eye, black bass, carp, and tench.

Michigan.-The stations at Northville and A!pena, Mich., are operated mainly in the interests of the whitefish fisheries of the Great Lakes, but at the former station lake, brook, rainbow, and brown trout, and saibling were also propagated during 1886. Both stations are in charge of Mr. Frank N. Clark. Northville Station is the headquarters for the whitefish work and is kept open during the entire year, but the Alpena Station is closed during the summer. During the season of $1886,129,400,000$ eggs of the whitefish were obtained from the fisheries of Lakes Erie, Huron, and Michigan. Of this number $56,800,000$ were placed in the hatchery at Alpena, and $72,600,000$ were sent directly to Northville; but subsequently $21,000,000$ were transferred from Alpena to Northville. The collection of eggs continned from November 4 to December 2. Of the total number, $32,600,000$ eggs were distributed mainly to State hatcheries, and $62,070,000$ were hatched and the fry planted in Lakes Euron, Michigan, Erie, and Ontario, and two smaller lakes in the State of Michigan.

California.-The salmon station at Baird, Cal., on the McCloud River, was not operated during 1886, but the collection of eggs of the rainbow or California tront was continued as usual at the McCloud River Station, the season lasting from December, 1885, until May, 1886. The total number of eggs taken was 221,425 , this having been a swaller
yield than usual, due to the loss of many breeding tront by disease and from the effects of a severe storm. The following season, beginning December, 1886, and ending May, 1887, 268,400 eggs were secured. Mr. Livingston Stone has continued iu charge of the Calffornia work, with Mr. Loren W. Greeu as superintendent of the McCloud River Station.

> C.-Stations for Propagation of Shad.

Battery Islend.-This station, located on Battery Island, near the mouth of the Susquehamia River, a few miles south of Havre de Grace, Md., was in charge of Mr. T. B. Ferguson, with Mr. L. R. Grabill as superintendent during the shad season, which continued from April 19 to June 10. The total number of shad egge bronght into this station was $60,766,000$, of which $2,009.000$ were received from the steamer Fish Hauk, and $2,433,000$ from the steaner Halcyon, the remainder having been obtained by a temporary force employed for the purpose. About $44,000,000$ eggs were hatched and the fry distributei. Experiments in the hatching of rockfish or striped bass met with partial success. Some improvements were made to the station during the year.

Washington.-The shad eggs obtained ou the Potomac River were trausferred to the Central Station in Washington, where they were latched and the fry distributed. The total number of eggs thus receised was $28,283,000$, of which $24,997,000$ were hatched and $1,586,000$ transferre! to other stations. The propagation of other species of tish was also carried on at this station, which is the headquarters for the cars and for the general distribution of young fish. It is in charge of Col. Marshall McDouald.
Fort Washington, Md.-This station, sitnated on the Government reservation at Fort Washington, on the Potomac River, was occupied during the shad seasou as a receiving station for the eggs collected from the fishing shores and from the gillers along the river. A seine is also operated at this point by the Fish Commission. The eggs are retained at Fort Washington until they are sufficiently hardened to permit of their being safely transported, when they are transferred to Central Station, Washington. Over $36,000,000$ eggs were receivel here during the season of 1886, of which one-third were taken from the fish caught in the Fish Commission seine. About $3,000,000$ of the eggs were hatched at the station and the fry planted in the vicinity. Operations were in charge of Col. Marshall McDonald.

Delaware River.-Operations were carried on in the Delaware River, with headquarters at Gloncester City, N. J., by the steamer Fish Hank. assisted part of the time by the steamer Halcyon, from May 5 to June 3, The total number of shad eggs taken was $34,454,500$, of which $23,196,000$ were hatched on board the Fish Hawk, a part of the remainder having been transferred to Battery Island Station.
D.-Stations for Propagation of Carp.

Washington, D. C.-Many improvements were made in the carp ponds on the Monument Lot, in Washirgton, and a new and more commodious office building was constructed. Congress directed the illing in of Babcock Lake as an additional precantion looking toward the safety of the Washington Monument; but as this work was ordered not to begin before December, it did not interfere with the year's operatious. This lake was drained and the fish remored for the last time on November 11. The Monmment Lot ponds are chiefly used for the propagation of the several varieties of the German carp, but tench, golden-ide, and gold-fish are also produced in limited numbers. They are in charge of Dr. Rudolph Hessel.
Two or three ponds on the Arsenal gronnds in Washington are still used for the raaring of scale carp. They are cared for by au employe of the Arsenal.

## E.-New Hatcuing Stations Proposed.

Duluth, Minn.-The following petition from the fishermen of Duluth was formarded, under date of April 18, 1886, to the Hon. Knute Nelson, member of Congress from Minnesota:

The fishermen of Lake Superior, whose market and shipping point is at Duluth, Minn., feel the need of some relicf being obtained for them from the U. S. Fish Commission, and a careful consideration of the facts as presented to Prof. Spencer F. Baird, Commissioner, and do hereby petition you to use your influence in securing for them the favors herein set forth.

They have formed themselves into an association to promote their mutual interests; their aims and objects being a better understanding of the fishing laws of States; a miform action anongst the fishermen concerning the regulation of the sizes of meshes of all nets, and the enforcement of the laws concerning them.

To secure the artificial propagation of the eggs of both whitefisin and lake tront by a fish hatchery.

To this end we have pledged ourselves to aid, by manual labor and by the use of our fishing plants and men, to procure eggs in the season for such a fish hatchery.

Realizing that the capital invested in the fishing industry is not proving remunerative under existing circumstances, and realizing from our past experience that the continual diminished catches both of whitefish aud lake trout are decreasing onethirl of the previous year's catch year by year, we therefore feel the necessity of providing for larger deposits of fry of these fishes, and assure you that a better seutiment is prevailing to-day amongst fishermen concerning the production of such fry.

While gratefully acknowledging the good work done by the Minnesota fish commission for us as fishermen, and the kiudly interest evinced by Prof. Spencer F. Baird in the welfare of the fishermen of Lake Superior, yet we pray you to introduce a bill asking for an appropriation to establish a fish hatchery, under the iustruction and charge of the U. S. Fish Commission, and have assured Professor Baird that we will, by such manual labor as may seem fitting to the U. S. Fish Commission or the assistants, place our apparatus and fishing plants to aid them in collecting and procuring eggs for this hatchery ; and your petitioners will ever pray, etc.
This petition was accompanied by a letter from Mr. C. I. Evans, of Duluth, in which it was stated that if the Govermment would build a
fish hatchery in that city, at a cost of $\$ 10,000$, and maintain it, the people would donate a suitable site with an ample supply of good water. The fishermen of the region, who employ several steamers to collect the fish for marketing at Duluth, also offered to sare the sparn and deliver it at the hatchery.

In response to inquiries by Mr. Nelson, the Commissioner replied that the whitefish interest of Duluth had not been wholly neglected, as many millions of the fry of that species had been planted in Lake Superior from the Michigan stations at Northville and Alpena; lut that if it was deemed desirable to increase the work, and Congress should provide the means, a batching station could be built at the proposed location. As a result of this correspondence, the following item was inserted in the sundry civil appropriation bill and became a law August 4, 1886:

Fish hatchery at Duluth, Minn.: For the establishment of a fish hatchery on Lako Superior at or near Dulath, Miun., $\$ 10,000$ : Provided, That the eity of Duluth shall furnish, without charge, a suitable site for the said fish hatchers.

A site offered by the Lake-side Land Company, of Dulnth, at the mouth of Lester River, on the northern outskirts of the city, was found, upon examination, to afford the requisite facilities for the purpose, and it was accordingly accepted. Jurisdiction to the land was ceded to the United States by an act of the legislature of Minnesota, approved March 2, 1887.

Clackamas River, Orogon.-In Februars of the present year the Commissioner received from the Hon. J. H. Reagan, chairman of the Committee on Commerce, House of Representatives, a "Memorial of the Oregon legishature, relative to the establishment of a fish hatchery on the Clackamas River, Oregon," with a request that it be given consiceration. The Commissioner, in reply, stated that the "salmon fisheries of that region could not be maintained in the face of the adverse influences exerted by civilization without resorting to artificial propagation on a scale commensurate with the importance of the fisheries, nor without such legislation as will give a reasonable measure of protection to the salmon during their spawning." He also explained that a reconnaissance of the Columbia River basin had been made, under the direction of the U. S. Fish Commissioner, by Mr. Livingston Stone, who reported favorably as to a location on the Clackamas IViver, as would be seen by reference to his account published in the Report of the $U$. S. Fish Commission for 1883.

The following amendment to the sumdry cival appropriation bill was introduced in the United States Semate December $21,18 s 6$, by Senator Dolph, but was not incorporated in the bill as passed:
For the establishment of a samon hatchery on the Colambia River, its tribitaries or other branches, and for the current exponses of the same for ono year, $\$ 20,000$.

## 7.-TIIE VESSELS OF TIIE FISH COMMISSION.

## A.-The Steamer Albatross.

The steamer Albatross, Lieut. Commander Z. L. Tamer, U. S. Navy, commanding, continued in active service during the greater part of the year. At the beginning of the year the steamer was at the Washington uavy-yard, making preparations for a cruise to the region of the Bahama Islands, for the purpose of investigating the winter range and habits of certain pelagic fishes, which, during the warmer months, are of great economic importance to the American fishermen; and of making a series of deep sea soundings for the benefit of the Navy Department. She was detained in the Potomac River by ice until February 17, but left Norfolk on the 20th of that month and proceeded to sea. The cruise lasted until May 10, when the steamer returned to Washington. March 30, while coaling at Key West, the officers and crew rendered effective service in fighting at disastrous fire which destroyed a large part of the town. From July 15 to October 28 the Albatross was surveying on the northern fishing grounds, from the latitude of Virginia to the Grand Bank of Newfoundland and the Flemish Cap, with headquarters at Wood's Holl, Mass.
In preparation for the proposed trip to the Pacific coast extensive repairs to the steamer were necessary, and it was decided that new boilers would be required to insure her safety for so long a cruise. The expenditures for this purpose were provided for by the following act of Congress, contained in the sundry civil appropriation bill, approved August 4, 1886 :

Steamer Albatross: For the construction and introduction of new boilers for the steamer Albatross, and other necessary general repairs, $\$ 20,000$; for expenses of voyage from New York to San Francisco, including cost of coal and other necessary supplies, $\$ 7,500$; in all, \$27,500.
The plans for the new boilers were prepared by Passed Assistant Engineer George W. Bairl, U. S. Navs, of the steamer Albatross, and received the approral of Mr. C. W. Copeland, the designer of the vessel, aud of Chief Engineer B. F. Isherwood, U. S. Nary, to whom they had been submitted for criticism. Proposals for constructing the boilers were received and opened December 21 , as follows:

| Name. | Address. | Timo required. | Amount. |
| :---: | :---: | :---: | :---: |
| Slater \& Reid ... | 167 Charles strect, New Furk, N. Y. | 130 days ......- | \$14, 300.00 |
| Atlantic Works. | East Boswon, Mass..... | 120 days | 19,800. 00 |
| John H. Dialourue ................. | Camden, N. J ..... | Reasonable tine | 27,000.00 |
| Donald MeNeil and John MeNeil | Trooklyn, N. Y | 3 months........ | 16, 825.00 |
| C. H. DeLamater \& Co......... | New Fork, N. | 4 months. | 17. 600.00 |
| Columbian Iron Works and Dry Dock Company | Baltimore, Md | 6 months. | $16,538.28$ $13,439.00$ |
| Oliver Reeder, C. M. Reeder, and L. B. Reeder | . -do | 135 daby | 21, 985.00 |
| Pusey \& Jones Company.......................... | Wilmington, Del......... | 112 days .-...... | 19,500.00 |

The bid of the Columbian Iron Works and Dry Dock Company, of Baltimore, being the lowest, was accepted, and the construction of the boilers was immediately begun.

> B.-Steamer Fish Hawk.

The steamer Fish Hazk was at Wood's Holl from January 1 to February 21 , when she proceeded to the castern part of the Gulf of Maine, for the purpose of collecting cod eggs for the Wood's Holl Station, generally making Portsmouth her headruarters. She remained in this region until April 12, when she returned to Wood's Holl, having obtained several million eggs, which were shipped directly as they were taken. While at Portsmouth the last part of February the Fish Hawk encountered a severe gale, and slight damage was done to the steamer by two schooners fouliug while at anchor. The steam-launch was also sunk and not recovered until the following September.

From April 26 to June 3 the Fish Hawk was engaged in shad propagation in the Delarare and Susquehanna Rivers, being stationed most of the time in the ricinity of Gloncester City, N. J. The total number of shad eggs obtained was $34,454,500$, of which $21,018,000$ were hatched on board. From early in July until August 28 she was eugaged most of the time in freighting for the Saint Jerome and Battery Island Stations, and left the last of August for Wood's Holl, visiting on the way the light-ships at Winter Quarter Shoal, Five Fathom Bank, and Saudy Hook, for the purpose of instructing the keepers in the meth ods of making temperature observations. Returning from Wood's Holl the latter part of October, an unsuccessful search was made in the vicinity of Sandy Hook for the English sole, which had been planted there some years before. The balance of the year the steamer remained in Chesapeake Bay, serving as a freight boat, the crew also assisting at times in the work at the stations. In July the command of the Fish Hurk was transferred from Eusign W. J. Maxwell, U. S. Navy, to Mate James A. Smith, who had previously commanded the Halcyon.

> C.-Steaner Halcyon.

This steamer, previously called the Lookout, was at Battery Station at the beginning of the year, where she remained until March 28 , un. dergoing repairs. Subsequently she made an investigation of the pound and gill-net fisheries in some of the tributaries of the Lower Chesapeake, and from April 27 to May 23 was emplosed in connection with the work of suad propagation in the Susquehanna and Delaware Rivers. From the close of the shad season until the last of July, and again from the first of November until the end of the year, the Halcyon was mainls in Chesapeake Bay, acting as a dispatch boat or freight boat in connection with the stations, or investigating the fisheries. From August 9 to October 25 she was at Wood's Holl, Mass. Mate

James A. Smith, U. S. Navy, who commanded the Halcyon diring the first half of the year, was transferred to the steamer Fish Hawk in July, and was succeeded on the Halcyon by Mr. William Hamlen.

## D.-Schooner Grampus.

The fishing-schooner Grampus, which was under construction at Noank, Conn., at the beginning of the year, was completed June 5, and left for Wood's Holl the same day. She is the first of a new type of vessel, designed especially for the offshore fisheries by Capt. J. W. Collins, who superintended her construction and subsequent operations. A description of her principal features and of her merits is given elsewhere in this report. The sigual letters G. V. Q. F. were assigned to her by the Bureau of Navigation of the Treasury Department.

The Grampus made her first cruise August 12 to the offshore fishinggrounds south of Martha's Vineyard, where a week was spent in a fruitless search for the tilefish. Certain alterations in her fittings, shown to be necessary by this trip, delayed the ressel in port until the last of September, when she began a cruise to the vicinity of Le Have Bank, Roseway Bank, and Seal Island Ground, for the purpose of securing and bringing to the Wool's Moll Station, in her well, living specimens of halibut and other food-fishes, the spawn of which was desired for propagation. Returning to Wood's Holl October 12, a short trip was made to the mackerel fleet operating at the western end of Vineyard Sound, and during most of the remainder of the year she was engaged in fishing for spawning cod, which were carried to the Wood's Holl Station, and in iuvestigating the fisheries of the western part of the Gulf of Maine, Massachusetts Bay, and the Vineyard Sound region.

## Assignments of Naval Officers.

The following changes in the assignmeuts of naval officers to the service of the Fish Commission were made during the year:

Lieut. Seaton Schroeder, executive officer and navigator of the steamer Albatross, was detached Jauuary 2, and was succeeded by Lieut. H. S. Waring.

Ensign W. J. Maxwell assumed command of the steamer Fish Hawk January 10, relieving Lieut. L. W. Piepmeyer, but July 24 he was transferred to the steamer Albatross, from which he was finally detached August 28.

Ensign W. S. Benton joined the Albatross January 13, and Eusign W. S. Hogg on the 16th of the same month.

Mate James A. Smith was detached from the steamer Malcyon and took command of the steamer Fish Hauk July 31, and Angust 3 Mate Hugh Kuhl joined the Fish Hawk as executive officer. Assistant Engineer S. H. Leonard was detarhed from the Fish Hawk December 18,

XLVIII REPORT OF COMMISSIONER OF FISH AND FISIIERIES.
S. -COURTESIES AND ASSISTANCE RECEIVED BY THE FIEII COMMIS. SION.

## A.-From tile United States Government.

TREASURY DEPAR'TMENT--Secretary's Offce.-Inplanting young codfish at I'ensacola it was very desirable to have the use of asteamer. The revenue cutter formard, by direction of the honorable Assistant Secretary, C. S. Fairchild, transported the fish and messenger in charge of the shipment to the peint selected for depositing the fish.

Bureau of Statisties.-This Bureau has issued circulars and Ietters of instruction to collectors of customs, at ports where fishing-vessels are documented, with the result of firnishing the Fish Commission much sta. tistical material.

Light-Mouse Board. - The assistance of this Board in securing ocean temperature observations at thirty-five of the principal light-nouses and light-ships upon the Atlantic coast has been continued.

Coast and Geodetic Surrey.-The Commissionel has received a large supply of maps and charts published by this Survey; especiably upou the fitting ont of the Grampus in May a completo set was fimished for her use.

Life-Saving Service- The keepers and patrolmen of this service, by direction of Superintendent J. H. Kimball, continue to ueport the stranding of marine animals upon the sea-coast. Among the specimens thus obtained were the following:

In March Mr. D. M. Nth eridge, keeper of the Currituck Inlet Station, forwarded a rare shark, Hexanchus griseus, the first oi this species seen on the United States coast.

Mr. E. H. Bunkers, Fleteher's Neck Station, Biddeford Pool, Me., sent a specimen of Argentina silus, a fish which is extremely rare on our coast, although not uncommon in Norway.

On July 5 Captain Edwards, of the Amagansett Station, forwarded a torpedo, or cramp-fish, to be monnted for exhibition.

War Departainnt. -. Permission for using the buildings and grounds at Fort Washington for the purpose of hatching shad was continued.

Signal Office--During the oceupancy of the Wood's Holl Station in July, August, and September, the Signal Office furnished weather predictions and special warnings of approaching storms. Copies of tem. perature reports made by observers at certain points of interest were also furnished as during preceding years.

Engineer Office.-Col. Peter C. Hains, engincer in charge of Potomac River tats improvements, save authority to cut sods from the flats for turfing about the carp pouds.

Navy Departanent. - The officers and crews of the Albatross, Fish Hawk, and Ilaleyon have been furnished by the Navy Department, and the facilities of various nary-yards, particularly those at Washington and Norfolk, have been estended to the Commission.

During the shad distribution in May and June the Department detailed Mr. H. E. Quinn to assist in the work.

Bureau of Construction and Repair.-The loan of two launches was continued during the present year.

Bureau of Steam Engineering.-By order of Mr. Charles H. Loring, Chief of the Bureau, a lot of engines, tools, etc., which were no longer required by the Department, were lent to the Commission and proved very useful.
Bureau of Yards and Docks.-A dredge and some scows belonging to the Washington nave-yard were lent to the Commissiou in June.

Hydrographic Office.-Upon the fitting out of the Grampus the Hydrographic Office furnished a valuable set of charts for her use in narigation.

Bureau of Navigation.-Commodore J. G. Walker furnished the Grampus with the Nautical Almanac, azimuth tables, and other books. He assisted also in procuring her instruments.

Naval Observatory.-Allan D. Brown, Superintendeut of the U.S. Naval Observators, detailed Mr. W. F. Gardiner in July to oversee the work of erecting a time-ball at Wood's Holl Station.
State Department.-When it became desirable to have the Roosen apparatus for experiments upon the preservation of bait, the Secretary of State directed the United States consul at Leith, Scotland, to procure and forward a set to the Wood's Holl Station.
In June the Secretary furnished, upon application, a circular letter to all consular officers of the United States in British North America, introducing Capt. J. W. Collins, commanding the schooner Grampus, and asking for him such official aid and facilities as might be required during a cruise in Canadian waters. The Secretary also addressed a letter to Sir Lionel Sackville West, requesting him- to inform the Marquis of Lansdowne of the proposed scientific expedition of the vessel.

Interior Departhent.-Patent Office.-The Official Gazette of the Patent Office has been supplied as heretofore; also specifications and drawings of various patents relating to fish and fishing apparatus.

Geological Survey.-The Director of the Survey allowed Prof. W. J. McGee to make a reconnaissance of Eattery Island, with a view to dotermining the feasibility of sinking wells at that station.

Government Printing Office.-The Government Printer has rendered much aid in advancing the publications of the Commission. Mr. James W. White, foreman of binding, wrapped the Commission's quota of its annual report.

Botanical Gardens.-Mr. William A. Smith, superintendent, at various times has furnished plants for the use of the Commission.

> B.-By Railioad Companies of the United States.

The distribution of fish and eggs is greatly facilitated by the courtesies of the railroad companies in transporting the cars free or at a reS. Mis. $90-\mathrm{IV}$
duced rate, in granting permission to carry fish and eggs in baggage cars, and to make repairs at their shops.
The Northern Pacific Railroad Company passed a car free from Saint Paul to the Pacific coast and back. The Atchison, Topeka and Santa Fé transported a car without charge with fish for the Southern Pacific region. During the whitefish distribution the Grand Rapids and Indiana Railroad lent the Commission a baggage car, which they transported free.
C.-By Steam-ship Companies.

The foreign steam-ship companies, without exception, have continued to transport free of clarge the fish and eggs which are exchanged between the United States and foreign countries.

Messrs. Glidden and Curtis, of Boston, furnished transportation for a Fish Commission naturalist, Mr. Charles H. Townsend, from New York to Swan Island, on board the schooner Mosquito.
D.-Courtesies from Foreign Countries.

Australia.-Mr. F. Abbott, of the botanical gardens, Hobart, Tasmania, in September sent some seeds of hardy Eucalyptus, and offered to send those of Nymphera gigantea, for the plant collections at the carp ponds.

England.-During the year, 61 soles were brouglit over alive from Liverpool in the White Star steamer Britannic and placed in large tanks at Wood's Holl, to be kept for breeding purposes.

Germany.-On January 28, were received from the German Fishery Association 50,000 eggs of a small whitefish (Coregonus albula); these were forwarded to Bucksport, for hatching and planting in Maine waters. On February 4, 50,000 additional eggs were received, and the good ones sent to Northville for lakes in Michigan and adjacent States.
During March, 1886, 104,000 eggs of the brown trout (Salmo fario) were received. The good ones, 35,000 in number, were sent to Northville, Wstheville, and Cold Spring Harbor. On April 16, 50,000 eggs were obtained from Max von dem Borne, of Berneuchen; these were forwarded to Northville, Mich.; Madison, Wis. ; and Cold Spring Harbor, N. Y.

During March, 1887, 58,000 eggs of the brown trout were received from Max von dem Borne, and 50,000 from the German Fishery Association.

On February 9, 1857, 20,000 eggs of the saibling (Salvelinus alpinus) were received from Berneuchen. On March 9 another consignment of 40,000 eggs arrived, one-half of them from Max von dem Borne, the other from the German Fishery Association.

Scotland.-On January 14, 1887, the Cold Spring Harbor Station received 48,000 eggs of the Loch Leven trout (Salmo levenensis), from Sir J. R. Gibson Maitland, proprietor of the Howietoun Fishery at Stirling.
9.-Courtesies and assistance rendered by the fish commisSION.

England.-Shipments to England were made to the National Fish Culture Association, South Kensington, London. On January 15 and 29,1886 , two lots of whitefish eggs, each of $1,000,000$, were forwarded by the Cunard steamer Aurania. On January 15, 1887, 1,500,000 eggs of the same species, followed on February 19 by $1,000,000$, were shipped through Mr. E. G. Blackford, of New York. Few of these, however, arrived in good condition.

50,000 lake-trout eggs were sent by the Aurania on January 15, 1886, and arrived in excellent order.

10,000 brook-trout eggs were carried by the Cunarder Servia, January 29, 1886, and 10,000 were forwarded through Mr. Blackford on January $15,1887$.

10,000 eggs of the landlocked salmon were taken March 16, 1886, by the White Star Line steamer Germanic. Un March 5, 1887, Mr. E. G. Blackford assisted in sending 25,000 eggs of the same species. Both of these shipments were successful.

10,000 eggs of the rainbow trout were sent from Wytheville during the fiscal year 1886-'87.
France.-During the fiscal year 1886-'87, 5,000 eggs of the rainbow trout were sent to France from the Wytheville Station. On April 6, 1887, 25,000 eggs of this trout from the Northville Station were sent to Mr. E. G. Blackford for shipment to France.

25,000 eggs of the landlocked salmon, from Grand Lake Stream Station, were shipped on April 1, 1887, to Léon d'Halloy, vice-president of the Lower Seine Fish Commission.

Germany.-In April, 1886, an unsuccessful attempt was made to trausport shad to the Dauube River.

On March 20, 1886, 20,000 landlocked salmon eggs were sent to von dem Borne for the Fischerei Verein. 30,000 eggs of this species were forwarded on March 5, 1887, through Mr. E. G. Blackford, to von Behr for the same association, and 10,000 to Max von dem Borne for his establishment at Berneuchen.

In January, 1886, two shipments of whitefish eggs, each containing $1,000,000$, were made from Northville to the Deutsche Fischerei Verein, Germany. These were repacked at Cold Spring Harbor. A third consignment of $1,000,000$ from the same station was reshipped by Mr. Blackford March 10 in the original packages, modified only by replac. ing some of the packing with ice. On January 22, 1887, again $1,000,000$ whitefish eggs were sent from Northville to Mr. Blackford, to be forwarded to Germany.

At Cold Spring Harbor 50,000 lake-trout eggs, which had come from Northville, were reshipped on January 18, 1886, per steamer Fulda, to the Fischerei Verein.

On February 22, 18S6, 25,000 brook-trout eggs, from Northville, were repacked at Cold Spring Harbor, and sent to the Verein per steamer Eider.

On February 19, 1886, 25,000 rainbow-trout eggs, from Wytheville, were shipped to the Fischerei Verein on the steamer Hermann. 10,000 eggs of this species were sent to Max von dem Borne on Jannary 24, 1887. 30,000 eggs were sent from Wytheville February 7 and 14, 1887, to Herr von Behr.

Attempts to convey sunfish, red-eye, and white perch in 1886 and 1887 to Max von dem Borne have been described in the systematic account of these species.

Mexico.-By request of the minister of Mexico, 25,000 lake-trout eggs were sent from Northville, January 18, 1886, to Estéran Cházari, of the City of Mexico.
New Zealand.-On February 5, 1886, there were sent from the Northville Station $1,000,000$ whitefish eggs to Mr. Charles B. Buckland, of San Francisco, destined for Sir Julius Vogel, Wellington, New Zealand. Owing to want of care in transportation this sbipment was a failure.

On January 5, 1887, there were forwarded from Northville 1,500,000 whitefish eggs to Mr. Charles B. Buckland, acting resilent agent for the New Zealand Government at San Francisco, to be forwarded to New Zealand. These eggs were taken by-the steamer Alameda and their safe arrival was acknowledged February 26 by Mr. W. J. M. Larnach, minister of marine. About one-half of the eggs were placed alive in the hatcheries.

Switzerland.- $1,000,000$ whitefish eggs and 50,000 eggs of the lake trout were sent to Switzerland January 13, 1886, per steamer Amerique, via Harre. On February 2, 10,000 brook-trout eggs were forwarded. On February 15 Col. Emil Frey an nounced the safe arrival of the whitefish and lake-trout eggs, and their distribution to the hatcheries at Zurich, Zug, Geneva, Locarno, Interlaken, Lucerne, Brassus, Saint Moritz, Stanz, and Chur.

Assistance rendered by steamer Albatross.-Note has been made, under the heading of the steamer Albatross, of the services rendered on March 30 by the officers and crew of that vessel in saving part of the torn of Key West, Fla., from a destructive fire.

On the 19th of July, as the steamer Albatross was returning to Wood's Holl from a dredging trip, the steam-collier Panther, belonging to the Philadelphia and Reading Railroad Company, was discovered aground off Naushon, and was assisted from her perilous position.
10.-PUBLIC EXHIbITIONS OF THE METHODS AND RESULTS OF THE COMMISSION.

At the exposition held at Louissille, Ky., during this year, a few of the appliances of the Fish Commission were displayed in connection
with the exhibit made by the National Museum. The Commission was also represented at the Nebraska State fair, in Lincoln, Nebr., by numerous articles of interest, furnished at the request of Mr. W. L. May, a member of the Nebraska State fish commission. The method of hatching whitefish eggs in the McDonald jars was exhibited, in April, at the exposition building in Chicago, under the direction of Mr. J. F. Ellis, $3,000,000$ eggs of the whitefish having been sent from the Northville Station for that purpose. A similar exhibition, with respect to both whitefish and brook-trout eggs, was made in December at an industrial exposition held at Wilmington, Del., Dr. E. G. Shortlidge having charge of the apparatus.

## 11.--visits from representatives of foreign governments.

A visit was received in September from Mr. Kadzutka Ito, commissioner of fisheries for the island of Yezzo, under the Japanese Government. Mr. Ito was commissioned by his Government to study the fishing industries of the United States and the methods and results of the U.S. Fish Commission. He is a graduate of the Imperial College of Agriculture at Sappora, and has been for several years chief of the bureau of fisheries in the Department of the Hokkaido; he is also an officer of the bureau of colonization. While in the United States he inspected nearly all of the stations of the Fish Commission and the principal fishery centers. He remained in this country nine months.

Dr. Filip Trybom, of the Swedish commission of fisheries, who arrived in the United States in 1885, continued his studies in this country until November, 1886, visiting the principal fishing ports and the hatching stations of both the Atlantic and Pacific coasts and of the Great Lakes.

## 12.-Deaths during the year.

Notice of Capt. Hublard C. Chester.-During this year the Fish Com. mission lost one of its most valued members, Capt. Hubbard C. Chester, who died July 19, at the age of fifty-two years. A native of the fishing town of Noank, near New London, Conn., Captain Chester, at an early age, entered the whaling service, in which he gained rapid promotion and received that thorough disciplining which, with his natural tastes and great energy, specially fitted him as an associate of Captain Hall in his Arctic expedition. The services which he rendered as executive officer of the steamer Polaris, and his successful rescue of the unfortunate party which drifted to sea on the detached ice-floe, have gained him well-merited fame.

Captain Chester joined the Fish Commission in 1874, soon after his return from the Polaris expedition, and has taken part in nearly all of its branches of service. On the smaller steamers, before the Albatross was built, he was generally in charge of the dredging operations, and
also participated during two or three seasons in the shad operations on the Susquehanua and Potomac Rivers. He assisted in preparing and installing the exhibits of the Fish Commission and National Museum at the Centennial Exposition at Philadelphia in 1876, and in 1883 had charge of packing the large collections sent by the Fish Commission to the London Fisheries Exhibition aud their subsequent installation. In 1855 he was made the first superintendent of the Wood's Holl Station, which was then permanently organized, and continued to fill this position until June of this year, when his final illness unfitted him for active service. Captain Chester was a member of the party which couducted the experimental work of cod hatching at Gloucester, Mass., during the winter of 1878-'79, when by unwise exposure he contracted a serious lung trouble, from which he never fully recovered. He also took part in the subsequent experiments of the same nature at Wood's Holl, and during the winter of $1850-86$ was in charge of the work. The Commission is indebted to him for important improvements in the methods of hatching cod and lobster eggs and in the dredging appliances.

Notice of Capt. Nathaniel E. Atwood.-It is very appropriate that mention should be made in this connection of the important services rendered to science and to the fishery industries of New England by Capt. N. E. Atwood, of Provincetown, Mass., who died November 7, 1886, in his eightieth year. His warm devotion to the interests of the Fish Commission, and his frequent contributions to its fund of information, made him an honored associate in its work, and his loss will be deeply felt by those who enjoyed his friendship. Starting life as a fisherman in 1816, when only nine years of age, he continued actively in this vocation for half a century, at the end of which time he turned his atteution to the curing of fish in his native town. In 1857 he was elected to the State house of representatives, and subsequeutly to the State senate, in which he served as a member of the committee on fisheries. Captain Atwood was an accurate observer of natural phenomena, and possessed a wonderfully retentive memory, lacking only the necessary training to fit him as an accomplished naturalist. He gave raluable assistance to Dr. D. Humphreys Storer in the preparation of his monograph on the fishes of Massachusetts, begun in 1843, and was afterwards a constant helper of Prof. Louis Agassiz in his ichthyological studies. The Fish Commission is indebted to Captain Atwood for most of its information respecting the history of the important fisheries of Cape Cod, and in many other directions it has had the benefit of his varied experiences.

## 13.-PUBLICATIONS BY THE FISII COMMISSION DURING $18 S 6$.

Annual Reports.-The annual report of the Commissioner for 1883, of which only the press-work and binding remained to be done January 1, was not received from the Printing Office until August 11. Most of the report for $188 \pm$ was also in type at the beginning of the
year, and the bound volumes were ready for distribution by the middle of December.

Quarto Reports.-Considerable progress was made with the quarto reports relating to the fisheries and fishery industries of the United States, which were ordered printed by an act of Congress passed in 1882. These reports have been prepared by Prof. G. Brown Goode and a staff of associates, under the joint co-operation of the Commissioner of Fisheries and the Superintendent of the Tenth Census. The "Geographical Review of the Fisheries," which, after being put in type, was transferred to the Department of the Interior, in 1885, for publication as a volume of the Census Report, was returned to the Commission during the current year, and will form Section II of the Quarto series. Only the press-work and binding remain to be done. The account of the fishing grounds of North America and of the ocean temperatures of the Atlantic coast, now constituting Section III, and the report upon the fishermen, forming Section IV, are also in type. Section v, in which the History and Methods of the Fisheries are discussed, was nearly ready for the Printer at the close of the year.

Bulletin.-The printing of the Bulletin for the current year (Volume vi) was begun early in February. Signatures were mailed to correspondents March 30, July 23, October 22, and December 20.
Pamphlets.-The following publications, mostly extracted from the Annual Reports for 1883, 1884, and 1885, have been issued during the year for separate distribution :
96. Tanner, Z. L. Report on the work of the U. S. Fish Commission steamer Albatross for the year ending December 31, 1883. (From Report 1883, pp. 117-236.)
97. Stone, Livingston. Explorations on the Columbia River from the head of Clarke's Fork to the Pacific Ocean, mado in the summer of 1883, with reference to the selection of a suitable place for establishing a salmon-breeding station. (From Report 1883, pp. 237-258.)
98. Atwater, W. O. Contributions to the knowledge of the chemical composition and nutritive values of American food-fishes and invertebrates. (From Report 188:3, pp. 433-499.)
99. Verrill, A. E. Results of the explorations made by the steamer Albatross off the northern coast of the United States in 1883. (From Report 1883, pp. 503-699.)
100. Bush, Katharine, J. List of deep-water mollusca dredged by the U. S. Fish Commission steamer Fish Hawk in 1880, 1881, and 1882, with their range in depth. (From Report 1883, pp. 701-727.)
101. Eisen, Gustav. Oligochetological researches. (From Report 1883, pp. 879964.)
102. Seal, William P. The Aqua-vivarium as an aid to biological research. (From Report 1883, pp. 965-969.)
103. Benecke, B. Utilizing water by fish-culture. (From Report 1883, pp. 11011142.)
104. Ryder, John A. An exposition of the priciples of a rational system of ofster culture, together with an account of a new and practical method of obtaining oyster spat on a scale of commercial importance. (From Report' 1885, pp. 381-423.)
105. Smith, Sidney I. Report on the Decapod Crustacea of the Albatross dredgings off the east coast of the United States during the summer and autumn of 1884. (From Report 1885, pp. 605-705.)
106. Ryder, Joins A. On the development of Osseons Fisbes, including marine and fresh-water forms. (From Report 1885, pp. 489-604.)
107. Tanner, Z. L. Report on the construction and outfit of the U. S. Fish Commission steamer Albatross. (From Report 1883, pp. 3-116.)
108. Baird, Spencer F. Report of the Commissioner for 1884. A. Inquiry into the decrease of food-fishes. B. The propagation of food-fishes in the waters of the United States. (From Report 1884, pp. xiii-lxxi.)
109. Baird, G. W. Specifications for building the new boilers, etc., of the steamer Albatross, 1886. (Printed by R. Beresford, Washington, D. C.)
110. Tanner, Z. L. Report on the work of the U. S. Fish Commission steamer Albatross for the year ending December 31, 1884. (From Report 1884, pp. 3-112.)
111. Nicklas, Carl. Pond culture. (From Report 1884, pp. 467-655.)
112. Smiley, Charles W. Some results of carp culture in the United States. (From Report 1884, pp. 657-890.)
113. Fewkes, J. Walter. Report on the medusa collected by the U. S. Fish Commission steamer Albatross in the region of the Gulf Stream, 1883-'84. (From Report 1884, pp. 927-980.)
114. Ryder, John A. On the origin of heterocercy and the evolution of the fins and fin-rays of fishes. (From Report 1884, pp. 981-1107.)
14.-DIGEST OF THE APPENDICES WHICH ACCOMPANY THIS REPORT.

The appendices which accompany this report consist of thirty-two papers, all of which have a more or less direct bearing upon the work of the Fish Commission. A large proportion, moreover, relate to the work accomplished at the stations of the Commission and by the vessels in its service during the current year. Several of the longer papers will be published in pamphlet form for separate distribution. The arrangement of the appendices is as follows:

## A.-Tue Fisheries.

This appendix consists of a comprehensive report by the Commissioner, Prof. Spencer F. Baird, upon the Sea Fisheries of Eastern North America. The paper was mostly prepared in 1877 and 1878, but was withheld from year to year for revision and completion, until it became evident that the author's declining bealth would prevent his giving the subject further attention. It is an important contribution to the literature of the American fisheries, and shows much careful research and thoughtful study.
B.-Scientific Investigation.

Four papers are included in this appendix, two relating to fishes and two to marine invertebrates. 'Lhe first is by Prof. D. S. Jordan and Mr. D. K. Goss, his assistant, upon the flounders and soles of America and Europe; the second is by Professor Jordan and Mr. C. H. Eigenmann, upon the Sciænidæ (drum-fishes, etc.), of the same region. The former is illustrated by 23 figures the latter by 12 figures. Prof. Edwin Linton reports upon the Entozoa, or intestinal worms of the marine fishes of New England, and Mr. J. Walter Fewkes, upon the medusæ collected by the steamer Albatross during its cruise to the Gulf Stream in the winter of 1885-96.

## C. - Fish Culture.

This appendix contains a single paper by Messrs. Bettoni and Vinciguerra, of Italy, upon the fish-cultural establishments of Central Europe.

> D.-Reports of Vessels and Stations.

This appendix consists of twenty-two reports, covering the principal field operations of the Commission during the current year. They relate to the steamers Albatross, Fish Haıck, and Halcyon; the schooner Grampus, and the fish-cultural stations at Bucksport and Grand Lake Stream, Me.; Wood's Holl, Mass.; Cold Spring Harbor, N. Y.; Battery Island, Saint Jerome, and Fort Washington, Md.; Washington, D. C.; Wytheville, Va.; Northville and Alpena, Mich.; McCloud River, Cal.
E.-Miscellaneous.

The first paper in this appendix is a compilation, by Mr. Sanderson Smith, of the data necessary for locating and defining all the dredging stations made in the North Atlantic Ocean, adjacent to the coasts of North America, by the vessels of the Fish Commission, the Coast and Geodetic Survey, and the various expeditions sent out by Earopean governments. It is accompanied by several charts, showing the positions of the dredging stations. Following it are translations of two papers, one from the Russiau, by Professor Kostytscheff, on the chemical composition of fish products, the other from the French, by Dr. Mauriac, on cases of poisoning produced by spoiled codfish, and a compilation of the Norwegian fishery statistics for 1885.

## APPENDIX A.

## THE FISHERIES.

## I. -THE SEA FISHERIES OF EASTERN NORTH AMERICA.

## PREPARED FOR TILE CONSIDERATION OF THE INTERNATIONAL COMMISSION HELD AT HALIFAX IN 1877.*

By Spencer F. Baird.

ANALYSIS. $\dagger$
Page.
Introductory ..... 13
General considerations ..... 17
Occan fisheries inexhaustible ..... 17
Advantages and evils of the sea fisheries ..... 19
Statistics of certain fisheries ..... 20
Meagerness of information ..... 21
Improvements in the business ..... 23
I.-Natural IIstory.

* Fishes considered separately or as species.
General considerations in regard to species of food fishes ..... 24
A. Systematic lists of principal food and bait fishes and invertebrates of the eastern coast of the United States ..... 25

1. List of principal food and bait fishes. ..... 25
2. List of invertebrates actually used for food and bait on a large scale ..... 31
3. List of invertebrates capable of being used for food and bait ..... 32
4. List of marine animals actually found in the stomachs of various fishes ..... 34
List of mollusks, \&c., frou stomachs of codish ..... 36
List of mollusks, \&c., from stomachs of haddock ..... 38
B. Biographical notices of the most important species ..... 45
** Fishes considered collectively or by groups.
C. Relationships aud surroundings ..... 46
(a) The inshore fish ..... 46
(b) The offshore tish ..... 46
(c) Pelagic fish ..... 47
(d) Deep-sea fish ..... 47

[^1]C. Relationships and surroundings-Continued.

1. To each other
(a) During the breeding season
(b) While feeding
(c) Under other circumstances
2. To the sea bottom and shores
(a) According to depth or bathymetrical distribution
(b) According to the shores or geographical distribution
3. To the temperature
Migrations and movements ..... 47
$\dagger$ Irregular.
(a) Occasional or at long intervals ..... 48
The bluefish ..... 48
The chub mackerel ..... 48
The scad ..... 48
The herring ..... 48
$\ddagger$ Regular.
(b) At well-defined intervals ..... 49
4. Anadromous ..... 49
The salmon ..... 49
The smelt ..... 49
The alewife ..... 49
The tailor shad. ..... 49
The gizzard sbad ..... 49
The striped bass (in part) ..... 49
Some Cyprinide ..... 49
The lamprey ..... 49
5. Catadromous ..... 51
The eel ..... 51
6. Inshore fish. (Coming from outside directly in to spawn) ..... 51
Herring ..... 52
Scup ..... 52
Squeteague ..... 52
Sea bass ..... 52
Tantog ..... 52
Mackerel (in part) ..... 52
Various ilat-fish ..... 52
7. Offshore fish, deep-sea, bottom fish. (Mostly localized) ..... 53
Cod ..... 53
Hake ..... 53
Halibut ..... 53
Haddock ..... 53
Ling and most other Gadidw ..... 53
8. Offshore, pelagic, or wide-sweeping fish. (Showing much at surface). ..... 53
Herring ..... 53
Menhaden ..... 53
Mackerel ..... 53
Chub mackerel ..... 53
Spanish mackerel ..... 53
Cero ..... 53
Bonito ..... 53
Horse mackerel ..... 53
Little tunny ..... 53
Swordfish ..... 53
Bluefish ..... 53
C. Relationships and surroundings-Continued. Page.
9. Deep-sea fish ..... 53
Hibernation ..... 54
Mackerel ..... 54
Sturgeon ..... 54
Carp ..... 54
Migration of fishes : how influenced ..... 55
(a) By physical causes. ..... 55
Temperature of the waters ..... 55
Currents ..... 57
Depth ..... 57
Clearness of water ..... 57
Condition of air or sky ..... 57
Winds ..... 57
(b) Reproductive instinct ..... 57
(c) By search for food ..... 58
Relation of herring to copepods ..... 58
Cod and halibut after capelin and herring ..... 58
Offshore fish after anadromons fish ..... 58
Bluefish, \&c. ..... 58
(d) Driven by enemics ..... 58
Bluefish and menhaden and mackerel ..... 59
Porpoises, salmon, bluefish ..... 59
Extent of such action ..... 59
(e) Human agencies (exclusive of capture) ..... 59
Obstructions:
Dams ..... 59
Nets. ..... 59
Sounds and concussions ..... 59
Steamers ..... 59
Cannon ..... 59
D. Numbers and abundance ..... 61
10. In early days ..... 61
Illustrations ..... 61
From report of U. S. Fish Commission ..... 61
From Mr. Martin's uotes ..... 61
11. At the present time ..... 61
12. Variations in abundance (on large scale, aud permavent for a time) ..... 61
(a) Natural or uncontrollable variationsAntagonisms between fish: Bluefish, squeteague, scup, cod, had-dock, halibut, porpoises, sharks, saimon, mackerel, and lobstersin Provincetown
Climatic conditions
Causes unknown
(b) Human agencies
Direct
Overfishing
Pollution of water
Indirect
ObstructionsDisturbance of balance of natureBreaking up schools and interfering with spawning
E. Dangers and fatalities ..... 62
13. From fellow-inhabitants of the sea ..... 62
(a) Destruction of eggs and young fish ..... 62
E. Dangers and fatalitics-Continued. Page.
(b) Destruction of mature fish ..... 62
By fish ..... 62
By porpoises ..... 63
By whales ..... 63
By seals and otters ..... 63
By hirds ..... 63
Gannets and cormorants ..... 63
Other species ..... 63
By reptiles ..... 64
Alligators, in Florida lagoons ..... 64
By fishes ..... 64
All tish predaceous ..... 64
Driving of menhaden and mackerel by bluefish ..... 64
Catfish, goosefish ..... 65
Sharks, dlogrish ..... 65
(c) Parasites: animal ; vegetable ..... 66
Eutozoa ..... 66
Epizoa ..... 66
(d) Epidemics ..... 66
Mortality in the Gulf of Mexico ..... 66
14. From mau ..... 66
(a) Obstructions (see above) ..... 67
(b) Poisoning (refuse, \&e.) ..... 68
(c) Capture and incidental destruction ..... 68
15. Natural canses or changes ..... 68
(a) Volcauic eruptions ..... 68
Hot water ..... 68
Acid or poisonous emauations ..... 68
Mud ..... 68
(b) Storms ..... 68
Mod and wind ..... 68
Bay of Fundy
Tides and currents ..... 68
(c) Cold and heat ..... 68
Auchor-ice ..... 69
Northers ..... 70
Gulf of Mexico ..... 70
16. Causes of accummlation of fish in fossil state ..... 71
Monte Bolca ..... 72
17. Epidemic or other diseases ..... 72
F. Natural food ..... 72
18. Vegetable ..... 72
(a) Diatoms and desmids ..... 73
(b) Algæ, turtles, shells ..... 73
(c) Sea plants ..... 73
(d) Floating wood: Mangroves, posts, \&c ..... 73
Consumed by Teredo ..... 73
Limnoria ..... 73
Mollusks ..... 73
Echini ..... 73
Grand Manan ..... 73
19. Organic mud ..... 74
Menhaden ..... 74
Gizzard shail ..... 74
THE SEA FISHERIES OF EASTERN NORTH AMERICA. ..... 7
F. Natural food-Continued. Page.
20. Animal substances ..... 75
(a) Dead ..... 75
Carcasses and offal ..... 75
By scavengers ..... 75
Lobsters and other crustacea ..... 75
Sharks and other fish ..... 75
(b) Living ..... 75
Eggs and embryos of fish ..... 75
Extensive support of life in the sea ..... 75
Adult fish ..... 76
Invertebrates ..... 76
Plant eating ..... 76
Protozoa (infusoria, sponges.) ..... 76
Radiates (holothuria, acalephie, \&c.) ..... 76
Carnivorous ..... 76
Mollusks ..... 76
Principal food of ground fish ..... 76
Squid: larve of herring and mackerel ..... 76
Salpa ..... 76
Articulates ..... 76
Nereis, bluefish, Fire Island crabs, thysanopoda. ..... 76
Protozoa and radiates ..... 79
Jelly-fish and echinoidea ..... 79
Mackerel ..... 79
G. Reproduction ..... 80
21. Fecundity ..... 81
(a) Table of eggs ..... 82
22. Character of eggs ..... 83
(a) Free swimming ..... 83
Mackerel ..... 84
Plaice ..... 84
(b) Adherent ..... 84
23. Rate of growth of young ..... 84
24. Peculiar habits or condition during spawning season ..... 84
(a) Change of shape ..... 84
Sea bass ..... 84
(b) Change of color ..... 84
25. Period of maturity ..... 85
26. Duration of fertility ..... 85
II.-Metiods of Capture (Fisheries).
A. The fishing grounds ..... 85
George's Bank ..... 85
Brown's Bank ..... 86
Jeffrey's Ledge ..... 87
Cashe's Ledge ..... 88
Jeffrey's Bank ..... 88
German Bank ..... 88
Marblehead Bank ..... 89
Grand Manan Bank ..... 89
Seal Island Ground ..... 89
Roseway Bank ..... 90
Le Have Bank ..... 91
Le Have Ridges ..... 91
A. The fishing grounds-Continued. Page.Sambro Bank92
Western Bank ..... 92
The Gully ..... 93
Bankquerean ..... 94
Canso Bank ..... 95
Misaine Bank ..... 95
Artimon Bauk ..... 95
St. Pierre Bauk ..... 95
Green Bank ..... 96
Grand Bank ..... 97
Flemish Cap ..... 98
Cod grounds in Bay of St. Lawrence ..... 99
Magdalen Islands ..... 100
Cape North ..... 100
Greenland Banks ..... 101
Mackerel Grounds ..... 102
B. The fishery marine ..... 103
27. Vessels ..... 104
28. Boats ..... 107
29. Crew
C. Apparatus of capture ..... 108
30. Bow and arrow ..... 108
31. Harpoon ..... 109
32. Lance and spear ..... 109
33. Hook and line ..... 109
(a) Hand-line ..... 109
(b) Long or trawl line ..... 110
Antiquity ..... 111
Extent of modern use ..... 111
Introduction into America ..... 111
Construction and mode of using ..... 111
Europe (Norway, England) ..... 111
America ..... 111
Bait employed ..... 111
Fish, fresh or salt ..... 111
Squid ..... 111
Clams ..... 111
Whelks ..... 111
Mussels ..... 111
Birds ..... 111
Porpoises ..... 111
Liver (Holland) ..... 111
Catch or yield ..... 114
Norway ..... 114
England ..... 114
Antagonism in America. ..... 115
Alleged injuries ..... 115
Advantages. ..... 115
34. The net ..... 119
(a) Hand or scoop net ..... 120
(b) Casting net ..... 120
(c) The seine ..... 120
Haul-seino ..... 120
Sweep-seine ..... 120
Purse-seine ..... 120
THE SEA FISHERIES OF EASTERN NORTH AMERICA.
C. Apparatus of capture-Continued.
35. The net-Continued. Page.
(d) The trammel-net ..... 120
(e) The gill-net ..... 121
(f) Beam-trawl ..... 121 ..... 121
Condition of use ..... 121
Not used in America ..... 122 ..... 122
Best for flat-fish ..... 123
36. The trap: Weir or pound ..... 123
(a) Seconnet trap or madrague ..... 123
(b) Heart-net or pound ..... 123
(c) Weir ..... 123
(d) Stake-net ..... 124
(e) Fyke and set-net ..... 124
37. Explosives ..... 124
D. Bait used in the sea fisheries ..... 124
Baits and allurements ..... 124
38. Red rags, eel-skin and other unedible covering ..... 124
39. Metallic and other allurements, part of the hook ..... 124
Shining metal, spoons, artificial fish ..... 124
40. Vegetable substances ..... 125
41. Animal substances ..... 125
(a) Mammals ..... 125
Flesh of porpoises ..... 125
Salted livers for cod ..... 125
(b) Birds ..... 125
Hagdons, puffins, auks, \&c ..... 125
Gannets, cormorants ..... 125
(c) Fishes ..... 126
Menhaden ..... 126
Alewives ..... 127
Capelin ..... 128
Herring ..... 128
Mackerel ..... 128
Launce ..... 128
Other fish ..... 128
Portions of food-fish, offal ..... 129
Fish-roe ..... 129
(d) Mollusks ..... 129
Squid ..... 129
Ommastrephes ..... 130
Loligo ..... 130
Architeuthis (found floating on beach)
Whelks and winkles ..... 130
Clams ..... 131
Mya ..... 131
Mactra ..... 131 ..... 131
Venus ..... 131
Gnathodon ..... 131
Mussels ..... 132
(e) Crustaceans ..... 132
Lobsters ..... 132
Crabs ..... 132
Shrimps ..... 132
E. Methods and routine of fishing ..... 133
F. Preservation of fish and bait ..... 133
42. Fresh (gutting and cleaning) ..... 133
F. Preservation of fish and bait-Continued. Page.
43. In ice ..... 134
(a) In contact with fish ..... 134
Gloucester method ..... 134
Noank method ..... 134
(b) Dry air process ..... 135
(c) Hard freezing ..... 135
(d) Advisable methods for cod-fishing ..... 135
44. By drying ..... 136
(a) In air ..... 136
(b) Desiccation ..... 136
45. By salting ..... 137
(a) Dry-salting ..... 137
(b) In pickle ..... 137
(c) Corning and drying ..... 137
(d) Use of other saline substances ..... 137
Borax ..... 137
(e) Use of acids ..... 137
Citric acid ..... 137
Acetic acid ..... 137
46. By smoking ..... 138
G. Disposition of offal or gurry ..... 138
47. Great waste to throw away ..... 139
(a) Utilizatiou in Normay ..... 139
48. Alleged evils of throwing overboard ..... 139
(a) Destroy fishing-grounds ..... 139
(b) Probably correct theory of action ..... 140
Attract sharks, \&e ..... 141
Destroyed by crustacea, echini, fishes ..... 141
49. Inducements should be held ont to fishermen to utilize ..... 141
50. No complaint in Europe ..... 142
II. Review of the American fisheries ..... 142
51. Tield of fisheries of all nations
52. Yield of American fisheries(a) Amount of shore line of United States(b) Yield of fish, by kinds(c) Combined tables.
(d) Number of torns, post-offices, and men
(e) Gloucester fishermen, 1874, '\%5, 'శ6
53. Fishermen of other nations
(a) Canada
(b) Newfoundland
(c) Norway
(d) Sweden
(e) France
(f) Great Britain
III.-Economical Applications of Products of time Fisheries.
A. As food ..... 143
54. Fresh (in ice, see above) ..... 144
55. Dried ..... 146
56. Smoked ..... 146
57. Salted: Pickled ..... 146
58. Canned ..... 146
(a) In spices ..... 146
(b) In oil ..... 146
A. As food-Continued. ..... Page.
59. Other preparations : Livers, sounds, fins ..... 146
60. Extracts ..... 146
61. Baits for fish ..... 147
B. Applied in the arts and industries ..... 148
62. Gelatine ..... 148
(a) Sounds ..... 148
(b) Skins ..... 148
63. Oil ..... 149
(a) Menhaden ..... 149
(b) Capelin ..... 149
(c) Herring ..... 149
(d) Other fish ..... 149
(e) Livers, expressed ..... 149
64. Fertilizers ..... 150
(a) Guano ..... 150
(b) Offal ..... 150
65. Clothing ..... 150
(a) Skins of salmon, cod ..... 150
(b) Eel-skins for pigtails ..... 150
(c) Sturgeon ..... 150
66. The industrial application ..... 150
(a) Stomach membranes of halibut for windows
(b) Teeth of sharks for weapons
(c) Shark skin for polishing ..... 150
(d) Shark skin for ornaments, covering, \&c ..... 150
(e) Vertebre for canes
(f) Scales of fish for ornaments
67. Medicines
(a) Cod-liver oil
(b) Propylamine from fish pickle or brine
(c) Intestines of grayling as rennet
IV.-Mantenance and Improvement of Fisheries.
A. By legislation regulating and prohibiting ..... 151
68. Special regulations ..... 151
(a) Places of fishing ..... 152
(b) Seasons for fishing ..... 155
(c) Time of day for fishing ..... 155
(d) Size of mesh of nets ..... 155
(e) Distance apart of nets ..... 155
$(f)$ Police regulations of boats and men ..... 155
(g) Preparation of fish for market ..... 155
69. Few restrictions of sea fisheries by United States ..... 156
(a) Difficulty of maintaining such regulations ..... 156
(b) Other nations would not respect them ..... 157
70. Regulation of river and shore fisheries desirable ..... 157
(a) Enactments of some States ..... 157
(b) Pollution of rivers ..... 157
(c) Erection of fishways ..... $15 \varepsilon$
(d) Inspection in markets ..... 158
71. Protection during spawning season ..... 158
(a) Advantageous for hoth fish and fishermen ..... 158
(b) Partial close time suggested ..... 159
(c) Some fish untit for food after spawning ..... 160
(d) Alewife fisheries in New England protected by towns. ..... 160
B. By increasing the number and variety of fishes ..... Page. ..... 160
72. Transferring fishes from one region to another ..... 161
(a) Scarus brought to Rome ..... 161
(b) Desirability of importing turbots and soles to United States ..... 161
(c) Suggested advantage of alewife to Europe ..... 161
73. Artificially propagating fishes ..... 162
(a) No experiments yet tried with sea fishes ..... 162
(b) Ratio of success in artificial impregnation ..... 162
(c) Experiments easily tried in New England ..... 163
(d) Hatching-boses used and proposed ..... 163
C. By bringing fish within reach of fishermen ..... 165
74. Mackerel attracted by chopped bait ..... 165
75. Offal drawing fish to the fishing-grounds ..... 165
76. Anadromous fish attract other species to the shores ..... 166
(a) Loss to industry by destruction of anadromous fish ..... 166
Illustration from former fisheries of Potomac ..... 166
V.-Political Considerations.
A. Memorandum of points attempted to be established in the case for Great Britain ..... 168
I. Statements of George McKenzie ..... 168
(a) Mackerel ..... 168
(b) Gurry ..... 168
77. Statement of Thomas Bennett ..... 168
(a) Codfish ..... 168
Appendix ..... 171
Index ..... 217

## THE SEA FISHERIES 0F EASTERN NORTH AMERICA.

## INTRODUCTORY.

In the present work I propose to give some account, as far as known, of the more important fishes of the Eastern United States north of Delaware Bay, together with an account of the methods by which they are pursued, captured, and utilized, as also of their application, with some statistical tables illustrating the results of the fisheries in the region referred to. For the better elucidation of the subject, I also propose to embrace a reference to corresponding fisheries in Europe and other parts of the world, so far as these throw light upon the American species.

A limitation of the subject to the region north of Delaware Bay is made, partly in view of the fact that the fisheries of that region are much more important in an economical point of vierr, and can be better monographed at present, and partly because this is the portion of Eastern North $\Delta$ merica which is embraced in the Washington treaty, and of which the information referred to is needed for the proper consideration of the interuational, political, and economical treatment of the subject.*

[^2]It is much to be regretted that there is no machinery employed in the United States for securing the statistics of our fisheries, the example of Canada and of European nations not having yet been adopted. The only sources of knowledge at our command are the reports of the cod and mackerel landed at American seaport towns, as made by the Statistical Bureau of the Treasury Department, the reports of inspectious of mackerel by the States of Maine, New Hampshire, and Massachusetts, and other incidental mention of local yields, such as the annual production at Gloucester, \&c., as can be picked up.

Of all these fish, however, the mullet is perhaps the most important, as being taken in larger quantities and occupying a greater number of persons in its manipulation. The fish, however, are almost exclusively consumed in the South, a very few being sent to Baltimore, Philadelphia, and New York. At present it may be considered as even more of a staple than the shad and alewife, which have been diminished very materially in later years; the supply of mullet, however, is apparently inexhaustible, and is repeated from year to year, though sometimes, owing to extreme weather and other conditions, the product is less, che condition of the lower classes being affected accordingly. Indeed, it may be said to occupy the same position that the mackerel does in the North; and the increasing yield of this fishery has undoubtedly had much to do with the reduced demand for the mackerel. Although as a fresh fish it may be considered as inferior to the best quality of mackerel, it is by most persons considered superior to it when salted. At Cape Hatteras the mullet fishery is said to begin about the middle of July; about Fort Macon in September, and later further: south, coutimuing for from one to two months at each station. The fish then come in from the sea for the purpose of spawning and enter the fresh water, being similar in this respect to the shad and alewife, although not apparently penetrating any considerable distance from the mouth. Like the herring and cod, they appear to spawn on a falling temperature, or when the waters have acquired a certain minimum. There is but little system adopted in the fishery, several individuals combining for a particular occasion and selecting one of their number as chief. The outfit consists simply of two or three six-oared hoats, a seine from 75 to 100 yards long, several splitting tables, some barrels, and salt. The fish are split and cleaned, but without removal of the head, and are slashed in the thickest side for the better penetration of the salt. The fish are all fat and plump, and are graded by size and not by quality. The lower grades are worth from 4 to ${ }^{5} 5$ a barrel ; the higher sometimes bring from $\$ 8$ to $\$ 10$. Not more than from seventy to a hundred can be packed in a barrel. As many as five humdred barrels of mullets are taken sometimes at a siugle hanl. The entire catch at Fort Macou alone is estimated by Dr. Yarrow at 12,000 barrels. The catch of a single county of North Carolina, Carteret, is given at 70,000 barrels. A large portion of the fish are bartered in the seaboard counties for agricultural products, 2 barrels being usually considered equivalent to 15 bushels of corn. They are sent by the railway lines all through the interior of the State, where they meet with great demand. Mullet roes are also considered a very great delicacy; a portion of them are pickled aud the others slightly salted and smoked. They usually bring from 25 to 40 cents a dozen.
With an increased demand and improved methods of capture and preparation, there is no reason why the yield of the mullet fishery should not be fully equaled in bulk and value to that of the mackerel, as the fish itself is in countless abundance and found for many hundreds of miles along the coast.

Dr. H. C. Yarrow, U. S. A., from whose manuscript notes I have obtained the facts referred to above, states that two-thirds of the entire population of the coast of North Carolina is employed in this fishery.

Canada, on the other hand, has a special department of the fisheries, organized for obtaining the necessary data, and from which we can learn with great precision the number of vessels and boats, their tonnage, the men employed, with the yield of the different kinds of fishing, in all the districts of the several provinces constituting the Dominion. The statistics of Newfoundland, which does not belong to the confederation, are scarcely more valuable or reliable than those of the United States. It is much to be hoped that both countries will, in time, initiate and carry on a system more like that of Canada, from which, year by year, tabulated and final results may be obtained.

Having been requested by the Secretary of State to proceed to Halifax and be present during the International Fishery Convention, I have been enabled, from the testimony adduced in regard to American fish and fisheries, and still more by personal inquiries of the witnesses, to obtain a great deal of information of much value, a portion of which will be embodied in the present report, and the remainder in an extension of the subject hereafter.*

The greater portion of the statistics employed in the present report is the result of special correspondence, initiated and maintained with

[^3]different parts of the country for the purpose, being partly the result of answers to a series of questions issued in printed circulars prepared for the purpose.

The reports of the Massachusetts commissioners of inland tisheries have furnished much valuable information, as well as the report of the commissioner of Maine.

Colonel Lyman, one of the Massachusetts commissioners, has also supplied some manuscript records of the weirs and pounds of Massachusetts, which have contributed greatly in making up these statistical tables. Especially important, too, have been communications from Capt. N. E. Atwood, of Provincetown ; Capt. Prince Crowell, of East Dennis; Vinal N. Edwards, of Wood's Holl; Mr. Samuel Powel, of Newport, R. I.; Capt. Benj. Ashby, jr., of Noank, Conn.; Captain Hurlbut, of Gloucester ; Captain Babson, collector of the port of Gloucester, and others hereafter euumerated.

To Mr. G. Brown Goode, assistant of the U. S. Fish Commission, I am indebted for rery important service in collecting information and preparation of statistical tables, nearly all of which have been made up by him for the purpose. The primary divisions into which an article like the present will naturally fall are as follows:
I. The natural history or biology.-This considers the fishes and certain other marine animals as they occur in nature, and without particular reference to their relations to man, except incidentally, or as they existed in North America before its occupation by the white man. Under this head will be included, first, an account of the individual habits and general history of each species included in my subject, and next a general riew of our marine fishes as a whole; e. g., their physical and mutual relationships; their migrations and movements; their abundance ; their food; their diseases and fatalities; and finally, their reproduction and growth.
II. Methods of capture.-After consideration of the inhabitants of the sea, without any special relation to man, we naturally proceed to the history of the various methods by which they are pursued and captured; this involving the subject of fishing grounds, boats and vessels, men, the apparatus of capture, bait, manner of fishing, packing on shipboard, and disposition of offal. Results of the fisheries and their statistics will naturally fall under this head.
III. Dtilization of the products of the fisheries.-As food, clothing, medicine, fertilizers, industrial applications, etc., or whatever applications are made of the fish after they have been caught. The general statistics of fishery products may come under this head.
IV. Maintenance and improvement of the fisheries.-This sulject naturally follows those preceding, and does not usually come up for consideration among communities until real or imaginary scarcity or diffculties of capture, etc., begin to press upon their members.
V. General political considerations.-Under this head are included the subject of the fisheries in relation to the State, bounties, inspection, international relations, \&c.

I propose to consider the sulbject of the fish and fisheries of Eastern North America substantially as given above, although I shall not be able to follow the various subdivisions in equal detail, indeed omitting some of them entirely for the present. So much yet remains to be known in regard to many of the topics enumerated that I can only hope that the meagerness and incompleteness of what I may say of them will call attention to the fact and secure the co operation of others in a future more reliable rendering of the whole subject.

GENERAL CONSIDERATIONS IN REGARD TO THE SPECIAL IMPORtance and value of the sea fisheries.

It may be safely stated that as a source of animal food to man the sea is the great fountain head, and that without this resource the supply of such food would be comparatively limited and far inferior to the demand of the various populations of the globe.
In the much greater proportion of ocean to land this reservoir of food is practically ineshanstible, and not only do the people living near its shores find a daily supply for consumption in a fresh state, but by proper methods of preparation and preservation the product of the sea can be fitted for long-continued keeping and for transportation to distant markets, where fishing is difficult, or into the interior, where it is impracticable. It is not a little remarkable that abundant as is the supply of fish in the warmer portions of the world it is impossible to preserve them there, and consequently, in Catholic countries especially, where the consumption of fish on certain days is a necessity, the colder countries of the North are drawn upon to furnish cod, haddock, hake, herring, etc., to their own great profit. It is difficult to make a calculation as to the comparative amount of animal food derived from the ocean and the land, batit is stated (Report of the British Sea Fisheries, $1866, \mathrm{I}, \mathrm{p} . \mathrm{xvi}$ ) that the weight of trawled fish supplied to the London market amounts to 300 tons daily, and is nearly equal to the total amount of beef, and that the price paid to the fishermen for this food is only one eighth of that paid to the first producer of the beef. It is also a gratifying and important consideration that the sources of food in the sea are very far from being all made use of, and that while in regard to the best known and most highly appreciated fish improved methods are constantly being devised for successfully increasing the amount of the catch at less expense, there are a rast number of sea animals which, while highly prized in some portions of the world, and really of superior excellence and wholesomeness as food, are despised elsewhere. In time, however, such prejudices will be overcome and the various species referred to fully appreciated.
S. Mis. $90-2$

Numerous illustrations of the propositions here enunciated will be found in the portions of the present article devoted to the consideration of particular kinds of fish found in American waters. There is practically no difficulty in even a dense population finding its subsistence in the sea, both as regards the food necessary for daily consumption and for the means of securing either necessities or luxuries by means of a trade in the same commodity, this fish supply being furnished and maintained withont the necessity of any previous cultivation or care, nature providing for the successions of the crop, and leaving it ouly to man to gather its full perfection. A spear, the bow and arrow, a hook aud line, a boat, even of the simplest and most primitive character, possibly even a floating log, will answer the necessary purpose; while the more extended investments of nets, weirs, and pounds, vessels for going a considerable distance to sea or even sailing to distant waters, are generally within the reach of the successful fisherman or a combination of several of them.

The case is very different on the land, where only a nomadic people can derive support from the wild game or forl, and this scarcely more - than sufficient for daily food and clothing, leaving but little for sale or export. As the population increases, this food becomes scarce and is either exterminated or driven aray, so that it offers but a scanty provision for the sustaining of life. It is then necessary to resort to the arts of the agriculturist; the land mast be cleared and tilled, the seed sown, and a harrest obtained, sometimes after many months of waiting, and with a chance, unfortunately too often realized, of a partial or total destruction of the whole by storm, rain, hail, drought, blight, or destructive insects. Even at best, too, only a small margin of annual profit is left after the interest on the investment and other deductions are made from the proceeds; and althoigh the farmer who controls a large body of land and works it by laborsaving machinery, or can gather in a large aggregate of the small proceeds of individual laborers, may acquire a competence and even wealth in time, yet comparing the profits of a laborer who has but a small tract of land at his command with those of the fisherman who has the sea for many miles under his control, we shall tind the actual results to be very different in the two cases.

Fishing, as an occupation, in fresh waters, is much less remunerative than the same business prosecuted in the sea, as by the limitation of area the supply becomes sooner exhausted, and is under the influence of cliwatic and physical conditions and the direct ageucies of man. So far as the rivers are concerned, it is only where they are in connection with large interior lakes, which take the place to them of oceans, that the most favorable conditions for the fresh-water fisheries are to be met with; and the great lakes themselves, such as those along the northern border of the United States, by their vast extent and great depth, are really, for all practical purposes, simply oceans, and furnish trout, whitefish, sturgeon, and other species in enormous numbers. Even here,
howerer, the possibility of the exhaustion of the fisheries is to be considered and remedies applied in the way of protection, artificial propagation, \&e.

I do not refer in this to the proceeds of rivers connected with the ocean and supplied with anadromous fish, such as salmon, shad, alewives, \&c. These are simply pathways for certain forms of sea fish, which enter them for the purpose of spawning and return to the sea again, thus coming within most convenient reach of human energy in their capture.

Apart from the illustrations already presented of such fisheries in the United States, I may refer to the fisheries of the Volga, which is connected with the Caspian Sea. Here, according to Von der Schultz, an enormous number of pounds are annually captured.

For the artificial culture of fish in fresh water it is probable that the carp and tench are most profitable, as furnishing the greatest yield in pounds, and even in values, for a given outlay; and as these are herbivorous fish, thriving in waters not suited to most other species, there is reason to anticipate that a great advantage will result to the United States from the measures now in progress by the U.S. Fish Commission to multiply them, especially as the climate and waters of this country appear eminently adapted to their condition.

The agency of the sea fisheries is also of importance to the welfare of a nation otherwise than merely in the actual yield of food obtained, or of other articles of necessity or luxury. The influence of a sea-fishing life in rendering men bold, self-reliant, hardy adventurers is well known, and the infusion into the general population of such an element is of great importance. The pursuit of sea-fishing has an important and very valuable influence in training men for a sea-faring life generally, there being but little practical difference between the fitting out of a ressel for a distant sea fishery and taking the same or another vessel for an extended royage to various points of the globe in the inter. est of commerce. It is from the hardy population of the fishermen that the merchant marine derives essentially its material, while the armed vessels of governments depend more indirectly upon the same source for manning their ships. It is for this reason that in all maritime natious the fishing population is looked to as a source of strength and protection, supplying, as it does, an element absolntely necessary to the well-being of the country, and in many instances bounties and privileges hare been extended to increase the inducements to enter upon and prosecute the sea-fisheries. The life of the fisherman is, of course, not one of ease; he is exposed to dangers and hardships which to a landsman would appear appalling, but which are taken by the fisherman in the regular way of his duty. There is, however, no class of community more liable to peril than the fishermen, their dangers being proportioned in a great degree to their enterprise. Of the fishing population of the United States, that of Cape Amn may be considered as eminently typical of the bold and resolute sailor, and every year the

Cape has reason to deplore a large loss of life and property especially as the result of winter-fishing on the George's Bank not inaptly termed the "Gloucester grave-yard."

Proctor's "Fisherman's Memorial and Record Book" gives the names of 1,252 men and 280 vessels lost in the fisheries from the port of Gloucester between the years 1830 and 1873 , or during a period of nearly half a ceutury. It is estimated that ten women and twenty children are annually deprived of husband and father by this service, the actual losses averaging twenty-eight lives and six ressels annually. The total amount of property lost in the period mentioned was $\$ 1,145,500$.

For the better illustration of the present article it would be desirable to present a statement of the product and values of the fisheries of the several maritime nations, so as to show the aggregate; and if reliable data were arailable for this purpose the result would be an amazing one. Unfortunately, the statistics of most nations are so inaccurate or incomplete as to render such a comparison entirely impossible. We hare, however, in an important report from Mr. Richard D. Cutts, "The Fisheries and Fishermen of the North Pacific, and the Commerce in the Products of the Sea, Washington, 1872," a table of the products of certain portions of the fisheries of fifteen countries in the year 1565. They are as follows:
Codfish ............................................................................... $\$ 20,730,249$
Herring ........................................................................... $17,685,408$

Maскеге . ......................................................................................... 4, 689,687
Sardines.................................................................................... $2,600,000$
Cod-Iiver oil .................................................................................. 3, 419,896
Seal oil....................................................................................... 757, 738
Pilchards . . . . . . . . . . . . . . . . . ...... ..... .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 . 375,000
Total
59, 606, 218
This, however, is merely a suggestion, and is probably far below the aggregate of that year, and much less than that at the present time.

The general facts in regard to these suljects may perhaps be best appreciated by some particular statistics in regard to certain countries, especially Norway, for which I give the figures for 1866.

## Total product of Norwegian fisheries.

The following statistics of the average product of the Norwegian fisheries is given by Baars in 1560 (Les Pêches de la Norwége, p. 58) :
Winter herring, 600,000 barrels, at 18 francs ................................ $\$ 2,400,000$
Summer herring, 220,000 barrels, at 20 franes ................................. 800,000
Salted fish, $2:, 000,000$ kilograms, at 40 franes per 100 kilograms......... $1,760,000$
Dried fish, $12,000,000$ lilograms, at 35 franes per 100 kilograms.......... . 850,000
Pickled fish, 60,000 larrels, at 20 francs . . ...................................... 250,000
Cod-liver oil, 60,000 barrels, at 90 francs ......................................... 1,080,000
Cod roes, 35,000 barrels, at 50 francs........................................... 3 . 350,000
Lobsters, $2,000,000$, at 6 cients each ................................................. 120,000
Fish guano, 350,000 kilograms, at 30 francs ................................... $5,100,000$

## Total

12,710,000

According to Schultz (Rep. U. S. F. C.), the annual catch of fish in the Caspian Sea and its tributaries amounts to $68,000,000$ pounds, worth about $\$ 10,500,000$.
The subject of the yield of the fisheries of the United States and the Dominion of Canada is of more special interest in the present report. So far as Cauada is concerned an excellent system of supervision by the Government enables us to gather, with more or less accuracy, the returns as to the number of ressels, of men, and the general yield for the different classes of objects in the various portions of the Dominion; and which, although these returns are probably considerably below the actual figures, still answer a useful purpose as a basis for comparison and for obtaining a general average.
Newfoundland, which is not a part of the Dominion, has unfortunately no corresponding record to which reference may be made. The case is equally unsatisfactory in the United States. Here the General Government does not pretend to exercise any supervision in the collection of statistics of the sea fisheries, with the exception of such as are couducted by a certain class of vessels, occupied in foreign waters. Of the great local business of fishing, either by means of small boats that go out to a short distance from the land or the larger coasting vessels, we have no reliable data. It is true that certain States, especially Maine, New Hampshire, and Massachusetts, provide for the inspection of pickled fish, which is branded according to the several degrees of excellence; and this furnishes us, as far as that class of products is concerned, with tolerably reliable information. Other products, however, are unrecorded, and only an approximation to the amount can be made. The State of Massachusetts has, however, lately undertaken to secure reliable facts under this head, and the commissioners of inland fisheries have been empowered to require, under suitable penalties, an annual return of the yield of every weir, pound, and gill-net on the coast.

While it is probable that the supply of fish on the outer banks and in the deep sea, away from the immediate coast, is as great as that of former years, a lamentable falling off is to be appreciated in the capture of anadromous fish, such as the shad, salmon, and the alewife, as well as of many species belonging immediately to the coast, such as the striped bass, the scup, and other fish.

Fortunately, it is believed they are capable of remedy by proper legislation and protection, artificial propagation, etc., and that we may look forward in the distant future to a very considerable return to the former very desirable state and condition of the fisheries.

In proof of the abundance formerly existing I will only refer to the chapter under that head in the first report of the United States Fish Commission, in which the quotations are supplied from early historical records, extending back to the first peopling of the country by the whites. The capture of thousands of striped bass by means of nets stretched
across the mouths of tidal rivers, the schools of scup so thick that they crowded each other out of the water in their passage, single hauls of from three to five thousand shad, and of from one to nine hundred thousand alewives with the small nets used at that time, the taking of a hundred sturgeon with the hook aud line in a day, and other similar facts all going to prove the general statement. A fisherman could, in a few hours and within a short distance from his home, fill his boat with cod, haddock, halibut, and other valuable species, and could take hundreds of pounds where now from one to teu would be considered a satisfactory return under the same circumstances.

As already stated, however, we may look forward, if not to the former state of things, yet to a great improvement on the present condition, and to this the efforts of State goveruments as well as of the General Government and of the Dominion of Canada are being directed with the utmost zeal, seconded by a growing public sentiment.

It may be remarked that the number of shad and herring (alewives) barreled on the Potomac River as the result of six months' fishing is equal to the entire yield of the Scottish fisheries for the entire year of 1873,0ne of their most successful years.
In an appendix to the Documents and Proceedings of the Halifax Commission, pp. 3360 et seq., prepared by Mr. Goode, will be found a statement, as approximately accurate as possible, of the yield of the shore fisheries returned in the year 1876, witu partial returns for 1877. These, it will be understood, are entirely the results of the inshore fisheries, with searcely an exception, the capture being made by pounds, traps, or gill-nets, set either on or close in shore, or by line-fishing from open boats, also close to the land.
I have also compiled a table of the sea fisheries of Cauada for the year 1876 , rearranging the tables of the report of the minister of marine and fisheries, so as to show what are purely sea fisheries, what are fresh water, and what are incidental products. In preparing this table I have converted the estimates of the weight of dry, smoked, and pickled fish into their estimated weight when fresh, so as to supply a more ready comparison. It is extremely difficult to obtain any estimate of the yield of the distant fisheries, prosecuted in vessels and from the ports of the United States. The report of the Washington Bureau of Statistics for the fiscal year ending June 30, 1577, enumerates:

Codfish 71,373,900
Mackerel ................................................................................... $30,542,500$
Herring . ............................................................................... . . . $22,328,700$
Other fish .... ........... ................................................................ . . . . $11,503,540$
Fresh fish, not cured................................................................. $99,677,911$
A second column gives the estimated weight of these fish when fresh, and is obtained in making up the table of Canadian statistics by multiplying the weight of the codfish by three; and adding oue-fifth, or 20
per cent., to the weights of the herring and mackerel. We have thus an aggregate which we are sure is very far below the proper figures.

Within the last two years a very great increase in the demand for fish fresh from the sea has spruug up in the United States, most portions of the interior being now regularly supplied. To this end the improved methods of preservation and transportation have greatly conduced. The use of ice in its various applications,* the employment of refrigerating chests and refrigerator steamboats and cars and other devices, permits the trausportation of fish many miles in a brief space of time. During the present year salmon have been loaded in cars on the Restigouche River and delivered in New York in thirty hours. The fish are packed in boxes with snow and placed in a refrigerator car supplied with a quantity of ice, so that on arriving in New York the snow is generally entirely unmelted. Fish are packed in chests in Florida and delivered in New York by steamer in the same manner. Fish taken in pounds or gull-nets or with lines along the coast are concentrated at shipping points and forwarded by rail or in smacks, properly iced. They are then repacked and sent by various lines of conveyance to their distant markets.

Such is now the method and system adopted in this business that it becomes very difficult to obtain fresh fish in seaport towns, the machinery of collecting and transporting being so arranged as to prevent, to a very great extent, the diversion of any portion of the stock to the local consumption. Indeed, it is not at all uncommon for fish to be sent directly away from a village on or near the coast to New York or Boston in a general shipment to market, and afterwards returned to its starting point for consumption. One supposed evidence of an increasing scarcity of fish is the increase in price at such stations. This is, however, a fallacious argument, as the market is regulated by the rates obtainable in the centers of supply rather than elsewhere, and the local prices necessarily must correspond. The proprietor of a weir or pound generally has his entire catch pre-engaged to the wholesale dealer in New York or Boston, and he cannot keep his accounts satisfactorily if he permits any portion to be diverted by the way. Formerly, before the introduction of the use of ice and the improved system of transportation, whenever a great catch of fish was made, the principal market would be found at a point on or near the landing, the fish being taken in wagons and peddled in the interior, but always orer a limited area, the result being that prices were usually or frequently very low, and not remunerative, in cases of a glut in the market. It is to the iuterest of fishermen, of course, that there should be no danger of such a glut, and that all the catch be disposed at a fair price.

[^4]
## I.-NATURAL HISTORY.

GENERAL CONSIDERATIONS IN REGARD TO THE SPECIES OF FOODFISHES OF THE EASTERN COAST OF THE UNITED STATES AND OF THE DOMINION OF CANADA.

The peculiar difficulties of investigating the natural history and general character of the inhabitants of the sea, excepting so far as they can be observed in aquaria, have tended very greatly to prevent the acquisition of satisfactory information in relation to their habits and characteristics; and it is therefore not surprising that our knowledge of this portion of the animal kingdom is far inferior to that of species belonging to the land. This proposition applies almost equally to the fish of all countries, there being very few species, even on the coast of Europe, the biology of which has been worked out in a satisfactory manner. Of a few species we know more than we do of others, especially of the salmon, several kinds of herring, and the cod. All these, as constituting an important source of wealth, have been investigated by scientific commissions, organized by Governments, and embracing men trained to research, and competent to do the work assigned them.

With an enlightened appreciation of the importance of this subject, the Norwegian Government has, for a number of years, employed some of its best naturalists, such as Professor Sars, Prof. A. Bœck, Mr. Robert Collett, and others, in these inquiries, providing them with all the necessary facilities. The inherent difficulties in the way will be readily appreciated, in view of the fact that even under such circumstances the investigators have not succeeded as yet in entirely working out the problems submitted to them for solution, but year by year further discoveries have been made, the sum of which constitutes the most if not the only reliable data at the service of inquirers elsewhere.

In view of these considerations, therefore, I trust that I shall be excused, if the accounts I give of the present state of our well-established knowledge of the habits and distribution of the American sea fish be more or less meager, especially as the limitation of the present report will forbid going into very minute detail. By distributing questions, as is now being done to a considerable extent, to the most intelligent observers throughout the country, and submitting particular questions and inquiries, and then by collating the results, it is hoped that a large body of facts will shortly be arailable.

The fishes of any region may be considered either in a purely zoolog. ical point of view, or as they would be treated in a natural history monograph, or in their relations to particular industries or to some special relation they may have to the land or water. For the purposes I have in view the subject of the biology or natural history of our fishes may be treated under the following heads:
A. A systematic list of the species embraced in the subject, including also the fishes and marine invertebrates serving as food and bait.
B. Biographical notices of the most important species. After treating them separately they may be considered collectively, or at least by groups of species.
C. The relationships of fishes in general to each other and to the shores and sea-bottom, as also to physical condition, their migration and movements, and the influence of men upon the same.
D. Their numbers and abundance formerly and at the present time.
E. Their fatalities, diseases, and destruction by natural causes and other than by ordinary human agency (which belong to the subject of the fisheries).
F. Their food, animal and vegetable.
G. Their reproduction, including their fecundity, their habits during that season, their rate of growth, and their conditions of maturity.
A.-LIST OF THE PRINCIPAL FOOD AND BAIT MARINE FISIIES OF THE EASTERN UNITED STATES AND BRITISH PROVINCES.*

1. Principal food and bait fishes.

## LOPHIID $x$.

1. Lophius piscatorius (Linu.). Goosefish; Monkfish; Molligut. Nova Scotia and Chesapeake.

## PLEURONECTID AE.

2. Pseudopleuronectes americanus (Walb.) Gill. Cominon Flonnder; Winter Flounder ; Muí Dab (Massachusetts Bay); Sole (New York). Nova Scotia to Cape Hatteras.
3. Limanda ferrugineu (Storer) Goode \& Bean. Rusty Dab ; Sand Dab (Maine).
Nova Scotia to Long Island.
4. Glyptocephalus cynoglossus (Linn.) Gill. Pole Flounder. North Atlantic, south to Block Island.
5. Pomatopsetta dentata (Storer) Gill. Smooth Plaice; Smooth-back. Massachusetts to Maine.
6. Hippoglossoides platessoides (Fabr.) Gill, Aretic Dab. Polar regions to Cape Cod.
7. Pseudorhombus dentatus (Linn.) Giinther. Common Flounder. Cape Ann to Brazil.
8. Hippoglossus vulgaris (Fleming). Halibut.

Greenland and Newfoundland to Cape Hatteras.
9. Platysomatichthys lippoglossoides (Walb.) Goode \& Bean. Greenland Turbot.
Greenland to Eastern Banks.

[^5]GADID AE.
10. Pollachius carbonarius (Liun.) Bon. Pollock: Coal-fish (England). Greenland to Cape Hatteras.
11. Gadus morrhua Linn. Common Codfish; Sarandlik and̉ Sarandlisksoak (Greenland).
Polar regions to Cape Hatteras.
12. Microgadus tomcodus (Walb.) Gill. Tomeod; Frost-fish.

Newfoundland to Cape Hatteras.
13. Melanogrammus aglefinus (Limn.) Gill. Haddock.

Newfoundland to Cape Hatteras.
14. Phycis chuss (Walb.) Gill. Codling (New York); Old English Hake; Squirrel Hake (Massachusetts); Ling; Chuss (formerly at New York);
Codling (Newport) ; Fork-beard (Eugland).
Newfoundland to Cape Hatteras.
15. Phycis tenuis (Mitch.) DeKay. Codling (New York); White Hake (Massachusetts) ; Squirrel Hake (Maine).
Newfoundland to Cape Hatteras.
16. Brosmius brosme (Miiller) White (d. @ s.) Cusk (Massachusetts);

Torsk or Tusk.
North Atlantic, south to Cape Cod.

## MERLUCIIDA.

17. Merlucius bilinearis (Mitch.) Gill. American Hake; Silver Hake (Maine); Whiting (Massachusetts) ; Stock-fish.
Nova Scotia to Cape Hatteras.

## SCORPAENIDAE.

18. Sebastes marinus; Limn. (l. @ s.). Norway Haddock; Hemdurgan; Red•fish ; Bream (Maine) ; Rose-fish; Suapper (Massachusetts Bay, Storer) ; Red Sea-perch (New York); Red Perch (Eastport). Polar regions to Block Island.

## LABRIDA.

19. Tautoga onitis (Limn.) Gthr. Black-fish; Tautog. Bay of Fundy to South Carolina ; New York.
20. Tautogolabrus adspersus (Walbaum) Gill. Burgall or Bergall (New York) ; Cunner or Comner ; Chogset (New England) ; Bluefish or Blue Perch.
Newfoundland to Cape Hatteras.

## XIPHIID.

22. Xiphias gladius Linn. Common Swordfish.

Nova Scotia to West Indies.
23. Tetrapturus albidus Poey. Billfish; Spearfish.

Cape Cod to West Indies.
24. Histiophorus americanus Lac. Sailfish.

Cape Cod to West Indies. SCOMBRIDE.
25. Scomber scombrus Linu. Mackerel ; Wawwhome-kesuog (Narragansett Indiaus, Trumbull); Caballa (Cuba).
Greenland to Cape Hatteras.
26. Scomber grex Mitchell (= S. pneumatophorus: De la Roche). Chub Mackerel.
Nova Scotia to Cape Hatteras.
27. Sarda mediterranea (Sclm.) Jordan. Bonito; Skip-jack (Boston market).
Cape Cod to Florida.
28. Orcynus thynnus (Linu.) Goode (d. © s.). Horse-mackerel (Massachusetts, \&c.) ; Albicore (Rhode Island); American Tunny. Newfoundland to Florida.
29. Orcynus alliteratus (Raf.) Gill. Eittle Tunny ; Albicore; Alliterato; (Naples); Mackerel (Bermuda).
Pelagic, occasional on coast (found in large numbers at Wood's Holl, Mass., August, 1871).
30. Scomberomorus maculatus (Mitch.) Jordan. Spanish Mackerel; Spotted Mackerel ; Bay Mackerel (rare in Massachisetts Bay). Cape Cod to Florida.
31. Scomberomorus regalis (Bloch) Jordan. Cero; Black-spotted Spanish Mackerel; King-fish. Cape Cod to Florida. CARANGID A.
32. Carangus hippos (Limn.) Gill. Horse-crevallé ; Jiguagua (Cuba). Cape Cod to Florida.
33. Trachynotus carolinus (Limn.) Gill. Pompauo (Southeru coast); Cavallé or Crevallé (South Carolina); Pompynose (New Orleans). Cape Cod to Florida.
34. Trachynotus ovatus (Linn.) Gthr. Short Pompano. Cape Cod southward.

STROTIATEIDTE。
35. Porometus triacanthus (Peck) Gill. Harvest-fish (New Jersey); Butter-fish (Massachusetts) ; Dollar-fish (Maine).
Maine to Cape Hatteras.

```
SCIANID A.
```

36. Cynoscion carolinensis (Cuv. \& Val.) Gill. Salmon-trout; Spotted Sea-trout (South coast) ; Spotted Silversides (Scott). Cape Hatteras to Florida.
37. Cynoscion regalis (Bloch) Gill. Squeteague or Squit (New Englaud); Shecutts or Checatts (Mohegan Iudians); Chickwick (Connecticut); Weakfish (New York) ; Bluefish (Beesley's Point, New Jersey); Trout (Southern coast) ; Salt-water Trout; Gray Trout (Southern coast). Cape Cod to Florida.
38. Pogonias chromis Lacépède. Drum.

Cape Cod to Florida.
39. Liostomus obliquus (Mitch.) DeKay. Lafayette (New York) ; Goody (Cape Mayj; Chub (Norfolk); Roach (Northampton County, Virginia).
Cape Cod to Florida.
40. Scicenops ocellatus (Limm.) Gill. Bass; Red Bass; Sea Bass; Spotted Bass (South Carolina) ; Redfish (Gulf of Mexico).
Cape Cod to Florida.
41. Menticirrus nebulosus (Mitch.) Gill. Kingfish; Whiting; Hake (New Jersey) ; Barb (New Jersey).
Cape Cod to Florida.
42. Mioropogon umdulatus (Linn.) Cuv. \& Val. Croaker; Verrugato (Cuba).

## SPARID A.

43. Archosargus probatocephalus (Walb.) Gill. Sheepshead.

Cape Cod to Florida.
44. Stenotomus argyrops (Liun.) Gill. Scup (Vineyard Sound); Scúp. paug; Porgy (New York); Bream (Rhode Island, formerly); Fairmaid (East shore of Viuginia).
Cape Cod to Florida.

## PRISTIPOMATIDAE.

45. Hamulon arcuatum Cuv. \& Val. Grunt.

South Atlantic coast of United States.

SERRANID A.
46. Centropristis atrarius (Linn.) Barn. Black Sea Bass; Sea Bass (New York); Black Perch (Mass.) ; Black Bass; Blackfish (New Jersey); Bluefish (Newport); Black-harry; Hannahills (New York, DeKay) ; Black-will (Eastern shore of Virginia).
Cape Cod to FIorida.

## LABRAGIDAE.

47. Roccus lineatus (Bl. Schn.) Gill. Striped Bass (Eastern States);

Rockfish (Pennsylrania, \&e.); Hissuckeke-kequock (Narragansett Indians).
Nova Scotia to Florida.
48. Morone americana (Gmelin) Gill. White Percl.

Nova Scotia to Florida.

## EPHIPPIIDA.

49. Ephippus faber (Cur.). Moonfish; Angel-fish (South Carolina); Three-banded Sheepshead; Three-tailed Porgy; Porgy (Chesapeake Вау).
Cape Cod to Fiorida.

## LOBOTID※.

50. Lobotes surinamensis Cuv. Flasher (New York market).

Cape Cod to Florida.

## POMATOMIDA.

51. Pomatomus salfatrix (Linu.) Gill. Bluetish (New York and New England, except Rhode Island) ; Horse-mackerel (Newport and Beesley's Point, N. J.) ; Skip-jack (North Caroliua); Green-fish (Virginia, DeKay) ; Tailor (Maryland and Virginia); Whitefish and Snap-mackerel (young).

## ELACATIDAE.

52. Elacate canadus (Linn.) Gill. Crab-eater. Cape Cod to West Indies.

## AMMODYTIDAE。

53. Ammodytes americanus DeKay. Sand-launce; Sand-cel (New Englaud).
Newfoundlaud to Cape Hatteras.

## MUGILIDAE.

54. ALugil albula Linn. Striped mullet. Cape Cod to Florida.
55. Mugil brasiliensis Agassiz. White mullet.

## ATHERINIDE.

56. Chirostoma notata (Mitch.) Gill. Silversides; Friar (New England). Maine to Florida.

BELONTDE.
57. Belone longirostris (Mitch.) Gill. Silver gar ; Bill-fish.

Cape Cod to Florida.
SCOMBERESOCID.E.
58. Scomberesox saurus (Walb.) Fleming. Skipper; Sutry; Skip-jack. Nova Scotia to Florida.

## CYPRINODONTIDA.

59. Cyprinodon variegatus Lac.

Cape Cod to Florida.

## MICROSTOMIDA.

60. Mallotus villosus (Miiller) Cuv. Capelin.

Polar regions to Nova Scotia.
61. Osmerus mordax (Mitch.) Gill. Smelt.

Nova Scotia to Cape Hatteras.
SALMONIDE.
6.. Salmo salar (Linn.) Giinther. Salmon; Mishquammauqueck (Narragansett Indians).
Polar regions to Cape Cod.
ELOPIDA.
63. Megalops thrissoides (Bl. Sch.) Giinther. Jew-fish; Tarpum (Bermuda).
Cape Cod to Florida.
DUSSUMIERIDA.
64. Etrumeus teres (Dekiay) Brevoort. Round herring.

Cape Cod to Cape Hatteras.

## CLUPEIDE.

65. Brevoortia tyrannus (Latrobe) Goode \& Bean. Menhaden (Vineyard Sound); Munnawhatteang (Narragansett Indians); Pogy, Poghaden (Last coast of New England); Mossbunker (New York); Paubaden, Pauhagen (New England); Hard-head, Bony• fish (Massachusetts Bay); Skippangor Bunker (East end of Long Island); Bony fish (Saybrook); Whitefish (Saybrook to Milford, Connecticut); Fat back and Yellowtail (coast of North Carolina); Bug•fish (Carolina). Nova Scotia to Brazil.
66. Alosa sapidissima (Wilson) Storer. Shad. Newfoumdland to Florida.
67. Opisthonema thrissa Gill. Thread-herriug; Menhadeu (Portlaṇd); Shad-herring (New York).
Newfoundland to Florida.
68. Pomolobus astivalis (Mitch.) Goode \& Bean; and Pomolobus vernalis (Mitchell) Goode \& Bean. Herring (Southern States); Alewite (New England); Gaspereau (British Provinces) ; Spring-herring (New England); Aumsuog (Narragansett Indians); Kyack, Blueback, Alewife, Sawbelly, Cat-thresher (Portland, Me.). Newfoundland to Florida.
69. Pomolobus mediocris (Mitch.) Gill. Tailor-herring (Potomac); Fallshad.
Newfoundland to Florida.
70. Clupea harengus Linn. English Herring.

Polar regions to Cape Cod.

## DOROSOMIDE.

71. Dorosoma Cepedianum (Lac.) Gill. Toothed Herring. Cape Cod to Cape Hatteras.

## ENGRAULIDAE.

72. Stolephorus vittatus (Mitch.) Jordan \& Gerard. Anchovy. Cape Cod to Cape Hatteras.

ANGUILLIDIE.
73. Anguilla bostoniensis (Les.) DeKay. Common Eel.

Newfoundland to Cape Eatteras.

## ACIPENSERIDAE

74. Acipenser oxyrhynchus Mitch. (d.i.) Sharphosed Sturgeon.

Cape Cod to Florida.
75. Acipenser brevirostris Lesueur. Short-nosed Sturgeon.

Cape Cod to Florida.
PETROMYZONTIDAE.
76. Petromyzon americanus Lesueur (d. s.) Lamprey; Lamper eel.

Cape Cod to Cape Hatteras.
2.-Invertebrates actually used as food and bait on a large suale.

MOLLUSCA.
Architeuthis Harveyi Verrill.
The giant squid, and other species of giant squids when ther can be obtained.

Ommastrephes illecebrosa Ver.
The squid generally north of Cape Cod, and the only squid of the Gulf of Maine, Bay of Fundy, \&c.
Loligo Pealii Lesueur. Squid.
South of Cape Cod, and also occurring in Massachusetts Bay.
Mya arenaria Linn. Long Clam.
Ranging from South Carolina to the Arctic Ocean.
Venus mercenaria Linn. Round Clam; Quahog.
Massachusetts Bay to Florida ; Quahog Bay, Me.; Gulf of Saint Lawrence (Local).
Spisula solidissima Gray. Sea Clam ; Surf Clam.
Labrador to Gulf of Mexico.
Gnathodon cuneatus. Lonisiana.
Mytilus chulis Liun. Common Mussel (or muscle).
Modiola plicatula Lamarck. Ribbed Mussel.
These tro species are both said to be used as bait off Sandy Hook, N. Y. I know nothing very positive about them.

## CRUSTACEA.

Panopeus Ierbstii Edwards. A crab, but know of no common name.
Ravge, Long Island Sound to Brazil; used for blackfish, Sonihern States.
Crangon vulgaris Fabr. Sand Shrimp.
North Carolina to Labrador.
Mysis, sp.
Used by boys in Eastport Harbor for catching pollock aud red perch. Thysanopoda, sp.

Used by boys in Eastport Harbor for catching pollock and red perch. Homarus americanus Edw. Lobster.

Ranges from Labrador to New Jersey.
Callinectes hastatus Ordway. Common edible Crab, or Blue Crab.
Ranges from Cape Cod to Florida, and is occasionally found in Massachusetts Bay.

## 3.-Invertebrates which might possblby anstwer as bait.

It would seem asthough nearly all the species of invertebrates which are found in the stomachs of fish, as food, might serve as bait for the same species at least; and the character of the food of some fishes is very varied. The following species are amoug the more common ones on the New England coasts and are easily obtained and of about the right size for bait, or could be rendered so by very little cutting. Of course there is the question as to whether they would all or eren many of them prove attractive to fish when on a hook, but forms closely red. lated to some of them are now standard articles of bait.

CRUSTACEA.
Gelasimus minax, pugnax, and pugilator.
The three species of Fiddler Crabs found on the Southern New England coast.
Cancer irroratus. Rock Crab.
Labrador to South Carolina.
Panopeus.
Sereral species of this genus are found on the Southern New Eng. land coast and to the sonth of New England, one of which, Herbstii, is already used as bait for blackfish.
Carcinus menas. Green Crab.
Cape Cod to New Jersey.

## Eupagurus.

There are several species of "Hermit Crabs" common to theNew England coasts, two or three of which, living not far from land, could easily be obtained as bait. One common species (pollicaris) is abundant on the oyster-beds of Southern New England (Long Island Sound) and could, therefore, be obtained of the oystermen.
Pandalus annulicornis. The Deep-water Prawn or Shrimp.
Common in the Gulf of Maine and Massachusetts Bay, in moderate to considerable depths, where it can be taken in large quantities by the beam-trawl.
Palcmonetes vulgaris. Common Prawn.
Massachusetts to South Carolina. Abundant in places, in shallow water.

## ANNELIDA.

Nereis virens, and other "marine worms" which occur, buried in muddy and sandy beaches; nearly everywhere.

```
MOLLUSCA.
```

There are six species of Gasteroporls of medium size which might possibly answer.
Buccinum undatum. Whelk.
Entire New England coast, but most abundant north.
Urosalpinx cinerea. Drill.
Massachusetts Bay to Florida. Very thick shell, for which reason might not answer.
Purpura lapillus. Purple.
Long Island to arctic. Also very thick shell,
Lunatia heros. Sea Snail.
Georgia to Gulf of Saint Lawrence.
Crepidula fornicata. Double-decker.
Casco Bay, Me., to Florida.
S. Mis. $90-3$

## Littorina littorea.

New Haven to Nova Scotia. Imported from Europe. Very abundant on the shores northward of Newport, R. I. Is very good eating for man.

Two other Gasteropods are common south of Cape Corl, but they are of large size.
Fulgur carica. Winkle.
Sycotypus canaliculatus. Winkle.
Of Lamellibranchs there are the following :
Mulinia Tateralis. No common name, but related to the Sea or Surf Clam, smaller size.
Massachusetts to Florida.
Callista convext. Related to the Quahog, but of smaller size.
New Jersey to Gulf of Saint Lawrence.
Astarte undata.
Scapharca transversa. Bloody Clams.
Argina pexata. Bloody Clams.
Florida to Cape Cod.
Pecten irradians. Scallop.
Florida to Cape Cod.
If ascidians could be used as bait, the best three species would be the following, but I have not heard of their ever having been found in the stomachs of fish:
Molgula Manhattensis.
North Carolina to Maine; sometimes thrown up on the beaches in immense quantities; lives in shallow water.
Cynthia pyriformis. Sea Peach; abundant in Bay of Fundy, in moderate depths.
Boltenia Bolteni. Sea Lemon.
Cape Cod northward, with last above in Bay of Fundy.

RADIATA.
Brittle-stars (Ophiurans) are often found in fishes' stomachs, and might answer as bait. The commonest species inOphiopholis aculcata.

New Jersey to the Arctic Ocean ; low water to 100 fathoms and deeper.

Some species of common startishes and sea-cucumbers might possibly also do.

## 4.-LISTS OF SPECIES, ANNUAL ESTLMATE FOR 1871-9*, FOUND IN THE - STOMACHS OF FISHES-FOOD OF FISHES.

In the following lists have been brought together the principal results of the various recorded examinations of stomachs of fishes in
this region up to the present time, whether done in connection with the U. S. Fish Commission or,independently. The special dates and localities are given in each case.*
Lophius Americanus DeKay. Goosefish; Angler.
A specimen caught in Vineyard Sound, in June, contained crabs, Cancer irroratus; and squids, Loligo Pealii. Another contained a me-dium-sized skate. Still another a large common flounder; bluefish (Pomatomus saltatrix); fragments of clam shells (Mya arenaria); crabs; and eel-grass. Wood's Holl, 1871; E. Palmer.

Specimens taken in the rivers with herring had their stomachs filled with that fish. A. E. Verrill, Eastport, Me., 1871.
Alutera Schoenfii. (Walb.) Goode \& Bean. File-fish.
A specimen taken at Wood's Holl, in August, contained a quantity of the finely-divided stems and branches of a Hydroid, Pennaria tiarella. Pseudopleuronectes Americanus Gill. Winter Flounder.
A specimen caught at Wood's Holl, in August, contained large numbers of Bulla solitaria.
Specimens taken, in 1871, in the rivers about Eastport, were filled with herring. A. E. Verrill, 1871.
Lophopsetta maculata Gill. Spotted Flounder.
Numerous specimens caught in seines at Great Egg Harbor, April, 1si1, contained large quantities of shrimp, especially Mysis Americana and Crangon vulgaris; the prawn, Palcmonetes vulgaris; numerous Amphipods, Gammarus mucronatus ; one contained a Gelia affinis.
Chenopsetta ocellaris Gill. Ocellated Flounder; Summer Flounder.
Several specimens taken in the seines at Great Egg Harbor, New Jersey, in April, contained large quantities of shrimp, Crangon vulgaris and Mysis Americana; one contained a fall-grown Gebia affinis.
One caught at Wood's Holl, June 6, contained twenty-six specimeus of Yoldia limatula; and numerous shells of Nucula proxima, Angulus tener, and Tritia trivittata; and Amphipod Crustacea belonging to the genus Ampelisca.

Specimens canght at Wood's Holl, in July, contained rock crabs, Cancer irroratus; Pinnixa cylindrica; Crangon vulyaris; squids, Loligo Pealii; Angulus tener; Nucula proxima; and many"sand dollars," Echinarachnius parma.

Augnst 16. One specimen contained a scup and one squid (Loligo); Sept. 1. Auother specimen had two small crabs and two minnows. Wood's Holl ; E. Palmer, 1871.

[^6]Gadus morrhua var. Cod.
The codfishes devour a great variety of Crustaceans, Annelids, Mollusks, starfishes, \&c. They swallow large bivalre shells, and after digesting the contents spit out the shelis, which are often almost uninjured. They are also very fond of shrimps, and of crabs, which they frequentiy swallow whole, even when of large size. The brittle-starfishes (Ophiurans) are also much relished by them. I hare taken large masses of the Ophiopholis aculeata from their stomachs on the coasts of Maine and Labrador ; and in some cases the stomach would be distended with this one kind, unmixed with any other food.

In this region I have not been able to make any new observations on the food of the cod. This deficiency is partially supplied, however, by the observations made by me on the coast of Maine, \&c., coupled with the very numerous observations made at Stonington, Conn., many years ago, by Mr. J. H. Trumbull, who examined large numbers of the stomachs of cod and haddock, caught within a few miles of that place, for the sake of the rare shells that they contained. This collection of shells, thus made, was put into the hauds of the Rev. J. H. Linsley, who incorporated the results into his "Catalogue of the Shells of Counecticut," which was published after his death, in a somewhat unfinished state, in the American Journal of Science, Series I, vol. xlviii, p. 271, 1845. In that list a large number of species are particularly mentioned as from the stomachs of cod and haddock, at Stonington, all of which were collected by Mr. Trumbull, as he has informed me, from fishes caught on the fishing-grounds near by, on the reefs off Watch Hill, \&c. Many other northern shells, recorded by Mr. Linsley as from Stonington, but without particulars, were doubtless also taken from the fish-stomachs by Mr. Trumbull. There was no record made of the Crustacea, \&c., found by him at the same time.

The following list includes the species mentioned by Mr. Linsley as from the cod. For greater convenience the original names given by him are added in parentheses, when differing from those used in this report:

> List of mollustis, dr., obtained by Mr. J. II. Trumbull, from codfish caught near Stonington, Conn.

## GASTROPODS.

Sipho Islaudicus (?), young, (Fusus corneus).
Ptychatractus ligatus (Fasciolaria ligata).
Turbonilla interrupta (Turritella interrupta).
Turritella erosa.
Rissoa exarata (\%) (Cingula arenaria).
Lunatia immaculata (Natica inmaculata).
Amphisphyra pellucida (Bulla debilis).
Chiton marmoreus (?) (Chiton fulminatus).

## LAMELLIBRANCHS.

Martesia cunciformis (Pholas cuneiformis).
Periploma papyracea (Anatina papyracea).
Thracia truncata.
Tagelus divisus (Solecurtus fragilis).
Semele equalis (?) (Amphidesma requalis).
Ceronia arctata (Mesodesma aretata).
Montacuta elevata (Montacuta bidentata).
Callista convexa, young, (Cytherea morrhuana).
Cardium pinnulatum.
Cyprina Islandica.
Gouldia mactracea (Astarte mactracea).
Yoldia sapotilla (Nucula sapotilla).
Yoldia limatula (Nucula limatula).
Nucula proxima.
Nucula tenuis.
Modiolaria nigra (Modiola nexa).
Crenella glaudula (Modiola glandula).
Pecten tenuicostatus, young, (Pecten fuscus).
ECMINODERMS.
Echinarachnius parma.
Microgadus tomeodus Gill. Tomcod; Frost-fish.
Several specimens from New Faren Harbor, danuary 30, contained numerous Amphipods, among which were Mova levis; Gammarus, sp.; Ampeliscu, sp.; an undetermined Macrouran; numerous Entomostraca; the larva of Chironomus oceanicus.

A lot taken in a small pond at Wood's Holl, in March, by Mr. Vinal N. Edwards, contained the common Shrimp, Crangon vulyaris; large numbers of the green Shrimp, Virbius zostericola; the Prawn, Palamonetes vulgaris; large quantities of Amphipods, especially of Gummarus annulatus, G. natator, Calliopius laviuscula, and Microdeutopus minax; and smaller numbers of Gammarus ornatus and G. mucronatus.

Another lot of twelve, taken in April at the same place, containesl most of the abore, and in addition several other Amphipods, viz: Merce levis, Pontogeneia inermis, Ptilocheirus pinguis, and Caprella ; also Nereis virens, and various small fishes.
Melanogramme cglifinus Gill. Haddock.
The haddock is not much mulike the cod in the character of its food. 'It is, perhaps, still more omni greater variety of species of shells, $\mathbb{E c}$. ; many of the shells that it habitually feeds upon are burrowing species, and it probably roots them out of the mud and sand.

A complete list of the animals devoured by the haddock would donbtless include nearly all the species belonging to this fauna. We have
had few opportunities for making observations on the food of the haddock south of Cape Cod, but have examined many from farther north.
A specimen taken at Wood's Holl, November 6, 1872, contained a large quantity of Gammarus natator and a few specimens of Cranyon vulgaris. Another from Nantucket contained the same species.

The following species of shells were mentioned by Mr. Linsley, in his catalogue, as from the haddock:

List of mollusis obtained from stomachs of haddock, at Stonington, Conn., by Mir. J. H. Trumbull.

Neptunea pygmæa (Fusus Trumbulli).
Astyris zonalis (Buccinum zonale).
Bulbus flavus (?) (Natica flava).
Margarita obscura.
Actæon puncto-striata (Tornatella puncto-striata).
Cylichna alba (Bulla triticea).
Serripes Grœulandicus (?) (Cardium Gromlandicum).
The above list doubtless contains only a small portion of the species collected by Mr. Trumbull, but they are all that are specially, recorded. As an illustration of the character and diversity of the haddock's food, I add a list of the species taken from the stomach of a single specimen, from the Boston market, and doubtless canght in Massachussetts Bay, September, 1871.

## GASTROPODS.

Natica clausa.
Margarita Gromlandica.

## LAMELIIBRANCHS.

Leda tenuisulcata.
Nucula proxima.
Nucula temuis.
Crenella glandula.

## ECIIINODERMS.

Psolus phantapus. ${ }^{\text {. }}$
Lophothuria Fabricii.
In addition to these there were fragments of shrimp, probably Pandalus anmulicornis, and numerous Annelids, too much digested for identification.
Pollachius carbonarius Bon. Pollock.
A species of Thysanapoda and one or two species of Mysis serve as food for the pollock about Eastport, Me. These crustaceans go under the general name of "shrimp" among the fishermen, and swim together in large schools. A. E. Verrill, 1871.

Phycis tenuis DeKay. Hake.
Feeds largely on worms, crustaceans (Pandali, \&c.), and mollusks, frequenting muddy bottoms. A. E. Verrill, Eastport, Me., 1871. Anarrhickas lupus Linn. Wolf-fish.

This species is said to feed on the sea herring (Clupea elongata), but in two specimens examined at Eastport, Me., in 1871, no traces of herrings were found. The stomach of one specimen contained about four quarts of sea-urchins (Strongylocentrotus Jröbachiensis), a part of them entire, and all with the spines on. The other contained a mixture of the same sea-urchin and Buccinum undatum. A. E. Verrill, 1871.
Batrachus tau Linn. Toadfish.
Several specimens examined at Great Egg Harbor, New Jersey, April, 1871, contained young edible crabs, Callinectes hastatus of various sizes up to those with the carapax two inches broad; slrimp, Crangon vulgaris ; prawn, Palamonetes vulyaris ; Ilyanassa obsoleta; various fishes, especially the pipe fish, Syngnathus Peckianus ; and the anchovy, Engraulis vittatus.

A specimen caught at Wood's Holl, in July, contained the common rock-crab, Cancer irroratus.
Oyclopterus lumpus Linn. Lumpfish.
In the rivers near Eastport, Me., specimens taken in connection with herring had been feeding upon the latter fish. A. E. Verrill, 1871. Prionotus Carolinus Cuv. \& Val. Sea Robin.
A specimen caught at Wood's Holl, May 27, contained shrimp, Crangon vulgaris; and a small flounder.

Another caught May 29, contained Amphipod Crustacea, Anomyx (?), sp.; and Crangon vulgaris.

Specimens dredged in Vineyard Sound, in August, contained mudcrabs, Panopeus Sayi ; rock-crabs, Cancer irroratus ; and several small fishes.
Sebastes marinus Liutken. Redfish; Red Perch.
At Eastport, Me., the red perch feeds upon a species of Thysanopoda, and one or two species of Mysis, which swim together in large schools, and are called "shrimp" by the fishermen. A. E. Verrill, 1871.
Tautoga onitis Gthr. Tautog; Blackfish.
Specimens caught at Wood's Holl, May 23, contained the common rock-crab, Cancer irroratus; hermit-crabs, Eupagurus longicarpus; shells, Tritia trivittata, all crushed.

Others caught May 26 contained Eupagurus pollicaris; E. longicar. pus ; the barnacle, Balanus crenatus ; the squid, Loligo Pealii; Iritia trivittata. Others taken May 29 had Cancer irroratas; mud-crabs, Panopeus depressus; lady-crabs, Platyonichus ocellatus; shells, Tritia trivittata, Crepidula fornicata, Argina pexata, and the scollop, Pecten ir. radians; barnacles, Balanus crenatus, all well broken up.

Another taken May 31 contained Platyonichus ocellatus; Tritia trivit. tata.

Others taken June 3 contained the mud-crab, Panopeus depressus; triangular crab, Pelia mutica; Crcpidula unguiformis; Triforis nigrocinctus ; the common mussel, Mytilus edulis ; and the "horse-mussel," Modiola modiolus.

Another, on Juwe 10, coutained the common rock-crab, Cancer irroratus; mud-crab, Panopeus Sayi ; Nucula proxima; several ascidians, Cynthia partita and Leptoclinum allidum.
Two caught July 8 and 15 contained small lobsters, Homarus Ameri. canus ; Crepidula fornicata ; Bittium nigrum ; a brsozoan, Crisia eburnea ; sand-dollars, Echinarachnius parma.

A specimen caught in August contained long.clams, Mya arenaria; muscles, Mytilus edulis ; Petricola pholadiformis.
Xiphias gladius Linn. Swordfish.
One specimen contained mackerel (Scomber scombrus), and butterfish (Paronotus triacanthus). Wood's Holl, Mass., 1871 ; E. Palmer.
Sarda pelamys Cuv. Bonito.
Specimens taken at Wood's Holl, in August, contained au abundance of shrimp, Crangon vulgaris, scup, and occasionally fragments of fish and bones. Out of eighty-two individuals examined at one time, nearly every one was empty. Shiners seemed to form their common food. Wood's Holl, 1871 ; E. Palmer.
Scomber scombrus Linn. Mackerel.
Specimens taken July 18, 20 miles south of No Man's Land, contained shrimps, Thysanopoda, sp. ; larral crabs in the zoëa and megalops stages of development; young of hermit-crabs; soung of lady-crabs, Platyonichus ocellatus; young of two undetermined Macroura; numerous small Copepod Crustacea ; numerous shells of a Pteropod, Spirialis Gouldii.

## Orcynus thunnina. Small Tunny.

One specimen caught at Wood's Holl, in Augnst, contained eleven squids, Loligo Pealii.
Often contained small fragments of fish and sea-grass (Zostera). Wood's Holl, 1871; E. Palmer.
Cybium regale Cuv. \& Val. Cero.
Stomachs often contained fine particles of fish. Wool's Holl, 1871; E. Palmer.

Palinurichthys perciformis Gill. Rudderfish.
A specimen caught at Wood's Holl, in August, contained a small Squilla empusa; young squids, Loligo Pealii; Butterfish, and several other young slender fish. Wood's Holl, 1871 ; E. Palmer.
Cynoscion regalis Gill. Weakfish; Squeteague.
Sereral caught in seines at Great Egg Harbor, New Jersey, April, 1871, with menhaden, \&c., contained large quantities of shrimp, Crangon vulgaris, unmixed with other food.

Specimens taken at Wood's Holl, in July, often contained sand.crabs, Platyonichus ocellatus; and very frequently squids, Loligo Pealii.

August 8.-Nearly every one of teu specimens opened contained six scup (Stenotomus argyrops); one had a herring (Clupea clongata).

August 11.-Twenty specimens contained on an average about five scup each. Some were empty, while others had as many as nine. One or two squid were found.

August 12.-Twenty-five specimens examined contained ou an average about four scup each; a few shiners, butterfish (Poronotus triacanthus), and squid were also found.

August 14.-Twenty specimens opened; of these one or two were empty, and the remainder had on an arerage about three scup each, without other kinds of food.

August 15.-Of fifteen squeteague examined, three had empty stomachs, and the remainder were more or less full of scup; a butterfish was found in one stomach.
August 16.-Out of teu specimens examined two were empty, and eight had a total of twenty-five scup.

August 19.-Ten squeteague opened contained a total of thirty-mine scup and six butterfish. One had nine scup in his stomach.
August 21.-Of forty specimens opened nearly all had more or less scup, with a few butterfish and squid.

September $\xlongequal{2}$-One squeteague had six butterfish; another a scup, with eel-grass (Zostera) ; another cel-grass only.

September 6. One specimen contained three butterfish, two scup, and two dotted sead (Decapterus punctatus).

September 15.-One specimen contained a sand-crab and a bluefish (Pomatomus saltatrix).

September 18.-Ten stomachs opened contained three specimens of Tracurops crumenopthalmus, three butterfish, three scup, and one squid.

September 26.-One stomach contained three butterfish, one herring, one eel (Anguilla Bostoniensis), and three pisquetos (Paratractus?).
Menticirrus nebulosrus Gill. Kingfish.
Four specimens taken in seines at Great Egg Harhor, April, 1871, contained only shrimp, Crangon vulgaris.

Others taken at Wood's Holl, May 29, were filled with Crangon vul. garis.

Specimens takeu in July contained rock-crabs, Cancer irroratus; and squids, Loligo Pealii.
Stenotomus argyrops Gill. Scup ; Porgee.
Forty young specimens, one year old, taken at Wood's Holl in August, contained large numbers of Amphipod Crustacea, among which were Unciola irrorata, Ampelisea, sp., \&c.; several small mud-crabs, Panopeus depressus; Idotea irrorata ; Nereis virens, and numerons other Annelids of several species, too much digested for identification.

Other specimens, opened at various times, show that this fish is a very general feeder, eating all kinds of small Crustacea, Annelids, bivalve and univalve mollusks, \&c.
Centropristis fuscus. Black Bass; Sea Bass.
Specimens caught in Vineyard Sound, June 10, contained the common crab, Cancer irroratus; the mud-crab, Panopeus Sayi; three species of fishes.

Another, caught May 25, contained a squid, Loligo pallida.
July 27.-Ten specimens were opened and found to contain scup (Stenotomus argyrops) and squeteague (Cynoscion regalis).

September 5.-One specimen contained two butterfish (Poronotus tria. canthus) and two chogsets (Tautogolabrus adspersus).
Roccus lineatus Gill. Striped Bass; Rockfish, or "Rock."
At Great Egg Harbor, New Jersey, hpril, 1871, several specimens, freshly caught in seines, with menhaden, \&c., contained Orangon vulgaris (shrimp) in large quantities.

A specimen caught at Wood's Holl, July 22, 1872, contained a large mass of "sea-cabbage," Olva latissima, and the remains of a smal ${ }_{1}$ fish.

Specimens taken at Wood's Holl, August, 1871, contained crabs, Cancer irroratus; and lobsters, Homarus americanus.
Morone americana Gill. White Perch.
Numerous specimens caught with the preceding at Great Egg Harbor, New Jersey, contained Crangon vulgaris.
Pomatomus saltatrix Gill. Bluefish; Horse-mackerel.
Specimens çaught at Wood's Holl, in August, frequently contained squids, Loligo Pealii; also various fishes.

Off Fire Island, Long Island, August, 1870, Mr. S. I. Smith saw bluefishes feeding eagerly on the free-swimming males (heteronereis) of Nereis limbata, (p. 318,) which was then very abundant.
Fundulus pisculentus Cav. \& Val. Minnow.
Specimens caught in July, at Wood's Holl, contained large numbers of Melampus bidentatus, unmixed with other food.
Clupea elongata LeS. Sea Herring
Specimens taken in Vineyard Sound, May 20, contained several shrimp, Crangon vulgaris, about 1.5 inches long; Mysis americana, and large numbers of an Amphipod, Gammarus natator; also small fishes.

At Eastport, Me., and Grand Manan, the principal, if not the only, food of the herring in summer is a species of Thysanopoda, and one or two species of Mysis. These species are associated together, and more in large schools; they are known among the fishermer as shrimp. The food of the herring caught ont in the bay by means of seines, and of those trapped in the weirs in the harbor, was of the same character for both. A. E. Verrill, 1871.

Alosa sapidissima Storer. Shad.
Several specimens taken in the seines, at Great Egg Harbor, April, 1871, contained finely-divided fragments of numerous Crustacea, among which were shrimp, Mysis americana.
Several from the mouth of the Connecticut River, May, 1872, contained fragments of small Crustacea, (Mysis, \&c.).
Pomolobus mediocris Gill. Hickory Shad.
Several specimens taken in the seines at Great Egg Harbor, April, 1872, contained large quantities of fragmentary Crustacea; one contained recognizable fragments of shrimp, Crangon vulgaris.
Brevoortia tyrannus (Latrobe) Goode. Menhaden.
A large number of specimeus freshly caught in seines at Great Egg Harbor, April, 1871, were examined, and all were found to have their stomachs filled with large quantities of dark mud. They undoubtedls swallow this mud for the sake of the microscopic animal and vegetable organisms that it contains. Their complicated and capacious digestive apparatus seems well adapted for this crude and bulky food.
Raia diaphana Mitch. Common Skate; "Summer Skate."
A specimen taken at Wood's Holl, May 14, contained rock-crabs, Cancer irroratus; a young skate; a long sleuder fish (Ammodytes?). Another, caught in July, contained Cancer irroratus.
Raia layis (?) Mitch. Peaked-nose Skate.
Specimens caught in Vineyard Sound, May 14, contained numerous shrimps, Crangonvulgaris; several Conilera concharum; several Annelids, among them Nephthys ingens; Meckelia ingens; two specimens of Phascolosoma Gouldii; razor-shells, Ensatella Americana (the "foot" only, of many specimens); a small fish, Ctenolabrus burgall. Specimens taken at Menemsha, in July, contained large numbers of crabs, Cancer irroratus; and of lobsters, Homarus americanus.
Trygon centrura Gill. Sting-ray.
Specimens caught at Wood's Holl, in July and August, contained large numbers of crabs, Cancer irroratus; squids, Loligo Pealii; clams, Mya arenaria; Lunatia heros.
Myliobatis Freminvillei Les. Long-tailed Sting-ray.
Specimens taken in Vineyard Sound, in July, contained an abundance of lobsters, Homarus americanus; crabs, Cancer irroratus; also clams, Mya arenaria; and Lunatia heros.
Pteroplatea maclura Miill. \& Henle. Butterfly Ray.
One specimen examined contained menhaden (Brevoortia tyrannus Goode). Wood's Holl, 1871. E. Palmer.
Eulamia obscura Gill. Dusky Shark.
Several specimeus caught at Wood's Holl, in July and Angust, contained lobsters, Homarus americanus; rock-crabs, Cancer irroratus.

One specimen contained a flat-fish, in the stomach of which were starfish and clam-shells. The common ray is often the food of this species
as is also the bonito, as many as three of the latter being sometimes found in the stomach of a single individual. Other animals that serve as food are the herring, horse-mackerel, skate's eggs, crabs, and lobsters. Wood's Holl, Mass., 1871. E. Palmer.
Eulamia Milberti Gill. Blue Shark.
A large specimen caught at Wood's Holl, in August, contained a quantity of small bivalve shells, Yoldia sapotilla.
The common food of this species was the squeteague (Cynoscion regatis), and the bonito (Sarda pelamys). One individual contained a fivepound mackerel; another had a large codfish hook and piece of line. Scup, the common skate, sea bass, and a small shell (Yoldia sapotilla), also served as food. Three bonitos were often found in a single specimen. Wood's Holl, 1871. E. Palmer.
Galeocerdo tigrinus Müll. \& Henle. Tiger Shark.
Specimens caught at Wood's Holl, in August, contained large univalve shells, Buccinum undatum and Lunatia heros.

One contained a quantity of pork in large pieces, while others had fed upon sea turtle, the common ray, sting-ray, bluefish, dogfish; quantities of feathers and eel-grass were also fomed in the stomachs of this species. Wood's Holl, 1871. E. Palmer.
Mustelus canis De Kay. Dogfish.
Several specimens caught at Wood's Holl, in August, contained lobsters, Homarus americanus ; spider-crabs, Lilinia canaliculata; rockcrabs, Cancer irroratus; Tautog (Tautoga onitis); and butterfish (Poronotus triacanthus). Wood's Holl, 1871. E. Palmer.
Eugomphodus bittoralis Gill. Sand Shark.
Many specimens taken at Wood's Holl, in July and August, contained lobsters, Homarus americanus, in abundance; Cancer irroratus; and squids, Loligo Pealii.

Also menhaden, Brevoortia tyrannus; eels; and common flounder. E. Palmer, 1871.
Squalus americanus.
Specimens taken in the rivers near Eastport, Me., in 1871, associated with herring, were full of the latter fish. A. E. Verrill, 1871.

A Gephyrean worm is often used for bait by the fishermen on some parts of the coast of Maine. It has not been well described but it is apparently the Holothuria chrysacanthophora of Couthouy and the Echiurus chrysacanthophorus of Pourtales. It has been generally considered a rare species, aud specimens of it are uncommon in museums. At Harpswell the fishermen sometimes dig it in immense quantities. It lives in the mud, just above the low-water mark, and is'as readily obtained as clams. It is used in catching several species of fishes, but is specially desirable for hake. Its irregularity of occurrence seems to be the only reason why it should not be more extensively employed.
B.-Biographical notices of the most important species.

As already explained, our knowledge of the habits of the sea-fishes of America is very imperfect for various reasons, chief among which is, of course, their concealment from notice during the greater portion of their existence. We are even far from the knowledge of what species actually occur on our shores; many kinds coming to notice only at rare intervals, or under circumstances when the intelligent observer and naturalist fail to encounter them. Comparatively few species are readily, if ever, taken with the hook, or eren the seine, and it is only since the more recent introduction of traps, pounds, and weirs, with their wholesale captures, that a fair idea of the geographical distribution of the sea-fishes along the coast has been attained. Even this apparatus fails to reach the outlying deep-sea species; and the beam-trawl and long-line, while constantly adding to the list, will never in all probability entirely complete it. During the summer of 1877 the parties of the U. S. Fish Commission trawled up at various distances off the coast of Massachusetts several species, some new to science, never before known in American waters, and it is probable that additions will be made continually, without exhausting the list.

It is not a little remarkable that fishermen who are continually in contact with fish throughout the year know actually so little about them. To questions as to the food of the various species, the peculiarities of spawning, the size and character of the eggs, the period of development, the history of the young, \&c., a negative answer is usually returned, and it is only occasionally that one more intelligent, or at least more observant, than the rest can be found from whom any satisfactory information can be obtained. It is, however, to be hoped, and indeed to be expected, that the publication of a résumé of our actual knowledge of the luabits and peculiarities of our fishes will call their attention to the subject, and secure their assistance in solviug the many remaining problems.

As already explained, the facts, or probably it will be safer to call them statements until confirmed, here given are to a considerable degree the result of personal observation of members of the U. S. Fish Commission, supplemented and extended by the answers to questions distributed by the Commission. Personal inquiry of wituesses summoned before the Joint Fisheries Commission held at Halifax from June 15 to December 15, 1877, in addition to the testimony elicited on their examination by the counsel and printed with the other evidence, have also added not a little to the mass of facts. Great care, however, requires to be exercised in admitting the statements made on this occasion, as one witness, apparently honest and claiming' to have been a practical fisherman for many years, stated under oath, that the eggs of the mackerel were as large as pease or BB shot, and that they could be hauled up on a book in large masses.

Not much information is to be found in the various publications hitherto made relative to the fish and fisheries of Eastern North America, although some facts of value are contained in the writings of Gilpin, Perley, Ambrose, Storer, and others.*

## C.-RElationships and surroundings.

Fishes considered collectively or by groups.-Although each species of fish on our coasts may be considered as possessing some peculiar habit or combination of habits by which it is distinguished from its fellows, they may be, for convenience of consideration, divided into groups, all the members of which possess certain common peculiarities, having an important bearing upon the methods and times of their pursuit and capture. These relationships are, to some extent interrupted by the reproductive instinct, which canses them to change their ordinary location and to assume new conditions. They are also affected by the exigencies of feeding, of pursuit by other animals or by man, or by the variations in their physical surroundings.

Deferring to a subsequent part of the chapter any consideration of the migrations and movements of the varions species, we may arrange marine fish in certain groups, as follows:
a. The inshore fish, or those found within a short distance (sometimes miles) from the shores. These embrace a great variety of species, generally of small size and finding their harbor and shelter among rocks and stones, sea-weeds, cel-grass, \&c. They are fish that can be taken from beaches, rocks, and wharves, or small boats from the shore, and furnish more occupation and amusement than actual profit in their capture. They are also among those most frequently taken in weirs, pounds, and fykes. Among them may be mentioned various Cyprinodonts, the cunner, the spearing or friar, the young Clupeids, the sea bass, the tautog, the scup, and many other species of less note.

These fish furnish an important article of food, but obtainable only by considerable effort; and being generally of small size, do not yield a very generous return. Some of the species, as the scup, in former years were, however, in such abundance on the south coast of New England that hundreds of pounds could easily be taken in a short time.
b. The offshore fish.-These are species which usually occupy greater depths, and are found at remoter distances from the shore than those first mentioned, being generally found on the banks or clevations in deeper water.

The greater portion of the Gadide or cod family, such as the cod, haddock, hake, \&e., beloug here ; as also the halibut. This group is the most important of our coast-lishes, being usually of large size and occur-

[^7]ring in great numbers, so that a few men, with proper apparatus, can capture a large number of pounds in a day. The salmon and shad may perhaps be included in this group.
c. Pelagic fish.-These consist largely of species belonging or allied to the mackerel family, and, next to the group just mentioned, furnish the most important supply of food. The prominent members of this group are the common mackerel, the bluefish, the menhaden, the swordfish, the bonito, and other kinds. Sometimes members of this group are found hundreds of miles from the land; at others they come close inshore, either in pursuit of food or for purposes of reproduction, when they can be taken from the shores or in nets. They, however, appear to be contiuually on the move, showing more or less at the surface, remaining in proximity to the shore during the warm season, then disappearing during the winter.
d. Deep-sea fish.-This constitutes a group, of which until within a few years very little was known, occasionally being found floating at the surface either dead or dying, or caught at great depth on cod or halibut lines. It is only within a few years, or since the labors of the Challenger and other vessels, provided with apparatus for fishing at great depths, that the number of species has been realized. While some of the fishes belonging to the second section occur not unfrequently at depths of many hundreds of fathoms, such as the cod, halibut, hake, \&c., very few of this fourth group are taken in waters of less than 100 fathoms, and thence to 1,000 and even to 2,900 fathoms, by the Challenger. This group is of little ecomomical value, especially on account of their small size and apparently scant numbers, even apart from the practical difficulty of their capture, although it is not at all impossible that there may be edible species sufficiently large and abundant to be worth pursuing if they were more within reach.

The status of fish in the sea is very largely determined by the question of temperature. This, however, will be considered more definitely under the next head of the migrations and movements of fish as influenced by various causes.

## MIGRATIONS AND MOVEMENTS.

The human race is more concerued in the movements and migrations of fish than in the question of their permanent abode. It is when they are aggregated in large bodies, and moving from place to place, either under the stimulus of search for food or other causes, that they furnish the best opportunity to man for their capture and utilization.
Little is known of the salmon, the shad, the herring, the menhaden, the mackerel, and the bluefish during a large portion of the year; but at certain periods these species collect in large bodies, and by a change of place come within the reach of their relentless parsuer-man. On the other hand, the Gadida, the cod, especially, and the halibut, are within reach throughout the greater part of the year, either on the offshore banks while feeding or inshore when spawning.

The movements and migrations of fish are of two classes; the one irregular and occasional, the other regular. The irregular migrations are such as occur only at long intervals, sometimes altering very materially the industrial and social conditions of maritime countries.

Among the most notable illustrations of irregular migrations, we may cite the case of the bluefish, which during the past century was a wellknown inhabitant of the eastern coast of the United States, occurring in great abundance and of large size. This species appears regularly on our eastern coast in the spring aud leaves in autumn; but some time after the middle of the last century it disappeared entirels, according to the histories of the time, and was not seen during the present century until much of it had passed by, having been absent for a period of about fifty years. Of course it is possible that it may have oceurred in small numbers, but not sufficient to make any impression ; at any rate, on its reappearance in 1825 or 1830 it was entirely new to all the fishermen.

Another case is that of the chub mackerel (Scomber pneumatophorus). This, twenty years ago, was extremely abundant and was taken in large numbers at the same time with the common mackerel; but of which in later years only occasionally individuals have been captured. I have succeeded in securing only one or two specimens since the commencement of the operations of the United States Fish Commission, although every effort has been made to obtain them.

A European member of the mackerel family is extremely capricious in its movements. It is the Caranx trachurus, or the scad, a well-known fish of the Meditcrranean and of the European coast generally. This sometimes sweeps down in immense numbers upon the shores of regions where it was previously unknown, or where it has not been seen for many years; a notable instance of this occurring in 1862, when immense numbers made their appearance on the coast of Bergen and in the Shrange Fiord, furnishing occupation in their capture and preparation to a large population; but scarcely was it at all known except in straggling specimens before or since.*

The causes of these rariations in distribution are entirely unknown; whether the fish have been exterminated by some disease or pestilence (as suggested in the case of the bluefish), \&c., cannot be ascertained. Various changes in the number of herring on the coast of Northern Europe have been of a similar character. These have been more especially important as influencing the condition of the population of Norway and Sweden and other northern countries. On the coast of Sweden herring were formerly in enormous abundance, sustaining a large populatiou along the shores, but have disappeared for decades. It is with the regular migrations of the fishes of our coast that we have at present most to do, and I shall proceed to consider them under several headings.

[^8]The regular migrations of fishes are for the most part dependent, 1 st, on the instinct of reproduction which causes them to seek grounds and regions more suitable to the purpose, especially so far as relates to a safe abode for the young duriug the earlier months of their life; 2 d , the search for food; 3d, the influence of temperature, a most potent factor. A fourth agency is the pursuit of predaceous fishes, although this is generally much more restricted in its operations than the others The pursuit of tish by man has doubtless some effect, but this is exhibited more in a reduction of numbers by actual destruction of parent fish or their eggs and young than by causing a definite change of place.
I have already grouped the marine fishes provisionally according to their relations to the shores and sea-bottom. Their migrationsinvolve a temporary change in their relations, offishore fish coming in to the coast or eveu ascending rivers. We may, however, arrange fish by the migrations and movements into the following groups:
(1) Anadromous fish.-Species passing most of their time in the ocean, and when mature entering and ascending fresh-water rivers and lakes for the purpose of depositing their eggs ; the young fish remaining for more or less time, and then descending to the ocean and there attaining their full growth, probably not going very far from the mouth of the river which they thus descend. The more important species in this connection are as follows:

The Sturgeon (iu part).
The Salmon.
The Smelt.
The Shad.
The Alewife.

The Tailor Shad.
The Gizzard Shad (?).
The Striped Bass (in part).
Various species of Cyprinidæ.
The Lamprey Eel.

A somewhat similar condition occurs entirely in fresh-water, where certain species which spend most of their time in larger or smaller lakes pass at the breeding season into the streams empying therein, to lay their eggs on the gravelly ripples. This is the case with nearly all the Coregoni or whitefish, the landlocked salmon, aud smelt, the Salmo oquassa, or Rangeley trout, the brook trout, \&c. Whether the fish ever descend into an outlet is an interesting problem.

Among the fish of this group we find species of great economical value, embracing as it does some of the finest table-fish, and sometimes in overwhelming abundance. They appear with great regularity in the mouths of rivers, ascending them to their very source, or at least until stopped by some impassable obstruction. They present a great advantage over the sea fishes so far as man is concerned, in the greater facility of capture. This pursuit is prosecuted with little comparative risk and exposure, while any one with a line, or a net of simplest construction, and a small boat, or even from the shore, can secure an abundant supply of food.

S: Mis. $90-4$

It is among th: anadromous fishes that man in a savage or semi-cirilized state finds hị most copious supply of food, depending sometimes almost entirely upon it for subsistence throngh the year, eating it fresh during the run and dried or swoked the rest of the time.

The most prominent fishes; under this head belong more especially to groups of the salmon, the herring, the shad, and the sturgeon. It is in the temperate regions of the northern hemisphere, so far as I am dware, that the anadromous habit is seen in its grand development.

No better illustration of the numbers in which anatromous fish enter the rivers can be given and the extent of diminution of the supply from various causes, hereafter to be referred to, than a presentation of the case as it relates to the Potomac River in the short distance between its mouth and the Great Falls of the Potomac, only twelve miles above Washington. Although, this streteh of water is even now rery productive, ant anuually becoming more and more so, as the result of careful propagation, many rears will elapse, if ever, before it gets up to the measure of yield mentioned by Martin in his Mistory of Virginia,* a work published in 1535. It is proper to say that some old fishermen along the river deny the accuracy of his statements in their detail, but admit that the numbers taken were enormonsly in excess of the present yield. I givé, howerer, the statement, allowing it to speak for itself:
"As Alexandria is the shipping port of the District of Columbia, and one of the principal marts for the immense fisheries of the Potomac, it may be well to mention that in the spring of the year quantities of shad and herrings are taken which may abmar ahmost incredible. The number of shad frequently obtained at a hanl is 4,000 and upwards, and of herrings from 100,000 to 300,000 . In the siming of 1832 there were taken in one seine at one dranght a few more than 950,000 accurately counted. The prosecution of the momerons fisheries gives employment to a large number of laborers, ant afords an opportunity to the poor to lay in, at rery reduced prices, food enough to last their families during the whole year. The shad and herrings of the Potomac are transported by land to all parts of the counti'y to which there is a convenient access from the river, and they are also shipped to various ports in the United States and West Indies. The lowest mrices at which these fish sell when just taken are 25 cents per thousand for herrings and $\$ 1.50$ per hundred for shat, but they generally bring higher prices, often $\$ 1.50$ per thousant for the former and from $8 ;$ to $\$ 4$ per handred for

[^9]the-latter; in the height of the season a single shad weighing from 6 to 8 pounds is sold in the market of the District for 6 cents. Herrings, however, are sometines taken so plentifully that they are giwen away or hauled on the land as mauare for want of purchasers." Some idea may be formed of the importance of these fisheries from the following statement:
Number of fisheries on the Potomac, about........................................... 150
Number of laborers required at the landings. ......................................... 6,500
Number of vessels employed.........-.............................................. . . . 450
Number of men to uavigate these vessels............................................ 1,350
Number of shad taken in good season, which lasts only about six weeks. 22,500,000
Number of herrings under similar circumstances ........................... $750,000,000$
Quantity of salt required to cure the fish .......................................... 995,000
Number of barrels to contain the fish ............................................... 995,000
In further illustration of the former extent of the fresh-water fisheries of the Potomac River, I give an extract from Burnaby's Travels in North America, referring more particularly to the sturgeon, although incidentally to the shad and herring.* At the present day the yield of these fisheries has decreased enormonsly, although enough are left to encourage the hope of a great improvement whenerer the proper means for protection and the artificial propagation of fish are entered upon.

In the year 1873 the shad, herring, and bunch fish canght in the Potomac and sold in the Washington market amounted to $8,541,851$ pounds ; in 1874 the total sales at Alexaudria, Washington, and Georgetown, from the same river, amomited to about $16,122,533$ pounds, a by no means indifferent presentation.
(2) Catadromous fish.-Species of fish which are born in the sea, ascend the rivers and reach their maturity in two to four years, and then, when mature, descend to the ocean to spawn, and possibly never leave it again.

The Eel is the only species to which we can at present assign this peculiar habit.
(3) Inshore fishies, more especially fishes found iushore during the summer season, coming in apparently to breed. They are more or less closely related to the bottom, seldom or never schooling at the

[^10]
## 52

 REPORT OF COMMISSIONER OF FISII AND FISHERIES.surface, and are generally most aboudant within a few miles of the shore. These include a great variety of fishes on the American coast, confined for the most part to the United States and the region south of Cape Cod, which do not enter fresh waters, but are found, during the summer seasou at least, and are most abundant near the shore or on particular spots not far distant.
So fir as we at present know, our information, however, being extremely imperfect, they come in regularly from the deep waters of the ocean, probably from the western edge of the Gulf Stream, in the spring of the year to spawn, remaining until fall. A few, as cunner and tantog, can be fomd at almost ail seasons oif the year. The rest, however, retrace their steps to spend the winters in the warmer depths outside, probably along the edges of the Gulf Stream.

The principal fish of this group are as follows:

Series 1.
The Scup or Porgy,
The Squeteague or Weakfish,
The Sea Bass,
The Sea Robin (Prionoius),
The Tautog,
The Canner,
Certain flat-fish,
The Dogitish and other Sharks.

## Series 2.

The Sheepshead, The Lafayette, The Drum, The Whiting, The Kingfish, The Red Snapper, The Red Bass, The Pompano, The Mullet.

Of these the members of Series 1 are known to come in immense schools in the early spring on the south coast of New England, aud are taken extensively in traps, pounds, and wiers. The morements of Series 2 are less well definert. They make their appearance on the coast in gradually increasiug quantity, although farther south they are found in moderate numbers throughout the whole year.

There are two dogish taken, one, the spinons dog (Acanthias americanus), coming first in cuormous numbers, the livers furnishing a large supply of oil; the other, the smooth dog, succeeding it in smaller numbers. The spiuons dog searcely belongs to this seet ion, as it does not remain inshore during the summer sonth of Cape Cod, although abundant north of it. It might be placed with the pelagic fishes but for not showing at the surface. It, however, appears more in enormous schools along the coast during spring and fall, and is rery obnoxious to the fishermen, as all fishing becomes unproductive whenever the dogfish make their appeamece.

An analogous movement is seen in certain fishes of the Great Lakes, as the salmon or lake trout, whitefish, \&e., which, while residing for the greater part of the year in the deep waters where they are more or less undisturbed, during the spawning season (in the autumn) come inshore, especially the whitefish, and are taken in immense unmbers by
the traps and pounds. The white fish exhibit a very decided tendency to enter the mouths of rivers on this occasion, especially in Lake Superior and Hudson Bay. Detroit River is an especially favorite spawn-ing-ground. Indeed, the whitefish might with eminent propriety be classed among the anadromons fish of the fresh waters, like the landlocked salmon, the blue-back tront of Rangeley Lake, \&c. The spawning along the shores of lakes at all may be due to their being barred out from the rivers by artificial or other obstructious.

We may possibly place in this schedule the Capelin (Mfollotus villosus), which is exclusively uorthern, and the Tomcod, although the latter sometimes enters fresh water to spawu, aud may almost be cutitled to a position in the first division, perhaps near the smelt.
(4) Offshore fish.-Not schooling at the surface; usually spawning in the deep seas, for the most part during the late autumn or winter, though generally resorting to rocks and bauks, and sometimes near the shore for the purpose; never swimming at the surface, and their presence only to be determined by actual capture. During the winter they range considerably farther south than in summer. Of these may be mentioned the cod, the hake, the haddock, and most other Gadide except the pollock. The pollock, belonging to the cod family, is more of a surface fish, and is very often seen swimming or schooling uear the top of the water. In some respects the halibat belongs in this division.
(5) Pelagic or wandering fish.-Usually surface swimmers, and for the most part regular migrants in large bauds or schools from north to south in autumn and from south to north in spring; not at all regular, however, in their movements, and sometimes, for one cause or another, disappearing gradually or stiddenly from a certain region, not to return again until the lapse of many years. Some, as the herring, the bluefish, and the menhaden, are autumn and winter spawners; the others lay their eggs, as far as we know, in summer or spring. It is among the fish of this group that we find, with the exception of the Gallida, the most important of all the sea fish in the entire northern hemisphere, whether we consider the number of fish taken, their excellence and high price, or the amount of capital and number of hands employed in their capture. They belong almost exclasively to the Clupeida (the herring family) or to the Scombridae (the mackerel family). Two species of the former group, the shad and the alewife, have been fully considered under the first head, while no species of the second family belong elsewhere. The principal species are the following:

The Sea Herring.
The Menhaden or Pogy.
The Common Mackerel.
The Chub Mackerel.
The Spanish Mackerel.

The Cero.
The Bonito.
The Tunny or Horse Mackerel.
The Swordfish.
The Bluefish.
(6) Decp-sea fish.-We have already referred to this group under the head of relationships. How far they can be considered as migrants is
to be ascertained. It is probable that they change their locations but seldom, living as they do at, great depth, where the prevailing low temperature ( $30^{\circ}$ to perhaps $45^{\circ}$ ) is thought to vary but little.

Until within a few years little has been knomn of this group, the researches of the Challenger having been principally instrumental in showing its extent, rariety, and the remarkable peculiarities of its different members. Many species hare also been revealed to us by the contributions of the Gloncester fishermen to the U. S. Fish Commission.

Probably the ouly important factor in influencing the change of situation in this group of fishes is the search for food or the pursuit by fellow fish, cephalopods, \&c.

In addition to the regular, periodical, or occasional movements of fish just referred to, there are cases in which the change of location is not so easily explained. Among these may be mentioned the selection of a fresh-water abole by species which are generally exclusively marine, and rice versa. Of course, the clange in anadromous fishes is intelligible; but why such fishes as the sawfish, shark (Pristis), the sting-ray, and quite a number of other kinds should live and apparently thrive in fresh water, is not so easils understood. Other species are found up rivers to a considerable distance from their mouths beyond the brackish portion.

Hibernation.-Another subject which may be considered in connection with that of migration and movements is that of hibernation.

Many fresh-water fishes, such as carp and others, are known to bury themselves in the mud, either partially or entirely, during the cold weather, and to remain there until the warm season of the year. This is also the case to a greater or less extent with the cels, both in fresh water and on the coast. To what extent other kinds of strictly marine fish exhibit the same habit is at preseut difficult to determine. The disappearance from our coast daring the winter season of the mackerel, menhaden, and some other species has given rise to the belief by some that they bury themselves in the mad at suitable places off the coast. Indeed, there are not wanting statements to the eftect that mackerel have been speared in the mud by persons who were attempting to capture eels in this well-known methed. Some of these instances appear to be fairly well substantiated; but whether they represent anything like a permanent condition it is now difficult to sas. Those who beliere in the libernation of mackerel point to the existence of a film over the eye on the first appearance of this fish in the spring, which they suppose to be the result of the long exclusion of light or of contact witin the mud, this film going away in the course of the summer.
The sturgeon is believed to be a hibernating fish to some extent.
Having thas considered the better marked movements of fishes uider their different heads, I now propose briefly to consider the causes of such movements so far as we can understand them.

Physical causes.-The more regular changes of position with the
seasons are caused by the reproductive instinct, by conditions of temperature, and by search for food. They are also to a less degree affected by the pursuit of predaceous fish and other fellow occupants of the ocean and by the action of man.

Temperature of the water.-The most important of these agencies is probably that of temperature; since while there are certain species that appear to be quite insensille to considerable variations in this respect, the distribution of others is largely dependent upon the degree of heat in the water. Certain fishes, such as the cod and herring, are to be taken ouly in cold water, the herring usually at a temperature not exceeding 500 to $55^{\circ}$; the cod at a still lower degree. This relationship has an important bearing upon the herriug fisheries; since, when the heat of the surface water is above the degree indicated, herring are seldom seen; as this decreases they make their appearance. This is so well established that now the herring fishery on the coast of Scotland is largely regulated by the temperature observed, and when it is decidedly above $55^{\circ}$ the herring are not looked for.
On the coast of the United States there are two well-defined regions, one bounded to the south by Cape Cod and the other having this boundary as its northeastern limit. A few stragglers may be found occasionally on either side; but practically the cape constitutes the boundary line.

As a general rule the winter temperature of the ocean at different points along the New England coast is about the same, the surface water as well as that at the bottom showing the minimum degree down to absolute freezing. During this season, therefore, all the more delicate fish leave either to go south or off the shore until they find the temperature they require; possibly, however, not until they reach the edge of the Gulf Stream. The summer temperatures, however, vary extremely, and these variations are accompanied by the presence or absence of fish of different kinds. On the south side of New England the warmest temperatures observed were in Peconic Bay, where, in Augist, 1874, the bottom temperature was from $71^{\circ}$ to $721_{2}$, the surface temperature in one instance being as high as $74^{\circ}$. Here the same southern types of marine animals were predominant.

At Wood's Holl, in 1873, the meau temperature at the bottom in June was $61.7^{\circ}$, and in July $69.5^{\circ}$, and in August $70^{\circ}$; or an average of $67^{\circ}$. The surface was sometimes a few degrees higler.
Elsewhere on the south side of New England the bottom temperature ranged from $61^{\circ}$ to $65^{\circ}$ off the coast of Connecticut, in fiom 4 to 20 fathoms; in rather deeper water from 58.50 to $64^{\circ}$. Off Cox's Ledge it was $50^{\circ}$ at 52 fathoms in August, aut off several miles northwest of Block Island it was $45.5^{\circ}$ at 47 fathoms, this being accompanied by a somewhat different fauna. In geucral, we may say that south of Cape Cod, while the inshore surface of the water during midsummer ranges from $62^{\circ}$ to $70^{\circ}$, at a greater distance outward, up to perhaps fifteen or twenty miles, it ranges from $6 \mathrm{H}^{\circ}$ to $68^{\circ}$, and that at the bottom, inside
the northern current that sweeps around the outside of Cape Cod and No Man's Land and into Fisher's Sound, the temperature inshore ranges from $61^{\circ}$ to $70^{\circ}$; more offshore, it ranges from $60^{\circ}$ to $64^{\circ}$. But in the colder water about Cox's Ledge and off Block Island and in certain parts of Fisher's Sound, it ranges from $45^{\circ}$ to about $50^{\circ}$.
at Portland there is quite a different condition. The maximum temperature was observed inside of Casco Bay, where the range was from $57^{\circ}$ to $65^{\circ}$, and outside from $50^{\circ}$ to $59^{\circ}$. The bottom temperatures during the summer inshore were from $54^{\circ}$ to $56^{\circ}$, and in the deeper waters of Casco Bay from $45^{\circ}$ to $49^{\circ}$. Farther east and in the Bay of Fundy still lower degrees are shown.

The following table of temperatures actually observed along the coast at different times of year will be of interest. It is compiled from ob. servations made by the U.S. Signal Service as a matter of special cooperation with the work of the U. S. Fish Commission.

Absolute highest and lowest temperature of water at the bottom at $3 p$. m. during the year ending February 28, 1877.

| Place of observation. | Spring. |  |  |  | Summer. |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Highest. |  | Lowest. |  | Highest. |  | Lowest. |  |
|  | Date. | Tomp. | Date. | Temp. | Date. | Temp: | Date. | Temp. |
| Indianola, Tex. | Apr. 23 | 78.0 | Mar. 21 | 57.0 |  |  |  |  |
| Galreston, Tex | Apr. 30 | 79.0 | Apr. ${ }^{2}$ | 62.0 |  |  |  |  |
| Mobile, Ala -...- | May ${ }^{4}$ | 68.0 87.0 | Mar. 22 | 54.0 67.0 | July 20 | 88.0 93.0 | June-10 | 79.0 |
| Key West, Fla. | May 3 | 84.8 | 31 y 24 | 57.0 | June 24 | 90.0 | Aug. 22 | 76.6 |
| Jacksonville, F | May ${ }^{23}$ | 84.0 | Mar. 21 | 62.0 | July 14 | 90.0 | Juno 12 | 81.0 |
| Savannah, Ga. | May 30 | 73.0 | Mar. 22 | 53.0 | Aug. 20 | 86.0 | June 15 | 69.0 |
| Charleston, S. C | May 30 | 77.0 | Mar. 23 | 54.0 | Ang. 20 | 88.0 | June 15 | 75.5 |
| Wilmington, N . | May 29 | 76. 0 | Mar. 3 | 51.0 | July 19 | 87.0 | June 10 | 74.0 |
| Norfolk, Va.- | May 30 | 73.5 | Mar. ${ }^{4}$ | 44.0 |  |  | Aug. 27 | 70.0 |
| Baltimore, Md. | May 28 | 71.0 | Mar. 3 | 38.0 | Tuly 11 | 86.0 | June 1 | 72.0 |
| New York, N. Y | May 29 | 58.0 | Mar. 1 | 32.0 | July 20 | 75.0 | Juno 1 | 55.0 |
| Now London, Con | May 30 | 57.0 | Mar. 2 | 34.5 | Aug. 13 | 76.0 | Juno 1 | 54.0 |
| Wood's Holl, Mass | May 28 | 57.0 | Mar. 1 | 30.0 | July 6 | 76.0 | June 1 | 58.0 |
| Portland, Me | May 30 | 50.0 | Mar. ${ }^{1}$ | 31.5 | Aug. 15 | 64.0 | June ${ }^{\mathbf{6}}$ | 49.5 |
| Eastport, Me | May 31 | 40.5 | Mar. 18 | 31.0 | Aug. 15 | 51.0 | June 9 | 40.0 |
| Place of observation. | Autumn. |  |  |  | Winter. |  |  |  |
|  | Highest. |  | Lowest. |  | Highest. |  | Lowest. |  |
|  | Date. | Temp. | Date. | Temp. | Date. | Temp. | Date. | Temp. |
| Indianoia, Tex.............. |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
| Mobile, Ala | Sept. 5 | 88.0 | Nov. 1 | 57.0 | Dec. 1 | 55.0 | Jan. 9 | 40.0 |
| Punta Rassa. Fla | Sept. 2 | 91.5 | Nov. 26 | 68.0 | Jan. 23 | 76.5 | Dec. 5 | 52.5 |
| Key West, Fla- | Sept. 1 | 89.0 | Nor. 11 | 65.0 | Dec. 24 | 84.0 | Dec. ${ }^{6}$ | 45. 0 |
| , Jacksonville, Fla | Sept. 2 | 89.0 | Nov. 11 | 64.0 | Jan. 29 | 64.0 | Dec. 7 | 45.0 |
| Savannah, Ga. | Sept. ${ }^{2}$ | 87.0 | Nov. 27 | 52.0 | Jan. 21 | 58.0 | Jan. 5 | 37.0 |
| Charleston, S. C | Sept. 3 | 84.0 | Nov. 26 | 55.0 | Feb. ${ }^{3}$ | 55.0 | Jan. 1 | 42.5 |
| Wilmington, N | Sept. 1 | 83.0 | Nov. 29 | 51.0 | Jan. 22 | 51.0 | Jan. 4 | 35.0 |
| Norfolk, $\nabla$ a. | Sept. 1 | 80.0 | Nov. 29 | 46.5 | Dec. 1 | 45.0 |  |  |
| Baltimore, Md | Sept. 1 | $7{ }^{7} .0$ | Nov. 30 | 45.0 | Dec. 1 | 45.0 |  |  |
| New York, N. Y | Sept. 1 | 72.0 | Nor. 30 | 39.0 | Dec. 1 | 38.0 |  |  |
| New London, Con | Sept. 1 | 72.0 | Nov. 30 | 46.5 | Dec. 1 | 45.0 | Jan. 6 | 33.5 |
| Wood's Holl, Ma | Sept. 1 | 70.0 | Nov. 30 | 39.0 | Dec. 1 | 38.0 | Jan. 1 | 29.0 |
| Portland, Me | Sept. 2 | 58.0 | Nov. 26 | 41.0 | Dec. 6 | 42.0 | Jan. 16 | 290 |
| Eastport, Me | Sept. 29 | 51.5 | Nor. 26 | 43.5 | Dec. - 1 | 43.5 | Dec. 26 | 27.0 |

The capture during the summer and autumn of fishes of the southern coast as far east as Long Island Sound, Vineyard Sound, and Buzzard's Bay, is not a matter of surprise.
The influence of temperature upon the movements of fishes, as already stated, is seen both in different parts of the coast and at different altitudes in the same region.

Oceanic currents also have more or less influence upon the distribution of fishes. This, however, depends more upon the pursuit by them of the less independent algæ, jelly-fish, crustaceans, ascidians, \&e., that float hither and thither with the tide.

The apparent clearness of the water is also a factor in this consideration, various species preferring one extreme or the other, and coming inshore or near the surface with this variation.

The temperature of the atmosphere probably influences the movements of fish only so far as it affects the temperature of the water itself, the surface strata being, of course, heated or cooled rery readily with variation of the air in this respect. The clearness of the sky and the consequent amount of light has a very decided influence on some fishes, especially the pelagic species, invertebrates too being affected in a similar manner. A bright sumny day will frequently call up forms that are never scen at any other time, while others again only approach the surface on clondy days or even in the night exclusively. The action of the winds of the ocean is also to be considered in this connection, although possibly more is due to local currents as affecting the water than anything clse. It is not impossible that variation in temperature may have great influence upon some fishes provided with air-bladders, by which the depth of immersion can be conveniently graduated.

In what way the influeuce of aerial currents or winds are felt by fish is difficult to say. Von Frieden, however, as the result of a comparison between the actual catches of herring by the German fishermen and the records of the corresponding days and hours, has come to the conclusion (Circulaire des Deutschen Fischerei-Vereins, 1874, p. 200) that the best results always followed with the wind from the northwest, and that generally northern winds were better than sonthern, and western better than eastern.

The reproductive instinct.-It is under the stimulus of the reproductive instinct that many of the more notable movements of fish take place, although by what prescience they are enabled to understand that the interests of their progeny require a change of abode, and especially from salt water to fresh, it is, of course, impossible to explain. The anadromous morements, or the ascent of rivers ly salmon, shad, and fresh-water herring, \&cc., all in countless myriads, and with almost unerring regularity, are notable examples. It was formerly supposed that these fish mored in great bodies along our coast, sending off detachments into the mouths of the rivers as they went by. The more rational hypothesis now is that they live.in the deeper waters of the sea
in nearly the same latitude as the months of the rivers 112 which they were born, and return to them at the proper season. The young remain in the fresh water for a time, the period rarying with the species, after which they also follow their parents in their return to the sea.
The movements of what we had previously designated as inshore and pelagic fish are also largely conuceted with the same reproductive instinct, and even the fishes of the Banks illustrate it to a greater or less degree.

SEARCH FOR FOOD.-Next, perhaps, to the influence of reproduction comes the search for food as influencing the migration and movements of fishes, certain species of fishes following up particular forms of other fishes, the attempts of which to escape fall under the same category; or of the lower anmals, as they are carried almost unresistingly by winds and currents in varions directions. A notable illustration of this is seen in the herring.

Professor Möbius, in investigating the food of the herring in the German seas, found that a certain copepod shrimp, one of the Entomostraca (Temora longicornis), was more eagerly sought after than anything else; this being so minnte, homever, that 18,000 were taken from the stomach of one herring and 60,000 from that of another.*

Professor Möbins thinks that the coinb-like fringes attached to the gills of the herring serve as tangles in capturing these shrimps, precisely as do the similar apparatus of the basking shark and the whalebone of the thate. These specimens were obtained in February of 1872, when both the shrimp and the herring were in exceptional abundance; and he subsequently observes that the same relations were found continualls, the abundance of the herring being in strict proportion to that of the shrimp. $\dagger$

The chain of comection does not cease in the relation between the Temore or shrimp and the herring. A great variety of sea birds, gulls, gannets, \&e., follow up the herring, as also numerous mackerel, tunnies, blackfish, swordfish, and even whales and porpoises, which derour the herring in comtless mumbers. The movements of the capelin in the North Atlantic influence very largely those of the cod and other species, as when the former come into the shores of Newfoundland and elsewhere in immense numbers to deposit their eggs on the beach, the cod, \&ce, follow, and are then captured within a very short distance of the shore.

Driven by enemies.- $A$ notakle instance of these relationships is seen in the menhaden and the bluetish. The meuhaden, in its morements along the coast, is very frequently accompanied by vast schools of blnefish, which, as already explained in a previous report, probably destroy more menhadeu in a day than are taken by man in a whole sea-

[^11]son's fishing. This is not unfrequently illustrated in the driving ashore of the menhaden by the blucfish in immense masses, while the bluefish themselves in their ardent pursuit are stranded at the same time. A similar pursuit of the mackerel by the bluefish is often noticed. The bluefish themselves are, by an act of retributive justice, pursued and driven ashore by schools of porpoises and horse mackerel or tunnies.

Human agencies.-The influence exerted by man in determining the abundance or the movements of fishes, apart from their actual capture, is manifested in various ways, although more particularly in the case of the anadromous fishes than any other. Whenever any impassable obstructiou is laid across a river, ascended by anadromous species, as shad, salmon, \&c., for the purpose of reproductiou, the exclusion from their breeding grounds has very soon a marked effect. Usually, for the first two or three years not much difference is appreciable, as these species require three or four years to mature after passing down the river before they return to their starting point. There will therefore be three years of successive returns of schools, and after that there will be no young fish to keep up the supply, which will be coufined to the older individuals returning in the vain attempt to find spawning beds. At the expiration of six or eight years the supply will probably cease entirely, and there will be no further run in the river. In this event the remedy is the removal of the obstructions by taking down the dams or barriers, or introducing a fishway, and planting the young fish above the former obstruction; at the end of three or four years the mature individuals will make their appearance again.

Nets constitute an obstruction of less moment than dams, since they are of temporary application and constantly liable to be torn or destroyed by the elements, or removed by legal enactments.

The disappearance of fishes to a greater or less degree from certain localities has frequently been ascribed to such agencies as the sound from the paddles of steamboats, the firing of cannon, \&c. How far this is of any moment remains to be seen. A variation in abundance of fish is not unfrequently caused indirectly by man in destroying or fostering predaceous species. It has not unfrequently happened that one species of fish has greatly multiplied in consequence of the capture by man of some special enemy. There is no doubt whatever that the number of bluefish caught during the summer season for market purposes permits a vast increase in the number of menhaden, scup, sea bass, and other fishes which would otherwise be devoured.

Many such cases could readily be adduced, and suggest extreme caution in the adoption of measures for protecting certain fishes from natural enemies, without a careful inquiry as to the possibility of indirect results not anticipated. A noticeable instance has been furnished by Mr. Whitcher, the distinguished commissioner of fish and fisheries of the Dominion of Canada.

He states that the Beluga, or white whale, is a great consumer of fish of all kinds, but is especially destructive to the salmon and cod of the Lower Saint Lawrence, the former particularly. Some distance up the Saguenay River, where the salmon were supposed to have been much injured by the Beluga, a license was taken out in 1872 for their capture, and in 1873 a large number (some sixty) were secured at one haul. In this way a very great diminution was effected.*
These have in turn reacted upon the fisheries, since the sharks, which had been kept down in point of numbers by the belugas, multiplied, or at least came in such numbers as, in their turn, to affect very seriously the fisheries, the fish being greatly diminished and those captured showing marks of laceration by the teeth of their new enemies. The increased abundance of the sharks was also shown by the much larger number of them captured in the nets.

Another statement of Mr. Whitcher still further illustrates the relation between the white whales and the salmon. It is well known that within a few years the salmon fisheries within the Dominion of Canada have been very greatly increased by the enforcement of legislation for the protection of fish during their spawning season, and for the increase of the supply by artificial propagation.

Another illustration of the same character, as also furnished by Mr. Whitcher, is to be found in the Bay of Chaleur. In former years the streams emptying into this bay abounded in saimon, but presented the usual appearance of salmon rivers in a marked decrease in numbers by overfishing and other agencies, and this continued for a period of a uumber of years. More recently, however, as a result of the wise legislation on the part of the Canadian Government of protection daring spawning season, and the measures of artificial propagation, the fish are again found in very great abundance. For twenty years the white whales were not known in the Bay of Chaleur, or only by stragglers, but latterly they have returned in large numbers. The first year of their occurrence they came after the salmon had entered the bay and drove them into the shores, where they were taken in very large numbers by the traps and nets that had got a small capture in the lower parts of the rivers. The nest year the belugas, or porpoises, came early in the season, before the salmon, and apparently awaited their arrival. They committed great havoc among them and cut them off apparently from the immediate shores.

[^12]
## D.-Numbers and abundance of Fish.

That fisk of many varieties have decreased greatly in abundance within the historic period in all parts of the world is well established, the reduction in some cases being truly enormous. This, however, applies only to certain varieties, especially of the anadromous fish, or those running up the ricers from the sea to spawn, and to the more inshore forms. The most indubitable cases of diminution are those of the shad, fresh-water herring, salmon, and striped bass. On the other hand, there is no reason to suppose that the cod, mackerel, blnefish, and the sea herring have been reduced essentially, if at all, in numbers, the stock of these fishes being from year to jear about the same, and au apparent diminution in one region being balanced by a greater supply in another.

In previous pages of this article, in illustrating another subject, I have referred to the difierence in the numbers of shad and herring in the Potomac at the present time and in the past, an experience which is shared to a greater or less extent by all the rivers of the Atlantic coast. Many streams which formerly furnished a vast quantity of food, within easy reach, have now become entirely unproductive, so that it is only by a combination of measures of artificial propagation in the rivers and judieious legislative euactments that anything like the earlier experience can ever be again realized.

The causes of this variation in abundance, so far as they can be detected, may be considered under two heads: first, the uatural, or uncontrollable; and, secoud, the artificial, or those connected with the interference of mau. Where the former alone are responsible there may be a hope of a return to original abundance; man's influence acts persistently and with increasing effect throughout long continued years.

There are two classes of natural causes of variation: first, those induced by physical conditions; and, secondly, the dependence of the fish upon, or the relations of fishes to, their fellow-inhabitants of the sea. The action of man is either direct or indirect. The direct agencies are those of overfishing and the pollution of the water. The indirect consist of the obstructions to the movements of the fish, the disturbance of the balance of nature, by unduly fostering or destroying certain classes of animals, and by breakiug up the schools of fishes during a critical period, and preventing their spawning.

We have already considered under the heads of migrations and movements of fishes the subject of variations in abundance, depending upon migration, or change of place, where, although the fish may be scarce in one locality, they are proportionally more abundant in another, the actual number in the sea remaining the same. At present we are considering the subject of diminution in actual number of fish. It will be more convenient to consider this sulject of variations in the abundance of marine fishes under the next head, of dangers and fatalities, where I propose to go into more details.

## E.-Their dangers and fatalities.

A general account of the fisheries of the North Atlantic coast of the United States is not to be completed without some mention of the agencies by which they are affected and reduced in abundance other than as the result of age. The variety of such influences is very great; perhaps more than in the case of the terrestrial vertebrates, and comparable only to the affections and influences upon insects, which, like the fishes, occur in orerwhelming abundance at one time to be more than decimated at another.

We may consider the subject of the dangers and fatalities under three heads: first, those brought about by their fellow-inhabitants of the sea ; second, by man ; and, third, by natural or physical causes and changes.

## 1. FROM otiler forits of marine life.

The injuries caused by their fellow-inhabitants are twofold in their action: first, upou the eggs and embryonic fish, and second, upon the more fully grown fish. The destruction of the eggs of fishes is something truly enormous, the percentage of the yield of even the youngest fish from a given number of eggs being extremely small. It has been calculated, in the case of the salmon or shad, that not fire eggs out of one thousand produce young fish, able to commence feeding, all the rest being destrosed in one way or ancther. It is quite likely that even this ratio is too large. A part of this loss of eggs is due, however, to imperfect fertilization, and it is here that artificial propagation has the advantage in securing the contact of the milt with all the ripe eggs, leaving an insignificant fraction not fertilized. Probably not half, and sometimes even much less than half, the eggs discharged experience the same fortune in natural spawning. It would seem as if the immense disproportion of eggs to the resulting fish was au intentional provision in nature, to furnish food to the sinall inhabitants of the sea, especially to the young fish themselves, of various species, no other bait being so attractive to fish, even to those that have just laid the very eggs used for this purpose. The size of the eggs varies very greatly with the species, as will be seen in a subsequent chapter, some being adapted to the smallest mouth, others requiring one of considerable capacity to take them in. There is almost no seasou of the year when fish eggs cannot be found in the water, either floating free or else adherent to some object, and the work of devouring them is carried on continually. Of course it is only the smaller fishes that pick up the small eggs ; but the former, in turn, contribute to some of larger size, and those to larger again, until finally, in the sequence, the largest inhabitants of the sea obtain their proper food.
It is amoug the aquatic mammals that we find the most powerfuldestroyers of fish, these requiring a much larger anomut in proportion
to sustain life, as they feed not merely for subsistence but for material to keep up the animal heat.

The cetaceans of various species are, of course, the most destructive by their much greater bulk, the larger of the porpoises being most notable in this respect. It is not unfrequently with feelings of satisfaction that the human spectator observes schools of bluefish that have devoured and driven on shore schools of mackerel and menhaden, themselves attacked and subjected to a similar treatment by troops of porpoises, forming a line outside of them and devouring them with extraordinary rapidity, frequently forcing them on the beach in large numbers. Whales, too, take their part in this conflict, butprobably confine themselves to smaller fishes, especially the herring, aud possibly mackerel, capelin, or other species, of which large numbers, while schooling can be taken at a gulp.

The method of feeding of the whale is, of course, only appreciable when the operation is conducted at the surface. Here they may be often seen (the finback whales especially), with the mouth wide open and swimming with great velocity against large bodies of herriug aud floating invertebrates, such as pteropods, jelly-fishes, Scc. The greater the development of whalebone in the mouth, the less do the whales apparently feed on fish and the more on iuvertebrates. The finback is characterized by the small amount of whaleboue. To what extent the sperm whate, which is essentially a large porpoise, feeds upon fish is not known; its principal food, however, is believed to be the giant cattlefish, which inhabits the depths of the oceau, with the largest of which it appears able to cope. It is very seldom that a sperm whale is captured without having in its stomach some fragments of this large cephalopod, the beaks being almost always found in their intestines and excrement. Ambergris almost always contains such remains.

Seals come next to the cetaceans in roracity and destructiveness, and occupy only a second place, in view of their more limited distribution and their confinement to a certain proximity to the land. The numbers of fishes, especially of the Gadida, doubtless also of salmon, devoured by the seals in the North Atlantic must be something almost beyond calculation, and the destruction on the part of the much larger seals, sea-lions, fur-seals, \&c., of the Pacific is probably still greater.

How far the walrus is a destroyer of tish I am unable to say, although it is generally believed to depend, to a considerable extent at least, upon mollusea for food.

Otters are also wortly of mention in this connection, the sea-otter of the Pacific Ocean being very destructive in proportion to its size and numbers. The common otter also devours large numbers of fish in fresh water, levyiug tribute on many a fine salmon, shad, and other valuable fish.

Although at first sight we may not be inclined to attach much importance to birds as destrogers of tish, yet it is found that they repre-
sent by no means an insignificant factor in the casualties of the class. Erery fish-culturist is painfully a ware of the destruction of his trout, carp, or other fresh-water species by herons and kingfishers. The fishhawks take their toll in the ricers and lakes, perhaps more rarely in the sea; but it is among aquatic birds, especially the gulls, the Pelecaniden (including cormorants, pelicans, gannets, \&e.), the Aleider, or auks, and some of the ducks that we find the most active oceanic enemies of the finny tribe. In many parts of the ocean the number of birds belonging to these gronps is enormons, and eveu supposing that each bird devours daily only half, or even a quarter, of its weight (a by no means difficult feat), the amount of destructireness is something quite appalling. It has been estimated that the gamets alone, on the coast of Scotland, devour more herring than are taken ios man, their voracity, like that of the cormorant, beiug very marked. The gulls are less destructive, as they must contine themselves more particularly to the smaller fish which come to the surface, either spontaneonsly or as driven by predaceous fishes.
The reptiles probably contribute but little to the mortality among fishes in the opeu sea; but in lagoons and along the shores of islands, especially in brackish water, as well as in fresh, thes play their part in the economy of nature. It is especially among the crocodiles, alligators, and caymans that this destructiveness is seen. The sea-snakes of the tropics and sub-tropics in all probability consume large numbers of fishes of such size as can be readily swallowed entirely. In fresh waters the rarious species of water-snakes also consume a considerable number. Some species of turtle are rery destructive to fish, although it is more particularly in fresh water where such forms as the snapping-turtle of North America play well their part. The sea-turtles are said to be vegetable feeders rather than animal, seeking the cel-grass, algæ, and other plats. Probably, homever, they do not disdain an occasional fish.

Frogs are also rery destractive to fish in fiesh water, and require a careful looking after by the fish-culturist. The salamanders are too diminutive to devour large fish, but probably consume eggs and young on a large seale. The Menobranchus, or large salamander, in the Great Lakes, is said to commit great havoc on the whitefish spawning.grounds, gorging itself on the eggs, and by the aggregate of their numbers largely reducing the crop of young tish.

The destrnction of fish in the sea, as might naturally be expected, is greatest from fellow.fishes, the smallest being cousumed by those a little larger, these again falling rictims to the still more powerful, and so on until we reach such forms as the swordish, the tunn5, the largest sharks, \&e., which apparently at least, when fuily grown, are free from danger from their own kind. Here, however, there come in as antagonists and destrocers the larger cetaceans; possibly the giant cuttlefish, and man; although such insidious enemies as the lamprey, the mysine, or hag, the pug-nosed eel, and other parasitic fish may even cause the very largest to succumb.

In most cases the fish is destroyed by being taken in at a gulp, by one of its fellows larger than itself, although there are certain forms, such as the Chiasmodes, the Saccopharynix, \&c., which, in the possession of very wide jaws and a capacious stomach sac, can take in entire and digest fishes of twice their own size. Specimens illustrating this are to be found in the National Museum. In many cases, as with the sharks, bluefish, \&c., the victim is lacerated, either torn or bitten in two. Fish like the sand-lance (Ammodytes), when swallowed alive, often burrow through the stomach and produce death. It is not uncommon for codfish to be taken with the sand-lance in the abdominal cavity, encysted and mummified, several specimens of these having been obtained by Captain Atwood, of Provincetown. The lampreys and myxines, already mentioned as des troying the very large fish, frequently do this still more extensirely on the smaller ones. The socalled pug, nosed eel of the Gloncester fishermen (Simenchelys parasiticus) is not unfrequently found nestling along the backbone of the halibut and cod where they seem to have the power of 'abiding for some time without actually causing death. The eel is another of the fishes that destroy life in an unusual way. It is especially noterorthy in conuection with gilling for shad, in view of its habit of fastening upou a ripe female, when meshed, and penetrating the abdominal cavity and devouring theeggs in its progress. It is a very common experience for the gillers to find perfectly sound, plump shad, taken in the net, with one and sometimes two or three eels in the abdomen, their destruction having been effected within a period of a few minutes.

It may safely be said that of oceanic fish more or less predaceous, there are many forms that live on vegetable substances while young, but for the most part changing to a carnivo rous habit when old. How many species confine themselves exclusively to fish it is impossible to say, as a careful examination of the stomachs of most forms shows at least the occasional presence of crabs, worms, radiates, \&c.

I have already referred to the subject of the rapacity of fish, auder the heads of migrations and movements, and variations in abundance, \&c. I would here simply call to mind the ravages of the bluefish in its attacks upon the mackerel, menhaden, and other species. Great as are these ravages, however, they are probably nothing in comparison with those of different species of the sharks. These, by their enormous size and immense abundance, must, of all oceanic forms, be the most destructive of fish life and constitute the largest factor in the element of mutual injurs. Neither is it the largest of the sharks that are the most dangerous. The smaller forms, which come in large schools, migrating with the season, are most effectual in their agency. Every fisherman on the New England coast is familiar with the so-called dogfish (Acanthias americanus), a species which rarely exceeds 3 feet in length, but which frequently comes in on the fishing-grounds in countless num-
S. Mis. $90-5$
bers and renders the fisherman's life a burden by the destruction of his bait and the disturbance of the fish.

Holdsworth (Deep-Sea Fishing) refers to the finding of twelve fullsized herring in the stomach of a pollock, and from thirty to thirty-five -in the stomach of a codfish. I have taken forty-seren scup of quite considerable size from the belly of a bluefish of about $\tilde{5}$ pounds weight. Instances of this kind could be readily multiplied.

To what extent fishes are destroyed by invertebrates it is difficult to decide, although probably this agency is one of considerable moment. Many species are infested with entezoa or intestinal worms, which find a lodgment in the brain, in the muscles, or the viscera, and which must necessarily involve more or less of mortality. Others have external parasites adherent to them, consisting in larger part of crustaceans of greatly modified shapes. The free-swimming crustacea, as lobsters, crabs, \&c., undoubtedly kill great quantities of fish. Their.office seems to be more particularly that of scavengers to destroy the weakly or dead individuals. Certain of the jelly-fishes are known to feed on small fishes. It is quite probable that the squids and cuttle-fish live mainly upon fish. Enormons numbers of squids are found at certain times in certain waters, and represent undoubtedly great destruction among fishes. Many illustrations of this relationship could be multiplied, but the subject need not be continued, as I merely wish to show the general relationships.

How far fishes are affected by epidemics or other diseases it is difficult to say, although there are many instances on record in which this condition is assigned as the canse of their disappearance. It is said that the bluefish off the coast of New England were all exterminated by some disease shortly after the middle of the last century, their carcasses being found floating in enormous masses over the sea. Whatever may have been the cause of their absence it is very certain that the bluefish was not known again until about 1820 , when they made their appearance gradually, of small size, but for many years in nothing like their original abundance. It is said that they were often known of such magnitude in the last century that fifteen would fill a barrel, representing a weight of 200 pounds when cleaned and dressed. Comparatively few such fish are now taken in Vineyard Sound.

Of late years there have been seasons, especially in the summer and autumn, when fish in the Gulf of Mexico have been found dead in immense numbers. The cause of this has not been ascertained, some as cribing it to actual disease, others considering it the result of some poisonous infusion or exhalations in the water.

## 2. THE INFLUENCE OF MAN.

A rery large element in the aggregate of destruction of fishes by the agency of other animals is furnishod by the fishing and fisheries, man deriving, in all parts of the world, especially near the sea-shore, a large
part of his food from the sea, and drawing upon it for supplying distant localities, or laying up stores for seasons when fish could not be readily obtained. These fisheries in the northern hemisphere are particularly extensive, a large portion of the population of both shores of the Atlantic finding extended employment in this vocation. The herring fisheries of Scandinavia, Holland, and Great Britain, and in less degree of British America and New England, the fisheries for cod and other Gadidec in the entire North Atiantic, the capture of halibut, salmon, \&c., are all included in this list. In the North Pacific Ocean the salmon and cod represent for the most part this industry. In the warmer countries of the world, although fish are perhaps absolutely as abundant as in the north, they can be used only for daily consumption, it being found almost impossible to salt or dry them for future use; and hence the anomaly of vast importation of cod, herring, and other salted and dried fish into Cuba, the West Indies, and South America, when these regions can show much better food-fish in countless abundance.

Great, however, as is the destruction of fishes by man in his various fisheries, it can easily be shown that it constitutes a rery insignificant portion of the slaughter, when compared with what is effected by fishes themselves, and it may safely be said that the total of the fisheries of the North Atlantic and Pacific for the year does not equal the destruction, possibly in a single hour, by other causes.

We are apt to ascribe a very undue influence to human agencies in affecting the supply of fish by positive diminution or by direct extermination. That man does influence the supply to some extent may readily be conceded, especially in the case of the anadromons fish. The obstructions of rivers by dams are among the most important. The other agencies of poisoning the water by refuse from factories have little weight excepting in rivers, scarcely attaching to bays and shores. It is even a question whether, in some instances, man does really increase the food supply by the destruction of certain forms that are predaceous. Reference has already been made to the great problem whether the pursuit of the bluefish by the Gloucester fishermen on the easteru coast of the United States is attended by a further increase of the fish ou which it especially preys, such as the menhaden, scup, weakfish, \&c., and whether every shark and every porpoise killed by mau also gives a new lease of life to a great number of fishes.

A morement now (1877) on foot promises to add another to the illus. trations of man's indirect influence upon the fisheries in the disturbance of the balance of power. It has been ascertained that by treating fish with bisulphide of carbon or benzine the oil can be extracted much more easily than by the ordinary process, leaving, indeed, a residuum in the form of a dry powder. It is claimed that the by-product of oil is about 80 per cent. more than by the kettle or presses, and the dried scrap instead of yielding 10.5 per cent. of ammonia produces 14.

A building is now being erected at Wood's Holl (85 feet by 40, and

34 feet high) to practice the process, which will be in operation before the close of 1877 , with the special object of making artificial fisl-flour and dried powders for fertilizing purposes. In this process they expect to work up a great number of refuse fish, which they promise to purchase at the same price as menhaden and in the following order of preference: Bluefish, porpoises, sharks, dogfish, menhaden, aud skates. They propose to work up twenty tons of fish each day, and to employ from one to three steamers to cruise for these supplies, extending from Block Island to the coast of Maine, touching all intermediate points.

The extent of destruction to fish caused by the porpoises, skates, and dogfish is well known, and should the anticipated manipulation of forty thousand pounds of refuse fish per day be accomplished, or say twelve millions per year (counting three hundred days to the year, and allowing ten millions of pounds for the destructive kinds), we shall have an enormons withdrawal of predators fish from the scene of action. This aggregate might be considered as equiralent in destroying capacity to two millions of bluefish at five pounds each; and an estimate of the amount of fish that would be deronred by such a body has been given in my first report. If the success anticipated for this venture be realized, it is probable that other establishments of a similar kind will be started, constituting a still greater relaxation of the exhanstion of the yield of fish. A few years of such fishing should present a marked influence upon the supply of elible fishes along the middle and northern coast of the United States.

## 3. Natural causes on cmanges.

Fish as a class are rquite subject to fatalities arising from natural causes, and which sometimes operate on a very large scale. Amoug these, volcanic eruptions are not the least momentous. It very frequently happens that such phenomena from volcanoes near to or in the sea are accompanied by discharges of boiling water or of poisonous gases, which contaminate the waters and canse great distruction to animal life therein. Many cases of this character are on record as incidents in the history of volcanic discharges. Not unfrequently mud is thrown out in vast masses, which fills lakes and streams, or invades the edges of the ocean with disastrons consequences to life. Violent storms and hurricanes are also to be considered in this connection, fish being not unfrequently blown on the shores or taken up bodily and carried to a great distance inland. Sudden changes by winds and currents of the sea bottom not unfrequently cut off portions of the sea occupied by large lociies of fish, which, mable to get back to proper physical surroundings, soon perish. Yery often, too, this action of the winds and waves renders the waters rery turbid and unfit for auimal life in the sea, which is consequently speedily destroyed. Of this, striking illustrations will be given in a succeeding chapter.

An excessive change of temperature, whether the change be to extreme heat or extreme cold, constitutes an important member of the agencies injurious to fishes. The latter phase, however, is the more dangerous, as while the fishes that belong to the colder waters of the ocean are but seldom exposed to an unnatural degree of heat, those of the South Atlantic and the Gulf Const of the United States are frequently killed at once by a severe turn of cold weather, hundreds of tons of fish frequently perishing within a limited district. This is quite a common accompaniment in the fall and winter of the severe northers on the Texas coast. Similar cases of death by cold or freezing are often observed on the shores of thie New England and Niddle States, although usually not so marked in their presentation. It is, however, quite common to find in early winter numbers of scup, tautog, sea bass, and other species in a drying condition on the beach.

Fish Filled by cold.-I find among some manuscript notes communicated to me by J. Carson Brevoort, esq., that in 1849 many fish were killed in Massachusetts by the cold, 60,000 pounds of striped bass haring been taken from Polk pound, and 120,000 pounds from Newton pound, Martha's Vineyarl, and sent to the New York market. He also records that on the 30th of September, 1844, the shores of Jamaica pond were covered with young pompanos, from $1 \frac{1}{2}$ to 5 inches in length, supposed to have been killed by the cold.

Dr. H. C. Yarrow reports that in the winter of $1.870-1871$, in the latter part of December, great numbers of drum, tlounders, small mullet, trout, and spots were frozen at New River (a prolific fishing ground), 45 miles from Fort Macon. The trout, mullet, and flounders were piled on the shore knee high, and were carted all over the country as manure, selling at $\$ 1$ per barrel.

The same thinghappened a year or two later. Thousauds of fish have been frozen at the same place. Almost every winter during the last ten years more or less of the food-fishes have been destroyed by cold.

In addition to the destruction of fish in large numbers by sudden chilling of the water, such as frequently takes place in the Gulf of Mexico and the eastern coast of Florida after a severe norther, many are killed by the action of anchor-ice. Thas, in the vicinity of Wood's Holl, Mass., young herring and other fish are often found in the winter time floating in vast numbers, and also imbedded in the ice which forms at the bottom and floats to the top.

Other fatalities.-A further exampie of the method by which large numbers of fishes and other inhabitauts of the waters may have been destroyed simultaneonsly is given by Mr. Henry O. Forbes, of Aberdeen, Scotland, in his account of a visit to the Cocos or Keeling Islapds in 1884. In this region, immediately after a cyclone, which occurred January 28, 1876, the water on one side of an adjacent lagoon was observed to be rising from a considerable depth and of a blackened color. It continued to flow for about fourteen days, had an inky
hue, and its smell was "like that of rotten egge." This was diffused gradually around the lagoon, and passed into the ocean; and within twenty-four hours every fish, coral, and mollusk in the part impregnated with this discoloring substance died. So great was the number of fish thrown on the beach that it took three weeks of ham work to bury them in a vast trench dog in the sand.

It is supposed that this water was impregnated with hydro-sulphuric or carbonic acid. The statement is made that the corals and shells were deeply corroded, the corals, especially, being in many places worn down to the solid base. For a long time after the catastrophe there were no signs of life in the lagoon.

Precisely to what cause we are to ascribe the destruction of fish in the summer season, in the Gulf of Mexico, it is impossible to say. Here, withont any apparent reason because of change of temperature or other physical condition, for a period of weeks together, myriads of fish, of all species, are found dying or dead, so much so that they drift ashore in vast numbers, threatening to create a pestilence. It appears that the cause, whaterer it be, is disseminated in the water, as smacks loaded with living fish in their wells, intended for the markets of Key West, Cuba, or the north, when entering certain zones experience the loss of their entire cargo. It is possible that the fatality is caused by some algons or tungous plant, which exercises a deleterons effect upon animal life. The statement that the zones of dangerous water are differently colored from the main body, wonh strengthen this impression. One explanation is that the water from the Ererglades, pouring into the Gnlf, in some way exercises a deleterious influence.

As a general rule, of the fishes which perish from one of these causes or another, no matter how great the mass, it floats at the surface of the sea until decomposed and wasted, leaving but little in the way of definite remains.

In regard to the agency of physical canses in destroying immense numbers of fish simultaneously, under circumstances to involve their being imbedded and their skeletons thereby preserved, numerous illustratious can be adduced in modern times, as we have already shown. The eruptions of voleanoes along the sea-coast frequently discharge immense bodies of acid or heated waters into the sea that poison everything around them, the fish being imbedded in the mineral matter which accompanies the discharge, or covered up by the ordinary tides, or by the extraordinary currents produced by the same outbreak.

Another very frequent and important uatural source of destruction to which we have just referred is in the sudden cooling of tropical waters by the "northers." These are frequently observed in the Gulf of Mexico, where, in the winter especially, the waters are frequently changed abruptly and to a very marked degree by the persistent blowing of an intensely cold and long continned wind from the north. This
in the regious west of the Gulf is usually accompanied by blinding snow and involves the destruction of man and beast; and on the seacoast millions of fish of all kinds frequenting the shallower waters are killed. Not unfrequently these are blown ashore in great heaps, poisoning the atmosphere and sometimes constituting by their decomposition the alleged cause of the yellow fever and other serious diseases.
The most plausible explanation of the phenomena of the occurrence of fossil fishes in enormous numbers is suggested by Dr. A. Leith Adams, of the Brtish army,* as the result of personal observation in New Brunswick. The occurrence took place at a small creek, called Anderson's Cove, a short distance to the east of the Magaguadavic River, which empties into the northwestern part of Passamaquoddy Bay, not very far from the town of Saint Audrews and from Saint Stephen. This cove is a lagoon of about 1,300 feet in circumference, into which a small stream enters and communicates with the sea, at high tide only, by a narrow channel. But in the vehement rush of the Bay of Fundy tides the water enters this lagoon with great force and stirs up the mud into a paste, which runs off slowly, at low tide. The incoming stream continually brings down a fresh supply of mud and slime.

On the 24th of September, 1867, a very heavy gale from the west blew directly into Andersou's Cove, disturbing the mud to an unusual degree. The same storm brought iato the cove immense numbers of young herring, about six inches in length, with a few other fish, as mackerel and flomders. These, after the storm, were found washed up on the beach in great uumbers, while the mud, which by this time had settled, was completely filled with them. The bottom of the lagoon was covered with a layer sereral feet in depth, the total amount of destruction being almost fearful to contemplate.

There is no reason to donbt that similar conditions, in earlier times, have given rise to some of the fossil deposits referred to.

Another of the natural causes of the destruction of fish is found in the numbers of certain fishes which are stranded when seeking the shallow waters for the purpose of depositing theirspawn. Of these the capelin of Newfoundland and Gulf of Saint Lawrence is a notable instance, as it comes in close to the edge of the water in enormous numbers to deposit its eggs. Here the pressure of the continually succeeding schools is such as to foree the fish in a body on the beach, this action being sometimes aided by high winds or heary waves. Windrows of the fish are to be found on the beach, which are in large part carried away and used as manure on the fields. Many of these, of course, would become imbedded in the sand and mud, and constitute material for the investigation of the future geologist. It is in all probability to these circumstances that we owe the occurreuce of the capelin as a Tertiary

[^13]fossil of the valley of the Saint Larfrence and of certain portions of Northern Earope.

The occurrence of fossil fish in inmense numbers in certain geological formations has been a subject of much interest to the geologist and naturalist, and many hypotheses have been promulgated in explanation thereof. It is not at all probable that the ordinary casualties happening to fish would produce anything like the phenomena in question. It is believed that very few fish die of old age, the incidents of life in the sea being such that whenever any animal loses the ability to care for itself some enemy is ready to devour it. The accumulations referred to, found at Monte Bolea in Sicily, in Syria, in many parts of the United States, and elsewhere, probably result either from some mysterious disease attacking the fish in large bodies, or from some physical cause. There is but little evidence to prove the existence of serious epidemics among fish in the sea, although such an occurrence is not at all improbable. Even here, however, it is likely that there would be enough scavengers to devour the dead and dying almost as rapidly as they succumbed to the baleful influence.

One of the methods by which fish are destroyed in great quantities, and yet kept in a condition favoring their ultimate preservation, as in rock strata, consists in the sweeping of large schools, during storms, into low, shallow basins at the edge of the sea, where, of course, death will very soon ensue. The gradual concentration, however, of the water by subsequent evaporation, answers the purpose of a slow and careful salting of the fish, so that for a considerable time after the basin is dry the fish remain in a good state of preservation. If, as is probably often the case, sand and mud are swept in with the fish, and this is repeated at short intervals, a succession of strata with skeletons of fish and other marine objects may result.

A case of this kind has been mentioned to me by Lient. Z. L. Tanner, U. S. N., who noted the phenomena during the cruise of the United States steamer Narragansett in 1872, at Christmas Island. The surface of the shallow lrasin inside of the beach was occupied by many hundreds and even thonsands of fish, varying in length from a few inches to three or four feet, and preserved in perfectly good condition, the thoroughly cured flesh being, however, too strongly salted to be palatable.

## F.-TIIE NATURAL FOOD OF SEA FISH.

The vegetable kingdom at sea, as well as on land, constitutes the starting point of all animal life, and whatever may be the extent to which animals devour their fellows, whether as adults, embryos, or eggs, there is no doubt that without the presence of plants in some form or other and their assimilation, the existence of animal lifein the sea would be an impossibility. It is less easy, however, in the water than on the land to see the comnection between the two kingdoms in this respect, espeaially as the most important element of the vegetable division is in
the extremely minute and more or less microscopic form of diatoms. These, however, swarm in thll portions of the ocean and extend into its uttermost ramifications, occurring at depths of three or four thousand fathoms, or at the surface, and equally abundant in the middle of the ocean as on its shores.

There appears to be an immense variety of the lower order of animals, whose special function it is to assimilate these minute algæ and convert them into animal matter. These, in turn, are devoured by animals of a higher organization or of larger dimensions, although still microscopic; and after a time, by a succession of such transformations, the matter becomes a portion of the organism of the larger mollusks, crustaceans, radiates, worms, or vertebrates.

The larger plant-growths in the sea also have similar relationships, the so-called sea-weeds, sea-mosses, kelp, \&c., furnishing a rich variety of food. Various mollasks and crustaceans devour both the living seaweed and the dead with avidity. The Nereis and others among the worms, too, will consume decaying vegetable matter.

The great sea-turtles are also believed to depend very largely upon sea-weeds for food, and the manatee or sea cow of tropical and sub-tropical regions also feeds upou sea-weeds and other submerged marine reg. etables.

There are comparatively few tishes within our knowledge that certainly eat sea-weed as a portion of their food, although it is said that the stomach of the striped bass frequently contains such quantities of ulva and other succulent vegetation as to render it almost certain that it must have taken it as an article of food. Not unfrequently the vegetable contents of the stomachs of certain fishes may have been taken in accidentally in connéction with some shrimp or mollusk which was resting upon it at the time of capture.

Of the higher order of plants very few species are known in the ocean (indeed the Zostera or eel-grass is said to be the ouly form), but immense quantities of the trunks of trees, ©.e., are constantly carried into the sea from the rivers, and are very speedily attacked by animals specially appointed for the purpose, the most familiar being the teredo or shipworm, and sometimes certain shrimps or crustaceans, the best known of which on our coast are species of Limnoria and Chelura. These very soon perform their part in honeycombing and reducing to minute fragments vegetable matter of whatever magnitude, and the fragments, after being made too small to serve as burrows, become in this finally divided state food for other marine objects.

The echini, so abundant ou our coast, and especially in the northern waters, are quite omnivorous in their habits and consume both animal and vegetable substances, and are apparently especialy adapted for those of harder texture. They devour greedily the soft portions as well as the bones of fishes and possibly of other vertebrates, and have been known to eat off the bark from the stakes used in constructing the
weirs for herring at Grand Manan. Fastening on the exterior, they eat off the bark in circular spots.

There is, therefore, no difficulty whaterer in establishing the existence of vegetable matter in the sea in sufficient quantity to serve as the basis for the stupendous mass of animal food derived from it.

Starting thus from the regetable kingdom the chain of succession of animal life furnishes in oue or other of its links food to all the animals of the sea, in the process of such assimilation enormous numbers of distinct organisms being consumed for the support of a single individual. Nor is there any definite ratio between the size of the food used and that of the animal raised upon it, since the baleen or bone whales are believed to live almost entirely upon shrimps, floating mollusks, and upou the smaller fish whenever they can be obtained in sufficiently large schools. It is well known that herring are devoured in multitudes by whales, such as the fimback, \&e.

Sixty thousaud copepods (Temora longicornis), by actual count, have been taken from the stomach of a single herring, while many thousands of herring have been taken from the similiar receptacle of the whale, which shows that this miscroscopic shrimp may be regarded as one chief source of the subsistence of the whale-another case of the relation between the infinitely small and the infinitely great.

Some fishes are believed to feed very largely upon the organic mud of the sea-bottom, this of course being rich in some of the smaller forms of auimals and the diatoms. The examination of stomachs of large numbers of the common meuhadeu, by Professor Verrill, revealed no other substances than the mud in question ; the fish being provided with very thick, muscular walls to its stomach, a so-called gizzard, for the special purpose of atilizing it. The Dorosoma, or gizzard shad, of the rivers of the Atlantic coast, has also a similar provision.

A favorite implement of the nataralist is that called the towing-net. This is simply a bag of gauze, the mouth of which is held open by a ring or brass frame, which is towed behind a boat or ressel so as to take a skimming of the surface of the water. This cau never be used in any part of the ocean without very soon obtaining a greater or less number of the minute animal organisms, such as the adult shrimp, the larval stages of certain crabs, embryos of mussels and other mollusks, and small fishes.

Around floating sea-weed in mid ocean are always congregated great swarms of minnte animals. The presence of whales, dolphins, albicores, and other species of animals in mid-ocean also proves the occurrence of food in rast quantities; as although all these species may not themselves devour the lower order of animals, they yet feed upon fishes which do find their sustenance therein.

It is not probable that any fish feed directly upon purely inorganic matter. It is through plants that mineral substances of any kind are introduced into the system, especially that which is required for the formation of bone.

Except in the earlier stages of life, as already explained, the chief sustenance of fishes in the sea consists of animal matter, either dead or living. While some kinds of fish are believed never to feed upon any: thing but living animals, others are, to a very great extent, scavengers, being especially appointed to devour dead or decaying substances, such as offal or the so-called gurry, \&c. The cyprinodonts of the coast are particularly active in this direction. Sharks also exercise the same function in a very marked degree. There are probably but few of the bottom fish that will disdain such substances, consuming living forms with the same readiness. In the business of clearing out refuse fish they are assisted largely by crustaceans, certain mollusks, echini, \&c.

The living food of fishes may be divided into two sections: first, eggs and embryos; second, fishes and marine invertebrates of more mature and adivanced ages.

The earliest form in which the dish serres as food for its fellows in the sea is in that of the egg, and it is for this reason that with the enormous fecundity of certain fish there is so little apparent increase in their schools. It may safely be assumed that only a small fraction of 1 per cent. of the total number of eggs laid by fishes ever develop embryo fish, by far the greater part being devoured in a very short time. The young fish, also, after birth, is for a certain time immature and to a considerable degree helpless and only able to take food for itself after the absorption of its yolk-bag and the accompanying development of its fins. Before it assumes the shape of the perfect fish and is able to care for itself, it becomes a prey to innumerable enemies; and if of the original deposit of eggs one fish becomes able to care for itself by feeding and hiding to every ten thousand eggs hatched, it may be considered a very satisfactory yield. The proportion, however, doubtless varies with the species.

Under the rate of the fecundity of fishes will be found a table of the numbers of eggs laid by particular kinds of fishes, partly copied from Buckland and partly original, from which we understaud that even with this percentage of loss there is still a margin left for the maintenance of the species.

Although the percentage of loss after the embryonic development of the fish is complete is less than before, there is still a very great drain upon the numbers of the species, there being at every step an enemy lurking in wait to devour.

To the large fishes of course there comes a time of comparative immunity, when nothing but the rarer and more powerful inhabitants of the sea can interfere. Even then, however, numbers of smaller enemies may combine together for the overthrow of the monsters that would be more than a match singly for any antagonist, and thus while fish of the known voracity of the cod, haddock, \&c., may consume readily species of a smaller size, they have as their antagonists the sharks, the various porpoises, and other cetaceans, and the rarer
giants among the true fishes, such as the swordfish, the tumy or horsemackerel, \&e., which in turn have their antagonists as already mentioned.

The seals, too, devour the larger fish in great quantities; and in turn they are attacked by the cetaceans, such as the orca, orkiller whales, and other kinds especially adapted for their destruction. Again, the whales are also antagonized by the killers and various species of swordfish; and, indeed, possibly with the exception of the sperm whale, there is no animal in the sea but what has its foe. Man, however, presents himself as the enemy and antagonist of all the species, and is provided with means for their capture.

We have already referred to the abundance of vegetable matter in the sea, and to the possibility of supplying it in sufficient quantity to serve as the basis of marine animal life, and the marine zoologist will have no difficulty in understanding how the countless numbers of fish in the ocean obtain their food, in view of the myriads of crustacea, of mollusks, of worms, \&e., which inhabit the waters.

It is not the species that remain in or near the bottom that are of the most importance, but the free swimming and floating forms that are most exteusively and readily devoured. While at no time does the apparatus of the zoologist fail to reveal the presence of auimal life, even though of microscopic dimeusions, at times this manifests itself in bodies, the masses of which almost stagger the imagination, the sea for hundreds of miles in exteut being an animated mush, what with shrimps and other crustaceaus, salpæ, and larve of mollusks, worms, \&c., a bucketful of water taken indiscriminately over the eutire area seems filled with animal life. Nor are these organisms confined to the surface, the evidence of the beam-trawl and the dredge revealing its existence in equal quantities below. Various species of minute crustacea are not unfrequently thrown in masses on the beach, so as to constitute windrows of many miles in exteut, this of course being but a small percentage of what is left behind. Where these smaller auimals are aggregated in unusual numbers are generally to be found great schools of mackerel, herring, whales, and other animals pursuing them, as though certain definite instincts of migration influence them, or they are driven in their season in a definite direction. Schools of fish follow, which are thus brought more nearly to the nets of the fishermen. Indeed, generally the movements of the fish are directed by the instinct of reproduction, in which they aim at finding a suitable locality for the deposit of their spawn, or in search of food, which they either follow or travel to meet.

Among the iubabitauts of the deep sea which serve as food for the larger fishes and cetaceans are probably various forms of the cephalopods or cuttle-fish, of which the stomach of the sperm whale frequently contains large masses, proving their occurrence of dimensions far beyond those of which actual critical observation has yet been made. It will, therefore, be readily understood, from what has already been
stated, that life in the sea is a perpetual contest, and that the problem of the survival of the fittest is there worked out to its extremest conclusion. As already shown, no form, however powerful, is free from danger of attack, the giant whale or the enormous kraken being equally liable. Of course many of these species when in fullest vigor can protect themselves by superior fleetness or strength, but with increasing years and infirmities they too must succumb. In this we see the wise provision of nature in securing the perfection of animal existence by providing for the reduction in the excessive abundance of certain forms of animal life and in the remoral from the sea of such as are not possessed of the highest bodily vigor.
Much outcry is made not unfrequently as to the wastefulness of different modes of fishing, and legislation is invoked to protect fish, on the ground that the stock will become reduced and the business of the fishermen destrosed. When, however, we fully appreciate the enormous fecundity of marine animals and the immense mass of life that exists in the sea, we can readily understand that the destructiveness of what we are inclined to protect as food-fishes constitutes but a small fraction of the whole. Several calculations have been made by various persons in this regard. Thus, Professor Huxley, in considering the question of the destrnction by the herring and cod fisheries on the British coast, calculated that the cod and ling alone actually canght in British waters would, if left undisturbed, have destroyed many more herring than the entire catch by the fishermen, who numbered 15,000 in 1872 . Nearly a million barrels were cured, to say nothing of the vast numbers used fresh and for other purposes.
In the first volume of the Reports of the United States Fish Commission, I endeavor to estimate the amount of food devoured by a single species, the bluefish, which occurs in such overwhelming numbers on our coast. Here, taking $1,000,000$ fish as the annual consumptiou in the New York market, and assuming the total number of these fish on our coast to be $1,000,000,000$, of 5 pounds each, which may be regarded as an exceedingly moderate calculation, we may consider the amount of other fish that this body of marine wolves will consume. Allowing ten fish per day, which is a moderate estimate, the total destruction daily would be $10,000,000,000$, which in the one hundred and twenty days of their abode on the eastern coast of the United States would give $1,200,000,000,000$ of fish taken in this part of the season alone. It is not at all an extravagant presumption that each bluefish consumes half its own weight of food per diem; and we should therefore have a total destruction of $2,500,000,000$ pounds daily, or $300,000,000,000$ pounds in the year. The food of the bluefish consists of menhaden, mackerel, herring, scup, and other species.

It will also be remembered that white the bluefish prey apon other fishes of proportionate size, for every one weighing 5 pounds we may estimate at least a hundred of a smaller size. These are equally voraci-
ous, destroying other fish in proportion, so that it will somewhat tax the human imagination to appreciate the total destructireness of animal life, resulting from the action of this one species alone.

Mr. Goode, in discussing the distribution and natural history statistics of the menhaden, attempts to make an estimate of the number of these fish devorred on the coast of New England in the summer months by bluefish and other species, and he comes to the conclusion that fhese may safely be given at three thousand millions of millions. In comparison with this the $750,000,000$ captured by man during the same period sinks into utter insignificance. This calculation might be pursued to any extent; but I have presented enough to show that the question of humau agencies in the way of affecting or influencing the great ocean fisheries is scarcely worth considering. I by no means wish to be understood as deprecating any legislation in regard to the fisheries, especially in respect to the sparning-grounds, as interference here, while not unnecessarily diminishing the supply to any appreciable extent, may tend to prevent their coming on particular parts of the coast, and thus within the reach of fishermen of a special neighborhood.

If it were in any way our duty to take measures for the prevention of the destruction of life in the sea, and of maintaining the yield of fish generally at its largest figure, we could accomplish it in no better way than by increasing the extent and magnitude of certain of our fisheries. Thus I have shown that there may be a saving of herring by the capture of the coll and ling on the British coast. For every bluefish captured in the waters of the United States many hundreds of other fish are left to enjoy their life, perhaps, however, in their turn to be the means of an increased destructiveness in another series of animals. The capture of whales gives a respite to the schools of mackerel and menhaden, while the destruction of the herring and menhaden relieves, though in an almost infinitesimal degree, the drain upon the crustaceans and the smaller fish.

Another consideration must not be lost sight of, namely, that the adult and old fish, which constitute au object of pursuit on the part of man, are, in proportion to their numbers, much greater destroyers of other fish and the marine animals generally than the younger. It is a well-established principle in the development of vertebrates that the earlier in life the greater the increase of the body resulting from the same amount of food. Thus the new-boru infant of 8 to 12 pounds will double his weight in a few months, and with increasing ratio the rate of growth diminishes until when maturity has been reached, unless under particular conditions of the system, the consumption of several pounds per diem does not produce the slightest appreciable increase, and, indeed, may be attended by an actual reduction in weigit. The same principle applies to fishes, although, perhaps, to a less degree, and ex. periments have been carefully made in regard to trout, the culture of Which has been the souree of greater care than that of auv other fish,

Here, according to some writers, it has been ascertained that, while it may require 1 pound of flesh to increase the weight of a trout from 3 ounces to 6 , the addition of the next 3 ounces to the weight requires at least 2 pounds of flesh; for the next 3 ounces, 3 pounds; for the next, 4 pounds, and so on in a constantly increasing ratio. Finally, when the fish has attained the maximum development possible in the given limits of the pond or stream, comparatively little effect is produced by any amount of feeding.
In this point of view, therefore, and in reference to a future supply of food, the capture of all the old and fully matured fish is especially desirable, apart from their own greater commercial value.

Worms, mollusks, \&c.; feed on the organic mud of the sea bottom, caused by the decomposition of sea-weeds, eel-grass, and land or fresh water plants carried down. Other animals and fish feed on this. Infusoria eat diatoms; larger furms consume infusoria.

Apart from the consumption of shrimps and other crustaceans the stomachs of mackerel are not unfrequently found to contain small sandlance and what the fishermen call all-eyes. These are said by them to be the embryors, quite recently hatched, of fishes, in which the body is transparent and the eyes very conspicuous, indeed, almost the only portion visible. In summer, schools of all-ejes are found on our coast, sometimes in immense quantities. Captain Hulbert informs me that in July the stomachs of the mackerel were fou nd loaded with these fish which were seen also on the surface of the water, forming extensive schools. On one occasion he went out seamard from Block Islaud for 25 miles without getting throngh the schools, and they were equally abundant to the right and left of him, so thick, indeed, that a dozen at a time could be scooped up in the palm of the hand.

To what species these belong is uncertain, although the fishermen surmise that they are young mackerel. It is, however, quite probable, after all, that they may be the young or zoea-stage of crustaceans.*

Fishermen iuform me that they frequently find mackeral apparently feeding on the jelly-fish, their method of attack being from below, coming upward and striking through the center and making a hole in it. It is very common to find the jelly-fish floating on the surface torn to pieces in this way.

[^14]H. W. COLLINS,

Whether they actually find nutriment in the jelly-fish itself, or whether they are in pursuit of young fish or crustacea that so often accompany the medusa, I am unable to say.

The habit of association between the jelly-fish and other species is a very curious one. In Norway the association of young cod and haddock with the Cyanea arctica is well known, Professor Sars haring called attention to it, and having furnished specimens of fish taken under such circumstances to the National Museum at Washington.

It is a very common thing to find a number of young harvest-fish, dol-lar-fish, or butter-fish (Stromatens triacanthus), swimming near the jellyfishes, and runuing under them for protection on the approach of an enemy; indeed, I hare seldom found very young butter-fish except in association with the medusa. Young hake are frequently found in a similar association.

## G.-lieproduction.

The last division of our topic of the natural history of fishes relates to the subject of their reproduction, and I now proceed to give a brief statement of the more interesting facts of this character. The reproduction of fishes is, for the most part, by means of eggs discharged from the body and hatched externally to it, these eggs when emitted being either adherent to each other and to whaterer they tonch, or free, floating near the surface of the water, or sinking to the bottom. Not unfrequently the parent covers up the eggs in furrows excarated by a rapid movement of the tail. Occasionally the eggs are discharged in large masses, notably so in the case of the Lophius, or fishing-frog, where they are imbedded in a shell of jelly, sometimes 50 feet or more in length and several feet wide. In some instances adkesive eggs are attached to the body of the parent, where they remain until the young are hatched out. At other times they are carried in a pouch under the abdomen, most frequently of the male, as in the pipe-fish (Syngnathus); sometimes of the female, as in the Solenostoma. Occasionally regular nests are prepared (again generally by the male) usually of vegetable substances, as in the case of the sticklebacks, in which case the eggs are hatched and the young cared for by the male. Numerous other varieties of presentation could be mentioned, but these are sufficient for my present purpose. In not a few instances the eggs are retained in the body of the parent until they are fully developed, although without placental adhesion, except in a modified degree in some of the sharks. In one family, that of the Embiotocoids, of the Pacific coast of California, not more than five to ten or fifteen young are produced at a birth, these sometimes being 3 or 4 inches in length, from a parent of not more than 8 or 10 .

Certain species of sharks and sting-rays produce living young, some showing an indication of placental relation to the mother. In all cases
of this kind, where the young are hatched out within the body of the mother, the number is extremely small, compared to what is seeu in the case of free eggs, and illustrates very well the enormous waste of life. The different species of Enbiotocoids are enormously abundant on the California coast, fully equal, if not surpassing, in numbers many kinds the females of which lay hundreds of thousauds of eggs at a time. As, however, all the ova developed produce young, which are protected in the belly of the mother to a period far beyond even that at which the young feeds itself, the larger part of the dangers of infancy are guarded against, and a yield of five to twenty young, from each parent, keeps up the supply more efficiently and extensively than. sometimes where ten thousand times that number of eggs is discharged.

The eggs themselves, as laid by the parent, are for the most part globular, and vary greatly in size, those of the eel being microscopically minute; of the cod, much larger, though still rery diminutive; those of the salmon, on the other hand, being of the marnitude of a pea; eggs of the ocean catfish are of still greater bulk, being sometimes half an inch in diameterThe males of some, if not all, of the marine Siluride, or catfish, have the curious habit of carrying the eggs either in the month or the cavity of the gills until they are hatched, haif a dozen to a dozen eggs constituting a laying. One of the largest known eggs, with the exception of those of the Plagiostomi (sharks, skates, \&c.), is that of the myxine, or hag, a fish well known in the North Atlantic as a parasite, attacking fishes caught on the hook. Here the shape of the egg is ellipsoidal, much like that of an olive, and the greater diameter sometimes almost three-quarters of an inch in lengti.

A great variety in shape and size of eggs is found among sharks and skates, these sometimes having it horny shell, and looking as much like dried sea-weed as anything else. The egg of the cestracion shark, of the Pacific Oceau, resembles a bit of sea-weed, twisted up into a spiral shape. That of certain skates is familiar to most visitors to the seashore from its resemblance to a brown pillow-case, with the four corners extended into tendrils. These cases are from 2 to 10 inches in length, according to the species. By means of the teudrils they can be attached to sea-weeds and other objects at the bottom of the ocean, and held there until the young are hatched out and eseape through the open end of the bag. Many varieties of form of egg-cases exist among the skates, and furnish excellent specific characters.

In further reference to the number of eggs laid by fish I present herewith a table giving some computations, both original and selected, which will serve to illustrate better the variety in this respect:
S. Mis, $90-6$

| Species. | $\begin{aligned} & \text { Number of } \\ & \text { eggs. } \end{aligned}$ | Weight of fish. | Weight of roe. | Authorits. |
| :---: | :---: | :---: | :---: | :---: |
| Cod | 6, 867, 000 | Pounds. | Pounds. $7 \frac{3}{4}$ | Buckland, British Fishes. |
| Do | 3, 400, 000 |  |  | Bertram, Harvest of the Sea, 1873, p. 4. |
| Turbot | 14,311, 200 | 23 | 5.93 | Buckland. |
| Flounder | 1, 250, 000 |  |  | Bertram, Harvest of the Sea, 1873, p. 4. |
| Sole | 1,000,000 |  | ........... | Do. |
| Mackerel | 500,000 |  |  | Do |
| Herring | 35, 000 |  |  | Do. |
| Perch. | 155, 620 | ${ }^{3 \frac{1}{8}}$ |  | Buckland |
| Lumpfis | 194,112 36,000 | 11 | 121 | Do. <br> Bertram Harvest of the Sen 1873 p 4 |
| Carp. | 2, 059,750 | 161 | $5 \frac{1}{2}$ | Bertram, Harvest of the Sea, 1873, p. 4. |
| Goosefish | 1, 050, 100 | 50 |  | Fishes. G. B. Goode. |
| Do. | 2, 592, 000 | 60 |  | S. F. Baird. |

As especial attention has been given by the U. S. Fish Commission to the numbers of eggs laid by the various species of sea-fishes and their average magnitude, I will not here pursue the subject further, but merely insert some original measurements by the Commission of eggs of the herring, cod, and mackerel, showing their average size.

| Kinds of fish. | Ergss. | Measure. ments. | Average. |
| :---: | :---: | :---: | :---: |
|  |  | Inches. | Inches. |
| Herring (Clupea vulgaris) | 29 | 1.09 | . 0372 |
|  | ${ }_{6}^{41}$ | 1. 56 | . 0380 |
|  | 63 43 | 2.31 1.43 | . 0366 |
| Cod (Gadus morrhua).. | 46 | 1. 40 | . 0304 |
|  | 62 | 1. 79 | . 0289 |
| Mackerel (Scomber scombrus) | 39 | 0. 98 | . 0251 |
|  | $\underline{29}$ | 0.72 | . 0248 |
|  | 77 | 1.93 | . 0251 |

The places of deposit of eggs by fish have already been referred to to some extent under the head of migrations and movements of fish as affected by the reproductive instinct. I shall therefore make only a brief recapitulation of some of the primary divisions.

The anadromous fish, as already explained, are those that run up from the orean into the rivers and sometimes lakes in which to deposit their eggs, returning after a short time, and followed by the young after a period sometimes of months and sometimes of one or two years.

The catadromous fish, of which the cel is the only known instance, are those the eggs of which are laid in the sea, the young passing up the rivers and remaining in the fresh waters during the period of immature existence, after which they return to the ocean and probably never again leave it; others, coming from the depths of the ocean, come to the shore to spawn in the summer season, and sometimes even in the depth of winter; others, again, discharge their eggs freely in the sea wherever they happen to be, these eggs, as already explained, floating or sinking to the bottom and being adherent or non-adherent.*

[^15]In the investigations before the British Fishery Commission as to the injurious effects of the beam trawl-net, much stress was laid upon its destructiveness to the spawn of fish, notably that of the cod, mackerel, plaice, turbot, and other species. Ample evidence, however, was adduced, both within the knowledge of Professor Huxley and from reliable investigations by Sars and others, that the ova of most of the important sea fishes are discharged in the open sea and float in it until the young fish escapes from the shell. Sars found this to be the case when visiting the Lofoden Islands for the purpose of this investigation, a conclusiou absolutely contrary to his previous opinious. Nothing struck him with greater astonishment than the immense number of eggs, either containing embryos or emptied of them, which were to be met with in erery direction, these being thickly scattered in the waters over many square miles.
following list of what he calls pelagic spawners, or those the egrss of which are found floating freely in the sea:

The common Sea Perch.
The Tautog.
Five or six species of Flounders.
The Silverside or Atherina.
The Butterfish.
The Menhaden.

The Mackerel.
The Striped Bass.
One species of Cottus.
The Goosefish or Lophius.
The Corl.
The Hake or Phycis.

Most of theso were olserved by him in the vicinity of Nantucket and a few at Newport. The time of the spawning of these fish, as noted by him, was as follows:

The Flounders, from June to early September.
The Perch and Tautog, the last of June and early in July.
The Cod, in August.
The Hake (Phycis), from June to Séptember; the young of all stages swimming on tho surface.
The Sea Bass, recently hatched young seen from July to September.
Menhaden, August and September.
Atherina, June and July.
Cottus, July to September.
Butterish, July to September.
Lophius, June and early July.
The eggs of these several species vary in size from the .06 to the .03 of an inch in diameter. He finds the young are easily identified by the pigment cells, the oil bubbles in the egg, the position of the yolk-bag, the extent of the development of the eyes, and the character of the fins. The only sea fishes whose eggs ho knows are doposited on the ground are tho Batrachus tau, or Toadfish, and some of the Cottoids.
As the result of his extended inquiries on the subject, as secretary of the British commission, Holdsworthy thinks that, the herring comes shoreward to spawn, but that the eggs may be emitted at a cousiderable distance from the coast. The ey.g. are discharged near the bottom and cover the gravel or sea-weed with a kind of cake, which is then immediately milted by the male.
According to observers on our own coast, herring, when spawning, are sometimes in pairs; at others, a large number of both sexes appear to join together, the females discharging their eggs almost simultanconsly and the males their milt, in such quantity as to whiten the water.
The Pilchard, a clupeoid fish, second in importance in England according to Holdsworthy, certainly spawns in deep water, and then both the adults and the young approach the shore.

Nackerel.-The mackerel, too, he found to have the same characteristic, the eggs of both species being fourl far out at sea. In both cases the egg was provided with a small globule of oil, apparently for the express purpose of facilitating its suspension in the water, and which was contained in the abdominal sack of the young fish in hatching, and constituted a large part of its embryonic nutriment.

Plaice-The eggs of the plaice, too, one of the principal flat-fish of Europe, were found floating freely in the sea, and the inference was drawn that most of the flat-fish family, including the turbot, sole, \&c., possessed the same characteristics. An analogy in the habits and physiological condition of other species of the cod family, such as the haddock, the pollock, and the hake, also induced Sars to include them in the same category.

As a general rule, the eggs of fish that float freely in the sea are single, and belong to the so-called dry eggs, or lack the glutinous enrelope which is found in the case of the herring and some less important fish, which canses them to adhere to each other in masses and to any other object with which they may come in contact. The herring is almost the only seatish of economical importance that exhibits the last mentioned characteristic. (Deep Sea Fishing, p. 42.)

Many forms of animal life, including fishes of the various Antennarius, Chironectes, \&c., live habitually in mid-ocean, especially among the masses of floating sea-weeds, of which some species actually make nests in which their eggs are introduced.

The rate of growth of the young fish raries with the group. In Crys. $t$ tellugolius, according to Collett, and perhaps in other forms, the capacity of reproduction is developed in a year's time. For the most part, howerer, it is thought that the ordiuary fishes require a period of three or four years before they are able to propagate their kind. It is likely that the sharks require a still greater allowance, although nothing definite is known on this subject.

The actual rate of growth of the individual varies with the species, and probably to a certain extent with the individual, and the arerage at maturity varies very much with different so-called schools. Thus among the codfish, a school of mature fish coming in to the coast of New Jersey and elsewhere on the south side of New England, may arerage not more than 5 to 10 pounds, while another school, which visits Cape Ann for the same purpose, averages a much greater weight, individuals of eveu 100 pounds not being extremely rare. The same difference in the size of coll occurs elsewhere, as also in that of other kiuds of tish. What causes this difference it is, of course, impossible to say.

Many fishes experience curious changes of shape and color during the breeding season. These alterations are very much marked in the salmon, the male of which develops a lengthened, hooked jaw, in which formidable teeth make their appearance. A common alteration consists
in the development of a hump in the nape of the neck or in the back of the male, as in the sea bass.

A change of color is also a very common feature, the male generally assuming brilliant tints during the brief season which are not appreciable at other times.

It is difficult to say how long fish can maintain their ability of propagation or reproduction, some forms, in all probabilits, being more persistent in this respect than others.

In conclusion, a volume could readily be written in regard to the peculiarities of habit, condition, and relationship of fishes, but as the present essay is intended more particularly as an illustration of the fisheries of the North Atlantic, I shall now bring this portion of my subject to a conclusion, and proceed to a more important division, that of the methods, processes, and results of the fisheries themselves.

## II.-METHODS OF CAPTURE.

A.-THE FISHing Grounds.

In the Western Atlantic there is a remarkable chain of submarine elevations situated between the Gulf Stream and the east coast of North America, and extending from the vicinity of Cape Cod to a point far east of Newfoundland, a distance of more than 1,100 miles. Many of these elevations are of large extent, and, together with others of a similar character but comparatively smaller size that are nearer the land, lying inside of the main range, they constitute what are known as the "banks" or the great fishing grounds for coll (that is, the various species of the Gadider, of which the cod, Gadus morrhua, is by far the most abundant) and halibut.

For the better understanding of the relative position of the banks, their importance, de., the description will begin with the sonthwestern grounds and proceed to the north and east.

GEORGE'S BANK.
George's Bank is by far the largest and most important fishing. ground near the coast of the United States, and is second to none in the Western Atlantic except the Grand Bank of Newfoundland. It lies to the eastward of Cape Cod and Nantucket Shoals, and is seemingly au extension of the latter, since the water is no deeper between the southern part of the shoals and the western part of the bank than in many places on it. As laid down on the charts the southern limit is in $40^{\circ} 40^{\prime} \mathrm{N}$. latitude, although 10 miles sonth of that the depth of water does not exceed $4 t$ fathoms, and therefore the soithern boundary may be placed at $40^{\circ} 30^{\prime}$ and the northern at $42^{\circ} 05^{\prime} \mathrm{N}$. latitude. The eastern part is in $66^{\circ} 2 \sigma^{\prime}$ and the western in $69000^{\prime} \mathrm{W}$. longitude, making the greatest length about $1: 30$ miles from the northeast to the southwest extremity. and the greatest width 95 miles north and south. The
depth is from 2 to 50 fathoms. On the western part, between the parallels of $41^{\circ} 10^{\prime}$ and $41^{\circ} 53^{\prime} \mathrm{N}$. latitude, and the meridiaus of $66^{\circ} 20^{\prime}$ and $68^{\circ} 37^{\prime}$ W. longitude, are a number of shoals known as the East Shoal, the North Shoal, the Southwest Shoal, Cultivator Shoal, \&c. The Southwest Shoal is the largest, being 15 miles in leugth. There is from 2 to 15 fathoms of water on these shoals and between them from 12 to 30 fathoms. The tides sweep over these with great force, causing strong rips, and during rough weather the sea breaks heavily on them, rendering, approach to their vicinity extremely hazardous. The bottom is chiefly sand, although patches of rough ground, gravel, pebbles, and rocks, of more or less extent, are found on some parts of it.

Its sitnation between the Bay of Fundy and the Gulf Stream causes the tides to run swifter than on the other banks, and to swirl around instead of going directly loack and forth in opposite directions. They run around the compass, from left to right, attaining the greatest strength when at SE. and NW., and the least in a southwest and northeast direction. The first attempt at fishing on this bank of which there is any record was made in 1821 by three Gloucester vessels. But the George's cod and halibat fishery is of later date, as it did not become fully established as a permanent business enterprise until about 1835, although vessels went there for halibnt in 1830. At first the catch was mostly halibut, but since 1850 it has been chiefly codfish, although more or less halibut are taken with them. During the months of February, March, and April large schools of cod make their appearance on the bauk. They are generally found on the "winter fishing-ground," a part of the bank lying to the eastward of the shoals, between $41^{\circ} 30^{\prime}$ and $42^{\circ} 00^{\prime}$ N. latitude and $66^{\circ} 38^{\prime}$ to $67^{\circ} 30^{\prime} \mathrm{W}$. lougitude. This is essentially a spawning ground for the cod, which appear to come on the bank from. the sontheast, as they almost invariably, after reaching the ground, move slowly to the north and west as spring approaches. This is in the direction of the shoals, and, as the pursuit of the fish brings the vessels near the latter, great loss of life and property sometimes occur in heary easterly gales and storms. As soon as the spawning season is over the schools of col break up, but more or less fish are caught on different parts of the bank during the entire year, though rarely, if ever, are they found so plenty as when the winter school is on.

The codfish fleet, which numbers about one hundred sail, is wholly from Gloncester, Mass. Besides these there are twenty-five to thirty vessels from the same port that fish on George's for haddock in the winter, and a few others from New London, Conn., and other ports on Long Island Sound engage in the cod and halibat fishery in spring and summer.

BROWN'S BANK.
Brown's Bank lies in a northeasterly direction from George's Bank, being separated from the latter by a gully, This bank is imperfectly
laid down on the charts, which therefore fail to give an adequate idea of its extent and importance as a fishing-ground. Its greatest leugth east and west is 53 miles, from $65^{\circ} 10^{\prime}$ to $66^{\circ} 23^{\prime}$ W. longitude, the greatest breadth 47 miles, from $42^{\circ} 15^{\prime}$ to $43^{\circ} 02^{\prime}$ N. latitude, and the depth varies from 20 to 55 fathoms. There is a small shoal on the northern part, the location of which has not beeu definitely determined, where it is said there is not more than 9 to 15 fathoms. The bank slopes gradually from the shoal in a southerly direction, bat falls off steep on the northern side. The bottom is mostly composed of gravel, pebbles, and rocks, the latter predominating near the shoal.

The tides are nearly as strong here as on George's Bank, but run more directly to and from the Bay of Fundy, the northeast and southwest set being generally much weaker than on the latter bank.

Cod, halibut, and haddock are the principal fish taken, although cusk, pollock, and hake are fomd more or less. Cod are quite plenty in the winter and some good fares are obtained, although but comparatively few vessels fish there at that season, most of them being in the George's fleet. At other seasons, however, the fishing on Brown's Bank compares farorably with that on any of the banks in the ricinity, and quite a number of the so-called Georgesmen are engaged in fishing there. The cod is found the sear around. Halibut were formerly found very plenty, but at present occur in much less numbers. Sometimes the haddock fishermen make a trip to this bank during the winter and good catches are occasionally obtained.

## JEFFREY'S LEDGE.

This may perhaps be considered one of the best shore fishing-grounds in the Gulf of Maine, although it is comparatively small. It is seemingly an extension of the shoal ground that makes off in a northeasterly direction from Cape Ann. It is about 20 miles long NE. and SW. and from 2 to 4 miles wide. Its southern limit is $42^{\circ} 54^{\prime}$, and northern $43^{\circ}$ $11^{\prime}$ N. latitude, and the eastern and western boundaries may be placed at $69^{\circ} 58^{\prime}$ and $70^{\circ} 18^{\prime} \mathrm{W}$. longitude. The bottom is rocky ou the shoalest parts, with gravel and pebbles along the edges. The depth of water is from 27 to 35 fathoms on the bank, falling off to 40 and 50 fathoms on the borders. Usually there is little or no tide, though occasionally there is some current setting to the SW. Cod, cask, and haddock are taken in the fall, winter, spring, and early summer, with more or less hake or pollock mixed with them. For a number of years Jeffrey's Ledge was a favorite winter fishing-ground for haddock, which were very abundant, and even at the present time many vessels resort there in pursuit of haddock; but since the haddock fishermen hare extended their cruises to the outer banks, a less number, of course, go to Jeffrey's. Besides the haddock catchers, the vessels engaged in the shore fisheries resort to this ground in the spring and fall.

This is not a very important fishing.ground at present except for a brief season in the spring, although it is resorted to somewhat by the shore fishermeu in summer and fall, and sometimes good trips are obtained. It bears east from Cape Aun, from which the shoals are 76 miles distant. The bank is about 22 miles long, from $42^{\circ} 49^{\prime}$ to $43^{\circ} 11^{\prime} \mathrm{N}$. latitude, and about 17 miles wide, from $65^{\circ} 40^{\prime}$ to $69^{\circ} 3^{\prime} \mathrm{W}$. longitude. There are three small shoals on the western part of the ground. The southern one has 7 fathoms, the middle one 4 fathoms and the northern one 11 fathoms of water. The position of the middle shoal is $42^{\circ} 56^{\prime} \mathrm{N}$. latitude and $65^{\circ} 52^{\prime}$ W. longitude. From this the south shoal bears S. by E. and the north shoal NNE., each being $3 \frac{1}{2}$ miles distant from it. These break in rough weather, and, though of small extent, are dangerous to passing vessels, especially as they are almost directly in the track of vessels bound to and from Cape Sable to Massachusetts Bay. With the exception of the shoals the depth of water ranges from 15 to 60 fathoms. The ground is more or less broken, with bottom of sand, pebbles, and rocks. The greater part of the fish caught here are cod, hake, and cusk. Halibut are rarely seen, and haddock and pollock are less plenty than the other kinds. Good trips are often secured on the edge of the gronnd in May and June, but the dogfish, which appear about the last of June or in July, usually drive everything before them and for a time stop the fishing. The class of vessels fishing on Cashe's range from 15 to 45 tons, and are what are known as shore trawlers.

## JEFFREY'S BANK.

This bank, which lies east of Cashe's Ledge, is of comparative little importance as a fishing-ground. It is about 20 miles long SW. and NE., and 10 miles wide, the northern and soathern limits being $43^{\circ} 15^{\prime}$ and $43^{\circ} 30^{\prime} \mathrm{N}$. latitude. The eastern edge is in $65^{\circ} 25^{\prime}$ and the western in $65^{\circ} 46^{\prime} \mathrm{W}$. longitude. The bottom, which is somewhat broken, is composed of mud, sand, gravel, and pebbles, with a depth varying from 35 to 70 fathoms. Cod, haddock, hake, and cusk are the fish most plentifu'; some pollock are canght, but halibut are rarely taken. The best season is in late spring and early summer, before the dogfish schools strike, after which but few fish can be obtained. This bank is resorted to by the smaller-sized vessels of from 15 to 50 tons.

GERMAN BANK.
Although this bank is not usually laid down on the charts it is one of the most important in the Bay of Fundy. It bears SE. from Baker's Island light (Mount Desert), from which the northwest part is about 52 miles distant. The length is about 15 miles and the width 9 to 10 miles. It lies between $43^{\circ} 35^{\prime}$ and $43^{\circ} 53^{\prime} \mathrm{N}$. latitude, and $66^{\circ} 55^{\prime}$ to $67^{\circ} 15^{\prime}$ $\dot{W}$. longitude. There is from 65 to 100 fathoms of water. The bottom is
mostly a tough red clay, but with spots of mud, sand, gravel, aud pebbles on some parts. The tide sets out and in the Bay of Fundy about SW. and NE., but is not so strong as might be expected. Cod, hake, cusk, and haddock are the fish which are chietly taken, but in few halibut and pollock are occasionally canght. The fishing season is from April to October, although fish are usually the most abundant in the spring. This bank is resorted to chiefly by vessels from the coast of Maine, but is sometimes visited by the Massachusetts fishermen.

## MARBLEHEAD BANK.

This fishing-ground, which is quite an important one for the shore cod-fishermen, is not laid down on the charts. Therefore the fishermen who visit it are probably the only persons familiar with its location, or who are able to estimate its extent. The ground which they call Marblehead Bank is situated between Grand Manan and German Banks, the shoal water bearing SSE. from Mooseabec light, a distance of 32 miles. It is about 12 to 15 miles long aud 7 or $S$ miles wide, and lies between $44^{\circ} 00^{\prime}$ and $44^{\circ} 10^{\prime} \mathrm{N}$. latitude and $66^{\circ} 58^{\prime}$ to $67^{\circ} 13^{\prime} \mathrm{W}$. longitude. There is from 35 to 70 fathoms of water, and the bottom is mostly clay and gravel. The fish that occur in the greatest numbers are cod, pollock, and haddock, but with these are more or less hake and cusk. The best fishing is generally in the spring and early summer. The same class of vessels-shore fishermen-as frequent Grand Manan and German Banks also resort to this, but occasionally those of a larger size make one or more trips during the summer season.

## GRAND MANAN BANK.

Grand Manan Bank lies at the entrance of the Bay of Fundy, and bears SW. $\frac{1}{2}$ S. from the southwest head of Graud Manan Island, from which the northern part of the bank is 15 miles distant. It is 10 miles long and 5 miles wide, and lies in a SW. and NE. direction. The bottom is mostly stones and gravel, and the depth of water varies from 24 to 45 fathoms. The tides are quite strong, but not enough so to prevent trawling. Cod and pollock are the principal fish, cusk, hake, haddock, and halibut being less plenty. The fishing season is from April to October, when the fish come on the bank to feed. In the spring the fish are usually the most plentiful on the southwest part, but later in the season the best fishing is generally obtained on the other end of the ground. It is a farorite fishing-ground for the class of small vessels commonly known as shore-fishermen.

## SEAL ISLAND GROUND.

Off the western part of Nova Scotia there is an important fishing locality known to the fishermen as the "Seal Island Cround," although no name is giren on the charts. This may not, perhaps, be called a
bank, as it is shore soundings, which slope gradually from the land to the south and west, bat contiuue in a northerly direction beyoud what may properly be considered the limit of the ground. To the south it exteuds nearly to Brown's Bank, from which it is separated by a narrow gully; to the west 35 miles from Seal Island, the western land of Nova Scotia; and to the northwest about 35 miles. The southern limit is in $43^{\circ} 00^{\prime}$, and the northern in $43^{\circ} 45^{\prime} \mathrm{N}$. latitude, while the western boundary may be placed at $66^{\circ} 40^{\prime} \mathrm{W}$. longitude:

There is a small shoal, the Pollock Rip, with a depth of 7 fathoms, which bears SW. from Seal Island, from which it is distant $9 \frac{1}{2}$ miles, but with this exception, the ground slopes quite gradually, the depth varying from 15 to 70 fathoms. The bottom is priacipally composed of coarse gravel and pebbles, with occasional rocky spots of more or less extent. The tides sweep out aud in the Bay of Fundy with considerable force, the course changing with the direction of the land, so that while they run nearly north and south on the northern part of the ground, they swing around to northwest and southeast to the southward of Seal Island. The flood is much stronger than the ebb, and the fishermen estimate that one flood will carry a vessel nearly as far in a northerly direction as two ebbs will in the opposite way.

The fish that are principally caught on this ground are cod, haddock, and pollock, although halibut, cusk, and hake are taken to a limited estent, and occasionally herring or mackerel are netted for bait. Cod are generally more plentiful from spring to fall than during the winter, but haddock and halibut are fonud all the year. Fishing usually begins in April or May, and continues until October. Halibut were formerly very abundant, but are now comparatively scarce.

This ground may be considered essentially a feeding-ground for the cod, which come here after the spawning season is over to fatten upon the crabs and mollusks on the bottom and the herring and otber species of small fish that are swept back and forth in the tide-rips. All parts of the Seal Island ground are fished on at the same time. This was formerly a farorite fishing-ground for vessels from the coast of Maine, but since trawling has comeoto be so universally adopted but fers American vessels except " hand-liners" go there. The fleet engaged iu fishing there now is principally composed of vessels belonging to the western part of Nova Scotia, which geuerally "fish at a drift," going back and forth over the ground with the wind and currents.

ROSEWAY BANK.
Roseway Bank lies in a northerly direction from Le Have Bauk and SE. from Shelburne light. It is oblong in shape and of small extent, the greatest length being only 19 miles, and breadth 12 miles. The limits are $43^{\circ} 13^{\prime}$ and $43 \circ 32^{\prime} \mathrm{N}$. latitude, and $64^{\circ} 30^{\prime}$ to $64^{\circ} 38^{\prime} \mathrm{WV}$. longitude. The bottom is sand, gravel, and rocks, and there is a depth of from 33 to 48 fathoms. The current here is not nearly so strong as
in the vicinity of Cape Sable, or Brown's Bank. The general set is about WSW. and ENE., the westerly current usually being much the strongest, although both the force and direction is somewhat influenced by the winds.

The principal fish are cod, haddock, and cusk, but hake, pollock, and halibut are occasionally taken. The season is usually from May to October, during which time fishing is carried on principally by small-sized vessels from the western part of Nova Scotia, although a few American vessels occasionally go there. To the northwest of Roseway, and between it and the land, is "Cape Negro Mud," a good ground for cod at certain seasons. It is of small extent, with muddy bottom, and a depth varying from 60 to 80 fathoms.

## LE HAVE BANK.

Le Hare Bank is situated to the eastward of Brown's and south and east of Rosemay Banks. It extends from $42^{\circ} 53^{\prime}$ to $43024^{\prime}$ N. latitude, a distance of 31 miles, and from $63^{\circ} 50^{\prime}$ to $64^{\circ} 47^{\prime} \mathrm{W}$. longitude, a distance of 41 miles. Much of this westerly extension is a long narrow prong that makes out from the main body of the bank. The bottom is largely composed of coarse gravel, pebbles, and rocks, with only here and there small spots of sand. The depth of water is from 40 to 50 fathoms. The general set of the current is mostly to the westward, but this, however, is influenced very much by the direction and strength of the winds. The fish that are chiefly taken on this bank are cod and haddock, although the other species of bottom fish are found more or less plentiful. Cod are found at all seasons of the year, but are more abundant during the early winter than at any other time, and good trips are frequently obtained by the Gloucester vessels, which are the only ones that go there at that season. The Gloucester winter haddockcatchers, who carry these fish fresh to Boston market, have extended their trips from George's and Brown's Banks to Le Have, and during the present winter (1880-'S1) have made some remarkably good catches.

## LE HAVE RIDGES.

The fishing-ground known as Le Have Ridges is simply a continuation of Le Have Bank to the eastward in the direction of the Western Bank, a distance of about 45 miles. This makes the eastern limit in 620 $50^{\prime} \mathrm{W}$. longitude, while the northern and southem boundaries are about the same as those of Le Have Bank. The bottom is a succession of ridges* of gravel and pebbles, with occasional patches of rocks, and the deptin varies from 55 to 85 fathoms. The curreut is weaker here thain farther west on the bank, and, excepting with easterly winds, is but little noticed. The general set is westerly. The "Ridges" were for a number of years one of the favorite places of resort for the halibut catchers in the winter, and many good trips of cod have also been taken at that
season. At present but few halibut are canght, except in the deep water along the southern edge of this ground, where sometimes they have been found quite plenty for nearly the entire year. Hake are also found in large uumbers in the deep water about the borders of the ground, and even on the ridges. As a general thing but few ressels besides those from Gloncester have made a practice of fishing on Le Have Ridges, though a few cod fishermen from other places stop there now and then during the summer.

## SAMBRO BANK.

This bank lies in a westerly direction from the Western Bank, but is so small that it is of little importance as a fishing-ground and is but little resorted to by American ressels. . It lies between $43^{\circ} 36^{\prime}$ and $43^{\circ}$ $47^{\prime} \mathrm{N}$. latitude and $65^{\circ} 40^{\prime}$ to $63^{\circ} 00^{\prime} \mathrm{W}$. longitude, the greatest length being 15 miles and width 11 miles. There is from 50 to 60 fathoms of water, and the bottom is mostly sand, gravel, and pebbles.

## WESTERN BANK.

The Western Bank is one of the most important fishing grounds in the Western Atlantic, considered either as to size or the amount of fish taken on it. Lying off the eastern coast of Nova Scotia, it has Le Hare Ridges on the west, and Bankquereau on the east, from both of which it is separated by gullies. The general direction of the bank is WSW. and ENE.; the eastern limit is $599^{\circ} 0^{\prime \prime}$, and the western $62^{\circ} 27^{\prime} \mathrm{W}$. longitude, making the extreme length 193 miles. The southern limit is in $42^{\circ} 51^{\prime}$, and the northern in $44^{\circ} 46^{\prime} \mathrm{N}$. latitude, the extreme width, therefore, being 95 miles.

On the eastern part of the bank is Sable Island. This is about 20 miles long and $1 \frac{1}{2}$ miles wide, and composed wholly of sand, which for nearly the eutire length is in hummocks, caused probably by the action of the wind. Off either end of the island are long and daugerous sandbars. The general direction of the island and bars is east and west, although they take the form of a crescent with the concave side on the north. The depth on the bars for a distance of from 7 to 10 miles from the island does not exceed 2 fathoms, and even 10 miles farther out in an easterly and westerly direction there is not more than 10 or 11 fathoms. On the middle ground-a portion of the Western Bank which lies in a northerly direction from Sable Island about 25 miles distant-there are several shoal spots with from 10 to 19 fathoms on them.

As a general rule the bank slopes gradually from the island to the south and west, the depth- ranging from 18 to 60 fathoms. The general character of the bottom is sandy, but there are patches of gravel and pebbles. The currents in the vicinity of Sable Island are occasionally quite sirong, and generally irregular, being very much influenced by the winds. On the greater part of the bank there is usually but
little current. The set of what there is, however, is mostly in a west. erly direction. Cod and halibut are the principal fisin taken, though the other species of bottom fish are found in limited quantity. The former are generally the most abundant in the spring, from the first of March to June, although good fares are obtained throughout almost the entire year. For more than twenty-five years the Western Bank has been a favorite resort of the halibut fishermen. At first these fish were found very plenty in from 45 to 60 fathoms, and since 1876 have been caught in great numbers along the edge on the south and east sides in from 100 to 300 fathoms. Like the cod, they are found during the entire year, the period of greatest abundance, however, being from the first of Jauuary to the first of Jctober. The Western Bank may be considered both as a feeding and spawning ground for the cod and halibut. It abounds with shell-fish and crustaceans, as well as with several species of small fish upon which the cod and halibut prey. Although the cod do not gather in such great schools in winter as they do on George's Bank, it is nevertheless quite evident that they assemble at that season for the purpose of reproluction. Usually they are found the most plentiful on the westeru part of the bank in winter and early spring, but as the season advances they move into shoaler water in the vicinity of Sable Island, the "bend" of the island and about the bars being favorite grounds during the late spring and early summer. Vessels from all along the New England coast and from the British Provinces resort to this bank to pursue the cod fishery, but fishing for halibut is almost exclusively carried on by the Gloucester fleet.

## THE GULLY.

Although the "Gully " cannot be called a bank, being just what its name suggests, a deep gully between two banks, it is nevertheless too important as a halibut fishing-ground to be omitted from a general description of the fishing banks. This lies between Bankquereau and the Western Bank, being bound on the north and east by the former, and on the south and west by the latter. The entire length of the gully is more than 60 miles, but the halibut ground is of less extent, and the limits, east and west, may be placed at the 59th and 60 th meridians of west longitude. It is about 18 miles wide, on the eastern part, from $44^{\circ} 08^{\prime}$ to $44^{\circ} 26^{\prime} \mathrm{N}$. latitude, but narrower farther west. There are several ridges with rocky and gravelly bottom and a depth of 75 to 125 ,fathoms, ou which the halibut are usually caught. On either side of these ridges the bottom is generally sand or mud, excepting in the eastern section, where it is composed mostly of pebbles and sharp rocks.

The current generally sets in a westerly direction, but is very irregular in strength; an easterly wind often causes it to increase very per. ceptibly, while at other times there may be but little or no tide. When the halibut fishing first began on this ground it was carried on chiefly
in the spring on the northern and western part, but in the spring of 1877 the fishermen made trials farther out, in deeper water, and excellent fares were obtained as late as June and July. Since that time good fares have been taken during the winter season, and it appears that halibut come to this place especially to feed, as they generally move to other localities just previous to the sparning season. With a few exceptions the Gloucester halibut ressels are the only ones fishing on this ground.

## BANKQUEREAU.

This may be considered among the most important of the fishing banks lying between the 40th and 4Sth parallels of fatitude. It lies in an easterly and northerly direction from the Western Bank, being separated from the latter by the "Gully." The former bank is long and comparatively narrow, and lies in an east and west direction. The extreme length is 118 miles, from $55^{\circ} 20^{\prime}$ to $60^{\circ} 04^{\prime} \mathrm{W}$. longitude. The southern limit is $44^{\circ} 0 \bar{J}^{\prime}$ and the northern $45^{\circ} 01^{\prime}$, a difference of 56 miles, but the widest place, the eastern part, does not exceed 46 miles.

There is a shoal ground called the "Rocky Bottom," on the eastern part of the bank, which has a depth of 16 fathoms, while elsewhere there is from 18 to 50 fathoms. The Rocky Bottom is much frequented by the haud-line dory fishermen during the summer, and sometimes several hundred dories are fishing theie rery close together.

The bottom is generalls rocks, but there are patches of sand and gravel on some parts of the bank. The current from the Gulf of Saint Larrence and the polar current meet here, but, though this causes considerable irregularity, the latter is usually the strougest, and the set is therefore chiefly in at westerly direction. The force is much influenced by the mind, so that there may be quite a strong tide for sereral days together and then but little or none.

But few kinds of fish, with the exception of cod and halibut, are taken on Bankquereau; hake, haddock, and cusk being comparatively rare. Halibut are found thronghout the entire sear in the deep water along the edges of the bank, where, at a depth of from 100 to 400 fathoms, large numbers of them are often taken. These are apparently both feeding and breeding grounds for the halibut, and it is not unusual for a school of them to remain sereral weeks or eren months in one localits, although it is probable that some of the schools that "strike" ou the eastern part of the bank in the spring are migrating farther north. The best season for cod is from Nay to November, when the schools gather on the bank to feed on the lant, squid, crustacea, and shell-fish that usually occur in great abundance. As a general thing cod are found the most plentiful on the eastern part of the bank, although good catches are frequently obtained farther west. Freuch, British, Prosincial, and American fishing ressels resort to this bank for cod in summer, and the American (Gloucester) fresh halibut fleet risit it at all seasous,

## CANEO BANK.

This bank lies to the south and east of Cape Canso, from which it derives its name; it is unimportant as a vessel fishing-ground, and is too distant from the land to be much resorted to by small boats. It lies between $45^{\circ} 00^{\prime}$ and $45^{\circ} 16^{\prime} \mathrm{N}$. latitude and $59^{\circ} 58^{\prime}$ to $60^{\circ} 42^{\prime} \mathrm{W}$. longitude; the greatest length, in an east and west direction, being 30 miles, and the width 16 miles. There is a depth of from 30 to 56 fathoms, and the general character of the bottom is sandy, with spots of gravel or pebbles.

MISAINE BANK.
Although Misaine Bank is quite large, it is but little resorted to by fishermen, and therefore it may be said that as a fishing-ground it is unimportant. This fact seems quite remarkable, since it is not more than 30 miles distant in a northerly direction from Bankquereau, which is a good ground for cod and halibut. The extreme length is 61 miles, in an easterly and westerly direction, the limit being $55^{\circ} 08^{\prime}$ and $59^{\circ} 28^{\prime}$ W. longitude. The width is 41 miles, from $44^{\circ} 59^{\prime}$ to $45^{\circ} 40^{\prime} \mathrm{N}$. latitude. The depth of water varies from 40 to 60 fathoms, and the bottom is generally broken and rocky. But little can be said concerning the abundance of fish on this bank, since it is so rarely visited by fishing vessels that no reliable information can be obtained concerning this matter. The natural inference is, however, that the bank has been fished on more or less, and though cod and other bottom fish are found they are not so plentiful as on other banks.

## ARTLMON BANK.

Artimon Bank lies north from the eastern part of Bankquereau, being separated from it by a narrow gully. It is of such limited extent that, compared with the latter, it is of but little importance as a fishingground. The fishermen generally prefer to try on the larger bank, and therefore but comparatively little is known about the abundance of fish on Artimon Bank, although it is known that the same kinds may be taken on one as on the other. It is 17 miles long and 10 miles wide, with a depth of 37 to 50 fathoms, and bottom of coarse gravel and rocks.

## SAINT PIERRE BANK.

Until quite recently the bank of Saint Pierre was considered a very important fishing-ground for both cod and halibut, and was much resorted to by American as well as French and British proviucial fishermen. At present, however, fish are much less abundant than formerly, and it can scarcely be placed in the front rank of fishing banks. It is situated to the northwest of Grand Bank and Green Bank, and off the south coast of Newfoundland, the northern part being only 11 to 15 miles distant from the French islands of Miquelou and Saint Pierre. It
is oblong in form, and extends in a northwest and southeast direction. The leugth is 110 miles, and width 60 miles, and it lies between the parallels of $45^{\circ} 15^{\prime}$ and $46^{\circ} 45^{\prime} \mathrm{N}$. latitude, and the meridians of $55^{\circ} 21^{\prime}$ and $56^{\circ} 21^{\prime}$ W. longitude. There is from 22 to 50 fathoms of water. The bottom is generally rocks and pebbles, covered with a growth of reddishcolored bryozoans, but on some parts there are places of considerable extent where it is composed of sand or gravel. Ordinarily there is not much current on this bank, although sometimes, when driven by strong winds, the polar current, which sweeps around the south coast of Newfoundland, is quite strong. Cod and halibut are the only foodfish that are found in any numbers, although a few cusk and haddock are sometimes taken. The season for both cod and halibut is from the 1st of April to November. The best season for cod is from the 1st of June to October, when they come here in pursuit of capelin and squid. Halibut were formerly taken on the shoal parts of this ground during the spring and summer, but at present are rarely found in any abundance except in the deep water along the edge, or on rocky spots, a distance of 15 to 20 miles from the bank, where there are no soundings laid down on the charts. Some of the schools of halibut find their breeding grounds on these rocky patches, but the greater part pass along the edge in the spring on their way to the north. With the exception of the fresh halibut catchers, few fishermen besides the French make an attempt to fish on Saint Pierre, as the other banks offer much greater inducement.

## GREEN BANK.

Green Bank is one of the least important of its size in the Western Atlantic, if only that part laid down on the charts as such is considered. But it may be said, however, that one of the best halibut grounds is in the deep waters near its southern part, and as this is also called Green Bank by the fishermen, it may not be out of place to consider it in this connection. This bank is situated between Grand and Saint Pierre Banks, beiug 7 miles distant from the former and 13 miles from the latter. The extreme length is 54 miles north and sonth, between $45^{\circ} 15^{\prime}$ and $46^{\circ} 09^{\prime} \mathrm{N}$. latitude, and it is 33 miles wide, the meridians of $54^{\circ} 17^{\prime}$ and $55^{\circ} 03^{\prime} \mathrm{W}$. longitude bounding it on the east and west.

The depth raries from 40 to 60 fathoms, and the bottom is composed of sand, shells, pebbles, rocks, and corals. The general direction of the polar current, which sets orer this bank, is usually from northwest to southwest, its course, as well as force, being more or less influenced by the wind. But little is known of the abundance of the cod here, as the fishermen prefer to go to grounds that are better understood than to stop on this.

Since 1875 halibut have generally been found very abundant in the winter and spring and sometimes, even during the summer, in from 75 to 300 fathoms, along the edge of the ground between the Grand and

Saint Pierre Banks, which is near the southern part of Green Bank. This locality appears to be a feeding-ground in winter, and during the spring is in the direct line of the route followed by the halibut that are migrating from the Grand Bank to other places farther north, and at this season it is not uncommon for immense schools to make their appearance, moving leisurely along the edge, perhaps in some cases only a very little for several days at a time, aud again more rapidly. The only vessels fishing for halibut at this place are from Gloncester, Mass.

## GRAND BANK.

Considered either as to area or with regard to the extent of its fish eries, the Grand Bank is by far the most important fishing-ground in the Western A tlantic, if not in the world. It lies sonth and east from Newfoundland, is triaugular in form, with sides nearly equal, one of them facing the east, one the south and west, and the other to the north and west. The north and east sides are each about 264 miles in length, and the other is 225 miles from the southern to the northwestern limit. It extends over more than four degrees of latitude, from $42^{\circ} 57^{\prime}$ to $47^{\circ}$ $02^{\prime} \mathrm{N}$. , and nearly six degrees of longitude, from $48^{\circ} 22^{\prime}$ to $54^{\circ} 16^{\prime} \mathrm{W}$.

The most remarkable shoals are the Virgin Rocks and the Eastern Shoal Water. The former are a number of rocky liummocks, severally known as the Main Shoal, Portuguese Shoal, the Maycocks, and the Eastern Shoals. On these the depth is from 4 to 25 fathoms, while between them it is from 40 to 50 fathoms. One or two of them break in rough weather, and though not very large, are at such times dangerous to passing ressels. They lie between $46^{\circ} 25^{\prime}$ and $46^{\circ} 30^{\prime} \mathrm{N}$. latitude and $50^{\circ} 31^{\prime}$ to $50^{\circ} 58^{\prime} \mathrm{W}$. longitude. The Eastern Shoal Water extends from about the fiftieth meridian nearly to the eastern edge of the bank and from $43^{\circ} 50^{\prime}$ to $44^{\circ} 50^{\prime} \mathrm{N}$. latitude. The depth of water is from 22 to 30 fathoms and the bottom is chiefly saud, but with some patches of rocks or gravel. With the exception of the shoals already mentioned, the bottom is generally level, the depth being from 30 to 50 fathoms, excepting in the whales deep, near the western part of the bank, where there is from 52 to 67 fathoms on a muddy bottom. The Grand Bank may be considered as a vast sandy plain in mid ocean, but notwithstanding this is the general character of the bottom, there are extensive tracts where it is either composed chiefly of rocks and gravel or where these occur in patches of more or less extent.

There is perhaps less current here than on any other of the banks, and oftentimes for days and weeks together it may be scarcely perceptible. This is generally the case during moderate weather, but a continuance of strong winds usually makes some tide.

The principal food-fish taken here are the cod and halibut. Haddock, cusk, and hake are rare. There are a few cod ("ground keepers") in winter, but the best season is between the first of April and the first of November. The Grand Bank is essentially a feeding-ground for the S. Mis. $90-7$
cod, which find there not only an abundance of shell-fish and crustacea of various kinds, but mollusks and several varieties of small fish that they are especialsy fond of. The appearance of large schools of cod at the same time with certain kinds of bait, for instance the capelin and squid, has caused these to be known to the fishermen as the "capelin school" and the "squid school." The spring fish, which feed largely on the bottom, and to some exteut on lant, are at first found the most abundant on the southern part of the bank, but later spread over a large area. The capelin school comes in May and June, and at that time fish are found more or less plentifni all orer the bank, although the locality betreen the latitudes of $44^{\circ} 00^{\prime}$ and $45^{\circ} 15^{\prime}$ and that east of the Virgin Rocks north of the forty sixth parallel are the most generally resorted to by traml fishermen, while the dory hand-liners gather about the Virgin Rocks, which is a farorite place for them at that season. The squid sehool appears in July and is found on the same grounds as the capelin school. Indeed, it is quite probable that it is made up chiefly of the same fish, their numbers increased, perhaps, by some new accessions. For several years but comparatively fer cod have been taken atter September. Cod-fishing on the Grand Bank dates from the earliest settlement of America. The halibut fishery, however, is of comparatively recent date. This was begun in 1865, at which time, and for several subsequent years, halibut were found very numerous on the bank. At first they were taken almost wholly on the Eastern Shoal Water, later on other parts of the bank, and since 1875 principally in the deep water along the western edge, where immense schools have been found in the winter and spring, and, though less frequently, sometimes in summer. During the early part of the sear the halibut usually do not remain long in one phace, as many of the schools perform their migrations at that season. The summer schools, howerer, are generally spawn fish and move but little.

A large fleet of French vessels of various rigs, but mostly brigs and barks, resort to this bank to engage in the cod fishery. Besides these there is a fleet from the British prorinces and another from the United States, the whole aggregating several hundred sail, with crews numbering many thousands of men.

## FLEMISI CAP.

Although the Flemish Cap is quite large, but comparatively little is known of it, and its boundaries are not fully defined on any of the charts. It is the most northeru of the large fishing banks in the Western Atlantie, being located between $46^{\circ} 36^{\prime}$ and $47^{\circ} 59^{\prime}$ N. latitude and the meridians of $44^{\circ} 06^{\prime}$ and $45^{\circ} 25^{\prime} \mathrm{W}$. longitude. The extreme length is therefore 83 miles and width 53 mites. The bottom is broken into patches of more or less extent of mud, rocks, pebbles, gravel, and sand. A slaty rock is the most common on that part of the bank resorted to by fishing vessels. The depth raries from 73 to 155 fathoms.

Cod and halibut are the only fish taken as an object of pursuit. Owing to the bank being situated so far to the north and east nothing is known about the abundance of fish in the winter season. Indeed, all that is known of them is in the period between the last of April and the first of August. In the spring and early summer cod and halibut have been found in great abundance. During the spring, however, the weather is often so rough that fishing can be carried on but a small part of the time, and after June the ground is so much infested with ground-sharks that the trawls are soon destroyed. Besides this there is more or less danger from drifting icebergs, which are often seen in great numbers. All these causes combined have hindered most of the fishermen from making any attempt to fish there. The only vessels known to have visited this bank for cod and halibut are a few from Gloncester, Mass., and this has never been done until within a few years.

## COD FISHING-GROUNDS IN THE BAY SAINT LAWRENCE.

The cod fishing-grounds in the Bay Saint Lawrence are comparatively of little importance except to the fishermen of the British Provinces. But few American fishermen go there, as the ocean banks are generally preferred by them. There is little difference between the depth of water and character of the bottom of the banks and elsewhere, and therefore the whole bay may be considered as a cod fishing-ground, wfth from 10 to 60 fathoms of water, and bottom generally rocky but somewhat diversified with areas of greater or less extent of sand, gravel, or mud. The only places of which special mention need be made are Bradelle Bank, Orphau Bank, "Pigeon Hill Ground," and "Miscou Flat."

Bradelle Bank is in a northeasterly direction from the North Cape of Prince Edward Island, and in a direct line between that and the northern Magdalen Islands, the SW. edge being 22 miles from the former headland. It is 36 miles long and 24 miles wide.

Orphan Bank is north of Bradelle. The center bears ESE. from Point Miscou, from which it is 47 miles distant. It is 36 miles long NE. and SW., and 15 miles wide, with a depth of from 10 to 30 fathoms, and bottom of rocks, coral, and sand.

Pigeon Hill Ground is the shore soundings that lie southeasterly from Shippegan Island at a distance of 10 to 20 miles, and extends in the direction of the coast about 18 to 20 miles.

Miscou Flat is a stretch of rocky shoal ground that makes out from Point Miscou about ESE. nearly twenty miles. There is from 10 to 22 fathoms of water, the ground gradually sloping toward the outer part.

On all these grounds cod-fishing is pursued only during the warmer season, from May to October. The abundance of cod, especially of the large fish, raries somewhat with different seasons, their presence in greater or less numbers being governed to a great extent by the amount of bait-herring, mackerel, \&c., on the ground. The fishing is largely car-
ried on by the local residents in small boats, although some Nova Scotia ressels, and a limited number from the United States, sometimes engage in it.

## FISHING-GROUNDS NEAR THE MAGDALEF ISLANDS.

The cod and halibut grounds about the Magdalen Islands are at present of little importance to Americau fishermen. Since the introduction of trawl-fishing it has usually been found that better results could be obtained clsewhere. These grounds are rocky patches, and generally of limited extent, with comparatively shoal water and sharp bottom. They oecur all around the islands, but are not of sufficient importance to make a special description necessary. A few trips of halibut have been taken on the shoal about Byron Island, but the appearance of these fish is so uncertain in that locality that the halibut catchers rarely go there. The fishing is done almost wholly in the small boats of the resident fishermen, and by the small vessels belonging to the British possessions and at the French islands of Saint Pierre and Miquelon.

## CAPE NORTII FISHING-GROUND.

Around the northern part of Cape Breton Island, at a distance rarying from 4 to 15 miles from the land, is a fishing.ground that is of considerable importance for a few weeks in the spring and early summer. This lies betreen Oape North and Saint Paul Island, and extends westerly about 15 miles, and southwesterly along the coast as far as Limbo Cove. The land is bold and high, with steep shores, so that notwithstanding the close proximity of the fishing-ground the depth of water on it is from 65 to 100 fathoms. The bottom is mostly tongh clay, but 10 or 15 miles from the laud there are some rocky ridges. The current sets ont of the Gulf of Saint Lawrence toward the southeast, although the direction in which it runs in the vicinity of Cape North changes more or less in conformity with the land. The strength is increased by strong westerly winds, and after a long continuance of these, the current sometimes runs 3 or 4 miles an hour. As a general thing, however, the tides rom slowly Abont 1860 and 1861 cod and halibut were found in abundance, but later the halibat seemed to disappear, and for several years have been takeu only occasionally. The cod are still found quite plenty in May and June, at which time they are moving slowly in by the headland on their way to the shoaler grounds in the bay of Saint Lawrence. The fishing is often obstructed by floating field-ice, which sometimes prevents the ressels from reaching the ground until late in the season. This place is resorted to by provincial and American ressels, but owing to the difficulties that have been alluded to, the fleet is usually small.

THE GREENLAND HALIBUT BANKS.
Mr. N. P. Scudder makes the following statement about the grounds in Davis Strait which are resorted to by the halibut fishermen of Gloucester :
"The fishing banks are 15 to 40 miles from the coast, and, if we can rely upon the Danish charts, extend from Disko Bay to within $3^{\circ}$ of Cape Farewell ; for these charts give soundings all along the coast between these two points. Extensive as the banks may be, only a small part of them, the part about Holsteinborg and Cape Amalia has been tried by American fishermen. That the fish are to be found throughout the whole extent is more than probable; for the species is identical with that taken on the Grand Banks, and we would naturally infer it would be found in all favorable situations within the limits of its distribution. It is also reported that Capt. Rasmus Madson, commonly known as 'Cap'. tain Hamilton,' who has been to Greenland several times, set his trawls for these fish farther to the south (probably off of Godthaab) and found them very abundant, but was unable to secure many on account of the numerous ground-sharks playing the mischief with his trawls.
"The depth of water on the banks is from 15 to 90 fathoms. * * * At the inner edge the banks have a sudden slope, leaving a long submarine valley, the depth of which I did not ascertain, between them and the mainland. The surface of the banks is varied, though generally rocky, with here and there saudy and clayey spots. The character of the fauna varies considerably and often abruptly in places a little distance apart. * * * The halibut were also more plentiful upon the edge than any other part of the bank. **** It will readily be seen from the preceding remarks that a careful survey of the banks, with the view of determining their limits, character, and fauna, could not fail of being of great use to the fishing interest, to say nothing of its immense importance from a natural history and geological point of view." (Report U. S. F. C., 1880, pages 193-4.)

Besides the banks that have been described there are many small patches, generally some part of the shore soundings, along the coast from Florida to Maine which are resorted to by small boats and also by larger craft. Although these fishing-grounds are important in the aggregate there are none of them sufficiently large to require a special description in this place.

Mention should also be made of some of the more noted inslore fishing-grounds of the north. Among these, perhaps the most important is the Strait of Belle Isle, though at present this locality is rarely visited by fishing ressels of the United States. The inshore halibut grounds, along the shores of Anticosti Island and the coast of Lower Labrador, were important for a few years, 1570 to 1874 , but have seldom been visited siuce 1875, the few trips that have been made to those localities since that period being usually unremunerative. Other inshore
localities, which are no longer good grounds for halibut, might be mentioned, but it may suffice to say that at present the only place where halibnt are found abundant near the shore is on the west coast of Newfoundland.

## THE MACKEREL FISHING-GROUNDS.

The principal fishing-grounds for mackerel (Scomber scombrus) are along the coast of the United States north of Cape Hatteras and in the Bay and Gulf of Saint Lawrence. The ordinary range of the mackerel on the American coast is between the parallels of $35^{\circ}$ and $52^{\circ} \mathrm{N}$. latitude. Instances have been recorded of their appearance north and south of these limits, but all the evidence goes to show that their presence in those waters is exceptional. The extent of the fishing-grounds on which mackerel are commonly. canght is considerably less than that first mentioned, since they are rarely taken south of the thirty-seventh or north of the fiftieth parallel of north latitude, and the best obtainable evidence shows that the average southern limit of the first catches in the spring is about $35^{\circ} 00^{\prime} \mathrm{N}$. latitude.*
The most northern localities where mackerel have been found abundant by fishermen who were sceking them (this is by no means a common occurrence) are the Seven Islauds, $50^{\circ} 05^{\prime}$, and Mingan Islands, $50^{\circ} 14^{\prime} \mathrm{N}$. latitude, both of these groups of islands being situated near the coast of Lower Labrador.

Mackerel appear on the coast of the United States early in Aprilrery rarely in March-and until the middle or last of May the fishing. ground for them is along the coast from off the capes of the Delaware to the South Shoal of Nantucket, adrancing northwardly with the season and at varying distances, say from 3 to 60 miles, from the land. From June to September the best grounds for these fish are off the coast of Maine. Sometimes they are caught in the bays, some distance inside of the outer islauds, bat more generally from 5 to 70 miles offshore. Large schools of mackerel frequently appear on George's Bank in the summer, and it is not uncommon for that to be one of the favorite grounds for these fish during a large part of the season. When the autumn migration of the mackerel takes place, which is generally in October, and continnes sometimes through November, they begin to move southward; the fishing-grounds, of course, change (the vessels follow-

[^16]ing the schools) from the coast of Maine to Massachusetts Bay and the waters off Cape Cod. They have never been followed far south of Cape Cod when leaving the coast, the inclemency of the weather at that season generally preventing such an undertaking. It shọuld, however, be said that mackerel have been found for the past few years quite abundant and of large size during the entire summer season and quite late in the fall, in the vicinity of Block Island.

We will now consider the more eastern or northern resorts of the mackerel. Toward the latter part of May, about the time when the southern wing of the great army of mackerel is approaching the waters of Cape Cod, another body, which may be called the northern wing, and whicli would appear to be distinct from the other, sweeps in past the island of Cape Breton and enters the Bay of Saint Lawrence. The mackerel make their appearance in those waters late in May or early in June. These are, however, apparently but the vanguard of the schools of fish that follow, and which are undoubtedly part of the same body of fish that tirst makes its appearance on the coast of the Middle States. During the month of June large quantities of mackerel are moving along the coast of Nova Scotia and passing through the Gut of Canso into the Bay of Saint Lawrence. Many fish are caught in nets, seines, and pounds while these migrations are taking place, and also during the fall when the mackerel are returning over the same track on their way south, and therefore the coast of Nova Scotia for a brief season in the early summer and late autumn may be considered a fishing-ground for mackerel, although the fishery on that coast is carried on exclusively by residents of the Province. Of the Bay of Saint Lawrence it is only necessary to say that from early in June to October, seldom later, this is a well-known habitat of the mackerel, though since the universal adoption of the purse-seine by the mackerel catchers much better fares have been obtained on the coast of the United States, and as a rule trips to the bay have resulted in loss. This is partly due to the mackerel being less abundant and of a poorer quality than formerls, but in a greater degree to the difficulties of seining on grounds where the water is generally shoal and the bottom foul. In conclusion, mention should be made of the fishing-ground off the east side of Cape Breton Island, in the vicinity of Sidney, where mackerel hare occasionally been found abundant ; Sable Island, where they were found quite numerous and of large size for one or two seasons, about 1853 and 1854; and the west coast of Newfoundland, where they have been known to occur at irregular intervals and where at least one trip has been obtained by an American schooner.

## B.-The fishery marine.

Important changes have been made in the models of fishing ressels during the last half century, and in the appliance of labor-saring apparatus to their rig and fittings. Although these improvements have
contributed much to the comfort and safety of the fishermen as well as to the success of the fisheries, it will, perhaps, suffice for the present purpose to allude very briefly to the vessels of former days, some of which may jet be occasionally seen, particularly in the shore fleet of Eastern Maine.

The "bankers" of the last century and the beginning of this were narrow, straight-sided, square-sterned schooners, with high quarterdecks, and very bluff-nearly square—bows. Thej were short-masted, consequently having but a small spread of cansas, and were extremely slow sailers. These vessels were usually from 40 to 75 tons, carpenters' measurement. The Chebacco boats, or "ram's-head boats," as they were sometimes called, which at that time were employed in the shore fisheries, were of small size, 10 to 20 tons, and were generally sharp aft, with two masts and no bowsprit. Next came the pinkie and the square-stern schooner with low quarter.* About 1845 the "half sharp" schooner made its appearance, and from this date rapid changes were made, and a few years later, about 1850, the "sharp-shooter" (as the clipper schooner was at first called) was introduced.

The fishing vessel of the present time is the embodiment of the combined and intelligent efforts of fishermen and builders through a long period of years, and as a result we now have the schooner-rigged clipper, with broad beam, a large spread of cauvas, and possessing excellent sailing and sea-going qualities. Although there is a general resemblance to each other among the vessels composing the fishing fleet, certain changes in the rig aud slight differences in the model are sometimes rendered necessary for their better adaptation to certain branches of the fisheries. Nearly all of the larger class of vessels are, however, constructed on a model which is well adapted for any fishery, and it is only the so-called marliet boats, which are usually of smaller size, and a very few vessels built for the mackerel fishery alone that differ from the rest; these are usually very sharp, and sometimes not so deep as the others, large deck room and swift sailing being the qualities most desired. There are, howerer, considerable differences in the rig. These are rendered necessary by the changes in the seasons, it being evident that in some branches of the fishery where speed is a special object a larger number of sails can be carried in the summer, when light winds are prevalent, than during the wintermonths, when heavy gales are frequent. The winter rig of the vessels employed in the George's cod-fishery is the lightest of any. To fit them for a winter trip the maintopmast is sent down, and they then carry but three sails, namely, mainsail, foresail, and jib: In the spring, when there is no longer a probability of meeting heary gales, the topmast is replaced, and they then carry a staysail, and some have also a gaff-topsail.

[^17]The summer rig of the Georgesmen, that has just been described, is the same as the winter rig of the vessels that are employed in other branches of the fisheries; for iustance, the bank halibut fishery, the haddock fishery, and the shore cod fishery. In summer nearly all of the bankers and mackerel catchers lave flying-jibs. Many of the latter class of ressels, and also a few of the halibut catchers, have a foretop. mast, and carry, in addition to the sails that have already been mentioned, a fore gaff-topsail and balloon-jib. A vessel rigged in this manner has eight sails, and resembles a yacht in appearance; a schooner of 75 tons will spread nearly 1,300 yards of canvas. The necessity of making rapid passages to and from the fishing-grounds, and moving swiftly from place to place in pursuit of fish, renders it necessary to have a large amount of canvas to improve the prevailing light winds of summer.

The size of the vessels engaged in the fisturies varies from 5 to 193 tons, although there are but few that are more than 110 tons. The fleet engaged in shore fisheries is composed of vessels of the smallest class, from 5 to 50 tons, the average being about 20 tons. A portion of these, more particularly on the east coast of Maine, are old-fashioned vessels a few of them are pinkies-and are not employed except during the season when fine weather may be expected. The greater part of the shore theet, however, are the best class of small-sized vessels, and many of them are employed in fishing at all seasons. Many of these pursue the cod and haddock fisheries in winter. In summer the small vessels engage in many kinds of fishing, changing from one to another, and following whatever promises the best results at the time.
The winter haddock catchers are usually all first-class vessels varying in size from 25 to 80 tons, averaging about $\tilde{50}$ tons. Many of these vessels are among the finest in the fleet, and the majority of the larger ones are generally employed in the mackerel fishery in summer. While the smaller haddock schooners do not go farther than 30 or 40 miles from the land, and usually a much shorter distance, the larger ones make trips to George's and Brown's Banks, and occasionally even farther east.*

The Georgesmen are all first-class vessels, averaging.a little more than 60 toms, the extremes being from 40 to 85 tons. These vessels, like all others that are employed in the winter fisheries, are heavily ballasted with rocks or iron (generally with the former); the ballast is covered with planks, which are fastened down in the most secure manner. Above this platform the hold is divided by bulkheads and partitions into sections or pens, in which the fish are packed away in ice, or salted. Although the vessels undoubtedly fish ou George's Bank the greater

[^18]part of the time, they also make trips to Le Hare Bank, Brown's Bank, Seal 1sland Ground, German Bank, and occasionally to some other grounds. A few trips have been made as far east as the Western Bank (Western Bank and Le Have trips are usually made in December and January), and as far south as Block Island, but only at rare intervals.

The greater part of the vessels composing the mackerel fleet are clipper schooners, many of them being equal in appearauce and sailing qualities to first class yachts. It has already been mentioned that some of them carry a great anount of light sail, but while this is true of the larger ressels and for some others, there are a few of the smaller ones that have no flying-jibs. The average size of the mackerel catchers is about 60 tons, the extremes being from about 20 to 151 tons. There are few, however, over 100 tons; and the largest one is a three-masted schooner.
The bankers average larger than the ressels employed in other fisheries. Few are less than 60 tons; the average size is about 75 tons; while a small number are more thau 100 , and the largest, a three-masted schooner, is 193 tons. The fleet is composel chiefly of the finest class of sea-going ressels, and this may especially be said of those employed in the bank halibut fishery. There are, however, a few old-fashioned schooners that make trips for cod in summer. The salt carried by the cod-fishermen serves for ballast, and this is stowed in "pens" or bins in the hold. The halibut catchers and a few other bankers are ballasted like the Georgesmen, though perhaps not so hearily, the ice and salt they carry making up the deficiency. The fishing-grounds risited by the bauk fleet extend from Le Have Bank to Davis Strait, although the Grand Bank, Banquereau, and Western Bank are the principal ones.
The ressels of the New York market fleet belong chiefly to the ports on Loug Island Sound. They differ in some respects from the ressels of Northern New England, as they are, with the exception of the halibut catchers, nearly all welled smacks, aud a considerable portion of them are sloops. The smacks take the greater part of their catch to market alive, preserving, however, the dead fish in ice. The vessels engaged in the halibut fishery are arranged somewhat similar to those already mentioned, and the fish are kept in the same manner, namely, by iciug them. Although there is not so large a proportion of extremely sharp vessels in the New York fleet as in the fishing fleet north of Cape Cod, there is, nevertheless, a general resemblance bettreen the schoonerrigged vessels and those of Massachusetts. The arerage size of the market smacks is about 40 tons, the extremes being 20 and 65 tons. The smacks fish from Cape Henlopen to George's Bank, principally on some part of the shore soundings, catching cod, haddock, \&cc., in the winter, and besides these sereral other varieties in summer. The halibut catchers go farther east on George's Bank and adjace nt grounds. The few vessels employed in the southern coast fisheries belong to the same class as the smacks that have been mentioned ; indeed the greater part of them were built in the ports of Long Island Sound.

The next to be considered are the open boats, of which there are a great many kinds, a few only of which, the more notable forms, can be mentioned here.

The sharp-stern fishing-boat is more universally used in the coast fisheries than any other, and to show how widely these are distributed along the coast it is only necessary to mention that the boats of Block Island and No Man's Land, the "five-handed" boat of Cape Cod and the coast of Maine, and the "quoddy" boat of Eastport, belong to this class.
One of the most peculiar fishing-boats on the coast is the cutter-rigged sloop, used exclusively by the Irish fishermen of Boston. These are said to resemble the fishing-boats of Ireland, and are generally called "Dungarvan boats" by other fishermen. The leugth varies considerably, the average being abont 30 feet on top. They have a reasonably sharp but rounding bow, square stern, with the rudder hung outside; are deep in proportion to their length, with a wide stem and deep keel. They are said to be excellent sea-boats. The forward part is decked over, thus forming a cuddy where the crew eat and sleep. There is a cockpit aft, with a seat around it. The midship section is partially covered on each side. In the bottom of this is placed the ballast, on top of which the fish, gear, \&c., are stowed. The bowsprit is adjustable, and two jibs are carried, one being set on a stay, the lower end of which fastens to the stem. In other respects they do not differ materially in rig from other sloops. In spring, summer, and fall these boats are employed in the cunner, haddock, and other fisheries for Boston market, the catch being chiefly sold fresh. In autumn most of them engage in the herring fishery with gill-nets at Cape Ann and other points in Massachusetts Bay.
The dory, which is so well adapted to the deep-sea fisheries, and is quite indispensable to our bank fishermen, originated during the latter part of the last century in Salisbury, Mass. This boat was originally designed for a lighter, and for many years was scarcely used for any purpose besides that of removing the cargoes from vessels at Newburyport. It was, however, employed to some extent in the fisheries early in the present century, and since the introduction of trawl fishing it has come into general use. The thwarts are adjustable, and, when these are removed, several dories may be "nested" inside of each other, the whole occupying the same space as one boat, and for this reason they are much better adapted for stowage on the deck of a vessel than any other style of boat. In addition to this, they are exceilent boats in a rough sea, are capacious, light to handle, and also cheap; therefore it follows, as a matter of course, that they are extensively used in most of the important fisheries, among which may especially be mentioned the bank cod and halibut fishery and the mackerel fishery (each vessel with a purse-seine usually carries two dories). Large numbers are also employed on the haddock vessels, the shore fishing fleet, and in the boat
fisheries of the coast. These boats are flat-bottomed, with \#laring sides, sharp bows, and V-shaped, oblique, projecting sterns. They are from 12 to 16 feet in length (bottom measurement), different sizes being required for the various kiads of fishing. There is but little variation in the models, although for certain purposes* they are built somewhat wider and deeper than the average.
The seine-boat that is used in the mackerel fishery is a modification of the whale-boat, and is sharp at both ends. It has been found admirably well adapted for purse-seining, as it moves easily through the water and at the same time has sufficient buoyancy to carry safely a large seine while being towed very swiftly by a vessel. The ordinary size of these is 36 feet in length, though a few larger and smaller ones are used.

In addition to the boats that have been described, the following may be meutioned as being, perhaps, the most noticeable: (1) The squaresterned, sloop-rigged lobster-boat of Bristol, Maine; (2) the squaresterned "reach-boat"; (3) "double-ender" (a canoe-shaped boat), both this and the preceding being common on the coast of Maine; (4) the "drag-boat" of Cape Cod; (5) the square-sterned, cat-rigged boat of Southern Massachusetts; (6) the sloop lobster-smack of Long Island Sound; and (7) the surf-boat of New Jersey.

The other forms of fishing-boats are mostly modifications of those that have been noticed, and it is scarcely desirable to make further mention of them here.

## C.-Methods of capture of sea-fisiles, and the changes in THIS RESPECT in later yliars.

The different varieties of sea-fish and their varying habits and modes of occurrence involve the necessity of special or peculiar methods for their capture ; and the great diversity of implements and processes in use in different parts of the world is therefore not a subject of wonder. For the most part, however, nearly all the methods will fall under the head of the bow and arrow, the spear or lance, the line, the seine, the beam-trawl, the weir or trap; with some subsidiary means, such as the employment of narcotics or poisons, explosives, \&c. I shall consider these methods under the foregoing heads.

The bow and arrow. -It is probable that in the pursuit and capture of wild animals our savage ancestry first made use of the hand or foot, the power of running, the strength of arm, and the acuteness of the perceptions, especially those of sight and smell, which in all probability were developed to a very high degree, and in this respect equaling, if even

[^19]they did not sometimes surpass, the most highly favored of the associated animals. Very soon, however, subsidiary apparatus would be called into play, either the throwing of stones or sticks, picked up at random, or the use of a specially fashioned club either for striking or throwing; and ultimately the arming of the stick with an implement for piercing, constituting the spear or lance, and, fiually, the discharge of this spear, in a modified form, by means of a bow, constituting the bow and arrow.

It is, of course, difficult to say how soon the arrow and the lance were brought into play. We only know that among the very earliest prehistoric implements are the stone tips, undoubtedly used for this purpose and continued to be employed by the wild tribes down to the present day. The bone and wooden tips, which doubtless were called into play at about the same time, perished, as being constructed of less durable material.

The spear and the bow and arrow constitute very efficient means for capturing fish, in view of the closeness of approach to many species which is possible. No more effective method could be devised for capturing such species as the salmon than the spear, with its modifications of the harpoon, the grains, \&c. In sea fishing it is especially such fish as the flounders, skates, eels, and other kinds that fall victims in large numbers to this method. The Esquimaux and the Indiaus of the northwest coast of America employ the bow and arrow very extensively for the capture of tish of various kinds. There are numerous and varied illustrations of this fact among the collections of the National Museum at Washington.

The harpoon comes legitimately in this series of weapous and has aumerous applications. The head is placed at the end of a stiff handle, and sometimes when this is buried in the llesh it slips off, but remains connected by a thong or cord either to the harpoon itself or to a buoy which is thrown overboard. The latter method is most generally employed in the capture of the swordfish. In the whale fishery the end of the line is attached to a boat, which thus serves as a buoy or float. The combination of a torpedo or an explosive with a lance, either kept in the haud or discharged from a gun, is a more recent and extremely efficient method of capture of the large auimals of the sea.

The line.-This may be cousidered essentially under the two divisions of the line held in the hands or at the end of a rod affixed to some object on the shore or to a float of some kind, and having at the extreme opposite end one or more hooks baited, with or without floats, for buoying the hook to a certain height above the bottom, or for showing by its motion the attack of the fish. Here we have the first idea of the hook, either covered with some substance attractive to the fish that conceals its character or simulates small fish and other objects that tend to attract its victims. The use of the hook and line in combination for the capture of fish is of the utmost antiquity in this respect, perhaps little inferior to the bow and arrow. While, of course, the lines themselves
have perished with time, we still have the hooks, sometimes of stone and sometimes of bone, of shell, or of metal, and usually constituting very attractive objects of archæological research. Usually the barb of the hook is on the inner or concave line. A curious anomaly, however, in this respect, is seen in the hooks of the prehistoric tribes of the coast of Lower California, which, whether made of bone or of shell (sometimes of extreme artistic beauty), invariably have the barb on the outer or convex outline. Sometimes the barb is dispensed with entirely, with or without some device to occupy its place and function.

The hook and line, whether in the hand or affixed to the end of a rod, is the simplest of all methods for capturing fish, and the one most universally employed. Where fish are aboudant it will generally take a sufficiency for all ordinary purposes, although where a large market is to be supplied it is not wholesale enough for the requirement. It does not waste the fish as much as other methods, and has especially the advantage of seldom taking those about to spawn, most species refusing, when in this condition, to be allured by the bait. There are some fish, indeed, which cannot be induced to take the hook at any time, and of course we have to depend on other methods, especially the net, in one form or another, for capturing them.

The trawl-line.-Where fish are needed in larger number than they can be taken by the hand-line, with a given number of persons, and where distant markets, rather than the local consumption, are to be provided for, what is called the trawl-line comes efficiently into play. This term, however, is applied to it only in the United States, where it is sometimes called the "set-line." On the continent of Europe it is known as the "long-line," while in Englaud it is called the " bultow," and one variety of it, the "spiller." It consists of a long line, having fastened to it at regular intervals, usually 6 feet, a succession of short lines, usually about 3 feet in length, and having hooks at the ends. The antiquity of the trawl or long-line is probably very great, the period of its first introduction into Europe not being anywhere a matter of record. It was first used in North America on the banks of Newfoundland for sea fishing by the French. Its introduction to the main land of the provinces and of the United States has been somewhat more recent, although now it is very generally made use of.

According to Captain Atwood,* the use of trawl-lines was first mtroduced into Massachusetts by a number of Irish fishermen of Galway, who settled on Cape Cod. Their success with this novel apparatus was so great as to induce its immediate adoption by the native population.

There has been a singular antagonism on the part of those who use

[^20]the hand-line, to the introduction of the trawl, and many accusations have been brought against it, on the seore of its destruction of the fish and the injury to the fisking-gromnds, in regard to which we shall inquire hereafter.

One proof of the antiquity of the long-line is the fact of its existence in almost the form used by civilized nations among the Indians of the northwest coast of America. It usually happens that aboriginal methods now employed by savage tribes have been handed down from a very high antiquity, and it is not at all improbable that the people of modern Europe simply developed an implement made use of many thousands of years previously by their ancestors.

The trawl-line as mentioned consists essentially of a line of varying length, sometimes, as on the coast of England, as much as 7 or 8 miles, more usually, however, from 100 yards uprards, with short lines of perhaps 3 feet in length attached at intervals of $3 \sqrt{2}$ to 6 feet, each with a hook, but commouly not provided with leads or sinkers. To one end of this long line is attached a weight, by means of which it is carried to the bottom. The line is then paid out at the side of the boat, the hooks being previously properly baited, and the other end is weighted and dropped to the bottom also. At each end of the long line is an attached buos, which, Hoating at the surface, indicates the location of the two ends. Sometimes, in the case of very long lines, there may be intermediate weights and intermediate buoys, those at the extreme ends in such a case being differently marked for their proper designation.

The bait used on the long-lines varies with the country and the circumstances, the longer lines used in England for the capture of cod being baited almost entirely with the whelk (Buccinum undutum), a mollusk or shell-fish very abundant in England, and for the capture of which numerous vessels of from 10 to 20 tons are employed.

The whelk is taken sometimes with the net, more usually by the use of some bait which attracts them into a basket or inclosure, in which they are then lifted out. The abundance of this object in the European waters is very great, as with all its cousumption the numbers do not appear to decrease.

In the ordinary boat fishing the long-line is usually baited with the common mascle, the use of tish, such as fresh herring, \&c., being much less common than in Northeru Europe and in America. The whelk and species closely allied to it are abundant in the United States; but so far comparatively little use is made of them. It is probable that in the search for improred qualities and increased quantities of bait for the capture of codfish this will soon come into play and constitute a very desirable and satisfactory substitute for the other varieties. The clam among the mollusks is more generally employed for this purpose, both the Mya arenaric, or soft clam, and the Venas merceneria, or hard clam. There are several other species which are used in large numbers for this purpose, to which reference will be made in another
place. Of course fish may be employed, either herring or mackerel, fresh or salted, as well as capelin, portions of the cod, the lamprey, and, indeed, fish generally; the most appetizing and attractive fish bait for this and other purposes is probably the menhaden or pogee.

The trawl-line reaches its maximum of application and of size in the cod and other white fisheries which are carried on in the North Sea on a very large scale. At Great Grimsby, one of the principal centers of this kind of fishing, the long-lining is prosecuted by means of smacks of about the class and size of those employing the beam-trawl, from 40 to 60 tons, and even greater tonuage. $\Lambda$ crew of nine to eleven hands is required to bait and work the lines; and the fish when caught are kept alive as long as possible, in wells. A complete set of long-lines, as used in all these vessels, consists of about 15 dozen, or 180 , lines, each of 40 fathoms in lengtli, and carrying 26 hooks on smaller short lines, called snoods. These are placed about a fathom and a half apart, so as to prevent the snoods from becoming entangled with each other. These 180 lines are united into one, forming a single line of 7,200 fathoms, or about 8 miles in lengti, and carrying 4,680 hooks. Contrary to the practice in Norway, where the lines are set in the aiternoon and taken up the next morning, in England the lines are always put down and taken up by daylight; they are "shot" at sumrise or earlier, and taken up before night ; sometimes, iudeed, two casts can be made in one day. The baiting is generally done at night. A small anchor holds the line steady at every 40 fathoms, with a bonoy at each end, and at each intermediate mile, as already explained.*
According to Mr. Holdsworth the use of wells in cod-fishing was first tried at Harwich, in 1712, and soon increased very rapidly, until now it is very exteusively employed by many nations. In the wor $k$ of Holds. worth (Deep-Sea Fishing and Fishing Boats) will be found very useful statements in regard to the use of the trawl in England.

As already stated, the whelk is used as bait ou the largest long-lines, as any other would be too readily washed away by the rapid tide. The shorter lines, shot from boats, usually in quieter waters, are served by means of the softer miscle, a mollusk, also extremely abundant in the United States. The fish are usually taken alive, and after a puncturing

[^21]of the air bladder by a long needle, they are placed in wells in the vessel and carried alive to market when a cargo has been obtained.

According to Holdsworth (p. 148), there is no reasonable gronud to believe that the catch on the coast of England has been diminished in numbers in consequence of the action of the loug or trawl lines, the principal means of capture. On the coutrary, the same ground has, year by year, furnished an increasing abundance in proportion to the number and size of the vessels employed, the eatch being nearly if not entirely as great on any given number of hooks as it was many years ago.

The capture of cod on the Norwegian banks is also made principally by the trawl-line, although the hand-line and the gill-net are also brought into play.
For the purpose of ascertaining the present views of the Normegian experts charged by the Gorernment with the supervision of fishery operations, I addressed a letter to one of their number, Mr. Robert Collett, of Christiania, Norway, and his reply is herewith presented:
"You ask me whether any question has arisen in Normay as to the greater destructiveness to fish or to the fishing-grounds in consequence of the use of the long-lines. Not at all. I am quite sure the long-line is just used in the 'great cod-usheries,' particularly in Lofoden Islands and along the coast of Aalesund, in the spawning season, and it would be a very bad fishery if tine fishermen had nothing but hand-lines.
"I never heard of any putrefaction of the grounds by the fishes breaking off from the hooks, and in the great depths, where the fishery is very good, nothing of that kind would be felt. I never heard of such a thing in Norway, and I could give you an example from the herring fisheries that proves there is nothing probably in this outery.
"In the year $\mathbf{1 8 3 4}$ great herring flocks were caught in a little fiord, Oxlofiord, a branch of Stonfoldenfiord, in Namdalen. By an accident once, the masses could not be taken up from the nets, and several thousand barrels died before they could be ased. All these dead fishes were thrown into the water on a rery small area in a narrow fiord and covered the bottom with a very thick layer. Notwithstanding, two years later the fiord was again full of fish, and thonsands of barrels were caught just on the spot where the fishes had been thrown out.
"As to the nature of the bait, it is partly fish, greatly invertebrates. On the great cod-fisheries in Lofoden, where they are catching the fish from January to March (the spawning season), they use herring. In Finmark they use Mallotus villosus, the best bait that is known. (When* this fish is in the fiord you cannot get cod with any other kind of bait.)
"Here they also use cephalopods (Ommastrephes). In the sonthern part of Norway, where they eatch cod every season, they use Mytilus. modiolus, Mytilus edulis, voung Clupea harengus, Arenicola piscatorum, and Palemon squilla. I have not heard of any other sort of bait. The bait is S. Mis. $90-8$
always used fresh, and it is only in the case of extreme scarcity of fresh bait that salted herring are used.
"I remember now another fish which they use in the northwestern parts, viz, the Ammodytes lancea. These as well as the young herring are used whole, $i$. e., the whole little fish on a hook.
"ROBERT COLLETT.
"Christiania, Norway, October 4, 1877."
The winter fishiug on George's Bank is entirely by hand-lines, the weather being too inclement to permit the use of the trawl. At the Lofoden Islands, 24 lines, each with 120 hooks, are usually fastened together into one, thus carrying 2,880 hooks, although sometimes, in particular localities, where the nature of the bottom requires it, a much shorter length is employed. As in England, the short lines, or snoods, are between 6 and 7 feet apart. Here, however, the lines are shot in the afternoon, remaining down all night and taken up the next morning. No line can be put down before noon, nor can it remain down after midday.*

Very often a glass ball, the size and shape of an egg, is fastened about a foot from the hook, so as to buoy the bait a few feet from the bottom and make it more easily observed by the fish.

The usual yield of a long-line, with the number of hooks given above, is 240 to 360 fish per day, and it is readily managed by two persons, while a hand-line, worked by one person, rarely takes more than 50 per day, thus showing a marked difference in faror of the trawl. Very frequently the loug-line, instead of being kept down for a period of twelve hours or longer, is overhauled much more frequently, especially in comparatively shoal water, where the line is no sooner fairly down than it is again overhauled and rebaited.

Various modifications as to the size and bait of trawl-lines are found in other countries; but what we have already stated will furnish a sufficient idea of the general character and applications of this important item of fishing apparatus.

As already stated, very grave complaints have been made against the long or trawl line in the United States, and legislation or mutual consent invoked either for its entire abolishment or its restricted use under certain specified conditions.

The advantages of this method will readily be understood, as consisting in the much greater efficiency and the much larger yield of fish taken by the same force of men; as also in the fact of the more continued exposure of the bait, in consequence of which fish that are deterred from biting at the hand-line in its incessant motion, or ouly kept down during the convenience of the fisherman, are more tempted by the bait on the long-line, which is much more quiet and remains on the ground sometimes for a number of hours.

[^22]The disadvantages of the long-line, as alleged by those opposed to its use, may be formulated essentially as follows:
(1) It is more expensive, requiring a larger capital, and consequently rendering the poor fishermen unable to compete with the more wealthy in regard to its acquisition and employment. Objections of this kind generally come from the hand-line fishermen, who, however, when able to purchase the long-line, are very apt to forget their former scruples and to use it withouthesitation. This change of policy, is excused on the score of self-protection and the necessity of employing methods similar to those of a rival fisherman for the purpose of making a living.
(2) It is sometimes objected that it requires two or more persons to use the trawl-lines instead of one. That a combination of persons should accomplish a much larger result than the aggregate of their separate endeavors is in accordance with the general principles of a sound political economy.
(3) It is asserted that the line is much more liable to be lost than the hand-line. This is said to be caused by the wearing of the line on rocks, although generally the buoys at each end enable the separate portions to be recovered. As a matter of actual experience, however, the expense of lines absolutely lost in this way amounts to a very small per. centage of the original cost.
(4) The fish are brought up dead or not always perfectly fresh, and many of them are devoured by other fish, as eels, codfish, sharks, crabs, \&c., either while living or after death.

This objection is, of course, one that may be fairly put; but after all, the yield of sound, merchantable fish is sufficiently great to permit an average wastage; and if it be fish killed on the hook and remaining in the water for some time, it is for the advantage of the consumer to have the services of these scavengers in assuring a supply of perfectly fresh fish for the market.

Although these objections will not apply to so great an extent to the hand-line, yet they do attach to the use of the gill-net, and, in fact, to a still greater degree, in both methods a considerable loss taking place. This destruction, howerer, which has been claimed as involving a wastage of the fish in the sea, is not a question for the consideration of the owner of the line, as an equivalent in weight to the very fish thus consumed while attached to the hook would in all probability have been taken while swimming free in the sea by these same enemies.

The practical experience in trawling, however, is that while some of the hooks are brought up entirely empty, very few hooks have mutilated fish upon them, a large proportion being alive and in good condition, and on being placed in the wells of the smacks are capable of being kept for a long time.

As a general rule codfish in England are sent alive to the markets, and the enormous quantity consmmed there and elsewhere is taken for the most part by the long-line. If in consequence of a storm or some
special condition the line be necessarily left down longer than usual, a still larger percentage of fish will be found dead, possibly the entire number. But it must be remembered that this fishery is almost, universally prosecuted in the colder waters of the ocean, frequently where the temperature varies from $35^{\circ}$ to $42^{\circ}$, which of course serves to preserve the fish much longer than a warmer medium.
(5) The wastage of the fish by dropping off the hook before they can be taken into the boat. This accusation is based upon the alleged practice of usiug considerably smaller hooks than those required for the hand-lines; and while it is possible that this may happen occasionally, it is quite certain that the fishermen will graduate the size of the hook so as to obviate such a danger, and even if a considerable percentage be lost, as already explained, this is the concern of the fishermen and not of the general public, the fish thus slipping away being consumed by the scavengers in place of live fish in equal bulk.
(6) The capture of roe or spawning fish. It is difficult to know what weight to attach to this objection, although it is very generally asserted that a spawning fish will bite at a long-line when it will not do so at a hand-line, the fish at this time being much more cautious in its approaches. So far as the cod are concerned, however, and the Gadida generally, it is probable that the force of the objection is lessened by the fact that the long-line is used more especially at the time when the fish are not spawning. As a general rule the cod, haddock, and hake, sc., are known to spawn in the winter months, usnally in January, February, and March, sometimes a little earlier and sometimes a. little later. It is precisely at this time, when, in consequence of the inclemency of the weather, in North America at least, this mode of fishing is more or less intermitted, consequently allowing the spawning fish a sufficient opportunity for discharging its roe undisturbed. This explanation applies more to the offshore fish, however, as the winter inshore fisheries of the New England coast are almost exclusively directed to outside fish that have come in to lay their eggs.

When we bear in mind the very small percentage of deep-sea fish that can be taken by man at all, and the immense yield of eggs of most of the species (amounting to several millions for each female cod, and others in proportiou), we can easily beliere that an objection of this kind can have but little weight, even if the fish were harried to the utmost during their spawning seasou. If, however, as is most probable, they are comparatively undistmbed on many fishing-grounds at that time, the objection falls essentially to the ground.

To the subject of the prolific character of the fish of the sea and the number of eggs laid loy some of the more prominent species, reference has been made in another part of this report (page 82).

There is another consideration which may be borne in mind in regard to the so-ealled lazy or logy cod which canot be caught with the hook and line. Hany of these are in reality past the period of bearing, as
there is erery reason to believe that, like other vertebrate mimals, ather a number of years of service in this respect, the fish, whether mate or female, becomes sterile. Sometimes this is the result of sickuess or disease; at others the fish is in its best condition for foorl. A codfish of 20 or 30 pounds is probably as efficient for reproduction as oue of 50 pounds, and perhaps more likely to furnish a healthy progeuy, able to meet the exposures of the sea.
(7) The long-line fishermen, in their wholesale method of capture, in America, at least, clean their fish at sea and throw the refuse, consisting of the heads, entrails, \&c., commonly called "gury" in America, overboard. This pollutes the fishing-ground and drives away fish for a period of months or even years, and this in connection with the fish that break away from the line on being hauled up, or which are partly devoured at the bottom.

This, with the alleged destruction of fish by the use of the trawl-line, is the objection upon which the opponents rely as the most formidable and as carrying the greatest weight. This will be considered in considerable detail (in another place under the head of Disposal of Offal), as, if established, it would constitute a reasonable ground for regulating this fishery, even by its restriction, limitation, or total abolition.

Bearing now in mind that the objection to the trawi-line is based more exclusively on the injurious effect of throwing overboard the offil of the fish cleaned at sea, the matter of self-interest and the desire to economize waste products will doubtless in time regulate the subject. It is a very significant fact that in Europe, where the practice of trawling has been conducted for many centuries and on a scale greatly in excess of anything of the kind in the United States, and where the same ground has been tished over and over again by a much larger percentage of hooks than is ever seen off the coast of North America, there has never yet been any suggestion of injury from this mode of fishing. The controversy there has not been on account of the interference of the long-line with the haud-line fishing; but it has been in opposition to the use of the beam-trawl, and it never, apparently, has come into the mind of the hand-line fishermen that there was any evil whatever resulting from the other mode of fishing besides the advantage given by the fact of a greater proportionate yield. The drift and purse seine interest, too, antagonizes the beam-trawl, but not the long-line, and it is not to be imagined that any real objection to the long-line would have failed to be brought forward and to excite the amimadrersion of parties fishing in a different manner.

The largest lines used in America are far inferior to those used in the British seas, where they are sometimes over 8 miles long and carry between 6,000 and 7,000 hooks.

The experiences recorded in such works as that of Holdsworth on deep-sea fishing, and of other writers, all tend to show that notwithstanding the ever-increasing number of long or trawl lines in certain
localities, there is no reason to believe that the iish have decreased in number in consequence, the captures always being proportioned to the increase in the length of the lines and the size of the vessels and their crews. In some cases it is alleged that the cod, in its well-known voracity, swallows the head and backbone of its fellow as it is thrown into the water, and is thereby rendered ill and sometimes even killed by the feast. This can only result from the laceration of the gullet and stomach by the bones, a condition which must ensue very rarely in a fish which fills its stomach with large sharp-edged shells without experiencing any evil effect.

The digestion of fish is very rapid, and it is not an uncommon thing to find that when a fish has been seized by another and is too long to be swallowed entire, the portion near the stomach is digested while the fragment projecting from the mouth is fresh and sound.

Upon the whole, therefore, I am inclined to conclude, from all the considerations and the testimony offered, that there is no actual proof that the use of the traml or long line in itself is injurious to the fisheries, so far as relates to the driving of the fish away from the grounds. It may render the desirable fish less eager to take the hook, or it may attract predaceous fishes, so as to frighten away the more noble for the time; but that any influences thus exerted can extend over a period of more than a few hours it is difficult to understand. If there be any evil effect, it is possibly from the gurry, but even this I am not willing to admit. This evil, if it be one, will be remedied in our waters, as it, has been within a recent period in other cases, by a utilization of this material as a wasted product, the yield or profit therefrom and its conversion into oil or guano being greater than the cost of saving and delivering it on shore. At any rate, before any legislation is invoked, a more careful examination on the ground of the more important regions alleged to be affected should be made by scientific men. The question of refuse matter on the bottom at depths of 15 to 30 fathoms can easily be settled by the use of the water telescope, a well-known implement in scientific research.

In further illustration of the subject, I call atteution to the fact that in the investigations in Norway as to the cause of the disappearance of the herring from accustomed grounds, it was maintaived that the dead fish, dropping from the gill-nets, or remaining in the meshes of the nets, that had become lost and entangled at the bottom, had produced this state of things. The water telescope was brought into use and it was ascertained that the number of such fish was much less than was alleged and that after being dead one day they had entirely disappeared, and furthermore it was found there had been an entire abandonment of certain localities where the gill-nets had not been used at all, and fish had previously been taken wholly by drawing seines from the shore.

Captain Nathaniel Atwood, of Provincetown, while earnestly combatting the assertions in regard to the injurious effects of the trawlline upon the fisheries, admits that they do appear to have a positive action on the abundance of the halibut, or at least those of the large individuals which are specially sought after for the market. He thinks that these large halibut are quite likely each to occupy a considerable area of ground, to the exclusion of others of the same species, and that when they are caught, it takes a considerable time for their restoration. He mentions a curious relation in the co-existence of balibut and haddock, the result of the capture of the halibut in the grounds conjointly occupied by them, being a very marked increase of haddock, so much so as to reuder them almost a drug in the market and reducing the price very materially. This is due to the fact of haddock being devoured in immense numbers by the halibut while present, and their consequent increase when their enemies are captured.*

I have already adverted to the fact that in the course of an extended and exhaustive investigation by Professor Huxley and his associates into the subject of the British sea fisheries, contained in a Blue Book of 1400 pages and involving the answering of 61,830 questions, there were but six witnesses of the entire number examined who made any objections to trawl-lines. One fisherman alone (vol. 2, p. 554, question $24,996)$ considered it a destructive mode of fishing in itself, his objection being that by using very small hooks they caught too many young fish, which, had they been allowed to grow up, would have furnished a more profitable yield.
One fisherman, in answer to questions 39,994 and 40,389 , said he found a difficulty in getting bait of the right kind with which to supply the hooks, although approving of their use.

To No. 40,976 , a fisherman replied that the trammel nets, such as he used, were liable to be torn by contact with the long-lines. Another trammel-net fisherman, in answer to question 41,023, maintained that the long-lines frightened the fish away from his net, so that he could not get all that he expected.

The net.-Having thus concluded the subject of line fishing, we come to the second of our principal divisions, namely, that of the use of nets. It is hardly necessary to go into any minute account of this mode of

[^23]capturing fish, as I hare ahready treated it at great length in the first volume of the Reports of the U.S. Fish Commissiou. I may simply remark that the use of the net extends back to a very remote antiquity, possibly as great as that of the hook and line, if it be not still older. That the inhabitants of the pile dwellings of Switzerland and Central Europe used the net is shown by the fiuding of many specimens of the netting and the sinkers. The employment of the net by all civilized nations proves that it has been handed down to them from a high antiquity. The seine was used in the pre-Columbian epoch by the Indians of North America, as it is not musual to find on the rivers and shores large numbers of small rounded stones, notched on two sides, to serve as weights, of precisely the same character as those in use at the present time by the Indiaus of the northwest coast of America.

The principal forms of the net are the hand or scoop-net, the dip-net, the casting-net, the seine, the trammel-net, the gill-net, the purse-net, and the stake-net.
The scoop-net is familiar to every one. It has various shapes, and is used for landing fish caught with the hook, or capturing fish, particularly the small varieties, penued up in restricted localities.

The dip-net may be considered a modificatiou of the scoop.net, being suspended at the end of a long handle.

The casting-net is largely in use by the Spaniards and Italians, both in Europe and America. This is circular, varying in diameter from 12 to 15 feet. It has leaden balls around the edge, and a long rope attached to the center. This is thrown very skillfully to a considerable distance in such a way as to fall flat upon the water, and dropping rapidly to the bottom incloses any fish that may happen to be beneath it. When the rope is hauled on, the leaden balls at the edge come together at the bottom, so that the net is pursed up when drawn from the water, and the fish are found therein as in a pocket.
The seine is also familiar to all. This is a continuous net, with floats of cork, glass balls, or light wood along the upper margin, and weights of lead or stone along the lower or bottom. Sonetimes it has a bag in the center, for the greater facility of holding the fish. This net is sometimes worked from the shore, one end being held on or near it, and the other carried around so as to form a sweep when the two ends are hauled in simuitaneously. Sometimes this is dropped in the sea and made to inclose a school of fish. This becomes a purse-uet when there is some arrangement for bringing the lower edge of the net together, like the inclosure at the mouth of a purse, so that the fish find themselves closely confined, both laterally and below.
The trammel-net is a very eflicient means for mpturing fish in waters where dragging is not possible or convenient. This consists of three nets bound together at the edges, the outer ones on either side having a large mesh, and the central one a fine mesh and much fuller than the others. Fish swimming incautionsly against this net pass through
the outer mesh and strike against the finer central net, carrying a fold of it through the large mesh of the net in the opposite side, and thus become pocketed.
The simplest of all nets, perhaps, is the gill-uet, which is a webbing of usually very fine twine, made to float either from the surface or carried to the bottom. The fish, unaware of its presence, or careless in regard to it, in swimming against it pass the head and shoulders through the mesh and become entangled and held until removed, or until devoured by some predaceous fish or invertebrate. No mode of fishing is more economical than this, as the capital required is comparatively light. The nets can be managed by a few persons, and it is only the large fish that are taken, the smaller ones passing readily through the meshes.

The stake net will be found described in the report of the U.S. Fish Commission. It comes more properly under the head of weirs and pounds.

The beam-trawl.-The beam-trawl is not used in America for the capture of fish, although it has been a farorite piece of apparatus with the U. S. Fish Commission for capturing specimens of varions kinds of fishes and other marine objects. It is, howerer, extremely probable that at no distant day it may come into use and our fisheries be prosecuted to a very considerable degree by its aid, although hardly to such an extent as it is employed around Great Britain and off the coasts of France, Holland, and Belgium.

It is essentially a large bag-net, the mouth of which is low and broad, and which is dragged along the bottom behind a vessel of suitable dimensions. This is kept in shape by means of a beam of wood resting at either end on iron runners, which hold it up at the proper distance from the ground and receive the friction of the bottom. As these runners are connected above to the beam, at the lower end they are united by a leaded rope, which constitutes the lower edge of the bag. This leaded line is very slack and forms a bend reaching nearly half way the length of the net, which is usually twice as long as it is broad and ends in a long, narrow apex. As it is drawn along the bottom with the tide, the fish, which usually are found lying with their heads towards the tide, are first dislodged by the lead line, and whether they head upward or forward, are met by the upper side of the net, extending behind the beam. By the continual motion of the trawl they are ultimately carried back to the opposite end of the net, aud there, getting into the pockets, are prevented from returning.

The size of the beam raries considerably. By an old British enactment the beam was not to exceed 36 feet in length; butit is sometimes now made nearly 50 . The length of the net for a 36 -foot beam would be about 70 feet, and one for a 50 -foot beam would be about 100 feet long. The net is made with meshes of suitable size, and is usually saved from abrasion on its under surface or posterior end by folds of old netting.

The beam-trawl is now used almost exclusively on the coast of Great Britain for the capture of the more important food-fishes, especially of the turbot and sole, few of which reach the markets captured in any other way. About nine thonsand tons of fish are furnished annually from this source alone to the London market; and it is not too much to say that without its use it would be impossible to farnish the English markets with fish.

There are other molifications of the trawl in different countries, all, however, on the same general principle of the dragging of a bag of netting along the sea-bottom. Sometimes this is carried under the vessel, where it is used particularly for the capture of whitebait and other small fish. In other cases, as in Spain, two vessels are used. The simplest form, however, that in common use by the English, French, aud Dutch trawlers, is as described. This is dragged behind the vessel at the rate of one or two miles an hour, always with the current, and is sometimes kept down for several hours in succession.

Many objections have been bronght to the use of the beam-trawl on the score of its exhausting the grounds, destroying the spawn of the fishes, killing great numbers of small fry, \&c. A royal commission was therefore ordered to investigate the whole subject of the methods of capturing fish in the British dominions, aud to determine whether any of them were hurtful or not. This was composed of Professor Huxley, Mr. James Caird, and Mr. S. Le Fevre, who took up the subject, and after investigating it most thoroughly gave it as their opinion that, so far from being a destructive method of fishing, the use of the beam-trawl was one of the most commendable; that it involved no greater unnecessary waste to fish life than other methods, and less than most; that so far from destroying the spawn of fish, no one could show that an egg of a fish was ever taken in it, especially in view of the fact that cod, mackerel, the turbot, and the flat-fish generally, the eggs of which it was especially accused of destroying in great numbers, all spawn in the open sea, their eggs floating generally near the surface until hatched, and that, consequently, the beam-trawl could have no influence whatever upon them. It was also shown that the actual nesting.places of many of the fish, such as the herring, \&c., are among the rocky portions of the sea-bottom, where the beam-trawl could not be used, requiring, as it does, a perfectly smooth, level sea-bottom for its action.

The masses of so-called fish spawn taken up from the bottom by the beam-trawl, has proved, in all cases to belong to one of the lowest forms of sea animals, either the Alcyonum digitatum, or so-called dead man's fingers, on the English coast, or to the compound ascidian, very abundant in America.

The report of the commission states emphatically as the final result of its inquiries that this mode of fishing has been prosecuted in many localities from fifty to a hundred years, not only without diminishing the supply, but indeed showing increased captures, in consequence of the increased number and size of the ressels employed.

As the beam-trawl can only be used to advantage in the capture of the flat-fish and flounders, what it may take of cod ant other fishes constituting but a small percentage of its catch, it is not likely that its use will be introduced into the United States until these fish assume a greater proportional value. With the great number of more or less desirable species of the flat-fishes in our waters there is no doubt that immense catches could be made by this means, and the day is probably not very distant when we shall find trawlers at work along Vineyard Sound and off the coast of New York, New. Jersey, and the States farther south. Here there are thousands of square miles of sea-bottom admirably adapted to its use, where a rich harvest awaits its introduction.

Weirs and pounds.-The various forms of this most wholesale mode of taking fish will be found fully figired and described in the first report of the U.S. Fish Commission. I may, however, briefly recapitulate some of the more prominent varieties. These are, the floating trap, or madrague, the heart-net or pound, the stake-net, and the weir in its various forms.

These all depend upon the movement of the fish in bands, and are sometimes worked in deep water, in which the apparatus is constantly immersed, sometimes depending upon the retention of the fish which come in at high water until the water runs out, leaving the fish high and dry, or else concentrated in small inclosed pools.

The Seconnet (Rhode Island) traps consist in a succession of inclosures held by anchors, and are similar in general character to the madrague of the Mediterranean. While in America the nets scarcely take anything else butscup, sea bass, tautog, and similar fish, those of the Mediterranean are especially used for the capture of tunnies or horsemackerel. A corresponding difference in the size of the net and in the thickness of the netting is to be found. The heart-nets, or pounds proper, are principally in use in Vineyard Sound and Buzzard's Bay. In these a wall of netting supported upon stakes extends perpendicularly from the shore and ends in a heart-shaped apartment, the pointed end of which passes into what is called the bowl. The fish, in their movements along the coast, come to the wall of netting and are arrested and turned seaward. Their course along the line of netting brings them to the main inclosure, which is so constructed that in circling round in schools they cannot readily find their way ont, owing to their indisposition to turn an abrupt corner. Their only escape is into the bowl, which constitutes a second apartment having a bottom of netting. Here they remain until the fishermen come on the scene, aud closing up the narrow entrance to the bowl secure whatever it may contain. They proceed to lift the netting of the bowl in which are the living fish, and throwing away the refuse, the desirable varieties are put in a boat or smack, or else placed in what is called a pocket, another inclosure, in which they can be kept until marketed. Of this apparatus there are many varieties.

The stake-nets are usel more particularly in the waters of the Dominion for the capture of satimon. The weirs are more generally to be found on the north side of Cape Cod and ou the coast of Maine and the Provinces. In these northern localities their use is principally confined to the capture of the herring. On Cape Cod, however, they take immense numbers of sea herring, alewives, and other species.

Many minor varieties, and some of considerable prominence of both pounds and weirs, are to be met with in different parts of the world. I have, however, mentioned those in more general use in the United States.

Other methods.-The remaining methods of capturing fish most usually employed are narcotics, poisons, and explosires. The narcotics and poisons are essentially of a simple character, in some cases the fishes being merely stupefied, and in others actually killed. These are not used in sea fishing, but many an owner of a trout pond or stream has had reason to deplore the dishonesty of the age in the loss lie has experienced in a single night by the poacher who has resorted to poisons for securing his bag of fish. Vegetable substances are generally used for this purpose, some of them of a character very easily obtained. It is not necessary for my present object to mention them.

Explosives as a means of capturing fish have come into use quite recently. The explosion of dynamite and other cartridges by means of a time fuse or a wire often results in benumbing or killing large numbers of fish. It is frequently employed by poachers upon trout or other ponds. In the mining regions of California very great destruction to trout and salmon in the rivers and pools has resulted from this practice. In the sea not unfrequently the involuntary result of submarine explosions, for the removal of sumken wrecks or rocks, is the destruction of great numbers of fish, which show themselves on the surface soon after the explosion. In some cases, as on the coast of California, where schools of fish have been thus exposed, great slaughter has been produced in this way. This method of destroying fish is highly objectionable, ou the ground that it kills many more fish than can be utilized, as they are washed away by the tides and lost.
D.-Bait used in the sea fisheries of eastern north america. e
Baits und allurements.-Having thus presented an account of the more effective apparatus by which fish are captured, I proceed to indicate the more common baits and allurements to the hook or the net employed by the American fishermen. These are of various kinds, the simplest consisting of the naked hook, which by its rapid motion through the water induces many fish to snap at it, and to be caught thereby. The bluefish, bass, pickerel, and many other rarieties are caught with i hook having some bright substance forming part of the shank. This may be a piece of bright pewter, tin, bone, iron, or other substance, and presented in the form of a plate, a cylinder, a spoon, or else a screw,
by which a rapid rotation or whirling motion is caused when drawn through the water. Not unfrequently an eel-skin or similar substance is stretched over the shank of the hook, and answers an excellent purpose. A bait of white cloth is sometimes quite sufficient in taking mackerel. The efficiency of a piece of red flannel fastened to three hooks, placed back to back, in taking frogs is well known to boys in the country.

Vegetable substances are not much used, as few fish are attracted by them. Bread crumbs, corn, cabbage leaves, \&c., may be employed in the capture of carp and other vegetable feeders.

Animal matter is generally employed as bait to attract fishes to the hook or into a net, other substances being considered of little account in comparison, almost every animal of any kind or description being available to a greater or less extent for the purpose. In sea fishing mammals are not used very extensively. Portions of meat of almost any kind are used by the fresh-water angler for the capture of catish, eels, the percoids, \&c. At sea the flesh of the porpoise and other cetaceaus is not unfrequently relied upon for the capture of cod and halibut when other bait fails.

Few persons realize the extent to which birds are sometimes employed as bait in the great offshore fisheries, the banker, when other bait fails, being able frequently to take large numbers of fish by the use as bait of the Procellaria, including petrels, fulmars, \&e., as also of gulls, murres, \&c. Most of these forms are easily caught on the hook, sometimes as many as a thousand birds, and especially of the petrel family generally (Puffinus major), have been taken and used for bait by a single vessel on the Grand Bank. The gannets, penguins, cormorants, \&e., are also taken in some parts of the world for a similar purpose.

On this subject, Capt. J. W. Collins says: "A few years ago, wheu many of the Grand Bankers went "shack fishing" and depended to a considerable extent on catching birds for bait, many thousauds (mostly Puf. finus major) were caught and used by the crew of each vessel on a single trip. As these trips were sometimes three or four months in length, and it was often possible for the crew to catch several hondredis in a single day-indeed I have known of one man taking neady a handred in a few hours-it will readily be seen that an enormous amonnt of these birds must have been utilized in a single summer for this purpose." "

There is but little, if any, use of the repthles in the sea fisheries of the United States, although the frog is called into play in certain forms of fresh-water fishing.

The various kinds of marine vertelrates constitute the chief portion of the sea-fishermau's bait, partly in consequence of their more ready availability, and partly becanse the fishes sought for are more accustomed to fish as food, and are more readily attracted to it. The other kiuds of bait just mentioned come into play as substitutes, but can hardly be considered as representing the regular resources of the North At-
lantic fishermen, and I therefore proceed to a more detailed consideration of the standard articles of supply for bait, consisting especially of fishes, crustaceans, and mollusks.

In the portion of the report devoted to the methods and apparatus of fishing practiced in the Eastern United States and the British Provinces some allusion has been made to the subject of bait for the hand and long lines, but it may be well to review the subject in a more systematic manner, beginning with the enumeration of the following as the more prominent substances used:

1. Menhaden.
2. Alewives.
3. Sea Herring.
4. Mackerel.
5. Capelin.
6. Sundry species of less note.
7. Roes of various fishes, especially of cod and mackerel.

Other varieties of animal substances are used as bait under particular circumstances and in particular localities ; but those just mentioned are of most economical value, and the possibility of obtaining one or other of them in greater or less abundance constitutes a very important factor to the fisheries of the mackerel, the cod, the halibnt, and other species.

Of the species mentioned, the menhaden is at present peculiar to the shores of the Uvited States, while the fifth, or capelin, is found only about Newfoundland, on the coast and islands of the Bay of Saint Lawrence, and the coast of Labrador. Dr. Gilpin refers to the occurrence of capelin in Halifax Harbor one season; but it is unknown as a regu. lar visitant there, nor has it ever been positively noticed even as an occasional visitant of the Bay of Fundy.

The special details in regard to the natural history and character of the fishes just enumerated belong in the chapter on the natural history and economy of the several American species, and are merely alluded to briefly in this special comection as bait.
In the very great varicty of fish bait, and its oceurrence at the various seasons of the year at different points, all portions of the United States and the Provinces may be cousidered as equally well provided in this respect; and although circumstances may render the procuring of this bait in a particular locality a convenience, yet it can be easily shown that whatever be the restrictions upon either country as to particular localities, there cim be no question as to the possibility of securing an ample supply in some other, although possibly at somewhat greater trouble and expense.
(1) Menkuden.-Of all the species mentioned as used for bait the menhaden is probably that of most importance, whether we consider its wide extent of distribution, its overwhelming abundance along the
coast at different times, or its attractiveness to other fish. Wherever it is met with, at different seasons of the year, from Florida to Penobscot Bay, it is always in request for bait. It is, however, ouly in the northern part of the United States that it is "slivered" and put up in large quantities either in ice or in salt and carried on distant voyages for the purpose of catching cod or mackerel. There is a peculiar toughness of the flesh and rankness of flaror which seem to constitute an appetizing attraction, not to be resisted by fishes generally, and the possessor of menhaden bait will be able to entice mackerel and cod, striped bass, sea bass, and other fishes, when a fellow-fisherman near by finds other bait valueless in comparison.
The earliest appearance of schools of meuhaden off the coast of the Middle States is the sigual for securing a quantity for the cod fishing banks; and until their disappearance from the North they are in constant request, this application of the fish, of course, being entirely independent of its use in the preparation of oil and guano.
(2) Alewives.-The two species of alewives, taken together, have a still greater range than the menhaden, being found from Florida to the coast of Labrador, and are, if anything, more abundant in the Middle and Southern States than at points farther north. They enter the mouths of all the rivers from the sea in vast schools, beginning in the early spring in each latitude, and can be taken for a ferw weeks in any quantity. They can be obtained as early as January in the Saint John's River, Florida, and in March or April in the Potomac, and would, undoubtedly, if other fish were unprocurable, be used for the spring cod fishery, serving a very excellent purpose in this respect. It is probable that the numerous schools of adult fish, coming in from the depths of the ocean to the shores in the spring, and of the young that pass out seaward in the autumn draw the larger sea fish into the vicinity of the land, and there can be no reasonable question that the great decrease in numbers of the latter, within the last fifty or one hundred years, has been caused, in large part, by human agencies, which have rendered it necessary to change the location of the fishing-grounds and to greatly limit the capture in ordinary boats of cod, haddock, hake, and the like in the bays and on the shores of New England, which was formerly so extensive and profitable.

As will be shown elsewhere, it is entirely within the power of man to restore, in a great measure, the previous abundance and greatly to improve the general fisheries of the coast.

The attractions of the young shad and salmon are donbtless to be added to those of the alewife and herring in drawing the larger fish towards the shore, but they are of less moment in this respect in view of their inferior abundance.
(3) SeaHerring.-Next to the menhaden, and indeed inadvance of it in some parts of British North America, is to be mentioned the sea herring, which is to be found in one locality or another throughont the entire
year, the fishes now spawning in one vicinity and then feeding in another. Without the sea herring the fisheries of the northeastern coast of North America would be very indifferent, and it is a subject of great congratulation that it is to be had at nearly all seasons, especially wheu most needed as bait.

Both the menhaden and the herring are used either entire for baiting the hooks, or chopped up fine in a bait-mill as chmm for attracting the mackerel within reach of the hook and line or into the net. The sea bass of the New England coast finds luring the summer season the chum of the meuhaden an irresistible attraction, bringing them within reach of the angler whenever its influence is experienced.

Menhaden and herring are usually cut in pieces for bait for cod and for many other varieties of fisb; only the small herring, "spurling," are used whole.
(4) Mackerel.-The mackerel is used very frequently as bait, generally the smaller and inferior individuals, or those less valuable for salting being employed. They are also sometimes chopped up as bait for mackerel when cheaper material is not to be had.
(5) Capelin.-Allied if not identical forms of capelin occur on both sides of the North Atlantic, and are everywhere eagerly songhtafter as bait for cod during the period of its presence. Unfortmately on the American coast it is found for only about six weeks. It is then in overwhelming abundance, coming in for the purpose of spawning, the eggs being sometimes washed on the shore in great windrows, and frequently in the edges of the sea forming beds several inches deep. When perfectly fresh no fish can resist its attractions, and for shore cod-fishing during the season nothing better can be had. It is, however, not considered especially advantageous for the bank fishing. The capelin is kept fresh $i_{n}$ ice by the American bankers from 8 to 10 days, and oceasionally a little longer. The French fishermen use immense quantities of salt capelin in the Grand Bank cod-fishery, thongh by Americans they are not considered good bait when salted.
In Norway the capelin is used very largely in the spriug cod fisheries of Fimmark, and its approach is hailed with the greatest satisfaction by the fishermen.
(6) Sundry fishes used as buit.-The sand-lannce (Ammodytes) may also be referred to as specially useful as a bait, as it can be obtained in certain localities along the coast of the United States and the Provinces in rast mubers, and is frequently used as a substitute for other kinds of bait, and the curresponding European species is equally satisfactory, being used ly the fishermen on a large seate. Althongh less in size than most oí the species just eummerated, it can be used entire and constitutes quite a tough, desirable bait. This fish lives mostly in the sand, where it buries itself with great rapinity and is cutrely concealed from view.

Other baits are frequently used hoth in the large and small fisheries,
eels and lampreys, portions of the bellies of cod and mackerel, the eyes of these and other fishes, and indeed almost any form of refuse fish. Dead fish of any kind are also used to constitute bait for taking lobsters.
(7) The roe of fish.-There is no question bat that the roe of fish constitutes a very large percentage of the food of the inhabitants of the sea, as it is only by the provision for the destruction of the large proportion that particular species are prevented from increasing in undue and overwhelming numbers. It is rarely that any fish can resist the attractiveness of fish roe, the eggs of trout and salmon being used largely in California for this purpose when nothing else has any attraction.

Besides the use of the roe of fishes as food for man it constitutes an important element on a large scale in the sardine fisheries of Europe. The salted roe of the cod and of the mackerel is prepared for this purpose and shipped, to the extent of many millions of pounds, about $9,000,000$ pounds of cod roe (worth $\$ 600,000$ ), and one or two millions of that of the mackerel, having been furnished in one year by Norway. Small shipments have beeu made from the United States to Europe for the same purpose.

These eggs are used especially for attracting schools of sardines into the vicinity of the gill-nets, and for that they are considered almost indispensable.* It is a question whether this same roe could not be employed advantageously in the mackerel fishery as a toling bait of a more satisfactory character even than the finely-chopped flesh of fish It keeps much more readily than any other, and its use, if not already attempted, should be experimented upon, as the roe both of the cod and the mackerel until recently has been a refuse product. It is worth considering whether it may not be prepared and used to adrantage for the purpose in question. $\dagger$
(8) Squid.-The squid, one of the cephalopods, a group of the mol jusks, is also a highly important element in the question of bait for the capture of deep-sea fishes, especially the cod and its allies, and occurs in overwhelming numbers along the entire coast of the eastern United States and of the Dominion. Of this there are two principal forms

[^24]S. Mis. $90-9$
equally attractive to the fish, and occurring in very great numbers, the more northern, the Ommastrephes, being found about Newfoundland and other portions of the Dominion, and the Loligo in increasing numbers from Cape Cod south and westward. They are used either fresh, im. mediately after being caught, or sometimes kept in ice; being very largely salted, however, in which condition they maintain their attractiveness for about three weeks.* They are usually taken at sea by means of the jig, and inshore the weirs and pounds are sometimes found to contain them in immense numbers.

The squid, of one species or another, is found off the coast throughout the greater part of the year, in Newfoundland more especially in the spring and summer, and on the Massachusetts coast at almost all times. It occurs more rarely in winter, apparently passing off into the warmer waters. It is probable that by exposing the squid to the cold of a freezing misture and rendering them specially hard, they may be kept indefinitely or until wanted. Among other pounds where squid have been takeu in large numbers, that at Waquoit, Mass., captured more than $6,000 \mathrm{in}$ a single day; and at the same pound, the captures for the first twenty-five days in May alone amounted to 35,000 . (Rep. U. S. F. C., 1871-'72, page 174.)
(9) Whelks.-As already mentioned when discussing the subject of the long or trawl line as used in Europe, the whelk or Buccinum undatum was referred to as the principal bait for that mode of fishing; and although captured every year in immense numbers for use by quite a large fleet of boats aud ressels, it still appears to be as abundant as ever. Here we have another indirect illustration of the influence of man in producing a balance of power in the sea, the whelks being notorions enemies of the oyster and other mollusks and destroying them in great numbers. The drain, therefore, upon the increase of the whelk doubtless has a material effect on the supply of these other objects.

In England whelks are taken on long-lines, on the snoods of which the common shore crabs are fastened or threaded, no hooks being employed. When laid down, the whelks seize this bait and, retaining their hold with great tenacity, are hauled up.

Another method of taking them is by means of baskets baited inside with pieces of fish, a net being stretched over the end, with the basket in the center. The whelks enter this, and when the baskets are drawn up, they remain in them.

Shallow hoop-nets, too, are baited with fish for this purpose, and the incidental adrantage of their capture, as already stated, is in the diminution of an inveterate enemy of the oyster. Each smack requires

[^25]as bait for a voyage from fifteen to twenty-five bushels of whelks. These are preserved in bags made of netting and may be kept for a long time in the wells of the smacks. When wanted, the shells are broken and the animals extracted.

The whelk is especially common in the United States from Portland to the Bay of Fundy, and extends to the south of Cape Cod, although rarely. It is usually known in America as the winkle, and is so abundant on the coast of Maine that it could readily be used as bait for cod.

There are many other of the univalres that may be employed as bait, such as the Busycon and Pyrula, which though seldom used are capable of the same application.
(10) Clams.-The clam in its various forms constitutes a very important portion of the bait used on a large scale in the United States and belongs especially to the following species:

The soft clam, Mya arenaria.
The common hard clam, Venus mercenaria.
The most important of these is perhaps the soft clam, Mya arenaria, which occurs in immense numbers along the entire eastern coast of the United States, and is consumed both as food and as bait. For the latter parpose it is collected very largely on the clam flats of Massachusetts and Maine, in some localities the plow being used at low tide to turn up immense numbers. An especially favorite locality is near Ipswich, Mass., where the immense size of the aboriginal kitchen-middens attest the antiquity of the abondance of this species, these being rivaled, however, by the piles of recent shells heaped up by the clamdiggers. About forty barrels of salted clams constitute an average fare for a cod fishing-ressel, and there appears to be no special difficulty in furnishing any number that may be called for, as notwithstanding the demand, the price at which they are sold now is little more than it has been for many years.

The so-called hard clam is more southern in its distribution than the Mya, and is less extensively used as bait, in view of the great demand for it as an article of food. On the sea coast, in a small way, however, it is used to a considerable extent.

The hen clam, or Mactra solidissima, is also a species which furnishes a valuable bait, and is especially abundant at present in the vicinity of Nantucket, Mass., where large numbers are taken out and used by the cod-fishermen.
In the Gulf of Mexico and the vicinity of Mobile and New Orleans the Gnathodon cuneatus, a so-called clam, is also employed largely in the minor fisheries, but has no prominence at all as a bait for the more important enterprises.

According to Mr. N.B.Nutt, collector of customs at Eastport, clams are not collected to any great extent in that vicinity as bait, but they are gathered along the shore from Machias to Mount Desert and sold by dealers at Deer Isle, Booth Bay, and Portland. Forty barrels rep-
resent the allowance for an ordinary voyage of a vessel of from 50 to 75 tous. Of late jears clams have been less in demand for cod-fishing, fresh herring purchased near the grounds or pickled herring being more exteusively used.
(11) Mussels, Oysters, and Scallops.-Of the mussel there are two distinct species, both known under the same name, and, although generically distinct, having a very close external resemblance which prevents their being distinguished by the ordinary observer. One of these is the Mytilus, the other the Modiola. These are well-known inhabitants of the waters, being fonnd attached in great numbers to the piles of piers, and to rocks, gravel, mud, and any other object to which their byssus will adhere. They are a favorite article of food in some parts of the world, being used largely in Europe for this purpose; but they are less esteemed in the United States. Uccasionally very grave inconveniences result from poisoning, of greater or less intensity, being produced by them. In riew of the well-known fecundity of the mussle, it may be imagined that the spat in regions where they abound constitutes a very important element in the food of young fish, and the contents of the towing net are very frequently composed largely of extremely minute mussels, which are greedily devoured by a great variety of species.

The oyster is not often used as bait. It is almost too valuable to be wasted in this way, and is of so soft and delicate a texture as to break away from the hook with but a slight touch.

The common scallop, Pecten irradians, which is extremely abundant off the coast of the Middle and Northern States, is largely utilized for food, and ouly occasionally used as bait for fish.
(12) Lobsters, Crabs, Shrimps, etc.-The lobster constitutes a very attractive bait in the small fisheries; but it is too valuable in itself as an article of commerce, to be employed to any great extent. Frequently, howeyer, young lobsters, not marketable, or falling within prohibited limits of the legal enactments of certain States, are used for capturing shore fishes.

Along the coast of the South Atlantic and Middle States a very favorite bait for the ordinary shore fishes is the common blue crab (Callinectes hastatus) a species occurring in enormous abundance, and constituting a favorite article of food, whether as hard or soft shell. This is a great resource to the fishermen, few fish resisting its attractions, especially when the old shell has been thrown off, leaving only a soft skin behind. Diminishing in abundance towards Cape Cod, its place is supplied, thence northward, by what is there called the common crab (Carcinus menas). This appears to constitute an especial attraction to the tantog, and doubtless constitutes its food in the sea in very great part.

Shrimps also are used all along the eastern coast of the United States in sea fishing.

## E.-Methods and routine of fishery.

The necessary limitations of space in the present essay require me to defer the consideration of this subject to another occasion, especially as it will come naturally within the investigations of the forthcoming census of 1880 .

## F.-Preservation of fish and bait.

The subject of the preservation of the products of the fisheries is one of very great importance, and is receiving more and more attention every day. In the earlier period of the American Republic the abundance of animal life in the waters was so great that there was little difficulty in taking the needed supply of food whenever it was wanted. rendering the question of its preservation comparatively unimportant. Of course, the methods of salting and drying were in vogue, but the long-continued preservation of fish in a fresh state was of comparatively little consequence. The circumstances have changed very greatly in this respect. The abundance of fish, \&c., has diminished to a greater or less extent, while the population of the country has increased enormously. The demand for fresh fish, too, has increased more than in proportion to the increase of population. The great extension of the system of communication with the seaports, both by steamboats and railroads, has been such as to render it practicable to carry the products of the sea fresh to a great distance. The same methods are available both for keeping bait for use in the fisheries as are employed in keeping the products of the fisheries themselves, and it will therefore not be necessary to discriminate between them.

We may consider this subject of preserration under several heads : (1) As fresh, without any special treatment; (2) as fresh, by means of ice ; (3) by drying ; (4) by salting or the addition of some chemical substance; (5) by smoking ; (6) that of immersion in alcohol or some saline substance, for scientific purposes, which properly does not enter into the plan of this paper.

Fish may, of course, be preserved for a greater or less time for purposes of food or bait without any treatment whatever, this depending upon the amount of moisture in the atmosphere and the temperature. In the colder seasons of the year of any locality an object of this character can be kept for many days, especially if the entrails are removed, the adherent blood washed from the inside, and the inside surface allowed to dry in some way. In warmer latitudes and periods, however, the flesh corrupts rapidly. The difticulty is that in the tropical or sub-tropical latitudes a fish will acquire a taint of corruption or decomposition within a very short time after the capture, so that even before the boat's load can be landed and subjected to the treatment of salt, or otherwise, it will have passed beyond the stage when this can be applied with any success.

Of course, when fish are taken in cold weather and frozen they will remain in good condition as long as the cold lasts ;** and the absence of a definite continuance of this condition suggested the use of ice in some form in the warmer season of the year. The simplest method of using ice is, of course, to lay the fish on it, and thus keeping down the temperature. The more common method of employing ice, however, is to pound it up and arrange it in layers with the fish, one alternating with the other until the given receptacle is filled. This, however, has the very serious disadvantage in the quantity of moisture necessarily held in contact with the fish, the ice melting very rapidly and the fish becoming saturated with the resultant water, from which in time comes an acidity or mustiness of the fish which is not at all palatable. In some cases, indeed, fish will keep better by being immersed in water kept cool by means of floating pieces of ice than when packed away in pounded ice itself. Fish thus treated become unpalatable when kept some time after removal from the ice. About two weeks represents the limit of time during which, under ordinary circumstances, fisl may be kept by the method indicated. After that period the fisherman finds that his bait ceases to be attractive, and the necessity for a renewal occurs.

Icing of fish and bait.--The fishermen at New London and Noank, who are almost exclusively occupied in furnishing fresh'fish to the New York market, by the exercise of special precaution are able to keep their fish and bait fresh a much longer time than is the experience at Gloucester. They exercise very great care in the preparation of the bait, which is opened and thoroughly washed and cleaned, the adherent blood along the backbone being especially remored.

Their bait pens are in one large apartment instead of three or four smaller ones, as is the practice at Gloucester, and are carefully lined with some non-conducting substance. The bottom is paved continuously with ice, to the original thickness of the block, whatever that may be. On this is placed a layer of fish three or four inches thick, and above this a layer of equal thickness of finely-pounded ice, snow answering a very good purpose if this can be had. On this is another stratum of fish, and then pounded ice, aud so on until the whole is filled. The atmospheric air is excluded very thoroughly in this way, and the amount of melting is comparatively trifling. The resultant water is immediately absorbed by the porous layers of pounded ice and held as by a sponge, so that the fish are kept comparatively dry.

In the other method of breaking up the ice with a hammer and sliding in layers over the fish there is much greater exposure to the air, and the water from the melting ice sinks to the bottom and keeps the fish or bait saturated throughont. In this way two weeks is usually

[^26]the limit during which bait can be kept fresh, instead of six or eight weeks, as claimed by the New London fishermen, who see no difficulty whatever in carrying enough fresh bait for a long voyage to the banks, supplemented, should it be necessary, by soft clams, and thus obviating the necessity of going into Newfoundland or elsewhere for a fresh sup. ply.

Ice can be applied much more adrantageously for cooling fish (independently of freezing them) in specially constructed apparatus, known usually as refrigerators. The refrigerator, however, furnishes the most economical mode of applying cold to the fish. In some cases the function of the refrigerator is simply to prevent an unnecessary waste of ice by melting away, so that a given quantity will last a much longer time. Other forms of refrigerators have a very different function, the simplest of which consist of an arrangement by which a current of cold, dry air is made to circulate through a provision chamber, taking off the excess of moisture aud allowing it to be coudensed upon the ice itself. This desiccation may be so rapid and excessive as to bring it under the head of "preservation by drying." It is not at present used to any greatextent in the sea-fisheries for the preservation, on a large scale, of fish for a long time. This is most effectively accomplished by the hard freezing process, which is destined to take the place of all others before long, as preserving the animal fiber indefinitely, or as long as the freezing is maintained at the proper temperature, and with a comparatively small consumption of ice and salt.

According to Mr. E. G. Blackford, the eminent fisl-dealer in Fulton Market, New York, a room, 10 feet each way, or of 1,000 cubic feet, with properly constructed non-couducting walls surrounding it, can be kept in effective operation in the summer weather of New York by the use of 2,000 pounds of ice and 2 bushels of salt per week, with less in colder weather. This would be, for a room of that size, $4 \frac{1}{2}$ tons of ice and 9 bushels of salt per month. As, however, all the bait necessary for a trawling expedition to the banks for cod could be kept in a room of half that size, it is likely that three-fourths the amount of ice and salt would be sufficient, or about $3 \frac{1}{2}$ tous of ice and 7 bushels of salt per month. With all the fresh bait on board required for a voyage to the banks and the filling up of the vessel, the amount for two months should not exceed at the outside 7 tons of ice. Allowing as much more for wastage, 14 tons would probably be an ample allowance. Duiring 1877 ice cost $\$ 2$ a ton at Gloucester and $\$ 12$ a ton at Newfoundland.

A patent has been recently introduced to the notice of fish-dealers, by which fish are arranged conveniently in vessels which are filled up with water, and the whole then frozen into a solid cake, and keptiu this condition until used. This process is claimed by those interested to keep the fish perfectly fresh indefinitely without the evaporation and loss of savor so frequently found in the dry-hard method.

In freezing animals hard and stiff care must be taken to extract the
heat slowly in proportion to their size. It is a common occurrence for moose, reindeer, and other large mammals when killed in a very cold atmosphere to become putrid internally in a few hours, although the exterior may be frozen stiff. The remedy here is probably immediate disemboweling. It is said that halibut cannot be frozen stiff and dry to advantage from the tendency to spoiling in the interior.

It is not an uncommon thing for fishermen on the banks to renew their supply of ice for bait from the floating icebergs. They do not usually venture on a large berg for this purpose; but generally there are to be found in its vicinity fragments of greater or less size which have been broken off from the main mass and are easily secured. The supply of fresh water, too, is not unfrequently obtained in a similar manner.

Desiccation.-Desiccation, or drying, comesnext to cold, either uatural or artificial, as a method for preserving fish for food or bait, and, indeed, is sometimes more available. This consists, in the simplest form, in the exposure of the fish, usually split to some extent, to a dry atmosphere or the sun, causing the evaporation of the moisture to a greater or less degree. Sometimes this process is accelerated by the application of artificial heat, which causes a more speedy evaporation of the moisture. A current of air, either warm or cold, made to play over the fish, carries on the work very rapidly. Quite recently the production of this current of dry air by cold has been called into service, and with very excellent results, the flesh not being altered in any way, and the desiccation being rapid and thorough. Of late years artificial processes of desiccation have beeu multiplied, and are being applied to all forms of marine products, including oysters, clams, lobsters, shrimps, \&c., as well as fishes themselves. Of course the use of a similar method for preserving vegetables and the flesh of land animals is familiar to every one. The preservation of bait by drying has not been very general; but it seems probable that when the application of the desiccating process comes to be more economically applied, it can be called into play to very great advantage.

A writer in the Newfoundland Chronicle for September, 1877, speaking of squid bait, remarks that during the squid season, which usually lasts about six weeks, there is no other bait so attractive to codfish, and that even when salted it is preferred by the fish to fresh herring. He suggests that the proper method of preparing the squid so as to be available under all circumstances and at all seasons is to wash and dry it as soon as possible in the sun and without salt. He does not state, however, whether the experiment has actually been tried.

If the bait thus prepared proves to be attractive to the fish there will be no difficulty, if it cannot be readily dried in the atmosphere of New England, in doing this by means of some of the patent desiccating processes.

Considerable quantities of squid are dried on the coast of Newfound-
and, the bodies being first split open and the heads and entrails removed. I secured a few of them in the fall of 1876 and tried them on the Grand Bank, but under such unfavorable circ umstances that nothing definite could be learned as to the relative value of squid bait prepared in that manner. The Newfoundland fisher men, however, claim that, when soaked for several hours before it is used, it nearly equals for bait, the squid that are just caught.

The method of preserving fish and bait by salting is of course familiar to all, and need not be discussed here to any great length. It will be sufficient to mention that the principal subdivisions consist of salting by sprinkling salt on successive layers of fish, which are piled up in masses, known as kench curing; of immersion in a saline solution, known as pickling; and of salting for a certain length of time by either of these processes and then drying by exposure to the air and by smoking, all of which have their advantages under particular circumstances.

Salting, etc.-The salt used in the preservation of fish in the methods indicated is, for the most part, the common chloride of sodium, or table salt. The quality of this, however, varies in different regions, some varieties beng considered preferable for special applications, and others much less satisfactory.

A very troublesome affection of salted and dried fish is that known as "reddening," where patches of red color make their appearance on the surface of the fish, and rapidly extending, soon reuder it unfit for fool. This is usually met with in the foggy August or dog-day weather. A careful examination of this substance by Dr. Farlow has shown that this redness is due to a minute algous plant abounding in the shallow sea-shores and not unfrequently included in the crystallized salt made by solar evaporation. Its presence is indicated by a slight pink or rosy tint in the salt, and at any rate it appears that fish treated with this salt is more liable to the affection than where the salt is obtained from mineral deposits or else is perfectly white sea salt.

Other saline substances are used in some cases ; and quite recently borax, in one form or another, has been warmly recommended as securing the proper preservation of the flesh by the use of a much smaller quantity of mineral matter. A favorite Swedish preparation, called aseptin, used for keeping milk and other animal substances without imparting a saline taste, consists essentially of borax.

Quite recently other chemical substances have been suggested, and among others is one lately communicated by D'A mélio to the Academy of Sciences in Paris. For this purpose the meat, either raw or boiled, is cut into sections (if the action is to be very rapid) and immersed in a solution of citric acid in water in sufficient proportion to render it decidedly acid. After two or three hours the meat is withdrawn and subjected to a moderate degree of artificial heat, or exposed to the air until dry. With the artificial heat the result should be accomplished in an hour, and in the open air in five or six days. This meat can be kept for
years. To restore it to softuess and flexibility it is only necessary to plunge it three or four days into fresh water. In time it acquires the hardness of wood, and the fatty portions have a tallowy odor.

Smoking.-A remaining method of preserving fish for food, if not for bait, is that of smoking, which has been used from time immemorial. This consists merely in exposing the flesh, either fresh or after being salted to some degree, to the smoke produced ly burning bark or wood. This changes the texture of the fiber apparently by the action of pyroligneous acid or some creosote product, at the same time preserving it and giving it a very agreeable taste. The celebrated Finmark haddies consist of the haddock slightly smoked to a moderate degree, not enough to keep them for a long time, but involving a less amount of salt and of smoking than usual. Other fish, of course, are readily prepared in the same way.

> G.-Disposition of offal or "Gurry."

The question of a convenient or economical disposition of the offal of fish, especially of the heads and entrails, is a serious matter to the fisherman, especially when the cleaning or preparation for market is conducted at sea. This waste matter constitutes a large percentage of the entire mass (about a third), and what is thrown away every year by fishermen of any cousiderable fishing station may amount to hundreds of tons. Men fishing in small boats, however, usually have no other convenient alternative.

The objections made to this disposition of offal are of two classes, ove on the score of waste, the other on the ground that the capture of fish in that locality is greatly interfered with. In the same connection I may refer to the question of waste of fish by means of the trawl-line, or the purse and gill net. As already mentioned, a severe complaint brought in North America against the apparatus referred to, is that large numbers of fish are lost from the trawl-line or from the nets in consequence of storms or otherwise; and that apart from the waste, these fish falling to the bottom, contaminate the fishing-grounds by their decomposition and drive other fish away, as shown by the inability to make successful catches until after a period sufficient to allow this matter to be decomposed or removed in some inanner.

The assertions of injury to the fishing-grounds in consequence of the gurry being thrown overboard or of the number of dead fish dropping from the lines or partly devoured by other fishes, apply most generally to the localities of the capture of the Gadide or members of the cod family, especially the true cod, haddock, hake. cusk, as well as of some other species, including also the halibut and others of the flat-fish family. It must be remembered, howerer, that these grounds are always in the colder portions of the sea, not unfrequently where the temperature of the water is but little above the freezing-point of fresh water, and always where it is as low as $50^{\circ}$. In regions where such temperatures prevail the year round, the cod and its allies are found
continuously. In others, as in the south side of New England, the fish come in as the waters at the bottom of the sea assume the temperature which they affect.

So far as the cleaning of fish at sea and the throwing overboard of the offal or so-called gurry are concerned, the practice is highly reprehensible in an economical point of view; and as representing an enormous waste of material capable of being devoted to useful purposes, the practice should be frowned down and presented by legislation if possible.

On the coast of Norway all such materials, which formerly were wasted, are now carefully busbanded and add very greatly to the percentage of the yield of any fishery. Sometimes this material is boiled and made to furnish a large amount of oil and scrap. At others the heads are assorted and dried as a special food for animals. The actual yield of guano alone from the Norwegian fisheries has in a single year amounted to $7,700,000$ pounds, a very notable element in the productive resources of the country. Whether this material be injurious to the fisheries or not, its preservation and utilization is too important to be neglected; and for this, instead of enacting a prohibitory law, which could not be euforced, it might be better to offer a bounty or drawback of some kind, in proportion to the amount of this material delivered on shore. In this event, even if the fish were more conceniently cleaned at sea, the refuse might be saved in barrels and put on shore at a convenient point. If the solid parts were for the most part saved, the juices and small particles might be poured into the sea without any detriment.

In regard to the allegation, however, that this offal or the dead fish falling from the hooks, in whatever quantity this may be present, affects the fishing-ground, it is extremely difficult to comprehend how this can have any serious effect. In the first place, the cold water in which the fishes of the cod family occur abound to au enormous degree with marine crustaceaus, the self-appointed scavengers of the ocean. These are largely a species of Gammarus and allied forms very varying in size and in overwhelming and almost incredible numbers, and their efficiency in their appointed task is so great that a large fish placed in a box or suspended in a bag of netting, will frequently be picked to a most perfect and complete skeletou in from twelve to twenty-four hours; iudeed, not unfrequently the fish on the trawl-lines are brought up skeletonized in this way.

The same waters in which these shrimps are to be found abound very largely in lobsters, which are baited by precisely the same offal which is considered so detrimental to the fishing. There are also immense schools of small fish such as cunners, and more particularly the Cyprinodonts, which are as active and prompt in their attacks upon dead matter as the crustacea; as witness the experience of those who find a large and valued bait cleaned entirely from the hook by these smaller fish before it has been down more than a rery few minutes. The wolffish or catfish (Anarrhichas), the sculpins, the sea-ravens, the goosefish,
\&c., may also be mentioned among these scavengers, the latter especially finding no difficulty in swallowing entire the largest masses of offal that are likely to be thrown overboard. There is no doubt whatever that all such substances scattered in or floating through the water are promptly seized by the lobsters, dogfish, and other species of sharks, and numerous others of the finny tribe that are always on the watch for such material, and it is altogether incredible that with all these agencies working together there should be any appreciable quantity of dead fish or its refuse left at the end of twenty-four hours.

A large part of the gurry is probably carried off from the grounds by the tides and thus distributed over a wide extent of the sea, the chances of its reaching the bottom and remaining there for any time being still further diminished. Eren supposing the skeletons and bones to be thoroughly cleaned and left, and that by their whiteness or other quality they should terrify the fish, another series of scavengers comes into play, namely, the sea-urchins, or sea-eggs. These, which swarm in enormous troops in the same waters, concentrate themselves in a very short time upon a bone and devour it as perfectly as the sea-lice do the flesh, leaving nothing whatever. It has been suggested that these sea-fleas and sea-urchins only carry on their operations in shallow water. This, however, is a great mistake, as the dredgings of scientific investigators in the vicinity of Grand Manan and elsewhere show that no portion of the sea-bottom, even to several hundred fathoms in depth, is without them, and, indeed, if there is any difference it is probably in favor of the colder and deeper water.

The inquiry naturally arises, why, if the chopped fish, including entrails and roe, constitute an attractive bait to the mackerel sufficient to draw them many miles out of their intended course, and dead fish can be used to bait perch pots, should precisely the same material, in not quite so minute a state of division, terrify and drive away the iuhabitants of the deep sea? It is, of course, possible that a great abundance of animal matter floating in the water, or for the moment lying on the bottom, may affect the actual fishery in consequence of the preference on the part of the fish to this matter over the more doubtful attractions of a baited hook. This, however, would be only temporary, and the interruption would soon cease. Possibly, too (and perhaps this is a powerful agency), the presence of this offal may attract the dogfish, sharks, and other predaceous species, so that they may drive away the weaker and comparatively defenseless cod.*

[^27]The fact that the throwing overboard of offal does not in itself drive away fish generally is illustrated in the fishery for the small dog shark about Provincetown. Great numbers of these are taken aunually for the livers, which are removed, and the rest of the fish thrown overboard. The result is apparently to increase the number of these fish, and make the catch of a larger number practicable.

The number of skates is greatly increased in any given locality, on the bauks where they abound, by throwing overboard large quantities of gurry. This is especially noticeable to the trawl fishermen, who often find after remaining in one berth or position for several days, that the ends of the trawls next the ressel have on them an increased number of skates.

In further reference to this subject of gurry on fishing-grounds and to the alleged wastage of fish by dropping from trawls and gill-nets, it is not a little remarkable that the question of the injury of the use of the trawl-line to the fish aud fisheries of the locality where practiced, should at the present time be for the most part confined to North America, while European writers now scarcely refer to any inconvenience likely to result from this cause. The practice of line fishing is considered in its two divisions of hand-line and trawl, or long line, but this is merely a question of comparative expediency and the cost of the investment.

In the question at issue between the fishermen of Great Britain in 1866, the case lay for the most part between the trawls on the one side and the hand-line fishermen on the other, the latter making no charge of any injury to the fishing in the rejoinder against the long-lines.

It is perhaps less the practice in Europe than it is in America to clean the fish at sea, and to throw the refuse overboard, a wasteful practice, which of course is to be disconntenanced. In Norway, on the great fish-ing-grounds, the sale of the offal to companies organized for utilizing it is a matter of very great importance. It is sold at a fair price, the dried head of the cod being in part prepared as food for cattle, but for the most part couverted into guano, which has an established position in the European markets, as might be expected, allowing it to constitute one-third of the total weight of nearly $20,000,000$ codfish.

In England the codfish taken are for the most part sold entire or dressed in the fishmongers' establishments.

If a considerable percentage of the fish taken on the long-line or trawl is necessarily lost by dropping off from the hooks by their excessive weight ou being hauled up, the injury, if it be one, of their decay on the sea-bottom would in all probability have impressed itself upon the minds of observers in England ; but the only allusions I have been able to find to this subject of dead fish on fishing-grounds is in connection with the herring fishery on the coast of Norway, where it was alleged that the dead fish which were lost from the gill-nets polluted the water and tended to drive the herring away.

According to Feddersen (Rep. U. S. F. C., 1873-5, p. 183), neither this nor the discharge of oil into the ocean from factories on shore proved to have any deleterious iufluence, the fish coming year after year even in increasing abundance to localities infected as mentioned, while they were just as likely to disappear capricionsly and suddenly from waters where no such complaints conld be alleged; indeed, as stated on page 118, a careful examination of the bottom of the sea, by means of the water telescope failed to reveal a persistence of dead fish, the appointed scavengers of the sea very soon removing them effectually. It was only occasionally in the crevices of the rocks and apparently sheltered from courenient approach that the dead herring or their skeletons were known to remain even for a few weeks, subsequent examinations failing to indicate the presence of any dead animal matter.

## H.-Review of the American fisheries.

The time when a faithful presentation of this subject can be made has not yet arrived, and its discussiou must be deferred until an exhaustive canvass of the country has been made. As a slight contribution to the subject the following tables are given:

Fishery products of Gloucester in 1876.

| d, 425,000 q | \$2, 295, 000 |
| :---: | :---: |
| Mackerel, 101,032 bar | 909, 000 |
| Herring, 30,000 barrels | 127, 500 |
| Dry-fish, other than cod (pollock, cusk, haddock, and hake, about equal - proportions), 40,000 quintals. | 120,000 |
| Shell-fish | 10,000 |
| Fresh fish, 11,000,000 pounds | 745, 000 |
| Fish oil (cod-liver nine-teuths at least), 275,090 gallons | 132, 000 |
| Fish manure (herring), 8,000 tons | 25, 000 |
| Miscellancous | 10, 000 |
| Smoked halibut (three-fourths made from catch of " fresh" vessels), 2,750,000 pounds | 275, 000 |

$4,648,500$
40 per cent. of flitching from halibut.
405,000 quintals, pickle-cured.
The following table shows the ralue and extent of the fishing business of the port of Gloncester for the year 1875:
Bank codfish, 177,473 quintals ................................................................. $\$ 998,628$
George's codfish, 185,758 quintals................................................................ 1, 021,669
George's lualibut, 2,462,364 pounds .............................................................. 172, 365

Hake, 4,257 quintals ...................................................................... . . . 12,774
Cusk, 2,349 quintals..............................................................................
Polloč், 9,417 quintals ................................................................... . . . . 32,964

Shore fisheries, the work of dory fishermen :

Cured .............................................................................................. 185,697
Oil „.................................................................................................. 8, 945

| Mackerel: |  |
| :---: | :---: |
| 18,172\% barrels No. 1. | \$327, 112 |
| 7,065 $\frac{1}{8}$ barrels No. 2. | 184,780 |
| 21,763 barrels No. 3 | 174, 104 |
| 4,0393 barrels No. 4 | 24,205 |
| Pickled fish, 31,750 herring | 13, 494 |
| 163 barrels cod, 40군 barrels swordfish . | 1,097 |
| $410 \frac{5}{8}$ barrels trout, $75 \frac{3}{3}$ barrels fins and napes | 4, 042 |
| 21 \% barrels salmon, 205 barrels tongues and so | 2,282 |
| Shell-fish, clams, de | 10, 000 |
| 6,500 tons manure. | 20, 000 |
| All other fish.. | 8,000 |
| Oil, otier than above | 100,000 |
|  | 4, 059,500 |

## III.-ECONOMICAL APPLICATIONS OF THE PRODUCTS OF THE FISHERIES.

The inhabitants of the sea which occupy a more or less direct relation to mau in their economical application are usually classed by the common name of fish, the term fisheries being applied to the methods of their capture. This, however, is to a certain extent a misnomer, as in addition to what are properly knomu as fish we have to consider the cetaceans, such as the whales aud porpoises; the crustaceans, as the crabs, lobsters, and shrimps; the mollusks or shell-fish, such as the clams, oysters, and the like; the corals, sponges, and many other forms of animal life.
The uses to which the various marine animals are put are very various, although by far the most important application is in the way of food for man, and to some extent for the lower animals.

The objects of the fisheries and the applications of the animals of the sea when caught may be cousidered under the following heads:
(1) Food.-For the direct use by man himself; and, second, as bait for the prosecution of the fisberies.
(2) Oil.-For food or medicine; for illumination; for use in the arts, as in the manufacture of soap, the dressing of leather, \&c.
(3) Manure--Applied in a fresh state directly to the soil; as dried and subjected to chemical manipulation and combination with other substances.
(4) Utility and ornament.-A systematic account of all the uses in their minutest detail to which the inhabitants of the sea are put by man would go far beyond the limits of the present article, and it is possible but briefly to refer to some of the more important, concentrating attention hereafter upon those which bear most closely upon the subject of the value of the fisheries in the United States and the Dominion of Canada.

For the present it is necessary to leave out the consideration of the cetaceans and other marine mammals, as well as the corals and sponges,
and some of the applications even of the fishes and crustaceans; and to furthermore restrict our consideration to the fishes proper, introducing other forms only so far as they relate to the question of bait.

1. As food for man and animals.-By far the most important application of fish is as sustenauce for man; a large proportion of the population of the globe deriving its support more or less exclusively from this source.

Although the fresh-water fisheries in many countries are of great importance, and supply a notable percentage of raluable food, it is from the sea that not only the great portion of the fish found in our markets is derived, but also the bulk of that which is preserved by various methods for a greater or less length of time, and for transportation to distant markets.

Fresh fish can, of course, be kept in a cool climate for a considerable time without any special preparation; but the simplest mode of treating it for preservation is that of drying, by exposure to the sun, either with or without a certain amount of salting.

Next to the drying we have the smoking either of the fresh meat or when it is more or less salted. The salt may be applied either dry or in solution, when the fish are to be used almost immediately (which process is known as corning), or else kept for a longer period. Salt, being a substance found universally, is the cheapest and most convenient medium. The use of borax has already been alluded to on page 137. Salicylic acid, too, in solution can be used to keep fish fresh for a considera. ble length of time.

Until quite recently the ice has been used by itself, without the addition of any salt whereby to produce the so-called freezing mixture, the fish being kept in boxes or bins in the holds of vessels, in contact with ice, reduced to a greater or less degree of firmuess, and drainage being provided to carry away the water. Sometimes the fish are packed with ice and a non-conducting substance like sawdust, which greatly retards the rapidity of melting and permits the shipment in large quantities.

A much better method of using ice alone consists of its application in some of the modern circulating refrigerators, in which it is placed above the receptacle containing the fish or other meats, and a circulation so established which, while keeping the temperature of the air surrounding the meats at a low point, extracts all the moisture from the atmosphere, leaving it perfectly dry, and furnishing an atmosphere corresponding to that of an ordinary clear cold winter's day. The flesh of fish thus treated is very much more palatable than where there is a direct contact with the ice itself; in the latter instance the fish, while not undergoing decomposition, becoming stale and sometimes more or less sour.

The greatest improvement, however, in the preservation of fish for food is by the use of freezing mixtures. Under no circumstances by the use of plaiin ice at melting temperatures, in an ordinary summer's at-
mosphere, can the temperature be kept below $40^{\circ}$, and where the fish are not actually in contact with the ice, possibly not below $50^{\circ}$. This involves a tendency to become stale, as above referred to. If, however, the fish be frozen hard and stiff immediately after being caught it may be kept in this condition for an indefinite period of time, and wheu carefully thawed out and used immediately after, will be very little if at all inferior to a fresh fish. For this purpose the fish are now exposed as soon as possible after being caught to the proximity of a freezing mixture of ice and salt; and as soon as well frozen they are transferred to a much larger chamber in which the temperature is kept by the same means at about $12^{\circ}$ to $16^{\circ}$.
These apartments have double walls, with some non-conducting sulstance interposed, as charcoal or sawdust, and usually have several iron cylinders passing through, which are kept filled with a mixture of ice and salt, provision being made for their introduction above the chamber and for the drainage of the melted liquid below withont the necessity of opening the room. Here immeuse guantities may be kept in a state of absolute unchangeableness as long as the condition of the market requires. This method is now employed 10 New York and elsewhere for the preservation of all kinds of fish, salmon, striped bass, cod, Spanish mackerel, bluefish, \&c., being piled up by the cord.

A very important result of these processes consists in equalizing the market, preventing a glut at one time and an excessive cost at another. Any one of the fish just mentioned, with numerous others, can now be obtained without any difficulty, at any season of the year, from such dealérs as E. G. Blackford, Middleton, Carman \& Co., and others, in Fulton Market, New York.

There seems to be no reason why dry, hard freezing may not maintain animal matter in a sound and wholesome conditiou for any period during which it may be applied without interruption ; and as a case in point, I adduce certain well-substantiated facts in regard to the occurrence of a carcass of the mammoth in Siberia. It is well known that at one time, probably during the interglacial period, the mammoth, or fossil hairy elephant, was extremely abundant in arctic Asia and America, in the former especially, and that even now a large percentage of the ivory of commerce is derived from the tusks of these animals found in the soil, in the river-beds, or dredged up in the Aretic Ocean off the mouths of the Siberian rivers. It is probable that herds of these animals, in crossing the rivers, were drowned and carried out to sea by the powerful current, when the meat soon decayed or was devoured, and the bones decomposing in time left only the tusks to reward the gatherer. Some years ago a merchant of St. Petersburg, in risiting Northern Siberia in the course of his trade, came across the carcass of a mammoth that had been washed out from a frozen gravel bank along one of the rivers, and lay on the beach, where it had been for many months the prey of dogs and of wolves and

$$
\text { S. Mis. } 90-10
$$

other wild animals. At the time he found it a considerable portion was left, although most of the meat had been consumed. It was even then not offensive at all, and the dogs were devouring it with great eagerness. He obtained the skeletou and a portion of the skin, which are now to be seen in the Museum of the Academy of Science of St. Petersburg. The natives assured him that the meat was fresh and fine, and in no way disagreeable. Here we have a case of meat preserved in a natural ice-house through a period, the antiquity of which we cannot readily measure, but certainly an estimate of many thousands of years is eutirely within the mark.

The animal was imbedded in the frozen soil below the point where the surface would thaw in the short summers of that country, and remained all that time, with all tendency to decay or deterioration absolutely suspended.

All these processes mentioned for the preservation of fish for food are applied to a greater or less degree in keeping fish to be used as bait in the fisheries, namely, salting, keeping in ice, and hard freezing; drying is less available. They have been discussed under that headiug at page 133 et seq.

Next in importance is the method of the preservation of fish in oil of one kind or another. Here the fish, after being treated properly, are sealed hermetically in metallic ressels of smaller or larger size. This method of preservation is applied more particularly to the sardines, but is also used in the case of the imitation of sardines, as the pilchards, menhaden, \&ce. In Frauce, Italy, Spain, and Portugal, however, where olive oil is inexpensive, nearly all kinds of fish are preserved, as the tunny, bass, perch, mullet, \&c., and rarious mollusks. Specimens of such preparations were exhibited at Philadelphia in 1876. In the United States, where olive oil must, for the most part, be imported at a heary cost, other regetable oils, especially that of cotton-sced, have beeu found very satisfactory substitutes.

A novel, and what promises in time to become an important, preparation of food is the result of a process for obtaining the extract from the flesh of the menhaden, as invented and patented by Mr. S. L. Goodale, of Saco, Me. The ralue, bothin a hygienic and dietetic point of view, of the beef extracts of Liebig and other inventors, is now well known and established, and the fish extract of Mr. Goodale, strange to say, has no fishy taste whaterer, and is sarcely distinguishable from the meat extract. He claims that an immense amonnt of this substance can be obtained during the ordinary process of utilizing the menbaden, adding greatly to the prolits of the busiuess and without interfering with the preparation of oil amd scrap. Samples of this extract were presented at the Philadelphia Wxhibition, which were considered very excellent, promising a satisfactory future. In his opinion at least $20,000,000$ pounds of this extract can be obtaiued from the menhaden ammally without interfering with the yield of oil and serap, and possibly of nearly equal money value.

It was first brought to notice at the Centeunial Eshibition, and received the high commendations of the jury on the fisheries and foods. The fish are first thoronghly cleaned and washed, and then immersed in boiling water for a short time for the purpose of removing the skin. They are then subjected to a subsequent treatment by which 3 pounds of extract are obtained from each barrel of meuhaden, or 4 pounds if the entire fish is manipulated without separation from the bones. This process does not in any way affect the value of the fish for the production of oil or manure, and therefore constitutes an important utilization of a waste product, the proceeds of which will probably in time much more than pay all the increased cost of treatment.

The same method can be applied to other fishes of sufficient size to warrant their evisceration, although it is hardly likely that any fish but the meubaden can be profitably treated in this manner, being actually shipped to Italy for the purpose of adulterating the genuine olive oil. There are other modes of preserving animal substances, especially fish, in use in various parts of the country, but those already given are the most important.

In addition to the consumption of the flesh of fish as food, other parts of the body are used for a similar purpose, the most important being the livers and the air-bladders. The livers of many fish, especially the Gadida, of some of the sharks and some other species, furnish oil in very great quantity ; and those of the cod especially, and other fish of the cod family generally, are used as food, particularly as nutriment for invalids affected by consumption or other wasting disease. The oil is also used for industrial purposes, which will be referred to hereafter.

The air-bladders or sounds of fish are very extensively employed in the preparation of so-called isinglass, of which the most esteemed is that from the sturgeon and the hake.

Of late years an excellent glue is inade from the skin as well as the air-bladder of fishes, but this has mostly technical applications. The isiuglass of fish when used as food is usually employed for the most part in the preparation of jellies, gum-drops, \&c., as well as in the refining of beer and other beverages.

Under the head of the application of fish as food must be included their use as bait for the fisheries, as also their destruction by their fellows for their sustenance. These subjects will be referred to hereafter.

Besides the use of the meat of the fish, either fresh, salted, dried, smoked, pickled, spiced, in oil, \&ce., there are certain portions of the body which are considered more or less delicacies. Amoug these the heads of many species are preferred to the rest of the body. The boiled head and shoulders of the cod, the striped bass, and some other species are considered especially excellent, as are the tins of the halibut. Indeed, in the carlier history of the country the head and fins only of the halibut were utilized, the rest being thrown away. The tongues and
sounds, too, of the cod, hake, and other gadoid fishes are very highly valued for food, and are usually put up salted separately. The airbladders or sounds of fish have already been referred to as of special commercial value, those of the sturgeon furnishing the well-known Russian isinglass, and being utilized for the same purpose.

Of late years the air-bladders of the hake have been collected very assiduously, and are worth more than all the rest of its body. They are gathered especially on the coast of Maine aud in the Bay of Fundy, where vessels are in the habit of visiting the different fishing stations and buying these sounds for from 50 cents to $\$ 1.25$ a pound. The drum, squeteague, and, indeed, almost any other of our species in which the walls of the air-bladder are thickened, and that organ is of cousiderable size, are valued for the same purpose. Several fresh-water fish in South America are also utilized in the same direction. There are establishments in Massachusetts where the business of collecting the air-bladders of fishes of all kinds, and of working them up into marketable products, is carried on.

The skins of many fishes, too, are couvertible into a coarse gelatine or tenacious glue. In Russia the cartilaginous backbone of the sturgeon is highly prized as an article of food, and is collected and sold in bundles like whips.
The roes of a great many fish are used as a special article of food, sometimes with the rest of the animal, as of the herring ; at others separate from it. The roes of the mullet of the southern coast of the United States are salted and barreled and consumed largely throughout the interior of the adjacent States, the meat itself being less prized.
The cariare of the sturgeon is a well-kiown article of commerce, and is now being put up in the United States in large quantities, particu. larly for export to Europe.

I have already referred to the extent to which the business of putting up fish in oil and spices and inclosing them in hermetically sealed tin cans is carried on abroad, particularly by the inhabitants of France, Spain, Italy, and Portugal, this process having been until recently scarcely known in the United States; but it now bids fair to become an important element of our industries. Few persons realize the extent to which the menhaden is utilized in this direction, several establishments in New Jersey finding it really difficult to secure a sufficient supply of fresh fish to meet their demands. Here they are put up in oil under name of American sardines, or spiced and known as ocean trout. The herring is also put up both in oil and spices in New York and at Eastport, in Maine. Mackerel are preserved to some extent in Canada in pound cans, like the canned salmon, several thousand pounds being included in the returns of the proceeds of the Canadian fisheries for 1876.

There is no doubt but that there is a wide field in America for the utilization of fish in this way, and that a large market could soou be
built up, not only in this country but abroad. In 1876 the value of the sardines and anchovies, prepared in oil and imported from abroad, amounted to $\$ 595,901$, each year showing a considerable increase. The only advantage that foreign countries have over us in this matter is in the price of oil ; and if the cultivation of the olive in California proves to be a success this will furnish the finer material, although the best quality of purified cotton-seed oil is believed to be equally wholesome and can be furnished at a very low figure.
2. As oil.-We have already referred to the use of the oil of the livers of fish as an article of food or medicine, but it is in its industrial applications that the oil of fishes merits the principal consideration. While there is a great difference in the amount of oil furnished by the livers in different species, almost any will yield it in greater or less abundance on being boiled and pressed, varying in amount with the species. The most of the fish-oil is, however, dericed from the body generally. In one fish abounding on the northwest coast of America, known as the candle-fish (Thaleichthys marinus), closely allied to the smelt and capelin, which, indeed, it resembles, the dried fish is used for the purpose of illumination, the amount of oil being such that it furnishes no mean substitute for a candle, being capable of iguition and burning for a considerable time. As this fish iṣ rery abuudant, it is not improbable that it will hereafter constitute an important sonrce of oil, parties in British Columbia and Alaska being now engaged in the business on a small scale.

It is from the menhaden or pogy of the Atlantic coast of the United States, however, that the greatest quantity of oil is obtained.

Next to the menhaden or pogy the sea herring is probably the most extensive source of supply in the United States, the fish as caught in weirs in the Bay of Fundy and elsewhere being treated for this purpose. It is not improbable that the offal of cod and other fish will after a time be largely utilized in this direction, as it is on the coast of Norway, where very little is wasted.

A further extensive source of oil for technical purposes is found in the liver of the dog shark (Acanthias), a small species searcely more than one or two feet in length, but occurring on the American coast in immense numbers.

As almost any fish will furnish oil when boiled or steamed and subjected to great pressure, other species are treated for this object from time to time, according to their abundance or the immediate necessities, but those mentioned above are probably the most important. The capelin, it is true, furnishes an excellent source of supply, but it is found for so short a time on the coast of Newfonndland and the other regions inhabited by it, that it would hardly pay to put up permanent establishments for operating on a large scale.

The limitations of my subject exclude the consideration of oils as obtained from whales, porpoises, blackfish, grampuses, \&c., the supply of
which is of course very great, although diminishing in duantity, white that from the true fishes appears to be increasing.

The use of fish-oil as food or medicine is comparatively limited. Its application is more generally to the manufacture of soap, and in the dressing of leather, for purposes of illumiuation, and, to some extent, in painting. During the late civil war in the United States, when the supply of turpentine was limited, the oil of the menhaden was employed as requiring less turpentine in its service.
3. As manures and fertilizers.-The refise, or so-called "scrap," left after the expression of oil from boiled or steamed fish, is used very largely as a fertilizer, for which it is especially valuable in consequence of the large amount of phosphorus contaned in the bones, and of the nitrogenous matters. This is used eitlrer directly or after being subjected to chemical treatment, and, for the moss part, mixed with the phosphatic earths found on the coast of South Carolina and Georgia, with the mineralized guanos of the Sombrero Islaud of the West Indies, or with the well-known guano of Peru or of the islands of the Pacific.
4. Other purposes.-The remaining applications of fish are of much less moment than those to which we have already adverted, being usually exceptional and confined to limited areas.

Although the skins of fishes have been utilized in varions ways by different nations for a long period of time, within a few years this industry has become prominent, and will in time represent a very important element in the total products of the sea. Although the skins of cod, salmon, and other fishes are not unfrequently used as clothing for both the feet and the body by the tribes of the northwest coast of America, it is only of late that such skins promise to come into use among civilized nations. A patent has been taken out in the United States for the manufacture of shoes from the skin of the cusk (Brosmius vulgaris). The skins of varions species of sharks are now very carefully sared in the Red Sea, the Mediterranean, and the Iudian Ocean, and constitute a considerable article of commerce, the best material being furnished by the genera Scyllium, Scymnus, Spruax, Acanthias, Sqatina, Squalus, de. These are used largely for polishing wood and inetai, for covering bores, spectacle and spy.glass cases, \&c.

The skin of the burbot or ling (Lota) is employed in Russia and Siberia for trimmings of dresses and for the windows of dwellings, instead of glass. It is also made into bags for holding clothing; \&c.

The skins conld be taken off from many fish which are now entirely wasted, and from others the meat conld be employed in some form or other. When tanned or dressed the skins cond be converted into articles of clothing or ornament, and could be used in polishing wood or metal.

As already explained we are far from deriviug all the benefit that we might from our sea fisheries, not only neglecting, as we do, a large part
of our actual catch, but failing to seenre what is in other comntries considered a source of national wealth. Apart from the increase in quantity of the well-established preparations of fish by drying, salting, smok ing, \&c., there is a large field open in putting up fish in hermetically sealed caus, either in oil, pickle, or spices.

The Centennial Exhibition of 1876 afforded an opportunity for the presentation of rast numbers of preparations of fish, as made and consumed in large quantities in France, Italy, Spain, and Portugal, which could be readily imitated in the United States, aud find a marlket either here or in foreign countries. Indeed, almost every fish of the Mediterranean in the varions preparations, notably the mullet, the mackerel, the tunny, the perch, bass, \&c., and even squids or cuttle-fish, were found to constitute no inconsiderable item.

Of herring there are many preparations greatly in demand in Emope, of which we know nothing. A reference to some of these will be found in the Report of the U. S. Fish Commission, Voi. III, page 183 (Wide• gren on the Herring and its Preparation as an Article of Trade).

The carcasses of sharks, skates, and other now refuse fish could be converted into food for dogs, poultry, and even used in feeding young trout or salmon, \&c., in piscicultural establishments. Eren if they could be sold at from 1 to 3 ceuts a pound for the dried meat, in the large demand that could readily be developed for the various purposes mentioned, a satisfactory profit could be derived. The meat could be chopped fine or converted into meal, as with the well-known fish-meal of Norway.

## IV.-MAINTENANCE AND IMPROVEMENT OF FISHERIES.

## CONSIDERATIONS RELATIVE TO TIIE BEST MODE OF MAINTAINING

 AND INCREASING TIIE SUPPLY OF TIIE SEA FISIIERIES.This subject may be best treated under the following heads: First, legislation in the way of regulation and prohibition; second, the increase of the absolute number and variety of fish; third, equalizing the supply of fishes and bringing them from distant points within easy or convenient reach of the fishermen.

> 1.-LEGISLATION.

The history of the fisheries for many centuries past has been largely a record of attempts either to give monopolies to favored individuals and companies, or well-meant, but in most cases ill-judged, endeavors to protect the fish from destruction and to secure the rights of the people in their capture. The tendency, however, of later years, has been materially to relax and in many cases to abolish these regulations, and it is now becoming generally conceded that, so far as the sea fisheries are concerned, the less the obstacles we place in the way of the prosecution of the fisheries the better. It very rarely happens that the enact-
ments for the protection and regulation of the fisheries are based upon a thorough knowledge of the habits, migrations, and general relations of the fishes themselves, and even while remoring or preventing a difficulty in one direction, they briug about a still greater one in another. In many cases action, when taizen, is the result of the monomded clamor or jealousy of fishermen using one kind of apparatus against those employing another, or, in some instances, it results from the influence of the wealthier classes, who wish to preserve the fishing as a sport and relaxation, as against the interest of those who depend upou it for a living. In considering the complaints, therefore, in regard to a particular mode of fishing, and the invocations for its restriction, due cantion should beexercised in determining how far the personal element comes into play and how far the interests of the great mass of the community and the world are at heart.

Legislation on this subject is usually iucluded under the following heads: First, the places of fishing; second, the season ; third, the time of day; fourth, the size and length of the nets, and the size of the mesh; fifth, the distance apart of nets, weirs, pounds, \&e.; sixth, the number of fish that may be taken; serenth, the police and regulation of the boats and men; and, eighth, regulations in regard to the preparation of the fish, and for securing to the purchaser a proper knowledge of their character and quality.

It will, of course, be understood that legislation can be properly enforced against foreign nations at least only within the territorial limits of the country; and as the three-mile line is usually accepted as defining the boundary between the inshore and offshore fisheries, it is usually the space within that limit to which the local laws apply. In some nations the particular areas of the fishing-grounds are assigned to the inhabitants of certain districts, those adjacent to it not being permitted to enter, and severe conflicts sometimes result from such an attempt.

How far one of the United States can enforce any fishery regulations at sea, outside of the three-mile line, or indeed even within it, is a question not to be discassed here; that the United States can do so is perhaps more certain, the ressel being considered a part of the country and carrying into it the conditions of its shore.

In accordance with a convention cousummated in August, 1843, between France and England, the exclusive right of fishing by the fishermen of either nation was given within 3 miles of its own coast, the intermediate space being common ground. A provision was made for the employment of cruisers by both nations, not only to protect the rights of their own fishermen, but to see that they obeyed the laws made for their regulation. Cases were specified in which the vessels of one nation might enter the territorial limits of the other, but in no part of the treaty was there any prohibition, when once within the limits, to purchasing bait, or supplies, or of deriving any other commercial adrantage.

This treaty is referred to in the Report of the British Sea Fisheries Commission, where it is expressly stated that the vessels of Belgium, with which there was no such treaty, were not bound by it, and that there was nothing to present their tishing if they were so minded, indicating that the submission to a restriction must be a matter of joint agreement between two contracting parties (p. lxiv).

With reference to the difficulty of estimating the extent of the threemile limit, Prof. George F. Barker, writing from Brookfield Center, Conn., September 7, 1877, said:
"With reference to the question you propose, i.e., whether the probability of an accurate judgment of distance is greater when the estimate is made by an observer standing on shore or by a person in the ressel, I would say that in my opinion the probability of at correct estimate of distance is considerably greater in the latter case. Distance, according to the present theory of rision, is always estimated by the eye from the maguitude of the visual angle under which the distant object is seen. Now, since any given object, placed at a suitable distance, will subtend any angle whatever, it is obrious that size and distance are both variables in the calculation, and that if neither is given the problem is indeterminate. A man who does not know how large the object is which he sees, cannot, from this datum alone, form any accurate idea of its distance. Hence, to estimate the distance of any object accurately, the size of the object which subtends the given visual angle must be accurately known. A man of average height placed a mile off will subtend an angle of about two minutes, and if two miles off, of about one minute. To tell that he is two miles off, and not one mile, the eje must accurately appreciate this slight difference of one miuute of arc. The human height is so well known that persons are ofteu introduced into art compositions to assist in judging of distances. But at three miles distance, a man is too small an object by which to estimate distance by the unaided eye, the limit of error being so large as to render the estimate of no value. Hence, other familiar objects larger in size must be chosen. If a person on the shore, accustomed to this kind of estimate, sees a vessel which he is familiar with at the landing, he cau tell approximately her distance, if she is not too far off. So a person sailing away from the shore may estimate quite accurately his distance from it, provided he be familiar with the size of the objects on shore. If neither person knows by personal inspection the size of the object looked at, the one in the vessel has the advantage, because the sizes of houses and their parts, windows, doors, \&e., and also of well-known trees and animals, vary much less than the sizes of vessels. But there is another advantage on the side of the man in the vessel. He forms his judgment not by a comparison with a single object, but from a large numher of objects, whose sizes are well known; and his estimate is, therefore, the meau of a large number of separate judgments, and so more reliable than any single one. Moreover, if these objects are successively back
of each other in the line of sight, another adrantage is gained, as any one must admit who notices how much larger, because apparently further ofi, the sun is when on the horizon, where there are objects of comparison, than in the zenith, when there are none. Moreover, as a rule, seafaring men have trained their eyes to estimate distance from a vessel."
To the above may be added the viems of C. P. Patterson, Superintendent of the U. S. Coast Survey, given under date of Augnst 31, 1877, as follows:
"From my experience, I conclude, and have always safely acted upon that conclusion, that perisons on board a vessel, with rare exceptions, judge the vessel to be nearer the land than she actually is, and this arises in a measure from the fact that the eye rarely recognizes the foreground, as it were, of the distances, but is apt, unconscionsly, to begin estimating the distance from an imaginary line at some distance from the vessel, the higher the eye above the water the greater being this distance, and the greater the real distance of the vessel from the shore than that estimated. This is particularly seen in handling a vessel in a harbor, or running close in along a shore.
"If the eye is placed at the mast-head of a vessel, the horizon rises, as it were, with the eye, the seusation created being that the vessel is at the bottom of a bowl and the eye on a level with the rim, and from this position estimated distances to objects are almost invariably too short. My own custom was to increase estimated distances accordingly. If a man at the mast-head estimated the distance to an object, unseen from the deck, to be 20 miles, I concluded at once that it was 24 or 25 miles.
"From the shore the eye recognizes a marked foreground (there always being a very decided one, eveu on a sand-beach of the edge of the breakers or water), which it cannot ignore, and from which it at once begins to estimate distances. The eye being filled with this 'foreground' takes cognizance but indifferently of the object itself, as well as the distance intervening between the outer edge of the foreground and the object, as shown thus:


A being the eleration of eye above the water, $D$ the edge of the breakers and foregromid, B limit of foreground, and C the position of object. The augle which the eye instinctively measures is D A B, and this is equal to D A C, be the object wherever it may on the horizon. Then the distance B C is measured only by the greater or less distinctuess of the object, there being nothing with which to compare it. From the want of a foreground, if A was the mast-head of a vessel the distance the eye would endeavor to measure is BC , almost entirely ignoring $\mathrm{A} D \mathrm{~B}$, and
in addition the shore being much more prominent to the eye from the vessel, than the vessel from the shore.
"If the eye on the shore is placed where it can take in a longstretch of coast, it will nearly always moderestimate the distance of a vessel from it.
"Of course, the cupidity of commerce sways the judgments of the best people in the direction of their own interests, but I give the results of my own experience for what they are worth.
"The matters stated in your letter also have an effect in the general estimate of a distance over the water from the land to a vessel or from a vessel to the land.
"My conclusion is that as a general rule the distances of the land from vessels and the distances of vessels from the land are usually underestimated. In one case the eye ignores the nearen part of the distance, and in the other the more distant part.
"In this I am confirmed by the experience and opinion of Commander L. P. Lull, U. S. N., Hydrographic Inspector, United States Coast Survey."

The seasou of fishiug, too, is also a subject of legislation. The (rorernment of Norway determines with great care the time when the nets and long-lines shall be set, the introduction of the latter into the water not being permitted at the Lofoden Islands fisheries before 12 o'clock m., their lifting being imperative before noon of the following day. France, England, and other nations have made regulations in regard to the size of the mesh, specifying the minimum for the beam-trawl and for the drift-net, the object being to secure to the young and unmarketable fish a chance to escape. This precaution, however, is of little value in the case of the beam-trawl, where many fish are taken which would have passed through the meshes of an ordinary net without dificulty.

The distance apart of nets, so as to prevent interference, has also been provided for; as also the restriction of particular kinds of fishing to certain grounds, in Great Britain trawling being sometimes limited to certain areas, to prevent interference in the use of the long-lines.

Nearly all nations have regulations in regard to the boats and vessels to be used, among others requiring them to be numbered in certain ways, so that they may be more easily designated and identified in the event of their attempting to evade the law.

The preparation of fish for the market has also been the subject of legislation. Many nations which pay no particular regard to the times, places, and circumstances of the sea fisheries, have considered it expedient to secure the interest of the purchaser by regulating and restricting the mode of preparation and of packing, this being the case, perhaps, more especially in Holland and the Scandinavian countries than elsewhere. The herring fishery in Holland was formerly kept, in all of its stages, under the control of the Government, although of later years this is more particularly confined to the paciing and inspection. In

Norway, howerer, the Govermment requires that the herring which are found to have in their stomachs certain kinds of food shall be keptalive, inclosed in the nets until this food is absorbed, as otherwise the fish cannot be preserved for any length of time, thereby affecting their quality as food. Still more geuerally is there an inspection of fish by the State after they have been put up, the packages being marked by Gorernment officials, who are supposed to be beyond danger of any corrupt influence in making the distinctions as to quality.
There is, perhaps, no nation in the world where there are fewer regulations and restrictions in regard to the sea fisheries than in the United States, no response having been made either by the Geueral Government or by the State to the numerous appeals to take the subject under their jurisdiction, and to prevent what is claimed to be improper methods, or unseasonable times of capturing fish, or undesirable modes of preserving them.

There are, however, in several of the States, especially of New Eng. land, State inspectors of fish who brand the packages, in accordance with the quality of the fish, these marks guiding the purchaser in his selection and in the price to be paid by him.

Although the propriety of maintaining such restrictions has been questioned, on the ground that all these matters should be subject to the general law of demand and supply, and to individual reputation, yet it is not likely that any change will be made. While it is comparatively easy in many cases to enforce regulations in regard to fishing and the treatment of fish near the shores and under the jurisdiction and superrision of officers, it becomes a much more difficult matter when the fishing is prosecuted at a distance, as in this country on the George's Bank, the Grand Bank, \&c. It is, of course, possible to send Government cruisers to accompany the fishing fleets, to see that the fishermen obey the laws in this matter, and this is done to some extent by the Norwegian, Dutch, English, and French Governments, the two latter maintaining a sea police, more to prevent encroachments by the opposite nation upon the fishing. grounds, or injury or outrage upon their own vessels. Great Britain, too, bas during some years maintained a certain number of armed vessels within her dominions in North America to prevent the encroachments of the American and French fishermen. The United States, however, has never had any provision of this kind, but has allowed the sea fisheries to regulate themselves entirely. Some of the States supply armed protection to their oyster fisheries, both Maryland and Virginia having now, or until quite recently, such a provision.
The propriety of international agreement in regard to certain modes of fishing has not unfrequently been urged, and more particularly it has been proposed that the United States and Great Britain have an agreement to prohibit the use of the trawl or long-line on the Banks of Newfoundland and in other portions of the high seas. Apart. however, from
the questionable propriety of interfering with this mode of fishing, there would be the consideration of enforcing such rules, as it could only be done by means of a fleet of Government vessels of both nations, stationed in different portions of the high seas, involving, of course, the danger of irritation at any attempt at enforcement, especially by the vessel of the opposite nationality.

Again, even if this could be effected and enforced by the IInited States and Great Britainin respect to their own subjects, there is no probability that other nations would enter the convention or consider themselves bound by its provisions; and without the co-operation of armed vessels of other nationalities, any attempt at regulating the fishermen of the same would be resented by their respective Goveruments, and danger of war ensue. If there were no interference with the subjects of other Governments, the effect would be simply to give them the monopoly of capture by the probibited apparatus, or during the prohibited season to other parties, and thus a season's loss would be inflicted upon the subjects of the consenting nations. It might also be a question how far any Government could pretend to interfere with the fishing operations of its own subjects on the high seas; provided, of course, these did not involve any criminal action, or such as is, by common consent, allowed to be a matter of jurisdiction. Of course, the vessels and their catch might be controlled on their entering port; but there would seem to be nothing to prevent the taking of the fish to a foreign nation. It is for these and other reasons, that need not here be detailed, that most careful consideration should be given to any proposition looking towards the restriction or regulatiou in any way of the sea fisheries of the United States, whatever may be the practice and policy of other nations.

There is, however, a plea for the interference of the Government, in certain cases, in regard to the fisheries that belong to the rivers, or are near the shore, and thereby most specially related to the adjacent commonwealth. Nearly all civilized nations have looked with more or less care after their interior or river fisheries; and quite a number of the States of the American Union have their own special enactments on this subject. This refers more generally to the times when fishing may be authorized ; the character of the apparatus, whether lines or nets ; but more particularly to the protection of the fish during the spawning season, especially of the trout and salmon. In States possessing shad and alewife fisheries there is usually a definite date when the fish are supposed to have reached their spawning beds or the condition of spawning, and at that time all fishing is interrupted. This varies according to latitude, being earlier in the South and later in the North.

Again, the question of the pollution of rivers is one that comes up for consideration, in many cases the introduction of sawdust or the refuse from gas or manufacturing establishments beiug prohibited or controlled. Other States, again, require from the proprietors of artiticial dams the introduction of some device by which shad, salmon, and
other fish may ascend, and thus be enabled to reach their spawninggrounds. There is also au inspection in the markets, in nearly all the larger cities, of the quality of fresh fish, so as to prevent the introduction for sale of any that are not considered wholesome and fit for food. All these provisionsare wise and beneticent, and tend, when judiciously and properly enforced, to protect the fish against decrease and to secure their multiplication, as well as to benefit the purchaser. If the anadromous fish are prevented from access to their spawning-beds, it is within the power of a siugle person to destroy fisheries of immense value and to deprive a large portion of the community of a wholesome food and an important means of support.

These conditions of protection and regulation, while they cannot be said to apply at all to the deep-sea fisheries, have comparatively little reference to the inshore sea fisherics. But even here we readily imagine that State action, if not that of the General Govermment, is desirable. The most important point in this comnection is the protection of the spawning-gronuds (when they can be detinitely ascertained) from pollution by the introduction of noxious substances and from the disturbing intluences of fishing or other operations. A notable instance of the advantage of regulation in this case is to be found in the matter of the herring fisheries of the Bay of Fundy. The spawning-ground for this fish is remarkably limited in extent, being for the most part situated immediately around the southem extremity of Grand Manau, or what is known as the Southern Head. Here, during the months of June, July, and August the hermg resort in immense numbers to deposit their eges; and limited as they appear to be in distribution at that time, the great number of vessels that followed them to that region took immense quantities of spawning fish, and apparently brokeup the schools and prevented them from depositing their eggs under proper conditions. The result appeared, at least, to be a vers great diminution of the fish, and the threatening of their practical extermination. Under these cirmmstances the Province of New Brunswick passed a law establishing the months of June (?), July, and August as a close time, during which no fishing was to be allowed, and appointed an officer to enforce the regulation. For several years many attempts were made to violate the law, with more or less success; but gradually the power of the Govermbent, and perhaps an improved publie sentiment, succeeded in breaking up this encroachment, and of late vears the protection of these spawning gromds has involved but little difficulty. It would appear, as the result of this action, that shortly after the enactment the fish began to increase in number, and they are now said to be as aboudant in the Bay of Fund and its vicinity as they were ever known to be since the earliest history of the conutry. It is of course barely possible that there is some fallacy in this conclusion, and that it was one of these ahternations of decrease that invoked the legislation in question, and that the subsequent increase would have taken phace, even if the practice of lishing during the spanning season had been continued.

All the European herring fisheries, especially the most important, as those of Norway and Great Britain, are without restriction as to time of catch, and indeed it is when the herring are fullest of ripe roe that they are the most esteemed. At the Magdalen Islands the herring are taken principally during their spawning season without any restriction or suggestion of diminution. The question, therefore, as to the actual importance of the measure referred to may be cousidered as unsettled, although I can hardly believe that the provision in regard to the herring fisheries at Grand Manan has not had a beneficial iulluence. It will not, however, do to prohibit the catch of herring when they are filled with roe, since it is when they are in this condition that they are most highly prized and most marketable, the roe of the sea herring being universally considered a very great delicacy.
There are, however, some fish on the coast of the United States for whose protection during the spawning season I have already urged in a previous report that some provision of legislation is desirable. I refer more particularly to certain fish on the south side of New Englaud, especially the scup, sea bass, and the tantog. These fish appear to come to the coast in well defined bands of immense numbers, at a particular season, following geuerally a definite line of migration and proceeding to their spawning-grounds, where the operation of reproduction is conducted on an enormous scale, in this respect closely resembling the anadromons fish, such as the salmon, shad, and alewife, and apparently almost equally susceptible to any interference by human agencies. Legislation is expedient here, too, both for the protection of the fish and of the fishermen themselves, since alter a few weeks' fishing the glut is so enormous as to bring down the price to a mere nothing, involving the necessity of wasting immense numbers of the catch, the best use to which they can be put being their conversion into manure.

In this case, however, I simply suggestel an intermission of capture from Friday night until Monday morning, or if this be too long a period, from Saturday night mutil Monday morning, so as to secure the escape of a sufticient number of the school and an opportunity to deposit their eggs, this weekly intermission to be continued only for the limited period during which these particular fish are on the move. They move in so close and solid bodies and in so limited an extent that it is by no means impossible to imagine the capture of the greater part of the school and the cutting off of the rest of it from reaching a suitable spawning-ground, or disturbing the individuals so that their eggs are not deposited at the proper time er under proper conditions.

The other tish taken during the same period, especially the mackerel and menhaden, are not affected, as it is only a portion of the migrating bands, and that which happens to be nearest the shore, which is taken under such circumstances, enough possibly passing outside to maintain the supply of eggs and young fish.

As to the conclusions at which 1 arrived in 1871 in regard to the pro-
priety of a partial close time, I still maintain the same opinion, and am fully satisfied that a fair trial for four year's would show such a positive increase in the number of these most important and valuable fish as to satisfy the most skeptical. Unfortunately, in this particular case concurrent legislation of two States is considered desirable, since the migrations and spawning-grounds are partly in Rhode Island and partly in Massachusetts, the fish for the most part passing through the waters of the first-mentioned State before they reach those of the latter. So far, neither State has shown a willingness to legislate either separately or conjointly, and the abundance of the fish referred to will probably be determined by the number of the bluefish that visit the same waters. I think, however, that if protected in some way there would be a decided increase without reference to the presence of this wolf of the seas.

I have found a decided unauimity of opinion among fishermen as to the expediency of such a close time, even among those who do not consider it necessars, in order to maintain the supp! 5 of fish, the prevention of a glut of the market, and the securing of time for the proper repair of the nets, and for the needed attention to home business, being important and well-accepted arguments with all classe.s concerned for the proposed close time.

In many cases it would seem that fish, after they have deposited their eggs, become sickiy and unfit for food, and no one can examine a male salmon under these circumstances and appreciate the alteration in appearance and condition withont realizing the impropriety of using it as an article of food. For this reason a close time is proper, not only to secure an opportunity for undisturbed spawning by the fisb, but also to prevent the consamption of unsuitable fish.

In the New England States the alewife disheries were formerly, and are still in some degree, taken under the protection of the towns, the catch within the jurisdiction of each town being cousidered as belonging to its inhabitants, to be distributed pro rata among them, or else sold for the common benefit. Sometimes each individual was authorized to take certain number of fish; at others officers were appointed to capture them and apportion them suitably. Regulations were made to secure free access from the sea of the fish to the pounds or other spawning grouuds, and for the escape to the sea again of the fish, both young and old, during the summer.

How far it will be desirable, now or hereafter, to regulate the size of the meshes of nets used in our inshore fisheries it is hardly necessary to take into consideration at present, for the reasons already mentioned.
2.-INCREASING THE NUMBER OF HOOD FISIIES BY ARTIFICIAL MHANS.

There are two methods by which this can be accomplished: (1) By the actual transfer of fishes from one region of the globe to another, or one part of the coast to another ; ( $\ddot{\sim}$ ) by the artificial propagation and multiplication of dish fomnd in a particular region.

Many instances are on record of the successful transportation of fishes, both fresh and salt water species, to localities previously uninhabited by them, and rery extended efforts are now being made, promising the fullest measure of success, to carry the shad and the eel of the Atlantic coast to the Mississippi Valley and the Pacific slope, as well as the tautog, the lobster, and the oyster, and to transfer the Califoruia salmon and trout to the Mississippi Valley aud the eastern coast of the United States, the carp from Germany to America, \&c. Less has been done in this direction with the sea fishes, although even here there is something to record. It is said that the Scarus, a well-known labroid fish of the Egean Sea, was brought, in the time of the Emperor Claudius, to the coast of Italy and planted near the mouth of the Tiber. They were protected from capture for five years, at the end of which time they swarmed in enormous abuodance aud constituted an important element in the Roman fisheries, being considered one of the greatest delicacies. (Report U.S. F. C., III, p. 10). In the United States the scup is said to have been carried in a smack from Vineyard Sound to Cape Cod Bay, and that a similar experiment was made in a transfer of the tautog both to Massachusetts Bay and the South Carolina coast.

The attention paid by the early Romans to securing an ample supply of fish is well understood, as also the enormons expense of their opera. tions in the construction and maintenance of fish ponds, ©ce. Among the most highly esteemed species were the red mullet (mullus), and the sea eel, the latter being kept in tanks constructed for the purpose, and fed, in some cases, it is said, with the flesh of slaves, as imparting an added delicacy. The introduction of fish from distant points was there practiced to a greater or less extent.

The limitations of temperature, howerer, and appropriate food, will probably determine what may be accomplished in the way of exchanges between the northern and sonthern coasts of the United States; and there are a few species in European waters the introduction of which it will be well to attempt, especially if brought into waters of the same general physical conditions. Among such desiderata may be reckoned more especially the turbot and sole, which constitute the most important element in the beam-trawl fisheries, and which, as already explained, always command a high price. There seems no good reason why these fish might not become, in a few years, after a successful transfer of a fer individuals, as abundant as they are on the European coasts. An ample supply of suitable food and of the necessary external conditions could be assured to the new-comers. The experiment would perhaps succeed best on the eastern coast of Massachusetts, where the conditions are quite similar to those of their natire habitat. If they were found to thrive in the region sonth of Cape Cod, an enormous fishery might in time be assured in view of the adaptation of the waters to successful beam-trawling.

As a return to Europe for the contribution of the turbot and sole S. Mis. $90-11$
the alewife mignt be offered, a fish which should thrive in all the rivers, ponds, and lagoons connected with the sea, whether in the warmer or colder portions; and as they move in well-defined bands of vast numbers of individuals, within narrow limits, it would add greatly to the food resources of the country. A very considerable expenditure of money on the part of European Governments, especially that of Germany, where the ordinary sea fisheries are restricted, would probably be amply justified in a few years, the fish being by far more valuable and worthy attention than the salmon and trout, and perhaps not excepting the shad.

From present information on the subject there are no other European sea fish, excepting the turbot and the sole, that would be especially important in America; possibly the fresh-water sterlet of Russia and the hucho salmon of the Danube might be introduced to adrantage. This last-mentioned species remains throughout the year in the Danuve Riser and its tributaries, and constitutes and excellent article of food. It might, perhaps, be quite adrantageonsly planted in the Mississippi, where it would find an ample supply of the poorer sorts of fish, for the most part not considered worth anything for maket purposes.

The artificial propagation of sea fishes has not yet been attempted on any experimental scale, although there seems to be no particular reason why a vast increase cannot be accomplished in this direction, as with the anadromous or interior species. There is no question as to our ability to multiply salmon aud shad to any desired extent, and the same general treatment might readily be applied to many of our coast fishes. The principal difficulty in the way would be the construction of the proper establishments, although the recent experiments of the U.S. Fish Commission, and that of Maryland, point out a reasonable method of accomplishing this, as will be referred to hereafter. It would be quite impossible to undertake to feed the joung fish when hatched, as is done with tront; but the methods used for shad and in most cases for salmon hatching, could be made use of, namely, that of introducing the young fish into the water and leaving them to their own resources so soon as the yolk-bag is absorbed and the fish is able to feed itself.

According to reliable estimates, not more than 1 egg in 200 hatched naturally in the waters produces a fish capable of feeding itself, this representing by far the greatest expectancy of destruction in the number of eggs laid by the female.

On the other hand, artificial impregnation and propagation should give us not less than 175 , or eren more yet, of the 200 , a vast difference, which could not fail to tell in the result. In other mords, the proportional result of artificial hatching is 175 fold that by the natural spawning of the same number of fish. The young, when ready for introduction into the water, could readily be placed in sheltered bays and coves, and possibly fenced off for a time from the iutrusion of larger fish, and kept there until they had attained a sufficient size to protect themselves to a considerable degree.

This experiment of artificial hatching could be adopted very readily on the south coast of New England, in connection with fisheries of scup, tautog, and sea bass, especially as all these fish are greatly in demand and are taken in great numbers in the fish pounds and traps of the southern coast during the months of April, May, June, and July. The sea bass especially spawn very largely during the latter period. An ample supply of scup could easily be obtained during the spawning season, and if necessary the tautog and sea bass could be kept in pens until ripe. These fish are very frequently kept for weeks, or even months, waiting the call of the market, and as they are very hardy, it would not injure them at all for market purposes to strip them of their spawn at the proper time. The eggs of this fish probably hatch out very quickly; in the tautog, indeed, an embryonic development of the egg is said to take place before it is laid, so that not unfrequently some of the eggs squeezed out into a bucket of water will hatch ont almost immediately. In an experiment of artificial impregnation and Latching of the sea bass, prosecuted at Noank, Conn., in 1874, there was reason to conclude that the period of development did not exceed one week.

The pound-nets frequently take great numbers of spawning mackcrel, which might also be manipulated; and there is no reason why the sheepshead might not be treated in a similar manner, nor, indeed, why the process might not be extended to such species as the cod. The striped loass is a fish that promises ample success in such an experiment as soon as we can succeed in taking it in sufficient numbers. At least some spawning fish are found in the rivers at the same time with the shad and herring; whether simply in pursuit of this prey or in search of a spawning. ground is not yet ascertained. In 1873 the parties of the U.S. Fish Commission engaged in hatching shad in the Roanoke River succeeded in taking several ripe striped bass, from one of which 100,000 eggs were successfully taken and hatched. The eggs are smaller than those of the shad, although similar to them in being non-adhesive and in being latched out in a short time.

The principal difficulty in regard to the multiplication of the sea fish by artificial meaus is in the arrangements necessary for the care and preparation of the egg. The ordinary hatching establishments used for trout and salmon are not available since salt water is required for the purpose. It is true that this might be pumped up by means of a wind-mill or otherwise into tanks, and allowed to trickle into the hatehing troughs, and thus produce the necessary current. Even if this could be done, however, the limits of space and the comparatively small number of fish that could be obtained will probably render it expedient to adopt some other method.

The first suggestion would be the employment of the floating-box, as constructed by Seth Green, E. A. Brackett, and others, and used in the hatching of shad. A serious difficulty, however, is in the danger of
having them upset and the contents spilled ont, or else greatly injured by the action of tho wares, experiments made in this direction nearly always resulting disastrously.

Much more wholesale and efficient methots of accomplishing this important object are, however, at our command, as suggested by the success of experiments prosecuted during the spring of 1376 at Harre de Grace in hatching eggs of shad on a large seale, in connection with the operations of the T.S. Fish Commission and of the Miryland commission. Mr. T. B. Ferguson, the effecient and accomplished Maryland commissioner of fisheries, has devised a method by which the hatching of shad can be prosecuted in tidal waters and by which not only a great number of eggs can be hatehed in a very small space, but also the danger of losing the eags in consequence of the upsetting of the hatching boxes in stormy weather can be prevented. This device consists in a series of buckets, with wiregauze buttoms, which are alternately depressed and raised by means of anaxis rotated by steam-power. The buckets $d i_{1}$ ) into the water, the eggs troating in them, and the genthe motion of elevation ama depression throngh the space of five or ten inches, the exient and ranility of which can bo varied at pleasure, gives the eggs that agitation and the continual contact with a new supply of water necessary to their proper conditron. Nme million eggs were thus hatched with a much less expenditure of labor than heretofore; and instead of some hundreds of tloating boxes lewing cathed into play, six to twelve buckets, worked along the eltwe of a heating scom, answered all the purpose.

Still other methots can be nsed, possibly in some cases to eren greater advantage, namels, the placing of the eags in fumel-shaped ressels, with a stream of salt water pumped up thongh the bottom, giving the eggs a constant agitation. A wire-gase sereen prevents the eggs from dropping into the mouth of the fonmel, and the enustant orerflow of the water carries od all the dead ofhal matter. It mond, of course, require a consulemble expenditure to start such an estahlishment. A small engine, of four or he horseporse, with the nepesary accompaniments, however, woul probably be large eamereh. With such an apparatus in comection with some of the great therie:, like those in Scconnet River at Thode Ishand, or at Menomsha Hight on Martha's Vineyard, results of incalculable value might and pobnily would in time be obtained. Insteal of counting the yidh of the fisheries by the handreds of thousands, millions could bo estimated for, and it wonk not be difficult to guarantee the propagation of one hundred millions of young fish as the result of a single season's work. These, when the yolk-bag was absorbed, could be scattered or sown along the coast in different localities so as to increase the opportunity of finding suitable food and of escaping the ravages of their enemies.
3.-ERUALIZING THE SUlPLY OF Misiles.

A third sublivision of the subject of maintaining the supply of sea fish along the coast, and of increasing it, may now be considered. The connection between the fresh-water or rather the anadromous fisheries of our coast and the sea fisheries has been dwelt unon in previous reports, and while not assenting to the possibility of diminishing the supply of sea fish by ordinary human agencies, I have been satisfied of the disappearance of certan fish from our shores for the want of suitable food, and their migration elsewhere. Of the possibility of attracting fish from great distances by suitable food we have numerous instances. Thus the mackerel fishermen have been in the habit of throwing chopped bait overboard, which was carried a distance, possibly of miles, by the tide. When the school of mackerel strikes this stream of food it follows it up an indefinite distance and comes in immerliato proximity of the source of supply, where the fishes can be captured by the hook or the net. Where many vessels are engaged in this business, it is said that the schools of mackerel are brought from a distance of many miles and held in the vicinity, against their ondinary instinet of migration. On the occasion, some years ago, of the lamentable falling off in the autumn mackerel fishery on the coast of Nova Scotia, involving considerable destitution and distress among the fishermen, the canse was believed to be in the immenso amount of mackerel bait thrown overboard in the Bay of Sant Lawrence by the mackerel smacks, which kept the fish in the bay a long time beyond their usual period of leaving it, so that when they once commenced theirantumal migration they passed directly out to sea, without shomping, as was their custom, in the shores.

The effect of gury, too, on fishins grounds may prohably be explained by the attractions of this strem of anmal matter carried by the tide over a distance of many miles to the dogfish, sharks, and other predaceous species, these following it up and concentrating in the vicinity, where they drive away the fool-fishes which form the more special subject of the attention of the fishermen. A similar instance is found in comection with the salmon in the (iulf of Saint Lawrence, where the fish are taken in quantities for valting, smoking, or other modes of preparation. Here immense quantities of offal are thown into the water, where, however, instead of attracting the destructive fishes, has the effect to bring in such species as the cod and render them capable of capture. At one time this practice of throwing offal overboarl was considered very objectionable, and an chactment was passed requiring it to be brought on shore and buried or utilized there in some mamer. As the result of the diminution of his supply of ammal matter the fishes abandoned the gromed entirely, and great complaint was marle as to the absence of the food-fishes, eren of the salmon itself; and subsequently a compromise was effected by which this matter was phaced in perforated boxes and the softer portion allowed to pass out and wash away. This, in connection with the great numbers of maggots of the blue-bottle fly
which also passed into the water, in a short time restored the previous ample abundance of the fishes. In view, therefore, of these circumstances we can readily understand how much the morements of the sea fish along the coast may be influenced by the enormous schools of salmon, mackerel, shad, and alewives, the adults coming in during spring and summer and returning with the young at other seasons of the year, and upou which they prey to a greater or less extent. It is now the general impression that the anadromous fishes just mentioned pass the period of their growth in the sea at no great distance from the mouth of the river in which they were hatched, possibly extending their movements outward 5 to 50 or even 100 miles, but still occupying a certain relation to the rivers in question. A proof of this generalization is found in the fact that in a cruise made by Mr. G. Brown Goode in a mackerel ressel off the coast of Maine, in 1873, young shad, probably one or two years old, as well as alewives, were found in considerable proportion among the mackerel taken in nets 25 to 30 miles off the shore, and he was assured by the fishermen that this was a rery common occurrence. Such fish are not brought in, as they are not considered marketable, and are generally thrown into the water when taken from the nets, where they become the prey of other fishes.

It is only necessary to bear in mind the enormons mass of these anadromous fish one hundred years ago, and even later, to appreciate the influence they can exert in attracting fish from the outer waters to the shores and keeping thein there for a considerable part of the year, and the lamentable result of the destruction of this source of supply, not only on its own account but also for its influence upon the sea fish. It is well known that while these anadromous fish were present there was an ample supply of cod, haddock, halibut, hake, and rarious other species close in to the shore. On the whole New England coast, as well as in many parts of the Dominion of Canada, the fisherman, in an ordinary open boat, could go out and catch a full fare at a short distance from the land, both for use as fresh fish and for purposes of commerce, and that it was not until this source of supply was cut off that it became necessary to resort, to so great an extent, to distant parts of the sea. We may therefore hope, as the result of methods now being practiced and their future extension, that the old state of things will be renewed to our great adrantage.

As an illustration, both of the loss to our own industries by the destruction of the supply of anadromous fishes, and of the amount of attraction that would be furnished from a single river to the incoming fishes and the retention on the coast of the outside fishes, I may again refer to the quotation on page 50 from Martin's Gazetteer of Virginia. Omitting here any considerations as to the enormons value of this fishery, but bearing in mind that this was only one of at least forty rivers where an almost equal catcł might be looked for, let us proceed to consider the amount of food and bait available for the sea fish, re-
sulting from the herring alone. For the $750,000,000$ actually captured we may suppose that this was not more than one-fourth of the total number in the river during the season, which would give $3,000,000,000$ for the Potomac River only. From Florida to the Bay of Fundy, without any reference to Dominion waters, we may safely assume the number to be at least one hundred fold, a calculation probably far within bounds, five times that amount and more, possibly, being the more reasonable. We have, therefore, $300,000,000,000$, representing a weight of not less than $200,000,000,000$ pounds. The progeny of these herring in their various stages of growth from the first year to the fourth, may certainly be estimated at twice the aggregate reight of the parents, or $400,000,000,000$ pounds, giving us $600,000,000,000$ pounds of tish along our coast of this one species. It may safely be assumed that at present not more than one-tenth of 1 per cent. of these fish now inhabit the waters specified, or only $600,000,000$.

I have made no reference to the adult and young of the shad, the tailor herring, the gizzard shad, the striped bass, the various Cyprin. $i d w$, and other fishes running in from the 'sea at about the same time with the other fish, and tending to swell the aggregate in the waters. But I think it will be readily understood what a loss we have experienced, not only in the way of direct food, but in the inducements to other fishes to come within our reach; and in the Dominion in the numbers of anadromons fish.

It is, therefore, very encouraging to believe that, even though from the changes in the physical condition of the land, water, artificial obstructions, \&ce., we may not look for the old-time abundance, we may yet hope for a very cousiderable increase; even if we get back to onefourth the original supply, we may well be satisfied.

A comparison of the statistics of the number of shad and alewives caught in the Potomac River in a single season of six weeks' time, and salted, to the extent of 995,000 barrels,* with those of the sea herring in any part of the world, will show the insignificance of the latter; while the fishery on the Potomac during the period referred to equaled the total yield of the Scottish salmon fisheries in 1873, prosecuted throughout the year, and employing 15,000 boats and 45,594 men, and equaled nearly twice the entire number of barrels of the sea herring put up in the Dominion of Canada in 1876.

[^28]
## V.-POLITICAL CONSIDERATIONS.

MEMORANDUM OF POINTS ATTEMPTED TO BE ESTABLISHED IN THE CASE FOR GREAT BRITAIN, BY GEORGE M'KENZIE AND OTHERS.

Mackerel.-Mackerel keep close to the shore. All mackerel fishing, therefore, must be near shore, within the three-mile line.
The proportion of mackerel taken outside this line, usually one-third or less of the catch.
The American average eatch of fish, six or seven hundred barrels.
Shrimps and small fry are the food of the mackerel. Not found out at sea, but close inshore.

Americans pay no attention to the three-mile line, after the abrogation of the reciprocity treaty, keeping outside only when cruisers were in sight, and returning when they went away.

The universal testimony of the Americans is that unless permitted to fish within the three-mile line, it would not pay to come into the bay.
Accordiag to their own statements two-thirds and even more of their catch are always taken within the three-mile line.

Seining for mackerel will soon clean out the fisheries of the Gulf of Saint Lawrence.
The presence of Americans is injurious to the body of the fishermen of the Dominion.
Would be willing to pay the whole duty imposed by the United States, and even more, if Americans could be kept entirely outside of the threemile line; the Dominion catch would be much greater.

Gury.-Throwing gurry overboard drives the fish away. This practice is exclusivel, American. Dominion fishermen clean their fish on shore.

Transhipping is a benefit to the Americans, euabling them to make more trips in the same time.
No Dominiou fisherman ever goes to American waters in a British vessel to fish. Reasou (according to McKenzie, p. 121), the Americaus would run them off.

Americans tranship at Charlottetown aud the Gut of Canso.
Codfish (Thomas Benuet, Newfoundland, p. 134).-The cod fishery on the coast of Newfoundland is entirely inshore.

Americans obtained bait illegally on the coast of Newfoundland before the Washington treaty.

Newfoundland has reaped no benefit from the Washington treaty; the exports to the United States are lower thau when there was a heavy duty on Newforndand products.

The amonnt exported to the United States is too trifling to have any appreciable effect on the commerce of Newforndland.

Americans fishing off the Newfoundland banks derive a great profit by selling the small fish, under 22 inches, in the Newfoundland markets.

Thinks the remission of duty by Newfoundland on these far larger than the remission on all the products sent by Newfondland to the United States. The remission of duties by the United States on Newfoundland products of late years is only $\$ 49,000$, while the amount remitted by Newfoundland is $\$ 78,000$.
Neverknew a Newfoundland fisherman to go to the coast of the United States to fish.

## APPENDIX.

The foregoing paper having been propared for use in presenting the case of the United States before the Halifax Commission, it seems desirable to append the testimony of the author as given before that Commission on Octover 18 and 19, 1877.
[Extracted from "Documents and Proceedings of the Halifax Commission, 1877, under the treaty of Washington of May 8,1871." pp. 2795-2816 and 2821-2849.]

Prof. Spencer F. Bard, assistant secretary of the Smithsoniau Institution, Washington, aud United States Commissioner of Fish and Fishories, called ou behalf of the Government of the United States, sworn, and examined.

## By Mr. Dana:

Question. It is not necessary, of course, to ask this witness any questions to show his position or geacral acquaintance with and knowledge of the subject. I would like, however, to have you state, if you please, as I am going to give, by and by, some of the results of your inquiries-I would liko to have you state particularly how you have obtained, and from what sources you have obtained, information respecting the fisheries of late, besides what you have studied in books.-Answer. I have been in the habit for five years past of spending from two to three months on the sea-coast for the purpose of prosecuting inquiries into the condition of the fisheries, to determine whether, as alleged, the American coast fisheries have been decreasing, and to ascertain what steps, if any, might bo adopted to romedy the difficulty, if found. I have, in pursuauce of that work, established stations in successive years at Eastport, Portland, Salem, Wood's Holl, on the south coast of New England, and at Noank. And I have had with me a force of experts, naturalists, and gentlemen interested in the biology of fishes, and hare endeavored to gather such information as I could from my own personal observation and that of my colleagues, as well as by inquiries from fishermen and others whom I have met.
Q. How far have you prosecuted that personal inquiry of the fishermen and persons engaged in the fisheries?-A. I have, by the help of a phonographic secretary, taken the testimony of many hundreds of fishermen aloug the coast in reference principally to questions in the natural history of fishes. The farcts as to the statisties of the fisheries hare como out incidentally, and were not the original object of my inquiry. I was interested more in determining what kinds of fish we had, what natural, physical, or moral causes influenced them, and what would probably be the result of these causes, and how any evil influences conld be remedied.
Q. Then have you employed fishermen to examine and make inquiries $:-A$. I have had in my employ several men, some for the whole year, or several years in succession, and others for a part of the year, who have taken a series of printed questions that I prepared in regard to the natural history of fishes, and pursued these inquirios in regions where Imyself could not go conveniently, especially in the winter season or in the early spring.
Q. Then you issued some printed circulars?-A. Yes ; a great many thousand blanks, inviting responses, aud I lave had a reasonable percentage of returns, of which I
consider a fair percentage more or less reliable. But, as a general rule, as everybody knows, fishermen know less about fish than they do about anything else. That is to say, they know how to catch fish and the practical cetails of their lusiness, but of their natural history they know very little. About such questions as the time of their migration, the rate of their growth, their spawning seasons, and other matters only here and there will you find a man who has observed and noted the factsclosely enough to be able to answer your questions.
Q. You employed some such persons?-A. I have one man especially, a skilled fisherman, resident on the sonth coast of New England, and whom I employ to visit the different fishing stations and gather statistics.
Q. Have you any of those circulars about you?-A. I have one. [Circular produced.
Q. [Reading circular.] There are something like nearly ninety diferent questions. Under one head you require the man's name, ©d. Then as to the distribution of fishes: what kind of fish he has in his neighborhood, their abundance, migrations, movements, food, relationships, reproduction, artificial culture, diseases, pursuits, capture, their economical value, application, $\mathcal{E c}$ c-A. That circular was issued in 1871. I have issued a great many editions of it. Then I have another circular which refers more particularly to the coast and river fisheries. I have onlc issued this within the present year.

## By Mon. Mr. Mellogg:

Q. Was that about the time, Professor ?-A. Yes; the first thing I did was to distribute these questions in order to get as much information as I could. I have some eight or ten special circulars, but these are the ones I have most used. I have issued special circulars for the cod and mackerel and menhaden, bat of these I have not copies with me.

By Mir. Dana :
Q. Here [referring to circular spoken of as issued during the present year] you have the home fisheries, the river fisheries; they don't como directly under our cog-nizance.-A. These are the coast and river fisheries particularly.
Q. Not the deep sea ?-A. Ouly incidentally. They are sea-coast fish, but not outside. There is a schedule of the principal fish marketed in the Boston market. My object was to get the number of pounds of these fish taken in the vicinity of the person to whom the circular was given.
Q. You think these have been pretty fully answered?-A. I have a great many answers.
Q. And from your information, which you gather as jou go about, from what is sent to you by the return of these circnlars, and from the persons employed by you, it has been jour business to make yourself fully acquainted with tho subject?- $\boldsymbol{A}$. Yes; I have, of course, used what published material I have found. I found a great deal of value iu the reports of the Canadian fisheries. What little I know of the fisheries in Canada I have learned from these documents.
Q. Wherever there are documents published by the United States you have them?A. Yes; I have them; and I have European documents, Englisi, Norwegian, \&e. I believe I have everything.
Q. I will question you first about codfish. I want you to state what is your opinion about the cod as a fish for all sorts of commercial purposes, as compared with others. - A. I think the cod stands at the head of fish at the present day. There is no fish that furnishes food to so many people, tho production of which is of so much importance, or which is applied to such a variety of purposes. The commercial yield is very great, and its capture is the main occupation of a large portion of the inhabitants of the sea-coast remion of the Northern Hemisphere.
Q. Besides as an article of food, either fresh or salted, what other purposes does it serve?-A. Well, it is applied to a great many purposes by different nations. It is
used, of course, as food in the different modes of preparation. Particular parts are used as food, other than the muscles. The sounds are used as food, converted into gelatine, and in the form of isinglass. They serve a great varicty of purposes. The roes are used as food, and bait for fish. The skin is tanned for leather and clothing. A great many nations dress very largely in the skins of cod and salmon. And the fish is dried and used as food 'for cattle in Iceland and Norway. The bones are used as fuel in some places; and, of course, the oil is used for medicine, and for the various purposes to which animal oils are applied. There is searcely any part that is not valuable. The offal, in Norway, is converted into a valuable manure. Every part is called into play.
Q. The bones?-A. They are burned as fuel, as well as eaton by dogs, or converted into fertilizers.
Q. It is not, probably, applied in the United States to all the uses you have specified ?-A. No; I don't think the skin is used as clothing in the United States, but it makes an admurable leather for shoes, and makes very nice slippers. We have in Washington quite a large number of articles made from the skins, as used in Alaska, the Aleutian Islands, and in Siberia.
Q. You think they can be used ?-A. Thave no doubt in the course of years the skin will be utilized very largely. In fact, I may remark, that at the late exhibition at the Westminster Aquarium, among tho special articles exhibited were shoes mado from leather of the codfish, furnished by an exhibitor from Christiauia.
Q. You think it is the foremost fish ?-A. I think it is. There is none that furnishes so important an industry or which is so abundantly or widely disseminated.
Q. What is the geographical distribution of the cod $\$$. There are quite a number of species of the cod, some characterized by certain peculiarities and some by others. The cod in the North Pacific is different from that in the North Atlantic. Both are, however, codfish, and no one could mistake them for anything else butcod. In the Atlantic the cod are found on the American side from the Winter Quarter Shoals, on the coast of Virginia; that is the most southern point I have traced it to; from that indefinitely to the northward. It is found everywhere upon the coast, in the Bay of Fundy, the Bay of Saint Lawrence, off Labrador and Newfoundland, on the Grand Bauk, and many other places. The European species, although by some considererd distinct from ours, probably have a geographical range equally extensive. Í believe they are not in Spitzbergeu.
Q. What is the most important locality?-A. Probably the most important single locality that furnishes the greatest amount of fish with the least possible labor in the shortest possible time is that in the vicinity of the Lofoden Islands, on the northwest coast of Norway. That is a region where usually twenty-five millions of fish are taken in three months by some twenty-five thousand men. The Dogger Bank, in the North Sea, is another European locality. In America the most exteusive stores of cod are found, I suppose, on the Grand Bank and tho George's. They are found, perhaps, also on the great banks off the coast of Labrador, 20 or 30 miles off the coast, extending for hundreds of miles.
Q. Now give the Commission some notion of the abundance of codfish.-A. Well, I have covered that point in my reply to the previous question. It is found in the greater part of those regions at some portion of the year. It is usually more abundant in the spring or summer, autumn or winter, in each locality, in numbers only to be measured by the ability of man to capture.
Q. What do you say of their migrations?-A. The cod is a fish the migrations of which cannot be followed readily, because it is a deep-sea fish and does not show on the surface as the mackerel and herring; but so far as we can ascertain, there is a partial migration; at least some of the fish don't seem to remain in the same localities the year round. They change their situation in search of food, or in consequence of the variations in the temperature, the percontage of salt in the water, or some other cause. In the south of New England, south of Cape Cod, the fishing is largely off-
shore. That is to say, the fish are off the coast in the cooler water in the summer, and as the temperature falls approaching autumn, and the shores are cooled down to a certain degree, they come in and are taken within a few miles of the coast. In the northern waters, as far as I can understand from the writings of Professor Hind, the fish generally go off-shore in the winter time, excepting on the south side of Newfoundland, where, I am informed, they maintain their stay, or else come in in large abundance; lut in the Bay of Fundy, on the coast of Maine, and still further north, they don't remain as close to the shore in winter as in other seasons.
Q. Take them as a whole, then, they are deep-sea fish ? I don't mean the deep sea as distinguished from the banks. $-\Lambda$. An outside fish? Well, they are to a very considerable extent. The largest catches are taken off-shore, and what are takeu inshore are in specially favored localities, perhaps on the coast of Labrador, and possibly off Newfoundland. They bear a small proportion generally to what is taken outside, where the conveniences of attack and approach are greater.
Q. Now, what is known about the spawning-grounds of codfish?-A. We lack positive information in regard to the sparming-grounds of this fish, except that we know single localities. We know the Lofoden Islauds are great spawning-grounds. We know that the fish come there almost exclusively for the purpose of spawning. They are not there in the ordinary times of the year. They come in December and January, and spawn in February and March, and are there in most overwhelming abundance.
Q. But on the coast of America ?-A. We know there is one large spawning-ground in Cape Cod Bay.
Q. You mean Massachusetts Bay inside?-A. Yes; there is said to be there a long reef about 4 miles wide and about 20 miles long, and the cod go in there and furnish a very important winter fishery.
Q. Then I presume there are similar spots along the whole American coast?-A. Probably they spawn at the Georges, and undonltedls in a great many localities in the Bay of Saint Lawrence, and on the Banks, although I cannot speak of that, because I haven't had an opportunity of knowing.
Q. What are the relations of cod to other lish? - A. They are friends and enemies. They are warriors and victims. They aro extremely voracious, and devour everything that is small enough, without any kind of consideration, and in turn are consumed in all their stages by such fish as can master them. The adult fish are principally interfered with by horse-mackerel, the bluefish, the porpoise, and by sharks, and anything else big enough to swallow them, instead of being swallowed by them. It is merely a question of size whether the codtish is the active or passive agent.
Q. Now what fish do they devour mostly?-A. They cat everything, but they live very largely on herring or mackerel, or any of the small fish found on the sea bottoms. They devour crabs and small lobsters. The stomach of the cod is one of the best dredges you can have. You find there sometimes rare specimens that are never found elsewhere.
Q. Do they digest the shells?-A. No; they digest the nutriment and then throw out the shells. Sometimes jou find the shells packed solid one inside of another like saucers in a pile. The wonder is how they empty them out.
Q. But they do?-A. I suppose they must.

## By IIon. Mr. Kellogg:

Q. They derour them whole and then when the meal is digested they eject the shells?-A. The mouth is quite large, and the shell goes ont as casily as it goes in.

By Mr. Dana:
Q. What do you think are the seasons for spamning on the American coast?-A. I presume that, like many other fish, they may spawn over quite a range of time. But, so far as our own observation on the American coast goes, their season is from November until March. In Cape Cod Bay they spawn about December and January.

I have no doubt, however, that farther north, where the changes of temperature are not so abrupt, they may spawn more irregularly, and have only an interval of a few months when there is no spawning.
Q. Will you describe this spawn so as to show the prolific nature of the fish?-A. The cod is one of the brag fish in regard to spawning. That is, we hear of ordinary multiplication of fish by that process, but the cod has been found to contain from three to seven million eggs by actual count. Turbot, I think, are one of the very few fish that can beat it. They run up to twelve millions.
Q. We do not have the real turbot?-A. No; from three to five million might be considered a fair annual estimate of the eggs of the codfish. From three to five millions of ripe eggs have been found in the ovary of one single cod, and more.
Q. What becomes of these eggs when discharged?-A. The question of the spawning places for codfish has been one that was originally very uncertain. The researches of naturalists have shown that these eggs are discharged in the open sea on the Lofoden Banks. Some miles from the shore they can be found floating at the surface, and can be taken up by the bushel in towing nets. The eggs are very small, from onetrentieth to one-fifticth of an inch in diameter, and they have a small globule of oil to make them float.
Q. Now, do these eggs all produce fish unless they are injured in some way?-A. No ; there are a great many contingencies. It is not likely that a very large percentage will be fertilized by the male. There is always an uncertainty about that. Then, as they are floating in the water, every fish that may be fond of that kind of sustenance devours them very greedily, and by the time they are hatched out a largo percentage is destroyed in this was. Then, the young fry, while in a helpless state, are devoured in large numbers. I shonld think it extremely probable that not one hundred thousand out of the three millions-possibly not ten thousand-attain to a condition in which they are able to take care of themselves. It is entirely impossible to make any estimate. We know, however, from the analogy of other fish, from the facts in regard to salmon, shad, and that kind of fish, we can make an approximation.
Q. These eggs rise to the surface?-A. They float at various distances from the surface down. Some are a little heavier and some a little lighter. I mean that they are not attached to the bottom. Their specific gravity is very nearly that of the water. Of course when the water is cold they will float better, because the density is greater, but when the water is warm they will sink.

## By Hon. Mr. Kellogg:

Q. Before you leave this subject, I would like to ask whether the spawn are visible in the ocean, that is cod spawn. What is the color?-A. It is transparent, with a little spot of oil in one corner. You would not notice it under ordinary circumstances, but you might if you were looking for it.
Q. The ocean might be full and a common man would not see it?-A. Certainly.

## By Mr. Dana:

Q. Be kind enough now to tell us what are the principal modes of capturing cod?-A. The modes of capture vary with the region. For commercial purposes, the fish are caught with hand-lines and the trawl-line, or long-line as it should be called. It is taken very largely in gill-nets on the coast of Norway, and in some other regions. I believe it is so taken on the coast of Labrador, but I don't think it is taken frequently on our own coast in nets.
Q. To what extent is the trawl-line used ?-A. It is used all over the world. It is one of the oldest methods of catching fish.
Q. From your investigation, do you think the capture of fish generally, or codfish, or other kinds, by some contrivance like the trawl, is as ancient as any other ? $-A$. I know it is. The Indians, the Aleutian Islanders have used them.
Q. That was not derived from us?-A. No. Travelers have found them in use when the first white men came among them. We havo specimens in great number of the trawl of the native savage. Ours have only been brought in within the last five or six years. I don't think it is possible to fix the date of the first use of the trawl. They have been traced back to such a period that there is no possibility of saying that it was introduced by this man or known to that one.
Q. What are the advantages of the method of trawl-fishing for cod?-A. The alleged advantages, as far as I have heard them spoken of, are the larger yield of the fishery. The same number of men in the same time, and in the same locality, will catch a larger fare of fish with the trawl than with hand-lines. Then they require less exposure of the fishermen. They can be set over night and left down through the day at tlmes when the weather would be too inclement for hand-line fishing. Then it requires much less skillful fishermen to use the trawl than the hand-lines. It is merely a matter of putting on the lait and throwing it overboard, and it does not require the delicate mauipulation and skill that the hand-line fishing does, and therefore does not call into play to the same extent the functions of the practiced fisherman.
Q. Now, are there any disadvantages comnected with the use of the trawl, alleged or actual?-A. There are a great many accusations brought against it. How far these are valid it is impossible for me to say. The principal objection I suppose is that it tempts all kinds of fish. One objection is that it takes fish that are too small size. They uso a smaller hook than the ordmary hand-lines, and they say it takes a great mayy uumarketable fish, which affects the supply. Then another complaint is that the fish being longer in the water are liable to be destroyed by the depredations of sharks, dogfish, and fish of that class. Another objection is that after the fish are caught the marketable fish, owing to their weight, slip off from the small hook and float away and are lost. Another objection is that they catch what they call mother fish, that is the parent fish, which some fishermen think should be left to reproduce their kind.
Q. If they are taken after depositing their spawn you only lose one fish?-A. Yes; but it is provable, judging from the testimony of fishermen, that the fish can be taken during their spawning season with a trawl when they will not bite a hook. As a general thing very few will bite on the ordinary line, but the trawl bait is said to be attractive to them, and the fish are believed to be more likely to take the bait at that time from a trawl than from a hook on an ordinary line.
Q. Well, taking the reasons given both ways, what conclusion have you come to about the use of the trawl for cod-fishing? - A. Well, it is jast one of the wholesale modes of capture, which it is difficult to avoid, because the tendeucy is to centralize, to accomplish the same worts by less expenditure of money and of human force.
Q. Do you think it is a case for probibition or regulation?- $\Lambda$. I don't see how it can be either prohibited or regulated. I hardly see. Of course I have had no practical experience. I may say that the trawl is used very much less on the coast of America than on the coast of England and of Europe generally, and I have failed to find any where in the English writers or in the testimony of the British Fishery Commission any complaint there such as occurs in America. There is a great complaint there against what is called the beam-trawl. When they speak of the trawl they don't mean what we mean. What they refer to is a trawl such as we use in our steamer to capture flounders and such fish. Wherever you see the word trawl used by an English or European writer you must apply it to that large net that is dragged behind the vessel aloug the bottom of the sea. The word trawl is never applied in Europe to the line, and, therefore, there is a great deal of vagueness and error involved in the consideration of the subject unless you know what the particular speaker or witness means by a trawl. But speaking of the long-line, which is the general term, or bultow, I have failed to find in the reports of the british Fishery Commission any complaint by anybody except three cases of complaint against the trawl-line or long-line. One was that it
destroyed the young fish, and the others were that they interfered with the nets. They complained that the trammel-net especially, which is a particular kind used in England, was fouled by these lines and injured.
Q. On the other hand, the net was in the way of the trawl:-A. No; the trawl was in the way of the nets. . The trawlers didn't care about the net, but the net fishermen did complain of the trawl. But I have looked carefully to find whether there was any complaint against that line, and I haven't found it. There may be, but I am quite confident it has not assumed anything like the antagonistic features and impression of magnitude that it has in the United States and America generally.
Q. We mean by the trawl a long line weighted or auchored which sinks to the bottom and has - A. It has branches three feet long. That is called a long-line or bultow.
Q. Then at intervals there are buoys? $-\Lambda$. Yes.
Q. To show the position. They are usually in a straight line? - A. In Europe there are generally several shorter lines united in one long line, so much so that on the coast of Great Britain they have a line of trawls six or eight miles in length. In America the trawling on the banks is generally by means of five shorter lines radiating from the vessel, but in England the tramling is done generall $\vec{y}$ on a large scale, without rowboats, directly from a vessel of forty or sixty tons, and the entire series of lines is united in one and sunk.
Q. They are hauled in from aboard the vessel, and notfrom a boat at all?-A. Yes.
Q. Now, what do they call that which wo call a trawl, if it is used at all?-A. They call it a long-line or bultow.
Q. What bait do you find to be the best for codish?-A. Well, I can't say I find any bait to be the best, becauso I never canght many fish, but I know that everything of an animal nature, and to some extent vegetable, has been used for the cod. Generally, in America, our bait consists of herring, menhichen, mackerel, a portion of the offal of the fish, sea-birds of varions kinds, clams, squid, aud the various species of shells, and in fact anything that can be got hold of.
Q. Well, now, what are the methods of preservation of this bait? We have heard of their using salt clams, $\mathcal{\&} c$. Has much attention been paid to the possibility of greater preservation of the bait than we have ever yet had?-A. Yes; the science of preserving bait, as well as of the preservation of fish on shipboard, is very low indeed, far below what can be applied, and I have no doubt will be applied, both in keeping fish for food and in keeping it for bait.
Q. Now, will you state what obser vation you have made respecting the method of preserving fresh bait from the start all the voyage through ? - A. As a general rule it is now preserved either by salting or freczing. Of course they keep it as long as it will remain without spoiling, and when you have to carry it beyond that time, either ice it or salt it. Salting, of course, is a very simple process, but it alters materially the texture and taste to such a degree that fish or other bait that under certain circumstances is highly prized by tho fish is looked upon with a great deal of indifference when salted. Now, there are special mothods of preserving the fish or bait by some chemical preparation, which preserves the fish without giving the saline taste. There are proparations by means of which oysters or clams or fish can be kept in solutions for six months without getting any appreciable taste, and without iuvolving the slightest degree of deterioration or destruction. One process submitted to the group of judges, of whom I was chairman, was exhibited by an experimenter who placed a great jar of oysters in our room prepared in that way. I think about the 1st of August those were placed in our room and they were kept there until the middle of September, for six weeks during the hottest portion of the centennial summer, and that was hot enough. At the end of that time we mustered up courage to pass judgment upon this preparation, and wo tasted these oystors and could not find them affecterl. We wonld have preferred absolutely fresh oysters, but there was nothing repugnant to the sensibilities, and I believe we consumed the entire jar. Aud we gave the exhib-
S. Mis. $90-12$
itor, without any question, an award for an admirable new method. That man is now using that process on a very large scale in New York for the preservation of fish of all kinds, and he claims he can keep them any length of time and allow them to be used as fresin fish quite casily. I don't suppose auy fisher man ever thought of using any preservative except salt.
Q. That is entirely experimental ?-A. It is experimental, but it promises very well. Now, borax is one of the substances that will preserve animal matter a great deal better than salt and without changing the texture. Acetic acid is another preparation, or citric acid will keep fish a long time withont any change of the quality, and by soaking it in fresh water for a little while the slightly acidulated taste will be removed. I don't believe a cod will know the difference between a clam preserved in that way and a fresh clam.
Q. Now, about ice. We know a good deal has been done in the way of preserving bait in ice. How far has that got?-A. It is a very crude and clumsy contrivance. They generally break up the ice into prieces about the size of peblole stones, or larger; then simply stratify the bait or fish with this ice, layer and layer about, until you fill up a certain depth or distance. The result is that if the bait can be kept two weeks in that method it is loing very well. They generally get a period of preservability of two weeks. The ice is continually welting and continually saturating the bait or fish with water, and a very slow process of decomposition or disorganization goes on until the fish becomes musty, flabby, and tasteless, unfit for the food of man or beast.
Q. Well, there is a newer method of preservation, is therenot?-A. There is a letter method than using ice. The method described by the Noank witness, by using what is equi valent to snow, allows the water to run off or to be sucked up as by a sponge. The mass being porous prevents the fish from becoming musty. But the coming methods of preserving bait are what are called the dry air process and the hard freezing process. In the dry air process you have your ico in large solid cakes in the upper part of the refrigerator and your substauce to bo preserved in the bottom. By a particular mode of adjusting the connection between the upper chamber and the lower there is a constant circulation of air by means of which all the moisture of the air is continually being condensed on the ice, leaviug that which envelops the bait or fish perfectly dry. Fish or any other animal substance will keep almost indefinitely in perfectly dry air about $40^{\circ}$ or $45^{\circ}$, which can be attained very readily by means of this dry air apparatus. I had an instauce of that in the case of a refrigerator filled with peaches, grapes, salmon, a leg of mutton, and some beefsteaks, with a great variety of other substances. At the oud of four months in midsummer, in the Agricultural Building, these were in a perfectly sound and prepossessing condition. No one would have hesitated one moment to eat the beefsteaks, and one might be very glad of the chauce at times to have it cooked. This refrigerator has been used between San Francisco and Now York, and between Chicago and Now York, where the trip has occupied a week or ten days, and they are now used on a very large scale, tons upon tons of grapes and pears being sent from San Fraucisco by this means. I had a cargo of fish-eggs brought from California to Chicago in a perfect condition. Another method is the hard frozen process. You use a freezing mixture of salt and ice pordered fine, this misture producing a temperature of twenty degrees above zero, which can be kept up just as long as the occasion requires by keeping up the supply of ice and salt.
Q. How big is the refrigerator?- $A$. There is no limit to the size that may be used. They are made of enormous size for the purpose of preservi ng salmon, and in New York they keep all kinds of fish. I have been in and seen a cord of codfish, a cord of . salmon, a cord of Spanish mackerel, and other fish piled up just like cord-wood, dry, hard, and firm, and retainiug its qualities for an indefinite time.
Q. Well, can fish or animals be kept for an unlimited period if frozen in that way?A. You may keep fish or animals hard dried frozen for a thousand years or ten thousand years perfectly well, and be assured there will be no change.
Q. Have geologists or paleontologists satisfied themselves of that by actual cases of the preservation of animal substances for a long period?-A. Yes; we have perfectly satisfactory evidence of that. About fifty years ago the carcass of a mammoth, frozen, was washed out from the gravel of the river Lena, I thiuk, one of the rivers of Siberia, and was in such perfect preservation that the flesh was served as food for the dogs of the natives for over six months. Mr. Adams, a St. Petersburg merchant, came along on a trading expedition, and found it nearly consumed, and bought what was left of it for the St. Petersburg Academy of Science-the skeleton and some portion of flesh-which were preserved first in salt and afterward in alcohol. Well we know the period of time that must have elapsed since the mammoth lived in the arctic circle must be very long. We know we can talk with perfect safety of ten thousand years. The geological estimato of it is any where from fifty to a bundred thousand years; we cannot tell. There is no unit of measure; we know it must have been some hundreds of thousands, and probably it would have remained in the same condition as much longer.
Q. Now, to come to a practical question, is this a mere matter of the ory or of possible use? For instance, could this method be adapted to the preservation of bait for three or four months if necessary ?-A. The only question, of course, is as to the expense. There is no question at all that bait of any kind can be kept indefinitely by that process. I do not think there would be the slightest difficulty in building a refrigerator on any ordinary fishing vessel, cod or halibut, or other fishing vessel, that should keep with perfect ease all the bait necessary for a long voyage. I have made some inquiries as to the amount of ice, and I am informed by Mr. Blackford, of New York, who is one of the largest operators of this mode, that to keep a room ten feet each way, or a thousand cubic feet, at a temperature of $20^{\circ}$ above zero, would require about 2,000 pounds of ice and two lushels of salt per week. With that he thinks it could be done without any difficnlity. Well, an ordinary vessel would require about seventy-five barrels of bait-an ordinary trawling-vessel. That would occupy a bulk something less than 600 feet, so that probably $4 \frac{1}{2}$ tons of ice a month would keep that fish. Aud it must be remembered that his estimate was for keeping fish in midsummer in New York. The fishing-vessels would require a smaller expeuditure of ice, as these vessels would be surrounded by a colder temperature. A stock of 10 to 20 tous would in all probability be amply sufficient both to replace the wasto by melting and to preserve the bait.
Q. Have you any doubt that some method like that will be put into immediate and successful use, if there is sufficient call for it?-A. I have no doubt the experiment will be tried within a twelvemonth. Auother method of preserving is by drying. Squid, for instance, and clams, and a great many other kinds of bait can be dried without using any appreciable chemical, and can be readily softened in water. I noticed lately in a Newfoundlaud paper a paragraph recommending that, in view of the fact that the squid are fonnd there for a limited period of time, the people should go into the industry of drying squid for bait, so that it would always be available for the purpose of cod-fishing. I think the suggestion is an excellent one, and I have no doubt it will be carried out.
Q. Now, what is the supply of bait for codfish on the American coast?-A. Well, as the codfish eats everything, there is a pretty abundant stock to call upon. Of course, the bait-fish are abundant, the menhadeu and herring. The only bait-fish that is not found is the caplin. The herring is very abund ant on the American coast, and the alewives enormonsly abundant. Squid are very abundant of two or three species, and, of course, clams of various kinds. Then we have oue sholl-fish that we possess. It is never used here, although it is very abundant; but it is almost exclusively the bait for trawling on the coast of Great Britain. This shell-fish is known as the whelk, or winkle.
Q. Is it a kind of mussel?-A. No; it is a kind of univalve shell [submits specimen], and is almost exclusively used for the capture of cod in England on deep-water trawl-liners. It is not used here at all,
Q. Why is it not used here?-A. I dou't know excent that they have other bait that they get at more readily, and they have not learned how to use this.
Q. But it is very abundant?-A. Yes; quite as abundant as it is anywhere. This is a rather small specimen. The advantage of this kind of bait is that it can be kept alive for a long time merely by moistening it or keeping it in watcr, so there is no question about salting it or using ice or any other application.

By Sir Alexander Galt:
Q. Is there any particular locality for that?-A. It is estremels abundant all through the northern seas. I am a littlo surprised that I have not seen more of them here. It is a northern shell. I presume it is very aboudant in Newfoundland, and to the north. At any rate it is in any desired abundanco in the Bay of Fundy, but not south of Cape Cod.
Q. From all you haro learned, have you any doubt that, supposing the fishermen of the United States were precludel from using any bait except what could be got upou their own coast, they could oltain a sufficient supply there?-A. Well, unless the American fishery should be expanded to very enormous limits, far in excess of what it is now, I can't see that there wonld ho any diffeulty. I. may refer to one bait at our command, which is an excellent bait-salt liver. In some parts that is considered an excellent bait. Of course each part of the world swears by its own particularbait. While the Cape Cod man swears loy menhaden, the Newfoundlander by herring and caplin, and the Englishman by winkles, the Dutchman swears by salt liver.
Q. We could have that, of course.-A. Yes. Then the roes of cod are good for bait.
Q. What do you say about gury? We had a grood deal about that in the early part of this inquiry. Be so good as to tell what opinion you have or what conclusion you have come to about its use and abuse. - A. It hardly applies to cod any more than to any other fish cleaned at sea. The gurry is the offial, and that of course may be of salmon or cod or haddock or mackerel. The practice of throwing overboard gurry is in many respects reprchensible, becauso in the first place it is a very great waste of animal matter. The applicability of this offal to commercial purposes is such that whenever it can be had in sufficient quantities it should be utilized. It is so on the coast of Norway. An cnormons number of pounds of fertilizer are made out of the gurry, and the heads are dried and used for food for dogs and cattle. I presume you refer, however, to the supposed sofluence of the gurry on the fishing-grounds, more particularly. Well, in the first place, moro of it can bo used now. In the process of hard freczing applied to cod it is brought in more as a fresh fish. But a large proportion of what is thrown overboard can bo utilized. It can all be utilized, and it would be rery proper, I think, to impose somo penalty apon the wasto of the gurry by throwing it overboard, in favor of securing its preservation and utilization. But of course the guestion is as to what influeuce the gurry can exercise upon the sea fishery, supposing it to be abundant and to be thrown overboard. I have no practical experience in regard to that. I know a great many persons testify that it is very objectionable. The reason why I should be inclined to attribute very littlo importance to the objection is the readiness with which all such offal is consumed in the sea by the scavengers appointed by nature to destroy it. In the northern seas, where codfish are most abundant and this gurry is in the greatest abmance, the waters abound with countless numbers of minute crustaceans whose business it is to destroy animal matter. The so-called sea fleas are so active that if yon take a fish the size of a codfish and put it in a bag of net-work and put it overboard where it will be exposed for a tide in water of anywhere from five to ten or twenty fathoms, you will find, as a generai rule, that next day you will have tho bones picked clean aud a perfect skeleton without a single particle of flesh. I have had thousands of skeletons (I may say literally so) of fishes and bireis and small quadrupeds prepared for museum purposes by simply exposing them to the action of the sea fleas. I have put them in bags perforated with holes and left them at the edge of low tide for a tide or two, and the skeleton would be perfectly complete withont a bit of meat left.
Q. Well, these sea scavengers, are they usually at the bottom?-A. Everywhere, at the bottom and the top. Then there are the dogfish, the small sharks, catfish, goosefish, sculpins, and the codfish themselves, a variety of lobsters, and other inhabitants of the sea, that are at work, always ready and eager to seize anything of this kind and consume it. Then when the bones are exposed there are the sea-urchins, that make a specialty of devouring them. Now, I cannot say but that this material, under certain circumstances, may lodge in the crevices of the rocks and remain there and become an offense to the surrounding fish, but I rather suspect that the trouble abont the gurry is that it attracts the predatory fish. Where it is thrown overboard it tolls them from a long distance. The dogfish, the shark, and other fish are attracted and come to the place where this offal has been throw overboard, and after they have consumed all that, they turn their attention to the cod and other fish that may be there and drive them off.
Q. So that even throwing overboard the gurry there is a danger of defeating your own purpose?-A. Yes; certainly. That is the hypothesis given as to the supposed evil effect of throwing overboard the offal in the European waters. It prevents the fishing there as iong as this state of things lasts, but whether there is an actual injury otherwise I cannot say. The general presumption is against the idea that these substances can have a lodgment for any length of time to produce any offense. It might do it in fresh water. In the lakes you may have such a condition where those scavengers are not provided. But it hardly scems to me that it can be in the seas, in the northern seas especially.
Q. What is the geographical distribution of mackerel?-A. Tho mackerel is a fish that has not so northerly a distribution as the cod, and perhaps extends somewhat further south; otherwise it is found over, to a very considerable extent, the same range. It is found as far south as the Azores in Enropeau waters, and as far as Spitzlergen and Norway to the north. On our southern coast we find it very rarely, and very few individual specimens have been taken in the vicinity of Charleston. It has never been taken in the West Indies; never in Bermuda, I believe; but it is found as far north as the Strait of Bcllo Isle, and how much further north I cannot say. The tro species (American and European) are Delieved to be identical, and although they are constantly within a comparatively small number of leagnes of each other, yet they do not occur all the way across.
Q. What is the season for mackerel?-A. In America the mackerel season is in spring, summer, and antumn. In winter they are not found on our coast, and we don't get them, but we have them on our shores as early as the middle of April and as late as November.
Q. Now, as to the variation of seasons. What do you say about that?-A. It is very rarely they appear in the same abundance in two successive years, or, at least, it is rarely that the sum total of the experience of the fishermen gives about the same aggregate. Sometimes they are so scarce that the actual catch of one year will be much below that of other jears, but we cannot say there are any fewer fish actually in the water. It may be that they take a different line; they may keep in different waters; they may show themselves less to fishermen; and may have other modes of variation ; but wo only know by the practical results of fishing that the catch in some seasons is much greater than in others.
Q. What do you think is known or what do you think is the best conjecture as to their migrations?-- 1 . There have been a great many hypotheses on the subject of the migration of mackerel. At one time mackerel, as was supposed to be the case with cod and sea-herring, was believed to have an extreme range, that a large school traversed the coast of America or Europe, and swept over a range of thousands of miles, making a circuit that occupied one year in its completion. But the evidence at the present time tends to show that the mackerel comes in on the American coast as a great army, broadside, and appears within a reasonable length of time, or very nearly the same time, on all that extent of coast.
Q. Do you think it strikes the coast a little later to the north aud a little earlier to the south?-A. The left wing of the army, as we might call it, strikes the American coast first, and the right wing strikes the Bay of St. Lawrence last; but it comes in with a broad sweep, not moving along the coast but coming in broadside. When the quickening influence of the spring sun is felt on this great body of fish somewhere outside, where I cannot say, they start, and the given temperature is reached sooner at Cape Hatteras than at Bay St. Larrence; but I do not believe that the fish that enter the bay always skirt the American coast, nor do I believe that the American fish go into the bay. They come in a large number of schools, each school representing a family, that is, they spawn together, and they may lave a short lateral movement, and they move a limited number of miles along the coast till they find a satis. factory spawning-ground; but, as a general rule, they aggregate in three large bodies; one of thosé bodies is about Block Island and Nantucket shoals, another is in the Gulf of Maine and Bay of Fundy, and another in Bay St. Lawrence. There are connections between those three bodies. You find them all along the coast ; there are a certain number which spawn and are taken all along the coast; they are caught in weirs and pounds in spring and fall within one hundred yards of the shore; but the mass, as far as I can learn from the testimony presented before the Commission, are aggregated in those three great bodies.
Q. Is anything known about their winter quarters?- $\Lambda$. Nothing definite. 'We miss them for several months, from the end of November until March and April, and we say, we guess, we suggest they go into the Gulf Stream. That they go somewhere where they can find a temperature that suits them and there they remain, is clear; but it is a little remarkable that they never have been seen schooling in the Gulf Stream, that they never have shown themselves, that no fisherman, mackereler, or steamboat captain has ever reported, so far as my information goes, a school of mackerel in the winter season. If they were free swimmers, one would suppose they would snow themselves under such circumstances. There is a belief very generally entertained among fishermen that they go into the mud and hybernate. That is an hypothesis I have nothing to say against. It seems a little remarkable that so free a swimmer as the mackerel should go into mud to spend its winter, but there is abundance of analogy for it. Plenty of fish bury themselves in mud in the winter time and go down two or three feet deep. There are fish that are so ready to bury themselves in mud you can dig them out of an almost dry patch as you could potatoes. The European tench, the Anstralian mud-fish, and dozens of species do that. There is nothing whatever in the economy of the mackerel or in the economy of fish generally against this idea, that it is an inhabitant of the mud. And the fishermen believe chat the scale, which grows over the eyes, according to their account, in winter, is intended to curb their natural impetuosity and mako them more willing to go into mud and stay there in winter and not be schooling out on the surface of the water. There are well-authenticated cases of fish being taken from the mud between the prongs of the jig when spearing for cels. That this has occurred off the Nova Scotia coast, in St. Margaret's Bay, aud Bras d'Or, Cape Breton, and parts of the Bay of St. Lawrence, I am assured is not at all doubtful.
Q. Do not fishermen mainly retain the old theory of the northern set of the whole body?-A. Very largely, but I think latterly they are changing their views.

## By Hon. Mr. Kellogg:

Q. The fish were mackerel that were brought out of the miud?-A. When after eels they brought up mackerel out of the mud, in several instances, in January.

## By Mr. Dana :

Q. What can you tell the Commission about the period of the spawning of mack-erel?-A. Mackerel spawn almost immediately after they visit our shores. The earliest fish taken in the weirs and pounds in Vineyard Sound and Buzzard's Bay are full of ripe spawn, so that when the fish are taken out of the pounds and put into boats to bring them to shore there are sometimes quarts and pecks of $t$ e spawn in
the bottom of the boats. It runs out with the utmost freedom, as it does with any full-spawning fish. That period ranges from the middle of May on our coast, and from June and July in Bay St. Lawrence. Mr. Whiteaves says they spawn in the Bay of Chaleurs in June. The season extends from the early part of May to the beginning of July.
Q. Where do the mackerel deposit the eggs?-A. The mackerel, like all sea fish, with the exception of the herring, the tomcod, and sculpin, has a free floating egg. The egg is discharged in the water wherever the fish lappen to be, inshore or offshore, and it floats just under the same condition that the egg of the cod does. It has a small globule of oil as a buoy, and it floats on the surface or anywhere from that to half way down, or perhaps alnost to the bottom, depending on the gravity of the egg and the specific gravity of the water.
Q. Is the mackerel supposed to be able to coutrol the time when it will spawn?A. When the egg is ripe it has to be discharged, whatever happens. The egg cannot be retained after it is overripe.
Q. How do the egrs of each mackerel compare in numbers with those of the cod?A. The average of the mackerel spawn is about 500,000 . They are very small, as you can imagine, for mackerel is not a very large fish. The eggs, when spawned, are only about one-fiftieth of an inch in diameter, about half the size of that of the coll. They vary in size, some being smaller and others larger, but they only vary within moderate limits.
Q. You eay they spawned all along the American coast?-A. I presume they spawn in some numbers along the entire coast from the snore of Virginia to the coast of Labrador; formerly they spawned on the coast of Newfoundlaud, when mackerel were canght there, where they were very abundant a great many years ago, and also off the Bay of Fundy, when mackerel were abundant there.
Q. What is the food of the joung mackerel?-A. The young mackerel, like the young of most other fish, feed on diatoms and other marine plants of low origin. They feed on the eggs of crabs and mariue animals, probably on the small eggs of fish themselves, and as they grow they eat anything small enough to be swallowed. They don't bite as bluetish do, but they take everything at one mouthful and swallow it whole.
Q. And what is the food of the adult fish ?-A. The adult fish feed very largely upon young fish, saud lauts and young lerring, and probably upon the young of their own kind. They are cannibals, as all fish are. They feed very largely upou what is called hay seed or cayenne; that is a minute kind of shrimp, which is so dimiuutive you require a microscope to separate it into its component parts. They feed also on large shrimps and on the young of large crabs. Its favorite food in summer is what fishermen have described as all-ejes, that is, young fish which, so far as I can judge, must bo joung mackerel, because I do not know auy other fish that could bo so abundant of that size at that season of the year. It is called all-eyes because its body is perfectly transparent, and when you see them swimwing in the sunlight you can only see two ejes as tro small dark specks. That occurs in almost incredible abundance, covering miles square and furnishing food for an enormous yield of fish.
Q. With regard to its bearing upon the locations of mackerel, I will ask whether there is any particular place where the food of mackerel is to be found, or whether it is all along the coast where the mackerel come?-A. The shrimp belongs to a class of crustaceans which inhabit the high seas everywhere. We took them this year in great canatities in coming across from Salem to Halifax, at Gcorge's, La Have, and Brown's Banks, and in Halifax Harbor. We take them in Eastport, Salem, and Portland Harbors, and as far as I am advised by the specialists who are associated with me, there is no part of the ocean where these small animals are not to be found in ample abundance, sometimes enormously aggregated and at other times less common. They are found at all depths of water, from the surface to the bottom. We take them in our dredge and in our midway and surface nets. Those and the young of the large crabs are found under all circuastances and conditions.
Q. Then we take the common bait, pogies, or meuhaden. They are mackerel bait, are they not?-A. Eaten by mackerel? I do not think they are, unless they eat them in the winter time. As to the spawning of pogies, we know nothing about it; we infer they spawn in winter off the southern coast.
Q. Are not menhaden used as bait for mackerel by fishermen?-A. The menhaden itself is taken all through the mackerel season at some part of the Amcrican coast.
Q. Is it abundant within your observation?-A. Yes; it is almost the most abundant of our fish ; indeed, it is a question which is most abundant, sea herring or menhaden.
Q. In regard to the catching of mackerel as afecting the supply and the probable diminution or increase of mackerel, what have you to tell the Commission about the mode of taking mackerel?-A. The mackerel is taken in a great variety of ways. At present it is taken by jig hook and by the net iu some form. Formerly it was taken by meaus of hooks, as wo do for bluefish, sailing backward and forward in a boat having a number of lines put from the vessel, and taking them when the vessel is under full speed. That method is still practiced on the coast of Earope, where mackerel are still taken in that way. Then it was found that by keeping the vessel comparatively motiouless and throwing chum or chopped meat overboard mackerel could be brought up to the ressel, and that proved a much more efficient and thorough mode of capture. Nets were introduced, and many mackerel are now taken in gillnets. Seines which are hauled to the shore have been introduced at some places on the coast of Nova Scotia, and a good many mackercl are taken in pounds and weirs, enormous quantities being taken in spring and fall on the Nerv England coast in that way. The purse-seine is perhaps the most efficient and comprekensive method, and it is used by vessels.
Q. What is the proper depth of a purse-seine?-A. Twenty, twenty-five, or thirty fathoms deep.
Q. To be successful it has to have that depth?-A. It has to be deep, but it must be shallower than the water, or it will get entangled and torn.
Q. Do you know whether it is true that there must be that dep th in order that the mackerel shall not discover it so quickly and escape?-A. I could not say; that is a fisherman's theors, which I know nothing about.
Q. With regard to the preparation of mackerel, what have you to say?-A. Nothing, except that they are ased in increasing numbers fresh. The principal consumption in Europe is in fresh fish. The people there do not salt fish, or scarcely at all. They are put up in Europe, and I believe, to some extent, in Canada in cans; I do not think that is done in the United States.
Q. Of course, you have obtained information as to the manner in which the fish can be used by consumers; you have nothing to do with the mercantile side of the ques-tion?-A. No.
Q. You have had it presented to jou. Do you find that the demand for fresh fish of all kinds is increasing?-A. I know the tendency at the present day is to substitute fresh fish for salt, in view of the improved methods of preparation and preservation, and the improved means of communication, railroads and steamboats coming to the shores and carrying away the fish and distributing it over an extent of thousands of miles and more in the interior, it bringing a much better price as fresh fish, and yielding a much better profit to the seller.
Q. Is that trade rapidly increasing?-A. It is increasing with enormous rapidity. Every year wituesses a great extension of the methods and increased improvements in the mode of preparation and the size of the refrigerators and their number.
Q. In regard to herring, what have you to say?-A. Herring is a fish of wide range. Though I cannot say it goes farther north than cod-perhaps it does not-it goes scarcely as far south on the American coast. I have not found any evidence of its being taken south of Block Island. It is very abundant off Block Island and Narragansett Bay in winter, but whether it is found farther south I am unable to say; it is found as far north as Labrador. and much farther.
Q. It is found from Block Island to the shores of Labrador in great abundance ?A. Yes.
Q. It is pretty fairly distributed all along?-A. Yes; in some localities they are found in greater abundance at some periods of the year ; but there is no part of the American coast, from Labrador to Block Island, where they are not found during a certain number of montls.
Q. What are the movements of this fish ?-A. Thes present migrations not so extensive and demonstrative as that of mackerel, but more so than those of cod. They probably move from their ground from time to time in search of food, and generally have definite places for spawning, to which they resort at different seasons of the year at each particular coast. While the spawn is deposited, as a general rule, in certain localities, it is sometimes a matter of uncertainty. The destruction of herring has been less in Amorica than in Europe, where it has been very marked. There are extensive regions where formerly the herring business was carried on, from which they have entirely disappeared, so much so that they import herring from Scotland and America.
Q. As to the egg of the herring ?-A. The egg is larger than that of the cod, and is about one-twentieth of an inch in diameter.
Q. What is the number to each fish?-A. About 30,000 .
Q. Do you think they lhave ans particular sparving-ground ?-A. They have definite localities that are preferred by them. They spawn round the Magdalen Islands in great abundance, and in the bass of Newfoundland. The most extensive spawningground on the southern coast is round the southern end of Grand Manan, which is one of the most interesting and extensive spawning-grounds I know of. But they spawn also all along the reefs and rocky places of the New Eugland coast as far as No Man's Land and Block Island.
Q. The yield of herring in New England, is it and can it be made very large?-A. I presume as many herring could be taken in New England, in seasons when they are able to be taken, as might be called for, if the price of them warranted it.
Q. Herring does not bring much in tho market?-A. I believe not; they are taken in both spring and fall, but they are most abundant in the fall.
Q. I should like to put one or two questions to you bearing a good deal on this subject which the Commission has before it, respecting the kinds of fish which can be and are used in the United States. Leaving out cod, mackerel, and herring, will you tell the Commission what has been discovered regarding the kinds of fish that are used as a substitute for mackerel-salted fish, I mean ? - . There is a great variety in vast cuundance of many kiuds of fish all along the coast of the United States, from Saint voln's River, Florida, and farther south, to the Bay of Fundy, and many of those couid be utilized to very great advantage if there was a demand. They are taken in very arge quantities and consumed as fresh fish, but they are not prepared in large quanticies, with the exception of the Southern mullet.
Q. How far north de mullet found?-A. It straggles as far as Cape Cod; it is quite abundant at some seasors on the south side of New England, but not sufficiently so for marketable purposes, but off the coast of Yirginia and off the Carolinas, and all the way down to the extremity of Florida, tho mullet is in quantities scarcely credible. They are taken and sold in great numbers; many thousands of barrels are put up, and if there was any speedy call for them they could be furnished. I presume I am safo in saying that oue million barrels of mullet coult be furnished amnually from the south shore of Chesapeake Bay to the south end of Florida, if they were called for.
Q. How far has the mullet come into the market now?-A. The mullet does not come into the Northeru market at all, but in North Carolina, South Carolina, and Georgia it fills the markets at the present time, excluding other kinds of imported fish. In former years there was a great demand for herring and mackerel, but the mullet is supplying the markets because they are sold fresher and supplied at much
lower price, and they are considered by the Southern people a much superior article of food.
Q. Is it preferred to mackerel as a salted fish?-A. The persons familiar with mackerel and with mullet from whom I have made inquiries-I never tasted salt mulietgive the preference to mullet. It is a fatter, sweeter, and better fish, and of rather larger size. They grade up to 90 to a barrel of 200 pounds, and go down to threequarters of a pound, and as a salt fish the preference is given by all from whom I have inquired to the mullet.
Q. Do you think the failure of the mackerel market in the Southern and Southwestern States is largely attributable to the introduction of mullet?-A. I cannot say that, but I imagine it must have a very decided influence.
Q. Can the mullet be caught as easily as mackerel?-A. More easily. It is entirely a shore fish, and is taken with seines hauled up on the banks by men who have no capital, but who are able to command a row-boat with which to lay out their seines, and they sometimes catch 100 barrels a day per man, and sometimes as many as 500 barrels have been taken at a single haul. The capital invested is only the boat, the seine, perhaps 100 or 200 yards long, the salt necessary for preserving the fish, and splitting boards and loarrels.
Q. Can pounds be used?-A. They have not been used, and I doubt whether they could be used. Pounds are not available in the sands regions of the South.
Q. They are taken by seining?-A. Yes, seines can be used. This work is entirely prosecuted by natives of the coast. and about two-thirds of the const population are employed in the capture of these fish.
Q. Then the business has grown very much?- $\Lambda$. It has grown very rapidly.
Q. When was it first known to you as a fish for the market? A . I never knew anything about it until $18 \%$.
Q. Then it has been known during only five years?-A. I cannot say; it has been known to me that length of time.
Q. Duri:g that time the business has very much increased?-A. I am so informed; I cannot speak persoually. All my information of it is from reports made to me in replies to circulars issued in 1872 and 1873. I have not issucd a nullet circular since that time, when I issued a special circular asking information regarding the mullet.
Q. Then it is your opinion that the mullet has become, to some extent, and will become, an important source of food supply?-A. It is destined, I suppose, to be a very formidable rival aud competitor of the mackerel. I know in 1822 a single county in North Carolina put up 70,000 barels of mullet, a single county of five States covering the mullet region.
Q. Repeat that statement.-A. I say 70,000 barrels of mullet were packed in Carteret County, North Carolina, in 1872-one county in the States of Virginia, North Carolina, South Carolina, Georgia and Florida, where mullet comes in great abundance during two or three months of the year. It is during the spawning season of the mullet that it is taken in this duantity, and mullet roes form a special delicacy over which every Southerner exults. It is a separate husiness, the roes being smoked and salted and sold in large quantities.
Q. Perhaps a reason-to get into the region of political economy-why mulletfishing was not prosecuted formerly, was that the Soutbern people were not fishingpeople under the slave system?-A. They probably had not a proper method of taking them. They used more casting nets than seines.
Q. State to the Commission what mode of fishing and what kinds of fish are caught on the south of the New England coast, south of Cape Cod. Is it not a great region for fish?-A. The varicty of fish taken on the shores sonth of Cape Cod is very great, and constitutes a very important element in the food resources of the country. Many of them are fish of very great value as food, some selling, as high as one dollar per pound, every pound of that fish that cau be brought into market bringing never less than 60 cents and up to one dollar per ponnd. Other fish range from 20 cents, 35
cents, and 40 cents per pound. Others from 20 cents to 25 cents, very few bringing less than 8 and 10 cents a pound as fresh fish.
Q. What kinds of fish are they which bring the high price of a dollar a pound?A. The pompano, which is the highest-priced fish.

## By Sir Alexander Galt:

Q. To what size does it grow ?-A. Three pounds is the maximum. It is more generally one pound. The pompano brings one dollar per pound when it is freshly caught. Sometimes when it is brought to New York and kept for a long time the price may come down. I know one occasion when it was sold at, 10 cents a pound; but the fish was not marketable and should not have been sold. The next best fish is Spanish mackerel, a fish of remarkable excellence.

## By Mr. Dana:

Q. In New York market at the proper season what does it bring?-A. I don't suppose it is ever sold under 25 cents per pound, and from that to 40 cents.
Q. Is that a mackerel?-A. It belongs to the mackerel family, and weighs about 3 pounds. There is the cero, a kind of Spanish mackerel, which goes up to 15 pounds. Those are all found from Cape Cod to Florida along the entire coast. There is the scup, which occurs from Florida to Cape Cod in great abundance.
Q. The scup is found in great abundance off the south coast of Massachusetts and Rhode Island ?-A. Yes. There is also sea bass, which is one of the finest of the American fish, and is worth from 18 cents to 25 cents per pound.
Q. How many pounds do they average in weight?-A. From 1 to 4 pounds; 3 pounds is a large fish.
Q. They are found in abundance on the south coast of New England ?-A. Yes; very abundant. There is also the kingfish and the bonito, which is a very important fish.
Q. There is a fish of that character extending from Block Island away down to Cape Hatteras?-A. It is one of the same family. It weighs up to 5 pounds. I have seen five thousand of those fish taken at a single time in a fishing pound at Menemsha Bight. There is the blucfish, which is the pièce de resistance. There is the squeteague; of that fish I have seen 25,000 pounds taken at a haul.
Q. The bluefish is a great fish in the market?-A. It is the principal fresh fish during the summer season on the coast of the United States from Cape Cod to North Carolina.
Q. Caught all along the shores?-A. All aloug the coast, being most abundant in the summer season toward Cape Cod, and in winter in North Carolina.
Q. There is a great drift through Vineyard Sound ?-A. There is a numerous catch.
Q. Are not the people on the sonthern coast of Massachnsetts, and on the coast of Rhode Island, now very much eugaged in catching fresh fish?-A. Very largely, taking them in pounds and gill-nets, and other modes of capture.
Q. Is this a part of the development of the fresh fish market?-A. Yes. Since bluefish has come back to the coast it has constituted an enormons element in the supply of fresh fish ; it is not the controlling element, lout it is the largest single clement, although combining the striped bass, squeteague, mullet, and scup, they considerably outnumber the bluefish. [Photographs of the fish referred to were exhibited.]
Q. What about tantog?-A. It is an important fish, but is not in such immense abundance. While you talk of tautog being caught in thousauds of pounds, you talk of others by hundreds of thousands or by millions.
Q. Pounds are very common on the American coast?-A. It constitutes the principal mode of summer fishing from round Cape Cod as far west as Long Island. Nearly all the fish taken on that coast are caught in the ponnils. The small tunny is a fish which of late years has come into notice, and it is believed to have disturbed the mackerel and menhaden this year. It was never recorded till I found it in 1871 in Martha's Vinejard, where it was in enormous numbers. It is a fish weighing abont 25 pounds, and it is something like the horse mackerel, but they never grow more than

25 pounds. Not unfrequently 500 or 1,000 of them are taken in a single night in one of the pounds, but the people make no use of them and consider them valueless They sell the fish weighing 25 pounds for 25 cents. It is a coarse fish and very dark meat, butstill it is a food resource when other fish are not taken. These fish are found in the Mediterranean, where they are very much looked after and bring very good prices, they being specially salted and put up in oil. The American tunny is undistinguishable from the European, though efforts have been made to separate them.
Q. The pound-fishing which has come into general use in the southern part of New England, what is its effect on the supply of fish?-A. That is a question which I think will require a longer period of years than we have had for its definite determination. In 1871 I made my first inquiries into these pounds, and satisfied myself then that they mast have a positive inflence upon the abnodance of fish, in view of the concurrent enormons destraction of blucfish. I considered the bluefish was the greatest agency in the destruction of one food-fishes. Its relation to scup and squeteague has long been established-that when bluefish are abundant the other fish are rare, and the moment blucfish diminish the other tish become enormonsly common. The squcteague in 1862 was unknown as a fish east of the waters of Now Jersey except in small numbers, and was not found in Marthi's Vineyard or Buzzard's Bay. In 1872, teu years sabsequently, so plentiful were they chat I know myself of 5,000 fish being taken at a single haul, a veraging five pounds each fish. The bluefish then began to diminish, and from that time were much less abundant than in 1850 or $\mathbf{1 8 6 0}$. Those pounds and the bluefish together I considered produced the decrease in the abundance of scup, sea bass, and tautog that has been so much complained of. I urged very strongly, and I still maintain my view, on the legrislatures of Massachusetts and Rhode Island the propriety of exercising some sort of restriction upon the indiscriminate use of this apparatus. I recommend that one day and two nights, that is, from Saturday night, or, if possible, from Friday night till Monday morning, should be established as a close time during which those fish should not be taken by any of those devices, thas giving the fish a chance to get into the spawning-grounds inshore, thereby securing their perpetuity.
I was quite satisfied in my orva mind that unless something of this kind was done very serious results would happen. Very mach to my disgust, I must admit, the next year, even with all the abundance of those engines, the young scup came in in quantities so great as to exceed auything the oldest fishermen remembered, and thousands and tens of thousands of barrels of what was called dollar scup were sold. They were so thick in the pounds aud so mixed with the fish that the owners could scarcely pick out the marketable fish, and consequently had to let large portions of the contents of the pounds go away. Since then scup has been very much more abundant than it was when I wrote my look and report.
Q. How do you account for this great increase?-A. I think those were scup, belonging to further south, which took a northern trip to northern waters and established themselves there. But I do urge in the most earnest manner the propriety of some restriction being placed on the pounds." I have not changed my views, although the evil has not arrived as I thought it wonld, and there are iudications of some other agency; whether it be the diminution of the bluefish which permits the scup to increase or not I cannot say.
Q. Is it true the bluefish is diminishing ?-A. It is not by any means so abundant as it was, very much to the regret of all people who catch them, cither for market or for sport.
Q. Can you remember the time when there was no bluefish ou the American coast?A. I cannot. I know we liave the record of the fact, and I know many persons who can remember it. Bluefish was absent from the American coast for sixty years, during which time there was not a single bluefish to be found on the coast.
Q. You think the pounds should be dealt with as a matter for regulation and not for banishment?-A. I don't think the market would be amply supplied without
them, and I don't think it would be expedient to prohibit them. I think a certain amount of regulation, such as I have recommended, would bo a great deal better for the fish and the fishermen. The disadvantage of the pounds is that they glut the market at times, so that there is no sale for the fish and fish are wasted, and by the adoption of a close time not only will it secure proper spawning of the fish, but also equalize cousumption.
Q. There were some matters with regard to herring, in regard to which I did not ask you fully yesterday. Will you state to the Commission about the spawninggrounds of herring especially? I do not care for anything outside of the American coast. - A. The herring spawn along the whole coast of the United States, from the Bay of Fundy to No Man's Land, which is a small island between Block Island ard Martha's Vineyard. I have specimens of sparn from almost all the localities between those two points, and I am informed they also spawn around Block Island; but I have never seen auy evidence myself.
Q. But you know as to the fact?-A. I know it is so from testimony and reports.
Q. Do the eggs of the herring lodge on the bottom?-A. The herring is almost the one-is, I think, the ouly one-of our important sea fish the eggs of which are adherent; that is to say, when discharged, it falls to the bottom and adheres to the seaweed, gravel, and rock. Gencrally it is scattered; but not unfrequently a great part of the spawn of the tish will be aggregated into a mass of the size of a walnut or hickory nut, but more geuerally they are scattered and attached singly or by twos and threes to sea-weed. I have here specimens of the eggs in the adherent form, some of which I dragged up at the southern end of Grand Manan.
Q. Are the spawning-grounds extended, along the coast all the way?-A. Yes; all the way.
Q. And are very numerous?-A. There is no reason to suppose there is any part of the coast at which they are wanting. They are specially abundant about Cutler, in Maine, and about some of the islands off Penobscot Bas, about Cape Elizabeth, Portssouth, off Newburyport, and particularly along the edge of the coast from north and east of the entrance of Massachusetts Bay. They also spawn inside of Cape Cod Bay, and all aloug tho south coast of this region to No Man's Land, as I have already mentioned. The spawning season is later and later as you go south. On the coast of the United States the herring spawns on the fall of the temperature, just as the salmon, cod, and trout do-unlike the shad and mackerel, which spawn at a rising temperature. The moment the water along our coast gets to a certain degree of temperature, then the herring is incited to the act of spawning. I might say in completion of this point that herring spawns in the spring in Bay St. Lawreuce and Newfoundland. It spawns in early summer at Grand Manan in July, August, and September. It spawns at the end of September in Eastern Maine, and it spawns in October off Boston, and does not spawn until November and sometimes December at No Man's Land.
Q. Making a difference of many months?-A. Yes; a difference of from six to eight months.
Q. Describe the modes by which herring are caught on the coast of the United States.-A. They are canght principally by weirs, pounds, and gill-nets on our coast. They are caught with seines largely in Bay St. Lawrence and Newfoundland; but the large, full-grown, spawniug herring are usually taken in gill-nets on or near the spawning-ground. A very large number are taken on the whole coast of Maine and in the Bay of Fundy in weirs; but the great body of these are smaller herring, and are not used as fresh fish.
Q. How is it with weir-fishing?-A. The weir-fishing is generally conducted in Maine, and to some extent inside of Cape Cod to the north. South of Cape Cod they are more generally taken in pounds, but also in gill-nets.
Q. How are they taken along the Massachusetts coast?-A. They are taken, generally, in gill-nets in the fall. The regular pounds are usually not down as lata as the herring season, but in spring large numbers are taken in the pounds.
Q. How do you feel sure that this statement about sparning on the coast is cor-rect?-A. By actual capture of the fish in the spawning season, and by dredging up their eggs from the bottom with apparatus we use for such purposes.
Q. Is herring a very common fish on the United States coast?-A. It is exceedingly abundant. It is not utilized at all to the extent of the capacity. The herring is not a very favorite fish. It is a cheap fish; and as there are so many better fish on the coast, it is not very marketable for food. It is sold in great quantities, but at very low prices, and is used only by the poorer classes of the community. Of course, it is used for bait; but as fresh fish it is very seldom seen ou the tables of the well-to-do people.
Q. Is it dried and pickled?-A. They are pickled to some extent. Some are smoked. A great many are worked up in the form of bloaters, and in this form it is very much sought after.
Q. You have been at the places where the business is carried on?-A. I have seen 20 or 30 large boats, of a capacity of perhaps 500 barrels or more, filled with herring, lying at the wharf at Boston at one time. They are loats probably from 4 to 10 tons.
Q. Market boats? - . They are open boats, known as herring boats, and the coast now is lined with the boats with gill-nets catching herring for the fall trade.
Q. Have yon anything to say about the predaceous fish, such as the shark and dogfish? Do.you think they do a great deal of harm to the food-fish?-A. They constitute a very important factor in the question of the abundance of fish on our coast. They destroy enormous weights and quantities of all the useful fish, and in proportion as they increase in numbers the food-fisk diminish, and rice vorsa. They perform the same function as bluefish; they are constantly in the pursuit of other fish and destroying them.
Q. There is no probability of changing that relation which fish seem to bear to one another?-A. They all have the relation of attack, defense, pursuit, and flight.
Q. But, notwithstanding that, I suppose they belong to what you call the balance of nature?-A. The balances of nature are such that it is extremely difficult to say what will be the effect on the fisheries of destroying or multiplying a particular stock of fish. The sharks, for instance, are destroying great quantities of food-fish. A new enterprise has just been started, and will be opened in the course of a few weeks, to utilize the sharks, porpoises, dogfish, and tumnies. An establishment expects to work up twelve million pounds annually of those fish, for which heretofore there has not been a market. They are caught in great quantities on the shores, but not utilized, and now there is to be a market for them, and the parties offer the same price for them as they do for menhaden.
Q. Where is the company started?-A. At Wood's Holl, Mass. The company expects to keep two or three steamers constantly traversing the coast from Block Island to Penobscot Bay, or Bay of Fundy, and the company adrertises that it will take all dogfish, sharks, porpoises, blackfish, and other offal that may be offered to it, up to the amount, I think, of 20 or 25 tons a day. By a new process the oil will be extracted without heat, leaving the meat entirely free of grease, and, when it is dried, it will be ground up to make what they call fish flour, or meal which can be used for fertilizing purposes or food, as you please. The same substance is made from cod in Norway and is an article of food. It makes a nice form of food, and is used as fishcakes and other preparations.
Q. It can be made up like flour?-A. Yes, and can be mixed up without any diffculty. Tho effect of the abstraction of twelve million pounds of those predaceous fish will undoubtedly be very great. Whether, as those fish eat bluefish, it may not allow bluefish to multiply, aud in that way restore the balance again, it is impossible to say; but if it was to take bluefish also, we would relas very largely the pressure on eatable fish, and they would necessarily increase.
Q. Is the philosophy of that substantially that when one kind of predaceous fish
becomes very numerous, and is destroying useful fish, it either disappears in time, or by what we regard as the regular course of nature and the work of man, that fish diminishes, or is exterminated, and others take its place?-A. After they have eaten up everything, they will start out and go somewhere else. Whenever they have made their favorite food scarce they go somewhere else. So it is a very serions question as to what had better be done, no matter what promise there may be in regard to altering the relations willfully and purposely between the different forms of the animals of the sea. If you take them for food, you allow the consequences to come as they may, but any question of protecting one kind of fish, or destroying or exterminating others, should always be considered with a great deal of care, and from a great many points of view that do not strike the mind or attention at first thought.
Q. To undertake to regulate the relations of fish beyond shoal water where you cau fish with nets, seines, and pounds, would be impracticable?-A. It would be very difficult, indeed, and the effect would probably be very trifling.
Q. You spoke yesterday of the fish of the Southern States, the fisheries of which in the new order of thiugs are being rather more developed by greater diversity of industry, and so forth; can you mention any other fish that are coming into use ?A. There are a great many snecies, probably not less thau fifty, all having a definite value as an article of food, and all caught and consunced on the coast, or sent in limited quantities either to the northeru markets or to Cuba, that could be taken into consideration, but perhaps the capture of the fish that takes the rank of fisheries relates more particularly to the mullet, meuhaden, striped bass, and bluefish. There is a very extensive fishery of bluefish on the southern coast. The bluefish, after leaving the northern waters, spends a certain time on the coast of Virginia and North Carolina, and by tho time it gets back there it has attained enormons dimensions, the fishes being generally from 12 to 15 pounds, at which size they are found only casually and occasionally on the northern coast. It is not at all an uncommon thing for one fishery of a single locality to take 3,000 bluefish averaging 12 pounds each fish.
Q. What do you mean by one fishery ?-A. A single station at one particular point, the fishing being controlled by one mau or firm. An enormons number of bluefish are sent late in fall and in early winter to the northern markets.
Q. So that. when bluefish leave the New England coast they do not disappear altegether from the American coast?-A. Not at all. It disappears some time in February, and where it goes we cannot tell.
Q. It disappears from the southeru coast?-A. Yes; a small school of bluefish is found all the year south to Florida, but the large school of bluefish usually disappears in February, and, indeed, I may say we never see it again. The fish, as they make their appearance in spring, are smaller fish.
Q. Do they first appear on the south coast of New England ?--A. On first appearing on the coast of Carolina and Virginia, they come in something like the mackerel, only they have a rather more coastwise travel because they do not spawn on the northern coast. Probably the big bluefish go out somewhere to spawn, but what becomes of them, whether they spawn themselves out to a condition of nonentity I cannot say. We do not see them ; they may go to Africa, or the Mauritius, for bluefish are found all the world over; but whether they go to any other portion of the world from the United States I cannot say.
Q. What have you to tell the Commission about menhaden at the South?-A. The menhaden is a very important fish on the south coast as an article of food. It is caught, salted, and pickled, and to some extent used in the country. There is quite a large export of menhaden to the West Indies from the Southern States.
Q. Is it used fresh?-A. It is salted and pickled; it is also eaten fresh very largely, and considered a very capital article of food.
Q. You have eaten it yourself?-A: Yes; it is a sweet fish, quite as good as horring, but rather more bony; the bones are, however, more adherent to the skeleton. You can prepare menhaden by maceration, so that the greater part of tho bones will stick
to the vertebral colmm inst ead of being loose and lying abont the muscular parts, as in herrings.
Q. It is also salted in the South?-A. Yes.
Q. Is there now a large business in menhaden, or is there likely to be?-A. It is a business capable of almost any extension for which there is a demand. There is no. limit apparently, speaking in reasonable terms, to the number that can be taken, any more than there is in the North. There is nothing like the same quantity taken in the Southern as in the Northern waters. It is taken somewhat for the manufacture of oil, but the business is not fuily developed.
Q. What other fish did you mention in the Soutl? ?-A. The mullet, menhaden, bluefish, and striped bass to some extent, but striped bass is more an estuary fish coming into brackish waters, and can scarcelf, with propriety, be mentioned in this connection.
Q. What have you to say about the drum ?-A. It is a fish that can be taken in almost any desired quantity. It is olvained weighing up to 100 to 120 pounds, but it generally weighs from 10 to 20 pounds. There is the channel bass, which can be also taken in any desired quantities. It is entirely a sea fish, and is caught in the rapid channel-ways between the shores and islands on the coast.
Q. Espocially, perhaps, in South Carolina?-A. Only stragglors come on the east ern coast, but it is found in enormons abundauce from North Carolina down to the southern extremity of Florida, and in the Gulf of Mexico.
Q. Can the fish wo salted for the market?-A. I don't think it has ever been tried; it is morth almost too much as fresh fish.
Q. Is the fish called red snapper there?-A. Yes; it is very abundant on the coast of Florida. It is a large fish, of a bloot-red color, as red as goldfish, and weighs from 5 to 20 pounds. It is canght in great nunbers in the winter season, and taken alive to Cuba. The Connecticut fishermen, after they have finished their halibut and cod summer and autumn fishing, go down to Florida, and spend two or three months catching red snappers and other fish and taking them to Cuba, selling them as fresh fish, alive. It is taken in the wells of vessels, and is sold at very high prices in Havana. Sometimes, on the return trip, they take a load to New York, and sell them in that market alive.
Q. In regard to pounds, they must be constructed in muddy ground?-A. In almost any ground, except sand, because the sand shifts.
Q. To construct a pound, you drive in piles or posts, and then make a straight line of net-work right up?-A. Yes. [Diagram of̂ a pond exhibited.] The stakes are driven right down with a pile-driver, and from stake to stake is extended a wall of netting, which extends down to the bottom and makes a barrier for the fish. They are held down by a chain. There is also the heart, bowl, and pocket. The fish coming along the coast strike the wall of netting, and very naturally, in endeavoring to skirt it, they turn seaward and go along till they get into this receptacle either way. A fish never turns a corner, and when it gets within the netting it swims round and round, but never goes back again. Then gradually it is led into the inner inclosure, and the same process goes on; the fish swim round and round, but never find their way out back throngh the opening. You may leave the pound for a week, and you will have there all the fish that have come in, except the striped bass, which is the only fish sou caunot cheat in a pound; and yon very rarely take them in that way. Then when they come to hanl the pounds, they throw a gate of netting across the opening, and in the bowl the netting exteuds over the bottom and comes up the side. They gather up the eud and haul it over the boat, and gradually concentrate the fish in a corner, and turn them or throw them over into the permanent pocket, where the fish are kept until ready for market. Fish are kept there sometimes two or three weeks or more for a demand in the market; if there is a glut in the market, they may keep perhaps $1,000,2,000$, or 3,000 fish in one of these inclosures.
Q. How is the pocket formed?-A. It is a net-work, fastened down to the bottom
by a chain, so that it will touch the bottom and not permit fish to go under it. [Diagram of trap exhibited.] The trap is only used in the waters of Rhode Island, and is used for scup, tautog, and sea-bass. There are no stakes used to the trap. It is a rectangular space of netting held at the corners by anchors. The fish go along the leaders and pass into the receptacle. The trap requires constant watching, or the fish could go in and out. The moment a school of fish enter, the netting at the end is raised. They pursue the same mode of emptying, and turn the fish into the pocket, as with pounds.
Q. The difference is that in the case of pounds, it is not necessary that boats should be employed to visit them frequently?-A. In stormy weather you sometimes cannot get to a pound for a week. In the case of traps they are visited three or four or half a dozen times a day. When the boats off shore see a school of fish enter the trap, they follow and take it whether large or small. [Diagram of weir exhibited.] This weir consists of a small circle of brush or boards, with two wings and a spring. The fish come into the weir at high tide, and as the water falls they are left in a cavity inside the weir, and are taken out in dip-nets. There are a dozeu or twenty different forms of constructing weirs.
Q. What is the estimated cost of a pound ?-A. $\$ 1,000$ will pay for the coustruction of a very good pound, including the entire equipment. A pound is managed by from two to four men, while a trap requires two loats and about seven men.
Q. The trap is more expensive?-A. About the same cost as the pound, betause, although it has no stakes, yet it requires to be of very considerable size and needs anchors. I should presume that the first cost of the two would not be very different.
Q. And what is the cost of a weir?-A. It is a simple thing. The cost merely represents the lumber and labor.
Q. That is a permanent erection?-A. Yes; the others are all taken up; the traps are only kept down six weeks in the year; the pounds are down for from two months to five, and at the end of the season they use an apparatus to pull the stakes out of the water, and then pack them on shore for next season.
Q. What are the kinds of fish taken in the great lakes ?-A. There is a great variety of fish taken there, but the most important fish, as a matter of business, are the whitefish, lake herring, lake trout, wall-eyed pike, muskalonge, sturgeon, aud a variety of others. The most important, however, are whitefish, herring, and trout.
Q. What are the methods of taking them?-A. They are taken rery largely by pounds, which are constructed on a very large scale, and much more elaborate and expensive than on the coast. They are taken by gill-nets very largely, and by seines under certain circumstances. At a certain time of the year, whitefish can be taken in great quantities in seines, and kept in pounds until ready for market.
Q. Are those built and constructed to a great extent along both the Canadian and American shores?-A. I presume they are used in Canada, though I cannot say. I know they are on our own coasts. There is quite a number of these pounds worked by Canadians on the American coast.
Q. Have you any statistics respecting the lake fishery for the years 1876 and 1877 ? A. I have only partial statistics for 1877. I published the statistics in detail in my report for 1872, and I am now having statistics for 1877 collected, and will have them I suppose by the end of the season.
Q. 1872 represents but faintly the present state of things. Can you tell us how it was in 1872?-A. In 1872 the American production of fish in the great lakes was $32,250,000$ pounds. That quantity of fish was takeu, but how much more I cannot say. Those were marketed at Buffalo, Cleveland, Chicago, aud many other stations.
Q. Does that include the Canadian catch?-A. I presume there is no Canadian catch in that amount. Those are the figures as they were obtained by my agents, from the fishermen and dealers.
Q. You obtained them from the dealers in the large cities ? $-\Lambda$. Yes; and the fishS. Mis. $90-13$
ermen at the grounds. This year I have had every station on the American side of the lakes visited and canvassed.
Q. You have steady communication with and reports from the dealers?-A. I have reports only when I send specially after them, as I did in 1872 and am doing this year.
Q. How far have jou got in your inquiry this year?-A. I have only a partial return from Chicago.
Q. What does that show?-A. The total marketing of salted fish in Chicago up to the middle of October amounted to 100,000 half-barrels, with about 20,000 half-barrels expected for the rest of the season, or equal to 60,000 barrels of those fish for Chicago alone for the present year. The corresponding supply of barrels of fish in 1872 was 12,600 in Chicago, so that the Chicago trade hasincreased from 12,600 in 1872 to 60,000 in 1877, or almost fivefold- $4 \frac{8}{1}$. The total catch of fish in the lakes in 1872 was $32,250,000$ pounds. If the total catch has increased in the same ratio as that market has done at Chicago, it will give $156,000,000$ pounds of fish taken on the American side of the lakes for the present year.
Q. That, of course, camot be a matter of certainty?-A. No.
Q. What other large central markets for lake fish are there besides Chicago ?-A. Chicago and Buffalo are the most important. Cleveland takes a large quantity, but Chicago aud Buffalo control the market. Detroit takes the fish to some extent, but it is not such a convenient shipping point.
Q. Wliat proportion does that bear to the fish of Canada ?-A. I cannotsay. I may say, in regard to this point, that on the same ratio the total product of the salt fish from the lakes in the American market would be $48,546,000$ pounds. Of course, those figures are comparisons, and the estimates may be fallacious. Chicago may have a larger share of the lake trade in propertion, or may have a smaller share; other places may have crowded on it, or it may lave gained on them.
Q. You expect to have full returns?-A. I shall have them probably in the course of one month. I bave not heard from my agent who is visiting all the Canadian stations and fishing points on the American coasts.
Q. You expect to ascertain the whole catch of the lakes for 1877 ?-A. Yes, with great precision. I have here an item which may perhaps be interesting in regard to the price of those fish. The ruling prices of fish on the 15th October in Chicago, were $\$ 7.50$ per barrel for whitefish, $\$ 5.50$ for salmon tront, and $\$ 3.75$ for lake herring. Those are the prices paid to the captors for the fish by the merchants; that is, before they are handled and any profit put upon them.
Q. In regard to the increase in the consumption of fish, are any as beneficial means being adopted in Canads to maintain the supply?-A. Both Canada and the States bordering on the great lakes have striven very efficiently to prevent what would otherwise have been a great danger to the supply of an enormous amount of fish. They are hatching whitefish by artificial means to the extent of a great many millions anuually. The tro countries are not co-operating but concurring in this business, and probably this year they may introduce as many as twenty, thirty, or more millions of young fish into the waters, and that must necessarily have a very important influence on the maintenance of the fisheries. They lave not done anything yet in regard to lake herring, but whitefish, which is a much more valuable fish, is being carefnlly guarded.
Q. What States of the American Union are cugaged in the breeding of whitefish?A. Ohio, Michigan, and Wisconsin.
Q. What has been the success generally of the fish-breeding system by artificial means?-A. It is now being practiced to such an extent in Canada and the United States as to show it is a very efficient mode of preventing the diminution of fish, and even of increasing the supply. It has passed the region of experiment, and it is a positive fact as shown by the large appropriations made on both sides of the border for this purpose. It commands the respect and consideration of men of all parties, and in our own country, at least, there is no difficulty in getting all appropriations that can profitably be expended to secure the result.
Q. It extends not only to the fish of the great lakes, but to river fish ?-A. To salmon, shad, striped bass, and alewives.
Q. You find as the result that a much larger proportion of the eggs are turned into fish than when left to natural esposures and dangers?-A. An ordinary estimate in regard to shad is that under natural sparning 995 out of 1,000 eggs perish without producing a young fish able to feed for itself, and that you get five young fish which reach the stage of ability to feed for themselves; that is, after their fins are properly formed, and the fish is three-eighths of an inch in length. They have then passed the ordinary perils of infancy, and are able to take care of themselves. With artificial spawning, a fish culturist who could not bring 950 out of 1,000 eggs to that state would be considered as ignorant of his business, except some unusual circumstance that could not be controlled should come in to interfere.
Q. Can you tell the Commission how many traps and pounds there are in the sonthern part of New England, Connecticut, Rhode Island, and Massachusetts, at Martha's Vineyard, and all along to Cape Cod?-A. There are 22 traps on the south side of Cape Cod, in the bays and basins about Chatham; 9 in Vineyard Sound; 30 at Buzzard's Bay; 3 at Block Island; 30 in Narragansett Bay. This year there have been 94 traps and pounds on the southern coast of Rhode Island and Massachusetts, exclusive of Connecticut. I have not the figures for Connecticuthere. This number represents the traps and pounds from Narragansett Bay to the eastern end of Cape Cod.
Q. Have they been increasing ?-A. Yes; they are very measurably greater in number than they were when I made my first census.
Q. Can you state the number of men who are employed on those traps? -A . The number of men required to man the traps is 436 , the traps requiring seven men each, taking 301.
Q. Your agent would know each of those traps ?-A. I have the name of the owner, and the catch of the greater portion of them.
Q. Can you tell the Commission the catch of those traps and pounds:-A. I have here a table of the yield of that number of pounds in 1876.
Q. Give the result.-A. For some of the species the figures are very accurate, and for others they are estimated to some extent, but this estimate is essentially a record of the year, so far as they have reported it themselves, corrected by the personal observation of one at least of my men, who has taken a standard pound, and meted it every day himself, and enumerated the catch and the kinds of fish. The total catch for 1876 included flounders, tautog, mackerel, Spanish mackerel, pompano, butterfish, squeteague, scup, sea-bass, striped bass, bluefish, menhadens, cels, cod, alewives, and herring. The total catch for the year was $34,274,350$ pounds. That is from Narragansett Bay to the eastern end of Cape Cod, on the south coast of Massachusetts and Rhode Island only.
Q. Not the western part of Rhode Island ?-A. It includes the whole of Narragansett Bay. It does not include Long Island, where there are a great many pounds, or the most westerly part of Rhode Island.
Q. Are all these pounds of fish capable of being used, and are used for food $:-A$. There is a large catch of menhaden in that fifteen millions.
Q. How many miles of coast-line does that catch represent ?-A. Abont 250 miles of coast-line.
Q. Have you made up a calculation of the ratio of the catch per mile?-A. I have the ratio of 137,097 pounds of fish to the line or mile.
Q. And to the men ?-A. The ratio of the catch is 78,610 to each man. The total value of the weir catch at the lowest wholesale rate is $\$=47,900$; at the lowest retail rate, $\$ 1,472,438$; at a mean rate between the two, which perhaps more exactly represents the value, $\$ 1,160,168$. That, however, is the catch of that region only with traps and pounds; there is also a very large catch with hand-lines, gill-nets, and seines. This is for but 94 weirs and traps. The agrgregate catch of the entire fisbery on the south coast of Rhode Island and Massachusetts is $45,917,750$ pounds, of the
mean value of $\$ 1,875,840$, which gives a ratio of 133,671 pounds per linear mile, and equivalent to $\$ 7,504$ to the linear mile. The yield in the trap and pound fishery is over 78,610 pounds to the man, of a money value of $\$ 2,661$, being the product of each man's labor for an average not exceeding four months. That sum, to bring it to tho annual amount, will have to be multiplied by three; each man thus would prodnce $\$ 8,000$ worth a year by this mode of fishing.
Q. You do not meau to say that each man makes that amount?-A. No ; bnt that is the ratio of fish to the man. Those pounds are generally owned by at least one of the men who run them, who sometimes hire what additional assistance they require; perhaps, however, in half of the cases the owners manage the pounds and have no division of profits.
Q. Those statistics were prepared to show the amount of the fish, including the fresh fish as well as those salted?-A. None of these are salted except such of the salted menhaden as is for food. They do not enter into the returns of pickled fish. These fresh fish go almost exclusively to New York, very few to Boston.
Q. It seems strange that you should be able to know the amount of fresh fish that passes into the great city and what is caught every day. What method have you adopted to ascertain those facts?-A. The entire fresh-fish trade of New York is confined to nineteen firms which form the Wholesale Dealers' Association, to whose books and figures I have had access through and by the assistance of the large wholesale and retail dealer in New York, Mr. Blackford, who has just taken great interest in my investigations and is a very hearty coadjutor. He has succeeded in interesting those dealers, and I have just prepared a series of blanks in which I hope to have the dealers record all the catches of fish every day and give me the returns.
Q. You have no doubt from your relations with the dealers who control the market that you know substantially the catch?-A. I cannot say that I know the maximum catch on the coast, but I know I have reason to rely upon the figures of the fish that is actually marketed and comes into the hands of the wholesale men.
Q. A large amount escapes notice ?-A. Yes; all the local catch, the catch of fishermen which goes for their own benefit and is consumed on the spot ; the catch consumed in seaport towns and villages cannot be included in this enumeration.
Q. Are these caught within the treaty limits?-A. All those fish which I have mentioned are caught east of Cape May.
Q. Northeast:-A. Yes; and all caught close to the shone, by traps or pounds, usually within 100 to 300 yards of the shore, or by gill-nets and hand-lines, used by men also from the shore.
Q. The whole fishery, with pounds and nets, that goes on from the shore, and with hook and line for market fish, all comes within the treaty limits?-A. Yes, of course, the mullet and winter bluefish are south of the treaty limits; but all the fish are practically within the treaty limits.
Q. And in those fisheries the Canadians have the same rights as Americans?-A. The Canadians have the same rights there as we have. It does not include the fishery, north of Cape Cod Bay and round to Eastport.
Q. Can you make any comparison of the corresponding ratio per mile, or otherwise, of the Canadian fisheries?-A. I do not think I could, because I believe the returns of the Canadian fisheries are not so large as they should be. I do not believe the Canadian returns are in proportion to the actual catch. I therefore think a comparative statement would be fallacious, and I would rather not make it.
Q. Some Canada tables have been published of the fisheries of 1876, including, perhaps, cod and herring?-A. Those relate to all the fisheries. This estimate I submit is for weir-fishing on a limited coast.
Q. The Canadian returns show a total amount of $\$ 11,000,000$ ?-A. I think the total estimate of the Canadian fisheries for 1876 is between $\$ 11,000,000$ and $\$ 12,000,000$.
Q. If you put that of the United States at $\$ 50,000,000$, would that be a low or high estimate ?-A. I think we could figure up over $\$ 40,000,000$ withont any difficulty; that is, for all the fisheries.
Q. Including the lake fisheries ?-A. Including hake, ring, and shell-fish. Our oyster fisheries are worth $\$ 30,000,000$ a year.
Q. That is nearly double the entire Canadian return?-A. Perhaps. There are $\$ 3,000,000$ worth of oysters put in cans in Baltimore yearly.
Q. They are all included in the Canadian returns?-A. I think so. Those industries with them are not so important as ours. Our off-shore codfish, lake and river shad, salmon, herring, lobster, crab, oyster, and clam fisheries are included.
Q. Now, with reasonable legislation to limit certain methods of fishing, is there in your judgment any danger to the existence of the inshore, coast, and lake fisheries? -A. I think that the lake fisheries would have been exhausted and greatly destroyed in a comparatively limited number of years but for the timely warning taken by Canada and the United States and the measures initiated in both countries for increasing the supply.
Q. You yourself have been very much engaged on the subject of the propagation of fish?-A. Not so much in the lakes directly as in the rivers.
Q. You have shipped some of your fish by rail to California?-A. Yes
Q. I remember reading an account of one of your large collections for California being lodged in one of the rivers by a bridge breaking down, for which collection the State has never paid?-A. Yes, a car of live fish which was being sent to California.
Q. In order to get some idea of the manipulation practiced in the breeding establishments, perhaps you will state whether steam machinery is not now. used?-A. That is a device we have adopted this year for the first time in hatching shad, in which, instead of depending on the uatural current of the river usually employed, we make the trays filled with spawn move up and down in the water in a continuous alternation, aud in that way hatching millions of eggs where formerly we could only hatch thousands.
Q. You can state a case showing the result of one year's experiment.-A. We had eleven millions of shad in Susquehanna River in about three weeks in May and June.
Q. Can you state to the Commission the result of some fish operations at Potomac River?-A. The instance to which you refer is that of black bass. The black bass is not indigenous to the Potomac River, and none were in it. About two years ago half a dozen adult fish were placed in the river, and it might now be said that the Potomac, with the exception of St. John's River, Florida, is the most prolific in black bass of any stream in the United States. Over an extent of one hundreĩ miles, the fishing for black bass both for market and sport is unrivaled anywhere.
Q. Without claiming too much for our people, are not the ingenuity and industry of the American people in taking fish for consumption and other uses on the one hand, and in propagating them on the other, very great and very remarkable? How is that?-A. The methods of fish-culture as practiced in the United States, and in Canada so far as they cover the same ground, are, we think, better than those anywhere in the Old World, and both conntries hatch fish by millions where thousands are considered a large performance in Europe. The United States have a single establishment in California at which more eggs are obtained than are gathered by all European hatcheries put together. This year we have taken about six million eggs, and we have taken as many as eight millions in a year. We have an establishment noiv on Columbia River where we expect to hatch twenty millions of eggs. Three millions of egrgs, I may say, in illustration of magnitude, would fill a hay-field cart to its utmost capacity.
Q. You have an estimate of the combined fishing of the United States for the year 1876, including the Bank fishing?-A. Yes. This is a table of the product of the marine fisheries of the United States east of Cape May within the treaty limits. The total product of the inshore fisheries of that range, the fish taken by boats from the shore, that taken by seines, by traps, pouuds, \&c., amounts to $319,579,950$ pounds, of a mean value of $\$ 4,064,484$. The total fisheries of the United States, inshore and offshore within the limits, amount to $1,045,855,750$ pounds, of the value of $\$ 13,030,821$.

This is exclusive of any of the Southern fisheries, exclusive of the lake fishery, of tne whale, porpoise, and seal fishery, and of the salmon, shad, and herring fishery.

By Sir Alexander Galt:
Q. Does it include the Grand Bank fishery and that at George's?-A. Yes.

## By Mr. Dana:

Q. It is exclusive entirely of the fresh-water fish of the lakes and rivers, shad, herring, and salmon, of the whale and fur-seal, of the oysters, lobsters, and crabs. The total coast-line on which the fisheries are pursued is 1,112 miles, from Cape May to Eastport, including the islands. The ratio to the mile is 940,510 pounds, the ratio of value is $\$ 11,718$.
Q. Will you state how the returns are obtained?-A. The figures in regard to the herring, cod, and mackerel are obtained from the reports of the Bureau of Statistics of the United States for 1876, the other figures are made up from a series of tables for each kind of fish. I had an estimate prepared of the production of each fishery, and those figures have been obtained partly from witnesses who hate been here to testify, partly from the books of dealers in Gloucester, Boston, Newburyport, and elsewhere, partly and very largely from the returns I have gathered through agents I have sent out, and from circulars I have distributed. I have here an enumeration of all the different kinds of fish and qnantity caught ; it is simply a combined table from a great many sub-tables.
Q. These tables you will put into the case?-A. The tables were not made up by me, but under my direction. They are put in by the compiler under an affidavit.
Q. An examination will show they are very much in detail?-A. These tables, like all those of all nations, excepting, perhaps, those of France, are imperfect, and are short of the true figures. I have no doubt that a large percentage should be added to the tables of both nations in the New World. But they are accurate as far as they go ; if they err, it is in the direction of deficiency, not of excess.
Q. It is so ou both sides?-A. Yes.
Q. You are allowed a pretty large staff of persons to assist you as writers ?-A. I have all the clerks and assistants I require. But a great many of those returns have been made to circulars I have distributed through the Departments of the Treasury and Post-Office, and other functionaries.
Q. In view of those vast resources of the country, and the supply of sea-fish of all kinds, the improved and increased methods of catching the fish, do you think there is any one kind of fish, the entire faibure of which would prove a very serious matter, such, for instance, as the mackerel obtained in the Gulf of St. Lawrence ?-A. I do not think that the entire failure of any kind of fish would affect the supply; but this would stimulate the fishermen to renewed efforts regarding some other fish. If all the mackerel disappeared, their places would be supplied by the Southern mullet, which are more abundant than the mackerel, and which could be taken in twice the quantity, if not more. If every mackerel was destroyed the mackerel fishermen would go down to the Southern coast, and take the mullet and pickle them.
Q. Your last statement applies only to fish caught north of Cape May ?-A. Yes; it does not include any Southern fisheries at all, or any catch of the same fish in Southern waters, such as the bluefish or the mackerel.

By Mr. Foster :
Q. Is Cape May far north of the treaty line?-A. It is directly on the treaty line; this line cuts off Cape May and runs just at the north point of the coast there.

## By Mr. Dana :

Q. So that these tables do not include the opening of Delaware Bay?-A. No ; but only the fisheries on the coast of New Jersey-the outer coast of New Jersey-and from that northward.

By Mr. Thomson :
Q. All this evidence which you bave given, with reference to the mullet becoming
the fish of the future, is mere matter of speculation, is it not?-A. It is nothing more than what I judge from the excellence of this fish, the ease with which they aro taken, and the ease with which they are cured, and the extent to which it is practiced as a local fishery by the people of North Carolina and other Southern States.
Q. Has not that fishery been known for a great many years?-A. I cannot say. I have only known it since 1872 and 1873. It probably has been known as a fishery for some years.
Q. Persons have eaten these mullet twenty or thirty years ago down South?-A. Yes.
Q. And it has not progressed at all as food for Northern consumption?-A. It is not now used as a food-fish in the North; but it is a fish which occupies the place of Northern fish through a large portion of the Southern States.
Q. Do you know from definite personal knowledge of your own whether they would not rather have there one single salt mackerel than a whole barrel of mullet?-A. No, I cannot say anything about that-as to their preference.
Q. I was told that this was the case no longer ago than this morning by a lady who has lived there, and I wanted to know what your experience in this respect was.-A. I must to my shame confess that I have never tasted a salt mullet; but I propose, as soon as I go home, to get a barrel of them and I will send some to Halifax for the Commission. I hope they will make up their minds to try them ; I will do it the very first thing after I reach home, and I hope you will all try them:
Q. Is it not a fact well known to those who are engaged in the sea-fisheries that Sonthern fish, or, in other words, fish taken in warm waters, are fish that will not bear transportation to Northern climates?-A. I cannot say anything about that at all, but I know the only peculiarity about mullet is, that it is a fall and winter fishers. It is a cold-water fishery. It begins in September and lasts until November and December.
Q. You say it is a cold-water fishery, but the water is nothing like as cold there as it is in our waters during the same months?-A. No ; but the water there is about as cold in winter-if not then quite as cold-as it is here in the summer time.
Q. Could cod, from your kuowledge, live in the waters which are frequented by the mullet?-A. No ; neither could the mullet live in the waters which are frequented by the cod.
Q. Are not the mullet also a fat fish?-A. Yes; they are very fat.
Q. Is not this fact also against transportation?-A. I do not know. I am not versed in the physics of transportation.
Q. How long ago is it since you first turned your attention to the fisheries at all?A. I have done so since 1871.
Q. Previous to that time your specialty lay in another direction ?-A. No; I have always been interested in fish as a branch of zoology for a great many years. I have been a specialist in icthyology, and I described, prior to that date, hundreds of new species.
Q. Speaking about the pounds established along the New England shore, how many of them did you say were there?-A. Ninety-four.
Q. In answar to Mr. Dana you stated that this kind of fisting was open under the Washington treaty to Britisin fishermen; do you think that you are quite right in stating that?-A. Yes.
Q. Do you think that under this treaty we have a right to set down pounds upon American soil?-A. You can, subject to the consent of the owners of the shore-just the same as with respect to any fishery so prosecuted in the Dominion.
Q. Is it possible for any person to carry on the business of pound fishing, except he is a resident on the coast?-A. I see no reasoi why auy one from Canada could not go to Long Island Sound or to Vineyard Sound and prosecute this fishery.
Q. Then such a person must reside there?-A. No; very few of these pounds, and I think I may say that not one-half of the pound fishing in Bnzzard's Bay and Vineyard Sound, are prosecuted by citizees of the State,
Q. A man mustreside or remain there for the purpose of attending these pounds?A. Yes, for two or three months in the year.
Q. He must be a resident of the shore for two or three months in order to attend to these pounds?-A. Certainly; he must be on the ground, as any fishermen must be when fishing, in his boat.
Q. Practically and really this is a fishery which must be carried on by persons on the spot?-A. Of course; all fisheries must be carried on on the spot; but they need not necessarily be carried on by residents of that region or by citizens of the State. Most of these fisheries in Buzzard's Bay are carried on loy people who do not usually live on the spot.
Q. At all events, do you seriously state that under the provisions of the Washingtou treaty we have a right to put down pounds on the Americau shore?-A. I think so, with the consent of the owner of the shore.
Q. That is another question.-A. Will you kindly read the clanse of the treaty of Washingtou in this relation?
Q. It is as follows:
"It is agreed by the high contracting parties tkat, in addition to the liberties secured to the United States fishermen by the convention between Great Britain and the United States, signed at London on the 20th day of October, 1818, of taking, curing, and drying fish on certain coasts of the British North American colonies therein defined, the inhabitants of the United States shall have, in common with the subjects of Her Britannic Majesty, the liberty for the term of years mentioned in Article XXXIII of this treaty, to take fish of every kind, except shell-fish, on the sea-coasts and shores, and in the bays, harbors, and creeks of the provinces of Quebec, Nova Scotia, and New Brunswick, and the colony of Prince Edward Island, and of the several islands thereunto adjacent, without being restricted to any distance from the shore, with permission to land upon the said coasts and shores and islands, and also upon the Maglalen Islands, for the purpose of drying their nets and curing their fish."
$\Lambda$. Yes; I do not understand that any mode of fishing is prohibited nuder this treaty, unless it is so mentioned in express terms, as is the case with shad, salmon, and shell-fisb. I do not understand that any mode of fishing is prohibited to the citizens of the opposite nation, except what conflicts with the Iocal law of the conntry.
Q. Can these pounds be put down without landing to make preparations for that purpose?-A. Yes; perfectly well. It is not absolutely necessary to go on shore at all to do it; indeed I know of a great many pounds which do not touch the shore, but which are started 20,30 , or 50 yards from the shore.
Q. Do you serionsly contend that there are territorial rights given us under the Washington treaty, because you recollect that the putting down of poles in the soil is a territorial right?-A. Yes.
Q. Do I seriously understand you to contend that, under this treaty, rights are giveu either to the Americans on the one side or to the British on the other, as to doing anything on the shores of either country except landing to cure fish and dry nets ?-A. I uuderstand that if you wish to start a pound in Buzzard's Bay, you could na $^{\circ}$ to Naushon Island, owned by John M. Forbes, an eminent citizen of the United States, and with his permission you can do so ; and that you require no permission in this regard either from the State of Massachusetts or the Government of the United States; he has precisely the same right to give authority to put down a pound, I think, as has Ashby, who was a witness here and a native of Connecticut.
Q. That is to say that Mr. Forbes, who owns the land, could allow me to go and put down a pound there?-A. There is not the slightest question about it.
Q. Could he not do that before this treaty was ratified?-A. I do not know whether he could do so or not; I cannot say anything about that; that is a legal question.
Q. He could have given me that right previous to the treaty just as well as since? -A. I do not know what exact right the treaty may give in this relation; but that is no reason why this might not be done. I consider that this fishery is now perfectly open to Canadians.
Q. Has not the mode in which the rivers on the coast of Maine have been treated for a number of years back depleted the waters on that coast or on the New England coast of cod, for instance, which you say was once one of the most important fish found there?-A. The destruction of river fish, in my opinion, has had more to do with the diminution of inshore fish, such as cod and haddock-
Q. And mackerel, too?-A. No, not mackerel; this has nothing to do with them. Mackerel cannot be considered in that connection, because they do not depend on the fish of those rivers for food; but I think that such destruction has more than anything else to do with the decrease of these fish I have mentioned, inshore; and the result of the measures which are now being taken by the States of Maine and Massachusetts, in restoring the river fisheries, will bring back the original historical abundance of the sea-fish inshore.
Q. What this will do is as yet in the womb of the future; but at present are not those fisheries depleted?-A. The boat-fisheries for cod and haddock are now much inferior in yield on most parts of that coast to what was the case 50 or 100 years ago.
Q. You now allude to the coast fisheries within the three-mile limit?-A. Yes; the fisheries carried on in open boats, which go out as far as a man can comfortably go in a day and come back again.
Q. Do you wish the Commission to understand that this system of treating the rivers has destroyed the food of sea-fish, and therefore that the bait or food is not there to induce the cod to come inshore, but that this has had no effect on the fish outside of the three-mile limit?-A. I cannot say how far out the effect extends, because some distance outside of the limits there are other fishes, such as herring and mackerel, and food of various kinds which they can get at.
$Q$. Is it possible that the inshore fisheries can be either destroyed or very considerably depleted within the three-mile limit and yet leave the fisheries just outside of this limit as good as ever?-A. I think so.
Q. And undiminished?-A. I think so, for the very reason that these fish naturally keep off from the shore. They are off-shore fish, and we find them largely inshore at certain seasons of the year because they then follow the fish that are coming inshore; and if you had an cnormous number of shad and alewives and salmon, and especially of alewives and shad inshore, that involves their pursuit by an enormous number of predatory fish, such as cod and haddock and pollock, just exactly as the same fish follow the herring and caplin on the coasts of the Dominion and Newfoundland.
Q. Then I understand you to mean that, although the food which these fishes prey upon may be destroyed by reason of the depletion of the rivers, this will only affect the fishing within three miles of the shore and have no effect on the fishing beyond this limit?-A. I cannot say how far it will have effect.
Q. Will this effect stop short of the three-mile limit p-A. I think there are a great many concurrent agencies which affect the fish supply at different seasons on the different parts of the coast, and that while the inshore fishing of herring and shad, or other incoming fish, regulates that to some extent, it does not cover the whole ground.
Q. I want a direct answer : Are you able to state that the destruction of bait, by reasou of the bad treatment of these rivers, only affects the fishing along the coast to the extent of three miles from it?-A. I cannot say that; I cannot say how far such effect extends, and nobody can do so.
Q. It is reasonable to suppose that it extends for a considerable distance farther than three miles from the coast?--A. That I cannot say.
Q. Would this not more likely drive the fish to other coasts where the rivers are not so treated?-A. Fish certainly have to go where they can get food, and if they cannot procure it on one spot they have to go to some other spot for it.
Q. Is it not probable that they will go where the rivers are not so badly treated ?A. This depends on how far cod and haddock will migrate, under any circumstances. If they leave the shore, but can find an ample supply of food on George's Bank or on Nantucket Shoals, they will probably stay there.
Q. Do cod migrate at all? Is this known for a certainty to be the case ?-A. It is not certain that they have such migrations as we ascribe to the bluefish and mackerel; whether they traverse a mile of sea-bottom in search of food, or whether they go 100 miles for it, under any circumstances, I cannot say.
Q. I understood you to say yesterday that you could not trace their migrations at all ?-A. No, I cannot.
Q. And do you not pretend to say that they do migrate? I rather understood you to say also that mackerel do not migrate ?-A. They migrate, but they do not sweep along the coast-at least I do not think they do so, as was formerly supposed, for very many miles; but rather come direct from their winter grounds inshore.
Q. I understood you to say your theory at present was that there was a vast body of mackerel which, forming one wing of their army, passed along the American coast; and that another wing directed their course into the gulf $\%-A$. Yes.
Q. I see that in the answer of the United States, page 10, the following language is used:
"The migration of mackerel in the spring begins on the Atlantic coast from a point as far south as Cape Hatteras. The first-comers reach Provincetown, Mass., about May 10. Here they begin to scatter, and they are found during the entire season along the New England coast.
"Whatever may be the theories of others on the subject," says Professor Baird "the American mackerel-fisher knows perfectly well that in spring, about May, he will find the schools of mackerel off Cape Hatteras, and that he can follow them northward, day by day, as they move in countless myriads on to the coast of Maine, of Nova Scotia, and into the Gulf of St. Lawrence. They may be occasionally lost sight of by their sinking below the surface; but they are sure to present themselves, shortly after, to those who look for them farther north and east."

Do jou now adhere to that statement?-A. I think that was not the most philosophical expression on that subject. My views in regard to the proper theory concerning mackerel have been modified since then, to the extent I have alleged.
Q. In fact, if I correctly understood you yesterday, you rather inclined to the theory which has been started here, that mackerel are not a migratory fish at all, but hibernate in the mud?-A. I cannot precisely say; but the evidence is quite strong in favor of hibernation of some kind, though $I$ do not consider the case proven in this respect; at the same time I do not consider it philosophical to refuse to countenance its possibility.
Q. Will you tell me how, if possible, it could be otherwise, if it is true that the mackerel have, in the spring, scales over their eyes, as has been described by witnesses here, and, as I understand, you admit?-A. I cannot say that this is the case ; I have never seen it.
Q. If these scales are on their eyes they could not possibly do otherwise than hibernate ?-A. I cannot say that; I am not a mackerel, and I could not tell what they do or what they do not do.
Q. Is it certain that any fish, that you are aware of, hibernate in the mud?-A. That is not certain, but it is believed to be the case.
Q. Do you know of any fish which certainly does hibernate?-A. The eel does.
Q. Is its eyes protected against the mud by scales?-A. This is not the case so far as I know. It has not been noted or reported.
Q. How has it become a theory if it has never been noted? Is it the want of experience with reference to mackerel that you do not know whether scales are found over its eyes or not?-A. I have never caught mackerel in the critical period of the year when they are said to have scales over their eyes; but a specimen which I have preserved in alcohol did have scales over its eyes, though the action of the alcohol on the cornea of the eye always tends to make it opaque and destroys its transparency.
Q. Is there any period of the year when mackerel must be prevented frcm seeing, as far as you can judge from the specimen which you possess?-A. No ; I cannot say that,
Q. What are these scales for?-A. I cannot say. The theory of the fishermen, however, is that it is to curb the roving habits of the mackerel, and make it more ready to stay in the mud; and that otherwise they would not want to stay there; that is the hypothesis of the fishermen, and I give it for what it is worth.
Q. You do not assent to it $9-A$. No ; it is not proven to be true.
Q. And it is not disproven?-A. All that is proven in this respect is, that in winter we do not see the mackerel; they do not then school on the surface, nor do they go to the West Indies, or to Bermuda, or to Florida; nor do they then appear on the surface anywhere as far as the testimony has gone.
Q. With reference to the inshore fisheries in the State of Maine, and in the States of New England, generally, are they depleted or not?-A. The boat-fisheries there are not what they were lifty or one hundred years ago ; that, I think, I am perfectly safe in saying; but whether there has been any decrease in them during the past few years I cannot say.
Q. I now quote from your own report, part second, for the years 1872 and 1873 , page xi ; it is headed "Conclusions as to decrease of cod-fisheries on the New England Coast," and it states :
"Of all the various fisheries formerly prosecuted directly off the coast of New England, north of Cape Cod, the depreciation in that of the cod appears to be of the greatest economical importance. Formerly the waters abounded in this fish to such an extent that a large supply could be taken throughout almost tine entire year along the banks, especially in the vicinity of the mouths of the large rivers. At that time the tidal streams were almost choked up with the alewives, shad, and salmon that were struggling for entrance in the spring, and which filled the adjacent waters throughout a great part of the jear.
"As is well known, the erection of impassable dams across the streams, by preventing the ascent of the species just mentioned to their spawning-grounds, produced a very great diminution, and almost the extermination, of their numbers, so that whereas in former years a large trade could be carried on during the proper season, now nothing would be gained by the effort."

On page xii you say this:
"It would, therefore, appear that while the river-fisheries have been depreciated or destroyed by means of dams or by exhaustive fishing, the codfish have disappeared in equal ratio. This is not, however, for the same reason, as they are taken only with the line, at a rate more than compensated by the natural fecundity of the fish. I am well satisfied, however, that there is a relation of cause and effect between the present and past condition of the troo series of fish ; and in this I am supported by the opinion of Capt. U. S. Treat, of Eastport, by whom, indeed, the idea was first suggested to me. Captain Treat is a successful fisherman, and dealer in fish on a very large scale, and at the same time a gentleman of very great intelligence and knowledge of the many details connected with the natural history of our coast-fishes, and in this respect worthily representing Captain Atwood, of Provincetown. It is to Captain Treat that we owe many experiments on the reproduction of alewives in ponds, and the possibility of keeping salmon in fresh waters for a period of years. The general conclusions which have been reached, as the result of repeated conversations with Captain Treat and other fishermen on the coast, incline me to believe that the reduction in the cod and other fisheries, so as to become practically a failure, is due to the decrease off our coast in the quantity, primarily, of alewives, and secondarily of shad and salmon, more than to any other cause.
"It is well known to the old residents of Eastport that from thirty to fifty years ago cod could be taken in abundance in Passamaquoddy Bay and off Eastport, where only stragglers are now to be caught. The same is the case at the mouth of the Penobscot River and at other points along the coast, where once the fish came close in to the shore, and were readily captured with the hook throughout the greater part of the year."
A. Yens
Q. Do you dissent now from that opinion?-A. No; I used that as an impressire lesson to the State legislature to induce them to pass the measures necessary to restore these river fisheries, which they are now doing very rapidly.
Q. Where is Capt. U. S. Treat, of Eastport, now?-A. In Japan, teaching the Japanese how to catch and cure fish.
Q. On page xiv of this report you say :
"Whatever may be the importance of increasing the supply of salmon, it is trifling compared with the restoration of our exhausted cod-fisheries; and should these be brought back to their original condition, we shall find within a short time an increase of wealth on our shores, the amount of which it would be difficult to calculate. Not only would the general prosperity of the adjacent States be enhanced, bat in the increased number of vessels built, in the large number of men induced to devote themselves to maritime pursuits, and in the general stimulus to everything connected with the business of the sea-faring profession, we should be recovering, in a great measure, from that loss which has been the source of so much lamentation to political economists and well-wishers of the country."

That you still adhere to ?-A. Certainly. I made that report as impressive as I conld in order to produce the effect desired, which was to cause the legislature to pass a law in this regard, and it has had that effect. They have passed such laws, and I hope that this evil will be remedied in a reasonable number of years.
Q. It is not remedied yet?-A. No.
Q. It takes a number of years to do that ?-A. I can give an instance where it has had such effect, if you like to have it. In Massachusetts the most has been done for the restoration of alewives and shad in the Merrimac River; and the shore fisheries there have now increased in a very marked degree. At the present time it is perfectly possible for a man to go out in a boat from the city of Newburyport and catch 4,000 pounds of codfish and bring them back the same night. This is the only river in Massachusetts in which very great efforts have been made to restore these river fisheries; and it is now possible to capture these fish in much greater quantities than was the case ten years ago; and this I ascribe to the action of the State government with regard to the restoration of river fish.
Q. How many pounds did you mention?-A. 4,000.
Q. Caught by a single man ?-A. Two men will do it; a man with a trawl and an assistant will go out in an open boat in the morning from the city of Newburyport and come back at night, or go out at night and return in the morning, and in the mean time take 4,000 pounds of cod. That is the only point along there at which, at that distance from the shore, I know that it is possible to catch cod in such numbers.
Q. Must not a great lapse of time, or at least a very considerable lapse of time, occur before the fisheries destroyed, as you have here described, can be restored by the process you speak of?-A. I think that this depends on the amount of time necessary for the restoration of the fish, which run ont to sea from the rivers. I think that if this year there are no such fish as alewives, \&c., to run into these rivers, and that if next year a great army was to so run in, concurrent with that army, an army of cod and other fish would be there to prey upon them.
Q. I see that in your Report for 1872 and 1873, referring to the lake fish, you say on page lxxxi:
"The restoration of food-fishes to localities originally tenanted by them, or their transfer to new waters, is, however, a question of time; and in the immense extent of our river and lake systems, many years must necessarily elapse before the work can be accomplished."
A. That is a great number of years, certainly; but that does not so mach refer to any particular river as to the aggregate rivers and lakes scattered over the whole body of the United States.
Q. You say here that "many years must necessarily elapse" B-A. Certainly.
Q. When did you commence this work?-A. The actual process of artificial propagation began, under my direction, in 1872.
Q. Do you refer to any term of years? I suppose that you mean a period of 10,12 or 14 years.-A. It might be more. The time of course depends on the expenditure involved, and the concurrence of suitable legislation to protect the fish, and many other points.
Q. How many fish-breeding establishments have you in the States?-A. Nearly every State in the Union has now a series of fish commissioners, whose business it is to propagate fish within their borders.
Q. There is only one in each State ?-A. There is one State establishment; and a certain number of private establishments in each, founded for the purpose of gain.
Q. Do you know how many there are in Canada?-A. I know there are a great many. Canada is doing most admirably in this respect.
Q. And very much more in proportion than the United States?-A. No; I think not. I think by far less in proportion.
Q. In proportion ?-A. Yes.
Q. To population?-A. I do not say according to population. I shall qualify that statement by saying that what is done in Canada is done on a much less scale of magnitude than is the case in the United States. I mean that the aggregate of artificial propagation in the United States is much greater than the aggregate in Canada; but I would not take a ratio. I think that both Canada and the United States are doing as much as they can in this regard, in the time that has been allowed for the purpose.
Q. I suppose that Canada is doing a very large work in this counection?-A. She is doing most admirably-yes.
Q. She is expending large sums of money on it ?-A. Certainly. She is doing most admirably. I am very happy to say that Canada and the United States are working concurrently in a great many directions in the line of artificial fish-culture.
Q. Do you know the Canadian establishment on Detroit River?-A. Yes.
Q. Is it doing a large business?-A. I dou't know what it is doing this year ; but last year I understand that it did a very large business.
Q. It then hatched $10,000,000$ eggs ?-A. Yes, very likely.
Q. You say that cod cannot live except in cold water?-A. The cod is an inhabitant of the colder waters.
Q. Are you aware whether or not the Gulf Stream during the summer mouths swings in at all more toward the American coast?-A. It does.
Q. For how many miles?-A. I cannot say.
Q. Would that have any effect in driving the cod away from the Americau shores? -A. No; not the slightest.
Q. You think not?-A. Yes; it has not the slightest effect on them. If you go down to a certain depth in the ocean, in the tropics or anywh ere else, you will find the water cold enough for cod; and there is nothing to prevent the cod being as abundant in tropical waters-say off Brazil or the West Indies-as anywhere else; as far as temperature is concerned, it is cold enough there for them at a certain depth.
Q. Have they ever been caught there?-A. Not that I know of; but the water there is cold enough for them.
Q. Is it not very venturesome to state that there is nothing to prevent them staying there?-A. They may be there, but they have not been caught there. Nobody has fished at those great depths, for you have got to go down from 6,000 to 15,000 and 20,000 feet to find that temperature in tropical seas.
Q. Have you the slightest idea as to what sort of animals reside down there ?-A. Yes. We have a very good knowledge of such species as can be taken up by the trawling line and dredge from those depths; and we know that an ample supply of food suitable for cod is to be found there.
Q. Has any beam-trawl or dredge ever taken cod in those regions?-A. No; you do not catch cod with small trawls any more than you can so catch whales.

By Sir Alexander Galt:
Q. Would not the temperature in those waters interfere with the spawn of the
cod, as this spawn floats?-A. I think that the water there might be too warm for the development of codfish eggs in the abstract; but the effect would be to make them hatch out more rapidly than would be the case in cold water. Of course it is a very serious question to decide whether, with the present constitution of the cod, its eggs would develop in warm water, though whether it might not evol ute and developinto a warm-water cod I do not know.

- By Mr. Thonson :
Q. On page lx of your Report for 1872 and 1873, you use the following language:
"It is in another still more important connection that we should consider the alewife. It is well known that within the last thirty or forty years the fisheries of cod, haddock, and hake along our coasts have measurably diminished, and in some places ceased entirely. Enough may be taken for local consumption, but localities which formerly furnished the material for an exteusive commerce in dried fish have been entirely abandoned. Various causes have been assigned for this condition of things, and, among others, the alleged diminutiou of the sea-herring. After a careful consideration of the subject, however, I am strongly inclined to believe that it is due to the diminution, aud, in many instances, to the extermination of the alewives. As already remarked, before the construction of dams in the tidal rivers the alewife was found in incredible numbers along our coast, probably remaining uot far from shore, excepting when moving up into the fresh water, and, at any rate, spending a considable interval off the mouths of the rivers either at the time of their journey upward or on their return. The young, too, after returning from the ocean, usually swarmed in the same localities, and thus furnished for the larger species a bait such as is not supplied at present by any other fish, the sea-herring not excepted. We know that the alewife is particularly attractive as a bait to other fishes, especially for cod and mackerel."
A. Do I say mackerel?
Q. Yes.-A. That is an inadvertence. I do not think that the alewife is a bait for mackerel.
Q. You say :
"We know that the alewife is particularly attractive as a bait to other fishes, especially for cod and mackerel."
A. Well, I should not hare said that.
Q. The alewives are the same as the fish we call gaspereaux in Now Brunswick:A. Yes.
Q. You further say:
"Alewives enter the streams on the sonth coast of New England before the arrival of the bluefish; but the latter devote themselves with great assiduity to the capture of the young as they come out from their breeding-ponds. The outlet of an alewife pond is always a capital place for the blucfish, and as they come very near the shore in such localities, they can be canght there with the line by what is called 'heaving and hauling,' or throwing a squid from the shore, and hauling it in with the utmost rapidity.
"The coincidence, at least, in the erection of the dams, and the enormons diminution in the number of the alewives, and the decadence of the inshore cod-fishery, is certainly very remarkable. It is probalble, also, that the mackerel fisheries have suffered in the same way, as these fish find in the young menhaden and alewives an attractive bait."

You see you say that twice.-A. That is an inadvertence,
Q. You say:
"It is probable also that the mackerel fisberies have suffered in the same way, as these fish find in the young menhaden and alewives an attractive bait." •
A. This is the case on the northern coast probably.
Q. It is hardly an inadvertence?-A. It is an inadvertence. It is a conclusion that is not justified by the fact.
Q. Then you dissent from that opinion now ?-A. Yes; I do not consider that it has a bearing on the mackerel question.
Q. All that goes to show that all these speculative opinions are entitled to little weight; you see that you have changed your opinion in this respect?-A. Certainly; as the data vary the conclusions also vary.
Q. I suppose you wiil admit that there is not the slightest reasoin why within the next three years you may not have come back to the same opinion which you now répudiate, or have then formed opinions totally different from those which you now express before the Commission?-A. I cannot say; that will depend entirely on the facts as they come.
Q. After all, this is all the purest theory?-A. It is an hypothesis; it is not a theory.
Q. Well, it is an hypothesis?-A. It is not a theory nutil it is absolutely certified by the facts.
Q. Then, of course, an bypothesis is more vague than a theory. You gave in a mass of figures just now, which you state were made up by your assistant, based upon information which you have got from some of the witnesses here, in answer to questions put them, and what not-have I understood you rightly?-A. Partly.
Q. And your assistant has verified them by his affidavit-have I uuderstood you rightly ?-A. Yes; they are verified by the aftidavit of the assistant who made them up.

- Q. What sort of an affidavit is it? Does he state that these figures are correct, or simply that they are there?-A. He certifies that he has compiled them and what they represent.
Q. In point of fact you cannot yourself swear that this statement is correct?-A. I cannot swear that; but it is made up from the statistics of the Fishery Commission and investigations.
Q. Even to that I do not think you can swear ?-A. No more than Mr. Whitcher or Mr. Smith can swear to the correctness of Canadian statistics.
Q. You directed it to be made up by one of your assistants ?-A. Yes.
Q. And you do not know whether it has been made up correctly or not?-A. No more than any man can swear to the accuracy of his assistant's work.
Q. As a fact, you have no personal knowledge as to its correctness ?-A. Certainly not.
Q. You directed it to be done ?-A. Precisely; it stands on the same footing asany table made up by a clerk.
Q. Did you directly take into consideration statements made by witnesses here?A. I have very largely taken into consideration inquiries made by Mr. Goode, my assistant, of witnesses here, according to the same definite plan which I have adopted elsewhere.
Q. Inasmuch as we have not the results of what these'inquiries were, and since the Commissioners have not them before them, none of these inquiries which you made, and none of the information which you thus obtained, are before us, the papers being locked up in your desk.-A. They are in the archives of the Fishery Commission.
Q. Then we have no means of testing the accuracy of those figures?-A. No; not the slightest. They are there for what they are worth. I present them with the affidavit which was made by my assistant.
Q. You admit that you have not furnished us with any means of attesting their ac-curacy?-A. You must take them for what they are worth. They are of the same value as any table published by the Fishery Department of Canada or the United States or anywhere else.
Q. If I rightly understood your answer to Mr. Dana yesterday, you rather think that the throwing over of offal amounts to nothing?-A. No ; I do not think that it does amount to anything.
Q. I thought you gave a rather interesting description of sea-fleas.-A. I merely say that it is a question whether it is or was injurious to the food of fishes on the coast, as has been maintained. It is a question as to which we have no definite proof that it injures the fishes; and I am inclined to believe that it has more of a local and immediate effect on the fish than it does injury to the fish.
Q. Would it not necessarily injure the spawn in its neighborhood?-A. No.
Q. You think not?-A. No.
Q. Not if thrown over on the top of spawn?-A. No ; you might throw it over all day long and try to injure a load of floating spawn and you could not do it. Nobody has ever suggested that gurry affects the spawn. By spawn I suppose you mean eggs?
Q. Yes.-A. No; nothing of the kind is to be thought of.
Q. You quoted yesterday Mr. Whiteaves's report. He says on page 11:
"In case Americans are allowed to fish in Canadian waters, the custom (said to be practiced by them) of splitting the fish caught at sea, aud throwing the offal over. board, on the fishing-ground, should not be permitted."
A. I do not think that I quoted Mr. Whiteaves on that point, but with regard to the spawning-time of mackerel in the bay.
Q. In your report of 1872 and 1873 Mr . Milner is your assistant?-A. Yes.
Q. On page 19 I find this language used:
"Throwing offal on the fishing-grounds.-It is the uniform testimony of all fishermeu that throwing offal or dead fish in the vicinity of the fishing-grounds is offensive to the whitefish, and drives him away. The whitefish is peculiarly cleanly in its instincts, and has an aversion for muddy or foul water of any description. Most fishermen regard their own interest sufficiently to be careful in this particular, while many careless and shiftless men injure themselves and others by dumping offal and dead fish anywhere in the lake where they find it convenient, reducing the catch in the vicinity for several months."
A. Yes.
Q. It is also stated:
"Unsalable fishes are generally thrown overboard in the vicinity of the nets."
You do not dissent from that opinion?-A. No ; not at all. The cases, however, are totally different. There are no scavengers in fresh water as there are in the sea; there are no sea-fleas, or sculpin, or lobsters, or anything of the kind, to clean up offal in fresh water, as is the case in the ocean.
Q. In your opinion, are purse-seiners proper or improper agents for taking fish?A. I have not formed any opinion on the sulyject; but I am inclined to think, however, that this is not a destructive mode of fishing. They destroy a good many fish, but I do not think that they diminish the absolute number of fish in the sea.


## By Sir Alexander Galt :

Q. Will you repeat that?-A. I say I do not think that they affect the total number of the fish in the sea materially, although they destroy and waste a great many fish. If you will permit me, I would state my reason for this view ; it is this: Every school of mackerel has a large body of predatory fish attendant upon it, such as dogfish, sharks, and other species, which are bound to have so many fish a day. They will eat their one, two, or three fish a day, and if they cannot get them dead they will eat them alive; therefore, if a large body of young mackerel is thrown out of these purseseines, besides mackerel which are rejected and worthless, the predatory fish that are attendant upon the mackerel will eat these dead fish, and if they do not find them dead they will take them alive; so it does not affect the number of fish in the sea.

## By Mr. Thomson :

Q. Are you positive about that? Do you undertake to say that the predaceous fishes will, in preference to capturing live fish, which they can easily do, be content with dead ones?-A. I think that is very likely.
Q. There, there-you say "very likely"?-A. I cannot say. I am not a predaceous
fish; but I would prefer a live fish. I am pretty sure, however, that these fish are quite ready to be saved the trouble of taking their prey. It is on precisely the same principle that bait-fish, such as capelin and herring, are placed on hooks and cast overboard to catch the same fish, which follow and eat them in the natural way. I think this may be inferred from that.
Q. You have something to do with the Annual Record of Science and Industry, I believe?-A. Something-yes.
Q. Do you agree with the language used in an article contained on page 473 of this journal for 187\%?-A. I did not write that, but I published it.
Q. Have you in any article stated that you dissent from it?-A. No. It is not my business to do so. That article merely reflects the opinion of the writer. I would be very sorry to believe one-half of what I publish in that periodical; but it expresses the progress of belief and science, and I take it accordingly.
Q. It is a matter of speculation whether dead fish are eaten, as you say, by predaceous iishes; this is mere theory?-A. I have no doubt that they are so eaten.

By Mr. Whiteway :
Q. You have stated that the largest quantity of codish taken in the shortest possi.ble time was in the vicinity of the Lofoden Islands?-A. Yes.
Q. You said that something like $25,000,000$ were taken by 12,000 people ?-A. Yes.
Q. In a very short time-in the course of three months?-A. Yes; and in a very small space.
Q. Where did you get your statistics from?-A. From a report of the Norwegian Government.
Q. For what year?-A. 1868, I think.
Q. Whose report was it?-A. It is an extremely hard jaw-breaking title; it is an abstract, prepared by Hermann Baars, of Bergen, Norway. It was an article prepared by him for presentation at the Paris Exhibition.
Q. You have not seen reports published since that time?-A. Oh, yes; I have them much later.
Q. Did these later statistics correspond with the former as regards the quantity ? A. I know that the capture of cod in Lofoden Islands in 1876 amounted to $21,000,000$ or $22,000,000$; I have the figures here.
Q. Are you aware what quantity of codish is caught on the coast of Newfound-jand?-A. No. I have been earnestly trying to get the statistics of Newfoundland in this respect, but I have not been able to obtain them as yet. I hope you will send them to me.
Q. You are not aware whether it is an inshore or deep-sea fishery on that island?A. No. I know nothing about it.
Q. You say that fish are dried and used as food for cattle in these islands and in Norway?-A. Yes.
Q. What sort of cattle use it?-A. Horses, oxen, and cows; they eat it with great avidity.
Q. What portion do they make use of?-A. Any part, bat more generally the heads, which are offal; they make most admirable nutriment.
Q. Yon say that a great many nations dress very largely in the skins of cod and salmon?-A. Yes.
Q. Will you kindly tell me what nations these are ? $-\mathbf{A}$. They are Tchulstchi, the Aleutian Islanders, the Norton Sound Esquimaux, other natives of Alaska, and a few others.
Q. You say, further, that the most extensive resorts of cod are the Grand Bank and George's Bank; can you tell me the quantity of fish taken on these banks?-A. No ; I have not made any investigation or tabulation in this regard.
Q. Then sou really base that opinion upon no data?-A. I merely base it on my general impression on that subject. I merely speak of these as being the most prominent particular banks and localities which the cod frequent. In speaking of the S. Mis. $90-14$
islands and other places in this connection, I mentioned banks off the coast of Labrador, but I did not refer to the great sweep of northern waters where the cod is found diffused. I referred more particularly to the places that are known and publicly mentioned. What is not published in this regard I know nothing about.
Q. With reference to Labrador, can you answer whether the fish are taken inshorethat is, within the three-mile range, or on the Banks off-shore ?-A. I am told, but I cannot say with what certainty, that at certain seasons of the year the cod are there taken in great quantities inshore from boats, but that the great bodies of the fish are on the Banks at some distance from the shore.
Q. Are these Banks fished?-A. That I cannot tell.
Q. Where are these Banks?-A. As far as I can learn, they extend at a distance of some 15 or 25 miles, perhaps, along almost the entire length of the coast of Labrador.
Q. Will you pledge yourself to that statement?-A. No ; I know nothing about it.
Q. From whom did you get this information ?-A. From the published writings of Professor Hind.
Q. I think he indicates in these writings the exact position of these Banks?-A. I think that probably he does. I may have located them too near or too far from the shore. I speak merely in general terms.
Q. I think that this report only indicates the existence of banks on certain portions of the coast of Labrador ?-A. Perhaps I may have made them too extensive.
Q. You have referred to a bank on which codfish are taken, off Cape Cod, abont 20 miles, I think, in length; can you give me any information as regards the annual product of this bank ?-A. I think you will find that given in Captain Atwood's testimony.
Q. Can you give it?-A. No; I know nothing of it, except from Captain Atwood.
Q. Is any report made in any public office in Massachusetts or the States, from which you can gather information as regards the exact quantity of fish taken outside of the three-mile limit, and inside of this limit?-A. No.
Q. In other words, is a report concerning the quantity of fish taken within and without this limit published?-A. No.
Q. Is nothing published in this relation?-A. It is my business, or my self-imposed mission to collect that information, and I am doing so as fast as I can. I hope that my next report will contain a great deal of this and other useful information.
Q. How many vessels are engaged in this fishery off Cape Cod?-A. I cannot tell you; but I have a great deal of information on this subject in my records, which, however, I do not carry with me, and I do not trust my memory fur anything.
Q. I think you referred to the herring fishery as yielding a very great quantity of fish on the American coast ?-A. Yes.
Q. On the coast of the United States ?-A. Yes.
Q. And the coast of Massachusetts?-A. Yes.
Q. Is that yield so great as you mention, during the winter?-A. It is during both spring and fall. These fish are found all along the coast in the spring.
Q. During what months is this the case in the spring?-A. In April and May.
Q. And in winter:-A. I do not think that they are caught in winter north of Cape Cod ; I do not think so; but so little is known of the biology and the natural history of herring that this might be the fact, and yet it be not known-I mean not known to the ordinary pullic. It was entirely new to me five years ago that herring spawned on the Massachusetts coast at all.
Q. Then there is no winter herring-fishery there?-A. The winter fishery is a very small one; it is carried on around Block Island and Narragansett Bay, but whether capabilities exist for prosecuting a winter fishery elsewhere on the coast I cannot say.
Q. How do you account then for the fact that such a number of your vessels come to the southern coast of Newfoundland for herring, if they are so prolific on your own coast?-A. That I cannot say. Why trade follows one line or direction rather than
another I do not know. They may not have appliances for catching them ou our coast, and they may not have the means of taking them in such quantities as is possible at Newfoundland; but it is certainly a notorious fact that herring are much more abundant on the coast of Newfoundland than they are on the coast of the United States; though whether the herring that are wanted on the United States coast could or could not be had in the United States, I cannot say ; but I do think that herring are vastly more abundant in Newfoundland and the Bay of Fundy than they are farther south.
Q. That accounts, then, for the number of your vessels that come to Newfoundland for them, no doubt. Give us the number of miles of United States coast along which fishing rights have been conceded to British subjects under the Washington Treaty?A. 1,112 .
Q. Can you give the extent of the Dominion coast, including that of Newfoundland ?-A. Yes; the coast line of the Province of Canada is 810 miles; of New Branswick, 1,000 miles; of Nova Scotia, 390 miles; of Newfoundland, 1,650 miles; of Grand Manan, 30 miles; of Prince Edward Island, 285 milcs; of the Magdalen Islands, 85 miles; and of Anticosti Island, 265 miles; the total length of the coast line of Eastern British North Amorica is 4,515 miles, four times that of the United States east of Cape Cod.

## By Mr. Dana :

Q. Following the bays?-A. Following the large bays, but omitting the smaller ones.

## By Mr. Whiteway :

Q. In jour statement regarding the annual product of the Dominion fisheries, rou lhave not included the Newfoundland fisheries?-A. No ; I have only that of the Dominion of Canada.
Q. Are you aware that something like $1,500,000$ or $1,600,000$ quintals of fish are caught in Newfoundland alone ?-A. I think that is very probable, but I do not know.
Q. Besides the large herring fishery?-A. I am very anxious to know exactly what the Newfoundland catch is; I have made inquiries respecting it; but I havenot been able to obtain any such public data.
Q. You say that the depletion of the codfish on the coast has been the result of the depletion of the river fisheries on the coast of Massachusetts?-A. I gave that as presumably one reason for it. It is probably a very important element in the fishery.
Q. Then any act which may prove injurious to the bay fisheries on the coast would seriously affect the inshore fisheries by removing that which induced the cod to go on the coast?-A. Yes; it would have its effect, I think. Possibly a very decided effect.
Q. As a naturalist I would ask you to answer one or two questions. What do you mean by the term "fish"? Can you give us a definition?-A. Well, a fish is a coldblooded vertebrate, having a particular mode of respiration. It breathes through gills instead of lungs, and it has a heart of a particular construction.
Q. I will read the definition from a book published in New York by Harper Brothers, the Encyclopedia of Commerce. I presume that is an authority that can be relied upon [reads definition]. I suppose that is a definition that can be relied upon?-A. No ; I think it cannot be relied upon at all. That would make anything that floats in the water a fish. So that the seal would be a fish and the otter would be a fish.
Q. This is the Encyclopedia of Commerce. I suppose it is reliable. I mean as an encyclopedia of commerce?-A. Well, I don't know. I don't think it is quoted very much. It is probably a very good compilation. There are a great many books of that class that one has occasion to look at without feeling that they are perfectly accurate.
Q. Do you consider the seal a fish ?-A. Not at all.
Q. Why?-A. Becanse it is a warm-blooded mammul. It breathes by means of lungs, \&c.
Q. Is not the whale the same?-A. The whale is no more a frsh than the seal.
Q. It is a mammal; it is a swimmer?-A. If you were to fall overloard in midocean you would be a swimmer.
Q. How is it with the walrus?-A. It is a mammal, not a fish.
Q. So is the whale is it not?-A. Yes.
Q. How do you draw a distinction between the whale and the seal; the one you consider a fish and the other not?-A. I don't consider the seal a fish.
Q. I thought you did. Now, don't you consider it a very. unr easonable action on the part of the United States, the refusal to admit seal-oil as fish-oil. Perhaps you don't care to answer ?-A. I don't object to answer. Iam not a politician. I am perfectly willing to answer the question. I know that the $p$ enguin is considered a fish, commercially-that is, that penguin-oil is received in England as fish-oil.
Q. That is a very important matter. I should like very much to have it taken down that, as a commercial oil, the penguin-oil is considered a fish-oil ?-A. It is in London.
Q. Is it not in the United States?-A. No; but as far as I am informed the oil is classified in the London custom-house and trade returns as a fish-oil.
Q. What is the quintal in weight?-A. 112 pounds in some localities, and in some 100 pounds.
Q. It was given here as 114 pounds? $-\Lambda$. Well, it might be 114 pounds. It is simply my impression that the quintal is considered 112 pounds. I would not be positive. A practical fish-dealer would give more positive information than I could.

## By Mr. Dana:

Q. Here, on the 148 th page of British Testimony we have a letter from Governor Hill to the Earl of Kimberly, taken from the journals of the legislative council in Newfoundland. It appears here, in the evidence of Judge Benn ett, as follows:

## Government House, <br> Newfoundland, July 4, 1871.

My Lond : I have the honor to inform your lordship that on the 1st instant I sent a telegram to your lordship, as follows, viz: "In reference to terms of Washingtou treaty, it is understood that fish-oil includes seal-oil. Explanation will oblige this Government." And on the $3 d$ instant received the following reply, viz: "I am of opinion that fish-oil does not include seal-oil.-Earl Kimberly."

I have, \&c.,
STEPHEN J. HILL.
The Right Honorable the Earl of Knmberly,

$$
\oint c ., \oint c ., f c
$$

Now yon were asked a question what you thought of the exclusion of that oil. Mr. Whiteway. He didn't answer it.
Mr. Dana. You withdrew it, didn't you? Perhaps this letter occurred to your mind.

The President. We suggested that the question had better be withdrawn.

## By Sir Alexander Galt :

Q. Before you leave, there are one or two questions I would like to ask you. We have been told by a witness-I think it was a pilot-that there was a difference in the appearance of the codfish that was caught in certain waters. I would like to ask if you have noticed that yourself?-A. Yes, there are a great many varieties of cod. They are, as far as I believe, one species, but they assume peculiar varieties, depending upon the particular bottom they are found on and the food they consume. Experts will tell you from what Banks particular fish are taken. For instance, inshore cod are nearly all red, while outside cond are gray. Some have larger heads, some smaller, some have stout shoulders, and some are sleuder, but all these differences are local and do not involve a distinction of species.
Q. Would not that, in your opinion, confirm the theory that the cod is not really a migratory fish?-A. It would. That is very good evidence that there is no great migration.
Q. There is another question I wished to ask you. You gave us a very interesting account of a company that has been formed for the purpose of catching these predaceous fish, and you seemed to think it would have the effect of materially diminishing their numbers. Well, if human means can reduce the predaceous fish, would sou not think that the appliances that are being used by fishermen must be diminishing the edible fish? -A. I don't think that the amount captured by man has any appreciable influence upon the supply of fish in the sea.
Q. Well, that is what I understood you to say.-A. That whatever effect is produced by waste or extravagance in the capture of the fish is itself so trifing, in proportion to the natural wear and tear of the fish, that it may be thrown entirely out of account. The report of the British Fishery Commission is very satisfactory on that point.
Q. The ouly reason why I asked the question was that you seemed to think this company would succeed in reducing the number of predaceous fish.-A. Well, those are large and take a long time to get their growth. You can imagine a limit to the abundance of certain fish like the shark, though you cannot to the other fish, such as the cod and the mackerel.
Q. You are United States Commissioner. Are yoa clothed with anthority respecting the several States of the Union?-A. No.
Q. Well, have you any authority?-A. I have none, except that they are all perfectly willing to have me spend all the money I will in their ports, and that they are willing to have me put as many shad, salmon, and cod, and useful food-fishes as I think I can spare in their waters.
Q. Have the United States collectively or the individual States the constitutional control over their fisheries; that is, their inshore fisheries?-A. The river fisheries are under the control of the several States, and the question of the jurisdiction of the sea fisheries has not yet been settled. For the present it lies in the States. The general Gevernment has exercised no control or authority on the inshore fisheries.

By Hon. Mr. Kellogg:
Q. Referring to your hypothesis about the waters of the world being supplied with oue kind of fish as another leares, what have you to say in regard to the whale fishery; what is going to supply that?-A. Well, a fishery diminishes to a certain extent until it does not pay, and then is abandonel. After being let alone it increases and again becomes a profitable cuterprise.
Q. Have any of the species of fish that were used in ancient times disappeared? They used fish in ancient times just as much as they do now. Do you know of any tribe having actually disappeared ?-A. The only kind of fish that has goue entirely out, so far as I know, is a kind of mackerel that was formerly found, known as the chub-mackerel or big-eye mackerel. It was formerly well known. Thirty years ago it was extremely common, a steady measurable article of the fish supply. I have been in search of specimens ever since I have been in my present line of inquiry, and have a standing offer of $\$ 25$ for a specimen, but it has not been produced. There are many instances of the local abandonment of extensive shores. For instance, herring was formerly abundant on the coast of Sweden.
Q. Do you refer to a distinct species of mackerel?-A. A totally distinct species. We had two species on our coast and now we have only one. I dare say there may be a few, but we don't find them as formerly.

The following statistics, prepared by Mr. G. Brown Goode, are quoted from pages $3357,3360-3$ of the documents and proc eedings of the Halifax Commission :

Estimated total of American fisheries for 1876.
Consolidated table of sea fisheries east of Cape May
\$13, 030, 821
Lake fisheries in 1872 (Milner) 1, 600,000
Products of whale fishery 2,737,379

17, 368,200
This is exclusive of all river fisheries; of the river fisheries of salmon, shad, alewives, and striped bass; of the coast fisheries south of Delaware Bay (mullet, bluefish, menhaden, \&c.) ; of all the Pacific coast fisheries (salmon, cod, haddock, \&e.); of the shell-fish (oysters, clams, $\mathbb{\&} c$. ); of the Crustaceans (lobsters, crabs, \&c.); of sponges; of skins; of fur and other seals, and of their oil. For these, thirty millions of dollars ( $\$ 30,000,000$ ) is cousidered to be a reasonable estimate.

Weirs and traps on the southern coast of New England.

| Locality. | Weirs and traps. | Men. |
| :---: | :---: | :---: |
| South side of Cape Cod | 23 | 88 |
| Martha's Vineyard Sound | 9 | 36 |
| Buzzard's Bay.. | 30 | 90 |
| Block Island | 3 | 12 |
| Narragansett Bay | 30 | 210 |
| Total | 95 | 436 |

In addition to the above there are one hundred fykes, managed by fourteen men.
Table showing the statistics of the manufacture of menhaden oil and guano in the United States in the years 1873, 1874, 1875, 1876.

|  | 1873. | 1874. | 1875. | 1876. |
| :---: | :---: | :---: | :---: | :---: |
| Number of factories in op | 62 | 64 | 60 | 64 |
| Number ot' sail-vessels employed | 383 | 283 | $30 \pm$ | 320 |
| Number of steam-vessels employed | 20 | 25 | 39 | 46 |
| Number of men employed in fisheries | 1,009 | 871 |  |  |
| Number of men employed in factorios | 1,197 | 1,567 |  |  |
| Total number of mon employed.- | \% 2,306 | 2,438 | -2,633 | 2,758 |
| Amount of capital invested.. | \$2, 388,000 | \$2,500, 000 | \$2, 650, 000 | \$2,750, 000 |
| Number of fisli taken.... | 397, 700, 000 | 492, 878, 000 | 563, 327, 000 | 512,450,000 |
| Number of fish taken (estimated in barrels) | 1, 193, 100 | 1, $4^{\prime \prime} 8,634$ | 1,887, 767 | 1, 535, 885 |
| Number of gallons of oil made ...-................. | 2,214,800 | 3,372,8.s7 | 2,681,487 | 2,992,000 |
| Number of tons of guano made.................... | 36,299 | 50,976 | 53,625 | 51,245 |
| Ninmber of gallons of oil held by manufacturers at the end of the year. | 484,520 | 648, 000 | 125, 000 | 264,000 |
| Number of tons of guano held by manufacturers at the end of the year. | 2, 700 | 5,200 | 1,850 | 7,275 |
| Value of oil, at 37 cents... | \$819, 476 | \$1, 247, 950 | \$992, 140 | \$1, 107, 040 |
| Valne of guano, at \$11. | \$399, 199 | \$560,736 | \$589, 875 | \$503, 695 |
| Total value of manufactured products............ | \$i, 218, 675 | \$1,808, 686 | \$1,582, 015 | \$1,670, 735 |

Total number of menhaden annually taken on the coast of the United States, estimate 750,000,000.
In 1874 one company, on the coast of New Jersey, put up 30,000 dozen boxes of menhaden in oil, under the name of "American sardines," the value of which was, at least, $\$ 90,000$.

On the coast of New England thirty-five decked ressels and numerous small ones, engage in the bait fishery, the catch of which approximates 100,000 barrels annually, worth from $\$ 100,000$ to $\$ 130,000$.

In the following table the cured cod have been restored to their green weight (three times as much). The salted mackerel have been restored to their green weight (one-sixth additional). By inshore fisheries is meant those conducted from shore, and by offshore fisheries those conducted in large vessels, principally those having over 20 tons burden.

| Kinds of fish． | Inshore fisheries． |  |  |  |  |  |  | Offshore fisheries． |  |  |  |  |  |  | Aggregate of weights． | Aggregate of values． |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Pounde． | 运 | Wholesale value． | $\left\lvert\, \begin{aligned} & \dot{8} \\ & \text { H } \\ & \text { H } \end{aligned}\right.$ | Retail value． | 菦 | Mean value． | Pounds． | 突 | Wholesale value． | 总 | Retail value． | $\underset{\sim}{\text { © }}$ | Mean value． |  |  |
| Flounders and Flatnish． Halibut： | ＊1，827， 000 | 4 | ＊\＄73，080 | 8 | ＊\＄146， 160 | 6 | ＊\＄109， 620 |  |  |  |  |  |  |  | 1，827， 000 | \＄109， 620 |
| Fresh．．．．．．．．．．．．．． |  |  |  |  |  |  |  | 12，339，000 | 4 | \＄493，560 | 15 | \＄1，850，850 | 92 | \＄1，172， 205 |  | 1，172， 205 |
| Fresh，New York |  |  |  |  |  |  |  | 1，000， 000 | 10 | 100， 000 | 15 | 150，000 | 122 $\frac{1}{2}$ | 125，000 |  | 125，000 |
| Cured $\dagger$ ．．．． |  |  |  |  |  |  |  | 8，476，000 | 2 | 169，520 |  | 302，500 |  | 236， 010 |  | 236，010 |
| Fins |  |  |  |  |  |  |  | 200， 000 | $5 \frac{1}{4}$ | 10， 500 | $7 \frac{1}{2}$ | 15，000 | ${ }^{68}$ | 12，750 |  | 12，750 |
| Cod： |  |  |  |  |  |  |  | －10，00 | 2 |  |  | 300 | 25 | 275 | 22， 025,000 | 275 |
| Fresh，New York．． | 5，000， 000 | 5 | 250， 000 | 8 | 400， 000 | $6 \frac{1}{2}$ | 325， 000 |  |  |  |  |  |  |  |  | 325,000 |
| Fresh $\ddagger$ ．．．．．．．．．．．．． | 20，000， 000 | 3 | 600， 000 | 5 | 1，000，000 | 4 | 800,000 |  |  |  |  |  |  |  |  | 800,000 |
| Cured | $28,480,000$ 80,000 |  |  |  |  | $1{ }^{13}$ | 379， 733 | 160，641， 700 |  |  |  |  |  | 3，319， 182 | 214，221， 700 | ${ }^{+3,698.915}$ |
| Tomcod． | 100，000 | 3 | 800 3,000 | ${ }_{8}^{24}$ | 8， 8,000 | 5 | 1,500 5,500 |  | 1 | 200 | 24 | 450 | 15 | 325 | 100,000 100,000 | 1,625 5,590 |
| Cunner | 250， 000 | 3 | 7， 500 | 5 | 12，500 | 4 | 10，000 |  |  |  |  |  |  |  | 250， 000 | 10，000 |
| Tautog | 615， 550 | 8 | 49， 244 | 15 | 92，332 | 113 | 70，788 |  |  |  |  |  |  |  | 615，550 | 70，788 |
| Mackerel： <br> Fresh | 3，481， 000 | 8 | 278，480 | 15 | 522， 150 | 112 | 400， 315 | 2，615， 000 | 8 | 209， 200 | 15 | 392， 250 | $11 \frac{1}{2}$ | 300， 725 | 6，096， 000 | 701，040 |
| Cured | 3， 181,00 |  | 278， |  |  |  |  | 35， 632,900 |  | 200， |  | 36， 250 |  | 30，725 | 35，632， 900 | ＊1，674， 222 |
| Spanish Mack | 105， 000 | 25 | 26，250 | 30 | 31，500 | $27 \frac{1}{2}$ | 28，875 |  |  |  |  |  |  |  | 105， 000 | 28，875 |
| Bonito ．．．．．．．．． | 2，200， 000 | 5 | 110， 000 |  | 176，000 | $8{ }^{62}$ | 143， 000 |  |  |  |  |  |  |  | 2，200， 000 | 143，000 |
| Pompano | 5,000 $1,500,000$ | 60 7 | 3，000 | 100 | 5,000 225,000 | 80 | 4，000 165,000 |  |  |  |  |  |  |  | 5，000 | 4，000 |
| Swordish． | 1，500，000 | 7 | 105， 000 | 15 | 225，000 | 11 | 165， 000 |  |  |  |  |  |  |  | 1，500， 000 | 165， 000 |
| Butterfish ${ }_{\text {S }}$ | 50，000 | 4 | 2，000 | 8 | 4， 000 | ${ }^{6}$ | 3， 000 |  |  |  |  |  |  |  | 50.000 | 3， 000 |
| Sea Robins | －90，000 | 2 | 1，800 | 3 | 2，700 | $\frac{21}{8}$ | 2， 250 |  |  |  |  |  |  |  | 90， 000 | 2，350 |
| Squeteague | 1，727， 600 | 6 | 103，656 | 10 | 172， 760 | 8 | 138， 208 |  |  |  |  |  |  |  | 1，727， 600 | 138，208 |
| Kingfish and Croaker | 10， 000 | 15 | 1，500 | 25 | 2， 500 | 20 | 2， 000 |  |  |  |  |  |  |  | 10，000 | 2， 000 |
| Spot and Croaker | 75，000 | 5 | 3，750 | 10 | 7，500 | $7 \frac{1}{2}$ | 5，625 |  |  |  |  |  |  |  | 75， 000 | 5， 625 |
| Sheepshead | 75， 000 | 15 | 11，250 | 20 | 15，000 | $17 \frac{1}{2}$ | 13， 125 |  |  |  |  |  |  |  | 75，000 | 13， 125 |
| Scap．．．． | 7，760，000 | 5 | 388,000 | 8 | 620， 800 | $6 \frac{1}{2}$ | 504， 400 |  |  |  |  |  |  |  | 7，760， 000 | 504，400 |
| Sea Bass ．．．． | 598，500 | 10 | 59， 850 | 15 | 89，775 | 121 | 74，812 ${ }^{\frac{1}{2}}$ |  |  |  |  |  |  |  | 598， 500 | 74， 812 |
| Striped Bas | 123， 200 | 15 | 18，480 | 20 | 24，640 | $17 \frac{1}{2}$ | 21，560 |  |  |  |  |  |  |  | 133， 200 | 21，560 |
| Bluefish | 7，068，000 | 4 | 282， 720 | 8 | ᄃ65， 440 | 6 | 424， 080 |  |  |  |  |  |  |  | 7，068， 000 | 424，080 |
| Smelt Menlen | 400， 000 | 10 | 40，000 | 15 | 60， 000 | $12 \frac{1}{2}$ | 50，000 |  |  |  |  |  |  |  | 400， 000 | 50， 000 |
| Eels | $224,834,000$ 250,000 | 12 | 30， 000 | 18 | 4\％，000 | 15 | 37， 500 | 478，012， 500 |  |  |  |  |  |  | $703,746,500$ 250,000 | $\\| 1.657,790$ |
| Sturgeon | 75， 000 | 5 | 3， 750 | 10 | 7， 500 | $7 \frac{1}{2}$ | 5，635 |  |  |  |  |  |  |  | 75， 000 | 3， 5,625 |
| Sea Shad | 3，770， 200 | 5 | 188， 510 | $7 \frac{1}{2}$ | 283， 765 | 61 | 235，637 ${ }^{2}$ |  |  |  |  |  |  |  | 3，770， 200 | － 235,637 |
| Almmife | －40，100 |  |  |  |  |  |  |  |  |  |  |  |  |  | 40， 110 | 8，020 |
|  | 7，385， 000 |  | 36，925 | 1 | 73， 856 | 1 | 55，3872 |  |  |  |  |  |  |  | 7，385， 000 | 55，387 |

216 REPORT OF COMMISSIONER OF FISH AND FISHERIES．
Products of marine fisheries of Northern Allantic States－Continned．

| Kinds of fish． | Inshore fisherios． |  |  |  |  |  |  | Otflhore fisheries． |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Pounds． | 突 | Wholesale value． | $\stackrel{\oplus}{E}$ | $\begin{aligned} & \text { Retail } \\ & \text { value. } \end{aligned}$ | $\mid \stackrel{⿺}{\tilde{c}}$ | Mean ralue． | Pounds． | 范 | Wholesale |  | Retail | $\stackrel{\ddot{E}}{\stackrel{\Delta}{E}}$ | Meãn value． | Weights． | of val |
| Пеcrring．．．．．．．．．．．．． | 1，604，800． | 2 | \＄32， 096 | 4 | \＄61，192 | 3 | \＄ 88,144 | 4，000，000 |  |  |  |  |  |  | $\begin{array}{r} 5,604,800 \\ 2:, ~ \\ 22.8,760 \end{array}$ | $\begin{array}{r} \$ 48,144 \\ -459,833 \end{array}$ |
| Total | 319，579， 950 |  | 2，710， 641 |  | 4，658， 864 |  | 4，064， 484 |  |  |  |  |  |  |  | $\overline{1,045,855,750}$ | ．13， 030,821 |
| Ratio to mile of coast line（ 1,112 ）．．．．．．．．．．．．． | 287， 392 |  |  |  |  | ．－ | 3，655 |  |  | － |  |  | ．．． |  | 940，510 | 11，718 |

## INDEX.

Page.
21, 61
Abundance of fishes, former
149, 150
149, 150
Acanthias
Acanthias
americanus ..... 52, 65
Acetic acid as a preservative ..... 178
Acipenser brevirostris ..... 31
oxyrhynchus ..... 31
Actæon puncto-striata ..... 38
Adams, Dr. A. Leith ..... 71
Advantages of the sea fisheries ..... 19
Agassiz, Prof. Alexander, on spawning ..... 82
Air-bladders utilized ..... 148
Albicore
Albicore ..... 27 ..... 27
Alcidæ
Alcidæ
122
Alcyonium digitatum
Alewife
Alewives ..... $157,159,16$ ..... $157,159,16$
anadromous ..... 49
as bait ..... 126, 127, 206
$21,167,203,204,206$ ..... , 206
catch in Potomac
catch in Potomac
exportation suggested
statistics of ..... 1215
All-eyes, food for mackerel ..... 79, 183
Alligators, destructiveness ..... 64
Allurements for fishes ..... 124
Alosa sapidissima ..... 30, 43
Alutera schœpfii to ..... 35
Ambrose, referred to ..... 46
American fisheries, review of ..... 142
Ammodytes ..... 4365,128
americanus ..... 29lancea
Ampelisca ..... 114
Amphidesma xqualis ..... 37
35, 37, 39,
Amphipods, food for fishes
49,82
Amphisphyy pellucida
Amphisphyy pellucida ..... 49,82
, 201
attract other specie
166
lecrease of
139
139
Anarrhichas....... ..... 39 ..... 37
Anchovies ..... 31 ..... 39
149
imported
imported
food for fishes
food for fishes
49
Angel-fish ..... 35
Angler, food of
Angler, food of
31,41
31,41
Anguilla bostoniensis.
Anguilla bostoniensis. ..... 35
Animal matter. ..... 125,126
Animal matter, chief food of
Annelids, food for fislies ..... 33, 36, 38, 41, 42, 39
Anonyx. ..... 41
Antennarins
Antennarins
101
101
Anticosti Island, halibat ground
Anticosti Island, halibat ground ..... 31
Archosargus probatocephalus
Arctic dab ..... 28
Arenicola piscatorum ..... 113
Argina pexata ..... 4, 39
Artiticial propagation. $60,162,163,19 \pm, 197$
Artimon Bank ..... 95
Ascidians as bait ..... 34
food for fishes ..... 40
Aseptin, used as a preservative ..... 137
Ashby, jr., Capt. Benj ..... 16
Astarte mactracea ..... 31
undata34
Astyris zonalis ..... 38
Atherina ..... 83
Atherinidæ ..... 29
Atwood, Capt. Nathaniel E....16, 110, 119, 203, 210 ..... 64
Auks, eating fish
Page.
Baars, H€rmann, cited ..... 20, 48, 299
Babson, Fit/J J ..... ${ }^{16}$
Bait-fishes, list of ..... 2.3
Bait for fishes. ..... 124, 126, 147, 177
preservation of $129,130,133,146,177,179$
Balanus crenatus ..... 39
Ballast used on fishing-vessels ..... 105
Banks for fishing, list of. ..... 58
Banquereau ..... 94
Barker, Prof. Geo. F., cited ..... 153
Barnacles, food for tishes ..... 39
Bass. ..... 28 ..... 28
as food
as food
deep-sea fish ..... 52
Batrachus tan ..... 39, 83
Bay of Chaleurs, abundance of salmon ..... 60
Bay of Fundy, temperature ..... 56
Beam-trawl, description and use ..... 83, 121, 122
Belone longirostris ..... 30
Belugas, destructive to salmon and cod. ..... 60
Bennet, Thomas, statements by ..... 168
Bergne, J. H. G
82
Bertram, cited
82
82
Billfish ..... 27, 30
Biographical notices of species. ..... 45
Biology of fishes
63
Birds destructive to tish
Bittium nigrum ..... 40
Black bass ..... 28
food of. ..... 42
planted in Potomac ..... 197
Black perch ..... 28
Blackfish ..... 26, 28
food of ..... 39,58
190
Blackford, Eurene ..... $135,145,179,196$
Blanchère, de la, cited ..... 129
Block Islaud, temperature ..... 55, 56
Blue-backed tront ..... 53
Bluefish ..... 29
abundance of ..... 13, 61, 191
decrease or disappearance - 48, 60, 188, 191destructiveness of $42,58,59,63,65,66,77,78$$160,174,188,190$
food for fishes ..... 35, 41, 44, 59
method of capture ..... 184, 206
moverments of ..... 47, 53, 191, 202
statistics of ..... 215
value as food-fish ..... 187
utilizeri
68
Boats used in tisheries ..... 107

Breck. Prof. A ..... | 24 |
| :--- |
| 34 |

Bonitos 27, 40. 47, 53, 187
fond for sharks ..... 44
Borax as a preservative ..... $137,144,178$
Bottom fishes ..... 53
Bottom-ice destructive to fishes ..... 69
Bow aml arrow used in dishing ..... 108
Brackett, E. A., Latching-box by ..... 163
Bradelle Bank ..... 99
Bream
Bream ..... 26, 28
Brevoort J. Carson ..... ${ }_{4}^{69}$
Brittle-stars, food for fishes ..... 34, 36
Brook trout ..... 49
Brosmius brosme ..... 26

Page.
Buccinum undatum...................33, 39, 44, 111, 130
zonale $.33,39,44,111,130$
Buckland, cited.
38
Buckland, cited
Bulbus flavus. 75,82

Bulla debilis
Bulla debilis.
solitaria.
triticea.
Buila debilis.
solitaria
triticea
38 36

Burnaby's Travels, cited...................... $\quad 51$
Busycon
Butterfish.............................................................................. 215
food for fishes
$40,41,42,44$
Caird, James
Callinectes hastatus ........................................................................... 132 ,
Calliopius læviuscula
37
Callista convexa
34,37
Canada, coast line 211
legislative aid to fisheries........... 60 system of fishery statistics..... 15,21 table of fisheries
Cancer irroratus............. $33,35,39,40,41,42,43,44$
Candle-fish furnishes oil ...................... 149
Canso Bank
149
Cape Ann fisherman a type................................................. 19 95
Cape Breton Island fishing-ground....... 103
Cape Negro Mud.
91
Cape North fishing-ground ...................... 100
Capelin as bait. ..................30,112, 126, 128, 179, 180
food for fishes.............................. 58,63
fossil forms
, 1
oil from . 149

used as fertilizer
Caprella
Caprella Capture, methods of .............................................................. 85, 108
Carangus hippos.
Caranx trachurus 48
Carcinus maenas. 33, 132
Cardium gronlandicun............................................................ 38
pinnulatum
37
Carp, bait for
125
eaten by birds 64
hibernation of
number of eggs
protitable for culture
transplanting
82

Bay, temperature
161
Casco Bay, temperature
Cashe's Ledge 56

Caspian Sea, annual catch 19,21
Casting-nets
120
Catadromous fishes 51, 82
Catish, bait for 125
Cavallé
Caviare
27
148
Centropristis atrarius ........................................................ 28
fuscus
48
Ceronia arctata ...........................................
Ceros ....................................................... $40,53,187$
Cephalopods as bait................................. 113
Chrenopsetta ocellaris.............................. 35
Challenger expedition..................................... 47,54
Channel bass
Chebacco boats 104
Chelura
Chiasmodes
Chironectes
Chironomus oceanicus
Chirostoma notata
Chiton fulminatus marnoreus
Chogset.
Christmas Island, preservation of fish.
Chab mackerel. Prest
disappearance of .........
Cingula arenaria
48,213
Citure acil as preservative
Clams as food and bait ....... $32,34,40,43,111,126$,
131, 177, 179
Close time recommended..................... 159, 188
Clupea elongata......................................... 39, 41, 42
harengus 31, 113
vulgaris
82
Clupeida
Cocos Islands, fish killed at
30, 53
Codfish
abundance of.
24,26 ......................22, 61, 173, 203 aflected by temperature 55, 205

Codfish, bait for Page.
Codfish, bait for............111, 125, 126, 127, 177, 179
eaten by white whales............ 60
eggs, floating .......................... 122, 175
number of ....................... 82, 175
proportion hatcled......... 175
size of .............................. 81
food of ............................... $36,58,66,174$
geographical distribution .......46, 53, 173
methods of capture.................. 175
migrations of....................... $47,173,202$
product of Gloucester ............. 142, 143
skins utilized......................... 209
spawning of.............. $83,116,122,174,175$
statistics ......................... 20, 22, 142, 215
value of ............................... 172
variations in size...................... 84
varieties of ......................................... 212
voracity of....................................... 75,118
Cod fisheries, banks for......................... 85
decrease of ...................... 203,206
of Newtoundland ............... 168
vessels used in ........... 104,.105, 106
Cod-liver oil .................................. $20,142,147,173$
Cod roes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $20,126,129$
Cold fatal to fish..................................... 69
Collett, Robert........................................... 24, 113
Collins, J W
$79,112,125,130$
Conilera concharum.
43
Consideration of tishes, by groups ....... $40^{\circ}$
by species ....... $\quad 4$
Copepods, food for fishes..................... . $40,58,74$
Coregonus ..................................................... 49
Cormorants, eating fish ......................... 64
used as bait..................... 125
Cotton-seed oil, substitute for olive oil... 146
Cottus
83
Cox's Ledge, temperature......................... 55,56
Crab-eater ..........................................- 29
Crabs as food and bait ..........32,33,39,44, 126, 132 as scavengers............................... 66
food for tishes........35-37, $40-44,90,174,183$
former abundance in Potomac ..... 51
Crangon vulgaris...... 32, 35, 37, 38, 39, 40, 41, 42, 43
Crenella glandula .................................... 37,38
Crepidula fornicata.................................... 33, 39, 40
unguiformis.
40
Crevalle 27
Crisia eburnea.......................................... 40
Croakers............................................................... 28,215
Crocodiles, destructiveness .-............... 64
Crowell, Capt. Prince.............................. 16

food for fishes. ............ 36, 42, 76, 79
Crystallagobius
81
Ctenolabrus burgall........................................................... 43
Cultivator Shoal....-............-........................ 86
Cunners ..................................................... $46,52,215$
$\begin{array}{ll}\text { Cured-fish products of Gloucester.......... } & 142 \\ \text { Currents as affecting }\end{array}$
Currents as affecting fishes.................. 57,68
fishing on the banks..................... 87
product of Gloucester .................... 142
shoes made from skins of............. 150
Cuttle-fist
64, 66
food for whales .......................... 63,76
Cutts, Richard D., cited.................................. 20
Cyanөa arctica...................................... 80
Cybium regale..................................... 40
Cyclopterus lumpus.-............................. 39
Cylichna alba.......................................... 38
Cynoscion carolinensis......................... 28
regalis.............................. $28,40,42,44$
Cynthia partita.

partita.
40
pyriormis .-.................................. 34
Cyprinida ........................................................... 49,167
Cyprinodon variegatus......................... 30
Cyprinodonts ...................................... 46, 75
Cytherea morrhuana............................ 37
Dabs, as food-fishes ................................. 25
$\mathrm{D}^{\prime}$ Amélio, suggestion on preservatives... 137
Dams obstructing fish.......................... 59,67
Dana, jr., Richard H.............................. $15,171,212$
Dangers to fishes...................................... 62
Danube salmon, suggested introduction.. 162
Davies. Mr,..................................... 15
Davis Strait, halibut fishery........................... 101

Page,

 .62, 68, 71
Diatonss, food for marine life
73, 79
Digestion of fish 118
Dip-nets
118
Disappearances of fish 48,53
Diseases of fish 66
Distance from shore, estimating .......... $1 \overline{0} 3$
Dogtish coming inshore
destructiveness of ..... $65,88,208$
food for fishes ..... 44
food of

44, 181
utilized................................ 68, 149, 190
Dollar-fish
27
Dories used in fisheries .................................... 107
Dorosoma
cepedianum
7 31
Doutre, Joseph 15
Dried fish as food for cattle 209
Drill, as bait
20
in Norway
33
Drumfish ............................................28, 5: 52, 192
Dry-fish products of Gloncester............ 142, 143
Drying bait......................................... 179
Drying method of preserving fish. 135, 136, 144, 178
Ducks eating fish
Dungarvan boats. 64
Dnssumieridæ 107

East Shoal
30 86
Eastern Shoal Water. 97, 98
Eastern Shoals
Echinarachnius parma 35, 37, 40
Echinoderms, food for fishes .................. 37, 38
Echinus, food of
Echiurus chrysacanthophorus. 73
44
Economical applications of fisheries....... 143
Edwards, Vinal N.
16,37
Eels
bait for 31
catadromous
culture of, by Romans
food for fishes
libernation of 1,82 51, 82 161
41, 44
size of eggs
51
statistics of.
way of destroying shad
Eel-skins as bait
215
65
125
62, 75
82
places of deposit
size of. $\qquad$
table of numbers.................................................................... 82
Elacate canadus.
Elopidæ
Embiotocoids, viviparous
Engraulidæ
Engraulis vittatus
Ensatella americana
Entomostraca.
Entozoa injuring fish
Ephippus faber 29
Epidemics among fish

Equalizing supply of fishes
Etrumeus teres 30
Eugomphodus littoralis.
Eulamia milberti
obscura
Eupagurus
longicarpus
pollicaris.
4
used in fisheries
44
44
43
33
39
33, 39
Explosires used in fisheries. 124
Exhaustion of fresh-water fisheries 19
Farlow, William G137

Fasciolaria ligata
137
Fatalities of fishes
62
Fecundity of fishes
Feddersen, Arthur, cited
Fertilizers obtained from fish refuse....... 150, 180
Fiddler crab....
File-fish, food of.
Finback whales, food of. 33 35

Fish, definition of
Fish-flour
Fish-gaano in Norway
products of Gloucester
Fish-hawks destructive to fish ......... 142, 143
Fish-oil products of Gloucester
142, 143

Fishermen, desirable class ................. Page. 19
ignorant about fish.-........... 45
Fisher's Sound, temperature................ 56
Fishery marine .................................. 103
Fishing-boats ...................................... 107
Fishing-frog, spawning of.................... 80
Fishing-grounds................................ 85
Fishways, erection of ............................. 158
Flasher .............................................. 29
Flat-iish coming inshore ................... 52
food for tishes........................ 43
spawning of......................... 122
statistics of ............................... 21.
Flemish Cap ........................................... 98
Flounders-................................................ 25,35
food for tishes ......................... $35,39,44$
food of ............................... 35
number of eqgs................... 82
spawning of........................ 83
statistics of......................... 215
Food as affecting movements of fishes... 58
Food-tishes, list of. .............................. $2 \overline{5}$
Food of sea fishes ............................... 72
Food supply from the sea .................. 17, 18, 144
Forbes, Henry 0 .................................. 69
John MI ................................... 200
Ford, F. C........................................... . 15
Fossil fishes, great numbers explained... 71,72
Foster, Dwight................................... 15, 198
Freezing method of preservation.....135, 144, 177
Fresh fish, former method of disposal.... 23
increasing demand for........ 184
products of Gloucester....... 142
sent to central markets........ 23
statistics in 1877................. 22
Friars....................................................... 29,46
Frogs as bait .................................... 125
bait for.................................. 125
destructive to fish.................... 64
Frost-fish ................................................. 26, 37
Frozen-herring business begun............. 134
Fulgar carica...................................... 31
Fulmars used as bait ........................... 125
Fundulus pisculentus.......................... 42
Fusus corueus.-...................................... 36
trumbulli....................................... 38
Frkes used ............................................ 214
Gadidæ...............26, 46, 47, 53, 63, 85, 116, 138, 147
Gadus morrhua ................................ 26, 36, 82, 85
Galencerdo tigrinus............................. 44
Galt, Sir Alex. T .................................. 15, 180
Gammarus ........................................ 37,139

|  |  |
| :---: | :---: |
|  |  |


ornatus .............................. 37
Gannets as bait........................................ 125
eating fish........................... 58, 64
Garfish............................................... 30
Gaspereau ........................................ 31
Gasteropods, food for fishes................. $33,36,38$
Gebia attinis ......................................... 35
Gelasimus minax ................................. 33
pugilator .................................. 33
pugnax.............................. 33
Gelatine from tishery products ........... 148
George's Bank ................................... 85
loss of life on.................. 20
Gephyrea as bait ................................ 44
German Bank...................................... 88
Gill-nets ................................................... 121, 141
Gilpin, Dr............................................. 46, 120
Gizzard shad.................................... 49,74
Gloucester fishermen, loss of life .......... 20
fishery products ............... 142
method of preserving fish...- 134
Glue prepared from fishes................. 147
Glyptocephalus cynoglossus................. 25
Gnathodon cuneatus............................. 32,131
Goodale, S. L., fish extract .................. 146
Goode, G. Brown, cited ........................... 78, 82
Goosefish
statistics by .......16, 22, 207,214
Gooseash ............................................ 25,35
number of eggs...................... 82
pelagic spawner .................... . 83
Gouldia mactracea.............................. 37
Grand Bank of Newfonndland ............. . 97
Grand Maдan Bank ............................ 89

Page.
193
Great Lakes, fisheries of 96
Green Bank 96
Green, Seth
163
Greenland halibut banks
Greenland turvot
101
Growth of fishes, rate of
Grunt.
78, 84
139,141

| Guano prepared from fish offal............. |
| ---: |
| menhaden .......... |
| 139,141 |
| 214 |

Gulf of Mexico, destruction of fish in ....66, 69, 70
Gulf Stream. summer course
205
Gulls as bait
eating fish
325
Gulls fishing. ground
Gurry, disposition of 58, 64

Gurry, disposition of................................. 138, 180
effect on fishing-grounds ....... $165,168,180$
Haddock
an ofishore dish ..................................................... 46,75
devoured by halibut ............................. 119
fisheries, decrease of.
vessels used
206
206
105
fishing on the banks.............. 86
food of........................................... $36,37,38$
former abundance , 38
smoked
138
spawning season of
Hrmulon arcuatum
Hag, destructiveness of $\qquad$
Наке.
6
an offshore tish

## bait for. <br> 53

fisheries, decrease of ........................ 206
fishunc on the banks
food of
isinglass from
product of Glowcester
spawning of
42
83.116

Halibut
an offshore fish $.25,46,47$
相
bait for.
banks near Greenland............... 101
lecrease of ................
2, 119
fisheries, vessels used
fishing on the banks.
product of Gloucester
statistics of.
too large for freezing.
106
106

Hand-lines used in fishing.
142
415

Mand-nets
109
Harpoons used in tishing
120
Harvest-fish
109
Hatching-boses
27
Haycocks, shoal
163
Hay-seed, food for mackerel
Heads of fishes utilized
18

Heart-nets, used in fisheries.
Herons, destructive to tish. 80, 209

Hermit-crabs.-......................................... 33, 39
Herring............................................... $24,31,53,61$
abundance of. . . . . . . . $22,181,185,190,210$
affected by temperature ........... 55
anadromous ....-........................ 50,57
as bait $\ldots . .90,111,113,126,127,177,179,180$ decrease of. ...........48,50,51, 61, 167, 206
eggs adherent
84, 189
size and number ...................... 82, 185
fishery regulations
155,156
food for birds. ....................... 58, 6
food for tishes... $35,39,41,44,58,63,66,74$,
$77,90,174$
food of
$42,58,74,76$
geographical distribution ....... 184
methods of capture
189
movements of ................................... 47, 185
oil from
149
preparations in Europe.
149
preserved in oil.
151
product of Gloucester 142 14:
spawning of. . ............ $83,158,159,185,189$
statistics of.
value for food
$20,22,216$
Hibernation
190
Hickory shad, food of
Hill, Stephen J
:4

Hind, Prof, cited.
174, 210
Hippoglossoides platessoides............................... 25
Hippoglossus vulgaris.
Histiophorus americanus
25

Holdsworth cited
Page.
Holdsworthy cited
$66,112,113,117$
Holland, regulations on herring fishery... $\quad 155$
Holothuria chrysacanthophora. ......... 44
Homarus americanus. -................. $32,40,42,43,44$
Hook and line, use of.......................................... 109
Horso mackerel .................................................. 29, 53
food for fishes............. . . 44
food of.................. 42, 59, 76, 174
Hulbert, Captain, cited 79
Hurlbut, Captain......................................... 16
Huxley, Prof. T. H ............................77, 83, 119, 122
Hydroids, food for fishes .-..................... $3 \overline{3}$
Ice for preserving fish and bait .....23, 134, 144, 178
Icebergs supply ice and water .-............ 136
Idotea irrorata ..................................... . . 41
Ilyanassa obsoleta............................................. 39
Implements used in fishing ................ 108
Improvements in handling fish............. 23
Infusoria.....-.-...................................... 79
Inshore fishes................................................................. 46,51
Inspection of fish .-...-................................ 21. 158
Invertebrates as bait and food ............ 31,32
destroy fish...................... 66
Isinglass prepared from sounds ........... 147, 173
Jeffrey's Bank ....................................... $\quad 88$
Jeffrey's Ledge .......................................... 87
Jelly-itish, association with other fish .... 80
feeding on small fishes .-....-. 66
food for fishes........................ 63, 79
Jew•fish................................................ 30
Joint High Commission, organized ........ 15
Kellogg, E. H...-...................-........... 15, 172, 213
Kingfish ............................................... $27,28,187$
coming inshore ....................... 52
food of......-........................... 41
statistics of......................... . . . 215
Kingfishers destructire to fish ............ 64
Kyacks ................................................. 31

Lafayette .................................................... 28,52


Lamellibranchs, food for fishes..............34, 37, 38
Lampreys . . . . . . . . . . . . . . . . . . . . . . . . $31,49,64,55,112$
Landlocked salmon .................................. 49,53

Le Have Bank...-. --................................... 91
Le Have Ridges........................................ 91
Teda temuisulcata ......................................... 38
Legislation on the fisheries ...................60, 77, 151
Leptoclinum albidum .............................. 40
Libinia canaliculata............................ 44


Linsley, J. H...................................................... 36,38
Liostomus obliquus .................................. 28
Littorina littorea.-.......................................... 34
Liver, bait for codfish.-........................... 180
Lobotes surinameusis ............................... 29
Lobster product in Norway........................ 20
Lobsters as food and bait......................... $32,126,132$
as scavengers............................ 66
destroyed by starfish ............... 119
food for fishes ............ $40,42,43,44,174$
transplanting......................... 161
Loch Fyne herring fishery ..................... 60
Lofoden Islands, tisheries of ................ 114, 209
setting long-lines ........ 155
Loligo.
rallida
$1: 30$

London markets, supply of trawled fish
Long-lines, advantages of ..... $113,114,115,118,119$ antiquity of ............................. 110, 111 bait used on.......................... 111 catch of.................................. 114
construction and 1 se...110-112, 117, 176
Lophins

- 35
piscatorius ..........-.-.-.-.-.-. - .-. . . 25
Lophopsetta maculata............................. 35
Lophothuria fabricii......-........................... 38
Lota ................................................... 150
Lull, Commander E. P............................ 155
Lumpfish, food of ........................................ 39
number of eggs.......................... 82
Page.

33, 43, 44
Lunatia heros 36
Lyman, Theodore, suppliedstatistics ..... 16
McKenzic, George, statements ..... 168 27, 47, 53, 61
as bait. $90,112,126,128,177$126, 127canned148
compared with mullets ..... 186, 198
egrs, floating ..... 183
size and number ..... $45,82,183$
fisheries, ressels used ..... 102
fishing grounds ..... 102
food for fishes. $40,44,59,63,65,77,174,208$
food of .............40,58,76, 79, 168, 183 ..... $40,58,76,79,168,183$
geographical distribution ..... 181
movements of $47,102,165,168$, ..... 184
preparation for food ..... 184
product of Gloncester ..... 142,143
roes, used as bait ..... 126, 129
spawning
statistics of ..... $20,22,215$181
supposed hibernation ..... 54, 182, 202
Macroura40
Mactra solidissima ..... 131
Madragues used in fisheries
123
100
123
100
Magdalen Islands fishing-grounds ..... 97
Main Shoal
16, 151
Maintenance of fisheries.
80, 81
80, 81
Male fish caring for eggs
Male fish caring for eggs ..... 30, 53, 113
Mammals destroying fish ..... 125
Man, influence on fishes ... $59,66,67,77,78,130,213$Manatee, food of
73
Marblehead Bank ..... 89
Margarita groenlaudica ..... 38obscura
Martesia cuneiformis
$-50,166,167$
Martin, Joseph, cited
Massachusetts, inspection and statistics. ..... 21Meckelia ingens.43
Megalops thrissoides
42
Melampus bidentatus
26, 37
26, 37
Menhaden ..... $30,31,10,47,53,67$
abundance of ..... 13, 184
as bait. $112,126,177,179,180$
insheries for. ..... 191
food of. ..... 43,74
movements of. ..... 47
oil from ..... 149
packed in oil ..... 146, 148
spawning of ..... 83
statistics of. ..... 68, 146
utilized ..... 191
Menobranchus ..... 61
Menticirrus nelunlosus ..... 28, 4126
Merlucius bilinearis Mesodesma arctata
16, 133
Microdentopus minax ..... 37
Microgradus tomcodus ..... 26, 37
Micropogon undulatus28Microstomidæ30
Migrations of fishes ..... 47,59, 165
Miluer, James W., cited ..... 35, 42
Minnows.35, 42
Misaine Ban95
99Miscou FlatMóbius, Prof. Karl, cited58Modiola
glandulamodiolusnexa37
plicatula40Modiolaria nigra37
Mora levis32
Molgula manhattensisMollusks as bait
food for fishes ..... $36,38,42,76,79,90$
food of79
Monkfish
27
Montacuta bidentata ..... 37
Montacuta elerata
Page.
37
Monte Bolca, fossil fish at Monte Bolca, fossil fish at ..... 72
Morone americana ..... 29, 42
Mortality of fishes ..... $48,66,68,69$
Mud, destroying fish ..... 68, 71
swallowed by fish ..... 43
Mugil albula ..... 29
Mnlinia lateralis ..... 29
Mullets ..... 29
abundance of ..... 14, 185
coming inshore ..... 162
fisheries for ..... 14, 191
mportance as a food-fish ..... 185,198
packed in oil ..... 146
roes of. ..... 14, 186
Murres used as bait ..... 125
Muskallonge ..... 193 .....
40 .....
40
food for fishes
food for fishes
Mussels as bait
Mussels as bait132
Mustelus canis
41
41
Mya arenaria ..... $32,35,40,43,111,131$
Ar yliobatis frominvillei ..... 43
Mysis ..... $32,33,39,42$
americana ..... 2,43
132
Mstilus ..... 132
edulis ..... $32,40,113$
Myxine ..... 113
Narcotics used in fisheries. ..... 124
Natica clansa ..... 38
flava ..... 38
immaculata ..... 36
Natural history of fishes. ..... 16, 24
Nephthys ingens ..... 43
Neptunea pyomea ..... 38
Nereis ..... 73
limbata ..... 42
Nets, distance apart ..... 155
obstructing passage of fish ..... 59
regulations on size ..... 155
use of ..... 119
New Brunswick, fossil fishes ..... 68
Newfoundland, cod fisheries near ..... 15,21
Noank method of preserving bait and fish. 134, 178
North Shoal ..... 86
Northers, effect on fish ..... 69, 70
Norway haddock
26
Norway, ice sent to Hull ..... 23
regulating the fisheries of ..... 155, 156
scientific investigations in ..... 24
statistics of fisheries in 1866
statistics of fisheries in 1866113
use of long-lines
utilizing refuse . $129,141,149,180,190,209$proxima$35,37,38,40$
sapotilla ..... 37
tenuis. ..... 37, 38
Nutt, N. B., citen
59, 67
Ocean fisheries inexbaustible ..... 17
Otial attracts predaceous fishes ..... 140,181

orster festructiv to fis
63
Oyster fisheries, value 126, 132

former abundance in Potomac
51
transplanting ........................... 161
Palæmon squilla
113

Palmer, E., cited ........................................ $40,43,44$
Pandalus
annulicornis
33, 38
depressus
39, 40, 41
32, 33
Parasites of fish 66
Parasitic fish
Paronotus triacanthus 40
Patterson, C. P., cited ........................... 154
Peconic Bay, temperatnre $34,39,132$

37
Pelagic spawners, list of. 83
Pelecanidae 64

Pelicans eating fish
Penguin oil considered as a fish oil
Pennaria tíarella 125

Pegnaria tarella......................................... 102
Perch, as food........................ $62,75,162,195$
food of 39
number of eggs 82 146
Periploma papyracea 125
Petricola pholadiformis
Petromyzon americanus
Phascolosoma gouldii
holas cuneiformis
tenui
Pickled fish in Norway
Pigeon Hill Ground 20spawning of 80
20
Pinkies used in fisheries 104
Pinnixa cylindrica35Platyonichus. ocellatus, 41

## leuronectida

28Pogr, 6
Poisons ..... 10
Pole tlounder25153
Phachous carbonaruts.
17, 168
Pollock ..... 38, 66
Pollution of waters142
pomatopsetta denta25
mediocris ..... 1,43
Pompanos28, 29, 41, 5
Poronotus triacanthus ..... 125
food of ..... 68, 190
Poromac, black bass in the
Page ..... 197
former abundance
shad and herring barreled
22
22
Pound-fishing, open to Canadians ..... 199
Pounds, construction of ..... , 189
ased in tusheries ..... 123, 187, 188
Powel, Samuel ..... 16
Prawns ..... 33, 35, 37, 39
Predaceous fish, their capture beneficial. ..... 59
155
Preserving fish and bait...23, 133, 134, 144, 177, 178 ..... 9
Prinnotus carolinus.
Pristipomatidro ..... 23
Pristis ..... 54
Procellaria ..... 125
Products of fisheries, utilizing ..... 16, 143
Psendopleuronectes americanus. ..... 25, 35
Psentorhombus dentatus ..... 25
Psolus phantapus
38
43
38
43
Pteroplatea machara
40, 63
40, 63
Ptilocheirus pinguis ..... 37
Ptychatractus ligatus. ..... $\begin{array}{r}36 \\ \hline 125\end{array}$
Puthaus majol
64, 65
Pur-nosed eel, destructive to fish ..... 64, 65
Purpura lapillus
Purpura lapillus ..... 184
not iцjurions ..... 208
Pyrula ..... 131
Quahogs ..... 32, 34
Quintal, weight of ..... 212
Kadiata ..... 34 ..... 43
Raia diaphana
Raia diaphana
Rangeler tront ..... 49, 53
Rathbum, Richard ..... 35 ..... 43, 44
Rays, food for tishes
Rays, food for tishes
Red bass ..... 28, 52
perch ..... 26, 39
Red rags as bait ..... 125
Red suappers coming inshore ..... 192
Reddening of salted fish. ..... 137
Redtish ..... 26, 28, 39
Refrigerators for preserving fish. ..... 144, 178
Reproduction of fishes ..... 57, 80, 85
Reptiles, destructive to fish ..... 125
Rissoa exarata ..... 36
River fisheries, regulation desirable
29, 42
Rocktish ..... 29, 42, 51
Roes of fishes, utilized..........126, 129, 148, 173, 180
Romans, fish-culture among. ..... 161
Rose-tish ..... 26
Roseway Bank ..... 90
30
luddertish, food of ..... 40
Rusty dab ..... 25
Sable Islanil Bank. ..... 92
103
Sable Island fishing.ground ..... 65
sailtish ..... 27
St. Pierre Bank ..... 99
Salamanders eating fish eggs ..... 64
Salicylic acid used for preserving fish ..... 144
Salmo oqnassa3n
Salmon ..... 24, 30, 47
anadromons ..... 49, 57 ..... $\begin{array}{r}84 \\ 203 \\ \hline\end{array}$
changes during spawningseason
changes during spawningseason
lecrease of
203
60
167
fisheries of Canada, legislation.
food for marine mammals ..... 60,6347
number of fish from eggs ..... 62
product of Gloucester ..... 143
propagation of ..... 162
mrotection for ..... 159
roes as bait ..... 129
ize of egrs. ..... 81
statistics of ..... 215
transplanting ..... 161

Page. 28, 52
Salmon-trout
Salpio, food for fishes 76
Salted fish in Norway 20

67, 184, 185Salting, method of preservation

Saling, method of preservation $.137,144,177$
Sambro Bank 92
Sand-dab 25
Sand-dollars, food for fishes................................... 35
Sand-eel
29, 65, 128
Sand-launce............................................................ 65,128
Sand-sharks, food of. 44
27
Sarda mediterranea
Sardines, bait for 129 imported....................................... 149
packed in oil
149
statistics in 1865
20
Sars, Prof. Geo. O.............................................. 84,83
Sawfish, migrations of ...-....................... 54
Scad, capricious movements of.............. 48 food for fishes............................ 41
Scallops as bait .......................................... 126,132
Scapharca transversa................................. 34
Scarus, transplanting...................................... 161
Schultz, cited
19,21
Sciænidæ
Sciænops ocellatus
Scomber grex
28
28
scombrus.......................... $27,40,82,102$

## Scomberesox saurus.

 30Scomberomorus maculatus
regalis
-
Scombrida
27, 53
Scoop-nets 120

## Scorpænidæ

Scotch fisheries for 1873 26

Scrap obtained from refus 22

Scudder, Newton P., cited................................. 101

coming inshore
21, 46
decrease of.................................. 21,46
food for fishes...35, 40, 41, 42, 44, 59, 66, 77, 188
food of
41
protection for 159
statistics of
215
Scyllium ........................................................ 150
Scymnus
Sea-bass
$28,46,187$
artificial propagation................. 163 ......................... 127, 128
changes during spawning season. 85
coming inshore $\qquad$ 52
44,59
food for fishes
food of
42
159
protection for .......................................... 159
Sea-birds devour herring
Sea-cabbage, food for fishes
215

Sea-cucumbers as bait 34
Sea fisheries, legislation on --.............. 151, 156 $\begin{array}{lc}\text { of Canada for } 1876 . . . . . . . . . . . ~ & 22 \\ \text { statistics of products........ } & 215\end{array}$
Sea-fleas consume flesh ....................... 180
Sea-lemons as bait
Sea-lions destructive to fish.
Sea-otters destructive to fish
Sea-peach as bait
Sea-pөrch, pelagic spawner.
Sea-robins
Sea-snails
39, 52, 21.5
Sea-snakes, destructiveness............................................. 64
Sea-turtles ............................................................... 64,73
Sea-urchins, consumo bones ...................... 181
food for fishes 39
Sea-weeds food of fishes 73
Seal Island Ground 89
Seal oil not a fish oil ${ }^{-}$ 212
statistics in 1865
Seals destructive to fish
20

Seine-boats used
108
Seines used in fishing
120
Seining for mackerel, injurious effects
168
Semele equalis
Serranidæ
28

Serripes grenlandicus Page.
Set-line used in fishing ............................................. 110
Shad ............................................... $30,47,49,57$
decrease of ...............21,50,51, 61, 167, 203, 204
devoured by eels ........................... 65
fisheries regulated......................... 157
food for otters...... . .................... 63
food of63
movemonts of ..... 47
propagation of

$62,162,164,197$

protection for

159

transplanting
64, 67
Sharks
75
as scavengers ............................................... 181
attracted by offal .............................................. 181
coming inshore
destrosed by white whales....... 60
destructiveness of .-.................... 65, 208
food of ...................................... $43,44,75,174$
migrations .............................. 54
period of growth ........................ 213
size and shape of eggs.................. 81

viviparous...................................... 80
Sheepshead .............................................. 28,29
coming inshore..................... 52
former abundance............. 51
statistics of -..................... 215
Shell-fish, products of Gloucester ......... 142, 143
Shiners, food for fishes ............................. 40,41
Shore fisheries, increase and decrease.... 203, 204 regulation desirable ..... 157
Shrimps as bait .............................. $32,33,126,132$ food for fishes..... 35-43, 58, 76, 79, 168, 183
Siberian mammoth, preservation of ....... 145, 179
Silversides ................................................. . . $28,29,83$
Simenchelys parasiticus ...................... 63
Sinclair, Capt. Peter .............................. 110
Sipho islandicus .........-............................ 36
Skates, food for fishes............................ 35,44
food of .-....-.-............................. 43
size and shape of eggs............... 81
utilized

Skip-jack .....-.......................................... $27,29,30$
Sruelts .................................................................... 30,82
number of eggs-.............................. 82
Smith, Capt. Henry ............................................... 134
Capt. Sylvanus ............................. 134
S. I., cited. ............................................. 42

Smoking for preserving fish ............... . 138, 144
Smooth plaice
25
Snapping-turtles eating fish....-......................... 64
Snow used in preserving fish................ 23,134
Solecurtus fragilis ........................................ 37
Solenostoma.......................................... 80
Soles
25
desirability of importing ............. 161
number of eggs................................................. 122
Sounds affecting movements of fishes... 59
Sounds of fishes utilized ...................... 148,173
Southern fisheries, importance ........... 13
Southwest Shoal 86
Spanish macierel.....................................53, 187, 215
Sparida
28
110
Spawning fish refuse bait ...................... 110
Shawning season, changes during ........ 84
protection during-...... 158
anfles some fish for food 160
Spearfish
27
Spears used in fishing .-.................................... 109
Sperm whales, food of
Spider.crabs, food for fishes ................... 44
Spirialis gouldii
Spisula solidissima ..........................................................
Spots, statistics of ................................. 215

Squalus ...---.-.............................................. 150
americanus........................................... 150

Squetearive food for fishes..................................................... 44, 186
food of ............................................. 40,41
statistics of .......................... 215

## Page.

Squids as bait .......31, 32, 126, 129, $130,136,177,179$ food for fishes ........ $35,39,40,41,42 ; 43,44$ food of 66
Squilla empusa 40
Stake-nets 121, 124
Startish as bait 4+
food for fishes 36, 43 food of 119
Statistics of fisheries.......................20, 197, 198, 214 lake fisheries................... 193 menhaden oil and guano...... 214 sea fisheries.............. 215 shore fisheries 22 traps and pounds 19.

Stenotomus argyrops
28, 41, 42
Sterlet, suggested introduction .............................. 162
Sticklebacks preparing nests 80
Sting-rays, food for tishes.
food of $\qquad$ 4
migrations viviparous
Stolephorus vittatus $\qquad$ 43 54 80

Storer referred to 46
Storms destroying fish
Strait of Belle Isle fishing-ground
Striped bass.
bait for
.29, 48, 51, 191

food of...
21, 61
spawning of 42
statistics of
83
215
Stromateide
$\stackrel{27}{29}$
Strongylocentrotus dröbachiensis
$31,49,193$
Sturgeon

isinglass from................................ 147, 148
statistics of:.............................. 215
Surf clam
as bait
32
Survival of the fittest .......................................... 34
Swordfish
27, 47, 53, 64
food of .................................. 40, 58, 76
statistics of ........................... 143, 215
Sycotypus canaliculatus ...................... 34
Syngnathus
peckianus
34
80
30
Tagelus aivisus
Tailor
'Tailor shad. anadromous
Tanner, Z. L
Tarpum
-..0. 46
Tautog
wait for
food for fishes...............................................
food of
39
propagation of ........................ 163
protection for .................................. 159
spawning of
statistics of
83
transplanting 215
Tautoga onitis .................................................. 16,44
Tautogolabrus adspersus ...................... 26, 42
Temora longicornis ............................. 58, 54
Temperature as affecting fish ...............47, 55,69
Tench profitable for culture.
19
Teredo
19
73
27
T'etrapturus albidus
Thaleichthys marimus.
Thomson, S. R
$15,198,208$
Thracia truncata
37
Thread herring
Three-mile limit
difficulty of estimating
201

.. 153 | 153 |
| :--- |
| 168 |

Thysanopoda .32, 38, 39, 40, 42

## Tiger sharks, food of

44
Toadfish depositing eggs on bottom food of

## Tomcod

food of
26, 53
37
statistics of
215
Toothed herring
31
Tornatella puncto-striata
Torsk
Towing-nets
Trachynotus carolinus
Trachsnotus carolin
ovatus.
${ }_{26}$
20
.....................
Page.
Tracurops crumenopthalmus ..... 41
Trammel-nets ..... 120
Transhipping, benefit to Americans
23, 161
23, 161
Transportation of fish
Transportation of fish ..... 193
Traps, construction of ..... 123
Trawl-line fishing not injurious............ 113, 118
Trawl-lines, bait used on ..... 179
introduction in America ..... 110
use limited in England ..... $15 \overline{5}$
use of ..... $10,175,176$
Treat, Capt. U. S
15, 200
Treaty of Washington, cited ..... 5, 200
Trescot, William H
15
15
Triforis nigrocinctus
35,39
Iritia trivittata ..... 28
Trout
Trout
64
64
eaten by birds
eaten by birds .....
143 .....
143
plative rate of crowth ..... 79
roes used as bait ..... 120
transplanting ..... 161
Trumbull, J. H ..... 36, 38
Trygon centrura ..... 43
Thnuies ..... 27, 53, 64, 187
food of.146 , 190
Turbonilla interrupta ..... 36
Turbots, desirability of importing ..... 161
number of eggs. ..... 82, 175
spawning of ..... 122
taken by beam-trawl ..... 122
Turritelia erosa ..... 36
Turtles destructive to fish ..... 64
Ulva latissima ..... 42
Unciola irrorata. ..... 41 ..... 41
Urosalpinx cinerea ..... 33
Vegetable matter, basis of food ..... 72, 74, 76
Vegetable substances used as bait ..... 125
Venus mercenaria. ..... 32, 111, 131 ..... 32, 111, 131
Verrill, A. E., cited ..... 35, 38, 39, 42, 44
Vessels used in fisheries ..... 104
Virbius zostericola ..... 37
Virgin Rocks ..... 97
Voleanic eruptions destroying fish ..... 68, 69, 70
Volga River fisherics ..... 19
Wall-eyed pike ..... 193
Walruses, food of ..... 63 ..... 63
Water-snakes, destructiveness ..... 64 ..... 64
Weakfish
21
Weirs and traps used ..... 21
Weirs, construction of ..... 193
used in fisheries ..... 123
Wells used in fisheries ..... 112
Western Bank ..... 92
Wetherbe, Mr ..... 15
Whale-oil statistics in 1865 ..... 20
Whales ..... 64
devouring fish
74, 76
74, 76
method of feeding ..... 23
Whelks ..... 33. 180
Whitcher, W. F!, cited ..... 59, 60
White perch ..... $29,42,51$
White whales destroy certain dishes ..... 60
Whiteaves cited ..... 208
Whitefish. ..... 29, 30, 49, 193, 208
propagation of ..... 194, 197
takeuat spawning season
15, 209, 212
15, 209, 212
Whitewas, Mr
26, 28, 52
26, 28, 52
Whiting ..... 15
Winds as affecting fishes ..... 57, 68
Winkles ..... 34, 179, 180
Wolf-fish, food of ..... $\begin{array}{r}39 \\ 73 \\ \hline\end{array}$
Wood eaten by marine animals. ..... 79
75
Wood's Holl, temperature ..... 55
Worms, food tor fishes ..... 76, 79
food of
27,40
Xiphias gladins ..... 14, 69
Yorrow 0 . H. ..... 35, 37sapotilla37,44
$40,11,73$
Zostera
 4

## APPENDIX B.

## SCIENTIFIC INVESTIGATION.

## II.-A REVIEW 0F THE FLOUNDERS AND SOLES (PLEURONECTIDE) 0F AIIERICA AND EUROPE.

By David Stari Jordan and David Kor Goss.

In this paper we have tried to give the synonymy of all the genera and species of flounders and soles (Pleuronectidec) found in the waters of America and Europe, together with analytical keys by which the groups may be distinguished.

The material we have examined includes (1) all the flounders in the museum of the Indiana University, which contains a large representation of the species found on our Pacific ccast, in the Gulf of Mexico, and in the Mediterranean; ( ${ }^{2}$ ) much, but not all, of the material contained in the United States National Museum, more especially the specimens collected by Dr. Jordan and by Dr. Gilbert; and (3) all the flounders contained in the Museum of Comparative Zoology, at Cambridge, Mass. This museum is rich in Sonth Americau forms, the collections made by Professor Agassiz, Dr. Steindachner, and others for this museum being very extensive. Only the collections in the Indiana Unirersity have been studied by the junior author; for all statements regarding other specimens, and, in general, for everything said regarding the South American species, the senior author is responsible. We are under special obligations to Prof. Alexauder Agassiz, director of the Museum of Comparative Zoology, and to Mr. Samuel Garman, curator of the fishes, for many courtesies in connection with our studies in that museum.

We regard the order of Heterosomata ("flat-fishes," with both eyes ou the same side of the head) as constituting a single family, Pleuronectida. We find ourselves unable to separate the soles as a distinct family from the flounders. The characters which mark them as a group stem no more important than those which set off one subfamily of flounders from another.
The group of "Bibroniide" receutly recognized by some of the Italian ichthyologists as a separate family ("Bibronidi") is composed entirely of larval forms in the early stages of their development. In this condition the eyes are symmetrical and the body translucent. Several generic names have been given to these peculiar forms (Peloria, Bibronia, Coccolus, Charybdia, Bascanius, Delothyris), but, of course, these geuera can have no permanent place in the system. Peloria has been shown by Dr. Emery to be the young of Platophrys (Rhomboidichthys). The others seem to belong to the Cynoglossince or to some allied group, but we are not yet certain as to the correct identification of any of them.
S. Mis. $90-1.5$

We recognize among the Pleuroncctida seren subfamilies-Hippoglossind, Pleuronectinc, Samarince, Platessina, Oncopterince, Soleince, and Cynoglossince. The Samarince and Oncopterince are all of recent discorery. The other groups correspond exactly to the five "subgenera" (Hippoglossus, Rhombus, Platessa, Solea, and Plagusia) recognized by Cuvier. These subfamilies are natural groups and are in most cases easily distinguished, although some few aberrant genera exist which serve as links joining one group to another. Thus Isopsetta of the Platessince is certainly a near ally of Psettichthys, which is as certainly a genuine member of the Hippoglossince.
The Hippoglossina and the Platessince are largely arctic in their distribution, few of the former group and none of the latter extending into the tropics. The Oncopterince seem to take the place of the Platessince in antarctic waters, but the species of this group are few in number. The Pleuronectince and the soles are, on the other hand, essentially warm-water fishes, their representatives in the north being comparatively ferw. The Samarince are few in number and belong to the East Indian fauna.
As the tropical Hippoglossince and all the Pleuronectince are sinistral species, the eyes and color being on the left side of the body, it follows that the tropical flounders are nearly all left-sided species, while those of arctic and antarctic waters are chiefly dextral species, the eyes and color on the right.

Still more curions is the relation between the number of vertebræ and the geographical distribution of the various species.

It has been already noticed by Dr. Giinther and others that in some groups of fishes northeru representatives have the number of vertebræ increased. In no group is this more striking than in the flounders, as the following table showing the numbers of the vertebre in various species will clearly show. The numbers inclosed in brackets are copied from Dr. Giunther; the others represent our own count of specimens contained in the museum of the Indiana University.

> Numbers of vertebre in flounders.
I.-Hippoglossinte.

| Hippoglossus hippoglossus | $16+34=50$ |
| :---: | :---: |
| Atheresthes stomias | $12+37=49$ |
| Hippoglossoides platessoides | $13+32=45$ |
| Lyopsetta exilis. | $11+34=45$ |
| Eopsetta jordani | $11+32=43$ |
| Psettichthys melanostictus. | $11+29=40$ |
| Paralichthys oblongrs | $11+30=41$ |
| Paralichthys dentatus | $10+30=40$ |
| Paralichthys lethostigma | $10+27=37$ |
| Paralichthys albigutta. | $10+27=37$ |
| Paralichthys californicus | $10+25=35$ |
| Xystreurys liolepis | $12+25=37$ |
| Ancylopsetta quadrocellata | $9+26=35$ |

## II.-Pleuronectine.

| Monolene sessilicauda | [43] |
| :---: | :---: |
| Lepidorhombus whiff-iagon | $[11+30=41]$ |
| Citharichthys sordidus | $11+29=40$ |
| Platophrys lunatus | $9+30=39$ |
| Arnoglossus laterna. | $10+28=38$ |
| Arnoglossus grohmanai | $10+28=38$ |
| Zeugopterus punctatus | $[12+25=37]$ |
| Platophrys ocellatus | $10+27=37$ |
| Pleuronectes maculatus | $11+25=36$ |
| Pleuronectes rhombus | $12+24=36$ |
| Syacium papillosum. | $11+25=36$ |
| CitLarichthys arctifrons | $10+26=36$ |
| Syacium micrurum. | $10+25=35$ |
| Phrynorhombus regius | $10+25=35$ |
| Citharichthys spilopterus | $10+24=34$ |
| Citharichthys macrops. | $10+24=34$ |
| Etropus microstomus | $10+24=34$ |
| Etropus crossotus. | $10+24=34$ |
| Azevia panamensis. | 33 |
| Pleuronectes maximus | $12+19=31$ |

## III.-Platessine.

Glyptocephalus zachirus ..... $13+52=65$
Glyptocephalus cynoglossus ..... [58]
Microstomus pacificus ..... $12+40=52$
Microstomus kitt ..... $[13+35=48]$
Parophrys vetulus ..... $11+33=44$
Platessa platessa ..... $[14+29=43]$
Isopsetta isolepis ..... $10+32=42$
Lepidopsetta bilineata ..... $11+29=40$
Limanda limanda ..... [40]
Liopsetta glacialis

$$
13+27=40
$$

Pleuronichthys decurrens ..... $14+26=40$
Pleuronichthys verticalis

$$
13+25=38
$$Platessa glabra

$$
11+26=37
$$

Platessa flesus ..... $[12+24=36]$
Pseudopleuronectes americanus ..... $10+26=36$
Hypsopsetta guttulata ..... $11+24=35$
Platichthys stellatus

$$
12+23=35
$$

IV.-Soleinte.
Brachirus zebra ..... $[8+41=49]$
Solea solea ..... $9+40=4$,
Solea kleini ..... $10+37=47$
Solea aurantiaca[46]
Monochirus ocellatus ..... $9+28=37$
Monochirusluteus ..... $8+29=37$
Monochirus hispidus ..... $9+25=34$
Achirus fasciatus ..... $8+20=28$
Achirus inscriptus ..... $9+19=28$V.-Cynoglossine.
Symphurus atricauda

$$
10+42=52
$$

Symphurus nigrescens ..... $9+40=49$
Symphurus plagiusa ..... $9+38=47$

The subdivision of the flounders into genera leaves room for considerable variety of opiniou. Most of the species are well detined and easily recognized, but they do not fall readily into generic groups unless we regard almost every well-marked species as the type of a distinct genus. A natural result of an attempt at sharply defining the genera is to reach what seems an extreme degree of geueric subdivision. On the other hand, attempts to unite these smaller groups to form larger ones often leave these larger ones at once unuatural and ill-defined.

It will probably appear to some that the process of generic subdivision has been in this paper carried too far. It is possible that this is true, but the arrangement which we have adopted seems to bring out the relations of the different forms better than can be done by a more "conservative" view of the genera. For those who would reduce the rumber of groups we suggest the following list of genera as representing a not unnatural mode of arrangement.
I.-Hiproglossine.

[^29]Citharichtirys $\left\{\begin{array}{l}\text { Syacium. } \\ \text { Orthopsetta. } \\ \text { Citharichthys. } \\ \text { Azevia. } \\ \text { Etropus. } \\ \text { Thysanopsetta. }\end{array}\right.$
Monolene.
ili.-Platersine.

Pleuronicuthys $\left\{\begin{array}{l}\text { Pleuronichthys. } \\ \text { Hypsopsetta. }\end{array}\right.$
Isopsetta.
PLATESSA $\left\{\begin{array}{l}\text { Parop\%rys. } \\ \text { Inopsetta. } \\ \text { Lepidopselta. } \\ \text { Limanda. } \\ \text { Pseudopleuronectes. } \\ \text { Platessa. } \\ \text { Flesus. } \\ \text { Liopsetta. } \\ \text { Platichthys. }\end{array}\right.$

Microstomus.
Cynicoglossus.

## IV.-Oncopterin.e.

## Oncopterus.

## V.-Soleine.

## Apionichithys $\left\{\begin{array}{l}\text { Apionichthys. }\end{array}\right.$

Gymnachirus.
Achirus $\left\{\begin{array}{l}\text { Achirus. } \\ \text { Baiostoma. }\end{array}\right.$
Monochirus $\left\{\begin{array}{l}\text { Monochirus. } \\ \text { Microchirus. } \\ \text { Quenselia. }\end{array}\right.$
Solea.
Brachirus.
VI.-Cynoglossine.

Syapherus $\left\{\begin{array}{l}\text { Symphurus. } \\ \text { Bascanius. } \\ \text { Delothyris. } \\ \text { Charybdia. } \\ \text { Bibronia. } \\ \text { Acedia. }\end{array}\right\}$ Larval forms. ANALYSIS OF SUBFAMILIES OF PLEURONECTIDA.
a. Flounders: Edge of preopercle free; month with developed teeth; pectoral and ventrals well developed (one pectoral* or one ventral occasionally absent). b. Mouth nearly symmetrical, the dentition nearly equally developed on both sides, the gape usually, but not always, wide.
c. Veutral fins symmetrical, similar in position and in form of base, the ventral fin of the eyed side not being extended along the ridge of the abdomen.

Hippoglossin e I.
cc. Ventral fins unsymmetrical, dissimilar in position and usually also in form, the ventral fin of the eyed side being extended along the ridge of the abdomen. Eyes and color on the left side ................... Reveronectine II. $\dagger$

[^30]$b b$. Mouth unsymmetrical, the jaws on the eyed side with nearly straight outline, the bones on the blind side strongly curved; teeth chiefly on the blind side.
d. Ventral fins unsymmetrical, that of the eyed side extended along the ridge of the abdomen, snout with a free ray or other appendage in connection with the first ray of the dorsal. Eyes and color on the right side.

Oncoptrine III.
$d d$. Veutral fins nearly or quite symmetrical, that of the eyedside with short base; eyes and color on the right side (with occasional exceptions).

Platessine IV.
aa. Soles. Edge of preopercle adnate, usually obscured by the scales; mouth very small, much twisted toward the blind side, and with rudimentary teet5; pectoral and ventral fins generally small, occasionally obsolete.
$e$. Eyes on the right side, separated by a bony ridge ............... Soleine V. $e e$. Eyes on the left side, not separated by a bony ridge.... Crnoglossine VI.

ANALfsis of Geverd of pledronectide found in ayerica and
EURope.

## Subfamily I.—HIPPOGLOSSIN尼。

(Large-mouthed floinders with the ventral fins symmetrical.)
Mouth symmetrical, the jaws and the dentition nearly equally developed on both sides; gape usually wide, the maxillary more than onethird length of head. Lower pharyngeals narrow, usually with but one or two rows of sharp teeth; teeth in jaws usually acute. Eyes large; edge of preopercle free. Pectoral and ventral fins well developed, the ventral fins similar in position and in form of base, the rentral fin of the eyed side not being attached along the ridge of the abdomen. Septum of gill cavity without foramen.
a. Fertebre and fin-rays much increased in number (the vertebre about 50 , the dorsal rays about 100 , the anal rays about 85 ); body comparatively elongate ; caudal fin lunate; lateral line simple; anal spine mostly obsolete. Dextral species, Arctic in distribution., (Gẻnera allied to Hippoglossus.)
c. Large teeth in both jaws arrow-shaped, biserial, some of them depressible; upper eye with vertical range; gill-rakers short; scales deciduous, ciliated; lateral line without arch; flesh soft. Vertebre (stomias)

cc. Large teeth not arrow-shaped, biserial above, uniserial below; scales very small, cycloid; gill-rakers long and slender; eyes strictly lateral. a. Lateral line without anterior arch; lower pharyngeal teeth uniserial.

## Platysonatichthys, 2.

 dd. Lateral line with an interior arch; lower pharyngeal teeth biserial ; vertebre (hippoglossus) $16+34=50 \ldots$....................... Hippoglossus, 3. aa. Tertebre and fin-rays in moderate number (vertebre less than 46, dorsal rays less than 95 , anal rays less than 75); caudal fin double truncate or rounded, the median rays longest.f. Lateral line without distinct anterior arch ; vertebre, 40 to 46 ; body normally dextral ;* caudal peduncle distinct ; scales ciliated; anal spine usually strong. Species of subarctic distribution. (Genera allied to Hippoglossoides.)

[^31]g. Lateral line simple (without accessory dorsal branch); teeth sharp, those of lower jaw uniserial; dorsal beginning above eye.
$h$. Teeth in the upper jaw biserial.
$i$. Scales comparatively large, thin, and deciduous (lateral line 70) ; body slender, the flesh soft; vertebre (exilis) $11+34=45$.

Lyopsetta, 4.
ii. Scales small and adherent (lateral line 96); body robust, the flesh
 $h h$. Teeth in the upper jaw uniserial ; scales small and flesh firm ; vertebræ

gg. Lateral line with an accessory dorsal branch; vertebre 40 to 42 ; scales small, firm, ctenoid; dorsal fin beginning before the eye; teeth sharp, unequal, some of them canine-like; mouth not large; lower pharyngeal teeth sharp, uniserial ; vertebre (melanostictus)

ff. Lateral line with a strong arch in front; no accessory branch; vertebree in smaller number ( 35 to 41 ); teeth uniserial; anal spine usually obsolete; body normally sinistral.* (Species chiefly of the temperate or sub-tropical seas, none of them Arctic and none European.) (Genera allied to Paralichthys.)
k. Dorsal fin begiuning above the pupil; gill-rakers short and thick; teeth rather small ; no canines; body indifferently dextral or sinistral (in some species at least).
l. Scales cteuoid
. Hippoglossina, 8.
ll. Scales cycloid; caudal fin subsessile, the caudal peduncle extremely short; skin of shoulder-girdle with patches of cup-shaped scales; vertebræ (liolepis) $12+25=37$

Xystreurys, 9.
$k k$. Dorsal fin beginning in advance of eye.
$m$. Scales weakly ciliated; caudal fin with a distinct peduncle; teeth unequal, some of the anterior canine-like; gill-rakers rather long and slender ; vertebrie, 35 to 41 Paralichthys, 10.
$m m$. Scales very strongly ctenoid on both sides of body; mouth smallish, with small, sharp teeth; anterior rays of dorsal notably exserted, the rays of the anterior part of the fin longer than some of those further back, thus forming a more or less distinct lobe; gill membranes considerably united; gill-rakers short and broad; caudal peduncle short; left ventral produced; vertebre (quadro-


## Subfamily II.-PLEURONECTIN压,

(Large-mouthed flounders, with the ventral fins unsymmetrical.)
Mouth symmetrical, the dentition nearly equally developed on both sides ; gape usually wide (narrow in Platophrys, Etropus, etc.), the maxillary commonly more than one-third length of head. Lower pharyngeals narrow, each with one or more rows or a narrow band of small, sharp teeth; teeth in jaws acute. Eyes not minute ; pectorals and ventrals usually well developed. Edge of preopercle free. Ventral fins dissimilar in form or in position, that of the left or eyed side inserted on the ridge of the abdomen, its base extended along this ridge, its rays more or less wide apart. Caudal fin rounded or subtruncate; no ac-

[^32]cessory lateral line ; anal spine usually weak or obsolete; a pelvic spine sometimes developed. Vertebræ in moderate or small number, 31 to 40 (except in Monolene). Body sinistral. Species chiefly tropical or subtropical in distribution.
a. Pectoral tin of both sides present; dorsal rays less than 100.
b. Septum of gill cavity between gill arches and the termination of the shouldergirdle with a large foramen; the emargination below the shoulder-girele near the isthmus not deep; lateral line with a strong arch in front; last rays of dorsal and anal inserted more or less on the right side of the median line ; teeth subequal, in bands.
c. Tomer toothless; ventral fins free from the anal; caudal fin subsessile ; scales small, each with very long spinules; vertebre (regius)

cc. Vomer with teeth.
d. Ventral of eyed side united to the anal; scales small, very rough; body ovate; vertebre (punctatus) $12+25=37$.

Zeugopterus, 13.
dd. Ventral fins free from the anal; scales ciliated, deciduous; body oblong, much compressed; vertebre f fhiff-iagonis) $11+30=41$. Lepidorhombus, 14.
bb. Septum of gill cavity below gill arches, without foramen; a deep emargination near the isthmus; ventral fins free from anal.
c. Vomer with teeth; lateral line with a strong arch in front.
$f$. Teeth unequal, those of the upper jaw biserial, some of them caninelike; scales weakly ciliated; body elongate; mouth very large................................................... Citharus, 15.
If. Teeth subequal, in villiform bands ; body broadly ovate ; candal fin subsessile ; interorbital area broad ; scales small, cycloid, or wanting; vertcbre 31 to $36 . . . . . . . .$. . Pleuronectes, 16. ee. Vomer toothless; ventral fins free from anal ; caudal fin subsessile.
h. Lateral line with a distinct arch in front; teeth small, uniserial, or imperfectly biserial.
i. Interorbital area a narrow ridge, sometimes with a median groove.
j. Scales cycloid or weakly ciliated, deciduous ; vertebre $10+28=$ 38. Arnoglossus, 17.
ii. Interorbital space more or less broad, deeply concave; scales small, ctenoid, adherent ; body ovate (pectoral of left side usually filamentous in the male) ; vertebræ (lunatus)

$\pi \hbar$. Lateral line without arch in front ; seales ciliated.
k. Teeth in upper jaw biserial, in the lower uniserial, the front teeth of upper jaw eularged ; vertebræ 35 or 36 .

Syacium, 19.
$k k$. Tecth in both jaws uniserial ; interorbital space very narrow, the ridges coalescing between the eyes.
l. Mouth not very small, the maxillary more than one-third length of head.
$m$. Gill-rakers very short and thick, tubercle-like; seales small, firm, ctenoid ................................. Azevia, 20.
mm . Gill-rakers slender, of moderate length ; scales thin, decid-

- uous, ciliated ; vertebre 34 to 40 .... Citharichthys, 21.

2l. Mouth very small, the teeth subequal, the maxillary less than one-third length of head.
n. Teeth uniserial; vertebræ $9+25=34 \ldots$. Etropus, 22.
$n n$. Teeth in villiform bands .........Thysanopsetta, 23. aa. Pectoral tin of blind side wanting ; eyes very close together ; caudal fin subsessile; teeth small, uniserial; mouth moderate; lateral line of eyed side arched, that of right side nearly straight; dorsal fin beginning on snout, its anterior rays not exserted, its rays all simple and very numerous: scales small ; body thin, very elongate; vertebre (sessilicauda) 43 ; (deep-sea flounders, of uncertain relationship).

Monolene, 24.

## Subfamily III.-ONCOPTERIN压,

(Small-mouthed flounders, with the right ventral fin extending along the ridge of the abdomen, dorsal beginning at the snout, a bony prominence of some sort connected with its first ray ; eyes and color on the right side.)
a. Left side of snout with a horizontal slit-like cavity, into which a curved, bony, ray-like appendage is depressible; lateral line with an anterior arch and with numerous accessory branches nearly at right angles withit ; scales cycloid ; right ventral fin free from the anal fin; left ventral fin present; gill-rakers short and slender.
..Oncopterds, 25.

## 

Mouth small, unsymmetrical, the jaws on the eyed side with nearly straight outline, the bones on the blind side strongly curved; dentition chietly developed on the blind side; eyes large; edge of preopercle not hidden by the scales; pectoral fins well developed; vertical fins well separated ; ventral fins nearly or quite symmetrical ; aual spine usually strong (obsolete in Microstomus). Body dextral (except frequently in Platichthys stellatus). Species arctic or snbarctic in distribution.
a. Vertebræ in moderate number (from $10+26=36$ to $11+33=44$ ) ; dorsal rays 65 to 80 ; anal rays 45 to 60 .
b. Teeth small, acute, in several series; lateral line nearly straight, with an accessory dorsal branch; lower pharyngeals narrow, with small biserial teeth; scales cycloid. (Genera allied to Pleuronichthys).
c. Lips thick-each with several lougitudinal folds; dorsal fin beginning on the blind side ; vertebre 38 to $40 . . .-$........ Pleuronichthys, 26.
cc. Lips simple ; dorsal fin beginning on the median line; vertebre (guttulatus) $11+24=35$ $\qquad$ Hypsopsetta, 27.
$b b$. Teeth chiefly uniserial, all more or less blunt, conical or incisor-like. (Genera allied to Platessa).
d. Lateral line with an accessory dorsal branch.
e. Lateral line withont distinct arch in front.
f. Teeth compressed, incisor-like, close-set.
g. Scales closely imbricated, mostly cycloid; upper eye on median line; vertebræ (vetulus) $11+33=44 . \ldots \ldots \ldots$....................
$g g$. Scales scarcely imbricated, all very strongly ctenoid; eyes both lateral

Inopsetta, 29.

If. Teeth conical, separated, not incisor-like ; scales closely imbricated, all strongly ctenoid; mouth comparatively large (approaching that of Psettichthys); vertebre (isolepis) $10+32=$ 42.............................................................. ISOPSETTA, 36.
$c e$. Lateral line with a distinct arch in front; scales imbricated, roughctenoid; vertebre (bilineata) $11+29=40$. Lepidopsetta, 31 . dd. Lateral line without accessory. dorsal branch.
h. Lateral line with a distinct arch in front; scales imbricated, rough-ctenoid; vertebre (limanda) 40..............Limanda, 32.
$n i$. Lateral line without distinct arch in front.
$i$. Scales regularly imbricate, all (on eyed side) ctenoid in both sexes; no stellate tubercles on head nor on bases of dorsal and anal fius; teeth, incisor-like, close-set; lower pharyngeals very narrow, each with two rows of separate, conical teeth; fin rays scaly .Pseudopleuronectes, 33.
ii. Scales imperfectly imbricated, or else not all ctenoid.
$j$. Scales chiefly cycloid in both sexes; lower pharyngeals small and narrow, separate, each with 1 to 4 rows of small, bluntish teeth .Platessa, 34.
ij. Scales rough-ctenoid in the male, more or less cycloid in the female (fin raysscaly in the male, naked in the female); lower pharyngeals very large, more or less united in the adult, their surface somewhat concave, the teeth in five or six rows, large, blunt, close-set; teeth in jaws incisor-like; fin-rays of dorsal, and anal without tubercles at base .................Liopsetta, 35.
ijj. Scales all in both sexes and on both sides of the body represented by coarse scattered stellate tubercles; similar tubercles between bases of dorsal and anal rays; lateral line without scales; lower pharyugeals broad, each with three rows of blunt, coarse teeth ; teeth incisor-like................. Platicithys, 36.
aa. Vertebre in increased number (varying from $13+35=48$ to $13+52=65$ ); dorsal rays 90 to 120 ; anal rays 70 to 100 ; teeth broad, incisor-like; scales small, all cycloid. (Genera allied to Glyptocephalus).
k. Left side of skull normal ; anal spine obsolete; vertebræ 48 to 52.
. Microstomus, 37.
$k k$. Left side of skull, with large mucous cavities; anal spine strong; vertebrae 58 to 65....................Glyptocephalits, 38.

## Subfamily V.-SOLEIN圧,

## (Soles with the eyes on the right side, and separated by a bowy ridge.)

Body oblong or elongate, with the eyes and color on the right side; eyes moderate or small, separated by a distinct bouy ridge, the upper eye usnally more or less in advauce of the lower; mouth small, more or less twisted towards the blind side; teeth little developed, in villiform bauds; edge of preopercle adnate, usually concealed by the scales; gill openings more or less narrowed, the gill membranes aduate to the shouldergirdle above; blind side of head usually with fringes; pectoral fins small, sometimes wanting; ventral fins developed, one or both of them sometimes obsolete; scales usually ctenoid, rarely wantiug; lateral line straight, usually single.
a. Gill openings very small, separate, each reduced to a slight slit below angle of opercle; right ventral beginning at the chin, confluent with the anal; pectoral fins wanting or very small; lateral line present, straight; eyes small; snout dilated, the dorsal beginning upon it.
b. Scales present, ctenoid ; caudal fin somewhat confluent with dorsal.
c. Left ventral rudimentary, with two rays ............................ ApIonichthys, 39.
cc. Left ventral well developed, with five rays........................... Achirorsis, 40.
bb. Scales none; caudal fin not confluent with dorsal and anal. . Gymnachirus, 41. aa. Gill openings of moderate extent, confluent below.
d. Vertical fins well separated.
$e$. Right ventral fin with extended base, confluent with the anal fin; vertebre about 28 ; body ovate in outline, the depth nearly half the length; pectoral fins rudimentary or wanting; lateral line straight; scales well developed, ctenoid, those on the head more or less enlarged, those of the blind side of the head with fringes

ACHIRUS, 42.
$e e$. Right ventral fin with short base, free from the anal; vertebre 34 to 50 ; body elliptical or elongate, the depth one-third to two-fifths the length; lateral line single* on both sides.
f. Vertebre 34 to 40 ; body oblong; pectoral fins usually small, sometimes

ff. Vertebræ 47 to 50 ; body elongate; pectoral fins subequal, present on both sides Solea, 44.
dd. Vertical fins fully confluent around the short tail, body oblong; scales very small, ctenoid; vertebre ( $\approx e b r a) 8+41=49 . \ldots . . . .$.

## Subfamily VI-CCYNOGLOSSIN尼,

(Soles with the eyes on the left side, not separated by a bony ridge.)
Body elongate, more or less lanceolate in outline, with the eyes and color on the left side; eyes small, very close together, with no distinct interorbital ridge between them ; mouth small, twisted toward the blind side; teeth little developed, in villiform bands; edge of preopercle covered by the seales; gill openings narrow, the gill membranes adnate to the shoulder girdle above, joined together and free from the isthmus below; pectoral fins wanting (in the adult); ventral fins small, that of the blind side often wanting; rertical fins more or less confluent; scales ctenoid; lateral line sometimes wanting, sometimes duplicated.
a. Ventral fin of eyed side only present, free from the anal ; no pectoral fins; no
lateral line; head without fringes.
SYMPHURUS, 46.

## Subfamily I.-HIPPOGLOSSINÆ.

## Geuns I.-ATHERESTHES.

Atheresthes Jordan \& Gilbert, Proc. U. S. Nat. Mus., 1880, 51 (sfomias).
Type: Platysomatichthys stomias Jordan \& Gilbert.
The single species which constitutes this genust is one of the most

[^33]remarkable of the flounders. Of all the group, it approaches in form and geueral characters most nearly to the Gadoid fishes, from which we may presume the flounders to be descended, although Dr. Gill has sug. gested the possibility of their descent from Trachypteroid fishes.

## ANALYSIS OF SPECIES OF ATHERESTHES.

a. Head about $3 \frac{3}{\overline{3}}$ in lergth; depth, $3 \frac{1}{2}$; D. 103, A. 86 ; Lat.1.135. Gill-rakers about $4+12$, long and slender ; interorbital ridge broad, scaly; eyes large; vertebre, $12+37=49$. Color olive brown, the margins of the scales darker; blind side dusted with dark points ; iuside of mouth and gill-cavity black.

Stomias, 1.
1: ATHERESTHES STOMIAS.
('The Arrow-toothed Halibut.)
[Plate I.]
Platysomatichthys stomias Jordan and (xilbert, Proc. U. S. Nat. Mus., 1880, 51, 301, (San Francisco).
Atheresthes stomias Jordau and Gilbert, Proc. U. S. Nat. Mus., 1850, 57, 454 (off San Francisco). Bean, Proc. U. S. Nat. Mus., 1881, 242 (San Francisco, Port Etches, Afognak Island, Popoff Island, Shumagins). Jordan and Gilbert, Proc. U. S. Nat. Mus., 1881, 66 (P'oint Reyes to Farallones). Jordan and Gilbert, Syn. Fish. N. A., 820, 1832. Bean, Proc. U. S. Nat. Mus., 1883, 354 (Wrangel and Nabu Bay, Alaska). Jordan, Nat. Hist. Aquat. Anim., 1884, 188, plate 53 (Point Reyes).
Habitat.-Coast of Alaska, southward in deep water to near San Francisco.

This species is not uncommon in the deep water off San Francisco, and is brought in in considerable numbers from the sweep-nets (parran. zelle) used in this region. Farther northward it is taken on the coast of Alaska, and it is properly a member of the Alaskan fauna.

## Genus II.-PLATYSOMATICHTHYs.

```
Reinhardtius Gillj, Cat. Fishes East. Coast N. A., 1861, 50. (Nomen nudum.)
Platysomatichthys Bleeker, Comptes Rendus, Acad. Sci. Amsterdam, xiii, 1862, 426. (pinguis =hippoglossoides.)
Reinhardtius Gill, Proc. Ac. Nat. Sci. Phila., 1864, 218. (hippoglossoides.)
```

Type: Plewronectes pinguis Fabricius =Pleuronectes hippoglossoides Walbaum.

But a single species of this genus is known, an Aretic fish, in some degree intermediate between the true halibut and Atheresthes.

We continue to use the name Platysomatichthys for this genus, as the earlier name Reinhardtius was introduced without explanation or special designation of a type, although there is no question as to what species the author would have included in the group if he had taken the trouble to define:it.

ANALYSIS OF SPECIES OF PLATYSOMATICHTHYS.
a. Head, $3_{5}^{4}$ in length; depth, nearly 3 ; D. 100 , A. 75 ; Lat. 1. 160 ; interorbital space, broad, flat, scaly ; color brown, nearly plain....... Hippoglossoides, 2.

## 2. PLATYSOMATICHTHYS HIPPOGLOSSOIDES.

## (The Greenland Halibut.)

[Plate II.]
Pleuronectes cynoglossus F'abricius, Fanna Grænlandica, 1780, 163 (Greenland, not of Linnæus).

Reinhardtius hippoglossoides Gill, Cat. Fish. E. Coast N. A., 1861, 50 (name only). Gill, Proc. Ac. Nat. Sci. Phila., 1864, 218.
Platysomatichthys hippoglossoides Goode \& Bean, Bull. Essex Inst., ii, 7, 1879 (coast of Massachusetts and northward in deep water). Collett, Norske Nord Havs Exped., 1880, 142 (Finmark, Hammerfest). Jordan \& Gilbert, Syn. Fish. N. A., 1882, 819. Goode, Nat. Hist. Aquat. Anim., 1884, 197, pl. 56 (George's Bank and northward), aud of late American writers generally.
Pleuronectes pinguis Fabricius, Zoologiske Bidrag., 1824, 43 (Greeuland).
Hippoglossus pinguis Reinhardt, " Kgl. Dansk. Vidensk. Selsk., 116, 1838."
Platysomatichthys pinguis Bleeker, l.c., 426, 1862.
Hippoglossus grœnlandicus Günther, iv, 404, 1862 (Greenland).
Habitat.-Arctic parts of the Atlantic, south to Finland and the Grand Banks.

## Genus III.-HIPPOGLOSSUS.

Hippoglossus Cuvier, Règne Animal, ii, 1817 (hippoglossus).
Type: Pleuronectes hippoglossus L.
This genus contains but one species, the well-known halibut, abundant on both coasts of the North Atlantic and of the North Pacific.

## ANALYSIS OF SPECIES OF HIPPOGLOSSUS.

a. Head, 3 量; depth, about 3; D. 105, A. 78; Lat. 1.150 or more ; interorbital space, broad, flat, scaly ; gill-rakers, few, short, compressed, wide-set; color, dark brown; vertebre, $16+34=50$ Hippoglossus, 3.

## 3. HIPPOGLOSSUS HIPPOGLOSSUS.

(Tief Halibut.)
[Plate III.]
Pleuronectes hippoglossus Linnæus, Systema Naturæ, ed. x, 269, 1758 (European Ocean) (of Gmelin, Bloch, and early writers generally).
Hippoglossus hippoglossus Jordan, Cat. Fish. N. A., 1885, 133.
Hippoglossus vulgaris Fleming, British Animals, 1824, 197. Guinther, iv, 403, 1862. Day, Fishes Great Britain, ii, 5, pl. xciv, and of European writers generally.

[^34]Hippoglossus vulyaris Storer, Fish. Mass., 145̄, 1839. DeKay, New York Fauna, Fishes, 1842, 294, pl. 49, f. 157. Storer, Synopsis Fish. N. A., 1847, 475. Lockington, Rep. Com. Fisheries, California, 1878-'79, 39 (Farallone Islands). Lockington, Proc. U. S. Nat. Mus., 1879, 71 (San Fraucisco). Bean, Proc. U. S. Nat. Mus., 1879, 63 (Unalashka and St. Michael's, Alaska, Eastport, Maine).

- Jordan \& Gilbert, Proc. U. S. Nat. Mus., 1880, 454 (Puget Sound, San Francisco). Goode, Proc. U. S. Nat. Mus., 1880, 471 (Fisher's Island, Connecticut, \&c.) ; Jordan \& Gilbert, Proc. U. S. Nat. Mus., 1881, 66 (San Francisco, Cape Flattery). Bean, Proc. U. S. Nat. Mus., 1881, 242 (San Francisco, Puget Sound, Port Althorp, Chugachik Bay, St. Paul, Unalashka, St. Michael's. Jordan \& Gilbert, Syu. Fish. N. A., 1882, 819. Bean, Cat.Col. Fish. U. S. NatMus., 1883, 20 (Port Althorp, Alaska). Dresel, Proc. U. S. Nat. Mus., 1884, 244, (Davis Straits, Greenland). Goode, Nat. Hist. Aquatic Anim., 1884, 189, plate 54 (Sandy Hook, Montauk Point, Block Island, and northward), and of American writers generally.
Hippoglossus maximus "Gottsche, Wiegmam's Archiv, 1835, 164."
Hippoglossus gigas Swainson, Nat. Hist. Class'n Anim., ii, 1839.
Hippoglossus ponticus Bonaparte, Catalogo Metodico, 1846, 47 (Black Sea, after Pallas).
Hippoglossus amtricanus Gill, Proc. Acad. Nat. Sci. Phila., 1864, 220.
Habitat.-All northern seas, southward in deep water to France, Sandy Hook, and San Francisco.

The halibut, the largest and most widely distributed of all the Pleuronectide, is too well known to require discussion here.

## Genus IV.-LYOPSETTA.

Lyopsetta Jordan and Goss, Cat. Fish. N. A., 1885, 135 (exilis).
Type: Hippoglossoides exilis Jordan \& Gilbert.
This genus contains but a single species, a small, soft-bodied flounder, of the waters of the North Pacific. In its technical characters Lyopsetta is very close to Hippoglossoides, of which it might well be regarded a subgenus. The introduction of the name Lyopsetta is to be regretted from its close resemblance to Liopsetta, a word of similar sound, but very different meaning. At the time of the introduction of Lyopsetta, Liopsetta was regarded as an obsolete synonym.

## ANALYSIS OF SPECIES OF LYOPSETTA.

a. Body rather slender, the flesh soft; mouth rather small, the maxillary $2 \frac{2}{8}$ in head; teeth small, slender, close-set, nearly uniform. Eyes very large, $3 \frac{1}{8}$ in head, separated by a sharp, scaly ridge. Scales rather large, thin, deciduous, weakly ctenoid; pectorals small, the right pectoral nearly 2 in head. Gill-rakers short, slender, $x+9$. Head, 4 ; depth, $3 \frac{4}{4}$; D. 78, A. 62, Lat. 1., 71. Vertebræ $11+34=$ 45. Pale brown, with dark points ; bronze spots sometimes present; fins dusky ; dorsal, anal, and ventrals edged with yellow

Exilis, 4.

## 4. LYOPSETTA EXILIS.

Hippoglossoidts cxilis Jordan \& Gilbert, Proc. U. S. Nat. Mus., 1880, 154 (off San Francisco). Jordan \& Gilbert, Proc. U. S. Nat. Mus., 1880, 454 (Puget Sound, San Francisco, Monterey Bay). Jordan and Gilbert, Proc. U. S. Nat. Mus., 1881, 67 (San Francisco, Point Reyes, Seattle, Puget Sound). Jordan \& Gilbert. Syn. Fish. N. A., 1882, 827.

Habitat.-North Pacific, in rather deep rater. San Francisco to Puget Sound, and probably northward.

This small flounder is bronght in in large quantities by the sweep. nets off San Francisco. It is of little value as a food-fish.

## Genus V.-EOPSETTA.

Eopsetta Jordan \& Goss, Cat. Fish. N. A., 1885, 135 (jordani).
Type: Hippoglossoides jordani Lockington.
This genus contains but a single species, a large flounder which is abundant on the coast of California. It is very close to the genus Hippoglossoides, and its separation as a distinct genus is perhaps hardly justified.

## ANALYSIS OF SPECIES OF EOPSETTA.

a. Body broadly ovate; maxillary $2_{3}^{2}$ in head; teeth in two series above, the inner series much smaller, the outer canine-like in front, gill membranes somewhat united; gill-rakers strong, $x+15$; eyes large, $3 \frac{1}{4}$ in head, separated by a narrow, blunt, scaly ridge; scales small, firm, strongly ciliated, smooth on blind side; anal spine strong; head $3 \frac{1}{3}$; depth $2 \frac{1}{2}$. D. 94, A. 72, Lat. 1. 96 . Vertebre $11+32$ =43. Color, olive-brown, nearly uniform.

Jordani, 5.

## 5. EOPSETTA JORDANI.

## (The "California Sole.")

Hippoglossoides jordani Lockington, Proc. U. S. Nat. Mus., 1879, 73 (San Francisco). Lockington, Rep. Com. Fisheries, California, 1878-'79, 40 (San Francisco, Farallone Islands). Lockington, Scieutific Press Supplement, April, 1879, 120. Jordan \& Gilbert, Proc. U. S. Nat. Mus., 1880, 454 (Puget Sound, Sau Francisco, Monterey Bay). Jordan \& Gilbert, Proc. U. S. Nat. Mus., 1881, 67 (Monterey, Puget Sound, San Francisco). Jordan \& Gilbert, Syn. Fish. N. A., 1882, p. 826. Jordan, Nat. Hist. Aquat. Anim., 1884, 187.
Habitat.-Coast of Califoruia, Puget Sound to Monteres.
This is one of the commonest flat-fishes of the California coast, being found in abundance in shallow water from Monterey northward. It is a good food-fish, and large numbers are dried each year by the Chinese.

## Genus VI.-HIPPOGLOSSOIDES.

Hippoglossoides Gottsche, Wiegmann's Archiv, 1835, 164 (" limanda" =platessoides). Drepanopsetta Gill, Cat. Fish. East Coast N. Am., 1861, 50 (platessoides).
Pomatopsetta Gill, Proc. Ac. Nat. Sci. Phila., 1864, 217 ("dentata" $=$ platessoides).
Type: Pleuronectes platessoides Fabricius.
This genus, as here restricted, contains two closely related species, the one of the North Pacific, the other of the North Atlantic. Both are essentially Arctic species, iuhabiting shallow waters in the regions where they are most abundant.

## ANALYSIS OF SPECIES OF HIPPOGLOSSOIDES.

a. Teeth small, unequal, the anterior largest; gill-rakers short, $\mathrm{X}+10$ in number ; maxillary $2 \frac{2}{8}$ in head; eye $5 \frac{1}{2}$ in head ; interorbital space with an obtuse, prominent ridge, with usually about six scries of scales; head, $3 \frac{3}{\text { 虽 } ; ~ d e p t h, ~} 2 \frac{1}{2} ;$ D. 88 (80 to 93 ) ; A. 70 ( 64 to 75 ) ; Lat. l. 90 ; vertebre $13+32=45$; color nearly plain brown. Platessoides, 6.
$a a$. Teeth small, subequal ; gill-rakers slender, $\mathrm{X}+16$; maxillary $2 \frac{1}{3}$ in head; eye large, 4 in head ; interorbital space a narrow, knife-like ridge with usually a single series of scales; head, $3 \frac{1}{2}$; depth, $2 \frac{1}{2}$; D. 80 ( 77 to 84) ; A. 61 (59 to 64) ; Lat. 1. 100; color brown, sometimes mottled with darker............................Elassodon, 7.

## 6. HIPPOGLOSSOIDES PLATESSOIDES.

## (The Sand Dab.)

## [Plate IV.]

Pleuronectes linguatula Miiller, Zool. Dan. Prodromus, 45, 1776 (not of Linnæus).
Pleuronectes platessoides Fabricius, Fauna Gronlandica, 1780, 164 (Greenland), and of numerous copyists.
Citharus platessoides Reinhardt, Kongl. Dansk. Vid. Selsk, 116, 1838.
Drepanopsetta platessoides Gill, Cat. Fish. East Coast N. Am., 1861, 50 (uame only).
Hippoglossoides platessoides Gill, Proc. Acad. Nat. Sci. Phila., 1s64; p. 217. Collett, Norske Nord-Havs. Exped., 1880, 144 (Norway to Spitzbergen). Goode, Proc. U. S. Nat. Mus., 1880, 471. Jordan and Gilbert, Syn. Fish. N. A., 1882, 826. Stearns, Proc. U. S. Nat. Mus., 1883, 125 (Labrador). Goode, Nat. Hist. Aquatic Anim., 1884, 197, pl. 55 (Wood's Holl and northward), and of recent American writers generally.
Fleuronectes limandoides Bloch, Ansl. Fische, iii., 24 tal. 186, 1787 (Europe), and of various copyists.
Hippoglossoides limandoides Giiuther, Cat. Fish., iv, 405, 1862. Day, Fishes Great Britain and Ireland, vol. ii, p. 9, pl. xev.
Hippoglossoides limanda Gottsche, Wiegm. Archiv, 1835, 168 (not Pl. limanda L.).
Pleuronectes limandanus Parnell, Edinburgh New Phil. Journ., 1835, 210.
Platessa dentata Storer, Fish. Mass., 143, 1839. (Boston and Provincetown; not Pl. dentatus Linnaeus.) Dekay, N. Y. Fauna, Fish, p. 298, 1842. Storer, Syn. Fish. N. A., 1846, p. 476.
Hippoglossoides dentatus Günther, Cat. Fish., iv., 406, 1862. Günther, Voy. Challenger, Fishes, 1880, 3. (Station 49, south of Halifax.)
Pomatopsetta dentata Gill, Proc. Acad. Nat. Sci. Phila., 1864, p. 217.
Habitat.-North Atlantic, south to Cape Cod, and the coasts of England and Scandinavia.

The identity of the American and European representatives of this species (platessoides and limandoides) is now conceded by all writers. A little difference is recognized bel ween Aretic and subarctic examples, the former having a somewhat greater number of fin-rays.

Thus, Greenland specimens, according to Collett, have D. 88, A. 69, specimens from Finmark have D. 92 , A. 72; these representing the var. platessoides. Specimens from England (var. limandoides) hare D. 80, A. 66, while those from intermediate localities present in general fin formulx likewise intermediate, showing that no sharp division is possible.

This is a rather common food-fish of the deeper waters northward, on both sides of the ocean.

## 7. HIPPOGLOSSOIDES ELASSODON.

## [Plate V.]

Hippoglossoides classodon Jordau and Gilbert, Proc. U. S. Nat. Mus., 1880, 278 (Seattle, Tacoma, Washington Territory). Jordan \& Gilbert, Proc. U. S. Nat. Mus., 1880, 454 (Puget Sound) and elsewhere. Bean, Proc. U. S. Nat. Mus., 1881, 242 (Puget Sound, St. Paul, Humboldt Harbor, Shumagins, Iliulink, Unalashka, St. Michael's). Jordan and Gilbert, Syn. Fish. N. A., p. 826, 1882. Bean, Proc. U. S. Nat. Muı., 1883, p. 20 (Unalashka). Jordan, Nat. Hist. Aquat. Anim., 1884, 188, pl. 52.

## Habitat.-North Pacific, south to Puget Sound.

This is a rather abundant shore fish in Puget Sound, and it seems to be still more common northward, being, in Alaska, a food-fish of some importance.

## Genus VII.--PSETTICHTHYS.

Psettichthys Girard, Proc. Ac. Nat. Sci. Phila., 1854, 140 (melanostictus).
TyPE: Psettichthys melanostictus Girard.
This genus contains bnt a single species, found on the coast of California. It is nearly related to Hippoglossoides, but possesses the peculiar accessory dorsal branch to the lateral line, characteristic of so many of the Pacific coast flounders.

## ANALYSIS OF SPECIES OF PSETTICHTIIYS.

a. Body elliptical; mouth rather small ; maxillary $2^{\frac{2}{3}}$ in head ; teeth large, sharp, uniserial ; eyes very small, 5 in head, separated by a broad, flat, scaly interspace; gill-rakers slender, $\mathrm{X}+14$; scales very small, ctenoid, adberent; accessory lateral line long; first rays of dorsal exserted, the longest 3 in head; head 4 ; depth $2 \frac{1}{8}$; D. 85 , A. 60, Lat. 1. 112; vertebrae $11+29=40$; color dark grayish brown, everywhere finely speckled with darker
.... Melanostictus, 8.

## 8. PSETTICHTHYS MELANOSTICTUS:

[Plate VI.]
P'settichthys melanostictus Girard, Proc. Acad. .Nat. Sci. Phila., 1854, p. 140 (San Francisco ; Astoria, Oregon). Girard, U. S. Pacif. R. R. Exped., Fishes, p. 154, 1859. Giinther, Cat. Fish., iv, 420, 1862 (copied). Lockington, Rep. Com. Fisheries Cal. 1 78 - 79 , p. 40 (San Francisco; Farallone Islands). Lockington, Proc. U. S. Nat. Mus., 1879, p. 76 (San Francisco). Jordan and Gilbert, Proc. U. S. Nat. Mus. 1880, 1. 453 (Puget Sound, San Fraucisco, Monterey Bay). Jordan \& Gilbert, Proc. U. S. Nat. Mus., 1881,p. 67 (Monterey; Puget Sound). Jordan, Nat. Hist. Aquatio Animals, 1884, 186, pl. 51 (Monterey to Wrangel, Alaska).
Hippoglossoides melanostictus, Jordan and Gilbert, Syn. Fish. N. A., 1882, p. 828.
Habitat.-Pacific coast of North America, from Alaska south to Monter.

This is one of the commoner flounders of the Pacific coast, being every where known by the name of "Sole." It lives near the shore, and reaches a length of about twenty inches.

In color this species is quite unlike the species of Hippoglossoides, but in most other respects the two groups are closeiy allied.

$$
\mathrm{S}_{\mathrm{a}} \mathrm{Mis}_{a} 90-16
$$

## Genus VIII.-HIPPOGLOSSiNA.

Hippoglossina Steindachner, Ichth. Beiträge, v, 13, 1876 (macrops),
Type: Hippoglossina macrops Steindachner.
This genus is intermediate between Hippoglossoides and Paralichthys, agreeing with the former in the insertiou of the dorsal and in generai appearance, and with the latter in the direction of the lateral line. Twg species, the one from Japan, the other from Patagonia, have been lately referred to Hippoglossina. A fourth species, apparently still undescribed, is in the museum at Cambridge, from Japan. Some of these species are dextral, and perhaps all of them are normally so, or perhaps, as in the case of Xystreurys liolepis, all are indifferently dextral or sinistral.

## ANALYSIS OF AMERICAN SPECIES OF HIPPOGLOSSINA.

a. [Eye very large, $3 \frac{1}{2}$ in head; body elliptical ; dorsal beginning over middle of eye; pectoral of left side half head, much longer than maxillary, which is $2 \frac{2}{3}$ in head and reaches middle of eye ; interorbital space a narrow ridge; teeth very small, sharp, uniserial ; scales of left side all strongly ctenoid, those of blind side ciliated only on posterior third of body; head $2 \frac{3}{4}$; depth $2 \frac{1}{3}$ to $2 \frac{1}{5}$, D. 66 or 67 ; A. 52 ; Lat. 1.75 to 80 ; no anal spine. Color, brownish, with obscure darker blotches; body sinistral (in the only specimen known)] (Steindachner)....................... Macrops, 9. uu. [Eye small, $4 \frac{1}{2}$ or more times in head; upper eye slightly before lower; snout $4 \frac{1}{2}$ in head; interorbital space flat, with minute scales, half vertical diameter of eye; dorsal beginning above cye, of moderate height; month wide, maxillary extending beyoud middle of orbit; lateral line with a semicircular curve; pectoral $D$ in head; ventrals well developed, symmetrical. Grayish, mịnutely mottled with brown. Head 31 ; depth, $2 \frac{1}{3}$; D. 72; A. 56.] (Günther) ..................Microps, 10.

## 9. HIPPOGLOSSINA MACROPS.

Hippoglossina macrops Steindachner, Ichth. Beitr., v, 13, pl. jii, 1876 (Mazatlan).
Habitat.--Pacific coast of Mexico, Mazatlan.
We know this species from the description and excellent figare published by Dr. Steindachner.

## 10. HIPPOGLOSSINA MICROPS.

Hippoylossina microps Giiinther, Vogage, H. M. S. Alert. Jan. 4, 1881 (Patagonia).
Habitat.-West coast of Patagonia.
This specimen is known only from Giinther's short description of a specimen four inches in length.

## Genus IX.-XYSTREURYS.

Xystreurys Jordan \& Gilbert, Proc. U. S. Nat. Mus., 1880, 34 (liolepis).
Type: Xystrcurys liolepis Jordan \& Gilbert.
This genus is very close to Hippoglossina, differing chiefly in the subsessile caudal fin and the smooth scales. In its peculiar gill-rakers it agrees with those of a Japanese species of Hippoglossina examined by us. The typical species, like some other Pacific coast flounders, is al-
most iudifferently dextral or sinistral. The lately-described Hippoglossina punctatissima Steindachner, from Japan, seems to belong to Xystreurys.

## ANALYSIS OF SPECIES OF XYSTREURYS.

a. Rody broadly elliptical ; mouth small; maxillary reaching pupil, $2 \frac{2}{8}$ in head; eyes large, $4 \frac{1}{2}$ in head, separated by a very narrow, blunt, scaly ridge; teeth small, conical, blunt, uniserial, those below subequal, those above larger in front. Gillrakers very short, broad, weak, $2+7$. Scales small, cycloid, with many accessory scales. Skin of shoulder girdle and gill arches with cnp-shaped, tubercular scales. Dorsal inserted above pupil; no anal spine. Pectoral of eyed side falcate, varying much in length, usually much longer than head; anterior nostril of blind side with a short flap. Head $3 \frac{ \pm}{5}$, depth $1 \frac{5}{6}$; D. 80 ; A. 62 ; Lat. 1.123 ; vertebre $12+25=37$. Olive-brown, mottled with darker, sometimes with very distinct round black blotches or ocelli; pectoral of colored side barred.

Liolepis. 11.

## 11. XYSTREURYS LIOLEPIS.

Xystreurys liolepis Jordan and Gilbert, Proc. U. S. Nat. Mus., 1880, p. 34 (Santa Barbara). Jordan and Gilbert, Proc. U. S. Nat. Mus., 1880, p. 454 (Santa Barbara; San Pedro). Jordan and Gilbert, Proc. U. S. Nat. Mus., 1881, p. 66 (Santa Barbara). Paralichthys liolepis Jordan and Gilbert, Syn. Fish. N. A., p. 825, 1882.

This species is rather common on the coast of California, from Point Concepcion southward. It is a very variable species, the coloration and the length of the pectoral fins having a wide range of variation.

## Genus X.-PARALICHTHYS.

Paralichthys Girard, U. S. Pac. R. R. Surv., Fish., 1859, 146 (maculosus - califormicus).
Pseudorhombus Blecker, Comptes Rendus, Acad. Sci. Amsterd., xiii, 1862, notice sur quelques genres de la famille des Pleuronectidæ, 5 (polyspilos).
Uropsetta Gill, Proc. Ac. Nat. Sci. Phila., 1862, 330 (californicus = maculosus).
Chænopsetta Gill, Proc. Ac. Nat. Sci. Phila., 1864, 218 (ocellaris = deutatus).
Trpe: Pleuronectes maculosus Girard=Hippoglossus califormicus Ayres.

This genus, as now restricted, contains a considerable number of species, inhabiting both coasts of America and the eastern and southern coasts of Asia. As indicated by the reduced number of vertebrx, the species range further southward than do those of the type of Hip. poglossoides.

The name Pseudorhombus has been often used for this genus by European writers, but the preferable name of Paralichthys has clear priority.

## aNALYSIS OF SPECIES OF Paralichtiys.

a. Gill-rakers in large number, about $9+20$, as long as the eye and very slender; body elongate, rather robust ; head small, 3 星 to $4 \frac{1}{4}$ in length; maxillary about as long as pectoral and about half length of head; depth of body $2 \frac{1}{2}$ to $2 \frac{2}{3}$ in length; caudal peduncle very long; interorbital space flattish, its width less than vertical diameter of eye; scales moderate, somewhat ciliated, about 100 pores in the lateral line; arch of lateral line $3 \frac{1}{2}$ in straight part ; dorsal rays 67 to 71 ; anal rays 51 to 57 ; vertebre $10+25=35$; color grayish brown, uniform, or mot-
tled with blackish and pale, the head sometimes sprinkled with black dots; young brownish, with spots of light bluish. (Eyes and color normally sinistral, but reversed examples almost equally common.). Californicus, 12.
aa. Gill-rakers in moderate number $(6+13$ to $5+16)$, rather long and slender.
b. Dorsal rays 70 to 75 ; anal rays 54 to 60 .
c. Scales not very small, about 100 in the course of the lateral line; head small, $4 \frac{1}{5}$ in length; depth, $2 \frac{1}{3}$; interorbital space rather broad and flattish, $\frac{2}{8}$ diameter of eje; eyes small, $5_{3}^{2}$ in head ; gill-rakers rather short, $4+15$, the longest about $\frac{3}{3}$ eye ; pectoral $1 \frac{1}{3}$ in head ; curve of lateral line high and short, 4 in straight part, its height 1 㝵 in $^{\text {its length; mouth }}$ moderate, the maxillary $2 \frac{1}{5}$ in head ; teeth rather few, the anterior canines large; color dark brown, more or less mottled and spotted with paler ............................................................. . . Brasiliensis, 13. cc. Scales very small, about $1: 2$ in the lateral line; head $3 \frac{1}{2}$ in length; depth, $2 \frac{1}{4}$; eyes small, wide apart ; gill-rakers $\mathrm{X}+17$; curve of lateral line nearly 5 in straight part, barely twice as long as high ; maxillary $2 \frac{1}{6}$ in head; color brownish-gray, thickly mottled with many larger and smaller spots, points and rings; side with three or four larger spots of irregular form and ocellated with paler............................ADSPERSUS, 14.
$b b$. Dorsal rass, 85 to 93 in number ; anal rays, 67 to 73 ; gill-rakers, $5+15$ or 16 in number, long and slender, the longest $\frac{7}{3}$ length of eye; body ovate, the depth about $2 \frac{2}{3}$ in length; head about $3 \frac{2}{3}$; caudal peduncle long; maxillary about half head, reaching past posterior margin of eye; mouth large, oblique, the gape curved; canines large, conical, wideset ; interorbital area a rather flattish ridge, in the adult about equal to vertical diameter of eye, narrower in the young, forming a bony ridge; scales cycloid, each with numerous small, accessory scales; lateral line with about 95 pores, its arch 4 times in straight part; color brownish olive, always with numerous paler and darker spots of various sizes and with obscure ocelli ; vertebre $11+30=41$. - Dentatus, 15. aaa. Gill-rakers few, shortish, wide set, the numbers $2+8$ to $3+10$.
d. Body ovate, more or less compressed, and opaque; the depth about $2 \frac{1}{3}$ in length ; no distinct, definitely-placed ocelli ; seales cycloid.
e. Dorsal rays in large number ( 85 to 93 , as in $P$. dentatus) ; anal rays 65 to 73 ; pores of the lateral line about 100 ; accessory scales few; gill-rakers $2+10$, lanceolate, dentate, wide-set, and much shorter than the eye; eyes small; interorbital space in adult broad, flattish, and scaly, as wide as length of eye; caudal peduncle rather long; depth about $2 \frac{1}{8}$ in length; head about $3 \frac{7}{3}$; length of arch of lateral line nearly onethird that of straight part; color dusky olive, darker than in P. dentatus, and with very few darker mottlings or spots. Lethostigma, 16. cc. Dorsal rays in moderate number ( 70 to 80 ); anal rays 54 to 61.
$f$. Scales very small, about 120 in the lateral line; depth of body about half length; head $3_{\overline{2}}^{2}$ in length; gill-rakers roughly toothed, $3+9$ in number; arch of lateral line $4 \frac{1}{3}$ in straight portion ; mouth very large, oblique, the broad maxillary more than half head, and reaching past eye; D. 78, A. 59; coloration brownish, the body and fins spotted with darker.

Squamilentus, 17.
ff. Scales moderate, 90 to 100 pores in the lateral line.
g. Interorbital width about equal to length of eye; dorsal rays 75 to 81 ; anal rays 59 to 61 ; gill-rakers 2 or $3+9$ or 10 ; coloration grayishbrown, with numerous (more or less distinct) whitish blotches, which
 gg. Interorbital width not half the Ieugth of the eye; dorsal rays 76; anal rays 60 ; form of $P$. albigutte; ese large ( 4 星 in head); maxillary
$2 \frac{1}{5}$ in head (as long as pectoral); teeth rather small; arch of lateral line a little longer than high, its leugth $5_{\frac{1}{10}}^{1}$ in the straight part; gillrakers $3+11$, shorter and thicker than in $P$. brasiliensis, the longest about half eye; color brown, the body and fins irregularly blotched and with obscure ocelli; pectorals barred; eyes speckled.

Patagonicus, 19.
$d d$. Body oblong, strongly compressed, semi-translucent; scales weakly ciliated; about 93 pores in lateral line; curve of lateral line about $3 \frac{2}{2}$ times in straight part; mouth large, oblique; maxillary narrow, its length 21 in head; interorbital area a very narrow, bony, scaleless ridge; head 3 星 to 4 in length; depth 27 ; gill-rakers $2+8$ in number, about half as long as eye; D. 77, A. 62; coloration light grayish, thickly mottled with darker; four large horizontally oblong, black ocelli, each surrounded by a pinkish area; one just behind middle of the body, below the dorsal; one opposite this, above anal ; two similar smaller spots below last rays of dorsal and above last of anal; vertebre, $11+30=41$

Oblongus, 20.

## 12. PARALICHTHYS CALIFORNICUS.

(Bastard Halibut; Monterey Halibut.)
Pleuronectes maculosus Girard, Proc. Acad. Nat. Sci. Phila., 1854, 155 (young, San Diego).
Paralichthys maculosus Girard, U. S. Pacif. R. R. Exped., Fishes, p. 147, 1859 (not Rhombus maculosus Cuvier, also a species of Paralichthys). Günther. Cat. Fish., iv, 431, 1862 (copied). Gill, Proc. Acad. Nat. Sci., Phila., 1864, p. 197. Lockington, Rep. Com. Fisheries, California, 1878-79, p. 41 (Monterey; Tomales Bay). Lockington, Proc. U. S. Nat. Mus., 1879, p. 79 (San Francisco). Jordan and Gilbert, Proc. U. S. Nat. Mus., 1880, 454. (San Francisco, Monterey Bay, San Luis Obispo, Santa Barbara, San Pedro, San Diego.) Jordan and Gilbert, Proc. U. S. Nat. Mus., 1881, 66 (Tomales Bay; Monterey; San Diego). Jordan, Nat. His. Aquat. Anim., 1884, 182.
Hippoglossus californicus Ayres, Proc. Cal. Acad. Nat. Sci., 1859, p. 29, and 1860, fig. 10 (adult, San Francisco).
Pseudorhombus californicus Günther, Cat. Fish., iv, 426, 1862 (copied).
Uropsetta californica Gill, Proc. Acad. Nat. Sci. Phila., 1862, 330. Gill, Proc. Acad. Nat. Sci. Phila., 1864, 198.
Paralichthys californicus Jordan and Gilbert, Syn. Fish. N. A. 1882, 821.

## Habitat.-Coast of California; Tomales Bay to San Diego..

This large flounder is one of the common food-fishes of the Pacific coast, where it takes the place occupied on the Atlantic side by Paralichthys dentatus. It reaches a length of three feet and a weight of sixty pounds. From its resemblance to the halibut, it usually goes by the name of bastard halibut. It is readily distinguished from the Atlantic members of the same genus by its fewer fin-rass and by its more numerous gill-rakers.

The specific name californicus must be used for this fish, the earlier name, maculosus, being preoccupieā in the genus Paralichthys. As was first shown by Mr. Lockington, the small fish, called Paralichthys maculosus, is simply the young of the larger fish, then called Uropsetta californica. Unlike other species of the genus, Paralichthys californicus is almost as frequently dextral as sinistral.

## 13. PARALICHTHYS BRASILIENSIS.

Hippoglossus brasiliensis Ranzani, Nov. Spec. Pisc., 10, tab. iii, 1840 (Brazil).
Pseudorhombus brasiliensis Günther, Fishes Centr. Amer, 473, 1869 (Brazil, Guatemala).
I'latessa orbignyana Valenciennes, D'Orbigny Voy. S. Amer. Mérid. Poiss., pt. 5, pl. 16, f. 1, 1847.
Rhombus aramaca Castelnau, Anim. nouv. ou rares, Poisś., 78, pl. 40, f. 3 (not of Cuvier).
Pseudorhombus vorax Giinther, Cat. Fish. Brit. Mus., iv, 1862, 429 ("South America").
Habitat.—South America, said to range northward to Guatemala. This species is known to us from numerous specimens from Rio Janeiro and from Maldonado, in the Museum of Comparative Zoology.
The locality "Guatemala" given by Guinther seems to be somewhat doubtful, and the species may not occur in West Indiau waters at all.

## 14. PARALICHTHYS ADSPERSUS.

- Hippoglossus kingi Jenyns, Vogage Beagle, Fishes, 1842, 128, pl. 20. (Valparaiso: from a drawing only.)
Pseudorhombus adspersus Steindachner, Ichthyol. Notizen, v, 1867, 9, Plate II. (Chinchas Islands.)
Paralichthys adspersus Jordan and Gilbert, Proc. U. S. Nat. Mus., 1882, p. 370. (Capo San Lucas.) Jordan and Gilbert, Bull. Fish. Corn., 1882, pp. 108 and 111. (Mazatlan, Panama.) Jordan, Cat. Fish. N. A., 1885, 133.
Habitat.—Pacitc coast of tropical America. Cape San Lucas to Peru.
Numerous specimens of this species were obtained by Professor Gilbert at Maza tlan and Panama. As all these have been destroyed by fire, we have taken our description from Callao specimens in the Museum of Comparative Zoology. The species is very close to P. brasili. ensis, differing chiefly in the smaller scales. This may prove identical with the remarkable $H$. kingi of Jenyns, in which case it must stand as Paralichthys kingi.


## 15. PARALICHTHYS DENTATUS.

(The Summer Flounder.)
Pleuronctes dentatus Linnxus, Syst. Nat., 1, 458, 1766, and of numerous copyists. Mitchill, Trans. Lit. \& Phil. Soc. N. Y., p. 390, 1815 (New York).
Platessa dentata Storer, Hist. Fish. Mass., p. 143, 1839.
Pseudorhombus dentatus Goode and Bean, Proc. U. S. Nat. Mus., 1879, 123.
Paralichthys dentutus Goode, Nat. Hist. Aquat. Auim., 1884, 178. (Detailed account; includes $P$. lethostigma.) Jordan, Cat. Fish. N. A., 1885, 134.
Pleuronectes melanogaster Mitchill, Trans. Lit. and Phil. Soc. N. Y., p. 390, 1815. (Doubled example.)
Platessa ocellaris DeKay, N. Y. Fauna, Fishes, 1842, 300, P1. 47, fig. 152.
Pseudorhombus ocellaris Günther, iv, 430, 1862 (copied). Jordan and Gilbert, Proc. U. S. Nat. Mus., 1878, 370 (Beaufort).

Chexnopsetta ocellaris Gill, Proc. Ac. Nat. Sci., 1864, 218.
Paralichthys ocellaris Jordan and Gilbert, Proc. U. S. Nat. Mus., 1882, p. 617 (Charleston).
Paralichthys ophryas Jordan and Gilbert, Syn. Fish N. A., p. 892, 1882 (Charleston).

Habitat.-Atlantic coast of United States from Cape Cod to Florida.
This species is the common flounder of the coasts of the Northern States, its range apparently not extending much south of Charleston. Of the species found in that region it is the most important from a commercial point of view. It reaches a length of about 3 feet and a weight of about 15 pounds.

It has been confounded by nearly all writers with the more southern species now called lethostigma, from which it is best distinguished by its much greater number of gill-rakers and by its mottled coloration. On account of this confusion it is impossible wholly to disentangle its synonsmy from that of $P$. lethostigma.

So far as the proper nomenclature of the two is concerned, this confusion makes little difference. There is no doubt that this is the original Pleuronectes dentatus of Linnæus, as the original Linnæan type is still preserved in London. This has been examined by Dr. Bean and its identity with the present species fully established.

It seems also certain that this is the Platessa ocellaris of DeKay, who properly distinguishes his ocellaris from his oblonga, the latter being $P$. lethostigma.

A little doubt must be attached to the melanogaster of Mitchill, very scantily described from a doubled (black-bellied) example of this species or of $P$. lethostigma. As the former species is much more common about New York than the latter it is probable that Mitchill's fish belonged to it. We have also received a doubled example from New York corresponding exactly to Mitchill's description. We may therefore regard the name melanogaster as a synonym of dentatus.

The diffirences in the gill-rakers of these species was first noticed by Jordan and Gilbert in 1883. These authors erroneously referred all these synonyms to the species with the fer gill-rakers and described the present one as new under the name of Paralichthys ophryas. The discovery of the Linnæan type of Pleuronectes dentatus has rendered a reconsideration of this matter necessary, and it is evident that to the "P. ophryas" belong also the prior names of dentatus, melanogaster, and ocellaris.

The name Platessa orbignyana Valenciennes, applied to a South American example and donbtfully referred by Dr. Giinther to his Pseudorhombus dentatus, belongs to Paralichthys brasiliensis.

## 16. PARALICHTHYS LETHOSTIGMA.

(The Southern Floundefa)

## [Plate VII.]

[^35]Paralichthys dentatus Jordan and Gilbert, Proc. U. S. Nat. Mus., 1882, p. 302. (Galveston, New Orleans, Pensacola.) Jordan and Gilbert, Proc. U. S. Nat. Mus., 1882, p. 617. (Charleston.) Bean, Cat. Col. Fish, U. S. Nat. Mus., 1883, p. 45 (Galveston).

Paralichthys dentatus Jordan and Gilbert, Synopsis Fish. N. A., 1882, 822.
Paralichthys lethostigma Jordan and Gilbert, Proc. U. S. Nat. Mus., 1884, 237 (Jacksonville, Florida).
Habitat.-South Atlantic and Gulf coast of United States, north to New York.

This species is the common large flounder of the South Atlantic and Gulf coasts of the United States, ranging as far north as New York. It very closely resembles Paralichthys dentatus, with which it has been repeatedly confounded. It is, however, sharply distinguished by the character of the gill-rakers. It is also always darker in color, and almost uniform, while the dentatus is usually profusely spotted. Its only tenable name is the very recent one of Parailichthys lethostigma.

## 17. PARALICHTHYS SQUAMILENTUS.

Paralichthys squamilentus Jordan aud Gilbert, Proc. U. S. Nat. Mus., 1882, p. 303 (Pensacola). Jordan and Gilbert, Syn. Fish. N. A., p. 823, 1882 (Pensacola, Charleston). Beau, Cat. Coll. Fish, U. S. Nat. Mus., 1883, p. 45 (Pensacola).

Habitat.-South Atlautic and Gulf coasts of United States.
This species is rery close to Paralichthys albigutta, from which it differs chiefly in the small scales. It seems to be rather rare. Besides the original types from Pensacola another referred to the same species is in the National Museum from Charleston.

## 18. PARALICHTHYS ALBIGUTTA.

Psendorhombus dentatus Jordan \& Gilbert, Proc. U. S. Nat. Mus., 1878, 370 (Beaufort). Paralichthys albigutta Jordan and Gilbert, Proc. U. S. Nat. Mus., 1882, p. 302 (Pensacola; Beaufort). Jordan and Gilbert, Syn. Fish. N. A., 1882, p. 823. Jordan and Swain, Proc. U. S. Nat. Mus., 1884, p. 233 (Cedar Keys). .

Habitat.-South Atlantic and Gulf coast of the United States.
This species is common on the South Atlantic and Gulf coasts. It has the few gill-rakers of Paralichthys lethostigma, the mottled coloration of Paralichthys dentatus, while from both it is distinguished by its smaller number of dorsal and anal rays. In the number of its vertebræ it agrees with $P$. lethostigma. It seems to reach a smaller size than either of these species.

## 19. PARALICHTHYS PATAGONICUS.

Pseudorhombus dentatus Giinthé, Cat. Fish. Brit. Mus., iv, 425, 1862 (Port Famine). Paralichthys patagonicus Jordan, sp. nov. (east coast of Patagonia).

This species is extremely close to P. albigutta, from which it is separated only by characters of slight importance. The locality inhabited by it is, however, widely distant. The types of the species are in the Museum of Comparative Zoology. There are three specimens, the largest about 8 inches long, No. 11399, from the east coast of Patagonia.

## 20. PARALICHTHYS OBLONGUS.

(The Four-Spotted Flounder.)

## [Plate VIII.]

Pleuronectes oblongus Mitchill, Trans. Lit. and Phil. Soc., 1, 391, 1815 (New York). Chcenopsetta oblonga Gill, Proc. Acad. Nat. Sci. Phila., 1864, p. 218.
Paralichthys oblongus Goode, Proc. U. S. Nat. Mus., 1880, p. 472 (Southern New England). Jordan and Gilbert, Syn. Fish. N. A., 1882, p. 824 (specimens from Wood's Holl, Mass.).
Platessa quadrocellata Storer, Proc. Boston Soc. Nat. Hist., 1847, p. 242. Storer, Hist. Fish. Mass., p. 397, pl. 31, tig. 3 (Provincetown).
Habitat.-Coasts of New England and New York.
This species is rather common on the coast of Cape Cod and the neighboring islands, but it has been rarely noticed elsewhere. The limits of its range are not yet definitely known.

It is a very strongly marked species. Its translucency of coloration indicates that it lives in deeper water than the other species of the genus.

## Genus XI.-ANCYLOPSETTA.

Ancylopsetta Gill, Proc. Acad. Nat. Sci. Phil., 1864, 224 (quadrocellata).
Notosema Goode \& Bean, Bull. Mus. Comp. Zool., XIX, 193, 1883 (dilecta).
Type: Ancylopsetta quadrocellata Gill.
This genus is also very close to Paralichthys, differing in the subsessile caudal fin, the short gill-rakers, the rough scales, and in the prolongation of the anterior rays of the dorsal fin. These characters are found in quadrocellata as well as in dilecta, the distinctions of the supposed genus, Notosema, being chiefly of degree. Besides the two species here mentioned, a third as yet undescribed, the types having been accidentally destroyed, was obtained by Professor Gilbert at Panama.

## ANALYSIS OF SPECIES OF ANCYLOPSETTA.

a. Anterior (produced) rays of dorsal shorter than head; pectoral of eyed side about two-thirds length of head. Body oval, very deep. Depth of caudal peduncle half length of head; head 4 in length; depth, $1 \frac{2}{8}$. Gill-rakers very short, $2+6$ or 7 . Mouth small; maxillary reaching middle of eye, $2 \frac{1}{8}$ to $2 \frac{2}{3}$.in head; teeth small, the canines scarcely differentiated; eyes moderate, separated by a very narrow, sharp, scaly ridge; scales of both sides ctenoid; ventral of eyed side produced, about half as long as head; no anal spine; color dark olive, with four large oblong ocellated blackish spots, the first above the arch of the lateral line, the three posterior forming an isosceles triangle, the hindmost being on the lateral line. D. 70 ; A. 55 ; Lat. 1. 85 - 58 pores in straight part; vertebræ, $9+26=35$.

QUADROCELLATA, 21:
$a a$. [Anterior (produced) rays of dorsal longer than the head, the longest half depth of body, pectoral of eyed side nearly as long as head ; body elliptical; head $3 \frac{1}{2}$ in length, depth 2; gill-rakers sultriangular, moderately numerous; mouth moderate, the maxillary $2 \frac{1}{2}$ in head; teeth unequal, those in front much largest; eyes large, 3 in head, the interorbital space very narrow; scales highly ctenoid; ventral of eyed side produced, more than three times length of right ventral; color dark brown, speckled with darker, three large subcircular ocellated spots nearly as
large as eye, with white center, dark iris, narrow, dark margin, and a brown encircling outline, these arranged in an isosceles triangle, the apex on the lateral line, the others before it and distant from the lateral line a distance equal to their own dimeter. D. 69, A. 56, Lat. 1, with 48 pores in straight part.] (Goode \& Bean)

Dilecta, 22.

## 21. ANCYLOPSETTA QUADROCELLATA.

Ancylopsetta quadrocellata Gill, Proc. Acad. Nat. Sci. Phil., 1864, p. 224 (Pensacola). (Not Platessa quadrocellata Storer).
Pseudorhombus quadrocellatus Jordan \& Gilbert, Proc. U. S. Nat. Mus., 1878, p. 370 (Beaufort).
Paralichthys ommatus Jordau \& Gilbert, Proc. U. S. Nat. Mus., 1882, p. 616 (Charlestou). Jordan \& Gilbert, Syn. Fish. N. A., p. 824, 1882. Jordan \& Swaiu, Proc. U. S. Nat. Mus., 1884, p. 234 (Cedar Keys).

Habitat.-South Atlantic and Gulf coasts of the United States.
This species is not rare along the South Atlantic and Gulf coasts of the United States. On referring the species to the genus Paralichthys it became necessary to change the specific name quadrocellatus, preoccupied in the latter genus. We, however, now consider it best to retain Ancylopsetta as a group distinct from Paralichthys.

## 22. ANCYLOPSETTA DILECTA.

Notosema dilecta Goode \& Bean, Bull. Mus. Comp. Zool., xix, 193, 1883 (Gulf Stream, off the coast of South Carolina).
Ancylopsetta dilecta Jordan, Cat. Fish. N. A., 1885, 134.
Paralichthys stigmatias Goode, Nat. Hist. Aquat. Anim., 1884, 182 (uane only, ly inadvertence for dilectus).
Habitat.-Gulf Stream.
This species is known from the original types obtained in the deep waters ( 75 fathoms) of the Gulf Stream, off the Carolina coast.

> Genus XII.-PHRYNORHOMBUS.

Phrynorhombus Giinther, Catal. Fishes Brit. Mns., iv, 414, 1862 (unimaculatus).
Type: Rhombus unimaculatus Risso =Pleuronectes regius Bonnaterre.
This genus is allied to Zeugopterus, from which it differs chiefly in the separation of the rentral and anal fins. It is, in our opinion, worthy of separation. But a single species is known. The peculiar flannel-like character of the scales is similar to that of Monochirus Mispidus.

ANALYSIS OF SPECIES OF PHRYMORHOMBUS.
a. First ray of dorsal produced in a filament, about one-third as long as head; first ray of pectoral sometimes filamentous; scales small, each with about four long spinules; eyes moderate, separated by a high, narrow scaly ridge; snout short, abruptly projecting ; gill-rakers short, about $X+10$; month curved, the maxillary not quite
 $=35$; color, dark gray, with dusty marblings and black spots, one at the end of the curve of the lateral line; a reddish ocellus edged with black on middle of tail ; fins much blotched

Regrus, 23.

## 23. PHRYNORFOMBUS REGIUS.

(The Tor-Knot.)
La Petite Limandelle, Duhamel, "Traité sur la Pesche, iii, sect. 9, p. 270, pl. 6, f. 5."
Plcuronectes regius, "la Calimande royale" Bonnaterre, Eneyclopédie Méthodique, 1788 (after Duhamel).
Pleuronectes calimanda Lacépède, Hist. Nat. Poiss., iv, 1803 (after Duhamel).
Pleuronectes punctatus "Fleming, Werner, Mem., ii, 241" (not of Bloch.) Rhombus unimaculatus Risso, Europe Méridionale, iii, 252, f. 35, 1826 (Nice). Phrynorhombus unimaculatus Günther, iv, 414, 1862 (Dalmatia; Plymouth). Scophthalmus unimaculatus Steindachner, Ichth. Bericht., vi, 1868, 49 (Barcelona). Zeugopterus unimaculatus Day, Fish. Great Britain, ii, 17, pl. xcix (Belfast). Rhombus uniocellatus Nardo, Prodr. Ichth. Adriat., 135, 1827.

Habitat.- Coasts of Southern Europe, north to England.
This small flounder reaches a length of 5 or 6 inches. Our specimens are from Venice. We adopt the earliest name, regius, for this species, as it seems to belong to this fish without doubt.

## Genus XIII.-ZEUGOPTERUS.

Zeugopterus Gottsche, Wiegmann's Archiv, 1835, 178 (hirtus).<br>Scophthalmus Bonaparte, Catologo Metodico dei Pesci Europei, 1840, 49 (hirtus). (Not of Rafinesque.)<br>Zeugopterus Steenstrup, Oefvers. Dansk. Vidensk. Selsk. Forhandl., 1865, 95-112.

TyPE: Pleuronectes hirtus Abilgaard=Pleuronectes punctatus Bloch.
This genus is distinguished from Pleuronectes both by the union of the ventral and anal fins, and by the perforation instead of emargination of the septum of the gill cavity. This latter character was first noticed by Professor Steenstrup, who used it to define his genus Zeugopterus, which is equivalent to Lepidorhombus, Zeugopterus, and Phrynorhombus of the present paper. But one species is known, widely diffused in Northern Europe.

## ANALYSIS OF SPECIES OF ZEUGOPTERUS.

a. Body ovate, covered with small but very rough shagreen-like scales; blind side smooth; caudal peduncle very short, the last rays of dorsal and anal inserted on the left side of it almost meeting across the base of the caudal fin; none of the dorsal rays exserted ; lateral line indistinct; eyes large, separated by a very narrow, scaly ridge; snout very short; gill-rakers short, thickish; lips thick; maxillary half as long as head. Left ventral inserted at chin, fully confluent with anal; right ventral long. Brown, with round black spots, one behind the curve of the lateral line, and one behind this on the straight portion; one near upper edge of gill opening, and one above upper ese; an oblique band from lower eye to subopercle. Depth 2 in length ; head 3; D. 93 to 99 ; A. 70 to 80 . Vertebræ $12+25=37$.

Punctatus, 24.

## 24. ZEUGOPTERUS PUNCTATUS.

(The Black Fluke.)
Pleuronectes punctatus Bloch, Ausländische Fische, iii, 31, tafel 189, 1787. Gmelin,
Syst. Natura, p. 1235, 1788. Bloch \& Schneider, Systema Ichth., 1801, p. 155.
Zengopterus punctatus Collett, Norges Fiske, 1875, 139. Day, Fishes Great Britain,
vol. ii, p. 18, plate 6.

Pleuronectes hirtus Abildgaard, Müller, Zoöl. Danica, 1788, III, 36, taf. 103.
Rhombus hirtus Yarrell, Brit. Fish., ed. 2, ii, 334. Günther, iv, 413, 1862, and of several authors.
I'leuronectes kitt Bloch \& Schneider, Systema Ichthyologiæ, 1801, 162.
Habitat.-Coasts of Northern Europe, south to France.
The specimens of this species which we have examined are from the North Sea.

## Genus XIV.-LEPIDORHOMBUS.

Lepidorhombus Günther, Catal. Fishes, iv, 411, 1862 (megastoma).
Type: Pleuronectes megastoma Douovan =Pleuronectes whiff-iagonis Walbaum.

This genus contains one or two European species, related to Zeugopterus, but in general appearance resembling the species of Arnoglossus.

## ANALYSIS OF SPECIES OF LEPIDORHOMBUS.

a. Dirsal rays, 85 to 87 ; anal rays, 67 to 69 ; depth, $2 \frac{1}{2}$ in length ; head, $3 \frac{1}{8}$; interorbital space a very narrow scaly ridge; mouth very large, the maxillary $2 \frac{1}{4}$ in head; the anterior teeth hooked backwards, about 4 in head; eyes very large, the lower somewhat before the other; anterior rays of dorsal short, but considerably exserted; scales small, very deciduous. Lat. l. about 100 . Vertebre $11+30=41$. Color, yellowish brown, dorsal and anal with some dark blotches...... Whiff-IAGonis, 25.
$a a$. Dorsal rays, 78 to $8 \Omega$; anal rays, 58 to 64 ; depth, $2 \frac{1}{2}$ in length ; otherwise essentially as in the preceding, of which it is probably a variety...... Norvegicus, 26.

## 25. LEPIDORHOMBUS WHIFF-IAGONIS.

(The Whiff, Merry Sole, or Sail Fluke.)
Passer Cornubiensis," Jago in Ray, Syn. Pisc., 163, f. 2," 1713.
Whiff Penvant, " British Zoology, iii, 238, 1776."
Pleuronectes whiff-iagonis Walbaum, Artedi Piscium, iii, 120, 1792 (after Pennant).
Pleuroncetes megastoma Donovan, "Brit. Fish., iii, pl. 41, 1802," and of many authors.
Rhombus megastoma Günther, iv, 411, and of numerous authors.
Zeugopterus megastoma Collett, Norges Fiske, 138, 1875.
Arnoglossus megastoma Day, British Fishes, iv, 21.
Pleuronectes bosci Risso, Ichth. Nice, 1810, 319, pl. vii, f. 33 (Nice).
Arnoglossus bosci Günther, iv, 416.
Pleuronectes pseudopolus "Pennant, British Zool., iii, 324, pl. 411, ed. of 1812."
Rhombus cardina Cuvier, Règne Animal, ed. 2, 1828 (excl. syn. pars), based on the Whiff of Ray and la Petite Limandelle of Duhamel.
Zeugopterus velivolans (Richardson) "Yarrell, Brit. Fish., ed. 3, 1, 656," 1859.
Zeugopterus gottsche "Winther, Ichth. Dan. Mar., 38."
Habitat.-Coasts of Europe, most abundant northward.
This species is not uncommon in Northern Europe, where it is held in slight esteem as a food-fish, being thin, dry, and bony. It reaches a length of probably less than 2 feet.

Its names, " whiff," "merry sole," and "sail-fluke," are said to be derived from its habit of frequently swimming at the surface of the water " with its tail erected above the water, like a boat under sail."

Dr. Day has adopted Giglioli's determination of the identity of this species with the Arnoglossus bosci. The descriptions of the latter species certainly agree closely with our specimen of Lepidorhombus. We have therefore placed bosci in the synonymy of Whiff-iagonis. Vinciguerra apparently regards bosci as specifically distinct from the others, although he places both in the genus Arnoglossus. The appropriate specific name of megastoma has been usually taken for this species, but the unmusical name of whiff-iagonis applied to it by Walbaum has ten - years' priority. This name is given in honor of the "Reverend George Jago, of Loo."

Our specimen is from the coast of France.

## 26. LEPIDORHOMBUS NORVEGICUS.

Pleuronectes cardina Fries, Vet. Akad. Handl., 1838, 181 (not of Cuvier).
Rhombus norvegicus Giinther, Cat. Fish. Brit. Mus., iv, 1862, 139 (after Fries). Collett, Norges Fiske, 1875, 139. (Christiania; Bergen; Bodö.)

Habitat.-South coast of Norway to the Arctic circle.
This species is known to us from descriptions only. According to Professor Collett, "it is distributed, although in scanty numbers, from the south coasts up to the polar circle." It would appear to be very close to the preceding species, differing somewhat in the numbers of the fin-rays.

## Genus XV.-CITHARUS.

Pleuronectes Bonaparte, Catalogo Metodico dei Pesci Europei, 1846 (linguatula, the only Linnæan species mentioned).
Citharus Bleeker, Comptes Rendus Acad. Sci. Amsterdam, xiii. Pleuronect., 6, 1862 (linguatula).

## Type: ${ }^{\prime}$ Pleuroncetes linguatula L.

This well-marked genus, an ally of Lepidorhombus and of Arnoglossus contains but a single species-a rather rare inhabitant of the Mediterranean.

> analysis of the species of citharus.
a. Body elongate, with soft flesh and large caducous scales. Mouth very large, oblique ; the maxillary 2 in head; lower jaw projecting; some canine teeth, especially in front of upper jaw; two or three rather large teeth on vomer; eyes large, close together; left ventral on the abdominal ridge, a little in advance of right; its base scarcely lengthened; gill-rakers sleuder, of noderate length, $X+9$; no foramen in gill septum ; dorsal beginning before the eye on right side; caudal pointed; fins all high, but fragile; head, $3 \frac{3}{3}$ in length; depth, $2^{\frac{2}{3}}$; D. about 65 ; anal, 45 ; lat. $1 ., 37$; color, grayish, translucent

Linguatula, 27.

## 27. CITHARUS LINGUATULA.

Pleuronectes linguatula Linneus, Syst. Nat., ed. x, p. 270, 1758 (after Artedi), and of early authors.
Citharus linguatula Giinther: Cat. Fish., iv, 418, 1862. Steindachner, Ichthyol. Berichte 1868, Sechste Fortsetzung, p. 51 (Barcelona, Alicante, Cadiz), and of most recent authors.

Pleuronectes citharus Spinola, "Ann. Mus., x, 166," 1807.
Plcuronectes macrolepidotus Delaroche, "Ann. Mus., xiii, 330," 1809 (and of other European writers, probably not of Bloch).
Solea limanda Rafinesque, Indice, 1810, 14 (after Linneus).
Solea cithara Rafinesque, Indice, 1810, 52 (based on Citharus of Rondelet).
Pleuronectes solea var. pataracehia, "Naccari, Ichth. Adriat., 11."
Habitat.-Mediterranean Sea.
This species is known to us from specimens in the Museum of Comparative Zoology, from Cette (Theodore Lyman), and from Cadiz (Dr. Steindachner). It does not seem to be very common anywhere.

## Gentis XVI.-PLEURONECTES.

Pleuronectes Artedi, Genera Piscium, 1738 (includes all flounders).
Rhombus Klein, Pisc. Missus, IV, 34, 1740 (rhombus; pre-Linnæan).
Pleuronectes (Artedi) Linuaus, Syst. Nat., ed. x, 1758, 271 (inchules all flounders then known).
Rhombus (Klein) Walbaum, Artedi Piscium, 1792 (rhombus; non-binomial).
Bothus Ratiuesque, Caratteri di Alcuni Nuovi Generi, etc., 1810, 23 (rumola=rhoinbus), etc.
Scophthalmus Rafiuesque, Indice di Ittiologia Siciliana, 1810, 53 (rhombus; maximus).
Rhombus Cuvier, Rigne Animal, 1817, and of most writers (not of Lacépèle) (first subdivisiou of Pleuronectes).
Pleuronectes Fleming, British Animals, 1828, 196 (first restriction of Pleuronectes, in which the name Pleuronectes is retained ; maximus).
Psetta Swainson, Nat. Hist. Classif. Anim., ii, 302, 1839 (maximus) (not. Psettus Cuvier).
Pleuronectes DeKay, New York Fauna, Fishes, 1842, 301 (maximus).
Psetta Bonaparte, Catologo Metodico deı Pesci Europei, 1846, 49 (rhombus; maximus).
Passer Valencienues, Voyage de la Venus, 1855, 341 (substitute for Phombus, preoccupied; type "le turbot;" not Passer Brisson, a genus of birds).
Lophopsetta Gill, Proc. Ac. Nat. Sci. Phila., 1862, 216 (maculatus).
Bothus Jordan \& Gilbert, Synopsis Fish. N. A., 18*2, 815, and in Proc. U. S. Nat. Mus . 1882, 577 (rhombus).
Psetta Jorlan \& Gilbert, Proc. U. S. Nat. Mus. 1830, 577 (maximus).

## Type: Pleuroncetes maximus Linuæus.

We here incinde in the geuns Pleuronectes three species, the Turbot, the Brill, and the "Wiudow-Pane." The Turbot and the WindowPane are both evidently very closely related to the Brill, although in size and appearance they are quite milike each other. The Turbot differs strikingly from the other two in a single character, the reduced or rudimentary condition of the scales. This character, however, shows a considerable range of variation in the same species, some turbots being distinctly scaly and others wholly naked, and it is apparently a character which the species has acquired comparatively recently. We have therefore regarded it as of subgencric value only. We, however, place the two scaly species in a distinct subgenas, Bothus, and in the view of a genus taken by many recent authors, Bothus and Pleuronectes slould be regarded as sufficieutly distiuct. If the non-binomial names of Klein, as reprinted or revived by Walbaum in 1792, be admitted,

Rhombus would take the place of Bothus as the name of this subgenus. Our reasons for considering the Turbot as the type of the genus Pleuronectes may be briefly stated:

In the earliest restriction of the Linnæan genus, Pleuronectes, in which the latter name is retained for one of the subdivisions, the Turbot has been retained as the type. We therefore find ourselves compelled to transfer the name Pleuronectes from the small-mouthed flounders to the present group.

The genus Pleuronectes, as it appears in the tenth edition of the Sys. tema Naturæ, is intended to contain all flat-fishes, 18 of which are characterized and named.

Omitting foreign species, the following table shows the Europeau species included by Linnæus, and the generic names which have since his time been specially based on each of these species :

The first subdivision of the geuus Pleuronectes, after the removal of the soles, seems to have been that of Cuvier. Cuvier subdivides the group into three subgenera, Hippoglossus, Rhombus, and Platessa, retaining the name Piouronectes for the group as a whole, but for none of his subdivisions.

Fleming, next after him, makes use of these subdivisions, but rejecting the name of Rhombus, he distinctly adopts the generic name Pleuronectes for the "Turbot" group. His genera are, therefore, Pleuronectes the "Turbot," Solea the "Sole," Platessa the "Fluke," and Hippoglossus the "Halibut." Pleuronectes maximus, the "Common Turbot," is evidently intended as the type of Pleuronectes, as understood by him. This is, so far as we have ascertained, the first restriction of the name Pleuronectes, to any group of flounders, and if it be so the name Pleuronectes must go with the Turbot and its relatives. In that case it would take the place of the preoccupied name Rhombus, and of the prior but almost forgotten name of Bothus, unless we see fit to place the Turbot and the Brill in different genera, in which case Bothus should be used for the Brill.

The nest restriction seems to be that of Swainson, in 1839, who indicates Pl. platessa as the type of Pleuronectes.

Next is the restriction made by DeKay, 1842, who again makes the Tur-
bot the type of Pleuronectes by adopting the then nearly obsolete name of Pleuronectes in place of Rhombus. In 1846 Bonaparte retained the name Pleuronectes for a group composed of Citharus, Arnoglossus, \&c. The only Linnæan species mentioned by him, linguatula, may be regarded as his type.

In 1862 Bleeker, and following him Günther and nearly all modern authors, have regarded Pleuronectes platess as the type of Pleuronectes.

The reason for this view lies apparently in the fact that Artedi before Limurus had mentioned the species later called platessa first in his list of species of Plewronectes. This reason is now regarded as an insuff. cient one, and the name Pleuronectes must retain the signification given it by the first author, who has properly restricted it. We must therefore follow Fleming* in regarding Pleuronectes maximus as the proper yye of Pleuronectes.

## ANALYSIS OF THE SPECIES OF PLEURONECTES.

n. Scales wanting or rudimentary, the blind side nearly or quite naked; eyed side covered with scattered bony tubercles or warts. Vertebræ, 31. '(Pleuronectes.)
b. Body broadly ovate, thick, and opaque, the depth about $1 \frac{1}{2}$ in the length ; head 3 in length, its tubercles much smaller than those on the body; interorbital space flattish, about as wide as eye; anal spine inconspicuous; none of the dorsal rays exserted; gill-rakers rather strong, not as long as eye, about $5+13$ in number ; lower pharyngeals small, narrow, each with a band of swall pointed teeth. D, 62 to $69 ;$ A, 45 to 50 ; vertebræ $12+19=31$. Color, grayish or brownish, usually sprinkled with small dark spots................. Maximus, 23.
x. Scales obsolete....................................................... var. maximus, 28, (a).

$a a$. Scales cycloid, imbricate, well developed on both sides of the body; no bony tubercles. Vertebræ 36. (Bothus.)
c. Anterior rays of dorsal little exserted, the longest about 4 in head; body elliptical ovate, nearly opaque ; scales very small; blind side well scaled; no bony tubercles; interobital space flattish, nearly as wide as eye; gill-rakers moderate, $4+12$ in number; lower pharyngeals small, narrow, each with a band of pointed teeth. Head 3 in length; depth $1 \frac{5}{6}$. D. 72 to 83 ; A. 53 to 61 ;Lat. 1. about 130. Vertebro $12+24=36$. Grayish brown, with darker spots and
 $c c$. Anterior rays of dorsal much exserted, free for more than half their length, their length nearly half head; body broadly ovate, subtranslucent; interorbital space flattish; gill-rakers long and slender, about $8+22$; blind side of body well scaled ; no bony tubercles; head $3 \frac{3}{4}$; depth $1 \frac{3}{6}$. D. 65; A. 52; Lat. 1. about 120. Vertebræ $11+25=36$. Color light olive grayish, everywhere on the left side closely spotted with paler and with blackish, the dark spots of various sizes.

Maculatus, 30.
*Fleming's definition is as follows:
"Gen. XlVI. Pleuronectes, Turbot.-Mouth entire; teeth numerous, slender: lateral line curved. Eyes on the left side." The species mentioned by him are:
P. maximus-Common Turbot.
P. rhombus-Brill.
P. megastoma-Whiff.

I'. punctatus-Top-knot.
P. arnoglossus-Scald-tish.

## 28. PLEURONECTES MAXIMUS.

(The Turbot.)

[Plates IX and X.]

a. Var. maximus.


#### Abstract

Rhombus aculeatus Rondelet, De Piscibus, and of early pre-Linntean writers. Pleuronectes maximus Linnæus, Syst. Nat., ed. x, 271, 1758, and ed. sii, 459 (and of early writers generally). Scophthalmus maximus Rafinesque, Indice, 14. Rhombus maximus Günther, iv, 407, 186\%. Steindachner, Ichthyol. Berichte, vi, 1868, 48 (Lisbon, Vigo, Trieste, Constantinople, Odessa, Cadiz). Day, Fishes Great Britain and Ireland, vol. ii, p. 11, plate xevi. Psetta maxima Swainson, Nat. Hist. Fish., ii, 302, 1839. Pleuronectes cyclops "Donovan, British Fishes, iv, pl.90," 1801. Pleuronectes tuberculatus Shaw, Gen'l Zool., iv, 312, 1803. Rhombus aculeatus Gottsche, Wiegm. Archiv, 1835, 172.


b. Var. macoticus.

Pleuronectes mœoticus Pallas, Zoogr. Ross. As., iii, 419, 1811.
Rhombus maoticus Giinther, iv, 409, 1862 (Erzeroum).
Rhombus stellosus Bennett, "Proc.Zool. Soc., 1835, 92" (Erzeroum).
Rhombus torosus Rathke, Fauna der Krym., 349, 1837 (Crimea).
Rhombus rhombitis Rathke, Fauna der Krym., 351, 1837 (Crimea).
Habitat.-All coasts of Europe except the extreme north. Variety mooticus in the Black Sea and extending uto the Mediterranean.
This species is the famous turbot of Europe, a broad, thick flounder, reaching a large size, its surface nearly scaleless and covered with rough warts. In spite of numerous statements to the contrary, the turbothas never been found in American waters. The fish so called by the Bahama and Key West fishermen, and which thes often maintain is the turbot of Europe, is a trigger-fish, Balistes carolinensis Gmelin.

The turbot is an excellent food-fish, generally common on the coasts of Europe, and everywhere highly prized. It is the most raluable of the European flounders.

According to Dr. Steindachner, there is a complete gradation between the ordinary turbot in which the scales are obsolete and concealed, and the scaly turbot (var. mooticus), which is more or less completely scaly, at least on the left side. Seindachner observes (Ichth. Berichte, ii, 48,1868 ) :
"Completely scaled on the sides of the body and the he ad (in part also on the blind side) is a very large individual from Lisbon and two smaller ones from Vigo, and from the Baltic Sea; for the greater part scaly on four examples from Trieste; only hereand there on two examples from Odessa and Constantinople, and finally naked on numerous examples from Trieste, Cadiz, and the German Ocean."

The turbot reaches a weight of 40 to 50 pounds or more.
Rhombus torosus Rathke, described from the Crimea, is apparently a local variety of $P l$. maximus, having the warts on the body elliptical S. Mis. $90-17$
aud the blind side wholly smooth, which is said not to be the case in var. mcoticus. Rhombus rhombitis is much the same, but sparsely covered with conoid warts.

We find also references to Rhombus hybridus Malm (Goteborg, Mus. Arsskr., iii, 1881, 24). We lave not seen the original description.

## 29. PLEURONECTES RHOMBUS.

## (The Brill.)

Rhombus lavis Rondelet, Do Piscibis, and of many early nou-binomial writers.
P'leuronectes rhombus Linnebus, Systewa Nature, ed. x, 271, 1758 (after Artedi), and of early writers generally.
Scophthalmus rhombus Rafinesque, Indice di Ittiologia Siciliana, 1810, 53.
Psetta rhombus Bonaparte, Pesc. Europ., 49.
Plouronectes cristatus Lichtenstein, in Bloch \& Schneider, Syst. Ichth., 1801, 153 (European Ocean),
Bothus rumolo Ratinesque, Caratteri di Alcuni Nnovi Generi, \&e., 1810, 23 (Sicily).
Rhombusvulgaris Cuvier, Règne Animal, 1817 (and of various authors).
Pleuronectes lioderma Nardo, Ichth. Adriat. No. 132 (Venice).
Rhombus barbatus Risso, Eur. Merid., iii, 251,1806 (Nice).
Rhombus laris Gottsche, Wiegm. Arehiv, 1835, 175. Giinther, iv, 410, 1862. Steindachner, Ichthyol. Berichte, vi, 1863, 48 (Dilbao, Cormma, Vigo, Lisbon, Cadiz, Malaga). Day, Fishes Great Britain, ii, 14, pl. xevii, and of most recent authors.
Pleuronectes passer Gronow, Syst. ed. Gray, 1854, 90.
lihombus limnei Malm, Bohustins Fauna, 513 (Sveden).
Mabitat.-All coastis of Emope, exeept the very extreme worth.
The brill is a common fool-lish of Hurope, especially southwards. It is less estemed than the turhot amb reaches a very moch smaller size. It rarely exceeds $S$ or 10 pounts in weight.

## 30. PUEURONECTES IMACULATUS.

## (The Windoy-Pine.)

Pleuronectes maculatus Mitchill, Iept. in Part. Fish. N. Y., 1814,9 (Now York). De Kay, Now York Fanna, Fishes, p. 301, tab. 4\%, fig. 151, 1842. Storer, Syn. Fish. N. A., 1846, p. 4i9. Storer, Hist. Fish. Nat. Mass., 186\%, 204 (Provincetown, Holmes' Hole).
Lophopsetta maculata Gill, Proc. Acad. Nat. Sci. Philad., 1862, 216, and 1864, p. 220. Jordan \& Gilbert, Proc. U. S. Nat. Mus., 1878, p. 371 (Beaufort).
Bothus maculatus Jordan \& Gilbert, Syn. Nish. N. A., 1882, 1, 815.
Plewronetes aquosus Mitchill, Trans. Lit. and Phil. Soc., 1, 339, p1. 2, fig. 3, 1815 (New Yorle).
Rhombus aquosus Cuvier, Kegne Animul. Giinther, Cat. Fish., iv, 411, 1802 (New Yorts).
Habitat.-Atlantic coast of United States, from Cape Cod to South Carolina.

This small ilounder wuch resembles the Furopean Brill, but is smaller, thinuer, and more translucent in body. Ite weight rarely exceeds a pound or two, and its ralue as a tood-dish is bat slight; nevertheless, it is a near ally of the Euronam Tumbot, and in its technieal character it very closely agrees with the latter species.

## Genus XVII.-ARNOGLOSSUS.

Arnoglossus Bleeker, Comptes Rendus Acad. Sci. Amsterd., xiii, 1862,6 (Arnoglossus laterna).
Type: Pleuronectes arnoglossus Bloch \& Schueider=Pleuronectes laterna Walbaum.

This genus is composed of several species of small translucent flounders, found in the Mediterraneau and the East Indies. They much resemble the species of Citharichthys, which they represent in the Old World fauna, the arch of the lateral line in Amoglossus constituting the chict difference. The characters of the different Enropean species have not been well set forth by authors, and possibly all the nominal species are reducible to two or three.

We find also in the Zoological Record a reference to Arnoglossus soleiformis Malm, Goteborg. Mus., Arsskr., iii,1881, 24. We have not seen the original description of the fish briefly noticed in this paper, and know nothing of the species thas named. We have also provisionally placed in Arnoglossus tro American species which we have not seen. These have been referred by their describers to otber genera, Hemirhombus and Eitharichthys; but as both have uniserial teeth and an arched lateral line, they would belong technically to Arnoglossus rather than to either of these groups. But the one (fimbriatus) differs from Arnoglossus in the small scales and tubercular gill-rakers, while the other has small, firm, strongly etenoid seales, uothing being said of its gill-rakers. Possibly the two should constitute one or two additional genera between Arnoglossus and Azevia ; but we do not wish to attempt to define these groups without having seen any of their species.

Bleeker has questioned the propriety of distinguishing Armoglossus from Platophrys, as the broad interorbital characteristic of Platophrys is subject to much variation. As the two genera differ also in various other respects of form, dentition, squamation, \&ce, we think it best to keep them separate.

## ANALYSIS OF SPECIES ON ARNOGLOSSUS.

a. Mouth small, the maxillary reaching front of pupil, its length about 3 in head; scales rather large, thin, and caducons, weakly ctenoid; 40 to 60 in the lateral line; gill-rakers slender. (drnoglossus.)
b. [Dorsal fin with four anterior rays produced. D. 95, A. 77 , lat. 1. 60. Maxillary $3 \frac{1}{5}$ in head; interorbital space a very narrow, sharp ritge. Depthe 2 in length. Color uniform grayish.] (Giinther).................................. Lopпotes, 31.
$b b$. Dorsal fin with its second ray much produced, nearly as long as head ; body rather deep, the depth $2 \frac{1}{4} \mathrm{in}$ length; maxillary about reaching frout of pupil, 3 in head; eye large, 4 in head; interorbital space not very narrow, with a median groove ; D. 80 to 90 ( 83 in specimens examined), A. 60 to 67 ( 63 in our specimens) ; lat. l. about 55. Curve of lateral line $3 \frac{1}{2}$ in straight part; gill-rakers slender and weak, $\mathrm{X}+6$. Vertebre $10+28=38$. Color dark brown,

aa. Mouth larger, the maxillary reaching middle of eye, its length $2 \frac{1}{2}$ to $2 \frac{8}{4}$ in head; none of the dorsal rays much produced; body more elongate, the depth $2 \frac{3}{5}$ in length. Dorsal rays 86 to 90 ; anal rays 67 to 70; Lat. 1. about 50.
c. [Maxillary nearly 3 in head; color grayish, dotted with brown.]

Conspersus, 33.
cc. Maxillary 2 $\frac{1}{2}$ in head; eve large, 4 in head, the interorbital space very narnow, without median groove; curve of lateral line 3 量in straight part; gillrakers slender and weak, about $X+7$ in number ; vertebre $10+28=38$; color nearly uniform translucent grayish.

Laterna, 34.
aaa. Mouth very large, the maxillary about half leugth of head: scales small, 65 to 70 in the lateral line; species of uncertain position.
d. [Scales cycloid; mouth very large, the maxillary half length of head; teeth uniserial, those in front of jaws larger, those below largest; some of the teeth depressible; eye 5 in head, the interorbital xidge low, about one-fourth width of eye; gill-rakers tubercular, $\mathrm{X}+9$; anterior nostril with a filament one-third length of snout; first ray of dorsal longer than second; lateral line with a slight arch, its length $3 \frac{1}{3}$ in the straight portion, none of the dorsal rays produced ; heat 31 ; depth nearly 2; D. 80 ; A. 60 ; Lat.l. 70; color grayish-brown; the dorsal and anal fins each with two ronndish dark blotches on their posterior half, each larger than the eye; a similar dark blotch on base of caudal; pectoral with a dark band at baso, its outer half marked with a dark blotch, which is reticulated and mottled with lighter; the intervening part of the fin pearly white, with dark specks on the rays] (Goode \& Bean)...Fimbriatus, 35. $d d$. [Scales strongly etenoid, firmly fixed; lateral line with the "curved portion bold and sharply defined"; eye large, $3_{\frac{2}{3}}^{2}$ in head, about eight times the diameter of the interorbital space, which is very narrow and scaleless; maxillaxy nearly half length of head; dorsal fiu begimning on the blind side, before the eyes; pectoral about as long as head; caudal fin subsessile; veutral of eyed side enlarged in the male, its length 32 in body, about threo times length of right ventral; head 4; depth ${ }^{2}$; D. 93 ; A. 73; Lat. 1. $66(20+46)$; color licht brownish-gray: a dark hlotels as long as eye on anterier rays of anal; another paler at end of curve of lateral lino ; a ferw obscure dusky blotches elsewhere on body] (Geode \& Bean)................................. Ventralis, 36.

## 31. ARNOGLOSSUS LOPHOTES.

> ? Dothes imperialis Ralinesque, Caratteri, 1810, 23 (Palermo).
> Annoglossus lophotes Giinther, iv, 417, 1862 (European, probably British).

Habitat.-Mediterranean Sea.
We do not know the species called Arnoglossus lopkotes. In fact only the original types, dried skins from unknown locality, seem to be known as yet. Among the Mediterranean fishes, this one approaches most nearly to the description wiven by Rafinesque of his Bothus imperialis. The name imperialis should therefore perhaps be adopted in place of lophotes. Aecording to Dorlerlein, the "Tappa or Linguata Impiriali" of the Sicilian fishermen is Armoglossus bosci. This, according to Day, would be Lepidorhombus whiff-iagonis, but Rafinesque's description cannot well be applied to the latter species. The following is a trauslation of Rafinesque's description:
"Bothus imperialis.-Amost three times longer than broad, dorsal fin beginning before the eyes; lateral line arehed at the base; left side smooth olive, clomed with dusky; rigit side white; tail even. It is
called Tappa Impiriali or Linguata Impiriali. It is still better than the Linguata to eat. It is rarely taken, because it lives on the sandy or muddy bottoms of the sea, where it creeps under the sand or the mud. It is very distinct from the preceding (B. tappa) being larger; it has the following numbers of fin-rays, that is, dorsal nearly 100 ; anal nearly S0; ventrals 8 ; pectorals 12 ; candal 15."
According to Day, Proc. Zool. Soc. Lond., 1882, 748, pl. 53, as quoted in the Zoological Record for 1882, this Arnoglossus lophotes is identical with Arnoglossus grohmanni. If so the latter species may have been the original Arnoglossus imperialis.

## 32. ARNOGLOSSUS GROHMANNI.

?? Bothus imperialis Rafinesque, Caratteri di alcuni nuovi generi e specie, 1810, 23 (Palermo).
Pleuronegtes grohmanni Bonaparte, Fauna Ital., Pesci, 1837.
Arnoglossus grohmanni Giinther, Cat. Fish., iv, 417, 1862. (Mediterranean.) Steindachner, Ichthyol. Bericht. Akad. Wissen. Wien, 1868, Sechste Fortzetzung, p. 50. (Barceloua, Cadiz, Malaga.)

This small flounder seems to be rather common in the Mediterranean. It reaches a larger size than A. laterna, and it is less transparent than the latter. The numerous specimens examined by us were collected by Dr. Jordan at Venice.

## 33. ARNOGLOSSUS CONSPERSUS.

Arnoglossus conspersus Canestrini, "Archiv Zool., i, 10, tav. 1, [.' 2, 1861." Giunther, iv, 416 (copied). Steindachner, Ichthyol. Bericht. Akad. Wissen. Wien, 1868, Sechste Fortzetzuag, p. 50 (Malaga). Vinciguerra, Risultate Ittiol. del Violante, 1883, 104 (Genoa).

## Habitat.-Mediterranean Sea.

We have not seen this species, and regard it as distinct from Arnoglossus laterna, chiefly because it is so considered by Dr. Steindachner. Dr. Vinciguerra gives a comparison of the two species, thinking them very donbtfully distinct, but without reaching a positive conclusion.

## 34. ARNOGLOSSUS LATERNA.

## (The Scald-Fish.)

[^36]Solea arnoglossa Rafinesque, Indice, 1810, 52 (after Perpeire of Rondelet). Rhombus nudus Risso, Lur. Mérid., iii, 251, 1826.
Pleuronecles pellucidus Nardo, Ichth. Adriat., 134, 1824.
Habitat.-Coasts of Soathern Europe, north to England.
This sinall flounder reaches a length of about six inches. It is common in the Mediterranean and as far north as the English coast. Our specimens were collected by Dr. Jordau in Venice.

## 35. ARNOGLOSSUS (?) FIMBRIATUS.

Hemirhombus finbriatus Goode \& Beau, Proc. U. S. Nat. Mus., 1835, 591. (Deep waters of the Gulf of Mexico.)
Habitat.-Deep waters of the Gulf of Mexico.
We know this species from the original description only. As the authors of the species say that "the teeth are uniserial in both jaws" we are unable to see why they have placed it in Hemirhombus. So far as the description goes it agrees better with Arnoglossus, in which genus we have provisionally placed it. But the gill-rakers in fimbriatus are said to be tubercular, as in Azevia, while those of Arnoglossus are slender. The proper position of the species is therefore uncertain.

## 36. ARNOGLOSSUS (?) VENTRALIS.

Citharichthys ventralis Goode \& Bean, Proc. U. S. Nat. Mus., 1885, 592. (Deep waters of Gulf of Mexico.)

Habitat.-Deep waters of Gulf of Mexico.
We know this species from the original description only. It is certainly not a Citharichthys. Aınong the known genera it seems to come nearest Arnoglossus or to Lepidorkombus, but the latter genus has a pedunculate candal and teeth on the romer, while the former has cycloid or scarcely ctenoid deciduous scales.

## Genus XVIII.-PLATOPHRYS.

Solea Rafnesque, Indice di Ittiologia Siciliana, 1810, 5 : (rhomboide) (not of Quensel, 1806).

Platophrys Swainson, Nat. Hist. Class'n Fishes, ii, 1839, 30: (ocellatus).
Peloria Cocco, Intorno ad Alcuni Pesci del mar di Messina, Giorn. del Gabin., 1844, pp. 21-30, Lettere di Messina (heckeli, a larval form of P. podas) (not Pelorus of Montfort, 1808).
? Coccolus* (Bonaparte) Cocco, 1. c. (annectens: larval form-probably of $P$. podas, with the right eye in trausitu to the left side).
Bothus Bonaparte, Catologo Metodico, 1846, 49 (podas) (not of Rafinesque).
Rhomboidichthys Bleeker, Act. Soc. Sci. Indo-Nederl. Manad. \& Makassar, 67 (myriaster), 1857-'8.
Platophrys Bleeker, Comptes Rendus Acad. Sci. Amsterd., 1862, xiii Pleuron, 5 (ocellatus).

* "Parvus mole et pleuronectiformis, medius inter Pleuronectidas et Bibroniinos hic piscis videtur! Attamen dum illi oculos unilaterales habeant, iste vero bilaterales; in hoc novo genere oculi, alter a latere, aitere in vertice vix ad appositum latus convenus positi sunt." (Bonaparte: quoted by Faccioli, Su di Alcuni Rari Pleuronettidi.)

Type: Rhombus oceliatus Agassiz.
This well-marked genus is widely diffased the warm seas. The sextal differences are greater than usual amons flounders, and the different sexes have often been taken for diferent species. As a rule, in the males the pectoral fin of the left side is much prolonged, the interorbital area is much widened and very conciro, and there are some tubercles about the snout, and lower eye. The young fishes, as is usually the case, resemble the adult females. This genus has been generally called Rhomboidichthys, but the appropriate name, Pletophrys, is earlier, as Bleeker bas already noticed.

Lately Dr. Emery has shown that the larval dounder, known as Pelorin heckeli, is in all probability the young of Plewronectes podte:.

The generic name Coccolus, based on forms slightly more mature than those called Peloria, probably belongs here also.

We have seen no larval forms so young as those which have been described as Peloria heckeli. We have, however, examined small trans. parent flounders, one with the eyes quite symmetrical, taken in the Gulf Stream, and another with the eyes on the left side, taken at Key West. Both these may be larve of Platophrys ocellatus. The figures published by Emery seem to make it almost certain that the corresponding European forms belong to $P$. podas, althongh some donlot as to this is expressed by Facciolà.

The species of Platophrys are widely distributed through the warm seas, no tropical waters being wholly without them. The group called Engyprosopon seems to be worthy of generic distinction from Platophrys, as its scales are large and rough ctenoid. Nil the known species of Engyprosopon are Asiatic.

All the species of Platophrys are extromely closely related and can be distinguished with difficulty. On the other hand the rariations due to differences of age and sex are greater than in any other of our genera.

A species apparently belonging to Platophiys has been seantily described by Schneider (Systema Ichthyologia, 1801, 156) under the name of Pleuronectes surinamensis. His types were small, smooth iudividuals ("exampla satis parva et glabra"), with the fins scaly, the mouth small, the lateral line arehed in frout, and the dotsal rays 96 , the anal rays $5 \overline{5}$. These may be the young of any of the West. Indian species, possibly of $P$. lunatus or ocellatus.

The following analysis of the species of Plalophris will doubtless be found to be very unsatisfactory. There are certainly three species (podus, maculifer, and lunatus) which are known to be distinct in their adult state. The young forms of maculifor and lunatus are not well known, nor is it known how thes differ from ocellatus, spinosus, and other species which presumably reach a smaller size. Only a thorongh sturly of the species, in all stages of development, in their native waters can give us the characters by which the species an he really discriminated.
a. Anal rays-at least anteriorly-each with a spinule at base (these are formed by a slight widening of the tip of the interhsmal spines, each being covered by a littlo rough scale); front of dorsal with similar projections.
b. Color brownish, more or less marked with spots of light blue and brownish, which are usually edged with darker, these usually arranged in rings; a large black blotch on the lateral line; mouth small, the maxillary 4 in head ; interorbital width rauging with age and sex from $2 \frac{1}{2}$ to $4 \frac{1}{2}$ in head; suout slort, scarcely forming a re-entrant angle at its base; an angle opposite upper eye; depth 18 in length, D. 85 to 91, A. 70.

Podas, 37.
bu. Color brown, covered with pale rounded spots; fins dotted with brown; a faint dark spot at first third of lateral line; suout with horny points; mouth small, the maxillary reaching front of eye. Eyes very wide apart, $\mathfrak{D}_{3}^{\circ}$ in head ; the interorbital space $1_{5}^{4}$ in head; pectoral fin short; curve of lateral line 5 in straight part. Depth 18 in length. D. about 74; anal about 57. Scales about 80. (Described from specimens $4 \frac{4}{4}$ inches long, which have been partly dried before being placed in alcohol)

Spinosus, 38.
a a. Aual rays without spinules at their base.
c. Anterior profile of head convex before the interorbital area, the very short snout scarcely forming a re-entrant angle at its base; form ellipticovate, the outlines more regular than in Pl. lunatus.
d. Dorsal rays 85 to 95.
c. Scales not very small, albout 75 pores in the lateral line. (No blue markings, at least in young specimens.)
$f$. Mouth small, the maxillary 3 in head; no spines about the snout; eye $3 \frac{1}{3}$ in length; interorbital width 3 in head (intypes); pectoral short; curve of lateral line 6 times in straight part; color dark brown, with numerons stellate white spots, the most distinct of them with darker edgings; these generally scattered over the body, but some of them on sides of body are gathered together in little rings. (Perhaps these spots are blue rather than white in life.) Fins mottled with dark brown, the pectoral finely barred. Head 4 in length; depth $1 \frac{1}{2}$; D. 89, A. 65 , scales 75. Specimens examined, $3 \frac{1}{2}$ inches long..Constellatus, 39.
ff. Month smaller, the maxillary 3 星 in head ; cye $3 \frac{1}{5}$ in head ; interorbital space 2 ; teeth small, biserial above; arch of lateral line 2 in head. Head 4 in lengtn ; depth $1 \frac{1}{2}$. D. 85 to 90 . A. 64 to 67. Lat. 1.72 to 78. Color light grayish, tinged with reddish, with small round spots of darker gray, and with lighter rings inclosing spaces of the ground color ; vertical fins, similarly colored, with a small black spot at base of each 9 th or 10th ray; two black spots on lateral line; some other black spots on body and on caudal fin. Vertebre, $37 \ldots \ldots .$. ...... Ocellatus, 40. ce. Scales smaller, 90 to 95 pores in the lateral line. Mouth small, oblique, the maxillary $3 \frac{2}{5}$ in head; tecth in both jaws in two irregular series; arch of lateral line $2 \frac{2}{5}$ in head. Head 4 ; depth $1 \frac{5}{5}$. D. 90 to 95 . A. 70. Lat. ]. 90 to 95 . Color of adult reddish gray, the body everywhere covered with rings formed of round, sky-blue spots, which are not confluent and are not edged with black; besides these, very few detached spots or other blue markings; head with similar blue spots, but no rings; area inclosed in the blue rings not different from the ground color; caudal with blue spots, other fins with none; dorsal and anal mottled; a large, diffinse, dusky spot at front of straight part of lateral line, one bettęr defined on middle of lateral line; a faint one farther back; pectorals grayish, with dark bars.... Maculifer, 41.
$d d$. Dorsal rays, 105 ; anal rays, 80 ; pectoral short ; interorbital space ${ }_{2}^{3}$ in head ; depth $1 \frac{3}{4}$ in length; scales 91 ; body deep; color (specimen $4 \frac{3}{4}$ inches long) grayish, much spotted and mottled with whitish; no blue (in young example)

Ellipticus, 42.
$c c$. Anterior profile of head strongly concave before interorbital area, the projecting snout leaving a marked re-entrant angle above it.
g. Mouth not very small; the maxillary 3 in head; head $3 \frac{1}{3}$ in length; depth 2; D. 95 ; A. 70 ; lat. 1. 90 . Teeth small, in an irregular double series in each jaw ; color dark olive, with many rings, curved spots, and small round dots of sky-blue edged with darker on body, these largest near middle of sides, where some are as large as the eye; three obscure dark blotches on straight part of lateral line; head and vertical fins with sharply defined blue spots, which are mostly round; spots on opercles, larger and curved; pectorals with dark bars; vertebræ $9+30=39$.

Lunatus, 43.
gg. Mouth small; the maxillary $3 \frac{3}{5}$ in head; head $3 \frac{3}{4}$; depth $1 \frac{3}{4}$; D. 86 to 88 ; A. 62 to 67 ; lat. 1. 80 ; teeth very small, biserial above; color highly varigated with different shades of gray, the pale blotches rounded, very irregular in size and position; no blue spots; no black spots along lateral line; a large whitish clond between the ejes.

Leopardinus, 44.

## 37. PLATOPHRYS PODAS.

Rihomboides Rondelet, De Piscibus, 1554.
Pleuroncetes podas Delaroche, "Ann. Mus., xiii, 354, tal. 24, fig. 14, 1809."
Ihomboidichthys podas Günther, Cat. Fish., iv, 432, 1862. (Sicily.) Vinciguerra, Risultati Ittiologici del Violaute, 1883, 106. Emery, Contribuzioni all' Ittiologi, 405. (Interesting discussion of larval forms.)

Bothus podas Steindachuer, Ichthyol. Bericht., 1868, Sechste Fortsetzung, p. 51. (Barcelona, Cadiz, Gibraltar, Santa Cruz de Teneriffe.)
Solea rhomboide Rafinesque, Indice, 1810, 52 (after Rondelet).
Bothus rhomboides Bonaparte, Catologo Metodico, 1836, 49.
Pleuronctics argus Risso, Ichth. Nice, 1810, 317 (not of Gmelin).
Pleuronectes mancus Risso, Ichth. Nice, 1810, 317 (not of Broussonet, whose species was from the Pacific Occan $=l$ 'latophys mancus $)$.
Rhomboidichthys mancus Giinther, iv ${ }^{3}$, 432, aud of many European writers.
Rhombus diaphanus Rafinesque, 1814 (larval form). Ricchiardi, "Soc. Toscana Sci. Nat., 1881."
Rhombus candidissimus Risso, Enrope Méridionale, iii, 253, 1826 (larval form).
Rhombus gesneri Risso, Europe Mérid., 1826, iii, 254.
Rhombus heterophthalmus Bennett, "Proc. Comm. Zool. Soc., 1831, 147."
Rhombus madeirensis Lowe, "Proc. Zool. Soc., 1833, 143." (Madeira.)
Peloria heckeli Cocco, "Alcuni Pesci del mar di Messina," 1844, 20 (larval form).
? Coccolus annectens (Bonaparte) Cocco, 1. c. (larva).
Rhombus serratus Valenciennes, "Wehb \& Berthelot, Iles Canar. Poiss., 82, pl. 18, fig. 1," 1835-50.
Pleuronectes cuspidatus "Machado, Catalogo, 26 " (fide Steindachner).
Habitat.-Mediterranean fanna.
This species is not rare in the Mediterranean and adjacent islands.
The specimens examined by us are from Genoa and Fayal. The two species mentioned by numerous authors under the names of podas and mancus have been shown by Dr. Steindachner to be the two sexes of the same fish, while Dr. Emery has shown that the translucent fish,

Peloria heckeli $=$ Rhombus candidissimus $=$ Rhombus diaphanus, is the larva of the same form, as is probably also the Coccolus annectens of Bonaparte.

## 38. PLATOPHRYS SPINOSUS.

Rhomboidichthys spinosus Poes, Syuopsis, p. 409, 1868. Poey, Euum. Pis. Cub., p. 139, 1875.

Habitat.-West Indian fauna.
The origiual description of this species is a very scanty one. In all respects, unless it be the color, it agrees with the European Pl. podas.

We have found two small specimens sent by I'rofessor Poey to the Museum of Comparative Zoology, which may be the types of this species. They are $4 \frac{1}{4}$ inches long, and have been partly dried in the sun. A result of this has been to iucrease the prominence of the interhæmal spines. Whether these be the original types or not, the species is an extremely doubtful one. The eyes are farther apart in these specimens than in any of $P$. ocelleta which we have examined. They agree in this respect with Agassiz's figure of Rhombus ocellatus.

## 39. PLATOPHRYS CONSTELLATUS.

Platophrys constellatus Jordan, sp. nov.
Habitat.-Galapagos Archipelago.
This species is described from three specimens, the largest $3 \frac{1}{2}$ inches long, numbered 11146 on the register of the Museum of Comparative Zoology. They are from James Island, in the Galapagos. The species is closely related to $P$. ocellatus and others, but in color, at least, it is different, and its habitat is remote.

## 40. PLATOPHRYS OCELLATUS.

Rhombus ocellatus Agassiz, Spix Pisc. Brasil., 1829.
Platophrys ocellatus Swainson, Nat. Hist. Class'n Fishes, ii, 1839. (Name only.)
Rhomboidichthys ocellatus Giunther, Cat. Fish. Brit. Mus., 1862, iv. (Bahia, Cuba.) Poey, Syuopsis, 1868, 408. (Havana.)
Rhombus bahianus Castelnan, Auim. nouv. rares Amérique du Sud, 1855. (Bahia.) Platophrys nebularis Jordau \& Gilbert, Proc. U. S. Nat. Mus., 1884, 31, 143. (Key West.)
Habitat.-Tropical America; sandy shores from Long Island to Rio Janeiro.

We know this species from the numerous sinall specimens taken by Dr. Jordan at Key West, which have been described as Platophrys nebularis. A specimen similar to these has been taken by Dr. Bean on the south coast of Long Island.

This seems to be the same as the Cuban species called Rhomboidichthys ocellatus by Poey, and some of the specimens sent by Poey to the Museum of Comparative Zoology are apparently identical with the types of nebularis.

In the Museum of Comparative Zoolog. we have compared speci-
mens of the real Platophrys ocellutus (No. 11423, Rio Janeiro, A gassiz), with a representative specimen of $P$. nebularis (No. 26147 , from the Tortugas, Florida), and are unable to find any differences.

We adopt, therefore, the name Platophrys ocellatus for all, and regard it as one of the widely-distributed flounders, like Etropus crossotus and Citharichthys spilopterus.

## 41. PLATOPHRYS MACULIFER.

? Pleuronectes maculiferus Poey, Mem., ii, p. 316, 1860. (Cienfucgos.)
? Rhomboidichthys maculiferus Poey, Synopsis, p. 403, 180\%. Poey, Enum. Pis.Cub., p. 139, 1875.
Platopitys ellipticus Jordan, Proc. U. S. Nat. Mus., 188k, 51 (Havana) (not of Poey ?).
We identify specimeus taken by Dr. Jordan at Havana and by him described as Platophrys ellipticus, with this species simply because we cannot place them anywhere else. In the Museum of Comparative Zoology are other specimens similar to these, sent to Cambridge by Poey.

In several respects these species agree fairly with Poey's ellipticus, but that species is said to have 104 dorsal rays.

## 42. PLATOPHRYS ELLIPTICUS.

? Pleuronectes ellipticus Poey, Memorias, ii, 315, 1860. (Cuba.)
? Rhomboidichthys ellipticus Giinther, iv, 434, 1862 (copied). Poey, Synopsis, 408, 1868. Poey, Enumeratio, 139, 1875.
Habitat.-West Indian fauna.
Poev describes his Pl. ellipticus as having 104 dorsal rays. In none of our other species does the number of these rays reach 100. Among the specimens sent by Poey to the museum at Cambridge is one, $4 \frac{3}{4}$ inches long, which has 105 dorsal rays. We have therefore assumed that the species to which this specimen belongs is the real ellipticus, and that the one heretofore called ellipticus is Poey's maculifer. Both these assumptions are open to considerable doubt.

## 43. PLATOPHRYS LUNATUS.

Solea lunata et punctatu (the Sole) Catesljy, Nat. Hist. Caroliva, tab. 27, 1725 (Bahamas).
Pleuronectes lunatus Linn., Syst. Nat., ed. x, 269, 1758 (based on Catesby), and of the various copyists.
Rhomboidichthys lunatus Giinther, Cat. Fish., vol. iv, p. 433 (Jamaica). Poer, Synopsis, p. 408, 1868.
Rhomboidichthys lunulatus Poey, Enum. Pis. Cub., p. 138, 1875.
Platophrys lunatus Jordan, Proc. U. S. Nat. Mus., 1886, 51 (Havana).
Pleuronectes argus Bloch, Ichthyol., tab. 48, 1783.
? Pleuronectes surinamensis Bloch \& Schneider, Syst. Ichth., 1801, 150 (Surinam); and of copyists.

## Habitat.-West Indian fauna.

This handsome and curiously colored species is not rare in the waters of the West Indies. The specimens examined by us are from Cuba, Sombrero, St. Thomas, and other localities in the West Indies. The
original figure of this species published loy Caresby is a very good one and leaves no room for doubt as to the species intended. The figure of Bloch, called Pleuronectes argus, is also fairiy accurate, and can refer to no other species.

This species reaches a length of some 18 inches, and is the largest in size of the American species of Platophrys. We have never seeu any young examples which certainly belong to it, and till its derelopment is traced some of the species known from small examples only must be doubtful.

## 44. PLATOPHRYS LEOPARDINUS.

Rhomboidichthys leopardinus Giinther, Cat. Fish., iv, 1802, 434 (locality unknown). Platophrys leopardinus Jordan, Proc. U. S. Nat. Mus., 1884, p. 260 (Guaymas).
Habitat.-Gulf of California.
This species is known only from the orignal type from unknown locality, and from a single specimen in the U. S. National Museum, taken by Mr. H. F. Emeric, at Guaymas.

## Genus XIX.-SYACIUM.

Syacium Ranzani, Novis Speciebus Piscium, Diss. Sec., 1840, 20 (nicrurum).
Hemirhombus Bleeker, Comptes Rendus Acad. Sci. Amsterd., xiii, Pleuron, 4 (1862), (guineënsis).
Aramaca Jordan \& Goss, Cat. Fish. N. A., 1885, 133 (petula).
Type: Syacium micrurum Ranzani.
This genus contains a considerable number of species, mostly American and African, which form a transition from Platophrys to Citharichthys. They fall readily into two groups or snbgenera, distinguished by the width of the interorbital space. As this width is dependent on age and as it is subject to various intergradations, the group Aramaca founded on it cannot be admitted as a distinct genus.

The name Syacium, based especially on Syacium micrurum, must take the place of Hemirhombus.

## ANALYSIS OF SPECIES OF SYACIUA.

a. [Snont before upper orbit with three conspicuous spinous processes; maxillary reaching beyond eye, $2 \frac{1}{2}$ in head; interorbital space sealy, concave, 2 in eye (in specimens of $3 \frac{1}{2}$ inches); eye $2 \frac{1}{2}$ in head; spines on snout about 3 in eye; no produced fin rays; pectoral as long as head without snout; head blunt, higher than long, the profile straight; lateral line without arch; head 3; depth 2; D. 78, A. 62 ; scales 48 ; color grayish, with large distant black blotches on dorsal and anal; one or two on basal half of caudal and on end of caudal peduncle; pectoral with dark bands.] (Günther)

Cornutum, 45.
aa. Snoat and orbits without spines or spinous processes.
b. Scales larger, 50 to 57 in the lateral line; interorbital space very broad, greater than the long diameter of the eye in the males, about equal to the vertical diameter in the females; accessory scales very numerous; maxillary $2 \frac{1}{2}$ in head; its tin scaly; anterior teeth canine-liko: gill-rakers short, strong, not one-third
length of eye; first rays of dorsal nearly on median line, their tips much exserted; pectoral fin in males $1 \frac{1}{4}$ to 2 times length of head; eye large, $4 \frac{2}{8}$ in head; head $3 \frac{2}{3}$; depth $2 \frac{2}{5}$; D. 81 to 88 , A. 63 to 70 ; vertebræ $10+26=36$; color nearly plain brown, with darker dots or mottlings, no ring-like spots or ocelli; fins mottled; left pectoral barred; blind side sometimes wholly or partly dusky, especially in Northern specimens

Papillosum, 46.
bb. Scales rather small, 60 to 70 in the lateral line.
c. Color dark brown, with many rings and spots of light gray and blackish, some of the dark rings with a black central spot; a diffuse dusky blotch on lateral line above pectoral, and one near base of caudal peduncle; fins with numerous inky spots and dark markings; blind side pale ; scales small, firm, moderately ctenoid; eyes large, 4 in head, nearly even in front, the male with the interorbital space deeply concave; its width two-thirds the vertical depth of the eye; female with interorbital area much narrower, with a more or less perfect median groove; its width about equal to depth of pupil: maxillary $2 \frac{1}{2}$ to 3 in head; the outer teeth canine-like; gill-rakers very short and thick, about $X+7$ in number; head $3_{5}^{4}$ in length; depth, $2 \begin{gathered}2 \\ 5\end{gathered}$; D. 87 to 92, A. 54 to 68 ; scales 65 to 70 pores; vertebre $9+24=33$; pectoral $1 \frac{1}{3}$ in head in the female, reaching nearly to base of caudal in the male....................................................
cc. Color light brown, with grayish and light bluish dots, some darker areas and a few round brown spots ocellated with lighter; interorbital space with a vertical brown bar bordered by lighter; fins mottled and spotted; interorbital space in adult male broader than eye ; insertion of dorsal on blind side of head; pectoral fins in males about 3 in body; head, 4 in length; depth, $2 \frac{1}{2}$; D. 92 , A. 72, Lat. 1.60 ; gill-rakers short and broad, $\mathrm{X}+7$; maxillary $2 \frac{1}{2}$ in head, its tip scaly.
. Latifrons, 48.
$c c c$. Color light olive-brown, nearly uniform, the vertical fins with elongate dark spots; eyes $4 \frac{1}{2}$ in head, the lower slightly advanced; interorbital space very narrow, as broad as pupil (in both sexes?), somewhat concave; maxillary $2_{5}^{4}$ in head; pectoral $\frac{1}{2}$ in head; head $3 \frac{1}{5}$ in length; depth $2 \frac{1}{8}$; D. 86, A. 69, Lat. 1. 58

Ovale, 49.

## 45. SYACIUM CORNOTUM.

Rhomboidichthys cornutus Günther, Shore Fishes Challenger, 1880, 7, pl.

## Habitat.-Coast of Brazil, in deep water.

This species is known from Guinther's description and tigure. In very joung examples the conspicuous processes about the head are undeveloped.

## 46. SYACIUM PAPILIOSUM.

[^37]Hippoglossus intermelius Rauzani, Novis Speciebus Piscium Dissertatio Secundo, 1840, 14, pl. 4. (Brazil.)
Hemirhombus patulus Bean MSS, Jordan and Gilbert, Proc. U. S. Nat. Mus., 1882, p. 304. (Pensacola.) Goode and Bean, Proc. U. S. Nat. Mus., 1882, p. 414. (Pensacola.) Bean, Cat. Col. Fish U. S. Nat. Mns., 1883, p. 45. (Pensacola.)
Citharichthys patulus Jordan and Gilbert, Syn. Fish. N. A., p. 964, 1882, addenda. Jordan, Proc. U. S. Nat. Mus., 1834, p. 38. (Pensacola.)
Habitat.-West Indian fauna. Charleston to Rio Janeiro.
Of the species found in the deep waters about Pensacola and called by Dr. Bean Hemirhombus potulus we have numerous specimens. Lately we have received from Mr. Charles C. Leslie, of Charleston, a specimen which shows its presence also in Carolina waters. It has not yet been recorded from Cuba, but in the Museum of Comparative Zoology is a specimen (26104) taken by Mr. Samuel Garman at Kingston, Saint Vincent. But its range exteuds much farther to the southward, for among the collections made by Professor Agassiz at Rio Janeiro there are many specimens ( 11375,4666 ), the largest about a foot long. These seem to be completely identical with Florida examples, differing ouly iu having the blind side pale, it being usually partly blackish in northern examples.

These Brazilian specimens agree very closely with the figure of Rhombus solecformis, except that Agassiz has represented that species as having a dusky blotel at the shoulder. No such marking is apparent in any of onr specimens. The coloration and the breadth of the interorbital both render it unlikely that Agassiz's solecformis could have been micrurum.

The Aramact of Marcgrave, which is the sole basis of Pleuronectes papillosus, Pleuronectes macrolepidotus, and Rhombus aramaca, cannot well be any known species other than the present one.

According to Marcgrare's rude figure and his description, this species has the form of a sole, the eses wide apart, the left pectoral produced, the mouth very large, the boily oblong, aud the coloration stone-like (sand-color) on the left side and white on the eyed side. Micrurum is not colored in that way, and its eyes are not noticeably far apart.

We therefore adopt for this species the oldest name of Syacium papillosum. ${ }^{\text {. }}$

The species is common in the deep waters of the Gulf of Mexico, and reaches a length of more than a foot.

## 47. SYACIUM MICRURUM.

Syacium micrurum Ramzani, Nov. Spec. Pisc. Diss. Sec., 1840, 20, pl. 5. (Brazil.)
Hippoglossus occllatus l'oey, Memorias, ii, 314, 1860. (Cuba.)
Hemirhombus ocellatus Poes, Synopsis, 407, 1868. Poey, Enumeratio, 138, 1875.
Citharichthys ocellatus Jordan and Gilbert, Syn. Fish. N. A., 964, 1882. (Key West.) Jordan, Proc. U. S. Nat. Mus., 1881, 143. (Key West.)
Hemirhombus aramaca Giinther, iv, 4:, 1862. (Cuba; Jamaica.) (Not Rhombus aramaca Cuvier.)
Citharichthys cethalion Jordan, Proc. U. S. Nat. Mus., 1886, 52. (Havana.)
Hemirhombus athation Jordan, Proc. U. S. Nat. Mus., 1886, 602.

Habitat.-West Indian fauna. Key West to Rio Janeiro.
We have found in the Museum of Comparative Zoology specimens purporting to be the types of Hemirhombus ocellatus Poey (No. 11144; Poey's number, 88). These are female specimens, and they differ from the types of Hemirhombus cthalion, also from Cuba, only in their greater size.

Numerous specimens (11373) from Rio Janeiro belong to the same species. Among these are males, which have the interorbital space much broader than in the types of ocellatus and cethation. Besides these specimens, we have examined others from Hayti, Cuba, and Key West, and there can be no reasonable doubt of their identity, and that all are identical with Günther's Hemirhombus aramaca.
This fish is described and fairly well figured by Rauzani under the name of Syacium micrurum. It is the type of his genus Syacium, a generic name which, strangely enough, has received no notice from sulsequent authors until the present time.

## 48. SYACIUM LATIERONS.

Citharichthys latifrons Jordan and Gilbert, Bull. U. S. Fish Comm., 1881, 334., (Panama.)
Hobitat.-Pacific coast of tropical America. Panama.
This species is known only from the original types, taken by Professor Gilbert at Panama. The several variations in this species have not been studied.

## 49. SYACIUM OVALE.

Hemirhombus ocalis Giinther, Proc. Zool. Soc., 1864, p. 154. Giinther, Fisì. Central America, p. 472, 1869, plate lxxx, fig. 1. (Panama.) Jordan \& Gilbert, Bull. U. S. Fish Com., 1882, p. 108-111. (Mazatlau; Panama.)
Citharichthys ovalis Jordan, Proc. U. S. Nat. Mus., 1885; 391. (Mazatlan; Panama.)
Habitat.-Pacific coast of tropical America: Mazatlan to Panama.
This well-marked species has been well figured by Dr. Giinther, from whose account our analysis has been taken. Numerous specimens bave been collected at Mazatlan and Pauama by Dr. Gilbert. The sexual changes in this species have not been reported.
Genus XX.-AZEVIA.

Azevia Jordan (genus novim). (Panamensis.)
Type: Citharichthys panamensis Steindachner.
This genus is proposed to include a single species hitherto referred to Citharichthys, but distinguished by its tubercular gill-rakers, as also by its small, firm scales, and other characters of minor importance.

A second species of this genus was obtained by Professor Gilbert at Mazatlan, and at first recorded by us under the name of Citharicthys panamensis. The specimens have, howerer, all been destroyed by fire.

The name Azevia is a Portuguese name for the sole, used at Lisbon, according to Brito Capello. It probably corresponds to the Cuban name Acedia.

## ANALYSIS OF SPECIES OF AZEVIA.

$\boldsymbol{a}$. Scales quite small, about 75 in the lateral line, ctenoid, and adberent. Body rather elongate. Mouth large, the maxillary about half length of head, the upper jaw somewhat booked over the lower; about three front teeth in upper jaw, enlarged and hook-shaped; canines strong. Anterior profile gently and evenly convex. Eyes large. Pectoral $1 \frac{1}{2}$ in head. Head 4 in length; depth $2 \%$ D. 95 or 96. A. 76 to 78. Scales 73 to 78. Vertebre 33. Gill-rakers tubercle-like, broader than high. Color brownish, spriukled with dark dots, and with some whitish rings; large vaguely-defiued oval spots on head and body ; dorsal with five or six, anal with three dark spots

Panamensis, 50.

## 50. AZEVIA PANAMENSIS.

Citharichthys panamensis Steindachner, Ichth. Beitr., iii, 62, 1875. (Panama.) Jordan \& Gilbert, Bull. U. S. Fish Com., 1882, 108 and 111. (Panama.) Gilbert, Bull. U. S. Fish Com., 1882, p. 112. (Punta Arenas.)

## Habitat.-Pacific coast of Central America.

Our description of this species is taken from the specimens from Panama in the museum at Cambridge, a part of the series of Dr. Steindachner's original types. The species is apparently not uncommon on the west coast of Central America.

## Genus XXI.-CITHARICHTEYS.

Citharichthys Bleeker, Comptes Rendus Acad. Sci. Amsterd., xiii, Plcuron, 6, 1862. (Cayennensis = Spilopterus.)
Orthopsetta Gill, Proc. Ac. Nat. Sci. Phila., 1802, 330. (Sordidus.)
Metoponops Gill, Proc. Ac. Nat. Sci. Phila., 1864, 198. (Cooperi = Sordidus.)
TyPE: Citharichthys cuyonnensis Bleeker=Citharikthys spilopterus Giinther.

This genus includes small flounders of weak organization, especialīy characteristic of the saudy shores of tropical America. The subgenus Orthopsetta iucludes species of more northern range and somewhat different in form, and especially noteworths as having an increased number of vertebre.

We are not certain that Citharichthys has priority over Orthopsetta, the two having the same ostensible date.

ANALYSIS OF SPECIES OF CITHARICHTHYS.
a. Vertebra about 40 ; interorbital ridge sharply elevated; the head not closely compressed ; cyes large. (Orthopsetta Gill.)
b. Dorsal rays 95 ; aual rays 77; lateral line 65 to 70 ; head 83 in length; depth 23: eyes large, $8 \frac{1}{2}$ in head, the interocular space scaly, concave, 4 in eye; a sharp elevated ridge bonading the lower eye; mouth not largo ; the maxillary 3 in head; teeth sharp, subequal anteriorly, smaller behind; lower pharyngeals narrow, each with a row of slender teeth; gill-rakers slender, close-set, $7+14$; scales large, thin, deciduous, slightly ciliate; mumerous accessory scales present; pectorals loug, $1_{2}$ in head ; flesh soft. Color dull olivebrownish, the males with spots and blotches of dull orange, the dorsal and anal blackish, similarly mottled with dull orange; females paler, nearly plain. Vertebrie, $11+29=40 \ldots \ldots$. . Sordidus, 51 ,
bb. Dorsal rays 85 to 90 ; anal 68 to 72 ; lat. 1.55 to 60 ; head 3 in length; depth $2 \frac{1}{3}$; eyes large, separated by a sharp, scaleless ridge; maxillary $2 \frac{3}{4}$ in head; teeth slender, rather long; gill-rakers short, rather slender; pectoral $1 \frac{2}{5}$ in head; color olivaceous, the scales edged with darker; fins dusky; a small ink-like spot on the middle of each seventh to tenth ray of each of the vertical fins.....-Stigmeus, 52.
aa. Vertebra 33 to 36 ; interorbital ridge Jow and narrow, the head closely compressed (Citharichthys).
c. Eyes large, 3 to $4 \frac{1}{3}$ times in the head.
d. [IIead large, $3 \frac{1}{8}$ in length; pectoral of left side elongate, one-third longer than head; maxillary $2 \frac{3}{4}$ in head; "lateral line slightly curved over the pectoral"; scales thin, deciduous, cycloid ; eye $3 \frac{1}{8}$ in head, five times interorbital space, which is a rather prominent narrow sharp ridge; a strong spine on the snout over the upper lip, above this another shorter spine ; caudal fin subsessile ; head, $3 \frac{1}{8}$; depth, 2t ; D. 91 ; A. 73; Lat.l. 48. Color grayish-brown.] (Goode \&-
 dd. Head smaller, about 4 in length.
e. Body comparatively elongate, the depth about $2 \frac{1}{2}$ in length; mouth very small; the maxillary $3 \frac{1}{2}$ in head; teeth very small, the anterior scarcely enlarged; eres larse, 4 in head, separated by a very narrow, sharp scaleless ridge, one-sisth diameter of the eye; snout with a small blunt spine; rays of vertical fins all exserted; left pectoral twice length of right. Head, 4 in length; depth, $2 \frac{1}{2}$; D. 83; A. 67 ; Lat. 1. 40. Color light brown .........Arctifrons, 54.
ee. Body comparatively broad, the depth about half the length; mouth larger.
$f$. [Snout with a strong sharp spine on eyed side, above upper lip. Eyes large, 3 in head ; greatest depth of body over the pectorals; interorbital space with a wide ridge, about half diameter of eye; teeth minute, close-set, stronger on blind side ; body extremely thin; D. 73 to 75, A. 60, Lat. 1. 40. Ashy gray, with dark lateral line. Deep-water species with loose scales.] (Goode) .... Unicornis, 55.
ff. Snout without distinct spine. Eyes moderate, $3 \frac{1}{2}$ to $4 \frac{1}{2}$ in head; greatest depth of body under middle of dorsal ; interorbital space a narrow, scaly ridge with a slight median groove ; maxillary $2 \frac{1}{3}$ in head; teeth small, those in front slightly enlarged ; body not very thin; gill-rakers moderate, $6+13$.
g. Dorsal rays 80 ; anal 56 ; scales large, cycloid; no accessory scales; head 4 in length ; depth 2; D.80, A.56, Lat.1.41. Vertebreo $9+$ $25=34$. Eye $3_{\frac{2}{3}}^{5}$ in head. Color light olive-brown, with some 20 dark brown spots, the largest about as large as eye; four of these spots arranged at equal intervals along the lateral line, the second being most prominent; dorsal and anal with round dark spots, one on the middle of each sisth to seventh ray, besides smaller, irregular spots and mottlings; caudal spotted; two brown spots, one above the other, at base of caudal; shallow-water species.

Macrops, 56.
gg. Dersal rays 68 ; anal 52 ; scales smaller, the lateral line with about 53 pores; outline regularly oval, without angle ; eyes moderate, $4 \frac{1}{2}$ in head, close together, the orbital ridges coalescent, the lower larger. Teeth small, uniserial; maxillary $2 \frac{1}{\frac{1}{3}}$ in head; gill-rakers short and very slender, $\mathrm{X}+12$. Color dark brown, with whitish blotches, the fins mottled ....................................................UThereri, 57.
S. Mis. $90-18$
cc. Eyes quite small, 5 to 6 in head; suout short, forming an angle with the profile ; mouth moderate, oblique, the maxillary $2 \frac{1}{2}$ to $2 \frac{2}{3}$ in head ; teeth small, the anterior somewhat enlarged.
$h$. Scales not very large, 45 to 48 in the lateral line; interorbital area a low narrow ridge which is divided only anteriorly (in Atlantic specimens, usually grooved for its whole length in Pacific coast examples); gill-rakers short and strong, $X+13$; pectorals about half head ; no distinct spine on snout; head $3 \frac{1}{2}$; depth $2 \frac{1}{8} ;$ D. 75 to 80 ; A. 58 to 61 ; vertebre, 34 ; color olive-brownish, somewhat transluceut, with darker dots and blotehes ; a series of distant obscure blotches along bases of dorsal and anal ..... Spilopterus, 58.
$h \hbar$. Scales large, 40 to 42 in the lateral line; interorbital area ${ }_{5}^{3}$ diameter of eye, which is 5 in head; gill-rakers short and slender, about equal to pupil ; teeth rather smaller thau in C. spilopterus; maxillary $2_{3}^{2}$ in head ; head $3_{5}^{2}$; depth 2 to 2 各; D. 77 to 82 ; A. 59 to 61 ; color light gray, everywhere soiled and freckled, peppered with black specks ; pectoral fin much mottled, the caudal less so.

Sumichrasti, 59.

## 51. CITHARICHTHYS SORDIDUS.

Psettichthys sordidus Girard, Proc. Acad. Nat. Sci. Phila., vii, 1854, 142. Girard, Proc. U. S. Pacif. R. R. Exped., Fishes, 1859, 155. (San Francisco; Tomales Bay.) Orthopsetta sordida Gill, Proc. Ac. Nat. Sci. Phila., 1862, 330.
Citharichthys sordidus Lockington, Rep. Com. Fisheries of California, 1878-79, 42. Lockington, Proc. U. S. Nat. Mus. 1879, 83 (San Francisco). Jordan \& Gilbert, Proc. U. S. Nat. Mus., 1880, 453 (Puget Sound, San Francisco, Monterey Bay, San Luis Obispo, Santa Barbara, San Pedro, San Diego), Jordan \& Gilbert, Proc. U. S. Nat. Mus., 1881, 67. Jordan \& Gilbert, Synopsis Fish. N. A., p. 817, 1882. Beav, Proc. U. S. Nat. Mus., 1883, p. 353 (Johnston Strait, Safety Cove, British Columbia.)
Metoponops cooperi Gill, Proc. Acad. Nat. Sci. Phila., 1854, 198 (Sauta Barbara).
Habitat.-Pacific coast of North America, in water of moderate depth; British Columbia to Lower California.

This small flounder is one of the commonest species on the Pacific coast, being found in water of ten fathoms or more depth, in all localities from the Mexican boundary to British Columbia. It rarely exceeds two pounds in weight. In its deciduous scales and soft flesh it much resembles Lyopsetta exilis and Atheresthes stomitts, two species of which are often taken in company with it. Of all the species allied to Citharichthys, this one has the most extended range to the northward.

## 52. CITHARICHTHYS STIGMAUS.

Citharichthys stigmaus Jordan and Gilbert, Proc. U. S. Nat. Mus., 188:, 410, 411 (Santa Barbara). Jordan \& Gilbert, Syn. Fish. N. A., 1882, 965.
Habitat.-Coast of Southern California.
The original type of this species is a young example, takeu near Santa Barbara by Capt. Andrea Larco. In the Museum of Comparative Zoology are other specimens collected by Mr. Cary at San Francisco. These have 72 anal rays, while the original type had but 68 . In this and other ways they approach $C$. sordidus. Were it not that some of
these are full of spawn at a length of five inches, we should regard them without much hesitation as the young of C. sordidus. As it is, it is not unlikely that $C$. stigmceus will prove to be simply the young of the latter species.

## 53. CITHARICHTHYS DINOCEROS.

Citharichthys dinoceros Goode \& Bean, Bull. Mus. Comp. Zool., xxviii, 1886, 156 (off Martiuique, St. Lucie, and Barbadoes).
Habitat.-Deep waters of Gulf of Mexico.
This species is known to us from the original description only.

## 54. CITHARICHTHYS ARCTIFRONS.

Citharichthys arctifions Goode, Proc. U. S. Nat. Mus., 1830, 341, 472 (G'ulf Stream off Southern New Eugland coast). Goode \& Bean, Bull. Mus. Comp. Zoology, xix, p. 194 (stations 313, 314, 311, and 336). Jordan \& Gilbert, Syn. Fish. N. A., 818, 1882.

Habitat.-Deep waters of the Gulf Stream.
This species is known to us from a small specimen obtained in the Gulf Stream southeast of Martha's Vineyard, and from the descriptions published by Goode \& Bean.

## 55. CITHARICHTHYS UNICORNIS.

C.tharichthys unicornis Goode, Proc. U. S. Nat. Mus., 1880, 342 (Gulf Stream southeast of New England). Jordan and Gilbert, Syn. Fish. N. A., p. 818,1882.
Habitat.-Deep waters of the Guif Stream.
This species is known to us from descriptions only.
56. CITHARICHTHYS MACROPS.

Citharichthys macrops Dresel, Proc. U. S. Nat. Mus., 1854, p. 539 (Pensacola). Jordan, Proc. U. S. Nat. Mus., 1886, 29 (Beaufort, N. C.).

Habitat.-South Atlantic and Gulf coasts of the United States.
This species is known to us from several specimens dredged in the harbor of Beaufort, N. C., by Prof. Oliver P. Jeukins.

## 57. CITHARICHTHYS UHLERI.

Citharichthys uhleri Jordan, sp. nor.
Habitat.-West Indian fauna.
This species is based ou a single specimen in the Museum of Comparative Zoology. It is $4 \frac{1}{2}$ inches in length, and was brought from Hayti by Mr. P. R. Uhler, the well-known entomologist, for whom we have named the species.
The species is close to Oitharichthys macrops, but its fin-rays and scales are considerably more numerons than in the latter.

## 58. CITHARICHTHYS SPILOPTERUS.

Citharichthys spilopterus Günther, iv, 1862, 421 (New Orleans, San Domingo, Jamaica). Gïnther, Fish. Central America, p. 471, 1869, pl. lxxx, fig. 2, (Chiapam). Jordan and Gilbert, Proc. U. S. Nat. Mus., 1882, p. 382 (Panama). Jordan and Gilbert, Proc. U. S. Nat. Mus., 1882, p. 618 (Charleston). Jordan and Gilbert, Proc. U. S. Nat. Mus., 1882, p. 630 (Panama). Jordan and Gilbert, Bull. U. S. Fish Com., 1889, p. 108-111 (Mazatlan and Panama). Jordan aud Gilbert, Syn. Fish. N. A., 1882, p. 817. Jordan, Proc. U. S. Nat. Mus. 1886, 53 (Havana).
Citharichthys cayennensis Bleeker, Comptes Rendus Acad. Sci. Amsterd., xiii, 1862, 6 (Cayenne) (name only).
Citharichthys guatemalensis Bleeker, Neder. Tydschr. Dierk, 1864, 73 (Guatemala). Günther, Fish. Central America, 472, 1869 (copied).
Hemirhombus fuscus Poey, Synopsis, 406, 1868. Poey, Enumeratio, 1875, 138.
Habitat.-Both coasts of tropical America, north to New Jersey and Mazatlan.
This little flounder is almostevery where abundaut on the sandy shores of tropical America, in shallow water. Careful comparison of specimens from South Carolina, Brazil, Mazatlan, and Panama shows no tangible difference, and we are compelied to regard all as forming a single species.

It rarely exceeds 5 or 6 inches in length. It usually comes into the markets mixed with other shore-fishes and it nowhere receives any notice as a food-tish.
This species is common in the markets of Harana, and it is evidently the original of Poey's Hemirhombus fuscus, although in Poey's descriptiou there seems to be some confusion, because the teeth are said to be biserial above, and 60 scales are connted in the lateral line.
A specimen from Poey in the museum at Cambridge is labeled "Hemirhonlus fuscus type." Uollector's number, 87. This belongs to C. spilopterus, and it has 48 scales in the lateral line.

Bleeker's Citharichthys guatemalensis agrees in all respects with Citharichthys spilopterus. We are unable to find any description of Citharichthys cayennensis, if, indeed, the species has ever been described.

Specimens of Citharichthys spilopterus are in the maseum at Cambridge from Pauama, Uaba, Pará, Sambaia, Pernambaco, Camara, Rio das Velhas, Rio Janciro, and Sin Matheo.

## 59. CITHARICETHYS SUMICHRASTI.

Citharichthys sumichrasti Jordan, sp. nov.
Habitat. - Pacific coast of tropical America.
This species is close to $C$. spilopterus, differing chietly in the larger scales and in the different coloration. The type, No. 25299 , in the Museum of Comparative Zoology, was collected in Rio Zanateuco, Chiapas, by Prof. Francis E. Sumichrast. Another specimen is in the musenm labeled Panama: Pitkins.

## Genus XXII.-ETROPUS.

Etropus Jordan \& Gilbert, Proc. U. S. Nat. Mus., 1881, 364. (Crossotus.)

## Type: Etropus crossotus Jordan \& Gilbert.

This genus is very close to Citharichthys, from which it differs ouly in the very small size of the mouth, and in the correspondingly weak dentition. The three known species are similar in appearance to the species of Citharichthys, and they inhabit the same waters. Another genus extremely close to Etropus and Citharichthys is Thysanopsetta. The teeth in Thysanopsetta are, however, arranged in a band.

## ANALYSIS OF SPECIES OF ETROPUS.

a. Body comparatively elongate, the head anteriorly acute; dorsal rays 91 ; anal rays 73 ; scales in the lateral line 54 ; back loss elevated than in other species; head small, the profile forming an angle at the posterior part of upper eye, the snout being abruptly pointed ; eyeslarge, $4 \frac{1}{6}$ in head, the lower being before the upper ; interorbital space elevated, with two prominent ridges, the space between them concave ; ridge above lower eye higher than upper and joining the latter behind upper eye, to form a sharp ridge; upper eye with some vertical range; mouth very small, the maxillary 4 in head, not reaching front of pupil; teeth bluntish, close-set, in one row, chiefly on the blind side; scales and fins much as in $E$. crossotus; the edge of the subopercle on the blind side fringed with white cirri, as in the latter species; scales large, loose, little ciliato; gill-rakers very short and slender ; gill membranes broadly united ; caudal fin rhombic, ratber pointed; pectoral $1 \frac{1}{2}$ in head; fin rays scaly; head 5 in length; depth $2 \frac{1}{6}$; color light olive-brown, with rague spots and darker markings; fins similarly marked.

Ectenes, 60.
aa. Body deeper, the head not acute in profile; dorsal rays 76 to 85 ; anal 56 to 67 ; scales 38 to 48 ; teeth sharp, close-set, unisorial.
b. Body somewhat elongate, pear-shaped, the depth notmore thau half the length, the body thinner and more compressed than in $E$. crossotus; mouth very small, the maxillary $4 \frac{1}{2}$ in head ; eye 3 to $3 \frac{1}{2}$ in head ; interorbital space a narrow, sharp ridge ; cirri on subopercle rather ferv and long; D. 77 to 78; A. 57 to 61; lat. l. 38 to 41 . Head 4 in length; depth 24 to 2 . Vertebre $9+25=34$. Color grayish, with a few irregular vague dark blotches, none of them larger than the eye; fins speckled; two dark spots at base of caudal............... Mrcrostonus, 61.
bb. Body very deep, the depth rather more than half the length; eye $3{ }^{3}$ in head; interorbital space a narrow, sharp ridge, divided anteriorly; masillary about 4 in head; head $4 \frac{4}{5}$; depth $1_{0}^{4}$ to 2 (14 in Atlantic specimens). D. 76 to 85 ; A. 56 to 67 ; lat. 1.48 ( 42 to 45 in Atlantic specimens). Vertebre $9+25=34$; cirri on subopercle of blind side numerous, white; color light olive-brown, witb some darker blotches; vertical fins finely nottled and speckled with black and gray. Crossotus, 6ะ.

## 60. ETROPUS ECTENES.

Etropus ectenes Jordan, sp. nov.

## Habitat.-Pacific coast of South America.

The types of this species are two examples (11605, Mus. Comp. Zool.) collected at Callao, Peru, by Dr. Jones. There are also a large number of young examples in the collection (11145) obtained at Paraca Bay by the Hassler Expedition.

The spocies is very readily distingnished from $E$. crossotus by its elongate form, ante head, and by the larger numbers of its fin-rays and scales.

## 61. ETROPUS MICROSTOMUS.

Citharichthys microstomus Gill, Proc. Ac. Nat. Sci. Phila., 1864, 223. (Beesley's Point, N Jerses.)
Etropus rimosus Goode \& Bean, Proc. U. S. Nat. Mus., 1855, 593. (Coast of Florida, between Pensacola and Cedar Keys, dredged at the depth of 21 fathoms.)
Etropus crossotus Jordau \& Evermann, Proc. U. S. Nat. Mus., 1836. (Pensacola.)
Habitat.-Gulf of Mexico.
On re-examining our specimens of Etropus, we find that those obtained by Jordan \& Evermann from Pensacola differ from the others in the greater elongation of the body and in the somewhat grayer coloration. These correspond fairly to the description of Etropus rimosus. All other specimens from the United States coast collected by Dr. Jordan and his associates, are, in our opinion, referable to Etropus crossotus.

The original description of Citharichthys microstomus Gill, fits this. species better than any other known. The fish in question is much too elongate for Etropus crossotus (depth $2 \frac{2}{3}$ in total length), and the mouth is too small for any of the known species of Citharichthys (maxillary 4 in head; mandible $2 \frac{1}{2}$ ).

In the Museum of Comparative Zoology are numerous young specimens collected at Somers Point, New Jersey, Dy Dr. Stimpson. These seem to belong to the genus Etropus. The teeth are equal; the scales are 44 , and the depth of the body is $2_{6}^{1}$ in its leagth. The eye is 4 in head, the dorsal rays 75 to 80 , and the anal rays 56 or 57 . The color is light brown, mottled and spotted with darker.

These certainly represent the Citharichthys microstomus of Gill, collected in the same neighborhood by the same naturalist. We are unable to distinguish them from Etropus rimosus.

## 62. ETROPUS CROSSOTUS.

Etropas crossoteis Jordau \& Gilbert, Proc. U. S. Nat. Mus., 1881, 364 (Mazatlau). Jordan \& Gilbert, Proc. U. S. Nat. Mus., 1882, 305 (Lake Pontchartrain; Mazatlau; Panama; Galvestou). Jordan aud Gilbert, Proc. U. S. Nat. Mus., 1882, 618 (Charleston). Jordan \& Gilbert, Bull. U. S. Fish Comm., 1832, 103-111 (Mazatlan ; Panama). Jordan \& Gilbert, Syn. Fish. N. A., 1832, 839. Bean, Cat. Fish. Intern. Exh., 1893, 44 (St. John's River). Jordan \& Swain, Proc. U. S. Nat. Mas., 1834, 234 (Cedar Keys).

Etropus microstomu. Jordan, Proc. U. S. Nat. Mus., 1836, 29. (Beaufort, N. C.) (Not Citharichthys microstomus Gill.)
Habitat.-Both coasts of tropical America, north to North Carolina.
This little fish seems to be abundant in all warm and sandy shores of tropical America. It is the smallest and feeblest of all our flounders, and has therefore been generally overlooked by collectors. Its range will doubtless prove to be coextensive with that of its near ally, $C i$. thariehtlyys spilopterus.

In the Museum of Comparatire Zoology are specimens of this species from Rio Janeiro, Santos, Victoria, Para, and Sambaia, in Brazil. The largest of these is 6 inches in length. Head 5 in length, depth, $1 \frac{9}{10}$; scales, 44 ; D. 85 ; A. 67.

A re-examination of the specimens collected by Prof. O. P. Jenkins at Beaufort, N. C., and described by Dr. Jordan under the name of Etropus microstomus, shows that these are identical with the specimens of Etropus from Charleston, Cedar Keys, New Orleans, and Galveston. These differ from the types of Etropus crossotus ouly in the slightly greater depth of the body, and in the slightly larger size of the scales. We now refer them to the latter species without much hesitation, hardly regarding them worthy of eren subspecific distinction.

## Genus XXIII.-THYSANOPSETTA.

Thysanopsetta Giinther, Voyage Challenger, Shore Fishes, 1880, $2 ?$ (naresi).
Type: Thys anopsetta naresi Guinther.
We have not seen the typical species of Thysanopsettil. From the figure and description it would seem that the genus differs from Etropus only in having the teeth in villiform bands.

## ANALYSIS OF SPECIES OF THYSANOPSETTA.

a. [Body oblong; head small ; eyes $3 \frac{1}{2}$ in head, well separated, the interorbital space being flat and scaly; mouth moderate, the maxillary more than one-third head; teeth in villiform bands; scales adherent, ctenoid; a fleshy lobe behind ventrals; lateral liue straight; head, 5 ; depth, $2 \frac{1}{2}$; D. 87 ; A. 59 ; lat. 1. 76 (in plate); color, nearly uniform brownish, the body and fins mottled.] (Günther)..........Naresi, 63.

## 63. THYSANOPSETTA NARESI.

Thysanopsetta naresi Günther, Voyage Challenger, Shore Fishes, 1880, 22. (Cape Virgin, Straits of Magellan.)
Habitat.—Straits of Magellan.
We know this species from the original figure and description only.

## Genus XXIV.-MONOLENE.

Monolene Goode, Proc. U. S. Nat. Mus., 1830, 337 (stssilicauda).
Type: Monolene sessilicauda Goode.
This peculiar genus of deep-sea flounders is probably allied to Arnoglossus and Citharichtllys. Of this we cannot speak with certainty, not having examined any members of the group, and the insertion of the ventral fins has not been described in either of the two known species.

## ANALYSIS OF SPECIES OF MONOLENE.

a. [Dorsal rays, 99 to 103 ; anal rays, 79 to 84 ; scales cf blind side ctenoid, 23-92-25; head everywhere closely scaly, even to the lips and front of snout; mouth oblique, the maxillary less than one-third length of head; teeth, uniserial, subequal; eyes very close together, the interorbital space a very narrow ridge; arch of lateral line very peculiar, the curve having two angles; head 5 in length; depth, 2 ? ; ashy brown, with spots of darker brown; pectoral barred; vertebre 43.] (Goode)

Sessilicauda, 64.
aa. [Dorsal rays, 194; anal rays, 100 ; scales of blind side scarcely ctenoid, 30-105-32; snout and lips not scaly ; maxillary 3 in head ; eyes, large, $2 \frac{8}{4}$ in head, separated by a very narrow ridge; head $4 \frac{1}{3}$ in leugth ; depth about 3 ; light brownish gray, the fins dusky, the pectoral black.] (Goode f Bean) Atrimana, 65.

## 64. MONOLENE SESSILICAUDA.

Monolene sessilicayda Goode, Proc. U. S. Nat Mus., 1830, pp. 337, 338 (deep sea south of New England). Goode, Proc. U. S. Nat. Mus., 1850, 472 (deep sea southern coast of New England, stations 870, 871, 876, 877). Jordan \& Gilbert, Syn. Fish. N. A., 1832, p. 841. Goode and Bean, Bull. Mus. of Comp. Zoology, xix, p. 184 (station 314 ; South Carolina).
Habitat.-Deep waters of the Gulf Stream.
This species is known to us from the accounts of Groode \& Bean.

## 65. MONOLENE ATRIMANA.

Monolene atrimana Goode \& Bean, Bull. Mus. Comp. Zool., xii, 155, 1836 (deep waters off Barbadoes).
Habitat.-Deep waters of the Caribbean Sea.
This species is known to us from the original description.

## Genus XXV.-ONCOPTERUS.

Oncopterus Steindachner, Ueber eine neue Gattung und Art aus der Familie der Pleuronectoiden, 1874, 1 (darwini).

## Type: Oncopterus darwini Steindachner.

This singular genus is based on a single species found on the shores of East Patagonia. It has no near allies among the American flounders, but it has several points of resemblance to the genera Rhombosolea, Ammotretis, and Peltorhamphus of the Australian fauna, and we have ventured to associate the four in a subfamily, which may be called Oncopterince. The Oncopterine agree in having some sort of peculiar appendage on or near the snout, apparently connected with the first interspinal. They agree with the Platessince in the general form, the dextral portion of the eyes, and in the structure of the mouth. Their nearest ally in this group is Pleuronichthys. In the insertion of the ventrals, they agree with the Pleuronectince and with the genus Achirus of the Soleince. In both Peltorhamphus and Rhombosolea, the ventral is continuous with the anal as in Zeugopterus and Achirus, but in Oncopterus the two fins are saparate. In Peltorhamphus and Rhombosolea, the bone connected with the the first interspinal extends forward as a sort of nose, meeting the chin (much as in Achiropsis and Apionichthys). In Oncopterus this bone is twisted to the blind side, and has a very peculiar position, described helow. The scales are smooth and cycloid in Oncopterus and Rhombosolea, ctenoid in Peltorhamphus. In Peltorhamphus and Oncopterus the left ventral is present. It is wanting in Rhombosolea. Ammotretis we have been mable to examine. In Oncopterus the lateral line has an anterior arch and many accessory branches. It is straight and simple in the other genera. In all the teeth are sharp, close set, in a band, and chiefly on the blind side.

## ANALISIS OF SPECIES OF ONCOTTERUS.

a. Body broadly ovate, with regular outlines; month small, twisted toward the blind side; its teeth small aud in bands; maxillary $3 \frac{1}{3}$ in head; cye $5 \frac{1}{2}$, twice the concave interorbital area; gill-rakers short and slender; left side above eye with a deep horizontal groove, in which lies a depressible curved bone as long as the maxillary. This seems to be attached to the first interneural, and is probably a modified fin-ray. On its upper edge on either side is a fringe of short fleshy projections resembling the gill fringes, but much shorter. Scales small, mostly smooth. Lateral line with a long, low arch, from which four accessory branches extend vertically upward. Another branch behind curve, and about 6 on head; blind side similar; no anal spine. Right ventral of six rays, placed wide apart along the ridge of the abdomen, but not joining the anal and not extending forward of the isthmus. Left ventral lateral, with narrow base. Color dark brown, everywhere covered with whitish stellate spots. Head $33_{\text {in }}$ in length. Depth, 2. D., 61. A., 45. V., 6. Scales, 115
.Darwini, 66.

## 66. ONCOPTERUS DARWINI.

Rhombus sp. Darwin, Jenyns, Voyage of the Beagle, Fishes, 1842 (east coast of Patagonia).
Oncopterus darwini Steindachuer, Ueber Eiue neue Gattung, ete, Pleuronectoiden, 18ヶ4, 1 (San Mathias Bay, Eastern Patagonia).
Habitat.-Eastern coast of Patagonia.
Of this species we have examined numerous specimens in the Mu seum of Comparative Zoology. Nos. 11397 and 11398 are a dult examples from San Mathias Bay. To this lot belong Dr. Steindachner's. original types. There is also a bottle of young examples (11311, M. C. Z.) from Rio Grande do Sul.

## Genus XXVI.--PLEURONICHTHYs.

Pleuronichthys Girard, Proc. Ac. Nat. Sci. Phila., 185t, 139 (ccenosus).
Heteroprosopon Bleeker, Comptes Rendus Acad. Amsterdam, xiii, 1862, 8 (cornutus).
Parophrys Giunther, Cat. Fishes, iv, 454, 1862 (not of Girard).

## Type: Pleuronichthys coenosus Girard.

This well-marked genus coutains three American species, which are very closely related to each other. The Asiatic species, Platessa cornuta Schlegel, of the coasts of China and Japan, is also a member of this group, having au accessory branch to the lateral line as in the American species. This species bears some resemblance to $P l$. verticaliş.

The species of Pleuronichthys are herbivorous. They spawn in the spring, and live in comparatively deep water.

## ANALYSIS OF SPECIES OF PLEURONICHTIYS.

a. Dorsal fin beginning on the level of the lower lip, its first mine rays on the blind side ; a blunt tubercle at front of upper eye, another at each end of the narrow interorbital ridge, the posterior largest lont usually not spine-like; two or three above the latt $\mathbf{r}$, behind the upper eye; some prominences above the opercle; head $3 \frac{2}{8}$; depth $1 \frac{4}{1}$; D. 72 ; A. 40 ; vertebrae $14+26=40$; color brownish, usually much mottled with brown and gray, often finely speckled on body and fins

Decurrens, 67.
ac. Dorsal fin beginning on level of upper lip, about five rass being on the blind side.
b. Interorbital ridge posteriorly with a very strong, backward directed spine ; some tubercles on interorbital ridge; head 4 ; depth $1 \frac{7}{8}$; D. 65 to 72, A. 45 to 48 ; vertebre $13+25=38$; color dark olive brown, much mottled and sometimes with grayish spots; middle of sides often with dark ocellus. . Verticalis, 68.
$b b$. Interorbital ridge prominent, but without spines or conspicuous tubercles; right side of lower jow with a narrow band of teeth; head 44 ; depth 18 ; D. 68 , A. 48. to 50 ; color light brown, usually profusely mottled, the colors variable
. Cenosus, 69.

## 67. PLEURONICHTHYS DECURRENS.

Pleuronichthys cenosus Lockington, Proc. U. S. Nat. Mus., 1879, 97 (San Francisco) (not Plewronichthys conosus Girard).
Pleuronichthys quadrituberculatus Jordan and Gilbert, Proc. U. S. Nat. Mus., 1880, 50 (not of Pallas). Jordan, Nat. Hist. Aquat. Anim., 1884, 189 (Monterey, Point Reyes, Farallones).
Pteuronichthys decurrens Jordan and Gilbert, Proc. U. S. Nat. Mus., 1880, p. 453 (San Francisco ; Monterey Bay). Jordan \& Gilbert, Proc. U. S. Nat. Mus., 1881, p. 69 (Monterey, San Francisco, Farallones). Jordan and Gilbert, Syn. Fish• N. A., 1882, p. 829.

Mabitat.—Pacific coast of United States, south to Monterey.
This species is rather scarce along the California coast, being taken chiefly in deep water. It reaches a larger size than either $P$. verticalis or P. conosus.

## 68. PLEURONICHTHYS VERTICALIS.

Pleuronichthys rerticalis Jordan \& Gilbert, Proc. U. S. Nat. Mus., 1880, 49 (San Francisco). Jordan \& Gilbert, Proc. U. S. Nat. Mus., 1881, 169. Jordan \& Gilbert, Synopsis Fish. N. A., 1882, 829. Jordan, Nat. Hist. Aquat. Anim., 1884, 189 (Monterey, Point Reyes, Farallones).
Habitat.-Coast of California, in deep water.
This species agrees in habits and general characters with Pleuronichthys aecurvens.

## 69. PLEURONICHTHYS CGENOSUS.

Pleuronichthys camosus (Girard, Proc. Phil. Acad. Sci., 1854, 139 (San Francisco). Girard, U. S. Pacif. R. R. Exped., Fish., 1859, 151 (San Francisco). Lockington, Rep. Com. Fisheries California, 1878-79, 45 (Farallones). Lockington, Proc. U. S. Nat. Mus., 1879, 97 (San Francisco). Jordan and Gilbert, Proc. U. S. Nat. Mus., 1880, 50 (Sinta Catalina Island, San Luis Obispo). Jordan and Gilbert, Proc. U. S. Nat. Mus., 1880, 453 (Puget Sound, San Franciscó, Monterey Bay). Jordan and Gilbert, Proc. U. S. Nat. Mus., 1881, 68 (San Diego, ${ }^{r}$ Puget Sound). Jordan anl Gilbert, Syn. Fish. N. A., 1882, 830. Jordan, Nat. Hist. Aquat. Anim., 1884, 189 (San Diego to Aleutian Islands).
Parophrys ccenosa Giinther, iv, 450, 1862.
Habitat.-Pacific coast of America, from the Aleutian Islands to San Diego.

This species is comparatively common in rather deep water and about rocks from Alaska southward, being most common about Puget Sound.

Its apparent abundance as compared with the other species of the genus is doubtless due to its iuhabiting shallower waters than they.

## Genus XXVII.-HYPSOPSETTA.

Hypsopsetta Gill, Proc. Ac. Nat. Sci. Phila., 1864, 195 (guttulatus).
TYPE: Pleuronichthys guttulatus Girard.
This genus consists of a single species, abundant on the coast of California. It is very close to Pleuronichthys, from which it differs only in a few characters of comparatively minor importance. Its range is in shallower and warmer water than that of the species of Pleuronichthys, and, in accordance with this fact, its flesh is firmer and its number of vertebræ less than in the latter genus.

## ANALYSIS OF SPECIES OF HYPSOPSETTA.

a. Head without spines or tubercles; accessory lateral line half length of body; outline of body very broadly rhombic ; head, 3 ; depth, $1 \frac{2}{8}$; D. 68, A. 50 , lat. 1.95. Vertebre, $11+24=35$. Brown, with numerous pale bluish blotches, fading in spirits; blind side largely yellow in life. Guttulata, 70.

## 70. HYPSOPSETTA GUTTULATA.

(The Diamond Flounder.)
Pleuronichthys gutlulatus Girard, Proc. Acad. Nat. Sci. Phila., 1856, p. 137. Girard, Jour. Boston Soc. Nat. Hist., 1857, pl. 25, figs. 1-4. Girard, U. S. Pacif. R. R. Exped., Fishes, p. 152, 1859 (Tomales Bay). Lockington, Rep. Com. Fisheries California, 1878-'79, p. $44 . \quad$ Lockington, Proc. U. S. Nat. Mus., 1879, p. 94 (San Fransisco).

Plewronectes guttulatus Giinther, Cat. Fish., iv, 445, 1862 (copied).
Hypsopsetta guttulata Gill, Proc. Ac. Nat. Sci. Phila., 1864, 195. Jordan and Gilbert, Proc. U. S. Nat. Mus., 1880, 453 (San Francisco, San Luis Obispo, Santa Barbara, San Pedro, San Diego). Jordan and Gilbert, Proc. U. S. Nat. Mus., 1881, 68 (Tomales, San Diego). Jordan and Gilbert, Syn. Fish. N. A., 1882, 830. Jordan, Nat. Hist. Aquat. Anim., 1884, 185.

Parophrys ayresi Günther, Cat. Fish. Brit. Mus., iv, 1862, 457 (San Francisco).
Habitat.-Coast of California; Cape Mendocino to Magdalena Bay.
This species is one of the most abundant in the shore waters of the California coast. It is a food-fish of fair quality.

## Genus XXVIII.-PAROPHRYS.

Parophrys Girard; Proc. Ac. Nat. Sci. Phila., 1854, 139 (vetulus).
Type: Parophrys vetulus Girard.
This genus consists of a single species, common on the Pacific coast of the United States.

The narrow interorbital space and the vertical range of the upper eye give it a peculiar physiognomy, but in most regards it is not very different from some of the species of Platessa.

ANAIISIS OF SPECIES OF PAROPHRTS.
a. Body elongate-elliptical; suout very prominent, forming an abrupt angle with the descending profile; eses large, $4 \frac{1}{2}$ in head, separated by a very narrow, high ridge, the upper eye encroaching on the dorsal outline; teeth small, trenchant, widened at tip; fin-rays scaleless; scales cycloid, those on cheeks usually ciliated, especially in northern specimens; head $3 \frac{1}{2}$; depth $2 \frac{1}{2}$; D. 74 to 86 ; A. 54 to 68 ; lat. 1. 105; vertebre $11+33=44$; uniform light olive-brown; the young sometimes spotted with blackish

Vetulus, 71.

## 71. PAROPHRYS VETULUS.

Parophrys vetulus Girard, Proc. Acad. Nat. Sci. Phila., 1854, p. 140 (California). Günther, Cat. Fish., iv, 455 (copied). Lockington, Rep. Com. Fish. Cal., 1878-9, p. 45. Lockington, Proc. U. S. Nat. Mus., 1879, p. 100 (San Francisco). Jordan and Gilbert, Proc. U. S. Nat. Mus., 1880, p. 453 (Puget Sound, San Francisco, Monterey Bay, Santa Barbara). Jordan \& Gilbert, Proc. U. S. Nat. Mus., 1881, 68 (Santa Barbara, Mouterey, Puget Sound). Jordan, Nat. Hist. Aquat. Anim., 1884, 185 (Santa Barbara to Alaska).
Pleuronectes vetulus Jordan and Gilbert, Synopsis Fish. N. A., 1882, 831.
Pleurouectes digrammus Giinther, Cat. Fish., iv, 445, 1862 (Victoria).
Parophrys hubbardi Gill, Proc. Ac. Nat. Sci. Phila., 1862, 281 (San Franciscb).
Habitat,-Pacific coast of North America, Alaska to Santa Barbara.
This small flounder lives in waters of moderate depth. It is, next to
Platichtlys stellatus, probably the most abundant of the flounders of the California coast.

## Genus XXIX.-INOPSETTA.

Inopsetta Jordan \& Goss, Cat. Fish. N. A., 1885, 136 (ischyrus).
Type: Parophrys ischyrus Jordan \& Gilbert.
This genus contains a single species, closely allied to Platichthys stellatus, but separated from it by the curious character common to many of our Pacific coast flounders, of having an accessory branch to the lateral line. In technical characters there is not very much to separate Inop. setta from Parophrys, though the resemblance between $I$. ischyra and $P$. vetulus is not very close.

## ANALYSIS OF SPECIES OF INOPSETTA.

a. Body oblong, robust ; suout projecting, forming an angle with the profile; teeth narrow incisors; interorbital space rather broad, scaly; eyes large; lower phargngeals each with two rows of coarse, blunt teeth ; scales thick, firm, adherent, loosely imbricated, all ctenoid on both sides of body, those on head roughest ; accessory lateral line short. Head 31 ; depth 2. D. 70 to 76; A. 52 to 57 ; lat.l. 85. Light olive-brown, with dusky blotehes, blind side more or less spotted or tinged with rusty .................................................... Ischyra, 72.

## 72. INOPSETTA ISCHYRA.

Parophrys ischyrus Jordan and Gilbert, Proc. U. S. Nat. Mus., 1880, 276 and 453 (Puget Sound). Jordan and Gilbert, Proc. U. S. Nat. Mus., 1881, 67 (Seattle). Jordan, Aquat. Anim., 1884, 185 (Seattle).
Pleuronectes ischyrus Jordan and Gilbert, Syn. Fish. N. A., 1882, 831.
Isopsetta ischyra Jordan, Cat. Fish. N. A., 188j, 136.

## Habitat.-Puget Sound (probably northward to Alaska).

This species is known only from tour specimens taken by Dr. Jordan at Seattle in 1880. It is a large rough flounder, with firm white flesh.

Genus XXX.-ISOPSETTA.
Isopsetta Lockington, MSS., Jordan \& Gilbert, Synopsis Fish. N. A., 1883, 832 (iso lepis).
Type: Lepidopsetta isolepis Lockington.
This geuus consists of a single species found on the coast of Califor. nia. It approaches in many respects very close to the large-mouthed flounders of the type of Hippoglossoides, and it may fairly be said to be intermediate between Psettichthys and Lepidopsetta. Its affinities on the whole seem to be nearest the latter.

## ANALYSIS OF SPECIES OF ISOPSETTA.

a. Body elliptical, much compressed, its outlines very regular ; e jes rather large, the upper $4 \frac{1}{2}$ in head, the interorbital space broad, flattish, and scaly. Scales rather largé, ctenoid, closely imbricated ; maxillary $3 \frac{2}{3}$ in head ; teeth bluntish, conical, close-set, but not forming a cutting edge. Lower phary ugeals each with two rows of bluntish teeth; lateral line with a slight arch in front, and an accessory branch nearly as long as head. Head 4; depth $2 \frac{1}{2}$. D. 88 ; A. 65 ; lat. 1. 88. Color dark-brown, mottled and blotched with darker. Vertebræ $10+32=42$.

ISOLEPIS, 73.

## 73. ISOPSETTA ISOLEPIS.

Lepidopsetta umbrosa Lockington, Proc. U. S. Nat. Mus., 1879, 106. (San Francisco; not of Girard. )
Lepidopsetta isolepis Lockington, Proc. U. S. Nat. Mus., 1880, 325. (San Francisco.) Parophrys isolepis Jordan \& Gilbert, Proc. U. S. Nat. Mus., 1830, 45:3, 1881, 67 (Puget Sound, San Francisco). Jordan \& Gilbert, Syn. Fish. N. A., 1882, 832. Jordan, Nat. Hist. Aquat. Anim., 1884, 186 (Monterey to Puget Sound).
Isopsetta isolepis Jordan, Cat. Fish. N. A., 1885, 136.
Habitat.--Puget Sound to Point Concepcion, in rather deep water.
This small flounder is rather common off the coast of California, where it reaches a length of about 15 inches. It much resembles Pseitichthys melanostictus, but its small mouth and blunt dentition indicates a real affinity with the small-mouthed flounders, among which it is here placed. Its nearest relative among our species is doubtless Lepidop. setta lilineata.

## Genus XXXI.-LEPIDOPSETTA.

Lepidopsetta Gill, Proc. Ac. Nat. Sci. Phil., 1864, 195 (umbrosus).
Type: Platichthys umbrosus Girard = Platessa bilineata Ayres.
This genus probably contains but a single species, abundant on the Pacific coasts of North America. It is close to Inopsetta, from which it is separated by the arcb of the lateral line, aud still closer to Limanda, from which the accessory branch of the lateral line alone separates it.

Pleuronectes variegatus Schlegel, from Japan, may belong to Lepidopsetta.
The same name, Lepidopsetta, has been lately given by Dr. Günther to a very different genus of flounders. For the group so-called the name Mancopsetta of Gill should be used.

## ANALYSIS OF SPECIES OF LEPLDOPSETTA.

a. Body broadly ovate, thickish; teeth bluntish, subconical: lower pharyngeals with two rows of blunt teeth. Snout projecting. forming an angle; eyes large, separated by a prominent scaly ridge. Scales small, mostly ctenoid, those ou the head very rough, especially in northern specimens (var. unbrosa); scales of the blind side smooth; accessory lateral line half length of head. Anal spine present. Head $3{ }^{3}$; depth $2 \frac{1}{3}$. D. 80 ; A. 60 ; lat. 1.85 . Vertebre, $11+29=40$. Yellowish brown, with numerous round pale blotches ............................ Bilineata, 74.

## 74. LEPIDOPSETTA BILINEATA

## [Plate NI.]

Platessa bilineata Ayres, Proc. Acad. Nat. Scí. Cal., 1855, p. 40 (San Francisco). Pleuronectes bilineatus Giinther, Cat. Fish., 441, 1862 (copied). Jordan \& Gilbert, Syn. Fish. N. A., 1882, 833.
Lepidopsetia bilineata Gill, Proc. Ac. Nat. Sci. Phila., 1864, 195. Lockington, Proc. U. S. Nat. Mus., 1879, p. 103 (San Francisco). Lockington, Rep. Com. Fisheries Californı, 1878-79, p. 46 (F'arallone Islands). Jordan \& Gilbert, Proc. U. S. Nat. Mus., 1880, p. 453 (Puget Sound, San Francisco, Monterey Bay). Jordan \& Gilbert, Proc. U. S. Nat. Mus., 1881, 68 (Monterey, Puget Sound). Bean, Proc. U. S. Nat. Mus., 1881, p. 241 (Monterey Bay, San Francisco, Puget Sound). Bean, Cat. Col. Fish. U. S. Nat. Mus., p. 19, 1883 (Port Chatham, Cook's Inlet). Bean, Proc. U. S. Nat. Mus, 1883, p. 353 (Carter Bay, British Columbia). Jordan, Nat. Hist. Aquat. Anim., 181, pl. 50 (Monterey to Alaska).
Platichthys umbrosus Girard, Proc. Ac. Nat. Sci. Phila., 1856, 136. (Puget Sound.)
Plewronectes umbrosus Günther, iv, 1862, 454. (Escuimanlt Harbor.)
Pleuronectes perarcuatus Cope, Proc. Ac. Nat. Sci. Phila., 1873. (Alaska.).
Habitat.-Pacific coast of North America, Alaska to Monterey.
This species is one of the commonest of the flounders of the Pacific coast, its abundance apparently increasing towards the northward. It reaches a weight of five or six pounds and is an inhabitant of shallow waters. Specimens from Puget Sound and northward are rougher than Southern specimens and constitute a slight geographical variety, for which the name of Lepidopsetta bilineata umbrosa may be used. Th's is the same as the perarcuatus of Cope.

## Genus XXXII.-LIMANDA.

Limanda Gottsche, Wiegmann's Archiv, 1835, 100 (limanda).
Myzopsetta Gill, Proc. Ac. Nat. Sci. Phila., 1864, 217 (ferruginea.)
Type: Pleuronectes limanda Linuæus.
This genus is closely allied to Pscudopleuronectes, from which it differs only in the presence of an arch on the anterior part of the lateral line. Hour species of Limanda are now recognized.

## ANALYSIS OF SPECIES OF LIMANDA.

a. Head comparatively large, $3 \frac{1}{2}$ to $4 \frac{1}{2}$ in length.
$\dot{b}$. Scales rather small, 90 to 100 in the course of the lateral line; scales of right side ctenoid, closely imbricated; those of blind side mostly smooth.
c. Teeth conical, close-set, forming a continuous series, about $11+30$ in the lower jaw; snout abruptly projecting, forming in front of upper eye a sharp angle with the descending profile; head rather long; eyeslarge, separated by a high and very narrow ridge, which is continued in long rugose prominences above the opercle. Head 4; depth $2 \frac{1}{5}$; D. 85 ; A. 62 ; lat. 1.100 ; color brownish olive, with numerous irregular reddish spots; fins similarly marked; blind side largely lemon-yellow

Ferruginea, 75.
c. Teeth less conical, less closely set, in an irregular series, about $10+20$ in lower jaw; snout less prominent, forming a slight angle with the profile; head rather smaller; eyes separated by a moderate ridge, broader and lower than in $L$. ferruginea; no rugose prominences above opercle. Head $4 \frac{1}{2}$; depth $2 \frac{1}{4}$; D. 65 to 78 ; A. 50 to 62 ; scales 86 to 96 ; vertebre 40 ; color brownish, with some cloudy markings or dusky spots .................................................................................... 7 .
$b b$. Scales larger, wide apart, about 80 in the course of the lateral line, each scale with 1 to 4 spinules, those mostly erect; scales of blind side more or less rough; lower pharyngeals narrow, with bluntish teeth; interorbital space narrow, scaly; head large; snout not forming a distinct angle with the profile; teeth small, subconical. Head, $3 \frac{1}{2}$; depth 2; D. 69 to 74 ; A. 53 or 54 ; lat. 1. about 80. Color brown, nearly plain, the blind side with tinges of yellow.

Aspera, 77.
$a a$. [Head very short, $5 \frac{1}{2}$ in length; snout very short; interorbital space very narrow;
teeth small, apparently biserial, chietly on the blind side; curve of lateral line half as deep as long, as long as head; scales strongly ctenoid, those on blind side smaller and cycloid. Head, $5 \frac{1}{2}$; depth, $2 \frac{3}{5}$; D. 64 ; A. 63; lat. 1.88 $=(27+61)$. Color grayish, mottled with darker, a conspicuous black blotch on outer rays of caudal on each side:] (Goode)................................. Beani, 78.

## 75. LIMANDA FERRUGINEA.

## (The Rusty Dab.)

## [Plate NII.]

Platessa ferruginca. D. H. Storer, Fish. Mass., 18:39, 141, pl. 2 (Cape Ann). DeKay, New York Fanna, Fishes, 1842, 297, pl. 48, f. 155 (New York). Storer, Syn. Fisk. N. A., 1346, 476.

Pleuronectes ferrugineus Guinther, iv, 447, 186\% (Boston). Jordan \& Gilbert, Syn. Fish. N. A., 1882, 834.

Myzopsetta ferruginea Gill, Proc. Ac. Nat. Sci. Phila., 1864, 21\%.
Limanda ferruginea Goode, Proc. U. S. Nat. Mus., 1880, 47 (New England). Goode, Hist. Aquat. Anim., 1884, pl. 49.
Platessa rostrata H. R. Storer, Bost. Journal Nat. Hist., vi, 263, 1850 (Labrador). Limanda rostrata Gill, Proc. Ac. Nat. Sci. Phila., 1864, 21\%.

Habitat.-Atlantic coast of North America, Labrador to New York.
This species is rather common northward on our Atlantic coast. It is allied to the European Dab, but has smaller scales and a more prominent snout. Our specimens are from the east coast of Massachusetts.

## 76. LIMANDA LIMANDA.

(Tife Dab.)
Plewroncetes limanda Limmans, Syst. Nat., ed. x, p. .270, 17...8 (after Arterli) (and of the carly copyists). Giinther, Cat. Fish., iv, 441, 1862 (Firth of Forth; Plymouth). Day, Brit. Fishes, vol. ii, p. 31, plate civ.
Pleuroncetes limandula Lacépède, Hist. Nat., Poiss., iv, 1803 (after "la Limandelle". Duhamel, ix, ch. 1, p. 268, pl. 6, f. 3, 4.)
Limanda vulgaris Gottsche, "Wiegmann's Archiv, 1835, 100."
Limanda oceanica Bonaparte, Catologo, 48, 1846. (P'latessa limanda L.)
? Limanda pontica Bonaparte, 1. c., 48, 1846 (Black Sea, atter Pallas).
Pleuronectes linguatula Gronow, Syst., ed. Gray, 1854, 88 (not of L.).
Habitat.-Northern coasts of Europe, south to France.
This small flounder is abundant on the coasts of Northern Europe and sonthward to the coasts of France. Our specimens are from the market at Paris.

Giinther speaks of other specimens, more elongate, the depth being buttwo-fifths the length without caudal. The synonym Pleuronectes limandula would appear to belong to this latter type.

## 77. LIMANDA ASPERA.

[Plate XIII.]
Fieuronectes asper Pallas, Zoogr. Rosso.-Asiat., 1811, iii, 495 (east coast of Siberia). Giinther, iv, 454, 1862 (copied). Steindachner, Plemronectiden, etc., aus Decastris Bay, 1870-5 (Decastris Bay). Jordan and Gilbert, Synopsis Fish. N. A., 1882, 835. (Description from Alaskan specimens collected by Dr. Bean.)

Limanda aspera Bean, Proc. U. s. Nat. Mus., 18s1, p. D42 (Sitka, St. Paul, Humboldt Harbor, Shumagins, Port Clarence, Plover Bay, Siberia; Indian Point, Siberia). Bean, Cat. Col. Fish, U. S. Nat. Mus., 1883, p. 20. (Sitka, Alaska.) Bean, Proc. U. S., Nat. Mus., 1883, p. 354 (Port Simpson, Cardenas Bay, British Columbia). Bean, Hist. Aquat. Anim., 1884, 184, pl. 48. (Gulf of Alaska, Unalashka, Sitka, Wrangel.)

## Habitat.-Coasts of Alaska and Kamtschatka.

This species is chietly known from the accounts gisen by Dr. Bean, who has collected it in various localities in Alaska. Its scales are larger and rougher than in $L$. ferruginea which, in many respects, it resembles. A specimen from the island of Saghalien is in the museum at Cambridge.

## 78. LIMANDA BEANI.

Limanda beuni Goode, Proc. U. S. Nat. Mus., 1880, 473 (southern const New Eugland, deep-sea stations, 875, 876).
Fleuronectes beani Jordan and Gilbert, Syn. Fish. N. A., p. 835, 1882.
Halitat.-Deep water off the coasts of New England.
We know this species only from the accounts given by Professor Goode.

## Genus XXXIII.-PSELDOPLEURONECTES.

Pseudopleuronectes Blecker, Comptes Rendus Acad. Amst., Pleuron., 7, 1862 (planus).
Type: Pleuronectes planus Mitchill=Pleuronectes americanus Walbaum.

This genus is distinguished from Platessa chiefly by the well-imbricated ctenoid scales, and from Limanda, which it more closely resembles, by the want of arch to the lateral line. Besides the typical species, we refer to this genus a second from the North Pacific.

## ANALYSIS OF SPECIES OF PSEUDOPLEURONECTES.

a. Dorsal rays 65 ; anal rays 48. Body regularly elliptical; a very slight angle above eye; interorbital space rather broad, convex, half as wide as eye, and entirely scaly; a low granular ridge above opercle. Head 4 ; depth $2 \frac{1}{4}$; lat. l. 83 . Vertebree $10+26=36$. Color dark rusty brown, plain or mottled with darker ; fins nearly plain

Americanus, 79.
aa. [Dorsal rays 58; anal 38. Body subelliptical, the snout rather pointed, and not forming an angle above eye ; interorbital space rather broad, half width of eye; a rather prominent rugose ridge above opercle, with a smaller similar ridge behind it ; both sides of jaws with teeth. Head $3 \frac{a}{a}$; depth $2 \frac{1}{6}$; lat. 1. 70. Color brown, with vague dusky spots; six or seven blackish vertical bars ou dorsal and anal; similar lengtliwise blotches on caudal.] (Steindachner). Pinnifasciatus,80.

## 79. PSEUDOPLEURONECTES AMERICANUS.

(The Common Flat-fisil of Winter Flounder.)
[Plate XiV.]

Flounder, Schöpf, "Schrift. Gesellschaft Naturforschonder Freunde, viii, 1788, 148." (New York.)
Pleuronectes americanus Walbaum, Artedi, Piscinm, 1792, 113 (based on the "Flounder" of Schöpf). Bloch \& Schneider, Syst. Ichth., 1801, 150 (copied). Giinther, iv, 443, 1862 (New York). Jordan \& Gilbert, Synopsis, 1882, 837. Stearns, Proc. U. S. Nat. Mus., 1883, 125 (Labrador).
Pseudopleuronectes amcricanus Gill, Proc. Ac. Nat. Sci. Phila., 1864, 216. Goode, Nat. Hist. Aquat. Anim., 1884, 182, p1. 44 (Chesapeake Bay to Bay of Chaleur).
Platessa plena Storer, Fishes Mass., 1839, 140. DeKay, New York Fauna, Fishes, 205, pl. 49, f. 158, 1842 (New York). Storer, Synopsis, 1846, 476.
Pseudopleuronectes planus Bleeker, Comptes Rendus Amsterd., xiii, 1862, 7.
Platessa pusilla DeKay, New York Fauna, Fishes, 1812, 246, pl. 47, f. 153 (New York). Storer, Synopsis, 1846, 477.
Habitat.-Atlantic coast of North America from Labrador to Chesapeake Bay.

This small flounder is one of the most abundant of the group on our Atlantic coast. It reaches a length of about 15 inches and a weight of less than two pounds. It is a very good food-fish and sells readily in the markets. Along the south coast of Massachusetts this species is more abundant than any other of the flat-fishes.

The specimens examined by as are from Labrador, Cape Breton, Anticosti, Grand Menan, Boston, Provincetown, Wood's Loll, New Bedford, and Somers Point, New Jersey.
S. Mis. $90-19$

## 80. PSEUDOPLEURONECTES PINNIFASCIATUS.

Pleuronectes pimifasciatus (Kner) Steindachuer, Ueber einige Pleuronectiden, etc., aus Decastris Bay, 1870, 2, pl. 1, f. 1 (Decastris Bay).
Habitai.-Sea of Kamtschatka, Decastris Bay.
This species is known to us only from Dr. Steindachner's description and excellent figure. From this we conclude that it belongs to the group called Pseudopleuronectes, although its pharyngeals have not been described. It seems to us nearer to $P$. americanus than to Liopsetta glacialis.

## Genus XXXIV.-PLATESSA.

Pleuronectes Artedi, Genera, etc., in part.
Pleuronectes Linurus, Sjst. Nat., el. x, 268, 1758 (includes all known Pleuronectide ).
Platessa Cuvier, Règue Animal, ii, 1817 (platessa), (first subdivision of Pleuronectes L.).

Platessa Fleming, Brit. Anim., 1828, 198 (culgaris-plutessa), (first restriction of Pleuronectes L. to Pl. maximus and relatives).
Pleuronectes Swainson, Nat. Hist. Class'n Anim., ii, 1839 (platessa), (second restriction of Pleuronectes).
Platessa DeKay, New York Fanua, Fishes, 1842 (platessa).
Pleuronectes Bleeker, Comptes Rendas Acad. Amsterd., xiii, 1862 (platessa), (and of most recent anthors).
Flesus Moreau, Poissons de France, 1881, 299 (flesus).

## Type: Pleuronectes platessa Linnæus.

The reasous for retaining for this genus the name Platessa instead of Pleuronectes have been giren under the head of the latter genus.

It is possible that the numerous related groups or genera, Pseudopleuronectes, Platichthys, and Liopsetta, should not be separated from Platessa. Convenience in definition of the groups seems, however, best served by regarding each of these types as forming a. distinct genus, though whether they are called genera or subgenera is a matter of minor importance. The group Flesus is fairly well defined, and may, perhaps, also merit generic rank.
a. Teeth incisor-like, compressed, close set, forming a continuous cutting edge; no stellate scales at bases of dorsal and aual rays; lower pharyngeals narrow, the teeth almost uniscrial. (Plaiessa.)
b. Snout projecting, forming a distinct angle above eye ............... Platessa, 81 .
$x$. Scales all cycloid, no ciliated scales anywhere; a series of about six small, bony tubercles on ridge above opercles; a small tubercle behind upper eye, and one before lower; interorbital space narrow, smooth. Head, $3 \frac{1}{2}$; depth, 2. D. $6 \underset{\text { to }}{ }$ to A. 50 to 57 . Vertebree, $14+29=43$. Color, brownish or dusky, with rather large, romd yellowish spots, which fade in spirits. (These spots ravely black, and persistent.)...Var. plutessa, 81 (a).
$x x$. Scales not all cycioid, some of those along lateral line, along the base of dorsal and anal and on sides of head and abdomen ciliated, otherwise as in the preceding. D. 62 to 66. A. 46 to 48. Light brownish, with yellow spots. (Gottsche).......................................Var. pseudoflesus, 81 (b).
$b b$. Suout not projecting, not forming a distinct angle above eye; tubercles on ridge above opercle at base of lateral line, coarser than in $P l$. platessa, and about five in number; a small tubercle behind upper eve ; scales small, cycloid in all specimens examined. Head, $3 \frac{2}{3}$; depth, 2. D. 68. A.50. Lat. 1. 78. Color, grayish, mottled with paler and with round black spots; fins very dark .................................................... Quadrituberculata, 82.
aa. Teeth in jaws small, conical, well-separated, not forming a continuous cutting edge ; a stellate scale or tubercle at the base of each ray of dorsal and anal; lower pharyngeals rather narrow, each with four or fiverows of teeth. (Flesus Moreau.)
c. Body oblong-elliptical, a small angle above eye. Head, $3 \frac{1}{2}$ in length; depth,

$y$. Sides of head and anterior portion of lateral line with coarse stellate scales or tubercles ; smaller ones on sides of abdomen, the scales otherwise cycloid; granular ridge above opercle usually without tubercles. D. 60 to 62 . A. 39 to 45 . Color brownish, irregularly mottled, the blind side rarely spotted with darker Var. Alesus, 83 (a). $y y$. Sides of head and lateral line nearly or quite destitute of tubercles, the scales all cycloid except those at the bases of the fin-rays and a few about the eyes; ridge above opercle usually with one or two rugose prominences. D. 62 to 64. A. 41 to 48. Color, dark-brown, often marbled with darker, the blind side usually with irregular dark spots $\qquad$ Var. glabra, 83 (b).

## 81. PLATESSA PLATESSA.

(Tife Plaice.)
[Plate XV.]
a. Var. platessa.

Pleuronectes No. 1, Artedi, Gevera, etc.
Plewronectes platessa Linnecus, Syst. Nat., ed. x, 1758, 269 (after Artedi) (and of the early copyists). Giinther, iv, 440 (Firth of Forth; Brighton; Bohuslïn). Day, Fish. Great Britain, ii, $25, \mathrm{pl}$. ci (and of recent writers geverally).
Scophthalmus diurus Rafinesque, Indice di Ittiologia Siciliana, 1810, 53 (based on the Quarrelet of Rondelet).
Platessa vulgaris Fleming, British Anim., 198, 1823 (and of numerons authors).
I'leuronectes latus Cuvier, Règne Animal, ed. ii, $18: 28$ (deformed example, France).
Pleuronectes borealis "Faber, Isis, 1828, 863 " (Iceland).
b. Var. pseudoflesus (variety ?).

Platessa pseudoflesus Gottsche, Wiegmann's Archiv, 1835, 143 (German Ocean).
Pleuronectes pseudofiesus Günther, iv, 441 (copied).

## Habitat.-Coasts of northern Europe, south to Italy.

This is one of the most common of the flat-iishes of Europe, and is, next to the halibut and the turbot, the one of most importance as a foodfish. It reaches usually a weight of five or six pounds, although speci-
meus of 15 pounds have been recorded. It is rather more northerly in its range than the mud-flounder, it being a comparatively rare species in the Mediterranean.

Our specimens of this species are from the markets of Paris. We have examined others in the Museum at Cambridge, from various localities in France, Englaud, Holland, and Scandinavia. There are also a number of specimeus from Trieste (Coil. Salmin). In one lot of these there are large black rounded blotches, inky in color, and permanent in alcohol. These take the place of the usual orange spots, which are evanescent in alcohol. Others from the same locality have the usual coloration.

We know nothing of the species called "pseudoflesus." It seems to us likely that it is a variety, or perhaps accidental variation, of Platessa platessa, the chief difference consisting in the presence of ciliated scales on the head and other parts of the body. It must be regarded as a very doubtful species at the best.

The alleged species Platesse borealis is also unknown to us. It is said to differ in having smaller teeth- 31 on the blind side of the premaxillary.

## 82. PLATESSA QUADRITUBERCULATA.

Pleuronectes quadriluberoulatus Pallas, Zoogr. Rosso-Asiat., iii, 423, 1811 (sea between Kamtschatka aud Alaska). Bean, Proc. U. S. Nat. Mus., 1881, 241 (Kodiak). Jordan \& Gilbert, Syn. Fish. N. A., 1882, 836 (from specimens collected by Dr. W. J. Fisher).
Parophrys quadrituberculatus Giinther, iv, 456 (copied).
Pleuronceles pallasi Steindachner, Ichth. Beitr., viii, 45, 1879, plake (Kamtschatka).
Habitat.-Behring Sea.
This small flounder is known to us only from descriptions and from a specimen (28025) collectel by Mr. W. J. Fisher at Kodiak, described by Jordan and Gilbert. It seems to be a rare species even in the remote regions it iuhabits. Although its pharyngeal teeth have not been examined, there can be little doubt that it will prove a near ally of Platessa platessa.

## 83. PLATESSA FLESUS.

(The Mud-Flounder or Fluke.)

> a. Var. flesus.

[^38]Pleuronectcs luscus Pallas, Zoogr. Rosso-Asiat., iii, 427, 1811 (Black Sea). "Nordmann, in Demidoff, Voy. Russ. Mérid., iii, 532, Pisc., tab. 27 "(Black Sea). Guiuther, iv, 452 (copied).
Pleuronectes carnaria Brown, "Edinburgh Journal, Nat. and Geol., ii, 99, t. ii" (albino example), 1830.
Platessa melanogaster Higgins, "Zoologist, xiii, 1855, 4596 " (doubled example).
Pleuronectes bogdanovi Sandeberg, Bull. Sci. Mosc., lii, pt. 2, p. 236, 1878 (White Sea).
Flesus vulgaris Morean, Poiss. de France, 1881, iii, 299.
b. Var. glabra.

Platessa glabra Rathke, Fauna der Krym., 352, 1837 (Crimea).
Platessa passer Bonaparte, Fauna Italica, Pesci, 1838-1840.
Pleuronectes italicus Guinther, Cat. Fish. Brit. Mus., iv, 1862, 452 (Dalmatia).
Habitat.-All coasts of Europe, ascending the streams; the typical form in northern Europe; var. glabra in the Mediterranean,

This small species is the common "flounder" or "fluke" of Europe. It is almost everywhere very abundant, but it is held in low esteem as a food-fish. It reaches a length of less than a foot. Our specimens of the typical form, flesus, are from the markets of Paris, but we have examined others from various localities in northern Europe. The form called lusca, from the Black Sea, we have not seen, and do not know whether it differs at all from the typical flesus or not.
The common Mediterrancan form called glabra (italica) differs a good deal in appearance from the ordinary flesus, but this difference lies mainly in the greater smoothness of the scales about the head.
The numerous specimens before us from Venice and Trieste differ from those of flesus only in the entire abseuce of the stellate tabercles which cover the head and the neighborhood of the lateral line in that species. Steindachner regards the two as unquestionably identical. Still it seems best to regard them as distinct subspecies, especially as no intermediate specimens have come to our notice. Rathke's description of Platessa glabra evidently belongs to the form called italicus by Dr. Giunther. Rathke's lusca agrees with the typical flesus. The Pleuronectes bogdanori of Sandeberg from the White Sea seems to be nearly the same as the typical flesus. It is said to be deeper (depth 2 in length), smoother, with shorter pectorals (2 in head). Teeth truncate, close set. Body smooth, except for a row of tubercles on eyed side on bases of dorsal and anal, and two or three similar rows on front of lateral line. D, 53 to $56 ; \mathrm{A}, 37$ or 38 .

## Genus XXXV.-LIOPSETTA.

Liopsetta Gill, Proc. Ac. Nat. Sci. Phila., 1864, 217 (glaber) (females).
Euchalarodus Gill, Proc. Ac. Nat. Sci. Phila., 1864, 222 (putnami) (males).
Type: Platessa glabra Storer =Euchalarodus putnami Gill.
This genus comprises one, two, or three species of small flounders of the Arctic seas. The genus is distinguished by the large, half-united pharyngeals, as also by the peculiar squamation, the scales in the males being very rough, in the females smooth. This difference has given rise
to the nominal genus Euchalarodus based on the males, while Liopsetta was based on the smoother females, which were erroneously supposed to be scaleless.

The following analysis gives the supposed differential characters of these species, but these characters are of very slight importance, and it is probable that the three nominal species are all varieties of Liopsetta glacialis.

ANALYSIS OF SPECIES OF LIOPSETTA.

a. [Ridge above opercle ending in two obtuse tubercles; scales of blind side smooth, those of the eyed side ciliated (probably in males only); interorbital ridge prominent, acute ; head, $4 \frac{8}{5}$ in total with candal ; depth, 2 ² . D., 50 to 57 ; A., 36 to 41.] (Lilljeborg).

Dvinensis, 84.
$a a$. Ridge above opercle coarsely rugose, divided toward its end, but withont distinct tubercles; seales ctenoid on both sides in males, those of the blind side smoother.
b. Pectoral fin long, about half length of head in the females. two-thirds head in the males. Head, $3 \frac{1}{2}$; depth, 2. D., 55 ; A., 40 ; Lat. 1., 70. Color, grayish brown, mottled with darker; tius with blackish spots. (Probably identical with the next)
.. Putnami, 85.
$b b$. Pectoral fin short, barely half length of head even in the males; head, 4 ; depth, 2 ; D., 56 ; A., 37 to 42 . Vertebre, $13+27=40$. Color, dark brown, the fins spotted. Glactalis,* 86.

## 84. LIOPSETTA DVINENSIS.

Platessa dvinensis "Lilljeborg, Vet.-Akad. Handl., 1850, p. 360, tab. 20 " (mouth of River Dwina). Nilsson, "Skand. Fauna, iv, 617."
Pleuronectes dvinensis Günther, iv, 442 (copied).
Habitat.—Arctic coasts of Russia.
This species is known to us only from the description copied by Giinther from Lilljeborg. It is apparently a species very closely related to Liopsette glacialis, and it is most likely identical with the latter.

## 35. LIOPSETTA PUTNAMI.

(The Eel-back Flounder.)

## [Plate XVI.]

Platessa glabra Storer, Proc. Boston Soc. Nat. Hist., p. 130, 1843 (female). Storer, Syn. Fish. N. A., p. 477, 1846. Storer, Hist. Fish. Mass., 1867, p. 199, pl. xxxi, fig. 1. Putuam, Bull. Essex Inst., vi, 1874, p. 12 (not of Rathke, 1837).
Liopsetta g!abra Gill, Proc. Acad. Nat. Sci. Phila., 1864, p. 217.
Pleuronectes glaber Gill, in Report U. S. Com. Fish and Fisheries, 1873, p. 794 . Goodo and Beau, Amer. Jour. Sci. and Arts, xiv, 1877, p. 476 ; xvii, 1879, p, 40. Goode and Bean, Proc.U. S. Nat. Mus., 1878, 347 (Casco Bay, Beverly Bridge, Salem, Bucksnort, Me.). Jordau and Gilbert, Syn. Fish. N. A., 1882, p. 836. Goode, Nat. Hist. Aquat. Anim., 1884, p. 183, pl. 45.
Euehalarodus putnami Gill, Proc. Acad. Nat. Sci. Phil., 1864, p. 216-221 (Salem, Mass.) male. Gill, Report U. S. Com. Fish and Fisheries, 1873, p. 794. Goode and Bean, Amer. Jour. Arts and Sci., xiv, 1877.
Habitut.-Atlantic coast of North America, îrom Cape Cod northward to Labrador and beyond.

[^39]This species is rather common along the coast of Northern Massachusetts and northward to Labrador. Specimens are frequently found in the markets, mixed with those of Pseudopleuronectes americanus. The numerous specimens in our possession were found in the markets of Indianapolis, having been sent thither from Boston.
The remarkable sexual differences in the species have been fully discussed by Dr. Bean (Proc. U. S. Nat. Mus., 1878, 345), the form formerly called Eucháarodus putnami being the male, and that called Pleuronectes glaber being the female of the same species. These conclusions of Dr. Bean are fully corroborated by our series of specimens in which both sexes are fully represented.

As the name Platessa glabra is preoccupied by Rathke (1837), we must adopt the specific name putnami for this species if it be regarded as distinct from Liopsetta glacialis. Taking our own notes and the published plate of the latter species as a guide, we can see no difference whatever by which Liopsetta putnami may be separated from it. It is possible, however, that differences would appear on actual comparison of specimens. In view of the wide distance between the habitats of the two species, we here leave them separate for the present. Although Liop. setta putnami is abundant where found ${ }_{0}$ its ascertained range is somewhat limited. Thie specimens in the U.S. National Museum represent localities from Salem, Mass., to Belfast, Me. In the Museum of Comparative Zoology the localities represented are Providence, Boston, Salem, Grand Manan, and Labrador.

## 86. LIOPSETTA GLACIALIS.

## [Plate XVII.]

Pleuronectes glacialis Pallas, "Itin., iii, App., 706" (mouth of river Obi). Bloch and Schncider, Syst. Ichth., 1801, p. 150 (copied). Pallas, Zoogr. Ross.-Asiat., iii, 424, 1811 (mouth river Obi). Richardson, Fauna Bor. Amer., Fish., 258, 1836 (copied). DeKay, N. Y. Fauna, Fishes, p. 302, 1842 (copied). Storer, Syn. Fish. N. A., 1846, p. 479 (copied). Bean, Proc. U. S. Nat. Mus., 1881, p. 241 (Kotzelue Sound, Northern Alaska). Jordan and Gilbert, Syn. Fish. N. A., 1882, 837 (from specimens taken by Dr. Bean). Bean, Cat. Col. Fish U. S. Nat. Mus., 1883, p. 20 (Kotzebue Sound, Alaska). Bean, Nat. Hist. Aquat. Anım., 1884, 184, pl. 47 (Saint Michael's).
Pleuronectes cicatricosus Pallas, Zoogr. Ross.-Asiat., iii, 424, 1811 (male) (sea between Kamtschatka and Alaska).
Pleuronectes franklinii Guinther, Cat. Fish., iv, 442, 18io (Arctic seas of America) (female). Bean, Proc. U. S. Nat. Mus., 1881, p. 241.

Habitat.-Arctic Ocean south to Saint Michael's.
This small flounder is known to us only from the specimens taken by Dr. Bean. It is said to be abundant in the Arctic Ocean, and as far south as Saint Michael's, "although small, its great abundance and fine flavor make it important as an article of food."

The male is the rough fish described by Pallas as P. cicatricosus. The smoother female is Dr. Giinther's Pleuronectes franklinii, the sexual differences being much as in Liopsetta putnumi.

Indeed, as already intimated, we have little doubt that the Liopsetta putnami of the Atlantic is wholly identical with Liopsetta glacialis of the Arctic Ocean, and with Liopsetta dvinensis of the northern coasts of Russia.

## Genus XXXVI.-PLATICHTHYS.

Platichthys Girard, Proc. Ac. Nat. Sci. Phila., 1854, 136 (rugosus=stellatus).
Type: Platichthys rugosus Girard $=$ Pleuronectes stellatus Pallas.
This genus is composed of a single species, the largest of the smallmouthed flounders, and distinguished from related forms chiefly by the development of coarse stellate tubercles instead of scales.

## analysis of species of platichthys.

a. Body broad and short, very robust, the snout forming a slight angle with the profile; interocular space broad, with very rough scales; tubercles or scales coarsest on head and aloug bases of fin-rays; lateral line without scales ; ridge above opercle rough; head $3_{5}^{2}$; depth, 2; D. 58; A. 42 ; vertebre 34 ; color dark brown, with lighter markings; fius reddish-brown, dorsal and anal each with four or five black vertical bands; caudal with three or four black lougitudinal bands.. Stellatus, 87.

## 87. PLATICHTHYS STELLATUS.

(The California Flounder.)

## [Plate XVIII.]

Pleuronectes stellatus Pallas, Zoographia Rosso-Asiatica, iii, 1811, 416 (Alaska). Günther, Cat. Fish., iv, 443, 1862 (Vancouver Islands, Behring Strait, Fraser River, Coronation Gulf). Steindachner, Pleur. von Decastris Bay, 1870, 1, (Decastris Bay). Jordan \& Gilbert, Proc. U. S. Nat. Mus., 1880, p. 453 (San Francisco, Puget Sound, Columbia River, Monterey Bay, San Luis Obispo). Jordan \& Gilbert, Proc. U. S. Nat. Mus., 1881, 68 (San Luis Obispo). Bean, Proc. U. S. Nat. Mus., 1881, 240 (San Luis Obispo, Monterey, San Francisco, Columbia River, Puget Sound). Jordan and Gilbert, Syn. Fish. N. A., 1882. Bean, Proc. U. S. Nat. Mus., 1883, p. 353 (Port Simpson, Brit. Col.). Bean, Cat. Col. Fish. U. S. Nat. Mus., 1883, p. 20 (Yakutat Bay, Alaska). Jordan, Nat. Hist. Aquat. Anim., 1884, 184, pl. 46 (San Luis Obispo to Kamtschatka).
Platessa stellata DeKay, N. Y. Fauna, Fishes, p. 301, $1842^{\circ}$ (copied). Storer, Syn. Fish. N. A., 1846, p. 478 (copied).

Platichthys stellatus Lockington, Rep. Com. Fish. Cal., 1878-79, p. 43 (San Francisco Bay, Humboldt Bay). Lockington, Proc. U. S. Nat. Mus., 1879, p. 91 (San Francisco).
Platichthys rugosus Girard, Proc. Acad. Nat. Sci. Phila., 1854, pp. 139, 155. Girard, U. S. Pacif. R. R. Sur., Fish., 148, 1859 (San Francisco, Presidio, Petaluma).

Habitat.-Pacific coast of America, from Point Concepcion to the Aretic Ocean and south to Saghalien.

This is one of the largest of the Americau flounders, reaching a weight of 15 to 20 pounds. Of the small-mouthed flounders, it is cousiderably the largest species known. It is an excellent food-fish, and from its size and abundance it is one of the most important of the group in the re. gion where it is found, constituting half the total catch of flounders on our Pacific coast. It lives in shallow water and sometimes ascends the larger rivers. It is one of the most widely distributed of all the flounders, its range exteuding from San Luis Obispo, where it was obtained by Jordan and Gilbert, to the mouth of the Andersou and Colville Rivers on the Arctic coast, where it was observed by Dr. Bean. A specimen from the island of Saghalien in Asia is in the museam at Cambridge.

## Genus XXXVII.-MICROSTOMUS.

Microstomus Gottsche, Wiegmann's Archiv, 1835, 150 (Tatidens) (not Microstoma Risso, 1826).
Cynicoglossus Bonaparte, Fauna Italica, 1837, fasc., xix (cynoglossus Nilsson, not of L). Cynoglossa Bonaparte, Catalogo Metódico Pesci Europei, 1846, 48 (microcephalus), not Cynoglossus Hamilton, 1822).
Brachyprosopon Bleeker, Comptes Reudus Acad. Sci. Amsterd., xiii, Pleuron, 7, 1862 (microcephalus).
Cynicoglossus Jordan and Gilbert, Syn. Fish. N. A., 1882, 460 (microcephalus).
Type: Microstomus latidens Gottsche=Pleuronectes kitt Walbaum.
This genus is widely separated from Platessa and its allies by its greatly increased number of vertebre, a character accompanied by a similar increase in the number of fin-rays. It is close to Glyptocephalus, but the lack of the caveruous structure of the bones of the head, a structure peculiar to the species of that geuas, sufficiently distinguishes it. Two species are known, small flounders of the Arctic seas, inhabiting considerable depths.

We here retain the generic name Microstomus, although in accordance with recent usage of most ornithologists and ichthyologists, it should be suppressed, as identical with Microstoma. The two words are from the same root and differ ouly in the termination. But is not this difference enough? The code of nomenclature of the American Ornithologists' Union very properly declares that "a name is only a name and has no necessary meaning," and, therefore, no necessarily correct spelling, except the spelling selected by the writer from whom it dates its origin. As a result of this, the original spelling of each generic name is (undoubted misprints aside) the orthography to be adopted, regardless of all questions as to the correct etymology of the word. As a necessary sequence, it seems to us that all generic names, not actually preoccupied by names spelled in the same way, should be tenable. There is no other certain boundary line between names tenable and names untenable. We propose therefore to regard all generic names as available unless used in zoology earlier and in exactly the same or-
thography. Among Americau genera of lishes we may therefore use the following, notwithstanding their earlier analogues :

| Microstomus for | Cynicoglossus notwithstanding the prior | Microstoma. |
| :---: | :---: | :---: |
| Heterodontus | Cestracion | Heterodon. |
| Lucania |  | Lucànus. |
| Thymallus |  | Thymalus. |
| Nebris |  | Nebria. |
| Cestreus (кебтрعvs) | Cynoscion | Cestræus (к⿺бтрацп¢). |
| Xiphidion | Xiphister | Xiphidium. |
| Amitra | Monomitra | Amitrus. |
| Scytalina | Scytaliscus | Scytalinus. |
| Lagochila | Quassilabia | Lagocheilus. |
| Auchenopterus | Cremnobates | Auchenipterus. |
| Ophisoma | Congromurana | Ophiosomus. |
| Leucos | Myloleucus | Leucus. |
| Pterophryne | P'terophrynoides | Pteropluynus. |
| Scaphirlignetus | Scaphirhynchops | Scaphorlynchus. |
| Brachirus | Synaptura | Brachyrus. |

If Microstomus be discarded, the name nest in order of date is Cynicoglossus.
The following is Bonaparte's definition of Cynicoglossus as quoted by Gill (Proc. Ac. Nat. Sci. Phila., 1864, 222) :
"Secondo è Cynicoglossus nob. che come il Pl.cynoglossus L. ha la linea laterale retta, la bocea piccola, i deuti come quello di sopra [Platessa] ma la mascelle iguale, con labbra turgide, e l'ano senza spina."

Later, in his Catalogo Metodico dei Pesci Europei, Bonaparte changes this name from Cynicoglossus to Cynoglossa, giving the sole species as Cynoglossa microcephala, and quoting as its sjnonym "Pleuronectes cynoglossus L. Nilss." showing that his identification of the Linuæan species coincided with that of Nilsson, who at first used the name "Pleuronectes cynoglossus" for the present species instead of the species of Glyptocephalus. In Bonaparte's Catalogo, Clyptocephalus Gottsche is regarded by Bonaparte as synonymous with Platessa.

It is thus erident, as Dr. Gill has suggested, that Bonaparte meant to refer to the Pleuronectes microcephalus instead of Pl. cynoglossus, he "haring followed Nilsson in his erroneous identification" of the latter with the former. In farther evidence of this we have the fact that Cynicoglossus microcephalus (hitt) has no anal spine, while such a spine is present in the species of Glyptocephalus. We would be, therefore, jus. tified in the use of Cynicoglossus instead of the later Brachyprosopon, if Microstomus shonld be regarded as ineligible on account of the prior name Microstoma.

## ANALYSIS OF SPECIES OF MICROSTOMUS.

a. Dorsal rays 85 to 93 ; anal rafs 70 to 76. Head very small, $4 \frac{2}{3}$ to $5 \frac{1}{6}$ in length; depth about 21; eyes moderate, about 4 in head; pectorals $1 \frac{3}{8}$ in head; lat. 1., 130; vertebræ $13+35=48$. Color dull yellowish-brown, body and fins clouded with blackish, Kitt, 88.
$a a$. Dorsal rays 102 ; anal rays $8^{\circ}$. Head larger, $4 \frac{1}{2}$ in length; depth nearly 3 in length; eyes large, 3 in . head, opercle above angle, adnate to the shoulder girdle; pectoral short, $1 \frac{1}{2}$ in head ; lat. 1. 140 ; vertebre $12+40=52$. Olive-brown, blotched on body and fins with darker
. Pacificus, 89.

## 88. MICROSTOMUS KITT.

(The Smeal: Dab.)
Rhombus lavis cornubiensis Jago in Ray, "Syn. Pisc., 162, tab. 1, f. 1."
The Smear Dab Pennant, British Zoology, iii, p. 230, pl. 41, 1776."
Pleuronectes kitt Walbaum, Artedi Piscium, iii, 1792, 1:0 (after Ray; the description in part confused with that of Lepidorhombus).
Pleuronectes kitt Bloch \& Schneider, Systema Ichthyologia, 1801, 162 (after Ray).
Plewronectes microcephalus Donovan, "British Fishes, ii, pl.42, 1801." Giuther, iv, 447. Steindachner, Ichth. Beitr., viii, 47 (Edinburgh). Day, Fishes Great Britain, ii, 28, pl. 102. Collett, Norges Fiske, 145, and of recent European writers generally.
Platessa microcephala Fleming, British Anim., 198, 1828, and of numerous writers.
Cynoglossa microcephala Bonaparte, Catalogo Metodico Pesci Eur., 1845, 48.
Pleuronectes lcovis Shaw, Gen'l Zool., iv, 299, 1803.
Pleuronectes quenseli Hölböll, "Bohuslïns Fiske, iv, 59."
Pleuronectes quadridens Fabricius, " Kongl. Dansi. Vid. Selsk. Afhandl., i, 39."
Pleuronectes microstomus "Faber, Isis, 1828, 886."
Microstomus latidens Gottsche, Wiegmann's Archiv, 1835, 150.
Pleuronectes gilli Steindachner, Ichth. Notizen, 1868, vii, 40. (Polar Sea, north of Icelaud.)
Habitat.-Seas of the north of Europe in rather deep water, south to Cornwall.
This small flounder is rather common in the waters of Northern Europe. It reaches the length of a foot or more, and is said to be excellent as food. We have no specimens at hand, and have therefore relied chiefly on the figure and description given by Dr. Day, in our comparison of this species with M. pacificus.- Like its congener, M. pacificus, this species is often very slimy in life.

This species isrecorded by Day, on the authority of Dr. Steindachner, as occurring in Kamtschatka. This reference probably belongs to M. pacificus.

The specific name "Fitt," given by Walbaum on the authority of Jago's description, seems to be the one which should be adop ted for this species. According to Day, the species is still called "litt" on the coast of Corniwall.

Pleuronectes gilli, as described by Dr. Steindachner, seems to differ from Microstomus litt only in the larger head, which is but $4 \frac{2}{5}$ in the length to base of caudal. It is probably not specifically distinct from the latter. Only a single specimen $10 \frac{1}{2}$ inches long is known.

## 89. MICROSTOMUS PACIFICUS.

## (The Slippery Sole.)

Glyptocephalus pacificus Lockington, Rep: Com. Fisheries, 1878-79, p. 43 (off Point Reyes). Lockington, Proc. U. S. Nat. Mus., 1879, p. 86 (San Nrancisco). Jordan, Nat. Hist. Aquat. Anim., 1884, 188.
Cynicoglossus pacificus Jordan and Gilbert, Proc. U. S. Nat. Mus., 1880, p. 453 (Puget Sound, San Francisco, Monterey Bay). Jordan and Gilbert, Proc. U. S. Nat. Mus., 1881, p. 68 (Seattle). Jordan and Gilbert, Synopsis Fish. N. A., 1882, 838.
Habitat.—Pacific coast of North America, Monterey to Vancouver's Island, and probably northward.

This small flounder abounds in deep water about San Fraucisco, but comes near the shore farther north. It is exceedingly slimy when first taken. The large specimens are considered excellent as food, the smaller are thrown away. It rarely reaches the weight of a pound.

## Genus xXXVIII-GLYPTOCEPHALUS.

Glyptocephalus Gottsche, Wiegmam's Archiv, 1835 , 156 (saxicola $=$ cynoglossus).
Type: Glyptocephalus saxicola Gottsche $=$ Pleuronectes cynoglossus L.
This genus is one of the most strongly marked in the family, being distinguished from most of the genera by the greatly increased number of vertebre, and from all of them by the remarkable cavernous structure of the bones of the head.

There are two species known, found in the deep waters of the northern seas, the one in the Pacific, the other in the Atlantic.

ANALYSIS OF SPECIES OF GLYPTOCEPHALUS.
a. Pectoral fins very short, not faleate, that of right side about half Jength of head. Eyes large, ahont 3 in head, close together. Head 5 in length, depth $2 \frac{3}{2}$ (2尔 to 3). D. 101 to 11_. A. 87 to 99 . Lat. 1. 125. Vertebre 58. Color grayish-brown; fins with dark spots; tip of pectoral dusky above ........................... Cynoglossus, 90. $a a$. Pectoral fin of colored side falcate, longer than head. Eyes large, $3_{5}^{2}$ in head, close together. Head 43 in length, depth 3. D. 94 to 106 ; A. 79 to 89 ; Lat. 1.138. Vertebre $13+52=65$. Color uniform brown, the fins darker, the blind side dusted with dark points

Zachirús, 91.

## 90. GLYPTOCEPHALUS CYNOGLOSSUS.

## (The Craig Fluke.)

[Plate XIX.]
Pleuronctics, sp., Gronow, Musenm Ichthyol., 1, iv, 39, \&c. (Belgium.)
Pleuronectes cynoglossus Linnæus, Syst. Nat., ed. $x, 1758$, 269 (after Gronow). Günther, iv, 449. Day, Fishes Great Britain, ii, 30, pl. 103. .(Lofoten, Finmark) (and of European writers generally.)
Glyptocephatus cynoglossus Gill, Proc. Acad. Nat. Sci. Phila., 360, 1873. Goode \& Bean, Proc. U. S. Nat. Mus., 1878, p. 21. (Salem, Mass.; Halifax; La Have Bank; Bedford Basin, Halifax ; Eastport, Me.) Goode, Proc. U. S. Nat. Mus., 1830, 337. (Deep sea, south coast New England.) Goode, Proc. U. S. Nat. Mus., 1880, p. 475. (Deep sea, New England coast.) Collett, Norske Nord-Havs Expd., 1880, p. 150. (Lofoten; Tana Fjord, Finmark.) Goode \& Beaw, Bull. Mus. Comp. Zoology, xix, 1883, 195. (Station 343.) Jordan \& Giilbert, Syn. Fish. N. A., 1882, 838. Goode, Nat. Hist. Aquat. Anim., 1884.
Solea cynoylossa Rafinesque, Iudice di Ittiologia Siciliana, 1810, 53 (based on the Pole or Cynoglossum of Rondelet).
I'latessa pola Cuvier (Règne Animal, 1817). Lacépède, Hist. Nat., Poiss., edition of 1832, vi, 50 , and of several anthor's.
Pleuronectes saxicola Faber, "Tidsskr. f. Naturv., 5 B., 244, 1828."
Glyptocephalus saxicola Gottsche, Wiegmann's Archiv, 1835, 156.
Platessa saxicola Kröyer, " Danmark's Fislse, 1843, 338."

Pleuronectes nigromanus Nilsson, "Prodr. Ichth. Scand., 1832, 55."
Platessa elongata Yarrell, "Supplement Brit. Fish., 1839."
Pleuroncctes elongatus Günther, iv, 450 (copied).
Glyptocephalus elongatus Gill, Proc. Acad. Nat. Sci. Phila., 1873, 362. Gilyptocephalus acadianus Gill, Proc. Acad. Nat. Sci. Phila., 1873, 360 (Nova Scotia).

Hebitat.-North Atlantic, chiefly in deep water, south to Cape Cod and France.

This species is found in rather deep water on sandy bottoms. It reaches a leugth of 12 to 18 inches. It is considered a fair food-fish.

The nominal species, acadianus and clongatus, have been shown by Goode and Bean to be identical with cynoglossus. Beyond this the synonymy needs no special remarks.

This flounder has been taken in great numbers with the beam trawl in deep water off our New England coast. It is pronounced by the U. S. Fish Commission to be not inferior as a food-fish to the European sole.

## 91. GLYPTOCEPHALUS ZACHIRUS.

Glyptocephalus zachirus Lockington, Proc. U. S. Nat. Mus., 1879, p. 88 (San Francisco). Lockington, Rep. Com. Fisheries California, 1878-'79, p. 42 (off Point Reyes). Jordan \& Gilbert, Proc. U. S. Nat. Mus., 1880, p. 453 (San Francisco; Monterey Bay). Jordan \& Gilbert, Proc. U. S. Nat. Mus., 1881, p. 68 (San Francisco ; Monterey). Jordan \& Gilbert, Syn. Fish. N. A., 1882, p. 838. Jordan, Nat. Hist. Aquat. Anim., 1884, 188 (deep waters about San Francisco).
Habitat.-Deep waters of the Northern Pacific; thus far known only from about San Francisco.

This species is a thin, dry flounder, reaching a length of something over a foot. It is taken in the sweep-nets in deep water about San Francisco, and thus far has been known from no other locality. It is readily known by its long pectoral fin.

## Genus XXXIX.-SOLEA.

Solea Klein, Pisces (non-binomial).
Solea Quensel; Vet. Akad. Handl., 1806, 230 (solea).
Pegusa Günther, Cat. Fish. Brit. Mus., 1862. iv, 462 (aurantiaca).
Type: Solea vulgaris Quensel=Pleuronectes solea L.
As now understood by us, this genus includes some six or seven species of soles, most of them belonging to the European fauna. The genus is distinguished especially in the group to which it belongs by the elongate body, this elongation being connected with a much increased number of vertebre. The soles of this genus are the only ones having much value as food. They reach a considerably larger size than any others of the species found in America or Europe, and as food-fishes they are especially excellent. The European sole (Solea solca) is the most highly esteemed of them all.

The subgenus Pegusa cannot well be separated from the true soles, as Solea kleini is intermediate between the two groups.

In the waters of the East Indies the related genus Purduchirus Giinther ( $=$ Achirus Kaup, not Cuvier) takes the place of Solec. Its species
are destitute of pectoral fins. There is a conspicuous pore at the base of each ray of the dorsal and anal, and on the blind side there is an accessory half lateral line.

## ANALYSIS OF SPECIES OF SOLEA.

a. Nostril of blind side simple, not forming a distinct tube, its edge scantily fringed; black spot on pectoral fin at its tip. (Solca.)
b. Pectoral of eyed side about one-third length of head, that of blind side a very little shorter; eyes well separated, the upper considerably in advance of lower ; scales small, ctenoid on both sides; those of blind side of head with few fringes ; color dark brown, with darker mottlings, rarely plain brown, immaculate (var. cinerea); vertical fins with darker edgings; tip of pectoral jet black. D. 73 to $80 ;$ A. 61 to 69 ; lat. 1. 140 to 150. Vertebræ $9+40=49$. Head, 3 in length ; depth, about 4....................................... Solea, 92.
$b b$. [Pectoral of eyed side less than one-third length of head, that of blind side similar; eyes well separated ; scales small, ctenoid on both sides; color clear brown, thickly covered with pale and dark brown spots and dots; fins similarly spotted; vertical fins without dark edgings; tip of pectoral black. D. 80 to 92 ; A. 75 to 76 ; lat. 1.128 to 150 . Head, $4 \frac{1}{2}$ in length;

blb. [Pectoral of eyed side as long as snout to eye. Form elongate; lower jaw included; teeth sharp, in three rows. Posterior nostril concealed; anterior in a short tube ; color uniform blackish. D. 84. A. 65. P. 8. V. 4. C.21.] (Kaup)
.Brasiliensis,* 94.
af. Nostril of blind side with its margin produced into a tube, which is more or less conspicuously fringed. (Pegusa Giunther.)
c. Scales of blind side cycloid; nasal tube moderate, its fringes few and short; seales of blind side of head with few fringes; pectoral fin with its black ocellus near the base, the fin short, that of the eyed side not one-third length of head. Eye rather large, the interorbital space moderate ; scales rather small, those on the blind side cycloid. Pectoral fin black at base, its tip and margin whitish; coloration of bods sulject to many variations, usually gray, profusely dotted and speckled with black and whitish, sometimes very finely mottled and sometimes nearly plain; vertical fins broadly edged with black. Head, 4 量; depth, $3 \frac{1}{5}$. D. 74 to 82 ; A. 59 to 64 ; lat. 1. 100 to 110. Vertebre, $10+38=48$ . Kleini, 95.
cc. Scales of left side of body ctenoid; nasal tube broad, well fringed, scales of eyed side with fringes; black ocellus on pectoral near the tip of the fin.
d. [Fringes of left nostril comparatively fow, the margin of the nostril very broad; pectoral fin comparatively long, about $2 \frac{1}{3}$ in head, the black ocellus on its posterior half; eye small, its diameter equal to the interorbital space; seales small; color yellowish, marbled with round brownish blotches, and speckled with black. Head $5 \frac{1}{\text {; }}$; depth 23 . Dorsal 81 to 89 ; anal 66 to 68. Lat. 1.117. Vertebre 46.] (Günther: Steindachner)......AURantiaca, 96. dd. Fringes of left nostril very numerous; longer than the diameter of the nasal tube.
c. Scales of lateral line 110 to 140 .
f. [Dorsal rays 80 to 89 ; anal rays 61 to 63. Lat. 1. 120 to 140. Pectoral fin 2 to $2 \frac{1}{2}$ in head. Depth 3 in length. Head 5 . Color ashy gray with a dark brown point at the base of each scale ; vertical fins with dark dots; pectoral with a large round black spot near its tip, this spot edged with paler anteriorly.] (Steindachner) .............................................. Lascaris, 97.

* 1). 9 ; A. 84. Head 6 in length; depth 3; middle of pectoral and end of caudal black, according to Agassiz. Possibly two species are confounded under this name.
ff. [Dorsal rays 75 to 76 ; anal rays 59 to 61. Lat. 1.112 to 118 ; pectoral fins about $2 \frac{1}{2}$ in head; depth $2 \frac{2}{3}$. Head $4 \frac{1}{2}$ in length ; color brown, with numerous obscure dusky cloudings; pectoral with a black ocellus in the middle of its posterior half. 1 (Steindachner: Gïnther)...............Theopmila, 98.
$e e$. [Scales in lateral line 90 to 95 ; D. 83 or 84 . A. 65 . Head $5 \frac{7}{3}$ in length; depth 3. Eye 5 in head, equal to interorbital width; nasal tube of left side long and much fringed; lips not fringed; blind side of head with many fringes; right pectoral 3 in head. Color grayish, very much mottled and spotted on body and fins; base of caudal dark; pectoral black, edged with paler.] (Kner)

Variolosa, 99.

# 92. SOLEA SOLEA. 

(The Common Sole.)
[Plates XX and XXI.]
Pleuronectes solea Linnæus, Systema Naturæ, ed. x, 1758, 270 (and of the carlier copyists).
Solea vulyaris Quensel, Vet. Akad. Haudl., 1806, 230, and of nearly all later writers. Solea buglossa Rafinesque, Indice, 1810, 45.
Solea cinerea Guichenot, Explor. Alger., Poiss., 1850, 106 (plain brown variety).
Solea anyulosa Kaup, Wiegmann's Archiv, 1858, 95. (Algiers; Rochelle) (= P'angulata, MSS. Paris Museum.)
Solea azevia Capello, Journ. Acad. Sci., Lisboa, i, 1867, 166, fig. 2 (plain brown variety).
Solea vulgaris var. azevia Steindachner, Ichthyol. Berichte, vi, $1 \not \subset f 8,54$, with plate. Solea linnæi Malm, Bohuslïns Fauna, 532 (about 1860).

Habitat-All coasts of Europe, except the extreme north.
This species is the famous sole of Europe, one of the most prized of all food-ishes. It abounds on almost all coasts of central and southern Europe, preferring sandy or gravelly shores, and it is usually captured, according to Dr. Day, with the trawl. It usually reaches a length of 12 to 18 inches.

No spucimens of the European sole have yet been takeu on the American coasts. Several attempts have been made by the United States Fish Commission to introduce the species into our waters, but thus far without evident success.

The Solea azevia of Capello is considered by Steindacher to be an unspotted variety of the common sole. The Solea cinerea, scantily described ly Guichenot, seems to be the same form.

Solea angulosa Kaup is said to have D. 84; A. 71; P. 7; V.7-6; C. 19; the pectoral as long as the distance from its root to the lower eye. It may be a common sole, with the number of fin-rays slightly increased.

## 93. SOLEA CAPELLONIS.

Solea capellonis Steindachner, Ichthyol. Berichte, vi, 56, 1868 (with plate) (Gibraltar; Dalmatia).
Habitat.-Mediterraneau Sea.
This species is evidently very closely related to the common sole, of which, it seems to us, it may be a mere local variets, with unusually
variegated coloration. Steindachner, however, compares it with Solea Fileini, which it much resembles in color, but from which it differs in numerous respects. We have not seen the species.

## 94. SOLEA BRASILIENSIS:

Solea brasiliensis (Cuvier Mss.) Agassiz, Spix Pisc. Brasil., 1829, 87 (Brazil). Kaup, Wiegmann's Archiv, 1858, 95 (Montevideo):

## Habitat.-Coast of Brazil.

We know this species only-from the descriptions of $\Lambda$ gassiz and Kaup. These two accounts do not agree very well and may refer to different fishes. It would appear to be very close to the European sole. None of the collections from Brazil in the mușeum at Cambridge contain any species of Solea.

## 95. SOLEA KLEINI.

Rhombus kleinii Risso, "Europe Méridionale, iii, 1826, 255."
Soled kleinii Giinther, Cat. Fish. Brit. Mus., 1862, iv, 464, and of numerons writers. Solea luctuosa Guichenot, Explor. Algérie, Poissons, 1850, 107.

Habitat.-Mediterranean Sea.
This species is subject to great variations in color, some of our specimens being excessively spotted, others almost plain. In all cases, however, the coloration of the pectoral is distinctive. Our specimens are from Venice and from Palermo.

## 96. SOLEA AURANTIACA.

(The Lemon Sole.)
Solea aurantiaca Giinther, Cat. Fish. Brit. Mus., iv, 1862, 467.
Habitat.-Coasts of Emrope, north to England.
We have not seen this species. According to Dr. Day it is identical with Pleuronectes nusutus Pallas, and he regards both as the same as the original Pleuronectes lascaris Risso. Day therefore adopts for the Lemon Sole the name of Solea lascaris. Knowing none of these fishes from autopsy we can have no opinion of value in this matter, but it would seem to us that the Solea aurantiact of Giinther and also the Pl. lascaris of Risso correspond better to the species called lascaris in the present paper than to the Plewronectes nasutus of Pallas, which is the Solea theophila of this paper.

## 97. SOLEA LASCARIS.

[^40]Habitat.-Mediterranean Sea.

We have not seen this species, and we take the above synonymy from Giinther. According to Dr. Day the name lascaris belongs to Solea aurantiaca. This species should stand in that case, perhaps, as Solea scriba.

## 98. SOLEA TEEOPHILA.

Pleuronestes theophilus Risso, Ichth. Nice, 1810, 313.
Pleuronectes nasutus Pallas, Zoogr. Rosso-Asiatica, iii, 1811, 427.
Solea nasuta Steindachner, 1. c., 58.
Solea impar Bennett, "Proc. Comm. Soc. Zool., i, 147," 1831. Giinther, iv, 468.

## Habitat.-Mediterranean Sea.

We do not know this species. According to Dr. Day it is identical with Solea aurantiaca, and should receive the name of Solea lascaris. Notwithstanding the close relation of S. theophila and S. aurantiaca, it would seem that the two are different, as the number of fin-rays is considerably smaller in the present species than in S. utrantiaca, or than in the species called by us S. lascaris.

The Italian naturalists should be able to settle these questions of synonymy. Judging from the literature alone, these three species would appear to be valid. S. aurantiaca would seem to be distinguished by the little development of its nasal fringes, iis fin-rays being "D. 81 to 89 ; A. 66 to $68 . "$ S. lascaris has the nostril with a wreath of fringes and the fin-rays substantially similar, and S. theophila ( $=$ nasuta $=$ impar ) has the nostril well fringed and the fin-rays fewer; "D. 75 to 76 ; A. 59 to $61 . "$

Risso says of his Solea lascaris that its dorsal rays are S5, anal 68. This agrees with our S. lasearis, which is that of Guinther, and differs from our theophila, the impar of Günther, with which Day has identified Risso's lascaris.

Risso further says that his Solea theophila (named for M. Theophile Rainaut, of Sospello) has 75 dorsal and 64 anal rays. This corresponds with the Solea impar of Günther, and as the name theophila has priority over impar we have adopted it. Possibly all three are forms of a single species, Solea lascaris Risso.

## 99. SOLEA VARIOLOSA.

Solea variolosa Kner, Novara Fische, 1869, 289 (Rio Janciro).
Habitat.-Coast of Brazil.
This species is known to us from the account given by Professor Kner.

> Genus XL.-MONOCHIRUS.

[^41]S. Mis. $90-20$

Monochirus Swainsou, Nat. Hist. Class'n Fishes, ii, 1839, 303 (linguatula).
Microchirus Bonaparte, Catalogo Metodico dei Pesci Europei, 1845--50 (after Swainson: lingula).
Buglossus Günther, Cat. Fish. Brit. Mus., iv, 1862, 462 (variegata).
Monochir Guinther, Cat. Fish. Brit. Mus., iv, 1862, 462 (monochir).
Quenselia Jordan, Subgenus noyum (ocellata).

## Type: Monochirus hispidus Rafinesque.

This small group of European soles seems to be worthy of generic distinction from Solea, not so much from the reduction of the pectoral fins as on account of the reduced number of vertebræ, which forms a step in the direction of the genus Achirus.

The species are, however, much more nearly related to Solea than to Achirus. Three subgeneric groups are included under the head of Monochirus as understood by us, and these might perhaps with no great impropriety be taken as distinct genera. We think it better, however, to place all together in one group, for which the name of Monochirus has priority. We have not seen the paper of Rafinesque in which this name is said to occur, but have taken our quotation from Bonaparte.

For the second subgenus, the same name, Monochirus, was proposed by Cuvier, but this is antedated by Monochirus of Rafinesque. The name Microchirus given by Bonaparte to the same group has priority over Giinther's name Buglossus. For the third group, we have suggested the new name Quenselia in honor of the Swedish naturalist who first separated the soles generically from the flounders.
analysis of species of monochirus.
a. Vertebrie 37 to 40 ; scales normal, strongly ctenoid.
b. Pectoral of both sides well developed, that of the eyed side not quite half head, that of blind side not quite a third ; vertebras 37. (Quenselia Jordan.)
c. Interorbital space very narrow, the eyelids thick, covered with rough scales; blind side of head with conspicuous fringes; scales sub-villous, the spinules conspicuous, though less so than in Monochirus hispidus; color dark gray, with some vague dusky blotches behind the gill opening; 4 round jet-black spots ocellated with white and about as large as eye disposed in a quadrangle behind the middle of the body; a black bar across base of caudal ; fins dusky ; pectoral mostly blackish. Vertebre $9+28=37$. Head 4 in leugth; depth $2 \frac{1}{2}$; D. 66 to 67. A. 52 to 54. P. 5-5. Lat. 1. 70 to $\%$ . Ocellatus, 100.
$b b$. Pectoral fin of blind side minute, that of eyed side small, not twice as long as eyc. (Microchirus Bonaparte.)
d. Scales in the lateral line 55 to 60 . Depth $2 t$ in longth; head $4 \frac{4}{5}$; color nearly uniform brownish, sometimes spottod with darker; a fow dark spots on dorsal and anal fins, each involving part or all of the membrane of about every fourth ray ; pectoral mostly black, its length not quite half more than that of eye........................................................... Luteus, 101. $d d$. Scales in the lateral line 75 to 80 . D. 63 to 73. A. 53 to 57. P. 5-3. Vertebre, $10+30=40$. Depth 3 in length; head $4 \frac{2}{8}$; color brownish gray, with broad irregular dark cross-bands which are darkest on the dorsal and aual fins; pectoral partly dusky, its length not greater than that of eye.
$d d d$. [Scales very small, 112 to 118 ; D. 72 to 79 ; A. 56 to 62. Depth, 2 ? ${ }^{7}$; head, $4 \frac{1}{3}$ in length; colors of Monochirus luteus, each sixth or seventh ray of dorsal and anal blackish brown; caudal with brown spots; posterior half of dorsal and anal with narrow, dark brown cross-spots.] (Steindachner)

Minutus, 103.
$a a$. Vertebræ 34 ; pectoral fin of eyed sido more than half length of head, that of blind side wanting ; scales sub-concave, elongate, and with the free margin somewhat erected; each scale with several long spinules, giving the body a villous appearance (as in Phrynorhombus) ; (Monochirus).
$e$. Scales of blind side with shorter spinules; scales on head slightly reduced; eyes rather large, with thick scaly eyelids; head $4 \frac{1}{2}$ in length; depth 21 ; D. 52 (" 56 to 61 ," Günther). A. 41 ( 44 to 49, Günther). P. about 7; lat. 1. 54 (63, Günther). Vertebræ $9+25=34$. Color, brown with irregular dark marblings on body and fins; dorsal and anal mostly dark ; caudal abruptly pale, with light brownish cross-streaks

Hispidus, 104.

## 100. MONOCHIRUS OCELLATUS.

Pleuronectes ocellatus Linnæus, Syst. Nat., ed. x, 1758, 269 ("Surinam").
Solea ocellata Günther, iv, 465.
Quenselia ocellata Jordan, MSS.
Pleuronectes pegusa Lacépède, Hist. Nat., Poiss., iv, 639, 1803.
Pleuronectes rondeleti Shaw, Gen'l Zool., iv, 307, 1803.
Solea oculata Risso, Europe Méridionale, iii, 248, 1826, and of numerous writers.
Habitat.-Mediterranean Sea; Madeira Islands.
Our specimens of this pretty species are from Palermo, where they were collected by Professor Doderlein.

This species, with some other African and Asiatic species, marks a transition between the typical forms of MIonochirus to those of Solea. It may be regarded as forming the type of a new subgenus for which the name Quenselia is suggested.

## 101. MONOCHIRUS LUTEUS.

Pleuronectes luteus Risso, Ichth. Nice, 1810, 312.
Monochirus luteus Costa, "Fauna Napoli, ii, 49."
Solea lutea Günther, iv, 469, 1862, and of most recent writers.
Habitat.-Mediterranean Sea.
Our numerous specimens of this species were collected by Professor Doderlein at Palermo, and by Professor Jordan at Venice.

## 102. MONOCHIRUS VARIEGATUS.

Plewronectes variegatus Donovan, British Fishes, 1801, pl. 117.
Solea variegata Gianther, iv, 469.
Pleuronectes microchirus Delaroche, Ann. Mus., xiii, 35f, f. 2, 1809.
Pleuronectes mangili Risso, Ichth. Nice, 1810, 255.
Pleuronectes lingula " Hamner in Pennant, Brit. Zool., ed. of 1812, iii, 313, pl. 48."
Plouronectes fasciatus Naccari, "Giornale Fis. Pav., iii, Adr. Ittiol., 9, 1822."

## Habitat.-Mediterranean Sea.

Our specimens of this species were collected at Palermo by Professor Doderlein. Most of the synonymy given above is copied from Giinther and Bonaparte, and has not been verified by us.

## 103. MONOCHIRUS MINUTUS.

Monochivus minutus Parnell, Mag. Zool. and Bot., i, 527, 1837.
Solea minuta Günther, iv, 470. Steindachner, Ichth. Berichte, vi, 1868, 61.
Habitat.-Mediterranean Sea.
We know nothing of this species. According to Dr. Day, it is identical with Monochirus luteus. Steindachner, however, regards the two as distinct, and describes M. minutus as having 112 to 118 scales in the lateral line-a number nearly double that found in his specimens as well as in our specimens of M. luteus. If this count is correct, the two species must be different.

## 104. MONOCHIRUS HISPIDUS.

Pleuronectes pegusa Risso, Ichth. Nice, 1810, 310 (not of Lacépède).
Monochirus hispidus Rafinesque, "Précis des Découvertes 1814 " (fide Bonaparte, Catalogo Metodico, 1845, 50).
Solea monochir Bonaparte, "Fauna Italica," abont 1840. Günther, iv, 470, 1862.
Habitat.-Mediterranean Sea.
Our specimens of this curious species are from Palermo and from Venice, the former collected by Professor Doderlein, the latter by Dr. Jordan.

## Genus XLI.-ACHIRUS.

Achirus Laćpède, Hist. Nat., Poiss., iv, 659, 1803 (fasciatus, etc.).
Achirus Cuvier, Règne Animal, 1828, (restriction to fasciatus, etc.).
Trinectes Rafinesque, Atlantic Journal and Friend of Knowledge, i, 1832 (scabra).
Grammichthys Kaup, Wiegmann's Archiv, 1858, 94 (linentus, fasciatus) (Achirus being restricted to Pardachirus barbatus, etc.).
Monochirus Kaup, 1. c. (maculipinnis).
?Aseraggodes Kaup, 1. c., 1858, 103 (guttulata).
Baiostoma Bean, Proc. U. S. Nat. Mus., 1882, 413 (brachiale).
Bæostoma Jordan \& Gilbert, Syn. Fish. N. A., 1882, 965 (amended orthography).
Type: Achirus fasciatus Lacépède.
This strongly-marked genus contains numerous species, all very closely related, and nearly all American. It has been united by Dr. Giinther with Solea, but apparently for no good reason, as the number of vertebre is very much less than in the European soles, and the right ventral fin is decurrent along the abdomen and united with the anal in the American soles, while it is short and wholly free in all the European forms. It is also worth noticing that the name Achirus is prior in date to that of Solea. The species with rudimentary pectoral fins have been set apart by Dr. Bean to form the genus Baiostoma, but the very slight development of these organs in some of the species, and the evidently very close relationship of them all, leads us to regard Baiostoma as a subgenus only. If we follow Kaup in restricting the name Achirus to the Asiatic group called Pardachirus, the present genus would receive the name of Irinectes. It seems to us that both Lacépède
and Cuvier regarded the species called by us fusciatus as the type of their genus Achirus.

## ANALYSIS OF SPECIES OF ACHIRUS.*

a. Pectoral fins small ; present at least on the right side. (Baiostoma Bean.)
b. Pectoral fin present on both sides, that of the left side rudimentary, of a single ray; that of the eyed side with about 3.
c. [Dorsal rays 60 to 67 ; anal rays about 48; lat. 1.80 ; depth $1 \frac{1}{3}$ in length; color brownish, irregularly spotted with darker, and with about 10 black vertical lines crossing the lateral line.] (Gïnther) ................................................. Achirus, 105. cc. Dorsal rays 53 to 57 ; anal rays 40 to 42 ; lat. I. 75 to 80 ; depth $1 \frac{3}{5}$ in length; scales swaller and less rough than usual in this genus, those of nape scarcely enlarged on eyed side, those of blind side much fringed; scales of colored side with scattered, hair-like appendages, some black, others pale ; color olivaceous; head, body, dorsal, and anal fins covered with a network of dark lines; traces of about 8 dark cross-streaks sometimes present; caudal fin yellowish, nearly plain, or with a few dark dots or reticulations; its base dusky. Vertebræ $8+20=28$

Inscriptus, 106.
$b b$. Pectoral of right side only present.
d. Dorsal rays 65 to 66 ; anal rays 48 to 51.
e. Pectoral well developed, with about 6 rays. Scales of eyed side without hair-like filaments; scales of lateral line 77 to 80 ; chin little prominent ; dorsal rays 65 ; anal rays 51 ; depth 15 in length; head 3 ; ; right lower lip fringed. Color brownish, with 9 or 10 narrow blackish cross-lines; small rounded blackish spots on the membranes of each of the vertical fins, much as in A. lineatus . . . . Klunzingeri, 107. ee. Pectoral fin small, its rays about 2 in number; scales of eyed side with numerous hair-like filaments; scales of lateral line about 70 ; chin prominent, protruding beyond upper jaw ; D. 66, A. 48 to 50 ; depth $1 \frac{\text { g }}{8}$ in length ; pectoral black, not much longer than eje; eyes rather large, the upper not in advance of lower; color brown, with traces of dark crossbands; numerous irregular blackish clouds and blotches on the body and fins; no small spots........... Mentalis, 108. dd. Dorsal rays; 50 to 58 ; anal rays, 35 to 47.
$f$. Pectoral fin of 4 to 6 rays, considerably longer than eye; body with 8 to 10 narrow vertical dark bars, these sometimes obsolete with age.
g. Vertical fins, all with round dark spots, these usually especially distinct on the caudal fin; some of the scales of eyed side with black, hair-like appendages; pectoral fin with 5 or 6 rays, about 3 in head; its length equal to that from outer edge of one eye to outer edge of another ; head $3 \frac{1}{2}$ in length; depth about $1 \frac{1}{2}$; color brown, the young spotted with whitish, the adult sometimes with darker; body with about 8 narrow vertical cross-streaks of blackish.Lineatus, 109.
$x$. Dorsal rays 49 to 58 ; anal rays 38 to 44 ; scales 70 to 85 .
Var. lineatus, 109 (a).

[^42]$x x$. Dorsal rays 50 to 51 ; anal rays 35 to 37 .
y. Scales 75 to 77 ....--............... Var. brachialis, 109 (b). yy. Scales 55 to 67 ........................ Var. comifer, 109 (c).
gg. Vertical fins dark, without distinct markings. Body broad, ovate, the depth about $1 \frac{1}{2}$ in length ; pectoral fin with 4 rays; scales of right side with numerous black hair-like appendages; color brownish, with 8 or 9 narrow vertical black bars; fins dark, without distinct markings; D. 56, A. 42, lat. 1. 70

Mazatlanus, 110.
ff. Pectoral fins of 2 or 3 rays, about as long as eye.
h. Body with 6 to 12 narrow dark bands; these sometimes obsolete.
$i$. [Body rather narrowly ovate, its depth $1 \frac{5}{6}$ in length; pectoral fin very small, of about 2 rays, not much longer than eye; color brownish olive, with six pairs of deep brown vertical lines extending ou the dorsal and anal fins. D. 58, A. 44, lat.1. 85.] (Günther)...............................
ii. Body broadly ovate; the depth $1 \frac{8}{8}$ in length ; pectoral as long as eye; fringes on lip of right side, fer and small, inconspicuous; scales on blind side moderately enlarged; hairlike appendages on scales few or none; D. 56. A. about 39. Scales about 76; color brown, finely mottled and speckled with darker, and with about a dozen narrow, very faint cross-streaks ; fins with similar dark spots; scales all finely dotted under the lens

Punctifer, 112.
$h h$. Body with very numerous ( 20 to 40 ) black cross-bands, which are as broad as the interspaces.
$j$. [Blind side of snout with few fringes; pectoral rays 3 ; depth $1 \frac{1}{2}$ in length ; D. 55, A. 48, lat. 1. 80. Color grayish; head, body, and fins with numerous blackish, irregular wary bands, broader than the interspaces; caudal fin with deep black spots.] (G̈̈̈nther)...........................Scutum, 113.
$j j$. Blind side of head profusely covered with fringes; scales on body very rough, those of the eyed side of head enlarged and with long spinules; numerous patches on body covered with appendages like short, coarse black hairs; lower lip with fringes on eyed side nearly half as long as eye; pectoral small, not longer than eye, which is rather large, about 5 in head; lower jaw included; upper eye largest and much advanced; anterior rays of dorsal, with fringes of cirri. Head $3 \frac{2}{8}$ in length; depth $1 \frac{3}{4}$; D. 55, A. 47. Scales 77 to 80 . Color dark-brown, with numerous (about 40) close-set, straight, black cross-bars, each about as wide as the interspaces; vertical fins, with about three elongate black spots on the membrane between each pair of rays.

Garmani, 114.
$a a$. Pectoral fins wholly wanting. (Achirus.)
k. [Dorsal rays 46 ; anal rays 33 ; right lower lip with serrated fringes; nostril in a fringed tube; depth $1 \frac{1}{2}$ in length; head 3; color brown, head and body with numerous large, rounded, or kidney-shaped white spots, edged with dark brown. Lat.1. 70.] (Günther)..........Fimbriatus, 115.
$k k$. Dorsal rays 50 to 55 ; anal rays 37 to 46 ; right lower lip fringed ; left nostril with some fringes ; depth $1 \frac{1}{5}$ in length; head 4 ; none of the scales of eyed side with hair-like appendages; color dusky olive, more or less mottled and with about eight dark vertical stripes, these varying very much
in width and in number; vertical fins with the membrane of every second or third pair of rays blackish, besides dark cloudngs at base of tin ; caudal with numerous longitudinally oblong spots; blind side often with round, dark spots, especially in northern specimens, usually immaenlate in southern ones (var. browni). Lat. 1.66 to 75 ; ver-
 $k k k$. Dorsal rays 59 or 60 ; anal rays 41 to 45.
l. [Snout and chin without evident fringe or barbel; right lower lip fringed; head 4 in length ; depth 1 采; D. 59, A. 45 ; seales 63 to 65 ; color brown; about 12 dark cross-bands on head and body; between these faint, paler cross-bauds, which form spots on dorsal and anal; caudal similarly spotted, the spots forming obscure cross-bands. (Steindachner) . Panamensis, 117. ll. Snout with a fringe-like barbel near its tip, as long as eye; a shorter one on the chin; eyed side with some patches of black hairs; scales of blind side of head scarcely enlarged or fringed; scales small, not very rough ; head $3 \frac{1}{5}$ in length; depth $1 \frac{1}{2}$. D. 60 , A. 41 ; scales 80 ; color pale, the eyed side with small scattered black points and blotches of varying size ; a few narrow obscure dark cross-streaks; blind side immaculate .Jenynsi, 118:

## 105. ACHIRUS ACHIRUS.

Pleuronectes oculis dextris, corpore glabro, pinnis pectoralibus nullis Gronow, Museum, i, No. 42. (Surinam.)
Pleuronectes achirus Linnæus, Syst. Nat., ed. x, 1758, 268 (based on Gronow).
Solea gronovii Günther, Cat. Fish. Brit. Mus., iv, 1862, 472 (Surinam).
Achirus gronovii Jordan, Proc. U. S. Nat. Mus., 1886, 602. (Name only.)

## Habitat.-Coasts of Guiana.

We know this species only from Dr. Günther's description. We place Achirus gronovii in the synonymy of the Linnæau species Pleuronectes achirus. Pleuronectes achirus is based on a description by Gronow of some Achirus from Surinam. Gronow's fish agrees with the present species in having 60 dorsal rays and 48 anal rays, in being brown, with transverse black bands, with dark spots on the fins, as well as in coming from Surinam. But Gronow explicitly denies the presence of pectorals, and the present species has rudimentary pectoral fins on both sides. Probably these were overlooked by Gronow, and as no other species found in the same region has so large a number of rays, we feel justified in the use of the name Achirus achirus for this species.

## 106. ACHIRUS INSCRIPTUS.

Achirus inscriptus Gosse, Nat. Sojourn Jamaica, 52, pl. 1, f. 4, 1851 (Jamaica). Jordan, Proc. U. S. Nat. Mus., 1884, 143 (Key West).
Solea inscripta Günther, iv, 1862, 473 (Jamaica).
Monochir reticuiatus Poey, Memorias, ii, 1861, 317 (Cuba); Synopsis, 409 ; Enumeratio, 139.

Solea reticulata Günther, iv, 472 (copied).
Brostoma reticulatum Bean \& Dresel, Proc. U. S. Nat. Mus., 1884, 152 (Jamaica).
Habitat.-West Indian fauna, north to Key West.

This species is known to us from numerous specimens taken by Dr. Jordan at Key West, and from specinens from Hayti, in the museam at Cambridge. These specimens belong undoubtedly to the species called reticulatus by Poey, and this is apparently not different from the inscriptus of Gosse, as the agreement with the latter is eren closer than with the former description.

## 107. ACHIRUS KLUNZINGERI.

Solea klunzingeri Steindachner, Zur Fische des Canca und der Flïsse bei Guayaquil, 1879, 44 (Guayaquil).
Achirus klunzingeri Jordan, Proc. U. S. Nat. Mus., 1885, 391 (Panama).
Habitat.-Pacific const of tropical America. Panama to Guayaquir. This species is known from Dr. Steindacher's description. A specimen, since destroyed, was obtained by Professor Gilbert at Panama.

## 108. ACEIRUS MENTALIS.

Solea mentalis Günther, Cat. Fish. Brit. Mus., iv, 475, 1862 (Para).

## Habitat-Coast of Brazil.

This species is known to us from a specimen, 3 inches long (No. 11449, Mus. Comp. Zool.). It was obtained at Para.

## 109. ACFIRUS LINEATUS.

a. Var. lineatus.

Plewronectcs fuscus subrotundus glaber "Brown, Jamaica, 445" (Jamaica).
Passer lincis transversis notatus Sloane, Jạmaica, 2, 77, pl. 246, f. 2 (Jamaica).
Plewronectes lineatus Liunteus, Syst. Nat., ed. x, 1758, 265 (based on Brown and Sloane; not of ed. xii, which is Achirus fasciatus).
Monochir lineatus Quoy \& Gaimard, Voy. Uranie, Zool., 238, 1824 (Rio Janciro, D. 52, A. 42).

Achirus lineatus D'Orbiguy, Voyage Amér. Merid. Poiss., pl. 16, f. 2, 1847 (Cayenne).
Monochir maculipinnis Agassiz, Spix Pisc. Brasil., 88, pl. 49, 1829 (Brazil). Poey, Synopsis, 1863, 409 (Cula).
Solea maculipinnis Giinther, ir, 473 (Cuba, Janaica, Brazil). Kuer, Novara Fische, iii, 289 (Rio Jaueiro).
Achirus maculipimis Jordan, Proc. U. S. Nat. Mus., 1886, 602 (name only).
b. Var. brachialis.

Baiostoma brachialis Beau, Proc. U. S. Nat. Mus., 1832, 413 (South Florida).
Breostoma brachiale Jordan \& Gilbert, Synopsis Fish. N. A., 1882, 965 (copied).
Achirus brachialis Jordan, Proc. Ac. Nat. Sci. Phila., 183:3. (Egmont Key.) Jordan, Proc. U. S. Nat. Mus., 1834, 149.

> c. Var. comifer.

Achirus comifer Jordan \& Gilbert, Proc. U. S. Nat. Mus., 1854, 31, 143 (Key West).
Habitat.-West Indian fauna-Key West, and Egmont Key to Uruguay.

The Pleuronectes lineatus of the tenth edition of the Systema Naturie is based wholly on the description of Brown and the figure and descrip-
tiou of Sloane in their works on Jamaica. It is very evident from Sloane's figure that the species he had in view was the Achirus maculipinnis. So far as we know, but two species of Achirus (inscriptus and maculipinnis) are found in the waters of the Antilles. There seems to be, then, no doubt that the maculipinnis of Agassiz is the original Pleuronectes lineatus of Linnæus. If it be so, it must stand as Achirus lineatus.

The Pleuronectes lineatus of the twelfth edition of the Systema Naturæ is described from a fish sent from Charleston by Dr. Garden. This is Achirus fasciatus.

We have placed the Florida species, comifer and brachialis, in the synouymy of lineatus. They differ from the latter only in the slightly smaller numbers of the seales and fin-rays.

The following table shows our count of a number of specimens from different localities:


It is evident from this table that neither the fin-rays nor the scales form characters by which the subspecies can be absolutely distinguished. It is evident also, from the examination of large series of specimens, that the coloration is subject to very great variations-as great as in Achirus fasciatus. In some of these the caudal is dark and immaculate, in others pale and usually profusely spotted. In some the ground color is nearly plain blackish, in others it is pale, usually with narrow dark cross-bands, but sometimes closely spotted everywhere.

The specimens examined by us are from Pensacola and Egmont Key (brachialis), Key West (comifer), Cienfuegos (Cuba, Poey), Coary, Teffy, Tapajos, Porto Alegre, Pernambuco, Cannarivieras, Manacapuru, Porto do Moz, Rio Grande do Sul, Rio Janeiro, San Matheo, Rosario, Itabapuana, Obidos, Xingu, Gurupa, Jutaby, Curuça, Parà, Bahia, Santarem, Iça, Fonteboa, San Paolo, Rio Trompetas, Sambaia, Manes, Javary, and Tabatinga.
The species would appear to be one of the commonest in Brazil.

## 110. ACEIRUS MAZATLANUS.

(Mexican Sole; Teipalcate.)
Solea mazatlana Steiudachner, Ichth. Notizen, ix, 23, 1869 (Mazatlan). Jordan \& Gilbert, Bull. U. S. Fish Comm., 1882, 108 (Mazatlan).
Achirus mazallanus Jordan, Proc. U. S. Nat. Mus., 1885, 391 (Mazatlan).
Solea pilosa Peters, Berliner Monatsber., 1869, 709 (Mazatlan).
Habitat.-Pacific coast of tropical America.

This species is not rare on the west coast of Mexico. We have examined numerous specimens collected by Professor Gilbert at Mazatlan. The Solea pilosa of Peters, as Dr. Steindachner has already indicated, is the same fish. The date of Steindachner's paper is said to be a little earlier than that of Professor Peters.

A specimen of this species is in the museum at Cambridge, collected by Professor Sumichrast at Chiapas.

## 111. ACHIRUS FONSECENSIS.

Solea fonsecensis Giinther, Cat. Fish. Brit. Mas., iv, 1862, 475 (Gulf of Fonseca).
Habitat.-Pacific coast of tropical America (Gulf of Fonseca).
Only the original type of this species, obtained by Sir John Richardson, is yet known.

## 112. ACHIRUS PUNCTIFER.

Monochir punctifer Castelnan, Aninanx Nonv. on Rares, Amérique du Sud, 1855, 80, pl. 41, f. 3 (Rio Jaueiro).
Habitat.—Coast of Brazil.
We refer a sole (11436, M. C. Z.) from Itabapuana to Monochir punctifer Castelnan, although the figure published by this author does not represent it very well. The black pepper-like spots are much smaller in nature than in the picture. The following is Castelnau's description: "Longueur totale, 12 centimètres; plus grande largeur sansles nageoires, 7 centimètres; avec les nageoires, 9 centimètres. Nageoire dorsale de 48 rayons; anale de 42 rayons; caudale de 16 rayons. Les écailles sont fines et âpres, surtout celles de la tête. Le poisson est entièrement d'un brun vert et couvert, ainsi que les nageoires, de points noirs nombreux et assez rapprochés les uns des autres; en dessous il est d'un brun rougeâtre. J'ai trouvé une seule fois ce Monochir au marché de Rio."

## 113. ACHIRUS SCUTUM.

Solea scutum Gînther, Cat. Fish. Brit. Mus., iv, 1802, 475 (Gulf of Fonseca, Panama).
Habitat.-Pacific coast of tropical America.
All that we know of this species is included in the description of Dr. Giinther.

## 114. ACHIRUS GARMANI.

Achirus garmani Jordan, sp. nov. (Rio Grande do Sul).
Habitat.-Coast of Brazil.
The type of this species is an example in good condition, 6 inches long (11246, M. C. Z.), from "the Rio Grande in South America." I have taken pleasure in naming it for my frieud Mr. Samuel Garman, curator of ichthyology in the Museum of Comparative Zoology, to whose kindly aid I have beeu much indebted in my studies of the South American fishes. (D. S. J.)

## 115. ACHIRUS FIMBRIATUS.

Solea fimbriata Günther, Cat. Fish. Brit. Mus., iv, 1862, 477 (Gulf of Fonseca).
Habitat.-Pacific coast of tropical America (Gulf of Fonseca).
This species is known from Guinther's description of a specimen taken by Sir John Richardson.

## 116. ACHIRUS FASCIATUS.

## (The American Sole; Hog-Chofer.)

(Plates XXII and XXIII.)
Pleuroncctes lineatus Linneus, Syst. Nat., ed. xii, 458 (on a specimen from Charlestou, received from Dr. Garden), (not Pleuronectes lineatus of edition x). Gronow, Systema, ed. Gray, 1854, 90 (in part, chiefly based on Linnæus).
Achirus lineatus Cuvier, Règue Animal, 1828. Gill, Cat. Fishes East Coast N. Am., Rept. U. S. F. C., 1872-73. Jordau \& Gilbert, Proc. U. S. Nat. Mus., 1878, 368 (Beaufort; Neuse R.). Goode, op. cit., 1879, 110 (St. John's R.). Goode \& Bean, op. c., 1879, 123 (Pensacola, Potomac R.). Bean, op. c., 1880, 77 (Potomac R., New Bedford, Tompkinsville, N. Y., Newport, Chesapeake Bay, Providence). Jordau \& Gilbert, op. cit., 1882, 618 (Charleston). Bean, op. cit., 1883, 365 (Havre de Grace).
Grammichthys lineatus Kaup, Wiegmann's Archiv, 1858, 101.
Achirus fasciatus Lacépède, Hist. Nat., Poiss., iv, 659, 662, 1803 (excl. syn. ; description based entirely on the Linnean ac count of the fish sent by Garden).
Pleuronectes mollis Mitchill, Trans. Lit. and Phil. Soc. N. Y., i, 1815, 388, pl. 2, f. 4 (New York).
Achirus mollis Storer, Synopsis, 1846, 228. Storer, Hist. Fish. Mass., 1867, 206, pl. 32 (Charles River, Holmes' Hole, Mass.). DeKay, New York Fauna, Fishes, 1842, 303, pl. 49, f. 159 (New York, ascending the Hudson River to Peekskill).
Achirus achirus mollis Jordan, Cat. Fish. N. A., 1885, 137.
Pleuronectes apoda Mitchill, Amer. Monthly Mag. and Crit. Rev., Feb'y, 1818, 244 (Straits of Bahama), (perhaps A. lineatus).
Trinectes scabra Rafinesque, "Atlantic Journal and Friend of Knowledge, i, 1832 (Pennsylvania, in fresh water)."
Solea achirus Günther, iv, 476, 1862 (New York) (not Plearonectes achirus L.).
Achirus achirus Jordan, Proc. U. S. Nat. Mus., 1885, 19. Jordan, Cat. Fish. N. A., 1885, 137.

Solea browni Giinther, iv, 477, 1862 (New Orleans, Texas).
Achirus lineatus var. browni Jordan \& Gilbert, Proc. U. S. Nat. Mus., 1882, 305 (Pensacola, Galveston).
Habitat.-Atlantic coast of the United States, from Cape Cod to Texas, ofteu ascending streams.

This species is the best known of the American soles, and it is common along our coast from Cape Cod to Texas, often ascending the rivers for a considerable distance above tide-water. It seldom exceeds 5 or 6 inches in length, and is of but little value as food on account of its small size. It was first described in the twelfth edition of the Systema Naturæ from a specimen sent to Linnæus by Dr. Garden. This specimen received the name of Pleuronectes lineatus, but the Pleuronectes lineatus of the tenth edition was a different fish, the name being originally based on a description of an Achirus found by Brown
and Sloane in Jamaica, a region in which the present species does not occur.

The specific name next in date to lineatus is that of Achirus fasciatus Lacépède. Lacépède quotes in his synouymy only the Pleuronectes achirus of the tenth editiou of the Systema, which is a species from Surinam. His description of Achirus fasciatus is however wholly taken from the account given by Linnæus of the fish sent by Garden. It therefore belongs to the present species, for which fasciatus seems to be the oldest tenable name.

The Pleuronectes apoda of Mitchill seems to be this species, as Mitchill expressly states that it has no pectoral fins. DeKay, however, speaks of it as a species of Monochirus. If DeKay examined Mitchill's specimen we may infer that the latter belonged to $A$. lineatus rather than to A. fasciatus.

This species has not yet been recorded from the West Indies. The form found along the Gulf coast has been described as a distinct species under the name of Solea browni. The differences are not very evident. We have compared a number of specimens from Boston (fasciatus) with others from Pensacola, and find the following differences, none of which are coustant: In the Gulf variety (browni) the blind side is always immaculate, while in almost all Atlantic examples (fasciatus) the blind side is profusely covered with round dark spots. In one specimen, however ( 11360 , Boston), the blind side is immaculate. The darker cross-streaks on the eyed side are usually broader and more numerous in southern specimens, and the scales on the blind side of the head rougher. There are no constant differences either in the fin-rays or in the scales.

We have examined specimens of this species from Boston, Chestertown, Tarrytown, New York, Port Monmouth, Havre de Grace, Potomac River, Neuse River, Beaufort, Charleston, Pensacola, Mobile, and Galveston. In one large specimen from Pensacola (11482 M. C. Z.) there is a rudiment of a pectoral fin on the eyed side. It consists of a single ray two-thirds as long as the eye.

## 117. ACHIRUS PANAMENSIS.

Solea panamensis Steindachner, Ichthyol. Beitrage, v, 10, 1876, Taf. ii (Panama).
Habitat.-Pacific coast of tropical America, Panama.
Our knowledge of this species is derived from the description and excellent figure of Dr. Steindachner. The species is evidently very closely related to Achirus fasciatus, which it closely resembles in form and color.

## 118. ACHIRUS JENYNSI.

[^43]Habitat.-Region about Rio de la Plata.

The Museum of Comparative Zoology contains a single specimen (11425, 3 inches long) of this species. It was obtained in the Uruguay River by Prof. Jeffries Wyman. It is near A.fasciatus, from which species it differs mainly in having fewer fringes on the scales of the left side of head, and in having rather conspicuous cirri on the snout and chin.

## Genus XLII.--GYMNACHIRUS.

Gymnachirus Kaup, Uebersicht der Soleinæ, Wiegmann's Archiv, 1858, 101 (nudus).
Type: Gymnachirus nudus Kaup.
We have examined none of the species of this singular genus. All that we know of it is drawn from the descriptions of Kaup and Guinther. Two species have been described.

## ANALYSIS OF SPECIES OF GYMNACHIRUS.

a. [Pectoral fin of right side present, very small, of two rays only, one-third as long as eye; jaws hidden in thick skin; lips slightly fringed ; left side of head with a network of fringes; gill opening not reaching upward as far as pectoral; vertical fins covered with thick skin ; caudal as long as head; head $5 \frac{1}{2}$ (with caudal); depth 2; D. 68, A. 50 ; color yellowish olive, with 14 brown bands, as broad as the interspaces, which again are crossed by narrower bauds, all these bands extending over the dorsal and anal, the first crossing the snout, the second and third the eye; candal with three brown bands.] (Günther)...............Fasciatus, 119.
$a a$. [Pectoral fins both wanting. Body somewhat longer than high. D.51; A. 42. Body with 14 black cross-bands; concentric rings about eyes; caudal with two black bands and a pale margin.] (Kaup)..............................................

## 119. GYMNACHIRUS FASCIATUS.

Gymnachirus fasciatus Günther, Cat. Fish. Brit. Mus., iv, 488, 1862 (locality unknown).
Habitat.-Unknown, probably Brazil.
We know this species from Dr. Guinther's description only. Possibly Gymnachirus uudus may be the same species carelessly described by Dr. Kaup.

## 120. GYMNACHIRUS NUDUS.

Gymnachirus mudus Kaup, Wiegmann's Archiv, 1858, 101 (Bahia). Ginther, iv, 488 (copied).

Habitat.-Coast of Brazil.
The scanty description of Kaup gives all that is known of this species.

## Genus XLIII.-ACHIROPSIS.

Achiropsis Steindachner, Ichth. Beiträge, v, 110, 1876 (nattereri).
Type: Solea nattereri Steindachner.
This is another of the remarkable genera found in the fresh waters of South America. Although its species bear a strong general resemblance to the species of Achirus, they differ remarkably from the latler
in some details of structure, and their real relations are with Apionichthys. Achiropsis differs from Apionichthys chiefly in the development of the left ventral fin. This is rudimentary in Apionichthys and perfect in Achiropsis.

ANALYSIS OF SPECIES OF ACHIROPSIS.
a. [Gill-opening on both sides present, but reduced to a short slit as long as eye next to the upper end of the opercular margin ; eye very small; snout with a probose islike prolongation beyoud the mouth; blind side anteriorly covered with fringes, but without true scales; scales on body ctenoid; fins scaly. Dorsal and anal fins slightly joined to the caudal; ventral of right side contınuous with the anal. Body oblong. Color grayish brown. Head 5 in length; depth $2 \frac{1}{2}$. D. 82. A. 61. V. 5-5. P. $0 ., 37$ to 40 scales in an oblique series above lateral line.] (Steindachner) Nattereri, 121.
aa. Gill-opening of eyed side wanting, the gill-membrane being throughout adnate to the shoulder-girdle; gill-opening of blind side an oblique slit just below posterior angle of opercle, its length $4_{3}^{\frac{1}{3}}$ in head. Eyes small, close together, the upper considerably in advance of lower, their diameter erual to the interorbital width; snout protruding over the mouth, proboscis fashion, making the anterior profile a regular curve. Snout $2^{\prime}$ in head. Scales small (larger than in A.nattereri), not as rough as in Achivus, those on the bliud side of the head wanting anteriorly, their place taken by cirri and fringes of moderate length; lateral line distinct, straight; fin-rays scaly; lower lip slightly fringed on eyed side, not on blind side. Nostril as in Achirus, a round foramen in front of interorbital space, not produced juto a tube. Dorsal beginuing on the snont, the dorsal and anal slightly joined to the caudal; ventral fin beginning at the chin, in front of the isthmus, the tip of the snout being in contact with its first ray; ventral of right side with extended base, wholly continnous with the anal; left ventral lateral, normally placed, its five rays opposite the $3 d, 4$ th, and 5 th rays of the right ventral; no pectoral fins. Body oblong, less deep than in Achirus. Color sand-color, with faint traces of about 8 narrow cross-bands; body and fins profusely and finely mottled and speckled with darker. Head, $4 \frac{1}{5}$; depth, $2 \frac{1}{3}$. D. 60. A. 44. V. 5-5. P. 0. Scales 70, about 28 in an oblique series above lateral line.

Asphyxiatus, 122.

## 121. ACHIROPSIS NATTERERI.

Solea (Achiropsis) nattereri Steindachuer, Ichth. Beiträige, v, 110, 1876 (Rio Negro).
Habitat.-Rivers of Northern Brazil.
We know this species from Steindachner's description only.

## 122. ACHIROPSIS ASPHYXIATUS.

Achiropsis usphyxiatus Jordan, sp. nov. (Goyaz, Brazil).

## Habitat.-Rivers of Brazil.

The type of this species is a female specimen in good condition, $4_{3}^{2}$ inches long ( 11106 M. C. Z.), from Goyaz, Brazil. It differs from all other Hounders in having but a single gill-opening. Possibly this character is only accidental in the individual, and that a small gill-opening may normally be present on both sides. It is certainly not present on the eyed side in the typical example.

## Genus XLIV.-APIONICHTHYS.

Apionichthys Kaup, Wiegmann's Archiv, 1858, 104 (dumerili). Soleotalpa Günther, Cat. Fish. Brit. Mus., iv, 489, 1862, (unicolor).

TY̌PE: Soleotalpa unicolor Günther = Apionichthys dumerili Kaup.
Besides the species here mentioned, we find in the Zoological Record a reference to Apionichthys bleekeri Horst, Nederl. Tijdschr. Dierk. Verh., iv, 30, 1878. It is decribed from a specimen from unknown locality in the museum at Utrecht.

This genus is a near ally of Achiropsis, from which it is only to be separated by the rudimentary character of the left ventral fin. Although it bears some external resemblance to Symphurus, its affinities are with Achirus. The species, if more than one really exists, have yet to be exactly defined.

## ANALYSIS OF SPECIES OF APIONICHTHYS.

a. Left ventral reduced to two minute rays; body ovate-lanceolate, slender, aud thinner than in Achiropsis, the eyes much smaller, reduced to mere points; scales very small, rough, those on head enlarged a little and friuged; upper eye in advance of lower, almost in the middle of the length of the head; gill-openings small, about equal on the two sides; right ventral beginning at the chin, aud extending along the abdominal ridge so that it is continuous with the anal (left ventral destroyed in specimen examined) ; dorsal and anal slightly connected with caudal; color brown, rather pale, the body and fins profusely covered with round, dark spots of varying sizes, the largest as wide as from eye to eye. Head $4 \frac{1}{5}$; depth 2\%. * D. 78. A.56. Scales about 100
. Unicolor, 123.
$a a$. [Left ventral wholly obsolete; scales ctenoid, cycloid on blind side; fin-rays scaly ; depth, $2 \frac{7}{3}$; head, 4 . D. 70 to 73. A. 52 to 54. V. 5-0. Lat. 1.87 to 90 . Color


## 123. APIONICHTHYS UNICOLOR.

Apionichthys dumerili Kaup, Wiegmann's Archiv, 1858, 104. (No locality; no description.)
Soleotalpa unicolor Günther, Cat. Fish. Brit. Mus., iv, 1862, 489. (West Indies.) (?) Apionichthys unicolor Jordan, Proc. U. S. Nat. Mus., 1886, 603. (Name only.)
Apionichthys dumerili Bleeker, NederI. Tydschr. voor Dierkunde, ii, 1865, 305. Steindachner, Ichth. Beitr., viii, 1878, 48. (Surinam.)
Apionichthys nebulosus Peters, Berliner Monatsberichte, 1869, 709. (Surinam.)
Habitat.-Brazilian fauna.
We have examined a single specimen of this species ( 4677 M. C. Z.) $2 \frac{1}{2}$ inches long, from Obydos, in Brazil. It evidently corresponds to the Apionichthys dumerili of Bleeker and Steindachner, aud apparently also to the Apionichthys nebulosus of Peters, although Peters failed to find the rudimentary left rentral fin. This fin, in fact, is not present in the specimen examined by us, it having been destroyed in attaching the metallic tag.

Giinther's Soleotalpa unicolor may be the same, but the account of the coloration does not accord with the specimen examined by us, nor

[^44]with the statements of other authors. Perhaps the plain coloration may be due to age, or to the poor condition of the typical specimen.
Kaup's Apionichthys dumerili has not been described at all, but simply mentioned as the type of the genus. As his species cannot be identified, its name should not be used.

## 124. APIONICHTHYS OTTONIS.

Apionichthys ottonis Steindachner, Ichth. Notizen, vii, 41, 1868 (Sicily).

## Hubitat.-Mediterranean Sea.

This species is unknown to us. Judging from the published descriptions, it must be very close to Apionichthys unicolor, and only the different locality would appear to indicate specific distinction.

## Genus XLV.-BRACHIRUS.

Brachirus Swainson, Nat. Hist. Class'n Fishes, 1839, ii, 303 (orientalis, zebra, commersoniana, etc.) (not Brachyrus Swainson, nor Brachyurus Fischer, both prior names).
Synaptura Cantor, Catal. Malayan Fishes, 1850, 232 (commersoniana, zebra) (name a substitute for Brachirus, preoccupied by Brachyurus, which is regarded as the correct orthography).
Solenoides Bleeker (fide Kaup).
? Euryglossa Kaup, Wiegmann's Archiv, 1858, 99 (orientalis).
? Eurypleura Kaup, l. c. (substitute for Achiroides).
? Achiroides Bleeker, Verh. Bataav. Genootsch., xxiv, Pleuron., 6, 1862 (melanorhynchus).
? Anisochirus Günther, Cat. Fish. Brit. Mus., ir, 1862, 486 (panoides).
Type: Pleuronectes zebra Bloch (as restricted by Swain., Proc. Ac. Nat. Sci. Phila., 1883).

We have had opportunity to study but few of the numerous species referred to this genus, and have no opinion as to the proper limitation of the group. Possibly neither of the European species should be referred to it.

We retain the name Brachirus(i.e., Brachychirus), notwithstanding the priority of the name Brachyrus, which seems to have the same meaning. If, however, this name of Swainson be rejected, that next in order of date is Synaptura, which has now the advantage of general usage.

> ANALYEIS OF THE SPECIES OF BRACHIRUS.
a. [Pectoral fins subequal; one of the nostrils of the blind side large, round, much dilated ; depth, 3 in length, with caudal; head, 5 ; upper jaw overhauging ; pectorals both present, equal in length, their length equal to their distance from the eye; color greenish brown, marbled with darker. D. 72 ; A. 58 to $60 ;$ P. 8. (Ћаир) .................................................................................... Savignyi, 125.
aa. [Pectoral fins unequal, the right pectoral $\frac{1}{3}$ its distance from the eye; nostril on each side dilated, trumpet-like ; lateral lino straight ; ventral not inserted at chin; body rather elongate, depth 32 to 4 . D. 72 to $76 ;$ A. 58 to 60 . Color chestnut, much spotted and variegated; three rows of pale ocelli bordered with dark along side of body.] (Capello).
. Lusitanicus, 126.

## 125. BRACHIRUS SAVIGNYI.

Synaptura savignyi Kaup, Wiegmann's Archiv, 1858, 97 (Naples). Günther, iv, 480. 1862 (copied).

## Habitat.-Mediterranean Sea.

We know nothing of this species, except what is contained in the scanty description of Kaup. According to Professor Giglioli, none of the Italian naturalists have seen this species.

## 126. BRACHIRUS LUSITANICUS.

Synaptura lusitanica Capello, Jorn. Ac. Sci. Lisb., v, 1868, 92, and vi, 1869, 153, tal. 9, f. 1 (Lisbon).

## Habitat.-Coast of Portugal.

We have not examined this species, and know it from Capello's description only.

## Genus XLVI.-SYMPHURUS.

Symphurus Rafinesque, Indice all' Ittiologia Siciliana, 1s10, 52 (nigrescens).
Bibronia Cocco, Alcuni Pesci del mare di Messina, 1844, 15 (ligulata; larval form).
Plagusia Cuvier, Règne Animal, ed. ii, 18※8 (based on Plagusia of Brown; name preoccupied in Crustaceans, Latreille, 1806).
Plagiusa Bonaparte, Catalogo Metodico, 1846, 51 (lactea; sulystitute for Plagusia preoccupied).
Aphoristia Kaup, Wiegmaun's Archiv, 1858, 106 (ornata).
Glossichthys Gill, Cat. Fish. E. Coast N. A., 51, 1861 (nomen nudum: playiusa).
Ammopleurops Günther, Cat. Fish. Brit. Mus., iv, 1862, 490 (lacteus = nigrescens).
? Bascanius Schiödte, "Naturhist. Tydsskr., v, 269, 1867" (tedifer; larval form).
Acedia Jordan, subgenus novum (nebulosus).
Type: Symphurus nigrescens Rafinesque.
We have adopted for this genus the name Symplurus instead of Aphoristia, as the so-called Ammopleurops lacteus is a genuine member of the latter genus, and as it seems to be erident that the latter species is the original of the Symphurus nigrescens of Rafinesque.

The following is Rafinesque's description:
"III. Gen. Symphurus. Ala caudale acata, e rimita all' ale dorsali, ed anali, occhj alla sinistra. Osserv. Si dovrauno raggnagliare in questo genere due specie del genere Achirus di Lacepede, cioè gli A. bilineatus, e A. ornatus. "Sp. no.44. Symphurus nigrescens. Nerastro senza fascie, allungato, una sola linea laterale da ogni lato."

This single lateral line assumed to distinguish Ammopleurops from Aphoristia is not a real lateral line, but a depression along the median line produced by the junction of the muscles.

The species of Symphurus are somewhat numerous and very closely allied. With the exception of the European Symphurus niyrescens, all of them are American.
The development of the species is imperfectly known. According to Giglioli, the larvo called Bibronia, may belong to this genus, and so possibly may Delothyris and Charybdia.
S. Mis. $90-21$

The name Plagusia belongs properly to the present genus rather than to the type of Plagusia bilineata, to which it has been restricted by Kaup and Giinther. It is, however, preoccupied in crustaceans, and in any case, both Plagusia and the substitute name Plagiusa are antedated by the name Sympturus.

One of the American species referred to Symphurus, nebulosus, seems to differ widely from the others and is probably the type of a distinct genus, or subgenus, for which we have suggested the name Acedia. This name is applied by the Cuban fishermen to Symphurus plagusia.

## ANAYYSIS OF SPECIES OF SYMPHURUS.

a. Scales ctenoid, not keeled. (Symphurus.)
b. Scales small, moderately ctenoid; the number in a longitudinal series from 75 to 105.
c. Dorsal and anal fins chieny black anteriorly and posteriorly, with paler edgings; body moderately elongate, the depth 33 in length; the head $4 \frac{1}{2}$. Scales rather small, not very rough, about 80 in a longitudinal series. D. 90 ; A. 73 to 75 . Color rather pale, plain or more or less mottled with darker, but without cross-bars; fins chiefly black with
 cc. Dorsal and anal pale anteriorly, becoming more or less abruptly black posteriorly.
d. [Caudal fin abruptly pale ; depth $4 \frac{1}{2}$ in length; head, $5 \frac{3}{2}$. D. 96 to 100; A 86 to 87. Scales, 88 to 90 . Color, grayish, speckled with brown; dorsal and anal fins black on last tenth, the caudal abruptly pale; tips of fin-rays vermiliou.] (Goode f Bean) ..... Marginatus, 128.
dd. Caudal fin black, as is a large part of the dorsal and anal; the black either continuous or in the form of large spots. Color, brownish, often mottled, usually with more or less distiuct darker cross-bands, and with longitudinal streaks along the rows of scales, sometimes nearly plain brown.
e. Scales quite small, 98 to 105.
f. Body decidedly elongate, the depth about $4 \frac{2}{5}$ in length; D. 97; A. 82; scales, 98.......................................................... Elongatus, 129.
 very distinet; D. $100 ;$ A. 80 ; scales about $105 \ldots$ Atricauda, 130.
ce. Scales somewhat larger, 75 to 85 ; body rather elougate, the depth $3_{10}^{10}$ to $3 \frac{2}{3}$ in leugth; the head $5 \frac{7}{3}$ to $5 \frac{2}{3} ; 1$ D. 90 to 95 ; A. 75 to 80.

Plagusia, 131.
cce. Dorsal and anal palethroughont, or more or less motiled or spotted with darker; the caudal similarly colored, not distinctly black; body not very elongate, the depth 3 to 3 in in length. (Probably all varicties of S. plagiusa) ................................................. Pagiusa, 132. $x$. Body with dark cross-bands more or less distinct; the fins mottled or speckled; upper eye slightly in advance of lower.
y. Dorsal rays 86 to 95 ; anal rays 75 to 80 ; head 5 in length ; depth :31 ; scales 85 to 93 ; cross-bauds more distinct than in related species. Var. plagiusa, 132 (a). yy. Dorsal rays 78 to 85 ; anal rays 70 to 22 ; head 5 iu length; depth 37; scales 80 to 90 ; color light brown, with darker cross-bars, which become obsolete with age....................... Var. pusillus, 132 (b).
$x x$. [Body uniform grayish, without cross-bands; last part of dorsal and anal with 3 or 4 oblong black blotches, each somewhat larger than the eye; upper eye directly above lower ; head, $5 \frac{2}{3}$ in length; scales, 85 ; D. 92; A. 75.] (Goode f. Bean)

Var. diomedeanus 132 (c).
bb. [Scales rather large, very rough-ctenoid, about 65-34; depth, $3 \frac{1}{7}$ in length; head, $4 \frac{7}{8}$; D. 90 ; A. 69 to 75 ; color clouded brown, somewhat blotched.] (Goode f. Bean)

Piger, 133.
$\boldsymbol{a} a$. [Scales very small, ctenoid, each with a median keel, which is dark and prominent; snout and jaws naked; fin-raysin increased number.] (Subgenus Acedia Jordau.)
h. Head, $5 \frac{3}{3}$; depth, $4 \frac{4}{3}$; D. 119 ; A. 107 ; seales, 120 ; grayish, everywhere mottled with brown.] (Goode \& Bean).....Nebulosus, 134.

## 127. SYMPHURUS NIGRESCENS.

Symphurus nigrescens Rafinesque, Indice all' Ittiologia Siciliana, 1810, 52 (Palermo).
Plagusia lactea Bonaparte, Fauna Ital. Pesci, about 1840.
Ammopleurops lacteus Günther, iv, 490 (copied).
Plagusia picta Cocco (fide Giglioli).
Bibronia ligulata Cocco, "Alcuni Pesci del mare di Messina, 1844,390"(Messina) (larva).
? Bascanius tcedifer Schiödte, Natur. Tydsskr., v, 269, 1867 (free-swinming oceanic larvæ).

## Habitat.-Mediterranean Sea.

We have examined three specimens of this rare species, obtained at Palermo by Professor Doderlein. As already noticed, this is a genuine member of the genus usually called Aphoristia, having no lateral line. These three specimens have the body nearly uniform in color. They correspond to the Ammopleurops lacteus of European authors. A specimen in the museum at Cambridge from Naples is somewhat mottled and represents the nominal species Ammopleurops pictus.
128. SYMPHURUS MARGINATUS.

Aphoristia marginata Goode \& Bean, Bull. Mus. Comp. Zool., sii, 153. (Off St. Vincent, etc.)
Habitat.—West Indies.
This species is known ouly from the original types, taken in deep water ( 94 to 324 fathoms) in the West Indies.

## 129. SYMPHURUS ELONGATUS.

Aphoristia ornata var. elongata Guinther, Fishes Centr. Amer., 1869, 473. (Panama.)
Aphoristia elongata Jorlan \& Gilbert, Bull. U. S. Fish Comm., 1882, 111. (Pananai.)
Habitat-Pacific coast of tropical America.
This species is not uncommon on the Pacific coast of Central America, where it represents the closely related Symphurus plagusia. Its relations with Somphurus atricauda are still closer.

## 130. SYMPHURUS ATRICAUDA.

Aphoristia atricauda Jordan \& Gilbert, Proc. U. S. Nat. Mus., 1880, 23 (San Diego). Jordan \& Gilbert, Synopsis Fish. N. A., 1882, 842. Jordan \& Gilbert, Proc. U. S. Nat. Mus., 1852, 380. (San José, Lower California.) 'Jordan, Proc. U. S. Nat. Mus., 1886, 54.

## Habitat.-Lower California, north to San Diego.

This species is common in the bay of San Diego, in which locality the numerous specimens before us were taken. A small specimen $1 \frac{1}{2}$ inches long, with light spots on the colored side and a pale ocellation on the black of the tail, taken by Mr. T. Belding near Cape San Lueas, probably belongs to the same species.

Symphurus atricauda is very close to S. elongatus, and both might well be regarded as geographical varieties of $S$. plagusia.

## 131. SYMPHURUS PLAGUSIA.

(Acedia.)
Plagusia Brown, Jamaica, 445, No. 1. (Jamaica.)
Pleuronectes plagusia Bloch \& Schneider, Syst. Ichth., 1801, 16: (after Brown).
Achirus ornatus Lacépèle, Hist. Nat. Poiss., iv, 659,1803 (on a specimen "presented by Holland to France").
I'lagusia ornata Cuvier, Regno Animal, ed. ii.
Aphoristia ornata Kaup, Wiegmann's Archiv, 1858, 106. Guinther, is, 490 (San Domingo, Jamaica). Poey, Synopsis, 1868, 409. Poey, Enumeratio, 1875, 140 (Havana). Kner, Novara Fische, iii, 292. (D. 90 ; A. 75 ; depth $3 \frac{1}{4}$ in length; Rio Janeiro.)
Plagusia tessellata Quoy \& Guimard, Voyage Uranie, Zoologie, 240, 1824 (Rio Janeiro). Plagusia brasiliensis Agassiz, Spix Pisc. Brasil., 1827, p. 89, tab. 50. (Brazil.)
Aphoristia plagiusa Jordan, Proc. U. S. Nat. Mus., 1886, 53. (Havana.) (NotS.plagiusa of this paper.)
Habitat.-West Iudian fauna (south to Rio Janeiro).
The numerous specimens of this species examined by us are from Havana, Pernambuco, Santos, Rio Janeiro, Curuça, and Victoria.

The synonymy of this species is somerhat doubtful. The original type of Pleuronectes plagiusa was sent to Linnæus by Dr. Garden, of Charleston. It would therefore appear probable that this specimen represented the species of this genus which is found on the Carolina coast. But this typical specimen is still preserved in the rooms of the Linnæan Society in Loudon, where it has been examined by Goode and Bean.
From their notes (Proc. U. S. Nat. Mus., 1885, 196) we quote: "The type of this species may have come from Africa or India. There is considerable doubt as to its origin. (See Garden's Correspondence with Limné, page 314.) D. ca 92 , A. cu 80 . Scales 77. The species is more elongate than our specimens of Aphoristia plaginsa, so called, the depth being contained in the total length without candal $4 \frac{1}{3}$ times and the head 6 times."

As, however, no species of this gemus are yet known from Africa or India, it is rather probable that Garden's fish actually came from

Charleston. The greater slenderness of the original type is perhaps due to distortion, and the smaller number than usual of the scales does not afford a marked distinction.

On account of the fact that the West Indian species as a rule is $\dot{a}$ little slenderer than the northern one and has a little larger scales, Dr. Jordan has elsewhere adopted for the former the Linnæan name, but, on the whole, it seems more probable that the original plagiusa was the northern fish.

The name ornotus is also doubtful in its proper application. The only thing distinctive in the description of Lacénède is that the typical specimen was "given by Holland to France." Many of the species in this Dutch collection seem to have come from Suriuam, and this is probably no exception. But Lacépède's description might apply as well to any other species of Symphurus as to this.
The name Pleuronectes plagusia, given by Schneider to the species described by Brown, seems to admit of no doubt, as this is the only one of the group yet known from Jamaica. If, therefore, the name plagiusa be used for the northern species, or dropped altogether as not identified, the present species will stand as Symphurus plagusia.
We have compared numerous specimens from Rio Janeiro (representing the nominal species tessellatus or brasiliensis) with others (plagusia $=$ ornata) from Havana. There is certainly no permanent difference. The Brazilian specimens are a little more slender on an average, but there are numerous exceptions, and all variations in color are found in both.
132. SYMPHURUS PLAGIUSA.

## (Tongue-fish.)

a. Var. plagiusa.

Pleuronectes plagiusa Linnæus, Syst. Nat., ed. xii, 1766, 455 (on a specimen from Dr. Garden, probably from Charleston, but the locality not quite certain ; and of various copyists).
Glossichthys plagiusa Gill, Cat. Fish. E. Coast N. Am., 1861, 51 (11ame only).
Plagusia plagiusa Gill, Cat. Fish. East Coast N. Am., 1872-'3, 794 (name only).
Aphoristia plagiusa Jordan \& Gilbert, Proc. U. S. Nat. Mus., 1\&78, 363 (Beaufort). Jordan, op. cit., 1880, 22 (St. Johu's River). Jordau \& Gilbert, op. cit., 1882, 305 (Pensacola) ; 1882, 618 (Charleston). Jordan \& Gilbert, Synopsis Fish. N. A., 1882, 842. Jordan, Proc. U. S. Nat. Mus., 1884, 144 (Key West). Plagusia fasciata Holbrook, MSS. De Kay,New York Fauna, Fishes, 1842, 304 (Charleston).
Aphoristia fasciata Jurdau, Proc. U. S. Nat. Mus., 1886, 53.
b. Var. pusillus.

Aphoristia pusilla Goode \& Bean, Proc. U. S. N. Mus., 1835, 590 (Gulf Stream; lat. $40^{\circ}$ ). c. Var. diomedeanus.

Aphoristia diomedeana Proc. U. S. Nat. Mus., 1835, 589 (Gulf of Mexico; 24 fathoms).
Habitat.—South Atlantic and Gulf coasts of the United States.

This species is Tery common on the sandy shores of our Sonth Atlantic and Gulf States. Our numerous specimens are from Beaufort, Charleston, Pensacola, aud Key West.

- The reasons for continuing to regard this species as the original Pleuronectes plagiusa of Linnæus, are given under the head of Symphurus plagusia.

If however, the name plagiusa be referred to the West Indian form or dropped as unidentifiable, the name fascintus would then hold for this species.
The characters distingnishing elongatus, atricunda, plagusia, plagiusa, pusillus, and diomedeanus are of slight value, and doubtless all will ultimately prove to be varieties of a single one, the coloration of the fins being more marked in southern specimens.
A specimen nearly six inches long collected at Beanfort, N. C., by Prof. O. P. Jenkins seems referable to pusillus rather than to the typical pletgiusct. It is highly mottled in coloration, the body and fins being profusely speckled and blotehed with blackish besides 9 or 10 rather distinct cross-bands. D. 85, A. 22 . Scales about 80. Depth $3_{4}$ in length.

Another large specimen 7 inches long from the Florida Keys is in the museum at Cambridge. This has: D. 82, A. 72, lat. 1. 76. Depth 3 in leugth. Color brown almost plain, except that the fins are mottled, especially posteriorly; candal fin not black.

If these two specimens are really typical of symphurus pusillus, it probably cannot be separated as a species from S. plagiusa.

The form called diomedeanus is known to us from the description ouls. It is certainly very similar to $\mathbb{S}$. plagiusa. Perhaps it is identical with our Key West specimens of the latter. These are very pale, and nearly plain gray, as would be expected in fishes taken from the coral sands.

## 133. SYMPHURUS PIGER.

Aphoristia pigra Goode © Bean, Bull. Mus. Comp. Zool., xiii, 5, 1886, 154 (St. Kitts, Key West, Cedar Keys, in about 250 fathoms).
Habitat.-West Indies and Gulf of Mexico, in deep water.
This species is known to us from the original description. It is evidently a better defined species than are most of the others.

## 134. SYMPHURUS NEBULOSUS.

Aphoristia nebulosa Goode \& Bean, Bull. Mus. Comp. Zool., xix, 1883, 192 (Gulf Stream, off the coast of Carolina).
Acelia nebulosa Jordan, MSS.
Habitat.-Gulf Stream.
This species is known from the original account only. The description would indicate a species considerably unlike those forming the rest
of the geuus. If its scales are really keeled it may form the type of a distinct genus. The increased number of fin-rays also indicates a probability that the number of vertebre will be found to be similarly increased. For the subgenus of which this is the type, we have suggested the name of Accdia.

## LARVAL FORMS.

## (Bibronie.)

The very young of all the Pleuronectida so far as known are transparent and with the eses symmetrical. At a length of from one-fourth of an inch to an inch the eye of one side moves by degrees to the other side, where it becomes the upper eye. The question has been much discussed as to how this change comes about-whether by a twisting. of the head so that the eye moves over the line of the profile, whether by passing from side to side beneath the frontal bone, or by passing between the frontal bone and the bases of the dorsal rays, or whether by each of these methods in different genera. The present writers have had no opportunity to make any observations on this point, the statements which follow being cutirely drawn from others, chiefly from the papers of Dr. Luigi Facciolì.*

According to Prof. Japetus Steenstrup, $\dagger$ who has examined some "plagusiiform" specimens (Symphurus?) about 250 millimeters in length, the eye, by a combined movement of rotation and translation, goes from its original position to the other side by passiug under the frontal bone.

In other flounders examined by Prof. Alexander Agassiz the eye is said to have crossed from side to side above the frontal bone, penetrating the space between this bone and the dorsal fin by sinking into the tissues of the head. In the species examined by Dr. Facciold the eye was found to pass between the frontal bone and the dorsal rays, but without penetrating any tissues. During the passage of the eye the first dorsal ray formed a projection detached from the cranium, and in the notch between this and the head the eye has passerl from one side to the other.

It has not been easy to determine with certainty the species to which these larval forms belong. The first of these which were known were described by Cocco as distinct genera, allied to the flounders, but distinguished from them by the symmetrical arrangement of the ejes. For the group thus defined Bonaparte has proposed the family name of Bibronidi (Bibroniidec), and this name has been adopted by some of the Italian ichthyologists.

[^45]Lately the relations of these forms have been made the subject of careful study by Dr. Carlo Emery, Dr. Luigi Facciolà, and others of the Italian naturalists, and no doult remains that the "Bibroniidee" are larval flounders and soles.

For the sake of completeness, we give the following analysis of the nominal genera and the synonymy of the species:

ANALYSIS OF THE NOMINAL GENERA OF BIBRONI E OR LARVAL FLOUNDERS AND SOLES.
a. Eyes wholly sinistral ; mouth toothless, shaped as in the soles; upper jaw hookshaped; head very small; caudal fin subsessile, free from the dorsal and anal; scales small, caducous, cycloid; eyes small; pectoral fins both present, the right pectoral small ; ventral fins both present, free from anal; dorsal fin of long, simple rays, their tips much exserted; body moderately elongate; the depth 3 in length; dorsal rays 100 ; anal rays 80. P. 12-4. Delothyris, A.
aa. Eyes partly sinistral, the one on the left side, the other on the vertex (in the act of trausition) ; form pleuronectoid.............................. Coccolus, B.
aaa. Eyes, one ou either side of the head; strictly symmetrical (or with the right eye somewhat higher than the other), and with a notch before it, between the cranium and the dorsal fin.
b. Vertical fins scarcely or not confluent; left ventral largest, on abdominal ridge.
c. Body excessively compressed, broadly orate, its depth $1 \frac{2}{3}$ in its length; both profiles very convex; the snout not forming an angle ; no scales; none of the dorsal rays prolouged ; ventral fin single (Faccioliu) ; pectoral fins short, rounded, with fleshy base and fringe-like rays; D. 85; A. 65. Jaws equal, with small, acúte teeth.....................................................................
cc. Body more elongate; scales present or ahsent; pectorals adipose, with fringelike rays.
d. Ventral fin single; first four rays of tho dorsal well separated and with much exserted tips; dorsal and anal slightly joined to caudal; depth about $4 \frac{1}{2}$ in length ; D. 4, 106; A. 100. (Emcry) ..................? Charybdia, D. $d d$. Ventral fins both present, the left ventral with more prolonged base; dorsal with only the first ray (if any) prolonged; dorsal and anal free from caudal ; depth $2 \frac{1}{3}$ to 2 in length ( Facciolù).....................Charybdia, D. bb. Vertical fins fully confluent; form lanceolate.
$e$. Body linguiform, the depth 6 in length; no teeth; snout obtuse; eyes minute; ventral fins two; four or five of the dorsal rays produced; pec-

ce. Body plagusiform; perfectly transparent....................... Bascanius, F.

## Synonymy of genera of larval Pleuronectida or Bibronice.

Bibronia Cocco, "Iutorno ad alcuni Pesci del mare di Messina. Lettera al Sig. Augusto Krohn da Livonia. In Giomale del Gabinetto \& Lettere di Messina. Ann. iii, tom. v, fasc. xxr. Gennaio e febbraio 1844, pag. 21-30, tav. 2" (fide Facciolia) (ligulata).
Peloria Cocco, 1. c. (hecckeli).
Coccolus (Bonaparte) Cocco, 1. c. (annectens).
Bascanius Schiödte, Naturhist. Tidsskr., v, 269, 1867 (tedifer).
Thyris Gooie, Proc. U. S. Nat. Mus., 1880, 344 (pellucidus: name preoccupiod).
Delothyris Goode, Proc. U. S. Nat. Mus., 1883, 110 (pellucidus).
Charybdia Facciola, Naturalista Siciliano, iv, 265, 1885 (riippelli).

## 1. DELOTHYRIS PELHUCIDUS.

Thyris pellucidus Goode, Proc. U. S. Nat. Mus., 1880, 337, 344, 475. (Gnlf Stream, off Rhode Island). Jordan \& Gilbert, SynopsisFish. N. A., 1882, 840 (copied).
Delothyris pellucidus Goode, Proc. U. S. Nat. Mus., 1883, 110.
This fish is unquestionably a larval form, but probably the adult is not yet known. In some respects it resembles Monolene, in others it seems allied to the Cynoglossince. The type was nearly three inches in length.

## 2. COCCOLUS ANNECTENS.

Coccolus annectens (Bonaparte) Cocco, l.c., 1844 (Messina).
This species has not yet been described in detail, but from the form of the body it wonld seem to resemble most closely the young of Platophrys podas.

## 3. PELORIA HATCKELI.

Peloria hackeli Cocco, l. c., 1844 (Messina). Einery, Contribuzione all' Ittiologia, 405 (Naples). Facciolà, Nat. Sicil., 1885, 5.
The specimens of this species described by Facciolit are 20 to 36 mm in length. According to Facciola, * it can be confounded with no known species of Pleuronectoid. Dr. Emery has maintained that it is the young of Platophrys podas, and his figure and description seem to render this determination almost certain.
4. CHARYBDIA. (Species.)

Peloria rüppelli Emery, Contribuzione all' Ittiologia (Naples).
The description given by Dr. Emery of P. riippelli diverges so widely from that giren by Dr. Facciola, that the identity of the two may be questioned. If, as is possible, the pectorals in the achirous forms disappear with age, this species may belong to the Cynoglossince. More likely, it is a relative of Arnoglossus, or of Monolene.

## 5. CHARYBDIA RÜPPELLI.

Peloria riippelli Cocco, l. c., 1844 (Messina). Charybdia ruippelli Facciolà, Nat. Sicil., 1885́, 5 (Messina).

This is probably the joung of some species as yet unknown in the adult condition. Some of its characters suggest Arnoglossus ventralis.

According to Facciolà, the body is naked; the form oval; the month as long as the eye; right eye higher than left; first dorsal ray only prolonged; no scales; left ventral with its base longer than the right; length 30 to 40 mm . D. 113, A. 91.

[^46]
## 6. CHARYBDIA RHOMBOIDICHTHYS.

Churybdia rhomboidichthys Facciolà, Nat. Sicil., 1885, 6 (Messina).
Form, oval; the two outlines similar; snout, obtuse, somewhat prominent; tecth, insensible; eye, $4 \geq$ in head, the right a little above the left; none of the dorsal rays prolonged; scales, cycloid, thin; lateral line without arch; length 40 mm . D. 99, A. 74, V. 6.

This form seems to be allied to Syacium and Arnoglossus.

## 7. BIBRONIA LIGULATA.

Bibronia ligulata Cocco, l. c., 1844 (Messina). Faccielà, Nat. Sicil., 1885, 4 (Messina).
This form is known from specimens one-third of an inch in length. If we suppose that in Symphurus the pectoral fins become atrophied with age, this may well be the larva of Symphurus nigrescens.

## 8. BASCANIUS TRDIFER.

Bascanius tedifer Schiödte, "Naturhist. Tydsskrift, v, 269, 1867" (Oceanic).
We have not seen the original description of this form, but from the references made to it by other authors it would appear to be a larval Symphurus.

## RECAPITULATION.

The following is the list of the genera and species of flounders now recognized by us as occurring in the waters of North America and Europe:

The general distribution of each may be indicated by the following letters:
E. Europe (North of Spain).
M. Mediterranean Sea.
B. Bassalian or deep-sea fauna of the Atlantic.
G. Greenland fauna.
N. East coast of United States; Cape Cod to Cape Hatteras.
S. South Atlantic and Gulf coast.
W. West India fauna.
R. Brazilian fauna (Rio).
'I. Patagonian fauna (Terra del Fuego).
P. Panama fauna.
V. Chilian fauna (Valparaiso)
C. Californian fauna.
A. Alaskan fauna.

## Subfamily I.-HIPPOGLOSSINE.

1. Atheresthes (Jordan \& Gilbert).
2. Atheresthes stomias (Jordan \& Gilbert). A.
3. Platysomatichthys Bleeker.
4. Platysomatichthys hippoglossoides (Walbaum). G.
5. Hippoglossus Cuvier.
6. Hippoglossus hippoglossus (Linnæus). E. G. A.
7. Lyyopsetta Jordan \& Goss.
8. Lyopsetta exilis (Jordan \& Gilbert). A.
9. Eopsetta Jordan \& Goss.
10. Eopsetta jordani (Lockington). C.
11. Hippoglossoides Gottsche.
12. Hippoglossoides platessoides (Fabricius). E. G.
$6(b)$.——var. limandoides Bloch. E. G.
13. Hippoglossoides elassodon Jordan \& Gilbert. A.
14. Psettiohthys Girard.
15. Psettichthys melanostictus Girard. C. A.
16. Hippoglossina Steindachner.
17. Hippoglossina macrops Steindachner. P.
18. Hippoglossina microps Giinther. V.
19. Xystreurys Jordan and Gilbert.
20. Xystreurys liolepis Jordan \& Gilbert. C.
21. Paralichthys Girard.
22. Paralichthys califormicus (Ayres). C.
23. Paralichthys brasiliensis (Ranzani). R. WT.
24. Paralichthys adspersus (Steindachner). P. V. (Possibly to be called $P$. kingi.)*
25. Paralichthys dentatus (Linnæus). N. S.
26. Paralichthys lethostigme Jordan \& Gilbert. N. S.
27. Paralichthys squamilentus Jordan \& Gilbert. S.
28. Paralichthys albigutta Jordan \& Gilbert. S.
29. Paralichthys patagonicus Jordan. T.
30. Paralichthys oblongus Mitchill. N.
31. Ancylopsetta Gill.
32. Ancylopsetta quadrocellata Gill. S.
33. Ancylopsetta dilecta (Goode \& Bean). B.

## Subfamily II.-PLEURONECTIN无.

12. Phrynorhombus Günther.
13. Phrynorhombus regius Bonuaterre. M.E.
14. Zeugopterus Gottsche.
15. Zeugopterus punctatus (Bloch). E.
16. Lepidorhombus Giuther.
17. Lepidorhombus whity-iagonis (Walbaun). E.
18. Lepidorhombus norvegicus (Günther). E. (Donbtful species.)
19. Citharus Bleeker.
20. Citharus linguatula (Linnseus). M.
21. Pleuronectes (Linnreus) Fleming.
${ }^{5}$ Pleuronectes.
22. Pleuronectes maximus Linneus. E. M.

28 (b). ——— var meoticus (Pallas). M.
§ Bothus Rafinesque.
29. Pleuronectes rhombus Linnaus. E. M.
30. Pleuronectes maculatus Mitchill. N.

[^47]17. Arnoglossus Bleeker.

## © Arnoglossus.

31. Arnoglossus Tophotes Günther. M. (Donltful species; perlaps identical with A. grohmanni-perhaps with Bothes imperialis Rafinesque.)
32. Arnoglossus grolmanni (Bonaparte). M.
33. Arnoglossus conspersus (Canestrini). M. (Doubttul species; probably same as the next.)
34. Arnoglossus laterna (Walbaum). M. E.

$$
\$-
$$

F5. Arnoglossus? fimbriatus (Goode \& Bean). B. (Probably type of a distinct genus.)

$$
\$ \text {. }
$$

36. Arnoglossus? ventralis (Goode \& Bean). 13. (Perhaps type of a distinct genus.)
37. Platophrys Swainsou.
:3. Platophrys podas (Delaroche). M.
38. Platophrys spinosus (Poey). W. (Doubtful species.)

39, Platophrys constellatus Jordan. V.
40. Platophrys ocellatus (Agassiz). S. W.R.
41. Platophrys maculifer (Poes). W. (Synongmy doubtful.)
42. Platophrys ellipticus (Poey). W. (Doubtful species.)

1:3. Platophrys lunatus (Linnaws). W. R.
44. Platophrys leopardinus (Giinther). P.
19. Syacium Ranzani.
45. Syacium cornutum (Gianther), R.
46. Syacium papillosum (Linnæus). S. W. R.
4. Syacium micrurum (Ranzani). S.W.R.
42. Syacium latifrons (Jordan \& Gilbert). ${ }^{\circ} \mathrm{P}$.
49. Syacium orale (Giinther). P.
20. Azevia Jordan.
50. Azeria panamensis Steindachner. P.
21. Citharichthys Bleeker.
§ Orthopsetta Gill.
51. Citharichthys sordidus (Girard). C.
52. Citharichthys stigmeus Jordan \& Gilbert. C. (Doubtful species.)
§ Citharichthys.
53. Citharichthys dinoceros Goode \& Bean. B.
54. Citharichthys arctifrons Goode. B.
55. Citharichthys unicornis Goode. B.

1 56. Citharichthys macrops Dresel. S.
5\%. Citharichthys uhleri Jordan. W.
58. Citharichthys spilopterus Giunther. S. W.P. R.
59. Citharichthys sumichrasti Jordan. P.

59 (b). *Citharichthys microstomus Gill. S.
22. Etropus Jordan \& Gilbert.
60. Etropus ectencs Jordan. V.
61. Etropus rimosus* Goode \& Bean. S.
62. Etropus crossotus Jordan \& Gilbert. S. W. P. R.

[^48]23. Thysanopsetta Guinther.
63. Thysanopsetta naresi Günther. T.
24. Monolene Goode. (Geuus of uncertain relationships.)
64. Monolene sessilicauda Goode. B.
65. Monolene atrimana Goode \& Bean. B.

## Subfamily III.-0NCOPTERIN尼.

25. Oncopterus Steindachner.
26. Oncoptcrus darwini Steindachner. T.

## Subfamily IV,-PLATESSIN尼,

26. Pleuronichthys Girard.
27. Pleuronichthys decurrens Jordan \& Gilbert. C. A.
28. Pleuronichthys verticalis Jordan \& Gilbert. C. A.
29. Pleuronichthys cconosus Girard. C. A.
30. Hypsopsetta Gill.
31. Hypsopsetta guttulata (Girard). C.
32. Parophrys Girard.
33. Parophrys vetulus Girard. C. A.
34. Inopsetta Jordan \& Goss.
35. Inopsetta ischyra (Jordan \& Gilbert). A.
36. Isopsetta Lockington.
37. Isopsetta isolepis (Lockington). A. C.
38. Lepidopsetta Gill.
39. Lepidopsetta bilineata (Ayres). C.

74 (b). -_ umbrosa (Girard). A.
32. Limanda Gottsche.
75. Limanda fervaginea (Storer). G.
76. Limanda limanda (Linuæus). E.

7\%. Limanda aspera (Pallas). A.
78. Limanda beani Goode. B.
33. Pseudopleuronectes Bleeker.
79. Pseudopleuronectes americanus (Walbaum). N.
80. Pseudopl euronectes pinnifasciatus (Kner). A. (Generic relations uncer tain.)
34. Platessa Cuvier.

$$
\S \text { Platessa. }
$$

81. Platessa platessa (Linnæus). E. M.

81 (b). ———pseudoflesus (Gottsche). E. 8.2. Platessa quadrituberculata (Pallas). A.
§ Flesus Morean.
83. Platessa flesus Linnæus. E. M.

83 (b). ——— glabra (Rathke). M.
35. Liopsetta Gill.
84. Liopsetta dvinensis (Lilljeborg). E. (Doubtful species, probably identical with L. glacialis.)
85. Liopsetta putuami (Gill). N. (Probably identical with the next.)
86. Liopsetta glacielis (Pallas). A.
36. Platichthys Girard.
87. Platichthys stellatus (Pallas). A. C.
37. Microstomus Gottsche. ('To be called Cynicoglossus if Microstomus be deemod preoccupied.)
88. Hicrostomus litt (Walbaum). E.
89. Microstomus pacifieus (Lockington). A.
38. Glyptocephalus Gottsche.
90. Glyptocephalus cynoglossus (Limææus). E. G.
91. Glyptocephulus zuchirus (Lockington). A.

## Subfamily V:-SOLEIN居

39. Solea Queusel.

> § Solea.
92. Solea sotea (Limmens). E. M.
93. Solea capellonis (Steindachner). M. (Doubtful species.)
94. Solea brasiliensis (Cuvier). R. (Species unknown to recent writers.)
§ Peyusa Giinther.
95. Solea Hlemi (Risso). M.
96. Solea aurantiaca (Giinther). E. (Doubtful species.)
97. Solea lascaris (Risso). M. (Synonymy donbtful; perhaps to be called S. scriba.)
93. Solca theophila (Risso). M. (Synonymy somewhat donbtful.)
99. Solea variolosa (Kuer). R.
40. Monochirus Rafinesque.
§ Quenselia Jordan.
100. Monochirus ocellatus (Linnaws). M.
(5) Mierochirus Bonaparte.
101. Monochirus Tuteus (Risso). M.
102. Monochirus variegutus (Donovan). M. E.
103. Monochirus minutus (Parnell). M. (Doultful species.)
(i) Monochivus.
104. Monochirus hispitus Rafinesque.
41. Achirus Lacépède.
() Baiostoma Bean.
105. Achirus achirus (Linnews). W. R. (1'ossibly to be called A.gronovii.)
106. Achivus inseriptus (Gosse). W.S.
107. Achirus klunzingeri (Steindachner). P. V.
108. Achirus mentalis (Guinther). IR.
109. Achirus linentus (Linnæus). S. W. R.

109 (b). ————brachialis (Bean). S.
109 (o). ————_comifer (Jordan 心 Gilbert). S.
110. Achirus mazatlanus (Steiudachner), 1'.
111. Achirns fonsecensis (Guinther). I'.
112. Achorus punctifer (Castelnarz). R.
113. Achirus scutum (Ciinther). P.
114. Achirus garmani (Jordan), Re.

> \$ Achirus.
115. Achirus fintriatus (Giunther). 1'.
116. Achirus fasciatus (Lacéperte). N. S.
117. Achirus panamensis (Steindachner). P.
118. Achirus jenynsi (Giinther). R.
$118(b)$. Achirus lorentai (Weyenbergh). R. (Species unknown to us.)
22. G.gmnachirus Kaup.
119. Gymnachirus fasciaius (Gïnther). R.
120. Gymnachirus nudus (Kaup). R.
43. Achiropsis Steindachner.
121. Achiropsis nattereri (Steindachner). R.
122. Achiropsis asphyxiatus (Jordan). IU.
44. Apionichthys Kaup.
123. Apionichthys unicolor (Giunther). W. R. (Synonymy a little uncertain.)
124. Apionichthys ottonis (Steindachner). M. (Doubtful species.)
45. Brachirus Swainson. (To be called Synaptura if Brachirus be regarded as preoc cupied.)
125. Brachirus savignyi (Kaup). M.
126. Brachirus lusitanicus (Capello). M. (Species unknown to us.)

## Subfamily VT.-CYNOGLOSSINÆ,

46. Symphurus Ratinesque.

## § Symphurus.

127. Symphurus nigrescens (Rafinesque). M.
128. Symphurus marginatus (Goode \& Bean). W.
129. Symphurus elongatus (Guinther). P.
130. Symphurus atricauda (Jordan \& Gilbert), C.
131. Symphurus plagusia (Bloch \& Schneider). W. R.
132. Symphurus plegiuse (Linnibus). S.

132 (b). ———pusillus (Goode \& Beau). S.
13: (c). ———diomecileanus (Goode \& Bean). S.
133. Symphurus piger (Goode de Bean). W.
§ Acedia Jordan. (Probably a distiuct genus.)
134. Sympharus nebulosus (Goode \& Bean). W.

LARVAL FORMS. (Bibronix.)
A. Delothyris Goode.

1. Delothyris pellucidus (Goode). B.
B. Coccolus Bonaparte.
2. Coccolus anncetens (Bonaparte). M.

> C. Peloria Cocco.
3. I'eloria hackeli (Cocco). M.
D. Charybdia Facciolà.
4. Charybdia sp. (Emery). M.
5. Charybdia rüppelli (Cocco). M.
6. Charybdia rhomboidichthys (Facciolà). M.
E. Bibronia Cocco.
7. Bibronia ligulata (Cocco). M.

> f. Bascanius Schiödte.
S. Bascanius tedifer (Schiodte). B,

Indiana University,
Bloomington, Ind., July 10, 1587.

## LIST OF PLATES.

## Plate i.

Page.
Fig. 1.-Atheresthes stomias Jordan \& Gilbert. The Arrow-toothed Halibut ..... 12
2.-Platysomatichthys hippoglossoides Walbaum. The Greenland Halibut ..... 13
3.-Hippoglossus hippoglossus Linnæus. The Halibut ..... 13
Plate II.
4.-Hippoglossoides platessoides Fabricius. The Saud Dab ..... 16
5.-Hippoglossoides elassodon Jordan \& Gilbert. The Alaska Sand Dab. ..... 17
6.-Psettichthys melanostictus Girard. The San Francisco "Sole" ..... 17
Plate III.
7.-Paralichthys lethosiigma Jordan \& Gilbert. The Southern Flounder ..... 23
8.-Paralichthys oblongus Mitchill. The Four-spotted Elounder ..... 95
12.-Limanda ferruginea Storer. The Rusty Dab ..... 63
Plate IV.
9.-Pleuronectes maximus Linnaus. The Turbot (left side) ..... 33
10.-Plewronectes maximus Linuens. The Turbot (right side) ..... 33
Plate V.
11.-Lepidopsetta bilineata Ayres. Var. umbrosa Girard. The California "Sole" ..... $6:$
13.-Limanda asperb Pallas. The Alaska Rusty Dab ..... 64
Plate VI.
14.-Pseudoplewronectes americanus Walbaum. The Flat Fish, or Winter Flounder ..... 65
15.-P'latessa platessa Linmeus. The Plaice. ..... $6 \%$
Plate Vif.
16.-Liopsetta putnami Gill. The Eel-back Flounder (male) ..... 70
17.-Liopsctta glacialis Pallas. The Alaska Eel-back Flounder (female) ..... 71
Plate Vili.
18.-Platichthys stellatus Pallas. The Great Califormia Flounder. ..... 72
19.-Glyptocephalus cynoglossus Linmeus. The Pole Flounder ..... 76
20.-Solea solea Linnæus. The Sole (right side) ..... 79
Plate IX.
21.-Solca solea Linurus. The Sole (left side) ..... 79
22.-Achirus fasciatus Lacépède. The Amorican Sole, or "Hog-choker" (right side) ..... 91
23.-Achirus fasciatus Lacépède. The American Sole, or "Hog-choker" (left side) ..... 91


Fig. 1.-Atheresthes stomias Jordan \& Gilbert. The Arrow-toothed Halibut.
(From No. 27186 : Point Reyes, California.)


Fig. 2.-PLATYSOMATICHTHYS HIPPOGLOSSOIDES (Walbaum). The Greenland Halibut.


Fig. 3.-Hippoglossus hippoglossus (Linnæus). The Halibut
(No. 10439: Eastport, Maine.)


FIG. 4.-HIPPOGLOSSOIDES PLATESSOIDES (Fabricius). The Sand Dab.
(No. 21002: Le Have Bank.)


FIg. 5.-HIPPOGLOSSOIDES ELASSODON Jordan \& Gilbert. The Alaska Sand Dab.
(No. 27938: Humboldt Harbor, Shumagins, Alaska.)


Fig. 6.-Psettichthys melanostictus Girard. The San Francisco "Sole."
(No. 27602 : San Francisco, California.)


Fig. 7.-Paralichthys Lethostigma Jordan \& Gilbert. The Southern Flounder. (No. 21279 : Saint John's River, Florida.)


FIG. 8.-PARALICHTHYS OBLONGUS (Mitchill). The Four-spotted Flounder.
(No. 10730: Wood's Holl, Massachusetts.)


Fig. 12.-LIMANDA FERRUGINEA (Storer). The Rusty Dab,
(No. 21020: Halifax, Nova Scotia.)


LEFT SIOE.
Fig. 9.-Pleuronectes maximus Linnæus. The Turbot.
(From No. 36902 : Europe.)


Fig. 10.-Pleuronectes maximus Linnæus. The Turbot.


Fig. 11.-Lepidopsetta bilineata (Ayres.) The California "Sole."
(Var. umbroset Girard.)
(No. 27602: Saint Paul, Kodiak.)


Fig. 13.-LIMANDA ASPERA (Pallas). The Alaska Rusty Dab.


Fig. 14.-Pseudopleuronectes americanus (Walbaum). The Flat Fish, or Winter Flounder.


FIG. 15.-PLATESSA PLATESSA Linnæus. The Plaice.


FIG. 16.-LIOPSETTA PUTNAMI (Gill). The Eel-back Flounder (male).
(No. 5368 : Salem, Massachusetts.)


Fig. 17.-LIOPSETTA GLACIALIS (Pallas). The Alaska Eel-back Flounder (female).


Fig. 18.-PLATICHTHYS STELLATUS (Pallas). The Great Californıa Flounder.
(From a reversed example.)
(No. 24164 : San Francisco, California.)


FIG. 19.-GLYPTOCEPHALUS CYNOGLOSSUS (Linnæus.) The Pole Flounder. (Atlantic.)


FIG. 20.-Solea solea Linnæus. The Sole.
(From No. 17324: Helsinburg, Sweden.)


Fig. 21.-SOLEA SOLEA Linnæus. The Sole.
(From No. 17324: Helsinburg, Sweden.)


FIG. 22.-ACHIRUS FASCIATUS Lacépéde. The American Sole, or "Hog Choker." (No. 12985: Wood's Holl, Massachusetts.)


Fig. 23.-ACHIRUS FASCIATUS Lacépède The American Sole, or "Hog Choker." (No. 12985: Wood's Holl, Massachusetts.)

## INDEX.

## [Note.-The references are to page-figures in brackets.]

Page.
Acedia ..... $5,97,98,99,103,111$
nebulosa ..... 102
Achiroides ..... 96
Achiropsis. $5,11,56,93,94,95,111$asphysiatus...........................94, 111
nattereri ..... 94, 111
Achirus 5, 11, 56, 77, 82, 84, 86, 87, 91, 93, 94, 95, 97, 110achirus ............................ 85, 87, 01, 110mollis91
bilineatus ..... 97
brachialis ..... 88
comifer ..... 88
fasciatus.......3, 84, 87, 88, 89, 91, 92, 93, 110
fimbriatus ..... 86, 91, 110
fonsecensis ..... 86, 90, 110
garmani ..... $86,90,110$
gronovii ..... 87,110
inscriptus ..... $3,85,87,89,110$
jenynsi ..... $87,92,110$
klunzingeri ..... $85,88,110$
lineatus. ..... $85,88,89,91,92,110$
brachialis ..... 86, 88, 110
browni.$86,88,110$
lorentzi ..... 85,110
maculipisnis ..... 88, 89
mazatlanus $86,89,110$
mentalis ..... $85,88,110$
mollis ..... 91
ornatas. 97, 100
panamensis. ..... 87, 92, 110
punctifer ..... 88, 90,110
scutum ..... $86,90,110$
Amitra ..... 74
Amitrus ..... 74
Ammopleurops ..... 97
lacteụs ..... 97, 99
pictus ..... 99
Ammotretis. ..... 56
Ancylopsetta ................................4, 7, 25, 26, 107dilecta.............................25, 26, 107
quadrocellata. ..... $2,25,26,107$
Anisochirns ..... 96
Aphoristia ..... 97, 99
atricatda. ..... 100
diomedeana ..... 101
elongata ..... 99
fasciata ..... 101
marginata ..... 99
Page.
Aphoristia nebulosa ..... 102
ornata elongata ..... 99
pigra. ..... 102
plagiusa. ..... $1.00,101$
pusilla ..... 101
Apionichthys ..... 111
bleekeri ..... 95
dumerili ..... 95, 96
nebulosus ..... 95
ettonis ..... $95,96,111$
unicolor ..... $95,96,111$
Aramaca. ..... 44, 45, 46
pretula ..... 44
papillosa ..... 45
solexformis ..... 45
Arnoglossus .....4, 8, $28,29,32,35,37,38,55,106,108$bosci....................................... $28,29,36$
conspersus ..... $36,37,108$
fimbriatus. ..... $36,38,108$
grohmanai ..... 3, 35, 37, 108
imperialis ..... 37
laterna ..... $3,35,36,37,108$
lophotes. $35,36,37,108$
megastoma ..... 28
soleiformis ..... 35
rentralis ..... $36,38,105,108$
Aseragrodes ..... 84
Atheresthes. $4,6,11,12,106$
stomias ..... $2,12,50,106$
Auchenipterus ..... 74
Auchenopterus ..... 74
Azeria.................................. $4,8,35,38,47,48,108$
panamensis $3,47,48,108$
Bieostoma ..... 84
brachiaio. ..... 88
reticulatum ..... 87
Baiostoma ..... 110
brachialis ..... 88
Balistes carolinensis ..... 33
Bascanius. $1,5,97,104,111$
IBibronia....................................... $1,5,97,104,111$
ligulata ..... 99, 106, 111
Bibronix $103,104,105,111$
Bibroniala $1,103,104$
Bothus. $4,30,31,32,38,107$
imperialis ..... 36, 37, 108
maculatus. ..... 34
podas 38, 41
[113]

|  | Page. |
| :---: | :---: |
| Bothus rhqmboides... | . 41 |
| rumolo. | 34 |
| tappa. | 37 |
| Brachirus.. | .5, 11, 74, 96, 111 |
| lusitanicus | .....96, 97, 111 |
| savignyi..- | .....96, 97, 111 |
| zebra. | 3 |
| Brachychiras | 96 |
| Brachsprosopon. | .... 73, 74 |
| Brachyrus. | .... 74,96 |
| Brachjurus. | 96 |
| Buglossus. | 82 |
| Cestracion | 74 |
| Cestreus. | 74 |
| Cestreus | 74 |
| Chrenopsetta. | 19 |
| dentata | 23 |
| oblonga. | 25 |
| ocellaris | .. 22 |
| Charybdia.... | 5, 97, 104, 105, 111 |
| rhomboidichthys | ...106, 111 |
| riuppelli | ....105, 111 |
| Citharichthys....4, 8, $35,44,47$, | 50, 53, 54, 55, 108 |
| rethalion | 46 |
| aramaca. | 45 |
| arctifrons | .. 3, 49, 51, 108 |
| cayeunensis. | ....... 48, 52 |
| dinoceros | ....49, 51, 108 |
| guatemalensis | 52 |
| latifrons | 47 |
| macrops | ..3, 49, 51, 10¢ |
| microstomus | ......54, 108 |
| ocellatus | 46 |
| ovalis | 47 |
| petulus | 46 |
| panameusis | ........ 47, 48 |
| sordidus | .3, 48, 50, 51, 108 |
| spilopterus.. | , 48, 50, 52, 54, 108 |
| stigmæus | ...49, 50, 51, 108 |
| sumichrasti. | ...-50, 52, 108 |
| uhleri. | ....49, 51, 108 |
| unicornis | ...49, 51, 108 |
| ventralis | 38 |
| Citharus. | 4, S, 29, 31, 32, 107 |
| linguatula | ...29, 107 |
| phatessoides | ..... 16 |
| Coccolus.. | .1, 38, 39, 104, 111 |
| annectens. | 38, 41, 42, 105, 111 |
| Congromurarna | 74 |
| Cremnobates. | .. 74 |
| Cynicoglossus. | ..5, 73, 74, 110 |
| microceplatus | 74 |
| pacificus...... | 75 |
| Cynoglossa....... | .... 73, 74 |
| microcephata ... | ............ 74, 75 |
| Cynoglossinæ................. | $3,5,6,11,105,111$ |
| Cynoglossum | 76 |
| Cynoglossus. | 73 |
| Cynoscion |  |
| Delothyris.... | .. 1, 5, 97, 104, 111 |
| pellucidus | ...105, 111 |
| Drepanopsetta. | 15 |
| platessoides | 16 |
| Engyprosopon | 39 |
| Eopsotta. | ..4.7, 15, 107 |


Page.
a jordani$4,9,55,54,55,108$
rossotas$.53,108$
microstomus54, 108
Euchalarodus ..... 0
Euryglossa ..... 96Flesus
Glossichthys. ..... 97
giusa110craslosus3, 76, 110
longatus .....
saxicola ..... 76
,lineatus
Gymnachirus
93,111
nudus.5, 38, 44
ethation46, 47
fimbriatus52
ฐuincënsis ..... 44
ovalis ..... 47solexformis451
Heteroprosopon57 ..... 1
Heterosomata
Heterosomata
Hippoglossina18, 107
microps19
Hippoglossinia77
exilis ..... 14
limanda ..... 16
1melanostictus.
platessoides ..... 2, 10, 107, 106
americanns ..... 14
californicus ..... 19, 21
grœenlandicus ..... 13
intermedius22, 107


Pleuronectes borealis
bosci. ..... 28
calimanda. ..... 27
cardina. ..... 29
carnaria ..... 69
casurus ..... 37
cicatricosus ..... 71, 72
citharus. ..... 30
cristatus ..... 34
cuspidatus ..... 41
cyclops ..... 33
cynoglossus. ..... 13, 74, 76
dentatus ..... 16, 22, 23
diaphanus. ..... 37
digrammus ..... 60
dvinensis ..... 70
ellipticus ..... 43
elongatus ..... 77
fasciatus ..... 83
ferrugineus ..... 63
Hesoides. ..... 68
Hesus ..... 68
franklinii ..... 71, 72
gilli ..... 75
glaber ..... 70, 71
glacialis. ..... 71
grohmanni ..... 37
guttulatus ..... 59
hippoglossoides ..... 12, 13
hippoglossus ..... 13
hirtus. ..... 27, 28
ischyrus ..... 60
italicus ..... 69
kitt ..... 28, 73, 75
levis ..... 75
lascaris ..... 80
laterva ..... 35, 37
latus ..... 67
leotardi ..... 37
limanda ..... 16, 62, 64
limandanus ..... 16
limandoides ..... 16
limandula ..... 64
lineatus 88, 89, 91,92
linguatula. ..... 16, 29, 64
lingula ..... 83
lioderma ..... 34
lunatus ..... 43
luscus. ..... 69
luteus. ..... 83
macrolepidotus ..... 30, 45, 46
maculatus ..... 3, 32, 34, 107
maculiferus ..... 43
maculosus. ..... 19, 21
maticus ..... 33
mancus. ..... 41
mangili ..... 83
maximus....... $3,30,31,32,33,66,107$
mæoticus ..... 32, 33, 107
megastoma ..... 28, 32
melanogaster. ..... 22
microcephalus ..... 74, 75
microchirus ..... 83
microstomus ..... 75
mollis ..... 91


#### Abstract

Page.

67, 68








1--$+$1析
 +
 .
80, 81 Plearonectes nasutus ..... 80, 81
nigromanus ..... 77
oblongus ..... 23, 25
ocellatus ..... 83
pallasi ..... 68
papillosus ..... 45, 46
passer ..... 34, 68
pegusa ..... 83, 84
pellucidus ..... 38
perarcuatus ..... 62
pinguis ..... 12, 13
pinnifasciatus ..... 66
plagiusa 100, 101, 102
plagusia ..... 100, 101
planus.
$31,32,66,67$ platessa ..... 15, 16
platessoides ..... 39, 41
polus ..... 80
pseudoflesus ..... 67
psendopolus ..... 28
punctatus ..... 27, 32
quadridens ..... 75
quadrituberculatus ..... 68
quenseli ..... 75
regias. ..... 26, 27
rhombus ..... 3, 32, 34, 107
rondeleti. ..... 83
roseus ..... 68
saxicola ..... 76
solea ..... 77, 79
pataracchia ..... 30
stellatus ..... 72
surinamensis ..... 39, 43
theophilus ..... 81
tuberculatus ..... 33
umbrosus ..... 62
variegatas ..... 62, 83
vetulus. ..... 60
whiff-iagonis ..... 28
zebra ..... 96
Pleuronectidæ 1,2, 4, 5, 6, 14, 66, 103, 104
Pleuronectinæ $.2,3,5,7,56,107$
Pleuronichthys 4, 9, 56, 57, 59, 109
cœnosus ..... 57, 58, 109
decurrēs 3, 57, 58, 109
guttulatus ..... 59
quadrituberculatus ..... 58
verticalis $3,57,58,109$
Pcecilopsetta ..... 5
Pomatopsetta ..... 15
dentata ..... 16
Psetta ..... 30, 31
maxima ..... 33
rhombus ..... 34
Psettichthys 2, 4, 7, 10, 17, 61, 107
melanostictus 2, 17, 61; 107
sordidus ..... 50
Psettodes ..... 11
Psettus ..... 30
Pseudoplearonectes $5,10,62,65,66,109$
americanus ...3, 65, 66, 71, 109pinnifasciatus.......65, 66, 109planus65
Pseudorhombus ..... 19
Page.
Pseudorhombus adspersus ..... 22
brasiliensis ..... 22
californicus ..... 21
dentatus ..... 22, 23, 24
oblongus ..... 23
ocellaris ..... 22
quadrocellatus ..... 26
voras ..... 22
Pterophryne ..... 74
Pterophrynoides ..... 74
Pterophrynus. ..... 74
Quassilabia ..... 74
Quenselia ..... $5,82,83,110$
ocellata ..... 83
Reinhardtius ..... 12
hippoglossoides ..... 13
Rhomboides ..... 41
Rhomboidichthys ..... $1,38,39$
cornatus ..... 45
ellipticus ..... 43
leopardinus ..... 44
lunatus ..... 43
lunulatus ..... 43
maculiforus ..... 43
mancus. ..... 41,103
myriaster ..... 38
ocellatus ..... 42
podas ..... 41
spinosus ..... 42
Rhombosole ..... 56
Rhombus ..... 2, 30, 31, 32, 57
aculeatus ..... 33
aquosus ..... 34
aramaca ..... 22,45, 46
bahianus ..... 42
barbatus. ..... 34
candidissimus ..... 41, 42
cardina .....
diaphanus ..... 41, 42
gesneri ..... 41
heterophthalmus ..... 41
hirtus ..... 28
hybridus ..... 34
kleinii ..... 80
levis ..... 34
cornubiensis ..... 75
linnæi ..... 34
maculosus ..... 21
madeirensis ..... 41
mæoticus ..... 33
maximus ..... 33
megastoma ..... 28
norvegicus ..... 29
mudus ..... 38
ocellatus ..... 39, 42
polus ..... 80
rhombitis ..... 33, 34
serratus ..... 41
soleæformis ..... 45, 46
stellosus ..... 33
torosus ..... 33
unimaculatus ..... 26, 27
uniocellatus ..... 27
vulgaris ..... 34
Samarinæ ..... 2, 5


# III.-A REVIEW 0f THE SCIENIDE OF ANERICA AND EUROPE. 

By David Starr Jordan and Carl H. Eigenmann.

In the present paper we have attempted to give the synonymy of the species of Scicenidec found in the waters of North and South America and of Europe, together with analytical keys by which the genera and species may be distinguished. The paper is based on the collections in the museum of the University of Indiana, on a large series belonging to the National Museum, the most valuable part of this series being the collections made by Professor Gilbert at Mazatlan and Panama, and on the collections in the Museum of Comparative Zoology at Cambridge, Mass. This collection is especially rich in South American forms, and nearly all of our information regarding the South American species has been drawn from it. All the representatives of this family in the museum at Cambridge have been examined by the senior author of this paper, and for all statements regarding the South American species he is responsible.

We wish to express our special obligations to Prof. Alexander Agassiz, Director of the Museum of Comparative Zoology, and to Mr. Samuel Garman, curator of the fishes, for the free use of the material in the museum, and to Dr. Tarleton H. Bean for a loan of special desiderata from the United States National Museam. Through the aid of these two great museums we have been enabled to examine nearly all the species included in the present paper. The only species not seen by us are the following: Cestreus obliquatus, Larimus stahli, Scicence gilli, Scicena heterolepis, Pachyurus francisci, Pachyurus schomburgki, Pachypops trifilis, Umbrina reedi, Lonchurus lanceolatus, and Eques pulcher, ten of the 113 species recognized.

There is room for much difference of opinion as to the proper subdivision of the Scicanido into genera. There are few families in which the various types are more definitely joined together by intermediate forms than in the present one. The subdivisions must be more or less arbitrary, or else the great bulk of all the species must be thrown into two genera, Scicena and Otolithus. Such an arrangement, however, tends to obscure the inter-relations of the species, and so we have adopted as distinct genera all the stibordinate groups which we are able to restrict and define by structural characters of some importance.

It is but fair to say, however, that the arrangement adopted is not entirely satisfactory to us. The genera recognized are not equivalent in value, and no subdivision is possible in which they can be made so. The species of Scienince with long gill-rakers (Stelliferus, \&ec.), and those with short oues (Sciena, \&c.) form together an almost perfect series. The characters on which the first of these groups is by us subdivided into distinct genera (deutition, armature of the preopercle, \&c.) cannot apparently be used for this purpose among the Scicnce, as the gradation there is more perfect and the extremes less marked. It is quite true that a character may have a generic value in one section of a family and not in another, yet such generic characters of partial application should always be looked upon with question.

The Scicenidex fall naturally into two suborders, which are well distinguished from each other, and, so far as we know, not connected by intermediate forms. These are the Otolithince and the Scienince. The extremes of the former group (Seriphus, Archoscion) have been of late usually set off as a distinct subfamily-Isopisthine. Dr. Bleeker has even removed this group, Isopisthince, from the family of Scienides altogether. There is no warrant for this arrangement. While Seriphus seems quite different from the other Otolithina, Archoscion is intermediate between Seriphus and Cestrens, and from the latter it is scarcely to be distinguished generically, so perfect is the gradation in the series of species. At the opposite end of the series the genus Eques represents an aberrant form of the Scionince, and another is represented by Aplodinotus and Pogonias. The differences existing do not apparently require the recognition of either of these groups as subfamilies, and we refer all to the Scionince.

The Scicenine constitute an irregularly graduated series, the characters changing by small and often scarcely perceptible gradations from the forms allied to Cestreus on the one hand to those approaching Eques on the other.

We begin our series with the genus Seriphus, which is perhaps most nearly related to the other percoid forms, and we close it with Eques, which stands at the opposite extreme from Seriphus. In passing down the series from Nebris and Odontoscion, the most Otolithus-like of the Scicnince, to Sciena, Menticirrhus, Eques, and the other extreme forms, we find, as has been already stated, no very sharp line of division. The middle line, if we may so speak, lies between Bairdiella chrysoleuca and Sciena sciera, two species closely allied to each other.
Nothing could be more unnatural or more ineffective than the subdivision adopted by Cuvier, whereby the Scianince without barbels are divided into three groups, Corvina, Johnius, and Scicena, solely on the strength of the second anal spine. This is large in Corvina, very feeble in Scicena, and intermediate in Johnius. Günther's arrangement, by which the species referred to Johnius are divided between Corvina and

Scicnen, is ino better, as very many of the species have this spine neither large nor small, and could as well be placed in the one group as the other. Bleeker divides this group into Pseudoscicna, species with the mouth oblique and the jaws subequal, the lower jaw with the teeth of the inuer row eularged, and Johnius with the mouth horizontal and the lower jaw included, the teeth of the lower jaw being in villiform bands. This arrangement is better than the other only in theory. The characters chosen are of more value as indicating relationship, but they canuot be applied in practice, as there are intermediate gradations of all sorts. The type of Pseudoscicona (Scicuna aquila) is in fact much more nearly related to the type of Johnius than to most of the species associated with it in Pseudoscicena.

As we proceed along the series of Scienince from Larimus towards Menticirrhus, the following changes are notable: In the Larimus type the pores on the snout are small and few, and there are no distinct slits or lobes on the snout above the upper jaw; in the other type the pores become large and conspicuous, 4 to 6 in number, and the thickened snout above the upper jaw has two slits on each side, bounding two dermal lobes. The mouth becomes smaller, narrower, more horizontal as we proceed towards Menticirrhus, the lower jaw shorter, and the bands of teeth in both jaws more and more broad, those in the lower more decidedly villiform; the pores on the chin become larger and more numerons, the number rising from 2 to 5 ; the lower pharyngeals become larger, and their teeth larger and less acute; the preorbital becomes wider and more gibbous, the gill-rakers shorter, fewer, and more like tubercles; the anal fin is placed farther forward, and the spines of the fins generally are less slender; the scales, as a rule, become rougher, and the rows of scales less regular in their direction. The flesh, as a rule, becomes firmer, coarser, less agreeable in flavor, and of less value as food, but this, like some of the other characters mentioned above, is subject to much variation.

It may be noted that in some Scicenidse the middle rays of the caudal are more produced in young specimens. In some also the serrations on the preopercle become weaker or even obsolete with age.

The two subfamilies recognized by us may be thus distinguished :

> ANALYSIS OF TIE SUBFAMILIES OF SCIENIDE.
a. Vertebre typically $14+10$, the number in the abdominal region always greater than that of the caudal; lower jaw prominent; teeth not villiform; edge of preopercle entire; second anal spine weak and adnate to the first ray; the first spine minute and often obsolete

Otolithine, I.
$a a$. Vertebræ typically $10+14$, the number in the caudal region always greater than that in tine abdominal ; second anal spine usually well developed and usually joined to the first soft ray by a distinct membrane.

Sclenine, II.

ANALYSIS OF THE GENERA OF SCIANIDAE.*

## Subfamily I.-0TOLITHINÆ,

(Scienida with the vertebre 14 or $15+10$ or 11 , the abdominal portion of the spinal column having always more vertebre than the caudal portıon, the anal fin being posterior in its insertion ; body more or less elongate, the mouth large, the lower jaw projecting, the preopercle with a crenulate, membranaceous border; suout without distinct pores or slits; preorbital narrow; gill-rakers slender, moderate, or rather long; aual fin with one or two very weak spines, the second closely connected with the first soft ray; seales small, smoothish.)
a. Anal fin long, of 15 to 21 soft rays, its length more than half that of soft dorsal; dorsal fins more or less separated (soft dorsal and anal fins closely scaled).
b. Teeth small, sharp, subequal, uniserial below, in a narrow band above; no canines; anal and soft dorsal with 20 to 22 rays each, the former but little shorter than the latter; dorsal fins well separated; body compressed; scales large, ctenoid; gill-rakers long and slender; caudal fin lunate. .Seriphus, 1.
$b b$. Teeth larger, very unequal, tip of upper jaw with one or two strong canines; enlarged teeth or canines on sides of lower jaw ; anal fin shorter than soft dorsal, with 15 to 18 soft rays; dorsal fins more or less separated; body com-

aa. Aual fin moderate, or short, of 7 to 13 soft rays; its length less than half that of second dorsal ; dorsal fins contiguous.
c. Canine teeth, if present, not lance-shaped, tapering from base to tip.
d. Lower jaw without canines at its tip; some of its lateral teeth sometimes enlarged ; tip of upper jaw usually with canines.

Cestreus, 3.
dd. Lower jaw with a pair of very strong canines at its tip, larger than the cauines at tip of upper jaw ; lateral teeth small; body very slender; anal fin small ; gill-rakers short. (Contains only Asiatic species.).......Otolithus. $\dagger$
cc. Canine teeth lance-shaped, widened toward the tip, then abruptly pointed; canines of front of premaxillary largest ; about two canines on front of lower jaw on each side; outer teeth of upper jaw enlarged, somewhat lanceshaped; outer teeth of lower jaw compressed ; air-bladder with two hornlike processes; gill-rakers moderate, slender; (soft dorsal and anal fins scaly).

Ancylodon, 4.

## Subfamily II.-SCIÆNINÆ.

(Scienidew with the dorsal fins contiguous, the soft dorsal being long, much longer than the anal ; vertebre 9 to $12+13$ to 20 , typically $10+$ 14 , the number of vertebre in the abdominal part of the body being always less than in the caudal part.)

[^49]a. Dorsal spines well separated, the first dorsal spine * attached to the third or fourth interneural, not more than two * of the spine-bearing interneurals being placed botween the same pair of vertebres; soft rays of dorsal fin 17 to 32 ( 37 to 40 in Lonchurus, 45 to 50 in Sci(enoides); occipital crest not greatly elevated.
b. Lower pharyngeals separate.
c. Lower jaw withoat barbels.
d. Caudal fin moderately scaly, its distal portion nsually more or less naked, the scales not vumerous enough to give a thickened appearance to the fin.
e. Teeth well developed, permanent in both jaws.
$f$. Lower pharyngeals rather narrow; their teeth conic and mostly sharp; none of them molar; outer teeth of upper jaw more or less enlarged.
g. Gill-rakers comparatively long and slender; mouth more or less oblique, anal fin usually (but not always) inserted posteriorly; preorbital usually narrow, flat; ; edge of snout above upper jarw with the pores and slits little conspicuous or obsolete.
h. Preopercle without bony teeth or serrations, its membranaceous margin entire, crenulate or ciliate (two or three slender spinules present in Collichthys); teeth of lower jaw in few series.
i. Skull excessively cavernous, soft and spongy to the touch, the interorbital space very broad; eye very small; mouth large, oblique; preopercle with a broad membranaceus border, which is striated and fringed; scales small; spinous dorsal short and weak; anal spines weak; caudal fin pointed.
j. Pseudobranchiæ wanting; air-bladder with a lateral horn-like process on each side, this dividing into many branches in the skin of a peritoneal membrane; both jaws with small, unequal, canine-like teeth, those of the upper jaw in the oater, of the lower jaw in the inner series; forehead very convex; soft dorsal very long, of 27 to 50 rays; anal fin small; pectoral finlong; gill-rakers $(X+14)$ slender but rather short; lower jaw included; "vertebræ $14+10$ " (Bleeker) ; "vertebræ 12 $+12 "(C u v$. \& Val.). (Asiatic species.)

Scienoldes. $\dagger$

[^50]$j$. Pseúdobranchix small ; air-bladder with a very complex structure, having many forking branches on each side, these extending in a peritoneal membrane which surrounds the viscera; no canine teeth; dorsal rafs IX-I, 25 to 30 ; anal rays II, 8 to II, 11; the spine small; pectoral shortish; gill-rakers sleuder, not very long; preopercle with two or three stiff, slender spinules near its angle; top of head very convex in all directions; occipital crest high, its edge dentate; caudal finlanceolate. (Asiaticspecies.) Ver-

jij. Psendobranchix present; teeth subequal, all villiform, in narrow bands; soft dorsal long, of 30 to 35 rays; anal fin rather long; soft dorsal and anal scaly; lower jaw projecting; vertebre $10+14$; gill-rakers long and sleuder; air-bladder with two horus . .................................. ii. Skull firm, not excessively cavernous, interorbital space not very broad; preorbital not turgid.
k. Teeth minute, equal, chiefly uniserial or partly biserial above ; snout very short ; cleft of mouth very oblique or even vertical, the lower jaw projecting....................Larimus, 6 . $k k$. Tecth larger, more or less unequal, those in lower jaw mostly biserial, those of the inner series usually enlarged ; cleft of mouth more or less oblique but not vertical.

1. Scales of the lateral line similar to the others, not concealed by smaller ones; anal fin inserted more or less posteriorly, its first spine usually nearer caudal than ventrals, the tip of the last ray when depressed extending beyond base of last ray of dorsal; caudal peduncle rather short; pseudobranchise well developed.
$m$. Upper jaw with a single row of teeth, some of them enlarged, forming long canines; some canines in lower jaw; lower jaw projecting ................Odontoscion, 7 . mm . Upper jaw with a narrow band of teeth, those of the outer row more or less enlarged; no distinct canines .-.........Corvula, 8.
ll. Scales of the lateral line considerably enlarged, almost entirely concealed by smaller ones; anal fin small, inserted well forward; its first spine usually as near ventrals as

[^51]caudal; candal fin pointed, its peduncle long and slender; soft dorsal and anal scaly; scales small ; psoudobranchiæ small, often obsolete on one side. (Fluviatile species.)

Plagioscion, 9. $h h$. Preopercle with its bony margin armed with sharp teeth or serro.
$n$. Head not very broad, the interorbital space convex, scarcely spongy.
o. Preopercle with its margin simply serrate; the lower spine not enlarged; anal fin inserted well forward ; caudal peduncle siender. (Species chiefly African.)

Pseudotolithus.*
oo. Preopercle with its lowermost spine largest, directed abruptly downward. (Soft dorsal and aral fin moderately scaly.)

Bairdiella, 10.
$n n$. Head very broad above, the interorbital space flattish, excessively cavernous, the septa reduced to thin partitions; soft dorsal and anal fin usually densely scaly. second spine of dorsal usually thick; ened ...................-Stelliferus, 11. gg. Gill-rakers comparatively short and thick, usually not longer than posterior nostril ; anal fin inserted farther forward; snout above lower jaw with large pores, and with two more or less distinct slits on its edge; these sometimes obsolete; preorbital more or less broad; mouth more or less inferior................. Sciena, 12.
ff. Lower pharyngeals very broad, with coarse blunt molar teeth; teeth in both jaws subequal, in broad bands; preopercle with its bony margin coarsely serrate; lower jaw included; snout with pores and slits as in Sciena; gill-rakers rather short and slender ............Roncador, 13.
ee. Teeth very small, subequal, those in the lower jaw wanting or deciduous; lower pharyngeals rather broad, with paved teeth; mouth small, inferior; snout as in Sciana; preopercle entire; anal fin long, with about 12 soft rays; gill-rakers shortish, rather slender ................ Leiostomus, 14. dd. Caudal fin very densely scaly, the scales so closely set and so numerous as to hide the rays and to give a thickened appearance to the fin; mouth small, with very small, equal teeth in villiform bands; preorbital broad, more or less turgid; preopercle

[^52]sharply but finely serrate ; gill-rakers very small, thickish; pores and slits on snout obsolete. (Fluviatile spe-cies.).-.-..............-. Pachyurus, 15. cc. Lower jaw with one or more barbels, either at the symphysis or on the rami; snout with slits and pores as in Sciana; lower jaw included; preorbital broad; lower teeth in villiform bands; gill-rakers more or less short.
p. P'sendobrauchir well developed ; pectoral fin not elongate.
q. Lower juw with slender barbels, usually several in number.
$r$. Barbels mostly in a tuft at the symphysis of lower jaw; mouth very small, inferior; gill-rakers minute, thickish; clorsal spines 10 or 11.
8. Preopercle sharply but finely serrate ; preorbital turgid and cavernous, more or less translucent; caudal fin rhom. bic. (Fluviatile species.)

Pachypors, 16.
s8. Preopercle without bony serræ; preorbital very broad, but less distinctly cavernous ----...--.......... Polycirrhus, 17. rr. Barbels chiefly lateral, along the rami of the lower jaw, usually none at the symphysis; lower pharyngeals narrow with sharp teeth.
$t$. Preopercle without bouy serra; dorsal spines 14; gill-rakers short, but rather slender ..... Genyonemus, 18.
$t t$. Preopercle with its bony margin armed with strong teeth; dorsal spines 10 or 11 ; gill-rakers short, thickish. Micropogon, 19. qq. Lower jaw with a single thickish barbel at its tip.
u. Air-bladder large; anal spines two; back more or less elevated; preopercle with its bony margin crenate or serrate ; pectorals short, shorter than ventrals. (Free-swimming species.)

Umbrina, 20.
uu. Air-bladder none; anal spine single, weak; back not elevated; preopercle with its membranaceous edge crenulate; pectoral fins long, longer than veutrals. (Bottom fishes.)

Menticirrhus, 21. $p p$. Pseudobranchix obsolete; body long and low; caudal pointed ; pectoral fin clongate; preopercle without bony serratures.
$r$. Chin without barbels; a row of slender barbels along inner edge of mandible; soft dorsal with about 30 rays:

Paralonchurus, 22.
$v v$. Chin with two short barbels, none on sides of mandible ; soft dorsal with 37 to 40 rays $\qquad$ Lonchurus, 23. bb. Lower pharyngeals very large, completely united, covered with coarse blunt paved teeth; lower jaw included; snout with slits and pores, as in Scirena; gill-rakers rather short.
$w$. Lower jaw with numerous barbels along the inner edge of the rami; preopercle nearly exitire. (Marine species.) ..................... Pogonias, 24. ww. Lower jaw without barbels; preopercle obscurely serrate. (Fluviatile species.) -........... Arlodinotus, 25. $a a$. Dorsal spines close together, the first spme attached to the first interneural, and from 5 to 12 of the spine-bearing interneurals wedged in between the high occipital crest and the neural spine of the second vertebra on the one hand, and that of the third vertebra on the other; occipital crest much elevated. Vertebræ $10+14$.
$x$. Mouth small, low, included, the teeth subequal, in villiform bands; air-bladder simple; preopercle with its membranous edge serrulate; gill-rakersshort; snoutabove premaxillary with slit and pores essentially as in Sciæena; anal fin small; soft dorsal very long, of 36 to 55 rays .-..-- .............. . 26 Ques, 26.

## Genus I.—SERIPHUS.

Seriphus Ayres, Proc. Cal. Acad. Nat. Sci., ii, 80, 1861 (politu8).
Type : Seriphus politus Ayres.
This genus consists of a single species, abundant on the California coast.

It is one of the most aberrant genera in the family-as compared with the typical sciænoid forms, standing at the farthest possible extreme from Eques, Pogonias, and Menticirrhus.

## ANALYSIS OF SPECIES OF SERIPHUS.

a. Body moderately elongate, compressed ; profile slightly depressed over the eyes; eyeslarge, $4 \frac{1}{2}$ in head; snout projecting, $3 \frac{1}{\frac{1}{2}}$ in head; mouth large and narrow, the lower jaw more or less projecting in the adult; premaxillary anteriorly about on the level of the lower margin of the pupil ; maxillary 2 in head, reaching to below posterior margin of eye; lower jaw with a knob at its symphysis which fits in a notch in the upper jaw ; teeth all small, subequal; those of the lower jaw in a single series, except at the symphysis, where there are two or three series; those of the upper jaw in two series, the inner ones much recurved; gill-rakers long and slender, $\frac{2}{8}$ length of eye, $7+16$; lower pharyugeals narrow, linear, fragile; scales moderate, weakly ctenoid, those about the head cycloid ; lateral line straight ; dorsal spines weak, the highest 3 in head; soft dorsal falcate, the anterior rays much the longer ; anal similar, its base
at least as long as that of the soft dorsal ; interspace between dorsals $2 \frac{1}{2}$ in head; ventrals 2 in head; pectorals $1 \frac{2}{8}$; caudal lunate. Color bluish above, sides and belly bright silvery, finely punctate; vertical fins all pale yellow; base of pectorals blackish. Head $3 \frac{1}{4}$ in length ; depth 4; D. VIII-I, 20 ; A. II, 21 or 22 ; scales 7-65-9

Politus,

## 1. SERIPHUS POLITUS.

(The Queen-fish.)
Seriphus politus Ayres, Proc. Cal. Acad. Nat. Sci., ii, 80, 1861. Gik, Proc. Acad. Nat. Sci. Phila., 1862, 18 (name only). Jordan \& Gilbert, Proc. U. S. Nat. Mus., 1880, 456 (San Francisco, Monterey Bay, Sau Pedro, San Diego). Jordan \& Gilbert, Proc. U. S, Nat. Mus., 1881, 48 (San Francisco southwards). Jordan \& Gilbert, Syn. Fish. North Am., 582, 1882. Rosa Smith, West American Scientist, 1885, 47 (San Diego).
Habitat.-Coast of Southern California, north to San Diego.
The Queen-fisk is common on the coast of Southern California. It reaches the length of about a foot, and is an excellent pan fish.

## Genus II.-ARCHOSCION.

Archoscion Gill, Proc. Ac. Nat. Sci. Phila., 1862, 17 (analis).
Isopisthus Gill, Proc. Ac. Nat. Sci. Phila., 1862, 18 (parvipinnis).

## Type: Otolithus analis Jenyns.

This genus as understood by us consists of two very closely related species (Isopisthus), and a third species (Archoscion) which is almost exactly intermediate between the typical Isopis thus and Cestreus.

The resemblance between Archoscion remifer and A. anolis is so very close that the two cannot consistently be placed in separate genera. On the other hand, the affiuities of A rchoscion analis with certain species of Cestreus (as C. bairdi) are scarcely less defiuite. The separation of Archoscion from Cestreus and of the latter from Otolithus are justified chiefly by convenience.

## ANALISIS OF SPECIES OF ARCHOSCION.

a. Distance between dorsal fins about equal to diameter of eye ; soft dorsal with 21 rays, its base about $1 \frac{1}{4}$ times that of anal (Isopisthas Gill).
b. Aual rays II, 19 ; depth 4 in length; pectorals rather long, the middle rays longest, $1 \frac{1}{5}$ in length of head; 75 series of scales between operclo and the tail; back not elevated; head compressed; snout not prominent, scarcely longer than the eye, which is $4 \frac{1}{3}$ in head; month large, very oblique; maxillary extending slightly beyond middle of eye, 2 in head; lower jaw strongly projecting, no pores about the chin; front of premaxillaries with two (or one) strong, recurved, movable canines; sides of upper jaw with two series of minute teeth, the outer series the larger; lower jaw with one or two series of minute teeth in front, and with a single series of larger teeth and 3 to 6 moderate canines on the sides; gill-rakers $4+9$, those near the angle rather long and slender; dorsal and anal densely covered with small scales; base of anal, $1_{6}^{5}$ in head. Color in life: bluish gray above, grayish silvery below, top of snout and tip of lower jaw blackish; inside of mouth yellow, with black on lower lip within; lining of opercles black, bordered with pate orange; dorsals, caudal, and pectorals yellowish with fine black punctulations; axil
brownish, the color extending on pecturals; anal white, the anterior part and the tips of most of the rays jellowish, punctate with black; a dark bloteh behind the orbit and another on upper part of opercle. D.VIII-I, 20 or 21 ; A. II, 19; scales in the lateral line about 55 Remifer, 2.
bb. Anal rays II, 16 or 17 ; depth $3 \frac{1}{5}$ in length ; head $3 \frac{1}{2}$; pectorals shortish, the upper rays longest, $1 \frac{1}{2}$ in head; at least 100 series of scales from opercle to the candal; body much compressed; upper canines very long, recurved; three canines on the sides of the lower jaw ; caudal fin subtruncate ; color dark plumbeous above, rest of body yellowish white ; no axillary spot; au indistinct elongate dark blotch from behind the eye to middle of opercle. D. VIII-I, 21; A. II, 16 or 17 ; scales in the lateral line 52 to $54 . . . . .$. ...................... Parvipinnis, 3. aa. Distance between dorsals about equal to diameter of pupil ; soft dorsal with about 24 rays, its base about $1 \frac{\pi}{4}$ times that of the anal (Archoscion).
c. Body more elongate than in the other species, with longer and sharper snout; base of anal fin $2 \frac{1}{4}$ in head; eye rather smaller than in A. remifer, $5 \frac{1}{2}$ in head; snout 4 $\frac{1}{3}$; maxillary $2 \frac{1}{3}$, reaching middle of eye ; gill-rakers rather long, $\mathrm{X}+12$; upper jaw with a large canine in front ; two to four small canines on cach side of lower jaw ; dorsal and inal scaly ; pectoral long, $1 \frac{1}{2}$ in head; longest dorsal spine $2 \frac{1}{2}$; caudal fin slightly lunate. Head $3 \frac{1}{8}$ in length; depth $4 \frac{1}{4}$. D. IX-I, 24 ; A. I, 15 ; scales 64 ; color bluish, the sides and belly silvery; axil dark; opercle dusky within

Analis, 4.

## 2. ARCHOSCION REMIFER.

Isopistlus remifor Jordan \& Gilbert, Bull. U. S. Fish Com., 1881, 320 (Panama).
Habitat.-Pacific coast of tropical America, Panama.
This species is extremely close to Archoscion parvipinnis, differing only in the characters mentioned in our analysis. It may perhaps prove a geographical variety of the other.

## 3. ARCHOSCION PARVIPINNIS.

dncylodon parvipimis Cuv. \& Val., Hist. Nat. Poiss., v, 84,1830 (Cayenue). Günther, Cat. Fish. Brit. Mus., ii, 312, 1860 (copied).
Isopisthus parvipinnis Jordan, Proc. Acad. Nat. Sci. Phila., 1883, 289 (Cayenne, re-examination of type). Jordan, l'roc. U. S. Nat. Mus., 1886, 588 (name only).
Isopisthus affinis Steindachner, Denksch. Mat. Nat. Kais. Acad. Wiss., 1879, 43, plate 2, fig. 2 (Porto Alegre).
Mabitat.-Coasts of Brazil, north to Cayenne.
Only the original type of this species in the Museum of Paris has been examined by us. This seems to be identical with the species well tigured by Steindachner under the name of Isopisthus affinis, and from Steindachner's description aud figure our account has been chiefly drawn.

## 4. ARCHOSCION ANALIS.

Otolithus analis Jenyns, Zool. Beagle, Fishes, 164, 1842 (Peru). Günther, Cat. Fish. Brit. Mus., ii, 307, 1860 (copied).
Otolithus poruanus Tschudi, Fauna Peraana Ichthyol., 10, 1844 (Peru).
Ancylodon altipinnis Steindachuer, Ichthyol. Notizen, iii,2, plate 1, fig. : 1866 (West coast South America).
Habitat.-Coast of Peru.
S. Mis. 90-23

We have examined many specimens of this species from Callao, Peru, in the museum at Cambridge. There seems no room for doubt as to the identity of the nominal species analis, peruanus, and altipinnis.
The species is about as near Cestrcus as Isopisthus, and its existence renders the separation of Archoscion as a genus from the former a matter of questionable propriety.

## Geuns III.-CESTREUS.

Cestreus Gronow, Cat. Fish., ed. Gray, 49, 1854 (carolincnsis $=$ nebulosus).
Cynoscion Gill, Proc. Acad. Nat. Sci. Phil., 1862, 18 (regalis).
Apseudobranchus Gill, loc. cit. (toeroe $=$ acoupa).
Atractoscion Gill, loc. cit. (aquidens).
Otolithus species; Cuvier, Günther, \&c.
TyPE: Cestreus carolinensis Gronow $=$ Otolithus nebulosus Cuvier.
This genus is closely related to the old world genus Otolithus, from which it differs chiefly in the absence of canine teeth in the lower jaw. Nearly all the species referable to Cestreus are American. Cynoscion, notwithstanding the existence of a prior name Cestraus
We use the mame Cestreus ( $\varkappa \varepsilon \sigma \tau \rho \varepsilon v^{\prime} s$ ) instead of the later name (ヶ\&бтраи̃os), also applied to a genus of fishes (Mugilida).
The reasons for regarding the two words as different have been already given in full by Dr. Jordan in a recent review of the Pleuronectidar, and need not be repeated here. (See page 297 of this Report.)

## ANALYSIS OF AMERICAN SPECIES OF CESTREUS.

a. Scales not very small, the lateral line having 55 to 75 pores, the number of transverse series ranging from 55 to 75 , being not much in excess of the number of pores; head compressed, not truly conical; upper jaw with distinct canines, the band of teeth in the upper jaw rather narrow, the lower teeth small and in few series in front, larger and uniserial on the sides.
$b$. Soft rays of the dorsal and anal more or less closely scaled; gill-rakers comparatively long and slender, 9 to 12 ou the lower part of the arch, the longest at least half the diameter of the eyc.*
c. Soft dorsal of 19 to 23 rays.
d. Candal fin rhombic, the middle rays considerably produced.
$e$. Mouth large, extremely oblique, the maxillary reaching considerably beyond eye, its length 21 in head; body robust, deeper, heavier, and with the back more elevated than in any other of our species ; anterior profile depressed above the eye, so that the snout projects; snout short, not very acute, $4 \frac{3}{5}$ in hear ; head thicker than in other species, the interorbital space equal to length of

[^53]snout; ese $7 \frac{1}{2}$ in head; maxillary very broad, its tip 6 in head; canines two, short and stout; lateral teeth of lower jaw moderate; gill-rakers $\mathrm{X}+10$, rather long and slender, the longest $\frac{8}{4}$ eye; pseudobranchir often obsolete on one side ; dorsal spines high, the longest $2 \frac{1}{10}$ in head; soft dorsal moderately scaly, the distal half of the rays largely naked; middle rays of caudal produced; P. $1 \frac{1}{2}$ in head; ventrals a trifle shorter; color pale, bluish above, silvery below, axil and inside of opercle a little dusky; head $3 \frac{1}{2}$; depth 4. D. IX-I, 19 ; A. I, 9 ; scales about 65 .........Predatorius, 5. ee. Mouth moderate, not very oblique; the maxillary extending little beyond eye, its length about $2 \frac{1}{4}$ in head.
$f$. Snout short, bluntish, $4 \frac{3}{5}$ in head; mouth smaller and less oblique than in most of the species, the canines quite small; the lateral teeth of lower jaw smaller and more mearly equal than in others; lower jaw a little protruding; maxillary extending to posterior margin of eye, 21 in head; gill-rakers $3+10$, those near the angle rather long, ? ? eye, the others rapidly shortened; eye large, $5 \frac{3}{5}$ in head ; soft dorsal and anal scantily scaled, the distal half largely naked, the fins rather high, the longest soft rays $2 \frac{1}{8}$ in head; caudal pointed; pectorals $1 \frac{1}{2}$ in head, not reaching tips of ventrals; color pale, with faint darker streaks along sides of back; axil pale; opercle dusky within; head 34 ; depth 4. D. XI, 20 ; A. I, 8 ; scales $66 . . . .$. . Acoupa, 6.
$f$. Snout loug, about $3 \frac{1}{2}$ in head ; maxillary reaching a little beyond eye; pectoral shortish, $1 \frac{2}{8}$ in head; lower jaw very prominent; lateral line becoming straight opposite front of anal ; dorsal spines weak, the longest $2 \frac{1}{2}$ in head; color uniform silvery, sides minutely punctulate; axillorown, ventrals yellowish; head $3 \frac{1}{4}$ in length; depth 4. D. VIIII, 21 or 22 ; A. II, 10 ; scales 10-70-23.

Squamipinnis, 7.
$d d$. Caudal fin lunate or subtruncate, the middle rays shorter than the upper oues.
g. Colcration nearly plain, bluish above, silvery below ; anal rays II, 10, maxillary reaching a little beyond eye, $2 \frac{1}{8}$ in head; body rather elongate, the back somewhat clevated; head compressed, pointed, not conical ; cye moderate, $6_{3}^{2}$ in head, its width a little more than interorbital space; gill-rakers long and strong, nearly as long as eye; lateral line becoming straight under soft dorsal;
soft fins ail densely covered with small scales; dorsal spines stiffish, the longest 28 in head; anal spines small ; veutrals 2 in head; candal fin deeply lunate; the middle rays 21 in head; pectoral fins 13 in head, reaching beyond tips of rentrals; color slaty bluish above, silvery below ; body and fins everywhere with dark punctulations; tip of chin dark; fins yellowish, the upper all with dark edging; pectorals blackish on the posterior side ; axil dusky; lining of opercle dark; head $3 \frac{1}{10}$ in length; depth 4. D. IX-I, 23 ; A. II, 10 ; pores in lateral line 60 ; the series of scales 66 .

Othonopterus, 8. gg. Coloration not uniform, the back and sides with conspicuous continuous brown streaks along the rows of scales, those above lateral line running upward and backward, those below horizontal; belly silvery ; fins plain; anal rays I, 8; body rather robust, compressed; head compressed ; eye large,5 5 in head; mouth moderate, somerwhat oblique, the maxillary $2 \frac{1}{4}$ in head, not quite reaching line of posterior margin of eye; snout moderately pointed, 4 in head; canines moderate; lateral teeth of lower jaw moderate in size, rather numerous; chin projecting; interorbital space rather flattened and depressed, $5 \frac{1}{2}$ in head; gillrakers long and slender, the longest $\frac{\text { ? }}{8}$ eye, $4+13$ in number; scales large; lateral line becoming straight under front of soft dorsal; soft dorsal and anal low, densely sealed; longest dorsal spine $2 \frac{1}{3}$ in head; caudal subtruncate ; pectorals longer than ventrals, $1 \frac{3}{4}$ in head; anal small; head $3 \frac{1}{3}$ in length; depth $4 \frac{1}{8}$. D. X-I, 19; A. I, 8; scales 54 (pores) ( 52 scries) .......Striatus, 9.
cc. Soft dorsal of 27 to 29 rays; caudal fin subtruncate, or double truncate, the middle rays but slightly produced.
h. Coloration nearly uniform silvery, somewhat darker above; snout short, scarcely longer than eye.
i. [Caudal truncate; body rather slender; eye 5 in head, the snout but little longer; maxillary reaching posterior third of eye; pectoral as long as ventral ; coloration uniform silvery ; head 3 星 in length; depth 5t. D. X-I, 27; A. I, 11 ; scales 60 , scales of fins undescribed.] (Sauvage.) Obliquatus, 10
ii. Caudal weakly domble concave; body rather deep; eye very large 4 in head, as long as snout, equal to interorbital width; body more compressed than in other species; the back
somewhatelevated；snout rather short， not very acute， $4 \frac{1}{2}$ in head；mouth smaller than in related species；maxil－ lary $2 \frac{1}{s}$ in head，reaching to below pos－ terior margin of pupil；gill－rakers long and slender， $4+9$ ，the longest half eye； lower pharyngeals very slender ；dorsal fins contiguous ；membrane of soft dor－ sal scaled to its tips；scales weakly ctenoid；lateral line much curved ante－ riorly，becoming straight under sev－ enth dorsal spine ；color grayish silvery， thickly punctulate above and on sides to level of pectorals，then abruptly silvery，a row of dark points marking the line of division；snout and tip of lower jaw blackish；mouth white within；lower fius white，upper dusky； head $3 \frac{3}{2}$ in length；depth 3 星．D．X－I， 27 to 29 ；A．II， 9 or 10 ；scales 6－58 to 62－7．

Nothus， 11.
$h h$ ．Coloration brownish silvery above，with many dark－brown spots， arranged in undulating streaks；body more or less compressed；eye moderate， 5 to 7 in head；maxillary extending to below posterior margin of eye， $2{ }_{6}^{1}$ in head；canines large；color brownish silvery，with iridescent reflections，and marked with many small，rather irreg－ ular dark－brown spots，some of which form undulating lines running upward and backward；upper fins dusky，lower yellowish．．．．．．．．．．．．．．．．．．．．．．Regalis， 12.
$x$ ．Snout not very sharp，about $4 \frac{1}{4}$（ 4 to $4 \frac{1}{3}$ ） in head；gill－rakers long and slender， usually $5+10$ to 12 in number；mem－ branes of soft dorsal and anal more or less closely scaly，the scales readily de－ ciduous；head 31 ；depth about $4 \frac{1}{4}$ ．D． X－I， 26 to 29 ；A．II， 11 to 13 ；scales 6－56－11．．．．．．．．．．．．．．．Var．regalis， 12 （a）． $x x$ ．Snout very sharp， 3 星 to $3 \frac{4}{5}$ in length of head；gill－rakers shorter，rather slender， $4+8$ or 9 in number；mem－ brane of soft dorsal and anal with very few scales，these readily deciduous； head $3 \frac{1}{3}$ in length；depth $4 \frac{3}{5}$ ．D．X－I， 24 or 25 ；A．II， 10 or 11 ；scales 5－52－8．

Var．thalassinus， 12 （b）． bb．Soft rays of the dorsal and anal scaleless；gill－rakers comparatively short and thiclish，usually not longer than pupil， and but 6 to 8 on lowerlimb of the arch．
$j$ ．Coloration not uniform，grayish and silvery，the back with dis－ tinct darker spots，lines，or reticulations； caudal fiv truncate，or slightly double concave．
l. Caudal and dorsal fins immaculate.

1. Back and sides covered with dark-brown streaks and reticulations, which obscure the ground color, especially above the lateral line; latcral line in a pale streak, bordered above and below by a darker one ; lower parts silvery; fins unspotted. Body comparatively deep and compressed; head somewhat conical, the snout not very sharp, $3 \frac{7}{8}$ in head ; maxiliary extending to below margin of pupil, 2 in head ; eye 7 in head ; gill-rakers shortish, $3+7$; ventrals $1_{\frac{1}{万}}$ in pectorals; pectorals about $1_{\frac{2}{3}}$ in length of head; highest dorsal spine about $2 \frac{1}{5}$ in head; caudal double truncate. Head $3 \frac{1}{2}$ in length ; depth $4 \frac{2}{8}$. D. X-I, 28 ; A. II, 9 ; scales $9-60-15$.

Reticulatus, 13.
$k k$. Caudaland soft dorsal fins with conspicuons round black spots; back and sides covered with similar spots smaller than the pupil, larger than those on the fins; anal fin dusky. Body moderately elongate, compressed ; snout rather long and acute, 3 童 in head; eye small, 6 to 7 in head; maxillary $2 \frac{1}{6}$ in head ; canines strong; gill-rakers shortish, $3+8$; lower pharyngeals narrow, with seven or eight series of sharp teeth, those of the inner series enlarged; pectorals $1 \frac{1}{5}$ in ventrals, $2 \frac{1}{9}$ in head. Head $3 \frac{1}{3}$ in leugth; depth 4. D. X-I, 25 to 27. A. II, 10; scales 10-70 to 75-11.

Nebulosus, 14.
ij. Coloration nearly uniform bluish gray above, silvery below; no distinet spots ou body or tims.
$m$. Caudal fin somewhat lunate in the adult, the middle rays shortest, although more or less produced in young specimeus; pectoral fin short, not reaching tips of ventrals; maxillary extending beyond pupil, $2 \frac{1}{5}$ in head; canine large, usually but one present; suout rather sharp, 4 in head ; gillrakers shortish, $4+7$; pharyngeals narrow, their teeth small, cardiform, the imner ones somewhat enlarged; color, clear steel-blue above, without stripes or spots; silvery below ; a narrow dusky shade along the sides below the lateral line ; axil dusky ; lower fins yellowish, with dusky shading; upper fins dark; second dorsal dark edged. Head $3 \frac{1}{2}$ in length ; depth 4종. D. X-I, 22 or 23 ; A. II, 10. Scales 13-75 (pores)-14, about 95 in a longitudinal series -Parvipinnis, 15. $m m$. Caudal fin always double truncate or double concave, the middle rays somewhat produced.
$n$. Pectoral fins reaching nearly or quite to the tips of ventrals, their length more than half head.
o. Scales small (12-86-X), the number of pores in the lateral line about 70; head rather long, compressed and pointed; maxillary a little more than half head, reaching just past eye; lateral line becoming straight opposite the vent; body rather slender, compressed ; eye large, 6 in head ; premaxiluaries in front, entirely below eye; canines small, two usually present; longest dorsal spine 2 in head; longest soft ray $2 \frac{2}{3}$; middle rays of caudal considerably produced, $1 \frac{1}{4}$ in head; anal spine rather small and stout; ventrals little more than 2 in head; pectorals $1 \frac{1}{8}$. Color bluish above, silvery below, upper parts and especially the middle of the sides punctate with dark points ; upper fins dark, their margins dusky, lining of opercle black ; inside of mouth bright yellow in life. Head $3 \frac{1}{3}$ in length; depth $4 \frac{1}{3}$. D. IX-I, 20; A. II, 8. Scales 12-66 (pores)-X ; 86 rows of scales.

Xanthulum, 16.
oo. Scales moderate ( $8-66-18$ ), the pores in the lateral line about 63 ; head large, bluntish; tho snout shorter than in Cestreus stolzmanni, the snout 4 to $4 \frac{1}{2}$ in head; eye $6 \frac{1}{4}$ in head; maxillary nearly half head, reaching well past eye; body rather rolust; lateral line becoming straight at a point well in advance of vent; dorsal spines slender, the longest $2 \frac{1}{2}$ in head; caudal double truncate, the middle rays longer than the head without snout; pectorals nearly reaching tips of ventrals, more than half length of head ; second anal spine evident. Color white, somewhat blaish above. Head $3 \frac{1}{3}$ in length; depth 4. D. X-I, 21 ; A. II, 9 ; scales 8-63 (pores)-18; 66 series of scales ..............Albus, 17. $n n$. Pectoral fins short, reaching little past middle of ventrals, their length not more than half head; body elongate, somewhat compressed; mouth oblique; maxillary $2 \frac{1}{6}$ in head, extending to posterior margin of pupil; snout rather sharp, 4 in head; canines rather small; gill-rakers shortish, $4+7$; body comparatively slender and elongate; scales rather large, all strongly ctenoid; lateral line becoming straight just before front of second dorsal; longest dorsal spines $2_{6}^{1}$ in head; soft dorsal slightly falcate, the first rays
about 2 in head: caudal large and broad, double truncate; veutrals $1 \frac{2}{3}$ in head. Color steel bluish above, lower parts silvery; no distinct markings. Head $3 \frac{2}{3}$ in length; depth $4_{5}^{4}$. D. IX-I, 21; A. II, 9 ; scales $10-60$ (pores)- 10 .

Stolzmanni, 18.
aa. Scales very small; the number of pores in the lateral line 70 to 90 , and very much less than the number of transverse rows, which is from 85 to $\mathbf{1 5 0}$; teeth of upper jaw in a rather broad band, one to four of them usually more or less canine-like, the canines generally suall,* and sometimes wholly disappearing with age; lateral teeth of lower jaw not much enlarged; gill-rakers usually small and sbort. $\ddagger$
p. Caudal fin lunato or subtruncate; scales not very small; head more or less distinctly conical, not dattened above; soft dorsal with 21 to 23 rays.
q. Soft dorsal and anal fins wholly scaleless.
$r$. Pectoral fin rather long, more than half head; flesh firm; scales of sides of head not silvery; head pointed, subconical, little compressed; profile rather steop; suout sharp, rather long, 3 in head; maxillary extending beyond pupil; anteriorly on a level with the lower margin of the pupil, $2 \frac{1}{3}$ in head; canines small, becoming obsolete; pharyngeals long and slender, with four series of teeth, the inner series several times larger than the rest; gill-rakers short, $2+7$; scales very small, those on head little imbedded and less silvery than in related species; candal lunate, its middle rays less than half length of head; both anal spines evident, the second about half length of the rays; color bluish, little silvery; everywhere punctulate; young with three or four distinct dusky cross-bars; axil and fins dusky; a dusky blotch at base of pectoral, extending on whole inner face of the fin. Heall $3_{5}^{3}$ in length; depth 4. D. X-I, 21 to 23; A. II, 9; scales 12-88-14 ................................ rr. Pectoral fins short, not more than half length of head; flesh rather soft ; sides of head brightly silvery; head very regularly conical, pointed, tapering, scarcely compressed; snout very acute; $3_{5}^{4}$ in head; canines quite small, usually but one pres-

[^54]ent and this disappearing with age；eye small， $7 \frac{1}{2}$ in head；maxillary extending to behind pupil， $2 \frac{1}{3}$ in heal；body slen－ der；subfusiform，moderately com－ pressed；gill－rakers very short， $3+6$ ． Scales small，all cycloid，those on head imbedded and brightly silvery；highest dorsal spine $2 \frac{3}{2}$ in head；pectorals and ventrals about equal， 2 in head；candal lunate．Color grayish above，with bright reflections；silvery below；lower part of tail golden；middle of sides with dark punctulations；inside of mouth deep orange－yellow ；lining of opercle black； caudal fins dusky whitish，with more or less of dark edging ；lower rays of cau－ dal yellowish；fins otherwise translu－ cent，ummarked；axil light brownish． Head $3 \frac{1}{3}$ in leugth；denth 4⿳亠口冋彡5．D．LX－I， 21 ；A．II，10．Scales 17－90－15；about 80 distinct pores in the lateral line．

Phoxocephalus， 20.
$q q$ ．Soft dorsal fin with its lower portion covered with small，caducous scales．Body com－ pressed；head conic，more compressed than in Cestreus phoxocephalus；eye mod－ erate， 5 to 6 in head；maxillary reach－ ing nearly to posterior margin of orbit， ${ }_{21}^{2}$ in head ；lowerjaw much projecting； upper teeth mostly biserial；canines small，both of them present；lateral teeth of lower jaw small；gill－rakers short and slender， $2+7$ ；scales small， chiefly cycloid，those on sides of head bright silvery；lateral line becoming straight above front of anal；caudal fin subtruncate；pectoral fins moderate， 2 in head；candal weakly double truncate ； head $3 \frac{1}{3}$ in length ；depth 4 $\frac{1}{3}$ ；D．IX－I， 21 to 23 ；A．II， 10 ；scales $13-90-13$ ， about 80 distinet pores．．Leiarchus， 21. $p p$ ．Caudal fin rhombic or S－shaped，the middle rays produced，the upper lobe usually pointed； soft dorsal with 23 to 28 rays．
8．Soft dorsal entirely naked；anal with a few scales；body long and low，spindle－ shaped，the head slender，subterete，and depressed above（suggesting the form of Elacate）；protile from snout to dorsal weakly concave；snout long，rather pointed， 4 in head；month large，little oblique，the lower jaw strongly project－ ing，the maxillary $2^{3}$ in head；canine teeth 2，short and thick；lateral teeth close－set，of moderate size ；eye small， $8 \frac{1}{3}$
in head; interorbital space flattish, 4 星 in head; gill-rakers rather short, $\mathrm{X}+8$, the longest about half eye; scales on head very small and silvery; caudal S-shaped, the middle rays longest ; pectoral 14 in head. Color plain, rather dusky, silvery below; inside of gill cavity dusky; head $3 \frac{1}{3}$ in length ; depth 5 to $5 \frac{1}{2} ;$ D. X-I, 28; A. I, 8. Scales 80 (pores), 125 to 130 cross-series.

Virescens, 22.
88. Soft dorsal and anal fins densely scaly throughout.
$t$. Sides of lower jaw without canines, the teeth all comparatively small.
$u$. [Scales extremely small, about 150 in a longitudinal series above the lateral line, 40 in a vertical series; snout 4 in head ; eye large, $4 \frac{4}{3}$; interorbital area $5 \frac{1}{3}$ in head; maxillary extending beyond eye; lower jaw projecting ; upper jaw with 3 series of teeth; canines rather strong ; lateral teeth of lower jaw not canine-like; dorsal spines slender, the longest $2 \frac{1}{7}$ in head; caudal fin S -shaped; pectoral slightly longer than rentral, which is sligltly more than half head; lateral line becoming straight above anal ; color greenish, silvery below; head $3_{5}^{2}$ in length ; depth $4 \frac{1}{2}$; D. XI-I, 23 ; A. II, 9 ; scales 155 to $160 ; 70$ pores in the lateral line.] (Steindachner.)

Microlepldotus, 23.
uu. Scales not very small, about 85 to 90 in a longitudinal series above the lateral line; borly rather robust, the head small and tanering; profile of head nearly straight and rapidly descending; mouth rather small, oblique, the maxillary $2 \frac{1}{3}$ in head; chin prominent; suout short, rather pointed, 6 in head; eye large, $5 \frac{1}{2}$ in head ; teeth all comparatively small, the bands rather broad; no distinct canines in upper jaw, the usual canine scarcely longer than the teeth around it; lateral teeth of lower jaw small ; scales small, those of lateral line little enlarged ; lateral line less conspicuous than in C. virescens or C. bairdl, becoming straight under front of soft dorsal; gill-rakers rather long, $4+9$, the longest $\frac{3}{5}$ eye; pectorals quite short, shorter than ventrals, $2 \frac{1}{2}$ in head, their tips not reaching tips of ventrals; caudal rhombic, the upper angle pointed; color
silvery, darker above; faint streaks along the rows of scales on the back; head $3 \frac{4}{5}$ in length; depth 4 ; D. X-I, 21 to 23 ; A. I, 9 ; scales 70 (pores); about 86 series............ Steindachneri, 24.
$t i$. Sides of lower jaw each with 4 or 5 moderate canines (the lateral teeth being larger than in any of the other species, much as in Isopistliss); canines of upper jaw strong; body slender, not specially compressed; head rather slender, little compressed; the upper profile straight; the interorbital area moderate (as broad as eye) and little convex ; eyo large, $4 \frac{1}{8}$ in head; snout short, sharp, $4 \frac{1}{3}$ in head; mouth moderate, not very oblique, the maxillary $2 \frac{1}{3}$ in head and extending to beyond pupil ; preorbital very narrow, not as broad as pupil; gill-rakers slender, very short and small, $X+6$, the the longest half as long as pupil ; dorsal spines sleuder, the longest 24 in head; soft dorsal and anal densely scaled; caudal fin rhombic; pectoral fins longer than ventrals, 14 in head; scales of lateral line enlarged, somewhat covered by smaller scales; lateral line becoming straight just before anal ; color plain silvery, darker above; head $3 \frac{3}{5}$; depth $4 \frac{1}{5}$; D. X-I, 25 ; A. I, 10 ; scales 70 pores; 150 series ....................... Barndr, 25.

## 5. CESTREUS PRADATORIUS.

(Boccone.)
Cestreus pradatorius Jordan \& Gilbert, sp. nov. (Panama).
Habitat.-Pacific coast of tropical America, Panama.
This strongly marked species was obtained by Dr. Gilbert at Panama in 1883, and by us described in MS. at the time. Our specimens were destroyed by fire, and the species has remained unnoticed. The types of the present description are three specimens, the largest nearly 2 feet in length, obtained by Professor $\Lambda_{\text {gassiz at Panama. These are num- }}^{\text {at }}$ bered 10901 and 10902 on the register of the Museum of Comparative Zoology. The species is known to the Panama fishermen as "Boccone."

## 6. CESTREUS ACOUPA.

[^55]Otolithus rhomboidalis Cuvier, Règno Animal, ed. 2,1829 (based on Lutjanius cayennensis Lacépède).
Otolithus tocroe Cuv. \& Val., Hist. Nat. Poiss., v, 72, plate 103, 1830, Cayenne (same type as L. cayennensis Lac., Surinam, Brazil, Lake Maracaibo), ibid., ix, 478 (Cayenne).
Apscudobranchus toeroe Gill, Proc. Acal. Nat. Sci. Phila., 1862, 18 (name only).
Mabitat.-Surinam, Brazil.
There seems to be no reason to doubt that this is the Ototithus tocroe of Cuvier \& Valenciennes, and this toeroe is based on the same typical examples as the prior names rhomboidalis and cayennensis.

As to the still earlier name acoupa, it seems to us that Cuvier and Valenciennes are right in referring it to a species of this group, as the caudal is rounded, the lower jaw projecting, the teeth unequal, and the second dorsal with 18 rays. As, according to the statements of these anthors, the fish called "Toeroe" by the Dutch in Guiana is known as "Acoupa" by the Portuguese, this identification is highly probable. The specific name acoupa should then supersede coyennensis.

Our description of this species is taken chiefly from a specimen 14 inches long from Cachiura, Brazil (10892, M. C. Z.). Numerous other specimens are iu the museum from Surinam, Sañ Matheo, Curuça, Cachiura, and Rio Janeiro.

The statement is mado by Dr. Giinther that this species lacks pseudobranchire, and on this statement Dr. Gill has proposed for it the generic name of Apseudobranchus.

It is true in this as in other species of Cestreus that the pseudobranchio become smaller with age. Usually they become (in old specimens) obsolete on one side while they are perfectly evident on the other. This is the case with all the old specimens of this species which we have examined, and it is true also in several others of the larger species. The genus Apsoudobranchas is therefore strictly synonymous with Cestreus and Cynoscion.

## 7. CESTREUS SQUAMMIPINNIS.

Otolithus squamipinnis Guiuther, Fishes Central America, 387 and 429, 1869 (Panama). Steindachner, Nene und Seltene Fische k. k. Zool. Mus. Wien, 37, 1879 (Panama).
Cynoscion squamipinne Jordan \& Gilbert, Proc. U. S. Nat. Mus., 1881, 232 (La Union, San Salvador). Jordan \& Gilbert, Bull. U. S. Fish Com., 1881, 320 (La Union).
Habitat.-Pacific coast of tropical America.
This species is known from a few specimens taken at La Union and Panama. Specimens obtained by Prof. Alexinder Agassiz at Panama are in the museum at Cambridge.

## 8. CESTREUS OTHONOPTERUS.

Cynoscion squamipinnis Streets, Bull. U. S. Nat. Mus., vii, 49, 1877 (off San Ygnacto River, Gulf of California) (not Otolithus squamipimis Guinther).
Cynoscion othonopterum Jordau \& Gilbert, Proc. U. S. Nat. Mus., 1881, 274 (Punta San Felipe, Mexico). Jordan \& Gilbert, Bull. U. S. Fish Com., 1881. 320 (copied).
Habitat.-Gulf of California.

This species is known to us from its type, a large specimen taken in the Gulf of California. The specimen-also from the Gulf-recorded by Dr. Streets under the name squamipinnis, seems to belong to C. othonopterus. The species is closely related to C. squamipinnis, but we believe it to be distinct.

## 9. CESTREUS STRIATUS.

Guatucupa Marcgrave, Hist. Brazil, 1648.
Otolithus striatus Cuvier, Règno Animal, ed.2, 1829 (based on Guatucupa of Maregrave). Otolithus guatucupa Cuv. \& Val., Hist. Nat. Poiss., v, 75, plate 104 (Montevideo). Günther, Cat. Fish. Brit. Mus., ii, 309 (copied). Günther, Shore Fishes, 13, 1880 (mouth of the Rio de la Plata). Jenyns, Zool. Beagle, Fishes, 41, 1842 (Maldonado Bay).
Habitat.-Coasts of Brazil and Argentine Republic.
This strongly marked species much resembles the northern weakfish in coloration, but it is readily distinguished by the small number of its dorsal rays.

Our description is mainly taken from a specimen 18 inches long from Buenos Ayres (434, M. C. Z.). Other specimens are in the museum from Montevideo, Maldonado, and Buenos Ayres.

## 10. CESTEEUS OBIIQUATUS.

Otolithus obliquatus (Valenciennes MSS.) Sanvage, Bull. Soc. Plilom. Paris, iii, 209, 1879 (Martinique).
Cynoscion obliquatum Jordan, Proc. U. S. Nat. Mus., 1886, 588 (name only).
Habitat.-Martinique.
This species is unknown to us. The increased number of dorsal rays leads us to place it in the neighborinood of Cestreus nothus, with which species the scauty description agrees in most respects. C.nothus has, however, not been recorded from the West Indies.

The following is the account published by Dr. Sauvage:
"Un Otolithe étiqueté dans la collection du Musérm Otolithus obliquatus de la main de Valenciennes, n'est pas décrit dans l'Histoire des Poissous. Voisiue de l'Otolithus thalassinus, Holbr., cette espèce en diffère par le moins grand nombre d'écailles à la ligne latérale et l'wil plus grand; la forme de la candale la sépare de l'Otolithus nothus, Holbr., des mêmes parages. Voici la diagnose des denx exemplaires recueillis à la Martinique par M. Plée:
"D. X, 28 ; A. I, 11; L. lat. 60.
"Hauteur du corps contenue cinq fois un tiers, longucur de la tête trois fois et trois quarts dans la longueur totale du corps; museau un peu plus long que le diamètre de l'œil, qui est contenue cinq fois dans la longueur de la tête ; mâchoire inférieure plus longue que la supérieure; des canines assez fortes à la mâchoire supérieure seulement; maxillaire arrivant au niveau du tiers postérieur de l’ocil; angle du préopercule arrondi et un pen rejeté en arrière; dentelures du prépercule bien visibles, plus fortes à l'angle. Caudale tronquée ; pectorales de même longueur que les ventrales. Ligne jatórale assez incurvó vers le milien de sa lougueur. Coloration uniforme. Longueur du corps 0,200 ."

## 11. CESTREUS NOTHUS.

## (Bastard Sea Trout.)

Otolithus nothus Holbrook, Ichthyol. S. Carolina, 134, plate 19, fig. 1, 1860 (South Carolina). Giinther, Cat. Fish. Brit. Mus., ii, 308, 1860 (Jamaica).
('ynoscion nothus Goode \& Bean, Proc. U. S. Nat. Mus., 1879, 131 (Pensacola). Jordan \& Gilbert, Proc. U. S. Nat. Mus., 1882, 607 (Charleston). Jordan \& Gilbert, Syn. Fish. North Am., 580, 1882. Goode, Proc. U. S. Nat. Mus., 1884, 212 (St. John's River, lila.).
Iabitat.-South Atlantic and Gulf coasts of United States.
This species is rather rare at Charleston and elsewhere along our Southern coast.

It is a very well marked species, differing in numerous respects from the others, regalis, thalassinus, nebulosus, found in the same waters. The specimens examined by us are from Charleston.

## 12. CESTREUS REGALIS.

(Time Weak-misif, or Squeteague; "Sea Trout.")
[Plate I.]
a. Var. regalis.

Johnius regalis Bloch \& Schneider, Syst. Ichthyol., 75, 1;301. IHolbrook, Ichthyol. S. Carolina, 127, plate 18, fig. 1 (South Carolina).
Ototilhes regalis Cuv. \& Val., Hist. Nat. Poiss., v, 67 (New York, New Orleans). Richardson, Faun. Bor. Amer. Fish., 68, 1836. Storer, Report Fishes Massachusetts, 33, 1839 ("no longer found on the coast"). Storer, Hist. Fish. Mass., 122, plate 9, fig. 1 (Provincetown). Ayres, Fishes of Brookhaven, I. I., 259, 1842. De Kay, New York Fama, Fishes, 71, plate 8, fig. 24, 1842 (New York). Storer, Syn. Fish. North Am., 118, 1846 (Massachusetts). Günther, Cat. Fish. Brit. Mus., ii, 307, 1860.
C'ynoscion regale Gill, Proc. Acad. Nat. Sci. Phila., 1862, 18. Uhler \& Lugger, Fishes of Maryland, 98, 1876 (Chesapeake Bay). Goode \& Beau, Fishes of Essex County and Massachusetts Bay, 17, 1879 (Milk Island, Cape Ann). Bean, Proc. U. S. Nat. Mus., 1880, 90 (Norfolk, Va. ; Wood's Holl, Mass.). Jordan \& Gilbert, Proc. U. S. Nat. Mus., 1882, 607 (Charleston). Jordan \& Gilbert, Syn. Fish. North Am., 581, 1882. Goode, Hist. Aquat. Anim., 302, plate 120, 1834 (Wood's Holl, Mass.).
Roccus comes Mitchill, Report in part Fishes New York, 26, 1814 (New York).
Letbrus squeteague Mitchill, Trans. Lit. and Phil. Soc. New York, 396, plate 2, fig. 1, 1815 (New York).

## b. Var. thalassimes.

Otolithus thulussinus Holbrook, Ichth. South Carolina, 13:, plate 18, tig. 2 (South Carolina). Guinther, Cat. Fish. Brit. Mus., ii, 308, 1860 (Gulf of Mexico).
Cynoscion thalussimus Jordan \& Gilbert, Syn. Fish. North America, 581, 1882 (copied).
Mubitat.-Atlantic and Gulf coast of the United States; var. thalas. sinus from Virginia to Louisiana.

The Weak-fish is one of the most valuable food-fishes of our Atlantic coast. It is caught in large numbers, and its flesh is very excelleut for the table. Its flesh, like that of most species of the genus, is very tendei and easily torn, hence the common name of Weak-fish.

On the Carolina coast it has received the very inappropriate name of "Sea Trout."
Specimens of the typical regalis are in the museum at Cambridge from rarious localities on the Atlantic coast, and from Mobile and "Florida Keys," on the Gulf coast. Its occurrence in the Gulf must be infrequent, as no specimens have been obtained by Dr. Iordan at Galveston, New Orleans, Pensacola, Cedar Keys, or Key West.

The form called Otolithus thalassimes by Holbrook has not been recognized by later collectors, and it has usually been considered identical with U. regalis.

A specimen lately sent to us by Mr. Silas Stearns from Peusacola seems to answer to Holbrook's description, and we have found two similar specimens in the museum at Cambridge, one (No. 438, M. C. Z.) from Pass Christian, Mississippi, the other from Hampton Roads, Virginia. The only differential characters which we have noted are given in the amalysis of species. As C. regalis is subject to considerable variation, we have regarded $C$. thelussinus as an extreme form or variety rather thau as a distinct species. It may, perhaps, be found to inhabit a different depth of water than that which the common TVeak-fish frequents.

The following is a description of our specimen from P'ensacola: Depth, $4 \frac{2}{3}$ in length ; head, 32.2 D. $\mathrm{X}-\mathrm{I}, 24$ A. II, 11; lateral line, 56 ; length, 12 iuches.
Body compressed; not especially elevated; of about the same depth everywhere betwen the reutrals and the vent; caudal peduncle rather long and stont.

Head pointed, subconical ; profile straight, scarcely descending; eye rather large, $1 \frac{2}{5}$ in snout, $5 \frac{1}{3}$ in head; mouth large, oblique; premaxillary anteriorly on a level with the upper margin of the pupil; maxillary extending beyond the pupil ; lower jaw strongly projecting, its tip entering the profile.
Teeth of the lower jaw in two series, anteriorly in a single series; those in front small aud subequal ; the inner ones recurved ; those of the side much larger. Teeth of the upper jaw in two series; those of the outer series searcely decreasing in size towards the angle; those of the inner series becoming minute on the sides; canines moderate, $\frac{1}{3}$ the diameter of the eye.

Preopercle with a striated and dentated dermal margin; gill-rakers slender; those near the angle half the length of the eye.

Lower pharyngeals weak and long, grooved below; teeth at the angle several times as large as the rest, all more or less recurved; the anterior ones specially so ; teeth of the upper pharyngeals unequal.

First dorsal spine inserted above the end of the first fourth of the ventrals; the spines slender; the third highest, reaching to the ninth spine, $2 \frac{2}{5}$ in head; second aual spine abont twice as large as the first, $2 \frac{2}{3}$ in length of eye; anal mas 㗔 in head ; pectorals broken; ventrats
slightly less than 2 in head; soft dorsal apparently not scaly, but so mutilated that we cannot be certain of this.

Scales very weakly ctenoid; lateral line somewhat wary anteriorly, becoming straight under the fourth or fifth dorsal ray.

Color, brownish above, lighter below; middle of sides with many dark dots; a dark blotch on upper corners of opercle and cheek; axil and inner margin of pectoral, black; spinous dorsal, black; soft dorsal and caudal, dusky ; the rest of the fins pale.

The specimen from Pass Christian has no scales on dorsal or anal at present, but the marks showing their former presence on the basal parts of the fin are evident. Gill-rakers, $\mathrm{X}+8$, the longest $\frac{2}{3}$ eye; snout $3_{4}^{3}$ in head; D. X-I, 25; A. I, 10.

In the specimen from Hampton Roads the gill-rakers are $\mathrm{X}+9$; snout $3 \frac{4}{5}$ in head; D. $\mathrm{X}-\mathrm{I}, 25$. The coloration is essentially as in regalis, but in all these specimens it is more silvery, the dark markings less distinct.

## 13. CESTREUS RETICULATUS.

Otolithus reticulatus Günther, Proc. Zool. Soc. London, 1864, 149 (San José de Guatemala, Chiapam). Günther, Fishes Central America, 387, 388, and 430, 1869 (San José, Chiapam).
Cynoscion reticulatum Jordan \& Gilbert, Proc. U. S. Nat. Mus., 1881, 232 (Acapulco, Mexico). Jordan \& Gilbert, Bull. U. S. Nat. Mus., 1881, 319 (Mazatlau ; Panama).
Habitat.-Pacific coast of tropical America, Mazatlan to Panama.
This is a common food-fish of the west coast of Mexico. It considerably resembles Cestreus nebulosus, and is similar in size, habits, and value to the latter.

## 14. CESTREUS NEBULOSUS.

(The Spotted Weak-fishe, or Spotted "Sea Trout.")

## [Plate II.]

Labrus squeteague var. maculatus Mitchill, Trans. Lit. \& Phil. Soc., 396, 1815 (New York) (not Labrus maculatus Bloch).
Cynoscion maculatum Jordan \& Gilbert, Proc. U. S. Nat. Mas., 1882, 285 (Pensacola, Galveston). Jordan \& Gilbert, Proc. U. S. Nat. Mus., 18こ2, 60 t (Charleston). Jordan \& Gilbert, Syu. Fish. North Am., 581, 1883. Bean, Internat. Fishery Exhib. Berlin, 55, 1883 (Pensacola, Florida). Jordan \& Swain, Proc. U. S. Nat. Mus., 1884, 233 (Cedar Key, Florida). Goode, Hist. Aquat. Anim., 362, plate 120, 1884 (Norfolk, Va.).
Otolithus nebulosus Cuv. \& Val., Hist. Nat. Poiss., v, 79, 1830 (locality mnknown). Jordan, Proc. U. S. Nat. Mus., 1886, 540 (note on type of Cuvier \& Valenci. emnes).
Otolithus carolinensis Cuv. \& Val., Hist. Nat. Poiss., ix, 475, 1833 (South Carolina). DeKay, New York Fauna, Fishes, 72, 1842 (New York). Storer, Syn. Fish. North Am., 318, 1846 (copied). Holbrook, "Ichthyol. S. Carolina, 133, pl. 19, fig. 2 " (S. Carolina). Giinther, Cat. Fish. Brit. Mus., ii, 306, 1860 (New York, Lake Pontchartrain).
Cestreus carolinensis Gronow, Cat. Fislı, ed. Gray, 49, 1854 (Carolina).

Cynoscion carolinensis Jordan \& Gilbert, Proc. U. S. Nat. Mus., 1878, 377 (Beaufort). Goode, Proc. U. S. Nat. Mus., 1879, 112 (St.'John’s River, Florida). Goode \& Bean, Proc. U. S. Nat. Mus., 1879, 131 (Pensacola). Bean, Proc. U. S. Nat. Mus., 1880, 92 (St. John's River, Florida ; Norfolk, Virginia; Beaufort, N. C.; Fort Macon, N. C.).
Otelithus drummondi Richardson, Faun. Bor. Am. Fish., 70, 1836 (New Orleans). Storer, Syn. Fish. North Am., 318, 1846 (copied). Girard, U. S. \& Mex. Bound. Survey, 12, plate vi, 1859 (New Orleans, Brazos Santiago, Indianola). Günther, Cat. Fish. Brit. Mus., ii, 307, 1860 (copied).
Habitat.—South Atlantic and Gulf Coast of the United States; New York to Texas.

This excellent food-fish is everywhere common on our Southern coast. The northernmost locality from which we hare examined specimens is Beesley's Point, New Jersey.

The oldest specific name of the species is that of Labrus squeteague var. maculatus Mitchill. This name seems, however, to be ineligible, as there was already a Labrus maculatus Bloch. Next in order comes the Otolithus nebulosus of Cuvier \& Valenciennes. This name apparently is the one which should be retained, although the later name carolinensis has been generally in use.

## 15. CESTREUS PARVIPINNIS. <br> (California "Blue-fish.")

Cynoscion parvipinnis Ayres, Proc. Cal. Ac. Nat. Sci., 1861, 156 (coast of Lower California).
Cynoscion parripinne Jordan \& Gilbert, Proc. U. S. Nat. Mus., 1880, 456 (San Pedro, San Diego). Jordan \& Gilbert, Proc. U. S. Nat. Mus., 1881, 48 (San Pedro southward). Jordan \& Gilbert, Proc. U.S.Nat. Mus., 1881, 274 (Guaymas, Mexico). Jordan \& Gilbert, Bull. U. S. Fish. Com., 1881, 320 (San Pedro, San Diego, Gulf of California). Jordan \& Gilbert, Syn. Fish. North Am., 580, 1882. Rosa Smith, Proc. U. S. Nat. Mus., 1883, 234 (Todos Sautos Bay, Lower California). Rosa Smith, West American Scientist, 1885, 47 (San Diego).
Otolithus magdalenca Steindachner, Ichthyol. Beit., iii, 18i5 (Magdalena Bay, Lower California).
Habitat.-Coasts of Lower California; Guaymas to the Santa Barbara Islands.

This species is common along the coasts of Southern California, as far north as San Pedro. It is an excellent food-fish, not inferior to its relative, the weak-fish of the Atlantic coast. As in the case of the latter species, the flesh of Cestreus parvipinnis is soft, and the fish does not bear transportation well.

Types of Otolithus magdalencr, from Magdalena Bay, are preserved in the museum at Cambridge.

## 16. CESTREUS XANTHULUM.

Cynoscion xanthulum Jordan \& Gilbert, Proc. U. S. Nat. Mus., 1881, 460 (Mazatlan). Jordan \& Gilbert, Bull. U. S. Fish. Com., 1881, 319 (Mazatlan). Jordan \& Gilbert, Bull. U. S. Nat. Mus., 1882, 107 (Mazatlan).
Habitat.-Pacific coast of Mexico ; Mazatlau.
S. Mis. $90-24$

This species is not rare about Mazatlan. The specific name ( $\xi \alpha 0 \theta_{0} 5$; $0^{5} \lambda(0 v$ ) is intended to allude to the yellow color of its lips and gums. It is closely related to Cestreus albus, a species which seems to replace it farther south.

## 17. CESTREUS ALBUS.

Ofotithus altus Günther, Proc. Żool. Soc. Lond., 1864, 149 (Chiapam; Pauama). Gü̈uther, Fishes Central America, 387 and 499, 1869 (Chiapam). Steindachner, Neue u. Seltene Fische k. k. Zool. Mus. Wien, 36, 1879 (Panama).
Cynoscion album Jordan \& Gilbert, Bull. U. S. Fish. Com., 1881, 319 (Pånama).
Habitat.-Pacific coast of tropical America; Panama.
This species is not rare at Panama. Like the others of the genus, it is a food-fish of importance. Specimens from Panama are in the museum at Cambridge.

## 18. CESTREUS STOLZIVANNI.

Otolithus stolzmanni Steindachner, Nene u. Seltene Fische k. l. Zool. Mus. Wien, 1879, 35, plate ii, fig. 1 (Tumbez, Peru).
Cynoscion stolzmanni Jordan \& Gilbert, Bull. U. S. Fish. Com., 1881, 320 (Panama).
Habitat.-Pacific coast of tropical America; Panama to Peru.
This species is not rare about Panama, where specimens were obtained by Professor Gilbert. A specimen collected by Prof. Alexander Agassiz, at Panama, is in the museum at Cambridge.

## 19. CESTREUS NOBILIS.

## (The "White Sea Bass" of California.)

Johnius nobilis Ayres, Proc. Cal. Acad. Nat. Sci., 1860, 78 (San Francisco).
Atractoscion nobilis Gill, Proc. Acad. Nat. Sci. Phila. 1862, 17 (name only). Jordan \& Gilbert, Proc. U. S. Nat. Mrus., 1881, 48 (San Francisco southward). Jordan' \& Gilbert, Syu. Fish. North Am., 579 and 933, 1832.
Cynoscion nobilis Jordan \& Gilbert, Proc. U. S. Nat. Mus., 1880, 456 (San Francisco, Monterey Bay, Santa Barbara, San Pedro, San Diego). Jordan \& Gilbert, Bull. U. S. Fish Com., 1E01, 320 (copied). Rosa Smith, West American Scieutist, 1885, 47 (San Diego).
Otolithus californiensis Steindachuer, Ichthyol. Beitr., iii, 31, 1875 (Lower California).
Habitat.-Coast of California, north to San Fraucisco.
This species is one of the largest in size of the Scirenoid fishes, reaching a weight of 60 to 70 pomnds. Its flesh is more firm than that of most of the other species of Cestreus, but its quality is scarcely less delicate than that of the weak-fish.

The young fishes are somewhat different in color from the adalt, being marked by two or three distinct dusky cross-bars on the back and sides. These joung fishes are often taken by fishermen to be a distinct species, and called sea-trout. Such specimens have been described by Dr. Steindachner under the name of Otolithus californiensis. Typical examples of this nominal species, from Sau Diego, are in the mnseum at Cambridge.

## 20. CESTREUS PHOXOCEPHALUS.

Cynoscion phoxocephalum Jordan \& Gilbert, Bull. U. S. Fish Com., 1881, 318 (Panama).
Habitat.-Pacific coast of tropical America; Panama.
This species is not uncommon about Panama. It somewhat resembles Cestreus nobilis, but it is not known to reach the large size of the latter. The tapering form of the head reaches an extreme in this species, and the silvery luster of the scales is brighter than in any other.

A specimen of this species from Panama is in the museum at Cambridge.

## 21. CESTREUS LEIARCHUS.

Otolithus leiarclus Cuv. \& Val., Hist. Nat. Poiss., v, 88,1830 (Brazil ; Cayenue). Guinther, Cat. Fish. Brit. Mus., ii, 308, 1860 (Bahia). Jordan, Proc. U. S. Nat. Mus., 1886, 540 (note on type of Cuvier \& Valencienues).
Habitat.-Coasts of Brazil and Guiana.
This species is known to us from the examination of the type, a dried skin of a young example in the museum at Paris. The absence of the anal spine (" leiarchus") is due to its being covered by varuish.

The description given in our analysis is taken from an example (34500, U. S. Nat. Mus.) from unknown locality (Brevoort Coll.) and from specimens from Rio Janeiro, Porto Alegre, Bahia, and Santos, in the museum at Cambridge. C. leiarchus is closely related to Cestreus phoxocephalus, but it more strongly resembles the typical Cestrei than the latter species does.

## 22. CESTREUS VIRESCENS.

Otolithus virescens Cuv. \& Val., Hist. Nat. Poiss., v, 72, 1830 (Surinam). Cynoscion virescens Jordan, Proc. U. S. Nat. Mus., 1856, 588 (name only).
Otolithus microps Steindachner, Neue Fisch-Arten k. k. Museen Wien, Stuttgart, und Warschan, 38, plate viii, fig. 2, 1879 (Porto Alegre, Brazil).
Habitat.-Coasts of Guiana and Brazil.
We know this species from a specimen (4584, M. C. Z.) 18 inches long from Victoria, Brazil.

This specimen agrees well with Steindachner's description of Otolithus microps. The scanty account given by Cuvier and Valencienues of Otolithus virescens agrees, so far as it goes; with O. microps, and with no other South American species known. We have been unable to find the type of virescens in the museum at Paris. There seems to be little reason for doubting the identity of the two. We have therefore taken the older name instead of microps.

## 23. CESTREUS MICROLEPIDOTUS.

Otolithus microlepidotus Cuv. \& Val., Hist. Nat. Poiss., v, 79, 1830 (Surinam). Günther, Cat. Fish. Brit. Mus., ii, 311, 1860 (copied). Steindachner, Nene und Seltene Fische k. k. Zool. Mus. Wien, 39, 1879 (Maranhĩo).
Cynoscion microlepidotum Jordan, Proc. U. S. Nat. Mus., 1886, 588 (name only).
Halitat.-Coasts of Surinam and Brazil.

This species is known from the original discription of Cuvier and Valenciennes and from a more detailed account given by Dr. Steindachner. It would appear to be well distinguished from all the others mentioned in this paper.

## 24. CESTREUS STEINDACHNERI.

Cestreus steindachneri Jordau, sp. nov. (Curuça, Brazil).
Habitat.-Coasts of Brazil.
The type of this species is a specimen (10922, M. C. Z.) collected at Curuça by Professor Louis Agassiz. We have taken pleasure in naming the species for our friend, Dr. Franz Steindachner, of Vienna, who has contributed more than any one else to our knowledge of the fishes of South America.

Cestreus steindachneri seems to be allied to C. microlepidotus, but it is readily distinguished from that species by numerous characters. It somewhat resembles $C$. acoupa, but its scales are not half as large as in that species.

## 25. CESTREUS BAIRDI.

Otolithus (?) bairdi Steindachner, Neue Fisch-Arten k. k. Mnseeu Wien, Stuttgart, und Warschau, 40, plate i, fig. 2, 1879 (Santos, Brazil).
Habitat.-Coast of Brazil.
We have examined a single specimen of Cestrcus bairdi, a young example ( 10887, M. C. Z.) 9 inches long, from Pará.

This species has almost exactly the dentition of the species of $A r^{r}$ choscion. It cannot, howerer, be referred to that genus, as it has the fins as in the ordinary species of Cestreus. The difference in the dentition is one of degree only, the lateral teeth being a little larger and more unequal than usual, and cannot be used to separate this species from the genus Cestreus.

## Genus IV.-ANCYLODON.

Ancylodon Cuvier, Rèmne Animal, ed. 1, 1817 (jaculitens =ancylodon).
TYPE: Lonchurus ancylodon Bloch \& Schneider.
This genus contains a siugle species, remarkable for the large size and peculiar form of its canine tecth.

## ANALYSIS OF SPECIES OF ANCYLODON.

a. Body oblong, moderately compressed, the general form about as usual in Cestreus: mouth oblique, the lower jaw projecting; maxillary moderate, $2 \frac{1}{3}$ in head; snout rather pointed, $4 \frac{1}{4}$ in head; preorbital narrow ; eye $6 \frac{1}{2}$ in head; large canine of upper jaw very long, lance-shaped, i. c., widened toward the tip and then abruptly pointed; about two canines in front of lower jaw on each side, also lance-shaped, but much smaller; outer teeth of upper jaw enlarged and showing something of the same form; enlarged lateral teeth of lower jaw compressed; gill-rakers moderate, slender, $3+8$, the longest $\frac{?}{8}$ eye: candal fin rhombic ; spinous dorsal very weak; soft dorsal and anal scaly; pectoral $1 \frac{1}{f}$ in head; lateral line becoming straight before vent ; color bluish above, silvery below; caudal lobe darker; head $3 \frac{1}{4}$ in length; depth 4 ; D. IX-I, 28 ; A. II, 10 ; scales 75 (pores), 85 rows.

## 26. ANCYLODON ANCYLODON.

Lonchurus ancylodon Bloch \& Schụeider, Syst. Ichth., 102, plato 25, 1801 (Surinam). Ancylodon jaculidens Cuv. \& Val., Hist. Nat. Poiss., v, 81, 1830 (Cayeune). Günther, Cat. Fish. Brit. Mus., ii, 311, 1860 (Surinam; West Indies). Jordan \& Gilbert, Bull. U. S. Nat. Mus., 1882, 111 (Panama).
Ancylodon atricauda Günther, Shore Fishes of the Challenger Exp., 1880, 12 (Mouth of Rio de la Plata).
Habitat.-Both coasts of tropical America; Surinam; Panama.
We have not been able to compare any specimens of this species in good condition, from Surinam, with specimens from Panama. The original types in the museum at Paris are in poor condition, but we did not see, when examining them, any characters by which we could sep. arate them from the specimens collected by Professor Gilbert at Panama.

Our description is taken chiefly from a specimen in the museum at Cambridge from Rio Grande do Sul. Others from Guiana, Montevideo, and Rio Janeiro are in the same collection.

The specimen described by Dr. Giinther as Ancylodon, atricauda differs from our account only in having the head 3 in length and 31 rays in the soft dorsal. It is probably identical with A. ancylodon.

## Genus V.-NEERIS.

Nebris Cuvier \& Valenciennes, Hist. Nat. Poiss., v, 149, 1830 (microps).
Type: Nebris microps Cuv. \& Val.
This genus is one of the most peculiar in the family. The cavernous structure of the head reaches in this genus its extreme of development, the head being more spongy to the touch than in Stelliferus, Collichthys, or Pachypops. But one species is known.

We retain the name Nebris, notwithstanding the prior Nebria, as we regard the two names as sufficiently distinct. The number of vertebrx $\mathrm{i}_{11}$ Nebris is $10+14$. The genus, therefore, belongs to the Scicenince and not to the Otolithina.

## ANALYSIS OF SPECIES OF NEBRIS.

a. Body plump, anteriorly tapering to the slender caudal peduncle; profile straight head broad, heavy, extremely spongy above, eye minute, $9 \frac{1}{2}$ in head, $2 \frac{1}{2}$ in snout, 4 in interorbital area; $1 \frac{3}{2}$ in width of maxillary, which is very broad; mouth very large, oblique; lower jaw projecting, premasillary anteriorly on a level with the middle of the cye; maxillary extending to below posterior margin of orbit, 2 z in head; teeth all minute, those of the lower jaw in a single series; those in upper jaw in a band which widens backwards; tongue large and thick; head entirely scaly; margin of the preopercle indistinct, with a very wide membranous edge, which is nearly covered with scales; gill-rakers loug and slender, $5+15$; scales small, cycloid; lateral line little arched; the bases, at least of all the soft fins, densely covered with small scales; dorsal spines feeble, shorter than the dorsal rays; caudal lanceolate; pectorals $1_{\frac{1}{5}}$ in head; ventrals $1 \frac{2}{8}$; color silvery, darker above; pectorals dusky on their inner. margin; head 3 in length; depth $4 \frac{1}{8}$. D. VIII-I, 31 ; A. II-13. Scales 18 -50 (pores)-18

Microps, 27.

## 27. NEBRIS MICROPS.

Nebris microps Cuv. \& Val., Hist. Nat. Poiss., v, 149, plate 112, 1830 (Suriuam). Günther, Cat. Fish, Brit. Mus., ii, 316, 1860 (copiēi). Steindachner, Ichthyol. Beitr., iv, 10, 1875 (Bay of Panama). Jordan \& Gilbert, Bull. U. S. Fish Com., 1882, 111 (Panama).
IIabitat.-Both coasts of Central America, Surinam, Panama.
The specimen from which our description is taken was obtained by Professor Gilbert at Panama, where the species is not rare.

The original type of the species, from Surinam, has been examined by us, but it is not in rery good condition, and no characters distinguishing it from the Panama form were noted. No direct comparison of Atlantic and Pacific specimens has yet been made. Numerous specimens from Panama are in the museum at Cambridge.

## Genus VI.-LARIMUS.

Larimus Cuvier \& Valenciennes, Hist. Nat. Poiss., v, 145, 1830 (breviceps).
Amblyscion Gill, Proc. Acad. Nat. Sci. Phila., 1863, 165 (argenteus).
Monosira Pocy, Anales do Hist. Nat. Esp., 1881, 326 (stahli).
Type: Larimus breviceps Cuvier \& Valenciennes.
This genus scems to be a rery natural one, and well worthy of distinction, although it is very closely related to Bairdiella and other more typical Sciænoids. The short snout and oblique mouth reach an extreme in Larimus argenteus, but no definite generic line can be drawn between that species and the others. Besides the following, one other species, Larimus peli Bleeker, is known, from Guinea. The species called Larimus auritus (Brachydeutervs auritus Gill) is not a Scienoid fish at all, but allied to Pomadasis.

## ANALYSIS OF SPECIES OF LARIMUS.

a. Dorsal with 27 to 30 soft rays; mouth extremely oblique or vertical.
b. Mouth large, the cleft vertical; profile slightly convex, nearly horizontal; no traces of dark stripes along the rows of scales; snout very short, $5 \frac{1}{3}$ in head; cye large, $4 \frac{2}{3}$; profile slightly convex, little oblique; snout very short, $5 \frac{1}{3}$ in head; maxillary not extending beyond anterior margin of pupil, 2 in head; teeth all minute; preopercle with a striated and ciliated membranaccous horder; gill-rakers $\frac{?}{3}$ length of eye, $7+16$; scales on head all cycloid ; highest dorsal spine $2 \frac{1}{3}$ in head; ventrals a little shorter than pectorals, which are about as long as head; color plumbeous above, golden below and on sides; a black axillary spot ; a large steel-blue opercular spot. Head $3 \frac{1}{6}$ in length; depth $3 \frac{1}{6}$. D. X-I, 27; A. II, 6. Scales 6-49-6 ........................................Angenteus, 28.
$b b$. Mouth not quite vertical; upper parts with dark streaks along the rows of scales ; profile slightly convex, a little oblique ; snout very short, 6 in head ; ege 4 ; maxillary extending to below front of orbit, 2 in head ; teeth in lower jaw uniserial, in upper uniserial in front, in about two series laterally ; preopercle with a ciliated, membranous border; gill-rakers slender and long, $10+21$; dorsal spines weak, the highest $1 \frac{3}{3}$ in head; yentrals a little shorter than pectorals, which are as long as head ; scales large, those on head chiefly cycloid; color plumbeous-silvery, with more or less conspicuous obligue blackish streaks
following the rows of scales above ; a black axillary spot ; region about pseudobranchise dusky. Head 3f; depth 3. D. X-I, 28; A. II, 6. Scales 6-487

Breviceps, 29.
aa. Dorsal rays 24 to 26 ; mouth lower and less oblique, the snout more convex and the profile descending forwards.
c. [Color white, with faint streaks and without vertical dark bars; second anal spine long, nearly 2 in head ; lody deep ; snout short, 5 in head ; cye $3 \frac{1}{3}$ in head; mouth large, maxillary 2 in head, lower mandible produced and curved; a pore on each side of the symphysis; gill-rakers loug and slender ; teeth uniserial, numerous, and very small, those of the lower jaw slightly larger ; pectorals lanceolate, reaching beyond vent, slightly longer than head. Head 33 in length ; depth 3. D. X-I, 25; A. II, 5.] (Poey.)

Stamli, 30.
cc. Color grayish, silvery below, with about seven dark vertical cross-bars; second anal spine short, $3 \frac{1}{4}$ in head. Body heary forwards, much compressed, tho back somewhat elevated ; profile convex; suout very, short and blunt, $5 \frac{1}{2}$ iu head ; eye 4, about equal to the datish interorbital area; mouth large, less oblique than in other species; tip of premaxillary on level of middle of pupil; maxiltary 9 in head reaching to below posterior third of eye; lower mandible with a slight knob at its symphysis, a small pore on each side of it; teeth minute, firm, in a singlo series in each jan ; pharyngeal teeth all long and slender ; the pharyngeal bones small and narrow, sub-triangular ; gill-rakers extremels elongate, as long as eye, $12+24$; preopercle with minute cilia ; third and fourth dorsal spines about2 $\frac{1}{4}$ in head; second anal spine short, one-fourth shorter than the first anal ray; scales large, ctenoid ; anal and soft dorsal with a scaly sheath at baso; color in lifo grayish olive above, with some silvery; below, clear silver white, back with 7 to 9 rather conspicuous darker vertical bars extending to below middle of sides; fins dusky-olive; anal fin and lower rays of caudal yellow, ventrals orange yellow, dusky towards tip; lower side of head very bright silvery; inside of mouth and lining of gill cavity, cheeks and opercles, with some light jellow. Head $3 \frac{1}{2}$ in length, depth 3. D. X-I, 24 to 26 . A. II, 5 to 6 . Scales $5-49-9$ to 11 Fasciatus, 31.

## 28. LARIMUS ARGENTEUS.

Amblyscion argenteus Gill, Proc. Acad. Nat. Sci. Phila., 1863, 165 (West coast Central America).
Larimus argenteus Jordan \& Gilbert, Bull. U. S. Fish Com., 1882, 110 (Panama).
Habitat.-Pacific coast of tropical America; Panama.
This singular fish is not uncommon about Panama, where several specimens were obtained by Professor Gilbert. Of all the known species of Scicnides this one las the mouth most nearly vertical. There is, however, in its structure nothing to warrant its separation as a distinct genus, Amblyscion. Many specimens from Panama are in the museum at Cambridge.

## 29. LARIMUS BREVICEPS.

Larimus breviceps Cuv. \& Val., Hist. Nat. Poiss., v, 146, pl. exl, 1830 (Brazil, San Domingo). Storer, Syn. Fish. North Am., 321, 1846 (copied). Giinther, Cat. Fish. Brit. Mus., ii, 268, 1860 (San Domingo). Giinther, Fishes Central America, 387 and 425, 1869. Jordan \& Gilbert, Bull. U. S. Fish Com., 188:, 107 (Mazatlan). Gilbert, loc. cit., 112 (Punta Arenas). Bean \& Dresel, Proc. U. S. Nat. Mus., 1884, 158 (Janaica).
Habitat.-Both coasts of tropical America, north to Mazatlan and San Domingo.

We have not been able to compare directly Atlantic and Pacific examples of this species, so that we cannot be quite sure as to their identity. The specimen now before us from Jamaica has the dark streaks on the scales much less sharply defined than Mazatlan examples, but we have no other evidence of difference. Specimens entirely similar to this are in the museum at Cambridge from Brazil, Porto Rico, and from Jérémie, Hayti.

## 30. LARIMUS STAHLI.

Monosira stahli Poey, Fauna Puerto-Riqueña, 326, plate vi, 1881 (P'orto Rico).
Habitat.-West Indian Fauna, Porto Rico.
This species is known from Poey's description and figure only. The nominal genus, Monosira, supposed to be distinguished by the uniserial teeth, is strictly synonymous with Larimus, and the species is evidently very close to Larimus breviceps.

A specimen of Larimus in the museum at Cambridge (Panama, Dr. Jones) agrees better with L. stahli than with L. breviceps. It has the mouth less oblique than in the latter, and but 24 soft rays in the dorsal fin.

## 31. LARIMUS F'ASCIATUS.

Larinus fasciatu8 Holbrook, Ichthyology S. Carolina, 153, plate 22, fig. 1, 1860 (Charleston). Guinther, Cat. Fish. Brit. Mus., ii, 269, 1860 (copied). Uhler \& Lugger, Fishes of Maryland, 102, 1876. Jordau \& Gilbert, Proc. U. S. Nat. Mus., 1882, 606 (Charleston). Jordan \& Gilbert, Syn. Fish. North Am., 578, 1883.

Mabitat.-South Atlantic coast of the United States.
Our specimens of this species were procured at Charleston by Mr. Charles C. Leslie. Specimens are in the museum at Cambridge, from Charleston and from Florida.

## Genus VII.-ODONTOSCION.

Odontoscion Gill, Proc. Acad. Nat. Sci. Phila., 1862, 18 (dentex).
Type: Corvina dentex Cuv. \& Val.
As here understood, this genus consists of a single species, whicn may be describerl as a Larimus armed with canine teeth. It also approaches closely to Bairdiella, one of the species of which genus (Bairdiclla archidiam) would be placed in Odontoscion were it not for the plectroid spine on the preopercle.

## ANALYSIS OF SPECIES OF ODONTOSCION.

a. Tceth in both jaws in a single series; the two front teeth iu lower jaw large canines, some of the tecth on the side of the lower jaw also enlarged, canine-like; teeth of the upper jaw largest forward, smaller than those in the lower jaw; body oblong, compressed, the prokle straight and rather steep; snout short, blunt, 4 in head; eye large, 8 to 4 in head; preopercle romded withont any distinct spines, with creunlated membranaceons margin; highest dorsal spiie 2 in head ; distance from first aual spine to middle of base of eaudal $3_{6}^{\frac{1}{6}}$ in length; distance from vent to first anal


#### Abstract

spine $1 \frac{1}{3}$ in base of anal; mouth large, oblique, maxillary reaching beyond middle of orbit, 2 in head; preorbital very narrow, about 4 in eye; gill-rakers long and stiff, $5+14$; lower pharyngeals small, with conical tecth; scales thin, ctenoid; soft dorsal and anal scaly; scales below lateral line in nearly horizontal series; dorsal spines long and slender, separated from soft dorsal ; the spine of soft dorsal short and stout; caudal subtruncate, upper lobe longer ; anal short and high, second anal spine $2 \frac{1}{2}$ in head; ventrals half way to anal, pectorals $1_{3}^{2}$ in head; color dusky silvery, overywhore soiled with dark points, which form faint streaks along the series of scales; snout and anterior part of the chin black; upper part of base of pectoral and axil black. Head 3 to $3 \frac{1}{3}$ in length; depth $3 \frac{1}{4}$. D. XI or XII-I, 23 ; 


## 32. ODONTOSCION DENTEX.

(Corvina.)
Corvina dentex Cuv. \& Val., Hist. Nat. Poiss., r', 139, plate 109, 1830 (Sau Domingo). Stover, Syn. Fish. North Am., 320, 1846 (copied).
Larimus dentex Günther, Cat. Fish. Brit. Mus., ii, 269,1860 (Jamaica, Trinidad).
Odontoscion dentex Gill, Proc. Acad. Nat. Sci. Phila., 1862, 18 (name"only). Poey, Synopsis, 325, 1863 (Cuba) ; Enumeratio, 49, 1875 (Cuba). Jordan, Proc. U. S. Nat. Mus., 1886, 44 (Havana).

Habitat.-West Indian fauna.
This small species is generally common in the West Indies, where it is a food-fish of some importance. The numerous specimens before us are from Havana, where the species is known to the fishermen as Corvina.

## Genus VIII.-CORVULA.

Corvula Jordan \& Eigenmann, genus novum.

## Type: Johnius batabanus Poey.

We propose the above name for four species of American Sciænoids, allied to Bairdiella in nearly all respects, but having the preopercleunarmed as in Larimus. The typical species is remarkable in form and coloration, but it is probably congeneric with the others with which we here associate it.

> ANALYSIS OF SPECIES OF CORVULA.
a. Body rather short and deep; depth $2 \frac{1}{2}$ to $3 \frac{1}{2}$ in length; distance from insertion of ventrals to first anal spine about equal to depth of body; color silvery, usually with faint dusky streaks along the rows of scales.
b. [Dorsal rays XI-I, 26 ; posterior dorsal rays much shortert han the anterior ones; eye very large, $3 \frac{1}{2}$ in head ; dorsal outline strongly convex, somewhat elevated anteriorly ; ventral outline considerably, strongly convex; snout short, 5 in head; mouth moderate, somewhat oblique, reaching to below hinder margin of pupil; tip of premaxillary little above lower margin of orbit ; maxillary $2 \frac{1}{8}$ in head; teeth in narrow bands, the outer series of the upper jaw enlarged ; longest dorsal spine 1 if in head ; the highest (third or fourth) dorsal ray 2 in head; base of anal and soft dorsal with a scaly sheath, the membranes with minute scales; second anal spine smail, $2 \frac{1}{2}$ in head ; color brownish, paler below ; upper two-thirds of body with dark streaks along the rows of scales; pectoral and especially anal with dark points; base of spinous dorsal light yellow ; numerous dark dots on belly, lower part of sides, and under side of head. Head 3 in length; depth 21 ${ }^{\frac{1}{2}}$; D. XI-I, 26 ; A. II, 10 ; scales'7-50-10.] (Steindachner.)

Macrops, 33.

## bh．Dorsal rays X－1， 28 ；depth， $2 \frac{2}{5}$ in length ；posterior rass of soft dorsal rays higher

 than the anterior ones；eye small， 5 in head ；dorsal outline strongly and reg－ ularly convex and elevated；ventral outline straight；snout acute，not round－ ed， $3 \frac{1}{2}$ in head ；mouth moderate，oblique，maxillary extending beyond pupil ； its leugth $2 \frac{1}{3}$ in head ；teeth of the lower jaw bluntish，in two series anteriorly， in a single series laterally；those of the inner series largest；teeth of the upper jaw in a narrow band，the outer series enlarged；preopercle with a cren－ ulate membranous margin；gill－rakers slender，about half as long as the eye， $7+13$ ；dorsal spines slender，the longest $1 \frac{1}{3}$ in head；soft dorsal rounded pos－ teriorly ；16th dorsal ray highest， 2 in head ；candal convex；second anal ray 21 2 in head ；pectoral short and broad，slightly shorter than ventrals which are $1 \frac{8}{8}$ in head ；scales large，those about the head，nape，and anterior part of breast cycloid，the remainder ctenoid；color，silvery white，darker above； sides and back with rather distinct dark lines along the scales；spinous dor－ sal，tips of ventrals and anal dusky；upper part of head brownish；lower part of head，cheek，and breast with numerous rusty dots，base of soft dorsal and anal rusty；head $3 \frac{1}{*}$ in length；depth 28．D．X－I， 28 ；$\Lambda$ ．II，8；scales 8－52－8．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．Sialis， 34.6bb．Dorsal rays X to XII－I，203 to 25；depth of body about 3 3 in leugth；form of $C$ ． sialis，but the body more elongate；jaws equal ；outer tecth above enlarged lower teeth nearly uniscrial；ese large， $4 \frac{1}{}$ in head ；snout bluntish， $4 \frac{1}{3}$ ；maxil－ lary 27 in head，extending to midule of pupil ；preoperele with flexible serre；； second anal spine， $3_{3}^{2}$ in head；caudal fin subtruncate．Head $3 \frac{1}{3}$ in length； depth about $3 \frac{1}{5}$ ．D．XII－I， 22 to $21 ; A . I I, 9$ ；scales about 46 ；color silvery， with faint streaks along the rows of scales abovo．．．．．．．．．．Subequalis，＊ 35. $\alpha \alpha$ ．Body rather elongate and compressed，the depth $3 \frac{1}{2}$ in length；distance from in－ sertion of ventrals to first anal spine half greater than depth of body；col－ oration dusky，with conspicnous dark streaks along the rows of scales．
c．Body oblong，compressed，the depth nearly uniform from ventrals to vent； profile nearly straight and horizontal ；month rather wide；maxillary 21 in head，reaching middle of eye；upper jaw with several scries of minute teeth and an outer somewhat enlarged series；lower jaw with a single series of rather strong teeth，a pair of minuto canine－like teeth at the symphysis； snout short，withont pores， $3 \frac{1}{2}$ in head；chin with 5 large pores；preopercio with a crenulate，dermal border；gill－rakitrs slightly longer than pupil， $5+\mathbf{1 3}$ ； lower pharyngeals with many small teeth，some of the inuer ones much elon－ gate ；eyo slightly shorter than snout， $4 \frac{1}{2}$ in head，about equal to the inter－ orbital area；scales large，their exposed edges much striated，the strim end－ ing in cilia；scales below lateral line in undulate，sulb－lorizontal series； lateral line slightly curved，becoming straight above anal；soft portions of vertical fins densely covered with seales；soft dorsal and anal with a sealy sheath at their base；dorsal caudal and anal rounded behind ；ventrals slightly longer than pectorals， $1 \frac{4}{7}$ in head．Color coppery－grayish，with many minute brown points；scales of back and sides each with a dark spot，these forming very distinct dusky stripes along the series of scales；stripes below the lateral line mostly of continuous spots，those above broken and irregular ；upper part of head and fins uniform bro wnish with many minute points．Head $3_{⿳ 亠 二 口}^{3}$ in length；depth 32. D．NI－I， $26 ;$ A．II， 8 ；scales $6-50-7 \ldots$ ．．．．Bataibana， 36.
The following is the substance of Poes＇s account of his Corvina subcqualis：Body rather clongate；eye 3 in in head ；suout short，rounded；mouth moderate；maxillary extending to below anterion margin of pupil，the jaws subequal；teeth in fine bands， the outer series longer，and larger above than below；symphysis with four pores；pre－ opercle finely dentate；dorsal fins separated；second dorsal spine stout；candal with a salient angle；base of anal scaly；anal spine rather strong，its insertion rather pos－ terior ；color silvery；depth 3 （with caudal）；head $33_{6}^{5}$. D．X－1， 25 ；A．II， 7.
33. CORVUIA MACROPS.

Corvina macrops Steindachner, Ichthyol. Beitr., iii, 24, fig. ${ }_{2}^{2}, 1875$ (Pauama). Sciana macrops Jordan \& Gilbert, Bull. U. S. Fish. Com., 1831, 316 (copied). Jordau, Proc. U. S. Nat. Mus., 1885, 382 (Panama).
Habitat.-Pacific coast of tropical America, Panama.
This species is apparently rare at Pamama. Specimens were obtained there by Dr. Gilbert, but as these hive been destroyed we hare copied our diagnosis from Steindachner. We do not find the species in the museum at Cambridge.

## 34. CORVULA SIALIS.

Corvula sialis Jordan \& Eigonmann, sp, nov. (Key West).
Habitat.-Florida Keys.
The only specimen of this species, as yet known (No. 26575, U. S. Nat. Mus.), was collected by Mr. Silas Stearns at Key West, Fla., in 1880. We give here a detailed description of this specimen:

Depth, $2 \frac{2}{3}$ ( $3 \frac{2}{7}$ in total) ; head, $3_{7}^{1}$ ( $3_{7}^{7}$ in total) ; D. X-I, $2 S$; A. II, 8 . Length, $6 \frac{1}{2}$ inches.

Body compressed; the back elevated, regularly rounded fiom snout to posterior margin of soft dorsal; rentral outline almost straight from chin to first anal spine; base of anal oblique ; caudal peduncle short and thick.

Profile slightly conrex posteriorly, somerhat depressed over the eyes; snout rather acute, slightly longer than eye; eye $4 \frac{3}{3}$ in head, $1 \frac{1}{3}$ in interorbital area; preorbital one-half as wide as eye; month moder. ate; maxillary extending past pupil, its length $2 \frac{1}{3}$ in head; premaxillary anteriorly on level with the lower border of the orbit; lower jaw included ; maxillary broad, not entirely concealed by the preorbital when the mouth is shut. Teeth of the lower jaw blunt, conical, in two series, those of the inner series much larger than those of the outer series; upper jaw with a narrow band of villiform teeth and an outer series of larger teeth, which are remote from each other and decrease in size towards the augle of the mouth.

Chin with five small pores; snout with six pores, arranged in a shaped figure.

Preopercle with a narrow, crenulate, membranous border; opercle with two scarcely distinguishable spines; scapular scale entice.

Gill-rakers moderately developed, about half as long as the eye, $5+12$; pseudobranchix large.

Scales about the head in front of dorsal and on anterior part of breast cycloid, marked with concentric strice; those on top of tho head imbedderl, indistinct; scales of the body all ctenoid ; membranes of candai, anal, and soft dorsal densely corered with minute scales nearly to their tips.

First dorsal spine short, inserted over the base of the pectoral; fourth dorsal spine highest, reaching to soft dorsal, $1 \frac{1}{2}$ in head; anterior
dorsal rays shorter than the middle and posterior ones; the eleventh longer than the fourth by an eje's diameter, little more than half the length of the head ; soft dorsal rery broadly rounded posteriorly ; candal short, broad, rounded behind; anal inserted posteriorls, the tips of the anal extending nearly as far as the tips of the dorsal; second anal spine moderate, scarcely more than two-thirds the length of the rays, little less thau 3 in head; ventrals lanceolate, slightly longer than the rounded pectorals, $1_{3}^{1}$ in head.

Color (in spirits), light brownish above, silvery on sides and below; the centers of the scales with many dark dots, these forming horizontal lines along the series of scales below the lateral line and oblique, irregular, often interrupted, lines above the lateral line; all the fins with dark dots; spinous dorsal dusky; soft dorsal brownish for twofifths of its height; the other three-fifths pale; anal and tips of ventrals dusky; pectoral pale; head with many minute rusty dots; these ag. gregated, and forming brownish spots on the maxillary and lower part of the head.

## 35. CORVULA SUBæQUALIS.

Corvina subaqualis Poey, Aun. Lyc. Nat. Hist., Nerv York, 1875, 58 (Cuba). Poey, Enumeratio, 48, 1875 (Cuba).

## Hubitat.-West Indian fauna.

We refer two specimens from Saint Thomas to this species, although they differ in some respects from Poey's description of Corvina subiqqualis. The specimens are in the museum at Cambridge, and are in rather poor condition. The more elongato body and the smaller number of dorsal rays distinguish subaqualis readily from sialis.

## 36. CORVULA BATABANA.

Johnius batabanus Poey, Memorias, ii, 184, 1860 (Batabano, Cuba); Synopsis, 324, 1868 (Cuba) ; Enumeratio, 49, 1875. (Cuba) ; Fauna Puerto-Riqueña, 327, 1881 (Porto Rico).
Larimus batabanus Jordan, Proc. U. S. Nat. Mus., 1886, 43 (Havana).
Habitat.-West Indian fauna.
This rare species is known to us from a single specimen, obtained by Dr. Jordan in Havana, and from several specimens sent by Professor Poey to the museum at Cambridge. Its strongly marked coloration is a very unusual trait in this famils. It diverges in several ways from the other species referred by us to Corvula, but we think that all should be placed in one genus.

## Genus IX.-PLAGIOSCION.

> Plagioscion Gill, Proc. Acad. Nat. Sci. Phila., 1861, 82 (a generic description only no species or type being indicated).
> Diplolepis Stcindachner, Beitrige zur Kemntniss der Sciænoiden Brasiliens, 1863, 2 (squamosissimus; name preoccupied in Hymenoptera).
> Plagioscion Jordan \& Eigenmaun (squamosissima).

TYPE: Scicena squamossissima Heckel.

This genus consists of fresh-water Sciænoids, inhabiting the rivers of South America. The genus seems to us a valid one, although closely allied to Corvula and Pseudotolithus, from both of which it is well distinguished by the peculiar squamation of the lateral line. This character suggested to Dr. Steindachner the name Diplolepis, a name which is, unfortunately, preoccupied. As no species of Plagioscion was named by the describer of that genus, we have hesitated as to the propriety of making use of that name. The original description of Plagioscion must, however, certainly hare been based on some species of the present genus, as it agrees with no other American form. We have therefore retained the name given by Dr. Gill in preference to coining some new one for the group.

Like most fresh-water fishes, the species of Plagioscion are subject to many variations, especially in regard to the size of the second anal spine. But three of the numerous nominal species seem to us valid.

## ANALYSIS OF SPECIES OF PLAGIOSCION.

a. Second anal spine small, scarcely longer than eye, its length 4 to $5 \frac{1}{2}$ in head; teeth of lower jaw with the inner series considerably enlarged; snout of moderate length, 5 in head; eye, $5 \frac{1}{2}$; maxillary, $2 \frac{1}{5}$ in head; gill-rakers rather long, $\mathrm{X}+12$; pseudobranchiæ usually small on one side and obsolete on the other ; upper part of the preopercle crenulate on its bony margin; pectoral fin short, $1 \frac{3}{5}$ in head : anal spine, $4 \frac{1}{2}$ to $5 \frac{1}{2}$, its length subject to much variation ; caudal convex; ventrals filamentous at tip. Color, silvery; darker above, the til with a large black spot. Head $3 \frac{1}{8}$ in length; depth $3_{5}^{\frac{1}{5}}$. D. X-I, 31 or 32 . A. II, 7. Scales (large ones or pores) 49 to 53. Lower pharyngeals narrow, armed with villiform teeth

Squamosissimus, 37.
$a a$. Second anal spino large and strong, its length 2 to 3 in head.
b. [Teeth of lower jaw with the inner series considerably enlarged ; snout very short, blunt, $5 \frac{1}{2}$ in head; head depressed above the eyes; mouth large, rather oblique, subinferior, the maxillary $2 \frac{1}{\delta}$ in head, reaching past eye; back elevated; ventral outline nearly straight; caudal peduncle slender; preorbital broad, a little narrower than eye, which is $5 \frac{1}{2}$ in head; preopercle rounded, nearly or quite entire ; teeth of outer series in upper jaw and inner series of lower notably enlarged; dorsal spines slender, the highest $2 \frac{2}{3}$ in head ; pectoral $1 \frac{3}{5}$ in head; ventrals $1 \frac{1}{4}$; scales all ctenoid; head $3 \frac{2}{5}$; depth $3 \frac{2}{5}$; D. X-I, 31 to 33 . A. II, 6. Enlarged scales in lateral line about 50 ; about 100 in a longitudinal series above it. Color grayish above, silvery below; upper vertical fins punctate; lower fins yellowish; axil dark.] (Steindachner.) Surinamensis, 38.
$b b$. Teeth of lower jaw subequal, those of the inner row scarcely enlarged; head very convex above, not spongy ; preopercle with a broad membranous margin, which is slightly crenulate ; preorbital broad, as broad as eye ; mouth large, oblique, the lower jaw slightly included, the maxillary $2 \frac{1}{4}$ in head; snout bluntish, $3 \frac{4}{5}$ in head; eye 6 in head ; gill-rakers $X+13$, slender and moderately long, the longest about ${ }_{5}^{2}$ diameter of eye; outer teeth above somewhat enlarged ; pectorals long, $1 \frac{1}{3}$ in head, shorter than the ventrals, which have filamentous tips; second anal spine $2 \frac{1}{3}$ to $2^{\frac{2}{3}}$ in head ; dorsals connected, the soft dorsal largely scaly at base ; candal rhombic, the middle rays produced. Color plain silvery, the axil dusky. Head $3 \frac{1}{8}$; depth $3 \frac{1}{8}$. D. X-I, 34 to 36 . A. II, 7. Scales 49 (pores); 80 cross-series.

## 37. PLAGIOSCION SQUAMOSISSIMUS.

Sciana squamosissima Heckel, Annalen des Wiener Museum, ii, 438, 1840. Reinhardt, Videnskab. Medd. Naturhist. Forening Kjöbenhavn, 108, 1854. Steindachner, Beitr. zur Keuntniss der Fisch-Fauna Süd-America's, 1879, 3 (Amazon, Orinoco, Rio Negro).
Pachyurus squamosissimus Günther, Cat. Fish. Brit. Mus., ii, 526, 1860 (copied).
Diplotepis squamosissimus Steindachner, Scixn. Brasil., 2, 1893 (Brazil).
? Sciena rubella Schomburgk, Naturalists' Library, Fishes of Guiana, ii, 133, 1843 (Rivers of Guiana). (D. IX, 34; $1 . \mathrm{II}, 6$; anal spines presumably small.)
Johnius crouvina Castelnau, Anim. Nouv. ou Rares de l'Amér. du Sud, Poissons, 11, plate v, fig. 1, about 1855 (Rio Crixas, Rio Araguay).
Sciona crowvina Guinther, Cat. Fish. Brit. Mus., ii, 287, 1860 (copied).
Johnius amazonicus Casteluau, Anim. Nouv. ou Raves de l'Amér. dul Sud, Poiss., 12, plate iv, fig. 1, about 1855 (Amazon).
Sciena amazonica Giinther, Cat. Fish. Brit. Mus., ii, 284, 1860 (River Chapin, Pará).
? Corvina monacantha Cope,* Trans. Am. Phil. Soc., 1866, 402 (near Parimaribo, Dutch Guiaua.
? Sciana monacantha Jordan, Proc. U. S. Nat. Mus., 1886, 587 (name only).
Habitat.-Rivers of Guiana and Brazil.
We hare examined specimens of this species from Obidos, Avary, Rio Puty, Tajaparu, Iça, Coary, Rio Trombetas, and Lake Hyanuary in Brazil. Our description is chiefly taken from 10867, M. C. Z., from Obidos, and 10857 from Coary.

We regard the Johnius amazonicus and Johnius crowvina of Castelnau as identical, and we follow Dr. Steindachuer in placing both in the synonymy of the earlier Scicena squamosissima of Heckel. We have seen no specimens of this species from Guiana. It seems to us, however, that the scanty descriptions published of Scicha rubella and Corvina monacantha resemble this species more than any other, although it is not impossible that both should be referred to Plagioscion surinamensis. If the latter should be found to be the only species of the genus in Guiana, it should stand as Plagioscion rubcllus.

## 83. PLAGIOSCION SURINAMENSIS.

Pseudoscicna surinamensis Bleeker, Arch. N6erl. Sci. Exact. et Nat., viii, 458, 1873 (Surinam).
Sciena surinamensis Steindachner, Fisch-Fana des Cauc r, 1880, 4 (Rio Cauca). Jordan, Proc. U. S. Nat. Mus., 1886, 587 (name only).
Neiana magdalence Steindachner, Zur Fisch-Fama des Magdalenen-Strome s, 6, 18:8 (Rio Magdalena).
Seicona magdalence Jordan, Proc. U. S. Nat. Mus., 1886, $58 \%$ (name only).
Habitat.-Rivers of the northern part of South America.

[^56]This species is known to us from descriptions ouly. We can see no evident differeuce between the magdalence and the surinamensis as described by Steindachner and Bleeker. We therefore refer the former to the synonymy of the latter. As already stated, this may be the orig. inal Scicuna rubella of Schomburgk.

## 39. PLAGIOSCION AURATUS.

Jolnius auratus Castelnau, Anim. Nouv. ou Rares de l'Amér. du Sud, 12, plate iv, fig. .2, 1855 (Rio Ucayala).
Scicna aurata Günther, Cat. Fish. Brit. Mus., ii, 287, 1860 (copied).
Habitat.-Rivers of Brazil.
This species seems to be very abundant in the rivers of Brazil. We have examined specimens, old and young, from Tajapuru, Cachiura, Caneta, Pará, Rio Sao Francisco, Arary, Obidos, Rio Puty, and Teffy. A specimen ( $\mathbf{1 0 8 5} 5$, M. C. Z.) from Tajapuru has especially served as the type of our description.

> Genus X.-BAIRDIELLA.

Bairciella Gill, Cat. Fish. East Coast North America, 33, 1861 ( argyroleuct=chrysura).
Type: Bodianus argyroleucus Mitchill = Dipterodon chrysurus Lacé pède.

This genus is characterized by the oblique month, little cavernous skull, few rows of teeth, sleuder gill-rakers, and the preopercle armed with a plectroid spine. It seems to us a natural group, and perhaps worthy of recognition as a distinct genus, although its relationships with Ophioscion and especially with Stelliferus are very close. The numerous species are all American, and some of them are remarkable for the great size of the second anal spine. In others, this spine is quite small. These variations among species unquestionably closely allied shows how slight is the systematic ralue to be attached to the size of this spine.

## aNALYSIS OF SPECIES OF bAIRDIELLA.

a. Teeth of lower jaw unequal, mostly biserial, some of those of the inner series very slender, canine-like ; two small canines on front of lower jaw, inserted ou a symphyseal knol ; second anal spine very small, 3 in head (species approaching Odontoscion).
b. Body moderately compressed, the back little elevated; profile somewhat concave anteriorly ; snout acute, slightly longer than eye; eye $4 \frac{1}{2}$ to 5 in head; mouth large, terminal, very oblique; maxillary extending to below posterior margin of pupil, $2 \frac{1}{4} \mathrm{in}$ head; teeth of the upper jaw long and slender, in 3 to 4 seties, the inner ones depressiblo backward, the outer ones enlarged and fixed ; 5 or 6 distinct serre near the angle of preopercle, the lowest a robust flattish spine directed downwards; gill-rakers slender, $6+15$; longest dorsal spine $2 \frac{1}{7}$ in head; anal fin small, its base slightly oblique; second anal spine shorter than the first rays, 3 in liead; pectorals about as long as ventrals, $1 \frac{1}{4}$ in head; scales about, the head cycloid, the rest all cte-
noid; mombraues of soft dorsal and anal scaled for nearly half their height ; color lustrous bluish gray above, silvery below ; middle of sides with indistinct lengthwise streaks formed by clusters of dark dots in the centers of the scales; snout and tip of lower jaw blackish; a dark blotch on opercle above; sides of head bright silvery ; finslight straw color; upper half of pectorals dusky: spinous dorsal finely speckled with black; axil brown above; lining of opercle black above; iris loright yellow; head 3 in length ; depth $3 \frac{1}{2}$; D. X-I, 24 or 25 ; A. II, 8. Scales 9-52-7 Archidium, 40.
$a a$. Teeth of the lower jaw unequal, chicfly biserial, those of the inuer series somewhat enlarged; no distinct canines; second anal spine moderate or large ; preorbital narrow (Bairdiella).
c. Second anal spino moderate, $2 \frac{1}{3}$ in head, not as long as the soft rays, notreaching to tip of last ray when depressed; " mouth large, somewhat oblique, the premaxillary on the level of lower part of the eye; maxillary reaching middle of eye, 92 in head ; body oblong, compressed, the back a little elevated, the profile depressed over the eyes; snout prominent, bluntish, as long as eye, which is $4 \frac{1}{4}$ in head ; upper teeth in two series, the outer row slender, enlarged; lower tecth in two series, the inner larger, similar to the outer in upper jaw ; preopercle serrate, the teeth near the angle larger; the lowest and largest directed downward; gillrakers slender, rather long, $8+16$; scales on head cycloid; base of anal little oblique; rentral outline rather regularly rounded; dorsal spines slender, the highest 21 in head ; candal long, double truncate; pectorals about as long as the ventrals, $1^{3}$ in head; soft dorsal and anal scaled at least half their height. Color greenish above, silvery below; back and sides more or less densely punctate with dark dots (especially in worthern specimens), these forming narrow, somewhat irregular streaks along the sides; fins plain, mostly yellow in life. Head 3 in length; depth 3. D. XI-I, 22; A. II, 10. Scales 8-52-8. Chrysura, 41.
cc. Second aual spine very long, nearly or quite $\frac{7}{8}$ length of head, reaching when depressed beyond the tip of the last soft ray; base of anal fin very oblique, making an abrupt angle with the straightish ventral outline. d. Mouth terminal, very oblique, the premaxillary anteriorly on the level of the middle of the eye; body subrhomboidal and angular in outline; profile steep, slightly convex; suout short, 5 in head; mouth moderate, the maxillary reaching middle of eye, $2_{\bar{\circ}}^{2}$ in head; teeth in upper jaw in two or three series, the outer considerably enlarged, all of them more or less depressible; gill-rakers long, $8+16$; dorsal spines stout, the highest about 2 in head; second anal spine enorm us, larger than in any other species, $1_{7}^{2}$ in head; longer than any of the rays; second anal spine and the anterior rays extending beyond the tips of the last rays; the margin of the fin concave, ventrals slightly longer than pectorals, $1 \frac{1}{5}$ in head; opercular scales and some of the scales of the cheek and top of the head ctenoid, those of the interorbital space and a few on the lower parts of the cheek and opercle cycloid; color bluish-gray above and ou sides, silvery below; a dark, ill-defined bluish-gray blotch on opercle; mouth yellow within ; black towards the tip of the lower jaw ; spinous dorsal with black punctulations and a black margin, soft dorsal dusky yellow; caudal and anterior rays of the anal brighter yellow; caudal and membrane between anal spine and first ray with black dots; axil of pectorals and inner membrane of the upper rays of the pectoral brownish. Head $3 \frac{1}{8}$ in length ; depth $3 \frac{1}{8}$. D. X-I, 23; A. II, 8. Scales 8-49-9..................................................................................
dd. Mouth not quite terminal, the premaxillary anteriorly searcely on level of lower margin of orbit; preorbital narrow, but broader than in the preceding species.
e. Dorsal rays X-I, 28; dorsal spines very slender, the highest $1 \frac{1}{2}$ in head; dorsal outline convex, especially anteriorly ; ventral outline straightish; profile straightish anteriorly ; eje moderate, as long as snout, $4 \frac{1}{8}$ in head; maxillary $2 \frac{1}{8}$ in head, reaching much beyond middle of eye; teeth in the upper jaw in a narrow band, the outer series enlarged; gill-rakers $8+19$; basal half of soft dorsal scaly; anal spine very strong, its tip reaching past tip of last anal ray; pectorals about equal the ventrals, $1 \frac{1}{8}$ in head; color grayish silvery above, silvery on sides and below ; dorsal region with faint streaks produced by the darker centers of the scales; sides without dots; spinous dorsal blackish; ventrals and pectorals pale; a dark axillary spot; lining of gill cavity with dusky blotches. Head $3 \frac{1}{4}$ in length ; depth 3 . . D. X-I, 28; A. II, 8. Scales 8-51-10

Icistia, 43.
$e e$. Dorsal rays X-I, 23 ; dorsal spines rather stiff, the highest 2 in head; second anal spime rather strong, curved, $1 \frac{\mathrm{~N}}{\mathrm{~N}} \mathrm{in}$ head, as long as first softt ray, and reaching beyond tips of other rays; body oblong, compressed, scarcely angular in outline; profile straight, rather steep, the snout short and rather acute; eye as long as snout, $4 \frac{1}{3}$ in head; mouth moderate, nearly horizontal ; premaxillary ou level of lower part of orbit; maxillary reaching beyond middle of eye, 23 in head; teeth as in $B$. icistia; preopercle strongly serrate; gill-rakers $9+18$. Ventrals slightly longer than pectorals, which are $1 \frac{3}{3}$ in head; caudal truncate; color solled grayish alove, silvery below; faint, dark streaks along the rows of scales; spinous dorsal and anterior part of anal densely covered with dark dots; head $3 \frac{1}{7}$ in length; depth $3 \frac{1}{7}$. D. X-I, 23; A. II, 8. Scales 7-50-8

Ronchue, 44.
zaa. Teeth of the lower jaw subequal in a rather narrow villiform band; mouth inferior or subinferior, little oblique; preorbital broader, gill-rakers shorter, and pores and slits on snout more conspicuous than in other species. (Species approaching Ophioscion.)
f. Snout sharp, the head slender, narrow above, the interorbital space not broader than eve; anal spine very long, and strong, $1 \frac{7}{8}$ in head; pectoral fin short, $1 \frac{1}{3}$ in head; form of body irregularly rhomboidal, the base of the anal fin being oblique; profile almost straight anteriorly ; eye moderate, siightly shorter than snout, $4 \frac{2}{8}$ in head; snout $4 \frac{1}{2}$ in head; mouth large, inferior, almost horizontal, maxillary reaching beyoud pupil, $2 \frac{3}{5}$ in head; upper jaw with a band of villiform teeth aud an outer series of enlarged teeth; lower teeth in a moderate band, the inner series slightly enlarged, especially in young examples; gill-rakers comparatively short, $8+15$; dorsal spines short and stout, slightly more than 2 in head; caudal rounded; anal spine $1 \frac{2}{3}$ in head; basal half of the soft dorsal and anal covered with scales; color, bluish above, silvery below, a rather broad area from snout to caudal covered with brownish dots; upper fins and anterior half of anal with many dots. Head 3 in length; depth 3; D. XI-I, 21; A. II, 8. Scales 7-51-8. Armata, 4j.
ff. Snout bluntish; the head rather stout and broad above; the interorbital space more or less broader than eye; second anal spine stout, shortish, about half length of head.
g. Dorsal rays X-I, 18 ; spales large, about 44 in the lateral line; pectoral not longer than caudal, which is $1 \frac{1}{3}$ in head; body rather elongate; back a little elevated and compressed; profile somewhat depressed S. Mis. $90-25$
over cyes；suout rather truncate，abont 4 in head；eye abont 4 in head；lower jaw much shorter than upper；mouth horizontal，maxil－ lary extending searcely beyond middlo of eye；teeth in upper jaw in a villiform band，the oator series somewhat eularged；gill－raker ${ }^{8}$ about as long as pupil ；longest dorsal spine little more than half length of head；second anal spine about 2 in head，是 the height of the soft rays；caudal fin long，double truncate，the middle rays produced；ven－ trals reaching vent；color light reddish－brown，with dark punctula－ tions；caudal yellow；anal almost black；lining of gill－cavity dusky； head 3 䓂in length ；depth 3 ． ．D．X－I，18；A．II， 8 ；scales 5－44－X．

Aluta， 46.
g9．Dorsal rays $\mathbb{X}-\mathrm{I}, 21$ or 22 ；scales moderate， 50 to 55 in the lateral line；pectoral $1_{7}^{\frac{1}{7}}$ in bead ；caudal $1 \frac{1}{8}$ in head ；back somerwhat elevater， the form of the body much as in Sciena scicra and related species； preorbital broader than in other species of Bairdiclla，$\frac{4}{\text { s }}$ width of eye； eye 5 iu head；snont blontish $4^{3}$ ；interorbital space $3^{2}$ ；head thick， somewhat more cavernons than in related forms ；premaxillary en－ tirely below level of eye；maxillary ${ }^{2}$ 高 in head；teeth of outer series of upper jaw enlarged；lowest serrio on preopercle smaller and less turned forward than in the other species；dorsal spines rather stout， the second strong，the third longest， $1 \frac{3}{4}$ in head；second anal spine shorter than the solt rays，${ }_{2} \frac{1}{4}$ iu head；the form and size of thesespines very variable；gill－rakers short and slender， $\mathbf{X}+15$ ，the longest not as long as pupil；caudal fin double truncate；color soiled brassy，ir－ regularly mottled，wit h large patches of shining golden brown；faint dark stripes along the rows of scales above，those below lateral line nearly horizontal，those above oblique；head 3 in length；depth 3. D．X－I， 21 or $2:$ ； 1. II， 9 ；sc：bles， $6-50$ to $55-13 \ldots$ ．．．Cirysoleuca， 47.

## 40．BAIRDIELLA ARCHIDIUM．

Odontoscion archidium Jordan \＆Gilbert，Bull．U．S．Fish Com．，1881， 317 （Panama）． Jordan \＆Gilbert，Bull．U．S．Fish Com．，1882， 111 （Pauama）．

## Habitat．－Pacific coast of tropical America，Panama．

This species is not very common about Panama，where three speci－ mens were taken by Dr．Gilbert．Althongh it bears a very strong re－ semblance to Odontoscion dentex，it should，we think，rather be placed in Bairdiella thau in Oilontoseion．It has the rery small anal of Odon－ toscion and the spur－like preopercular spine of Bairdiella，while in its dentition it is intermediate．

## 41．BATRDIELLA CHRYSURA．

（The Mademoiselle；Yellof－tall．）
［Plate MI．］
Porca punctata Liumwes，Syst．Nat．，ed．xii，48：，1766，in part（South Carolina）（not Perca punctatus of ed．x，which is Emeacentrus fulvus）．Bonnaterre，Encycl． Méth．，1788，126．Goode \＆Bean，Proc．U．S．Nat．Mus．，1885， 201 （notes on Linuseau Fishes）．
Bairdiella punctata Jordan \＆Gilbert，Proc．U．S．Nat．Mus．，1878， 377 （Beaufort）．
Sciena punctata Jordan \＆Gilbert，Proc．U．S．Nat．Mus．，188：， 280 （Pensacola；Gal－ veston）．Jordan \＆Gilbert，Syn．Fish．North Am．，570， 1883.

Dipterodon chrysurus Lacépète, Hist. Nat. Poiss., iii, 64, 1802 (after Linnæus).
Sciana chrysura Jordan \& Gilbert, Proc. U. S. Nat. Mus., 188\%, 606 (Charleston). Jordan \& Gilbert, Syn. Fish. North America, 933, 1883. Swain, Proc. U. S. Nat. Mus., 1884, 233 (Cedar Key, Florida).
Bairdiella chrysura Goode, Hist. Aquat. Anim., 375, plate 126, 1884.
Bodianus argyrolcucus Mitchill, Trans. Lit. \& Phil. Soc. New York, 417, plate 6, lig. 3, 1815 (New York).
Corvina argyroleuca Cuv. \& Val., Hist. Nat. Poiss., v, 105, 1830 (Martinique (?), United States). DeKay, New York Fanna, Fishes, 74, plate 18, fig. 51, 1842 (New York). Storer, Syn. Fish. North Am., 319, 1846 (copied). Giunther, Cat. Fish. Brit. Mus., ii, 299, 1860 (copied).
Bairdiella argyroleuca Goode, Proc. U. S. Nat. Mus., 1879, 113 (St. John's River, Florida). Goode \& Bean, Proc. U. S. Nat. Mus., 1879, 131 (Pensacola). Bean, Proc. U. S. Nat. Mus., 1880, 93 (Brunswick, Ga.; St. John's River, Florida).
Bodianus pallidus Mitchill, Txaus. Lit. \& Phil. Soc., 1, 420, 1815 (New Yorī).
Homoprion xanthurus Holbrook, Ich. S. Car., cd. 1, 1856, 170, pl. 24 (not Leiostomus xanthurus Lacépède.
Homoprion subtruncatus Gill, Cat. Fish. E. Coast, 1861, 33 (after Holbrook).
Hrebitat.-South Atlantic and Gulf coasts of the United States, north to New York.

This species is very abundant on our sandy shores from Long Island to Texas. It reaches but a small size, hence, although an excellent pan fish, it has no great economic value.

Unlike most of the other species of the genns, its second anal spine is little enlarged.

The oldest name of this species, Percu punctata L., is not available, as there was at that time already another Perca punctata, also named by Linnæus. The appropriate name, chrysura, being next in order of date, must, therefore, be adopted.

## 42. BAIRDIELIA ENSIFERA.

Corvina armata Steindachner, Ich. Beitr., iii, 28, 1875 (Panama) (not of Gill).
Sciena ensifera'Jordan \& Gilbert, Bull. U. S. Fish Com., 1881, 313 (Bay of Panama). Gilbert, Bull. U. S. Fish Com., 1882, 112 (Punta Arenas).
Corvina fulgens Vaillant, Miss. Sci. au Mexique, 164, 1083 (Pacitic coast of Mexico).
Habitat.-Pacific coast of tropical America.
This species is not uncommon abont Panama. Of all the American Sciænoids this species has the largest anal spine in proportion to the size of the body. The Corvina fulgens, lately described by Dr. Vaillant, seems to be identical with Bairdiclla ensifcra.

Numerous specimens of this species from Panama are in the museum at Cambridge. They had been wrongly identified as "Corvina armata" by Dr. Steindachner.
43. BAIRDIELLA ICISTIA.
(Corbineta.)
Sciana icistia Jordau \& Gilbert, Proc. U. S. Nat. Mus., 1881, 356 (Mazatlan). Jordan \& Gilbert, Bull. U. S. Fish Com., 1881, 316 (Mazatlan). Jordan \& Gilbert, Bull. U. S. Fish. Com., 1882, 107 (Mazatlan).
Habitat.—Pacific coast of Mexico, Mazatlan.

This species is rather common ahout Mazatlan, where numerous specimens were taken by Dr. Gilbert. It is readily distinguished from other species by the weakness of its dorsal spines, as well as by the large number of the anal rays.

## 44. BAIRDIELIA RONCHUS.

## (Ronco ; Corvina.)

Corvina ronchus Cuv. \& Val., Hist. Nat. Poiss., v, 107, 1830 (Maracaibo; Surinam). Storer, Syn. Fish. North Am., 320, 1846 (copied). Güntlier, Cat. Fish. Brit. Mus., ii, 299, 1860 (San Domiugo, Janaica, Bahia). Guinther, Fishes Central America, 387, 1869 (Atlantic coast Central America). Cope, Ichthyol. Lesser Antilles, 471, 1870 (St. Martin).
Bairdiella ronchus Poey, Synopsis, 324, 1868 (Cuba). Poef, Enumeratio, 48, 1875 (Cuba). Poey, Fauna Puerto-Riqueña, 326, 1831 (Porto Rico).
Sciena ronchus Jordan, Proc. U. S. Nat. Mus., 18es, 44 (Havana).
Habitat.-Atlantic coasts of tropical America.
This species seems to be generally common in the West Indies and along the coast of Brazil.

The numerous specimens before us are from Havana. The species is called Corvina in the Mavana markets, where it is a food•fish of some importance.

Many specimens from Rio Janeino and from Havana are in the museum at Cambridge. There is considerable individual variation, but there seems to be no specific differeuce between Cuban and Brazilian examples.

A number of specimens in poor condition are also in the museum, supposed to have been obtained by Captain Perry at Vera Cruz. These hare the snout longer, the eye smaller, and the fins higher than usual in ronchus, aud they may represent a different species. In these the snout is 4 in head, the eye $4 \frac{1}{2}$, the longest dorsal spines 13 , the second aual spine $1 \frac{\%}{7}$. D. $\mathrm{X}-\mathrm{I}, 24$.

## 45. BAIRDIELLA ARMATA.

Bairdiclla armeta Gill, Proc. Acad. Nat. Sci. Phila., 1863, 164 (west const Central America). Bean \& Dresel, Proc. U.S. Nat. Mus., 1884, 156 (Jamaica).
Corvina armata Giiuther, Fishes Central America, 397 and 428, 1959 (Pacific coast of Central America).
Sciurna armata Jordan \& Gilbert, Bull. U. S. Fish Com., 1881, 316 (Panama). Gilbert, Bull. U. S. Fish Com., 1882, 112 (Punta Arenas). Jordan \& Gilbert, Proc. U. S. Nat. Mus., 1882, 276 (Panama).

Corrina acutirostris Steindachner, Ichthyol. Beitr., iii, 28, 1875, plate 4 (Panama).
Corrina (Homoprion) acutirostris Steindachner, Zur Fisch-Fauna des MagdalenenStromes, 9, 1878 (Caiman on Rio Magdalena).
Habitat.-Both coasts of tropical America.
This species is not uncommon on the Pacific coast about Panama, and it is equally abundant on the Atlantic coast, where it seems to ascend the rivers.

There is no doubt of the identity of Corvina acufirostris with Bairdiella armata, the type of the latter having ieen examined by Dr. Gilbert.

Bairdiella armata is close to B. ronchus, and the character of the dentition of the lower jaw, which we have used to divide Bairdiella into minor groups, becomes here of slight importauce.

We have examined specimens of this species from Panama, Rio Magdalena, San Matheo, Camaru, Canuarivieras, Curuça, Bahia, Pernawbuco, Maranhão, and Itabapuana. The specimen from the latter locality ( 10837 , M. C. Z.) is uearly a foot long, and has the spines a little shorter and stouter than in Panama examples.

## 46. BAIRDIELLA ALUTA.

Scicena aluta Jordan \& Gull)ert, Proc. U. S. Nat. Mus., 1831, 230 (La Union, San Salvador.
Habitat.-Pacific coast of Central America.
This species is known only from the original type collected by Captain Nichols at La Union.

This specimen strongly resembles Bairdiella chrysoleuca, apparently differing ouly in the larger scales, ferver dorsal rays, longer candal fin, and larger eyes. The two characters last mentioned may be due to youth, the type of aluta being smaller than any chrysoleuca examined by us. The other characters are possibly results of extreme variation. It is, therefore, probable that the two nominal species will prove to be identical.

## 47. BAIRDIELLA CHRYSOLEUCA.

Corvina chrysoleuca Giiuther, Fish. Central America, 357 and 427, plate 67, tig. 1, 1869 (Panama).
Scicena chrysoleuca Jordan \& Gilbert, Bull. U. S. Fish. Com., 1831, 316 (Panama).
PSciæna aluta Jordan \& Gilbert, Proc. U. S. Nat. Mus., 1881, 232 (La Union).
Habitat.-Pacific coast of tropical America.
A few specimens of this species were obtained at Panama by Professor Gilbert. Two others are in the museam at Cambridge (No. 10se6, from Panama). The species is quite variable, especially in the armature of its preopercle.

This species, although technically a Bairdiella, shows uumerous affiuities with Scicna scierct and other species of Ophioscion. It marks the transition from one group of Scianoids to the other, from those related to Larimus to those allied to Scicna, Pogonias, and Eques.

## Genus XI.—STELLIFERUS.

Les Stellifères Curier, Règno Animal, ed. i, 1817, 283 (stellifer).
Stelliferus Stark, "Elements Nat. Hist., i, 459, 1898" (stellifer) (fide Gill).
Homoprion Holbrook, Ichth. S. Carol., 1st ed., 1856, 168 (lanceolata).
Type: Bodianus stellifer Bloch.

This group is composed of small species, all American, allied to Bairdiella aud Ophioseion, but distinguished by the remarkably spongy and cavernous structure of the bones of the skull. The septa are reduced to the thimess of the walls of honeycomb. The skull is also very broad and much depressed between the eyes.
The generic name Homoprion was based on a species each of Stelliferus and Bairdiella. It was restricted by Gill to the former group, and should therefore be regarded as a synonym of Stelliferus. We have not examined the paper of Stark, but we understand that Stelliferus is a latinization of Cuvier"s "Les Stellifères," based on Bodianus stellifer.

## ANALYSIS OF SPECIES OF STELLIFERUS.

a. Preopercle with two spines ouly, the upper directed backward, the lower more or less downward.
b. Jaws subequal, the mouth very oblique; teeth of lower jaw unequal, not villiform, those of the inner series cularged; mouth very large, oblique, the jaws equal, the snout not projecting beyond the premaxillaries, which are on the level of the bye; maxillary 2 in head, extending beyond eye; interorbital width nearly half head; preopercle with two spines ouly, the upper directed backward, the lower downward; body robust, subrhomboidal; profile steep, straightish ; snout short, prominent, as long as eye, $4 \frac{?}{s}$ in head; teeth of the upper jaw anteriorly in two separated series, the outer of which is composed of enlarged teeth; posteriorly in a broad baud of villiform teeth; gillrakers long and slender, scarcely shorter than eye, $21+27$; dorsal spines low, the first two and last two somewhat thickened, the rest slender; highest spine 2 in head; caudal rounded, shorter than head, $1 \frac{1}{5}$ in head; second anal spine robust, $1 \frac{1}{2}$ in head; ventrals $1 \frac{1}{6}$ in pectorals, which are slightly longer than the head; scales about head, on breast, antedorsal region, and several series along the base of the dorsals cycloid, tho rest ctenoid; bases of anal and soft dorsal densely scaly; a series of scales on membrane of each spine in the dorsal fin. Color dusky above, palo bolow, with some silvery luster; middle of sides conspicuously punctulate; upper fins all brownish, punctulate with darker; ventrals, anal, and pectoral pale, the anal and pectoral dusted with darkpoints; opercle blackish within; head $3 \frac{3}{5}$ in length; depth $4 \frac{1}{5}$. D. XI-I, 24; A. II, 8; scale s7-48-6........Oscitans, 48.
bb. Jaws not equal, the lower jaw included; mouth less oblique ; teeth of lower jaw subequal, in a narrow, villiform band.
c. Mouth large, maxillary ${ }_{2}$ in head; lower preopercular spine directed downward and backward; body moderately deep, the anterior profile straightish and steep, a littlo dopressed over the eyes; eye rather large, $4 \frac{1}{4}$ in head; snout $4 \frac{1}{3}$; intororbital area broad and flattish, its width 25 in head; head narrower and less depressed than in S. fürthi ; mouth oblique, the lower jaw included, the premaxillary in frout a little above lower edge of pupil; maxillary 2 in head, reaching to posterior margin of eye; teeth of lower jaw in a narrow band of about 3 series, those of the inner series very slightly enlarged; gillrakers extremely long and slender, abont $X+30$, the longest slightl. less than eye; preoperele strongly rounded, the lower spinule directed backward and downward; scales large; lateral line becoming straight orer the anal spine; caudal pointed; longest dorsal
spine $1 \frac{5}{5}$ in head ；second anal spine 21 ；pectoral $1 \frac{1}{8}$ ；head $3 \frac{1}{3}$ in length；depth $3 \frac{1}{3}$ ；D．XI－I，21；A．MI， 9 ；scales 48 （pores）；color rather pale，the pectoral with dark points；gill cavity dark with－ in

Rastrifier， $4 \boldsymbol{\theta}$ ．
cc．Mouth moderate，the maxillary reaching to behind pupil，$a_{2}^{2}$ in head；lower spine of preopercle directed downward and forward；bones of side of head little cavernous；interorbital width more than $\frac{1}{3}$ head； mouth low，little oblique，the maxillary reaching to behind pu－ pil， $2 \frac{1}{2}$ iu head ；eye $4 \frac{2}{3}$ in head；gill－rakers shorter and fewer than in S．rastrifer；snout short，thick，and blunt，protruding beyond the premaxillaries which are on the level of the eye；profile steep；body rather short and deep，the back elerated ；highest dorsal spine $1^{3}$ in head；second anal spine small， $2 \frac{1}{1}$ in head，shorter than soft rays；ven－ trals $2 \frac{1}{2}$ in head；pectorals scarcely shorter than head；color dull silvers，darker above；lower fins pale；head $3_{5}^{2}$ in length；depth $3_{3}^{2}$

$a a$ ．Preopercle with numerous（ 6 to 20 ）serra，those near the angle more or less en－ larged；lower teeth subequal，in a narrow band．
d．Lowermost spinule of preopercle eularged，directed downward（as in Baird－ iella）；caudal fiu subtruncate；body deep，robust，moderately com－ pressed；nuchal region compressed；profile steep，depressed over the cye，the snout projecting；head broad，flattish，and soft above，but less cavernous than in the other species；interorbital space 3 in head；a sharp ridge above orbits as in other species；suout very blunt，short，and thick， $4 \frac{4}{5}$ in head；mouth oblique，the lower jaw in－ cluded；maxillary reaching middle of pupil， $2 \frac{2}{2}$ in head ；eye $4 \frac{1}{5}$ in head；gill－rakers long and slender， $\mathbf{X}+21$ ，the longest，$\frac{\square}{3}$ eye；pre－ opercle with 6 or 7 sharp teeth above，the one at the angle enlarged and turned downward；dorsal spines moderate；second anal spine short，stoutish，$\frac{3}{3}$ length of first soft ray， 3 in head ；candal subtruu－ cate，the upper lobe slightly produced；pectorals rather long， $1_{1 \frac{1}{2}}$ in head，reaching beyond tips of ventrals；color soiled silvery，with faint darker streaks aloug the rows of scales；dorsal with darls points；other fins pale；head $3 \frac{1}{4}$ ；depth 3；D．XIII－I，22；A．II， 11 ； scales 51．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 51.
$d d$ ．Lowermost spinule of preopercle not directed downwards；caudal fin pointed．
e．Mouth large，oblique，the maxillary 2 to $2 \frac{1}{2}$ in length of head；snout very short，little projecting．
$f$ ．Preopercle with three or four spines next the angle，divergent，consider－ able larger than the others．
g．Pectoral fin long， $1 \frac{1}{6}$ in head；body deep，compressed；head short， deep，more compressed than in related species，the interorbital space less depressed，its width $3 \frac{1}{5}$ in head，the supraocular ridges less promi－ nent；anterior profile evenly convex；eye rather large， $4 ⿱ ⿻ 土 一 ⺝ ⿱ 丆 贝: ~ i n ~ h e a d ; ~$ snont very short and blunt， $4 \frac{1}{6}$ ；mouth oblique，large，the maxillary 2 in head，reaching posterior border of eye；the premasillary on the level of lower part of ese；preopercle very convex，forming an are of a circle；gill－rakers long and slender， $\mathrm{X}+18$ ，the longest ${ }_{3}$ eye；dorsal spiues slender，rather low，the longest $1 \frac{1}{4}$ in head；sec－ ond anal spine long and rather stont， $1_{3}^{\frac{2}{3}}$ in head；color dull silvery， the fins not very dark；head $3 \frac{1}{3}$ in length；depth $3 \frac{1}{5}$ ；D．XI－I， 19 ； A．II， 8 ；scales 48

Stellifer， 52.
gg．Pectoral fin short，about $1 \frac{2}{3}$ in head ；interorbital space 3 in head； second anal spine $2 \frac{1}{3}$ ；body rather slender；snout as long as eye， $4 \frac{1}{3}$
in head; mouth moderate, oblique, the maxillary not quite half length of head, extending just past pupil ; premaxillary in front on level of lower margin of pupil; teeth añove in broan Dands; the outer row enlarged; gill-rakers $13+22$, about $\frac{3}{n^{2}}$ length of eye; scales on head cycloid; dorsal spinos sleuder, the first two somewhat stronger, the highest abont 2 in head; caudal long, lanceolate, $1 \frac{1}{5}$ in head; second anal spiue little shorter than the highest dorsal spine; first ventral ray filiform; pectoral about as long as ventral, $1 \frac{?}{8}$ in head; color grayish olive above, silvery below; fins all nearly uniform dusky; the ventrals margined with white; many black dots along the sides; baso of anal fin and inner lining of opercle dusky; head $3 \frac{1}{4}$ in length; depth $3 \frac{1}{2}$; D. XI-I, 20 to 23 ; A. II, 7 or 8 ; seales $5-47$
 .f. Preopercle with numerous short, straight spinules, which decrease in size regularly from angle upwards ; eye small ; mouth terminal, moderate, the maxillary extending past the pupil, its length $2_{5}^{2}$ in head; premaxillaries anteriorly opposite lower margin of orbit, the snout scarcely projecting beyond them; head extremely spongy and cavernous; interorbital width less than $\frac{1}{3}$ headi ; profile straight; snout short, blunt, 5 in head, equal to diameter of eye ; upper jaw with a band of villiform teeth, the outer series enlarged; margin of preopercle rounded, its spines all small; gill-rakers $\frac{?}{8}$ length of eye, $11+18$ in number ; first two dorsal spines stout, the highest 2 in head ; second anal spine 2 in head; pectorals as long as ventrals, $1 \frac{1}{4}$ in head ; scales on cheeks mostly ctenoid, on top of head cycloid; color dark brownish above, everywhere soiled with dark points; a dark temporal blotch; lower jaw black within, behind the front teeth; lower fins dusky; head $3 \frac{1}{3}$ in length ; depth 3 ? D. XII-I, 23; A. II, 7 or 8 ; scales 5-48-7.

Ericymba, 54.
ce. Mouth small, inferior, nearly horizontal ; the maxillary 3 to $3 \frac{1}{2}$ in head ; the snout thick, blunt, and protuberaut, the premaxillaries entirely below the level of the eye ; lower jaw cavernous.
h. Eye large, $3 \frac{1}{2}$ in head; lower teeth on preopercle enlarged; preorbital moderate; its width about half diameter of eye; body moderately elongate; anterior profile straight and rather steep; interorbital area flattish, very spongy, narrower than in S. microps; its width $3 \frac{1}{5}$ in head; snout thick, blunt, protruding, $4 \frac{1}{2}$ in head; eye very large; mouth small, inferior, horizontal, the maxillary exteuding to posterior border of pupil, $3_{3}^{1}$ in head; teeth as in related species, in moderate bands, those above slightly enlarged ; preopercle rounded, sharply serrate, the serree largest near the angle, some 12 of them present; gill-rakers rather long, very slender, about $\mathrm{X}+18$; dorsal spines slender, the longest $1 \frac{1}{5}$ in head; soft dorsal less scaly than in other species, lower than in S. microps, the lougest ray $2 \frac{1}{4}$ in head; second anal spine 2 in head ; pectoral $1 \frac{1}{5}$; color soiled grayish above, with faint dark streaks along the rows of scales ; silvery below; fins somewhat punctulate ; head 33 ; depth $3 \frac{1}{2}$; D. XI-I, 20; A. III, 7; scales 48. Naso, 55.
$h h$. Eye small, 5 to 6 in head; teeth on preopercle subequal ; preorbital thick and swollen, much broader than eye; body moderately elongate; suout thick, blunt, convex, and protuberant; head above less cavernous than usual in the genus, more so below ; preopercle (as usual in this genus) forming the are of a circle; mouth rather small, the maxillary 3 in head; suont 4 ; gill-rakers about $X+16$, shorter than in $S$. rastrifer, about $\frac{1}{2}$ diameter of eye; no pores or
slits at end of snout; interorbital space $2^{2}$ in head; dorsal spines low, the longest $1 \frac{2}{3}$ in head; soft dorsal high, the longest ray $2 \frac{1}{6}$ in head; second anal spine rather large, $1_{\frac{7}{8}}$ in head ; pectoral $1_{\frac{1}{6}}$. Color pale, nearly plain; faint oblique streaks along the rows of scales, those below lateral line rumning obliquely upward and backward; scales of sides with many brown dots. Head $3 \frac{1}{5}$; depth $3 \frac{1}{2}$. D. X-I, 19; A. II, 8. Scales 51...........................................................
48. STELLIFERUS OSCITANS.

Scicena oscitans Jordan \& Gilbert, Bull. U. S. Fish. Com., 1881, 312 (Bay of Pauama); 1882, 111 (Panama); Proc. U. S. Nat. Mus., 1882, 376 (Panama).

Habitat.-Pacific coast of tropical America; Panama.
This species is not uncommon about Panama; numerous specimens from that locality are in the museum at Cambridge. In the dentition and form of its mouth it differs from the other species, approaching the genus Bairdiella.

## 49. STELLIFERUS RASTRIFER.

Stelliferus rastrifer Jordan, sp. nov.
Habitat.-Coast of Brazil.
This species seems to be generally common on the coast of Brazil. Specimens are in the museum at Cambridge from Rio Jineiro, Santos, Maranhão, Bahia, Cachiura, and Abrolhos Islands. The specimen specially described ( 10815, M. C. Z.) is $5 \frac{1}{2}$ inches iu length and was obtained at Santos.

The species is allied to Stelliferus fürthi, from which it is distinguished, amoug other things, by the long and numerous gill-rakers (hence the name-rastrum, a rake).

## 50. STELLIFERUS FU̇RTHI.

Corvina (Homoprion) fïrtit Steindachuer, Ichthyol. Beitr., iii, 20, fic. 3, 1875 (Panama).
Scirena fiirthi Jordan \& Gilbert, Bull. U. S. Fish Com., 1881, 315 (Panama).
Habitat.-Pacific coast of tropical America; Panama.
One specimen of this species was taken by Professor Gilbert at Panama. Several others from the same locality are in the museum at Cambridge.

## 51. STELLIFERUS MINOR.

Corvina minor Tschudi, Fauna Peruana, Ichthyol., 8, 1844 (Peru).
Sciena minor Günther, Cấ. Fish. Brit. Mus., ii, 295, 1860 (copied).
Corvina (Homoprion) agassizi Steindachuer, Ichthyol. Beitrïge, ii, 26, 1875 (Caldera, Callão, Payta).
Habitat.-Pacific coast of South America.
The specimens of this species in the museum at Cambridge are from Callão, in Peru. There seems to be no doubt of the identity of Corvina
agassizi with the Corvina minor of Tschudi. The name minor was given to iudicate the small size of the species as compared with Corvina delicinsa. The name seems a little unfortunate, as this species reaches a larger size than any other in the genus Stelliferus. It bears a considerable resemblance to the species of Buirdiella, but its nearest affinities are with Stelliferus stellifer.

## 52. STELLIFERUS STHULIFER.

Bodianus stellifer l3loch, Ichthyologia, plate 231, 1790 ("Cape of Good Hope"). Bloch \& Schueider, Syst. Ichth., 331, 1801 (copied).

- Scicena (Stelliferus) stellifera Jordan, Proc. U. S. Nat. Mus., 1886, 540 (notes on type of irispinosct).
Corvina trispinosa, Cuv. \&E Val., Hist. Nat. Poiss., v, 109 (Brazil ; Cayenne). Steindachuer, Scienoiden Brasiliens, 14, 1863 (Pará).
Habitat.-Comsts of Gaiana and Brazil. One description of this species is taken from specimens iu the museu'n at Cambridge, from Bahia.

We nave also examined the original type of Corvina trispinosa in the museum at Paris. It is donbtless true that Bloch's type of Bodianus stellifer came from Surinam rather than from Africa. His figure represents some species of Stelliforus, and Ouvier and Giinther are probably right in illentifying this figure with Corvina trispinosa. Still this identification is not free from doubt, and it may be better to call the species Stelliferus trispinosus.

## 53. STELLIFERUS LANCEOLATUS.

Homoprion lanceolatus Holbrook, Ichthyol. S. Carolina, ed. 1, 168, plate 23, 1856 (Port Rogal Sonul). Girard, U. S. and Mex. Bound. Survey, 11, 1859 (Saint Joseph's Island, Texas).
Sciona lanceolata Giinther, Cat. Fish. Brit. Mus., ii, 289,1860 (copied). Jordan \& Gilbert, Proc. U. S. Nat. Mus., 1882, 605 (Charleston). Jordan \& Gilbert, Syn. Fish. North Am., 931, 1883.
Stelliferus lanceolatus Goode, Proc. U. S. Nat. Mus., 1881, 113 (Saint John's River, Florida). Bean, Interuat. Fishery Exhib. Berlin, 55, 1883 (Matanzas River Inlet, Florida).
Seirna stellifera Jordan \& Gilbert, Syn. Fish. North America, 569, 1883 (Pensacola).
Habitut.-South Atlantic and Gulf Coast of the United States, Charleston to Texas.

This small fish is rather rare on our coast, the specimens seen by us being few and all from rather deep water: the one here described was obtained at Charleston by Dr. Gilbert.

## 54. STELLIFERUS ERICYMBA.

Sciena ericymba Jordan \& Gilbert, Bull. U. S. Fish. Com., 1881, 311 (Bay of Panama).
Hubitat.-Pacific coast of tropical America; Panama.
This small speries is rather common about Panama. The cavernous character of the head is more marked in this species than in any other.

## 55. STELLIFERUS NASO.

Stelliferus riaso Jordan, MSS.
Habitat.-Coast of Brazil.
This species is represented in the museum at Cambridge by many young specimens from Cachiura, the lougest about 4 inches in length. The label of the bottle, in Dr. Steindachner's handwriting, indicates that he has regarded it as a species distinct from $S$. microps, although he has published no description of the species.

## 56. STRLLIFERUS MICROPS.

Corvina stelliferc Giiather, Cat. Fish. Brit. Mus., ii, 299, 1850 (West Indies). (Not Bodianus stellifer Bloch.)
Corvina microps Steindachner, Ichthyol. Not., i, 6, plate ii, fig. 1, 1864 (Guiana).
Habitat.-Coast of Brazil and Guiana.
The specimens of this species ( 4581, M. C. Z.) examined by us, were collected at Pará by Dr. Steindachner. The largest is 3.2 inches in length.

## Gemus XII.-SOIAENA.

Sciæna part Artedi, Genera Piscium, 1738. (Includes umbra and cirrosa.)
Sciæna Linnæus, Systema Naturee, ed. x, 289, 1758 (umb̆ra; cirrosa).
Johnius Bloch, Ichthyologia, x, 107, 1793 (carutta, \&c., later restricted by Gill to Jolnius carutta).
Sciæna Cuvier, Rèrne Animal, erl. i, 297, 1817 (restricted to Sciena umbra, a Linnsean species, and to Scicuna aquila, a non-Linnæan one) (not of Règne Auimal, ed. ii, which is Pseudosciena).
Bola Francis Hamilton, Fishes of the Ganges, 1822 (coitor chaptis, \&e.).
Sciæna Cuvier, Règne Auimal, ed. ii, 18\%9 ("umbra" = aquila; and of all subsequent authors except Bleeker; not of Liunaus, nor of Artedi, to both of whom Scicna aquila was unknown; not of the first edition of the Règne Animal).
Corvina Cuvier, Règne Animal, ed. ii, 1829 ( nigra $=$ umbra).
Cheilotrema Tschudi, Fauna Peruana, Fische, 1845, 13 (fasciatum).
Rhinoscion Gill, Proc. Ac. Nat. Sci. Phila., 18̇61, 85 (saturnus).
Pseudoscizena Bleoker, Nederland. Tydsskr. f. Dierkunde, i, 1863 (aquila).
Sciænops Gill, Proc. Ac. Nat. Sci. Phila., 1863, 30 (ocellata).
Ophioscion Gill, Proc. Ac. Nat. Sci. Phila., 1863, 164 (typicus).
Callaus Jordan, sulgenus novum (de'iciosus).
Type: Scienc umbra Linnæus.
We are compelled to place in a single genus the great bulk of those Scicuide which have short gill-rakers, inferior mouth, and no barbels on the lower jus. In spite of the marked differences between the extremes of the series, the intergradation in characters is so perfect that we are unable to draw any sharp distinctive lines among them. This is especially true when the Asiatic species, forming the groups called Bole and Johmins, are taken into account. It is also true that one of the species of Bairdiella (chrysoleucu) is very close to some of the members of the present group. In this case, however, there is really one
difference-the length of the gill-rakers, which, though small, is constant, and holds good in all the known species.

With a view to the discovery of a basis for generic subdirision, we have especially compared the following species: Scicua (Scicnops) ocellata, Sciona (P'seudosciona) aquila, Sciunu (Bola) diacanthe, and Scienc. (Callaus) deliciosa. If these species could be satisfactorily arranged in different genera, it would be comparatively easy to find characters on which to detach the rather more aberrant tyjes of Sciona (umbra), Cheilotrema (saturne aud fusciata), Ophioscion, and Johnius.

The four species first mentioned agree in the position of the anal fin. Its second spine is very weak in afuila aud adinate to the first ray. It is somewhat so in the others and it is not Iarge in any. In Johnius (dussumicri) it is also small, but in Scicena, Cheilotrema, and Ophioscion it is considerably enlarged.

The scales are smallest in aquila, laxgest in ocellata, but the difference is not sharp enough to warrant generic division. In all four of the species first mentioned the preorbital is Hat and mather broad, broadest in deliciosa ( 7 in head) and narrowest in aquila-101. In the other forms it is generally still broader and more gibbotis.

The slits and pores abont the snont are distinct in ocellata and deliciosa, little marked in diucuntha and nearly or quite obsolete in aquila. In Johnius, Scicent, Cheilotrema, and Ophioscion these are more or less distiuct.

In all the four species the month is of moderate size, slightly oblique, with the lower jaw inchuded, the maxilhary reaching to opposite the posterior border of the eye. The mouth is largest in ocellata, smallest in aquila. In all the others (Ophioscion, dic.) the month is still smaller. The upper teeth are nearly alike in all of these; of the four mentioned they are largest in diacantia, smallest in deliciosa. In some East Indian species (referable to Bola.?) these teeth are still larger, some of them almost canine-like.

The lower teeth are rather large, and chiefy uniserial in diacontha and other species of Bota; in two on three rows, the inner eularged in deliciose and aruila; in a broad band, some of the inner enlarged in ocellate. In Johnius, Cheilotremu, Seitenu, and most of the species of Ophioscion, the lower teeth are in a broad band and equal.

The preopercle is sharply sermate in youtb, becoming entire with age in ocellutu. In qquitu it is vaguely crenulate in yonth, becoming fiually entire. In diacontha it remains more or less cremulate. In deliciose the preopercle is edged by fine thexible serre. In Ophioscion the preopercle is always sharply sermate. In Science, Cheilotrema, ant Johnius it is always entire or at least without bony serratures.

Among the fonr species first mentioned, the gill-rakers are smallest in diactuthe $(X+7)$, when they are short and thick, the longest not half the pupil. They are longest in deliciosa; when they are slender $(X+12)$ as long as pupil. In aquile and ocellate they are $X+S$ or 9 ,
rather slender and short, about $\frac{2}{3}$ leugth of pupil. In most of the species of the other groups (Ophioscion, \&c.) they are very few, short and thickish, usually not more than half the length of the pupil. The form of the body offers nothing which can be used for generic distinction, as the intergradations are very perfect. The same can be said of the form and the squamation of the fins.

We may, however, recoguize for convenience' sake a number of subgenera, all but one (Bola) of them being represented by species occurring within our limits.

We think that there is no doubt that the generic name, Scicena, should go with Sciena umbra (the type of Corvina Cuvier), if the laws of nomen. clature followed by us be admitted.

There are three members of the preseut family found in European waters. Two of these, cirrosa and umbra, were known to Limmeus and to Artedi, and on these the geuus was primarily based. The third, aquila, was unknown to these authors, and could not therefore with any sort of propriety be taken as the trpe of a Liumeau geuns. The group was first knowingly subdivided by Cuvier in 1817. First separating cirrosa as the type of the genus Umbrina, he retains in Scicena proper ("les Sciènes proprement dites") two species ("Sciena umbra L." and "Scienna aquila nobis"). This is a perfectly proper arrangement, and of this genus, Scicena, as thus restricted by Cuvier, Sciciena umbra must be regarded as the type.

Later, in 1829, this Scicena umbra was made the type of the new genus Corvina, as Corvina nigra Cuvier, while the non-Liumaan species "aquila" was left as the type of Sciena. This arrangement has been followed by nearly all recent writers, but it is wanifestly inadmissible, except to authors to whom, as to Cuvier, all laws of nomenclature are subordinato to personal caprice or convenience.

Recently Dr. Bleeker has proposed to take, as the type of Scicna, the Umbrina cirrosa, because this is the species mentioned first by Artedi. In the rules now generally followed, this matter of being placed first in the genus is not regarded as an element of any importance. The restriction proposed by Bleeker must therefore give way to the earlier one of Cuvier, and the name Sciena must be regarded as synonymons with Corvina. There is the less to be regretted from the fact that Corvina has usually been regarded as a generic name for all Scixnoids with conspicuous anal spines, and members of a dozen different genera have been from time to time referred to it.

ANALYBIS OF SPECIES OF SCIENA.
a. Preopercle, with its bony margin armed with strong persistent spines, which do not disappear with age ; (caudal fin not lunate ; solt dorsal and anal scaly; species of small size). (Ophioscior Gill.)
b. Caudal fin convex or lanceolate, the middle rays longest, often nearly as loug as head; soft dorsal with 16 to 23 rays; head low, the suout somewhat projecting.
c. Anterior protile of head nearly straight; maxillary ab out 3 in head.
d. [Maxillary not extending to front of eye; depth of body $4 \frac{1}{1-2}$ in total (with caudal); head $4 \frac{2}{5}$; eye 4 in head; snout 3 ; preopercle with larger teeth at the angle ; mouth longer than broad ; mouth inferior, the snont extending beyond the premaxillary; teeth all alike and minute; maxillary extending to below posterior nasal opening; profile asceuding uniformly to first dorsal, convex at the suout and nape; highest dorsal spine $1_{6}^{5}$ in head; highest dorsal rays not half head; second anal spiue robust̀, searcely half as long as head; first anal ray $1_{3}^{2}$ in head ; caudal rhomboidal Tr $_{15}$ in head; soft dorsal scaly for half its height ; pectoral equals ventral, $1 \frac{1}{2}$ in head; membranes of fins with numerous dark points; D. X-I, 16; A. II, 7; scales 11-52-16.] (Steindachuer.) .................................................. $d d$. Masillary extending to opposito posterior edge of pupil; its length $3 \frac{1}{5}$ in head; body compressed, moderately deep, the head low, subconic, acutish but blunted at tip; snout projecting, the usual slits and pores well developed; its length $4 \frac{1}{2}$ in head ; eye small, $4 \frac{8}{3}$ in head ; month small, inferior, horizontal; teeth in lower jaw equal, in the upper nearly so, the outer row a little enlarged; preopercle with a vertical limb and rounded angle, the latter with about 8 rather strong teeth on it ; interorbital space $3 \frac{1}{8}$ in head ; preorbital wide, about as broad as eye; gill-rakers very short, thicker than high; scales regularly arranged, those below lateral line in horizontal series; lateral line becoming straight before anal; dorsal spines rather stout, the longest $1_{5}^{t}$ in head; second anal spine shortish and very stout, 2 in head; longest soft ray of dorsal 3 in head; caudal rounded, shorter than head; pectoral $1 \frac{1}{3}$ in head. Color, soiled brassy; a faint small dark spot on each scale of back and sides, these forming dusky streaks along the rows of scales; fins all dark with dark points. Head $3 \frac{2}{5}$ in length; depth $3 \frac{1}{3}$; D. X-I, 92 to XI-I, $23 ;$ A. II, 7 ; scales 51.

Adusta, 58. cc. Anterior profile more or less concave, especially in old examples, the head being very low and slende: ; caudal fin lanceolate, almost as long as head; snout short and bluntish, projecting a little beyoud the premasillaries, about as long as eye; eye $3 \frac{z}{\text { i }}$ in head; mouth small, low, maxillary not extending to below middle of eye, $2 \frac{1}{2}$ in head; teeth in both jaws in moderate bands, the outer series of the upper jaw enlarged; highest dorsal spine $1_{5}^{t}$ in head; anal spine very thick, strong; as long as the rays, $1 \frac{3}{\text { a }}$ in head ; peetorals about as long as rentrals; first ventral ray filiform. Color, grayish; anal and ventral fins largely black. Head $3_{3}^{3}$ in length; depth $3 \frac{1}{3}$; D. X-I, 22; A. II. 7 ; scales $5-50-7 . . . . . . . . . . . . . . . .$. Typica, 59.

3b．Caudal fin irregularly double truncate or $f$－shaped，much shorter than the head；soft dorsal with 24 or 25 rays．
$e$ ．Teeth in the lower jaw equal，in a broad villiform band．
$f$ ．Snout much projecting beyond the premaxillaries；head low，slender， blunt，somewhat spougy；body rather deep，com－ pressed；the back considerably elevated；profile steep，concave over the head；snout shorter than the eye，which is $4 \frac{1}{3}$ in head；mouth small，maxil－ lary reaching to below middle of eye， 3 in head； outer series of teeth in the upper jaw slightly en－ larged；highest dorsal spine slightly more thau half leugth of head；anal spine moderate，shorter than the rays， $2 ⿱ ⿱ 亠 䒑 木 斤 丶 ~ i n ~ h e a d ; ~ f i r s t ~ r e s t r a l ~ r a y ~ f i l a m e n t o n s ~$ pectorals much longer than the veutrals，scarcely shorter thau the head．Color，dull brown above， lighter below；upper fins brown；spinous dorsal dusky at tip；anal black；ventrals and pectorals dusky．Head $3 \frac{1}{2}$ in length；depth 3 ；D．XI－I， 25 ；A．


Imicers，cu．
ff．Snout scarcely projecting beyond the premaxillaries；head not very slender；body robust；profile steep；snout rather acute，somewhat longer than eye，which is about $5 \frac{1}{2}$ in head；month moderate；maxillary 3 in head， reaching beyond middle of orbit；teeth in broad villiform bands，the outer series in upper jaw larger； highest dorsal spines， 2 in head；caudal irregularly double truncate，the median rays longest， $1^{\frac{3}{5}}$ in liead；the upper angle not produced；second anal spine stont，scarcely shorter than the rays， 2 in head；pectorals as long as the ventrals， $1 \frac{1}{4} \mathrm{in}$ head． Color，steel gray above，dull silvery below，every－ where densely covered with brown points，these becoming more numerous and larger below；nar－ row，very distinct dark lines following the series of scales，those below the lateral line horizontal， those above extending obliquely upward and back－ ward；fius plain；edge of the spinous dorsal and the whole of the anals and ventrals blackish．Head $3 \frac{2}{5}$ in length ；depth 37 ；D．X－I，24；A．II，7 ；scales （6－50－9
－Sciera， 61. ee．Teeth in lower jaw unequal，a series of larger ones being present besides those of the villiform band；upper lobe of caudal produced，acute，the lower lobe rounded ；form of $S$ ． sciera；［head somewhat compressed，the snout ob－ tuse，a littlo longer than eje，which is about 5 in head；premaxillaries below level of eje，the snout projecting beyoud them；margin of preopercle with wide－set spinous tecth；preorbital nearly as wide as eye；maxillary reaching beyond middle of eye $3_{4}^{3}$ in head ；third dorsal spine $1 \frac{1}{3}$ in head；second anal spine very strong， 2 in head．Color，dusky sil－ vers，with distinct purplis！brown streaks along the series of scales；fins，brown．Head $3 \frac{1}{2}$ in length； depth 3；D．X－I，25；A．II，8；scales 6－？－15．J（Gü－ ther．）

Vermicularis， 62.
aa. Preoperele, with its bony margin sharply serrate in soung examples, becoming entire with age: body rather elongate, not much compressed. (Scirnops Gill.)
i. Caudal fin slightly concave, about half as long as head; a large black ocellus at its base above. Body elongate, rather robust, back somewhat arched; profile rather steep, somewhat convex; head long, rather low; eyo small, 7 in head; snout bluntish, rather long, 4 in head; mouth large, nearly horizontal; maxillary not quite reaching posterior border of orbit, $2 \frac{1}{3}$ in head; teeth in both jaws in villiform bauds, the outer series of the upper jaw much enlarged ; lower teeth subequal; gill-rakers $5+7$, shorter than the diamcter of the pupil; longest dorsal spine $2 \frac{1}{3}$ in head; second anal spine $1 \frac{2}{5}$ in the longest ray, $3 \frac{2}{5}$ in head; pectorals as long as ventrals, 2 in head; scales of the breast imbedded, cycloid ; soft dorsal scaleless; color grayish-silvery, iridescent ; each scale with a center of dark points, these forming rather obscure, irregular, undulating brown stripes along the rows of scales; a jet black ocellated spot about as large as eye at base of caudal above; this sometimes duplicated; the body occasionally covered with ocelli. Head $3 \frac{1}{3}$ in length; depth 31 ${ }^{\frac{1}{2}}$. D. X-I, 24 ; A. II, 8. Scales 4-50-7 ............................... Ocellata, 63. aan. Preopercle, with its bony margin entire or irregularly crenulate or ciliate, never distinctly serrate.
j. Second anal spine small and slender, 3 to $4 \frac{1}{2}$ iu head; mouth small, the back not greatly elevated.
. Body more or less elongate, little compressed, formed as in Ophioscion; teeth of lower jaw equal (Johnius Bloch).
l. [Caudal rhombic, its length $\frac{8}{3}$ that of head ; no black ocellus at its base. Body rather elongated, the form much as in Sciana (Ophioscion) typica, but the head less depressed; profile, depressed above eye; eye 4 in head, as long as the snout, which is rather long, bluntish at tip; preorbital, $\frac{8}{3}$ length of eye ; mouth moderate, horizontal; maxillary extending to below middle of eye, $2 \frac{1}{3}$ in head ; teeth in many series; outer series of the upper jaw somewhat louger, those of the lower jaw all subequal ; preopercle entire (in the fgure); scales of the cheek cycloid; those of the opercle ana body ctenoid; 46 series of scales above the lateral line; 40 below it ; spinous dorsal little longer than high, the spines slender, scarcely flexible, the third longest, 2 in head; soft dorsal densely scaly, the longest ray $2{ }^{2}$ in head; second anal spine small, little longer than the eye, $3 \frac{1}{2}$ in head; pectorals $1_{\frac{2}{3}}^{2}$ in $\cdot$ head. Color, greenish or bluish gray above, silvery below ; fins yellowish. Head $3 \frac{1}{5}$ to $3 \frac{1}{\frac{1}{2}}$; depth $3 \frac{1}{2}$ to 3 3 ; D. X-I, 28 or 29 ; A. II, 7; lateral line, 45.] (Bleeker.) ............................... Heterolepis, 64. $k k$. Body rather elongate, considerably compressed ; teeth in lower jaw unequal, those of the inner series more or less enlarged; mouth rather large; preopercle with flexible serræ.
$m$. Slits and pores of snout anteriorly obsolete, or nearly so (Pseudosciona Bleeker).
$n$. Caudal peduncle long, the caudal fin subtruncate ; profile rather steep, the snout pointed, 4 in head; eye small, 5 to 6 ; preorbital narrow, about $2 \frac{1}{2}$ in eye; mouth rather large, little oblique, the maxillary reaching beyond pupil, $2 \frac{1}{2}$ in head; teeth above in a narrow band, the outer enlarged; teeth in lower jaw in few series, some of those in the inner considerably larger ; lower jaw included ; snout $3_{3}^{2}$ in head; preopercle serrulate, the teeth all membranaceous, becoming obsolete with age ; gill-rakers $4+8$, short and slender; scales small, those below lateral line in oblique series, as well as those above; dorsal spines weak, the longest $2 \frac{2}{5}$ in head ; pectoral short, $1 \frac{3}{5}$ in head; second anal spine very small, $4 \frac{2}{8}$ in head, about half as long as soft rays, the insertion well forward; caudal subtruncate; soft dorsal scaleless. Color grayish, darker above ; a gray blotch on opercle; fins reddish. Head 4 in length; depth $4 \frac{1}{2}$; D. X-I, 26 to 29 ; A. II, 7. Scales 8-52 to 55-18.

Aquila, 65.
mm . Slits and pores on snout anteriorly well developed (Callaus Jordan).
o. Head and body compressed, the back arched, the outline oblong-elliptical; profile straightish, rather steep; head bluntish, the snout $4 \frac{1}{6}$ in head; eye rather large, $5 \frac{1}{2}$ in head, as wide as the broad preorbital; maxillary extending to middle of pupil, $3_{6}^{\frac{1}{6}}$ in head; mouth rather large, a little oblique, the lower jaw slightly included ; preopercle finely and evenly serrate, the serræ flexible and not bony; gill-rakers slender and very short, scarcely as long as pupil, X+ 12 in number; teeth in moderate bands, some of the outer moderately enlarged above, some of the inner ones below, these smaller than those of the upper jaw; soft dorsal and anal scaled at base only ; dorsal spines moderate; second anal spine small, $4 \frac{1}{5}$ in head ; caudal lunate, its upper lobe the longer; pectoral long, $1_{6}^{\frac{1}{6}}$ in head; color bluish above with faint dark horizontal streaks, following the rows of scales; axil dark; fins pale; head 3 in length; depth $3 \frac{1}{10}$; D. X-I, 23 ; A. II, 9. Scales $50 . .$. . Deliciosa, 66. $j j$. Second anal spine long and stout, its length 2 to 3 in head; back elevated; mouth small, inferior; snout with conspicuous slits and pores.
$p$. Vertical fins high ; membranes of dorsal and anal scaleless; caudal fin subtruncate, its middle rays the longest (Sciana).
$q$. Dorsal spines slender and weak, the 4th to 6th subequal, $1_{5}^{2}$ in length of head ; ventrals long and lanceolate, the outer rays reaching almost to vent, scarcely shorter than head; body rather short and deep, the back elevated, profile steep, depressed above the eye; ventral outline slightly arched; snout blunt,
searcely longer than eye, $4 \frac{z}{5}$ in head; eye $5 \frac{z}{5}$ in head; preorbital broad, nearly as wide as ese; mouth rather small, inferior, maxillary reaching middle of eye, $2 \frac{3}{5}$ in head; teeth in both jaws in broad, villiform bands, the outer series above somewhat enlarged; pharyngeal teeth all more or less conical, the inner series somewhat rounded and molar-like; gill-rakers short, flattened, $5+8$; preopercle with an irregular entire border; dorsal spines all thin and slender; middle rays of soft dorsal highest $1_{5}^{4}$ in head ; caudal subtruncate, the middle rays longest; second anal spine stout and long, about 2 in head, reaching when depressed beyond the last ray; first and second soft rays elongate $1 \frac{\square}{亏}$ in head, the rest rapidly decreasing in length; pectorals $1 \frac{1}{4}$ in head; scales strongly ctenoid, those about the head cycloid; a scaly sheath at base of anal and soft dorsal. Color dark golden, each scale with many blackish dots, these forming stripes along the rows of scales; rows of scales below lateral line undulating; membranes of dorsal spines blackish; anal black, the last two rays pale; ventrals black, their first rays with the outer border white, caudal edged with dusky below and behind. Head $3 \frac{1}{2}$ in length ; depth 3. D. X-I, 23 ; A. II, 7. Scales 8-60-17
.............. Umbra, 67.
$p p$. Vertical fins low, the membranes of the dorsal and anal closely scaled; caudal fin lunate, the upper lobe the longer. (Cheilotrema Tschudi.)
$r$. Dorsal rays X-I, 27 or $2 £$; suout moderately blunt; second anal spine $2 \frac{1}{3}$ in head; dorsal spines gradually shortened behind the third, which is $2 \frac{1}{3}$ in head; ventrals short, $1 \frac{1}{8}$ in head; body oblong, the back considerably elevated; profile steep, the nape convex; snout short and blunt, but less so than in $S$. fasciata, $3 \frac{1}{2}$ in head; eve, 5 ; preorbital broad, nearly as wide as eye; teeth as in Sciena umbra, the bands broader; pharyngeal teeth all conic, the inner series enlarged; gill-rakers short, thick, $6+9$; middle rays of soft dorsal longest, $2_{3}^{\circ}$ in head; second anal spine long and stout, $2 \frac{1}{3}$ in head, not reaching nearly to tip of last ray ; first anal rays scarcely elongate, about 2 in head; pectorals broad, $1 \frac{1}{8}$ in head; all scales of of head strongly ctenoid; a scaly sheath at base of anal and soft dorsal. Color blackish, with coppery luster, each scale with a cluster of dark points, an obscure, broad, pale cross-band extending downward from front of soft dorsal to tips of ventrals; fins rather dark, belly silvery, dusted with dark specks; suborbital region coppery, with round, dark dots; membrane about angle of opercle jet black; tips of ventral and anal black; young ("Corvina jacobi") with three broad longitudinal dark bands. Head $3_{\text {\% }}^{\circ}$ in length; depth 27. D. X-I, 27; A. II, 7. Scales,

> rr. Dorsal rays XI-I, 23; snout extremely short and blunt; second anal spine 24 in head. Body deep, the back elevated ; anterior profile very steep and somewhat convex; the back a little compressed; snout low, thick, blunt, and short, $3_{\frac{2}{3}}$ in head, its pores and slits conspicuous; mouth inferior, horizontal, the maxillary reaching middle of eye, 3 in head; teeth in broad bands, the outer above somewhat enlarged; preopercle with membranaceous serræ; preorbital very broad, as broad as eye; gill-rakers very short and thick, rough, as long as high, 5 or 6 of thein developed; eye $5 \frac{1}{3}$ in head ; dorsal spines moderate, the longest $2 \frac{1}{6}$ in head; second anal spine stout and rather shorter than in related species; longest soft ray of dorsal $2 \frac{1}{3}$ in head ; pectoral shortish, $1 \frac{2}{5}$. Color dusky, the young with two or three vague blackish cross-bands; fins all dusky. Head $3 \frac{1}{6}$ in length; depth 21 2 . D. XI-I, 23 ; A. II, 8. Scales 57.

Fasciata, 69.

## 57. SCIANA GILLI.

Corvina gilli Steindachner, Ichthyol. Notizen, vi, 29, 1867 (Rio de la Plata).
Habitat.—Atlantic coast of South America.
We know this species from the account given by Dr. Steindachner. It is very close to Sciana adusta, and may prove to be the same, but the description seems to indicate some differences.

## 58. SCIENA ADUSTA.

Sciona (Corvina) adusta Agassiz, Spix Pisc. Bras., 126, plate 70, 1829 (Montevideo). Jenyns, Zool. Beagle, Fishes, 42, 1842 (Maldonado; Montevideo). Günther, Cat. Fish. Brit. Mus., ii, 289, 1860 (South America).

Habitat.-Coast of Brazil and the West Indies.
We refer to this species several specimens in the museum at Cambridge from Pernambuco, Fonteboa, and Jérémie, Hayti. Our description is drawn chiefly from the largest example ( 22417, M. C. Z., 7 inches long) collected at Pernambuco by Rev. J. C. Fletcher. These specimens agree almost perfectly with the figure of Sciona adusta, given by Agassiz, the only discrepancy being that the second anal spine is a little. longer than is shown in the figure. They agree fairly with the descriptions of Jenyns and Giinther, except in the number of rays in the soft dorsal. In Agassiz's text, as well as by Jenyns and Günther, 28 soft rays are enumerated. We count 22 and 23 in different specimeus. But in Agassiz's plate but 19 or 20 are shown, and it has occurred to us that the number 28 in the description was a misprint for 18 or for 20 , and that possibly this number, 28, may have been copied without verification by Jenyns and by Günther. If this is not so Agassiz's description must refer to one species, the one examined by Giinther and Jenyns, and his figure to another, the one examined by us. In that case our species must receive a new name. But we regard this as highly improbable, and refer all these accounts to the synonymy of Scicena adusta.

## 59. SCIANA TYPICA.

Ophioscion typicus Gill, Proc. Acad. Nat. Sci. Phila., 1863, 165 (west coast Central America).
Corvina ophioscion Günther, Fish. Central America, 387 and 428, 1866 (Panama). Sciena ophioscion Jordan \& Gilbert, Bull. U. S. Fish Com., 1881, 315 (Panama).

Habitat.-Pacific coast of tropical America; Panama.
This species is not uncommon about Panama. In its slender head and lanceolate caudal fin it would seem to differ widely from most of the related forms. Its relations with S. scicra are, however, close, and S. imiceps is evidently intermediate.

The undesirability of such words as "typicus" as specific names is very evident in this case. If we follow the law of priority we have a name which is self-contradictory, as this is one of the species most unlike the real type of Sciona.

## 60. SCIENA IMICEPS.

Sciena imiceps Jordan \& Gilbert, Bull. U. S. Fish Com., 1881, 309 (Bay of Panama).
Habitat.-Pacific coast of tropical America; Panama.
This small species is not rare at Panama. It resembles the species of ${ }^{\prime}$ Stelliferus, and it has real affinities with the latter group. The head is, however, different, being low and narrow, and little cavernous, while the gill-rakers are very short, as in the other species referred to Ophioscion.

# 61. SCIENA SCIERA. <br> (Corbineta.) . 

Sciæna vermicularis Jordan \& Gilbert, Bull. U. S. Fish Com., 18ஃ1, 315 (Mazatlan; Panama) (not Corvina vermicularis Giinther). Gilbert, l. c., 1882, 112 (Punta Arenas).
Sciena sciera Jordan \& Gilbert, Proc. U. S. Nat. Mus., 1884, 480 (Panama).
Habitat.--Pacific coast of tropical America.
This species is one of the most abundant of the Scirnoid fishes on the Pacific eoast of Mexico. It was at first taken by Jordan and Gịlbert for the Corvina vermicularis of Günther, but the latter species is well distingaished by the enlarged teeth * of the lower jaw and by the sharp upper lobe of the candal.

## 62. SCIIENA VERMICULARIS.

Corvina vernisalaris Günther, Fish. Central America, 387 and 427, plate 67, fig. 2, 1869 (Panama).
Scicna vernicularis Jordau, Proc. U. S. Nat. Mus., 1885, 381 (Panama).
Habitat.-Pacific coast of tropical America; Panama.
This species is rare about Panama. One specimen was obtained by Dr. Gilbert in 1883. Besides this, only Dr. Giinther's original type is on recork.

[^57]
## 63. SCIENA OCELLATA.

## (The Red Drum, or Channel Bass; "Red-fish.")

[Plate IV.]
Perca ocellata Linnæus, Syst. Nat., ed. xii, 483, 1766 (South Carolina). Goode \& Bean, Proc. U. S. Nat. Mus., 1835, 202 (examination of Linurean types).
Centropomus ocellatus Lacépède, Hist. Nat. Poiss., iv, 257, 279, 1802.
Corvina ocellata Cuvier \& Val., Hist. Nat. Poiss., 134, plate 108, 1830 (New Orleans). DeKay, New York Fauna, Fishes, 75, plate 21, fig. 61, 1842 (New York). Storer, Syn. Fish. North Am., 319, 1846 (copied). Holbrook, Ichthyol. S. Carolina, ed. 1, 149, plate 21, fig. 2, 1856 (South Carolina).
Johnius ocellatus Girard, U. S. \& Mex. Bound. Survey, 14, plate viii, fig. 1-4, 1859 ( Indianola, Tex.).
Sciena ocellata Günther, Cat. Fish. Brit. Mus., ii, 289, 1860 (America). Jordan \& Gilbert, Proc. U. S. Nat. Mus., 1882, 280 (Pensacola, Galveston). Jordan \& Gilbert, Proc. U. S. Nat. Mus., 1882, 606 (Charleston). Jordan \& Gilbert, Syn. Fish. North Am., 571, 1883. Jordan \& Swain, Proc. U. S. Nat. Mus., 1884, 233 (Cedar Key, Florida). Goode, Hist. Aquat. Anim., 371, plate 125, 1884.
Scienops ocellatus Gill, Proc. Acad. Nat. Sci. Phila., 1863, 30 (name only). Uhler \& Lugger, Fishes of Maryland, 100, 1876 (southern part Chesapeake Bay). Jordan \& Gilbert, Proc. U. S. Nat. Mus., 1878, 378 (Beaufort). Goode \& Bean, Proc. U. S. Nat. Mus., 1879, 113 (St. John's River, Florida). Goode \& Bean, Proc. U. S. Nat. Mus., 1879, 132 (Pensacola). Bean, Proc. U. S. Nat. Mus., 1880, 93 (St. John's River, Florida; Beaufort, N. C.; Fort Macon, N.C.).

Lutjanus triangulum Lacépède, Hist. Nat.Poiss., iv, 181 and 217, plate 24, fig. 3, 1802.
Sciena imberbis Mitchill, Trans. Lit. \& Phil. Soc., New York, 411, 1815 (New York).
Habitat.-South Atlantic and Gulf coasts of the United States, New York to Texas.

This species is common along our coast, especially to the southward, where it one of the largest and most important of the food-fishes. On the Texas coast, where it is known as "Red-fish," or "Pescado Colorado," it exceeds in economic value all other fishes found there.

## 64. SCIANA HETEROLEPIS.

Johnius heterolepis Bleeker, Archives Néerlandaises, viii, 1873, with plate (Surinam).
Habitat.-Surinam.
We know this species solely from Dr. Bleeker's account of it. It much resembles the species of Ophioscion, but from these it is apparently separated by the entire preopercle, which, in the figure, is repre sented much as in Scicena and Johnius. .

## 65. SCIANA AQUIIA.

(The Maigre.)
? Labrus hololepidotus Lacépède, Hist. Nat. Poiss., iii, 517, plate 21, fig. 2, 1802 (Cape of Gooả Hope).
Cheilodipterus aquila Lacépède, loc. cit., v, 685, 1803.
Scicena aquila Cuv. \& Val., v, 28, pl. 100. Günther, ii, 291, and of writers generally. Perca vanloo Risso, Ichthyol. Nice, ed. i, 298, plate 9, fig. 30, 1810.
Scirena umbra Cuvier, Mém. Mus., i, 1 (not of Linnæus).
? Scicena capensis Smith, "Ill. S. Afr. Fishes, plate 15."

Habitat.-Coasts of Southern Europe (said to range southward to the Cape of Good Hope).

Our description of this species is taken from specimens in the moseum at Cambridge from Cadiz, Spain.
If the accepted synonymy be correct, and the species found at the Cape of Good Hope be identical with the Maigre of Europe, the species should stand as Sciena hololepidota. But this identity seems rather assumed than proved. The Australian "Jew-fish," until lately also identified with Sciena aquila, is now recognized as a distinct species (Sciena neglecta Ramsay). It is, therefore, not improbable that the form found at the Cape is also different.

This species reaches a large size. It is in many respects analogous to Scicna ocellata, which species is perhaps its nearest relative among the American forms.

## 66. SCIRENA DELICIOSA.

Corvina deliciosa Tschudi, Faun. Peru. İchthyol., 8, 1845 (Peru).
Sciona deliciosa Günther, Cat. Fish, Brit. Mns., ii, 295, 1860 (copied).
Habitat.-Pacific coast of South America, north to Panama.
This species is said to be one of the most abundant food-fishes on the coast of Peru. A great number of specimens are in the museum at Cambridge. Most of them are from Callao, but a few from Panama.

This is a strongly marked species, having no very near relatives anywhere, and, if the other subgenera are to be noticed, this must form an additional one, for which we have suggested the name of Callaus (from Callao). It resembles Genyonemus lineatus as mach as any of our species, but it reaches a much larger size and it has no barbels.

## 67. SCI RNA UMBRA.

Sciena No. 2 Artedi, Genera, 39 ; S5n., 65, 1734 (Venice; Rome).
Sciena umbra Linnæus, Syst. Nat., ed. x, 289, 1758 (based on Artedi).
Sciona nigra Bloch, Icthyologia, vi, 35, taf. 297, 1792.
Johnius niger Bloch \& Schneider, Syst. Ichth., 76, 1801.
Corvina nigra Cuv. \& Val., and of most recent authors.
Coracinus chalcis Pallas, Zoographia Rosso-Asiatica, iii, 256, 1811.
Corvina canariensis Cuv. \& Val., Hist. Nat. Poiss., v, 93, 1830 (Canaries).
Habitat.-Coasts of Southern Europe.
This species is generally common in the Mediterranean. The speci mens examined by us are from Venice.

As there can be no possible doubt that this is the original Sciona umbra of Linnæus, we have adopted the name umbra instead of the more frequently used name nigra.

## 68. SCIANA SATURNA.

(Red Roncador, black Roncador.)
Amblodon saturnus Girard, U. S. Pac. R. R. Survey, 98, 1859 (San Diego, California). Corvina saturna Günther, Cat. Fish. Brit. Mus., ii, 288 , 1860 (San Diego). Jordan \& Gilbert, Proc. U. S. Nat. Mus., 1850, 456 (Santa Barbara, San Pedro, Nan Diego). Jordan \& Gilbert, Proc. U. S. Nat. Mus., 1881, 49 (Sania Barbara southward). Rosa Smith, West American Scientist, 1885, 47 (San Diego).

Rhinoscion saturmus Gill, Proc. Acad. Nat. Sci. Phil., 1862, 17 (California).
Sciana saturna Jordan \& Gilbert, Syn. Fish. North America, 572, 1883.
Johnius saturnus Jordan, Cat. Fish. North America, 93, 1885 (name only).
Corvina (Johnius) jacobi Steindachner, Ichthyol. Beitr., viii, 3, 1079 (San Diego), based on young specimens.
Sciana jacobi Jordan \& Gilbert, Syn. Fish. North America, 571, 1883 (copied). Rosa Smith, West Americau Scientist, 1885, 47 (San Diego).
Habitat.-Coast of Southern California, north to Santa Barbara.
This species is common on the coast of Sonthern California, where it is a food-fish of some importance, and is usually known as the Red Roncador or Black Roncador. It reaches a length of something more than a foot.

The nominal species, called Corvina jacobi, described from young specimens taken at San Diego, is doubtless identical with Corvina saturna. The only difference indicated by Steiudachner which conld have any serious importance is in the coloration. In the species of Hemulon, Anisotremus, and other analogous groups the young often have exactly the coloration assigned to C. jacobi, while the adult may be very differently marked. We hare not seen the very young of saturna, but have no doubt that it passes through the "jacobi" coloration in the course of its development.

## 69. SCIANA FASCIATA.

Cheilotrena fasciatum Tschudi, Faun. Peru. Ichthyol., 13, plate i, 1845 (Peru).
Corvina fasciata Giinther, Cat. Fish. Brit. Mus., i, 305, 1860 (copied).
Corvina fasciata Steindachner, Ichthyol. Not., vii, 21, 1868 (Chili).
Habitat.-Pacific coast of South America.
Our account of this species is taken from a large specimen (10839, M. C. Z.) from Payta, Peru.

The species is closely related to Scicena saturna, but it is a more robust fish with heavier head. The geuus Rhinoscion, based on S. saturna, is perfectly identical with Cheilotrema. The name fasciata is not a fortunate one, as the dark bands are not conspicnons and not perma nent.

## Genus XIII.-RONCADOR.

Roncador Jordan \& Gilbert, Proc. U. S. Nat. Mus., 1880, 28 (stearnsi).
Type: Corvina stearnsi Steindachner.
This genus contains, so far as known, a single species, a large Scieenoid of the California coast, much resembling Aplodinotus grunniens and having similar teeth, except that the lorver pharyngeals in Roncador are separate. The Spanish name, Roncador (grunter), is one of general ap. plication to these fishes, but on the California coast it is used most particularly for the present one.

ANALYSIS OF SPECIES OF RONCADOR.
a. Body oblong, heavy forward; the back elevated and compressed; depth 3 in length; head $3 \frac{1}{3}$ to $3 \frac{2}{8}$; profile long, steop, and conves, abruptly rounded at the snout; snout very blunt, $3 \frac{1}{2}$ in head, about equal to the interorbital space; eye 5
in head ; mouth moderate, low, subinferior, the lower jaw included ; maxillary 2 2f in head, reaching at least to below middle of eye; preorbital nearly as broad as eye; teeth in both jaws in broad villiform bands, noneoof them enlarged; lower pharyngeals large, with many rounded molars, the outer series and a patch at the outer corner, composed of villiform teeth; gill-rakers slender, rather short, $7+15$; posterior margin of preopercle with short, stout teeth; dorsal spines strong, the longest 2 in head; candal lunate, the upper lobe the longer; second anal spine stout, $3 \frac{1}{3}$ in head; pectorals much louger than ventrals, about as long as head; scales below lateral line in slightly ohlique series. Color grayish silvery, with bluish luster, some streaks of dark points along the rows of scales; breast and belly with two dusky longitudinal streaks; a very conspicuous jet black spot as large as eye at base of pectoral; axil and lining of gill cavity black. D. X-I, 24 ; A. II, 8 ; scales 6-60-9
.Stearnsi, 70.

## 70. RONCADOR STEARNSI.

## (The Roncador.)

## [Plate V.]

Corvina stearnsi Steindachner, Ichthyol. Beitr., iii, 22, 1875 (San Diego).
Roncador stearnsi Jordan \& Gilbert, Proc. U. S. Nat. Mus., 1880, 28 (San Diego) (gen. nov.). Jordan \& Gilbert, Proc. U. S. Nat. Mus., 1880, 456 (Santa Barbara, San Pedro, San Diego). Jordau \& Gilbert, Proc. U. S. Nat. Mus., 1881, 49 (Sauta Barbara, southward). Jordan \& Gilbert, Syn. Fish. North Am., 572, 1883. Rosa Smith, Proc. U. S. Nat. Mus., 1883, 234 (Todos Sautos Bay, Lower California). Goode, Hist. Aquat. Anim., 379, plate 129, 1884 (Santa Barbara, Cal.). Rosa Smith, West American Scientist, 1885, 47 (San Diego). Jordan, Cat. Fish. North America, 93, 1885 (name ouly).
Habitat.-Coast of Southern California, north to Santa Barbara.
This species is rather common on the coast of Southern California, where it is a food fish of some importance. It reaches a weight of 5 or 6 pounds.

The black ocellus on the base of the pectoral fin in this species is as characteristic as that at the base of the caudal in Scicena ocellata.

## Genus XIV.-LEIOSTOMUS.

Leiostomus Lacépède, Hist. Nat. Poiss., iv, 439, 1802 (xanthurus).
Liostomus Gill, Proc. Ac. Nat. Sci., 1863, 63 (corrected orthography).
Type: Leiostomus xanthurus Lacépède.
This genus, as now understood, contains but a single species. It is distinguished from Scicena chiefly by the obsolescence of the teeth in the lower jaw, and by the more paved teeth of the pharyngeals. The soft rays of the dorsal fin and especially of the anal' are more numerous than in related groups.
a. Body short, deep, much compressed ; back in front of dorsal compressed to a sharp edge; profile steep, convex, depressed over the eyes; dorsal outline convex, highest at front of dorsal; depth 3 in length; head $3 \frac{1}{8}$ to $3 \frac{1}{2}$; snout very blunt, as
long as eye, $3 \frac{1}{\frac{1}{8}}$ to $3 \frac{1}{2}$ in head; mouth small, inferior, horizoutal; maxillary 3 in head, extending to below pupil; no teeth in lower jaw, in the adult; upper jaw with a narrow series of minute teeth; gill-rakers short, slender, $8+22$; lower pharyngeals small, with three series of molars posteriorly and many villiform teeth anteriorly; preopercle entire; preorbital broad, $1 \frac{1}{2}$ in eye; third dorsal spine highest, $1 \frac{1}{2}$ in head; soft dorsal with the sheath at its base, formed by a single series of scales; caudal long and forked, as long as head; anal long and slightly falcate; second anal spine, $2 \frac{1}{2}$ in the longest ray, 4 in head; ventrals $\frac{1}{3}$ shorter than pectorals which are as long as the head; scales small, strongly ctenoid, extending on caudal and base of pectorals but not on other fins; lateral line little curved anteriorly ; scales below lateralline in oblique series. Color bluish above, silvery below; about 15 narrow dark wavy bands extending from the dorsal downward and forward to below lateral line; a round black humeral spot rather smaller than eye ; fins plain olivaceous, the caudal not yellow. D. X-I, 31; A. II, 12 ; scales 9-60 to 70-12

Xanthurus, 71.

## 11. LEIOSTOMUS XANTHURUS.

## (The Spot; Goody; Post-croaker; Oldwife; Lafayette.)

> [Plate VI.]

Leiostomus xanthurus Lacépède, Hist. Nat. Poiss., iv, 439, plate 10, fig. 1, 1802 (Carolina). Cuv. \& Val., Hist. Nat. Poiss., v, 142, 1830 (Martinique). DeKay, New York Fauna, Fishes, 70, 1842 (New York). Storer, Syn. Fish. North Am., 321, 1846 (copied). Gill, Proc. Acad. Nat. Sci. Phila., 1863, 63 (N. Y. to S. C.). Uhler \& Lugger, Fishes of Maryland, 99, 1876 (Lower Potomac, Chesapeake Bay, Sinepuxent Bay). Jordan \& Gilbert, Proc. U. S. Nat. Mus., 1878, 377 (Beaufort). Jordan \& Gilbert, Proc. U. S. Nat. Mus., 1882, 281 (Pensacola, Galveston). Jordan \& Gilbert, Proc. U. S. Nat. Mus., 1882, 606 (Charleston). Jordan \& Gilbert, Sjn. Fish. North Am., 574, 1883. Bean, Internat. Fishery Exhib. Berlin, 55, 1883 (Brazos Santiago, Tex.; Pensacola, Fla.). Jordan \& Swain, Proc. U. S. Nat. Mus., 1884, 233 (Cedar Key, Florida). Jordan \& Meek, Proc. U. S. Nat. Mus., 1884, 237 (St. John's River, Florida). Goode, Hist. Aquat. Anim., 370, plate 124, 1884 (Newport, R. I., and southward). Jordan, Cat. Fish. North America, 94, 1885 (name only).
Homoprion xanthurus Holbrook, Ichthyol. S. Carolina, ed. 1, 1г0, 1856 (South Carolina). Girard, U. S. and Mex. Bound. Survey, 11, 1859 (Brazos Sautiago, St. Joseph's, Texas).
Seicna xanthurus Günther, Cat. Fish. Brit. Mus., ii, 288, 1860 (New York).
Mugil obliquus Mitchill, Trans. Lit. and Phil. Soc., New York, 405, 1815 (New York).
Leiostomus obliquus DeKay, New York Fauna, Fishes, 69, plate 60, fig. 195, 1842 (New York). Storer, Syn. Fish. North Am., 321, 1846 (copied). Holbrook, Ichthyol. S. Carolina, ed. 1, 164, plate 24, fig. 2, 1856 (South Carolina). Girard, U. S. and Mex. Bound. Survey, 11, 1859 (Brazos Santiago, Tex. ; Indianola). Gill, Proc. Acad. Nat. Sci. Phila., 1863, 32 (north to Mass.). Jordan \& Gilbert, Proc. U. S. Nat. Mus., 1878, 377 (Beaufort). Bean, Proc. U. S. Nat. Mus., 1880, 93 (St. John's River, Florida; Wood's Holl).
Sciona obliqua Günther, Cat. Fish. Brit. Mus., ii, 288, 1860 (North America).
Scicena multifasciata Lesueur, Journ. Ac. Nat. Sci. Phila., ii, 225, 1821.
Leiostomus humeralis Cuv. \& Val., Hist. Nat. Poiss., v, 141, plate 110, 1830 (New York).
Leiostomus philadelphicus Goode, Proc. U. S. Nat. Mus., 1879, 113 (St. John's R.). Goode \& Bean, 1. c., 1879, 131 (Pensacola) (not Perca philadelphica L.).

## Habitat.-South Atlantic and Gulf coasts of United States; Cape Cod to Texas; Martinique (?).

This species is one of the most common food-fishes of our southern coast, being an excellent pan-fish. Notwithstanding the numerous nominal species which authors have recognized, there is no evidence whatever of the existence of more than one species of Leiostomus on our coasts.

The name xanthurus is an unfortunate one, as in this species the caudal fin is never yellow. This name came about through confusion with Bairdiella chrysura, in which species the caudal fin is bright yellow.

## Genus XV.-PACHYURUS.

Pachyurus Agassiz, Spix Pisces Brasiliens., 1829, 123 (squamipennis).
Lepipterus Cuvier \& Valenciennes, Histoire Naturelle des Poissons, v, 151, 1830 (francisci).
Type: Pachyurus squamipennis Agassiz.
This genus is composed of fresh-water Sciienoids inhabiting the rivers of Brazil. It is well separated from Sciena (Ophioscion) by the weak dentition. Two groups or subgenera are readily distinguished by the form of the mouth, the group called Lepipterus agreeing in this respect very closely with the species called Pachypops, from which Lepipterus can ouly be separated by the absence of the small barbels at the chin, which are usually present in the species of Pachypops. As these barbels are quite small, and in iudividuals even occasionally absent, Dr. Steindachner has proposed to unite Pachypops with Lepipterus as a subgenus under Pachyurus. There is no doubt that Pachypops, Lepipterus, and Pachyurus together constitute a single natural group. The characters drawn from the form of the mouth and of the preorbital are subject to intergradation. Unless the presence of the barbel can here, as elsewhere, be used as a mark of generic distinction, all the species must be placed in Pachyurus. It seems to us, however, that convenience is but served by placing all the species in which barbels are habitually developed in one genus (Pachypops), and those which never have them in another (Pachyurus).

> analysis of species of pachyurus.
a. Mouth terminal, oblique, small, but larger than in other species; the maxillary reaching front of pupil, its leugth about 2 in in head; jaws subequal ; caudal fin densely covered with scales, so that it is thick to the touch; preorbital scarcely turgid (Pachyurus).
b. Body compressed; the back elevated, the nape especially compressed; head low and narrow ; profile depressed above the eyes, so that the sharp, projecting snout leaves a considerable concavity in the line of the profile; teeth in broad bands, all equally minute in both jaws; preorbital broad, broader than eye; skull not specially cavernous ; pores and slits on suout obsolete; preopercle sharply but rather finely serrate on the bony border; eye large, $5 \frac{1}{3}$ in head; suout $3 \frac{2}{3}$; interorbital width $5 \frac{1}{3}$; gill-rakers almost obsolete, $2+4$ in number, not higher than wide; pseudobranchiæ small; caudal fin rhombic, much thickened; soft dorsal scaly, but not thickened; longest
dorsal spino $2 \frac{1}{4}$ in head; anal scaleless, its second spine very strong, 14 in head; pectoral $1 \frac{8}{\text { i }}$ in head; color silvery, with narrow dark streaks above the lateral line; both dorsals profusely covered with fine dark spots; head $3 \frac{1}{1}$; depth $3 \frac{1}{2}$. D. X-I, 35; A. II, 7 ; scales 67 to 68; those in the lateral line scarcely larger

Squamipinnis, 72.
$a$ a. Mouth small, inferior, the maxillary barely reaching front of eye, about 34 in head; lower jaw included; caudal fin less thickened; preorbital more or less cavernous and turgid (Lepipterus Cuv. \& Val.).
c. [Dorsal rays X-I, 33; body elongate ; head long and depressed over the eyes; depth 6 in length; head 4 ; maxillary concealed under preorbital; teeth in fine bands; month small, maxillary not reaching to front of eye ; preopercle serrate; dorsal spines leeble, flexible, and little elevated; dorsal rays subequal; caudal rounded; dorsal and caudal completely scaled; second anal spine curved and compressed, larger and stronger than in related species; color entirely silvery, with numerous darker lines along the back; brown spots on second dorsal. D. X-I, 33; A. II, 7.] (Cuv. \& Val.)..Francisci, 73. cc. Dorsal rays $\mathbf{X}-1,26$ to 29 .
d. Second anal spine very long, 2 in head; anterior profile more or less concave, rather steep posteriorly; profile of snout convex; snout 3 in head; mouth small, with very small teeth overlapped by the turgid and translucent preorbital ; eye large, $4 \frac{1}{2}$ in head; maxillary $3 \frac{1}{3}$; caudal fin rhombic, densely scaled, but less thickened than in $P$. squamipinnis; soft dorsal much scaly; anal naked; dorsal spines slender, the longest 2 in head, about as long as second anal spine; preopercle strongly serrate; gill-rakers very small; pectoral $\frac{1}{8}$ in head ; color brownish, silvery below; traces of 2 or 3 faint dark streaks on posterior part of body above ; spinous dorsal mostly black; soft dorsal with some dark spots; head $3 \frac{1}{3}$ to $3 \frac{3}{3}$ in length; depth $3 \frac{1}{3}$ to $3 \frac{1}{2}$. D. X-I, 26 to 29 ; A. II, 6 to 8 ; scales 65 (pores) to 70 (series).. Bonariensis, 74.
dd. [Second anal spine shorter, 3 in head; body slightly compressed and somewhat elongate; head conical, elongate ; snout produced and somewhat pointed, $2^{2}$ in head; eye 4 in head; preorbital much swollen, concealing the maxillary ; mouth inferior, small; maxillary not reaching to below eye; preopercle with moderate spinous teeth; longest dorsal spines $\frac{3}{3}$ of depth of body ; all the spines sleuder ; soft dorsal scaly $\frac{\circ}{\text { e }}$ of its height; caudal pointed; second anal spiue 3 in nead; anal rays naked, shorter than dorsal rays; scales small, finely ciliated; teeth minute, scarcely perceptible in upper jaw, in a fine villiform band below; body and second dorsal with blackish spots; head 4 in length; depth $4 \frac{1}{2}$. D. X-I, 26 ; A.II, 7 ; scales 9-85-20.] (Günther.)

Schomburgei, 75.

## 72. PACHYURUS SQUAMIPINNIS.

Pachyurus squamipinnis (misprinted "squamipennis") Agassiz, Spix. Pisc. Bras., 123, plate 71, 1829 (Brazil). Günther, Cat. Fish. Brit. Mus., ii, 281, 1860 (Atlantic Ocean). Steindachuer, Ichthyol. Beitr., viii, 13, 1879 (Rio São Francisco; Rio das Velbas).
Pachyurus lundii (Reinhardt, MS.). Lütken, Velhas-Flodens Fiske, xx, 1875 (Rio das Velhas).
Habitat.-Rivers of Brazil.
The numerous specimens of this species which we have examined are from the Rio das Velhas, in Brazil. The largest of these (8634, M. C. Z.) is about 15 inches long.

## 73. PACHYURUS FRANCISCI.

Lepipterus francisci Cuv. \& Val., Hist. Nat., v, 152, plate 113, 1830 (Rio São Francisco).
Pachyurus francisci Giinther, Cat. Fish. Brit. Mus., ii, 281, 1860 (copied).
Pachyurus corvina (Reinhardt MS.), Liitken, Velhas-Flodens Fiske, xx, 1875 (Rio das Velhas).
Habitat.-Rirers of Brazil.
We know this species from descriptions only.

## 74. PACHYURUS BONARIENSIS.

Pachyurus bonariensis Steiudachner, Ichthyol. Beitr., viii, 8, 1879 (Rio de la Plata).
Habitat.-Basin of the Rio de la Plata.
We have examined three specimens of this species in the Museum of Comparative Zoology. Two of them, each about a foot in length, are from Buenos Ayres, the other from Rosario.

## 75. PACHYURUS SCHOMBURGKI.

Pachyurus schomburgki Guinther, Cat. Fish. Brit. Mus., ii, 282, 1860 (Rio Capin; Carife; Para). Steindachner, Ichthyol. Beiträge, viii, 11, 1879 (Para; Cameta; Obidos; Lake Saraca; Rio Negro; Rio Branco).
Pachyurus nattereri Steindachner, Beitr. zur Kenntn. der Sciæn. Brasil., 10, plate iii, 1863 (Rio Branco; Rio Negro).
Habitat.-Rivers of Brazil.
This species is known to us from descriptions only. We have failed to recognize it in the collections at Cambridge. We follow Steindachner in regarding his Pachyurus nattereri as a synonym of schomburgki.

## Genus XVI.-PACHYPOPS.

Pachypops Gill, Proc. Ac. Nat. Sci. Phila., 1861, 87 (trifilis).
Type: Micropogon trifilis Miiller \& Troschel.
This genus, like Pachyurus, is composed entirely of fresh-water species, inhabiting the Amazon region. It differs from Pachyurus only in the presence of small barbels at the chin, and in some individuals these appeudages may be rudimentary or even wantiug. For this reason Dr. Steindachner has proposed to regard this character as of no systematic importance, and to place these species in the subgenus Lepipterus under Pachyurus. But unless it can be shown that the Pachyuri sometimes possess barbels, it seems to us better to retain the two groups as distiuct genera.

## ANALYSIS OF SPECIES OF PACHYPOPS.

a. Dorsal rays X-I, 25 to 27 ; body without conspicuous dark brown spots; caudal rhombic ; teeth all equally small.
b. Maxillary scarcely reaching front of eye, its length 4 to $4 \frac{1}{2}$ in head; barbels 3 , minute (sometimes obsolete); snout prominent, blunt, $2 \frac{4}{5}$ in head; eye very large, 3 in head ; mouth very small, overlapped by the turgid preorbital; teeth small, equal ; gill-rakers very small; soft dorsal and anal completely scaled; pectorals $1 \frac{1}{2}$ in head; candal rhombic, $1 \frac{1}{8}$ in head; second anal spine $2 \frac{1}{6}$ in head;
longest dorsal spine $1 \frac{1}{2}$. Color uniform dusky, paler below; dorsals punctate with black. Head $3 \frac{1}{2}$; depth 4. D. X-I, 25 to 27 ; A. II, 6. Scales 58.

Furcrifus, 76.
$b b$. [Maxillary reaching line of front of eye, its length $3 \frac{1}{2}$ in head; barbels 3 , well developed; body oblong, compressed ; eye not very large, $3 \frac{1}{3}$ to $3 \frac{3}{3}$ in head; snout prominent, rounded, $3 \frac{1}{4}$ in head; preorbital broad; teeth equal; preopercle rather finely serrate; soft dorsal closely scaled; anal scaly at base only ; pectoral, $1_{\frac{2}{5}}^{2}$ in head ; caudal rhombic, $1 \frac{1}{8}$ in head ; second anal spinc, $2 \frac{1}{6}$; third dorsal spine, 1 量. Color silvery, with 5 dusky longitudinal bands; dorsals edged with black, the membranes of the spinous part with longitudinal series of dark dots. Head $3 \frac{1}{3}$; depth $3 \frac{1}{3}$. D. X-I, 26 ; A. II, 6. Scales 50 to 55.]
(Steindachner.)-................................................................... Trifilis, 77.
$a \boldsymbol{a}$. Dorsal rays X-I, 31 or 32 ; back and dorsal fins sprinkled with round dark spots; caudal fin not rhombic; outer teeth above slightly eularged. Body rather elongate, the back elevated; head rather slender, depressed above the eye; snout rather long, bluntish at tip, 3 in head; eye large, 5 in head; mouth small, low, inferior, scarcely overtipped by the snout, the maxillary reaching front of eye, $3 \frac{1}{3}$ in head; teeth in broad bands, the outer teeth of upper jaw somewhat enlarged ; barbels at chin 3 , minute, not longer than nostril; preopercle sharply serrate. Gill-rakers slender, very short; preopercle and especially preorbital much swollen, cavernous, and translucent; mandıble not cavernous; dorsal spines strong, the longest 2 in head, as long. as the large anal spine ; pectoral $1_{\frac{2}{z}}^{2}$ in head; caudal fin $f$-shaped, the upper lobe pointed. Color brown, with round dark-brown spots scattered over the back and sides, these forming streaks along the rows of scales, which are more or less irregular or interrupted, the spots not being confluent; both dorsals with rows of similar spots; ventrals dusky. Head $3 \frac{1}{3}$ in length; depth $3 \frac{3}{3}$. D. X-I, 31 or 32 ; A. II, 6 to 8 . Scales 75 (8-67-13).

Adspersus, 78.

## 76. PACHYPOPS FURCRIAUS.

Perca furcréa Lacépède, Hist. Nat. Poiss., iv, 398, 424, 1802 (\% Surinam).
Corvina furcrea Cuv. \& Val., Hist. Nat. Poiss., v, 111, 1830 (same type).
Pachypops furcrevus Steindachner, Beitr. zur Kenntniss Scienoiden Brasiliens, 7, plate 1, 1863 (Rio Negro).
Pachyurus furcreus Steindachner, Ichthyol. Beitr., viii, 12, 1879 (Surinam; Rio Trombetas; Rio Negro ; Amazon, near Cameta).
Corvina biloba Cuv. \& Val., Hist. Nat. Poiss., v, 112, 1830 (habitat not known).
Pachypops biloba Steindachner, Ichth. Notiz., 206, 1864 (Surinam).
Habitat.-Rivers of Brazil and Guiana.
Specimens of this species are in the museum at Cambridge from Rio Trombetas, Rio Negro, Obidos, and Cameta. The specimen here described was obtained in Rio Negro by Rev. J. C. Fletcher.
This species was named in honor of a French chemist, Fourcroi.

## 77. PACHYPOPS TRIFILIS.

Micropogon trifilis Müller and Troschel, Schomburg Reise, iii, 622, 1848 (Guiana). Günther, Cat. Fish. Brit. Mus., ii, 273, 1860 (copied).
Pachypops trifilis Gill, Proc. Acad. Nat. Sci. Phila., 1861, 87 (copied). Steindachner, Beitr. zur Kenntniss Scienoiden Brasiliens, 7, plate ii, figs. 1-3, 1863 (Rio Guaporé ; Rio Negro).
Pachyurus trifilis Steindachner, Iehthyol. Beitr., viii, 12, 1879 (synonymy).
Habitat.-Rivers of Brazil and Surinam.
This species is known to us from Dr. Steindachner's descriptions and figure only.

## 78.- PACHYPOPS ADSPERSUS.

? Corvina grunniens Schomburgk, Nat. Libr. Fish. Guiana, 1843, 136 (Rio Essequibo). Pachyurus (Lepipterus) adspersus Steindachner, Ichthyol. Beitr., viii, 5, 1879 (Rio Parahyba, Rio Doce, Rio Sau Antonio, Mucuri).

## Habitat.-Rivers of Brazil.

We have examined numerous specimens of this species in the museum at Cambridge from Rio Doce, Santa Clara, Rio San Antonio, and Menchez. The specimen described, 15 inches in length, is from the Rio Doce.
The scanty description of Corvina grunniens indicates some river Sciænoid, with distinctly spotted dorsal and aual fins, and with the fin rays D. IX, 32 ; A.II, 7. The account comes nearest among known species to Pachypops adspersus, and if this species occurs in the Essequibo it should probably stand as Pachypops grunniens. But without a better knowledge of the local fauna of Guiana, such an identification would be premature.

## Genus XVII.-POLYCIRRHUS.

Polycirrhus Bocourt, Nouv. Arch. Mus. d'Hist. Nat., iv, 22, 1868 (dumerili).
Type: Polycirrhus dumerili Bocourt.
This genus is composed of three species of Sciænoid fishes, distinguished from Micropogon chiefly by the absence of serra on the preopercle, and from Genyonemus by having the normal number of dorsal spines. All the known species are marked by well-defined dark crossbands, and all belong to the fauna of South America.

ANALYSIS OF SPECIES OF POLYCIRRHUS.
a. Dorsal rays about IX-I, 22 ; caudal fin double truncate ; body rather elongate, the back somewhat elevated, the headlow and small; profile steep; ventral outline straightish; snout not very short, somewhat acute, $3 \frac{1}{2}$ in head ; interorbital area broad, convex, 3 in head; eye $5 \frac{1}{2}$; mouth small, entirely inferiur, maxillary extending past middle of eye, $2 \frac{2}{\delta}$ in head; teeth small, villiform, the outer scarcely larger; preopercle rounded, its edge with soft cilia; third dorsal spine 3 in head; soft dorsal with' a scaly sheath, its membranes with small scales; ventrals filiform at tip, $1 \frac{1}{\frac{1}{2}}$ in head ; anal inserted well forward, its second spine 28 in head; caudal double truncate ; lateral line much arched anteriorly. Color, bluisl-gray, silvery below; 6 rather broad distinct crossbars extending down to edge of belly ; two inconspicuous dark cross-bars on head; lower fins pale. Head $3 \frac{2}{5}$ to $3 \frac{3}{5}$ in length; depth $3 \frac{2}{5}$ to $3 \frac{1}{4}$. D. IX-I, 22 to 25 ; A. II, 7 or 8 ; scales $6-47$ to 52-9 ......................... Dumerili, 79. $a a$. Dorsal rays X-I, 26 to 32 .
b. Caudal fin obliquely truncate, or somewhat pointed. Dorsal rays X-I, 29 to 31; snout short, $3 \frac{3}{4}$ to $4 \frac{3}{4}$ in head ; body more elongate than in $P$. dumerili, the snout lower, shorter, and more pointed; maxillary $3 \frac{1}{4}$ to $3 \frac{1}{3}$ in head; gill-rakers minute; fins scaly; soft dorsal rays 3 in head ; eye $4 \frac{1}{2}$ to 6 ; longest dorsal spine $2 \frac{1}{3}$; caudal $1_{16}^{1}$ in head; second anal spine very small, $4 \frac{1}{3}$ in head ; pectoral $1 \frac{1}{4}$; preopercle ciliated on its membranous border. Coloration less marked than in P. dumerili, the darker cross-bands narrower, more numerous (about 8), and less sharply defined; the anterior band sometimes reduced to a large round black blotch above base of pectoral; pectoral mostly dusky. Head 4; depth 31. D. X-I, 29 to 31; A. II, 8; scales about 7-58-11..Brasiliensis, 80.
$b b$. Caudal fin slightly lunate or $\mathbf{S}$-shaped; body compressed, rather robust; head low, little compressed, the snout extremely short and blunt, $4 \frac{2}{2}$ in head; gillrakers small and slender; barbels well developed, about as in the other species; eje $4 \frac{2}{8}$ in head; mouth larger and more oblique than in the other species; the maxillary $3 \frac{1}{8}$ in head; pectoral $1 \frac{1}{4}$ in head; longest dorsal spine 2; second anal spine $3 \frac{2}{5}$. Color soiled, hardly silvery; about eight short, rather faint, dark cross-bands, as wide as the interspaces; fins all dusky. Head $3 \frac{3}{6}$ in length; depth $3 \frac{3}{5}$. D. X-I, 26 ; A. II, 9 ; scales 55........Peruanus, 81.

## 79. POLYCIRRHUS DUMERIII.

Polyoirrhus dumerili Bocourt, Nouv. Arch. Mus. d'Hist. Natur., iv, 22, 1868 (La Union). Jordan, Proc. Acad. Nat. Sci. Phila., 1883, 288 (La Union) (note on Bocourt's type).
Genyonemus fasciatus Steindachner, Ichthyol. Beitr., ii, 31, 1875 (Panama). Jordan \& Gilbert, Bull. U. S. Fish Com., 1882, 111 (Panama).
Habitat.-Pacific coast of Central America; Panama.
This small species is rather abundant about Panama. An examination of Bocourt's type of Polycirrhus dumerili has shown its identity with the Genyonemus fasciatus of Steindachner. The specimens in the museum at Cambridge are from Panama.

## 80. POLYCIRRHUS BRASIIIENSIS.

Genyonemus brasiliensis Steindachner, Ichthyol. Beitr., ii, 34, 1875 (Pará, Santos).
Micropogon ornatus Giunther, Shore Fishes Challenger, 13, plate vii, fig. A, 1850 (mouth of Rio de la Plata).

## Habitat.-Coast of Brazil.

The specimens of this species in the Museum of Comparative Zoology are from Rio Janeiro and Santos. The identity of ornatus with brasiliensis has been claimed by Dr. Steindachner. Günther's description does not agree very well with the specimens examined by us, which are a part of the number of Dr. Steindachner's original types. It is not likely, however, that they belong to a different species.

## 81. POLYCIRRHUS PERUANUS.

Genyonemus pervanus Steindachner, Ichthyol. Beiträge, ii, 27, 1879 (Callao; Payta).
Habitat.-Coast of Peru.
The specimens of this species in the museum at Cambridge are from Callao and Payta. They are among the original types of Dr. Steindachner.

## Genus XVIII.-GENYONEMUS.

Genyonemus Gill, Proc. Acad. Nat. Sci. Pbila., 1861, 87 (lineatus).
Type : Leiostomus lineatus Ayres.
This genus contains but a single species, abundant along the coast of California.

Although in a general way allied to Polycirrhus and Micropogon, it has some points of resemblance to Corvula and Bairdiella, and especially to Sciana deliciosa.

## ANALYSIS OF SPECIES OF GENYONEMUS.

a. Body oblong, somewhat compressed, the back little elevated; depth $3 \frac{1}{3}$ to $3 \frac{2}{3}$ in length ; bead $3 \frac{1}{3}$ to $3 \frac{1}{2}$; profile little convex, rather abruptly decurved at the snout; snout $4 \frac{1}{8}$ in head; mouth subinferior, some what oblique; maxillary 3 in head, reaching posterior margin of pupil, lower jaw included; teeth in villiform bands, the outer series above slightly enlarged; chin with five small pores and two series of minute barbels; preorbital two-thirds width of eye, which is $5 \frac{1}{3}$ in head; preopercle with a crenulate membranous border ; opercle with radiating strix; gillrakers short and slender, $7+19$; third dorsal spine highest, $1 \frac{1}{2}$ in head; first soft rays of dorsal highest, decreasing in height to the last ; caudal lunate ; first ventral ray produced as a filament, $1 \frac{1}{2}$ in head; pectoral slightly longer than ventrals; scales large, strongly ctenoid, those below lateral line in horizontal series; color silvery with brassy luster aud black punctulations, these forming faint, oblique dark lines along the rows of scales; fins yellowish; axil black. D. XIII-I, 21 or 22; A. П, 11; scales 7-54-10 .......................................................... Lineatus, 82.

## 82. GENYONEMUS LINEATUS.

Leiostonus lineatus Ayres, Proc. Cal. Acad. Nat. Sci., 1855, 25 (San Francisco). Girard, Proc. Acad. Nat. Sci. Phila., 1856, 135 (San Francisco). U. S. Pac. R. R. Survey, 99, plate 22 B, fig. 1-4, 1859 (San Francisco).

Sciana lineata Giinther, Cat. Fish. Brit. Mus., ii, 288, 1860 (copied).
Genyonemus lineatus Gill, Proc. Acad. Nat. Sci. Phila., 1861, 89 (name only). Gill, Proc. Acad. Nat. Sci. Phila., 1862, 17 (name only). Jordan \& Gilbert, Proc. U. S. Nat. Mus., 1880, 456 (San Francisco, Monterey Bay, San Luis Obispo, Santa Barbara, San Pedro, San Diego). Jordan \& Gilbert, Proc. U. S. Nat. Mus., 1881, 49 (San Francisco, southward). Jordan \& Gilbert, Syn. Fish. North America, 574, 1883. Jordan, Cat. Fish. North America, 94, 1885 (name only).
Habitat.-Coast of Southern California, north to San Francisco.
This little fish is generally common along the coast of Southern California, where it is a food-fish of some importance and is usually known as the "Little Roncador."

## Genus XIX.-MICROPOGON.

Micropogon Cuvier © Valenciennes, Hist. Nat. Poiss., v, 213, 1830 (lineatus= furnieri.)
Type: Micropogon lineatus Cuv. \& Val. =Umbrina furnieri Desmarest. The species of this well-marked genus are very closely related and are all American.

## ANALYSIS OF SPECIES OF MICROPOGON.

a. Dorsal rays X-I, 28 to 30 .
b. Scales comparatively small, abont 9 in a vertical series between front of dorsal and lateral line, 12 in an oblique series; outer teeth of upper jaw evidently enlarged; dark spots on scales above lateral line not forming continuous stripes; 16 scales in an oblique series from vent upward and forward to lateral line. Body rather robust, the back elevated; profile regularly rounded, scarcely depressed above eyes; snout 3 in head; eye 5 in head; preorbital broader than eye; preopercle strongly serrate along its whole posterior margin; maxillary reaching front of pupil, 3 in head; gill-rakers slender, very short, numerous, about $7+16$; third dorsal spine 2 in head ; pectoral $1 \frac{1}{5}$ in
head; caudal double truncate, $1 \frac{3}{5}$ in head; second anal spine 3 in head. Color brassy, paler below ; middle part of body with short, irregular dusky vertical bars crossing the lateral line; many dark-brown spots on sides of back, irregularly placed, and not forming continuous streaks along the rows of scales; usually some of these coalesce to form two dark streaks concurrent with the back. Head 3 in length; depth $3 \frac{1}{3}$. D. X-I, 28 or 29 ; A. II, 7 ; lat. 1. 54

Undulatus, 83.
bb. Scales larger, 7 in a vertical series from front of dorsal to lateral line, 9 or 10 in an oblique series; teeth of outer series in upper jaw scarcely eularged; dark spots on back forming continuous dark streaks nearly as wide as the pale interspaces; body a little more slender than in M. undulatus; profile almost straight, a little depressed above the eye; snout long, 3 in head ; cye small, 6 in head, $1 \frac{1}{2}$ in interorbital area; preorbital wider than eye; maxillary 3 in head, reaching front of pupil ; teeth in broad, villiform bands; preopercle less strongly serrate than in M. undulatus; third dorsal spine highest, $1 \frac{8}{4}$ in head ; dorsals connected by a low membrame ; dorsal with a sheath at its lase formed by a single series of scales; soft dorsal naked ; second anal spine 5 in head; scales of the breast and head cycloid; a dark spot on opercle; axil dusky ; short vertical bars exteuding across lateral line; many oblique lines above these ; markings more regular, though less sharply defined than in M. undulatus. Head $3 \frac{2}{2}$ in length; depth $3 \frac{1}{4}$ to $33_{3}$. D. X-I, 30 ; A. II, 7 ; lateral line 54

Furnieri, 84.
aa. Dorsal rays X-I, 24 to 26 ; outer teeth of upper jaw scarcely eularged ; scales rather large ; snout little projecting ; lateral line 48 (oblique series, 53 pores); scales between front of dorsal and lateral line, vertically 6 or 7 ; obliquely 8 ; 16 in an oblique series from vent; profile gibbous above the eyes, depressed at the nape; eye $1 \frac{8}{2}$ in suout, 6 in head; mouth broad, inferior, slightly oblique ; maxillary eutirely concealed by the broad preorbital, which is wider than the eye; maxillary exteuding to below anterior margin of the orbit; teeth in both jaws in villiform bands, those of the outer series of the upper jaw somewhat enlarged; preopercle with two strong spines at the angle and many smaller ones above these ; gill-rakers little developed, not half the length of the pupil, $7+12$; third dorsal spine highest, reaching to first soft ray, $1 \frac{f}{f}$ in head; soft rays of dorsal subequal; candal double truncate; anal spine moderate, $1_{5}^{2}$ in the rays, $3^{\frac{4}{5}}$ in head ; pectorals $\frac{1}{6}$ longer than ventrals, slightly less than $1 \frac{1}{2}$ in head; scales on cheek, opercle, and breast cycloid, the rest ctenoid; soft dorsal with a weak scaly sheath anteriorly; soft dorsal and anal naked; lateral line arched anteriorly, becoming straight slightly in front of anal fin. Color, grayish silvery; dorsal region and sides above lower edge of pectorals marked with dark streaks extending obliquely upward and backward along the series of scales; about ten short oblique bars extending dowhward and forward across the arched portion of the laterial line ; lining of gill cavity blackish; fins all yellowish; tip of spinous dorsal blackish; upper edge of pectoral and border of soft dorsal dusky. Head $3_{5}^{2}$ in length; deptli $3_{5}^{4}$. D. X-I, 24 to 26 ; A. II, 7 ; scales 7-53-10

Ectenes, 85.
aaa. Dorsal rays X-I, 20 to 22 ; outer teeth of upper jaw scarcely enlarged; snout somewhat projecting; scales still larger; lateral line 42 ( 49 pores); scales above the lateral line, vertically, 5 or 6 ; obliquely, $8 ; 12$ in an oblique series from vent; maxillary extending scarcely beyond the vertical from the anterior margin of the eye; body less elongate than in Micropogon ectenes; highest dorsal spines $1 \frac{1}{3}$ in head; anal spine about 4 in head; coloration essentially as in Micropogon ectenes. Head $3 \frac{1}{2}$ in length; depth $3 \frac{2}{5}$. D. X-I, 20 to 22 ; A. II, 7 . Scales 7-48-15..............................................

## 83. MICROPOGON UNDULATUS

(The Croaker.)
[Plate VII.]
Perca nndulata Linnæus, Syst. Nat., ed. xii, 483, 1766 (South Carolina). Bloch \& Schneider, Syst. Ichth., 87, 1801.
Micropogon undulatus Cuv. \& Val., Hist. Nat. Poiss., v, 219, 1830 (New Orleans). Storer, Syu. Fish. North Am., 325, 1846 (copied). Holbrook, Ichth. S. Carolina, 145, plate 21, fig. $\mathfrak{2}, 1856$ (South Carolina). Girard, U. S. \& Mex. Bound. Survey, 13, plate xii, 1859 (month Rio Grande, Indianola, Galveston, Saint Joseph's Island, Texas). Giinther, Cat. Fish. Brit. Mus., ii, 271, 1860 (in part) (New York). DeKas, New York Fanna, Fishes, 84, 1862 (New York). Uhler \& Lugger, Fishes of Maryland, 102, $18 \% 6$ (sonthern part Chesapeake Bay). Jordan \& Gilbert, Proc. U.S. Nat. Mus., 1878, 378 (Beaufort). Goode, Proc. U. S. Nat. Mus., 1879, 113 (Saint John's River, Florida). Goode \& Bean, Proc. U. S. Nat. Mus., 1879, 132 (Pensacola). Bean, Proc. U. S. Nat. Mas., 1880, 94 (Saint John's River, Florida). Jordan \& Gilbert, Proc. U.S. Nat. Mus., 1882, 289 (Pensacola; Galveston). Jordan \& Gilbert, Proc. U. S. Fat. Mus., 188:), 606 (Charleston). Bean, Internat. Fishery Exhib. Berlin, 56, 1883 (Arlington, Florida). Jordan \& Gilbert, Syu. Fish. North Am., 575, 1883. Jordan, Proc. U. S. Nat. Mus., 1884, 36 (Pensacola). Goode, Hist. Aquat. Anim., 378 , plate 128, 1884 (Newport, R. I., and southward). Goode \& Bean, Proc. U. S. Nat. Mus., 1885, $20 \geqslant$ Linnaean types (South Carolina).
Scicna croker Lacépède, Hist. Nat. Poiss., iv, 309, 314, 316, 1802 (Carolina).
Bodianus costatus Mitchill, Trans. Lit. and Phil. Soc. New York, 417, 1815 (New York).
Micropogon costatus DeKay, Now York Fauna, Fishes, 83, plate 72, fig. 230, 1842 (Now York). Storer, Syn. Fish. North Am., 325, 1846 (copied).
Habitat.-South Atlantic and Gulf coasts of the United States, Cape Cod to Texas.

This species is generally common along our Atlantic coast, becoming very abundant southward, but not extending into the West Indies. It is a food-fish of some importance.

## 84. MICROPOGGN FURNIERI.

## (Verrugato.)

Umbrina furnieri* Desmarest, Premiere Dêsrié Ichthyol., 22, plate ii, fig. 3, 1823 (Cuba).
Micropogon furnieri Jordan, Proc. U. S. Nat. Mus., 1884, 37 (Havana). Bean \& Dresel, Proc. U. S. Nat. Mus., 1884, 157 (Jamaica). Jordan, Proc. U. S. Nat. Mus., 1886, 44 (Havana).
Sciana opercularis Quos \& Gaimard, Voy. Uran., Zool., 347, 1824 (Rio Janeiro).
Micropogon lineatus Cur. \& Val., Hist. Nat. Poiss., v, 215, plate 119 (Brazil; Porto Rico; Havana).
Micropogon argenteus Cuv. \& Val., Hist. Nat. Poiss., v, 218 (Surinam).

- Micropogon undulatus Giinther, Cat. Fish. Brit. Mus., ii, 971, 1860 (in part ; not Perca undublataL.) (Surinam; Bahia; Guatemala; Cuba; Jamaica). Giinther, Fishes Central America, 387, 1869 (Atlantic coast of Central America). Poey, Synopsis, 325, 1868 (Cuba). Poey, Enumeratio, 48, 1875 (Cuba). Ginther, An. \& Mag. Nat. Hist., July, 1880 (Rio Plata). Poey, Fauna Puerto-Riqueña, 325, 1881 (Porto Rico).

[^58]Habitat.-West Indies and coasts of South America.
This species is generally common in the West Indies and southward along the coast of Brazil. It is very close to the northern Micropogon undulatus, and for this reason its real distinction from the latter has been generally overlooked until quite lately. We have examined numerous specimens from Cuba and from Rio Janeiro.

## 85. MICROPOGON ECTENES.

Micropogon cetenes Jordan \& Gilbert, Proc. U. S. Nat. Mus., 1881, 355 (Mazatlan); Bull. U. S. Fish Com., 1882, 107 (Mazatlan).
Habitat.-Pacific coast of Mexico ; Mazatlan.
This species was found by Professor Gilbert in moderate abundance at Mazatlan, where it seems to take the place of the closely allied Micropogon altipinnis.

## 86. MICROPOGON ALTIPINNIS.

Micropogon altipinnis Giinther, Proc. Zool. Soc., 1864, 149 (San José; Panama; Chiapam). Giinther, Fish. Ceutral America, 387 and 425, 1869 (Chiapam; San José; Panama). Jordan \& Gilbert, Bull. U. S. Fish Com., 1882, 111 (Panama).
Habitat.-Pacific coast of Central America.
This species is closely related to the others of the genus. It was found by Dr. Gilbert at Panama. Specimens from Panama are also in the museum at Cambridge.

## Geuus XX.-UMBRINA.

Sciæna (part) Artedi, 1738 (includes Corvina).
Sciæna (part) Linnæus, Systema Nature, ed. x, 289, 1758 (umbra; cirrosa).
Umbrina Cuvier, Règne Animal, ed. i, 297, 1817 (cirrosa ; Sciona L. being restricted to Sciæna umbra, a Linnæan, and Sciana aquila, a non-Linnæan species).
Sciæna Bleeker, ${ }^{*}$ Poissons de la Côte de Guinée, 1802, 66 (cirrosa ; not the earliest restriction to a Linnean type).
Umbrina Giinther, Gill, Jordan \& Gilbert, and of authors generally.
Type: Scicena cirrosa Linnæus.
This genus contains a considerable number of species, most of them being American. It agrees with Scice na in nearly all respects, excepting the presence at the chin of a short, thick barbel. A similar barbel is found in the geuus Menticirrhus, but notwithstanding the fact that all European writers have confounded Menticirrhus with Umbrina, the two genera are not among the most closely related in this family.

[^59]We find ourselves unable to follow Bleeker in using the name Scicena for the group usually called Umbrina, for reasons which may be again briefly stated. Scionu was originally (Artedi, 1738; Linnæus, 1758) founded on the typical species of the two modern genera Umbrina and Corvina. In 1817, L'mbrina was set off from this group and Scicena was made to apply to the group later called Corvina, a third species (aquila) being added to Scicena. Later (1829) Corvina was separated by Cuvier. This gave Cmbrina, Corvina, and Sciona, the latter name then standing for aquila. In 1862, Bleeker proposed to use Scicena for the type of Umbrina, because in enumerating his species of Scicna, Artedi had made the Umbrince "No. 1" and the Corvina "No. 2." This is, however, a matter of no significance. In our view but one arrangement of these names is allowable. Umbrine must stand, Scicena must take the place of Corvina, and the third species (aquila) must take a new name-Pseudosciana Bleeker.

## ANALYSIS OF SPECIES OF UMBRINA.

a. Dorsal rays X-I, 22 to 24 .
b. Snout moderate, $3 \frac{1}{3}$ in head ; stripes on body yellowish, bordered with steel blue; preopercle with its lony margin distinctly serrate, the teeth at the angle broad and flattish. Body rather deep, the back elevated, the dorsal outline regularly rounded, highest at first dorsal spines; profile steep; suout low, bluntish, $3 \frac{1}{8}$ in head ; eye small, $1 \frac{1}{3}$ in snout, $1 \frac{1}{3}$ in interorbital area, about $5 \frac{1}{\frac{1}{2}}$ in head ; mouth moderate, inferior ; maxillary reaching front of eye, $3 \frac{1}{8}$ in head; preorbital one-third broader than eye; teeth villiform, in broad bands, the outer above little enlarged; lower pharyngeal teeth stout, conical, the inuer posterior series slender. Spinous dorsal high the third spine $1 \frac{1}{2}$ in head; soft dorsal scaleless; second anal spine small, $1_{5}^{3}$ in soft rays, $2_{3}^{2}$ in head; pectorals little shorter than ventrals, which are $1_{5}^{\frac{2}{5}}$ in head; caudal slightly lunate, the upper lobe the longer. Color olivaceous, silvery lelow ; upper parts with many wary lines, yellowish in color, and each bordered on each side by a distinct streak of steel blue; the lines partly following the rows of scales, running nearly straight upward and loackwards at the shoulders, more nearly horizontal, more irregular and more or less broken posteriorly ; free membrane of opercle jet black within and without ; gill cavity pale. Head $3 \frac{5}{7}$ in length; depth $3 \frac{1}{6}$ to $3 \frac{1}{2}$. D. X-I, 22 to 24 ; A. II, 7 ; scales $9-51$ (pores)-12 ; about

bb. [Snout very short, $4 \frac{1}{2}$ in head ; stripes on body dusky. Body somerwhat elongate; the ventral outline straightish, dorsal outline elevated and much convex; profile steep and convex, slightly depressed over the eyes; snout bluntish, $4 \frac{1}{2}$ in head; eye 6 in head, about equal to the broad preorbital; mouth subinferior, horizontal ; maxillary reaching past middle of eye, $3 \frac{1}{2}$ in head; barbel very short; dorsal spines rather strong, the longest $2 \frac{1}{3}$ in head; anterior dorsal rays highest; base of membrane scaly ; caudal slightly lunate; anal spine very strong, 3 in head; ventrals shorter than pectorals, which are $1 \frac{1}{2}$ in head; scales very thin, covered with minute scales on their base; scales below the lateral line in horizontal series; lateralline regularly arched to above posterior margin of anal. Coloration much as in Micropogon undulatus; conspicuous undulating black lines follow the series of scales on whole of boby above the pectoral; pectoral, ventral, and anal blackish, with broad whitish margin. Head $3 \frac{1}{3}$ in length; depth 3. D. IX-I, 24 ; A. II, 9 ; scales 6-60 (about)-10.] (Günther.)

Reedi, 88.
aa. Dorsal rays X-I, 26 to 28 ; serrix of preopercle slender, not notably flattened.
c. Body with about nine dark vertical cross-bands, besides narrow undulating streaks along the rows of scales. Body rather stont, the back somewhat arched; eye $3 \frac{1}{2}$ in head; preopercle finely denticulate; mouth moderate, the maxillary reaching to below middle of eye ; teeth subequal, villiform, in broad bands; gill-rakers minute, slender, $5+9$; second dorsal spine highest, $1 \frac{4}{4}$ in head; second anal spine about $2 \frac{1}{3}$; pectorals short, $1_{\frac{2}{3}}^{2}$ in head; ventrals $1 \frac{1}{2}$; lateral line little arched. Head $3 \frac{3}{3}$; depth 3. D. X-I, 26 to 28 ; A. II, 6 or 7; scales $5-48-10 \ldots . . . . . .$. .....Broussoneti, 89.
cc. Body without dark cross-bands, the rows of scales above with distinct undulating streaks.
d. Snout bluntish, short, $4 \frac{1}{2}$ in head ; serræ of proopercle comparatively numerous and strong, subterete. Body not very deep, the profile somewhat depressed over the eyes; eye $1 \frac{1}{8}$ in snout, $1 \frac{1}{8}$ in interorbital space, 5 in head; preorbital not $q_{1}$ uite so broad as eye; mouthinferior, the maxillary reaching to middle of eye, $2 \frac{7}{8} \mathrm{in}$ head; teeth in broad bands, the outer series above little enlarged ; gill-rakers shortish, rather stout, shorter than pupil, $6+9$; pharyngeal teeth longer and more numerous than in cirrosa; highest dorsal spine $1 \frac{4}{5}$ in head ; caudal slightly lunate ; second anal spine strong, 21 in head ; color bluish above, silvery below; a dusky bloteh on center of opercle; back and sides with distinct streaks of deep olive following the centers of the rows of scales, these lines regular and not interrupted; they run obliquely upward and backward below as well as above the lateral line, those below being more nearly horizontal; fins chiefly bright yellow; membrane of opercle pale; lining of gill cavity dusky. Head 3 考 in length ; depth 31 . D. X-I, 27 ; A. II, 6 or 7 ; lat. l. with about 50 pores; about 60 transverse rows of scales...................... Roncador, 90. $d d$. Snout longer than eye, 3 to $3 \frac{1}{2}$ in head; preopercle distinctly serrate.
e. Second anal spine large, 2 in head; profile straight, moderately steep; . snout rather acute ; eye $4 \frac{1}{3}$ in head ; mouth small, inferior, the maxillary nearly reaching middle of orbit, its length $2 \frac{1}{2}$ in head; teeth subequal; gill-rakers scarcely developed, $4+9$; third dorsal spine highest, $1 \frac{1}{8}$ in head; anterior dorsal rays much longer than posterior ones; anal fin pointed, the second soft ray longest, the second spine very strong, 2 in head; ventrals slightly longer than pectorals, $1 \frac{1}{3}$ in head; lateral line moderately arched anteriorly ; color bluish, silvery below; conspicuous dark lines following the rows of scales, those below lateral line oblique as well as those above; spinous dorsal dusky. Head $3{ }_{5}^{3}$ in length; depth $3 \frac{1}{6}$. D. X-I, 26 ; A. II, 6 ; scales 5-48-8

Xanti, 91.
ee. Second anal spine short and thickish, 3 in head. Back elevated, the anterior profile steep and rather convex ; snout blunt, much protruding ; mouth small, horizontal; the maxillary reaching just past pupil, 3 in head; eye 5 in head; preopercle finely and sharply serrate; gill-rakers very small; pectoral short, $1 \frac{1}{2}$ in head; longest dorsal spine 2; caudal fin slightly lunate, the upper lobe the longer; scales above lateral line in very oblique series, in oblique series below lateral line anteriorly ; color, grayish, yellow below; faint dark lines along the scales on the upper half of the body, golden lines on scales helow ; dorsals finely punctulate ; fins pale ; gill cavity pale within. Head $3 \frac{3}{5}$ to $3 \frac{3}{4}$; depth $3 \frac{1}{5}$ to $3 \frac{1}{3}$. D. X-I, 28 or 29 ; A. II, 6 ; lat. 1. 50 to $53 \ldots$............. Galapagorum, 99.
aaa. Dorsal rays X-I, 31 to 33 ; preopercle with its edge weakly crenulate; snout very blunt, not longer than eye, 4 in head; back elevated; profile depressed posteriorly, anteriorly gibbous; mouth rather large, subterminal ; maxillary reaching posterior border of pupil, $2 \frac{1}{2}$ in head ; gili.
rakers short and slender, $5+9$; second dorsal spine highest, 2 in head; soft rays high; second anal spine $2 \frac{1}{3}$ in head; pectorals slightly shorter than ventrals, which are $1^{3}$ in head. Color bluish, silvery below, dark streaks along the rows of scales very faint, broader than the pale interspaces. Head $3 \frac{1}{3}$ in length ; depth 3. D. X-I, 33 ; A. II, 7 ; scales 8-53-9.

Dorsalis, 93.

## 87. UMBRINA CIRROSA.

Scirena No. 1. Artedi, Genera 38, 1734 (Mediterranean).
Scicrna cirrosa Linnieus, Syst. Nat., ed. x, 289, 1758 (Mediterranean ; after Artedi).
Johnius cirrhosus Bloch \& Schneider, Syst. Ichth., 72, 1801.
Umbrina cirrhosa of recent writers generally.
Perca umbra Lacépède, Hist. Nat. Poiss., iii, 16, 1802 (not Sciona umbra Linneus).
Chilodipterus cyanopterus Lacépède, Hist. Nat. Poiss., iii, 546, plate 6, fig. 3, 1802 (on a painting by Plumier).
Coracinus boops Pallas, Zoographia Rosso-Asiat., iii, 259, 1811.
Umbrina vulgaris Guichenot, Expl. de l'Algérie, 43, 1850 (coast of Algeria).
Scicena cestreus Gronow, Cat. Fish., ed. Gray, 52, 1854 (Mediterranean).

## Habitat.-Mediterranean Sea.

This handsome species is rather common in the waters of Southern Europe. Our specimens are from Venice and Palermo.

## 88. UMBRINA REEDI.

Umbrina reedi Giinther, Shore Fishes, Challenger, 25, plate xiii, fig. B, 1880 (Juan Fernandez).
Habitat.-Coast of Chili.
We know this species from Giinther's description only.

## 89. UMBRINA BROUSSONETI.

Umbrina broussoneti Cuv. \& Val., Hist. Nat. Poiss., $\mathrm{r}, 187,1830$ (Jamaica). Storer, Syn. Fish. North Am., 324, 1846 (copied). Gínther, Cat. Fish. Brit. Mus., ii, 277, 1860 (San Domingo, Jamaica). Cope, Ichthyol. Lesser Antilles, 471, 1870 (St. Martin). Jordan \& Gilbert, Sgn. Fish. N. Am., 576, 1883 (specimens described from Indian River, Florida).
Umbrina coroides Cuv. \& Val., Hist. Nat. Poiss., v, 187, 1830 (Brazil). Storer, Syn. Fish. North Am., 323, 1846 (copied). Poey, Enumeratio, 48, 1875 (Cnba).
Habitat.-W est Indian Fauna; Florida to Brazil.
This species is known to us from two specinens taken by Dr. J. A. Henshall in the Indian River, Florida. These agree on the whole better with Limbrima coroides C. \& V., than with Umbrina broussoneti; but we think that Dr. Giinther is probably right in regarding the two nominal species as identical.

We have also examined specimens from Jérémie, Hayti, and from Pernambuco in the museum at Cambridge.

## 90. UMBRINA RONCADOR.

(The Yellow-finned Roxcador.)
Umbrina undulata Steindachner, Ichthyol. Beitr., iii, 21, 1875 (San Diego) (not of Girard).
Umbrina xanti Jordan \& Gilbert, Proc. U. S. Nat. Mus., 1881, 48 (Sauta Barbaia sonthward). Jordan \& Gilbert, Proc. U. S. Nat. Mus., 1880, 456 (Santa Barbara, San Pedro, San Diego) (not of Gill).

Umbrina roncador Jordan \& Gilbert, Proc. U. S. Nat. Mus., 1881, 277 (west coast Lower California). Jordan \& Gilbert, Syn. Fish. North Am., 576, 1883. Rosa Smith, West American Scientist, 1885, 47 (San Diego).
Habitat.-Coast of Southern California; north to Santa Barbara.
This species is rather common along the coast of Southern California from Santa Barbara as far south as Cerros Island. It is a handsome species, brightly colored in life, and of some value as food.

## 91. UMBRINA XANTI.

Cmbrina xanti Gill, Proc. Acad. Nat. Sci. Phila., 1862, 256 (Cape San Lucas). Joridan \& Gilbert, Proc. U. S. Nat. Mus., 1882, 363 (Cape San Lucas). Jordan \& Gilbert, Bull. U. S. Fish Com., 1832, 107 (Mazatlan) and 111 (Panama). Gilbert, Bull. U. S. Nat. Mus., 1882, 112 (Punta Arenas).
Umbrina analis Giinther, Fishes Central America, 387 and 426, 1869 (Panama).
Habitat.-Pacific coast of tropical America, Cape San Lucas to Panama.

This species is rather common along the west coast of Mexico, specimens having been taken by Dr. Gilbert, at Mazatlan, Punta Arenas, and Panama. These are identical with Gill's types of $U$. xanti and with Guinther's $U$. analis, both of which have been examined by us.

## 92. UMBRINA GALAPAGORUM.

Umbrina galapagorum Steindachner, Ichthyol. Beitr., vii, 20, 1878 (James Island, Galapagos).
Habitat.-Galapagos Archipelago.
This species is known from Dr. Steindachner's original types, most of which are still in the Museum of Comparative Zoology.

## 93. UMBRINA DORSALIS.

Umbrina dorsalis Gill, Proc. Acad. Nat. Sci. Phila., 186?, 257 (Cape San Lucas). Jordan \& Gilbert, Proc. U. S. Nat. Mus., 1882, 363 (Cape San Lucas). Jordan \& Gilbert, Bull. U. S. Fish Com., 1882, 107 (Mazatlan).
Habitat.-Pacific coast of Mexico.
This species seems to be rather rare. A large example was taken by Dr. Gilbert at Mazatlan, and this has been compared by us with the types of $U$. dorsalis, young examples taken at Cape San Lucas by Mr. Xantus.

## Genus XXI.-MENTICIRRHUS.

Menticirrhus Gill, Proc. Acad. Nat. Sci. Phila., 1861, 86 (alburnus).
Cirrimens Gill, Proc. Acad. Nat. Sci. Phila., 1862, 17 (ophicephalus).
Umbrula Jordan \& Eigenmann, subgenus nov. (littoralis).
TYPE : Perca alburnus Linnæus = Cyprinus americanus Linnæus.
This genus is one of the most strongly marked in the family. It has been confounded by all European writers with Umbrina, with which it has not very much in common except the presence of the barbel at the chin. All the species are Americau, aud most of them are closely re-
lated to each other. Two of them, however (littoralis, elongatus), while retaining the external form and appearance of the others, differ from them widely in the form of the lower pharyngeal teeth and in the pres. ence of gill-rakers. These we have placed in a distinct subgenus, which we have called Umbrulu. Another species (ophicephalus) is also somewhat aberrant and represents a third subgenus (Cirrimens).

The species of Menticirrhus are all bottom tishes. The low, elongate body, the large pectorals, and the obsolete air-bladder are all characters related to this peculiarity of habit.

## ANALYSIS OH SPECIES OF MENTICIRIRIUUS.

a. Dorsal spines about 13 ; head rery low, thick, sub-terete, the snout blunt and very prominent ; lower pharyngeals with acute teeth; gill-rakers obsolete. (Cirrimens Gill.)
b. Body formed as usual in Menticirhus; long and low, little compressed; head with very convex cross-outlines, high in front, gibbous above the nostrils; profile depressed above eye ; snout $3 \frac{1}{2}$ in head ; projecting for one-third its length ; eye small, 5 or 6 ; mouth very small, inferior, the outer teeth in the upper jaw moderately enlarged; maxillary reaching to opposite middle of eye, $3 \frac{2}{3}$ in head; gill-rakers minute, reduced to little fleshy projections; gill openings contracted, the membranes more united below than in other species; preopercle with flexible cilia; lower pharyngeals small, the teeth mostly pointed; spinous dorsal high, the longest spines $1 \frac{1}{5}$ in head; pectorals short, $1 \frac{1}{6}$ in head, not reaching tips of ventrals; candal Sshaped, the lower lobe the longer. Color, dark gray; pectorals dusky. Head 4 ; depth 4. D. XII-I, 23; A. I, 8; scales 74 (pores) ............................... Ophicephalus, 94.
aa. Dorsal spines usually eleven; head not terete, more depressed, with lower snout. c. Gill-rakers obsolete, reduced to tubercular prominences, covered with teeth similar to those ou the other gill arches; lower pharyngeals narrow, the teeth villiform or cardiform, all of them acute or conical, none with rounded heads (molar); teeth in the outer series of upper jaw more or less enlarged; scales on breast large. (Menticirrhus.)
d. Soft dorssal rather short, its rays I, 18 to I, 22 ; suout prominent.

Snont very prominent, $3 \frac{3}{2}$ in head, its tip slightly turned upward, projecting beyond the premaxillaries for a distance about two-thirds diameter of the eye; spinous dorsal elevated, its longest spines $1 \frac{1}{\jmath}$ in head, reaching beyond front of solt dorsal ; eye large, but considerably smaller than in M. nasus, $5 \frac{1}{2}$ in head; mouth comparatively small, inferior, the maxillary reaching middle of ese, $3 \frac{1}{3}$ in head ; posterior margin of spinous dorsal deeply concave ; rays of soft dorsal low, subequal; candal deeply $f$-shaped, the upper lobe much the louger, $1 \frac{1}{5}$ in head; ventrals short, $1 \frac{7}{3}$ in pectorals; pectorals $1 \frac{1}{5}$ in head; lateral line concurrent with the back. Color, bluish above, silvery below; spinous dorsal dusky; liuing of gill cavity and inner side of pectorals dusky. Head $3 \frac{1}{2}$ in length; depth 4. D. X-I, 22 ; A. I, 8 ; scales 6-50-10

Simus, 95. ee. Snout less prominent, abont 4 in head, its tip not recurved; dorsal spines not elevated, the longest barely reaching soft dorsal, $1 \frac{1}{8}$ in head.
f. Dorsal rays X-I, 22; eye very large, $4 \frac{1}{2}$ in head; snont projecting beyond lower jaw for a distance about equobl to half the diameter of the eye; month small, inferior, the maxillary reaching to below middle of eye, 3 in head; pectoral $1 \frac{1}{3}$ in head, caudal fin $f$-shaped, the upper lobe pointed, the lower rounded. Color, silvery ; fins blackish. Head $3 \frac{1}{4}$ in length; depth 4. D. X-I, 22; A. I, 8 ; scales 6-54-14 ....Nasus, 96. df. Dorsal rays X-I, 19 or 20.
g. Snout low and pointed, $3 \frac{7}{3}$ in head, projecting much beyond the premaxillaries; eye rather large, $5 \frac{1}{\frac{1}{2}}$ in head; body long and low, with rather depressed profile, and low, sharp snout; maxillary extending beyond pupil, 3 in head; preopercular serre somewhat bony, stiffer, and more distinct than in any other species, rather small and distant; gill-rakers minute, about half length of nostril ; outer teeth of upper jaw much enlarged, as in M. alburnus; scales on breast large; dorsal spines high, the longest reaching beyond front of soft dorsal, $1 \frac{1}{3}$ in head ; pectorals rather short, $1 \frac{1}{3}$. Color, plain, dark gray above, paler below ; gill cavity dusky; lower fins all dark. Head $3 \frac{1}{5}$; depth 4. D. IX-I, 20 ; A. I, 9 ; scales 55 (pores).

Agassizi, 97.
gg. Snout rather short and blunt, 4 in head, projecting beyoud premaxillaries for about half a diameter of the eye; eye small, 7 in head; maxillary reaching nearly to posterior margin of ese, 3 in head; outer teeth of upper jaw much enlarged; pectoral long, $1 \frac{1}{8}$ in head; ventral 2 in head; longest dorsal spine as long as pectoral, anal spine half as long as the rays; upper lobe of caudal not produced. Color, plumbeons, bright silvery below ; lower fins mostly black. Head 3 in length; depth 4. 'D. X-I, 18 to 20 ; A. I, 9 ; scales 6-50-14.

Panamensis, 98.
dd. Soft dorsal longer, its rays I, 23 to I, 25.
h. Mouth comparatively large, the maxillary reaching to below middle of eye, 2 星 to $3 \frac{1}{4} \mathrm{in}$ head; teeth on lower pharyngeals acute; back and sides usually with oblique dusky lars; lower lobe of caudal longest.
i. Outer teeth of upper jaw decidedly enlarged; dorsal spines not much elevated, the longest usually not reaching front of soft dorsal, $1 \frac{1}{2}$ to $1 \frac{?}{8}$ in head. Coloration, grayish silvery, the dark markings not pronounced and often obsolete.
j. Dorsal rays X-I, 22 or 23 ; suout rather shorter and less pointed than in M. americanus, $3 \frac{1}{2}$ in head; mouth smaller, the maxillary 3 in head. Coloration usually plain, sometimes very dark; otherwise as in Menticirrhus americamus. Head $3_{5}^{2}$; depth 42. D. X-I, 22 or 23 (rarely 24); A. I, 7; scales 55 (6-52-10)

Martinicensis, 99.
$j$. Dorsal rays X-I, 24 or 25 ; snout longer, $3 \frac{1}{3}$ in head; maxillary reaching nearly to middle of eye, 24 to 3 in head; eye small, 2 in snout; teeth villiform, in broad bands, the outer series of the upper jaw very much eularged, larger than in the other species; ventrals short, $1 \frac{1}{2}$ in pectorals; pectorals $1_{4}^{\frac{1}{4}}$ in head; caudal $f$-shaped, the broad rounded lower lobe longer than the acute upper; scales all ctenoid, those of the breast larger and regularly placed. Color, grayish silvery, with obscure darker clouds along the back and sides; these marks
forming dusky loars, running obliquely forward and downward to considerably below the lateral line, these often obsolete; the bar at the nape saddle-like; lining of gill cavity dusky; pectoral yellowish, dusky at tip ; an obscure dusky streak along lower parts of sides rumuing into lower lobe of caudal. Head $3 \frac{1}{2}$; depth 4 to 5. D. X-I, 24 or 25 ; A. I, 7; scales $6-55$ (pores)- $12 \ldots . . . . . . . . . .$. . Americanus, 100.
ii. Onter teeth of upper jaw less enlarged ; spinons dorsal elevated, the longest spine reaching past front of soft dorsal, its length $1 \frac{1}{3}$ in head; coloration strongly marked, body scarcely silvery. Profile slightly depressed above the eyes; eyes small, $2 \frac{1}{3}$ in snout, 2 in interorbital area, about 7 in head; snont long, bluntish, $3_{5}^{4}$ in head; mouth large; maxillary reaching middle of eye, $2_{5}^{4}$ in head ; ventrals $1_{\frac{1}{2}}$ in pectorals, which are $1^{\frac{1}{7}}$ in head; scales all ctenoid. Color dusky gray above, sometimes blackish, the back and sides with distinct dark oblique cross-bands running downwards and forwards, the anterior one at the nape exteuding downward, meeting the second and thus forming a $\mathbf{V}$-shaped blotch on each side ; a dark lateral streak bounding the pale color of the belly, most distinct posteriorly, and extending on lower lobe of caudal ; inside of gill-cavity scarcely dusky ; pectorals dark. Head 3 丵 to 4 in length ; depth $4 \frac{1}{2}$ to $4 \frac{2}{5}$. D. X-I, 26 or 27 ; A. I, 8 ; scales 7-53 (pores)-14
. Saxatilis, 101.
hil. Mouth smaller, the maxillary reaching scarcely to front of eye, $3 \frac{1}{8}$ in head; teeth on lower pharyngeals bluatish; coloration grayish, with dark streaks along the rows of scales. Snout long, little projecting, $3 \frac{1}{3}$ in head; eye small, 7 in head, 24 in snout, 18 in interorbital area; outer teeth in upper jaw moderately eularged, about as in M. saxatilis; lower pharyngeals a little broader than in M. americanus, the teeth coarser, and many of them bluntish, none of them really molar, those of the inner posterior corner of the bone much enlarged ; ventrals $1 \frac{1}{2}$ in pectorals, which are $1 \frac{1}{6}$ in head; scales all ctenoid. Color sooty-grayish, with bright reflections; the back, all the fins, and under side of head dusky; undulating lines along sides running upward and backward, made of dark points in center of each scale; back often with very faint dark cross-bars; edge of opercle dusky ; lining of gillcavity slightly dusky. Head 4 in length; depth 4 to 5 . D. X-I, 25 or 26 ; A. I, 8 ; scales 7-60-11 ........ Undulatus, 102. $c c$. Gill-rakers present, very short and somewhat slender; lower pharyngeals rather broad; some or nearly all of the teeth molar, i.e., enlarged, with thickened, rounded heads, the molar teeth covering at least the anterior portion of the bone; teeth in the outer series of upper jaw scarcely larger than the others; scales on breast small. (Umbrula Jordan \& Eigenmann.)
k. Upper love of caudal longer than lower ; scales rather small, about 25 in an oblique series from vent forward to lateral line ; axillary scale one-third length of pectoral ; snout very little projecting; gill-rakers very short, $3+5$, the longest about one-third diameter of pupil; lower pharyngeal bones narrower than in littoralis, the molar teeth smaller, covering the whole anterior part of the bone ; conical teeth on posterior part of the bone, the outermost row enlarged ; body
more elongate than in other species; profile low, little convex; eye small, $2 \frac{1}{8}$ in snout, 7 in head; snout long, 3 in head; mouth small, the maxillary scarcely reaching front of eye, 3 in head; second dorsal spine $1 \frac{2}{3}$ in head; anterior soit rays of dorsal almost twice as long as the posterior ones, caudal with an $f$-shaped margin; ventrals $1_{\overline{5}}^{2}$ in pectorals; pectorals $1 \frac{2}{5}$ in head. Color bluish on sides and back, silvery below, without stripes or bands. Head $3 \frac{1}{3}$ in length; depth 49. D. X-I, 22 to 24 ; A. I, 7; scales 5-53-13. .Elongatus, 103.
$k k$. Upper lobe of caudal not longer than lower; scales rather large, 15 to 18 in an oblique series from vent upward and forward to lateral line; axillary scale not one-fourth length of pectoral ; snout distinctly projecting beyond mouth, $3 \frac{1}{2}$ in head; gill-rakers larger than in other species, the longest about $\frac{1}{2}$ length of pupil, the number $\mathrm{X}+7$; lower pharyngeal bones broad, most of the teeth developed as coarse molars, only those along the posterior margin conical; maxillary reaching past front of orbit, $3 \frac{1}{2}$ in head; outer teeth of upper jaw scarcely eularge 3 ; longest dorsal spines reaching past front of soft dorsal, the free margin of the fin concave; caudal rather deeply lunate, the lower lobe rounded, the upper pointed; ventrals $1 \frac{3}{5}$ in pectorals, which are $1 \frac{1}{8}$ in head. Color silvery gray above, with bluish and bronze reflections, immaculate; a dark-bronze shade along sides on level of pectorals, extending to tail and along cheeks; belly below this abruptly white; dorsals light brown, spinous dorsal black at lip, the base narrowly white ; caudal pale, its tip usually lyack; inner lining of pectoral and ventrals blackish; gill cavity pale. Head $3 \frac{1}{2}$ in length; depth $4 \frac{2}{5}$. D. Xi-I, 23 to 25 ; A. I, 7 ; scales 6-53 (pores)-12 ...... Littoralis, 104.

## 94. MENTICIRRHUS OPHICEPHALUS.

Umbrina ophicephalus Jenyns, Zool. Beagle, Fish, 45, 1842 (Coquimbo, Chili). Günther, Cat. Fish. Brit. Mus., ii, 277, 1860 (copied).
Cirrimens ophicephalus Gill, Proc. Acad. Nat. Sci. Phila., 17, 1862.
Habitat.-Coast of Chili and Peru. ${ }^{\text {• }}$
This singular species is represented by numerous specimens large and small in the Museum of Comparative Zoology. These cre from Caldera, Chili (8603, M. C. Z.), and from Callao, Peru. It seems to us that the name Cirrimens proposed for this species can be used for a subgenus only.

## 95. MENTICIRRHUS SIMUS.

Menticirrhus nasus Jordan \& Gilbert, Bull. U. S. Fish Com., 1882, 107 aud 111 (Mazatlan and Panama) (not Umbrina nasus Guinther). Jordan, Cat. Fish. North America, 94, 1885 (name only).
Menticirrhus simus Jordan \& Eigenmann, sp. nov.
Habitat.-Pacific coast of tropical America; Mazatlan to Panama.
This species is known to us from the specimeus collected by Dr.C. F.
Gilbert at Mazatlan and Panama.
It was at first identified somewhat doubtfully with Menticirrhus nasus by Jordan and Gilbert. The examination of the original type of Um-
brina nasus has convinced Dr. Jordan that this is a different species. We here describe in detail the typical specimen under the name of Menticirrhus simus.

Menticirrhus simus sp. nov. Type No. 28292, U. S. Nat. Mus.
Depth 4 in length (5 in total); head $3 \frac{1}{2}\left(4 \frac{1}{3}\right)$. D. X-I, 22 ; A. I, 8 ; scales 6-52-10.

Body robust; back somewhat compressed and regularly arched; depth about uniform between the first dorsal spine and the first soft ray; caudal peduncle rather heary ; distance from last dorsal ray to beginning of middle caudal ray slightly more than 2 in head.

Head subconical; profile steep, slightly depressed over the posterior part of eyes; snout abruptly blunted, turned up anteriorly, suggesting the form of snout in the genus Heterodon; five large incisions in the upper lip, three large oval and three small round pores above them, as in other species of Menticirrtus; suout $3 \frac{1}{2}$ in head ; eye $5_{3}^{2}$ in head; mouth horizontal, inferior, the snout extending $\frac{1}{\frac{1}{2}}$ of its length beyond the premaxillary; maxillary extending past middle of eye, slightly more than 3 in head.

Teeth in lower jaw villiform in rather broad bands; upper jaw with a band of small teeth and an outer series of enlarged ones; largest teeth of the outer series slightly longer than the anterior nostril; preopercle with fine widely placed teeth on its membranous border ; gill-rakers obsolete; pseudobranchie very large; lower'pharyugeal teeth villiform, those of the imner series much enlarged; first dorsal beginning behind base of pectoral; the first spine minute; the second spine highest, reaching to third dorsal ray, $1 \frac{1}{5}$ in head; posterior margin of spinous dorsal deeply concare; dorsal soft rays low, subequal ; caudal unequally lunate, the upper lobe much the longer, $1 \frac{1}{5}$ in head; anal inserted under fifth dorsal ray; its spine weak, 5 in head; the anterior anal rays much the longer, but notextending to tip of last rays; ventrals $1 \frac{3}{5}$ in pectorals; pectorals $1 \frac{1}{6}$ in head.

Scales large; all strongly ctenoid; those in the lateral line and those above it more or less covered with smaller ones. Soft dorsal, with a very narrow scaly sheath. Bases of pectorals and caudal densely scaly, the rest of the fins naked. Color, grayish above, lighter below; lower parts of sides with numerous dark points; faint lines following the rows of scales above; spinous dorsal dusky, anal with dark specks; axil and inner margin of pectoral dusky; other fins plain ; lining of gill cavity dusky.

This species differs from Menticirrhus nasus (Günther) in the size of the eye, the size of the teeth, and the size and shape of the snout. Dr. Jordan has examined the type of M. nasus and verified the description of Gïnther. The large size of the eye in $M$. nasus is not due to the immaturity of the typical example.

## 96. MENTICIRRHUS NASUS.

Umbrina nasus Giinther, Fishes Central America, 387 and 426, 1869 (Panama). Jordan, Proc. Acad. Nat. Sci. Phila., 1883, 289 (Central America).
Habitat.-Pacific coast of tropical America, Mazatlan to Panama.
This species is known to us from Dr. Giinther's original type. No others have since been taken, if, as we suppose, our Menticirrhus simus is really a distinct species.

## 97. MENTICIRRHUS AGASSIZI.

Menticirrhus agassizi Jordan, sp. nov. (Caldera).
Habitat. -Coast of Chili.
This species is known from a single specimen, $6 \frac{1}{2}$ inches long, in the Museum of Comparative Zoology, from Caldera, Chili. It was found mixed with specimens of Menticirrhus ophicephalus, in bottle 8603.

This species is named in honor of Professor Louis Agassiz.

## 98. MENTICIRRHUS PANAMENSIS.

Umbrina panamensis Steindachner, Ichthyol. Beitr., iv, 9, 1875 (Panama).
Menticirrhus panamensis Jordan \& Gilbert, Bull. U. S. Fish Com., 1882, 107 (Mazatlan); 1. c., 111 (Panama). Jordan, Cat. Fish. North America, 94, 1885 (name only).

Habitat.-Pacific coast of tropical America, Mazatlan to Panama.
This species is known to us from specimens taken by Dr. Gilbert at Panama and Mazatlan.

## 99. MENTICIRRHUS MARTINICENSIS.

Umbrina mariinicensis Cuv. \& Val., Hist. Nat. Poiss., v, 186, 1830 (Martinique). Storer, - Syn. Fish. North Ain., 323, 1846 (copied). Guinther, Cat. Fish. Brit. Mus., ii, 277, 1860 (copied). Jordan, Proc. U. S. Nat. Mus., 1886, 539 (note on type of Cuvier \& Valenciennes).
Umtrina gracilis Cuv. \& Val., Hist. Nat. Poiss., v, 189, 1830 (Brazil). Günther, Cat. Fish. Brit. Mus., ii, 277, 1860 (copied). Jordan, Proc. U. S. Nat. Mus., 1886, 539 (note on type of Cuvier \& Valenciennes).
Unbrina arenata Cuv. \& Val.,Hist. Nat. Poiss., v, 190 (Brazil). Jenyus, Zool. Beagle, Fishes, 44, 1842 (Bahia Blanca; Maldonado). Günther, Cat. Fish. Brit. Mus., ii, 276, 1860 (Jamaica).
Umbrina phalcena Steindachner, Ichth. Notizen, ix, 20, 1869 (Santos, Brazil).
Dmbrina januaria Steindachuer, Ichthyol. Beitr., v, 122, 1876 (Rio Janeiro).
Habitat.-West Indies to Patagonia.
We have examined the types of Umbrina martinicensis and $U$. gracilis in the museum at Paris. We have also examined numerous specimens in the museum at Cambridge, apparently identical with these, from Rio Janeiro, Rio Grande do Sul, Victoria, Bahia, and Montevideo. The species seems to be as common in South America as its analogue $M$. americanus is in North America. The two are exceedingly alike, and martinicensis is probably a geographical variety of the other, distinguished perhaps by a slightly smaller number of rays in the dorsal fin.

Were it not that the Sciænoid fauna of South America is chiefly different from that of North America, we should scarcely hesitate to place martinicensis in the synonymy of americanus. Umbrina januaria is apparently based on the specimens from Rio Janeiro examined by us. Umbrina gracilis was based on the dried stin of a young example, distorted and varnished.

Umbrina arenata, as described by Cuvier \& Valenciennes, does not differ at all from M. martinicensis. As described by Dr. Giinther, the scales are 72 to 78 in arenata. It is evident, however, that Günther has counted not the pores, but the number of vertical series of scales, and these range from 70 to 80 in nearly all of our species, the number exceeding the number of pores by about 20 , and similarly exceeding the number of oblique series. We see no reason, therefore, for not placing arenata in the synonymy of martinicensis.

## 100. MENTICIRRHUS AMERICANUS.

## (The Carolina Whiting.)

[Plate VIII.]
Alburnus americanus (the Whiting) Catesby, Nat. Hist. Carolinas, etc., pl. 12, f. 2 (Jordan, Proc. U. S. Nat. Mus., 1884, 195).
Cyprinus antericanus Linnæus, Syst. Nat., ed. x, 321, 1758 (based on the Whiting of Catesby) (not Cyprimus americanus of the twelfth edition, which is a Cyprinoid, Notemigonus bosei Cuv. \& Val.).
Perca alburnus Linneus, Syst. Nat., ed. xii, 482, 1886 (on specimens sent from Charleston by Dr. Garden). Schöpf, Schrift. Naturf. Freunde Berlin, viii, 162, 1788. Bloch \& Schneider, Syst. Ichth., 87, 1801.

Centropomus alburnus Lacépède, Hist. Nat. Poiss., iv, 249, 257, 264, 1802.
Sciena alburnus Gronow, Cat. Fish., ed. Gray, 51, 1854 (South Carolina).
Umbrina alburnus Cuvier \& Valenciennes, v, 180, 1830 (in part). Holbrook, Ichthyol, S. Carolina, 136, plate 20, fig. 2, 1856 (South Carolina). Guinther, Cat. Fish. Brit. Mus., ii, 275, 1860.
Menticirrhus alburnus Uhler \& Lugger, Fishes of Maryland, 101, 1876 (Chesapeake Bay). Jordan \& Gilbert, Proc. U. S. Nat. Mus., 1878, 378 (Beaufort). Goode, Proc. U. S. Nat. Mus., 1879, 113 (Saint John's River, Florida). Goode \& Bean, Proc. U. S. Nat. Mus., 1879, 132 (Pensacola). Jordan \& Gilbert, Proc. U. S. Nat. Mus., 1882, 282 (Galveston). Jordan \& Gilbert, Proc. U. S. Nat. Mus., 1882, 606 (Charleston). Jordan \& Gilbert, Syn. Fish. North Am., 577, 1883; Goode, Hist. Aquat. Anim., 376, plate 127 b, 1884. Goode \& Bean, Proc. U. S. Nat. Mus., 1885, 202 (Linnæan types). Jordan, Cat. Fish. North America, 94, 1885 (name only).
Umbrina phalena Girard, Proc. Acad. Nat. Sci. Phila., 1858, 167 (Indianola, Brazos Santiago). Girard, U. S. and Mex. Bound. Survey, 13, 1859.
Habitat.-South Atlantic and Gulf coasts of the United States, Chesapeake Bay to Texas.

This species is very common on the sandy coasts of our Southern States, where it is a food-fish of some importance.

As elsewhere stated, this may be identical with the South American Menticirrhus martinicensis.

This species has generally received the specific name of alburnus given to it by Linnæus in the twelfth edition of the Systema Naturæ. In the tenth edition of the Systema, Linnæus had already given the specific name of americanus to the Whiting of Catesby. There is no doubt that Catesby had this common species in mind, although his rude figure resembles the Surf Whiting (littoralis) fully as much as it does the common Whiting.

## 101. MENTICIRRHUS SAXATILIS.

## (The King-fisif Sea Mink.)

[Plate IX.]
Johnius saxatilis Bloch \& Schneider, Syst. Ichth., 75, 1801 (New York).
Menticirrhus saxatilis Jordan, Proc. Acad. Nat. Sci. Phila., 288, 1883 (note on type of Bloch \& Schneider). Jordan, Proc. U. S. Nat. Mus., 1884, 1;2 (Key West). Jordan, Cat. Fish. North America, 94, 1885 (name only).
Unbrina alburnus DeKay, New York Fauna, Fishes, 78, plate 7, fig. 20, 1842 (New York). Storer, Syn. Fish. North Am., 323, 1846 (Massachusetts) (not Perca alburnus L.).
Scirena nebulosa Mitchill, Trans. Lit. \& Phil. Soc. New York, 406, plate 3, fig. 5, 1815 (New York) (not of Gmelin).
Umbrina nebulosa Storer, Fishes Massachusetts, 35, 1839 (near Boston light house). Ayres, Fishes of Brookhaven, L. I., 259, 1842. Storer, Hist. Fish. Mass., 124, plate ix, fig. 4, 1867 (Boston light-house ; Lynn; Provincetown). Guinther, Cat. Fish. Brit. Mus., ii, 275, 1860 (New York).
Menticirrhus nebulosus Goode \& Bean, Fish. Essex Co. and Mass. Bay, 17, 1879 (Danvers; Spite Bridge ; Marblehead light-house). Bean, Proc. U. S. Nat. Mus., 1880, 93 (Wood's Holl, Mass ; Noank, Conn.; Cohasset Narrows, Mass). Goode, Proc. U. S. Nat. Mus.; 1881, 113 (St. John's River, Florida). Jordan \& Gilbert, Proc. U. S. Nat. Mus., 1882, 252 (Pensacola). Jordan \& Gilbert, Syn. Fish. North America, 577, 1883. Goode, Hist. Aquat. Anim., 375, plate 127a, 1884.

Habitat.-Atlantic and Gulf coasts of the United States, Boston to Key West and Pensacola, most common northward.

This species is generally common along the coasts of our Northern States, its greatest abundance being north of the limit of M. americanus, a species which it very closely resembles, the differences being of comparatively little importance. Southward its distribution seems to be peculiar. A large specimen was obtained by Dr. Jordan at Pensacola and several small ones at Key West. All these are very dark in color, but not otherwise evidently different from the common northern form. The name saxatilis should be used for this species. The original type of Johnius saxatilis, sent by Schöpf (?) to Bloch, is still in the museum at Berlin, where it has been examined by us. The name saxatilis for the Whiting, like that of regalis for the Weak-fish, came about through a confusion of the vernacular names, the supposed "King-fish" being named "Johnius regalis" by Bloch, and the supposed "Rock-fish," "Johnius saxatilis."

## 102. MENTICIRRHUS UNDULATUS.

## (The California Whiting or "Sucker.")

Cmbrina undulata Girard, Proc. Acad. Nat. Sci. Phila., 1854, 148 (Say Diego, Cal.). Girard, U. S. Pacif. R. R. Survey, 121, 1859 (San Diego, Cal.).
Menticirrhus undulatus Gill, Proc. Acad. Nat. Sci. Phila., 1862, 17 (name only). Jordan \& Gilbert, Proc. U. S. Nat. Mus., 1880, 456 (Santa Barbara, San Pedro, San Diego). Jordan \& Gilbert, Proc. U. S. Nat. Mus., 1881, 48 (Santa Barbara, southward). Jordan \& Gilbert, Syn. Fish. North Am., 578 and 933, 1883. Rosa Smith, West American Scientist, 1885, 47 (San Diego). Jordan, Cat. Fish. North America, 94, 1885 (name ouly).
Habitat.-Coast of Southern California, north to Santa Barbara.
This species is rather common along the sandy coasts of Southern California, where it is a food-fish of moderate importance. Girard's type of Cmbrina undulata has been examined by us. It is a young example of this species.

## 103. MENTICIRRHUS ELONGATUS.

Cmbrina elongata Giunther, Proc. Zool. Soc. Lond., 1864, 148 (Chiapam). Giinther, Fishes Central America, 387 and 425, plate 64, fig. 2, 1869 (Chiapam). Steindachner, Ichthyol. Beitr., iv, 9, 1875 (Panama north to "Sau Diego," confounded with M. undulatus).
Menticirrhus elongatus Jordan \& Gilbert, Bull. U. S. Fish Com., 1882, 107 (Mazatlan). Jordan, Cat. Fish. North America, 94. 1885 (name only).
Umbrula elongata Jordan \& Eigenmann.
Habitat.-Pacific coast of tropical America, Mazatlan to Panama. This species is rather commou ou the west coast of Mexico. Its relations are evidently with M. littoralis, but in several respects it represents a transition towards Menticirrhus undulatus, its nearest relative among the typical Menticirrhi.

## 104. MENTICIRRHUS LITTORALIS.

(The Surf Whiting; Silver Whiting.)
Umbrina littoralis Holbrook, Ichthyol. S. Carolina (tirst edition), 142, plate 20, fig 1, 1856 (South Carolina). Günther, Cat. Fish. Brit. Mus., ii, 276, 1860 (copied). Menticirrhus littoralis Jordan \& Gilbert, Proc. U. s. Nat. Mus., 1878, 378 (Beaufort). Bean, Proc. U. S. Nat. Mus., 1880, 93 (Florida). Jordan \& Gilbert, Proc. U. S. Nat. Mus., 1882, 283 (Pensacola, Galveston). Jordan \& Gilbert, Proc. U. S. Nat. Mus., 1882, 606 (Charleston). Jordan \& Gilbert, Synopsis Fish. North Am., 933, 1883. Bean, Internat. Fishery Exhib., 56, 1883 (Matanzas River Inlet, Florida). Jordau, Cat. Fish. North America, 94, 1885 (name only).
Umbrula littoralis Jordan \& Eigenmann.
Habitat.-South Atlantic and Gulf coasts of the United States, North Carolina to Texas.

This species is generally common in the surfalong the sandy shores of the Southern States. It resembles II. americanus somewhat in external characters so that it has often been confounded with it by careless observers. Its technical distinctions are, however, numerous, and in the
form of its pharyngeal teeth it differs in a marked degree from all the other species of Menticirrhus except M.elongatus. Were it not that M. elongatus and $M$. umbulatus are both in several respects intermediate between M. littoralis and the typical forms of ilenticirrhus, we should regard the subgeuns Umbrula, based on M. littoralis, as certainly worthy of full generic rank.

## Genus XXII.-Paralonchurds.

Paralonchurus Bocourt, Nouv. Arch. Mhus, iv, 21, 1869 (petersi).
Type: Paralonchurus petersi Bocourt.
This geuus seems to be most nearly related to Lonchurus, being in some respects intermediate between that and ordinary Scienoids. But one species has been described.

ANALYSIS OF SPECIES OF PARAIONCIIURUS.
a. Body long aud low; head slender, flattish, somewhat spongy above, with protuberant snout ; eye $8 \frac{1}{3}$ in head ; suout $3 \frac{3}{3}$; interorbital area $3 \frac{1}{3}$; mouth horizontal; maxillary $2 \frac{2}{3}$ in head; tecth in villiform bantis; upper jaw with a conspicuous outer row of larger ones; chin with 5 pores, a multilid barbel at the symphysis; rami with a row of slender barbels along inner edge; dorsal low, highest behind; soft dorsal scaled at base ouly; caulal pointed, as long as head; anal spines small; second spine as long as snout; pectorals very large, 2 考 in body; scales rather large, cycloid; color light olive with faint stripes on rows of scales; pectoral dusky; other fins plain. Head $3 \frac{1}{4}$ in length ; depth 4. D. X-I, 30 ; A. II, 9 ; scales 8 -50-16

Petersi, 105.

## 105. PARALONCHURUS PETERSI.

Paralonchurus petersi Bocourt, Nonv. Archives du Mnséum, iv, 1269, 20 (San Salva(lor). Jordan, Proc. U. S. Nat. Mus, 1886 (Panama).
Habitat.-Pacific coast of tropical America, Panama.
This rare species is now known to us from the original account of Dr. Bocourt and from Dr. Jordan's notes on the original type in the museum at Paris. Specimens were later taken by Dr. Gilbert at Panama, but all of these have been destroyed by fire.

A second species of Paraloncharus was obtained by Dr. Gilbert, but the typical specimens were destroyed by fire and no description has been published.

The following is Bocourt's description :
${ }^{6}$ D. X-I, 30; A. II, 9. C. 17; P. 21; V.I, 5. L. lat. 50. L. trans. $\frac{8}{16}$.
"Caracteres.-Corps allongé comprimé; la plus grande hauteur, prise à la naissance des pectorales, est contenue quatre fois dans la longueur (la candale non comprise), la tête y entrant trois fois et demie. Museau déprimé, percé en avant d'un gros pore; deux lobes arrondis au-devant de la bouche, au-dessus de chactun desquels se trouve un autre pore. Diamètre horizontal de l'ieil, compris trois fois et demie dans la largenr te l'espace interorbitaire, et près de dix fois dans la S. Mis. $90-28$
longueur de la tr̂te. Pouche placée sous le museau, l'extrémité du maxillaire ne dépassant pas verticalement le bord postérieur de l'orbite. Quatre pores sons la mâchoire inférieure; entre les deux premiers on aperçoit un petit barbillon multifide touchant a la symphyse, et il y en a dix d'une grande ténuité placés sur chacune des branches de la mâchoire inférienre. Préonercule arrondi; une crénelure membraneuse existe sur son bord postériem. Ligne latérale infléchie au-dessus de l'anale. Pectorale's très développées. Dorsale profoudément échancrée et à rayons 戶斤 incux faibles; le premier, très court, prend naissance audessus de l'origine des pectorales; le quatrième, le phus long, égale la largeur de l'espace interorbitaire. Ventraies attachées au même niveau que les précédentes. Anale petite, et à épines médiocres. Caudale pointue, sal longueur egale celle de la tite. Anus plus éloigné, de l'extrémité de la quene que du bout du musean. Vessie aérieme épaisse, argentée et prolongée en une pointe très déliée. Ecailles cycloïdes.
"Un seul exemplaire a été rapperté de La Union, République du Salvador.
"Longueur totale, $0^{\text {m }} 256 . "$

## Genus XXII.-LONCHURUS.

Lonchurus Bloch, Syst. Ichth., plate 360, 1793 (barbotus = lanccolatus).
Type: Lonchurus berbatus Bloch.
This genns contains apparently but a single species, a rather rare inhabitant of the Caribbean waters. This species we have not been able to examine.

The genns seems to be one of the most remarkable of the family. Except its analogne, Paralonchurus, it seems to have no very near relatives.

ANALYSIS OF SPECIES OF LONCHURUS.
a. [Body long and low; the profile straightish, depressed over the eyes; interorbital area as broad as eye, which is as long as suout ; snout small, 10 in head; snont soft, depressed, with conspicuons pore at tip; month oblique, subinferior; maxillary reaching a little beyond eje; tecth in fine bands; barbels 2 , not louger than eje; preoperele with crenulate, membranaceous margin; upper ray of pectoral much elongate, $2 \frac{1}{2}$ in body ; caudal elongate lanceolate, 4 in lody; first ray of rentral reaching front of anal; anal short and high, its spines weak, inserted before middle of soft dorsal; scales mostly cyeloid; lateral line becoming straight above anal; color brownish; pectoral and candal fins black, other fins dusky. Depth 4 in length. D. X or XI-I, 38 to $40 ;$ A. 11,7 or 8 ; lateral line 60 to 70.] (Cuvier \& Falenciemnes.) .............................................. Lanceolatus, 106.

## 106. LONCHURTS LANCEOLATUS.

Perca 7anccoluta Bloch, Nov. Act. Sc. Copenh., iii, 383.
Lonchurws lanceolatus Giinther, Cat. Fish. Brit. Mus., ii, 317, 1860 (copied).
Lonchurus burbatus Bloch, Ichthyol, plate 360, 1893. Bloch \& Schueider, Syst. Ichthyol., 102, 1801 (Surinam). Cuv. \& Val., Hist. Nat. Poiss., T, 193, 1830 (described from Bloch's type).

Lonchu'us depressus Bloch \& Schneider, Syst. Ichthyol., 102, 1801 (Surinam). Cuv. \& Val., Hist. Nat. Poiss., v, 195, 1830 (copied). Giunther, Cat. Fish. Brit. Mus., ii, 317, 1860 (West Indies).

## Habitat.-Coast of Guiana.

This remarkable species we have had no opportunity to examine. We follow the suggestion of Dr. Giinther, in regarding the nominal species, Lonchurus depressus, as a synonym of $L$. lenceolatus.

## Genus XXIV.-POGONIAS.

Pogonias Lacépède, Hist. Nat. Poiss., iii, 138, 1802 (fasciatus = cromis).
Pogonathus Lacépède, Hist. Nat. Poiss., v, 121, I803 (courbina=cromis).
Type: Pogonias fasciatus Lacépède.
This genus contains, so far as known, but a single species, a large coarse fish of our Atlantic coasts.

ANALYSIS OF SPECIES OE POGONIAS.
a. Body oblong, the back much elevated, ventral outline almost straight, the depth rapidly diminishing from the first dorsal spine backwards; depth $2 \frac{1}{2}$ to 3 in leugth; head $3 \frac{1}{3}$; profile rather steep and slightly convex; mouth moderate, inferior, the maxillary not reaching middle of eye, $3 \frac{1}{8}$ in head; teeth in broad bauds, the outer series above scarcely enlarged ; snout blunt, 1 onger than eye, $3 \frac{1}{2}$ to 4 in head; lower pharyngeals large, completely united, covered with many blunt molars and a small patch of conical teeth at the outer posterior corner; gill-rakers $4+12$, very short, slender; dorsal spines high but slender, the 4th highest, 2 in head; caudal subtruncate; second anal spine very large, about 2 in head; pectorals about as long as head; scales large, those on breast small ; color grayish silvery, with 4 or 5 broad dark vertical bars, these disappearing with age; fins blackish. D. X-I, 19 to 21; A. II, 5 or 6 ; scales $5-47$ to $50-9$..................................... Cromis, 107 . $x$. Body deep, the depth about $2 \frac{1}{2}$ in length; snout blunt, 3 年 in head. D. X-I, 21 ; scales 47 ; back usually without distinct oblique streaks .Var. cromis, 107 (a).
$x x$. Body more elongate, the depth about 3 in length ; snout more acute, $3_{3}^{3}$ in head. D. X-I, 19 ; scales 50 ; color more silvery, with oblique faint dark streaks along the rows of scales above

Var. courbina, 107 (b).

## 107. POGONIAS CROMIS.

(The Drum.)
[Plates X and XI.]
a. Var. cromis.

Labrus cromis Linnæus, Syst. Nat., ed. xii, 479, 1766 (Carolina). Gmelin, Syst. Nat., 1292, 1788 (Carolina).
Pogonias cromis Goode \& Bean, Fishes of Essex County and Massachusetts Bay, 17, 1879 (Provincetown). Goode \& Bean, Proc. U. S. Nat. Mus., 1879, 131 (Pensacola). Bean, Proc. U. S. Nat. Mus., 1880, 93 (St. John's River, Florida; near Charleston, S. C.). Jordan, Cat. Fish. North America, 93, 1885 (name only).
Labrus chromis Schöpf, Schrift. Naturforsch. Freunde Berliv, viii, 158, 1788 (New York).
Sciena chromis Bloch \& Schneider, Syst. Ichth., 82, 1801 (Carolina). Lacépède, Hist. Nat. Poiss., iv, 314, 1802.

Pogonias chromis Cuvier, Regne Animal, plate 29, fig. 1, 1829. Cuv. \& Val., Hist. Nat. Poiss., v, 206, $18: 30$ (New York; Montevideo). DeKay, New York Fauna, Fishes, 80,1812 (New York). Storer, Syn. Fish. North Am., 324, 1846 (copied). Holbrook, Ichth. S. Carolina, ed. 1, 112, plate 16, tig. 2 (South Carolina). Guinther, Cat Fish. Brit. Mus., ii, 270, 1860 (Lake Pontchartrain). Uhler \& Lugger, Fishes of Maryland, 98, 1876 (Eastern Shore, Maryland). Jordan \& Gilbert, Proc. U. S. Nat. Mus., 1878, 377 (Beaufort)。Jordan \& Gilbert, ProcU. S. Nat. Mus., 1R50, 280 (Pensacola; Galveston). Jordan \& Gilbert, Proc. U. S. Nat. Mus., 1882, 605 (Charleston). Jordan \& Gilbert, Syn. Fish. North Am., 568, 1883. Jordan \& Swain, Proc. U. S. Nat. Mns., 1884, 233 (Cedar Key). Jordan \& Meek, Proc. U. S. Nat. Mas., 1884, 237 (St. John's River, Florida). Goode, Hist. Aquat. Anim., 36\%, plates 121 and $122,1884$.
Pogonias fasciatus Lacépède, Hist. Nat. Poiss., iii, 137, 1802. Cuv. \&f Val., Hist. Nat. Poiss., v, 210, pl. 118, 1830 (New York). Dekay, New York Fanna, Wishes, 81, p1. 14, fig. 40, 1842 (New York). Storer, Syn. Fish. North Aın., 324, 1846 (copie(1). Girard, U. S. \& Mex. Bound. Survey, 11, 1859 (Brazos Santiago). Holbrook, Ichthyol. S. Carolina, 118, pl. 16, fig. 1, 1860 (South Carolina). Giinther, Cat. Fish. Brit. Mus., ii, 270,1860 (copied). Giinther, Ann. and Mag. Nat. Hist., July, 1880 (Rio Plata).
Mugil grumniens Mitchill, Report in part Fishes New York, 16, 1814 (New York). Labrus grunniens Mitchill, Trans. Lit. and Phil. Soc., 405, 1815 (New York).
Mugil gigas Mitchill, Report in part Fishes New York, 16, 1814 (New York).
Sciona gigas Mitchill, Trans. Lit. and Phil. Soc., 413, 1815 (New York).
Pogonias gigas Ayres, Fishes of Brookhaven, L. I., 2i0, 1842 (Brookhaven, L. I.).
Sciena fusca Mitchill, Trans. Lit. and Phil. Soc., 409, 1815 (New York).

## b. Var. courbina.

Pogonathus courbina Lacépede, Hist. Nat. Poiss., v, 121, 1803 (Rio Plata).
Habitat.-Atlantic coasts of America; Long Island to Montevideo.
This species is common on the sandy coasts of the United States, where it reaches a very large size. It is probably the largest of all the Scicenide. It is a rather coarse fish, of no great value as food.

There is no donbt that all the North American names belong to a single species, the form called fusciutus being simply the joung.

The Sonth American form (courbina) is scarcely different from the Northern. We haveexamined specimens in the musemm at Cambridge from Rio Grande do Sul and other localities in Brazil. We have found only the slight differences noticed in the analysis above.

## Genus XXV.-APLODINOTUS.

Aplodinotus Rafinesque, Journ. de Phys., 1819, 418 (grumniens).
Amblodon Ratinesque, Journ. de Phys., 1s19, 418 (based on the pharyngeal teeth of A. grunniens, supposed to belong to a species of Buffalo-fish).

Haploidonotus Gill, Proc. Acad. Nat. Sci. Phil., 1861, 102 (grunniens) (amended orthography).
Eutychelithus Jordan, Man. Vert., ed. i, 242, 1876 (richardsoni=grunniens).
Type: Aplodinotus grumniens Rafinesque.
This genus contains a single species, a large coarse fish, confined to the fresh waters of the United States. The geuus differs from Ron. cador chiefly in the complete union of the very large lower pharyngeal bones.
a．Body oblong；back much elevated and compressed；depth 2 in in length；head $3 \frac{1}{5}$ ； profile long and steep，straightish；head slightly compressed ；mouth moderate， subinferior，low；the maxillary reaching past middle of eye， 3 in head；teeth in villiform bands，the outer above scarcely enlarged ；lower pharyngeals completely united；the teeth less blunt than in Pogonias；gill－rakers short，thickish， $6+14$ ； preopercle obscurely serrated；snout bluntish，longer than eye， $4 \frac{1}{3}$ in head；dorsal spines strong and high；second spine highest，2I⿱乛龰卜 in head；a sealy sheath at the base of spines；the two dorsals connected；second anal spine very large，more than half the length of the head；caudal double truncate；scales rather thin and deep，the series somewhat oblique；scales on breast rather large；color grayish silvery，dusky above，sometimes very dark；back sometimes with oblique dusky streaks along the rows of scales．D．X，30；A．II，7；scales 9－55－13．

Grunniens， 108.

## 108．APLODINOTUS GRUNNIBNS．

（The Fresh water Drum，Gaspergou，Thunder－pumper，Sheepsifead，Croaker， Bubbler，White Perch．）

## ［Plate XII．］

Aplouinotus gruntiens Rafinesque，Journ．de Plys．，1819， 88 （Ohio R．）．Graham，Pre－ liminary List Kansas Fishes，77， 1884 （Kansas River）．Jordan，Cat．Fish． North America，93， $188 \overline{5}$（name only）．
Amblodon grunniens Rafinosque，Ichtl．Ohiensis， 24,1820 （Ohio R．）．Agassiz，Am．Journ． Sci．and Arts， 1854 （＇Tennessee R．）．Girard，U．S．Pac．R．R．Survey，96，plate 23， 1859 （St．Louis；Arkansas R．；Poteau R．；Milk R．）．
Haploidonotus grunniens Gill，Proc．Acad．Nat．Sci．Phila．，1861，104．Jordan，Fishes of Upper Georgia，319， 1876 （French Broad R．；Cumberland R．）．Jordan，Man． Vert．，ed．i，241，1876．Nelson，Fishes Illinois，44， 1876 （Lake Michigan）．Jor－ dan，Cat．Fish．Illinois，50， 1878 （La Salle；Peoria）．Bean，Proc．U．S．Nat．Mus．， 1880， 94 （Sandusky，O．；Cincinnati，O．；Detroit，Mich．；An Sable Riv．，Mich．）． Jordan \＆Gilbert，Syn．Fish．North America，567，1883．Jordan，Ohio Geol． Survey，iv，983， 1883 （Ohio R．；Great Lakes）．Forbes，Catalogue Fish．Illinois， 62， 1884 （Lake Michigan ；Illinois R．，Ohio R．）．Goode，Hist．Aquat．Anim．， 370，plate 123， 1884.
Sciena oscula Lesueur，Journ．Acad．Nat．Sci．Phila．，1822，252，plate 13．Kirtland， Kept．Zool．Ohio，168，192， 1838 （Ohio）．
Corvina oscula Cuv．\＆Val．，Hist．Nat．Poiss．，v，98， 1836 （copied）．Richardson，Faun． Bor．Amer．，iii，68，1836．Kirtland，Bost．Journ．Nat．Hist．，iii，350，plate 6， fig．3，1840．DeKay，New York Fauna，Fishes，73，plate 21，fig．63， 1842 （New York）．Storer，Syn．Fish．North Am．，319， 1846 （copied）．Giinther，Cat．Fish． Brit．Mus．，ii，297， 1860 （Ohio Canal；Lake Pontchartrain）．
Sciena grisea Lesueur，Journ．Acad．Nat．Sci．Phila．，1822， 254.
Corvina grisea DeKay，New York Fauna，Fishes，76， 1842 （New York）．
Corvina richerdsoni Cus．\＆Val．，Hist．Nat．Poiss．，v， 100 （Lake Huron）．Richardson， Faun．Bor．Amer．，64，77，1836．DeKay，New York Fauna，Fishes，76，plate 20， fig．55，1842．Storer，Syn．Fish．North Am．，320， 1846 （copied）．Guinther，Cat． Fish．Brit．Mus．，ii，298， 1860 （copied）．
Haploidonotus richardsoni Gill，Proc．Acad．Nat．Sci．Phila．，1861， 105 （uame only）．
Eutychelithus richarilsoni Jordan，Man．Vert．，ed．i，242， 1876 （copied）．
Amblodon concimus．Agassiz，Amer．Jour．Sci．Arts，1854， 307 （Tennessee R．）．
Haploidonotus concinnus Gill，Proc．Acad．Nat．Sci．Phila．，1861， 104 （name only）． Jordan，Man．Vert．，ed．i，242， 1876 （copied）．

Amblodon lineatus Agassiz, Ain. Jour. Sci. Arts, 1855, 307 (Osage River).
Haploidonotus lineatus Gill, Proc. Acad. Nat. Sci. Phila., 1861, 105 (name only). Jordau, Man. Vert., ed. i, 242, 1876 (copied).
Amblóon neglectus Girard, Proc. Acad. Nat. Sci. Phila., 1858, 167 (Rio Grande). Girard, U. S. and Mex. Bound. Survey, 12, plate v, fig. 6-10, 1859 (Rio Grande, Matamoras).
Haploidonotus neglectus Gill, Proc. Acad. Nat. Sci. Phila., 1861, 105 (name only).
Corvina (Amblodon) neglecta Steindachner, Ichth. Notizen, vi, 1867, 38 ("southeru part of the west coast of the United States").
Habitat.-Fresh waters of the Eastern United States, chiefly west of the Alleghanies; Great Lakes to Dakota, and Texas.
This species is one of the common inhabitants of our deep and slug. gish rivers and of our lakes. Under favorable circumstances it reaches a large size, and a weight of 40 to 50 pounds. It is held in rather low esteem as a food-fish, its flesh being rather coarse and flavorless. In the lake region, as the "Sheepshead," it is altogether worthless, but farther south it holds a higher rank, the "White Perch" of the Ohio being regarded as a tolerable food-fish. In Texas the same species, as the "Gaspergou," is regarded as one of the best of the river fish.
There is no doubt that all of the nominal species above enumerated should be referred to a single one, A. grumniens.

## Genus XXVI.-EQUES.

Eques Bloch, Ichthyologia, 1793 (americanus=lanceolatus).
Equietus Ratinesque, Analyse de la Nature, 1815, 86 (sulostitute for Eques, the latter name being considered too short).
Pareques (Gill Mss.) Goode, Bull. U. S. Nat. Mus., v, 50, 1875 (acuminatus).

## Type: Eques americanus Bloch=Ohetodon lanceolatus L.

This genns is one of the most remarkable in the family in respect to its osteology, as well as to the coloration of some of its species. Oue of the four known species, Eques acuminatus, resembles considerably Sciuna and other typical members of the family, while the bizarre form and coloration of Eques lanceolatus gives it some resemblance to the Chietodonts. The two other species are, however, intermediate, and we know of no sufficient character on which Pereques can be maintained as a distinct genus.

## ANALYSIS OF SPECIES OF EQUES.

a. Dorsal rays X to XII-I, 36 to 46 ; first five or six of the interneurals * wedged in between the neurals of the second and third vertebre, the rest between third and fourth. (Pareques Gill.)
b. Profile elongate, rather steep, but not nearly vertical ; distance from snout to first dorsal spine abont equal to depth of body (form approaching that of Seiena umbra).
c. Dorsal spines little elevated, the longest about $5 \frac{1}{2}$ in length of body; vertica fins unspotted; body oblong, compressed, the back somewhat elevated: eye about equal to snout, 4 in head; interorbital area not quite as broad as eye; preorbital $1 \frac{1}{3}$ in eye; mouth larger than in Eques punctatus, max-

* Not examined in Eques pulcher.
illary reaching past middle of orbit; teeth of upper jaw slightly enlarged; gill-rakers short, rather slender, $6+9$; caudal peduncle and fin less deep than in Eques punctatus; second anal spine slightly shorter than soft rays, $2 \frac{1}{3}$ in head; soft dorsal scaly; scales large, the series below lateral line slightly oblique; longitudinal streaks on body not following the rows of scales

Acuminatus, 109.
$x$. Color nearly black, with longitudinal whitish stripes on the body, not on the fins; one stripe from upper edge of eye straight to upper edge of candal peduncle, one just above this to last rays of soft dorsal, two confluent behind from nape to midde of soft dorsal, two below the first from peetoral to base of caudal, the lowest to edge of caudal peduncle; fins dusky. Head 3 ; depth 23. D. X-I, 38 to 40 ; A. II, 7 ; scales 50 ; eve 4 in head; snout 3 量; maxillary 3; second anal spine $2 \frac{1}{3}$; longest dorsal spine $1 \frac{3}{5}$; pectoral 14. (West Indian specimens.)..........Var. acuminatus, 109 (a).
$x x$. Coloration dark smutty brown, with traces only of seven paler streaks; region at base of soft dorsal darker; spinous dorsal, tips of ventrals, and inside of gill cavity black; fins otherwise smutty. Heail $3 \frac{1}{3}$ in length; depth 2 ² . D. X-I, 40 ; A. II, 7; seales 6-51-10; second aual spine $2 \frac{7}{3}$; eye 4 ; snout 4 ; masillary $2 \frac{7}{3}$. (Specimens from Charleston.)

Var. umbrosus, 109 (b).
cc. Dorsal spines elongate, the longest 2量 in length of body; soft parts of vertical fins with white spots; body robust, the back much compressed, the general form much as in Equcs acuminatus, but the caudal pedugcle deeper and more compressed; profile rather steep, depressed over the eye; snout slightly longer than eye, $3 \frac{1}{2}$ in head; oye as wide as interorbital region; preorbital broad, as wide as eye; mouth small, sub-inferior; maxillary almost entirely concealed below the preorbital, $2 \frac{1}{3}$ in head, reaching to below middle of eye; teeth in both jaws in broad bands, the outer series of the upper jaw enlarged; preopercle entire, the membrane with slight cilia; gill-rakers small, slender, $6+11$; lower pharyngeals small; the teeth all conical, those of the posterior angle and inner series somewhat enlarged ; anterior dorsal spines as high as body ; membranes of the soft portions of the vertical fins closely scaled to the tip; caudal broadly rounded; anal short and high; second spine about $\frac{3}{3}$ of longestray, 3 in head; anal spine placed midway between base of pectoral and base of candal; pectorals and ventrals short and equal, $1 \frac{1}{7}$ in head. Color, dark brown, a light bar in front of eye extending around the chin, a second pale bar extending around the head immediately behind the eyes, a third extending from in front of dorsal over base of pectorals; a light bar along base of soft dorsal; a light bar extending from behind the elevated portion of the spinons dorsal downwards, dividing into two, the branches rumning straight back, the upper braach to beginning of last fourth of soft dorsal, the lower branch to base of caudal; 2 or3light, undulating longitudinal bars below these; fius all dark brown, the soft portions of the vertical fins with many whitish stellate spots. Head $3 \frac{3}{2}$ in length ; depth 3. D. XI or XII-I, 46 ; A. II, 6 or 7 ; scales $8-55$ to $59-11$ or $12 \ldots$ Puxctatus, 110.
bb. [Profile very steep, "steeper than in Eques lanceolatus." Body deepest below first dorsal spine, thence rapidly tapering to the narrow caudal peduncle; eye 3 in head; snout $1 \frac{1}{2}$ in eye; mouth subinferior, the thick convex snout projecting beyoud it; first ventral ray filiform, $3 \frac{1}{3}$ in body; longest dorsal spines $1 \frac{8}{3}$ to $2 \frac{2}{3}$ in length of body, their hoight nearly twice that of the body below them; color olivaceous, three dark-brown longitudinal baads along the sides, the middle one from eye backwards reaching tips of the middle caudal rays; the upper from occiput backward to end of soft dorsel; the lower from lower corner of eye to behind anal; two very
faint broad cross-bars, the anterior from base of first dorsal to ventrals, the next from middle of soft dorsal to anal ; tip of suout and chin black; an oblique bar below eye; spinous dorsal, pectoral, and ventral black, edged with white; edges of caudal jellowish; anal with brown points anteriorly. Head $3 \frac{2}{3}$ to $3 \frac{1}{2}$ in total length; depth the same. D. X-I, 37 or 33 ; A. II, 7; lat. 1. 50.] (Steindachner.)......................Pulcher, 111. aa. Dorsal rays XIV or XV-I, 53 ; about twelvo of the anterior interneurals wedged in between the occiput and the neural spine of the third vertebra; profile almost vertical, the distance from tip of snout to first dorsal spine much less than depth of body. (Eques.)
d. Body deepest below first dorsal spine, rapidly tapering to the narrow candal peduncle; profile very steep, little convex; eje little longer than suout, about 4 in head; preorbital broad, nearly as wide as eye; mouth small, slightly oblique; maxillary reaching to below anterior fourth of eye; teeth all villiform in broad bands, the onter scarcely enlarged ; preopercle with a fringed membranous border; gill-rakers very short and slender, $6+9$; anterior dorsal spines much elongate, 18 in body; soft rays low, the membranes scaled to the tips; anal small; its second spine 3 in head; ventrals $1_{8}^{2}$ in head; pectorals scarcely shorter; color, light yellowish; a narrow brownish band from the corner of the mouth up across the middle of the eye, and mecting its fellow on top of head; another broader band edged with a narrow white line on each side from the nape down and back over opercle, meeting its fellow between the ventral fins and extending to the tips of their outer rays; a third and still broader band, also bordered by white, extending from the tips of the dorsal spines to their base, then downward and backward to the tips of the middle caudal rays; body below this band silvery white; above it somewhat darker. Head 4 in length; depth 22. D. XIV to XVI-I, $53 ;$ A. II, 5; scales irreghlar, with smaller ones intermixed................... Lanceolatus, 112.

## 109. EQUES ACUMINATUS.

a. Var. acuminatus.

Grammistes acuminatus Bloch \& Schneider, Syst. Ichth., 184, 1301.
Eques acuminutus Castelnan, Anim. Nonv. on Rares de l'Amér. du Sud, 10, 1855. Günther, Cat. Fish. Brit. Mus., ii, 280, 1860 (Cuba). Poey, Memorias, ii, 370, 1861 (Cnba); Synopsis, 395, 1868 (Cuba). Cope, Ichthyol. Lesser Antilles, 471, 1870 (St. Croix). Poey, Enumeratio, 49, 1875 (Cuba). Jordan, Cat. Fish. North Ancrica, 94, 1885 (name only).
Pareques acuminatus Goode, Bull. U.S. Nat. Mus., v, 50, 1876 (Bermudas). Bean, Internat. Fislı. Exhib. Berlin, 54, 1883 (Key West).
Eques lineatus Cur. \&. Val., Hist. Nat. Poiss., v, 18:30, 169 (Brazil).

## 7. Var. umbrosus.

Sciona acuminata Jordan \& Cilbert, Syn. Fish. North Am., 573, 1883 (Pensacola).
Eques acuminatus umbrosus Jordan © Eigenmann, var. nov. (Charleston; Pensacola).
Habitat.-West Intian fama, South Carolina to Brazil ; var. umbrosus on the United States coast.

This species is not uncommon in the IVest Indies. In several respects it differs widely from the type of the genms Eques, in all these respects approaching the trye of the genus scicun. It however seems impossible to regard Pareques as a genus distinct from Eques, as in several
regards Eques punctatus is intermediate between Eques acuminatus and Eques lanceolatus.
A third species of the subgenus Pareques was obtained by Professor Gilbert at Panama, but the types were destroyed by fire before a desoription could be published.

Northern specimens of this species (Charleston, Pensacola, Key West) are much more plainly colored than the ordinary West Indian form. We propose for such the varietal name of Eques acuminatus umbrosus, taking as our type a specimen from Charleston sent us by Mr. Charles C. Leslie.

Of the ordinary striped form we have examined specimens in the museum at Cambridge from Rio Janeiro, Porto Rico, St. Thomas, and Sombrero. Our description of var. acuminatus is especially drawn from No. 563, M. C. Z., from the island of Sombrero.

## 110. EQUES PUNCTATUS.

(SERRANA.)
Serrana hispanis Parra, Piezas de Hist. Nat. de Cuba, 2, plate 2, lower firure, 1787 (Cuba).
Eques punctatus Bloch \& Schneider, Syst. Ychth., 106, 1801 (based on Parra, 2, plate 2, fig. 2). Desmarest, Première Décade Ichthyol., 40, plate iii, fig. 2, 1893 (Cuba). Cur. \& Val., Hist. Nat. Poiss., v, 167, plate 116, $18: 30$ (Cuba, Martinique). Storer, Syn. Fish. North Am., 322, 1846 (copied). Giinther, Cat. Fish. Brit. Mus., ii, 281, 1860 (Jamaica). Poey, Proc. Acad. Nat. Sci. Phila., 1863, $1 \% 3$ (Parra, plate 2, lower figure). Poey, Synopsis, 325, 1868 (Cuba). Cope, Ichthyol. Lesser Antilles, 471, 1870 (St. Croix). Poej, Enumeratio, 49, 1875 (Cuba). Jordan, Proc. U. S. Nat. Mus., 1886, 43 (Cuba).
Habitat.-West Indian fauna.
This handsomely colored species is not uncommon in the West Indies, The specimen here described was obtained by Dr. Jordan at Havana. Others are in the museum at Cambridge, from Cuba and from Jérémie. Hayti.

## 111. EQUES PUICHER.

Eques pulcher Steindachner, Ichth. Notizen, vi, 43, 1867 (Barbadoes).
Habitat.-West Indian fauna; Barbadoes.
This species is known from Steindachner's description oniy.

## 112. EQUES LANCEOLATUS.

## (Serrana.)

Guapenc, Edwazds, "Gleanings, plate 210 " ("Caraibes islands").
Chatodon lanceolatus Linnzeus, Syst. Nat., ed. x, 277, 1758 (based on Edwards, plate 210). Liunæus, Syst. Nat., ed. xii, 466, 1766. Gmelin, Syst. Nat., 1254, 1783 (copied).
Sciona lanceolata Castelnau, Anim. Nouv. ou Rares de I'Amér. du Sud, 10, 1855.
Eques lanceolatus Guinther, Cat. Fish. Brit. Mus., ii, 279, 1860 (West Indies). Poey, Enumeratio, 49, 1875 (Cuba). Poey, Synopsis, 325, 1863 (Cuba). Poey, Proc. Acad. Nat. Sci. Phila., 1863, 177 (Parra, plate 2). Cope, Ichth. Lesser Antilles, 471, 1870 (St. Croix; St. Martin). Jordan \& Gilbert, Syn. Fish. North Am., 932, 1883 (Pensacola). Jordan, Cat. Fish. North America, 94, 188 (name onls).

Serrana Parra, Piezas de Hist. Nat. de Caba, piate 2, upper figure, 1787 (Cuba).
Eques americanus Bloch, Ichthyol., plate 347, 1793. Bloch \& Schneider, Syst. Ichth., 105, 1801.
Eques punctatus var. Bloch \& Schmeider, Syst. Ichth., 106, 1801 (based on Parra, plate 2, fig. 1).
Eques balteatus Cuvier, Règue Animal, plate $\mathfrak{2 9}$, fig. 2, 1899. Cuv. \& Val., Hist. Nat. Poiss., v, 165, 1830 (Martinique). Storer, Syu. Fish, North Am., 322, 1846 (copied).
Scicna elluardi Gronow, Cat. Fish., ed. Gray, 53, 18 int.
Habitat.-West Indian fana, ranging northward to Pensacola.
This interesting fish is widely distributed in the West Indian waters. The specimen described by us is in the National Museum, having been taken near Pensacola.

## REOAPITULATION.

The following is a list of the species of sinenide recognized by us as occurring in the waters of Anerica and Europe. The distribution in general of each species is indicated by the use of the following letters:
E. Europe.
N. Atlantic coast, morth of Cape Hatteras.
S. South Atlantic and Gulf coast.
W. West Indies.
C. California.
P. Pacifie coast of Mexico and Central America.
F. Rivers of North America.
B. Coast.s of Brazil.
A. Rivers of South America (Amazon).
V. Pacific coast of Sonth America.

## Subfanily I:-OTOLITHINÆ.

1. Seriphus Ayres.
2. Seriphus polttus Ayres. C.
3. Archoscion Gill.
§ Isopisthus Gill.
4. Archoscion remifer (Jordan \& Gilbert). P.
5. Archoscion parvipianis (C'ur. \& Val.). W., B. 1. Archoscion.
6. Archoscion analis (Jeuyns). V.
7. Cestreus Gronow. (To be called Cynoscion, if Cestreus be regarded as preoccupied by Cestracus.)
8. Uestrens predutorius Jordan \& Gilbert. P.
9. Cestreus acoupu (Lacépèle). B.
10. Cestreris squamipiunis (Giinther). P.
11. Cestreus othonoplerus (Jordan \& Gilbert). P.
12. Cestreus striatus (Cuvier). B.
13. Cestrens obliquatus (Valerciennes). W. (Donbtful species; unknown to us.)
14. Cestreus nothus (Holbrook). S.
15. Cestreus regalis (Bloch \& Schmeider). N., S.
$12(b)$ - —— thetassimes (Holbrook). S.
16. Cestrens rehculatus (Giinther). P.
17. Cestreus nebulosus (Cuv. \& Val.). S.
18. Cestreus parcipinnis (Ayres). C.

16．Cestreus xanthutum（Jordan \＆Gilbert）．P．
17．Cestreus albus（Giinther）．P＇
18．Cestreus stolzmanni（Steindachner）．P．
19．Cestreas nobilis（Ayres）．C．
20．Cestreus phoxocephalus（Jordan \＆Gilbert）．P．
21．Cestreus leiarchus（Cuv．\＆Val．）．W．，B．
22．Cestrcus virescens（Cuv．\＆Val．）．B．
23．Cestreus microlepidotus（Cuv．\＆Val．）．B．
24．Cestreus steindachneri Jordan．B．
25．Cestrous bairdi（Stcindachner）．B．
4 Ancylodon Cuvier．
26．Ancylodon ancylodon（Bloch \＆Schneider）．B．，P．

## Subfamily II．－SCI届NIN屈。

5．Nebris Cuv．\＆Val．
27．Nebris microps Cuv．\＆Val．B．，P．
6．Larimus Cuv．\＆Val．
23．Larimus argenteus（Gill）．P．
29．Larimus breviceps（Cuv．\＆Val．）．W．，B．，P．（Perhaps more than one species included in the synonymy．）
30．Larimus stahli（Poey）．W．
31．Larimus fasciatus Holbrook．S．
7．Odontoscion Gill．
32．Odontoscion dentex（Cuv．\＆Val．）．•W．
8．Corvula Jordan \＆Eigenmann．
33．Corvula macrops（Steindachner）．P．
34．Corvula sialis Jordan \＆Eigenmann．S．
3i．Corvula subcrqualis（Poey）．W．
36．Corvula batabana（Pocy）．W．
9．Plagioscion Gill．
37．Plugioscion squamosissimus（Heckel）．A．
38．Plagioscion surinamensis（Bleeker）．A．
39．Plagioscion auratus（Castelnan）．A．
1．0．Bairdiella Gill．
40．Bairdiella archidium（Jordan \＆Gilbert）．P．
41．Buirdiella chrysura（Lacépèle）．S．
42．Bairdiella cnsifera（Jordan \＆Gilbert）．P．
43．Bairdiella icistia（Jordan \＆Gilbert）．P．
44．Bairdiella ronchus（Cuv．\＆Val．）．W．，B．
45．Bairdiella armata Gill．P．，W．，B．
46．Bairdiella aluta（Jordan \＆Gilbert）．P．（Doultful species．）
47．Bairdiella chrysoleuca（Giinther）．P．
11．Stelliferus Stakk．
48．Stelliferus oscitans（Jordan \＆Gilvert）．P．
49．Stelliferus rastrifer Jordan．B．
50．Stelliforus fïrthi（Steindachner）．P．
51．Stelliferes minor（Tschuli）．V．
52．Stelliferus stellifer（Bloch）．B．
53．Stelliferus lanceolatus（Holbrook）．S．
54．Stelliferus cricynba（Jordan \＆Gilbert）．P．
55．Stelliferus naso Jordan．B．
56．Stelliferus microps（Steindachner）．B．
12. Sciæna (Artedi) Linnens.
§Ophioscion Gill.
57. Sciena gilli (Steindachner). B.
58. Sciena adusla Agassiz. B., W.
59. Sciona typica (Gill). P. (Nomen ineptum; perhaps to be called Sciana ophioscion.)
60. Scicna imiceps (Jordan \& Gilbert). P.
61. Sciena sciert Jordan \& Gilbert. P.
62. Sciena rermicularis Giinther. P.

S Scienops Gill.
63. Sciena ocellata Linneus. S.
§Johnius Bloch.
64. Sciena heterolepis Bleeker. B. (Species unkuown to us.)
$\$$ Psendosciana Bleeker.
65. Sciona aquila (Lacépède). I.. (Perhaps to be called Scicena hololepidota.) § Callens Jordan.
66. Sciena deliciosa Techudi. V.
§Sciena ( = Corvina Cuvier).
67. Sciena ambra Limnæus. E.
\$ Cheilotrema Tsehudi.
68. Sciena saturna (Girard). C.
69. Sciena fasciata (Tschudi). V.
13. Roncador Jordan \& Gilbert.
70. Rioncador stearnsi (Steindachner). C.
14. Leiostomus Lacéperle.
71. Leiostomus xanthurus Lirépede. S. (W. ? ?
15. Pachyurus Agassiz。
© P'achyurus.
72. Packiyurus squamipinnis Agassiz. A.
f. Lepiqterks Cuv. \& Val.
73. Pachyurus francisci (Cuv, \& Val.). $\Lambda$.
74. Pachyurus bonarionsis Steiudachner. A.
75. I'achyurus schomburyki Giinther. A.
16. Pachypops Gill. (I'erhaps a subgenus under Pachyurus.)
76. I'achypops furcrens (Lacépède). A.
77. Pachypops trifilis (Miiller \& Trosehel). A.
78. Pachypops adspersus (Steindachner). A. (P'erhaps to be called $I$ '. grunniens.)
17. Polycirrhus Bocourt.
79. Polycirrhus dumerili Bocourt. P.
80. P'olyoirrhus brasiliensis (Steindachner). B.
81. P'olycirrtus peruanus (Steindachner). V.
18. Genyonemus Gill.
82. Genyonemus lineatus (Ayres). C.
19. Micropogon Cuvier \& Valencieunes.
83. Micropogon undulatus (Linneus). S.
84. Micropoyon furnieri (Desmarest). W., B.
85. Micropogon ectenes Jordan \& Gilbert. P.
86. Micropogon altipinnis Giinther. P.
20. Umbrina Cuvier.
87. Umbrina cirrosa (Linueus). E.
88. Umbrina reedi Giinther. V.
89. Umbrina broussoneti Cuv. \& Val. 'S., W., B.
90. Umbrina roncador Jordan \& Gilbert. C.
91. Umbrinaxanti Gill. P.
92. Umbrina galapagorum Steindachner. V.
93. Umbrina dorsalis Gill. P.
21. Menticirrhus Gill.
is Cirrimens Gill.
94. Menticirrhus ophicenhalus (Jenyns). V.
§ Menticirrhus.
95. Menticirrhus simus Jordan \& Eigemmann. P.
96. Menticirrhus nasus (Giinther). P.
97. Menticirrhus agassizi Jordan. V.
98. Menticirrhus panamensis (Steindachuer). P.
99. Menticirrhus martinicensis(Cuv. \& Val:). W., B. (Donbtfulspecies; probably a variety of the next.)
100. Menticirrhus americanus (Linurous). S.
101. Menticirrhus saxatilis (Bloch \& Schmeider). N., S.
102. Menticirrhus undulatus (Girard). C.
§ Umbrula Jordan \& Eigenmann.
103. Menticirrhes elongatus (Giinther). P.
104. Menticirrlus littoralis (Holbrook). S.
22. Paralonchurus Bocourt.
105. Paralonchurus petersi Bocourt. P.
23. Lonchurus Bloch.
106. Lonchurus lanccolatus (Bloch). B.
24. Pogonias Lacépède.
107. Pogonias cromis (Linureus). S .
$107(b)$ - courbina (Lacépède). B.
25. Aplodinotus Rafinesque.
108. Aplodinotus grumiens Rafinesque. F.
26. Eques Bloch,
§ Pareques Gill.
109. Eques acuminatus (Bloch \& Schneider). W.
$109(b)$. - umbrosus Jordan \& Eigenmann. S.
110. Eques punctatus (Bloch \& Schneider). WV.
111. Eques pulcher (Steindachner). W.
§ Eques.
112. Eques lanceolatus (Linnæus). W., S.

Indiana University,
Bloomington, Ind., July 25, 1887.

## Note on Cestreus and Cynoscion.

The generic name Cynoscion Gill must be used instead of Cestreus for the Weakfishes. Professor Gill calls my attention to the prior use of Cestreus by McClelland (Journ. Nat. Hist., v. 2, p. 151) in 1842, for a genus of gobies ( $=$ Prionobutis Bleeker). The type, Cestreus minimus McClelland $=$ Eleotris amboinensis Day. For the Scisenoid genus, Cestreus (1854), must give place to Cynoscion.

## LIST OF PLATES.

## Plate I.

Page.
Fig. 1.-Cynoscion regale Bloch © Schneider. The Weak-fish, or Squeteague... 24
2.-Cynoscion nebulosum Cuvier \& Valencieunes. The Spotter Weak-fish. ..... 24
3.-Bairdiella chrysura Lacépede. The Mademoiselle, or Yellow-tail ..... 44
I'late II.
4.-Sciena ocellata Limmens. The Red Drum, or Chamel Bass ..... 63
5.-Roncador stearnsi Steindachner. The Roncador. ..... 66
6.-Leiostomus xanthurus Lacépede. The Spot ..... 67
Plate III.
7.-Micropogon undulatus Linmeus. The Croaker ..... 76
8.-Menticirrlus americanus Linneus. The Carolina Whiting. ..... と8
9.-Menticirrlus saxatilis Bloch \& Schneider. The King-tish ..... 89
Plate IV.
10.-Pogonias cromis Linnteus. The Drum ( young) ..... 93
11.-Pogonias cromis Linmens. The Drmm (adult) ..... 93
12.-Aplodinotus grunniens Rafinesque. The Fresh-water Drum, or Gaspergou ..... 95


Fig. 1.-Cynoscion regale (Bloch \& Schneider). The Weak-fish, or Squeteague. (No. 10421, U. S. N. M., from Wood's Holl, Massachusetts.)


Fig. 2.-CYNOSCION NEBULOSUM (Cuvier \& Valenciennes). The Spotted Weak-fish.
(No. 15000, U. S. N. M., from Norfolk, Vırginia.)


Fig. 3.-BAIRDIELLA CHRYSURA (Lacépède). The Mademoiselie, or Yellow-tail. (No. 771, U S. N. M., from Beesley's Point, New Jersey.)


Fig. 4.-SciÆna ocellata Linnæus. The Red Drum, or Channel Bass.
(No. 622, U. S. N. M., from Indianola, Texas.)


Fig. 5.-Roncador stearnsi (Steindachner). The Roncador.
(No. 26864, U. S. N. M.. from Santa Barbara, California.)


Fig. 6.-LEIOSTOMUS XANTHURUS Lacépède. The Spot.
(No. 20222, U. S. N. M., from Newport, Rhode Island.)


Fig. 7.-Micropogon undulatus (Linneus). The Croaker. (No. 20742, U. S. N. M., from Newport, Rhode Island.)


Fig. 8.-Menticirrhus americanus (Linnæus). The Carolina Whiting. (No. 22832, U. S. N. M., from Pensacola, Florida.)


Fig. 9.-Menticirrhus saxatilis (Bloch \& Schneider). The King-fish. (No. 25403, U. S. N. M., from Charleston, South Carolina.


Fig. 10.- Pogonias cromis Linnæus. The Drum (young).
(No. 18036, U. S. N. M., from Matanzas River Inlet, Florida.)


Fig. 11.-Pogonias cromis Linnæus. The Drum (adult).
(No. 22936, U. S. N. M.)


Fig. 12.-APLoDINOTUS GRUNNIENS Rafinesque. The Fresh-water Drum, or Gaspergou.

## INDEX.

## [NOTE.-The references are to page-figures in brackets.]




| Page. | rage. |
| :---: | :---: |
| Johnius saxatilis .......................... 89 | Monosira................................... 32, 34 |
| Kingfish ................................... 89 | stahli. |
| Labrus chromis ........................... 93 | Mugil gigas................................ 94 |
| cromis ............................. ${ }^{\text {a }}$ | grunnieus..................... 9 . |
| grunniens......................... 94 | obliquus |
| hololepidotus ...................... 63 | Mrugilidx .................................. 12 |
| macalatus......................... 26, 27 | Nebris . .............................. $2,5,5,31,101$ |
| squeteagus........................ 24 | mierops . . . . . . . . . . . . . . . . . . . $31,32,101$ |
| maculatus ............. 26, 27 | Notemigous beeci ....................... 88 |
| Lafayetto.................................. 67 | Odontoscion ..................2, 6, 31, 41, 43, 44, 101 |
| Larimus ......................3, 6, $32,34,35,47,101$ | archidiun .................... 41 |
| argenteus.....................32, 33, 101 | dentex...................... $35,44,101$ |
| auritus ......................... 32 | Oldwife .................................... 67 |
| batabanus ....................... 38 | Ophioscion..... 41, 47, 48, 53, 54, 55, 58, 62, 63, 68, 102 |
| breviceps ...................32, 33, 34, 101 | tspious ........................ 58,62 |
| dentex ........................... 35 | Otolithina .........................2, 3, 4, 5, 31, 100 |
| fasciatus ...................... 33, 34, 101 | Otolithus ...... ...................... $1,2,4,10,12$ |
| peli ............................. 32 | albus............................ ${ }^{\text {a }}$ |
| stahli.......................1, 33, 34, 101 | analis .......................... 10,11 |
| Leiostomus .............................. 7, 66, 102 | argratens...................... 4 |
| humoralis..................... 67 | bairdi |
| lineatus....................... 73, 74 | biauritus |
| obliquus ...................... 67 | californjensis |
| philadelphicus ................. 67 | carolinensi |
| xanthurus ........... 45, 66, 67, 68, 102 | cayennensis |
| Lepipterus.........................68, 69, 70, 102 | drummondi |
| adspersus..................... 72 | 上иатисира |
| francisci ....................... $0_{0}$ | 1 diarchas |
| Linstomus ................................. 66 | magdalcne. |
| Lonchurus .......................... 5, 9, 91, 92, 103 | microlepidotus |
| ancylodou....................... 30,31 | microps. |
| barbatus....................... 99 | nebulosus....................19, 26,27 |
| depressus ....................... 93 | nothus ........................... 23,21 |
| lanceolatus ................1, 22, 93, 103 | obliquatus ....................... $2^{3}$ |
| Lutjanus cayennensis.................... 21, 22 | yeraamus. |
| triangulum.................... ${ }^{\text {b }}$ | regalis |
| Mailemoiselle ............................. 44 | reticulatu |
| Mimigro.................................. 63 | rhomboidali |
| Menticirrhus ..........2, 3, 8, 9, 77, 81, 82, 86, 91, 103 | squamipinnis |
| agassizi. .................. 83, 87, 103 | stolzmanini ...................... 28 |
| described............ 83,87 | striatus ......................... 23 |
| alburnus ..................... 83, 88 | toeroe........................... 22 |
| americauus ... $83,84,87,88,89,90,163$ | thalassimus ....................23, 24, 25 |
| clongatus .--.......... 85, 90, 91, 103 | virescens........................ 29 |
| littoralis .............. $85,90,91,103$ | Pachyprops ........... .-........... 8, 31, 68, 70, 102 |
| martinicencis ..........83, 87, 88, 103 | adspersus...................71, 72, 102 |
| nasus. ........... $83,83,85,86,87,103$ | biloba.......................... 71 |
| nebulosus.................... 89 | furcraus........................71, 102 |
| ophicerphalus.......... $82,85,87,103$ | grunniens ......................72, 102 |
| Menticirrhus panamensis...............83, 87, 103 | trifilis .......................1, 71, 102 |
| saxatilis .................. 84, 89, 103 | Pachyurus...........................8, 68, 70, 102 |
| simus .............. $83,8 \overline{5}, 86,87,103$ | urlspersus..................... ie $^{\text {a }}$ |
| describerl............. 82, 85 | bonariensis ................. 69, 70, 102 |
| undulatus.............84, $00,91,103$ | corvina ........................ 70 |
| Mierepogon....................... 8, 72, 73, 74, 102 | francisci .................. $1,69,70,102$ |
| altipimmis..................-75, 77, 102 | furcråus........................ 71 |
| argentens ................... 76 | lundii ........................... 69 |
| costatus...... ................ Tf $^{\text {a }}$ | mattereri................ ...... $7_{0}$ |
| ectenes....................75, 77, 102 | schomburgki..............1, 60, 70, 10, |
| furnieri .-. .-...............75, 76, 102 | *quaruipennis...... ...........68, 68,69 |
| lineatus ...................... 74, 76 | squamipinuis ...................00, 103 |
| ornatus....................... 73 | squวmosissimus...............- 40 |
| trifilis-....................... 70,71 | tritilis........................ 71 |
| condulatus ...........75, 76, 77, 78,102 | Paralonchurus........................ 8, 91, 92, 103 |
| S. Mis. 90 -_69 |  |



Page.
diacantha ................................. 54
edwardi.................................... 100
ensifera................................... 45
ericymba................................... 52
fasciata ............................60, 61, 65, 102
furthi ......................................... 51
fusca.................................................. 0
gilli ..................................... 5 , 56, 61, 102
, $1 . . . . .$.
hololepidota.................................64, 102
icistia...............-.-..................... 45
imiceps................................. . $57,62,102$
jacobi ............................................ 65
haceolata ......................................... 52, 99
lucida........................................ 6
macrops.................................... 37
(1)............................ 40
monacantha ............................. 40
multifasciata............................ 67
nobulos................................................
nigra......................................... 64
oblqua............................................. 67
opercularis..................................... 76
ophioscion ................................62, 102
punctata ................................... 44
ronchus.............................................. 16
saturna ............................60, 64, 65, 102
sciera ......................... 2, 44,47, 57, 62, 102
14.
surinamensis............................. 40
typica..............................56,58,62,102
,
xanthurus .............................. 67
Sciænidæ .......................... $2,2,3,4,33,53,94,100$
Sciæninæ .................................... $2,3,4,5,31,101$
Sciænoides............................................ 4, 5,6
pama ...................................... 5
acuminata...................................... 98
adusta ....................................56, 61, 102
aluta.......................................... 47
amazonica................................. 40
aquila.............3, 53, 54, 55, 59, 63, 64, 77, 102
capensis .................................................. 63
cestreus ....................................... 80
93
chrysura........... ....................... 45
cirrosa ..................................... 77,80
cronvina
40


## IV.-NOTES ON ENTOZOA 0F MARINE FISHES OF NEW ENGLaND, WITH DESCRIPTIONS OF SEVERAL NEW SPECIES.

## By Edwin Linton.

In the summers of 1854-85 I collected Entozoa from several of the commoner species of food-fishes and Selachians at the summer station of the U. S. Fish Commission, Wood's Holl, Mass.

Cestoid entozoa in the adult or strobile condition were found in great numbers in the alimentary tracts of all the Selachians examined. Eucysted forms of the Cestoidea are for the most part confined to the Teleostei and are found in greatest abundance in the submucons coat of the stomach and intestine, although not infrequently met with in the peritoneum, liver, spleen, ovaries, \&c. In every specimen of such fishes, as the Bluefish (Pomatomus saltatrix), Squeteague (Cynoscion regale), Striped Bass (Roccus lineatus), \&c., examined, the walls of the alimentary tract were spotted thickly with minute cysts, which, when opened, were found to contain larvie of some Cestods, most of them of the genus Rhynchobothrium. Some from the submucous coat of the Squeteague ( $C$. regale) seem to be larva of the species which I have named $R$. bisulcatum.

In the gall-bladder of nearly every specimen of Squeteagne (Cynoscion regale) that I have examined, I found hundreds of larval Tetrabothric. They are usually attached to the walls of the eystic duct in clusters of such size as to obstruct the passage. (Plate VI, Figs. 6 and 7.) They are easily dislodged and often may be seen in vast numbers in the ambercolored contents of the gall-bladder. These larvæ, when placed in seawater, are quite active. Each moves by alternately thrusting forward a pair of bothria and by alternate contraction and extension of the body. While this is in progress the body is constantly changing its form. At times it is long and filiform, at others short and broad. At rest it is commonly thickened or obtuse in front, tapering posteriorly. The body of the larva consists of a thin limiting membrane about $0.05^{\text {mum }}$ thick, inside of which is a granular parenchyma, the latter a clear fluid filled with highly refractile globular masses averaging $0.01^{\mathrm{mm}}$ in diameter. The bothria are four in number, withont hooks, and in the majority of those examined, without costre. In some specimens there seems to be the beginning of an ausiliary acetabulum at the apex of each bothrium.

The apex of the head, at times obtuse or even retuse, is frequently elevated into a terminal papilla, disclosing a connical proboscis and terminal os like that of Echeneibothrium. The entire head is sometimes invaginated. The length is difficult to determine, on account of the extreme variability of form, but the average length when at rest is not far from $2.5^{\mathrm{mm}}$. When placed in fresh water they are apt to assume a filiform shape, with a length of from 4 to $\boldsymbol{6}^{\mathrm{mm}}$. When disturbed they contract to $1.5^{\mathrm{mm}}$ or less. Many of these larve have two small red blotches immediately behind the bothria. A water vascular system can be distinguished in most of them. This consists of a convoluted tube on each margin, becoming evidently double near the head and forming a loop in front of the bothria and giving off branches to the bothria. Larvæ resembling those from the gall-bladder, but smaller, were also found in the intestine of the Squeteague (Cynoscion regale) and of the Angler (Lophius piscatorius). These, wherever noticed, were in myriads, floating free in the chyle. (Plate VI, Figs. 8 and 9.)

Elongated cysts were found in the liver, or peritoneum, of most of the Teleostei that were examined. These when opened set free an eudocyst which is contractile and has the power of locomotion to some extent. Wher subjected to the action of the compressor, lateral vessels can be discerned which are evidently parts of a water vascular system. When one of these endocysts (blastocysts Diesing), that is sufficiently developed, is opened, it will be found that an embryo has been developed within. In some, this embryo seems to be free in the parenchyma, and when the wall of the blastocyst is ruptured, it is at once freed from its living envelope. The development in this case seems to be analogons to the development of Cercaric in a Sporocyst.

In other cases the neck of the embryo is protruded from the side of the blastocyst in the form of a loop. When further pressure is applied the head is released, while the blastocyst remains attached to the scolex much like the bladder of a Cystocercus. The embryo, however, it will be observed, is not released by evagination, as in Tania.

Nematods were found in most of the fish that were examined, both free in the alimentary canal and encapsuled in the peritoneum, gastric ceca, liver, \&c. They were found in the greatest numbers in the peritoneum of the Angler (Lophius piscatorius), from a single specimen of which hundreds of the Nematoid, Agamonema capsularia Dies., were obtained.

Several Trematods were met with, most of them free in the stomach of their host, but not so abundant as either the Cestoidea, Nematoidea, or Acanthocephala. These will be described in a subsequent paper.

The only fishes that were found comparatively free from intestinal parasites were the Sea-Robins (Prionotus), while a Sturgeon (Acipenser sturio) yielded but one specimen, a Nematod from the alimentary canal, and a few Trematods from the gills.

In the descriptive part of this paper I have confined my attention to the Cestoidea and the Acanthocephala, and with two exceptions, viz, Dibothrium alutere and Echinorhynchus sagittifer, to adult forms.

In the determination of genera I have been guided principally by Diesing's Revisions. Accepting the characters there enumerated, I have been compelled to create three new gencric names, viz: Spongiobothrium, Crossobothrium, and Phoreiobothrium.

For the determination of species I have madeuse of the publications of Rudolphi, Diesing, P. J. Van Beneden, Dujardin, Von Linstow, Wagener, Krabbe, Olsson, Eschricht, Leuckart, Küchenmeister, Zürn, Von Siebold, Leidy, Cobbold, and others.

Systematic work on the Entozoa is attended with much difficulty on account of the confusion in which the earlier literature is involved. In this connection I take the liberty of quoting a brief passage from Vou Linstow's "Compendium der Helminthologie," Hannover, 1878:
"The number of well-founded species is indeed not quite so great as the list indicates, for a host of older names, especially originating with Rudolphi, figure in it, of which typical examples are no longer in existence, and which have been described imperfectly or not at all, so that they must remain forever an unsolved riddle. For example, many rudiments of Tounice discovered by this author, whose enumeration has been of not the least advantage to science, and many descriptions of older date have not since been recognized. One comes from their contemplation often in great perplexity of mind, and does not really know how they ought to be represented. Moreover, to make the entire literaturo effective was impossible, since too many species are described in such a way that it is not possible to recognize them again, and other specifcations are so improbable that for this reason they must remain unconsidered ; * * * when further the description of a new species is disposed of with an enumeration of the length and breadth, when, finally, for new species only the place where they are found is given, together with or without an accompanying description, as is to be found in many works, then I think I am not at fault in citing such publications only in limited amount."

It has been my endeavor to give as full a description of each species considered as the material at hand would justify. When only alcoholic specimens were accessible I have mentioned the fact in the proper place.

As the development of many of the Cestoidea seems to be quite different, even in closely related forms, it is very important that the systematic work which is done on them be so done as to leave no doubt in the mind of the investigator what species is being described, whether the name adopted for it holds or not. Appreciating the value of figures in establishing the identity of species, I have therefore not included in this paper descriptions of any forms unless accompanied with sufficient figures to make future identification reasonably certain.

In giving the specific names of fishes mentioned in this paper, I hare used the nomenclature adopted by Prof. George Brown Goode in "The Fisheries and Fishery Industries of the United States, Section I." Washington, 1884.

The illustrations which accompany this paper are the work of my wife, Margaret B. Lintou.

## Order Cestoidea.

## Family DIBOTHRIIDA Diesing.

Dibothrium Rudolphi.

Rhytclminthes, Ihhytis, Alyselminthus, and Helsys Zeder. Bothriocephatus (Dibothrius) Rudolphi.
Diphyllobothriam Cobbold.
Dibothriam Diesing.

Dibothrium manubriforme, sp. nov.
[Plate I, Figs. 1-4.]
Head cuneate, tetrangular, truncate in front, tapering posteriorly, constricted into a cylindrical neck-like part near posterior, then expanding so that the posterior end of the head resembles one of the anterior segments of the body. The general apparance of the head when viewed laterally is therefore somemhat like a ball-bat, the constricted part representing the handle. Two longitudinal fosser (bothria), laterally placed, extend from the anterior part of the head to the constricted part. Each of the marginal lobes thas formed is indented at the anterior extremity ly a short but deep secoudary fossa, which, together with the two lateral fosse, give the head when viewed in front a four-lobed appearance. The edges of the lobes bordering the lateral fossee are thin-lipped and flexible; auteriorly there is a transverse eleration forming both a lateral and a marginal rim and making an obtnse angle between the front and the side of the head. The margiual lobes, when at rest, hare a rounded outline, fullest in the middle, tapering posteriorly, appressed slightly anteriorly, and raised into two small eminences on each side of the secondary fosse. The head in a marginal view is somewhat flaskshaped. Seel from the front the head is squarish, with the angles rounded and the sides deopiy cleft, the clefts rounded, the lateral clefts deeper than the marginal. Immediately back of the head the segments are very narrow, and for a greater or less distance, depending on the state of contraction, maintain about the same width as the base of the head. In some individuals the small anterior segments continue much farther back from the head than in the one figured (Plate I, Fig. 1). The segments are alternately short and long. This characteristic is quite plainly markefi in those segments which immediately follow the
head, is still noticeable on the median segments and also on the posterior ones, but is not so plainly marked on the latter as on the two former. In one specimen examined the first six segments did not show this alternation in size. In the next fourteen segments, however, the alternation was quite evident. The small anterior segments are terete, subtriangular in outline, narrow in front, wide behind, the length nearly equal to the greatest breadth. The succeeding segments are much broader than long. At the widest part the ratio of the breadth to the length is as much as fourteen to oue. As the segments increase in width they become much crowded together and thickened. In one specimen, measuring $140^{\mathrm{mm}}$, the segments increased in width uniformly for about $100^{\mathrm{mm}}$ from the head; from that point they remained about the same size until near the posterior end, where they began to be elongated and at the same time became narrower and much thinner. The crowding together of the median segments is not due to contraction, but seems to be a permanent characteristic of the species. In some very young specimens the same character was observed. The general form of these worms, both young and adult, was persistent. Although kept for some time in water they were not observed to change their form in any essential particular from that given in the sketches.

In alcoholic specimens a dark median line will be noticed extending from the posterior end to the middle or anterior third of the strobile. This is due to the centrally situated ovaries, which are crowded with eggs. The genital apertures are lateral and may be traced in an irreg. ular zigzag line on one side from about the auterior third of the body. In the mature segments they are rendered obscure, if not wholly oblitcrated, by the mass of eggs with which the center of the segment is filled. The eggs are white, opaque, oval; leugth, . $04 \boldsymbol{y}^{\text {mm }}$; breadth, $.03^{\text {min }}$. Associated with these perfect eggs are masses of others which become transparent when treated with oil of cloves or other strongly refracting media. These seem to be imperfect eggs which have not become invested with the thick hard shell which covers the perfect eggs. An adult specimen gives the following measurements:

Length of strobile ........................................................................................ 133.00
Leugth of first series of segments.......-...............................................................- 17.00
Length of head .......-...........-.-...................................................................... 3.50
Breadth of head in front, widest part................................................................. 1.00
Average length of segments in first series......................................................... 0.50
Breadth of widest segments, median............................................................... 6.50
Length of widest segments, median.................................................................... 0.25
Length of posterior, mature segments.............................................................. 1.00
Breadth of posterior, mature segments......................................................... 2.50
In another specimen the head and first seyments give the following measurements:

Length of head and first series of segments .................................................. 30.00
Length of head ........................................................................................... 3. 00
Breadth of head in front, widest part ..... 0.90
Breadth of head just behind the front rim ..... 0.80
Breadth of marginal lobe, about the middle ..... 0.90
Breadth of head, narrowest part ..... 0.21
Breadth of first segment, widest (posterior) part ..... 0.80
Brealth of first segment, narrowest (anterior) part ..... 0.42
Length of longer alternate segments, first scries ..... 0.40
Length of shorter alteruate segments, first series. ..... 0.24
The segments of the first series are sometimes notehed or crenulated
on the postero-lateral margin, with a single median indentation; inothers the edge is but slightly waving; in others it is nearly entire.The following measurements are from a young specimen:
Length of strobile ..... 20.00
Length of head ..... 2.10
Breadth of head, anterior ..... 0.80
Breadth of head just back of anterior rim ..... 0.60
Breadth of head, narrowest (constricted) part ..... 0.31
Breadth of first segments, widest (posterior) part ..... 0.50
Breadth of first segments, narrowest (anterior) part ..... 0.28
Average length of segments, longer alternates ..... 0.35
Average longth of segments, shorter alternates ..... 0.24
Breadth of widest segments ..... 0.90
Average length of widest segments ..... 0.12
Width of posterior segments ..... 0.35
Leugth of posterior segments ..... 0.36
Habitat.-Both young and adult, one specimen of the former and sixof the latter, were taken from the intestine of a spear-fish (Tetrapturusalbidus Poey), August S, 1885̃, at Wood's Holl, Mass.
Dibothrium alutera, sp. nov.
[Plate I, Figs. 5-8.]
Near Dibothrium microcephalum Rudolphi, Diesing, Systema Helminth., i, 592.Ibid., Sitzungsb., xiii, 578, Revis. Ceph., Par. 241. Wagener, Nov. Act.Nat. Cur., xxiv, Suppl., 16, 69, tab. vir, 77. Van Beneden, in Bullet.Acad. Belgique, xxii, ii, 521.
Bothriocephalus microcephalus Bellingham, Ann. Nat. Hist., xiv, 253. (Habitat,Orthagorisous mola.)

Head subsagittate with rounded apex; bothria oblong, lateral ; neck, none; first joints distinct, about as long as wide, becoming much shorter and crowded together, much wider than long; genital apertures unknown.

Habitat.-File Fish (Alutera Schopfii), Wood's Holl, Mass., August, 1854; 104 specimens from intestines of a single fish.

These specimens were all immature, none of them had the genital apertures developed. They ranged in length from $20^{\mathrm{mm}}$ to $94^{\mathrm{mm}}$. The bothria in the smaller specimens are conrex (Fig. 5), the central con. vex portions thin and transparent. A lateral view shows the bothria
to be much narrower than the first joint, with curved regular outlines, except at the posterior edge, where there is a shallow notch. The front of the head is bluntly conical, expanding quickly, then moderately cortracted, making a kind of knob or button at the apex; this knob is nearly circular. Measurements showed that the lateral diameter was but little greater than the marginal. In the larger specimens this convexity of the bothria had entirely disappeared, the thin membrane having collapsed and the typical fosse of the Dibothric make their appearance. In the larger specimens, also, the bothria are much shorter in proportion to their width than in the smaller specimens (Fig. 7). The first segments are distinct, length as great or even greater than the width, triangular. The median and posterior segments are much crowded, width as much as or even more than ten times the length, alternately long and short, sometimes roughened by transverse wrinkles toward the posterior end. Posterior end bluutly rounded (Fig. S).
The following measurements are from alcoholic specimens:

| Dimensions. | No. 1. | No. 2. | No. 3. | No. 4. |
| :---: | :---: | :---: | :---: | :---: |
|  | mm. | mm. | mm. | mm. |
| Length of strobilg | 55.00 | 67.00 | 94.00 |  |
| Length of head. | 0.60 |  | 0.64 | 0.64 |
| Diameter of head, lateral apox | 0.34 | 0.25 | 0.33 | 0.34 |
| Diameter of head, marginal apex | 0.30 | 0.25 | 0.33 | 0.34 |
| Breadth of bothriom, widest part | 0.42 | 0.40 | 0.52 | 0.54 |
| Greatest marginal diameter of head | 0.46 |  |  |  |
| Lateral diameter of first segment... | 0.58 | 0.70 | 0.66 | 0.68 |
| Marginal diameter of first segmen | 0.34 | 0.40 | --- |  |
| Length of first segment....... | 0.34 |  | 0.40 |  |
| Greatest width of strobile | 2.50 | 1. 60 | 1. 80 |  |
| Average length of segments near poste | 0.17 |  | 0.15 |  |
| Length of posterior sogment | 0.20 |  |  |  |
| Breadth of posterior segment | 1. 40 |  | 0.40 |  |

It will be seen upon comparing Figs. 6 and 7 that there is great variety of form to be found in the bothria of these worms. Other forms could be given, but it is believed that those chosen for illustration are sufficiently typical to prevent mistakes in identification. In many specimens the convex outline of the bothria is lost, while the other proportions of Figs. 5 and 6 are preserved. In cases where care is not taken the preserving fluid may distort the bothria.

I did not observe any indication of the hooks on the head, mentioned by Wagener for D. microcephalum (Entwickelung der Cestoden, p. 69, tab. vii, figs. 77 and $77 a$ ). The resemblance of this worm to Wagener's figure is sufficiently close to indicate a probable identity. The close relationship of the hosts, Orthagoriscus mola and Alutera Schoppfi, does not lessen this probability.

In the abseuce of positive proof of such identity, which can be obtained only by observing some other stages of development, I think it best to classify this worm as a new species with the provisional name D. aluterce.

## Family TETRABOTHRIIDA.

## Echeneibothrium Van Beneden.

## Echeneibothrium variabile Van Benedien.

[Plate I, Figs. 9-13.]
Echencibothrium variabile Van Beneden, Mém. Acad. Belgique, xav, 117, tab. iii, 1-1, 6-15. G. R. Wagener, Nov. Act. Nat. Cur., xxir, Suppl., 85, tab. xxii, 280-28\%. Van Beneden, Mém. Vers Intest., 122 and 366, tab. xv, 6-8. Diesing, Revis. der Ceph. Ab. Par., 267. Olsson, Lunds Uuivers Arssk., tom. iii, 38, 40, tab. i, 15, 16.
Tetrabothrium (Echencibothrium) rariabile Dlesing, in Sitzungslo, xiii, 1854, 581.

Larval state, Van Beneden, Mém. Acad. Belgique, xxv, tab. iii, 5. Diesing, Sitzungsb. der kais. Alaad., xiii, 1854, 56 e. G. R. Wagener, l. c., 85, tab. xxii, 279. Van Beneden, Mém. Vers Intest., 122, tab. xv, 5.
Boilhriocephalus spherocephalus? Deslongchamps, Encycl. Méth., ii, 150.
Echeneibothrium spharocephatum Diesing, Revis. der Ceph. Par., 267.
The characters given for this species by Diesing, following Van Beneden, are:

Bothria four, pedicellate and highly rersatile, at times linear or oval, at others cochleariform or calyciform, with a few transverse coste, and divided into several loculi by a longitudinal partition. Muscular proboscis (myzorhynchus) large, subglobose, retractile, with a circular aperture (os) in the apex. Neck long. Anterior segments of body broader thau long, median quadrate, ultimate oval. Genital apertures marginal, alternate. Penis armed with spines, scarcely bristly at base. Leugth as much as $100^{\mathrm{mm}}$.
In the latter part of Augast, 1884, I obtained several specimens of Echencibothria from the spiral valve of the common Skate (Raia erinacea) which I have for the present referred to $I$. variabile Van Beneden. Some of the specimens possess characters which are given by Diesing as belonging to E. spherocephatam Dies. (Revis. der. Ceph. Par., 267). It is probable, however, that these two species are identical, as indicated by Diesing: "Species hae ( $E$. variabile) cum pracedente ( $E$. sphucrocephalum) fortasse identica."

A few sketches and meastrements were made of the specimens while they were still alive, but a pressure of other duties prevented a careful study of then then. When I found time to study them carefully they had lain for some time in alcohol and many of the segments had separated. There are two distinct types of head, one represented in Fig. 9, made from the living specimen; the other represented in Fig. 13, made from an alcoholic specimen. Other alcoholic specimens are identical in form with that shown in Fig. 9. In the first mentioned the bothria are somewhat oral; pedicels moderately extended; the border of the sucking disks thickened, marked with radiating lines, and gathered or puckered into a few large folds. The proboscis is giobose, re-
tractile. When the living specimen was viewed from the apex the aperture (os) could be seen surrounded by many radiating lines like the radiating muscles of the iris. In a side riew of a mounted specimen a globular body about $0.2^{\mathrm{mm}}$ in diameter can be seen lying in the center of the proboscis and about $0.1^{\mathrm{mm}}$ from the apex. This globular mass has an aperture which lies opposite the aperture of the proboscis. It probably represents the true apex of the myzorhynchus retracted. The head behind the bothria is elongated into a neck-like part, which joins the true neck or jointless portion of the body by a definite articulation, which bears a faint resemblance to a ball-and-socket joint, in which the anterior part of the neck represents the "ball." There is also a difference in tissuc, the neck having, besides longitudinal fibers, transverse fibers and many granular cells, while the neck-like portion of the head appears to be composed almost entirely of fibrous tissue arranged longitudinally.

In the other type the pedicels of the bothria are inflated and somewhat globose; the thickened border of the disk is not so much folded as in the first. The head behind the bothria is short and turgid. These differences, although striking when extreme cases are considered, are none of them so profound but that they may be accounted for by supposing them to represent different degrees of contraction. The bothria in the living worm are susceptible of great variety of form.

The segments begin from 1 to $2^{m m}$ back of the head. At first they are much broader than long, subsequently they become quadrate, then longer than broad. As the segments begin to mature they show a tendency to become narrowed anteriorly, with conver margins. A few of the extreme posterior segments are four times as long as broad, ob-tuse-pointed in front, posteriorly attenuate, with a truncate termination. The genital apertures are marginal, opening a little behind the middle. In some they are not exactly on the margin, but may be seen, in a lateral view, to be situated near the margin and running obliquely toward the center of the segment. The penis was retracted in all the specimens examined. It could be seen lying coiled up in the angle formed by the vagina where the latter turns abruptly from the middle of the segment towards the margin. The vagina could be traced from the ovaries in the posterior part of the segment along the median line until it reaches a point nearly opposite the marginal opeuing, where it turns abruptly towards the margin and opens immediately in frout of the penis. The vas deferens is represented by a convoluted mass of tubes in the ceuter of the segment. The anterior part of the segment is filled with large globular masses (ova). These are surrounded by a thick transparent membrane, and have a granular interior. A layer of oblong granular masses, smaller than the interior globular masses, surrounds the latter. This layer is adjacent to the marginal wall of the segment and the masses are at right angles to it.

In some specimens the median and posterior segments are rery irregular in shape. This irregularity is sometimes produced by the appar-
ent oecurrence of an imperfect segment of triangular shape interjected between two others which are but slightly irregular ; in other cases it has the appearance of two segments, one lying diagonally across the other and the two, as it were, welded together. Measurements of the head are not satisfactory on account of the extreme contractility of that part.

The following measurements were made from a mounted specimen corresponding in position and appearance with Fig. 9 :

Millimeters.
From tip to tip of oxtended bothria ................................................................. 1.48
From apex of proboscis (retracted) to neck........................................................... 0.96
Breadth of neck............................................................................................... 0.20

Length of first segment.......-.............................................................................. 0.04
Distance from head to first segment..................................................................... 1.40

Breadth of a mature segment ............................................................................... 0.60
Length of segment near posterior ....................................................................... 1.20
Breadth of segment near posterior ....................................................................... 0.50
Length of longest living strobile.-.-.................................................................. 108. 00
Habitat added: Common Skate (Raia crinacca), spiral intestine. Wood's Holl, Mass., August 25, 1884.

## Spongiobotirium,* gen. nov.

Body articulate, treniæform. Head separated from the body by a neck. Bothria four, opposite, pediceled, broken up into locinio-crispate folds, which are transversely costate. Unarmed; auxiliary acetabulum none; terminal papilla none. Genital apertures marginal.

This genus combines many of the characters of Echeneibothrium Van Beneden and Phyllobothrium Van Beneden. It differs from the former in the lacinie of the bothria and in the absence of a terminal haustellum; from the latter in having pediceled instead of sessile bothria, and in the transverse costie on the bothria.

Spongiobothrium variabile, gen. et sp. nov.

> [Plate II, Figs. 13-19.]

Body articulate, trenixform. Head separated from the body by a short neck, subquadrangular, tapering posteriorly, continuing at the anterior angles into four bothria. The bothria are pediceled and on their outer faces and borders are broken up into a n umber of delicate frill-like lacinie, which are sometimes gathered into a more or less compact mass of crisp, puckered, or purse-like folds (Fig. 15) and sometimes expanded into long, curved, auriculate, or lea f-like flaps (Fig. 16). These are marked by transverse, parallel costre which originate from a middle portion like the midrib of a leaf. There is no trace of either a

[^60]terminal papilla or auxiliary acetabulum. The neck, or unjointed part of the body, is short. In some the transverse strix, which indicate the beginning of segments, were discernible almost immediately back of the head. The first segments are usually crowded, broader than long; subsequently they increase in length and become considerably longer; than broad. In some of the ultimate segments the length is four or five times that of the breadth. The shape of the mature and nearly mature proglottides is very various.

This irregularity of shape is to be found in the living specimens as much as in those which have been preserved in alcohol. The most usual shape for the mature segments to assume is subquadrangular, somewhat contracted about the posterior third in the vicinity of the genital openings, expanding in front of this; the anterior end contracted into a short constricted neck where it joins the preceding segment. Sometimes this constriction occurs at the posterior instead of the anterior end of the segment. The ovaries are two sets of radiating tubes situated in the posterior end of the segment. The anterior half of the mature segments is crowded with globular masses (testes). These masses fill at least the anterior tro-thirds of the adolescent segments. In the mature segments of all the specimens I have yet examined the center is filled with a convoluted mass, consisting of the retracted penis and the vas deferens, with perhaps the vagina and a portion of the oviduct. The extremely long and convoluted vas deferens is found protruding from the ruptured side of some of the segments which have been preserved in alcohol. This worm is remarkable for the slight change which it experiences when preserved in alcohol. Even the extremely delicate leaf-like folds of the bothria were not observed to curl up or shrivel when subjected to moderately strong alcohol. Fig. 15, Plate II, is a sketch made of a living specimen. I have since mounted the same individuals for permanent preservation. In the various processes of dehydrating with alcohol, staining with eosin, rendering transparent with oil of cloves, and afterwards mounting in Canada balsam, there has not been any shrinking or change of form, at least to any appreciable extent.

The water-vascular system is plainly indicated by two rather large tubes, which in the neck and anterior part of the body are sinuous, and each situated about as far from the other as it is from the nearest edge of the strobile. In subsequent segments they become widely separated from each other on account of the interposed ova and genital organs.

The substance of the head and pedicels of the bothria is for the most part fibrous tissue. The conical portion of the head is thus sharply marked off from the so-called neck. While the former is made up largely of fibrous tissue, the latter is granular, with but few longitudinal fibers. This feature can be easily brought out in preserved specimens by simple staining.

The following measurements were taken from mounted specimens:

| Dimensions. | No. 1. | No. 2. | No. 3. | No. 4. |
| :---: | :---: | :---: | :---: | :---: |
| Length of specimen | mm. <br> 37. 00 | $m m .$ $21.00$ | mm. 23.00 | mm. <br> 74.00 |
| Leugth of bothria. | 0.96 | 0.90 |  |  |
| Breadth of head-side | 1.35 | 1.60 |  |  |
| Ereadth of head across the top |  |  | 1.40 | 2. 00 |
| Length of one bothrium, expanded. |  |  | 3.00 |  |
| Brealth of neck. | 0. 20 | 0.16 | 0.20 | 0.24 |
| Distance from head to first strias |  |  | 1. 50 | 1. 00 |
| Distance from head to first distinct segm | 1. 80 | 1.40 | 2.00 | 2. 60 |
| Leagth of first segment | 0.10 | 0.08 | 0. 16 | 0.14 |
| Breadth of first segment. | 0. 20 | 0.26 | 0.24 | 0.32 |
| Length of maturing segmen | 1. 60 | 0.54 | (*) | 2. 00 |
| Breadth of maturing segment | 0. 32 | $0.24 \dagger$ |  | 0.42 |
| Length of posterior seyment | 0.7.4 | 0. ${ }^{0} 0$ |  | 1. 56 |
| Breadth of posterior segmen | 0.50 | 0.46 |  | 0.86 |

* Mataring segments very irregular, some long and narrow, others thick and short with rounded
corners. $\dagger$ Variable.

Additional measurements of No. 4.

|  | Length. | Breadth. |
| :---: | :---: | :---: |
|  | mm. | mm. |
| Segment $4^{\text {nmm }}$ from head. | 0. 20 | 0.32 |
| Segment 20 mm from head | 1.00 | 0.34 |
| Seqment 30 mm from head | 1. 50 | 0.40 |
| Segment $45^{\text {mm }}$ from head | 2.00 | 0.42 |
| segment wear posterior end | 2.40 | 0.70 |
| Last segment but one | 1. 76 | 0.80 |
| Last segment. | 1. 56 | 0.86 |
| Free segment. | 2.50 | 0.80 |
| Free segment | 3.00 | 0.80 |

Habitat.—Sting Ray (Trygon centrura), spiral intestine. Wood's Holl, Mass., August, 18St.

Phyllobotimaum Van Beneden.
Phyllobothrium thysanocephalum,* sp. nor.
[Plate II, Figs. 1-12.]
In its sexmally mature or strobile condition, this Cestode raries in length from $300^{m m}$ to $1^{m}$. The head, as best seen in joung specimens, has four bothria, which are quite early lobed and crisped and folded at the edges. In the adult these bothria are deeply lobed, so that even in a cross-section (Fig. 10) it is extremely difficult to make out the four primary lobes. The frilled, crisped, or rufled structure of the bothria gives to the head, when at rest, a singularly striking resemblance to the short, imperfect branches which form the head in the caulifower. The neck, or jointless part of the body, is very long. In one specimen, which measures $840^{m m}$ in length, the first joints appear about $360^{\mathrm{mm}}$ back of the head. Immediately back of the bothria the head is slightly swollen and subcylindrical, and in alcoholic specimens nearly as wide as the bothria; in the living worm about three-fifths the width of the bothria.

[^61]The neck is continuous with the head, slightly flattened, and tapers away from the head very gradually in fully grown specimens, so gradually, that its progress cannot be noted, except by comparing the width of the proglottides with that of the neck. The neck is marked with longitudinal rugæ, which continue well back on the forming proglottides (Figs. 1, 2). Where the transverse strix, which mark the forming proglottides, begin, the surface of the body presents a rough, checkered appearance, due to these two systems of grooves, which is quite characteristic, and may serve to identify a fragment of one of these worms when neither head nor mature proglottis is preseut.

Proglottides, before they become free, are much broader than long, and each has a short, free posterior border, which becomes the rim or border mentioned in the description of the free proglottis. Penis very long, with a bulbous enlargement at the base. Near the posterior end the segments become rounded at the corners and somewhat elongated, until they graduate into the shape which is characteristic of the mature free joints.

Free proglottides (Figs. 4, 5) abont twice as long as broad, very changeable in form, but in general rounded anteriorly; the extreme anterior end prolonged into a contractile papilla, which acts somewhat as a sucking-disk in aid of locomotion; posterior end truncate, with a narrow rim or border marked off from the basal edge by the trausverse water-vessel. Sexual apertures marginal, opening a little back of the middle point. Penis very long; when erected, longer than the proglottis. Vagina opening immediately in front of the peuis, flaring slightly at the mouth, quickly contracted into a short cylindrical tube, then expanding, finally reduced to a narrow tube, which runs anteriorly alongside a central clear space, enters the latter, and near its anterior end turns sharply, and runs back along the middle of the clear space until it unites with the ovaries in the posterior part of the proglottis.

Good preparations of the mature proglottides were obtained by subjecting them to slight pressure between two cover-glasses held in place by a spring wire-clip and hardened while in this position. When segments so prepared were afterwards stained, made transparent, and mounted, they wère free from wrinkles or distortions, and showed the internal anatomy as well, indeed better, for topographical purposes, than could be shown with thin sections.

The clyle in the spiral intestine of the host, Tiger Shark (Galeocerdo tigrinus), swarmed with free proglottides, which were quite active. They had powers of independent movement and locomotion which gave them much the appearance of Trematods.

About twenty specimens in the strobile condition, but representing three stages of development, together with great numbers of free proglottides were found in the spiral intestine of a Tiger Shark (G. tigrinus). The larger adult specimens varied in leagth from one-half to one meter.
S. Mis. $90-30$

Measurements made on the largest specimen were as follows:
Total length of strobile meter ..... 1
Breadth of head, lateral millimeter ..... 15
Thickness of head, marginal ..... do. ..... 6
Breadth of neck ..... do... 9
Breadth of posterior segment ..... do..- 5
Length of posterior segment ..... do... 2

In this specimen all the mature proglottides had evidently become separated from the strobile. On another specimen, measuring $580^{\mathrm{mmm}}$ in length, the posterior proglottides were mature, and measured $5^{\mathrm{mmm}}$ in length and $2_{2}^{1 \text { mum }}$ in breadth.

Measurements of free living segments give the following proportions: Length, $\mathcal{S}^{\text {umi }}$; breadth, 4 to $4.5^{\mathrm{mm}}$; length of penis, $4^{\mathrm{mm}}+$.

A second and younger stage was represented by specimens ranging in length from $190^{\text {mun }}$ to $230^{\mathrm{mm}}$. These differed from the next stage, described below, in size and in having a more or less evident beginning of a jointed condition. This, in the smaller forms of this second group, was indicated by tolerably distinct waring trausverse lines. The largest specimen of this gronp, $230^{m, y}$ in length, although tapering to a point at the posterior end like the others, had distinct segments for the last $30^{\mathrm{mm}}$.

Another group, cousisting of quite young specimens, ranging in leng̨th from $31^{\text {mun }}$ to $57^{m m}$, represented a third stage in the development of this worm (Figs. 7, 8). These are evidently the joung of this species.
Measurements of one of them give the following dimensions:
Millimeters.
Length of specimen........................................................................... 41.00
Length of head....................................................................................... 1.50
Brealth of head ............................................................................... 2.25
Length of rostellum ........................................................................................ 0.50
Breadth of neck just back of head ............................................................ 1.00
Breadth of posterior extremity ..................................................................... 0.20
The neck increases slightly for a short distance back of the head. The bods then tapers gradually and uniformly to the posterior end. In this group there is no sign of joints. Most of the specimens, particularly after they have been preserved in alcohol, have a much more compact arrangement of the folds of the bothria than appears in Fig. 7, which was sketched from a living specimen, one of the smallest of the iot. In larger specimens of this group the head is subglobose, with the edges of the bothria in crisp, closely lying folds, so that it is very difficult to make out the number of lobes of the bothria or to determine whether the latter are pediceled or sessile. The bothria are marginal, sessile, or on very short pedicels, each divided into at least two secondary lobes, which ultimately become a mass of crisp folds. In the center of the head, placed anteriorly, is a short chitinous rostellum on a pedieel of soft connection tissue (Figs. $7,7 a, 7 b$ ). Seen from the front this rostellum is quadrate, and presents to view four crescent-shaped bodies (Fig. $\sigma(t)$ with their concexities turned inward and inclosing a clear
space, in the center of which is a gramular elevation. The tips of the horns of these crescents are sharp-pointed, and form a circle of eight hooks, which surrounds the tip of the rostellum. When this rostellum is viewed from the side, each crescent is seen to be the recurved anterior border of an oblong or triangular trough-like plate. These four triangular plates occupy much the same relative position with respect to each other as the jaws in Echinus, and suggest the "lantern" of that animal. This proboscis was observed in all of the smaller specimens and in some of the half-grown ones, but had been lost by all of the larger specimens. It seems to bave but a feeble attachment to the head, and became detached from sereral specimens while they were being examined. The length of this rostellum in the half grown specinens was about the same as that found in the smaller specimens, viz, about $0.5^{\mathrm{mm}}$.

In a series of transrerse sections made of a head of one of the larger specimens, it was noticed that there was a circular aperture in the sections of the anterior part of the head, which doubtless marks the place where the fleshy pedicel of the rostellum was iuserted. The primary lobes of the bothria spring from a central muscular portion of the head (Figs. 9, 10), and consist of fascicles of muscular fibers which extend into the secondary and tertiary divisions. The crisped appearance of the head is due to minute crimped or frilled divisions of the lobes, and not to the crisping or curling of the free borders of the lobes, as in P. lactuca Yan Beneden. The solid, central part of the head which serres as a support for the socalled bothria, is pointed anteriorly, where the lobes, in transverse section, appear to radiate from a common point. It is on this extremity of the head that the base of the rostellmm is situated. This central portion or core of the head increases in size until at the base of the head it has the dimensions given in the measurements as the thickness and width of the neck. A trausverse section of the basal part of the head or of the neck, in the smaller specimens, is rhomboidal (Fig. 12). In the larger specimens the breadth of the neck is greater in proportion to the thickness than is the case in the smaller specimens. In Fig. 10 a transverse section is shown of the head of an adult at about the anterior third. The central core of the head at this point is quadrate, and but two of the ressels of the watervascular system appear. Sections made transversely through the middle of the head show the central core to be oblong (Fig. 9): The central part of such a section is a clear space with a few conuective tissue fibers and granular masses in it. Both fibers and gramules become more crowded in the vicinity of the longitudinal ressels which are sharply defined in cross-section. A transrerse ressel was observed in a section through the head, which connected the two imer longitudinal ressels. The ceutral clear space is limited by a dense layer of muscular and connective tissue fibers, which make a circular layer of tissue that can be traced back into the neck where it becomes much
elongated and is surrounded by a layer of longitudinal fibers. In the head, ontside of the ring of tissue which limits the central space, there may be seen in the sections both the cat ends of longitudinal fibers and also the beginning of transverse fibers, which extend out into the lobes of the head in dense fascicles.

The color of living specimens is translucent white, with sometimes a faint bluish tint. Alcoholic specimens are opaque, white, faintly yellowish, or cream-tinted.

This worm is near P. luctucu Yan Beneden(Les Vers Cestoides, Pl. IV, Figs. 1-7), but differs from it in the following characters:

The neck and anterior unjointed part of the body are broader than the posterior mature segments. They are not so represented by Van Beneden for $P$.lactuca. The genital apertures instead of opening opposite the anterior third of the body of the proglottis, as in $P$. lactuca, open nearly opposite the posterior thirl. No mention is made of a rostellum in $P$. lactuca, but this difference aloue wonld not justify the creation of a new specific name, since the rostellum could be easily overlooked, or if only mature strobiles were found, it is very probable that the rostella would have been lost.

Habitat.-Tiger Shark (Gatencerdo tigrimus), adult, half grown, and young specimens together in spiral intestine. July 23, 1885, Wood's Holl, Mass.

## Orygalatobothriual Diesing.

> Bothriocephali spec. Siobold.
> Anthobothrii spec. Van Beneden.
> Tetrabothrii (Authobothrii) spec. Molin.

Orygmatobothrium angustum, sp. nov.
[Plate III, Figs. 1-3.]
Head round-pointed in front with four bothria, which are unarmed, hollowed out or boat-shaped when at rest, with anterior extremities, round-pointed, slightly appressed and projecting in front and surmounted at the apex by a supplemental disk (anxiliary acetabulum). A second, larger disk lies in the center of the hollow of each bothrium. The posterior end of each is rounded, broader thau anterior end, usually flaring away from the neck. Border of bothria raised, somewhat thickened with entire outline. Pedicels short, neck long, narrow, marked with transverse, closely parallel, slightly notched or crenulate rings, which give a serrate ontline to the edge. Segments long and narror, mature segments five times as long as wide. Genital apertures marginal. This worm is near O. versatile Dies. (Revis. der Ceph. Ab. Par., 276.)*

[^62].It differs from 0 . versatile, however, in being much smaller, and in the proportions of the segments. In $O$.versatile the segments are square, while in $O$. angustum all the segments are long and narrow.
The following measurements were made from mounted specimens:

| Dimensions: |  | No. 1. | No. 2. | No. 3. |
| :---: | :---: | :---: | :---: | :---: |
|  |  | mm. |  |  |
| Lengtl of strobile. |  | 17.00 | 18.00 | $20.00$ |
| Length of bothriam |  | 0.64 |  |  |
| Breadth of botlrium, widest part |  | 0.32 |  |  |
| Breadth of neck near head |  | 0. 14 |  |  |
| Length of neck. |  | 5. 00 |  |  |
| Length of posterior segment |  | 2. 20 | 2. 00 | 2.46 |
| Breadth of posterior segment |  | 0.44 | 0.28 | 0.54 |

The anterior supplemental disk (auxiliary acetabulum) is small and circular and is quite manifest. I must coufess, howerer, that the identification of the other was not wholly satisfactory. An oval disk was distinguished in a few. In some hearls stained with carmine, cosin, and hematoxylon, respectively, they cannot be distinguished. At about the anterior third the face of each bothrium, in the stained specimens, is crossed by a curred fibrous band which is concave in front. This band lies in the tissue of the bothrium and is not raised on the surface. It seems to be connected with another band lying farther back in the bothrium and deeper in its substance. If they are connected they probably make the oval border of the second disk. If one is to judge from the specimens in this lot-about fifteen in number- the secoudary disk in the center of the bothria is an extreme doubtful character. It is plainly different in its nature from the anterior disk which was differentiated from the adjacent tissue cleady, both in unstained and stained specimens. The fine transverse strixe on the neck, which may be distinguished also on the mature proglottides, are a more characteristic feature of this worm than the secoud disk (auxiliary acetabulum).

The genital organs open nearly opposite the anterior fourth of the proglottis, on the margin.

The vagina can be traced from the posterior end of the segment, where it originates as a coiled tube, lying between the two marginally placed oraries. It lies along the central line of the segment, until a short distance in front of a point opposite the raginal opening, where it turns, forming a crook-shaped curve, and opens in front of the penis. The latter organ and the testis lie in the surve of the crook.

Habitat.—Dusky Shark (Carcharias obscurus), in spiral intestine. Wood's Holl, Mass., August, 1884.

## Crossobotimriun,* gen. nov.

Body articulated, slender, flattened, subquadrate; neck short or none; bothria four, opposite, pediceled, unarmed, each provided with

[^63]one anxiliary acetabulum on the anterior border. Faces of bothria with a raised rim or border, which becomes more or less free, cut, or frilled as the worm grows weak, or when placed in fresh water or alcohol.

Genital apertures, both male and female, marginal. Derelopment not known.

This geuus is closely allied to Phyllobothrium Van Beneden, but differs from it in having the bothria pediceled instead of sessile, and in the absence of a distinct neck.

Crossobothrium laciniatum bears some resemblance to Anthobothrium cornucopia Van Ben, particalarly in the shape of the segments, but differs from it in having distinct anxiliary acetabula, and in having the segments begin immediately behind the head. The botbria are not so long-pediceled as in A. cornucopid. The bothria, especially in living specimens in sea-water, bear a superticial resemblance to Orygmatobothrium versatilc Dies. (Antiobothrium musteli Vau Ben.), but there is no trace of a second ausiliary acetatolum on the face of the bothria. The habit of the strobile is, furthermore, quite different from O. versatile Dies.

> Crossobothriam laciniatum, gen. et sp. nov.

> [Plate III, Figs. 4-18.]

Body ardiculated, slightly flattened; cross-section of segments near head quadrangular; ratio of thickness to breadtin about 1 to 2 . The segments begin immediately behind the head, each is characterized by having four marginal daps on the posterior border. The anterior segments in the larger specimens, for a distance of 20 or $30^{\text {mm }}$ back of the head, are about as broal as long, the posterior angles projecting into prominent triangular flaps, which, in a few cases, stand out almost at right angles to the face of the segments, but are usually appressed. The bodies of the segments are translucent, the posterior borders and projecting flaps opaque and ivory white in color. This feature is especially noticeable in siecimens which have lain a few minntes in fresh water. Behind these slender anterior segments the remaining segments increase in breadth without increasing in length. Near the middle of the strobile the ratio of length to breadth is about 2 to 9 . The median segments are flat aud the triangular flaps develop into broad, rounded lobes. These lobes form a free border, which is sometimes reflexed and usually emarginate ou the lateral edge.

The posterior segments are considerably lengthened; length about $1.5^{\text {mum }}$; breadth about $2^{\text {mun }}$, flattened; outline usually romuled or waving, narrower in front than behind, emarginate on lateral edge. (Plate III, Figs. 7, 8.) The sLape of the free proglottides varies greatly while they are living, but at rest or in alcoholic specimens it is quite uniform.

The postero-lateral border is profondly emarginate; the ontline of the margin concave behind, then convex thronghout the greater part of the length, concave again near the anterior end, which is extended into
a rounded knob. (Plate III, Fig. 12.) In some free segments with a less rounded outline the shape is much like that of a steeple-crown hat with a drooping, flexible rim. Length of a mature free proglottis $2.5^{\mathrm{rmm}}$; breadth of posterior edge, measured from tip to tip of the reflexed border, $2.1^{\mathrm{mm}}$; breadth of posterior, exclusive of reflexed border, $1.7^{\mathrm{mm}}$, tapering to an obtuse point in frout. The bothria are four in number, marginal, short-pediceled, unarmed, each provided with a single supplemental disk (auxiliary acetabuium Diesing) on the anterior border.

The bothria of living, active specimens undergo such profound changes upon being transferred from sea-water to fresh water that it is necessary, in order to guard against mistakes, to give separate descriptions for each condition.

If allowed to lie in sea-water, these worms continue active for several hours. Some, after lying for twenty-four hours in sea-water, were still quite active, moving their bothria incessantly and alternately contracting and elongating the body and throwing it into irregular kinks and folds. The bothria are extremely mobile. They are usually hollowed out or boat-shaped on the face, bounded by a thickened rim or border which merges into the auxiliary acetabulum in front. In a resting position they are oval in shape, more or less narrowed in front and rounded posteriorly. Locomotion is effected by thrusting the bothria forward and attaching the face as a sucking disk to the surface over which -the worm is moving, and thus dragging the body along. The bothria are usually thrust forward in pairs, the two which would stand diagonally opposite in a cross-section constituting a pair. They are thrust forward bodily and at the same time become greatly elongated in front. This attenuated part of each is frequently bent ontward at right angles, so that the two stand apart like a pair of recurved horns. (Plate III, Fig. 11.) The remaining pair of bothria meanwhile is some distance back of the forward pair and much contracted longitudinally, the apex of each being a short distauce behind the rounded papillary apex of the head. Each bothrium when thrust forward and attenuated is tipped by the auxiliary acetabulum, which forms a sort of sucker. Each individual bothrium, while active, resembles in its motions the movements of a common leech. The resemblance is heightened by the auxiliary acetabulum, which has much the appearance and is used in the same mauner as the anterior sucker of some leeches. Often the posterior ends of the bothria bend outward and forward until they almost meet the recurved anterior ends. The under bothrium was noticed sometimes adhering to the bottom of the watch-glass in which the specimen was lying and spread out iuto a broad, thin, circular disk. In this case all appearance of a thickened border to the face of the bothrium was obliterated. Behind the bothria the head contracts suddenly into a short, neck-like part, which is about the same size and shape as the first segments, and, like them, is terminated by four triangular lappets at each of the four angles. This latter feature
is unchanged either by fresh water or alcohol. When placed in fresh water the bothria become profoundly modified. Two distinct forms were observed; in one lot the specimens measuring from 112 to $124^{\mathrm{mm}}$ in length, the breadth of the head is $3.5^{\mathrm{mm}}$, its length is $1.5^{\mathrm{mm}}$. The bothria are trumpet-shaped, very transparent and delicate, the outer face convex and surrounded by a delicate, narrow, raised border. It is circular except at the anterior edge, where it is broadly indented and interrupted by a circular, opaque disk (the auxiliary acetabulum). (Plate IHI, Fig. 6.)

In a second lot, the individuals of which measure from 95 to $250^{\text {mum }}$ in length, the breadth of the head is about $2^{\mathrm{mmm}}$, its length $1.5^{\mathrm{mm}}$. (In an active specimen in sea-water the length of the head is about onehalf of the breadth.) The rim or border of the bothria is irregular, broken, or ragged in outline, which gives to the head a crisped appearance, so as to suggest upon superficial examination the genus Phyllo. bothrium (Plate III, Fig. 5). The auxiliary acetabula are often concealed by the ragged edges of the bothria, but they can be plainly seen in a top view of the head (Plate III, Fig. 15).

Both the male and female apertures are marginal. It is often very difficult to make out the course of the vagina. By compressing a free proglottis, or better by fiattening a proglottis between two glass slips and hardening it while in that position, and afterwards staining and transferring to glycerine or oil of cloves, the topography of the genital apparatus can be made out. At first I was wholly at fault with regard to the position of the raginal opening, having been misled by the lateral aperture which is usually to be seen in the mature segments and from which the ova are discharged. This aperture resembles the vaginal opening in many of the Dibothrice. It is found only in the posterior segments of the largest specimens and in the free proglottides. It is not always present eren in these, as it is not unusual to find a free proglottis without the lateral aperture. When such a proglottis is examined its central part will be found to be filled with ova, often to such an extent that the lateral face of the proglottis is swollen in the middle so as to have a convex outline. In this case the lateral aperture may be seen already outlined bat closed by a thin membrane, upon the rupture of which the eggs make their escane. The ovary is a lobed, glandular body lying near the posterior end of the proglottis. The ragina after leaving the ovary follors the median line but a short distance. It bends in a uniform curve towards the margin, and in its outer part lies immediately in front of the penis and very close to it. In the specimens which I have examined the course of the vagina as it approached the margin could not be made out until after it was differentiated by staining with carmine. The marginal aperture of the vagina is very small and is situated immediately in front of the penis. When the latter is retracted the two genital apertures seem to have the same marginal opening. The penis is loug and slender. In some cases it was
found protruding as much as $0.5^{\mathrm{mm}}$. It is covered with minute spines whose length is about one eighth the breadth of the penis. The ras deferens is a long convoluted tube lying for the most part a little in front of the center of the proglottis. The central part of the proglottis around the ova is filled with the large glandular masses of the testes. The longitudinal ressels of the water-vascular system can usually be distinguished and between them and the margin, on each side, a series of granular masses, more opaque and smaller than the masses which make up the testes, exteuding to the ovary and widening in the vicinity of that organ. The lateral aperature for the discharge of eggs is situated a little way back of the middle and is surrounded by a low horder or lip. It is oval in outline, the longer axis coinciding with the longitudinal axis of the segment and equal to about one-eighth the length of the seginent. Its posterior edge is at about the posterior third of the segment and nearly opposite the marginal opening of the generative organs.

The following measurements were made upon living specimens which had lain for a few hours in fresh water:

| Dimensions. | No. 1. No. 2. |  | No. 3. | No. 4. |
| :---: | :---: | :---: | :---: | :---: |
| th of strobile | mm. | $m m$. | mm. | mm. |
| Breadth of head.. | 100.00 | 142.00 | 195.00 | 212.00 |
| Length of head. | 1. 4 | 1.30 1.50 | 1. 8.45 | 1.8 |
| Breadth of segments near head, excluding | 0.6 | 0. 56 | 0.70 | 0.7 |
| Length of segments near head | 0.7 | 0.35 | 0. 50 | 0.7 |
| Breadth of posterior segments | 1.7 | 1. 26 | 1.90 | 1.8 |
| Length of posterior segments | 1.2 | 1. 26 | 1. 60 | 1.4 |

The following measurements are from a segment which became detached from a strobile while still living and active in sea-water:

Millimeters.
Length..................................................................................................... 3.10


Breattl, posterior end .................................................................................. . . . 10


Length of spines on penis. .................... ................................................. 0.0100
Diameter of ova .................................................................................... 0.0254
The breadth given above is approximate, as the segment was constantly changing its shape; the penis was only partly everted.
The following measurements are from a young specimen, in fresh water:

|  | Millimeters. |
| :---: | :---: |
| Entire length | 20.00 |
| Length of head | 1.20 |
| Breadth of head | 1.80 |
| Leugth of anterior segments | 0.10 |
| Breadth of anterior segments | 0.30 |
| Length of median segments | 0.07 |
| Breadth of median segments. | 0. 90 |
| Posterior segments but little |  |

Several young specimens were obtained, measuring from 5 to $20^{\mathrm{mm}}$ in length. In these the bothria were identical in shape and habit with those of the adult. In the younger specimens, however, the part of the head to which the bothria are attached was proportionally larger than it is in the adult. In the larger specimens of young the laciniate segments occurred throughout the entire length ; in smaller specimens they occurred only near the head and at the posterior end, while the intermediate parts of the strobile were unsegmented or marked with faint transverse lines. In many of the smallest forms there were no laciniate segments, while the posterior end of the strobile carried a number of elongated segment-like bodies, totally unlike the segments of the adult. These pseudo-segments are evidently evanescent. (Plate III, Fig. 17.)

Habitat.-Sand Shark (Odontaspis littoralis), in spiral intestine, young and adult together, abundant, chyle swarming with free proglottides. July and August, Wood's \#oll, Mass.

## Phoreiobothriunt,* gen. nov.

> Near Cylintrophorus Dicsing.
> Tetrabothrii Spec. Wagener.
> Cylindrophorus typicus Diesing, Revis. d. Ceph. Ab. Par., p. 264.
> Tetrabothrium Cachchice Rondolettii Wagener, Nov. Act. Nat. Cur., xxiv, Suppl. 4 and 84, tab. xxii, 270-973; Statu larvie Wagener, l. c. 4 and 84, tab. xxi, 266-268, tab. xxii, 269.
> "Genus hoe insufficienter cognitum provisorio modo nomine Cylindrophori notavi" Diesing.

Body elongated, articulate. Head separaten from the body by a neck. Bothria four, opposite, tubular, parallel, entire, each armed with compound hooks and provided with one supplemental disk (anxiliary acetabulnm) in front. Minute spines on neek, or on neek and body. Genital apertures marginal.

Phoreiobothrium lasium, $\dagger$ gen. et spec. nov.
[Plate IV, Figs. 94-29.]
Head separated from the body by a neck. Bothria four, marginal, flat-tubular, subrectaugular in outline, each with two compound hooks placed anteriorly, and one auxiliary acetabulum in front of hooks near the lateral edge of the bothrium. Face of the bothria hollowed out, with a thickened or raised border, so that each bothrium resembles a shallow tray. Inner edges of bothria united by a thin membrane, in which lie bands of fibrous tissue. Posterior end of the bothria elliptical, with a thickened ring or border, and marked with strice parallel with the smaller diameter. These strie, when highly magnified, prove to be low ridges, which give to the end of a bothrium the appearance of a coarse rasp. These strie or ridges are not seen plainly unless the

[^64]bothria are reflexed. Neck flattened, rather slender, increasing uniformly backwards and merging imperceptibly into the jointed body, covered, sometimes sparsely, sometimes thickly, with very small, straight, sharp, bristle-like spines. The body has at first au unbroken outline, the square segments being indicated simply by fine, transverse lines. Farther back the segments become elongated, with the corners slightly rounded. Genital apertures marginal, opening about the middle line.

The compound hooks of the head have three recurved prongs each, the middle one slightly longer than the others, the inner one the shortest. These prongs rise from a common horizontal part, which is itself supported by a flattened or spatulate process, which lies immediately under the middle prong, is about the same leugth and parallel with it.
The following measurements were made from a mounted specimen:
Millimeters.


Breadth of head. ......................................................................................... 0.44
Breadth of neck ........................................................................................ 0.12
Length of first segments, $2^{m m}$ from head....................................................... 0.03
Breadth of first segments............................................................................... 0.01
Length of segments, $3^{\mathrm{mm}}$ from head............................................................ 0.20
Breadth of segments, $3^{\mathrm{mm}}$ from head................................................................ 0.42
Length of segment, $6^{\text {min }}$ from head ................................................................. 0.34
Breadth of segments, $6^{\mathrm{mm}}$ from head.... .................................................. 0.42
Leugth of posterior segments...................................................................-. .-. 2.20
Breadth of posterior segments.... ..... ............................................................ 0.84
Leugth of hooks..................................................................................... 0.10
Length of bristly spines on neck or body ...................................................... 0.01
A few specimens in the lot differed from the prevailing type in being much more irregular in outline and having in general a more fragile structure. The neck is much distorted by contraction and much broader than in the prevailing type; the first segments, on the contrary, are longer and more slender. The posterior segments are elliptical, oblong, flatter, and more fragile in appearance.

In one specimen I found what seemed to be a transverse costa on the face of a bothrium. I looked in vain for a similar characteristic in the other specimens of the lot. If such costie could be proved to be characteristic of this worm it would indicate a very close relationship with Calliobothrium.
In some the bristly spines were found on the neck and not on the body, in others sparsely on the body and not on the neck, in others thickly on both neck and body. They are, without doubt, the remnant of a bristly outer covering of the body, which is characteristic of the young and larval conditions of this genus.

The genus Cylindrophorus is a provisional one made by Diesing to include a single species which is not well known. He, however, includes it among those Tetrabothric, which are characterized by having no anxiliam acetabula on the bothria. The presence of a well-defined anxiliary
acetabulum in this worm is therefore sufficient reason for not including it in the genus Cylindrophorus. The almost invariable occurrence of spines on the neck or body, or both, together with the shape of the bothria and hooks, present so many points of resemblance to Wagener's figures, from which Diesing created the generic name Cylindrophorus, that I do not feel justified in adding a new generic term to the already burd ened nomenclature of Helminthology without at the same time admitting Diesing's Cylindropharus in the probable synonymy of the geuus.

The oraries occupy nearly the posterior fourth of the proglottis. The ragina extends, from its origin in the oraries, as a sinuous duct along the median line of the proglottis until it reaches the middle point, where it turns nearly at right angles and opeus in frout of and immediately adjoining the penis. The latter organ is retracted and lies coiled up in the aagle of the ragina, but seems to be connected with a conroluted mass, which is situated centrally in the proglottis. A median tube can be traced from near the anterior end of the proglottis to the angle of the vagina and seems to lie parallel with that duct for some distance. Its union with the latter could not be made out. The greater part of the interior of the proglottis is filled with irregular granular masses, each of which is composed of several irregular or disk-shaped pieces, which are rather loosely joined together.

In a specimen which had been subjected to donble staining in green and red analine colors, the oraries in the base of the proglottis and what appeared to be their continuation into a donble row of coarse granular masses lying along each margin, had a strong affinity for the blne staining. On the margins, outside of the coarse granular layer, a fine granular layer, and outside of that a transparent, structureless, epidermal layer, were difierentiated. The ragina and anterio-median tube were also slightly stained with the green. The interior compound granular masses, the penis, and the convoluted mass of tubes (vas deferens) were unatfected by the green coloring matter. They were clearly differentiated, though not deeply stained, by the red analine, nearly all the red stain haring disappeared when the specimen was washed in alcohol.

Habitat.-Dusky Shark (Carcherins obscurus), in spiral intestine. August, 1884, Wood's Holl, Mass.

## Calliobothriuy Van Beueden.

Calliobothrium verticillatum Rudolphi.
[Plate IV, Figs. 1-8.]

Onchobothrium rerticillatum Rud., Diesing, Syst. Melm., i, 606.
Calliobolkrium verticillatum Van Beneden, Dies., Revis. d. Ceph. Ab. Par., p. 280-281. Van Beneden, in Mem. Acad. Belgique, xxv, 133 and 192, tab. xii. Bothriocephatus verticillatus Rud., Synops., 142 aud 484. Leuckart, Zool. Bruchst., i, 56, tab. ii, 41, fragm. Nitzsch., Ersch., and Grub., Encycl., xii, 99. Dujardin, Hist. Nat. des Helminth., 621. Creplin, 'Troschel's Arch., 1s49, i, 73.

## Acanthobotlirium verticillatum Van Beneden, Bullet. Acad. Belgique, xvi, ii, 79.

 Onchobothrium (Calliobothrium) verticillatum Diesing, Sitzungsb. der Kais. Akad., siii (1854), 585. Molin, 1. c., xxx (1858), 135, xxxiii (1858), 292, and xxxviii (1859), 10; Idem, Denkschr., six, 239, tab. v, 3.Tetrabothrium verticillatum Wagener, Nov. Act. Nat. Cur., xxiv, Suppl. 85, tab. xxii, 274 and 275.
Head continuous, with the subquadraugular body. Bothria four, angular, subelliptical, unequally divided into three loculi by two trausverse ribs; each bothrium armed with four simple hooks, and provided, in front of hooks, with a trilocular, auxiliary acetabulum, the loculi of the latter arranged in a triangle. Hooks equal and arranged in pairs. Body filiform auteriorly, increasing posteriorly ; anterior segments provided with four triangular, laciniate processes on the postero-lateral margin, followed by other segments bearing one, and still others bearing two, additional flaps on each postero-lateral margin, subsequent segments with two rounded flaps near posterior, nearly circular in outline; ultimate segments considerably elongated. Genital apertures marginal. Length $75^{m m}$ to $100^{\mathrm{mm}}$.

Habitat.-Found at Wool's Holl, Mass., August, 1884, in spiral intestine of Smooth Dogfish (Mustelus canis).
In this species there is so much difference betrecu segments occurring in different parts of the strobile, that some additional notes are necessary in order to make trustworthy identifications in cases where ouly fragments are found. The head is so small that it may be easily orerlooked by the collector; moreover the anterior segments are so delicate that, as is often the case, they break and leave the head imbedded in the mucous membrane of the intestines of their host. The anterior portion of a living specimen, when isolated from its natural surroundings and placed in clear water, resembles a very delicate white hair. It may therefore easily escape any but the most careful search. The head itself is ouly about one-eighth as broad as the head of a common pin, while the breadth of the segments immediately behind the head is about the same as that of a hmman hair, and the thickness is only about one-third the breadth. The first segments are nearly twice as long as broad, flat and thin, somewhat distinetly four-angled, so that a crosssection is rectangular. The segments are continued at the postero-lateral corners into four triangular flaps, which are about one-fourth the length of the segment proper. The posterior margins of the segments, includiug the flaps, are thick, white, and opaque in life, while the bodies of the segments are translucent.

A fer segments back from the head the middle of the posterolateral margin of the segment begins to rise, and soon assumes the form of a third flap. In one specimen, which measured $63^{\text {mun }}$ in leugth, this third flap begins about the 3Sth segment. This character continues for several joints until about the 00 th segment, when the median flap, becomes bitid; at the 80th segment it has become decidedy two-notehed, and at the 120 th it is divided into two lobes, so that in this part of the body
the postero-lateral edges of the segments are each distinctly four-lobed. The two original flaps, those near the margins, continue, however, to be a little longer and sharper-pointed than the two median ones. At the 150 th segment the two middle flaps or lobes become indistinct, and are represented only by gentle flexures of the posterior margin ; the notch between them is at this point broad and shallow. From the 160th or 164 th to the $192 d$ segment the median notch decpens gradually, and the secondary or median lobes disappear, leaving the postero-lateral margin tro-lobed, the imuer margin of each lobe with a slightly waving convex outline. The segments thus far are short and somewhat crowded, the length, in the specimen measured, after monnting in Canada balsam, uniformly about $0.14^{\text {min }}$ to $0.16^{n \mathrm{~mm}}$. At the point where the segments become two-lobed the margins become rounded, convex, the segments lengthen to abont $0.20{ }^{\mathrm{mm}}$. At the 200 th segment the proglottides are nearly circular in outline, globose in living specimens. At this point the segments begin to lengthen abruptly. The arerage length of the last four segments, with circular outline, being 0.6 thm $^{\text {man }}$, while the average length of the next four segments is $1.022^{n}$. The last segment the 212 th in the specimen from which the above measurements were taken, measured $1.90^{\text {min }}$ in length and $0.84^{\text {min }}$ in breadth.
The following measmements are intemled to show the proportions at different points on the strobile. They were made from mounted specimens, and cousequently may be a little less than they monld be if taken from living specimens:
Milimeters
Length of specimen ..... 60.00
Brearlth of head, in front ..... 0.23
Length of bothria ..... 0.30
Breadth of bothria, front and middle ..... 0.10
Breadth of bothria, posterior end ..... 0.04
Spread of hooks, tip to tip ..... 0.16
Length of hooks ..... 0.14
Breadth of segments just back of head ..... 0.076
Breadth of segments 1 mm back of head ..... 0.09
Length of segments without flaps ..... 0.127
Length of segments including flaps ..... 0.159
Breadth of segments $2^{\text {nm }}$ back of head ..... 0.16
Thickness ..... 0.02
Length ..... 0.14
Length, including flaps ..... 0.16
Breadth of segments 11 mm back of head ..... 0.30
Thickness. ..... 0.08
Thickness, including flaps ..... 0.16
Breadth of segments $188^{\mathrm{mm}}$ back of heat, four lobes ..... 0.46
Length ..... 0.16
'Thickness ..... 0.10
Breadth of segments $\stackrel{29 m m}{2}$ back of head ..... 0.52
Breadth of segments 3 Bm hack of head, two lobes ..... 0.66
Length, including flaps ..... 0.16
Breadth of segments 45 mm back of head, round segments ..... 0.78
Millimeters.
Length ..... 0.74
Length of posterior segments ..... 1.90
Breadth of posterior segments ..... 0.84In another specimen:
Length of posterior segments ..... 2. 20
Breadth of posterior segments ..... 0.78

Number of joints in one specimen about 342 , the last 11 of which were mature.

There was one prominent, transverse rib at about the posterior third of each bothrium ; another, much less prominent, about the middle, at the extremities of the iuner pair of recurved hooks, and two other faint, transrerse lines, parallel with the ribs and apparently homologous with them, between this and the base of the hooks. The trilocular anxiliary acetabula showed but faintly in most of the specimens.

There is considerable difference between the anterior segments of the specimens examined and those figured by Van Beneden (Vers Cestoïdes, tab. xii). In Van Beneden's figures the anterior segments are represented as being several times as long as broad, and with the flaps rudimentary and rounded. The sketches of the head and anterior segments (Figs. 1, 2) were made from a mounted specimen. The proportions are identical with those of the living specimens, as is prored by comparing these sketches with some memorandum sketches made at the time of collecting. Amoug all the specimens, eight or ten in all, not one was noticed in which the segments differed materially from those represented in the figures. In. Wagener's figures (Entwick. d. Cestoden, tab. xxii, fig. 274) the proportions of the anterior segments are about the same as I have found them. The transrerse costre of the bothria do not agree exactly with the figures of Van Beneden and Wagener, but the differences are so slight, that I have no hesitation in pronouncing the specimens which I have examined identical with those figured by Vau Beneden and Wagener.

## Family DIBOTHRIORHYNCHIDA Diesing.

## Rhynchobothrium Rudolphi.

Tania spec. Fabricius.
Bothriocephali (Rhynchobothrii) and Tetrarhynchi spec. Rudolphi. Bothriorhynchus Van Lidth.

## Rhynchobothrium bisulcatum, sp. nor.

[Plate IV, Figs. 9-23.]

Head subconical, bluntly rounded in front. Bothria tiro, lateral, separating slightly at posterior corners, coalescing in front, each divided into two distinct lobes by a median sulcuis, which extends from the posterior border about one-fourth the length of the bothrium, where it divides into tro less distinct but clearly marked sulci, which diverge
and inclose tro sides of a triangular space. At the extreme anterior end of each of these secondary sulei is sitnated one of the four proboscides. Each bothrium is broadly convex on the posterior border, with often a slight emargination on the posterior elge of each lobe. Each lobe is triangular, the posterior side being the posterior edge of the bothrium, the onter side being the marginal edge of the bothrim, and the inner side being bounded by the median sulcus and one of its branches. The central portion or face of each lobe is sometimes depressed, which gives rise to the appearance of a double furrow on each side of the median triangular piece. Posterior edges of bothria thick and fleshy, orerlapping the neck. Neck tubular, couical, sometimes slightly swollen back of the head, ai little shorter than the bothria, the posterior fourth prolonged into a collar, which incloses the anterior part of the body and its articulation with the neck. Proboscides (irypanorynchi Dies.) four, a little shorter than head, armed with numerous hooks arrauged in spirals, about eight visible in each spiral ; spirals about $0.0 \mathrm{n}^{\mathrm{mm}}$ apart. Hooks recurved, pointed, broad at base in an auteroposterior direction, very thin from side to side, those near the base of the proboscis shorter-curved aud blunter than the others. Proboscis sheaths straight in front, but with a single short spiral curre at the posterior end where they join the contractile bullos, with one of which each is connceted. The four contractile bulbs, which lie side by side in the neck, are about twice as long as broad and abont one-half the length of the neck. The distance between the point of articulation between the neck and the body and the posterior end of the contractile bulbs is normally about one-third the length of the latter.

So far as examined the heads presented the same general outline, with one exception. In the excentional case noted there is a slight constriction of the bothria where they overlap the neck, at the point which marks the greatest diameter of the head in all the other specimens. This imparts to the head a more raunded outline in front than in the others, and a less diameter proportionally at the base of the bothria.

The body, usually very much attenuated anteriorly, is miointed for a short distance back of the head. Fine transverse lines soou make their appearance, and shortly afterwards the first segments are formed. The latter are usually much broader than long, and rectangular in outline. Although they sometimes are lengthened with rounded corners, so as to give to the series of segmeuts a beaded appearance.

The mature proglottides are always squarish, or rectangular, some. times longer than broad, sometimes broader than long. The wale genital opeuings are margimal, irregularly alternate, always near the anterior edge of the proglottis. Female genital opeuings lateral, median dehiscent, apparently not appearing until the proglottides are almost ready to separate.

Length of strobiles with mature proglottides from $40^{\text {min }}$ to $230^{\mathrm{mm}}$.

The following measurements of head and neck give proportions whicb hold good for all:

| Dimensions. | Marginal view. | Lateral view. |
| :---: | :---: | :---: |
|  | $m m$. | mm . |
| Length of head. | 0.90 | 1.04 |
| Breadth of head | 1.10 | 1. 04 |
| Length of neck. | 0.76 | 0.70 |
| Breadth of neck, anterior | 0.72 | 0.76 |
| Breadth of neck, posterior | 0.40 | 0.44 |
| Breadth of strobile back of neck | 0.28 | 0.28 |

Millimeters.

Length of proboscis.

0.840

Breadth of proboscis, exclusive of projecting hooks.................................. 0.043
Breadth of proboscis, inclusive of projecting hooks ................................ 0.078
Length of anterior hooks......................................................................... 0.023
Breadth of base of anterior hooks........................................................... 0.013
Length of hooks on base of proboscis........................................................ 0.014
Breadth of base of hooks on base of proboscis................................................ 0.011
In the summer of 1884 I obtained two lots of these worms from the alimentary tract of the Dusky Shark (Carcharits obscurus).
The first lot, containing approximately 200 individuals, was lodged in the pyloric portion of the stomach, where the worms were so massed together as to make a swelling in the pylorus which was discernible before opening.

These specimens were not studied closely while they were alive. Upon examining them subsequently as alcoholic specimens, it was found that there was a very considerable variation in the length of the strobiles, and to some extent in the proportions of the segments. In the foregoing description I have enumerated those characters which belong to all; but inasmuch as there are some more or less clearly marked groups among them I shall add some further observations. I deem this of importance, for the reason that, if it were not for the great number of intermediate forms which these tiwo lots furuish, one might be justified in making tro, if not three, distinct species instead of one. The second lot came from the pylorus and spiral intestine of the same species of shark (C. obscurus).

Three groups were observed in the first lot. These differ from each other principally in the shape and proportions of the segments, the distance from the head at which mature proglottides occur, and in the total length of the strobile.

In the first group, which, for the sake of clearness, I shall name rar. $\alpha$ (Plate IV, Figs. 9-12), the mature proglottides are flat and thin, square, or the posterior ones a little broader than long. When there are but few mature proglottides they increase in breadth rather abruptly, so that the strobile has a somewhat club-shaped or linear-obovate outline.

$$
\text { S. Mis. } 90-31
$$

Generative organs: male not conspicuous, smooth, marginal, near anterior edge of proglottis as in all; female lateral, median, dehiscent, in mature proglottides easily recognized as a clear central spot; length of strobile as short as $36^{\mathrm{mm}}$; average, perhaps, about $45^{\mathrm{mm}}$, although it seems to graduate into var. $\beta$, which is much longer. In one specimen measuring $48^{\mathrm{mm}}$, the last twelve proglottides were mature and had an average length of $1^{\mathrm{mm}}$.

Measurements of a specimen, var. $\alpha$, made from a mounted specimen, and hence probably a little distorted:
Length of strobile ............................................................................. 36.00
Length of bothria ..... 0.80
Breadth of head ..... 0.90
Length of neek ..... 0.70
Breadth of neck in front ..... 0.60
Breadth of neck, posterior end ..... 0.36
Length of proboscis ..... 0.70
Length of proboscis sheath ..... 0.76
Length of contractile bulb ..... 0.32
Breadth of contractile bulb ..... 0.14
Length of posterior proglottis ..... 0.80
Breadth of posterior proglottis ..... 1.30

The second group I shall also, for convenience, designate as a variety, calling it var. $\beta$ (Plate IV, Figs. 17-20). The strobile, like that of rar. $\alpha$, is flat and thin, but is much longer. The mature proglottides do not make their appearance until $100^{\mathrm{mm}}$, or eren $200^{\mathrm{mm}}$, back of the head. The first segments are short and broad; the succeeding segments increase in length until they become longer than broad. The median and postero-median segments are frequently rounded at the corners, giving to the strobile a beaded appearance. This character is usually present in those segments which immediately precede the mature proglottides. Usually about three longitudinal striæ can be traced on the median seg. ments (Figs. 18-19). The posterior segments are rectangular, longer than broad. The following measurements were made on a mounted specimen, var. $\beta$.

Millimeters.
Length of strobile ..... 230.00
Length of head ..... 0.76
Breadth of head ..... 0.94
Length of neck ..... 0.70
Breadth of neck in front ..... 0.70
Breadth of neek, posterior end ..... 0.40
Length of proboscis ..... 0.60
Length of proboscis sheath ..... 0.64
Length of contractile bulb ..... 0.36
Breadth of contractile bulb ..... 0.16
Breadth of strobile back of neek ..... 0. 26
Length of posterior proglottis ..... 1.54
Breadth of posterior proglottis. ..... 1.20

A third group, which comprises individuals that have certain characteristics separating them from the two preceding groups, I have distin-
guished as var. $\gamma$ (Plate IV, Figs. 13-16). These are all immature strobiles, but are mucb longer than var. $\alpha$, and in some cases as long as var. $\beta$. The strobile is much thicker and rather wider than those of varieties $\alpha$ and $\beta$. The posterior segments, although not mature in any of the specimeus, have a conspicuous male generative organ. The female generatire opening is represented by a lateral, median, slightly raised papillifor:u eminence. Length about $100^{\text {min }}$; average length of last 30 segments $0.6^{\mathrm{mm}}$. The posterior segments are $\left.2 \frac{1}{2} \mathrm{t}\right) 3$ times as broad as long.

Measurements mate from two mounted specimens.


* In all measurements of the neck the distance from the postero-lateral or postero-marginal edge of the bothria to the posterior edge of the collar is the one given.

In the second lot containing about fifty specimens, the strobiles are not so mature as those of the first lot. The three varieties noted in the first lot are not so distinctly marked off. There are, however, two distinct kinds in this lot, which may possibly be due to the effect of the preservatives, but which are sufficiently noteworthy to be mentioned here. In the first the lobes of the bothria are smooth and bounded by regular curved lines as in the first lot, but with the centers of the faces of the lobes slightly hollowed out or depressed, so as to produce the effect of a raised border, and double furrows on the lateral face of the bothrium.

In the second the bothria are irregularly furrowed or wrinkled. The bothria are shorter than the neck. The neck is also wrinkled. These differences, although sufficiently marked to attract attention, do not occasion much perplexity where one remembers the wonderful powers of contractility possessed by the Cestoidea. They might, however, lead to coufusion of species in cases where only a few specimens are at hand.

In describing new species of the Cestoidea, I am satisfied that, where it is possible, a great many specimens should be examined before final conclusions are reached. If this rule had been adopted by former workers in this field of Systematic Zoology the older literature of Helminthology would not be in its present state of confusion.

Attachment to the host.-Those found in the pylorus were not firmly attached, but would release their hold when the point of a scalpel was
applied to their heads. This was characteristic of those of the first lot. With those found in the spiral valve, however, the case was quite different. In it these parasites were found to be firmly attached to the wall of the intestine. Many of them had tunneled holes in the mucous and submucous coats. In some cases these tunnels cat through the muscular coats of the intestine and opened into the interior body cavity. In some instances several heads were found occupying the same cavity. One of these pockets was $6.5^{\text {mw }}$ deep. In it were imbedded three heads belonging to three strobiles $20^{\mathrm{mm}}, 32^{\mathrm{mm}}$, and $55^{\mathrm{mm}}$ long, respectively. The heads were so tightly fastened in their fleshy cavern that they had to be cut out before they could be removed. A pecularity of the individuals of this second lot is a tendency to contract the anterior segments, so that instead of being attenuated as in most of those of the first lot, the anterior segments are at first nearly as broad as the neck, and immediately widen until they are as broad or even broader than the head. This gives the worm the appearance of being constricted just back of the head. This habit of tunneling into the flesh of its host must make this parasite a very unpleasant guest. Usually in the case of those Cestoidea which infest the alimentary canal of their host, their presence cannot give rise to much pain, unless they are present in numbers sufficient to occasion obstruction. But with this worm it is quite otherwise. Wherever tumuels in the walls of the intestine caused by this worm were observed, it was noticed that there was much irritation of the nucous membrane. Not only was the mucous coat highly inflamed, but the inflammation often extended into the submucous and muscular coats. The whole interior of the spiral valve was blotched with angry-looking sores. If this is at all common, then we find in this worm an enemy of the Dusky Shark, small but not insignificant. It is certainly encouraging to find in nature, in the too small army of enemies which are arrayed in warfare agaiust the Selachians, these humble sappers and miners lending their aid towards keeping down the numbers of these Ishmaelites of the sea.

Abnormal forms.-In the second lot a few monstrosities were observed, two of which are figured (Plate IV, Figs. 21 and 22). The first example, Fig. 22, is a strobile $13^{m m}$ in length, which, at about $2^{m m}$ from the posterior end, gives off from the postero-marginal edge a secondary strobile, in which there are about four joints faintly marked. The dimensions of the segment which sends off this budding part are: Length, $0.1^{\mathrm{man}}$; breadth, $0.72^{\mathrm{mm}}$; of the succeeding segment, length, $0.1^{\mathrm{mm}}$; breadth, $0.62^{\mathrm{mm}}$; of the budding portion, length, $1.08^{\mathrm{mm}}$; breadth, $0.06 \mathrm{~mm}^{\mathrm{mm}}$. The second example, Fig. 21, is a fragment; length of strobile not known. The segments hare the begiunings of the male genital organs. A secoudary strobile is given off from the margin of the primary strobile in a somewhat different manner from the one just described. A teadency towards a marginal thickening can be seen on the third segment in front of the one from which the secondary strobile becomes free. In the stucceeding segments this marginal thickening,
or rather widening, is more pronounced, and there is the beginning of an independent alar margin. On the next segment the alary margin is onefourth the breadth of the segment itself, and fromit springs the secondary series of segments. The breadth of the three segments mentioned is $0.82^{\mathrm{mm}}, 0.86^{\mathrm{mm}}, 0.90^{\mathrm{mm}}$, respectively, or of the latter, exclusive of the alary margin, $0.72^{\mathrm{mm}}$. The breadth of the succeeding segment is $0.72^{\mathrm{mm}}$. The length of each of these segments is $0.26^{\mathrm{mm}}$. Length of secondary strobile, $2.46^{\mathrm{mm}}$; number of segments, 21 ; breadth, $0.20^{\mathrm{mm}}$ to $0.24^{\mathrm{mm}}$; average length, $0.12^{\mathrm{mm}}$.

Eversion and inversion of proboscis.-The proboscides do not play backwards and forwards in their sheaths like a piston-rod in its barrel, but each folds in upon itself from the outer extremity like the finger of a glove. When a proboscis is fully extended it has the appearance of a slender, solid cylinder, covered with recurved hooks. If, however, one which is not fully extended be examined, it will be found to be folded in upon itself from the outer end. As the hooks point backwards when the proboscis is extended, it can be easily seen that it is impossible to retract that organ by pulling it in bodily. When the proboscis is entirely retracted it forms a hollow tube, whose outer covering is the inside wall of the extended proboscis, and whose inner coat carries the hooks which now point forward. The whole tube lies in the proboscis sheath.

The manuer of everting and inverting the proboscis seems to be identical in all the Trypanorhynchi, both in the mature and later larval stages. The contractile bulbs and proboscis sheaths contain a transparent liquid, in which float a few granules. The contractile bulbs act on the contained fluid exactly as the bulb of a syringe. The thick walls of the bulbs are composed of diagonal, interlacing fibers, whose contraction compresses the bulb and forces the fluid out into the proboscis sheath. The result of this action is to make the proboscis begin to unroll from the anterior end of the sheath. This will continue as long as the walls of the contractile bulbs continue to exert pressure on the fluid conteuts, or until the proboscis is entirely everted. When the proboscis is fully extended the granular liquid can be seen filling the interior of both proboscis sheath and proboscis. To the interior of the proboscis, at the anterior end, is attached a tubular cord of very contractile tissue, which lies in the hollow of the proboscis, extends back through the sheath, and isinserted at one side on the inner wall of the contractile bulb. The proboscis is inverted by the contraction of this cord. When the proboscis is inverted this cord lies in kinks and irregular coils in the contractile bulb and posterior end of the sheath. This movement is made rather quickly by the living worm. Upon removing some specimens from the pylorus of a Dusky Shark, it was noticed that when the heads were touched by the point of a scalpel or needle, even when the head was partly imbedded in the mucous membrane, the proboscides would be suddenly retracted and the worm detached.

Larval state.-Great numbers of encysted Rhynchobothria were found, mostly in capsules, between the mucous and submucous coats of the stomach of the Squeteague (Cynoscion regale) and the Bluefish (Pomatomus saltatrix), which appear to be the young form of this species. The proboscides and their hooks agree. The bothria and their lobes seem to be identical. The sequence from these fishes to the Dusky Shark is a natural one, and in the absence of any evidence to the contrary it may be fairly assumed that they are the encysted larvo of $R$. bisulcatum. It is the purpose of the author to publish figures and a fuller description of these in a subsequent paper.

Habitat.—Sirobile: Dusky Shark (Carcharias obscurus); pylorus and intestine ; very abundant.

Scolex encysted: Squeteague (Cynoscion regule), Bluefish (Pomatomus saltatrix); submucous coat of stomach and peritoneum; very abundant. Wood's Holl, Mass., August.

This worm resembles $R$. paleaceum Rudolphi and Van Beneden. (Dies., Revis. d. Ceph. Ab. Par., p. 294.)

Tetrarlynchus lingualis Van Beneden (Les Vers Cestoides, p. 151, tab. xvii, $4,6-9)$. It presents many differences from Van Beneden's figures and descriptions, however, among which may be mentioned here, as of most importance, the number and form of the hooks, the articulation of the neck with the body, and the position of the male genital openings. Van Beneden represents the latter in $R$. paleaceum as always opening at the posterior third of the segments. In all of the different forms of $R$. bisulcatum they open uniformly near or in front of the anterior third.

## Rhynchobothrium tenuicolle Rudolphi.

[Plate V, Figs. 17, 18.]
Tetrarhynchus tenuicollis Rud., Synops., 130 and 451. Creplin, Ersch. and Grub. Encycl., xxxii, 295, note 34, and Erichson's Arch., 1846, 149. Dujardiu, Hist. Nat. des Helminth., 551.
Mhynchobothrium tenuicolle Diesing, Sitzungsb., siii, 1854, 595 ; and Revis. der Ceph. Ab. Par., 299.
Tetrarhynchus corollatus Siebold, Zeitsch. für Wissensch. Zoül., ii, 241 (in part).
The characters given for this species by Diesing are the following: Head with suborbiculate lateral bothria, converging at the apex and with an elevated border; neck very long, subcylindrical, slender, rounded at the base; segments of the body bacilliform, ultimate ones contracted, easily falling off. Length of head and neek, $5.3^{\text {miw }}$ to $6.5^{\text {min }}$; length of body, $15^{\mathrm{mm}}$ to $17^{\mathrm{mm}}$; breadth, $0.56^{\mathrm{mm}}$.

The proboscides for the larval condition are described as filiform, very slender, and armed with a long series of ternately verticillate and recurved hooks.

The published descriptions of this species are meager and unaccom. panied with figures. It is with some hesitation, therefore, that I refer a few Rhynchobothria from the spiral valve of the Smooth Dogfish (Mustelus canis) to this species.

The head of the living worm is rery variable in shape. The bothria are lateral and are united at the apex by their margins; usually broader than long, slightly emarginate on the posterior edge, with a raised and thickened border. The neck is long, cylindrical, the narrowest part about half way between the head and the contractile bulbs. There is a constriction immediately behind the contractile bulbs, back of which the neck swells into a nearly globular base. This rounded basal part of the neck is sharply marked off from the body by a short, narrow constriction. The body is without segments or transverse markings of any kind for a distance equal to as much as six times the length of the head and neck. . Strixe then begin, which outline squarish segments. The first segments are a little longer than broad; subsequently they become much longer than broad, crowded with ova, and with the genital apertures marginal. The four proboscis sheaths are long and thrown into spirals, the coils of the spirals being deuse or loose, as the neck is contracted or not. The proboscides when everted are seen to be very long and slender. They are closely beset with small hooks, which, when highly magnified; are seen to be of several distinct shapes. The prevailing shape of those near the end of the proboscis is slender, tapering, somewhat irregular in outline, with an abruptly recurved short point. Others have the same length, but differ in being broader, and in haring a curved, convex outline on the posterior edge. Others have the same outline, but are rery short. Others are slender, curred slightly and pointed, but are without the abruptly recursed point. Some are straight, others nearly straight, but bent slightly about the middle. The hooks on the proboscides, moreover, are arranged in distinct series of ternate groups. This arrangement could be plainly distinguished in some places, while in others it was but faintly iudicated, and, owing to the extreme smallness of the hooks and their peculiar shape, it was impossible, from the specimens at my disposal, to determine the exact number of series, or whether, indeed, all the hooks were arranged in these ternate groups or not. Where most distinct there seem to be four series of ternate hooks. The longer hooks stand nearly at right angles to the axis of the proboscis, and are equal in length to about one-third of the diameter of the proboscis.

The following measurements are from an alcoholic specimen :
Millimeters.
Length of strobile............................................................................... 31. 00
Length of bothria............................................................................................ 0.42
Breadth of bothria................................................................................ 0.34


Length of contractilo bulbs............................................................................... 0.29
Breadth of contractile bulbs......................................................................... 0.10
Breadth of neck near head (lateral). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Breadth of neck near middle (lateral)....................................................... 0.20
Breadth of neck iu front of basal bulb . . . . . . . . . . . . . . . . ................................ 34
Millimeters.
Breadth of basal bulb of neck ..... 0.39
Breadth of constriction between neck and body ..... 0.20
Breadth of body just behind basal bulb of neek ..... 0.28
Breadth of body $7.4^{\mathrm{mm}}$ from neck ..... 0.28
Distance from neck to first strix. ..... 11. 20
Distance from neck to first segment ..... 14. 60
Length of first segments indicated by strix ..... 0.40
Rreadth of first segments indicated by strie ..... 0.44
Length of first distinct segments ..... 0.94
Breadth of first distinct segments ..... 0.44
Length of last segments ..... 3.00
Breadth of last segments ..... 0.80
Breadth of proboscis ..... 0.33
Length of hooks ..... 0.0075
Length of longest hooks ..... 0.009

These worms are actively locomotile while living. The two bothria act as sucking disks and change their shape continuously. As the head progresses the anterior ends of the proboscis sheaths separate slightly, when the soft tissue which forms the anterior end of the head is then drawn in so as to give to the front of the head the shape of a hollow cup; the anterior ends of the sheaths then approach each other and the hollow cup disappears, the tissue which forms it being thrust out into a short, blunt eminence (myzorhynchus).

Habitat.—Smooth Dogfish (Mustelus canis), in spiral intestine. Wood's Holl, Mass., August, 1884.

## Family TETRACOTYLE E Diesing.

Tenia Linn.

Tania dilatata, sp. nov.
[Plate V, Figs. 14-16.]
Head small, truncate, or, in living specimens, slightly prominent in front. Acetabula nearly circular, directed a little forwards. Neck rugose, very long, very contractile and dilatable, narrow in front, tapering toward the head; a short distance back of the head expanding into a number of jrregular, transparent, dilated folds, which border both sides of an opaque central portion, in which two longitudinal canals are faintly outlined. First segments about three times as broad as long; median segments square, or broader than long; ultimate segments nearly square, sometimes broader than long, sometimes longer than loroad. Genital apertures marginal, opening a very little in front of the middle.

A single specimen of this species of Tonia was obtained from the intestine of the Common Eel (Anguilla vulgaris) August 26, 1885. The
length of the specimen, when stretched out by fastening one end with a needle to the bottom of the dissecting dish and removing all kinks and curves with a fine brush, was $170^{\mathrm{mm}}$. The length of the same specimen, after having been preserved in alcohol, is less than $90^{\mathrm{mm}}$. The specimen when first obtained and placed in sea-water was quite active. The body was constantly throwing itself into sinuous curves, while the head and neck were jerked from side to side with a moderately rapid motion. In addition to these movements the neck and anterior portions of the body constantly changed their shape by the inflation or dilatation of the investing membranes into wide transparent folds, constricted at irregular intervals by narrow transverse bands. The neck, meanwhile, was alternately stretched out and contracted like the body of a Nemertean. The anterior end of the head protruded into a pro-boscis-like papilla. The breadth of the head itself varied from $0.17^{\mathrm{mm}}$ to $0.35^{\mathrm{mm}}$.

In the alcoholic specimen the dilatable folds of the neck are much contracted and broken. They lie in rough, ragged frills along each side of the dark central part of the strobile. The head is truncate or blunt in front. The neck immediately behind the sucking-disks is almost as wide as the head, flat, thin, and little, if at all, tapering.

The following measurements were made on the living specimen. The head and neck changed their position and shape so rapidly that it was with the greatest difficulty that trustworthy measurements could be made :

Millimeters.
Breadth of head.................................................................................................. 8
Diameter of acetabula.................................................................................. 0.12
Diameter of neck, narrowest part........................................................................ 0.20
Distance of first segments from head...................................................... 17.00
Length of fourth segment from end of strobile............................................. 1.30
Breadth of same, posterior end................................................................ 1.50

Length of posterior segment................................................................. 0.90
Breadth of same, posterior end ............................................................... 0.60
Breadth of same, anterior end................................................................... 1.25
Habitat.-Common Eel (Anguilla valgaris) ; intestine ; Wood's Holl, Mass., August 26, 1885 ; one specimen.

Von Linstow (Compend. der Helminth., 1878) records but two Tanice from the Common Eel, T. macrocephala Creplin and T. hemispherica Molin. T. dilatata is very different from the former. Diesing (Revis. der Ceph., Ab. Cycl., p. 378) mentions the latter, but gives no enumeration of characters. I do not have access to Molin's paper, and cannot, therefore, say whether T'. dilatata is identical with his species or not. The peculiar inflated character of the neck suggests T. ambigua Dujardin, but the difference in size between the adult specimens is alone sufficient to render their union in the same species impossible.

# Order acanthocephala Rudolphi. 

Echinorhyncilus Zoega.
Echinorhynchus agilis Rudolphi.
[Plate V, Figs. 1-6.]
E. agilis Rudolphi, Synopsis, 67 and 316. Westrumb, Acanthoceph., 17, tab. i, 1. Bremser, Icon. Helminth., tab. vi, 9-10. Dujardin, Hist. Nat. des Helminth., 535. Diesing, Syst. Helminth., ii, 35, and Revis. der Rhyngod., 746. Molin, in Sitzungsb. d. Kais. Akad. d. Wissensch., xxx, 142.

Color white. Proboscis clavate, very short, nearly globose, armed with three, sometimes apparently only two, series of hooks, about six in each series. Hooks in front row three or four times as long as those in second and third rows, each with a loug, flat basal support. Front hooks sharply recurved, with recurved part long, pointed, and often slightly concave on the outer edge. Remaining hooks very small, slender, slightly bent, sometimes standing out nearly at right angles to the axis of the proboscis, when the latter is exserted. Anterior part of the body slightly contracted and capable of introversion along with the proboscis, thus forming a short, transversely plicate neck. Body arcuate, club-shaped, cylindrical, transversely rugose, widest a little in front of the anterior third, narrowing rapidly in front and diminishing uniformly but very gradually to the posterior end, which is truncate. Proboscis sheath rather short, manubriform; proboscis and sheath often found retracted by an invagination of the anterior body wall. Lemnisci usually long, sleuder, attenuate posteriorly, longer proportionally in male than in female. Testes three-lobed, followed by an oval opaque mass. Male genitalia posteriorly continued into a cup-shaped copulatory organ, which is capable of eversion and inversion.

Females $9^{\mathrm{mm}}$ to $12^{\mathrm{mm}}$ in length ; males $4.6^{\mathrm{mm}}$ to $6.44^{\mathrm{mm}}$.
When subjected to the action of the compressor a series of oval and circular carities becomes visible in the inner coat of the body wall. These are evidently the channels of the vascular system seen in section. At intervals, however, there are large circular spaces in this vascular layer clearly defined by a circular thickened ring of connective tissue. These become so much enlarged in some as to be visible with a comparatively low magnifying power, and give rise to small mammillary elevations in the superficial layer of the body wall. These are evidently the "pores" or "orbicular disks" given as specific characters of $E$. tuberosus (Dujardin, Nat. Hist. Helminth., p. 538). They are described as usually numbering five or six on the convex side and a siugle one on the concave side. In the specimens which I have examined there does not appear to be either this regularity or proportion in their arrangement, $e . g$., oue specimen had four on the concave side and two on the
convex. In others they could not all be made out definitely, but enough could be made out to show that they were irregularly placed.

Habitat.-Common Eel (Anguilla vulgaris); intestine; 12 specimens, © and 9 ; September 2, 1885. Dusky Shark (Carcharias obseurus) ; 1 specimen, of ; August, 1884: Wood's Holl, Mass.

Of the following specimens of which measurements were made, No. 1 is a female, Nos. 2 and 3 are males. No. 3 is the specimen obtained from the spiral intestine of C. obscurus :

| Dímensions, | No. 1, 9 | No. 2, ơ: | No. 3, $0^{\prime \prime}$ |
| :---: | :---: | :---: | :---: |
|  | $m m$. | $m m$. | mm. |
| Length of specimen | 9. 50 | 6.44 | 4.60 |
| Length of proboscis | 0.17 | 0.105 | 0.16 |
| Breadth of proboscis, apex | 0.17 | 0.14 | 0.162 |
| Breadth of proboscis, base. | 0.15 | 0.12 | 0.132 |
| Length of proboscis sheath. | 0.46 |  | 0. 30 |
| Breadth of proboscis sheath |  |  | 0.12 |
| Length of lemnisci -........ | 1.50 | 1.50 | 1.40 |
| Breadth of body, anterior |  |  | 0.19 |
| Breadth of body, greatest..... |  |  | 0.50 |
| Breadth of body, posterior end |  |  | 0.16 |

Millimeters.
Length of hooks in front row.............................................................. $\left\{\begin{array}{c}0.084 \\ 0.090\end{array}\right.$
Length of hooks in second row .............................................................. 0.023
Length of recurved part of front hooks ............................................................. 0.061
Length of ova ....... ........................................................................... 0.035
Breadth of ova.................................................................................... 0.017
Length of ovarian masses much greater than ova, circular and oval, with diameters as much as $0.1^{\mathrm{mm}}$, others as low as $0.04^{\mathrm{mm}}$.

I confess no small degree of perplexity in identifying this species as E. agilis. The arrangement and character of the hooks of the proboscis ally it closely with this species and a little less closely with $E$. claviceps Zeder. The lemnisci are not so long in proportion to the length of the animal as in either of the above-named species. This is about the only character that lints at a probable specific difference which is sufficient to justify the separation of the specimens under consideration from either of the above species. The presence or absence of the socalled neck is rather a doubtful feature at best.

While there are no distinctive characters which seem to my mind to be important enough to justify the erection of a new species, there are certainly strong reasous afforded for uniting $E$. claviceps and $E$. tuberosus, which is, indeed, proposed by Dujardin (op. cit., p. 538) and accepted by Diesing, who does not mention E. claviceps in his revision, and including both under E. agilis Radolphi.

In the absence of figures of these species I must content myself at present with referring these specimens to $E$. agilis.

With regard to the single specimen found in the spiral valve of Carcharias obscurus, it may be well to observe that its presence there may be accounted for by supposing it to have been introduced in the adult
condition along with some more usual host which had beeu eaten by the shark a short time before the latter was examined. However interesting this supposition may be, it is hardly necessary, as there is no reason why C. obscurus should not be a proper host of E. agilis.

## Echinorhynchus acus Rudolphi.

[Plate V, Figs. 7-13.]

Rudolphi, Wiedmann's Archiv., ii, 2, 51; Entoz. Hist., ii, 279 ; Synops., 71 and 324. Zeder, Naturg., 150. Westrumb, Acanthoceph., 24. Siebold, in Burdach's Physiol., 2, Aufl, ii, 196 (ovulay). Drummond, Charlsworth's Mag. of Nat. Hist., ii, 5i6. Bellingham, in Annals of Nat. Hist., xiii, 250. Dujardin, Hist. Nat. des Helminth., 540. Creplin, Nov. Obs., 43, and in Ersch. and Grub. Encyclop., xxxii, 284. Leidy, in Proceed. Acad. Phila., viii, 43. Van Beneden, Mem. Vers. Intest., 279-287 (development).

For detailed synonymy and habitats, see Diesing, Syst. Helm., ii, 39~40, and Revis, d. Rhyngodeen, 747.

Proboscis linear with about twenty series of hooks; neck none; body long, greatest width a short distance back of proboscis, subattenuate posteriorly, bluntly rounded at posterior end. Length 27 to $81^{\mathrm{mm}}$ (Dujardin), breadth $2^{\mathrm{mm}}$; males half as long as females; color usually white.
"The color is very various but generally white when distended, though frequently accompanied at the same time by a tinge of orange, pink, or cinereous. Sometimes the whole animal is reddish orange (especially the male), and sometimes the whole is irory white with a solitary minute crimson dot here and there" (Drummond).

Some specimens flat, thin, with regular outline, others cylindrical with irregular transverse rugx. All the specimens noted by me were white or faintly tinged with yellow.

The following measurements were made on alcoholic specimens:

| Dimensions. | No. 1, f | No. 2, 7 | No. 3, $0^{\prime \prime}$ |
| :---: | :---: | :---: | :---: |
|  | mm. | mm. | mon. |
| Length of specimen | 46. 00 | 45.00 | 20.10 |
| Length of proboscis | 1, 04 | 1. 06 | 0.96 |
| Breadth of proboscis | 0. 28 | 0.32 | 0.28 |
| Length of proboscis sheath | 1. 44 | 1. 60 | 1. 40 |
| Breadth of proboscis sheath | 0.36 | -0.36 | 0.36 |
| Breadth of body, anterior.. | 0. 75 | 0.80 | 0. 60 |
| Breadth of body, antero-median | 2. 00 | 1. 60 | 1.20 |
| Breadth of body, near posterior en | 0. 60 | 1.10 | U. 60 |

Length of longest living specimen, $60^{\mathrm{mm}}$.

| Dimensions. | Millimeters. | Millimeters. | Millimeters. |
| :---: | :---: | :---: | :---: |
| Longest diameter of orarian masses. | 0. 11 | 0.07 | 0.08 |
| Shortest diameter of ovarian masses | 0.075 | 0.05 | 0.07 |
| Length of ova..- | ${ }_{0}^{0.13}$ | ${ }_{0} 0.114$ | 0.112 |
| Breadth of ova ... | 0. 098 | 0.08 | ${ }_{0} 0.076$ |
| Breadth of embryo | 0.017 | 0.018 | 0.015 |

Length of hooks, $0.064^{\mathrm{mm}}$; breadth of same at base, $0.02^{\mathrm{mm}}$.
The proboscis, when fully extended, stands a little obliquely to the axis of the body. In all the specimens that $I$ have seen the proboscis was either wholly extended or partly withdrawn bodily. In no case was the proboscis inverted. These worms are able not only to withdraw and to protrude the proboscis as a whole, but also to invert and evert it. When the proboscis is retracted in mass the walls of the body at the base of the proboscis are invaginated by the action of retractor muscles, which are attached to the base of the sheath and inserted on the median parietes of the body. When thus retracted the proboscis lies as a rigid cylindrical rod inclosed in a pouch made by the invaginated anterior end of the body (Fig. 12).

The protrusion of the proboscis seems to be effected by the propulsive force exerted by the fluid contents of the body cavity when forced forward by muscular contraction of the body-wall. A retractor muscle, or ligament, was traced from the interior of the proboscis sheath to the apex of the proboscis. Inversion of the proboscis itself is effected by this ligament, while eversion is produced by the action of the thick, muscular walls of the sheath upon a granular fluid which it contains. The hooks of the proboscis are arranged in quincunx order, thus giving rise to rows parallel with the long axis of the proboscis, and also to spiral rows. The body cavities of the females were crowded with myriads of eggs. These were long-oval and each contained a fusiform embryo. The outer covering of the ova is a delicate but rather thick, transparent membrane. Within this and immediately surrounding the embryo is a thin but dense coat, which is much compressed at one end so as to look like a loop, slightly compressed at the other. The embryo in most of the ova had not developed sufficiently to indicate more than a fusiform, granular mass lying within the dense hyaline inner coat of the ovum.

The spherical ovarian masses were in different stages of progress, some having simple granular contents, others having secondary masses within them, while in others oblong bodies, apparently young embryos or the beginnings of ova, could be distinctly seen.

Habitat.-Flat Fish (Pseudopleuronectes americanus), in intestine; eight specimens. Wood's Holl, Mass., September, 1884.

Echinorhynchus sagittifer, sp. nov.
[Plate VI, Figs. 1-2.]
This worm was found in the peritoneum of several species of fish. Although no adult specimens were found, the form of the immature specimens is so different from that of any adult Acanthocephala with which I am acquainted, and the structure and arrangement of the spines are so remarkable, that I propose the name $E$. sagittifer for it. Of course it is possible that it may subsequently be identified as the young
of some form already described, as the spines of the body are probably shed in the course of its further development.
The proboscis is clavate, bluntly rounded in front, increasing slightly for a short distance back, and then narrowing gradually to the base, thickly beset with recurved hooks, of which there are about twenty series, counting from base to apex, and about fifteen visible in the longest spiral ; proboscis eversible; neck short, unarmed; body always curved, anteriorly armed with sagittate spines, thus for ming an armed collar back of the neck, the spines of which are arranged in about eight transverse rows, but placed a little irregularly. A short distance back of this spiny collar is a transverse row of sagittate spines, which are placed on the inner (ventral) part of the curve, and extend up each side nearly to the outer (dorsal) edge. Following this row are about twenty other rows of similar spines, similarly placed, except that none of them contains as many spines, and hence is not as long as the first row. The first eight or ten rows do not differ much in length nor in the number of spines ; posteriorly the rows become shorter and shorter until the last, in which the spines are few and hard to distinguisl. The body increases in size for some distance back of the neck, attains its greatest dimensions about the anterior third, and diminishes uniformly to the posterior end, which is in some slightly eularged, ending ing with a bluntly rounded point.

These worms were all found in the body cavity of their host, coiled up and lodged in the serous coat of the intestine or stomach, or in the mesentery. When found they usually had the proboscis inverted, but everted it, in whole or in part, when immersed in alcohol or when placed under the compressor. They were surrounded by a thin investing membrane, which was of the nature of a cyst, while at the same time it appeared to belong to the worm. They were uniformly coiled in a curved or lu nate shape, with the rows of spines on the concave side. The body is much roughened by transverse wrinkles or creases, especially towards the posterior end.

The branching vascular system characteristic of this order is clearly defined. If the plane in which the curved animal lies be called a dorsoventral one, then the principal vessels of the vascular system are lateral.

The sexual characters were already plainly distinguishable. In one specimen two oval masses suspended from the base of the proboscis sheath were identified as the beginning testes. These were oval, granular bodies, the first 1.16 mm back of the proboscis sheath, and the second $0.34^{\mathrm{mm}}$ farther back; length of each $0.164^{\mathrm{mm}}$; breadth $0.127^{\mathrm{mm}}$. They lay in the ribbon-like band or tube which in all the specimens depended from the base of the sheath, and which doubtless represents the suspensory ligament. Behind the anterior oval body lay a cluster of spherical nucleated cells. The genitalia, in this specimen, ended in a campanulate expansiou, at the base of which a small pointed body was
recognized, which was probably the spiculum. This enlargement of the genital apparatus opened into a larger oval cavity in the extreme posterior end of the body. This was evidently the male bursa, but was still closed by the investing body-membrane.

In some specimens which had been stained and mounted in glycerine, bodies which looked like the lemnisci were discovered. These were paired organs, very long and slender, tapering gradually to near the posterior end, which was bluntly rounded. Their attachment was at the base of the proboscis sheath. In one specimen the attachment was by a short ligament. The general appearance of these organs was much like that of the lemnisci of E. agilis, but their attachment at the base of the sheath, instead of near the base of the proboscis, makes their indentification as lemnisci doubtful.

In a series of thin longitudinal sections made from one of these worms a cluster of spherical, granular masses was found lying just back of the base of the proboscis sheath and apparently supported by the suspensory ligament. These masses were each about $0.025^{\text {mu }}$ in diameter, and each contained a number of smaller cells. It is probable that these represent the early stages of the ovarian masses peculiar to this order.
The proboscis sheath is thick-walled and made up of two layers, the outer dense, about $0.03^{\mathrm{mm}}$ thick; the inner loose in texture and $0.032^{\mathrm{mm}}$ thick. From the base to about the middle of the sheath these layers are close together; from that point to the base of the proboscis they separate slightly, but unite again at the base of the proboscis. A retractile ligament extends from the proboscis back through the neck, where it divides into two branches, which continue to the base of the sheath, where they are attached. The sheath extends to the third or fourth row of ventral spines.

An oblong granular mass was noted about the middle of the proboscis, seen in a thin section, and on its inner wall. A round granular mass about $0.00^{\mathrm{mm}}$ in diameter was seen near the base of the neck in one section. I could find no indication of a ganglion in the base of the proboscis sheath.

Measurements of mounted specimens.

| Dimensions. | No. 1. | No. 2. | No. 3. | No. 4. |
| :---: | :---: | :---: | :---: | :---: |
| Length of specimen | mm. | $m m .$ | $7 m m$. | man. |
| Length of proboscis | 1. 20 | 0.90 |  | 1. 20 |
| Breadth of proboscis near apex | 0.44 | 0.48 | 0.52 | 0.46 |
| Breadth of proboscis at base | 0. 20 | 0. 32 | 0.46 | 0.36 |
| Breadth of body at anterior. |  | 0. 50 |  |  |
| Breadth of body at median | 0.54 | 0.92 | 0.74 | 0.80 |
| Breadth of body at posterior | 0.30 | 0.46 | 0. 10 | 0.90 |
| Length of proboscis sheath. |  | 1.80 |  |  |
| Length of meck |  |  |  | 0.36 |
| Number of rows of spines on body | 21 |  |  | 18 |

[^65]The length of the larger hooks on the proboscis is about $0.08^{\mathrm{mm}}$; of the spines on the collar from $0.0 J^{\mathrm{mm}}$ to $0.06^{\mathrm{mm}}$; of the spines in the ventral rows from $0.06^{\mathrm{mm}}$ to $0.07^{\mathrm{mm}}$.

In specimen No. 1 , of which measurements are given above, the number of spines visible on side in the first ventral row was 24 ; the number visible on one side in the second to the twenty-first rows, respectively : $16,13,13,16,17,13,13,12,12,10,11,12,11,9,9,9,8,7,10,6$.

Habitat.-Common Flounder (Paralichthys dentatus), Squeteague (Cynoscion regale), Bluefish (Pomatomus saltatrix). In peritoneum and mesentery. Wood's Holl, Mass., July and August, 1884-'85.

Echinorhynchus proteus Westrumb.

## [Plate VI, Figs. 3-5.]

Dujardin, Hist. Nat. des Helminth.,p. 529. Molin, in Sitzungsb. d. Kais. Akad. d. Wissensch., xxx, 143, and xxxiii, 295. Leidy, Proceed. Acad. Phila., v, 208, and viii, 48. Greef, Wiegmann's Archiv, i, 361-375, tab. vi. Pagenstecher, Z. f. w. Z., xiii, 413, tab. xxiii-xxiv. Leuckart, Mensch. Paras., ii, 785-817. Molin, Deuksch. d. K. Akad., xix, 272-3, tab. is, fig. 2-3.
For detailed synonyms and habitats see Diesing, Systema Hfimiath., ii, 51-53, and Revis, der Rhyngo., 754.

Proboscis cylindrical or often subclarate, with about 6 to 8 longitudinal series of recurved hooks visible on one side, 12 to 20 in each series. Median and anterior hooks flat and thin, postero median and posterior, slender. A thin-walled, spherical bull a immediately back of the proboscis, followed by a long, slender, cylindrical neck. Body fusiform, slightly swollen and rounded anteriorly, obtusely rounded posteriorly; color varying from light lemon-yellow to orauge. Leugth, $\mathbf{1 5}$ mm to $23^{\mathrm{mm}}$.
Length of specimen ..... 23. 00
Length of proboscis ..... 0.75
Diameter of bulla ..... 1.75
Length of neck ..... 4. 50
Length of body ..... 16. 00
Diameter of body, anterior ..... 2.00
Diameter of body, posterior eud ..... 0.77
Diameter of neck, median ..... 0.25
Diameter of proboscis, anterior ..... 0.17
Diameter of proboscis, mediau ..... 0.31

These parasites were found in great numbers attached to the inner wall of the large intestine of the Striped Bass (Roccus lineatus). They differ from most intestinal parasites in being highly colored. While the prevailing color is orange of different shades, many were observed which were a light lemon-yellow, aud others intermediate between these colors.

The presence of these parasites in considerable numbers must be injurious to the host, since they are always firmly attached and usually canse much local inflammation. In many cases the proboscis was found to have penetrated the walls of the intestine and to be protruding into the body cavity. In most instances of this kind it was surrounded by an abnormal secretion from the tissues of its host. This secretion is of a dark-brown, cinuamon-brown, or amber color. In many cases the proboscides were found to have become nuclei, around which were formed, in concentric layers, calculi of this abnormal deposition. The whole is further inclosed in a thickened cyst composed of two or three layers of connective tissue over which is thrown a thin outer covering of peritoneum. A cluster of these encysted calculi, lying in the peritoneum of the large intestive of a specimen of Striped Bass (Roccus lincatus), is shown in Fig. 5; one of the cysts opened, in Fig. 5a; and a cross-section of a calculus remored from its cyst in Fig. 5b. The diameter of one of the largest cysts was $18^{\mathrm{mm}}$. In the calculus figured the diameter is $15^{\text {mum }}$. The color on the surface is, when the calculus is placed in alcohol, a beautiful rich golden-brown with a silky iuster. The surface is uneren, with little irregular rounded or mammillary eminences. The nucleus is irregularly linear, $1 \frac{1}{2}$ to $2^{m m}$ in length. The inner layers are thin, irregularly concentric and darker in color than the outer layers. Outside of this central, dark portion is a lighter ring about $22_{2}^{\text {num }}$ thick aud made up of a great many thin, concentric layers. This lighter portion is sharply marked off from the remaining outer part of the calculus, separates from it easily, and can be removel from the half-calculus, as oue cupel can be takeu out of a nest made up of graded sizes. The outer ring is about $3^{m m}$ thick, is a little darker than the middle ring, but, like it, is made up of a number of thin, concentric layers. The layers of the two outer rings are more regularly concentric than those of the inner portion. The color of the cut part of the calculus is a little darker than that of the surface, and the luster is waxy. A piece of one of these secretions burned readily and left a small quantity of ash which was composed largely of calcium carbonate. In one, from which the alcohol had evaporated, crystals were noticed which had the general habit and appearance of those of oxalate of urea.

Alcoholic specimens are uniformly white in color.
Habitat.-Striped Bass (Roccus lineatus) ; large intestine; Wood's Holl, Mass., August and September, 1884-'8j.
S. Mis. $90-32$

List of Entozoa described in this paper, with their hosts.

| Entozoa. | Host. | ¢ | $\stackrel{ \pm}{\text { ¢ }}$ |  |
| :---: | :---: | :---: | :---: | :---: |
| 1. Dibothrium manubriforme | Spear Fish (Tctrapturus albidus). | 4 | 1 | 1-4 |
| 2. Dibothrium aluterce sp. nov | File Fish (Alutera Schoepfi) ..... | 6 | I | 5-8 |
| 3. Echeneibothrium variabile Van Beneden | Common Skate (Raia erinacea). | 8 | I | 9-13 |
| 4. Spongiobothrium variabile gen. et sp. nov.... | Sting Ray (Trygon centrura).... | 10 | II | 13-19 |
| 5. Phyllobothrium thysanocephalum sp. nov..... | Tiger Shark (Galcocerdo tigrinus). | 12 | IL | 1-12 |
| 6. Orygmatobothrium angustum sp. nov ........ | Dusky Shark (Carcharias obscu$r u s)$. | 16 | III | 1-3 |
| 7. Crossobothrium laciniatum gen. et sp. nov | Sand Shark (Odontaspis littoralis). | 18 | III | 4-18 |
| 8. Phorciobothrium lasium gen. et sp. nov...... | Dusky Shark (Carcharias obscurus.) | 22 | IV | 24-29 |
| 9. Calliolothrium verticillatum Rudolphi ....... | Smooth Dogfish (Mustelus canis). | 24 | IV |  |
| 10. Rhynchobothrium bisulcatum sp . nov ......... | Dusky Shark (Oarcharias obscurия.) | 27 | IV | 9-23 |
| 11. Rhynchobothrium tenuicollc Rudolphi | Smooth Dogfish (Mustelus canis). | 34 | V | 17-18 |
| 12. Tania dilatata sp. nov | Common Eel (Anguillavulgaris). | 36 38 | V | 14-16 |
| 13. Echinorhynchus agilis Rudolph | Anguilla vulyaris and Carcharias obscurus. | 38 | V | 1-6 |
| 14. Echinorhynchus acus Rudolphi | Flat Fish (Pseudopleuronectes americanus). | 40 | V | 7-13 |
| 15. Echinorhynchus sagittifer sp. nov ............. | Common Flounder (Paralichthys dentatus), Squeteague (Cynoscion regale), and Bluefish ( Po matomus saltatrix). | 41 | VI | 1-2 |
| 16. Echinorhimehus protcus Westrumb | Striped Bass (Roccus lineatus) .- | 44 | VI | .3-5 |
| 17. Embryo Tetrabothria................ | Squeteague (Cynoscion regale) -- | 1 | VI | 6-0 |

Washington and Jefferson College, Washington, Pa., June 1, 1886.

## Rxplanation of plate i.

Fig. 1. Dibothrium manubriforme sp. nov. Adult strobile, natural size.
Fig. 1a. Median segments of same, enlaxged 3 diameters.
Fig. 1b. The same, opposite side, showing genital openings, onlarged 3 diameters.
Fig. ©. Head and anterior segments of foung specimen, enlarged 12 diameters.
Fig. 3. Posterior segments of adult, enlarged 10 diameters.
Fig. 4. Ova. a, ova with white opaque shell; b, ova with thin transparent shell, enlarged 150 diameters.
Fig. 5. Dibothium alutere sp. nov. Head and anterior segments, marginal view, enlarged 4 diameters.
Fig. 6. Lateral view of same specimen, enlarged 4 diameters; length of specimen $28^{\mathrm{mm}}$ 。
Fig. 7. Lateral view of head of another specimen, enlarged 4 diameters; bothria contracted and concave.
Fig. 8. Posterior end of same specimen, enlarged 4 diameters; length of specimen $766^{\mathrm{mm}}$.
Fig. 9. Echoneibothrium veriabile Van Beneden. Front view of head as seen in living specimens, when the sucking disks are applied to the under surface of the cover-glass, enlarged 36 diameters.
Fig. 10. Ontline of median, irregular segments, enlarged 10 diameters.
Fig. 11. Outline of other segments farther back, showing position of genital aperture, enlarged 10 diameters.
Fig, 12. One of the same, compressed, showing the genitalia, enlarged 20 diameters.
Fig. 13. Lateral view of head, alcoholic specinen, enlarged 20 diameters.
Figures 1,2 , and 9 from life; others from alcoholic and mounted specimens. All figures made by Mrs. Edwin Linton.


## ENPLANATION OF PLATE II.

Fig. 1. Phyllobothrium thysonocephatum sp. nov. Head and part of neck of adult, natural size, length of specimen 1 meter.
Fig. 2. Part of body of same, showing the beginuing segments, enlarged 2 diameters.
Fig. :3. Segments near posterior end of adult, enlarged 2 diameters.
Fig. 4. Mature free proglottis, enlarged ${ }_{\sim}^{2}$ diameters.
Fig. 5. Mature free proglotis, dattened under compressor, enlarged d diameters.
Fig. 6. Posterior segments of a specimen measuring $990^{m m}$ in length, enlarged 2 diameters.
Fig. 7. Head and neck of young specimen, enlarged 12 diamoters.
Fig. Fa. Front view of rostellmm, enlarged 18 diameters.
Fig. 7b. Side view of same, enlarged 18 diameters.
Fif. 8. Young specimen, natural size.
Fig. 9. 'Transverse section throngh middle of head of a young specimen, length 58 mm , cnlarged 9 diameters.
Fig. 10. Transverse section through anterior third of head of adult, enlarged 9 diameters.
Fig. 11. Transverse section throngh neek a short distance back of head, adult, enlarged 6 diameters.
Fig. 12. Transverse section through neck of young, near the head, enlarged 9 diameters.
Fig. 13. Spongiobothrium variabile gen. et sp. nov., outline of strobile with regular slender segments, enlarged 5 diameters.
Fig. 14. Outline of another specimen with shorter and more irregular segments, onlarged 6 diameters.
Fig. 15. Side view of head, neek, and anterior segments, edges of hothria contracted, enlarged 10 diameters.
Fig. 16. Front view of head of another specimen, with two bothria expanded, enlarged 10 diameters.
Fig. 17. Three mature segments, enlarged 5 diameters.
Fig. 18. Median segment, enlarged 20 diameters.
Fig. 19. Mature segment, enlarged 20 diameters.
Figures 3, 4, 6, 7, 8, and 15 from lifo; others from alcoholic and monnted specimens. All figures made by Mrs. Edwin Linton.


## EXPLANATION OF PLATE III.

Fig. 1. Orygmatobothrium angustum sp. nov., outline of strobile, enlarged 8 diameters.
Fig. 2. IIead and part of neck of same, enlarged 20 diameters.
Fig. 3. Posterior segment of same, enlarged 20 diameters.
Fig. 4. Crossobothrium laciniatum gen. et sp. nov., adult strobile, in fresh water, natural size.
Fig. 5. Head and first segments of same specimen, enlarged 12 diameters.
Fig. 6. Head and first segments of a specimen after lying for a few minutes in fresh water, enlarged 8 diameters.
Fig. 7. Posterior segments of same, enlarged 6 diameters.
Fig. 8. Posterior segments of another specimen, showing lateral openings for the discharge of ova, enlarged 6 diameters.
Fig. 9. Head and first segments of adult, showing one position of bothria while in motion. The bothrium in front view and the one opposite (not shown in sketch) are thrust forward, enlarged 10 diameters.
Fig. 10. The same, with one bothrium flattened out and applied to the bottom of the watch-glass, enlarged 10 diameters.
Fig. 11. The same with two bothria pushed forward, the ends extended and curled outward, enlarged 10 diameters.
Fig. 12. Free proglottis showing lateral opening for discharge of ova, enlarged 6 diameters.
Fig. 13. Free proglottis before the ova are discharged, flattened under the compressor, enlarged 10 diameters.
Fig. 14. Another after most of the ova have been discharged from the lateral opening, also flattened under compressor, enlarged 10 diameters.
Fig. 15. Front view of head of specimen transferred from fresh water to alcohol, en larged 10 diameters.
Fig. 16. Transverse section through another specimen, enlarged 10 diameters.
Fig. 17. Yonng strobile before segments have made their appearance near the head. The joints at the posterior end are pseudosegments ; flattened under compressor, enlarged 12 diameters.
Fig. 18. Head and anterior part of a joung specimen in fresh water, enlarged 12 diameters.
Fig. 18a. Anterior segments of same, enlarged 12 diameters.
Fig. 18b. Posterior segments of same, eularged 12 diameters.
Figures 9, 10, 11, 13, 14, and 17, from living specimens in sea-water ; figures 4, 5, 6, $7,8,18,18 a$, and 187 , from living specimens in fresh water; others from alcoholic and mounted specimens.
All figures made by Mrs. Edwin Linton.


## EXPLANATION OF PLATE IV.

Fig. 1. Calliobothrium verticillatum Rudolphi. Head and first segments turned so that both a marginal aud a lateral view may be obtained, enlarged 20 diameters.
Fig. 2. Transition segments near head, showing the formation of secondary lateral flaps, enlarged 20 diameters.
Fig. 3. Segments farther back, showing transition from three lacinie to four, enlarged 20 diameters.
Fig. 4. Segments still farther back. The two median lacinie have become of equal length and nearly as long as the primary flaps; enlarged 20 diameters.
Fig. 5. Segments still farther towards posterior end, showing incipient obliteration of the two median lateral lacinix, enlarged 20 diameters.
Fig. 6. Segments approaching posterior end, showing further modification of posterior margin, enlarged 20 diameters.
Fig. 7. Segments near posterior end of strobile, enlarged 20 diameters.
Fig. 8. Posterior mature segment, enlarged 20 diameters.
Fig. 9. Rhynchobothrium bisulcatum sp. nov. Head and neck, lateral view, var. a (see descriptiou), enlarged 15 diameters.
Fig. 10. Auterior segments of same specimen, enlarged 9 diameters.
Fig. 11. Antero-median segments of same, eularged 9 diameters.
Fig. 12. Posterior segments of same ; length of strobile $48 \mathrm{~m}^{\mathrm{mm}}$; enlarged 9 diameters.
Fig. 13. Head and neck, marginal view, var. $\gamma$ (see description); length of strobile 92 mm ; eularged 15 diameters.
Fig. 14. Antero-median segments of same, enlarged 9 diameters.
Fig. 15. Median segments of same, enlarged 9 diameters.
Fig. 16. Posterior segments of same, enlarged 9 diameters.
Fig. 17 Anterior segments of another specimen, var. $\beta$ (sce description); length of strobile $230^{\mathrm{mm}}$; enlarged 9 diameters.
Fig. 18. Median segments of same, enlarged 9 diameters.
Fig. 19. Postero-median segments of same, eularged 9 diameters.
Fig. 20. Outline of posterior segments of same, enlarged 9 diameters.
Fig. 21. Alonormal form, secondary chain of segments, originating from the margins of two primary segments, enlarged 10 diameters.
Fig. 22. Another secondary chain from the postero-marginal border of a primary segment, enlarged 10 diameters.
Fig. 23. Apex of proboscis, enlarged 150 diameters.
Fig. 23a. Base of same, enlarged 150 diameters.
Fig. 24. Phorciobothrium lusium gen. et sp. nov. Ontline of strobile, enlarged 6 diameters.
Fig. 25. Front view of head, enlarged 20 diameters.
Fig. 26. Lateral view of head of another specimen, enlarged 40 diameters.
Fig. 26a. Spines from ueck of same, enlarged 350 diameters.
Fig. 27. Compound hooks from one bothrium, enlarged 175 diameters.
Fig. 28. Another specimen with many spines on the neck, and showing strix on bothria somewhat flattened under compressor ; enlarged 20 diameters.
Fig. 29. Posterior mature segment, enlarged 20 diameters.
All the figures in this plate made from alcoholic or monnted specimens, by Mrs. Edwin Linton.


## EXPLANATION OF PLATE V.

Fig. 1. Echinorhynchus agilis Rudolphi. Sketch of living specimen, male, flattened under compressor, enlarged 10 diameters.
Fig. La. Another specimen, male, natural size.
Fig. 2. Sketch of living specimen, female, flattened under compressor, enlarged 10 diameters.
Fig. 2a. Another specimen, female, natural size.
Fig. 2b. Ova, enlarged 200 diameters.
Fig. 3. Ontline of specimen with proboscis retracted, enlarged 25 diameters.
Fig. 4. Ontline of male, from C. obscurus, enlarged 15 diameters.
Fig. 5. Posterior extremity of another male, showing bursa everted, eularged 15 diameters.
Fig. 6. Hooks of proboscis ; , $\alpha$, from first row ; $b$, from second row; $c$, from third row; enlarged 150 diameters.
Fig. 7. Echinorhynchus aous Rudolphi ; outline of male, enlarged 20 diameters.
Fig. 8. Male aud female alcoholic specimens, natural size.
Figs. 9 \& 10. Specimens in sea-water, enlarged 2 diameters.
Fig. 11. Specimen shown in Fig. 10, after lying some time in fresly water, enlarged 2 diameters.
Fig. 12. Outline showing proboscis partly retracted, retractor muscles and lemnisci, eularged 15 diameters.
Fig. 13. Anterior end of female, showing protruded proboseis and ova, enlarged 15 diameters.
Fig. 14. Tania dilatata sp. nov. Head and antorior part of neck, onlarged 18 diameters.
Fig. 15. Portion of neck, showing dilated folds, enlarged 18 diameters.
Fig. 16. Outline of posterior segments, oularged 4 diameters.
Fig. 17. Rhynchobothrium tenuicolle Rudolphi. Outline of strobile, enlarged 2 diameters.
Fig. 18. Head and neek of same, enlarged 30 diameters.
Fig. 18a. 'Portion of proboscis, eularged 350 diameters.
Fig. 18b. Hooks near apex of proboseis, enlarged 350 diameters.
Figures $1,1 a, 2,2 a, 2 b, 7,9,10,11,14,15,16$ from life ; others from alcoholic and mounted specimens.

All figures made by Mrs. Edwin Linton.
508


## EXPLANATION OF PLATE V1.

Fig. 1. Echinorbynchus sagittifer sp.nov. Outline sketch of young, showing pro truded proboscis, neek, collar armed with sagittate spines, trausverse rows of sagittate spines on the body, and, interiorly, the proboscis sheath, retractor muscles of same, the genitalia depending from sheath of proboscis, enlarged 20 diameters.
Fis. 1a. Hooks of proboseis, ventral side, enlarged about 150 diameters.
Fig. 1b. Hooks of proboscis, dorsal side, enlarged about 150 diameters.
Fig. 1c. Sagittate spines from collar, eularged about 150 diameters.
Fig. 1d. Sagittate spines from one of the transverse ventral rows on body, enlarged about 150 diameters.
Fig. 1c. Five contiguons hooks in one of the spiral series on the proboscis, enlarged about 150 diameters.
Fig. 2. Sketch of live specimen, somewhat flattened by the compressor, enlarged 12 diameters.
Fig. 3. Echinorkynchus proteus Westrumb. l'ortion of rectum of lioccus lineatus (Striped Bass) with parasites attached, natural sizo.
Fig. 4. Outline of an individual removed from its place of attachment, enlarged 2 diameters.
Fig. 5. Abnormal secretions in peritoneal covering of largo intestine of liocous lineatus, to the inner coat of which numbers of these parasites wero attached, as shown in Fig. 3, natural size.
Fig. 5a. One of the eysts shown in Fig. 5, cut open, exposing the calculus within, natural size.
Fig. 5b. Transverse section through one of the abnormal secretions, showing its concentric strncture, natural size.
Fig. 6. Portion of cystic duct of Cynoscion regale with young Tetrabothria attached to mucous lining, enlarged 3 diameters.
Fig. 7. One of the specimens removed from its place of attachment, enlarged 12 diameters.
Fig. 8. A young Tetrabothrium from intestino of same host, onlarged 12 diameters.
Fig. 9. Another from same habitat, ilattened under compressor, enlarged 12 diameters.
Figures $2,3,4,6,7,8$, and 9 from life; others from alcoholic or mounted specimens. All figures made by Mrs. Edwin Linton.


## INDEX.

## [NOTE.-The references are to page-figures in brackets.]



## V.-REPORT ON THE MEDUSE COLLECTED BY THE U. S. FISH COMMISSION STEAMER aLbatross in THE REGION OF THE GULF STREAM, IN 1885-'86.

By J. Walter Fewnes.

The following paper considers the Medusæ collected in the summers of the years 1885 and 1886 off the eastern coasts of the United States, in the region of the Gulf Stream. In this collection there are many genera which have already been described from this locality, and others which are believed to be new to science. Many belong to the so-called deep-sea fauna, and some, formerly supposed to be limited to great depths, are recorded by the collector from the surface waters.

Among Siphonophores, some of the most interesting are new specimens of the gigantic physophore, Pterophysa. One specimen in the collection of these animals reaches the great length of 23 feet in alcohol. Next to certain recorded specimens of the genus Apolemia, this is one of the largest Physophores yet described, and is the largest yet reported from the waters of the Gulf Stream contiguous to our coast. The new genus Pleurophysa is interesting in its relationship to the Rhizophysidæ, and the somewhat peculiar characters of the polypites.

Stomatoca periphylla is recorded for the first time from the western waters of the Atlantic.

A new Pegantha, a genus which has never before been found in the Gulf Stream, is described. As more and more specimens of the interesting genus Atolla, ascribed by Hæckel to the deep-sea fauna, are collected, the number of specimens from the surface water is increased. In the present collection we have three more examples of this medusa from the surface. This fact would seem to indicate that the genus is not necessarily confined to the great depth at which it was collected by the Challenger.

Halicreas and Solmaris incisa are found in the collection, and new facts for the acceptance of the deductions made from previously known specimens recorded.

Ephyroides rotaformis is represented by several specimens.
A new Ctenophore, of the known genus Callianira, is recorded for the first time from the waters of the Gulf Stream.
$\qquad$

As more and more is known of the medusan life of the Gulf Stream, $\dot{\text { we }}$ see how rich in new genera the waters of this current are, and what a good collecting locality it presents for a discovery of new genera, species, and even families of these pelagic organisms.

This paper, like those with a similar title which have preceded it, is preliminary to a final report on North American Hydrozoa, which the author has in preparation.

## SIPHONOPHORA.

## Pneumatophorfe.

## Family RHIZOPHYSIDÆ.

Pterophysa, Fewkes.

In the collection of 1883 a Siphonophore was recorded, to which, from the peculiar wings or ptera on the polypites, the name Pterophysa was given.
The stem of this specimes is very much twisted, and the float and other portions so contracted that it was impossible for me to make out the anatomy of any part except polypites. The wings of the polypites are, however, so exceptional, that it seemed justifiable to refer this specimen on this ground to a new genus.

Pterophysa differs from any Rhizophysid in this and certain other features of the anatomy, which are well marked in the new specimens recently collected. In the collection of 1883 a giant float was found, which, although at that time not recognized as belonging to Pterophysa, after study of new material is thought to belong to this genus.

Among the collections made by Mr. A. Agassiz, in the Blake, there is also a huge Siphonophore, which has ptera on the polypites, and seems to belong to the same genus. These are the physophores ("Rhizo. physa") mentioned by A. Agassiz in a letter to the Superintendent of the Coast Survey.*

In the collections of the Albatross, in 1885, there are fresh specimens of Pterophysa, which throw light on some points in the anatomy of this curious Rhizophysid. The specimens are as follows:


Of the new specimens, No. 1 is the best preserved and the largest. Both were found twisted on the dredge wire or rope. Neither of the

[^66]specimens have the body complete, but from the fragments of both several common details can be made out. No. 1 is destitute of a float; No. 2 has the float well developed.

## Pterophysa grandis, Fewkes.

[No. 1.]
The stem of this specimen is approximately 20 feet in length in alcohol. It is ribbou-shaped, about $3^{\operatorname{mm}}$ broad. Not twisted. Color in alcohol, white. No float present, but this structure is ruptured from its connection.

The terminal polypite is $40^{\mathrm{mm}}$ in length, elongated, finger-shaped, with dark color near its distal end. On the proximal third of its length it bears two well-marked lateral bands or ptera, which are placed opposite each other on the polypite. The terminal polypite arises from a point on the axis where the stem is somewhat thickened. The surface of the thickened stem is nodose, probably from contraction. A short fragment of a tentacle springs from its base of attachment to the stem. The stem narrows above the nodose enlargement, becomes again thickened as it recedes from the polypite, and then diminishes in size to the flat, ribbon-like shape of the stem.

The peuultimate polypite is elongated, finger-like, $50^{\mathrm{mm}}$ in length, enlarged into a knob at the distal or oral end. In the proximal region, on each side, there are two marked ptera. The penultimate polypite is similar to the terminal, and arises from the stem by a long thread similar to but smaller than the peduncle. The filamentary union of the polypite to the stem arises from a tangled cluster of thread-like bodies on the stem. These bodies possibly correspond to the immature lateral branches of the tentacle.

Between the region of the stem from which the tangled lateral bodies arise and the other (opposite) end of the stem there are several polypites, all of which have similar filamentous attachments to the flat (in alcohol) axis, as the ultimate and penultimate. Many small clusters of sexual bodies, confined as a general thing to the flat axis, are noticed. These bodies hare, like the sexual glands of Rhizophysa, the form of botryoidal clusters.

## [No. 2.]

In this specimen a float and the proximal end of the axis are well preserved. The whole axis is $1.9^{\mathrm{m}}$ long.

The float is large, $15^{m m}$ in length, and appears to be carried upright, as in $R$. eysenhardtii, Geg. It has an apical opening. This opening is surrounded by a zone of reddish pigment. From the pueumatophore hang digitiform appendages into the cavity of the pnemmatocyst, as in the genus Rhizophysa. The walls of both pueumatocyst and pneumatophore are thin. At the base of the pneumatocyst the stem becomes
thick and swollen, while lower down, more distally from the float, it tapers gradually and becomes flat, as in the first specimen. On the one side of the thickened region of the stem there arises a small cluster of flask-shaped bodies, in the form of elongated, digitiform structures, which may be undeveloped polypites. Below (more distally from the float) the latter structures we find a number of polypites, nore or less thickened by contraction, which are arranged in clusters. No tentacles observed attached to them. Nine polypites (one broken in examination) were counted in the largest cluster.

The distal end of the stem now (distally from the float) diminishes in diameter, and a second cluster of flask-shaped bodies is seen. When this second cluster is closely examined it is found to be composed of four polypites, brought together by a contraction of the stem. These polypites have ptera, but no tentacles. The last of the second cluster of polypites, the most distant from the float of any yet considered, is $60^{m m}$ from the apex of the float. The stem, between the first and secoud clusters of polypites, is muscular, more or less folded and nodose by contraction. It sometimes shows an infolded groove on one side.

The diameter of the stem distally from the second cluster of polypites diminishes very considerably, and after the addition to the number of existing polypites of two more, we find a long bare interval of the axis.

In addition to the long fragment of Pterophysa in No. 2, there are two other fragments of large size, which seem to belong to the same animal. Both of these fragments have a nodose stem, which appears much twisted and contorted. The first fragment is about $250^{\mathrm{mm}}$ long, and at one end is flat, and seems to be broken from the axis of the larger specimen in the same bottle. It is enlarged about midway in its length, and at one end bears a swollen nodose body, from which arises a polypite. This polypite has a tentacle, which arises from one side.*

If we compare this fragment and its polypite with the terminal polypite of the specimen already described (No. 2), we find a close resemblance in many particulars. A swollen nodose body is present in both. Tentacles exist in both. The fragment is therefore regarded a terminal polypite.
In another fragment of No. 2 we have a long mudivided part, which bifurcates and becomes nodose at the free euds, while a botryoidal body, homologous with a sexual gland, arises from oue of the bifurcations.

> Pterophysa, sp. incog.

In the collection made by Mr. Agassiz in the Caribbean Sea there are a few matilated specimens of a Pterophysa, the polypites of which have

[^67]a close likeness to the above, although I have not been able to satisfactorily study the other organs. These specimens, in one or two instances, are destitute of a float, but when that organ is present it has the same cluster of flask-shaped immature polypites below it as in Pterophysa. The polypites themselves have the lateral wings.

Specimens of Pterophysa collected by the Blake.

| Station. | Locality. |
| :---: | :---: |
| 205 | Off Martinique. |
| 110 | Kingston, SE. Vincent. (Lat, $20^{\circ} 10^{\prime} 30^{\prime \prime} \mathrm{N}$. long $7^{\circ}{ }^{\circ} 10^{\prime 2} 0^{\prime \prime}$ |
| 108 | Off Nuevitas. |

gen. incog.
Among the Siphonophores collected by the Blake is one from St. Kitt's, which I have not been able to identify on account of its frag. mentary nature. The fragments consist of large numbers of polypites. The stem, float, and other organs are wanting. One or both ends of the polypite has a very dark red or purple (red) color. There are no lateral ptera. The polypites are about $40^{\mathrm{mm}}$ in length.

Pleurophysa, gen. nov.
P. insignis, sp. nov.

Among the new Rhizophysidæ are many specimens of a genus which is different from any yet described, and which probably is a new genus as well as species. The specimens are very numerous and come from the following localities:
$\left.\begin{array}{|r|c|ccc|cc|}\hline \begin{array}{c}\text { Catalogue } \\ \text { number. }\end{array} & \text { Station. } & \text { North latitude. } & \text { West longitude. } \\ \hline 12100 & & 2543 \\ & 2585 \\ & 2584\end{array}\right)$

Pleurophysa is destitute of nectocalices and hydrophyllia. The axis is thick (in alcobol), and all the appendages arise from one side of the stem.

Float swall, pyriform, pigmented at the apex, with thin walls. Just below the float there is a small cluster of stylated spherical bodies, which occupy the same position as the undeveloped nectocalices in other physophores.
The region of the stem below the cluster of stylated bodies is thickened, and bears on one side a row of knobs, These were at first thought
to be the line of attachment of nectocalices. In a large number of specimens, however, no sign of a nectocalyx was discovered.
The distal end of the anterior stem (portion from which the knobs arise) is marked by a cluster of spherical or club-shaped bodies, which in some of the specimens have a reddish color even in alcohol. These botryoidal clusters resemble sexual bodies. The distal region of the stem from the cluster of bodies last mentioned is much longer than the anterior, and bears on one side a double row of flask-shaped bodies closely crowded together. These bodies are fimbriated on one side by small lateral appendages, and are thought to be polypites. Notentacles were observed, and no clusters of sexual bodies or immature tentacular knobs at the bases of the polypites. No clusters of sexual bodies on the axis between the union of the supposed polypites and the axis.

The polyp stem is spirally coiled in many of the specimens. No hydrophyllia. Tasters, unknown.

It must be said that the interpretation given to the different organs which has been given above is somewhat conjectural. Of the float, stem, and polypites there can be little doubt. It seems probable that the cluster of bodies which separate the anterior stem from the polyp stem are sexual bodies.

The nectocalices and hydrophyllia are easily ruptured from the stem, and their absence may simply be due to this fact. It seems strange that among so many specimens not even a fragment of these bodies is found, while in specimens of Agalma, collected by the same collectors, these gelatinous structures are well preserved. We shall, therefore, look with interest to a new collection of Pleurophysa and a study of better-preserved specimens for anatomical details, which this account necessarily leaves in great imperfection.

## Family PHYSALIADA.

## Physalia arethusa, Tilesius.

This physophore is one of the most commonly collected of all the siphonophores of the Gulf Stream. In the collections of 1885-'86 it is recorded from the following localities:

| Catalogue | Station. | North latitude. |  |  | West longitude. |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | - | 1 |  | - | , | " |
| 11637 | 2566 | 37 |  | 00 | - 68 | 08 | 00 |
| 11639 | 2567 | 37 | 45 | 00 | 66 | 56 | 00 |
| 15233 | 2711 | 38 | 59 | 00 | 70 | 07 | 00 |
| 15255 | 2712 | 38 |  | 00 | 70 | 05 | 30 |
| 15754 | 2723 | 36 | 47 | 00 | 73 | 09 | 30 |
| 15755 | 2725 | 36 |  |  | 73 | 48 | 00 |
| 15762 | 2727 |  | 35 | 00 | 74 | 03 | 30 |

## Physophore.

## Family AGALMID风.

\{ Agalma okenii, Esch.
\{ Crystallodes rigidum, Hæck.

| Catalogne number. | Station. | North latitude. |  |  | West longitude. |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - |  | $\bigcirc$ | 1 | " | $\bigcirc$ | $t$ | " |
| 11838 | H5d. 743 |  | 15 |  | 64 | 23 | 00 |
| 11684 | 2569 |  | 20 |  | 68 | 03 | 30 |
| 11647 | 2570 |  |  |  |  |  |  |
| 11676 | 2566 |  | 23 |  | 68 | 08 | 00 |
| 13264 | 2712 | 38 | 20 |  | 70 | 05 | 30 |

## Hippopodie.

## Family HIPPOPODID※.

Gleba imppopus, Forskal.

| Catalogue <br> number. | Station. | North latitude. | Wrest longitude. |  |  |  |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 0 | $\prime$ | $\prime \prime$ | 0 | $\prime$ |
| 11676 | 2566 | 37 | 23 | 00 | 68 |  |
| 11684 | 2569 | 39 | 26 | 00 | 08 | 00 |
| 12111 | 2566 | 37 | 23 | 00 | 68 | 03 |
| 11683 | 2566 | 37 | 23 | 00 | 68 | 08 |

## Diphye (Calycophore).

## Family ABYLAIDE.

Abyla trigona, Quoy \& Gaimard:

| Catalogue number. | Station. | North latitude. | West longitude. |
| :---: | :---: | :---: | :---: |
| 11670 | 2566 | $\begin{array}{ccc}\circ & \prime & \prime \prime \\ 37 & 23 & 00\end{array}$ | $\begin{array}{ccc}\circ & \prime \prime \\ 68 & 08 & 00\end{array}$ |

This is the first mention of A. trigona from the Gulf Stream, although I have seen specimens from the Caribbean Sea.

## A fragment of the posterior Nectocalyx.

## Family DIPHYIDE.

Epibulia aurantiaca, Vogt.

| Catalogue number. | Station. | North latitude. |  |  | West longitude. |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 1 |  |  | 1 |  |
| 11836 | Hyd. 753 |  | 18 | 30 |  | 39 | 30 |
| 12109 | 2545 |  | 58 |  |  | 42 |  |

Diphyes, sp.

| Catalogue number. | Station. | North latitude. | West longitude. |
| :---: | :---: | :---: | :---: |
|  |  | - , " | - , " |
| 11836 | Нуd. 753 | 40 | $53 \quad 3930$ |

## Muggiea, sp.?

Among the Diphyid-like Medusæ are many specimens which have the anterior nectocalyx only. All of these I have placed in the genus Muggitea, following Chun* in his limitation of the generic name Muggice, to Diphyids with one nectocalyx, which resembles the anterior nectocalyx of the genus Diphyes. Our Atlantic species somewhat resembles M. kochii, but differs from it in several particulars. In the absence of more knowledge of the live animal, I will provisionally refer this to an unknown species of Muggiaa.


[^68]
## Discoidea.

Family VELELLID E.
Velella mutica, Bosc.


Family PORPITIDE.
Porpita linnatana.

| Catalogue number. | Station. | North latitude. |  |  | West longitude. |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\bigcirc$ | ' | " | - | , | " |
| 11640 | $\underline{2} 536$ | 39 | 56 | 15 | 70 | 47 | 30 |
| 11641 | 2537 |  | 56 | 45 | 70 | 50 | 30 |
| 11642 | 2538 |  | 57 | 30 | 70 | 51 | 15 |
| 11643 | 2566 |  | 23 | 00 | 18 | 08 | 00 |

## Craspedota.

Family $\mathbb{E} Q U O R I D E$, Eschscholtz.

> Polycanna, Hæckel.

It is rery difficult to distinguish the genera and species of the above family, especially the American representatives.
A. Agassiz describes three species of Zygodactyla from our coast: Z. groenlandica Ag., Z. crassa A. Ag., and Z. cyanea, A. Ag. Hæckel places Z. gromlandica, Z. crassa, and Cremastoma flava, A. Ag., in the geuus Polycamna, Hxeckel, while Z. cyanea A. Ag. is referred to his genus Mesonema as M. cyaneum. According to A. Agassiz, the tentacles in Z. grentandicu, Z. crassa, and C. faca are more numerous than the chymiferous tubes. This is true also, according to Hreckel, of P. vitrina, Hæck. In P. germanica and P. italica, Hæck., the tubes and tentacles correspond in number, while in P. fungina, Hæck., the radial tubes are more numerous than the tentacles. These characters form the three subgenera:

1. Rhacostoma. Radial tubes more numerous than tentacles.
2. Cremastoma. Radial tubes equal in number to the tentacles.
3. Zygodactyla. Tentacles more numerous than the radial tubes.

It is evident from what we know of the development of the Medusa (gonophore) of Z. gromlandica (?) that the relative number of tentacles and radial tubes varies with age, and consequently the three subgenera are difficult to separate on this feature alone. There are specimens of Polycanna in the collection with characters of the tirst subgenus Rhacostoma, to which I have already given the name $P$. americana. It is beliered that we have at least two species of Polycanna on our New England coast, and provisionally these may be known as P. grentandica and $P$. americana. The basis of the separation of the two is the existence in the former of rows of subumbral knobs between the chymiferous tubes and the absence of these knobs in the latter. It happens that in the latter the number of tentacles is less than the number of chymiferous tubes, while in the former, according to A. Agassiz, the number of tentacles is greater than that of the radial tubes.*

It seems to me that the presence or absence of the subumbral knobs is a much safer character to rely upon in the separation of our species of Polycanna than any which has yet been suggested. If new investigation shall show that true specimens of gromlandica do not have subumbral knobs, our New England species is possibly new. From the fact that a supposed type specimen of Polycanna, labeled Z. grcenlandica, in the collection of the Museum of Comparative Zoology, has these tubercles, the name groenlandica is retained for this species.

There is another Zygodactyla-like Medusa in which I have not been able to find these gelatinous kuobs, either in a live animal or in alcoholic representatives. As this species also differs from the species crassa and cyanea in the relative number of tentacles and chymiferous tubes, it is supposed to be the new species, americana.

Unlike all other American Zygodactylce, as described by A. Agassiz, this species has a smaller number of tentacles than of radial tubes, and at the same time none of the alcoholic specimens have subumbral tubercles. It is possible that the former feature indicates an immature Medusa, but not so the latter; for, as has been already shown, the subumbral tubercles are present in the Medusa when very small.

Specimens referred to $P$.americana were collected in the following localities:

| Catalogne number. | Station. | North latitude. |  |  | West longitude. |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 1 |  | - | 1 | " |
| 11650 | 2563 | 39 | 18 | 30 | 71 | 23 | 30 |
| 11665 | 2567 |  | 45 | 00 | 66 | 56 |  |
| 11673 | 2566 | 37 | 23 | 00 | 68 | 08 | 00 |
| 11674 | 2563 ? |  | 18 | 30 | 71 | 23 |  |
| 11677 | 2566 |  | 23 | 00 | 68 | 08 |  |
| ? 11649 | 2539 | 39 | 59 | 45 | 70 | 53 | 00 |

[^69]
## Polycanna americana,* Fewkes.

Of all the specimens of the species examined in the collection of 1885, No. 11674, station 2563, is the best preserved. A diagnosis of the species is made from this specimen.
Disk flat, with a slight apical protuberance. Roof of the stomach convex, thicker than the margin. Diameter of the roof of the stomach, $28^{\mathrm{mm}}$. Diameter of the disk, $70^{\mathrm{mm}}$. Stomach wide, lips open. The stomach wall is formed by papillate folds, the number of which is equal to the tubes. These tubes fall down below the velum. Numerous (107) chymiferous tubes, each of which bears a folded sexual gland, reaching from the vicinity of the stomach to the marginal vessel.

Tentacles, 29-32? in number, long, base inflated. Between each pair of tentacles there are five or more small protuberances on the bell margin. These are either otocysts or immature tentacles. No subumbral tubercles on the umbrella, between the chymiferous tubes.
Of the other recorded Polycannce, P. greenlandica, P. flava, and P. crassa have more tentacles than chymiferous tubes. No tubercles are recorded in P. flaca. In an alcoholic specimen of Zygodactyla, with tubercles, now in the collection of the Museum of Comparative Zoology, the tentacles are missing. I cannot, therefore, say at present whether the specimens with tubercles have the same number of tentacles as tubes or not. If the Zygodactyla, with tubercles, last mentioned, has more tentacles than tubes it may be grocnlandica; if less, it is doubtful whether it is the same as the species (gronlandica) which is recorded by A. Agassiz as possessed of more tentacles than tubes.

## Family AMPHINEMIDÆ, Hæckel.

## Stomatoca $\dagger$ periphylla, Hæckel.

| Catalogue number. | Station. | North latitude. | West longitude. |
| :---: | :---: | :---: | :---: |
|  |  | - , " | - , " |
| 15229 | 2711 | $\begin{array}{llll}38 & 59 & 00\end{array}$ | $\begin{array}{llll}70 & 07 & 00\end{array}$ |
| 15253 | 2713 | $38 \quad 20 \quad 00$ | $\begin{array}{llll}70 & 08 & 30\end{array}$ |

Two well-preserved specimens of this species were found by the Albatross in the summer of 1886.

We have in our waters two very beautiful genera of the family of Tiaridæ, with two opposite tentacles. One of these is the well known

[^70]S. apicata (Amphinema apicatum, Hæeckel); the other, the Dinematella, Fewkes. Both of these have in the adult condition an apical prominence on the bell, which in the former is without internal cavity, and in the latter with a cavity. Stomatoca periphylla, Hreckel, is destitute of this prominence, is much larger, and the stomach is situated on an especial "Magenstiel." In this species the mouth lappets, stomach with sexual bodies, lie outside the bell cavity. The specimens agree substantially with Hæckel's description, except that the teutacular bulbs at the base of the tentacles are more swollen than he represents in his figure (Pl. ir, fig. 10, Das System der Meduseu). It is probable from the studies of Hincks, Allman, and Hreckel that the young of this species has for its hydroid a genus related to or identical with Perigonimus. This notice is the first record of S.periphylla, from the Western Atlantic.

Family GERYONIDÆ, Eschscholtz.
Liriope scutigera, McCr.

| Catalogue number. | Station. | North latitude. |  |  | West longitude. |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | ' |  |  | , |  |
| 15229 | 2711 |  | 59 | 00 |  | 07 |  |
| 15253 | 2713 |  | 20 |  |  | 08 | 30 |

## Family CUNANTHIDÆ, Hæckel.

Cunina?
Among the Narcomeduse there are a few specimens of a Cunina-like medusa which is temporarily referred to this genus. The specimen was so mutilated that it was impossible to tell whether it was a Cunina or a solmaris, although from the character of the festoon canal and the existence of gastral pouches, it seems more closely allied to the former genus. It was not possible to see the gastral pouches, one of the main characters of the Cuninidx, in several of the specimens, although they are well seeu in one of the same.

Specimens examined.


The collar lobes of these specimens are girt by a horseshoe-shaped festoon canal, as in the Peganthidæ, but the bell is more flexible and not crossed by the radial elevations and depressions upon the exumbrella. *

Umbrella flat, discoid, with a ring of sexual bodies divided into as many lobes as tentacles and alternating with them. In each marginal lobe there is a genital sac, which is free from the wall of the lobes on the floor of the gastral pouches.

Tentacles numerons, 20 to 22 or more in number, springing from the sides of the body or the peripheral border of the umbrella. Tentacles longer than the diameter of the bell. The marginal collar is composed of as many lobes as there are tentacles, and each has a festoon canal. Peroniæ wanting. ?

The following notes were made from a specimen with 22 tentacles: Umbrella flat, lens-shaped or discoidal. Color, transparent, white in alcohol, flabby, gelatinous. Outer surface (exumbrella) smooth. The body divided into a central region and a peripheral collar.

Central region plano-convex or double convex. The greater convexity is below. Diameter in alcohol, $20^{\mathrm{mm}}$.

Upper surface flat. No coronal fossa or annular indentation at the rim near the origin of the tentacles.
The marginal collar is composed of twenty-two marginal lappets joined laterally by a thin membrane. The festoon canal broad, extending from tentacle to tentacle in well-marked horseshoe shaped-loops. No sense bodies were seen, on account of the poor preservation of the specimen.
The festoon canal scems to open on each side of the tentacle into the central stomach cavity. The edge of the marginal lappets is girt by a thin veluin. The tentacles are long (louger than the diameter of the bell) and are iuserted into the gelatinous substance of the bell by a conical root extending radially. No peronia and no marked marginal canal besides the festoon canal. Twenty-two gastral pouches. The stomach is a dish-shaped cavity bounded above by the under surface of the central region of the disk and below by the wall of the stomach. Well-marked gastral pouches. The mouth has a broad opening without protruding lips.

The sexual bodies lie in a ring on the peripheral region of the lower stomach walls in the gastral pouches. In the specimen with twentytwo tentacles these organs were not seen.

In other and larger specimens in which, however, in one instance at least, there are not as many tentacies, the sexual bodies take the form of sacs hanging in the lower wall of the stomach between the radii of the tentacles. In one case these glands are very much inflated; in another they have the form of a simple band. Of the species of Cunina

[^71]from the Atlantic,* C. campanulata, Esch. has ten gastral pouches, C. oligotis, Hæckel, has sixteen. Of Mediterranean Cunince, C. vitrea, Gegenbaur, has ten to twelve gastral pouches; C. lativentris, Gegenbaur, the same number; and C. prolifera, Gegenbaur, sixteen. C. rhododactyla, Hackel, has ten to fifteen gastral ponches, and C. rubiginosa ten to twelve. A species from the Pacific Ocean, C. mucilaginosa, Blain., and one from the Indian Occan, C. multifida, Hackel, have respectively twenty to twenty-four and thirty-two stomach pouches. These latter, however, appear to differ from my Cunina in the length of the tentacles and other structural details. Our specimens therefore may be looked upon either as of a new species or more mature adults of species already described.

These specimens were at first referred to Solmissus in a provisional examination of them. The structures which I have interpreted as the festoon canals would throw them out of the genus Solmissus. S. faberi Hæckel, has twenty-four gastral pouches, and S. bleekii thirty-two.

## Subfamily Tamoxide, Hieckel.

Carybdea (Tamoya) haplonema, F. Mïller.
Specimens of this medusa were taken at the following localities:

| Catalogue <br> number. | Station. | North latitude. | West longitude. |  |  |  |
| ---: | ---: | ---: | :---: | :---: | :---: | :---: |
| $-\ldots$ |  |  |  |  |  |  |
| 11679 | 2566 | 37 | 23 | 00 | 68 | 08 |
| 11686 | 2566 | 37 | 23 | 00 | 00 |  |

Claus $\dagger$ considers Tamoya the old genus, Carybdea, Peron et Leseuer. Hæckel $\ddagger$ describes a medusa, which the above specimens closely resemble as Carybdea pyramis, Hreckel. The latter anthor separates Carybdea from Tamoya. My specimens resemble more closely his Carybdea than Tamoya. They are larger than C.pyramis and smaller than T. haplonema. If the two genera are separated our meduse more closely resembles Carybdea, but I have followed Claus in regarding them as the same. This medusa appears to be the same as that which is mentioned as Tamoya in the collection of 1883-'84.§

[^72]
## Family HALICREASIDE, Fewkes.

Halicreas minimum, Fewkes.
Specimens of Halicreas were taken from the following locality:

| Catalogue number. | Station. | North latitude. |  |  | West longitude. |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\bigcirc$ | , |  |  | 1 | " |
| 15244 | 2719 | 38 | 29 |  |  | 58 | 00 |
| 15750 | 2728 |  | 30 | 00 |  | 03 | 30 |

This genus is recognized by the eight tuberculated projections on the exumbral margin of the bell. From these projections there extend to the vicinity of the center of the bell eight ribs or radial depressions, which appear on the subumbral surface as radial depressions between which the octants of the subumbrella are somewhat swollen. Near the center of the subumbrella is a ring of eight knobs which lie one in each octant between the above-mentioned depressious.

There is a well marked vellum below the marginal projections. The radial projections appear as elevations on the exumbral side of the bell in alcoholic specimens.

In my former paper* I referred this genus to the Narcomeduse of Hreckel. There is no reason from a study of new material to change that opinion of the affinities of the family of Halicreasidæ.

## Family PEGANTHID A, Hæckel.

Among the families of Narcomedusre described by Hreckel is the Peganthidæ, a family without radial canals and gastric pouches in the subumbrella but with a festoon canal. The sexual bodies are either lobed or form a non-continuous baud on the under floor of the stomach.

Among the meduse collected by the Albatross is one which has a close likeness to the genus Pegantha of the Peganthide but which differs from the known species of this genus so widely that it may be necessary later to call it a new species.

This Pegantha somewhat resembles $P$. quadriloba, although the genital sacs are not as markedly four-lobed as Hreckel's description of this species would seem to indicate. It has marked lobes in the sexual glands, but the poor condition of preservation and the rupture in one or two instances of the gland from its attachment rendered it impossible for me to tell to what species this Pegantha belongs.

[^73]
# Pegantha, sp. 

[Plate 1.]
The sexual bodies divided into a number of separate sacs pendant from the abaxial lower wall of the stomach. The sexual glands do not enter the umbrella lobes but alternate with the attachments of the tentacles, which they equal in number. No coronal fossa.*

Specimen examined.

| Catalosue number. | Station. | North latitude. | West longitude. |
| :---: | :---: | :---: | :---: |
|  |  | - 11 | 0 1 1 |
| 11654 | 2559 | $39 \quad 48 \quad 00$ | $71 \quad 48 \quad 30$ |

Bell, crown-shaped, twice as broad as high, with stiff gelatinous walls. The bell is thick, biconvex, firm. The marginal lobes folded inward on the oral side so that they are with difficulty bent back to normal position without rupture. Exumbrella crossed by strongly-marked, prominent radial ridges, separated by radial furrows. These ridges and furrows arise from the center of the exumbrella in the radii of the marginal lappets and divide, sending off lateral branches which pass into the marginal lappets.

The collar of the umbrella, or the peripheral portion of the bell, is made up of thirteen horseshoe-shaped marginal lobes with festoon canals. These lobes are connected by a thin membrane which unites contiguous lobes and skirts their borders. The specimen was not well enough preserved to observe the sense-bodies.

The subumbrella is divided into two regions, one correspouding with the central disk and marked by the lower stomach wall; the other with the collar region formed by the horseshoe lappets. The mouth opening is simple. The lower stomach wall thick, well marked. The sexual sacs form a number of pouches upon the outer rim of the lower stomach wall. They appear as folds or separated sacs, the exact number of which could not be determined in the single specimen studied. There are thirteen sexual glands, each of which lies in an internemal radius. An open niche is formed in each marginal lappet, as described by Haeckel, in which the sexual organs are forced wheu the medusa bends inward the lobes of the collar. There are thirteen tentacles, each of which arises in the incisions formed by the horse-shoe-shaped festoon canal. They are long aud slender, apparently hollow, aud have the same color as the bell.

[^74]
## Family SOLMARIDE, Hæckel.

Solmaris incisa, Fewkes.

| Catalogne number. | Station. | North latitude. | West longitude. |
| :---: | :---: | :---: | :---: |
| 11667 | 2429 | $\begin{array}{ccc}0 & \prime & \prime \prime \\ 4 . & 55 & 30\end{array}$ | $\begin{array}{ccc}\circ & \prime & \prime \prime \\ 50 & 51 & 00\end{array}$ |

Several large specimens of this giaut Narcomedusa occur in the collections; in one of these the form of the bell is ummutilated and the subumbral elevations and depressious well shown. The velarium is undivided into marginal lappets, showing that my conjecture of the non-existence of separate lappets in the jelly-fish is borne out by a study of fresh material. There are in the largest specimen (entire) thirty subumbral depressions. There are thirty tentacles and the same number of peronix. No festoon canal.

Many of the "marginal lappets" in other specimens are united, indicating, as already suggested, the existence of comnections along the peronix, which are split in most of the specimens studied. The velarium is formed by a union of all the marginal lappets, and recalls that of other Solmaridæ.

The feature upon which the species is built is the radial grooves on the under side of the umbrella, as already elsewhere described. These "radial-furchen" resemble structures in Cunina campanulata, where, according to Hackel, they are on the "untere magenwand." In S. incisa these furrows are on the upper wall of the stomach or the under wall of the disk.

A new examination of $S$. incisa to determine, if possible, whether I might not be mistaken in my identification, and whether my specimen does not belong to C. campanulata has convinced me that my specimens bave no festoon canals, and differ in many other ways from Cunina. S. incisa is more disk-like than campanulate, is larger than Campanulata and has more tentacles. Instead of gastral ponches in the pernemal radii there are prominent umbral elevations. The furrows are internemal. In one specimen the edges of the gastral furrows were lined with a white structure which may be the remnauts of the attachment of the ovaries. The species differs so greatly from other Solmares that it may probably be found to be a new genus.

This animal is a giant among the Narcomedusæ. The only genus of the group which approaches it in size is Polyxenia, of which P. cyanostylis, Esch., according to Eschscholtz is $80^{m u n}$ in diameter. According to Hæckel a species found by him was one-third smaller than that of

$$
\text { S. Mis. } 90-34
$$

Eschscholtz. The largest of the other genera of Narcomedusie are $50^{\mathrm{mm}}$ in diameter, one-half the size of large specimens of S. incisa.

In all specimens of $S$. incisa found, the under wall of a stomach is supposed to be ruptured and absent. The liability of this to occur in Solmaridæ has led me to suppose the same thing possible in my new species.

## Acraspeda.

## Family COLLASPIDE, Hæckel.

Atolla bairdii, Fewkes.


Atolla verrillif, Fewkes.


| No. | Tentacles. | Narginallappets. | Senso bodies. |
| ---: | :---: | :---: | :---: |
|  |  |  |  |
| 9 | 26 | 52 | 26 |
| 10 | 28 | 56 | 28 |
| 11 | 28 | 56 | 28 |
| 12 | 28 | 44 | 22 |

The two species of American Atolle, A. bairdii and A. verriliii, can be readily distinguished by the size of the marginal sense bodies, which in the latter are larger, longer, and narrower than in the former. The number of tentacles in bairdii is generally twenty-two, while in
verrillii we find several specimens with tweuty-eight. Why Hæckel has assigned from sixteen to thirty-two tentacles to the Collaspidie does not appear from what we already know of the genera (Collaspis and Atolla) which compose the family. The least number of tentacles observed in any of my Atolle is twenty-two. Haeckel records an Atolla with nineteen tentacles. The greatest number of tentacles observed in any Atolla is twenty-eight in my species verrillii. It is not denied that it is possible that Atolle with less thanmineteer (iv. i. .ir tontr. eight tentacles may be later observed, but until $t$ ] to include the limits in the number observed (? twenty-two to twenty-eight.
The deepest limit in the ocean at which Atol 2,369 fathoms. Many specimens are recorded from the surface. has been found by the Albatross within the following geographical limits: Lat. $35^{\circ} 19^{\prime} 26^{\prime \prime}$ to $42^{\circ} 46^{\prime}$, loug. $50^{\circ} 55^{\prime} 30^{\prime \prime}$ to $71^{\circ} 55^{\prime}$. The Albatross has collected thirteen specimens of the genus.
The genus Collaspis, Hæck., of which several drawings are published by Hæekel (System der Medusen, Pl. xxviii), was collected "by Smith" between Kergueleu and Crozet Islands in "about 1,000 fathoms," according to Hreckel. The expedition upon which this specimen was collected is not mentioned, but the great depth from which it is said to have been taken excites more than usual interest in it. Very few, if any, other hauls besides those of the Challenger have been made at this depth in this remute locality, and this seems to be the only medusa ascribed to "Smith" from this locality. Hæckel's description of Collaspis was made from a very much mutilated specimen, which he reconstructed from his knowledge of 4 tolla, and allowed a drawing of the medusa thus reconstructed to be published. On account of what might be regarded as suspicious circumstances, under which Hæckel's description of Collaspis was made, the geuus is not recognized.

According to Filhol (La Vie au Fond des Mers, p. 244) Atolla is found "dans l'Atlantique sud et dans l'Atlantique nord au niveau du canal des Faröer." The species of the Atolla, from the latter locality, is not mentioned by Filhol, and it is probably the same as one of mine, $A$. bairdii or A. verrillii.

The increase in number of specimens from the surface would indicate that Atolla is found on the surface of the ocean as well as at great depths. The data for this statement are those of the collector. I have already discussed the limitations which necessarily exist to a rigid acceptance of the recorded depths ascribed to this and other so called deep-sea medusæ.

Family PERIPHYLLIDA, Hæckel.
Periphylla hyacinthina,* Steen.

| Catalogue | Station. | North latitude. | West longitude. |
| :---: | :---: | :---: | :---: |
|  |  | - 11 | $\bigcirc$ ' " |
| 11651 | 24.27 | $42 \quad 46 \quad 00$ | 510000 |
| 11655 | 2565 | $\begin{array}{llll}38 & 19 & 20\end{array}$ | $\begin{array}{llll}69 & 02 & 30\end{array}$ |
| 11662 | 2429 | $42 \quad 55 \quad 30$ | $50 \quad 51 \quad 00$ |
| 15750 | 2728 | $\begin{array}{lll}36 & 30 & 00\end{array}$ | $\begin{array}{llll}74 & 33 & 00\end{array}$ |
| 15756 | 2732 | $\begin{array}{llll}37 & 27 & 00\end{array}$ | $73 \quad 3300$ |

## Family EPHYRIDE, Hæckel.

## Ephyroides rotaformis, Fewkes.

Several more specimens of this remarkable genus and species were collected by the Albatross in 1886. Although all were in good condition as far as the bell and subumbral radial elevations are coucerned, the finer anatomy could not be made out.

| Catalogue number. | Station. | North latitude. |  |  | West longitude. |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\bigcirc$ | 1 | " | $\bigcirc$ | 1 | 11 |
| 15236 | 2717 | 38 | 24 | 00 | 71 | 13 | 00 |
| 15249 | 2719 | 38 | $\because 9$ | 30 | 71 | 58 |  |
| 15256 | 2717 |  | 24 | 00 |  | 13 |  |
| 15266 | 2712 |  | 20 | 00 | 70 | 05 | 30 |

Ephyroides is characterized as follows: On the subumbral surface of a thick umbrella there are radial elevations (in one specimen 32 iu number) which alteruate with the marginal lappets. These elevations are half cylindrical, sausage-shaped, radially situated, exteuding from the margin of the umbrella at its junction with the marginal lappets towards the center of the bell. They resemble on the subumbral side of the umbrella the socles of the exumbral side, and lie in the radii be-

[^75]tween those which pass through the middle line of each marginal lappet. The best preserved of all the specimens is from Station 2717. In this specimen the stumps of certain of the tentacles are present. They lie, as stated above, on the notches between the marginal lappets. The form of the abaxial rim of the marginal lappets in this specimen is bifid, recalling the appearance in the margiual lappets of Atolla. The exumbral surface of the marginal lappet is rough, with slight projections. Its rim is thin, the attachment and body of the lappet thick and gelatinous. The whole marginal lappet recalls those of the species verrillii of the genus Atolla. No sense bodies were seen in the alcoholic material at my control.

It is desirable that the live medusa of Ephyroides be studied, as the features presented by the alcoholic material are of great morphological interest. It has not seemed to me best to say anything about these questions until more is known of the anatomy of the extraordinary geuus.

## Family CYANEIDA, L. Agassiz.

Cyanea, sp.

A specimen of Cyanca from the Gulf Stream differs in certain respects from the Cyanea arctica, Per. et L., of the New England coast. It also differs from other species of this genus which have been described. With the imperfect knowledge derived from a single specimen, I hesitate to introduce a new name into the nomenclature of this genus, although there is little doubt that the specimen referred to is not the common C. arctica.*

| Catalogue number. | Station. | North latitude. | West longitude. |
| :---: | :---: | :---: | :---: |
|  |  | - , " | - 11 |
| 11668 | 2542 | $\begin{array}{llll}40 & 00 & 15\end{array}$ | $79 \quad 42 \quad 20$ |
| 11669 | 2542 | $40 \quad 00 \quad 15$ | 70 4 420 |

A much larger specimen than either of those mentioned above was collected in 1879, Station 378, No. 5124, off Cape Cod. This specimen resembles more closely than the others the common C. arctica, Per. et Les., but the mouth appendage and tentacles are missing. The forms of the marginal lappets are like those of $C$. arctica.

[^76]Family PELAGIDIE, Gegenbaur.
Pelagia cyanella, P. and Les.

| Catalogno number. | Station. | North latitute. |  |  |  | West longitura. |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 0 | 1 | ${ }^{\prime \prime}$ | $\bigcirc$ | , | " |
| 11678 | 2566 |  |  | 23 |  | 68 | 08 | 00 |
| 116 ลั 6 |  |  |  |  |  |  |  |  |
| 11688 | 2569 |  |  | 26 |  | 68 | 03 | 30 |
|  | 2566 |  |  | 2.3 |  | 68 | 08 | 00 |
| 11680 | 2566 |  |  | 23 |  | 68 | 08 | 00 |
| (f) $15 \times 25$ | 2711 |  |  | 59 | 001 | 70 | 07 | 00 |
| 15926 | 2711 |  |  | 59 | 00 | 70 | 07 | 00 |
| 15936 | 2717 |  |  | 24 | 00 | 71 | 13 | 00 |
| 15987 | 2715 |  |  | 29 | 30 | 70 | 54 | 13 |
| 15.339 | 2716 |  | 38 | 29 | 30 | 70 | 57 | 00 |
| (2) 15240 | 2716 |  | 38 | 29 | 30 | 70 | 57 | 00 |
| 15945 | 2711-22 | $38^{\circ}$ |  | $-39^{\circ}$ | $13^{\prime}$ | $7005^{\prime} 30^{\prime \prime}$ | $-720$ | $12^{\prime}$ |
| 15765 | 2724 |  |  | 47 | 00 | 73 | 25 | 00 |
| 15760 | 2724 |  |  | 47 | 00 | 73 | 25 | 00 |
| 15757 | 2724 |  |  | 47 | 00 | 73 | 25 | 00 |
| 15763 | $27{ }^{2} 4$ |  |  | 47 | 00 | 73 | 25 | 00 |
| 15762 | 27.27 |  | 36 | 35 | 00 | 74 | 03 | 30 |
| $1575{ }^{\circ}$ | 2730 |  | 36 | 42 | 00 | 74 | 30 | 00 |
| 15758 | 2735 |  | 37 | 23 | 00 | 73 | 53 | 00 |
| 15759 | 2731 |  | 36 | 45 | 00 | 74 | 28 | 30 |
| 15761 | 2731 |  | 36 | 45 | 00 | 74 | 28 | 30 |
| 15764 | 2731 |  | 36 | 45 | 00 | 74 | 48 | 30 |
| 15747 | 2731 |  |  | 45 | 00 | 74 | 28 | 30 |

## Ctenophora.

Beroè ovata? Br.

| Catalogue number. | Station. | North latitulo. |  |  | West longituke. |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 0 | ' | 11 | $\bigcirc$ | 1 | ' |
| 11658 | 2563 | 39 | 18 | 30 | 71 | 23 | 30 |
| 11659 | 2542 | 40 | (1) | 15 | 70 | 42 | $\pm 30$ |
| 11842 | 9563 | 39 | 18 | 30 | 71 | 23 | 30 |
|  | 2575 |  | 07 | 00 |  | 26 |  |

$$
\text { Station } 2585 .
$$

This is the first record of this genus from the Gulf Stream.
Cambridge, Mass., May 27, 1887.

## EXPLANATION OF TIIE PLATE.

Pegantila, sp. incog.
Fig. 1. View of Pegantha from the side.
Fig. 2. View of Pegantha from aboral region.


Fig. 2.

## INDEX。

## [Note.-The references are to page-figures in braokets.]

Page Page.
Diphyes ..... 8
Diphyid:e ..... 8
Discoidea ..... 9
Ephyrida ..... 20
Ephyroides ..... 21
rotaformis ..... 1,20
Epibulia aurantiaca ..... 8
Fewkes, J. Walter ..... 1
Geryonidæ ..... 12
Gleba hippopus ..... 7
Heckel, Prof. Ernst ..... 1,11
Halicreas. ..... 1
minimum ..... 15
Halicreasidse ..... 15
Hippopodix ..... 7
Hippopodide ..... 7
Hydrozoa ..... 2
Liriope scutigera. ..... 12
Medusæ ..... 1
Mesonema ..... 9
cyaneum ..... 9
Muggiaa ..... 8
kochii ..... 8
Narcomedusa ..... $12,15,17$
Nauphanta ..... 20
polaris ..... 20
Challenger, H. M. S., voyage of ..... 19
Chun, Dr. Carl ..... 8
Collaspidæ ..... 18,19
Collaspis ..... 19
Craspedota ..... 9
Cremastoma ..... 9
flava ..... 9
Crystallodes rigidum ..... 7
Ctenophora ..... 1,22
Cunanthidr ..... 12
Cunina ..... 12
campanulata ..... 14, 17
discoides ..... 13,14
lativentris ..... 14
mucilaginosa ..... 14
multifida ..... 14
oligotis ..... 14
prolifera ..... 14
rhododactyla ..... 14
rubiginosa ..... 14
vitrea ..... 14
Cyanea ..... 21
arctica ..... 21
Cyaneida ..... 21
Diphy: ..... 7

Pegantha ................................................. $1,15,16$
pantheon ..... 16
quadriloba ..... 15
Peganthida ..... 13, 15
Pelagia cyanella. ..... 22
Pelagida ..... 22
Periphylla ..... 20
hyacinthina. ..... 20
Periphyllidx ..... 20
Physalia arethusa ..... 6
Physaliadre ..... 6
Physophore ..... 7
Pleurophysa, gen. nov ..... 1,5
insignis, sp. nov ..... 5
Pneumatophorie ..... 2
Polycanna ..... 9, 11
americana ..... 10, 11
crassa. ..... 11
Hava ..... 11
fungina ..... 9
germanica ..... 9
grocnlandica ..... 10,11
italica ..... 9
vitrina ..... 9
536 REPORT OF COMMISSIONER OF FISH AND FISHERIES. ..... [24]

|  | Page. |  | Page. |
| :---: | :---: | :---: | :---: |
| Polyxenia. | 17 | Solmissus | 14 |
| cyanostylis | 17 | bloekii | 14 |
| Porpita linnæana | 9 | faberi | 14 |
| Porpitidx. | 9 | Stomatoca apicata. | 12 |
| Pterophysa | .1,2,4,5 | periphylla | 1,11, 12 |
| grandis | 3 | Tamoya... | 14 |
| Rhacostoma. | 9, 10 | haplonema. | 14 |
| Rhizophysa eysenhardti | 3 | Tamoyila .. | 14 |
| Rhizophysidre. | 1,5 | Velella mutica | 9 |
| Siphonophora | 1,2 | Velellida | 9 |
| Solmarida | 17 | Zygodactyla ..... | 9, 10, 11 |
| Solmaris . | .- 12 | crassa | 9 |
| corouantha | .. 13, 14 | cyanea | 9 |
| incisa......... | .. 1,17 | grcenladi | . 9,10 |

## APPENDIX C.

FISH CULTURE.

# VI.-0N THE FISH-CULTURAL ESTABLISHMENTS OF CEvTRAL EUROPE.* 

By Dr. Eugenio Bettoni and Di. Decio Vinciguerra.

## A.-NOTES ON FISH-CULTURAL ESTABLISHMENTS VISITED BY DR. BETTONI.

List of the cstablishments visitcd.

| Location of establishment. | Character of establishment. | Name of director. | When founderl. |
| :---: | :---: | :---: | :---: |
| Switzerland: | C |  | 1889 |
| Zuricle Canton of Zuricu - | Cantonal. | Dr. Asper .io..........- | 1889 |
| Neuhausen, Canton of Schaffliausen. |  | Moser-Ott . | 1877 |
| Germauy: |  |  |  |
| Hüningen, Alsace | Governmental | II. Haack .-...-........ | 1854 |
| Selzenhof, Baden. | Owner, Mr. Schns | C. Schaster | 1872 |
| Seewiese, Bararia | Owner, Mr. Zenk | 31. Hartmann | 1881 |
| Cosmandorf, Bavari | Owner, Mr. Mittag | Mittag. | 1880 |
| Wilthen, Sasony... | The Catholic Church at Bantzen. | Teubue | 1880 |
| Lübbinchen, Prussia | Owner, Mr. Eckardt. | R. Eckardt ... | 1868 |
| Berneuchen, Prussia.. | Owner, M. r.il | Max von dem Burno | 1877 |
| Michaelstein, Brunswick etherlands: | Government | Wegener ...... | 1881 |
| Velp | Joint stock company | Boatjes | 1871 |
| Apeldoorn | Owner, Mr. Nordoek- Hegt. | Nordoek-Hegt . | 1880 |

## I.-Salmon and trout culture.

The water in general.-In consulting rarious treatises on the subject I have found that, in founding a fish-cultural establishment, it is necessary to take into account the origin of the water to be employed, so that it may be used for that branch of fish-culture to which it is best adapted. In fact the water of springs, brooks, and rivers may all be employed in the incubation and raising of salmonoids, provided, of

[^77]course, that it meets all the necessary requirements of purity, nutritive substances, sufficient aeration, and suitable temperature.

Spring water, which does not contain mineral substances, is to be specially recommended for hatching, provided it is not so warm as to exceed $10^{\circ}$ C. [ $50^{\circ}$ Fahr.]; as owing to its even temperature it appears cool in summer and warm in winter.

On the other hand, brook water commends itself, because generally it is easy to oltain, and contains a good deal of air, in which latter respect it is excelled by river water, which is well adapted to the purpose, if it does not carry too much mud. In northern comitries, however, this water is apt to freeze.

In view of the above it will not seem strange that the first request which I made of the directors of the establishments visited by me was to inform me in relation to the quality of the water employed by them. I have below tabulated their statements regarding the quality and temperature of the water employed in their hatcheries.

Establishments in which only spring water is used, which rises in close proximity to the hatching chambers.
Fstablishments.

Establishments in which spring water, brook water, or viver water, either each by itself or mixed, is used.

| Hüningen ...--.............. | Several springs which rise in the extreme |  | ${ }^{\circ}{ }^{\circ} \mathrm{C} .00{ }^{\circ} \mathrm{F}$. |
| :---: | :---: | :---: | :---: |
|  | southwest of the territory occupied by the establishment; a portion of their water being led to the hatcheries through pipes, 2,950 feet long. |  |  |
|  | Rhine water from a canal connecting the Rbone and the rhine, led into tho inclosure, and brought into the hatching honses by means of turbines. | Varying. | Varying. |
| Selzenhof. | A spring at a short distance. | $8 \quad 46$ | $12.5 \quad 55$ |
|  | Water from a brook which rises at the distance of half an hour. | 2. 5-8 37-46 | 12-15 54-59 |
| Seowiese. | Several springs rising within the inclosure of the establishment. | $8 \quad 48$ | 8? 46? |
|  | Water from the brook called "Fischbach," a tributary of the river Saale. |  |  |
|  | A mixture of the two waters................. | 1152 | 1152 |

[^78]Establishments supplicd from springs led to the hatching house through long open courses, or through ponds and canals.


Establishments which use other-water.

| Radolfszell | Drinking water of the country |  | ${ }^{\circ} \mathrm{F}$. | ${ }^{\circ} \mathrm{C}$. | ${ }^{\circ} \mathrm{F}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Zarich | Drinking water of the city, drawn from the lake. |  | 39 | 21.5? | 71 ? |
| Cosmandorf | Mill canals coming from the river Rothe | 1. 5-8 | 35-46 | 19 | 66 |
| Berneuchen | Mill canals coming from the tiver Mietzel |  | 32-37 | 25 | 77 |

Temperature of the water facorable to hatciing.-It is at present almost impossible to say which of the various temperatures under the influence of which the hatching process is accomplished is absolutely preferable; but in general it may be stated that, in the cold of winter, a temperature which does not rise much above $10^{\circ} \mathrm{C}$. [ $50^{\circ} \mathrm{F}$.] is favorable for salmonoids; nevertheless there are facts to show that salmonoids have been successfully hatched both at a much lower and at a much higher temperature (at Torbole in water of $11^{\circ} \mathrm{C}$. [51.8 ${ }^{\circ} \mathrm{F}$.], and at Garda in water of $\left.14^{\circ} \mathrm{C} .\left[57.2^{\circ} \mathrm{F}.\right]\right)$. But it is certain that the development of the embryo succeeds better if the hatching water has an even temperature than if it exceeds certain limits of heat or cold; and this condition is more generally found in spring water than in other water. It should be understood, however, that favorable conditions of temperature may also.be found in other than spring water; and if these conditions do not exist, we have seen fish-culturists endeavor to obtain them by mixing waters of different origin, as is done or can be dove at Hüningen, Selzenhof, and Seewiese; or by having recourse to a stove, which in several places I have seen in the hatching rooms, as an indispensable article of furniture. The objection might be raised that the mixing of spring water with other water, or the substitution of other water, the placing of the hatching chambers in the ground, as is done in some northern countries, and the stoves, have no other object than to ward off the dangers of freezing; but we may be allowed to suspect that practice employs all these means in order to obtain or to approximate that evenness of temperature which otherwise could not be obtained.

As it is necessary, therefore, to know whether sudden changes of temperature during the hatching period can be averted and whether they are hurtful, and to find out what are the final consequences of accelerated and of retarded hatching* on the life of the soung fish which have been hatched from eggs treated in different ways, it follows that fish-culture is, strictly speaking, experimental. The answers of theoretical fish-culture on these points cannot be entirely evasive and categorical. Meanwhile, however, by carefully interpreting all that practice teaches, and by applying physiological analogies, we find that the changes from a relatively high to a relatively low temperature are to be feared, while there is not so much dauger in changes from a low to a high temperature, because if there is a certain given degree of warmth care can be taken to maintain it.

Fish-culturists distrust hatching at a relatively high temperature, not because they think that it, may unfavorably affect the development of the embryo, but becanse, as Max von dem Borne states, the young fish which have been hatched before their proper time are in need of food earlier than they would have beeu otherwise, and nature, still wrapped in its winter sleep, may not yet be able to furnish the food.

Hermann Haack also verbally stated the same, relative to hatching accelerated by comparatively too hot water, as, in his opinion, the young fish hatched too soon and placed in a lake immediately after the absorption of the umbilical sac, would miss the food furnished by the eggs of insects which can not be obtained until mild weather sets in. In view of this circumstance, he is inclined to prefer slow hatching in river water, which is generally colder in spring thau spriug water, or in brook water coming from springs, which, however, during a long course has had time to lose some of its original warmth. It appears to me, however, that Mr. Haack's suggestion does not yet furnish a complete remedy. He proposes to phant the young fish later, which may become possible by feeding them for some time artificially in the same water in which they have been hatched.

But is it really true that young fish placed in a lake too early must necessarily die? Fish, like most other animals haring blood of a variable temperature, can, as is well known, remain without food for a long time; but we desire to know, as regards salmonoids, and for purposes of fish-culture, which are the extreme limits of the period of fasting which the young fish can reach, and whether this will not more or less exercise an influence on their bodily development, on their health, and on the condition of their ottspring. And this is a question which can ouly be solved by experimenting.

Filtration of the water.-It is well known that water couducted in open canals through a comntry covered with vegetation carries with it leaves and other regetable matter, which has either fallen into it or

[^79]which has been brought there by winds and showers ; it is therefore a common practice to keep these objects out of the water by means of gratings and clains, or similar contrivances, even in cases where the water is not to be used for such delicate objects as the hatching of fish. But water incariably contains other particles, principally belonging to the mineral kingdom, which remain floating, as their weight is very light, and which are sometimes so diminutive that they can not be discerned with the naked eye, the water being to all appearances perfectly clear; and it is these particles which, if allowed to remain in the water for any length of time, cover any objects submerged in it with a sediment.
The best authors on the subject of fish-culture state that this sediment is injurious to the eggs of fish. Max you dem Borne does not hesitate to say that, next to mold, this sediment is the most dangerous enemy of fish; and Benecke, not satisfied to call attention to the dangers of this sediment, accurately describes the means by which it can be removed, and states that eveu the clearest water will always contain some of it.* Hence filters are used, which $I$ do not deem it necessary to describe here, as they are well known, and have been described in many treatises on the subject, the object of which filters being to remove by mechanical means many of the small impurities, sediment, and diminutive animals. Prof. P. Pavesi also attributes the mortality which several times made sad ravages in the hatching-houses of the fish-cultural establishment of Torbole to the lack of filtration. $\dagger$

The theoretical knowledge which I possessed, and the practical knowledge derived from experiments made at Torbole and Garda, caused me to start on my trip to foreign countries with the firm expectation that I would find filters universally adopted. But my surprise was great to find their use not near so general as I had supposed, and that they were entirely wanting even in establishments where the quantity of sediment had for a long time formed the canse of serious complaints, as, for instance, at Hüningen. In consulting the historical notice of this establishment I found that the turbid character of the water of the Rhine was deplored, and the wish expressed (in 1862) that filtering apparatus might be introduced, which was entirely wanting; and that then, as now, the water from some neighboring ponds was used for the hatcheries, because the Rhine water contained so much sediment.

In only five of the fourteen fish-cultural establishments which I visited did I see filtration properly practiced, wamely, at Seewiese, Berneuchen, Wilthen, Michaelstein, and Velp, and a rudimentary filtration at Dachsen and Selzenhof. At Zurich the water of the lake is led into reservoirs for public use, and is sufficiently filtered for that pur-

[^80]pose; but the process of filtering should be repeated near the fish-cultural establishment.

Mr. Haack justifies the absence of filtering apparatus by saying that practice has shown the sediment to be harmless, and I can state from personal observation that fish eggs have been successfully hatched at Hiningen even in hatching-boxes and in California apparatus, supplied with water directly from ditches without any grating at the entrance.

At Max yon dem Borne's establishment I saw in operation the filter with several chambers, terminating with the so-called American filter (of flannel), but in answer to my inquiries he stated that for filtration there might be suistituted the washing of the eggs by letting water fall on them from a certain height from the pierced spout of a simple water-ing-can. This proves at any rate that this eminent fish-culturist has not abandoned the idea above referred to, that the sediment is hurtful, as long as he tries to remove it in some way or other.

Those who maintain that filtration is useless can not say that they follow the example of nature, because if it is true that the trout cover the eggs which they lay in brooks, they do it with small stones and not with mud; and the sediment cannot adhere to the eggs, because they are continually kept floating by little currents passing through tho crevices between these stones.

I am not able to explain the difference of opinion in this respect amoug such competent persons; but I have no doubt that in erery case the opinion is based on experience drawn from the peculiar practice prevailing in the different localities. It is generally agreed that if the quantity of the sediment exceeds certain limits it becomes hurtful to the eggs, preventing free respiration. But as regards allowing a small quantity of sediment, people should be guided by its quality, which in one place may be such as to render its removal necessary, while in others it may be left without running any risk.

Of whatever description the filtering apparatus may be, the filtering should be done through thick or relatively indestructible matter, sand, or fine gravel, alternating with layers of charcoal, sponges, \&c. Even then it may not be entirely efficacions in directly preventing the development of the minute spores, which are among the most dangerous enemies of pisciculture. But if sediments of a mineral nature are combined with organic matter, which may sometimes happen (although the combination may greatly vary in its charaeter), I think a mechanical process of filtration may indirectly be successful by keeping the parasites away, or at least diminish their spreading, since only organic matter contains the conditions favorable to their growth. There is no doubt, however, that the antiseptic property of coal, which is largely emplosed as a means of filtration, is lost after a short time, so that after a certain time the filters will only act in a mechanical way. For this reason I would like to know whether any experiments have been made in pisciculture with filtration by "carferal" (carferal, or iron sponge,
is a compound of aluminium, iron, and carbon, the preparation of which is kept a secret: it is usexl largely in the British wary), which, eren after having served for a long time, will not leave in the water which passes through it any traces of ammonia or any spores, which does not happen when charcoal is employed. In my opiuion the use of carferal for filtering the water to be employed in hatching fish eggs would at least keep away the mold; and perhaps it would be possible to use water containing a large quantity of organic substance of another nature.

To reach a conclusion in this matter I should say that under certain circumstances filtration may be unnecessary, especially if the sediment is so light that it remains floating in the water; but it will be necessary, if the sediment forms deposits on any bodies submerged in the water, or if, owing to its peculiar nature, it possesses injurious qualities. But filtration may be recommended under all circumstances, if for no other reason, because one wonld rather see the eggs clean, and also because inspection would become easier.

Aeration of the water.-A defect which is sometimes found in spring water, especially if it flows into the hatching-box after haring for some time passed through closed canals, is the scarcity of air, which is not the case in brook or river water which has for a long distance passed through the open air, and which throngh its constant contact with it has retained a large supply of this vivifying agent.

Some fish-culturists, as, for instance, Mr. Schuster, consider the aeration of the water of such importance as to favor it and to increase it artificially, when there does not seem to be a sufticient quantity of air in the water. I cannot but think that artificial aeration of the water is absolutely necessary in cases where the air is lacking, and is a landable precaution when such lack of air is suspected, though there may be no means of proving it, and superfluous when water is used which contains a superabundance of air; but under no circunstances will aeration prove hurtful. Moreover, the different linds of apparatus used for artificially aerating water are so simple and so little expensive that economical reasons should never prevent people from using them.

I am sorry that I have lost the design of the air-injector of Mr . Schuster which I saw in position at the month of the outflow of the water into the hatching troughs, but I will give a description of the principle on which it is based. It simply consists of two concentric metal vessels, into the lower one of which the water flows from the other through holes in the bottom. The water in forcing itself through these holes produces air, which enters at the upper part of the central tube and mingles with the water.

At Neuhausen the water destined for hatching is aerated by means of pipes which carry it underneath the hatching-house. These pipes are placed near the surface of the water in distributing canals, and are of S. Mis. $90-35$
such a diameter that the water rising above the outer edge does not completely fill them.

The water descends like a long reil along the inside of the pipe, producing a strong current of air, which rushes down with the water. I do not think that these pipes are constructed for the express purpose of acting as air-injectors; but, howsoever this may be, it is none the less true that they serve this purpose in as very efficacious manner.


$$
\text { Fig. } 7
$$

The manner in which the water enters the individual hatching-boxes may also be a means of introducing air into the water. I refer particularly to the practice which I observed in the establishment of Neuhausen and also in that of Dachsen. In the Neuhausen establishment the water, which from the general distributing reservoir is made to gush through a pipe at same height above two troughs, first enters a square box, whence it descends along the short sides like a waterfall, as shown in Fig. 1.

At Dachsen the water flows through stop-cocks into common terracotta flower-pots, the bottom hole of which is purposely somewhat enlarged. The pot rests on a piece of metal sheet, on which are placed a number of small pebbles. As the distance between the mouth of the stop-cock and the pebbles in the flower-pot is sulficient to allow the stream of water to spread out somewhat, and to break itself on the pebbles with a certain force, the water comes in constant contact with the air, as shown in Fig. 2.

I must also state that the water may receive some air in the open canals through which it is led into the hatching-houses at Hiiningen, Selzenhof, Neuhausen, Dachsen, Zurich, Berneuchen, MichaeIstein, Velp, and Apeldoorn. This small quantity of air is, however, entirely lacking at Cosmandorf, Wilthen, and Seewiese, where the distributiug canals are entirely closed. This remark should not be misunderstood, since the object in view may be fully attained, as the water contains a sufficient quantity of air, either owing to the fact that it is either river or spring water, or by flowing open for a considerable distance after it has left the spring.


Hatching apparatus.-The character of the hatching apparatus which I saw in operation to some extent partakes of the mature of the period in which the establishments to which they belong were fommed; but they also reflect the special riews and the degree of techmical education of their directors.

It is certain that among the very large number of models of hatching apparatus which I have seen there is not one which could be said to answer the purpose better than the others; bat if we take into consideration the requisites which they must possess, it will easily be understood that these requisites may be obtained in many different ways, and by different means. For the sake of clearness I will enumerate the priucipal requisites which the hatching apparatus must possess, as follows:

1. They must furnish a suitable, continuous, regular, and uniform supply of aerated water.
2. They should economizo space as much as is compatible with the proper performance of the hatching operation and with the least possible hinderance to the renewal of the water.
3. They should be constructed of impervious, durable, and clean materials.
4. They should be placed in such a manner as to facilitate the operations which should be carried on during the hatching process, especially the separation of the spoiled eggs from the healthy ones.

According to their typical character I may classify the hatching apparatus which I hare seen in operation as follows:

1. Coste's system: (1) Stairs of troughs; (2) hatching tables; (3) subterranean canals.
2. Simple troughs: (1) Troughs of carbonized wood; (2) troughs of cement or zinc.
3. Hatching tables: (1) Williamson tables; (2) Zenk tables.
4. Holton's system: Holton hatching apparatus.
5. California troughs: (1) Eckardt troughs; (2) California boses; (3) funnel-shaped troughs; (4) automatic selectors.
6. Ice boxes: The Haack box.

The defects of the Coste troughs are mell known, and have been clearly shown as fish-culture has further advanced. It is, therefore, not astouishing that they have been ererywhere abandoned, even at Hïningen, where the present director of the establishment does not use them at all. I saw a Coste stairway in white enameled clay at Neuhausen, but it was not in use. Hatching tables (Coste's system) I saw, however, at Hiiningen, where they are still used, and form part of the material which the imperial German Govermment acquired with the establishment. These tahles are about a meter long, with a somewhat deep edge, and are placed on an incliue; the first receives the water direct from a spont in the short side of the table. A perforated partition of zine plate, ruming parallel with the lower edge, lets the water pass, which then flows from this edge through small leaden pipes upou the table placed below. Some of these pipes are kept closed with a stopper, while others are left cutirely open, so as to maintain the desired level. The large compartment (lined on the inside with zinc) is placed between the edge and the partition running parallel with the lower edge, and is destined for the eggs, which are placed on a soft bed supported by the well-known network of glass stems, for which, in some cases, a more cconomical construction of metal wire is substituted.

Similar to the Coste tables are the large troughs in cement, placed on an incline, which fill the large hatching-hall of the Velp establishment. They are placed in a row of five donble compartments having a common edge, and leading to a compartment which is donble the size of the others, and which is the last of the ror. Some troughs intended for hatching are 80 centimeters [about 34 inches] broad and 2 meters [about 79 inches long. Here likewise the eggs are placed on Coste frames,
many of which are set in terra-cotta, and have, in place of the glass beams, beams of chalk. In these tables the water flows over the eggs more easily, and does not flow among them; the aeration, however, is not and can not be so defective as in the Coste stairway, since the water flowing through pipes from the front edge on to the table below rushes down upon it, and rises again a little, and in every compartment spreads advantageously over a large surface. But it is certain that the renewal of the water must form the proper test, whether apparatus can, in the establishment which possesses it, be used to advantage or not. The Coste tables at Miiningen show, by their state of preservation and by their dimensions, that they are not so expensive as those found at Velp.

The spring water at Hiningen is in part made to flow through canals of cemented brick-work which are laid in the ground under the hatching hall. They may be compared to veritable brooks, while by their bottom, arranged in long steps ending in perforated cross partitions, they resemble the Coste tables.

This system of subterranean cauals has one great inconvenience, as it compels the person who places the frames for the eggs in position, or who has anything to do about them, to work kneeling on the parement. This inconvenience is not found in the hatching tables at Itiningen and at Velp, as they are placed at a conrenient height. The simplest apparatus, however, is the large wooden troughs which I saw at Neuhausen and Dachsen. The first of these were constructed according to two identical models, but difiering in size. Two and two are placed lengthwise by the side of each other; their edges are about 20 centimeter: [8 inches] high; their shape is that of a parallelopiped; they have a partition 25 centimeters from the short edge, opposite to which the water enters if their length is 2.68 meters and their breadth 43 centimeters [ 106 by 17 inches]; and at a distance of 8 centimeters, if their total leugth is 68 centimeters and their breadth ouly 22 centimeters [ 27 by 9 inches.] The eggs are spread on frames of iron and wire, the water, which is kept at a height of 8 centimeters, flows into the space between the partition and the outer edge through closed pipes, at the end of which there is a metal grating.

The Dachsen troughs resemble those which I have just described, bat here the egess are placed on a lacer of very fine gravel 2 centimeters $\left[\frac{3}{4} \mathrm{inch}\right]$ high, above which there are 3 ceutimeters of water. This sys tem of hatching in wooden troughs, the eggs being placed on very fine gravel, is practiced a good deal in America; and I have also secu it employed at Zuricb, but the same result is said to be obtained by placing the eggs on the carbonized bottom of the trongl, or on frames of metal wire, of switches, or glass reeds. I would, however, observe in this connection that, the general conditions of hatching being the same, which it seems to me is hard to prove, the frames represent an expensive but durable material, and the gravel a comparatively small expense, all the work required being to get it all of a suitable size, and to wash it in a dilution of mineral acids before using it. If, therefore, it was not more
to the parpose to keep the eggs on frames, it would be the most economical way to place them directly on the bottom of the boxes.
At Radolfszell, likewise, there are some wooden tronghs constructed in this simple and primitive plan. I saw at Mr. Schuster's establishment, at Selzenhof, similar troughs, but constructed in cement, and therefore of more solid material, more durable, and neater in their appearance. Their leugth varies from 4.8 to 3 meters [ 16 to 10 feet]. As they have a partition of wire in the usual place, with the well-known canal which carries the water to the parement, they do not need any special description. I will only state that those which are placed in the room to the right of the entrance have anexcavation immediately underneath the place where the water rushess out for the purpose of regulating its movement and preventing it from springing up with too great force.
A portion of the very large hatching-rom at Apeldoorn contains troughs in cement, paced in pairs. Lach trongh is supplied with water from a separate spont, and therefore there is not the least trouble to keep the water aerated. Some of the tronghs are of wood, but it is intended to substitute for them, at no distant time, troughs made of the material referred to above.

The hatching.tables according to the Williamson system are well known and hare often been described. They have the advantage of causing the current of water to pass below the frames containing the eggs, these frames being, in order to economize space, placed in this hatching apparatus one above the other. I have seen these tables at Radolfszell and Michaelstein. In the last-mentioned establishment they are placed over cemented tanks, which serve for fish, and are used only in case of necessity.

The Zenk tables, which are an invention of the owner of the Seewiese establishment, Mr. Frederick Zenk, although not in every respect like the Williamson hatching apparatus, still resemble it somewhat. They are troughs 2 meters long and $60^{\mathrm{cm}}$ broad [ 6.1 by 2 feet $]$, made of pine wood, tarred on the outside and carbonized on the inside,* and their edges are $20^{\mathrm{em}}$ [nearly 8 inches] high. The water flows from tro stop-cocks at the head of the trough against a partition of woorl, which touches the bottom of the trough, but which is 4 centimeters lower than the edge; thence it passes into another compartment, whose partition rises to the same height as the edge, but does not touch the bottom. The water, therefore, flows over the first partition, as in the TVilliamson system, and passes underneath the secoud. A zine pipe, starting from the distrib-uting-pipe, is laid diagonally on the bottom nearly the entire length of the trough. This pipe passes over the first and below the second partition, and has all along its sides holes, from which small currents of water flow, which is said to exercise a very beneficial influence on the hatching process. At the distance of 9 centimeters from the end wall

[^81]of the trough there is a partition which has nine holes, in three perpendicular rows, which can be closed by means of small cork stoppers, with the view to regulate the depth of water in the trough. If all the nine holes are open the water in the hatching apparatus keeps at a height of 5 centimeters; if the lower holes are closed the water rises to the height of 10 centimeters; if those in the middle are closed the water rises to a level of 15 centimeters; while if the upper holes are closed the water may rise to $20^{\mathrm{cm}}$. (See Figs. 3 and 4.)

Into the troughs placed underneath the first the water flows in the following manner: The water, which reaches these troughs from those above, has already served, but fresh water is led into them through the diagonal pipe at the bottom, which receives it direct from the distrib-uting-pipe.

The eggs are placed on rectangular frames measuring $56 \times 25^{\mathrm{cm}}[22$ by 10 inches.] They are made of galvanized-iron wire and have perforated edges. If these frames, as is sometimes done, are not placed parallel with the edges of the trough, this is done to aroid too uniform a current. On every one of these frames there can be placed 10,000 trout eggs, and as six frames can be placed on the bottom of the trough and over each one of these three, these tronghs have each a total capacity of $60,000 \mathrm{eggs}$.

The hydraulic movement of this trough is in most respects like that of the Williamson trongh, ouly with this difference in favor of the latter, that the movement is repeated at each row of frames, partitions being interposed, which are wanting in the Zenk trough and which, in my opinion, do not present the same adrantage as the pipe in the bottom of the Seewiese trough. Both models, however, have the inconvenience that it is difficult to pick out the good from the spoiled eggs, for which purpose it is always necessary to change the place of the frames so that the one which is to be operated on is always at the top.

I saw the Holton apparatus at Radolfszell and Cosmandorf, but they were not in operation.

As a matter of course, Mr. Eckardt, at Liibbinchen, employs the troughs of his own invention, which, according to the movement of the water, must be classed among the California apparatus. It is not necessary to describe them here, as Professor Paresi has already given a full description of them in his report above referred to.

The California trougl is used very much, but not so extensively as might be supposed from the favor which it has found with many fishculturists. Still, I have found establishments in which it is the only hatching apparatus in use; and many in which it is used in addition to other hatching apparatus, for the reason that owing to lack of space the number of these apparatus could not easily be increased.

The location of Hinningen is not favorable to the use of this apparatus on a large scale, but owing to the favor which it has found with the distinguished director of the Hüuingen establishment (who himself had
introduced some modifications in it), it forms part of the apparatus which has been acquired during his directorship. At Hiiningen I have also seen California troughs in use in the open air.


ZENK TLOUGH.

As reserve or supernumerary apparatus I have seen these troughs employed at Selzenhof, Zurich, and Seewiese.


In the last-mentioned establishment I hare seen it with such singular modifications that I deem it proper to give an idea of the same.

One of these models represents a small box with a rectangular base (see Figs. 5 and 6) which serves to receive the water directly from the distributing cock. Along a line in the middle of the longer side of this box there is joined to it a receptacle of oral shape, in which the box with the eggs is placed. A small pipe placed below the upper edge of the box pours the water into a second pipe which is lower, broader, and longer, which takes the water which camot all come out through the smaller pipe and which also flows between the two partitions, the inside and lower of which supports the frame for the eggs, while the upper limits the external surface of the apparatus. The capacity of this box is 6,000 trout eggs, the exact quantity which a California trough of the normal type and dimensions can hold.

I do not consider it necessary to describe another modified type of the California box, capable of holding 7,000 trout eggs, lower than the
regular Califoruia box, but with cross-sections and rectangular sides, which I saw at Seewiese, and which, like the first mentioned, is made by Ignaz Walther, of Marktreit. At Cosmaudorf, however, the California trough only is used (Max von dem Borue type) without a third box, and with the addition of the "cateh-box," as also with von dem Borne at Berneuchen, and to a great extent at Michaelstein.

In the last-mentioned place some of the California troughs are of the Schuster model-that is to say, with a fixed perforated partition ; but some have a movable partition. The boxes are arranged on an incline in such a manner that each ineline has seven steps, so that the water flowing from one spout passes from one box to the other, from the first to the seventh in the row.

At first sight this arrangement shows the same defects which have been noted in the Coste stairway; but the better distribution of the water, the large pipe which serves for its outflow (which causes it to fall below in the sbape of a thin reil), and the quicker renewal of the same, makes up in the California troughs for the scarcity of air, which in the Costetroughs is remedied by the presence of small faucets, which distribute the water in the shane of small springs.

The best way of utilizing the California boxes, economizing space as much as is compatible with the proper dispatch of the hatching process, I have seen employed at Berneuchen. Here each spring supplies only two tronghs in succession, a box being placed between each couple. Three models of Califoruia troughs are employed here, namely, Max von dem Borne, normal type; funnel-shaped troughs (Bell) ; and automatic selectors.

The troughs are placed in cemented tanks, which successively are used for varions operations comnected with fish-culture; for keeping the spawners and milters which are to furnish eggs for artificial fecundation, for hatching, and finally for the young fish. These tanks are 2 meters long, 50 centimeters broad, and 30 centimeters deep [about 79 by 20 by 12 inches].

By keeping the California boxes in tanks the water is prevented from flowing on the pavement, and another useful object is reached by an arrangement for regulating the depth of water in these tanks by means of a pipe with an elbow, attached on the iuside to the mouth of the discharge pipe and terminating in a box of tin or perforated zinc. This pipe may be more or less inclined by the operator, and allows him to obtain the needed depth of water, as by increasing or decreasing the contact of the water and the box he can raise or lower the level of the - water in the tank.

The addition of a mooden box into which the discharge pipe passes from the tanks will not in any noticeable way influence the result of fish-cultural operations; but it will serse as an illustration of the exemplary order and cleanliness which reign in Max von dem Borne's establishment. I can not imagine anything more convenient and cleanly,
as well as healthy, than his establishment, where you can approach the tanks containing the apparatus through which the water runs on any side without wetting your feet.
I may pass in silence the Lavallette troughs (which I saw at Seewiese), and the Zug apparatus (which I saw at Zurich) ; the first, becanse made of porcelain, has a surface perforated by only a few and large holes; and for the second antomatic selectors have been substituted to advantage.

To some extent ice boxes may be considered as belonging to the hatching apparatus. Thes consist of prismatic or cubic boxes with thick walls of wood, sometimes lined on the outside with zinc. In these boxes, which may have a double lid, are placed, at a suitable distance, one above the other, several frames with a perforated wooden or wire bottom. On these the eggs are placed on moist cloths. On the top frame ice is placed which lets its cold drippings pass through the perforated bottom. In this manner eggs have been shipped a long distance, and the embryonal development has been delayed.
In reviewing the character of the hatching apparatus which I saw in operation, I would say :

1. That on account of their convenience (suitable height of the apparatus) troughs of any kind of material, and hatching tables of the height of an ordinary table, are equally to be recommended.
2. Troughs of cement and metal are preferable on 'account of the durability of the material, and because they can easily be kept clean.
3. On account of the proper hydraulic movement all those apparatus are to be preferred in which the water runs among the eggs placed at its bottom.
4. An arrangement by which the eggs are more scattered is not to be recommended, unless the abundant and rapid renewal of the ' ater fulfills the third condition.
5. Owing to the greater facility with which the spoiled eggs can be picked out from among the sound ones, those methods are to be preferred, by which the eggs are placed in a single layer.
6. I consider it better to place the eggs ou frames of netting in preference to placing them on fine gravel, or directly at the bottom of the trough ; the best kind of frame is that which allows the water to pass through easily (wire netting), and which has perforated edges.
7. All the hatching apparatus which I have seen answers the purpose more or less, but the ordinary California trough excels them all, because it meets all the desired requirements.
8. Automatic selectors are particularly suited for the hatching of eggs of Coregoni ; while the ordinary California trough is specially adapted to the hatching of the eggs of salmonoids.

At Hüningen I saw in operation the Haack apparatus. It was there employed for Coregonus eggs from the Lake of Constance, which were hatched at the expense of the Italian Government. The eggs remained
in the box containing fine ice until it was time to separate the fecundated eggs from those which had not been fecundated, and which were opaque, and from those which through contact with moss and alga had assumed a bright blue color, so as to make them resemble colored crystals.* The eggs were gradually hatched on Coste tables. $\dagger$

Hatching-houses.-It is my opinion that he who travels for the purpose of obtaining a practical knowledge of the various aids employed in an industry like fish-culture should pay more attention to a critical examination of the apparatus seen in operation in the various establishments than to the extent to which this apparatus is employed, because this will necessarily vary according to the funds at the disposal of the establishment and the importance of the operations to be performed. I shall therefore not speak of the size of the various hatching-houses, but pass in quick review the characteristic features which they must possess.

The object of these houses is to protect both the hatching apparatus and the persons who work them against the inclemencies of the weather. If in case of necessity any kind of house or shed with windows suitably placed may be converted into a hatching-house, it is none the less true that buildings erected for the purpose, in a suitable position and furnished with all the necessary requisites, will answer the purpose better. Any one constructing such buildings should have due regard to the severity of the weather, and provide them with sufficiently thick walls. Thus at Cosmandorf the hatching-house has double walls of wood with compressed straw between them.

At Cosmandorf, Dachsen, and Apeldoorn the hatching-chambers are also of wood. The large hatching-room at Berneuchen has three walls of wood, the fourth being of brick, formed by the same canal which carries the water into the establishment. The roof is formed of wooden slats, covered both on the inside and outside with tarred pasteboard. The placing of the hatching-chamber in the ground made necessary by the hydraulic movement also serves the economical purpose of affording protection to the water and the apparatus against the excessive cold of the winter.
I have already referred to the hatching-canals at Hüningeu, which run in the pavement, as being made necessary by the circumstance that the water has to be brought from a spring which rises at too low a level; but they may also serve to keep the water from freezing. Whenever

[^82]the climate makes it necessary (as at Berneuchen, Liibbinchen, Secwiese, \&c.), stoves are employed.*

The hatching-chambers at Hüningen, Selzenhof, Radolfszell, Wilthen, Lübbinchen, Michaelstein, Velp, Zurich, and Neuhausen are of masonry.

The rooms where the hatching apparatus is kept should be sufficiently lighted by windows placed in suitable position, so as to facilitate the inspection of the eggs and the separation of the spoiled eggs from the good, \&c. It is also asserted that a violet or blue light is most favorable to the embryonal development of the eggs and fish. I accordingly expected to see colored glass employed in some establishments, but my expectations were disappointed.

I confess that, with Professor Verson, among others, I am somewhat skeptical as regards the influence of monochromatic (violet) light to the exclusion of the white (composed of various rays of the laminous spectrum) on animal organisms, since, as Verson thinks, the same number of rays of a given color on which it is intended to experiment, to the exclusion of others, pass through a colorless glass.

But, to return to the subject to which I referred, it is easy to guess the reason for the absence of colored glass from the hatching-houses, because according to the advanced opinion of our time the eggs will develop better in complete darkness. $\dagger$ Moreover, it is of little importance in industrial establishments whether some think favorably of violet and blue rays, while others have their doubts on the subject, as experiments in this matter would seem more appropriate in a zoological laboratory. Complete darkness has also its dangers, as it favors the development of mold, while light favors the generation of green algæ.

Even a simple pavement of beaten clay (at Dachsen) may suffice for a hatching room, and it is certainly preferable to some other pavement made of or covered with cement (Selzenhof, Hüningen, Berneuchen, \&c.); and in this connection I cannot speak too highly of the Berneuchen establishment for the ingenious way of preventing a light and continuous movement which, if not hurtful to fish-culture, may injure the building and interfere with the work of the operator.

As regards the filtration of the water it may be stated that the filter may either be placed in a room immediately adjoining the hatching room or in that room. The selection of a place for the filter will depend on topographical circumstances and on the desire to avoid any unnecessary enlargement of the building. It is certain, however, that if the filter is placed in the hatching room itself or in one immediately adjoin ing it, this will be found more convenient, as it affords a better chance to watch this useful apparatus without having regard to the state of the weather.

[^83]It is also useful to have in the hatching-rooms a place for tanks where, during the proper season, and separated by sexes, the spawning fish destined for artificial fecundatiou nay be kept. This is done on a large scale at Hinningen, where there are great tanks in the ground constructed of concrete. It has already been said that at Berneuchen every provision in this respect has been carefully made by Max von dem Borne. It is not necessary to speak of the size of these tanks, as they will have to be in proportion to the number of spawning fish kept on hand in each establishment.
Artificial fecundation of salmonoids.-After it has been ascertained that the spawning fish have reached sexual maturity artificial fecundation may commence. This may be done either by one person alone or with the aid of an assistant.*
In the first case the female fish is taken from the water and held with the right hand over the basin destined to receive the eggs. If the fish is large it is held inclined at a sharp angle. The belly of the fish is then pressed with the thumb of the left hand, the movement being in a downward direction.

If another person assists in the operation he must hold the fish by the tail by means of a cloth. The tro operators hold the fish almost vertically over the basin, the first one holding it by the head with the hand and in the manner indicated, and the second by the tail. The first has to go through the manipulation described above to cause the eggs to come fortl. The male fish is subjected to exactly the same operation.
The amount of pressure should correspond with the greater or less degree of maturity of the female, withont, however, passing certain limits, as excessive pressure would injure the fish without reaching the object in view. In some cases the eggs have reached such a state of maturity that they will come out of themselves when the fish is examined to ascertain whether the genital gland has swelled enough to be operated on.

In natural spawning the salmonoids will deposit their eggs at different, more or less short, intervals; while where the process is artificial they all come out at one and the same time with a certain violent movement, which, however, does not interfere with their successful embryonation. The milt of one male fish is used for the eggs of two or three female fish.

In primitive fish-culture the eggs were kept under the water to be fecumated, as people believed that in doing so they followed the teachings of nature. But it frequently happened that many eggs were not

[^84]fecundated, and were thus lost. In nature the male fish closely follows the female, and it may be said that the laying of the eggs and their fecundation are simultaneons. But in spite of the action of the water which kills the enemies of the eggs, and the aikaline sliminess of the eggs which favors their movements, it is a fact sthat many eggs do not undergo the process of fecundation which necessarily takes place under the water. At the present time, therefore, nature is no longer imitated in a servile manner, and it is the general practice to employ dry fecundation, which assures better and more general success. When as many eggs have been obtained as are deemed sufficient, and artificial fecundation has been reached by mising at proper and regular intervals the milt with the spawn, the eggs are washed and then placed in the troughs.

The possibility of fecundating eggs on the shore of the waters from which the fish have been taken is proved by the circumstance that the eggs immediately after fecundation are so elastic as to allow of their being packed and shipped to the places where they are to be hatched. As soon as incubation has commenced this is no longer possible, eren if managed in the most delicate manner, as the eggs when exposed to any pressure will ineritably be lost. But transportation again becomes possible when the eggs are near being hatched ; that is to say, when the eyes of the embryo can easily be distinguished through the shell. From a practical point of view it is, therefore, important to know whether fresh eggs contained in a dead female fish can be fecundated.

If it is desired to know how many eggs have been obtained, the object can be reached by measuring them in small cylinders of a known capacity, having perforated sides and bottom, and, the kind of fish from which the eggs have come of course being known, to count the eggs in one cylinder* and muitiply by the number of cylinders.

Packing and shipping embryonated eggs.-I have witnessed the packing of embryonated eggs, to be sent a considerable distance, at Hiiningen and at Selzenhof. The eggs were placed on a bed of moisteued wadding, gathering them in a piece of cloth folded in such a manner as to prevent the eggs from touching the sides, and keeping them covered. The layer of eggs was placed on the perforated bottom of a small wooden bos. The next box is exactly like the first, and the last box of the pile coutains the small pieces of ice, the cool dripping of which keeps the eggs below alive. The pile of boxes has on the top a stick of the same length as the boxes, and rests on a similar stick at the bottom. The whole is kept in position by a cord placed crosswise, and is then put in a larger box, the spaces between its inner sides and the pile of boxes containing the eggs being filled with sawdust, hay, or compressed moss.

From Pavesi's report the labels are known which are attached to the outside of the package, and which contain the address of the persons

[^85]to whom they are sent, and generally some directions for their treatment by the railroad employés.

In Germany packages of eggs are received in the mails as postal parcels, and the administration of posts is directed to treat the package with the greatest care, in compliance with the request "urgent" written on a piece of red card-board attached to the usual label.

Tantis and ponds for salmonoids.-My report would not be complete as regards salmon culture if I did not mention the open tanks aud ponds which in many establishments are used for keeping the stock of salmonoids.

The tanks are laid in cement, and covered with an iron grating, and the salmonoids are kept in them, separated according to age. They are so arranged that the fish in them can easily be fed artificially. As regards the matter of artificial feeding, tanks are perhaps better than ponds, as a possible excess of food* can more casily be removed in the former, and as it is also easier to prevent any injurious pollution of the water.

Special mention should be made of a simple contrivance adopted at Hiuningen to protect the lish kept in certain provisional tanks, with wooden sides, especially against rats, which, if they have once got into them, find no way to get out. For this purpose boards are placed at right angles with the vertical sides of the tank, and projecting a little over the water. How this contrivauce may serve as a trap will be understood without any further explanation by a glance at Fig. 7.


## Fig. 7

Tront which have reached a certain age are generally placed in ponds, in company with other non-camivorons fish, which rid the water from any superfluous regetation (espucially algee), and thus, enable the sal-

[^86]monoids to have more ready access to small crustaceans and mollusks, which form an important part of their food.

Mr. Haack cousiders it also necessary to place in ponds those trout which have been deprived of their eggs by an artificial process, because here they will find more farorable conditions for gaining flesh and for recovering from the sudden exertion incidental to forced spawning.

Although on general principles it is preferable that the water in ponds destined for salmonoids should during summer be kept cool, and that its temperature should in no case exceed $31^{\circ} \mathrm{C}$. [ $85{ }^{\circ} \mathrm{F}$.] (according to my observations the temperature did not exceed this limit in any of the establishments which I visited), it will be well to note that aeration, an abundance of water, frequent agitation of the same, and a just proportion between the capacity of the water and the number of fish to be kept in it, will allow the fish to do well even if the summer temperature of the ponds should not altogether come up to the conditions as mentioned above.
It would be useless to describe the arrangements for obtaining the best hydraulic movement in the ponds and to provide for their draining without losing the fish. This is done by putting partitions in suitable places; perforated zine plates being at present preferred for that purpose. More or less ingenious apparatus is employed in this connection, as well as sewers and pipes; but as they are known from models, it wili not be necessary for me to describe them.

In constructing the bottom of the conduits, cement or stone is at present preferred to wood, which is only seemingly more economical.
Planting young salmonoids.-When should the young salmonoids be planted? The auswers to this question differ somermat, and reflect the individual opinions of rarious fish-culturists.

Mr. Haack prefers to plant them when the umbilical bag has begun to disappear, stating that as soon as they are placed in the water they will hide under stones as long as they do not feel the desire to seek food, and during this time they become acclimatized in the new element.

In the Netherlands the young salmon are not planted until they havo lost the umbilical bag, and after they have been kept and fed artificially for an entire year.

At Wilthen the young trout are not placed in brooks until they have been kept for a certain time in the apparatus where they were born, where they hare lost the umbilical bag, and where they have been fed. After they have passed the fine season of the year in the brook they are in autumn placed in ponds, where they remain abont a year; and after that they are sold, if they have reached the weight of at least half a pound.

It is not customary to place in open waters embryonated eggs of salmonoids which are near being hatched, for fear of some voracious fish, especially the Chondrostoma nasus and the Barbus fluviaitilis. Although S. Mis. $90-36$

Mr. Haack declares that it not advisable to plant eggs in large lakes and rivers, he states that he has made some experiments in small streams and lakes.

In Italy (at least in many parts of it) the Squalius cavedanus would have to be feared particularly; but I take the liberty to state that, when some years ago I planted eggs during spring in some large lakes of upper Italy, I invariably found the water in which I planted the eggs free from fish. Moreover, if it is logical to presume that joung fish freed from the umbilical bag, lively and well able to swim, will be better prepared to escape their voracious enemies than the sluggish eggs, it will not be entirely unreasonable to suppose that young fish which are still impeded in swimming by the umbilical bag will not be particularly active, and able to escape from their enemies even if they should hide in the maze of the gravelly bottom.

Species of salmonoids which are cultivated in the fish-cultural establishments visited by me.-The post of honor among the salmonoids which form the object of artificial fish-culture in Switzerland, Germany, and the Netherlauds is held by the salmon, Salmo salar, a veritable gastronomic delicacy, which gives rise to a considerable trade.
The variety which enters during the spawning season the large rivers of Central Europe from the North Sea and the Baltic is in German called "Lachs," while the barren variety which lives in fresh water and does not go into the sea is called "Winter Salm."

All public administrations prohibit salmon fishing during the period when these fish go up the rivers to spawn; and no fishoof this kindare allowed to be sold until it has been officially ascertained that the eggs destined for artificial fecundation have been laid.

Artificial fecundation is practiced, for instance, at Basel by Mr. Glaser, at Lauffenburg by the agents of the Fishery Company, which for this privilege pays a considerable sum to the Governments of Baden and Aargau. It is also practicerl at Neuhansen, in the cantonal establishments of Zurich, and at Dachsen. Mr. Giaser also furnished salmon eggs to the Hüningen establishment before Mr. Maack taught fecundation according to the most approsed modern method. I have also witnessed the incubation of salmon eggs in the establishments of Neuhausen, Selzenhof, Seewiese, Cosmandorf, Velp, and Apeldoorn.
The young fish are mostly intended for opeu rivers, and are therefore sold to the various governments. Salmon eggs fecundated at Selzenhof have been bought by the Goverument of Saxony, and have been hatched at Cosmaudorf, to be placed eventually in the river Wesenitz, a tributary of the Elbe. The establishment at Cosmandorf has also rendered this service to the Academy of Forestry at Tharand, in Saxony, where Professor Nitsche does his share in aiding the diffusion of fish-culture. The Saxon Government pays the Cosmandorf establishment 1 mark 30 pfennige [aboat 31] cents for every thousand young salmon hatched.

The Velp establishment lhatches salmon for the river Yssel, and receives from the Netherlands Government 2 cents (Dutch). [about 1 cent American money] for each young salmon, and receives in all a sum amounting to 25,000 lire $[\$ 4,825]$, which the Netherlands Government pays to the various fish-cultural establishments in the Netherlands, which are charged with restocking the rivers.

At Velp about 500,000 salmon eggs can be hatched, 300,000 of which are obtained from fish in the Netherlands waters, while 200,000 are received from the Upper Rhine. Besides young fry, salmon one year old are also placed in the rivers; and the Government pays at the rate of 50 centesimi [about 10 cents] per fish. Another half million salmon eggs can be hatched at Apeldoorn.

At Apeldoorn the California salmon is also hatched, which develops quicker than the Rhine salmon. It is this salmon which the eminent fish-culturist, Mr. von Baer, president of the German Fishery Association, considers (as he informed me) as peculiarly adapted to the rivers flowing into the Mediterranean, owing to the fact that there is much greater analogy betreen that sea and the Pacific than between the North Sea and the Pacific. Mr. von Baer has, during the years 1877 to 1880, planted in the Dauube, which flows into the Black Sea, 670,000 eggs of the California salmon.
The eggs of the Salmo sebago, another fish of American origin, also develop very rapidly; and large numbers of these fish are now found at Seewiese, where during the time of my visit 2,000 eggs were hatched, and where some tolerably large specimens were found in ponds.

Trout culture is carried on still more extensively, and I have seen it in operation in all the establishments which I visited. Fecundation of Salmo fario (the common European river or brook trout) is everywhere practiced with spawning fish taken in the immediate neighborhood. It is not so common to find establishments which devote themselves to the Salmo or Trutta lacustris, and the only ones where I have seen this done are Hüningen and Selzenhof.

In some cases the indigenous species do not satisfy the fish-culturists, and they have commenced to introduce some foreigu varieties of the trout; among the rest the Salmo irideus, or the Trutta iridea, from California. The oldest specimens of Trutta iridea are found at Hiiningen, where they were obtained from eggs which came direct from America in 1882, and which have already propagated their species in their new home. The value of this trout, according to Mr. Haack, is in the fact that it is an unusually hardy fish, and is therefore sure to thrive in Germany.

I have also seen some Trutta iridea (one year old) at Luibbinchen, and some (two years old) at Michaelstein. Mr. Schuster also has some Salmo carpio from the Garda lake, which he keeps in cemented tanks at Radolfszell, and which he obtained from eggs furnished to him from Torbole Trentino.

At the present time two rarieties of the Salvelinus are cultivated, namely, the Salmo (or Sulvelinus) umbla, and the Salmo (or Salvelinus) fontinalis. The second variety may now be considered acclimatized at Hiiningen, Apeldoorn, Bernenchen, and in many other establishments. The Salmo fontinalis is a great favorite, not only on account of its rapid development, but aiso on account of the extraordinary beanty of its coloring.

The spawning season of the Thymullus vexillifer had not yet begun, and I could not, therefore, witness the hatching of the eggs of this fish; which, howerer, is raised in many establishments. Mr. Eckardt, for instance, keeps them in a special paved pond.

The alimentary value of the Coregoni is sufficiently known; and I therefore deem it proper to devote a feew lines to this fish, all the more as experiments are being made to introduce it in Italy, where it is not fomm. Bat also in comntries where this fish is found attempts are made to introduce new varieties, such as the American Corcgonus albus, which is cultivated at Zurich, Liibbinchen, and Bernenchen.

The Radolfisell establishment, situated on the shores of the Lake of Constance, gives special attention to the Blenfelchen or Coregomes uart. munni. There are sereral varieties of this fish; and the Railolfszell establishment knows of at least three, differing from each other not only by bodily characteristies, but also by their geographical distribotion. These are the Blanfelchen, found in the Lake of Constance proper; the Silberfelchen, in the Untersee (connected with the Lake of Constance), and the Ganfisch, fomd ouly in a certain limited portion of the lake. The Coregoni at Selzenhof come, as may be supposed, from the Lake of Constance. From this same lake came the Coregoni, hatched at Hiiningen, which have been sent to the Italian Govermment for the Lake of Como, where they find the required food, as that lake contains the pelagie crustaceans, which, as Dr. Asper, of Zurich, has already declared, are an indispeusable article of food for this fish.

Mr. Eckardt does not think that there is any specific difference between the Coregonus marcenu and the Coregonus wartmanni, and bases this opinion on the reciprocal fecundation of the sexual products of these two varieties. Notwithstanding the fact that such fecundation has actually been observel-proring that ereu cross-breeds may possess the facalty of fecmulation-this would not form a very strong proof in favor of Mr. Eckardt's opinion.

Two conditions are essential to the existence of Coregoni, namely, great depth of water and suitable food (insects). Nevertheless it is possible, according to Mr. Schuster's statement, to introduce the Coregonus fera also in shallow water, provided it contains suitable food.

The production of lyybrids of salmonoids also forms part of the work of fish-culture, and has been done on a sufficiently large scale. The salmon, the Salvelinus umbla, and the American tront will interbreed with the tront.

I think that the attempt to fecundate, for instance, salmon eggs with milt of the trout, should not remain the only one, and that, besides endeavoring to find out whether the mixing of the sexual products of these two kinds of fish will result in successful fecundation, fish-culturists should also endearor to utilize in some way eggs, which through the possible failure of the male fish, would run the risk of being lost.
It is said that the hybrid of the salmon and the trout does not migrate to the sea; and in this respect it resembles the "Winter Salm," with which it also shares the physiological characteristics of being barren. Haack, however, asserts that the barrenness of the hybrid of the Salve. linus umbla (male) and the trout (female) can not be proved. At Berneuchen lyybrids were obtained from the Salmo fontinalis and the trout. Dr. Asper, of Zurich, has no very high opinion of these hybrids, which generally hare a small head, an irregular dorsal profile and orary. At Dachsen a great mortality has been observed among the young bastards of the salmon and trout, whose umbilical bag has the bluish color of algæ.

In the following table are giveu the kinds of salmon cultivated in the various establishments:


## II.-Cyprinus culture.

Carp. - The principal object of cyprinus culture is the carp, Cyprinus carpio, which in Central Europe has from time immemorial given rise to a very lucrative trade. The great ease with which it is multiplied, raised, and protected against its enemies, its prolific nature, the preference which it shows for vegetable food, and its rapid growth, explain the great favor which this fish has found with lisheruiturists, and may even justify the expectation that its cultivation may also be extended to Italy, although we are not inclined to consider the carp a remarkable delicacy.

Carp are raised in ponds, where they are kept either by themselves or in company with other fish. Different kinds of ponds are used in carp culture, namely, spawning ponds, raising ponds, growing ponds, and winter ponds.
The water of the spawning ponds should be somewhat warm. This condition is obtained by having these ponds exposed to the sun, by changing the water slowly, and by selecting such as are not very deep, the average depth of water not being more than one meter [31 feet]. Vegetation should be abundant, but not excessive. Reeds and grasses which soon cover a pond, should be checked in their growth. If possible, Mr. Haack would remove all the phragmites from the numerous ponds at Hüningen. Among aquatic plants the Glyceria fluitans is useful, and much songht after by the carp, which deposits its eggs on it.

To regulate the spawning of carp, Mr. Haack advises to place the fish intended for that purpose in comparatively cold water, and thence take them at the proper time to the spawning ponds, where, stimulated by the higher temperature of the water, they will soon deposit their eggs. Benecke, on the other hand, advises to place the carp in the spawning ponds when their water still has the winter temperature.

The number of spawning fish to be placed in a spawning pond covering an area of from one-tenth to half an acre should, according to Max ron dem Borne, not exceed two females and one male, each weighing 8 pounds, from which in a few days two to three thousand young fish will be obtained. A single carp weighing $S$ pounds is, therefore, capable of producing enough young to stock 500 hectares [about 1,235 acres] of ponds. Mr. von dem Borne has had seventeen successive spawnings in water having a temperature of $31^{\circ} \mathrm{C}$. [about $88^{\circ}$ Fahr.]. It is therefore not at all surprising, if Mr. Haack states that he has realized from the abore-mentioned number of carpin one pond, which costs hardly $\$ 10$ to keep up, the sum of $\$ 300$.

Mr. Haack informed me that, in order to preserve all the good qualities of the carp which he cultivates, he is very careful in selecting his spawning fish from among those which from time to time are furnished him for the purpose, selecting those which are not only sufficiently robust, but which also possess all the other requisites of form and color which make them desirable spawners. He therefore applies the true principles of rational selection also to these animals.

The artificial fecundation of the carp is possible, but it is rery little practiced. The fish-culturist is contented in most cases to leave to the carp the care of laying its eggs. Some people inclose the spawning fish in non-floating and perforated boxes containing branches and awlshaped leares (juniper branches in Mr. Eckardt's establishment), which, as soon as they are cosered with eggs, are placed in more suitable water. Professor Nitsche adrises experiments with the artificial fecundation of carp, using frames covered with some silk stuff, like those used by Möbius for herring. Fecundation should of course be accom-
plished under the water, as with other kinds of fish that las adhesive eggs, in recognition of the fact that the spawn of fish which spawn in summer matures less rapidly when brought in contact with water than the spawn of fish whose fecundation takes place in cold water.

I regret very much that the season was not favorable for seeing in full operation the Liibbinchen ponds described by Max von dem Borne, and arranged in such a manner as to insure the greatest possible result from the spawning of carp, and the keeping of many other kinds of fish. As it is not my intention to give a detailed description, I shall merely give the general plan on which they are constructed. The ponds are deep in the center, have flat shores, and are connected by numerous openings with canals which are much lower. On the bottom near the shores the collectors (bushes or branches) are placed, and are soon corered with the eggs of the spawning carp. After the eggs have been laid, these collectors are placed in other ponds, or in the canals surrounding the ponds, care being taken to prevent the spawning fish from entering these canals. It is necessary to remove the eggs from the spawning fish, as the grown carp will injure them and derour the young fry. The sparning ponds should be allowed to lie dry during winter, so as to kill the small animals which are enemies of the carp, and especially the pike which may have got into the ponds. The young fish would soon suffer from want of food if this contingency was not provided for by distributing them in suitable quantities in the growing ponds.

Mr. Max von dem Borne has eren the smallest carp taken out of the pond by a man who stands in the water and uses for this purpose a muslin dipper. All the fish which he catches in this way he throws into floating barrels with a bottom of very fine wire. After he has gathered a sufficient quantity, he transfers them, by means of a zinc basin with a spout, to the tin caus in which they are conveyed to the ponds for which they are intended.

The growing ponds should be proportioned to the number of fish which it is intended to raise in them, due regard being taken to the amount of food which they contain. The fish are distributed according to age ; for which reason rational carp-culture requires many of these ponds.

In the growing ponds other fish may be kept with the carp; for instance, pike and bass. These fish should, however, be very small, so.es not to prey upou the carp. The principal object of having these foll in the ponds is to prevent the carp from spawning, as spawnidy would make them lean. In these ponds artificial food is also wed, consisting of flour-balls, regetables, potatoes, bran, dung (from: cattle), larvæ of flies, \&c.

If the conditions are favorable, the carp can winter in the ponds; but in some establishments, as, for instance, at Jüningen, there are special winter ponds, in which the carp are liept during the cold season. For these pouds spring water is used if it is somewhat warm. To prevent
the carp from being frozen, special excavations are made in the bottom of these ponds, where the carp crowd together in a semi-lethargic state. The water of these winter ponds should be deep. But if the water should freeze, it becomes necessary to make holes in the ice, so as to introduce air into the water below. These holes are covered with sheaves of reeds, having a broad base and forming a kind of roof over the holes, thus preventing further freezing. It is necessary, however, that these holes be frequeutly examined, so as to keep them always open.

Tillage of carp ponds.-Mr. Haack recommends the custom which has beeu introduced, of using the carp ponds also for agricultural purposes. After they have served as ponds for two or three years, they are drained, and then plored for the cultivation of grain and potatoes. According to the director of the Hinningen establishment, a pond which has undergone dry cultivation is richer in small crustaceans which form a favorite food of fish. For instance, the eggs of the Phyllopoda will develop better during a dry season.

It will easily be understood why it is useful and profitable to use the bottom of the ponds after a certain period for agricultural purposes, thus utilizing the large quantity of fertilizing matter, consisting of leaves, aquatic plants, animal matter, aud excrements of fish, which has accumulated in the pond; white on the other hand it is difficult to explain why ponds used in this maner should be richer in fish. Mr. Haack believes that this is owing to the greater derelopment of small crustaceans; but the greater abundance of these crustaceans has not been sufficiently explained by science. We are, however, allowed to suppose that the greater number of fish is caused not only by the increase of small crustaceans, but also by the more luxuriant aquatic regetation which will derelop in soil, which after lying dry, has been plowed and cultivated, and before being again submerged has changed chemically by the influence of the air and sum. Whether this explanation is correct or not the fact remains aud deserves to be taken into account.*

Other kinds of cyprinoids which are cultivated.-As secondary objects of cyprinus culture we may mention the crucian carp (Carassius vulgaris), the Chinese goldfish, the Idus melanotus, and the tench.

As regards the crucian carp (Carassius vulyaris Nilsson), I would state that, compared with the common carp, it presents a great variety of forms, and will interbreed with the Idus melanotus, but its flesh has not S delicate a flavor as that of the carp; nor is its culture so profitable, as ins erowth is much slower.

The golas sh (Carassius auratus), owing to its beantiful color, is much sought after as au ornament for ponds, artificial lakes, aquariums, \&c., and it is therefore enltivated to advantage.

[^87]The Idus melanotus, especially its small variety, rivals and perhaps excels the goldfish in brilliancy of color, which changes with its different ages.

The tench (Tinca vulgaris) is another cyprinoid which is cultivated to advantage, especially its golden rariety, which is kept in aquariums. The manner of raising this fish differs but little from that of the carp, as it is quite customary to stock ponds both with tench and carp.

## III.-Other kinds of fish.

Pike.-At Radolfszell, Mr. Dietrich, the manager of Mr. Schuster's establishment, has been successful with the artificial fecundation of pike (Esox lucius). The eggs of the pike are very small, the cmbryo develops very rapidly, and the young are hatched in about twelve days. They were placed in a small lake, where they did well but did not prove antadvantage to the other fish. Mr. Max von dem Borne has also been successful in fecundating pike eggs. As far as I know, fecundation of pike eggs has not been attempted at Liibbinchen, where these voracious fish are kept only in the growing ponds, to keep the carp from spawning. Here they are kept in company with the Lucioperca sandra and the perch (Perca vulgaris), which last-mentioned fish is considered to diminish any excess of small fish, as they take away the food from fish which are the proper object of fish-culture.

Black bass.-Successful experimeuts in acclimatizing this American fish (Huro nigricans Cuv. \& Val., AFicropterus salmoides Lacep.) have been made at Berneuchen. The number of individuals of the first importation which survived the long journey was rery small; but from the 3 which survived, Mr. Max von dem Borne obtained about 1,300 joung fish. I have mentioned this new branch of fish-culture, because Mr. v. d. Borne thinks that it is adapted to the rivers of southern Italy; and I must confess that I have great faith in the opinion of this distinguished fishculturist. But before introducing this fish, the question should be thoroughly considered, whether it would be expedient to increase the number of voracious fish. The black bass likes to spawn on a bed of large stones. I have seen some very large specimens of this fish which are considered the oldest now in Germany.

Eels.-All the eels found in the waters of Continental Europe came from the sea as young eels, forming what is called the "mounting" of the eels. The attempt to convey these young eels to places where they will break their journey, or to guide them to such places if they do not go there of their own accord, to some extent resembles the method pursued at Comacchio and Polesine, where from time immemorial the cels have been guided into the basins destined for them. The most enthusiastic advocate of the introduction of these young eels into German waters is Mr. Haack, who once procured them from France, but now obtains them direct from Pisa, Italy, where they are brought into the market in enormous quantities.

The following is the method employed by Mr. Haack for packing them aud transporting them from Pisa to Hiiningen. He employs large, square baskets lined with coarse cloth (jute), the inside being divided into several horizontal compartments, which are produced by pieces of cloth being serred to one side of the cloth which forms the lining. In each compartment are placed branches of Potamogeton pectinatum or Potamogcton crispum, which afford hiding-places to the young eels, and which, owing to their peculiar elasticity, protect them from the danger of being crusied. Layers of Potamogeton and eels alternate, until the compartment is comfortably filled, when another clotb is drawn out, which receives other alternate lasers of Potamogeton and young eels. If the plants are sprinkled a little they will supply enough moisture to keep the young eels alive. These packages are sent from Pisa to Basel by way of the St. Gothard tumel, special directions being given the employés of the railroad to forward them promptly. From Basel they are conreyed to the imperial fish-cultural establishment of Hüningen on wagons.

As soon as the cels arrive at their destination they are, together with the plants which have protected them during their journey, placed in water on the hatching-tables or in open tanss, where they move about very mimbly, trying to aroid the light. The dead ones are picked out when the plants are taken away, and afterwards during the daily visits.

Fish-cultural establishments or private individuals in Germany who wish to obtain young eels get them from Hiiningen. This has already been done by the Radolfszell establishment, which has placed them in the Lake of Constance, in the hope that after some time they will again make their appearance when they have reached a greater size. Although in Italy we are more farorably sitnated in this respect than Mr. Haack, as we have plenty of young eels, we should nevertheless follow his example and increase this useful species of fish in our waters.

At Neuhausen I saw an apparatus (eel-way) intended to favor the

retention of the young eels which have reached the water above the famous falls of the Rhine. (See Fig. 8.)

It is a wooden canal with a smooth bottom, wifh wooden partitions (not shown in the figure) placed at regular intervals; the entire length is 5.07 meters [ $16 \frac{2}{3}$ feet]; it is divided in two arms ( $\mathrm{A}, \mathrm{B}$ ) of nearly equal length, and connected by a horizontal arm (C); the first in the beginning runs borizontal, and afterwards slopes towards the arm C; and from this again slopes the arm $B$, which widens at its end. It is clear that this canal will conduct a current of water from a higher to a lower level.

I am not able, however, to understand what benefit can be derived from the use of this apparatus, which will not increase the "mounting" of the eels (which in my opinion cannot be accomplished by any contrivance whatever); but which will draw some of them away into watercourses, which, owing to the lack of communication with the streams by which the young eels usually ascend, would under ordinary circumstances not have them.

The following table will show what fish, not belonging to the salmonoids, are cultivated in the establishments which I visited :

| Name. | Locality of establishment. |
| :---: | :---: |
| Acipenser ruthenus. | Lübbinchen. |
| Huro nigricans. | Lübbinchen and Berneuchen: |
| Lucioperca sandra | Seewiese, Lübbinchen, and Berneachen. |
| Silurus glanis... | Liibhinchen. |
| Csprinus carpio -.. | Hüningen, Seewiese, Lübbinchen, Berneuchen, Wichaelstein, and Apoldoorn. |
| Carassius auratus. | Hüningen, Seewiese, Liubbinchen, Velp, and Apeldoorn. |
| Idus melanotus | Hüningen, Seewiese, and Lilbbinchen. |
| Tinca vulgaris. | Hüningen, Seewiese, Lübbinchen, Berneuchen, and Michaelstein. |
| Esox lucius.. | Lübbinchen and Berneachen. |

Apparatus, arrangement, and products

| Place. | Kind of water used. | Hatching rooms. | Hatching apparatus. |
| :---: | :---: | :---: | :---: |
| Zurich.. | Lake............... | 1 chamber of masonry.. | 8 wooden troughs; zinc troughs; 2 Zenk apparatus; California boxes. |
| Dachsen... | Spring............ | 1 chamber of woot | 24 wooden troughs |
| Neuhausen | do | 1 chamber of masoury ... | 26 wooden troughs; Coste |
| Hüningen .- | Rhine water and soveral springs. | 2 halls of masonry, with area of $165 \mathrm{sq} . \mathrm{m}$. each. 1 hall with area of 540 sq. m. Total area of 870 sq. m. [about $1,040 \mathrm{sq}$. sds.]. | Costo tadles; hatching boxes; Calitornia troughs; Coste troughs; wooden troughs. |
| Selzenhof. | Spring and brook. | 3 chambers of masonry... | Cemont troughs; California boxes. |
| Radulfszell | Drinking water... | 1 chamber of masomry .... | 4 wooden troughs; 3 Williamaou tronghs; 1 Holten incubator. |
| Seowieso. | Spring and brook. | 1 wooden houso aud 1 of masonry. | 40 Zenls troughs ; California boses; 10 Lavalette apparatus. |
| Cosmandorf. | River.............. | 1 small house of wood.... | 12 California boxes; 1 Holten's apparatus. |
| Wilthen | Spring | do | 4 California boxes; 3 wooden troughs. |
| Liibbinchen. | do | 1 small room of masoury, with area of 4 sq . m . [about 43 sq . ft .]. | Eckardt troughs............. |
| Berneuchen. | River.............. | Severallarge houses; some of masonry, some of wood. | California boxes; funnelshaped troughs ; automatic selectors. |
| Michaclstein. | Pond. | 1 large chamber of masonry, with area of 81.7 sq. m. [about 879 sq . ft.]. | 112 California boxes ; 8 Williamson tables. |
| Velp........ | Spring.-.......... | 1 latge house of masonry, with area of $150 \mathrm{sq} . \mathrm{m}$. [abont 1,614 sq. ft.]. | 40 Coste tables. |
| Apeldoorn .. | do | 1 large house with area of 185 sa . m. [about 1,990 sq. ft.]. | 41 cement trougls; 31 wooden troughs. |

## of fourteen European hatcheries.

| Capacity of apparatus. | Ponds, tanks, cte. | Kind of water in ponds and tanks. | Kinds of fish cultivated. |
| :---: | :---: | :---: | :---: |
| $\begin{gathered} 500,000 \quad \text { salmon } \\ \text { eggs. } \end{gathered}$ |  |  | Salmon, trout, grayling, sereral Coregoni. |
| do | 2 ponds for male trout .....do $\qquad$ | Spring............ | Salmon, trout, grayling, sal-mon-trout. * <br> Salmon, trout, grayling, sal-mon-trout.* |
| 12,000 eggs of Salmonidæ per year. | Large tanks in a great hall; several open tanks in cement; 50 pouds for salmon, trout, etc.; 1 large pond for summer fish, and 1 pond for carp; numerous ponds for goldtish, spawning carp, etc. | Rhine water, springs, waste from the hatching hall, a ditch, etc.; filtered water for several ponds. | Salmon, trout, Salmo irideus. S. fontinalis, Salvelinus, Thy mallus vexillifer, several Coregoni, carp, crucian, goldfish, golden orf, tench, Salve-linus-trout.* |
| $8,000,000$ eggs of Salmonidæ. | 0 ponds for Salmonidm...... | Brook | Salmon, trout, Salvelinus, grayling, several Coregoni, |
|  | Tanks in cement indoors ... | Drinking water... | Salvelinus, carp, grayling, several Coregoni. |
| $\begin{gathered} 7,000,000 \\ \text { eggs. } \end{gathered}$ | 12 ponds for Salmonidat ; 11 ponds for cither Salmonidæ or Cyprinidæ; several tanks. | Spring and brook. | Salmo sebago, S. fontinalis, trout, Thymallus vexillifer, bass, carp, crucian, golden orf, teuch, trout-salmon,* Salvelinns-tront.* |
| 120,000 eggs of Sal- | Wooden tanks for spawners. | River. | Salmon, trout, trout-salmon.* |
| 60,000 eggs........ | 18 ponds, covering $10 \frac{1}{2}$ acres. |  | Trout, Salvelinus. |
|  | Over 100 ponds; 1 special pond for Thymallus; 24 concrete basins, each of 50 sq. m. [538 sq. ft.]; wooden tanks. | Spring............ | Salmo iriteas, Salvelinus, several Coregoni, Osmerus cyerlanus, sterlet, bass, Silurus, carp, crucian, goldfish, golden orf, tench, pike. |
| Very large number | 22 ponds; basins with filters for young carp. | River | Trout, Salvelinus, Salmo fontinalis, Coregoni; perch, bass, carp, tench, pike, trout-S. fontinalis.* |
| $\begin{aligned} & 1,120,000 \text { trout } \\ & \text { eggs. } \end{aligned}$ | 4 tanks in cement; 27 ponds, 4 of them for Salmonidæ. | Spring and brook. | Trout, Salmo irtdeus, Salvelinus, carp, tench. |
| $\begin{aligned} & 600,000 \text { sa } 1 \text { mon } \\ & \text { eggs. } \end{aligned}$ | 7 ponds for trout ; 6 for salmon ; 2 for goldfish. | Spring............ | Salmon, trout, Salmo fontinalis, goldfish. |
| ...do ............. | 88 round ponds or tanks; 54 small brooks for young trout. | .do. | Salmon, Salmo quinnat, S. fontinalis, trout, lake trout, carp, crucian, goldfish. |

[^88]IV.-SoIIE OF THE CAUSES OF THE GENERAL DIFFUSION OF FISHCulture in the countries visited, especially in Germany.

The process of artificial fecundation of fish is said to have been a secret possessed by some French monks towards the end of the fifteenth century. It was also discovered by the Manoverian Jacobi (1758), and again fell into oblivion, but when it was again discovered in 1849 by two fishermen, Remy and Gehin, due publicity was given to it by Professor Coste. No practical application, however, mas made of it until, at Professor Coste's suggestion, the Hiiningen establishment was founded, to which Europe is certainly indebted for the modern impulse given to fish-culture, because its influence made itself felt not only in France, to which it formerly belonged, but also to foreign countries, including Germany. The new industry soon spread rapidly and made constant progress, numerons societies and jouruals promptly diffusing its knowledge.

But Hiningen, luring the last years of the French régime, did not keep up with the progress made in fish-culture, both in Europe and America, and lost its importance, until it passed into the hands of the German Government, and Mr. Haack became its director, when it again began to improve.*

The interest taken in fish-culture by the Governments of Germany, Switzerland, and the Netherlands, which in a large measure have contributed to the restocking of public waters, and which have also furnished the necessary material for private establishments, has greatly aided the diffusion of artificial fish-culture ; its further progress is assured, as the results of its operations are no longer uncertain, and as the pecuniary benefit derived therefrom becomes greater.

This industry has been made popular to no small degree by the public exhibition of fish-cultural apparatus in full operation in zoological gardens (as at Dresden, Amsterdam, Fraukfort-on-the-Main), and in aquariums (Berlin), which, as is well known, are risited by large numbers of people.

In Saxony fish-culture is popularized by courses of lectures given by Professor Nitsche, of the Academy of Forestry, at Tharand. As this is the ouly course of instruction on fish-culture of which I have any precise knowledge, it will not be out of place to give a more detailed description of the same. At certain convenient seasons Professor Nitsche gives free lectures on fish-culture at the Academy of Forestry. He has published a large wall diagram, giving illustrations of the fish in ques. tion (trout) ; the distinctive characteristics of sex; the eggs, both sound and spoiled by mold ; the phases of their embryonal development; the young fish with and without the mbilical sac ; a figure showing artificial spawning; the gravel-filter of Mr. Ryfseli, pincers, glass pipes,

[^89]vessels for measuring the eggs ; California loxes, whole and in sections, cans for transporting eggs, etc.

In these short courses apparatus, fish, and eggs are shown, while in a small room of the academy, which has been transformed into a hatching chamber, the California apparatus is shown in full operation with trout eggs.

## Analysis of lectures on the artificial raising of trout

## A.

I.-Introduction. Propagation of trout in open waters.

1. Waters in which trout and their kind live.
2. The spawning of trout in open waters:
a. The spawning season (winter), aud the spawning places.
b. Fecundation of the eggs laid by the female by means of milt ejected by the male.
c. Dangers to which the eggs are exposed during their development and during the hatching.
3. Showing that in open waters only a small percentage of the eggs is hatched. Can this be remedied by artificial raising?
II.-The artimichal raising of trout.
4. Idea of artificial tront raising, i.e., an artificial way of depositing, keeping, and hatching the eggs and protecting them against daugerons influences.
5. Method of artificial fecundation:
a. The procuring of spawning fish.
b. Separation and distinction of the sexes.
c. Indications of sexual maturity.
d. The spawning of the ripe female.
$e$. Dry fecundation of the eggs by means of the milt.
$f$. Counting the eggs by means of a measuring glass, and their introduction into the hatching troughs.
6. Necessary conditions for the development of fecundated eggs. Precautions to prevent any animals from destroying the eggs. Pure water needed incessantly:
a. By chemical processes the water should be kept free from injurious matter.
b. And by mechanical processes from mud.
c. Its temperature should not be too high ( $0.5^{\circ}$ to $8.6^{\circ} \mathrm{C}$.) [ $33^{\circ}$ to $47.5^{\circ} \mathrm{F}$.].
d. The largest possible quantity of air shonld pass througi the water.
$e$. During the hatching time it should neither cease to run nor freeze.
7. The California box, the apparatus best adapted to raising a small quantity of trout:
a. Description and demonstration of the California box and its accessory apparatus.
b. Instructions for placing it in position.
c. Demonstration of the advantage of the California boxes, as compared with other apparatus, where the eggs are placed on a bed of sand. The advantages consist in a saving of space, and in the greater ease with which the eggs and young fish are kept clean.
8. Care of the eggs during the hatching time:
a. They should be left entirely undisturbed during the first wcek.
b. Dead eggs should be removed every day to prevent the formation of fungus.
c. All sediment should be removed.
9. Young fish, and their care:
$a$. The approach of the hatching is indicated by the visibility of the eyes of the embryos.
b. The young tront is hatched with an umbilical sac.
c. Change of the young fry to a small fish.
d. Keeping the young fish clean, and regularly removing the dead.
10. Placing of the young fish in water adapted to their raising:
a. The proper time for placing the fish in water.
$b$. Hatching brooks and hatching ponds.
c. Transportation of the young fish to the water; cans cmployed for transporting them.
III.-Conclusion.

Facility with which brooks can be stocked with trout; given the possibility of receiving from a distance, by mail, embryonated eggs:
a. Selection of a cood spring, even if it should be small.
b. 'Treatment of the fish after their arrival.

Exhortation to make experiments on a small scale.

## B.

## I.-Introduction.

1. The growing depopulation of our waters, and the causes of this phenomenon: a. Voracious fish.
b. Many streams have become unable to maintain fish alive, owing to industrial and mercantilo establishments, and to the lack of spawning places, and of suitable places where the fish can live.
2. Desirability of using for the raising of fisk any waters which may still be adapted to the purpose.
3. Trout are best adapted to this purpose.
4. Artificial raising is the best means.
5. The artificial raising of tish is a German invention (invented by the Hanoverian Jacol, in 1758 ; lirst published, 1763-64). After it had fallen into oblivion it was invented anew by a fisherman of the Vosges, Remy, in 1849, and practiced on a large seale at the establishment of Hiungen, in Alsace, which passed into the hands of Germany in 1871.
II.--Life and propagation of trout in open waters.
6. Waters in which trout and their kind live; the idea that trout confine themselves to mountain streams is erroneous.
7. Spawning place and season of the tront.
8. The ovaries of the female empty their contents into the abdominal cavity.
9. Structure of the egg:
a. The yelk.
b. Tho germ.
$c$. The shell of the egg and the micropgle.
10. The testicles of the male have ducts carrying :
11. The sperm:
a. The liquid of the sperm.
b. Spermatic filaments.
12. Depositing the eggs; their fecundation by means of the male semen.
13. Fecundation is accomplished by the entrance into the micropyle of at least one spermatic illament.
14. The development of the young fish :
a. Point from which the formation of the body of the young fish starts.
b. Extension of the same and formation of the back of the young fish.
c. Growth of the yelk round the germinal spot.
d. Formation of the shape of the body of the young fish.
e. Visibility of the eyes by the formation of pigment in the eyes.
$f$. The little fish with its umbilical sac, and its hatching from the egg.
$y$. The change of the embryo, which does not need any food, to a perfect little fish.
15. Conditions favorable to the normal development of the embryo:
a. The eggs should be fecundated.
b. The eggs should be daily moistened with water not chemically pure.
c. The water should be furnished with a constant supply of fresh air.
d. Mud, which hinders the access of air, should be removed.
e. The temperature of the water should not be too high ( $0.5^{\circ}$ to $8^{\circ} \mathbf{C}$.) [330$46.5^{\circ} \mathrm{F}^{\prime}$.]. Too high temperature accelerates development, while too low temperature delays it.
$f$. Safety from mechanical dangers. If the eggs are bruised, malformation is caused. Safety of the fish against enemies belonging to the animal kingdom.
16. Which conditions of success are not'all found in open spawning places; and how a large part of the eggs run a great risk.
III.-Tile raising of trout.
17. The nature of trout raising.
18. Procuring fish for artificial fecundation:
a. Obtaining spawning tish.
b. Distinguishing the male from the female fish.
c. Indications of the maturity of the spawn.
d. The spawning of the inature female.
$e$. The spawning of the mature male.
iII.-The baising of trout-Continued.
19. Procuring fish for artificial fecundation-Continued.
$f$. Different methods of fecundation (dry and moist).
g. Counting the eggs by means of measuring glasses; and placing them in the hatching troughs.
20. Necessary conditions for placing a hatching trough:
a. A hatching trough may be placed anywhere where there is a current of not too warm water, which may be conducted to a place secure against freezing.
b. Water of ponds, rivers, and springs may be used, each having its peculiar advantage.
c. Chemical purification of the water, and freeing it from injurious matter, is indispensable.
d. Cleaning the water from mud may be effected by means of clearing basins or by filtration. Arrangement of a small sand-filter.
c. It is desirable that the water should fall into the hatching troughs from a certain height, thas producing air.
$f$. A space protected against frost may be arranged by means of a very simple apparatus, as a smaii wooden shed covered with substances which are nonconductors of heat, such as reeds, straw, sawdust, ete.
$g$. The pipes through which the water is conveyed should be so arranged that they can easily be cleaned.
21. A good hatching trough should be :
a. Of durable material.
b. Easy to handle.
c. Easy to clean.
d. Well protected against the enemies of fish.
e. Should have room for a suitable quantity of eggs on a small bottom.
$f$. Should be so arranged as to render easy the care and management of the eggs.
22. All these requisites are possessed by Max von dem Borne's California trough : a. A description and demonstration of the trongh and its accessory apparatus.
$b$. Showing the disadvantage of placing the eggs on a bed of sand.
23. Care of the eggs and the young fry :
a. Necessity of daily visits to the apparatus; special attention during rain-storms and snow-fall.
b. Treatment of the eggs during the first stage.
c. Removing every day the dead fish, to prevent the formation of fungus.
d. Removing all sediment.
$e$. How to recognize the approach of the hatching by means of the points of the eyes which become visible.
$f$. Keeping the hatched embryos clean.
24. Placing the young fry in the waters where they are to be raised:
a. Proper time for transporting the fry.
b. The brook for the young fry, and its character.
c. Transporting the young fry to the places where they are to be raised.
d. Cans for transporting them.
25. Some brief hints as to the management of trout ponds.
26. Stocking with trout such waters as are adapted to the purpose, but where no tront are found:
a. Various methods of stocking with grown fish, young fry, and with eggs; hatching of the same near the waters which are to be stocked.
b. The last-mentioned method to be preferred; accustoming the fish to the water in which they are to live.
c. Choico of a good spring for embryonated eggs ; a spring which has been tried and found to answer the purpose, eveu if far away, is to be preferred to one which has not been tried.
d. Facility of sending eggs loy mail.
c. Treatment of the eggs, when they have arrived at destination, in the hatching
troughs.
27. Management of trout ponds; their character:
a. If there is only one pond, it can be used only as a growing pond.
b. If there are at least threo ponds, young fish may be raised in them.
c. Hatching ponds, raising ponds, growing ponds.
d. The food of trout in ponds.
28. Growth of the tront:
a. The growth of trout is possible wherever there is snitable food.
i. Growing basins for trout; conditions of soil, abundant supply of suitable water; the proper control of this supply.
c. The growth of the tront depends on ample food, and a limited space for moving about.
[iI.-The raising of trout-Continued.
29. More extepsive arrangements for raising trout:
a. Circumstances under which they are made ; if the object is to stock a largearea of water, or if a large sale of eggs is looked for.
b. Principal ideas which should guide persons in arranging a large establishment.
c. The hatching house; conditions of soil and abundant supply of water, with it good fall. Essential characteristics of the hatching house: Protection against frost, sufficient light, so the eggs can be properly taken care of, close proximity to the dwelling of the inspector.
d. Samples of hatching troughs adapted to largo establishments; Williamson troughs.
e. Apparatus for filtration and aeration.
$f$. Packing and shipping of embryonated trout eges.
30. Hints on the raising of other species of salmoneids; where are such fish raised?
a. Raising of Thymallus vexillifer.
b. Raising of Salvelinus.
c. Raising of salmon.

## IV.-Conclusion.

a. Brief review of legislation relative to the fish in question.
b. Advantages of large fishery associations.
c. Exhortation to found small fishery associations.
d. The German Fishery Association, and its influence.

## V.--Financlal statement of tile Huningen establishment fron April 1, 1884, to March 31, 1885.

## inconme.

From the German ministry of agriculture for placing young salmon (one
million) in the Rhine ............................................................... 497.80
Sale of embryouated eggs of salmonoids:
(a) To Germans .................................................................. 1,90. 904.00
(b) To foreiguers..................................................................... 357.00

Sale of embryonated eggs of Coregoni ................................................. 71.40
Sale of carp................................................................................. 814.00
Sale of ice and reeds . . .................................................................... 238.00
Reimbursements for packiug ....................................................... . . 2.8.00
9,020. 20
FXPENSES.
Salary of director, besides lodging ....................................................... 856.80
Two keepers, besides lodging.............................................................. 456.96
Secretary and treasurer ................................................................. . 471.24
Wages of workmen........................................................................... 714.00
Traveling expenses of director ......................................................... 380.80
Rent (ground rent)........................................................................ 499.80
Purchase of eggs of salmonoids and fish................................................ 2, 380.00
Foorl of tish .................. ............................................................. . . . 476.00
Packing rygs ................................................................................. 238.00
Library aud experiments............................................................... 142.80
Maintaining and improving ponds, \&c............................................. 952.00
Maintaining and improving buildings................................................ 357.00
Unforeseen expenses ................................................................... 142.80
For new constructions ...... ................................................................. 952.00
9,020.20
Brescia, Jume 21, 1885.

## B.-NOTES ON FISH-CULTURE IN GERMANY, SWITZERLAND, AND THE NETHERLANDS, BY DR. VINCIGUERRA.

## I.-Germany.

1. Hiiningen.-The imperial establishment of fish-culture at Hüningen is situated in Alsace, at a short distance from the Swiss boundary, and only 8 kilometers from Basel. Founded in 1854 by Professor Coste and two engineers, Berthot and Detzem, it passed through different phases aud finally into the possession of the German Government; and since that time Mr. Hermann Haack has been its director.

The establishment lras no fixed allowance from the Government, because it should, if possible, be self-supporting, but the expenses have, so far, always considerably exceeded the income; and the deficiency has been made up by the German Government, in the shape of a compensation paid for young salmon placed in the Rhine every year.
The ground on which the establishmentstands belongs to the village of Blotsheim, covers an area of 39.56 hectares [ 973 acres], and is rented for an annual stum of $\$ 465.22$.

The water of the establishment is supplied by copious springs, of which there is a sufficient number in the neighborhood, from a small brook called the Augraben, and from the canal connecting the Rhone and the Rhine. For the hatching of the eggs Director Haack prefers this water to brook and spring water, because it seems that the latter contains larger quantities of the germs of the much-dreaded mold; moreover, it is too warm, having a constant temperature of $10^{\circ} \mathrm{R}$. [54.5 $\left.{ }^{\circ} \mathrm{F}.\right]$, while the temperature of the brook and canal water falls even to the freezing-point. The water is no longer filtered in the true sense of the term; but before being distributed through the establishment, it passes through grates and fascines, in order to keep out any large foreign bodies.

The gromd floor of the priucipal buiding and that of the left wing are devoted to the hatching of the eggs of salmonoids. The eggs of the common tront are gathered and fecundated in the establishment from fish raised there; the eggs of lake trout, salmon, Nalvelinus, Thymallus, Coregonus, \&c., are received from abroad. Of the five kinds of American salmonoids introduced into Europe a few years ago through the efforts of the German Fishery Association, two are raised in the establishment. These are the American trout, or "Bachsaibling "(Salvelinus fontinalis), and the California trout, or rainbow trout (Salmo irideus), both distinguished by their beautiful color and their fine shape. The former has already been sufficiently spread by fish-culturists; while the latter is not yet found so generally ; although Mr. Haack thinks, if specially cultivated, it will yield very fine results.

The Hiiningen establislment carries on an active trade in the eggs of salmonoids, $82,332.40$ worth of these eggs having been sold during the
season of $188 \pm-35$; live fish are aiso sold, especially carp, and also trout, after they have for two or three years furnished sexual products for reproduction. Every year young salmon are placed in the Rhine to the number of from 500,000 to $1,000,000$, and in return the establishment receires from tho German Government a sum sufficient to cover the annual deficiency, provided it does not exceed $\$ 5,950$.

Tho hatching apparatus used in the large halls of the Hiiningen establishment are still substantially those inceuted by Coste, having frames with a bottom of glass stems, although for these there have been substituted, to a large extent, other frames with a bottom of metal staves, or a network of metal wire, used particularly when eggs of the finer kinds of fish, such as Coregoni, are to be hatchod. Generally the eggs which are to be hatched in the establishment are, when near being hatched, placed in troughs made of pine-wood, about 3 meters long, 40 to 50 centimeters broad, and 15 to 20 centimeters deep [about $10 \times 1 \frac{1}{2}$ $\times \frac{1}{2}$ feet], at the lower end of which there is a metal grating to prevent the escape of the young fish. They are covered with a stroug wooden lid to prevent mice and rats from getting in, and to have the development of the eggs carried on in darkuess, which greatly favors such development. These troughs are then placed in the open air, and after the eggs have been hatched the young fish are fed until they are near losing their umbilical sacs, when they are immediately placed in some river or lake, it being considered better to place them in open waters a few days before they have entirely lost the umbilical sac. When the number of eggs to be hatched is very large, Mr. Haack also uses California apparatas, more or less modified; especially those recently constructed by Professor Benecke on the principle of the La Vallette apparatus.

The young fish destined to be raised in the establishment are placed in small basins laid in cement, into which water rums continually. Here they are raised and fed artificially, and are not taken out, except in very cold winters, when for some days they are placed in basins in the small wing on the right. There are also pouds for carp and for some other cyprinoids (Tinca, Idus, \&e.), some small for winter, and others large for summer; these ponds are used for reproduction and the development of the Joung fish. The largest of these ponds covers an area of 1 hectare [about 21 acres]. The ground where it was excarated was rented for the sum of $\$ 9.65$ per aunum, and the aunual income from carp raising amounts to $\$ 259.50$.

After several experiments Mr. Haack has succeeded in transporting from Pisa to Hianingen live young cels, known by the name of "blind eels." He keeps them for a certain time in cemented basins, and then ships them to other parts, some as far as the most remote portion of the province of Pomerania.
The imperial establishment of Hüningen is the one which has given the greatest impetus to the spread of the industry of fish-culture; but
at the present time this industry has made such rapid strides in Germany, that Mr. Haack deems it proper and advisable that the Government should cease to carry it on exclusively, but let private enterprise take hold of it.
2. Selzenhof.-The fish-cultural establishment of Selzenhof is situated about an hour and a half's journey from the city of Freiburg in the Grand Duchy of Baden. It belongs to Mr. Schuster, the mayor of Freiburg, who founded it in 1865, and enlarged it in 1872. It does not receive any fixed subsidy; but the Baden Government pays it for the young salmon placed in the Rhine and for the Coregoni placed in the Lake of Constance, on the shores of which Mr. Schuster has another establishment, Radolfszell.

It furnishes embryonated eggs to the German Fishery Association, and to many public and private fish-cultural establishments.
The eggs are hatched in a small one-story building, divided into three rooms, two large and one small. The water comes from a brook running at a short distance from the house, but as in winter this water is too cold, it is then mixed with spring water, which is warmer, so that in the hatching-room its temperature is not lower than $2^{\circ} \mathrm{R}$. [ $36.5^{\circ} \mathrm{F}$.]. The water passes through a sand-filter, which need not always be employed, as the water is very pure. The hatching-rooms are somewhat lower than the filter, and the water which enters through two pipes, one for each of the large rooms, circulates in an open canal, constructed of masonry, placed at a certain height along the walls, whence it falls into the troughs below. To each of the openings perforated metal tubes are attached, for the purpose of aerating the water, which process Mr. Schuster considers very important, and endeavors to further it by every possible means.

The kinds of fish on which Mr. Schuster operates all belong to the family of the salmonoids, and are especially the Rhine salmon, river trout, lake trout, Salvelinus, Thymallus, and Coregonus. A trade is also carried on in trout eggs fecundated by salmon milt, which are much songht after by fish-culturists, because the hybrids obtained by this process develop very rapidly and do not go into the sea. He has also undertaken the culture of Salmo fontinalis and Salmo irideus from North America.

The troughs which serve for hatching the eggs are cemented and 22 in number. Their length varies from 360 to 480 centimeters, and their breadth is 45 , and their depth 18 centimeters. [Each trough is therefore about 14 feet long, 18 inches wide, and 7 inches deep.] They are covered with wooden lids, having some openings provided with grating. The eggs are placed on wire frames, which can be placed one above the other. There are also employed some California boxes, according to a model prepared by Mr. Schuster.

There are 9 ponds, which are used for raising young fish and for keeping the spawning fish. Two of these ponds are for carp. The ponds are arranged one above the other, so that the water passing from one pond
to the next forms a little waterfanl, and is therefore always properly aerated. The Selzenhof establishment cam latch about $3,000,000$ eggs at the same time.
3. Radol/s:ell.-This establishment is situated in the little town of Radolfszell on the "Untersee," a branch of the Lake of Constance, and like the preceding one it is the property of Mr. Schuster. It was founded in 1877 , principally for the purpose of reproducing Coregoni. It consists of one large hall, which formerly served as a public bath. The water used in it is the common drinking water of the place, and is not filtered. In summer its temperature is about $\mathcal{S}^{\circ} 1 \mathrm{l}$. [ $50^{\circ} \mathrm{F}$.], and in winter it sometimes falls to $1^{\circ} \mathrm{R}\left[34^{\circ} \mathrm{F}\right.$.] The water is contained in a reservoir placed in the highest part of the hall, and thence it is by wooden conduits led into the troughs, of which there are 7 , some without divisions, and with several compartments, on the Williamson system. The troughs are at some height above the ground, resting on wooden supports. For the hatching of Coregomi a Holton apparatus is principally employed. It consists of a kind of wooden box into which the water enters through a hole in the bottom, and graduaily passes throngh 15 frames made of iron wire, placed one above the other. Each of these frames can hold about 20,000 eggs. The water finally flows over the upper edge of the apparatus.

Although the principal fish raised in this establishment are Coregoni, some other fish are also cultirated, as the lake trout (among them the famous tront from Sake Garda, some young specimens of which I saw, which had been raised in the establishment), Salvelinus, and Thymallus. They are placed in the upper course of the Rhine, and some in the lake, where formerly they were not found. After the river and lake had been stecked, people soon began to catch these fish. The German Fishery Association pays a reward of $\$ 1.19$ to every fisherman who can prove that he has caught one.
4. Seewiese.-The establishment of Seewiese near Gemiinden in Franconia (Bavaria) belongs to Mr. Frederick Zenk, of Wiirzburg, who founded it in 1881 on ground belonging to him, and eutirely at his own expense. The establishment does not receive subsidies of auy kind, and has no other income except from the sale of eggs and fish.

The hatching room is 20 meters long, 9 broad, and $3 \frac{1}{2}$ high [about 65 . $\times 29 \frac{1}{2} \times 112$ feet]. The water rises to a height of 2 meters [about $6 \frac{1}{2}$ feet] above the fioor, and runs along the northern wall in a pipe having a diameter of 8 centimeters [about $3 \frac{1}{6}$ inches.] It generally comes from a brook in the neighborhood, which contains a great many fish, and is therefore called the "Fischbach." The temperature raries from a maximum of $10^{\circ} \mathrm{R}$. [54.5 $5^{\circ} \mathrm{F}$.] in summer, to a minimum of $10 \mathrm{R} .\left\lfloor 34^{\circ} \mathrm{F}\right.$.] in winter.

If the water flows too warm or too cold, it can be mixed by a small hydraulic pump; or there may be substituted for it spring water, haring a constant tempermiture of about $50 \mathrm{~N} .[430 \mathrm{~F}$.$] The water of the$ brook is filtered through an apparatus containing sponges and sand.

The hatching-troughs are of wood carbonized on the inside; their number is 20 , and they are arranged in groups of 4 each. The frames used are those of Coste, and others having a network of metal wire. Some California boxes of various systems are also used.
The fish raised in this establishment are river trout, lake trout, Thymallus, Salvelinus, and cross-breeds of Salvelinus ( 8 ) and trout ( ( ) ); also some American species, as Salmo sebago and Salvelinus fontinalis.
Besides the above-mentioned hatching-house, there is another smaller one, fed exclusively by spring water, where, besides ordinary troughs, circular porcelain apparatus (according to the La Vallette system) are used.

There are also 20 ponds of different size for young Salmo sebago and American Salvelinus, from which, thongh only two years old and not more than 15 centimeters [ 6 inches] long, Mr. Zenk has already obtained eggs. In these ponds there are also carp, bass, tench, and golden orf (Idus melanotus var. aureus).

In the large hatching-room there can be kept and developed about $6,000,000$ trout eggs.
5. Cosmandorf.-Near the village of Cosmandorf, between Dresden and Tharand, in Saxony, a short distance from the confluence of the "red" Weisseritz and the "wild" Weisseritz, there is a small fish-cultural establishment belonging to Mr. Mittag, one of the proprietors of the fisheries in the Weisseritz and the Wesenitz, who, among other cconomical enterprises has undertaken to restock these waters by means of artificial fish-cultare. He does not receive any direct subsidy from the Government, but it furnishes him gratuitously the smbryonated salmon eggs, which are to be placed in the TVeisseritz; and also pays him 31 cents for every thousand young salmou which have been hatcked iu his establishment. Mr. Mittag is, however, obliged to furnish the necessary material for Prof. Nitsche's fish-cultural course at the Tharand Academy of Forestry. The establishment has been in existence about six years. Some time before this another much larger establishment was founded, but proved au entire failure.

The water is supplied by a mill canal which comes from the "red" Weisseritz, and also furnishes the water-power for a manufactory of wood material (pasteboard). The water is not filtered, although this would be beneficial on account of the sediment from the manufacture referred to above. The temperature, during the hatching season, varies from $1^{\circ}$ to $6^{\circ} \mathrm{C}$. [ $34^{\circ}$ to $43^{\circ} \mathrm{F}$.].

The hatching-house is small; it has double wooden woalls with a layer of hay between them. The water runs along one of the walls in a wooden caual. It should be noted that the faucets of the pipes through which the water flows into the hatching apparatus are not, as is generally the case, on the sides of the pipes, but at the very end of the pipe, in order to make it more difficult for the sediment to gather. The hatching apparatus which I saw consisted of twelve California boxes,
on the von dem Borne plan, but without the third inside bos. I also saw a Holton apparatus, but it was not in use. Ontside the hatchinghouse there is a wooden tank containing trout of both sexes destined to serve as propagators.

The establishment does not have a commercial object, and only serves to stock the neighboring waters. Only trout and salmon are raised. An attempt was made some time ago to introduce Salvelinus in some of the ponds, but they were soon devoured by the trout.
6. Tharand (Academy of Forestry).-There is not a geunine fish-cultural establishment, with a practical object, near the Tharand Academy of Forestry ; but it possesses only a small room for the various hatching apparatus used by Professor Nitsche in his fish-cultural course. He showed me all the material usel by him in this course, which never lasts longer than a week, and which has already been followed by good results.
7. Wilthen.-This establishment is located near Schirgiswalde, in Saxony. Its foundation is due to the above-mentioned course of fishculture by Professor Nitsche at Tharand. The ground belongs to the Catholic church at Bautzen, and the establishment is managed by Mr. Waurick, superintendent of forestry, who deserves credit for having founded it. But here, as in other places, the monks had in olden times already constructed some carp ponds. At present only trout are raised for the market. The establishment does not receive any subsidy.

The water comes from a spring at a distance of about one kilometer [nearly tro-thirds of a mile] and is led through a conduit into a receiving reservoir, whence it passes into the hatching-house. The temperature of the water, at the time of my visit, was 20 R . [36.50 F .]; but it may fall to the freezing point, and rise a great deal in summer. The water is filtered through two flannel filters, which are in the hatchingroom. It flows through a wooden conduit, which can be opened in order to be cleaned. This conduit, outside the house, and the tank, are covered with straw to prevent the water from freezing.

For hatching, California boxes are used (Nitsche system), and wooden troughs, about $1 \frac{1}{2}$ meters [ 5 feet] long. In each of these there are two wooden frames with a wire bottom, on which the eggs are placed. After the eggs are hatched, the frames are removed, and the young fish are left free in the troughs until they have lost the umbilical sac, or even some time longer, feeding them artificially with meat chopped fine. They are then taken to the brook, fed from the receiving reservoir with spring water, where they remain till antumn, when they are caught and conveyed to the ponds, where they stay at least a year, until they have reached a weight of at least 250 grams [ 83 oz.$]$. Above the place where the fish are the brook is closed by a sluice, and below ly a metal grating, so that the fish cannot escape.

There are a great many ponds, some of them very large; they are connected with the brook which passes through them in the shape of
small waterfalls, which serve to aerate the water and preveut the escape of the fish. In summer the temperature of the water may rise to $25^{\circ}$ or $30^{\circ} \mathrm{C}$. [ $77^{\circ}$ or $86^{\circ} \mathrm{F}$.] without injuring the trout contained in it.

The fish in the ponds are fed artificially with meat-ground meat (which generally serves as a fertilizer) -and with the larvæ of flies. To obtain these, poles are rammed into the bottom of the ponds, and the carcass of some animal is placed on them. The flies deposit their eggs on the carcass, and the larve which develop from them gradually fall into the water and serve as food for the young trout.
8. Liubbinchen.-This model establishment is located near the city of Gubeu, in the Prussian province of Brandeuburg, and belongs to Mr. Eckardt, one of the men to whom the industry of fish-culture is deeply indebted. Aithongh it may be said that there is hardly any kind of fish, to which fish-culture is applied, which he has not cultivated, there are two to which he has specially devoted his efforts, namely, Coregoni and carp.

The Liibbinchen property covers an area of 10 hectares [nearly 25 acres], 9 of which are occupied by ponds, but at some distance Mr. Eckardt owns 400 hectares [988? acres], with some lakes containing a great many fish.

The water comes from two springs, distant about 1 kilometer [nearly ${ }_{3}^{2}$ mile] from Mr. Eckardt's house. It passes underneath an open vault, in order to get some air, and is then conveyed about 200 meters [219 yards]. It feeds the ponds and the basins, and is again collected in a small lake. It also forms a small brook destined for young tront, and from this brook comes the little stream which euters the hatching-house. The water is not filtered.

The hatching-house covers an area of hardly 4 square meters [43 square feet]. The water runs in an open conduit of wood, bitummated. The apparatus used for hatching are the boxes invented by Mr. Eckardt, each of which can hold as many as 20,000 Coregonus eggs, and have the advantage that they can be placed one above the other. There are raised artificially Coregonus, trout, European and American Salvelinus, \&c.

The ponds and basins are more than 100 in number, and, as has already been stated, occupying an area of 9 hectares [22 $\frac{1}{4}$ acres]. The largest pond covers more than 1 hectare [about 21 acres]. The first ponds, in the immediate neighborhood of the house, are about $1 \frac{1}{2}$ meters [ 5 feet] deep, and have some small canals through which the water runs all the year round, so as to keep them clear. The oxygenation of the water is kept up by reeds and water lenti's, which grow in the ponds in great abundance. Beyond these ponds there is a large pond, about 4 meters [13 feet] deep, and some smaller ponds.

There are also some wooden and cemented tanks, containing pike, Silurus, tench, crucians, golden orf, \&c. There are carp weighing as much as 14 pounds. There are 24 cemented basins, covering each an area of about 50 square meters [ 538 square feet]. In these there are
sterlets from the Volga, Coregoni from the Madue lake and from the Lake of Constance, American Coregone, Sulvelimus, Salmo irideus, de.

The temperature of the water in the ponds does not differ much from that of the air; in summer it may get as high as 200 to $25^{\circ} \mathrm{R}$. [770 to S80 F.], and in winter the ponds are apt to freeze. Mr. Eckardt deserves special credit for having succeeded in hatching the eggs of the delicious Coregoni of the Madue lake, and artificially raising these fish, which are greatly esteemed by Germans; but still more for the impetus he has given to the industry of carp cultivation. He succeeded in transporting the eggs a considerable distance by causing the carp to spawn on juniper branches placed in the ponds, these eggs being glatinous and therefore adhering to the branches. After these branches have been in the water some tine they are taken ont covered with eggs, which, even when transported some distance, will, under favorable conditions, develop normally. In special and very simple apparatus he ships live carp to a great distance, even as fir as North America.
9. Jerneuchen.-The most important fish-cultural establishment visited by me is without doubt the one belonging to the distinguished fishculturist, Max von dem Borne, located on his estate of Berneuchen, at a short distance from the city of Kiistrin, in that part of the province of Brandenburg called the "Nemmark." Mr. vou dem Borne founded this establishment in 1876, entirely at his own expeose, and he does not receive any subsidy whaterer. As a general rule he does not carry on the business of selling eggs or fish, and merely labors in the public interest for the German Fishery Association.
The water of the Bernenchen establishment is brought from a stream called the "Mictzel," by means of a canal, which also farnishes the waterpotrer for some mills. Its temperature varies very considerably; in winter it fulls as low as zero (when I visited Berneuchen its demperature was 20 li . [36.50 F.]), and in summer it may get as high as 200 R . [ 76 F.$]$. The roof of the hatching house is covered with tarred pasteboard, under which there are two thicknesses of boards, to which recently one of pastehoard has been added; one of the walls runs along the canal and is of masoury, while the othersare of wood. Inside, the house is divided into 2 roons; in the first there are 4 basins, 1 large and 3 small ones, intended for young carp; and the filtering apparatus. The water is made to pass throngh four compartments filled with sand, and through a flamel filter. From these filters the water passes into the second room, in the middle of which it rums in an open conduit of cement, from which by means of common fancets it is distributed to the right and the left. On both sides, and a little lower than the central conduit, there are cement basins, 7 on each side, about 2 meters long [ $6 \frac{1}{2}$ feet]. Each of these basins contain 4 California boxes, the 2 upper ones large, and the lower ones somewhat smaller, which serve for hatching salmon and trout eggs. For hatching Coreyonus eggs a special apparatus' is used, invented by von dem Borne, and called the "antomatic selector." To
each of these hatching apparatus there is attached a swall box, intended to gather the young fry after they have slipped out of the egg. When this has taken place, the young Corgoni fall into the basins below, which have about 3 centimeters [ $1 \frac{1}{5}$ inches] of water, while the young salmon and trout are left in the hatching-boxes. The hatching apparatus have covers, because otherwise one rat could in one night destroy the entire contents. The room can be heated artificially. Besides eggs of varions German salmonoids, I saw in process of hatching eggs of American Coregoni and Salvelinus.

Mr. vou dem Borne also has 22 ponds, the largest covering an area of $11 \frac{1}{2}$ hectares [about $28 \frac{1}{2}$ acres]. In these there live and are raised fish of many different linds-salmonoids, eyprinoids, \&c. In the majority of the ponds, however, there are carp, the ponds being arranged according to the Dubitsch system, already described by me ín another report. Among the foreign kinds the black bass (Huro nigricans) from Florida deserves special mention, as Mr. von dem Borne has succeeded in propagating this fish in his ponds. This kind, like the bass and some other fish, deposits its eggs among stones; and it is therefore necessary to prepare a bed of small stones in the place where it is intended they shall spawn.
10. Michaelstein.-In 1880, by an agreement between the Gorernments of Prussia, Brunswick, and Anhalt, for the purpose of stocking the public waters of the Harz Mountains, a fish-cultural establishment was founded in Michaelstein, near Blankeaburg, with Mr. Dreckmann, superintendent of forests, as director. After his death Mr. Wegener became its director. As far back as the Midale Ages there were in this neighborhood carp ponds, constructed by the monks.

The water comes from one of the ponds close to the establishment and passes throngh a small grating; thence it passes into a filter composed of six boxes, the first containing pieces of sponge, the second sand, the third again sponges, and so on, alternating. In winter the temperature of the water falls to the freezing.point. After the water has reached the hatching-room it is, by means of faucets, to which small flannel bags are sometimes attached with the view to better filtration, distributed through the apparatus, which are California boxes modified according to the Schuster system. These boxes are arranged on ! wooden staircases, each of the 14 steps containing two boxes; therefore in all 252 boxes. Each box may contain about 10,000 trout eggs. There are also 4 large cemented tanks for grown trout, and some wooden troughs, which are only used in case of absolute necessity. Besides river trout, Salcelinus and American trout are raised in this establishment. Some of these, two years old and weighing about 3 pounds, have already propagated the species under artificial cultivation.

There are a great many ponds, some of which might possibly be used for trout, and others for salmonoids, while in others carp alone can be raised, because the bottom is too muddy for others. In these ponds are
lept the fish which are to serve as propagators, and they are caught when the time for fecundation has come.

## II.-Switzerland.

11. Neuhausen.-This establishment is located about 300 meters [32S yards] from the celebrated falls of the Rhine. It belongs to the canton of Schalfluausen, which founded it in 1877 . It is muder the superintendence of Mr. Moser. Ott.

The water comes from a spring about 200 paces from the establishment, and is carried through a conduit about a meter and a half [ 5 feet] below the level of the floor. The temperature is not rery high, nearly always $7 \circ$ R. [about $48^{\circ} \mathrm{F}$.]. It is not filtered. It rises to the ceiling of the hatching-house, whence it falls into a long, rectangular wooden basin, from which through vertical pipes it descends into the hatchingroom below. To each pipe there are two troughs. These are of wood, about $2 \frac{1}{2}$ meters long, 40 centimeters broad, and 20 centimeters deep [about $98 \times 16 \times 8$ inches]. They are arranged in couples, each couple having one pipe through which the water flows into the troughs, and one common outlet pipe. The number of troughs is 16 . The water inside the troughs reaches a height of about 6 centimeters [21 during the hatching of the eggs, which are placed on frames of varnished iron wire, but after the eggs have been hatched the height of the water is reduced to 3 centimeters [ $1 \frac{1}{5}$ inches]. There are also in use small wooden troughs 80 centimeters long [31, inches]. In the hatch-ing-room, 10 meters long and $7 \frac{1}{2}$ meters broad [about $33 \times 25$ feet], there is also a large tank for live fish.

The only kinds of fish raised at Neuhausen are trout, salmon, and Thymallus, with the view to placing them in the Rhine, on the account of the canton; but a small trade is also carried on, priucipally in fecundated salmon eggs which have not yet become embryonated.

There are two small ponds for keeping trout, especially males, which are to furnish the material for reproduction.

In the Neuhausen establishment about 500,000 eggs can be hatched at one time.
12. Dachsen.-On the opposite bank of the Rhine, a little farther distant from the falls, there is the establishment of Dachsen, ou territory belouging to the canton of Zurich, which founded it in 1875, but reduced it to its present condition in 1881.

It is under the management of Director Asper, of Zurich. The water comes from springs close to the establishment and is collected in a reservoir, whence through a pipe it flows into the hatching-house. It is not filtered, but the end of this pipe has a grating to prevent any mud, leaves, \&c., from entering. In winter its temperature is $5^{\circ}$ to $6^{\circ} \mathbf{R}$. [ 4310 to 452 F .], and is somewhat higher in summer. Inside the room the pipe conveying the water rises vertically from the floor and flows into a canal in the center, constructed of masonry, and raised about 2
meters [ $6 \frac{1}{2}$ feet] above the pavement. From this central canal the water Llows into troughs, arranged perpendicularly on either side of the same, through pipes about 20 centimeters [ 8 inches] loug, which empty into a tlower-pot without bottom filled one-third with sand, resting on the network of metal wire, which covers the upper part of the trough. Thus the stream of water is broken in its fall, and is aerated. The troughs are of wood, 24 in number, and of the same dimensions as those used at Neuhausen. No frames are used, but the eggs, as well as the young fry, rest on a bed of sand and very fine gravel, at least 4 centimeters [ $1 \frac{1}{2}$ inches] high. Each trough may contain about 20,000 eggs.

As at Neuhausen, there are two ponds for trout, especially for males, selected as reproducers. The kinds of fish raised are salmon, trout, and Thymallus, for stocking the Rhine. No trade, properly so-called, is carried on; but exchanges are made with other establishments, for instance, with Hüningen.
13. Zurich.-The Zurich establishment is located at the place where the river Limmat flows out of the lake, and is under the immediate supervision of Dr. Asper. Like the Neuhausen establishment it belongs to the canton of Zurich.
The water comes from the Lake of Zurich. It is brought into the city by pumps, and is used by the people of Zurich as drinking water. Before being used it undergoes a thorough process of filtration. In winter its temperature is generally $3^{\circ}$ to $4^{\circ} \mathrm{C}$. [37.4 ${ }^{\circ}$ to $39.2^{\circ} \mathrm{F}$.], while in summer it can reach and exceed $20^{\circ} \mathrm{C}$. [680 F.]. It circulates inside the hatching-room by means of a pipe suspended from the ceiling.
The establishment is provided with hatching apparatus of different kinds: Wooden and zinc troughs, California boxes of various systems, small troughs of cement, \&c. In the troughs the eggs are at first laid on frames of metal wire, but when they are near to being hatched they are placed directly on the bottom covered with gravel or sand. Salmon and trout eggs are hatched for the Limmat and the Rhine, and Coregonus eggs for the Laike of Zurich.
For the latter kind of fish the American method answers well; it consists in keeping the eggs in a kind of large cylindrical bottle of glass, with a large mouth, closed by a perforated tin lid, pierced in the center by a pipe through which the water passes, and again flows out through the holes in the lid. In this manner the development of the much-dreaded parasitical fungi is prevented, especially during the first period of the development of the eggs. When the eyes become yisible the eggs are placed iu an ordinary California box.
At Geneva, Zug, and in some other places another apparatus was used with considerable success, consisting of a large glass funnel, 30 to 40 centimeters [about 14 inches] high, which is filled with eggs till within a short distance from the top, and into which the water enters through the lower aperture, keeping the eggs in motion and carrying away the dead and spoiled ones, which are lighter than the others.

Dr. Asper has also been successfui in hatching eggs of the American. Coregonus, and has placed some young ones in the lake.
14. Geneva.-In the quarter of Geneva known as "Sous Saint Jean," is located the fish-cultural establishment belonging to the canton of Geneva, which at present is under the direction of Mr. Covelle.
The water comes from the Lake of Genera, and is the same which is used as drinking water in the city. In winter its temperature is $6^{\circ} \mathbf{C}$. [t2. $\left.5^{\circ} \mathrm{F}.\right]$ and sometimes it falls to $40 \mathrm{C} .[39.20 \mathrm{~F}$.$] ; in summer it is$ very warm, but during that season no operations are carried on in the establishment. Generally it is not filtered, but when a north wind (the so called "bise") prevails, it becomes turbid, and at that time it is, when coming out of the faucets, made to pass through a zinc box divided into two compartments, half fille! with gravel. Mr. Covelle, however, proposes to substitnte for these apparatus a large filter, to be placed outside the Duilding.

The water runs along the malls of the hatching-room, which is 13 meters long and 12 broad [nenly $43 \times 40$ feet], in iron pipes, which are preferable to wooten ones, because parasitical fangi are not so apt to form in them.

In the hatching-room there are 28 troughs, placed in fro double rows, each containing 7 ; they are cemented, 212 meters long and 70 centimeters broad 「about $98 \times 28$ inches] on the inside. The one standing agaiust the wall is 20 centimeters [nearly 8 inches] higher than the outer one. For each trough there is a faucet, to which is attached a winding appendage of brass, with a small hole at the end ; so the water does not flow out more than at the rate of 6 liters [about $6 \frac{1}{3}$ quarts] per minute. Inside this tube is placed a small grating, which prevents all matter from stopping up the hole. The water flows from the upper trongh into the lower one through a zine pipe, to which is attached a distributing apparatus, which may also be attached to the upper fancet. The lower troughs have as an outflow a straight iron pipe, terminating at the top in a small grate.

These pipes, joined two and two, lead to a conduit under the pavement, which ends in a large basin placed at the ent of the room, which serves for keeping, separately, the male and female propagating fish.

For hatching Coregonus eggs the funnel-shaped apparatus already referred to is used. It is provided with a metal edge with a rertical grate, which runs along a peripheric canal, whose opening communcates with the conduit of the edge, from which the young fish and the spoiled eages fall, while the good ones remain at the bottom.
The hatching frames which Mr. Covelle plates in the large troughs have a bottom of metal wire with very narrow interstices. I think, however, that a network with larger openings is preferable, which woukd allow the young fish to pass through soon after they are hatched. The bottom of the troughs is generally covered with very tine gravel.

The Geneva establishment hatches eggs of the Swiss and American Coregonus, Thymallus, and Salvelinus, but principally eggs of lake trout, of which about 500,000 are raised per ammm. The attempt has been made to introduce salmon in the lake, but it has not proved successful.

## III.-Netherlands.

15. Telp.-The Velp establishment is near Annhem, at a short distance from the castle of Billiom, on the river Yssel. Its director is Mr. II. Id. Bontjes. It was founded in 1871, with a view to placing yonng salmon in the Yssel; but now it distributes them in nearly all the rivers of the Netherlands. The Dutcin Government pays about 1 cent for every young salmon, and about 10 cents for every one-year-old salmon placed in public waters, expending for this purpose a total sum of nearly $\$ 5,000$. The establishment consists of a large and very high hall, 15 meters long and 10 meters broad [about $49 \times 33$ feet].

The water used is spring water. It comes in an open canal, a distance of 4 to 5 kilometers [about 3 miles]. In winter its temperature sometimes falls to $1^{\circ} \mathbf{C}$. [ $34^{\circ} \mathrm{F}$.], and even lower, while in stmmer it rises to $20^{\circ}$ [ $\left.77^{\circ} \mathrm{F}.\right]$. Near the establishment it is collected in galvauized-iron pipes, through which it flows into a basin placed in frout of the house, whence it passes into another basiu inside. The water first goes into a little room, and is gathered in a cask, through a metal grating intended to keep oat all impurities; thence it passes, through a funnel filled with small sponges, into a large vat, half filled with gravel, and from this it goes into the hatching-room. In this room there are four rows of donble troughs, in cement, arranged on six steps. The lower trough, however, is not divided, and each row therfore consists of ten ressels, each 2 meters long and 86 centimeters broad [about $79 \times 34$ inches], and of a last one twice as broad. In these troughs the salmon eggs are placed on Coste frames, which often hare a network of clay pipe-stems. Abore the cement troughs others, made of wood, can be placed. The water flows under the pavement of the hall, whence it rises vertically in pipes, through which' it flows into the troughs.

Besides the two basins referred to for trout and one-year-old salmon, there are five basins for salmon, six for trout, and two for Chinese goldfish. During the first state the young fish are fed with brains chopped fine, then with heart, \&c.

The establishment makes a specialty of hatching salmon eggs, of which it can hold 500,000 . The eggs are mostly obtained froin fish caught in the Netherlands, and in that case from dead females and from fish from the Epper Rhine. Besides salmon I have se en the eggs of trout and the American Sulvelinus hatched in this; estamishment.
16. Apeldoorn.-The establishment of Apeldoom, form ded in 1850 by Mr: J. Noordhoek Hegt, is 4 Dutch miles from Apeldoom. It receives its water from a spring at a distance of about : kilometerss [nearly 2 miles],
which yields 10,000 cubic meters [about 350,000 cubic feet] of water per day. Close to the hatching house it falls about 4 meters [ 13 feet], and is partly gathered in an open wooden canal, which serves to bring it into the hatching house. It is not filtered. Its temperature, even in very cold winters, is $2^{\circ}$ to $3^{\circ} \mathrm{C}$. [35.60 to $37.4^{\circ} \mathrm{F}$.].
There are in all seventy-two troughs, generally double, arranged in three rows. Some of them are still of wood, but they will soou be replaced by others of cement.

There are mauy ponds and basins for fish of different kiuds, intended for raising fish and for selling them. The priucipal object of thisestablishment is to raise young salmon for the Rhine, but it also hatches eggs of common trout, lake trout, American trout, American Salvelinus, and California salmon; likewise crucians, carp, gold tench, and other cyprinoids.

## IV.-Fisit-Cultural Methods.

There are two methods in use for increasing the number of different kinds of fish: The first, in which human influence is reduced to its minimum, consists in placing the fish under the most favorable conditions for spawning. This may be called protective fish-culture, and is known by the name of "pond-culture;" it is particularly adapted to the cyprinoids, and among these specially to the carp.

By the second method the eggs are taken from the fish, mired with the milt, and hatched, and the young fish are cared for and fed, until the suitable time has arrived for placing them in the water; natural processes are followed as closely as possible, and all hurtful influences kept away. This last is genuine artificial fish-culture, and is especially applicable to fish which, like the salmonoids, spawn in winter, and consequently do not develop too rapidly.

Protective fish-culture does not demand so much care as artificial fish-culture, and can easily be carried on even on a large scale. In following the protective method the fish-culturist should confine himself to providing favorable conditions for the fish which he intends to raise, learing all the rest of the mork to nature. If carp are to be raised, there are placed (in the spawning-season) in a small pond, covering an area of 1,000 square meters [ 10,764 square feet], which has been kept perfectly dry until a few days beforehand, two male and one female fish, which have been carefully selected. These fish will spawn in a few days, and the young fry will develop rery rapidly. After they have lost the umbilical sac they should be placed in a larger pond, covering an area of at least 1 hectare [ $2 \frac{1}{2}$ acres], or in the waters for which they are intended. The bottom of the pond used for reproducing carp and other cyprinoids should be muddy ; while for bass, American perch, and other fish it should be gravelly. By allowing the carp to spawn on jumiper branches Mr. Eckardt has succeeded in conveying the eggs from one pond to the other, and he ships them by railroad in the same manner in which the
eggs of salmonoids are usually shipped. Aia important condition for raising carp is that the ponds can be laid entirely dry.
The rules to be observed in artificial fish-culture are, however, much more numerous. According to Benecke they may be classed under the following categories: Obtaining and fecandating the eggs in an artificial manner, hatching them, raising the young fish until they have lost their umbilical sac, shipping them, and placing them in suitable waters.

The artificial fecundation of fish eggs is, at present, generally practiced according to the dry method, the Russian method of Wraskij. By a gentle pressure on the abdomen the mature eggs are extracted from the body of the female, and allowed to drop into a dry vessel; over the eggs is poured the seminal liquid obtained in the same manner from the male; the mixture is gently stirred with the hand, gradually adding a little water. Eggs have even been successfuily fecundated which had been taken from female fish which had beeu dead several hours.

The best fish for propagators are those which are not too old; this applies particularly to the male fish. It is advisable not to use the same fish as propagators for several years in succession, with the view to avoid the evil consequences of the fatty degeneration of the genital organs, advanced age, and consanguinity. If the fish selected for the purpose of reproduction are healthy and fine, their products will be so likewise. It is possible to produce hybrids; bat these, besides beiug barren, show a very high rate of mortality, and in my opinion their raising can not be recommended.

The eggs, after haring become fecundated, are subjected to the hatching process. In a temperate climate this process may be effected in the open air and in open waters, in apparatus either floating or placed ou the bottom of a brook or some other water-course; but it is alwars safer, and in most cases absolutely necessary, that the hatching should be done in corered and inclosed places, which are called hatch-ing-houses. These should be constructed in such a manner that the water inside is not liable to freeze ; they should have sufficient light, so that there is no difficulty in selecting the eggs; but the light should not be too strong, because this farors the derelopment of alge and parasitical fungi.

The principal question which should engage the attention of fish-culturists, is the selection of the water destined for the hatching-house. It should be clear, free from impurities, have a low and even temperature (possibly from $2^{\circ}$ to $5^{\circ} \mathrm{C}$. [ $35.6^{\circ}$ to $\left.41^{\circ} \mathrm{F}.\right]$ ), and, what is still more important, should be abundantly aerated. These conditions are found particularly in brook water, which has only one fault, namely, that it is frequently muddy. Spring water is generally too wam and too littio aerated, but both these defects may be remedied by letting it, before entering the hatching-honse, run for some distance through a covered canal over a bed of gravel, and forming some little falls. Wherever S. Mis. $90-38$
these two kinds of water are found in the same neighborhood, it will be best either to use only one or to mix the two. Whenever brook water, and even when spring water is used, one should not fail to let it pass, before beiug used, through a filtering apparatus, which usually consists of oue or more rats or basins half filled with gravel, through which the water is made to flow. Small pieces of sponge may also be used, and the American filters of flannel have also been found to answer the purpose very well. The modern hatching apparatus, in which the eggs can be stirred and washed without difficulty, render it less necessary to filter the water.

In cold countries all possible precantions should be taken to prevent the freeziug of the water, by placing the pipes through which it flows before entering the hatching-house at a certain depth below the ground, and by eureloping them in straw or other non-conductors of heat.

Inside the hatching-honse the water should be gathered in a reservoir, or should run in a canal (an open one to be preferred) at a height of at least 2 meters [ 68 feet] above the pavement; the canals may be of wood, cement, or metal, accorling to circamstances, and from them the water should fall rertically into the hatching apparatus placed below. The object of letting the water fall from a certain height is to add to its aeration; special contrivances attached to the pipes may also serve this purpose.

The hatching apparatus generally used in large fish-cultural establishments are cement troughs, as being the most durable and less apt to favor the development of parasites on the eggs. The eggs may be placed in these tronghs, on frames with a wire bottom, the bottom being covered with rery fine gravel. Wherever witer is abundant it is advisable that each trough should hare a se parate faucet, because if parasites should (tevelop, in any one of them the infections germs can easily be removed. Even wooden tronghs may be used, provided they are carbonized on the inside, or at least tarred. In small, especially private, establishments the most useful hatching apparatus is the Califormia box, of whatever model it may be. Those, however, are preferable in which the water flows through a very large opening.

After the eggs have been placed in the apparatus strict watch should be kept orer them to remove immediately all those which have not been properly fecundaterl, which show traces of disease, or have become opaque. The eggs should be kept in the dark, because light favors the development of fugi and parasitical alge. All hatching apparatus, no matter of what kind, should be provided with strong covers to prevent mice, rats, \&c., from entering.

When the eggs are near being hatched they can, if they are on frames in large troughs, be taken off the frames aut placed on the bottom, or placed in special apparatus. If, on the other hand, they are in Califomial bores, it is not necessary to do this. Great care should be taken to remove at once spoiled esgs or dead young fish, as the presence in
the apparatus for any length of time of one dead body may canse the death of thousands of healthy eggs or young fry. To obviate this difficulty, the water should never cease to run into the apparatus freely. Whenever the fish begin to be less lively than usual and there is reason to suspect the development of the much-dreaded fungus (Saprolegnia), endeavors should be made to prevent its spread by throwing a large quantity of salt into the water. In some cases excellent results have been obtained by raising fresh-water fish in sea water. When the young fish are intended for public waters it is best to place them there some days before they have lost their umbilical sac, so they may become somewhat accustomed to their new element before they are compelled to seek their food. They should not all be put into the mater at the same time and at oue and the same place, but be scattered over a larger surface of water, selecting localities which contain the conditions favorable to their existence. Instead of quite young fish it would be preferable to put into open water fish about one year old, which are stronger and are not exposed to so many dangers. If the young fish are to be fed artificially the first food should consist of brains chopper very fine; afterwards they may be gireu meat chopper fine, fish eggs which have not been fecundated, ground meat (meat flour), and larse of flies. When they are two to three years old fish begin to be capable of propagation.

Fecundated eggs may be transported withont any danger at two periods, immediately after fecundation and after the points of the eyes begin to show in the embryo, while during the first stage of the development even the least shock may cause the death of the embryo. The eggs are wrapped in a small piece of moist muslin and placed on a bed of moistened wadding, which in its turn rests on a bed of moss. They are covered with a similar layer of wadding and moss, on which mother layer of eggs may be placed. In this way they can be shipped a considerable distance, placing on the top of the whole pile a small piece of ice, which serves to keep the temperature low, and which should be renewed from time to time. The box containing the eggs is paced inside another larger one, and the space between the two boxes is filled with sawdust, hay, \&e.

The American fish-culturist, Fred Mather, has invented an apparatus, a sort of chest with different bottoms, which is used for transporting the eggs which the German Fishery Association receives every year from the U. S. Fish Commission. The first attempts to conrey eggs such a distance were not successful, but at present they are shipped with perfect safety.

It is much more difficult to transport young fish, owing to the neces. sity of having the water acrated. For this purpose Schuster and others have constructed vessels to which air-pumps are atharhed, but according to Haack and others, these are not absolutely necessary; if great precaution is taken, and the water is changed as often as jossible, using
also ice, so that the water does not get too warm, the young fish may be shipped a considerable distance without great loss. The consignment of fish should in every case be in charge of a practical, intelligent, and reliable person.
There is of course much less difficulty in transporting grown fish. Director Haack has succeeded in transporting alive from Pisa to Hiiningen foung eels, known under the name of "blind cels."

In Itai! the first aftempts to stock the public waters with nish were made by Professor 3 be Filiphi, and contimed during the last few years, by the aid of the mimistry of agriculture, industry, and commerce, by Professor Paresi. But in order to make these experments with the certainty of faromble results, they should be preceded ly investigations relative to the physical and biological conditions of our fresh waters, such as Professor Pavesi has made in some of the lakes of northern Italy, Lake Trasimeno and Lake Albano.

All the kinds of salmonoids fomd in Central Enrone, with the exception of the Rhine salmon, the Bambe salmon, and the difterent kimds of Covegonus, are also fond in the fresh waters of Sorthern Itals; and it is therefore certain that these cfforts to increase the fish in our waters will be crowned with success. The trout, the solvelims, amd Thymatlus could casily be cultivatent, and there ins also reason to hope that the Coregoni introduced at first in Lake Maggiore by Trofessor De Filipni, and recently in Lake Como by Professor Pavesi, will become acelimatized and will propagate.

In Central and Southern Italy only tront are found ; but it would not be difficult to increase their number in the upper tributaries of the Arno, the Tiber, and in all the streans of fresh water's coming from the Apennines. I have not pet been informed of the resulis of the attempts made during the past year to introduce Rhine salmon in the Po and the Pescara. During my stay in Germany, I was altised more than once, especially by the illustrious president of the German Fishery Association, von Behr, to attempt the acelimatization of the California salmon (Oncorhynchus chomicha), which lives in localities whose natural condifions greatly resemble those of Italy. The non-migratory salmon of the Schoodic Lakes (Silmo sebefyo) might be raised to advantage in the deep lakes of Northeru Italy, and the volcaniclakes (eraters) of Central Italy.
Throughout the whole of Italy, but especially in C'entral and Southern Italy, the industry of carp culture is, as I think, destined to be developed veloped on a large seale; so far it has been introduced in some lakes and ponds. Tr. Max ron dem Borne also advised the cultivation in Italy of the American black bass (IIu:o nigricens). It is true that it is a rey voracions fist, bat the same may be said of the pike; and yet they do not destroy all the other fish in the waters in which they are found; suitable precautions and careful watching may prevent much of this evil; and there is no reason to exaggerate the dangers to which one kind of fish is exposed by another.

Fish-culture in Italy, especially in its sonthern portion, presents doulotless fewer difficulties than in Central and Northern Europe, by reason of the milder climate, which does not expose the water in the hatchinghouse to the danger of freezing, and reuders unnecessary many of the precautions which have to be taken in a more northern climate.

There are two methods of stocking with fish the fresh waters of a country: The founding of large central establishments of fish-culture, or of small fish-cultural stations scattered throughout the country. It has now been demonstrated that the second method is the better and more practical of tho two. Large fish-cultural establishments are in nearly all cases more subject to diseases which destroy the eggs and the roung fish thau small ones. "Splendid results may be expected from fish-culture only when every one has become his own fish-culturist," says vou Behr, and with good reason. But in order to obtain these results it is necessary that this industry should become more general and should be prized as highly as it deserves, and this can only take place after loug and patient labor, and if the proper impetus is given by the Gorernment. This is the grand service which the Hüningen establishment has rendered to the whole of Europe. But when fish-culture has entered the field of private enterprise the Government should cease to carry it on. This is also the opinion of the eminent director of the Hiiningen establishment, Mr. Haack. The large fish-cultural establishments should be the centers fiom which this industry is spread, and they should make efforts to start as large a number as possible of small establishments throughout the country.

This result has been reached perhaps in the most satisfactory manner in Saxony, since in that kingdom there were, at the end of 1882, not less than 73 fish-cultural establishments, both large and small, or one to every 40,000 inhabitants and to about 300 square kilometers [77 square miles]. This result is due particularly to the efforts of Doctor Nitsche, professor of zoology in the Academy of Forestry at Tharand. Since 1878 he has giren a special course of lectures on fish-culture, lasting not longer than a week. These lectures have been attended by the students of the academy and by many other persons, among the rest ser. eral fish-culturists. In most cases the inspectors of forests, both Corernment and private, have founded the different fish-cultural establishments, and hare done their share in diffusing the practice of fish-cultme. The same conld be done in Italy. The Institute of Forestry at Vallombrosa possesses, as I think, all the necessary material for a course of fish-culture. This course should be made free to all, so that it could be attended not only by the students of the institute, but also by persons employed in the superintendence and care of forests. The course should not merely comprise theoretical instruction relative to the phys. iology and reproduction of tish, the histological develoument of the embryo, \&c., but it should be essentially practical and brief, oceupying in all not more than three or four weeks, divided into different
periods, and that it will be possible for the employés of the forest service, the mly serrice which at present can be counted on in this respect, to become practically acquainted with fish-culture.

In conclusion it cannot be denied that in Italy the sea fisheries are of greater importance than the fresh-water fisheries; but at the same time it should be stated that even in the sea man may exercise a beneficial influence on the propagation of fish. We have an example of this by what is done in this direction in America as regards the cod, and in the Baltic as regards the herring. Some of our efforts should, therefore, be directed to salt-water fisl-culture, which is destined in time to produce still greater results than fresh-water fish-culture.

Genon, August 6, 1855.
[*After risiting and studying the principal fish-cultural stations of Germany, Switzerland, and the Netherlands in 1884-'85, under orders from the Italian Govermment, Dr. Bettoni and Dr. Vinciguerra advised the establishment of two somerrhat similar stations in Italy. The principal fish which they pointed out as suitable for cultivation were salmon, trout, and carp. Bolsena was mentioned as the most farorable place in Central Italy for one such establishment. The plan for the station contemplated a hatching-house, with all the necessary apparatus, an artificial canal from a small stream to the Lake of Bolsena, and the construction of two large ponds, each with an area of 1,000 square meters [nearly $\frac{1}{4}$ acre] and a depth of one meter [ $3 \pm$ feet]; these ponds being intended for the cultivation of carp on the Dubitsch system. Besides these ponds, two rectangular basins were to be laid in cement, each with an area of 12.5 square meters [ 134.5 square feet], and two other basins, one round and the other elliptieal, to be used as stock and winter ponds for carp and other fish. The total estimated cost for starting this statiou was about $\$ 2,3 \pi 0$. Brescia was proposed for the location of the establishment in Upper Italy, on a somewhat larger scale than the one-at Bolsena. The plan contemplated making a large canal and two small ones, emptsing into a pond of irregular shape, having an area of 246 square meters [ 2,648 square feet]. From this pond another canal is to start, feeding a large hatching-house and supplying water for three circular ponds with an area of 495,128 , and 110 square meters, respectirely $[5,328,1,378$, and 1,184 square feet]. There are to be also four rectaugular pouds, in pairs, each covering 414 square meters [4,457 square feet], and two large rectangular ponds, each with an area of 500 square meters [ $5,4.4$ square feet]. The bnilding is to contain, besides hatching-rooms furnished with the latest improved apparatus, a room for the director, oue for a laboratory, and one for a small museum. The total estimated cost for the Brescia station was about \$4,650.]

[^90]
## INDEX.

[Note.-The references are to page-figures in brackels.]

Aargau, action of Government ............... 24
Acipenser ruthenus................................ 33
Deration of water .................................. 7
Air-injector, description of...................... 7
American trout in Europo .................... 41, 49
Amsterdam, Netherlands ....................... 36
Anhalt, action of Government ............... 49
A peldoorn, Netherlands ...1,3,9,12,18, 24-7, 34, 53 fish culture at . ................... 33, 53
Arnhem, Netherlands............................. 53
Arno, river.......................................... is
Asper, Dr ..................................... 2, 20, 27, 50,51
Bachsaibling ........................................ 41
Baden, fish culturo in .............................. 24,43
Baltic Sca.
60
Barbns fluviatilis................................... 23
Basel, Switzerland .................................. 24, 2!
Bass .................................................. . . 35
Bebr, Herr von....................................... 5 , 58, 59
Benecke, B............................................... 28, 42
Berlin, Germany.................................. 36
Berneuchen, Germany .............. $3,5,9,16,19,20$, $25,26,27,31,34,48$
fish culture at ................... 33, 48
Berthot, Mr......................................... 41
Bettoni, Dr. Eugenio............................... 1
Black bass............................................. 31, 58
Blaufelchen....................................... . . . 20
Blind eels........................................... . . 42,58
Blotsheim, Germany............................... 41
Bolsena, station proposed at
60
Bontjes, H. E........................................ 1, 53
Borne, Max von dem.......... $1,4,5,6,16,90,28,29$, $30,31,39,46,48,49,58$
Borne, Max von dem, hatckery of.......... 16
Brescia, station proposed at.................... 60
Branswick, action of Government .......... 49
California boxes, use of............ $15,43,45,46,48,51$ hatching apparatus........... 6, 13, 17, 42
salmon ....................................... 54,58
trout, in Europe..................... 41
Carassius auratus................................... 30, 33
rulgaris................................ . 30,33
Carbonization, how obtained .................. 12
Carp
$.35,42,47,54$
culture of 27
ponds, tillage of. ..... 30
sale of ..... 40, 42
spawning of ..... 28
Chinese goldfish ..... 30, 53

Page.
Cliondrostoma nasus ..... 23
Page.
Cod ..... 60
Comacchio, Italy
Coregonns ..... 31 ..... 3, 58
albus ..... 26, 27
apparatus for batching ..... 52
fera. ..... 26, 27
maræиa ..... 26, 27
sale of ..... 40
wartmanni ..... 26, 27
Cosmandorf, Germany .... 1, 3, $9,13,18,24,27,34,45$ fish cultare at ..... 45
Costo, Professor ..... $36,41,42,45$
Coste frames, use of. ..... 53
hatching apparatus. ..... 10, 16
Covelle, Mr ..... 52
Crucians ..... 35, 47, 54
Crucian car! ..... 30
Cyprinoids ..... 30
Cyprinus carpio ..... 27, 33
Dachsen, Switzerland ...1, 2, 5, 8,9,11,18, 24, 27, 34
fish-culture at ..... 50
hatching-loxes at ..... 8
Danube, Califoruia salmon planted in ..... 25
salmon ..... 58
De Filippi, Professor ..... 58
Detzeru, Mr ..... 41
Dietrich, Mr ..... 1,31
Dreckmann, Mr ..... 49
Dresden, Germany ..... 36,45
Eckarlt, I ..... $13,20,47,48$
hatching-troughs ..... 10
Ecl ..... 31
introduced from Italy ..... 42
introduction into Germany ..... 31
packing aod transporting ..... 32, 58
Eel-way, description of ..... 32
Eggs, packing and shipping of ..... 21,57
Eperlanus ..... 35
Esox lucius ..... 31, 33
European hatcheries. ..... 34, 35
Europe, fish calture in ..... 1
Filters of flannel, uso of ..... 56
Filtration of water ..... 4, 19
Fischbach ..... 44
Fish-cultural establishments ..... 2
methods ..... 54
Fish-eggs, artificial fecundation of ..... 55
Fish, methods of stocking waters with ..... 59
transportation of ..... 57

Frankfort-on-the-Main ................................ $\frac{\text { I'age. }}{30}$
Freiburg, Germany .............................-........ 43
Fungus, how prevonted...-----.-.............. 57
Ganfisch

26

Gehin, Mr
3,5
Geneva 5156
Genoa, Italy
51, 52
60
German Fishery Association ..........43, 44, 48,57
Germany, fish culture in.......................... 36, 41
salmon in
24
Glaser, Mr
24
Glyceria fluitans. 28

Guldfish
Gold tench
35

Grayling 54

Guben, Germany ......................................... 47
Haack, Herman . $1,4,6,23-5,28,30,31,36,41,43,57-9$
hatching apparatus........................... 10, 17
Kartmanu, II
,
Hatching apparatus, kinds used........-.... 56 requisites of ........... 9 review of .............. $\quad 17$
houses, description of.............. 18, 19
Hogt, J. Noordhoek..............................................53
Merring .
Holton apparatus
$10,13,46$
Huiningen, Gormany.................. $, 2,5,10,11,13,14$, $18,19,24,25,26,27,28,29$, $30,32,34,36,41,42,58,59$
financial statement ot'............. 40
fish-culturo at
33,41
Huro nigricans..................................... $31,33,49,58$
Ice-boxes, use of.
Itlus.
melanotus .......................................... $30,31,33$
var.aureus.---.................. 45
Italy, fish in
45
58
Jacobi, Hanoverian ................................... 36
Jacoloson, Herman.................................... . . . 1
Küstrin, Germany ................................. 48
Lachs, local name for salmon .-....-.......... 24
Lago Masgiore. . . ...................................... . . 58
Lake Garda, trout from.......-................... 44
Albацо ............................................ 58
Como
26,5s
Constanco....................... $17,26,53,43, \frac{1}{4} 4,48$
Geneva .................................................
Zurich............................................... 51
'Irasimeno ........-.-.............................. 58

hatchine of
41
La Vallette hatching system..................... 17, 4
Limmat xiver ............................................ 51
Liter, mumber of erres in........................... 21
Lïbbinchen, Gemmany ...1, 3, 13, 19, 26, 27, 29, 31, 34
fish-culture at.....................29, 23,47
Lucioperca sandra ....................................... 31,33
Madue Lake
48
Maendli, Mr......................................................
Marktreit . . . . . . .......................................... 10
Mather, Fred
16
Michaolstcin, Germany......1,3,12, 16, 19, 27, 34, 49 fish-culture at.

33,49
Page.Micropteŕus salmoides
Mitatel ..... 31
48Mittag, Mr
Möbius, Carl ..... , 45
28Moser-Ott, Mr
Netherlands, fish-culture in.1, 50
action of Government. ..... 25, 53
salmon in ..... 24
Nouhausen, Switzerland..1, 7, 8, 9, 10, 11, 19, 24, 27,32, 34, 50, 51
hatching boxes used at ..... 8
Nitsche, Professor. $24,28,36,45,46,59$
hatching system. ..... 46
Oncorhynchus chonicha ..... 58
Osmerus ..... 35
eperlanus ..... 27
Pavesi, $P$ ..... -5, 13, 21, 58
Perca vulgaris ..... 31
Perch ..... 35
Pescara, river ..... 58
Phyllopoda. ..... 30
Pike. ..... 35, 47
hatching of ..... 31
Pisa, Italy ..... 31, 32, 42
Po, river ..... 58
Polesine, Italy ..... 31
Potamogeton crispum. ..... 32
pectinatum ..... 32
Prussia, action of Government ..... 49
Radolfszell, Germany ...... $1,3,12,13,19,25-7,31-4$
fish-culture at ..... 44
Rainbow trout, rearing of. ..... 41
Femy, Mr ..... 36
Lhine, river. ..... 50, 51, 53
placing salmon in ..... 40, 42
salmon ..... $25,43,58$
Hiver trout ..... 43, 45
Yesel ..... 25
IRussian method of artificial fecundation ..... 55
Ryisell, Mr ..... 36
St. (xothard ..... 32
St. Pölten, Germany ..... 18
Salmo carpio ..... 25, 27
fario. ..... 25, 27
foutinalis ..... 27, 35,43
irideus ..... $25,27,35,43,48$
rearing of ..... 41
heustris. ..... 27
quinuat ..... 27, 35
salar ..... 27
salrelinus ..... 85
sebago ..... 45, 58
umbla ..... 26, 27
Salmou. ..... , 5
crossed with trout ..... 27
eulture of. ..... 1
hatching of ..... 41
migration of ..... 27
Salmonoids, artilicial fecundation of ..... 20
food for ..... 22
hatching of ..... 41
planting of ..... 23
species cultivated ..... 24
taking eggs from ..... 20
tanks and ponds for ..... 22
1’ago.
Salvelinus
American
Trout, hatching eggs of ..... 41
hybrid migration of ..... 27
in open waters ..... 38
in ponds ..... 22
lectares on raising ..... 37
raising of ..... 38
Trutta iridea ..... 25
lacustris ..... 25
United States Fish Commission ..... 57
Upper Rhine ..... 53
Untersce, river ..... 26
Vallombrosa, institute of forestry at ..... 59
Velp, Netherlands .......... 1, 3, 5, 9, 19, 21, 27, 33, 34
description of ..... 53
salmon hatched at ..... 25
Verson, Professor ..... 19
Viaciguerra, Dr. Decio ..... 1
Volga river ..... 48
Walther, Ignaz ..... 16
Water, aeration of ..... 7
filtration of ..... 4, 19
temperature of. ..... 3
Waurick, Mr ..... 46
Wegener, Mr ..... 1,49
Wesenitz river ..... 24
Williamson hatching tables ..... 10, 12
Wilthen, Germany ..... , 34
fish-culture at ..... 46
Winter salm, local name for salmon ..... 24
Wittingau, Germany ..... 30
Wraskij, Mr ..... 54
Tisel river ..... 53
Zenk, F ..... 1,12
hatching apparatus ..... $10,12,13$
Zueg, Switzorland ..... 51
latching apparatus ..... 17
Zurich, Switzerland........1, 3, 5, 9, 11, 19, 24, 26, 27,34,50,51
description of ..... 51

## APPENDIX D.

REPORTS OF VESSELS AND STATIONS.

# VII.-REPORT ON THE WORK OF THE UNITED STATES FISH COMMISSION STEAMER ALBATROSS FOR THE YEAR ENDING DECEMBER 31, 1886. 

By Lieut.-Commander Z. L. Tanner, U. S. N., Cominanding.

The ressel was at the nary-yard, Washington, D. C., on the first of January, practically ready for sea, althougin the mechanics were still at work on one of the boilers. Cold weather coming on at this time, the Potomac was frozen over and all navigation ceased.

Lient. Seaton Schroeder, executive officer and navigator, was detached on January 2, and Lieut. H. S. Waring assumed his duties. Ensign W. S. Benson reported for duty on the 13th, and Ensign W. S. Hogg on the 16th.

We were detained by ice until 7 a. m., February 17, when we cast off from the wharf and steamed down the Potomac river. Several buoys were out of place, and after passing Glymont considerable floating ice was encountered. A heavy gorge was found between Upper and Lower Cedar Points, but we passed it without difficulty or delay. We anchored in Hampton Roads at 1.30 a. m., February 18, and at daylight got underway for the nary-yard, Norfolk, Va., where we arrived and moored to the coal wharf at $8.30 \mathrm{a} . \mathrm{m}$. Having telegraphed our departure to the commandant, we found 100 tons of coal on the wharf a waiting our arrival, thas saving us a day in coaling.

At meridian February 20 we left Norfolk, and proceeded to sea under the following orders:

## U. S. Commission of Fish and Fisheries, Washington, D. C., February 1, 1886.

SIR : For the purpose of extending researches commenced by the Albatross into the distribution and habits of the more important foodfishes of the United States, especially of the mackerel, menhaden, bluefish, etc., you will proceed, as soou as the steamer is ready, to Norfolk, Va., there, if convenient, to go into dock, and then take on board coal for the trip. After that you will continue the voyage, at the earliest possible moment, to the waters of the Bahama Islands, as there is
reason to believe that the yet undetected winter abode of the fish mentioned may be found to be in that vicinity.

If eucountered, you will note the comparative number of the fish, their character and peculiarities; and also determine whether they carry on the operations of spawning, and, if so, under what circumstances. You will also note any facts that may present themselves to you as to other species of fish, such as sheepshead, Spanish mackerel, drum, and other useful food-fishes known on the coast of the United States or peculiar to those waters; and will secure specimens of the various kinds for the purpose of more critical examination on the return of the vessel to Washington.

As in previous cruises, you will make collectious by trawl, dredge, or otherwise, of the marine animals inhabiting the waters, whether rertebrate or invertebrate, and will gather as many data as you can respect ing their relatiouship to each other and to their physical surroundings.

The Navy Department having expressed a desire to have a series of soundings made in the Bahama seas for the purpose of extending our hydrographical knowledge, you are authorized to do what you can in this connection without endangering the safety of the men or the vessel under your command. It is understood that the extra expense of any work done in behalf of the Nayy Department is to be defrayed by a supply of coal not to exceed 200 tous for the trip; and for this the Department has authorized you to call upon the coal depots at Key West or Peusacola.

You will give the scieatitic corns accompanying the vessel all possible facilities in carrying out their investigations, allowing them such opportunities for visiting the shores and briuging them on board again as may best aid in their work. Mr. James E. Benedict, as heretofore, will act as chief of the scientific party, aided by Thomas Lee and Willard Nye, jr.

Respectfully,

> SPENCER I. BAIRD,
> Commissioner.

Lieut.-Commander Z. L. Tanner,
Commanding Steamer Albatross, Navy-Yard, City.

> U. S. Commission of Fisi and Fisheries, Washington, D. ,C,, February $2,1886$.

Dear Sir: In continuation of my original detail of Messrs. Lee and Nye as assistants to Mr. Benedict in the natural history work of the Albatross during her coming cruise, I have taken advantage of the turn from California and the Arctic Ocean of Mr. Charles H. Townsend, of the Fish Commissiou, aud arranged to have him accompany the ressel on the Bahama trip. He is a gentleman of most excellent qualifications, and I have no doubt you will find him a pleasant addition to the scientific corps.

You will please arrange to have him mess in the ward-room, and give him comfortable accommodations in any stateroom that may be vacant.

Mr. Townsend is an accomplished collector and naturalist, and has lieen in the service abont three years.

Yours truls,
S. F. BAIRD.

Capt. Z. L. Tanner, Commanding Steamer Albatross, Navy-Yard, City.

Bureau of Navigation, Navy Departinent, Washington, D. C., January 18, 1886.

Dear Sir: 1 learn from Lieuteuant-Commander Tauner, commanding the U. S. Fish Commission steamer Albatross, that it is your intention that the vessel shall cruise in the vicinity of the Bahama Islands and the Gulf Stream, engaging in work connected with the Commission, and that it will not interfere with this work for Lientenant-Commander Tanner to fill several important gaps in the lines of deep-sea soundings in that vicinity, provided that the additional coal required for this purpose can be transferred from the Nary Department.

I have therefore to request that, if practicable, the necessary soundings indicated in the accompanying chart by red lines may be taken, and to state that the actual amount of coal consumed by the Albatross for steaming purposes, while so employed, will be issued to that vessel at Key West, not exceeding in amount 200 tons.

Very respectfully, your obedient servant,

> J. G. WALKER, Chief of Bureau.

Prof. Spencer F. Baird,
Commissioner of Fish and Hisheries, Washington, D.C.
We passed Cape Henry at 2.40 p . m. with ciear weather aud moderate NW. gale. Cautionary off-shore signals were flying at Norfolk, Fortress Mouroe, and Cape Henry. The wind continned during the night, and at meridian the following day backed to SW., blowing a fresh gale mutil noon of the $22 d$, gradually decreasing in force to a moderate breeze from west in the evening.

We commenced sounding to the northward of Great Abaco on the morning of the 23 d , in 557 fathoms, latitude $28041^{\prime} \mathrm{N}$., longitude $78^{\circ}$ $03^{\prime}$ W., and ran a line to the castward, reaching a depth of 2,545 fathoms, in latitude $25^{\circ} 43^{\prime} \mathrm{N}$., longitude $76^{\circ} 26^{\prime} \mathrm{W}$.

From 5 to 5.30 p . m . we swing ship under steam, observing azimuths of the sun on every other point of the compass in order to ascertain errors due to local attraction.

We then steamed to the southward, and at $12.51 \mathrm{a} . \mathrm{m}$. on the 24th sounded in 3,196 fathoms, latitude $28034^{\prime} 42^{\prime \prime}$ N., longitude $760^{\circ} 10^{\prime} 25^{\prime \prime}$ W. This depth was a surprise to us, as the sonudings on the chart to
the northward and southward did not lead us to expect more than 2,500 fathoms. A line was then run to the sonthward, terminating in 677 fathoms, latitude $27^{\circ} 38^{\prime} \mathrm{N}$., longitude $76^{\circ} 23^{\prime} 24^{\prime \prime}$ W., thence to the northward and eastward to latitude $27551^{\prime}$ N., longitude $75^{\circ} 53^{\prime \prime} 30^{\prime \prime}$ W., where a depth of 2,599 fathoms was found. The wire parted while reeling in, and we lost the specimen cup and thermometer. The break was attributed to an imperfect splice, but we subsequeutly learned that it was caused by a partial collapse of the drum.

The weather was boisterous during the day, and although the work was carried on successfally, it was at considerable expense of labor and frel and no little personal discomfort.

The wind continned from east to south during the 25th, with a heary head sea. One sounding ouly was takenduring the day, in 2,761 fathoms, latitude $27^{\circ} 30^{\prime}$ N., longitude $7.5035^{\prime} \mathrm{W}$. The wire parted again while hearing in, and the thermoneter and specinen cup were lost. The line was continned to San Salvador, or Watling's Island, the greatest depth fomd being 2,709 fathoms. We reached the island and anchored off Cockbum Town at 9 p . m. on the 20 th. The settlement as seen from seaward consists of a small group of white houses, a tall flagstaff, and two or three boat-houses on the beach. In approaching from the northward, laiding Rock Point will be recognized by three isolated palu trees just back of it, overtopping aill other foliage. The coast from the point to the settlement is a series of low rocky clifis, a white sand beach commencing at the latter point. To reach the anchorage, bring the flagstaf to bear east and stand in slowly, keeping the lead going, and anchor in from 14 to 7 fathoms, white sand bottom. Boats land on the sand beach in front of the settlement.

There is a light-honse in process of construction on Dixon's Hill, about two miles from NE. point, and one mile from the eastern shore. The tower is of limestone and is being built in the most sulstantial manner. Its base is 100 feet above the sea, and the center of foens 63 feet above the base, making a total height of 163 feet above the sea. It is to have a dirst-order lens, and will be completed in about a year.

Water is procured from wells, and is very hard. (iood mutton, fowls, egge, sweet potatues, and the fruits of the season can be procured at fair prices.

The magistrate, Maxwell Naim, esq., the only white man living on the island, is a naturalized American citizen, and was formerly a shipmaster sailing from Philadelphia. Lient.-Commander James M. Forsyth. U. S. ス̇., a relative of Mr. Nairn, had written him of our coming, and he han been looking for us for several weeks. He received us very kindy and made prompt and vers satisfactory arrangements for the accommodation of a couple of naturalists we wished to leave on the island while the ressel went to lium Cay. He gare his office for a laboratory and sleeping quarters, and twok them to his own table for meals.

Messrs. Lee and Nye were detailed to remain behind, and they were landed on the morning of the 27 th with everything necessary for the prosecution of their work. After seeing them established in their new quarters we got under way about noon and ran a line of soundings to Rum Cay, the greatest depth of water being 1,264 fathoms, white coral ooze.

We arrived and anchored in Port Nelson, Rum Cay, at 5.30 p. m., hauled fires, and made preparations for work on and abont the island.

We were met here by still other friends and relatives of Lient.-Commander Forsyth, whom he had informed of our expected arrisal. They exerted themselves to make our stay pleasant and rendered material assistance in the prosecution of our work.

The following day being Sund y no work was done. The collectors were away at early daylight on Monday, and their explorations were prosecuted vigorously during the remainder of our stay. On board ship we overhauled the sounding apparatus, and while trausferring the wire from the working reel for the purpose of overhauling splices, $\mathcal{E c}$., we found the drum partially collapsed, thus accounting for our loss of wire on the outward trip. We then mounted a new and heavier reel. Should it show signs of weakness, it would be advisable to adont some other and stronger type, which can, I thisk, be readily procured.

A plan of Port Nelson and St. George's Bay, or Man-of-War anchorage was made by Lieutenant Scott, assisted by Ensign Hogg.

We made a fair collection of the fishes of the island, bat our attempts to gain information regarding their sparning habits resulted in absolute failure, the natives having little or no knowledge of the subject. When questioned about migratory fishes, such as mackerel, shad, and menhaden, they said they were unknown among the islands, but bluefish were taken at any season of the year. I was unable to identify the blue-fish of the islands with our northern fish of that name, those I saw being "parrot fish," of a deep blue color and called blue-fish by the natives.

We continued our practice of rendering medical aid to the people of the islands where they had no resident physician, the ship furnishing necessary medicines if they could be spared from the stores. Dr. Flint gave a portion of each day to the care of the sick, and his name will be long remembered by the people of Rum Cay for his kinduess and attention.

The harbor and settlement of Port Nelson lie on the south side of Rum Cay, about 6 miles east of Sands Point, the western extremity of the island. The harbor is formed by a reef rumning westward from Sumner's Point. The chaunel is narrow and intricate for vessels of more than 10 feet draught, and should not be attempted without a pilot; 18 feet can be carried through the channel.

St. George's Bay, or Mam-of-War anchorage, lies to the westward of Port Nelson, and is in fact a part of the same bay, scparate names being S. Mis. 90 39
given to designate different localities in the same harbor. It is easy of access, the channel being straight and clear, with a depth of 24 feet. A vessel intending to enter St. George's Bay should keep in blue water, outside of the reef, until the conspicuous white house on Cottonfield Point bears N. by E. ; then stand in for it until inside the reef, when she may anchor in any desired depth, white sand bottom. This anchorage is safe in all ordinary weather.

The settlement of Port Nelson will be recognized at a distance by a grove of tall cedar trees near the center of the village which overtop all other foliage. The Government flagstaff marks the head of a small wharf having 4 feet of water at its outer end. The white house referred to on Cottonfield Point is about $1_{1}^{1}$ miles to the westward of the flagstaff.

A poor quality of beef, good mutton, fowls, eggs, sweet potatoes, and fruits of the season were obtained at fair prices. The water is procured from wells in which the tides rise and fall, and is decidedly hard.

The following brief historical sketch by Lient.-Commander James M. Forsyth, U. S. N., a native of the island, is replete with interesting facts and reminiscences:
"Rum Cay, one of the Bahama groun, is probably identical with Santa Maria, the second island touched at by Columbns. Little is known of its history until the latter part of the cighteenth century, when, with the adjacent islands, it became the refnge of a number of loyalists from the Carolinas and other parts of the United States. Most of these refugees had been engaged in cotion groming in their former homes, owned slaves whom they brought with them, and continued the cultivation of cotton. The island at this time was well wooded, and in clearing for fields the lignum-rite and the dye woods not only paid all expenses, but gave a fair profit. The cotton, hard wood, and dye woods were annually shipped to Englaud through agents in Nassan, and supplies were received at the island through the same channel. Later on, probably about 1818, the salt industry began to be developed. The island has one of the best salt ponds in the Bahamas, lying convenient to a safe and commodions anchorage. The salt was manufactured by solar evaporation, and exported direct to the United States aud British provinces. For a period of about fifty years the island was fairly prosperous. Then the abolition of slavery began to be pressed on the colonists by the British govermment, causing an unsettled state of affairs until, finally, emancipation was proclaimed. Naturally this worked great changes in the control of labor. The wants of the newly liberated slaves were few and simple, and in a country where the climate was mild and sea and soil readily yielded the mere necessaries of life, the laborer with lis new found liberty was quite independent. Some of the proprietors of land became disheartened and left the island. Those who remained found that cotton could not be profitably cultivated with the uncertain labor of their former slaves, and as the supply of valuable woods was
about exhausted, salt became the leading product. From 1840 to 1852 there was exported from Rum Cay between 100,000 and 250,000 bushels of salt yearly, reaching the highest production in 1852. The prices, paid on delivery on board generally cash down, ranged from 10 to 15 cents a bushel; 10 cents was considered fair profit, 12 cents very good, and 15 cents extra. In November, 1853, a severe hurricane struck the island and caused great damage. The sea broke into the reservoir of the salt pond, injured the canals and wharves, and gave the salt business a setback from which it never fully recovered. During the Crimean war, $1854-56$, prices went up to 25 cents a bushel. The demand exceeded the supply, for the damage inflicted by the 1853 hurricane limited the production. Since that time the output of salt has gradually decreased, and is now small, the shipment of a cargo being an erent. This decline of production was due to various causes, foremost among which were competition, sharply pressed, and the protective tariff placed on salt by the United States. Early in the fifties the salt ponds at Inagua and Fortune Islands were takeu hold of by euterprising men who commanded capital. Superior facilities for loading and quicker dispatch were promised to vessels and great pains taken to secure charters in the United States and at St. Thomas (at that time a noted port of call for West India traders who were in search of homeward bound cargoes). This turned the trade into a new chamnel. Theu the United States tariff on salt cut the price down so low that profit on the industry was impossible. With the loss of this trade the population decreased, people leaving the island to search for employment. In 1850 the population was about 800 , of whom 35 were whites. At present it is about 350 , of whom 3 are whites. The inhabitants are as a whole in iulustrious, law-abiding people. Their deliberate methods of lalsor are at times aggravating to foreigners, get they are capable of long-continned and severe efiort and will work faithfully when sure of fair wages and certain pay. At plodding, steady labor they do not exeel, a trait more the effect of climate than anything else. In the season of salt raking and the loading of ressels their quick, cheerful mode of work camot be surpassed. The strong hold the salt industry had on the laboring class was due to the fact that the main work was done in large companies with song and excitement, the returus were prompt and distributed almost at once, whilst there were long periods when the laborer was at liberty to enjoy his ease in a fine climate and work as he pleased on his own little holding. Emancipation was disastrons to the proprietors, but shows a strong balance in its favor in the comparative happiness and comfort it has given to the colored people. Even those who mourn most over the decadence of the Bahamas innst admit that it has proved to be the greatest good to the greatest number. At Rum Cay all business is in the hands of the blacks, severai of whom show marked alility, integrity, and intelligence. There are several churches and a public school, where the rudiments of aur English elucation are tanght. The
inhabitants of this island as a community were never wreckers. They are skillful and fearless boatmen, good fishermen, and make capital sailors on the small craft of the Bahamas. They still cling to the hope that the removal of the United States tarifi on salt will restore some of the old-time prosperity, but there is doubt if such would be the case. The trade has sought new channels and is hard to turn back; and new deposits of salt have been found in the United States. The nse of canned provisions for sea life, and the supply of armies and navies, has lessened the demand for salt provisions, so that the future of the island must depend on agriculture and stock raising.
"Pineapple culture has beeu started of late years, the first cargo being shipped to the United States about 1:378. At present four or five cargoes are shipped every jear, and the prospect for success is good. Fiber plants of several varicties grow readily and efforts are being made to cultivate them. Some attempt is also being made to establish cocoanut groves. The agricultural products of the island were never sufficient to support the population, mainly because more attention was given to salt raking as more remunerative. Supplies were obtained from Watling's and Long Islands. At present, with a reduced population, the products are still insufficient to supply the people, though Iudian corn, Guinea corn, sweet potatoes, jams, peas, tomatoes, beans, okra, melons, bananas, plantains, and oranges are produced. Cattle, sheep, and hogs are reared to some extent and shipped to Nassau. Under a careful system of agricuiture these products might be largely increased, but unfortunately a method of working land on shares, established just after emancipation, has educated the laborer into carelessness as to the life of the soil. No manuring is attempted, and land is worked until it is exhausted; then new tracts are cleared. A liberal use of five in clearing oftentoesham. The soil is light and mainly composed of vegetable mold aud is injurea as to producing qualities by the passing over it of the flames. This working on shares, with is inherent defects, is not the fault of the colored people, lout is rather a legacy from the old slavery times, wheu, after cmancipation, the freedman had no capital but his daily labor, whilst the promietors held the laud. The ouly way to briug laud and labor together was to stad this share culture, one-third of the prodnet going to the land owner. This system is, hovever, steadily being displaced by that of the swall freeholder. The colored man's first ambition is to own his house and plot of gronnd. The descendants of the slaves are therefore buying land from the government and the descendants of the slave-owners, often becoming owners of the land where their forcfathers were held in slavery, so that at the present time a large nortion of the island is ormed by the colored race. The soil will give rich returns when carefully culticated, and as a quiet home for the small freelolder of the colored people it cau lardly be equaled. A bad yearmay come, cansed either by drought or hurricane, but a littlo forethought in the good years will render the owner of five or ten acres of land more independent and comfortable than a laboring man can pos-
sibly bo auywhere else in the world. Land is cheap, goverument lands selling at five shillings sterling per acre. There is no tax on land, so with ordinary industry a home may easily be kept. If there was a sure market and quick transportation for fruit and regetables production would be stimulated, for each owner would strive to keep his holding at its best. The day may come when, with the waters of the Bahamas used as a winter cruising-ground by American yachtsmen, and Nassau the headquarters and winter resort it should be, there will be the desired increased demand for out-island produce and an incentive given to more careful and thorough work."

At 5.50 a. m., March 8, we got under way and ran a line of soundings to Conception Island, the greatest depth being 1,017 fathoms. Arriving off the western side of the island about $11 \mathrm{a} . \mathrm{m}$. the naturalists went on shore for a few hours. We, in the mean time, steamed several miles off shore and lowered the trawl in 1,169 fathoms, white coral ooze bottom. After dragging a few minutes it fouled on one of the projecting coral rocks which crop up at intervals throughont the Bahamas, eren in the deepest water. We succeeded in getting the trawl on board, with the net somewhat torn, after several hours' effort, only to find a few shrimp, a sinall octopus, and a few minute forms in the lag. Our experience has been the same on all coral sand or ooze bottoms, which seem to be almost barren of life.

The naturalists returned at $2.45 \mathrm{p} . \mathrm{m}$. with a large number of birds and, the trawl being up, a few minutes later we started abead, running a line of soundings to Columbus Point, Cat Island, the greatest depth being 845 fathoms, developing a connecting ridgo between the islands.

We sounded in 22 fathoms on the reef off Columbus Point about dusk, and a few minutes later slowed down and put over the large sur. face tow-nct. Very little life was found. During the night a line of soundings was carried to Watling's Island, leveloping a depth of 2,482 fathoms. At daylight on the morning of the 9th we anchored off Cockburn Town, took Messrs. Lee and Nye on board, and returned to Rum Cay, anchoring in St. George's Bay at 4.40 1). m. We were under way at $6.15 \mathrm{a} . \mathrm{m}$. on the 10 th , and ran a line of somudings to Cape Sta. Maria, north end of Long Island; thence to the SW. end of Cat Island, where we arrived at $5.27 \mathrm{p} . \mathrm{m}$. and anchored for the night at Hawk's Nest anchorage. The greatest depth found during the day was 1,398 fathoms, between Rum Cay and Long Islaud, and 1,056 fathoms between the latter and Cat Island.

Hawk's Nest anchorage is safe and couvenient, with mortherly or easterly winds. We anchored in 7 fathoms, white sand bottom, the buildings on Hawk's Nest hill bearing ENE., with the western extremity of the reef about 300 yards distant.

The naturalists landed at daylight the following morning and returned at $10.30 \mathrm{a} . \mathrm{m}$., when we got under way and ran a line of soundings across Exuma Sound to the NW. end of Exuma Island, thence to the south end of Eleuthera Island, arriving and anchoring at Miller's
anchorage at $6.43 \mathrm{a} . \mathrm{m}$. on the 12 th . The naturalists landed an hour later and made a successful hunt for birds, reptiles, \&c.

At $1.50 \mathrm{l} 1 . \mathrm{m}$, we got under way and made two hauls with the tangles on the edge of the reef in 36 and 360 fathoms. The bottom was exceedingly rough, the tangles fouling soon after they landed on the reef. We secured very few specimens beside fragments of coral rock which were detached by dragging the apparatus over the meven surfaces. Findiug the work difficult and almost wholly unproductive, we returned to our anchorage at $4.55 \mathrm{p} . \mathrm{m}$.

We were under way again at $1.16 \mathrm{a} . \mathrm{m}$., March 13 , and ran a line of soundings to Wide Opening, thence to the head of the Sound. At 2.05 p.m. We lowered the trawl in 791 fathoms, white coral ooze, landing it on deck at 4.53 p . m., with a few shrimp, a fragment of a holothurian, a quantity of dead coral, \&c., the mad-bag being filled with the white, pasty ooze of the bottom.

The results of this hat confirm our former experience of the barrenness of waters where the bottom is composed of coral sand or ooze. The han finished, we started for the chamel between Eleathera and Little San Sarador Islands, somnding $1 \frac{1}{2}$ miles inside the reef in 476 fathoms, and oue-half mile outside in 226 fathoms. The depth increased 1o 2,664 fathoms 30 miles to seaward in a northerly direction, latitude $25^{\circ}$ $2^{\prime} 45^{\prime \prime} \mathrm{N}$. , longitude $75^{\circ} 43^{\prime} \mathrm{W}$. Maving completed the line, we steamed for N.E. banks off Northern Eleathera, ruming a line of soundings from 11 hathoms on the bauks, to 2,663 fathoms, latitude $25^{\circ} 44^{\prime} 45^{\prime \prime} \mathrm{N}$., longitude $74022^{\prime} 3^{\prime} 15^{\prime \prime} \mathrm{W}$. The last sounding was taken at $5.10 \mathrm{p} . \mathrm{m}$., March 14. We then stood for Nassau, New Providence, under low speed, arriving and mooring in the harbor at $7.15 \mathrm{a} . \mathrm{m}$., March 15. We were visited by the harbor-master and health officer, and promptly granted praticue. A boat was sent for the United States Consul, T.J. MrLain, who visited the ship. At 3 p . m., accompanied by the United States consul, I made an official call on his excellency the governor, Henry A. Blake. It being the closed season, a license for our naturalists.to shoot birds for specimens was requested, and granted as follows:

> Governament House, Bahamas, March 17, 1886.

In virtue of the authority vested in me by the terms of the 48th Victoria, chapter 10, I herely grant permission to the undernamed persons to take, during the rear 1886, whatever birds or eggs of birds, protected by the provisions of the said act, they may require for the purposes of the scientific expedition of which they are members. henry a. Blake, Governor.
Jas. E. Benedict, C. H. Townsend, F. L. Washburn, Thomas Lee, W. Nye, jr.

The birds mentioned in the act are: Wild pigeons, partridges, dores, flamingoes, boobies, man-of-war birds, pimlies, noddies.
The governor very kindly sent us the following letter also, which is evidence of his friendly interest in our work, and desire to assist in its prosecution:

Government House, Nassau, March 17, 1886.
To whom it may conceru:
The governor requests that public officers and other inbabitants of the islands of this colony will afford every assistance in their power to the naturalists on board the U.S.S. Albatross, who are engaged in scientific investigations.

> HENRY A. BLAKE, Governor.

The work of collecting and investigation was carried ou vigorously during our stay in port, and large numbers of rare and interesting specimens were obtained.

His excellency the governor visited the ship ou the 17 th , and spent several hours in inspecting the apparatus, examining the specimens, and familiarizing himself with our methods. He has a good knowledge of natural history, and is doing useful work in that branch of science himself; hence his study of our apparatus and methods was with unusual interest and intelligence.

At $6.10 \mathrm{a} . \mathrm{m}$., March 24 , we left the harbor of Nassan, and rau a line of soundings to the south end of Great Abaco, the maximum depth being 1,490 fathoms. At 5.25 p . m. we anchored off Soldiers' Road Settlement and landed Messrs. W. Nye, jr., and C. H. Tomnsend, with necessary supplies and apparatus for the prosecution of their work while the vessel was absent. This auchorage is safe with winds from NW. and N. to E. The Albatross anchored in 7 fathoms, white saud bottom, Hole-in-the-Wall light-honse bearing ENE. three-fourths E. in sight over the land. We left the anchorage at $8.10 \mathrm{p} . \mathrm{m}$., and ran a line of soundings through NW. Providence Channel to Great Isaac's, thence proceeding direct to Key West, Fla., where we arrived and anchored at 2.05 p.m., March 26. The flagship Teunessee, flying the flag of Acting Rear-Admiral James E. Jouett, the Powhatan, Galena, Swatara, and Yantic were at anchor in the harbor, and the U. S. Coast and Geodetic Survey steamer Blake arrived during the evening. The fleet left at $11.45 \mathrm{a} . \mathrm{m}$., March 28, and the U.S. S. Brooklyn came in and went to the coal wharf.

At $1.40 \mathrm{a} . \mathrm{m}$., on the 30 th, fire broke out in a building adjoining the San Carlos theater, and quickly spreading among the dry wooden structures in the vicinity, soon became totally ummanageable in the absence of suitable fire apparatus. A working party of thirty men, under command of the executive oificer, Lientenant Waring, was sent on shore from this vessel at 2 a . m., and fought the fire until 3 p . m., when it was under
control. Sinsigns Benson and Hogg and Mr. Thomas Lee volunteered their services, and reudered valuable assistance. The party went armed with axes aud a coil of rope for pulling down and demolishing buildings, as that was about the ouly method of fighting the fire in the absence of water and fire-engines. Large parties well officered were sent from the Powhatan and Brooklyn, and the crew of the revenue-cutter Dix were early at the scene of fire. Captain Matthews, of the Brooklyn, with his torpedo corps, leveled many buildings, which tended to narrow the track of the flames as they swept through the city toward the water.

Steam was raised as soon as it was seen that the conflagration was becoming serions, and every preparation made to get under way should assistance be required in moving vessels from the wharves. Several men were detailed to carry hot coffee and hard-bread from the ship to the parties on shore, and about fifty gallons were dispensed in this way, much to the comfort of both officers and men. All the business portion of the city, including the wharres, was burned, beside several large cigar factories and many dwellings. The government property was sared.

We commenced coaling at 6.45 a. m., on April 2 , and finished at meridian on the 3d, having taken on board 127 tons.
The fire disarranged all business matters on shore so much that we were unable to procure money for the use of the vessel, fresh water for the boilers, or stores for otficers and crem, hence it was determined to go to Havana for the articles required. As there was a wide break in the soundings between American Shoal, on the Florida coast, and Matanzas, we took the opportunity to run a line between the points mentioned. Leaving port at 5.10 p.m. we commenced the line off American Shoal in 145 fathoms, and completed it at 12.45 p.m., April 4, when we started for Mavana under steam and sail, arriving and mooring at one of the government buoys at $6.30 \mathrm{p} . \mathrm{m}$. The health officer visited the ship and granted pratique; and officers from Spanish and German men-of-war in port called, tendering the usual civilities. These calls were returned on the following day, when I also visited the commodore (acting admiral) and captain of the port.
The services of the goverument water-boat were secured and the boilers filled on the 6th, preparations for sea being completed in the mean time. At $7.30 \mathrm{a} . \mathrm{m}$. , April 7 , we left port and spent the forenoon hauling the taugles near the reef to the eastward of Morro Castle, taking 126 Pentacrinus, a variety of coral, crustacea, shells, \&c. The trawl was lowered at $2.09 \mathrm{p} . \mathrm{m}$. in 1,025 fathoms, and landed on deek at 4.45 ; a water hanl. The current was so strong that the trawl failed to reach the bottom. We then started for Key West, arriving and anchoring off the govermment wharf at $6.17 \mathrm{a} . \mathrm{m}$. the following morning.

At $7 \mathrm{a} . \mathrm{m}$. we went alongside the Freeda A. Willey and took from her 50 tons of coal which filled the bunkers and bags, about 30 tons being carried on deck. We cast off and went to sea at 5 p.m., and at 6 a.m.
the following day put the dredge over in $\tilde{\sigma} \boldsymbol{f}$ fathoms off Carysfort Reef. Thirteen hauls of dredge, tangles, and trawl were made during the day between Carysfort and Fowey's Rocks, in from 56 to 369 fathoms. Large numbers of minute shells, numerous crustacea, swall fish, cephalopods, \&c., were taken. We continued dredging till dark, theu steamed across the straits to Great Isaac's and ran a line of soundings thence to SW. Point, Great Bahama Island ; after which the northern part of NW. Providence Channel was sounded, the greatest depth, 869 fathoms, being found 18 miles west of Burrows Cay. The last sounding was taken at $10.16 \mathrm{p} . \mathrm{m}$., and we then steamed direct for Soldiers' Road auchorage, Great Abaco, arriving at 5.40 a. m., April 11.

While engaged in sounding the NW. Providence Channel, we encountered a strong NW. current, exceeding 2,2 knots per hour, setting into the bight, and a counter-current of some force to the southward and eastward along the line of reefs from Burrows to Gordo Cays. Brisk to fresh easterly winds prevailed.

Boats were sent for Messrs. Nye and Townsend, who had been on the island since March 24. They appeared in good condition, and reported fair success in collecting. Everything being on board, we left at $8.30 \mathrm{a} . \mathrm{m}$. for Tongue of Ocean, anchoring in $4 \frac{1}{2}$ fathoms on the eastern bank at $10.40 \mathrm{p} . \mathrm{m}$. We were under way again at 5.20 the following morning, and at 7 a . m. anchored off Green Cay and landed the naturalists. The anchorage is on the west side of the cay, the northwest and sonthwest points projecting slightly, forming an open bay protected from easterly winds. The bottom is white sand and there is sufficient room for vessels to anchor and swing.

The island is uninhabited at present, but gives evidence of having supported quite a large population in earlier times. The collectors returned at 10.45 , much pleased with their success and anxious for another opportunity of landing on the cay. We were under way at 11 a . m., and steaming to the southward passed Booby Rocks, then hauled up to the southward and eastward for the extremity of Tongue of Ocean, sounding and putting the tangles over in 36 fathoms at 5.30 p . m ., latitude $23^{\circ} 34^{\prime} \mathrm{N}$., longitude $76^{\circ} 33^{\prime} \mathrm{W}$. It was an exceedingly rough coral bottom, and we anticipated a variety of specimens usually found on such ground, but our catch was confined to a few sprays of gorgonian coral, sponges, mollusea, and crustacea. Steaming W. by S. one mile the tangles were again lowered in 369 fathoms, the same rough and barren bottom being encountered.

The large surface tow-net was put over a little after dark with equally poor success, very fer specimens being taken. A line of soundings was run to High Point, Andros Island, during the night, and thence to Booby Rocks, where we anchored at 7.10 a. m., April 13. The depth of the southern portion of Tongue of Ocean developed by our soundings averaged about 750 fathoms, ranging from 711 to 805
fathoms, with the bottom of white coral ooze as found throughout the Bahamas.

The naturalists landed as soon as we came to anchor, hoping to get a few specimens of sea birds, numbers of which were seen on the wing hovering over the rocks. Thes returned in about an hour with two specimens of boobies, the only species of bird they saw. We then got under way, and at 9.46 lowered the tangles in 97 fathoms off the west side of Green Cay. It was an exceedingly rough bottom, and we expected a rich haul, but found nothing but a few gorgonian corals, barnacles, and sponges. The dredge was then lowered in 140 fathoms, coral sand bottom, but it soon caught on a coral lump and parted the rope at the hoisting engine. The end canght under the guard on the dredge-block, which for the second time held the rope till we conld clamp and secure it. The bottom was found to be exceedingly barren, a few small shells being the ouly specimens brought up by the dredge. We anchored off Green Cay at $11.30 \mathrm{a} . \mathrm{m}$., and landed the naturalists. They returned at 1.30 p. m., when we got under way and resumed our work of sounding, finally anchoring for the night on the bank in latitude $24^{\circ} 29^{\prime} \mathrm{N}$., longitude $77^{\circ} 15^{\prime} \mathrm{W}$.

We were under way the following morning at daylight and continued the soundings. The weather was clear and pleasant with light airs and calms during the forenoon, but later in the day the wind increased to a moderate gale from north with thick rainy weather and heavy sea. We continued work until dark, then hove to under the lee of Thompson's Cay until daylight the following morning, when a line of soundings was rum to the west end of New Providence Island, completing the work in Tongue of Ocean.

The gale continued with a heavy and exceedingly uncomfortable sea. The bar at the entrance of Nassau Marbor was breaking so heavily that we were unable to enter, and were forced to make an anchorage in Southwest Bay to leeward of the island.

The weather appearing to have moderated somewhat on the 17 th , we got under way and steamed to the vicinity of the bar which we found still impassable, and were obliged to return to our anchorage in Southwest Bay. Another attempt was made to enter on the 19 th, but the bar was still breaking heavily and it was not until the 21 st that we succeeded in passing it. We reached the harbor at $11.30 \mathrm{a} . \mathrm{m}$. on that day, received the usual visits, and, during the afternoon, accompanied by the United States consul, I made an official call ou the governor.

The naturalists continued their work while we were letained at Southwest Bay, and, after our arrival in Nassau, the fishing and spongeing industries of the Bahamas were investigated as thoroughly as our limited time would permit. The results of their inquiries will be found in the naturalist's report.

During the prosecution of our work among the islands we have encountered brisk to stroug winds from various points of the compass,
easterly wiuds prevailing, and much squally weather. These conditions are normal for the months of Janaary and Febraary, but rather exceptional for March and particularly for $A$ pril. We left Nassau April 30, and ran a line of soundings from Egg Island reef to a point of the shoal off Hole-in-the.Wall, to develop a shoal said to exist in mid-channel. An old shipmaster who traded for many years among the islands said he had fished on it and knew that it existed. We found a depth of 2,222 fathoms on the spot indicated, and saw no signs of shoal water. It is more than probable that the captain fished on the extremity of the reef, making off 10 miles or more from Hole-in-the-Wall, and it is not at all strange that he should think himself half way across the channel, particularly if he was in a small vessel.

From Hole-in-the-Wall we steamed to Little Guana Cay, and sounded in 940 fathoms, latitude $26^{\circ} 40^{\prime} \mathrm{N}$., longitude $76^{\circ} 49^{\prime} 30^{\prime \prime} \mathrm{W}$.; then ran a line to the northward and eastward, perpendicular to the coast, to latitude $26^{\circ} 50^{\prime}$ N., longitude $76^{\circ} 04^{\prime} 45^{\prime \prime}$ W., reaching a depth of 2,670 fathoms. The course was then changed to the northward and westward and a somuding taken in 2,715 fathoms, latitude $27^{\circ} 11^{\prime} \mathrm{N}$., longitude $76^{\circ} 19^{\prime} \mathrm{W}$. The next cast gave 943 fathoms, latitude $27^{\circ} 41^{\prime} \mathrm{N}$., longitude $76^{\circ} 41^{\prime} \mathrm{W}$. From this point a line was run to the westward to latitude $27^{\circ} 57^{\prime} 30^{\prime \prime} \mathrm{N}$., longitude $77^{\circ} 27^{\prime} 30^{\prime \prime} \mathrm{W}$., in 660 fathoms. The trawl was lowered at this station ạt 8.29 a. m., May 2, aud a large number of pteropod shells, a few fish, a single specimen of Argonauta, dead shells of various species, and a quantity of foraminifera were obtained.

A line of soundings was then run to the southward and westward, striking the banks off Grand Cay. At $5.45 \mathrm{p} . \mathrm{m}$. we lowered the trawl in 338 fathoms, coral sand, latitude $27^{\circ} 22^{\prime} \mathrm{N}$., longitude $78^{\circ} 07^{\prime} 30^{\prime \prime} \mathrm{W}$., and made a successful haul. Among the specimens were four species of sea-urchins, dogfish with young, munidas, two species of gorgonian coral, shrimp, crabs, glass sponges, brachiopod shells, fish, \&e. At 7.20 we steamed to the northward and at 8.20 stopped for forty minutes to use the submarine light. A few good specimens were procured, but the waters were exceedingly barren. The course was resumed at $9 \mathrm{p} . \mathrm{m}$., and at $5.24 \mathrm{a} . \mathrm{m}$. the following day the trawl was lowered in 572 fathoms, latitude $27^{\circ} 58^{\prime} 30^{\prime \prime}$ N., longitude $78^{\circ} 24^{\prime} \mathrm{W}$. Five hauls were made during the day between the above position and latitude $28^{\circ} 40^{\prime} \mathrm{N}$., longitude $78^{\circ} 46^{\prime} \mathrm{W}$., in 504 fathoms. The character of the specimens taken in all the hauls was moch the same; among them were shrimp, starfish, many fine specimens of flabellum, hermit-crabs, barnacles, seaurchins, a variety of corals, pennatulas, holothurians, hydroids, several species of fish, \&c., beside a large quantity of foraminifera washed from the contents of the mud-bag.

The large tow-net was put over after dark and the submarine lights used, but the surface was barren of life. At $11 \mathrm{p} . \mathrm{m}$. we steamed to the northward and westward, and at $530 \mathrm{a} . \mathrm{m}$. the following morning
lowered the trawl in 438 fathoms, gray sand, latitude $29010^{\prime} 30^{\prime \prime} \mathrm{N}$., longitude $79^{\circ} 30^{\prime} 30^{\prime \prime} \mathrm{W}$. Five hauls were made during the day between the above position and latitude $29^{\circ} 47^{\prime} \mathrm{N}$., longitude $50^{\circ} 05^{\prime} 45^{\prime \prime}$ W., in 203 fathoms, fine gray sand. The first three hanls brought up large masses of branching coral of various species, besides a few fish, sea-urchins, shrimp, \&c. The last two had very little coral, but a variety of cther specimens, among which were several species of crabs, mollusea, worm-tubes, shrimp, sea-urchins, and numerons species of fish. The surface net aud submarine light were used successfully during the erening.

The working ground of the day was under the bed of the Gulf Stream and extended diagonally across its course. At $9 \mathrm{p} . \mathrm{m}$. we started ahead to the northward and eastward, and at 5.20 a. m., May 5, lowered the trawl in 270 fathoms, gray sand, latitude $30^{\circ} 47^{\prime} 30^{\prime \prime} \mathrm{N}$., longitude $79^{\circ} 49^{\prime} \mathrm{W}$. Seven hauls were made during the day between the above position and latitude $31^{\circ} 31^{\prime}$ N., longitude $79^{\circ} 05^{\prime}$ W., in 277 fathoms, coarse brown sand. The results of the day's work were remarkable for the enormons loads of coral brought up by the trawl and tangles. Other specimens were taken in considerable numbers also, among which may be mentioned hydroids, siliceous sponges, sea. urchins, sea-anemones, and several rarieties of fish. A large porpoise was caught during the day, and its skeleton preserved for the National Museum.
The bottom was so thickly covered with coral that the trawl was soon wrecked, and the tangles were used in subsequent hauls. A remarkable feature of the day's work was the capture of nine sharks, of a species unfamiliar to us. One of them was preserved in salt for future examination at the laboratory of the National Musenm. The stomach of one was found to contain about a gallon of oil of a reddish tint, which smelled like ordinary fish-oil. Unfortunately most of it was lost, but we saved about half a pint for examination. The presence of this large quantity of oil in a shark's stomach shows that it had fed bountifully on it a short time before, but it would be difficult to conjecture where it could have found it. The stomach contained nothing else.

We steamed to the northward and eastward during the night, and at $5.17 \mathrm{a} . \mathrm{m}$. on the 6th lowered the trawl in 240 fathoms, gray sand and coral, latitude $32^{\circ} 26^{\prime} \mathrm{N}$., longitude $77^{\circ} 43^{\prime} 30^{\prime \prime} \mathrm{W}$., and made seven hauls during the day between that position and latitnde $32^{\circ} 40^{\prime} \mathrm{N}$., longitude $76^{\circ} 40^{\prime} 30^{\prime \prime}$ W., in 782 fathoms, light gray ooze.

The results of the day's work were very satisfactory. The earlier hauls were on coral bottom and the nets were badly cut, but later in the day, after reaching deeper waters, we found smooth bottom, from which we brought up a great number and variety of specimens. The various forms of deep-sea fish were unusually abundant, besides seaauemones, corals, hydroids, hermit-crabs, shrimp, cephalopods, pennatulæ, squid, shells, glass sponges, ophiurans, holothurians, \&e. The
working ground of the 5th and 6th was, like that of the 4th, under the bed of the Gulf Stream.

The winds, which had been light to moderate from the 2d, increased during the afternoon of the 6th, and at midnight, when the last haul was finished, was blowing a brisk breeze from SW., with indications of approaching bad weather.
The submarine light was used until about $2 \mathrm{a} . \mathrm{m}$. on the 7th, when we started ahead under steam and sail for the capes of the Chesapeake. The weather became overcast during the afternoon and the wind increased, with falling barometer. At $8 \mathrm{p} . \mathrm{m}$. there was a moderate gale from south, with thick threatening weather and incessant thunder and lightning, followed by a furions squall half an hour later. We were near the northern verge of the Gulf Stream off Cape Hatteras, where the sea rises with the wind and assumes a magnitude entirely disproportionate to the apparent cause.

We passed Cape Henry at $7.30 \mathrm{a} . \mathrm{m}$. on the Sth, and the weather still being thick and unsettled, anchored in Hampton Roads until the following morning, when, the storm having passed, we steamed up the bay, anchoring for the night off Upper Cedar Point. We were under way at daylight on the 10th, and arrived at the navy-yard, Washington, D. C., at $10.50 \mathrm{a} . \mathrm{m}$.

We remained at the navy-yard overhauling and refitting for the summer's cruise until June 30, when we left for Norfolk, Va., arriving the following morning.

At 7.30 a . m., July 2, we went into dry-lock, and the work of scraping and painting the bottom commenced. Considerable rust was discovered, but very few barnacles or other marine life. The vessel was last docked at Baltimore May 27, 1885, and has therefore been a little more than thirteen months in the water; five months at sea, three months in the Potomac river, followed by another three months at sea in West Indian waters, and finally about two months in the Potomac. These intervals in fresh water killed the marine growths, thins accounting for the comparatively smooth bottom. The rust was readily accounted for, and was excessive wherever the dredge-rope or soundingwire had been in contact with the bottom. There was much rast near and below the water-line, where the paint was rubbed off by ice when we were steaming down the Potomac en route to the West Indies in February last.

We found another small piece gone from a broken blade on the port propeller, and to compensate for the loss of weight and surface, an equal area was cut off the opposite blade. The outboard bearings are wearing somewhat, and it will be necessary to reline both shafts when the vessel is docked again.
The painting having been finished, the ship was hauled out of dock at 1 p. m., July 7, and at ${ }^{2}$ p. m. we commenced coaling, finishing at

cast off from the wharf and proceeded down the Elizabeth River. The weather was clear and very warm. We passed Cape Henry at 7.45 p. m. and at 9.45 set our course for Wood's Holl, Mass. The weather became overeast, with rain-squalls and fogs during the night, continuing until our arrival, at $2.30 \mathrm{p} . \mathrm{m} .$, July 10.

At 5.10 p. m., July 15, we left for a dredging trip, and passing Gay Head at 7.35 p . m. we set our course to the south ward during the night. The weather was clear and pleasant, with fresh breeze from southwest.

At $9.03 \mathrm{a} . \mathrm{m}$. the following day we sounded in 505 fathoms, latitude $39^{\circ} 50^{\prime} \mathrm{N}$., longitude $70^{\circ} 26^{\prime} \mathrm{W}$., and while reeling in the stray line parted, losing one specimen cup and one N. Z. thermometer with Tanner improved case. The beam-trawl was lowered at 9.27 and landed on deck at 11.16, with one octopus, two large crabs, six species of fish, archasters, maldana, and foraminifera. Two other hauls were made during the day in latitude $39^{\circ} 43^{\prime} \mathrm{N}$., longitude $70029^{\prime} \mathrm{W}$., and latitude $39038^{\prime}$ N., longitude $70022^{\prime}$ W., respectively, resulting about the same as the previous haul, with the additiou of several benthodytes and seaspiders. The surface net was towed in the early morning and evening with meager results.
At $4.30 \mathrm{a} . \mathrm{m}$., July 17, we sounded in 887 fathoms, brown ooze, latitude $39^{\circ} 33^{\prime} \mathrm{N}$., longitude $71050^{\prime} \mathrm{W}$., and at 5.04 put over the beam-trawl. It was lauded at $7.2_{2}$ with one specimen of Cyclothone lusca, but no bottom specimens. Two other hauls, in 1,106 and 1,137 fathoms, latitude $39^{\circ} 35^{\prime} \mathrm{N}$., longitude $70^{\circ} 54^{\prime} \mathrm{W}$., and latitude $39^{\circ} 35^{\prime} \mathrm{N}$. , longitude $71^{\circ}$ $0^{2} 30^{\prime \prime}$ W., respectively, were made during the day, securing a large quantity of Ophiomusium, 5 species of fish, benthodytes, 1 octopus, and numerous archasters. Serial temperatures were taken to 1,000 fathoms. The surface net was used in the evening as before, but the results were uninteresting.

The following day six stations were occupied, in depths from 326 to S35 fathoms, between latitude $39052^{\prime \prime} \mathrm{N}$., longitude $71^{\circ} \cong 0^{\prime} 45^{\prime \prime} \mathrm{W}$., and latitude $39^{\circ} 37^{\prime} \mathrm{N}$., longitude $71^{\circ} 05^{\prime} \mathrm{W}$. The results were the same as on the previons days, with the exception of a specimen of Onus rufus, taken in the last haul. Serial temperatures were taken to 500 fathoms, and the surface net towed without success. At 9.05 p . m . We started for Wood's Holl. Soon after entering Tineyard Sound the following morning we discovered the steamer Gate City aground on the beach east of Robinson's Hole, Naushon Island, and, communicating with her, learned that she had gone ashore the previons evening during a dense fog. We offered assistance, but there was nothing to be done pending the arrival of divers, who hat been sent for. We then resumed our course, and ini a few minutes saw the stemmer Panther aground near Job's Neck, Namshon Island, and in response to our offers of assistance, they reguested us to aid them in getting afloat. We took a hawser from her stern and towed her off the rocks, when she proceeded to New Bedford.

We arrived and moored to the Fish Commission wharf at $10.30 \mathrm{a} . \mathrm{m}$. The captain and agent of the Gate City called about 11.30 and requested us to tow Davis's wrecking scow to the stranded vessel, as it was very important that the divers should be on the spot as soon as possible, and there was no other means of getting them there for several hours. We left soon after with the scow in tow, delivered her at the steamer about $1 \mathrm{p} . \mathrm{m}$., and returned to port.

We remained at the wharf, coaling ship, overhauling apparatus, and making necessary repairs to boilers, until 1.40 p. m., August 2, when we proceeded to sea under the following orders:

> U. S. Commission of Fish and Fisheries, Wood's Holl, Mass., July $29,1886$.

SIR: As soon as the Albatross is ready you will make a cruise to the eastward, for the purpose of determining the existence and, if possible, the character of certain banks which are believed by some to exist, but which, so far, have not been properly sounded and examined.

In connection with this inquiry you will follow, as far as convenient, the suggestions of the Hydrographic Office of the U. S. Navy as embodied in a letter from Commander Bartlett.

A particular point to be examined is the so-called Hope Bank; another is in the vicinity of the Flemish Cap, and also an alleged marine ridge connecting Flemish Cap the Azores.

In the course of this voyage yon will of course take occasion, by sounding, trawiing, and dredging, to ascertain any physical or biological characters of the region.

In consequence of Mr. Benedict's resiguation, Mr. Thomas Lee, the assistant naturalist, will have charge of the natural history work, and of the various operations of making collections and preserving them for transfer to Wood's Holl.

The length of time during which the voyage is to last is left to your discretion. The principal object of finding and defining the banks in question is to furnish new grounds to the American fishermen, and you will therefore take such steps as are in your power to determine their economical value, by securing full collections of the fishes themselves and the animals that serve them for food.

You are authorized to stop at any port in the British Provinces for the purpose of taking in coal and supplies.

As opportunity presents you will communicate by telegraph your whereabouts and the general condition of the vessel and those on board.

Very respectfully,

SPENOER F. BAIRD,<br>Commissioner.

> Lient.Commander Z. L. Tanner, Commanding Steamer Albatross.

We steamed to the eastward through Vineyard Sound and over Nantucket Shoals. The weather was pleasant, but the barometer was falling rapidly and a heary thunder-shower approaching from the northward and westward. It followed along the land, gradually gaining on us, until, off the east end of Nantucket, the storm finally passed ahead and across the bow.

The officer of the deck reported seeing on two occasions, between 8 and $10 \mathrm{p} . \mathrm{m}$., several pieces of floating ice from $S$ to 10 feet square and 5 feet thick. Ice in this locality in Angust is unusual, if not moprecedented.

We had light southerly winds and moderate swell during the night, with pleasant weather and passing clouds. A strong NW. wind was blowing at uoon on the 3d, aud increased to a moderate gale later in the day.

The following is a copy of the Mydrographer's letter, referred to in the preceding orders of the Commissioner:

> Bureau of Navigation, Navy Departurent, Washington, D. C., July $16,1886$.

Dent SIm: The receipt of your letter of dily 13 is acknowledged. I send to day copies oi Hydrographic Office charts $21 a$ and $22 a$, on which I have marked in red pencil the position of possible dangers. The records of these are very meager, and would of no assistance to you. I hare also indicated by blue pencil crosses where it is desimble to bave soundings. Of course any others that you cau get will be useful.

I am inclined to think there is a smbmarine ridge extending from the Azores to the Flemish Cap, hence I have marked a line to develop it. This may be the mackerel grounds you have been looking for.

The lino across the old position of Hope Bank will develop it in a north and south direction, if it exists. Your line (referming to your work of last year) runs cast and west.

Beaufort and Milue Banks ought to be developed, and the vicinity of Zaragosa Rock ought to be closely examined. If you are going to the eastward of the Azores I should like to know it, as there is a host of reported dangers all around these islands.

Very respectfully,

> J. R. BARTLETT, Commandor, U.S. Navy, Hydrographer.

Lieut.-Commander $Z$. L. Tanner, U. S. N., Commanding U.S. I. O. Steamer Albatross.

The first line of somdings imdieated by blue pencil crosses on Hydrogiaphic otice chart 21 ereferred to in the above letter, began at latitude $40^{\circ} 14^{\prime}$ N., longitule $6 \%^{\circ}$ n6 $6^{\prime} \mathrm{W} .$, where, notwithstanding the prevalence
 carried the line to the eastward to latitude $40^{\circ} 20^{\prime}$ N., longitute $64054^{\prime}$
W., in 2,575 fathoms, thence to the position assigned to Hope Bank, where eleven soundings were taken at intervals of about 5 miles, the depths ranging from 1,930 to 2,069 fathoms. On the position assigned the bauk, latitude $41^{\circ} 29^{\prime} 28^{\prime \prime} \mathrm{N}$., longitude $63^{\circ} 17^{\prime} \mathrm{W}$., we found a depth of 1,969 fathoms. Five soundings taken by the Albatross last year form another line from 5 to 10 miles farther sonth.

Leaving the reported position of Hope Bank on the morning of the 5th, we ran a line in a northeasterly direction to Sable Island Bank. The depths decreased graduaily, showing no evidence of outlying banks or shoals. This line was recommended by the Hydrographer.

On the morning of the 6th we discovered an unexpected error of the compass, which had carried us about 20 miles out of our course during the night, thus throwing discredit on our steering-card. As we were entering the region of fogs it was necessary to ascertain our compass errors as accurately as possible; accordingly, at as early an hour in the afternoon as practicable, we swung ship under steam, observing azimuths of the sun, from which a table of errors was constructed. A comparison of the card thus obtained, with that we had been using, not only accounted for the deviation from our course, but demonstrated the fact that something was wrong. A search occupying the remainder of the day and night resulted in the discovery of a piece of iron pipe, $1 \frac{3}{4}$ inches outside diameter and 8 feet in length, deposited in the seine-boat on the starboard side of the deck. The forward end of the pipe was about 8 feet from the compass and 1 foot 6 inches below the card. The cause of disturbance being found and removed, a new card was made by swinging the ship on the 7th, the results corresponding nearly with observations in Narragausett Bay.

A line of soundings was then run between Banquereau and Grand Bank, about 60 miles to the southward of our line last year, in from 1,780 to 1,172 fathoms.

At meridian, August 8, we sounded in 34 fathoms on Grand Bank, latitude $44^{\circ} 52^{\prime} \mathrm{N}$., longitude $50^{\circ} 25^{\prime} \mathrm{W}$., and put over the hand-lines baited with menhaden. Two cod and two haddock were taken, thus confirming our former experience that menhaden are worthless as bait for cod on the Grand Bank. Another trial was made at 6.12 p. m., in 35 fathoms, without taking a fish.

The significance of hydrographic soundings 1,042 to 1,047 , inclusive, in $35,35,35,35,41$, and 115 fathoms, will be made apparent by reference to H. O. chart 21 a, where the contour of the eastern edge of the Grand Bank is distorted, apparently, on the evidence of a single negative sounding.

The line was continued east on the same parallel to develop a bank referred to in the following extract from a letter of Capt. J. W. Collins of the U. S. Fish Commission schooner Grampus, dated Wood's Holl, Mass., July 10, 1886 :

$$
\text { S. Mis. } 90-40
$$

"Referring to our conversation of this date, relative to the possible future movements of the Albatross, I beg to submit to your consideration the following:
"On the general charts of the North Atlantic a small bank is laid down to the eastward of the Grand Bank, perhaps about 200 miles distant from the latter, and about on the 45th parallel of north latitude. This bank, ou which are marked depths approximating 75 to 100 fathoms, has long been an object of much interest to the Gloucester fishermen, and much speculation has been indulged in as to whether the bank really exists or not. If so, it is universally believed that cod and halibut may be found there in great abundance, and its authentication would, no donbt, prove a bonanza to the fishermen.
"If it does not exist, the settlement of the question would prove not only interesting, but extremely valnable to the fishermen, since they may be prevented from spending their time in fruitless search for the bank.
"The Albatross is so eminently well adapted to making this research that I trust I may be pardoned for hopiug she will look for the place in question if her other work takes her in the vicinity of the Grand Bank during the summer.
"The value of such work may be fairly illustrated by the fact that, a short time ago, while the Grampus lay in Gloncester Harbor, one of the captains came on board who was about to sail on a halibut trip. Incidentally he told me it was his intention to try to find Hope Bauk when he got to sea. I told him that it had no existence except in the imagination of the person who reported it, and that the Albatross had found 2,000 fathoms where the bauk is laid down.
"This information not only surprised him, but pleased him very much, for he said it would practically save him (and another vessel which was going to make the attempt in company) a brokeu trip, since he had determined to spend a week or ten days in the search."

The depth found 100 miles east of the Grand Bank was 1,916 fathoms, increasing to 2,658 fathoms 200 miles farther east. The souudings show no rise in the sea-bottom along this line, which extends far enough to the eastward to intersect a marine ridge extending from the Azores to Flemish Cap. On the contrary the depths increased with great regularity until the maximum, 2,658 fathoms, was reached at the extremity of the line in latitude $45^{\circ} 14^{\prime}$ N., longitude $42^{\circ} 03^{\prime} \mathrm{W}$. From this point a line was run to Flemish Cap, as indicated by the hydrographer, with still no sigus of marine elevations until reaching the abrupt rise of the Cap.

A few words as to the accuracy of our varions positions may not be out of place here. We had generally clear weather to $6 \mathrm{p} . \mathrm{m}$. on the Sth, enabling us to locate the somudings as aceurately as ordinary sea observations permit. On the 9 th, latitude by ex-meridian altitudes of the sun was obtained, but no longitude. Foggy weather and moderate

SW. winds prevailed. The sun was visible at intervals during the 10th, giving us an excellent opportunity of locating the ship. Strong winds to moderate NW. gale prevailed. On the 11th the sun was visible at intervals until late in the afternoon, affording us ample opportunity of locating our stations.

Our first sounding on the 11th was taken at $3 \mathrm{a} . \mathrm{m}$. in 2,135 fathoms, and the next at $10.38 \mathrm{a} . \mathrm{m}$. in 73 fathoms, gray sand, black specks, and stones, on Flemish Cap, latitude $46^{\circ} 50^{\prime}$ N., longitude $44^{\circ} 3 \grave{5}^{\prime}$ W. The beam-trawl was put over at this station, resulting in the capture of several specimens of Cottidre, ophiurans, starfish, sea-anemones, seaurchins, corals, \&c. It may be said that stones were a marked feature in all the hauls during the day, the bottom seeming to be pretty thickly* strewn with them, dropped there by ice.

Four other hauls were made at stations 2,603 in 78 fathoms, 2,694 in 86 fathoms, 2,695 in 105 fathoms, and 2,696 in 98 fathoms, the character of the bottom and catch comparing closely with those of the first haul.

A serious leak was discovered in the bottom of the port boiler, water and steam escaping to such an extent that it was impossible to get near enough to determine the nature of the damage. Fires were hauled and the boiler blown down, when the leak was traced to a defective gasket on a mud-hole plate.

After the trawl was on board we steamed to the westward toward the Grand Bank, carrying a line of soundings across to further develop the connection between the two banks. The greatest depth was 477 fathoms. Reference to H. O. chart $21 a$ will show Flemish Cap to be an exteusion of the Graud Bank, to which it is connected by a narrow submarine ridge having a depth of 500 fathoms or less, increasing rapidly on either side to 1,000 fathoms.

We were enveloped in a dense fog during the night of the 11th and all of the 12 th, which made it impossible to locate ourselves by observation, but, assuming the eastern extremity of the Graud Bank to be correctly laid down on the chart, we were able to plot our soundings with some degree of accuracy.

The normal direction of the current between the banks is about ESE., but we experienced a strong set to the northward and eastward. A fresh SW. breeze which prevailed at the time may account for the change of direction.

The trawl was lomered at $13.09 \mathrm{p} . \mathrm{m}$. on the 12th in 206 fathoms, green mud, black specks, lat. $47^{\circ} 40^{\prime}$ N., long. $47^{\circ} 35^{\prime} 30^{\prime \prime}$ W., and came up at $1.15 \mathrm{p} . \mathrm{m}$. with specimens of ray, halibut, a large number of macrurus, flounders, sea-anemones, starfish, mollusks, \&e. A rock was - brought up also, weighing about 2,000 pounds, and much time and patience was expended in getting it on board without sacrificing the net.

Necessary repairs being completed, fires were started under the port boiler.

Soundings were continued toward the coast for narigational purposes, we being enveloped in a dense fog, which continued uutil 2 p . m. on the 13th. These soundings have been carefully located, and may have some value hydrographically.

We arrived at St. John's, Newfoundlaud, at 7.10 p. m., August 13, and found H. M. S. Emerald, Lily, and Mallard at anchor in the harbor. An officer came on board, and, in the name of the senior officer present, tendered the usual civilities of the port. The United States cousul visited the ship at 10 a.m., August 14. His call was returned later in the day, and official visits were made to the governor, and Capt. A. H. Hanond, of H. M. S. Emerald, senior British naval officer present.

Fires were hauled and the usual work of stopping leaks in the boilers commenced. We coaled ship on the 19th, taking on board 100 tous of anthracite.

Preparations were made for extending the cruise to the eastward, including Beaufort Bank, Milne Bank, and Lama Ethel Shoal, but that part of the expedition being abaudoned, we took on board only the quantity of coal required for the trip to Wood's Holl, including a few days' dredging and sounding.

We coaled from Shea's Wharf, where me also filled the boilers with fresh water, which was taken from a hydrant in the street, at a cost of $\$ 12$ for 10,000 gallons. The necessary hose ior conducting the water on board was borrowed of the fire department.

At 9.30 a. m., August 21, we got under way and proceeded to sea en route to Wood's Holl. The weather was clear until 5 p . m., when we were enveloped in a dense fog. Cape Race bore WNW. about 4 miles distant. As our course was seaward, we stood on and soon ran out of the fog bank into clear, pleasant weather. Our course during the night was to the southward and westward, and at \& a. m. the following morning we cast the trawl in 90 fathoms, latitude $45^{\circ} 06^{\prime}$ N., longitude $55^{\circ} 099^{\prime} \mathrm{W}$., oif the southern extremity of Green and St. Pierre Banks. Five hauls were made during the day on a westerly course, in from 50 to 205 fathoms, the results being numerons ascidians, ophiurans, starfish, mollusca, and sereral species of fish. The positions and depths indicate an extension of the 100 -fathom line to the southward of Green and St. Pierre Banks. Fog shat in aboat sundown and continned during the night.

We finished trawling for the day at $6.18 \mathrm{p} . \mathrm{m}$.and started ahead, rumning a line of soundings across the chamel between St. Pierre and Banquerean, developing a depth of from 226 fathoms in mid-channel to 32 fathoms on the latter bank.

The fog continued until 6 a. m., August 23. $\Lambda \mathrm{t} 7.33$ we sounded in. 32 fathoms, latitude $44^{\circ} 2 \tilde{y}^{\prime}$ N., longitude $57^{\circ} 3 \jmath^{\prime} \mathrm{W}$., on Banquereau, and put over several hand-lines, taking 136 cod in 45 minutes. The vessel was not anchored, but allowed to drift. The fish were examined for parasites, contents of stomach, \&c. Two hauls of the trawl were made during the day in 140 and 110 fathoms, on the sontheast extremity
of Sable Island Bank, resulting in the capture of a few fish, ophiurans, starfish, slarimp, sea-anemones, and mollusca.

At $9.11 \mathrm{a} . \mathrm{m}$., the 24th, we cast the trawl in 1,255 fathoms, latitude $42^{\circ}$ $47^{\prime}$ N., longitude $61^{\circ} 04^{\prime \prime} \mathrm{W}$. The frame was landed at 1.07 p . m., minus the net, which had been torn away by an overload of stones or mud. We expended much time and patience in the vain endeavor to clear it from the bottom without sacrificing the apparatus. We started ahead ou our course as soon as the hanl was completed, the general appearance of the weather making it inad visable to cast the trawl again. The wind, which was light during the early part of the day, increased to a moderate gale from WNW. in the afternoon. The barometer was unsteady and there was a heavy southerly swell; in fact, all indications pointed to heavy weather.

The 25 th commenced with fresh winds from WNW., and overcast misty weather. We had heavy rains and light to moderate breezes in the middle part, and fresle SSE. winds in the latter part of the day. The barometer was unsteady, and although the sea was comparatively smooth, the general indications were of approaching bad weather. Ten soundings were taken during the day near the position assigned to Hope Bank, in depths ranging from 1,644 to 1,943 fathoms. The soundings are inshore, or to the northward of those taken on the outward trip, and demonstrate beyond doubt that no shoal or bank exists on the ground covered by them.

We were unable to locate our position by observation during the day except by ex-meridian observations of the sun for latitude, and, although we had covered the ground satisfactorily, we determined to remain on the spot until the weather permitted us to verify our work. With this object in view the ressel was hove to from midnight until $1.10 \mathrm{p} . \mathrm{m}$., August 26, when, having ascertained our position by good observations, we procceded to rum a line of soundings at right angles to those of the previous day in from 1,587 to 1,910 fathoms; the results confirming the general accuracy of our former work.
The unsettled weather of preceding days culminated in a cyclone of moderate force on the 26 th , as will be shown by the following extract from the meteorological columus of the ship's log.

The force of the wind should be increased about .2 - otherwise the record may be considered correct.


Haring completed our search for Hope Bank, we rau a line of soundings to the westward to George's Bank without finding any indications of shoal water to the eastward of it.

Having definitely proven that Hope Bank does not exist in the locality assigned it on H . O. chart $21 a$, it may not be out of place here to inquire into the probable reasons for its having been frequently reported. Reference to the chart will show its assigned position to be near the northern edge of the Gulf Stream, where its deep blue waters, with temperatures above the normal and high specific gravity, impinges upon the colder green water of the Aretic current. The first sight of this green water on emerging from the Gulf Stream gives one the impression that he has suddeuly struck soundings. The bank ouce placed on the chart, the navigator who found himself in green water anywhere in that region during foggy weather, or when from any cause he was uncertain of his position, would conclude at once that he was in shoal water, and locate himself on the position assigned to Hope Bank. The difference in color and specific gravity between the waters of the Gulf Stream and the region adjacent raries with the seasons, and is more marked during summer and antumn, when the fresh water from melting ice finds its way from the Arctic.

On August 3, at meridian, in latitude $40^{\circ} 26^{\prime} 30^{\prime \prime}$ N., longitude $66^{\circ}$ $19^{\prime}$ W., surface temperature $78^{\circ} \mathrm{F}$., the specific gravity reduced to $60^{\circ}$ F. was 1.027808 , and at noon of the 5th, latitude $41^{\circ} 48^{\prime} \mathrm{N}$., longitude $62^{\circ} 51^{\prime} 30^{\prime \prime} \mathrm{W}$., surface temperature $67^{\circ} \mathrm{F}$., the reduced specitic gravity was 1.025008 , a difference of .0028 , quite sufficient to account for the change of color. Thus it will be seen that the varions indications of shoal water are accounted for from natural causes wholly independent of the existence of banks or shoals, and the depths developed by our soundings show positively that none exist in that locality. The navigator in passing over the region had neither time nor the means at hand for satisfactory incestigation; therefore he was forced to judge from appearances, which, we have shown, are deceptive.

It may not be out of place here to call attention to a report concerning Hope Bank, which to a casual observer would be considered definite and final as to its existence in the locality mentioned.

We have what purports to be a complete copy of the $\log$ of the fishing schooner Margnerite on a voyage from Gloncester, Mass., to Iceland, extending from April 27 to September 24, 1885. On September 21, on the return trip, the following remarks are found relating to the bank above mentioned:
"From 4 to 8 a.m.-Wind steady in force and direction. At 7 a. m., water leing discolored, sounded; depth 63 fathoms, with coarse saud. At 7.30 al. m., water looking whiter, sonnded again, found 45 fathoms, with small black pebbles. At first thought the vessel had overrun the log and was on somdings on George's Bank. At S a. m. sounded; depth 38 fathoms.
"From 8 a. m. to noon.-Wind steady in force aud direction. At 8.30 a. m. took observation, which almost corresponded with the distance run by the log. At 9 sounded; depth 90 fathoms; hauled the vessel close to the wind SW. by W. At 9.30 sounded; depth 100 fathoms; hard bottom. Tacked ship, run off to the NE. 6 miles, sounded ; depth 40 fathoms, with small black pebbles; run to the north 4 miles, sounded; found 75 fathoms; hauled up ESE. 4 miles, sounded ; got 62 fathoms; tacked ship and kept off course. At noon found the latitnde to be $41^{\circ}$ $38^{\prime}$ and longitude $63^{\circ} 30 .^{\prime \prime}$

The above extract from the schooner's $\log$ would seem to be conclusive, at least, as to the soundings having been made as stated, even if her position was not correctly giren. A vessel's $\log$ is usually taken as evidence in court, and entries in it are generally the results of personal observation of its writer or of other officers in charge of the deck for the time being. Facts only are looked for, and fictitious entries are so foreign to the habit of seamen generally that it would be considered correct until proved otherwise. Yet this copy fails to inspire confidence; in fact, the evidences of its having been cooked to suit the occasion are so palpable that its reliability becomes questionable at every point. It is a well-known fact that a fishing vessel's $\log$ is brief, that her navigational and scientific instruments are few, and equal to her absolute necessities only, yet this copy purports to give for every hour of the cruise, day and night, a complete record, including the filling out of 18 columns in the United States Navy log-book, which was used for making the copy, nine of them being meteorological observations, besides remarks more or less full.

On September 20, the day before the discovery of Hope Bank, this remarkable ressel made 77 miles in 12 hours on a SW. by W. course, wind WSW., sailing within one point of the wind! With a wind force of 4 to 5 she made 7 to 8 knots, heeling 30 to $4^{\circ}$, with leeway of one-half a point, the same leeway being maintained later in the day with a speed of 2 knots, heel of $1^{\circ}$ to $2^{\circ}$, and wind force from 1 to 2 .

The following entry is found on May 13, at noon:
"Latitude, D. R., $48^{\circ} 35^{\prime} 00^{\prime \prime}$ N.
"Longitude, D. R., $42^{\circ} 38^{\prime} 00^{\prime \prime}$ W.
"Latitude by observations of " $\odot 48^{\circ} 38^{\prime} 00^{\prime \prime} \mathrm{N}$.
"Longitude by chronometer $\odot 42^{\circ} 36^{\prime} 00^{\prime \prime} \mathrm{W}$.
"Current during the time 1.7 knots per hour, setting to the castward."
We find recorded here a current of 40.8 miles for 24 hours, whereas, assuming the calculations for position to be correct, there was actually a current of 4 miles N., $40^{\circ} \mathrm{E}$. during the day.

Similar examples might be quoted throughout the whole log-book, but the above extracts are sufficient to illustrate its ralue as an accurate record of results. The meteorological record is hardly worthy of comment.

Referring to the log of September 2i, we fint the shooner making 3 knots au hour until 7 a. m., the time the sounding commenced, and, as the wind is logged "steady in force and direction" from this time till noon, the ressel should have made 15 knots had she continued on her course; but instead of this uninterrupted progress she takes eight somudings in average depths of 64 fathoms, which must have consumed three-quarters of an hour at least, and sails 91 knots, about 5 knots an hour, or 2 miles an hour more than she would have logged had she taken no soundings and continued on her couss with the wind two points abaft the beam.

Further comment is unnecessary ; enough has been written to show that reports of shoals and banks at sea are nut always reliable, even when soundings, character of bottom, and other seemingly reliable data are given. A reference to the pian (Plate I) will shom that the sehooner Marguerite did not find bottom in the region indicated, and the presumption is strong that the lead was not put over the side at all.

At $9.33 \mathrm{a} . \mathrm{m}$. , August 27 , we cast the trawl in 1,188 fathoms, latitude $41^{\circ} 28^{\prime} 30^{\prime \prime}$ N., longitude $65^{\circ} 35^{\prime} 30^{\prime \prime} \mathrm{W}$., landing it on deck at 12.44 p. m. Among the forms taken were a quantity of ophiurans, starfish, shrimp, mollusks, blue hake, coryphenoides, Mucrurus asper, and skate. The trawl was lowered again at 2.21 p . m., but it soon buried and was lost.

At $7.09 \mathrm{a} . \mathrm{m}$. , August $2 S$, the trawl was lowered in 980 fathoms, latitude $40^{\circ} 07^{\prime} \mathrm{N}$., longitude $67^{\circ} 49^{\prime} \mathrm{W}$., and landed on deck at $9.22 \mathrm{a} . \mathrm{m}$.; a water haul, the current having prevented its reaching bottom. Another haul in 866 fathoms, six miles to the westward, brought up an enormous load of mud and numerous ophimrans, holothurians, mollusks, crustaceans, and several varieties of fish, among them being coryphenoides, Mucrurus Bairtii, blue hake, lycodes, ©c. A third haul was made in 984 fathoms a few miles farther westward with much the same results.

At $5.35 \mathrm{p} . \mathrm{m}$. Tre started for Wood's Holl. Fog shat in as soon as we touched the banks and contimued until we passed the Soutin Slioal lightship, when it partially cleared. It shut down again oft No Man's Land and continued until our arrival iu port at 11.55 a. m., August 29.

We saw but few birds during the trip except " llother Carey" chickens, which were always with us. An occasional gull and a few terns were seen. Whales were seen in the region between Sable Island and Grand Bank, and porpoises were frequentley observed playing about the ship. A large school of curved-fin oreas were seen on Flemish Cap during the morning of August 10.

We were detained in port overhauling our dredging and sounding gear, cleaning and repairing boilers and other mechanical appliances until $5.58 \mathrm{a} . \mathrm{m}$. , September 1t, when we left for Newport, R. I., for coal, preparatory to a dredging trip.

Arriving at the latter port at $10.30 \mathrm{a} . \mathrm{m}$., we commenced coaling from a schooner alongside at $1.15 \mathrm{p} . \mathrm{m}$., and finished at $6 \mathrm{p} . \mathrm{m}$. the following day, having taken on board $91 \frac{15^{4}}{2540}$ tons.

We got under way at 6.40 and proceeded to sea en route to our working grounds, which were included in the region between latitude $38^{\circ}$ and $39^{\circ} \mathrm{N}$., and longitude $70^{\circ}$ and $72^{\circ} \mathrm{W}$. Light to moderate SE. winds, smooth sea, and partially cloudy, pleasant weather was experienced during the night and following day.

At 3.38 p . m., September 16, we lowered the trawl in 1,544 fathoms, brown ooze, latitude $38^{\circ} 39^{\prime} \mathrm{N}$., longitude $70^{\circ} 07^{\prime} \mathrm{W}$., and landed it on deck at 7.43 p . m., with numerous specimens of shrimp, starfish, ophinrans, mollusks, Macrurus asper, lithodes, benthodytes, benthysaurus, \&8c. The surface net and submarine electric light were used with fair success until $10 \mathrm{p} . \mathrm{m}$., when we steamed slowly to the southward to change our position.

The trawl was lowered at $5.49 \mathrm{a} . \mathrm{m}$., the 17th, in 1,867 fathoms, latitude $38^{\circ} 20^{\prime} \mathrm{N}$., longitude $70^{\circ} 05^{\prime} 30^{\prime \prime} \mathrm{W}$., and landed on deck at 10.24 , a water haul. There were, however, a few valuable specimens of crustacea, \&c., taken while the net was coming up. It was again lowered at 11.20 a . m. in 1,859 fathoms, latitude $38^{\circ} 20^{\prime} \mathrm{N}$., longitude $70^{\circ} 08^{\prime} 30^{\prime \prime}$ W., and landed at $4.05 \mathrm{p} . \mathrm{m}$. , with specimens of hermit-crabs, ophiurans, mollusks, sea-memones, and eight species of fish. A third haul was made at 4.58 p . m. in 1,825 fathoms, latitude $38^{\circ} 22^{\prime} \mathrm{N}$., longitude $70^{\circ} 17^{\prime} 30^{\prime \prime} \mathrm{W} .$, and landed at 9.46 p . m., with mollusks, ophiurans, starfish, shrimp, ascidians, macrurus, \&e. The suiface net was used successfully during the evening. Six dolphins and one shark were taken with hook and line during the day, and a large squid of an unknown species was found dead on the surface.

Light airs and calms prevailed, with clear, warm weather, the thermometer reaching $80^{\circ}$ Fahr. We had quite a strong current ( $17^{\prime}$ ) to the southward and westward, sometimes called the Gulf Strean countercurrent. It was this current which caused the failure of the first haul in the morning.

At 5.33 a. w., September 18, the trawl was lowered in 1,753 fathoms, latitude $38^{\circ} 29^{\prime} 30^{\prime \prime} \mathrm{N}$., longitude $70^{\circ} 54^{\prime} 30^{\prime \prime}$ W., and landed at 10.17 a. m., with several species of fish, shrimp, starfish, sea-anemones, \&c. At 11.04 it was put over the second time, in 1,631 fathoms, latitude $38^{\circ}$ $29^{\prime} 30^{\prime \prime} \mathrm{N}$. , longitude $70^{\circ} 57^{\prime} \mathrm{W}$., and came up at 3.15 p . mo., with several macrurus, shrimp, mollusca, gold-baud coral, \&c. The trawl was cast a third time in 1,615 fathoms, at 3.54 p . m., latitnde $38^{\circ} 24^{\prime}$ N., longitude $71^{\circ} 13^{\prime} \mathrm{W}$., and was landed at $8.32 \mathrm{p} . \mathrm{m}$., a water hanl. There were several interesting specimens, however, taken on the way up.
The engines were stopped and the ship allowed to drift until $3 \mathrm{a} . \mathrm{m}$. , September 19, when we ran 10 miles to the westward, and at 5.38 put over the trawl in 1,569 fathoms, latitude $38^{\circ} 24^{\prime}$ N., longitude $71^{\circ} 52^{\prime}$ W., landing it on deck at $10.08 \mathrm{a} . \mathrm{m}$., with numerous archasters, shrimp,

Cyclothone luscu, and fish. "Two other hauls were made during the day in 1,536 fathoms and 1,509 fathoms, in both cases the trawl failing to reach bottom owing to the strong current. The last haul, latitude $38^{\circ}$ $36^{\prime} 30^{\prime \prime}$ N., longitude $72^{\circ} 12^{\prime} \mathrm{W}$., was notable, however, for the capture of a new species of fish, 5 feet in length, allied to Gastrotomus. While occupying this station Mr. Lee succeeded in shooting a large blue heron -adult female-which was flying about the ship. The bird was quite fat, and did not appear to be at all distressed, though so far at sea. The surface net and submarine electric light were used to good adsantage, large numbers of squid being taken by aid of the latter.

Monday, September 20, moderate brecze from SW., hauling to the northward and increasing to a strong wind at meridian. The trawl was lowered at $6.02 \mathrm{a} . \mathrm{m}$. , in 813 fathoms, latitude $38056^{\prime} \mathrm{N}$, longitude $72^{\circ}$ $11^{\prime} 30^{\prime \prime}$ W., and landed on deck at 8.50, with two specimeus of Geryon quinquedens, fiabellum, annelids, holothurians, large numbers of fish, \&c. It was cast again at 9.33 in 594 fathoms, latitude $39013^{\prime}$ N., longitude $72 \circ 01^{\prime}$ W., and landed at $12.32 \mathrm{p} . \mathrm{m}$., with 190 Macrurus Bairdii, 20 blne hake, 3 pole flounders, 4 dogfish, 3 Geryon, shrimp, mollusea, aunelids, holothurians, $\mathbb{S c}$. A school of whales was seen during the forenoon.

The weather becoming too boisterons to continne dredging, we started for Wood's Uoll at $12.40 \mathrm{p} . \mathrm{m}$., arriving and mooring at the wharf at 10.30 a. m., September 21.
We remained at Wood's Holl overhauling the sounding and dredg. ing apparatus, repairing boilers, and making general preparations to leare the station for the season, until October 21, when at $2.40 \mathrm{p} . \mathrm{m}$. we cast off from the wharf and proceeded to sea. The weather was clear, with fresh westerly winds and heary swell which moderated during the night. We had Mr. Tabor, an artist from the Century Company, on board, who made the trip for the purpose of picturing the operations of the Albatross.
An accident occurred on the morning of the $22 d$ which might have been serions. While rerifying the scale on the accumulator, the dredge rope broke under a strain of about 5,000 pounds, and the tension-rod flying back with great force, struck the band supporting the accumulator and boom topping-lift at the foremast head, broke the bolts, and allowed the band, accumulator, and boom to come on deck with a crash. No one was hurt, thongh several men had narrow escapes. The heel of the dredging-boom was broken and the accumulator guide-rods badly bent, besides other minor damages, all of which were repaired during the day and following night.

At 5.42 a. m., October 23 , we put the trawl over in 1,685 fathoms, latitude $36^{\circ} 47^{\prime} \mathrm{N}$., longitude $73^{\circ} 09^{\prime} 30^{\prime \prime}$ W., landing it on deck at 10.19 with many macrurus, starfish, marguerites, crustaceans, and one large lithodes. It was put over again in 1,641 fathoms, at 12.02 p . m., latitude $36^{\circ} 47^{\prime}$ N., longitude $7: 3025^{\prime}$ W., and landed on deck at 4.46 with several species of fish, two (probably new) mollusca, holothurians, \&c. The
large surface net was towed at intervals witli fair success, and the submarine electric light was used during the evening. Among the specimens takeu were about forty squid.

At 5.54 a . m., October 24, the trawl was lowered in 1,374 fathoms, latitude $36^{\circ} 34^{\prime} \mathrm{N}$., lougitude $73^{\circ} 48^{\prime} \mathrm{W}$., and landed on deck at 10 a. m. with many macrurus, hake, holothurians, starfish, and a large quantity of brisinga. It was cast a second time at $11.10 \mathrm{a} . \mathrm{m}$. in 1,253 fathoms, latitude $36^{\circ} 34^{\prime}$ N., longitude $73^{\circ} 54^{\prime} 30^{\prime \prime}$ W., but while heaving in the rope parted, losing 1,210 fathoms and the trawl. Another cast was made at 4.09 p . m. in 1,239 fathoms, latitude $36^{\circ} 39^{\prime}$ N., longitude $74^{\circ} 03^{\prime} 30^{\prime \prime} \mathrm{W}$., and, when landed on deck, at 7.26 p . m., the net was found to contain a large number of macrurus, hake, one large Synaphobranchus, many holothurians, benthodytes, a quantity of brisinga, mollusca, \&c. The large surface net and submarine electric light were used during the evening with fair success.

At $5.45 \mathrm{a} . \mathrm{m}$., October 25 , the trawl was cast in 859 fathoms, latitude $36^{\circ} 30^{\prime}$ N., longitude $74^{\circ} 33^{\prime}$ W., and landed ou deck at 8.14 a . m. with single specimens of black dogfish and Gastrostomus, lumerous hake, lycodes, ophiurans, sea-urchins and mollusca, several species of crustaceans, and a quantity of flabellum. A seeond cast was made at 9.10 a. m. in 679 fathoms, latitude $36^{\circ} 36^{\prime}$ N., longitude $74^{\circ} 32^{\prime}$ W., and the trawil landed on deck at 11.30 a. m., containing the same species as were found in the previous haul. A third cast was made at $12.28 \mathrm{p} . \mathrm{m}$. in 727 fathoms, latitude $36^{\circ} 42^{\prime}$ N., longitude $74^{\circ} 30^{\prime}$ W., and finished at $2.39 \mathrm{p} . \mathrm{m}$. ; contained the usual number of macrurus and hake found in similar depths along the Atlantic coast. Single specimens of pole flounder and Geryon quinqueders were found, besides a quantity of skates' eggs containing live embrsos. There were also varieties of mollusca and starfish and a quantity of flabellum. The fourth and last cast of the day was made at $4.12 \mathrm{p} . \mathrm{m}$. in 781 fathoms, latitude $36{ }^{\circ} 45^{\prime}$ N., longitude $74^{\circ} 28^{\prime}$ W., and finished at 6.44 p . m., the net containing skates' eggs, lycodes, holothurians, pemnatulas, macrurus, and hake. There was a single specimen of red brick; also fourteen soles of shoes, the uppers having been rotted away. The surface net was towed at intervals with fair success. Our working ground being in the route of coastwise traffic, one or more steamers were in sight at all times during the day.

At 6.09 a. m., October 26, the trawl was cast in 1,152 fathoms, latitude $37027^{\prime}$ N., longitude $73^{\circ} 33^{\prime}$ W., and landed on deck at $9.20 \mathrm{a} . \mathrm{m}$., with numbers of hake, beuthodytes, starfish, holothurians, sea-urchins, pennatulas, and other forms of Alcyonaria. It was cast again at 10.19 a. m. in 944 fathoms, latitude $37^{\circ} 26^{\prime}$ N., lougitude $73^{\circ} 43^{\prime}$ W., and was up at $1.05 \mathrm{p} . \mathrm{m} .$, with many macrurus, starfish, sea-urchins, three cephalopods, Alloposus mollis, one specimen of Onus rufus, holothurians, Alcyonaria, \&c. A thirl cast was made at $1.52 \mathrm{p} . \mathrm{m}$. in 841 fathoms, latitude $37^{\circ} 23^{\prime}$ N., longitude $73^{\circ} 53^{\prime}$ W., the trawl being landed on deck
at $4.35 \mathrm{p} . \mathrm{m}$., with many specimens of macrurus, crustaceans, benthodytes, starfish, sea-urchins, peunatulas, \&c. The fourth and last hau! was made at $4.55 \mathrm{p} . \mathrm{m}$. in 811 fathoms, latitude $37^{\circ} 23^{\prime} \mathrm{N}$., longitude $74^{\circ} 02^{\prime} \mathrm{W}$. It was completed at $7.32 \mathrm{p} . \mathrm{m}$. , and, besides an enormous load of mud, the net contained one specimen of a large red spiny crab, lithodes, penuatulas, starfish, flabeilum, shells, and a large squid, stcnoteuthis megaptera, 5 feet $6 \frac{1}{2}$ inches in length, weighing 30 pounds. There were also the usual variety of deep-sea fish. The large surface net was towed at intervals with fair success. The use of this net in winter and spring has shown the surface waters of the North Atlantic to be comparatively barren of life, but during the latter part of summer and autumn many forms of crustacea are found, either mature or in the larval form. Fish are a marked feature of the catch, among them being the surface fishes, of various kinds, that have their homes in floating Gulf-weed, or hover about the meduse. The young of varions species, notably the bluefish and flying-fish, are taken iu large numbers, besides many other forms too numerons to mention. It may be truly said that the introduction of the large surface net has opened a new field of inves. tigation.

At 7.35 p . m. we started for port. The weather, which had been mild and pleasant, threatened a change for the worse, and, after a night of menacing indications, we encountered, about 5 a. m., a furious squall of wind and rain. Passing Cape Henry at 6.28 a. m., we steamed up Chesapeake Bay and the Potomac River, anchoring for the might at $5.37 \mathrm{p} . \mathrm{m}$., near Lower Cedar Point. We got under way again at daylight, October 28 , and reached the nary-yard, Washington, D. C., at 1 p.m. Specimens and other articles received on board for transportation were sent to the Smithsonian Institution, and the work of cleaning and refitting was commenced. Spars and rigging were overhauled and a new fore-top-gallant yard made to replace the old one, which was rotten. The chain cables were overhauled and restowed, store-rooms and holds broken out, cleaned, and painted, or whitewashed, and the inner side of the iron hall scraped and painted where accessible.

The engines were overhauled and repaired by our own people.
An appropriation was made during the first session of the Fortyninth Congress for new boilers. Passed Assistant Engineer George W. Baird, U.S. N., prepared designs for them, aud for a rearraugement of coal-bunkers, \&c., which were approved, and, after duly advertising in the public press, the contract was awarded to the Columbian Iron Works and Dry Dock Company, of Baltimore, Md., for the sum of $\$ 13,439$.

## MECHANICAL APPLIANCES.

The mechanical appliances and apparatus generally have worked very well during the year, but experience has suggested improvements here and there, most of which have been adopted.

## ACCUMULATOR.

The necessity is still felt for an improved accumulator having greater elasticity under extreme teusion. We have consulted the best spring manufacturers in the country and about exhausted the inventive talent on board without thus far attaining the desired result.

## COUNTER-BALANCES.

## [Plate V.]

When dredging very low speed is required, from one-half to 112 knots per hour, and to attain it one propeller only is turned as slowly as possible, but even then we cannot always bring the vessel down to the desired limit, except by stopping the engine until her headway is checked, when it is started again. The revolutions could be brought down to 24 per minute in smooth water, bat after the introduction of carefully adjusted counter-balances a further reduction to 18 revolutions per minute was effected.

These counter-balances were designed by Passed Assistant Engineer George W. Baird, U. S. N., to reduce the vibration of the engines when rumning at high speed, and it is gratifying to say that they have served the purpose as well as the more important one mentioned above.

## SOUNDING FROM BOATS.

## [Plate II.]

The necessity for greater facilities for sounding from boats has been apparent to us on several occasions when developing banks or shoals. It is frequently desirable to extend lines of soundings from 2 or 3 fathoms to several hundred fathoms with the same boat, and we have accomplished the object in a simple and inexpensive manner by fitting our Tanner sounding machine to work on the stern of the steam cutter, thus giving the boat a compact and reliable apparatus for sounding in depths from 1 to 1,000 fathoms.

## BAIRD'S ANNUNCIATORS.

## [Plate VI.]

Among the most important improvements in mechanical appliances during the year are the pueumatic annunciators designed by Mr. Baird, showing by dial and index pointer, on the bridge and in the pilot-house, what the engines are doing. It is desirable to know whether engineroom signals are promptly and correctly answered on any steamer, but doubly so on this vessel, where the safety of the apparatus depends upon it.

## TIIE SIGSBEE DEEP-SEA SOUNDING MACHINE.

This machine has performed its work admirably during the year. We have crushed one reel, which caused the loss of some wire and two or three sounding cups and thermometers before it was discovered, but
a hearier one being mounted we had no further trouble in that direction, althongh we had to contend with greater inertia incident to the increased weight. This is of no great importance in moderate depths, but when the weight of wire and its attachments approximate to that of the siuker, every pound of extra weight in the reel detracts from the simplicity and reliability of the apparatus.

Passed Assistant Engineer George W. Baird, U. S. N., of this vessel, proposed an improved reel, which would not only be stronger and lighter, but would avoid the necessity of throwing off and putting on the belt when a soundiug is taken. (Plate III.) Mr. Baird describes this important addition to the sounding machine as follows:
"It is made of aluminum bronze, cast by the Cowles Electric Smelting and Aluminum Company, of Cleveland, Ohio, and finished by D. Ballauf, of Washington, D. C. This metal is reported, after tests by responsible engincers, as standing it tensile strain of over 100,000 pounds per square inch, and is represented as being as strong as the best steel as regards compression and torsion.
"The reel is cast in one piece and the rims are strengthened by numerous ribs which do not materially increase its weight.
"The objections to the old reel are its great weight and consequent inertia when revolving at high speed, as in sounding; the delay iucident to putting on the belt, and working the water of condensation out of the steam cylinder when starting to reel in; also the necessity of shipping the cranks and hearing in the first few fathoms by hand.
"These objections were kept in mind while making the present design. The bronze reel A and cast-iron pulley D are mounted on the shaft B . The pulley is grooved ( $d$ ) to carry the beit. The original frames CC are used. The polley D is driven from the same engine and belt which drove the old reel; with the new reel in use the eugine is kept rumuing all the time, revolving the pulley D in a direction to reel in the wire.
"The pulley D has its rim beveled and fitted to a corresponding surface ou the reel $A$, and wheu pressed together will, bg its friction, carry the reel with it. The pulley D may be pressed against $\Lambda$, or withdrawn from it throngh the intervention of the clutch lever E and crank F . The open end of the lever E, which permits the pulley and reel being lifted out of the frame without the lever B being disturbed, is the design of Lient.-Commander Z. L. Tamner. To retard the velocity of the reel when paying out wire the lever $G$ and its attached brake (shown in dotted lines) are provided. The operation of the machine is as follows: Turn the crauk F to the left, which withdraws the friction wheel D from its contact with the reel $A$, when the latter being freed will revolve and pay out the wire by gravity. The engine is then started and the pulley D revolved in the opposite direction, i. e., the direction to reel in the wire. When the sinker reaches the bottom the crank $F$ is quickly revolved to the right, which throws the friction in gear and starts the reel A to wiuding in the wire.
"The throttle valve of the engine, the friction crank $F$, and the friction lever G are close together, and under the control of one man, who can readily regulate and manage them. The counter or register, which measures the quautity of wire paid out or reeled in, is on the opposite side of the machine, convenient for the inspection of the officer in charge of the sounding."
The vessel has not been at sea since the completion of the new reel, but we have tested it at the wharf with a few fathoms of wire and a $35-$ pound lead, which demonstrated the adrantage of the new arrangement over the old as far as rapidity of working is concerned. The streugth of the reel can be demonstrated only by practical operations in deep water.

## DREDGE ROPE.

The dredge rope furnished by the Hazard Manufacturing Company has not been uniform in tensile strength or length of lay, and the result has been that we have lost several thousand fathoms, with trawls and appurtenances. One lot of 4,000 fathoms was so imperfect that we had to reject it. Crucible steel has been used in the manufacture of our rope heretofore, but the requirements are so great that it has been difincult to fulfill them, and we are now getting estimates for the best mild extra plow steel, which should give much better results. With a superior quality of rope and an improved accumulator we hope to be more economical in the expenditure of dredging apparatus.

## DEEP-SEA TESIPERATURES AND THERMOMEIERS.

Deep-sea temperatures have beea observed with great care during the year, and much thought has been given to the improvement of deepsea thermometers with a view of attaining still greater accuracy. The following remarks on this subject are by Dr. J. II. Kidder, who has charge of the Fish Commission and Smithsonian Institation instraments, and to whom we are iudebted for the suggestion of the special thermometer referred to:
"The Negretti-Zambra deep-sea thermometers now in geueral use by the Fish Commission, while doubtless the best instruments yet derised, cannot probably be depended upon for differences of temperature less than one-half degree Fahrenheit. Being pointed ouly to full degrees, upon short stems, the degree spaces are so small that estimation of small fractions is almost as much a matter of opinion as a fact of obserration. As heretofore furnished, the individual thermometers have furthermore shown a wide difference in range, some readiug from $-30^{\circ}$ to $+100^{\circ}$, others from $+34^{\circ}$ to $+92^{\circ}$; the results being that searcely any two instruments showed degree spaces of the same width, and that the observer gained nothing by his experience with one thermometer in estimating fractions of a degree with another. The slight departures from uniformity in breaking column shown by some of the instru-
ments, although seldom equaling half a degree, tend to cast a doubt upon readings to small fractions; and it may be that the quantity of mereury contained in the small safety bulb at the top of the tube is sulficient to cause a fractional crror when the temperature of the water differs from that of the air at the time of reading.
"For these reasons, and considering the fact that at depths greater than 1 mile the general ocean temperature falls very gradually if at all, and that observatious at far greater depths do not agree in reporting corresponding differences in temperature, I requested authority from the Commissioner to order an experimental half-dozen of longer tubes of uniform range, and pointed to one-fifth degree Fahrenheit (Plate IV). The sprecification was as follows: 'The special thermometers are required to be of sufficient length to be legibly pointed in fifths of̂ a Fahrenheit degree, and it is particularly desired that all of the instruments now or hereafter ordered shall conform as nearly as possible to the range from $20^{\circ}$ to $90^{\circ}$ Fahrenheit, as specified in my letter of August 6, 1886.' (Order dated September 6, 1886.)
"As far as can be determined by laboratory experiments the new thermometers fultill all of the desired conditions, and are besides unusually free from index error. It is possible that before the Albatross sails I shall be able to furnish a correction for the small error arising from the expansion of the mercury contained in the sma'd safety bulb at the top of the tube after oversetting."
the tanner mproved thermoneter-case with the sigsbee CLAIIP AND TIIE NEGRETTI-ZAMBRA SPECIAL DEEPSEA THERmoneter.

## [Plate IV.]

Fig. 1 shows the apparatus complete, and Fig. .a a vertical sectional clevation of the case containing the thermometer.

N゙OMFNCLCATURE.
a. Neck of the bulb.
b. Catch reservoir.
c. Small receptacle.
d. Partition confining mercury in shield surrounding bulb.
e. Glass shield inclosing thermometer,
$f$. Thermometer-case.
g. Thimble with rubber lining.
\%. Spiral springs.
i. Cap.
j. Pivot.
\%. Slot for reading scale.
l. Frame of cast brass.
m. Guard.
n. Propeller.
o. Spindle.
p. Stud.
q. Sigsbee clamp.
$r$. Latch.
s. Slot.

The thermometer-case is made of brass except the Sigsbee clamp, $q$, and spiral springs, $h$, which are phosphor bronze. The frame is cast and the case in which the thermometer is inclosed is an ordinary tube of commercial pattern.

The Negretti-Zambra deep-sea thermometer was described as follows in the Report on the Construction and Ontfit of the U. S. Fish Commission Steamer Albatross, 1883:
"The thermometrical fluid is mercury; the bulb containing it is cylindrical, contracted in a peculiar manner at the neck $a$; and upon the shape and fairness of this coutraction the success of the insrtument mainly depends. Beyond $a$ the tribe is bent and a small catch reservoir at $b$ is formed for a parpose to be presently explained. At the end of the tube a small receptacle, $c$, is provided. When the bulb is downward the glass contains sufficient mercury to fill the bulb, tube, and a part of the receptacle $c$, having, if the temperature is high, sufficient space in $c$. When the thermometer is held bulb upward the mercury breaks at $a$, but of its own weight flows down the tube, filling $c$ and a portion of the tube above $c$, depending upon the existing temperature. The scale is accordingly made to read upward from $c$.
"To set the instrument for observation it is only-necessary to place it bulb downward, when the mercury takes the temperature just as in an ordinary thermometer. If at any time or place the temperature is required, all that has to be done is to turn the thermometer bulb upward and keep it in this position until the reading is taken. This may be done at any time afterward, for the quantity of mercury in the lower part of the tube which gives the reading is too small to be sensibly affected by a change of temperature, unless it is very great; while that in the bulb will continue to contract with greater cold and to expand with greater heat. In the latter case some mercury will pass the contraction $a$ and fall down aud lodge at $b$, but it cannot go farther so long as the bulb is upward, and thus the temperature to be read will not be affected.
"The thermometer is inclosed in a glass shield which eliminates all errors that might arise from pressure at great depths.
"To mount the thermometer, unscren the cap $i$ (Plate IV), drop a spring, $h$, into the case, slip a thimble, $g$, over the glass shield at $d$, put the thermometer in the case, drop in another thimble, which will rest on the upper end of the shield; then place another spring on the thimble and screw the cap in place. The thermometer will then be sispended between delicate spiral springs at the ends, and soft rubber rings which surround the shield. This arrangement has proved effectual in guarding the thermometer against jars incident to the service required of it on board the Albatross.
"To take a temperature set the spindle, $o$, into the hole in the cap, $i$, by screwing it down until the propeller blades are against the stud $p$, then by means of the Sigsbee clamp, $q$, secure it to the temperature rope. The bulb will then be down and the mercury in the tube connected with it, the position required to take the temperature. The water acting on the propeller during the descent will keep it in position, resting against the stud, $p$, but as soon as the reeling in begins the propeller is set in
S. Mis. $90-41$
motion, bringing the screw ou the upper end of the spindle into action, gradually raising the propeller until the lower end of the spindle is withdrawn from the hole in the cap, $i$, when the thermometer promptly turns over and registers the temperature by breaking the column of mercury at the point $a$, the columin then falling to the bottom of the tube. it can be read at any time afterward, as changes of temperature do not affect the reading after the column is once brokeu."
The latch, $r$, and slot, $s$, in which it works, has been added to prevent lateral motion after the thermometer has been turned over.

## 'THERIOMETERS FOR AIR AND SURFACE TEMPERATURES.

The instruments for this purpose were made by J. and H. J. Green, New York, and are all that can be desired.

## STEAM TRAP.

[Plato VIII.]
The exhanst steam from the ratiators, fore and att the vessel, is trapped to the hot-well and again fed into the boilers, thus effecting a considerable saving in fuel.

We first ased the Hawestrap, which did not prove satisfactory. The Chapman trap was then tried with better results, but it frequently failed to carry off the water, thus floolling the radiators and causing more or less amoyance. Mr. Baird, coming to our assistance again, devised a simple and inexpensive trap which has performed itis work admirably, relieving us from the annoyances above mentioned.

BOILERS.
[Plate IX.]
Mention has been made of an appropriation for new boilers, made necessary by a contemplated cruise in the Pacific. The old ones are much worn and require exteusive repairs after each trip, making them totally unfit for a long cruise.

With the introduction of new boilers we will increase the size of the coal-bunkers between 60 amd 70 tons, thus augmenting the steaming distance over 1,000 miles. A "donkey" boiler is included in the new arrangement, fordistilling water, heating and lighting ship, and for fire purposes. Heretofore this service has been performed by one of the main boilers, at comparatively large expense.

```
MAIN STAY-SAIL.
```

We formerly carried a fore try-sail gaff, but owing to the position of the standard compass, pilot-house rail, Sce, were mable to use the sail. We have recently dispensed with the gafi and substituted a stay-sail, containing 900 square feet of canvas, hoisting on the main-
spring stay, which extends from the main to the foremast head. This sail can be carried in ordinary weather.

## PERSONNEL.

The health of officers and crew has been excellent during the year, and no deaths have occurred. There have been several changes among the officers. Lieut. Seaton Schroeder, executive officer and navigator, was detached January 2, 1886, Lieut. H. S. Waring assuming his duties.
In the detachment of Lieutenant Schroeder the Commission lost one of the most accomplished and indefatigable workers it has ever drawu from the Navy.

Ensign W. S. Benson reported for duty January 13, and Ensign W. S. Hogg on the 16th.

Mr. James E. Benedict, resident uaturalist, resigned September 1, and was succeeded by Thomas Lee, assistant.
The following officers are attached to the vessel at the close of this report, December 31, 1886 :
Lieut. Commander Z. L. Tanner, U. S. N., commanding.
Lieut. H. S. Waring, U. S. N., executive officer and navigator.
Lieut. (J. G.) B. O. Scott, U. S. N.
Lieut. (J. G.) W. S. Hogg, U. S. N.
Ensign W. S. Benson, U. S. N.
Surgeon J. M. Flint, U. S. N.
Paymaster C. D. Mansfield, U. S. N.
Passed Assistant Engineer G. W. Baird, U. S. N.

## CIVIL APPOINTMENTS.

Thomas Lee, resident naturalist.
E. H. Shuster, clerk to commanding officer.

> PETTY OFFICERS, FIRST CLASS.
> Seaman class.
J. W. Astrom, chief boatswain's mate.

Special class
Charles Wright, master-at-arms.
S. L. Pritchard, equipment yeoman.
N. B. Miller, apothecary.
G. A. Miller, paymaster's yeoman.
F. L. Stailey, engineer's yeoman.

Artificer class.
John Hawkins, machinist.
Walter Blundell, machinist.
F. M. Stromberger, machinist.
W. L. Watson, machinist.

Attention is called to the appeuded reports of the chiefs of the various departments:

Navigator's report, giving a summary of the distances steamed, objects of the cruise, number of soundings, dredgings, \&c.

Engineer's report; medical department, sanitary report and record of specific gravities; naturalist's report, including lists of birds and fishes taken in the Bahamas; list of hydrographic soundings ; and dredging and trawling record.

Navigator's report--Summary of the movements of the Albatross for the year 1886.

| Date. | Movements. | Distance. | Object. |
| :---: | :---: | :---: | :---: |
| February 17 to 18 | Washington, D. C., to Norfolk, V a | $\begin{gathered} \text { Miles. } \\ 174 \end{gathered}$ |  |
| February 20 to 27. | Norfolk, Va., to San Salvador - | 1,053.4 | Sounding. |
| Febraary 27 to 28. | San Salvador to Ram Cay. | 34 | Do. |
| March 8 to $15 . .$. | Rum Cay to Nassau, Now Providence | 560.3 | Soundiug and dredging. |
| March 24 to 26. | Nassau, New Providence, to Key West, Fla. | 389.8 | Sounding. |
| April 3 to 4 | Key West to Havana, Cuba | 156.3 | Do. |
| April 7 to 8. | Havana to Key West | 90 | Sounding and dredging. |
| April 8 to 21 | Key West to Nassau | 793.4 |  |
| April 30 to May 8 | Nassau to Hampton Roads | 1,001.8 | Do. |
| May 9 to 10..... | Hampton Roads to Washington | 162 |  |
| June 30 to July 1 | Washington to Norfolk | 174 |  |
| July 15 to 19 | Wood's Holl and return | 390.2 | Sounding and dredgiug. |
| August 2 to 13. | Wood's Holl to St. John's, Newfoundland. | 1,883.2 | Do. |
| August 21 to 29 | St. John's to Wood's Holl. | 1,000.8 | Do. |
| September 14 | Wood's Holl to Nowport | 40 |  |
| September 15 to 21 | Newport to Wood's Holl | 499.2 | Sounding and dredging. |
| October 21 to 28. | Wood's Holl to Washington. | 724.1 |  |
| Total (95 days) |  | 9,592.3 |  |

The above table gives the number of days the vessel was at sea during the year ; also the distance run and the object of each trip. The number of days at sea, 95. Namber of dredging stations, 107. Number of hydrographic soundings, $2: 1$.

## ENGINEER'S DEPARTMENT.

Report of G. W. Baird, Passed Assistant Engineer, U. S. N., 1886.

THE MAIN ENGINES.

The engines have been in operatiou $1,160 \frac{1}{2}$ hours, while the ship was on her course, in free route, besides the time occupied in sounding and dredging at sea, while the engines were worked to signal.

The ship has steamed on her course 9,495 geographical miles-a mean of 8.182 knots per hour. During this time the starboard engine made $4,652,279$ revolutions and the port engiue 4,632,904, being a mean of 66.81 per minute for the starboard, and 66.53 for the port.

The cruising has been made under easy steam, usually on a limited allowance of coal. We are carrying the same boiler pressure ( 50 pounds per square inch above the atmosphere) that we carried last year, but have seldom run the engines up to the highest power obtainable with even that limited pressure. The highest speed recorded for one hour during
the year is 10.4 knots, and highest average for 7 homes, mimmencet by wind or sea, is 9.93 knots.

The shaking of the ship (which has never been violent) has been somewhat reduced by the counter-balance wheẹls (Plate V) which we had built by the Steam Engineering Department at the Washington navy-yard, in January. The writer designed them in two parts, in order to get the wheels on without disturbing the shafts, and by filling certain pockets with lead we contributed connter-balance to the engines. It has always been difficult to move the engines by hand, owing to the preponderance of the moving parts over the original counterbalances; this has been modified by making teeth on the periphery of the wheel (Plate V) which afford additional points for "pinching" the engines. These new counter-balance wheels fit over the forward webs of the low-pressure cranks. The cost of the two wheels complete was $\$ 314.04$, or about $7 \frac{3}{4}$ cents per pound.

The new feed-pump valves, referred to in my last report, have fulfilled my most sanguine expectation; the pumps have not failed for an instant, during the year, and their noise has been very much diminished.

During the year we have fitted a new key to the starboard rockshaft, and have put new anti-attrition metal in the port low-pressure crank-pin brasses; we have raised the main valves on their stems to restore the lead.

The following synopsis for the year's run covers the time the ship was running, in free route, on her course; it includes the time the vessel was slowed down, in fogs, going into and coming out of port, running between dredging stations, \&c., but not the time soundings or dredgings were being taken. We have considerable trouble to keep the valvestems of the high-pressure valves and those of the high-pressure cutoffs tight for any extended period; this is owing to the shallowness of the stuffing-boxes and also to the uneven wear of cut-off rods. I will make a requisition for the Katzenstine metallic packing for these rods at the beginning of the year. We have replaced the main air-pump valves with hard-rubber valves, purchased of the Davidson Steam Pump Company at a cost of $\$ 29.10$.

Engines:
Synopsis of the steam log of the Albatross for the year 1886.

| Mean point of cutting-off, in the high-pressure cylinders, from commencement of stroke $\qquad$ inches.- | 16.3 |
| :---: | :---: |
| Mean point of cutting-off, in the low-pressure cylinders, from commencement of stroke | 16.8 |
| Mean number of holes of throttie-valve open | 4.19 |
| Mean vacuum in the condenser .........---.-.-.-.-.-. .-...inches. | 22.7 |
| Mean pressure in the boilers, per square inch............ pounds. . | 47.9 |
| Mean pressure in starboard receiver, per, square inch, above zero $\qquad$ peunds.. | 19.3 |
| Mean pressure in port receiver, per square inch, above zero... do . | 20 |

Temperatures:
Of engine-room ..... 107.9
On deck ..... 67.5
Of injection water ..... 69.8
Of discharge water ..... 95.9
Of feed water ..... 75.4
Total time fires were lighted ..... 6,232 ${ }_{1}^{2}$
Total time engines were in operation, the ship being on her course do. ..... $1,160 \frac{1}{2}$
Revolutions:
Total of starboard engine ..... 4,652, 279
Total of port engine ..... 4, 632, 994
Mean of starboard engine per minute ..... 66.81
Mean of port engine per minute ..... 66.56
Total number of geographical miles ..... 9,495. 2
Mean number of geographical miles per hour ..... 8.182
Total tons of coal consumed while engines were in operation ..... 5622224
Mean number of pounds of coal consumed per hour while the engines were in operation ..... 1,087
Total tons of coal consumed for all purposes ..... $953 \frac{419}{2240}$
Total tons of refuse (ashes) from the coal ..... $2111_{2}^{4} 240$
Draught of water :
Greatest:
Forward feet and inches. ..... 115
Aft ..... 1310
Least:
Forward ..... 10
Aft ..... 125
Mean, for the whole of the steaming:
Forward106.81
Aft ..... 130.31
The greatest continuous speed during the year 1886.
Date, July 19, 1885 :
Speed knots ..... 9.93
Number of hours ..... 7
Direction of wind ..... NNE.
Force of wind ..... $\stackrel{6}{7}$
State of sea ..... Smooth.
Number of furnaces used ..... 4
Steam pressure in boiler, per square inch pounds ..... 50
Steam pressure in receiver, per square inch ..... do ..... 25.5
Revolutions per minute ..... 81.5
Vacuum ..... 23.7
Holes in throttle-valve open ..... 5
Cut-off in non-condensing cylinder. ..... 22
Cut-off in condensing cylinder ..... $18 \frac{1}{8}$
Temperature:
In engine-room ..... 115
On deck ..... 68.6
Of injection water ..... 69.8
Of discharge water. ..... 98
Of feed water ..... 78.7
Draught:
Forward ..... $10^{\prime} .8^{\prime \prime}$
Aft ..... $12^{\prime} .7^{\prime \prime}$


The ship was docked in July at the Norfolk navy-vard. We found the outboard valves in good order. A quantity of barnacles (Balanides) was found inside the cast-iron chamber of the injection-valve. We found the zinc ferrales in the nozzle of the outboard blow-ralve had corroded but little, while the iron chamber appeared preserved. We found the line-shafts, under the insulation tape, to be free from corrosion. This tape has been on the shafts two years.

The annunciator, referred to in my last annual report, was duly completed, and has worked well during the year.

A current of air blown into the bottom of the case (Plate VI) will cause the little wind-mill at the top to revolve. This is monnted ou the vertical spindle, which has a screw-thread near its lower end which gears into a toothed wheel; this wheel, which is on a horizontal shaft, carries an arrow on each end; the back of the indicator is secured to one side of the pilot-house, with a circular hole in the wood large enough to move in ; the front arrow is visible from the deck and the back arrow from the interior of the pilot-house. If a current of air, blown into the bottom of the indicator, revolves the arrow ahead, it is manifest that the direction of the arrow will be reversed if the current be reversed.

To secure these positive blasts, a small blower (as in Plate VII) is placed in the engine-room, parallel with the line-shaft, to which shaft it is belted. If the engine goes ahead the blower delivers a blast, and if the engine backs the blower induces an air current, and if the engine stops the blower and current of air cease simultancously.

There is one of these machines for each of the main engines; their action is positive and automatic, aud they can make no mistake.

On board the United States ships Boston and Atlanta there are three of these indicators in each circuit, which consequently announces the motion of the engine at as many different parts of the ship. To connect the blower and indicators we use lead pipes.

The inertia of a ship in motion is considerable, and it takes some little time for the ship to change her direction even after the engines are reversed; it often occurs, in sounding and in dredging, that opposing wind and curreuts carry the ship from the desired position in reference to the wire; hence it becomes imperative for the commander to know, promptly, if either eugine has moved in the desired direction. Damage due to mistakes either in striking or in interpreting the signals, which hitherto occurred, have not occurred since the pnematic indicators have been used. The tax on the commander's mind in reconciling the wind, waves, current, strains on and direction of the dredging wire, while dredging in the great depths of the Gulf Stream is considerable,
and when he had, in addition to this, to remember the direction both engines were moving iu, it was a surprise that successful work was done at all.

## GOVERNORS.

The Svedberg governors have performed well during the year. They have required no repairs nor alteration, and but little attention.

On completing the repairs to the boilers at the Washington navyyard, in January, we pat a cold-water pressure of 65 pounds in the port boiler and 64 pounds in the starboard boiler; at which pressure they appeared tight, but the soft patches on the front inboard corners began to leak soon afterwards.

The $1 \frac{1}{2}$-inch screw (pipe) plugs we put in the boilers were tight. One of the plugs began to leak oa the 1st of March and the legs began to leak soon afterwards. On the 1st of April we discovered one of the steel socket rivets broken off; we replaced it with an irou one.

On our return to Washington (from the Bahama cruise), we replaced five rivets in a patch on the back leg of port boiler; and a soft patch on a seam on the shell of starboard boiler; replaced a soft patch in the forward inboard corner of No. 4 furnace; replaced two soft patches in the port inboard corners of both boilers; put a new stem in the starboard main check-valve; calked seams and rivets in No. 4 furnace; a new rivet in a brace in the starboard boiler; replaced two soft patches on the waist of port boiler and one on starboard boiler; replaced a soft patch on the bridge end, inboard corner of No. 1 inurnace; to accomplish this last job it was necessary to dig a portion of the cement out of that boiler, which we replaced. We pat several new rivets in the front sheet of this furnace.

On completing the repairs at Washington the vessel made her summer cruise, during which time leaks occurred as before, but we were able to obtain fresh water at Wood's Holl and at St. John's—the only ports visited-and we only accumulated scale while at sea after our supply of fresh water was exhausted. Our stay at Wood's Holl was longer and our voyages were of shorter duration than during previous cruises, which enabled us to take better care of the boilers.

During the year we have paid for repairs to the boilers:
For labor, $\$ 516.21$; for material, $\$ 494.15$. Total, $\$ 1,010.36$.

## NEW BOILERS.

In obedience to the Commissioner's order the writer designed boilers to replace those now in the ship, which were bid on by a number of large engineering establishments; these bids were opened on the 23d of this month and the Columbian Irou Works and Dry Dock Company, of Baltimore, was found to be the lowest bidder.
The new boilers are to be two in number, cylindrical in form, and are specified to be of "the best American charcoal-hammered iron."

They are to be placed in the main hold fore and aft, one forward of the other, with the fire-room ath wart-ships between them.

A steam chimney is placed over the fire-room-between the boilersand is supported on wrought-iron built-up girders, supported by the boilers, essentially as recommended in my quarterls report dated 31st of March, 1884.
The external diameter of the boilers is 12 feet, and the length on line of axis is 10 feet 3 inches. Each boiler has three furnaces, 36 inches internal diameter, and exposes a length of grate of 6 feet 6 inches, making an aggregate of 117 square feet of grate surface.

The tubes are to be wrought-iron lap-welded, 3 inches exterual diameter, 7 feet 9 inches long, No. 10 wire gauge in thickness; there are in all 394 tubes, including 48 stay-tubes, which are No. 8 W. G. thick.

The shells of the boilers are to be $\frac{3}{4}$ of an inch thick; the lougitudinal seams are double strapped; the circumferential ${ }^{\bullet}$ seams are to have single straps; all the seams are butted.

The heads are to be $\frac{9}{10}$ inch thick, butted and strapped. The heads are braced by $1 \frac{5}{8}$-inch rods, spaced 12 inches centers, and the other flat surfaces are stayed by $1 \frac{1}{4}$-inch screw-stays, spaced $7 \frac{1}{2}$-inch centers.
The stean-chimney is 7 feet 4 inches in diameter (the same as the old one) and is 10 feet high.

The flue is 4 feet 4 inches in diameter, is in four sections, stiffened by the Adamson rings, and is $\frac{5}{8}$ inch thick.

The boilers are to sit in and be secured to wrought-iron saddles, which are to be riveted to the floor frames. The holding-down bolts are $1 \frac{1}{2}$ inches in diameter, and six in number for each boiler.

The old stop-valves, checks, blows, salinometers, gauges, etc., are to be utilized as far as possible.

A new $8 \frac{1}{2}$-inch stop-valve, a section of $5_{2}^{2}$-inch copper steam pipe, a 3 -inch safety-valve, one new escape-pipe, two safety feed-ralves, and two sections of feed and blow pipe are to be made new.

The covering of the boilers will consist of half an inch of kaolin, half an inch of hair felt, and half an inch of wood pulp.

The center of the smoke-pipe will come about 5 feet 3 inches forward of the present one. We will put four ventilators (instead of two) into the fire-room, and, by bringing them close to the smoke-pipe, we will leave more "floor room" on deck than at present, and will bring the ventilator hoods clear of the main-stays, that we may run them up about 8 feet into the air. As there will be a boiler on both sides of the fire-room, we will need all the air we can get into the fire-room.

The iron in the old coal-bunkers is to be utilized in the new ones. We will get the new boilers and bunkers between the same bulk heads that inclose the old ones, but the new arrangement affords a space of 12 inches in the clear (at the smallest place) around the boilers, and an increase of more than 30 tons of coal in the bunkers.

DONKEY-BOLLER.
This boiler is to be of the same material as the main boilers, is to be cylindrical in form, 4 feet 6 inches in diameter, and 4 feet 8 inches in length. It is to have a single furnace-dhe 30 inches in diameter, exposing a grate 3 feet 3 inches long. It is to have a steam drum 24 inches in diameter and 15 inches high; the tubes are to be eight in number, $4 \frac{1}{2}$ inches in diameter, and 3 feet 9 inches long, arranged in nests over the spandrels of the furnace; they are to be lap-welded drawn tubes. This little boiler is to be placed on the main deck in the deck-house amidships, between the main steam drum and the galley. The object of using this boiler is to warm the ship, run the dyamo, rum the punps (for rashing decks, pumping bilge, supplying the aquaria, etc.), and distilling water when the main boilers are not in use. It is beliered that cousiderable labor and coal will thus be saved, as well as saving the main boilers.

## DREDGING-FNGINE.

The follower-bolts in the starboard cylinder of this engine, whick were broken a year ago by water freezing in the piston, were at the time temporarily replaced by bolts belonging to another engine, have been replaced by new and proper bolts. The guide-roll of this engine was badly worn and scored by the dredge wire, and was replaced by a new one made at the Washington nary-yard in June last. Two new wrist-pins have been made for this engine. The cost for labor on the above was $\$ 13.80$; material, 35 cents; total, $\$ 14.15$.

## RFELLING-ENGINE.

This engine has been overhanled and adjusted; the wrist-pins, which were wearing "out of round," have been turned around one-fourth of a turn, that the future wear may come on the high places.

SOUNDING-ENGINE.
The steam hose on the sounding-engine burst at sea, on the 1st dar of May, and as there was no way of repairing it the writer substituted the exhaust-hose for it and erected a temporary exhaust-pipe of iron, which temporary plan answered very well until the ship reached port. We provided new and larger steam hose and attached them. We had the steam cylinder rebored, increasing its diameter nearly one-quarter of an inch, had new piston-rings made, and provided a proper oil-cup to lubricate the valve and piston of this engine. The cylinder was not true and the original piston-rings leaked, which diminished the power of the engine, which is really too small for the work. The changes made it a little better. The writer belieses, when the increased pressure from the new boilers is applied to this little engine, that it will reel the wire in about 15 per cent. faster than it did originally. A new


#### Abstract

bronze sounding-reel has been built by contract, and has been fitted to its place by the men in this department. Its pulley is slightly less in diameter than that of the original reel, and with increased pressure on the steam piston it is believed that the speed of reeling in will be from this cause augmented. The cost of the labor and material consumed on the engine of the sounding-machine-which come in the writer's department-were as follows: 38 feet of steam hose................................................................................ $\$ 18.00$  1 hose-coupling ................................................. ................................. 2.00  


STEERING-ENGINE.
The steam steering-gear has not been used much during the year, but has, when used, done its work with promptness and precision. The plates over the exhaust chambers and passages are very light and are not bolted close enough; this makes bad air-leaks which reduces the vacuum from 2 to 3 inches in the condenser.

## STEAM-WINDLASS.

This machine continues to give satisfaction. Besides hoisting, catting, and fishing the anchors, it is used to reel off wire rope, warp the ship, and hoist boats. No repairs have been needed to this engine during the year, except sweating thin pieces of brass on the sides of the crank-pin brasses, at a cost of $\$ 1.38$.

## STEAM ASH-HOISTER.

This machine continues to work admirably. The (cast-iron) gland to one of the piston-rods was discovered to be broken; there was sufficient metal in it and the fracture showed a clear break, an indication that it was broken by accident or stupidity. The broken gland was replaced by a brass one at the Washington navy-yard, at a cost of $\$ 2.76$.

## STEAM-PUMPS.

We have had to renew the leather cup-packings on the water-piston of the circulating pump during the year, at an expense of $\$ S$. The piston, which is of cast iron, is badly corroded and will not last much longer. It should be replaced by a light brass piston fitted for hemp packing. We have had the steam-chest of the hydrant pump rebored, and a new steam-valve put in during the month of June, at an expense of $\$ 27.05$.

A No. 1 Davidson steam pump has been purchased and erected in the engine-room to circulate sea-water through the aquaria. The pip.
ing is entirely of brass, and is provided with proper valves, tap-cocks, and safety-ralve, which may be regulated in the laboratory. The pump and piping were erected by the men in this department.
Cost of the aquarium pump) . ................................................................. . . . . 5.56
Cost of piping ......................................................................................... . . . 48.23
Cost of valves, cocks, and fittings .................................................................... 11. 89
Total
150.68

## STEAM CUTTERS.

These two boats continue to do good service, and are always ready for use when required. The nature of the service of this ship, which gives us semi-annual opportunities to overhaul these two boats, and the hearty co-operation of the commanding officer in all matters pertaining to their efficiency, are two important elements in the great success of these Herreshoff boats. During the year the following repairs were made to the larger boat, at the Washington yard: A sheet-brass cover was put on the separator, new wrist-pins were put in the cross-heads, and the cross-head gibs were rebabbitted; the lower half of the casing of the boiler has been renewed; new pins were made for the ec-centric-rods; new pins were made for the link blocks; the plunger and valve of the hand bilge-pump were refitted; a new steering-wheel and drum were made. In November a set of grate-bars were made. Repairs, such as straightening the screw-blades, which had been bent, remaking joints, \&c., have been made by our own men. The cost of repairs to this boat at the Washington navy-yard amounted to \$54.66. During the year we have bought from the builders of the boat a new slide-valve for the high-pressure cylinder, at a cost of $\$ 5.50$. The wear of these slide-valves, which are made of brass, is all on one side.

The smaller boat (the gig) broke her high-pressure piston ring and spring and bent the rod and follower on the 7th of March. The brass follower was screwed to the cast-iron piston by a fine thread; this became loose and unscremed. We repaired it temporarily by casting a solid Babbitt-metal ring, in place, and straightening the rod and follower; we replaced the piston, later in the year, by one of wrought iron. Later in the year we lost the low-pressure piston in the same way, and replaced it in like manner. The slide-valve of the high-pressure engine, which was worn to a knife-edge on one side, has been replaced with a new one.

The smoke-pipe was rolled out of the gig on the night of the 5th of March, in $3 \frac{1}{2}$ fathoms of water; it was recovered by a native diver. The top of the boiler was so badly torn by the accident, and the lower casing so badly corroded and burned out by the end of the summer cruise, that we were obliged to put on an entirely new casing. As the fine boiler-shop at the Washington navy-yard had been discontinued, as such, we were obliged to employ a journeyman boiler-maker and build
the casing ourselves. By the courtesy of the chief engineer of the navy-yard we were permitted to use the shop. We purchased the material from L. H. Schneider, of Washington.

The cost of repairs to the gig during the year was as follows:
1 safety-valve spring ..... \$0. 75

1. high-pressure slide-valve ..... 4.50
1 high-pressure piston ..... 13. 50
2. low-pressure piston ..... 17.00
Material for new boiler casing ..... 35. 57
Labor for new boiler casing ..... 49. 68
1 set of fire-bricks. ..... 2. 50
Total ..... 123.50

## FRESH-WATER DISTILLING APPARATUS.

During the year we have distilled 53,425 gallons of water, which has been uniformly of good quality. A leak was discovered in the joint at one end of the coils during the month of June. This leak was stopped by a plumber's joint of soft solder, by a nary-yard workmau, at a cost of $\$ 9$.

The practice of cleaning and whitewashing the interior of the tanks each time they are emptied is continued with good results.

## ELECTRIC LIGHT.

The uniformly white, steady, and agreeable light from our Edison incandescent lamps has continued throughout the year.

The commutator of our Z-dynamo, though much worn, is still efficient. The engine is as efficient as when new, and gives us but little trouble. The engine and dynamo are run by a coal-heaver.

The usual amount of breakage of wires and burning out of cut-out plugs has occurred, which has generally been traced to short circuiting through sea-water, which leaks through the decks, \&c., and gets at the wires.

We find, in repairing these wires (which are of copper) that they are now quite soft and ductile, though they were quite brittle two years ago. There can now be no doubt that a molecular change is going on in these wires all the time. The three-light pendants, with their flexible cables, have been used the entire year, to the exclusion of the are lights. The attachment at the end of the cable is troublesome in that the men break them by sometimes screwing up too hard; sometimes they burn out by arcing, from failure to serew them up to good contact, and again by dirt separating the contacts just enough for the purpose.

One of the small tension-screws of the dynamo brushes has been renewed during the year, and drip-pans have been fitted to the pillowblocks of the dynamo, the blocks being cut out to receive the pans.

Total ............................................................................ 250.58
Taking the 16 candle-porer lamps as requiring double the current of one 8 candle-power, the mean number of lamps will be (as nearly as can be estimated) 47 ; the candle-power hours will then be ( $47 \times 1574 \times 8=$ ) 591824 , and this quantity, divided into the total cost, gives the cost of
$\frac{250.58}{\times 1574 \times 8}=0.042$ cents per candle-power per hour, or almost exactly what an equal gas-light costs the consumers in Washington city.

The submarine lamps have worked very well during the year. The naturalists employed them extensively on the Bahama Banks, where the white bottom of the sea afforded a beautiful reflector in the darkness of the night. By the aid of the marine glass (improvised in this department) the position of the light and adjacent objects were readily observed even when the surface of the water was disturbed.

Though no hitch or delay has occurred during the year, and the plant has worked fiully as well as when first installed, I feel obliged to say that the $B$ circuit of only 51 volts pressure is rather behind the age, so far as economy is concerned, and therefore recommeud the exchange of the dynamo for one of higher potential.

The Albatross was, I believe, the first Government vessel (of any nation) that employed the incaudescent electric lighting for internal illumination.

The experiments made and the results obtained here were carefully considered in the Navy Department before any venture was made to light their ships in a similar manner. We have produced our light, I believe, at least as economically as any people using so weak a current as we employ, but since we installed our plant great improvements have been made in dynamos. The change in the dynamo will not be very expensive.

For the past two years we have kept the lamps in the engine-room alone in circuit all the time, that we might obtain a correct estimate of the average duration of the lamps.

The total lamp hours was 27,987 hours and 31 minutes, and the total number of lamps expended was 30 , so that the mean life-time of the lamps in the engine-room appears to be $\left(\frac{27987-31}{30}=\right) 932$ hours and 54 minutes. Lamp No. 92 is included in the above arerage, though it was broken after 701 hours of incandescence.
In recording the great life-time of these lamps, it is proper to state that they were in circuit all the time, and were lighted and extinguished daily with the starting and stopping of the dynamo, and were, consequently, never suddenly heated nor cooled.

## VENTILATION.

The veutilating fan has been in use, during the warm weather, for several hours each night when at sea. The wastefulness of the Wise motor, which drives the fan, is so great, that the writer does not feel justified in using it a great deal. The new arrangement of boilers will displace the present fan and motor, and I recommend that a pair of Sturtevant's No. 5 monogram exhaust fans and an orthodox steamengine be put in place thereof. They can be placed in the donkeyboiler rom conveniently. To exhaust some of the heated air from the space over the working platform of the engine-room I recommend that two wrought-iron chimneys be run from this point to the open deck above.

The four proposed rentilators to the new fire-room, which will extend 8 feet above the deck, will doubtless be much more efficient than the present two, having the same ( 18 inches) diameter, and which are only 3 feet above the deck. The movable cowls of the new ventilators will be of copper, to prevent affecting the standard compass.

## WARMING.

The usual trouble from breaking of heater valres has continued. It is impossible to say when or by whom these valve-stems are twisted off or threads stripped; it is a contest between small brass valves and muscle, in which the latter appears to trimoph. The large heater, which was removed from the berth-deck last year, has been replaced.

The steam traps (Chapman's) have never been satisfactory; water accumulates in the heaters if we trust to the automatic action of the traps, and if we attempt to regulate the drain by adjusting the by-pass, we find steam blowing through at times.

The writer designed a valve (Fig. 2, Plate VIII) and improvised a trap by screwing the valve into a cast-iron cylinder we had been using
for an oil-filter; the steam and water enters at the top and the condensed water escales throngh the valve; the steam does not escape.

We substituted this for the Chapmau trap for draining the after heaters, and find it works admirably.

> COAL.

Excepting 30 tous of semi-bituminous coal purchased at Nassau in April, and about two tous for the catters, we have used anthracite coal exclusively.

The total consumption, for all purposes, has been 953 tons 419 pounds, and the average cost has been $\$ 5.17$ per ton.

The quality has been generally good, except that obtained from the Norfolk navy-yard, which we found dirty and air-slaked.

We check the weight of coal received by the increase in the ship's displacement, which latter quantity is obtained from a calculation of the ship's increase in draught of water. We either witness the weighing of every pound of coal we buy, or weigh it ourselves as it is delivered alongside the ship. The following amounts of conl have been used for the purposes specified:
Coal consumed to propel the ship while on her course, to warm the ship,
Tons.pump bilges, wash deeks, and hoist ashes while the main engines were inoperation$562 \frac{2}{2} \frac{1}{219}$
Coal consumed to light the ship by electricity ..... $14 \frac{15097}{224}$
Coal consumed to ventilate the ship, ..... $10 \frac{186}{27} 27$
Coal consumed to distill water ..... $23 \frac{12}{2} \frac{2}{24}$
Coal consumed by the steam cutters ..... $9282 \frac{3}{40}$Coal consumed for driving the hoisting engine, steam windlass, washingdecks, warming ship, and keeping fires banked when the main engineswere not in operation$277 \overline{2 \pi}+0$
Total coal consumed by the engineer's department ..... $899_{2 \frac{96}{92}+6}$
Coal consumed by the equipment department (cooking) ..... $53 \frac{1698}{248}$

## MEDICAL DEPARTMEN'T.

Report of Surgeon J. M. Filint, U. S. Navy.

The general health of the ship's company during the year has been very good. No cases of serious illness have occurren, and only those tritling accidents incident to all the ruder occupations of men. The provisions for ventilation are the same as heretofore, and are reasonably effective when in use. The between-decks, in this as in all other ships with which I have been acquainted, are more or less malodorous at sea. No precautions can prevent the evolution of foul gases in the bilges of a ship, where the presence of organic matter and the conditions of heat and moisture favorable to decomposition are unavoidable. How to remove these gases before they have contaminated the air of the apartments of men and officers, is a problem not yet solved; it is
evident, however, that any system of ventilation in order to be perfect must be in continuous action.

The first part of the year, from early in February to May, was passed principally among the Bahama Islands, where the temperature was mild, the winds fresh but soft, and the climate generally couducive to health and comfort. The islauds themselves in their present condition furnish wonderfully little of ceneral interest to the visitor, and fail utterly to justify the glowing accounts given of them by their discoverers. The inhabitants of the islands, with the exception of New Providence, are poor and thriftless but not wretched or degraded, mostly colored, evidently diminishing in numbers, extracting a very plain subsistence from a thin soil impervious to modern implements of husbandry, and from the more open-handed generosity of the sea. There are no educated medical men on the islands except at Nassant, and the announcement of the presence of a "doctor" among them was sufficient to surround him speedily with a numerous clientèle, consisting of the sick, those who had been sick, and those who thought that they might at some future time get sick, all anxious to avail themselves of the rare opportunity for professional treatment. Erery effort was made to minister to their neces. sities as well as their fancies, and their expressions of gratitude for what they received were evidently sincere. So far as was observed the physical condition of the people seemed to be good. There were few maimed or deformed, and only occasional evidence of the prevalence of specific diseases among them, either at present or in the past. These remarks, howerer, apply only to the outlying islands and not to New Providence, upon which is situated Nassan, the largest town and the principal commercial port of the Bahamas.

Among the interesting cases observed was one of Hysterical Paralysis of several months' continuance, the patient having been utterly unable to move a muscle of the lower extremities during that time. The subject was a well-conditioned young girl, one among numerous victims of a remarkable epidemic of hysteria attending great religious exeitement on Cat Island. Several hundred persons, a very large percentage of the whole population, were said to have been affected, mostly young people, boys and men as well as girls and women, and their wild vagaries were related by wituesses with a solemnity that assured the hearer how firmly rooted was the belief in the supernatural character of the manifestations. Treatment of this case by nerve tonics and electricity for a few days was attended by such marked improvement that a complete and speedy recovery was certain.

The summer and autumn cruise of the ship was made on the North Atlantic coast, with Wood's Holl as headquarters, northward as far as St. John's, Newfoundland. The Grand Banks in August developed the same foggy, rainy, disagreeable, and depressing climate for which it is noted, and a week in the quiet and sung harbor of St. John's was a welcome and refreshing interlude. Nothing for record in this department
S. Mis. $90-42$
occurred during the summer, except the development of a case of Melancholia in one of the seamen, who was in consequence transferred to the naval hospital at Chelsea, Mass., and subsequently to the Government Insame Asylum in the District of Columbia. No satisfactory cause for the disease could be assigned.

The determinations and record of the densities of sea-water have been continued by this department during the year. The obsercations have been chiefly confiued to surface deusities, and the collection of water for the parpose has usually been made at 12 oclock each day that the ship was at sea. The specimen is kept until it has taken abont the temperature of the room and of the instruments emphoyed, and the same care as heretofore exercised in the reating and reluction. The record in itself presents no remarkable features calling for extended remarks. The high gravities of the Southern waters, where evaporation is rapid, is observable, and especially in those inclosed basins like Exuma Sound and Tongue of the Ocean, where there are no active currents to restore the equilibrium with the ocean water in general. In contrast are the low gravities of the Northeru waters, where evaporation is slight and the water is freshened by the Arctic currents.

The record of temperatures and deusities observed during the year is appended:

Record of temperatures and specific gravities.


Record of temperatures and specific gravities-Continued.


## REPORT OF THE NATURALIST, MR. THOMAS LEE.

The trork of the Albatross for 1886 began with a cruise among the Bahama Islands. Mr. James E. Benedict was in charge of the scientific department, and was assisted by Messrs. Willard Nye, jr., C. H. Townsend, F. L. Washburn, aud myself.

We left Norfolk February 20, and met with little of interest before reaching our anchorage at Watling's Island. Before speaking of our work, it is my pleasant duty to acknowledge our great indebteduess to Lieut.-Commander James M. Forsyth, of the United States Navy, for furnishing us with much valuable information with regard to the character of the islands, and for letters to Mr. R. C. Nairn, of Watling's Island, and the Misses Forsyth, of Rum Cay, who showed us every courtesy and attention, besides very materially aiding us in our work:

February 27 Mr. Nye and I lauded on Watling's Island, and remained there till March 9. The Albatross rau over aud anchored at Rum Cay. We were cordially welcomed by Mr. Nairn, who furnished us with comfortable quarters, thus enabling us to get to work at once.

Watling's, like all the islands of the Bahama group, is made up of coral limestone, much weathered upou the surface, and below it of a very cavernous nature. A great part of the interior of the island is occupied by a series of connecting lakes, which are surrounded by hills rising quite abruptly from the water to a height of 50 to 140 feet, and thence sloping more gradually to the ocean. Between the hills and the ocean are a number of large swamps, hardly above tide-level.

The coast-line is partly rough coral rock rising abruptly from the water, partly stretches of coral sand, and the ishand is pretty well surrounded by outlying coral reefs. Though there is little soil, the greater part of the islaud is clotled with a dense, low, serub growth, with here and there a large tree to indicate what the timber was in old times. The surface has been quite extensively under cultivation, but since the abolition of slavery nearly all the white people have left the island, and the negroes caltivate fields only here and there, and scarcely do more than get a living off the ground.

The swamp water is pretty much all brackish, but fresh water can be had at any point by digging down to near the ocean level. It collects slowly and is subject to a rise and fall with the tide.

We found the rough, coral bottom near the shore ill adapted to seining, and the inhabitants bronght in but few species of tish caught with hook and line.

A trip across the island to a creek on the easteru const resulted in the capture of a number of species of fish. There was little opportunity to haul the seine, but we made a number of sets across the months of small creeks, and then drove the fish down into the net.

From the lakes we seined a large number of mimows, Atherina stipes -a species most plentiful in these waters and apparently the only fish occupying them.

The lake water is very saline and subject to a slight rise and fall with the tide, though there is no apparent connection between the lakes and the ocean.

We made a trip through the lakes to a cave near the ner light-house at the northern end of the island, and from which several human skulls are said to hare been taken. The cave is near the lake, in the face of a low semicircular ledge of limestone. The mouth of this cave, about 8 feet long by 2 feet in height, was originally walled up. It now stands open, the wall haring been pulled down. Within, the cave extends about 50 feet along the face of the ledge on each side of the entrance, and the low roof meets the floor about 20 feet back. It is divided into several chambers by natural columns rising from the floor to the roof. The largest of these chambers extends back to a pool of brackish water on the lake level, and it was from this chamber that we made our collections. A careful search throngh the other parts of the care revealed no human remains, and only a few small bits of broken potters. The outer wall of the care is a mass of stones, piled up to the roof, through
which the earth from without has washed into the cave, and down across the floor. Whether this wall is artificial or natural would be an exceedingly difficult task to determine.

From among the loose stones and earth, near this outer wall, we picked out several pieces of coarse pottery, and sereral pieces of bone beionging to the human skull, among them two jaw-bones with teeth intact. About half way across the floor we found a number of human long bones strewn about with no apparent arrangement.

Miss Nairu, who was one of the first to visit this cave, told us that she saw fire or six skulls lying upon the floor when she was there, and that one of them had been taken to the library at Nassau.

Both going aud coming through the lakes we saw great numbers of cormorants floating lazily about on the water or sitting on the mangrove bushes along the shore. They remain throughont the year and breed on these lakes. We saw, too, a mumber of herons, of which we shot several, and Hocks of Baluama ducks and blue-bills, but could not get near these latter.

Coming home, we landed on Iguana Key and captured six iguanas of the genus Cyclura. We saw there a large brown rat, but did not succeed in capturing it.

During our stay on Watling's Island we visited several other caves, but found no human remains. In all the caves visited we found but one bat, though there was every indication that they had been there in great numbers quite recently. The negroes say that they always disappear during the winter months.

We procured a number of stone implements during our stay. These the negroes call thunderbolts, believing that they fall with the lightning. They preserve them very carefully, as a charm to ward off the lightning, and are very loth to part with them.

We made collections of the shore fauna as well as of lizards, crabs, insects, and mollusks from all parts of the island, and of birds we took a number of species as well as sereral nests with eggs.

Miss Nairn, who scemed quite conversant with the habits of most of the birds, told us that in December, during high winds, swallows sometimes made their appearance, very tired. They stay but a few days, and then disappear. The "gale bird," undoubtedly ourbobolink, comes too, during the ligh autumn winds, in large flocks, but stays only a few days.

On March 8 the Albatross left Rum Cay, and on the same day tonched at Conception Island and gave the naturalists a chance to make shore collections. One haul with the beam trawl, near Conception Island, at station 2629 ( 1,169 fathoms), brought up ouly a few crustaceans, one glass sponge, one piece of coral, and one fish. The mud-bag was filled with coral sand, with pteropod shells and foraminifera in it.

March 9 the Albatross picked up Mr. Nye and myself and theu ran back to Rum Cay, to give us a chance to take some photographs at Port Nelson.

The character of the surface and the growth at Rum Cay are abont the same as at Watling's Island, and the collections made at each island were made up largely of the same things.

The land snails, Helix, however, on Rum Cay were fond clinging to the bushes, in low, wet places, in vast numbers, much greater than observed ou any other island, and a very large collectiou was made.

The inhabitants of Rum Cay fish almost entirely with hand-lines, though occasionally using basket traps. They never attempt to do more than catch fish enough for immediate use.

We left Rum Cay March 10, and anchored off Cat Islaud for the night. Next morning we landed and made quite extensive collections. Near the shore, aud ruming parallel with it, were several low ridges covered with thick scrub growth and separated by partly open glades. Further inland were tields of millet bordered by quite hears timber. Had it not been for a high wind our collection of birds here would andoubtedly have been much larger and comprised many more species, as this was one of the best collecting grounds visited during our cruise.

March 12 we landed in the morning on Elenthera Island, and worked over a low country which stretches from the shore to high land about a mile inland. The day was perfect and our collections comprised a number of birds and a good representation of the shore fanna.

In the afternoon two hanls with the tangle, at stations 2630 ( 244 fathoms) and 2631 (2s0 fathoms), brought up only a few glass spouges and a ferr smail pieces of coral.

March 13 a hanl with beam trawl, near the head of Exima Sound, at station 2632 ( 791 fathoms) showed a bottom of white coral ooze with no apparent animal life.

We anchored in Nassau Harbor, New Providence, on the morning of March 15, and remained till March ${ }^{2} 4$.

To Governor and Mrs. Blake we are indebted for much assistance in our work of making collections, as their knowledge of the character of the country, and of the localities in which certain things could be found, was a great help to us.

Mrs. Blake had a very fine collection of stone implements, from various islands, and a lignum-rite stool from a cave on Krum C'ay, of which we got very fair negatives.

The fish-market at Nassan afforded an opportunity for making a large collection of fish, as tho fishermen are compelled to sell all their fish through the market. The fishing industry is a large one, and I give a few detans from data collected upon the subject by Mr. Benedict.

There is no record of the number of vessels employed in fishing, but it is estimated at 120 sail. The ressels are principally of two classesschooners, measuring 28 to 30 feet on the keel, and sloops of about 18 feet keel.

The schooners cary a crew of 7 men and do most of their fishing with seine of 1 -inch mesh, 30 fathoms long, and 80 meshes deep. The sloops
carry 3 or 4 mon and do all of their fishing with hand-lines. The hand-line fishing is done with the aid of a water-glass. The water-glasses are simply a box, painted some dull color, with a pane of plain windowglass set in the bottom. The fisherman holds this box on the surface of the water, and, by looking through the glass, can see the bottom through this clear water perfectly plainly to a depth of 50 or 60 feet. When fishing, the men hunt about till they find a spot where the fish - are pleuty, then, by watching their lines through the glass, they can tell exactly when to strike the fish. Most of the fishing is done at Abaco and the Berry Islands, the vessels staying out about a week and bringing the catch in alive in their wells. The larger specimens of skip-jack, bone, hound, and amber fish are split and dried in the fore rigging, but the bulk of the eatch is peddled out fresh at the marketthe demand for fish determining the stay of each vessel in port. A fare will run from $\$ 12$ to $\$ 60$, and anything over $\$ 40$ the fisherman considers good work. After paying the expenses of a cruise, two shares of the protits go to the ressel, one to the seine, one to the captain, and one to each member of the crew.

Many species of fish from these waters are excellent eating, and few seem to be poisonous. While barracuda, hog, and amber fish are more likely to be poisonous than other species, this property is by no means confined to them. Cases of poisoning, however, are of such rare occurrence that the natives pay little attention to the matter, and have no rule as to what can be eaten and what canmot.

The sponge fishing is another very importaut industry, the details of which I give from data collected by Mr. Nye.

The spouging fleet consists of about 475 vessels aud employs not less than 4,000 men, the majority of them negroes. The ressels used are sloops of 15 to 20 feet over all, and schooners running up to 20 tous, though commonly about 36 feet over all. The largest schooners carry 12 to 18 men and 6 to 10 boats-one of 12 feet and the others 10 feet in length.

The sloops carry 4 to 7 men and 3 or 4 boats. The small boats are of the smooth, round-bottom class, like the northern smack-boat, but with less sheer.

The sponging trips last about six weeks, and are made at all seasons except the "harricane month," October, when the vessels are generally hauled up for repairs.

When on the sponge ground the vessel anchors in 3, or heaves to in 5 , fathoms of water, and the crew put off, two in a boat, at sumrise, and remain till sunset, unless a boat-load is secured before that time. One man handles the boat, generally sculling, while the other gathers the sponges, using a water-glass in one hand and a long pole, rigged with a two or three tined hook, with the other. The men become very expert with this hook, and work to a depth of 5 fathoms, but seldom if ever over that depth. Ten pounds, dry weight, is a first-class catch for one boat in a day. The fresh sponges are left on deck uutil the
vessel has a deck-load, when they are taken to the "crawl," a crib built of sticks in the shallow water near the shore, where they are left to rot for six or eight days. The rotten flesh and dirt is then beaten and washed out, the sponge being held.in one hand and struck repeatedly with the "clipper," held in the other haud, and frequently rinsed. They are then thrown upon the beach to dry.

One man can wash 50 pounds, dry weight, of large sponges, or 15 pounds of mixed sponges, in a day. Though sponge beds get fished. out and destroyed by hurricanes, the fishermen consider the supply inexhaustible, for they say the yomg sponge grows so rapidly, reaching a marketable size in about three months after its attachment, and new beds are so plenty that they have little trouble in finding either a new set or a new bed. The sponges broken off by storms collect in soft, muddy spots, and are known as "rolling sponges."
The fishermen recognize six kinds of sponges, though both they themselves and the dealers hare many names for the different varieties of each. In point of abundauce they run: (1) Reef (including glove), Spongia tubifera. (2) Grass, Apongicu cerebraformis. (3) Boat (including velvet), Apongite barbera. (4) Wool, spongia gossypina. (5) Yellow, Spongia corlosia. (6) Key West (no specimen obtained).

The wool ranks first in ralne followed by reef, boat, grass, yellow, and Key West. Six hundred pounds, dry weight, is considered a good fare for a single cruise. The sponges are all brought to Nassau and sold through the market. No fised value can be given, but a first-class wool sponge of 8 inches diameter brings 15 to 20 cents, and the small glove sponges 1 to 2 cents each. The vessel bears one-third of the expense of the outfit aud takes one-third of profits. The balance goes two shares to captain, and one share to each member of the crew.

While in Nassan we made large collections of the shore fauna, including fine specimens of the red and of the cellow fan corals, Gorgonia flabellum, which grow in great numbers on the reefs.

To Mr. Nye's indefatigable zeal and amphibions habits are due the credit for the bulk of these collections, as mell as for the fish not brought into the market for food.

Trips inland added several species to our collection of birds, and one trip to the caves on Captain Lightlom's plantation, on his invitation and under his kindly guidance, resulted in the capture of a number of bats, Phyllonyeteris seychorni, which proved rery wide-a wake and Hew swiftly about when disturbed by the lights. The bats, Vesperugo serotinus, taken from the vaulted chambers under Fort Cbarlotte, on the contrary, seemed quite iorpid, aml would do nothing but chatter, even after having several of their number shot from the bunches hanging to the ceiling.
Among our collections at Nassau were two unlaid but perfectly dereloped eggs of the Bahama cuckoo, takell from specimens of that bird shot there.

March 24 we started for Key West, stopping on oúr way to land Messrs. Nye and Townsend on Abaco Islaud. At Key West we collected several species of birds, among them several specimens of the vireo, Vireo noveboracensis maynardi, recently described by Maynard.

This bird seems to be very abundant here, but extremely shy and hard to see among the dense foliage.
On March 30 the greater part of Key West's business section burned down, creating quite an excitement. The next day Mr. Washburn left us to return North. April 3 we sailed for Havana, and on the 7th, on our way back to Key West, five hauls with the tangle at Stations 2633 to 2637 , in 100 to 200 fathoms, brought up about one hundred and twenty-five specimens of the sea-lily, Pentacrinus decorus and Pentacrinus miilleri, with a few sea-urchins and brittle-stars.

We left Key West on April 4, and on the sth began a line of dredg. ings, off Carysfort light, at Station 2639 ( 56 fathoms). We took six hauls with a ship's dredge and four with the befm-trawl, the depth ranging from 56 to 217 fathoms. The bottom proved barren, and we took only a few small crustaceans, fish, and liydroids, the latter attached to the dead scallop shells, which were abnodant.

April 11 we picked up Messrs. Nye and Townsend, with their extensive collections.

We had hoped that they would get a few damingoes on Abaco, but, though they saw about sixty birds, they were too shy to approach, and a fire, which broke out in the woods, soon drove them all from their feeding-grounds.

The flamingoes live on a large tract of land, about 6,000 acres in extent, on the west side of the island. The surface is little above tidelevel, and is composed of soft ooze, washed in from the coral reefs. Scattered through this tract are lakes, of all sizes, from 6 inches to 3 feet deep, and islands, of higher ground, covered with trees. The flamingoes keep to the larger lakes, or "swashes," as the inhabitants call them, and are very shy. In the breeding-season they are much less shy, and are frequently killed while feeding in the smaller swashes by negroes, who consider them excellent eating. Parrots are said to have been common on the island, but of late years few are seen on the southern end of the island. One flock was reported as coming daily to feed on an old field, near the light-house at Hole-in-the-Wall, but no specimens were procured.

From Abaco we ran past New Providence into the Tongue of Ocean, and on the morning of April 12 landed on Green Cay. The island is small and heavily wooded, rising to high ground near the center. Near our landing-place was a poud with the remains of old salt-works. In spite of a steady rain we got a number of birds, among them two specimens of Kirtland's warbler.
In the afternoou a haul with tangle at station 2649 ( 36 fathoms) brought up a few small corals, spouges, mollusks, and crustaceaus. A haul at station 2650 (369 fathoms) brought up, nothing.

April 13, a hanl with tangle at station 2601 ( 97 fathoms), and with ship's dredge at station 2652 ( 140 fathoms), brought up a few gorgonian corals, barnacles, and mollusks.

On the 14th two boobies were shot, just after daylight, on Booby Rocks, and later we landed on Green Cay. The white-headed pigeons, Columba leucocephula, were very abundant, but extremely shy, always flying out of thick foliage, and taking great eare to pat the tree between you and themselves. We shot a number of small birds and found a lizard, Liocephalus carinatus, extremely abundant.

In the pores of the limestone, near the salt-pond, were quartered immense soldier-crabs, and under the bushes in the grassy swales in the interior, were hundreds of land-hermits crawling about. On the salt poud we started three Bahama ducks and sa:s several winter yellowlegs.

In the afternoon we took a haul with beam trawl at station 2653 ( 1,000 fathoms), aud found a bottom of coral ooze with no apparent animal life.

On the 15th we anchorel in Smothwest Bay, New Providence, and had to wait till the 21st for the bar at Nassan to become passable.

During this time the country was well hunted over and a number of birds taken.

From the ship fish could be plamly seen moving about on the bottom, and several species were captured on hand-lines.

On the 17 th Mr. Townsend and I walled to Nassau aud shot several birds on our way through the pine woods.
Our second stay at Nassan, April 21 to 30, was pretty much a repetition of our former work, thongh we added a few species to our collection of birds, and nearly doubled our collection of fish.

We left Nassan April 30 and reached Washington on May 10.
On the way north we took twentr-three hanks with the beam trawl and three with the taugle-stations $260 \mathrm{n} t$ to 2669 (263 to 731 fathoms). We added many valnable specimens to our collection of deep-sea fish and invertebrates, several large hanls of coral being of special interest.

At station 2655 one porpoise, Tursinps tursio, was taken, of interest from his nearly uniform dark color. At station $260 \tilde{f}$ eight sharks, Carcharhinus lamia, were taken with hook and lite. Porpoise blood had been draining from the scuppers all day, and when we put over the electric light in the evening the water was literally alive with these sharks.

Throughout the entire cruise the electric light was used for surface collecting whenever there was an opportunity, and, while among the Bahamas, many interesting forms of fish and invertehrates were takeu, as well as at several stations during our rum north.

The Albatross lay in Washington till Jme 30, when we started for Wood's Holl.

July 15 we left Wood's Moll. Mr. Benedict was in charge of the seientific department, assisted by Mr. Sanderson Smith and myself.

We ran to the southward and eastward about 100 miles and took twelve hauls with the large beam trawl at stations 2680 to 2691 (226 to 1,106 fathoms). The bottom there is extremely rich in animal life, and we made very extensive and valuable collections of fish aud invertebrates.

August 1 Mr. Benedict left the Albatross. Since that time I have had charge of the scientific department, and Mr. Sanderson Smith has been with the ship, detailed from the shore laboratory.

August 2 we left Wood's Holl for a cruise to the eastward. On the 3d we sighted a large school of porpoises traveling to the southward. On the 5th a barn swallow flew on board ship. On the 6th sighted six finback and one humpback whale, and on the 7th a large school of killers traveling northwest. On the 11th we took several hauls with the beam trawl, beginning at station 2692 ( 78 fathoms), just to the southward of the Flemish Cap, running up on to the Cap at station 2694 (56 fathoms). Here we found a bottom quite like that of the Grand Bank, while stations 2695 and 2696 ( 105 and 98 fathoms), just to the west of the Cap, showed a hard, barren bottom.

At station 2697 ( 199 fathoms), we landed a bowlder of about 2,000 pounds on deck, with a number of sponges, mollusks, crustaceans, and fish.

After this haul we ran to St. John's for coal, and while there I made a collection of young salmon, Salmo salar, and brook trout, Salmo fontinalis, at Harbor Grace Junction, together with a few birds.

Angust 24 we left St. John's, and while running to the south passed a number of finback whales moving to the northward.

Eight hauls with beam trawl, beginning at station 2698 , near the edge of the bank, aud running to the westward to station 2705 , brought up many interesting specimeus. From the deeper hauls between the two banks we took a great number of sea-pens, Pcuratula arulcata, and a few specimens of Pennatula borealis ; aīso a number of species of fish, among them Macrurus buirdii and Sebastes marinus in great numbers.

August 23, at hydrographic station 1070 (32 fathoms), we took, on hand-lines, one humdred and thirty-six cod, Gadus callarias, in about half an hour's fishing. We used squid for bait, and the cod took it voraciously. An examination of the cods' stomachs revealed a great number of Bauk clams, Cystodaria siliqua, with a few fish, erabs, squid, and other small mollusks.

One dolphin, Delphinus delphis, was here captured from a school. On the 25 th there was a winter yellow-leg about the ship, and a swallow flew on board during the high wind next day. On the 26th, too, we saw a number of porpoises, Delphinus delphis, moving to windward.

Five hauls with the beam trawl, to the southward and eastward of George's Bank, at stations 2706 to 2710,866 to 1,188 fathoms, brought up many interesting specimens.

We reached Wood's Holl August 27.

Leaving Wood's Holl September 14, we made a cruise abont 200 miles to the southward to deep water on the inner edge of the Gulf Stream, and found a very rich bottom at stations 2711-2722, 594 to 1,867 fathoms. We succeeded in bringing in the large soft holothurians Benthodytes gigantea and Euphronides cornuta, in an excellent state for study, by injecting them, through the natural orifice, with alcohol and setting the tanks of full strength alcohol in which they were placed directly upon the ice.

One of the deep-sea fishes from station 2720, 1,509 fathoms, Ophiognathus sp., was of special interest, as it was the first taken by the Albatross.

During this cruise we obserred a pigeon-hawk, a cedar-bird, and a woodpecker about the rigging.

At station 2719 we took a big blue heron-Ardea herodias-which was very fat and seemed quite at home out there.

We had excellent opportunities for surface work, and made large collections, both with the scoop-nets about the electric lights and with the large tow-net. As usual the large tow-net brought the best results just about dark in the evening.

While at Wood's Holl, during the latter part of September, I made sereral trips, in company with Messrs. Edwards and Nye, over to Gay Head and Menemsha Bight, in the steam-launch Cygnet, to secure specimens of the haglets (Puffinus borealis) and jagers (Stercorarius pomarinus and parasiticus), which were following the mackerel and herring. We shot a number of specimens, and were able to make a fine series of skins, besides sending a number of fresh birds to Washington.

On October 21 the Albatross started south. We made thirteen hauls with the beam trawl, stations 2623 to 2635,629 to 1,672 fathoms, just to the southward of our last work.

The fanua was much the same, but we added one new species of fish to our collections.

A large specimen of the squid, sthenoteuthis megaptera, was taken at our last station.

The amount of phosphorescence about most of the deep-sea life is a very striking feature of all the hauls landed after dark.
It is impossible to speak of our deep-sea mork except in this very general way, on account of the vast amount of material collected. For particulars we shall have to wait for the reports of the specialists to whom the material has been turned over for study.

Thanks to the kinduess of Dr. Bean and Mr. Ridgway, in allowing me access to their books, I have been able to copy off the following lists of the fish and of the birds collected by us while among the Bahama Islands.

It has seemed adrisable to mention in these lists those species taken by other collectors which we did not succeed in finding, and this I have dove as far as I have found any record of their work.

Our work for the season closed with the arrival of the Albatross at Washington on October 27.

List of fish talien by sleamer Sllatross among Bahama Islands and at Nassun fish-mariat daring March and April, leoti.


## * Young.

$\dagger$ All fish so marked were taken during the winter of 1886 by students of Johns Hopkins University.

List of fish taken by steamer Albatross among Bahamer Istands, so.-Continned.

| No. | U.S. Mus. No. | Name, \&c. | Common name. | Locality. |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Family Labride-continued. |  |  |
| 25 | 38391 | Sparisoma Havescens Bloch \& Schneider. | Pug\% | Market, Nassau |
| 26 | 38394 | 'Thalassoma bifasciatum Bloch...... | Slippery Dick | Nassau. |
| 27 | 38395 | Syrichthys limeatus Linnicus. . . . . . | Yellow pudding-wife | Nassau. |
| 28 | 38336 | Syrichthys intirmis Bean | Bhuo pudaios-wife | Nassalu. |
| 29 | 38100 | Platyslossus radiatus Linnmeus | Pudding-wife, Slippery Jenoy. | Market, Nassan. |
| 30 | 38401 | Plat-glossus maculipiuna Nitller \& Troschel. | Slippery Jenny ............ | Nassau. |
| 31 | 38397 | Platyglossum bivittatus Bloch .-... | Slippery Jenny | Nassat. |
|  | 38398 | Platyglossus biviltatus .-.-. | Sucker......... | Rum Cay. |
|  | 38399 | Platyglossus bivittatus ( 1,169 fi. near Conception Island). |  | Statiou 2629. |
| ( ${ }^{\text {) }}$ |  | Platyglossus nov. sp ................ |  | Green Turtle Cay. |
| 32 | 38402 | Sachnolremus maximus. Walbaum .. | Houfish | Market, Nassau. |
| 33 | 38403 | Bodianus rufas Linnaens | Spanish hogtish | Market, Nassau. |
|  |  | Fawily Pomacentride. |  |  |
| 34 | 38404 | Pomacentrus lencostictus Miiller \& Troschel. | Blackfish | Nassau. |
| 35 | 38405 | Pomacentrus obscuratus Poer. | Plackfish | Nassau. |
|  | $\times 3 \times 20.4$ | Pomancoutrus sp |  | Nassatu. |
| 36 | 38408 $* 38407$ | Glyphictodon sitsatilis Linneens. <br> Glyphidodon saxatilis | Scotch 1orgy | Nissau. <br> Greon Cay. |
|  |  | Family Gierride'. | - |  |
| 37 | 38410 | Gerres aprion Cur. of Val.......... | Shad. | Watling's. |
| 38 | 38109 | Gerres lefrovi dionme | Narrow shad | Market, Nassan. |
| ( $\dagger$ |  | Gerres zebratuv. di Yil |  | Creon Turtle Cay. |
|  |  | Family Aecnthuridep. |  |  |
| 39 | 38412 | Teuthis hopatus Limm | Tauc | Market, Nassan. |
| 40 | $38 \pm 11$ | Teuthis tractus Poey | Tang | Market, Nassau. |
|  |  | Family Chcelodontidre. |  |  |
| ( $\dagger$ ) |  | Chaetodort striatus Linneeus |  | Green Turtle Cay |
| 41 | 38413 | Holacanthas ciliars Linneus | Yollow angel-fish | Market, Nassau. |
| 4*- | 38414 | Pomacantlus anteus Bloch | 13ack angel-tish. | Marlict. Nassau. |
|  |  | Family Carangida. |  |  |
| 43 | 38119 | Trachurops crumenopthalmus Bloch | Gogmle-eye | Maxket, Nassau. |
| 44 | 38421 | Caraux latus Agassiz | Horse-eyo jack | Market, Nassau. |
| 45 | 38418 | Catanx chrysus Mitehill | Rumnius-jack | Market, Nassan. |
| 46 | 38122 | Caranx lattholomei Cuv. \& Va | Tellow-jack | Market, Nassan. |
| 47 | 38120 | Caranx ruber Bloch | Skip-jack | Market, Nassau. |
| 48 | 38423 | Seriola rivoliana Cur゙. \& Val | Jack -- | Watling's. |
| 49 | 38425 | Trachynotus glaucus bloch. | Old-wife | Market, Nassau. |
| 50 | 38124 | 'Trachynotus rhomboides Bloch | Permit | Market, Nassiu. |
|  |  | Family Latilida. |  |  |
| 51 | $\begin{aligned} & 38427 \\ & 38426 . \end{aligned}$ | Malacanthus plumicri Cuv. \& Val Malacanthus plumieri ............... | Sand-tish <br> Sand-tish | Nassau. Rum Cay. |
|  |  | Family Ifullide. |  |  |
| 52 | 38128 | Mulloides martinicus Cuy. of Val | Groat-fish | Market, Nassau. |
| 53 | 38129 | Upeneus maculatus Bloch | Goat-fish | Market, Nassau. |
|  |  | Family lierycide. |  |  |
| 54 | 38431 | Holocentrum ascensione Osbeca. | Squirrel-fish | MIarket, Nassau. |
|  | 38430 | Holocentrum ascensione | Red suapper | Ium Cay. |
| 55 | 38132 | Holocentrum riparium Poey |  | Alaco. |
|  |  | Family sparide. |  |  |
| 56 | 38433 | Kyphosus sectatrix Linnmens | Chub | Market, Nassan. |
| 57 | 38452 | Calamus milneri Goode \& Bean | Shed porgy | Market, Nassall. |
| 58 | 38154 | Calamus calamus Cuv. \& Val . . | Sancer-ey yorgy | Marker., Nassau. |
| 59 | 38455 | Cahamus leneostens? Jordan é fill bert. | Lithor-head or shementad porgl. | Matktt. Nassatı. |

List of fish taken by steamer Albatives among Bahama lslands, fo.- Continued.


* Young.
$\dagger$ All fish so marked were taken during the winter of 1886 by students of Johns Hopkins University.

List of fish taken by steamer Albatross among Bahama Istands, \&c.-Continued.

| No. | U. S. <br> Mus. <br> No. | Name, \&c. | Common name. | Locality. |
| :---: | :---: | :---: | :---: | :---: | :---: |

* Young.
$\dagger$ All fish so marked were taken during the winter of 1886 by students of Johns Hopkins University.

A list of birds taken by stamer Albatross on the Bahama Islands during Maroh and April, 1886.
$[+=$ Species included on authority of Dr. Bryant.
$\mathrm{O}=$ Species included on authority of W. B. Moore.
$\mathbf{B}=$ Species included on authority of J.K. Brace.
$x=$ Species included on authority of Charles B. Cory.]


A list of lirds taken by steamer Albatross on the Bahama Islands, fo.-Continued.


A list of birds takin by steamer Albatross on the Bahama Islands, $f$ c.-Continued.


A list of birds taken by steamer Albatross on the Bahama Islands, $\delta c$.-Continued.


[^91]In the following tables the abbreviations for the characters of the bottom and the instrument used are from the following code:

| Abbre. viation. | Meaning. | Abbre. viation. | Meaning. | Abbreviation. | Meaning. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| C. | Clay. | fne... | fine. | stt . | stiff. |
|  | Coral. | 18e...... | large. | bk ....... | black. |
| St . ..... | Stones. | rky ..... | rocky. | bu...... | blue. |
| G.. | Gravel. | rtn ..... | rotten. | dk...... | dark. |
|  | Sand. | tk..... | sticky. | gy ...... | gray. |
| For...... | Foraminifera. | ir ...... | brown. | rd ....... | red. |
| Pter | Pteropods. | choc.... | chocolate color. | whl ..... | white. |
| M | Mud. | gn $\mathrm{lt} . . . . . .$. | green. | dd. ${ }_{\text {d. }}$ T.... | dead. ${ }_{\text {Larce beam-trawl. }}$ |
| Oz......... | Ooze. | slat...... | mlate color. | S. B. T.. | Smatl beam-trawl. |
| K | Rock. | yl........ | yellow. | B1. Dr .. | Blake dredge (deep- |
| Sh | Shells. | crs | coarse. |  | sea dredge). |
| Glob..... | Globigerina. Specks. | hrd | hard. | Sh. Dr .. | Ship's dredge (mud- |
| brk ........ | broken. |  | soft. | Tgls.... | Tangles. |

For the record of hydrographic soundings preceding those herewith reported, reference should be made as follows: Nos. 46-557, pages 111112, Fish Commission Report for 1884; Nos. 591-868, pages 74-77, Fish Commission Report for 1885.
Record of hydrographic soundings of the U．S．Fish Commission steamer Albatross for the ycar 1886.

|  | 苐 号 |  |
| :---: | :---: | :---: |
|  |  | － $\square$ <br>  $\vdots$ <br>  ！ |
|  | ＇өorf．ans |  |
|  | ＊！ |  |
|  |  | $\text { A } 1 \text { O }$ |
|  |  |  <br>  |


| ． | B io － － |
| :---: | :---: |
| $\begin{aligned} & \text { Tig } \\ & \text { A } \end{aligned}$ | 号 |







－nnoH
$\stackrel{\text { ® }}{\stackrel{\text { ® }}{\circ}}$
－xaquanu pẹ！as










(1)
 -








[^92]Record of hydrographic soundings，$\& \cdot c$ ．－Continued．

|  | 范 |  |
| :---: | :---: | :---: |
|  | －xu0qtoci |  ぶ |
|  | ＂əวหูı＂ |  <br>  |
|  | $\begin{aligned} & \text { 品 } \\ & \text { 荅 } \\ & \text { 2 } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ |  |
|  | 妾 | $\qquad$ |
| $\begin{aligned} & \text { घं } \\ & \text { 俞 } \\ & \text { Hi } \\ & \text { Hin } \end{aligned}$ | E |  <br>  <br>  |
|  | － |  <br> －ำ <br>  |
|  | 㐌 |  <br>  <br>  <br>  |
|  | $\stackrel{\text { ¢ }}{\text { ® }}$ |  |
| ： izq | ［［ ${ }^{\text {IIJos }}$ |  <br>  |

East by south，$\frac{1}{2}$ knot．
Do．
North，$\frac{1}{2}$ knot．
Northwest， 1 knot．





Northeast by east， 2 knots． East－northeast， 1 knot．



















Record of hydrographic soundings, \&c.-Continued.

Record of dredgings and travlings of the L. S. Fish Commission steamer Albatross for the year 1886.




|  |  |  <br>  <br>  |
| :---: | :---: | :---: |
| $\stackrel{ \pm}{E}$ |  | $\qquad$ |
|  |  |  |
|  | oncod |  |
| ت | 䔍 | 为 |
| $8$ |  |  |
|  | 少 |  <br>  |
|  | － $10 \% 709$ |  <br>  |
|  | －${ }^{\text {aref．uns }}$ |  |
|  | ${ }^{*} \mathrm{I}$［ F |  |
|  | $\begin{aligned} & = \\ & 30 \\ & 3 \\ & 0 \end{aligned}$ |  <br>  <br>  |
|  | 爫 |  <br>  <br>  |


ค
 $\stackrel{\text { ご }}{\text { 玉．}}$



#### Abstract

  


Hernextroch为乐




#### Abstract

    ベヴージ  －












以







Whe Tounus improved Zhermomefer casernith the Sigstice ctamp, used witt tho Negrettí \& Zhamfrus special
deepsea Thermometer:

Tro Counter-balance Whoels, of C'ast iron. U.S.F.C. Str. Albatross, Oct. 2 : 1885.

' ZOLVOLGNT OLLVNATNX
s.đylve







## INDEX.

## [NoTE.-The references are to page-figures in brackets.]

Page.
Abaco $65,66,65,69,71$
Acanthuridse ..... 66
Accipiter fuscus ..... \% 0
Accumalator, necessity of an improved pattern ..... 33
Acklin Island ..... 69, 71
Actitis macularia. ..... 70
Egialitis meloda ..... 70
semipalmata. ..... 70
vocifera ..... 70
wilsonii ..... 70
Agelaius phœniceus bryanti ..... 71
Ajaja ajaja ..... 69
Albatross. . $1,19,55,62,73,79$
courtesies extended to ..... 11
list of fish taken by ..... 65
personnel of ..... 39
report on thermometers ..... 35
summary of movements of ..... 40
synopsis of steam-log of ..... 41
visitors to ..... 12,24
Albula vulpes ..... 68
Alcedinidse ..... 71
Alloposus mollis ..... 31
Ammodramus sandvicensis savanna. ..... 71
Anas boschas. ..... 69
carolinensis ..... 69
discors ..... 69
Andros Island. ..... 13, 69, 71
Anisotremus virrinicus ..... 6
Annunciator, success of ..... 43
Anous stolidus ..... 69
Antrostomus carolinensis ..... 71
Apogon ..... 67
Ardea candidissima ..... 70
cœrulea ..... 70
egretta ..... 70
herodias ..... 61,69
prelei ..... 70
rufa. ..... 70)
tricolor ruficollis ..... \%)
virescens ..... 70
Arenaria interpres ..... 70
Argonauta, occurrence of ..... 15
Astrom, J. W ..... 39
Atherina area ..... 67
stipes ..... 56, 67
Atlanta, U.S. S ..... 48
Austidx ..... 69
Boats, sounding from33
Bodianus rufus ..... 66
Boilers, donkey ..... 38,46
description of new. ..... 11
repairs to ..... $32,38,44$
Bone-fish ..... 65
Boobies, permission to collect ..... 11
Booby Rocks ..... $62,69,71$
Boston, U.S.S ..... 43
Botaurus exilis ..... 69
Brace, J. K ..... 69
Brachiopod shells, taking of ..... 15
Brisinga ..... :31
Brooklyn, U.S.S ..... 11
Bryant, Dr ..... 69
Bubonide ..... 71
Buteo borealis ..... 70
Calamus bajanado ..... 67
calamus ..... 66
leucosteus ..... 66
milneri ..... 06
Calidris arenaria ..... 70
Callichelidon cyanoviridis ..... 72
Caprimulgidas ..... 71
Caranx bartholomieri ..... 66
chrysus. ..... 66latusruberCarcharhinus lamiaGi
62
Carysfort Reef, dredge halus near.$9,53,65,69,71$
collections made at ..... 5 5
soundings near ..... 9
Cathartes aura ..... 80
Centurus blakei ..... 71
nyeanus ..... 71
Certhiola bahamensis. ..... 72
Ceryle alcyon ..... 71
Chæefodonstriatus ..... 66
Chsetodontidit ..... $6{ }^{6}$
Chapman steam-trap. ..... 38,52
Charadriida ..... 70
Charadrius dominicus ..... 70
squatorola. ..... 70
Chen hyperborea ..... 69
Chilomyeterus geometricus. ..... 65
Chordeiles virginianus minor ..... 71
Chub. ..... 66Cireus hudsonius.
Citharichthys macrops ..... 6371Clinus gobio
Clupea.Coal-bunkers, rearrangement of.consumed6.532Coceyzus maynardi52Cockburn Town.Cod, lait for.719
Correbridat ..... 7221
Colinus virginianus floridanus ..... 70
Collins, J. W ..... $\because 1$
Columba leucocephala ..... (i2, 70
Columbia Iron Workss. ..... 32, 44
Columbigallina passerina ..... 70
Columbus Point
Colymbus dominicus ..... 69
Compass, error in ..... 21
Page.Compsothlypis americana
72
Conception Island ..... 9,57,69,71
birds taken at ..... 9
trawling near ..... 9,57
Coney. ..... 67
Contopus bahamensis ..... 71
Coral, enormous quantitics of ..... 16
Cory, Charles I ..... 69
Coryplianoides ..... 28
Counter-balances ..... 33, 41
Cow-fish ..... 65
Cowles Electric Smelting and Aluminum Company ..... 34
Crabs, taking of. ..... 15
Cremmolrates. ..... 65
(rotophaskikani. ..... 71
Cuculidse ..... 71
Curved-fin oreas, oceurrence of. ..... 28
Cyelothonelusca ..... 18,30
Cyclura. ..... 57
Cygnet, steam-launch. ..... 64
Cyprinodon rivitendi ..... 68
Cystodaria siliqua. ..... 63
Daiila bahamensis. ..... 69
Davidson Stean Pump Company ..... 41
Deep-sea apparatus, loss of. ..... 4
fish, abundance of ..... 16
Delphinus flelphis. ..... 63
Dendrocygna arborea ..... 69
Dendroica astiva ..... 72
blackburnite ..... 72
earulescens. ..... 72
coronata ..... 72
discolor. ..... 72
dominica ..... 72
kirtlandí ..... 72
maculosa ..... 72
palmarum. ..... 72
pensylvanica. ..... 72
petechia gundlachi. ..... 72
striata. ..... 72
tigrina. ..... 72
vigorsii ..... 72
Densithes of ser-water, record of ..... 51
Distilling apparatus, working of ..... 49
Dix, revenue-cutter John A ..... 12
Dixon's IIIl, light-house at ..... 4
Dogfish, taking of ..... 15
Dolichonyx oryzivorus ..... 71
Donkey boiler ..... 38, 46
Doricha evelyaz. ..... 71
lyrura. ..... 71
Doves, permission to collect ..... 11
Dredge rope, breakilge of ..... 30
cause of the loss of. ..... 3.
Dredging-engine, repairs to ..... 46
Dredgings, record of ..... 73, 81
Drum, proposed investigation of ..... 2
Dryobates villosus maynardi ..... 71

1) urgan-fish. ..... 65
Dussumicriastoliferi ..... 68
Echeneis natucrates ..... 67
Echidna eatenata. ..... 68
Edison incandescent lamps ..... 49
Edsvards, Vinal N


Page.Inagua7,69,71
Inornis martinica. ..... $\%$
Jack ..... 66
Jolt-head porgy ..... 64
Jouett, James E ..... 11

- Katzenstinc metallic packing ..... 41
Key West, Fla., arrival at ..... 11, 12
fire at ..... 11,61
Kidder, J. II3.5
Kyphosus sectatrix ..... (i)
Labrosomus nuchipinnis ..... (6)Lachnokemus maximus.
66
Lagodon rhomboides ..... 64
Lamps, life-time of ..... 51
Lane snapper ..... 6.
Larus atricilla ..... 69
Latilid: $x^{\prime}$ ..... 66
Lee, Thomas $2,5,10,12,19,30,39$, ,5
Lily, II. M. S24
Liocephalus carinatus. ..... 62
Little Guana Cay ..... 15
Little-head ..... 60
Long Island ..... 8, 69, 71
Lutjanus analis ..... 67
buccanclla ..... 67
caxis. ..... 67
griseus ..... 64
mahogoni ..... 67
synagris ..... 67
Mackerel, investigation of ..... 1
MeLain, U.S. Consul T.J ..... 10
Macrorhamphus griseus ..... 70
Macrurus asper ..... 28, 29
bairdii ..... 24, 30, 63
Main stay-sail, adoption of ..... 35
Malacanthus plumieri ..... 66
Mallard, II. M. ..... 24
Man-of-war anchorage, location of ..... 5birds, permission to collectMansfield, C. D11
Margarops fuscatus39
Margate ..... 6772
Marguerite, schooner, log of ..... 26
Matthews, Captain
Mechanical appliances ..... 32Medical Department, report onMedusa
3452
Menemsha Bight ..... 61
Menhaden as bait ..... 21
proposed investigation of ..... 1
Miller, G. $\Lambda$ ..... 39
Miller, N. BMimocichla plumbea.
rubripes
Milne Bank, investigation to be made near ..... 20
Mimus bahamensis.
polyglottus ..... T:
Minnow
Mniotilta variaMonacanthusMoore, W. B397272

pullus. ..... pullus.
Moringua
MorrayMother Carey's chickens, occurrence ofMud-gut
Page.
Mugil trichodon ..... 67
Mullet. ..... 67
Mulloides martinicus ..... 66
Munidas, taking of ..... 15
Miurenidæ ..... 68
Mutton-fish ..... 67
Myiarchus leucaysiensis. ..... 67
Myxodes lugubris ..... 65
varius. ..... 65
Nairn, Maxwell, courtesies extended by. ..... 4
Nairn, R. C ..... 55
Nantucket. ..... 20
Nassau $8,11,14,53,57,60,65,66,67$
arrival at. ..... 10
collections made at ..... 60
fishing-vessels of. ..... 58
fish-market at ..... 58
list of fish taken at ..... 65
sponge fishery of ..... 58
Naturalist, report of. ..... 55
Navigation report, scope of ..... 40
Navy Department ..... 20
coal supplied by ..... 2
soundings for ..... 2
Negretti-Zambrathermometer, deseription
of. ..... 55, 36
loss of ..... 10
Net, loss of ..... 25
Newport, IR. I., arrival at ..... 28
New Providence 53, 58, 61, 65, 69, 71permission to collect birdsof.10
Nigger-fish ..... 67
Noddies, permission to collect ..... 11
Norfolk, Va., arrival at ..... 17
Nycticorax nycticorax navius. ..... 70
violaceus ..... 70
Nye, jr., Willard ..... $.2,5,10,11,13,14,55,61$
Ocyurus chrysurus ..... 67
Old-wife ..... 66
Onus rufus ..... 18,31
Ophidiidre ..... 63
Ophidium ..... 65
Ophiognathus ..... 64
Ostracion quadricornis ..... 65
trigonum ..... 65
Pandion haliaëtus carolinensis ..... 71
Pauther, steamer, assistance rendered to ..... 18
Parrot-fish, occurrence of. ..... 5,65
Partridges, permission to collect ..... 11
Passer domesticus ..... 71
Passerina ciris ..... 71
cyanea ..... 71
Pelecanus fuscus ..... 69
Pennatulaaculeata ..... 63
borealis ..... 63
Pennatulas, taking of. ..... 15
Pentacrinus decorus. ..... 61
mülleri ..... 61
taking of. ..... 12
Percide ..... 67
Permit ..... 66
Phaëthontida ..... 69
Phaëton flavirostris ..... 69
Phalacrocorax dilophus floridanus ..... 69
mexicanus ..... 69 ..... 69

| Pumenterus ruber Page. |  | Page. |  |
| :---: | :---: | :---: | :---: |
|  |  | Sable Island Bank | 21 |
| Phyllonycteris seyckorni........................ | 60 | whales in vicinity of..... | 28 |
| Phyrrulagra noctis.................................. | 72 | Sailor's choice. | 67 |
| violacea | 72 | St. Domingo Cay | 69, 71 |
| Picidre | 71 | St. George's Bay.. | 9 |
| Pigeons, permission to collect. | 11 | location of | 5 |
| Pimlies, permission to collect. | 11 | St. John's, Newfoundland.......... .. ...... 44, | 53, 63 |
| Pincers.. | 68 | arrival at.. | 21 |
| Pitangus bahamensis | 71 | St. Pierre, sounding near. | 24 |
| caudifasciatus. | 71 | Salmo fontinalis. | 63 |
| Plataleidre. | 69 | salar | 63 |
| Platyglossus bivittatus | 66 | Sand-fish. | 66 |
| maculipinna | 66 | San Salvador, arrival at. | 4 |
| radiatus. | 65 | Santa Maria. | 6 |
| Pleuronectidx... | 65 | Saucer-eye porgy.. | 66 |
| Podicipidse.. | 69 | Saurothera bahamensis. | 71 |
| Polioptila cuerulea. | 72 | Scarus cœruleus. | 65 |
| cesioga | 72 | Schneider, L. H. | 49 |
| Pomacanthus aurcus... | $6^{6}$ | Schoolmaster... | 67 |
| Pomacentrus leucostictus | 66 | Schroeder, Lieut. Seato | 1,39 |
| 'obscuratu | 66 | Sciurus aurocapillus.. | 72 |
| Pork-fish | 67 | noveboracensis. | 72 |
| Porpoise, taking of | 16 | Scolopacidx.. | 70 |
| Port Nelson, location of | 5 | Scorpæna grandicornis | 65 |
| Porzana carolina | 70 | plumieri | 65 |
| Powhatan, U.S.S | 11 | Scotch porgy... | 66 |
| Priacanthus arenatus | 67 | Scott, B. O.. | 5,39 |
| cruentatus | 67 | Sea-lily, occurrence of. | 61 |
| Pristipomatidæ. | 67 | Sea-urchins, taking of. | 15 |
| Pritchard, S. L. | 39 | Sea-water, densities of. | 54 |
| Procellariidke.. | 69 | Sebastes marinus. | 63 |
| Psittacus leucocephala | 71 | Seriola rivoliana. | 66 |
| Pudding-wife.. | 66 | Serranidæ.. | 67 |
| Puffinus auduboni | 69 | Setophaga ruticilla. | 72 |
| borealis. | 64 | Shad. | 66 |
| Pug. | 5,66 | Shark, oil in stomach of.......................... | 16 |
| Puppy shark | 68 | Shed porgy... | 66 |
| Querimana gyrans.................................. | 67 | Sheep-head porgy.................................. | 66 |
| Rallus longirostris crepitans | 70 | Sheepshead, proposed investigation of... | 2 |
| Recurvirostridæ.. | 70 | Ship Channcl..................................... | 69,71 |
| Red snapper. | 66 | Shrimp, taking of. | 15 |
| Reel, description of................... ............. | 31 | Shuster, E. H.......................................... | 39 |
| Reeling-engine, repairs to | 46 | Sidera funebris. | 68 |
| Ridgway, Robert..................................... | 64 | moringa........................... ........... | 68 |
| Riding Rock Point, location of.................. | 4 | Sigsbee clamp, description of................... | 36 |
| Rockfish................................................ | 65 | sounding machine...................... | 33 |
| Rock hind. | 67 | Siphostoma. ........................................... | 65 |
| snapper ......................................... | 67 | Skip-jack....................................... ....... | 66 |
| Rum Cay......................... 9, 57, 65, 66, 67, 68, |  | Slippery Dick........................................ | G6 |
| arrivalat. | 5 | Jenny ...................................... | 66 |
| cattle raising at. | 8 | Smith, Sanderson................................... | 62 |
| cocoanut grove of.. | 8 | Sounding apparatus, loss of..................... | 5 |
| educational facilities of | 7 | engine, repairs to.................... | 46 |
| exports of... | 6 | Southwest Bay....................................... . | 14 |
| historical sketch of | 6 | Sow grunt............................................. | 67 |
| industries of | 6 | Spanish hogfish..................................... | 66 |
| land-owners of | 8 | mackerel, proposed investigation |  |
| medical assistance rendered at... | 5 | of.......................................... | 2 |
| mode of fishing at... | 58 | Sparide.,............................................. .. | 66 |
| pinc-apple cultureat. | 8 | Sparifoma catesbyi................................. | 65 |
| product of. | 8 | distinctus | 65 |
| salt industry of. | 6 | flavescens................................ | 66 |
| sickness at.. | 5 | Specific gravities, record of ...................... | 54 |
| soundings near......................... | 9 | Specimen cup, loss of,.............................. | 18 |
| Rum Cay, woods of... | 6 | Speotyto cunicularia floridana................... | 71 |
| Running-jack. | 66 | Sphyræna picuda.................................... | 67 |


|  | Page, |
| :---: | :---: |
| Spliyrænidx.. | 67 |
| Sphyrapicus varius.................................. | .. 71 |
| Spindalis zena. | 72 |
| townsendi | 72 |
| Sponge, manner of collecting ................... 14,59 |  |
| sloops, deseription of. | 59 |
| Spongria barbara. | 60 |
| cerebraformis. | 60 |
| corlosia | 60 |
| gossypina | 60 |
| tubifera | 60 |
| Sporadinus bracei | 71 |
| ricordi. | 71 |
| Spotted hind. | 67 |
| Squirrel-tish. | 66 |
| Stailey, F. I. | 39 |
| Starfish, taking of | 15 |
| Steam-cutter, use of. | 48 |
| Steam Engineering Department................ | . 41 |
| Steam-log, synopsis of. | 41 |
| Steam-pumps, working of. | 47 |
| Steam-windlass, satisfactory working of... | ... 47 |
| Steering-engine, working of. | 47 |
| Stercorarius parasiticus. | 64 |
| pomarinus | 61 |
| Sterna anathetus | 69 |
| antillarum | 69 |
| douralli | 69 |
| fuliginosa | 69 |
| hirundo. | 69 |
| maxima | 69 |
| philadelphia | 69 |
| sandvicensis acuflavida | 69 |
| Sthenoteuthis megaptera | 32, 64 |
| Strix pratincola | 71 |
| Stromberger, F. M. | 39 |
| Submarine light, use of...................... 15, 17, | ,17,30,31 |
| Sucker. | 66 |
| Sucking-fish.............................................. | 67 |
| Sula cyanops............................................ | 69 |
| sula. | 69 |
| Surface net, use of ............................. $29,30,31,32$ |  |
| temperature, thermometers for..... | 38 |
| Svedberg governors, success of | 41 |
| Swatara, U.S.s | 11 |
| Sylvidae. | 72 |
| Symphemia semipalmata. | 70 |
| Syngnathide.. | 65 |
| Synodus. | 68 |
| Tabor, Mr.. | 30 |
| Tachycinita bicolor | 72 |
| Tang. | 66 |
| 'Tanner, 7. L. L.... ................................... 1, 19, | , 19, 39, 72 |
| Tanner sounding machine. | 33 |
| thermometer case, description of.... | Of... 36 |
| Temperature, record of.........................18, 35, 54 |  |
| thermometer for taking...... | ... 38 |
| Tetraonida... | 70 |
| Tetrodon | (6) |
| spengleri | 65 |
| testudineus...... ... | ... 65 |

Page.
Sphyrænidx............................................................. 67
Sphyrapicus varius............................................... 71
Spindalis zena
townsendi
72
Sponge, manner of collecting ..................... 14,59
sloops, deseription of ..................... 59
Spongia barbara....................................................... 60
cerebraformis.
60
corlosia
60
grossypina ..................................... 60
60
Sporadinus bracei........................................... 71
ricordi......................................... 71
Spotted hind
.
(quirel
Starfish, taking of 15
Steam-cutter, use of............................................. 48
Steam Engineering Department.
Steam-log, synopsis of.
Steam-pumps, working of.
Steam-windlass, satisfactory working of...
Steering-engine, working of.
parnarinus
nxthetus
ntillarum
Hzati
hirundo.
maxima
philadelphia
69
thenoteuthis megraptera


omarine light, use of
Sucking-fish.................................................... 67
Sula cyanops........................................................ 69 sula

29, 30, 31, 32
temperature, thermometers for..... 38
Svedberg governors, success of .................... It
Swatara, U.S. 九...............................................
11
Sylvide 72
Symphemia semipalnata

Synodus
Tabor, Mr.
6.5

6 s
30
2
Tang
1,19,39,72
Tanner sounding machine............................ 33
thermometer case, description of.... 36
thermometer for taking....... 38
Tetraonida?
70
...............................
testudineus.

O
Page,
Teuthis hepatus. ..... 66
tractus. ..... 66
'Thalassoma bifasciatum ..... 66
Thermometers, deep-sea ..... 35
Thompson's Cay ..... 14
Toadfish ..... 65
Tongue of Ocean ..... 54, 61
Totanus flavipes ..... 70
melanoleucus ..... 70
Townsend, Charles II ..... $.2,10,11,13,55,61$
Trachurops erumenopthalmus ..... 66
Trachynotus glaucus ..... 66
rhomboides ..... 66
Trawl, use of ..... 31
Trawlings, record of ..... $.70,80,81$
Tringa fuscicollis ..... 70
maculata ..... 70
minutilla ..... 70
Trochilidae ..... 71
Troglodytidx ..... 72
Turbot ..... 65
Turdus mustelinas ..... 72
Tursiops tursio ..... 62
Tyrannus dominicensis ..... 71
magnirostris ..... 71
United States, importation of salt by ..... 7
Upeneus maculatus ..... 66
Ventilation, report on ..... 51
Vesperugo serotinus. ..... 60
Vireo altiloquus barbatulus ..... 72
crassirostris ..... 72
flavescens. ..... 72
flavifrons ..... 72
noveboracensis maynardi ..... 61
Walker, J. G ..... 3
Wraner, If. S. ..... ,11,39
Washburn, F. I ..... 10,35
Washington, D. C., arrival at ..... 17; 32
Watling Island $.8,9,55,65,66,67,69,71$
arrival at ..... 4
collection made at ..... 57
inluabitants of. ..... 56
natural features of ..... 56
Watson, W. I, ..... 39
Whales, occurrence of, ..... 28
White grunt ..... 67
Wind, table of force of ..... 25
Wise motor ..... 51
Wood's Holl, Mass ..... $19,21,28,44,53,62$
Wright, Charles ..... 39
Syrichthys infirmis ..... 66
lineatus ..... 66
Tantic, U.S.S ..... 11
Yellow angel-fish ..... 66
coney ..... 67
grunt ..... 67
jack ..... 66
pudding-wife ..... 66
tail ..... 67
Zaragosa Rock, investigation near ..... 20
Zenaida amabilis ..... 70

# VIII.-REP0RT 0F 0PERATIONS 0F THE U. S. FISH COMDIISSION steamer fish hawk for the year exding december 31, 1886. 

By Mate James A. Smitif, U. S. N., Commanding.

The following is a general report of the operations of this vessel for the year 1886:

On January 1 the ressel was moored to the wharf at the U. S. Fish Commission Station at Wood's Holl, Mass. The crew and some of the hatching equipment of the ressel were utilized in the colfish hatching work then being conducted at that station. This continued until February 14, when the ressel proceeded to New Bedford, Mass., to procure coal and stores, returning to the station at Wood's Holl on February 16. The next few days were spent in building a live-fish car, and otherwise preparing for a trip to the cod fishing-grounds in Ipswich Bay, for the purpose of procuring spawn for propagating purposes. On February 21 left station at Wood's Holl and proceeded down Vineyard Sound, bound for Gloncester, Mass., arriving there at 8 a. m. the next day.

On February 24 got under way from Gloncester Harbor, steamed to Ipswich Bay, and in that vicinity boarded several fishing vessels in search of codfisin sparn, but did not succeed in procuring any, and proceeded to harbor of Portsmonth, N. H. Came to anchor in the roadstead at $4 \mathrm{p} . \mathrm{m}$.

On February 25 got under way at 5 a . m., steamed out towards the Isles of Shoals, boarded several fishing vessels, and succeeded in procuring about $8,000,000$ of codfish eggs. Then proceeded to Portsmouth Harbor and came to anchor off New Castle. Shipped $4,000,000$ cod eggs from Portsmonth, N. H., to Wood's Holl Station. A severe gale of wind from SSE. shifted to NW., in which some slight damage was done to vessel by two schooners fouling while at anchor. Steam-launch of the vessel was also sunk, and at times there was great danger of the ressel dragging on the rocks, which was happily averted. Weather moderating on the 27 th, at 3 p . m . slipped starboard and port chains, steamed up the river, and arrived at Kittery navy-yard, where the vessel was made fast to the wharf and remained until the gale was over.

On March 3, at 3 p. m., steamed down the river and picked up the buoy; unshipped anchors and chains, which were both secured. Swept
for steam-lamel and made a rigid searein for her all next day, but without success.

From March 4 to 23 the ressel mas engaged in making trips to the fishing-grounds whenever the weather would permit. Boarded all fishing ressels for the purpose of procuring colfish spawn, and shipped it to statiou at Wood's Holl, Mass.

On March 24 got mender way from nars-yard at Portsmouth, N. H., and proceeded to Boston, Mass.; arrived and made fast to wharf at nary-yard at $1 \mathrm{p} . \mathrm{m}$. Vessel remained there until April 10 awaiting orders, during which time repairs were made to the upper work that had been damaged by the collision with the schooners during the gale of February 27.

On April 12, at 4 1. m., ummoored ship from wharf and steamed down the harbor, bound to Wood's Holl, Mass., arriving at Fish Commission whart on the 14th.

On April 16, at 10 a. m., cast off from wharf and proceeded down the Tineyard Sound, bound to New York. At 5.30 p . m. put into Newport, R. I., on account of fog. Got under may next day and proceeded to Brooklyn; made fast to wharf at nary-yard, Brooklyn, at 6.45 April 18. The vessel remained there awaiting orders until the 21 st.

On April 22 proceeded down East River to sea, bomnd to Harre de Grace, MId. Arrived at Battery Station at 4 p. m. on April 24, and began to fit up hatehing apparatus for the season's shad work.

Ou April 26, at $\pm$ p. m., left Batters Station, steamed orer to North East River aud auchored at a point midway between Red Bank and Carpenter's Point, adjacent to the fishing-shores and gillers. Sent out spawn-takers daily to the fishing-shores and gillers, which duty was carried ou until May 1, when orders were received to discontiune work at this point and proceed to the Delaware River. At 6 p . m. went to Battery Station and transferred all shad spawn and eggs in process of hatching to superintendent of station.

On May 3 steamed up to Harre de Grace; coaled ship at Hiller's coal wharf. At 1 p . m. cast off from wharf, steamed down the river, landed Assistant Commissioner Ferguson at Battery Station, then proceeded down Chesapeake Bay, bound to the Delaware River; arrived and came to auchor off Gloucester City, N. J., at 12.30 p. m., May 5.

From May 6 to June 19 vessel was stationed in the vicinity of Gloucester City, N.J.; crew were employed in gatheriug shad sparn from the different fishing-grounds on the river. The depositing and transferring of shad fry was continned until the close of the season; a detailed report of which has beeu printed in Fish Commission Bulletin, 1886, page 289.
On June 10, at 3.30 p. m., proceeded to Cooper's Point, Camden, N. J. Arrangements were made to haul the vessel out on Tilton's marine railway, repairs being needed to the sheathing and the shiphs rudder. On June 15 the vessel was hauled ont, repairs were made, and ressel was
launched on the 15th. On June 19 took on board 50 tons of coal from coal wharf at Port Richmoud. Returned to Gloncester City, N. J.
On June 21, at $5.30 \mathrm{a} . \mathrm{m}$. , proceeded down the Delaware River, bound to Washington, D. C.; arrived at and made fast to wharf at navy-yard at $1 \mathrm{p} . \mathrm{m}$., June 24.

From June 25 to July 9 the vessel was at nary-yard, Washington, D. C., awaiting iustructions, in the mean time making some necessary repairs to main boiler and repairiug dredging-machine and scows to be towed to Saint Jerome Station, Maryland.
On July 10, at 5.15 a. m., got under way from navy-yard, Washington, D. C., with dredging-machine and two dump-scows in tow, and proceeded down the Potomac River, bound to Saint Jerome Station, arriving there next day at 6.30 p . m., and delivered them to superintendent of station.

On July 12, at 1.10 p. m., proceeded up the bay, bound to Battery Station, arriving there at $10 \mathrm{a} . \mathrm{m}$. next day; took on board a lot of machinery for transportation to Saint Jerome Station.

On July 14, at 10.40 a. m., left Battery Station with two steamlaunches in tow and proceeded down the bay, bound to Saint Jerome Station, arriving there on the 16 th at $2 \mathrm{p} . \mathrm{m}$. Delivered machinery and launches to superintendent of station; vessel remained at station until August 3. Crew were employed while there in working on dredg-ing-machines and scows and rendering assistance to the superintendent of the station in dredging the chaunel. During the stay of the vessel at this place the command of the ressel was turned over to Mate James A. Smith, U. S. Navy. W. J. Maxwell, U. S. Navy, was detached and ordered to duty on the U. S. Fish Commission steamer Albatross.

On August 3 received orders from Assistant Commissioner T. B. Ferguson to tow dredging-machine, two dumping-scows, and one steamlaunch to Battery Station, Harre de Grace, Md.

On August 4, at 2 p. m., got under way and procceded up the bay with tow and arrived at Battery Station at $6 \mathrm{p} . \mathrm{m}$. next day, and delivered the dredging-machine and scows and steam-lannch to superintendent of́ Battery Station, and ressel remained at station until August 20. Crem were employed in dredging-machine and scows in digging out the channel leading into the station. On that date receired orders to proceed to Saiut Jerome Station aud drive a well for the use of the station.

On August 21, at 10 a. m., got under way with well-driving equipment on board, bound to Saint Jerome Station. Arrived there next day and made fast to the Fish Commission wharf. Crew were empioyed until August 27 in driving well pipes, when orders were receired to discontinue work at this place and proceed to Wood's Holl, Mass.

On August $2 S$ took on board well-driving apparatus and seven men for transportation to Wood's Hohl Station. At noon steamed out of
creek and procceded down Chesapeake Bay and came to anchor in Hampton Roads at 10.30 p. m.

On August 29, at 9 a. m., got under way and proceeded out to sea. Visited Winter-Quarter Shoal, Five-Fathom Bank, aud Sandy Hook Light-Ship and consulted with the keepers in regard to the temperature observations for the United States Fish Commission. Arrived at Newport, R. I., and came to auchor at 10 p . m., having been instructed to stop there and convey the Commissioner to Wood's Holl, Mass. On September 2, Commissioner Spencer F. Baird came on board. At noon steamed out of the harbor, bound to Wood's Holl; arriving at station at 5.45 p . m., where vessel remained awaiting instructions until September 12 .

On September 13 took on board steam windlass left at the station by the schooner Grampus. Received orders to proceed to Proridence, R. I., to have it fitted in vessel by American Ship Windlass Company; also to tow steamer Halcyou to Bristol, R. I., for repairs.

On September 14, at 7 a. m., cast off from wharf at station, steamed out of the harbor with steamer Halcyon in tow. At 3.30 p . m. dropped steamer at Herreshoff's Works at Bristol, R. I.; then continued to Providence, R. I., arriving there at $5.30 \mathrm{p} . \mathrm{m}$. The vessel remained here until September 26, having steam windlass fitted.

On September 27, at, 3.30 p. m., proceeded to Wood's Holl, Mass., having put into Newport over night on account of fog. Vessel remained at Wood's Holl awaiting instructions until October 23, during which time the crew were varionsly employed about the station, discharging coal from schooner, etc.

On October 23 received orders to sail for Battery Station, touching at New York and Saint Jerome Station en ronte. Took on board some articles for transportation to both stations; also took launch Cygnet in tow as far as New York.

On October 24, at $6.30 \mathrm{a} . \mathrm{m}$., cast off and steamed out of harbor with launch Cynget in tow, bound to New York. Arrived there and made fast to wharf at navy-yard, Brooklyn, at 8 a. m. next day. While there, received paymaster's stores from navy-yard.

On October 26, at 7 a . m., steamed down East River and proceeded outside of entrance to New York Bay; made several hauls of the trawl in the vicinity of Sandy Itook Light-Ship for the purpose of ascertaining if any of the English sole could be found which were deposited in that locality some years ago. Did not succeed in finding any. Weather looking threatening, came to anchor in the Horse Shoe, and were detained by bad weather until November 1. Got under way at $7 \mathrm{a} . \mathrm{m}$. that morning and proceeded to sea, bound to Battery Station, touching at Saint Jerome Station en route, arriving there at 9 p . m. on November 2 , where well-driving apparatus was landed.

On November 3, at 9 a. m., got under way with launch 55 in tow and proceeded up Chesapeake Bay, came to anchor off Spesutic Island at
9.30 p . m., and arrived at Battery Station next morning; anchored in the chamel opposite the station, where vessel remained until November 20 . The majority of the crew of the vessel were employed every day on work about the station, such work as the superintendent of the sta tion required.

On November 22 received instructions from the Assistant Commissioner, T. B. Fergusou, to proceed with vessel to Saint Jerome Station; got under way and proceeded down Chesapeake Bay, arriving next day. Took on board several wheelbarrows, three flumes and gates to be transferred to Battery Station.

On November 25, at 4 a. m., got uuder way and proceeded up the bay to Battery Station, arriving there at $8.30 \mathrm{a} . \mathrm{m}$. November 26. Got lighter alongside; put on board all articles received at Saint Jerome Station, which were transferred to superintendent of Battery Station. From then to December 3 the ressel remained at the station. The majority of the crew were emplosed in discharging coal for station, tending dredging-machine and scows, wheeling mod, and assisting carpenter's gang to build exteusion of hatching-house.

On December 3 weather very cold (temperature 18) ; drifting ice began to come down the channel. Not being able to get alongside of wharf at station, and to prevent ressel from being frozen in, at $4 \mathrm{p} . \mathrm{m}$. got under way and steamed down off Spesutie Island and came to anchor. About $10 \mathrm{p} . \mathrm{m}$. found ice making about the vessel. Got under way and steamed down the bay and anchored above Poole Island. Next morning proceeded to Baltimore, Md., and awaited instructions.

On December 24, at 9 a. m., went to Locust Point and took on board two small boilers and other machinery for transportation to Battery Station; then steamed up to Skinner's ship-yard and made fast to wharf.

On December 25 steaner Halcyon hanled alongside, and there were placed on board this vessel her cylinders, crank-shaft, and bed-plates, etc., to be taken to Battery Station as soon as the channel was open. From this time to December 31 ship remained at Skimer's ship-yard a waiting instructions.

Wood's Holl, Mass., September 12, 1887.

## IX.-REPORT 0N THE OPERATIONS OF THE STEAYER HALCYON FOR TILE YEAR ENDING DECENBER 31,1886 .

[Abstract.]

At the beginning of the year this steamer (formerly known as the Lookout) was at Battery Station in winter-quarters, where she remained undergoing repairs until March 28. The services of the crew were utilized for various items of shore duty when not required for painting, cleauing, and overhauling the steamer and its apparatus.

On March 28, with Assistant Commissioner Ferguson and William Hamlen on board, she proceeded to Baltimore, to take on articles for use in shad-hatching, and 12 men for spawn-takers. After returning, the ressel remained at the station until April 15, when she proceeded to Baltimore, and on the 17th to Saint Jerome Station, with the assistant commissioner on board. On April 18 and 19 pound-nets were visited between Smith's Point and the month of Wicomico River. Proceeding up the Rappahannock River as far as Layton, 100 stake siad gill-nets and 58 pound nets were counted. The vessel, needing repairs, proceeded to Baltimore, and was hauled out ou the railway $\Lambda_{\text {pril }} 22$, from which time until the 26th the shaft was undergoing repair.

From April 27 to May 23 the Halcyon was engaged in gathering and hatching shad spawn and in depositing the fry. A detailed report of this work has been published in the Fish Commission Bulletin for 1886, page 295. The total number of eggs procured was $4,561,000$, a number far in excess of any previous year.

From the close of the shad season to May 27 the ressel was used for making freight trips between Battery Station and Havre de Grace. On that date she went to Wilmingtou, Del., with William P. Sauerhoff on board, to iuvestigate the shad fisheries of the Delaware. After some slight repairs had been made to the ressel the assistant commissioner came on board and inspected her, after which she proceeded to Baltimore, arriving on the 2sth. From this point Major Ferguson accompanied the vessel to Battery Station.
In May the equipment was increased by the addition of a light naphthaengine lannch. On June 4 the steawer was loaded with lumber and stores for Saint Jerome. After discharging the cargo she steamed to Washiugton navf-yard, and arrived June 6. Two days later, accompanied by the assistant commissioncr, she procceded to Saint Jerome, and afterwards to Battery Station. On June 10 the vessel proceeded to Havre de Grace, where the assistant commissioner left the ship.

From June 11 to the end of the month the ressel was used for several freight trips.

On June 30 the steamer proceeded to Hawkins Hole, behind Hamptou Roads, and fitted up apparatus for the artificial hatching of crabs. On July 3 several female crabs were secured, the spawn of which was placed in hatching-jars. Ou July 8 deposited crab spawn in Elizabeuh River. On July 10 secured the spawn of five female crabs and placed it in hatching.jars. On July 12 overhauled pound-nets in the vicinity of Back River Light. The catch of mackerel was very small, one net securing 130 mackerel and 25 pompanos, none of which were found to be ripe.
On July 28 the command of the vessel was turned orer to William Hamlen, James A. Smith haring been transferred to the command of the steamer Fish Hawk.

On July 30 the vessel left Baltimore, bound for Wood's Holl, reaching New York City on Angust 4 and Wood's Holl on Angust 9. On the 26th of August search was made in the neighborhood of Cox's Ledge for swordfish, without success. On August 26 proceeded, with the assistant commissioner on board, to Mattapoisett, Mass., to meet Gen. W. F. Sinith. On the return trip to Wood's Holl, withont any known canse, the shaft snapped and the propeller was lost. The ressel was then examined by a submarine diver, and the broken shaft removed. On September 7, with the assistance of a diver, the wheel was recovered from the channel. On September 14 the ressel was towed by the Fish Hawk to Bristol, R. I., and hauled up to Herreshoff Manufacturing Company's wharf. While waiting to be hauled out on the railway the crew was engaged in painting and cleaning. On October 1 the vessel was towed to Providence, R. I., and hauled out on the dry-dock for repairs.

Ou October 4 conveyed the assistant commissioner to Fall River. Later in the month trips were made to Nerport, R. I.; New Bedford, Mass.; Noank, Comn.; and New London, Conu. At the latter place the assistant commissioner rejoined the ressel, and the compasses were tested by Lieutenants Waring and Scott, of the Albatross.

On October 25 the Halcyou, with the assistant commissioner on board, left Wood's Holl for Battery Station, where she arrived October 29 and remained until November 1. After this various trips were made to Baltimore, Saint Jerome, and Amuapolis, at which latter point the assistant commissioner joined the ship.
In the early part of December the vessel got aground from dragging of anchor, and it was impossible to get afloat until the 9 th, when the tugs Pacific and Champlin towed her to Havre de Grace. In endeavoring to get off, the condeusing-pipe was broken. This necessitated going to Baltimore for repairs, where she remained alongside of Skinner \& Son's railway wharf until the close of the year.

Balitimore, Md., Junuary 4, 1887.
Report U. S. F. C. 1886,-Collins. (To face page 701.)


## X.-REPORT UPON THE OPERATIONS OF THE U. S. FISH COMMISSION SCH00NER GRAMPUS FRON JUNE 5, 1886, T0 MARCH $15,188 \%$.

By J. W. Collins.

The Grampus was completed by the contractor, and went into commission on the morning of June 5,1886 , previous to which time the offi cers (first mate, D. E. Collins ; second mate, J. M. Coombs ; machinist, G. W. Williams), three seamen, and the cook had joined her and were assisting in making preparations for sea. At $10.40 \mathrm{a} . \mathrm{m}$. on the 5th of June, we left Noank, Conn., and arrived at Wood's Holl on the afternoon of June 6. On J une 8 we sailed from Wood's Holl for Gloucester, where we arrived at $6.30 \mathrm{p} . \mathrm{m}$. on the following day. Boats and fishing gear which had been made at Gloucester were takeu on board at that place, and some necessary changes were made in the sails. On June 14, left Gloncester for Boston, arriving at the latter place the same afternoon. The chronometer and other instruments and apparatus .were taken ou board at Boston. Returned to Gloucester June 16; on June 22 sailed from Gloucester for Wood's Holl, reaching the latter place at $7 \mathrm{p} . \mathrm{m}$. on the following day. The ressel remained at Wood's Holl until August 12, the time in the interim being spent in making the necessary preparations for a cruise.

On the morning of August 12 we left Wood's Holl on a cruise to the so-called "tilefish grounds," which lie along the northern edge of the Gulf Stream, in depths varying from 75 to 175 fathoms, between the meridians $70^{\circ}$ and $73^{\circ}$ west longitude.

After leaving Wood's Holl we went to Newport for bait, arriving at that place the same erening. A supply of menhaden bait was obtained on the 13th from fishing steamers off Wickford, and the next day a quantity of clam bait was purchased at Newport.

At 5.40 p. m., Angust 14, got under way at Newport and proceeded to sea. On the afternoon of August 15 three trawls were set in 96 fathoms, latitude $39^{\circ} 59^{\prime} \mathrm{N}$., longitude $70^{\circ} 15^{\prime} \mathrm{W}$.

From this time until and including August 21, trials were made every day, with the exception of August 17 (when it was too rough to fish), with hand-lines and trawl-lines in depths varying from 60 to 160 fathoms, at intervals of from 5 to 20 miles apart, until a position was reached, latitude $39^{\circ} 20^{\prime}$, longitude $72^{\circ} 04^{\prime} 15^{\prime \prime}$, where the trawls were set
for the last time during the cruise. The results of these trials for fish were very meager. A few common hake (Phycis chuss) and silver hake or whiting constituted the chief part of the catch.

Ou the morning of the 18th, at $5.300^{\circ}$ clock, I noticed a large number of small horse-mackerel (Orcynus thynnus) alongside, running with the vessel. We immediately put out two bluefish troll-lines and caught 10 of the fish. Such of them as were not severely wounded we put into the well, but some of them soon died. We had one of them cooked and found it very palatable, the flavor resembling somewhat that of the common mackerel. These fish were of uniform size, and, approximately, about 18 to 22 inches in length. Although they seemed to bite readily at troll-hooks when first put out, it was not long before they refused to take them, and all subsequent attempts at capturing others on hooks proved unarailing. These fish exhibited a remarkable peculiarity, and one which I have not preciously noticed in similar species. While the vessel would be lying to, drifting, they would remain aromud her, their presence being detected by an occasioual flash of white, as they turned in the water several fathoms below the surface. But as soon as the vessel was under way and sailing through the water, they would rise near the surface and follow along on both sides, seemingly taking great delight in chasing her, their movements resembling those of the common porpoise or dolphin (Dclphinus delphis); the chief difference being that the tunny exhibited no disposition to "play" under the bow as the dolphin does, but contented itself with keeping near each quarter of the vessel. It may be remarked here (though somewhat anticipating the rest of the report) that this school of fish remained alongside of the vessel for two or three days and nights, following her with unflagging vigilance, and with seemingly increasing numbers. For most of the time when the vessel was sailing, many hundreds of these fish could be seen ou each side and astern, sometimes as far off as 200 fathoms, runuing down the slope of a wave. Several were struck with the harpoon, but our latest efforts to catch them on a trolling.line proved abortive. Mr. Newcomb saved the gills from some of the dead specimens, parasites having beeu observed on them.
The object of this cruise was mainly to ascertain if any tilefish (Lopholatilus chamacleonticeps) could be found on the grounds where this species had existed in such abundauce prior to the great mortality which occurred to the same in the spring of 1882. No tilefish were taken on the grounds visited, and, so far as could be ascertained, by examination of the stomachs of the fishes caught, there was a deciled scarcity of food suitable for the Lopholatilus.

The attempts to catch the tilefish having now continued for six days, and our researches having extended over a stretch of ground nearly 120 miles in leugth, where the Lopholatilus was formerly known to occur in large numbers, it seemed to me undesirable to pursue the investigation to greater length, more particularly as our bait at this time was quite
unfit to use. I think it is now safe to say that the large number of sets made with the trawl-line on this occasion, tog ether with the trials made with hand-lines, clearly demonstrate the fact, that, if the tilefish has not become absolutely extinct in this region, it is certainly so rare that the chances of obtaining it are limited. It is possible that in other regions it may be found, or it may be taken, at some later period, in the locality visited by us, but at the present time it seems very doubtful if it exists along the northern borders of the Gulf Stream to the eastward of $73^{\circ}$ west longitude.

It is a somewhat remarkable fáct, and one seemingly worthy of notice in this place, that, with comparatively few exceptions, the fish caught had no food in their stomachs. Hake are notably voracious, and it is reasonable to infer that if food is abundant in this region there would be as good evidence of it as when, in former years, the tilefish were found gorged with crustacea, etc.

We left the tilefish ground on the eveuing of August 21. It was calm and foggy during the $\mathrm{a} . \mathrm{m}$. of the 23d. At this time we were off to the southward of Block Island, about 15 or 16 miles distant. Here we saw several schools of porpoises running in various directions. In the afternoon the wind increased from a light air to a moderate breeze from the southward. We headed in for Martha's Vineyard. The fog cleared for awhile, and Block Island was seen. A number of hagdons (Puffinus major) were seen on the previous day off Long Island, and others were noticed to-day. At $12.40 \mathrm{p} . \mathrm{m}$. I succeeded in wounding one, which we secured alive, and brought it on board.

We arrived at Wood's Holl on the afternoon of August 24. As soon as the collections which had been obtained on the cruise were landed, together with such portion of the vessel's equipment as was not required for work in the immediate future, preparations were made for a trip to the eastern fishing banks in quest of halibut, which, it was hoped, might be brought into port alive in the vessel's well, thas affording an opportunity for experimentation in the artificial propagation of this important and valuable species.

The large iron steam windlass and the engine and boiler used on the Grampus having been found too heary for her, the accumulation of weight forward making it difficult to keep the vessel in trim, and causing her to pitch and send hearily in a seaway, the Commissioner determined to have them removed and to substitute instead a wooden windlass, such as is ordinarily used on fishing schooners.

The boiler and steam pump were landed at Wood's Holl, and, arrangements having been made with Gloucester parties to make the necessary changes in the windlass, we left Wood's Holl on September 1, and on the following day reached Gloucester.

On the afternoon of the $2 d$ the vessel was hauled out on the railway to have the condensing pipes taken off her bottom, and at high water the next day she was launched again and moored to the railway pier,
where she lay nearly all the time white the new windlass was being made and put on.

The construction of the vessel's deck-frame forward of the foremast, thongh well adapted to the requirements of a steam windlass such as had first been put on her, was not so well suited for the support of a wooden windlass. It was necessary to put in a new deck-beam for the windlass bitts to rest on and fasten to, and also a new pawl-bitt. To do this the deck had to be taken up forward of the foremast, running back of the forecastle iu places to break joints. New decking had also to be put in where the hole for the smoke-stack of the steam boiler had previously been cut.

The change in the windlass rendered necessary a change in the stow. age of the chain cables. These had been stowed under the forecastle floor, forward of the formast, but under the new arrangement they were placed in boxes built on the after side of the forecastle bulkhead. This carried the weight of the chains-some 6,500 pounds-about 10 feet farther aft, nearer the center of the vessel; a desirable change, since she would thus be less liable to pitch and send heavily in a seaway.

September 6 the iron windlass was landed, and the next day it was shipped to Wood's Holl. Some delay was experienced in getting the new windlass completed, owing to the fact that several days' work were expended on the stick of timber first selected before it was found to be unfit for the purpose. The work of the carpenters, calkers, painters, and plumbers was finally completed at noon of September 22.

Previons to this, at 9.40 a. m., September 15, Mr. James Carswell, expert fish-culturist, reported on board, he having been ordered on from Washington by the Commissioner to join the vessel for this cruise to the bauks. Mr. R. L. Newcomb joined the vessel on the 21st to make the cruise in the capacity of naturalist.

It was thought that there was at least a probability of finding halibut with ripe eggs, which might be taken from the fish and impregnated on the ground. In this event it would be necessary to have some device to keep the eggs in, so that they would retain their vitality and go on in their development until the ressel reached Wood's Holl. Mr. Carswell devised and had made tro wooden frames, each capable of holding two of Chester's glass hatchingjars. These frames were so arranged that they would float in the well, thus supporting the nearly immersed jars, their motion being regulated by upright wooden guides nailed to the side of the well, thongh they were not preveuted from oscillating with the movement of the ressel in a seaway. Ten of the Chester jars were sent on from Wood's Holl and taken on board; also pans, dippers, etc., that were required for fish-cultural purposes were purchased.

The season was at hand when heavy weather might be expected on the banks. The foretopmast was therefore sent down and the rigging
set up taut before sailing. September 21 we took on board six tons of ice, and the next day, just before sailing, the water tanks were refilled.

As previously mentioned, the repairs on the vessel were completed at noon of September 22, and at $4.20 \mathrm{p} . \mathrm{m}$. of the same day we sailed on a cruise to the banks under the following orders:

> U. S. Commission of Fisir and Fisheries, Wood's Holl, Mass., September 19, 1886.

SIr: As soon as the repairs and alterations incident upon the completion of the new windlass are completed, you will proceed with the Grampus to some one of the eastern banks for the purpose of determining the possibility of bringing in cod and halibut living, in connection with the artificial propagation of these species. If you cau add some living haddock or pollock or others of the gadoid fish, you will do so. Should you find any of these fish spawning, it may be well to try the experiment of stripping them on the spot, and bringing the eggs in under such conditions as you and Mr. Carswell may decide upon. The locality to be visited, and the period of your stay, are left to your discretion. The vessel will return to Wood's Holl with its cargo.

You will also obtain as good a series of the sea-fowl of the coast as you can secure, procuring as many duplicates as possible. A few specimens of each species should be brought in the flesh, to be forwarded to the National Museum.

Very respectfully,

## SPENCER F. BAIRD, <br> Commissioner.

Capt. J. W. Collins, Commanding Schooner Grampus, Gloucester.

We passed Eastern Point at 5.25 p. m., and at 11 a. m., September 23, we spoke the schooner Carrie E. Payson, of Portland, one of the gill-net herring fishing fleet, off Wood Island, Maine. From her we obtained 8 barrels of fresh herring, which we immediately iced for bait.

As soon as the bait was on board (at $11.50 \mathrm{a} . \mathrm{m}$.) we filled away on port tack, close hauled by the wind, heading SE. $\frac{1}{2}$ S., with a moderate breeze E. The latter part of the day was rainy, with light to moderate wind from E. to SE., varied by calms; weather threatening in appearauce.

We went into Portland Harbor for the night, in company with a large flect of fishing and coasting ressels, and at 8 p . m. auchored off Fort Preble.
At 6 a. m., September 24, we got under way, and ran out of Portland with a light breeze, which varied from W. to WNW. The wind gradually increased during the p. m., and at midnight blew a moderate gale from NNE.

The wind blew stiff during the first part of the 25th, decreasing to moderate breeze at meridian.
S. Mis. $90-$ - 45

At $12.15 \mathrm{p} . \mathrm{m}$. sounded in 49 fathoms, hard bottom; latitude $43 \circ 05^{\prime}$ N., longitude $65^{\circ} 15^{\prime}$ W.; put out 5 hand-lines and caught 17 cod, mostly of small size, and one haddock. These were all put into the well, but 9 of the cod soon died. Their ovaries and spermaries were very small, apparently not at all advanced in development. Nothing was found in the stomachs of the fish except a few pieces of partially digested squid. Squid were seen in the water following up the fishing gear, but none could be caught on a squid-jig that was put out.

We lay to fishing one and three-quarters hours, and got under way at $2 \mathrm{p} . \mathrm{m}$. Just previous to this a school of porpoises came alongside the vessel for a brief time, but did not "play" under the bow when we kept off.
At 2.45 p. m. spoke schooner Garibaldi,* at anchor in 82 fathoms (approximately), trawling for cod. Her captain came on board. He reported having good fishing, and said he caught a halibut that day, which was then on deck among the recently caught codfish.

Mr. Carswell aud I went on board the Garibaldi to ascertain what stage of development the reproductive organs of the halibut were in. It was a male, of about 25 pounds' weight. Its spermaries, though not ripe, were in an advanced condition of development.

In the evening, as we lay becalmed, about 200 squid were caught, the majority of which were put into the well alive. They seemed to live without any difficulty, but in a few days they nearly all made their escape through the holes in the bottom of the well, which are large enough to allow a somewhat bulkier animal to pass through if he chance to hit directly in a hole.

There was a moderate breeze from SSW. on the morning of the 26th, but the wind rapidly augmented in force, blowing a stiff breeze at 3 p . m . and somewhat stronger after that, veering westerly. We ran to the eastward, along the southern border of La Have Bank, making occasional soundings and trials for fish with hand-lines, but without success. Only one of the cod put into the well yesterday remained alive to-day.
At 11 a. m., while we were lying to trying for fish, the schooner Mabel Leightou, of Gloucester, spoke us, and her captain, Charles H. Greenwood, told me that he had a large squid on board which he would give to the Fish Commission. I immediately went on board the Leighton and got the squid. It proved to be the "broad-finned squid" (Sthenoteuthis megaptera Verrill), of which no perfect specimen had heretofore been obtained in the Uuited States. The only perfect specimen previously known was picked up on Cape Sable, Nova Scotia, and it is now in the Provincial Museum at Halifax.

Captain Greenwood said the squid had been caught on the previous evening by John F. McDonald, one of his crew, who was fishing with an ordinary squid-jig. The locality where it was taken was off the southern part of La Have Bank, near the meridian of $64^{\circ} \mathrm{W}$., and in S2 fathoms of water.

[^93]I made the following measurements of the specimen before puting it into alcohol:

|  | Ft. In. |
| :---: | :---: |
| Total length (tip of tail to end of longest tentacles) | 4 |
| Length of longest tentacle, each | 27 |
| Length of body, exclusive of head | $17 \frac{1}{2}$ |
| Length of upper pair of arms, each | 088 |
| Length of pair of arms next the upper oues, each | 011 |
|  | 13 |

At noou we filled away and ran to the eastward. and at $1.45 \mathrm{p} . \mathrm{m}$. spoke the schooner M. A. Baston, of Gloncester, a halibut catcher, at anchor in 220 fathoms. Her position, as given by Captain Thompson, was latitude $42^{\circ} 47^{\prime} \mathrm{N}$., longitude $63^{\circ} 12^{\prime} \mathrm{W}$.

After lowering and furling the maiusail and laying the vessel to under foresail and $j i b$, I went on board the Baston, accompanied by Mr. Carswell.

On her deck were 12 to 15 halibut that had just been canght. The fish were opened and examined to ascertain the condition of the reproductive organs. These were found in various stages of development; some well adranced, but none fully ripe.

Captain Thompson reported halibut failly plentiful, and thonght we might get enough for our purposes if the weather proved favorable. I therefore concluded to lay to by his vessel and wait for an olportunity to fish.
The next day, September 27, was rery unfarorable for our purpose, since we had to set under sail, or make a "flying set," as it is often called. It was raining in the early morning, with a fresh WSW. wind. $\Lambda \mathrm{t} 7 \mathrm{a} . \mathrm{m}$. the wind hauled to WNW.; the rain ceased, and was immediately followed by a thick fog, which continued till 11 a.m. Between meridian and $4 \mathrm{p} . \mathrm{m}$. the wind hanled from NW. to NE., increasing in force, with a rough choppy sea and current setting sonthwesterly with cousiderable strength.

The crew of the Baston went out about noon to hanl their lines, which had beeu previonsly set. Two of her dories, each having two men, were brought so far to leeward by the change of wiod that they could not reach their vessel. Indeed, the men could make little or no headway agaiust the wind, sea, and current. Anticipating a difliculty of this kind, I had run down to leeward of the Baston, and a lookout was kept for any of her boats that might be in that direction. The men in the first dory we picked up were considerably exhausted. They had been unable to find their gear, and had been rowing continuonsly for several hours; they could then searcely hold their position against the sea and wind. After getting the boats on board we beat up to windward of the Baston, hove to, hoisted out her dories at 5.30 p . . im., and her men returned to their vessel.

On the 28th the wind was moderate from ENE. in the morning, veering southeasterly in the evening. We set two codfish trawls, each hav-
ing 1,000 hooks, in from 90 to 110 fathoms, pebbly bottom; position (5013), lat. $42^{\circ} 50^{\prime} \mathrm{N}$. ; long. $63020^{\prime} \mathrm{W}$. This set was made chiefly to procure cod, hake, etc., to use as bait for catching halibut. There was also some probability of catching a ferw of the latter species. The total catch was as follows: 60 cod ; 81 hake ( $P$. chuss) ; 37 cusk (Brosmius americanus); 5 pollock (Pollachius carbonarius); 2 small skates; a few shells, chiefly whelks (Buccinum), and some sea anemones. The following birds were collected during the day: 6 common hagdons (Puffinus major), 1 black or sooty hagdon (P. fuliginosus), 7 jægers, and 1 young herring gull.

It was rainy during the first part of the 29th, and too rough and blowy to fish. In the afternoou the weather improved slightly, but the wind blew fresh all day, with occasional squalls and a choppy sea. Shortly before noon the M. A. Baston's dories went out to haul the trawls which had been set the previous evening. Soon after, we passed close to the Baston's stern, and Captain Thompson hailed, saying he had ordered his men to give us auy small halibut they should get which appeared to be strong enough to live in our well. Being very desirous of ascertaining whether or not halibut that were caught in deep water ( 200 to 350 fathoms) could be kept alive in a ressel's well, I deemed it best to accept this gencrous offer. Accordingly, during the afternoon we got 4 halibut from the Baston's dories, the fish varying in size from 18 to about 50 pounds weight each. They appeared tolerably lively when put into tine well, but they soon died, the last of them being dead on the following morning. The birds collected on the 29th were as follows: 3 hagdons, 1 noddy (Fulmarus glacialis), and 4 jægers.

September 30 was moderate, with fog in the latter part of the day. We set two halibut trawls to the westward of the M. A. Baston, beginning to set about 2 miles from her in 321 fathoms. The strong current carried the gear nearly 2 miles to the westward before it fetched up. The depth at the northwestern end of the trawls, where they brought up, was 266 fathoms. After the gear was set, and while we were waiting for the time to arrive when it should be hauled (between 10 and $11.30 \mathrm{a} . \mathrm{m}$. ), several birds were shot, as follows: 8 hags ( $P$. major ), 4 kittiwake gulls, and 6 jægers.

Much difficulty was experienced in hauling the trawls, owing to the great tenacity of the sticky clay bottom, into which the anchors were buried. The difficulty was increased by one of the trawls of the schooner Gertie May, of Portland, going across one of ours, the result being that our gear parted and we Iost nearly half of one trawl.*

We caught 19 halibut, 14 of which were put into the well alive. Eleven of the live halibut were canght on a portion of trawl that we

[^94]hauled on board the vessel. These fish were lifted over the rail with the greatest care. They were immediately unhooked and put into the well. Every possible effort was made to guard against the fish receiring any injury. The conditions ander which they were captured were certainly as favorable as they well could be, in deep water, to insure their living in the well; aud it was felt that this would be an unusually good test of the feasibility of keeping alive halibut that had been caught in such a depth. The result, however, was contrary to our hopes; for, although we did not complete hauling the lines until 8.25 p . m., six of the fish were dead next morning, and all died in less than 36 hours after they were put into the well. This, though somewhat discouraging, was not entirely unexpected. It is self-evident that a fish taken from a depth of 200 to 300 or more fathoms must undergo a very great change in pressure and temperature in reaching the surface. Such changes are generally fatal to many species of fish, and might be particularly so to a halibut caught on a trawl-line, and which must necessarily be half drowned and so much exhausted that it would not have sufficient vitality left to endure what otherwise it conld successfuily withstand. It will, therefore, in my opinion, be difficult, if not absolutely impracticable, to get halibut from deep water which will have sufficient vitality to live until they can be carried into port alive.
This being the case, the attempt to obtain a supply of gravid halibut will be attended with many difficulties, and it is probable that success will be attained only after considerable experimentation. The fact that the breeding grounds of the halibut are asually, so far as known, in depths ranging from 150 to 400 fathoms, and that the species is now seldom found in any considerable abundance in shallow water, complicates somewhat the solution of the problem.

It is, however, a fact that halibut may yet be caught in a ferw localities on the west coast of Newfoundland, and along the shores of southern Labrador, in very shallow water- 5 to 15 fathoms-during midsummer. There is a strong probability that fish caught there would live for a considerable period in a vessel's well. The conditions of the water in the well would be the same as those in which they were living, and their capture on such shallow grounds would not seriously affect their vitality. It is, of course, not yet certain what effect the change of temperature might have on them before they arrived at Wood's Holl, for undoubtedly there would be a considerable difference in this respect between the littoral waters of Newfoundland aud Labrador and those of southern Massachusetts.

We had hoped that some fish might be found with ripe eggs and milt, so that the eggs could be impregnated and some experiments made with them on board. But, although the majority of the halibut we caught, as well as those seen on board of the M. A. Baston, were apparently well advanced, none of them were ripe. This fact, together with our total lack of success in keeping any halibut alive, made me
determine to fish in shallower water the remainder of the trip, since it was possible halibut might be caught there, and if we got any they would have a much better chance to live.
The halibut we dressed had almost nothing in their stomachs. In eight that were carefully examined we found only a few bones, and pieces of fish that were wholly or partially digested. Among these I recognized the head of a "hand-saw" fish (Alepidosaurus ferox).

The wind blew a gale on the 1st aud $2 d$ of October, backing from SSE. on the morning of the 1st to WNW. and W. on the evening of the same day, blowing a smart gale, with a heavy cross-sea. On the $2 d$ the wind veered from W. to NW. and blew a moderate gale, with a sharp choppy sea and heavy tide rips. This being the first gale of any magnitude to which the Grampus had been exposed, her movements were noted with care aud interest. During the heaviest of the gale she lay to very steadily under a double-reefed foresail. She lay close to the wind, varied little more than one-half point in the direction of her head, and made comparatively little leeway. Later, the forestaysail, with the bomet out, was set with the reefed foresail. Under this sail she lay steady and was very weatherly. In all cases she was remarkably dry on deck, apparently had less pitching and sending motion than the average vessel of her size, but her sideways motion was rather quick, as it generally is in sinall craft, though she lurched far less heavily than the ordinary fishing schooner.

The weather was fine on October 3 , with a moderate breeze, varying from NW. to WSW. Between 7 and $8 \mathrm{a} . \mathrm{m}$. two halibut trawls were set in 80 fathoms, latitude $42^{\circ} 52^{\prime} \mathrm{N}$., longitnde $63^{\circ} 04^{\prime} \mathrm{W}$. No halibut were caught. The total catch was as follows: 18 cusk, 8 hake, 9 cod, 7 spiny-backed dogfish (Squalus), 1 blue shark, and 2 small skates.

This result, with our previous experience, led me to think it nearly useless to remain ionger on La Have Bank. I therefore determined to work to the westward and be governed by circumstances as to whether we tried on Brown's Bank or Seal Island Ground, or both. Scattering halibut are sometimes found on these fishing grounds, and to visit them offered the greatest probability of success in seeking fish in moderate depths.

Fine weather prevailed on October 4, with moderate to fresh breeze, varying from SSW. to W. $\frac{1}{2}$ S. At $11.40 \mathrm{a} . \mathrm{m}$. sounded on Roseway Bank, in 39 fathoms, sand and pinkish colored bryozoa; latitude $43^{\circ}$ $19^{\prime} \mathrm{N}$., lougitude $64^{\circ} 40^{\prime} \mathrm{W}$. Hove to under mainsail and foresail and put out hand-lines. Cod were abundant. In about one and one-half hours we caught 50 or 60 cod and 4 haddock, all of which were immediately put into the well. Those fish which had swallowed the hook in biting generally had their gills wounded in getting the hook out. They died in a short time, and about one-third of the whole number had to be removed from the well. These were dressed and iced for halibut bait. Almost nothing was found in the stomachs of the fish that were dressed, and their generative organs were very little developed.

Shortly after meridian the supply of drinking water was reported uearly exhausted, and I determined to go into Shelburne to fill water. Accordingly, at 1.30 p . m., we got under way, and at 5.30 p . m. anchored in Shelburne, above Sand Point. Upou going on shore I learned that it would be necessary to go to the village of Shelburne, 5 miles further up the harbor, to fill water or to get other necessary supplies.

It was calm and foggy on the morning of the 5 th, but at $9.30 \mathrm{a} . \mathrm{m}$. the fog cleared off and a light northerly breeze sprang up. We immediately got under way to beat up to Shelburne village, but the wind was exceeding light, with occasional periods of calm, so that it was $1.30 \mathrm{p} . \mathrm{m}$. when we anchored near the wharves.
At 10.50 a . m., on October 6, we got under way to go down the harbor to Sand Point. While beating down the harbor we met the schooner Laura Sayward, of Gloucester, whose captain spoke us and reported his ressel in distress, she being short of water, provisions, and light. In compliance with his request, I gave him 2 gallons of kerosene to supply his immediate need of a light, and also gave him a letter of introduc. tion to F. C. Blanchard, esq., a citizen of Shelburne, who is a law partner of Mr. White, the American consul, asking him to use his good offices to assist Captain Rose in obtaining a supply of provisions, enough at least to enable him to reach home.* I have since learned that the officials at Shelburne refused to permit the captain of the Laura Sayward to buy provisions.

At $1.30 \mathrm{a} . \mathrm{m}$., October 7, we got under way and left Shelburne. After getting out of the harbor a course was steered for Cape Sable, and it was my intention to set halibut trawls near the cape if the weather proved favorable, since reports had reached Shelburne that a considerable number of halibut had been taken in that locality a few days previously. But when we had reached the locality where it was proposed to fish, the wind blew fresh, and there was a sharp choppy sea running. It was too rough and windy to set trawls, therefore we ran into Pubnico for a harbor.

On the morning of October 8 we left Pabnico, but the wind was light, and we did not reach any fishing ground until the forenoon was well advanced. At 10.20 a . m. halibut trawls were set in 22 fathoms between Bon Portage and Seal Island, latitude $43^{\circ} 25^{\prime}$ N., longitude $65^{\circ} 51^{\prime}$ W. Nothing was caught except 9 spiny-backed dogfish and 17 skates, also a few sea lemons. Hand-lines were also put out, both before and after the trawls were hauled, but only dogfish were eaught.

At $1.35 \mathrm{p} . \mathrm{m}$. put out boat dredge, the vessel at this time drifting in a calm with the flood tide setting toward the Mud Islands. A small

[^95]quantity of marine life, chiefly shells and crustacea, was obtained from the dredge, but when it was put out again, at 2.10 p . m., the net bag was torn open by the rocky bottom and nothing was taken.

On October 9 two sets were made with halibut trawls on the Seal Island Ground, the localities being as follows: First position, latitude $43^{\circ} 04^{\prime}$ N., longitude $65^{\circ} 54^{\prime} 15^{\prime \prime}$ W.; deptl, 50 fathoms; pebbly bottom. Second position, latitude $43^{\circ} 06^{\prime}$ N., longitude $66^{\circ} 07^{\prime}$ W.; depth, 40 fathoms; bottom, sand and gravel.

Catch: First set, 39 dogfish, 10 skates, 15 cusk, and a few sea lemons. Second set, 21 dogfish, 9 skates, and 5 cusk; also 2 small sponges attached to stones and gravel.

At $4.40 \mathrm{p} . \mathrm{m}$. the dories came alongside from hauling the tramls for the second time and were hoisted on deck. At the same time the boat dredge was put out, with 125 fathoms of towing line payed ont on it. Nothing was got in the dredge.

The absolute failure which we had met with in the various attempts made to catch halibut in moderate depths conviuced me that there was small probability of catching any fish of this species in shallow water, unless we were prepared to continue our cruise several weeks longer, for a new supply of bait would have to be obtained to start with, the small quantity of herring we had left on board being then unfit for use. Our ice was also exhausted. Besides this, little success could be expected so Iong as dogfish remained so abuudant as we had found them on Seal Island Ground, and we certainly could not expect to find them less plentiful on Brown's Bank. For, not only will these pests of the fisherman gather round a trawl when it is being set, to eat the bait off or get canght, but their presence on a fishing ground is usually sufficient cause for other species to leave, at least to such an extent that other fish are seldom plentiful.

Not considering it desirable to refit, I determined to return to Wood's Holl. Therefore, as soon as the dredge was hauled, shortly after 5 p . m., October 9 , we filled away, and after a pleasant passage-most of the time with unfavorable winds-we arrived at Wood's Holl at 9.45 a. m. on the 12th of October.

No noteworthy incident occurred on the passage home, with the single exception of falling in with three fishing schooners while beating down the castern side of Cape Cod, on the afternoon of the 11th. As they were going in the same direction that we were bound, and all of them some distance to the windward of us (from 4 to 10 miles), it was a fair opportunity, at least a better one than had previously been afforded, of making a comparative test of the sailing qualities of the Grampus when beating dead to windward. Two of the vessels, a large two-masted clipper schooner of about 150 tons register, and the other a craft of perhaps 70 tons, we outsailed very much, beating them, at the most moderate estimate, two knots an hour, deard to windward. The third vessel is reputed to be one of the best sailers in the fishing fleet. At 2 p . m., when we were 4 or 5 miles to windward of Cape Cod

Highland Light, she was just fairly in sight to windward, the upper part of her sails showing above water, and with glasses I made her out to be a fishing vessel, beating to the sonthward. We gained on her rapidly, and at $9.30 \mathrm{p} . \mathrm{m}$. we weathered her, when just off the bell buoy north of the Pollock Rip. The distance made to windward by our vessel did not exceed 28 miles, and though the other vessel towed a seine boat, the rate at which we outsailed her proved that the Grampus can at least make a fair rate of speed in windward work.
Since the latter was designed for an improved type of fishing vessel (more particularly, however, to obtain greater safety), it is gratifying to find that she is more than commonly swift, since speed is an important and necessary qualification in a schooner which must be employed in most branches of our fisheries.
The collections and fish obtained on the trip were landed on the 12th and 13th. Reference is made to the following notes, prepared by Mr. R. L. Newcomb, for a statement of ornithological collections:

List of ornithological specimens obtained by the U. S. Fish Commission schooner Grampus, from September 26 to October 9, 1886, inclusive.
[By Raymond L. Newcomb.]

| Date. | Where obtained. | Remarks. |
| :---: | :---: | :---: |
|  | S. pomatorhinus. |  |
| Sept. 28 | La Have Ridges | Fourteen specimens were obtained. One of |
| ${ }^{3} 29$ | La Have. | them was in the dark plumage. <br> Two specimens secured. |
| Oct. 9 | Southeastof NovaScotia, lat. 43.03 N., long. 65.55 W . <br> Stercorarius buffonii. | Twenty-one specimens were obtained. Four of these wero in the dark plumage. |
| 9 | Southeast of Nova Scotia, lat. 43.03 N., long. 65.55 W . <br> Pufinus major. | Two specimens were obtained. |
| Sept. 28$\begin{aligned} & 29 \\ & 30 \end{aligned}$ | La Havo Ridges | Six specimens procured. |
|  | La Have Bank. | Two specimens procured. |
|  | P. fuliginosus. |  |
| 28 | La Have Ridges | One specimen was obtained. |
|  | L. argentatus, var. Smithsonianus. |  |
| 28 | La Have Ridges.. | One immature gray specimen was taken. |
|  | Rissa tridactyla. |  |
| 30 | La Have Bank | One adult and threo immature specimens were |
| Oct. 3 | La Have Ridges. | Ontadult specimen procured. |
|  | Southeast of Nova Scotia, lat. 43.03 N., long. 65.55 W . <br> Sterna macroura. | Three specimens were obtained. |
| Sept. 26 | La Have Bank. | One specimen oltained. |
|  | O. leucorrhoa. |  |
| 28 | La Have Ridges | Seven specimens obtained. |
|  | Sula bassana. |  |
| Oct. 9 | Southeast of Nova Scotia, lat. 43.03 N., long. 65.55 W . | Two immature specimens were oltained. |
|  | Passage from La Have to Roseway Bank... | One immature specimen was oltained. |

Mr. James Carswell, who had been on board during the trip to the banks as an expert fish-culturist, left the vessel October 13, after her arrival at Wood's Holl.

On October 14 we got under way and made a short run to Gay Head to observe the movements of the fishing vessels, which were then engaged in hook-and-line mackerel fishing about the western end of Vineyard Sound. Mr. Thomas Lee, naturalist of the steamer Albatross, accompanied us, and he and Mr. Newcomb interested themselves in collecting and making observations on the sea birds that were seen near Gay Head. We returned to Wood's Holl in the latter part of the afternoon.

Having made preparations for a new cruise, we left Wood's Holl on October 17, for Gloucester, where we arrived on the following day. A supply of hand-line gear for catching pollock was obtained.

It was necessary for me to remain on shore to attend to business matters connected with the vessel and to do other necessary work for the Commission. Therefore, on October 20, I ordered the first mate, Mr. D. E. Collins, to take command of the ressel, and when the weather permitted to proceed to the fishing grounds in Massachusetts Bay and to the eastward of Cape Amn and procure as many live cod, pollock, etc., as practicable.

On October 24 the anchor of the vessel fouled a telegraph cable on Jeffrey's Ledge, when a kedge anchor, a 30 -pound Chester anchor, and 5 fathoms of manila-hawser were lost. The Grampus not being provided with a suitable auchor and hawser for riding on the fishing grounds, I hired an anchor and 100 fathoms of 7 -inch manila-cable from Daniel Allen and Son, of Gloucester, which served for the remainder of the trip.
The weather was very rough and fish difficult to obtain on the inshore grounds during the latter part of October and the beginning of November. A good deal of difficulty was experienced also in endeavoring to keep the fish alive in the well. Cod caught in moderate depths appeared to live fairly well, but a very large percentage of the pollock died.

On November 13, having determined to take the fish that had been caught to Wood's Holl, I resumed command of the vessel. On .November 15 we sailed from Gloucester and reached Wood's Holl on the following day. The total of live fish landed was as follows: 195 cod, 25 pollock, 17 haddock, 7 hake, 6 squirrel hake, and 2 cusk. After our arrival at Wood's Holl, Mr. Newcomb, whose term of service had expired, left the vessel.

At 7 a. m., November 20, we sailed from Wood's Holl, and at $2.10 \mathrm{a} . \mathrm{m}$. on the following day arrived at Gloucester, when I immediately transferred the command of the vessel to the first mate, who remained in charge until December S. During this period (from November 21 to December 8) he exerted himself, as opportunity offered, to procure all live fish which it was possible to obtain. Through all this time the
weather was exceedingly stormy and unfavorable, and cod were unusually scarce on the inshore grounds.

On Dẹcember 8 I resumed command of the vessel, and on that afternoon we sailed for Wood's Holl, where we arrived at 3.50 p . m. on the following day, and began to transfer the live fish from the well to the cars. On this occasion 297 fish were landed, of which 287 were cod.
On December 11, at the request of Lieut. J. H. Weber, of the U. S. Signal Service, we made an attempt to sweep the submarine cable between Martha's Vineyard and Naushon Island, which had been broken a short time previously by the anchor of a coasting vessel. Lileutenant Weber and his assistant were on board, but the attempt to grapple the cable was a failure. The apparatus we had on board being too frail for the purpose was broken by being caught on the rocky bottom. After the failure of our attempt to get the cable, Lieutenant Weber and his assistant were, at their request, lauded on Naushon Island.

Mr. Atkins informed me that cod had been found in abundance about No Man's Land, as also on the grounds westward of Vineyard Sound; and suggested that it would be desirable to make an attempt to fish in that locality. Accordingly, a supply of bait was obtained, and a pilot familiar with those grounds was engaged to go with us. He belonged at Vineyard Haven, and after landing Lieutenant Weber and his companion we went over to the Haven, so that the pilot might get such clothing as he needed for the trip.

On the following morning we started for the fishing.grounds above mentioned, with a gentle but increasing wind from ENE. to NE. By the time, however, that we had reached the Vineyard light-ship the wind was blowing fresh, and the weather was threatening. We therefore steered for Newport, where we arrived at $3.40 \mathrm{p} . \mathrm{m}$.

At 6.40 a . m., December 14, we got under way at Newport for the fish-ing-grounds, the wind at that time being NW. by W., and the weather generally clear. Outside of the harbor there was a heavy ground-swell, and the wind rapidly increased in force. Before we reached the grounds the wind was too heavy to carry on fishing operations; we therefore steered for Wood's Holl, where we arrived at $2.30 \mathrm{p} . \mathrm{m}$.

On December 15 we left Wood's Holl, and at 2.10 p . m. tried for cod on Brown's Reef, to the westward of Vineyard Sound light-ship. No fish of any kind were taken. The weather was then very threatening, with indications of the near approach of a snow-storm. For this reason we went back to Vineyard Sound, and, at midnight, anchored off Falmouth.

A heavy storm prevailed on December 16, but the weather cleared on the following day. We left Falmouth at $6.25 \mathrm{a} . \mathrm{m}$. , December 17, and at $9.20 \mathrm{p} . \mathrm{m}$. on the same day arrived at Gloucester.

After transferring the command of the vessel to the first mate, I went on shore. The Grampus continued to fish off Cape Ann and in Ipswich Bay whenever it was possible to get out of the harbor. The weather
was exceedingly boisterous and cold, with frequent storms, so that there was rery little time when fishing could be prosecuted. I would say, as illustrative of the extreme inclemency of the weather in which it was necessary to fish, that on January 19 the Grampus visited the fishing-gronnd and the crew hauled her gear when the temperature ranged from $2 \circ$ to $7^{\circ}$ below zero Fahrenheit. The vapor was unusually dense, aud seamen Collins and Campbell were considerably frost-bitten. Besides this adverse condition of the weather, cod were unusually scarce for this season of the year, and few were taken under the most favorable circumstances.

On January 23 I resumed command, and we left Gloncester for Wood's Holl. At $6.55 \mathrm{a} . \mathrm{m}$. on the same day we auchored off Cape Cod, north of Chatham, the wind being to the sonthrard and weather foggy. The wind blew a gale from SSW. to NW. on the 24th, and on the following day we reached Wood's Holl at 3.38 p . m., and immediately commenced to transfer the live fish from the ressel's well to the tanks beneath the hatching house. On that evening and the following day 219 fish were landed.

On January 27 we took on board 2,000,000 soung cod and sailed from Wood's Holl for Gloucester, getting under way at 10.10 a . m. On the morning of the 28th the young fish were put overboard in 29 fathoms of water, Race Point bearing east $3 \frac{1}{2}$ miles distant, temperature of air and water each $333_{2}^{\circ}$ Fahrenheit. Shortly after noon we arrived in Gloucester, and I then transferred the command of the vessel to First Mate Collins, after which I went on shore to engage in other duties which demanded my attention. At this time the ressel had become very foul, and on January 31 she was hauled out on the marine railway to be cleaned, after which, on the following day, she was launched.

It had now been decided by the Commissioner to try the experiment of taking eggs from the cod on the fishing-grounds, by sending one or more men on board of the fishing-vessels to collect them. Accordingly, Mr. G. II. Tolbert, expert spawn-taker, who had been ordered to join the Grampus, reported on board the vessel on February 3. From that date until the close of the seasou's work eggs were obtained on every occasion when it was possible to get them, and were shipped to Wood's Holl either by express or in charge of Mr. Tolbert. I went on the vessel only on one occasion after Mr. Tolbert joined her, which was on February 18 , when about one million eggs were obtained from the fishing. schooners off Eastern Point, Gloucester.

On February 25, in compliance with orders received from the Commissioner, I left Gloucester for Washington for a stay of several months, the Crampus being left in command of the first mate.
The work of collecting cod eggs was continued whenever opportunity offered until March 14, at which date $5,000,000$ eggs were taken. It may be explained that the statistics of fish landed at Wood's Holl do not by any means represent the number taken. In many cases, as for
example in that of the pollock, not 5 per cent. of the catch lived until the vessel reached Wood's Holl, and the mortality to the other species was always large.

The Commissioner having decided to send the Grampus on a cruise to the southern mackerel grounds, orders were issued for the work of collecting fish eggs to be brought to a close and for the necessary preparations to be made to fit the vessel for the intended cruise.

In concluding this report upon the operations of the Grampus it is only just to say that the officers and men under my command have exerted themselves to the utmost to carry on successfully the work in which they were engaged. Hardships and dangers, which might intimidate and discourage men unaccustomed to the vicissitudes and perils of a fisherman's life, were cheerfully borne, and no opportunity was lost to obtain fish and fish eggs. Mr. D. E. Collins, while in command, not only exhibited much energy in currying out his instructions, but he also exercised care and prudence in the mangement of the ressel, which met with no damage whatever during the winter, though she was constantly going in an out of crowded harbors, often at night and not unfrequently in thick weather.

Record of dredginge and trawlings of the U. S. Fish Commission schooner Grampus on the trip to the tilefish ground.


[^96]|  | Character of bottom. | Direction of wind. | Instrument used. | Fish canght. |
| :---: | :---: | :---: | :---: | :---: |
| 5001 |  | NNE | 3 trawls, 3,000 hooks | 16 silver hate (Merlucius), 2 |
| 5002 | White sand with black specks. | SSE | 2 trawls, 2,100 hooks. | 11 silver, 3 common hako (Phycis chuss), 3 slime eels, crus. tacea, etc. |
| 5003 | Muddy . . . . . . . . . . . . | NE |  | 2 silver, 1 common hake, 1 spearfish (Tetrapturus albidus. Poey). |
| 5004 | ......do ... | $\begin{aligned} & \text { NE } \\ & \text { ENE } \end{aligned}$ | 1 trawl, 1,050 hooks* Trawl | 6 silver hake. 115 common, 11 silrer hake. |
| 5006 | Muddy . . |  |  | 115 common, 11 silver hako. 5 sommon, 33 silver hake. |
| 5007 | ......do |  |  | 18 common, 4 silver hake, 3 squid. |
| 5008 5009 | $\begin{gathered} \text {....do } \\ \text { - . . do } \end{gathered}$ |  | . 10 | 3 common, 2 silver hake. 18 common, 17 silver hake. |
| 5009 5010 | -...do |  |  | 18 common, 17 silver hake. <br> 5 common, 3 silver hake, 1 |
| $\begin{aligned} & 5011 \\ & 5012 \end{aligned}$ | Saudy and muddy |  | $\begin{array}{\|c} \text { Dredqe } \\ \hdashline \ldots . . . d_{0} \end{array}$ | slime eel. <br> Mud, gray sand, shells, shrimp Shells. |

[^97]Washington, D. C., May 25, 1887.

## INDEX.

## [Nоте.-The references are to page-figures in brackets.]


[19]
Page. Page.
Sooty hagdon collected ..... 8
Spiny-backed dogfish taken ..... 10,11Squalus.10
Squid, measurements of ..... 7
occurrence of ..... 6taken6
Squirrel hake landed alive ..... 14
Steam windlass removed from Grampus. ..... 3
Stercorarius buffonii. ..... 13
pomatorhinus ..... 13
Sterna macroura ..... 13
Sthenoteuthis megaptera ..... 6
Sula bassana13
Telegraph cable fouls anchor. ..... 14
Thompson, Captain ..... 7
7
7
Tilefish. ..... 2
assistance to
assistance to
absence of. ..... 2, 3

grounds, cruise to

grounds, cruise to .....  ..... 1 .....  ..... 1
Tolbert, George II
Tolbert, George II ..... 16 ..... 16
Trawlings, record of ..... 17
Weber, Lieut. J. H ..... 15
Whelks taken ..... 8
Whiting ..... 2
Windlass changed. ..... 3,4
assistance from ..... 837

## XI.--REP0RT OF OPERATIONS AT COLD SPRING HARBOR, NEW YORK, DURING THE SEASON OF 1886.

By Fred Matiner.

On the work done in hatching and distributing different fishes for the U.S. Fish Commission at this station, which is leased by the New York Fish Commission, I bave the honor to report as follows:

## CODFISII (GADUS MORRIIUA).

Early in January, 1886, we had $2,000,000$ eggs in the honse, which were doing well, and we could see the embryos in the eggs, but on January 11 a cold northeast wind blew through our old hatchery and froze our salt water solid, and they all perished.

## WHITEFISH (COREGONUS CLUPEIFORMIS).

On January 7, 1886, we received from Mr. Frank N. Clark, of the Northville, Mich., station, one case containing 1,000,000 whitetish eggs in excellent order, the temperature of the eggs in the packages being $44^{\circ}$ Fahr. They were placed in seven McDonald hatching.jars and did very well, the loss being 57,700 , or a little less than 6 per cent., and 942,300 were distributed to the different waters on Long Island, but thins far I am unable to report any captures of these fish in waters on the island previously stocked. They are deep, cold lakes containing plenty of small crustaceans and other food, but, no net-lishing being allowed in them, it is possible that the fish may be there, but have not been seen.

## LAKE TROUT (SALVELINUS NAMA'YCUSH).

Ou December 19, 1885, we received from F. N. Clark, Northrille, Mich., one case containing $150,000 \mathrm{eggs}$ in good condition. Of these we lost 12,000 eggs and fry before distributing, and tried the experiment of keeping 50,000 until they should be a year old or so, in our rearing ponds. They were put in the upper ponds in the coolest water, and before September the last one had died. My experience with this fish is that they are the most delicate of all the Salmonidee which I have had any experience with, and that they require colder water than any others
S. Mis. $90-46$
of the family that I know. Our fish took food very well until some time in June, when the temperature in their ponds reached $60^{\circ} \mathrm{Fahr}$, and then they began to die. A table of distribution will be found at the close of the report.

## ATLANTIC OR PENOBSCOT SALIION (SALMO SALAR).

This was the third season of operations with this fish at this station, and the fourth in which plantings in the Hudson River were made. The first plant in the Hudson was from Roslyn, Long Island, in 1882, when I obtained the use of the stream and hatchery building of Mr. Thomas Clapham of that place, to carry on the work ; and the captures of saimon in the Hudson River during the summer of 1886 , which will be detailed further on, have given us great encouragement.

On January 7, 1886, we received from Mr. Charles G. Atkins, in charge of the salmon station at Bucksport, Me, three cases containing 240,000 eggs, which were in excellent condition; and on the following day we received four cases, containing 260,000 eggs, which were also in good coudition. The fry were placed in tribntaries of the Hudson, Saint Lawrence, and Lake Ontario, the details of which are in the tables of distribution appended to this report.

In May, 1855, we made plantings of salmon in Paulinskill aud the Pequest River, New Jersey, tributaries of the Delaware River, and the fry have been seen there, as is shown by the following letters from one of the fish commissioners of New Jersey :
"Newton, N. J., November 13, 1886.
"Fred Mather, Esq.:
"DEAR SIR: Yours of the Sth ultimo is at hand, making inquiries about the salmon fry placed in the Pequest, Paulinskill, aud Musconetcong rivers, they being tributaries of the Delaware. These salmon were placed in the streams about 20 miles from where they empty into the Delaware, and were found in the Panliuskill in September, 1885, in the small spring-runs near the main stream. In May of the preseut year I learned that some had been taken by a party while fish. ing for trout at a point about 5 miles below where they were placed the year before. The party that caught them at first thought they were rainbow tront, but on examination I learned they were young salmon, from ti2 to $i$ inches long. They were taken with a common angle-worm bait, and seemed to be quite numerous at this point. I have seen them, during the early part of last September, in the same stream, aud have no doubt that they have done equally well in the two other streams. There were, perhaps, about forty taken at this point, and neally all of them were returned to the stream. I am satisfied, from this experience, that the planting of the fry in the headwaters of the tributaries, in uatural trout water, is the best way to stock the

Delaware, and if the effort to do so succeeds, it must be done in this manner. Allow me to congratulate you on the success, so far, of this experiment.
"I am yours, etc.,

"F. M. WARD,<br>"New Jersey Commissioner of Fisheries, in charge of Northern Newo Jersey."

Mr. Ward wrote again on the subject of salmon, as follows:
"Newton, N. J., April 29, 1887.
"Fred Mather, Esq.:
"My Dear Sir: I wrote you, some months since, that in May and June of last year there were taken from the Paulinskill, in the headwaters of which you caused to be placed some of the salmon fry two years ago, what I supposed to be young salmon, from 5 to 6 inches long. For a few weeks past they have been taken in small numbers, at the same point, from 8 to 9 inches in length, but, on examination, I doubt their being young salmon, the sides having the bright red spots of our brook trout, and all the other marks of the oquassa or Dolly Varden trout, as described in recent reports by the U.S. Commission of Fisheries. Presuming that you might be interested in this unlooked-for development and may be able to account for it, I have been induced to write you in relation to it.
"Yours, etc.,

> "F. M. W ARD, "Commissioner of Fisheries for New Jersey."

To which I made the following reply:
"Cold Spring Harior, N. Y., May 2, 1887.
"F. M. Ward, Esq.:
"My Dear Sir: I have yours in reference to some fish taken in Paulinskill, where we planted the salmon fry two years ago, and which were then from 5 to 6 inches long. You now say that for a few weeks past they have been taken in small numbers from 8 to 9 inches in length, but doubt their being young salmon because of the sides having little red spots like a brook trout. Now, the fact is that young salmon have these red spots during the first year or 'parr' stage, but they can easily be distinguished from the trout on account of the forked tail. The second year they assume the 'smolt' stage, and are then silvery, the red spots having gone never again to appear. But I should think that they would have goue farther down the river by this time; but your letter is a very valuable contribution to their life history, and I am exceedingly obliged to you for it, for I have not the slightest donbt that the red-spotted fish were young salmon which had not yet taken ou the silvery coat. I should much like to have a specimen, if possible.
" Very truly, yours,
"FRED MATHER."

For information concerning the captures of adult salmon in the Hudson we are greatly indebted to Mr. A. N. Cheney, of Glens Falls, N. Y., a gentleman who is well known as an angling authority in this and other countries, and who has taken a great interest in the work of stocking the waters with fish: He writes me, under date of March 23, 1887, as follows:
"Last year twenty-four salmon were taken in the Hudson River at the places named:
Troy Dam .................................................................................... 9
An island, below Troy ................................................................................ . 2
Stockport......................................................................................................
Albany ............................................................................................. 2
Rhinebeck................................................................................................. 2
Poughkcepsie ....................................................................................... 3
Yonkers ................................................................................................ 4
"The New York Herald also reports some taken at Staten Island."
The largest salmon taken in the Hudson, of which we have any account, was caught at the State dam, at Tros, and weighed $14 \frac{1}{2}$ pounds. This fish was seen by Dr. H. P. Schuyler, of Troy, who has also taken a great interest in the stocking of the river, and who has said that he belieres that the waters in the vicinity of the dam contain many salmon that are unable to get farther. In addition to the list of twenty-four salmon given by Mr. Cheney, I am able to add one which I saw in Fulton Market, which weighed about 10 pounds, aud was captured by John Denyse, of Gravesend, in Graresend Bay, some time in the latter part of Mas,1886. Several gentlemen, anong whom are Messrs. Cheney and Schuyler, before referred to, and Dr. Samuel B. Ward, of Albany, president of the Eastern New York Fish and Game Protective Association, have moved to induce the State legislature to make an appropriation for fishways, to be placed in the Troy and other dams, in order that the salmon may reach the breeding grounds. If they accomplish this, and the fish have proper protection, it is among the possibilities that we may yet take eggs from salmon which have been artificially hatched and planted in the Hudson, a feat which we might justly regard as one of the greatest triumphs in fish-culture.

## LANDLOCKED OR SCHOODIC SALAON (SALAO SALAR var. SEBAGO).

On March 18, 1886, there was received from Mr. W. H. Buck, of Grand Lake Stream, one case containing 34,000 eggs in exccedingly good condition, only 76 being dead. After hatching, the fry were planted in Adirondack lakes by request of General R. U. Sherman, of the New York Fish Commission.

## brown or european trout (salmo fario).

Three lots of browntront eggs were received from Germany. On March 1, 1886, one case came from the Deutscher Fischerei-Verein con-
taining 64,000 eggs. These were in rery bad condition, one-fourth had hatched in the package, and the remainder of the eggs were dead. It was evident that they had not been iced on the ship. On March 20 wo received from the Fischerei-Verein a case containing 40,000 eggs which were in better condition, only 4,134 being dead. Ten thousand were sent to Mr. F. N. Clark, of Northville, Mich., and 3,000 to George A. Seagle, of Wytheville, Va. On April 16 we received from Herr Max von dem Borne, of Berneuchen, two cases containing $50,000 \mathrm{eggs}$, which were in very good order, about 500 being dead. Thirteen thousand were repacked and sent to Mr. Clark, at Northville, and 1,000 to James Nevin, superintendent of the Wisconsin Fish Commission at Madison.

## SHAD (CLUPEA SAPIDISSIMA).

On April 26, 1886, we received from Central Station at Washington two cases containing 546,000 eggs, which were all dead on arrival. On April 29 we received from the same place five cases containing $1,250,000$ eggs. These were not in good condition, and the loss in hatching was very great, but we succeeded in getting 100,000 good fry, which were planted in the Hudson, near Troy.

## SMELTS (OSMERUS MORDAX).

We have succeeded in hatching large numbers of smelts, the parent fish being obtained on the south side of Long Island and bronght here in cans. The glutinous nature of the eggs has rendered their hatching very difficult, but we have managed to bring out about 50 per cent. of the eggs taken, and in the spring of 1886 turned out over $2,000,000$ fry in Cold Spring Harbor. There has been no smelt in the harbor for a number of years, but in the spring of 1887 a number were reported to have been takeu in Oyster Bay, which conuects with the harbor ; and at the upper end of Cold Spring Harbor we have seen several male fish in the little streams where our plants have beeu made for the past two years, but no females were observed.

## TOMCOD (MICROGADUS TOMCODUS).

These little fish, although very plentiful here, are more numerous than ever since our efforts in cultivating them. The eggs are free and heavy enough to hatch well in the McDonald jars. They are about oneseventeenth of an inch in diameter. A small Bar glass, 21 inches high, $1 \frac{1}{2}$ inches at the bottom and $2 \frac{1}{2}$ inches at the top, inside measurements, holds 20,000 eggs when filled up to a height of about 2 inches. Two million two hundred and twenty-five thousand of these eggs were taken and placed in hatching jars, and at about the time when the embryos in the eggs could be seen, a blizzard blew through our old building and froze them all.

On May 29, 1886, I bronght from the United States hatching station at Wood's IIoll, Mass., 5,000 young lohsters which had been hatched there and also 50,000 lobster eggs. The eggs were all dead on arrival at the Cold Spring Harbor hatchery, but the young lobsters were in very good condition. They were placed in small aquariums and fed on soft clams (Hya drenaria), and did very well for a few dass mutil they began to molt, when as soon as one little fellow cast his shell his brethren would devour him. I think that Prof. J. A. Ryder, who hatched these lobsters, told me they had molted twice before and that they were then betreen two and three weeks old. After losing perhaps two hundred of them I decided to plant them, and did so on June 5 , six days after receiving them, off Rocky Point in Cold Spring Harbor. When planted the young were :boot five-sixteenths of an inch in length. There have been no lohsters in this larbor for a number of sears, and in September, 18ist, (apt. S. A. Walters and Caut. Thuce each caught young lobsters while working on their ofster-heds, which they informed me measured about an inch and a half in length, but I have been unable to secure specimens.

## GENERAL REMARKS.

As before stated the grounds are leased by the New York Fish Commission, and much work was done for that commission which is not here reported. The colfish work mentioned was done at the expenso of the State. The building used for a hatchery is an old mill nearly ready to tumble down and not worth repairing. A bill has been introduced into the New York legislature to appropriate $\$ 5,000$ for the purpose of building a new hatchery, and at present writing (May, 1887) it has passed the assembly, and there is every reason to hope that it will become a law.*

[^98]In case we have a new building there will be no dauger of such accidents by freezing as that referred to, and wo shall be enabled to have our work all on one floor and to do much better than has been done, both in salt and in fresh water.

The following tables show the distribution of the various kinds of fish handled at this station during the season:

Table I.-Distribution of whitefish from Cold Spring Herbor in 1886.

| Date. | Messenger. | Where planted. | Number. |
| :---: | :---: | :---: | :---: |
| Feb. 16 | C. H. Walters. | Large mill-pond near Riverbead, N .1 | 500, 000 |
| Feb. 23 | O. V. Rogers. | Tonkonkona Lake, Long Istand | 400.000 |
| Mar. 12 | O. V. Rogers | Saint John's Lake, Long Island. | 30,000 |
| Apr. 3 | O. V. Rogers . | Saint John's Lake, Long Iskand | 12, 300 |
|  | Total. |  | 912, 300 |

Table II.—Distribution of lake trout from Cold Spring Marbor in April and May, 1886.

| Date. | At whose request. | Messenger. | Where planted. | Number. |
| :---: | :---: | :---: | :---: | :---: |
| Apr. 3 | J. H. Perkins | O. V. Rogers | Riverhead, L. I. | 15, 000 |
| Apr. ${ }^{9}$ | H. Shoskinsky | Deliverel | Breslau, L. I | 5, 000 |
| Apr. 18 | Prof. S. F. Bair |  | Ponds at hatchery | 27,775 |
| Apr. 20 | R. U. Sherman | F. A. Walters | In Adirondack wat | 50, 000 |
| Apr. 22 | Prof. S. F. Baird | Deliverct | Gloucester, Mass | 5,000 |
| Apr. 27 | A. N. Cheney | O. V. Rogers | Lake Genrme, N. X | 30, 000 |
| May 2 | E. G. Blackford | O. V. Rogers | Momroe, N. Y | 5, 000 |
|  | Total |  |  | 137, 775 |

Table III.-Distribution of Allantic salmon from Cold Spring Harbor in April and May, 1886, on account of the U. S. Fish Commission.

| Date. | Messenger. | Place of deposit. | Fish supplied. | Loss in trausit. | Fish planted. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Apr. 12 | C. H. Walters. | Carr's Prook, Hudson River | 50,000 | 200 | 49, 800 |
| Apr. 12 | F. A. Walters. | Raymond Brook, Hudson River | 50, 000 | 200 | 49,800 |
| Apr. 20 | C. II. Walters | St. Regis and Brandon Lakes, | 50, 000 | 500 | 49,500 |
| Apr. 27 | O. V. Rogers | Clendon Brook, Hudson River..... | 20,000 | 300 | 19, 700 |
| Apr. 29 | C. H. Walters | Osweyo liver, Lake Ontario .- | 50, 000 | 340 | 49,700 |
| May 3 | C. H. Walters | Eldridge Brook, Hudsou Hiver -... | 60,000 | 20 | 59. 800 |
| May 3 | O. V. Rogers. | Oak Orchard Creek, Lake Ontario. | 50, 000 | 500 | 49,500 |
| May 7 |  | Roaring Brooks, Hudson River..... | 60,000 | 200 | 59, 800 |
| May 10 | O. V. Rogers. | Balm of Gilead Brook, Hudson - River. | 59, 073 | 100 | 58,973 |
|  | Total |  | 449, 073 | 2,500 | 446,573 |

Table IV.—Distribution of landlocked salmon from Cold Spring Harbor in Mfy, 1886.

| Date. | At whose request. | Messenger. | Where planted. | Number. |
| :---: | :---: | :---: | :---: | :---: |
| May 13 | R. U. Sberman | F. A. Walters. | St. Regis Lake, Franklin Coun- | 15,400 |
| May 13 | R. U. Sherman | F. A. Walters. | Clear Pond, Franklin County, N. Y. | 16,020 |
|  | Total |  |  | 31, 020 |

Table V.-Distribution of brown trout from Cold spring Haybor in Apriland May, 1886.

| Date. | Messenger. | Place of deposit. | Fish supplied. | Loss in transit. | Fish planted. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Apr. 20 |  | Large reserroir at hatchery ....... | 8,000 |  | 8,000 |
| Apr. 27 | O. V. Rogers .. | Clendon Brook, Mudson River..... | 8,000 | 1,000 | 7,000 |
| May 13 | F. A. Walters. | Lake Brandon, near Adirondack Hatchery. | 8,000 |  | 8,000 |
| May 27 | Delivered | Pond of Mr. Beekman, Oyster Bay. | 500 |  | 500 |
|  | Total |  | 24,500 | 1,000 | 23,500 |

Table VI.-Itistribution of shad, smelts, and Tobsters from Cold Spring Harborin 1886.

| Date. | Kind. | Messenger. | - Where plauted. | Number. |
| :---: | :---: | :---: | :---: | :---: |
| May 10 | Shat. | O. V. Rogers | Hudson River, at Albans. N. Y ....... | 100,000 |
| Apr. 20 | Smelts | F. A Walters | Sarauac Lake, Franklin County, N. Y.. | 50,000 |
| Apr. 25 | Smelts | O. V. Rogers. | Cold Spring Harbor, N. Y............... | 50, 000 |
| Apre June | Smelts | C. H. Walter | Cold Spring Harbor, ${ }^{\text {Cold Spring Harbor, }}$ N ${ }^{\text {r }}$ | 2, 000,000 |

Cold Spring Harbor, N. Y., May 16, 1887.

## XiI.-REPORT OF 0perations Àt THE MiChigan stations 0F THE U. S. FISH COMIIISSION FOR THE YEAR 1886-‘87.

By Frank N. Clark.

During the summer of 1886 the whitefish hatchery at Alpena was closed, as usual. At Northville the small force employed at this season was engaged chiefiy in work that is current the year round-the care of ponds and stock fish, \&c.-devoting such time as could be spared from this work to preparing for the operations of the ensuing season. The hatching boxes, trays, tanks, \&c., were repaired or renewed, and coated with asphaltic varnish. It was necessary also to refill with flannel trays the transportation cases that had been emptied by the egg shipments of the previous winter and spring.

The following table summarizes the receipts and shipments of eggs and fish at both the stations in Michigan:

Summary of eggs and fish handled at the Michigan stations in the year 1886-87.

| Kind of fish. | $\underset{\text { received. }}{\text { Eggs }}$ | Eggs shipped. | Fish shipped. | $\begin{aligned} & \text { Fishl } \\ & \text { retained at } \\ & \text { station. } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
| Brook trout | ${ }^{1} 186,750$ | £2, 000 | 527 | 4,000 |
| Rainbow trout | 2198,850 | 50, 000 | 34, 920 | 25,000 |
| Lake trout | +29,400 | 7,500 | 6,150 |  |
| Saibling .... | 515, 060 | 7,500 |  | 15,000 |
| Whitefish | ${ }^{6} 129,400,000$ | 32,600,000 | 62,070,000 |  |
| Total | 129, 830, 000 | 32, 739, 500 | 62, 081, 597 | 54,000 |

${ }^{1}$ From ponds at Northville Station.
${ }^{2} 196,350$ from ponds at Northville, and 2,500 from Baird station.
${ }^{3}$ Of this number 300 were shipped as fry to J. F. Miller, Richmond, Ind., the remainder being yearlings or two year-olds.
420,000 from Fred Mather, and 9,400 from ponds at Northville.
${ }^{5}$ From Fred Mather.
${ }^{6}$ From Lakes Erie, Huron, and Michigan.

## WHITEFISH.

The funds available for the collection of whitefish eggs being less than in either of the two preceding years, the field-work was confined to fewer points. Operations in Lake Erie were confined to the fisheries of North Bass, Middle Bass, and Put-in-Bay Islands, and the penving of fish in Put-in-Bay; in Lake Huron to the fisheries along the west shore from Alpena to Oscoda, and at Detour and vicinity on the north shore;
and in Lake Michigan to the north shore fisheries at Thompson. The points that had heretofore furnished more or less eggs, but which were not included in last fall's programme, are Monroe, Toussaint, and Catawba Island, Lake Erie; Eammond's Bay, and some nnimportant fisheries of Thunder Bay, Lake Huron; and Eponfette and Naubinway, north shore of Lake Michisau. Penning operations were transferred from Mouroe to Put-in-Bay. The only new territors worked was at Detour and vieinity, on the north shore of Lake Huron.

Whitefish commenced spawning at the Lake Erie islands on November 7. The first eggs were taken on that date from the pound-net fisheries at North Bass, while the last eggs were taken from penned fish on December 2. The pound and gill net fisheries of Lake Erie furnished $39,600,000 \mathrm{eggs}$, and the pemned fish $4,000,000$, all of which were received at Northville in good condition. The weather as a whole was quite unfavorable, a series of heavy blows occurring during the best of the spawning seasou. On December ' 2, Put-in-Bay was entirely frozen over, while outside large fields of ice bore dorn from the westward and damaged or destroyed quite a large amount of twine, vearly one-third of which was still in the lake.

The collection of spawn from the ponnd-net fisheries along the west shore of Lake Huron, below Alpena, occurred between November 4 and 25 , and these shore fisheries fumished $38,000,000$ eggs, which were forwarded to Alpena. At Detour the spawning commenced November 6, and $16,500,000$ eggs were taken here and sent to Alpena. The gill-net tugs fishing out of Alpena fumished ouly $2,000,000$ eggs, the first of which were taken November 2. . The total number of eggs placed in the Alpena house was $56,800,000$.

The spawning season at Thompson, north shore of Lake Michigan, occurs nearly one month later than elsewhere. The run is quite heary, and usually begins from December 1 to 5 and ends December 15 to 20 . The grounds are several miles out, and steam-tugs and gill-nets are employed. From December 5 to 13, Mr. Tulian, with a force of four men, secured $29,000,000$ eggs from the tugs fishing out of Thompson and Manistique. The weather was very severe, the temperature frequently being at or below zero; and it was therefore impossible to effect a high percentage of impregnation, and nearly one-half of these eggs were afterwards drawn from the hatching.jars and throwu away. Mr. Tulian brought the eggs to Northville in one lot of ten large cases, by steamer from Manistique to Escanaba, theuce by rail to Milwankee, thence by steamer to Ludington, thence by rail to Nortlurille, arriving at night on December 16. The eggs were transferred to hatching-jars the following morning, filling one hundred and forty-five jars. The total receipts of whitelish eggs at Northville, direct from the spawning grounds, were $72,600,000$. The total collection of whitefish eggs at both stations was 129,400,000. On January 29, 21,000,000 were transferred from Alpena to Northville, by car No. 2, in charge of George H. H. Moore.

The whitefish eggs were carried forward in hatching.jars, as usual, and no special features attended their development. On November 28 about 30,000 eggs were taken from two whitefish from the pond of three-year-olds raised at the Northville Station, and a fair percentage of impregnation was obtained. The incident is worthy of record ouly from the fact that it is doubtless the first aud ouly instance of the taking of eggs from whitefish hatched and reared wholly by artificial treatment.

Shipments of whitefish eggs from Northville Station, season of 1886-'87.

| Date. | Destination. | Namber. |
| :---: | :---: | :---: |
| 1586. |  |  |
| Dec. 1 | Delivered to car No. 3, Wilmington, Del. | 100, 000 |
|  | Dr. E. G. Shortlidge, Wilmington, Del. | 1,000, 000 |
| Jan. 3 | William Buller, Erie, Pa | 5,000, 000 |
|  | Charles R. Buckland, San Fraucisco, Cal., for New Zealand | 1, 500, 000 |
| 12 | William Buller, Erie, Pa.........................- -.......... | 5, 000, 000 |
| 15 | E. G. Blackford, New York, for London, England | 1,500, 000 |
| 17 | Fred Mather, Cold Spring Harbor, N. Y | 1, 000, 000 |
| 19 | Central Station, Washington, D. C...... | 2,500, 000 |
| 23 | E. G. Blackford, Nerv York, for Germany | 1,000,000 |
| 26 | Dr. R. O. Sweeny, Saint Paul, Minn ..... | 5, 000,000 |
| Fel. 3 | Central Station, Washington, D.C.. | 2, 500,000 |
| 9 | Dr. R. O. Sweeny, Saint Paul, Minn...................... | 5, 000, 000 |
| 19 22 | E. G. Blackford, Now York City, for London, England.................................. ${ }_{\text {Dr }}^{\text {Dr. }}$. | 1, 00000000 |
| 22 | Dr. E. G. Shortlidge, Wilmington, Del .................................................... | 1500, 000 |
|  | Total | 32, 600,000 |

Whitefish eggs began hatching at Northville on March 11, and the last eggs were hatched on April 12. At Alpena the hatching season commenced April 22 and closed May 8. The distribution from Northville was successfully made by car No. 2, in charge of George H. H. Moore; from Alpena, by steam-tugs and the regular lines of steamers. The tables of distribution of whitefish fry during the spring of 1887 are as follows :

FROM NORTHVILLE STATION.

| Date. | Lake. | Place near which deposited. | Number of fry planted. |
| :---: | :---: | :---: | :---: |
| $1887 \text {. }$ | Lake Michigan | Ludington Mich | 3000000 |
| 27 | Lake Huron... | Bay City, Mich | $3,000,000$ |
| 31 | Lake Michigan | Grand Haven, Mich | $3,000,000$ |
| Apr. ${ }_{5}^{2}$ | In..do - | Ludington, Mich | 3, 000, 000 |
| ${ }_{6}^{5}$ | Lake Michigan | Monroe, Mich.... | $3,000,000$ $3,000,000$ |
| 9 | Lake Ontario. | Oswego, N. Y . | $3,000,000$ |
| 12 | Lake Erie | North Bass Island, Ohio | 3, 000,000 |
| 18 |  | Monroe, Mich | $3,000,000$ |
| 20 | Lake Michigan | Saint Joseph, Mrich | $3,000,000$ $3,000,000$ |
|  | Total |  | $33,000,000$ |

FROM ALPENA STATION.

| Date. | Lake. | Place near which deposited. | Number of fry planted. |
| :---: | :---: | :---: | :---: |
|  |  |  |  |
|  |  |  |  |
| May ? | -.... do ..... | Sulphur Island, Mich | 3, 0000000 |
|  | Lako Huron | Alcona. Mich ........ | $3,000,000$ |
| 6 | Thunder Bay, Laku Humon | North Point, Mich | 3, 3 , 000,000 |
| 7 | Lako Huron ............... | Oscoda, Mich .... | 3, 000,000 |
| 8 | ..do |  | 3,000, 000 |
| 11 | . ${ }^{\text {do}}$ | Detour, Mich | 2, 000,000 |
| 16 | Lake Michigan | Thompson, Mich. | 2, 0000000 |
| 17 | Thunder Bay, Lake Huron | North Point, Mich | 1,000, 000 |
| 18 | -..... do..---...- | Whitefish Point, Mich | 1, 000,000 |
| 19 | Lake Huron | Sand Beach, Mich.. | 2, 000,000 |
| 20. | Long Lake.. | Alpena Countr, Mich | 20, 000 |
| 24 | Clear Lake | Oscota Comnty, Mich | 50, 000 |
|  | Total |  | 29,070,000 |

Summary of whitefish fory distributed in the Great Lakes, spring of $188 \%$.
Lake Huron .............................................................................. 30, 000, 000
Lake Michigan ......................................................................... 17, 000,000
Lake Erie ................................................................................. $12,000,000$
Lake Ontario ........................................................................... $3,000,000$
Clear Lake .................................................................................. 50,000
Long Lake ..................................................................................... 20,000
Total................................................................................. $62,070,000$
Summary by States.
Michigan............................................................................... $50,070,000$
Ohio ....................................................................................... 6, 600, 000
Indiaua......................................................................................... 3,000,000
New York ................................................................................. 3, 000,000
BROOK TROUT.
The spawning season of brook trout in tho Northville ponds began October 14 and closed December 31, 18S6. In all, 186,750 eggs were taken, from which 82,000 were shipped aud 4,000 fry hatched and retained at the station.

The record of the number of eggs taken from females of different ages, and the table of shipments of brook-trout eggs, are as follows:

ONE YEAR OLD.

| Date. | Females. | Eggs. | Date. | Fcmales. | Igrgs. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1886. |  |  | 1886. |  |  |
| October 19. | 1 | 200 | November 12.. | 11 | 2, 000 |
| October 21 | 2 | 350 | November 14 | 1 | 200 |
| October 24 | 2 | 500 | November 15 | 6 | 1,600 |
| October 25 | 1 | 200 | November 17 | 10 | 2, 000 |
| Oetober 28. | $\because$ | 800 | November 19 | 25 | 4,200 |
| October 30. | 6 | 2, 100 | November 20 | 14 | 2,800 |
| November 1 | 3 | 1,000 | Norember 22 | 18 | 3,800 |
| November 2 | 1 | 400 | November 23 | 5 | 1,000 |
| November 3 | 3 | 1,000 | November 24 | 19 | 4, 600 |
| November 6 | 12 | 2,400 | November ${ }^{\text {2 }}$ | 15 | 2, 600 |
| Novemiber 7 | 2 | 400 | November 30 | 10 | 1,800 |
| Novembers | 3 | 600 | December 3. | 3 | 400 |
| November 9 | 9 | 2,000 | December 7. | 17 | 6, 000 |
| November 11 |  | 1,600 700 | Total | 213 | 47, 250 |

TWO YEARS OLD.

| Date. | Females. | Eggs. | Date. | Females. | Eggs. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1886. |  |  | 1886. |  |  |
| October 14 | 1 | 600 | November 15. | 9 | 3,200 |
| October 18 | 1 | 400 | November 16 | 7 | 2, 800 |
| October 22 | 1 | 440 | November 17 | 18 | 5,800 |
| October 23 | 4 | 2, 000 | November 18 | 7 | 1,600 |
| October 25 | 6 | 3, 600 | November 20 | 19 | 9,200 |
| October 26 | 2 | 800 | November 21 | 3 | 1,800 |
| October 27 | 7 | 3,400 | November 22 | 11 | 4,400 |
| October 28 | 8 | 3,800 | November 23 | 5 | 2,200 |
| October 29 | 5 | 2, 600 | November 24 | 5 | 1, 800 |
| October 30 | 4 | 1,600 | November 25 | 15 | 4,800 |
| October 31 | 6 | 2,400 | November 27 | 5 | 2,800 |
| November 1 | 5 | 3,400 | November 28 | - 1 | 400 |
| November 2 | 15 | ©, 200 | November 30 | 7 | 2,300 |
| November 3 | 6 | 2, 300 | December 3. | 7 | 2,800 |
| November 4 | 7 | 3,100 | December 9 | 8 | $\stackrel{2}{2}, 800$ |
| November 5 | 3 | 1,600 | December 11. | 6 | 1,400 |
| November 6 | 10 | 4,600 | December 13. | 3 | 2,000 |
| November 7 | 5 | $\stackrel{2}{2}, 400$ | December 14. | 2 | 600 |
| November 8 | 2 | 900 | December 18 | 6 | 1,800 |
| November 9 | 8 | 2,800 | December 21. | , | 1,000 |
| November 10 | 8 | 3,200 | December 31. | 6 | 3, 200 |
| November 11 | 9 | 4,200 |  |  |  |
| November 12 | 21 | 7,400 | Total | 301 | 124,200 |
| November 13 | 1 | 1,800 |  |  |  |

## THREE YEARS OLD.

| October 14 | 1 | 1,000 | November 24 | 1 | 400 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| October 24 | 1 | 1,200 | November 25 | 3 | 2,800 |
| October 25 | 1 | 800 | November 26 | 1 | 1,200 |
| October 31 | 1 | 800 | November 27 | 1 | 1,000 |
| November 1. | 8 | 5,500 |  |  |  |
| Norember 14 | 1 | 600 | Total | 19 | 15,300 |

Shipments of brook-trout eggs during the season of 1886-'87.

| Date. | Destination. | No. of eggs. |
| :---: | :---: | :---: |
| $\stackrel{1886 .}{ }$ |  |  |
|  | Dr. E. G. Shortlidge, Wilmington, Del | 30,000 |
| 29 | E. H. Frishmutlr, jr., Philadelphia, Pa | 5,000 |
| Jan. 1887 | Dr. R. O. Sweeny, Saint Paul, Minn | 15,000 |
| 15 | E. G. Blackford, New York city, for London, E | 10, 000 |
| 25 | Central Station, Washington, D.C.............. | 5,000 |
| Feb. 9 | Dr. R. O. Sweeny, Saint Paul, Minn | 7,000 |
|  | Total | 82, 000 |

## RAINBOW TROUT.

The spawning of rainbow tront occurred from January 6 to April 25. The total number of eggs taken was 196,350 ; total results, 50,000 eggs shipped, and 25,000 fry hatched. Of the latter, 300 were shipped to J . F. Miller, Richmond, Ind., and the remainder were retained at the station.

About one-half the eggs were carried forward in hatching boxes as usual, and the remainder on gravel. The loss on the eggs in trays ranged from 80 to 95 per cent., while with those 8 gravel the loss in
no instance was more than 50 per cent., and in some cases only 5 per cent., the average beiug about 30 per cent. A number of experiments were made in carrying forward eggs of the same taking by two systems, aud the results in every iustance were greatly in favor of the gravel treatment. Arrangements for haudling a good portion of this fall's crop of brook trout egss on gravel will be provided, and further comparative experiments of the two systems made.

A case of 20,000 rambow-tront eggs arrived March 19 from Baird station, Cal., in a very boor condition. They had eridently been exposed to a high temperature in transit, as the ice was all gone and the eggs mostly hatched. About 2,500 eggs were picked out and placed in hatehing boxes, where they soon hatehed. The fry seemed feeble, and a large percentage of them dien within a few weeks.

Shipments of rainbow-tront eggs mere made as follows: March 21, $\because 5,000$ to the Michigan Fish Commission, Paris, Mich. ; and April 6, 25,000 to Eugene (x. Blackford, New York city, for shipment to France.

The spawning record for the rainbow tront during the seasou is as follows:

| Date. | Females. | Eggs. | Date. | Females. | Eggs. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1887. |  |  | 1887. |  |  |
| January 6. | 3 | 2, 400 | March 5. | 4 | 1, 800 |
| January 7 | 1 | 600 | March 6. | 4 | 2, 500 |
| January 9 | 1 | 600 | March 7 | 8 | 4,800 |
| January 12. | 1 | 1,000 | March 8 | 10 | 5,250 |
| Jaunary 13. | 1 | 1,000 | March 9 | 4 | 3, 000 |
| January 15. | 1 | 1,200 | March 10 | 7 | 3,900 |
| January 16. | 1 | 1,500 | Mareh 11. | 8 | 4,300 |
| Jannary 17. | 1 | 1,200 | March 12 | 13 | 7,000 |
| January 19. | 2 | 2, 400 | March 13 | 11 | 5,100 |
| January 21. | $\cdot 1$ | 1,300 | March 14 | 2 | 1,200 |
| Taunary 22. | 3 | 2, 300 | March 15 | 4 | 2,100 |
| 才anuary 23. | 4 | 2, 700 | March 16 | 10 | 3, 000 |
| Jannary 24 | 1 | 600 | March 17 | 3 | 1, 050 |
| January 25. | 1 | 400 | March 18. | 1 | 450 |
| January 28. | 1 | 1,600 | March 19. | 6 | 1,900 |
| , January 29 | 1 | 400 | March 20. | 25 | 10,900 |
| January 30 | 3 | 1,800 | March 21. | 18 | 6,700 |
| Felmary 1. | 2 | 1,200 | March 2 |  | 2,950 |
| February 3 | 5 | 3,600 | Marel 24. | 6 | 1,300 |
| February 4 | 1 | 550 | March 25 | 2 | 700 |
| February 5. | , | 700 | March 26 | 6 | 2,500 |
| February 6. | 1 | 909 | Mareh 27. | 2 | 1,000 |
| February 7. | 1 | 60 | March 28 | 8 | 2,500 |
| Fehrary 9. | 1 | 600 | March 29 | 2 | 750 |
| Febraary 11. | 1 | 1510 | March 30 | 2 | 550 |
| February 12. | 1 | 900 | March 31 | 11 | 3,950 |
| February 13. | 4 | 2, 800 | April 1. | 12 | 5, 400 |
| February 14. | 6 | 3,550 | April 2. | 6 | 3, 400 |
| February 15. | 9 | - 6,800 | April 3. | 6 | 3,600 |
| February 16. | 9 | 5, 800 | April 4 | 4 | 2,400 |
| February 17. | 3 | $\cdots, 400$ | April 5 | 4 | 1,700 |
| Felmuary 18. | (i) | 3,000 | April 7. | 2 | 700 |
| February 19. | 1 | 700 | April 8. | 5 | 1, 800 |
| Fehruary 20. | 1 | 5010 | April 9. | 3 | 600 |
| February 21. | 4 | $\because 2000$ | April 10. | 3 | 1,000 |
| February 22 | 4 | 2,900 | April 11. | 4 | 1, 400 |
| Fehmary 2 a | 5 | 3. 2181 | April 13. | 1 | 1 300 |
| February ${ }^{\text {a }}$ | 11 | (j, 900 | April 13 | 3 | 1,200 |
| February 20 | 3 | 1,600 | April 14 | 3 | 1,000 |
| February 97 | 2 | 96\%) | April 15 | 6 | 2, 200 |
| Febrnary 28 | 1 | 600 | April 21. | 3 | 1,500 |
| March 1. | 2 | 1. 500 | April 2 | 1 | 200 |
| March 2 | 4 | 3,000 | $\pm$ mil 25. | 1 | 150 |
| March ${ }^{\text {March }}$ |  | 3,906. | Total | 375 | 196, 350 |

A case containing 20,000 brown-trout eggs and 15,000 saibling eggs, shipped from Cold Spring Harbor, N. Y., by Fred Mather, arrived at Northville ou March 17 in first-class condition. The saibling hatched soon after, but the fry refused to eat, and most of them died of "blue sac" and starvation. Shipments of brown-trout eggs were made as follows: March 21, 2,500 to Michigan fish commission, Paris, Mich.; and March $28,5,000$ to Wisconsin fish commission, Madison, Wis. There was considerable loss before hatching, but nearly 9,000 fry were hatched and retained at station.

Between November 18 and December 21 a total of 9,400 eggs of brown trout were takeu from stock fish in the Northville ponds, but they turned out quite poorly, and only 1,500 fry were hatched. The spawning record is as follows:

Record of brown-trout spawning, season of 1886.

| Date. | Females. | Eggs. | Date. | Females. | Eggs. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1886. <br> Nov. 18 <br> 24 <br> 23 <br> 25 26 |  |  | $\stackrel{1886 .}{\text { Dec. }}$ |  |  |
|  | 1 | 1,250 | Dec. 14 | 5. | 5,000 1,600 |
|  | 1 | 350 | 18 | 2 | 400 |
|  | 1 | 300 | 21 | 1 | 100 |
|  |  |  | Total .. | 29 | 9,400 |

## LAKE TROUT.

No lake-trout eggs were taken, owing to a lack of funds available for the purpose. This is greatly to be regretted, as no fish of equal rank is more easily propagated, and, if held in confinement until of suitable size and age, it is remarkably adapted for diffusion to a large range of waters into which the whitefish, brook trout, rainbow tront, and other high-grade varieties cannot be established. As compared with other trouts, the cost of obtaining the eggs is greatly in favor of lake trout, as is also the percentage of young that cau be reared in confinement until of suitable size and age for distribution. During the fiscal year a total of 6,150 of the lake trout, hatched in January and February, 1886, were delivered to cars No. 2 and No. 3, and distribated chiefly in Ohio, Indiana, Kentucky, and Tennessee.

During the fiscal year a total of 11,297 tront, ranging from eight months to two years old- 6,150 lake trout, 4,620 rainbor tront, and 527 brook trout-were distributed, as is shown by the following table:

Distribution of troul from December 1, 1886, to March 3, $188 \%$.


* Delirered to Frank Elwell, Owosso, Mieh.

Northville, Mich., August 16, 1887

# XIII.-REPORT OF OPERATIONS AT THE U. S. SALIION AND TROUT STATIONS ON THE N'CLOUD RIVER, CALIFORNIA, FOR THE YEARS 1885-'s\%. 

## By Livingston Stone.

## SALMON.

Matters in relation to salmon at this station remain in much the same condition as at the close of my last report. The property was ieft in charge of Mr. Robert Radeliff; but, for various reasons, no active operations were carried on during these years.

TROUT.
The operations in trout breeding at this station during the past two years developed no new items of special interest. The fishing in the McCloud River for breeders was continued very much the same as in previous years, and the station was conducted according to the same methods as heretofore.

A few improvements were made during the year, among which may be mentioned the building of two or three new boats, and the constructing of some ponds for growing the young trout, which ponds Mr. Loren W. Green, the superintendent of the station, says are so carefully and securely built that nothing can get into or out of them without his knowledge.
The date of the beginning of the spawning season for the trout in the ponds at this station has receded till now the first eggs are obtained late in December,* the first for this season being 12,500 eggs which were taken on December 26, 1885. Operations in taking eggs continued from this date until May 10, 1886, when the spawning season closed for that year. More than 220,000 eggs were obtained, as shown in Table I, accompanying this report, which were distributed as shown in Table III. In 1886-'87 over 268,000 eggs were taken, of which 184,300 were disposed of as per Table IV.

This total number of eggs taken in 1885-'86 was not so large as usual, owing chiefly to two misfortunes that befell the trout during the year. The first was another outbreak of the mysterious disease described in
my last report, and referred to more at length under the heading below, which carried off a great many of the breeding trout; and the second was a terrible rain-storm which visited the McCloud River in December, 1885 , just before the trout began to spawn, and which forced so much mud and sand into the ponds that many fish died from the effects of carthy matter collecting in their gills. Specimens of trout that died of the disease and of some that died of earthy matter in their gills were sent to Prof. S. A. Forbes, of Illinois, for examination.
Some brief memoranda, which are given in Table VI from Mr. Green's diary, contain information in regard to the weather, the trout fishing, and other matters, from September 7, 1885, to December 31, 1886. Table V is also added, showing the temperatures of air and water at the station between the same dates.

Disease affecting rainbow trout.-Mr. Green, superintendent of the trout ponds at the McClond River station, described a disease which affected the rainbow trout in the ponds and river at this station during the fall of 1885, and caused the death of many breeding fish, substantially as follows : *

The fish all died in the same way, being apparently in perfect health up to the time of their being taken with this disease, while none that were taken ever recovered. By watching them closely, the first symptom discovered is that the fish begin to grow dark colored, some of them uearly black, and about the second day after this they refuse food and seem inclined to keep very quiet, and remain most of the time resting on their left sides at the bottom of the pond. This symptom differs from any I have ever witnessed in trout before. I have seen a great many fall sick aud die, some from old age, others from bruises or fungus or other canses, but they almost invariably rise near the surface, and sometimes so near the top that their back fins will be out of water, and as they grow weaker they keep falling off towards the back screens; but such is not the case with any of these fish dying of this disease, as they lie on the bottom all day long unless disturbed, while if disturbed they swim off apparently all right. If taken from the water they seem to shake or quiver, and will splash around quite lively for a moment. They remain in this state from three to six days, breathing very naturally. I have kept them seven days after this, always lying on their sides and breathing faster each day. They seem to be in no pain, but simply stupefied. I think they would live even longer than this if it was not for the sediment that gathers in their gills from their being so quiet in the water. Some of them seem to cramp and their bodies will be crooked and it is almost impossible to straighten them. I have given them earth, salt, and everything I could think of as remedies, but to no avail. After they stop breathing it is eight or ten hours before they begin to get stiff or look like dead fish, and I have opened them forty-

[^99]five minutes after there was no sigu of breathing and no feeling, and still found the heart beating. The fish are all fat and nice to look at, and I can find no trouble with eyes or gills or any other part, except the stomach seems a little hard and drawn up, and a hard and contracted yellow substance sometimes appears around the heart and stomach.
The disease has been very severe in the McCloud River, and I feel sure that it was introduced into the pouds by transferring fish to them from the river. It seems to be a clearly contagious disease, as in oue pond, which received no fish from the river and where the water flows directly to the poud from the flume without running over any other fish, no tront have been affected.

The water in the river this autumn has been much lower than I have ever known before, and has been of a milky, muddy color all summer, owing to the overflow from Ash Creek. The very hot weather melts the snow on Monnt Shasta, which has been reduced much more than usual this summer and fall, some of which empties through this creek, and when very higin the creek overflows its banks and carries quantities of ashes into the McCloud River.
The large trout suffered from this disease much more than the small ones. It was thought that the changed weather and heavy rains late in the fall would stop the progress of the disease, but it did not seem to do so. The temperature of the water while the fish were dying was about 58 or 60 degrees Fahrenheit.

Some specimens of these diseased trout were sent to Prof.S.A. Forbes, of Champaign, Ill., with the result of his making a careful examination and reporting as follows:

In these six specimens the kidneys were evidently the principal seat of disorder, the spleen being also considerably affected, and the liver much less so, The muscular tissue of the heart was involved in the single specimen that I examined in that particular.

The kidneys were as black as coal and as soft as mush, a condition explained by microscopic sectious, which show the urinary tubules little altered, with their epithelial lining intact, but all the other tissues (the connective tissue, capillaries, \&cc.) almost wholly replaced by a mere pulp of pigmented corpuscles, black pigment grauules, and micrococci, in which lie imbedded vast numbers of spherical corpuscles each contaiuing an embryo parasite. These encysted parasites are so numerous that the kidney pulp is seen to be everywhere thickly speckled with them.

The spleen is much pigmented, like the kidueys, but less so, and the liver still less than the spleen, the pigment cells being much the most abundant about the blood-vessels, and often blocking the capillaries, especially in the liver, and causing the degeneration of large tracts of the gland substance. A similar disorganization of the liver cells frequently appears at a distance from arteries or veins. The
spleen and liver are free from parasites. On the other hand, my sections of the heart show great numbers of the kidney parasites all through the walls of that organ. I counted thirty-three in a single thin section. A hasty examination of the muscular tissue of the back showed none, and the brain does not contain them.

As matters are, I cannot doult that these kidney parasites caused the death of these fish. In my previous and first examination of these fish I was misled by the fact that the first specimens from which sections were obtained contained relatively few of these parasites, while the general appearance of the organs in other respects was closely like that of the diseased herring from Lake Mendota.

Of course, no practical conclusion can be drawn from this until we know what these parasites are and where they came from, or in what other host they continue their development; and for this a general study of the subject on the spot would be necessary.

Charlestown, N. H., April 30, 1887.

Table I.-Record of trout eggs taken at MoCloud River Station during the season of 1885-'86.

| Date. | Females. | Esgs. | Date. | Females. | Eggs. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1885. |  |  | March 6. | 18 | 20, 200 |
| December $26 .$. | 12 | 12, 500 | March 16 | 13 | 11, 500 |
| 1886. |  |  | April 3. | 10 | 10, 050 |
| January 4.. | 12 | 12, 200 | April 5. | 19 | 20,150 |
| January 13. | 23 | 21,000 | April 12. | 4 | 5,025 |
| January 18. | 13 | 12,100 | April 20. | 8 | 10,000 |
| January 23 | 15 | 15,300 | April 27. | 10 | 10,000 |
| January 24. | 10 | 10, 100 | May 5. | 12 | 13, 000 |
| February 1. | 12 | 10, 150 | May 10 | 10 | 8, 000 |
| February 9 | 11 | 10, 050 |  |  |  |
| February 14.. | 14 | 10, 100 | Total | 226 | 221, 425 |

Table II.-Record of trout eggs taken at MeCloud River Station during the season of 1886-'87.

| Date. | Females. | Eggs. | Date. | Females. | Eggs. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1880. |  |  | February 17. | 30 | 28,000 |
| December 26. | 8 | 7,500 | February 23 | 10 | 10, 000 |
| 1887. |  |  | February 25 | 12 | 10, 000 |
| January 4. | 20 | 20, 500 | March 3 . | 21 | 20,500 |
| January 12. | 7 | 7,200 | March 9 | 5 | 5,200 |
| January 14 | 4 | 3,000 | March 20 | 21 | 20,000 |
| January 26. | 15 | 13, 000 | March 29 | 16 | 12,000 |
| January 27. | 18 | 13,200 | April 5. | 16 | 10, 000 |
| Tanuary 31. | 20 | 18,000 | April 8. | 23 | 24, 000 |
| February 3 | 23 | 20,300 | April 11* | 4 | 2,000 |
| February 15. | 12 | 11,000 13,000 | Total | 299 | 268, 400 |

[^100]Table III．－Disposition of trout éggs from McCloud River Station during the season of 1886.

| Date． | Disposition． | Namber of eggs． |
| :---: | :---: | :---: |
| $\begin{gathered} 1886 . \\ \text { Jan. } 12 \end{gathered}$ | Central Station，Washington，D．C． | 12，00 |
|  | －．．．．do－－．－．．．．．．．．．．．．．．．．．．． | 12，00c |
| 29 | Lost by high and muddy wate | 20， 000 |
| Feb．${ }_{9}$ | E．B．Hodge Plymouth，N．H ．．．．． | 12，000 |
| 10 | Hatched for tront ponds．．．．．．．．． | 10，000 |
| 17 | H．M．Garlichs，Saint Joseph，Mo | 10，000 |
| 25 | H．A．Cutting，Plymouth，N．II ． | 10，000 |
| Mar． 2 | B．E．B．Kennedy，Omaha，Nebr． | 10，000 |
| 23 | Otto Gramm，Laramie Cits，Wyo | 20,000 |
| 31 | A．W．Aldrich，Anamosa，Iowa．． | 10，000 |
|  | Lost by high and muddy water． |  |
| ${ }^{18}$ | H．M．Garlichs，Saint Josepls，M | 20，000 |
| 27 | Hatched for river．．．．．． | 5，000 |
|  | Total．． | 176，000 |

Table IV．－Disposition of trout eggs from McCloud River Station during the season of 1887.

| Date． | Disposition． | Number of eggs． |
| :---: | :---: | :---: |
| $\begin{gathered} 1887 . \\ \text { Jan. } 14 \end{gathered}$ | Central Station，Washington，D．C | 5，000 |
|  | E．D．Carlton，Spirit Lake，Iowa ．．． | 20，000 |
| 29 | B．E．B．Kennedy，Omaha，Nebr． | 10， 000 |
| Feb． 12 | R．O．Sweeny，Saint Paul，Minn | 25， 000 |
| － 17 | II．M．Garlichs，Saint Joseph，Mo | 20， 000 |
| Mar．${ }^{3}$ | F．N．Clark，Northville，Mich | 20,000 |
|  | Central Station，Washington，D．C | 20， 000 |
| $\begin{array}{r} 24 \\ \text { Apr. } \begin{array}{r} 6 \\ 8 \\ 11 \end{array} \end{array}$ | R．Kroeck，Denvar，Colo．．．．．．．．．． | 5， 000 |
|  | Central Station，Washington，D．C | 20， 000 |
| $11$ |  |  |
|  | ．．．．．．do ．．．．．．．．．．．．．．．．．．．．．．．．．． |  |
|  | Total sent．－．．．．．．．． <br> Lost from various cause | $\begin{array}{r} 184,300 \\ 84,100 \end{array}$ |
|  | Total eggs taken． | 268， 400 |

Table V．－Temperatures of air and water at noon at McCloud River Station from Septem－ ber 7，1885，to December 31， $18 \pm 6$.

| Day of month． | 1885. |  |  |  |  |  |  |  | 1886. |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Sept． |  | Oct． |  | Nov． |  | Dec． |  | Jan． |  | Feb． |  | March． |  | April． |  |
|  | $\dot{4}$ | 苞 | 寺 | $\begin{aligned} & \stackrel{\oplus}{ \pm} \\ & \stackrel{\text { H}}{E} \end{aligned}$ | 号 | － | 寻 | 嵌 | $\frac{1}{4}$ | ＋ | $\dot{4}$ | $$ | $\dot{y}$ | － | 免 | 8 |
|  | － | － | $\bigcirc$ | － | － | － | － | $\bigcirc$ | － | － | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | － |  |
|  |  |  | 78 | 60 | 68 | 58 | 58 | 52 | 54 | 52 | 68 | 52 | 60 | 53 | 54 | 56 |
|  |  |  | 86 | 60 | 52 | 53 | 60 | 52 | 52 | 50 | 68 | 52 | 60 | 54 | 56 | 54 |
|  |  |  | 88 | 60 | 52 | 53 | 62 | 52 | 46 | 50 | 68 | 52 | 58 | 54 | 58 | 54 |
|  |  | $\ldots$ | 89 | 60 | 52 | 53 | 62 | 52 | 48 | 50 | 63 | 52 | 60 | 54 | 56 | 54 |
|  |  |  | 87 | 60 | 54 | 54 | 66 | 52 | 46 | 50 | 62 | 53 | 60 | 54 | 56 | 54 |
|  |  |  | 86 | 60 | ． 50 | 50 | 60 | 52 | 48 | 48 | 64 | 53 | 60 | 54 | 56 | 54 |
|  | 78 | 60 | 86 | 58 | 50 | 50 | 56 | 52 | 46 | 48 | 62 | 54 | 60 | 54 | 60 | 54 |
| 8. | 76 | 60 | 85 | 58 | 52 | 50 | 54 | 52 | 48 | 48 | 60 | ． 54 | 60 | 54 | 58 | 5 |
| 9. | 78 | 60 | 81 | 58 | 46 | 48 | 54 | 52 | 48 | 48 | 66 | 51 | 60 | 55 | 60 | 54 |
| 10. | 80 | 60 | 83 | 58 | 48 | 48 | 58 | 52 | 46 | 48 | 66 | 54 | 60 | 54 | 60 | 5 |
| 11. | 80 | 60 | 82 | 58 | 48 | 48 | 56 | 52 | 50 | 48 | 60 | 54 | 60 | 56 | 60 | 54 |
| 12. | 84 | 60 | 81 | 58 | 48 | 48 | 60 | 52 | 56 | 48 | 66 | 54 | 48 | 56 | 58 | 54 |
| 13. | 80 | 60 | 80 | 56 | 46 | 48 | 60 | 52 | 60 | 50 | 60 | 54 | 50 | 54 | 58 | 5 |
| 14. | 82 | 60 | 80 | 56 | 48 | 48 | 60 | 52 | 50 | 50 | 68 | 54 | 48 | 54 | 58 | 5 |

Table V．－Temperatures of air and water at noon at MeCloud Iiver Station，etc．－Cont＇d．

| Day of month． | 1885. |  |  |  |  |  |  |  | 1886. |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Sept． |  | Oct． |  | Nov． |  | Dec． |  | Jan． |  | Feb． |  | March． |  | April． |  |
|  | $\dot{y}$ |  | 艺 | E | 光 | ¢ | 获 | $\begin{aligned} & \stackrel{\ddot{\Phi}}{ \pm} \\ & \stackrel{y}{*} \end{aligned}$ | $\dot{\theta}$ |  | A | 苞 | \＃ | $\begin{aligned} & \text { ث̈ } \\ & \stackrel{\pi}{E} \end{aligned}$ | 获 | ＋ |
|  | $\bigcirc$ | $\stackrel{5}{5}$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | － | $\bigcirc$ | － | － |
|  | 80 | 60 | 79 | 50 | 44 | 46 | 56 | 52 | 56 | 50 | 72 | 54 | 48 | 54 | 59 | 54 |
| 17. | 88 | 60 | 78 | 58 | 42 | 46 | 56 | 52 | 44 | 48 | 72 | 54 | 48 | 54 | 60 | 54 |
| 18 | 88 | 60 | 8 | 00 | 4 | 46 | 60 | 5 | 48 | 48 | 4 | 54 | 49 | 54 | 60 | 54 |
| 19 | 84 | 60 | 58 | 56 | 50 | 46 | 58 | 52 | 48 | 50 | 72 | 53 | 56 | 54 | 66 | 56 |
| 0 | 88 | co | 80 | 56 | 48 | 47 | 58 | 52 | 48 | 50 | 78 | 54 | 58 | 54 | 66 | 56 |
| 21 | 86 | 60 | 76 | 56 | 46 | 49 | 60 | 52 | 53 | 51 | 72 | 54 | 58 | 54 | 68 | 56 |
| 23 | 88 | 60 | 74 | 56 | 46 | 50 | 58 | 53 | 53 | 51 | 73 | 54 | 58 | 54 | 72 | 56 |
| 23. | 82 | 60 | 74 | 56 | 50 | 50 | 56 | 52 | 60 | 51 | 73 | 54 | 60 | 54 | 74 | 56 |
| 24 | 64 | （i0） | 74 | 56 | 53 | 50 | 58 | 53 | 56 | 50 | 73 | 54 | 58 | 54 | 82 | 56 |
| 25 | 68 | 60 | 78 | 56 | 48 | 51 | 69 | 53 | 58 | 50 | 72 | 54 | 58 | 54 | 86 | 51 |
| 26 | 76 | （6） | 76 | 56 | 46 | 51 | 53 | 52 | 56 | 50 | 70 | 54 | 60 | 54 | 78 | 56 |
| 2 | 76 | 60 | 80 | 56 | 54 | 52 | 53 | 52 | 60 | 51 | $6 \pm$ | 54 | 69 | 54 | 78 | 56 |
| 28 | 76 | ¢0 | 80 | 58 | 54 | 52 | 54 | 52 | 62 | 50 | 46 | 52 | 64 | 54 | 90 | 56 |
| 29 | 80 | 60 | 78 | 56 | 56 | 52 | 51 | 52 | 68 | 50 |  |  | 63 | 54 | （i0） | 56 |
| 30 | 78 | 60 | 76 | 56 | 54 | 53 | 56 | 53 | 66 | 52 |  |  | 60 | 54 | i0 | 54 |
| 31. |  |  | 78 | 56 |  |  | 52 | 52 | 66 | 52 |  |  | 60 | 54 |  |  |
| Day of month． | 1886. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | May． |  | June． |  | July： |  | Aug． |  | Sept． |  | Oct． |  | Nor． |  | Dec． |  |
|  | $\dot{\tilde{4}}$ | $\begin{aligned} & \dot{4} \\ & \text { H } \\ & \text { Hen } \end{aligned}$ | $\dot{\#}$ | $\begin{aligned} & \text { تٌ } \\ & \stackrel{y}{ت} \end{aligned}$ | $\hat{A}$ |  | $\dot{y}$ | $\stackrel{4}{4}$ | $\ddot{y}$ | 崖 | $\dot{y}$ | $\begin{aligned} & \stackrel{ت}{\pi} \\ & \stackrel{\pi}{ت} \end{aligned}$ | 号 |  | $\underset{y}{4}$ | － |
|  | $\bigcirc$ | － | $\bigcirc$ | － | － | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
| 1 | 74 | 56 | 100 | 60 | 98 | 60 | 100 | 60 | 78 | 58 | 60 | 56 | 48 | 50 | 44 | 48 |
| 2. | 73 | 57 | 102 | 60 | 96 | 60 | 98 | 60 | 80 | 58 | 70 | 5 | 48 | 50 | 44 | 48 |
|  | 73 | 57 | 98 | 60 | 98 | 60 | 110 | 62 | 84 | 58 | 66 | 55 | 49 | 50 | 46 | 48 |
|  | 68 | 58 | 98 | 60 | 96 | 60 | 98 | 60 | 86 | 58 | 66 | 5 | 50 | 50 | 50 | 49 |
| 5 | 68 | 57 | 96 | 60 | 94 | 60 | 98 | 60 | 80 | 58 | 64 | 5.3 | 46 | 49 | 52 | 49 |
|  | 69 | 57 | 98 | 60 | 93 | 60 | 102 | 60 | 84 | 58 | 66 | 55 | 41 | 49 | 52 | 49 |
| 7 | 56 | 57 | 98 | 60 | 92 | 60 | 98 | 60 | 78 | 58 | 64 | 54 | 44 | 49 | 48 | 48 |
| 8. | 56 | 56 | 96 | 60 | 94 | 60 | 94 | 60 | 78 | 58 | 60 | 54 | 50 | 49 | 46 | 48 |
| 9. | 56 | 58 | 98 | 60 | 98 | 60 | 90 | 59 | 90 | 58 | 62 | 54 | 48 | 49 | 50 | 49 |
| 10 | 64 | 58 | 96 | 60 | 100 | 60 | 88 | 59 | 98 | 59 | 60 | 54 | 46 | 49 | 52 | 49 |
| 11. | 64 | 58 | 80 | 60 | 102 | 60 | 90 | 59 | 102 | 60 | 58 | 54 | 49 | 49 | 50 | 49 |
| 12. | 68 | 58 | 80 | 60 | 104 | 61 | 98 | 59 | 100 | 60 | 58 | 54 | ． 44 | 48 | 48 | 48 |
| 13. | 70 | 59 | 88 | 60 | 108 | 62 | 100 | 60 | 91 | 59 | 56 | 53 | 46 | 48 | 48 | 48 |
| 14. | 76 | 59 | 83 | 60 | 108 | 62 | 109 | 60 | 94 | 59 | 56 | 53 | 40 | 48 | 46 | 48 |
|  | 82 | 59 | 84 | 60 | 110 | 62 | 96 | 60 | 96 | 59 | 58 | 53 | 43 | 48 | 44 | 47 |
| 16. | 92 | 59 | 86 | 60 | 104 | 61 | 98 | 60 | 98 | 59 | 5 | 53 | 38 | 48 | 46 | 48 |
| 17. | 90 | 59 | 86 | 60 | 100 | 60 | 80 | 60 | 88 | 58 | 50 | ， 52 | 42 | 48 | 48 | 48 |
| 18. | 92 | 59 | 88 | 60 | 98 | 60 | 88 | 59 | 86 | 58 | 58 | 53 | 42 | 48 | 50 | 48 |
| 19. | 92 | 59 | 90 | 60 | 102 | 60 | 90 | 59 | 81 | 58 | 63 | 52 | 50 | 49 | 52 | 48 |
| 20. | 94 | 60 | 98 | 60 | 104 | 61 | 92 | 59 | 80 | 58 | 62 | 52 | 38 | 48 | 52 | 48 |
| 21. | 92 | 59 | 106 | 61 | 98 | 60 | 90 | 59 | 78 | 58 | 60 | 52 | 40 | 48 | 54 | 49 |
| 22 | 90 | 59 | 98 | 60 | 96 | 60 | 88 | 59 | 83 | 58 | 58 | 52 | 42 | 48 | 56 | 50 |
| 23. | 90 | 59 | 92 | 60 | 102 | 60 | 81 | 58 | 88 | 58 | ${ }^{60}$ | 52 | 40 | 48 | 56 | 50 |
| 24 | 92 | 59 | 90 | 60 | 98 | 60 | 80 | 58 | 90 | 58 | 59 | 53 | 44 | 48 | 58 | 50 |
| 25. | 94 | 59 | 86 | 60 | 96 | 60 | 83 | 58 | 84 | 58 | 60 | 52 | 42 | 48 | 60 | 52 |
| 26 | 90 | 59 | 90 | 60 | 90 | 59 | 84 | 58 | 80 | 58 | ${ }^{60}$ | 53 | 44 | 48 | 58 | 5 |
| 27. | 92 | 59 | 92 | 60 | 98 | 60 | 78 | 58 | 80 | 58 | 56 | 51 | 42 | 48 | 50 | 51 |
| 28 | 94 | 59 | 88 | 60 | 98 | 60 | 80 | 58 | 72 | 57 | 54 | 50 | 40 | 48 | 52 | 51 |
| 29 | 92 | 59 | 92 | 60 | 100 | $6^{60}$ | 86 | 58 | 70 | 57 | 52 | 50 | 48 | 48 | 54 | 51 |
| 30 | 98 | 60 | 94 | 60 | 96 | co | 84 | 58 | 68 | 56 | 52 | 50 | 46 | 48 | 54 | 51 |
| 31．．．．．．．．．．．． | 102 | 60 |  |  | 94 | 60 | 86 | 58 |  |  | 50 | 50 |  |  | 52 | 51 |

Table VI.-Memoranda relating to the weather, etc., at McCloud River Station from September 7, 1885, to December 31, 1886.

Date.
1885.

Sept. 7
Sept. 8

Sept. 9
Sept. 10
Sept. 11
Sept. 12
Sept. 13
Sept. 14
Sept. 15
Sept. 16
Sept. 17
Sept. 18
Sept. 13
Sept. 20
Sept. 21
Sept. 2\%

Sept. 23
Sept. 24
Sept. 25
Sept. 26
Sept. 27
Sept. 28
Sopt. 99
Sept. 30
Oct. 1
Oct. 2
Oct. 3
Oct. 4
Oct. 5
Oct. 6
Oct. 7 Five large aud 10 small trout ; some in Five large aud 10 small tro
ponds still refusing food.
Oct. 8
Oct. 9

Oct. 10
Oct. 11
Oct. 12
Oct. 13
Oct. 14
Oct. 15
Oct. 16
Oct. 17
Oct. 13
Oct. 19
Oct. 20
Oct. 21

Oct. 22
Oct. 23
Oct. 24
Oct. 25
Condition of weather, etc.

Date.
1885.

Oct. 26
Oct. 27
Oct. 28
Oct. 29
Oct. 30
Oct. 31
Nov. 1
Nov. 2
Nov. 3
Nov. 4
Nor. 5
Nor. 6
Nov. 7
Nov. 8
Nov. 9
Nov. 10
Nov. 11
Nov. 12
Nov. 13
Nor. 14
Nov. 15
Nor. 16
Nor. 17
Nov. 18
Nov. 19
Nov. 20
Nov. 21
Nov. 22
Nor. 23

Nov. 24

Nor:

Nor. 26

Nor. 27
Nov. 28
Nov. 29
Nor. 30

Dec. 1
Dec. ${ }^{2}$
Dec. 3
Dec. 4
Dec. 5
Dec. 6
Dec. 7
Dec. 8
Dec. 9

Condition of weather, etc.

Clear; caught I trout.
Four large and 2 small trout; $\operatorname{some}$ troutdyinginriver, butmore in ponds. Clear; no trout.
No trout; 5 dead ones in ponds; look fat.
No trout; etill looking badly in pouds.
Raining a little; no tront.
Raining quite hard in afternoon.
Still raining slowly; no tront.
Still raining; no trout; thes bite very poorly.
Raining quite hard; water risen con-
siderably.
Heavy rain; water still rising.
Raining very hard; water rising.
Still raining quite hard.
Raining; trout in poads looking badly ; 4 dead ones.
Faining not quite so hard.
Clear; 3 more dead trout in ponds.
Clear; no tront.
Clear; more trout in ponds looking sick.
No fishing yet, water too Ligh; tront still dying.
Eight dead trout in ponds; no idea what ails them.
Raining all day; trout still look badls.
Raining hard; water rising; 3 dead trout in ponds.
Raining hard; caught 2 largo trout in fish-trap.
Water rising fast; 1 trout in trap.
Pleasant; no trout.
Trout still dying in ponds; took ont 8 to-day.
Raining hard all day; water rising fast. Raining very hard, water high and still rising; took out of ponds 5 dead trout. Water still risiag; 15 feet high now; logs rumuing over tops of traps; 3 dead trout in ponds.
Water very high and still rising; one boat swept away, and one trap washed ont; water 20 feet high.
Raining quite hard, but water falling some; snowing high up on mountains; 5 dead trout in ponds.
Raining slowly; water high; very dangerous crossing river; traps all filled up with sand and rocks.
Still raining; water high; 8 dead trout in ponds.
Raining siowly; water rising; snow melting on mountains.
Raining slowly; fish still dying ; no apparent cause.
Raining a little; water falling; caught 2 trout in trap; took 13 dead trout out of ponds.
Clear; water rising; snow on mountains melting.
Clear; water falling.
Clear; water falling; 10 dead trout in ponds.
Cloudy, bnt no rain; water falling; trout dying fast.
Clear; water falling; 15 dead trout in ponds.
Morning foggy; no rain; fish still dying.
Water low; 16 dead trout in ponds; all look fat.
Cloudy; some fish in ponds looking sick.
Cloudy, but no rain; shipped 4 specimens of diseased trout to Professor Forbes; took 18 dead trout from ponds.

Table VI.-Memoranda velating to weather, etc.-Continued.
1885.

Dec. 10
Dec. 11
Dec. 13
I)ec. 13

Dec. $1 t$
Dec. 15
Dec. 16
Dec. 17
Dec. 18
Dec. 19
Dec. 20
Dec. 21
Dec. 2 ?
Dec. 23

Dec. 24

Dec. 25

Dec. 26

Dec. 27

Dec. 28
Dec. 29
Dec. 30
Dec. 31
1886.

Jan. 1
Jan. 2
Jan. 3
Jan. 4
Jan. 5
Jan. 6
Jan. 7
Jan. 8
Jan. 9
Jau. 10
Jan. 11
Jan. 12
Jan. 13
Jan. 14
Jan. 15
Jan. 16
Jan. 17
Jau. 18
Jan. 19
Jan. 20
Jan. 21
Jaュ. 22
Jan. 23
Jan. 24
Jan. 25

Jan. 26

Jan. 27

Jan.

Condition of weather, etc.

Raining, but water falling; fish still dying.
Clear; 13 deal trout in ponds.
Clear; took 8 deal trout out of ponds.
Clear; tish in ponds looking sick.
Clear; some fish in pouds refusing food. laining hard all day; :20 dead trout in ponds.
Raining lard; water standing about the same.
Rainiug; water 3 fuet higher; 11 dead trout in ponds.
Clear; 5 dead tront in ponds.
Clear; water low.
Cloudy; water low; 8 dead trout in ponds.
Raining all day; 6 deal trout in ponds. Raining all day; caught 10 large trout intrap.
Raining hard; water rising fast; cannot cross river; caught 7 trout in trap; water in ponds muddy.
Water 10 feet hirsh, rumping over top of traps; raining hard; 14 dead trout in ponds; ponds very inuddy.
Raining very hard; water 15 fect high, but not rising any more; trout in ponds still dying.
Clear, and wator falling; water very nigh in creek; can not get in traps; began to tako erges.
Clear; water falling fast; nights cool; eggs doing well; 8 dead tront in ponds.
Clondy; moro rain; water rising.
Kaining; water hirh; eqge doing well.
Clear; water falliug; 3 dead trout in ponds.
Clear; nights cool, eggs doing nicels.
Clear; water falling.
Clear; 5 dead trout in ponds.
Clear; egge doing well.
Clear.
Clear; no trout running up traps.
Clear; eqge loing well.
Clear; 4 dead trout in ponds.
Clear; diseaso seems to bo learing trout a little.
Clear; egres doing nicely.
Clear; fish som to be looking a little better.
Clear; 3 dead trout in ponds.
Cloudy; egrs doing well.
Rainiug a little; 1 dead trout in ponds. Raining all day, but not hard.
Still maning.
Clear; ogge looking well.
Clear, though erening a little clouds.
Snowstorm of about 2 inches.
Raining hard all day.
Raining lard; water rising fast.
Clear ; water falling.
Laining very hard; water high; no trout running.
Raining hard; water rising fast; caught 8 trout in trap.
Raining vory hard; water high, and still rising.
Clear in morning, sunshine at noon, and cloudy aud raining in evening: water rising; canght 3 trout in trap; $\because$ dead troutin ponds: water muddy.
Raining hard all day; caught a large trout in trap; wator rising; expect to lose 20,000 eggs by high water. Raining hard; water very high; water coming into hatching-house thick with mud.
Raining hard; water rising and muddy; no fish to-day.

Date,
1885.

Jan. 99
Jan. 30
Jan. 31
Feb. 1
Feb. 2
Feb. 3
Feb. 4
Feb. 5
Feb. 6
Feb. 7
Feb. 8
Feb. -9
Feb. 10
Feb. 11
Fob. 12
Feb. 13
Feb. 14
Feb. 15
Feb. 16
Heb. 17
Feb. 18
Feb. 19
Feb. 20
Feb. 21
Fob. 22
F'eb. 23
Feb. 24
Feb. 25
Fob. 26
Feb. 27
Feb. 28

Mar. 1
Mar. 2
Mar. 3
Mar. 4
Mar. 5
Mar.
Mar. 7
Mar. 8
Mar. 9
Mar. 10
Mar. 11
Mar. ${ }^{2}$
Mar. 13
Mar. 14
Mar. 15
Mar. 16
Mar. 17
Mar. 18
Mar. 19
Mar. 20
Mar. 21 Mar. 2y
Mar. 23
Mar. 24
Mar. 25
Mar. 26
Mar: 27
Mar. 28
Mar. 29
Mar. 30
Mar. 3!
Apr. 1
Apr. 2
Apr. 3
Apr. 4

## Condition of weather, etc.

Raining hard; water high; no trout; lost 20,000 oggs.
No rain, but clondy; no mail; can not cross rivers.
Clear; water falling a little: 1 dead trout in ponds.
Clear; water falling; caught 3 trout in trap ; mail came to-day.
Cloudy and misty ; no hard rain; water falling.
Clear, and water falling; trout in ponds looking much better, and eating well.
Clear ; water getting quite low ; caught in trap 5 female trout and 4 males.
Clear; water falling; no trout to-day.
Clear'; no trout; fish in ponds looking well.
Clear; water low; no fish running.
Clear; fish in ponds eating, and looking nicely.
Cloudy, but no rain; eggs doing well.
Clear.
Cloudy, and a little rain in morning; afternoon clear.
Clear; young trout hatched out and looking nicely.
Clear; fish in ponds doing well, and young fish doing splendidy.
Clear; water low; no fish.
Clear; wator low.
Clear; eggs doing well.
Clear; water very low.
Clear.
Clear; eggs doing mell.
Clear; water low.
Clear; all the fish doing rery well.
Clear; eags doing well.
Cloar; water low.
Clear; little fish looking very nicely.
Clear; all the fish eating nicely.
Clear: water low.
A little clondy.
Heary snow-storm, very large flakes;
raining at noon, mountains covered
with snow; sun shining by spells in the afternoon.
Clear; water very low.
Clear; fish doing splendidly.
Cloudy, but no rain.
Raining slowly; eggs doing well.
Raining slowly; fish doing nicely.
Still raining a little.
Raining a very little.
Clear; fish looking spleudidis.
Rather rainy.
Clear.
Clear; eggs doing well.
Clear; all fish doing well.
Clear.
Clear; littlo fish eatiug nicely.
Clear.
Cloudy, but rery little rain.
Rather cloudy; exgs and tish doing well.
Cloudy ; all fish looking well.
Cloudy; water low.
Clear.

## Do.

Clear; a littlo wind.
Clouds.
Clear; strong north wind.
Cloudy and windy; all fish looking well.
Clear; eggs doing well.
Clear.
Do.

## Clear and very pleasant.

Clear.
Clear; all fish looking nicely.
Clear; little fish growing rapidly.
Clear; water low.
Clear.
Clear; water very low.

Table VI.-Memoranda relating to the weather, etc.-Continued.
Date.
1886.

Apr. 5
Apr. 6
Apr. 7
Apr. 8
Apr. 9
Apr. 10
Apr. 11
Apr. 12
Apr. 13
Apr. 14
Apr. 15
Aрг. 16
Apr. 17
Apr. 18
Apr. 19
Apr. 20
Apr. 21
Apr. 23
Apr. 23
Apr. 24
Apr. 25
Apr. 26
Apr. 27
Sept. 6

Sept. 7
Sept. 8
Sopt. 9
Sept. 10
Sept. 11
Sept. 12
Sept. 13
Sept. 14
Sept. 15
Sept. 16
Sept. 17
Sept. 18
Sept. 19
Sept. 20
Sept. 21
Sept. 22
Sept. 23
Sept. 24
Sept. 25
Sept. 26
Sept. 27
Sept. 28
Sept. 29
Sept. 30
Oct. 1
Oct. 2
Oct.
Oct. 4
Oct.
Oct.
Oct.
Oct.
Oct 9
Oct. 10
Oct. 11
Oct. 12
Oct. 13
Oct. 14
Oct. 15

Condition of weather, etc.

Clear ; eggs doing well.
Clear; fish all eating well.
Began raining, very dismal day.
Raining hard; river rising.
Still raining quite hard.
Still raining; eggs doing well.
Not raining quite so hard.
Raining hard; water rising.
Still raining hard; water high and fast rising.
Still raining; water rising fast.
Raining very hard; water higher than before this winter.
Still raining a little; water high; snow on mountains.
Not raining much; water still rising.
No rain; water very high, but not rising.
No rain; water still pretty high.
No rain; water falling ; little fish doing well.
Clear and nice; water falling fast.
Very nice; fish all doing well.
Splendid day; water quite low.
Very nico and warn ; water low.
Splendid weather; little fish growing rapidly.
Very nice; fish-traps all very badly damaged by recent high water.
Splendid weather; clearing out fishtraps.
eathor clear, with strong north wind; began fishing to-day; caught 1 large and 5 small trout.
Continued north wind; almost impossible to stay on the water.
North wind; no trout.
North wind, caught 6 small trout.
North wind in forenoon ; clear and still in afternoon; caught 5 small trout.
Hot and smoky, no wind; caught 4 small trout; large trout very scarce.
Hot and smoky ; no trout.
Do.
Clear; no trout.
Clear; caught 1 large trout; fishing very poor.
Caught 3 amall trout.
Clear; fishing poor.
Clear; troat not biting.
Clear.
Caught 18 nice trout.
Clear; no trout.
Clear; caumht 7 small trout.
Clear; no tront.
Do.
Clear; 6 small trout.
Clear; no trout.
Clear; 5 small tront; fow large ones in riser.
Clear; 6 small trout.
Clear; water low: no trout.
Strong north wind; no trout.
Do.
Clear; no fish.
Clear; 9 small trout
Clear; no trout.
Do.
Do.
Do.
Clear; '2 small trout.
No trout; moved boat up the river.
Clear; no trout.
Do.
Clear; $C$ large trout and 12 small ones.
Clear; no trout.
Cloudy; no tront.
Raining hard in evening.

Date.
1886.

Oct. 16
Oct. 17
Oct. 18
Oct. 19
Oct. 20
Oct. 21
Oct. 22
Oct. $2_{3}$
Oct. 24
Oct. 25
Oct. 26
Oct. 27
Oct. 28
Oct. 29
Oct. 30
Oct. 31
Nov. 1
Nor.
Nov. 3
Nov. 4
Nov. 5
Nov. 6
Nov. 7
Nor. 8
Nov. 9
Nov. 10
Nov. 11
Nov. 12
Nor. 13
Nov. 14
Nov. 15
Nov. 16
Nov. 17
Nov. 18
Nov. 19
Now. 20
Nov. 21
Nov. 22
Nov. 23
Nov. 24
Nov. 25
Nov. 26
Nov. 27
Nov. 28
Nov. 29
Nor. 30
Dec. 1
Dec. ${ }^{2}$
Dec.
Dec. 4
Dec.
Dec.
Dec. 7
Dec. 8
Dec. 9
Dec. 10
Dec. 11
Dec. 12
Dec. 13
Dec. 14
Dec. 15
Dec. 16
Dec. 17
Dee. 18
Dec. 19
Dec. 20
Dec. 21
Dec. 22
Dec. 23
Dec. 24
Dec. 25
Dec. 26
Dec. 27
Dec. 28
Dec. 29
Dec. 30
Dec. 31

Condition of weather, etc.

Clear; 15 large and 3 small trout.
Strons north wind; no trout.
North wind and very clouly; no trout.
Clear; no trout.
Do.
Clear; no trout biting.
Cloudy; no trout.
Do.
Do.
Clear; no trout.
Cloudy, without rain; no fish.
Cloudy; fish not biting.
Clear; no trout.
Do.
Do.
Do.
Cloar; nights cool.
Clear and pleasant.
Do.
Clear; trout not biting.
Do.
Do.
Do.
Very cloudy, with some rain; trout not biting.
Days clear and nights cool.
Do.
Clear; no trout biting.
Do.
Do.
Cloudy, but no wind.
Cloudy, with wind.
Cloudty, with strong north wind.
Cloudy; no trout biting.
Do.
Cloudy; caught 13 trout.
Meavy rain all night.
Cloudy; night cool.
Clondy, but no rain.
Do.
Do.
Clear and pleasant.
Do.
Cloudy; caught 13 trout.
Cloudy; no trout.
Cloudy; 13 trout.
Clear; 5 tront.
Cloudy; no tront.
Do.
Clear and pleasant; no trout. Do.
Do.
Clear.
Do.
Clear, with north wind.
Do.
Cloudy, with south wind.
Very cloudy.

## Do. Do

Very clouds, but no rain.
Do.
Raining slightly.
Cloudy, but not raining.
Clear and pleasant.
Cloudy, but no rain.
Cloudy; working on fish-traps.
South wind ; working on fish-traps.
Began raining in afternoon.
Raining slowly; fishing in river all
done; no trout in fish-traps as jet.
Water 3 feet higher than usual.
Raining slowly.
laining again quite hard.
Raining very hard.
Water very muddy and rising.
Raining, but water falling.
Clear; water falling.
Rained hard all night.
$\qquad$

# XIV.-REPORT ON THE PROPAGATION OF PENOBSCOT SALMON IN 1886-'8\%. 

By Charles G. Atkins.

The number of salmon purchased for breeding purposes at the Pe nobscot Station in 1886 was limited to 205 , which were received between May 29 and June 8. By collecting them thus early it was hoped that we might avoid in great measure the losses that annually decimate the stock of salmon during the transfer from the weirs to the inclosure, and also while coufined during the summer months in Dead Brook. These hopes were only partially realized. There were, to be sure, no deaths in transit, but out of the 205 placed in the inclosure only 147 (or 72 per cent.) were recaptured in the fall. This is a lessfavorable result than in 1885, when the collection of salmon was continued till June 20, and when 72 per cent. of the whole number purchased and 82 per cent. of those actually placed in the inclosure were sared and made serviceable in the fall. The deaths in the inclosure occurred for the most part, as usual, soon after the salmon were inclosed, and thus before the height of the summer's drouth or heat. Of 48 whose remains were found 33 were discovered in June, 9 in July, and 6 in August, the last 6 bearing evidence of having been dead from ten to twenty days.

This was a year of large salmon in the Penobscot. The average of the estimates of the entire stock collected was 16.47 pounds. At the spawning season those remaining on hand were found to arerage 14.47 pounds in weight and 34 inches in length, including all the males and gravid females.
The spawn was taken at the usual date, and the 101 females recorered yielded a total of $1,158,776$ eggs, an average of 11,473 each.

The development of the embryos up to the shipping point was attended with a loss of 59,776 , or 5.2 per cent. The loss from non-impregnation was estimated at 21,035 , or 1.8 per cent. Among the rejected eggs was an entire lot of very small and evidently worthless eggs which were thrown out in a mass soon after placing them in the hatchery. Leaving these out of the account, the total loss appears to have been but 3.9 per cent., a very satisfactory result.
The net stock of eggs available for division among the subscribers to the fund was $1,099,000$, of which there were awarded to the State of

Massachusetts 320,000 , and to the U. S. Commission of Fisheries $779,000$. Out of the latter, 25,000 were reserved for experiments in rearing and feeding at the Bucksport Station, but were subsequently liberated (June 13) in Craig's Pond. The remainder were distributed as per following schedule:

Table I.-Statment of shipments of salmon eggs from the Penobscot Station in 1887, from the stock collected in 1856.

| Date. | Consignee and address. | Belong. ing to Massachusetts | Belonging to Cnited States. | Total. |  | $\underset{\sim}{E}$ | Condition on unpacking. |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1887. |  |  |  |  |  | Days. |  |  |
|  | F. Mrather, Cold Spring Rarbor, N. Y |  | 250,000 | 250,000 | 4 | 3 | Excellent. | 479 |
| 2 | F. A. Walters, Bloomingdale, |  | 250,000 |  | 4 | 6 |  | 58 |
| 3 | E. B. Hodge, Plymouth, N. H | 110,000 | 100, 000 | 210, 000 | 3 | 2 | Good. | 23 |
|  | E. B. Hodge, Plymouth, N.H. | 210,000 | 10, | 210,000 | 4 | 2 | Good. | 40 |
| 21 | F. Mather, Cold Spring Harbor, N. $\overline{ }$ |  | 40,000 | 40,000 | 1 | 3 | Excellent. | 38 |
| 23 | F. Mather, Cold Spring Harbor, N Y |  | 10,000 | 10,000 | 1 | 3 | Excellent. | 40 |
| 24 | W. H. Munson, Grand Lake |  |  |  | 1 | 3 | Excellent. | 40 |
|  | Stream, Me ............ |  | 89,000 | 89,000 | 2 | 3 | Good. | 37 |
| 28 | Wit Minnson, Grand Lake |  | 15,000 | 15,000 | 1 | 3 | Good. | 0 |
|  | Tota | 320,000 | 754, 000 | 1,074,000 | 20 |  |  | 715 |

Table IL.-Observations on temperature of Eastern River at Orland Lower Dan, June, 1886.
[During the period while breeding salmon are usaally collecting.]

| Date. | Hour. | Temper. ature. | Date. | Hour. | Tomperature. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $1886 .$ | 6 p.m | ${ }^{\circ} F_{6 f}$ | $\begin{aligned} & 188 \mathrm{C} . \\ & \text { June } 14 \end{aligned}$ | 8 a.m | ${ }^{\circ} \boldsymbol{F}{ }_{69}$ |
| - | 8 a.m | 6.5 | 14 | $5 \frac{1}{2} \mathrm{p} . \mathrm{m}$ | 70 |
| 2 | $6 \mathrm{p} \cdot \mathrm{m}$ | 64 | 15 | 8 a.m | 68 |
| 3 | 8 i. m | 62 | 16 | 8 a.m | 69 |
| 3 | $5 . \frac{1}{2} \mathrm{p} . \mathrm{m}$ | 64 | 17 | $7 \frac{1}{2} \mathrm{a} . \mathrm{m}$. | 69 |
| 4 | 8 a.m | $63 \frac{1}{2}$ | 17 | $5_{2}^{\frac{1}{2}} \mathrm{p} . \mathrm{mm} .$. | 71 |
| 4 | $5 \mathrm{p} . \mathrm{m}$ | 66 | 18 | 8 a. m ..- | 70 |
| 5 | 8 a.m | 65 | 18 | 51 pr.m.. | 71 |
| 5 | 5 pm m $\ldots$. | $66 \frac{1}{2}$ | 19 | 8 a.m | 70 |
| ${ }_{6}^{6}$ | Noobserration | 66 | 19 | ${ }_{8}^{5 \frac{1}{2} \mathrm{p} \cdot \mathrm{m}}$ | 71 |
| 7 | 5 p 㐌m. | 68 | 20 | $5_{\text {2 }}$ p.m. | 71 |
| 8 | 8 a m. | 67 | 21 | 8 a.m | 71 |
| 8 | $\sin ^{\text {a }} \mathrm{p} . \mathrm{m}$ | 68 | 21 | $5^{1} \mathrm{p}$ p.m | 72 |
| 9 | 7 a. m | 67 | 22 | $7 \mathrm{a} . \mathrm{m}$ | 72 |
| 10 | 7 а. ıи | ${ }^{67}$ | 25 | ${ }^{5} \mathrm{p} . \mathrm{mm}$ | 71 |
| 11 | 8 a.m | 68 | 26 | 8 a.m. | 70 |
| 12 | 8 a i . m | 68 | 28 | 412 P. m. | 71 |
| 1:3 | No observation |  |  |  |  |

Table III.—Observations on temperature of Dead Brook (at the salmon inclosures), 1826.
[Note.-These observations were taken between 5 and $6 \mathrm{a} . \mathrm{m}$.]

| Day of month. | June. | July. | August. | Septem. ber. | October. | Day of month. | June. | July. | $\begin{aligned} & \text { Au- } \\ & \text { gust. } \end{aligned}$ | Septomber. | $\begin{aligned} & \text { Octo- } \\ & \text { ber. } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | ${ }^{\circ} \mathrm{F}$. | ${ }^{\circ} \mathrm{F}$. | - $F$. | $\bigcirc{ }^{\circ}$. | ${ }^{\circ} \mathrm{F}$. |  | ${ }^{\circ} \mathrm{F}$. | $\bigcirc$ | - $F$. | ${ }^{\circ} \mathrm{F}$. | $\bigcirc{ }^{\circ}$. |
| 1. |  | 54 | 64 | 56 | 52 | 17...... | 60 | 60 | 52 | 52 | 35 |
| 2. |  | 58 | 64 | 54 | 50 | 18..... | 62 | 63 | 53 | 52 | 36 |
| 3. | 57 | 64 | 63 | 54 | 44 | 19...... | 56 | 62 | 52 | 54 | 52 |
| 4 | 54 | 63 | 63 | 54 | 44 | 20...... | 56 | 58 | 58 | 52 | 37 |
| 5 | 55 | 60 | 58 | 55 | 46 | 21...... | 56 | 58 | 53 | 48 | 37 |
| 6. | 54 | 60 | 58 | 55 | 45 | 22 | 57 | 58 | 58 | 44 | 40 |
| 7 | 53 | 65 | 57 | 62 | 43 | 23...... | 60 | 52 | 58 | 43 | 37 |
| 8 | 56 | 66 | 60 | 61 | 47 | 24...... | 61 | 55 | 52 | 44 | 36 |
| 9 | 56 | 63 | 60 | 60 | 48 | 25. | 59 | 55 | 52 | 44 | 36 |
| 10. | 58 | 63 | 59 | 62 | 47 | 26..... | 58 | 62 | 58 | 48 | 35 |
| 11. | 60 | 59 | 60 | 63 | 48 | 27...... | 60 | 62 | 58 | 54 | 34 |
| 12........ | 58 | 58 | 63 | 51 | 48 | 28...... | 60 | 62 | 60 | 50 | 40 |
|  | 55 | 58 | 60 | 60 | 47 | $29 . .$. | 58 | 63 | 60 | 5 | 40 |
| 14. | 55 | co | 60 | 60 | 45 | 30...... | 55 | 63 | 54 | 52 | .... |
| 15. | 56 | 62 | 58 | 56 | 55 | 31. |  | 65 | 60 |  | .... |
| 16 ...... | 58 | 60 | 56 | 51 | 45 |  |  |  |  |  |  |

Table IV.-Observations on temperature of water in the hatchery at Craig's Brook, October, 1886, to June, 1887.
[Taken in the morning.]

| Day of month. | 1886. |  |  | 1887. |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | October. | Novem. ber. | Decernber. | Janu. ary. | February. | March. | April. | May. | June. |
|  | ${ }^{\circ} \mathrm{F}$. | - $F$. | - $F$. | ${ }^{\circ} \mathrm{F}$. | - $F$. | - $F$. | ${ }^{\circ} \mathrm{F}$. | ${ }^{\circ} \mathrm{F}$. | ${ }^{\circ} \mathrm{F}$. |
| 1 |  | 51 | 39 | 34 | 33 | 32 | 34 |  | 54 |
|  |  | 52 | 36 | 34 | 33 | 32 | 34 | 36 | 56 |
| 3 |  | 52 | 36 | 33 | 32 | 33 | 34 | 38 | 56 |
|  |  | 52 | 32 | 32 | 32 | 33 | 34 | 38 | 55 |
| 6 |  | 52 | 34 | ${ }_{34} 34$ | 32 | ${ }_{33}$ | ${ }_{34}$ | 48 | 54 |
| 7 |  | 50 | 33 | 34 | 32 | 33 | 34 | 43 | 58 |
| 8 |  | 46 | 34 | 33 | 32 | 33 | 33 | 42 | 58 |
| 9 |  | 44 | 36 | 32 | 33 | 33 | 34 | 44 | 58 |
| 10 |  | 48 | 33 | 32 | 33 | 34 | 35 | 44 | 57 |
| 11 |  | 50 | 36 | 32 | 34 | 33 | 35 | 42 | 57 |
| 12 |  | 46 | 36 | 34 | 34 | 33 | 34 | 43 | 57 |
| 13. |  | 42 | 36 | 33 | 33 | 33 | 34 | 43 | 57 |
| 14 |  | 44 | 34 | 31 | 33 | 34 | 34 | 44 | ........ |
| 15 |  | 41 | 34 | 32 | 34 | 34 | 34 | 47 | ........ |
| 16 |  | 41 | 33 | 32 | 34 | 34 | 34 | 48 | . |
| 17. |  | 42 | 32 | 31 | 34 | 34 | 34 | 48 | ....... |
| 18. |  | 42 | 32 | 32 | 34 | 34 | 34 | 50 | ....... |
| 19. |  | 43 | 34 | 31 | 33 | 34 | 34 | 53 | ........ |
| 20 |  | 42 | 34 | 32 | 34 | 34 | 35 | 54 | ........ |
| 21 |  | 42 | 34 | 34 | 32 | 34 | 35 | 54 | -....... |
| 22. |  | 40 | 34 | 34 | 34 | 34 | 34 | 53 |  |
| 23 |  | 40 | 34 | 34 | 34 | 34 | 36 | 56 | ....... |
| 24 |  | 44 | 34 | 34 | 34 | 33 | 36 | 56 |  |
| 25 |  | 40 | 34 | 34 | 33 | 33 | 36 | 56 |  |
| 26 |  | 40 | 33 | 34 | 34 | 33 | 35 | 56 | ....... |
| 27 |  | 38 | 34 | 32 | 33 | 33 | 35 | 56 |  |
| 28 | 48 | 36 | 34 | 32 | 33 | 34 | 35 | 54 |  |
| 29 | 50 | 36 | 34 | 34 |  | 34 | 36 | 54 |  |
| 30 | 52 | 42 | 32 | 34 |  | 34 | 36 | 55 | - |
| 31 | 50 |  | 32 | 34 |  | 34 |  | 56 |  |
| Mean | 50 | 44.3 | 34 | 33 | 33.1 | 33.4 | 34.5 | 48 | 56.4 |

Bucksport, Me., November S, 1887.

# XV.--REPORT 0N THE PROPAGATION 0F SCH00DIC SALMON aT GRaND LaKE STREAM, MAINE, IN 1886-'87. 

By Chas. G. Atmins.

The management of the Schoodic Station for this year was placed in the lands of the assistant superintendent, Mr. W. O. Buck, of Bucksport, whose chief helper was the experienced forman, Mr. William H. Munson, of Princeton, who has served the station in that e pacity since its organization, and to whose skill and fidelity the success of the work has been largely due.

Mr. Munson began work the first of September and placed the barriernets across the outlet of Grand Lake on the 15th of that month. The pounds were built at the usual date, and made ready for the capture of fish on the 28th of October. The run of fish was rather small, not quite equal to that of 1885 . Of the 752 taken in all, 505 , or 67 per cent., were females, and 247 , or 33 per cent., males. The fish proved of satisfactory size and fecuudity, the females yielding an average of 1,935 eggs each, a higher rate than ever before observed, except in 1884, when the yield was 2,349 eggs per fish.
The fishing and sparn-taking was accomplished under the disadvantage of very low water and a current too sluggish to attract the fish into the inclosures so freely as desirable, and a larger number than usual spawned on the shallows above our nets. But for extra exertions to capture the recusants, by stretching additional nets, the loss from this cause would have been rery serious.
In 1885, at the close of the work of spawn-taking, the greater number of the salmon in hand were marked by cutting ont a V -shaped piece from the outer margin of the anal fin. This year all the salmon that were handled were closely scrutinized for these marks, and 56 of them ( 5 males and 51 females) were found to bear what appeared to be the mark sought for. In each of these cases there was a distinct, well-defined triangular transparent spot in the requisite position. It appeared as though the rays and integuments had been reproduced so as to completely fill out the outline of the fin, but that the new growth had as yet assumed no color. So distinct were these marks that both Mr. Buck aud Mr. Munson were fully convinced that they were the marks of 1885. Such a result was unexpected and great interest will attach
to a repetition of the experiment. These 56 marked fish average in weight 3.4 pounds, and in length 20.5 inches, in both points less than the general average of 1885. For a more exact experiment Mr. Buck has devised a system of marks consisting of holes to be punched through the fins, by which numerals can be indicated and individual fishes identi. fied on their return, and these marks were applied to a large part of the fishes handled in 1880.

The eggs obtained numbered in all 942,500 . They were all placed for development in the cold water of the river house, and there remained till the month of February, when they were remored to the cove house, preparatory to division and shipment, which was accomplished in March. The losses from lack of impregnation and other causes reduced the eggs available for division to 555,500 . The legal reserve took from these 214,000 , and the remaining 641,500 were divided among the subscribers to the fund as follows: Massachusetts, 132,000; New Hampshire, 132,000; United States, 377,500.

The eggs for shipment were packed as usual in Sphagnum moss, and transferred by express, over the usual route, including a ride of 36 miles in the open air, and all reached their destination safely.

The 214,000 eggs reserved for Grand Lake were hatched and planted with the very small loss of 1,044 eggs and fry. A lot of 104,000 seasalmon eggs were sent over from Bucksport by the Maine Commissioners and hatched at the Schoodic Station to be planted in waters tributary to the St. Croix. They were likewise successfully hatched with a loss of but 255 eggs and fry, and were planted in Junior Stream and Upper "Dobsey" Stream June 15, 17, and 20, 1887.

The following tabular statements will be found to give additional details of interest:

Table I.-Fishing record at Grand Lake Stream, Maine, 1886.
[Each day of 24 hours, ending at $7 \mathrm{a}, \mathrm{m}$.]

| Date. | Day weather. | Night weather. | $\begin{aligned} & \text { Heigbt } \\ & \text { of } \\ & \text { Grand } \\ & \text { Lake. } \end{aligned}$ | Temperature, 7 a . m. |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Air. | Water. |
| $1886 .$ |  |  | Ft. $\begin{gathered}\text { In. } \\ 1\end{gathered}$ | - 3 | ${ }^{\circ} 46$ |
| Oct. 28-29. | Clear a. m., overcast p. m. ; light easterly wind. | Partly orercast, wind increas. ins, more northerly. | 18 | 32 | 46 |
| Oct. 29-30 | Mostly clear, northerly wind, moderate. | Sprinkling at p.m.. raining balance of night: light E. wind. | 17 | 37 | 46 |
| Oct. 30-31 | Raining a. nu., light E. winus; misty p.m. | Cloudy and damp; calm, littlo or no rain. | 17 | 43 | 40 |
| Oct. 31-Nov. 1. | Cloudy a. m., calm p. m........ | Clear, 9 p.m. ; misty in morning. |  | 44 | 48 |
| Nov. 1-2 | Misty morning, clearing toward noon. | P. m. fine ; light W. wind, becoming misty toward morning. |  | 40 | 48 |
| Nor. 2-3..... | Misty morning, wind SE.; misty all day. | Overcast, wind rising and veering to W . |  |  |  |
| Nor. 3-4 | Misty morning, clearing with shower in p. m. | Clear, bright night; calm; growing colder. |  | 48 | 49 |
| Nor. 4-5. | Clear, frosty morning, bright, light W. Wind. | Grew colder till midnight; frosty, then lamp and warmer. |  | 25 | 46 |

Table I.-Fishing record at Grand Lake Stream, Maine, 1886-Continued.

| Date. | Day weather. | Night weather. |  | Temperature $7 \mathrm{a} . \mathrm{m}$. |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Air. | Water. |
| 1886. |  |  | Ft. In. | $\bigcirc$ | $\bigcirc$ |
| Nov. 5-6 | Calm, clondy morning, white frost, cloudy all day. | Wind rising SE. ; heary showers: cale from SE. |  | 38 | 46 |
| Nov. 6-7 | Cloudy, high wind from SE. ; heavy rain a. m., clearing | Beantiful evening; moderato W. wind. | 16 | 51 | 51 |
| Nov. 7-8 | Fine morning, orercast, noon clearing. | Clear, W. wind; becoming overcast. |  | 24 | 45 |
| Nov. 8-9 | Chilly, overcast, moderating wind. | Clear, becoming cloudy ; wind veering to E . |  | 23 | 4 |
| Nuv. 9-10 | Cloudy, calm .................... | Calm, cloudy, damp; a littlo |  | 28 | 4 |
| Nov. 10-11 | Light E. wind, misty, clearing. | Calm, clearing. |  | 8 | 4 |
| Nov. 11-12 | Light W. wind, becoming northerly; fair. | Fair; becoming clouly ; light E. and NE. wind rising. |  | 29 | 44 |
| Nor, 12-13 | Snow about 7 a. m., wind NE.; rain p.m. | Rain, NE. wind first part, cloudy latter. |  | 29 | 42 |
| Nov. 13-14 | Snow and rain. NE. wind, becoming NW.; noon snowsiqualls. | Coliter, with suow-squalls; less clouds. |  | 32 | 42 |
| Nov. 14-15 | Wind NW., growing more cloudy. | NW. gale, moderating towarl morning. |  | 27 | 40 |
| Nov. 15-16 | High NW. wind; fair; wind modorating at night. | Calm, cloudy |  | 20 | 37 |
| Nov. 16-17 |  | Snow, followed by icy rain |  | 20 | 37 |
| Nov. 17-18 | Rain, E. wind, becoming southerly. |  |  | 32 | 37 |



## S. Mis. $90-48$

Table 1I.- Recorl of sponem: operations, Grand Litke Stream, 1836.


Table III.-Statement of shipments of cgys at Schoodic salm:a from Gremd Lake Stream, Maine, in March, 1887.


[^101]Observaions on temperature, etc., at Grand Lake Stream, Mainc, from Siptember 1:3, 1Es6, to June 29, 1と87.


Observations on temperature, etc., at Grand Lake Stream, Maine, eto.-Continued.

| Date. |  | Temperature at $7 \mathrm{a} . \mathrm{m}$. |  |  |  |  |  | Rain. |  | Snow. |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Air. |  | Water. |  |  |  |  |  | Hour when measured. |  |
|  |  |  |  |  |  | \% |  |  | E 0 0 0 8 8 4 4 |  |
| Nov. | $\begin{aligned} & 1886 . \\ & 9 . . . \end{aligned}$ |  | $\stackrel{0}{23}$ | ${ }^{\circ}$ | $\stackrel{\circ}{43}$ | - | - | Ft. ${ }_{1}$ In. |  | Inches. |  | Inches. |
|  |  | $\stackrel{28}{28}$ | 43 | 43 |  |  |  |  |  |  |  |
|  | 11. | 38 | 44 | 44 |  |  |  |  |  |  |  |
|  | 12. | 28 | 44 | 44 |  |  |  |  |  |  |  |
|  |  | 29 | 42 | 41 |  |  | 16 | 7 a m | - | $11 \mathrm{a} . \mathrm{m}$. | $1 \frac{1}{8}$ |
|  | 15. | 27 | 40 | 40 |  |  |  | . |  | $7 \mathrm{a}, \mathrm{m}$. | $0{ }^{\circ}$ |
|  |  | 20 | 37 | 36 |  |  |  |  |  |  |  |
|  |  | 33 | 38 | ${ }_{36} 38$ |  |  | 18 | $7 \mathrm{a} . \mathrm{m}$. | 12 |  | ........ |
|  |  | 20 | 36 | ${ }_{36}{ }^{2}$ |  |  |  |  |  |  |  |
|  | 22. | 21 | 36 | 36 |  |  |  |  |  |  |  |
|  | 23. | 19 | 35 | $34 \frac{1}{2}$ |  |  | 19 |  |  | $6 \mathrm{p} . \mathrm{m}$. | i |
|  | 24. | 41 | 37 | 37 |  |  |  | $7 \mathrm{a} . \mathrm{m}$. | 03 |  |  |
|  |  | 24 | 36 | 36 |  |  |  |  |  |  |  |
|  | 26. | 31 | 35 | 35 |  |  |  |  |  |  |  |
|  |  | 12 | 35 | 35 |  |  |  |  |  |  |  |
|  |  |  | 35 | $34 \frac{1}{2}$ |  |  |  |  |  |  |  |
|  | 29 | $29 \frac{1}{2}$ | 36 | 36 37 |  |  |  |  |  |  |  |
|  |  |  | 37 | 37 |  |  | 111 | 7 a. m. | 03 |  |  |
|  | Total. |  |  |  |  |  |  |  | 5.2 |  | 27 |
|  | Means | 30.2 | 41 | 40.8 |  |  |  |  |  |  |  |
| Dec. | 1. | 43 | $37 \frac{1}{2}$ | $37 \frac{1}{2}$ | 40 | 38 |  | $7 \mathrm{a} . \mathrm{m}$. | 01 |  |  |
|  |  | 21 3 |  | 37 |  |  | 2 |  |  | 7 a m | 10 |
|  |  | - 5 |  | 321 |  |  |  |  |  |  |  |
|  |  | -10 9 | 33 | ${ }_{33}^{32}{ }^{\frac{1}{2}}$ | 37 즐 | 35 | 201 |  |  |  |  |
|  |  | 1 1 |  | 33 |  |  |  |  |  | $7 \mathrm{a} . \mathrm{m}$. | 3 |
|  | 8 | 16 |  | 33 |  |  |  |  |  | $7 \mathrm{a} . \mathrm{m}$. | 4 ${ }^{\text {a }}$ |
|  | 9 | 29 |  | 33 |  |  |  |  |  |  |  |
|  | 10 | $-5$ | 33 | 322 | 39.2 | 38 | 21 |  |  |  | - |
|  |  | 30 |  | 32 |  |  |  |  |  |  |  |
|  | 12. | 17 |  | ${ }_{331}^{33}$ |  |  |  |  |  |  |  |
|  | 13. | $16 \frac{1}{2}$ 10 | $33 \frac{1}{2}$ | 333 $33 \frac{1}{2}$ | 39 | 37를 | 21 |  |  |  |  |
|  | 15. | 16 |  | $33 \frac{2}{2}$ |  |  |  |  |  | $10 \mathrm{a} . \mathrm{m}$. | 1 |
|  | 16. |  | 34 |  |  |  | $2{ }^{1 \frac{1}{2}}$ |  |  | ......... |  |
|  |  | -6 |  | - $32 \begin{aligned} & 2 \\ & 32 \\ & 32\end{aligned}$ |  |  | $\mathrm{L}_{2}$ |  |  | 7 a.m. | ${ }_{2}^{4 \frac{1}{8}}$ |
|  | 18. | 31 |  | $32 \frac{1}{2}$ 33 |  |  |  |  |  | $8 \mathrm{p} . \mathrm{m}$. | 2 |
|  | 20 | 0 | 33 | ${ }_{32} 3$ | 40 | 37 | $2{ }^{-1}$ |  |  |  |  |
|  | 21. | 19 |  | $32 \cdot \frac{1}{2}$ |  |  |  |  |  |  |  |
|  | 22. | 90 |  | 33 |  |  |  |  |  |  |  |
|  | 23. | $24 \frac{1}{3}$ | 33 | 33 | 40 | 38 | 22 |  |  |  |  |
|  | 24. | 28 |  | 33 |  |  |  |  |  |  |  |
|  | 25. | $34 \frac{1}{8}$ |  | 33 |  |  |  | $7 \mathrm{a} . \mathrm{m}$. | 0 |  |  |
|  | 26. | ${ }_{16}$ |  | 33 |  |  |  |  |  |  | . |
|  |  | $16 \frac{1}{3}$ -4 | 34 | $33 \frac{1}{2}$ | 40 | $38 \frac{1}{2}$ | ...... |  |  |  |  |
|  |  | -4 |  | $32 \frac{1}{2}$ |  |  |  |  |  | $7 \mathrm{a} . \mathrm{m}$. | $2{ }^{8}$ |
|  | $\begin{gathered} 29 . \\ 30 . \end{gathered}$ | - 10 |  | 321 |  |  |  | - -- |  |  | - |
|  |  | -18 -8 | 33 | ${ }^{3}$ 321 | 39 | 37 |  |  |  |  |  |
|  | Total |  |  |  |  |  |  |  | $1 \frac{18}{8}$ |  | $27 \frac{1}{3}$ |
|  | Means | 11.3 | 33.8 | 33.1 | 39.4 | 37.4 |  |  |  |  |  |
| Jan. | $\begin{aligned} & 1887 . \\ & 1 \ldots \ldots . \end{aligned}$ |  | 33 |  | 39 | 37 |  |  |  | 7 a. m. |  |
|  |  | $16{ }^{2}$ |  | $33{ }^{2}$ |  |  |  |  |  | $3 \mathrm{p} . \mathrm{m}$. | 4, |
|  | 3. | -8 |  | $32 \frac{1}{2}$ |  |  |  |  |  |  |  |
|  | 4. | -23 |  | 3 3 |  |  |  |  |  |  |  |
|  |  | $-11$ | $32 \frac{1}{2}$ | $33 \frac{1}{2}$ | 381 | 37 |  |  |  |  |  |
|  |  | 25 20 |  | $\stackrel{33}{32}{ }_{3}$ |  |  |  |  |  | $3 \mathrm{p} . \mathrm{m}$. | 4 |

Observations on tempcrature, etc., at Grand Lake Stream, Maine, etc.-Continued.


Observations on temperature, etc., at Grand Lake Stream, Maine, cte.-Continued.


Observations on temperature, etc., at Grand Lake Stream, Maine, etc.-Continmed.


* Water-gango swept away by icc. Obserser absent distributing fry.

Bucksport, Me., November S, 1857.

# XVI.-REPORT OF 0pErations at battery station, havre DE GRACE, MD., FOR THE YEAR ENDING DECEMBER 31. 1886. 

By W. de C. Ravenel.

This year was ushered in at Battery Station by a continuance of work on the breakwater at west end of carp pond. This was interrupted early in January by bad weather and ice, so that but 1'2 feet were added to the work of December, making 92 feet to the end of Jamuars. One hundred and fifty tons of ice were cut and stored in this month; 26 iron cots were finished, which completed the 30 originally intended. The boilers and engines of the launches were thoroughly overhanled, as also the pumps. One of the station carpenters assisted in work on steamer Halcyon for fifteen dass daring January. On the 30th, at 9.30 p. m., 200 feet of the crib at the onter end of the wharf were carried away to low-water mark by ice and overthrown into the carp pond. The damage is estimated at $\$ 1,000$. On 31st, the entire force was at work cutting ice to more pile driver to a place of safety. The presence of ice made it necessary to use sledge-boats in trips to IIarre de Grace for mail, provisions, etc.

A very small portion of February was suitable for outdoor operations, it being generally too cold. But very little work was done to the new breakwater; the piles pushed off the main wharf by ice were recovered, and such timbers from the broken wharf as could be got at and wedged apart were saved. The general and routine work was carried on ; repairs to launches were made in the way of stanchions, fenders, scraping, aud sand-papering. The barge kite hen and mess-room were given two coats of paint inside, and tinware used in hatching operations was painted outside.

Ice corered the head of the bay all the first portion of February. $\Lambda$ heavy movement of ice occurred on 13th at 4 p . m., lasting thirty minutes, crushing about 20 feet of the sheet-pile dike crected during the winter. At midnight, same date, a movemen't lasting ten minutes crushed about 25 feet of the southern end of the same work. The damage iny ice this month is about $\$ 180$. The ice piled 15 feet abore wharves on north side of island.

During the early part of March, work on the machinery, etc., of the launches was pushed to completion, and, as soon as the weather permitted, all of the boats, scows, ete., belonging to the station were over-
hauled, painted, and launched. Six new tlat-bottom row-boats were purchased, making the number of this class available 20. Two new round-bottom gilling skiffs, 21 feet long, with masts, oars, and anchors, were also purchased for use in the shad work. Two gilling nets of 100 fathoms each were added to the outfit, and the seine was hung and tarred. The seine haul was well dragged and cleared of snags and stumps, and all necessary work for putting the station in order for the hatching operations was done.
The shad season opened on April 18 and closed June 10, during which time the station collected $60,766,000$ shad eggs and 600,000 eggs of the rockfish. A full report of these operations has beeu submitted by Mr. L. R. Grabill, the superintendent of the station at that time.*

At the conclusion of the shad work the temporary force was discharged, the equipment dismantled and stored, and the seine cut out. A drive-well was started on the islaud, with the view of obtaining an artesian water supply. The well was carried to a depth of 150 feet by July 1. The Assistant Commissioner obtained authority from the U . S. Geological Survey to have a geologist examine this well, and Mr. W. J. McGee proceeded to Battery Station during the first half of July. His report, however, was adverse, and the well was abandoned.

In the middle of July, Mr. Grabill left the station temporarily to assume charge of some dredging operations to be conducted at Saint Jerome Station. This work occupied him until August 5, when the dredging-machine, which had been borrowed from the Nary Depart. ment, was brought to this station in tow of the steamer Fish Hawk. The report of the work accomplished will be embodied in the anuual report of Mr. W. de C. Rarenel, superintendent of St. Jerome Station.

In the mean time, the routine work of the station was carried on under the supervision of Mr. William P. Sauerhoff, and the roof of hatchinghouse was painted and work was done to pumps, etc. The launch Blue Wing arrived at the station on August 10, and was at once dismantled and the machinery removed for overhauling, and the launch towed to Havre de Grace to be hauled out for repairs to hull and condenser. She was returned to Battery Station on August 21 and hauled out.

On Mr. Grabill's returu with the dredging-machine, he proceeded to cut a channel from the main channel to pool gates, and completed this between the 9th and 14th of August; the cut was 20 feet wide with a depth of $8 \frac{1}{2}$ feet at low water, mean. The remaining work in this line was completed by August 21, and Colonel Abert, deciding to postpone further dredging at Saint Jerome, the proposed return to that point was given up. Mr. Spencer agreeing to make certain concessions as to the use of his railway at Havre de Grace if permitted to do one day's dredg. ing with the mud-mackine, the dredge was towed to that point on the 23d, the work he desired performed, and then the machine returned to the station. The well-driving equipment was transferred to the steamer

[^102]Fish Hawk, and on the 21st transported to Saint Jerome Station, to be used there in securing au artestan water supply. On the 24 th of August the dredge force was discharged, the machine laid up, and Mr. L. R. Grabill left the service of the Fish Commission to return to the U. S. Engineer service under Col. S. T. Abert. The station was then transferred to the charge of Mr. William P. Sauerhoff.

After Mr. Sauerhoff assumed charge of the station, and up to the latter part of September, the small force under him was engaged in routine work of painting flat-boats and deck of Blue Wing and interior of launches, and in repairs to pile driver, gill-boat sails, pumping out dredge and pile-driver, work on pile-driver, engines, ete. The welldriving equipment sent to Saint Jerome by the Fish Hawk was returned to this station on September 6. September 22 Maj. N. M. Hutton visited the station to obtain information as to the depth of water around the island, etc. His risit was followed by those of Captain McCullongh and Mr. Glemn in reference to the engineer work provided for by act of Congress.

Mr. McGee arrived at station on 21st, and on $22 d$ and $23 d$ nsed launch in his investigations as to the geology of the surrounding country. Towards the latter part of October the United States engineer force began to arrise at the station and soon had preparations for their work completed. The operations were commenced October 27 and continned until December 23, when work was suspended on account of ice. The work of extending the hatching-house was commenced in the first part of November, and was vigorously pushed during the fullowing weeks. The foundation for the new storchonse was started, aud the men from the Fish Hawk, which had arrived on the 4th of November, and from the Halcyon, assisted the station force in these operations. The Assistant Commissioner frequently visited the station to supervise the work.

On November 20, Mr. W. de ©. Raveuel, superintendent of Saint Jerome Station, was transferred to the charge of this station and took the work in hand. During the latter part of November and through the month of December the work on the hatching-house was carried forward with all energs. The force was increased by details from the Fish Hawk and Halcyon. In the machinery department, all pumps and machinery were overhauled, as were launches, small boats, etc.

Havre de Grace, Md., September 9, 1887.

## XVII.-REPORTT OF OPERATIONS AT SAINT JEROME OYSTERbreeding station for the year 1886.

By W. de C. Ravenel.

During the greater parts of the months January, February, and March the channel to station and the upper part of the creek was frozen over, stopping all oystering and communication by water. Records of the temperature and density of water in the ponds and bay were kept during that time when practicable.

It having been decided to continue the experiments in artiticial propagation by means of artificially-impreguated spawn on a much larger scale than before and without confining it to ponds in which the water was filtered, aud also to give Prof. Johu A. Ryder's system of spat collection a fair trial, 300 bushels of oysters were purchased in April and bedded in lower pond for the artificial propagation, and 75 bushels were put in pond 5 to furnish spawn for the Ryder experiment, the Hume used to connect pond and chaunel having been taken out.

I was ordered to Battery Station on April 21 to assist in the shadhatching operations and returued to Saint Jerome on May 26. During the month of June a zigzag canal 270 feet in length, 4 feet deep, and $3 \frac{1}{2}$ feet wide, counecting pond 5 and main chanuel, was dug, sheathed up, and baskets made, which, soon after the 1st of July, were filled with clean shells and placed in canal.

The bank around the lower pond was wattled from the south end of piles to wharf ou Deep Point; piles were driven around the mouth of terra-cotta pipe comnecting bay and pond 4 and inclosed with wire netting to keep out, sea-weed and trash. A large quantity of sea-weed having settled at wharf, the men were employed two days removing a part of it; the Halcyon arriving on 30th with the Assistant Commissioner, finished this work by means of her propeller.

The laborers employed in digging canal, handling baskets, and other general work were hired from the immediate vicinity at $\$ 1.50$ per day.

On June 23 ripe oysters were found in sufficient numbers to commence spawning regularly. The force, cousisting of four men, was employed daily during the season in collecting ripe oysters, distributing the artificially-fertilized spawu in ponds $1,2,3,4$, and 5 , and at other points, and putting out collectors of slate and tile, coated with mortar,
placed in frames of various designs, so as to be in horizontal and up. right positions. Wire triys, covered with oysters and slate, resting on trestles about 8 inches ligh, were used in the ponds where artificially-fertilized spawn was distributed. In addition to these, plastering laths and shingles nailed to strips were mate use of in the ponds and surromnting waters, fixed so that where some tloated on the surface, others rested on the bottom or were amchored midway. Shells were also used as formerls, strung on galvanized wire.

The Steamer Fish Hawl arrived July 11 with dredge and two scows. Leaving them she proceeded to Battery Station, returning ou the 16th with two launches and a large force of men to work the dredge and sink an artesian well under the direction of Mr. Grabill, superintendent Battery Station, who, immediately upon his arrival, commenced sinking the well at the north east corner of wharf. After several attempts to get water near the surface, the pipe was driven down about 80 feet and then abandoned, in consequence of the punps being out of order.

The dredge commenced work in front of wharf to dig ont a basin 150 feet yide by 9 feet deep, and to continue decpening the channel leading to station. Tery little progress was made, owing to the poor condition of machinery, the difficulty of getting fresh water, and the hardness of the soil. Un the $2+$ th the dipper-pole broke and was not replaced until the 28 th, when work was resumed.

The Assistant Commissioner arrived on steamer Ifalcyon on 30th instant to inspect the general work of station.

During this month all the shells in the baskets mere washed, as much sediment had collected on them; very few young oysters were found at that time on them.

In August spawning was pushel with energy, new collectors being gut out daily until the 24th, when these operations ceased. The first appearance of spat was in pond 2 on July 29 , when oysters one-eighth of an inch in diameter were fonm. Mr. Grabill left for Battery Station August 3, sending the dredge, scows, and a launch by the Fish Hawk to same point; leaving Lamelh No. 55 and crew to assist in spawning at this station.

On August is Machinist Gleman and a carpenter reported for duty with a pump borrowed from the Fort Washington Station and work was resumed on the well. After several ineffectual attempts to Trive the pipe deeper it was given up and a new one commenced, which had been sunk to adepth of 94 feet when P'assed Assistant Engineer Reeves arrived on Fish Ituck with a large force of men to take charge. The work was now pushed night and day until, on the 26th, when a depth of $80: 3$ feet had been ohtained, the pipe wrung off 23 feet below the surface. It was then abandoned and the Fish ITavek left for Wool's Holl, Mass., taking with her the carpenters, the greater part of the engineer force, and the well-driving equipment. The rest of the men, except Corsirain Jones, were sent to Battery Station on the 31st.

During the months of September and Uctober all coilectors pat out were taken up and overhauled. The set of spat was exceedingly poor on collectors from chanel and lower ponds, though 183 oysters were found on one slate collector from Wrightson's Bar. About 500 were found on collectors in ponds $1,2,3$, and 4 . All those with spat were placed in ponds 1 and 2 on wire trays, resting on bottom.

On September 13, fiuding the oysters in pond 5 dying in great numbers from the effect of sand, I had them all taken up and put in lower pond. Upon thoroughly overhanling the baskets of shells and finding about 40 oysters to the basket, the shells were scattered in the channel and pond west of cottage.

Having observed a very heavy set of spat in parts of the outer creek, at the suggestion of the Assistant Commissioner, a careful examination of this, with Point Lookout and Smith's Creeks, was instituted. In the former the set of spat was phenomenally large for about one-half mile up both branches, while in the others the set was quite poor, though oysters were plentiful. It would therefore appear that Saint Jerome Creek had been advantageonsly affected by the large quantity of arti-ficially-fertilized spawn distributed by the station.

The Fish Hawk arrived here on 3 d of November, left well-tower and equipment, and taking Coxswain Jones and Launch 55, proceeded to Battery Station. The Herreshoff pump borrowed from the carp pond in Washington was returned November 8.

November 14 the Halcyon arrived with the Assistant Commissioner, who, after inspecting the station, instructed that it be closed and put in charge of a watchman and the superintendent report to Battery Station. All collectors with oysters attached were left in ponds 1,2 , and 3 ; about 350 oysters obtained from collectors placed in outer creek were put into three caissons and placed in poud 3. The station was turned over to the watchman, S. B. Wrightson, on 20th of November.

Appended is a table of weather variations and density and temperature, etc., of water at Saint Jerome Station.

Havre de Grace, October 2S, 1887.

[5] SAINT JEROME OYSTER-BREEDING STATION.









| $\frac{2}{2}$ |
| :---: |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |

サin








Table of temperatures, weather, and densities of water at Saint Jerome Station from January 1, 1886, to November 7, 1886, inclusive-Continued.

|  |  |  |
| :---: | :---: | :---: |
|  |  |  |
| $\begin{aligned} & \text { Water at Deep } \\ & \text { Point. } \end{aligned}$ |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  | 苟 易 A |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  <br>  <br>  <br>  <br>  <br>  <br>  |






## 




##  <br> 















[^103]|  | Date. | $\begin{aligned} & \text { State of } \\ & \text { tide. } \end{aligned}$ | State of weather. | Direc. tion of wind. | Tem perature of air. | Water at wharf. |  | Water of oyster ponds. |  | Water at canal. |  | Water in the bay. |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | Tem pera ture. | Densits. | Tempera ture. | Density. | Tem perature. | Density. | Tem perature. | Density. |
|  | 1886. |  |  |  |  |  |  |  |  |  |  |  |  |
| Juls 1, 7.30 a . m |  |  | Storms. | SE. | $\begin{aligned} & 70 \\ & 78 \end{aligned}$ | 70 75 | 1. 10080 | 70 76 | 1.0080 | 70 76 | 1.0780 1.0020 | 76 | 1.0080 |
|  |  | Low | Stormy | SE. | 72 | 72 | 1. 0080 | 72 | 1.00s0 | 73 | 1.0760 | 72 | 1. 0080 |
| July $2,2 \mathrm{p}$. m... |  | High | Stormy | SE. | 82 | 78 | 1. 0680 | 78 | 1. 0680 | 78 | 1.0070 | 78 | 1. 0070 |
| July 3, 9 a.m. |  | Low | Clear ... | NW. | 74 | 74 | 1.0080 | $7 \pm$ | 1. 0080 | 74 | 1.0760 | 74 | 1. 0760 |
| July 3, 3 p.m. |  | Hiph | Clear .... | NW. | 74 | 75 | 1. 0080 | 75 | 1. 0080 | 73 | 1.0780 1.0070 | 75 74 | 1.0740 |
| July 4, $10 \mathrm{a} . \mathrm{m}$ |  | Low | Clear | NW. | 75 | 74 | 1.0070 | 74 | 1.00,0 | 75 | 1.0070 | 75 | 1. 00060 |
| July $4,4 \mathrm{pm}$ |  | High. | Clear | NW. | 78 | 74 | 1.0070 | 76 | 1.0070 | 76 | 1.0076 | 76 | 1. 1.0066 |
| July $5.5 \mathrm{p} . \mathrm{m}$. |  | Low | Clear | $\mathrm{SH}_{6}$ | 7 78 7 7 | 82 | 1.0064 | 83 | 1.0066 | $\varepsilon 2$ | 1. 0066 | 82 | 1.0066 |
| July $6,12 \mathrm{~m}$. |  | Low | Clear | SE. | 74 | 75 | 1. 0074 | 75 | 1.0070 | 75 | 1.0073 | 75 | 1. 0074 |
| July $6,6 \mathrm{p}$. m |  | High. | Clear | SE. | 80 | 8 | 1.0062 | 8 | 1. 0460 | 82 | 1. 0060 | ¢2 | 1. 0060 |
| July 7, 7 a.m. |  | Hiph | Clear | W. | 82 | 80 | 1. 0070 | ¢0 | 1. 0064 | 80 | 1.0064 | 80 | 1. 0068 |
| July 7, 1 p.m |  | Low | Clear. - | SW. | 87 | 82 | 1. 00.5 | 82 | 1. 0058 | 8 | 1.006t |  | $1.006{ }^{1}$ |
|  |  | High | Clear | \% | 80 | 8 | 1. 1.0070 | 80 | 1.0060 | 80 | 1. 0064 |  | 1. ${ }^{1} .0080$ |
| July $8,2 \mathrm{prm}$ July $9,9 \mathrm{~mm}$ |  | Low | Clear | Nu. | 85 75 | 8 | 1. 1.0174 | 75 | 1. 1.0066 | 8 | 1.0076 | 75 | 1. 00064 |
| July $9,9 \mathrm{am}$ |  | Low | Clear. | NW. | 80 | 85 | 1.0660 | 8.5 | 1. 6060 | 85 | 1.0060 | 85 | 1. 0060 |
| July 10,930 a.m |  | High | Clear | W. | 79 | 80 | 1. 1017 | 80 | 1.007) | 80 | - 1.0070 | 80 | 1. 0064 |
| July $10,3.30 \mathrm{p}$. m |  | Low | Cleas | W. | 85 | $8:$ | 1.01130 | 82 | 1. naco | 82 | 1. 0060 | $8 \cdot$ | 1.00tie |
| July $11,10 \mathrm{a} . \mathrm{mm}$ |  | High | Clear. | SE. | 78 | 81 | 1. 0164 | 81 | 1. 0060 | ¢1 | 1.0064 | 81 | 1. 0064 |
| July 11,4 p . m . |  | Low | Clear | E. | 81 | 81 | 1. 0051 | 84 | 1.0053 | 84 | 1.00.58 | 81 | 1. 0000 |
| July 12, $10.30 \mathrm{a}, \mathrm{m}$. |  | Himh. | Clear. | E. | 7.5 | 80 | 1. 0170 | 80 | 1.0066 | 80 | 1. 0006 |  | 1. 1.0066 |
| July 12, $4.30 \mathrm{p} . \mathrm{m}$ |  | Low | Clear | ${ }_{\text {E }}^{\text {E }}$ | 79 | 82 | 1. 0ettic | 8 | 1. 1.0068 | 8 | 1. 0062 |  | 1.0062 |
| July 13, 11 a.m... |  | High | Cloudy. | SW. | 74 | 75 | 1. 10060 | 75 | 1. 0063 |  | 1. 0051 |  | 1.0074 |
| July 13,5p.m. |  | Lnw. | Rain..... | SW. | 75 | 80 | 1. 0160 | 80 | 1.00.52 | 80 | 1. 0048 |  | 1. 0061 |
| July 14, $11.30 \mathrm{a} . \mathrm{m}$ |  | High . | Stormy | SW. | 76 | 76 | 1. 0.662 | 76 76 | 1.0070 | 76 76 | 1. 0052 |  |  |
| July 14, $530 \mathrm{p} . \mathrm{m}$. |  | Low | Stormy | SW. | 72 | 76 | 1. 04054 | 76 | 1. $006{ }^{2}$ | 76 | 1. 0062 |  | 1.0067 |
| July 15, $12.15 \mathrm{p} . \mathrm{m}$. |  | High | Clondy - | SE. | 75 | 78 | 1. 0072 | 78 | 1.007 | ${ }_{7} 8$ | 1. 0050 |  | 1. 1.0010 |
| July 15, $6.15 \mathrm{p} . \mathrm{m}$ |  | Low | Cloudy | SE. | 4 | 76 |  | 74 | 1. 00004 | 74 | 1. 000 t | 74 | 1.046 |
| July 16, $7 \mathrm{a} . \mathrm{m}$.. |  |  | Clear | $\mathrm{S}_{\mathrm{S}}$ |  | 74 78 | 1. 01058 | 78 | 1. 0060 | 78 | 1. 0062 | 78 | 1.008 ${ }^{\text {d }}$ |
| July $16,1 \mathrm{p}$, m |  | Low | Clear | W. | 75 | 78 | 1. 0064 | 78 | 1.0060 | 78 | 1. 0060 | 78 | 1. 0070 |
| July 17, $2 \mathrm{p} . \mathrm{m}$ |  | High | Clear | W. | 80 | 82 | 1. 00tio | 82 | 1. 0054 | 82 | 1.0060 | 83 | 1. 0662 |
| July 18, 9 a.m |  | Low | Clear .. | SW. | 78 | 80 | 1.0060 | 80 | 1. 0060 | 80 | 1. 0060 | 80 | 1. 0064 |
| July 18, $3 \mathrm{p} . \mathrm{m}$ |  | High | Clear | SW. | 82 | 84 | 1. 0056 | 84 | 1. 0056 | 81 | 1. 0058 | 84 | 1. 0062 |
| July 19, 10 a . m |  |  | Clear | NE. | 77 | 75 | 1. 0070 | 75 | 1. 0070 | 75 | 1. 0072 | 75 | 1. 0070 |
| July 19, 4 p. m |  | Eigh | Clear .... | NE. | 80 | 84 | 1. 0064 | 84 | 1.0066 | 84 | 1.0074 | 84 | 1.0070 |





$\qquad$



층心. Now








|  | $\stackrel{\stackrel{\rightharpoonup}{c}}{\stackrel{\sim}{4}}$ |  <br>  |
| :---: | :---: | :---: |
|  | 白葛苞 |  |
| Water at canal． |  |  <br>  <br>  |
|  |  |  |
|  |  |  |
|  |  |  |
| $\begin{aligned} & \text { H } \\ & \text { ت } \\ & \text { H } \\ & \text { E } \end{aligned}$ | $\begin{gathered} \text { 突 } \\ \text { 感 } \end{gathered}$ |  |
| $\begin{aligned} & \text { Wy } \\ & =0 \\ & \hline \end{aligned}$ | 至 |  |




|  |
| :---: |
|  |  |




 | 4 |
| :--- |
| 0 |
| 0 |
| $=0$ |



1886.






















|  |  |  |
| :---: | :---: | :---: |
|  |  |  |
|  | 亳 |  |
|  |  |  |
|  | 涊 |  |
|  |  |  |
|  | 豧 |  03000000000．0． |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  | घ <br>  <br>  <br>  <br>  <br>  |


| [13] | SAINT | JEROME |
| :---: | :---: | :---: |
|  |  |  |





















N









## XVIII.-REP0RT ON THE artificial propagation of THE CODFISH at W00D's hoLL, Mass., FOR THE SEASON OF 1885-'86.

By James Carswell.

Having received instructions on the 1st of December to proceed to Wood's Holl, Mass., and report to Capt. II. C. Chester to assist in codfish hatching, I left Washington December 2 for that place, taking with me all the necessary apparatus.

On my arrival at Wood's Holl Captain Chester was engaged in carrying on a series of experiments for the hatching of codfish eggs, and after conference with him I learned that his idea was that in order to secure success the eggs must have motion, and that all the apparatus he had tried previous to that time, and was still using, was constructed under this impression. He had several boxes fitted up with jets of water let in, one so as to merely move the eggs, the others varying in velocity from 1 to 4 miles an hour; but all of these arrangements resulted in failure. I had been sent on with apparatus constructed by Colonel McDonald, designed for using the tidal motion, but Captain Chester appeared to be thoronghly convinced that motion was the thing. There was also at the station an arrangement of barrels put up by direction of Major Ferguson which failed, and the only success which had been attained up to this time was by a series of cones, which Captain Chester called the "Tanner arrangement." In this a very small percentage was hatched out; but it had the effect of changing our minds in regard to the necessary motion, as the eggs worked very slowly with a tidal motion.

On the 4 th I fitted up two tubs aud glass aquaria with side and center jets, siphon bag in center, and water escaping at the bottom. On the 5 th I procured 400,000 eggs and placed an equal number in each of the two apparatus. I was very much pleased with the motion, which was just enough to force the eggs slowly to the bottom, diffusing them well through the water, and then rising toward the surface. Having had no previous experience, I thought by what I had learned from Captain Chester aud by examining his apparatus that I had combined all the necessary conditions to secure success. The eggs looked all right and seemed to be doing very welk, although a great many ad-
hered to the siphon cloth. This, however, was easily remedied by giving the siphon bag a slight shake hourly.

On the morning of the 7th I found a great many dead eggs in both apparatus, and the following day all were dead in the aquarium. I attributed the mortality to the fact of this adhesion to the siphon cloth and to the sediment in the water.

On the 9th Colonel McDonald arrived at the station, and after talking the matter over we concluded that there was too mach motion. I put 100,000 more eggs into the aquarium, using as little motion as possible, and entirely filtered the water. The eggs in the tub were still doing well, although under exactly similar circumstances as those in the aquarium, so I thought the advantage of the former over the latter was due to the larger area. I then started a large tub, fitted up in the same manner as before, with a fresh lot of eggs and a moderate circular motion. They all did well until the 13th, when I found it was necessary to do something else with them, as they were clotted together and sunk to the bottom. The fish at this time could be seen distinctly. I took them out and, after cleaning them off, placed them in a McDonald jar and worked the same as with shad. I was also compelled to transfer those in the large tub to jars, working with a small jet of water applied to the surface, which made them swing gently around the jar, but not enough to drive them to the bottom.

On the 15th all the eggs taken on the 5th, which were worked in the aquarium for five days aud afterwards trausferred to jars, were dead; but they were well developed and would probably have hatched out in a few days.

On the 16th I was obliged to take all the eggs out of jars and aquaria for the same reasou as before, and I am convinced that cod eggs sink to the bottom as they grow older and as the young fish begin to develop. I then placed them in three jars, working one with top motion, one with bottom motion, and the other with a combined motion of top and bottom; but this resulted, as before, in their gradually dying, and on the eleventh day after they were taken all were dead. In one jar the eggs were left to adhere constantly to the siphou bag for eight days. For the first six days they did well, but after that they began dropping off, and at the eud of the eighth day thes had all dropped off and were dead. I tried the tubs once more with slightly altered conditions, but the result was the same. In all the methods and motions tried a great many of the eggs lived until the hearts of the young fish conld be seen to beat.

Captain Chester also had two boxes fitted up, one with a copper sereen in the bottom, and in another he put two of the hatching jars, but covered them with copper-wire screens. All of these experiments resulted in naught, but the experiments had been continued long enough to satisfy us that it was better than anything heretofore discovered. In putting in the next lot of eggs Captain Chester used cheese-cloth
instead of copper wire to cover the jars and placed these in the box with tidal motion as before. This lot of eggs was hatched out with a small percentage of loss.

From my own experience I have come to the conclusion that cod eggs will float for ine or six days, but at the end of that time they begin clotting together and sink.

It would be impossible for me to give in detail all the different appliances and means that were resorted to, but they were all carried on with the view that it is necessary for the cod eggs to be submerged for awhile and then allowed to rise to the surface, and every motion that could be conceived was tried to attain this end. I think it a great mistake to use any metal whatever in fitting up any kind of apparatus for cod hatching.

Although prepared for applying the tidal motion, I had never up to this time fitted the tubs up, applying this motion. On the 23d of December I fitted up one glass aquarium and wash-tub with tidal motion, using cheese-cloth screens made to fit tight on the inside, about 4 inches from the bottom.

Ou the 25th I found that most of the eggs had gone to the bottom in both apparatus, owing to the density of the water having fallen from .025 to .021 degrees, and upon examination found that the pumps were drawing fresh as well as salt water, which, of course, put an end to this experiment, as the eggs were all destroyed.

On the 28th I put in another lot of eggs, which did rery well, bat do not think that I got more than 50 per cent. of young fish; but even this was an improvement on anything heretofore accomplished.

On the 6th of January, 1886, I put a fresh lot of eggs in the aquarium and one tub, which did well until the 9 th ; but for some unaccountable reason at least one-half the eggs in the aquarium had gone to the bottom and were dead, while those in the tub were still doing splendidly. These commenced hatching on the 19th, and by the $22 d$ all had hatched out, not more than 10 per cent. having beeu lost.

After the many experiments tried both by Captain Chester and myself I have no hesitation in saying that the best conditions for success in cod-hatching are :
(1) As little motion as possible, with just sufficient chauge of water to keep it fresh.
(2) To use entirely filtered water, which can be easily done by filling a McDonald jar with cotton, and fitted up as is done in shad work.
(3) To avoid the use of anything like metal in fitting up an apparatus.

The work now ceased for a time, as the codfish in live cars had all died on account of the extremely cold weather, and II was instructed to proceed to Florida with half a million of the young fry. Up to the time I left I estimate that we had taken about $15,000,000 \cdot \mathrm{eggs}$, all of which were lost in experimenting, with the exception of about $2,000,000$.

Five hundred thonsaud of these were deposited in the waters of the Gulf and 100,000 in Chesapeake Bay. The re!nainder, $1,400,000$, were planted in Wood's Holl Harbor. The shipment to the Gulf was sent in my charge, while that to the Chesapeake Bay was made by Messrs. Moore and Robinson.

On my return to Washington I was ordered to the Fish Hawk to continue the collection of codfish eggs off the Isle of Shoals. In consequence of the rough weather there was only one day on which we succeeded in collecting eggs, when we procured about $8,000,000$, half of which were shipped to Captain Chester by express in transfer cans, and the other half were placed in large glass aquaria which I had fitted up on board the Fish Hawk, applying the tidal motion, but owing to the extremely cold weather and to an accident to the vessel these were all lost. We made several attempts subsequent to this to collect more eggs, but withont avail. Of the lot forwarded to Wood's Holl I am informed that one-third were received alive. These were hatched out with a small per cent. of loss and turned into the Wood's Holl Harbor.

[^104]
## XIX.-REPORT'0N THE ARTIFICIAL PROPAGATION OF CODFISH AT W00D'S H0LL, IISS., FOR THE SEAS0N OF 1886-'87.

By Charles G. Atiins

The experiments in the hatching of codfish at the Wood's Holl Station for the season of 1886-87 extended, in point of time, from the 16th of November to the 6th of April. The spawn was obtained, for the most part, from codfish brought in by the schooner Grampus from the Gulf of Maine, a single lot of 170 adults having been secured from local fishermen who had caught them at Nantucket Shoals and about $11,000,000$ eggs having been taken by the Grampus from the fish on the fishing-grounds off Cape Aun. The hatching was all conducted in the hatching.room of the laboratory, and all, with the exception of a few experiments, in the Chester hatching-boxes. The total number of eggs handled was $43,575,000$, of which $22,040,000$, or a little more than 50 per cent., were hatched, and $19,495,000$ were liberated alive in the waters of the adjacent coast.

The scale of operations, which under favorable circumstances might be greatly extended, was limited by the difficulties attending the collection of the parent fish. The first fish that came to hand were collected by the schooner Grampus to the eastward of Cape Cod and brought to the station on the 16 th of November to the number of 195 codfish, together with a few pollock, haddock, hake, and cusk. Only the codfish yielded spawn. Another lot of adults, numbering 273 live codfish, were brought in by the Grampus from the same waters on the 9th of December; on the 11th of December 170 codfish were obtained from Nantucket Shoals; and, finally, on the 25th of January, 219 more were brought in from the Gulf of Maine by the Grampus. By the latter date the temperature of the sea along the coast, especially in the harbors, had fallen to so low a point that it seemed quite probable that an attempt to collect codfish and bring them to the station in the well of the Grampus, as had been done with the lots brought in by her so far, would fail by the death of the fish from the excessive cold to which they would be exposed should the vessel be compelled to seek a harbor during the trip.

The result of the observations heretofore made on this point is, in general, that codfish will live in water not colder than $30^{\circ}$ Fahreuheit,
but that when it falls to 290 they all die, apparently through actual freezing. It has several times occurred at the Wood's Holl Station that all the adult fish on hand have died in this way in a single night. At the suggestion of Captain Collins, it was determined to attempt the collection of eggs directly from the fish on the fisking-grounds and transfer them to the Wood's Holl Station by rail. Mr. George.H. Tolbert was sent from Washington charged with the manipulation of the eggs; and, with the assistance of the officers and crew of the Grampus, he collected and transferred all the eggs obtained after the 25th of January.

In an ordinary season the weather and other circunstances would be much more favorable to the capture of codfish than the winter of 1886'87, and there would be no great risk attending their transfer from the Gulf of Maine to Wood's Holl up to the 1st of February. It might, therefore, be reasonably expected that a sufficient stock of breeding codfish could be gathered at Wood's Holl before the end of Jannary to supply all the eggs that could be profitably incubated there.

The fish brought in by the Grompus were taken from her well in fairly good condition and placed in cars in one of the basins at the station. On the approach of dangerously cold weather in the winter an inclosure was made in the basement of the hatchery and the fish then on hand, and afterwards received, were placed therem. The experience of a single winter seems to warrant the belief that in such an inclosure fish will be safe from freezing in the severest weather.
The fish were overlauled from time to time, generally at intervals of two to four days, and the spawn and milt extruded into large pans containing a little sea-water, from which they were in a very short time washed off and placed carefully in the hatching-jars. The total number of gravid females found during the season was 108 , and their average yield of eggs was about 300,000 each.
The first lot of eggs, taken on the 18th of November, began to hatch on the 26 th, eight days from impregnation. The temperature of the water, which up to this time had been above $50{ }^{\circ}$, fell steadily, until, on the 19th of January, it reached 320 Fahrenheit, the lowest reached in the hatchery during the season. The development of the spawn was, in consequence, so retarded that the lots takeu in January and February were from twenty to twenty-five days in incubation. The best success attended the incubation of the eggs that were taken from the fish at the station in December and January. In sereral lots as high as 85 per cent. of the eggs put into the jars were successfuily hatched, and in most cases all of the fry were liberated alive. Some of the lots of those months were, however, less satisfactory, the ratio of fry hatched being in some cases as low as 50 and 40 per cent., and the results obtained from those taken in November, and from those taken at sea aud brought overland to the station in February and March, were eren less satisfactory. From 11,150,000 transferred overland, but $72 \pm, 500$ were hatched.

It is a matter of common expericnce among fish-culturists that the
individuals that mature earliest in the season yield less healthy eggs than those spawning in the height of the season, and we may suppose that the eggs taken in November were from fish prematurely ripe. The masatisfactory results from the eggs brought orerland must, however, be attributed to the conditions under which they were taken and transferred. They were takeu frequently under the great difficulties attendant on a boisterons sea and extremely cold weather, had generally to be kept over night, while awaiting shipment, in jars or other vessels, and their transfer by express involved their confinement for many hours, in a crowded condition, in small jars of water hermetically closed, with at best a scanty allowance of air. I do not think the ill success attending these transfers at all settles the equestion of the practicability of this method of collection under varied conditions. It might be possible to bring them throngh in perfect health by more careful attention to the necessity of a constaut pration of the water. This, however, is a matter for future experiment.

As a rule the figs were liberated as soou as practicable after they were hatched. If, as was commonly the case, the period of hatching out was protracted, those first breaking the shell were taken ont of the jars and liberated, while the remainder of the lot were left in the jars to hatch. A single lot of the fry, numbering 2,050,000, was takeu by the Grampus, on the 27th day of January, and liberated near Race Point in Cape Col Bay. All the others were liberated in the immediate vicinity of Wood's Elll, sometimes on the flood tide, which would carry them into Vineyard Sound, aud sometimes on the ebb, which would carry them into Buzzarà's Bay.
The experiment was tried in sereral instances of keeping the fry in aquaria until they should attain some growth. The conditions of these experiments were greatly raried, but uo satisfactory result was obtained in any case. Although ampearing to be in good health when pat into the aquaria, the fry incariably dwindled away until all or nearly all were goue. Egress was so guarded against that there seems little doubt that in most cases the disappearance was the result of death. It seemed impossible to so arrange the screens that the young cod would not be drawn against them and die. Whether the egress of the water was constant or intermittent (which latter condition we obtained by means of a tidal movement), in every case the result was practically the same.

A determination of the conditions under which cod fry can be reared, even to the age of a few weeks, presents to us, therefore, an unsolved problem. It will be necessary to inquire whether the dificulty does not arise, in part at least, from the crowded condition of the eggs in the hatching jars. These jars are of glass, 9 inches in diameter and 15 or 16 inches deep, and eggs enough are placed in one of them to form a layer at the surface a large fraction of an inch in thickness. When this apparatus is in operation the jar is covered closely witk cheesecloth and placed in the hatching-box in an inverted position, the water, S. Mis. $90-$ - 50
aerated by the artificial tidal motion, which is the most essential feature of this arrangement, rising and falling through the cheese-cloth and the complementary supply of air harmg ingress and egress through a hole bored in the upturned bottom of the jar. It is supposed that the ingress of water from the bottom disturbs the eggs enough to change their position and gives each egg its share of the water-supply; but it is questionabie whether the arrangement secures sufficient change of water throughout the mass of eggs to maintain them in a condition of healthy and normal development. As yet there has been no opportunity of comparing the artificially hatched fiy with those hatched in the natural way in the open sea.

A very important improvement has been effected in the water service during the past season. Two circular tanks with an aggregate net capacity of 17,000 gallons, have been erected alongside the coal-shed, and are served with a system of piping of which the mains are formed of $\log$ pipe wound with iron and covered with coad-tar, and the smaller pipes of hard rubber. Weare consequently now entirely free from the dificulties that used to arise from the presence of fron rust in the pipes and hatching apparatus and which was, in fact, a very serions difticulty. The new system was put in operation on the 7 th of December, and, with the exception of an occasional muddiness, resulting from heavy rainfall, the water has been admirably pure ever since.

The number of hatching boxes brought into operation during the winter was 24. They were arrauged in series of thee boxes each, and the amount of water fed to each series amomited to 150 gallons per hour, or a total of 1,200 gallons per hour. The total net capacity of the tanks is 17,000 gallons, so that in case of a suspension of pumping the hatchery can be made to rum abont fourteen hours without any curtailment of the quantity before the supply would be exhausted.

The Chester hatching boxes appear to be well adapted to the purpose of hatching buogant egge, yet, like most other new inventions, to be capable of simplification. A few boxes on essentially the same plan, but with simplified details, were constructed and found to work quite as well as those built on the original design. With the ordinary watersupply, which was about 150 gallons per minute, the period of each tidal pulsation was about ten minutes. The antomatic action of the apparatus is well-nigh perfect, interference of the attendant being rarely necessary. It was, however, not considered prudent to leave the boxes without attention during the night, aud the night watchman made regular examinations.
Obsercations on the temperature and density of the water in the hatchery were made daily through the months of December, Janary, February, and March. From these it appears that the density was very uniform, ranging from 1.0200 to 1.0260 , and that the temperature of the water ranged from 490 to $33^{2}$, the mean tor the month: being 38.70.

Subjoined will be found the report of Mr. James Carswell, who was in charge of the manipulation of the eggs and of the water observations.

## REPORT OF MR. CARSWELL.

As desired, I submit the following report of cod-hatching for the winter of 1886-'87.
On my arrival at the station, on the 29th of November, I found in the hatchers a few cod eggs and fry. Some of the latter I put in an aquarium, but all got drawn upon the siphon bag and were lost. This I attributed to their sickly conditiou when put in.

On the 9th of December the Grampus arrived with 273 live codtish, and a smack, on the 11 th of the same month, with 170 , all of which were put into the live cars, and all proved to be good sparmers. The first eggs taken were a small lot on the day of arrical, but these and the two following lots turned out badly, not hatching over 50 per cent. At the time they were taken I did not think they were likely to turn out well, because they scattered too much in the water when put in the hatching jars. Cod eggs wheu taken should at once rise to the surface of the water after being impregnated, and remain there mutil hatched; although in the case of cery low temperature, when a long time is taken to hatch, the eggs will sometimes get coated with a very fine sediment and sink. Still, if they are far enough advanced for the young fish to be seen with the naked eye, they will hatch out, notwithstanding they have sunk to the bottom.

The codfish in live cars were examined every other day with varied success, the smallest number of eggs taken being 35,000 , and the largest $3,200,000$. All the eggs taken from the 13th to the 31st of Decemberabout $18,000,000-$ turued out well, the arerage loss, as near as I could estimate, being about $\underline{\Sigma}^{0}$ per cent., but in several instances it did not exceed 5 per cent. I think the collhatching apparatus now in use at the Wood's Holl Station will compare farorably with any apparatus known to me and which is used for the hatching of other species of fish.

Experience has proved that it is not advantageous to have the temperature of the water above $40^{\circ}$. In warmer water the eggs hatch out too rapidly, the fry are weak and sickly, and a very large percentage of them die after hatching. I consider the best temperature to be from $34^{\circ}$ to $35^{\circ}$, when the eggs will take from eighteen to twenty-five days in hatching; then the fry straighten out soon after hatching, look strong and vigorous, and invariably stay on the surface of the water. My experience is, the stronger the fry the nearer the surface they will remain.

From the 13th to the 31st of December I made sereral experiments in trying to keep the young fiy alive in aquaria. First with the usual siphon-bag as in shat work; but in every case this resulted in drawing all the fry onto the cheese-cloth, where ties would remain until they died. Next I fitted up three aquaria (see phans) and applied the tidal motion in three difierent ways, but this also resulted in the death of the fry after a time; not, howerer, on account of their sticking to the
cheese cloth, as the draught was very slightand only lasted from fire to fifteen minutes, when the return would come, releasing any that might have got onto the cloth, but from other causes which I am unable to account for. The best success obtained was in one of the smaller aquaria (No.1), with a lot of very strong and healthy fry, which were put in on the sed of Jannary and did very well for some time, hat all gradually died, and on the 14th of February all were gone. I also kept some of this lot in the hatching.jars, but they, too, died about the same time. I noticed that the sacs of most of them were gone before they died.

Sn the ?'5th of Jamary the Grompus arivel with 162 live cod, which were put in the basement, and they lived equally as well there as in the cars. My experience in keaping large codfish alive is they will live any where, procided they have a plentiful supply of fresh salt-water and the temperature never goes below $30^{\circ}$; for at $23^{\circ}$ all will die. Very few eggs were obtained from this lot of fish, as the majority were males and the females had mostly spent, and even those taken turned out badly on account of the poor condition of the tish when received.

I fitted up two tubs with the tidal motion and put in $1,000,000$ eggs, which did very well for a few days, but owing to the high temperature of the hatchery and the large surface exposed to it, the temperature of the water in the tubs got too high and killed them all. I did not get another opportunity of trying the tubs, but from former experience I am satisfied good hatching can be done with them.

Several lots of eggs were receiced by express from Gloncester, and Mr. Tolbert brought three lots, in all about $11,000,000$; and on each occasion from one third to one-half died in transportation. On examining the apparently good ones with a microscope very many of them were fonnd to be more or less defective, and, consequently, but few healtly firy were hatehed out.

I submit the following suggestions for another season's work:

1. That there should be a supply of not less than 1,000 codfish at the station by the 1st of November, or as soon as they can be obtained from Nantucket Shoals.
2. That arrangements should be made for getting a monthly supply of at least 500 more. By this means the number rould be kept up, and I think would furnish all the eggs the present force could handle.
3. That the basement he fitted up with a number of small pools, conveniently arranged, so the fish can be easily overhauled and get a. mentiful supply of fresh water. This will obviate the chances of their getting killed by frost and afford an opportunity of examining them at any time.

Accompanying this you will find copies of the daily record kept during the season.

Wood's Holl, Mass., March 25, 1887.
liecord of cod-hatching at Wood's Holl, winter of 1886-87. [Prepared by James Carswell.]


Record of the planting of cod fry during the ainter of 1886-'87.
[Prepared by James Carswell.]

| Date. | Where planted. | By whom. | Number. | Species. |
| :---: | :---: | :---: | :---: | :---: |
| 1886. <br> Dec. '34 | Wood's Holl Harbor | Olmston and Barry | 487, 500 | Common cod. |
| 1887. |  |  | 750,000 |  |
| Jan. 3 | . do | do | 1, 530,000 | Do. |
| 5 | . . do | do | 880,000 | Do. |
| 10 | -.....do do.. | ....do. | 725,000 | Do. |
| 12 | Small Yool ….. | Carswell....... | 500,000 | Do. |
| 17 | ......do -............ | Olmston and Bary | $2,050,000$ $2,000,000$ | Do. |
| 19 | do | , | 2, 500,000 | Do. |
| 21 | ...do | do | 480,000 | Do. |
| 27 | Race Point, Cape Cod Bay | Captain Collins... | *2, 050, 000 | Do. |
| Febr $\begin{array}{r}5 \\ 11 \\ 14 \\ 29 \\ 20 \\ 25\end{array}$ |  | Ohmston and Barry | 750,000 $1,000,000$ | Do. |
|  |  |  | $1,000,000$ 500,000 | - ${ }_{\text {- }}^{\text {Do. }}$ |
|  |  | Olmston | 750, 000 | Do. |
|  |  | -....do | 250,000 | Do. |
|  |  | Parry | 1,570, 000 | Do. |
| Mar. 13 | Small Pool | Barry | 50, 000 | Do. |
| Apr. 4 | Wood's Holl Harbor | Olmston | 272,500 250,000 | Do. |
|  |  |  | 150, vor |  |
|  | Totat |  | 19, 405,000 |  |

* Capain Collins reported the fry phanted in splemed condition.

The fry put in larbor were sometimes put in on the flnod tide, when they would be drawn into Vineyard Sound, and sometimes on the cob, wheu they would be drawn into Buzzard's Bay.
liecord of temperature and density of water, winter of 1886-87.
['repared by James Carswell.]

| Date. |  | Temperature of water. |  |  | Density of water. |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Morning. | Noon. | Erening. | Morning. | Noon. | Evening. |
| Dec. | 1886. | ${ }^{\circ} 40$ | ${ }^{\circ}{ }_{49}$ | ${ }^{\circ}{ }_{49}$ | 1.0253 | 1. 0253 | 1. 0253 |
|  |  | 49 | 48 | 47 | 1.0253 | 1. 0253 | 1. 0253 |
|  |  | 43 | 43 | 43 | 1. 0256 | 1.0256 | 1. 0256 |
|  |  | 43 | 4. | 42 | 1. 0256 | 1. 0256 | 1. 0256 |
|  |  | 43 | 43 | 39 | 1.0256 | 1. 0256 | 1. 0256 |
|  |  | 40 | 39 | 38 | 1.0258 | 1. 0258 | 1. 0258 |
|  |  | 39 | 38 | 38 | 1. 0258 | 1.0258 | 1. 0258 |
|  |  | 37 | 37 | 38 | 1.0258 | 1.0258 | 1. 0258 |
|  |  | 38 | 38 | 38 | 1.0257 | 1.0257 | 1. 0256 |
|  |  | 39 | 39 | 40 | 1. 0256 | 1. 0256 | 1.0.56 |
|  |  | 40 | 40 | 40 | 1. 02250 | 1.0256 | 1. 0256 |
|  |  | 40 | 40 | 41 | 1. 0256 | 1. 0256 | 1. 0256 |
|  |  | 41 | 41 | 42 | 1. 0256 | 1.0256 | 1. 0256 |
|  |  | 42 | 41 | 41 | 1.0256 | 1.0256 | 1.0256 |
|  |  | 41 | 42 | 42 | 1. 0256 | 1. 0256 | 1. 0256 |
|  |  | 41 | 41 | 41 | 1. 0253 | 1.0253 | 1. 0253 |
|  |  | 41 | 38 | 41 | 1. 0258 | 1. 0258 | 1. 0258 |
|  |  | 41 | 41 | 40 | 1. 0258 | 1.0258 | 1. 0256 |
|  |  | 40 | 40 | 40 | 1. 0255 | 1. 0256 | 1. 0256 |
|  |  | 40 | 39 | 39 | 1. 0256 | 1. 0256 | 1. 0256 |
|  |  | 40 | 39 | 39 | 1. 0256 | 1. 0256 | 1. 0256 |
|  |  | 39 | 39 | 39 | 1.0256 | 1.0256 | 1. 0256 |
|  |  | 39 | 39 | 39 | 1.0256 | 1.0256 | 1. 0256 |
|  |  | 39 | 40 | 40 | 1. 0255 | 1.0256 | 1. 0256 |
|  |  | 41 | 41 | 40 | 1.0256 | 1.0256 | 1. 0256 |
|  |  | 39 | 39 | 39 | 1.0256 | 1.0256 | 1. 0256 |
|  |  | 39 | 39 | 39 | 1. 0256 | 1.0256 | 1. 0256 |
|  |  | 38 | 38 | 38 | 1. 0256 | 1.0256 | 1. 0256 |
|  |  | 37 | 38 | 37 | 1. 0256 | 1.0256 | 1. 0256 |
|  |  | 36 | 36 | 36 | 1.0254 | 1.0254 | 1. 0254 |
|  |  | 36 | 36 | 36 | 1. 0254 | 1.0254 | 1. 0254 |
|  |  | 40 |  |  |  | 1. 02559 |  |

Record of temperature and density of water, winter of 1886-'87-Continaed.


+ 29 days.
- 


# XX.-REpgrt 0f operations at the Wytheville station, VA., FRoM Jandary 1, 1885, T0 JUNE 30, $188 \%$. 

By Marshall McDonald.

The plans projected during 1884 for extending and improving the facilities for work at this station were carried out during the summer and fall of 1885 , under the direction of the Commissioner of Fisheries for the State of Virginia, and the cost of the exteusive improvements made was defrayed by the State Commission.

The station is now substantially complete in its equipment and appointments. Additional ponds will be needed from time to time to provide increased capacity for rearing trout and other species for distribution.

Much also remains to be done in providing access to and circulation through the grounds by the construction of good graded roads, in erecting substantial inclosures for protection from depredations, and in improving the amenities of the grounds by planting trees and shrubs, clearing up the undergrowth, and, turfing bare aud unsightly spots. But the station may now be regarded as fully equipped for its work; and a description of its location, buildings, ponds, and grounds, aud its facilities for production and distribution of the Salmonidre will well illustrate its importance and value to the work of the U.S. Fish Commission.
(1) Location.-The station is situated in southwestern Virginia, about 3 miles east of the town of Wytheville and immediately on the line of the Atlantic, Mississippi and Ohio Railroad, which, with its extensive connections northeast and sonthwest, traverses that broad belt of mountain region which stretches from New York to Georgia and Alabama and is the natural trout region of the Middle and Sonth Atlantic States. The facilities thus afforded for expeditious and satisfactory distribution to the most distant points are all that can be desired.

A railroad siding, not a hundred yards from the station and accessible by a good graded road, affords every convenience for saticfactory distribution by car and messenger service.
(?) W'iter supply.-This, which aggregates $\mathbf{1 , 1 0 0}$ gallons per minute, is affonded by two bold springs, coming to the surface in an oval depres-
sion or basin in the hillside to the north of the hatehery. The water supply for the hatching-house is drawn from the upper spring (see Plate I) through a 4 -inch irou pipe conveying abont 120 gallons of water per minute. The excess of water from the upper spring is conducted by shallow flumes, which also serve as spawniug races, through the two ponds, 12 by 50 feet, which are reserved for the oldest breeding trout. Escaping from the lower of these the discharge unites with that from the lower spring and is conveyed by a tunnel nuder the hatchery to the sloping hillside south of this building, and the whole discharge from the spriags is thus atilized for the supply of the succession of troutrearing ponds constructed on the rather abrupt slope extending from the hatchery to the valley below.

The station, it will be seen (Plate II), presents remarkable advantages in the large water supply available for fish-cultural operations, and in the fact that the distribution both to the hatching.house and ponds can be made by gravity, thus eliminating one very considerable item in the cost of maintenance of stations where circumstances require the water to be pumped to a higher level before it can be utilized. One serious trouble relating to the water supply yet remains to be corrected.

During the seasous of heary and prolonged rainfall the springs become muddy, and although the muddy water does not appear to be directly injurions, the fact that proper observation and attention can not be given to the eggs and young fish may give rise to serious losses. Where this muddy condition is prolonged the gills of the larger tront become congested or inflamed, and many of our losses of fish have doubtless originated from the abnormal condition of water, if not directly attributable to it.

It is expected to get rid of this trouble and embarrassment to the work either by the use of a settling reservoir or by devising effective methods of filtration. Experiments are now in progress with a view to determining the most convenient and available means to accomplish the desired end.
(3) Hatchery.-The building first occupied as a hatchery was an old, log still-house, fitted up with hatcling troughs affording capacity for the development and hatching of 300,000 trout eggs. In the spring of 1886 this building was removed, and on its site was erected the present comfortable, convenient, and well-equipped station. It is shown in elevation in the general view of buildings, ponds, and grounds (Plate II). Details of interior construction and arrangements are given in Plates III, IV, V.

The building is 50 feet by 2.5 feet and two stories high. The basement or lower story is of stone, the floor of concrete, so that it may be flushed with water and thoroughly cleaned whenever necessary. This floor constitutes the hatchery proper, and is fitted up with troughs and hatching jars, as shown in Plate ILI. As at present arranged, about

800,000 trout eggs can be incubated conveniently; by crowding, provision could be made for $1,200,000$ eggs. Under the hatching troughs and supplied by the overflow of the water from these are an equal number of nursing $t$ roughs for the young trout.

Experience has shown that it will not do to transfer them to the openair ponds until they are several months old. It is proposed to make additional provision for twenty-five more nursing troughs in a separate building, and so increase the capacity of the station as to enable us to rear and furnish for distribution each season not less than 200,000 yearling trout.

The second story of the hatchery is framed, and the interior is arranged for ofilice, storage, and quarters, as shown in Plate IV.
(4) Work done. -The work of the station was at first directed with the view of producing the eggs and young of the Rainbow Trout (Salmo irideus) for distribution. The breeding fish have been reared from eggs obtained from na tive wild fish at Baird Station, California. These spawned first in the winter of 1883-'s4, and, in the winter of 1886-'87, we obtained from our own stock of the Rainbow Trout, 220,000 eggs. The work of the station has been by degrees extended and diversified so as to provide for the pond-culture of Carp, the Goldfish, the Rock Bass, and the small-mouthed Black Bass.

For the better economy and distribution of the work of the station, arrangements were begon in 1885 to accumulate a stock of the native or red-spotted trout of the Eastern States by the collection of wild fish from streams of Virginia and by hatching and rearing breeding fish at the station from eggs obtained both from Michigan and from the Northeastern States. The eggs from the West gave fry of feeble vitality, and the percentage reared was very small. The stock of breeding fish on haud consists of a few hundred of the native Brook Tront and about 2,500 one and two-year old fish reared from eggs hatched at the station. It is probable that a few thousand eggs will be obtained during the winter of 1887-'88. Only a small number, however, will mature enough to spawn before the winter of 1888-'89.

The current work of production and distribution for the fiscal year beginning July 1, 1886 , is given in the following tables. The receipts of fish and eggs by collection from our breeding fish and from open waters and by transfer from other stations are given in Table I. The distribution of fish and eggs from the station during the fiscal year beginning July 1,1886 , is given in Table II.

TABLE I.-Recipts of fish amt eggs at Ifytherille Station for the year ending June 30, 1887.


Table II.-Distribution of fish and eggs from Typtherille Station for the year ending June $30,1807$.


Table II.-Distribution of fish and eggs from Wytheville Station, etc.-Continued.

| Species. | Where sent. | Date. | Eqgs. | Fish. |
| :---: | :---: | :---: | :---: | :---: |
| California trout. | M. V. Osborne, Cold Oreek Hatchery, Oh | Feb. 21 | 10, 000 |  |
| Ibo | E. G. Shortlidge, Wimington, Del | Eeh. 21 | 5,000 |  |
|  | E. H. Frishmuth, Philadelphia, P'a | Feb. 26 | 5,000 |  |
|  | J. W. Hoxie \& Co., Carolina, R. I | Feb. 20 | 3,000 |  |
| Do | Charles E. Hardie, New York, N. | Mar. 1 | 10, 000 |  |
|  | G. W. Delawder, Baltimore, Ma. | Mar. 1 | 5,000 |  |
|  | Long Meadow Rum, near Hagerstown | Mar. 31 |  | ${ }^{*} 622$ |
| Do | Almshouse Itun, near Hagerstown, M | Mar. 31 |  | *622 |
| D | Rush İun, near Hagerstown, Md | Mar. 31 |  | *622 |
| Do | Walker's Run, near Hagerstown, M | Mar. 31 |  | *622 |
| Do | South Forli of Reel Creek, Wythe County, Va | May 19 |  | t6, |
| D | Holston River noar Mariou, Va | May 20 |  | *500 |
|  | Cove Creek, Wytho County, Va | May 24 |  | *250 |
| D | Walker's Creek, Mland County, Va | May 27 |  | *250 |
|  | North Fork of Reed Creek, Wy the County, Va | Jane 1 |  | $\dagger 100$ |
|  | L. S. Allison, W.fthe County, Va ... | June 20 |  | *250 |
|  | Total |  | 98, 000 | 12, 230 |
| Brook trout | Long Meadow Run, near Haqe | Mar. 31 |  | +622 |
| Do. | Almshouse Run, near Hagerstown, | Mar. 31 |  | +622 |
|  | Rush Run, near Hagerstown, Md | Mar. 31 |  | 622 |
| Do | Walker's Run, near Hagerstown, Md | Mar. 31 |  | $\ddagger 622$ |
| D | Cove Creek, Wythe Comsty, Va | May 24 |  | *250 |
| D | Walker's Crcek, Bland County, V | May 27 |  | *250 |
| Do | i. S. Allison, Wythe County, Va | June 20 |  | +250 |
|  | Total |  |  | 3,238 |
| Lake trout | II. C. Parsons, Natural Bridge, Va | Aug. 11 |  | * 100 |
| 1) 0 | M. C. Treiber, stauton, Va | Aug. 11 |  | *100 |
|  | Tributary of Gasconade River | Aug. 17 |  | *50 |
|  | William spangler, Speedwell, | Sept. 2 |  | *20 |
| $1{ }^{1}$ | Eht F. Thomas, Grant, Va | Sept. 21 |  | +2.5 |
| Do | S. N. Huftiond, Wytherille, V | Oct. 9 |  | *25 |
| Do. | D. B. Mackall, messenger, Wash | Nov. 15 |  | +250 |
| Do |  | Nor. 23 |  | *6001 |
|  | Noxton simmons, messenger, Wash | Jan. 30 |  | * 30 |
|  | Total |  |  | 1, 200 |
| Landlocked salmou Do. | Tributary of Shenandoah River, Staunton, | Aum. 11 |  |  |
|  | South Fork of Shenandoah River, Waynesborough, Va. | May 19 |  | *11,000 |
|  | Total ............................................. |  |  | 12, 997 |
| Red-eye perch ..... | W. L. Bumgardner, Staunton, Va I. G. W. Steedman, St. Louis, Mo Cowpasture River, Bath County, Va Cacapon River, West Virginia. W. O. Watson, Charlottesville, Va W. E. Grant, Grantland, Va. <br> D. B. Mackall, messenger, Washington, D. C <br> V. G. Shepard, Faber's Mills, Va. <br> L. S. Pendleton, Frederick's Hall, Va <br> Fred Mather, Cold Spring Harbor, N. $\bar{Y}$ Newton Simmons, messenger, Washington, D.C. E. M. Robinson, messenger, Washingtou, D. C..... <br> Total. | Ang. 11 |  | *25 |
|  |  | Ang. 17 |  | *60 |
|  |  | Sept. 23 |  | * 800 |
|  |  | Oct. 12 |  | *500 |
| Do |  | Oct. 12 |  | *200 |
| 10 |  | Oct. 15 |  | ${ }^{*} 100$ |
| Do |  | Nov. 7 |  | *400 |
| Do |  | Nov. 15 |  | *100 |
| Do |  | Nov. 15 |  | *50 |
| Do |  | Dec. 12 |  | *50 |
| Do |  | Jan. 6 |  | \$0 |
|  |  | Feb. 25 |  | \$12 |
|  |  |  |  | 2, 103 |
| Black bass......... J. D. Eads, Warrensburgh, Mio ....................... |  | Aug. 17 |  | *48 |
| Carp (leather)..... | Ninety-one applicants in southwest Virginia and east Tennessee. <br> South Fork of Reed Creek, Wythe Comnty, Va <br> Total. |  |  | 1,925 |
| Carp (scale) |  | Jan. 8 |  | 450 |
|  |  |  |  | 2,3\%5 |
| Tench | South Fork of Reed Creek, Wy the County, Va | Jan. 8 |  | *450 |
| Goldfish. | Mrs. O. J. Smythe, W y theville, Vis | July 13 |  |  |
| Do.. | J. C.Ewald, Paris, 'Tex........... | July 17 |  |  |
|  | Mrs. Emma dV. Cuy, Glade Spring, Va | Aug. 5 |  | 6 |
| Do | Miss Daisy Bedford, Vicksburs, Miss | Aug. 10 |  |  |
| Do | E. M. Robinson, Fayetteville, N. C | Dec. 21 |  | $\delta$ |
|  | Charles Hancoek, W ytheville, Va | Jan. 1? |  | 4 |
|  | J. ©. Hollbrook, W y theville, Va | Jan. 22 |  | 6 |
|  | Charles Ewald, Wy theville, Va | Mar. 0 |  |  |
|  | Hon.C. F. Trigg, Abingdou, Va |  |  |  |
|  | Total |  |  | 50 |

From the eggs hatched at the station during the seasou we have now in our ponds for distribution during the fall of 1887, according to the estimates of the superintendent of the station, about 60,000 California and Easteru brook trout, from 3 to 5 inches in leugth.

During the spring of 1887 our facilities for pond-culture were extended by the construction of a series of ponds covering about 2 acres, for the cultivation of the rock bass (Ambloplites rupestris), a species well adapted for pond-culture and rapidly growing in favor with those desiring a species of easy cultivation, with gamy characteristics and of good flavor.

The laudlocked salmou bred during the season were held in ponds at the station until June, 1887, and then transferred to the headwaters of the Shenandoah River, in Augusta County, Va. They were from $2 \frac{1}{2}$ to 3 inches in length when planted, and about 25 per cent. only of the eggs received survived.

The stocking of the headwaters of the Shenandoak with salmon is to be regarded as an experiment in acclimation rather than assured fishcultural work. It is hoped that by the selection of a variety of salmon that has largely lost its migratory instiucts and by hatching it and constraining it to live for some months in a much higher range of temperature than is natural to it, it may become habituated to its new environment and become resident in the Potomac River basin. Should but a few survise and spawn it is probable that the young will exhibit considerable modification of habit and be in better accord with their enviromment, and after a succession of generations develop a distinct race, finding congenial habitat in streams with a higher range of temperature than is found in the natural salmon streams of the Northeast.

It is not possible to report even a fair measure of success in hatching eggs of the Brown Trout of Europe (Salmo fario). From the Dentsche Fischerei-Verein we obtained about 2,000 fish, which, at the age $o$ six months, are from 4 to 6 inches long and growing rapidly. The very large percentage of loss occurred during the period intervening between hatching aud beginning to feed.
(5) Procision for pond culture.-In the oval depression north of the hatchery (Ilate I) are two ponds, 12 by 50 feet, provided with sparning races. These are reserved for our breeding trout. They are constructed entirely of plank, sides and bottom, and at first the sides projected above the lerel of the soil. The considerable losses occurring among the breeders during the hot weather of summer indicated unhealthy conditions, which were attributed to the exposed sides, which became heated during the day, thus causing a considerable rise in the temperature of the water. This was remedied by banking up the sides with earth and sodding the slopes. The plank bottoms at the upper ends of the ponds were also covered by broken stone and coarse gravel. These changes were marked by the greater improvement in the condition of the fish in the ponds. Losses are now comparatively rare, and are almost entirely confined to the males, being usually the result of injuries
inflicted in the fierce fights they wage with each other during the breeding season.

A general view of the series of ponds to the south of the hatchery is giren in Plate VI. The four ponds lying upon the slope immediately below the hatchery are each 8 feet by 50 feet, and are reserved for the larger tront which are being reared at the station to maintain the succession of breeders or for distribution after attaining considerable size.

The eight pouds at the base of the hill, between the superintendent's house and Tate's Ruin, are also appropriated to the reariug of trout for distribution. All of these ponts have earth sides and bottom, and each has an independent water supply and drainage. The series of four large ponds on the opposite side of Tate's Run, near the railroad, is appropriated to the pond culture of the carp and other species requiring warm waters for their successful cultivation. The water supply for this series of ponds is conducted from the springs in a 4 -inch pipe, and, with the view of securing the warming of the water as much as possible by exposure to summer temperature, the water supply is reduced to an amount barely suflicient to replace the losses by evaporation and leakage. The extent of surface exposed to the air and the presence of abundant vegetation in the ponds are relied upon to maintain the water in healthy coudition.

A series of six ponds, covering about 3 acres, has been constructed in the area of ground lying between Tate's Run and the series of carp pouds. These are not shown in the general view of pouds in Plate VI.

They have been constructed especially with a view to the breeding of the red-eyes and the small-mouth black bass for distribution. The water supply is drawn from Tate's Run, and carries into the pond an abundant supply of food both for the parent fish and the young.
(6) Capabilities of the stution.-As now equipped this statiou may safely be looked to to furnish each season 400,000 or 500,000 eggs of the rainbow trout for distribution or for hatching and rearing. Equally good results may be expected from the work with Eastern brook trout in a year or two.

The trout ponds at the station are of sufficient extent to permit the carrying of 150,000 fish $u p$ to the age when they are of sufficient size to permit their introduction with safety into open waters infested by predaceous tish. The arrangements for pond culture are sufficiently extensive and the results of such work well enough assured to enable us to look with confidence to the Wytherille station to provide for all demauds for the streams and ponds of Virginia, North Carolina, Tennessee, Maryland, and West Virginia. The distribution of trout fry from this station has been conspicuous by the failure to secure appreciable results in the improvement of the streams stocked. Rarely did we find any evidence of success from such work, so far as it has come under my observation.

The change in our methods of haudling the tront, namely, rearing them at the station and distributing after they have attained a length of 5 inches to 6 inches has, on the other hand, met with most encourag. ing success. The irideus has been established in several of the streams of sonthrest and Piedmont Virginia, and in Maryland and in a number of ponds in Virginia and Tennessee:

A remarkable comparison of the different results of the two methods is given by the experiments conducted under my own observation and direction with a view of stocking the natural trout strean flowing through the gromnds of the station. For several years in succession this stream was stocked with the fry of both the California and Eastern brook trout. The aggregate number planted was not much short of 100,000 . No appreciable results followed from this work. In August, 1886, about 400 fingerling tront from 4 to 5 inches in length were released into the stream. During the ensuing fall and winter about 100 of these were captured at the heal of a little fishway fed by the waste water discharged from the ponds. They had attained a length of 7 to $S$ inches, and the brightuess and clearness of their color were in marked contrast to the duller hues oif the fish of same age in the ponds. An examination of the stream subsequently showed that the tront were still quite numerous in the stream in the ricinity of the hatchery.
The important lesson to be dramn from these experiments is that in stocking streams infested by small predaceous fish we can only assure success by stocking with trout of sufficient size to dominate the water. Under the circumstances indicated experience, shows that several humdred yearling trout are sufficient to stock a stream presenting snitable habitat. On the other hand, we can rarely expect success in stocking such waters with any number of the fry, however great. It may be assumed as a rule that a pair of jearling trout are fully the equivalent of several thousaud fry in stocking streams presenting the conditions to be found in the tront region of Penusylvania, Maryland, Virginia, and States farther to the south.

Washington, D. C., November 19, 188\%.

## LIST OF Plates.

Plate I.-Wever supply and ponds for brood fish.
II.-General view of buildings and grounds.
III.-Plan of hatchery, first floor.
IV.--Plan of hatchery, second floor.
V.-View of interior, showing details of equipment.
VI.-General view of ponds.


Drdirage
웅

'土001д puozes jo ueld
 worna
${ }^{50.10} \mathrm{~d}$




## XXI.-REPORT OF SHAD DISTRIBUTION FOR THE SEASON OF 1886.

by Marsifall McDonald.

The work of shad propagation and the production of the young for distribution was conducted on the Potomac River at Fort Washington and Central Stations, on the Susquehanna at Battery Station and by the steamer Lookout, and on the Delaware River by the steamer Fish Hawk. Shad for distribution were contributed as follows:

| Battery Station, Susquehanna River. | 43, 776, 000 |
| :---: | :---: |
| Central Station, Potomac River. | 28, 151, 000 |
| Steamer Fish Hawk, Delaware River. | 21, 018, 000 |
| Steamer Lookout | 310, 000 |
|  |  |

The aggregate number of fry actually planted was $92,679,000$. In this distribution liberal plants of shad fry have been made in the Potomac, the Susquehanna, the Delaware, and other tributaries of Chesapeake and Delaware Bays. The following is a summary by river basins of shad distributed during the season of 1886 :

| River basin. | Received from station. | Actually planted. | Lost in transit. |
| :---: | :---: | :---: | :---: |
| Tributaries of Narragansett Bay | 2, 534,000 | 2, 534, 000 |  |
| Tributaries of Long Island Sound | 8332,000 | 749,000 | 83,000 |
| Hadson River | 2, 312, 000 | 2, 312, 000 |  |
| Delarare River | 21, 618, 000 | 21,618,000 |  |
| Tributaries of Albemarle Sound | $52,923,000$ $1,990,000$ | $52,835,000$ $1,990,000$ | 88,000 |
| Streams draining into the Atlantic south o | 4, 288, 000 | 4, 183,000 | 105,000 |
| Mississippi River and minor tribntaries of | 4, 758, 000 | 4, 758, 000 |  |
| Colorado River, Gulf of Californi | 1, 000,000 | 850,000 | 150, 000 |
| Columbia liver bastn | 1, 000, 000 | 850, 600 | 150, 000 |
| Total. | 93, 255, 000 | 92, 679, 000 | 576, 000 |

The localities at which the plants were made, the streams in which they were made, and the number of fish included in each deposit are given in the following table:

| Date. | Stream stocked. | Tributary of- | Place of deposit. | Fish shipped. | Died in transit. | Planted. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} 1886 ; \\ \Delta \mathrm{pr} . \end{gathered}$ | Potorac River | Chesapeake Bay | Little Falls, Md | 918, 000 |  |  |
|  |  |  | ...do | 364, 000 |  | 364,000 |
|  | Rivanna River | Jamey River | Charlottesville, Va | 534, 000 |  | 534,000 |
| 28 | Ilappahannock River | Chesapeake Bay | Rappalannock Station, V | 340,000 |  | 340,000 |
| 28 | Rapidan River... | Rappahannock Riv | Rapidan Station, Va | 311,000 |  | $341,0 \mathrm{c} 0$ |
| 29 | Occoquan River | Potomac River | Woodbridge station Near Tredericksbur | 579,000 730,000 |  | 579,000 730,000 |
| May 1 | Mattapony River. | York liver. | Near MilfordStation, | 391, 000 |  | 730,000 391,000 |
| - | North Anna Rive | Pamunkey Rivo | C. \& O.Junction, Va | 391,000 |  | 391, 000 |
| 1 | Fork of Shenand | Potomac Piver | Near Wayneslorongh, | 557, 000 |  | 557, 000 |
| $\stackrel{9}{9}$ | Acquia Creek. | - | Near Quantico, Va | 389, 000 |  | 389, 000 |
| 2 | Accolscekrun | Acquia Creek | Brooke's Station, Va | 290, 000 |  | 290,000 |
| 3 | Appomattox Rive | ......do. | Near Mattoas Va. | 700,000 |  | 700, 000 |
| 3 | Monocacy River. | Potomac River | Near Frederick Junction, Md | 603,000 |  | 379,000 603,000 |
| 3 | Patuxent Rivor | Chesapeake Bay | Laurel, Md | 609,000 |  | 609, 000 |
| , | Shenandoah Rive | Potomac liver | Waynesborough, V | 200, 000 |  | 200, 000 |
| 3 | Rapidan River | Rappahaunock Rirc | Rapidan, Va | 629, 000 |  | 629, 000 |
| 4 | James River... | Chesapeako Bay | One milo abore Bo | 380,000 |  | 380, 000 |
| 5 | Chicoquan River | Potomac River | Mristoo, Va ${ }^{\text {Munslett Statiol }}$ | 531,000 |  | 531,000 |
| 7 | Pamunkey River | York Tiver | Near White House Station | 385, 000 |  | 310,000 385,000 |
| 8 | Mattapony Ri | -....do | Near Milford, Va. | 367, 000 |  | $3 \mathrm{C7}, 000$ |
| 8 | Dan River... | Roanoke Rive | Tromiles irom Danrille, Va | 329,000 |  | 329,000 |
| 10 | Colorado River of the | James River. | Tires niles from Ashlizud, | 316,000 |  | 310,000 |
| 10 | Cheat River ........... | Monongahela Liver | Threo miles from Rowlesburgh, | - 350, 000 | 10,000 | 850,000 356,000 |
| 11 | Chattahoochee Rive | Appalachicola liver | West Point, Ga. .-........... | 370,000 |  | 370,000 |
| 12 | Stony Creek... | Nottoway River | Near Stony Creok Station, V | 364, 000 |  | 364, 000 |
| 14 | Meherrin liver | Chowan Iive | Near Belfield, Va | 415, 000 |  | 415, 000 |
| 15 |  |  | Near Margarettsville, N. | 300,000 |  | 314,000 300,000 |
| 15 | Fountaine's Creek |  |  | 40, 000 |  | 300,000 40,000 |
| 16 | Savannah Fiver | Atlantic Ocean | Augusta, Ga | 301, 000 | 30,000 | 271,000 |
| 17 | Nottoray River | Chowan Rive | Near stony Creck, | 2208, 000 |  | 228, 000 |
| ${ }_{21}^{17}$ | Monongahela Rive | Ohio Ri | Cwo miles from Fairmont | 281,000 |  | 281,000 |
| 21 | Housatonic Riv | Toug Isla | Near Fairmont, W. Va | -10,000 |  | 210,000 |
| $\stackrel{22}{22}$ | Will's Creok. | Potomac River | Cumberland, Md. | Fi3', 000 |  | 749,000 |
| 22 | Rapidan River | Rappahannock River | Rapidan Station, V | 259, 000 |  | 532,000 259,000 |
| 23 | Neuse Rivor | Pamlico Sound | Gohisborough, N.C | 200, 000 | 20,000 | 180, 000 |


|  | Tar River. | Pamlico Sound. | Two miles abovo Rocky Mount Station, N. C . . . . . . . . . ${ }^{\text {a }}$ | ${ }^{4481} 0000$ | ............ | 448,000 9910 | U |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 25 | Youghiogheny rio | Monongahela Ri | Connellssille, Pa, | ${ }_{4631,000}^{990}$ |  | ${ }_{4631,000}^{991,000}$ |  |
| ${ }_{26}^{26}$ | Mattarvoman Creek | Totowac | 11 miles from Quantico, Va | 548, 000 |  | - 548,000 |  |
| 27 | Quantuxent River.. | Chicsapeako Bay | 28 miles from Marlborough, M | 528, 000 |  | 528,000 921000 |  |
| 28 | Hudson River . | Atlantic Ocean. | Catskill, ${ }^{\text {albany, }}$ N. Y . | 1, ${ }^{931,0000}$ |  | 1, 03616000 |  |
| ${ }_{31}^{31}$ | Taunton T River | Narragansett Bay | Dighton, Mass | 1, 034, 000 |  | 1, 034,000 |  |
| e | Catarba River | Santeo River. | Near Morchautou, | 374,000 |  | -374,000 |  |
|  | Crab-Tree Creek Acquia reek . | Neuse River.... | 22 miles from Quantico, Va | 370, 000 |  | 370,000 |  |
|  | Hudson River | Atlantic Ocean | Catskill, N. Y....... |  |  | $\begin{array}{r}355000 \\ \hline 586,000\end{array}$ |  |
|  | Potomac River | Chesapeako Bay | Fort Washington, Mid | 3, 154, 000 |  | 3, 151,000 |  |
|  |  |  |  | 29, 737, 000 | 283, 000 | 29, 454, 000 |  |
|  |  |  | TERY STATION. |  |  |  | 8 |
|  |  |  |  |  |  |  |  |
| Apr. 25 | Susquehanna River. | Chesppeake Bay | Near Station, Md | 25, 000 |  | 25,000 | E |
|  | …....do . . | ......do do .............................. |  | 2, 431,000 |  | 2, 431,000 |  |
| ${ }_{28}^{27}$ | .......do | do | do | 325, 000 |  | 325, 000 |  |
| ${ }_{28}^{28}$ | Northeast River | do | T., W. \& B R. M ., Mà | 500, 000 |  | 500, 000 |  |
| ${ }_{29}^{29}$ | Susquelhanna River | do | Near Port Deposit, Md | 1, 055,000 |  | 1, 055,000 |  |
| 29 | Bush River | do | Rush Station, | 500,000 |  | 500, ${ }^{5000}$ |  |
| 30 30 | Susquelanna Rive | do | Near Station, Md. | 50, 000 |  | 50, 000 |  |
| ( $\begin{array}{r}30 \\ 30\end{array}$ | Gunpowder River Northeast River. | -.do | P.....do \& B. | 500,000 500,000 |  | 500,000 500,000 |  |
| May 1 | - | do |  | 500,000 |  | 500,000 |  |
| 1 | Patapsco River. | do | Near Relay Station, MId | 500,000 600,000 |  | 500,000 600,000 |  |
| 1 | Elk River ...... | do | Eliton, Md | 600, 6000 |  | 600,000 |  |
| 3 3 5 | Susquehanna Riv | - .-...do | Near Station, Má. | 1, 1 , 6252,000 | 48,000 | $1,573,000$ $1,952,000$ |  |
|  | -7...d. ${ }^{\text {Palmer }}$ - | .do | Near Provid | $\begin{array}{r}\text { r } \\ \text { 1, } 5009,000 \\ \\ \hline\end{array}$ |  | 80, 0000 |  |
| 6 |  | Chesapalko Bay | Near Station, Mid | 1, 245,000 |  | 1, $1,245,000$ |  |
| 8 | Chester River.... Columbia River. | Pacitic Ocean | Near Chestertown, Md | 500,000 $\$ 1,000,000$ |  | 500,000 |  |
| 9 | Columbia River. | Columbia River | Albany, Orec . . . . . | +1,00,00 | 150,000 | 550,000 |  |
| 11 | Patuxent Jiver.. | Chesapeake Bay | Odenton, Mu | 650, 000 |  | ${ }^{650,000}$ |  |
| 11 11 | Gunpowder Riv |  |  | 600, 6000 |  | 600, ${ }^{5000}$ |  |
| 11 | Bush River ... |  | 1., ${ }^{\text {do }}$, | 300, 000 |  | 300, 000 |  |



Eggs for Eurctpe.-In addition to the distribution covered by this table, 50,000 shad eggs were sent from Battery Station to Mr. H. C. Mercer, of Doylestown, Bucks County, Pennsylvania. Mr. Mercer had arranged to sail for Europe on the North German Lloyd steamer Eider April 28, and expected to reach Hüningen, Alsace, in ten days. He wished to take some shad eggs with him, and try to reach the Danube before they perished. He proposed to keep down the temperature of the eggs as much as possible while on board the steamer, by the use of ice. On April 27, 1886, Mr. Grabill forwarded the eggs to him. When he reached Southampton he found many of them dead, and the remainder died before he reached Bremen, to his great disappointment.
Stocking the Colorado.-An attempt to acclimate shad in the Colorado River of the West, and to establish fisheries on the Colorado, Gila, and other tributaries of the Gulf of California, was commenced by the deposit of 983,000 fish in 1884 and 998,000 eggs in 1885, and was continued the present season by a deposit of 850,000 eggs, thus making a total of $2,831,000$, all of which were deposited at The Needles. These plants are considered sufficient to determine whether the waters present such conditions as will assure the establishment of a run of shad in the streams tributary to this gulf. The evidence of success will be looked for in the capture of mature shad in the season of 1888 , or possibly of male or buck shad in 1887. It is not proposed to prosecute this experiment further.
Stocking the Columbia River.-An unsuccessful attempt was made in 1886 to transfer shad from the Atlantic to the Pacific coast. Detentions on the way consumed so much time that the fry were all lost. In order to guard against loss occasioned by delay en route, the present year arrangements were made to send eggs as well as fry. Car No. 3, with J. F. Ellis in charge, was detailed for the purnose. The car was equipped with tanks for storing and a steam-pump for circulating the water. Two stands of McDonald jars, with specially designed glass aquaria for collecting and holding the fry, completed the equipment of the car as a moving hatchery." The car left Havre de Grace May 9 with $1,000,000$ young shad, 200,000 eggs on trays, and 385,000 eggs in the McDonald hatching.jars. Mr.E.M. Robinson went on board to take charge of the hatching. The fry were transported with a loss of 50 per cent, while the eggs on trays were all lost. The 355,000 eggs in jars hatched and were planted in the Willamette River, with a loss of less than 10 per cent. The success of this experiment has so important a bearing upon the methods of our work, and points out such possibilities, that Mr. Ellis's report relative to the incubation and hatching of the eggs on the way is given.*

Washington, D, C., March 1, 1887.

[^105]slow motion given to the eggs. At 8.25 p . n. on May 6 th 210,000 of these eggs had been taken, and 175,000 at $9.30 \mathrm{p} . \mathrm{m}$. on May 7. The temperature of water at Battery Station when the eggs were taken was 56 degrees; the temperature of water in car was 60 degrees. Took on fresh water at York, Pa., at 10 o'clock p. m., from engine-tank, usiug our suction-hose and pumping about 30 minutes. Pumped the water through the ice-coil during the night, so the temperature was brought down to 58 degrees. Took on fresh water at Altoona, Pa., and after that pumped water from engine-tank three times each day.

May 10. The temperature was from 58 degrees to 60 degrees. The eggs worked nicely, with only a small loss. About a dozen or so of those taken on the 6th iustant hatched this afternoon. The egrs look rather light in color, and the fish can be seen moving lively in the egys. One jar of eggs went over in the aquaria last night; replaced them in jar at 6 o'clock a. m.
May 11. The temperature was from 56 degrees to 58 degrees. Only a few more fish hatched out, as the fall in the temperature of the water seemed to retard them. They all look well, and are developing slowly.

May 12. Got on a little alkali to-day; this did not seem to have any effect on the eggs. Those taken on the 6th instant are hatching to-day. Temperature of water 58 degrees. The fish look well, and have a large sac. Those taken on the 7 th instant are almost ready to come out, and a few hatched before night. Worked all the dead eggs off and measured those left in jars; found the loss on the 210,000 eggs taken May 6 to be 10 per cent, and the loss on the 175,000 eggs taken May 7 to be 3 per cent. This would make an average loss of 9 per cent. We lost very ferw, it any, after this. The eggs were hatching slowly this evening. The water in tanks got a little low, so the pump was used to get some air into the water. The air-bubbles attached themselves to the young fish and turned them head down; also collected around the jars and aquaria. This caused some trouble, which was overcome a little by keeping the lower tanks as full of water as possible.

May 13. The eggs of the 6 th instant are hatching rapidly; temperature of water 58 degrees. The fish look healthy and strong, with large sacs. Those of the 7 th are hatching slowly. Put up at $11 \mathrm{a} . \mathrm{m} .25,000$ fish in five cans, and 25,000 more at 5.30 p. m. The air-bubles were still troubling the joung fish a little, so took them from aquaria as fast as hatched.

Lay 14. Almost all the eggs of the 6th instant hatched to-day. The temperature of water went down to 56 degrees this morning. This retards the eggs of the 7 th a little. The air-bubbles in the water seem to collect on some of the eggs, making them come to top of jar; so can give them but very little motion or they will go over in the aquaria. This air-bubble has been the only difficulty we have had to contend with, which seems strange, as the air-pump has not been in use on the trip. The air also collects on the shells and causes them to come to the top, when they can be easily skimmed off. Removed the young fry from the collecting aquaria to transportation cans as fast as they were hatched. Planted 25,000 of these fish in the Columbia River, at Wallula Junction, at 11.30 to-night. They were in tine condition.

May 15. The car arrived at Portland at 10.30 this morning. All the eggs of the 6 th were hatched, and those of the 7th hatched rapidly all day, the temperature of water gradually going up to 62 degrees. The air-bubbles entirely disappeared this morning. The car was taken to the Willamette, at Albany, at 9.30 p .1 m. , and the young fry planted at $11.30 \mathrm{p} . \mathrm{m}$. The eggs did not quite all hatch to-day, so ran the pump up to 10 o'clock May 16, at which time all the eggs had hatched, with a total loss of 9 per cent. The experience of this trip makes it safe to recommend the shipping of eggs instead of the young fry on all long trips, as this is perhaps the most difficult trip in the country. The water is very cold, going as low as 44 degrees in a great many places. The alkali, too, is very strong. I think without doubt this car can take $2,000,000$ eggs to any stream in the United States, and hatch them in as good condition as they come from the hatcheries, and with as small a loss.

# XXII.-REPORT OF OPERATIONS A'T THE SHAD-HATCHING STATION ON BATTERY ISLAND, NEAR HAVRE DE GRACE, MD., dURING THE SEASON OF 1886. 

By L. R. Grabill.

The first run of shad was perceived on April 18, and 35 ripe shad were takeu on April 19. This run continued for a week, and was larger in number than had been known for 20 years. Both shad and herring came in enormous quantities. It was impossible to obtain the catch of shad at the seines during this run. The catch of Mr. Osmond's seine in shad for one day alone was more than 5,000 .

The collection of spawn for the station was done by men and boys hired temporarily for the purpose. As many as 40 men and boys in addition to the station's ordinary force were employed. These were paid monthly wages, each being allowed $\$ 10$ a month for subsistence. It was endeavored to station men permanently at all the seines, and to attend to as many gill-nets as possible. The men were graded as first and second class spawn-takers, and apprentices. Besides these, boys were used merely as oarsmen.

Experience shows, however, that it will be better in the future to employ 3 men to every boat, 2 of whom are apprentices; these 2 to take nightly turns at receiving instruction. Boys, unless quite large and strong, cannot care for boats in a squall. Large as was the collecting force it could not attend to more than one-half of the gilling boats on nights when all of the fishermen were out. As a rule it was found more profitable to attend gill-nets than seines.

Collection was continued from April 19 to June 10, the total number of eggs collected being $60,766,000$. Of this number there were received from the steamer Fish Hawk 2,099,000, and from the steamer Lookout $2,433,000$, the total received from other sources thas being $4,532,000$.
The Commission's gill-nets were put in use during the latter part of the season, there being no scarcity of male fish during the first part. Notwithstanding the smaller mesh of the net, it was not noticed that there was a large difference from other nets in the proportion of male fish caught. The largest roe fish seen during the season was caught in one of the Commission's small-mesh gill-nets. On a few occasions these nets served a good purpose in supplying male fish for impregnating eggs, but they did not supply these male fish nearly so often as they were supplied from ordinary nets near at hand. The Commission's gillnets, being fished by expert fishermen, caught about as irany fish, both male and female, as most of the gill-nets fishing in the same locality.

At the beginning of the season the hatching department was not prepared to do the work that was forced upon it by the early and immense
run of shad. The connections for the hatching apparatus and for the water supply were inadequate to the demand, and the supply of hatching apparatus on hand was insufficient. To increase the hatching room an addition, covered with canvas, was made, accommodating 2 tables additional with 50 McDonald jars. The store-room used for the seine was furnished with sky-lights, and 28 hatching cones wero placed in it, and about 30 cones in all conditions of repair were hastily fitted up outside of all shelter. Notwithstanding the increase thus made, the cones and jars constantly carried twice as many eggs as they should have done, and much loss was the result. But by far the greater loss was caused by being obliged to allow eggs brought in to stand in buckets, \&c., until room could be made for them. In many cases eggs nearly hatched were compelled to be placed in the river to make room for new ones. About 170 McDonald jars and 58 cones were in constant use, supplemented by wire-gauze cylinders, buckets, pans, and all kinds of arrangements for hatching.

Three experts were employed during most of the season in the hatch-ing-house. Three apprentices were also employed most of the time as assistants. These men received and cared for all eggs, cared for the fish when hatched, filled the cans for shipment, and loaded them in the launch or scow.
Notwithstanding the losses, the number of shad fry hatched was $45,231,000$. These numbers are based on the measurement of the perfectly cleaned eggs in the jars just before hatching in every case, and are as nearly accurate as these figures can be made. It is believed that this is rather under than over the actual result. The percentage of hatching during the season was 74.4. The total number of fry shipped and receipted for by messengers was $43,776,000$. The total loss of fish was $1,455,000$. Three tables are appended to this report, which give details concerning the collection of the eggs, the shipments of the fry, and meteorological observations during most of the season.
The collecting force was entirely disbanded after June 10, when gilling is no longer permitted by Maryland laws. On June 13 all the eggs on hand had hatched, and the hatching department was then closed. But few eggs, however, were taken after June 1, the date on which the greater part of the force was discharged. After the close of the hatching season the time of the small number remaining was given to storing the equipment, and in work upon a drive-well, which was begun with the hope of finding an artesian water supply. This well was carried to a depth of about 150 feet by July 1.
There is little doubt but that the area of 4 or 5 square miles immediately surrounding Battery Station is as large as any, if not the largest, spawning ground for shad on the coast. The station is well located for reaching every part of this ground. The possibilities of the station are almost unlimited. Fishermen and fishing boats cover the bay during the season, and every ripe egg taken in fish in the nets would be
lost if it was not taken by the collectors of the station, impregnated, and hatched. One need only to see the bay studded with the lights of the fishing boats on a night in May to convince him that but for the Commission's work very few fish could come from eggs naturally deposited. But, large as was the Commission's force last year, I am satisfied that not over one-half of the ripe fish taken in the bay by fishermen were stripped by its collectors, as they could not possibly attend to all.

It is fairly demonstrated by this season's work that collecting from gillers produces a better result than hauling the Commission's seine. Two or 3 men can secure as many ripe fish from gillers in a day as 30 men would secure if employed in hauling the seine. Moreover, hauling the seine by the employees of the station necessarily involves the Fish Commission in the care and disposal of the fish taken, while it seems to antagonize the fishermen, and is an unnecessary cost. With a good run of fish in the coming year, if the collecting force is doubled and their work thoroughly systematized, perhaps double the number of eggs secured last season can be obtained during 1887. The collection of eggs in 1886 was stimulated also by giving small rewards to those gathering the greatest amount of good spawn.

Penning siad.-Out of a large number of shad full of roe, but not ripe at the time of introduction, which were placed in the pool and kept for a space of time ranging from a few days to 2 weeks, not one ever produced eggs that would hatch, though apparently ripe when stripped. It would seem that possibly the fright at being taken in the net, or of confinement in the pool, prevents the eggs from further development. All of the fish placed in the pool become more or less diseased after a short time, which may be due partly to the muddy bottom. This interesting experiment has hitherto met with such small success as to warrant its being dropped hereafter.

Herrivg.-Herring were taken continually and sometimes in such quantities as to retard the hauling of the seines. No account was kept of them, as they were considered valueless in most cases, and they were shoveled back dead into the river or allowed to escape through the large meshes before completely hauling in the seine.

Rockfish or striped bass.-Experiments were made in hatching the eggs of the rockfish, the greatest success being obtained by swing. ing a cylinder with gauze ends in a sluice-way through which a current, caused by the tide, constantly flowed. It appears, however, that even with very fine gauze the eggs in a certain state are forced through. Owing to want of time, caused by pressure of other matters, sufficient attention could not be devoted to these experiments, and most of the eggs taken were lost. In all, 600,000 rockfish eggs were taken, and 75,000 fry were shipped to Lake Ontario, near Oswego, N. X.*

Washington, D. C., December 20, 1880.

[^106]| 4 |
| :--- |
| 0 |
| 0 |
|  |


|  |  |  |
| :---: | :---: | :---: |
|  |  |  |
| 淢烒 |  |  <br>  <br>  |
|  | 雷 |  |
|  |  |  |
|  |  |  <br>  <br>  |
|  |  |  |
|  |  |  |
|  | 淢 |  |
| $\begin{aligned} & \text { Taken by haul. } \\ & \text { scines. } \dagger \end{aligned}$ |  | 烒 |
|  | 跑 |  |
|  |  |  |
|  |  |  |
| $\stackrel{\dot{\circ}}{\stackrel{\circ}{5}}$ |  |  <br>  <br>  |
|  |  |  |

응

| 发 |  |
| :---: | :---: |
| 앙은옹ㅇㅇ ： <br>  |  |
|  |  |
| － |  |
| 앙 \앙ㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ ： |  |
|  |  |
|  |  |


|  |  |
| :---: | :---: |
|  |  |
|  |  |




| ${ }^{6}$ Fifty thousand egres sent to II．C． <br> put into Danube River： <br> ${ }_{8}$ SEight to car No． 1. <br> frigerator，and died in a few hours； overflow of aquaritans． <br> ${ }^{9}$ Lost by overtiow of aquariums． <br> ${ }_{10}^{10}$ Shipped by car No． 1. <br> ${ }^{11}$ From steamer Fish Hawk，2，099，000． <br> ${ }_{12}^{12} \mathrm{On}$ account of lack of water． |
| :---: |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |


26， 754

| popit웅운울 |  |
| :---: | :---: |
| か ri | rinirinim riri |

$\stackrel{\circ}{\circ}$






| Date． | Tempera． ture of air． |  |  | Tempera－ ture of sur face water． |  |  | Tempera ture of bot－ tom． |  |  | Direction of wind． |  |  | Intensity of wind． |  |  | Condition of sky． |  |  | Condition of water． | State of tide． |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & \text { a } \\ & \text { ㄹ․ } \end{aligned}$ | $\left.\begin{gathered} a \\ \dot{a} \\ \dot{\sim} \end{gathered} \right\rvert\,$ | $\begin{aligned} & \text { घ̀ } \\ & \stackrel{\text { an }}{\prime} \end{aligned}$ | $\begin{array}{\|c} \text { घ } \\ \text { ci } \end{array}$ | $\left\|\begin{array}{c} \dot{a} \\ \dot{a} \\ \dot{\prime} \end{array}\right\|$ | $\begin{gathered} \dot{a} \\ \dot{~} \\ \underset{y}{2} \end{gathered}$ | $\begin{array}{\|c} \text { ㅂ } \\ \text { eg } \end{array}$ | $\underset{\sim}{\dot{a}}$ |  | $\begin{aligned} & \text { á } \\ & \text { d } \end{aligned}$ | $\begin{aligned} & \text { ai } \\ & \text { А } \end{aligned}$ | $\begin{aligned} & \text { घं } \\ & \stackrel{y}{幺} \\ & \underset{\sim}{2} \end{aligned}$ | $\begin{gathered} \text { í } \\ \stackrel{\text { ® }}{6} \end{gathered}$ | $\underset{\sim}{\text { \&ig }}$ | $\begin{aligned} & \text { घं } \\ & \stackrel{y}{*} \end{aligned}$ | 号 | $\begin{aligned} & \text { घ̇ } \\ & \stackrel{1}{4} \end{aligned}$ | 星 |  | غ | $\begin{aligned} & \text { à } \\ & \stackrel{1}{4} \end{aligned}$ | $\stackrel{\text { a }}{\stackrel{1}{*}}$ |
|  | $\begin{gathered} \circ \\ 56 \\ 50 \end{gathered}$ | $\begin{gathered} \circ \\ 59 \end{gathered}$ | $\begin{gathered} \circ \\ 59 \end{gathered}$ | $\begin{gathered} 0 \\ 61 \\ 61 \end{gathered}$ | $\left.\begin{gathered} \circ \\ 60 \end{gathered} \right\rvert\,$ | $\left.\begin{gathered} 0 \\ 59 \end{gathered} \right\rvert\,$ | $\stackrel{\circ}{61}$ | $\stackrel{\circ}{60}$ | $\begin{gathered} \circ \\ 59 \end{gathered}$ |  |  |  |  |  |  | Cloudy | Cloudy | Cloudy ． | Clear |  |  |  |
| 3 |  | ${ }_{66}^{66}$ | ${ }_{66}^{61}$ | ［ 57 | ${ }_{61}^{62}$ | ${ }_{64}^{60}$ | 50 | ${ }_{64}^{62}$ | ${ }^{\text {co }}$ | N． | ${ }_{\text {E }}^{\text {E．}}$ | SE． | Fresh ．： | Light．．． | Light． | Cdo ．．． | －do do．． |  | ．．do | Flood． | Flood．． | Do． |
|  | 60 67 | ${ }_{67}^{66}$ |  | 60 64 | 61 64 | 64 64 | ${ }_{64}^{60}$ | 64 64 | 64 64 | SW． | SWV． | SWW． | Light．．． |  |  | Clear | Clear ．．． | Clear |  |  |  | Do． |
|  | 62 | 70 | 67 | 64 | 65 | 64 | 64 | 65 | 64 | S． | NW． | W． | $\cdots$－${ }^{\text {do }}$ ． | Fresh．．． | do |  | ．do． | Cloudy． | Muddy． |  | Ebb ．．． | Do． |
| $6_{7}{ }^{2}$ | ${ }^{65}$ | ${ }_{6}^{68}$ | ${ }^{64}$ | 64 | ${ }_{6}^{65}$ | 64 | 64 | 65 | ${ }^{64}$ | SE． | SW． | S． |  | Light．．． | …do．．．． | Cloudy |  | Clear．．． | Clear |  | ．．do | Dis |
| ${ }_{8}{ }_{8}$. | 59 | ${ }_{59}^{63}$ | － $\begin{aligned} & 60 \\ & 58\end{aligned}$ | 63 62 | ${ }_{60}^{65}$ | ${ }_{60}^{62}$ | ${ }_{62}^{63}$ | 65 60 | ${ }_{60}^{62}$ | E． | $\stackrel{\text { E．}}{\text { N }}$ | EW． | Light．．． | Strong．． | Strong．． | ．．．do ．．． | Cloudy | Cloady | Muddy | Ebb | $\ldots$ ．．do | $\underset{\substack{\text { Flood．} \\ \text { Do．}}}{ }$ |
| $9^{95}$ | 55 | ${ }_{62}^{62}$ | ${ }^{62}$ | 56 | 60 | 60 | 56 | 60 | 60 | NV． |  |  | Fresh．．． | Calm．．． | Calm．．． | Clear．．． | Clear．． | Cloudy． | ．．．do | do | －．．do | Do． |
| ${ }_{11}^{106} \ldots$ | $\stackrel{\text { en }}{59}$ | ${ }_{62}^{62}$ | ${ }_{60}^{63}$ | e0 59 | 60 60 | ${ }_{60}^{60}$ | 60 59 | 60 60 | 60 60 | NE． | N． | SE． | Light．．． | Light．．． | Light．． | Clondy | Cloudy | ．．．do ．．．． |  | do | ．．．do | Do． |
| 12. | 59 | 62 | 60 | 59 | 62 | 61 | 59 | 62 | 61 | SE． | SE． | SE． | ．．．do | Calm ．．． | Light．．． |  | ．．do ．．． | do | ．．．d | ．．．do | $\cdots$ | Low． |
| ${ }_{11}^{137} \ldots$ | 58 | ${ }_{57}^{58}$ | 58 | ${ }_{58}^{58}$ | 58 | ${ }_{58}^{58}$ |  | 58 | 58 | SE． | ${ }_{\text {NE }}$ | NE． | do | Fresh．．． | $\mathrm{F}^{\text {do }}$ | do | do | Clear．．． | ．do | do | Flood．．． | Ebb． |
| ${ }_{158}^{14 .}$ | 57 | $\stackrel{57}{59}$ | ${ }_{6}^{58}$ | 58 | 58 59 | ${ }_{60}^{58}$ | 58 | ${ }_{59}^{58}$ | 58 60 | SE． | SE． | SE． | Fresh | Light．．． | Fresh | do | do | Cloudy | － | Flood．．． | $\cdots$ do | Do． |
|  | 58 | 59 | 57 | 58 | 60 | 58 | 58 | 60 | 58 | NW． | NW． | NW． | $\cdots$ | Strong．． | Light．．． | Clear ．．． | Clear．． | Clear．．． | ．．do | ．．do． | Ebb | Flood． |
| ${ }_{1811}^{1710} \ldots$ | 54 | 59 60 | 57 58 | 57 57 | 60 61 | ${ }_{61}^{58}$ | 57 57 | 60 61 | 58 61 | NW． | SW． | S． | Light． | Light．．． | Fresho．．． | ． C do．．．． | Cloudy | Cloudy． | Clear | ．．．do | Flood．．． | Ebb． |
| ${ }_{1912}{ }^{19} \ldots$ | 59 | ${ }^{63}$ | ${ }^{68}$ | 59 | 612 | 61 | 59 | 612 | 601 | S． | ${ }^{\text {S．}}$ | s． | $\cdots$ | Light．．． | Light．．． | cioudy． |  | cio－ |  | do | Ebb | Do． |
| ${ }_{21}^{2013}$ | 58 | 74 | ${ }_{61}^{68}$ | ${ }_{60}^{60}$ | ${ }_{64}^{62}$ | ${ }_{62}^{61}$ | 60 | 62 | ${ }_{6}^{615}$ | SE． | SIV． | NW． | ．．do ．．． | ．．do | Calm | Clear | Clear | Clear ．．． | ．do | ， | ．．do |  |
| ${ }_{22}^{21 .}$ | 65 | 74 | ${ }_{70}$ | $62^{4}$ | 66 | 66 | $62^{2}$ | ${ }_{6} 6$ | 66 | SWV． | S． | E． | ．do ．．．． | ．．do | Strong．． | －．do ．．． | －do ．．． | Clondy | do |  | －．．do | Flood． |
| $2314 .$. | 70 | 74 | 1 | 65 | 69 | 69 | 65 | 69 | 69 | SW． | SW． | SW． |  | ．do | Light． | do | Clouiy | ．．．do ．． | do |  |  | Do． |
| ${ }^{2416} \ldots$ | 68 | 66 |  | 685 | 68 | 69 | 683 | 68 | 69 | SW． | NW． | NE． | ．．do ．．．． |  | －do |  | ．do ． |  |  | ．．．do | do | Do． |
| l ${ }_{26}^{25 \ldots .}$ | 68 | $\stackrel{59}{59}$ | ${ }^{59} 5$ | ${ }_{65}$ | 68 | 62 | 65 | 64 | 62 | NV． | NW． | NW． | Fresh ．．．． | Fresh | Sirong．： | Clear | Clear．．． | ．．do ．．． | iinudy |  | do | Do． |
| $2716 \ldots$ | 58 | 62 | 64 | 60 | 64 | 63 | 60 | 64 | 63 | S． | S． | NW． | Light．．． | Light．．． | ．．．10 ．．．． | Cloudy． | ， | do． | ．．do | do | do |  |
| ${ }_{29}^{28 .}$ | 63 | ${ }_{71}^{67}$ | ${ }_{6}^{64}$ | ${ }_{63}^{60}$ | ${ }^{65}$ | ${ }_{65}^{64}$ | ${ }_{6}^{60}$ | 65 | 64 | N． | N． | NW． | Calm |  | ．do | Clear | do |  | Clear | ．do |  | Flond． |
| 30. | 65 | 72 | 72 | 64 | 69 | 66 | 64 | 69 | 65 |  | S． | NE． | －do | do | ．．do |  |  | Cloudy |  | Flood | F．．do ．．． | Flood． |
|  | 69 |  |  | 66 |  |  | ${ }^{66}$ |  |  | NE． |  |  | Cight | Light |  | Cloudy |  |  |  | ．．． |  |  |
| ne ${ }_{2} 17$ | 60 | 78 | 71 | 65 | 70 | 70 | 65 | 70 | 70 | NE． | SW： | Sw． | Light | Drisk | L．${ }^{\text {do }}$ ．．．． | Cloudy． | Cloudy． | ．．do ． | ．${ }^{\text {do }}$ do．．． | －．．do | Ebb ．．． |  |
| $3^{318}$ | 71 | 68 | 65 | 69 | 70 | 68 | 69 | 70 | 68 | SW． | NW． | NW． | Bri |  | Brisk．．． |  | Clear |  | － |  |  |  |
| $4^{19}$ | 63 | 70 | 65 | 65 | 70 | 68 | 65 | 70 | 68 | NW | W |  |  | Vory 1 | ．．．do | Clear | ．${ }^{\text {a }}$ |  |  |  | ．．．do ．．． | Do． |

$[13]$ SHAD-HATCHING STATION, BATTERY ISLAND, MD, 1886. 813


Table MI.-Statement of shipments of shad fry made from Battery Station, Harre de Grace, Md., in April, May, and June, 1886.


[^107]${ }_{8}^{7}$ By J. F. Ellis, car No. 3.
8 Delivered 585,000 eggs in good order.
${ }^{9}$ By steamer Lookout.
${ }^{10}$ By launches Nos. 68 and 8?.
${ }^{11}$ By H. E: Quinn.
${ }^{12}$ Seventy-five thousand rockfish.

# XXIII.-REPORT OF SHAD PROPAGATION ON TIIE POTOMAC RIVER DURING THE SEASON OF 1886. 

By Marsimal McDonald.

The organization and conduct of the work was the same, in general, as during the season of 1885 . The facilities for collecting egss were greatly improved by substituting for the launch heretofore employed in the collection serrice the small steamer Lilla, chartered for the season, but at the close of the season purchased by the U. S. Fish Commission.

Theeggs collected from the fishing-shores and gillers were transferred to the field station at Fort Washington, where they were kept and developed until hardened, so as to permit safe transportation to Central Station, Washington. Here the hatching was completed, and the distribution of the fry conveniently made by car and messenger service. Several million eggs were retained and hatched at Fort Washington for stocking waters in the immediate vicinity of the station.

## COST AND RESULTS OF THE WORK.

For the conduct of the work, in accordance with the program submitted and approved, the Commissioner authorized an expenditure not to exceed $\$ 5,000$. At Fort Washington Statien the actual cost of collecting, developing, and transporting the eggs was \$2,879.90; at Central Station, for hatching and distribution, $\$ 916.55$; total, $\$ 3,796.45$. The total number of eggs obtained was $36,362,000$, and the losses during incubation were $6,625,000$, leaving the aggregate number furnished for distribution from the Potomac River stations 29,737,000. The percentage of loss during incubation was 18 per cent, and shows marked improvement over the results of previous seasons. The cost of production was $\$ 127.66$ per million, or 78 shad for each cent of expenditure.

## FORT WASHINGTON STATION.

On March 26 the station was occupied by a small force. The men were employed in tarring and rigging the seine, cleaning up the shore, and getting everything in readiness for active work when the run of shad should begin.

The first haul of the Commission seine was made April 12 , and the first ripe fish was taken on the 16th. The run of fish steadily increased from that time to the $22 d$, as did also the proportion of ripe females. On the afternoon and night of the $22 d$ of April 3,503,000 shad eggs were taken and impregnated. This was the maximum number taken in one day during the season. The period of maximum production was from April 20 to 27 , inclusive; the total production for the period referred to being $16,017,000$, or nearly one-half of the entire number obtained during the season.

The eggs which were hatched and planted in local waters $(3,154,000)$ and forwarded to Central Station $(33,205,000)$ were derived as follows:


The records of the Commission seine fished on the Fort Washington reservation have been carefully kept, and are here published, so as to preserve important data in a shape accessible to fish-culturists generally. These show the fluctuations from season to season, not only in the aggregate catch of shad on the same shore, but also the variations in the proportion of males to females, in the time of maximum run, and in the date at which the proportion of ripe fish reaches its maximum, and the interval during which the largest numbers of eggs are taken.

Record of seine-lauling at Fort Washington shore during the season of 1886.


[^108]A comparison of the records of the seine-hauling in 1885 and 1886 , for which seasons only we have reliable records, affords contrasts as interesting as they are perplexing. These may be summarized as follows:

| Years. |  | $\frac{\dot{x}}{\stackrel{\pi}{3}}$ |  |  |  | Maximum prolnction of egge for entiro river |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | Date. | Period. |
| 1885 |  | Pr.ct. 45.7 | $\underset{\text { Pr.ct. }}{51.3}$ | Pr.ct. | Pr.ct. |  |  |
| 1886. | 7,419 | 71.8 | 28.2 | 5.3 | 14.1 | AT, 22 | Apr. ${ }^{\text {20-27 }}$ |

A considerable proportion of the excess of males was made up $c_{2}$ small two-year-old " buck shad," called by the fishermen "skimuers," which, being too small to count, are sold by the bunch. The preponderance of these during the season gives promise of an increased run of full-sized spawning fixil in 1887.

Transportation of eggs.-The transfer of impregnated eggs from Fort Washington to Central Station was, made by the steamer W. W. Corcoran, plying daily between Waslington and Mount Vernon, the transportation being uniformly made on trays, by the "dry method," inaugurated by me in 1881. The total number of eggs forwarded from Fort Washington Station was, $33,208,000$. Of these $4,925,000$ died in transit.

## CENTRAL STATION.

The total number oif eggs received in good condition, the number of eggs and fry distributed, and the average percentage of loss in hatching are given in the following summary for the season of 1856 :

Eggs transferred to other stations................................................. $1,586,000$
Fish distributed.......................................................................... $24,997,000$
Eggs lost in hate'」ing, 7 per cent................................................. . 1,700,000
Total $\operatorname{eg}_{5}$ s received alive from Fort Washington....................... $28,283,000$
The records of the station contain a history of each lot of eggs received from the Fish Commission seine, giving the temperature of impregnation, the maximum, minimum, and mean of water temperatures during the period of incubation, and the percentage of loss in hatching, data which it is important to preserve for reference, but which it is hardly necessary to publish.

Comparison of the eatch of 1885 and 1886. The catch of shad in the Potomac varies greatly from one season to another. The aggregate number* taken in 1885 was 157,697 ; in 1886 it ras 275,422 , the increase of 1886 over the prerious season being 117,725.

[^109]
## xxiv.- -lieport on the shad work of the stelier fish HAWK DURING THE SEASON OF 1886."

By Mate James A. Smiti, U. S. N.

The shad work prosecated by the U. S. Fish Commission steamer Fish Hark during the season of 1886 covers the period from April 25 to June 3, inclusive. DIost of the operations were conducted on the Delaware River, though some of the work in the first part of the season was done on the northern end of Chesapeake Bay.

On April 24 the Fish Mawk arrived at Battery Station from Wood's Honl, Mass., and on the 25th preparations for the season's work were begun. On the 26 th the ressel proceeded across to the east side of the bay and took up a position in the mouth of North East River, from which the spawn-takers could conveniently visit the fishing-shores and the gillers in the vicinits, and arrangements were made for paying the fishermen for the ripe shad furnished. This work was continued until May 1, when orders were received to proceed to the Delaware River. Up to this time 2,192,500 eggs had been taken, which, on May 2, were transferred to Battery Station, aud on the 3d the ressel proceeded down Chesapeake Bay bound for the Delaware.

On May 5 amived in the Delaware River, and at 1 p . m. anchored off Gloucester City, N. J. This point was the headquarters for most of the subsequent operations on the river, as from it most of the gillers and fisheries could easily be reached by the spawn-takers. Found the U. S. Fish Commissiou steamer Lookout at anchor at this place, and on the 6 th received from lee $1,150,000$ eggs. The Lookout was of assistance also by towing the spawn boats to and from some of the various fishing shores, and by transporting the spawn-takers. On May 6 the Fish Hawk steamed dorn the river, stopping at the different shores, where the proprietors were seeu and arrangements made about paying them for shad spawn taken. At $10.30 \mathrm{p} . \mathrm{m}$. of the 7 th the vessel grounded on the mud-flats ofir the month of Mantua Creek, where she remained till $4 \mathrm{a} . \mathrm{m}$. of the Sth.

On May 11 transferred to Dr. D. G. Shortlidge, of the Delamare fish commissiou, 660,000 eggs; while in the channel off Gloucester, deposited $1,140,000$ fry from eggs obtained on the river. On the 12 th went down the river to Wilmington, Del., where arrangements were made to

[^110]repair steam-launch No. 55 , just arrived from Battery Station. Sent to Dr. Shortlidge* 450,000 more eggs, after which returned to the usnal anchorage oif Gloucester. On the 13th launch No. 55 arrived from Wilmington and began to render service in distributing spawn takers and tending the different fishing-shores. The fishermen reported a great decrease in the catch of shad for the week ending May 15, and attributed this to the constant easterly weather. Almost daily deposits of fry were made in the river, as will be seen from the appended table.

Owing to heavy rains the river was very muddy during the middle part of BIay, and some of the egrs in the jars and cones were covered with a muddy sediment and died. This led to the use of raw cotton in the jars for the purpose of filtering the water.

On May 27 William P. Sauerhoff reported for duty from Battery Station, to assist in shad-hatching work. On the 31st orders were received to discontinue gatheriug spawn.

On June 3 transferred to Dr. E. G. Shortlidge 180,000 fry; a shipment was also made to Philadelphia, in launch No. 55, of fifteen cans containing $1,910,000$ fry, which were delivered to U. S. Fish Commission car No. 2. As there were no more eggs or fry on hand, this terminated the shad-hatching operations of the Fish Mawk for the season of 1886. Appended will be found a table giving details of the work, showing especially the number of eggs taken, the number of fish hatched, the number deposited, and the times and places of deposit, with other statements of particulars in this comection.

> U. S. Fish Conimision Steamer Fism Hawr, Wood's Holl, Blass., October 11, 1886.

[^111]| Date. | Fishery. | Number of- |  |  | Time putin cones. | Time began hatching. | Number hatched. | Namber deposited. | Time deposited. | State of water. | Temperature of sur. face. |  | Temperature in cones. |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Males. | Females. | Eggs taken. |  |  |  |  |  |  | Max. | Min. | Max. | Min. |
| 1886 |  |  |  |  |  |  |  | (*) |  | Clear | ${ }^{\circ} \mathrm{C7}$ | $\stackrel{\circ}{65}$ | ${ }^{\circ} 6$ | ${ }^{\circ} 64$ |
|  | Red Bank. |  |  | 30,000 30,000 |  |  |  | () |  | ....do | 65 | 6.5 | 65 | 63 |
|  | Gillers. | 5 | 8 | 150,000 | $1.50 \mathrm{ar} \mathrm{m} . .$. |  |  |  |  |  | 66 | 6.5 | 65 | 64 |
|  | . C do. | 9 | 6 | 180, 000 | 3.00 a . m... |  |  |  |  | do | ${ }_{6}^{65}$ | ${ }_{61}$ | 65 | 64 |
|  | Carpenter's Point | 3 | 3 | 128, 000 | $8.15 \mathrm{p} . \mathrm{m} . .$. |  |  |  |  | artly | 63 |  | 65 | 64 |
|  | Gilfers... | 4 | $\stackrel{4}{2}$ | 120,000 | $9.30 \mathrm{p} . \mathrm{m} .$. |  |  |  |  | ...d | 62 | 61 | 6.5 | 64 |
|  | -... | 2 6 | 2 6 | 262, 500 | 8.00 p. m... |  |  |  |  | ...do | 62 | 60 | 63 | 63 |
|  | do | 7 | 8 | 400, 000 | $11.20 \mathrm{p} . \mathrm{m}$. |  |  |  |  | do | 62 | 60 | 63 | 63 |
|  | . do | 9 | 9 | 330,000 | $11.30 \mathrm{p} . \mathrm{m} . .$. |  |  |  |  | . . . do | 62 | 60 | 63 | 63 |
|  | ...do | 2 | 3 | 82, 500 | $10.00 \mathrm{p} . \mathrm{m} .$. |  |  |  |  | ...do | 6 | 61 | 63 | 63 |
|  | - do | 3 9 | 3 9 | 127, 500 | $11.30 \mathrm{p} . \mathrm{m} .$. |  |  |  |  |  | 61 | 60 | 6 | ${ }_{62}^{62}$ |
|  | $\ldots$... do | 9 | 9 <br> 5 |  |  |  | 160,000 | 160,009 |  | Mudly | 61 | 59 | 61 | 63 61 |
| May | Faunco's | 1 | 5 1 | 200,000 | $11.00 \mathrm{p}, \mathrm{m} .$. | May 10 | 35, 000 | 35, 000 | May 11 | . ...do | 61 | 59 | 63 | 61 |
|  | Lookout | 10 | 12 | 568, 000 |  | May 9 | 465, 000 | 465, 000 | May 11 | ..do | 62 | 61 | 63 | 61 |
|  | ....do | 8 | 10 | 588,000 |  | May 9 | 480, 000 | 480, 000 | May 11 | do | 62 | 61 |  | 61 |
|  | Faunco's. | 3 | 3 | 195, 000 | $5.30 \mathrm{p} . \mathrm{m}$ | Mray 10 | 170, 14000 | 170, 000 | May 12 | ... ${ }^{\text {do }}$ | 62 | 61 | 63 | ${ }_{61}^{61}$ |
|  | Howell's Core | 3 4 4 | 4 | 262',500 | 8.00 p. m... | May 10 | 220, 000 | 220, 000 | May 12 | $\cdots$ | 63 | 61 | 63 | 61 |
|  | Howell's Cove | 10 | 10 | 578,000 | 9.00 p. m... | May 10 | 470,000 | 470, 000 | May 12 | do | 62 | 61 | 63 | 61 |
|  | Eagle Point | 3 | 3 | 157, 500 | $11.00 \mathrm{p} . \mathrm{m} .$. | May 10 | 135, 000 | 135, 000 | May 12 | Partly muddy | 62 | 61 | 63 | 61 |
|  | Fannce's. | 6 | ${ }^{6}$ | 208, 000 | $11.00 \mathrm{p} . \mathrm{m} .$. | May 10 | 1600000 32000 | 160, 3200 | May 14 | ....do | 62 | 61 | ${ }_{6} 6$ | 61 |
|  | Woodbury | 7 | 7 | 500, 000 | 7.00 $\mathrm{a} . \mathrm{m} . .$. | May 10 | 400, 000 | 400, 000 | May 14 | ....d do | 62 | 62 | 63 | 62 |
|  | Howrell's Cor | 2 | 2 | 75, 000 | 7.30 p. m... | May 11 | 65,000 | 65, 070 | May 15 | ....do | 62 | 63 | 63 | 62 |
|  | Gloucester Poin | 8 | 8 | 583, 000 | $7.30 \mathrm{p} . \mathrm{m} .$. | May 11 | 480, 000 | 480, 000 | May 15 | -..do | 62 | 63 | ${ }_{6}^{63}$ | $6^{63}$ |
|  | Woodlury ... | 5 | 5 | 240, 000 | $11.00 \mathrm{p} . \mathrm{m} \ldots$ | May 11 | 200,000 40 | 200,000 40,000 | May 15 |  | 62 | ${ }_{6} 6$ | 63 | 62 |
|  | Eagle Point | 1 | 1 | 45,000 300000 | $11.00 \mathrm{p} . \mathrm{m} .$. 3.30 | May 12 | 345, 000 | 345, 000 | May 17 | ...do | 61 | 61 | 61 | 60 |
|  | Faunce's |  |  | 630, $0 \wedge 0$ | 3.00 7.00 p. m... | May 15 | 450, 000 | 450, 000 | May 17 | ...do | 62 | 61 | 63 | 60 |
|  | Howell's Cove | 13 | 13 | 648, 000 | $7.30 \mathrm{p} . \mathrm{m} . .$. | May 15 | 400, 000 | 400, 000 | May 17 | . .d | 62 | 61 | 62 | 60 |
|  | Bennett's | 15 | 15 | 855,000 | Midnight... | May 15 | 400,000 | 400,000 | Miay 17 | $\cdots$ | $6^{63}$ | 61 | 62 | ${ }_{60}^{60}$ |
|  | Woodbury | 4 | 4 | 255, 000 | $10.00 \mathrm{p} . \mathrm{m} \ldots$ | May 15 | 160,000 | 160,000 191,000 | May 17 | ... | 62 | 61 | 62 |  |
|  | Howell's Cove | 14 | 14 | $\ddagger 1,042,000$ | Midnight | May 15 | 191, 000 | 191, 000 | May 17 |  | 02 | 61 | 62 | 60 |

Record of shad operations by the Fish Hawh on the Susquehanna and Delaware Rivers, during the season of 1826-Contiuncd.





*Four hundred and thirts-four thousand died, add 450,000 eggs were delivered to Dr. Shortlinge on May 12.
rAll died.
Lost orerboard.
$\$$ On June 3, 1,940,000 fry were shipped to U. S. Fish Commission car No. 2, eud 180,000 fry were sent to Dr. Shortlidge.

## X.XV.-REPORT ON THE SHAD WORK OF THE STEAMER LOOK OU'T DURING THE SEASON OF 1886.

By Mate James A. Smith, U. S. N., Commanding.

The work in gathering, transferring, and hatching the spawn and depositing the fry of shad, performed by the U.S. Fish Commission steamer Lookout during the season of $\mathbf{1 8 8 6}$, covered the time from April 27 to May 23 , iuclusive. The greater part of the eggs obtained came from the Delaware River, but about one-third were gathered at the northern end of Chesapeake Bay and its inflowing streams. Most of the egrgs were transferred to Battery Station or to the Fish Hawk, while some were hatched on board and deposited from the Lookont. During the season $3,000,000$ fry were received from Battery Station and deposited in the tributaries of the Upper Chesapeake.

The season's work began on April 27 in the month of the Susquehanna River, where the floats and gill-boats were visited, but no ripe spawn was obtained. Ou the 29 th received 500,000 shad fry from Battery Station and deposited them in the month of North East River. From the gill-boats in this vicinity obtained 520,000 eggs, which were transferred the next day to Battery Station. On the 39th left this station, passed through the Chesapeake and Delamare Canal to the Delaware River, communicated with some of the fishing.shores, and late at night anchored off Gloucester City, N. J., a few miles below Philadelphia, which was a conrenient.point from which tovisit many of the most important shad fisheries in the river.

On May 3 went to Wilmington, Del., for the purpose of having some repairs made, but returned to the spawn-taking work on the river during the afternoon. On the 5th the Fish Hark arrived, and the Lookout received orders to co-operate with her in gathering spawn, in obedience to which, the work was carried on conjointly for several days. On the Sth passed through the canal to Chesapeake Bay, and proceeded to Battery Station.

On May 10 Commissioner S. F. Baird and Assistant Commissioner T. B. Ferguson came on board at Havre de Grace, and were taken to Battery Station. All the eggs obtained during the last few days were transferred to the station, and several deposits were made on that and subsequent days in the Susquehanna, North East, and Sassafras Rivers, of fry received from the station. Many of the fishing-shores and gillers in this region were visited almost daily, but comparatively smali numbers of eggs were taken, as the shad were becoming scarce, and these were duly transferred to the station. On the 15th proceeded to Baltimore.

On Mas 18 left Baltimore and returned to Battery Station, where the gathering and transferring of spawn were resumed. On the $22 d$ some of the fisheries had ceaced operations and most of the gillers on the cast side of the bay had stopped fishing for the season, so the sparntakers from the Lookout were sent out to gather spawn in the immediate vicinity of the station and to attend the gillers above the station, which resulted in getting 218,000 eggs on the 222 and $23 d$.

On May 23 , as the fishing seasou was abont ended, orders were received to discontinue the operations by the Lookout.

Appended will be found tables giving records of the shad operations during the season and of meteorological obserrations made in the vicinity of Harre de Grace and on the Delaware River during a portion of the month of May. The total number of eggs procured by the crew of the vessel was $4,561,000$.

Table I.-Record of shad operations conducted near Havro de Grace, Ma., and on the Delaware River, on the U. S. Fish Commission steamer Lookout.


[^112]Table II.-Record of temperature observations made at Havre de Grace, Ma., and on the Delaurare River, on the U. S. Fish Commission sleamer Lookiout, from Hay 1 to May 10, 1836.

*The bottom thermometer in use was No. 5264.

# XXVI.-REP0RT OF EGGS SHIPPED TO AND RECEIVED FROMI FOREIGN COUNTRIES AT THE COLD SPRING HARBOR, NEW YORK, STATION DURING THE SEASON OF 1886-'8\%. 

By Fred Mather.

## SIIIPPED TO GERMANY.

(A) Sunfish (Eupomotis aureus).-Some time in the summer of 1886, I shipped to Mas von dem Borne, of Berneuchen, 125 sunfish about 1 inch in length. The fish were captured from the mill-pond of Mr. Townsend Jones at Cold Spring Harbor aud sent to Mr. Blackford in Fulton Market for shipment. The wisdom of introducing these fish in Germany was rather questionable, but after repeatedly warning Vou dem Borne of their predatory character and that their only value was as an aquarinm fish, he still wished them. No report of their arrival has been receired.
(B) White Percir (Roccus [IIorone] americanus).-Three shipments of fish from 5 to 6 inches long were made to von dem Borne as follows: Uctober 9, 1886, 36 fish were sent in six cans by steamer Aller, but they died on the fifth day out. On December 22, 16 fish in four cans, per steamer Werra, which arrived in Germany in a frozen condition, all dead. On March 1, 1887, 16 fish of the same size as those sent before were shipped in four cans, but only 3 of them reached von dem Borne alice. These fish were taken from the mill-pond at Cold Spring Harbor by permission of Mr. Townsend Jones.
(C) Rock bass (dmbloplites rupestris).-On March 1, 1887, twere were sent to Herr vou dem Borne 25 rock bass of about an inch in length. They were put in one can and 20 of them reached him alive. These fish came from New River, Virginia, and were forwarded by order of Col. M. MeDonald from the Wytheville Station.
(D) Brook pike (Esox americanus).-On December 2., 1886, I sent von dem Borne 14 brosk pike per steamer Werra, at the same time that one shipment of white perch mentioned above was made. The fish were all dead on arrival. The only, thing that surviced in the cans were some rery suall cyprinide put in as food for the pike. The fish were furnished by Mr. M. B. Hill, superintendent of the New York hatchery at Clayton.

## SIIIPPED TO FRANCE.

(A) Land-Lucked salmon (Salmo salar, var. sebago).-On April i, 1887, there was packed and shipped to Mr. M. D. Hallay, vice-president [1]
of the Fish Commission of the Lower Scine, Gonzerville, France, one case containing 95,000 eggs of the landlocked salmon, per steamer La Bretagne. These eggs rame some days before from Grand Lake Stream, Mane, and were in good condition for the voyage. No word has been received from them, but from the appended letter of Mr. Lonis De Bibian, agent Ceneral Transatlantic Company, dated New York, April 2,1857 , and relating to their care on shipboard, there is every reason to believe they will get to their destination in safety:
"Xour telegram of 31st March and letter of April 1 at hand. The case reached ime this morning and goes on La Dretagne, saling to day, in care of an officer whom I have given iustructions in reference to keeping the box conl and adding ice thereto. I have sent the case to our agents care in Have and written him to reship by express on ar. rival there."

## RECLIVED FROM SCOTLAND.

(A) Loch-leven trout (Sutmo levincnsis).-On January 14, 1887, there were receited from Sir dames Gibson Maithand, Bart., proprietor of the Howietom Fisbery, Stirling, Seotland, three cases of eggs of: the Loch-leven tront, per stean-ship Bothnia. The cases contamed 16,000 cacb, or 48,000 in all. The eggs on the upper trass were in good coudition, but the lower trays in all the boxes contansed ouly dead eggs, owing to the wet condition of the moss and a rise in the temperature. The eggs were all clean and entirely free from fungus, and had they been iced on the ship and the temperature kept down they would have arrived in splemdid condition, for those which contained dead embryos had not been dead long and merely showed the white line in the egg. We took out 20,300 deal ones, and the loss since that time has been trifling. The fry trom the good eggs are as strong and healthy as any fish ever hatched here. The packing at Homietom is most excellently done.

## RECEIVED NROM GERMANY.

(A) Saiblivg (Salvelimus salvelinus).-On Febraary 9, 1887, there were received from Hew Max von dem Bonte, proprietor of the fishcultural establishment at Berneuchen, one case containing 20,000 Saibling eggs, from which there were taken 8,000 dead. In reply to an order to send one-fouth of the eggs to Col. E. B. Hodge, commissioner of fisheries of New Hampshire, 3,000 were repacked and shipped to the hatchery at Plymorth, N. H. He reported their arrival in good condition. On March 9 another case of -Saibling eggs was received from Merr von dem Borne, containing 20,000 , of which 5,500 were dead. Throngh a misunderstandiug these were mixed with an installment of brown trout eggs received the same day from Germany, and the 14,500 grod eggs were disinibuted with the brown trout to the hatcheries at Corry, Pa.; Wytherille, Va.; Northville, Mich.; and Cold Spring Harbor, N. Y.

On the same date there were receivel 20,000 eggs of the Saibling from Herr von Behr, president of the Deutsche Fischerei-Verein, from which we removed 5,000 dead and sent the remainder to Mr. F. N. Clark, Northville, Mich., who reported their arrival in good order.
(B) Brown Trout (Sulmo fario).-On March 4, 1887, there was received from IIerr von dem Borne, per steamer Elbe, one case containing 8,000 brown tront eggs, which arrived in very good condition, very few being dead; and, in accordance with orders, they were kept at Cold Spring Harbor. On March 22 there were received from son dem Borne 50,000 brown tront eggs, in two cases. They were in very bad condition, many being hatched. On the first day 30,000 dead were removed. These eggs not being fit to send out were placed in the troughs to hatch, the prospect of getting any good fish at all from them being very small. At the present time there are about 3,000 fry which are two weeks old and looking well. Probably six hours more in the package would have ruined them.
On March 9 there were received from Herr von Behr, of the Deutsche Fischerei Verein, per steamer Werra, one case contaning 50,000 eggs of the brown troat, which were in excellent condition, althongh 13,000 from the lower trays were dead. These eggs were sent ont as follows:

| E. B. Hodge, | 5,000 |
| :---: | :---: |
| Central Hatching Station, at Washington, D. C. | 5,000 |
| F. N. Clark, Northville, Mich . | 20,000 |
| Pemsylvania Hatchery, Corrs, Pa | 10,000 |
| Wytheville, Va., Hatchery | 10,000 |

The above figures include the 14,500 saibling, which, as already explained, had been mised with them. All except Colonel Hodge got a portion of them.

This station has received on accomat of the New York Fish Commis. sion the following eggs shipped to Commissioner E. ©. Blackford: twenty thousand eggs of the grayling (Thymellus vexillifer Ag .), of which ouly 300 eggs were good, and 10,000 eggs of the brown trout from Herr von Behr, which came in excellent condition.

Cold Spring Harbor, N. Y., Aprib 8, 1887.

# XXVII.-REPORT OF DISTRIBUTION OF FISH AND EGGS BY THE U. S. FISH COMMISSION FROM JANUARY 1, 1886, T0 JUNE 30, 1887.* 

By M. McDonald.

The aggregate number of fish and eggs distributed by the U. S. Fish Commission, as collated from the reports of stations, in the period comprised between January 1, 1856, and June 3, 1857, was 210,628,413.

The actual number distributed, however, was several hundred thoasand less than this, the discrepancy resulting froin the fact that the eggs of Salmonide produced at one station have been transferred to and hatched out at other stations and consequently have been reported twice, once as eggs aud again as fry or older fish. The aggregate dis. tribution by species is shown in the following summary, from which it will be seen that the whitefish, the shat, and the carp still constitute the main features of the work of the U. S. Fish Commission.

Summary of distribution.

| Specios. | Eggs. | Fish. | Total. |
| :---: | :---: | :---: | :---: |
| Whitefish (Coregonus clupeiformis) | 32, 600,000 | 62, 070,000 | 94, 670,000 |
| Brook trout (Salvelinus fontinalis) | 82, 000 | 19,199 | 91, 199 |
| Lake trout (Salvelinus namaycush) |  | 2162, 723 | 162, 723 |
| Rainbow trout (Salmo ivideus) | 429,000 | ${ }^{3} 60,412$ | 495, 412 |
| Atlantic salmon (Nalmo salar) | 754, 000 | 446,588 | 1,200,588 |
| Land-locked salmon (Salmo salar, su | 377, 500 | 44, 017 | 421,517 |
| Brown trout (S'almo fario) | 84, 500 | 26,500 | 111,000 |
| Snad (Clupea sapidissima) | 10,718, 000 | 99, 759, 000 | 110, 470, 000 |
| Carp (Oyprinus carpio) |  | 136, 163 | 136, 163 |
| Gold-fish (Carassius auratus) |  | 2,805 | 2,805 |
| Black bass (Hicropterus dotomiei) |  | 48 |  |
| Red-eye perch ( 4 mbloplites rupestris) |  | 2,328 | 2, 328 |
| Grayling (Thymallus tricolon) |  |  |  |
| T'ench (Tinca vulgaris) |  | 1, 202 | 1,202 |
| Saiblng (Salvelinus salvelinus) | 18,000 |  | 18,000 |
| Smelt (Osmerus mordax) |  | 2, 100, 000 | 2, 100, 000 |
| Lobsters ...........- |  | 5, 000 | 5,000 |
| White perch (Rocous [Jorone] ameri |  | 88 | 68 |
| Sunfish (Euponnotis aurens) |  | 125 | 125 |
| Brook pike (Esox americanus) |  | 14 | 14 |
| Soles. |  | 19 | 19 |
| Eels. |  | 200 | 200 |
| Rock-fish (Roccus striatus) |  | 75,600 | 75, 000 |
| Codfish (Gadus morrhua) |  | 662, 000 | 663, 000 |

> 1 Of this number 1,711 were one or more years old.
> ${ }^{2}$ Of this number $6,9,3$ were one or more years old.
> ${ }^{3}$ Of this number 16,482 were one or more years old.

[^113]S. Mis. $90-53$

The following summary of fish and eggs furnished for distribution, arranged by stations, will indicate the character and extent of the work accomplished by each station.

Summary of fish and eggs furnishod for distribution by the stations during the season.


By comparison with reports of distribution of previous sears it will be seen that the trout work is growing very much in importance, and to make adequate provisions for the rapidly increasing demand for the Salmonide will necessitate comsiderable extersion of the work of the U. S. Fish Commission in this direction.

The details of distribution of the most important species, as summarized abore, are as follows:
(a) Whitefish (Coregonus clupeiformis).

Of this species $32,600,000$ eggs were distributed from Northville Station, Michigan, the present season and were allotted as follows:

The eggs which were retained and hatched at the Michigan stations yielded $62,070,000 \mathrm{fry}$, which were distributed as follows:
To Lake Ontario............................................................................... 3,000,000
To Lake Erie ................ ....... ....................................................... $12,000,000$
To Lake Huron .......................................................................... $30,000,000$
To Lake Michigan ....... ................................................................ 17, 000,000
To Long Lake .......................................................................... 20,000
To Clear Lake.... ............................................................................ 50,000
Total ............................................................................... $62,070,000$
(b) Brook Trout (Salvelinus fontinalis).

Eggs of this species are collected at the Northrille Station from fish reared in the ponds. The number furnished for distribution during the season of 1886 -'87 was 82,000 , which were assigned as follows:
To State commissioners and individuals................................................ 37,000
To Central and $W_{y}$ theville Stations, for hatching and rearing................ 35,000
To foreign countries (international exchange)..................................... 10,000
Total.................................................................................. 82,000
(c) Lake trout (Salvelinus namaycush).

No eggs of this species were collected during the season.
(d) Rainbow trout (Salmo iridens).

Eggs of this species are collected for propagation and distrjbution at Baird Station, California, Northville Station, Michigan, and Wytheville Station, Virginia. At Baird Station the eggs are obtained chiefly from wild native fish. At Northville and Wytheville Stations the breeders have been reared from eggs artificially impregnated at Baird Station and hatched and reared at the stations.

## The total production available for distribution was as follows:

|  | $\begin{gathered} \text { Season } \\ 1885-' 86 . \end{gathered}$ | $\begin{aligned} & \text { Season } \\ & 1886-87 . \end{aligned}$ | Tutal |
| :---: | :---: | :---: | :---: |
| From Baird Station, California: |  |  |  |
| Hatched and planted in McCloud Rive | 5,000 | 39,300 | 44,300 |
| Hatched for ponds at station..... | 10,000 |  | 10, 000 |
| Distributed to applicants and eastern United States stations | 131,000 | 145,000 | 276,000 |
| From Northville Station, Michigan: |  |  |  |
| To Michigan State commission .......-.-.......) |  |  | $\begin{array}{r} 25,000 \\ 25,000 \end{array}$ |
| Hatched for rearing at station...........-.... |  |  |  |
| From Wrtheville Station, Virginia |  |  |  |
| To Central Station ........... |  |  | 5,000 |
| To State commissioner and individuals. |  |  | 38,100 |
| To foreign countries (international exchange) |  |  | 55, 000 |
| Hatched for rearing at station |  |  |  |
| Totai |  |  | 478,300 |

(e) Atlantic salion (Salmo salar).

Eggs of this species distributed by the Commission are all furnished by the collecting station at Bucksport, Me. The production for the year was 779,000 , which were distributed as follows:

| Date. | Consiguee. | Adrress. | Number. | Condition on arrival. |
| :---: | :---: | :---: | :---: | :---: |
| Fub. $\begin{array}{rr}1 \\ & 3 \\ 3 \\ & 21 \\ & 23 \\ & 24 \\ & 28\end{array}$ | F. Mather | Cold Spring Ma:bor, N. Y.. |  |  |
|  | F. A. Walters | Bloomingdale, N. Y ......... | $250,000$ | Good. |
|  | E. 13. Hodge | Plymouth, N. H. .......... | 100, 000 | Do. |
|  | F. Mathew. | Cold Spring Harbor, N. X.. | $40,000$ | Excellent. |
|  | W...do ... | --...do.................. - | $10,000$ | Do. |
|  | W. M. Munson | Grand Lake Stream, Me.... | 89, 000 | Good. |
|  | .-....ilo | . 10 | 15,000 | Do. |
|  | Total shipped on account United states. |  | 754, 000 |  |
|  | Retainel at hatchery for rearing ... |  | 25,000 |  |
|  | Total |  | 779,000 |  |

## ( $f$ ) SCHOODIC OR LAND-LOCEED SALMON.

The station at Grand Lake Stream, Me, reported 352,500 - eggs of this speeces as available for assignment. These were distributed as follows:

| Date. | Consignee. | Address. | Number. | Condition on arrival. |
| :---: | :---: | :---: | :---: | :---: |
| Mar. $\begin{array}{r}3 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 5 \\ 5 \\ 5 \\ 5 \\ 7 \\ 7 \\ 7 \\ 7 \\ 8 \\ 9 \\ 2\end{array}$ | E. D. Carleton | Spirit Lake, Iowa | 30, 000 | Fair. |
|  | 1.O. Sweeny | Saint Paul, Minn | 30, 000 | Good. |
|  | Buker liros | Rome City, Ind. | 2,500 | Good. |
|  | F. A. Walters | Bloomingdale, N. Y | 30,000 |  |
|  | 6. W. Delawter ..................... | Baltimore, Mrd | 10,000 30,000 |  |
|  | Mer von Behr, care E. G. Backford.- Max von dem Borne, care E. G. Black- | New York, N. Y | 30,000 10,000 |  |
|  | ford. |  |  |  |
|  | National Wish Culturo Association, caro 18. (i. Blackford. | . .do | 25,000 |  |
|  | H. Th. lioot.... | Providence, R. I | 10,000 | Excellent. |
|  | L. Z. Leiter. | Lake Geneva. Wis | 5,000 | Good. |
|  | I. Mather | Cold Spring Harbor, $\overline{\mathrm{N}}$. $\bar{Y}$ | 20, 400000 | Very gom. |
|  | E. A. Bracket | Winchester, Mass ....... | 30,000 | Good. |
|  | E. B. Hodgo | ${ }^{\text {Plymouth, }}$ N. H. | 25, 000 | Fair. |
|  | F. Mather. | Cold Spring Inarbor, N. Y. | 25, 000 |  |
|  | Total |  | 352, 500 |  |

SUMMARY.
To State commissioners and individuals. ..... 287; 500
Deutsche Fischerei-V eroin ..... 30, 000
Max von dem Borne ..... 10, 000
National Fish Culture Association ..... 25, 000
Total ..... 352, 500
(g) Brown trout (Salmo fario).
To the courtesies of Herr von Behr, president of the Deutsche Fisch-erei-Verein, and Herr Max von dem Borne, of Bernenchen, Germany,the U. S. Fish Commission is indebted for several consiguments ofeggs of the brown tront. The number received, their condition asreported on arrival, and the assignments made of the eggs are givenbelow:
From Herr von Behr (international exchange) ..... 37, 000
From Herr Max von dem Borne ..... 22,500
They were distributed as follows:
To Pennsylvama commission ..... 10, 000
To Wytheville Station ..... 10,000
To Northville Station ..... 20,000
To Cold Spring Harbor Station ..... 9,500
To New Hampshire commission ..... 5,000
To Central Station ..... 5, 000

A shipment of 50,000 brown trout eggs sent by Herr von dem Borne were three-fifths dead on arrival, and the balance will probably prove a total loss.

> (h) Saibling (Salvelinus salvelinus).

The Commission is indebted also for eggs of the saibling to Herr von Behr and Herr Max von dem Borne. The number received and their distribution is as follows :

| From Herr von Behr | 15, 000 |
| :---: | :---: |
| From Herr Max von dem Borne | 12,000 |
| Their distribution was: | 27,000 |
| Northville Station. | 15,000 |
| Cold Spring Harbor Station. | 9,000 |
| New Hampshire commission | 3,000 |
| (i) SHad (Clupea sapidissima). | 27,000 |

The total distribution of shad for the season was $110,370,000$, which were contributed as follows:
Battery Station, Susquehanna River............................................. 42, 650, 000
Fish Hawk Station, Susquehanna River..................................... 20, 934, 000
Central Station, Potomac River.................................................. 44, 736, 000
Fort Washington Station, Potomac River................................... $2,050,000$

## A summary of the distribution of fry by river basins is as follows:

Penobscot River ..... 922,000
Kenuebec River ..... 1, 047, 000
Tributaries of Narraganset Bay ..... $1,275,000$
Hudson River aud tributaries ..... ${ }^{*} 2,18 \overline{5}, 000$
Tributaries of Delaware Bay ..... †5, 099, 000
Tributaries of Chesapeake Bay ..... 70, 199, 000
Tributaries of Albermarle Sound ..... 5, 322, 000
Tributaries of South Atlantic coast ..... 3,569, 000
Tributaries of Gulf of Mexico ..... 7, 048, 000
Inland waters ..... 1,014,000
Total$97,680,000$
(j) Carp (Oyprirus carpio).

The production of this species for distribution the present season was not sufficient to meet all requests filed by applicants and gave rise to considerable dissatisfaction on the part of those who expected to be supplied. The diminished proluction was oceasioned by the work of reclamation of the Potomace flats, which necessitated the interruption of the drainage of the ponds and prevented their proper preparation for the spawning of the fish. This canse is, of course, temporary, and we may reasomably expect in the fature to be able to produce the carp in sufficient numbers to supply all demands. The total distribution of carp for the season aggregated 133,660 in thirty-two States and four Territories, as follows:

Distribution of earp by U. S. Fish Commission during season 1886-87.

| State. | Point of distribution. |  |  | Fish issued - |  | Total issued. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |
| Alabama. | Birmingham and Greenvi | 45 | 152 | 3, 110 |  | 3, 110 |
| California | Sau Francisco | 23 | 33 | Cfio |  | 660 |
| Florida | Jacksonville | 14 | 77 | 2, 260 | $\pm 475$ | 2, 735 |
| Connecticut | loston, Mass | 8 | 36 | 720 |  | 720 |
| Delaware | Washington, D. | 3 | 18 | 3 CO | 400 | 760 |
| District of Colu |  |  | 3 | 69 |  | 60 |
| Georgia | Atlanta. | 67 | 181 | 3, 725 | 250 | 3,975 |
| Illinois | Quiney | 75 | 221 | 4,520 |  | 4,520 |
| Iudiaua | Indiauapolis .... | 73 | 257 | 5, 250 |  | $5,2.50$ |
| Idaho T | Salt Lake City, Utah | 4 | 7 | 140 |  | 140 |
| Iowa. | Des Moines. | 90 | 187 | 3,970 | 5,590 | 9,490 |
| Kansas | Kansas City | 83 | 6017 | 12,620 | 440 | 13, 020 |
| Kentucky | Lexington. | 4. | 98 | 2, 150 | §249 | 2,399 |
| Maine . | Boston, Mass | 1.5 | 61 | 1,250 |  | 1,2.50 |
| Maryland | Washington, D | 10 | 31 | ${ }^{60} 0$ | 1,200 | 1,850 |
| Massachusetts. | Boston... | 13 | 37 | 770 |  | 770 |
| Minnesota | Saint Pa | 29 | 53 | 1,060 | 3, 500 | 4,560 |
| ${ }^{*}$ Dres not include the product of $0,66 t, 000 \mathrm{cggss}$ shipped to Cold Spring Ihtrbor to be hatched and |  |  |  |  |  |  |
| turned into Hudson liiver and tributaries. <br> $\ddagger$ Does not include the product of $4,074,000$ eras shipped to Wilmington, Del., to be hatched and |  |  |  |  |  |  |
| turned into the tributaries of Delawia <br> tPlanted in Lake Emma, Florida. |  |  |  |  |  |  |
| § Deposited in city reservoir at Lexington, Kf. |  |  |  |  |  |  |

Distribution of carp by U. S. Fish Commission during season 1886-87-Continned.


* Supplied from stock belonging to State fish commission.
+ Deposited in Muskingum River, at McConnellsville, Ohio.
$\ddagger$ Deposited in Reed Creck, Virginia.


## (k) Goldfisif (Carassius auratus).

The total distribution of this ornamental species for the season aggregated 2,755 , which were distribated to 392 applicants in twenty-two States and two Territories in lots of from 4 to 10.

The summary of distribution by States is as follows:

| State. | Number of applicants. | Number of fish. | State. | Sumber of applicants. | Number of fish. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Alabama... | 3 | 24 | New Jersey | 4 | 24 |
| Connecticut | 1 | 4 | New York. | 11 | 62 |
| Florida | 2 | 12 | North Carolina | 4 | 36 |
| District of Colum | 273 | 1,630 | Ohio | 4 | 24 |
| Georgia... | 11 | 256 | Penusylfania | , 11 | 84 |
| Illinois | 3 | 18 | Rhode Island | 1 | 6 |
| Indiana. | 3 | 18 | Sonth Carolina | 1 | 12 |
| Iowa... | 10 | 72 | 'Temnessee -... | 5 | 30 |
| Kansas | 1 | 50 | Utah .-... | 3 | 87 |
| Maryland. | 14 | 102 | Virsinia | 19 | 114 |
| Massachusetts | 3 | 18 | West Virginia | 2 | 12 |
| Michigan | 1 | 4 |  |  |  |
| Minnesota | 2 | 50 | 'Total | $39^{*}$ | 2,755 |

## CAI AND MESSENGER SERVICE.

During the seasou of 1556 the cars of the Commission were moved 45,861 miles, as follows :

|  | Paid. | Free. | Total. |
| :---: | :---: | :---: | :---: |
| Car No. 1: | Mites. | Jiles. | Miles. |
| Carp distribution. | 3, 5.59 |  | 3, 559 |
| Shad distribution | 4,183 |  | 4,183 |
| Carp distribution. | 4,390 | 1,313 | 5,703 |
| Shad distribution. | 10,327 | 74 | 10, 401 |
| Whitelish distribut | -637 | 3,919 | 4,556 |
| Trout distribution | 6, 153 | 2,356 | 8,509 |
| Car No. 3: |  |  |  |
| Tront distribution. | 2, 536 |  | 2,536 92.2 |
| Slad distribation. | 5,004 | 488 | 5,492 |
| Total | 37, 711 | 8,150 | 45,861 |

Of the above transportation 8,150 miles were furnished by the railroads gratuitonsly, and 37,711 miles paid for at an arerage rate of 20 cents per mile.

The number of miles traveled by messengers on detached service was as follows (all paiia):
Carp distribution
Miles. ..... 13,701
Shad distribution
Whitefish distrimation ..... 2, 209
Trout and perch distribution ..... 6,802
Soles distribution ..... 989
Total ..... 41,535

As heretofore many of the railroads, especially the great continental lines, hare responded freely and generonsly to requests for free transportation, and we have thus been enabled to extend the benefits of the distribution to remote sections of the comutry, which it would otherwise have been impracticable for us to supply on account of the enormous expense of such distribution.

The following is a list of the railroads which furnished free transportation:

CAR No. 2.

| Date. | Specios. | Railroad. | Route. | Distance. |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { 1886-'87. } \\ & \text { NoF. } \quad 20 \end{aligned}$ | Car | Missouri Pacific | Saint Louis to Kansas City and | Miles. 574 |
|  | do | $\ldots \mathrm{do}$ | Kansas City to Omaha.............. | 213 |
| Dec. $\frac{1}{4}$ |  | Utah Cor | Ogden to Salt Lake City and return. | $\begin{array}{r}74 \\ 452 \\ \hline\end{array}$ |
| Aug. 19 | Trout | Saint Louis and San Fran- | Saint Louis to Verona .............. | 274 |
| 20 |  |  | Verona to Nichols | 32 |
| 22 | ${ }^{10}$ |  | Nichols to Kansas City | 242 |
|  | do | Kansas City, Fort Scott and Gulf. | Nichols to Mammoth Springs and | 288 |
| Feb. 2 | do | Flint and Pere Marquetto.. | Northville, Mrich., to Reed City and | 326 |
| 12 | . do |  | Northrille, Mich., to Toledo and re- | 124 |

CAR No. 2.-Continued.


CAI No. ?

| May | 22 | Shad. | Easton. | Boston, Mass., to Portland, Me | 108 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 23 | .... do ....... | Maine Central | Portland to Bangor, Mie | 136 |
|  | 24 | do | do | Baugor to Portland, Me | 136 |
|  | 25 | . do ....... | Easton | Purtland, Me., to Boston, Mass. | 108 |
|  |  |  | Total |  | 488 |

## HATCHING OF SHAD EGGS EN ROU'IE.

The first successful attempt in this direction was made in the spring of 1886 , when 600,000 shad eggs were transferred from the Susqeiamma River Station to Portland, Oregon, successfully hatched after arrival at destination and the fry deposited in good condition in the Columbia and Willamette Rivers in the State of Oregon.

The application of this method during the season of 1887 has greatly increased our facilities for distribution and, by enlarging the carrying
capacity of the cars, has introluced a corresponding reduction in the cost of distribution.

Only one car (No. 3) is as yet equipped for this service. This made three trips, carrying each time, in addition to its full complement of fish, $1,200,000$ eggs, and experience has shown that the hatching of the eggs in this moving station can be conducter as conveniently and with as good results as at the fixed stations. The mumber of hatching.jars in use was 12 , each requiring one half a gallon of water per minute and having a capacity of 90,000 eggs.

It is desirable that the equipment of car No. is should be increased to 60 jars, which will afford hatching room. for 5,000,000 shad eggs or about $8,000,000$ whitefish eggs. It is recommended that car No. 2 be similarly equipped and provided with cireulating hatching and collecting apparatus, thus giving each a carrying capacity fon-fold greater than if young fish only are transported.

Should the increase of the work of shad protuction necessitate, as is probable, the construction of another car, it is desirable that this should be built and equipped with special reference to its use as a field or moving station for the hatching of eggs of shad and whitefish.

## TRANSFER OF EGGGS TO DISTANT STAIIONS.

The number of shad eggs collected during the season was greater than we could care for at Battery and Central Stations. The necessity of making proper provision for this excess led to the application of the methods of tramsportation now in use for the transfer of eggs from Fort Washington to Central Station to the transfer of large lots of eggs to remote stations, where the eggs were hatehed and planted in adjacent waters.

The eggs, packed on shallow, cloth-lined wooden trays, were crated up in packages of convenient size for handling (each package containing 250,000 eggs), packed in the refrigerators of car 3 , the temperature regulated so as to stand at about $60{ }^{\circ} \mathrm{F}$. and transferred to destination. Of the four lots of $2,000,000$ each, moved in this way, two arrived at destination in good condition, one in inferior condition, and one proved almost a total loss. This lot, however, was delayed 12 hours en route, and the eggs for safety stored in a refrigerating apartment where the temperature approached freezing. To this is doubtless to be attributed the loss of this shipment.

We have yet to learn much as to the conditions determining the successful transfer before we can be assured of uniform success in making shipments of eggs instead of fish to distant points, but doubtless the movement of eggs instead of tish will be the main feature of future distributions, since eggs can be transfered in large numbers at little relative cost to distant points convenient to the waters to be stocked, and hatched out there in improvised fieh stations or in a car equipped as a hatching station.

Washington, D: C., July 25, 1887.

## xXVIII.-DISTRIBUTION OF DUPLICATE SETS OF MARINE INVERTEBRATES, 1879-1886.

In the Commissioner's report for several years past, reference has been made to the work done by the U. S. Fish Commission in distributing to museums specimens of the lower forms of aquatic life; but as in no case has a detailed report been made, it has been deemed proper to present one at this time. Thus in the report for 188 ! it was stated:
"The Commission has also made very large collections of aquatic animals, especially of fishes, shells, corals, crustaceans, star-fishes, ete., and after submitting them to a careful investigation for monographic research and setting aside a full series for the National Museum, the remainder has been made up into well-identified and labeled sets for distribution to colleges, acalemies, and other institutions of learning throughout the United States. The educational adrantages of this last measure have proved to be of the utmost value and are thoroughly appreciated by teachers throughout the comntry. Applications for these sets are being continually received, and several hundreds of them have already been supplied, a number of persons being occupied for a good part of their time in preparing to meet additional calls. There is nothing which so much increases the interest in natural history as the opportunity of examining actual specimens of rare and usually unprocurable species, instead of depending upon descriptions or drawings; and as the possibility of obtaining these series becomes the better known it is quite likely that all the resources of the Commission for making collections, great as they are, will be fully taxed.
"The calls for these specimens are usually made through the member of Congress representing the district in which the institntion is established; or, if made direct to the Commission, they are referred to the member for his indorsement and recommendation."

Again, in his report for 1884, the Commissioner said :
"The Fish Commission has been enabled to do a great ceal iucidentally in the way of promoting science and education: especially by the discovery of many rare forms of life in the waters, and by the accurate labeling and extensive distribution of duplicates of these objects to colleges and acalemies throughont the comtry; the reserve specimens, of course, going, under the law, to the National Musemm."

In his report for 185 he wrote:
"There has also been hearty co-operation with the work of investigation by various men of scieuce, notably by those connected with Government bureans of this and other countries, and with many of the leading eolleges and edacational organizations of the country. To the latter it has been possible for the Commission to supply, in return, collections of marine forms and other material of great value for class-room instruction and for museum purposes. These collections involve no expense to the recipients beyond the cost of freight, of alcohol, and of suitable receptacles for exhibition and stovage, and are assigned to schoois and colleges upon recommendation of the member of Congress from the district in which the institutions are located."

The following is a copy of the circular which was usually sent to applicants for these specimens:
"Some of the duplicate specimens of marine invertebrates collected by the U.S. Fish Commission have been arranged into sets for distribution to educational establishments throughout the country. They are partly dry and partiy in alcohol, each specimen accompanied by a printed label giviug name, locality, etc. The sets contain about 105 species each, and represent many of the principal fimilies, orders, and genera of Crustaceans, Mollusks, Radiates, and Sponges of the North Atlantic.
"To oitain one of these sets application must be made through and indorsed by a member of Congress and must contain an assurance that the expense of proper exhibition will be met. Alcoholic specimens are packed in a number of storage jars, from which they must be removed and each placed in a separate bottle. The cost of jars and alcohol generally amounts to from $\$ 25$ to $\$ 40$, but these materials are not furnished by the Fish Commission."

These series of duplicates were all prepared by Mr. Richard Rathbun, the first series at New Haven, Comn., nuder the direction of Prof. 1. E. Verrill, the remainder at the National Museum. The following explanatory remarks are quoted from the official lists:
"The specimens included in the following list are preserved in alcohol, unless otherwise stated. The authority given for the uame is usually the author who first used the combined binomial name herein adopted, and is not necessarily that of the author who first described the species or gare the specific name. (A name in parentheses is authority for the specific name only.)
"The species are not all included in each of the fifty sets, but those sent in each numbered set are checked on the list bearing the corresponding number. The species now distributed are not to be considered as the most a momom, but simply those which happen to be at present most abundantly represented in the collections of the Fish Commission, or

[^114]those which, for other reasons, can be most conveniently distributed at this time, and have been so selected as to give representatives of most of the important groups. It will also be understood that the species included in this list form but a rery small proportion (less than onetwelfth) of the total number of species contained in the collections made by the Fish Commission on the New England coast." (Explanatory of Series I.)
"The species enumerated in the present list were collected by the U. S. Fish Commission, mainly during the past four years, and represent a portion of the duplicate material resulting from their sea-coast explorations, and now available for distribution. Several of the species included in these duplicate sets are recent additions to science, obtained by the U. S. Fish Commission steamer Fish Hazk, from the inner edge of the Gulf Stream slope, south of Martha's Vineyard, during the summers of 1880 and 1881. This region, which was first explored in 1880 , has proved to be the richest dredging ground yet discovered upon our coast, both as regards variety of life and abundance of specimens.
"Nearly all the species enumerated are included in each set, but of a few species only enough duplicates were secured to supply a portion of the sets. The sets will number about one hundred. The crustacea have been identified, for the most part, by Prof. S. I. Smith, and most of the other species by Prof. A. E. Verrill. The names are mainly those used in the Preliminary Check-list of the Marine Invertebrata of the Atlantic Coast, by A. E. Verrill, edition of 1879. A cousiderable number of species that have since been described are, however, here inchuded." (Explanatory of Series II.)

Five series, containing 360 sets in all, have been prepared, and of these, 247 sets have been distributed to date. The following lists of institutions and individuals supplied are furnished by Mr. Rathbun, who has had charge of the distribution:

List of insfitutions and individuals supplied with sets of duplicate specimens of marine inver. tebrates from the collections of the $U$. S. Fish Commission to Vecember $\mathbf{3 1}, \mathbf{1 8 8 6}$.
1.-FOREIGN.

| Country. | City or town. | Institution or individual. | $\begin{aligned} & \text { Series } \\ & \text { No. } \end{aligned}$ |
| :---: | :---: | :---: | :---: |
| Argentine Repulic. Australia $\qquad$ | Buenos Ayres | Museo Publicode Buenos Aires <br> Queensland Museum. $\qquad$ <br> Victoria Museum <br> William Macleay <br> Anetralian Musenm $\qquad$ <br> Musée Roval a Histoire Naturelle $\qquad$ Queen's University Peter Redpath Museum, McGill University Geological and Natural History Survey Sherbrooke Library, Art, and Natural History Association. |  |
|  | Brisbaua ... |  |  |
|  | Melhomrne........... |  |  |
|  | Elizabeth Bay, Sydney |  |  |
|  | Sydney <br> Brunsels. |  |  |
| Canada | Kingston |  |  |
|  | Montreal |  |  |
|  | Ottawa |  |  |
|  | Sherb |  |  |
|  | Toronto | Trinity College.................................. |  |
|  |  | Trinity Medical school |  |
|  | Quebec | Université Lar |  |
|  | Santiag | Museo Naci |  |

List of institutions and individuals sumplied with sets of duplicate specimens of marine invertebrates, etc.-Continued.
1.-FOREIGN-Continued.

| Country. | City or town. | Institution or individual. | Series No. |
| :---: | :---: | :---: | :---: |
| Denmark Eugland. | Copenhagen | Royal Zoological Museum | 1 |
|  | Cambridge | John W. Clark, Cambridge University | 5 |
|  | Fence Houses, County Durham. | Leev. A. M. Norman ................................ | 5 |
|  | Liverpool.. | Derby Museum. | 1 |
|  | London..... | British Museum. | 1 |
|  | Manchester | Manchester College and Musen | 2 |
|  | Oxtorid..... |  | 5 |
| France | Nantes ... | Societe d'Ifistoire Naturelie | 4 |
|  | Paris. | Museum-Jardin des Plantes | 1 |
| Germany | Berlin | Zoolowical Museum | 1 |
|  | Dresden | Royal Zoological Museum | 1 |
| Greece | Athens | The Greek Gorermuent ........................... | 2 |
| Italy | Do.. | Netherlands Museum. |  |
|  | Florence | Reale Museo di Fisico e Storia Naturale | 1 |
|  | Genoa | Museo Civico di Storia Naturale. |  |
| Japan | Tokio. | Mombusho Museum. | 1 |
| Manitola Mexico. | Winuipeg | Manitoba Historical and Scientific Society | 3 |
|  | Mexico ... Guanaiuat | Museo Nacional | 1 |
|  | Guanajuat Mexico ... | Prof. Alfredo Duges.......................... Prof. F. Ferrari Perez, Mexican Exploriug | $\stackrel{2}{4}$ |
| New Branswick |  | Commission. |  |
|  | Fredericton | New Brunswick University -..--................. | 1 |
| New Zealand | Christ Church | Society of Natural Hi Canterbury Museum. | 4 |
|  | Dunedin. | Otago Muserm | 1 |
|  | Wellington | Colonial Museum | 1 |
| Norway | Pergen | Bergens Museum. | 1 |
| Nova Scotia | Christiana | University Museum | 1 |
| Perin | Limas... | King's College ................. | 3 |
| Portasal | Lisbon | Zoological Museum ...... | 1 |
| Russia. | St. Petersburg | Triversity of St. Petersburg | 1 |
| Scotland | Elinburgh.. | University of Edinburgh, Prof.J. C. Ewart | 5 |
| Sweden |  | Sir C. Wyville Thomson.-......... Prot. Sven Loven Roval Academy | 1 |
|  | Stockholm Do...... | Prof. Sven Loven, Hoyal A cademy Museum of the Acalemy of Scieoce | 5 |

## 2.-DOMESTIC.

| State. |
| :---: |
| California |
| Colorado. |
| Connecticut |

Georgia
Illinois

| Instiution or individual. | Series No. |
| :---: | :---: |
| California Academy of Sciences | 1 |
| Agricultural Collego....-.... | 3 |
| A. H. Danforth, president board of ed | 4 |
| Triuity College | 2 |
| Wesloyan Unirersits | 1 |
| Hish School .-. | 3 |
| National Deaf Muto College | 3 |
| U. S. steamer Albatross | 2 |
| Atlanta University | 3 |
| Hedding College. | 3 |
| Illinois Wesloyan Universiey | 2 |
| Cairo public schools | 4 |
| Illinois University Museum | 1 |
| Chicago Academy of Sciences | 1 |
| North Division High School | 4 |
| Lake View High Sehool. | 4 |
| Elgin Scientific society | 4 |
| Northwestern University | 1 |
| Knox College. . | 2 |
| Hyde Park School. | 4 |
| Jacksonville Female Academy | 4 |
| W. S. Mack, superintendent public sc | 4 |
| Northwestern College | 4 |
| P. Thompson, prestlent boand oĭ educ | 4 |
| Illinois Musenm of Natural Ilistory. | 1 |
| Chaddock College | 4 |
| Rockford Sominary | 3 |
| Augustana College | 4 |

List of instilulions and individuals supplied with sets of duplicate sperimens of marine invertebrates, etc.-Continued.
2.-DOMESTIC-Continued.


List of institutions and indiriduals supplicd with sets of duplicate specimens of marine invertebrates, etc.-Continued.
2.-DOMESTIC-Continued.


List of institutions and inlividuals supplied with sets of duplicate specimens of marine inver tebrates, etc.-C'ontinued.
2.-DOMESTIC-Continued.

| State. | City or town. | Institution or individual. | Series No. |
| :---: | :---: | :---: | :---: |
| Rhode Island. | Providence. | State Normal School. | 4 |
| South Carolina | Charleston. | Avery Normal Institute |  |
| Tennessee..... | Clarksville | Southwestern Presbyterian University |  |
|  | Cleveland. | Centenary Female College |  |
|  | Columbia. | Female Institute.......... |  |
|  | Nashville. | Mehurry Medical College |  |
|  | Spring Hill --. | Beechcroft School....... |  |
| Texas ......... | College Station | State Agricultural and Mechanical Col |  |
| Vermont ...... | Barre.......... | Goddard Seminary ... |  |
|  | Burlington ... | University of Vermont |  |
|  | Middebury... | Middebury College. Manual Labor School | $\stackrel{1}{4}$ |
|  | Hampton. | Hampton Normal and Agricaltural In | ${ }_{3}^{4}$ |
|  | Morgantown | West Virginia University | 4 |
| Wisconsin. .... | Elkhorn ...... | Elkhorn High School | $t$ |
|  | Lake Geneva. | Genera Public School | 4 |
|  | Madison... | Public Museum of the City of Mil | 1 |
|  | Ripon.... | Ripon College ..................... | 2 |

## RECAPITULATION.

Number of sets of Series I distributed ..... 49
Number of sets of Series II distributed
Number of sets of Series II distributed ..... 46 ..... 46
Number of sets of Series IV distributed ..... 97
Number of sets of Series $V$ distributed ..... 6
Total ..... 247
The number of species in each series was as follows:
Series I ..... 198
II ..... 183
III (first educational) ..... 102
IV (second educational) ..... 110
V (for exchange only) ..... 213

The following single list, containing 260 items, has been compiled from
the five lists upon which the specimens were sent out. The series
which contain representatives of each species are denoted by Roman
numerals so placed in columns as to indicate the place from whence
the specimens were obtained.

$$
\text { S. Mis. } 90-54
$$

Gelasimus pugnax Smith. Fiddler crab Gelasimus pugilator Latreille. Fiduler crab. Callinectes hastatus Ordway. Blue crab; Edible crab
Platyonichus ocellatus Latreille. Lady crab; Sand crab
Carcinus menas Leach. Groen erab.
Panopeus sayi Smith. Mud crab
Cancer irroratus Say. Rock crab; Jonah crab... Cancerborealis Stimpson. Rock crab; Jonah crab.
Hyas coarctatus Leach
Libinia emarginata Leach. Spider crab.
Libinia dubia Edwards. Spider crab
Zoeas and Megalopas of erabs.
Euprognatha rastellitera Stimpson. Maioil crab.
Mippa talpoida Say, Samd-burf; Bait-bug
Eupagurus bernhardus Brandt. Hermit crab.
Eupagurus politus Smith. Deep-sea hermit crab.
Eupagurus pubescens Brandt. Hermit crab.
Eupagurus kröyeri Stimpson.
Eupagnrus longicarpus Stimpson. Hermit crab.
Eapaguras pollicaris Stimpson. Hermit crab.
Catapagurus sharreri A.M. Edwards. Deep-sea hermit crab
Parapagurus pilosimanus Smith. Hairy-clawed hermit erab
Pinnotheres maculatus Say. Oyster-crab.
Munida, Sp.
Homarus americanus M, Efwards. American lob. ster ....-....................................
Cambarus affinis Erichs. Craytish.....-- -- - -
Crangon vulgaris Eabricius. Common shrimp
Pontophilus norveaicus M. Sars
Pontophilus brevirostris Smith
Hippolyte securifrons Norman. Shrimp
Hippolyte spina Leach. Shrimp
Pandalus Montagui Leach. Derp-water prawn.
Pandalus propinquus G. O. Sars. Deep-water
 Pandalus leptocerus Smith. Deep-water prawn..
Palemonetes vulgaris Stimpson. Common prown.
Sergestes arcticus Kröyer
sCHIzOPOD.
Thysanopoda inermis Kröyer
Thysanopodanorvegica M. Sars. Surface shrimp.
Mysis mista Lilljeborg. Opossum shrimp
Mjsis americana imi h. Opossum shrimp
CUMACEA.
Diastylis rnadrispinosus G. O. Sars

${ }^{3}$ Le Have Bank.

+ Oft Chesapeake Bay.
coast used in making up sets for distribution.

${ }^{5}$ New England coast.
${ }^{6}$ Potomac River.
- Massachusetts coast.

List of species of marine inverterrates from the Atlantic coast

${ }^{1}$ George's Bauk, on codlish.
${ }^{2}$ Off Nova Scotia, on cod and halibut.
used in making up sets for distribution-Continued.

${ }^{3}$ Off Halifax, Nova Scotia.

List of species of marine invertebrates from the Atlantic coast

used in making up sets for distribution-Continued.

${ }^{4}$ New England coast.
${ }_{5}$ Barnstable, Mass.

used in making up sets for distribution-Continued.


used in making up sets for distribution-Continued.

${ }^{1}$ Race Point, Cape Cod, Mass.

used in making up sets for distribution-Continued.


List of species of marine invertebrates from the Atlantic coast

${ }^{1}$ George's Bank.
For convenience of reference there is added an index to genera and brackets on the inside of each page.
used in making up sets for distribution-Continued.

species contained in the above list, with page references to figures in

## INDEX.

## [Note.-The references are to page-figares in brackets.]


Page.
Globiceps tiarella ..... 20
Gyge hippolytes ..... 10
Halocampa producta ..... 18
Halocynthia echinata ..... 16
partita. ..... 16
pyriformis ..... 16
Harmothoe imbricata ..... 10
Heteroteuthis tenera ..... 12
Hippa talpoida ..... 8
Hippolyte spina. ..... 8securifrons
Hippothoa hyalina ..... 16
Homarus americanus ..... 8
Hyalinœcia artifex ..... 10
Hyas coarctatus ..... 8
Hydrallmania falcata ..... 20
Ilotea irrorata ..... 10
robusta ..... 10
Ilyanassa obsoleta ..... 12
Lacuna vincta ..... 12
Lxtmatonice armata ..... 10
Lepas anatifera ..... 10
fascicularis ..... 10
Lepidonotus squamatus ..... 10
Lepralia americana ..... 16
Leptasterias compta ..... 18
Leptoclinum albidium ..... 16
Var. luteolum ..... 16
Leptosynapta girardii ..... 16
Libinia dubia ..... 8
emarginata ..... 8
Ligria oceanica ..... 10
Limulus polfphemus ..... 10
Littorina littorea ..... 12
palliata ..... 12
rudis ..... 12
Loligo pealei12
Lophothuria fabricii ..... 16Lunatia heros
12
Macoma sabulosa ..... 14
Marcarita argarita helicina ..... 14
Megalopas ..... 8
Melampus lineatus ..... 14
Membranipora pilosa. ..... 16
Metridium marginatum ..... 18
Microciona prolifera ..... 20
Modiola modiolus ..... 14
plicatula ..... 14
14
Molgula arenata ..... 16
manhattensis ..... 16
retortiformis ..... 16
Mulinia lateralis ..... 14
Munida8
Mya arenaria14
Mysis americana8
mixta8
Mrtilus edulis ..... 14
Neplithys cueca ..... 10
Noptunca decemcostata. ..... 1210
Nereis pelagica
Nereis pelagica ..... 10 ..... 10virens
Neverita duplicata. ..... 1210
Nothria conchylega ..... 10
opalina.
Page.
Nucula proxima ..... 14
Nymphon hirtum ..... 10
Obelia geniculata ..... 20
dichotoma ..... 20
Octopus bairdii ..... 12
Odoutaster hispidus ..... 18
Ommastrephes illccebrosa. ..... 12
Ophiacantba millespina ..... 18
Ophiocnida olivaceia ..... 18
Ophioglypla robusta ..... 18
sarsii ..... 18
Ophiopholis aculeata ..... 18
Opioscolex slacialis ..... 18
Orchestia asilis. ..... 10
Ostrea virsinica ..... 14
Palxmonetes vulgaris. ..... 8
Pandalits horealis ..... 8
leptocerus ..... 8
montagui ..... 8
propinguus. ..... 8
Panopens sayi ..... 8
Paragorgia arborea ..... 18
Parapaçurus pilosimanas ..... 8
Pecten irradians ..... 14
tenuicostatus ..... 14
vitreus ..... 14
Peunatula aculeata ..... 18
borealis ..... 18
Pentacta frondosa ..... 16
Perophora viridis ..... 16
Petricola pholadiformis ..... 14
Phascolion strombi ..... 1:
Phascolosoma gouldii ..... 12
Phoxichilidium maxillare ..... 10
Pinnotheres maculatus ..... 8
Platyonichus ocellatus ..... 8
Pleurobrauchia tarda. ..... 14
Podarko oloscura ..... 10
Pontophilus brevirostris ..... 8
norvegicns ..... 8
Porania grandis ..... 18
Potamilla reniformis ..... 12
Primnoa reseda ..... 18
Ptilocheirus pinguis ..... 10
Purpura lapillus. ..... 12
Raphiodesma lingua ..... 20
Renilla reniformis ..... 18
Sagartia abyssicola ..... 18
Sagitta elegras ..... 12
Salpa. ..... 16
Salpa caboti ..... 16
Saxicara arctica ..... 14
Scapharea transversa ..... 14
Schizaster fragilis ..... 16
Sergestes arcticus ..... 8
Sertularella polyzonias ..... 20
tricuspidata ..... 20
Sertularia cupressina ..... 20
pumila ..... 20
Spirorbis borealis ..... 12
lncidus ..... 12
Spisula ovalis ..... 14
solidissima ..... 14
Sterwaspis fossor ..... 12
Page. Pago.
Suberites compacta 20 Tracistlermon albits ..... 14
Sycotypus canaliculatus 1: Tritia trivitata ..... 12
Tagelus gibbus ]t Lioplontatations. ..... 12
Talorehestia longicornis 10 Coneinla irrorata ..... 10
Temora longicornis 10 Urosalpins cincrea ..... 12
Tercloratulina septentrionalis 10 Erticiaia callosa ..... 18
Teredo megotara nodosa ..... 18
Tethya gravata 20 Venorirardia borealis ..... 14
Themisto bispinosa ..... 10 ..... 14
Thelepus cincinnatus12 Vesicularia dichotomaThyone briareus16 Viraxularia grandiflora.16Thysanopoda inermis
norvegicaFohlia limatula1814
sapotilla ..... 14

 thraciformis. ..... 14
Tottenia gemma ..... 14
Trachs dermon ruber ..... 1.
Zucas
Zucas ..... 8 ..... 8

APPENDIX E.

MISCELLANEOUS.

## TABLE OF CONTENTS.

Page.
Preface ..... 1
List of charts ..... 4
List of the dredging stations of the U. S. Fish Commission, 1871 to 1879 ..... -
Fish Hawk, 1830 to 1882 ..... 43
Fish Hauk, 185:3 to 1887 ..... 56
Report of the dredging stations of the Albatross for 1883 ..... 61
Albatross for 1884 ..... 65
Albatross for 1885 ..... 73
Albatross for 1886 ..... 81
Albatross for $188 \%$ (up to November 1) ..... 84
List of dredgiog stations occupied by Coast-Survey steamers, 1867 to 1880 ..... 85
List of dredging stations of the Challenger in the Atlantic, 1872-'76... ..... 101
Travailleur in 1880 and 1881 ..... 104
Trarailleur in 1882 ..... 107
Talisman in 1883 ..... 108
Tashington in 1881 ..... 114
Norwegian North Atlantic expeditions, 1876-\%8 ..... 115
Swedish expeditions of Nordenskjöld, etc., 1875, 1876, 1878-'79 ..... 116
Danish Arctic expedition 1882-83. ..... 120
British steamer Lightuing, 1868 ..... 124
British steamer Porcupine, 1869 ..... 124
British steamer Porcupinc, 1870 ..... 126
Notice of dredgings of the British steamer Shearwater, 1871 ..... 128
List of dredging stations of the British steamer Falorous, 1875 ..... 128
British steamer Knight Errant, 1880 ..... 129
British steamer Triton ..... 129
Notice of dredgings of the Swedish frigate Josephine, 1869 ..... 130
Classified list of deep-water dredgings of the U. S. Fish Commission north of the Bahamas. ..... 130
Serial temperatures taken by the U. S. Fish Commission steamers Speeduell and Albatross, 1877-'85 ..... 133
Record of speed of five trawlings and soundings by the Albatross, Julv, 1883 ..... 144

# XXIX.-LISTS 0F THE DREDGING STATIONS OF THE U. S. FISH COMMISSION, THE U. S. COAST SURVEY, AND THE BRITISH STEAMER CHALLENGER, IN NORTH AMERICAN WATERS, FROM 1867 T0 188\%, TOGETHER WITH THOSE OF THE PRINCIPAL EUROPEAN GOVERNMENT EXPEDITIONS IN THE ATLANTIC AND ARCTIC 0CEANS. 

## Prepared by Sanderson Suitie.

## PREFACE.

The records of the dredgings and trawlings executed by the U.S. Fish Commission from 1871 to 1879 were pablished in the Fish Commission Report for 1879 by the author and Mr. Richard Rathbun; those of the Fish Haivk from 1880 to 1882 in the Bulletin of U. S. Fish Commission for 18s2, by Mr. Richard Rathbun; those of the Albatross from 1883 to 1886 in various volumes of the Fish Commission reports. The dredgings of the Fish Hawk from 1883 to 1887 and of the Albatross in 1887 have not yet been published.

Although separate copies were printed of the lists from 1871 to 1882, the scattered manner in which most of these lists appeared in various publications and associated with great masses of other material has rendered it very difficult to bring together a complete series of them.

The completion of the accompanying series of charts, on which all the dredging positions of the U. S. Fish Commission, the U. S. Coast Survey, and the British steamer Challenger in North American waters are laid down, has rendered it desirable to bring together and complete all these scattered lists, together with those of the Coast Survey and the Challenger. The opportunity has at the same time been taken to collect together the records of the dredging operations undertaken by the British, French, Italian, Norwegian, Swedish, and other European Governments in the Atlantic and Arctic, the results of which are of almost as much importance to us as of those carried on upon our own coasts. These are scattered through a great number of works in various languages, and many of them very difficult to find, and have in many cases never been reduced into the form of tables; so that the task of bringing them together and putting them into shape has been a somewhat
laborious one. It has beeu endeavored to present as nearly complete a set of these records as possible, but no doubt some will be found to have been omitted which ought to have been included. Excepting in the Arctic seas series consisting mainly of shallow-water dredgings, such as those in the Batic, have not been included. Of other expeditions which have made important dredgings no lists, so far as is known, have ever been published. It will be noticed, also, that the amount of detailed information given in these lists varies very much, some giving only the position, depth, and kind of bottom, whilst others contain full particulars of temperature of air, surface, and bottom, drift, etc. They are lere presented essentially as originally published, with some slight changes of arrangement for the sake of uniformity, and with foreign measures or temperatures accompanied with their American equisalents. The sourees from which they were derived are, as a rule, stated, hut with some exceptions.

A large part of the dredging positions of the Coast Survey were published by Professor Agassiz in the Bulletin of the Museum of Comparative Zoology at Cambridge, Mass. Those of 1867, 1868, and 1869 made by Count Pourtales have, however, been rendered definite by reference to the original charts and records in the Coast Survey Office; those of $187^{2}$, made by Dr. William Stimpson, have been added from the same sources, and a few other additions and corrections have been made.

The prefatory notes attached to each, both of the American and foreigu lists, will render unnecessary auy forther explanation of their sources or peculiarities here.

The five large charts accompanying these lists require but little explanation. They relate only to the work of the Fish Commission, Coast Surver, and Challenger on and near our Atlantic coast, as it was not found practicable to publish at present charts illustrating the dredgings in other parts of the Atlantic and Arctic, althongh such have been prepared.

Every dredging made by the Fish Commission or the Coast Survey has been placed upon one or the other of these charts, except where the seale compels their omission or where the position was originally so indefinitely stated as to reuder it impossible to place it accurately. Of both these classes special lists are giren on the charts, pointing out the nearest station which is placed on the chart.

A few words may be added to explain the special objects of the four small charts and sections placed upon the chart of the Caribbean Sea. The little clart of the Gulf of Mexico and the northwestern part of the Caribbean Sea serves toshow parts of the Gulf not included on any of the large charts, to give additional contour lines, and to direct attention to the remarkable regions of deep water existing in both seas, and especially to that one marked as the S: ssbee Deep in the Gulf of Mexico. The bottom of this is almost a perfect plain, varying in depth over a
very large area only from 2,000 to 2,050 fathoms, as is shown by the east and west section across the Gulf, which is also giren.

The three sections, from the Cultivator Shoal, or George's Bank, from Hatteras, and from Charleston, illustrate the general fact of the very gentle slope of the sea bottom along our easterr coast until the depth of about 100 fathoms is reached aud of its very abrupt descent beyond that line, whilst the $\dot{y}$ show the very different distances from shore at which this line is found.
The two sections showing the temperatures in the Mediterranean and the Caribbean Sea illustrate the fact that in a deep basin closed loy a barrier of shallower soundings no change of temperature oceurs from a depth corresponding with that of the barrier to the very greatest depths. In the Mediterranean the temperature found at a depth of about 120 fathoms, that of the Straits of Gibraltar, is about $572_{2}^{10}$ Fahr. and does not vary to a depth of more than 2,000 fathoms, whilst in the Caribbean and Gulf of Mexico the deepest channel communicating with the ocean appears to be about 800 fathoms, corresponding to a temperature of $392^{\circ}$ Fahr., and below this depth this temperature is invariably found down to 2,000 fathoms and more. The temperatures marked upon the section of the Gulf of Mexico illustrate this fact more fully.

The other temperature sections show the very rapid diminution of temperature from the strface and the very low temperatures reached in great depths.

As, after the preparation of the chart of the Carribbean Sea, the sections illustrating depths and temperatures were found, when reduced, to be too small for convenient use, enlarged copies of them are given as separate plates, numbered $5 a, 5 b$, and $5 c$.

The tables of serial temperatures, taken by the Speelwell, Fish Hourk, and Albatross, afford the means of studying these changes of temperature in greater detail. These tables, like those of positions, have been scattered through numerous volumes, and, as requiring the aid of charts for their intelligent use, it has been considered best to bring them together in conuection with these.

The hydrographic stations of the Albatross haviug been published for the most part by the Hydrographic Office as well as in the Fish Commission reports, and requiring only very rarely to be referred to by their serial numbers, the lists of them have not been reprinted.

## LIST OF CHARTS.

No. 1. Dredgings of U.S. Fisl. Commission in Gulf of Maino, Nantucket and Vineyard Sounds.
No. 2. Dredgings of U. S. Fish Commission in Nantucket, Vineyard, and Long Island Sounds.
No. 3. Dredgings of U. S. Fish Commission, U. S. Coast Survey, and Challenger, from Cape Canaveral, Florida, to the Grand Bank of Newfoundland and the Flemish Cap.
No. 4. Dredgings of the U. S. Fish Commission and the U. S. Coast Survey in the Gulf of Mexico and adjacent parts of the Atlantic Ocean and the Caribbean Sea. The Florida Reefs are also given as a separate plate of enlarged size, numbered $4 a$.
No. 5. Dredgings of the U.S. Fish Commission, U.S. Coast Surves, and Challenger in the Caribbean Sea and adjacent parts of the Atlantic Ocean.
[On this chatt have been placed four small subsidiary charts and sections, as follows : (1) A small chart of the whole of the Gulf of Mexico, with additional contour lines. (2) A section from east to west across the Gulf of Mexico, with temperatures. (3) Several temperature sections in Atlantic, Caribbean, and Mediterrauean. (4) Three sections of the sea bottom, commeneing at the Cultivator Shoal, Cape Hatteras, and Charleston, respectively. For further explanatious of these sulecharts see the preface. In order to render these sections more convenient for use the second, third, and fourth are also given of about four times the size as separate plates, numbored $5 a, 5 b$, and $5 c$.]

## LISTS OF THE DREDGING STATIONS OF THE U. S. FISH COMMISSION FROM 1871 TO 1879, INCLUSIVE, WITH TEMPERATURE AND OTHER OBSERVATIONS.

[Arranged for publication by Sanderson Smitif and Richard Rathbun.]

The following lists include all the recorded dredging stations made by, or in connection with, the United States Fish Commission, from its organization up to date. The stations are, for the most part, arranged chronologically, and are designated by four series of numbers or letters, as follows: One series of numbers, from 1 V to 87 V , with letters appended, represents the stations for 1871. The 1872 stations (in the Bay of Fundy) are designated by letters from $t$ to $\approx$. Those for 1873 are indicated by a second series of numbers, from 1 to 212 , with B. (Bache) or Bl. (Bluelight) added, according as the dredgings were carried on from the steamers Bache or Bluelight. In this series, however, are also included the stations of the Bache for 1872 and 1874, as well as those for 1873. The last series combines all the stations from 1874 to 1879, inclusive (omitting 1876, during which year sea-work was suspended), in numbers running from 1 to 769. For the sake of obtaining greater uniformity in recording the stations ou charts, as explained further on, the stations for 1874 and 1875, originally numbered separately, have been united with those from 1877 to 1879, and given numbers following 1879. The num bers for these later years run as follows: 1874, from 400 to $580 ; 1875$, from 600 to $769 ; 1877$, from 1 to $128 ; 1878$, from 129 to 238; 1879, from 239 to 378.

The stations of the Speedwell for 1877, 1878, and 1879 are indicated by numbers only, and are readily distinguished from those of the Bache and Bluclight, which have B. or Bl. affixed to them. In the following tables the localities given are taken from the original record books, whenever such exist (i.e., for all the work of the Speeducell and much of that of the Bluelight-101 Bl. to 166 Bl .), with some other notes added to facilitate the finding of the localities on the chart. In many cases the positions were marked, at the time, ou the steamers' charts by the commanding officer, and all such positions have been adopted, even though differing somewhat from those given by the record books. From the nature of the operations of dredging and trawling, it becomes almost
impossible to estimate exactly the changes of position caused by curreuts, etc., especially when out of sight of land, and in a few cases the positions were not placed on the charts at the time, and the bearings given do not suffice to fix them very accurately. It is believed, however, that but few positions are rendered uncertain to any great extent by either of these causes. A large part of the positions determined by the Bache were originally given by latitude and longitude. The other latitudes and longitudes given in the tables are intended to serve as the readiest means of finding the localities, all of which are either thus designated or are referred to as being near others which are so. The bearings given for the Specitwell's work in 1878 are true; the others, with a few (unrecognizable) exceptions, are magnetic.
In the last column of the tables the letter indicates the apparatus employed in dredging: D., Dredge; Ag. D., Agassiz Dredge; R. D., Rake Dredge; T., Trawl; Ag. T., Agassiz Trawl; O. T., Otter Trawl; Tan., Tangles.
sTATIOAN FOR 1Ni, IN AND ABOUT VINEYARD SOUND, MASSACHUSETTS.
During this, the first year of the Commission, the dredgings in shallow water were made partly from a sail-boat and partly from a steamlaunch, and those in the deeper waters from the United States revenuecutter Moccasin, Capt. J. G. Baker. The dredging stations numbered in all aboat 250 , but to aroid confusion in laying them out on the chart, they were combined into 87 groups or lines, each including from 2 to 9 stations, the lines being designated by numbers, the stations by letters. In this manner they were represented on the large chart accompanying the Report of the United States Fish Commissioner for 1871-'72. In making up the present list the same arrangement has also been follored, and where all the stations of a group were of the same nature, they have been located collectively; otherwise the exact position of each sta. tion has been given.

Dates are not prefixed to all of the inner groups, as many of these include stations made on different days. Temperature observations (with Miller-Casella self-registering thermometers) were taken at most of the outer stations, as recorded in the list, but were omitted at the inuer ones. The dredge was the implement most commonly used for scraping the bottom, but the beam traml was also frequently employed on the smooth inner grounds. The rakedredge was worked a few times ofil Gay Head and the tangles rery rarely, in only a few places. The characters of the many localities gone over in 1871, as well as the species of animals found inhabiting them, are fully discussed in the "Report upon the Invertebrate Animals of Vineyard Sound and the adjacent waters, with an account of the physical characters of the region," by Prof. A. E. Verrill; contained in the Report of the United States Fish Commissioner, Part I, for 1871-72

Note-The serial numbers in this table from 1 to 87 , inclusive, should be read $1 \mathrm{v}, \mathbf{2 v}, 3 \mathrm{v}$, etc., to correspond with the charts upon whioh the positions are so designated.




| घ | Date. | Locality. | $\begin{aligned} & \text { a } \\ & \text { = } \\ & \text { 荡 } \\ & \text { \&. } \\ & \text { © } \end{aligned}$ | Nature of bottor. | Temperature. |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | $\frac{5}{4}$ |  | 告 |
| 44 | 1871. | $a, b, c, d, e$. Vineyard Sound; line about | 10, 15 - | Gravel. |  |  |  |
|  |  | parallel to last, off northern half of Naushon Island, about 1 mile from shore. | 10. |  |  |  |  |
| $\begin{aligned} & 45 \\ & 46 \end{aligned}$ |  | $a . b$. Vinejard Sound, off Quick's Holo. | 62-83 | Coarse gravel, shells .. |  |  |  |
|  |  | Vinoyard Sound, off the Elizabeth | 7-143 |  |  |  |  |
|  |  | a,b. Oft Prsque Island .................. |  | Sand, shells |  |  |  |
|  |  | c. Off LRobinson's Hole................ |  |  |  |  |  |
| 47 |  | d, e. Off south end of Naushon Island.- | 10-173 | Sand, shells, and gravel |  |  |  |
|  |  | side of Martha's Vinsyard, between Menemsha Bight and Cedar Tree Neck, $\frac{1}{2}$ to $1 \frac{1}{4}$ miles ctrom shore, and nearly parallel to it. $a, b, c, d$ | 10-17 |  |  |  |  |
|  |  |  |  | Black mud, dead manssols, \&c. |  |  |  |
| 48 |  | a, ${ }_{\text {e }}, c, \ldots$. Vineyard Sound, sameas last, | 48-11 | Sand, gravel, shells. |  |  |  |
|  |  | ${ }^{\frac{1}{4} \frac{1}{3}}$ mile from shore, and extending about $1 \frac{1}{8}$ miles both north and seati of Cape Higgon. |  |  |  |  |  |
| 49 |  | Vineyard Sound: <br> a. About northeast of Gay He | 73-13 |  |  |  |  |
|  |  | miles. |  |  |  |  |  |
| $\begin{aligned} & 50 \\ & 51 \end{aligned}$ |  | a, b. VineyardSound, Menemsha Bight. | 4-8 |  |  |  |  |
|  |  | Vineyard Sound, Menemsha Bight: |  |  |  |  |  |
|  |  | a, ${ }_{\text {d }}$ | $1{ }^{2}-2 \frac{1}{4}{ }^{\frac{1}{3}}$ | Sund |  |  |  |
|  |  | ${ }_{a}, \underline{b}, c, d$ Vineyard Sound, north of | \%-9 | Sand |  |  |  |
| 52 | $\left.\begin{array}{\|l\|l\|} \hline \\ \text { July } \\ \text { July } \end{array}\right\}$ | $a, b, c, d$. Vineyard sound, north of southwestern extremity of Miartha's Vincyard, $\frac{1}{2}-1$ mile from shore $(c, d$, off Menemsha Bight). | 10-12 |  |  |  |  |
| 53 | July 14 |  | 5-12 | Sand, rocks |  |  |  |
|  |  | northeast of Deril's Bridge, Gay Hesd, $\frac{3}{8}$ to 1 mile from shore. |  |  |  |  |  |
| 54 |  | Vineyard Sound, north of Gay Head: <br> a. About $1 \frac{1}{3}$ miles from shore | 161 |  |  |  |  |
|  |  | b. About 2t miles from shore ............ | 14-15 ${ }^{\frac{1}{2}}$ | $\begin{aligned} & \text { Mrisse } \\ & \cdots \mathrm{do} \end{aligned}$ |  |  |  |
| 55 | July 22 | $a, b, c$. Vineyard Sound, north of Deril's | $6{ }^{2}-131$ | Rocks, dead mussels, |  |  |  |
| 56 | July 22 |  | 5-11 |  |  |  |  |
|  | Juy 2~ | erly from Gay Head, about 1 mile. | 5-11 |  |  |  |  |
| 57 |  | $a, b, c, d, e$. About same position as last, | 5-19\% | Focky |  |  |  |
|  |  | forminga line about $\frac{3}{5}$ mile further off. $a, b, c, d, e$. Vineyard Sound, northwest- | 10-10 |  |  |  |  |
| 58 |  | erly from Gay Head, 13-2 miles. |  |  |  |  |  |
|  |  | $a, b, c$. |  | Rocky. |  |  |  |
|  |  | ${ }_{a, ~}^{\text {d, }},{ }_{\text {a }}$ Vineyard Sound, northwesterly | $5{ }^{3}-11$ | Mud, deat mus. |  |  |  |
| 50 |  | a, from Gay Head, $\frac{1}{3}-1 \frac{1}{8}$ miles. | ${ }^{4}-11{ }_{4}$ | Kocky. |  |  |  |
| 60 | .0...... | $a, b, c$. Vineyard Sound, northwesterly | 6-11 $\frac{1}{2}$ | do |  |  |  |
|  |  | from Gay Head, 1-2 miles. |  |  |  |  |  |
| 61 |  | $a, b, c$. Vineyard Sound, northwesterly from Gay Head, 1-2 miles; more east- | $13{ }_{3}^{3}$ |  |  |  |  |
|  |  | erly than 60. | $16_{2}^{1}$ |  |  |  |  |
| 62 |  | from Gay Head, 1-2 miles; more east- |  |  |  |  |  |
| 63 |  | $a, b, c$. d. Vineyard Sound, northof Dev- | 6-8* | Tocks, sand, shells . |  |  |  |
| 04 |  | il's Bridge, Gay Mead, $\frac{1}{2} \frac{1}{4}$ mile. |  |  |  |  |  |
|  | Juls 12 | Buzzard's Bay, Cataumet Harbor: <br> a. In harbor |  | Sand, eel-grass |  |  |  |
|  |  | b. At mouth of harbor....... | $3{ }^{1}-4$ | ....do .. |  |  |  |
| 65 |  | $a, b$. Buzzard's Bay, off Cataumet Harbor. | 42 |  |  |  | $\cdots$ |
| 66 |  | a,b. Huzzard's Bay, between Long | 5-6 ${ }_{6}^{1}$ | Hard sand |  |  |  |
|  |  | Neck and Quamquisset Harior. |  |  |  |  |  |
| $\begin{aligned} & 67 \\ & 68 \end{aligned}$ | July 24 | $a, b$. Just outside of $66 . . . . . . . . . . . . . . .$. | 5-6\% | Saud, mud |  |  |  |
|  |  | Buzzard's Bay, west of Quamquisset Harbor: |  |  |  |  |  |
|  |  | a. About 2 miles ..................... | $7 \frac{1}{1}$ | Fine sandy mud |  |  |  |
|  |  | b. About 1 milo. |  | rno samay mu |  |  |  |
|  |  | c. About ${ }^{\text {a mile }}$ - ...................... |  | Mud |  |  |  |
| 69 | ... | $a, b$. Bnzzard's Bay, west of Quamquisset Harior, about $1 \frac{1}{2}$ miles. | 59.71 |  |  |  |  |



|  |  | Locality． |  | Nature of bottom． | Temperature． |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Date． |  |  |  | $\frac{8}{4}$ | ¢ \％ H 号 | 宮 |
| 87 | 1871． Sept． 14 | a． $19 \frac{1}{2}$ miles west－southwest of Gay Head． <br> b． $18 \frac{1}{2}$ milos west－southwest of Gay Head． | 29 | Sandy mad ....do |  | 62 | 59 |

STATIONS FOR 1872，WITH HEADQUARTERS AT EASTPORT，ME．
The dredgings for 1872 were mostly carried on from a large sail－boat； but those in the deeper waters of the Bay of Fundy were made from the United States revenue－cutter Mosswood，Captain Hodgdon．The regions explored were about as follows：Eastport Harbor，South Bay，and Pas． samaquoddy Bay，all of which are comparatively shallow－water areas； the shallow waters about the island of Grand Menan，especially those among the small islands to the east of Grand Menan；and the deeper waters east of Campobello Island，west of Grand Menan；and toward the center of the Bay of Fundy，between Grand Menan and Nova Scotia．

In connection with the shallow－water dredgings no complete record of observations was kept，but the collections made were appropriately labeled with the precise locality，depth of water，nature of bottom，\＆c． The more important hauls in deep water，mostly accompanied by tem－ perature observations，are as follows，the letters used to designate them being the same as were employed in the original records：

|  | Date． | Locality． | $\begin{aligned} & \text { Depth in fath. } \\ & \text { oms. } \end{aligned}$ | Temperatures． |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | $\dot{4}$ |  |  |
| $t$. | $\begin{gathered} 1872 . \\ \text { Aug. } 24 \end{gathered}$ | Bay of Fundy，off Grand Menan，beginning at a pount 8 miles SE．by E．of north end of White Head Island，and running NE．for a distance of nearly 3 miles．（Tem－ peratures taken at the beginning and close，and the same at both．） <br> Bay of Fundy，off Grand Menan，north of last；beginning <br> $8 \frac{1}{3}$ miles E．of White Head Island，and extending about 2 miles SW． | 106－90 | － | $\begin{gathered} \circ \\ 48 \end{gathered}$ | ${ }^{\circ} \mathrm{B}$ |
|  |  |  |  |  |  |  |
| $t^{\prime}$ | ．．．do ．．． |  | 96－100 | ．．．．． | ．．．．．． | 373 |
|  | Aug． 23 | 2 miles SW ． <br> Bay of Fundy，E．of Grand Menan，about $2 \frac{1}{2}$ miles E．of north end of White Head Island． | 28－52 |  | 53 | 301 |
| $u^{\prime}$ ． | do | Bay of Fundy，E．of Grand Menan， $1 \frac{5}{8}$ miles E．by S．${ }^{3}$ S．of north end of White Head Island． | 29 |  |  | 44 |
| $v$. | Aug． 28 | Grand Menan channel，west of Grand Menan Island； $2 \frac{3}{3}$ miles N．by W．$\frac{1}{2}$ W．of Sonthern Head，G．M． | 40 |  | 48 | 451 |
| $v$ 。 | do | Grand Menan channel，west of Grand Meuan Island； $4 \frac{1}{3}$ miles NNW．$\frac{1}{2}$ W．of Southern Head，G．M． | 54 |  | 47 | 40 |
| $\cdot v^{\prime \prime}$ ． | －．．do ． | Grand Menan channel，west of Grand Menan Island； 6 miles N．$\frac{1}{2}$ W．of Southern Head，G．M． | 55 |  |  | 40 |
| ${ }^{\prime}$ | Aug． 16 | Bay of Fundy，about 3 $\frac{1}{2}$ miles east of Herring Cove Head， Campobello Island．（Soft muddy bottom．） | 60 |  |  | 43 |
| $w^{\prime}$ ． |  | Bay of Fundy，just off Herring Cove，Campobello Island．． | 27 |  |  | 45 |
| $x$ ． | $\text { Aug. } 2$ | Bay of Fundy， $2 \frac{1}{3}$ miles，about SE．of Head Harbor Light， Campobello Island． | 90 |  | 481 |  |
| $x^{\prime}$ ． | da | About 21 miles ENE．of Head Harbor Light，Campobelio Island． | 77 |  |  | 42 |
| $x^{\prime \prime}$ | －．．do | About $1 \frac{1}{3}$ miles NE．of Head Harbor Light．．．．．．．．．．．． | 30 |  |  | 46 |
| $x^{\prime \prime \prime}$ ． |  | Midway between Head Harbor Light and Spruco Island．． | 73 |  | 48 | 45 |
| $y .$ | $\text { Aug. } 5$ | Passamaquoddy Bay，off North Harbor，Deer Island．．．．．．．． | 25 |  | $57 \frac{1}{2}$ | 47 |
| $z$ | ...do . | Passamaquoddy Bay， $1 \frac{1}{4}$ miles north of last．．．．．．．．．．．．．．．． | 32 |  | 58 | 46 |

[^115]In this list the dredgings indicated by the above heading have been grouped together, as they appear on the chart prepared for publica. tion. Numbers ranging from 1 B . to 78 B . were originally assigned to the Bache dredgings for 1873 and 1874, in papers published by Professor Verrill in the Americ an Journal of Science for April, 1874, and June, 1875, and elsewhere. To these the dredging stations of the Bache for 1872 , 18 in number, have been added, thus increasing the list to 97 B . As to the regular series of dredgings made by the Bluelight, under command of Lieut. Commander L. A. Beardslee, in and off Casco Bay, no serial numbers were given to the hauls until the commencement of the temperature observations, July 21 . To the numbers ( 1 to 66 ), given to such of the subsequent hauls as were accompanied by temperature observations, 100 has been added ( 101 Bl . to 166 Bl .), and numbers from 167 Bl . to 190 Bl . have been given to the hauls from July 12 to July 21 , and from 191 Bl . to 212 Bl . to those taken after July 20 , but not in. cluded in the temperature series. The descriptions of localities from 101 Bl . to 166 Bl . are taken from the record books for temperatures, with some additions, and from 167 Bl . to 212 Bl . from the eight books of dredging lists, which were kept. Additions to 101 Bl . to 166 Bl ., taken from the dredging books, are marked D. L.

The dredging stations of the Bache for 1872 were on and about Saint George's Bank and La Have Bank, and extended as far as Halifax, N. S.; in 1873 they were mostly in the Gulf of Maine, especially in the region of Jeffrey's and Cashe's Ledges, a few being made in Massachusetts Bay; those for 1874 were entirely in the Gulf of Maine.

DREDGINGS BY THE BACHE, 1873-Continued.


[^116] DREDGINGS BY THE BACHE, 1874.*

|  |  |
| :---: | :---: |
| ¢ |  |
|  | W888\% $0^{6060}$ |
|  |  |
|  | 욱ㅇ్లㅇ్ల눙్ㄱ |



 웅 : :匕్రిపేర 웅우룰 :品


## 웅웅










*The surface temperatures taken this year were quite unreliable, in consequence of an erroueous method of observation. DREDGINGS BY THE BACHE, 1872.

DREDGINGS BY THE BLUELIGH', 1873.


|  | 筬 |
| :---: | :---: |
|  |  |



 Soft mud

空




－

${ }^{\circ}$





[^117]DREDGINGS BY THE BLUELIGHT，1873—Continued．

| Serial numbor． | Date． | $\begin{aligned} & \text { 范 } \\ & \text { 菏 } \\ & \text { H } \end{aligned}$ |  | Locality． | 息品号若日 | Nature of bottom． | Temperataro． |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  | 妾 |  |  |  |
|  |  | － | － 1 |  |  |  | 0 | 0 | $\bigcirc$ |  |
| 173 B1． | July 14 |  |  | Casco Bay，off Crotch Island． | ${ }^{(?)} 16$ | （？）．．．．．．．．．．．．． |  |  |  | T． |
| 174 Bl ． | ．．．do ．．．． |  |  | Casco Bay，off mouth of Bluelight Cove，drifting north．．． | 15－19 | Sand and sponge |  |  |  |  |
| 175 El ． | ．．．do |  |  | Casco Bay，off north end of Hog Island ．．．．．．．．．．．．．．．．．．． | 15 | Sand．．．．．．．．．．． |  |  |  |  |
| ${ }_{17} 176 \mathrm{C}^{\mathrm{B}} \mathrm{Bl}$ | －．．${ }^{\text {do }}$ | 434 | 70 092 | Casco Bay，between Great Chebeag and Basket Islands．．． | ${ }^{7-8}$ | Mud |  |  |  |  |
| 177 Bl ． | do |  |  | Casco Eay，off North end of Long Island | （！） | Mud |  |  |  | Tan． |
| ${ }_{179}^{178 ~ \mathrm{Dl}}$ ． | July 15 |  |  | Mouth Casco Bay，off Inuer Gre | ${ }_{2} 2$ | liocky ．．．．．． |  |  |  |  |
| 1 180 11. | $\cdots$ | 4340 | $70 \times 0$ | Casco Bay，off Jowel | （3）${ }^{17}$ | Sandy |  |  |  |  |
| 181 B1． | July 16 |  |  | （？）．．．．．．．． | （？） | Muddy |  |  |  | T． |
| $182 \mathrm{B1}$. | do |  |  |  | 15－23 | Shelly and Spongy |  |  |  |  |
| 184 Bl ． | July 17 | 43 304 | $70 \quad 02$ | Off Porthand，XNE．of West Codurdge | $1+20$ | Hard and rocky |  |  |  |  |
| ${ }_{156}^{185 \mathrm{Bl}}$ | d |  |  | Off Portland，WSV．of West Cod Ledge $1 \frac{1}{2}$ mile | 10－15 | ．．．．．．do ．．．． |  |  |  |  |
| 137 Ll | ．do | $43 \quad 342$ | $70 \quad 08$ | Off Portand，Ssive of West Cod | 20－22 |  |  |  |  |  |
| 188 Bl $1 \times 9 \mathrm{Bl}$ ． | July 18 |  |  | Casco Eay，off Cow Island． | 17 | Saudy |  |  |  | 1． |
| $1 \pm 9 \mathrm{Bl}$ ． |  |  |  | Casco Bay botween Cow Island | 14 | band and stone |  |  |  |  |
| 19181. | July 21 | 43 362 | 70 04t | Off Portland，near West Cod Ledge．．．．． | 28 | Mrud and stone |  |  |  |  |
| 192131. | －July 22 |  |  | Entrance to l＇ortland Harbor，littlo west of 122 Bl | 10 | Tocky and shelly |  |  |  |  |
| 194131. | July 24 |  |  | Casco 13ay，off Whaleboat Island．．．．．． | ${ }^{(7)} 13$ | （1）． |  |  |  | T． |
| 195 Bl ． | ．．．do．．． | 43 353 | 7001 | Casco Bay，between Ministerial and Eaglo Islands，the monument on Mark Island slowing over north ead of Eagle Tsland． | （？） | Gravel and etones． |  |  |  |  |
| 197 LH ． | －do ．．． | 43 30．31 |  | Entranco to Portland Harbor，near 192 B1 | （？） 11 | （？） |  |  |  |  |
| ${ }_{199} 198 \mathrm{Bl}$ ． | Aug． 4 |  |  | Casco Bay，Haddocl Grounds，Broad Sound | 12－18 | Gravel and shells |  |  |  |  |
| ${ }_{1992} 19 \mathrm{Bl}$ Bl | ．．do do．．． | 4346 | 7005 | Casco Bay，off＇Chebeag Point ．．．．．．．．．．．．．． | $11 \frac{1}{2}$ | Mud |  |  |  |  |
| 200 Bl ． | Aug． 13 | $\begin{array}{ll}43 & 43 \frac{1}{2} \\ 43 & 39\end{array}$ | 70 69 | Casco Bry，between Basket and Little Chebeag Islands ．．． | （？） 5 |  |  |  |  |  |
| 201 B1． | Aug． 20 | $43 \quad 37 \frac{1}{6}$ | 6951 | Seguin Island，NW． 5 miles ．．．．．．．．． | 45 | Mocky and sandy |  |  |  |  |
| 202 Bl ．．． | Aug． 25 |  |  | Off Portland，East Cod Ledge．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． | （？） |  |  |  |  |  |
|  |  | 4337 | $70001{ }^{\circ}$ | Casco Bay，between Peak＇s Island and Ovarset Island $\dddot{0}$ ． Off mouth＇Casco Bay， 2 miles off Halfway Rock；the io－ cality montioned on page 357 of Profesbor Verrill＇s Ex－ plorations of Casco Bay，Proc．Am．Ass．Adv．Sci．， 1873. | ${ }_{27}^{18}$ | Rock and snonges ${ }^{\text {Sand，}}$ gravel，shells， m |  |  |  |  |



STATIONS FOR 1874 AND 1875．WITH HEADQUARTERS AT NOANK，CONN．， AND WOOD＇S HOLL，MASS．

In 1874，the headquarters of the United States Fish Commission wero established at Noank，Conn．，and the area covered by its dredgings in－ cluded Fisher＇s Island Sound；the eastern part of Long Island Sound； Block Island Sound；and Gardiner＇s and Peconic Bays；and also ex－ tended some distance to the east，south，and southwest of Block Island． In 1875，with headquarters at Wood＇s Holl，Mass．，dredgings were car－ ried on in Vineyard and Nantucket Sounds；Buzzard＇s Bay；over a portion of Nantucket Shoals；to the southward of Nantucket Island and Martha＇s Vineyard；and also on and about Southwest Shoal．The dredgings were all made by the United States steamer Bluelight，Com－ mander L．A．Beardslee，and a separate series of numbers，to designate the stations，was employed for each year．To facilitate the recording of all the dredging stations of the United States Fish Commission on charts，and to bring the southera ones into uniformity with those made to the north of Cape Cod in more recent years，and already recorded both on charts and in reports prepared for publication in a single series of numbers ranging from 1 to 378,400 has been added to the 1874 dredgings and 600 to those of 1875 ．In this way all the dredging sta－ tions from 1874 to 1879，inclusive，are included in a single series．

The temperature observations recorded in the two following tables were mostly taken with much care．Former experiences had proved that the Miller－Casella thermometers were slow in acting，requiring from three to ten minutes（according to the depth of water）to obtain a cor－ rect reading，and they were，therefore，always left down a suitable length of time．The bottom and surface temperatures，in nearly all cases，were taken with Miller－Casella self－registering thermometers；occasionally a United States naval thermometer was employed for surface tempera－ tures，and the same instrument was generally employed for the air．

STATIONS FOR 1874.

| \＆ | Date． | Locality． |  | Nature of bottom． | Temperatares． |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { g } \\ & \text { 霖 } \\ & \text { in } \end{aligned}$ |  |  |  |  | 获 | 遤 | gi ¢ ＋ 品 |  |
| 401 | $\begin{gathered} 1874 . \\ \text { July } 13 \end{gathered}$ | Fishers Island Sound，West Clump，bearing S ． | 73 | Mud．．．． | － | － | － | D． |
| 402 | 13 | Fisher＇s Island Sound．．．．．．．．．．．． | $9{ }^{1}$ | Sand． |  |  |  | D． |
| 404 | 13 |  | 111 3 3 |  |  |  |  | D． |
| 404 | 13 | Fisher＇s Island Sound，off Lati－ mor＇s Reef． <br> （No record．） | 32 | Rocky ．．． |  |  |  | D． |
| 406 | July 14 | Fisher＇s Island Sound，N．of Young＇s Rock． | 11 | Rocky ． |  |  |  | D． |
| 407 | 14 | Fisher＇s Island Sound，NW．of Seal Rocks． | 9 | Sand，stones ．．．．．． |  |  |  | D． |
| 408 | 14 | Fisher＇s Island Sound，N．by E． of Wicopessit． | 111 $\frac{1}{2}$ | Clay |  |  |  | D． |
| 409 | 14 | Fisher＇s Island．Sound，Lord＇s Channel． | 1112 | Rocky |  |  |  | Tan． |
| 410 | 14 | Fishor＇s Island Sound，off Nap－ atreo Point． | $2 \frac{1}{2}$ | Sand |  |  |  | T． |
| 411 | 16 | Watch Hill Light－House，R．I．， NNW．，distant about 音 mile． |  | do ．．．．．．．．．．．．． |  |  |  | D |

STATIONS FOR 1874 -Continued.

| \% | Dato. | Locality. |  | Nature of bottom. | Temperatures. |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| E |  |  |  |  | 䕀 |  | $\begin{aligned} & \text { 首 } \\ & \stackrel{\rightharpoonup}{\circ} \\ & \end{aligned}$ |  |
| 412 | $\begin{gathered} 1874 . \\ \text { July } 16 \end{gathered}$ | Watch Hill Light NNE., distant nearly $\frac{1}{2}$ mile. | 5 | Rocky . | - | - | - | Tan. |
| 413 | 16 | Fisher's Island Sound, off Gro- | $\begin{aligned} & 5 \\ & 7 \end{aligned}$ | Gravel. |  |  |  | Tan |
| 415 | 16 | ton Long Point. <br> Fisher's Island Sound, Groton Long Point NW. by N. 1 mile. | 7 | .do |  |  |  | D. |
| 410 | 17 | Fisher's Island Sound, $\frac{3}{4}$ mile W. by N. of N. Hammock LightHoase. | 6 | Sand, mud |  |  |  | D. |
| 417 | 17 | Long Island Sound, New London Light N. by W., distant about $2 \frac{1}{4}$ miles. | 8 | Sand |  |  |  | D. |
| 418 | 17 | Long Island Sound, New London light N., distant $1 \frac{7}{8}$ miles. | 9 | Sand, mud |  |  |  | T. |
| 419 | 17 | Long Island Sound, Little Gull Island Light bearing S. by E. 2 miles. | 40 | Gravel |  |  |  | D. |
| 420 | 20 | Fisher's Island Sound, $\frac{1}{4}$ mile $N$. of West Clump. | 112 | . do |  |  |  | D. |
| 421 | 20 | Fisher's Island Sound, N. Ham--ock Light W. by S. $\frac{1}{3}$ mile. | 121 | Sand, gravel |  |  |  | D. |
| 422 | 20 | ner's Island Sound, N. Mamnock Light S. by W. $\frac{1}{2}$ W. $\frac{1}{4}$ mile. | 13 | .do |  |  |  | D. |
| 423 | 20 | Fisher's Island Sound, N. Hammock Light E. $\frac{1}{3}$ mile. | 17 | Gravel. |  |  |  | D. |
| 424 | 20 | Fisher's Island Sound, N. Hammock Light E. by N. 1 mile. | 71 | Sand, mud ......... |  |  |  | D. |
| 425 | 20 | Fisher's Island Sound, N. Hammock Light NE. by E. 흘 E. $1 \frac{1}{4}$ miles. | $10{ }^{3}$ | Mud |  |  |  | D. |
| 426 | 20 | Fisher's Island Sound, near Middle Clump. | 8 | Sand. |  |  |  | T. |
| 427 | 22 | Fisher's Island Sound, $\frac{1}{4}$ mile NW. of Midale Clump. | 1112-92 | Sand, shells ...... | 65 | 64 | 62.5 | D. |
| 428 | 22 | Fisher's Island Sound, $\frac{1}{4}$ mile NNW. of Middle Clump. | 11 | ..do | 65 | 64 | 62.5 | D. |
| 429 | 22 | Fisher's Island Sound, $\frac{1}{8}$ mile NNE. of W. Clump. | 8 | ..do | 65 | 64 | 63 | D. |
| 430 | 23 | Fisher's Island Sound, Eelgrass Light-Ship E. by W., distant $\frac{1}{2}$ mile. | 7 | Sand, gravel ...... | 66 | 64 | 62.5 | D. |
| 431 | 23 | Fisher's Island Sonnd, between Latimer's Reef and Young's Rock. | 102 | Sand, gravel, shells. | 65.5 | 62.5 | 61.5 | D. |
| 432 | 23 | Fisher's Island Sound, eastward of Latimer's Reef. | 11 | Coarse sand, shells, rocks. | 65 | 62.5 | 61 | D. |
| 433 | 24 | Fisher's Island Sound, Groton Long Point NE. by N., distant $\frac{1}{8}$ mile. | 8 | Sand, shells ....... | 72 | 66 | 63 | D. |
| 434 | 24 | Fisher's Island Sound, between Sea-Flower Reef and Groton Long Point. | 7 | ...do .............. | 71 | 65.5 | 62.5 | D. |
| 435 | 24 | Long Island Sound, Race Point bearing E., distant $2 \frac{1}{8}$ miles. | 50 | Rocky, with mussels. | 72 | 68 | 59 | D. |
| 436 | 24 | Long Island'Sound, about $\frac{1}{4}$ mile SW. of 435. | 50 | Rocks, gravel..... | 68 | 68 | 58 | D. |
| 437 | 24 | Block Island Sound, off Culloden Point, Long Island. | 122 | Sand, mud....... | 74 | 66 | 61 | T |
| 438 | 24 | Block Island Sound, NW. of Cul loden Point, Long Island. | 12 | Sand. |  |  |  | D. |
| 439 | 27 | Fisher's Island Sonnd, eastern part of Sweeper Sound. | 4 | Sand, shells | 70.5 | 66.5 | 65 | D. |
| 440 | 27 | Fisher's Island Sound, house on Ram Island bearing NE. $\frac{1}{2} \mathrm{E}$. | 4 | Sand... | 68.5 | 66.5 | ¢5. 5 | D. |
| 441 | 27 | Fisher's Island Sound, SW. of Ram Island $\frac{1}{4}$ mile. | $3 \frac{1}{3}$ | ..do | 68.5 | 66.5 | 65 | D. |
| 442 | 27 | Fisher's Island Sound, off Middle Clump. | 14 | Stones, gravel..... | 68.5 | 66.5 | 64 | D. |
| 443 444 | 27 29 | Fisher's Island Sound, NW. of | ${ }^{101}{ }^{1}$ | .... do $\qquad$ | 67 | 66 | 64.5 | D. |
| 44 | -9 | Eel grass Light-Ship, distant about $\frac{7}{8}$ mile |  | Sanu, gravel, shelis |  |  |  | D. |

STATIONS FOR 1874-Continued.

| ¢ | Date. | Locality. |  | Nature of bottom. | Temperatures. |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | 年 |  | 具 |  |
| 445 | $\begin{gathered} 1874 . \\ \text { July. } 30 \end{gathered}$ | Block Island Sound, SE. $1 \frac{1}{2}$ E. of Race Rocknearly 3 miles; E. of Little Gull Island Light-House $5 \frac{3}{8}$ miles. | 45 | Sand............... | ${ }_{76}^{\circ}$ | $\begin{gathered} \circ \\ 62.5 \end{gathered}$ | 57 | D. |
| 446 | 30 | Block Island Sound, $\frac{8}{6}$ mile about W. by S. of 445 . | 40 | ...do |  |  |  | D. |
| 447 | 30 | Block Island Sound, 15 miles about W. by S. of 445. | 24 | .do |  |  |  | D |
| 448 | 30 | Mouth of Gardiner's Bay, Long Island, Gardiner's Point LightHouse S . about ${ }^{3}$ mile. | 143 | Gravel. | 71 | 66 | 63.5 | D. |
| 449 | 30 | Gardiner's Bay, Long Island.... | 63 | Mud | 71.5 | 67.5 | 64.5 | D. |
| 450 | 30 | ...... do | $4 \frac{1}{2}$ | Sand | 72 | 66.5 | 65 | D. |
| 451 | 30 | do |  | Grav | 72 | 66.5 | 65 | T. |
| 4 | 30 | Block Island Sound, Watch Hill | ${ }^{6 \frac{1}{2}}$ | Mud | ${ }_{68}^{69.5}$ | ${ }_{66}^{68.5}$ | 56 | D. |
| 4 | 31 | Block Island Sound, Watch Hill Light N. by W. 3 miles. | 18 | S | 68 | 66 | 56 | D. |
| 454 | 31 | Block Island Sound, Watch Hill Light N. by E. 3 miles. | 1812 | Mud, sholls ....... |  |  |  | T. |
| 455 | Aug. 3 | Long Island Sound, Bartlett's Reef Light-Ship E. about $1 \frac{1}{2}$ miles. | 22 | Sand, mud......... | 60.5 | 64.5 | 63.5 | D. |
| 456 | 3 | Long Island Sound, Bartlett's Reef Light-Ship E. about ${ }^{2 \frac{1}{2}}$ miles. | 14 | Gravel, sand ....... | 59 | 64 | 63 | D. |
| 457 | 3 | Long Island Sound, Bartlett's Reef Light-Ship E. $\frac{7}{2}$ N. about 3 miles. | $15 \frac{1}{3}$ | Sand, gravel, shells | 67 | 64.5 | 63.5 | D. |
| 458 | 3 | Long Island Soand, Hatchett's Point NW. about 2 miles. | 19 | Gravel, shells ...... | 61.5 | 64 | 63 | D. |
| 459 | 3 | Long Island Sound, off Saybrook, Conn. | 4 | Sand.. | 67 | 64.5 | 63.5 | T. |
| 460 | 3 | Long Island Sound, between Cornfield Point and Long Sand Shoal. | 9 |  |  |  |  | T. |
| $\begin{aligned} & 461 \\ & 462 \end{aligned}$ | 4 | Little Peconic Bay, Long Island. | ${ }_{7}^{7}$ | Gravel, sholls..... Sand, shells ...... | 66.5 | 74 | 71.5 | D. |
| 463 | 4 | do | 7 | Gravel.............. |  |  | 72 | T. |
| 464 | 4 | do | 132-10 | Sand, grarel ...... | 67 | 72 | 71.5 | D. |
| 465 | 4 | -....do ........................ | 14 | Sand, shells....... |  |  |  | D. |
| 466 467 | 4 | Great Peconic Bay, Long Island. | 51 | Mud, sand, gravel. |  | 74 | 72.5 | D. |
| 468 | 4 | .-...do | $4 \frac{1}{2}$ | Gravel.............- | 66.5 | 73 | 72.5 | D. |
| 469 | 4 | Little Peconic Bay, Long Island. | $9 \frac{1}{2}$ | Sand, shells ....... | 66 | 72.5 | 71 | D. |
| 470 471 | 4 | Gardiner's Bay, Long Island ............................ | 4 |  |  | 70.5 | 68 | T. |
| 472 | 5 | .....do. | 4 | Saud, shells....... |  |  |  | . |
| 473 | 6 | $\left\{\begin{array}{c}\text { Block Island Sound, Watch Hill } \\ \text { Light N. } \frac{1}{2} \text { W., distant } 3 \text { miles }\end{array}\right\}$ | 18-23 | Sand | 63 | 63 | $\left\{\begin{array}{l}59 \\ 60\end{array}\right\}$ | T. |
| 474 | 6 | Block Island Sound Montauk Point SW. $\frac{1}{2}$ S. 6 miles. | 17 | do |  | 63.2 | 60 | D. |
| 475 | 6 | Block Island ${ }^{2}$ Sound, Block Island Light ENE., distantabout 3 miles. | 19.2 | Mud |  | 63.5 | 60 | D. |
| 476 | 6 | Block Island Sound, Block Island Light SE. by E. $\frac{1}{2}$ E. about 4 miles. | 183 | Sand, mud........ |  | 64 | 60 | D. |
| 477 | 6 | Block Island Sound, Block Island Light ESE., about 7 miles. | 19 | Mud |  | 64 | 59 | D. |
| 478 | 6 | Block Island Sound. Watch Hill LightNW. $\frac{1}{2}$ W. about 4 miles. | 24 | Sand | 70 | 64 | 58.5 | D |
| 479 | 6 | Block Island Sound, Watch Hill Light NW. $\frac{1}{2}$ N. about 3 miles. | 22 | Sand, shells....... |  |  |  | T. |
| 480 | 10 | In West Harbor of Figher's Island. | 4 | Sand | 74 | 66.5 | 65. 25 | D. |
| 481 | 10 |  | $3 \frac{31}{51}$ | ...do ...-............ | $74$ | $66.5$ | 65. 25 | D. |
| 482 | 10 | In West Harbor of Fisher's Island, off Clay Point. | $5 \frac{1}{2}$ | Sand, mud | 74 | 66.5 |  | T. |
| 483 | 10 | Off Hawk's Nest Point, inner side of Fisher's Island. | 52-21 | Sand, gravel, to mud and weeds. | 74 |  |  | T. |
| 484 | 10 | Fisher's Island Sound, between Middle Clump and Ram Island Reef. | 121 $\frac{1}{3}$ | Mud, shells ....... | 73.5 | 69 | 64.75 | D. |
| 485 | 11 | Block Island Sound, about 1 milo S. of E. end of Fisher's Island. | 15 | Sand | 75 | 66 | 61 | D. |

STATIONS FOR 1874-Continued.

|  | Dato. | Locality. |  | Nature of bottom. | Temperatares. |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | . 4 | ¢ |  |  |
|  | 1874. |  |  |  | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |  |
| 486 | Aug. 11 | Block Tsiand Sound, about $\frac{3}{8}$ mile | $8 \frac{1}{2}$ | Sand.......-........ | 75 | 65.5 | 62.5 | D. |
| 487 | 11 | Block Island Sound, about $\frac{1}{2}$ mile | 8 | Stones | 72 | 65.5 | 63 | D. |
| 487 | 11 | ofr centre of Fisher's Island. | 8 |  |  |  |  | D |
| 488 | 11 | Block Island Sound, off Mount Prospect, Fisher's Island, about $\frac{1}{4}$ mile from land. | $7 \frac{1}{2}$ | . ${ }^{\text {do }}$ | 76 | 66.5 | 63 | D. |
| 489 | 11 | Block Island Sound, about $\frac{1}{2}$ mile | 6 | Stones, gravel | 78 | 66.5 | 63.25 | D. |
|  |  | Westward of 488. about mile |  |  | 76.5 | 66.5 | 63.25 |  |
| 490 | 11 | Block Island Sound, about is mile <br> SE. of Race Point. | $5 \frac{1}{2}$ | do | 76.5 | 66.5 | 63.25 | D |
| 491 | 11 | Block Island Sound, about $1 \frac{1}{4}$ miles S. of Mount Prospect. | 321 | 'Sand, shells........ | 75 | 66.5 | 58.5 | T. |
| 492 | 12 | Noank Harbor.-.....-.-.-.-...... | 2 | Mud |  |  |  | D. |
| 493 | 12 | Fisher's Island Sound, between Sea-Flower and Horse-Shoe Reefs. | 43. | Sand | 76 | 67.5 | 62.5 | D. |
| 494 | 12 | ..... do | 41 | Sand, gravel | 75 | 67 | 64.5 | D. |
| 495 | 12 | Fisher's Island Sound, W. of SeaFlower Heef Beacon. | 6 | Finesand and mud. |  | 67 | 64.5 | I. |
| 496 | 12 | Fisher's Island Sound, W. of SeaFlower Reef Beacon about 1 mile. | 6 | Sand, mud ......... | 72 | 67 | 64.5 | T. |
| 497 | 13 | Block Ysland Sound, Montauk PointLightSSE about 6 miles. | $15 \frac{1}{2}$ | Sand. | 74 | 65 | 64 | D. |
| 498 | 13 | Block Island Sound, Montauk Point Light SSE. about 6 $\frac{1}{3}$ miles. | 9 | Fine sand and gravel. | 71 | 65 | 64 | D. |
| 499 | 13 | Block Island Sonnd, Montank Point Light SSE. about 7 miles. | $5 \frac{1}{3}$ | Coarse sand and rocky. | 72 | 65 | 64 | D. |
| 500 | 13 | Block Island Sound, Montank Point Light S. by E. $4 \frac{1}{2}$ miles. | 19 | Fine sand. | 72 | 65 | 63.5 | D. |
| 501 | 13 | Block Island Sound, Montauk Point Light S . by W. about 3 miles. | 20-8 | Sand, shells ....... | 72 | 66 | 63.5 | D. |
| 502 | 13 | Block Island Sound, Montauk Point Light SSW. about 21 $\frac{1}{2}$ miles. | 8 | Stony - ....-......... | 72.5 | 65 | 65 | D. |
| 503 | 13 | OfiMontauk Point, Light-House WSW. about 2 miles. | $7 \frac{1}{2}$ | Rocky | 72 | 65 | 64.5 | D. |
| 504 | 13 | Off Montauk Point, Light-IIouse W. about 2 miles. | $7 \frac{1}{2}$ | ....do | 72 | 65 | 64.5 | D. |
| 505 | 14 | Fisher's Island Sound, between Eelgrass Light-Ship and White Rock | $5 \frac{1}{4}$ | Sand, gravel ....... | 67 | G6 | 64.5 | D. |
| $E 06$ | 14 | Fisher's Island Sound, about 1 mile E. by N. from Eelgrass Light-Ship. | $\theta$ | .do | 67 |  |  | D. |
| 507 | 14. | Fisher's Island Sound, Stonington LiglatNE. $\frac{1}{3}$ E. about1mile. | 5 | Sand. | 67 |  |  | T. |
| 508 | 14 | Fisher's Island Sound, Eelgrass Light-Ship WN W. $\frac{3}{4}$ mile. | $5 \frac{1}{3}$ | Rocky ............. | 67 |  |  | D. |
| 509 | 17 | Fisher's Island Sound, Eelgrass Light-Ship N W. by W. about $\frac{3}{4}$ mile. | 7 | Stones | 69.5 | 67 | 63 | D. |
| 510 | 17 | Fisher's Island Sound, Eelgrass Light-Ship WNW. 1 milo. | 68 $-3 \frac{1}{2}$ | Sand, rocky....... | 69.5 | 67 | 63 | D. |
| 511 | 17 | Fisher's Island Sound, Eelgrass Light-Ship W. by N. about 14 miles. | $5 \frac{1}{2}$ | Hard, rocky.......- | 69 |  |  | Tan |
| 512 | 17 | Fisher's Island Sound, Stomington Light ENE. about $1 \frac{1}{2}$ miles. | 4 | Sand .............. | 69 | 66.5 | 60.5 | D. |
| 513 | 17 | Fisher's Island Sound, Eelgrass Light-Ship W. $\frac{1}{2}$ N.aboutlmile. | 7 | Hard, stones ....... | 70 | 67 | 63 | D. |
| 514 | 17 | Fisher's Island Sound, Eelgrass Light-Ship E. about 1 mile. | 71 | Sand. | 70 | 66.5 | 63 | D. |
| 515 | - 18 | Off Block Island, Montauk Point W. about 9 miles. | 20 | . .do .-.-.......... | 71 | 66 | 47.5 | D. |
| 516 | 18 | Off Block Island, Montank Point NW. byW. $\frac{1}{2}$ W. about 11 miles. | 25 | Sand, shells . . . . . . | 70 | 67.5 | 45.5 | D. |
| $517$ | 18 | do | 231 | ...do | 70 |  |  | D. |
| 518 519 | 18 | Off Block Island, Old Harbor | 23 11 | - do .-..... | 70 |  |  | D. |
| 519 | 18 | Off Block Island, Old Harbor Point, Block Island N. 5 miles. | 11 | Sand, stones |  | 67 | 55 | D. |

STATIONS FOR 1874-Continuod.

| 4 |  |  | 펻 |  |  | peratu | ares. |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Date. | Locality. | Depth in oms | Nature of bottom. | - |  | $\begin{aligned} & \text { gig } \\ & \text { ثٌ̈ } \\ & \text { A } \end{aligned}$ | 唇 |
| 520 | $\begin{gathered} 1874 . \\ \text { Aug. } 18 \end{gathered}$ | Ofi Block Island; Old Harbor Point, Block Island, N. 5 miles. | 11 | Sand, stones ...... | $70^{\circ}$ | $\bigcirc$ | $\bigcirc$ | D. |
| 521 | 18 | Off Now Shoreham, Block Island | 14 | Gravel, stones | 70 | 66 | 57.5 | D. |
| 522 | 18 |  | 18 | Sand, gravel | 70 | 66.5 | 52.5 | D. |
| 523 | 19 | Off Block Island, New Shoreham NTV. by N. about 6 miles. | 14 |  | 73 | 66.5 | 54 | D. |
| 524 | 19 | Oif Block Island, New Shoreham NNW. | 141 $\frac{1}{2}$ | Coarso sand | 73 | 66 | 50.5 | D. |
| 595 | 19 | Off Block Island, SE. side ....... | $14 \frac{1}{2}$ | Gravel. | 69.5 | 66.5 | 53 | D. |
| 520 | 19 | SE. from Point Judith, Rhode Island, about 4 miles. | $13 \frac{1}{2}$ | Sand, gravel ...... | 75 | 67.5 | 54.5 | D. |
| 527 | 19 | S. from Point Judith, Rhode Island, about $2 t$ miles. | 9 | Stones |  | 69.5 | 61 | D. |
| 528 | 19 | W. from Point Judith, Rhode Island, about 3 miles. | 4 | Rocks, sand. | 76 | 67.5 | 63 | D. |
| 529 | 19 | Ofi' Narragansett Beach, Rhode Island. | 812 | Sand, gravel. |  |  |  | T. |
| 530 | 19 | ......do .-......................in | 101 ${ }^{\frac{1}{2}}$ | Stones, gravel. |  |  |  | T. |
| 531 | 21 | Block Island Sound, Watch Hill Light N. $\frac{1}{2}$ E., distant 3 miles. | 21 | Sand | 80 | 67.25 | 56.5 | D. |
| 502 | 21 | Block Island Sound, SIV. $\frac{3}{3}$ S. of No. 531, distant $\frac{1}{2}$ mile. | 20 | ...do .-........... | 80 | 67.25 |  | T. |
| 533 | 21 | Block Island Sound, WSW. of No. 531, distant $\frac{5}{8}$ mile. | 1712 | .d | 79.5 | 67.25 |  | T. |
| 534 | 21 | Block Island Sound, about S. $\frac{3}{3} \mathrm{E}$. of east point of Fisher's Island $\frac{7}{8}$ mile. | 9 | Gravel. | 78 | 66.5 | 63.5 | D. |
| 535 | 21 | Block Island Sound, east end of Fisher's Island N. by E. about 2 miles. | $10 \frac{1}{2}$ | Sand. | 78 | 67 | 57.5 | D. |
| 536 | 24 | Fort Pond Bay, east end of Long Island. | $7 \frac{1}{2}$ | Mud | 76 | 73.5 | 65.5 | D. |
| 537 | 24 | Off Fort Pond Bay, east end of Long Island. | $6 \frac{1}{2}$ | Sand, gravel ....... |  |  |  | T. |
| 538 | 24 | Napeague Bay, off Culloden Point, Long Tstand. | $8 \frac{1}{2}$ | Sand |  | 67.5 | 65.5 | D. |
| 539 | 24 | Napeague Bay, east end of Long Island. | 5-8 | . .do |  |  |  | T. |
| 540 | 24 |  | $6-7$ |  |  |  |  | D. |
| 541 | 24 | Block Island Sound, Race Point N . about $1 \frac{1}{8}$ mile. | $42$ | Stony | 70.5 | 66 |  | D. |
| 542 | 25 | Off Hay Marbor, west end of Fisher's Island. | 42 | Sand | 70 | 65.5 | 64.5 | D. |
| 543 | 25 | Off west end of Fisher's Island, Race Point about S., distant $\frac{1}{3}$ mile. | $7 \frac{1}{3}$ | Mud, sand | 70 | 65. 5 | 64.5 | D. |
| 544 | 25 | Off west end of Fisher's Island, Race Point SSE. 1 mile. | $8 \frac{1}{2}$ | Fine sand |  |  |  | T. |
| 545 | 25 | Off west end of lisher's Island, Race Point about S. $\frac{1}{2}$ mile. | $5 \frac{1}{2}$ | Rocks |  |  |  | D. |
| 546 | 25 | Fisher's Island Sound, between East Clump and Ram Island buoy. | 72 | Hard | 74.5 | 65.5 | 65 | 1. |
| 547 | 25 | -....do ..............-.-...... | 14 | do |  |  |  | D. |
| 548 | 25 | Fisher's Island Sound, ESE. from house on Ram Island. | $7 \frac{1}{2}$ | - |  |  |  | D. |
| 549 | 27 | Oif Niantic IMay, Connecticut, W. of Two-Tree Island. | 5 | Sand | 70.5 | 65 | 64 | D. |
| 550 | 27 | Off Niantic Bay, Connecticut, between Black Point and Two'Tree Island. | $5 \frac{1}{2}$ | . . do |  |  |  | T. |
| 5.15 | 27 | …. do .................. | $5 \frac{1}{2}$ | . do |  |  |  | D. |
| 453 | 27 | Long Island Soand, Saybrook | ${ }_{7}^{6}$ |  |  |  |  | D. |
| 554 | 27 | Light NE. 2 miles. <br> Long Island Sound, Plum Island Light SE. by E. 3 miles. | 22 | Gravel | 73.5 | 66 | 65 | D. |
| 555 | 27 30 | Off CoxLedge, ESE. from Block | $\begin{aligned} & 26 \\ & 20 \end{aligned}$ | ...do | 73.5 | 60 | 65 | D. |
| 50 |  | Island ahout 20 miles. <br> (The shallowest part of Cox Ledge lies in about $41^{\circ} 11_{\frac{1}{2}}{ }^{\prime} \mathrm{N}$. Lat. and $71^{\circ} 02^{\prime}$ W. Long.) | 0 | nocky ...-......... |  |  |  | D. |
| 557 558 | 30 30 | Oft Cox Ledge | $\stackrel{21}{21}$ | Sand, rocks ....... | 67 | 62 | 51.5 | D. |
| 559 | 30 | ....... do .... | 21 |  |  |  |  |  |

STATIONS FOR 1874-Concluded.

(There are no numbers 581-600.)
STATIONS FOR 1875.

S. Mis. 90

STATIONS FOI 1875－Continued．

| كِّ | Date． | Locality． |  | Nature of bottom． | Temperatures． |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { 言 } \\ & \text { 淢 } \\ & \text { un } \end{aligned}$ |  |  |  |  | 荘 |  |  |  |
| 621 | $\begin{aligned} & 1875 . \\ & \text { July } 20 \end{aligned}$ | Vineyard Sound，Cuttyhunk Light NIV．by N． $3 \frac{5}{8}$ miles， Sow aud Pigs Light－Ship WNW． | 19 | Hard ．．．．．．．．．．．．．． | $\bigcirc$ | － | $\bigcirc$ | D． |
| 622 | 20 | Vineyard Sound，Cuttyhunk Light N．${ }^{13}$ miles，Sow and Pigs Light－ship W．by N． | 10 |  |  |  |  | D． |
| 623 | 20 |  |  |  |  |  |  | D． |
| 624 | 20 | Vineyard Sound，Menomsha Bight． |  |  |  |  |  | T． |
| 625 | 21 | Nantucket Sound；Oak Bluffs Hotel W．by S．，W．end of Squash Meadow E．by N． | 5 | Sand．．．．．．．．．．．．．．． |  |  |  | D． |
| 626 | 21 | Nantucket Sound，between Oak Bluffs and Squash Meadow． | 6 | do |  |  |  | D． |
| 627 | 21 | －－．．．do ．．．．．．．．．．．．．．．．．．．．．．．． | 51 | ．．．do ．．．．．．．．．．．．．． |  |  |  | T． |
| 628 | 21 | Nantucket Sound，Oak Bluffis NW．，Cape Poge SE．by E． | $5 \frac{1}{2}$ | ．do ．－－－．．．－．．．．．． |  |  |  | T． |
| 629 | 21 | Nantucket Sound，about same as 628． | $5 \frac{1}{2}$ | do |  |  |  | T． |
| 630 631 | 26 | Nantucket Sound，Cross－Rip | $10 \frac{1}{2}$ | $\cdots$ Sand | 76 | 69 | 68.5 | D． |
| 632 | 26 | Light－Ship E．by S．를 mile． NantucketSound，close to Cross－ Rip Light－Ship． | $11 \frac{1}{2}$ | Sand, gravel, | 76 | 69 | 69 | D． |
| 633 | 26 | Nantucket Sound，Cross－Rip Light－Ship W．by S．$\frac{3}{4}$ mile． | 12 | Sand，gravel ．．．．． | 76 | 60 | 60 | D． |
| 634 | 26 | Nantucket Sound，Cross－Rip Light－Ship WNIV．about 1 mile． | 10 | ．．．do | 76 | 69 | 69 | D． |
| 635 | 26 | Nantucket Sound，Brant Point Licht，Nantucket，S．by E． 4 miles． | $7 \frac{1}{2}$ | Muddy sand ．．．．．． | 76 | 71 | 69.5 | D． |
| 636 | 26 | Nantucket Sound，Brant Point Light SSE． 21 miles． | 8 | Mud．．．．．．．．．．．．．．． | 76 |  |  | D． |
| 637 | 28 | Nantucket Shoals，Sankoty Head Light west，distaut 10 miles． | 16 | Sand，shells．．．．．．． |  | 59 | 58 | i． |
| 638 | 28 | Nantucket Shoals，about same as 637. | 151 | ．．．do |  | 59 | 58 | T． |
| 639 | 28 | Nautucket Shoals，Sankoty Head Light west about 9 miles． | 14 | Sand |  | 60 | 59 | D． |
| 640 | 28 | Nantucket Shoals（a little S．of 6：99？）． | 11 | Sand，shells．．．．．．． |  | 60 | 59 | D． |
| 641 | Aug． 4 | Buzzard＇s Bay，Woepecket buoy W，by S．$\frac{\pi}{3}$ mile． | 7 | ．．．do ．．．．．．．．．．．．． | 75 |  |  | D． |
| 642 | 4 | Buzzard＇s Bay | 8 | Hard |  |  |  | D． |
| 643 644 | 4 | - do | 5 | Sand．．．．．．．．．．．．．．．．．． | 75 | $\begin{aligned} & 69 \\ & 69 \end{aligned}$ | 69 69 | ${ }^{\text {D }}$ ） |
| 645 | 4 | Brzzard＇s Bay，buoy No． 8 off Scraggy Neck NE．$\frac{1}{2}$ mile． | 6 | Sand，shells．．．．．．．． |  |  |  | D． |
| 646 | 4 | Buzzard＇s Bay，oll Cataumet Harbor． | 6 | Sand．．．．．．．．．．．．．．． | 75 |  |  | T． |
| 647 | 4 | －－．．．do－．．．．．． | ${ }_{6}^{6}$ | ．．do |  |  |  | T． |
| 648 649 | 4 | Buzzard＇s Bay－．．．ar．．．．．．．．．．．．．． | \％ | Mard | 75 71 |  |  | ${ }_{\text {D }}^{\text {D }}$ ． |
| 649 650 | 5 | Vineyard sound，Tarpaulin Cove Light N． 1 mile． ．．．．．．do | 10 18 | Hard | 71 71 | 68 | 67 | D． |
| 651 | 5 | Buzzard＇s Bay，$\frac{3}{3}$ mile N．of Penikese． | 10 | Sand． |  | 65 | 64 | D． |
| 659 |  |  |  |  |  |  |  | D． |
| ${ }_{6}^{653}$ | 5 | Buzzard＇s Day | ${ }^{8 \frac{1}{2}}$ | $\begin{aligned} & \text { Mud } \\ & \text { Soft mud } \end{aligned}$ | $\begin{aligned} & 71 \\ & 71 \end{aligned}$ | 68 | 66 | D． |
| 655 | 5 | ．．．．．．do | $10^{-}$ | Sand，mud |  |  |  | T． |
| 656 | 5 | －do | 8 | Mud | 71 | 68.5 | 66 | D． |
| 657 | 5 | do |  | Gravel. | 71 |  |  | D． |
| 658 6.59 | 10 | About $\frac{3}{4}$ mile off Gay Head | 9 | Gravel <br> Hard | 73 | 66 66 | 64 | ${ }_{\text {D }}^{\text {D．}}$ |
| 6.69 | 10 | －．．．．．${ }^{\text {do }}$ | 9 |  | 73 | 66 | 64 | D． |
| 661 | 10 | About 18 miles off Gay Head． | 13 | Shells． |  | 67 | 65 | D． |
| 662 | 10 | Vineyard Sound ．．．．．．．．．．．．．．．． | 10 | Sand． |  |  |  | $\stackrel{1}{1}$ |
| 663 | 10 | Vineyard Sound，off Tarpaulin Cove． | 144 | Hard |  |  |  | D． |
| 664 665 | 10 10 |  | 16 | Lard |  | $\begin{aligned} & 67.5 \\ & 67.5 \end{aligned}$ | 60.5 | $\mathrm{D}_{\mathrm{D}}^{\mathrm{D} .}$ |

GTATIONS FOR 1875-Continued.

|  | Dato. | Locality. |  | Nature of bottom. | Temperatures. |  |  | $\begin{aligned} & \text { 䃾 } \\ & \text { H } \\ & \text { E } \\ & \text { E } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { Ē } \\ & \text { 嵌 } \\ & \text { UN } \end{aligned}$ |  |  |  |  | $\frac{4}{4}$ |  | $\begin{aligned} & \text { gi } \\ & \text { \#ٌ } \\ & \text { R } \end{aligned}$ |  |
| 660 | $\begin{gathered} \text { 1875. } \\ \text { Aug. } \end{gathered}$ | Off Chappaquiddick, SE. part | 3 | Sand. | - | 0 | - | T. |
| 667 | 11 | of Martha's Vinoyard. | 5 | Sand, stones | 72 | 71.5 | 71 | D. |
| $66 \%$ | 11 | -......do | 6 | Sand, gravel ........ | 72 | 1.5 | 71 | ${ }_{\text {D }}^{\text {D. }}$ |
| 669 | 11 | Off Skiff Island, at SE. corner of Martha's Vineyard. | 7 | Mrud, sheils....... | 72 |  |  | D. |
| 670 | 11 | ......do --........................ | 29 |  | 74 | 68 | 66 | D. |
| 671 | 12 | Great Point, Nantucket Island W. 5 miles. | $7 \frac{1}{2}$ | .do | 72 | 56 | 56 | D. |
| ${ }_{672}$ |  | ...... do ........................... | 8 | -...do | 72 | 56 | 56 | D. |
| 673 |  |  | 9 | $\ldots$ | 72 |  |  | T. |
| 674 | 12 | Sankotr Head, Nantucket Island, W. 1 mile. | 63 | Sand, gravel | 72 | 67 | 66 | D. |
| 675. | 12 | Sankoty Mead, Nantucket Island, WNW. 2 miles. | 16 | Lard | 72 | 66 | 65 | D. |
| 676 | 12 | A little west of 675............. | 9 | -...do | 76 |  |  | D. |
| 677 | 1: | Sankoty Head, Nantucket, NW. 1 mile. | $7{ }^{3}$ | .do | 77 |  |  | 'T. |
| 678 | 12 | Sankoty Head, Nantucket, W. ${ }^{2}$ mile. | $4 \frac{1}{3}$ | Sand, shells ...... | 78 |  |  | T. |
| 679 | 13 | Nantucket Sound, off rest side Nantucket Island. | $5 \frac{1}{2}$ | ...do .............. | 80 | 70 | 70 | D. |
| 680 | 13 | ...... do ............................ | 7 | Mud. | 80 |  | 70.5 | D. |
| 681 | 13 | -....do -...-................- | 5 | Sand.. | 80 | 71.5 | 71 | D. |
| 682 | 13 | Nantucket Sound, Cross-Rip Light-Ship NW. 2 2 miles. | 10 | Shells, sand | 79 |  |  | D. |
| 683 | 13 | Nantucket Sound, Cross-Rip Light-Ship E. about 3 miles. | 102 | Sand | 79 | 71 | 70.5 | D. |
| 684 | 13 | Nantucket Sound, Cross-Rip Light-ShipE.,CapePogeLight SSW. $2 \frac{1}{2}$ miles. | 102 | do |  | 71 | 71 | D. |
| CS5 | 13 | Tineyard Sound, off Falmouth. |  |  | 78 |  |  | T. |
| 686 687 | 17 | Buzzard's Bay, off Nye's Neck.. | $7 \frac{1}{2}$ | Mud, hard |  | 76 |  | $\cdots$ |
| 688 | 17 | ......do - | 6 5 | Sandy mud |  |  |  | T. |
| 689 | 17 | do | 5 | Sand. |  |  |  |  |
| 690 | 17 | ...do | 8 | Sand, mud. |  |  |  | D. |
| 691 | 17 | Buzzard's Baf, off Wild Harbor, near N. Falmonth. | 8 | Sand, gravel | 75 |  |  | D. |
| 602 | 17 | Buzzard's Bay, ofif West Fal. mouth $\frac{3}{3}$ mile. | $7 \frac{1}{2}$ | Shells, gravel. | 75 |  | 72 | D. |
| 693 | 17 | Buzzard's Bay, SW. of No. 692 about mile. | 7 | Mud. | 75 | 76 | 73 | D. |
| 694 | 17 | Buzzard's Bay, off Hamlin Point. | $3 \frac{1}{2}$ | Hard | 75 |  |  | D. |
| ${ }_{6} 695$ | 17 | -......fo | 5 | $\cdots$ | 75 | 75.5 | 70.5 | D. |
| 696 | 17 | Buzzard's Bay, off Quamquissett Harbor. | 7 | Sand, mad | 75 | 78.5 | 70.5 | D. |
| 697 | 23 | Vineyard Sound, S. entranco to Quick's Kole. | $7 \frac{1}{2}$ | Stony, mussels. |  | 67 | 67 | D. |
| 698 | 23 | V....do ......................... | 6 | Sand, rocks | 64 | 68.5 | 68.5 | D. |
| 699 700 | $\stackrel{23}{23}$ | Vineyard Sound, offQuick's Hole | $7 \frac{1}{3}$ | ...do | 64 |  |  | D. |
| 700 | 23 | Vineyard Sound, south of Cuttyhunk Light 1 mile. | 9 21 | Sand |  | 66 | 65.5 | D. |
| 701 | 23 | Vineyard Sound, off Cuttylunk Light 1 mile. | 9 | Rocky | C4 |  |  | D. |
| 702 | 23 | Near mouth of Buzzard's Bay, Cuttyhunk Light ESE. 1 mile. | 8질 | Grarcl. |  | 66 | 65 | D. |
| 703 | 23 | Vineyard Sound, off south side of Cuttyliunk Island. | 9 |  |  |  |  | T. |
| 704 | 23 | ....-do ......................... | 9 |  |  |  |  | T. |
| $70 \overline{3}$ | 23 | Vineyard Sound, off Roluinson's Hole. | 15 | Sand, gravel...... | 66 | 68.5 | 66 | D. |
| 706 | 25 | Vineyard Sound, off Falmouth.. | 4 |  | 60 |  |  | T. |
| 707 | 25 | .....do | , |  |  |  |  | T. |
| 709 | 25 | -......do | 6 | isan | 68.5 | 73 | 72 | D. |
| 710 | 31 | Vineyard Sond | 9 | - 7 ard | 76 | 69 | 69 | ${ }_{\text {D }} \mathrm{D}$. |
| 711 | 31 | .....do ........ | 10 | Hard | 76 | 68.5 | 69 | D. |
| 712 | 31 | . do | 13 |  | 76 | 69 | 69 | D. |
| 713 714 | 31 |  | 8 | Shells, gravel | 76 | 70 | 69.5 | D. |
| 715 | 31 | -....do | ${ }_{13}^{6}$ | Hard, | 76 | 70 70 | ${ }_{70}^{69.5}$ | ${ }_{\text {D }}^{\text {D. }}$ |
| 716 | Sent. 1 | Off Gay ILead, 3 miles SW. buoy No. 25. | 17 |  |  | 6 G | 61.5 | D. |
| 717 | 1 | Southwest of Gay Head, distant 4 miles. | 19 | ....do |  | 66 | co | D. |

STATIONS FOR 1875-Continued.


STATIONS FOR 1875－Concluded．

| 边 | Date． | Locality． |  | Nature of bottom． | Temperatures． |  |  | 芴 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { 昌 } \\ & \text { "゙̈ } \\ & \text { Hi } \end{aligned}$ |  |  |  |  | 年 | 迺 | 哀 |  |
| 763 | $\left\lvert\, \begin{gathered} 1875 . \\ \text { Sept. } \end{gathered}\right.$ | Off Southwest Ledge，$\frac{1}{2}$ mile W． oi 762. | 17 | Gravel，sand | 64 | $\stackrel{\circ}{\circ}$ | $80^{\circ}$ | D． |
| 764 | 20 | Off Southwest Ledge，$\frac{1}{8}$ mile S ． |  |  |  |  |  |  |
| 765 | 20 | Ofi Southwest Ledge，$\frac{3}{4}$ mile W． | 17 | Sand，gravel |  |  | 60 | D． |
| 760 | 20 | On SouthwestLedge，$\frac{1}{\text { c }}$ mile NW． | 17 | ．do |  |  | 60 | D． |
| 767 | 20 | Off Southwest Ledge， 11 milos | 18 | Sand． | 64 |  | 61 |  |
| 768 | 20 | 9 miles SWV．of Gay Head．．．．．．． | 20 |  | 64 |  | 61 |  |
| 769 | 20 | 6 miles SW．${ }^{\text {a }}$ W．of Gay Head．． | 20 | ．．．do ．．．．．．．．．．．．． |  |  |  | D． |

STATIONS FOR 1877，1878，AND 1879，WITH HEADQUARTERS AT SALEM， Mass．，Halifax，N．S．，GLOUCESTER AND PROVINCETOWN，MASS．

During these three years the dredgings were carried on from the U．S．Str．Speedwell，commanded in 1877 by Lieut．Commander A．G．Fel－ $\operatorname{logg}$ ，in 1878 by Lieut．Commander L．A．Beardslee，and in 1879 by Lieut． Z．L．Tanner．In 1877，headquarters were first established at Salem， and the stations made from there covered the northern part of Massachu－ setts Bay，and portions of the Gulf of Maine，off Cape Ann．During the session of the commission of arbitration on the fishery claims，how－ ever，the headquarters were removed to Halifax，N．S．，and dredgings were made in the waters off that coast，from the last of August to the first of October．The Speedwell also made a line of stations on her trip across the Gulf of Maine，from Cape Ann to Cape Sable，N．S．In 1878， with headquarters at Gloucester，Mass．，the area dredged over included the northern and central parts of Massachusetts Bay，and the Gulf of Maine，off Cape Ann．In 1879，the dredging grounds were the southern part of Massachusetts Bay，and the Gulf of Maine，off Cape Cod．The bottom temperatures in 1877 were mostly taken with Miller－Casella self－registering，deep－sea thermometers，but in 1878 and 1879 Negretti－ Zambra thermometers were used for that purpose．All the tempera－ tures for 1879 were taken with more than usual care，the thermometers employed being frequently compared with a reliable＇standard．
DREDGINGS BY SPEEDWELL, 1877.


DREDGINGS BY SPEEDWELL, 1877—Continued.


DREDGINGS BY SPEEDWELL, 1878—Continued


DREDGINGS BY SPEEDWELL, 1878-Continued.


DREDGINGS BY SPEEDWELL，1870—Continued．

|  |  |  | 烒荡EH | Locality． |  | Nature of bottom． | Temperatures． |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | － |  |  |  |  |  | 華 |  |  |  |
|  | ${ }_{\text {July }}^{1879}$ |  |  |  |  |  | ${ }^{\circ} \mathrm{C}$ | ${ }^{\circ} \mathrm{C}$ | $\stackrel{\circ}{\circ}$ |  |
| 247 | July | $4{ }_{4}^{4} 806$ | 70 | Race Point light Soint Light S． $20^{\circ}$ E．3，miles， | 34 | Fine gray saud | 63 | ${ }_{63}^{63}$ |  | D． |
| 248 | ．．．do | $42 \quad 07$ | 7014 | Race Point Light S． $1^{\circ} \mathrm{W} .3 \frac{1}{2}$ miles | 32 | do | 6 6皃 | 633 |  | D． |
| 249 | ．．．do | $43 \quad 08 \frac{1}{2}$ | $70 \quad 13$ | Race Point Light S． 130 W ． $4 \frac{1}{1}$ miles | 30 | Coarse sad | $65^{\circ}$ | $6: 3$ |  | T． |
| 250 | ．．．do | $42 \quad 69$ | $\begin{array}{ll}70 & 13\end{array}$ | Race Point Light S． $9^{\circ} \mathrm{W} .5^{1}$ miles | 30 | －do | $66 \frac{1}{2}$ | 624 |  | T． |
| 252 | do | 423 | 70 09 <br> 1  | Race Point Light S． $34^{\circ} \mathrm{W}^{*} 66_{4}^{4}$ miles | $27^{2}$ | Tine gray sand aud gravel． | $00^{2}$ | $6{ }^{6} 2$ |  | T． |
| 253 | July 28 | $41 \quad 57$ | 7070 <br> 10 | Cape Cor Bay，＂Fishing Ledge，＂Wood End Light N． $50^{\circ}$ E． 7 miles． | 17 | Focky ．．．．．．．．．．．．．．．．．．．． | 72 | ${ }_{65}{ }^{-1}$ |  | D． |
| 25. | ．．．do |  |  | ， | 21 | Sandy | 75 | 65 |  | D． |
| 255 | ．．．do |  |  | ．．．．．do | 18 | lucky | 76 | G6 |  | D． |
| 256， 257 | ．．．do |  |  |  | 16 | ．．．．．ilo | 78 | 68 |  | D． |
| 258 | ．．do | 415.5 | $70 \quad 20$ | Capo Cod Say，Wood End Light NE．$\frac{1}{2}$ E． $9 \frac{1}{2}$ miles | $\because 0$ | Soft mud． | 72 | 64 |  | T． |
| 259 | ．．．do | 41 57， | $70 \quad 238$ | Capo Cod Bay，Wood End Light ENE． $10{ }^{3}$ miles | 24 | Dlue mud | 71 | 64 |  | T |
| 260 | ．．．do | 4158 | $70 \quad 19^{-}$ | Cape Cod Bay，Whood End Light ENE． 71 | 25 | Green mad | 74 | 6כ |  | T． |
| 261 | ．．do．．． | $42 \quad 00$ | 7075 | Cape Cod Bay，Wood End Light EnE． 32 miles | 26 | Mud | 74 |  |  | T． |
| 262 | July 29 | 4211 | （0） 57 |  | 80 83 | Blue mud | 71 | 635 |  | D． |
| 264 | －．．do | 4210 | 6956 | Off Capo Cod，Race Point Light S 050 W． 15 miles | 80 | ．．．．．．do do | 71 | $60^{6}$ |  | T． |
| 205 | ．．．do | $4209{ }^{1}$ | $69 \quad 57$ | Off Cape Cod，Cape Cod Light S． $30^{\circ} \mathrm{W} .8$ miles ． | 73 | Gravel | 71 | 6.5 |  | T |
| 266 | ．．．do | 4212 | ¢9 50 | Off Cape Cod，Cape Cod Light S． $42^{\circ}$ W． 13 miles | 120 | Blue mut | 715 | 66 2 |  | T． |
| $\because 67$ | July 31 | $42 \quad 13$ | $69 \quad 40$ | Of Cape Cod，Race Point Light S． 8130 W .26 mil | 135 | ， | $7{ }^{1+2}$ | 68.8 | 41 | D． |
| $\because 68$ | －．do ．．．． | 4212 | 6949 | Off Cape Cod，Race P＇oint Light S． $84 \frac{1}{3} \mathrm{O}$ W． 26 miles | 129 | ．${ }^{\text {do }}$ | $71^{*}$ | $66 \frac{2}{2}$ | 42 | T． |
| 269 | ．．．do | 4208 | $69 \quad 53$ | OiY Cape Cod，Cano Cod Light S．Cidi W． 9 miles | 53 | Gravel． | $70 \pm$ | 6.12 | $39 \frac{1}{2}$ | ＇ |
| 270 | $\ldots$ ． $10 . .$. | 4206 | 6） $55 \frac{1}{2}$ | Off Cape Cod，Cape Cod Light S．Codo W． 7 miles． | 43 | 131uo sand and gravel | 71 | 643 | 39 | T， |
| 271 | Aug． 1 |  | 70 | Off Cape Cod，及aco Point Light S． 120 WV． 23 milos | 34 | line yellow sand．．．． | 70.1 | 66. | 383 | D． |
| $\bigcirc 72$ | ． $\mathrm{do}_{0}$ ． | $\begin{array}{lll}42 & 07\end{array}$ | $\begin{array}{lll}70 & 19\end{array}$ | Off Caye Con，Race Point Light S 20 W .3 miles | 34 | Yellow sand | $70^{*}$ | 66. | 38 | T． |
| 273 | ．．．do | 4207 |  | Off Capo Cod，Lace Point Light S． $40^{\circ} \mathrm{W} .51$ miles | 25 | Coarso yellow sand and grarel． | C＇） | 67 | $38 \frac{1}{2}$ | D． |
| 274 | ．．．do ．．．． | 42002 | $70 \quad 05$ | Off Capo Cod，Cape Cod Light S． $11{ }^{\circ}$ L． 7 miles | 30 | Coarso yellow sand and brokion shells． | 733 | 68. | 30 | D． |
| 275 | ．．．do |  |  |  | 291 | Green mud ．．．．．．．．．．．．．．．．．． | 72 | $60 \frac{1}{2}$ |  |  |
| 276 | ．．．do | 42 08． | 7000 | Off Cape Cod，Cape Cod Limht S． 200 TV． $6 \frac{1}{2}$ miles | 47 | Blue mud | 71 | $66^{2}$ | $37 \frac{1}{2}$ | T． |
| 277 | ．．．do ．．． | 4202 | $70 \quad 15$ | Capo Cod Bay，Wooil End Light S． $76^{\circ} \mathrm{N} .3$ miles | 28 | Sand and | 74 | $74 \frac{1}{2}$ | 42 | T |
| 278 | Aug． 4 |  |  | Pruvincetown Haxbor，Long Point Light N． 750 E．$\frac{1}{4}$ miles ． |  | Sandy | 70 | $60 \frac{1}{2}$ | 53 | 1. |
| 279 | ．．．do ．．．． | 43093 | 70 15 |  | 13－132 | Sind．．．．．．．．．．．．．．．．．．．．．．． | 7.4 | 63 | 4.45 | I）． |
|  | ．．．do | $\begin{array}{ll}42 & 09 \\ 42 & 12\end{array}$ | $\begin{array}{ll}70 & 10 \frac{1}{2} \\ 70 & 16\end{array}$ |  | $121-131$ |  |  |  |  | D． |
| 281 |  | 4212 | $70 \quad 10 \frac{1}{2}$ | On Stellwagen＇s Bank，Race Point Light S． 120 E．81 miles ．． |  | Fine yellow sand and broken shells． | 76 | 62.3 | 44 | D． |



| 70 |  | On Stellwagen's Bank, Race Point Light S. $3^{\circ}$ W. $9 \frac{1}{2}$ miles.. |
| :---: | :---: | :---: |
|  | 22 | Southwest of Stellwagen's Bank, Race Point Light S. $44^{\circ}$ E. $8 \frac{1}{4}$ miles. |
|  |  |  |
| 70 | 25 | Southwest of Stellwagen's Bank, Race Point Light S. $44^{\circ}$ E. 11 miles. |
| 70 | 23 | West of Stellwagen's Bank, Race Point Light S. $14^{\circ}$ E. 14 |
| 70 | 25 | West of Stellwagen's Dank, Race Point Liglit S. $20^{\circ}$ E. 16 |
| 70 | 27 | West of Stellmagen's IBank, Race Point Light S. $20^{\circ}$ E. 10 miles. |
|  | 25 | Same as last in Record Look; nearly 2 miles SE. on chart .. |
| 70 | 10 | Month Cape Cod Bay, Race Point Light S. $86^{\circ}$ E. $1 \frac{1}{1}$ w |
| 70 | 16 | Mouth Cape Cod liay, lace Point Light S. $55^{\circ}$ |
| 70 | 18 | Month Cape Cod Bay, Race Point Light N. $85{ }^{\circ} \mathrm{E} .23$ miles.. |
| 70 | 193 | Mouth Cape Cod Bay, Raco Point Light N. $8.4^{\circ} \mathrm{E} .3 \frac{1}{\frac{1}{4}} \mathrm{mil}$ |
| 70 | 23 | Mouth Cape Cod Bay, Race Point Light N. $86^{\circ}$ E. ${ }^{3}$ mile |
| 70 | 24 | Mouth Cape Cod Bay, Race Point Light N. 830 E. 73 miles. |
| 70 |  | Mouth Cape Cod Bay, lace Point Light N. $8.0^{\circ}$ E. 9 mile |
| 70 | 29 | Mouth Cape Cod Bay, Race Point Light N. $80{ }^{\circ}$ E. 11 mil |
| 70 | 32 | Mouth Cape Cod Bay, Gurnet Point Lipht S. $79^{\circ} \mathrm{W} .3 \frac{1}{4}$ miles. |
| 70 | 30 | Mouth Cape Cod Bay, Gurnet Point Light S. $888^{\circ} \mathrm{WV} .4 \frac{7}{4}$ miles |
| 70 | 30 | Mouth Cape Cod Bay, Gurnet Point Light S. $7.1^{\circ} \mathrm{W} .4 \frac{1}{2}$ miles |
| 70 | 20 | Mouth Cape Cod Bay, Gurnet Point Light $\mathrm{S} .75^{\circ} \mathrm{W} .5$ miles, 2 mile S. of No, 297. |
|  | 20 | Month Cape Cod Bar, Race Point Light N. $65^{\circ} \mathrm{E} .5$ miles |
|  | 46 | Off Cape Cod, Cape Cod Light S. $51^{\circ} \mathrm{WV} .16 \frac{1}{2} \mathrm{~m}$ |
| 69 | 47 | Ofr Cape Cod, Cape Corl Lipht \$. $51{ }^{\circ} \mathrm{W} .15$ |
| 69 | 45 | Off Capo Cod, Cape Cod Light S. $611^{\circ}$ W. 1.5 n |
| 69 | 41 | Off Cape Cod, Capo Cod Light S. $68^{\circ} \mathrm{W}$ |
|  | 20 | Race l'oint Light S. $56^{\circ} \mathrm{D}$. 5 milr |
| 70 | 1.8 | Race Point Light |
| 70 | 18 | Race l'oint Light S. $28^{\circ}$ L. $5 \frac{1}{2}$ miles, S.edge Stellwagen's Bank. |
| 70 | 17 | Race Point Light S. 2 |
| 70 | 11 | Capo Cod Bay, Wood End Light N. $33^{\circ} \mathrm{W}$. |
| 70 | 10 | Cape Cod Bay, Wood End Light N. $36^{\circ} \mathrm{WV.1} \mathrm{\frac{1}{4}} \mathrm{~m}$ |
| \% | 09 | Cape Cod Bay, Wood End Light N. $41^{\circ}$ W. 231 |
| 70 | 09 | Cape Cod Bay, Wood End Lisht N. $26^{\circ} \mathrm{W} .3 \frac{1}{2} \mathrm{mil}$ |
| 70 | 07 | Cape Coll Bay, Wood End Light N. $31^{\circ}$ W. 6 mile |
| 70 | 07 | Cape Cod Bay, Wood End Light N. $25^{\circ}$ |
| 70 | 063 | Cape Cod Bay, Wood End Light N. $36^{\circ} \mathrm{W} .5 \frac{3}{3}$ |
| 70 | 14 | Cape Cod Bay, Race Point Light N. $3^{\circ} \mathrm{W} .1^{3}$ mile |
| 70 | 15 | Cape Cod Bay, Race Point Light N. $14^{\circ} \mathrm{E} .2 \mathrm{l}$ miles |
| $70$ | 15 | Cape Cod Bay, Race Point Light N. $10^{\circ} \mathrm{E} .1{ }^{\text {a }}$ mile |
| \% | 15 | Cape Cod Bay, Hace J'oint Light N. $38^{\circ} \mathrm{E} .1 \frac{1}{4}$ mil |
| 70 | 15 | Cape Cod Bay, Race Point Light N. $62^{\circ}$ E. 1 milo |
|  | 01 | Off Cape Cod, Cape Cod Light S. $9^{\circ} \mathrm{W} .10$ miles. |
|  |  | Off Cape Cod, Cape Cod Ligh |




 İ
DREDGINGS BY SPEEDWELL，1879－Continued．

|  |  | $\begin{aligned} & \text { 䓽 } \\ & \text { 苞 } \\ & \text { H } \end{aligned}$ | $\begin{aligned} & \text { 淢 } \\ & \text { 吡 } \\ & \dot{H} \end{aligned}$ | Locality． |  | Natare of bottom． | Temperatures． |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  | 易 |  |  |
| 324 | ${ }_{\text {Sept．}}^{1879} 1$ | $42{ }^{\circ} \mathrm{l} 23$ | ${ }^{\circ} 70 \quad \text { ó }$ | Ofir Cape Cod，Cape Cod Light S． $2^{\circ} \mathrm{W} .11$ milcs．． | 45 | Corrse sand，black specks， | $\stackrel{\circ}{67}$ | $\stackrel{\circ}{61}$ | $\stackrel{\circ}{40 \frac{1}{6}}$ | T． |
| 325 | ．．do ．．． | $42 \begin{array}{ll}44 \\ 48\end{array}$ | $7000{ }^{7}$ | Off Cape Cod，Cape Cod Light S． 80 W． 13 miles．．．．．．．．．．． | 83 | Green mud． | ${ }_{70}^{67}$ | ${ }_{504}^{61}$ | 401 |  |
| $\begin{aligned} & 3.66 \\ & 3,27 \\ & 3, \end{aligned}$ | Sept．${ }^{\text {co }}$ |  | 70  <br> 70 02 <br> 121  <br> 1  |  | 17 17 | Coaree sand，black specks． | ${ }^{70}$ | ${ }_{60}^{50 \%}$ | ${ }_{4}^{408}$ | ${ }_{\text {D }}^{\text {d．}}$ ．${ }^{\text {I．}}$ |
| 328 | ．．．do ．．． | 4210 | 5013 |  | 23 | ．．．．．do ．．．．．．．．．．．．．．．． | 72 | $60 \frac{1}{3}$ | 42 | о．т． |
| 329 | ．．do | 4203 | 7312 | Ofrs．end Stellwagca＇s Banlt，Race Point Light S． $17^{\circ}$ W． $5 \frac{1}{2}$ | 26 | Fino brown sand，pelbles． | $67 \frac{1}{2}$ | co | 42 | R．D． |
| 330 | do | $42 \quad 09 \frac{1}{2}$ | 7013 | Off s．end Stollwagen＇s Baut，Race Point Light S． 80 TV． 0 | 20 | ．．${ }^{\text {do }}$ | 63 | co | 42 | T． |
| 331 | ．．．do ．．． | 42003 | 7314 | CNTS．ond Stellwagen＇s Bank，lace Point Light S． 20 W．53 | 28 | Fine brown sand，black | 67 | 001 | 414 | T． |
| 332 | ．．do | $42 \quad 097$ | 7015 | Ofi S．edd Stellmagen＇s Bank，Iace Point Light S．io E．51／ | 28 | Tine brown sand，shells．．． | 70 | 01 | 42 | T． |
| 333 | ．．do | $4208 \frac{1}{5}$ | $7010{ }^{2}$ | Ofis．end Stellwagen＇s Bank，Raco Point Light S． 180 E． $5 \frac{1}{4}$ | 27 | ．．．do | 71 | 61 | 424 | R．D． |
| 334 | ．．do | 42088 | 18 | Offi S．end Stellwagen＇s Dank，reco Point Light S． $28{ }^{\circ} \mathrm{E}$ ． $5 \frac{1}{1}$ | 27 | Fine yellow sand | 74 | $61 \frac{1}{6}$ | 42 | $\triangle$ ¢．T． |
| 335 | Sept． 9 | 41 583 | 70 34， | Off Mlymouth，Gurnet Point Light N． 500 W． 13 milos ．．．．．． | 7 | Green mud，san | C2 | $61 \frac{1}{\square}$ | 55 | D． |
| 236 | ．．do ．．． | 4158 | 70 33！ | Off Plsmouth，Gurnet Point Light $\mathrm{N} .40{ }^{\circ} \mathrm{W} .23$ niles ．．．．．． | 112 | dead cel－grass． <br> Brown sand，spectes，ecl－ | 6 | $61 \frac{1}{6}$ | 50 | т． |
|  | ．．．do |  |  | Off Plymouth，Gurnet Point Light $\mathrm{N} .55^{\circ} \mathrm{W} .4 \frac{1}{2}$ miles | 16 | ${ }_{\text {Greens mul }}^{\text {gras．}}$ and sand | 70 |  | 473 | D． |
| 338 | ．．．do | $4157 \frac{1}{2}$ | $702{ }^{7}$ | Off Plymouth，Gurnet Point Light N． $66^{\circ}$ W． 6 miles | 18 | Sant，blue mind | 71 | ${ }_{6}^{63}$ | 498 |  |
| 339 | ．．${ }^{\text {do ．．．}}$ |  | 7028 | Capo Cod Bay，Manomet Point N． $67^{\circ} \mathrm{W} .3 \frac{1}{2}$ miles， $3 \frac{1}{2}$ miles s．of No． 338 ． | 151 | Mud and sand |  |  | 47\％ | T． |
| 340 | ．．．do |  | 7027 | Capo Cod lay，Mranomet Point N． 880 W .6 miles ．．．．．．．．．． | 14 | Brorn samil and mul | 603 |  | 493 | D． |
| 341 |  |  |  | Capro Cod Bay，Mauomet point N． 680 W． 9 miles | 15 | Gren mud，sand |  |  |  |  |
| 342 343 | Sept． 10 | ［ $\begin{aligned} & 42 \\ & 42 \\ & 42\end{aligned} 17$ |  | Off Cape Cod，Capo Cod Light S． 230 W .14 miles．． | 116 | Brown mud． |  | ${ }^{681}$ | ${ }_{41}^{41}$ | ${ }_{\text {T }}^{\text {T }}$ |
| 344 | ．．． |  | 69 471 | Ofŕ Cape Cod，Capo Cod Light S． $35^{\circ} \mathrm{W} .15$ miles（ 20 miles | $1{ }^{10} 0$ |  | 64 | 5712 | 415 | T． |
| 345 | Sept． 13 |  |  | Off Boston Harbor，Minot＇s Ledge Light S． 31 miles | 10 | Speckled saud and slells．． | ${ }^{60}$ | 61.8 | 46 | D． |
| $\stackrel{346}{347}$ | $\ldots$ | ${ }_{42}^{43} 12{ }^{4} 16$ |  | Massachusetts Bay，Minot＇s Ledge Light V ． 5 diles mil．．． |  | Pebles and broken shells． |  |  |  | T． |
| 348 | ．．．do ．．． | $4209{ }^{4}$ | 70 32d | Massachusetts Ray，Standish Monument（near Duxburs） | 16 | Gravel and sand ．．．．．．．．．．． | 66 | $62{ }^{2}$ | $466_{6}^{6}$ | D． |


S. Mis. 90 ..... 58

DREDGING STATIONS OF THE U. S. FISH COMMISSION Steaner fish Hawk, Liedt. Z. L. TANNER COMmAND. ING, FOR 1880, 1881, AND 1882, WITH TEMPERATURE AND OTEER OBSERVATIONS.
[Arranged for publication by Richard Rathbun.]
In the summer of 1880, the headquarters of the United States Fish Commission were established at Newport, R. I., and the steamer Fisk Hawk, then newly constructed, made its dredging and trawling trips from there, whenever the weather permitted. The field of explorations for the summer included Narragausett Bay, Sakomet River, and the regions to the northward, eastward, and southward of Block Island. In September and the first part of October, three trips were made by the Fish Hawk to the inner edge of the Gulf Stream slope, between latitudes $40^{\circ} 05^{\prime} 42^{\prime \prime} \mathrm{N}$. and $39^{\circ} 46^{\prime} \mathrm{N}$., aud longitudes $70^{\circ} 22^{\prime} 06^{\prime \prime} \mathrm{W}$. and $71^{\circ} 10^{\prime}$ W., in depths of 64 to 487 fathoms, resulting in the discovery of a new and exceedingly rich fauna, both as regards fish and marine invertebrates. On her passage to Washington in November, the Fish Hawk also trawled off the mouth of Chesapeake Bay, in depths of 18 to 300 fathoms.

During the summers of 1881 and 1882, the headquarters of the Commission were at Wood's Holl, Mass. As the shallow waters of this region had been quite fully explored by the Commission in 1871 and 1875, very little time was expended in work near land; but advantage was taken of all pleasant weather to still further investigate the rich faunal region of the Gulf Stream slope, discovered the previous year. Seven trips were made to this region, in 1881 , between latitudes $39^{\circ} 40^{\prime} \mathrm{N}$. aud $40^{\circ} 22^{\prime} \mathrm{N}$., and longitudes $69^{\circ} 15^{\prime} \mathrm{W}$. and $71^{\circ} 32^{\prime} \mathrm{W}$., in depths of 43 to 782 fathoms. A line of dredgings and trawlings, at intervals of about four miles, was made from off Nomau's Land to the Gulf Streain slope, in order to connect the iushore with the offshore stations; and a few trips were also made in Vineyard Sound, Buzzard's Bay, and off Chatham, Cape Cod, on, and in the vicinity of, Crab Ledge. Cod trawl-lines were set ou most of the outside trips, for the purpose of catching fish that would not enter the beam-trawl.

In 1882, five deep-water trips, were made to the same region, extending the area of dredgings considerably beyond its former eastern and western limits. A few hauls of the dredge and beam-trawl were taken in Vineyard Sound, and one trip was made to the one-hundred fathom line, off the eastern side of Cape Cod. The most eastern haul on the Gulf Stream slope for 1882 , was in latitude $40^{\circ} 08^{\prime}$ N. and longitude $68^{\circ}$ $45^{\prime} \mathrm{W}$.; and the most western in latitude $39^{\circ} 31^{\prime} \mathrm{N}$. and longitude $72^{\circ}$ $0 \mathrm{~b}^{\prime}$ W.; the deepest haul was in 787 fathoms. Cod-trawls were set on two of the trips ouly.

The temperatures of the air were taken, in part, with a Jas. Green, in part with a Signal Service, thermometer; the temperatures of the bottom and surface waters were obtained by means of Negretti and Zambra deepsea thermometers. The bearings are all magnetic. As the bearings and latitudes and longitudes indicate ouly the points at which the dredge or trawl was lowered upon the bottom, the direction of the drift of the vessel and the distance gone over in dredging and trawling have been given in most cases, to show the extent of the hauls. The figures in the column of "Drift" indicate the distance of the drift in miles. The abbreviations in the column of "Apparatus used" have the following significations: D., dredge; R. D., rake-dredge; O. D., oyster-dredge; T., trawl; O. T., otter-trawl; B. T., Blake-trawl; Tan., tangles; C. T., cod-trawl.

The New York fishing schooner, Josie Reeves, Capt. F. M. Redmond, employed by the Fish Commission to look for the tile fish (Lopholatilus chameleonticeps) in the neighborhood of the one-hundred fathom line, south of Martha's Vineyard, made five stations in that region, which for convenience sake have been given numbers in the regular series from 1145 to 1149 , inclusive. She used cod trawl-lines and lobster-pots.
Dredging stations of the steamer Fish Hawk for 1880，1881，and 1882.

| $\left\|\begin{array}{c} \text { pasn } \\ \text { smquxedd } V \end{array}\right\|$ |  |
| :---: | :---: |
| \％¢ ¢ ¢ ¢ |  |
|  | Dininoonnooo |
| 嵒 | －000000000000 0 n 0 O 0 O 0000000000 |
|  |  |
|  |  |
| 莒 |  |
| $\begin{aligned} & \text { 淢 } \\ & \text {. } \end{aligned}$ |  |
| 的 |  |
|  |  |
| 免 |  |
| $\stackrel{\dot{\pi}}{\stackrel{\oplus}{\tilde{\circ}}}$ |  |
| - |  |

Dredjing stations of the steamer Fish Hawk for 1880，1881，and 1882—Continued．

| हो |  |  |  |  |  |  |  |  |  | pera | res． | 年 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { H2 } \\ & \text { N } \end{aligned}$ |  |  |  |  |  |  |  |  | Air． | Surf． | Bot－ tom． | 会号 |
| 801 | 1850. Alg． 16 | 12.20 p | －＇ 1 | ＇ | Narragansett Bar： <br> Poplar Point Lights，W．byN．， $2 \frac{1}{2}$ miles． |  | 4t | Mud | 65． 0 | 71.0 | 68.0 | T． |
| 802 | Aug． 16 | 2.15 |  |  | Halfway Rock，iv．，$\frac{3}{\text { of of a mile }}$ ．．．．．．．．． |  | $12 \frac{1}{2}$ | ．${ }^{\text {do }}$ do | 68.0 | 70.5 | 62． 0 | T． |
| 803 | Ang． 16 | 3.25 |  |  | Halfway Rock，N．Dy E．$\frac{1}{4} \mathrm{E}, 2 \mathrm{~g}$ miles．． |  | 20 | Fine sandy mud | 67.0 | 69.0 | 60.0 | D． |
| 804 | Ang． 17 | $11.15 \mathrm{a} . \mathrm{m}$ ． |  |  | O\＆f Newport，R．I．（Brown＇s Ledge）： <br> Cuttyhunk Light，NE．by E．， 8 miles．． | NTV．by W．， | 11. | Rocks and sa | 68.0 | 660 | 59.0 | D． |
| 805 | Aug． 17 |  |  |  | Close to No． $804 . . . . . . . . . . . . . . . . . . . . ~$ | mile， | 114 | Fine gravel． |  |  |  | D． |
| 8015 | Aug． 17 | 12． 00 m |  |  | Cuttyhunk Light，E．NE． $7 \frac{3}{3}$ miles ．．．．．．．． | W．SW．，$\frac{1}{2}$ milo． | 14 | －．do | 69.0 | 67．0 | 56． 0 | Tan． |
| 807 | Aug． 17 | $12.50 \mathrm{p} . \mathrm{m}$. |  |  | Cuttyhunk Light，NE．by E．，$\frac{3}{6}$ E．， $7 \frac{3}{4}$ miles． | SW．bys．，$\frac{1}{6}$ mile． | 121 | Fine gr | 70.0 | 67.0 | C0． 0 | D． |
| 808 | Ang． 17 | 1． 20 |  |  | Cuttyhunk Light，NE．by E．$\frac{1}{2}$ E．， 8 miles Off Newport，R．I．；SW．of Bromn＇s Ledce： | $\underset{\text { mile. }}{\substack{\text { STI } \\ \text { mise }}} \mathrm{S} \text {., } \frac{1}{2}$ | 13 | ．．do | 70.0 | 67.0 | 60.0 | D． |
| 809 | Ang． 17 | 1． 57 |  |  | Cuttyhuuk Light，NE．by E．， 12 miles．．． | $\mathrm{W} \cdot \frac{1}{2} \mathrm{~S}, \frac{1}{2}$ mile．． | ${ }_{21}^{21}$ | Fine sand． | 70.0 | 67.0 | 52.0 | D． |
| 810 | Aug． 17 | 2． 15 |  |  | Cuttyhunk Light，NE．by E．， $12 \frac{1}{2}$ miles．．． Off Newport，R．I．；W．of Brown＇s Ledse： | W．NW．，年 mile－ | 21 | Fine saud and g | 70.0 | 67.0 | 52． 0 | T． |
| 811 | Aug． 17 | 2． 20 |  |  | Cuttyhunk Light，NE．by lio， $12 \frac{1}{2}$ miles ．． Off Block Island： | SW．，$\frac{1}{4}$ mile | 192 | Fine saudy mud | 69.0 | 67.0 | 53.0 | D． |
| 812 | Aug． 18 | 11．30•a．m． |  |  | Block Island Light，N．NW．\＆W．， 20 miles． | NW．，$\frac{1}{4}$ mile | 281 | San | 70.0 | 66.0 | 46.0 | D |
| 813 | Ang． 18 | 11.55 |  |  | Block Island Light，N．NW．$\frac{1}{4}$ W．， 20 | SE．，$\frac{1}{4}$ mile ．．． | 28. | do | 70.0 | 67.0 | 46.0 | T |
| 814 | Aug． 18 | $1.00 \mathrm{p} . \mathrm{m}$ ． |  |  | Block Island Light，N．NW．${ }^{\text {S W W．，}}$ ， 18 | SW．，$\frac{1}{4}$ mile ．．．． | $27 \frac{1}{2}$ | Scau | 72.0 | 72.0 | 46.0 | T． |
| 815 | Ang． 18 | 2.15 |  |  | Elock Island Light，N W．by N．， 17 miles ． | SW．，$\frac{1}{2}$ | 23 | 硡 | 72． 0 | 72.0 | 48.0 | R．D． |
| 816 | $\Delta \mathrm{ug} .23$ | $10.25 \mathrm{a} . \mathrm{m}$. |  |  | Narragansett Bay： <br> Hrenton＇s leef Light－ship，E．霉 S．， $2 ?$ | SE．，$\frac{1}{2}$ milo | $\varepsilon \frac{1}{2}$ | Sand and broken shel | 71.0 | 69.0 | 60.0 | D |
| 817 | Aug． 23 | 11.00 |  |  | miles． <br> Brenton＇s Reef Light－ship，E．$\frac{1}{8}$ N． 3 | SE．， | 10 |  | 72.0 | 68.0 | 63.0 | D． |
|  |  |  |  |  | miles． |  |  |  |  |  |  |  |
| E18 | Aug． 23 | 11． 20 |  |  | Brenton＇s Reef Light－ship，E．$\frac{1}{3}$ N．， 3 年 miles． | SE．，$\frac{1}{2}$ mile ．．．．． |  |  | 72.0 | 68.0 | 65． 0 | D |
| 810 | Ans． 23 | 1． $00 \mathrm{p} . \mathrm{m}$ ． |  |  | South end Hopo Island，SE．by E．$\frac{1}{3}$ E．， $\frac{1}{3}$ milc． | W．SW．，$\frac{1}{4}$ mile．． | 6 | Mud and broken shells | 74.0 | 73.0 | 70.0 | T． |
| $8: 0$ | Aus． 23 | 1． 40 |  |  | South end Hopo Island，N．NE．，$\frac{2}{4}$ mile ．．． | W．by S．$\frac{1}{4}$ mile． |  |  | 76.0 | 72.0 | 70.0 | T． |
| $8 ? 1$ | Auk． $3^{3}$ | 2． 15 |  |  | South end Hope Island，N，by E．，$\frac{1}{3}$ mile．． |  | 5 |  | 78.0 | 72.0 | 70.0 | ${ }_{\text {T }} \mathrm{T}$ |
| 822 | $\Delta \mathrm{ug}, 23$ | 3.00 |  |  | South end Hope Islaud，NE．，$\frac{1}{8}$ mile．．．．． North of Block Island： | W．，$\frac{1}{4}$ mille．．．．．．． |  |  |  | 71.0 |  |  |
| 823 | Aug． 24 | 12． 25 |  |  | North Light of Biock Island，W．$\frac{1}{2}$ S．， $1 \frac{1}{2}$ milos． | NW．，$\frac{1}{4}$ milo． |  |  | 74.0 | 65.0 | 60.0 | ก |
| 824 | Aug． 24 | 12．50 |  | $\cdots$ | North Light of Block Island，SW．${ }_{\text {I }}$（ mile． W ．， | NW．，$\frac{1}{4}$ milo．．．．． | 13 | ．．do | 54.0 | C5． 0 | 67.1 | T |



Gravel and stones．．
Sand and gravel．．．．
Dark，soft fetid mud
응웅

สสสืส
ชิส $\infty$ 等
定号
 Sand and shells


Coarse sand，broken shells．算

 Sand and broken ohells


Dredging stations of the steamer Fish Hawk for 1880，1881，and 1882－Continued．

| $\begin{aligned} & \text { 香 } \\ & \hline \end{aligned}$ |  |  |  |  |  |  | ．${ }^{\text {a }}$ 界 |  | Tem | perat | ures． | 界 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 边 |  |  |  |  |  |  | A呂䓵 |  | Air． | Surf． | Bot－ tom． | 会星 |
|  | 1880. |  | ＂ | $\bigcirc{ }^{\circ} 1$ | Atlantic Ocea |  |  |  |  |  |  |  |
| $\begin{aligned} & 865 \\ & 866 \end{aligned}$ | Sept． 4 | 5.40 arm 6.30 | $\begin{array}{llll}40 & 05 \\ 40 & 05 \\ 40 & 18\end{array}$ | 7023 7022 | Off Martha＇s Vincyard | E．NE， | 65 | Compact fine sand and mud． | 71.0 | 73.0 | 68. | T |
| 867 | Sept． 4 | 7．04 | 400542 | 702206 | do | E． | 65 | Fine sand and mud ．．．．．．．．．． | 71.0 75.0 | ${ }_{73.0} 7$ | 68.5 53.0 | $\begin{aligned} & \mathbf{T} \\ & \mathbf{R} . \mathbf{D} . \end{aligned}$ |
| 868 | Sept． | 8.23 | 400142 | 702230 | ． |  | 162 | broken shells． | 75.0 | 75.0 | 47.0 |  |
| 869 | Sept． 4 | 9.27 | 400218 | 702306 | d | N．N | 192 | Fine sand．．．．．． | 80.0 | 76．0 | 50.0 | $\stackrel{\text { T，}}{\text { T，}}$ |
| 870 | Sept． 4 | 10.51 | 400236 | $7022: 8$ | do | W．br ${ }^{\text {d }}$ | 155 | Mud and fine sand | 80.0 | 77.0 | 50.0 | T， |
| 871 | Sept． 4 | 11.40 | 400254 | 702340 | ．${ }^{\text {do }}$ | N．N W．， | 115 | Mud and fine sand | 84.0 | 76.5 | 49.0 | T |
| 872 | Sept． 4 | $12.45 \mathrm{p} . \mathrm{m}$ ． | 400539 | 702352 | do | NW．by N．，$\frac{1}{2} \ldots$ | 86 | Saud，gravel，shells，and | 81.0 | 77.0 | 50.5 | T． |
| 873 | Sept． 13 | $5.36 \mathrm{a} . \mathrm{m}$ ． | 4002 | 7057 | ．do | NW．by N．，支．．． | 100 | $\underset{\text { Soft sticky }}{\text { spongne }}$ mud | 68.0 | 69.5 | 51.0 | T． |
| 874 | Sept． 13 | 6． 26 | 400000 | 705700 | ．do | NW．，$\frac{1}{2}$ mile．．．．． | 85 | －．do ．．．．．．．．．．． | 70.0 | 70.0 | 51，0 | T |
| 875 | Sept． 13 | 7． 51 | 395700 | 705730 | d | NE．，$\frac{1}{2}$ mile．．．．．． | 126 | ．．．．do | 70.0 | 70.0 | 53.0 | T |
| 876 | Sept． 13 | 8.45 | 395700 | 705600 | ．do | N．，${ }^{3}$ mile | 120 | ．．．do | 68.0 | 70.0 | 53.0 | T |
| 877 878 | Sept． 13 | 9． 40 | 395600 395500 |  | do | N．NW．，者milo．． | 126 | $\cdots$ do | 71.0 | 71.0 | 57.0 | T |
| 878 879 | Sept． 13 Sept． 13 |  | 395500 <br> 3949 | 705415 70 70 |  |  | 1424 | Mud | 72.0 | 71.0 | 52． 0 | T |
| 880 | Sept． 13 | ${ }_{3.12}{ }^{120} \mathrm{p}$ | 394930 <br> 3948 | 7054 70 70 | ．${ }^{\text {do }}$ | N W by V N．，$\frac{3}{4}$ mile． | ${ }_{2}^{225}$ | Sand | 73.0 74.0 | 71.5 715 | 42.0 43.0 | $\stackrel{\text { T }}{ }$ |
| 881 | Sept． 13 | 5． 00 | 394630 | 705400 |  | W．N゙W．，$\frac{1}{2}$ milo． | 325 | ．．．．do | 70.0 | 71.0 | 42．0 | T |
| 882 | Scpt． 17 | $10.56 \mathrm{a} . \mathrm{m}$ ． |  |  | Narragansett Bay： <br> Falfway look，N．NE．\＆E．， $2 \frac{z}{s}$ miles | SWV．，$\frac{1}{4}$ mile | 121 | Mud | 68.0 | 65.0 | 67． 0 | T |
| 883 | Sept． 17 | 11． 35 m |  |  | Halfway loock，NE．by N．， 21 miles | SW．，$\frac{1}{2}$ mile | 13 | ．．．．do | 70.0 | 65.0 | 63.5 | T |
| 8885 | Sept． 17 | ${ }_{3}^{2.15}$ p．m． |  |  | Hope Island，NE．$\frac{1}{2} \mathrm{E}, 200$ Yards | SW．，$\frac{1}{4}$ mile | 5 | $\because \mathrm{a}$ do | 72.0 | 6．5． 0 | 63.5 | R．D． |
| 885 | Sept． 17 | 3.15 |  |  | Gould Islind，N．by E．${ }^{\text {a }}$ E．，$\frac{3}{2}$ mile | S．，$\frac{1}{4}$ milo． | 16 | Mud and shelle | 71.0 | 69.0 | 63.0 | O．＇． |
| 886 | Sept． 21 | 12.49 |  |  | South Light of Block Island，N． 1 E．， 54 miles． | N．，$\frac{1}{4}$ mile ．．．．．．． | 19 | Shells and coarse | 67.0 | 64.0 | 62.0 | D |
| 887 | Scpt． 21 | 1.30 |  |  | South Light of Block Island，N．$\frac{1}{2}$ W．， $5_{4}^{3}$ | W．，mile ．．．．． | 10 | d | 67.0 | 04.0 | 62.0 | T |
| 888 | Sept． 21 | 2． 00 |  |  | South Light of Block Island，N．by E．， 6 | W．，11 miles．．．． | 19 | ． | 68.0 | 64.0 | 62.0 | T |
| 889 | Sept． 21 | 3． 50 |  |  | South Light of Block Island，W．$\frac{1}{4}$ S．， 5 | W．SW．，$\frac{1}{2}$ milo | 11 | Hard sand asd roc | 68.0 | 61． 0 | 61.5 | D |
| 890 | Sept． 21 | 4.15 |  |  | miles． <br> South Light of Block Island，W． 1 S．， $4 \frac{3}{\$}$ | W．SW．，$\frac{1}{2}$ mile | 11 |  | 68.0 | 64.0 | 61.5 | D |
| 891 | Oct． 2 | $6.00 \mathrm{a} . \mathrm{m}$ ． | 394600 | 711000 | miles． Atlantic Ocean，off Martha＇s Vineyard |  | 480？ | Soft，bro | 60.0 | c7． 0 |  | T |
| 892 | Oct． 2 | 8.46 | 394600 | 710500 |  | N．NE．， 2 miles．． | 487 | Suft，brown mud and small | 64.0 | 65.0 |  | T |
| 893 | Oct．${ }^{\text {a }}$ | 11． 23 | 395220 | 705800 | ．${ }^{\text {do }}$ | N．， 1 mi | 372 | stone． | 63.0 | c4． 0 |  |  |
| 894 | Oct． 2 | $1.10 \mathrm{p} . \mathrm{m}$ ． | 395300 | 7058 | do | N．， 2 miles | 365 |  | C3． 0 | 64． 0 | 40.0 | T． |


Dredging stations of the stcamer Fish Havk for 1880, 1881, and 1882-Continued.

|  | Date. | Honr. | $\begin{gathered} \text { Latitude } \\ \text { N. } \end{gathered}$ | Longi. tude iv. | Locality. | Drift. |  | Nature of bottom. | Temperatures. |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  | Air. | Surf. | Bottom. |  |
| 044 | $\begin{aligned} & \text { 1881. } \\ & \text { Aug. } 9 \end{aligned}$ | $8.27 \mathrm{a} . \mathrm{m}$. | $\begin{array}{ccc} \circ & 111 \\ 40 & 01 & 00 \end{array}$ | $\begin{array}{lcc} \circ & \prime \prime \\ 71 & 14 & 30 \end{array}$ | Atlantic Occan: <br> Off Martha's V'ineyard | NW. by N., 1 ${ }^{\frac{1}{2}}$ | 128 | Mud, sand, | 78.0 | 70.0 | 51.0 | T. |
| 945 | Ang. 9 | $12.05 \mathrm{p} . \mathrm{m}$. | 395800 | $7113^{\circ} 00$ |  | $\mathrm{NW}_{\mathrm{A}}^{\text {miles. }} \mathrm{N}_{2}, 2$ | 207 | Green mud and sand. | 75.0 | 71.0 | 44.0 | T. |
| 946 | Aug. 9 | 2.00 | 39550 | 711400 |  | $\begin{aligned} & \text { miles. } \\ & \text { NW. by } \mathrm{W} ., 1 \frac{1}{2} \end{aligned}$ | 247 | . d | 75.5 | 71.0 | 47.0 | T |
| 017 | $\Delta \mathrm{ug} .9$ | 4.00 | 395330 | 711330 |  | $\text { Wiles. } 3 \text { miles. }$ | 310 | Sand and mud | 75.0 | 70.0 | 44.0 | T. |
| 948 | Aug. 13 | 5. 20 |  |  | Buzzard's Bay: <br> Penikese Ísland east, 2 miles | W.SW., 1 milo.. | 7 | Black mud and shells. | 76.0 | 67.0 | 66.0 | T. |
|  |  |  |  |  | Atlantic Ocean: <br> Off Martha's Vineyard... |  |  |  |  |  |  |  |
| 950 | Aug. ${ }^{\text {Aug. }} 23$ | 5. 50 | 40 <br> 40 <br> 070 | 703200 | Off Marthas Vine | N.NW., $1 \frac{1}{2}$ miles. | 71 | Sand, shells, an | 68.0 69.0 | 66.0 65.0 | 52. 0 |  |
| 931 | Aug. 23 | 9. 40 | 395700 | 703130 | d | N., 12 milces ..... | 225 | Mud........... | 78.0 | 67.5 | 41.0 | T' |
| 952 | $\Delta \mathrm{ug} .23$ | 11. 28 | 395500 | 702800 | .do | $\begin{aligned} & \text { NE. by N., } 1_{2} \\ & \text { miles. } \end{aligned}$ | 396 | Yellow mud and san | 82. 0 | 68.0 | 40.0 | T. |
| 953 | Aug. 23 | $2.30 \mathrm{p} . \mathrm{m}$. | 395230 | 701730 | do | N.NW.,12 miles. | 724 | Mud | 77.0 | 68.0 | 39.5 |  |
| 954 | Aug. 23 | 4.50 | 395300 | 701830 |  | N.NW., 2 miles . | 651 | Sand and mud | 74.5 | 68.0 | 39.5 | I. |
| 95. | Aug. 26 | $10.50 \mathrm{a} . \mathrm{m}$. |  |  | Nye's Neck, E. by S., $\frac{1}{4}$ milo | $\text { W. by S. } \frac{1}{4} \text { S., } \frac{1}{2}$ | 7 | Sand. | 69.0 | 67.5 | 68.0 | T. |
| 956 | Ang. 26 | 11. 26 |  |  | Nre's Nock, S.SE. ${ }^{\frac{3}{3} \mathrm{E}} \mathrm{E}$, $\frac{3}{3}$ milo | W. by S., $\frac{1}{2}$ mino. | 5 | ...clo . | 71.0 | 69.0 | 68.0 | ${ }^{1}$ |
| 957 | $\text { Aug. } 26$ | 11.4.7 |  |  | Nye's Neck, S.SE. ${ }^{\text {a }}$ E., $\frac{1}{\text { b }}$ mil | W. N ., $\frac{1}{4}$ nile . | 6 | Sand and stone | 73.0 | 69.5 | 68.0 | $\stackrel{1}{1}$ |
| 9.8 959 | $\text { Ang. } 26$ $\text { Aug. } 26$ | $\frac{13.80}{13.40} \mathrm{p} \cdot \mathrm{m}$. |  |  |  | W. SW , $\frac{1}{3}$ mile .. | 5 | Sand, stones, s | $75.0$ | $70.0$ | 68.0 68.0 | T |
| 959 960 | $\begin{aligned} & \text { Aug. } \\ & 26 \\ & \hline 106 \end{aligned}$ | 12.40 1.10 |  |  | Nye's Neck, S., $\frac{1}{2}$ mile ..................... | West, $\frac{1}{2}$ mile..... SW, | ${ }_{4}^{5}$ | ....do | 72.0 72.5 | 69.0 69.5 | 68.0 68.0 | $\frac{T}{T}$ |
| 060 | Aug. 26 | 1. 10 |  |  | Nye's Neck, S. ${ }_{3}$ E., $\frac{1}{2}$ milo.................. | SW. by W., $\frac{1}{2}$ mile. | 4 |  | 72.5 | 69.5 | 68.0 | T. |
| 901 962 | Ang. 26 | 1. 53 |  |  | Nye's Neck, NE. $\frac{3}{4}$ E., 23 miles | W. br S., $\frac{3}{4}$ milo. | 8 | Black mud. | 71.5 | 69.0 | 68.0 | T. |
| ${ }_{963}^{962}$ | Aug. ${ }^{6} 6$ | 3. 10 3.40 |  |  | Woepecket Island, NE. $\frac{1}{\text { E }}$, $1 \frac{1}{4}$ miles .... | W.NW., $\frac{1}{2}$ mile | 8 | Black mud, sand | 71.0 | 68.0 | 66. 0 | ${ }_{\text {T }}$ |
| 963 | Aug. 26 | 3. 40 |  |  | Woepecket Island, SE. $\frac{1}{2}$ S., 1 mile......... <br> Off Chatham, Cape Cod (Crab Ledge): | W.SW., ${ }^{3}$ mile .- | 82 | Brown mud | 70.0 | 68.0 | 66.0 | D. |
| ${ }_{9}^{964}$ | Aug. 30 | 7. $50 \mathrm{a} . \mathrm{m}$. |  |  |  | S.SE., 专 milo … | 10 | Sand, gra | 6.3. 0 | 61.0 | 55.0 | D. |
| 965 966 | Aug. 30 Aug. 30 | 8.15 8.40 |  |  | Chatham Lights, NW. by W., 6 miles. Chatham Lichts, NW hy W ive 61 miles | SE. by E., $\frac{1}{3}$ mile. SE mile | 15 | ج..do. | 65.0 65.0 | 61.0 61.0 | 53.0 52.0 | ${ }_{\text {D }}^{\mathrm{D}}$. |
| 967 | Aug. 30 | 8. 50 |  |  | Chatham Liphts, NW. by W. ${ }^{\text {a }}$ W., 6 mimiles |  | 16 | Sand, | 65.0 66.0 | 61.0 61.0 | 52.0 52.0 | ${ }^{\text {D }}$ |
| 968 | Aug. 30 | 9.00 |  | , | Chatham Lights, NW. by W. ${ }^{3}$ W., $7 \frac{1}{4}$ miles. | $\begin{aligned} & \text { NW, by W., in } \\ & \text { mile. } \end{aligned}$ | 18 | Gravel. | 66.0 | 61.5 | 50.5 | D. |
| 969 | Aug. 30 | 0.10 |  |  | Chatham Lights, NW. by W. $\frac{3}{4}$ W., 7 miles. | SE., $\frac{1}{4}$ milo...... | 18 | Sand, pebbles | 66.0 | 61.5 | 51.0 | D. |
| 970 | Aug. 30 | 9.43 |  |  | Chatham Lights, W.NW. ${ }^{\text {? }}$ W. 6 miles . | W.NW., 古 mile | 13 | . . do | 67.0 | 61.0 | 54.0 | D. |
| 971 | Aug. 30 | 10.05 |  |  | Chatham Lights, W. $\frac{3}{4}$ N., $4 \frac{1}{4}$ miles .... | S.SE., $\frac{1}{4}$ mile..... | 11 | Sand, gravel, pebbles. | 67.0 | 61.5 | 54.0 | D. |


| A |  | स゙स゙大ジ |  |  |  | A | ${ }^{\text {H }}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | － | 015013 |  | 0010100130151010000 | 0152000 | ． | ， | 0 －100 |
| ํํㅇ |  | ボデブッ | 18 |  | 110゙すが\％ | च | ¢ | ¢ ¢ ¢ ¢ ¢ |
|  | $\bigcirc$ | 2018015 |  | － | 00000 | － | $\bigcirc$ | 000018 |
| ¢ ¢ |  | ¢゙¢゙ธฺ | ¢ | む゙tititisus |  | $\overbrace{0}$ | 15 | 18． |
|  |  | 0.010. |  |  | 000180 | － | － |  |
| 5 | 式む゙囚isisis | ญைら | ๕่ |  | ～¢¢ ¢is | $10^{\circ}$ | ¢ |  |






|  | ：： |  | $\stackrel{\text { ¢ }}{ }$ |  | ペップッシ <br> にNFe8 ${ }^{\circ}$ | 10 8 8 | $\stackrel{9}{9}$ |  앙여영영 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | ！！！ |  | $\cdots$ |  <br>  |  | ¢ 0 0 0 0 | ¢ | 운우웅 โ్లిన్లొ |
| $\stackrel{\infty}{+}$ |  | 우ㅇㅜㅜㄷ <br>  | 23 $\sim 1$ $\sim 1$ |  |  | － | －${ }^{\text {a }}$ | 8010 亿药 ช゙ช゙囚゙ビた |
| $\stackrel{\varepsilon \dot{E}}{=}$ |  <br>  |  ED sicis Ei <br>  | R |  | $\infty$ がびず <br>  U心OWN | N 芯 und | \％ |  |
|  |  |  | $\underset{\infty}{\infty}$ |  | 10 Mn <br> co앱앙 | O | 厄్ల |  |

Dredging stations of the steamer Fish Hauk for 1880，1881，and 1882－Continued．

|  |  |  |  |  |  |  |  |  |  | perat | res． | 雷。 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Dat | our |  | tude W． |  | Drif |  | Nature of bottom． | Air． | Surf． | Bot－ tom． | 道荡 |
| 1037 | $\begin{aligned} & 1881 . \\ & \text { Sept. } 15 \end{aligned}$ | 8.00 a．m． | －1 | －11 | Off Gay Heal，Martha＇s Vineyard： <br> Gay Head Light，NE．$\frac{3}{3}$ N．， 4 miles．．．．．． |  | 16 | Sand |  |  |  | T． |
| 1033 | Sept． 21 | 6． 55 |  | 7006 | Atlantic Ocean； Off Martha＇s Vineyard ．．．．．．．．．．．．．．． |  | 146 | Sand |  |  |  | 1． |
| 1039 | Sept． 21 | 9．35 | 3959 | 7006 |  | N．by E．， 2 miles | 120 | ．．．do | 66.5 | 67.0 | 50.0 | T． |
| 1040 | Sept． 21 | 10.43 | 4000 | 7006 |  | N．by E．， 2 miles | 93 | ， | 64.0 | －68．0 | 66.0 | D） |
| 41 | Sept． 22 | $12.35 \mathrm{p} . \mathrm{m}$ ． |  |  | Vineyard Sound，Mass．： <br> West Chop Light，E．$\frac{1}{2}$ N．， $1 \frac{1}{2}$ mile | W．SW．，${ }^{\text {q mile ．}}$ | 9 |  | 63.5 |  | 65． 0 |  |
| 1042 | Sept． 22 | $1.17{ }^{\text {d }}$ |  |  | West Chop Light，${ }^{\text {E．}}$ ．$\frac{2}{2} \mathrm{~N}$ ．， $1 \frac{1}{2}$ miles | W．by $\mathrm{N} ., \frac{1}{2}$ mile． | $\checkmark$ |  | 63.5 | 65.0 | 65.0 | T． |
| 1043 | Oct． 10 | $7.17 \mathrm{a} . \mathrm{m}$. | 3839 | 7311 | Atlantic Ocean： <br> Off the Capes of Delaware． $\qquad$ | NW．by N．，${ }^{13}$ | 130 | San | 63.5 | 65.5 | 49.0 | T． |
| 1044 | Oct． 10 | 8． 15 | 3837 | 7312 | ．do | W．N W．，$\frac{1}{2}$ mile．． | 224 | Gray mud | 65.0 | 66.0 | 42.5 | T． |
| 1045 | Oct． 10 | 9.32 | 3835 | 7313 | ， | W．$\frac{3}{\text { N }}$ ，，${ }^{2}$ milo．． | 312 | ．．．do | 67.0 | 66.0 | 40.0 | T |
| 1046 | Oct． 10 | 11．14 | 3833 | 7318 | do | W．NV．， 3 mile．． | 104 | Sand | 66.0 | 66.0 | 51.0 | T |
| 1047 | Oct． 10 | $12.15 \mathrm{p} . \mathrm{m}$ ． | 3831 | 7321 | ．do | NW．， 1 寺 miles ．． | 156 | $\ldots$ ．．．do | 69.0 | 66.0 | 49.0 | T |
| 1048 | Oct． 10 | 1． 55 | 3829 | ${ }_{73}{ }^{21}$ | .do | V． 2 miles．．．．．． | 435 | Mud | 71．0 | 66.0 | 40.0 | T． |
| 1049 | Oct． 10 | 3． 30 | 3828 |  | ．．do | N．NW．， 2 miles ． | 435 | ．．．．do | 63.0 | 60.0 | 40.0 | T |
| 1050 | Feb． 278 | 2.00 p．m． |  |  | Chesapeako Bay： <br> Point No Point，N．NE．， $1 \frac{1}{2}$ mile |  | 33 | Mind，shells， | 50.0 | 41.0 |  |  |
| 1051 | Feb． 27 | 2.15 |  |  | Point No Point， N ．br E．， 1 mile |  | 2 | Mud，grass | 50.0 | 41.0 | 40.0 | ${ }_{\text {O．D．}}$ |
| 1052 | Feb． 27 | 2.30 |  |  | Point No Point，N．NE．，$\frac{1}{2}$ milo． |  | 13 | ．．．．do | 50.0 | 41.0 | 40.0 | O． D ． |
| 1053 | Feb． 27 | 2.45 |  |  | Point No Point，N．by E．， $1 \frac{1}{4} \mathrm{mil}$ |  | 23 | Mud，shells，oysters | 50， 0 | 41.0 | 40.0 | O．D． |
| 1054 | Feb． 27 | 2.50 |  |  | Point No Point，N，by E．， $1 \frac{1}{8}$ miles．．．．．．． |  | $2{ }^{4}$ | －10， | 50.0 | 41.0 | 40.0 | O．D． |
| 1055 | Fob． 28 | $10.40 \mathrm{a} . \mathrm{m}$. |  |  | Patnxent River，Maryland： <br> Drum Point，NE．，$\frac{1}{2}$ milo |  | 6 | Brown | 46.0 | 40.0 |  |  |
| 1050 | Fel． 28 | 10.55 |  |  | Dram Pent，N．NE．，$\frac{1}{3} \mathrm{mi}$ |  | 6 | ．．．do | 46.0 | 40.0 |  | R．D． |
| 1057 | Feb． 28 | 12.00 m ． |  |  | Chesapeake Bay： |  |  |  |  |  |  |  |
|  |  |  |  |  | miles． |  | 17－20 | Brown | 49 | 40.0 | 40.0 | T． |
| 1058 | Feb． 28 | $12.10 \mathrm{p} . \mathrm{m}$. |  |  | South end Barren Island，SE．by E．$\frac{1}{2}$ E．， 2 miles． | W．NT．，$\frac{3}{3}$ mile．． | 3－25 | ．．．do | 49.0 | 40.0 | 40.0 | T． |
| 1059 | Feb． 28 | 12.30 |  |  | South end Barren Island，SE．$\frac{1}{2}$ E．， 2 miles | W．NW．，${ }^{\text {a }}$ mile． | 23－25 | ．．．do | 49.0 | 40.0 | 40.0 | T． |
| 1060 | Feb． 28 | $\stackrel{4.40}{ }$ |  |  | Smith＇s Point，S．SW， 2 miles．．．．．．．．．．．． | SE．by S．，$\frac{3}{3}$ mile． | 11－1 | Brown mud，shells | 46． 0 | 41.0 | 40.5 | T． |
| 1061 | Mar． 2 | 11． $20 \mathrm{a} . \mathrm{m}$ ． |  |  | Smith＇s Point Light，S．by W．$\frac{1}{3}$ W．， $1 \frac{1}{2}$ miles． | S．，$\frac{1}{2}$ mile．．．．．．．．． | 11－16 | ．．．．do | 42.0 | 41.5 | 41.5 | D． |
| ${ }_{1063}$ | Mar． 2 | 11.40 |  |  | Smuith＇s Point Light，SW．$\frac{1}{2}$ S．， 18 miles ． | S．by W．， 1 mile | 16－91 | ．．．do | 42.0 | 415 | 41.5 |  |
| 1003 | Mar． 2 | $1.35 \mathrm{p} . \mathrm{m}$ ， |  |  | South point Tangier Island，N．by E．$\frac{3}{4}$ E．， $2 \frac{1}{4}$ miles． | NE．by E．，$\frac{1}{2}$ mile． | 10 |  | 50.0 | 44.0 | 42． 0 | İ．D． |
| 1064 | Mar． 2 | 2.17 |  |  | South point Tangier Island，N．NW．， 1 | NE．by E．，$\frac{1}{2}$ mile | 20－91 | ．${ }^{\text {d }}$ | 50.0 | 42.0 | 42.0 | R．D． |

คั்

Dredging stations of the stcamer Fish Hawk for 1880, 1881, and 1882—Continued.



Dredging stations of the steamer Fish Hawk from 1883 to 1887.

| 䬱。 |  |  |  |  | － |  |  |  | ＇rem | peratu | res． |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 范 | Date | Hour | N． | tu | Localits． |  | 萵 | 俍． | Air． | Surf． | Bot． tom． | 会范 |
| 1156 | 1883 A11． 23 |  | $\circ$ 40 10 13 | \％ 80 | Off Nantuc | NW． | 60 | Mud | 71.0 | 67.0 | $\stackrel{\bigcirc}{45.0}$ | T． |
| 1157 | Aug．${ }^{\text {A }}$ | $6.35{ }^{\text {6 }}$－ | 4014 | 702915 | ．．．．．do ．．．． | ．．．do＇ | 62 | sift mud． | 73.0 | 70.0 | 45.0 | İ |
| 1158 | Aus． 23 | 8． 00 | 4016 | 8031 | do | W．by N．， 1 | 62 | Soft green | 74.0 | 67.0 | 45.0 | ＇1． |
| 1159 | Auc． 23 | 10.15 | 4020 | 7035 | do | N． 1 mile | 55 | Soft mud． | 74.0 | 67.5 | 4.0 | T． |
| 1160 | Aum． 23 | 10． 25 | 4024 | 7035 | do | WNW．，${ }^{3}$ mile | 41 | Black muc | 76.0 | 70.0 | 43.0 | T． |
| 1161 | Ang． 23 | $12.45 \mathrm{p} . \mathrm{m}$ ． | 4028 | 7037 | ． 10 | NW．by W．， 1 m | 45 | ．．．do | 77.0 | 69.0 | 44.0 | T． |
| 1162 | Aug． 23 | 2． 15 | 4033 | 7039 | ．．．．．．do | N．by W．il mile | 45 | c．do ．．．．．． | 77.0 | 68.0 | 46.5 46.0 | T |
| 1163 | Aus．${ }^{\text {a }}$ 3 | 3.25 | 403530 40 40 | 7041 | $\cdots$ ．do | NW．by W．，${ }^{\text {a mil }}$ | 31 | Sand and m | 77.0 75.0 | 71.0 | 46.0 | $\stackrel{\text { T }}{\text { T }}$ |
| 1164 1165 | Alıs． 23 Aur． 23 | 5． 60 | 4043 4050 | 7045 7049 | ．do | WNW．，古mile．．． | 31 32 | Mud．．．．．． | 75.0 73.0 | 70.0 68.0 | 44.0 45.0 | T． |
| 1165 | Aur． 23 | 6． | 4050 | ¢0 49 | On Menemsha Biwht |  | 32 | Gray sand | 72.0 | 68.0 | 45.0 |  |
| 1166 | Aun．${ }^{7}$ | 1.00 |  |  | （Gay Head，W．$\frac{1}{4}$ s．， 2 miles；north end of Nashawena，N．by $11 . \frac{1}{2}$ W．， 6 miles． | NW．，$\frac{1}{2}$ mile | 8 | Sand | 77.0 | 66.5 | 65.5 | T． |
| 1167 | Aug． 27 | 1.45 |  |  | Gay llead，W．$\frac{3}{4}$ S．， $2 \frac{1}{2}$ miles；north end of Nashawema，NNW．， 6 miles． | NW． $\mathrm{log}^{\text {W．，}}$ 立mile．． | 9 | do | 77.0 |  |  | T． |
| 1108 | Aus． 27 | $\because 00$ |  |  | Gay Head，W．by S． 3 S．， $2 \frac{1}{4}$ miles： north end of Nashawrua，N．by W．荲W．， $5 \frac{1}{2}$ miles． | ENE．，$\frac{1}{2}$ mile | 11 | do | 76.0 |  |  | T． |
| 1169 | Aug． 27 | 2． 30 |  |  | Gay Head，W．by S．anc，2a miles： notthend of Nashawena，NNW | S．$\frac{1}{2}$ mile | 12 | ．do | 77.0 | 66.0 | 64.5 | T． |
| 1170 | Ang． 27 | 3.00 |  |  | 莌W．，㫊mik． <br> Gay Head，W．hy s．， 23 niles：morth end of Nashawena，NNW．，6t miles． <br> Oif Martha＇s Vinerard： | NSTW．，${ }^{\text {a mile．}}$ | 12 | ．． 10 | 77.0 | 67.0 | 65.0 | T． |
| 1171 | Sept． 6 | 12．05 |  |  | Katama Point，E．${ }^{\text {a Sos }} 1$ mile | W．，${ }^{\text {e }}$ mile．．．．．．．．．．．． | 2－4 | do | 66.0 | 68.5 | 62． 0 | D． |
| 1172 | Sept． 6 | 12.15 |  |  | Katama Point，E．$\frac{3}{2}$ S．， $1 \frac{1}{2}$ miles．．．．． | Ir．${ }^{\text {a }}$ | 5 | ， | 66.0 | 68.0 | 62． 0 | D． |
| 1173 | Sept． 6 | $\begin{aligned} & 1.05 \\ & 1.43 \end{aligned}$ |  |  | Katama Point，E．${ }_{\text {c }}$ miles．．． |  | 21 |  | $\begin{aligned} & 66.0 \\ & 67.0 \end{aligned}$ |  |  |  |
| 1174 1175 | Sept． Sept． 6 | 1.43 2.0 .5 |  |  | Katama Point，E． 3 miles． | $\text { S. by } \mathbf{E}, \text {, } \frac{1}{3} \mathrm{mi}$ S. f innle. | 5 | ..do | 67.0 67.0 | 68.0 68.0 | 63.0 63.0 | $\stackrel{\square}{\text { T．}}$ |
| 1175 1176 | Sept． 6 | 2.05 |  |  | Katama Point，E．${ }^{\text {K }}$ ，339 miles ．．．．． | $\text { S., } \frac{1}{2} \text { mile.....il }$ | 54 |  | 67.0 | 68.0 | 63.0 | T． |
| 1176 | sept． 6 1894. | 3.12 |  |  | SE．cnd of No Man＇s Land，W．by S．， $7 \frac{1}{2}$ miles． <br> East of Martha＇s Vinoyard： | S．by W．，$\frac{1}{2}$ mile．．．． | 13 | ．．．do | 68.0 | 67.0 | 60.0 | T． |
| 1177 | Aug． 18 | 12． 60 m ． |  |  | Near Howe＇s shoal and Buoy No． 4. | W．by S．$\frac{1}{2}$ S．，$\frac{1}{2}$ milo | 3－7 | do | 78.0 | 69.0 |  | T． |
| 1178 | Aug． 25 | $12.30 \mathrm{p} . \mathrm{mm}$ ． |  |  | Menemsha bight： <br> Gay Head，SW．$\frac{1}{2} \mathrm{~W}$ ， $1 \frac{1}{2}$ miles； S ． | NE | 13 | Hard | 72.0 | 66.0 |  | T． |
| 1179 | $\Delta \mathrm{ug} .25$ | 1.15 |  |  | Gay Head，SSW ．，$\frac{1}{2}$ mile；S．end of Nashawena，N．$\frac{1}{2}$ E． | NE．，$\frac{1}{2}$ mile | 121 | Sticky | 79.0 | 66.0 |  | T． |



Dredging stations of the steamer Fish Hawk from 183 to 1887-Continued.


| $\dot{H}$ | ＋ | $\stackrel{\square}{\circ}$ | $\stackrel{\text { ® }}{ }$ | $\stackrel{\square}{2}$ | வ่ | $\dot{\square}$ | H | सं | H | H | H | $\dot{\square}$ | H | H | $\dot{\square}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 808 | $\stackrel{\stackrel{1}{*}}{ }$ | $\stackrel{-}{-1}$ | 영 | O | $0$ | Oi | O | $\begin{aligned} & \circ \\ & 0.0 \end{aligned}$ | $$ | 영 | $\stackrel{\circ}{6}$ | 앙 | $\begin{aligned} & \circ \\ & 8.6 \\ & \hline \end{aligned}$ | $0$ | $$ |
| \％ | $\stackrel{\circ}{\circ}$ | $\stackrel{\circ}{\mathrm{S}}$ | ob | $\begin{aligned} & \circ \\ & \dot{\omega} \\ & \hline \end{aligned}$ | $\begin{aligned} & \circ \\ & \oplus \dot{\Phi} \end{aligned}$ | oㅇ | $0$ | $0$ | $\begin{aligned} & 0 \\ & \stackrel{i}{0} \end{aligned}$ | $\begin{aligned} & 0 \\ & \text { í } \end{aligned}$ | 융 | $\begin{aligned} & \circ \\ & \hline i \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 . \end{aligned}$ | $\begin{aligned} & 0 \\ & +i \\ & \hline \mathbf{i} \end{aligned}$ | $\begin{aligned} & \circ \\ & \stackrel{i}{\circ} \end{aligned}$ |
| $\stackrel{\circ}{\circ}$ | $\stackrel{0}{8}$ | A | $\begin{aligned} & 0 \\ & \hline 6 \end{aligned}$ | $$ | $\stackrel{\circ}{\stackrel{\circ}{\oplus}}$ | $\stackrel{\circ}{5}$ | $\stackrel{8}{8}$ | $8$ | 8 | O | $8$ | $0$ | $\begin{aligned} & 0 \\ & \hline 1.8 \end{aligned}$ | \％ | $\begin{aligned} & 0 \\ & 18 \\ & \hline 8 \end{aligned}$ |
| $\begin{gathered} \dot{y} \\ \text { 品 } \end{gathered}$ | $\bigcirc$ |  |  | 8 | $\vdots$ $\vdots$ $\vdots$ |  |  | $\fallingdotseq$ | 部 | $\because$ | $\because$ |  | 3 3 3 3 3 |  | $\bigcirc$ |
| $\sim$ | $\cdots$ | 萝 | ， | ～1 | $\stackrel{ }{*}$ | $\stackrel{\sim}{\sim}$ | $\stackrel{\square}{\sim}$ | 9 | $\sim$ | 澏 | $\pm$ | $\bigcirc$ | $\stackrel{\sim}{7}$ | $\stackrel{\rightharpoonup}{\square}$ | ＊ |



Dredging stations of the Steamer Fish Hawk from 1883 to 1887－Continued．

| 自 |  |  |  |  |  |  | E |  | Ten | peratu | res． |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 荡范 | Date． | Hour， | N． | tude W． | Loc |  | む\％ | ． | Air． | Surf． | Bot－ tom． | ${ }_{4}^{\text {en }}$ |
| 1235 | $\begin{gathered} 1887 \\ \text { Aug, } 29 \end{gathered}$ | $2.10 \mathrm{p} . \mathrm{m}$. | 0 ＇ 1 | 0 ＇ 11 | Tinerand somm－Contimmed． <br> Tinevard sound Lipht－whip，W．by <br> N．$\frac{1}{2}$ N．：Cutt Hhmk ，NW．$\frac{1}{8}$ N．；Gay <br> Hem，SE，by S．$\frac{1}{8} \mathrm{~S}$ ． <br> Blcek Islamd Sotmd： | W．，$\frac{1}{6}$ mile．．．．．．．． | 12 | Sand，shells． | $\stackrel{\circ}{65.0}$ | $64.0$ | $\stackrel{\circ}{6 \div .2}$ | T． |
| 1236 | Aug． 30 | 9.03 arm. |  |  | Gay Had Liyht，NE．be E．$\frac{1}{3}$ E．：Cut－ tyhnok Light，N．by E．；N＇o Man＇s Lamd，ME W E．$\frac{1}{3} \mathrm{E}$ ． | S．by E．，${ }^{3}$ mile．．．．． | 19⿳亠丷厂犬 | Hard | 65.0 | 62.0 | C0． 0 | T． |
| 1237 | Aug． 30 | 10．00 |  |  | Gay Heablight．S In．N．：Cuttyhnk， <br> NE．by N．$\quad$ No Man＇s Land，SE．by E． 5 E | ${ }_{4} \mathrm{~m}$ mile． | 20 | ．．．．do ．．．．．．．．．．．．．．．． | 67.0 65.0 | C4． 0 64.0 | 59.0 61.0 | ＇T． |
| 1238 | Aug． 30 | 10． 45 |  |  | Gaylleall Light，E．by N．$\frac{1}{\text { I }}$ N．；Cutty－ limke，NE．by N．$\frac{1}{3}$ N．；No Man＇s Land，ESE． | $\frac{1}{2}$ mile | 20 | Sand，broken shells． | 65.0 65.0 | 61.0 6.0 | 61.0 61.0 | D． T． |
| 1239 | Aug． 30 | 11． 35 |  |  | Ifen ant Chickens Light－ship，N．by <br> E．$\frac{1}{4}$ E．；Cuttyhunk，NE．；No Man＇s Land，SE．${ }_{3}^{3}$ E | $\frac{1}{2}$ mile． | 16 | Hard．．．．． Biue mud． | 65.0 64.0 | 62.0 62.0 | 61.0 c0． 0 | T． T． |
| 1240 | Aug． 30 | $12.44 \mathrm{p} . \mathrm{m}$. |  |  | Gay lleal Light，E．by S．${ }^{3}$ S．；No Man＇s Land，SSE．$\frac{2}{8}$ E．；Vineyard Sound Light－ship，N W．$\frac{1}{2}$ W． Nantucket Sound： | $\frac{1}{1} 11$ |  | Bue mud．．．．．．．．．．．． | 64.0 70.0 | 68．0 | 69.5 | D |
| 1241 | Sept． 5 | 10． $27 \mathrm{a} . \mathrm{m}$ ． |  |  | Bishop and Clerks Ligut－ship，E．$\frac{3}{4}$ N Succonesset Light－ship，W．by N．${ }^{3}$ N ． | ESE．，$\frac{1}{4}$ mile | 21 18 | Saud，broken shells．． Saud，shells ．．．．．．．． | 70.0 70.0 | 68.0 68.0 | 69.5 69.0 | D． T． |
| 1242 | Sept． 5 | 10.50 |  |  | Succonesset Lipht－ship，W．a N <br> Bishopand Clerks Lirht－ship，F．$\frac{1}{3} \mathrm{~N}$. ； | NNW．，${ }^{\frac{1}{4}}$ | 18 | Sayd，shells | 70.0 | 68.0 | 69.5 |  |
| 1243 | Sept． 5 | 11.15 |  |  | Bishopand Clerks Lioht－ship，E．$\frac{1}{2}$ N．； Succonesset Light ship，W．$\frac{1}{4} \mathrm{~N}$ ． | N．bs E．，$\frac{1}{\text { milc }}$ | 15t | and，shels，rocks | 70.0 | 68.0 | 69.5 69.5 |  |
| 1244 | Sept． 5 | $11.5+$ |  |  | $\begin{aligned} & \text { Bishopand Clerks Light-ship, E. N.; } \\ & \text { Succonesset Lightship, W. } \\ & \text { Hyannis Light, NE. by N. } \frac{1}{8} \text { N. } \end{aligned}$ | W．by N．，素mil |  | aud， $\mathrm{s}^{2}$ ells，mud． | 70.0 | 67.0 | 69.5 | D． |
| 1245 | Sept． 5 | 12． $22 \mathrm{p} . \mathrm{m}$ ． |  |  | Bishop and Clerks Light－ship，E．by W．；Hyamis Light，NE．$\frac{1}{4}$ N． S．$\frac{1}{4}$ S．：Colling＇Beacon，N．by W．$\frac{3}{4}$ | W．by N．， | $4 \frac{3}{2}$ | Sand，shells | 68.0 | 68.0 | 69.5 | T． |
| 1246 | Sept． 5 | 1． 60 |  |  | Succonesset Light－ship，SW．${ }^{3}$ S．； Collins＇Beacou，N．；Hyannis Light， NE．$\frac{1}{2} \mathrm{~N}$ ． | W．by N．，交mile． |  | Sand ．．do．．．．．．．．．．．．．．． | 68.0 67.0 | 68.0 65.0 | 69.5 53.5 | T． |
| 1247 | Sept．${ }^{\text {c }}$ | $9.49 \mathrm{a} . \mathrm{m}$ ． | 410045 | 710005 | Sonthwest of Gay Head | NE．$\frac{1}{2}$ N．，${ }^{\text {a }}$ mile | ${ }_{26}{ }^{27}$ | Sand． | 67.0 68.0 | 65.0 64.0 | 55．0 | $\stackrel{\text { T }}{\text { T }}$ |
| 1248 | Sept．${ }^{6}$ | 10.39 11.29 | 410200 <br> 4104 <br> 1 | 710000 705930 | $\begin{gathered} \text { - } \text {. . do do } \\ \hline \end{gathered}$ |  | $2 \cdot 2 \frac{1}{2}$ |  | 67.0 | 64.0 | 57.0 | 宁 |
| 1250 | Sept． 6 | ${ }_{12.30} \mathbf{p} . \mathrm{m}$ ． | 410600 | 705915 |  |  | $20 \frac{1}{2}$ |  | 67.0 | 64.0 | 58.5 | T． |
| 1251 | Sept． 6 | 1.36 | 411000 | 705915 | do |  | 17 |  | 67.0 | 64.0 | 60.0 | T． |

## REPORT OF DREDGINGS OF THE ALBATROSS FOR 1883, BY LIEUT. SEATON SCHROEDER, U. S. N., NAVIGATOR.

The cruising of the Albatross during this first year of service has been included between the parallels of $35^{\circ}$ and $45^{\circ}$ north latitude and the meridians of $64^{\circ}$ and $77^{\circ}$ west longitude. The number of days under way, the object of each trip, and the distances performed are given in the following table:

$\qquad$范

|  |  | 它 |
| :---: | :---: | :---: |
| $\stackrel{ \pm}{A}$ |  |  |
|  |  |  |
| $\begin{aligned} & \dot{B} \\ & \dot{B} \end{aligned}$ | －ว0さ0马 |  |
|  |  | 気的 |
|  |  |  |


| 零 |  |
| :---: | :---: |


$\operatorname{XIV} \mid$




Locality．

| Latituile |
| :---: | :---: |
| north． | | Longiturle |
| :---: |
| west． |











[^118]
四








ーデージー
$\rightarrow$－-
又






$$
\begin{aligned}
& \text { 以 }
\end{aligned}
$$

[^119]

# REPORT OF DREDGINGS OF THE ALBATROSS FOR 1884, BY LIEUT. SEATON SCHROEDER, U. S. N., NAVIGATOR. 

During the year 1884 the geographical limits of the cruising of the Albatross were the parallels of $5^{\circ} 30^{\prime}$ and $43^{\circ}$ north latitude and the meridians of $61^{\circ} 30^{\prime}$ and $55^{\circ} 30^{\prime}$ west longitude. The number of days at sea and the distances run, together with the object of each trip, are given in the following table:

| Date. | Object. | Distance. |
| :---: | :---: | :---: |
| January 6 to 7 | Baltimore to Norfolk | Miles. 163 |
| January 10 to 17 | Soundung trip. | 1,417.5 |
| January 24 to 30 | Sounding and dredging trip | 1,660.2 |
| February ${ }^{2}$ | Swinging ship | 20 |
| February 3 to 11. | Soundingr aud dredging trip | 1,209.4 |
| February 18 to 26. |  | 1,100.8 |
| February 27 to Ma March 13 to 16. | do | 333.8 605.1 |
| March 22 to 26... | ----410 | 429.4 |
| April 2 to 5. | do | 253 |
| A pril 9 to 15 |  | 813.1 |
| April $29 . .$. | Kes West to Haraua, Cuba | 100 |
| A pril 30 to May | Sounding and dredging trip | 603.8 |
| May 11 tc 17. |  | 1,279.5 |
| July 13 to 14 | Washington to Norfolk. | 174 |
| July 20 to 26 | Inrestigating migrations of | 651.7 |
| July 31 to Angust | Dredging trip | 486.4 |
| August 19 to 25 |  | $4 \div 9.2$ |
| August 27 | Wond's Holl to Newport. | 42 |
| August 28 to 31 | Flagship of Honorable Secretary | 47 |
| September 1 | Newport to Wood's Holl | 42 |
| September 6 to 15. | Dredging trip | $9{ }^{\text {+3 }}$ |
| September 25 to 23 <br> October 8 to $9 \ldots$. | Wood's Holl to New York | 189 |
| October 17 to 23. | 1 redring trip. | 797 |
| December 25 to 26 | Washington to Norfolk | 174 |
| Total, 134 da |  | 13,388 |

The mumber of soundings taken during the year was 701, almost all of which were located with sufficient accuracy to be of hydrographie value; of these, 194 were also dredging stations.

During the winter and spring the ressel was employed in hydrographic work for the Nary Department ; searching for reported dangers in the West Indies and between there and the Ch sapeake; runuing lines of soundings across the Caribbean Sea and among some of the islauds; taking serial temperatures and noting surface curents; making an examination of a part of Saranilla Bay, United States of Colombia, and establishing the longitude of Cape San Antonio lighthouse, Cuba.

Following is a list of reported dangers over or near which the depths were found in the positions given:

List of rejorted dangers.


The soundings were such as to prove the non-existence of all except the Georgia Bauk off the east end of Jamaica, which had been recently searched for by several ressels. It was originally discovered by Capt. John S. Molt, of the American brig Georgia, in 1867, who reported 14 fathoms in about latitude $17^{\circ} 46^{\prime} \mathrm{N}$., longitude $75^{\circ} 45^{\prime} \mathrm{W}$. An extensive and careful search was made for this, resulting in the discovery of a bank with a least depth of 17 fathoms a little to the southward of the reported position, in latitude $17^{\circ} 36^{\prime}$ to $17^{\circ} 44^{\prime}$ N., iongitude $75^{\circ} 40^{\prime}$ to $75^{\circ} 45^{\prime} \mathrm{W}$. The Nary Department has given it the name of Albatross Bank. This must not be confounded with the Albatross Shoal off the northwestern shore of Cuba, which was reported by the German gunboat of that name and not subsequently found.

One hundred soundings were taken off Cape San Antonio, extending to just beyond the range of the light, with deep water everywhere (up) to 1,200 fathoms), and Sancho Pardo Shoal has, in consequence, been expunged from the charts of the Hydrographic Office, Nary Department.

Six lines of soundings were run across the Caribbean Sea, four between the Leeward Islands and the Main, and diagonal lines on and off the coast of the United States of Colombia. The eastern part of the Caribbean Sea is the deepest, the greatest depth being 2,844 fathoms, in latitude $13^{\circ} 25^{\prime} \mathrm{N}$., longitude $66^{\circ} 25^{\prime} \mathrm{W}$. Off the Honduras coast, however, still deeper water was found, there being 3,169 fathoms at 60 miles southwest of the Grand Cayman.

An interesting discorery was that of a submarine ridge commecting the islands of Santa Cruz and Puerto Rico, the least depth on which was 578 fathoms and the greatest 900 , while on eituer side was found over 2,000 fathoms.

Ares Islet, 100 miles westward of Guadaloupe, was found to be the summit of a mountain, precipitous on its western slope and extending in a south-southeast direction orer 150 miles to the 1,000 -fathom curre.
During the summer aud autumn of 1884 hydrographic work was merely incidentai, as continuous dredging aud trawling generally interfered with the correct locating of the stations. Still, a number of the soundings taken were considered plotted with sufficient accuracy to be of hydrographic ralue. This work was off the United States coast between Cape Hatteras and George's Bauks.

Nothing of special interest was definitely ascertained. But in the course of the season it became rery evident that in the vicinity of the 40th parallel and the 70th and 71st meridians there is an easterly and a westerly morement of the water, alternating at intervals of apparently about half a das. Circumstances prevented a close examination into this matter, but, as the approximate time of the change of the current was noticed on several occasions to be later each dar, it is believed that the phenomenon may be attributed to the influence of the moou, and that probably there may be tidal currents, less pronounced, but as regular there as along shore.

Indications were also fonud of a pocket ruming in northward from the 600 -fathon line on abont the meridian of $70^{\circ} 1 \tilde{s}^{\prime}$, differing from the contour lines on existing charts. But, owing to cloudy weather and the impossibility of keeping a good reckoning while trawling, the positions found were not considered sufficiently reliable to warrant making a report to the Hydrographic Office.
 dredge．ill．Dr．＝D．S．（deep－sea dredge），and Sh．Dr．$=11$. B．（mud－bag）．

|  |  |  |
| :---: | :---: | :---: |
| 苔 |  |  |
|  |  |  |
|  | －80x0才 |  |
|  |  |  <br>  <br>  |
|  |  |  |
|  |  |  |
|  | ${ }^{6} \mathrm{moq70} 9$ | 凡和 |
|  | －${ }^{\text {ergmin }}$ |  |
|  | $\cdot \Gamma \square$ |  |
| $\begin{aligned} & \text { 总 } \\ & \text { 荡 } \\ & \text { for } \end{aligned}$ | $\begin{aligned} & \text { 总 } \\ & \text { 新 } \\ & \text { 守 } \end{aligned}$ |  <br>  <br>  |
|  | \％ \％ O \＃ E H |  <br>  <br>  |
|  | $\begin{aligned} & \dot{\oplus} \\ & \dot{\text { a }} \end{aligned}$ | 地 <br>  <br>  |
|  | $\begin{aligned} & \text { ® } \\ & \stackrel{\text { ® }}{2} \end{aligned}$ |  <br>  <br>  |
|  |  |  |




㕕
（1）



 ーデ が ージージゥジー





 －


 ※








[^120]Dredging and Trawling Record of the United States Fish Commission steamer Albatross，Season of 1884－Continued．

|  |  |  |
| :---: | :---: | :---: |
| $\begin{aligned} & \text { む̀ Ḣ } \\ & \text { Ả } \end{aligned}$ |  |  |
|  |  |  |
| $\begin{aligned} & \text { تٌ } \\ & \text { in } \end{aligned}$ | ${ }^{\circ} 9010 \mathrm{~A}$ |  |
|  |  |  <br>  |
| $\begin{aligned} & \text { Character of bot. } \\ & \text { tom. } \end{aligned}$ |  |  |
|  |  |  |
|  |  | 以 |
|  | －${ }^{\text {arg．r．ms }}$ |  |
|  | －1\％ |  |
|  | $\begin{aligned} & \text { 采 } \\ & \text { 械 } \\ & \tilde{O} \\ & H \end{aligned}$ |  <br>  <br>  |
|  | $\begin{aligned} & \text { 荷 } \\ & \text { 胥 } \\ & \text { 䔍 } \\ & \text { H } \end{aligned}$ |  <br>  <br>  |
| $\stackrel{\oplus}{\tilde{H}}$ |  |  <br>  <br>  <br>  |
| $\begin{gathered} \dot{\text { ® }} \\ \stackrel{\text { ® }}{0} \end{gathered}$ |  | 婄 <br>  |
|  |  |  |

#   

|  |  |
| :---: | :---: |
|  |  |
|  | セッロゼロ M M |

 ヶちゃ








#### Abstract

  









Dredging and Trawling Record of the United States Fish Commission steamer Albatross，Season of 1884—Continued．

|  |  |  |
| :---: | :---: | :---: |
| $\begin{aligned} & \text { 彥 } \\ & \text { A. } \end{aligned}$ | －อวนยาร！¢ |  |
|  |  |  |
| 邑 |  |  |
|  |  | Fick <br>  |
|  |  |  |
|  |  |  |
|  | ¢тоұำ | （1） |
|  | ${ }^{\text {earyms }}$ |  |
|  | ${ }^{\text {a }}$－V |  |
|  |  |  <br>  <br>  |
|  |  |  －タットに <br>  |
| 惫 |  |  <br>  <br>  <br>  |
| $\begin{aligned} & \stackrel{\text { ® }}{\text { R̈ }} \end{aligned}$ |  |  |
|  |  |  |

$\overline{\text { Instrument used．}}$




| $\begin{gathered} \text { 出 } \\ \text { A } \end{gathered}$ | ＊өопвךร！ |
| :---: | :---: |
|  | I \＃ \＃ － |
|  | －2010 |
| ت | $\begin{aligned} & \text { gi } \\ & \stackrel{y}{0} \\ & \stackrel{y}{0} \\ & \stackrel{y}{0} \\ & \stackrel{1}{2} \end{aligned}$ |

会：


| 3 0 0 0 0 0 0 0 0 0 0 0 3 3 3 |  |  |
| :---: | :---: | :---: |
| ジ |  |  |


|  | ＊1407708 |  |
| :---: | :---: | :---: |
|  | ＊ววtun |  |
|  | ＇IIV |  |
| $\begin{aligned} & \text { ä } \\ & \text { 霖 } \\ & 0 \\ & \text { f } \end{aligned}$ | $\begin{aligned} & \text { 五 } \\ & 80 \\ & 9 \\ & 6 \end{aligned}$ |  <br>  <br>  |
|  |  |  <br>  <br>  |


 N以

تٌ

．raquan Ir！ias

S．Mis． $90-60$
Fiecord of dredgings and traulings of the $U$. S. Fish Commission stectmer Albatross, ete. -Continued.






















 둔












o

|  |  |
| :---: | :---: |
|  |  |
|  |  |
|  |  |
|  |  |
















[^121]Record of dredgings and trauclings of the U. S. Fish Commission steamer Albatross, etc.-Continued.





$\xrightarrow[\text { ®. }]{\text { 甲 }}$








N N N
















的

 を组


Record of dredgings and traulings of the U．S．Fish Commission sleamer Albatwors tre

| $\begin{gathered} \text { 递 } \\ \text { 俞 } \\ \text { 品 } \\ \text { 篤 } \\ \hline \end{gathered}$ | Date． | Time． | Position． |  | Temperature． |  |  | Depth． | Character of bottom． | Wind． |  | Drift． |  | Instiument used． |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Lat．N． |  | A |  | 售 |  |  |  |  |  |  |  |
|  |  |  |  | Long．W． |  |  |  |  |  | Dirention． |  | Direction． |  |  |
| $\bigcirc 610$ | Oct．${ }^{1885}$ | $9.32 \mathrm{a} . \mathrm{m}$ ． |  |  | $\bigcirc$ | $\bigcirc$ | 0 | Fath． | wh．S．bk．Sp．brk．Sh．．．．．．．．．．．．．．．．．． |  |  | Milcs． |  |  |
| 2011 | Oct． 19 | $10.35 \mathrm{a} . \mathrm{m} .$. | 341500 | 7611300 |  |  |  |  |  |  |  |  |  |  |
| －142 | $\begin{array}{lll}\text { Oct．} & 19 \\ \text { Oct } & 19\end{array}$ | 11． $49 \mathrm{a} . \mathrm{m}$ | $3 \pm 1100$ | 761030 | 16 77 | 78 |  | 31 52 | bk．s．brk．Sh ．．．．．．．．．．．．．．．．．．． | ESE． | 3 3 | SSE， |  | L．B．T． |
| 2014 | Oct． 19 |  | 340900 | 510000 | 77 | 78 |  | 168 | crs，wh．S．brd． | ESE． | 3 | NE，by N． | ． 25 | L．B．T． |
| 2015 | Oct． $0^{0}$ | $6.17 \mathrm{a}, \mathrm{m}$ | 340900 334500 | 760 00 | 77 | 7. |  | 163 | －y．s．bk．Sp | SSE． | $\stackrel{2}{2}$ | NE． | ． 50 | L．13．${ }^{\text {I }}$ ． |
| 2616 | Oct． 20 | 7． $20 \mathrm{a}, \mathrm{m}$ | 3．3 4248 | \％ 77310 | 76 | 75 |  | 18 | \＃y．s．．．．． | SSE． | $\stackrel{2}{3}$ | NE． | ． 50 | L．B．${ }^{\text {T }}$ ． |
| 2617 | Oct． 20 | $10.00 \mathrm{a} . \mathrm{m}$ | 333730 | $\begin{array}{r}773100 \\ \hline 360\end{array}$ | 76 | 15 |  | 17 | S．P | SSE | 3 | SSE． | ． 25 | Dretge． |
| －618 | Oct． 20 | 10.55 ar m | 333715 | 7785 | 76 | Tis |  | 14 | crs．yl．s．brk．${ }^{\text {ch }}$ |  | 3 | SSE． | ． 25 | 1）redge． |
| －600 | Oct． 20 | 11.19 am 12.13 m | 3.3380 | 773600 | T 6 | $7+$ |  | 15 | crs．yi．S．brk．Sh | SE biy S． | 3 | E． | － 25 | Dredge． |
| 24 | Oct． 20 | 1．54 $1 . \mathrm{mm}$ | 33 37 <br> $3: 3$  <br> 34 4.5 <br> 0.0  | 773630 | 7 | 75 |  | 15 | crs．S．rot．Co．${ }^{\text {a }}$ ， | ${ }_{\text {SE，}}$ | 3 | SE． | ． 25 | S．B．T． |
| 3 | Oct． $2^{3}$ | $3.48 \mathrm{p} . \mathrm{m}$ | 33 34 34 3401 | 8743 | 76 | 75 |  | 9 | gy．Srk．Co | SE．bys． | 3 | ESE． | ． 25 | S．B．${ }^{\text {d．}}$ |
| $\because 623$ | Oct． 20 |  |  |  | 78 | 74 |  | 15 | Ey．s．brk．Co | SEbs | 3 | ESE． |  | S．B．T． |
| 2024 | Oct． 21 | 6.27 ar m | 32 3600 |  | $76$ | 74 |  | 15 | gy．．brk．Co | SE bys． | 3 | ESE． |  | S． 1 B．${ }^{\text {T．}}$ |
| ？62， | Oct． 21 | $7.50 \mathrm{a} . \mathrm{m}$ | 3235 | $\begin{array}{r}17 \\ \hline 7 \\ \hline 180\end{array}$ | 71 | 78 |  | 258 | yy．Sk． Sp |  | 3 | ESE： | ． 25 | S．B．T． |
| 26.26 | Oct． 21 | $10.50 \mathrm{a} . \mathrm{m}$ | 32 2730 | 172030 <br> 20 | 69 | 76 |  | 24.7 | gy．S．bk．Sp | NE． | 5 | SSW． |  | L．B．${ }^{\text {¹ }}$ |
| 26.7 $26-8$ | Oct． 21 | 2． $06 \mathrm{p} . \mathrm{m}$ ． | 322130 | $\bigcirc 0$ | 69 | 76 |  | 353 437 | free ins：S． | SSW゙． | ${ }_{2}^{5}$ | SEby |  | L．B．T． |
| 20－8 | Oct． 21 | $3.51 \mathrm{p} . \mathrm{m}$ | 322400 | 7685 | 70 | 77 |  | 428 | 51.3 | SSIV． | 4 | SE．be S． |  | L．B．T． |
|  |  |  |  |  |  |  |  |  | 51． 1 | SSW． |  | V． | $\begin{aligned} & .50 \\ & .50 \end{aligned}$ | L. B. T. |

In the preceding and following tables the abbreviations for the characters of the bottom and the instrument used are from the following code：

| Abbre． viation． | Meaning． | Abbre． riation． | Meauing． | Abbre． viation． | Meaning． | Abbre． viation． | Meaning． | Alure． viation． | Meaning． | Abbre． viatiol． | Meaniag． |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| C． | Clay． | P． | Pelbbles． | lge．．．．．． | large． | stf． | stiff． | br ．．．．．． | brown． | L．B．T． | Large beam－trawl． |
| Co．．．．．．． | Coral． |  | Ooze． | rky ．．．． | rocky． | slat | slate color． | choc．．．． | chocolate color． | S．B．T． | Small beam－trawl． |
| St ${ }_{\text {G }} \ldots \ldots .$. | Stones． Gravel． |  | IRock． | rot | rotten， sticky， | bl． | yellow． |  | green． | Ll．Dr ． | Blake dredge（deep－ sea dredge）． |
|  | Sand． | Glob．．． | Globigerina． |  | coarse． | bu | blue． |  | dark． | $\mathrm{Sb} . \mathrm{Dr}$. | Ship＇s dreago（mud． |
| For ．．．．．．． | Foraminifera． | Sp．．．．．． | Specks． | hir | hard． |  | gray． |  |  |  | bag）． |
| Pter | 1 1teropods． | brk | brokeu． | sm | small． | rd | red． |  |  | Tgls．．． | Tangles． |
| 2 L | Mud． | fine | fine． | sft | soft． | wh | white． |  |  |  |  |

Fiecord of dredgings and trawings of the $U$ ．S．Fish Commission steamer Albatross，from Tanuary 1 to October ©t，183is．

|  |  |  |
| :---: | :---: | :---: |
|  |  |  |
| 芭 |  |  |
|  | － ersat $^{\text {a }}$ | サザがかっか |
| ت |  |  |
|  |  |  |
|  | 岗 |  |
|  | ＇THO\＃7O¢ | －$+\infty \times \infty$ |
| 莫 | －${ }^{\text {ajum }}$ |  |
| ${ }_{5}^{5}$ | MF |  |
| E | $\begin{aligned} & \text { B } \\ & \text { B } \\ & \text { E } \end{aligned}$ |  <br>  <br>  |
| $\stackrel{\circ}{\circ}$ |  |  <br>  <br>  |
|  | 䓌 |  <br>  <br>  <br>  |
|  | ® |  <br>  <br>  |
|  | mane jelas |  <br>  |



言 Character of bottom.

 vinuvo = sum


完





= 888\%8\%\%я8\%8888,





ructiog
argums
11 V

!

0










 Fi


## o <br> 1 <br> is <br> Z














Pecorl of dredgings and tranlings of the $\bar{T}$. S. Tish Commission steamer Albatross, from April 8 to September 19 , $185 \boldsymbol{y}$.


## LIST OF DREDGING STATIONS OCCUPIED BY THE U. S. COAST SURVEY STEAMERS CORWIN, BIBB, HASSLER, AND BLAKE, FROM 1867 TO 1880.

The dredgings from 1867 to 1871, and those of the Hassler in 1872, were ali made by Count L. F. Pourtales, Assistant U. S. Coast Survey, in a great measure under the direction of Prot. Louis Agassiz, who accompanied several of the expeditions. Their positions were originally published in the Bulletin of the Museum of Comparative Zoology at Cambridge, Mass., in September, 1879. A continuous series of numbers running from 1 P . to 224 P . has been assigned to them for convenience in placing them on charts without confusing them with other Coast Survey or Fish Commission dredgings.

The following stations were occupied by the Corwin, Acting Master R. Platt, U. S. Navy, commanding, in 1S67, in connectiou with a survey for a telegraph cable between Key West and Havana. The expedition was cut short by the breaking out of yellow fever on board.

| Serial number. | Date. | Depth. | Locality. |
| :---: | :---: | :---: | :---: |
|  |  | Fathoms. |  |
| 1 P | May 17 | 90-100 | 5 miles SSW. of Sand Key, Fla. |
| 2 P | May 24 | 270 | 1.6 miles from Chorrera, Cuba. |
| 3 P | May 25 | 350 | 2 miles from Chorrera, Cuba. |
| $4 P$ | May 29 | 270 | 1.6 miles from Chorrera, Cuba. |

The dredging in 1868 and 1869 were made by the Bibb, Acting Master' R. Platt, U. S. Navy, commanding. They are all situated in the Florida straits, between Tortugas and Cape Fiorida. The positions, as published in the Bulletin of the Museum of Comparative Zoology, were only given in a general way, aud are here taken from Count Pourtales's orig. inal charts, preserved in the Coast Survey Office. A separate series of numbers is attached to each day's work, both on the charts and in the bulletin, and these numbers and the depths given correspond for the most part, except that the depth on the charts have been corrected whilst those in the bulletin are apparently from the original rough notes. In some cases, however, a difterent number is given to the hanl on the chart from that in the bulletin. All notes here given on the character of the bottom are also derived from the charts. The number and letter assigned to each dredging on the original charts and record-books, the number given in the bulletin, and the depths given by them, respectively, are given in separate columns, so as to facilitate future comparisons. A few hauls, mostly shallow water ones, it has been impossible to place exactly.

Dralyings made by U．S．Coast Survey，1868－＇69．

|  | $\begin{aligned} & \text { No.on charts and } \\ & \text { rocord-books. } \end{aligned}$ |  | Date． | $\begin{gathered} \text { Latitude } \\ \text { N. } \end{gathered}$ | Longi－ tude W． |  |  | Nature of bottom． | Locality． |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 1868. | － 11 | －11 |  |  |  |  |
| 5 P |  | 2 | Apr． 23 |  |  | 195 |  |  | Off Sombrero． |
| 6 P ． |  | 3 | Арpr． 23 |  |  | 115 |  |  | Do． |
| 7 P | 7 B | 7 | May 1 | 242850 | 810310 | 111 | 111 | Hard | Do． |
| 8 P | 6 B ． | 6 | May 1 | 242515 | 810130 | 121 | 121 |  | Do． |
| 9 P ． | 5 B. | 5 | May 1 | 242140 | 810000 | 111 | 140 | Rock | Do． |
| 10 P | 4 B ． | 4 | May 1 | 21 1s 00 | $8058: 30$ | 152 | 15： | －．介10 | 10． |
| 11 P ． | 3 B ． | 3 | May 1 | $2416 \geq 0$ | $8057 \quad 30$ | 183 | 180 |  | Do． |
| 12 P ． | 213. | 2 | May 1 | $3414 \geq 0$ | 825700 | 462 | 238 |  | Do． |
| 13 P ． | 113. | 1 | May 1 | 241230 | 805530 | 517 | 517 | Mud | Do． |
| 14 P ． | 1 D. | 1 | May 4 | $\underline{24} 3330$ | 811900 | 19 | 19 |  | Off Bahia Honda． |
| 15 P ． | 4 D ． | 4 | May 4 | $\because 4000$ | 81 1\％ 23 | 75 | 7.5 | Sind | Do． |
| $16{ }^{\prime}$ | 5 I ． | 5 | May 4 | 34 $29: 30$ | $81 \quad 17$ | 95 | 91 |  | Do． |
| 17 P ． | 6 b | 6 | May 4 | 24：28： 20 | $8116: 0$ | 105 | 10.5 |  | Oo． |
| 18 P | 7 D ． | 7 | May 4 | 242630 | $811 \pm 30$ | 100 | 100 | Rocky | Do． |
| 19 P. | 9 D. | 9 | Muy 4 | 248230 | 811030 | 119 | 112 |  | Io． |
| 201. | 10 D. | 10 | May 4 | 211940 | 810700 | 128 | 128 |  | Do． |
| 21 P ． | 11 I. | 11 | May 4 | $\because 41700$ | $8103 \quad 20$ | 17 i | 167 |  | 10. |
| 2. | 13 I 1． | 13 | May 4 | 241420 | 805940 | 324 | 310 |  | Do． |
| 231 P | 13 D ． | 13 | May 4 | 241250 | 805800 | 418 | 100 | Mud | Do． |
| 24 P ． | 1 E ． | 1 | May 6 | $2 \pm 3020$ | 813030 | 16 | 16 | Inotten shells | Off American Shoal． |
| 2 P ． | 3 E ． | 3 | May 0 | 2488 | 813030 | 43 | 43 | Mud－－－－． | Do． |
| 2415. | 4 E | 4 | May 6 | －34 3810 | 813015 | 55 | 5.5 | ．．do | Jo． |
| 27 P | 5 E ． | 5 | May 6 | 24.3730 | $81: 3945$ | 75 | 70 | ．do | Do． |
| 28 P | 6 E ． | 6 | May 6 | 312700 | 812900 | 83 | 83 | －．do－－．－．．－． | 10. |
| 29 1． | 7 E. | 7 | May 6 | 242640 | 812830 | 98 | 98 |  | Do． |
| 30 P． | 8 E． | 8 | May 6 | $2+2600$ | 812750 | 31 | 94 | Rocky | Do， |
| 31 P ． | 9 E ． | 9 | May 6 | －1 250 | 812700 | 160 | 99 | Irarí | Do， |
| 32 P | 1 F ． | 1 | May 8 | $24 \geq 440$ | 812904 | 111 | 111 | Murl． | Do． |
| 33 ए． | 3 F ． | 3 | May 8 | $24: 30$ | 812430 | 150 | 129 | Coral aud rocky． | Do． |
| 34 P． | 4 F ． | 4 | May 8 | $2 \pm 1810$ | 81 2\％ 10 | 135 | 132 |  | Do． |
| 35 I ＇． | 5 F ． | 5 | May 8 | 241550 | 811940 | 26 | 260 |  | Do． |
| 36 P ． | 3 G ． | 2 | May 9 | 342715 | 812930 | 34 | 34 | Mud and send | Oft the Samboes． |
| 37 P ． | 6 （1）． | 4 | May 9. | 212600 | 813840 | （j7 | 67 | Mul．－．－．．．．．． | To． |
| 381 | 7 G ． | 5 | May 9 | 242505 | 813800 | 80 | 80 |  | Do． |
| 39 P ． | 8 （1． | 6 | May 9 | 242400 | $81 \quad 3710$ | 93 | 93 | Broken slie | Do． |
| 40 P ． | 90. | 7 | May 9 | 24.320 | 813615 | 96 | 96 | Mud | Io． |
| 41 P | 10 G ． | 8 | May 9 | 242340 | 813.500 | 101 | 100 | －．do | Do． |
| 42 P ． | 11 G ． | 9 | May 9 | 242200 | 813400 | 106 | 104 | do | Do． |
| $4 \%$ P． | 1：${ }^{1}$ | 10 | May 9 | 242120 | 813300 | 106 | 106 | －dor | Do． |
| 441 | 136. | 11 | May 9 | 242045 | 813200 | 116 | 116 | Hard | Do． |
| 45 P ． | 11 G | 1\％ | May 9 | 212005 | 813100 | 123 | 121 |  | Do． |
| 46 P ． | 15 G ． | 13 | May 9 | 241910 | 813000 | 125 | 123 | Coral，roc | Do． |
| 47 P ． | 16 G. | 14 | May 9 | $2418 \quad 45$ | 812845 | 125 | 121 | Hard | Vo． |
| 18 P ． | 18 G. | 16 | May 9 | $2416 \geq 0$ | 812130 | 139 | $1: 7$ |  | Io． |
| 49 l ． | 19 G. | 17 | May 9 | $2+1415$ | 812030 | 147 | 145 | Ilard | Do． |
| 50 『． | 20 G． | 18 | May 9 | $211: 30$ | 812020 | 298 | 292 | Sand and shells | Io． |
| $51 P$ | 216. | 19 | May 9 | 211240 | $8119 \pm 5$ | 237 | 312 | Vine coral mud | 1） 0 ． |
| 52 1． | 211. | 2 | May 11 | 242610 | $81+730$ | 26 | 26 | Coral and shells | OfrSand Key． |
| 531. | 4 H． | 3 | May $11^{\circ}$ | 2t 2515 | 814730 | 54 | 54 | Broken shells． | Do． |
| 54 P． | 6 H. | 4 | May 11 | 21 24.0 | 814700 | （i7 | 67 | －－．do | Do． |
| 551 | 8 M． | 5 | Maxy 11 | －t 2330 | 814640 | $8{ }^{\prime \prime}$ | 83 | ， | Do． |
| 56 P | 10 H. | 6 | May 11 | 2t 23.50 | 81.1620 | 91 | 94 |  | Do． |
| 57 P ． | 11 H. | 7 | May 11 | 242800 | 814000 | $10 \%$ | 103 |  | Do． |
| 58 P | 13 I． | 9 | May 11 | 2t 20） 20 | 814520 | 119 | ＇115 | Hard | Do． |
| 59.3 | 14 II ． | 10 | May 11 | $\because 41980$ | 814500 | 119 | 119 | ， | Do． |
| 10 P ． | 15 H. | 11 | May 11 | 整 1900 | 814150 | 123 | 119 |  | Do． |
| 61 P． | 16 H. | 12 | May 11 | $\because 41830$ | 814420 | 127 | 118 |  | Do． |
| 62 P． | 17 H. | ． 13 | May 11 | $3 \pm 1755$ | 814350 | 123 | 123 |  | Do． |
| 63 P ． | 18 H. | － $1 \frac{1}{2}$ | May 11 | $\because 41730$ | 81 $43 \div 0$ | 134 | 130 |  | 1）0． |
| $6{ }^{6} \mathrm{P}$ ， | 19 H. | 15 | May 11 | 241700 | 8140 | 113 | 140 |  | Do． |
| $65{ }^{2}$ | 20 H. | 16 | May 11 | 241600 | 814000 | 138 | 137 |  | Do． |
| 64 P | 21 II． | 17 | May 11 | $2 \pm 1500$ | $\therefore 1410$ | 151 | 1－1） |  | Ho． |
| 67 F \％ | 23 H． | 19 | May 11 | $2 \pm 13 \quad 25$ | $413!30$ | 308 | $\stackrel{2}{2}$ | Mud | Do． |
| 68 B （ ${ }^{\text {c }}$ | 21. | 20 | May 11 | 21 1230 | 813830 | $\therefore 45$ | 241 | ．．do | Io． |
| （9）${ }^{1}$ |  | 1 | May 15 |  |  | 100 |  |  | 10. |
| 70 P |  | 3 | May 15 | E |  | 100 |  |  | Do． |
| 71 P |  | 4 | May 15 | 抎。 |  | 100 | ． |  | 1o． |
| $7{ }^{7} \mathrm{~L}$ 1 |  | 5 | May 15 | － |  | 100 | ．．．． |  | Do． |
| 73 P |  | 6 | May 15 | ¢ 玉 |  | 100 |  |  | Do． |
|  |  | ${ }^{1}$ | May． 16 | 5， |  | 120 |  |  | Do． |
| 75 P |  | \＆ 8 | May 16 | 河 |  | 120 |  |  | Do． |
| 76 P |  |  | May 16 | 人类 |  | 120 |  |  | Do． |
| 77 P ． |  | 6 | May 16 | J \＃̇ |  | 120 | ．．． |  | Do． |
| 78 P ， |  | 1 | Jan． 15 | \％ |  | 6－7 |  |  | South of Tortugas， |

Dreilgings made by U. S. Coast Survey, etc.-Continued.

|  |  |  | Date. | $\left\lvert\, \begin{gathered} \text { Latitude } \\ \mathrm{N} . \end{gathered}\right.$ | $\begin{aligned} & \text { Longi.- } \\ & \text { tude W. } \end{aligned}$ |  |  | Nature of bottom. | Locality. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 1869. | $\left\|\begin{array}{ccc} 0 & \prime \prime \prime \\ 2+30 & 30 \end{array}\right\|$ | 82 5915 |  |  | Broken shells.. |  |
| ${ }_{80} \mathrm{P}$ P. | ${ }_{2}^{1} \mathrm{~A}$. | ${ }_{3}$ | Jan. 15 | 242730 | 825930 | 17 | 18 | Mud.............. | Do. |
| 81 P . | 3 A . | 4 | Jan. 15 | 242445 | 8.3 5945 | 34 | 34 |  | 10. |
| 82 P . | 6 A . | 7 | Jan. 15 | 241600 | 830045 | 260 | 261 |  | Do. |
| ${ }^{83} \mathrm{P}$. | (*) | 2 | Jan. 16 | 243900 | 830730 | 30-32 | 30-32 | Samul and shel | Do. |
| ${ }_{85}^{84} \mathrm{P}$. | ${ }^{3} 1 \mathrm{~B}$. |  | Jan. 16 | ${ }_{2}^{24} 4030$ | 831500 | ${ }^{35}$ | 35 |  | $1{ }^{\text {Do. }}$ |
| ${ }_{86}^{85} \mathrm{P}$. | ${ }_{5}^{4} \mathrm{~B}$ B. | 5 | $\xrightarrow{\text { Jan. }}$ Jan. 16 | 24 24 24 42 | ${ }_{8}^{8819190} 80$ | ${ }_{36}^{36}$ | ${ }_{36}^{36}$ | Sand, sholls, | Do. |
|  |  |  |  |  |  |  |  | sponges. |  |
| 87 P. | ${ }_{7}^{6} \mathrm{~B}$. | $\begin{aligned} & 6 \\ & 7 \end{aligned}$ | Jan. 16 <br> Jan. 16 | $\begin{aligned} & 244230 \\ & 2443 \end{aligned}$ | $\left\lvert\, \begin{aligned} & 832630 \\ & 83 \\ & 80 \end{aligned}\right.$ | $\begin{aligned} & 35 \\ & \hline 55 \end{aligned}$ | $\begin{aligned} & 35 \\ & 366 \\ & \hline \end{aligned}$ |  | ${ }_{\text {l }}^{\text {Do. }}$ Do. |
| 89 P . | 8 B | 8 | Jan. 16 | 244340 | 833430 | 37 | 37 | Sand, gr | 1). |
| 90 P . | 9 B . | 9 | Jan. 16 | 244400 | 833830 | 37 | 37 | Sand, shells, sponges. | Do. |
|  | 10 B. | 10 | Jau. 16 | 244415 | 834200 | 34 | 34 | Coral | Do. |
| ${ }_{93}^{92} \mathrm{P}$ P. | $112 \mathrm{B}$. | (i) | Jial. 16 | 24 $\begin{gathered}24 \\ 2+4 \\ 4+15\end{gathered}$ | 834600 8349 89 | 42 | 43 |  | ${ }^{10} 0$ |
| ${ }_{94}^{93} \mathrm{P}$. | 1 C ¢ | 1 | Jan. 17 | 244811 | ${ }_{83} 8900$ | 43 | 43 | …do | Do. |
| 95 P . | 3 C. | 3 | Jan. 17 | 244845 | ${ }^{84} 0100$ | $12 \pm$ | 124 | Coarse sand | 110. |
| 96 P . | 5 C. | 5 | Jan. 17 | $2 \pm 4900$ | 841300 | 502 | 502 | Gray mud | Do. |
| 97 P . | 1 D. | 1 | Jan. 18 | 243330 | 830945 | 25 | 25 | Gray sand, black specks. | 10. |
| 98 P . | 3 D . | 3 | Jan. 18 | 242945 | 831700 | 60 | 60 | Rocky | 1 p . |
|  | ${ }^{4} \mathrm{D}$ D. | 5 | ${ }^{\text {Jan. }}$ Jan. 18 | 242815 $2+2615$ |  | ${ }_{214}^{115}$ | ${ }_{214}^{115}$ | Mud | 120. |
| 101 P . | 6 D | 6 | Jan. 18 | 242500 | 832745 | 306 | 316 | do | Do. |
| 102 P . | 7 D. | 7 | Jan. 18 | 94.2245 | 833200 | 389 | 389 | .do | 1 o . |
| 103 P . | 8 D. | 8 | Jan. 18 | 24.2030 | 833700 | 468 | 450 |  | 10. |
| 104 P . | 1 E . | 1 | Jau. 22 | 243345 | 824415 | 13 | 13 | Coarso sand, broken shells. | Do. |
| 105 P |  |  | Jau. 22 | 242915 | 824400 | n | 11 |  | Lo. |
| 106 P . | 3 E . | 3 | Jav. 2.3 | $2{ }^{2} 2630$ | 8.2 4:3 40 | ${ }^{161}{ }^{1}$ | 163 | Mud, coarse sand. | Do. |
| 107 P . | ${ }_{5}^{4} \mathrm{E}$ E | 4 | Jan. ${ }^{2.2}$ | $2 \pm 2300$ | 82 43.15 | 47 | - 118 | White mud | Do. |
| 108 |  |  | ${ }^{\text {Jan. }}$ Jay | 241900 | ${ }^{82}{ }^{2} 4245$ | 118 | 118 |  | Do |
| 110 | 7 E. | 7 | ${ }^{\text {Jan. }}$ 22 | - 241545 | ${ }_{82}^{82} 4015$ | 3 | ${ }_{3+9}^{290}$ | -. 10 | Bo |
| 111 P . | 8 E . |  | गau. 22 | 240915 | -230 390 | 377 | 377 | ...do | Do. |
| 112 | ${ }^{9} \mathrm{E}$. | 9 | Jan. 23 | 240700 | 833720 | 416 | 416 |  | 1 o . |
| ${ }_{114}^{113 P}$ | ${ }_{2}^{1} \mathrm{~F}$ | $\stackrel{1}{2}$ | Jan. ${ }^{\text {J3, }}$ | 342400 <br> 242000 <br> 20 |  | 34 <br> 74 | 34 75 | Mroken sho | 1o. |
| 115 P . | 1 G . | 1 | Fab. 10 | 242600 | 821100 | 42 | 42 | Mui.... | Mar |
| 116 P . |  | 2 | Feb. 10 |  |  | 55 |  |  | 10. |
| 117 P . |  | 3 | Febl 10 |  |  | 40 |  |  | Do. |
| 118 |  | (4) | Fub. 10 |  |  | 12-15 |  |  |  |
| 119 | 1 II. | 1 | Feb. 11 | ${ }^{24} 2130$ | 821100 | 107 | 100 | Mud | South of Marquesas. |
| ${ }^{121}$ | ${ }_{3}^{2} \mathrm{H}$. | $\stackrel{2}{3}$ | Feb. Feb. 11 | - $3+1845$ |  | 132 140 | ${ }_{1}^{130}$ | Rocky | Do. |
| 122 P . | 5 H. | 5 | Feb. 11 | $\underline{24} 1545$ | 821030 | 296 | 296 | Mud | 10 |
| 123 P. | 6 H. | ${ }_{6}^{6}$ | Fel. 11 | $2+1340$ | 820900 | 3:3 | 333 |  | Do. |
| ${ }_{1} 124 \mathrm{P}$ | 5. | 1 | ${ }^{\text {Feb }}$ Feb, 5 | ${ }^{2+29} 15$ | ${ }_{8}^{82} 0^{123} 30$ | 105 | 1105 |  | 130 |
| 126 P . | 6 6 J? |  | Febl 15 | 24 210100 | ${ }^{82}{ }^{2} 010130$ | 122 | 122 | Sandy mud | Do. |
| 127 P . |  | 4 | Feb, 15 | - |  | 125 |  |  | 10. |
| 128 |  | 5 | Febl. 15 |  |  | 125 |  |  |  |
| 129 | 4 | ${ }^{6}$ | Fell, ${ }^{15}$ | 242300 | 830330 | 99 | 90 |  | 1)\%. |
| 130 P : | 1 K | 1 | Fel. 16 | 241920 | 820630 | 125 | 125 |  | Jo. |
| 131 P. | 3 K. | 3 | Feb. 16 | 241340 | 820900 | 327 |  | Mmd | Do. |
| P | 4 K | ${ }_{5}^{4}$ | Felo. 16 | ${ }^{2+11}$ | 82, 8945 | 338 | 368 | Wh | Do |
| 134 P . | 5 K. | 5 |  | 240815 | 821045 | 105 | + 405 | Mand | Do. |
| 133 P . | 2 L |  | Feb. 17 |  |  |  |  |  | Key. |
| 136 P . | 3 L . | 3 | Feb. 17 | $2+1645$ | 815845 | 138 | 136 | Rok | 10. |
| 137 | 4 I. | 4 | Feb. 17 | ${ }_{2}^{24} 1330$ | 815900 | 32.5 | 320 | Mud | No. |
| 138 P. | 5 L . |  | Fel. 17 | 242300 | 815530 |  | 85 |  |  |
| 139 P |  | 1 | Mar. 4 |  |  | 450 |  |  | Off Cojima, near |
| 140 P . | 2 M | 2 | Mar. 5 | 232730 | 805530 | 638 | 638 |  | Oft Cruz del Padre, |
| 141 P . | 1 N . | 1 | r. 10 | 235730 | 832915 | 315 | 315 |  | Cuba. <br> ar Donblohended |
|  |  |  |  |  |  |  |  |  | Shot Keys. |
|  |  | 1 | Mar. 21 |  |  | 45. |  |  |  |

Dredgings made by U. S. Coast Survey, etc.-Continued.


On the voyage of the Massler，Lieut．Commander R．P．Jonnson，U． S．Nary，commandins，from Boston to San Francisco in 1S71－77，dredg． ings，numbered from 1 to 8 ，were made off Saudy Bay，Banbados，and twenty－six other dredgings were made in the Sonth Atlantic，besides fifteen made off the coast of Chili．To the thirty fow hauls in the Atlantic，numbers from 217 P ．to 250 P ．have been assigned．The dredgings were made by Count Pourtales under the direction of Prof． Louis Agassiz．

Dredgings of the Hassler in 1871－72．

|  |  | Date． | $\begin{aligned} & \text { Latitude } \\ & \text { S. } \end{aligned}$ | $\begin{aligned} & \text { Longi. } \\ & \text { tude W. } \end{aligned}$ |  | Locality |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 217－201． | 1－4 | $\xrightarrow{1871 .}$ |  |  | 75－100 |  |
| 231－24 | 5－8 | Dec． 30 |  |  | 17－100 | Do． |
| 225 P． | 9 | Jan． 18 | 1149 ） | $\bigcirc{ }^{\circ}$ |  | Off coast |
| 226 P． | 10 | Jan． 18 | 1149 | $¢ 8$. |  | Do． |
| 227 P ． | 11 | Jan． 18 | 1149 | 管 |  | Do． |
| 228 P ． | 12 | Jan． 18 | 1149 |  |  | Do． |
| 229 P ． | 13 | Jan． 18 | 1149 | 匂渮碞 | －$\quad \pm$ | 1） |
| 230 P | 14 | Jan． 18 | 1149 | 边云云 | 75 | Do． |
| ${ }_{233}^{231 P}{ }^{\text {P }}$ | $\begin{aligned} & 15 \\ & 16 \end{aligned}$ | Jan． 18 Jan． 20 | 11491 |  | （ 200 <br> 20 | ${ }_{\text {Ofi }}^{\text {Do．}}$（le A brolhos，Brazil． |
| ${ }_{233}^{232} \mathrm{P}$ 。 | 17 | Jan． 20 |  |  | 20 | （）fit the Abrolhos，Brazil． Jo， |
| $234 \mathrm{l}^{2}$ ． | 18 | Jan． 20 |  |  | 26 | Do． |
| $235{ }^{2}$ | 19 | Jan． 20 |  |  | 41 | Do． |
| 236 P. | 20 | Jan． 22 |  |  |  | Off Capo Frio，Brazil． |
| ${ }_{23}^{237} \mathrm{P}$ ． | 21 | Jan． 23 |  |  | 4.5 | Do． |
| 238 P ． | 23 | Fob． 20 | 3200 | 5015 | 80 | Ofi＇Coast of Brazil，north of river La Plata． |
| 239 P ． | 23 | Feb． 20 | 3200 | 5015 | 7.$)$ |  |
| ${ }^{240} \mathrm{P}$ ． | 24 | Fob． 22 | $3 \pm 55$ | 5412 | 19 | Off La Plata River． |
| 241 P ． | 25 | Feb． 29 | 3519 | 5530 | 1 | In La Plata Jiver． |
| $242{ }^{\text {P }}$ | 26 | Mar． 1 | 3742 | 5020 | 4 | Ofi＇La Plata River． |
| 243 P | $\because 7$ | Mar．${ }^{\text {a }}$ | 4022 | 6035 | 39 | Oft Bahia Blanca，Argentine IEepublic． |
| 244 P | 28 | Mar． 4 | 4117 | $66^{3} 80$ | 17 | Off mouth of Rio Nogro，Argentine Republic． |
| 245 P | 49 | Mar． 4 | 41.5 | 6350 | 25 | In Gulf of S．Matias，Argentine Republic． |
| 246 P ． | 30 | Mar． 7 | 4140 | 6313 | 0 | Do． |
| 247 P | 31 | $\begin{array}{rrr}\text { Mar．} \\ \text { Mar．} & 11 \\ \end{array}$ | 4453 49.40 | 6410 6050 | 57 | Off Cape Raso．Patarouia． |
| 249 P ． | 33 | Mar． 12 | 5120 | 6805 | 58 | Off Coy Inlet，Patagonia． |
| 250 P ． | 34 | Mar． 13 |  |  | $\underline{2}$ | Off Cape Poosession，Patagonia． |

The dredgings in 1872，except those of the Hasster，were made by Dr．William Stimpson．The first enes weremade upon the Bibb，deting Master R．Platt，U．S．Nary，commanding，those mumbered 1.1029 S ．in this list being in the Yncatan Chanuel，following a proposed telegraph line，and 30 to 34 S．south of Sand Ker，near Key West．Dr．Stimpson afterwards joined the Bache，Lient．Commander I．A．Howell，com－ nandiug，aud made dredgings numbered 41 to 60 S ．Lieutenant Com－ mander Howell had made a few dredgings in auticipation of Dr．Stimp－ son joining him，numbered 35 to 40 S ．All the Bache＇s dredgings were off the west coast of Florida，except 36 to 60 S．，which were southwest of the Tortugas．

S．Mis． $90-61$

Dredgings made by the Bibb and Bache in 1872．

|  | $\stackrel{\dot{\star}}{\stackrel{\Delta}{3}}$ | Date． | $\begin{gathered} \text { Latitudo } \\ \text { N. } \end{gathered}$ | $\begin{aligned} & \text { Longi-. } \\ & \text { tude } W . \end{aligned}$ | Depth． | Kind of bettom． | Locality． | Tempera－ tures． |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  | $\dot{4}$ | 告 | 華 |
| 1 S ． | 1 | $\begin{gathered} 1872 . \\ \text { Feb. } 10 \end{gathered}$ | $\left\lvert\, \begin{array}{ccc} \circ & 1 & \prime \prime \\ 92 & 02 & 20 \end{array}\right.$ | $\begin{array}{ccc} \circ & \prime \prime \\ 84 & 57 & 20 \end{array}$ | $\begin{gathered} \text { Fath. } \\ 230 \end{gathered}$ |  | In the Xucatan Cham－ | 0 | － | $\bigcirc$ |
|  | 2 | ， 10 | $\bigcirc 20030$ | 850000 | 317 |  |  |  | 74 |  |
| 3 S ． | 3 | Felo． 10 | 215420 | 850240 | 441 | 31 | －．．．lo |  | 75 | 48 |
| S． | 4 | Febl） 10 | 豆1第年 | 8.5050 | 60 | Co．M |  |  | 74 | 42 |
| S． | 1 | Feb． 16 | 起0135 | 815700 | $2 \%$ |  |  |  |  |  |
| 6 s. | $\stackrel{3}{2}$ | Feb． 10 |  |  | 110 |  | to |  |  |  |
| 7 s | 3 | Feb． 16 | $2201: 0$ | 815720 | 162 | Co．S． | do |  |  |  |
| 8 S ． | 4 | Feb． 16 | 220080 | 850050 | $\because$ | Co．rky |  |  | 78 | $60 \%$ |
| 9 s | 5 | 1＋b． 16 | $\because 1811$ | $\therefore .50410$ | 371 | Co．M． | ， |  | 74 | 51 |
| 10 S ． | 1 | Feb． 16 | 2154 15 | $8501: 30$ | 581 | Co．s． M | do |  | 79 | 41 |
| 11 s | 7 | IN， 16 | 2150 | $\therefore 8010$ | 40：； | M | 10 |  | 6 | 18 |
| 12 S | 1 | Neb． 17 | 215115 | 845915 | 180 | Co． | do |  |  |  |
| 13 S. | 2 | Fob． 17 | 215100 | 850145 | 366 |  | do |  | 77 | $\frac{1}{3}$ |
| 14 S ． | 3 | Feb． 17 | 215080 | 850415 | 635 | MI．S | do |  | 78 | 40 |
| 15 S ． | 4 | Feb． 17 | 214040 | 8．5 11910 | 963 | crs．S．hik．Sb． | －．${ }^{\text {do }}$ |  | 77 | 39 x |
| 16 S. | 5 | F（b） 17 | $\because 14611$ | nis $13: 0$ | 1，066 | Co．M |  |  | 79 | 3：\％ |
| 17 S. | 1 | Treb． 18 | $\because 14320$ | 852350 | 940 | crss．M | do |  | 98 | 395 |
| 18 S. | 3 | Feb． 13 | 214045 | S：3 3300 | 1，054 | II | do |  | $78 \frac{1}{2}$ | 392 |
| 19 S ． | 3 | Feb． 18 | 213545 | 854415 | 1，164 | S．M |  |  | 78 1 | 34. |
| 20 S ． | 1 | Tob，${ }^{3}$ | 2158 | 836310 | 73 | brk． |  |  |  |  |
| 21 S ． |  | Feb． 43 | 21163 | 835323 | 105 |  | do |  | 79 | 66 |
| 22 S | 3 | Feb，2： | 213800 | 563000 | 153 | rky | do |  | 76 | 511 |
| 23 S | 4 | Feb． 23 | $\because 12125$ | 46： 9610 | 262 | wh． | do |  | 76 | 493 |
| 24 S． |  | Mar． 6 | 212300 | c6 40100 | 17 | M． | On luc |  |  |  |
| 25 S ． |  | Mrar． 6 | $\because 1.808$ | 8038100 | 23 | S． |  |  |  |  |
| $26 \mathrm{S}$. | 1 | Mar． 7 | $\because 12105$ | 861500 | 200 | fne．Co． | In the Fucatan Chan－ nel． |  | 16 | 4 |
| $27 \mathrm{S}$. | 1 | Mar． 31 | 213130 | 96 0015 | 1，127 | Yll． M ． |  |  | 79 | 405 |
| $28 \mathrm{s}$. | 2 | 3ar． 11 | $21: 370$ | 85 5200 | 1，031 | Co．M． | do |  | 81 | 40 |
| 29 S | 3 | Mar．Jt | 21.35 | 854415 | 1，164 | S．M |  |  | ${ }^{7} 8$ | 393 |
| 30 S ． | 1 | Mar．${ }^{\text {c }}$ | $2 \pm 1700$ | 815400 | 133 |  | Sand Key lears NE． ${ }_{4}^{2} \mathrm{E}$ ． |  |  |  |
| 31 S ． | 2 | Mar．${ }^{3}$ |  |  | 134 |  | Near preceding |  |  |  |
| $32 \mathrm{S}$. | 3 | Mar． 29 |  |  | $13 \pm$ |  |  |  |  |  |
| 32 S ． |  | Miar． 29 |  |  | 125 |  | Sand Key bears NE． by N． N ． |  |  |  |
| $34 \mathrm{S}$. |  | Mar． 23 |  |  | 119 |  | Near ureceding |  |  |  |
| 35 S. |  | Feb． 17 | 250360 | 821310 | 13 | brk．Sh | North of Mrarquesas．－ | 67 | 69 | 67 |
| 36 S ． |  | Feb． 18 | 25 0310 | ع－3 55 00 | 25 | bl．M | North of Tort | 66 | 70 | 67 |
| 37 S |  | Feb． 18 | 25 03.30 | 831.415 | 33 | h． 1 |  | 66 | 69 | 64 |
| 38 ふ． |  | F＇ob． 18 | 250340 | 83.20 | 35 |  | Northwest of Torat－ | 67 | 69 | 67 |
| 39 S ． |  | Feb． 18 | 250355 | 834210 | 40 | brk．Sh．Co |  | 74 | 70 | 68 |
| 40 S |  | Feb． 18 | ㄴ $456: 30$ | 841410 | 169 |  | － | 76 | 78 | 55 |
| 41 S. | 24 | Apr． 19 | 270709 | 834709 | 13 | Co．spouge | Off west coast of | 75 | 78 | 83 |
| 42 S ． | 28 | Apr． 19 | 270700 | 83 5100 | 14 | gr．S．brk．Sh． |  | 85 | 78 | S0 |
| 43 S ． | 32 | Apr． 19 | 270700 | ¢83 50 | 15 | gr．S．brk．Sh． |  | 76 | 78 | 79 |
| $44 \mathrm{S}$. | GJ | Apr． 19 |  | $8 \pm 1100$ | 50 | fine．gr．S．blk．Sp |  | 74 | 77 | 74 |
| 45 S. | 70 | Apr． 20 Apr． 2 | $\begin{array}{llll}27 & 07 \\ 20 \\ 20 & 17 & 25 \\ 20\end{array}$ | $8+2609$ $8 \pm 3609$ | 81 3 32 | fue．gr．S wh. S. brk. Sh. | do | 75 | 78 80 | 76 56 |
| 47 s． | 13 | Apr． 23 | 2617 | 8＋3125 | 123 |  | do | 7 | 80 | 57 |
| 48 S ． | 17 | Apr． 23 | 261720 | 8t 2120 | 100 | gr． |  | 78 | 81 | 60 |
| $4) \mathrm{S}$ ． | 34 | Apr． 23 | 261650 | 8：3 4025 | 45 | S | do | 75 | 78 | 67 |
| 50 S | 35 | Apr． 23 | 261650 | $\times 33745$ | 40 | s | do | 74 | 78 |  |
| 51 S ． | 52 | Apr． 24 | 261680 | 83．5720 | 23 | gr．S．M | do | 72 | 78 |  |
| 52 S | 55 | Apr． 24 | 261025 | 8． 5030 | 19 | gr．S．M |  | 71 | 74 |  |
| $53 \mathrm{S}$. | 57 | Apr． 24 | 201625 | 82 47 | 18 | gr．S．brk．Sh | do | 71 | T4 |  |
| 515 | 57 | Ajrr． 21 | 261020 261610 | $\begin{array}{r}82400 \\ 823 \\ \hline 250\end{array}$ | 16 |  |  | 74 | 79 |  |
| 56 s ． | 1 | May 13 | 243425 | 825700 | 8 | Co． | Southwest of Torbu． | 74 | 78 |  |
| 57 S ． | 7 | May 13 | 213040 | 850250 | 15 | crs．S．brk．Sh． | ${ }_{\text {gits }}^{\text {gio }}$ | 74 | 78 | 85 |
| 58 S． | 9 | May 13 | 24.2655 | 83.3935 | 37 | blk sp．brls． | do | 76 | 78 |  |
| 59 S | 12 | May 13 | 242300 | 8317.9 | 125 | ［1．M |  | 78 | 79 |  |
| 60 S ． | 15 | May 13 | $2+1950$ | 832400 | 600 | gr． | do | 79 | 82 |  |

Note．－Either the depth or the position of 60 S ．must be erroncous，as there is less than 300 fathoms there．

During the season of $1876-78$ the dredging operations from Decem． ber to March were in charge of Prof．Alexander Agassiz，and were con－ ducted upon the Blake，Lieut．Commander C．D．Sigsbee，U．S．Navy， commanding．The cruise extended from Key West to Havaua，from Havaua westward along the north coast of Cuba，from Key West to the Tortugas，thence to the northern extremity of the Yucatan Bank and Alacran Reef，to Cape Catoche and across to Cape San Antonio， returuing to Key West，and from Key West to the Tortugas，and north－ ward to the mouth of the Mississippi River．The positions were orig． inally published in the Bulletin of the Musenm of Cemparative Zoology at Cambridge，Mass．，September，1879．In giving these positions on the charts，etc．，the word Ag．has been added to the numbers in the bulletin so as to distinguish them from the dredgings of the U．S．Fish Commission，Count Pourtales，etc．The positions from 1 Ag ．to 4 Ag ． are taken from Sigsbee＇s original charts．

Dredgings made by the Blake in 187\％－78．

|  | Latitude N． | Longi－ tude． W． | Depth． | Locality． | Tempera－ tures． |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | ¢ | シ |
|  | 011 | ＇ | Fathoms． |  | － | $\bigcirc$ |
| 1 Ars． | 231400 | 822560 | 801 | North of Havana | 73 | 393 |
| 2 Am． | 231400. | 8： 2500 | 805 | －－．．．do | 77 | 39 |
| 3 Ag 。 | 233100 | 821600 | $9 \because 4$ | do | $78 . \frac{3}{3}$ | 39 |
| 4 Ag． | \％3 3930 | $821 \pm 00$ | 936 | －－．－do | $77 \frac{1}{3}$ | 39 号 |
| 5 － 5 ． | 241500 | 821300 | 152－229 | South of Marquesas Keys，Florida |  | $49{ }^{2}$ |
| 6 Ag \％ | 241730 | 820900 | 137 | ．．．－－do $\qquad$ Only mud brousht，up |  |  |
| $9 \mathrm{Ag}$. |  |  | 111 | Seven miles S．by IV．from Sand Ke | 70 | 55를 |
| 10 Ag ． | 244400 | 832600 | 37 | West of Sortugas．－．－．－．．－．．． |  | 53 |
| 11 Ag ． | 244300 | 832500 | 37 | ．．．．．．do ．－．．．．．．．．． |  |  |
| 12 Ag ． | 243400 | 831600 | 36 | ．．do |  |  |
| 13 Ag． |  |  | 742 | North of Harana． |  |  |
| 14 A¢． | 231800 | 822100 | 850－900 | ．．．．．．do |  |  |
| 15 Ag ． | 231400 | 822500 | 785 | ．．．．．．do |  |  |
| 16 Ag ． | 231100 | 83.3300 | 292 | ．－．．．．do ．．．．． | 77 | 555 |
| 17 Ag ． | 230100 | 824300 | 320 | Off Mariel，Cuba | 76 | 50 号 |
| 18 Ag ． | 230700 | $8=4330$ | 756 | ．．．．do do．．．．．．．．．．．．． | 76 | $40^{2}$ |
| 19 Ag ． | 230300 | 831030 | 310 | Off Bahia Honda，Cuba | 73 | 5 |
| 20 Ag ． | 230230 | 831100 | 220 | ．．．．．．dlo ．．．．．．．．．．．．．．．．． | 76 | 4 |
| 21 As． | 230200 | 831300 | 287 | ．．．－do |  |  |
| 22 Ag ． | 230100 | 831400 | 100 | ．．do | 77 | $7{ }^{\circ}$ |
| 23 Ag ． | 230100 | 831400 | 190 | －．．．．．do | 77 | tit |
| 24 A | 230230 | 831300 | 342 | －．．．dlo | 76 | 50 |
| 25 Ag． | 230400 | 831230 | 635 | W．．．do．．．．．．．．．． | 78 | $40 \stackrel{1}{2}$ |
| 26 Ag ． | 243730 | 833600 | 110 | West of Tortugas | 7 | $5 \times 2$ |
| 27 Ag ． | 243000 | 834900 | 393 |  | 73 | $44 \frac{1}{3}$ |
| 28 Ag． | 243400 | $8 \pm 0000$ | －$\quad 863$ | －．．．．．do | 75 | $39 \frac{1}{3}$ |
| 29 Ag ． | $\begin{array}{r}24 \\ 24 \\ \mathbf{2} \\ \hline\end{array} 330000$ | 81 <br> 81 <br> 81 <br> 1500 | 955 | ．．．．．．．do |  | 391 |
| 30 Ag 31 Ag | 243300 243300 |  | 1．968 | －do |  | $39 \frac{1}{3}$ |
| 32 土 ${ }_{\text {g }}^{\text {g }}$ ． | 23 3200 | 88 0500 | 1， 920 | North part of Yucatan Bank |  | 392 |
| 33 Ag ． | 240100 | 885800 | $\left\{\begin{array}{c} 1,400 \text { to } \\ 1,568 \end{array}\right\}$ | North of Yucaton Banb | 72. | 40. |
| 34 Ag ． | 235200 | 885600 | 400－600 | ．．．．．．．do | 81 | $\dagger 40 \%$ |
| 35 Ag ． | 235200 | 885800 | S0t | －．．．．dlo ．．．． | 78 | $40{ }^{1}$ |
| 36 Ag ． | 231300 | 891000 | 84 |  | 74 | $60^{2}$ |
| 37 Ag ． |  |  | 35 | Northwest ond of Alacran Reef，Yucatan Bankz．． |  |  |
| 38 Ag ． | 231000 | 888500 | 20 | North part of Yneatan Bank．．．．－．．．．．．．．．．．．．．． |  |  |
| 39 Ag ． |  |  | 14 | Sixteen miles north of Jolbos Islands，southwest part of Yucatan Bank． |  |  |
| 40 A ． | 232600 | 840200 | 1，323 |  | 77 | 40 |
| $41 . \mathrm{Ag}$ ． | 234200 | 831300 | 860 |  | 73 | 391 |
| 42 Ag ． | 235300 | 830430 | 620 | ．do |  | 393 |

Iredyinys made by the Blake，ctc．－Continued．

| ¢ | $\begin{gathered} \text { Latitude } \\ \mathrm{X} . \end{gathered}$ | $\begin{aligned} & \text { Lonui- } \\ & \text { tunde } \\ & \text { W. } \end{aligned}$ | Depth． | Locality． | Tempera－ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | 迷 | 发 |
|  |  |  | Futhoms． |  |  |  |
| ${ }_{44}^{43 \mathrm{Ag} .}$ | ${ }^{24} \begin{aligned} & 25 \\ & 23 \\ & 3300\end{aligned}$ | 825100 <br> 84 <br> 85 <br> 80 | 339 539 | South of Dry Tortugas．．．．．s Nortinwest of Dry Tortugas | $74 \frac{1}{3}$ | ${ }_{392}^{45}$ |
| 43 Ag ， | ${ }^{25} 3300$ | 8t 2100 | 101 | ．．．．d． do ．．．．．．．．．．．．．．．．．． |  | 61 |
| 46 Ac ． | 254309 | 844730 | 888 |  |  | 391 |
| 47 Ag ． | 284200 | 884090 | 3312 | Off mouth of the Mississippi． | ${ }_{66} 7$ | ${ }_{41}^{468}$ |
| 48 Ag ． | 284730 | 88.4180 |  |  |  |  |
| 49 A ． | 285130 | 890239 <br> 85 <br> 583 <br> 109 | ＋118 |  |  |  |
| 50 Ag ． | ${ }^{26} 3100$ |  | ${ }^{*} 4189$ | Offi Havana |  |  |
| ${ }_{5}^{51}{ }_{5}^{\text {Ag．}}$ | ${ }_{23} 0900$ | 822300 | －${ }_{158}$ | ．．．．．tho |  |  |
| 53 Ag ． |  |  | ＂12 | do |  |  |
| 54 Ag ． | 230900 | 83210 | 242 | do |  |  |
| ${ }_{56} 58 \mathrm{~g}$ ． | 230900 | 83 21130 | 175 | dro |  |  |
| 57 Ag ． | 230915 | 82 2100 | 175 |  |  |  |
| 58 Ag ． | 230930 | 82 1130 | 242 | ．${ }^{\text {d }} 10$ |  |  |
|  |  |  | 480 | …．．．do |  |  |
| 61 Ag ． | 23096 | 820100 | 243 | ．．．．．．do |  |  |
| $6^{63} \mathrm{Ag}$ ． |  |  | 80 |  |  |  |
| ${ }^{6} 3 \mathrm{dg}$ ． |  |  | 171 |  |  |  |
| ${ }^{61} \mathrm{Ag}^{5}$ |  |  | 129－310 | ．．．．．10 |  |  |
| ${ }_{66}^{65} \mathrm{Ag}$ ． |  |  | $80-180$ | du |  |  |
| 67 As ． |  |  | 13x－240 | do |  |  |
| 68 Ag ． |  |  | $243-488$ |  |  |  |
| 69 Ag ． |  |  |  | （1） |  |  |
| 70 Ag ． |  |  | 111 | orsami |  |  |
| ${ }_{71} \mathrm{Ag}$ ． |  |  | 4 | Off Havana |  |  |
| $7_{73 \mathrm{Ag} \text { ．}}$ | 232500 | 831100 | 220 | North of Balia Honda，Cub |  |  |
| 74 Ag ． | 232500 | 831100 | 207 | ．．．．．．do |  |  |
| 75 Ag． |  |  | 992 | Off Havaua |  |  |
| 76 Ag 77 Al ． |  |  | 2t0 |  |  |  |
| 78 A． |  |  | $1 \times 9$ |  |  |  |
|  |  |  | 175 | ．．．do |  |  |

Note．－Stations 50 to 79 wero occupical hy Lient．Commander Liossbe whife in search of Pentacrinus． ${ }^{*}$ The position or depth must be wrong，as there are 1,700 fathoms there；perhaps $28^{\circ} 31^{\prime}$ ．

No dredgings appear to have been taken to which the numbers 80 to 99 in this series were originally given，but on the original chart of Sigsbee＇s cruiso seren dretging stations are markel，which are not contained in Professor Agassiz＇s list in the bulletin．To these，num－ bers from 50 to 86 Ag ．have been assigned．

| $\stackrel{\square}{*}$ |  |  |  |  |  | Te | ra. <br> S． |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & \text { Latitude } \\ & \text { N. } \end{aligned}$ | $\begin{aligned} & \text { Longi- } \\ & \text { tude } W . \end{aligned}$ | Depth． | Kind of bottom． | Locality． |  | 等 |
|  | －＇ 1 | $\bigcirc{ }^{\circ}$ | Faths． |  |  | － | $\bigcirc$ |
| 80 Ag ． | 22 293900 | 815900 | $1,2,2$ | 1t．br．MT．aud S | Northwest of Cuba <br> Suuth part of Campeche Bank |  |  |
| 81 Ag ． | 22 1130 | 88 <br> 88 <br> 86 <br> 86 <br> 10 <br> 10 | 1，501 | S．and Sh <br> 1t．br． 11 | South part of Campeche Bank Northeast of Campecho Bank． |  |  |
| 82 Ag ． | 23 4800 | 861030 863130 | 1，501 | 1t．br．M．M．${ }^{\text {It．}}$ ． | Northeast of Campecho Bank． <br> do |  |  |
| 83 Ag ． | $\begin{aligned} & 23500 \\ & 23 \\ & 90 \end{aligned}$ | 863130 <br> 89 <br> 89 <br> 1230 | 603－9 | $\begin{aligned} & \text { lt. br. M.? } \\ & \text { lt. br. M. } \end{aligned}$ | North edge of Campeche Bank |  |  |
| 884 Ag. | $\begin{aligned} & 232000 \\ & 2318 \quad 10 \end{aligned}$ | 89 <br> 89 <br> 89 <br> 13 <br> 12 | $8{ }_{82}$ | Co．AI and | －．－．．lo．．．．．．．．．．．．．．．．．．．． |  |  |
|  | 23 23 16 | 891600 | 91 | Co．M．and S |  |  |  |

During the season of $1878-979$, the dredgings, from December to March, were iu charge of Prof. Alexander Agassiz, upon the Blake, commanded by Commander J. R. Bartlett, U. S. Navj. The cruise extended from Key West to Harana, from Havana to Jamaica through the Old Bahama Channel and Windward Passage, from Jamaica to St. Thomas, along the south coast of Hayti and Porto Rico. From St. Thomas the Blule visited Santa Cruz, Saba Bank, Montserrat, St. Kitts, Guadeloupe, Dominica, Martinique, St. Lucia, St. Vincent, the Grenadines, Grenada, extended the dredgings as fur as the 100 fathom line off Trinidad, returned to St. Vincent, and fiuished the dredging operations at Barbados. These positions were also published in the Bulletin of the Museum of Comparative Zoology, September, 1879, and are distinguished in the same manner as the preceding ones. The serial numbers, temperatures, and localities are taken from the Bulletin, while the depths, latitudes, and longitudes, nature of bottom, original numbers of casts, and letters designating lines are mainly taken from "Hydrographic Notice No. 9 of 1882," published by the U. S. Hy. drographic Office, with the exception of about a dozen hauls, to which no latitudes or longitudes are aftised.
Dredgings mate by the Blake in 1878-'79.





 कi



[^122]tinned．

| 岂 | －su07tog |
| :---: | :---: |
| 会完 | －－－ |
| － | － 201 fr m |




（
亲 476 Fine sand，我
 liough ． 8
8
8
8
8
0
0 Sum，ro $k$
Fine sazd Ooze ．．．．．．．． lock ．．．． Sund，0oze Fine black sand． Fino sand．

| 苀 |  |
| :---: | :---: |
|  |  <br>  <br>  |
|  |  <br>  <br>  |
| ＇7ธษo jo．tayume |  |
| $\stackrel{\text { g }}{\underset{\sim}{ت}}$ |  0 <br>  <br>  |
| $\underset{\sim}{B}$ |  |
|  |  <br>  <br>  |




告 ：80

Fine dark sand．







かけゆった



Dredgings made by the Blake，etc．－Continued．

|  |  |
| :---: | :---: |
|  |  |
|  | (! a o : 促 |
| 8 |  |
|  |  <br>  <br>  |
| 总 |  <br>  <br>  |
|  |  |
| ＋ |  |
| 宊 |  |

The following stations were occupied by Commander J. R. Eartlett on the Blake, from February to May, 1880. They are all, except the first three, in the western Caribbean, between Cuba, Jamaiea, and Honduras:

| Sta. tion. | Latitule N. | $\begin{aligned} & \text { Longi- } \\ & \text { tade W. } \end{aligned}$ | Depth. | Nature of bottom. | Locality. | Tempera. tures. |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | $\begin{aligned} & \stackrel{0}{0} \\ & \underset{\sim}{\Xi} \\ & \underset{\Xi}{\Xi} \\ & \hline \end{aligned}$ | $$ |
|  | - '" | - 1 | Fath. |  |  | 1 | - |
| I |  |  | 145 |  | 9 miles E. $\frac{3}{3}$ N. of Mathewtown, Gt. Inama Island. |  | 615 |
| IV | 201100 | $7333 \% 00$ | 766 | Hard coral sand. | Ott east end of Cuba ............. |  | 40 |
| IV* | 202415 | 735659 | 772 | sponge. <br> Coral sand, stones, | do |  | 398 |
| $\nabla$ |  |  | 288 | Sand mud, black specks. | 3.3 miles SE. by E 1 E. from Santiago de Cuba Light. |  | 5.3 |
| VI | 175150 | 764500 | 250 | Mud.... ... | Off Port Royal, Jamaica ....... | 80 | 562 |
| VII | 172830 | 773000 | 8110 | Coral sabd | South of Jamaica |  | 41 |
| VIIL | 174500 | 775840 | 32? | . . .do | - -. - . do |  | 52 |
| IX | 181200 | 782000 | 254 | Mud | Weat of Jamaica |  |  |
| X | 181320 | 783640 | 103 | Coral | -..- - do...... |  |  |
| XI | 173000 | 791200 | 5.5 .5 | Coral sand, ooze. | West of Pedro Bank |  | 41 |
| XIII |  |  | 272 | Cozal ......... | 1 mile west of Georgetown, (xrand Cayman Island. |  | 56 走 |
| XIV |  |  | 608 | Coral sand | Off Grand Cayman Island..... |  | 41 |
| XV | 185100 | S3 07 00 | 903 | Coral saud, ooze, pteropods. | East of Misteriosa Bank . |  | 41 |
| xyII | 182320 | 872130 | 41 | Coral ........... | South of Chinchorro Bank |  | 79 |
| XVIIL | 182030 | 871640 | 630 | Coral sand, ooze .. | do |  | 41) ${ }^{\text {d }}$ |
| X $\Sigma$ | 164200 | 830100 | 951 | Coral sadd, gray поze. | No:'theast of Hondura |  | 39 2 |
| XXI | 194800 | 771700 | 33 | Coral ...........-. | East of Cape Cruz, Cuba |  |  |
| XXII | 19 40 47 | 758300 | 250 | Mud..... |  |  |  |
| XTIV |  |  | 206 | Coral sand | 5 miles east of Cape Cruz, S. side Cuba. |  |  |
| XXVI |  |  | 297 | do | 1 mile N. of W. end Cayman Brac Island. |  |  |
| XXIK | 212319 | 835442 | 300 | do | Soutlu of Isle of Pines ........ |  | 55 |
| XXX | 212630 | $86 \quad 2840$ | 51 |  | East of Cape Catoche, Yucatan |  | 69 |
|  |  |  | 109 |  | Off entrance Port Royal, Jamaica. |  |  |

## The following stations were occupied by the Blake during the dredg． ing cruise of the summer of 1880 ：

Stations 301 to 303 are on the lines run off the northeastern extremity of George＇s Bank．
Station 309 is intermediate between the northeastern extremity of George＇s Bank aud the next line run oft Newport，which includes stations 310 to 312.
Stations 313 to 318 are in a line normal to the coast in abont latimde $32^{\circ}$ north．
Stations 319 to 323 are in a line parallel to the coast in the so－called axis of the Gulf Stream．
Stations $3: 4$ to 329 ，south off Cape Hatteras．
Stations 330 to 333 ，north off Cape Hatteras．
Stations 334 to 339 ，east off Cape May．
Stations 340 to 347 ，normal to coast sontheast off Montank Point．
Dredgings by the Blake in 1830.

|  | Line． | Date． |  | Latitude N． | Longi－ tude W． | Deptl． | Nature of bottom． | Tempera． tures． |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  | $\underset{\sim}{\text { B }}$ |
|  |  | 1880. |  | － 11 | $\bigcirc 11$ | Futh． |  | $\bigcirc$ | 0 |
| 301 Ag ． | A | June 28 | 3 | 412655 | 660300 | 71 | Tellow sand，black speeks | 55 | $4 \cdot \frac{1}{2}$ |
| 302 Ag ． | A | June 28 | 4 | 413000 | 660000 | 73 | Yellow sand，black specks， shells． | 53 | $4 \pm \frac{1}{3}$ |
| 303 Ag ． | A | June 28 | 6 | 413430 | 6.5430 | 305 | Gray sand，black specks，mud． | 61 | 40k |
| 304 Ag ． | A | June 28 | 8 | 413500 | 655730 | 139 | No sperimen． | 62 | 44 |
| 305 Ag ． | A | June 28 | 9 | 413315 | 65518 | 810 | Darls－stay mud，sand，ston9s．． | $56 \frac{1}{2}$ | 39 |
| 206 Ag ． | A | Juno 29 | 12 | 413250 | 635500 | 524 | － | 59 | $39 \frac{1}{2}$ |
| 307 Ag ． | $\Lambda$ | June 29 | 16 | 412945 | 654710 | 980 | Diak－may mut | 68 | 38 |
| 308 As． | $\Delta$ | June 29 | 19 | 412445 | 65 35 30 | 1，212 | ．do | 65 | 38 |
| 319 A | A | Jane 30 | 29 | 401140 | 68230 | 304 | Dark－gray mud， | 63 | $40 \frac{1}{2}$ |
| 310 Ag． | 13 | July 1 | 1 | 395900 | 701845 | 260 | Green mad | 69.8 | 43 |
| 311 A ${ }^{\text {g }}$ | 13 | July 1 | 3 | 395920 | $70 \quad 1130$ | 143 | Green sand，black specks | $7(0)$ | $45 \frac{1}{2}$ |
| 312 Ar． | 13 | July I | 6 | 395030 | 701100 | 466 | Iark－rreen mud，¢reen sand | 71. | 40 |
| 313 Ag． | C | July 19 | 3 | 323150 | 784500 | 75 | Fine gray sand，black specks ．－ | 83 | $61 . \frac{1}{5}$ |
| 314 A | C | July 12 | 4 | 32.200 | 784400 | 142 | Green sand，blackspecks ．．．． | 81 | $56 \frac{2}{2}$ |
| 315 Ag． | C | July 12 | 6 | 321820 | 784300 | 225 | Green sand．black spects． broken shell． | 80. | 43 |
| 316 Ag． | C | Tuly 12 | 9 | 320700 | 783730 | $2 \cdot 9$ | Pebbles．．． |  | 48 |
| 317 A ¢ \％ | C | July 12 | 11 | 315700 | $7818 \quad 35$ | 334 | Hamd | 85 | 45 |
| 318 A岳． | O | July 12 | 14 | 314850 | 775159 | 337 | Coral shell | $84 \frac{1}{4}$ | 47 |
| 319 Ag． | C | July 13 | 20 | $3: 2500$ | 774230 | ＇6t2＇ | Coral saud | 84 | $45 \frac{1}{2}$ |
| 320 Ag ． | C | July 13 | 21 | 323315 | 77 （i） 10 | 957 | Gray sand，black speeks，shells． | $84 \frac{1}{2}$ | 51 |
| 321 Ag ． | C | July 13 | 23 | 324325 | $77 \times 030$ | 333 | Globiqerina，oozo | 81 | $53 \frac{1}{2}$ |
| 322 Ag ． | C | July 14 | 29 | 331000 | 763215 | 362 | Coral，sand，globigerina，ooze． |  | $46^{\frac{1}{2}}$ |
| 323 Ar． | C | July 14 | 31 | 331900 | 7612 | 457 | Globigerina，ooze． | 83 | 40 |
| 324 Ag ． | 0 | July 14 | 33 | 332790 | $75 \quad 5330$ | 1，386 | －． 10 | 81 |  |
| 325 A | D | July 14 | 1 | $3335 \geqslant 0$ | 760000 | 647 | dio | 813 | 39 |
| 326 Ag． | $1)$ | July 14 | $\stackrel{3}{2}$ | 334215 | 760050 | $46 \pm$ |  | $84 \frac{1}{2}$ | $39 \frac{1}{2}$ |
| 327 А尔． | I | July 15 | 9 | 3400 30 | 761030 | 178 | ．．．．．．．do | 83 | $49 \frac{1}{2}$ |
| 328 Ag． | E | Suly 15 | 1 | 342845 | 752.50 | 1，6：3 | ．．．．．．（to | $84 \frac{1}{3}$ | 37 |
| 329 Ag ． | E | July 15 | 4 | 344940 | 751410 | 603 | ， | $84 \frac{1}{2}$ | $-359$ |
| 330 Ag ． | E | July 16 | 13 | 354103 | 743100 | 1，047 | Mlobigerina，ooze， | 85 | $38 \frac{1}{2}$ |
| 331 A号． | E | July 16 | 17 | 354440 | $7440 \geq 0$ | 898 | （ alobigerina，ooze | 81 | 39 |
| 332 Ag ． | E | July 17 | 21 | 354530 | 74 4800 | 263 |  | 792 | 412 |
| 33.5 Am． | E | July 17 | 23 | 354525 | 7459 30 | 63 | Clay | 79 |  |
| 334 Ag． | ${ }^{\text {r }}$ | July 18 | 1 | 3520.30 | 732640 | 395 | Globigerina，ooze，clay | 781 | 41 |
| 335 A | F | July 18 | 4 | 382305 | 733340 | 89 | Gray saud，black speck | $77 \frac{1}{3}$ | 56 |
| 336 Ag． | F | July 18 | 5 | 38.2150 | 733200 | 197 | Fiue gray sand，mud | $77 \frac{1}{2}$ | 4. |
| 337 Ag ． | ${ }^{3}$ | July 18 | 6 | 38.2008 | $7323 \leq 0$ | 740 | Globiveriua，ooze | 79 | 392 |
| 338 A¢． | F | July 18 | 8 | 381840 | 731810 | 923 | －do | 79 | 39 |
| 339 Ag． | F | July 18 | 10 | 381645 | 731030 | 1， $186^{\circ}$ | ． 11 | 78 | 39 |
| 340 Am | G | July 20 | $\stackrel{2}{2}$ | 392530 | 70.5810 | 1，391 | ．．．．．．．lo | $76 \frac{1}{2}$ | 38 |
| 34）Ag． | $(1$ | Tuly 20 | 5 | $3938 \div 0$ | 705600 | 1，241 | －．．．dlo．． | 76 | 28 |
| 342 Ag ． | G | July 20 | 6 | 394300 | 7055 | 1，003 | Blac clay | $76 \frac{1}{3}$ | 39 |
| 343 Ag ． | G | July 20 | 8 | 394540 | 705300 | 732 | Green sand | $75 \frac{1}{4}$ | 39.1 |
| 344 － g ． | C | July 21 | 12 | 400100 | 705800 | $1: 9$ | －－．－．do | $74 \frac{1}{3}$ | 51 |
| 345 A ${ }^{\text {g }}$ ． | G | July 21 | 13 | 401015 | $710 \pm 30$ | 71 | Green mud，broken shell，sand． | 73 | 51 |
| 346 A哭。 | G | July 21 | 14 | 40.535 | 711030 | 4：12 | Green mud． | 75.3 | 69 |
| 347 Ac | Gr | July 21 | 15 | 405900 | 712230 | $\because 4$ | Coarse black sand，yellow spects． | $72 \frac{1}{2}$ | 60 |

## DREDGING STATIONS OF THE CHALLENGER IN THE AT. LANTIC OCEAN, 1872 TO 1876.

The British steamer Challenger left Englaud for her scientific trip, around the world in December, 1872, and returned to England in May, 1876. She was under the command of Captain Nares, aud the scieutific operations were under the charge of Dr. (afterward Sir) Wyville Thompson.

The serial numbers in the following table are those of the stations at which serial temperatures, trâwlings, and dredgings were obtained, not those of the soundings, which had a separate numbering, rumiag up to 504 . This table includes only the stations in the Atlantic, and of these ouls those at which dredgings and trawlings were made are given, except from No. 23 to No. 53 (including all stations in North American waters). For these all stations, which includes also all the somanges made, are given, and they are placed upon the accompanying charts. In the ninth column, D. siguifies dredging ; T. trawling.

Dredging stations of Challenger, 1872 to 1876.


Dredging stations of Challenger, etc.-Continued.


Dredging staiions of Challenger，etc．－Continued．

| \&் |  |  |  |  |  |  | pera- es. | $\underset{\sim}{x}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Date． | Latitude． | tude． | Depth． | Nature of bottom． | ジ | $\begin{gathered} \text { B } \\ \stackrel{y}{3} \\ \text { B } \end{gathered}$ | $\frac{A}{3}$ | Locality． |
| 106 | $1873 .$ | North． －＂＂ | $\begin{gathered} \text { West. } \\ o_{1}, \\ 242600 \end{gathered}$ | Fath． | Globigerina，ooze | 78.8 | 36.6 | T． |  |
| 10 |  |  |  |  | Globigerina， |  |  |  | St．Paul＇s liocks． |
| 107 | Aug． 26 | 12200 | 263600 | 1，500 | do．．．．．．．．．．．． | 78.8 | 37.9 | T． | Do． |
| 109 | Ang． | 05538 | 292235 | 104 | Hard ground．． | 77.7 |  | D． | Do． |
| 120 | Sept． 9 | 83700 | 312800 | 675 | Red mud | 78 |  | T． | Between Pernam－ |
| 121 | Sept． 9 | 828 | 343100 | 500 | do | 78 |  | T． | Do． |
| 123 | Sript． 10 | 90500 | 345000 | 350 | do | 77.5 |  | T． | Do． |
| 129 | Sept． 10 | 91000 | 345200 | 120 | do | 77.5 |  | T． | 1 o． |
| $122 b$ | Sept． 10 | 909 | 345300 | 32 | ．．do | 77.5 |  | T． | Do． |
| $12 . c$ | Sept．10 | 91009 | 3ト 4900 | 400 | d | 77.5 |  | T． | Do． |
| 124 | Sept． 11 | 101100 | 352200 | 1，600 | d | 77.5 |  | T． | ）o． |
| 126 | Sept．12 | 104600 | 360800 | 270 | ．do | 77 |  | T． | Do． |
| 12fa | Sept．12 | 104500 | 360900 | 700 | －．．d | 77 |  | T． | Do． |
| 129 | Sept． 30 | 201300 | 351900 | 2，150 | do．．．．．．．．．．．． | 74 | 34.2 | D． | Bahia to Tristan da Cunha． |
| 130 | Oct． | 2631500 | 325600 | 2，350 | Red clay | 69 | 34.7 | T． | Do． |
| 131 | Oct． | 293500 | $28 \times 900$ | 2， 275 | Globiserina，ooze | 65 | 34.6 | T． | Do． |
| 133 | Oct． 11 | 354100 | 205500 | 1，900 | ．．．．do．．．．．．．．．．．． | 58 | 35.4 | T． | Do． |
| 134 | Oct． 14 | 361200 | 121000 | 2， 025 |  | 53.5 | 36 | D． | Off Tristanda Curina． |
| 135a | Oct． 16 | 371650 | 124515 | 75 | Hard ground， | 51 |  | D． | Do． |
| 135 c | Oct． 17 | 372580 | 122830 | 110 |  | 54 |  | D． | Do． |
| 133 d | Oct． 17 | 372500 | 1230 30 | 72 |  | 54 |  | 1. | Do． |
| 1350 | Oct． 18 | 372100 | $12 \times 230$ | 1，000 | Hard groumd， shells，gravel | 53.5 |  | D． | Do． |
| 135 f | Uct． 18 | 371445 | 122015 | 1，100 | Hard ground | 53.5 |  | D． | Do． |
| 1359 | Oct． 18 | 371050 | 121830 | －5，50 |  | 54 |  | D． | Do． |
| 136 | Oct． 20 | 364300 | 71300 | $\because, 100$ |  | 54 | 35.2 | D． | Tristan da Cumba to south of Cape |
| 137 | Oct． 23 | 355900 | $\begin{gathered} \text { East. } \\ 1340 \end{gathered}$ | 2， 550 | Red clay | 56.1 | 34.5 | D． | of Grood Hope． Do． |
| 141 | 1）ec． 17 | 354100 | 183600 | －， 98 | Green san | 66.5 | 49.5 | D． | $1 \%$ |
| 142 | Dec． 18 | 850400 | 183 3700 | 1.50 | do | 65.5 | 47 | 1. | Do． |
| 143 | Dec． 19 | 364800 | 192400 | 1，900 | Globigerina，ooze | 73 | 35.6 | 1. | Do． |
| 313 | $\begin{gathered} 1876 . \\ \text { Jan. } 20 \end{gathered}$ | 522000 | $\begin{gathered} \text { West. } \\ 67: 3000 \end{gathered}$ | 55 | Sand | 48.2 | 47.8 | T． | Straits of Magellan to Falkland Is1－ |
| 314 | Jan： 21 | 513500 | 653900 | 70 | do | 48 | 46 | T． | D\％． |
| 3140 | Jan． 2 | 512400 | 614600 | 120 | Hard ground | 49 | 41.8 | T． | D\％ |
| 315 | Jan． 26 | 514009 | 575000 | 12 | Smd，iravel． | 50 |  | D． | Do． |
| 316 | Feb． 3 | $513^{3} 200$ | 580600 | 4 | dind． | 51.2 |  | D． | Falkland Islands to Rio delaPlata |
| 317 | Feb． 8 | 483700 | 551700 | 1，035 | $\begin{aligned} & \text { Hard ground, } \\ & \text { gravel. } \end{aligned}$ | 46.7 | 35.7 | T． | Do． |
| 318 | Feb． 11 | 423200 | 562900 | 2，040 | Blue mud．．．．．． | 57.5 | 33.7 | T． | Do． |
| 320 | F＇eb． 14 | 371710 | 533200 | 600 | Greeu sand | 67.5 | 37.2 | ＇T． | Do． |
| 321 | Fel，${ }^{5} 5$ | 350300. | 55.1500 | 13 | Mud | 73.5 |  | T | Do． |
| 322 | Feb． 26 | 352000 | 534200 | 21 | Sand，shells | 71.5 |  | T． | Do． |
| 323 | Feb． 28 | 353900 | 504700 | 1，900 | Blae mud | 73.5 | 33.1 | ${ }^{\text {T }}$ ． | Rio de la Plata to TristandaCumha． |
| 324 | Feb．${ }^{2} 9$ | 300900 | 48.290 | 2,800 |  | 71.5 | 32.6 | T． | Do． |
| 325 | Mar．： | 364410 | 463600 | 2， 650 |  | 70.8 | 3．． 7 | T． | Do． |
| 331 | Mar． 9 | 374700 | 302000 | 1，715 | Giobigerina，ooze | 64.5 | 35.1 | T． | Do． |
| 332 | Mar． 10 | 372900 | $\because 73100$ | 2，260 | ．．．do | 67 | 34 | T． | Do． |
| 333 | Mrar． 13 | 35.3600 | 211200 | ${ }^{2}, 025$ | do | 67 | 35.3 | T． | Do． |
| 334 335 | Mar． 14 | 35450 | 183100 | 1，915 | Pteroped 00ze． | 68.5 | 35.8 | T． | Do．${ }^{\text {Dristan da cumba }}$ |
| 335 | Mar． 16 | 322100 | 130500 | 1，425 | Pteropod．ooze．． | 73.5 | 37 | D． | Tristan da Cunha to Ascension Isl ands． |
| 337 | Mar． 19 | 243800 | 133600 | 1，240 | do．．．．．．．．．．．． | 77 | 37.2 | D． | Do． |
| 338 343 | Mur．${ }^{21}$ | 211500 8193190 | 14 142200 14 1 | 1，990 | Globigerina，ooze Voluanic saut． | 76.5 | 36．？ | D． | Do． |
| 344 | Apr．${ }^{\text {a }}$ | 75420 | 14.8 |  | Voluaic sazt． | $8:$ | 40.5 | D． | Ameension toramds |
| 346 | Apr． 6 | 24200 | 144100 | 2， 250 | Globigerima，ooze | 83.7 | 34 | D． | Cape de Verdes． Do． |
| 348 | Apr． 9 | $\begin{aligned} & \text { North, } \\ & 31000 \end{aligned}$ | 145100 | （2，459） |  | 34 |  | D． | Do． |

# DEEI'SEA DREDGINGS OF LE TRAVATLLEUR. 

## Abstract of तecp-sea dredgings in the Bay of Biscay, the Atlantic Ocean, and the Mediterranean, by the French dispatch boat Lo Travailleur.

fUnder the command of M. E. F. Richards, Lieutenant de Vaisseay, by a commission of naturalists, of which M. Milne Edwards was president.]

BAY OF BISCAY IN 1880.


Alotract of deep-sea dredgings in the Bay of Biscay, ctc.-Continued.
BAT OF BISCAY IN 1880-Continued.

| Dates. |  | Positions. |  |  | Character of bottom. |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Latitude. | Longitude. |  |  |
|  |  | North. <br> - , " | West. | Faths. |  |
| July 29 | 68 | 433235 | 2.0930 | 167 | Mud. |
| Do. | 69 | 433620 | ${ }_{2}^{2} 1700$ | 308 | Mud. |
| July 30 | 70 | 433745 433730 | 2 2 2 06000 | 930 | Mud. |
| Do. | 72 | 433730 433345 | 20620 15915 | 625 349 | Mud. Mud. |
| Do. | 73 | 433240 | 15250 | 77 | Fine sand. |
| Do. | 74 | 433500 | 15255 | 93 | Sand. |
| Do. | 75 | 433630 | 15335 | 231 | Mud. |
| Do. | 76 | 433730 | 15345 | 419 | Mud. |
| Do. | 77 | 433750 | 15155 | 449 | Mud. |
| Do. | 78 | 433800 | 14730 | 155 | Mud. |
| Do. | 79 | 434015 | 15055 | 77 | Saud. |
| July 31 | 80 81 | 434125 434225 | 210210 15300 | 97 | Sand. |
| Do. | 82 | 434115 | 14700 | 78 | Mud. |
| Do. | 83 | 434030 | 14515 | 73 | Mud. |
| Do | 84 | 433900 | 14510 | 74 | Mud. |
| Do. | 85 | 433740 | 14535 | 204 | Mud. |
| Do. | 86 | 433540 | 14355 | 336 | Mud. |
| Do. | 87 | 433355 | 14405 | 71 | Mud. |
| Do. | 88 | 433330 | 14205 | 66 | Sand. |
| Do. | 89 | 433600 | 14205 |  | Sand. |
| Do. | 90 | 433715 | 14205 | 74 | Mixed sand and mud. |
| Do. | - 91 | 433825 433920 | 14200 14140 | 239 135 | Soft mud. Mud. |
| Do. | ${ }^{93}$ | 434010 | 14055 | 79 | Mixed sand and ramb. |
| Do. | 94 | 433930 | 13825 | 314 | mixed sand and mud. |
| Do. | 95 | 433820 | 13830 | 74 | Mud. |
| Do. | 96 | 433815 | 14005 | 149 | Mud. |
| Do. | 97 | 433905 | 14025 | 151 | Rock. |
| Do. | 98 | 434025 | 13955 | 79 | sand, rock. |
| Do. | 99 | 434030 | 13830 | 179 | Gray sand, rock. |
| Do. | 100 | 434035 | ${ }_{3} 3810$ | 238 | Mud. |
| Do. | 101 | 434030 433650 | 13510 15745 | 179 612 | Soft green mad. Mud. |
| Do. | 103 | 433540 | 15530 | 514 | Mud. |

IN THE ATLANTIC IN 1881.


Abstract of deep-sea dredgings in the Bay of Biscxy, etc.-Continued.
IN THE MEDITERRANEAN IN 1881.


## DREDGINGS OF THE TRAVAILLEUR IN 1882.

The Trarailleur in 1852 continued the series of dredgings commenced in 1880 and 1851, and extended them from Cape Peuas, on the north coast of Spain, along the coast of Portugal, the Gulf of Cadiz, and the coast of Morocco to the Canary Islands, through the strait of Bocayna (between Fuerterentura and Lanzarote), to Madeira, Lisbon, and back to liochefort. Twenty-one hauls of the dredge were made, in from 100 to 3,700 meters ( 55 to 2,023 fathoms) of water. M. Alphonse Milne-Edwards was in principal charge of the natural history observations. A general report of the expedition was publisked in the Revue Maritime et Coloniale, February, 1883 (Tome LXXVI, page 454), and the details of position, etc., in the Amales Hydrographiques, vol. 5, p. 4, 1883.

The number of the Annales Hydrographiques containing these positions was found to be wanting in all the accessible libraries in the United States, and although ordered from France, failed to arrive in time to allow the positions to be included in this paper.

The Talisman continned the researches carried on by the Travailleur in 1880-92, and extended from the coast of Portugal along the west coast of Africa, touching at the Canaries, to about $17 \circ \mathrm{~N}$. latitude; thence westward to the Cape de Verde Islands; thence northwestwardly to latitude $31^{\circ} 34^{\prime}$, Iongitude $41^{\circ} 15^{\prime}$; thence wortheasterly to the Azores, and thence back to France.
Dredgings by the French steamer Talisman, 1883.


982 REPORT OF COMMISSIONER OF FISH AND FISHERIES. [110]
Dredgings by the French steamer Talisman, 1383-Continued.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(\stackrel{1}{6}\) \& \& \& \& \& \& \& \& \& Tempor \& ature \& \& \\
\hline 䔍 \& Date. \& \[
\underset{\text { North }}{\text { Natitude. }}
\] \& lowitude,
Green.
wich. \& \[
\begin{gathered}
\text { longitude, } \\
\text { l'ans. }
\end{gathered}
\] \& Depth. \& Depth. \& Kind of bottom. \&  \&  \&  \&  \& Locality. \\
\hline 1 \& \& \(\bigcirc 1\) \& \(\bigcirc 1\) \& - ' \& Fathoms. \& Mete \& \& \(F\). \& F. \& C. \& C. \& \\
\hline 36 \& June 18 \& 3159 \& 1009 \& 1229 \& 573 \& 1,048 \& Mud \& \& \& \& \& Coast of Morocco, from Capo Blanco to Mogator. \\
\hline 37 \& June 21 \& 3124 \& 1021 \& 1.241 \& 499 \& 912 \& Red mud \& \& \& \& \& Do. \\
\hline 38 \& June \({ }^{\text {J }}\) \& | \(\begin{aligned} \& 3131 \\ \& 30\end{aligned}\) \& 1027
11
119 \& 1247
13
13 \& 574
1,371 \& 1,050 \& Redo and yellow mud \& \& \& \& \& Jogador to Canaries. \\
\hline 49 \& June \({ }^{2}\) \& i \(\begin{array}{r}3042 \\ \\ \hline 041\end{array}\) \& 1117 \& \begin{tabular}{l}
13 \\
13 \\
\hline 17
\end{tabular} \& 1,512 \& 2, 2,765 \& Red mud............. \& \& \& \& \& Do. \\
\hline 41 \& June 3 \& 8009 \& 1141 \& 1401 \& 1, 209 \& 2, 210 \& Mud \& 71.6 \& 39. 2 \& 22.0 \& 4.0 \& Do. \\
\hline 42 \& Jume 23 \& 3008 \& 1142 \& 1402 \& 1,203 \& 2,200 \& Greasy mud \& \& \& \& \& Do. \\
\hline 43 \& June 23 \& 30005 \& 11.45 \& \(1+05\) \& 1,203 \& 2, 200 \& - . do \& 70.7 \& 39. \(\square^{2}\) \& 21.5 \& 4.0 \& Do. \\
\hline 44 \& June 24 \& 3003 \& 1142 \& 1403 \& 1, 210 \& 2,212 \& Gray mud, broken shells \& 65.7 \& 41.0 \& 18.7 \& 5.0 \& Do. \\
\hline 45 \& J пих \({ }^{2} 4\) \& 3001 \& 1146 \& 1406 \& 1,157 \& 2, 115 \& \& \& \& \& \& Do. \\
\hline 46 \& June \({ }^{5}\) \& \(\bigcirc 95\) \& 11
11
41 \& \(\begin{array}{lll}14 \& 01 \\ 1+0 t\end{array}\) \& 1,151 \& 2, 104 \& - . do \& 67.1 \& 41.0 \& 19.5 \& 5. 0 \& Do. \\
\hline 48 \& June 25 \& -29 29 \& \(\begin{array}{ll}11 \& 44 \\ 11\end{array}\) \& \begin{tabular}{l}
14 \\
1404 \\
\hline 104
\end{tabular} \& 1,139 \& 2,075
2,083 \& -..do \& \(6 . .1\) \& 41.0 \& \& 5. 0 \& Do. \\
\hline 49 \& June 26 \& \(\because 908\) \& 1223 \& 1446 \& 676 \& 1,235 \& Soft yellow mud \& 68.5 \& 47.3 \& 29.3 \& 8.5 \& Do. \\
\hline 51) \& June 20 \& 2903 \& 1228 \& - 14.48 \& 667 \& 1,220 \& Yellow mud \& 71.6 \& 46.4 \& \(\stackrel{2}{2} 0\) \& 8.0 \& Do. \\
\hline 51 \& June 26 \& 2903 \& \(12 \div 9\) \& 1449 \& 636 \& 1,163 \& Mud. \& 70.7 \& 47.7 \& 21.5 \& 8. 7 \& Do. \\
\hline 52 \& June 26 \& 2901 \& 1231 \& 3451 \& 615 \& 1,180 \& Fellow mui \& 60.7 \& 47.3
4.6 \& 21.5
21.0 \& 8.5
7.0 \& Do. \\
\hline 53 \& June 27 \& 2837
2835 \& 1302
1310 \& 1523 \& 413
533 \& \({ }_{9} 975\) \& - . do ...... \& 70.2 \& 45.0 \& 21.3 \& 7. 2 \& 10. \\
\hline 55 \& June 2 \& 2835 \& 1310 \& 1536 \& 677 \& 1,238 \& ...do \& 72. 5 \& 45.0 \& 2 \& 7.2 \& Do. \\
\hline 56 \& June 27 \& 2833 \& 1319 \& 1539 \& 518 \& 946 \& Sand, black specks, ro \& \& \& \& \& Do. \\
\hline 57 \& June 27 \& \(\bigcirc 835\) \& \({ }_{13}^{1319}\) \& 1539
1606 \& \({ }_{19-147}^{497}\) \& 905
\(30-259\) \& \& 72. 5 \& 46.4 \& 22.5 \& 8.0 \& Canary Islands. \\
\hline 58 \& June 28 \& 2848
2849 \& 1346
1353 \& 1600
1613 \& 13-142 \& 30-259 \& Sand, shells petoles \& \& \& \& \& Canary Istands. Do. \\
\hline c0 \& \& 2848 \& 1401 \& 1621 \& 495-678 \& 906-1, 240 \& Muddy sand, rocks \& \& \& \& \& Do. \\
\hline 61 \& July 7 \& 2735 \& 1415 \& 1635 \& 1, 004-1, 102 \& 2, 000-2, 015 \& Yellow mud \& 73.4 \& . 38.3 \& 23.0 \& 8.5 \& From Cauaries to mouth of Senegal, near coast of Africa. \\
\hline 62 \& July 7 \& 2732 \& 1409 \& 1629 \& 1,101 \& 2,013 \& ....do \& 73.0 \& c9. 2 \& 22.8 \& 4. 0 \& 1 \%o. \\
\hline 63 \& July 7 \& 2731 \& 1408 \& 1623 \& 1,080 \& 1,975 \& . do \& 73.0 \& 39.4 \& 2.. 8 \& 4. 1 \& Do. \\
\hline 64 \& July 7 \& 2731 \& 1407 \& 1627 \& 1,049 \& 1,918 \& \(\ldots\). dio \& 73.0 \& 39.4 \& 22.8 \& 4.1 \& \({ }^{1} \mathrm{O}\) O. \\
\hline 65 \& July 8 \& \(\bigcirc 60\) \& 1453 \& 1713 \& 421 \& 782 \& Sund, shells, corals \& \& \& \& 9. 5 \& Do \\
\hline \({ }_{66} 6\) \& \(\begin{array}{ll}\text { July } \\ \text { July } \& 8 \\ \text { ¢ }\end{array}\) \& 2618
2617 \& 14
1452
14 \& 1712 \& 350
191 \& \({ }_{355}^{640}\) \& Sand, corals, shells, corals \& 70.7 \& 49.1 \& 21.5 \& 9.5 \& Do. \\
\hline 68 \& July 8 \& 2616 \& 1451 \& 1711 \& 130 \& 250 \& ...do ....... \& \& \& \& \& Do. \\
\hline 69 \& July 8 \& 2613 \& 1450 \& 1710 \& 96 \& 175 \& do \& \& \& \& \& Do. \\
\hline 70 \& July 8 \& 2607 \& 1448 \& 1708 \& 71 \& 130 \& . \({ }^{10}\) \& \& \& \& \& Do. \\
\hline 71 \& July \({ }^{8}\) \& 2604 \& 1445
1556 \& 1705
1816 \& 56 \& 10.3 \& \& \& \& \& \& Do. \\
\hline 73 \& July
Juiy

9 \& - 2549 \& 1556
1558 \& | 1816 \& 224 \& 410 \& Muddy sand, corals, shelis \& \& \& \& \& Do. <br>
\hline
\end{tabular}





riーか







| 范 |  |
| :---: | :---: |
| －．${ }_{\text {¢ }}$ |  |
|  |  |
|  |  |
| －วuguns |  |
|  |  |
| $\stackrel{\text { \＃}}{\stackrel{\text { ® }}{\sim}}$ |  <br>  －＊ |
| $\stackrel{\vdots}{\stackrel{\rightharpoonup}{4}}$ |  <br>  4 |
|  |  <br>  |
| 范 |  <br>  <br>  <br>  |
| 苞 |  <br>  |
|  |  <br>  <br>  |
| －saquandiraas ！ |  |

$\qquad$


## DREDGING STATIONS OF TEE ITALIAN STEAMER WASHINGTON IN THE MEDITERRANEAN, 1881.

The Washington was under the command of Commander G. B. Magnaghi, of the Italian navy, and the dredgings were nuder the direction of Prof. Eurico Hillyer Gigholi. The report from which these positions are taken was poblished in the Report of the Third International Geographical Congress ("Terzo Congresso Geografico Internazionale") held in Venice in 1881, published in Rome 1882.

Dredgings by the Italian stcamer H'ashington, 1881.

|  |  | Dato. | Latitude north. | Longitude east, Greedwich. | Depth. | Depth. | Nature of bottom. | Locality. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 1881. | - 1 | - ' 11 | Fathoms. | 1 c cters. |  |  |
| 1 | 1 | Ang. 2 | 410845 | 83421 | 437 | 800 | Mud | North of Sardinia. |
| 2 | 2 | Aug. 3 | 410248 | 83220 | 246 | 450 | Very fine mud.. | Do. |
| 2 | 3 | Aug. 3 | to | to | 86 | 157 | Mad | Northwest of Sar. dinia. |
| 2 | 4 | Aug. 3 | 410501 | 83223 | 202-230 | 370-420 | Madrepores | Do. |
| 3 | 5 | Ang. 4 | 411027 | 81541 | 92-155 | 168-284 | - do ....-- | Do. |
| 4 | 6 | Aug. 4 | 411509 | 81041 | 1,176 | 2, 150 | Mud (?) | Do. |
| 5 | 7 | Aus. 8 | 41. 1000 | 81200 | 128-303 | 235-555 | Madrepores ..... | Do. |
| 6 | 8 | Aug. 8 | 411310 | 81294 | 1,094 | 2, 000 | Dredge lost. | Vo. |
| 7 | 9 | Aug. 8 | 411438 | 81805 | 1,173 | 2,145 | Fine tonacious yellows mud. | Do. |
| 8 | 10 | Aug. 9 | 412442 | 74328 | 1,531 | 2,800 | Tenacious mud. | Do. |
| 9 |  | Aug. 9 |  |  | 1,553 | $\because, 810$ | Gravish-jellory mid. | Do. |
| 10 | 11 | Aug. 10 | 412338 | 70854 | 1,588 | 2,902 | Mud .............. | Do. |
| 11 | 12 | Aug. 10 | 411842 | 65402 | 1,534 | $\because 3$ | 'lenacious mud. | Do. |
| 12 | 13 | Auğ 11 | 395140 | 6. 4440 | 1,590 | $\because 908$ | 1)rerse empty .. | West of Sardinia. |
| 13 | 14 | Aug. 13 | 391537 | 92037 | 278 | 508 | Mud............. | Southwest of Sardinia. |
| 13 | 15 | Aug. 13 | 390346 | 92747 | 359 | 656 | . . .do | Do. |
| 14 | 16 | Ang. 13 | 390128 | 93019 | 422-470 | 772-860 | - .do | Do. |
| 15 | 17 | Alug. 14 | 383804 | 94556 | 875 | 1,600 | Yellow mud | Do. |
| 16 | 18 | Aug. 14 | $3850 \times 6$ | 93915 | $\because 21$ | 401 | Sandy inud ..... | Do. |
| 16 | 19 | Aug. 14 | 385015 | 94350 | 450 | 822 | Yellowish mud | Do. |
| 17 | 20 | Aug. 15 | $\begin{array}{llll}39 & 23 & 07\end{array}$ | 954053 | 225 | 412 | Wredge empty .. | East of Sardinia. |
| 17 | 21 | Aug. 15 | 392150 | 94908 | 615 | 1,125 | Mud............ | Do. |
| 18 | 22 | A.ug. 15 | 392058 | 93702 | 208 | 381 | Mud; dredgelost | Do. |
| 19 | 23 | Aug. 16 | 394040 | 95412 | 849 | 1,553 | Yellow mud.... | Do. |
| 20 | 24 | Aug. 16 | 394328 | ${ }^{9} 50502$ | 341-477 | 623-856 | ...do | Do. |
| 21 | 25 | Aug. 16 | 394940 | 94908 | 33 | 60 | Sand; algae .... | Do. |
| 22 | 26 | Aug. 16 | 395832 | 94808 | 216 | 395 | Mud...-........ | Do. |
| 23 | 27 | Aug. 17 | 403216 | 101236 | 281-514 | 514-940 | Rocky .....-..... | Do. |
| 24 | 28 | Aug. 17 | 403708 | 104005 | 979 | 1,790 | 'lenacious mud. | Between Sardinia and Naples. |
| 25 | 29 | Aug. 18 | 404440 | 1112200 | 1, 142-1,307 | 2,188-2,390 |  | 10. |
| 26 | 30 | Aug. 18 | 404420 | 113322 | 1, $2 \times 9$ | ${ }^{2}, 247$ | Mud | Do. |
| 27 | 31 | Alig. 19 | $40: 2900$ | 123400 | 1,703 | 3,115 | - . do | Do. |
| 28 |  | Au¢ 19 | 401013 | 122600 | 1,985 | 3,630 |  | Do. |
| 29 | 32 | Aug. 26 | 403732 | 14095 ! | 22 $23-235$ | 407-430 | Mul | South of Naples. |
| 29 | 33 | Aug. ${ }^{\text {a }} 6$ |  |  | 87-197 | 159-360 | . .do | Do. |
| 30 | 34 | Aus. 26 | 402653 | 140715 | $5 \times 5$ | 1,070 |  | Do. |
| 31 | 35 | Aug. 27 | $39: 308$ | 131038. | 1,983 | 3, 624 | IIud | Between Naplos and Sicily: |
| 32 | 36 | 人14. 28 | 380500 | 115940 | 219 | 400 | Sand and yellow m114. | West of Sicily. |
| 33 | 37 | Auc. 28 | 375550 | $1153 \cdot 15$ | 450 | 823 |  | Do. |
| 33 | 38 | Aug. 28 | 375255 | 115640 | 437 | 80: | Mud | 10. |
| 34 | $\cdots)$ |  |  |  |  |  |  |  |
| 86 | - | Alug. 29 | 365500 | 111500 | (*) | ( $\dagger$ ) | ) Bauks produc- | BetweenSicily and |
| 37 | .- $\}$ | to | to | to |  |  | \} ing mecious | Africa. |
| 38 | .- | Sept. .2 | 371500 | 124400 | ( ${ }^{\prime}$ ) | (i) | ) coral. |  |
| 39 40 | . 1 |  |  |  |  |  |  |  |

[^123]
## ZOOLOGICAL STATIONS OF THE NORWEGIAN NORTH-AT. LANTIC EXPEDITIONS, 1876-1878.

These expeditions were made by the steamer Vöringen and the zoological and physical researches were under the charge of Dr. Danielssen, Profs. Mohn aud G. O. Sars, Herr Friele, etc. The first expedition, in 1876, exteuded along the western coast of Norway to the Fïriöe Islands and Iceland; the second, in 18i7, from Bergen to ontside the Loffoden Islands, and from Tromsioe to Jan Mayen; the third, in 1878, to Vardë, thence westward to Beeren Island, and afterwards to Spitzbergen in $80^{\circ}$ N . latitude. All the dredging stations are given in this list.

Dredgings of Norwegian North-Allantic expedilions, 1876-1878.

| $\begin{aligned} & \text { í } \\ & \text { E. } \end{aligned}$ | Dato. | Latitude. | Longitude. | Depth. | Frature of lottom. | Bottom temperatures. |  | $\begin{gathered} \text { Apparatus } \\ \text { used. } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { ت゙ } \\ & \text { H } \\ & \text { N } \end{aligned}$ |  |  |  |  |  | Fahr. | Cent. |  |
|  | 1876. | North; | East, | Faths. |  | $\bigcirc$ | 0 |  |
| 1 | June 3 | 6113 | 636 | 650 | Sandy clay. | 43.9 | 6. 6 | D. |
| 2 | June 3 | 6110 | 632 | 672 |  | 44.1 | 6.7 | T. |
|  | June 8 | 6105 | 514 | 566 | Sandy clay, pebbles | 43.9 | 6.6 | T. |
| 8 | June 9 | 6100 | 449 | 200 | Clay, sand, stones | 43.9 | 6.6 | D. |
| 9 | June 20 | 6130 | 337 | 206 | Clay | 42. 6 | 5.9 | T. |
| 10 | June 21 | 6141 | 319 | 220 | Ooze, clay | 42.8 | 6.0 | T. |
| 18 | June 21 | 6244 | 148 | 412 | Clay ....- | 30.2 | $-1.0$ | D.,T. |
| 23 | June 23 | 6259 | 550 |  |  |  |  | T. |
| 25 | Juno 28 | 6310 | 525 | 98 | Sandy cla | 44. $\frac{1}{1}$ | 6. 9 | D.,T |
| 26 | June 28 | 6310 | 516 | 237 | ... do | 44.8 | 7.1 |  |
| 31 | June 29 | 6310 | 500 | 417 | -..do | 30.2 | -1.0 | D., T |
| 33 | June 30 | 6305 | ${ }^{3} 00$ | 525 | Clay | 30.0 | -1. 1 | D.,T |
| 34 | July 1 | 6305 | 053 | 587 |  | 30.2 | -1.0 |  |
| 35 | July 5 | 6317 | $\begin{aligned} & \text { West. } \\ & 127 \end{aligned}$ | 1, 081 | Bilocul | 30.2 | -1.0 |  |
| 40 | July 18 | 6322 | 529 | 1,215 | ....do | 29.8 | $-1.2$ | 1., T |
| 48 | Aug. G | 6136 | 1022 | 299 | Daris gray clay | 31.5 | -0 3 | Tan. |
| 51 | Aug. 7 | 6553 | 718 | 1,163 | Biloculina clay | 30.0 | -1.1 | 1. |
| 52 | Aag. 8 | 6547 | $\begin{array}{r} 307 \end{array}$ | 1,861 | ....do ......... | $\because 9.8$ | -1.2 | T. |
| 53 | Aug. 10 | 6513 | East. 033 | 1,539 | ...do | 29.7 | -1.3 | D.,T |
| 54 | Aug. 12 | 6147 | 424 | 1601 | ....do | 29.8 | -1.3 | D.,'T |
| 79 | Aug. 21 | 6448 | 632 | 155 | Sandy clay | 44.4 | 6.9 |  |
| 87 | Aug. 22 | 6102 | 535 | 498 | Clay ...... | 30.0 | -1.1 | D. |
| 92 | Aug. 22 | 6400 | 642 | 178 | Sandy clay | 45.0 | 7. 2 | ${ }^{\top}$ |
| 93 | Aug. $^{\text {dig7 }}$ 2t | $6241$ | 708 | 158 | Soft clay | 43.5 | 6.4 | ${ }^{1}$ |
| 96 | June 16 | (romsd | Ifjora.) 300 | 805 | Biloculina clay | 30.0 | -1.1 | D. |
| 101 | June 17 | $6 \overline{36}$ | 832 | 223 | Sandy clay .... | 42.8 | 6.0 |  |
| 124 | June 19 | 6641 | ${ }_{6}^{659}$ | 350 | Coarse clay | 30.4 | -0.9 | D. T |
| 137 | June 21 | 6724 6649 | 858 1208 | $4{ }^{452}$ | Clay -.... | 30.2 | $-1.0$ | D.,'1 |
| 147 | June ${ }^{29}$ | 6649 | 1208 | 142 | Gray clay | 43.2 | 6.2 |  |
| 149 | June 23 | $6752$ (Vest) | $\begin{array}{r} 1358 \\ \text { (jord.) } \end{array}$ | 135 | Clay | 40.8 | 4.9 | D., T |
| 164 | June 29 | 6821 | 1040 | 457 | Sandy clay- | 30.7 | $-0.7$ | D.,T |
| $173 b$ | July ? | 6918 | 1432 | 300 415 | Clay, stoues | 40.3 | 4. 6 | D. |
| 175 177 | July ${ }^{\text {July }}$ | 6917 6925 | 1435 1349 | 415 1,443 | Clay, pebbles | 37.4 29.8 | -1.0 | D. ${ }^{\text {D }}$, |
| 183 | July 5 | 6959 | 615 | 1,710 | .-.do. .-... | 29.7 | -1.3 | D.,'T |
| 190 | July 7 | 6941 | 1551 | 870 | Sandy clay | 29.8 | -1.2 |  |
| 192 | $J^{\text {July }} 7$ | 6946 | 1615 | 649 | - ${ }^{\text {do }}$ do .... | 31.7 | $-0.7$ | $1)$. |
| 195 | July 16 | 7055 | 1838 | 107 | Stoues, clay | 41.2 | 5.1 |  |
| 200 | July 17 | 7125 | 1541 | 620 | Clay | 30.2 | $-1.0$ | D.,T |
| 205 | July 18 | 7051 | 1303 | 1,287 | Biloculina cla | 29.8 | $-1.2$ | D. |
| 213 | July 26 | 7023 | 230 | 1,760 | ...do . | 29.8 | -1.2 | 1. |
| 223 | Aug. 1 | $\begin{gathered} 7054 \\ (\sin \text { May } \end{gathered}$ | $\begin{gathered} \text { Hest. } \\ 824 \\ \text { yen I'd.) } \end{gathered}$ | 70 | Dark gray, sand $\bar{y}^{\text {clay }}$ | 30.9 | -0.6 | D. |
| 294 | Aug. 1 | 7051 | . 820 | 95 | .... Io | 30.9 | $-0.6$ | D. |
| 235 237 | Aug. Aug. | 70 <br> 70 <br> 78 <br> 18 | 804 1010 | $\begin{aligned} & 195 \\ & 263 \end{aligned}$ | …do ....... | 30.9 | $-0.6$ | D. |
| 240 | Aug. Aug. 4 | 70 69 | 10 11 11 | 1, ${ }^{263}$ | Brown clay, sto Biloculina clay | 31.5 30.0 | -0.3 | D. |

Dredgings of Norwegian North-Atlantic expeditions, 1876-1878-Continued.

|  | Date. | Latitude. | Longitude. | Depth. | Nature of bottom. | Bottom tomperatures. |  | $\omega$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | Fahr. | Cent. |  |
|  | 1877. | North; | East, | Faths. |  | 90. 5 | -1. |  |
| 248 | Aug. 8 |  |  | 778 | Biloculina clay. | ${ }^{29.5}$ | -1.4 | D. |
| 251 | Ang. 9 | 6806 | ${ }^{9} 44$ | 634 | Clay | 29.7 | -1.3 | D. |
| 25. | Aug. 11 | (Vestit | jord.) |  |  |  |  | D. |
| 253 | $\text { Aug. } 15$ | (Skjersta (Saltstro | adfjord.) | 263 90 | Stones | 37.8 | 3.2 | D. |
| 2536 | Aug. 17 1878. | (Saltstro) | mmen.) | 90 | Stones |  |  | D. |
| 255 | June 19 | 6812 | 1540 | 341 | Clay | 43.7 | 6.5 | D. |
| 257 | June 21 | 70041 | jord.) 23 | 160 | ...do | 39.0 | 3.9 | D. |
| 258 | June 21 | (Alten/ 7013 | fjord.) ${ }_{23} 03$ | 230 | . .do | 39.2 | 4.0 | T. |
|  |  | (Altenf | fjord.) |  |  |  |  |  |
| 260 | June 24 | 7055 | 2611 | 127 | . do | 38.3 | 3.5 | D., T. |
| 261 | June 25 | Porsang 7047 | erfjord.) 2830 | 127 | . ${ }^{\text {do }}$ | 37.0 | 2.8 | D.,T. |
|  |  | (Tanaf | jord.) |  |  |  |  |  |
| 267 | June 27 | 7036 | 3235 3701 | 148 | Clay, stones | 29.5 | -1.9 | D., D . |
| 270 | June 27 | 7227 | 3501 | 136 | Clay. | 32.0 | 0.0 | D. |
| 273 | July 1 | 7325 | 3130 | 197 | , | 36.0 | 2.2 | D. |
| 275 | July 2 | 7408 | 3112 | 147 | do | 31.3 | -0.4 | T. |
| 280 | July 4 | 7410 | 1851 | 35 | Stones | 34.0 | 1.1 | D. |
| 283 | July 5 | (Beeren | Island.) | 767 | Clay | 29.5 | -1. 4 | D. |
| 286 | July 6 | 7257 | 1432 | 447 | ...do | 30.6 | -0.8 | T. |
| 290 | July 7 | 7227 | 2051 | 191 | Sandy clay | 38.3 | 3.5 | T. |
| 295 | July 14 | 7159 | 1140 | 1,110 | Biloculina clay | 29.7 | $-1.3$ | T. |
| 297 | July 16 | 7236 | 512 | 1, 280 | ....do | 29.5 | -1.4 | T. |
| 303 | Tuly 19 | 7512 | 302 | 1,200 | -.do | 29.1 | -1.6 | T. |
| 312 | July 22 | 7454 | 1453 | 658 | Cay .. | 29.8 | -1.2 | T. |
| 315 | July ${ }^{2}$ | 7453 | 1555 | 180 | Clay, sand | 36.5 | 2.5 | T. |
| 322 | July 23 | 7457 | 1952 | 21 | Hard ... | 32.4 | 0.2 | D. |
| 323 | July 30 | 7253 | 2151 | 223 | Clay | 34.7 | 1.5 | T. |
| 326 | Aug. 3 | 7531 | 1750 | 123 |  | 34.9 | 1.6 | T. |
| 333 | Ang. 4 | 7606 | 1310 | 748 | Biloculina clay | 29.7 | $-1.3$ | T. |
| 336 | Aug. 5 | 7619 | 1542 | 70 | Clay, hard bottom | 32.7 | 0.4 | D. |
| 338 | Ang. 6 | 7619 | 1801 | 146 | Mard | 30.0 | -1.1 | D. |
| 343 | Aug. 7 | 7634 | 1251 | 743 | Clay | 29.8 | -1.2 | T. |
| 350 | Aug. 8 | 7626 | Trest. | 1,686 | Biloculina clay | 29.3 | -1. 5 | T. |
| 353 | Aug. 10 | 7758 | East. | 1,333 | ...do | 29.5 | -1.4 | T. |
| 357 | Aug. 12 | 7803 | 1118 | 1, 125 | Clay | 35.4 | 1.9 | ט. |
| 359 | Aug. 12 | 7802 | 925 | 416 | ....do | 33.4 | 0.8 | I. |
| 362 | Aug. 14 | 7959 | 540 | 459 | do | 30.2 | -1.0 | 'T. |
| 363 | Aus. 14 | 8003 | 828 | 260 | do | 34.0 | 1.1 | T. |
| 366 | Aug. 17 | 7935 | 1117 | 61 | . ${ }^{\text {do }}$ | 28.2 | -2.1 | 'T' |
| 366 | Aug. 17 | Magdale | ena Bay. | 37 | do | 31.6 | -0.2 | T. |
| 370 372 |  |  |  | 109 | do | 34.0 34.2 | 1.1 1.2 | $\xrightarrow{T}$ |
| 372 | Aug. 19 | $78 \text { (isfjo }$ | ord.) | 129 | - ...do | 31.2 | 1.2 | T. |
| 374 | Aug. 22 | 7816 (Adren | $\begin{aligned} & 1533 \\ & \text { nt Bas) } \end{aligned}$ | 60 | ...do | 33.3 | 0.7 | T. |

ZOOLOGICAL STATIONS OF THE SWEDISH ARCTIC EXPEDITIONS OF 1875,1876 , AND 1878- 79.

The dredgings of 1875 were made by A. E. Nordenskiöld and Dr. Hjalmar Théel in the sloop Proeven, those of 1876 by Nordenskiöld in the steamer Ymer, those of 1878-'79 by Nordenskiold in the Tega.

The numbers assigned to the stations are arranged geographically, instead of according to the dates at which they were made.

The numbers 98,103 , and 104 refer to collections not made by the Vega expeditiou but brought in by the Tschuktsches, who found them thrown on the shores in the spring and summer months of 1879.

Zoological stations of Swedish Arctic expeditions of 1875, 1876, and 1878-'79.

| Latitudenorth. | Lungi Green wich,east. | Depth. | Kind of bottom. | Temperatures, Fahr. |  | Temperatares Cent. |  | $\begin{aligned} & \text { Apparatus } \\ & \text { used. } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Sur- | $\begin{aligned} & \text { Bot- } \\ & \text { toms. } \end{aligned}$ | Sur- face. | Bot- tom. |  |
|  |  |  |  |  | 。 |  | - . |  |
| 6955 70 700 | 6030 6085 60 | $\begin{array}{r} 10 \\ 120 \end{array}$ | Sand and shells | 42.3 <br> 39.0 | 28.6 | 5.7 3.9 | -1.9 | D. |
| 7045 | 61100 | 90 | Brown sott mud | 40.3 | 28.6 | 4.6 |  | D. and Tan. |
| 7014 7023 | 6121 6121 60 | 116 100 | Fine soft mud - ${ }_{\text {Fine }}^{\text {mud, poor in lifu }}$ | 39.9 41.7 |  | 4.4 5.4 |  | Tan. ${ }^{\text {D and }}$ |
| 70) 30 | 620 | 60 | Mud ................ | 42.3 |  | 5.7 |  | D. and Tan. |
| 7025 | 6230 | 55 |  | 35.2 |  | 1.8 |  | D, and Tan. |
| $7{ }^{20}$ | 6240 | 50 | Brown mud | 35.6 |  | 2.0 |  | D, and Tan. |
| 7012 | 6307 | 150 | Mud. | 36.0 |  | 2.2 |  | D. aud Tan. |
| 7105 7109 710 | ${ }_{6}^{63} 29$ | 90 | $1 . . .10 .$ | 39.6 39 | 28.9 | 4.4 | -1.7 | $\begin{aligned} & \mathrm{D} . \\ & \mathrm{D} . \end{aligned}$ |
| 7103 7103 | 63 63 63 46 | 70 | -rine mud, poor in lifo | 39.2 39.6 3 | 30.6 |  | -0.8 | D. and Tan. |
| 7010 | 6440 | 28 | Mud................. | 34.3 |  | 1.3 |  | D, and Tan. |
| 7121 | 64.53 | 60 | Greenisl-gray mud | 38.5 | 28.4 | 3.6 | -2.0 | D. and Tan. |
| 7010 | ${ }^{65} 30$ | 8 | Mud i....i...... | 33.8 |  | 1.0 |  | D. and Tan. |
| 7012 <br> 70 <br> 15 | ${ }_{65} 45$ | 8 | Slightly muddy sand.... | 33. 7 |  | 0.4 |  | D. |
| 7015 <br> 7020 <br> 8 | 66 60 6600 60 |  | Very lard, muddy sand Hard sand ............. | 32.2 <br> 33 |  | 1.1 |  |  |
| 7020 7015 70 | 66 64 64 40 | 11 | Sand | ${ }_{43.2}$ | 30.9 | 6.2 | -0.6 | D. |
| 7100 | 63) 50 | 12 | ....do | 42.1 |  | 5.6 |  | D. |
| 7110 7115 |  | 19 | -..do | 43.3 |  | ${ }^{6} .3$ |  |  |
| 7115 <br> 7155 <br> 8 | ${ }^{66} 900$ | 33 | Dark-blue muil | 44.6 43.0 |  | 6.1 |  | D. and Tan. |
| 7205 | ${ }_{63}^{63} 10$ | 85 | Fine, soft, gray ish-brown mud | 38.3 | 27.9 | 3.5 | -2. 3 | D. ami Tan. |
| 72 725 7210 | 6730 6750 675 | 21 | Muat .......... | 42.6 41.7 |  | 5.9 5.4 |  | D. and Tan. |
| 7242 | 6802 | 15 | Fine, gray, sundy mud | 37.4 | 34.5 | 3.0 | 1.4 | D. aud Tan. |
| 7237 | 68 30 |  | Sand........... | 40.6 |  | 4.8 |  |  |
| 7300 | 6815 |  | Brown, muddy sand | 36.5 | 28. ${ }^{1}$ | 2.5 |  |  |
| $\begin{array}{r}7315 \\ 73 \\ \hline 8\end{array}$ | 6910 6833 | ${ }_{10}^{9}$ | Slightly muddy sand....... | 46.0 33.8 | 30.2 28.8 | 7.8 1.0 | ${ }_{-1.8}^{-1.0}$ | ${ }^{\mathrm{D}} \mathrm{D}$. and Tan. |
| 7345 | ${ }^{69} 10$ | 10 | sand .................. | 46.0 | 30.2 | 7.8 | -1.0 |  |
| 73 745 74 | 7200 | 12 16 | Cray sand ......................... |  |  | 3.1 |  |  |
| 7430 | 7325 | 17 | Saudr mnal ..................... | 36.9 |  | 2.7 |  | Tangles. |
| 7412 <br> 73 <br> 7 | 7545 89 89 83 | ${ }_{23}^{18}$ | Muddy sand Jud.... | 37.0 44.4 |  | 2.8 6.9 |  | Tangles. |
| 7500 | 75.30 | 2 | Mund ${ }^{\text {a }}$ sand | 47.4 37.8 | 28.9 | 3.2 | -1. 7 | D. ${ }^{\text {das. }}$ |
| 753 | 7730 | 20 |  | 36.5 |  | 2.5 |  | D. |

 $\qquad$

Zoological stations of Suedish Arctic expeditions, etc.-Continued.

|  | Date. | Latitude north. | Longitude, Greenwicb, east. | Depth. | Kind of bottom. | $\begin{aligned} & \text { Temperatures, } \\ & \text { Fahr. } \end{aligned}$ |  | Temperatures,Cent. |  | Apparatus used. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | Sur. face. | Bottom. | Surface. | Bottom. |  |
|  |  | -5 | 8 | Fath. |  | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |  |
| 40 | Aug. 12, 1875 | 7540 | 7840 | $\stackrel{26}{20}$ | Muddy sand ........ | 32.9 | 28.9 | 0.5 | -1.7 | D. and Tan. |
| 41 | Aug. 14, 1875 | 7430 7315 | と0 50 5718 | 20 50 | Mud, with derruginous concretions | 34.5 |  | 1.4 |  | 1) aui Tan. |
| 43 | July 31, 1876 | 7310 | 5745 | 150 | ...do.......... | 34.5 |  | 1.4 |  | D and Tan. |
| 44 | Ang. 31, 1875 | 7330 | 5755 | 60 | do |  | 28.9 |  | -3.7 | D. and Tan. |
| 45 | Aug. 20, 1875 | Udde Bay | on the | 5 | Lithothamuion bottom | 38.5 |  | 3.6 |  | D. |
|  |  | cast coas Zembla. | of Nova |  |  |  |  |  |  |  |
| 46 | Sept. 7, 1876 | 7328 | 5800 | 50-125 | Srony and muddy | 37.4 |  | 3.0 |  | D. and Tan. |
| 47 | $\cdots$. ${ }^{\text {do }} \ldots$ | 7330 | 58.20 |  | Stone's ......... | 36.0 |  | 2.2 |  | Tangles. |
| 48 | Sopt. 6, 1876 | 7338 | 59108 | 100 | Sand................. | 36.0 |  | 2.2 |  | D. and Tan. |
|  | Sept. $5-6,{ }^{76} 7$ Sept. 5,1876 | 73 743 74 | 6345 | 80 | Sand and broken shells | 34.5 |  | 1.4 |  | D. and Tan. |
| 51 | Sept. 4, 1876 | 7443 | 6.355 | c0 | Mud..... | 32.4 |  | 0.2 |  | Tangles. |
| 52 | Alug. 24, 1875 | 7530 | $6 \pm 10$ | 60 | Mud? | 36.7 | 28.8 | 2.6 | -1.8 |  |
|  | Sent 41876 | 7543 | 65.20 | 40-50 | do | 37.0 |  | 2.8 |  | Tangles. |
| 5 | $\begin{gathered} \text { Spt. } \\ \text {. } 1876 \\ \hline \text { do.... } \end{gathered}$ |  | 6650 6720 | 12.0 | $\xrightarrow{\text { drow }}$ | 32.8 |  | 0.1 |  | D. and Tan. |
| 59 | Aug. 9,1878 | $\left\{\begin{array}{r}73 \\ 30\end{array}\right.$ | ${ }^{80} 58$ |  | Fine, very soft, light-brown mud |  |  |  |  |  |
| 57 | Aug. 10, 1878 | \{ Dickson ${ }^{73} 52$ | Harbor. |  |  | 48.7 | \$8. 2 | 9.3 |  |  |
| 58 | ....io ....... | 74 us | 8212 | 19 | Gray mud | 47.7 |  | $\times .7$ |  | D. and Tan. |
| 59 | ....do | 7418 | 8308 | $\because 1$ | Mad | 46.1 46.4 | 30. 2 | 8.0 | -1.0 | D, and Tan. |
| 60 | Aug. 11, 1878 | 7452 | 8508 | 6 | Sand | 46.8 | 33.8 | 8.0 | -1. ${ }^{1}$ | Taugles. |
| 61 | Aug. 12, 1878 | 7608 | 9025 | 15 | Stones | 34.2 | 30.0 | 1.2 | -1.1 |  |
| $6_{62}^{62}$ | Aug. 13, 1878 | 7618 | 9220 | 40 | Brown mud, with many larg | 33.3 | 29.5 | 0.7 | -1.4 | D. and Tan. |
| 63 | ....ilo ....... | 7618 | 9403 | 3-10 | Stones................... | 35.6 |  | 2.0 |  |  |
| 61 | dug.14-16, ${ }^{78}$ | $\{7618$, | 9530 | \} 5-10 | . 10 |  |  |  | -1.4 |  |
|  |  | $\left\{\begin{array}{l}\text { Ak1in} \\ 7736\end{array}\right.$ | ia Bay. 10325 |  |  | 33.6 | 29.5 | 0.9 | -1.4 |  |
| 65 | Aug. 19-20,'78 | $\left\{\begin{array}{l} 77 \\ \text { Off } \end{array}\right.$ | Tschel- | \}5-10 | Mud, with stones | 31.8 |  | -0.1 |  | D. |
| 66 | Aug. 20, 1878 | 7740 | kin. 105 |  | Gray mud | 32.0 |  | 0.0 |  |  |
| 68 | Aug. 21, 1878 | 7728 | 10828 | 50 | Gray mat | 32. 9 | 29.5 | 0.5 | -1.4 | Tangles. |
| 69 | Aug. 22,1878 | 7715 7655 | 11145 115 18 | 23 | Gray mud | 32.4 | 29.5 | 0.2 | -1.4 | Tangles. |
| 70 | -do -...... | 7652 | 11600 | 36 | Fine, gray mud | 31.8 30.9 | 29.5 | -0.1 |  | Tangles. |
| 71 | Aug. 23, 1878 | 7640 | 11530 | 35 | Mrud.......... | 30.9 | 34.9 | -0.6 | -1.6 |  |
| 72 | Aug. 24, 18i8 | 7500 | 11330 | 15 | Mud, with stone | 39.2 | 30.6 | -4.0 | $-0.8$ | Tr. and Tan. |



## DREDGING STATIONS OF THE DANISH ARCTIC EXPEDI. TION, 1882-'S3.

The Danish Arctic expedition of 1882-'83 in the steamer Dijmphna, commanded by Lieutenant Hovgaard, was partially at the expense of the Danish Government, but mainly at that of the brothers Gamél. The naturalist in charge was Th. Holm. The zoological and botanical results were published in 1887 at Copenhagen in an octavo volume, containing papers by Holm, Jensen, Deichmann Branth, Wille and Kolderup Rosenvinge, on the botany, and by Liitken, Hansen, Lerinsen, Bergh, Jungerseu, Traustedt, Collin, and Holm on the zoology.

The dredgirgs were on the southern coast of Nova Zembla and in the Kara Sea.
No. 1 in the Kostin Schar on the southwest coast of Nora Zembla.
No. 2 in the Nicholskoï Schar on the southwest coast of Nova Zembla.
No. 3 in the Olenje Sund on the southwest coast of Nova Zembla.
Nos. 4-6 in the Petuschowski Schar in the southwest coast of Nova Zembla.
No. 7 in the Kara Sea, off Cape Yarasol.
Nos. 8-10 in the Jugor Schar at its outlet into the Kara Sea.
Nos. 11-188 in the Kara Sea.
Nos. 189-90 in the Kara Strait, between Nova Zeimbla and Waigatsch Island.
Dredging stations of the Danish Arctic expedition, 1882-'s3.

| 高 | Date. | Latitude north. | Longitude cast, Greenwich. | 華 | Eind of bottom. |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1882. | $\bigcirc$ | $\bigcirc$ ' | Fath. |  |  |
| 1 | Aug. 12 | 7124 | 5249 |  | Sand and stones ...... | A. |
| 2 | Aug. 18 | 7031 | 5728 | 12 | Blue clay, with stones | A. |
| 3 | Aug. 23 | 7030 | 5703 | 12 | Sand and stones | A. |
| 4 | Aug. 28 | 7034 | 5618 | 5 | do | A. |
| 5 | Aus. 29 | 7034 | 5618 | 5 | do | A. |
| 6 | Sept. 1 | 7034 | 5618 | 5 | do | A. |
| 7 | Sept. 9 | 6952 | 6040 | 10-12 | Blue clay, with brown mud, stony | A. |
| 8 | Sept. 12 | 6949 | 60 603 63 | 6 6 | Sand and blue clay.. | A. |
| 10 10 | Sept. 13 | 6949 6948 | 6032 60 60 | 6 | blue clay |  |
| 11 | Sept. 26 | 7015 | 6425 | 65 | Blue clay, with brown mud |  |
| 12 | Sept. 27 | 7017 | 6420 | 70 | .....do |  |
| 13 | sept. 28 | 7012 | 6437 | 67 | ..... 10 |  |
| 14 | Sept. 29 | 7010 | 6441 | (i. 3 | do |  |
| 15 | Sept. 30 | 7011 | 6430 | 67 | . do |  |
| 16 | Oct. 2 | 7012 | $6 \pm 23$ | 63 | Dark-brown clay |  |
| 17 | Oct. 3 | 7014 | 6422 | 69 | .....do |  |
| 18 | Oct. 4 | 7016 | 6423 | 66 | .....do |  |
| 20 | Oct. ${ }^{\text {Oct. }}$ | 7019 70 | 6426 64 64 | 60 58 | . ...do |  |
| 21 | Oct. 7 | 7021 | 6422 | 65 | ....dlo |  |
| 22 | Oct. 9 | 7023 | 6403 | 79 | ..do | A |
| 23 | Oct. 10 | 7022 | 6356 | 81 | Blue clay, with brown mud |  |
| 24 | Oct. 11 | 7020 | 6344 | 97 | ......do . |  |
| 25 | Oct. 12 | 7019 | 6340 | 98 | do |  |
| 26 | Oct. 14 | 7017 | 6337 | 104 | Dark-brown clay |  |
| $\stackrel{27}{ }$ | Oct. 16 | 7021 | 6355 | 78 | .......do ......... |  |
| 28 | Oct. 17 | 7016 | 6411 | 75 | ..do |  |
| 29 | Oct. 19 | 7007 | 6423 | 70 | Blue clay, with brown mud | A. |
| 30 | Oct. $2^{0}$ | 7007 | 6427 | 67 | ...... do ...................... |  |
| 31 | Oct. 21 | 7008 | 6442 | 67 | do |  |
| 32 | Oct. 23 | 7007. | 6452 | 61 | do |  |
| 33 | Oct. 24 | 7003 | 6453 | 61 | Stiff gray clay, with a little brown |  |
| 34 | Oct. 25 | 7003 | 6447 | 58 | Blue clay, with brown mud. |  |
| 35 | Oct. 27 | 7004 | 6451 | 60 | ...... do . . . . . . . . . . . .-.... |  |
| 36 | Oct. 31 | 7012 | 6412 | 75 | .....lo |  |
| 37 | Nov. 2 | 7018 | 6400 | 76 | do |  |
| 38 | Nor. 8 | 7017 | 6126 | 62 | Dark-brown cla |  |

Dredging stations of the Danish Arctic expedilion, 1882-'83-Continued.

|  | Date. | Latitude north. | Longitude east, Green wich. |  | Kind of bottom. |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1882. |  |  | Fath. |  |  |
| 39 | Nov. 16 | $70 \quad 23$ | 6413 | 75 | Blue clay, with brown mud |  |
| 40 | Nov. 21 Nov. 25 | 7019 7016 | 64 64 64 04 | 72 80 | Stiff do ................... |  |
| 42 | Dec. 1 | 7015 | 6352 | 80 | Dark-brown clay ........ |  |
| 43 | Dec. 12 | 7028 | 6435 | 68 | Blue clay, with brown mud | A. |
| 44 | Dec. 15 | 7033 | 6437 | 48 |  |  |
| 43 | Dec. 16 | 7036 | 6443 | 23 | do |  |
| 46 | Dec. ${ }^{2} 2$ 1883. | 7038 | 6440 | 23 | .....- do ................................................. |  |
| 47 | Jan. 4 | 7058 | 6505 | 20 | .do |  |
| 48 | Jan. 6 | 7057 | 6503 | 20 | do |  |
| 49 | Jan. 9 | 7058 | 6509 | 20 | do |  |
| 50 | Jan. 12 | 7059 | 6141 | 40 | . 10 |  |
| 51 | Jaw. 16 | 7054 | 6357 | 68 | . do |  |
| 52 | Jan. 19 | 7055 | 6416 | 50 | . do |  |
| 53 | Jan. 23 | 7058 | 6104 | 67 | - do |  |
| 54 | Jan. 26 | 7058 | 6400 | 68 | . ${ }^{\text {do }}$ |  |
| 55 | Jan. 29 | 7105 | $6 \pm 31$ | 55 | . .do |  |
| 56 | Jan. 31 | 7102 | $6 \pm 23$ | 55 | .. . do |  |
| 57 | Feb. 1 | 7102 | 6416 | 55 | ...do |  |
| 58 | Feb. <br> Feb. | 7101 7105 | 64 64 64 07 | 58 | . . do | A. |
| 60 | Feb. 9 | 7105 | 6350 | 59 | .... do |  |
| 61 | F'eb. 12 | 71.05 | 6117 | 58 | do |  |
| $6{ }^{6}$ | Feb. 13 | 7106 | 6121 | 54 | ...do |  |
| 63 | Feb. 14 | 71.04 | 6436 | 53 | ...do | A. |
| 64 | Feb. 15 | 7104 | 6438 | 53 | . . do |  |
| $\begin{aligned} & 65 \\ & 6 i j \end{aligned}$ | $\begin{array}{ll}\text { Fob. } & 17 \\ \text { Fiel. } & 21\end{array}$ | 7107 7108 | 6425 6431 | 55 | do | A. |
| 67 | F'el. 22 | 7109 | 6439 | 51 | .......do |  |
| 68 | Fels. 23 | 7111 | 6442 | 51 | . do |  |
| 69 | Fell 24 | 7114 | 6443 | 60 | . . do |  |
| 70 | Feb. 26 | 7117 | 6447 | 66 | . do |  |
| 71 | Feb. 28 | 7121 | 6448 | 80 | Blue clay, with ferruginous concretions .............. |  |
| 72 | Mar. 1 | 7120 | 6453 | 66 | Blue clay, with ferruginous concretions, and small stones. |  |
| 73 | Mar, Mrar | 7128 7138 | $\begin{array}{ll}65 & 04 \\ 65 & 17\end{array}$ | 78 | -...-do ............................................. |  |
| 74 | Mar. 5 <br> Mar.  | 7138 7140 | 6517 6507 | 85 84 | Blue clay, with brown mud |  |
| 76 | Mar. 7 | 7139 | 6502 | 83 | Blue clay, with brown mud | A. |
| 77 | Mar. 8 | 7136 | 6459 | 79 |  |  |
| 78 | Mar. 9 | 7133 | 6456 | 75 | Elue clay, with ferruginous concretions |  |
| 79 80 | Mar. 10 | 7134 7141 | 6453 | 77 |  |  |
| 80 | Mar. <br> Mar. <br> 12 | 7141 | 6437 6445 | 67 73 | Blue clay, with brown mud |  |
| 88 | Mar. 15 | 7141 | 6447 | 78 | do |  |
| 83 | Mar. 16 | 7140 | 6447 | 71 | .....do ...-. .-......................................... |  |
| 84 | Mar. 17 | 7140 | $6 \pm 43$ | 71 | Blue clay, with small stones, and ferruginous concretions. |  |
| 85 | Mar. 19 | 7136 | $6 \pm 32$ | 60 | Blue clay, with brown mud and ferruginous concretions. |  |
| 86 | Mar. 21 | 7134 | 6430 | 60 | Blue clay, with brown mud. |  |
| 87 | Mar. 24 | 7132 | 6424 | 55 | Blue clay, with ferruginous concretions |  |
| 88 | Mar. <br> Mar. <br> 28 <br> 1 | 7132 7133 | 6426 6427 | 55 55 | -....do do | A. |
| 90 | Mar. 29 | 7135 | 6432 | 59 | do | A. |
| 91 | Mar. 30 | 7134 | 6437 | 60 |  |  |
| 93 | Mar. 31 | 7132 | 6436 | 63 | Blue clay, with brown mud. |  |
| 93 | Apr. 2 | 7130 | 6433 | 56 | Blue clay, with ferruginous concretions and small stones. |  |
| 94 | Apr. 3 | 7128 | 6433 | 56 | Blue clay, with brown mud and small stones ....... |  |
| 95 | Apr. 6 | 7131 | 6434 | 57 | Blue clay, with brown mud and ferruginous concretions. |  |
| ${ }_{97}^{98}$ | Apr.  <br> Apr 7 | 7133 | $6 \pm 33$ | 58 |  | A. |
| 97 | Apr <br> Apr. <br> Apr. <br> 10 | 7134 7136 | 6433 6433 | 57 60 | . do |  |
| 99 | Apr. 11 | 7137 | 6438 | 70 | Blue clay, small stone |  |
| 100 | $\mathrm{Apr}^{\text {pr }}$. 12 | 7140 | 6143 | 68 | Blue clay, with brown mud and ferraginous concretions. |  |
| 101 | Apr. 13 | 7144 | 6503 | 81 | Blue clay, with brown mud, and large stones ....... |  |
| 102 | Apr. 14 | 7144 | 6506 | 8: | Bhe clay, with brown mud, and ferruginous concretions. |  |
| 103 | Apr. 16 | 7145 | 6320 | 88 | Light-brown clay, with brown mud, and ferruginous concretions. |  |
| 104 | Apr. 17 | 7144 | 6522 | 89 | . . . do . |  |
|  | S. | . 90 | -63 |  |  |  |

Dredging Etations of the Danish Arctic expedition, 1882-83-Continued.

|  | Date. | Latitude north. | Longitude east, Green. wich. |  | Find of bottom. |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1883. |  |  | Futh. |  |  |
| 105 | Apr. 18 | 7145 | 6512 | 90 | Light-brown clay, with brown mu |  |
| 106 | Apr. 19 | 7146 | 6514 | 89 | .do |  |
| ${ }^{5} 107$ | Apr. 21 | 7141 | 6511 | 91 |  |  |
| 108 | Apr. 23 | 7143 | 6504 | 80 | Light-brown clay, with brown mud, and ferruginous concretions. |  |
| 109 | Apr. 24 | 7139 | 6456 | 73 |  |  |
| 110 | Apr. 25 | 7138 | 6158 | 79 | Dark-browu clay, with brown mud, stones, and ferruginous concretions. |  |
| 111 | Apr. 26 | 7137 | 6456 | 74 | Grayish-brown clay, with ferruginous concretions.. |  |
| 112 | Арг. 27 | 7137 | 6454 | 74 | Grayish-brown clay. |  |
| 113 | Арг. 28 | 7136 | 6449 | 70 | Grayish-brown clay, with brow |  |
| 114 | Арг. 30 | 7138 | 6437 | 65 | Grayish-brown clay, with small stones, and ferruginous concretions. |  |
| 115 | May | 7134 | 6422 | 50 |  |  |
| 116 | May 3 | 7133 | 6417 | 50 | Blue clay, with brown mud, and ferruginous concretions. |  |
| 117 | May | 7132 | 6417 | 50 |  |  |
| $\begin{aligned} & 118 \\ & 119 \end{aligned}$ | May <br> May | 7134 7135 | 6418 6412 | 44 | $\begin{gathered} \text {. do } \\ \text {. . do } \end{gathered}$ |  |
| 120 | May | 7133 | 6418 | 53 | .-...do |  |
| 121 | May | 7132 | $6 \pm 19$ | 51 |  |  |
| 122 | May 10 | 7131 | 6423 | 53 | ¢....do .................... | A. |
| 123 | May 11 | 7128 | 6417 | ${ }_{5}^{56}$ | Blue clay, with brown mud | A. |
| 124 | May 12 | 7127 | 6420 | 53 |  |  |
| 125 | May 15 | 7125 | 6422 | 50 | Blue clay, with ferruginous con |  |
| 127 | May 17 | 7122 | $6 \pm 20$ | 68 | Blue clay, with brown mud, and ferraginous concretions. |  |
| 128 | May 18 | 7121 | 6423 | 69 | , |  |
| 129 | May 21 | 71 | 6418 | 68 |  |  |
| 130 | May 22 | 7122 | 6417 | 56 | . ${ }^{\text {do }}$ |  |
| 131 | May 24 | 7125 | 6418 | 55 |  |  |
| 132 | May 26 | 7118 | 6401 | 55 | Blue clay, with brow |  |
| 133 | May 28 | 7121 | 6407 | 55 | do |  |
| 134 | May 30 | 7122 | 6402 | 55 | Blue clay, with brown mud, and ferruginous concretions. |  |
| 135 | June 1 | 7120 | 6405 | 56 | Blue clay, some small stones. |  |
| 136 | June 4 | 7118 | 6416 | 57 | Blue clay, with brown mud, and ferruginous concretions. |  |
| 137 | June 6 | 7117 | 6.418 | 60 | , |  |
| 138 | June ${ }^{8}$ | 7116 | 6416 | 59 | Blue clay, with brown mud |  |
| 140 | $\begin{aligned} & \text { June } 9 \\ & \text { June } 11 \end{aligned}$ | 7115 7112 | 6416 6420 | 64 56 | Bhe clay, with sandy clay, and a few small stones.. Blue clar, with brown mud, and ferruginous con- |  |
| 140 | June 11 |  |  | 50 | cretions. |  |
| 141 | June 12 | 7113 | 6422 | 59 | Blue clay, with brown mud |  |
| 142 | June 14 | 7110 | 6.11 | 73 | Blue clay, with brown mud, and a fow ferruginous concretions. |  |
| 143 | Jane 15 | 7109 | 6406 | 58 | do |  |
| 144 | June 16 | 7110 | 6402 | 75 | -do |  |
| 145 | June 18 | 7118 | 6343 | 70 | do |  |
| 146 | June 19 | 7120 | 6339 | 69 | Blue clay, with brown mud |  |
| 147 | June 20 | 7121 | 6343 | 65 | Blue clay, with brown mad, and ferruginous concretions, and small stones. |  |
| 148 | June 21 | 7120 | 6349 | 85 | Blue clay, with brown mud.. |  |
| 149 | Tune 23 | 7118 | 6348 | 83 |  |  |
| 150 | June 25 | 7115 | 6344 | 91 |  |  |
| 151 | June 26 | 7114 | 6344 | 933 | Blue clay, with lrown mud, and sandy clay |  |
| 152 | Jime 27 | 7113 | 6343 | 83 | Blue clay, with brown mud, and ferruginous concretions. | $\Delta$. |
| 153 | June 28 | 7115 | 6343 | 85 | Bhe clay, with brown mud. |  |
| 154 | June 29 | 7112 | 6343 | 95 | Blue clay with brown mul ferruginous concre |  |
| 155 | Juдe 30 | 7111 | 6342 | 783 | Blue clay, with brown mud, ferruginous concretions, aud stones. |  |
| 156 | July 1 | 7110 | 6337 | 67. | Blue clay, with brown mud, and ferruginous concretions. |  |
| 157 | Juls | 7109 | 6333 | 70 |  |  |
| 158 | July <br> July <br>  | 7107 7106 | 6324 6324 | 70 73 | Blue clay, with brown mud |  |
| 160 | - July 5 | 7104 | 6313 | 7 |  |  |
| 161 | July | 7105 | ${ }_{6} 610$ | 73 |  |  |
| 162 | July | 7105 | 6307 | 791 | Blne clay, with brown mud, and ferruginous concretions. |  |
| 163 | July 9 | 710.5 | 6255 | 80 | Bhe clay, with brown mud |  |
| 169 | July ${ }^{13}$ | 7102 7105 | 6246 <br> 6238 | 8 | Blue clay, with brown mud, and stone |  |
| 160 | July 16 | 7104 | 6340 | 761 | d |  |
| 167 \| | July 18 | 7104 | 6. 37 | 75 |  |  |

Dredging stations of the Danish Arctic expedition, 1882-'83-Continued.

|  | Date. | Tatitude north. | Longitude east, Greenwich. | 第 | Kind of bottom. |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1883. | 71 | (2) | Fath. |  |  |
| 168 | July 20 | 7106 | 6242 | 75 | Blue clay, with brown mud. |  |
| 169 | July 22 | 7105 | 6347 | 73 | Blue clay, with brown mud, and stones |  |
| 170 | July 24 | 7104 | 6249 | 74 | Blue clay, with brown mud |  |
| 171 | Aug. 2 | 7114 | 6237 | 70 |  | A. |
| 172 | Aug. Aug. 7 | 7118 7116 | 6210 | 58 46 | Blue clay, with brown mud, and stone | A. |
| 174 | Aug. 8 | 7113 | 6128 | $48 \frac{1}{2}$ | do |  |
| 175 | Aug. 10 | 7110 | 6122 | 53 | do |  |
| 176 | Aug. 13 | 7111 | 6112 | 53 | -.do |  |
| 177 | Aug. 16 | 7059 | 6030 | $68 . \frac{1}{2}$ | Blue clay and brown mud, with many sandy wormtubes. | A. |
| 178 | Aug. 17 | 7052 | 6000 | 92 | Blue clay, with light-brown mud, and small stones . | A. |
| 179 | Aug. 20 | 7054 | 5951 | 93 | Blue clay, and small stones | A. |
| 180 | Aug. 22 | 7056 | 5940 | 97 | ..do | A. |
| 181 | Aug. ${ }^{2} 2$ | 7056 | 5936 | 100 |  | A. |
| 182 | Aug. 24 | 7057 71 | 5935 | 100 98 | Blue clay and brown mud, with small stones |  |
| 183 184 |  | 7104 7117 | 5940 59 | 98 | Blue clay and small stones Blue clas with brown mud, sand tubes, and small |  |
| 185 | $\begin{array}{ll}\text { Sept. } \\ \text { Sept. } & 4\end{array}$ | 7110 | 59 59 59 | 74 100 | Blue clas, with brown mud, sand-tubes, and small stones. | A. |
| 185 | Sept. | 7110 | 5924 | 100 | Blue clay, with brown mud. | A. |
| 186 | Sopt. 5 | 7108 | 5915 | 106 | Blue clay and brown mud, with very numerous sand-tubes. |  |
| 187 | Sept. | 71.18 | 5944 |  | Blue clay and many sand tubes...................... | A. |
| 188 | Sept. 9 | 7120 | 5958 | 62 | Blue clay and many sand-tubes, with some mud and stones. | A. |
| 189 | Sept. 21 | 7026 | 5753 | 30 | Sandy clay, and stony | A. |
| 190 | Sept. 22 | 7020 | 5747 | 50 |  | A. |

## UREDGING AND SOUNDING STATIONS OF THE LIGHT. NING, 1868.

The dredgings made by the British surveying steamer Lightning in 1868 were undertaken at the request of the Royal Society, and, with the exception of the dredgings of Count Pourtales in 1867 and 1868, were almost the first deliberate attempts to investigate the deep-sea fauna. The region explored was between the north of Scotland and the Fairöe Islands and extending thence to a distance of about 250 miles northwest of Scotland. The series of temperatures obtained on this expedition, showing the great difference of temperature exising to the northeast and southwest of a submarine barrier (discovered by a subsequent expedition) were the first contributions of importance to our knowledge of the laws gorerning deep-sea temperatures. The scientific observations were under the charge of Dr. W. B. Carpenter and Prof. Wy ville Thomson, and the preliminary report by Dr. Carpenter was publisined in No. 107 of the Proceedings of the Royal Society, 1868.

Dredging and sounding stations of the Lightning, 1868.
WARM AREA.

| Serial number. |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |

COLD AREA.


* Dredgings.
$\dagger$ dt least.


## DREDGING STATIONS OF THE PORCUPINE, 1869.

The dredgings of the British steamer Porcupine in 1869 were in continuation of those of the Lightning in 1868, and were, like them, undertaken at the request of the Royal Society. They extended west of Ireland and Scotland, as far west as the Rockall Bank, and as far north as the Füröe Islands, and reached a depth of 2,435 fathoms, a much greater
one than ever before attained. Dr. Carpenter's report on them is coutained in No. 121 of the Proceedings of the Royal Society, Vol. 17, 1. 397.

Dredling stations of the Porcupine, 1869.


Dredging-stations of the Porcupine, 1863-Continued.

|  |  | Latitude. | Lougitude. | Depth. | Kind of bottom. | Temperatures Fahrenheit. |  | Tompera. tures centigrade. |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | Sur <br> face. | Bottom. | Sur. <br> face. | Bottom. |
|  |  | North; | East. | Fath. |  | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | - |
| 68 | August. | $60 \quad 33$ | 033 | 75 |  | 52.5 | 44.0 | 11.4 | 6. 7 |
| 69 | ...do .-. | 6001 | $\begin{gathered} 018 \\ \text { TVest. } \end{gathered}$ | 67 |  | 53.5 | 43.8 | 12.0 | 6.5 |
| 70 | Ang. 28 | 6004 | West. 21 | 66 | - | 53.4 | 45.1 | 11.9 | 7.3 |
| 71 | Sept. 1 | 6017 | 253 | 103 |  | 53.0 | 48.6 | 11.6 | 9.2 |
| 72 | ...do ... | 6020 | 305 | 76 |  | 52.3 | 48.8 | 11.3 | 9.4 |
| 73 | . . do . | $60 \quad 29$ | 306 | 84 |  | 52.7 | 48.8 | 11.5 | 9.4 |
| 74 | ... do . | 6039 | 309 | 203 |  | 52.6 | 47.6 | 11.4 | 8.7 |
| 75. | ...do .. | 6045 | 306 | 250 |  | 51.5 | 41.9 | 10.8 | 5.5 |
| 76 | Sopt. 2 | 6036 | 358 | 344 |  | 50.3 | 29.7 | 10.1 | $-1.1$ |
| 77 | S.do .... | 6034 | 440 | $5(00$ |  | 50.9 | 29.8 | 10.5 | -1. |
| 78 | Septembr | 6014 | 430 | 230 |  | 52.2 | 41.5 | 11.2 | 5.3 |
| 89 | ...do ...- | 5944 | 444 | 76 |  | 52.1 | 48.9 | 11.2 | 9.4 |
| 80 | $\left\lvert\, \begin{gathered} \text { - do .... } \\ \text { - . do } \end{gathered}\right.$ | 59 59 59 59 | $4{ }^{4} 4^{42}$ | 142 |  | 53.2 | 49.4 | 11.8 | 9.6 |
| 818 | ...do .... | $\begin{array}{ll}59 & 54 \\ 60 & 00\end{array}$ | 501 5 5 13 | 142 |  | 53.3 | 49.1 | 11.8 | 9.5 |
| 83 83 | $\begin{aligned} \text { - do } \\ \text { do do } \end{aligned}$ | 6000 60 | 513  <br> 5 18 | 312 |  | 52. 3 | 41, 4 | 11.2 | 5.2 |
| 83 | do | 6006 | 508 | 362 |  | 53.1 | 37.5 | 11.7 | 3.0 |
| $8 t$ | Sept. 4 | 5934 | 634 | 155 |  | 54.3 | 49. 1 | 11.4 | 9.5 |
| 85 | ...do .... | 5940 | 634 | 190 |  | 53.9 | 48.6 | 12.1 | 9.3 |
| 88 | Sept. ${ }^{\text {d }}$ | 5948 | 631 | 445 |  | 53.6 | 30.1 | 12.0 | $-1.0$ |
| $\begin{aligned} & 87 \\ & 88 \end{aligned}$ | Sept. 6 | 5935 59 | 9 8 8 11 | 767 |  | 52.5 | 41.4 | 11.4 | 5.2 |
| 89 | Sept. 7 | 5926 59 | 818 746 | 705 |  | 53.5 53.1 | 42.6 | 12.0 | 5.9 |
| 90 |  | 5941 | 734 | 458 |  | 53.1 | 45.5 45.2 | 11.7 | 7.3 |
| VI |  | 6045 | 449 | 510 |  | 52.0 | 31.7 | 11.1 | $-0.2$ |
| VII |  | 6007 | 521 | 500 |  | 51.0 | 30.2 | 10.6 | $-1.0$ |
| VIII |  | 6010 | 559 | 550 |  | 53.0 | 29.8 | 11.7 | -1.2 |
| 1 |  | 6028 | 655 | 500 |  | 51.0 | 30.8 | 10.6 | -0.7 |
| XI |  | 6030 | 716 | 450 |  | 50.0 | 31.2 | 10.0 | -0.4 |
| XII |  | 5930 | 720 | 530 |  | 52.5 | 44.8 | 11.4 | 7.1 |
| XVV |  | 5959 | 915 | 650 |  | 53.0 | 42.5 | 11.7 | 5.8 |
| NV |  | 6038 | 1107 | 570 |  | 52.0 | 43.5 | 11.1 | 6.4 |
| XVII |  | 5949 | 1236 | 620 |  | 52.0 | 43.5 | 11.1 | 6.4 |

## DREDGLNG AND SOUNDING STATIONS OF THE PORCUPINE, 1870.

The dredgings of the Porcupine in 1870, like those of 1869 and those of the Lightning in 1868, were undertaken at the request of the Royal Society to extend the examination of the deep-sea bottom to the south of Europe and the Mediterranean. Two cruises were made, the first under the scientific direction of Mr. Gwyn Jeffreys, accompanied by Mr. Josua Lindahl and Mr. W. L. Carpenter, extending from Falmouth to Gibraltar, and the second under W. B. Carpenter, assisted by Mr. Lindahl and Mr. P. H. Carpenter, exploring the western basin of the Mediterranean between Gibraltar and Malta, in order to determine its physical and biological relations to the Atlantic, with special reference to the Gibraltar current. The temperature observations made on this second cruise, slowing an almost absolute uniformity of temperature from the depth of about 100 fathoms (or that of the Straits of Gibraltar) to the greatest depths reached ( 1,743 fathoms), shed a most important light upon the phenomena of ocean basins inclosed by shallow barriers, such as the Mediterraucan, the Caribbean Sea, Gulf of Mexico, and Sooloo Sea, as contrasted with those of the open ocean. Thus, on this seasou's work, the six temperatures taken below 1,000 fathoms in the Mediterranean (rauging from 1,398 to 1,743 fathoms) were all between
$54.7^{\circ}$ and $56^{\circ}$, and one at 112 fathoms giving $55.5^{\circ}$, whilst in the Atlantic, almost in the same latitude, depths of 1,095 and 1,065 fathoms gave $39.7^{\circ}$ and one of 128 fathoms, a little farther north, $52.5^{\circ}$. The report on the expedition, by Mr. J. Gwyn Jeffreys and Dr. W. B. Carpenter, forms No. 125 of the Proceedings of the Royal Society, December 8, 1870. There appear to be some discrepancies between the numbers assigned to the stations in the Mediterranean in the detailed description of the dredgings and those given in the list of stations and on the charts, but as the latter two series agree the others are probably erroneous. Care, therefore should be taken in making use of the lists of animals dredged to see that they really belong to the station aseribed to them in the body of the text. The explorations of the first cruise (No. 1 to 38) extended from July 7 to August 5, 1870, and those of the second cruise from August 15 to October 1.

Dredging and sounding stations of the Porcupine, 1870.

| $\stackrel{\circ}{4}$ |  |  |  | Temper | ratures. |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { ت } \\ & \stackrel{5}{0} \end{aligned}$ |  |  |  | Surface. | Botton. |  |
| 1 | North. 4838 | West. 1615 | Fathoms. | $\bigcirc$ |  |  |
| 2 | 4837 | 1009 | 305 | 61.5 | 48.5 | Do. |
| 3 | 4831 | 1003 | 690 |  |  | Do. |
| 4 | 4832 | 959 | 717 | 61.5 | 45.3 | Do. |
| 5 | 4829 | 945 | 100 | 62.3 | 51.5 | Do. |
| 6 | 4826 | 944 | 353 | 62.0 | 50.3 | Do. |
| 7 | 4818 | $9{ }_{9}^{911}$ | 93 | 61.0 | 51.3 | Do. |
| 8 | 4813 4806 | 911 918 | 257 539 | 60.7 64.0 | 50.0 48.0 | Do. |
| 10 | 4244 | 918 923 | 81 | 60.5 | 53.5 | Between Cape Finisterre and Vigo |
| 11 | 4232 | 924 | 332 | 60.5 | 51.5 | Do. |
| 12 | 4220 | 917 | 128 | 61.5 | 52.5 | Do. |
| 13 | 4016 | 937 | 220 | 64.5 | 52.0 | Between Onorto and Lisbon. |
| 14 | 4006 | 944 | 469 | 65.3 | 51.5 | Do. |
| 15 | 4002 | 949 | $72 \pm$ | 67.5 | 49.7 | Do. |
| 16 | 3955 | 956 | 994 | 69.5 | 40.3 | Do. |
| 17 | 3942 | 943 | 1, 095 | 68.0 | 39.7 | Do. |
| $17 \times$ | 3939 3929 | 939 94 | 740 1,065 | 67.5 65.0 | 49.3 39.7 | Do. |
| 19 | 3927 | 939 | 1,248 | 64.7 | 51.7 | Do. |
| 21 | 3819 | 930 | 620 | 67.3 | 50.5 | Southwest of Lisbon. |
| 22 | 3815 | 933 | 718 | 66.3 | 52.0 | Do. |
| 23 | 3720 | 930 | 802 | 66.5 | 49.3 | Northwest of Cape St. Vincent. |
| 24 | 3719 3711 | 9 9 9 | 292 | 67.5 | 5.7 | Do. |
| $\stackrel{25}{26}$ | 3711 3644 | 907 808 | 374 <br> 364 | 69.7 71.7 | 53.5 52.7 | Detween Capo St. Vincent and Cadiz. |
| 27 | 3637 | 733 | 322 | 73.0 | 51.3 | Do. |
| 28 | 3629 | 716 | 304 | 71.5 | 53.3 | Do. |
| 29 | 3620 | 647 | 227 | 73.3 | 55.0 | Southwest of Cadiz. |
| 30 | 3615 | 652 | 386 | 73.0 | 53.7 |  |
| 31 <br> 32 | 3556 3541 | 706 708 | 477. | 71.3 71.5 | 50.5 50.0 | Off Straits of Gibraltar. |
| 33 | 3533 | 654 | 554 | 72.0 | 49.7 | Do. |
| 34 | 3544 | 653 | 414 | 71.7 | 50.0 | Do. |
| 35 | 3539 | 638 | 335 | 73.5 | 51.5 | Do. |
| 36 37 | 3535 | 626 600 | 128 | 75.0 72.0 | 55.0 53.7 | In Straits of Gibraltar. |
| 38 | 3550 3558 | 600 5 5 26 | 190 | 72.0 71.7 | 53.7 54.0 | In Straits of Gibraltar. Do. |
| 39 | 3559 | 527 | 517 | *66. 0 | 55.5 | Do. |
| 40 | 3600 | 440 | 586 | 74.5 | 55.0 | Between Gibraltar and Oran. |
| 41 | 3557 | 412 | 730 | 74.5 | 55.0 | 1 Do. |
| 42 | 3545 <br> 3524 <br> 1 | 357 3 3 54 | 790 | 74.0 74.7 | 54.0 55.0 | Do. |
| 44 | 3542 | 301 | 455 | 70.0 | 55.0 | Do. |
| 45 | 3536 | 229 | 207 | 72.7 | 54.7 | Do. |
| 46 47 | 3539 | 156 110 | 493 845 | 73.5 69.5 | 55.5 54.7 | ${ }_{\text {Dou }}$ Do. |
| 47 48 | 3725 3711 | ${ }_{0}^{1} 10$ | 1, 328 | 69.5 73.5 | 54.7 54.7 | South of Cartagena. <br> Do. |

Dredging and sounding stations of the Porcupine, 1870-Continned.

|  | Latitude. | Longitude. | Depth. | Temperatures. |  | Locality. |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Surface. | Bottom. |  |  |
| 49 | North. 3629 | Tiest. 031 | Fathoms. <br> 1, 412 | $71.5$ | $\stackrel{\circ}{54.7}$ | Between Cartagena and Oran. |  |
| 50 50 |  |  | 51 |  |  |  |  |
| $50 a$ $50 b$ |  |  | 152 <br> 510 | $\}^{*} 74.4$ |  | Coast of Algiers. |  |
|  |  | East. |  |  |  |  |  |
| 51 52 | 8655 | 110 | 1,415 | 75.0 | 54.7 | Off coast of Algiers. |  |
| $\begin{gathered} 52 \\ 52 a \end{gathered}$ |  |  | 660 590 | $\}+76.2$ |  | Coast of Algiers. |  |
| 53 | 3653 | $5{ }^{-7}$ | 112 | 77.0 | 55.5 | Do. |  |
| 54. | 3741 | 627 | 1,508 | 76. 0 | 55.0 | Off coast of Algiers. |  |
| 55 | 3730 | 651 | 1,456 | 76.5 | 55.0 | Do. |  |
| 56 | 3703 | 1136 | 390 | 78.0 | 56.5 | Between Cape Boa and Pantellaria. |  |
| 57 | 3606 | 1310 13 136 |  | $* 76.8$ 75.5 |  | South of Sicily. |  |
| 58 | 3643 3632 | 13 14 14 12 | 266 445 | 75.5 76.5 | 56.5 56.5 | Do. |  |
| 59 60 | 3632 3631 | 1412 | 1, $\begin{array}{r}445 \\ \hline 14\end{array}$ | 76.5 74.0 | 56.5 56.0 | Do. <br> Southeast of Sicils. |  |
| 61 | 3826 | 1532 | - 392 | 72.5 | 55.7 | Northeast of Sicily. |  |
| 62 | 3838 | 1521 | 730 | 72.5 | 55.3 | ${ }_{\text {Do }}{ }_{\text {D }}$. ${ }^{\text {d }}$ |  |
| 63 |  |  | 181 | 68.0 | 54.7 | Straits of Gibraltar. |  |
| 64 |  |  | 460 | 65.6 | 54.7 | Do. ${ }_{\text {D }}$ |  |
| 65 66 |  |  | 198 | 63.0 69.0 | 54.5 | Off Straits of Gibraltar. |  |
| 66 67 |  |  | 188 | 69.0 73.0 | 55.3 | $\begin{aligned} & \text { Do. } \\ & \text { Wo. } \end{aligned}$ |  |

* These temperatures are the averages of the day.


## DREDGINGS OF THE SHEARWATER, 1871.

In $18 \% 1$ the steamer Shearmater made some dredgings ou the coral banks between Sicily and Cape Bon, in depths of not more than about 200 fathoms. Dredging was not the main object of the expedition and no record exists, so far as is known, of the precise localities.

## SOUNDING AND DREDGING STATIONS OF THE VALOROUS, 1875.

The Talorous was a war-steamer sent as a store-ship with the British North-Polar Expedition of 1875 (the Alert and Discorery). As it was to return directly from Disco, Greenland, the Royal Society requested the Government to permit Mr. J. Gwyn Jeffreys and an assistant, Mr. Herbert P. Carpenter, to make the voyage, so as to undertake natural history observatious both at Diseo and on the return royage. The reports on the dredgings, etc., between Davis's Straits and England by Mr. Jeffreys, Dr. William B. Carpenter, Rev. A. F. Norman, Dr. W. C. MeIntosh, Professor Allman, Professor Duncan, Prof. George Dickie, and Mr. R. Etheridge were published in No. 173 of the Proceedings of the Royal Society, 1876. The first dredging was made about July 22 and the last on August 23, 1875. Ia the following table the letter D. indicates a dredging, S. T. a serial temperature. At the other stations soundings only were made.

Sounding and dredging stations of the Valorous, 1875.

| $\begin{aligned} & 0.0 \\ & \text { 淢 } \\ & \text { on } \end{aligned}$ | $\begin{aligned} & \text { Lati- } \\ & \text { tude } \mathrm{N} . \end{aligned}$ | Longi. tude W. | Depth. | Bottom temper ature | Kind of observation. | Nature of bottom, | Locality. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\bigcirc$ | $\bigcirc$ | Fath. | - |  |  |  |
| 1 | 7030 <br> 70 | 5441 5500 | 175 85 |  | ${ }_{\mathrm{D}}^{\mathrm{D}}$. | Sand, mud ... | North of Disco Isla |
| 3 | 6931 | 5601 | 100 |  | D. | Mud... | West of Disco Island. |
| 4 | 6756 | 5527 | 20 |  | D. | Broken barnacles, shells | In Davis's Straits. |
| 5 | 6655 | 5530 | 57 |  | D. | Rock, sand, shells ...... | Do. |
| 6 | 6405 | 5647 | 410 | 34.6 | D., S. T. | Sand, mud. | Do. |
| 7 | 6309 | 5643 | 1,100 | 36.4 | D., S. T. | Clay, mud ............. | Do. |
|  | 6206 | 5556 | 1, 350 | 34.6 34.0 |  | Mud (blue clay under).. | Do. |
| 10 | 5910 5814 | 4025 | 1,750 | 34.0 34.3 | S. ${ }_{\text {T }}$. | Fine sand. | SW. of Cape Faremell. |
| 11 | 5750 | 4452 | 1, 865 | 33.4 |  | Globigerina ooze. | South of Cape Farewell. |
| 12 | 5611 | 3741 | 1,450 | 36.3 | D., S. T. | Globigerina ooze, stone . | In Atlantic Ocean. |
| 12. | 5601 | 3442 | 690 | 38.2 |  | Globigerina ooze. | Do. |
| 14 | 5558 | 3141 | 1,230 | 36.8 |  | Mud. | Do. |
| 15 | 5558 | 2842 | 1,485 | 36.5 | S. T. | Clay, blue mue | Do. |
| 16 | 5510 | 2558 | 1,785 | 36.7 | D. | Globigerina ooze (blue mud under). | Do. |

## DREDGING STATIONS OF THE KNIG.HT ERRANT, 1880.

The dredgings of the British steamer Knight Errant were made in the Färöe Channel between the Färöe Islands and the north of Scotland, covering a part of the same ground that was explored by the Lightning in 1868, and defining the position of the submarine barrier by which the so-called warm and cold areas of the Fïröe Channel are divided from each other. The report of the expedition was published in the Proceedings of the Royal Society of Edinburgh, Vol. XI, pp. 638-720, read May 15, 188\%. The dredgings were under the scientific charge of Mr. John Murray, of the Challenger expedition.

Dredging stations of the Kwight Errant.

|  | Date. | Latitude N. | Longitude W. | Depth. | Kind of bottom. | Temperatures. |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | Surface. | Bottom. |
|  | July 27 | for 04 | $\bigcirc$ | Fath. | Mud | 54.8 | $4{ }^{\circ} \mathrm{S}, 5$ |
|  | July 28 | 6029 | 819 |  | ....do | 53.0 | 31.0 |
| 3 | Aug. ${ }^{\text {J }}$ | 5912 | 557 | - 5 |  |  |  |
|  | Ang. 10 | 5933 5926 | 714 <br> 7 <br> 19 | 555 | Mud | 57.0 | 45.0 |
| 5 | Aug. 11 | 5926 <br> 59 <br> 9 | 719 719 | 515 | Ooze. | 56.6 57.0 | 44.0 |
| 7 | ....de . | 5937 | 719 | 530 | -...do. | 57.0 57.0 |  |
| 8 | Aug. 17 | 6003 | 551 | 540 | ....do. | 56.5 | 28.0 |

## DREDGING STATIONS OF THE TRITON, 1882.

The dredgings of the British surveying steamer Triton in 1882 were, like those of the Knight Errant in 1880, directed towards the further exploration of the Färöe Channel, and covered nearly the same ground. They were also under the scientific charge of Mr. John Murray, and Mr. J. Gwyn Jeffrey's report on the mollusea obtained was published in the Proceedings of the Zoological Society of London, June 19, 1883, from which these positions have been taken.

Dredging stations of the Triton, 1882.


* Partly on the ridge.

TThe trawl had boon carried right over the ridge and came up in the cold area.

## DREDGINGS OF THE SWEDISH FRIGATE JOSEPHINE, 1869.

These dredgings extended from the coast of Portugal to the Azores, and thence across the Atlantic to America. They were under the charge of Messrs. Smith and Ljungmans. I have been unable to meet with any details as to the precise positions or character of the dredgings.

## CLASSIFIED LIST OF ALL DREDGINGS OF OVER 60 FATH. OMS MADE BY U. S. FISH COMMISSION NORTH OF BAIAAMAS.

Dredgings made in the Gulf of Maine are not giren, nor those made inside the Banks situated off the coast of Nova Scotia.

The others are designated as follows:
S.-Off Savanmah to Bahanas. N. Lat. $27^{\circ} 30^{\prime}$ to $34^{\circ} 00^{\prime}$.
II.-Off Cape Hatteras. N. Lat. $34^{\circ} 00^{\prime}$ to $36^{\circ} 30^{\prime}$.
C.-Off Chesapeake Bay. N. Lat. $36^{\circ} 30^{\prime}$ to $38^{\circ} 00^{\prime}$.
D.-Ofi Delaware Bay. N. Lat. $38^{\circ} 00^{\prime}$ to $39^{\circ} 00^{\prime}$.
M. -South of Block Islaud, Martha's Vineyard, and Nantucket.
G.-South to east of St. George's Bank.
N.-South and southeast of Newfoundland and on the Flemish Cap.

60 to 100 fathoms:
H.-2008, 2267, 2268, 2298, 2595, 2600, 2602, 2603.
C.-2005, 2011, 2012, 2265, 2421, 2422, 2424.
M. $-365,866,867,872,874,920,921,922,941,950,1091,1109,1117,1118,2031,2032$, $2057,2037, \geqslant 036,2037,2177,2197,2192,2199,2043,2244,2247,2248$.
G. -83 B., 84 B., $2065,2066,2079,2524,2525$.
N.-2432, $9692,2693,2694,2698,2699,2700,2701$.

100 fathoms:
H.-2266; $2425,2426,2592,2601$.
C. -2004 .
D. $-1046,2746$.

100 fathoms-continued.
M. -871 , 873, 875, 876, 877, 923, 949, 1027, 1035, 1036, 1010, 1107, 1108, 1110, 1111, $1119,1151,1152,2053,2054,2055,2056,2091,2245,2246,2505,2512,2522,2558$, 2559, 2560.
G.-2060, 2061, 2061, 2067, 2060, 2070, 2071, 2523, 2526, 2527.
N.-2477, 2481, 2695, 2696, 2704.

150 fathoms:
H. $-2109,2310,2593,2594,2613,2614$.
C. $-897,2020,2170,2264,2423$.
D. -1043 , 1047 .
M. $-863,870,878,921,940,942,943,944,1034,1033,1039,1097,1098,1115,1116,1150$, $2026,2083,2039,2090,2184,2185,2200,2536,2537,2533,2539,2540,2541,2542$, 2543, 2544, 2545, 2555, 2557, $2582,2583$.
G.-93 B., 97 B., $2062,2063,2068$.
N.-2431, 2172, 2474, 2479, 2483, 2703.

200 fathoms:
C.-2021.
D. $-1044,2745$.
M. $-869,926,945,951,1025,1026,1032,1033,1092,1113,11: 4,1120,1121,1137,1138$. $1153,1154,2027,2028,2092,2183,2548,2556,2590,2591$.
N.-2430, 2469, 2470, 2471, 2473, 2475, 2476, 2478, 2430, 2483, $9134,2485,2456,2497$, 2702.

250 fathoms:
S.-2624, 26:25, 2665, 2666, 2667, 2673.
D.-2232.
M. $-878,879,895,925,939,1112,2024,2025,21 \% 8,2183,2262,2589,2636$.

300 fathoms:
S.-2668, 2670, 2671, 2672, 2674, 2675.
H. $2299,2306$.
C.-898.
D. -1045 .
M.—881, 93~, 947, 996, 997, 998, 999, 1031, 1094, 1095, 1096, 112J, 1139, 1142, 2176, 2586.
N.-2482.

350 fathoms:
S.-2626, 2655, 2664, 2669.
M. $-1030,1093,1122,2186,2687$.

400 fathoms:
S.-2627, 2661, $2662,2663,2676$.
C. $-2014,2023,2171,2263$.
D. $-1048,1049$.
M. $-893,894,952,994,905,1023,1140,1141,2033,2045,2016,2047,2187,2212,2213$, 2547, 2554, $2581,2587$.
G.-85 B.

500 fathoms:
S.-2628, 265i, 2658, 2659, 2660, 2677.
H.-2009, 2110.
C. $-2001,2006,2022$.
M. $-891,892,1023,1143,1144,2013,2175,2179,2180,2201,2022,2214,2237,2516$, 2561, 2584, 2585, 2588, 2689.
G.-20\%こ.
N.-2427, 2429.

600 fathoms:
S.-2656.
C.-2002, 2003, 2019, 217\%.

600 fathoms-continued.
D.-2233, 2744.
M.—037, 1124, 1155, 2030, 2189, 2215, $2236,2549,2553,2680,2688,2690,2722$.
G. -2073.

700 fathoms:
S. $-2654,2678$.
H. -2300
C. $-2729,2730$.
M. $-936,953,954,2181,2: 203,2204,2235,2552,2749$.
G.—2528, 2599, 2532.

800 fathoms:
S. -2679.
H. -2115 .
C. $-9018,2731$, $2734,2735,2739$.
D. $-27 \times 1$.
M. $-935,1123,2551,2691$.
G. -2533.
N.-2428.

900 fathoms:
H. -2010, 2111, 2116 .
C. - $2013,2793,2733,2738,2741,2742$.
M.-2182, உ217, 2218, 2219, 2238, 2683.
G.-2072, 2075, 2076, 25331, 2709.

Dredgings in 1,000 fathoms or more are not distinguished geographicalls, but are all between N. lat. $36^{\circ} 06^{\prime}$ and $41^{\circ} 43^{\prime}$ and W. long. $65^{\circ}$ $22^{\prime}$ and $74^{\circ} 33^{\prime}$.

1,000 fathoms:
$2049,2050,2035,2093,2094,2104,2191,2206,2210,2216,2931,2530,2681,2682,2708$, 2710, 2740 .
1,100 fathoms:
$\therefore 044,2051,2052,2103,2192,2193,2194,2195,2205,2207,2009,2211,22 \div 0,2550,2684$, 2685, 2707, 2743.
1,200 fathoms:
$2029,2102,2190,2196,2298,2230,2534,2535,2706,2727,2732,2748$.
1,300 fathoms:
$2034,9074,2077,9084,9095,2705,9796,2747$.
1,400 fathoms:
$2035,2105,2229,2562,2563,2564,2571,2725$.
1,500 fathoms:
$2013,2096,2106,2291,2222,2711,2719,2720$.
1,600 fathoms:
$2041,2045,2100,2101,2173,2174,9223,2716,2717,2718,2723,27 \% 4$.
1,800 fithoms:
2036, 2037, $2568,6569,2570,257 \cong, 2573,9574,2575,2719,2713,9714,9715$.
$\because, 000$ fathoms:
2038, 2097, 2226, 2565.
2,200 fathoms:
2040, 2098, 2237.
2,400 fathoms:
2039.

2,600 fathoms:
2223, 2224, 2225, 2566, 2567.
2,949 fathoms:
2099.

SERIES OF TEMPERATURES TAKEN BY THE SPEEDWELL IN 1877, 1878, AND 1879-Coutinued.



)8 REPORT OF COMMISSIONER OF FISH AND FISHERIES. [136]
SERIES OF TEMPERATURES TAKEN BK THE SPEEDWELL IN 1877, 1878, AND 1879—Concladed



TEMPERATURE OBSERVATIONS BY THE SPEEDWELL SEPTEMBER 25 AND 29，1879—Continued．

|  |  |  | $\stackrel{\text { 昳 }}{\text { e }}$ | Temperatures． |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\stackrel{\text { ®. }}{\stackrel{\text { ® }}{\leftrightarrows}}$ | $\begin{aligned} & \text { 品 } \\ & \text { B } \\ & \text { B } \\ & \text { in } \end{aligned}$ | Locality． |  | 守 | 芯 |  |  |  |  | 里 |  | 淢 |  |  | 盛 |
| $\begin{gathered} 1879 . \\ \text { Sept. } 29 \end{gathered}$ | 20 | Race Point Light S． $70^{\circ} \mathrm{W} .9 \frac{1}{2}$ miles | 32 | 62． 5 | ${ }^{\circ}$ | ${ }^{\circ}$ | .$^{\circ}$ | － | $\circ$ 47 | － | $\circ$ + 4 | － | － | － | － |
| 29 | 21 | Race Point Light S． 66 W． $5 \frac{1}{2}$ mile．s | 21 | 61 | 57 | 55． 2 | 51 |  | 45 |  |  |  |  |  |  |
| 29 | $\because$ | Race Point Light S． $420 \mathrm{~W} .5 \frac{1}{2}$ miles | 28 | 62.8 | 50.5 | 56． | 46.1 |  |  |  | 46 |  |  |  |  |
| $\underline{29}$ | 23 24 | Race Point Light S． 180 W .21 miles | 33 30 | 61 | 57.5 58 | $\begin{aligned} & 57 \\ & 58 \end{aligned}$ | $\begin{aligned} & 56 \\ & 57 \end{aligned}$ |  | 45 |  | 44 | 44 |  |  |  |
| 29 | 25 | Race Point Light N． $16{ }^{\circ}$ E． 21 miles | 27 |  | 58 | 59 | 56.8 |  |  |  | 44.9 |  |  |  |  |


$1-3-3$ Continued.


LISTS OF DREDGING STATIONS．

|  |  |  |
| :---: | :---: | :---: |
|  | －stuoqzer 008＇t |  |
|  | ＊sumoqua 00］＇I |  |
|  | －¢uoutaj 00í5 |  |
|  | ＊sworty 000＇I |  |
|  | ＊scaotpry 036 |  |
|  | ＊suroturj 008 |  |
|  |  |  |
|  | ＂smoury 009 |  |
|  | －stuorter 0ces |  |
|  | ＊stuottrej 005 |  |
|  | ＊suoчtry 008 |  |
|  | stuotrey 00s | 8 |
|  | －stuortury 00 I |  |
|  | ＊＊motref 0c | にかになたかに思 |
|  |  |  <br>  |
|  | 它药 |  |
|  | 害 |  |
|  | 范 |  <br> 艺 |
| $\begin{aligned} & \text { 言 } \\ & \text { 荡 } \\ & 0 \end{aligned}$ | $\begin{aligned} & 3 \\ & y=0 \\ & y \end{aligned}$ |  <br>  <br>  |
|  |  |  <br>  <br>  |
|  | － |  <br>  <br>  |
|  |  |  <br>  <br>  |

1014 merom on commsstoner of mish and misimmies [1:2]




Ircorl of spect of fire trawlings and sommlings, Tuiy, 1883, U. S. Fish Commission stramer Albatross, Lieut. Commander Z. L. Tamer, U. S. Navy, commanding.

TRAWL-GOING DOWN.

| Fathoms. | Number of station. |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2038. | 2039. | 2040. | $20 \pm 1$. | 2042. |
| Surface to 100 | h. $m$. $s$. 400 | h.m.s. <br> 515 | h.m.s. | h. m. $\delta$. 355 | h.m.s. |
| 100 to 200 .... | - 500 | 515 405 | 410 | 430 | 400 400 |
| 200 to 300 | 500 | - 350 | 315 | 400 | 345 |
| 300 to 400 | 400 | 400 | 425 | 430 | 530 |
| 400 to 500 | 440 | 530 | 905 | $\pm 30$ | 355 |
| 500 to 600 | 400 | 445 | 415 | 446 | 330 |
| G60 to 700 | 400 | 353 | 400 | 445 | 330 |
| 700 to 800 | 520 | 402 | 330 | 447 | 500 |
| 800 to 900 | 445 | 415 | 400 | 445 | 400 |
| ! 100 to 1,000 | 410 | 400 | 340 | 447 | 430 |
| 1,000 to 1,100. | 405 | 735 | $4 \because 0$ | 447 | 400 |
| 1,100 to 1,200 | 450 | 615 | 340 | 505 | 400 |
| 1,200 to 1,300 | 920 | 725 | 415 | 420 | 410 |
| 1,300 to 1,400 | 600 | 500 | 415 | 420 | 410 |
| 1,400 to 1,500 | 550 | 500 | 340 | 420 | 400 |
| 1,500 to 1,600 | 430 | 430 | 440 | 430 | 420 |
| 1,600 to 1,700 | 430 | 430 | 435 | $\pm 40$ | 410 |
| 1,700 to 1,800 | 600 | 4.00 | 740 | $4 \times 5$ | 415 |
| 1,800 to 1,900 | 515 | 800 | 620 | 420 | 350 |
| 1,900 to 2,000 | 415 | 1145 | 525 | 410 | 340 |
| 2,000 to 2,100 | 505 | 745 | 500 | 410 | 345 |
| 2,100 to 2,200 | 500 | 750 | 510 | 410 | - |
| 2,200 102,300 | 435 | 700 | 700 | * 200 | - |
| 2,300 to 2,400 | 420 | 500 | 615 | ....... | . . . . |
| 2,400 to 2,500 | 400 | 500 | 700 |  |  |
| $\stackrel{2}{2}, 500$ to 2,600 | 930 | 645 | 645 |  |  |
| $\because, 60$.$) to 2,700$ | 530 | 450 | 400 |  | -*----- |
| 2,700 10 2,800 |  | 500 | 330 |  |  |
| 2.800 10 2, 300 |  | 955 | 400 |  |  |
| 2,500 to 3,000 |  | 500 | 340 |  |  |
| 3,004 to 3,100 |  | $4{ }^{4} 3$ |  |  |  |
| :3,110 to 3,200 |  | 615 |  |  |  |
| 'Total time | $\because 1730$ | 30215 | 22840 | 14032 | 12600 |
| Aretage speed per 100 fathoms | 505 | 542 | 457 | 428 | 406 |
| Inpth in fiathoms ...-........... | 2,033 | 2,369 | $\underline{2}, 206$ | 1,608 | 1,555 |

TRAWL-COMING UP


| Fathoms. | Number of station. |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2035. | 2039. | 2010. | 2041. | 2022. |
|  | h.m.s. | h.m.s. | h.m.s. | h.m.s. | h. 21.6 |
| Surfame to 100 | $\begin{array}{ll}102 \\ 0 & 0 \\ 0\end{array}$ | 057 | 130 | 120 | 1100 |
| 100 to $200 \ldots$ | 056 | ${ }_{0}^{0} 55$ | 130 | 120 |  |
| 3000 to 30400. | 0 57 <br> 1 00 | 109 <br> 1046 <br> 189 | 130 130 | 120 |  |
| 400 to 5100 | 102 | 058 | $1: 30$ | 120 | 12 |
| 500 to 600 | 102 | 103 | 130 | 115 | 1103 |
| (60) to 700. | 107 | 100 | 130 | 12 | 117 |
| 700 to S00. | 109 | 103 | 130 | 118 | 115 |
| 860 to 900. | 108 | 100 | 130 | 122 | 125 |
| 900 to 1,000 | 116 | 117 | 130 | 117 | 120 |
| 1,000 to 1,100 | 114 | 106 | 130 | 123 | 12. |
| 1,100 to 1,200 | 117 | 104 | 130 | 121 | 125 |
| 1,200 to 1,300 | 107 | 108 | 130 | 119 | 130 |
| 1,300 to 1,400 | 117 | 110 | 130 130 |  | $\begin{array}{r}120 \\ \times 100 \\ \hline\end{array}$ |
| 1,400 to 1,500 1,500 to 1,600 | 116 115 | $\begin{array}{lll}1 & 11 \\ 1 & 14\end{array}$ | 130 130 | 120  <br> 10 2 <br> -4  |  |
| 1,500 to 1,600 | 115 1 1 12 | 114 105 | 130 1.010 | $102 \cdot$ |  |
| 1,700 to 1,800 | 1 足 | 112 | 1.5 |  |  |
| 1,800 to 1,900 | $\because 40$ | 118 | ! |  |  |
| 1,900 to 2,000 | $\pm 38$ | 115 |  |  |  |
| $\because 0100$ to 2,100 |  | 1 7 |  |  |  |
| 20.100 to |  | ill 117 |  |  |  |
| Total time | 2708 | 2405 | 8115 | 1930 | $\because 50$ |
| Averace specd per 100 fathoms. | 121 | 101 |  |  |  |
| Depth in fathoms.... | -3, 130 | 2,369 | 2,220 | 1,60s | 1,555 |
| * 'To 1, 480 tums. <br> f To 1,530 turas. | $\begin{aligned} & \text { turns. } \\ & \text { turne. } \end{aligned}$ | \|| To | 76 turns |  |  |

SOUNHLNG-COMTNG UP.


The "Total time" is not the sum of the partial times, but the whole tiane employed for the trawhor sombing, inchling promation for it.

American Museum of Naturat Ifistory,
NEW VO\&K, llecpmber 20. 1857.

F

$2$







## 2-





## 4-


$\lrcorner$


## XXX.-CIIEMICAL COMPOSITION OF FISTI PRODUCTS, with sole remarks on their ndtritive vadue.*

By Prof. P. Kostytscieff, Of the Agricultural Station in St. Petersburg.

The number of inrestigations on the chemical composition of the various substances used as food by man is not great. Owing to the experiments on the feeding of domestic animahs, we have, for instance, hundreds of analyses of the varions kinds of hay, while the a arailable analyses of the different kinds of bread will hardly count by dozens. Of the alimentary substances used to prepare fool for man, only those have been frequently investigated which at the same time fiud application in techuical industries, such as the potato, the grains of cereals, etc.; and it is to be noticed that such investigations were called forth not by the requirements of hygiene but of technology. The reason is eridentenough. Erery manufacturer is deeply interested in theamomnt of profit he can obtain, whereas hut few persons; will take as great an interest in the life of people unknown to them.

Nevertheless, there can be no doubt as to the great importance of chemical inrestigations concerning the composition of the materials; from which the food of man is derived. Aside from the physiological interest attaching to the problem, it must be taken into consideration that the results of such investigations, if held together with the neces. sary statistical data, will throw much lisht on the economical conditions of the natioual life, and may sometimes illustrate such points as would otherwise escape attention.

I have thonght it might not be surperfluons to say these few words as introduction to the following, becanse my investigations concerning the composition of the flesh and some other products of fish will atiord me an opportunity to call attention to the importance of fish as food in our national life in general, and, in connection with the available statistical data, will allow me to show how much other food would have to be provided and what means would have to be used if, for some reason or other, the yield of the fisheries was considerably reduced.
[*Translated from the Russian Journal of Rural Economy aud Forestry, Vol. CXLIV, Part II.]

The present article is therefore subdivided into two parts. In the first part I shall try to present the results of all investigations made up to the present time on the chemical composition of the flesh of fish. In the second part I intend as far as possible to show, with the aid of certain statistical data, what importance fish has as a food-substance in our domestic economr.

## I.-RESULT'S OF INVESTIGATIONS.

Inrestigations on the chemical composition of the flesh of fish can properly be said to have begun only with the year 185t. Before this date only two such aualyses were made, and they were rery incomplete, so that it is impossible to obtain from their results a correct idea of the composition of the flesh of fish.*

Last rear Dr. Popòf analyzed the tlesh of some Russian fishes.t Being evidently macquainted with the work of Mr. Almen, to be referred to hereafter, he proceeded in his analyses in the same manner as did Payen and König. His results are as follows :

| Name of fish. | Percentage of - |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Water. | Fat. | Protein. | Ash. |
| Salt smelt (Salmo eperlanus) | 42.58 | S. 28 | 29.98 | 18. 93 |
| Fresh smelt ......... | 79.01 | 4.31 | 13.86 | 2.97 |
| Fresh "Vobla " (a dish found in the Folga | 75. 76 | 5. 88 | 17.29 | 1. 60 |
| Snoked breann (Cyprinus vimbe) | 37.25 | 15. 29 | 36. 93 | 10. 8.3 |
| Suthrimb pik-pelch. | 20.55 | 1. 9 9 | 60.33 | 1.6. 6 |
| Salt-dried spinling. | 72.45 | 6. 78 | 16. 14 | 3.51 |
| line of tiesh "Yobla, | 72.18 | 6. 85 | 19.78 | - 91 |
| Loo of smoked bream. | 33.17 | 16. 30 | 42.80 | 7.58 |

In the spring of the present year I made analyses of thirty species of fishes and fish products from Russian waters. $\frac{+}{T}$ I deteriained in wy analyses all the substances emumerated in the table, closely following the directions given by Hoppe-Seyler in his hand-book of physiolegical chemical analysis. Besides the substances indicated in the table, I also determined the amonnt of common salt in salt fish, and in certain (salted and preserved) fishes the amounts of phosphoric acid and iron.

[^124]
## The results of my analyses will be found in the following tables: *

Table I.--Percentage of substances found in certain fishes.

| Name of fish. | Water. | Extraneous substances. | Gclatin | Alburminous matter. | Fat. | Ash. | $\begin{aligned} & \text { Common } \\ & \text { salt. } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Frest fishi. |  |  |  |  |  |  |  |
| Coregouns Bacrii (Iuss. Sig.) | 79. 13 | 2.93 | 3. 70 | 11. 69 | 1.53 | 122 |  |
| Pike-perch | 79.87 | 3.28 | 3.55 | 13. 10 | 0. 20 | 1. 0 |  |
| Commoin codtish | 81.03 | 3.45 | 4.24 | 10.11 | 0.07 | 1.11 |  |
| Carp (Russ., "Sazau") | 79.89 | 3. 92 | 2.81 | 10.79 | 1. 42 | 1.14 |  |
| Pite | Sil. 70 | 3.14 | 3. 32 | 11.23 | 0.35 | 1.18 |  |
| Crucian (carp) | 80.82 | 4.56 | 3. 63 | 0.44 | 0.48 | 1.07 |  |
| Hadiock (kuss., "Navàga") | 81.35 | 4.99 | 2.46 | 9. 0 | 0.59 | 1.58 |  |
| Smelt. | 7*. 38 | 4.14 | 2.83 | 10.00 | 3.08 | 1.57 |  |
| Saluaun | (i2.02 | 2.70 | 5.48 | 13. 98 | 14.82 | 1. 30 |  |
| Salmon trout | 75.35 | 3.11 | 1.71 | 16.0i | 2.49 | 1.33 |  |
| Sturgeon (Russ., "Ositor") | 76.02 | 3.05 | 1. 58 | 13. 04 | 5.15 | 1. 36 |  |
| Sterleto | 76. 81 | 1.69 | 1.74 | 13. 21 | 5. 59 | 0. 26 |  |
| sprat | 76.11 | 2.54 | 1.29 | 13,46 | 4.89 | 1.71 |  |
| Liver of cel pout | 45.58 | 2.55 | 1.01 | 5.26 | 44. 89 | 0.61 |  |
| priselivel mish and fish prontucts. |  |  |  |  |  |  |  |
| Dried smelt; the whole fish, with the bones | 47.12 | 3.56 | 2.27 | 20.55 | 8. 03 | 18.47 | 13.14 |
| Pickled anchors; wholo fisk, with |  |  |  |  |  |  |  |
| bones | 60.72 | 3. 73 | 3. 116 | 3.79 | 17.14 | 11.56 | 9. 90 |
| Salmon (Russ., "Siomga ") | 53.48 | 3.96 | 5. 08 | 15. (i) | 12. 19 | 11.65 | 11.21 |
| Salt turbot | 54. 6.5 | 5.57 | 1.09 | 16.83 | (6. 8.2 | 15.04 | 13.77 |
| Salt sturgeon (Russ., "Beluga ') | 61.85 | 1.83 | 2.0 .5 | 14.82 | 8.93 | 10. 52 | 10. 03 |
| Pickled lamprey; whole fish, without head and tail. | 44. 63 | $\because .74$ | 4.03 | 27.57 | 16.57 | 4.49 | 3.33 |
| Smoked shield-fish.. | 54.89 | 5.42 | 6. 14 | 18.48 | 5.08 | 9. 20 | 7. 39 |
| Smoked herring (Russ., "She- naia") .............................. -1 | 43. 53 | 6.37 | 3.47 | 18.99 | 16. 21 | 11.43 | 9. 86 |
| Smoked Astrakhan herring | 5\%. 30 | 3.78 | 4.87 | 13.41 | 8.80 | 9. 52 | 8.95 |
| Roe of Coregonus Batrit | 66.05 | 2. 16 | 1. 19 | 14.37 | 8.97 | 7.26 | 6.16 |
| Fresh roe of sturgeon | 56.97 | 1.6\% | 0.78 | 2-5. 47 | 12.85 | 8. 31 | 0.35 |
| Dried "Vobla" (kind of crucian ?) | 27.96 | 9.44 | 8. 23 | 30. 18 | 9.88 | 14.31 | 8.92 |
| Dried cod. | 25.23 | 5.21 | 13,23 | 50.44 | 0. 69 | 5.20 | 1.20 |
| "Balyk"* of whitefish | 57.55 | 3. 99 | 4.59 | 14.91 | 13.07 | 5. 78 | 4.13 |
| "Valyk" of sturgeon $\dagger$............... | 36.67 | 8. 34 | 2. 63 | 31.08 | 14.35 | 93 | 3. 53 |
| "Viaziga" (i.e., tho spinal cartilago of sturgeon) | 50.93 | 5.21 | 40.04 | 0.15 | 0.06 | 3.52 |  |

* "Balyk" is the Russian term for the flesh of fish chied in the sun.
$\dagger$ The "balyk" investigatod by me was too dry' fresh "balyk" onglit to contain at least 48 to 0 per cent. of water, with corrosponding amounts of other constituent parts.


## Table II.-Proportions of phosphoric acid and iron contained in certain jish products.

|  | Percentage of- |  |
| :---: | :---: | :---: |
|  | Phos.acil. | Iron. |
| Flesh of Coregonus Baerii (Russ. "Sig.") | 0.4711 | 0.0031 |
| Flesh of pike-perch .... | 0. 2602 | 0.0025 |
| Flush of fresh cod. | 0.3731 | 0. 0018 |
| Flesh of pike. | 0.3959 | 0.0034 |
| Flesls of haduock (Russ. "Naraga") | 0. $4 \times 38$ | 0. 0041 |
| Flesh of salmon | 0.3322 | 0.003 .5 |
| Flesh of salmon-trout | 0.3998 | 0.0040 |
| Flesh of sturgeon | 0. 2903 | 0. 10227 |
| Flesh of sterlet | 0.3104 | 0.0125 |
| Dried smelt (Salmo eperlants) | 1. 3701 | 0.1341 |
| Flesh of salt turbot | 0.4007 | 0.0041 |
| Flesh of Astrakhan herring | 0.2733 | 0.0020 |
| Roe of sturgeon | 1.0340 | 0.0047 |

* Where nothing is specified, the substance analyzed is the flesh alone.
[At the International Fisheries Exbibition in London in 1883 there were disphayed in the Russian exhibit two printed charts of analyses of the fishes of Russia by Pro-

By comparing these results in their difforent bearings we are led to the following conclusions, which are not without interest:
(1) The greater the proportion of water contaned in the flesh of a fish the smaller is the propor! ion of fat, as is also the case with the mammalia.

This will reatily appear from the tables given above. It will be seen, for instance, that all our most common fishes-the perch, pike, pike-perch, ete., and also the eod-eontain in their flesh about 80 per cent. of water, while the poportion of lat amounts to a little over 1 per cent. or less than 1 per cent.* On the other hami, such fishes as the sahmon, stmereon, eel, ete., whicia contain moth fat, have a far smaller proportion of water. The greatest mroportion of fat was found in the liver of the eelpont, which also eomtains the smallest proportion of water. One and the same fish, if it has mo efat, will have less water, as will be seen from the following examples :

(2) In general it may he sat that the more expensive a fresh fish is the more it contains of mutritions matter. In this respect it will be instructive to compare, on the one hand, the figures showing the propor-
fessor kostytscheff. Aside from one eviden miaprint, the firmers are the same as here siven, exeept that in the shield-fish (l'clecus vulgaris) the percentage of fat is 5.87 instead of 5.08 , and in the balyk of whitefish (Corcyome lencichthys) the fat is $\mathbf{1 3 . 1 7}$ instead of 13.07 per cent. 'The names are somewhat difterent, and tho Latin names are added. As they are (it is to bo presumed) the atuthor's trauslation into English, the names are inserted here, by the aid of Professor Atwater, to supplement the names as here translated from Professor Kostytschef's article.

F'vesh fishes.-Flesh of Sig, Coretomus Baerii ; Pike-perch, Lucioperch sandra; Codlish, Gadus morvlua; Carp, Cypinus carpio; Pike, Esox lucius; Crncian carp, Carassius rulgaris; Galus navaga; Suclt, Osmerns eperlanus; Salmon, Salmo salar; Sal-mon-tront, Sa7mo trutta; Sturgeor, Acipenser gitdenstacdtii; Sterlet, Aciponser ruthemes; Ctupea harengus vax. mombras; liver of Burbot, eel-pout, Lota vulgaris.

Pre served fishes.-Salted aud dried ontire Osmerus spirinchus; marinated entiro Malettu vulgaris; salted salmon, flesh of Salmo salar ("Semgi"); salted tlesh of the halibut, Hippoyloseus maximus; salted flesho of the great sturgeon, deipenser huso; marinated entire river lamprey, Petromyzon fluciatilis; salted and smoked thesh of Pelceus vulgaris ; salted and smoked flesh of Albumus chatcoides; salted flesh of caspian shith, Alosu cuspicu; salted caviare of Coregomus species ; fresh caviare ot'sturgeon; salted and drie d llesh of Leuciscus mutilus var. caspica; dried tlesh of codlish, Gadus morhua; salted and dricd backs of Corcgonus lcucichthys ("Balyk"); salted and dried batks of sturgeon ("Balyk"); dried cartilaginous dorsal chords ("Vezeega").

The Osmerus spirinchus here is the smelt of the tables; the Petecus vulgoris the shield-fish; the Alburnus calcoides, smoked he rring; the Alosa caspica the Astrakhan herring; the salted caviare, the roe of Coregonus liarii; the Lenciscus rutilus, the vobla, and the Coregonus leucichthys the whitefish.-LDDITOR.]
*[The orisinal has " or not less than 1 per cent.;" probably a misprint.]
tions of fat and albumen in the flesh of the salmon, salmon-trout, sturgeon, and sterlet with the corresponding figures for the pike-perch, pike, perch, cod, ete, on the other. Awong the cheap tishes only one presents an exception, namely, the sprat. Its flesh has precisely the same composition as that of the sturgeon and sterlet. It will be noticed that, of all fresh fish-products, fresh (granulated) eaviare or roe of sturgeon contains the greatest proportion of nutritious matter.
(3) As regards digestibility, certain kindred species of fish appear to present a remarkable diversity; for instance, salmon and salmon-trout. The flesh of salmon is much fatter than that of "siomy๗,", * which, however, contains more albuminous matter; aud compared with other fishes it has much soluble albumen, as far as could be judged from the size of the coagulated albumen without weighing it. Hence, a weak stomach will stand salmon-trout more readily than salmon.
(4) Some fish-products used as food apparently contain searcely any nutritive matter; for instance, "riazigu," which is almost exclusively composed of water and gelatiu-forming substances. The liver of the cel-pout coutains mainly fat (nearly 45 per cent.), with a small quantity of albuminous matter.
(i) The investigation concerning the proportions of phosphoric acid and sesquiozide of iron contamed in the flesh of fish did not result in any definite indications of particular interest, excepting, perhaps, the fact that grambated caviare is distinguished by a large proportion of phosphoric acid. The high figures resulting in the case of dried smelt are due to the circumstance that the whole fish, with its bones, was subfected to analysis, and that the ashes were not free of extraneons matter adhering to the smelt from the drying process.

I restrict msself to the present fer remarks aud the incomplete grouping together of figures, learing it to the reader to evolve from the tables those more minute indications and results that may be of interest to him.

## II.-mimortance of fisil $a s a$ Food-supply.

It is well known that in general our waters are comparatively rich in fish, and that a very large quantity of fish is caught there every year. In a recently published pamphlet by $O$. A. Grimm, $\dagger$ the amount of fresh fish caught every year in Russia is estimated at $40,000,000$ puds. $\ddagger$ Whoever will take the trouble to examine closely the statistical data presented in this work will find that such data are very incomplete, and that this figure of $40,000,000$ puds is far below the actual number.

But even this incomplete estimate will allow us to dednce some very instructive conclusions concerning the importance of fish as food in our

[^125]natioual life. To do this, let us cetermine the quantity of nutritive matter derived from the fish caught and prepared in various manners in Russia. In doing this we may restrict ourselves to the consideration of the albuminous matter as the most important constituent of auimal foorl.
Let us first select for our calculation those more important species of fish about which Mir. Grimm's pamphlet gives definite data, and for wiich we have also analyses:

| 1. Pike-perch, amount sent out from Astrakhan, not less | Puds. $2,000,000$ |
| :---: | :---: |
| 2. Salmon, caught in various places, not less than. | 60,000 |
| 3. Smelt and spirling | 1,000,000 |
| 4. Salt-dried "vòbla" | 3, 000,000 |
| 5. Bream, shield-fish, | $3,500,000$ |
| 6. Astrakhan herring | 7,000,000 |
| '7. Sturgeon, sturgeon caviare, and "balyk" | 1,500,000 |

It will be seen from Mr. Grimm's figures that this whole amount of fish, which is mostly in a preserved condition, corresponds to $95,000,000$ puds of fresh fish. Consequently, the quantity of all other kinds of 6ish caught every year amounts to not less than $15,000,000$ puds.

Assmming that in the fishes mentioned above two-thirds of the weight is flesh and one-third makes up the weight of bones, skin, ete., it will be found, with the aid of the aualyses given before, that the amount of dry albumen obtained from these fishes is not less than $2,330,000$ puds. Assuming further that in the remainivg $15,000,000$ puds of fish the skin, scales, bones, ete., amounts to one-third and the flesh to twothirds of the total weight, and supposing all these fishes to be such as contain the least amount ( 10 per ceut.) of albuminous matter, the amount of dry albumen obtained will be at least $1,000,000$ puds.

We thas find that we annally derive from our fisheries $3,330,000$ puds of albuminous matter. This estimate is certainly below the actual amount; first, because many fishes coutain more than two-thirds of Hesh; second, because the amual yield of the fisheries in Russia is no doubt greater than $40,000,000$ puds. At first sight this figure of 3,330, 000 puds of albuminous matter may not appear very great. To realize better its true signification let us try to calculate what resources would be required to obtain the same amount of animal albuminous substances from cattle.

Let us suppose that, to replace fish as food, we keep black cattle of such kind that, on an arerage, every head when fully grown weighs 90 puds. Such an animal will contain 4 . 9 per cent. of flesh without bones, or 9.18 puds; and this flesh will contain 1.61 puds of albuminous matter. Now, to obtain from such black cattle $3,330,000$ puds of albominous matter annoally it will be necessary to kill not less thau $2,000,000$ head of cattle a year.

Let us further assume that our cattle will be ready for slaughter when four years old; it will be seen that the supply of eattle in Russia would have to be increased by $8,000,000$ head of cattle for slaughter
and not less than $2,500,000$ cows for breeding. Consequently, even under the most fortuate (bat impossible) circumstances, such as the absence of special cattle diseases, sterility of cows, $\mathrm{e}^{2} \mathrm{c}^{2}$, the number of black cattle in Russia would have to be increased by at least 10,500,000 in order to supply those $3,330,000$ puds of albumen, and it would require not less than $25,000,000$ desiatin* of meadows and pastures of good quality to keep and feed these cattle.

How enormous these figures are will be seen from the fact that the number of milch cows in European Russia (not iuchuding Poland aud Finlaud) is estimated by varions authors at from five to ten milions, and the area of pasturage at $55,000,000$ desiatin.

We have, however, neglected in our calculation to take into account the milk provided by the cows. Supposing that, on an average, erery cow gives 60 pails, or 180 pounds, of miik, this milk represents 1.44 pud of albuminous matter (the average proportion of albumen in milk being 3.2 per cent.). Every cow thus furnishes nearly as much albuminous matter per sear as is contained in the flesh of the full grown animal.

Taking into account the milk, our figures will therefore have to be reduced by one-half. But even then they are exceedingly high, amount. ing to $6,000,000$ head of cattle that would require over $12,000,000$ desictin of meadows and pastures. Approximately, we may adopt as our final result that, in order to substitute the albuminous matter of the milk and flesh of our domestic animals for that obtained from our fisheries, we would have to raise by 10 per cent. the productivity of our cattle-breeding industry and the supply of fool for the same.

These figures define (with the degree of approximation attainable with the arailable statistical data) the position and rank the fisheries take in the animal food-supply of the population of Russia. It would of course be possible to replace it by the products of cattle-breeding, but only with the same prices for food. But the prices for the products derived from cattle are far higher than those for the corresponding mutritive products of fish (taken on an average, of course): 1 pud of albuminous matter of fish is worth less than 20 ronbles [ 1 ronble $=58.2$ cents, whereas the same amount derived from the Hesh of cattle will be worth not less than 40 to 50 ronbles; the latter food is therefore accessible to a smaller number of people.

It is true, however, that to replace fish by vegetable food would require very much smaller resources. To produce $3,330,000$ puds of albaminous matter requires, for instance, only 600,000 desiatin of rye, assuming a yield of 55 puds per desiatina exclusive of seen, or not over 900,000 desiatin in the case of triennial farming and neglecting the meadows necessary for obtaining manure.

[^126]
## XXXI.-CASES OF POISONING CAUSED BY SPOLLED CODFISH, AND THE UNNECESSARY PROHIBITION OF THE SALE OF REDDENED CODFISH.*

By Dr. E. Mauriac.

By a circular dated December 31, 1885, the minister of commerce instructed the prefects to prohibit the sale of red colfish throughout the entire French territory. The prohibitory orders of the prefects, issued in accordance with this circular, threatened venders of reddened codfish with articles 423, 471, and 477 of the penal code, and the law of March 27, 1851, relative to the suppression of frauds in the sale of goods, i.e., they may be punished by imprisonment, fines, seizure of their goods, and the publication of the judgment by meaus of placards; moreover, dealers are made responsible for any cases of sickness which may be caused by the use of red cod. This prohibitory measure, which was taken in consequence ot several cases of poisoning caused by spoiled codfish, has raised energetic protests in all the ports where fishing fleets are fitted ont, and especially in Bordeaux, which is the most important center of the codfish trade.

At the urgent request of interested parties, indorsed by the deputies and senators from the sea-board departments, the new minister: of commerce, Mr. Lockroy, has withdrawn the circular of his predecessor, until fuller information on the subject could be obtained; but this withdrawal is only temporary and not final, as some papers have erroneonsly stated.

We have therefore deemed it useful to make an exhaustive study of this whole question, and to submit the results to the Bordeaux Society of Medicine and Surgery aud to the central Council of Public Hygiene of the Gironde.

Our work is divided into five parts:
(1) In the first we give a brief historic review of all the cases of poisoning caused by spoiled codfish, which, as far as our knowledge goes, have been noticed in the ammals of science. We give at the same time a sketch of the symptoms which have been found to accompany these cases of poisoning.

[^127](2) In the second we endeavor to ascertain the physical characters of the codtish which have produced these cases of poisoning, with the aid of all the information contained in the reports of the plysicians who have treated these cases.
(3) In the third we give the results of recent investigations relative to the nature of the red color of the codfish; and we show that not only is the red in the codfish not poisonous, but that it is not even the determining cause of the putrid change of the codfish. We endeavor, moreover, to ascertain under what special conditions this abnormal color develops, and we show the means by which it may be cansed to disappear, or by which its development may be prevented.
(4) In the fourth we show that all the cases of poisoning which have been observed must be attribnted solely to the eating of spoiled codfish, whose flesh had already become more or less putrid. We also give the results of investigations relative to the specific poisonous matter contained in spoiled codfish. We compare the phenomena produced by eating spoiled codfish with those produced by other spoiled articles of animal food, and show the difference between these phenomena.
(5) In the fifth we enter into some technical details regarding the cod fisheries, and regarding the curing and preserving of cod; we show the important place which this fish holds among the articles of human food; and we point out the evil effect which the ministerial cirenlar of December 31, 188., is liahle to produce on mational and local commerce, withont yielding any benetit for hygiene and the health of the people.
I.-REVIEW OF OASES OF POISONING, IN CHIUONOLOGICAL ORDER.
(1) Case on "gu-boat in 1866, reported by Ibr. Maréhal, chief physician of the navy.
"In 1 sbit there suddenly appeared on the $\bar{t}$ th of June, in the port of Toulon, a sickness which fortunately was not rery serious, but which, when night set in, had attacked about one humdred and thirts men belonging to the nary. All awoke with violent colic, followed soon by liquid, copious, and frequent operations, sometimes by vomiting, aud more or less pronomed headache; nearly all the patients had a cold skin, and oceasionally they were slightly feverish. In nearly all cases a very marked prostation was noticed, accompanied by profase perspiration, and an erident tondency to a syncopal condition.
"I at once beswn to seated for the catuse of these phenomena. The kitchen utensils were in perecte coudition, lont the crew had on that day had confish for their meals. I had the codfish brought to me, and tasted it law, after I had aldeady eaten it cooked at the same meal as the crew and withont porducing in me the slightest inconvenience.
"The appentance of the phenomena was as follows: After a period varying between haff ant ham ant one hambeel am! diftern homss, and averaging from fise to lifteen homrs, the simptoms began to appear.

The tirst were digestive tronbles, consisting at tirst in a feeling of dryness in the mouth and throat, which most of the patients considered as an excessive thirst, while some considered it as the sharp after-taste of their dimer, which they hoped to overcome by drinking copionsly. But soon, no matter whether they drank anything or not, they had a feeling of heaviness in the stomach, and a disagreeable bloated feeling, which very soon, however, turned to a severe stomachache. In the evening more than half the men were on their feet again, and on the following day most of them did not feel any traces of this slight indisposition."
(2) Case reported by Dr. Hermann, of St. Petersburg, in 1878.

In 1878,108 persons at St. Petersburg were poisoned by eating the salt and dried cod called "stock-fisch," which forms at common article of food in Russia. Dr. Mermanu treated four of the worst cases. One of them, forty-four years of age, died after twenty-four hours; and the autopsy showed a hemorrhagic injection of the ileum and the larger intestines. The symptoms in all cases were faintness. stupor, violent colic, diarrhea, vomiting, cramps in the lower extremities; pulse weak, a little quicker than usual; stomach elastic, no sensation of pain when pressed.

In most cases convalescence was reached on the third day; in one case the diarrhea lasted longer than two days. The codfish which had prodnced these cases had a bad taste and odor; and a sample examined under the microscope showed that the muscular tissue had become granulous and brittle; while the streaks of the muscular fiber were no longer apparent. The codtish had a deep yellow color.

## (3) Case in a regiment of the Foveign Legion, at Sidi-Bel-Abbès, in 1878.

Dr. Schamont has published in the Recueil de mémoires de Chirur. gie et de Pharmacie militaires ( vol. for $1878, \mathrm{p} .504$ ), a report on a case of poisoning of the same kiud, showing extremely grave symptoms.

The case occurred in the night of April 19, 1878, in a company of the Foreign Legion stationed at Sidi-Bel-Abbès, province of Oran, Algiers. At $9 \mathrm{p} . \mathrm{m}$. the physician was informed that 20 men had been taken with violent colic, diarrhea, and romiting. At $11 \mathrm{p} . \mathrm{m}$. the number of patients had increased to 64 , and the condition of those who had been taken first became more and more serions. An hour later the number of patients had reached 80 . In all, 122 men were sick, 17 of whom had to be sent to the hospital.
"All complained at first of vertigo, headache, and nausea; the face became livid; then followed cramps in the stomach, and vomiting of food matter, and finally frequent and violent attacks of diarrhea. At last the lower extremities begau to grow cold, and cramps were felt in the calves."

Dr. Schaumont and Dr. Péborle gave to the sick adranght composed of six drops of ether and eight drops of tincture of opium dissolved in a little water, and followed this up by some tea. In the morning there was a very noticeable improvement in all the patients. On the 21st only 36 were sick; on the $22 \mathrm{~d}, 27$; on the $23 \mathrm{~d}, 16$; the 24 th, 15 ; the 25 th, 14 ; the 26 th, 7 ; and on the 27 th, 4 , who were all convalescent on May 1.

After having administered the most urgent remedies, Dr. Schaumont inquired what had oceurred on the 19th, and learned that the men had gone to target practice in the afternoon. None of them had experienced the least inconvenience before dinner, although the heat on that day was excessive.

In the erening they had taken their principal meal, composed of codfish, potatoes fried in lard, and wine. In the morning of April 20 several dishes contaming some of the food which had not been touched since the evening were taken to the pharmacy of the military hospital to be subjected to an amalysis, as well as samples of the wine, lard, and codfish from the stores of the commissiry of the Foreign Legion. It was found that neither the wine nor the lard (which was white and free from bad odor) eontained any poisonous matter. The potatoes were in perfectly good condition. No conper utensil had been used in cooking any of the victuals. But when the dishes were opened an exceedingly strong and very disagreeahle odor was noticed at once, reminding one of putrefying matter.

The sample of codfish from the commissary was examined next. By its external appearance it might deceive an unskilled eye. When subjected to a careful examination, and broken into two parts its entire length, it showed towards the middle a grayish portion, measuring almost six centimeters [ $\overbrace{-3}^{!}$inches] in diameter, and completely decayed. When opened it exhaled a sickening odor. No poisonous substance was discovered in this analysis. It was, therefore, in evident case of spoiled codfish.

From the above facts Dr. Schaumont arrived at the conclusion that the cases of sickness which occurred in the night of $\Lambda$ pril 19 were caused by accidental poisoning by putrid codfish, which opinion was confirmed by the circumstance that none of the officers, who had a mess of their own and had not partaken of codtish, were in the least indisposed.

## (4) Case reported by Dr. Bertherand, of Algiers.

While on a tour of inspection of the military grocery stores, Dr. Bertherand ate codtish with a white sauce, which produced colic and diarrhea. The symptoms consisted in "violent pain in the stomach, incessant bilious vomiting, frequent attacks of diarrhea, accompanied by a very painful tenesmus; general collapse, excessive thirst, dysphagy, acrid taste, a burning sensation along the entire esophagus, general cramps, and very cold extremities."

The examination of this codfish showed that it had a faint putrid odor, and that all along the backbone, on the surface and eren in the thick part of the flesh romil the backbone, there was a very pronounced vermilion color.

Several otber persons who had partaken of codfish having a similar red color, and a certain putrid odor, experienced similar attacks of sickness.
(5) Case reported by Dr. Heckel, of Marseilles, in 1878.

In 1878 Dr. Heckel visted a family of fifteen persons, who had all been poisoned by a spoiled codfish which had the red color above referred to. The symptoms were similar to those already described, and all the persons suffering from these attacks were quickiy cured.
(6) Case on the flug-ship of the prastice fleet in December, 1880.

This case, witnessed by Dr. Bérenger-Féraud, dircetor of the naval health service at LOrient, was briefly as follows:

On December 10, 1880, the practice tleet, commanded by ViceAdmiral Garnault, was engaged in gun exercises ont at sea between Fréjus and Toulon. After this very tining exercise, the crew partook of codtish at $10 \mathrm{a} . \mathrm{m}$. At $8 \mathrm{p} . \mathrm{m}$. a sailor from the admiral's ship, the Colbert, became indisposed, experiencing violent colic, ascompanied by vomiting. Soon after, and during the course of the night, 35 others from the same ressel were taken sick. On the following day and the day after, 16 more were similarly affected, and in all 52 men were taken sick out of a force of 710 men, composing the crew of the Colbert.

The symptoms were exactly like those already mentioned, but were not quite so serious, "because convalescence or a perfect cure was effected after a few hours. Even the person who suffered from the most violent attacks was only excused from service for two days.
"On board the five other ironclads and the two transports where codfish from the commissary at Toulon had likewise been used, there were 50 cases of sickness like the one described, but none of them was serious. In all about 100 persons were affected, and none of these suffered more than one to two days."
(7) Case in the fleet at L'Orient, on October 3, 1884.

This case, observed and carefully described by Dr. Bérenger-Féraud, is of the greatest importance, and we beliere that it really has been the determining cause of the recent ministerial circular prohibiting the sale of red codfish. It is, therefore, proper that we should give it somewhat more in detail.

The first report on this case was published by Dr. Bérenger-Féraud in the Archives de Médecine navale (vol. for 1884-'80゙) under the title, "Etude d'un empoisonnement multiple surveuu á L'Oricut par l'usage de
morue altéréc. (Study on cases of poisoning at L'Orient by spoiled codfish).

In a more recent treatise, published in the Anmales dilygiene publique et de Médecine légale (October, Norember, and December, 1885) under the title Recherches sur les accideuts que provoque la morne altérée (Investigation of cases of poisoning caused by spoiled codtish) Dr. BérengerFéraud, has grouped together all similar cases which have come to his kuowledge, aud has produced a remarkable monograph, showing the question as it stands at present in all its features.
The number of cases which he describes is 7, and they are not all of equal importance. We reprodnce the description of the last, in point of time, as given by Dr. Bérenger-Féraud.
On October 3, 1884, at number of cases of sickness, occasioned by eating codfish from the naval commissary at L'Orient, ocenred awoug the crew of the Heet stationed at that port. Of 387 men composing the crew of the frigate Venyeunce, 175 were taken sick; 114 of these within twelve hours after partaking of codfish at the noonday meal.

At the same time similar cases occurred on board the Aubette and among the marines; but none of these were as serious as the first mentioned. On board the Aubette there were only 19 cases of sickness out of a total number of 978 men, and among the marines ouly 17 were sick out of a total of 746 men ; the largest proportion of sick ( 45 percent.) was on board the Vengeance; and to these Dr. Bérenger-Fèrand gave his special attention.

We should state right in the beginning that most careful inrestigations very clearly determined the canses of the sickness, as neither the utensils in which the food had been cooked nor the water, bread, coffee, wine, or the oil used in the preparation of the codfish showed the slightest traces of poisonous matter.

In most cases the following symptoms were observed soon after the persons had been taken sick: Stomach-ache, nausea, vomiting, attacks of diarrhea, sometimes accompanied by the passage of blood, and coldness in the lower extremities. Cramps in the lower extremities were not observed in all cases. All these symptoms were of a very pronounced bilions character. The first period of the sickness, lasting from tro to ten hours, generally was followed by a period of reaction, accompanied by great lassitude. Convalescence was very rapid, and even those who sufered from the most serious attacks did not have to stay in the hospital more than eight to ten days. In fact, in all these cases of poisoning the first symptoms were very alarming, but the consequences were not serious. A commission of competent men, appointed by the vice-admiral commanding at L'Urient, made a careful examination of the codfish furnished by the naval commissary at L'Orient on October 3, and found that some of it was perfectly sound, while some was spoiled.
According to the report of this commission, the change in the cod-
fish, which were fonnd to be spoiled and which had cansed the cases of sichness, "consisted in an abormal coloring of the muscular tissue of the fish. This color varied from a tender rose color to an orange-red, and seemed to follow certain portions of the flesh, leaving others close by entirely sonud. This change was noticed in the two muscular bands lying along the backbone and in the neighborhood of the head. The more intense the color, the more deeply did it penetrate into the tissues. In cortish which had some pale rosy spots it went only to the depth of half a millimeter [one-fiftieth inch], while in some which had an orange-red color it went to the depth of 3 or 4 millimeters, aud even half a centimeter $\mid 12$ to $\therefore 0$ inch]. In these last-mentioned fish the spoiled portions exhaled a putrid odor, and at the same time the muscular fiber crumbled to pieces, having lost all consistence."

The above are the symptoms of cases of poisoning by spoiled codish, observed and described by Dr. Bérenger-Féraud.

In spite of the most exhanstive bibliographic researches made by as in regard to this subject, we have not been able to find in the numerous medical publicatious consulted by us any other cases, and, as far as our knowledge goes, we have not learued that any cases of this kind have ever occurred at Bordeaux. Our city, however, is the principal port of importation of codfish, and an enormous quantity of this fish is consumed in Bordeatux.

Cases of poisoning by codtish are therefore extremely rare, considering the vast quantity of codfish consumed throughout the world. Such cases hare only been observed among troops or ou board a fleet, where it is well known the food is not always of the first quality, and where the culinary arrangements often leave much to be desired.
II.-Cmaracteristics of Tim Codfish producing cases of POISONING.

In endearoring to ascertain the characteristics of the codfish which have produced cases of poisoning like those described, we find that in 4 out of the 7 cases the codfish did not show any red color (on the guuboat, on the practice fleet, case reported by Dr. Hermam, and the case which occurred in the Foreign Legion at Sili-Bel-Abbès.)

In the St. Petersburg case-the only one where the symptoms were violent enough to cause death-the codfish had a deep yellow color, a bad flavor, and a bad odor; its flesh crumbled to pieces; in short, it showed ummistakahle signs of putrefaction.*

The same, or very nearly the same, physical characteristics were ob served in the case which occurred in the Foreign Legion at Sidi-Bel-

[^128]Abben. When the lids were removed from the dishes which contained the codtish an exceedingly strong and disagreeable odor arose at once, in every respect like the odor from putrid animal matter. The codfish taken from the commissary might deceive an unskilled eye; but when sulojected to a careful examination, and broken in two aloug its entire length, it showed towards the middle a grayish part, measuring hardly © centimeters in diameter, and completely decayed. This part when broken open exhaled a sickening odor.

In the first four cases of poisoning, therefore, which are the most important on account of the larger number of individuals attacked (460), no red codfish was the cause. On the contrary, this red color was noticed only in the three other cases, in which the total number of individuals attacked was only 227 (case of Dr. Bertherand, in Algiers; case of Dr. Heckel, in Marseilles; case on the fleet at Lorient).

The codfish described by Dr. Bertherand had along the backbone a very pronounced vermilion color; but it had at the same time a faint putrid odor. The codtish which Dr. Heckel examined at Marseilles in 1878, and by which fifteen persous were poisoned, hat likewise a red color.

As regards the codfish which cansed the more recent cases of poisoning on board the fleet at L'Orient, they showed au abnormal color, from a tender rose-color to a deep red-orange, and this color was found principally in certain parts of the fish (the two muscuiar bands lying alongside of the backbone), leaving here and there portions which were entirely sound. Especially in those codfish which had au orange-red color the spoiled portions exhaled a putrid odor; the muscular fiber crumbled to pieces, and had lost all consistence.

It will be seen that in the three cases where the red color was noticed there was observed at the same time a putrid odor and a crumbling of the muscular fiber-plain indications that the flesh of the codfish had become decayed.

It appears from the brief examination of the physical character of poisonous codfish that in two-thirds of the cases observed there was no red color, while the putrid odor and the crumbliug of the flesh were observed in all cases.

There is, therefore, uo reason to assume that the red color of contish is an indication of their being poisonous, because on the one hand the most numerons and most serious cases of sickness have been caused by codfish which did not have its red color, and becanse, on the other hand, in cases of sickness caused by red codfish there was at the same time noticed a putrid odor and the crumbling of the flesh-the only indications (we must repeat it) common to all cases, and the only ones which can be considered in the etiology of cases of poisoning of this kind. In short, these codfish did not cause cases of poisoning because they were red, but becanse they were more or less decayed or patrified.

Althongh there is no absolute identity of symptoms between the cases
of poisoning caused by spoiled codtish and cases of poisoning produced by other spoiled fish, or by fresh or preserved meats which have begmu to decay, there is good reason to believe that all these cases must be attributed to special poisonous substances produced by the putrefaction of animal matter.

III- iNATURE OF THE RED SUBSTANCE IN CODFISII, ITS CIIARACTER, DEVELOPMENT, AND PREVENTION.

Since it has been deemed proper to prohibit the sale of red codfish, it is evident that in the opinion of the ministry which has taken this measure, the red codfish is the principal indication that the flesh has undergone a hurtful change. But what proofs are there, and what experiments can be cited, to show that the red color of the codfish possesses any poisonous qualities? We shall endeavor to answer these questions.

In the first place, what constitutes the red color of the codfish? The fers authors who have studied this subject do not agree among themselves. It seems, however, pretty well established that this red color is produced by the development of a fungus, whose name varies according to the different authors who have described it. Thus, Mr. Fonssagrives calls it the Penicillium roseum; Mr. Heckel, the Coniothecium sanguinsum; and Mr. Mégnin, the Coniothecium bertherandi. In an article published in the Madrid Imparcial, March 20, 1886, and cited by Prof. Alex. Layet, it is stated that some years ago (in 1878) attention was called at Gloucester and some other places in the United States to the red color of the fresh and dried codfish, which appeared during the summer months. Prof. W. G. Farlow was commissioned to investigate the causes of this coloration, and it is stated in the Imparcial that Professor Farlow found that it was caused by an alga of the family of the Nosto chacce, namely, the Clathrocystis roseo-persicina.* Mr. Carles, who has recently published the results of his researches in the Bulletin des travaux de la Société de Pharmacie de Bordeaux (February, 1886), thinks that the red color of the codfish is caused by the evolution of various parasites of a very primitive organization, belonging to the micrococci.

This is also, we believe, the opinion of Mr. Gayon, professor of chemistry at the faculty of sciences at Bordeaux and chief chemist of the custom-house, who for about two years, in conjunction with Mr. Carles, has been engaged in the cultivation of these small organisms. He writes the following:
"When one examines under the microscope the red spots of a codfish one sees among the loose muscular fibers and the sea-salt crystals numerous organisms of various kinds, young and live specimens of the micrococcus. The red color is attenuated through their enlargement-
"If the surface of a red spot is dissolved in some drops of boiling water, and if the liquid obtained is carefully stirred in codfish broth or

[^129]pourch on moist pieces of muscle of codifish, it will be fome that after having been kept in a stove heated to from $30^{\circ}$ to $35^{\circ} \mathrm{C}$. [ $59{ }^{\circ}$ to $95^{\circ} \mathrm{F}$.] red color develops aud gradually covers all the parts exposed to the air. The microbes causing this coloration are, therefore, aërobies (produced by the action of the atmosphere).
"By successive experiments, and by varying the physical and chemical conditions, Messrs. Carles and Gayon succeeded in eliminating a large number of live organisms; and wheu they closed their investigations there were only two kinds left, a bacillaria and a micrococcus, which, when mised, invariably produced the red color, although it could not be determined which part each took in this process. It is remarkable that these infinitesimal organisms can live on sea-salt; they even develop on salt crystals which are merely moist, but not on all kinds of salt."

On the other hand it appears from recent investigations made in the hygienic laboratory of the medical school of Bordeaux, by Drs. Layet, Artigalas, and Ferré, that "in examining the rel matter of the codfish under the microscope we find, after it has been dissolved in water or glycerine, that it is composed of (1) crystals of sea-salt ; (2) lanceolate lamelle; (3) a granular substance ; (4) muscular elements; and (5) special elements, resembling in shape the elements called sarcines, found not only in decaying but also in sound substances. They represent quarters of a sphere joined by a common diameter. Taken by themselves, each one of these elements is transparent and colorless, bat when grouped iu masses, forming several layers, it can easily be seen that the center hats a rosy color. The coloration, therefore, seems to be due to the greater or less quantity of these elements. One of the gentlemen who made these experiments was of opinion that the red color was produced exclusively by the sareinoid elements.

The three gentlemen arrived at the following conclusions as the result of their microscopical examination:
(1) There are, on the surface of the codfish showing a red color and in the interstices between the bundles of the surface maseles, special organisms of a vegetable nature which constitute the coloring elements.
(2) These elements are found in masses, together with a granular substance composed of single or double grains, zooids, and detritus.
(3) These colored masses are particularly dense round the salt crystals, appear to penetrate with them into the interstices between the bundles of muscles, and to reach small cavities when these open on their level.

It was important to know whether these small cavities were found in the somed codfish, withont red color. This could easily be ascertained. Cuts made in a sound codfish showed these cavities formed of radiating lamella, more or less filled with detritus. They are, as in the red codfish, found in the first central muscular layer, in the shape of grains producing a screeching noise when rubbed on a plate of glass.

This kind of corrosion of the muscular fibers must, therefore, be attributed to an entirely different cause than the development of the red color. It is probably a normal production in the codfish during the salting process.

In the red codfish no other change is noticed in the muscular tissue, except the formation of small cavities which are found in the salt, white, sound codfish; but the red color penetrates into the flesh, continues to develop, and gains in intensity.

In au additioual note, Dr. Layet states that the small organism composing the red part of the codfish is not a fungus, but rather an alga, belonging to the family of the Bacteriacere.

We shall not say any more regarding the composition and nature of the red of the codfish, as we desire that our article shall keep the character of a practical hysienic treatise. Whatever may be its nature, the red is evidently a parasitic growth in the flesl of the codtish. So far as our knowledge goes, there is not a single proof of the poisonous character of this parasite, while proofs of the contrary abound.

We first give the opinion of Dr. Dumas, of Cette, vice-president of the hygienic council of Hérault, as given in the treatise of Mr. Béren-ger-Féraud. Dr. Dumas says: "This fungus is not poisonous in itself, which fact has been sufficiently proved by direct experiments made by the codfish dealers of Cette, who, as well as their employès, have many a time eaten rosecolored and red colfish, which was otherwise perfectly good, without being in the slightest inconvenienced thereby."

Mr. Bérenger-Féraud adds that the employès of the commissary's department at L'Orient have frequently made the same experiment with exactly the same result. He does not believe in the poisonous character of the red of the codfish, and bases his opinion on the circumstance that he has many a time seen people eat rose colored and even red codfish which had no putrid odor without cansing any indisposition, and on the fact that Mr. Degorce, principal pharmacist of the navy at L'Orient, has frequently found this same fungus in otherwise perfectly sound codfish, and that fish containing these fungi have repeatedly beeu eaten without causing auy disturbance of the digestion, so that it can certainly not be termed a poisonous fungus. Mr. Mégnin is, as far as we know, the first who has giveu red codfish to live animals (dogs and rabbits). The result of his experiments was entirely negative, as these animals showed no symptoms of indisposition. He, therefore, reached the conclusion that this fungus is not poisonous.

Dr. Carles, of the School of Medicine of Bordeaux, also maintains that the red of the codfish is not injurious to health. He calls to mind the fact that the city of Bordeaux, which for the last wro years has been right between two dangerous cholera centers, has remained entirely free from any case of sickness resembling cholera, in spite of the enormous quantities of red codtish from the suburban drying establishments which were consumed in the city every day.

Professor Layet, in his recent " Note sur le ronge de la morue" (notes on the red of the codfish), states that " the red in itself camot be considered as the cause of poisoning by spoiled codtish, but that the poisonous character depends entirely on the state of putrid decay of the fish." For more than a week he fed two cats exclusively on red codfish, and these animals were not in the least inconvenienced thereby.

We have fed two hunting dogs of medium size on a codfish which was strongly tainted with red, and neither of these dogs experienced any disagreeable consequences. The codfish was given to them mixed with bread soaked in tepid water. It should be stated, iowever, that this fish when split open along its entire length did not emit any putrid odor, and that its flesh had preserved its normal.consistence.

We ourselves have repeatedly eaten red codfish without being incon. venienced, and we know many places in the southwest of France where the codfish sold by the small dealers frequently has a red color.

If one considers, on the other hand, that the greater portion of the codish received in our colonies, in the Antilles, in Rémion, and in eastern countries has always more or less of a red color, produced by the influence of the great heat, and that the people of these countries have been in the habit of eating such codfish every day, from time immemorial, without experiencing any iujurious consequences, we are forced to the conclusion that the red color of the codfish has nothing to do with the poisonous nature of the decaying flesh.

But, it will be said, if red codfish are not injurious to health, why has their sale been prohibited, as a hygienic measure? Here the question becomes somewhat complicated.

Mr. Bérenger-Féraud says in his treatise: "If the red is not poisonous in itself, it seems certain that, when closely examined, it acts in a powerful manner in producing or aiding the decay of the codtish, and the decay always began, as far as the codfish served to the garrison at L'Orient is concerned, coincident with the apparance of the reddish color. In those parts which tirst turned red, and in their immediate suroundings, the flesh was first noticed to become soft, moist, and crumbling, and finally the putrid odor first began to show itself in these parts."

Further on the same author states: "In my opinion, therefore, the codfish sometimes undergoes a change whose first indication is the growth of the red cryptogam referred to. It is true that this cryptogam, in itself, has not the property to render the flesh poisonous, but it will, under certain special conditions-for instance, when the weather has for some time been moist and hot-favor a putrid decay of a greater or less portion of the codfish."

According to Dr. Bérenger-Féraud, therefore, the red, although not poisonous in itself, is one of the determining canses of the putrid decay of the codtish. It probably (the author is not absolutely sure) hastens the putrid decaly of the flewh; and this is the ouly effect of the kind which it produces.

This opinion appears to us to be based on an inaccurate interpretation of the facts. We agree that this is only a supposition, but the authoritative character attaching to it from the high standing of the author has caused it to be accepted as true in government circles. The minister reasoned in the following manner: Because the red color of the codfish causes and aids its putrid decay, we shall prohibit the sale of red codfish, and thas cause all danger of poisoning to disappear on the well-known principle that when the cause is removed the effect will cease. This mode of reasoning would be correct if the basis on which it rests were sound, but so far the relation supposed to exist between the red color of the codfish and its poisonons putridity has not been sufficiently proved.

If the opinion of Mr. Bérenger-Féraud is well founded, the degree of poison in the flesh of a colfish should be in the direct ratio of the extent and intensity of the red color. But the very contrary is the case, because in by far the larger number of cases of poisoning by spoiled codfish and in the most serious cases there was no red color. In a secoud category of facts, it is true, the codfish which had been eaten were red, but we believe to have showu sufficiently that these fish did not produce cases of sickness, because they had this abnormal color, but because they were at the same time spoiled and partly patrid.
In short, the more or less advanced stage of putrid decomposition of codfish, no matter whether they are red, gray, yellow, or white, is, in our opinion, the sole cause of the poisonons character of their flesh.

In order to maintain authoritatively, as Mr. Bérenger-Féraud has done, that the red color-although inoffensive in itself-favors the putrid decomposition, and should be considered as the first cause of the poisonous nature of the flesh, it ought to have been proved, in the first place, that all the codfish which produced cases of poisoning were more or less impreguated with the fungus referred to above. Bat this proof has not been furnished. On the contrary, it has been clearly shown that this crypitogamic vegetatiou has been obserced ouly on a small number of the codfish which produced cases of sickness; from which we think we can draw the conclusion that the presence of the red color on these fish is simply a coincidence and a sort of unimportant phenomenon.

Although the red color is found both in sound and spoiled corlfish, it is none the less true that, from a commercial point of view, to which we shall soon have occasion to return, codfish which have that color are slightly depreciated in value in our French markets, where whiteness of the flesh is the principal recommendation of a codfish. It seems that this was not always so, for we read in a popular almanae for the year 1838 that red codfish was at that time considered the best; a proof that the popular taste changes in course of time, and that red codfish are not a new thing. In hot conntries, especially in the Antilles and in Réunion, consumers even to this day give the preference to red codfish, which they term "saumonée" (salmonified).

Endearors hare been made to find what might be the canse of the red color in codfish. It has been noticed more frequently during the last twenty years. Sometimes it is found in all the codfish of one consigument, and sometimes there is not one which has a red color. It seems that moist heat fiavors its development. It has been observed that entire cargoes of codfish which had kept white during the voyage from Newfoundland to Bordeaux rapidly turned red only a few days after their arrival at the latter port.

According to Dr. Dumas some dealers have observed "that the rose color shows itself most frequently when Mediterranean salt has been used in salting codtish, while the salt from the west of France produces the contrary effect, and they think that this result is due to the presence in the salt from the west of France of a larger quantity of small earthy particles. These particles, althongh rendering the salt less pure, would therefore have at least this adrantage, that they prerented the colfish from turning red. But as this salt gives to the codfish a yellowish color, which is not very agreeable to the eye, most people prefer to use the Mediterranean salt."

This opinion regarding the special iuftuence of the Mediterranean salt on the deveiopment of the red color is not shared by all dealers; but it is nerertheless interesting to note, because it raises the question as to the influence of the salting on the production of parasitic germs in albuminous matter.

Aceording to I)r. Layet there are facts, proved by actual practical observation, which seem to show this influence of the different methods of salting on these small organisms in other substauces than the red of the codtish, as for instance, the appearance of red color in the Norwegian sardines; and there are likewise facts, proved by experiments, which cleary establish the influence of sea-salt ou the development of microbic germs. Miemel has elearly shown that, according to the quantity of salt added to the liquids which serve as elements of coltivation for schizomycetes, these show themselres in greater or less quantity; a certain quantity farors their development, while a difterent duantity almost entirely prevents it.

We have abreaty given the opinion of Professor Farlow resarding the red color of the codfish. According to the spanish jommal which has pmblishod P'ofessor Farlow's opinion, he examined the Cumazalts, which showed a slight rose-colored tinge, and arrired at the conclusion "that the dadiz salt, as it eomes into the hands of fishermen, is already impreg. nated with a considerable quantity of the cluthrocystis," athe that this pant develops on the codish whenerer the temperature is sufticiently high (above ( $60^{\circ} \mathrm{F}$.)

Let us now hear what Mr. Carles has to soy on the subject:
"It is a vory delicate matter to shos precesely wheme come hae serms of this rede coloring, expectally in the absenme of samples of the different substances with which the conlish has come in contare from the time it
is caught till its arrival in the port of destination. But every thing leads us to suppose that the origin of the trouble is in the salt; aud if the germs develop on salt fish with au intensity which varies in different years- $i$. $e_{0}$, according to the temperature, the condition of the atmosphere, etc.-the codtish must, in order to become a fertile soil for the parasite, have commenced to spoil on the surface."

In short, it may be said that all the naturalists who have occupied themselves with this question and the codfish deale's agree in considering the salt as one of the principal canses of this cryptogamie vegetation. But so far this is only a supposition, which, in spite of its great probability, needs to be confirmed by experimental iuvestigations conducted on scientific principles. We know that Messrs. Layet, Artigalas, and Ferré, of Bordeanx, and Dr. Heckel, of Marseilles, have undertaken this task, and we shall probably soon learn the results of their investigations.

Several means have been proposed to prevent the development of red in the codfish, but so far none has proved sufficiently practical to be employed. Salicylic acid, borate of soda, sulphite of soda, a freezing process, etc., all bave been mentioned. By a ministerial circular of February 7,1851 , the application of salicylic acid to articles of food was prohibited. This method, theretore, conld not he employed. As regards borate of soda, by which it has been proposed to rephace the salt, and the freezing process, it must be said that these methods are too expensive to be employed to auy extent.

As far as we are concerned, and urtil something better is found, we freely gire the preference to the means indicated by Mr. Carles, which, if they do not altogethe kill the germs, at least prevent their spread. These means are the following:
(1) Careful washing of the fiesh codfish, so as to remove all impurities from the intestines.
(2) Using salt obtained from mines, which is tree from all germs, and contains fewer deliquescent magnesian salls.
(3) Washing and disinfection of the vessels by fumigatiou with sulphurous gases.
(4) Disinfection, by the same means, of the material, the ground, and the walls of the drying-houses.
(5) Removing at once from the drying-houses all orgauic detritus produced by the washing of the fish and their immediate disinfection by sulphates of iron or copper.
(6) A final washing of the fisk in water from which all organic products and deliquescent salts have been carefully removed.

This question of the inthence of the salt on the production of the red color in codfish naturally leads us to speak of the codfish termed "softsalted;" that is, insufficiently salted. It is certain that these codfish spoil more easily than others, and may therefore canse cases of poisoning similar to those which have been described. Otherwise they are
S. Mis. $90-66$
much less subject to being infected by red color than those which have been well salted. When fresh-and even when dried-they exhale, according to the statements of dealers whom we have consulted, a very strong odor of garlic; their Hesh is soft, and an impression made with the finger will remain. When cooked they exhale a putrid odor, characteristic of their decay, which generally prevents people from eating them.
There are "soft-salted" codfish which accidentally have been badly salted at the fishing stations. Their number, however, is small; but there are large quantities of badly salted codfish simply owing to the fact that the fishermen, with the view to making greater gains, have been too saving with their salt. Insufficiently salted codfish keep a much larger quantity of water in their flesh than well salted ones, and consequently weigh heavier when they reach the French ports, where they are sold by weight.
This method of insufficiently salting codfish can not be censured too severely, and dealers can not be too careful in this respect, as both from a hygienic and from a commercial point of view the consequences may be most deplorable.

## IV.-NATURE OF THE POISONOUS SUBSTANCE CONTAINED IN PUTREFIED CODFISH.

The cases of poisoning observed, which we have described in the first part of this treatise, prove beyond a doubt that spoiled codfish contains a poisonous substance which, when eaten, is liable to cause in human beings more or less serious cases of sickness resembling cholera in its symptoms. We deem it proper to enter somewhat into detail regarding the nature of this poison; and it may be stated here that there are weighty reasons for supposing that the poisonous substance of putrefied codtish is a cadaveric alkaloid or ptomaine.

This last-mentioneí word was introduced to science in 1872 by Professor Selmi, of Bologna, who first of all toxicologists called attention to the existence of small quantities of poisonous alkaloids which could be extracted from human bodies, which had not been poisoned, after having lain in the ground for some time. He proposed for these poisonous substances the name ptomaine (from the Greek word $\pi=\bar{\omega} \mu \alpha$, cadaver), and pointed out the possibility of confounding these substances with vegetable alkaloids. In 1870 Selmi's attention was for the first time directed to the existence of these alkaloids. He produced, according to the method of Stas, from the entrails of a man who was supposed to have been poisoned an alkaloid which he could not identify with any of the poisonous alkaloids hitherto known. But it was only in 1874, and later, in 1878, that Selmi again took up this question and made experiments on a large seale on human bodies which had been buried for several months. By these experiments Selmi established, beyond the shadow of a doubt, the fact that poisonous alkaloids will develop in the course of putrefaction.

This study of the ptomaines from a toxicological point of view has been continued in France by Messrs. Brouardel and Boutmy. In 1881 Messrs. A. Gauthier and Etard, taking up Selmi's work, isolated the products from a large number of putrefying fish from the volatile bases belonging to the pyritic series, which were the first of these interesting componnds to be analyzed. The physiological action of these alkaloids varies greatly; some are only poisonous for animals, while others produce symptoms similar to those produced by strychnine, morphine, and veratrine.
Our knowledge of these substances, some of which are extremely poisonons, is still very rudimentary. A large number, however, of new and well-established facts have increased our knowledge since 1850 , when Stas, in connection with the celebrated Bocarmé affair, discovered a method of separating the alkaloids, which bears his name. But, on the other haud, many new alkaloids have been discovered since that time whose poisonous character has hardly been demonstrated, or which as yet has not been shown at all. Mr. Duvillier, professor of chemistry in the medical school of Algiers, has discovered a large number of these cadaveric alkaloids in the flesh of spoiled codifish, which Dr. Bertherand had submitted to him for analysis in 1878. This chemist by follow. ing the Stas method succeeded in obtaining the characteristic reaction of ptomaines (precipitate of Prussian blue by prussiate of potash and perchlorate of iron).

Mr. Degorce, principal pharmacist of the navy, did not obtain the same result in his examination of spoiled codfish from the port of L'Orient. He says in his report to Mr. Bérenger-Féraud: " 50 grams of codfish, taken from those parts of the fish which were rose-colored, were treated according to the Stas method, and did not show any traces of organic alkaloids or ptomaines." This negative result is not surprising. It is, on the contrary, only another proof that the poisonous substance of spoiled codfish is not found in its red portions; and it is more than probable that, if this chemist had sought for ptomaines, not in the red portions, but in the positively putrid flesh of the codfish, he would have found them.

Other experiments have confirmed the presence of ptomaines in putrefied codfish. Brieger discovered, besides the alkaloids which are generally found in spoiled articles of animal food, a particular ptomaine, which he has called gadinine. Mr. Brieger has made experiments on ptomaines developed in digested fibrine, in spoiled milk, putrefied fish, spoiled cheese and gelatine, and putrefied yeast. According to him, putrefied milk produces a poisonous base neurine, and a non-poisonous base neuridine. The poisonous quality of neurine is ten times stronger than that of choline. Neurine is the characteristic alkaloid of putrefied meat. In the long rum, these alkaloids are destroyed by the process of putrefaction. Decayed tish produces neuridine, dismine ethylene, muscarine, similar to that of mushrooms, and a new base, gadinine and
rimethylaminc. Most of these ptomaines have been reproduced by synthesis.

Professor V. K. Anrep, of Kharkov, Russia, had occasion to observe several cases of poisoning by salt sturgeon, five of which were fatal, and found on investigating the nature of the poison that it was a ptomaine. He examined matter drawn from the gastro-intestinal canal of one of the victims (blood, liver, brain, and milt of the sturgeon), and likewise the urine of one of the persous who had died, and he found in both cases a substance identical in its physical and chemical properties as well as in its physiological action on animals. This ptomaine appeared in the shape of a solid amorphous substance, having strongly pronounced alkaline properties, and of an exceediugly stroug, poisonous character. Not very soluble in water it proluces salts of a very great solubility. Its principal characteristic is its great firmuess.

When given to animals (dogs, rabbits, frogs) it very soou produced the same symptoms which had been observed in human beings. In human beings the eating of poisonous fish invariably profuced in a few hours (never more than twenty-four) great lassitude; a sensatiou of cold with violent pain in the stomach, vomiting, dryness of the mouth and tongue, excessive thirst, a weakened sight, ptosis, and dilation of the pupil of the eye, cold extremities, difficult respiration, precordial anxiety, a slow pulse, considerable prostration, and gradual dimination of the temperature of the body. In fatal cases the cardiac and respiratory functions do not recover their normal condition and the sight becomes very weak. These symptoms are followed by cyanosis of the face, paralysis of the bladder and intestines, and great difficulty in speaking or even titteriug sounds. Death occurs on the second day, or sometimes on the third or fourth.

Bocklisch foum that codlish and perch undergoing a process of putrid fermentation yieldel different products. He also made au investigation regarling herring, which frequently, when decayed, cause cases of poisoning. He succeeded in extracting from the brine of herring the following bases: trimethylamine, dimethylamine, and methylamine. In the flesh of a decayed herring he found cotdoerine (discovered also by Brieger), diamine-ethylene, gudinine (discovered by Brieger), and putrescine, as well as methylamine and trimethylamine.

This question, which is still but little known and has not been suffciently studied-that is, the question of poisons prodnced in decaying organic matter-has been treated from a more gencral point of view by Mr. Netter in an excellent treatise published by him in $188 \pm$ in the Archives générales de Médecine. The author attributes to these poisons, the study of which has hardly been begun, the cases of poisoning known as bolutism and allantiasis, which sometimes occur after partaking of certain articles of foot, especially preserved meats and spoiled sausage. The following are, according to Mr. Netter, the symptoms of bolutism:
"Two stages may be distinguished; one of irritation and one of paralysis. Eighteen hours after the food has been partaken of the
patient complains of an uncomfortable feeling, general lassitude and pain and a heavy feeling in the epigastrium. He has no appetite; but instead nausea, attacks of retching and vomiting. There is pain in the abdomen, which is frequently swollen and extended. Sometimes diarrhea sets in at the very beginning, but it is soou followed by constipation, which generally is very severe. There is an extraordinary dryness in the mouth and throat, which frequently rises to a burning sensation. Only in rare cases these symptoms are accompanied by chills. The head aches.
"On the secoud or third day the paralytic stage commences. At first this shows itself by attacks of vertigo, an uncertain step in walking, and heary respiration. The sight becomes dim and the pupil of the eye is dilated. On the third or fourth day the upper eyelid falls down, the pupil is immovable and inseusible. Then follow attacks of choking and cough, reminding one of eroup. From the fourth to the tenth day dysphagy becomes more pronounced, and it now becomes impossible to swallow anything. All secretions are suppressed, with the exception of the urinary secretion; constipation becomes settled, the faintness of sight becomes amaurosis, and the hoarseness becomes speechlessness; the seuse of tonch is entirely lost. The patient can no longer move the tongue. The paralysis of the members becomes complete; the skin is cold, the pulse slow and feeble, and the beating of the heart can no longer be noticed. One fainting spell follows another, and respiration ceases. Finally the patient dies with every indication of complete and utter exhaustiou. Sometimes death is accompanied by convulsions.
"This is the course in fatal cases. Death, which follows in one-third of all the cases, occurs during the first ten days. At the autopsy nothing can be discovered but a congestion of most of the viscera. Rigidity sets in slowly, and putrefaction likewise makes its appearance very slowly."

These morbid phenomena of bolutism differ far too much from those of poisoning by spoiled codfish to allow us to draw the conclusion with Bérenger-Féraul that they both are produced by the same cause, by a poisonous substance having varying effects, according to its different degree of strength. It seems much more natural to suppose that the putrefaction of animal matter produces different poisonous substances, according to the nature of the matter in which they are developed.

This appears rery clearly from ail the recent researches and from the different symptoms which have been observed both in cases of accidental poisoning by decayed food substances of animal origin and in physiological experiments.

Mr. Bérenger-Férand himself recognizes the decided difference of the symptoms of the two cases. "In cases of poisoning by sioiled codfish," he states, "we notice immediate attacks resembling that of cholera, and after this tirst stage has been passed the coudition of the patient improves very regularly and rapidly. In botutism, on the other hand,
there are two stages, oue of irritation and the other of paralysis, and after a short and deceptive period of improveinent the special symptoms begin to show themselves-paralysis of the limbs, eyelids, etc.; symptoms which have never been known to follow the eating of spoiled codfish." It is truly astonishing that the author, after making the above statement, nevertheless arrives at the conclusion that there is a complete etiological identity between the two cases.

For our part we can not share this view; and we find a new proof of the decided difference between the two poisonons substances by examining the different symptoms by which these two cases of poisoning are followed.

Poisoning by spoiled codfish, which we propose to designate by gadinism, in order to distinguish it from other cases of poisoning of the same kind, has only resulted in death in a single case (in St. Petersburg) among 700 persons who had been poisoned. Bolutism, on the other hand, very frequently canses the death of the victims, as will be seen from the following facts from Mr. Netter's treatise already referred to:

In 1799, on a farm in Suabia, 5 persons were takeu sick from eating spoiled meat-balls, and 4 of them died. In 1808, Jaeger observed 25 cases, in 11 of which death followed. In 1820, Kerner observed 76 cases, of which 37 were fatal ; and in 1822,155 cases, in 86 of which death ocurred.

The objection might be raised against these statistics that they are of ancient date, of foreign origin, and that the study of these cases doubtless left much to be desired. But the opinion which we have adv anced regarding the probability of the existence of different poisonous substances in decayed articles of food of animal origin is not merely based on a comparison of the symptoms of bolutism described by Mr. Netter and the symptoms observed in cases of poisoning by spoiled codfish and on the different course of the illness following these two kinds of poisoning; it is also based on the comparative examination of a certain number of more recent cases of poisoning by animal substances of the most varied character, in which the symptoms showed essentially different characteristics.

It is impossible to give in this place a detailed account of all these cases without exceeding the limits allowed for this article. We shall content ourselves to enumerate them and to indicate the sources from which they have been taken, so that our readers, if they desire it, may study these sources, and ascertain the truth of our assertions:
(1) Cases of poisoning produced by the eating of mussels, communicated by Dr. E. Monod at the session Society of Public Hygiene of Bordeaux, December 5, 1883 (Revne sanitaire de Bordeanx, January 25, 1884).
(2) Case of poisoning by eating Portuguese oysters during the month of August, observed by Dr. Méran (Revue sanitaire de Bordeaux, January 25,1884 ).
(3) Case of poisoning from eating the roe of fiounder, reported by Dr. Rondot (Revue sanitaire de Bordeaux, January 25, 1884).
(4) Case of poisoning from eating preserved turkey which had become spoiled, communicated by Mr. Darnet, a pharmacist of Soulac at the session of the Society of Public Hygiene of Bordeanx, December 5, 1883 (Revue sanitaire de Bordeanx, January 10, 1884).
(5) Poisoning by the flesh of a goose, reported by Brouardel in Hoffman's Traité de Médecine légale.
(6) Poisoning by the spoiled flesh of a turkey, communicated to the Academy of Medicine of Dublin at the session of January 18, 1884. (Revue sanitaire de Bordeanx, March 10, 1884). In this comnection the author recalls other cases of poisoning by spoiled meat, observed by Van der Corput, Klein, and Ch. Cameron.
(7) Case of poisoning by smali mussels; reported by Dr. J. Turle in the Sanitary Record, January 15, 1834. This was a case of the death of a person who had eaten about a handful of these small shell-fish, bought in the Finchley market. Four hours after eating them he was taken with violent attacks of colic, followed by utter prostratiou, and death after thirty hours.
( 8 ) Poisoning by eating suails; reported by Dr. Dumas, of Cette, in 1873. Several persons who had partaken of suails were taken with intestinal troubles, nervous symptoms, vertigo, headache, delirium, etc. (Revue sanitaire de Bordeaux, March 10, 1884).
(9) Poisoning by spoiled meat. This case occurred at the Bordeanx fair in October, 1884, in a family of strolling actors, three of whom died (Revue sanitaire de Bordeaux, October 10, 1884).
(10) Poisoning by spoiled English preserved beef, March 26, 1881, on board the English pleasure yacht $A m y$, in the harbor of Villefrauche This was observed and described by Bérenger-Féraud in his treatise Sur les accidents que provoque la morue altérée (cases of sickness cansed by spoiled codtish).
(11) Poisoning by cheese, in Michigau (Revue sanitaire de Bordeaux, January 25, 1885).
(12) Poisoning by meat from a sick calf (Echo vétérinaire belge; Art médical de Bruselles, June, 1885, and Revue sanitaire de Bordeaux, September 25,1885 ). In this last-mentioned case 10 persons were poisoned, and 1 died. The man who died, and a woman, showed typhoid symptoms. The others, whose cases were not so severe, were attacked by headache, violent diarrhea, and intense colic for two days. The patients, moreover, suffered from a very painful dysury, and the urine, which flowed out drop by drop, was as black as ink.
(13) Numerous cases of poisoning by mussels; communicated to the Berliu Society of Medicine by Dr. Virchow, at its session of November 18, 1885.

The cases occurred in one of the docks of Wilhelmshafen on the North Sea. After two vessels had entered the dock, and after the water had
been let out, it was noticed that these ressels were covered with an innumerable quantity of mussels. The workmen gathered them, had them cooked, and partook of them with their families. After a few hours 19 persons ( $1: 3$ men, 5 women, and 1 child) were taken serionsly ill. Four died; the irss, three-quarters of an hour after having eaten the mussels; the three nthers several hours later. We should state that these two vessels were not covered with copper.

The symptoms observed after eating only from five to six mussels were in all cases the same. The teeth of the patients scemed blunted; they experienced an itching sensation in the hands and feet, but no headache. An excitement like the one produced by alcohol soon gave way to a feeling of depression; the polse varied between 80 and 90 ; the temperature of the body did not increase; the pupil of the eje became dilated, bat the vision did not become dim; convalsive movements of the hands were noticerd, great feebleness in the lower extremities; no diarthea. During the last stage there were general chills, anxiety, a feeling of oppression, and fmally the patients died, without having lost consciousness for a single moment.

At the autopsy the intestines showed symptoms of inflammation of the bowels, which confirms the opinion of Orfila as to the irritating action of the poisonous substance.

Professor Virchow gave some of these mussels to dogs, cats, rabbits, and frogs; and all these animals died after haring eaten a very small quantity. Thms, the largest dog had only eaten from six to seven mussels. A cat licked a yery small quantity of the liguor from the mussels left in a dish and was taken violently sick. The poison must, therefore, have been very strong. Dr. Schmidtmann, the physician of Wilhelmshafen, who oiserved all these eases of poisoning, believes that it was ptomaine. Virchoar is inclined to consider it as a chemical poison. In either case it must be admitted that the mussels produced this poison.

In the Japan seas there is a species of fisture which several months during the sear becomes poisonous, while during the remaining portion of the year it may be eaten with impmity. Does not this fact agree with the supposition of a kind of virulence showing itself at the time of reproduction, amd might not this virulence be the result of the development of a nomnal or accilental pomaine, resembling the substance described br Bablbud (in fitudes sur l'empoisomement par les moules, Paris, 1870), and termed by him molluseine (?)

It is probahle, however, that mussels may also become poisonous by the begiming of the putrefying process, which wonld agree with the circumstance that these cases of poisoning are more frequent during the hot season, However this may be, the rariety of symptoms observed in most of the eases justifies the opinion that spoiled articles of food of animal origin contain ptomaine or different chemical poisons. The clinical shservation therefore agrees entirely with the chemical observation, which has alreals isolated and characterized several of these
poisonons substances. Much remains, doubtless, to be done, both from a chemical point of view and from that of physiological experimenting, in order to throw full light on this but little explored fied of the toxicology of cadaveric alkaloids; but the results which have been reached thus far justify the hope that science will fmally succeed in solving all the kuotty problems of this question.

We will close this chapter by the report of a personal experience regarding the eating of putrefied colfish: During the first days of April two reliable codfish dealers of our city furnished me, at my request, with a number of dried codfish which had been more or less tainted with red; and three of the oldest and most decayed codfish which could be found among the refuse of their drying-houses.

These three codfish, three years old, and destined to be sold as grease, showed all the signs of putrefaction-a putrid odor, and flesh which throughout was of a brownish color, and easily crumbled to pieces. The outside showed many red spots scattered irregularly over the entire body.

I gave these three old codfish, raw, and without being prepared in any way whatever, to three dogs of the physiological laboratory of the Faculty of Medicine, which Professor Oré kindly piaced at my disposal. None of these three dogs were inconvenienced thereby. They neither romited, nor had they attacks of diarrhea, or any other symptoms of sickness; and still the codfish of which they had eaten was old and thoroughly decayed.

May we conclude from this experiment that the eating of such codfish would not produce cases of sickness in a human being? I do not believe it. Dogs are in the habit of eating all sorts of impure matter, and putrefied substances, without suffering any bad consequences.

The same would hardly be the case with man, whose stomach is of a much move delicate organzation; and one shonld be careful not to draw any conclusion as regards man, as to the harmless character of spoiled articies of food, from cases in which dogs ate such articles with impunify. To make the experiment complete, I should also have eaten of the spoiled codfish, but I freely confess that I did not have the courage to let my scientific derotion go so far. I contented myself by eating red, but otherwise sound, codfish at two consecutive meals; and I can state that I digested it perfectly without the least trouble, like all the members of my family who partook of it with me.

It may, therefore, be considered as settled that the red codfish has no hurtful quality, and that dogs could eat, without being in the slightest inconvenienced, raw codfish, three years old, inteaded to be used for grease, and showing every sign of putrefaction. Should we admit that the poisonous products of putrefied codfish do not act on dogs, or that these products, poisonous at a certain given time, are finally destroyed by the process of putrefaction? These questions can only be solved by new researches, and by much more numerous experiments.

> V.-COMMERCIAL ASPECTS OF THIS QUESTION.

The cod fisheries are carried on on the coasts of Iceland and New. foundland from April till the middle of September, aud more than 12,000 of the best class of fishermen and sailors are engaged in these fisheries.

The codfish are not caught in the same manner near Iceland as near Newfoundlaud. In Iceland fishing is going on while the vessel is moving, drawing the fishing-lines after it. The fishermen constantly raise these lines, and the codfish pass direct from the sea into the vessel which is to take them to France. When they reach the deck of the vessel the head is cut off and the abdominal viscera are removed, among which is the roe, which is to be used as bait in the sardine fisheries, and the liver, from which oil is to be extracted. Then the fish are cut open and a portion of the backbone is removed; whereupon they are washed, salted, and piled up in the hold of the ressel.

Near Newfoundland the fisheries are carried on in a different way. Lines with hooks are immersed in the water and left there from one tide to the other. At each tide small boats are sent ont from the res. sel to raise the lines. The codtish are at first received in these small boats, or dories, which conver them to the vessel. There is therefore a double handling, which does not take place in the Iceland fisheries. As regards the methods of preparing the codfish, they are the same in both countries. We should also bear in mind the fact that the temperature of Iceland is much colder than that of Newfoundland.

These details are of importance regarding the question before us, for they may have to be taken into account in explaining the fact, which has been duly observed, that the codfish caught near Iceland turn red more rarely than those caught near Newfoundland.

In 1885 the average quautity of codfish taken by each fishing vessel near Newfoundland was from 3,500 to 5,000 quintals. A boat manned by 24 men cau take at each tide about 5,000 codfish. The largest fishing vessels can carry as many as 180,000 codfish.

It is probable that if Dr. Bertherand, of Algiers, had been acquainted with the abore-mentioned fact when he read his treatise on the poisonous fungus at the meeting of the scientific societies held in Paris in April, 1884, he would not have proposed as a remedy for preventing the growth of this fungus, to arrange in the fishing vessels tanks in which live codfish could be conveyed to France. Without mentioning other impossibilities we must say that no vessel would be large enough to hold tanks for 180,000 live codfish, many of which are 3 feet long. It is true that the fish might be distributed among a number of vessels, but what an enormous fleet would be required to convey to France in tanks the $1,200,000$ quintals of codfish which represent the anmual yield of these fisheries. All the vessels of the French merchant marine would not suffice, not to speak of the enormous expense which this mode of transportation would involve.

We stated that the cod fisheries take place from April tiil the middle of September. The first vessels conveying fresh codfish from I celand and the Newfoundland banks arrive in France about the end of May or the beginning of June, and from that time on ships continue to arrive every week in July, August, September, October, and November. A considerable quantity of codfish, therefore, arrives in our ports during the heat of summer. It is no rare case to see entire cargoes turn red from the influence of the heat, either during the voyage or when the fish are landed in the port of destination. But at that time the red spots are merely found on the surface.
As soon as the codfish are landed they are taken to the drying-houses. There they are piled up in enormous heaps in closed but well-ventilated rooms. They remain in this condition a longer or shorter period, according to the needs of the trade. They are termed "green codfish." Some are shipped in this condition, but by far the larger quantity is delivered to the dealers as "dried codfish."

According to the needs of the trade, the green are transformed into dried codfish in the following manner. They are brushed violently with a broom-corn brush, and washed in several waters, so as to get them as clean as possible. This operation frequently causes the red color to disappear. After they have been thus washed, they are hung in the open air to dry. In summer two "suns" suffice to dry them completely, but in winter and in wet weather they have frequently to hang much longer. The codfish hung to dry is carried to the warehouse every evening, and is not allowed to stay in the open air ia single night. We have seen 30,000 codfish hung up to dry in a single drying-house at Bégles. This operation, of course, necessitates the employment of a very large number of persons.

The dried codtish generally leaves the drying-houses in good condition, but it passes through several hands before it reaches the retail dealers, and with these latter it is not always kept under conditions favorable to its preservation.

The following figures, derived from a reliable source, give an exact idea of the importance of the Freuch codfish trade:

The whole of France receives every sear from the Icelaud and New. foundland fisheries codfish valued at from $30,000,000$ to $35,000,000$ francs (about $\$ 6,000,000$ ). The share of Bordeaux alone in 1885 was $14,000,000$ francs (about $\$ 2,700,000$ ). The average annual quantity re. ceived is 600,000 quintals.

In 1885 the Bordeaux merchants exported to Spain and Italy $\mathbf{1 5 0 , 0 0 0}$ quintals, Spain taking three-fourths of this quantity.

Some years ago (hardly six) France exported no codfish to Spain, Norway furnishing that country with all the codfish consumed. It seems that considerable difficulty was experienced in opening the Spauish market for French codfish, but at present the Norwegians again take courage, and, since the ministerial circular prohibiting the sale of red codfish in France, again ship large quantities of codfish to Spain.

The Spanish dealers say: "Don't buy any more French codfish, be. cause they have torned red; and that this color is a proof of their bad quality is clearly shown by the recent circular of the Freuch ministry prohibiting the sale of red codfish." A Bilboa paper has even gone so far as to insimate that it is more than proballe that it was the French codfish which last year carried the cholera into Spain, and that if these fish had been carefully examined specimens of Dr. Koch's bacillus would probably have been found.

All this evidently is not strictly scientific, bat it will be seen how much in such matters the hygienic consideration intluences the commercial side of the question; and it will be understood what great damage may be indicted on commerce by an erroneoús scientific opinion when it has been pronomeed in an official way, especially in the shape of a prohibitory measure.

We have stated that the new minister of commerce, Mr. Lockroy, has smpressed the cirentar of his predecessor until the entire question in all its bearings has been made the sulject of exhanstive investigations. We hope that soon sufficient light will have been thrown upon this question to cause the minister to revole definitively the prohibitory measure reitrred to, and to proclaim positicely in a new circular the absolntely harmless character of red codfish from a hygienic point of view. Such a declaration seems to be the only means of conquering the very considerable prejudice which has been created against these fish by the prohibitory ministerial circular of December 31, 1885.

> VI.--CONCLUSIONS.

From all that has been said above we feel justified in drawing the following conclusions:
(1) Castes of poisoning from eating spoiled codfish are extremely rare, considering the enormons quantity of these fish consumed throughout the entire world.
(2) The exceptional cases which have been observed must be attributed to the eatmg of spoiled codifish which had already commenced to putrefy, which can always be recognized by the following two certain iudications: A putrid odor, and the casy crumbling of the flesh. Every colfish showing these two iudications should be condemned at once.
(3) The red color which often appears on these fish, both when "green" and when "dry," under certain conditions of temperature and the phace where they are kept, is no indication of their injurions character; becanse, on the one hand, it is a wellestablished fact that from time immemorial people have eaten red codfish withont experiencing any bad consequences; and becanse, on the other hand, animals (dogs and cats) have for several days in succession been fed on raw colfish, having a deep red color, withont cansing any sickness whatever. One may threfore eat withont fear any colfish which has preserved its
normal odor, and the firm consistence of its flesh, no matter whether its color is more or less rosy or red.
(4) The red of the codtish is produced by a cryptogamic vegetation, the nature of which has not yet been fully determined. Some think it is a fungus, others an alga.
(5) This cryptogamic vegetation which develops both on spoiled and on sound codfish, seems to be aided in a special manner by the salting process; but it has nothing whatever to do with putrefaction.
(6) Only those codfish whose flesh is more or less putrefied contain a poisonous substance, which in man may produce symptoms similar to those of cholera.
(7) This poisonous substance has been isolated and characterized by several experimenters as a kind of ptomaine, or an alkaloid produced by putrefaction.
(8) Protection against all danger of such poisoning is easy, simply by not eating any codfish which has at all begun to putrefy. As regards sonnd codfish, they should invariably, before being eaten, be carefully cleaned, soaked in water, which should be changed several times for twelve hours, and above everything else should be well cooked. Thorough cooking of all articles of food of animal origin is in fact the best means of destroying all hurtful parasites and minute organisms which they may contain.
(9) In peremptorily prohibiting the sale of red codlish, which is absolutely harmless unless it is at the same time spoiled (a measure which can not be justified by any reasons, and which has done cousiderable injury to an important brauch of our commerce), a product which has lost nothing of its alimentary value, and which is of great and every-day importance to the laboring classes, has been unjustly depreciated and condemued.
(10) We therefore consider it our duty to advise that, as soon as possible and in the most positive manner, this prohibitory measure be revoked, because it is based on a manifestly erroneous interpretation of facts.

Bordeaux, France, April 25, 1886.

# XXXII.-NOTES ON THE NORWEGIAN FISHERIES 0F 1885. 

[Abstract from a Compilation of A. N. Kiær.*]

Cod fisheries.-The yield of the cod fisheries in 1885 was larger than in any of the four preceding years; while it was considerably less than in 1880, which was the most productive year since 1866 , when somewhat complete statistics of these fisheries were first taken. The anount of cod taken in 1885 was above the average, while the value was somewhat below it, owing to a decided fall in prices. A comparison of the results of $1884 \dagger$ and 1885 may easily be made by referring to the following table:


The amounts for 1885 are owing partly to the Lofoden fisheries and partly to the spring fisheries in Finmark, which gave a regular and average yield. The Lofoden fisheries, which had such poor yields in 1883 and 1884, improved very much, and in the Lofoden district proper during the fishing season $26,530,000$ codfish were taken. If to this are added the number of fish canght after April 14 and those caught near Veröe and Röst and near the outer group of islands (in all 7,480,000 fish, 500,000 of which were caught in the Lofoden district proper after April 14), the total yield of these fisheries is brought up to $34,010,000$, while in 1884 it was only $23,354,000$.

[^130]The Romsdal fisheries in 1885 yielded the following quantities:


These figures are below those of 1884 in each instance, and considerably less than the average for several years back.

In the Tromsje district the cod fisheries have been on the increase during the last few years, giving in $18551,433,500$ fish as against 1,241 S00 in 1884. On the other hand, the Fosen (or South Trondhjem) fisheries were not so productive as in former years, falling from an average of about $1,000,000$, and from $1,766,000$ in 1884 to 689,400 in 1885. The Namdaten fisheries yielded 618,400 in 1885, against 404,000 in 1884.

The quality of the fish was about the same in 1885 as in 1884. They were fat and plump, but the Lofoden fish were very small. But the fish were not so fat nor did they contain so much liver as in average years, when one hectoliter of liver may generally be obtained from 350 fish, while in 1885 it took 506 fish to yield one hectoliter.

The average prices paid at the fishing stations were much below those of 1834 , especially in the case of romed fish and roe. The inspector of the Lofoden fisheries said in his report that with reference to roe the fall in price conld be attributed only to accidental circumstances. Regarding the price of the fish, however, he thonght the canse a different one. In 1880 and 1881 the price was lower in the Lofolens than in 1885 , but he considered it donbtful whether it would again rise as rapidly, as the competition in the codfish trade is considerable, owing to the increase in the French cod tisheries near Iceland and Newfoundand.

Fet-herving fisheries.-The yield of these fisheries in 1855 was uearly twice as great as in 1884; but the value was not much greater, owing to the low prices. The priucipal fat-herring fisheries were, as usual, carried on in the Nordland district, where the quantity caught was 498,570 hectoliters, or nearly five-sisths of the entire quantity. A comparison of 1884 and 1855 is afforded by the following table:

spring-herving fisheries.-The following table shows the yield, value, and average price for 1884 and 1885:

| - | Year. | Quantity. | Vialue. | Arerage prico per hectoliter. |
| :---: | :---: | :---: | :---: | :---: |
| 1884 |  | $\begin{gathered} \text { Hectoliters. } \\ 261,981 \\ 209,246 \end{gathered}$ | $\begin{array}{r} \$ 387,396.95 \\ 203,048.86 \end{array}$ | $\begin{array}{r} \$ 1.48 \\ .97 \end{array}$ |

Sprat and other small herring fisheries.-The following table affords a comparison between the quantities takeu, the values, and the average prices for 1884 and 1885:
Year.

Mackerel fisheries.-The comparison of the mackerel fisheries for 1884 and 1885 is shown by the following table:


Summer fisheries for ling, coal-fish, torsk, etc.-The total quantity of these fish taken could not be ascertained; but their value in 1885 was $\$ 653,593.57$, while in 1854 it was $\$ 776,960.41$, thus slowing a considerable decrease in value.

Salmon trout and sea-trout fisheries.-These fisheries yielded much better results in 1885 than in 1884, though that year was better than any of the five preceding years. The yield was particularly good in the districts of South Trondbjem, Lister, Mandal, and Stavanger. A comparison of the years 1884 and 1885 is shown in the following table:

| Year. | Quantity. | Value. | Average price per pound. |
| :---: | :---: | :---: | :---: |
| 1884 1885 | Pounds. <br> 1, 082, 789 <br> 1, 287, 006 | $\begin{gathered} \$ 132,707.97 \\ 158,056.22 \end{gathered}$ | \$0.12 |

Lobster fisheries.-The number of lobsters taken was smaller than usual, while, owing to the high prices, the value was about the average. A comparison for the two years is as follows:


S, Mis. $90-67$

Oyster fisheries.-The comparative total statistics of these fisheries for 1884 and 1885 are shown in the following table:

| Year. | Quantits. | Value. | Arerage price per bectoliter. |
| :---: | :---: | :---: | :---: |
| 1881 | $\begin{array}{r} \text { Hectoliters. } \\ 230 \\ 153 \end{array}$ | $\$ 1,991.78$ $1,299.27$ | $\begin{array}{r} \$ 8.66 \\ -\quad 8.19 \end{array}$ |

The total value of the Norwegian coast fisheries in 1885 was $\$ 5,142,907.41$, as against $\$ 6,535,488.45$ for 1884 , showing a considerabe falling off for 1885 . This small total value, which was less than for any of at least the six preceding years, was due principally to the low prices of the products of the cod fisheries. A comparative table showing the ralue of the coast fisheries according to the kinds of fish caught is as follors:

| Fisheries. | 1884. |  | 188 J. |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Total value. | Per cent. | Total ralue. | Per cent. |
| Cod fisheries. | \$4, 163, 732.68 | 63. 7 | \$2, 951, 275. 23 | 57.4 |
| Fat-lierring fisherics. | 683, 076. 34 | 10.4 | 811, 83:3. 81 | 15. 6 |
| Spring herring fisheries | 387, 396i. 95 | 5.9 | 203, 0188.86 | 3.9 |
| Sprat, etc, fisheries | 78, 605, 74 | 1.9 | 57, 5813.77 | 1.1 |
| Mackerel fisheries. | 197, 094.43 | 3.0 | 209, 56.. 60 | 4.1 |
| Summer fisheries. | 776, 960.41 | 11.8 | 653, 593. 57 | 12.7 |
| Salmon-tront, etc., fish | 132, 707. 97 | 2.3 | 158, 056. 22 | 3.1 |
| Lobster fisheries | 111, 922. 15 | 1.7 | 106, 661.05 | 2.1 |
| Oyster fisheries | 1,991. 78 |  | 1, 299, 2 |  |
| Total | 6, 535,48S. 45 | 100 | 5, 142, 907.41 | 100 |

Storeggen Bank fisherics.-The results of the fisheries, which were especially for ling and torsk, were not very favorable in 1855, owing chiefly to the stormy weather.

The fisheries on the banks near Stordy Bet were comparatively more. successful, being carried on simultaneonsiy with the Storeggen fisheries.

The following table gives the statistics for 1885 , and affords a partial comparison with the figures for 1884:

| Fear. | Storeggen. |  |  | Stordy bet. |  |  |  | Total value. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Vessels. | Men. | Value. | Steamer. | Boats. | Vessels. | Value. |  |
| $\begin{aligned} & 1884 \ldots \\ & 1883 . . . \end{aligned}$ | 25 26 | 308 310 |  | 1 | 20 | 90 | \$18,240 | \$68, 278.36 |

Shork fisheries in Finmark.-These employed 14 boats, 25 vessels, and 174 men. The tota! value of the livers obtained ( 4,078 hectoliters) was $\$ 13,742.77$. The quantity obtained was less than for several years
and the low prices of the oil caused the value of these fisheries to decline.

Other Polar Sea fisheries.-These fisheries employed 45 ressels, with a tomnage of 1,933 , and 453 men. They yielded 10,654 seals, 721 walruses, 178 white-fish, 12 bottle-noses, 623 hectoliters of sharks' livers, and 40 hectoliters of whale fat. The total value in 1885 was $\$ 54,603.66$, against $\$ 80,145.40$ in 1884 . Besides the above, a vessel from Vardöe brought 204 seals and 6 walruses, valued at $\$ 1,447.20$.

Whate fisheries in Finmark.-These fisheries yielded 1,269 whales, valued at $\$ 320, \$ 83.64$. This result is a great increase over 1884 and the catch for many years previously.

Seal fisheries.-These fisheries near Jan-Mayeu and in the sea between Iceland and Greenland employed 18 steaners, with a tonnage of 4,527 , and 993 men, 148 of whom were hunters. They yielded 58,028 seal,skins and 10,625 hectoliters of fat and oil, having a total value of $\$ 174,200$.

Bottle-nose fisheries.-These employed 20 vessels (5 being steamers), with a tomnage of 2,455 , and yielded about 800 bottle-noses, producing about 7800 barrels of oil, valued at $\$ 83,616$.

Total value of Norwegian salt water fisheries in 1885.


The following twelve tables give more full details in regard to the coast fisheries in 1885:

Table I.-Number of fishermen engaged in the cod, fat-lterring, and mackerel fisheries in 1885.

| District. | Cod fisheries. | Fat-herring fish eries. | Mackerel fisheries. | Total. |
| :---: | :---: | :---: | :---: | :---: |
| Stuaalenene |  |  | 132 | 132 |
| A kershus. |  |  | 125 | 125 |
| Buskerud .............. |  |  | 30 | 30 |
| Bratsberg ............ |  |  | 937 79 | 937 |
| Nedenas. |  |  | 233 | 238 |
| Lister and Mandal. |  |  | 1,286 | 1,282 |
| Stavanger | 475 | 114 | 1, 302 | 1, 891 |
| South Bergenhus | 650 | 2, 130 | 1, 24 | 2, 804 |
| North Bergenhus | ${ }_{60}^{60}$ | 1, $49 \pm$ |  | 1,554 |
| Romsdal Trondbje | 15, 626 | 2,830 |  | 18,456 |
| North Trondhjem | -3,162 | 5,161 2,090 |  | 8,323 |
| Nordland ......... | 34, 810 | 16,002 |  | 4,119 50,812 |
| Tromsöe | 2,381 | 3,187 |  | 5,568 |
| Finmark | 17,311 |  |  | 17,311 |
| Total | 76,504 | 33, 008 | 4,147 | 113, 659 |

Table II.- Falue of the coast fisheries in 1885.*


* The figures in this table are given in even dollars.

Table III.-Details of the cod fisherics in 1885, showing the number of fishermen and boats.

| District. | Total number of fishermen. | Fishermen using- |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Nets onty. | Night. lines only. | Lines ouly. | Two or more of these. |
| Stavanger. | 475 |  |  |  | 475 |
| South Bergenhus. | 650 |  |  | 650 |  |
| North Bergenhus. | 60 |  |  |  | 60 |
| Romsdal | 15,626 | 1, 723 | 2, 346 | 1. 562 | 9,395 |
| South Trondhjem | 3, 162 | 661 |  | 1,270 | 1,229 |
| North 'Trondhjem. | 2, 029 | (302 | 19, ${ }^{34}$ | - 21.18 | 1,381 |
| Nordland. | 34,810 2,381 17 | 12, 072 | 19,442 1,365 | 1,560 | $\begin{array}{r}1,796 \\ \hline 951\end{array}$ |
| Finmark | 17,311 | 25 | 3,566 | 3, 693 | 10, 027 |
| Total. | 76,504 | 14,833 | 27, 289 | 9,065 | 25,317 |

Table III.-Details of the cod fisherics in 183., elc.-Continued.

| Districts | Total number of boats. | Boats equipped with- |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Nets only. | Night- <br> lines only. | Lines only. | Two or more of these. |
| Stavauger | 125 |  |  |  | 125 |
| sonth Bergenhus. | 250 |  |  | 250 |  |
| North Bergenhus. | 10 |  |  |  | 10 |
| Iomsdal ......... | 2, 688 | 2:33 | 516 | 289 | 1,64 |
| North Trondijom. | 514 | 157 | 15 | 98 | $34!$ |
| Nordland.......... | 8,157 | 2,000 | 5,250 | 501 | 406 |
| Tromsiors | 828 | 10 | 452 | 33 | $3: 3$ |
| Fimmark | 4,959 | 8 | 1,12? | 869 | 2,960 |
| Total | 18,310 | 2,464 | 7, 355 | 2,417 | 6,080 |

Table IV.-Quantity of codfish caught in 1885.

| District. |  |
| :--- | :--- | ---: | ---: | ---: | ---: |

Table V. - Value of the cod fisheries in, 1885 and the average prices paid.

| District. | Value of the different products. |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Fish without liver and roe. | Liver. | Roe. | Fish-heads sold. | Total value. |
| Stavanger. | \$1,170. 20 | \$99. 16 | \$77.72 | \$58.90 | \$1, 415.04 |
| South Bergenhus | 837.50 | 107. 20 | 64.32 | 20.10 | 1, 029.12 |
| Nortl Bergenhus | 175, 349.344 |  | 5J. 18 17.244 .46 | 17.43 | 499.82 $223,066.05$ |
| South Trondhjem | 28, 291.15 | 5,252. 80 | 4,631.0t | 881.72 | 39, 056. 71 |
| North Trondhjem | 28, 834. 11 | 4, 055. 38 | 1,964. 98 | 562. 80 | 35, 417.27 |
| Nordland. | 1,426, 171. 65 | 294, 952. 23 | 155, 649. 30 | 19, 786.17 | 1, 896,559.35 |
| Tromsü̈e | 58,763. 83 | 10,318.00 | 3, 747.71 | 131.32 | 72, 960. 86 |
| Finmark | 530,684. 22 | 138, 945.41 | 1,140.07 | 10, 501, 31 | 681, 271. 01 |
| Total. | 2, 250, 264. 14 | 478, 066. 19 | 184, 575.18 | 38,309. 82 | 2,951, 275.23 |

## Table V.-Talue of the cod fisheries in 1885, etc.-Continued.

| District. | Average prices. |  |  |  | Estimated price per 100 with liver, roe. and heads. |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Withontliver and roe, per 100. | Liver, yer hectoliter. | Roe, per hectulitor. | Fish-heads, per 100. |  |
| Staranger | \$5. 36 | \$2. 68 | \$2. 68 | \$0. 27 | \$6. 43 |
| South Bergenhus | 5. 58 | 4. 29 | 3.23 | . 27 | 6.86 |
| North Bergenhus | 5. 38 | 4.29 | 3.70 | . 27 | 7. 69 |
| Romstal ........ | 4.89 | 4.07 | 3.21 | . 28 | 6. 22 |
| South Trondbjem | 4.10 | 3. 86 | 3.2\% | . 19 | 5. 67 |
| North 'rondhijem | 4. 56 | 4. 25 | 2.64 | . 19 | 5. 63 |
| Nordtand | 4.09 | 4.71 | 3.53 | . 09 | 5. 44 |
| 'I'romsöe | 4.10 | 3. 61 | 4.02 | . 12 | 5. 09 |
| Hinmark | 3.03 | 3. 14 | 2.90 | . 08 | 3. 89 |
| General average | 3.83 | 4.05 | 3.48 | 0.10 | 5.02 |

Table VI.-Details of the fat-herriug fisheries in $\mathbf{1 8 8 5}$.

| District. |  | Total number of fishermen. |  |  | $\begin{aligned} & \text { Fish } \\ & \text { mer } \\ & \text { usin } \\ & \text { seine } \end{aligned}$ |  | Net-boats used. | Seines used. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Stavanger. |  | 114 |  | 14 |  | 00 | 1 | 5 |
| South Bergenhns. |  | 2,130 |  | 25 |  |  | 10 | 146 |
| North Bergeuhus. |  | 1,494 |  | 400 |  |  | 50 | 87 |
| Romsdal .- |  | 2, 830 |  | 672 |  |  | 399 | 140 |
| South Troudhjem |  | 5,161 |  | 1,164 |  |  | 556 | 248 |
| North Trondijem. |  | 2, 090 |  | 245 |  |  | 110 | 107 |
| Nordland. |  | 16,002 |  | ¢, 600 |  |  | 3, 046 | 435 |
| Tr |  | 3, 187 |  | 2. 675 |  | 12 | 1,026 | 50 |
| Total. |  | 33,008 |  | , 795 | 19, |  | 5,198 | 1,218 |
| District. | Total quantity caught. | Caught with nets. |  | Caught with seines. |  | Value. |  | Average price per hectoliter. |
|  | Hectoliters.1,3506,7083,84029,3701,10918,30049,57046,100 | Hectoliters. |  | Hectoliters. |  | \$5, 185. 80 |  | \$3. 81 |
|  |  |  |  |  | 300 |  |  |  |
|  |  |  | 0 |  | 540 |  | 065. 20 | 1.32 |
|  |  |  |  |  | 192 |  | 063. 36 | . 85 |
|  |  |  |  |  | 349 |  | 437. 99 | 2.48 |
|  |  |  |  |  | 900 |  | 374.40 | 1. 77 |
|  |  |  |  |  | 960 | 635. | 791.95 | 1. 28 |
|  |  |  |  |  | 300 |  | 299.52 | . 85 |
| Total. | 619,347 | 120,330 |  | 499, 017 |  | 801, 823.84 |  | 1. 29 |

Table VII.—Details of the mackerel fisheries in 1885

| District. | Total number of fishermen. | Fisher. men usiug drift-nots. | $\begin{gathered} \text { Boats } \\ \text { having } \\ \text { drift-nets. } \end{gathered}$ | Total number of tish caught. | $\begin{gathered} \text { Fish } \\ \text { cau } \\ \text { witht } \\ \text { drift-nots. } \end{gathered}$ | Value of fish caught. |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Smaalenene | 132 | 132 | 44 | 88,500 | 77, 000 | \$4, 743, 60 | \$5. 36 |
| Akershus | 125 |  |  | 28, 100 |  | 1, 453. 90 | 5. 18 |
| Buskerud | 30 |  |  | 19,500 |  | 603.00 | 3.11 |
| Jarlsberg and Lau | 937 | 937 | 254 | 1, 211,769 | 1,171,269 | 48,529.44 | 4. 60 |
| Bratsberg | 79 | 71 | 24 | 80,750 | 72, 500 | 3, 174.46 | 3.93 |
| Nedenas | 232 | 204 | 76 | 188, 025 | 176, 425 | 8. 279.59 | 4.40 |
| Lister and M | i, 286 | 1,270 | 346 | 2, 826,3:30 | 2, 813,030 | 87,735. 16 | 3. 10 |
| Stavanger | 1,302 | 1,152 | 300 | 1,663,903 | 1,644, 860 | 51, 855. 85 | 3. 30 |
| South Bergenhus | 24 | 24 | 8 | 5,000 | 5,000 | 187. 60 | 3. 75 |
| Total. | 4, 147 | 3,790 | 1,052 | 6, 111, 969 | 5, 960, 084 | 209, 562. 60 | 3.43 |

Table VIII.-Details of the sprat and other small-herring fisheries in 1885.

| District. |
| :--- | :--- | ---: | ---: | ---: | ---: |

Table IX.-Details of the spring-herring fisheries in 1885.

| District. | Quantity. | Value. | Average prico per hectoliter. |
| :---: | :---: | :---: | :---: |
| Smaalenene | Hectoliters. 60, 080 | \$29, 506. 80 | \$0,49 |
| Akershus | 50 | 134.00 | 2.68 |
| Jarlsberg and Laurvig | 20,840 | 19, 105. 72 | . 92 |
| Bratsberg. | 3, 160 | 5,215. 28 | 1.68 |
| Nedenæs. | 11,760 | 12, 917. 60 | 1. 10 |
| Stavanger. | 67, 650 | 89,967. 60 | 1.33 |
| Sonth Jergenhus. | 34, 050. | 32, 604. 88 | . 96 |
| North Bergenhus | ${ }^{891}$ | 2, 036.80 | 2. 29 |
| Romsdal.... | 10, 825 | 11,560. 18 | 1.07 |
| Total. | 209, 246 | 203, 048.86 | . 97 |

Table X.-Details of the salmon-trout and sea-trout fisheries in 1885.

| District. | Quantity. | Value. | Average price per pound. |
| :---: | :---: | :---: | :---: |
|  | Pounds. | - ${ }^{\text {a }}$ |  |
| Smaalenene | 7,910 | \$1, 543.95 | \$0. 20 |
| Akershus | 8, 827 | 1,615. 77 | . 18 |
| Buskerud | 15,388 | 2,624. 52 | . 17 |
| Jarlsberg and Laurvig | 26, 649 | 4, 615.50 | . 17 |
| Bratsberg .............. | 12, 787 | 2, 351.70 | . 18 |
| Nedenres. | 32,518 | 4,325.52 | .13 |
| Lister and Mandal | 177, 779 | 22, 238.37 | . 13 |
| Stavanger | 166, 337 | 21,444.82 | .13 |
| South Bergenhis. | 133, 224 | 16.453.06 | . 12 |
| North Bergenhus | 92, 853 | 12. 212.76 | .13 |
| Romsdal... | 82, 613 | 8,966. 94 | . 11 |
| South Troudhjerm | 321, 856 | 38, 084.68 | . 12 |
| North Trondhjom | 123, 250 | 14, 386.78 | . 12 |
| Nordland...... | 38, 257 | 3, 839. 37 | . 10 |
| Tromsöo. | 32, 102 | 2, 304.26 | . 07 |
| Finmark | 13,856 | 1, 049.22 | . 08 |
| Total. | 1,287,006 | 158, 056. 22 | . 12 |

Table XI.-Details of the lobster fisheries in 1885.

| District | Quantity. | Valce. | Average price per 100. |
| :---: | :---: | :---: | :---: |
| Smaalcneno | Number. |  |  |
| Akershus - | 61,000 1,000 | $\$ 5,078.60$ 80.40 | \$8.33 |
| Buskerul | 1,500 | 53.60 | 10.72 |
| Jarlsberg and Laturvig | 99,890 | 9,300. 67 | 9.31 |
| Bratsberg | 33, 000 | 3,537. 60 | 10. 72 |
| Nedenas | 128, 547 | 12,543. 21 | 9. 76 |
| Lister and Mandal | บ23, 770 | 29,756. 04 | 12. 73 |
| Stavenger | 232, 305 | 26, 286.78 | 11. 32 |
| South Bergenhus. | 155, 049 | 14,126. 28 | 9. 11 |
| North Bragenhus | 46, 950 | 4,197. 68 | 8.91 |
| Lomsdal | 15,860 | 1,700. 19 | 10. 72 |
| Total | 1, 007, 871 | 106, 661.05 | 10.58 |

Table XII.—Detuils of the oyster fishocries in 1885.

| District. |  |
| :--- | :--- | ---: | ---: | ---: |

Christiania, Norway, October $23,1886$.

## INDEX.

Note.-This index contains general references to the entire volume; more detailed
indexes to nine papers will be found at the pages indicated. Baird, Spencer F Sea Fisheries of Eastern North America - Page.
Bettoni and Vinciguerra, Fish-Culture in Central Europe ............................ 594
Collins, J. W., Operations of the schooner Grampus ..................-................. 701
Fewkes, J. Walter, Mednsæ from the Galf Stream ...................................... . 535
Jordan and Eigenmann, Review of the Sciænidæ.......................................... . 447
Jordan and Goss, Flounders and Soles of America and Europe..................... 337
Linton, Edwin, Entozoa of Marine Fishes of New England......................... 511
Tanner, Z. L., Work of the Albatross in 18:6................................................... 687
Marine invertebrates distributed............................................. 843
A.

Page.
Agassiz, Alexander ...82, 225, 343, 874,965
Agassiz, Louis .-.-.-................... 957,961
Albatross, apparatus.-.-............ . 636, 643
assistance to vessels.... 622
Bank, location of....... 938
birds taken by ............ 673
cruise to Bahama.......605, 621
dredgings by-.............. 683,
$933,937,940,945,953$
electric lighting......... 653
engineor's report ........ 644
fish taken by............. 669
medical report .......... 656
medusæ .... ....... ..... 513
naturalist's report...... 659
navigator's report .-.... 644
new boilers for .... 636, 648, 649
personnel.--....-....... 643
report of operations..... 605
soundings..............-. 616,678
temperatures taken by -- - 1011
Alpena Station, operations at...... 729
American fisheries, review of...... 142 statistics of.... 214
Journal of Science cited. 884
Anadromus fishes, list of........... 49
Anrep, V. K. ............................. 1044
Apeldoorn fish hatehery............ 591
Apparatus for hatching fish.....547,558
Ashly, jr., Benj-....................... 16
Atlantic salmon, distribution of ..797,836 propagation of... 722

Atkins, Chas, Page.
Atwater, W. O.-. ...................... 1020
Atwood, Nathaniel E............... . - 16,119
Azore Islands, examination of..... 6
B.

Babson, F. J................................ 16
Bache, steamer, dredgings by .... 884, 961
Babama Islands, crnise to ......... 605-621 seas, soundings in......... 606
Baird, George W..................... . . 636,644
Baird, Spencer F...... 1, 171, 606, 623, 705
Bait for sea fishes................. $31-34,126$
preservation of .....-............. 133
Baker, J. G................................ 878
Barker, George F., quoted........ 153
Bartlett, J. R............................. 965
Battery Station, meteorological observations at. . 812
operations at..... 761
shad work...... 762,807
Bean, Tarleton H. .................... 343
Beardslee, L. A...........-...-. - $884,892,901$
Benedict, James E. .................... 606, 667
Benson, УV. S............................ 605
Berenger-Ferand, Mr................ 1037, 1038
Bergue, J. H. G......................... 15
Berneuchen fish hatchery.......... 586
Bettoni, Eugenio.-......-. .-.......... 539, 598
Bibb, steamer, dredgings by .......957, 961
Birds collected by Albatross ...... 673
colleited by Grampus...... 713
Page.
Black-bass culture in Europe ..... 569
Blackford, E. G., quoted ..... 135
Blake, Henry A. ..... 614
Blake, steamer, dredgings by ..... 957,
963, 965
Bluefish with acanthocephala ..... 496
Bluefish infested by cestoids ..... 456
Bluelight, steamer, dredgings loy.. ..... 892
Boeck, A ..... 24
Borne, Max von dem ..... 542, 543, 829, 830
Brook pike for Germany ..... 829
trout, distribution of ..... 733, 734
eggs taken ..... 732
Brown trout, distribution of ..... 728,
$735,831,835,837$
eggs taken ..... 735
hatching of ..... 798
from Germany ..... 725, 831
Buck, W. O ..... 751
C.
Caribbean Sea, soundings in ..... 938
Carp culture in Europe ..... 565
distribution of ..... 838
Carpenter, Herbert $\mathbf{P}$ ..... 1000
Carpenter, P. H. ..... 998
Carpenter, W. B ..... 996, 998
Carpenter, W. L ..... 998
Carswell, James ..... 704, 779
Caspian Sea fisheries ..... 21
Catadromous fish ..... 51
Central Station, shad work at ..... 817
Challenger, dredgings by ..... 873, 973
Charts of dredgings .874, ..... , 876, 1018
Chemical analyses of fish ..... 1021
Chester, H. C. ..... 779
Chub mackerel, scarcity of ..... 48
Clark, Frank N ..... 729
Clupea sapidissima ..... 725
Cod-fish, effect of temperature on-783,787eggs, taking of..........784,787transportation of .. 785fisheries of Norway ....... 1055,1059, 1060hatching apparatus......- 779,785, 786experiments..780,781,782
record of ..... 789
planting of ..... 781, 785, 790
poisoning by ..... 1027, 1028
poisoning, preventive ..... 1053
poisonous ..... 10:33, 1042
Cod-fish, rearing of
Page. ..... 785
statistics ..... 22
stomach, specimens from. ..... 36
taking of ..... 783
value of, to France ..... 1051
Cold Spring Harbor hatching-house ..... 726
operations at ..... 721
shipment of eggs from ..... 829
Collett, Robert, quoted ..... 24, 113
Collins, D. E ..... 714
Collins, J. W 79, 112, 12 ..... 701
Columbia River, shad planted in ..... 805
Corwin, steamer, dredgings by ..... 957
Coregonus clupeiformis ..... 721
Cosmandorf fish-hatchery ..... 583
Coste, P ..... 574
Crossobothrium described ..... 469
Crowell, Prince ..... 16
Cutts, Richard D., quoted ..... 20
Cyprinus culture in Central Europe ..... 565
D.
Dachsen fish-hatchery ..... 588
Dana, jr., Richard II ..... 15
Danielssen, D. C ..... 987
Danish Artic expedition ..... 992
De Filippi, Professor ..... 596
Delaware River shad-works. ..... 819
Delfosse, Maurice ..... 15
d'Halloy, Leon ..... 829
Dibothrium aluteræ n. sp ..... 458
manubriforme n . sp. ..... 456
Diesing, Mr ..... 460
Dijumphua, steamer, dredgings by . ..... 992
Distribution, report on ..... 833
Dog-fish infested by cestoids ..... 477
Doutre, Joseph ..... 15
Dredgings on New England coast ..... 884
by Coast Survey ..... 958
in Atlantic Ocean ..... 977
Bay of Biscay ..... 976
Bay of Fundy ..... 883
Block Island Sound. ..... 892
Buzzard's Bay ..... 894, 915
Casco Bay, Me ..... 884
Eastport Harbor, Me. ..... 883
Fiariöe Channel ..... 1001
Fisher's Island Sound ..... 892
Garduer's Bay ..... 892
Gulf of Maine ..... 901
Kara Sea ..... 992
Loug Island Sound ..... 892
Massachusetto Bay ..... 901Dredgings in Mediterranean Sea... 978,986, 998
Nantucket Sound ..... 892
Narragansett Bay.. ..... 915
Passamaquoddy Bay - ..... 883
Peconic Bay ..... 892
South Bay, Me ..... 883
Vineyard Sound ..... 878,
892, 915
near Block Island ..... 915
Campobello Island ..... 833
Grand Menan ..... 883
Gulf Stream: ..... 915
Nova Zembla. ..... 992
off Nova Scotia ..... 901
on Southwest Shoal ..... 892
Dreilging stations, list of. ..... 873 ,
$87 \%, 879,1002$
Dusky shark infested by cestoids.476, 486
E.
Echinorhynchus sagittifer n. sp.... ..... $49: 3$
Edwards, Vinal N ..... 16
Ee' culture in Central Europe ..... 569
infested by acanthocephala. ..... 490 ..... 490
Eigenmaun, Carl H ..... 343
Entozoa of marine fishes ..... 453
F.
Farlow, W. G ..... 1035
Fewkes, J. Walter. ..... 513
Fish as a food supply ..... 1023
Fish-culture in Central Europe. ..... 539,
571,574 ..... 57
methods of ..... 592
Fish-eggs from abroad ..... と 80
sent abroad ..... $8 \div 9$
transportation of ..... 595
Fisheries, production of ..... 20
Fish-food, cconomy of ..... 1024
Fish, foreign shipments of ..... 829
Fish-hatcheries, location of ..... 581-591
Fish-Hawk cod work ..... 693
dredgings by ..... 915
in collison ..... 693
repairs .....  696,700
report of operations. ..... 693
shad work ..... $.694,819,>21$
Fish, kinds distributed ..... 633
Fish migrations, cause of ..... 55
offal, disposition of ..... 138
Fish, preservation of ..... 134
Fish products, composition of. ..... 1019
investigation of ..... 1020

Page.
Fish products, nutritive value of.. 1019
Fish, taken by Albatross....-....-. 669
transportation, methods of... 23
Fishing apparatus. .-.................. 108-125
Fishing-grounds, description of .... 85-102
Fishing-vessels, description of ... 103-108
File-fish infested by cestoids ...... . 458
Flat-fish, with acanthocephala.... 493
Flemislı Cap, examiuation of.....626, 627
Flint, J. M....-........................... G56
Flounder, with acanthocephala.... 496
Flounders of America and Europe. 225
Food-fishes, danger from predaceous fish........... 63,64
increased by artificial
means .-.-....-....-160-164
list of.................. 25
Forbes, Henry O...-....................... 69
Forbes, S. A................................. 738
Ford, F. C.................................... 15
Foreign shipments of fish eggs .... 829
Forsyth, James M ...................... 610
Foster, Dwight........................... 15
Fort Washington, shad work at... 815
France, fish for......................... 889
Friele, Herman . .-........................ 987

## G.

Gadus morrhua-.......................... 721
Galt, Alexander T .................... . . 15
Gamél Brothers ......................... 992
Garman, Samuel .......................225, 343
Gate City, steamer, assistance to.- 622
Ganthier, A .......-...................... 1043
Geneva fish hatchery ............... . 590
Georgia Bank, location of.......... 938
brig .-......................... 938
Germany, fi for..............-...... 829
fish from.................. 830
location of hatcheries $581-588$
Giglioli, Enrico Hillyer. ............ 896
Gilbert, Chas. H. .-. .-. ................... 225,343
Goldfish, distribution of ........... 839
Goode, G. Brown ........................ 16,456
Goss, David K ......................... 225
Grabill, L. R .....-.-........................ 62,807
Grimpus anchor fonled.............. 714
cod work of . . . . . . . . . . . . $\quad 716$
cruise to tilefish grounds. 701
dredgings and trawlings - 717
first cruise of...-.......... 701
halibut work of .......... 707
persouuel.---............... 701
røpairs........................ 703
Pagc.
Grampus report of operations ..... 701
sailing qualities of ..... 713
Grand Lake Stream, operations at ..... 751
Grimm, O. A ..... 1023
Gurry, disposition of ..... 138
H.
Haack, Hermann, referred to ..... 542,574,579
Haddock stomach, specimens from ..... 38
Halcyon, report of ..... 699
Halibut difficult to keep alive ..... 709
Hamlen, William ..... 700
Hassler, steamer, dredgiugs by ..... 957
Hatcheries of Europe, products of ..... 572
Herriug fisheries of Norway ..... 1056,
1059, 1062, 1063
occurrence of ..... 809
price of ..... 50
statistics ..... 22
Hibernation of fishes ..... 54
Hodgdon, Captain ..... 883
Hogg, W. S ..... 605
Holdsworth, Mr., quoted ..... 112, 113
Holm, Th ..... 992
Holt, Johu S ..... 938
Homarus americanus ..... 726
Hope Bank, examination of..625, 629 , ..... 630
Hovgaard, Lieutenant ..... 992
Ножell, I. A ..... 961
Hüningen fish hatchery ..... 574, 578, 579
Hurlbat, Robert H ..... 16
Husley, Thomas H., referred to ..... 83
I.
Indiana University ..... 225,343
Inshore fishes, list of ..... 52
Institutions receiving invertebrates ..... 845
Invertebrates, distribution of ..... 845
used for loait ..... 32
J.
Jacoli, Hanoverian ..... 574
Jacobson, H., 1ranslator. . .539, 1027, 1055
Jeffreys, J. Gwyn 998, 1000, 1001
Jerrell, H. P ..... 1055
Johnson, R. P ..... 961
Jordan, David S ..... 225, 343
Josephine, frigate, Aredgings by .- 1002
Josie Reeves, schooner, drelgings. 916
K.
Kellogg, A. G ..... 901
Kellogg, E. H ..... 15
Page.
Key West, Fla., fire at ..... 615
Kiaer, A. N ..... 1055
Knight Errant, steamer, dredgings. ..... 1001
Kostytscheff, P. ..... 1019
L.
Lake trout, distribution of ..... 727
propagation of ..... 721,735
Land-locked salmon, issue of... ..... 727, 836
for France.. ..... 829
for Shenan- doah River. ..... 798
propagation of ..... 724
Laura Sayward, schooner ..... 711
Lee, Thomas ..... 606, 659, 714
Liusley, J. H ..... 38
Lightning, steamer, dredgings by ..... 996
Lindahl, Josua ..... 998
Linton, Edrin ..... 453
Linton, Margaret 13 ..... 456
Ljungman, A. V ..... 1002
Lobsters, distribution of ..... 728
fisheries of Norway ...1057, 1064
propagation of ..... 726
Loch Leven trout from Scotland ..... 830
Lockroy, Mr ..... 1027
Lookont shad work ..... 825
Liibbinchen fish hatchery. ..... 585
Lull, E. P., referred to ..... 155
Lyman, Theodore ..... 16
M.
M. A. Baston, schooner, assistance to ..... 707
McCloud River Station, report ..... 737
weather report ..... 743
McDonald, Marshall......793, 801, 815, 833
McKeuzie, George, reforred to ..... 168
Mackerel fisheries of Norway ..... 1057,
1059, 1062
statistics of ..... 22
Magnaghi, G. B ..... 986
Maitland, Sir James G. ..... 830
Marguerite, schooner, log quoted.630, ..... 631
Marine invertebrates, distributed. ..... 843
of the Atlan- tic coast. ..... 850
Mather, Fred ..... 829
Mauriac, E. ..... 1027
Medusce collected by Albatross ..... 513
Michaelstein fish hatchery ..... $58 \%$
Michigan stations, report on ..... 729
Microgadus tomcodus ..... 725
Milne-Edwards, Alphonse ..... 976, 979
Mohn, H. ..... 987
Page.
Mosswood, steamer, dredgings loy- ..... 853
Mullet fisheries ..... 1.1
Munson, William H. ..... 751
Murray, Johu ..... 1001
Museum of Comparative Zoology .295,343
N .
Nairn, Maxweil ..... 608
Nares, George S. ..... 973
National Museum ..... 225, 343
Natural history of sea fishes ..... 24
Navy Department, soundings ..... 607, 624
Netherlands, fish hatcheries in ..... 591
Netter, Mr ..... 1044
Neuhausen fish hatchery ..... 588
Newcomb, R. I ..... 704
New Providence, natural history of ..... 662
Nitsche, Prof ..... 574
Nordenskiöld, A. E ..... 988
Northville Station, operations at. ..... 729
Norwegian fisheries, notes on ..... 1055
production of. ..... 20
North Atlantic trip ..... 987
Nutt, N. B ..... 131
Nee, jr., Willard ..... 606
O.
Orygmatobothrium angustum n. sp. ..... 468
Osmernsmordax ..... 725
Oyster culture at Saint Jerome ..... 765 ,766, 767
fisheries of Norway ..... 1058,1064
P.
Palmer, Dr. E ..... 35
Panther, steamer, assistance to ..... 623
Patterson, C. P., quoted ..... 154
Pavesi, 1 ' ..... 543,596
Pelagic fishes, list of ..... 53
Penobscot salmon, distribution of ..... 748
eggs, taking of. ..... 747
mortality of ... ..... 747
Station, report. ..... 747
Phoreiobothrium described ..... 474
Phyllobothrium thysanocephalum described ..... 464
Pike culture in Central Europe ..... 569
Plates, list of ..... 336,
446, 500, 800, 876Platt, Robert957, 961
Pleurophysa described ..... 517
Popof, Dr., analysis of fish by ..... 1020
Porcupine, steamer, dredgings by . 996,998
Potomac River fisheries. ..... $0,51,167$
shad work ..... 815
Pourtales, L. F
Page. ..... 874,957, 961Powel, Samuel
16Proceedings of the U. S. National
Museum cited ..... 844
Proeven, sloop, dredgings by ..... 988
R.
Radolfszell fish hatchery ..... 582
Rainbow trout diseased ..... 738
eggs takeu ..... 733 ,
734, 737, 740
issue of . $734,736,741,835$
propagation of ..... 737
Rathbun, Richard ..... 35 ,
$844,873,8: 7,915$
Ravenel, W. de C ..... 761,765
Red cod-fish, characteristics of, 1035,1053
poisonous qualities of. 1027,1052
Reddening of cod-fish, cause of ..... 1040
preventive. ..... 1041
Redmond, F. M ..... 916
Rhynchobothrium bisulcatum n. sp. ..... 479
Richards, M. E. F ..... 976
Rock bass for Germany ..... 829
Rock-fish, hatching of ..... 809
Rum Cay, description of ..... 610
natural history of ..... 662
S.
Saibling, distribution of ..... 831, 837
from Germany ..... 830, 831
propagation of ..... 735
Saint Jerome, improvements at ..... 766
report of ..... 765
Salmo fario ..... 724
salar ..... 722
Salmon, artificial fecundation of ..... 558
culture ..... 539
eggs, packing of ..... 559
in Central Eurone ..... 562, 565
occurrence of ..... 722
trout fisheries of Norway. 105\%,1063
Salvelinus namaycush ..... 721
Sand shark infested by cestoids ..... 474
Sars, G. O. ..... 987
Schrocder, Seaton ..... 605, 933, 937
Sciænidx, review of ..... 343
Schoodic salmon, distribution of .. 754
emers taken. .. . -751, 754
marking of ..... 751
station, report on ..... 751
Scotland, fish from ..... 830
Page.
Scudder, N. P., quoted ..... 101
Sea-fisheries:
dangers to ..... 62
general consideration of ..... 17
importance of ..... 17
improvement of ..... 151
legislation ..... 151-160
maintenazce of ..... 151
of Eastern North America ..... 3,13
products, use of ..... 143
statistics of ..... 215
Sea-fishes:
abundance of ..... 21, 61
biological notes on ..... 45
bait for ..... 31, 126-132
capture of ..... 85
causes of destruction ..... 68-72
destroyed by mammals ..... 63
enemies of ..... 58, 63, 77
food of ..... 34, 72
habitat of ..... 46
increased by artificial means-160-164
influenced by man ..... 59,66,77
inshore, list of ..... 52
list of ..... 25-31
methods of capture ..... 108-125
migration of ..... 47,57
natural history of ..... 24
number of eggs laid by ..... 82
reproduction of ..... 80
spawning of ..... 83
stomachs, specimens from . .... 38-44
supply of ..... 165-167
Seal fisheries of Norway ..... 1059
Sea trout fisheries of Norway .. 1057, 1063
Seewiese fish hatchery ..... 582
Selmi, Professor ..... 1042
Selzenhof fish hatchery ..... 581
Shad, distribution of ....728, 801, 814,837for Europe.................... 805hatching on car............. 806, 841pemning of.................... 809
planting of ..... 801, 802, 819
price of ..... 50
propagation of ..... 725,
$762,807,815,819,825$
Shark fisheries in Finmark ..... 1058
Shearwater, steamer, dredgings by ..... 1000
Shenandoah River, salmon planted ..... 798
Sigsbee, C. D ..... 963
Skate infested by cestoids. ..... 462
Smelts, distribution of ..... 728
propagation of ..... 725
Smith, James A
Page.
Smith, Sanderson ..... 873, 877
Smith, S. I ..... 845
Soles of America and Europe ..... 225
Solsky, N. M ..... 1020
Soundings by Albatross .607-609, 613, 615, ..... 678, 1016
Spear-fish infested by cestoids ..... 458
Speedwell, steamer, dredgings by.. ..... 901
temper atures taken by ..... 1005
Sponge fishery, account of ..... 663
Spongiobothrium described ..... 462
Squeteague infested by- acanthocephala ..... 496
cestoids ..... 456
Squid, capture of ..... 706
Stations, fish distributed from ..... 834
Steindachner, Dr. F. ..... 225
Stimpson, William ..... 874,961
Sting ray infested by cestoids ..... 464
Stone, Livingston ..... 737
Striped bass infested by- acanthocephala ..... 497
cestoids ..... 456
Sun-fish for Germany ..... 829
Swedish Arctic expeditions ..... 988
Switzerland, fish hatcheries in ..... 588
T.
Tæuia dilatata described ..... 488
Talisman, steamer, dredgings by - ..... 950
Tanner, Z. L. ..... $.72,605,901,915$
Temperature, effect of, on fish ..... 55
record of ..... 658,
741, 749, 755, 768, 790, 1005
Tharand fish hatchery ..... 584
Theel, Do Hjalmar ..... 988
Thermometers used in dredging. ..... 892,901,916
Thomson, S. R ..... 15
Thompson, Wyville ..... 973, 996
Tiger sbark, infested by cestoids. ..... 468
Townsend, Chas. H. ..... 606
Tomeod, propagation of ..... 725
Travailleur, steamer, dredgings ..976, 979
Trawlings, record of ..... 1016
Trescot, Williaw H. ..... 15
Triton, steamer, dredgings by ..... 1001
Tront culture ..... 539
method of planting ..... 800
raising, lectures on ..... 575
Trumbull, J. H ..... 36, 38





[^0]:    * In Fewkes' Report on Meduse from the Gulf Stream.
    $\dagger$ In Drs. Bettoni and Vinciguerra's Notes on the Fish-cultural Establishments of Central Europe.
    \# In Tanner's Report on TWork of tho Illuatross.
    § In Collins' Report on Operations of Grampus.
    UI In McDonald's Report of Operations at W 5 theville Station, Ya.
    II In Sanderson Smith's List of Dredging Stations in the North Atlantic.

[^1]:    * This paper was mostly written in 1877 and 1878 , but its publication was leferrer by the author, in the hope of being able to prepare additional material, which seemed essential to its completeness. The opportunity for this, however, never oceurred, and his subsequent ilness, while the paper was going through the press, prevented him from ever examining the proofs. The accounts of the fishing-grounds and the fishery marine are additions to the original mauscript, the former being an abstract of a report by J. W. Collins and Richard Rathbun, published in Section III of the Fisheries and Fishery Industries of the United States, Washington, 1887; abd the latt, r having been taken from unpublished manuseript prepared by J. W. Collins.
    $\dagger$ This analysis is somewhat fuller than the paper itself, the alditional items representing points upon which information was considered desirable, but which time did not permit the author to obtain.--Editor.

[^2]:    * In confining attention in the present article specially to the subject of the fisheries of the region covered by the treaty of Washington, it is not to be supposed that there are no productive fisheries on a large scale further south, the contrary being quite the fact. No portion of the globe exceeds the Southern and Gulf coasts of the United States in the number and varicty of excellent food-fish, their waters teeming with them throughout the year and permitting their capture, especially in the cooler seasons, to almost any imaginable extent. A few hours' labor, either with the line, the cast-net, the gill-net, or the seine, suffices to supply the fisherman with food for days; and the introduction of the wholesale means of capture (pounds and traps not get attempted) will probably produce no appreciable effect upon the supply.
    Among the species which may be mentioned in this connection are the menhaden, bluefish, and mullet, all of which yield important fisheries in North Carolina, Virginia, and farther south. The menhaden is taken in great numbers and salted in barrels, being considered a very desirable article of food.
    The bluefish spends several months on the Southeru coast after leaving the Northern and Middle States, and is found of very great size-from 12 to 16 pounds. During the late autumn and early winter vast numbers of these are shipped to the Northern markets, where they find a ready demand. I find a memorandum that on the 20th of November, 1872, three thousand bluefish, averaging 12 pounds each, or 36,000 pounds altogether, were shipped from a single fishing station in North Carolina.

[^3]:    * The treaty of Washington, made by the joint high commission in 1871, provided that nearly all the restrictions to the unimpeded use of the fisheries by the Americaus on the shores of the British provinces on the Atlantic coast, and by the subjects of these provinces in American water's as far south as the parallel of $39^{\circ}$, or Cape May, should be mutually conceded, and either party was to have the privilege of exporting fish other than the products of the Great Lakes to the other country free of duty; and that a commission should meet at Halifax, to consist of a commissioner and agent for each side, to determine what the commercial value respectively of these concessions amounted to, and if it were found that the privileges granted to the Americans were greater than those secured by the same treaty to the Dominion, a money value should be estimated for a twelve years' period and paid by the United States. It was not supposed at the time that the balance might be on the other side.

    This convention was organized in obedience to the provisions of the treaty at Hali. fax on the 15 th of June, and was represented by How. E. H. Kellogg on the part of the United States, and Sir Alexander T. Galt on the part of Great Britain, the third commissioner, in accordance with the provision of the treaty, being Mr. Maurice Delfosse, the minister from Belgium to the Uuited States. Mr. Dwight Foster, of Boston, was the agent for the American cause, and Mr. F. C. Ford, of London, for the British. Mr. J. H. G. Bergne, of the foreign office, London, was chosen as secretary of the joint convention.

    Subsequently the selection of counsel was authorized to assist the agents in their labors, those for the United States being Mr. Richard H. Dana, Jr., of Boston, and Mr. William H. Trescot, of Washington ; the British counsel being one for each province, namely: Mr. Joseph Doutre, for Canada; Mr. S. R. Thomson, for New Brunswick; Mr. Wetherbe, for Nova Scotia ; Mr. Davies, for Prince Edward Islaud; and Mr. Whiteway, for Newfoundland.
    It is not my province to refer to the history and results of this convention excepting so far as relates to the testimony available for the objects of the present report. Suffice it to say that a vast body of testimony was taken on both sides, much of it contradictory, but leaving a residuum of well-established fact, and that this was supplemented by personal inquiries and special conference with the most intelligent witnesses.

[^4]:    * In 1874 there were 25,000 tons of ice brought from Norway to Hull, for the press ervation of fish taken by otrawl nets.

[^5]:    * This list is intended to present the principal species of food and bait fishes found north of the Delaware or the thirty-ninth degree of latitude.

[^6]:    * This article is essentially the same as the one contributed by Prof. A. E. Verrill to the report of U. S. Fish Commission of $1871-7$, ${ }^{\prime}$. I am indebted to Mr. R. Rathbun for rearranging it and adding notes by Professor Verrill made at Eastport, Me., either in 1871 or previous years, and notes of the fishes found as food in the stomachs of other fishes at Wood's Holl in 1871 by Dr. E. Palmer, Professor Verrill having enumerated in his report only the iuvertebrate contents.

[^7]:    * This section of the report as prepared at Halifax L have concluded to omit until a new digest of our knowledge of the subject can be prepared, so much information having been obtained in reference to the habits of our fishes since 1877 as to render it obsoleie,

[^8]:    * Baars, Des Fischerein Inclustrie de la Norwége, 1873; p. 158,

[^9]:    * A new and comprehensive gazetteer of Virginia and the District of Columbia, containing a copious collection of geographical, statistical, political, commercial, religious, moral, ath miscellaneons information, collected and compiled from the most respectable aml chiefly from oriminal somrees, by Joseph Murtin. To which is added a history of Virsinia from its frist settlement to the year $1 \% 54$; with an abstract of the principal events from that period to the independence of Virginia, written expressly for the work by a citizen of Virsinia. Charlottesville, published by Joseph Martin. Moseley \& Tompkins, printers, 1835 , page 480.

[^10]:    *In the first report of the U. S. Fish Commission I have given numerous quotations from early authors in reference to the abundance of varicus fishes in the rivers and along the coast of the United States. Burnaby (Travels through the middle settlements of North Anerica in the years 1759 and 1760 , Londou, 1775), in speaking of the Potomac River, remarks as follows (on page 9): "These waters are stored with incredible quautities of fish, such as sheepsheads, rock-fish, đrums, whitepearch, herrings, oysters, crabs, and several other sorts. Sturgeon and shad are in such prodigious numbers that one day, within the space of two (2) miles only, some gentlemen in canoes canght above 600 of the former with hooks which they let down to the bottom and drew up at a venture when they perceived them to rub against a fish; and of the latter, above 5,000 have been caught at one single hanl of the seine." It is probable that the seines used in the Potomac waters over a hundred years ago were much smaller than those now employed, one of one hundred yards being, doubtless, of remarkable magnitude.

[^11]:    * Circulare des Deutschen Fischerei-Vereins, 1873, p. 112.
    tCirculare des Deutschen Fischerei-Vereins, 1874, p. 90.

[^12]:    *According to the report of the British Fishery Commission, p. xliv, at one time in consequence of the apparent diminution in the abundance of fish in Loch Fyne, one of the best known herring fisheries in Scotland, what was then cousidered a very destructive mode of fishing, by the circle-net, was interdicted for a number of years. It was found, however, that this had not produced the effect supposed; as the decrease of the fish continued for a time, and after the circle-net fishing was restored the fish again became as abundant as ever.

[^13]:    *Field and Forest Rambles, or Notes and Observations in the Natural History of Eastern Canada. London. Henry S. King, 1873. p. 264.

[^14]:    * I have frequently found young mackerel-blinks-several inches in length in tho stomachs of mackerel. These are sometimes as large as they are able to swallow. Without doubt they also feed to some extent on the smaller crustaceans. As is wellknown, a variety of these forms grow on floating sea-weed, and many fishermen consider it a good sign of mackerel in the vicinity when they see floating eel-grass broken into small fragments. They assert that the cause of the eel-grass being "chopped up" in such a manner is because it is bitten into by mackerel. This is perhaps true, and, if so, is doubtless done by the fish while feeding on the small shell-fish with which the grass or sea-weed is generally covered. I have observed mackerel attacking jelly-fish,

[^15]:    * Prof. Alexander Agassiz has paid special attention to the character and place of deposit of the spawn of fishes of the Atlantic coast, and has furnished me with the

[^16]:    *'The journal of schooner Alice, of Swan's Island, Maine, records the fact that the first mackerel in 1879 were caught in $37^{\circ} 50^{\prime} \mathrm{N}$. latitude and $74^{\circ} 03^{\prime} \mathrm{W}$. longitude. The first catch of the Alice in 1878 was in $38^{\circ} 38^{\prime}$ N. latitude.
    'The journal of schooner Augusta E. Herrick, of Swan's Island, records tirst mackerel taken in 1879 in $37^{\circ} 57^{\prime} \mathrm{N}$. latitude and $74^{\circ} 92^{\prime} \mathrm{W}$. longitude.

    First mackerel taken by schooner John S. MeQuin, of Gloucester, in 1879, in 3742 N. and $74^{\circ} 13^{\prime} \mathrm{W}$.

    First fish by Charles Haskell, 1879, in $38^{\circ} 08^{\prime}$ N., $73^{\circ} 57^{\prime}$ W.
    First fish by schooner Albert H. Harding, 1879, in $38^{\circ} 08^{\prime} \mathrm{N} ., 74^{\circ}: 30^{\prime} \mathrm{W}$.
    First fish caught by schooner John Somes, in 1833, was in $33^{\circ} 21^{\prime} \mathrm{N}$. and $74^{\circ} 13^{\prime} \mathrm{W}$.

[^17]:    * Although sloop-rigged vessels have beeu and a re still employed in the fisheries, these form but a comparatively small part of the fis hing fleet, the schooner rig having always been a favorite one with our fishermen.

[^18]:    * Trips are made to the western part of Nova Scotia, and during the winter of 1880-'81 many of the large vessels went as far as Le Have Bank, where haddock were found in great abundance, some of the vessels getting as many as 500,000 to 600,000 pounds each during the winter, most of which were caught on this bank.

[^19]:    *Dories built expressly for haddock fishing, where but little rowing is required, are not so sharp as others, carrying capacity being the chief requirement. The same may be said of those used by the fresh-fish companies in the larger fishing ports. A few have been built with rounding sides, but this form has not been so favorably received by our fishermen as the other with straight flaring sides.

[^20]:    * Writing of the occurrences of the year 1843, Captain Atwood says: "About this time we began setting trawls for halibut, as has been described elsewhere." Capt. Peter Sinclair, of Gloucester, claims to have been the first to use trawls in Massachu_ setts Bay, about 1850, and makes the statement that a man named Atwood, who belonged at Provincetown, and was with him at the time, afterwards introduced the method of trawling in that place.

[^21]:    * Although the British fishermen set longer trawl-lines in one string than the Americans do, they rarely if ever use so many fathoms or such a number of hooks to the vessel as the latter. The greater part of the American "bankers" set more than nine miles of traw ! in the aggregate, having 9,000 hooks attached, while the smallest amount would be about two-thirds as much. It should also be borne in mind that it is not uncommon for the American fishermen to set and haul this amount of gear twice a das. The vessels engaged in the winter haddock fishery on our coast have a still greater number of hooks than the cod fishermen. The smallest class of these rarely have less than eight miles of trawl, with 12,000 hooks attached, while all of the larger vessels have, at least, half as much more, and quite a number have twice as many, namely, 24,000 hooks, or abont sixteen miles of trawl.-J. W. Collins.

[^22]:    * Baars, Des Péches de la Norwége; Paris, 1\&6\%. H. B., Die Fischerei Industrie Norwéges, Bergen, 1873.

[^23]:    *Another instance of this mutual interdependence of fish, as asserted by the fishermen, occurs on the coast of Nova Scotia, in this case between the lobsters and the starfishes. According to this the lobsters are destroyed by the starfishes in great numbers, and in the immediate vicinity of the canning establishments where the lobsters are taken and put up there is found to be an appreciable diminution of them from this cause. The starfishes are then said to multiply very greatly. The fishermen insist that the starfishes feed upon sea-weed, and that they devour this in such quantities as to clear the bottom of this covert, and that the food-fishes finding no means of concealment do not resort to what were formerly excellent fishing-grounds. The statement that starish eat sea-weed is perhaps yet to be substantiated.

[^24]:    *According to De la Blanchère, Le Pêche et les Poissons, 1,500,000, 000 of these fish are brought into the port of Concarneau alone, this being only one of many from which the industry is carried on in France, Spain, and elsewhere.
    $\dagger$ All bait as above referred to is used fresh whenever it can be done. It is, however, preserved in various ways, sometimes by drying, more frequently by salting. The use of ice of late years luas come into play very extensively and constitutes a necessary element in most fisheries whether for the preservation of the bait itself or of the fish when caught. For the most part the bait is preserved by keeping ice in contact with it. It is probable, however, as already suggested, that hard freezing may more advantageously be substitated in many cases as being more likely to retain the same attractiveness that freshly-caught bait presents. It is quite probablo that by using special apparatus and adjustments the hard freezing may be conducted at very little expense.

[^25]:    *Squid can usually be kept from 2 to 3 weeks in ice, and for months when salted. While the French use salted squid almost exclusively on the Grand Bank, the Americans and Provincials prefer to have them fresh, and use but few salt ones, and those only in the fall when no others can be obtained.-J. W. Collins.

[^26]:    * I am informed that the first to commence the business of freezing herring and bringing them from Newfoundland was Capt. Henry Smith, of Gloucester, in 1856. In 1857 Capt. Sylvanus Smith went into the same business and continued it for some time.

[^27]:    *At one time the practice of the French fishermen of throwing overboard the gurry was bitterly complained of by the English on the ground that it materially affected the fishing. The explanation given was probably the true one, namely, that this offal attracted an immense number of sharks, dogfish, and other predaceous fish, which concentrated in unusual numbers, and not only devoured the offal, but drove out all the fish from the ground. Nothing was suggested as to any defilement of the sea bottom itself by the accumulation of decaying animal matter. (British Fishery Commission Report, p. lxi.)

[^28]:    * It is proper to say that the accuracy of Martin's figures has been disputed by some recent writers, Eren if they are, however, twice as large as the fact would justify, the generel argument would not be invalidated.

[^29]:    Atiferesthes.
    Platysomatichthys.
    Hippoglosses.
    Hiprogilossondes $\left\{\begin{array}{l}\text { Lyopsetta. } \\ \text { Eopsetta. } \\ \text { Hippoglossoides. }\end{array}\right.$
    Psettichthys.
    Hippoglossinat $\left\{\begin{array}{l}\text { Hippoglossina. } \\ \text { Xystreurys. }\end{array}\right.$
    Paralichtirys $\left\{\begin{array}{l}\text { Paralichthys. } \\ \text { Ancylopsetta. }\end{array}\right.$
    1I.-Pleironectidia.
    Phrynorhombus.
    Zeugopterus.
    Lepidoriombus.
    Citharus.
    Pleuronectes $\left\{\begin{array}{l}\text { Bothus. } \\ \text { Pleuronectes. }\end{array}\right.$
    Arnoglossus.
    Platopirrys.

[^30]:    * Both pectorals are wanting in the genus Mancopsetta Gill ( $=$ Lepidopsetta Gthr.), an antarctic member of the Pleuronectine.
    i In the Samarine, the eyes and color are on the right side, the mouth is small bu: nearly aymmetrical, the ventral fins are both lateral but with base somewhat prolonged, the gill-rakers are minute, and in most of the species some of the dorsal rays are filamentous and simple, resembling spines. The group, like the Onc opterine, seems to lie between Pleuronectince and Platessince. It seems to include the genera Samaris, Lophonectes, Pocilopsetta, and Nematops, all belonging to the Indo-Pacific fauna.

[^31]:    *Frequently sinistral in Hippoglossoides elassodon.

[^32]:    *Dextral in some species of Hippoglossina; occasionally dextral in some species of Paralichthys and Xystreurys.

[^33]:    * Two lateral lines on the blind side in the Asiatic genus, Pardachirus.
    $\dagger$ Arrow-shaped canine-teeth are also found in the Asiatic genus Psettodes Bennett, a curious group somewhat allied to Atheresthes. In Psettodes, the caudal fin is rounded, the dorsal fin begins on the nape, above middle of the cheek, the scales are small and ctenoid, and there are no gill-rakers.

[^34]:    * Only an outline of the very extensive synonymy of this common food-fish is here given.

[^35]:    Platessa oblonga DeKay, New York Fauna, Fishes, p. 299, pl. 48, fig. 156, 1842. (New York; not Pleuronectes oblongus Mitchill.) Storer, Syn. Fish. N. A., 1846, p. 477. Pseudorhombus oblongus Günther, Cat. Fish., iv, 426, 1862 (copied).
    Pseudorhombus dentatus Goode, Proc. U. S. Nat. Mas., 1879, 110. (St. John's River, St. Augustine.) Goode and Bean, Proc. U. S. Nat. Mus., 1879, 123 (Pensacola). Chenopsetta dentata Gill, Proc. Acad. Nat. Sci. Phil., 1864, 218.

[^36]:    Arnoglossus (Perpeire) Rondelet, De Piscibus, xi, c. 14, 324, 1554.
    Pleuronectes laterna Walbaum, Artedi Piscium, 204, 1792 (after Roudelet).
    Arnoglossus laterna Günther, Cat. Fish., ir, 415, 1862. (Cannes, Broxham, Plymouth.) Steindachner, Ichthyol. Bericht. Akad. Wissen. Wien, 1868, Sechste Forisetzung, p. 50. (Barcelona, Alicante, Malaga.) Day, Brit. Fishes, vol. ii, p. 22 , plate xcix, fig. 2.

    Pleuronectes arnoglossus Bloch and Schneider, 1801, p. $15 \%$.
    Pleuronectes diaphanus Shaw, Gen'l Zool., iv, 309, 1803.
    Pleuroneotes casurus Pennant, "Brit. Zool., 1812, iii, 325, pl. 53."
    Pleuronectes leotardi Risso, Ichth. Nice, 318, 1810.
    ? Bothus tappa Rafinesque, Caratteri, 1810, 23 (Palermo).

[^37]:    Aramaca Maregrave, Hist. Brasil., 1648, 181.
    Pleuronectes papillosus Linnæus, Syst. Nat., x, 271, 1758 (based on Marcgrave), and of the earlier copyists.
    Aramaca papillosa Jordan, Proc. U. S. Nat. Mus., 1886, 60:2 (synonymy coninsed with S. micrurum).
    ? Pleuronectes macrolepidotus Bloch, Auslindische Fische, vi, 只5, tal. 190, 1787 (and of some copyists) (apparently based on Maregrave).
    Pleuronectes aramaca Donndorf, Beytriage zur xiii Ausgabe des Linnacischen Natursystems, 1798, 386 (after Marcgrave).
    Rhombus aramaca Cuvier, Règne Animal, ed. ii, 1 R37 (after Marcgrave).
    Citharichthys aramaca Jordan and Gilbert, Synopsis Fish., N.A., 18*2, 816. (Pensacola.)
    Rhombus soleceformis Agassiz, Spix Pisc. Brasil., 86, tab. 47, 18:29. (Atlantic Ocean.)
    Hemirhombus soleaformis Giinther, Cat. Fish., iv, 423, 1862. (Copied.)
    Aramaca soleeformis Jordan, Proc. U. S. Nat. Mus., 1886.

[^38]:    Pleuronectes flesus Linneus, Syst. Nat., ed. x, 270, 1758 (after Artedi, and of copyists). Giinther, iv, 450, 1862. Steindachner, Ichthyol. Bericht., Sechste Fortsetzung, 53, 1863 (Bilboa, Coruña, Vigo, Barcelona, Cadiz, Gibraltar, Rio Miño, Pomerania, Kattegat; unites flesus and glabra; Spanish localities belong to the latter). Day, Fish. Great Britain, vol. ii, $33, \mathrm{pl}$. cv, and of recent authors generally.
    Platessa flesus Fleming, British Anim., 1829, 198, and of numerous writers.
    Pleuronectes passer Linnæus; Syst. Nat., ed. x, 271, 1758 (reversed example).
    Pleuronectes flesoides Pontoppidan, "Hist. Nat. Danise, 158, tab. 15," 1765 (reversed example).
    Pleuronectes roseks Shaw, "Nat. Mise., vii, 238 ," 1800 (albino example).

[^39]:    * The pharyngeals in drinensis and !lacialis have not been examined.

[^40]:    I'lєuronectes lascaris Risso, Ichth. Nice, 1810, p. 311, tab. 7, f. 3:.
    Solea lascaris Giuther, iv, 467. Steindachner, Ichth. Berichte, vi, 1868, 59.
    Rhombus polus Risso, "Enrope Méridionale, iii, 949 ," 1896 (not Pleuronectes polus (nvier).
    Sotea scriba Valenciennes, Webl, \& Bertholot, Ites Canaries, Poissons, 84, pl. 18, f. 3.

[^41]:    Monochirus Rafinesque, "Précis des Découvertes Somiologiques, 1814" (hispidus) ( $f i d e$ Bonaparte).
    Monochirus Cuvier, Règue Animal, ed. i, 1817 (microchirus.) (Not of Rafinesque.)
    Monochir Cuvier, Règno Animal, ed. ii, 1823 (microchir.) (Modified orthography of Мопосhirus.)

[^42]:    * Besides the species here mentioned, another, Achirus lorentzi Weyenbergh (Algunos Nuevos Pescados del Museo Nacional y Algunas Noticias Ictiologicas 1877, 13, pl. 1, f. 1-Buenos Ayres), has been described from Santa F6, Uruguay. We have not seen the description.

[^43]:    Achirus lincatus Jenyns, Voyage Beagle, Fishes, 1842, 139 (Rio de la Plata) (not $P$ 。 lineatus L.).
    Solea jenynsi Güuther, Cat. Fish. Brit. Mus., iv, 476, 1862 (after Jenyns).

[^44]:    * D. 76. A. 57. Scales 92. Color uniform brownish gray ( (iiinther). D. 72. A. 53. Scales 95. Color brownish, mottled with darker spots (Steindachner).

[^45]:    * "Sulla Stato Giovanile del Rhomboidichthys mancus," Facciolì, Naturalista Siciiiáno, vi, 1887, and "Su di Alcumi Rari Plemonettidi del mare di Messina," Nat. Sicil., iv, 1885.
    t"Om Skjæbheden hos Flynderne og navnlig om Vandringen af det ürre Oie fra Blindsiden til Ojesiden trers igjennem Hovedet," 1864.

[^46]:    *"Non è a dubitarsi che questi Pleuronettidi son giovani di altro specie più grandi. Diro soltanto che la Peloria hackeli non puo confondersi con nessun Pleuronettide conosciuto." (fiacciold.)

[^47]:    * Hippoglossus kingi is known from a drawing ouly, executed by unscientific hands. In all respects but one this drawing agrees well with $P$. adspersus. The first 18 of the 66 rays of the dorsal are represented as lower than the others, apparently forming a distinct portion. Depth 2 in length. Anal rays 51.

[^48]:    *Te are probably in error in regarding Etropus rimosus as identical with Citharichthys microstomus. The latter has a larger mouth, the maxillary $2 \frac{3}{4}$ in head, instead of nearly 4 as in the former.

[^49]:    * For completeness' sake we include in the following analysis, besides the American genera, Otolithus, Scianoides, Collichthys, and Pseudotolithus, the ouly well-defined genera without American representatives with which we are acquainted.
    $\dagger$ Otolithus Cuvier, Règne Animal. Type, Jolmius ruber Bloch. The characters here given are drawn from Otolithits argenteus (specinen from Hong-Kong, China).

[^50]:    * These characters (which separate the rest of the Scicenince from Eques) have been verified in part of the genera only, and the statement of them may need some modification when the entire group is considered. The genus Lonchurus especially should be examined in this regard.
    $\dagger$ Scicenoides Blyth, Journ. Asiat. Sci. Beng., 29, 1861; type Otolithus biauritus Cantor. The characters here given are drawn from Sciænoides pama. This genus seems nearest to Nebris, but it shows several resemblances to Lonchurus. If it really has vertebræ $14+10$, as stated by Bleeker, it should be placed among the Otolithinc.

[^51]:    * Collichthys Günther-Hemisciæna Bleeker ; typo Sciona lucida Güntber, not of Richardson. Our specimens from Swatow, China (Coilichthys lucidus Rich.?) agree with Bleeker's account of Hemiscianna lucida rather than with Giinther's. This genus is certainly very close to Scianoides.

[^52]:    * Pseudotolithus Bleeker, Poissons de là côte de Guinée,. 1869, 59 ; type Psendotolithus typus. The characters here given are taken from a species from Gambia.

[^53]:    * Cestreus obliquatus, a species imperfectly known, belongs presumably to this group.

[^54]:    * Rather large in Cestreus microlepidotus.
    $\dagger$ Not examined in Cestreus microlepidotus, of moderate length in C. steindachneri.

[^55]:    Cheilodipterus acoupa Lacépède, Hist. Nat. Poiss., iii, 546, 1802 (Cayenne).
    Cynoscion acoupa Jordan, Proc. U. S. Nat. Mus., 1886, 588 (name only).
    Lutjanus cayennensis Lacépède, Hist. Nat. Poiss., iv, 196 and 245, 1802 (Cayenne)
    Otolithus cayennensis Giinther, Cat. Fisk, Brit. Mus., ii, 309, 1860 (West Indies)

[^56]:    *The following is the substance of Professor Cope's description of Corvina monacantha:

    First ventral ray produced as a filament which reaches past the vent ; psendobranchix none; eyes 5 m head; depth equal to length of head; preopercle sharply serrate on its vertical margin; pharyngeal patches of teeth small, the teeth bristly; caudal fin sublanceolate; pectorals as long as ventrals without filaments; anal spine short, single in typical specimens; color, silvery, grayish above ; no spots. D. X-I, 33 ; A. I, 5. Scales 10-49-16.

[^57]:    * This character is not mentioned in the description of S. vermicularis. We give it on the strength of our remembrance of the species, as no specimens of the species now exist in any American museum.

[^58]:    * This species, although named for its discoverer, Marcellin Fournier, is always written furnieri by Desmarest.

[^59]:    * "Je note ici que l'espèce typique du genre Scicna Art. étant l' Umbrina cirrosa CV., le nom de Sciana devra être appliqué aux espèces dont Cuvier a fait des Umbrina, et ne pourra plus être emploý́ dans le sens de Cuvier. Ni M. Giinther ni M. Gill, dans leurs travaux sur les Sciénoides, paraissent avoir fait attention à ce que le nom générique d'Artedi est mal employé par les anteurs modernes, et M. Gill cite même le Sciena aquila comme le type du genre." (Bleeker, 7. c.)

    In quoting Umbrina cirrosa as the type of Artedi's genus Sciarna, Bleeker means merely that it is the one placed first by Artedi in the list of species.

[^60]:    * $\Sigma \pi$ о́ yos = a sponge or 'mop.

[^61]:    * $\Theta$ úб $\chi \nu 0$ = $=$ a tassel.

[^62]:    * Rothriocephalus anticulatus Siebold, Zeitschrift f. Wissensch. Zool., ii, こ18, tab. xv, 12.

    Anthobothrium masteli Van Beneden, Mém. Acad. Belgique, xxv, 126 and 190, tab. vii, 1.

    Terrabothrium (Orygmatobothrium) versatile Diesing, Sitzungsb., xiii, 582.
    Tetrabothrium musteli Van Beneden, Vagener, Nov. Act. Nat. Cur., xxiv, Suppl., 85, tal. $x \times i i_{,}$276-978.

[^63]:    * Кроббоí = a border, fringe.

[^64]:    * форعĩov $=$ a tray. $\quad+$ д́áolos $=$ bristly.

[^65]:    Nos. 1 and 2 were from Cynoscion regale, No. 3 from Pomatomus saltatrix, and No. 4 from Paralichthys dentatus.

[^66]:    * Letter No. 3. Bull. Mus. Comp. Zö̈l. Vol. V, No. 14, pp. 289-290.

[^67]:    * It is possible that in my account of the polypites of Pterophysa collected by the Albatross in 1883, I have exaggerated the grasping power of the ptera of these organs. As I then stated, "It is difficult to determine definitely the function of the ptera and the peculiar structure of the polypites of Pterophysa, unless we study the animal alive."

[^68]:    * Ueber die cyclische Entwickelung und Verwandtschafts-Verhältnisse der Siphonophoren. Sitzungsber. Akad. Wiss., LII, pp. 1155-1172. Berlin, 1882.

[^69]:    * The existence of radial subumbral knobs and a larger number of tentacles than radial tubes is supposed to characterize grœnlandica, although the knobs are not mentioned in A. Agassiz's description.

[^70]:    * This species is supposed to be the same, or closely allied to the genus once called Rhegmatodes, now Polgcanna. It is given the former name in the plates, the latter in the text of Hæckel's System der Medusen. The species falls in Hrekel's subgenus Rhacostoma (L. Agassiz, sensu mutato) and may be the same as $P$. fungina, Hæck.
    $\dagger$ The spelling, Stomatoca, is adopted instead of Stomotoca, from the derivation $\sigma \tau \sigma \mu \alpha$ (gen. $\sigma \tau \dot{\prime} \mu \alpha \tau \circ 5$ ) root бтонс兀т.

[^71]:    * The species of Cunina, C. discoides, may eventually turn out to be one of the Atlantic species of Solmaris. It may be the young of S. coronantha, Hæckel.

[^72]:    * Cumina discoides, Fewkes, was probably described from an immature specimen. No gastral pouches were observed, and it is therefore probable that it belongs to the Solmaridx. It is possibly the young of Solmaris coronantha, Hreckel.
    † Ueber Carybdea marsupialis. Arbeit. Zool. Inst. Wien., I Heft., 1878.
    $\ddagger$ Das System der Merlusen, pp. 440, 44:3.
    §Cf. Report on Albatross Meduss for 1883-84. Ann. Rept. Com. Fish and Fisheries, 1884, 1. 951.

[^73]:    * Butl. Mus. Comp. Zool., ix, 8, p. 306. In one of the two specimens of Halicreas there described, sausage-shaped sexual bodies were observed hanging from the underside of the bell. In one of the above specimens (15750) glandular bodies were observed in the subumbral radial fuirows.

[^74]:    * The surface of the exumbrella is contmmous and withont division between the disk part of the umbrella and the marginal lobes. $I$. panthcon, which this species in some respects closely resembles, has a "deep horizontal coroual fossa."

[^75]:    * This species is common as far morth as Greenland. The allied genns Nanphanta somewhat resembles the young Pcriphylla, but has eight sense bodies and eight tontacles. It remains yet to be seen whother the joung, Ieriphylla has the same number of tentacles and sense bodies as the adult. If it has eight tentacles instead of twelve it may be readily conjectured that Nauphanta is a young Periphylla, and that immature tentacles have been mistaken for sense bodies.
    I have elsewhere recorded a Neuphanta, N. polaris, Fewk., from Lady Franklin Bay, North Greemland.
    There seems to be a relationship between the cold waters of great depths of the sea and those of the cold waters of the Arctic Ocean. Temperature would seem to play an important part in the relationship of medusie from these two localities.

[^76]:    * One of the main diflerences between this Cyanca and C. arctica is found in the incisions in the marginal lappets. There are iu the unknown Cyanca eight deep ocular incisions, eight shallower tentacular incisions, and tho margin of the bell botween each occular and tentacular incision is again incised. There are therefore 32 marginal lappets.

[^77]:    * Sugli Stabilimenti di Piscicoltura visitati all'estero dal Novembre, 1884, all'Aprile, 1885." From Annali di Agricoltura, Rome, 1885. Translated from the Italian by Herman Jacobson.

[^78]:    *In the oflicial report, "Notice historique sur l'Etablissement de IIuninguc," Strasbarg, 1862, it is stated that the temperature of the springs is even, but durigg the winter 1884-85 very noticeable variations of temperature were observed. The only mention made of such variations in said report is that of 1856 , during the winter of which year the temperature fidl to zero.

[^79]:    * According to Ainsworth's observations the duration of hatching varies with the salmon from 1 to $\frac{1}{6}$, at a temperature varying from $2.5^{\circ}$ to $12.5^{\circ} \mathrm{C}$. [ $36.5^{\circ}$ to $54.5^{\circ} \mathrm{F}$.].

[^80]:    * B. Benecke: Fische, Fischerei und Fischzucht in Ost- und West-Preussen, Königs.berg, 1881, p. 459.
    $\dagger$ P. Pavesi : Esposizione Internazionale di pesca a Berlino, Rome, 188\%, p. 105.

[^81]:    * Carbonization is olotained bj a picce of red-hot iron, or by applying smoking sulphuric acid.

[^82]:    * It seems to me that the vegetation which endangers packed eggs is perhaps favored by the finish of the cloth in which they are wrapped and on which they rest. I would therefore recommend the use of cloth without any finish, or from which it has been removed by a solution of lye.
    $\dagger$ I saw at Seewiese an ice box for transporting Thy mallus eggs to the establishment from the place where the eggs had been fecuudated. This apparatus had the dimensions of an ordinary Dillen vessel used by herbaìists, and is made of tin by Joseph Sehwarz-Spengler, in St. Pölten, and like this can be carried slung over the shoulder. It contains six frames for egrs, and a seventh (the top one) for ice. It has two panels, one for lowering what constitutes the long side of the parallelopiped box, the other to raise the upper side.

[^83]:    * Although there are large stoves at Hüningen, they were not used this year, not even during a period of intense cold, when the temperature of the spring water became considerably lower.
    $\dagger$ For this reason, as well as to protect the young fish against their enemies, the hatching apparatus is kept covered.

[^84]:    * 'The male fish may be recognized by having a more slender body, and its sexual maturity by the brown color of the skin of the belly. When the male fish is large its jaws are moro hooked than those of the female. The female is recognized by having a stouter body; it has reached maturity when the belly is swelled out and elastic, and particularly puffed , up above the anal fin, and when the reddish genital gland begins to swell.

[^85]:    *A liter measure [a little more than a quart] of eggs contains 15,625 Thymallus eggs, 8,000 trout eggs, 7,000 of salmon, and 36,926 of the Coregonus.

[^86]:    * Daily visits are made to the hatching-box to remove the spoiled eggs. Amongr the substances employed to feed salmonoids I havo observed meat ground fine, meat flour, dissolved brain, heart chopped fine, cut-up entrails, and larva of flies bred in decaying flesh. There are many more or less complicated machines for grinding the food, but as they have been deseribed in various treatises, I need not give any further description of any of them, not even of the ingenions hydraulic grater for meat which I saw at Seewiese, because its coustruction can easily be imagined.

[^87]:    * In further proof of tha fact Max von dem Borne (Fischzucht, 2d ed., p. 13) reports what took place in an ofl pond near Wittingan, called the Rosenberg pond, haring an area of 750 acres, which every three years produced only 1,000 hundredweights of carp; and after having been laid drer aud cultivated four times from 1865 to 1881, produced 1,500 to 1,700 hundredweights.

[^88]:    * Cross-breeds of the 2 fish named.

[^89]:    *Mr. Haack has introduced at Hiiningen new apparatus; has had cement tanks constructed; has improved the distribution of the water, and the arrangement of the ponds.

[^90]:    * This paragraph is not a part of Dr. Bettoni's report, but is from an article by Prof. P. Paresi relative to the establishment of fish-cultural stations in Italy. It is inserted here as showing ono of the results of Dr. Bettoni's work.-Editor.

[^91]:    ${ }^{1}$ Nest and egg.
    ${ }^{2}$ Seen only.

[^92]:     Ni
    
    
    
    
    

[^93]:    * This vessel was destroyed by fire October 2, near Murder Island, off the west coast of Nova Scotia.

[^94]:    * The Gertie May had just arrived at this place, from the eastward, and had set under sail some time after our gear was out. The current swopt one of her trawls afoul of one of ours-a result that could not be anticipated, since no indications of the strong westerly tide were apparent to one on a vessel under sail, more particularly as there was little surface current.

[^95]:    * The letter was as follows: "This will introduce to you Capt. Medeo Rose, of the schooner Laura Sayward, of Gloucester. He has just arrived here in a distressed condition, being short of provisions and water, owing to heavy adverse winds on his passage home from the banks.
    "I know, of course, that he has the right to fill water, and I trust you will have no difficulty in securing for him sufficient supplies to obviate any risk of actual dis. tress on his passage home from here."

[^96]:    * For sounding we nsed an ordinary cotton fishing line, marked at erery ten fathoms, and a deep-sea sounding lead of 16 pounds weight. The depths given in this report may not on this account be deemed absolutely accurate, but will not in any case vary more than a few fathoms-probably in no case more than 2 or 3 fathoms-from the actual depth. The reason for using this method of sounding was threefold: (1) It was not deemed essentially necessary to wake accurate hydrographic records; (2) our "Tanner machine" was not ready to use, and consequently we had to depend on the ordinary line, and (3) it would be impracticable to use the machine, even if it was ready, in carrying on rapid fishing operations, since the time required to make soundings, etc., would very much interfere with the time absolutely required for fishing, and where the vessel has only a small force, as in the present case, it was necessary to adopt the most feasible method.

[^97]:    * In setting the trawl on this occasion we adopted a new method. Two dories were put out, each taking one tub of trawl, the ends of which were bent together; the dorics then pulled in opposite directions at right angles to the wind, and when the line was out they let go the anchors and each boat lay by its respectivo end. This method of setting has a considerable advantage over the ordinary method, when quick work is desirable, for as soon as the men weigh the anchors and get them on board, there is comparatively little strain on the trawl, and it can bo quickly and easily pulled in.

[^98]:    * Since the above was written, the following law has been passed (chapter 613, Laws of New York):
    "Au act to provide for the erection of a fish-hatchery at Cold Spring Harbor, and making au appropriation thorefor. Passed June 18, 1857, three-fifths being present.
    "The People of the State of New York, represented in the senate and assembly, do euact as follows:
    "Section 1. There shall be appropriated from any funds in the treasury of the State, not otherwise appropriated, for a new hatchery building and improvement of grounds at the Cold Spring Harbor station of the commissioners of fisheries, $\$ 5,000$, or so much thereof as shall be necessary, to be expended under the direction of the commissionere of fisheries on vouchers to be approved by the comptroller; but no money shall be paid out of the appropriation till a lease of the lands and water rights now occupied for such hatchery shall bo executed to the State, rent free, from the owner, for such period as the same may be occupied as a public hatchery, which lease, when accepted by the commissioners, shall be filed in the office of the secretary of state."

    Such a lease was given by the owner, Mr. John D. Jones, and the building is now (October 26, 1887) in process of erection. The contract requires its completion by January 1, 1888, which will be in time for the salmon work of that year. In the mean time a small building outside the grounds is being used for trout and other fishes.

[^99]:    * For previous references to this disease see F. C. Report for 1885, p. 134, and F. C. Bulletin for 1885, p. 472.

[^100]:    * At this date there are 53 more tish which are expected to spawn.

[^101]:    *To Germany, 40,000; Euglaud, 25,000.
    $\dagger$ To France.
    Mr, Mather's report of condition on arrival at Cold Spring Harbor.

[^102]:    * See F. C. Bulletin for 1886, p. 361.

[^103]:    日云百云
    ：En
    
    
    
    
    

[^104]:    Wasimgton, D. C., February 10, 1886.

[^105]:    * May 9, 1886. The 585,000 eggs arrived at the car at 2.20 p. m., 200,000 of which were put on trays in an ice-box. The other 385,000 came to the car in two Wroten buckets, and were pat in four McDonald jars at $3.30 \mathrm{p} . \mathrm{m}$. The pump was then started and a

[^106]:    "For notice of their successful planting, see F. C. Balletin for 1886, p. 137.

[^107]:    ${ }_{2}^{1}$ By employees of station.
    ${ }^{2}$ Fifty thousand eggs on trays shipped to II .
    C. Mercer, by steamshíp Eider, for Danubo Liver.
    ${ }^{3}$ By IR. H. Dana.
    ${ }^{4} \mathrm{By}$ N. Simmons, car No. 1.
    5 Eggs almost hatehed when put into river.
    ${ }^{6}$ By F.L. Donnelly.

[^108]:    *Seine hauled but once.
    $\dagger$ Ono haul omitted.
    $\pm$ No hauls, on account of the high wind or heavy current.
    Current lighter and running down very fast.
    if Raiu all day.
    II Now carrent beginning to run.
    ** Cut seino ont after lirst haul.

[^109]:    * See reports of Gwynn Harris, inspector of marine products, in U, S, F. C. Bulle. tip, Vol. V, p. 192, and Vol. VI, p. 202.
    S. Mis. $90-52$

[^110]:    * This roport was compiled from the recurds of Lieut. L. W. Piepmeyer, U. S. N., who was in charge of the vessel when the work was doue.

[^111]:    * Dr. Shortlidge reported that the general condition of the $1,110,000$ eggs which he received from tho Fish Hawk on May 11 and 12 was bad, as at least one-third were found dead on unpacking. The subsequent loss on these eggs was about one-eighth. All the fry were phated in the Brandywine Creek, near Wilmington. July 21 a smal: ehad was caught in Brandywine Creek, supposed to have been one of those planted ir. May.

[^112]:    * Receired from Battery Station.

[^113]:    * This report includes also the distribution of 1850-86 from Baird Station, California, and Cold Spring Harbor Statiou, New York, not previously reported.

[^114]:    * Proceedings of the United States National Masenm, 1879, pp. 2:27-232; 1881, pp. 298-303, 30.1-307; 1883, pp. 212-216.

[^115]:    STATIONS FOR 1873, WITH HEADQUARTERS AT PEAK'S ISLAND, CASCO BAY, MAINE ; AND ALSO STATIONS OF THE UNITED STATES COAST SURVEY STEAMER BACHE FOR 1872, 1873, AND 1874, IN THE GULF OF MAINE, ETC.

[^116]:    No record exists of any hauls corresponding to Nos. 11 B. and 10 B.

[^117]:    
    

[^118]:    

[^119]:    
    
    
    

[^120]:    （：
    
    

[^121]:    
    
    
    

[^122]:    
    

[^123]:    * Abont 110 fathoms.
    + About 200 moters.

[^124]:    *The author here recanitulates the analysis of tish reported prevons to the yar 1 -s:3, when the following aualyses by huself were performed. It is deemed unecessary to repeat his recapitulations here, the more so as the same data with others are to be included in a detailed disenssion of the subject ly Prof. W. O. Atwater in connection with a report of his to be published by the Commission. A series of analyses by Popof are, howerex, inchuded, as thes have not become current in the literature of the subject.-Ediror.
    $\dagger$ Determination of the proportion of nutritive matter confaned in the most common species of tish. Dissertation for the degree of doctor of medicine. St. Peters burg, le**; in lussian. [The analyses are stated by Professor Kostytseheĭ to have been made in the usual way, from which it is to be inferred that the protein was. estimated by multiplying the nitrogen by (6.25.-EDitor. 1
    $\ddagger$ Owige to an ofrer made by Mr. N. Mi. Solsky, director of the Muse man of Rural Economy, and late general commissioner to the Interuational Exhibition of Fisheries at London.

[^125]:    [*It would seem as if this ought to be "salmon-trout" and not " siomga."]
    $\dagger$ Fishing and Hunting in Russian Waters. (International Fisheries Exhibition.) St. Petersburg, 1883. (English.)
    $\pm 1$ pud $=40$ Russian pounds $=$ about 36 English pounds.

[^126]:    S. Mis. $90-65$

[^127]:    * "Des accidents toxiques orcasionmís par le morue actrice, et de l'interdiction de la mise en vente des morues rouges." From the Jourual de Mérlecine de Bordeaux, vol. xv, 1886, p. 425. Translated from the French by Herman Jacobson.

[^128]:    * It seems proper to state here that the only case of death resulting from spoiled codfish was one caused by the cod caught and prepared by the Norwegians, and termed "stock-fisch." But "stock-fisch" never turns red. The mode of curing it is entirely different from that followed in France. The "stock-fisch" is cod dried, hardened, aud rolled out into sticks, which are left to dry in the open ar for two or three months. The French fishermen never cure codfish in this way.

[^129]:    *See F. C. Report for 1878 , p. 969, and F. C. Bulletin for 1887, p. 95.

[^130]:    * From the Norges Officielle Statistik, 3d sories, No. 29, Christiania, Norway; 1886. Compiled by A. N. Kiaer. Mr. H. Jacobson has assisted in the translation and Mr. H. P. Jerrell in prepariug and reducing the tables.

    Throughout this article reductions are made to dollars and pounds, by considering the crown as worth $\$ 0.268$, and tho kilorram equal to 2.2046 pounds. The hoctoliter contains nearly $26 \frac{1}{2}$ gallons, wine measure; or about ${ }_{2}^{5}$ bushels.

    + For the statistics for 1884, with comparative tables covering the fivo procoding years and other details, seo the U. S. Fish Commission Report for 1885, 1. 313.

