REPORT OF OCEANOGRAPHIC CRUISE

UNITED STATES COAST GUARD CUTTER CHELAN
BERING SEA AND BERING STRAIT
1934
AND OTH:ER RELATED DATA

25 April 1996
Mr. Steve Gegg
Data Library \& Archives
McLean Lab
WHOI
Woods Hole, MA 02543

Dear Steve,
Per our phone conversation, enclosed please find the typescript report:

Report of Oceanographic Cruise United States Coast Guard Cutter Chelan Bering Sea and Bering Strait 1934 and Other Related Data.

As I mentioned, I have no idea how Carnegie Museum of Natural History acquired this report, especially since we never had a scientific section dealing with oceanography or any related topics. Having been a Marine Policy and Ocean Management Post-doctoral Fellow at WHOI in the early 1980s, I realized this report might be of use to WHOI. Dr. David Aubrey in Geology \& Geophysics provided me with your name.

This report is an unrestricted donation to WHOI and may be used for whatever purposes you see fit.

Sincerely,

David R. Watters
Curator of Anthropology
enc.
cc: Dave Aubrey

REPORT OF OCEANOGRAPHIC CRUISE UNITED STATES COAST GUARD CUTTER CHEIAN BERING SEA AND BERING STRAIT. 1934.

> U.S. Coast Guard Headquarters, Washington, D.C.,
> I June, 1936 .

This report covers the oceanozraphic activities of the U.S. Coast Guard Cutter CHEL during the summer season of 1934. It is approved and prepared for dissemination to all interested departments.

H. G. HAIILJT

PREF ACT

The oceanographic cruise covered by this report was planned with the assistance of Dr. Thomas G. Thompson of the oceanographic laboratories of the University of Washington. Through his efforts two very efficient observers, Dr. Phifer and Mr. C. Barnes, also of the University of Washington were detailed to the Cutter CHELAN for duty. These men brought with them all the necessary equipment to outfit tho sick bay of the cutter into an actively functioning laboratory. Accompanying them was Professor J. L. Alexander of the Forestry Section of the University of Washington, who assisted in the research and who also investigated the tree lifo of those sections of Alaska visited and who planted seeds and seedlings on many of tho islands of that country.

To Dr. Thompson, Dr. Phifor and Mr. Barnes belong tho credit for making the chemical analysis of water, marine life and marine growth. Further credit is given for their assistance in making many of the calculations and summarizing much of the data without which great difficulty would have bean oncountored in compiling this report.

The officers and crew of the CHELAN deserve much credit for their untiring efforts to make the cruise a success. Their interest and wholehearted cooperation made the season of 1934 a productive and interesting one, both from the view point of the Coast Guard Patrol duties and also from the angle of scientific research.

The stenographic force and the drafting room personnel of the Communication Office; Coast Guard Headquarters, are thanked for their able assistance in assembling the data.

This report summarizes the physical investigation. The results of the chemical investigation will not be ready until march 1937 at which time they will be published as an addenda.

FIRE ISLAND, BOGOSLOF.

THE CRUISE (OFROTOLOGICAL).

The cruise of the CHELAT in 1934 was in accordance with the policy of the goverment in assigning Coast Guard cutters to the Bering Sea for patrol duty. The Coast Guard has played an integral part in the development of slaska. The logoooks of its cutters contain the carly history of that country. Soutirern and southeastern aliaska are constantly associatod with tho service as ships are stationcd in Kotchikan, Juncau, Cordova and Soward but wostorn and northwostown Alaska grosts tho cuttors in the spring and bids thom adiou in the F'all. As suroly as in oach Spring tho sun roturns to broak tho ico fottors that shecklc tho lakos, tho rivors and the soa, so tho Coast Gunrd Cutter INOFTHLNDD woids its way from its baso in Seattle toward the Arctic to take up its sumar base off on. And so as the salnon return each Spring toward the streams of their nativity, as the many migrant birds each year again seek their nosting grounds in the marshes and in tho metors of the million streams of Alaska and as tho scals begin their onnual trok to their summer home on the Pribiloi Islands in the Bering Sea so the patrol cutters, especially the CHELiN class, point their bows toward their base at. Unalaska to take up the seal and fishery patrol, law onforcoracnt, assistance and lifosaving dutios around the Pribilof Islands and along tho Aloutian Isleris.

Alaska is a largo country. If its map woro placed on the map of the United States a portion of its northorn bordor would touch on tho Conadian bordor, its castorn ode would touch tho Atlantic ocoan, its southorn boundary would rost on tho Moxican division lino and its' wostorn most islands would touch the Pacific ocoan. Its coast lino is ubout 26,000 miles. Its aroa is 13 times as large as Now York; 500 timos as lirgo es Rhode Islend; ono fifth the size of the United States, covering generally the areas of Maine, New Mampshire, Vermont, Nassachusetts, Rhode Island, Connecticut, Neer York, New Jorsey, Delaware, Níaryland, West Virginia, North Carolina, South Carolina, Goorgia, Florida, Mississippi and Tonnosseo.

In the Bering Soa and tho waters surrounding Alaska aro found codfish, Halibut, salinon, maciorol, herring, crabs and othor sholl fish, while, seals (fur and hair), sea lion and walrus. Its islands are the homos of foxcs, caribou, roindoor and sho $o p$.

The CHELAN was based at Unalaska, the largest city in the Aleutian Islands situated 55 miles from Unimak Pass, the gateway to the Bering Sea, about 150 miles from the transpacific steamer lanes and about 1750 miles from Seattle. The Aleutian Islands, discorered by Chirilof and Bering in 1741, jut out boldly from the coast of alaska extending far into the Pacific Ocean for a distance of about 900 miles to the westward.

Unalaska is one of the prettiest places in the North. The first Greck Russian church erected in the territory is Iound here. It is filled with paintings and ornate tapestries. Dutch Harbor being at the hosa of a landlocked bay and surroundod by rounded fertile hills is a half a mile from Unalaska. This combination makes it one of the most strategic points
in Alaska. The Coast Guard has its base at Unalaska and the Alaska Commercial Compeny has a store and a coaling station there. The Mavy has a radio station at Dutch Harbor. There is also located one of the most active industries in the Islands, herring packing. A few stunted spruce treos comprise the only growing timber on the island but the grias grows waist high and on the ificlds are millions of violets and other fragrant flowers. In former years thousinds of caribou subsisted on the island but with the importation of rifles the herds were soon exterminated. The deer placed there in 1914 by the Coast Guard have also disappeared.

After leaving Unalaska on patrol, the first point of contact of the cutter was the summer hone of the famed Alaskan fur seals, the Pribilof Islands. These are located about 200 miles north northeast of Unalaska. They consist of four islands; St. Paul Island; St:Gorge Island, Walrus Island and Otter Island. They were discovered by Gerassium Pribilof a Russian navigator in the summer of 1786. He was in the employ of the Lebedoff Corpany, one of the many trading companies which at that time were levying tribute upon the Aleution natives and fighting among themselves for the control of the rur industry。 Sailing a clumsily-constructed crart through a Bering Sea tiog, he hearda strange, bollowing sound, similar to the barking of a bend of dogs. Ho anchored, and when the fog cleared, ho saw tho islands. which bear his name. It did not take him long to discover that the beirking cmanatod from fur scols, tho skins of which, at that time, were very highly prized by the Oriontals. Pribilot numed the southornmost island St. Gcorgo, aftor tho ship in which ho sailod.

During the first season Pribilof's hunters killed roore than 2,000 sea otters, more than 40,000 seals and accumlated much walrus ivory. The invading horde of huntcrs recklessly and masterully killed hundreds of pup seals and young otters during the years that iollowod.

In 1867 the United Statos purchased Alaska. In 1868 Amorican financiers purchased the buildings of the Russian Corpanios. In 1869 the Congress passed a law declaring tho islands to be a resorvation and prohibiting anyone from killing fur seals except under certain restrictions. The following year on July I, I870, the islands of St. Paul and St. Gearge were leased to the Alaska Commercial Company for a period of twenty years. In 1895 this was renewed but avarded to the IVor th American Commercial Company. In 1910 the Governnent undertook to manage the seal rookeries itself. The seal herd had been deploted. Fíny rocks on the islands once worn smooth and round by the continual movemont wore now covered with moss and buricd in vogotation. This gradual roduction was duc to the pernicious activity of pelagic or open sea soaling which was a disgracoful butchory. the United. States
In 1911 $/$ as a \quad esult of this held a con orence with roprosontativos of Russia, Groat Britian and Japan, and it was agrood thoy jointly should patrol the Bering Sea and that no sealing of any kind should be permitted within sixty miles of the shore of any territory controlled by any of these countries. Under this treaty each nation was permitted to kill seal in its own territory, A law providing that a certain number of the bachelor seals on the Pribilof Islands be killed each yaar under government suporvision and the skins sold and tho proeeeds divided botmoon the signatory powers, and that every ship of whatovor flag, carrying
sealing gear, found within sixty miles of any port of either America, British, Japanese or Russian territory, imnediately be confiscated and the crew and officers punished by fine arid imprisonment, or both, was passed. Under this system the depleted herd of 235,000 in 1910 has now increase"d to more than $3,000,000$ scals. The coast Guard cutters maintain a patrol and strictly enforce these treatios.

Upon completion of the deties at the Pribilofs and in the vicinity, tho CHEAN prococdod northward to Nono. None is a seacoast town locatod on the mainlend about 600 miles north of Unalaska. It is built along the shore, boing without a harbor. The roadstoad is opon to navigation from about June 5 till Novomber 15 each your and the bolance of the year it is frozon in. The residents are thon cut off from tho outsido world by boat but thoy can bo rocchod by trail or by moroplano when the woathor pormits.

In the autum, generally about November.l, Bering Sea begins to take on a covering of slush ice. Sometinc later the Arctic ice pack, a solid field begins forming and, hundrods of square miles in extent, soon covers tho sea. In tho Spring those immonsc ficlds of ice float gontly out to soa and aro carriod northmard by tho curronts. Tho ficid passos through Boring Strait, tho norrow strip of wator botwoen tho ocstornmost point of Asia and the wostemmost point of Alaska Mainland. Tho creaking, crushing noiso can be heard for a great distance.

On days when the Arctic sun is shining, after the ice has left, the land-scape and the sea-scape present a pretty view. The tundra on the shore is brown and green, and the air is filled with sumer heat, while pretty wildilowers adorn the foot hills. Dut quitc often, without notice, the scone changes. Black lowering clouds obscure the sun, heavy winds lash the sea and large, white-capped maves crash on the beach. The thundor of tho surf can bo hoerd for milos. The ships in the roadstead must weer more chain on their anchors and for a while try to ride out the storm, but when the anchors begin oraggine they run for safety in the lee of Sledge Island or go off to sea. Often the gale blows for three or four consecutive days.

Nome in summer is a busy place. Kine Island Eskimos poddlo their ivory on the main stroet. The stores are stocked with furs. Here and there men are seen working the beach sands while on the first and second beaches large dredges mechanically pan ior gold dust. Ine cutter CHEIAN saw a decided change later in the year when it visted Nome after a fire which destroyed about 80% or its business section and 40% of the residential section.

The next place of interest passed was a sinall projection to the northmest of Nome about 60 miles distance, called King Island. This rock is the home of the Eskimo tribo oi nativos called King Islanders. They build their houses on stilts as there is no level spot, the sides of rock bcing sheer. These natives spend their summers in Nome, leaving King Island about June 21. In Octaber they aro taken back to thoir island home by the cutter NORTHLARD. This placo is surroundod by ico during the winter and in the spring months it is a spondid hunting ground for walrus.

After a few days in the Bering Strait and in the Arctic Ocean, St. Lawrence Bay in Siberia was entered. At this point fresh water was taken aboard. After a two-day stop, St. Lawrence Island was visted. St. Matthew Island, an uninhabited island in the Bering Sea, was m:xt on the schodule, and from there the CHELAN proceeded to Nunivek Island, the home of tho most primitive people in Alaska.

The noxt point of interest to visit was Bogoslof Island locatod about 60 milos northwost of Unalaske. Enroute to this, the codfishormen from the United States tho arrive in Bering Sce in June and loave about Soptember 15, wore passed. In addition thereto tho Jepanesc crab fishing floct consisting of lorge ships, tramlors and crab boats woro soen. These boats catch the largo spider crabs which are canned on the lerger vossols; Somo of tho vhalors from the Aloutions and a number of vessels of tho salmon canning flect from Bristol Bay grooted tho CHEIAN mhile patrolling.

Bogoslof is perhaps the most attractive of the islands of Alaska. Four days were spent here and then a course was set for Unalaska where the Oceanographic Cruise ended.

STATISTICS OF CHUTSE.

The Cutter CHEIAN left Seattle on the 18 July, 1934, on Bering Sca patrol. Spceial arrangenents had beon mado to utilize a part of tho time to obtain data in tho Boring Sea. A prearrangod schocule prepored by the commanding officer assistod by the staff of tho Occanographic Laboratory of the University of Washington and approvod by the Cormander, Western Aroa; ard the Coast Guard Hondquarters was followed. It is intorasting to note in this connoction that in Junc 1881 tho Pevonuc Cuttor CORWIN landed a porty of officers and men, Ronr Admiral W. E. Roynolds (thon Sr Srd Lioutonant) in chargo to mako obscrvations of tho curronts and tomporaturos of the waters that set through Boring Strait.

Prior to tho eruiso the cutter was outfittod with the nocossary cquipment. The sick bay was tomporarily robuilt to sorvo as a laboratory. The following oquipmont wes takon:

1. Moãcrn fathometer (recoraing up to 125 Iathoms).
2. Thormograph, installed in the engine room.
3. I Cunningham, oceanographic sounding machine, type $\mathrm{EGr} \# 440$, of the following description: 660 fathoms of $3 / 16^{4}$ vite, 3 H.P. 220 volt A.C. 3 -phase 60 cycle motor equipped with wire laying carriage, 4 speeds in raising and lowering, speed $3-\frac{1}{2}$ feot por second in low and 7 foot in high, friction control and brake control.
4. 1 moter whocl.
5. 1200 lb . load sinkor.

-MEMBERS OF CREW OF CHELAN WITH LOST BABY SEAL.

NATIVES OF SAVOONGA, ST. LAWRENCE IS. ABOARD CHELAN.

BABY SEAL.
6. 1 doast \& Gcodotic Survey salinity apparatta ifith ily necessary chenicals and equipmont for the analysis of sea water.
7. 1 Drift stick,woightod at 15 fect:
8. 1 Elman curront motor. (Univarsity of Washington)*
9. 2 Nonsun Knudson typo Water bottlos, U.S.C.G.
10. 5 Improved typo wator bottles, Northivest Instrument Co. (University of Weshington).
11. 7 mossengors ($2 \mathrm{U} . S . C . G ., 5$ University of Washington):
12. 7 protocted thermomotors, rovorsing type (Richtor and Wicse moke) \#2189, 3167, 3168, 3169, 3170, 3171 and 3172 (U. of W.).
13: 2 above typc U.S.C.G.
14. 2 unprotocted themomoters, roversing type of Richtor and Wieso make \#2965 and 2966 (U. of W.).
15. 2 snapper typo bottom somplers with load weight (U.S.C.Gj).
16. I dredgc typo bottom smmplor.
17. Equipment of nots and bottlos for obtainirg phyto plankton date.
(*). The current motor was of tho latost Ekmn type and had been calibrated before usc by Prof. V. Walfrod Ekmen of Stroden.

The object of the cruisc was to study the chenistry of tho Bering Sca ocenn floor, of tho oconn water and of the various organisms and plants. This Wrs accomplishod by obtaining smples of wator from which density and curronts celculated, tenperaturos measurod, obtaining samplos of water for determination of minor constituents and to study the vertical and geographical distribution of genera and species present.

The physical properties, namely temperatures, pressures and the soncentration of salts were studied. The temperatures. Were measured first by ordinary themometer immersed in water hauled on bocrd with a bucket, secondly by recording thermograph placed in the intake of the condenser giving a continuous record of the surface tomperatures, thirdly, intake temperatures taken hourly by the engineer force, fourth, reversing thermometer to obtain temperatures at various depths.

Collection of Samples. The CHELAN was provided with an electric winch and 600 fathoms of sounding wire for sampling oporations. The longth of the wire limitod the sampling depth to approximatoly 1000 metors which was onough in most cases, as only 9 of the 120 stations occupied excoodod that depth. Samples wero colloctoa by moans or rovorsing bottles of the NansonKnudsen type. Sovon levcls could be sampled at one haul, a sufficient number for all stations in the shallow region north of the Pribilof Islands. Two hauls were necessary at the deep stations south of the Pribilofs. Samples were drawn in duplicate from the water bottles into citrate bottles. The latter were tagged then stored in wooden cases to prevent broakago. One of the duplicatos wis used in tho dotormination of nutrient salts soon after sampling. Tho othor vas rosorved for chlorinity dotuminations which wero made oither in port or at the Ocounographic Laboratorios at the ond of the cruise.

Bottom samplos wero obtained at a number of stations by meons of a clom shell grab. Those samples moro stored in pint and quart jars for

Samples of surface water obtained enroute from Seattle to Dutch Harbor were picked up from the moving ship by means of a bucket lowered over the side. Temperatures were obtained as soon as the samples came aboard: Due to the relatively small differences betwe on the temperaturos of the airsand the water, those of the lattor are reliable to within approximatcly one tonth degree centigrado.

Determination of Depth. A meter-wheel was used to determine the spacing of the sampling bottles placed on the line at definite intervals. Meter-wheel readings for a vertical wire accordingly tidicated the depths of sampling but were checked for all deep stations by calculations based on difforencos in readings of the protocted and unprotected thermometers. Wire angles were recorded if the line departed appreciably from the vertical and these were used in conjunction with the meter-wheel readings and those of the thermometers in obtaining the corroct depth. Corrections for wiro angle wore scldom necessary as sampling operations wore not carricd out during hoavy winds. In tho fow casos in which samples wore obtainod at odd depths at individual stations, the tomperaturo and chlorinity measuroments have been intorpolated for uniform dopths to facilitate comparisons betwoen $: \because$ stations.

Bottom dopths werc obtainod at the stations by moans of sonicsounding (fathometor). Soundings given in the tables aro correctod for tomperaturo and chlorinity.

Tomoraturo Detormination. The water temperatures at the various stations were determined by means of reversing thermometers. The thermometers were manufactured by Richter and Wiese and were calibrated originally by the Physikalische-Technische Reichanstalt. Most of them had been recslibratea by the United States Bureau of Standards and were checked after the cruise at the Occanographic Laboratories. Six of the eight thermometers usod were graduated to $0.05^{\circ} \mathrm{C}$. and could be read with an error of less than 0.010 C. The values for the temperatures given in the tables are corrected readings. Necessary corrctions werc mado according to Schumachor's formula o.s given by Soulo (1933).

Determination of Chlorinity. The chlorinities were all checked determinations obtained by titrations with silver nitrate solution according to the Mohr method. Standard sea water of the Fydrographic Laboratories of Copenhagen was used as a primary. standard. The probable error of the chlorinity determinationisis less than $\ddagger 0.01 \% / 00$.

Dissolved Oxygen. The dissolved oxyren mas detcrnined by means of the Winklor (1923) method. The samples for this dotormination were securod from the sampling bottlos immediatcly after being recoived on deck and treatod at once with the nocessary reagonts. Tho final titrations woro all done aboard ship.

The dissolved oxygen is reported in the tables in units of milligrem atoms per kilogram of water (1934). A milligram atom of an element is defined as that quantity of the element which has a mass in milligrams numerically equal to its atomic weight. The nutrient salts are reported in terms of microgram atoms of the principle element per kilogram of sea water. A microm gram atom, abbreviatod meg. at., equals one thousandth of a milligram atom.

Tho por cont saturation of dissolvod oxygon was calculatod from tablos proparcd at tho Oceanographic Laboratories. These tablos aro based on thoso of ihipole and Thipple (1911).

Soluble Phosphatos. Solublo phosphates werc determined by tho corulomolybdato method of Doniges (1920) according to tho modification of Truog and licyor (1929). In ordor to componsate for tho salt error, phosphatefroo soa wator mis usod in tho proparation of ull comparison standards. So that no ormor would be introduced by storage, analyses wore made on board ship as soon as possible after the samples had attained the temperature of the laboratory. This same proaedure was folloned in the determination of silicate and nitrite.

Determination of Silicates. The soluble silicates were detemined by means of the silico-molybdatementod using picric acid standards as outlined by Thompson and.Houlton (1933).

Nitrite-Nitrogen. The detemination of nitrites was mede by the colorimotric method of Griess (1879) as nodified by Ilosvay (1889). Nitrite. free sea wator was usod in the proparati on of comparison standards to compensato for salt effccts.

Detarmination of pH . A Hellige comparator was usod with crosol red as the indicator. The data in the tables are not corrected for tomporature, or salt error.

Direct Current Iicasuremonts. The CHELAN was anchored at several shallow stations and the watcr current measurod directly by moans of a current metor of the latost Eknan type (1932). The curront moter had beon calibratod just before use by Professor V. Wedirid Eknan of Lund, Sweden. The curront magnitudes listed in tho tables arc exprossed in knots, and directions in degrocs magnctic. Fo attempt has been made to correct the directions for local variation or the deviation due to the iron masses of the ship. The deviation caused by the ship's magnetism varies with the ship's heading and the depth of the current meter. In most cases it is probably not more than 10° at 10 meters below the surfice.

Dynamic Computations and Calculated Currents. The densitieswof: the water samples at atnospheric pressure and the temperatures at which they occured in the sea were ascertained from the temperature and chlorinity data by the use of Knudson's Hydrographical Tables (1901). The donsitios in situ and reciprocal quantitios, the specific volumes in situ, dynsmic depths, and rolative volocities woro then obtaincd by methods basad on the Bjerknes theory (1910) similar to those outlined by Hesselberg and Sverdrup (1915) and Smith (1926). Tables by the latter authors have been modified at the Oceanographic Laboratories to give chlorinity-prossure corrections directly rather than salinity-pressure corrections thus eliminating from dynamical computations the unnocessary stop of obtaining salinity. Currents as obtainod by means of Bjerknes theory are relative, the currents of the upper wator level being obtained in roforenco to tho lowest obscrvod lovol, whero it is assurnod that thoro is no movement of the Fater, or, exprossod differontly, tho current near tho bottom is taken as zero. The values for calculatod curronts appearing in tho tables are based on this assumption. Those relativo valuos aro almost identical with tho absoluto valuos at stations taken in deep water, but in shallow water in whioh there is an
appreciable current at the bottom the calculated values are less than the absolute values.

Explanation of Tablos. The experimontal data and calculatod dynanic quantities have bocn arranged in 4 tables. An outinc of thoso.tablos and their contonts is as follows:

Tablc I, scetion (a) gives the tomporaturo and chlorinity data and calculatod dynamic quantitios for tho difforent stations and soctions ostablishod in Boring Soa. The same genoral form is used for each station. The station hoadings arc for the most part sclf explanatory and contain the following information: station's number, position of station, dato and time of sampling, the botton dopths as obtainod by sonic soundines, and the physical zature of tho botom or bottom sedinent for stations at wich these ouservations were.made.

The significancc of the various colums is as follows:
Column 1. Depth in motors at which samplos wore taken. The values are rogerded as nunorically equal to the pressure in docibors.
2. Corructod timporatures, dogrocs contigrade.
3. Chiorinity, parts por millo. 3 (a) Salinity, parts per.mille.
4. $\sigma_{t}=\left(e_{s, t, o-1)} 10^{3}\right.$, whorc $e_{s, t, o}$ is the donsity as computed from tho tomperature and chlorinity but not corrected for prossuro.
5. $\sigma_{s, t, p}=\left(e_{s, t, p}-1\right) 10^{3}$, whore $e_{s, t, p}$ is tho donsity in situ. 6. $\alpha_{s, t_{2} p} \times 10^{5}$ oquals the specific volume in situ multiplicd by
7. Dynamic dopths bolow tho surfacc of corrosponding isobaric lovols of Colum 1 ; cxprossed in units of dynamic nictors.

In general, obscrvations wore mado at cortain standard depths but in a number of instances this was not possible. So that direct comparisons could be mede between stations in these cascs, the obscrved data were interpolated or extrapolated to other depths. Those interpolated or extrapolatod values and calculatod quantitios basod thercon appear in tho tablo onclosod by paronthesos ().

Obsorvations of doubtful value from any cause havo boon rojectod and are not listod in tho table.

Tablo I, soction (b) contins additioncl chomical data for the stations given in Table I, and is arranged in a similar manor. The colums in Table I may be explained as follows:

Column 1. Depth in meters
2. Soluble phosphate concentration expressed in units of microgram atoms phosphorus per kilogram of sea vater.

OBTAINING SAMPLES OE WATER FROM WATER BOTTLES.

KING ISLAND.

DOC BARNES WITH EKMAN METER.

DECK SCENE, TAKING SAMPLES OF WATER.

DECK SCENE DR. PHIFER AND MR. BARNES.

Column 3. Soluble silicate concentration as microgram atoms of silicon per kilogram of the sea water.
4. Nitritv nitrogen concentration as microgram.atoms of nitrogen per kilogram of sea water.
5. Dissolved oxygen concentration as milligram atoms of oxygen per kilogram of sea water.
6. Dissolved oxygen as per cent saturation.
7. Hydrogen ion concentration as pH.

Table II contains the physical and chemical data of the surface waters as obtained on the cruise from the Strait of Juan de Fuca ta Dutch Harbor. The column headings in this table have the same meaning as outlined for Table I.

Table III is a tabulation of the differences in dynamic depth, differences in dynamic height, and computed currents for the stations of sections given in Table I. The stations are grouped in pairs, as indicated in the headings. K is a constant for each pair of stations. The value of K is dotermined from the mean latitude of the stations, the distance between stations and the angular velocity of the earth's rotation. The columns have the following significance:

Column 1. Depth in meters or pressure in decibars.
2. $\triangle E \times 10=$ aifference in dynamic depth $\times 10^{3}$ for the given pair of adjacent stations at the lovels indicatcd in Column I. The differences are obtained from Table I by subtracting the valuos of dynamic depth at onc station from those at another in the order indicated in the hading of the table.
3. $\triangle \mathrm{Hx} 10^{3}=$ difference in dynamic height $\times 10^{3}$ referred to the lawest cormon depth sampled.
4. This column contains the components of the water velocity in a direction perpendicular to the section. The velocity is expressed in units of lmots (nautical milos per hour) and is relative to the lowest common depth sampled. Poitive and negative values indicato the direction of the current across the section.

Table IV summarizes the direct current measurements as obtained at various stations in Bering Sea by the use of the Ekman current meter. An explanatory note is given at the beginning of the table.

Generally speaking the following data was obtained:

```
Dynamic: seckions taken, mąjor 15 minor 14
Stations occupied, 120
Somples taken for temperature, 617
Chlorinity and, selinity determination, 617 each
Current measurenents by.Ekman netor, taken at
7 stations, the instruments lowered, to difforent
dopths from the surface to 40 metcrs, 148.
Drift stick data at each anchorage,
Determinations of minor constituonts such as
Silicatc, phosphate, dissolvod oxygon, 600 each.
Ph and nitrate nitrogon 400 each
```

The Phyto Plankton obtained from net hauls and water bottle samplos wa:o taken to dotormino the vortical and goological distribution of gencra and spocies prosent.

TORESTRY.

Professor.-J.I. Aloxandor, accompanied the oceanographic party as assistant observer. One thousand seedlings of difforont variotics were roccivod on board and a large quintity of scod. Soudings wore planted as follows: 300 on Expedition Island; 1 grove of 100 at Dutch Hrabor; 250 distributod in Unalaska; 200 at St. Paul and tho othors variously distributed in tho islands of the Soc. Tho scuds. Wore distributed as follows: a number on St. Lawrence Island, on ITunivek Island, at St. Paul and in Unolaskn.

SECTIONS AND STATIONS:

The following shows the locetion of the various sections with their several stations. Fine east-mest sections and six-north-south sections were established from Unalaska to the Arctic Circle with a total of 120 stations.

Sections		Stations	Place	Date
1	11	1-11	Dutch: Harbor - St. George	7/26-27/34
2	$\bigcirc 6$	12-16	St. George - St. Paul	7/27/34
3	16	17-32	St. Paul - Iome	$\begin{aligned} & 7 / 28 / 34 \\ & 7 / 30 / 34 \end{aligned} \text { to }$
4	3	33-35	King Island - Fairway Rocis	7/31/34
5	4	36-39	Bering Strait, $\quad \because$	7/31/34
6	5	40-44	Bering Strait, North of East Cape	$\begin{aligned} & n / 31 \times 34 \text { to } \\ & 8 / 1 / 34 \end{aligned}$
-	7	45 a to g	Tidal cycle Bering Strait	$\begin{aligned} & 8 / 1 / 34 \text { to } \\ & 8 / 2 / 34 \end{aligned}$
7	13	$46 a-b$ to 57	St Lawrence Bay, Siberia to iNome	$\begin{aligned} & 8 / 2 / 34 \text { to } \\ & 8 / 4 / 34 \end{aligned}$
8	9	58 to 66	Lat. $62^{\circ} 39^{\circ} \mathrm{N} .$, Long 165° 24' W. to Savoonga, St. Lawrence Island	$\begin{aligned} & 8 / 4 / 34 \text { to } \\ & 8 / 5 / 34 \end{aligned}$

Sections	İO. Stations	Place	Date
9	467 to 70a	Gambell to Siberia	$\begin{aligned} & 8 / 5 / 34 \text { to } \\ & 8 / 6 / 34 \end{aligned}$
10	$13 \quad 70 \mathrm{~b}$ to 82	Siberia to St. İat thow Is lanã	$3 / 6 / 54$ to
			8/7/34
11	10 84 to 93	St. Hatthew - Wunivak	8/9/34
-	194	Off Cape Mohican, IVunivak Island	8/10/34
12	7 95-101	East of St. Paul Islund	8/12/34
13	9 104b to 112	Bogoslof Island, St George Islond	$\begin{aligned} & 8 / 20 / 34 \text { to } \\ & 8 / 21 / 31 \end{aligned}$
14	$4113-116$	St. Paul Island - iTost	8/21/34
15	$4117-120$	Lat. $54^{\circ} 12^{\prime \prime} 45^{\prime \prime} \mathrm{N}$. Long - 168°	8/2is/34
		05^{\prime} - 35" W to Lot. $55^{\circ} 19^{\circ} \mathrm{N}$. Lone: $166^{\circ} 10^{\circ} \mathrm{W}$	

The CHELAN was anchored in the following placos for current data:

Nome	$30 \cdot \mathrm{Ju}$ Iy
Wostorn Boring Strait	1 dugust
Off Gonblo	6 August
St. Liathow Island	6 kugust
Capo Iiohican	10-11 August
Bogosl of	18-19-20 ،(ugust

Hours undermay:	897
Fillos crujsod:	11,683

DESCRIPTIOIT OF REGIONT.

Bering Sea, (ifigure I) second only to the Kediterranean Sea in size, covers an area of 878,000 square miles. It extends from latitude of 52° North to the Arctic Circle a distance of over 800 miles ivorth and South and from 160° West to 160° East Longitudo and is boundod on the south by the Alaskan Poninsula and tho Aloutian Islands, on tho oast by ilaskan coast lines, and on the mest by the Sibcrian coast, a arimun of over 1200 milos oast and west. On tho north, it is connctod with tho Arctic Ocoan by racans of Boring Strait.

Tho Aloutian Islands, juttin about 900 milos to the wostmard from the mainland to a comparatively short distance of tho Asiatic mainland aro a continuation of tho Liaskan Poninsula. Thoy fom a partial barrior botroon tho North Pacific Occan and tho Boring Sca. Thoy arc mountainous. in the oxtrome and gencrally of volcanlc origin. Their average elevation is nbout 1000 ft. reaching as maximum to 5000 ft . They are devoid oi timber but a luxurious growth of flora is present generally below the snow line. The shores are bold on the northern side with nurnerous offlying islets, rocks and reefis to the southward. They are divided into groups, such as Fox Islands, Rat Islands, etc. The charts are usually inaccurate having been made fror tho carly Fussian charts.

The essential foatures of the bottom topogruphy (liguro 2) may be outlincd as follows: Tho eastorn and northern portions of Boring Son aro shallow, tho bottom dopth rarcly excooding 100 motors. Sevural islands
among which are St. George and St. Paul (the Pribilofs), Nunivak, St. Iathew, St. Lawrence and the Dionedes, ara located in the shallom region. The 100 -meter contour extends fron Unimak Pass in a northwestcrly direction south of the Pribilof Islands to the east Sibcrian coast. The 1000 and 3000 meter contours lic to the southoast of the 100 motor contour and follow a direction roughly parallel to it. In most places the bottom drops off more abruptly botweon 1000 and 3000 metors thon betwe on 100 and 1000 moters. The southivestorm portion of Boring Sca is a basin of uniform dopth of approximatoly 3500 Fotors. It is connoctod to tho Pacific Occan betweon Attu Island and the Komandorski Islands by a chamel of the same depth. This chancl provides the solc moans of circulation of tho doop wators of the Bering Sca with those of the Pacific. Botwoen Attu Island and the Alaskan Poninsula, tho meny islands of tho Alcutian chain are soparatod by pessos ranging in dopth from 20 or 30 to ovor 1000 motors. Thoso passes permit exchange of suriece waters betweon the two bodies of water. North of the Aleutian Ridge the Bering Sea drops to a depth of over 3500 meters githin 10 to 25 miles from the islands. The 1000 meter contour in some cases is less than two miles ofi shore. South of the islands the bottom of the Pacific slopes more gradually, the 1000 meter contcur seldom being loss than 10 milos from land, but oxtonds to groator dopths reaching a maxinum of over 7000 metcrs in tho sileutian Trough, 100 milos south of the Ridge. Bering Strait connccts Boring Sca With the Arctic Occan. It is loss than 50 miles wide at its narrowest point and is from 40 to 60 metcrs deep. Bering Strait provides a restrictod path for tho circulation of surfaco wator botweon tho Boring and the Arctic, but does not allow any transfer of deep Water. Conditions thus exist in Bering Sea and the North Pacific that are not encountered in the more open North Atlantic.

The little that is known of the circulation of the waters of Bering Sea is due chiefly to reports from ships' navigators. This information for the eastern portion of Bering Sea as summarized in the UUited States Goast Pilot" (1931) is essentially as follows: As far west as Attu Island, water flows through the passes of the Aleutian Islands from the Pacific to the Bering Sea. A rising tide increases the current to the north; a falling tide reverses it to the south but at a smailer velocity. Imnediately north of the Aleutian. Islands from Attu Island to Unalaska Island, the current set toward the east and are not affected by tides. In general the water of Eastern Bering Sea moves north and empties into the Aretic through Bering Strait. Normal currents in Boring Strait aro roportcd as 2 knots, but here as in other parts of Bering Sea the currents may be strongly influenced by Windis. The northward flow is substantiatod by a similar movement of the ice which generally covors Bristol Bay and Boring Sea north of the Pribilofs during tho winter months. In the wostern portion of the Bering Soa along the Sibcrian coast, south of tho Gulf of Anadir, curronts heve bocn reported setting south, (Kmurnel, 1917). The reports of the Comming Of.icers of oive U.S. Coast Guard CuttemBEAR and CCRWIN generally confirm these findings. (See pages 31 to 36 inclusive).

Tidal currents set through the various passes between the islands in a northerly or northeasterly direction on the flood tide. and with an ebb tide, follow a southerly or southwestorly diroction. Velocitios as groat as 9 knots are sonetines observed in the passes (U.S. Coast Pilot. Alaska. Part II, 304, 11931). The passes in the entire Aleutian Chain vary in depth from 15 to 20 fathoms to more than 300 fathoms, and thus provide paths for free circulation of the surface waters of Bering Sea and the North

Pacific. However, the Aleutian Ridge prevents any exchange of the abysmal waters. Between Attu Island and the Komandorski Islands, depths of 2000 fathoms havo boen recorded, thus providing a means for the exchange of fhe a deeper waters. (See CHEIAN Report Pages 46 and 47).

Bering Strait prevents any exchange of the waters of the Arctic Ocean and thus produces conditions in Bering Sea and the North Pacific that are not encountered in the North Atlantic.

Three great rivers, the Yukon and Kuskokwim in Alaska and the findir in Siberia, discharge into the northern waters of Bering Sea.

The basin of Boring Soa is approximatoly divided into two cqual portions by the 100-fathom contour which extonds from Unimak Pass, in a northiostorly direction, to Sibcria, passing just south of the Pribilor Islands. The sea floor, east and north oir this contour, is an inmense platoau of little changing dopth, averaging between 20 ind 30 fathoms and shoaling gradually tomard the coast linos. Wost and south of tho contour, the sea floor droos more or less rapidly to a basin approximating a depth of 2000 fathoms.

Prior to the sajling oi the CHELAN from Seattle, a recording fathometer was installed. This kept an accurate account of the soundings up to 125 fathons. The CHEIAN covered much of the territory in the Boring Sea and some in tho iretic. An accurato record wes kopt of soundings and positions, which data was plotted. ilany intorosting observations were made from theso soundings. It can bo scen thet if tho olovation of the shores of the Boring Soa, tho Arctic Ocoan and a continontal sholy lying orf thom is raisod 200 foct thoy would connoct Asia and Alaska; if thoy wore raised ' 300 feet it mould connoct the castem Alcutians as iar us Umak and the Pribilof Islands with the mainland oi Alesiv, laying bare a vory large lavel plain, covoring the northern half and most of tho oastorn part of tho Bering Soa.

It was possible to obsorve the contour and constructions of many of the islands of the Bering Sec and the linos of Alasion and Asia. With this information and data with reicrenco to tho dopths, it wald appoar thet the glacial thoory is a corroct one. Soundings would indicate that a geologically short tine ugo the continent of North Amorica and Asia were probably one being connected during the period when tho mamoth passed over from Asia to Ancrica. Invostigations have shown that man probably passed Irom Asia to Amorica, over the Asian-Ancrican bridgo or over that vast continontal platoau which occupicd what is now Boring Son, Boring Strait, and a part of the Arctic Soa. Tho similarity of rock structure on both sides of Bering Strait is proof of the former land comection between Alaska and Siberia.

In spite of great variety in types, the Anerican natives show definite similarities to Asiatics. A careivl investirgation of these tribes has given very significant indications as to the character of the othnological connections between the northern Asiatics, and the Eskimo.

The Aleutians Islands and those of the Pribilofs, St. Nathew, St. Lawrence and Diomeaes appoar to bo just a cegradod portion of tho turotic glacial mountains with thoir foothills and most of the lowest portions undor wator;
the submorgod ridges forming the passes botwoon the islends, whilc the plains approaching those mountains now covored by tho shellow wators form tho Boring Sca. It boars out the theory that an ice sheet from the Arctic region once covered this area and discharged itself into the Pacific Ocean and that the basins of the Bering Sea, Bering Strait and the dretic Ocean were simply a portion of tho bed of the ico shoot which was erroded to a modoratc dopth benoath the lovol of the sca and over which tho waters woro gradually oxtondod as tho ice shost was withdrawn end soparatod tho two continents.

AIBUTIAN ISIANDS - WEATIER.

As a rasult of their location, winds from practically overy direction aro noar saturation, This applies ospocially to thoso botweon southoast and southriest which have blown over the. North Pacific Ocean, absorbing wat.ir from the Japaroso curront, this as a rosult of the higher nater temperatures. South winds are usually present when the lows travel across the islands. Clear weather is usually present when the Polar Highs sweep southward toward the Aleution IsIands with a northwest to north winds, Which winds contain air of low hunidity far belon saturation, being mostly from over Sibeia and are thus dry. Host of the fall and rinter stoms of the Horth Pacific originato in the Aloutian Islands.

The meathor in the Islands is usually misty with rroquent blows but during the minter soason and in the late spring northoest winds are oncountored with consoquent clear wather. The sumer vinds are usually southoast to southrest rith on ocersionsl northoaster. Thejr are not vory sovere and of short duration but the Fintor gales are long and severe. The temperatures of the islands are not very extrene because of the fact that they lie between the warm Japanese current and the cold Boring Soa wators. They can be considored mild and stomy in wintor and cool and dmp in the summer months. No froezing tomperatures occur during tho sumor months, the micdle of May and first of Octobor bcing the limiting poriods. Tho procipitation avorages about 70 inchos with tho groatost fall in the autumn and wintor and tho loast in summor. Procipitation occurs on about 200 days a yoar, the most during October. The Kuro Suvo or Japanose current, breaks on tho westorn end of the Aleutian chain. Fialf flows eastward south of the Island and carries with it the warm moist atmosphere which is condensed on the snow peaks and sinks downward in the fine and dolicious mist that gives the grass its vivid, brilliant, perpetual, green. The other half.passés northtard into Bering Sea.

BERING SEM.

Tho most outstanding featuro about tho woather in Boring Sea is its groat uncortainty. Like the Alcutian Islands good wather is rarc and the winds cennot bs doponded upon to ramain long in onc quartor. Tho lato spring and summer aro mild and very loggy, with comparatively fow strong winds and considorable rain. Arter Soptomber 1 , Gules bocome fruquent but not so hoavy, fogs gracually lessen, and toward the latter part of "the month snow orten accompanies tho storms. During the fall and winter, gales aro frequent, violent, and from almost any quartor.

These gales arc often accompanirod by vory low barometers. Though sometimes very severe, they are usually not so strong as mould bo expoctod
A 1 A

$$
f
$$

$$
\varepsilon
$$

E
E
E
by the fall of the barometer. There are of ten periods of moderate weather. Strong winds or gales from any quarter always bring thick weather, rain, or snow. With easterly or southerly winds the rain is continuous, while vith westerly or northerly winds the rain or snow occurs at intormals in squalls, and whon tho wind subsides the woathor is likoly to bc clcar.

Southoast galcs, With falling baromoterand rising temperature are generally preceded by an almost unusual clearness of the air; cirrus clouds are seon southwestward, which gradually thicken and oversproad tho sky. The wind usually shifts to southwestward whon tho baromotor coasos to fall, but it sometimes backs from southeast to northeast and gonerally goes to northwost boforo subsiding. Upon abating, tho galo is followod by light wostcrly minds and comparatively cloar moather. (Soc chasts on moathor).

Ice gencrally covers Bering Sca north of the Pribilof Islands and Bristol Bay during the winter, but there may bo considorablo seasonal variations. This ice inveriably moves northward, propellod by the surface curront through the Boring Soa into the Aretic Occan, unloss influonced by adverse minds. The movemont genorally begins in April, ico broaking along the Siborian coust. Boring Strait may not bo free of ice until gle first week in July.

RESULTS AND DISCUSSION.

Temperature and Chlorinity Distribution. The distribution of surface temperature (Table I) was characterized by a decrease from east to west. Comparatively high temperatures of above 9°. C. were found along the Alaskan coast off the Yukon Delta. This region extended from lunivak Island through Iorton Sound to the Seward Peninsila. In the southern portion of Bering Sea, a tongue oir wamn nater protuded vest of a line betiveen St. George and Bogoslof Islands (Section XIII). Cold surface water of from 3° to $6^{\circ} \mathrm{C}$. Was found along the East Siberian coast, extonding from St. Lawronce Island west of tho Diomodos to the Arctic Ocean. Abnomally low suriace tomperaturos of $2.34^{\circ} \mathrm{C}$. and $2.32^{\circ} \mathrm{C}$. worc found at stations 39 and 50 mithin this area. Most of the surface tomporatures obsorvod woro botwoon 6° and 9°, indicating thit tomporature rango throughout tho contral portion of Boxing Soe und the castorn part of Boring Strait. Isothoms for subsuriaco lovels to dopths of 50 motors parallclod roughly surfeuce isotherms and also contours of equal bottom dopth. Tomporaturos ut subsurfaco lovals woro lowor than at the surfacu. Tho 6° isothorm at 25 motors occupiad approximatoly tho position of the 9° suriaco isothom. Valuos of bolon 0° C.tore found at 25 moters betwoon St. Larrence Island and the Siborian mainland (Stations 68 and 69). Thic coldost mator on the cruiso with a mininum tomporsture of $-1.63^{\circ} \mathrm{C}$. तns found noar tho botbom (50 maters dopth) in tho refion southrost of St. Larmonco Island. This cold arca includod Soctions IX, X, and tho westorn ond of XI, pointing to tho Gulf of Anadir as tho "cold contor" of Boring Sea.

Chlorinity valuns for surfoco mators incroasod Irom about $18.00 \% / 00$ noor the Aloution Ridge to a meximum of above $18.25 \% / 00$, 50 milas north of the ridge. Continuing north rrom this area, the values decreasod to botween 17.25% and 17.50% at 60° north latitude (Section XI). North
of 60° the predominant variation was in an east-west direction, chlorinities increasing from 17.00% or less along the hasitan shore to raxirnum values of sbove $18.00 \% 00$ a short distance Irom the inest Siberian coast. Inshore values had dropped below 17.50% due to the fresh water drainage from land. Inflow from the Yukon, which drains over 330,000 square miles of territory, and the Kuskokrim Rivers oxplainod the low chlorinitios along the Alaskan coast. The relative distribution of chlorinity for subsurfaco lovols down to 50 motors was similar to that at the suriacc, but the concentretions woro higher. As A ith isothoms, iscehlors parullelod roughly tho bottom contours.

The vortical distribution or torporaturo and chlorinity varied considerably with location. Average values for 11 stations of under 30 meters in depth in Norton Sound showed a uniform temperature gradient with conparatively high toraperatures extending to depths of 20 meters:

Depth ITetors	0	10	20
Temporature ${ }^{\circ}$ C.	9.29	7.18	5.94
Chlorinity $\%$		17.23	17.63

Tho Chlorinitios showod tho ofroct of surface dilution Pron the Yukon River. See especially the data for stations $28,29,58$, and 59 in Table I.
The waters at a number of stations near the flaskan coast were well mixed from top to bottom. This was true of the stations near Nunivak Island, for example stations 23 to 25 in Section III and stations 91 and 92 oi Section XI. At these stetions the water hed been so recently mixed that little evidence of the nombl surface waming was found, temperatures being practicallythe same at all depths.

In general the shallow waters in central and western Bering Sca north of the Pribilof Islands, were divided into two distinct thermal layers separated by a transition zone of varying thickness. The upper warmer layer Was of lowor chlorinity than the cold botton water. This condition is woll illustrated by data from stations 95 to 98 in Scction XII and stations 18 to 20 of Section III. At these stations the water of the ilirst 10 motors belor the surface lay in ono homogonoous layer, and that bolow 25 metors lay in another heving entirely difierent properties. At Station 97 the sharp temperature drop and chlorinity increase occureā within a space of five meters. The water had a temperature of $8.35^{\circ} \mathrm{C}$. and a chlorinity of 17.56% at 20 meters as contrasted to 3.530 C . and $17.86 \% / 00$ at 25 meters. For most of the stations between St. Liathew and St. Lawrence Islands (Section X), the greatest changes in temperature and concentration took place between the depths of 10 and 25 meters. At stations 68 and 69 between St. Lawrence Island and Siberia (Section IX), the transition zone centered about a depth of 10 meters, whereas at Station 70A of the same section, the entire change had occured between the surface and 10 meters.

At stations 39 and 50 menticned previously as heving excoptionally low surface temperitures, temperature and chlorinity cinanges from top to bottom were small, less than $1.5^{\circ} \mathrm{C}$. and $0.10 \% / 00$ rospectively. This watcr had ovidently undorgone very recent mixing. A comparison of the data at Station 50 with that of other stations in IJorth Boring Sua shows the tomperature to be too low and the chlorinity too high for water originating

$$
r
$$

along the klaskan coast. Tho temperatures and chlorinities are too low for water inshore along the Siberian coast at the same latitude. The source of this water must then have been at a distance, cithor north in the Arctic Ocean or southrost in tho Gulf of Anadir. Both diroct curront moasuromonts and calculatod curronts indicatod tho latter. This conclusion was substantiated by rosults from Station 69 which lay in the path ois any water moving from tho Gulf of Aliadir to Station 50. Tho mator at 69 was stratifiod as it camo from tho Gulf but had a moan chlorinity equal to that at 50, showing that tho lattor could havo boon formod by tho mixing of tho watcrs passing north betwoon St. Lawronce Island and Siboria at, or ncar, Station 69. This wator ovidontly continucd on through Boring Strait in a path not far romoved from Station 39.

In Section V (Stution 36 to 39) taken across Boring Strait at its normoricst point, uniformly high tomporituras and low chlorinitios woro found noar the Alaskan Coast and low tomportures and high chlorinitics on the Siberian sido. Each mator mass within itsolf was quite honogeneous due to mixing at the entrance to the strait. The differcace betreon the two arose from their sourcos. Thio Siboricn wator cemo from tho cold, rolativoly concontrated Gulf of Amadir and flowod towrd Borirg Strait west of St. Larrence Island. The filiskan rotor came from Bristol Bay and tho Yukon Dolta and moved northeast of St. Lawrence Island. At the tro stations in tho midalo of tho soction (38 nd 39), the lighter Alaskan wetcr overtlowed the moro donse Siborian $\boldsymbol{\text { anter cousing stratification. }}$

For the purpose of studingtidal effects and other variations of a short-time nature, values of tenperature and chlorinity at intervals during a 23-hour period जere detemined in Bering Strait at Station 45 . The properties of the water wore practically constant at depths of 25 and 40 metors, but temporaturo valuos at the surfecc and 10 meter lovels fluctuatod widely. The menn valuos of tomporature and chlorinity have beon computed and aro shown, togother with the naximum and mean deviations from the mean in Tabic V.

TABLE V.

Temperature and chlorinity values, showing the maximum and mean deviation from the man for a 23-hour period at Station 45 in Bering Strait

:	Tomperature 0 C.			:	Chlorinity \% 00					
Dopth :	Moan	: Inaximurin	Mean		Ifoan		ximum		Mean	
Motors:		: Deviation	: Daviation				iation		iation	
-		: Arom Mican	:from lican	:			n Moan		m İcan	
0	4.79	: 0.95	0.64	:	18.10		0.05		0.02	
10 :	2.67	0.83	0.51		18.16	:	0.02		0.01	:
25	1.53	0.08:	0.03		18.20		0.02		0.01	
40 :	1.49	$: 0.06$	0.03	:	18.21	:	0.02	:	0.01	:

The vortical distribution of tamparature and chloininity ior the docp water stations betweon the Alcutian Ridgc and the Pribilof Islands is perhaps bost suminarized by avorago rasults fron sovoral stations. The results from seven suah stations (102, 105, $106,107,117,118$, and 119) have been averaged and ure shown together with the maximum and mean deviations from the mean in

Table VI. Tomporatures decroascd With
T\&BLE VI.
Tomporaturo and chlorinity values showing tho inaximum and mean deviations from tho moan at soven stations botwon the Alcution Ridge and tho Pribilof Islends

incransing dopth to dopths of 150-200 motors mad thon roso to a slight subsurface maximum at 300 meters. Between 400 and 1000 meters, a unilom decrease occured, The greatest temperature variations were in the first 25 ineters, but considerable variation extended to depths of 300 moters. From 400 to 1000 meters, the mean deviation from the mean averaged $0.03^{\circ} \mathrm{C}$. Chlorinity values showed a uniform incroase with incroasing depth. The greatest deviations from the mean occurcedin the first loo moters. Bolow 100 metors, the mean doviation iron the mean nevor oxcoodod $0.03 \% / 00$.

Density. The donsity of tho mator at any givon lovol is a function of the tomporaturc and chlorinity and is detormined by those values. For tho area invostigated, tho isopycniclines showing the distribution of density at the difforent lovels are approximatoly parallel to tho tarmporaturo and chlorinity contours as wall as to tho bottora contours. The lowest donsity values wore Iound at tho suriace in Mortor Sound off the Yukon Delta. Values of density expressed as $\mathrm{O}_{\mathrm{S}}^{-}, \mathrm{t}, 0$ of under 23.00 were found in this region. hiaximun values of above 25.00 were found just oif the Siberian coast and also southwest of a line extending from the Pribilon Islands to Unimak Island. The aistribution at the 25- and 50 -meter levels was analagous to that at the surface, densities increasing from east to west. Values of about 26.00 wore found at theso levels in the deop wator south OI' St. George Island and in tho shallow wator near the Siborian coast. Haters from the shallow region of northern Boring Sea we.c quito stablo, donsitios incroasing mith dopth, the increase boing vory rapid at the transition zone. Only at stations in positions of continuous mixing were donsitios uniform from top to bottom. In the region of deep water near. Bogoslof Island, maximum velues of $0 \bar{s}, t, o$ of 27.43 were found at 1000 meters. The stability of the water showed, a normal decrease with increasing depth in this area.

Currents. Calculated current rosults are given in Table IV. Two diagrams have been constructed, the first of which (Figure 4) shows the dynamic topography of the surface referred to the 1000 decibar lovol for tho rogion of decp water between tho Aloutian Ridgo and the Pribilof Islands. The socond diagram (Figuro 5) shows tho dynamic topography of tho surface reforred to the 50 decibar levol for tho rogion betwoon St. Paul Island and the Arctic Ocoan. Contour lincs aro dramn for intorvals of two dynamic contimetors. Arrows show tho diroction of the curront. Numbors adjacont to the arrows givc tho wator velocitios in knots. Not all stations in docp تater region wore sampled to depths of. 1000 metors. In such cases the dynamic hoights wero obtcinod by extrapolation, using lo00-motor stations as a besis. The sume procoduro was followed for northern Boring Sca at stations lass then 50 motors in dopth. Tho diagrams aro not cxact at all points duo to thosc cxtrapolations but are essentially correct as shown by chocking the oxtrapolations using differemt reference stations. The small temperature and chloririty variations at depths of 1000 meters (Table VI) indicato almost constant conditions with little current at that depth." Thus Figure. 4, based on rolative values, also gives quito accurately the picture of the absoluto curront ficld for tho decper rogion.

North of the Alcutian Ridge near Bogoslof Islend, the curronts paralt lolod the ridgo toward the oast, swung north in tho vicinity of Unalaske Island as tho water met the continental sholf, and then doublod buck along the sholf as it headod to the northwest south of the Pribilof Islands. Current magnitudes in this area wore 0.3 knot or less. Between Unimak and Unalaska Islands, the Pacific wator sct morth into the Bering at velocities up to 0,4 knot. Wost of Unalaska Island, the velocity componont towards the north was loss, but tho genoral transior of watcr from the Pacific to tho Boring was still prosont. Wator volocitics docroasod with increasing dopth, bocoming small at dopths of 800 to 1000 metors as comparcd to those at the surfoacc.

In the northorn portion of Boring Soa, water from Bristol Bay and the Yukon Dolta moved north along the Alaskan coast and passed into the Aretic through the castorn portion of Boring Strait. Cold Wator from the Gulf of Anadir and porhaps sonc surfece wator from the doupor rogion of tho Boring, moved north olong the Asiatic coast and into the Arctic on the wostern side : of the Strait. Sinall eddy currents were found between St. Lawrence and the Diomede Islands. Currents calculated by the Bjerknes method for the shallow Watcrs of North Bering Sea are low, as this method gives only the relative velocities roferrad to the lowest obsorved lovel; and water at this lovel was shown by diroct curront moasurorionts to be in motion. Surface curronts dopictod in Figure 5 and given in referonce to the 50-dociber lovel accordingly do not givo the obsolutc currents for that rogicn. Tho diagram, howovor, shows satisfactorily the linos of tilow und rolativo curronts.

Calculutod curronts showed that in goncral the wator in Boring Soa movod in a diroction paralloling the coust linos and tho bottom contours. This can bo roadily aocn by comparing figuros 4 and 5 showing tho curronts with Figura 2 showing tho bottom topography.

Dircet curronts as obtained by obscrvations fron tho anchored ship by inoths of in Ekman curront motor (Tablo IV) aro shown for sovoral stitions in Figuro 6. In this diagran tho Iongths of tho arrons aro proportional to the velocity of the vator rasses and thoir diroctions show tho diroction of the flow. In most cases tho mator mas found to bo in intion from top to
bottom, the velocity decreasing with increasing depth. Current values obtained by direct measurement are absolute, and higher than the rolative valuos obtainca by dynamic methods. Both methods indicated the same water transfor, namely, fron tho Pacific north through the Boring and into the Arctic through Boring Strait.

Diroct curront measurchents takon for a $21-h o u r$ period at Station 45 in Boring Strait gave a mean water velocity from top to bottom of 0.5 knot setting north. Currents varied from 0.3 to 0.7 knot during the observations but maintained a constant direction and shored little change of intensity With depth. Considering uniform velocity across Bering Strait at this point, its width and mean dopth, the above volocity corrosponds to a flow of 0.5 cubic nautical milc per hour. This flow is above 3% of that for tho Gulf Stream at its narrowest point off the coast of Florida els calculated by wist (1930). It is equivalont to a rivor 15 times as large as the lississippi which has an average hourly discharge of abat 0.03 cubic noutical milc.

Similar current moasuroments wero modo for a nine-hour period at Station 70 betwoen St. Lamrence Islond and Siberia. The current at this place avoraged 1.3 knot satting consistently about 15° oast of north. The moan curront was 0.26 knot groator at 5 notors than at 35 moters. Diroct curront moasurcments wore madic at stations 82 and 83 during and just aftor a heavy wind. The valuos were abnomally high for this region as was shown by the uniform decrease as the storm abated at tho end of the observation period. Currents bascd on a 24-hour poriod of observation at Station 94 off Cape Mohican, Nunivak Island, were chicfly tidal in naturo and followed the shoro line. Tho curronts rovorsod direction with a change of tide but showed a net transfor of Water to the north. Curronts at Station 103 at the west anchorgeg of Bogosloi Island wore quite constant at 0.8 knot sotting northinest. Those curronts can not bo taken as a truc measuro of those in deep weter a short distonce offshore, as the water undoubtedly increased in volocity and modificd its dirsction to consorm to the botton contour as it flowod ovor the shallow sholf surrounding the island.

The surface currents obtained by both direct measurements and dynamical methods agree well in direction with those outlined by the "Unitea States तoast Pilot" - Alaska - Part II (1931). The magnitudes in a number of oases differed considerably from values reported by previous observers based on mothods of a move or loss qualitative nature. Prior to the cruiso of tho CHECAN, subsurface currexts for most of the area investigated'had never beon determined.

Dissolvod Oxygon and Minor Constituents. The data for dissolved oxygen and minor constituents are givon in Table I, scetion b. Considering the horizontal distribution at the surface for the shallow rogion extending from the Pribilof Islands to tho Arctic Occan, oxygon concontrations were low, less than 0.5 milligram atom per kilo along the Alaskan coast, and high, groater than 0.9 milligrom atom por kilo corrosponding to about 150 por cont saturation along the. Siberian coast in the vicinity of East Cape. The maximum value observed was 0.972 mg .at. (153 per cent saturation). at station 40 in the northern part of Bering Strait. The concentration for most of the contral part of the region was approximately equal to tho saturation value for the water. Phosphate concentration increased from loss than 0.5 microgram atom per kilo on the castorn side of Bering Soa

to a maximum of 2.7 microgran atoms at Station 49 , about 30 ,miles from the Siberian coast at the southern entrance to Bering Strait. "Silicates at this station were 35 mcg .at. per kilo as contrasted to valuos of Prom 0 to 10 meg . at. for the entire central portion of the area. In Norton Sound from Nunivak Island to Nome, silicate coneentrations were higher, above 20 meg . at., duc to the solublo silicato carricd down by the Yukon and Kuskokwim rivors. Nitritos woro ontirely absont or prosont in concentrations of less than 0.05 mcg . at. per kilo in the castorn and contral area of North Boring Soa. Tho highest values above 0.20 meg . at. wore found along the Siborian coast. Unusually high concontration of nutriont salts and low concontrations of dissolvod oxygen in the surfacc laycrs at stations 49 and 50 aro oxplainod on tho basis of turbulonce in tinat rogion as brought out in the discussion of tomperature and chlorinity values. In South Bering Sea high concentrations of phosphate, isilicate, and nitrite were found along or just north of the Aleutian Ridge. This may be oxplained by upwolling and mixing due to turbulence of the Pacific water as it passes across the Ridge into tho Bering..

The horizontal distribution of nutriont salts at subsurface levels was relatively tho same as at the surfece, but tho actual concontrations wore higher at the lower levols. Throughout Bering Sco tho contours showing the distribution of nutriont salts and dissolved oxygon, as vas the caso With the isothorms and.isochlors, tended to follow the bottom contours and lie in the direction of the currents.

In order to show the vertical distribution in South Bering Sea, values of dissolved oxygen and nutrient salts for seven deep water stations (102, $105,106,107,118,119$, and 120) have been averaged. The se average values are given in Table VII. The concentration of dissolved oxygen

TABLE VII:

Averago concontrations for dissolvod oxygen and nutrient salts for soven stations in Bering Sea near Bogoslof Island. (Concentrations of dissolved oxygon aro expressed as milligram-atoms and of nutriont solts as microgramatons of tho characteristic eloment por kilo of soa wator.)

Dopth	: Dissolvod Oxymon:Phosphorus:Silicon:Nitrogon: DH											
Motors				\% Sat.		meg.at.		megoat		cg.st		
0	:	0.521	:	90.4	:	1.3		29		0.14		8.09
10	:	. 531	:	91.2	:	1.5		31		. 13	:	8.09
25	:	. 513	8	86.0	:	1.7		38		. 16		8.08
50	:	. 459		73.7	:	1.9		49	:	. 20	:	8.06
75	:	. 445	: 7	71.0	:	2.0		54	:	. 13	:	8.05
100	:	. 433	:	68.8	:	2.0		58	:	. 12	:	8.04
150	:	. 404		63.7	:	2.0		64		. 09		7.99
200	:	. 398		62.0	:	2.3		69	:	. 05	:	7.94
300	:	. 323	5	50.3	:	2.5		82	:	. 02	:	7.90
400	:	-205		32.3	:	2.6		91	:	. 00		7.86:
500	:	. 133		20.7	:	2.8		105	:	. 00	:	7.81
600	:	. 096	: 1	14.9	:	2.8		115	:	. 00		7.81
800	:	. 061	:	9.4	:	2.9		130	:	. 00		7.78
1000	:	. 057		8.8	:	2.9		135	:	. 00		7.74

average slightiy more at 10 meters than at the surface. Below 10 meters
the concentration decreased to tho lowest observed valuos at 1000 metors. A mininum oxygen zono was found at 800 moters at Station 105 and indicated at 1000 motors at other stations but was not definitoly ostaiolished as no samplos were obtainc d below that depth. The values for dissolved oxygen at 1000 meters in this region were slightly higher than those found at the same depth in 1933 near Adak Island, 400 miles to the west (Thompsoir, Thomas and Barnes, 1934). Tho vertical distribution curves for the two localities, howovor, aro of tho same general type.

Tho most significant chango in phosphato concontration was tho rapid incroaso in the first 500 motors; below that depth, values cither incroasod only slightly to maxima at 1000 meters or were constant. The concentration to a depth of 400 meters was considerably higher than that reported for the Pacific off the Washington coast in 1932 (1936). Bolow 400 moters , tho values obtained from the two rogions wero almost indontical. Silicate concontrations also increased rapidly with dopth in the upocr lovels. Littlo change occurred fron 800 to 1000 motors. Silicate concentrations for surface layers were higher than those normally found in the Pacific near the Washington coast. Λ maximum for nitrite nitrogen of 0.20 mog.at. per kilo was, found at 50 meters. Concentrations were higher in the vicinity of the islands than at offshore stations. No nitrites were present at depths of over 300 meters. Values of pH decreased from about 8.1 at the surfaco to 7.8 at 500 metcrs; bolow this depth, the docroaso was siight.

The distinct layering of water in North Bering Sea as denonstrated by temperature and chlorinity distribution, was shown also by the distribution of dissolved oxygen and nutrient selts. Referring again to Station 97 in Which marked changes in tempcrature and chlorinity occurred between 20 and 25 meters, it is seen that this trensition zone corresponds exactly to that for nutriont salts. Phosphate concentrations increased from 0.47 microgam atoms per kilo at 20 motors to 1.6 microgram atom por kilo at 25 metors. The corrosponding increase insilicato and nitrito concontrations wore from 8 to 30 and 0.00 to 0.26 rospectivoly. Concontrations for the upper 20 moters werc constant at the lowcr values, whoreas concontrations for dopths of 25 to 65 meters were constant at the higher values. Sirnilar distributions were found at most stations sufficiently removed from arcas of turbulence and mixing. In genoral the conclusions regarding tho origin and flow of wator as based on temporature and chlorinity measuromuts aro confirmed by tho distribution of dissolved ozygen and nutriont salts.

Surface Obsorvations in the Pacific Occan. The results from surface obsorvations made while on route from Saat tie to Drtoch Harbor (Tablo II) may bo sumarized as follaws: Tomporaturos and chlorinitios wero lower on tho continontal shelf at both cndis of tho routo than at positions of doop water off the sholf. A meximum of $14.5^{\circ} \mathrm{C}$. was found just off the continontal sholf west of Vancouver Island (Iatitude $49^{\circ} 17^{\prime}$ North, Longitudo $127^{\circ} \quad 33^{\prime}$ Wost) . Tho tomparature at a similar position with rospoct to the shelf south of the Alaskan Penisula was 10.5°. C. The mininum tenperature found was $7.4^{\circ} \mathrm{C}$. in Uninak Pass. A maximurn chlorinity of $18.21 \% / 00$ was found in the Gulf of Alaska due saith of Kodiak Island ($54^{\circ} 08^{\prime}$ North, $155^{\circ} 00$ West). The minimura value, $17.29 \% / 00$, was found in the Strait of Juna de Fuca. Phosphates wore high in tho Strait, 1.6 meg.at. por kilo, and decreased to a minimum of 0.16 jacg .c.t. at the position of maximurn toriporatore off the continental sholf noar Voncouvor Islande Maximunnitrito values were also recorded in the Strait. Nitrite concentrations in the open sea varicd

\square

irregularly from 0.00 to 0.27 mcg . at. por kilo. Soluble silicatos wore slightly loss concontrated ncar the Alaskan Poninsula than off the continontal sholf in the Gulf of Alaska. The proportics of the water in the Pacific inradiately south of the Alaskan Poninsula wore quiot analagous to those of castern Bering Sca and mark tho North Pacific as tho sourco of Boring Soo wator.

Bibliography.

1879. Grioss, P. Bor. 12: 427.
1880. Ilasvay, M.I. Bull. Soc. Chom., Sor. 3, 2: 347.
1881. Knudson, Martin. Hyarographical Tablos, Coponhagon.
1882. Bjerknos, V.F.K. .nd Sondstrom, J.W. Dynamic Meteorology and Hydrography. Carnegie Inst. Pub. No. 88. Washington, D.C.
1883. Krumrel, Otto. Handbuch der Ozeanographie, Vol. 2, p. 723-724. Stuttgert.

Whipple, G.C. and Whipple, IS.C. J. An. Chem. Soc. 33, p. 362-365.
1915. Hesselborg, Th. and Svordrup, H.U. Borgens Niuseuns Aarbok, No. 14, 1914-1915. Bergon.
1920. Donigos, C.C.R. Acad. dos. Sc.; Paris I. Y , 302.

192̈3.' Winklor, x.W. Standard Nothods of Water Analysis. An. Publ. Hoalth Assoc. 5th od. 59-61.
1926. Sraith, E.H. U.S. Coast Guard Bulletin No. 14: Washington, D.C.
1929. Truog, E. and Nieyer, A.H. Ind. Eng. Chern. Anal. Ed. J, p. I35-139.
1930. Wưst, Georg. Der Golfistron. Sonderabdruk Aus Der Zeitschrift Der Gesellschaft Für Erdkunde Zu Berlin. Jahraciang 1930, Nr. $\frac{1}{2}$, p. 42-59. Berinn.
1931. Unites States Coast Pilot, Alaska, Pt. II; p. 13-14 and p. 304. Washington.
1932. Ekcian, V.W. Journ. du Conseil VII, No. 1, p. 3-10.
1933. Soule, F.M. Hydrographic Rev. 10, p. 126-130.

Thompson, T.G. and Houlton, H.G. Ind. Eng. Chom. Anal. Ed. 5, 417.
1934. Carter, N.Ni., Nioberg, E.G., Skogsborg, T., and Thornson, T.G. Proc. Pifth Pac. Sci. Cong. A5, p. 2123-2127.

Thorpson, T.G., Thonas, B.D. and Barnes, C.A. Distribution of Dissolvod Oxygen in the North Pacific Ocoan. Jamos Johnstono Minorial Voluno, p. 203-234. Liverpool.
1936. Igolsrud, I., Robinson, R.J. and Thompson, T.G. Univarsity of Washington Publications in Ocoanography, Yol. 3, No. 1, p. 1-34. Seattlo.

TABLE I.

Section (a)	1. Temperature 2. Chlorinity 3. Salinity 4. Dynamic Depth
Section (b)	I. Phosphorius 2. Silicon 3. Nitrite 4. Dissolved Oxygen

Addenda sheet, Table I. Under scction (a) change heading Chlorinity and Dynamic Depth from:

Addenda shoct; Tablo I. Under scction (b) chango hoading Phosphorus. Silicon; Nitrito Nitrogen from:
"Dopth : Phosphorus ${ }^{2}$: Silicon 2 : Nitrite Nitrogen : Dissolved Oxygen

to

SECTION 1 - Dutch Harbor - St, George
7-26-34 Time:1131-1216

Time: 1422-1603

Station: 4
The observations from this station were discarded as unreliable.

\square

*
..

SECTION 1 - Dutch Harbor - St. George

SECTI ON 1 - Dutch Harbor - St. George

[^0]* * * *
* * * *

SECTION I - Dutch Harbor - St. George

\square

\square
\square

\square .
\qquad
\qquad

SECTION 1 - Dutch Harbor - St. George

SECTION 1 - Dutch Harbor - St. George

Depth Meters	Phospho mg.at.x	:	$\begin{array}{r} \text { Silicon } \\ \text { ma, at.x } \end{array}$:	$\begin{gathered} \text { Nitrite } \\ \text { ms.a } \end{gathered}$:	$\frac{\text { Dissol }}{\text { mg.at. }}$	d	$\begin{aligned} & \text { Oxygen } \\ & \% \text { Sat. } \end{aligned}$:	pH
0	0.0	:	0.5	:		:	. 567	:	98.6	:	
10	0.32	:	(0.6)	:		:	. 553	:	96.2	:	
25	0.32	:	0.8	:		:	. 590	:	101.0	:	
50	1.42	:	3.2	:		:	. 524	:	78.1	:	
75	1.42	:	4.3	:		:	. 419	:	63.3	:	
100	1.51	:	4.5	:		:	. 437	:	66.0	:	
Station: 10											
0	0.22	:	0.7	:		:	. 536	:	91.9	:	
10	: 0.25	:	0.8	:		\pm	. 509	:	87.0	:	
25	: 0.57	:	1.8	:		:	. 506	:	82.0	-	
47.5	0.79	:	2.5	:	!	:	. 536	:	84.7		
(50)	(0.77)	:	(2.4)	:		:	(.535)	:	(84.6)	:	
72.5	0.63	:	2.0	:		:	. 480	:	75.5	:	
(75)	(0.63)	:	(2.0)	:		:	(1773)	:	(79.6)	:	
Station: 11											
0	0.57	:	1.8	:		:	. 540	:	87.5	:	
10	0.57	:	1.8	:		:	. 558	:	90.7	:	
25	: 0.88	:	2.2	:		:	. 518	:	82.5	:	

SECTION II - St. George - St. Paul

1
Station: 12
SECTION II - St. George - St. Paul

SECTION III - St. Paul Island - Nome
Time: 1645-1701
SECTION III - St. Paul Island - Nome
Station:: 17

Depth ineters	Phosphorous ing.at.x 10^{3}	:	$\begin{array}{r} \text { Silico } \\ \text { mgoat. } \\ \hline \end{array}$:		$\begin{aligned} & \text { Dissol } \\ & \text { mg.at. } \end{aligned}$	-	$\begin{aligned} & \text { Oxygen } \\ & 8 \text { Sat. } \end{aligned}$:	pH
0	1.10	:	0.0	:	:	. 606		98.5	:	
10	1.10	:	0.0	:	:	. 599		97.4	:	
25	1.20	:	0.0	:	:	. 594		96.6	:	
Station: 18										
0	0.47	:	0.8	:	:	. 401		68.9	:	
10	0.63	:	0.8	:	:	. 380		65.3	:	
25	1.35	:	1.8	:	:	. 288		43.6	:	
50	1.26	:	1.8	:	:	. 327	:	49.4	:	
Station: 19										
0	0.32	:	0.5	:	:	. 417		71.5	:	
10	0.54	:	0.9	:	:	. 507		87.0	:	
25	1.32	:	1.8	:	:	. 341		51.2	:	
50	1.35	:	1.8	:	:	. 296	:	44.4	:	
Station: 20										
0	0.25	:	0.8	:	:	. 464	:	79.5	:	
10	0.57	:	1.8	:	:	. 403		69.9	:	
25	1.35	:	1.8	:	:	. 500	:	74.7	:	
50	1.42	:	2.3	:	:	. 491	:	73.2	:	

SECTION III - St. Paul Island - Nome

SECTION III - St. Paul Island - Home
Station: 21

SECTION III - St. Paul Island - Nome

SECTION III - St. Paul Island - Nome Station: 25

SECTION III - St. Daul Island - Nome

\square

- \square
\square
29
Station:
SECTION III - St. Paul Island - Nome
-

Station:	31								
-									
0 :	0.47	:	2.5	:		:	. 535	: 93.9	:
10 :	0.32	:	2.0	:		:	. 558	: 97.9	:
15 :	0.32	:	2.0	:		:	. 557	: 97.9	:
Station: 32									
0 :	0.32	:	2.8	:	0.0	:	. 558	: 97.2	:
10 :	0.32	:	3.5	:	0.0	:	. 551	: 26.0	:

SECTICN IV - King Island to Fairway Rock

SECTION IV - King Island to Fairway Rock

Depth Meters	Phosphorous ${ }^{\text {m }}$ mo.at. 100^{3}	$\begin{array}{r} \text { Silicon } \\ \text { mg.at. } \\ \hline \end{array}$		$\begin{aligned} & \text { ite Ni } \\ & \text {.at. } \mathrm{x} \\ & \hline \end{aligned}$:	$\begin{aligned} & \text { Dissolv } \\ & \text { mg.at. } \end{aligned}$	$\begin{aligned} & \text { d Oxygel } \\ & : \% \text { Sato } \end{aligned}$:	pH
0 :	0.95	0.2	:	0.0	:	. 574	: 95.2		8.2
10 :	0.95	0.5	:	0.0	:	. 581	: 95.7		8.15
25 :	1.04	1.0	:	0.0	:	. 550	: 86.8		8.1
35 :	1.17	1.3	:	0.1	:	. 646	: 96.6	:	8.1
Station: 34									
0	0.47	0.0	:	0.0		. 499	: 83.7		8.2
10	0.32	0.0	:	0.0	:	. 54.4	: 88.0		8.15
25	0.32	0.0	:	0.0	:	. 658	:102.0	:	8.15
(35)	(0.93)	(0.6)	:	(0.7)	:	(.560)	: (86.0)	:	(8.15)
(40)	(1.24)	(0.8)	:	(0.2)	:	(.511)	: (77.0)	:	(8.15)
43	1.42	$1: 0$:	0.2	:	- ± 81	$: 72.5$:	3.15
Station: 35									
0 :	0.25	0.7	:	0.0	:	. 655	:108. ${ }^{\text {c }}$		8.18
10	1.51	0.7	:	0.0	:	. 614	:103.2	:	8.18
25 :	0.63	1.0	:	0.1	:	. 637	: 97.1		8.15
40 :	0.95 :	1.0	:	0.1	:	.635	: 96.9	:	8.15

SECTION V-Bering Strait

SECTION V - Bering Strait
Station: 36

SECTION VI - Bering Strait, North of East Cape
Long. 1690 $25^{1} \mathrm{~W}$ Date: 7-31-34
Botiom: Gravel

i
\square
\cdots
SECTION WI - Boring Strait, North of East Cape

STATION 44-Arctic Ocean, North of Fast Cape
STATION 44 - Arctic Ocean, North of East Cape

\square
,

SECTION - Tidal Cycle Bering Strait

$\frac{\text { Station: }}{\text { Sonic } D E}$	$\stackrel{45 \mathrm{~A}}{\mathrm{pth}} \underset{\mathrm{fat}}{\mathrm{If}}$	t.	$\begin{aligned} & 65^{\circ} 51^{\prime} \\ & \text { is }\left(47 \frac{1}{2} \mathrm{mo}\right. \end{aligned}$		Long. $169^{\circ} 45^{\circ} \mathrm{W}$				Date: 8-1-34			Time: 1200
Depth Meters	$\begin{gathered} \text { Teraperature } \\ { }^{\circ} \mathrm{C} \\ \hline \end{gathered}$		$\begin{gathered} \text { Chlorinit } \\ \text { Oo } \\ \hline \end{gathered}$:	$\begin{gathered} \text { Salinity } \\ 0 / 00 \\ \hline \end{gathered}$	$\begin{aligned} & : 0_{s, t}, o \\ & \hline \end{aligned}$	$\begin{aligned} & : o_{s}, t, p \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{Vs}, \mathrm{t} \mathrm{~g}^{\mathrm{p}} \\ & \times 10^{2} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { : Dynam } \\ & \hline \end{aligned}$	mic Dep	
0	5.31	:	18.10	:	32.70	: 25.84	: 25.84	:	97481	0	0	
10	2.87	:	18.18	:	32:8.4	: 26.20	: 26.25	:	442	9	9.74625	
25	1.55	:	18.22	:	32.92	: 26.36	: 26.47	:	421	: 21	24.36088	
40	1.51	:	18.22	:	32.92	: 26.36	: 26.56	:	413	: 38	38.97343	
Station:	45 B								Date: 8-1-34			Time: 1530
0	5.61	:	18.12	:	32.74	: 25.84	: 25.84	:	97481	: 0	0	
10	3.50	:	18.15	:	32.79	: 26.10	: 26.15	:	451	9	9.74660	
25	1.53	:	18.21	:	32.90	: 26.34	: 26.46	:	422	21	24.38208	
40	1.51	:	18.22	:	32.92	: 26.36	:26.56	:	413		38.97	
Station: 45 C									Date: 8-1-34			Time: 1900
0	4.39	:	18.12	:	32.74	: 25.97	: 25.97	:	97469		0	
10	3.45	:	18.17	:	32.83	: 26.14	: 26.20	:	4 47	9	9.74580	
25	1.61	:	13.21	-	32.90	: 26.34	: 20.46	:	422	: 24	$2{ }_{5} .36098$	
40	1.48	:	18.22	:	32.92	$\bigcirc 26.36$: 26.56	:	413	:- 38	38.97360	
Station: 45 D									Date: 8-1-34			Time: 2300
0	5.23	:	18.09	:	32.68	: 25.84	: 25.84	:	97481	0	0	
10	2.58	:	18.17	:	32.83	: 26.22	: 25.27	:	140	9	9.72505	
25	1.45	:	18.20		32.88	: 26.33	: 26.46	:	422	2	25.36070	
SO	1.43	:	18.20	-	32.88	:26.34	: 26.55	:	614	38	38.07340	

Station: 45 A
SECTION - Tidal Cycle Boring Strait

SECTION - Tidal Cycle Bering Strait

SECTION - Tidal Cycle Boring Strait

SECTION VII - St. Lawrence Bay, Siberia to Nome

SECTION JII - St. Liamrence Bay, Siberia to Nome

SECTI GI YII - St. Lartronco. Bay, Siberia to TITome
Time: 1716-1733
Long. 169° 28, W Date: 8-3-34 Long. Bottom: Rocky Bottom:

\qquad
\qquad
\qquad $\stackrel{1}{5}$
\square

\square
Station: 50

Depth : Rieters :	Phosphorous ${ }_{3}$: me.at. X 10 :		$\begin{array}{r} \text { Silicon } \\ \text { mg.at. } x \end{array}$		$\begin{aligned} & \text { tMi } \\ & \text { at. } \mathrm{x} \end{aligned}$		$\frac{\text { Dissol }}{\text { mg.at. }}$		$\frac{\text { Oxygen }}{\frac{1}{8} \text { Sat. }}$:	pH
0 :	1.48		2.8	:	1.5	:	. 671	-	100.1	:	8.15
10 :	1.58	:	3.0	:	1.5	:	. 617	:	91.4	:	8.10
25 :	1.89	:	3.0	:	1.2	:	. 559	:	82.7	:	8.05
(35)	(2.04)	:	(3.0)	:	(1.2)	:		:		:	(8.05)
40 :	2.11	:	3.0	:	1.2	:		:		:	8.05
Station: 51											
0 :	0.38	:	1.0	:	0.0	:	. 761	:	124.1	:	8.15
5 :	0.38	:	1.0	:	0.0	:	. 788	:	127.9	:	8.15
10 :	1.51	:	2.0	:	1.0	:	. 665	:	106.9	:	8.10
25 :	1.73	:	2.8	:	1.4	:	. 621	:	98.1	:	8.10
40 :	1.89	$:$	3.2	:	1.4	:	. 620	:	98.1	:	8.10
Station: 52											
0 :	0.38	:	0.8	:	0.2	.	. 619	:	104.7	:	8.10
10	0.38	:	0.8	:	0.2	:	. 630		104.3	:	8.10
(20) :	(1.07)	\%	(1.5)	:	(0.5)	:	(.579)	:	(92.4)	:	(8.12)
$25:$	1.42	:	1.8	:	0.6	:	. 553	:	30. ${ }^{\text {a }}$:	8.12
Station: 53											
0 :	0.63	:	1.0	:	0.0	:	. 596	:	101.2	:	8.10
10 :	0.69	:	1.2	:	0.0	:	. 621	:	100.2	:	8.10
$20-$	0.95	:	1.4	:	0.5	:	.609		34.9	:	8.05

SECTICN VII - St. Eawrence Bay, Siberia to Nome
Time: 0026-0041
\square \vdots

-
SECTION VII - St. Lawrence Bay, Siberia to Nome

\square

$$
\begin{aligned}
& * * \\
& \cdots 2 \\
& * * * \\
& \text { • .. }
\end{aligned}
$$

SECTION VIII - Lat. $63^{\circ} 39^{\circ} \mathrm{N}$, Long. $165^{\circ} 24^{\prime}$ 罗 to Savoonfa, St. Lawrence Island

Station: 58		
Sonic Depth:		
Sat. $63^{\circ} 39^{\prime} \mathrm{N}$	Lang. $165^{\circ} 24^{\prime} \mathrm{W}$	Date: $8-4-34$

Station: 61

0 :	0.54	:	1.0	:	0.0	:	. 574	:	101.1	:	8.10
10 :	0.54	:	1.0	:	0.1	:	. 436	:	73.2	:	8.10
20 :	0.69	:	1.4	:	0.3	:	. 616	:	98.1	:	8.10
Station: 62											
0 :	0.63	:	0.3	:	0.3	:	. 566	:	97.5	:	8.15
10	0.63	:	0.3	:	0.0	:	. 598		100.7	:	8.15
(20) :	(0.84)	:	(0.8)	:	(0.2)	:	(.593)	:	(96.3)	:	(8.15)
$25:$	0.95	:	1.0	:	0.2	:	. 591	:	94.1	:	8.15

SECTION VIII - Lat. $63^{\circ} 39^{\prime} \mathrm{N}$, Long. $165^{\circ} 24^{\circ} \mathrm{W}$, to Savoonga, St. Limence Island

$=n$ \square
SECTION VIII - Lat. $63^{\circ} 39^{\circ} \mathrm{N}$, Long. $165^{\circ} 24^{\prime}$ W to Savoonga, St. Lawrenee Island
Station: 63

SECTION IX - Gombell - Siberia

67
Station:

\square

SECTION X - Siberia - St. Matthew Island

SECTION X - Siboria - St. IMathow Island

SECTION X - Siberia - St. Mathew Island

SECTION X - Siberia - St. Ihathew Island

SECTION X - Siberia - St. Matthew Island

SECTIUN X - Siberia - St. Matthow Island

SECTION X - Siboria - St. ilatthew Island

Depth : Metors :	Phosphorou mg.at. x 10		$\begin{array}{r} \text { Silicon } \\ \mathrm{mg} . a t . \quad \mathrm{x} \\ \hline \end{array}$		tritc Ni mg.at. X		$\frac{\text { Dissoly }}{\text { mg.at. }}$:	$\begin{aligned} & \text { Oxygen } \\ & \% \text { Sat. } \end{aligned}$		pH
0 :	0.79	:	1.0	:	0.0	:	. 520	:	81.9	:	\%. 10
10 :	0.79	:	1.0	:	0.0	:	. 615	:	96.9	:	8.05
25	1.10	:	1.0	:	0.8	:	. 638	:	98.3	:	8.10
45 :	0.79	:	1.5	:	0.0	:	. 547	:	79.3	:	8.10
Station: 85											
0 :	0.79	:	1.5	:	0.0	:	. 604	:	100.3	:	8.10
10 :	0.85	:	1.5	:	0.0	:	. 597	:	96.9	:	8.10
25 :	1.10	:	2.5	:	1.0	:	. 605	:		:	8.10
(45) :	(1.10)	:	(2.5)	:	(1.0)	:	(.592)	:		:	(8.06)
50 :	1.10	:	2.5	:	1.0	:	. 589	:		:	8.05
Station: 86											
0 :	0.63	:	1.5	:	0.0	:	. 570		97.1		8.10
10 :	0.63	:	1.2	:	0.0	:	. 573	:	97.0	:	8.10
25 :	0.79	:	2.2	:	0.8	:	. 601		87.5	:	8.05
50 :	1.10	:	2.5	:	0.6	:	. 609	:		:	8.05
Station: 87											
0 :	0.79	:	1.2	:	0.0	:	.587		99.8	:	8.10
10 :	0.85	:	1.2	:	0.0	:	. 521		88.6	:	8.10
25 :	1.10	:	2.4	:	1.0	:	. 555	:		:	8.10
(45) :	(1.23)	:	(2.2)	:	(1.0)	:	(.504)	:		:	(8.10)
50 :	1.26	:	2.2	:	1.0	:	. 491	:		:	8.10
Station: 88											
0 :	0.63	:	1.0	:	0.0	:	. 579		98.5	:	8.10
10 :	0.72	:	1.0	:	0.0	:	. 578	:	98.1	:	8.10
25 :	0.88	:	1.0	:	0.5	:	. 598	:	86.0	:	8.10
(40) :	(0.38)	:	(1.2)	:	(0.5)	:	(.610)	:	(87.7)	:	(8.10)
45 :	0.88	:	1.2	:	0.5	:	.61去	:	88.2	:	8.10

SECTION XI - St. Matthew - Nunjvak

SECTION XI - Station off Cape Mohican - Nunivak Islend
Date: 8-70-34

4

Station: 89

Depth : Meters :	: Phosphorous ${ }^{3}$:: mg.at. $\times 10^{3}$:		$\begin{array}{r} \text { Silicon } \\ \text { mg.at. } \mathrm{x} \end{array}$		te Nit		$\frac{\text { Dissolve }}{\text { mg.at. }}$	$\frac{0 x y g e n}{\% \text { Sat. }}$:	pH
0 :	0.57		0.0	:	0.0		. 564	94.6	:	8.10
10	0.57	:	0.0	:	0.0		. 584	98.0	:	8.10
25 :	0.63	:	0.0	:	0.0		. 609	95.0	:	8.10
40 :	0.63	:	0.0	:	0.0		. 604	93.1	:	8.10
Station: 90										
0 :	0.38	:	0.0	:	0.0		. 521	86.0	:	8.10
10 :	0.47	:	0.0	:	0.0		. 532	87.6	:	8.10
25 :	0.47	:	0.0	:	0.0%		. 543	89.0	:	8.10
Station: 91										
0 :	0.25	:	0.0	:	0.0		.538	90.7	:	8.10
10 :	0.32	:	0.0	:	0.0		. 556	93.8	:	8.10
$25:$	0.57	:	0.0	:	0.0		. 581	97.5	:	8.10
Station: 92										
0 :	0.38	:	0.0	:	0.0		. 516	87.9	:	8.10
10	0.47	:	1.0	:	0.0		. 571	97.3	:	8.10
20 :	0.57	:	0.8	:	0.0		. 570	86.9	:	8.10
(25) :	(0.62)	:	(0.9)	:	(0.0)		(.570)	(98.7)	$:$	(8.10)
Station: 93										
0 :	0.47	:	2.0	:	0.0		. 572	97.1	:	8.10
10 :	0.47	:	1.2	:	0.0		. 581	98.6	:	8.10
25 :	0.57	:	0.5	:	0.0		. 567	95.3	:	8.10
Station: 94										
0 :	0.22	:	2.0	:	0.0		. 560	94.9	:	8.15
10	0.32	:	2.0	:	0.0		. 578	98.0	:	8.15
25	0.47	:	1.5	:	0.0		. 562	-95.3	:	8.15

\square

- . .
SECTION XII - Fast of St. Paul Island

SECTION XII - East of St. Paul Island
Station: 95

Depth Meters	$\begin{aligned} & \text { : Phosphorous } \\ & : \text { mg.at. } \times 10^{3} \text { : } \end{aligned}$			Siliconmat.at. x $10^{2}:$ Nitritc Nitroggnmg.at. x 10^{4}				$\begin{aligned} & \text { Dissolved Oxygen } \\ & \text { mg.at. }: \% \text { Sat. } \end{aligned}$				pH
0	:	0.38	:	0.5	:	0.0	:	. 528		92.0	:	8.10
10	:	0.38	:	0.5	:	0.0	:	. 5447		95.1	:	8.10
25	:	1.73	:	3.0	:	2.3	:	. 509		78.3	:	8.10
50	:	1.73	:	3.0	:	2.3	:	. 510		78.5	:	8.05
65	:	1.73	:	3.0	:	2.3	:	. 484	:	74.5	:	8.05

Station: 96

0	:	0.38	:	0.2	:	0.0	:	. 573	:	99.8	:	8.15
10	:	0.14	:	0.5	:	- 0.0	:	. 575	:	100.2	:	8.10
25	:	1.73	:	3.0	:	5.6	:	. 497	:	75.8	:	8.05
50	:	1.89	:	3.0	:	5.6	:	. 481	:	73.3	:	8.05
65	$:$	1.83	:	3.0	:	5.6	:	.505	:	77.0	:	8.05
Station: 97												
0	:	0.38	:	0.5	:	0.0	:	. 508	:	103.1	:	8.15
10	:	0.57	:	0.5	:	0.0	:	. 597	:	102.9	:	8.10
15	:		:		:		:		:		:	
20	:	0.47	:	0.8	:	0.0	:	. 558	:	95.5	:	8.10
25.	:	1.58	:	3.0	:	2.8	:	. 454	:	69.7	:	8.05
50	:	1.58	:	3.0	:	3.3	:	(.668)	:	(71.8)	:	8.05
(60)	:	(1.75)	:	(3.0)	:	(3.3)	:	(. $\cdot 73$)	:	(72.7)	:	(8.05)
65	:	1.83	:	3.0	:	3.3	:	. 476	:	73.1	:	8.05

SECTION XII - East of St. Pauł Island
Time: 1158-1215

SECTION XII - EOSt of St. Paul Island

SECTION XIII - Bogosloff Island - St. George Island

SECTION YIII - Bogosloff Island - St. George Island

SECTION XIII - Bocosloff Island - St. George Island

Depths below so0 meters mere disregardeã as unreliable.
\square
\square
!
!....

$$
\therefore \quad \therefore \quad \vdots
$$

SECTION XIII - Bogosloff Island - St. George Island

0	:	1.07	:	2.2	:	0.3	:	. 543	:	94.8	:	8.10
10	:	1.20	:	2.2	:	0.8	:	-439	:	76.5	:	8.10
\%	:	1.89	:	4.5	:	1.0	:	.398	:	35.4	:	8.05
50	:	2.08	:	6.0	:	2.0	:	. 406	:	64.6	:	7.95
75	:	2.21	:	6.5	:	2.2	:	. 423	:	66.8	:	7.95
100	:	2.21	:	7.0	:	0.0	:	. 279	:	43.8	:	7.95
150	:	1.73	:	7.5	:	0.0	:	. 355	:	55.2	:	7.90
200	:	2637	:	8.0 \%	:	0.0	:	. 393	;	60.9	:	7.90
300	:	2.48	:	8.0	:	0.0	:	. 315	:	48.8	:	7.85
400	:	2.08	:	3.0	:	0.0	:	. 201	:	31.2	:	7.85

-

SECTION KIII - Bogosloff Island - St. George Island

Station: 109

Dopth解ters	: Phosphorous: ment. 10^{3} :			$\begin{array}{r} \text { Silicon } \\ \text { mg.at. } \mathrm{x} \end{array}$		irito Nitrogen mg.at. $\times 10^{4}$		$\frac{\text { Dissolv }}{m g . a t .}$	d	$\frac{\text { oxygen }}{\% \text { Sat. }}$		pH
0	:	0.76		1.2	:	0.1		. 584	:	99.3	:	8.10
10	:	1.01	:	1.4	:	0.2		. 467	:	81.4	:	8.10
25	:	1.73	:	4.0	:	2.1		. 532	:	87.2	:	8.05
50	:	2.14	:	5.5	:	0.7		-. 454	:	71.5	:	8.05
75	:	2.21	:	5.5	:	0.2		- 441	:	69.6	:	7.95
100	:	2.27	:	6.5	:	0.0		. 403	:	62.8	:	7.95
125	:	2.05	:	7.0	:	0.0		. 428	:	66.7	:	7.95
150	:	2.37	:	7.5	:	0.0	:	.377	:	58.6	:	7.95
175	:	1.89	:	8.0	:	0.0	:	. 394	:	61.1	:	7.95
Station: 110												
0	:	0.47	:	0.5	:	0.0		. 509	:	89.3	:	8.10
10	:	0.47	:	0.7	:	0.0	:	- 443	:	75.5	:	3.10
25	:	1.10	:	1.8	:	0.8	:	. 532	:	86.5	:	8.10
50	:	1.10	:	3.5	:	0.5	:	. 409	:	62.2	:	8.10
75	:	2.05	:	5.0	:	0.4	:	. 382	:	58.4	:	8.10
100	:	2.21	:	6.0	:	$0 \cdot \stackrel{5}{=}$:	-432	:	67.1	:	8.05
150	:	2.21	:	7.0	:	0.2	:	- 401	:	62.1	:	8.05

SECTION XIII - Bogosloff Island - St. George Island
$\begin{array}{ll}\text { Station: } 111 & \text { Lat. } 56^{\circ} 31^{\prime} \mathrm{N} \\ \text { Sonic Depth: } & 54 \text { fathoms (} 99 \text { meters) } 169^{\circ} 55^{\prime} \mathrm{W} \\ \text { Bottom: Black Mud, Shell and Sand }\end{array}$

Depth Meters	:Temperature		$\begin{aligned} & : \text { Chlgrinity } \\ & : \quad / 00 \\ & \hline \end{aligned}$:	Salinit	:	$o_{s, t, o}$:	${ }^{\text {s,t,p }}$		$\begin{aligned} & \bar{V}_{s, t_{5} p} \\ & x 0^{2} \end{aligned}$	nnamic D
0	:	6.97		17.81	:	32.18	:	25.22	:	25.22	:	97540	0
10	:	6.15		17.82	:	32.20	:	25.35	:	25.41	:	522	9.75310
25	:	5.96		17.83	:	32.21	:	25.39	:	25.50	:	513	24.38073
50	:	4.82		17.86	:	32.27	:	25.56	:	25.80	:	485	$48.755 \% 8$
75	:	3.72		17.89	:	32.32	:	25.71	:	26.06	:	460	73.12360

SECTION XIII - Bogosloff Island - St. George Island


```
* * * *
* 0 * * *
```

```
* * *.*.* * * * * * 
```

SECTICN XIV - St. Paul Isiand - West

1

Station: 113

\square * * ". . .

* *
\qquad
\qquad
\qquad

- \quad : '

SECTION XIV - St. Paul Island - Hest

SECTION XIV - St. Paul Island - Wost.
Station: 116

$$
166^{\circ}
$$

$$
36^{\circ} 10^{\prime} \mathrm{T}
$$

SECTION XV - Lat. $54^{\circ} 12^{\prime} 45^{\prime \prime} \mathrm{N}$ Long. $168^{\circ} 05^{\prime} 35^{\prime \prime}$ W to Lat. $54^{\circ} 19^{\circ} \mathrm{NI}$ Long. $166^{\circ} 10^{\prime} \mathrm{W}$

\square
-.

SECTION XV - Lat. $54^{\circ} 12^{\prime} 45^{\prime \prime} \mathrm{N}$ Long. $168^{\circ} 05^{\prime} 35^{\prime \prime} \mathrm{W}$ to Lat. $54^{\circ} 19^{\prime} \mathrm{N}$ Long: $166^{\circ} 10^{\prime} \mathrm{W}$

SECTION XV - Lat. $54^{\circ} 12^{\prime} 45^{\prime \prime} \mathrm{N}$ Long. $168^{\circ} 05^{\prime} 35^{\prime \prime} \mathrm{W}$ to Lat. $54^{\circ} 19^{\prime} \mathrm{N}$ Long. $166^{\circ} 10^{\prime} \mathrm{W}$

Station: 120

0	:	1.10	:	2.5	:	2.0	.	- 414	76.5	:	8.10
10	:	1.42	:	2.8	:	2.0	:	. 509	86.4	:	8.10
25	:	1.42	:	3.0	:	1.8	:	. 501	35.9	:	8.10
50	:	1.73	:	3.0	:	1.8	:	. 550	c]. 4	:	8.05
75	:	1.58	:	3.5	:	2.2	:	. 510	83.9	:	8.05
100	:	1.83	:	4.0	:	2.0	:	. 503	81.7	:	8.05
150	:	1.89	:	$\because .0$:	2.0	:	. 318	50.6	:	7.95
200	:	1.89	:	7.0	:	1.8	:	- 398	63.0	:	7.90
300	:	2.37	:	8.0	:	0.0	:	. 378	58.6	:	7.80
400	:	2.52	:	9.0	:	0.0	:	. 294	45.7	:	7.75
500	:	2.84	:	10.0	:	0.0	:	. 150	23.3	:	7.75
600	:	${ }_{3}^{2}$:	11.0	:	0.0	:	. 107	16.6	:	7.75

\qquad

TABLE II.

Current Tabulations.

Tabulations of $10^{5} x$ difference in dynamic depth, $10^{5} x$ differenco in dynamic hoight, and computor in knots perpendicular to tho section rolative to the lowest common depth-sampled for the stations of the scetion occupicd.

Addenda shect, Tablc II.: Change honding from:

```
Depth : D× \(10^{5}: \mathrm{H} \times 10^{5}\) : Knots :
Fintors:
    or: from
Depth : D X 10 : E X 10 : Knots :
Motors :
    to
Depth \(: \triangle D \times 10^{5}: \triangle H \times 10^{5}:\) Knots :
Inotors:
```

Physical and chemical conditions of the surface waters from the Strait of Juan de Fuca to Dutch Farbor, Alaska. U.S.C.G. Cutter CHETAN, July 1934.

Time	Lat. N. :	$\begin{aligned} & : \text { Long. W. : : Temp. } \\ & : \quad:{ }^{\circ} \mathrm{C} . \end{aligned}$	$\begin{aligned} & : 01 \\ & : 0 / 00: \\ & : 0 \end{aligned}$	P :mcg.at.	$\begin{gathered} : \mathrm{Si} \\ : \mathrm{mcg} . \mathrm{a} \end{gathered}$		$\begin{aligned} & 0-\overline{\mathrm{N}} \\ & \mathrm{~g} \cdot \mathrm{at.} \end{aligned}$
$\frac{\text { July } 18}{2140}$	$\frac{1934}{} \mathbf{4 8}^{\circ} 17^{\text {; }}$: $1233^{\circ} 401$: 10.8	: 17.29: $25.91:$	1.6	:	:	0.82
July 19, 1934							
0100	: $48^{\circ} 30^{\prime}$: $124^{\circ} 47^{\circ}: 112.5$: 17.73: 24.22:	: 0.63	:	:	0.36
0500	: $48^{\circ} 53^{\circ}$: $126^{\circ} 09^{\circ}: 12.8$: 17.79: 24.24:	- 0.80	:	:	0.07
0900	: $49^{\circ} 17^{\prime}$: $127^{\circ} 333^{\prime}$: 14.5	: 17.65: 23.69:	: 0.16	:	:	0.00
1300	: $49^{\circ} 44^{\prime}$: $128^{\circ} 56^{\prime}$: 14.2	: 17.80: 23.98:	: 0.63	:	:	0.07
1700	: $50^{\circ} 031$: $130^{\circ} 10^{\prime \prime}: 13.4$: 17.85: 24.20:	: 0.80	:	:	0.11
2200	$: 50^{\circ} 26^{\prime}$	$: 131^{\circ} 32,: 13.4$: 17.87: 24.23:	: 0.90	:		0.00
July 20, 1934							
0100	: $50^{\circ} 41^{\prime}$: $1320{ }^{10} 8^{\prime}$: 13.2	: 17.85: 24.24:	: 1.4	:	:	0.05
0500	: $50^{\circ} 59^{\prime}$: $133{ }^{\circ} 38^{\circ}$: 12.6	: 17.85: 24.36:	: 0.32	:	:	0.07
0930	: $51^{\circ} 25^{\prime}$: $135^{\circ} 23^{\prime}$: 12.6	: 17.83: 24.33:	: 0.32	:	:	0.11
1300	: $51{ }^{\circ} 41^{\prime}$: 136° 26 6° : 12.2	: 17.99: 24.63:	: 0.95	:	:	0.00
1700	: $51^{\circ} 50^{\circ}$: $137^{\circ} 16^{\text {: }}: 11.8$: 18.00: 24.73:	: 0.95	:	:	0.11
2100	$: 52^{\circ} 13^{\circ}$: $139^{\circ} 19^{\circ}: 12.2$: 18,03: 24,69:	$: 1.05$:	0.11
July 21, 1934							
0100	: $52^{\circ} 27{ }^{\circ}$: $1400{ }^{\circ} 7^{\circ} \mathrm{P}$: 12.2	: 18.00: 24.65:	: 1.10	35	:	0.11
0500	: 52039^{\prime}	: $142^{\circ} 17^{\prime}$: 10.9	: 18.11: 25.05:	: 1.10	15	:	0.14
0000	: $52^{\circ} 55^{\prime}$: $144^{\circ} 15^{\prime}$: 11.2	: 18.08: 24.94:	: 1.25	20		0.11
1300	: $53^{\circ} 09^{\prime}$: $1450{ }^{\circ} 7^{\text { }}$: 11.6	: 18.18: 25.01:	: 1.4	20		0.18
1700	: $53019{ }^{\circ}$: $147^{\circ} 11.11 .6$: 18.18: 25.01:	: 1.4	30	:	0.23
2145	: $533^{\circ} 32$: $148^{\circ} 56^{\text {: }}: 11.2$: 18.13: 25.02:	: 0.95	: 40	:	0.27
July 22, 1934							
0100	: $53040{ }^{\prime}$: $150016^{\text { }}$: 10.8	: 18.15: $25.12:$: 1.1	: 30	:	0.07
0530	: $53^{\circ} 47^{\circ}$: $152^{\circ} 00^{\circ}$: 10.7	: 18.18: 25.17 :	: 0.95	40	:	0.18
0900	: $53^{\circ} 53^{\prime}$: $153{ }^{\circ} 21^{\prime}$: 11.1	: 18.21: 25.14:	: 0.95	20	:	0.18
1300	: $54^{\circ} 08^{\prime}$: $155^{\circ} 00^{\prime}$: 10.6	: 18.18: $25.19:$: 0.95	20	:	0.18
1900	: $54^{\circ} 06^{\prime}$: $157^{\circ} 19^{\prime}: 10.8$: 18.14: 25.10:	: 0.95	30	:	0.18
2400	: $54^{\circ} 03^{\prime}$	$: 159^{\circ} 32: 10.5$: 17.99: 24.94:	$: 0.80$: 10	:	0.05
July 25, 1934							
0730	: $54^{\circ} 02{ }^{\text {\% }}$	$: 162^{\circ} 25^{\circ}$: 9.6	: 17.83: 24.86:	: 0.63	: 10	:	0.05
1200	: $54^{\circ} 17^{\prime}$: $164^{\circ} 11^{\circ}$: 8.2	: 17.44: 24.53:	: 0.25	: 5	:	0.00
1600	$: 54^{\circ} 19^{\prime}$: $165^{\circ} 52: \quad 7.4$: 17.83: 25.19:	$: 1.1$	- 20		0.11

Station: $\quad 2-1$
Station: 3-2
Station:
Station: 5-4

Positive values indicate currents running West

SECTION II

$\frac{\text { Station: }}{K-13-12}$						$\frac{\text { Station: } 14-13}{\mathrm{~K}=\frac{8.87}{}}$						Station: $\mathrm{K}=\frac{15-14}{6.35}$													
						:	:																		
Depth Meters	:	$D \times 10^{5}$	$: \mathrm{H} \times 10^{5}$:	Knots						$D \times 10^{5}$		$\mathrm{H} \times 10^{5}$		Knots		$\mathrm{Dx} 10^{5}$		$\mathrm{H} \times 10^{5}$		Knots			$\mathrm{H} \times 10^{5}$	
0	:	-	: 328	:	0.02%	0	:	130	:	0.01	:	0	:	-290	:	-0.02	:	:		:					
10	:	240	: 88	:	0.01	130	:	0	:	0.08	:	-290	:	0	:	0.00	:			:					
15	:	328	: 0	:	0.00		:		:		:		:		:		:			:					
25	:		:	:	:	167	.	-37	:	0.00	:		:		:					:					
50	.		:	:	:	130	:	0	:	0.00	:		:		:					:					

Positive values indicate currents setting West
SECTION III

> Posityra values indicate currents setting Iest Negative values indicate currents setting East

SECITON IV

Positive values indicate currents setting West Negative values indicate currents setting Fast

SECTION VI

Positive values indicate currents setting North Negative whlues indicate currents setting South
\square

\qquad
!
SECTION VII

Positive values indicate currents setting North Negative values incicste currents setting South

Positive values indicate currents setting North
ivegative values indicate currents setting South

Positive values indicate currents setting Northeast
Negative values indicate currents setting Southwest

1

3. 4.4
SECTION X

Positive values indicate currents setting West Wegative Velues indicate currents setting East

SECTION XI													
Station: 85-84			Station: 86-85			:	Station: 87-86			Station: -88-87			
$\mathrm{K}=8.27$			K $=$	8.27		:	K	8.27		: $\overline{\mathrm{K}}=$	8.27		
Depth : Meters : Dxi0	$\mathrm{Hx} \times 0^{5}$: Knots	$D \times 10^{5}$	$: \mathrm{Hxl} 0^{5}$: Knots		$D \times 10^{5}$	$: \mathrm{H} \times 10^{5}$: Knots	$D \times 10^{5}$	$: \mathrm{Hr} 10^{5}$		Knots
0 : 0	: -287	: -0.02	0	722	: 0.06		0	: -247	: -0.02	: 0	: 175		0.01
10 : 290	: -577	: -0.05	205	: 517	: 0.04	:	30	: -277	: -0.02	: -65	: 240		0.01
25 : 223	: -510	: -0.04	535	: 187	: 0.02	:	-60	: -187	: -0.02	: -35	: 210		. 01
45 : -287	0	: 0.00	722	0	: 0.00			:	:	: 175	: 0		. 00
50 :		:		:	:		-247	0	$: 0.00$:			
Station: 89-88			Station: 90-89			: Station: 91-90				: Station: 92-91			
$\underline{K}=3.31$			$\bar{K}=3.18$:	$\mathrm{K}=0.00$: $K=$	8.28		
0 : 0	: 353	: 0.01	0	: 235	: 0.01		0	635	0.04	: 0	: 160		0.01
10 : -120	473	: 0.02	-20	: 255	: 0.01	:	245	390	$: 0.03$: 55	: 105		. 01
25 : -8	: 361	: 0.01	235	0	: 0.00	:	635	0	: 0.00	: 160	0		. 00
$40: 353$	$: \quad 0$	$\bigcirc 0.00$.	:	:		-	:	.	:	:	

Positive values indicate currents setting North Negative values indicate currents setting South
\qquad
\qquad
\qquad
\qquad
\qquad

$\therefore \quad$.
\qquad
\qquad
\qquad

SECIION XII

SECTION XIII.

$\frac{\text { Station: } 109-108}{K=14}$						Station: 110-109						Station: 111-110						Station: 112-111				
					:	K $=$. 94				K		7.19						2.30		
0	: 0	: 1285	:	0.05	:	0	:	4010	:	0.20	-	0	:	525	-	0.04		0	:	653	:	0.08
10	: 175	: 1110	:	0.05	:	315	:	3695	:	0.18	:	-380	-	905	.	0.07		110	:	543	:	0.07
25	: 385	900	:	0.04	:	885	:	3125	:	0.15		-650	-	1175	.	0.08		327	:	326	-	0.04
50	: 66C	: 625	:	0.03	:	1960	:	2050	:	0.10	-	-287	-	812		0.06		627	:	26	:	$\because .00$
75	: 797	488	:	0.02	:	2785	:	1225	:	0.06		525		0		. 00		653	:	0	:	0.00
100	: 960	: 325	:	0.01	:	3360	:	650	:	-.03			-						:		:	
150	:1285	0		0.00		≤ 10	:	0	:	0.00			:						:		:	

Positive values indicate currents setting West
Negative values indicate currents setting East

SECTION XV

Positive values indicate currents setting North Negative volues indiacte currents setting South

	$\begin{aligned} & \dot{8} \\ & \underset{8}{o} \\ & \text { B-1 } \end{aligned}$			$\begin{aligned} & \text { ro } \\ & 0 \\ & 0 \\ & \text { 世 } \end{aligned}$	$\begin{gathered} \text { ro } \\ 0 \\ 0 \\ \text { rit } \end{gathered}$		$\begin{aligned} & \Omega \\ & 0 \\ & 0 \end{aligned}$	$$
				$M G T-69 T \text { HTS }-G S$		$\begin{gathered} \stackrel{5}{5} \\ 0 \\ 1 \\ 0 \\ 0 \\ 1-1 \\ 0 \\ 0 \\ 10 \\ 1 \\ 40 \\ 00 \end{gathered}$	$\begin{gathered} 10 \\ 10 \\ 1 \\ 1 \\ 0 \\ 0 \\ -1 \\ 1 \\ 1 \\ 10 \\ 1 \\ 18 \\ 18 \end{gathered}$	$\begin{gathered} 6 \\ 1 \\ 1 \\ 8 \\ 1-1 \\ 2 \\ 10 \\ 1 \\ 1 \\ 0 \end{gathered}$
	$$		$\because \quad \stackrel{10}{\square}$		？			
			9	10	－	8		
		\％						
					0 6 6 4 4 9 0		$\begin{gathered} 8 \\ 0 \\ 0 \\ y \\ y \\ y \\ y \\ 0 \\ 0 \end{gathered}$	$\begin{aligned} & 8 \\ & 8 \\ & 8 \\ & 8 \\ & 8 \\ & 8 \\ & 12 \end{aligned}$
					$\begin{aligned} & 10 \\ & 4 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { 号 } \\ & \text { H } \end{aligned}$	$\begin{aligned} & 4 \\ & 4 \\ & 4 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$
	$\begin{aligned} & \dot{0} \\ & \dot{E}-1 \end{aligned}$		 					
$\begin{array}{cc} 0 & \cdot \\ +0 & 80 \\ 0 & \overrightarrow{4} \end{array}$					－	－	3	c

1

*

Coast Guard Cuttor CHELAN. Curront moasurorionts, ococnogriphio cruiso.

Datc.Aug.	Time.	Station number.	$\begin{aligned} & \text { Dopth } \\ & \text { (motors) } \end{aligned}$	Ekm:n curront motor roading.			Drict stick data.		Position.	Tide.
				Irots.	Dircction		$\left\{\begin{array}{c} \text { Direction } \\ \text { (true) }^{\circ} \end{array}\right.$	İnots		
					${ }^{105}$	Truo			Iat. Iong.	
2	1116	G 45	suriace	- 45	342	1	335	. 25	$05-51 \text { i } 169-45:$	ebb
	1126		5	. 39	342	1				
	1134		10	. 33	348	7				
	1143		25	. 35	7	26				
	1152		40	. 37	6	25				
2	17ワ0	A 46	surface	. 26	152	171		. 4	$65-37 \mathrm{Na} 171-06 \mathrm{~N}$	flood
	1718		5	. 06	0	19	45			
	1729		10	. 07	40	59				
	1738		25	.1?	190	209				
	1749		suriface	. 25	103	122				
3	1016	B 46	surface	. 13	330	349		0	35-37 17 171-05:?	ebb
	1025		5	. 08	100	209	0			
	1054		25	. 07	190	209				
6	0125	$70-\mathrm{A}$	surface	1.26	7	24			64-13 1! $272-193$	flood
	0138		-	1.40	20	37	88	1.35		
	O145		110	1. 42	24	41				
	0219		25	1.47	30	57				
	0229		35	1. 29	30	57				
6	0420	$70-\mathrm{B}$	surface	1.39	7	2%	55	1.5	64-13 M 172-199	flood
	0425		15	1.53	20	37				
	0429		10	1.58	20	37				
	0435		25	1. 8	27	4 ${ }^{1}$				
	$0<12$		35	1.43	27	$\stackrel{1}{2}^{4}$				
6	0719	$70-\mathrm{C}$	surface	1.18	10	27			$6 \div-13172-19 \%$	ebb
	0726		5	1.47	4	21	80	1.4		
	0730		12	1. SI	23	\therefore				
	0734		125	1.20	58	75				
	0741		35	. 93	47	68				
6	0747	$70-0^{8}$	surisee	1.55	1.6	33			64-13 4 172-19H	ebb

Coast Guard Cutter CHELAN．Current measurements，oceanographic cruise．

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \& \[
\begin{aligned}
\& \dot{0} \\
\& \dot{\theta} \\
\& \dot{E}
\end{aligned}
\] \& \& \[
0
\] \& \& \[
0
\] \& \[
\begin{aligned}
\& \widehat{0} \\
\& 0 \\
\& 0 \\
\& 0 \\
\& 0 \\
\& 0
\end{aligned}
\] \& \[
\frac{0}{\hat{\circ}}
\] \& \[
\begin{aligned}
\& \text { rd } \\
\& \text { o } \\
\& 0 \\
\& \text { eq }
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { ro } \\
\& 0 \\
\& 0 \\
\& \text { \& }
\end{aligned}
\] \& \[
\begin{gathered}
\text { ro } \\
0 \\
0 \\
{ }_{i-1}^{1-1}
\end{gathered}
\] \& \[
\begin{array}{r}
0 \\
0 \\
0 \\
0 \\
i=1
\end{array}
\] \& \[
0
\] \\
\hline \multicolumn{2}{|r|}{\begin{tabular}{l}
-1 \\
\hline 0 \\
\hline \\
+ \\
+-1 \\
0 \\
0 \\
0 \\
0 \\
\hline
\end{tabular}} \& \& \& \& \& \& \& \& \& \[
\begin{aligned}
\& \hline 0 \\
\& 0 \\
\& 0 \\
\& 1 \\
\& 0 \\
\& 0 \\
\& 1 \\
\& 1 \\
\& 0 \\
\& 0 \\
\& 1 \\
\& 0 \\
\& 0
\end{aligned}
\] \& \& \[
\begin{aligned}
\& \text { 䁍 } \\
\& 1 \\
\& 0 \\
\& 0 \\
\& \cdots \\
\& 0 \\
\& 0 \\
\& 0 \\
\& 1 \\
\& 0
\end{aligned}
\] \\
\hline \& \& \& \begin{tabular}{l}
18 \\
\(\sim\) \\
\\
\hline
\end{tabular} \& － \& H
－

－
－
－ \& $\xrightarrow{+}$ \& \bigcirc \& 哭 \& $\frac{\square}{0}$ \& \& \&

\hline \multirow[t]{2}{*}{} \& \[
$$
\begin{gathered}
\text { II } \\
.0 \\
-+ \\
+0 \\
0 \\
0 \\
-1 \\
A
\end{gathered}
$$

\] \& \& \& | 단 |
| :--- |
| $\stackrel{\circ}{\circ}$ | \& | ® |
| :--- |
| $\stackrel{\sim}{4}$ | \& \[

\] \& | 8 \qquad |
| :--- |
| 19 | \& | 10 |
| :--- |
| 8 | \& | $\stackrel{9}{-}$ |
| :--- |
| | \& | |
| :--- |
| |
| O | \& | 迸 |
| :--- |
| 感 | \& $\stackrel{2}{\square}$

$$
\begin{aligned}
& 3 \\
& \hdashline \\
& \hline
\end{aligned}
$$

\hline \& \multicolumn{2}{|l|}{$$
\begin{aligned}
& \dot{9} \\
& + \\
& 0 \\
& 0 \\
& 0 \\
& y
\end{aligned}
$$} \& \multicolumn{10}{|l|}{}

\hline \& \multicolumn{2}{|l|}{} \& \multicolumn{10}{|l|}{}

\hline \multicolumn{3}{|c|}{} \& \multicolumn{10}{|l|}{}

\hline \& \[
\stackrel{\oplus}{\dot{M}} \underset{E-1}{\circ}

\] \& \& \multicolumn{10}{|l|}{| |
| :--- |
| |}

\hline \& $$
\begin{aligned}
& \dot{0} \\
& \stackrel{\rightharpoonup}{\Pi \quad} \\
& \text { A. }
\end{aligned}
$$ \& \& \ldots \& ～ \& － \& \& ∞ \& ＋ \& ∞ \& 9 \& －1 \& \bigcirc

\hline
\end{tabular}

-

Coast Guard Cutter CHELANT. Current measurements, oceanographic cruise.

Date. Aug.	Tine.	Station number.	$\begin{aligned} & \text { Depth } \\ & \text { (meters) } \end{aligned}$	Ekman current meter reading.			Drift stick data.		Position.	Tide.
				Knots.	Direction		$\begin{gathered} \text { Direction } \\ (\text { true })^{0} \end{gathered}$	inots		
					Filag.	True ${ }_{0}$			Lat. Long.	
11	0211	$94-\mathrm{C}$	$\begin{aligned} & \text { surface } \\ & 5 \\ & 10 \\ & 25 \end{aligned}$	1.37	178	184	178	1.5	60-08 M 167-32以	ebb
	0116			1.66	169	135				
	0123			1.50	158	174				
	0129			1.21	150	166				
11	0414	$94-\mathrm{D}$	surrace	. 64	180	196	195	1.0	60-08N 167-32\%	flood
	0419		5	. 64	227	243				
	$0 \div 23$		10	. 59	170	106				
	0		25	. 43	130	146				
11	0712	94-E	suriace	. 66	318	354	350	- 6	60-082 $167-32 W$	flood
	0713		5	. 69	353	09				
	0720		10	. 75	357	13				
	0725		25	. 57	355	11				
11	1003	$x_{5}-\mathrm{F}$	suriace	. 66	320	336		. 5	60-08 N 167-321	flood
	I. 09		5	. 63	0	10	350			
	1022		10	. 55	0	16				
	1023		25	. 32	295	311				
11	1255	$94-6$	surface	. 28	330	3403			60-08N 167-325	flood
	2239		5	.25	350	06	305	. 2		
	1303		10	. 59	321	357				
	1311		25	. 61	290	305				
11	$\bigcirc 501$	O< - E	surfeco	. 75	3.3	538	3.35	. 5	60-03N 167-32.1	0 bo
	1505		15	2.02	338	$35=$				
	1509 151.3		120	1.10	$33^{3} 0$	356				
	151.3		25	. 28	330	E. ${ }^{\text {c }}$				
11	16.6 1050	$198-1$	surataco	1.23	332	3:9	$33^{2} 5$	- 9	60-08N 167 - 32	ubb
			10	1.05 1.	350 350	0				
	1.050		25	1.17	350	3				
II	1001	$36-J$	Sumpac	1.80	538	35\%			30-03N137-320	2bj
	2300		E	1.50	350	6	350	3.3		

-

Coast Guard Cutter CHELAN. Current measuranents, oceanographic cruise.

Direct current measurements by Ekman current meter for several of the stations occupied. Values for surface observations are low due to the shielding effect of the ship and are not used in obtaining mean values. Directions are magnetic and true. Mean directions are based on moasurements at depths of and greator than ton metors.

Addenda shect, Table IV. Add the following under:

Velocity			Dircction (meg)
Station	(mean)		(monn)
A-45	. 56		$\cdots 3$
B-45	. 60	;	9
C-45	. 60	.	4
D-45	. 57	.	6
E-45	. 48		5
F-45	. 36	,	8
$\mathrm{G}-45$. 37		0
		Mean valucs for 21 hour poriod.	
	. 51		6
A- 70	1.42		27
B-70	1.51		24
C-70	1.24		39
D-70.	1.01		41
		Mean values for 9 hour period.	
	1.29		33
B-82	. 89		
C-82	1.05		
D-82	. 98		
E-82	. 45		
F-82	. 35		
A-94	. .93		8
B-94	1.11		144
C-94	1.40		154
D-94	. 53.		150
E-94	. 68		356
F-94	. .47		332
G-94	. 55		305
H-94	1.05		335
I-94	1.31		350
J-94	1.38		352
A-103	. 75	-	337
B-103	. 87	-	335
C-103	. 82	-	327
D-103	. 72		336
E-103	. 88	,	326
F-103	. 88	,	324
G-103	. 40	Mean values for 21 hour period.	325
	. 77		332

Drift stick data obtained fron obscrvations at anchor.

CURRANRS.

The following observations worc mado with a drift stick 15 foct long woightod to float ono foot above the surface:

NOIE

STATION 45

30	July, 1934.		
1200	298	.5	F
1400	290	1.0	F
1600	288	.6	E
1800	292	.55	E
2000	305	.6	E
2200	310	.1	E
2400	320	.1	F
31 July	1934.		
0200	290	.1	F
0400	295	.55	F

1230	25	. 6
1300	41	. 55
1400	44	. 55
1500	40	. 6
1600	42	. 5
1700	55	. 45
1800	56	. 35
1900	60	. 65
2000	42	. 7
2100	35	.65
2200	20	. 5
2300	30	. 4
2400	30	. 3
2 Augus ${ }^{\text {², }}$ 1934.		
0100	38	. 5
0200	23	. 6
0300	15	- 4
$0: 500$	15	. 4
0500	50	. 4.5
0600	65	. 6
0700	20	. 75
0800	25	. 5
0900	355	. 1
1000	5	. 1
1100	335	. 25
1200	25	. 2

St. Lawronco Island.

2 August,	1934.		
1630	145	.4	F
1800	110	.6	F
1900	90	.1	F
2000	80	.1	F
2100	85	.1	F
2200	80	.1	F
2300	230	.1	F
2400	270	.1	F

3 August, 1934.

0100	0	$:$	0
0200	0	0	E
0300	0	0	E
0400	0	0	E
0500	0	0	E
0600	0	0	E
0700	0	0	E
0800	0	0	E
0900	0	0	\mathbb{E}
1000	0	0	E
1100	0	0	F
1200	0	0	F

Nunivak Islond.

9 August, 1934.

2300	250	1.0	E
2400	235	1.0	E

10 August, 1934.

0100	260	1.0	E
0200	250	.9	F
0300	220	.7	F
0400	290	.7	F
1817	355	1.0	F
1900	10	.9	F
2000	5	.7	E
2100	180	.2	E
2200	185	.7	E
2300	180	1.2	E
2400	180	1.5	E

11 fugust, 1934 .

0100	178	1.5	E
0200	178	1.5	E
0300	193	1.4	E
0400	195	1.0	E
0500	180	. .6	F
0600	0	0	F
0700	350	.6	\mathbb{F}
0800	350	.7	F
0900	355	.75	F
1000	350	.5	F
1100	350	.4	F
1200	350	.2	F
1300	325	.2	F
1400	340	.45	\mathbb{F}
1500	335	.45	E
1600	345	.9	E
1700	355	1.3	E
1800	350	1.5	E

St. Watthew Island.

7 Auguist, 1934.

1100	290	1.25	F
1200	320	1.4	F
1300	305	1.4	F
1400	310	.9	F
1500	273	.65	F
1600	265	.45	E
1700	120	.5	E
1800	120	.35	E
1900	120	1.	E
2000	120	1.4	F
2100	100	1.3	E
2200	120	1.3	E
2300	120	1.1	F
2400	123	1.	F

8 Avgust, 1934 .

1300	360	.1	F
1400	360	.45	F
1500	360	.1	F
1600	360	.1	F
1700	360	.55	E
1800	70	.45	E
1900	80	.7	E
2000	120	.55	E
2100	90	.5	F
2200	90	.45	E
2300	100	.15	F
2400	90	.2	F
0100	173	.4	F
0200	235	.3	F
0300	277	.5	F
0400	335	.5	F
0500	300	.2	F
0600	260	.I	E
0700	220	.2	E
0800	230	.2	E
0900	80	.2	E
1000	350	.25	E

Bogoslof Island.

WEST	ANCHORAGE:	18 August
1700	10°	1.0 knot
1800	10	.95 knot
1900	5	.95 knot
2000	350	1.0 knot
2100	350	1.0 knot
2200	0	.95 knot
2300	315	.95 knot
2400	325	1.1 knot

Light south-southwest airs

PAST ANCHORAG:	19 August	
1630	325	.25 knot
1700	325	.25 knot
1800	325	.25 knot
1900	325	.25 knot
2000	280	.3
2100	310	.3
knot		
2200	280	.2
knot		
2300	270	.2
2400	10	.3
	knot	

Light southwest airs

WEST	ATJCHORAGP:	19	August
0100	350°	1.0	knot
0200	0	1.1	knot
0300	350	.7	knot
0400	0	1.0	knot
0500	300	1.0	knot
0600	355	1.1	knot
0700	350	1.0	knot
0800	350	1.0	knot
0900	330	.95	knot
1000	335	.95	knot
1100	330	.6	knot
1200	330	.4	knot
1300	10	.4	knot
1400	10	1.0	knot

Light south-southwest airs

0100	30	. 5 knot
0200	80	. 55 knot
0300	40	. 55 knot
0400	10	. 6 knot
0500	0	. 1 knot
0600	325	. 1 knot
0700	325	. 1 knot
0800	210	. 25 knot
0900	210	. 1 knot
1000	210	. 1 knot
1100	210	. 1 knot
1200	210	. I knot
1300	225	. 35 knot
1400	220	. 35 knot
1500	170	.35 knot
1600	160	. 5 knot

Light southrest airs.
It should be, noted that the current was practically constant in direction on the west side, whereas on the east side an eddy seemed to be felt. Upon approaching and leaving the i,land a current of .78 knots per hour, 98° tirue was observed.

CURRENIS, BERING SEA AND ARCTIC OCEEAN.

The following is quoted from the U.S. Coast Pilot, Alaska, Part II, 1931:

Between Cape Cheerful and St. George Island the current is not believed to have any decided set or flow unless influenced by the wind. With a strong wind a current is likely to set with it, but $\frac{1}{2}$ point allowance in a course will be sufficient to overcome any set that will be found in this vicinity duo to this cause.

Betroon St. Matthow and Nunivak Islands tho sot of the current is northward; with provailing northoast winds it sets northwest, and with northwost and southwost winds, northeast. This northorly curront continues and increasos betwoen St. Lavronco Island and tho mainland, being stronger toward tho mainland north of the molth of the Yukon River, whore it amounts, to about 1 knot; oxcopt in tho ocrly summor, inen, increasod by the freshots in tho Yukon, it may amount to 2 knots or more. A strong northoasterly current setting on the fukon flats has boon obsorved, amounting at times to $2 \frac{2}{3}$ knots. Tho curront sots north across Norton Sound to Slodge Island and then follows tho const to Boring Strait. It is strongly markod botwocn Slodgo Island and Boring Strait.

In Boring Strait the curront sots north, and when not influoneod by wind its velocity is about 2 knots an hour. Protracted northerly gales which provail in the autumn change its direction to southward, but on the cossation of the wind it quickly sot north again. Strong southorly gales increasc its volocity to 3 lmots. The curront is stronger oast of tho Diomede Islands than wost of them.

From Boring Strait to Point Barrow there is a general current setting northward alongshore (stronger inshore), which, when not aftected by winds or stopped by the ice, has a velocity of not less than 1 knot at any part of it. The current from the strait turns northeastward and is joined north of Cape Krusenstern by that from Kotzebue Sound. From Eschscholtz Bay a northerly current sets alongshore on the eastern side of Kotzebue Sound, having a velocity of $\frac{3}{}$ to I knot at Capo Blossom. It continues past Cape Krusenstern, whore it is incroased by the flow from Hotharn Inlet to a volocity of 1 to 2 knots; and northward of the cape joins the current from Bering Strait, where, in the latter part of July and August, its velocity is $\frac{1}{2}$ to 2 knots . It continues with tho sanc velocity around Point Hope, then with a reducod volocity to Cape Lisburno and across to a short distance south of Point Lay. A.tor rounding Point Hopo, and thence to Icy Cape, the curr nt doos not appear so strong, and, as a rule, is about 1 knot.

In the bight botwoon Capo Lisburno and Cape Boaufort thoro is a tidal current, and unless driven in by a westerly wind the outside general current is not felt.

Northward of Point Lay, if the ice has not opened up from the shore, the current is stopped; but if the ice is open to Point Barrow, the current continues along the shore and, because of the contracted space between the shore and the ice, increases in velocity to from 2 to 3 hots and sometimes more at Point Barrow.

This gonoral curront is moro or loss affoctod by the wind and may be decreascd or oven stopped at timos by northerly winds, but whon the wind abatos it starts again. Whon tho wind is with tho curront its velocity is incroascd. Woll offshore the curronts are variable and not so strong and depend to a great extent on the winds. There is, however; a general set northward.

A report from the Coast Guerd states that in the vicinity of Point Barrow (that is, from Sea Horse Island to Point Barrow) a northeast wind will act against a northly current and produce a resultant curront which will carry the ico offshore.

The following is quotod from Physical Goography of the Sca (Mary) 1857:

A surfaco current flows north through Bohring Strait into the Arctic Occan, but in the Atlantic the current is from, not into the Aretic Soa: it floms south on the surfacc, north bolom: Bohring Strait being too shallow to admit of mighty undercurront or to porrait tho introduction from the polar basin of any largo icoborgs into the Pocific.

The following is quoted from the cruise of the CORWIN in the Arctic Ocean -,1881: (Notes and Observations by Hooper):

A bright ice-blink had boen in sight, to the castward, all tho afternoon, and about 8 p.m., the ice was raisea on the port boam and ahead. Wo soon discovered the straits to be entirely filled with ice, coming through from Bering Sea, compelling us to lay by until morning. During the nieht the set of the current, after careful observation, was found to be about one knot per hour to the northward.

On the BOth or May, being anchored at the West Diomede, the ice was observed to be setting to the northward about 2 knots per hour, the wind blowing fresh southeast with snow-squalls.

During the night of June 3 the CORWIN, while trying to get south through Bering Strait, was met by a large body of ice drifting through into the Arctic Ocean from Boring Sca Which complotely filled tho strait. Being compclicd to hoave, until tho noxt forcnoon, tho drift of the vesscl was noted and found to bo northwost, vclocity about one-half a knot por hour, weathor calm.

Junc 7; stoaming from Saint Lawronco Bay to Saint Iawronce Island, in calm woather, a current set the vossel 30 miles in an east-northeast diroction in twenty hours.

July 2, steaning from Bering Strait to Marcus Bay, time ninetecn hours, the vessel was set to the northcast 18 milos. Thore was no wind at tho time, but for sovoral days proviously a fresh north-northwost gelo had boon blowing. In passing through tho stridit noar the Dionodo Islands at that time a strong current had boen encountercd, which had boon the subjoct of romark on board, somo estimating it as high as 3 knots por hour.

From 7 p.m., July 2, to 4 a.m., July 3, steaming from Marcus Bay towards Saint Michael's, Norton Sound, the current set the vessel eastm northeast 30 miles.

On the afternoon of July l2a short trip was made at Cape Prince of Wales. A strong northerly current necessitated frequent working of the engine to hold the vessel in position. Wind moderate and variable.

July 30, While made fast to the shore ice at the east end of Herald Island, the current was measured with the chip and line and found to be to the northward 1 knot per hour. There wes no appreciable change in the velocity or direction of the current during the time the CORWIN remained at the island -w from $9: 45 \mathrm{p} . \mathrm{m}$. , until $3 \mathrm{a} . \mathrm{m}$. The ice was setting steadily northward during that time.

At Cape Wankerem, latitude $68^{\circ} 05^{\circ}$, longitude $176^{\circ} 30^{\circ}$, a tidal current was observed with a riso and fall at that time of about 2 foct, the flood setting along the coast to the northward.

At 7:30, August 3, in tho Arctic Ocoan, south of Wrangel Island, being able to scc a mile or more, wo got under way and stoamed to the northwost under one bell until 9, when it again shut down thick, just as mo come up to the ice. Tho ongine wes stopped and soundings made in $19 \frac{3}{4}$ fathoms of water, soff bottom, tomporaturo at bottom 40°, the curront setting to the westmard very gontly, not more than a quarter of n knot.
************ $* * * *$

The bed of the nnvigable part of the Arctic Oconn lying north of Boring Straits is a vast plain, with an average depth of less than 30 fathoms. South of Wrangel Island the soundings are remarkably regular, at 22 fathoms for many miles, but toward the Asiatic side of the strait the water deepens to 27 Iathoms at a distance of 20 miles from the coast, gradually shoaling to 14 in the next 10 miles. Just east of Herald Island the depth exceeds 30 fathoms, and to the northeast a fow miles reaches 40 . This is undoubtedly caused by the current which sets northward between Herold Island and the Horald Shoal.

On the 4 th of August, While cruising in the strait south of Wrangel Island, our obsorvations showed a west-northwast set of 12 miles, the wind light and variabie.

On the 4th and 5th of August tho ship's position 7as detcrminod by obsorvation, showing a current of 1 knot por hour north-northwost; wind moderate, from cast to southeast.

On the loth of August, while at anchor off the south coast of Wrangel Island, near the edge of the icempack, the curront was observed to be sotting in a northeasterly dircetion, from one-quarter to one-half a knot por hour.

On tho following day, when about 8 milos off the southoast ond of Wrangel Islond, the curront was moasured with a chip and line, and found to bo about threc-quartors of a knot per hour in a northeasterly diroction (tho diroction of the const-line). During the night the ice continued to drift to the northward, the lcad in thich the CORVIN was at anchor changing its position about 8 miles. On the following morning (August 12), while at anchor near the shore off the east end of Vrangel Island, the curront was obscrved to be north $1 \frac{4}{4}$ knots por hour. The wind during the llth and l2th was modorate from west to southwost.

August 13, tho vossol's position was dotormined by obsorvations, and tho rockoning brought formard showod: a north-northoast curront of I nilc por hour for the twonty-four hours.

At midnight, August 16, stopping at Point Bolchor, tha curront vas found to bo sctting along tho coast to the northiard about l milo por hour. Tho samo curront was obsorvod a fow hours later noar Point Barrow. The wind during tho day nas light and variablo.

August 17, monsured the velocity of the currant while at anchor at Point Barrow, and found it to bo $1 \frac{3}{4}$ milos por hour, following the direction of the land to the northeast. During our stay at Point Barrow the mind was light and variable, so that it would have but little effeot' upon the current.

August 18; got under way from Point Barrow, and steamed to the southward, with a strong head current, which was no doubt accelerated by a fresh southwest wind. At 7 a.m. the following day at Point Belcher found the current setting to the northeast along the land, but very much decreased in velocity; the wind light scutherly.

From noon August 19 to noon August 20, steaming to the southard between Icy Cape and Point Hope, the vessel ras set to the northward 30 miles.

From 5 p.m. August 20 until meridion of the $21 s t$ the curront $\pi a s$ found to have sct 12 miles north by cast onemalf east.

From 4 pim. August 22 until meridian August 24; in Boring Strait and Soa betwen tho Diomodo Islands and Plovor Bay, the curront sot 75 miles to tho northward, tho wind blowing a frosh galc from south and southeast. Three days later, in returning over this track with a moderate northerly wind, no current was encountered.

In Septomber the result of our observations in Kotzebue Sound showod a tidal current with a riso and fall of about B foct.
**** *********

On the aftornoon of Soptember 14 wo passed Capo Prince of Wales about $4 \mathrm{p} . \mathrm{m}_{\mathrm{o}}$, having a strong northorly current whilo in tho straits, चhich we estimatad at 3 knots per hour.

Tho discovery of a tidal curront in Bering Strait ond tho Arctic Ocoan is not now, it having boon known to oxist and beon roportod by soveral navigators. Tho boat oxpodition undor Cormander Pullen, R.N., along tho north coast of Alaska, In 1849, found 18 inchos rise and fall at Point Barrow and the samc at the mouth of the Mackenzic. Richardson spcaks of the ebb and flow of the tido oast of tho Mackenzie. Tho CORWIN found 2 foct riso and fall at Wankorom and 3 foct in Totzebue Spund. Parry found a tidal current in Melville with the flood tide setting to the southward. W.H. Dell, United States Coast Survey, found a tidal current in Bering Strait in 1880 with the flood tide, which was the stronger, setting to the northward.

One theory advanced in relation to the Bering Strait current is that it is caused by the rivers emptying into Bering Sea and Norton Sound, The effect of the rivors in Kotzobue Sound was romarked by Captain Beochey, R.N., who, in spoaking of a current encountorod betweon Point Hopo and Kotzebuc Scund, says:

It varied from $1 \frac{1}{2}$ to 3 milos por hour and was strongost inshore. It was very constant, and the water was Inuch froshor than the ordinary sea mator.

Ho adds:
It is necossary hore to give some further particulars of this current, in ordcr that it may not bo supposed that the wholo body of water between the two continents ras setting into the Polar Sea at so considerable a rate. By sinking the patent log first 5 fathoms and then 3 fathoms, and alloring it to remein in tho first instance six hours and in the latter twelve hours, it was clearly ascertained that there was no current at either of those depths. But at the distance of 9 foot from the surface the motion of the mator was noarly equal to that at the top. Hence, we must conclude that the curront was suporifcial and confined to a depth of between 9. and 12 foct. By the froshness of wator alongside, Captain Boechey belioved the current was occasionod by tho many rivors wich at this timo of the yoar ompty themselves into the soa at differont parts of the coast at Schischmaroff Inlet.

Ho furthor says:
So far thoro is nothing oxtraordinary in tho fact, but why this body of Water should continually pross to the northward in preforenco to toking any othor dircction or gradually oxponding itsolf in the sea is a question of considerable interest.

Tho romark applies with equal force to such rivors in Kotzebue Sound es pass through Boring Strait, while tho docreasod spocific gravity of the rivor water, duc to its higher tomperature and frecdom from salt, would prevent its raadily mingling with tho surrounding solt wator. Tho tact of its flowing northrard through Boring Strait, notwithstanding the courso of tho currunt is broken by shoals', sand bars, capos, islands;
etc., is not so readily explained except upon the theory of the surrounding current having the same direction.

As evidence of the existence of a current northward through Bering Strait, we have first the remarkable drift of the Jeannette. This vessel entered the ice near where the observations of the Rodgers are said to have upset all oxisting theories in relation to Arctic currents, yot notWithstanding the onormous friction of the ico, at points of contact, to be overciome, and in the face of adverse winds; which many times set her back to the south and eastward during the twenty months she was helplessly embayed in the ice, as a resultant of all currents she made a drift of 500 miles in a northwesterly direction.

* * * * * *

The discovery near Herald Island of part of a vessel burned south of Boring Strait must also be regarded as evidence pointing in the same diroction. We have also the tostimony of the whalers, the only men who navigate those scas regularly, not ono of whom, so far as I can learn, doubts the oxistonce of this curront. Then comes the testimony of the natives living on the shores of Bering Strait to tho same offoct. But in all this ovidonco thorc is nothing inconsistont with a regular tidel current in Bering Strait.

$$
* * * * * *
$$

MAMMALS.

An excollont opportunity was made possible by the Bering sea"Oruises to observe the peculiarities of the sea lion, the walrus and the seal. The sea lions were encountered in the Aleutian Islands, the Pribilof s Islands and Bogoslof Island, the seals were seen on the Pribilof Islands and on Bogoslof Island; while the walrus were seen off St. Lawrenco Island, St. Lawrenco Bay, in Boring Strait and in tho Arctic Ocean. The se mamals, also called pinnopods, aro built primarily for life in the water. Their activities ashore are very limited. Their bodies are more or less fishlike in form and their limbs are to a great degree finfooted.

IHE SEAS.

The fur seals of the Bering Sea form two independent herds which have distinct places of habitation and separate ways of migration. The seal of the American herd is concentrated on the Pribilofs and is called callorhinus alascanus while the callorhinus ursinus (Russian) visit the Komandorski Islands and the callorhinus civilensis, the Japanese, visit the Kurile Islands. The differences in the color of the skins, in the forms of the bodies and in the construction of the skulls make it possible to differentiate between the various classes. For example, the Anerican seals have stouter broador heads, thicker necks, superior fur and different claws. The greater portion of tho world's supply of fur seal comes firom the Pribilof Islands.

Seals are amphibious mamals. On land their forofoct aro used for climbing, whilc the hind flippers are dragged. At sea the forcfect are

the propolling power, the hind ones being used as rudders.
The goneral color of tho bull is black with grayish shouldors and brownish face. The fomple is lightor in color. The young is usually all black, having a brown mouth. On the top of tho hoad, tho males have a well marked crest of hair. The hair of the mele is longer than that of the femalo. linles also have long slender cylindrical and tapering whiskers. The pup socls about a wock old arc about a foot long and meigh about 7 pounds. At 6 months thoy arc about 2 fect and meigh about 25 pounds. Yoarlings are about 40 inches long and trigh 40 pounds. Two yearlizgs are about 4 feet long and weigh about 60 pounds. Old bulls weigh about 500 lbs., and are about 7 feet long. The average weight of the cow is about 85 pounds. The neck, chest and shoulders of a bull comprise more thon $2 / 3$ of its Whole moight and it is in this long thick nock and fore foet thet oll their strength is centered.

Betroen the first and the 15th of May the first bulls are found on the Pribilof rookeries. At that time they spend much time swinming of f the beach, a condition that soon changes when the main body arriwes. The first arrivals are not generally the oldest but are the fincst spocimens and are the ones that later control the harems ashore. with the coming of foggy woather, about 15 June, bull soals come up by thousands and locate thomselves in adventageous positions for the arrival of the fomalos.

Tho seals are polygemous type and have harems averaging l2 fomales. The selections of a special location on the brecding ground are not necessarily the same overy year. Immediately upon tho arrival of the herd at thoir summer home, vicious battles are fought between the developed mole seals for the domination of the harems. Small colonies composed of many female seals and one lord are formed. This leaves generally a large number of robust young male seals. Onco in a while they moke a raid, when the lord of the harem is not looking, and ondeavor to stal some of the females. If they are successful, they lay the foundation for a harom of their own'
-.
The bulls show remarkable courage and strength is defending their temporary homes. The fighting seems to be done mostly by their teeth, they seizing each other's hide and shaking. It usually results in a bad wound, the sharp needlelike teeth tearing out strips of skin and blubber.

Seals are the most intelligent of the manmals. They resemble a dog. They can be taught to obey in the same way. They bark somewhat the same, they cool themselves by opening their mouths and heve genorally speaking a similar head. Thoy are playful. They howevor sometimes strotch out thoir bodies like striking adders and make vicious snaps at anyone within reach.

Man is number one enemy of the fur seal but under the existing law the seals have a splendid chance. The killer whale preys on the young. The shark and swordfish attack to a lesser degree.

The seal chart shows the general run of the seal. It is reported that at one time they made the shoros of Guadaloupo Island but now they seldom reach below $32^{\circ} \mathrm{iN}$ Latitude. The information was obtained from

Coast Guard records,from Captain Bissett, one of the carly scalors and from others of his associatos.

THE FOLTOWING IS QUOTED FROM CAPTAII BISSETT'S REPORT.
MScals on leaving the Bering Sca in October and Novorabor onter the North Pacific through 72 Pass and makc course for an area in about latitude $33^{\circ}-38^{\circ} \mathrm{N}$ and for $150-400 \mathrm{miles}$ west of the California Coast, arriving in that vicinity from oarly Novomber until tho middle of December. They remain here until the month of February. The movenent or the return migration that of the snaller cows and young bulls begins.much earlier than that of the mature cors. In some yoars this part of the herd arrives off the coast of Oregon and Washington and as far north as Capo Cook on Vancouver Island carly in January. The south end oi the herd however trails as far back as the southern California Coast. The herd moves ratiner slowly along the coast of Queen Charlotte Island, thence along the Alaska coast, up to the Gulf of Alaska, arriving at the Fair Weather Grounds in April and May. On these grounds, which seem to be an immense feeding grounds many of the seals remain till sometime in June. At this time the cows are heavy with pups and begin to arrive, forming the forward moving part of the herd but do not remain long in the vicinity but move through the different passes on to the breeding grounds in July:
"We sealers used to hunt them while they were feeding some 60 miles offshore. We remained in the seal hunting until lato Soptember and sometimes until October."
"In my opinion all the great seal hords, most birds and evon fish When migrating follow great clliptical paths to and from their brecding and spawning grounds. On tho wost coast of North Amorica the seal movomont is against the clock and on the coast of Japan and Russia clockwise. I have hunted in both those grounds."

[^1]"Up until the seals leave tho islands thoy live on their mothor's milk. Cows will only suckic their own pups. Tho pups aro woanod about the first of October. The bull seals arrive on the islands covered with fat and for three months remain on the island to domineer over their various households and multitudinous better halves, with little sleop and with no food. The mothor scals swim out to sca in scarch of squib and other food, and therc formorly mot doath at the hands of the poachors. As a majority of the scals killod at sca wore fomalos, the ofroct of the pelagic catch was felt diroctly on the bra ding herd. Tho forfoiture oif the mothor's lifo moant tho forfoiture also of not oflly the liferd

the baby she left at home in the rookery, but also of the life of the baby yet unborn that she carried with her.

The older seals do not obtain their food from a very great depth; living mostly on squib and surface fish. Our investigations indicate that the soals scldom cat salmon, taking thom only when thoy pass through a school. They soem to prefer pollack instead. Howevor, they cat more salmon off the Coppor Island rookeries, but even thero the genoral food is squib and pollack. They seldom distrub the fisheries. They do not eat shellfish. Some cod but no halibut were found. The migratory feature of the seal is due generally speaking to food conditions but the departure from the Islands in October is due mostly to the approaching winter conditions. There scems to bo a rolations botweon 100 fathomenrue and the location whore the seals get their food. The cows most froquent foc ding ground is about 75 milos SE to NW of tho Pribilofs, just off 100 fathom curve."
"The cows are usually about three yoars old whon they bear their first pups, having but one offspring at a time. Coms cen casily rocognizo the young by the individual cries in addition to the peculiar individual odars. The mother single thom, out of thousands but tho pups don't socm to bo able to rocognize their mother. The apathy with which the young are troatod by tho old is rather strange. Thoy are scldon fondled. The cows show littlc concorn over tho death of thoir offspring once they leave them."
"Bulls have a number of peculiar tones but cows can only bleat. When surprised the scal will usually sit up in an ercet position and growl and make a spitting noise, showing tho teeth."
"About tho middle of August thero seerns to bo a breaking up of the harcms as the brecding is ovor. They come and go at rancor, tize cows going to sea more often than the bulls. The pups are clumsy and weak but take to the water to icarn to swim. They soon swim and socm to thoroughly enjoy thenselves. By the 25 th of September they are out on their own resources except for food. By one October the rookeries; are pretty well broken up. By 30th October very few remain. The むalling snow and the heavy rain have thoroughly discouraged thein. The seal likes cool, moist weather. The hazy, foggy weather of June, July and August is to their liking. They apparently do not like temperatures of $50^{\circ} \mathrm{F} . "$

When the natives off the coast of the United States kill their seals during the months of March and April, it is done by canoe at sea. The fishing gear consists of two spears which arc fitted to a pronged pole about 15 feot long. To the spar is attached a linc \quad bhich is fastenod towho spear pole or is held in tho hand of tho spearman whon he throws the weapon. A scal club is also provided as well as two seal skin buoys, the lattor boing takon in tho canoc to bo uscd in rough weathor or if a scal, having been speared, cannot be managed with line, the other buoy is bent on and the seal played. Its efforts to escape by driving and plunging soon plays out the seal and it is then hauled alongside and clubbed. Killing the seals ashore is somewhat different. The killing of seals occurs during the last two weeks of July. Barly in the morning the fur-seals from one rookery or anothor are cut off
from escape by sea and are driven inland. About half a mile from the shore the herd is examined. Old males, fomales and puppies aro soloctod and freed from the drivo and returned to the shore, and the males betwoon threo and five years old are driven to the killing placos. Tho woight of the skin must be botweon 8 and 12 lbs. They are driven slowly and permitted to halt and cool off at regular intervals, as herting thom injures thoir fur. Thoy scldom show fight and move along like a flock of sheep. When they reach the killing grounds, they are rested and cooled and when ready the eligible males are driven from the hord, surrounded by nativos Who thon do tho killing by striking ogch scal on tho hoad by a blow from a hoavy club. A singlo stroke proporly dolivorod will crush the bone of the scal's skull at oncc. The finishing touches are made then with a long knifo thrust into the hoart of the senseloss seal and it is then blod. Aftor the killing, the body of the saal is rolled over on its back and the ratives make a single cut through the skin along the nock, chost and bolly from the lower jaw to the tail. Tho hind and foro flippers are liftod and a circular hole is made, and the hide is cut froc from the body. The skins are cloaned and then salted and at the end of the scason are brought south and dolivored to tho dosignated firm to propare the skins for auction.

REPORT OF CAPTAIT HOOPER, U.S.R.M.

21 NOVMIBER, 1892.

Tho native^hunters divide the soals into six classos as follows:

Sok'atch	Old Bull
Polu-sok'atch	Half-grown-bull
Holosty'ak	Young malc
Mátkah	Brooding cow
Molodàya-mátkah	Young oow
Kotock	Pup

As a rosult of my invostigations I find that the fur scals whon leaving Bcring Sca in the fall go through Four Mountain Pass, Umak Pass; Akutan Pass, Unimak Pass, and tho Falso Pass; by far tho groatest numbor, probably a majority of all the pups going through Unimal Pass which being wider than the others, is less subjoct to strong curronts, tido rips, otc., than the narrowor passes. It coincides most noarly with the lino of travel of the migratory hord of cows, young males, and pups which go to the coasts of California; Orcgon and Washiagton, etc., as wcll as that of a large numbor of malos which romain in Alaska watels during the wintor.

It is also the mosst available pass for the usc of all classes of soals on account of the provailing winds. Soals always travel with a fair wind if possible. A few stray individuals only, mazty pups go through the narrow pass botween Akutan and Akutan Island; mich on account of its rapid curroints, rocks and rocfs is fillod with tido rips and ovorfalls.

According to native tostimony, the scason during which the sokiatch or old bulls go through the passas is from the l5th to the 2and of October. Thoy laave tho sca ahoad of the migrating hord, alrays travel by thomsolves and go vory finst. After loaving Boring Sca they go to the castmard and pass tho winter south of Unimak Island and tho Alaska Poninsula and in tho

Alaskan Gulf. During our spring cruise we found large numbers of them off the Mt. Fairweather region where they had undoubtedly wintered. Although I made inquiry at that tirne of all hunters both white and native met with and had a careful lookout kept from the vessel at all times; I could not learn of any number of old bulls having been seen south of the southern limit of Alaska and only vague rumors of a limited number being taken as far south as Forrester Island near Dixon's Entrance. Polu-sek ${ }^{\text {- }}$ atch or half-gromn bulls are often erroncously called "old bulls" by the white hunters, the name being properly applied to the old rales inhabiting the breeding rookeries. The old bulls are very large, weighing from six to eight hundred pounds, perhaps more. Two were taken by the "CORWIN'S" hunters from the herd encountorod off the Mt. Fairwoathor rogion, the polts of which weighed sixty-one and sixty-five pounds rospoctively.

Individuals of tho Polu-sck'atch are sometimes found with the migrating herd of cows; young males and pups but by far the greater number of them as well as many of the larger Holosty'ak renain in Bering sea or in the waters off the Coast of Alaska all winter. They are seen during the \quad inter by the natives of Belkofsky, Unga, and Sand Point ihon out sea otter hunting and are both seon and taken by the Sanok natives throughout the winter. Many Holosty ${ }^{\prime}$ gk and Polu-seklatch remain upon the Pribilof Islands until the ice comes down, and drives the fish away when they must search for other feeding grounds. As I have stated in a former report to the Hon. Secretary of the Treasury, I landed upon St. Paul's Island about the 24th of January, 1886 and was informed that a "drive" had been made the day previous and a largo number of Holosty'ak (about one thomsand) killed.

But a fow malo soals of moro than four yoars of ago accompany the migrating herd on its voyage across the Pacific. A large percentage of all the adult male portion of the fur seal herd remain in Alaskan waters throughout the year, sponding the time Irom May until. October upon the Pribilof Islands and the balance of the yoar in Boring Sea and tho Pacific Occan near the Alaskan Coast. The groat migrating hord consisting of Mat'kah, Molodaya, Holosty'ak, end Kotock bogins to go through the passos about Octobor 22nd. The invariablo cnsmor mado by the nativos to tho quostion "What time do tho cows, young melos and pups bogin to go through tho passos?" wes "Desya" travo Octy a bri'ya" - October loth old style or October 22nd new style. At first they are seen in very small numbers; as a rule I think but a few stray individuals go through the passes beinore the first of Novomber and the herd is not fairly upon the move before the tenth.
\therefore While cruising ncar tho passos during October, wo saw but fivo soals in all. On Octobor 20th, two wore soon an adult and a pup in the Boring Sea noar Unimak Pass. They had apparently no intention of going out at once as they were playing and were in reality swimning amay from the pass When seen. On October 2ind, two more seals were seen as before an adult and a pup in the south ord of Falso Pass, comonly callod Morzovia Straits; just ontoring tho Pacific. On the samo day somo hours lator e sineslo adult scal was soon noar Amagat Island a Iev milos cast or Faisc Pass. It had doubtioss come through the pass.

Umnak Passos under favorable conditions, a north west wind and a moderate sea, a few seals were observed; in each case only single individuals were seen and those seemed to be equally divided betwoon adults; yoarlings and pups. No seals were takon by the nativechuntcrs at Kashoga, Macushiu or Akutan this yoar during October.

- The first soal scon in Unalaska Bay this yoar was on Octobor 2lst, and but fivc had boon scon in the bay up to tho ond of October. A rocord kept at Unalaska for the past twolve ycars shows the average date of the first appearance of soals in the bay to be October 24th, and the avorage date of the last appoarance to bo January lst., the carlicst and latost dates being respectively October 18th and January 4th. During strong galos, tho pups como into tho bays in tho vicinity of the passos for tomporary sheltor. This fect doubtloss gave rise to the belicf that the adults and pups travol scparately when leaving Bering Sea -- a belief that has no foundation in fact.

The season during which tho scals use the passes to the wost of Unalaska (Four Mountain and Umnak) ends about December lst, one month carlicr than in the passes to the cast of Unalaska Island。 This undoubtedly is due to cold wosterly and north westerly geles which occur in Docomber and the scals" disliko to traveling against wind and sca as shown by the testimony of all natives. Thoy can go from the Pribilof Islands to the passos east of Unalaska Islanci (Akitan, Unimak and Folse) With a fiair wind, while to reach the passes rest of Unalasko Island, they have almost continual strong head minds and sees to contend with after the end of November.

About the end of December, a little more than two months from the time the first seals appear in the passes going from Bering Soa into the Pacific, the main bcdy of the herd may be considered out of Bering Soa, although some reasons scals aro seon in tho passes as late as the l2th of January. The close of the migrating soason varios a fow days from ycar to yoar, according to the condition of the woathor, an carly approach of winter causing an early southward movement of the seal herd and the contrary. In about the same time that the main body of the herd has occupied in going through the passes and before the last of it is fairly through; the first part of the hard has made its appearence upon the coasts of Califormia and Oregon, having travellod a distance of rioro than two thousand miles, more tinandarble the distance made at any other part of the routc in the same time. In viow of all tho circumstancos, the stomy condition of tho soc, the provalence in the Pacific of heavy easterly galos; tho scols' disliko to swimning against wind and soa, the delay necossarily caused in obtaining food, the fact thet n portion of the migrating hord consists of pups notyot six months of age and considoring further the rato of spoed at which soals travel on other parts of the routc, they being five months and a half from January lst to until Iune l5th making the return trip from the coast of California to the Aleutian Island Passes, following the coast line which increases the distance about one-third, it is evident that the seal herd after leaving the passes makes its way to the coasts of the Pacific States without unnccessary delay. The part of the hard which first goes out through the passes tokes a more southerly route thon thosc that go lator. But a small part of the entire herd goes to the coasts of California, and Oregon. Many soals reach the coast farther north, some of those going out through the passes last
going no doubt direct to the coast of Washington and even farther north. In 1886 during a passage in the United States Revenue Steamer "Rush" from Puget Sound to Unalaska, where we arrived on the 19tif of January, I saw fur seals nearly every day, the vessel having passed through the herd then on its migration from the passes to the coast and oxtonding entirely across the Pacific Ocean.

The time of the appearance of the fur scal herd off tho coast of the Pacific States differ slightly with different scasons, but as I loarned during my invostigations last spring and as I hevo alroady roportcd coincides with the arrival of tho smolts, herring and culachon which cach spring como into the rivers in large numbers to spawn. If the fish come into the rivcrs unusually carly the scals appear off the coast corrospondingly carly; if tho fish arc lato tho soals also arc lato. That the scals must ind fishing banks on tho routo does not follow; the supply of surface fishes, squib, it appears to be ample for their wants. Both in Bering Sea and the Pacific Ocean during our summer investigations, we found herds of seals with their stomachs well filled in nearly twothousand fathoms of Fater.

In relation to the way seals travel, whether singly or in bands, the natives agroe that they travel singly or in small bands never excooding five or six and gonerally by twos and threos.

One intelligent native in answer to the question, said "Seals travel like people - sonetimes one goes alone and sometimes with another".

Systematic observations of the movoments of the seals in the Pacific Occan near the passcs at this scason of tho yoar is impracticable. Almost constant gales and thick wathor prevail. In tho influcnce of the strong currents through the passos the soa is very rough and cvon were it possible for a vossol to romain thero; fow if any scals mould be scon. Under such circumstances, the seals travel vory fast and romain undor wator oxcopt mon forcod to come to the surface to breathe and then only the nose is above the water for a moment. In bad weather on the sealing grounds in the Pacific and Bering Sea, the seals disappear so entirely that the Indian seal hunters believe they go to the bottom and remain there until the weathor bocomes bettor.

But having proviously obsorved tho scals over the ontire routo and over a large portion of it many times, I am able to statc positively that in no part of it do they travel in bands. Leaving San Franciso in March of the present year; I followed the seals along the coast northward to the Alaskan Gulf making careful observations of their habits, etc; subsequently and while the seals prere still moving toward the passes, I went several times over their track between the Alaskan Gulf and the passes. I spent the month of August observing the seals in Bering Sea and in addition the cruise just completed covering Octobcr and a part of November.

As stated olsemhere in making tho passage from Pugot Sound to Unalaska in January 1886, I passed ontirely through tho scol herd thon making its migrating to tho "coast". I have cruised in Boring Soa scven seasons including the present and have many times been along the coasts of California, Oregon and Washington during the months that the seals were present. I have at all times in Bering Sea in the Pacific Ocean and in
the Aleutian Island passes secn scals travelling singly or in twos and threcs; frequently a young male, female and pup are seen together, the only exception to this being when they haul out on floating patches of kelp. In Bering Sea, I have often seen a dozen or twenty seals upon one patch of drift kelp apparently resting. If disturbed, however, thoy spring into the water and soparato, ontiroly rogardless of cach other. From my own observations and what information I can gather from all sources, I believe that upon leaving the islands in the fall, the seals are ontiroly independent of cach other, cach following its own inclination, and that the small groups of twos and threes sometimes seen arc but tomporary and more accidental than otherwisc. The coast of the Pacific Statos is the destination of the hord aftor leaving the passes; and a milder climato and the sriall fish that infost the rivers in the spring the incontivos. The southern range of the herd being dotominod by the individual likes is reached by but a small port of the entire herd. Up to the time of reaching the coast the soals are very much scattorod. After roaching tho const and while following it along to the northward the scattered seals close up somewhat and assume at times something the character of a herd or band. This however is but accidental. If disturbed, they always scatter in all directions instead of moving off in one direction as do walrus, sea-lion, porpoises and other animals that are known to travel in bands or schools.

On November loth; the CORWIN left tho vicinity of the passes and shaped a course for San Francisco. Wo soals were seon on that day. On the
 ly a yearling was seen and on the morning of the l2th in Lat. $50^{\circ} 08^{\prime} \mathrm{N}$. , Long. $156^{\circ} 40^{\circ}$ W., what mas believed to bc a pup seal was seon -- the only seals seen during the passage although a gaod lookout was kept at all times.

THE SEA ITON.

The sea lion is a great furless seal. Its color is dark chocolate brown. The length of a full grown male is about ll feot and its weight is as much as 1100 pounds. The female seldom is over $\frac{1}{2}$ the size of the male. The baby seal weighs approximately 25 pounds and is about 2 foct in longth 人

The seal lion is polygamous. Like the seel the bulls congrogate on their rookeries. Threo or four woeks aftor the bulls establish their homes the covs mako thoir appearance. Usually a savage fight occurs botwoen males the younger and weaker onos are driven away loaving the larger and stronger bulls in charge forming harems of about 12 coins each.

The young are born during the months of May and June. The young must strive for themselves early in life their lot being somewhat different from the baby walruses.

The sea-lion as a whole rcmain in the vicinity of their rookeries the year round. They are a timorous lot. If they are approached by man the bulls and cows rush off into the water, loaving their young bohind.

They usually swim offshore for a safe distance and huddle togethor in packs of about 200 each. Thoy hold their head and nock high out of watcr roaring in concort incossantly making a deafoning noise as in protest of their being disturbed. As soon as thoy are loft alone they return to
their rookery. They swim with ease and with considerable speed. As they approach the beach their heads are held well up,out of the water as tho picking the best landing place. In beaching they seem to take advantage of the existing swells and sea to help them land. On shoro they can travel at approximato speed of one mile per hour.

The sea-lion altho provided with flippers similar to the fur scal cannot uso them as frcoly. Thoy soldom oxploro vory much ashore but locatc in a strategic position and sprawl all over the ground.

The voice of a sea-lion is a deep roar. Whon natives have a scalion drive it parallels the scal drive. The bulls howevor, aro shot down and the fonale spoared.

The hides are usod for boats, the intestines for water proof clothing, the moat for rood, the skin of the flippor for solos of boots and tho oil for light and fuol.

Tho food of the sea-lion consists gencrally of fish, mollusk; crustaceans, or birds. .

Tho sond beachos of Bogoslof were beset with sea-lions. They seened to keep well clear of the rocks wile at Boulder Island and Walrus Island, they seemed to remain on the rocks at all tinas.

THE WAIRUS。

The walrus is a member of the scal family but is largor and lives in much colder water. They arc holpless bundles of blubbor protected by a. thick tough skin from $\frac{1}{2}$ to $3^{\prime \prime}$ thick. The feralo is smallor than tho male. Its tusks are smaller, thiner and sot closer togethor.

The walrus can float with ease; swim at a fair rate of specd and while ashore can wadde at about 1 mile por hour.

The walrus are more or loss grogarious and do not seem to be migratory. They limit thoir movoment to the shore line and to jarge massos of ice.

Tho walrus is monogamous. During tho months of May and. Juno they hoad for shore when the female givos birth to their young, usually ono pup but soldom more than two. Tho fomalo suckle their young for a long period. Keeping well clear of the rest of the herd with their new born. The walrus protects its young and is extremely affectionate. When one is injured the whole herd usually gets into action. They are not easily alarmed and it is for that reason a huntor can approach very close to them. Unloss attackod tho walrus is really inoffonsivo and harmloss but becomes a powerful and dangerous enemy when annoyed.

Their voice is a loud roar which can bo heard a long distance. Thoir roar in a fog is usually a sign of ico or at least of cold water.

Walrus subsists on mollusks and sea grass which, thoy obtain from the bottom of tho sea by digging with their tusks. The sholls aro romoved by means of their teoth and their tongue. Tho young live for about
two years almost solely on the milk of their mother, they being unable to dig for their food until their tusks have attained at least 3 inches in length. The tusks are also used as Heapons.

Wan is the main enemy of the walrus altho the polar bear is a consistent foe. The killer whale pursues the young walrus but nevor attacks the older one.

The walrus is killed today mostly by man with fircarms. The hide is used for boats, the tusks for trade, the flesh and oil for food and the intestines for rain clothing for their natives.

SOUNDINGS

The CHELAN in 1934 under Conmander F. A. Zeusler made an oceanographic survey and ran a series of lines of sounding to the nortlwestward in Bering Sea which indicated the existence of cortain shoal water. The CHELAN in 1935 and in 1936 under Commander L. V. Kiclhorn continuod the survoy work. The contour devolopment is shown on tho accompanying chart. This chart is submittod because of its bearing on the flow of water in the Pacific Occan and in the Bering Sca.

Extracts from lottor of Commanding Ofticor, Chilan, Commandor L. V. Kiclhorn, With roforonce to soundings in Wostorn Bcring Sca and North Pacific Occan arc quotod as folloms:

> "Tnalaska, Alaska, 25 Suptombor, 1936.
"The object of sounding south of tho Aleutians to find and … develop a bank roportcd south of \&ttu by an "old timo socier" as a hording placo for young bull sools. Thic roport stated that the shoal was knomn to most oi the oldcr soalcrs tho visitod Japon ana Coppor Island and that it was crossed diagonally whon roturning from the Conmandor Islands and to Cape Flattery. Tho CHPLAN foiled to find such a benk, but instoad, lecrnod that the Aleutian Trough is much narrower, closer to the islends, and deepor than hitherto supposod. There is reason for bolicving also that it cxtends further most than at prosont showil.
"Upon loaving this area for Attu it ves docided to join the thou-sand-fethom curves on the northern and southorn sides of that island. Much to the surprise of all the cyrve took the ship more and more to the wostward, whero, in Longitude 170 cast, it terminated in a shool, triangular in shape, and of lerge aroc. Pvidence of another shoal beyond this was found oxtonding to tho northwostward. Time and approaching bad weather did not permit furthor oxploration but sufficiont informetion is uncovered to indicato quite cloarly that shoal water exisits here in much the same way as it does among the other groups between the filaskan and Kamchatkan Peninsulas, thus establishing all these jslands as of the same geologic period and origin. Much more work is necossary to develop the area west of Attu satisfactorily, but onough is now known to warrant beliei that the soundings will show a highly irregular bottom with many pinnacles.
"The surveying was done under conditions exceptionally good for this rogion and scason. Light variablc breczes provailod and, although observations could not be had as ofton as desircd bocauso of mostly

overcast woathor, tho small drift, avoraging lcss than ono-fifth knot per hour (sco curront sheot), lossonod tho nocossity of having them more frequently, and considerablo confidence is to bo plecod in the accuracy of tho work in genoral.
"Tho CHETAN is providod with a Submarine Signal Company fathometer, type 515E, and recorder, type 505, with two oscillators in parallel for deep soundings. With this device soundings of more than four thousand fathoms came in sharp and clear under normal conditions. There is also installed a wire sounding machine for depths not groator than a thousand motors, its uso being primarily for obtaining wator somplos and tomporaman tures. It is thus seen that the ship is woll equippod for hydrographic surveying and dyriamic obsorvations. Tho fathometor was carofully. inspected by.an agent of tho company in Saattle in Junc of tho prosont yoar, both for operation and adjustment to the standard white light specd of 820 fathoms por socond. In addition tho wire sounding machine was used on several occasions to check the fathometer. Salinitios wore somewhat lower than expectod but these doterminations wore chocked i number of times and aro bolioved to bo corroct. Tho wator tomperaturos agroe romntwibly well mith those observed in the Gulf of Alaske by the Coast and Geodetic Survey."

For Record in the United States Hydrographic Office
Vessel (name, flag, type) U. S. S. CRETAN C.G.

Master (name) L. V. KIELHORT, Comdr.e.U.S.C.G. Owners name and address \qquad
Observer (name and rank) J.A. Ely, It. U.S.C.G.
Address to which an acknowledgment should be me de Commanding Officer, U. S. S. CHELATH, C.G., Seattle, Wash.
Voyage: From Amehitka, Aleutian Island. to At An, Aleutian Islands. on Hydrographic cruise south and West of Aleutians

ADDITIONAL REMARKS

The current observation between Augst 24 and August 25 includes a 4 -mile drift 350° between 2330 August 24 and 0700 August 25, during which time the ship was drifting in latitude 53-2 $5 \mathbb{N}$, 171-02E: Subsequent observations of the sun determined this drift which observations were taken before noon, 25 August.

VELOCITY 820

Locality off ATTU', ALEUTIANS, August; 1936.
Observed data indicated by asterick
Other Salinitics indicated by formula:

and other temperatures adopted.

DEPTH		Salinity	Temporatures	Correction
Moters	Fathoms	-100	${ }^{\circ} \mathrm{C}$	Factor
4^{*}	2.2	31.00*	11.5*	
15*	8.2	31.25*	$10.5{ }^{*}$	
30*	16.4	$31.45 *$	8.25*	
50*	27.4	31.85*	5.5*	
100*	54.7	32.18*	4, 0^{*}	0.983
300*	164.1	32.67*	3.75 *	0.983
500*	$273 n 5$	32.90	$3.5 *$	0.982
1000*	549.0	33.22	3.0 *	0.984
1500	820.5	33.40	3.0	0.988
2000	1094.0	33.54	2.5	0.994
2500	1367.5	33.64	505	0.996
3000	1641.0	33.73	2.5	1.005
3500	1914.5	33.80	2.0	1.010
1000	2188.0	33.86	2.0	1.015
4500	2461.5	33.92	2.0	1.019
5000	2735.0	33.96	1.5	1.024
6000	3282.0	34.05	1.5	1.037
7000	3829.0	34.12	1.5	1.046
8000	4376.0	34.19	1.5	1.056

BOGOSLOF ISIAND.

Bogoslof Island, the mystery island of the Bering Sea has long been the center of interest for the vessels of the Coast Gunrd while on Seal Patrol. Altho many positions heve been reported its location was definitely ascertained by a survey party of the U. S. Coast and Geodetic Survey in 1935. Through the courtesy of that service the latest chart is included with other running surveys made previously by Coast Guard Officers. Bogoslof has never been inhabited by man but has always been a hauling out place for herds of sea lions and a nesting place for millions of sea birds principally murres and sea gulls.

Generally specking the island is about 60 miles wost of Unalaska and about 25 miles north of the Aleution Islands. It is thus far off the usual trade routes and is scldom seen by the merchant flect but it is visited each yoar by the cutters. It is for that reason many of the changes of the wolcano reported havo been obscrved by the Coast Guard.

This island was shown on the charts of Krenitzon and levoshef in 1769. Captain Jomes Cook on his third voyage, sighted an island on October 29, 1778 doscribing it as an "elevated rock which appearod as a tower". The rock, was no doubt the ramains of an ancient island which was show as "Sail Rock" on many of the carly charts.

The first recorded cruption of Bogoslof or Joanna Bogoslof (St. John the Theologian) so called by tho Russians, occured in 1796 when a large peak rose out of the sca close to "Sail Rock;"

Father Veniaminoff the Russian Missionary to the Aleutians writes the following account:

> The new island, Bogoslof, in latitude $53^{\circ} 58^{\prime}$ north and longitude $168^{\circ} 05^{\prime}$ west, rose from tho sea in the carly part of May, I796. Before the island appeared above the sca, thore had beon witnessed for a long time in that spot, a column of smoke. On the 8th of May, aftor a strong subterrancan noiso, with the wind frosh from the northwest, the new small black islet became visible through the fog; and from the summit great flames shot forth. At the same time there was a great carthquake in the mountains of the northwest part of Unmak Island; accompanicd by a great noise like the cannonading of hoavy guns; and the next day the flames and earthquake continued. The ilamos and smoke wore scon for a long time. ifany masses of pumice stonc were ejected on the first appoarance of the island.

In 1806 Langsdorf passed the island and said that the centor point lookod like a pillar. At that time thore wore four rounded sumaits which rose over above the other like steps. The new island apparently continued to grow and in 1817 its circumforence was estimnted at $2 \frac{1}{3}$ miles. At that time its height was estimated at 350 foct. Frorn roports, in 1823 the island cooled sufficiently for it to bocomo a rookory for sca-lions and a bird sanctuary.

.. It is reported that in June 1820 the Russian sloop "Good Intent" passed by the island. At that time the island was cold, as sea-lions were along the shore linc altho a column of snoke arose from the erater. Tho circumforenco was estimated at 4 miles and tho hoight about 500 foet. The next report by Voniaminoff statos that the island ccased to incrcaso in 1823.

In 1832 the island was again visitod. At that tinc it was about 2 milos in circumforence and about 1500 foct high. The island was pyramidal in shape with a long tonguo of land on which wero seon horods of sca-lions.

In 1873 the scientist Dall visitcd tho island and mado a numbor oif sketches. The island had becone smaller and had changed materially.

The next great recorded activity occured about 1883. In September of that year Captain Anderson of the Schooner Mathew Turner landed at Bogoslof and found two-peaks instead, of one. The new peak was found to be about one mile north-northwest of the old peak. It was estimated between 800 and 1200 feet in height. It was steaming and smoking violently. This now peak wes known as IVow Bogoslof for a period of time but gradually became known as Fire Island its present nome.

In 1884 Lieutenant Cantwoll and Licutenant Doty of tho Cutter CORWIN charted the island. Thore was a vast change in appearance in 1873. Extracts from the roport are horewith quoted:

REPORT OF SECOND ITEUT. JOHN C. CAINTHELE. U.S.R.C. CORWIN, 1884.
"Approaching the islond from the northeast it has the appearance of being divided into two parts, the northern portion being in a state of eruption and the southern portion a much serrated rock rising almost perpendicularly from the sea, while between the two and nearer the northern part of the Bogoslov a tower-like rock rises with a slight inclination towards the north to a height of eighty-six feet. At a distance it might be easily mistaken for a sail upon the horizon; for this reason it is called Ship Rock or Sail Rock. A nearer approach discovers the fact that the two elevations are connected by a low, flat beach free from rocks and affording an axcellent landing place for small boats. The CORWIN steamed around the northern end of the island and alose enough to obtain an accurate view of the volcano. The top was hidden by clouds of stoam and smoke which issued not only from the crater but also poured forth with great violonce from ronts or aroas in tho sidos of the cono. On the northeast side thesc aporturcs aro particularly woll dofincd. I counted fifteen steam jets forming a group situated on a horizontal line about two-thirds the distance from the base to the apex of the cone. This group was the more noticable on account of the force with which the steam escaped as well as the marked regularity of the spaces separating the vents. The sketch marked A gives a view of the northern end of the island and the position of steam jets meritioncd above.
"When the conter of the island boro northeast and distant threequartors of a milo tho CORWIN was anchorod in thirtoen fathoms wator and a boat lowered in which we proccedod towards the shore, sounding in from ton to twolve fathoms until within ono hundrod and fifty fect of the beach, when the water gradually shoaled and we landed without difficulty, the wind being light from northeast and the sea smooth. The landing place is shown in the sketch marked B.
"The narrow isthmus connceting the old and the now formations is composod of a mixture of fine black sand and small oolitic stone, the greatest quantity of sand being on a line dividing the island longitudinally into two parts. During our stay the water did not rise high enough to cover this beach; but pieces of drift-wood, algae, etc., found on the highest parts fully show that at times of highest tides or during severe storms the entire isthmus is submerged.

Abstract

"The sides of the Bogoslov rise with a gentle slope to the crater and tho ascont at first appoarance is casy, but the thin layer of ash formed into a crust by the action of rain and moisture is not strong enough to sustain a man's weight. At every step my feet crushed through the outer covering and I sunk at first ankle-deep and later on knoc-decp into a soft, almost impalpable dust which arose in clouds and nearly suffocated me. As the summit was reached the heat of the ashes bocame almost unboarable; and I was forced to continue the ascent by picking my way ower rocks and bowlders whoso surfaces being oxposed to the air were cooler and afforded a more securc foothold.

"The temperature of the air at the base was 44° and at the highest point reached 60°. A thermometer buricd in the sonl at the foot of the cone rogistered 44°, half-way to the top, 191°, and in a crevice of the romparts of tho crater the mercury rapidy expanded and filled the tube, when the bulb burst, and shortly afterwards the solder used in attaching the suspension ring to the instrument was fused. We estimated the temperture at this point to be 500° Fahrenheit. The temperature of the water around the island wes the same as that of the sea, as observed on board the CORWIN at the time, was 40°.
"On all sides of the cone there are perforations through which the steam oscaped with moro or less energy. I obscrved from some vents the steam was emitted at regular intertols, while from others it issued with no perceptible intermission. Around each vent there was formed a thick deposit of sulphur; the vapor arising from which was suffocating and nauseating in the extreme.
"An examination of the interior of the crater was not satisfactory on account of the clouds of smoke and steam arising and obscuring the view. On the northwest side the surface of the cone is broken into a thousand irregularities by masses of volcanic and metamorphic rock. On allother sides, however, the accumulation of ash and dust has almost entirely covered the rocks and the sides appear more even and less precipitous.

[^2]

hitherto examined in the Aleutian Isiands. Small quantities of rockfroth consisting of unfused particles in a semi-fused mass were seen, but the heat of discharge has evidently never been sufficient to produce firm fusion. Specimens of dust collected from one on the vents. was compared with volcanic dust which fell in the village of Ounalaska October 20, 1883, and found to be identical in charactor.
"Dosconding to the beach on the east side I found it to be much the same formation as on the west sido, with porhaps the exception that the line of sand hero approaches nearer the water-line. The pebbles seen on the island are universally of a dark-gray color, with small black spots and worn surface by attrition.

> "I sam no shells and but little sea-weed. Kelp in considerable quantities, however, was observed close inshore.
"A Walk of a third of a mile brought me to old Bogoslov, where the beach abruptly terminates. The northern end of this rock rises almost perpendiculorly to a distance of somo 325 teoto Its face is deeply indented at tinc base. forming a cave-like recoss which gives the rock the appearance of loaning toward the north.

Abstract

"Probably nowherc can there be found a bettor example of the disintegration of stone into soil by the ection of the atmosphere. The composition of the islot was originally of slate or shale. It is now breaking down on all sides and cmmining to dust. The central portion seened to be composed of a more enduring substance, but a close examination $\pi a s$ impossible on account of the loose. crumbling nature of the rock formine the sides and the precipitous ascent. I fired a riflemshot into a flock of puffin, myridds of wich were perched in the clefts and niches of the rock, and when they reso small pieces of stone were detachod and inturn displaced larger pioces of stone until a porfect avalanche of stonc camo down the doclivity, scoring great ruts in the hillside and toering up great masses of stone, tihich were dashed to pieces on the shore bolow.

"Spocimons of outer rock were found at the baso of the old Bogoslov, on the southern side', which; boing struck with a hamer, crumbled to dust, in somo cases dooply tintod with rod, showing the prosconce of iron.
"Hard bomlders of some hard, smooth stone fringe the bases of both the old and new Bogosloff, but a carcful examination of the surrounding waters, both in small boéts and on board the oORWIN, failed to show any outlying dangers. A spot of sand and pebble formation extends from the southern end of old Bogoslov four-tenths of a mile in a southeasterly direction, and, like the isthmus connecting the two islands, is probably submerged at times of highest tides or during severe storms. The depth of water around the island is shown upon the chart accompanying the roport.
"Puffin in great numbers were scen on old Bogoslov, and it is probable they make this isolated spot a brecding place. I also saw numbers of harlequin-ducks; gulls, and kittiwakes. A dead albatross was pickod up on tho boach; but it is probable it was washed ashore,
as its prosence in these latitudes is not common. Soveral herds of sealions were found on the bcachos, and on the rocks of tho island. Thoy cvinced no foar of our party until fired into, when they entored the Wator and followod us from point to point, cvidently viewing our intrusion with the greatest curiosity and astonishment.
"Angular neasurements were made on the shore by Liout. D.W. Hall to determine the heights of the poaks and the dimensions of the island, with the following rosults:

	Foot.
Height of oast pinnaclo old Bogoslov	334
Height of conter pinnacle old Bogoslov	289
Height of west pinnacle old Bogoslov	32
Breadth of basc old Bogoslov	933
Height of Sail Rock -	87
Width of isthmus (narrowos	326
Length of southorn spit	1;824
Extrome longth of island	7,904
By obscrvations of Licut. J.W. Howison the position of Sail Rock reckoned to bo latitude $53^{\circ} 55^{\circ} 18^{\prime \prime}$ north and longitude $168^{\circ} 00^{\prime}$ most."	

In 1885 the CORiliN again visited tho island at tirat time a narrow neck of land comected the island. The tctivity had stopped materially. There was little change from 1884. The lower peak was 450 feet and the higher one 525 feet.

In 1887 the island was visited by ITr. W.C. Greenrield, at that time the contours had changed materialiy.

In 1890 and 1891 the island was visited by the Cutter GRANT and by the U.S.S. AIBATROSS.

In 1895 scientist Dall again visited the island and found much erosion.

The Gutter GRANT under Captair Tozier visited the island'in 1896. Lieutenant Commander Perry then a. junior officer states:
"There were two islands at that time separated by a channel 200 yards Wide. These islands were inhabited by a great herd of sea-lions also by myriads of birds. The level ground was strewn with eggs and Perry Pcak was honeycombed with nests".

In 1897 Dr. L. Stejneger passed close by the island taking pictures.
In 1898 the CORWIN Visited the island and found much orosion.
In 1899. the Flarriman Expedition visited the Bögoslof amd obtained - considerable data.

In 1900 the cuttef reported that the heat had died out on Fire Island. A passage between the two islands was found with not less than 7 fathoms of water.

Between 1900 and 1904 the island was visited by cutters which reported few marked changes until latter part of 1905 a new peak appeared half may between the two islands. This peak was connected With Fire Island and left a passage between it and Castle Island with a least depth of 5 fathoms.

Early in 1906 tho island was survoyed by officors or the Cuttor PEPRY. The now poak was called Perry Poak. It was still separated from old Bogoslof by a chonncl about 7 fathoms deep but connceted with Fire Island. In May 1906 tho U.S.S. Albatross visitod the island and observed the new steaming volceno. During the lattor part of 1906 the cutter found that anothor poak was formod filling the space betwocn Porry Poak and Castlo Island, this again making one island of the group.

In 1907 a local trador visited the islond and found that the additional peak had formed. This was later found by the MeCullock in July of tho same year and that onc peak had half collapsed and the.t the chonnel between it and Castle Rock hed filled up with MoCullock Peak, estimated 500 feet high. In October the IicCullock again visited the island. McCullock peak was gone and a hot water lagoon was in its place, the other poak still stood. Tho avorage life of the two now peaks in the middle were abatt 10 months.

In July 1908 tho Cutter RUSF visited the island and the officers made anothor survoy. Porry Peak had disappoarod, a high ridge of land had bocn found oxtonding from Firo Island to Castlo Rock with a reximum height of 300 foot', tho Castlo Rock cntranco had boon closed and a now ontrance noar Fire Island had beon found.

In 1909 the cuttor visited the island but no important change occurred.

From this point on oztracts of roports are cuotod giving oyewitnoss accounts of the existing changes.

Report of Captain F. J. Haake, U.S.R.C.S., Commanding Revenue Cutter PERRY on observations of Bogoslof Islond: - June 15-16, 1910.
"The formation of Bogoslof Islond has undergone considerable change since our visit last year. The two small islets reported last your as havingeome up in the lako; heve united and risen to a hoight of about 185 foet above the lake lovol, and oxtended to and joined the N.E. shore strip forming a neck of lond oxtonding into the lako in a S.W. diroction: the shore strip on tho N.E. side had also risen about tem. feet above last year's height. Castle Rock. Fire Island, and the S.W. shore of the lake remain the same as last year. In the lake, which is salt water, we found tomperatures ranging from 62 to 110 degrees. On the now land the most active portion is on its wost sido where considorablo sulphur fumes and boiling wator aro omitted from small holos in tho ground. Thare is no crater formation, and only at ono spot on top
(N.W.Sidc) is nny activity shown. Thero are a number of gullies leading from the top of the new land to the lake and the old land as if there had been a great rush of water: one place resembled a 4 foot road made by road scraper', perfectly smooth from top to bottom.
"To tho navigating officer of this vesscl, Lioutcnont Wasscho, is duc the credit for the survey and photographic work, preparation of the skotch and collecting the specincns."

Roport of Captain Quinan, Commending U.S. Coast Guard Cuttor Tahoma, Septomber 14, 1910.
"Bogoslof Islana is somowhat oval in shape and is about l $\frac{1}{2}$ statute miles long and three-quarters of a mile wide in its widest part; with its major axis lying in a north-west and south-cast dircction, magnetic.
"Its shore linc is comparatively rocular except at the north end, Where there ia a large arch rock which at a distanco appoars detachod from tho main lond but roally connocts with it by a lov rocky nock. It has throc distinct elctetions; Fire Islond, at the northerly ond, 175 foot high; Castle Rock, at the soutnerly end, 289 feet high; midway between them. No particular difficulties presented themselves in computing tife heights of Fire Island and Castle Rock, except the time necessary for setting up instruments and taking angles, and mcasuring basc lincs. With Perry Paak, homever, the conditions wore bad, as the base and portions of tho poak were onvoloped in vapor and stoum and the lagoon was stcaming. The height was finally computed and is approximatoly correct, as the top of Perry Poak when viowed from the ship Was seen to be almost on a lovel with the top of Firc Island.
"Fire Island (175 foet high) apparently has not chenged since the observations made by the Revonue Cutter P巴RRY in June, 1910, but the top and the side of Castlc Rock (289 foct high) appear to be split off by oarthquake effects of tho recont oruption.
"The now land in the center has entirely changed its formation since the last obsorvations pore made. At that time it was in the form of a long sloping plateau; now the middle of this plateau has been dished out, forming two peaks; the higher one being towards Fire Island. The lower one, which is about 100 feet high, I have named Tahoma Peak for designation. At the same time a high embankment has been thrown up from the lagoon between Firc Island and the now land, dividing the lagoon in two parts, and moking a uniform slopo from tho top of the high poak to the edge of the lagoon, and thus giving the only moans of accoss to the now land.
"The lagoon is much narrower than shown on the sketch of Bogoslof made throe years ago. On account of the high land, which has rocently formed betweon the logoon and shore linc, it was impracticable to got the boat over into the lagoon to take soundings.
"The now land botween Firc Island and Perry Poak is soft-sun-driod and crackod towards Firo Island, and soft and stoaming noar the lagoon. Tho contor of volcanic activity is at the basc of tho now land toward

Firo Island on thoodge of the small lagoon. Herc an aroa of soveral hundred yards is in violont agitation, boiling water spurting up through tho mud, which gives up a donse stoam and vepor, moking it impossiblc to seo farthor than a few feet. Two pools of water, each about four feet in diameter, are in a state of excessive ebullition they are small geysers in fact, as the water is thrown to a height of about five feet by the rapidly escaping steam. On account of the escaping steam and the treacherous charactor of the ground which could not be trusted, with one's weight, the farther end of this active area could not bo oxamined. On the cast side of the now land where it had bocn dished out; and at the edge of the lagoon, there is a group of stcaming conical rocks of recont formation. The water in the lagoon around these steaming rocks is boiling, but the action is not nearly so violent as at the geysers.
"A number of sulphur patches were noticed in those places where vapors were rising.
"Along the western beach abrocst of Perry Pcak was found a cavc-in about 18 foet in diameter and 15 foot deop; probably very recent, but nothing of importance to bo noticed about it.
"No irroceularitics wore noticed in the boot compass, Which was observed at different points on the island, and semod to be no magnotic influence.
"The sea lions at Sea Lion Point were just as numerous as formerly, but all the murres which inhabited Fire Island and Castle Rock are gone. In fact there were no birds on the island cxeopt a fow sea gulls around the sea lion rookery. The skeltons of murres are seattered over all the island, showing that most of thom must have boen killod by the action of tho volcano during the last threc montis.
"at number of temperatures were taken in the lagoon, and a uniform temperature of $107^{\circ} \mathrm{F}$. Was obtained except at the extreme northerly end, where it was found to be $90^{\circ} \mathrm{F}$.
"Spacimens of lava, pumice, sand, etc., were collocted, temperatures taken at the places where fand, and the specimons labolod as follows:
" * *"A ${ }^{\text {P }}$ - taken at the edege of the lake at the extrome northwest ond. The tomperature of tho lake at this point wes $90^{\circ} \mathrm{F}$. and of the soil $75^{\circ} \mathrm{F}$.

" * * "B" - found about 300 yards almost due cast of Firc Island, and about 200 yards from the north-cast shore of the lake. The temperature of the soil. at this point was $108^{\circ} \mathrm{F}$.
" * * "C" - found about 500 yards cast-south-cast of Firc Island. The tomporeture of the soil at this point was $140^{\circ} \mathrm{F}$.
". * * "D" - found about 500 yards to the northward of Castle Rock. The temperature of the soil at this point was $70^{\circ} \mathrm{F}$.
$" * * * \mathrm{~m}_{\mathrm{F}}$ - found in the mouth of a gas jet about 400 yards north by west of Castle Rock, and about 50 yards from the edge of the lake. Temperature $210^{\circ} \mathrm{F}$. Numerous gas jets of this type extend all along the north-east shore of the lake, about 50 to 100 yards from the lake edge, and from the location of specimen "D" to specimen "F". Steam and some sulphurous gas rise from all thess openings. A thin layer of sulphur surrounds all of them. The sulphur is in two forms: the ordinary flowers of sulphur, and the neddle crystal form.
" * * * "G" - found about 500 yards north-west of Castle Rock and about 25 fect from the edge of the lake. Temperature $75^{\circ} \mathrm{F}$.
" * * * "H" - is the only wced observed growing on the island, found half way between Porry Peak and Sea Lion Rock. No tomperature was taken.
" * * * "I" - taken at the extremity of the lake nearest Fire Island. The temperature of the water at this point was $90^{\circ} \mathrm{F}$.
" * * * "K" and "L" - taken on the west side of the lake, about 500 yards south from Fire Island, and on the opposite side of the lake from the small crater, at the foot of Perry Poak, which is most active. The temperature of the water here was $107^{\circ} \mathrm{F}$.
" * * * " ${ }^{1} \mathbb{N}^{\prime \prime}$ - taken from onc of the most active "Sulphur Beds" on the west side of the island, noar the foot of'Perry Peak.
"The temperature of the air along the island ranged from about $54^{\circ} \mathrm{F}$. along the open beach to $58^{\circ} \mathrm{F}$. under the lee of Perry Poak. The temperature of the sea water about the iskand at the everage distance of $3 / 4$ of a mile only varied from $43^{\circ} \mathrm{F}$. to $45^{\circ} \mathrm{F}$. The barometer registered 30.27 .
"There have been no tidal observations as far as knom at Bogoslof, but using Whalaska as a port of reference, at the time of computing the heights of the peaks it was lom water and at the beginning of the flood. There is probably a range of about three feet.
"Nurnerous soundings were taken from the ship all around the island at a distance ranging from a half mile to one mile, and the bottom ras found to be very deep, and irrogular on the southwest side of the island. There and on the north side of the islond, the discoloration of the water indicated some shoaling, although no feef's or breaks could ba seen.

We left Bogoslof at 6:15 P. M., September 14, 1910 and procoeded to Attu. On tho l8th instant I shaped a course for Bogoslof, intending to take soundings from the ship's boats close to the island, in radial Iines, before procecding to Chemofski. About four oclock of the morning of the 19 th , when $n e$ were about 25 miles southrest of Bogoslof, the officer-of-the-deck reported forked lightning in the northeast. I thought
this very strange, as it. wis a beautiful clear night with a gentio northerly wind, and I imediately concludod from these wather conditions, and its diroction, that it had something to do with Bogoslof, as thunder storms are unhoard of in the Boring Sea, ospecially in September. At daylight, an hour later, my suspicion mas confimed. When Bogoslof was first sighted, both Castle and Fire Island wore visible; Porry Peok was in stato of cruption. At first it resembled in appearance a waterspout, which aftervards sproad and envoloped the whole island. On approaching the island it ras found to be in violent state of eruption, throwing up immense clouds of vapor, smoke and ashes. A thick, dark cloud hung over the island, and at the same time a tongue of flame could be seen shooting up from the crater. Intormittent forked lightning split the clouds extending to the crater, followed by sharp poals of thunder.
"We were thon four milos southwest of the island, and tho rind shifting from northeast blew directly tomards the ship. It was nocessery to steam to the morthrard to avoid thic ashes, sone of which fell on the ship's deck, and which I gathored and marked "Spocimen "K".
"The eruption though constant was intormittent in intensity, and presented an ever changing aspect. Vapor rose to a height of several thousand fect, spreading at the top and assuming a mushroon appearance resembling a huge white cauliflever. Then at times in the certer of this white mass would appear a black streak of ashes, and mud, most of which fell on the island but some on the sea, pattering like immense drops of rain.
"Officers and men stood on deck fascinated with the magrificont spectacle, which mas still further enhanced by the rays of the rising sun just peeping over inount Mokushin.
"After getting to windmard of the island, we approached to mithin a little over a mile. All sca lions and gulls hed disappoared. I deered it. imprudent to send a boat close to shore to obtain soundings, as I was afraid the wind which was light might suddenly shift.
"After romaining in the vicinity several hours and taking some valuable photographs, wa proccoded to Chernofski.
"On the morning of the 2lst, when roturning to Unalaska, Bogoslof was obscorvod to bo still steaming."

Report of Licutenant Cormander K. W. Perry, U.S.R.C. MANJING 191 I.
"On a cruise from Unalaska to Attau me kept off our course in order to visit these islands. We found that one island hed ontircly disappeared and the other greatly changed from its former appearonce. The remains of Perry Peak eriittod somo smoke. Fimding no anchorage the MANNING lay to and a party of us landed. We walked by shore half way around the island thon walked across to our starting point. The surface was crusted and thickly perforated by fumeroles. Putting it finger into one of those, I found it very hot below the surface. This mio us a bit uneasy and we hastencd to the beach and went aboard ship.
"The hordes of birds formerly thoro had practically disappeared and the only sea lions we sam were in a small hord swiming along shore."
"Landing was made on this island about 8:00 a.m., August 14, 1916, on its easterly side which furnishod a good 10 c . The general trond of the island is northwest and southeast. It is located in the Bering Sca about 28 milos northward of Umnak Island, and is about a milc in extent and about $1 / 4$ mile wide. The castern beach is steep and no difficulty mas experienced in landing. The first point visited was the Southern peak, callod Castle Peak. This peak is about 200 feet high, and is the nosting place for thousands of murres which cover its slopes. At this season the hatching period of these birds is about.completed and all the peaks are covered with young birds and broken egg sholls. Tho ascent tomard Castle Peak, from the cast beach, is gradual, first the beach itself, then a plateau which occupies the entire midale portion of the island rising to the poaks on the western side. The surface of this plateau is coverod with volcanic boulders, ranging in size from about the size of a football to that of a hogshead, and its surface is scored in an cast and west direction by a series of corparatively clear lanos or spaces between the boulders, some of minich are so free fron rocks as to give the impression that thoy rore cleared by hand. These lanes lead from the high ground, which rises into the peaks, to the castern boach and are doubtless indicative of an anciont flow of lava. A short moss or mold, very green, is found onl the gradual slopes leading to the peaks, but the peaks thomselves are bero and rocky. The plateau ends abruptly on the northwest and of the island, rising shoer from a flat beach which terminates in a rocky point oxtending torrard Fire Island. About half way between the cliff of the plateau and the rocky point forming the northeast spit, which scems to occupy the position previously assigned to Perry Peak, is a hot lake about 100 yards in diemeter, from the surface of which steam is continually rising. Along the shores of this lake may be seen numerous gas bubblos. Between the lake and the cliff of the central plateau the beach is almast flat, and here occurs the only real vegetation on the islands. This consists of patches of coarse grass and short trailing vines. This end of the islend contains a quantity of driftwood, which is some distance from the water's edge, and this point scems to be the principle rookery of the sea lions which inhabit this vicimity, there being eight doad pups lying about, also tro medium sized dead lions. Both of the latter had a shot or harpoon hole in the back.
"As the eastern beach trands tomerd the northwest paint it becomes rough, being covared with round boulders, and the point itself is a plateau about fifty feet high and corposed of extremely rough and jagged volcanic rocks. This part of the island is so rough and broken that it is irrpossible to walk on it. The rocks are very warm to the touch and vapor rises from among them.
"Fire Poak, or Fire Island, is now a distinct island of itself, although it was obviously once a part of the main islend. It is rounded in outline, shows distinct stratified narkings on its eastern side, and is separated from the main island by a strait about 600 yards wide. This strait appears to contain numerous shonls, and is greatly frequented by the sea lions. An atterpt was made to walk from the northwestern to the southeastern end of the island by way of the mestern beach, but it was found impossible to do so on account of the roughess of the beach, and
also on account of the fact that tho western side of Castle Peak descends shecr to the water's edge. The oastom beach is of an average ridth of about 75 yards. Except at its northrest end, it is smooth and free from boulders. It is composod of small particles of ground volcanic rock, no sand being noticed at any point of the island. The central plateau sllopes tomard the southeast point.of the island into a mooth beach and spit, much frequented by sea lions."

REPORT OF CAPTAIN W.T. STROMBERG, COMMANDING U. S. COAST GUIRD CUTTER ALGONQUIN, SEPTEMBER 13, 1922.
"Change is the only dopondable thing about Bogoslof Volcano, unless the regular annual visit (for rearing their young) of the Murre, seagulls, and sea lions be an exception. Five timos have I'visited it. Five distinetly different viows have I seen. The last time, as far as could be learned at Unalaska, that Eogoslof decidod to make a sudden transformation was in 1916. Thore is much to cause one to aceept this statement. The island is entirely cold. A fen tufts of growing grass wore foumd. The beaches have begun to show signs of permanemce (driftwood, sea grasses, etc.). The high platoau has many gullies on the costern slope caused by the heavy rains.
"There was quite a contrast between my first visit (I906) and my last (1922). Then there was a large peak probably 450 feet in height about half way between Fire Island (Grewingk) on the North and Castle Rock on the South. This mountain was giving off sulphurous vapors. In the crevices we lighted pine slivers as te climbed its faces. Numerous vents fringed with brireht yellow sulphur were found noar its base. The peak was enshrouded in a denso vapor around its contral rock, popularly supposed to have been what was lmown locally by mariners and shown by geagraphers as "Ship Rock". Cantwell's mp (1884) shows it, thilo Dall's outline (1896) doos not, al though it is said to have later expoared agein. The water at its base mas hot below, cold at the surface. There was a flat area connecting the new peak (knom by some as Metcalf Cone, by us as "Porry" Peak from the old Revenue Cutter PERRY on which wo more serving When the visit was made) with Grewingk. This area was dotted with many hot water holes, in many of which eggs could be boiled. The central portion of this area was lower than the seashore probably bolow the general sea level. Then I climbed a mountain, whose sidos were kot and on which rested very insecurely rocks of a size dangerous to those in the rear of the party. Then the Castlo Rocks portion was isolated, Grewingk being then honorod with visiting partios. Then panoramis more takon from Grerringk's easily scaled plateau. Fundreds of sea lion foregathered on a long spition the S.E. end of Castle Rock, thousends of soagulls and tons of thousands California murre builded their nosts, deposited their eggs, hatched and reared their young on both Castlc Rock and Growingk. Everywhore there was eviderice of one's insecurity from the effects of the enormous forees just bonoath us. Nothing was old, everything new. One ran from one surprise to another. My 1906 sketch was takon fram Grewingk. While sitting on its sumnit (Southorn end) running in tho shore line the earth decided to rumble a little. This rumble caused me the loss of several draning instruments as it hastoned my departure. Then passage by deep draft vessels could have been made botreen the two portions of the volcano by kecping near and leaving "Perry" peak of the North. Then there was sa much ado everywhere that, in our short visit, accuratc boarm ings and distances were not taken. I still remomber vividly each incident
though sixteen years have elapsed. Now overything is tamb-like in its quietness, excepting the raucous squarving of the Murre and the discordant, attomptod defiantly terrifying roar of the sca lions. The smoking peak is no more. In its place is water lapping, gently or violently, as old Neptune decrees, the shores of a new island which has caused Growingk to lose its pre-eminence as a visited spot. No. one is ever likely to scale Grewingk's precipitous, crumbling heights again, while Castle Rocks have become the point of vantage from which the general vien of the island is taken. Now the oarth is cold, the water is cold, no vapors are to be seen. Nothing of interest remains save comparison with what was. The Murres still come back. Perhaps to do honor to their forebears' spirits, surcly to rear their young. The seagulls are also still to bc found, but both thesc species are found in very much smaller numbers than of yore. The sea lions toc are still true to the call of their progenitors though they too are smaller in number. I personally considerod the malos to be largely in excess of the females, but several of those in the visiting party hold the contrary. The chief soa lion rookery is at the extrome Northern end of the island making out from Castle Rock. There was neught to excite one in the matter of danger unloss it were being caught on the precipitous slopes of Castle Rocks mith oners foot hold insceure due to easily dislodged rocks. To the East, a couple of hundred yords from Where formerly Metcalf Cone ("Porry" Peak) and later "perry" Poak reared their smoky interestiag heads begins a high plateau, prosenting porpandicular faces.scamard and unscalable on the west face and scaleble in but for places on the East side, varying in height from fiftecn feet to probably two hundred at its highest (middle)point. This plateau runs into and merges with Castle Rock due South of it, and with a long spit north of it, forming one island about one nautical mile long in a due south line. Passage may now be made by modorato draft vessels leaving the place wherc "Perry" Poak formorly stood on the South hond. Excitement being loss, more accurate data was obtained, though due to throntering weather conditions, our stay was 011 too short. The distance North and South, East and Wost, of the prominent points more obtained. Bearings of various prominent points mire takon. lioving picture scones mere gotten. Photogrephs and sketches more made. Several celestial observam tions, both on ship and shore taken by different officers; five of us in fact. The average result was taken, latitude $53^{\circ}-57^{\prime} \mathrm{N} ., 168^{\circ}-04^{\prime} \mathrm{W}$. A line of soundings was made along the East shore and in the passage bem treen Grewingk and the spit. Landing ras made on the beach in a bight on the East shore E.N.E. from Castle Rock poaks.. Ko difficulty was experienced as the wind and sea wore both from the westward. The many photographs taken will depict the island in elevatiom from verious vion points. The extent of the island is shom in the accorpanying sketch which is accurate erough to give anyono a definite idea of the island. The general appearance of the island built up around Castle Rocks gives one the impression that the mhole sea bed was pushed up bodily by enormous, though evenly applied pressurc. This is ovident from the fact that numerous quite distinct strata are practically horizontal. The high plateau is covored with brown, igneous rock, casily broken up and pulvered, varying in size from gravel to huge bouldcrs. The heavy rains have eroded gullies of considerable size on the South ond of the East side of the plateau. It was through one of these that I reached the top. A sandy beach fringes the island on all sides. This beach is probably 200 feet wide, except on the extreme South side whore little er mo eandy
beach exists. The whole soil seems of the same general nature, some in Iumps or boulders, the other in gravel sand, or solidified powder. To me the outstanding foatures of Bogoslof are:

1. The apparent solidity of Castlc Rocks.
2. The dimension in size of Grewingk (It is no more than one-eighth its 1906 size).
3. The fact that Grewingk is merely a huge pile of rock (held together by loose lava) gradually falling with the sea.
4. The fact that the edge of the crater, is, as allays, concare to the southrest.
5. The general appearance of permancnce.
6. The impression that the "pushed up" sea battom forms the islend proper.
7. The decrease in the number of birds and sea lions.
8. The appearance of erosion on Castle. Rocks.
9. The apparent lack of change in sounding e. few hundred yards off. 10. The change in the direction of the eastern edge of the crater.

My present tour of duty in Alaskon waters is about over. I don't know whether or not I shall ever come asain. Should I come - in What guise will Bogoslof present itself? Na conjecture is safe. Of one thing only will I be sure and that is - change."

REPORT OF COMMANDING OFFFICER, CAPTAIX J.T.HOTTII, NORTHIAND, 27 SEPT., 1927.
"On September 27, 1927, the MORIHLAND enroute to the Pribolof islands stopped off Bogoslof Island to investigate a report that the Island was showing new activity.
"The observations showed:
(1) That in place of two islands, Castle Rock and Growinck, or Fire Island, as last reported there now existed only one island, Castle Rock and Growingk were now comnected by a long sandpit. Proviously a deep chennel was roported between these islands.
(2) That great activity had taken place and mas taking place on Bogoslof Island. A new mound had risen about 175. foot above the plane of the island in the approximete former positions of Metcalf Cove and McCullocins Peak. A great amount of stam mas coming out or this nen mound or cone."

REPORT OF COMMANDER C. DENCH, U.S.C.G.C. TAILAPOASA, 1931.
"Left Nikolski at 8:05 p.m. 6 June and arrived off Bocoslof Island at 6:30 the noxt morning. A landing party oxamined tho islend carefully and made a running survey of the land area. remperatures in the lake were found to range from 64° to 144° Fahrenheit, and the water is selty. The lake appears to have the same level as the sea. The lava bod, from which stoarl is now being emitted, is plainly older than the lava at Gereloi. It was jagecd, homevar, and onc needs to excreise caution in climbing up thero. It is almays possible that a fairly hoavy piece of rock may be so poised as to fall mith a mon's meight upon it. The lava area was climbed nocrly to its
sumit. No clearly defined crater mas observod but at the contor the crevosed mere deeper and more jaggod than elsewhere. Steam is issuing from quite a number of places all over the top and partly down the sides of the lava aroa. The lake is also giving forth vapor which is sulphurous, but not to such a degree as to cause irritation.
"Procceding in the direction of Fire IsIand the party came upon the sea lion herd on the more northerly rookery on Bogoslof Island. The bulls and coms put off into the water leaving their young on the boach. Some of the pups were so young that they had not yet learned to bark. These did not object to being getted, but most of the young sec lions protested with what lug pown they have against being touched. During alI the time me stood at the rookery the roar from the bulls and coms continued unabated and at full blast. The landing party counted 180 pups at this rookery, and as the more southerly rookery is the larger, the totel sea lion population probably muns betreen 1,000 and 2,000.
"A number of sea gull egss were scon upon a platoau away from the rookeries, and a peculiar fly is quite numerous there.
"It was interosting to noto the first sign of vegetation. This consists of small patches of moss hich upon the more westerly of the two sharp poaks. When on the island twenty yoars ago I sam no sign of vegetation whatever."

RFRORT OF COMMMDER F. A. ZEUSLER, U. S.C. G. C. CHETANT, AUGUST, 1934.
"The CHELNN anchored at 160518 August in a comparatively shallow spot on the mestern side of the island and plans were made to make a rem connaissance survey of the island. On the afternoon of the 18 th signals were erected at the most important points and a base line of 800 yards established on Sea Lion Point. On 19 August a reconnaissance by plane table was begur and soundings were taken up to 20 fathors and ta the limit of the visibility from the vessel, as intermittent fog prevented distant soundings. On the afternoon of 18 AuEust the vessel was shifted to the east anchorage. On 19 August, the reconnaissance by plane table was completed and a series of soundines token on tho aastern side up to the 20 fathom depth. A staff compass recomaissance was also made by Professor Alexander in order to chock the hish water line with the plenc table. No opportunity was had to obtain the pasition by astronomical observations. Although the sun was seen a number of times during the day, the horizon was usually obscured, making it impossible to obtain an accurate position. The vessel was gotten uncorray at 1658,20 August, as the wind had shifted to the north northeastward and conditions were becoming unfavorable for further surveying.
"The soundings were taken by the personnel in a rotor boat, positions were abtaincd every five soundings by bearings and distances from the kridge by calibrated rance finder from the CHELfN and checked by calibrated stadimetor in the boat, and the sreed of the rotor boat was determined by the contour of the botton usilig the stendard instructions as published by the Coast Survey.
"On 24 August tho CHEEAN had occasion to occupy station \#117, Wiscly vas locatod about 10 miles north of Bogosiof. The wanther was cloar, sea calm and light mostorly airs were oncountcred. Tho vessel was gotton undorway from this position at a known spood and barings Werc taken at rogular intervals irom Castlo Rock cutting in on the known headlands by boarings and taking obscrvations of the sun. The position obtained by this method of Castle Rock was 54-57 North, 16802 Wost.
"In making the approach the vessel was kopt ono milo south and constant soundings were takon. An anchorage mas found in 16 fathoms off the northrost cove of Bogoslof. Left tangent, Fire Island bearing 470 true, right, tangent NicCullough Peak (which was also in line with Castle Rock bearing 138° true. A comparatively herd sondy bottom was found, 6 mples of which proved to be a mixture of voloanic ash and sand. This proved to be a fairly good bottom for holding. When the anchor was weighed it was found that it was absolutely clean and the chain had worm bright in places. Soundings indicated that an anchorage can be had at a reasonable distance off shore from anywhere off the west side of the island, north of the bearing 105° true from Castle Rock and sath of a bearing of 95° true from Sea Lion Point. From the soundings it is ovident that the bottom is regular and slopes gradually to the beach. No indications of rocks off shore wore seen, although at difforont stages of tho tide, curront swirls wore soon, which somod to indicate projections, from their very charactor, but investigations were mado of the number of these and in each casc it was found the bottom was clear of obstructions. It is belicved that a bettor anchorage in more shallow wator will be found off McCullough Peak, at an approximatc bcaring of 110°, in 10 fathoms of water and about 800 yards off shore. The vessel could be anchored in 6 fathoms of wator and in that way bc an absoluto lec for a southwest to northeast gale. An anchorage on the west side is better than that on the east side; because of a more extended shelf. It is believed that the best anchorage on the east side is about 500 yards off shore in about 13 fathoms of water on a bearing of Sea Lion Point 276°. No soundings wero taken off the southorn part of the island, bocausc of the fact that the water is comparatively deep close up to the beach and no anchorage mould be found for a large vessel, although a smaller vesscl could anchor fairly closc inshoro in 5 fathoms of water and boaring left tongent, MeCullough Poak 0° and Castle Rock boaring 103°.

Bogoslof, not is divided into two ports, first tho main island, which runs approximately $340^{\circ}-160^{\circ}$ and consists of Castle Poak and tho adjacent poak, licCullough Peak, a large solt watox lake and the hills or hommocks that make out to Castle Poak and second Firo Island. Castle Paok has two summits, very sharp in outlino, the highost point being 360 foet. The southeast point is comparativoly flat and consists of a sandy beach northward and a rock-bound beach to the southward and southwestward. The eastern shore line consists of a flat sandy beach backed by comparatively high wavecut terrace about 75:yards from the shore line. The beach continues to Sea Lion Point, from there it makes off into shallow Water. Small boats can be taken in to the wavecut entrance a short distance off Sea Lion Point from cast to west and vice vorsa. The island is 1925 yards long and about 850 yards at its

Widest point, at MicCullough Peak. Fire Island is found bearing 3l2 ${ }^{\circ}$ from Sea Lion Point, at a distance of 350 yards. Comparatively deep water is fairly close to the shore and numerous rocks are located inshore, their presence being made known by the heavy kelp that is found on the northeastorn and western sides of the island. The charactor of the island has not dhanged sinco last roported, it still consists of three pinnacles. It has a number of wave-cut caves on the southwestem side and a large cave on the northeastern side. The name Firc Island is a misnomor, at first glance Fire Island would be taken for Castle Peak because of its resemblance to a medieval castle. Fire Island is 270 feet at the highest point.
"Both Castle Peak and Pire Island are cores of an extinct volcano and are dead. McCullough Peak is an active volcano and is constantly smoking. A live fissure was found on the westorn shore of the island, which emits considerable gas and steam at high tide. The uppor platoau is coveced with volcanic bombs, somo of hugh proportions, the largor oncs boing ovidcnce of a terrific explosion of yoars bock, the smaller oncs boing indications of on erruption of more recont timos.
"No frosh water was found. A small salt water lake is located at the northwest end; water from this lake on analysis shows a chlorinity of 19.39%, indicating a salt content of about 8% higher than that of the surface water of the surrounding sea. The surface tomperature of the lake water varied from $14.5^{\circ} \mathrm{C}$. , to $19^{\circ} \mathrm{C}$., as compared to a tomporature of $9^{\circ} \mathrm{C} .$, for the surface wator of the sea. Volcanic activity furnishod sufficient heat to maintain this comparativoly high tomporature of. the lake and to evaporete the sea mater, which souped through to a high salt concontration. A small hot spring was found on tho oast side noer tho north point thet appeared from secpage during high tide. Tho tomperature of this water ranged up to $85^{\circ} \mathrm{C}$., with a chlorinity of 20.42\%. Five glass fishing buoys, such as the Japanese use, were found in the selt wator lake.
"As tho island is of volcanic origin of rocont timos, no fuel othor than driftwood was found. The following spocios of troos mere noted: Douglas Fir, : Sitka Spruce, Wostern Hemiock, Wostern Red.Cedar, Northern Black Cottontood and Alder. The nbove listed specics are all Wost Coast troes and no Asistic spocics Wore noted.
"Tho below listed birds wero obsorved:

> Glancous Winged Gull; nosting on lovol or gontly sloping areas of island; young birds found.
> Comon Murre; nosting on rocky cliffs and lodgos of Firc Islond. Costlo Rock and the adjacent peaks and McCullough Peaks; eggs and young birds in all stages of developmont. Horned Puffin; nesting in burroughs along the wave-cut terraces, cggs and young birds were scen.
> Forked. Tailed Potrol; camo aboard tho ship at night and wore Iound on dock whore thoy had fallon after striking the dock houses.

[^3]
SKFHCH OF BOGOSLOF ISLAND
AS OBSERVED FROM THE U.S.S.MCCULLOCH,OCTOBER 15, 1907.

0 NAUTICAL MILES

Respectfully submitted,
BOGOSLOF ISLAND
U.S.C.G. CUTTER "RUSH"
UULY, IGOB
SOUNDINGS IN FATHOMS -

F. I. Hecke, Gaptain, USRCS

Commanding

Sketch of Bofaslof Istand, BeringSea.
U.S.R.C. Rush", September 20,1909,
\qquad

$$
\frac{\text { Apprived, }}{\text { ritit. f. do Ale, }}
$$

2nd Licul, Navigater.
captain, U.S.r.c.s., comd'象.

4

TEMPERATUPES - FAHPENHE/T SOUNDINGS - APTIOMS
HEIGHTS - FEET FED LATTERS - SPECIMFNG
BARDMETEF - 3027 WEATHER-MARTLY CLEAR, SMOOTH SER.

TEMPERATUAE O AIR - MIN 59° MAY 58°

US PITENUE CTTER "TAHOMA" IHOUMAN, CIPT USRCS.
SGPTKMABA 19 IPIO
comst.
AH SCALAY, Zne Lnewt. USPCS NANGator.

GREWINGK
FIRE ISLAND

BOGOSLOF ISLAND ALASKA SCALE उठ00	
BOGOSLOF FROM ANCHORAGE OF HAIDA	
	CASTLE ROCK FIRE ASLAND FROM

(a)
 bogoslof island looking n.e. Showing explosion
 near castle rcck oct. 15, 1907.

bogoslof island as seen by u.s.c.g. Cutter

BOGOSLOF ISLAND BEARING 260° SEPT. 11, 1922.

BOGOSLOF ISLAND AS SEEN BY U.S.C.G. CUTTER "HAIDA"
AUG. 23, 1926. THE CASTLES BEARING 298° TRUE. DISTANCE ONE MILE.

BOGOSLOF ISLAND AS SEEN BY U.S.C.G. CUTTER "NORTHLAND" SEPT. 27, 1927

7

SEALION, BOGOSLOF ISLAND

BOGOSLOF ISLAND JUNE 26,1916 N. BY E.
DISTANCE 1.5 MILES.
including the bulls, coms and pups. Whales were seen hovering around the island, also some seals which were found on the rocks in the wake of Fire Island and Mchullough Peak. The seals appeared to be fur seals, being limited in number.
"Thirty seed spots were made in the area northwast of tho copper box on the eastern slopo of the island. Secds of :Douglas Fir, Wostorn Red Cadar, Sitka Fir, Sitka Spruce and Wostern Hemlock were uscd. Two spocics of succulent plants wero notod on the buach near the salt water lake and in the watcr of a unicellular greon algac. Torrestrial forms of unicollular algac grow on the slopeswnear the nesting places of the murres. A few small tufts of grass grew on the eastern slope, and one prominent tuft on the western side between Sea Lion Point and McCullough Peak.

Reference (I) Files at Coast Guard Hoadquarters.
(2) Cruise of CORWIN 1881.
(3) Cruise of CORWIN 1884.
(4) Cruisc of COHWIT 1885.
(5) Bulletin of the:Amorican Geographical Socicty, Volume XL - No. 7, July 1908.
(6) National Geographic Society Magazine, February, 1909, Volume XX - No. 2.
(7) Letters and pictures from:

Admiral R. R. Waesche
Adriral W. E. Reynolds, Ret.
Commodore R. O. Crisp, Ret.
Commodore D. F. A. deOtto, Ret.
Captain E. S. Addison, Ret.
Captain C. H. Scott., Ret.
Captain (E). C. G. Porcher, Ret.
Captain W.T. Stromberg, Ret.
Captain J. F. Hottel
Captain L. J. Chalker
Captain E. D. Jones
Captain R. W. Dompwolf
Captain R. C. Wcightman
Captain C. F, Howell
Conmander (E) W. M. Prall
Commander J. G. Cantwell, Ret.
Commander (E) W. C. Moglathlin
Comiander C. H. Jones
Commander P. F. Roach
Commander (E) H. Perhom
Cormandor M. J.. hyan
Conmandor L. L. Bennott
Commander C. H. Dench
Comman dor W. K. Scarmall
Commander S. S. Yeandle
Cormandor (E) J. F. Hahn, Ret.
Commander (S) J. N. Hoimer
Commander I. V. Kiclhorn
Licut. Commandor J. H. Quinan
Liout. Commander K. W. Perry, Rot.
Lieut. J. A. Glynn

This report covers, generally spoakirig, the mamals encountored by the CHELAN in 1933 and 1934 and on provious visits to Alaska by Comander F. A. Zouslor; In viow of tho fact that no live soa otters wore seon at any time, the subjoct was not covored. Howover, it is felt that in viow of the recent observations made of the sea otter hord by the CHELAN undor Commandor L. L. Kiclhorri, U. S. Coast Guard, a roport should be included as an addition to the CHELAN observation of 1934. Therofore, by permission of Coast Guard Headquarters oxtracts from the CHELAN roports of 1935 and 1936 aro quotod:
"Rocent reports of large number sea otters on southorn side Amchitka Island have been confirmed by CHELAN who with U.S.S. OGLALA of Alcutian Island Survoy Expedition havo circimmovigated this island. No otter on Kiska, Khwostof, Davidof, Scgula, Littlo Sitkin, Semisopochnoi, probably reason survival this herd is duo to extonsive foul grounds on tho Pacific side of the islands. Estimato of number of ottcr varios from one to six thousoind but ChPLAN counted in small arca in dense fog from ships boat about. fifty. Otter aprocrs to be spreading to Rat and neighbot- (ing islands and are found in denso kolp bods about one eighth mile off shorc which is genorally unapproachable from Pacific side.
"CHELAN Kiska, Alaska,

"Tho party of two offiocrs and ton men; having been transported from Unalaska to Amchitka on the DAPHIE, was landed at Constontine Harbor at noon, 10 August, 1936. There the base camp was established and the work carried on from that point. Six terts were orected for sholter of the party and two folding cots installodin each tent. Ono of tho cabins was selected for use as a cook house and a place to store provisions. The portable radio set was at first set up in one of tho tonts but, due to the dompness, was later installed in the house.
"In order to arrive at an aecurato estimate of the situation and plan of operations - the first step undertaken, after the base camp had been established, was to scout as much of the eastern half of tho island as possiblo with tho purpose of obtaining data concorning the location of the sea otter and othor pertirient and generel information. This was accomplishod and the following racts established theroby:
"(a) The prosence of scu otter in abundence along tho southern shore of the island, but found only in tho water.
"(b) The absence of sea ottor on the northorn shore of the island insofar as could be observed from land.
"(c) A hord of soa lions wero found on the rocky boach noar the castorn cxtromity of the Boring Soa side of tho island. (Thoso arimals furnish a sourco of food supply to tho nativos of the island during the trapping season.)
"(a) The prosonce on the island of at least two unknown persons. Onc man had been obsorved on shore from tho DAPHNE as she approached. Two men wore scen by one scouting group, but, duc to the casy concealment affordod by tall grass and the numerous ravines, on attompt to catch up with thom failcd. Thoir tracks were closcly inspoctod whoro found in soft mud. Thoir feet were small, both mon woaring about a size $7 \frac{1}{6}$ boot. Onc had rubber boots and tho other laathor ones. The lengths of the steps indicated men of smaller than average stature.
"(e) The topography of the eastern half of the island: low rolling hills with numerous lakes and pot-holes; steep and generally rocky cliffs along the $\dot{\text { ghore, }}$ cut by ravines and fissures; a rock-strewn shore line and some fresh water stroams. Tundra, with soft moss, believed to be reindeer moss, and lush grass growing in the ravines and stroam bods makes walking difficult.
"The plan adopted for carrying out the survey was to divido the porty into two equol groups; one group in charge of Ensign Opp to move to the southorn side of. the island and traverse that side, establishing \because successive tomporary camps as the counting progrossed. The other group was to romain at the basc comp to furthor inspect tho Bering Sea side of the island, using the 19-foot surfboat with outboard motor, if practicable; maintain radio cormunications with the CHEIAN; maintain contact wi th the counting party by messenger and assist that party in moving camp and supply them with any additional provisions required. In this manner the eastern half of the island would be covered. Survey. of the western half of the island in a similar manner was contemplated, provided a suitable landing place could be located there.
"The foregoing plan was placed in effect and a camp established on the southern shore of the island on 13 August, 1936, at approximately $179^{\circ} 17 \frac{1}{2}$ East. The counting of the sea otter was comnenced the following day, Ensign Opp, with one assistant, counting.
"Some of the otter were close enough to the shore to be counted spparately. while others remai ned in groups or herds, too distant to be counted individually and making it possible to only estimate their numbers. Consequently; two sots of figuros wero nocessary, tho number actually counted in an area and tho total number estimatod to be in that arca. Caro Was takon to underostimato rather than ovorestimate. Results of the counting are as follows:

14 Aug.	$179^{\circ} 27^{\circ}$ E. to $179^{\circ} 17 \frac{1}{2}$ E.	177	400
15 Aug.	$\begin{aligned} & 179^{\circ} \mathrm{J7} \frac{7}{2}^{\mathrm{E}} \mathrm{E} \text { to } \\ & 179^{\circ} \mathrm{I} 0^{\circ} \mathrm{E} . \end{aligned}$	217	500
16 Aug.	$179^{\circ} 10^{\prime} \mathrm{E}$. to	410	700
	1790 00' 至。	804	1600

"Fog and choppy scas hindored the use of the surfboat in inspecting the Bering Sea side of the island. Advantage was takon of the only day of favorable weather to make a eruise to the wastward of Constantinc Harbor, On this occasion, about ten sea otter were discovered in a kelp patch hear the western end of Kirilof Bay and about threeqquarters of a mile offshore. These animals were too far off shore to have been distinguished from on shore and were tho only ones actuelly scen on the northerm side of the island.
"At the conferonce hold aboard the CHELAN upon hor arrival, it was docidod that a roasonably accuratc estimate of the number of the sca otter in the vicinity of Amchitka Island could be mado irom the data already obtaincd and that, duc to the lateness of the scason and likolihood of unfavorablo woather, it would be inadviscble to continue to survey on the western hali of the island.
"Tno shore lino of the Pacific side of Amchitka Island is fortyfivo milos long and along tronty-four miles of this sido 804 soa otter werc actually counted, Thile a conservetive estimete placod the number for that scetion at 1600. Assuming that soction covorod prosents a fair avorage, it is estimated that the number of sea ottcr on the south side of Amchitka Island is 3000. The ton soa ottor found in Kirilof Bay indicate that at least 100 additional are located on tho northern shore of the island. It is therefore estimated that there are a minimum of 3100 soa otter in the wators surround Amchitka Island.
"All of the sea ottor obscrved were in the wator excopt in one instance when a group of fivo was soen on some rocks lying offshorc. No indications whatever of the animals having been on shore were discovered. They remained for the most part in groups or herds in and about the kelp patches and appearod to stay in fixed arcas. A few, howevor, swam along the shore and came noar cnough in to presont excollont opportunitios to watch thom. In feeding they dive and reappcar a fow seconds later with What appears to bo soaveed. This they consume whilc swimming slowly on their backs and holding the foods in their front flippers. These flippers are short with paw-like parts and are used with considerable dexterity. In asplayful mood they present marvelous exhibitious of aquatic gracefulness, lolling about, usually on their backs, in the brcakers, appearing to miss tine jagged rocks by inches. A number of times they wero soon mating whilc in the water.
"A small group of trappors' dwellings, consisting of onc boat houso (containing two dorics), four barabaras, and one out-house, was found on the Pacific side at about $179^{\circ} 13^{\prime}$ East. Another barebera was found on
tho Pacific sido about $179^{\circ} 05^{\circ}$ East. Noar $179^{\circ} 18^{\prime}$ East on the same side of the island, anold villago sito was locatod. Tho placo was overgrotini with lush groen grass, poculiar to such sites but tho hollows forming the interiors of tho barabaras wora cosily disccmiblo.
"Plant lific 'found on Amehitka is very similar to thet found on other islonds of tho Aloution chain axcept that hills are covered with a moss believed to be reindeer moss. Cloud berries (rubus chamaemorus) are found in abundance. They grow but a few inches from the ground, are odiblo, but have a peculiar and unpalatable flavor. Somo plants identifiod on the island, With tho assistanco of Miss Isobcl Hutchinson, tho British botonist, are: clymis aronarius, lathyrus maritimus, senecia seudarnoca, anemore zephyra, primula, chrysanthomu (Asiatic type), linnca borealis, honkenya poploides, claybonia, and sarmontosa.
"The only enimals seen on the island in addition to the sea ottor wero rod fox and soc lions. Birds found wore: Stilt sondpiper, (microplamahimantopus); house wren (troglodytos acdon); Northorn Amorican ravon (corvas corax principalis), glaucous winged gull (larus gloucoscots), sparrow (specic undotermined) -- largo sparrow of slato groy color and having no distinctivo markings-- boliovod to be a fox sparrow (passorolla) of an undetermined type, beld ocaglc (haliacotus platyrhchos), gadwall (chaulolasmus striperus), mallard (aras platyrhychos), and rod throatod. Ioon (gavia stellata).

Abstract

"Fish abound in the wators about tho island and in tho largo lakos. "Dolly Varden" trout, "Humpback" salmon, and "Rock" bass are found in the salt wator, while in tho lakos there aro "Silver" salmon (about lo" long') and "Dolly Vardon" trout. The coloring, as woll as the flosh of tho bass caught by tho party, was of a very groenish hic. The flosh was wormy and unfit for food. Fish were found in the lokes thich appoarod to bo on tiroly landlockod.

"The island is of a volcanic rock formation, similar to that of the other islands of tho Aleutian chain. Samll picces of calcite, marble quartz and volcanic slato found along the boach.

Abstract

"The high cliffs bordering: the southern shorelinc of the island afford excellent sitos for the orection of obsorvation stations on any of the numorous promontorios. "It is bolicvod that the plan usod in conducting this survoy was gencrally satisfactory. The ostablishment of a besn comp theroin to locato tho radio set and to storo supplies is considered desirable, as the task of transporting tho radio sot with its stcrege battery along With the counting party rould not only require oxtra mon but would subjoct tho set to unproventable rough handing as well as to the dampness. The total number in the party could vory well be roduced to seven, four with tho counting party and threo at the base camp. The tonts were fairly satisfoctory as weie the sleeping bags for men sleeping under cover. Men Who may have to sleep in the open, however, should be provided with good Water-proof sleeping bags to protect them against drenching rainfalls. Each man in the party should have a pocket compass. Fog is cormon and

the absence of distinguishable Iandmarks makes it decidedly too difficult, at such time, to follow a dircct course. Gasoline stovos with fuel aro too heavy to bo packed and tho mobilo party would bo supplicd with smaller alcohol stoves, which arc light and toke up littlo spece.
"No moving pictures wero taken of the sca otter as they wore too distant from shore to be photographed by the camora with which tho party, Wes supplicd.

S. P. SWICEGOOD

"CTELAN

From: Comnanding Ofさicer, CHELAN.
TO: Commander, Bering Soa Patrol Force.
Subject: Amchitka Sca Otter Survey Expedition.

Formarded.

"From that tho commanding officor has boon ablo to loarn from various sources it is bolicved that sea otter are to be found in varying numbers on nearly, all islands of the Rat and Andreanof groups.
"The sea otter survey at Amchitka was instituted by the CHELAN for the purpose of placing into the hands of tho officers concorncd the best obtainablo data relativic to the actual number on Amchitka, unofficial reports horetoforo having ranged from throe hundred to throc thousand. As the count exceods even the largest number proviously estimated, that for oll the islands must be stopped up accordingly.
"At prosent comparatively fow persons know of the presonce of soa otter on tho Alcutians. It would secm, thorefore, prevention of the bost sort to take active measures in advenco of the spread of the information contained in subject report, to the end that what may bocome a fur source of first rank may be fostored and dovolopod to tho utmost."

L. V. KIEIHORN

PAGE
Alasia, Marinc animal lite 1-4
Alasita, Nutives of 13.
Aliska, Nome 3
Alaska, purchase of 2
Alaske, souling agreement 2
flaskn, siza of 1
Alcution Islands, weather 14
diuthorization(a)
Bonnett, L. L. Cormander, rsport of, on BogoslofBering Soa, currents an contours
Bering Soa, woather
60-61
10-11-12-13-31-
32
BibliographyBissett, Captain, roport of
Cantwell, J. C. Commander, report of, on Bogoslof
CHiPLAN, sounding 51-52-53-54 1314
23-67
Bogoslof (see last page)38-39-40
CHELAN, current report 464-50-67 incl.
6Chlorinity, deteminationChlorinity, detemination

$$
15-16-17-18
$$

Chronological events

$$
1-4
$$Chronolosical events

$$
1
$$

CORWIN, currents reported
Contours, Bering Sea
Currents, Bering SeaCurrent s, Bering Sea (Coast Pilot)Currents, Report of CHELANT, 1936
Currents, Cruise of U.S.R.C. CORWIN, 1881Currents, calculated, dynanic
Currents, computation ofCurrents, discussion of32-36
10-11-12-13
10-11-12-13
31-32
4632-36クCurrents, Maury19-20
Gurrents, measurements of
. 732
Determination, of chlorinity 6
Determination, of depth 6
Determination, of dissolved orygen 6
Determination, of nitrite nitrogen 7
Detormination, of p II. 7
Detarmination, of phosphato 7
Dotermination, of silicate 7
Detemnination, of temporatures 6
Donoh, Commandor, roport on Bogoslof 63-64.
llonstity, discussion of19-20
lopth, dotarmination of
Discussion, chlorinity and tomparatures6
Discussion, curronts

15-16-17-18
R.0-P1-2?

PAGE
Discussion, aensity 18
Discussion, minor constituents and oxygen 18
Equipnent 4-5
Forestry 10
Haske, Captain, report of, on Bogoslof 55-56
Fiooper, Captain, report of (currents) 32
Hooper, Captain, report of, (seals)Hottel, Captain, report of, on Bogoslof
Kiclhorn, Commander, roport of, on sea otter 71
King Island
Nammals 36
Inaury, currents 32
Natives, Alaska 13
Nitrite nitrogen, determination of 7
Nome 3
Reynolads, Admiral 4
Samples, collection of 5-6
Sea Lions 44-45
Seals 36-44
Seal chart 40
Sealing afreoments 2
Sea otter, report of. CHELAN
Sections and stations 1068-69-70-71
Silicon, detemination of
Soundings, CEELAN
Statistics of eruiseStrombcig, Captain, report of, on BogoslofSwicegood, Licutenant Comander, report of, on sca otter
Tables, explanation of 8-9
Table I 24
Table II 25
Table III 26
Table IV Ekman current meter observation 27-38-29-30
Tables IV (a) Drift stick data28-29-30
Table17
Table VI18
Teble VII21
Temperature, determination of6
Temperature, discussion of

STIBJECT PAGE
Object of cruise 5
Oxygen, dotcrmination of 6
Oxygon, discussion of 20-21-22
Pacific Ocean, suriaco obsorvations 22
Perry, K. Licutenant Commander, roport of, on Bogoslof 54-59
p^{H}, dotomination of 7
Phosphates, dotomination of 7
Physical rosults 9
Pribilor Islands 2
Quinan, Captain, report of, on Bogoslof 56-57-58-59
Roport of Captain Hooper 40-44 incl.
Sounding, CHELAN, 1934 46
Sounding, CHELAN, 1935 46
Sounding, CHELAN, 1936 46-47
Sounding, Fathometer corrections, 1936 49
Unalaska 1
Walrus 45
Weather, Aleutian Islands 14
Zeusler, F.A. Comander, report of, on Bogoslof 64-65-66-67
Bogoslof Island, general history 50-51" Report of Lieutenant L.L. Bennett, MicCulloch,1916 60-61" " " Commander J.C. Cantwell, CORWIN 1884 51-52" " " Commander Dench, TALIAPOOSA 1931 63-64
" " " Captain Haake, PERRY 1910 55~56
" " " Captain Hottels NORTHLAND 1927 63
" ". " Lieutenant Perry, GRailT 1896 54
" " " Lieutenant Cormander Perry, MANNING 1911 59
" " " Captain Quinen, TAHOMA 1910 56-57
" " " Captain Stromberg, ALGONGUIN 1922 61-62-63
" " " Cominanaer F.A. Zeusler, CHELAN 1934 64-65-66-67

$$
5
$$

No
∞

0
.
\qquad

[^0]: - * $\quad=4$

[^1]: "A large bank exists probably 150 - 200 miles south of Attu Island extending fron the moridion of Attu to the l80th. Tho oxtent of this bank, north and south, is evidently Yery great. There is evidence from the color of the water and the flocks of sea birds that there must be soundings at no very great depth in the large area. This seems to be a herding for young bulls principally and a few of the smaller cows. I have crossed the bank many times. The area was well known to most of the old soalers that visted tho Japan and Copper Island soeling grounds and Wo crossed it diagonally on our roturn from Coppor Island to Capo Flattery. It was tho genoral opinion of tho scalcr that tho hord was a part of tho Copper Island hord."

[^2]: "A curious fact to be noted in regard to this volcano is the entire absence, apperently, of lava and cinder. Nowhere could I find the slightest evidence of either of these characteristics of other volcanoes

[^3]: "Tho following animals worc obsorved on the island; Hords of sea lions occupying the various boachos which totallod approximatoly 1000 ,

