Digitized by the Internet Archive in 2007 with funding from Microsoft Corporation

3

DEPARTMENT OF THE INTERIOR, CENSUS OFFICE.)

FRANCIS A. WALIEER, Superintendent, Appointed April 1, 1879; resigned November 3, 1881,

CHAS. W. SEA'TON, Superintendent, Appointed November 4, 1881.

REPORT

ON THE

FORESTS OF NORTH AMERICA

 (ExCLUSIVE OF MEXICO),CHARLES. SARGENT, 1969 ARNOLD PROFESSOR OF ARBORICULTURE IN HARVARD COLLEGE, SPECIAL AGENT TEN'IH CENSUS'.

$$
\begin{aligned}
& 93588 \\
& 2119108
\end{aligned}
$$

WASHINGTON:
GOVERNMENT PRINTING OFFICE 。
1884.

$$
\begin{aligned}
& S D \\
& 143 \\
& S 3
\end{aligned}
$$

LETTER OF TRANSMITTAL.

Departaient of the Interior, Census Office,
Washington, D. C., September 1, 1884.

Hon. H. M. Teller,
Secretary of the Interior.
SIR: I have the honor to transmit herewith the Report on the Forests of North America (exelusive of Mexico), by Charles S. Sargent, Arnold Professor of Arboriculture in Harvard College.

This report constitutes the niuth volume of the series forming the final report on the Tenth Census.
I have the honor to be, most respeetfully, your obedient servant,
CHAS. W. SEATON, Superintendent of Census.

TABLE OF CONTENTS.

Page.
Letter of Transmittal. ix
PART I.
THE FOREST TREES OF NORTH \triangle MERICA, EXCLUSIVE OF MEXICO.
The Forests of North America-General remarks 3-16
Tife Atlantic region 3-6
Tile Pacific region. 6-10
Distribution of genera 10-12
Distribution of species 12-16
A Catalogue of the Forest Trees of North America, exclusive of Mexico, With remarks upon their Synononty, Bibliogleapiical History, Distribution, Econonic Values, and Uses 17-219
Index to Catalogue 220-243
PART II.
THE WOODS OF THE UNITED STATES.
Preliminary remarks 247
Specific gravity and ash 248-251
Fuel valee: 251, 252
The strength of wood 252
Comparative values 252
Table of relative values 253-255
Table of averages 256-259
Table illustrating the relation between transverse strengtif and specific gravity in tim wood of certain SPECIES 259-264
General remarks 264, 265
Tannin values 265
Table I.-Specific gravity, asil, and weight per cubic foot of dry specimens of the woods of the United States. 66-349
Table II. - Actual fuel value of some of the more important woods of the United States. 350-353
Table III.-Behavior of the phincipal woods of the United States under thansyerse strain. 354-115
Table IV.-Behavior of some of the woods of the United States under transverse strain: specimens fight Centineters squale 414-417
Table V.-Behayion of the piencipal woods of the United States under conpression 418-481
Part III.
the forests of the united states in their economio aspects.
General remarks 485
The lumber indu'stry 485-489
Fuel. 489
WOOD USED as furl gor various purposes 489
Estimateid CoNsumition of wood for domestic purposes. 489
Consumption of charcoal 489
Forfest fires 491-493
Table of forest fires occurrivo during the census year 491, 492
North Atlantic livision 494-510
Maine: 494-496
New Habpsimer: 496-498
Vermont 498-500
Massachlesetts, Rhode Island, and Connecticut 500,501
New York 501-506
New Jersey 506
Prenseylvania 506-510Page.
Soctil Atlantic division 511-523
Delawame 511
Maliviand 511
Distmet of Columbia 511
Vibginia 511,512
West Vhaginia 512-515
Nohth Carolina 515-518
Naval stores 516,517
Soutil Carolima 518,519
Barning oll dead herbage 518
Georgia 519, 520
Florida 520-523
Pencil cedar 522
Cypress $5 \% 2$
Soutuers Centhal division 524-545
Alabama 524-530
Tho Maritime pine region 525-527
Cypress swamps of the Tensas river 525-527
The forests of the Chattahoochee in eastern Alabama, mixed forest growth, ete 527,523
Forests of the T'ennessee valley 528,529
General remarks 529
The pine belt of central Alabama 529
The pine region of the Coosa 529
Naval stores 529, 530
Mississippl. 530-536
The pine forests of sonthern Mississippi 531, 532
The nertheastern comnties 532-534
Central pine hills 534
Western Mississippi 534,535
The Yazoo delta 535, 536
louisiana 530-540
Moss ginning 536, 537
Texas 540-543
Indian tembitoby 543
Amkansas 543,544
Tranessee 544, 545
Effect of fires apon the ferest 545
にentlecky 545,546
l'asturage of woodlands 540
Northers Central division 547-563
Onio 547
lndana 547
Illivois 547-550
Michigan 550-554
Forest fires 550, 551
Statisties of growing timber. 551
Wisconsin 554-558
Minsesota 558-560
Forests on Indian reservations 559,560
Iows 560
Missount 560.561
Daкота 561,562
Nimbaska 562
liansis 562,563
Whestrery division 564-580
Moseraxa 564-566
Wromsg 566,567
Coloriado 567,568
New Mexico 568
Anizosa. 508,569
Uran 569-571
Lalio range, west of Utah lake 570
Sanpete Valley range 570
Sevier lifer mometains 570
Ni:vaba 571
IDano 571-573
Wasmagton 573-576
Oregon 576-578
Calmporia 578-580
Pasturage of monutain forests 579, 5t0
Alasien 580

LIST OF ILLUSTRATIONS.

Map of the United Sitates, showing the character of the Full used in the different sections of the settledPORTION OF THE COUNTRY489
Map of the United States, showing the proportion of Woodland witime tie settled area burned over during tifecensus year.491
Map showing Density of Forests in Mane, New Hanpsimbe, Vermont, Massachusetts, Riode Island, Connecticut, New York, New Jerset, and Pennsylvania. 495
Map of Malee, showing the Distribution of Pine and Spruce Forests 496
Map of New Hampsiire and Vermont, showing tie Distribution of the Pine and Spruce forests 497
Map of Pennsylvaikia, showing tie Distribution of the Pine and Hemlock forests 506
Map showing Dexsity of Forests in Delaware, Maryland, West Virginia, Virginia, North Carolina, Ohio, Kentucky; Tennessee, Indiana, and Illinois. 511
Map of West Virginia, showing tife Distribution of tife Habdwood, Spruce, and Pine Forests. 512
Map of Nortil Carolina, showing tie Distribution of the Pine Forests 515
Map showing Density of Forests in South Carolina, Georga, Florida, Alabaima, Mississippi, and louibiana 518
Map of South Carolina, showing the Distribution of the Pine Forests 519
Map of Georgia, showing time Distribution of the Pine Forests 520
Map of Florida, showing tie Distribution of the Pine Forests 522
Map of alabama, showing the Distribution of the Pine Forests 524
Map of Mississippi, showing the Distribetion of the Pine Fonests 530
Map of Louisiana, showing the Distribution of time Pine Forests. 536
Map showing Density of Forests in Texas 540
Map of Texas, showing the Distribution of tile Pine Furests. 541
Map showling Devsity of Forests in Missouri, Arhansas, hansas, and Indian Territory 543
Map of Arkansas, showing tie Distribution of time Pine anid Ilardwood Forests. 544
Map showing Density of Forests in Michigan, Wisconsin, Minnesota, and Iowa 550
Map of the Lower Peninsula of Michigan, showing tie Distribltion of tife Hardwood and Pine Forests. 551
Map of tife Upper Peninsula of Michigan, showing the Distribution of the Hardwood and Pine Forests 551
Map of Wisconsin, showing the Distribution of tile Hardwood and Pine Forests. 554
Map of Minaesota, showing the Distribution of the Hardwood and Pine Fonests 558
Map showing Density of Furests in Dakota. 561
Map nhowting Density of Forests in Nebraska 562
Map sifowing Density of Forests in Montana 564
Map showing Dexsity of Forests in Wyoming. 566
Map showing Dessity of Forests in Colorado 567
Map showing Density of Fonests in New Mexico 568
Map silowing Dessity of Forests in Arizona 569
Map showing Deasity of Forests in Utail. 570
Map showing Density of Gorests in Nevada 571
Map showing Density of Forests in Idaio 572
Map showing Density of Forebts in Wasmington 574
Mar showing Density of Forests in Oregon 576
Map showing Devisty of Forests in California 578
Map of a portron of California, showing the Distribution of the redwood Forests. 580

Maps Contained in portrolio accompanying this volume.

No. 1.-Map showing the position of the Forest, Prairie, and Treeless Regions of Nortil America, exclusive of Mexico.
No. 2.-Map showing the Natupal Divisions of the Nortil American Forests, exclusive of Mexico.
No. 3.-Mar showing the Distribution of the genes Fraxinus (tie Ashes) in Norti Amemica, exclusive of Mexico.
No. 4.-Map of tife United States, showing tie Distribution of tue genera Carya and Umbellularia (the Hickories and Califormia Laurel).
No. 5.-Mar of the United States, showing tile Distridution of tile genus Juglans (tife Walnuts).
No. G.-Map showing the Distribution of the genus Quercus (the Oaks) in North America, exclusive of Mexico.
No. 7.-Map of the Unfted States, showing the Distribution of the genera Castanea and Castanopsis (the Chestnuts and Cinnquapins).
No. 8.-Mar showivg tie Distribution of the genus Pinus (the Pines) in Norti America, exclusive of Mexico.
No. 9.-Map showing tife Distribution of the genera Abies and Picea (the Firs and Spruces) in Nortif America, exclubrye of Mexico.
No. 10.-Map of the United States, showing the Distribution of Liriodendron Tulipifera and Pinus Lambertiana.
No. 11.-Mar of the United States, showing the Distribution of l'bosolis Juliflora, Quercus Alba, and Quercus Densiflora.
No. 12.-Map showleg the Disthbution of Fraxinus Ammicana and Pinus Ponderosa in Norti america, exclusiye of Mexico.
No. 13.-Map showing the Distribution of the genera Chamectpahis and Cupressus in North America, exclusive of Mexreo.
No. 14.-Map showing tife Distribution of the genera Thuya, Taxodium, and Sequoia in Nortif America, exclusive of Mexico.
No. 15.-Map showina the Distribution of Pinus Strobus, Pinus l'alustris, and Pseudotsuga Douglasif in Nortif america, exclubive of Mexico.
No. 16.-Map of tife United States, showing tie Relative Average Density of Existing Forests.
-

LETTER OF TRANSMITTAL.

To the Superintendent of Census.

Brookline, Massachusetts, Juhy 1, 1883.

SIR: I have the honor to submit the following report upon the nature and condition of the forests of the United States, to which are added statisties of the lumber and other industries directly dependent upon the forest for their support.

Mr. Andrew Robeson, of Brookline, Massachusetts, has prepared the maps which accompany this report; he has supervised the entire statistical work of this division and has conducted its correspondence.

Mr. Stephen P. Sharples, of Cambridge, Massachusetts, has conducted the varions experiments undertaken with the view of determining the value of the different woods prodnced in the forests of the United States.

Mr. C. G. Pringle, of East Charlotte, Vermont, has examinel the forests of northern New England and New York, Pennsylvania, and West Virginia; and subsequently, as an agent for the American Museum of Natural History, has greatly increased our knowledge of the trees of Arizona and sonthern California.

Mr. A. H. Curtiss, of Jacksonville, Florida, has studied the forests of Georgia and Florida, and subsequently, as an agent of the American Museum of Natural History, las added to our knowledge of the semi-tropical forests of southern Florida.

Dr. Charles Mohr, of Mobile, Alabama, has explored the forests of the Gulf states.
Mr. H. C. Putnam, of Ean Claire, Wisconsin, has gathered the forest statisties of Pennsylvania, Michigan, Wisconsin, and Minnesota.

Mr. George W. Letterman, of Allenton, Missonri, has examined the forests extending west of the Lower Mississippi River, and Professor F. I. Harrey, of Fayetteville, Arkansas, has gathered the forest statisties of that state.

Mr. Sereno Watson, of Cambridge, Massachusetts, has studied, during a long and arduous journey, the forests of the northern Rocky Mountain region, and Mr. Robert Douglas, of Wankegan, Illinois, those of the Black hills of Dakota.

I take this opportunity to call your attention to the faithful and admirable manner in which my associates have performed the diffienlt duties to which they were assigned; their zeal and intelligence lave made possible the preparation of this report.

It is my pleasant duty also to call your attention to the fact that this investigation has been greatly aidect from the first by the experience and knowledge of Messrs. G. M. Dawson, John Macoun, and Robert Bell, members ef the Geological Snrvey of Canada; the information in regard to the distribution northward of the trees of the eastern United States is entirely derived from the latter's paper upon the Canadian ferests, published in the Report of the Geological Survey of Canada for the years 1870-80.

I am under special obligation to Dr. George Engelmann, of Saint Lonis, Missouri, my companion in a long jonrney through the forests of the Pacific region, for valuable assistance and adrice; lis unrivaled knowledge of our oaks, pines, firs, and other trees has been lavishly placed at my disposal.

Mr. M. S. Bebb, of Rockforl, Illinois, the highest American authority upon the willow, has given me the benefit of his critical advice in the stndy of this diffenlt genus. I desire to express to him and to Dr. Laurence Johnson, of New York, who has furnished me with a full series of notes upon the medical properties of the trees of the United States, the deep sense of my obligation. My thanks are also due to Mr. Henry Gannett, Geographer of the Tenth Census, for cordial co-operation in the work of this division; to Colonel T. T. S. Laidley, of the Onited States army, in command of the arsenal at Watertown, Massaehusetts, and to Mr. James E. Howard, in charge of the testing machine there, for advice and assistance afforded Mr. Sharples while conducting the experiments upon the strength of woods, as well as to a large number of correspondents in all parts of the United States who have favored me with their cordial co-operation.

I am, sir, your obedient serrant,
OHARLES S. SARGENT, Special Agcnt.

PARTI.

THE FOREST TREES OF NORTH AMERICA,

EXCLUSIVE OF MEXICO.

THE FORESTS OF NORTH AMERICA.

GENERAL REMARKS.

Abstract

The North American contment, or that part of it situated north of Mexico, which will alone be considered here, may be conveniently divided, with referenee to its forest geography, into the Atlantic and the Pacific regions, by a line following the eastern base of the Rocky mountains and its outlying eastern ranges from the Aretic cirele to the Rio Grande. The forests whieh cover these two divisions of the continent differ as widely, in natural features, composition, and distribntion, as the elimate and topography of eastern America differ from the climate and topography of the Pacifie slope. The causes which have produced the dissimilar composition of these two forests must be sought in the climatic conditions of a geologieal era earlier than our own and in the aetual topographical formation of the continent; they need not be disenssed here.

The forests of the Atlantic and the Pacific regions, dissimilar in eomposition in the central part of the coutinent, are united at the north by a broad belt of subarctie forests extending across the continent north of the fiftieth degree of latitude. One-half of the species of which this northern forest is composed extends from the Atantie to the Pacific; and its general features, although differing east and west of the continental divide, in conformity with the climatic conditions peenliar to the Atlantie and the Pacifie sides of the continent, still possess considerable nniformity. The forests of the Atlantic and the Pacific regions are also united at the south by a narrow strip of the flora peculiar to the plateau of northern Mexico, here extendiug northward into the United States. Certain ebaracteristic speeies of this florn extend from the gnlf of Mexico to the shores of the Pacific, and while the peculiar features of the eastern and the western slopes of the interior monntain system of the continent are still maintained here, the Atlantic and the Pacific regions of the Mexican forest belt possess many general features in common. Typical North American species, moreover, peculiar to the forests of the Atlantic or of the Pacific, mingle upon the Black hills of Dakota, and upon the Guadalupe and other mountains of western Texas, the extreme eastern ridges of the Rocky Mountain range, and the outposts between the Atlantie and the Pacifie regions.

THE ATLANTIC REGION.

The forests of the Atlantic region may be considered under six natural divisions: the Northern Forest, the Northern Pine Belt, the Southern Maritime Piue Belt, the Deciduous Forest of the Mississippi Basin and the Atlautic Plain, the Semi-tropical Forest of Florida, and the Mexican Forest of Southern Texas (Map No. 2, portfolio).

These natural divisions, although composed in part of species found in other divisions and possessing many general features in common, are still for the most part well characterized by predominant species or groups of species, making sueh a separation natural and convenient.

The Northern Forest stretehes along the northem shores of Labrador nearly to the sixtieth degree of north latitude, sweeps to the south of Hudson bay, and then northwestward to within the Aretic circle. This Northern Forest extends sonthward to the filtieth degree of north latitude on the Atlantic coast, and nearly to the fifty-fourth degree at the 100 th meridian. It ocenpies 10 degrees of latitude upon the Atlantic sea-board and nearly 20 degrees in its greatest extension north and south along the eastern base of the Rocky mountains. The region occupied by this Northern Forest, except toward its sonthwestern limits, enjoys a copious rainfall; it is divided by innamerable streams and lakes, and abounds in swampy areas often of great extent. The nature of the surface and the low annual mean temperature check the spread of forest growth and reüuce the number of arborescent species, of which this forest is composed, to eight ; of these, four cross to the Pacific coast, while the remainder, with a single exception, are replaced west of the continental divide by closely allied forms of the Pacific forest. The white and the black spruces are characteristic trees of this region; they form an open, stunted forest upon the low divides of the

FOREST TREES OF NORTH AMERICA.

water sheds, and reach a higher latitude than any other arboreseent species of the continent; the valleys and wide bottoms are elothed with broad sheets of poplars, ilwarf birches, and willows. The forest of this entire region is seattered, open, stment, and of no great economic value. It embraces, south of the sixtieth degree of north latitude, the northern extension of the great mideontinental plateau, which will be considered hereafter.

Sontlo of the Northern Forest the Northern Pine Belt extends from the Atlantic eoast to the ninety-sixth meridian of longitude; east of the Apalachian Mountain system it extends south over nearly 6 degrees of latitude, with a long, narrow spur following the higher Alleghany ridges for nearly 3 degrees farther south; west of the Alleghany momntains, in the region of the great lakes, the pine forest is replaced south of the forty-third degree of latitude by the deciduous growth of the Mississippi basin. This sceond division of the Atlantie forest may be characterized by the white pine (Pinus Strobus), its most important, if not its most generally-distributed, species. East of the A palachian system this tree often forms extensive forests npon the gravelly drift plain of the Saint Lawrence basin, or farther sonth and west appears in isolated groves, often of considerable extent, seattered through the decilnous forest. Forests of black spruce are still an important feature of this region, especially at the north, and within its houndaries the hemlock, the yellow cedar, the basswood, the black and the white ash, the sugar maple, and several species of birel and elm find their northern limits and the center of their most important distribution. The hickories and the oaks, characteristic features of the deeiduous forests of all the central portion of the Atlantic region, reach here the northern limits of their distribution, as do the chestnut, the sassafras, the tulip tree, the magnolia, here represented by a single species, the red cedar, the tupelo, the syeamore, the beech, and other important genera.

The Southern Maritime Pine Belt extends from the thirty-sixth degree of north latitude along the coast in a narrow belt, varying from one hundied to two hundred miles in width, as far south as eape Malabar and Tampa bay; it stretehes aeross the Florida peninsula and along the coast of the gulf of Mexico until the alluvial deposits of the Mississippi are encountered; it reappears west of that river in Lonisiana, north and south of the Red river, and here gradually mingles with the deciduous forests of the Mississippi hasin in Arkansas and eastern Texas. This belt is well characterized by the almost continuous growth, outsile of the broad river bottoms aud the immediate neighborhood of the coast, by the open forest of the long-leaved pine (P. palustris). The live oak, the palmetto, and various species of pine characterize the coast forest of this region; through the river bottoms and along the borders of the shallow ponds, scattered through the pine forest, different gams, water oaks, hiekories, and ashes attain noble dimeusions. The southern eypress (Tuxotiam), althongh extending far beyond the limits of this matural dirision, here attains its greatest derelopment and value, and, next to the long-leared pine, may be considered the characteristic species of the maritime pine belt.

The Deeiduous Forest of the Mississippi Basin and the Atlantic Plain occupies, with two unimportant exceptions to be considered hereafter, the remainder of the Atlantic region. Through this deciduous forest, where peculiar geological features have favored the growth of Coniferce, belts of pine, growing gregariously or mixed with oaks and other broad-leaved trees, oceur, especially upon some portions of the Atlantie plain and toward the limits of the Sonthern Maritime Pine Belt, west of the Mississippi river. The characteristic features of the forest of this whole region are found, however, in the broad-leaved species of which it is largely composed. XOaks, hickories, wahuts, magnolias, and ashes give rariety and value to this forest, and here, with the exception of a few species peculiar to a more northern latitude, the deciduous trees of the Atlantic region attain their greatest development and value. Upon the stopes of the southern Alleghany mountains and in the valley of the lower Red river, regions of copions rainfall aud rich soil, the decidnons forest of the continent attains unsurpassed variety and richuess. Upon the Alleghany momentains northern and southern species are mingled, or are only separated by the altitude of these mountains; rhododendrons, laurels, and magnolias, here attaining their maximnm derelopment, enliven the forests of northern pines and hemlocks which clothe the flanks of these mountains or are scattered through forests of other broalleaved species. The cherry, the tulip tree, and the chestnut here reach a size unkuown in other parts of the comntry. The forest of the Red River valley is hardly less varied. The northern species which the elevation of the Alleghany mountains has carried south are wanting, but other species peculiar to the southeru Atlantic and Gulf coasts are here mingled with plants of the southern deciduous forest. The seven species of Carya (the lickories) are nowhere else elosely associated. A great variety of the most important oaks grow here side by side; here is the center of distribution of the North Ameriean hawthorns, which do not elsewhere attain such size and beanty. The osage orange is peculiar to this region; the red cedar, the most widely distributed of American Coniferce, the sonthern and the yellow pine (Pinus palustris and mitis) here reach their best development. Just outside of this region, upon the "bluff" formation of the lower Mississippi valley and of western Louisiana, the stately southern magnolia, perhaps the most beautiful of the North American trees, and the beech assume their greatest beanty, and give a peeuliar charm to this southern forest.

The western third of the Athantic region is suljected to very different elimatic conditions from those prevailing in the eastern portion of the continent; it consists of an elevated platean which falls away from the eastern base of the Rocky monntains, forming what is known as the Great Plains. This great interior region, on account of its remoteness from natural reservoirs of moisture, receives a meager and uncertain rainfall, sufficient to insure a growth of herbage, but not suffieient to support, outside the narrow bottoms of the infrequent streams, the scantiest
forests. This treeless plateau extends north to the fifty-second degree of north latitude; it follows southward the trend of the Rocky mountains far into Mexico, extending eastward at the point of its greatest width, in abont latitude 400 N ., nearly to the ninety-seventh meridian. This whole region is generally destitute of forest. The narrow bottoms of the large streams are lined, however, with willows, poplars, elms, and hackberries, trees adapted to flourish under such unfavorable conditions. These diminish in size and number with the rainfall, and often disappear entirely from the banks of even the largest streams toward the western limits of the platean, south of the forty-fifth degree of latitude. North and east of these central treeless plains a belt of prarie extends from the sixtieth degree of north latitude to southern Texas. The average width east and west of this prairie region, through much of its extent, is not far from 150 miles. Its eastern extension, between the fortieth and forty-fifth degrees of latituele, is much greater, however, here reaching the western shores of lake Michigan, and forming ingreat recess in the western line of the heary forest of the Atlantie region with a depth of nearly 600 miles. The tramsition from the heavy forest of the eastern and central portions of the Atlantic region to the treeless platean is gradual. The change occurs within the prairie region. Here is the strip of debatable ground where a continuons struggle between tho forest and the plain takes place. There is bere sufficient precipitation of moisture to cause, under normal conditions, a growth of open forest, but so nicely balanced is the struggle that any interference quickly turns the scale. Trees planted within this prairie belt thrive if protected from fire and the encroachment of the tough prairie sod, and so extend the forest line westward; if the forest which fringes the castem edge of the prairie is destroyed it does not soon regain possession of the soil, and the prairie is gradually pushed eastward.

The eastern live of the plain where arborescent vegetation is confined to the river bottoms, and which divides it from the prairie where trees grow naturally, to some extent, ontside of the bottoms, and where they may be mado to grow under favorable conditions everywhere, is determined by the rainfall enjoyed by this part of the continent. The extreme eastern point reached by this line is found, unou the fortietlu legree of north latitule, near the northern boundary of the state of Kansas. North of the fortieth degree it gradually trends to the west, reaching the eastern base of the Rocky mountains in about latitule 520 . This northwestern trend of the eastern plain line may be ascribed to the comparatively small evaporation which takes place during the shorter summer of the north and to a slight local inerease of spring and summer rainfall. South of the fortieth degree the plain line gradually trends to the sonthwest under the influence of the gnlf of Mexico, reaching its extreme western point in Texas upon the one bundredth meridian.

Other causes, however, than insufficient rainfall and a nicely balanced struggle between the forest and the plain have prevented the general growth of trees in the prairie region east of the ninety-fifth meridian. The rainfall of this region is sufficient to insure the growth of a heary forest. The rain falling upon the prairies of Minnesota, Wisconsin, Iowa, Illinois, and Missouri equals in amonnt that enjoyed by the Michigan peninsula and the whole region sonth of lakes Ontario and Erie, while prairies exist within the region of the heaviest forest growth. It is not want of sufficient heat, or of sufficient or equally distributed moisture, whieh has checked the general spread of forest over these prairies. The soil of which the prairies are composed, as is shown by the fact that trees planted upon them grow with vigor and rapidity, is not unsuited to tree growth. It is not perhaps improbable that the forests of the Atlantic region once extended continuously as far west at least as the minety-fifth meridian, althongh circumstantial evidence of such a theory does not exist ; and the causes which first led to the destruction of the forests in this region, supposing that they ever existed, camot with the present knowledge of the sulject be eren guessed at. It is, however, fair to assume that forests once existed in a region adapted, by climate, rainfall, and soil, to produce forests, and that their absence under such conditions must be traced to accidental causes. It is not diffieult to understand that the forest once destroyed over such a vast area could not easily regain possession of the soil protected by an impenctrable covering of sod and snbjected to the annual burnings which have occurred down to the present time; while the force of the wind, unchecked by any forest barrier, over such an area wouk, even without the aid of fires, have made the spread of forest growth slow and diffeult. The assmmption that theso eastern prairies may have once been covered with forests is strengthened by the fact that since they have been devoted to agriculture, and the annal burning has been stopped, trees which were fomerly contined to the river bot toms have gradually spreaw to the uplands. Small prairies situated just within the western edge of the forest have entirely disappeared within the memory of persons still living; the oak openings-open forests of large oaks through Which the amual fires played without greatly injuring the full-grown trees-once the characteristic feature of these prairies, have disappeared. They are replaced by dense forests of oak, which only require protection from fire to spring into existence. In western Texas, the mesquit, forced by annual burning to grow almost entirely below the surfice of the ground, is, now that prairic fires are less common and destructive, spreading over what a few years ago was trecless prairic. The prairies, then, or the eastern portions of them situated in the region of abundant rainfall, are fust losing their trecless character, and the forest proteeted from fire is gradually gaining in every direction; regions which fifty years ago were trecless outside the river bottoms now contain forests covering 10 or even 20 per cent. of their area. These castern, well-watered prairies must not, however, be confounded with their dry western rim adjoining the plains- the debatable ground between forest and plain-or with the plains themselves. There is now no gradual, constant spread of forest growth upon the phins. They are treeless, on account of insufficient moisture to develop forest growth; and while trees may, perhaps, if planted, survive during a few years
beyond the western limits of the prairie as here laid down, the permanent establishment of forests there does not seem practicable, and, sooner or later, a period of unnsual drouglit minst put an end to all attempts at forest cultivation in a region of such insuflicient and uncertain rainfall (Map No. 1, portfolio).

It remains to consider the Semi-tropical Forest of Florida and the Mexican Forest of Southern Texas.
A group of arborescent species of West ludian origin ocenpies the narrow strip of coast and ishands of southern Florida. This belt of sami-tropical vegetation is continel to the immeliate neighborhood of the coast and to occasional hmmoeks or islands of high grouml situated in the sarimuas which cover a great portion of sonthern Florida, cherking, by the nature of the soil amd want of drainage, the spread of forest growth across the peninsula. This semi-tropical forest belt reaches cape Mabab on the east and the shores of Tampa bay on the west const, while some of its representatives extem fully a degrees farther north. It is rich in composition; nearly a quater of all the arboreseent species of the Atlantic forest are fomm within this insiguifuant region. The semi-thopical forest, in spite of its variety, is of little economic importance. The species of which it is composed here reach the extreme northern limit of their distribntion; they are generally small, stunted, and of comparatively little valne. Certain species, however, attain respectable proportions; the mahogany, the mastic, the royal palm, the mangrove, the seagrape, the damaion dogwood, the manchineel, and other specis here become considerable and important trees.

In westurn and southen Texas the trees of the Mississippi basin, checked by insuffieient moisture from farther extension southward outside the river bottoms, are replaced by species of the phatean of northern Mexico. The streams flowing into the gulf of Mexico are still lined, however, cast of the one-hnudredthmeridian, with the speeies of the Atlantic basin, whieh thus reach sonthward to beyond the Rio Grande. The Mexican forest belt of Texas extends from the valley of the Colorado river, near the ninety eighth meridian, to the Rio Grande. It tonches the coast not far from the Nueces river and extends to the eastern base of the monntain ranges west of the Pecos; here the species of which it is composed mingle with those peculiar to the Pacific-Mexican forest. The forest of this reqion, like that of all conntries of insufficient moisture, is open, stment, and comparatively of little valie. It is characterized by enormons areas covered with chaparal (dense and often impenetrable thickets of thorny surubs and small trees), by a stunted and occasional arborescent growth upon the hills and plains, and by finges of heavier timber along the river botoms. The most valnable and perhaps the most characteristic species of this whole region, the mesquit, extends to the Pacitic coast. With this exception, none of the arborescent speeies peenliar to this region attain any considerable size or importance, althongh the forest of small jumpers which covers the low limestone hills of the Colorado valley are locally valuable in a conntry so generally destinte of trees. The region immediately adjoining the Rio Grande abonnds in different species of Acacia, Leucana, and other Mexican Leguminose; and farther west, upon the dry plains of the Presidio, the Spanish bayonet (Yucca baceata) covers wide areas with a low, open, and characteristic forest growth.

THE PACINIC REGION.

The lacific forest region is coextensive with the great Cordilleran Momatain system of the continent. Thecanses which have inthenced the present position and density of these forests must be songht in the peenliar distribntion of the rainfall of the region. The precipitation of moisture upon the northwest coast is mequaled by that of any other part of the continent. It gradually decreases with the latitnde until, in sonthern California, the temperature of the land so far exceeds that of the ocean that precipitation is impossible through a large part of the year. The interior of all this great region, shat off by the high monntain ranges which face the ocean along its entire extent, is very imperfectly smplied with moisture. It is a region of light, merertain, and unequally distributed rainfall, heavier at the north, as upon the coast, and decreasing gradually with the latitude in nearly the same proportion. This entire region is composed of a mass of mountain ranges with a general nortla and sonth trend, separating long and generally marrow valleys. The precipitation of moistme within the interior region is largely regulated by the position of the mountain chains. Warm currents ascending their sides become cold and are torced to deposit the moisture they contain. It follows that, while the interior valleys are sainless or nearly so, the monntain ranges, and especially the high ones, receive during the gear a considerable preepitation of both rain and snow. If the distribution of the forests of any region is dependent upon the distribution and amonnt of moistnre it receives, forests exceeding in density those of any other part of the continent would be fomd upon the northwest coast; they wonk gralually diminish towarl the somth, and entirely disappear near the sonthern bonndary of the United States, while the forests of all the interior region, from the summit ot the principal Coast Ranges to the eastern base of the locky monntains, woul? be confined to the anks and smmmits of the momatans. These forests wond be heavy upon the high ranges, especially towarl the north; they would disappear entirely from the valleys and low momtain ranges. An examination of the forests of the lacitic region will show that in general distribution and density they actually follow the distribution of the rainfall of the region. These forests well illustrate the inflnence of moisture upon forest growth. Within the lacitic region the heaviest and the lightest forests of the continent coexist with-its heaviest and lightest rainfall.

The forests of the Pacific region may be considered under fonr divisions: the Northern Forest, the Coast Forest, the Interior Forest, and the Mexican Forest (Map No. ., portfolio).

The Northern Forest of the Pacific region extends from nearly the seventieth to about the fifty-eighth degree of north latitude, or, immediately upon the coast, is replacel by the Coast Forest nearly 2 degrees farther north; it extends from the continental livide, here mingled with the Northern Forest of the Atlantic region, to the shores of the Pacific. The sonthern limit of this open, scanty Northern Forest, composed of species whieh extend across the continent, or of species elosely allied to those of the Northern Forest of the Atlantie region, is still imperfectly known, especially in the interior. The determination of the southern range in Alaska and British Columbia of several species, as well as the northern range here of a few others, must still be left to further exploration. The white sprnce, the most important and the most northern speeies of the forest of the North Atlantie region, is here also the most impertant speeies. It attains a considerable size as far north as the sixty-fifth degree, forming, in the valley of the Ynkon, forests of no little loeal importance. The canoe-birch, the balsam poplar, and the aspen, familiar trees of the North Atlantie region, also occur here. The gray pine and the balsam fir of the Atlantic region are replaced by allied forms of the same genera. The lareh alone, of the denizens of the extreme Northern Forest of the Atlantie eoast, finds no eongener here in the northern Paeific forest.

The Pacifie Coast Forest, the heariest, although far from the most varied, forest of the continent, extends sonth along the coast in a narrow strip from the sixtieth to the fiftieth parallel; here it widens, embracing the shores of Pnget sound and extending eastward over the high monntain ranges north and south of the boundary of the United States. This interior development of the Coast Forest, following the abundant rainfall of the region, is carried north ward over the Gold, Selkirk, and other interior ranges of British Columbia in a narrow spur extending north nearly to the fifty-fourth parallel. It reaches southward along the Cour d'Alenc, Bitter-Root, and the western ranges of the Rocky Mountain system to about latitude $47^{\circ} 30^{\prime}$, covering northern Washington territory, Idaho, and portions of western Moutana.

The Coast Forest south of the fiftieth degree of latitude oceupies the region between the ocean and the castern slopes of the Cascade Range; in California the summits of the principal southern prolongation of these monntains, the Sierra Nevada, marks the eastern limits of the Coast Forest, which gradually disappears south of the thirty-fifth parallel, although still carried by the high ridges of the southern Coast Range nearly to the southern boundary of the United States. The Coast Forest, like the forests of the whole Pacific region, is largely composed of a few coniferous species, generally of wide distribution. The absence of broad-leaved trees in the Pacifie region is striking; they nowhere form great forests as in the Atlantic region; when they occur they are confined to the valleys of the coast and to the banks of mountain streams, and, economically, are of comparatively little valne or inportance. The characteristic and most valuable species of the northern Coast Forest are the Alaska cedar (Chamocyparis), the tide-land spruce, and the hemlock. These form the prineipal forest growth which covers the ranges and islands of the coast between the sixty-first and the fiftieth parallels. Other species of the Coast Forest reach here the northern limits of their distribution, although the center of their greatest development is found farther sonth.

The red fir (Pseudotsuga), the most important and widely-distributed timber tree of the Pacific region, reaches the coast archipelago in latitnde 51°; farther inland it extends fully 4 degrees farther north, and in the region of Puget sound and throngh the Coast Forest of Washington territory and Oregon it is the prevailing forest tree. The characteristic forest of the northwest coast, although represented by several species extending south as far as cape Mendicino, near the fortieth parallel, is replaced south of the Rogue River valley by a forest in which forms peculiar to the south rather than to the north gradually predominate. The forest of the northwest coast reaches its greatest density and variety in the narrow region between the summits of the Caseade Range and the ocean. North of the fifty-first parallel it gradually decreases in density, and south of the forty-third parallel it ehanges in composition and charaeter. This belt of Coast Forest is only surpassed in density by that of some portions of the redwood forest of the California coast. The red fir, the great tide-land spruce, the hemlock, and the red cedar (Thuiya) reach here cnormous dimensions. The wide river bottoms are lined with a ieary growth of maple, cottonwood, ash, and alder, the narrow interior valley with an open growth of oak. In this great coniferous forest the trinks of trees two or three hundred feet in height are often ouly separated by the space of a few feet. The ground, shaded throughout the year by the impenetrable canopy of the forest, never becomes dry; it is densely covered by a thick carpet of mosses and ferns, often of chormous size. The more open portions of this forest are choked by an impenetrable growth of various Vaccinew of almost arborescent proportions, of hazel, the vine-maple, and other shrubs. The soil which has prodnced the maximum growth of forest in this region is, ontside the river bottoms, a thin, porous gravel of glacial origin, rarely more than a few inches in deptli; the luxurianee of vegetable growth, therefore, illistrates the influence of a heavy rainfall and temperate climate upon the forest.

The gencral character of this forest in the interior, although composed largely of the speeies peenliar to the coast, differs somewhat from the Coast Forest proper in composition aud largely in natural features. The dense, impenetrable forest of the coast is replaced, east of the summit of the Caseade Range, by a more open growth, generally largely destitute of unlergrowth. The red fir, the hemlock, and the red cedar (Thuya) are still important elemeuts of the forest. Less valuable speeies of the Coast Forest-the white fir (Abies grandis), the yew, the alders, the mountain liemlock (Tyuga l'attoniana), the liawthorn, the buckthorn, and the white pine (Pinus monticola)are still represented. The latter, a local species upon the coast, onls reaches its greatest development toward the eastern limit of this region, here forming considerable and important forests. Other species peculiar to the Coast Forest, the maples, the ash, the oak, the arbutus, and the Alaska cedar, do not extend east of the Cascades. The tide-
land spruce is replaced by an allied species of the interior region. The widely-distributed yellow pine (Pinus ponderosa), barely represented in the northern portions of the immediate Coast Forest, beeomes east of the mountains one of the most important and characteristic elements of the forest. The Coast Forest sonth of the forty-third degree of latitude changes in composition. The tide-land spruce, the hemloek, and the Thuya are gradually replaced by more sonthern species. The sugar pine (P. Lambertiana) here first appears. The California laurel (Umbellularia) covers with magnificent growth the broad river bottoms. The Libocedrus, several oaks, and the chinquapin here reach the northern limits of their distribution. The change from the northern to the sonthern forest is marked by the appearanee of the Port Orford cedar (Chamccyparis Laicsoniana), adding variety and value to the forests of the sonthern Oregon coast. Farther south, near the northern boundary of California, the redwood forests (Sequoia) appear.

The Coast Forest of California will be most conveniently discussed under three subdivisions : the forest of the Coast Range, the forest of the western slope of the Sierra Nevada, which, toward the northern boundary of the state, extends to the coast, covering the mass of mountains which here unite the Sierra Nevada and the Coast Range; and, third, the open forest of the long, narrow ralleys lying between the Coast Range and the Sierra Nevala, sonth of this northern connection. The important leature of the Coast Range, as far south as the thirtyseventh degree of latitude, is the belt of redwood ocenpying an irregular, interrupted strip of territory facing the ocean, and hardly exceeding thirty miles in width at the points of its greatest derelopment. The heaviest growth of the redwool forest oceurs north of the bay of San Franciseo, and here, along the slopes and bottom of the narrow cañous of the western slope of the Coast Range, the maximnm productive capacity of the forest is reached. No other forest of similar extent equals in the amount of material which they contain the groups of redwood scattered along the coast of northern California. The red fir reaches, in the California Coast Range, a size and value only surpassed in the more northern forests of the coast; the sellow pine is an important tree in the northern portions of this region, and here flourish other species of the genus endemic to this region. The forest of the Coast Range is marked by the presence within its limits of several species of singularly restricted distribution. Oupressus macrocarpa and Pinus insignis are confined to a few isolated groves upon the shores of the bay of Monterey; Abies bracteata occupies three or four cañons high np in the Santa Lucia momntains; it is found nowhere else; and Pinus Torreyana, the most local arborescent species of North America, has been detected only in one or tro small gronps apon the sand-dmnes just north of the bay of San Diego. The characteristic forest of the Coast Range is checked from farther southern development, a little below the thirty-fiftl parallel, by insufficient moisture; the scanty forests which elothe the high deelivities of the Coast Range farther south belong in composition to the Sierra forests.

The heavy forest which covers the western slopes of the Sierra Nevada, a forest only surpassed in density by the redwood belt of the coast and the fir forest of Puget sonnd, occupies, in its greatest development, a belt situated between 4,000 and 8,000 feet elevation. This forest belt extends from about the base of mount Shasta at the north to the thirty-fifth parallel; farther south it diminishes in density and disappears upon the southern ridges of the Coast Range just north of the southern boundary of California. Its greatest width oceurs in northern Calitornia, where to the south of mount Shasta the Sierra system is broken down into a broad mass of low ridges and peaks. The characteristic species of this forest is the great sugar pine (P. Lambertiana), which here reaches its greatest development and value, and gives unsurpassed beauty to this mountain forest. With the sugar pine are associated the red fir, the yellow pine, two noble Abics, the Libocedrus; and, toward the central part of the state, the great Sequoia, appearing first in small isolated groups, and then, farther south, near the headwaters of Kern river, in a narrow belt exteuding more or less continuonsly for sevema miles. This heary forest of the Sierras, umlike the forest which farther north corers the western flanks of the Cascade Range, is almost destitute of undergrowth and young trees. It shows the influence of a warm climate and unevenly distribnted rainfall upon forest growth. The trees, often remote from one another, have attained an enormous size, but they have grown slowly. Above this belt the Sierra forest stretches npward to the limits of tree growth. It is here subalpine and alpine in elaracter and of little economic value. Different pines and firs, the mountain hemlock, and the western juniper are seattered in open stretches of forest upon the high ridges of the Sierras. The forest below the belt of heavy growth gradually becomes more open. Iudividual trees are smaller, while the number of species inereases. The small pines of the upper foot hills are mingled with oaks in considerable variety. These gradually increase in uumber. Pines are less frequent and finally disappear.

The forest of the ralleys is composed of oaks, the individnals often widely seattered and of great size, but nowhere forming a contiuuons, compaet growth. The Coast Forest of tho Pacifie region, unsurpassed in density, is composed of a comparatively small number of species, often attaining enormous size. It presents the same general features thronglont its entire extent, except as modified by the elimatic conditions of the regions which it covers. The species which compose this forest range through nearly 26 degrees of latitude, or northern species, are replacel in the south by closely allied forms; and, as in the Atlantic region, the southern species far exceed in number those peculiar to the north.

The Iuterior Forest extends from the sonthern limits of the northern subarctic forest to the plateau of northern Mexico; it ocenpies the entire region between the eastern limits of the Pacific Coast Forest and the extreme western limits of the Atlantic region. The forests of this entire region, as compared with the forests east and west of it, are stunted and remarkable in their poverty of composition. They are confined to the high slopes
and eañons of the numerous mountain ranges eomposing the interior region, while the valleys are treeless, or, outside of the narrow river bottoms, nearly treeless. The interior forest attains its greatest development and considerable importance mpon the western'slope of the California Sierras and upon the flanks of the ligh peaks of the southern Roeky Monntain system, from Colorado, where the timber line reaches an extreme elevation of 13,500 feet, to sonthern New Mexieo and western Arizona. The minimum in North American forest development, outside the absolutely treeless regions, both in the number of species and in the proportion of forest to entire area, is found sonth of the Blue mountains of Oregon, in the arid region between the Walisatch mountains and the Sierra Nevada, known as the Great Basin. Here the open, stunterl forest is confined to the highest ridges and slopes of the infrequent eañons of the low mountain ranges which oceupy, with a general north and south trend, this entire region. The individuals which compose this forest are small, althongh often of immense age, and everywhere show the marks of a serere struggle for existence. Seven arborescent species only have been detected in the forests of the northern and eentral portions of this region. The monntain mahogany (Cercoearpus), the only broad-leaved species of the region, with the exception of the aspen, which throughont the entire interior region borders, above an clevation of 8,000 feet, all mountain streams, reaches here its greatest development. This tree, with the mut pine (Pinus monophylla), characterizes this region. Stunted junipers are seattered over the lowest slopes of the mountains, or farther south often eross the high valleys, and eover with open growth the mesas, as the lower foot-hills are locally known. An open forest of arborescent yuceas (Yucca brcvifolia) upon the high Mojare platean is a eharacteristic and peeuliar feature of the flora of this interior region. The red fir and the sellow pine, widely distributed throughout the Pacifie region, do not oceur upon the mountain ranges of the Great Basin.

The heary forests of the interior region, found along the western'slopes of the California Sierras and upon the Roeky Mountain system, are, for the most part, situated south of the forty secomd degree of latitude. The forests of the whole northern interior portion of the continent, ontside the region oeeupied in the northern Rocky monntains by the eastern development of the Coast Forest, feel the influence of insnffieient moisture; the number of speeies of which they are eomposed is not large; the individuals are often small and stunted, while the forests are open, seattered, without undergrowth, and confined to the cañons and high slopes of the monntains. The most generally distributed species of this northern region, a scrub pine (Pinus Murrayana), ocenpies vast areas, almost to the exclusion of other speeies, and is gradually taking possession of gronnd eleared by fire of more valnable trees. Sonth of the fiftysecond parallel the red fir (Pseudotsuga) and the yellow pine (Pinus ponderosa) appear; with them is associated, in the Blue monntains and in some of the ranges of the northern Roeky mountains, the western lareh (Larix oc cidentalis), the largest and most valuable tree of the Columbian basin.

The forest covering the eastern slope of the Sierra Nevada consists almost exclusively of various species of pine, often of great size and value. The eharacteristie species of this region are the yellow pine and the eloselyallied Pinus Jeffreyi, here reaching its greatest development. The red fir is absent from this forest, while the oaks, multiplied in many forms on the western slopes of these monntains, have here no representative.

The forests of the southern Rocky Mountain region, less heary and less generally distributed than tho se of the westerntslope of the Sierras, are, as compared with those of the Great Basin, heavy, dense, and valuable. They owe their existence to the comparatively large preeipitation of moisture distributed orer this elevated region. The characteristic species of the Colorado mountains is a spruce (Picea Engelmanni); it forms, at between 8,000 and 10,000 feet elevation, extensive and valuable forests of considerable density and great beanty; with it are assoeiated a balsam fir of wide northern distribution, and varions alpine and subalpine speeies of pine; at lower elevations forests of yellow pine and red fir eover the monntain slopes, while the bottoms of the streams are liued with cottonwood, alder, aul maple, or with an open growth of the white fir (Abies roncolor), a species of the Coast Forest, here reaching the eastern linits of its distribution; the foot-hills above the treeless plain are covered with seant groves of the nut-pine (Pinus cdulis), stanted junipers, and a small oak, which in many forms extends through a large area of the southern interior region. A forest similar in general features to that of Colorado, and largely composed of the same species, extends over the high mountains of New Mexico to those of western Texas and western and northwestern Arizona, where a heavier forest of pine covers the elevated region lying along the thirty-fitth parallel, culminating in the high forest-clad San Franciseo mountains of northern Arizona.

The species of the interior Pacitic region mingle along its sonthern borders with the species peculiar to the platean of northern Mexico. The Paeifie-Mexican Forest, although differing widely in natural features from the Atlantic-Mexican Forest, possesses sereral speeies peenliar to the two. The forests of this region are eonfined to the high mountains and their foot-hills, and to the banks of the rare watercourses. They disappear entirely from the Colorado desert and from the valleys and low mountain ranges of sonthwestern Arizona. The most important and generally distributed speeies peculiar to the valleys of this region is the mesquit, tho charaeteristic speeies of the Atlantic-Mexican region. The suwarrow, however, the great tree eactus, is pertaps the most remarkable species of the region, giving an umsual and strikiug appearance to the dry mesas of eentral and sonthern Arizona. The high monntain ranges, extending aeross the boundary of the United States, between the one hnodred and fifth and the one lundred and eleventh meridians, enjoy a larger and more regularly-distributed rainfall than the regions east, and especially west, of these meridians. The forests which eover these sonthern momitain ranges are often dense and varied. Upon their summits and almost inaccessible upper slopes the firs and pines of
the Pacifie region are mingled with pines, a juniper, an arbutus, and various other species peculiar to the Mexican platean. Extensive forests of a cypress of Mexican origin also characterize this mountain vegetation. The bottoms of the cañons are lined with a dense growth of cottonwood, hackberry, a noble sycamore, an ash, a cherry, and other decidnons trees. The high foot-hills and mesas are covered with open groves of various oaks pecnlin to the Mexican-Pacilie region, here reaching, within the United States at least, their greatest development.

Such are some of the prominent forest fatures of North America: a dense forest, largely composed, except at the north, of a great variety of brondeaved species, and extending from the Athatic sea-board in one nearly unbroken sheet until checked by insufticient moisture from further western development-the forest of the Athantic region; a forest of conifers, ocenpying the ranges of the great Cordilleran mountain system, unsurpassed in density in the humid climafe of the coast, open and stunted in the arid interior-the forest of the Pacific region.

A more detailed examination of the distribution of North Amcriean arborescent genera and species will serve to illustrate the wealth of the forests of the Atlantic and the comparative poverty of those of the Pacific region. It will show, too, more clearly how widely the forests of these two great regions differ in composition.

DISTRIBUTION OF GENERA.

The forests of North America contain arboresecnt representatives of 158 gencra; 142 genera oceur in the Atlantic and $\mathbf{0} 9$ genera in the Pacific region. Of the Athantic genera, 48 are not represented in the United States outside the semi-tropical region of Flonida.

The following table illustrates the distribution of these genera; the genera of semi-tropical Florida are desiruated by a*.

*	Genera represented by arborescent species in the Atlantic region.	Genera represented by arbe- rescent specesin the Praclic regiou.		Genera represented by arborescent specles in the Atlantic region.	Genera represented by arboreacent specles in the Pacific reglon.
Magnolia	\checkmark	Eysenbardtia	\checkmark	\checkmark
Liriodendron	\checkmark	Dalea		\checkmark
Asimina.	\checkmark	Robinia	\checkmark	\checkmark
* Anona	\checkmark	...-.	Olneya		\checkmark
* Capparis	\checkmark		*Piscidia	\checkmark	
- Canella.	\checkmark	Cladrastis	\checkmark	
- Clusia	\checkmark		Sophora.	\checkmark	
Gordonia	\checkmark		Gymnocladus.	\checkmark	
Fremontia		\checkmark	Gleditschia...	ν	
Tilia.....	\checkmark		Parkinsonia	\checkmark	\checkmark
* Byrsonima	V		Corcis.	ν	
* Guaiacum.	\checkmark		Prosopis.	\checkmark	\checkmark
Porliera.	\checkmark	-.........	Leucæna.	\checkmark	---...-
Xanthox̧lum	\checkmark		Acacia	\checkmark	\checkmark
Ptelia........	\checkmark	V	*Lysiloma	ν	-...-......
Canotia		\checkmark	*Pithecolobinm.	\checkmark	----......
- Simarnba	\checkmark		* Chrysobalanus	\checkmark	-
* Bnrsera	\checkmark		Prunus ...	\checkmark	\checkmark
* Amyris	\checkmark		Vauquelinia		$\boldsymbol{\nu}$
* Swictenia	\checkmark		Cercocarpus		\checkmark
- Ximenia	\checkmark		Pyrus......	\checkmark	\checkmark
Ilex....	\checkmark		Cratagus.	\checkmark	\checkmark
Cyrilla	V		Heteromeles		\checkmark
Cliftonia	\checkmark	Amelanchier	\checkmark	-..........
Enonymus	\checkmark		Hamamelis	\checkmark	
* Myginda..	\checkmark		Liquidambar	\checkmark	-..-.-0.0.-
*Schafferia.	\checkmark		Rhizophora.	\checkmark	-
*Reynosia	\checkmark		*Conocarpus.	\checkmark
Condatia.	\checkmark	\checkmark	*Laguneularia	\checkmark
Rhannus.	\checkmark	\checkmark	* Calyptranthes .	$\boldsymbol{\nu}$	-.-.-.-...
Ceanothus.		\checkmark	- Eugenia.......	\checkmark	
*Colubrina	\checkmark		Cereus ..		\checkmark
Esculus	\checkmark	V	Cornus	\checkmark	\checkmark
Ungnadia	\checkmark	\checkmark	Nyssa ..	\checkmark	-..---....
Sapindus.	\checkmark	\checkmark	Sambucus	\checkmark	\checkmark
*Hypelate.	\checkmark		Viburnum	ν
Acer.	\checkmark	\checkmark	*Exostcinma	\checkmark	-
Negundo	\checkmark	\checkmark	Pinckneya	$\boldsymbol{\nu}$	-••
Rhus....	\checkmark		*Genipa....	\checkmark	-
Pistacia	\checkmark		*Guettarda	\checkmark	

	Genera represented by arbo- reseent speeies in the Athantic region.	Genera represented by arbor rescent speoies in the paeific region.		Genora represented by arbod reacent species in the Atlantie region.	Genera represented by arbe- rescert ghectios in the $1 \times a c i f i e$ region.
Vaccininm.	\checkmark		Planera	\checkmark	
Andromeda	\checkmark		Celtis	\checkmark	\checkmark
Arbutus	\checkmark	\checkmark	${ }^{+}$Ficus	\checkmark	
Oxydendrum ...	\checkmark		Morus.	\checkmark	\checkmark
Kalmia....	\checkmark	--.......	Maclura	$\stackrel{\rightharpoonup}{v}$	
Rhododendrou..	\checkmark		Platanus	\checkmark	v
*Myrsine .-	\checkmark		Juglans .	\checkmark	\checkmark
* Ardisia .	\checkmark		Carya ..	\checkmark	
*Jacquinia ...-	\checkmark		Myrica .	\checkmark	
*Chrysophyllum	\checkmark		Quercus.	\checkmark	v
*Sideroxylon ...	\checkmark		Castauopsis		\checkmark
*Dipholis.......	\checkmark		Castauea...	\checkmark	
Bumelia..	\checkmark	\checkmark	Fagus...	\checkmark	
*Mimusops	\checkmark		Ostrya	\checkmark	
Diospyros	\checkmark	Carpinus	\checkmark	
Symplocos.	\checkmark	Betula	\checkmark	
Halesia...	\checkmark		Aluus	\checkmark	\checkmark
Fraxinus	\checkmark	\checkmark	Salix.	\checkmark	\checkmark
Forestiera	\checkmark	,	Populus.	\checkmark	
Chionanthus	v		Libocedrus		
Osmanthus	v		Thuya	\checkmark	\checkmark
Cordia ..	\checkmark	Chamæcyparis	\checkmark	\checkmark
* Bourreria	\checkmark		Cupressus		
*Ebretia .	v		Juniperus	\checkmark	\checkmark
Catalpa.	\checkmark		Taxodium.	\checkmark	
Chilopsis.	v	\checkmark	Sequoia		
	v		Taxus ..		\checkmark
* Citharexylum	\checkmark	Torrcya	\checkmark	
* Avicennia	\checkmark	Pinus .		v
${ }^{*}$ Pisouia...	v		Picea	\checkmark	$\sqrt{ }$
*Coccoloba	\checkmark	\cdot	Tsuga ...	\checkmark	\checkmark
Persea	\checkmark		Pseudotsuga		\checkmark
*Nectandra.	\checkmark		Abies.	\checkmark	
Sassafras	\checkmark		Larix	\checkmark	v
Unbellnaria		\checkmark	Sabal	\checkmark	
*Drypetes...	\checkmark		Washingtonia		\checkmark
*Sebastiania.	\checkmark		*Tbriuax -	\checkmark	
- Hippomano.	v		*Oreodoxa		
Ulmus	v		Yucea.	\checkmark	\checkmark

Arborescent species of 43 genera oceur within the limits of the two regions. They are:

Ptelia.	Robinia.	Arbutus.	Quercus.	Taxus.
Condalia.	Parkinsonia.	Bumelia.	Betula.	Torreya.
lhamnus.	Prosopis.	Fraxinus.	Alus.	Pinus.
Esculus.	Acacia.	Chilopsis.	Salix.	Pieea.
Ungnadia.	Prunus.	Celtis.	Populus.	Tsiga.
Sapindus.	Pyrus.	Morus.	Thuya.	Abies.
Acer.	Cratægus.	Platanus.	Chamecyparis.	Laris.
Negundo.	Cornus.	Juglans.	Juniperus.	Yucea.
Eysenlardtia.	Sambucus.	Myrica.		

The following gencra, 44 in number, of the Atlantic region, exclusive of those of semi-tropical Florida, are not sepresented in the Pacific forest:

The following genera of the Atlantic region, 9 in number, are represented in the Pacific flora by one or moro frutescent, but by no arborescent, species:

Euonymus.	Amelauchier.	Vaccinum.	Rhododendron.
Rhus.	Viburnum.	Kalmia.	Forestiera.

Ptclia, Condalia, Sapindus, Robinia, Bumclia, Ccltis, Morus, and Juglans, genera reaching their greatestdevelopment in North Anerica in the Atlantic region, extend with a single arborescent representative into the Pacific region. Rhamnus, Asculus, Acer, Negundo, Prumus, Pyrus, Cratagus, Cornus, Sambuous, Fraxinus, Platanus, Myrica, Quercus, Betula, Alnus, Salix, Populus, Thuya, Chamacyparis, Juiperus, Taxus, Torrcya, Pinus, Piccu, Tsuga, Abies, and Larix, eharacteristic North American genera, are widely represented in the two regions.

Unynadia, Eysenhardtia, Parkinsonia, Prosopis, Acacia, Chilopsis, and Yucca, genera of the Mexican flora, are common to the two regions.

Arbutus, a genus of the Pacific region, just reaches, with a donbtful species, the Atlantic region through western Texas.

The following genera of the Paeifie region, 13 in number, have no representatives in the Atlantic region:

Fremontia.	Cereocarpus.	Castanopsis.	Sequoia.
Canotia.	Heteromeles.	Libocedrus.	Psendotsuga.
Ollera.	Unbellularia.		Capressus.

The following gencra of the Pacific, 3 in number, are represented in the Atlantic region by frutescent species:
Ceanothus. Dalea. Cerens.

The Atlantic forest, exclusive of semi-tropical Florida, contains 45 genera entirely unrepresented in the Pacific region and 7 genera withont Pacific arborescent representatives. The Pacific forest contains 13 genera unrepresented in the Atlantic region and 3 genera without Atlantic arboreseent representatives.

The following genera of the Mexican region, 14 in number, are not elsewhere represented in North America. Genera with arboreseent representatives in both the Atlantic- and Pacifie-Mexican regions are designated by a star (*):

Porliera.	Pistacia.	Olneja.	Acacia.	"Chilopsis.
Canotia.	*Eysenhardtia.	*Parkinsonia.	Vanquelinia.	Washingtonia.
*Ungnadia.	Dalea.	Lencana.	Cereus.	.

Porliera and Leuccena belong to the Atlantic; Canotia, Dalea, Olneya, Vauquclinia, Cereus, and Washingtonia to the Pacific region.

DISTRIBUTION OF SPECIES.

In the forests of North America 412 arborescent species have been detected; of these, 292 species belong to the Atlantic region, and 153 ocenr within the limits of the Pacifie region. Species common to the two regions are rare; they are pincipally confined to the subarctic Northern Forest and to the narrow belt along the southern boundary of the United States.

The following species, 10 in number, cross the continent:

Prosopis juliflora.	Sambucus Mexicana.	Salix longifolia.	Populus balsamifera.	Picea alba.
Pyrns sambucifolia.	Betula papyrifera.	Populus tremuloides.	Jumiperus Virginiana.	Yucea baceata.

Prosopis juliflora, Sambucus Mexicana, and Yucca buccata belong to the Mexican flora of the south; Salix longifolia also belongs here, although extending northward iuto the Atlantic and throngh the Pacitic Coast region of the United States. Populus balsamifera, Bctula papyrifera, and Picea alba belong to the Northern Forest. Pyrus sambucifolia, Populus tremuloides and Juniperus Virginiana are widely distributed throngh the central portions of the Atlantic and Pacife regions; they are the only really continental arborescent species.

- The following species of the Atlantic region, 15 in number, extend from the Atlantic into the Pacifie region :

Ptelia trifoliata.	Negnndo aceroides.	Cratægus tomentosa.
Condalia ohovata.	Parkinsonia aculeata.	Fraxiuus viridis.
Sapindns marginatus.	Prunus Anuericana.	Celtis occideutalis.
Ungnadia speciosa.	Prunns Pennsylvanica.	Morus microphylla.

I'telia trifoliata, a widely distributed species of the Atlantic region, extends through western Texas into the extreme sontheastern portion of tho Pacifie region. Condalia obovata, Ungnadia speciosa, Parkinsonia aculeata, Morus microphylla, and Quercus Emoryi, of the Atlantic-Mexican forest, extend into the Pacifie-Mexican region. Sapindus marginatus, of the southern Atlantic region, extends through western Texas to the Paeifie-Mexican region. Prunus Americana, Prunas Ponnsylvanica, and Alnus incana, widely distributed throngh the northeru portions of the Atlantic regrion, just reach the eastern limits of the central Pacifie region.

Ncgundo aceroides, Cratagus tomentosa, Fraxinuts viridis, and Cclis occidcntalis are widely distributed throngh the interior Pacific region, although nowhere reaching the coast.

The following species of the Pacific region, 8 in number, extend through the Mexican into the Atlantie region :

Eysenhardtia orthocarpa.	Acacia Greggii.	Chilopsis saligna.	Juniperus occidentalis.
Prosopis pobescens.	Fraxinns pistaciæfolia.	Juglans rupestris.	Junipcrus pachyphloa.

Juglans rupestris and Juniperus occidentalis reach their greatest development in the Pacifie Coast region, and extend through the Paeifie-Mexican region into western Texas; no other speeies are common to the Pacifie Coast forest and the Atlantic-Mexican region. The 6 remaining Pacific-Atlantic species belong to the Pacific-Mexican region, jnst reaching western Texas.

The following speeies of the Southern Pacific region extends into the Atlantic region :
Salix amygdaloides.
The following species of the Pacifie forest, 12 in number, endemic to the interior arid region, do not extend beyond its limits:

Acer grandidentatum.	Cratægus rivularis.	Populus angnstifolia.	Pinus monophylla.
Robinia Neo-Mexicana.	Fraxinus anomala.	Pinus flexilis.	Picea pungens.
Cercocarpus ledifolins.	Quercus undrlata.	Pinus edulis.	Yucea brevifolia.

A detailed examination of the distribution of the arborescent species composing the North American forests shows that-

Magnolia is represented by seven Atlantic species, with the center of its distribution in the southern Alleghany region.

Liriodendron is represented by a single species, widely-distributed through the eastern and central portions of the Atlantic region.

Asimina is represented by a single widely-distributed arborescent species and by three frutescent species of the Atlantie region.

Anona, Capparis, Canella, and Clusia are represented eaeh by a single semi-tropical species.
Gordonia is represented by two speeies of the southern Atlantic region, one of wide distribution, the other rare and local.

Fremontia, a genus endemic to the Pacific region, is represented by a single species of the southern Paeific Coast region.

Tilia is represented by two Atlantie speeies, with its center of distribution in the southern Alleghany region.
Byrsonima is represented by a single semi-tropical species.
Guaiacum is represented by a single semi-tropical speeies.
Porliera is represented by a single species of the Atlantic-Mexican region.
Xauthoxylum is represented by two species of the Atlantie region, by a semi-tropical species, and by a second semi-tropical species which reaches the Atlantic-Mexican region.

Ptelia is represented by a single arborescent speeies of wide distribution in the Atlantie, reaching also the Paeific region, where a fruteseent species occurs, and by a seeond frutescent speeies of the south Atlantic region.

Canotia, a genus endemic to the Pacific-Mexican region, is represented by a single species.
Simaruba, Amyris, Sucietenia, Ximenia, are each represented by a single semi-tropical species.
Bursera is represented by a single semi-tropical species and by a seeond frutescent species of the PacifieMexican region.

Ilex, an Atlantic genus, is represented by four arborescent and several frutescent speeies, with its center of distribution in tho southerp Atlantie region.

Cyrilla and Cliftonia are each represented by a single species of the southern Atlantic region.
Euonymus is represented by a widely-distributed arboreseent species in the Atlantic, and by a frutescent species in both the Atlantic and the Pacific regions.

Myginda, Schafferia, and Reynosia are each represented by a single semi-tropical species.
Condalia is represented by one semi-tropical and by one species of the Atlantic-Mexican reaching the PacifieMexican region.

Rhamnus is represented by one arborescent and by one fruteseent species in the Atlantic, by two arborescent and one frutescent species in the Pacific region, and by one fruteseent speeies common to the two regions.

Ceanothus is represented by a single arborescent species in the Paeifie Coast region and by several frntescent species widely distributed through the Atlantic and the Paeitie regions.

Colubrina is represented by a single semi-tropical species.
Asculus is represented by two arboreseent and by three frutescent speeies in the Atlantic, and by an arborescent species in the Pacifie region.

Ungnadia, an endemic genus of the Atlantic-Mexican region, and just reaching the Paeific-Mexican region, is represented by a single species.

Sapindus is represented by one species widely distributed through the southern Atlantic, and reaching the Paeific region, and by one semi-tropieal species.

Acer is represented by five Atlantic and four Pacifie speeies.
Negundo is represented by one species widely distributed through the Atlantie and the Pacific regions and by a second species in the Paeific region.

Whus is represented by five arboreseent species in the Atlantic and by several frutescent speeies in both the Atlantic and the Paeific regions.

Pistacia is represented by a single species in the Atlantie-Mexican region.
Eysenhardtia is represented loy a single arboreseent species in the Pacific-Mexican, extending into the AtlanticMexican region, where a sceond frnteseent species occurs.

Dalea is represented by a single arborescent species in the Pacife-Mexican and by mumerous frntescent and herbaceons speeies in the Atlantic and the Pacifie regions.

Robinia, with its center of distribution in the sonthern Alleghany region, is represented by two arboreseent and one fritescent speeies in the Atlantic and by one arborescent species in the Pacific region.

Olneya, an endemie genns of the Pacific-Mexican region, is there represented by a single species.
Piscidia is represented by a single semi-tropical species.
Ciadrastis is represented by a single local species in the southern Atlantic region.
Sophora is represented by a species in the sonthern Atlantic and by a second speeies in the Atlantic-Mexican region, and by four frutescent or suffinteseent speeies.

Gymnocladus is represented by a single species in the central Atlantic region.
Gleditschia is represented by two widely-distributed species in the Atlantie region.
Parkinsonia is represented by an arboreseent species common to the Atlantie- and the Pacific-Mexican regions, by two arborescent and one frnteseent species in the Paeific-Mexican, and by a frutescent speeies in the AtlanticMexican region.

Cercis is represented by a widely-distributed species in the Atlantic, by a second species in the AtlanticMexican, and a frutescent species of the California Coast region.

Prosopis is represented by two arborescent species common to the Atlantic- and the Pacific-Mexican regions, and by two frutescent species.

Lcucana is represented by two species in the Atlantic-Mexiean region.
Acacia is represented by two arboreseent species in the Atlantie-Mexican, by one arborescent species of the Pacific-Mexican extending into the Atlantic-Mexican region, and by several frutescent species widely distributed through the two regions.

Iysiloma is represented by a single semi-tropical species.
lithccolobium is represented by a single polymorphons arboreseent species of semi-tropical Florida, and by a shrubby species of the Mexican Boundary region.

Chrysobalanus is represented by one arborescent and one frutescent semi-tropieal species.
Prunus is represented by seven arborescent species in the Atlantic region; of these, one is semi-tropical and two extend into the Paeific region. This genns is represented in the Pacific region by four species, of which one belongs to the Mexiean regiou, and by several frutescent species.

Vauquelinia, an endemic genus of the Pacific-Mexican region, is there represented iy a single species.
Cercocarpus is represented by two widely-distributed species in the Pacifie region.
Pyrus is represented by one species common to both Atlantic and Pacifie, by three arboreseent and one frntescent speeies in the Atlantie, and br one arborescent species in the Pacific region.

Cratagus is represented by twelve arborescent and frutescent species in the Atlantie, of which one extends into the Pacific region, and by two species in the Pacific region.

Heteromeles is represented by a single species in the Pacific Coast region.
Amclanchier is represented by one arborescent species in the Atlantie and by one frutesent species in thePacific region.

Hamamelis and Liquidambar are each represented by one widely-distributed species in the Atlantic region.
Rhizophora is represented by a single speeies in the southern Atlantic region.
Conocarpus, Lagunculnria, and Calyptranthes are each represented by a single semi-tropieal species.
Euyenia is represented by five semi-tropical species.
Cereus is represented by a single arborescent species in the Pacific and by several frutescent species in the Atlantic and Pacific regions.

Cornus is represented by two arborescent species in the Atlantic, by a single arboreseent speeies in the Paeific region, and by several frutescent and herbaceous species in the two regions.

Nyssa is represented by three species in the Atlantic region.
Sambucus is represented br one arborescent speeies of wide distribution in the Pacifie, by one species in the Pacific-Mexican extending into the Atlantic-Mexican, by a fruteseent species in the Atlantic, by a second frotescent speeies in the Paeific, and by a frutescent species common to the Atlantic and Pacific regions.

Viburnum is represented by two arborescent species in the Λ thantic and by several frutescent species in theAtlantic and the Pacific regions.

Exostemma is represented by a single semi-tropical species.
Iinckneya, an endemic genus of the southern Atlantic region, is there represented by a single species.
Genipa is represented by a single semi-tropical species.

Guettarda is represented by one arborescent and by one frntescent semi-tropical species.
Vaecinium is represented by one arborescent species in the Atlantic and by sereral frntescent species in the Atlantic and the Pacific regions.

Andromeda is represented by an arborescent and several fritescent species in the Atlantic region.
Arbutus is represented by one species in the Pacitic Coast, by a second species in the Pacific Mexican, and by one species in the Atlantic-Mexican region.

Oxydendrum, an endemic genns of the Λ tlantie region, is there represented by a single species.
Kalmia is represented by one arborescent species and by three frutescent species in the Atlantie region, of which one extend to the Pacific region.

Rhododendron is represented by one arborescent and by several frutescent species in the Atlantic and by several frutescent species in the Pacific region.

Myrsine, Ardisia, Jaequinia, Chrysophylhum, Sideroxylon, and Dipholis are each represented by a single semitropical species.

Bumelia is represented by fonr species in the Atlantic and by one species in the Pacife-Mexican region.
Mimusops is represented by one semi-tropical species.
Diospyros is represented by oue species in the Atlantic and by one in the Atlantic-Mexican region.
Symplocos is represented by one species in the southern Atlantic region.
Halesia is represented by two arborescent and by one frutescent species in the sonthern Atlantic region.
Fraxirns, with its center of distribution in the southern Atlantic region, is represented by seven species in the Atlantic, nf which one extends into the Pacific region, and one belougs to the Mexican region, and by three arborescent and one fritescent species in the Pacific, of which one belongs to the Mexican region.

Foresticra is represented by one arborescent and seven frutescent species in the Atlantic region, of which one reaches the Mexican-Pacific region.

Chionanthus and Osmanthus are each represented by a single species in the southern Atlantic region.
Cordia is represented by one arborescent and by one frntescent semi-tropical species and by one arborescent and one frutescent species in the Λ tlantic-Mexican region.

Bourreria and Ehretia are each represented by a single semi-tropical species.
Catalpa is represented by two species in the southern Atlantic region.
Chilopsis is represented by a single species in the Pacific-Mexican region, extending into the Atlantic-Mexican region.

Oresecntic, Oitharexylum, and Avieennia are each represented by a single semi-tropical species.
Pisonia is represented by one arborescent and by tro frutescent semi-tropical species.
Coccoloba is represented by two semi-tropical species.
Persea is represented by one species in the sonthern Atlantic region.
Nectendra is represented by one semi-tropical species.
Sassafras is represented by one widely-distributel species in the Atlantic region.
Umbellularia is represented by a single species in the Pacific Coast region.
Drypetes, Sebastiania, and Hippomane are each represented by a single semi-tropical species.
Ulmus, with its center of distribution in the Mississippi basin, is represented in the Atlantic region by fire species.

Planera is represented by a single species in the sonthern Atlantic region.
Celtis is represented by a single polymorphons species of wide distribution in the Atlantic region, exteuding into the Pacific region, and by a frutescent species common to the Atlantic-Mexican and the Pacific-Mexican regions.

Ficus is represented by three semi-tropical species.
Morus is represented by one widely-distribnted species in the Atantic region, and by one species in the AtlanticMexican, extending into the Pacific-Mexican region.

Maclura is represented by a single local species in the southern Atlantic region.
Platanus is represented by one widely-distributed species in the Atlantic region, by a species in the Pacitic coast, and by a species in the Pacific-Mexican region.

Juglans is represented by two widely-distributed species in the Atlantic region and ly a species in the Pacific coast, extending through the Pacifie-Mexican into the Atlantic-Mexican region.

Carya, an endemic genns of the Athatic region, with its center of distribution west of the Mississippi rirer, is represented by seven species.

Myrica is represented by one arborescent and two frntescent species in the Athantic region and by one arborencent species in the Pacitic Coast region.

Quereus, with its center of most important distribution in the basin of the lower Ohio river, is represented in the Atlantic region by twenty-four arborescont species, of which one, belonging to the Mexican region, extends into the Pacitic-Mexican region; and in the Pacific region by twelve arborescent species, of which one belongs to the interior and four to the Mexican region, and by tro frntescent species.

Castanopsis is represented by a single species in the Pacifle Coast region.

Castanea is represented by two species in the Atlantic region.
Fagus, Ostrya, and Carpinus are cach represented by a single widely-distributed species in the Atlantic region.
Betula, with its center of distribution in the northern Atlantic region, is represented by one arborescent and by one frutescent species common to the Atlantic and the Pacific regions, by four arborescent and one frutescent species in the Atlantic region, and by one arborescent species in the Pacific region.

Alnus is represcnted by threc arborescent specics in the Atlantic, of which one extends to the Pacific region, by three arborescent species in the lacific region, and by two frutescont species common to the Atlantic and the Pacific regious.

Salix is represented in the A tlantic region by five arborescent species, of which three are found in the Pacific region, aud by many frntescent species. This genus is represented in the Pacific region by ten arborescent and by many frutescent species.

Populus is represented by two species common to the Atlantic and the Pacific regions, by three species in the Atlantic region, and by three species in the Pacific region.

Liboccdrus is represented by a single species in the Pacific Coast region.
Thuya is represented by one species in the Atlantic and by one species in the Pacific region.
Chamacyparis is represented by one species in the Atlantic and by two species in the Pacific Coast region.
Cupressus is represented by fonr species in the Pacific region, of which three occur in the coast and one in the Mexican region.

Juniperus is represented by one arborescent species in the Atlantic region, by three arborescent species in the Pacific, of which one belongs to the Pacific-Mexican and one extends to the Atlantic-Mexican region, and by two frutescent species common to both regions.

Taxodium is represented by a single species in the southern Atlantic region.
Sequoia, an endemic genus of the Pacific Coast region, is there represented by two species.
Taxus is represented by an exccedingly local arborescent species in the southern Atlantic region, by a frutescent species in the northern Atlantic region, and by an arborescent species in the Pacific Coast region.

Torrcya is represented by a single exceedingly local arborescent species in the southern Atlantic region and by a single species in the Pacific Coast region.

Pinus, with its center of distribution in the southern Pacific Coast region, is represented by thirteen species in the Atlantic and by twentr-two species in the Pacific region, of which three belong to the interior and four to the Mexican region.

Picea is represented by one species common to the Atlantic and the Pacific regions, by one species in the Atlantic, and by three species in the Pacitic region, of which one belongs to the interior region.

Tsuga is represented by two species in the Atlantic and by two species in the Pacific region.
Pseudotsuga, an endemic genns of the Pacific region, is there represented by a single widely-distributed species.
Abies is represented by one widely-distributed and by one exccedingly local species in the Atlantic region and by seven species in the Pacific region, of which one is exceedingly local.

Larix is represented by one species in the Atlantic and by two species in the Pacific region.
Sabal is represented by a single species in the southern Atlantic region.
Washingtonia is represented by a single species in the Pacific Mexican region.
Thrinax is represented by two semi-tropical species, and Oreodoxa by one.
Fucca is represented by one arborescent and one frutescent species common to the Atlantic and the Pacifle regions, by one arborescent and by two frntescent species in the Atlantic, and by two arborescent and by one frutescent species in the Pacific region.

A CATALOGUE

OF THE

FOREST TREES 0F NORTH ANERICA, EXCLUSIVE 0F MEXICO,

WITH

REMARKS UPON THEIR SYNONYMY, BIBLIOGRAPHICAL IIISTORY, DISTRIBUTION, ECONOMIC VALUE, AND USES.

FOREST TREES OF NORTH AMERICA.

Species which grow from the ground with a single stem, either wholly or over a large portion of the area of their distribution, are admitted as trees into the following catalogue, without reference to the height or size they may attain.

The line which divides trees from shrubs is entirely arbitrary, and is often unsatisfactory in application. A separation of this nature, however, based upon habit rather than upon size, is perhaps less objeetionable, all things considered, than any other, and serves at least to keep this catalogue within reasonable limits.

The word "compact", used in the description of various woods mentioned in the catalogue, indicates that they show no tendency to cheek or open in drying, and does not refer to their structure.

CATALOGUE OF FOREST TREES.

MAGNOLIACEE.

1.-Magnolia grandiflora, Linuæus,

Spec. 2 ed. 755.-Marshall, Arbnstum, 84.—Am. Gewach. t. 185, 186.—WaIter, Fl. Caroliniana, 158.—Gærtuer, Fruct. i, 343, t. 70.-B. S. Barton, Coll. i, 13; it,20.—Aiton, Hort. Kew. ii, 251 ; 2 ed. iii, 329.—Bartram, Travels, 2 ed. 89.-Lamarck, Diet. iii, 672; Ill. iii, 35, t. 490.-Mœneh, Meth. 274.-Willdenow, Spec. ii, 1255 ; Enum. i, 579.-Miehaux, Fl. Bor.-Am. i, 327.-Nouveau Duhamel, ii, 219, t. 65.-Desfontaines, Hist. Arb. ii, 5.-Robin, Voyages, iii,265.-Andrews, Bot. Rep. viii, t. 518.-Titford, Hort. Bot. Am. 7G.-Miehaux f. Hist. Arb. Am. iii, 71, t. 1; N. American Sylva, 3 ed. ii, 8, t. 51.-Pursl, Fl. Am. Sept. ii, 380.-Nuttall, Genera, ii, 18; Sylva, i, 81 ; 2 ed. i,96.—De Candolle, Syst. i,450; Prodr. i, 80.—Hayne, Deud. Fl. 116.-Elliott, Sk. ii, 36 .—Loddiges, Bot. Cab. t. 814.-Sprengel, Syst. ii, 642.-Auduhon, Birds, t. 5, 32.-Rafinesque, Med. Bot. ii, 32.-Don, Milier's Diet. i, 82.-Eaton, Manual, 6 ed. 218.-Croom in Am. Jour. Sei. 1 ser. xxvi, 314.-Loudon, Arboretum, i, 261 \&t.-Hooker, Jour. Bot. i, 188.- Eaton \& Wright, Bot. $312 .-T o r r e y$ \& Gray, Fl. N. America, i, 42.—Spach, Hist. Veg. vii, 470.—Dietrich, Syn. iii, 308.-Scring e, Fl. Jard. iii, 225.-Darby, Bot. S. States, 210.-Cooper in Smithsonian Rep. 1858, 250.-Clıapman, Fl.S.States, 13.-Curtis in Rep. Geological Surv. N. Carolina, 1860, iii, 66.—Wood, Cl. Book, 214; Bot. \& Fl. 24.-Porcher, Resources S. Forests, 38.—Baillon, Hist. Pl. i, 133, f. 165-169.-Koch, Dendrologie, i, 367.-Yonng, Bot. Texas, 148.-Vasey, Cat. Forest Trees, 6.
M. Virginiana, var. β : fotida, Linnæus, Spee. 1 ed. 536 , iu part.
M. grandiflora, var. elliptica and obovata, Pursh, Fl. An. Sept. ii, 380.
M. grandiflora, var. lanceolata, Pursh, Fl. Am. Sept. ii, 380.—Bot. Mag. t. 1952.-Eaton, Manual, 6 ed. 218.

BIG LAUREL. BULL BAY.

Cape Fear river, North Carolina, south near the coast to Mosquito inlet, and Tampa bay, Florida; basin of the Mississippi river sonth of latitude $32^{\circ} 30^{\prime}$, extending westward to southwestern Arkansas, and along the Texas coast to the val? $\begin{gathered}\text { y } \\ \text { of the Brazos river. }\end{gathered}$

One of the most magnifieent trees of the Atlantic forest, evergreen, 18 to 27 meters in height, with a trunk 0.60 to 1.20 sucter in diameter; reaching its greatest development on the "bluff" formations along the eastern bank of the Miserssippi river from Vicksburg to Natchez, and of western Louisiana.

Wood heavy, hard, not strong, elose-grained, compact, easily worked, satiny; medullary rays very numerons, thin; color, creamy white or often light brown, the heavier sap-wood nearly white; speeifie gravity, 0.6360 ; ash, 0.53 ; little nsed except as fuel; suitable for interior finish, fine eabinet work, ete.

2.-Magnolia glauca, Limneus,

Spec. 2 ed. 75\%.-Kalm, Travels, English ed. i, 204.-Sehopf, Mat. Med. Aru. 91.-Marshall, Arhustum, 83.-Wangenheim, Amer. 60, t. 19, f. 46.-Walter, Fl. Caroliniana, 158.-B. S. Barton, Coll. i, 13; ii, 20.-Lamarck, Dict. iii, 674,-Aitou, Hort. Kew. ii, 251 ; 2 cd. iii, 329.-Mœnch, Meth. 274.-Willdenow, Spec. ii, 1256; Enum. i, 579.—Sehkuhr, Mandb. ii, 1441, t. 148.-Miehaux, Fl. Bor.-Am. i, 327.-Nonvean Duhamel, ii, 223, t. 66.-Desfontaines, Hist. Arb. ii, 5.-Titford, IIort. Bot. Am. 76.-Bonpland, Pl. Malm. 10:3, t. 42.-Michanx f. Hlist. Arl. Am. iii, 77, t. ${ }^{2}$; N. American Sylva, 3 ed. ii, 12, t. 52.-Pursh, Fl. Am. Sept. ii, 381 .-Eaton, Manual, 6 ed. 218.—Bigelow, Med. Bot. ii, 67, t. 27 ; Fl. Boston. 3 ed. 244.-Nnttall, Genera, ii, 18.-Barton, Prodr. Fl. Pliladelph. 59 ; Med. Bot. i, 77, t. 7 ; Compend. Fl. Philadelplı. ii, 17.-Loddiges, Bot. Cab. t. 215.-De Candolle, Syst. i, 452; Prodr. i, 80.-Hayne, Dend. Fl. 116.-Elliott, Sk. ii, 37.-Bot. Mag. t. 2164.-Sprengel, Syst. 642.-Torrey, Compend. Fl. N. States, 221; Fl. N. York, i, 17, t. $5 .-$ Audubon, Birds, t. 118.-Rafincsciue, Med. Bot. ii, 34.-Dou, Miller's Diet. i, 82.-Eaton, Manual, 6 ed. 218.-Ilooker, Jour. Mot. i, 188.—Beck, Bot. 15.-Sertum Botanienm, v\& t.-Reiehenhaeh, Fi. Exot. v, 37, t. 342.-Lindley, Fl. Med. 23.-Eatou \& Wright, Bot. 312.-Torrey \& Gray, Fl. N. America, i, 42.-Spach, Hist. Veg. vii, 473.-Dietrieh, Syn. iii, 308.—Griffith, Med. Bot. 96, f. 5k.London, Arhoretum, i, 267 \& t.-Emerson, Trces Massacliusetts, 527 ; 2 ed. ii, $603 \&$ t.-Seringe, Fl. Jard. iii, 226. Gray, Genera, i, 61, t. 23 ; Manual N. States, 5 cel. 49.—Schnizlein, Ieon. t. 176.-Darlingtou, Fl. Cestrica, 3 ed. 8.-Darby, Bot. S. States, 211.Cooper in Smithsonian Rep. 1858, 250.-Chapman, Fl. S. States, 13.-Curtis in Rep. Geological Surv. N. Carolina, 1860, iii, 66.Lesqnerenx in Owen's 2d Rcp. Arkansas, 374. - Wood, Cl. Book, 214; Bot. \& Fl. 24. -Poreher, Resources S. Forests, 36.-Koch, Dendrologic, i, 369.-Young, Bot. Texas, 148.-Vasey, Cat. Forest Trees, 6.
M. Virginiana, var. a. glauca, Liunaus, Spcc. 1 ed. 535.
M. fragrans, Salisbury, Prodr. 379.-Rafinesque, Fl. Ludoviciana, 91; Med. Bot. ii, 32.
M. longifolia, Sweet, Hort. Brit. 11.-Don, Miller's Dict. i, 83.-Dietrich, Syn. iii, 308.

MF. glauca, var. latifoliu, Aiten, Hert. Kew. 2 ed. iii, 350 -—Purah, Fl. Am. Sept. ii, 381.-Eaton, Manual, 6 cd. 218.
M. glauca, var. longifolia, Aiton, Hort. Kew. 2ed. iii, 330.-Pursh, Fl. Ain. Sept. ii, 381.-Rafinesque, Fl. Ludoviciana, 91.-Hayne, Dend. Fl. 116.-Eaton, Manual, 6 cd. 218.
sweet bay. White bay. beaver tree. White ladrel. swamp laurel.
Cape Ann, Massachusetts; New Jersey southward, generally ucar the coast, to bay Biscayne and Tampa bay, Florida; basin of the Mississippi river sonth of latitude 35°, extending west to southwestern Arkansas and the valley of the Trinity river, Texas.

A tree 15 to 22 meters in height, with a trunk sometimes 1.20 meter in diameter, or toward its northern limits reduced to a low shrub; swamps or low wet woods, reaching its greatest development on the rich hummocks of the interior of the Florida peninsula and along the low sandy banks of pine-barren streams of the Gulf states.

Wood light, soft, not strong, close-grained, compact; medullary rays very numerous, thin; color, light brown tinged with red, the sap-wood nearly white; speeific gravity, 0.5035 ; ash, 0.47 ; in the Gulf states sometimes used in the manufacture of broon handles and small woodenware.

The dried bark, especially of the root, of this species and of M. acuminata and M. Umbrella is included in the American Materia Medica, furnishing an aromatic tonic and stimulant used in intermittent and remittent fevers; a tincture made by macerating the fresh fruit or bark in brandy is a popular remedy for rheumatism ($U . S$. Dispensatory, 14 ed. 567.-Nat. Dispensatory, 2 ed. 891).

3.-Magnolia acuminata, Linnæns,

Spec. 2. ed. 756.-Marshall, Arbustum, 83.-Walter, Fl. Caroliniana, 159.-B. S. Barton, Coll. i, 13.-Aiton, Hort. Kew: ii, 251; 2 ed. iii, 331.-Lamarck, Diet. iii, 674.-Willdcnow, Spee. ii, 1257 ; Enum. i, 579.-Michanx, Fl. Bor.-Am. i, 329.-Nouvean Duhamel, ii, 222.-Desfoutaines, Hist. Arb. ii, 5.-Michaux f. Hist. Arb. Am. iii, 82, t. 3; N. American Sylva, 3 ed. ii, 15, t. 53.-Pursh, Fl. Am. Sept. ii, 381.-De Caudolle, Syst. i, 453; Prodr. i, 80.-Loddiges, Bot. Cab. t. 418.-Nuttall, Genera, ii, 18.-Bot. Mag. t. 2427.Hagne, Deud. Fl. 117.-Elliott, Sk. ii, 37.-Ratinesque, Med. Bot. ii, 32.-Guimpel, Otto \& Hayne, Abb. Holz. 18, t. 17.Sprengel, Syst. ii, 642.-Torrey, Compend. Fl. N. States, 221 ; Fl. N. York, i, 28.-Rafinesque, Mcd. Bot. ii, 34.-Beek, Bot. 15.Sertum Botanicum, v. \& t.-Don, Miller's Diet. i, E3.-Reichenbach, Fl. Exot. t. 251.-Eaton, Mannal, 6 ed. 218.-Loudon, Arboretum, i, 273 \& t.-Eaton \& Wright, Bot. 312.-Torrey \& Gray, Fl. N. America, i, 43.-Dietrich, Syn. iii, 308.-Griffith, Med, Bot. 98.-Darlington, Fl. Cestrica, 3. ed. 9.-Darby, Bot. S. States, 211.-Ceoper in Smithsonian Rep. 1858, 250.-Chapman, F1. S. States, 14.-Curtis in Rep. Geological Surv. N. Carolina, 1860, iii, 67.-Wood, Cl. Book, 214 ; Bot. \& Fl. 24.-Porcher, Resources S. Ferests, 38.-Baillon, Hist. Pl. i, 140.-Gray, Mannal N. States, 5. ed. 49.-Koch, Deudrologie, i, 371.-Young, Bot. Texas, 149.-Vasey, Cat. Fercst Trces, 6.-Nat. Dispensatery, 2 ed. 891 .-Ridgway iu Proc. U. S. Nat. Mus. $1882,58$.
M. Virginiana, var. e. Linnmes, Spec. 1 ed. 536.
M. DcCandollii, Savi, Bibl. Ital. i, $224 \& t$.

Tulipastrum Americanum, Spach, Hist. Veg. vii, 483.

CUCUMBER TREE. MOUNTAIN MAGNOLIA.

Western Xew York to sonthern Illinois, southward along the Alleghany mountains, and seattered through eastern and middle Kentucky and Tennessee, usually on Carboniferous deposits, to southern Alabama (Stockton, Mohr) and northeastern Mississippi; Arkausas, Crowley's ridge, and in the southern and sonthwestern part of the state (Texarkana, Harvey, and in Polk, Howard, Cross, and Pike counties).

A large tree, 20 to 30 meters in height, with a trunk 0.60 to 1.20 meter in diameter; rich woods, reaching its greatest development on the slopes of the southern Alleghany mountains.

Wood durable, light, soft, not strong, close-grained, compact, satiny; medullary rays numerous, thin; color, yellow-brown, the sap-wood lighter, often nearly white; specife gravity, 0.4690 ; ash, 0.29 ; used for pump-logs, watertroughs, flooring, cabinet-making, ete.

> 4.-Magnolia cordata, Michaux,

Fl. Bor.-Am. i, 328.—Aiton, Hort. Kew. 2 ed. iii, 331.—Poiret, Suppl. iii, 547.-Michaux f. Hist. Arb. Am. iii, 87, t. 4; N. Amorican Sylva, 3 ed. ii, 18, t. 54.-Pursh, Fl. Am. Sept. ii, 382. -Lindley, Bot. Reg. iv, t. $325 .-$ Nuttall, Genera, ii, 18. -De Candolle, Syst. i, 455 ; Prodr. i, 80.-Mayne, Dend. Fl. 118.-Elliott, Sir. ii, 38.-Loddiges, Bot. Cab. t. 474.-Sprengel, Syst. ii, 642.-Rafinesque, Med. Bot. ii, 32.-Eatou, Manual, 6 ed. 218.—Scrtmm Botanieum, v ir t.-Don, Millor's Dict. i, 83.-Reichonbach, Fl. Exot. t. 250.-Loudon, Arberetum, i, 275 \& t.-Eaton \& Wright, Bot. 312.-Torrey \& Gray, Fl. N. America, i, 43.-Dietrich, Syn. iii, 308.-Darby, Bot. S. States, 211.-Cooper in Smithsonian Rep. 1858, 250.-Clapman, Fl. S. States, 14.-Curtis in Rep. Geological Surv. N. Carolina, 1860, iii, 68.-Wood, Cl. Book, 214; Bot. \& Fl. 25.-Koch, Dendrologie, i, 371.-Vasey, Cat. Forest Trees, 6.

Tulipastrum Americanum, var. subcordatum, Spach, Hist. Veg. vii, 483.

CUCUMBER TREE.

Southern Alleghany Mountain region, near Augusta, Georgia (Michaux, Elliott), head of Sipsey creek, "valley of Davidson creek", Winston county, Alabama (Mohr).

A tree 22 to 24 meters in height, with a trunk sometimes 0.60 meter in diameter; low, rich woods; very rare and local.

Wood light, soft, not strong, close-grained, compact; medullary rays very numerous, thin; color, light brown streaked with yellow, the sap-wood light yellow; speeific gravity, 0.4139 ; ash, 0.32 .

5.-Magnolia macrophylla, Michaux,

F1. Bor.-Am. i, 327.-Nonvean Duhamel, ii, 221.-Desfontaines, Hist. Arb. ii, 5.-Aiton, Hort. Kew. 2 ed. iii, 331.-Poiret, Snppl. iii, 573.-Michanx f. Hist. Arb. Am. iii, 99, t. 7; N. American Sylva, ii, 26, t. 57.-Bonpland, Pl. Malm. 84, t. 33.-Parsh, Fl. Am. Sept. ii, 381.—Nuttall, Genera, ii, 18 ; Sylva, i, 83 ; 2 ed. i, $99 .-D e$ Candolle, Syst. i, 454 ; Prodr. i, 80.-Bot. Mag. t. 2189.-Hayne, Dend. Fl. 117.-Elliott, Sk. ii, 40.-Sprengel, Syst. ii, 642.-Rafincsque, Med. Bot. ii, 31; t. 62.-Eaton, Manual, 6 cd. 218.Sertnm Betanicam, v \& t.-Don, Millcr's Dict. i, 83.-Croom in Am. Jour. Sci. 1 ser. xxv, 76.-Reichenbach, Fl. Exet. ii, 44, t. 139.-London, Arboretam, i, 271 \& t.-Eaton \& Wright, Bot. 312.-Torrey \& Gray, Fl. N. Amorica, i, 43.-Spach, Hist. Veg. vii, 479.-Dietrich, Syn. iii, 308.-Griffith, Med. Bot. 98, f. 57.-Darby, Bot. S. States, 211.-Cooper in Smithsonian Rep. 1858, 250.Seringe, Fl. Jard. iii, 230.-Chapman, Fl. S. States, 14.-Curtis in Rep. Geological Surv. N. Carolina, 1860, iii, 67.-Wood, Cl. Book, 214 ; Bot. \& Fl. 25.-Gray, Manaal N. States, 5 ed. 49.-Koch, Dendrologie, i, 374.-Vasey, Cat. Forest Trees, 6.

LARGE-LEAVED CUCUMBER TREE.

North Carolina, eastern base of the Alleghany mountains (Iredell and Liucoln counties); sontheastern Kentucky sonthward to middle and western Florida and southern Alabama, extending west to the valley of Pearl river, Lonisiana; central Arkansas (Garland, Montgomery, Hot Springs, and Sebastian counties).

A tree 6 to 18 meters in height, with a trunk rarely 0.60 meter in diameter; rich woods, reaching its greatest development in the limestone valleys of northern Alabama; rare and local.

Wood light, hard, not strong, close-grained, compact, satiny; medullary rays numerous, thin; color, brown, the sap-wood light yellow; specific gravity, 0.5309 ; ash, 0.35 .

6.-Magnolia Umbrella, Lamarck,

Dict. iii, 673.-Nouveau Dahamel, ii, 221.-De Candolle, Prodr. i, 80.-Loiseleur, Herb. Amat. iii, t. 198.-Sprengel, Syst. ii, 642.Don, Miller's Dict. i, 83.-Torrey \& Gray, Fl. N. America, i, 43.-Spach, Hist. Veg. vii, 475.-Dietrich, Syn. iii, 308.-Scringe, Fl. Jard. iii, 227.—Gray, Genera, i, 62, t. 24 ; Prec. Linnæan Sec. ii, 106, f. 1-18; Manual N. States, 5 ed. 49.-Coeper in Smithsonian Rep. 1858, 250.-Chapwan, Fl. S. States, 13.-Curtis in Rep. Gcological Snrv. N. Carolina, 1860, iii, 67.-Weod, Cl. Book, 214; Bot. \& Fl. 25.-Porcher, Resonrces S. Forests, 38.-Vasey, Cat. Forest Trees, 6.
M. Virginiana, var. tripetala, Linnæus, Spec. 1 ed. 536.
M. tripetala, Linnæus, Spec. 2 cd. 756.-Marshall, Arbustum, 84.-Walter, Fl. Careliniana, 159.-B. S. Barton, Coll. i, 14.Aiten, Hort. Kew. ii, 252; 2 ed. iii, 331.-Wilhdenow, Spec. ii, 1258; Enam. i, 579.-Michaux, Fl. Ber.-Am. i, 327.Desfontaines, Hist. Arb. ii, 5.-De Candolle, Syst. i, $452 .-$ Michaux f. Hist. Arb. Am. iii, 90, t.5; N. American Sylva, 3 cd. ii, 20, t. 5.-Porsh, Fl. Am. Sept. ii, 381.-Nuttall, Genera, ii, 18; Sylva, i, 84 ; 2 cd. i, 100.-Guimpel, Otto \& Hayne, Abb. Holz. 20, t. 18.-Hayne, Dend. Fl. 116.-Elliott, Sk. ii, 38.-Torrey, Compend Fl. N. States, 221.Rafincsque, Med. Bot. ii, 32.-Eaton, Manual, 6 ed. 218.-Eaton \& Wright, Bot. 312.-Griffith, Med. Bet. 98.Louden, Arboretum, i, 269, t. 5.-Darby, Bet. S. States, 211.-Koch, Dendrolegie, i, 379.-Nat. Dispensatory, 2 ed. 891.

UMBRELLA TREE. ELK WOOD.

Southeastern Pennsylvania, southward along the Alleghany mountains to central Alabama (Prattville, Mohr) and northeastern Mississippi, westward through Kentucky and Tennessee; in central (Hot Springs) and sonthwestern Arkansas (Fulton, valley of the Red river, Harvey).

A small tree, rarely exceeding 12 meters in height, with a trunk 0.10 to 0.40 meter in diameter; rich, shady hillsides; most common and reaching its greatest development along the western slope of the southern Alleghany mountains.

Wood light, soft, not strong, close-grained, compact; medullary rays very numerous, thin; color, brown, the heavier sap-wood nearly white; specific gravity, 0.4487 ; ash, 0.20 .

7.-Magnolia Fraseri, Walter,

F1. Caroliniana, i, 59 \& t.-Torrey \& Gray, Fl. N. America, i, 43.-Walpers, Rep. i, 70.-Dietrich, Syn. iii, 308.-Chapman, Fl. 8. States, 14.-Curtis in Rep. Gcologieal Surv. N. Carolina, 1860, iii, 68.-Wood, Cl. Book, 214; Bot. \& Fl. 25.-Gray, Manual N. States, 5 cd. 49.-Koch, Dendrologio, i, 372. - Vasey, Cat. Forest Trees, 6.
M. auriculata, Lamarek, Dict. iii, 673.-Bartram, Travels, 2 ed. 337.-Willdenow, Spec. ii, 1258; Enum. i, 579.-Michaux, Fl. Bor. Ain. i, 328.-Nonveau Duhamel, ji, 222.-Desfontaines, Hist. Arb. ii, 5.-Dlichaux f. Hist. Arb. Am. iii, 94, t. 6; N. Ameriean Sylva, 3 ed. ii, 23, t. 56.—Andrews, Bot. Rep. ix, t. 573.-Bot. Mag.t. 1206.—Cubieres, Mem. Mag. \& t.Aiton, Ilort. Kew. 2 enl. iii, 332.—Pırsh, Fl. Am. Scpt. ii, 382.-Nuttall, Gonera, ii, 18; Sylva, i, 84; 2 ed. i, 98.-De Candolle, Syst. i, 454 ; Prodr. i, 80.-Hayne, Dend. Fl. 117.-Elliott, Sk. ii, 39.-Sprengel, Syst. ii, 642.-Audubon, Birds, t. 38.-Don, Miller's Diet. j, 83.-Eaton, Manual, 6 ed. 218.-Hooker, Jonr. Bot. i, 188.-Spach, Hist. Veg. vii, 477.-Loudon, Arboretum, i, 276 \& t.-Seringe, Nl. Jard. iii, 229.
M. pyramidata, Bartram, Travels. 2 ed. 333.-Pursh, Fl. An. Sopt. ii, 382.-Do Candolle, Syst. i, 454; Prodr. i, 80.-Hayne, Dend. Fl. 117.-Lindley, Bot. Reg. v, t. 407.-Loddiges, Bot. Cab. t. 1092.-Rafinesque, Med. Bot. ii, 32.-Don, Miller's Dict. j, 83.-Eatom, Mamal, 6 cd, 221.-London, Arboretum, i, 277 \& t.-Seringe, Fl. Jard. iii, 230.-Darby, Bot. S. States, 211.
M. auricularis, Salishury, Parad. Lond. i, t. 43.-Kerner, Hort. t. 360.

LONG-LEAVED CUCUMBER TREE.

Alleghany mountains, from Virginia sonthward to the Chattahoochee region of western Florida, and southern Alabama (Clark countr, Mohr), extending west to the valley of Pearl river, Mississippi.

A small tree, 8 to 12 meters in height, with a trunk 0.15 to 0.20 meter in diameter; rieh woods.
Wood light, soft, not strong, elose-grained, compact; medullary rays very numerous, thin; color, brown, the sap-wood nearly white; specific gravity, 0.5003; ash, 0.28.

8.-Liriodendron Tulipifera, Linnæus,

Spee. 1 ed. \mathbf{i}, 535.-Kalm, Travels, English ed. i, 202.-Marshall, Arbustum, 78. -Wangenheim, Amér. 32, t. 13, f. 32.-Walter, Fl. Caroliniana, 158.-Schmidt, Arb, i, 48.-B. S. Barton, Coll. i, 14, 45.-Aiton, Hort. Kew. ii, 250 ; 2 ed. iii, $329 .-G a r t n e r, ~ F r u c t . ~$ if, t. 178.-Bot. Mag. t. 275.-Mœneh, Meth. 222.—Abbot, Insects Georgia, ii, t. 102.—Schkuhr, Mandb. ii, 93, t. 147.-Trew, Ieon. t. 10.-Willdenow, Spec. ii, 1254 ; Euunu. i, 579.-Michaux, Fl. Bor. Am. i, 326.-Nouveau Duhamel, iii, 62, t. 18.-Desfontaines, Hist. Arb. ii, 15.-Poiret in Lamarek, Dict. viii, 137 ; Ill. iii, 36, t. 491.-St. Hilaire, Pl. France, iii, t. 37\%.-Titford, Hort. Bot. Am. 76.-Michaux f. Hist. Arb. Am. jii, 2u2, t. 5; N. American Sylva, 3 ed. ii, 35, t. 61.-Eaton, Manual, 63; 6 ed. $208 .-N u t t a l l$, Genera, ii, 18: Sylv:1, i, 84 ; 2 ed. i, 100.-Barton, Prodr. Fl. Philadelph. 59; Med. Bot. i, 91, t. 8; Compend. Fl. Philadelph. ii, 18.-De Candollo, Syst. i, 462 ; Prodr. i, 82.-Bigelow, Mcd. Bot. ii, 107, t. 31.-Hayne, Dend. Fl. 115.-Elliott, Sk. ii, 40.-Torrey, Compend. Fl. N. States, 221 ; Fl. N. York, i, 28.-Rafinesque, Med. Bot. ii, 239.-Guimpel, Otto \& Hayne, Abb. Holz. 34, t. 29.Cobbett, Woodlands, No. \mathbf{W} 6.—Sprengel, Syst. ii, 642.-Audubon, Birds, t. 12.-Don, Miller's Diet. i, 86.-Beek, Bot. 15.-Lindley, FI. Med. 23.-Spach, Hist. Veg. vi, 488.-London, Arboretum, i, 284 \& t.-Eaton \& Wright, Bot. 302.-Penn. Cyel. xxv, $341 .-T o r r e y$ \& Gray, Fl. N. America, i, 44.-Dietrich, Syı, iii, 309.-Griffith, Med. Bot. 98, f. 58.-Emerson, Trees Massaehusotts, 529 ; 2 ed. ii, 605 \& t.-Seringe, Fl. Jard. iii, 240.-Gray, Genera, i, 64, t. 25 ; Manual N. States, 5 ed. 50.-Darlington, Fl. Cestrica, 3 ed. $9 .-$ Darby, Bot. S. States, 212.-Agardb, Theor. \& Syst. Pl. t. 11, f. 2.-Cooper in Smithsonian Rep. 1858, 250.-Chapman, Fl. S. States, 14.-Curtis in Rep. Geological Surv. N. Carolina, 1860, iii, 77.-Lomaire, 1ll. Hort. 15, t. 571.-Wood, C1. Book, 215; Bot. \& Fl. 25.-Porcher, Resources S. Forests, 39.-Engelmann in Trans. Anı. Phil. Soc. new ser. xii, 183.-Baillon, Hist. Pl. i, 143, f. 175-178.-Koch, Dendrologie, i, 380.—Guibourt, Hist. Drognes, 7 ed. iii, 746.-Ridgway iu Am. Nat. vi, 663; Proc. U. S. Nat. Mns. 1882, 59.-Vasey, Cat. Forest Trees, 6.-Eichler, Sit. Bot. Brand. xxii, 83, f. 1-3.-Bell in Geological Rep. Canada, 1879-'80, 53c.

Tulipifera Liviodendron, Miller, Dict. No. 1.

L. procera, Salisbury, Prodr. 379.

TULIP TREE. YELLOW POPLAR. WHITE WOOD.

Southwestern Vermont, through western New England, southward to northern Florida (latitude 30°); west through New York, Ontario, and Michigan to lake Miehigan, south of latitude 43030°, thence south to latitude 31° in the Gulf states east of the Mississippi river; through sonthern Illinois and southeastern Missouri to Crowley's ridge, northeastern Arkansas.

One of the largest and nost valuable trees of the Atlantic forests, 30 to 60 meters in height, with a trunk 2 to 4 meters in diameter (Ridgway); rich woods and intervale lands, reaching its greatest development in the valley of the lower Wabash river and along the western slopes of the Alleghany monntains in Tennessee and North Carolina.

Wood light, soft, not strong, brittle, very elose straight-grained, compact, easily worked; medullary rays numerons, not prominent ; color, light yellow or brown, the thin sap-wood nearly white; specific gravity, 0.4230 ; ash, 0.23 ; largely manufactured into lumber and used for construction, interior finish, shingles, in boat-building, and especially in the mannfacture of wooden pumps, woodenware, etc.; varieties varying slightly in color and density are recognized by lumbermen.

Ifriodendrin, as stimulant tonic, with diaphoretic properties, is obtained by macerating the inner bark, especially of the root (Jour. Philadelphia Col. Phar.iii. 5.—U. S. Dispensatory, 14 ed. 556.-Nat. Dispensatory, 2 ed. 871).

ANONACER.

9.-Asimina triloba, Dunal,

Mon. Anon. 88.-De Candolle, Syst. i, 479 ; Prodr. i, 87.-Elliott, Sk. ii, 42.-Guimpel, Otto \& Hayne, Abb. Holz. 66, t. 53.-Hayno, Dend. Fl. 118.-Sprengel, Syst. ii, 639.-Torrey, Compend. Fl. N. States, 222; Ann. Lyc. N. York, ii, l6r -Bcek, Bot. 16.-Don, Miller's Dict. i, 91.-Nnttall in Jour. Philadelphia Acad. vii, 11.—Dietrich, Syn. iii, 304.-London, Arboretum, i, 293, f. 39.-Gray, Genera, i, 69, t. 26, 27 ; Mannal N. States, 5 ed. 50.-Parry in Owei's Rep. 609.-Darlington, Fl. Cestrica, 3 ed. 9.-Darby, Bot. S. States, 212.-Cooper in Swithsonian Rep. 1858, 250.—Chapman, Fl. S. States, 15.-Curtis in Rep. Geological Surv. N. Carolina, 1860, iii, 94.-Lesquerenx in Owen's 2d Rep. Arkansas, 347.-Maont \& Decaisne, Bot. English ed. 199 \& figs.-Bot. Mag. t. 5834.-Wood, Cl. Book, 215; Bot. \& Fl. 26.-Porcher, Resources S. Forests, 41.-Engelmann in Trans. Am. Phil. Soc. new ser. xii, 183.-Koch, Dendrologie, ii, 383.-Yonng, Bot. Texas, 149.-Vasey, Cat. Forest Trees, 6.-Ridgway in Proc. U. S. Nat. Mus. 1882, 60. -Burgess in Coulter's Bot. Gazette, vii, 95.

Anona triloba, Linnteus, Spec. 1 ed. 537.-Marshall, Arbustum, 10.-Lamarck, Dict. ii, 125.-Walter, Fl. Caroliniana, 158.B. S. Barton, Coll. i, 29.-Aiton, Hort. Kew. ii,254; 2 ed. iii, 335.-Willdenow, Spee. ii, 1267 ; Ennm. i, 580.-Nouvean Dthamel, ii, 83, t. 25.-Desfontaines, Hist. Arb. ii, 21.-Michaux f. Hist. Arb. Am. iii, 161, t. 9; N. American Sylva, 3 ed. ii, 33, t. 60.—Barton, Prodr. Fl. Philadelph. 59.-Schknhr, Handb. ii, 95, t. 149.

Anona pendula, Salisbury, Prodr. 380.
Orchidocarpum arietinum, Michaux, Fl. Bor.-Am. i, 329.
Porcelia triloba, Persoon, Syn. ii, 95.-Pursh, Fl. Am. Sept. ii, 383.-Rafinesque, Fl. Lndoviciana, 92.-Barton, Compend. Fl. Philadelph. ii, 18.-Nuttall, Genera, ii, 19.-Poiret, Suppl. iv, 529.-Eaton, Manual, 6 ed. 278.-Audubon, Birds, t. 2, 162.-Eaton \& Wright, Bot. 371.

Uvaria triloba, Torrey \& Gray, Fl. N. Anerica, i, 45.-Torrey, Fl. N. York, i, 30.-Caruel in Ann. Mus. Firenze, 1864, 9, t. 1, f. 1-7.-Baillon, Adansonia, viii, 333; Mist. Pl. i, 193, f. 220-228.
A. campaniflora, Spach, Hist. Veg. vii, 529.

PAPAW. CUSTARD APPLE.

Western New York (Lockport and in Monroe county); Ontario (Queenstown heights); eastern and central Pennsylvania, west to southern Michigan, sonthern Iowa, and eastern Kansas (Manhattan), south to middle Florida and the valley of the Sabine river, Texas.

A small tree, sometimes 12 meters in height, with a trunk rarely exceeding 0.30 meter in diameter, or often redneed to a slender shrub; rieh, rather low woods, reaching its greatest development in the lower Wabash valley and in the valley of the White river, Arkansas.

Wood very light, very soft and weak, coarse-grained, spongy; layers of annual growth clearly marked by several rows of large open ducts; color, light rellow shaded with green, the sap-wood lighter; specific gravity, 0.3969 ; ash, 0.21.

> 10.-Anona laurifolia, Dunal,

Mon. Anon. 65.-Do Candolle, Syst. i, 468; Prodr. i, 84.-Sprengel, Syst. ii, 641.-Lindley, Bot. Reg. xvi, t. 1328.-Schnizlein, Icon. t. 174, f. 9.-Grisebach, Fl. British West Indies, 4.-Cooper in Smithsonian Rep. 1860, 439.-Chapman, Fl. S. States, Snppl. 603.
> A. glabra, Chapman in Coulter's Bot. Gazette, iii, 2 [not Linnæus].
> A. species, Vasey, Cat. Forest Trees, 6.

POND APPLE.

Semi-tropical Florida, cape Malabar to bay Biseayne, on the west coast, Pease creek to the Caloosa river, and through the West Indies.

A small tree, sometimes 9 meters in height, with a trunk 0.30 meter in diameter, or toward its northern limit and on the west coast often reduced to a stont, wide-spreading shrub; common and reaching its greatest development within the United States on the low islands and shores of the Everglades in the neighborhood of bay Biseayne.

Wood light, solt, not strong, rather close grained, compact, containing many seattered open ducts; color, light brown streaked with yellow, sap-wood lighter; specific gravity, 0.5053 ; ash, 4.86 .

The large fruit (0.14 to 0.28 meter long) searcely edible.

OAPPARIDAOE \mathbb{A}.

11.-Capparis Jamaicensis, Jacquin,

Slirp. Am. 160, t. 101.-Aiton, Hort. Kew. 2 ed. iii, 285.—De Candolle, Prodr. 1, 252.-Descoartilz, Fl. Med. Antilleb, p. t. 273.Macfadyen, Fl. Jamaica, 39.-Grisebach, Fl. British West Indies, 18.-Chapman, Fl. S. States, 32.-Porcher, Resources S. Foreste, 75.-Eichler in Martins, Fl.Brasil. xlii, 270, t. 64, f. 11.-Vasey, Cat. Forest Trees, 6.
C. Breyniu, limmens, spec. 2 ed. 221 , in part.-Aiton, Hort. Kew. 2 ed. iji, 285.-De Candolle, Prodr. i, 252, in part.Swartz, Obs. 210 [not Jacquin].-Macfadyeu, Fl. Jamaica, 39.
O. cynophyllophora, Liuneus, Spec. I ed. 504 [not subsequent ed. file Eichler, l. e.].-Aiton, Hort. Kew. 2 ed. iii, 285.Macfadyen, Fl. Janaica, 39.
O. siliquosa, dinmens, Spec. \% ed. 721.
C. torulosa, Swartz, Prodr. E1.-De Candolle, Prodr. i, 2J2.-Grieobacl, F1. Britieh West Indies, 18.
O. uncinata, Loddiges, Cat. [not Wallielı].
C. emarginata, Richard, Fl. Cuba, 78, t. 9.-Walpers, Rep. i, 201.

Semi-tropical Florida, cape Canaveral to the southern keys; in the West Indies and southward to Brazil.
A small tree, sometimes 6 meters in height, with a trunk 0.15 meter in diameter, or reduced to a low shrnb; common and reaching its greatest development within the United States on Upper Metacombe and Umbrella Keys.

Wood heavy, hard, close-grained, compact, sating, containing many evenly-distributed large open ducts; medullary rays mumerous, obseuro; color, yellow tinged with red, the sap-wood lighter; specific gravity, 0.6971; ash, 4.76.

CANELLACEA.

12.-Canella alba, Murray;

Limuens, Syst. 14 ed. iv, 443.-Swartz, Obs. 190; Trane. Linnaan Soc. i, 96 , t. 8.-Willdenow, Spec. ii, 851 ; Ennm. i, 406.-Aiton, Hort. Kew. 2 ed. ihi, 144.-'Titford, Hort. Bot. Am. Suppl. 3, t. 10, f. 4.-De Candolle, Prodr. i, 563.-Hayne, Arza. 9, t. 5.-Stevenson \& Churchill, Med. Bot. ii, t. G6.-Woodville, Med. Bot. 3 ed. iv, 694, t. 237.-Liadley, Med. Bot. 116.-Carson, Med. Bot. I, 24, t. 16.-Griffith, Med. Bot. 181, f. 98.-Miers in Ann. Nat. Hist. 3 ser. \mathbf{i}, 348; Contrib. i, I16.-Grisebach, Fl. British West Indies, 109.-Chapman, Fl. S. States, 93.-Guibourt, Hist. Drogues, 7 ed. iii, 621, f. 767.-Vasey, Cat. Forest Trees, 7.-Bentley \& Trimen, Med. Pl. i, 26, t. 26.
O. Wintcrana, Gærtner, Fruct. 1, 377, t. 77.

Wintcra Canclla, Limmens, Spec. 2 ed. 636.-Poirot in Lamarck, Diet. viii, 799, t. 399.
O. laurifolia, Loddiges, Cat.-Sweet, Hort. Brit. 65.-Don, Millor's Dict. i, 680.

WHITE WOOD. CINNAMON BARK. WILD CINNAMON.

Semi-tropical Florida, on the southern keys (Eliott's Key, Key Largo to Jew Fish Key); through the West Indies.

A small tree, often 10 meters in height, with a trunk 0.22 metor in diameter; not rare.
Wood very heavy, exceedingly hard, strong, close grained, compact; medullary rays numerous, thin; color, dark reddish-brown, the sap-wood light brown or yellow; specific gravity, 0.9893; ash, 1.75.

The pale inner bark appears in the Pharmacopos under the name of Cortex canelle albe, furnishing an aromatic stimnlant and tonic, occasionally employed in cases of debility of the digestive organs, or as an adjunct to more active remedies (Micrs, l. c.-Fhickiger \& Manbury, Pharmacographia, 68.-U. S. Dispensatory, 14 ed. 210.-Nat. Dispeusatory, 2 ed. 337).

GUTTIFERA.

13.-Clusia flava, Limmas,

Spec. 2 ed. 1495.-Willdenow, Spee. iv, 977 ; Enum. ii, 1043.-Aiton, Hort. Kew. 2 ed. v, 444.-Tlford, Hort. Bot. Am. 105.-De Candolle, Prodr. i, 559.-Macfadyen, Fl. Jamaica, 134.-Nuttall, Sylva, ii, 111, t. 77; 2 ed. ii, 58, t. 77.-Grisebach, Fl. British West Iudiea, 407.-Cooper in Smithsonian Rep. 1858, 201.-Cbapman, Fl. S. States, 43.-PIanchon \& Triana in Anı. Sci. Nat. 4 ser. xiii, 352.-Walpers, Ann. vii, 340.-Vasey, Cat. Forest Trees, 7.
C. rosea, Torrey \& Gray, Fl. N. Ameriea, i, 168.

Jamaica and other West Indian islands; Key West (Blodgett) prior to 1840. Not detected by later explorers (Palmer, Garber, Chapman, Curtiss) of the botany of semi-tropical Florida, and probably not now growing spontaneously within the limits of the United States.

Wood not examined.

TERNSTRCMIACEX.

14.-Gordonia Lasianthus, Linnans,

Mant. i, 570.-Ellis, Phil. Trans. 60, 518, t. 11; Letters, t. 2.-L'Heritier, Stirp. Nov. 15G.-Cavanilles, Diss. ii, 307, t. 161.-Walter, Fl. Caroliniana, 177.-Aiton, Hort. Kew. ii, 231; 2 ed. iv, 234.—Lamarek, Dict. ii, 770; 11]. iii, 146, t. 594, f. 1.—Swartz, Ohs. 271.Willdenow, Spec. lii, 840.-Michaux, Fl. Bor.-Am. ii, 43.-Bot. Mag. t. Gu8.-Nouveau Dulhumel, ii, 236, t. 68.-Desfontaines, Hist. Arb. 1, 484.-Persoon, Syn. ii, 2\%9.-Michaux f. Ihist. Arb. Am. iii, 131, 1.1; N. American Sylva, 3 ed. ii, 29, t. b8.-lumsh, Fl. Am. Sept. i, 451.-Nuttall, Genera, ii, 84.-De Candolle, I'rodr. i, 528.-Elliott, Sk. ii, 171.—Sprengel, Syst. iii, I25.-Don, Miller's Dict. i, 573, f. 99.-Audubon, Birds, t. 168.-Reichenlach, Jl. Exot. t. 151.-Spreh, IIist. Veg. iv, 79.-Londou, Arborstum, i, 379, f. 93.Torrey \& Gray, Fl. N. America, i, $223 .-E a t o n$, Manual, 6 ed. 161.-Daton \& Wright, Bot. 258.-Brownc, Trees of America, $52 .-$ Dietrich, Syn. iv, 802.-Gray, Gonera, ii, 103, t. 140, 141 ; Manual N. States, 5 ed. 104.-Choisy, Mern. Ternst. \& Camel. $51 .-$ Darby, Bot. S. States, 256.-Cooper in Smithsonian Rep. 1858, 250.-Chapman, Fl. S. States, 60.-Curtis in Rep. Geological Surv. N. Carolina 1860, iii, 80.-Maont \& Decaisne, Hinglish ed. 774 \& tigs.-Wood, Cl. Book, 274; Bot. \& Fl. 65.-Baillon, Jlist. Pl. iv, 230, f. 2̈4, 255.-Vasey, Cat. Forest Trees, 7.

Hypericum Lasianthus, Limnæus, Spec. 1 ed. 783.-Mill, Veg. Syst. xv, t. 1, f.3.
G. pyramidalis, Salisbnry, Prodr. Stirp. 386.

LOBLOLLY BAY, TAN BAY.

Southern Virginia, south near the coast to cape Malabar, and cape Romano, Florida, west along the Gulf coast to the valley of the Mississippi river.

A tree 15 to 24 meters in height, with a trunk often 0.45 to 0.50 meter in diameter; low, sandy swamps.
Wood light, soft, not strong, close-grained, compact, not ${ }^{\circ}$ durable; mednllary rays numerons, thin; color, light red, the sap-wool lighter ; specific gravity, 0.4728 ; aslı, 0.76 ; somewhat employed in cabinet making.

The bark, rich in tannin, was once occasionally used, locally, in tanning leather (Bartram, Travels, 2 ed. 160).

15.-Gordonia pubescens, L'Heritier,

Stirp. Nov. 156._Lamarck, Dict. ii, 770.—Cavanilles, Jiss. ii, 308, t. 164.-Aiton, Hort. Kow. ii, 231; 2 ed. iv, 234.-Willdenow, Spee. iii, 841 .-Michanx, l'l. Bor.-Am. ii, 43.-Ventouar, Jud. Malm. t. 1 (Schrader, Noues Jour. Bot. 1806, 121).-Nouveau
 Am. jii, 135, t. ${ }^{2}$; N. American Sylva, 3 ed. ji, 31, t. 59.-Pursh, Fl. Am. Sept. ii, 451.-Nuttall, Gcnera, ii, 84.-Loiselenr, Merb. Amat. iv, t. 236.-Nlliott, Sk. ii, 171.-De Candolle, Prodr. i, 528.-Sprengel, Syst. iii, 125.-Don, Miller's Diet. i, 573.-Eaton, Mauual, 6 ed. 161.-Andubon, Birds, t. 185.-Spach, Ilist. Veg. iv, 80.-Loudon, Arboretum, i, 380, f. 94.-Torrey \& Gray, Fl. N. America, i, 223.-Eaton \& Wright, Bot. 258.-Brownc, Trees of America, 54.-Diotrich, Syn. jv, 862.-Gray, Gencra, ii, 102, t. 141, f. 11-14, t. 142.-Choisy, Mem. Ternst. \& Carnel. 51.-Darby, Bot. S. States, 25\%.-Cooper in Smithsonian Rep. 1858, 250.-Chapman, Fl. S. States, 60.-Wood, Cl. Book, 274 ; Bot. \& Fl. 65.-Vasey, Cat. Forest Trees, 7.-Goodalo \& Sprague, Wild Flowers, 193, t. 47.

Franklinia Altamaha, Marshall, Arbustım, 49.-Bartram, Travele, 2 ed. 16, 465.-Rafincsque, Atlant. Jonr. 79 \& f.
G. Franklini, L'Heritier, Stirp. Nov. 156.-Willdenow, Spec. iii, 841.-Nouvean Duhamel, ii, 237.-Desfontaines, Hlst. Arl, i, 484.-Persoon, Syn. ii, 259.-l’oiret, Suppl. ii, 816.

Miehauxia sessilis, Salishury, l'rodr. Stirp. 386.
Lacathea florida, Salisbury, Parad. Lond. t. 56.-Colla, Hort. Ripul. Appx. i, 134.

FRANKLINIA.

Near Fort Barrington, on the Altamaha river, Georgia (J. di W. Bartram, Dr. Moses Marshall).
Careful explorations of Bartram's original locality by later botanists, especially by Mr. H. W. Ravenel, have failed to rediscover this species, which is, however, still preserved in cultivation throngh the original plants introduced by the Bartrams. "Florida" given as a locality by Torrey \& Gray, l. c., on the authority of Herb. Scheceinitz, and followed by Chapman, l. c., is probably an error (Ravenel in Am. Naturalist, xvi, 235).

STERCULIACEA.

16.-Fremontia Californica, Torrey,

Smithsonian Contrib. vi, 5, t. 2, f. 2 ; Proe. Am. Assoc. iv, 191 ; Pacifie R. R. Rep. iv, 15, 71.-Newberry in Pacifie R. R. Rep. vi, 68.Walpers, Ann. iv, 319.-Gray in Jour. Boston Soc. Nat. Hist. vii, 146.-Bentham \& Hooker, Genera, i, 212, 982.-Bot. Mag. t. 5591.Lemaire, Ill. Mort. xiii, t. 496.—Belgo Hort. xvii. 236, t. 13.-Carrière in Rev. Hort. 1867, 91 \& t.-Koch, Dendrologie, i, 483.Masters in Loudon Gard. Chronicle, 1869, 610.-Seemauu, Jour. Bot. vii, 297.-London Garden, 1873, 54 \& t.-Planehon in Fl. des Serres, xxii, 175.-Brewer \& Watson, Bot. California, i, 88 ; ii, 437.-Rothroek in Whecler's Rep. vi, $41,357$.

Cheiranthodendron Californicum, Baillon, 1Iist. Pl: iv, 70.

SLIPPERY ELM.

California, valley of Pitt river, southward along the western foothills of the Sierra Nevada, and in the Santa Lucia momntains southward through the Coast ranges to the San Jacinto mountains; rare at the north, most common and reaching its greatest development on the southern sierras and the San Gabriel and San Bernardino ranges.

A small tree, 6 to 10 meters in height, the short trunk often 0.30 to 0.45 meter in diameter, or more often a tall, much branched shrnb; dry, gravelly soil.

Wood heavy, hard, very close-grained, compact, satiny, containing many groups of small ducts parallel to the thin, conspicuous medullary rays, layers of annual growth obseure; color, dark brown tinged with red, the thick sap-wood lighter; specific gravity, 0.7142 ; ash, 1.69.

The mucilaginous inner bark used locally in poultices.

TILIACE \mathbb{E}.

17.-Tilia Americana, Linnæus,

Spec. 1 ed. 514.-Marshall, Arhnstnm, 153.—Wangenheim, Amer. 55.-Aiton, Hort. Kew. ii, 229; 2 ed. iii, 299.-Willdenow, Speo. ii,
 Sylva, 3 ed. iii, 81, t. 131.-Barton, Prodr. Fl. Philadelph. 58; Compend. Fl. Philadelph. ii, 6.-Eaton, Manual, $59 .-J a m e s ~ i n ~$ Long's Exped. i, 69.-Watson, Dend. Brit. ii, 134, t. 134.-Torrey, Compend. Fl. N. States, 214; Fl. N. York, i, 116.-Loudon, Arboretum i, 373 \& t.-Torrey \& Gray, Fl. N. America, i, 239.-Bigelow, Fl. Boston. 3 ed. 227.-Emerson, Trees Massachnsetts, 511 ; 2 ed. ii, 584 \& t.—Browne, Trees of America, 47.—Gray, Genera, ii, 96, t. 136; Manual N. States, 5 ed. 103; Hall's P]. Texas, 5.-Darlington, Fl. Cestriea, 3 ed. 38.-Darby, Bot. S. States, 262.-Cooper in Smithsonian Rep. 1858, 250.-Chapman, Fl. S. States, 59.-Curtis in Rep. Geological Surv. N. Carolina, 1860, jii, 79.-Lesquereux in Owen's 2d Rep. Arkánsas, 352.-Wood, Cl. Book, 27\%; Bot. \& Fl. 64.-Porcher, Resources S. Forests, 103.-Engelmann in Trans. Am. Phil. Soc. now ser. xii, 186.-Walpers, Ann. vii, 449.-Koch, Dondrologie, i, 480.-Young, Bot. Texas, 188.-Vasey, Cat. Forest Trees, 7.-Macoun in Geological Rep. Canada, 1875-76,191.-Sears in Bnll. Essex Inst. xiii, 174.-Bell in Geological Rep. Canada, 1879-80, 51c.-Ridgway in Proe. U. S. Nat. Mns. 1882, 61.
T. nigra, Borklaausen, Handb. d. Forstbot. ii, 1219.
T. glabra, Ventenat in Mem. Acad. Sci. iv, 9, t. 2.-Nouvean Dnhamel, i, 228.-Poiret in. Lamarck, Diet. vii, 681.-Pursh, Fl. Am. Sept. ii, 36i.-Nuttall, Genera, ii, 3.-De Candolle, Prodr. i, 513.-Hayne, Dend. Fl. 112.-Elliott, Sk. ii, 2.Guimpel, Otto \& Hayne, Abb. Holz. 55, t. 45.-Hooker, Fl. Bor.-Am. i, 108.-Don, Miller's Diet. i, 553.-Eaton, Manual, 6 ed. 365.-Beck, Bot. 59.-Darliugton, Fl. Cestriea, 2 ed. 312.-Eaton \& Wright, Bot. 452.-Dietrieh, Syn. iii, 237. -Richardson, Arctic Exped. 422.
T. latifolia, Salisbury, Prodr. 367.
T. Canadensis, Michaux, Fl. Bor.-Am. 306.-Persoon, Syn. ii, 66.-Poirot in Lannarek, Dict. vii, 683.
T. neglecta, Spaclı, Ann. Sci. Nat. 2 ser. ii, 34t, b. 15; Hist. Veg. iv, 27, 29.-Walpors, Rop. i, 359.

Northern New Brunswick, westward in British America to about the one hundred and second meridian, southward to Virginia and along the Alleghany mountains to Georgia and southern Alabama; extending west' in the United States to eastern Dakota, eastern Nebraska, eastern Kansas, the Indian territory, and soutliwest to the valley of the San Antonio river, Texas.

A large tree, 20 to 24 meters in height, with a trunk 0.90 to 1.20 meter in diameter, or, exceptionally, 30 to 45 meters in height, with a trank 0.92 to 1.84 meter in diameter (valley of the lower Wabash river, Ridgway); common in all northern forests, and always an indication of rich soil; toward its western and southwestern limits only along river bottoms.

Wood light, soft, not strong, very close-grained, compact, easily worked; medullary rays numerous, rather obscure; color, light brown, or often slightly tinged with red, the sap-wood hardly distinguishable; specific gravity, 0.4525 ; ash, 0.55 ; largely used in the manufacture of woodenware and cheap furniture, for the panels and bodies of carriages, the inner soles of shoes, in turnery, and the manufacture of paper-pulp (the quickly-discolored sap renders it unfit for making white paper).

The inner bark, macerated, is sometimes manufactured into coarse cordage and matting; the flowers, rich in honey, highly prized by apiarists.

Aqua tilix, an infusion of the flowers, buds, and leaves of the different species of Tilia, is used in Europe as a domestic remedy in cases of indigestion, nervousness, ete. (Nat. Dispensatory, 2 ed. 1429).

Var. pubescens, London,
Arhoretam, i, $374 \&$ t.—Browne, Trees of America, 43.-Gray, Manual N. States, 5 ed. 103; Hall's Pl. Texas, 5.
T. Caroliniana, Miller, Dict. No. 4.-Wangenheim, Amer. 56.-Marshall, Arbastum, 154.
T. Americana, Walter, Fl. Caroliniana, 153 [not Linnens].
T. pubescens, Aiton, Hort. Kew. ii, 229; 2 ed. iii, 299.—Willdenow, Spec. ii, 1162; Enum. i, 566.-Ventenat in Mem. Acad. Sci. iv, 10, t. 3.-Nouvean Duhamel, i, 228, t. 51.-Persoon, Syn. ii, 66.-Desfontaines, Hist. Arb. ii, 37.-Michaux f. Hist. Arb. Am. iii, 317, t. 3; N. American Sylva, 3 ed. iii, 85, t. 133.-Pursh, Fl. Am. Sept. ii, 363.-Do Candolle, Prodr. i, 513.-Hayne, Dend. Fl. 112.-Elliott, Sk. ii, 3.-Watson, Dend. Brit. ii, t. 135.-Torrey, Comp. FI. N. States, 215.-
 447.-Dietrich, Syn. iii, 237.-Darby, Bot. S. States, 262.-Chapman, Fll. S. States, 59.-Curtis in Rep. Geologieal Surv. N. Carolina, 1860, iii, 79.—Walpers, Ann. vii, 449.-Koch, Dendrologie, i, 479.—Vasey, Cat. Forest Trees, 7.
T. laxiflora, Michaux, Fl. Bor.-Am. i, 306.-Poiret in Lamarek, Dict. vii, 683.-Persoon, Syn. ii, 66.-Willdenow, Enum. Suppl. 38.-De Candolle, Prodr. i, 513.-Hayno, Dend. Fl. 113.-Torrey, Compend. Fl. N. States, 215.—Don, Miller's Diet. i, if53.-Eaton, Manual, 6 ed. 365.—Beck, Bot. 59.—Spach, Ann. Sci. Nat. 2 ser. ii, 343, t. 15; Hist. Veg. iv, 32.Browne, Trees of Anerica, 48.-Dietrich, Syn. iii, 23i.
T. grata, Salisbury, Prodr. 367.
T. pubescens, var. leptophylla, Pursh, Fl. Am. Sept. ii, 63.
?T. stenopetala, Rafinesque, Fl. Lndoviciana, 92.-Robin, Voyages, iii, 484.
T. truncata, Spach, Ann. Sci. Nat. 2 ser. ii, 342 ; Hist. Veg. iv, 30.—Dietrich, Syn. iii, 237.
T. Americana, var. Walteri, Wood, Cl. Book, 272; Bot. \& Fl. 64.

North Carolina to the Chattahoochee region of western Florida, usually near the coast; Honston, Texas (E. Hall).

A small tree, rarely exceeding 15 meters in height, with a trunk 0.30 meter in diameter; swamps or low ground; rare, or often confounded with the typieal T. Americana.

Wood lighter, but not otherwise distinguishable from that of T. Americana; specific gravity 0.4074; ash, 0.65 .

18.-Tilia heterophylla, ventenat,

Mem. Acad. Sci. iv, 16, t. 5.-Nouveau Dohamel, i, 229.-Poiret in Lamarck, Dict. vii, 683.-Pursh, Fl. Am. Sept. ii, 303.-Nuttall, Gencra, il, 3 ; Sylva, i, 90 , t. 23 ; 2 ed. i, 107, t.23.-Do Candolle, Prodr. i, 513.-Don, Miller's Diet. i, 553.-Laton, Manual, 6 ed. 365.Spach in Ann. Sci. Nat. 2 ser. ii, 345; Hist. Veg. iv, 34.-Torrey \& Gray, NI. N. America, i, 239.-Eaton \& Wright, Bot. 452.Penn. Cycl. xxiv, 447.-Walpers, Rep. i, 359.—Dietrich, Syn. iii, 237.-Cooper in Smithsonian Rep. 1858, 250.-Chapman, Fl. S. States, 60.-Curtis in Rep. Geologieal Surv. N. Carolina, 1860, iii, 79.-Wood, Cl. Book, 272; Bot. \& Fl. 64.-Gray, Manual N. States, 5 ed. 103.-Vasey, Cat. Forest 'Trees, 7.-Nat. Dispensatory, 2 ed. 1429.-Ridgway in Proc. U. S. Nat. Mus. 1882, 61.
T. alba, Michanx f. Hist. Arl. Am. iii, 315, t.2; N. American Sylva, 3 cd. iii, 84, t. 132 [not Waldstein \& Kitaileel].-Eaton \& Wright, Bot. 452.-Darby, Bot. S. States, 262.
T. laxiflora, Pursh, Fl. Am. Sept. ii, 363 [not Michaux].-Elliott, Sk. ii, 2.
T. Americana, var. heterophylla, Loudon, Arboretnm, i, 375 \& t .
T. heterophylla, var. alba, Wood, Cl. Book, 272; Bot. \& Fl. 64.

WHITE BASS WOOD. WAHOO.

Mountains of Penusylvania, southward along the Alleghany monntains to northern Alabama and Florida (valley of the Apalachicola river, opposite Chattahoochee, Mohr), west to middle Tennessee and Kentucky, sonthern Indiana, and southern and central Illinois (valley of the Illinois river).

A tree 15 to 20 meters in height, with a trunk 0.60 to 1.20 meter in diameter; rich woods and river bottoms, often on limestone; most common and reaching its greatcst development along the western slopes of the southern Alleghany mountains and in middle Tennessee.

Wood light, soft, not strong, close-grained, compact, easily worked; medullary rays numerous, obscure; color, light brown, the sap-wood hardly distinguishable; specific gravity, 0.4253 ; ash, 0.62 ; generally confounded with that of Tilia Americana, and used for similar purposes.

MALPIGHIAOE®.

> 19.-Byrsonima lucida, нвк.

Nov. Gen. \& Spec. v, 147.-De Candolle, Prodr. i, 580.-Jussien, Mon. Malpig. ii, 40.-Walpers, Rep. V, 168.-Richard, Fl. Cnba, 115, t. 280.-Grisebach, Fl. British West Indies, 115.-Chapman, Fl. S. States, 82.

Malpighia lucida, Swartz, Fl. Ind. Occ. ii, 852.

TALLOWBERRY. GLAMBERRY.

Semi-tropical Florida, on the southern keys (Boca Chica, No-Name Key, etc.); through the West Indies.
A small tree, sometimes 6 to 8 meters in height, with a trunk 0.15 to 0.25 meter in diameter, or often branching from the ground, and frutescent in habit.

Wood light, soft, weak, close-grained, compact; medullary rays numerous, thin; color, light red, the sap-wood a little lighter; specific gravity, 0.5888; ash, 2.46.

Fruit edible.

ZYGOPHYLLAOEA.

20.-Guaiacum sanctum, Linnmns,

Spec. 1 ed. 382.-De Candolle, Prodr. i, 707.-Nuttall, Sylva, iii, 16, t. 86; 2 ed. ii, 86, t. 86.-Gray, Geuere, ii, 123, t. 148.-Schnizlein, Icon. t. 253, f. 21.-Cooper in Smithsonian Rep. 1858, 264.-Grisebach, Fl. British West Indies, 134.-Chapman, Fl. S. States, 64.Wood, Bot. \& Fl. 67.-Vasey, Cat. Forest Trees, 7.

$$
\text { G.verticale, Richard, Fl. Cuba, } 321 .
$$

LIGNUM-VITA.

Semi-tropical Florida, Upper Metacombe and Lignum-Vitæ Keys, common; Lower Metacombe and Umbrella Keys, rare; in the Bahamas, St. Domingo, Onba, Porto Rico, etc.

A low, gnarled tree, not exceeding, within the limits of the United States, 8 meters in height, with a trunk sometimes 0.30 meter in diameter.

Wood exceedingly leavy, very liard, strong, brittle, close-grained, compact, difficult to work, splitting irregularly, containing mauy evenly-distributed resinous ducts; medullary rays mmerous, obscure; color, rich yellow-brown, varying in older specimens to almost black, the sap-wood light ycllow; specific gravity, 1.1432 ; ash, 0.83 ; used in turncry and for the sheaves of ships' blocks, for which it is preterred to other woods.

Lignum Guaiaci, Guaiacum wood, the heart of this and the allicd G. officinale, Linnæus, formerly largely used in the treatment of syphilis, is now only retained in the Materia Medica as an ingredient in the compound decoction of sarsaparilla.

Guaiac, the resinous gum obtained from these species, is astimulating diaphoretic and alterative, or in large doses cathartic, and is still cmployed in cases of chronic rheumatism, gout, etc. (Fliickiger \& Hanbury, Pharmacographia, 92._U. S. Dispensatory, 14 ed. 456.-Nat. Dispensatory, 2 ed. 696.—Guibourt, Hist. Drogues, 7 ed. iii, 551.-Berg, Pharm. Anat. Atl. 53, t. 27).

21.-Porliera angustifolia, Gray,

Smithsonian Contrib. iii, 28.-Torrey, Bot. Mex. Boundary Survey, 42.
Guaiacum angustifolium, Engelmann, Wislizenns' Rep. 29.-Gray in Jour. Boston Soc. Nat. Hist. vi, 158; Genera, ii, 123, t. 149.-Walpers, Ann. iii, 840.-Watson in Proc. Am. Acad. xvii, 334.

Western Texas, valley of the Colorado river to the Rio Grande (Anstin, Matagorda bay, New Braunfels, San Antonio, Brownegville, Fort McIntosh), extending west to the Rio Pecos (Havard); in northern Mexico.

A small tree, 8 to 10 meters in height, with a trunk 0.15 to 0.20 meter in diameter, or toward its eastern, northern, and western limits reduced to a low shrub; reaching its greatest development in the United States on the calcareous hillsides bordering the valley of the Guadalupe river.

Wood exceedingly heavy, very hard, elose-grained, compact, the open ducts smaller and less regularly distributed than in Guaiacum; medullary rays very thin, numerous; color, rich dark brown, turning green with exposure, the sap-wood bright yellow; specific gravity, 1.1101 ; ash, 0.51 ; probably possessing medieinal properties similar to those of lignum-vitæ.

RUTACE \nrightarrow.

22.-Xanthoxylum Americanum, miller,

Dict. No. 2.-Dn Roí, Obs. Bot. 57.-Wangenheim, Amer. 116.-Torrey \& Gray, Fl. N. America, i, 214.-Torroy in Nicollet's Rep. 147.Emerson, Trees Massachasetts, 509; 2 ed. ii, 581 .-Gray, Genera, ii, 148, t. 156; Pacific R. R. Rep. xii, 41 ; Manual N. States, 5 ed. 110.-Richardson, Aretic Exped. 423.-Parry in Owen's Rep. 610.—Darby, Bot. S. States, 253.-Cooper in Smithsonian Rep. 1858, 250.-Wood, Cl. Book, 282 ; Bot. \& Fl. 70.-Engelmann in Trans. Am. Phil. Soc. new ser. xii, 187.-Koch, Dendrologie, i, 563.-Vasey, Cat. Forest Trees, 8.
X. Clava-Herculis, Lamarck, Dict. ii, 38; III. t. 811, f. 3 [not Linnæus].-Aiton, Hort. Kew. iii, 399.-Mœnch, Meth. 340.
X. fraxinifolium, Marshall, Arbnstum, 167.-B. S. Barton, Coll. i, 52; ii, 38.
X. fraxineum, Willdenow, Spec. iv, 757 ; Enum. 1013; Berl. Baumz. 413.-Persoon, Syn. ii, 615.-Desfontaines, Hist. Arb. ii, 343.-Aiton, Hort. Kew. 2 ed. v, 383.-Pnrsh, Fl. Am. Sept. i, 210. - Nuttall, Gencra, ii, 236.-Nourear Duhamel, vii, 3. t. 2.-Hayne, Dend. Fl. 197.-Bigelow, Med. Bot. iii, 156, t. 59; Fl. Boston. 3 ed. 405.-Do Candolle, Prodr. i, 726.Sprengel, Syst. i, 945.-Torrey, Compend. Fl. N. States, 373.-Rafinesque, Med. Bot. ii, 113, f. 96.-Don, Miller's Dict. i, 802.-Eaton, Manual, 6 ed. 399.-Beek, Bot. 70.-Spach, Hist. Veg. ii, 364.-Lindlry, Fl. Med. 216.-Loudon, Arboretum, i, 488 , f. 158 \& t.-Dietrich, Syn. ii, 1000.-Hooker, Fl. Bor.-Am. i, 118.-Eaton \& Wright, Bot. 482.-Nees, Pl. Wicd. 5.-Griffith, Med. Bot. 195, f. 103.-Browne, Trees of America, 150.-Agardh, Theor. \& Syst. Pl. t. 19, f. 9.Schnizlein, Icon. t. 250, f. 1-14.-Maout \& Docaisne, Bot. English ed. 324 \& figs.-Bailion, Hist. PI. iv, 398, f. 433-438.
X. mite, Willdenow, Enum. 1013.—Poiret, Suppl. v, 622.-De Candolle, Prodr. i, 727.-Don, Miller's Dict. i, 802.-Loudon, Arboretum, i, 489.
X. ramiflorum, Michaux, Fl. Bor.-Am. ii, 235.
X. tricarpum, Hooker, Fl. Bor.-Am. i, 118 [not Michanx].
\geqslant

Thylax fraxineum, Rafinesque, Med. Bot. ii, 114.

PRICKLY ASH. TOOTHACHE TREE.
Eastern Massachusetts, west to northern Minnesota, eastern Nebraska, and eastern Kansas, south to the mountains of Virginia and northern Missouri.

A small tree, not often 7 meters in height, with a trunk 0.15 to 0.20 meter in diameter; or, reduced to a shrub, 1.50 to 1.80 meter in height; common and reaching its greatest development in the region of the great lakes; rocky hillsides, or more often along streams and rich river bottons.

Wood light, soft, coarse-grainel ; medullary rays numerous, thin ; color, light brown, the sap-wood lighter; specifie gravity, 0.5654 ; ash, 0.57 .

The bark of Xanthoxylam, an active stimulant, is used in decoction to poduce diaphoresis in cases of rhenmatism, syphilis, etc., and as a popnlar remedy for toothache (U. S. Dispensatory, 14 ed. 940.-Bentley in London. Pharm. Jour. 2 ser. v, 399.—Guibourt, Mist. Drogues, 7 ed. iii, 562.—Nat. Dispensatory, 2 ed. 1535).

23.-Xanthoxylum Clava-Herculis, Linnæus,

Spec. 1 ed. 270, in part.-B. S. Bartou, Coll. i, 25, 52; ii, 38.-Willdenow, Spee. iv, 754, in part.-Aiton, Hort. Kew. 2 ed. v, 382.Elliott, Sk. ii, 000.-l'lanchon \& Triana in Ann. Sci. Nat. 5 ser. xiv, 312.
X. fraxinifolium, Walter, Fl. Caroliniana, 243 [not Marshall].

Fagara fraxinifolia, Lamarek, Ill. i, 334.
X. Carolinianum, Lamarek, Diet. ii, 39; Ill. 403, t.811, f.1.-Torrey \& Gray, Fl. N. Aweriea, i, 214.-Engelmann \& Gray in Jour. Boston Soc. Nat. Hist. v, 213.—Gray, Genera, ii, 148, t. 156, f. 13, 14; Manual N. States, 5 ed. 110; IIall's Pl. Texas, 5.-Seheele in Rœmer, Texas, 432.-Nnttall, Sylva, iii, 8, t. 83; 2 ed. ii, 78, t. 83.-Darby, Bot. S. States, 253.Cooper in Smitlsonian Rej. 1858, 250 .-Chapman, Fl. S. States, 66.-Curtis in Rep. Geological Surv. N. Carolina, 1860, iii, 103.—Wood, Cl. Book, 282; Bot. \& Fl. 70.-Yonng, Bot. Texas, 194.—Vasey, Cat. Forest Trees, 8.
X. aromaticum, Willdenow, Spee. iv, 755 (exel. syn.).-Jaequin f. Lelogæ, i, 103, t. 70.
X. tricarpum, Nlichanx, Fl. Bor.-Am. ii, $235 .-$ Poiret, Suppl. ii, 294.-Aiton, Hort. Kew. 2 ed. v, 383.-Pursh, Fl. Am. Sept. i, 210.-Dc Candolle, Prodr. i, 726.-Elliott, Sk. ii, 690.-A. de Jussieu in Mem. Mns. xii, t. 25, f. 38.-Sprengel, Syst. i, 945.-Don, Miller's Diet. i, 803.-Spaeh, Hist. Veg. ii, 365.-London, Arboretum, i, 488.-Eaton, Manual, 6 ed. 399.Eaton \& Wright, Bot. 482.-Dietrieh, Syn. ii, 1000.
Kampmania fraxinifolia, Rafinesqne, Med. Rep. v, 354.
Pseudopctalon glandulosum, Ratinesque, Fl. Ladoviciana, 108; Med. Bot. ji, 114.
Pseudopetalon tricarpum, Rafinesqne, Fl. Ladoviciana, 108; Med. Bot. ii, 114.
X. Catesbianum, Rafinesque, Med. Bot. ii, 114.

TOOTIACHE TREE. PRICKLY ASH. SEA ASH. PEPPER WOOD. WILD ORANGE.
Sonthern Virginia, southward near the coast to bay Biscayne and Tampa bay, Florida, westward through the Gulf states to northwesteru Louisiana, southeru Arkausas (south of the Arkansas river), and the valley of the Brazos river, Texas.

A small tree, rarely 12 to 14 meters in height, with a trunk 0.30 meter in diameter, of very rapid growth; usually aloug streams and low, rieh river bottoms, reaching its greatest development in southern Arkansas, Louisiana, and eastern Texas.

A form with trifoliate leaves is-
X. macrophyllum, Nuttall, Sylva, iii, 10; 2 ed. ii, 80.-Lesquereux in Owen's 2d Rep. Arkansas, 353.
X. Clava-Herculis, var. Watson in Proc. Am. Aead. xvii, 335.

Wood light, hard, not strong, soft, eoarse-grained, not durable, containing many seattered open ducts; medullary rays numerous, thin; color, light brown, the sap-wood lighter; speeifie gravity, 0.5056 ; ash, 0.82 .
X. Clava-Herculis probably possesses similar medicinal properties to those of the last speeies (Nat. Dispensatory 2 ed. 1535).

> Var. fruticosum, Gray,

Smithsouian Contrib. iii, 30.-Torrey \& Gray in Pacifie R. R. Rep. ii, 161.-Torrey, Bot. Mex. Boundary Survey, 43.—Chapman, Fl. S. States, 66%-Wood, Bot. \& F1. 71.
X. hirsutum, Buckley in Proc. Philadelphia Aead. 1861, 450; 1870, 136 (see Gray in same, 1862, 162).-Young, Bot. Texas, 195.

Western Texas, Corpus Christi (Buckley), month of the Colorado river (Mohr), near Austin, and west to Devil's river and lagle pass; Florida (?) (Chapman l.c.).

A low shrub, or on the Texas coast a small tree, 6 to 8 meters in height, with a trunk 0.20 to 0.30 meter in diameter.

Wood light, soft, close-grained, compaet; medullary rays mumerous, thin ; color, light brown, the sap-wood yellow ; speeific gravity, 0.5967 ; ash, 0.76 .

24.-Xanthoxylum Caribæum, Lanarek,

Dict. ii, 40.-Giertner, Fruct. i, 333, t. 68, f. 8.-Desconrtilz, Fl. Med. Antilles, ii, 58 .-Planehon \& Triana in Ann. Sei. Nat. 5 ser. xiv, 315.-Gnilourt, Hist. Drogues, 7 ed. iii. 562.
X. Clava-Merculis, Limmeu\&, Spee. 1 ed. 270, in part.-De Candolle, Prodr. i, 727.-Maefadyen, Fl. Jamaiea, 194.—Grisebach, Fl. British West Indies, 138.
X. lanceolatum, Poiret, Suppl. ii, 293.-De Candolle, Prodr. i, 727 .
X. Floridanum, Nuttall, Sylva, iii, 14, t. 85; 2 ed. ii, 85, t. 85.-Chapman, Fl. S. States, 66.-Wood, Bot. \& Fl. 70.-Yonng, Bot. Texas, 194.-Vasey, Cat. Forcst Trees, 8.

SATIN WOOD.

Semi-tropical Florida, south Bahia Houda and Boca Chica Keys; in the West Indies.
A small tree, 6 to 10 meters in height, with a trunk 0.30 to 0.40 meter in diameter.
Wood very heary, exceedingly hard, not strong, brittle, fine-grained, compact, satiny, susceptible of a beantiful polish ; medullary rays numerous, thin, conspieuons; color, light orange, the sap-wood lighter; speeifie gravity, 0.9002 ; ash, 2.02.

25.-Xanthoxylum Pterota, HBK.

Nov. Gen. \& Spec. vi, 3.-Knnth, Syn. iii, 325.-De Candolle, Prodr. i, 725.-Torrey \& Gray, Fl. N. America, i, 680.-Macfadyen, Fl. Jamaica, 190.-Nuttall, Sylva, iii, II, t. 84 ; 2 ed. ii, 81, t. 84. -Seemann, Bot. Herald, 275.-Torrey, Bot. Mex. Boundary Survey, 43.-Cooper in Smithsonian Rep. 1858, 264.-Chapman, Fl. S. States, 66.-Yonng, Bot. Texas, 195.-Planehon \& Triana in Ann. Sci. Nat. 5 ser. xiv, 311.-Engler in Martins, Fl. Brasil. xii ${ }^{2}$, 154.-Vasey, Cat. Forcst Trees, 8.-Hemsley, Bot. Am.-Cent. i, 169.-Watson in Proc. Am. Acad. xvii, 335.

Fagara Pterota, Linnæns, Amœn, v, 393, in part.-Lamarck, Diet. ii, 444; 1ll. i, 335, t. 84.-Willdenow, Spec. i, 666.Aiton, Hort. Kew. 2 ed. i, 263.-Titford, Hort. Bot. Am. 40.-Turpin, Diet. Sci. Nat. xvi, 107, t. 127.
Fagara lentiscifolia, Willdenow, Ennm. i, 166.—Grisebach, Fl. British West Indies, I37.

WILD LIME.

Semi-tropical Florida, Mosquito inlet to the southern keys, on the west coast from about latitude 29° to eape Sable; sonthwestern Texas, and southward through Mexico to Brazil.

A small tree, sometimes 8 meters in height, with a trunk rarely execeding 0.15 meter in diameter, or often reduced to a slender shrub; in Florida common, and reaching its greatest development on the keys of the west coast; iu Texas not common, bnt widely distributed as a sinall shrub, or on the shores of Matagorda bay, west of the Nneees river, and in the valley of the Rio Grande a low tree.

Wood heary, hard, close-grained, compact; medullary rays thin, numerous; color, brown tinged with red, the sap-wood yellow; speeific gravity, 0.7444 ; ash, 0.78 .

26.-Ptelia trifoliata, Linnæus,

Spec. 1 ed.118.-Medicus, Bot. Beobacht. 215.-Marshall, Arbustum, 115.-Walter, Fl. Caroliniana, 88.-Aiton. Hort. Kew. i, 162; 2 ed. i, 264.-Lamarck, Ill. i, 336, t. 84.-Møneh, Meth. 55.-Willdenow, Spee. i, 670; Enmm. i, 116. -Nouveau Duhamel, i, 25\%, t.57.Michanx, Fl. Bor. Amı. i, 99.-Sehkuhr, Handb. 83, t.83.-Poiret in Lanarck, Diet. v, J06.-Per800n, Syn. i, 145.-Desfontaines, Hist. Arb. ii, 343.-Robin, Voyages, iii, 509.-Porsh, Fl. Am. Sept. i, 107.-Nuttall, Genera, i, 104.-Guimpel, Otto \& Hayne, Abb. Holz. 94, t. 74.-Hayne, Dend. Fl. B.-Elliott, Sk. i, 201.-Rœmer \& Schultes, Syst. iii, 291.—Torrey, Fl. U. S. 189 ; Compend. Fl. N. States, 86.-Fl. N. York, i, 133; Pacific R. R. Rep. iv, 73; Bot. Mex. Boundary Survey, 43.-De Candolle, Prodr. ii, 82.-Sprengel, Syst. i, 441.—Turpin, Diet. Sci. Nat. xliv, 2, t, 128.-A. do Jussieu in Mem. Mus. xii, t. 26, f. 42.-Beek in Am. Jour. Sci. 1 ser. x, 264 ; Bot. 71.-Don, Miller's Dict. i, 806.-Spach, Hist. Veg. ii, 369.-Hooker, Jour. Bot. j, 202.-Lindley, Fl. Med. 2l5.-Loudon, Arboretum, i, 489 \& t.-Eatod, Manual, 6 ed. 288.-Torrey \& Gray, Fl. N. America, i, 215.-Eaton \& Wright, Bot. $379 .-D i e t r i c h$, Syn. i, 497.-Browne, Trees of America, 153.-Scheele in Remer, Texas, 432.-Gray, Genera, ii, 150, t. 157; Manual N. States, 5 ed. 110.-Richardson, Aretie Exped. 423.-Parry in Owen's Rep. 610.-Agardh, Theor. \& Syst. Pl. t. 19, f. 7, 8.-Cooper in Smitlisoniau Rep. 1858, 250.-Darby, Bot. S. States, 254.-Chapman. Fl. S. States, 66.-Curtis in Rep. Geologieal Surv. N. Carolina, 1860, iii, 107.-Lesquereux in Owen's 2d Rep. Arkansas, 353.—Wood, Cl. Book, 283 ; Bot. \& Fl. 71.-Sehnizlein, Icon. t. 250, f. 15-26.Yonng, Bot. Texas, I95.-Baillon, Hist. Pl. iv, 395, f. 445, 446.-Koch, Dendrologie, i, 566.-Vasey, Cat. Forest Trees, 8.Hemsley, Bot. Am.-Cent. i, 171.-Burgess in Coalter's Bot. Gazette, vii, 95.

Amyris elcmifera, Linnæus, Spec. 2 ed. 295.-St. IIilaire, Fam. Nat. i, 253.
P. viticifolia, Salisbury, Prodr. 68.

HOP TREE. SHRUBBY TREFOIL. WAFFR ASH.

Ontario and New York (banks of the Niagara river), Pennsylvania sonthward to northern Florida, west to Minnesota and the headwaters of the Canadian river; throngh western Texas to the valley of the Mimbres river, New Mexico (Bigelous), and southward into northern Mexico.

A small tree, sometimes 4 to 6 meters in height, with a trunk 0.15 to 0.20 meter in diameter, or more often rednced to a slender shrub; shady, rocky hillsides.

A variety with more or less pubescent leaves, not rare on the south Atlantic coast, and the common form of western Texas, is-

Var. mollis, Torrey \& Gray, Fl. N. America, i, 680.-Engelmann \& Gray in Jonr. Boston Soc. Nat. Hist. v, 213.-Torrey in Marcey's Rep. 282.-Gray in Smithsonian Contrib. iii, 31; Hall's Pl. Texas, 5.-Wood, Bot. \& Fl. 71.-Watson in Proc. Am. Acad. xvii, 335.
P. Mollis, Curtis in Am. Jour. Sci. 2 ser. vii, 406; IRep. Geological Surv. N. Carolina, 1860, iii, 107.-Walpers, Aun. ii, $259 .-$ Cliapman, Fl. S. States, 6\%.-Young, Bot. Texas, 196.

Wood heavy, hard, close grained, compact, satiny, the annual growths clearly marked by two or three rows of open ducts; medullary rays few, thin; color, yellow-brown, the sap-wood hardly distingaishable; specific gravity, 0.8319 ; ash, 0.30 .

The bark of the root possesses tonic properties aud is employed by herbalists in the form of tinctures and fluid extracts in cases of dyspepsia, debility, etc. (Am. Jour. Pharm. 1862, 198; 1867, 337.-U. S. Dispensatory, 14 ed. 1740.-Nat. Dispensatory, 2 ed .1179); the bitter fruit is occasionally used domestically as a substitute for hops.
27.-Canotia holocantha, Torrey,

Pacific R. R. Rep. iv, 68.-Gray in lves' Rep. 15; Proc. Am. Acad. xii, 159.-Baillon, Adansonia, x, 18; Hist. Veg. vi, 7, 42.-Brewer \& Watson, Bot. California, i, 190.-Rothrock in Wheeler's Rep. 24, 81, t. 1.-Maximowicz in Act. Hort. St. Petersburg $\mathbf{\nabla}$, 256.Rusby in Bull. Torrey Bot. Club, ix, 106.
Arizona, Whito Monntain region, valley of the Gila river (Rothrock), valley of Bill Williams Fork (Bigelow).
A small tree, 6 to 8 meters in height, with a trunk sometimes 0.30 meter iu diameter, or often a large shrub; dry, rocky mesas. Wood heavy, hard, close-grained, compact; medullary rays numerous, not prominent; color light brown, the sap-wood lighter; specific gravity, 0.6885 ; ash, 5.33 .

SIMARUBEA.

28.-Simaruba glauca, De Candolle,

Diss. in Ann. Mus. xvii, 323 ; Prodr. i, 733.-Hamboldt, Bonpland \& Kunth, Nov. Gen. et Spec. vi, $16 .-$ Desconrtilz, Fl. Med. Antilles, i, 66, t. 14.-Planchon in London Jour. Bot. v, 567.-Gray, Genera, ii, 152.-Nnttall, Sylva, iii, 20, t. 87 ; 2 ed. ii, 88, t. 87.Cooper in Smithsonian Rep. 1858, 264.-Grisebach, Fl. British West Indies, 139.—Chapman, Fl. S. States, 67.-Wood, Bot. \& Fl. 72.-Planchon \& Triana in Ann. Sci. Nat. 5 ser. xv, 357.-Engler in Martius, Fl. Brasil. xiia² 223.-Vasey, Cat. Forest Trees, 8.Hemsley, Bot. Am.-Cent. i, 173.

Quassia Simaruba, Linnæus, Suppl. 234.—Wright, Trans. Edinburgh Soc. ii, 73, t. 1, 2; Bot. \& Med. Acconnt of Q. Simaruba.-Gærtner, Fruct. i, 340, t. 70.-Lamarek, Ill. ii, 478, t. 343, f. 2.-Willdenow, Spec. ii, 568.—Aiton, Hort. Kew. 2 ed. iii, 42. -Descourtilz, Fl. Med. Antilles, i, 23, t. 5.
Quassia dioica, Bergins, Mat. Med. 355.
S. amara, Aublet, Guian. t. 331.-Hayne, Arzn. iv, t. 15.-Schnizlein, Icon. t. 249, f. 1-6.
S. merlicinalis, Endicher, Medz. Pf. 525.-Berg, Handb. i, 373.—Berg \& Schmidt, Off. Gew. ii, t. 13.

PARADISE TREE.

Semi-tropical Florida, cape Canaveral to the southern kess; through the West Indies to Brazil.
A tree sometimes 15 meters in height, with a trunk 0.60 meter in diameter; within the United States not common, and reaching its greatest development on the shores of bay Biscayne.

Wood light, soft, not strong, coarse-grained, containing many large scattered open ducts; medullary rays few, thin; color, light brown, the sap-wood a little darker; specific gravity, 0.4136 ; ash, 0.93 .

The bark of this species has been occasionally nsed as a substitute for that of S. officinalis, DC. as an aromatic, bitter tonic (U. S. Dispensatory, 14 ed. 838.—Nat. Dispensatory, 2 ed. 1294).

BURSERACE \mathbb{E}.

29.-Bursera gummifera, Jacquin,

Am. Pict. t. 65.-Linnaus, Spec. 2 ed. 741.—Lamarek, Ill. ii, 392, t. 256 .-Willdenow, Spec. iv, 1119.—Aiton, Hort. Kew. 2 ed. V, $481 .-$ Titford, Hort. Bot. Am. 107.-De Candolle, Prodr. ii, 78.-Descourtilz, Fl. Med. Antilles, ii, t. 97.-Spaeh, Hist. Veg. ii, 239.Macfadyen, Fl. Jamaica, 229.-Nnttall, Sylva, ii, 117, t. 79; 2 ed. ii, 64, t. 79.-Richard, Fl. Cnlua, 390.-Browne, Trees of America, 189.-Grisebach, ll. British West Indies, 173.-Cooper in Smitlisonian Rep. 1858, 264; 1860, 440.—Chapman, Fl. S. States, 68.-Wood, Bot. \& Fl. 72.-Planchon \& 'Triana in Ann. Sci. Nat. 5 ser. xv, 302.-Vascy, Cat. Forest Trees, 8.-Hemsley, Bot. Am.-Cont. i, 177.Engler in De Candolle, Suites, iv, 39.
B. acuminata, Willdenow, Spec. iv, 1120.-De Candolle, Prodr. ii, $\boldsymbol{\tau}$.

Elaphrium integerrimum, Tulasno in Ann. Sci. Nat. 3 ser. vi, 369. (Fide Engler, l. o.)

GUM ELEMI. GUMBO LIMBO. WEST-INDIAN BIRCH.

Semi-tropical Florida, cape Canaveral to the southern keys, west coast Caloosa river and Caximbas bay; through the West Indies.

A tree often 18 meters in height, with a trunk 0.50 to 0.70 meter in diameter; one of the largest and most common trees of southern Florida, of very rapid growth and decay.

Wood very light, exceedingly soft and weak, spongy, containing many scattered open ducts; medullary rays numerons, thin; color, light brown or gray, quickly discoloring with decay; specific gravity, 0.3003 ; ash, 2.04; used in making live-fences, pieces of the tronk when planted in the coral rock of the keys throwing out roots and growing rapidly.

The aromatic resin obtained from this species was formerly somewhat used in various forms, under the name of Caranna, as a remedy for gout (Watts, Chem. Dict. i, 749 .-Guibourt, Hist. Drogues, 7 ed. iii, 525, f. 749); and in the West Indies is manufactured into a valuable varnish. An infusion of the leaves is occasionally used as a domestic substitute for tea.

30.-Amyris sylvaticā, Jacquin,

Aur. Pict. t. 108.-Willdenow, Spec. ii, 333.-Aiton, Hort. Kew. 2 ed. ii, 351.-De Candolle, Prodr. ii, 81.-Dietrich, Syn. ii, 1271.Macfadyen, Fl. Jamaica, 231.—Richard, Fl. Cuba, 393.-Grisebach, Fl. British West Indies, 174.-Planchon \& Triana in Ann. Sci. Nat. 5 ser. xv, 321.-Vasey, Cat. Forest Trees, 8.

Toxicodendron arborescens, Miller, Dict. No. 9.
A. dyatripa, Sprengel, Nene Entdeck. iii, 48.-De Candolle, Prodr. ii, 81.

Khus arborescens, De Candolle, Prodr. ii, 73.
A. Plumieri, De Candolle, Prodr. ii, 81.
A. Floridana, Nuttall in Am. Jonr. Sci. v, 294; Sylva ii, 114, t. 78; 2 ed. ii, 61, t. 78.-De Candolle, Prodr. ii, 81.-Torrey \& Gray, Fl. N. America, i, 221.-Eaton, Mannal, 6 ed. 16.-Eaton \& Wright, Bot. 123.-London, Arboretum, ii, 561.Cooper in Smithsonian Rep. 1858, 264.-Chapman, Fl. S. States, 68.—Wood, Bot. \& Fl. 72.-Vasey, Cat. Forest Trees, 8.
A. cymosa, Reichenbach in Sieb. Pl. Trin. No. 29 \%.
A. maritima, Richard, Fl. Cuba, 392 [not Jacquin].

TORCH WOOD.
Semi-tropical Florida, Mosquito inlet to the southern keys; in the West Indies.
A small tree sometines 7 meters in height, with a trunk 0.20 to 0.25 meter in diameter; common.
Wood very heavy, exceedingly hard and strong, close-graincd, compact, resinous, exceedingly durable, susceptible of a beautiful polish; medullary rays obscure ; color, light orange, the sap-wood lighter; specific gravity, 1.0459; ash, 0.59.

MELIACE

31.-Swietenia Mahogoni, Linnæns,

Spec. 2 ed. 548.—Jacquin, Stirp. An.t. 127.—Cavanilles, Diss. ii, 365, t. 209.—Gærtuer, Fruct. ii, 89, t. 96.—Lamarck, Dict. iii, 678.Willdenow, Spec. ii, 557. -Aiton, IIort. Kew. 2 ed. ii, 33s.-Titford, Hort. Bot. Am. 64.—Desconrtilz, Fl. Med. Antilles, ii, 125, t., 99.-De Candolle, Prodr. i, G25.-Tnrpin in Dict. Sci. Nat. Atlas, t. 170.-Tnssac, Fl. Antilles, iv, t. 23.-Hayne, Arza. i, t. 19.Hooker, Bot. Misc. i, 21, t. 16, 17.-A. de Jussion in Mem. Mus. xix, 248, t. 11.—Don, Miller's Dict. i, 687, f. 116.-Woodville, Med. Bot. 3 ed. iit, 620, t. 220.-Spach, Hist. Veg. iii, 164, t.21.—Lindley, FI. Med. 155.—Macfadyen, Fl. Jamaical, 175.-Torrey \& Gray, Fl. N. America, i, 242.-Eaton, Manual, 6 ed. 360.-Eaton \& Wright, lot. 447.-Walpers, Rep. i, 436.-Nuttall, Sylvat, ii, 98, t. 75; 2 ed ii, 46, t. 75.-Richard, Fl. Cuba, 304.-Schnizlein, Icon. t. 226, f. 1.-Cooper in Smitbsonian Rep. 1858, 264.-Darby, Bot. S. States, 263.-Chapman, Fl. S. States, 62.-Grisebach, Fl. British West Indies, 131.-Wood, Bot. \& Fl. 66.-Baillon, Hist. Pl. v, 478, f. 472-476.-Gnibourt, Hist. Drogncs, 7 ed. iii, 596 .-Tippel \& Bollovar, Ausland. Cult. Pfl, Atlas, i, t. 2, f. 1.-C. De Caodolle, Suites, i, $\mathbf{2} 23 .-11 \mathrm{cmsley}$, Bot. Am.-Cent. i, 183.
S. Soncyalensis, Desrousseaux in Lamarek, Dict. iii, 678.

Celrus Mahogoui, Miller, Dict. No. 2.
3 FOI:

MAHOGANY. MADEIRA.

Semi-tropical Florida, on the southern keys (Key Largo, Elliott's Key); through the West Indies, and in Central America.

A large tree, on the Florida keys rarely exceeding 15 meters in height, with a trunk sometimes 0.90 meter in diameter.

Wood heavy, exceedingly hard, very strong, brittle, very close-grained, compact, very durable, susceptible of a high polish; mednllary rays numerons, obseure; color, rich reddish-brown, turning darker with age, the thin sapwood yellow; specific gravity, 0.7282 ; ash, 1.09 ; varying greatly in quality in different regions; largely used aud preferred to all other woods for cabinet-making of all sorts, interior finish, etc.; formerly somewhat employed in ship-building.

OLACINEA.

32.-Ximenia Americana, Linnæns,

Spec. 1 ed. Appx. 1193.-Bartram, Travels, 2 ed. 112.-Lamarck, Ill. ii, 435, t. 297.—Willdenew, Spec. ii, 338.-Aiton, Hert. Kew. 2 ed. ii, 352.-De Candelle, Predr. i, 533. - Nuttall, Sylva, i, 124, t. 36; 2 ed. i, 138, t. 36.-Schnizlein, Icon. t. 223, f. 1-9, 30, 31.Cambessedes in St. Hilaire, Fl. Brasil. i, 341.—Wight \& Walker-Arnott, Prodr. Fl. Penins. Or. i, 59.-Walpers, Rep. i, 377 ; Ann. vi, 565.-Richard, Fl. Cuba, 304.-Cooper in Smithsonian Rep. 1858, 264.-Grisebach, Fl. British West Indies, 310.-Baillon, Adansonia, ii, t. 9, f. 5, 6.-Chapman, Fl. S. States, 61.—Engler in Martius, Fl. Brasil. xii, 9, t. 2, f. 1.-Vasey, Cat. Forest Trees, 8.-Hemsley, Bot. Am.-Cent. i, 185.

Heymassoli spinosa, Aublet, Guian. i, 324, t. 125.-Lamarck, III. ii, 435.
X. multiflora, Jaequin, Stirp. Am. 106, t. 177, f. 31.-Lamarck, Ill. ii, 435, t. 297, f. 1, 2.-Spach, Hist. Veg. xiii, 264.
X. montana, Maefadyen, Fl. Jamaica, i, 121.

WILD LIME. TALLOW NUT. HOG PLUM. MOUNTAIN PLUM.

Florida, east coast from the Saint John's river to the sonthern keys, west coast Caloosa river to Caximbas bas; through tho West Indies to Brazil, and on the coast of the Indian peninsula (introduced?, A. De Candolle, Geog. Bot. ii, 1027).

A small, low, wide spreading tree, rarely exceeding 4 meters in height, with a trunk 0.15 meter in diameter, or in pine-barren soil and toward its northern limits reduced to a low shrub; common and reaching its greatest development in Florida on the west coast.

Wood very heavy, tough, hard, close-grained, compact, containing numerous regularly distributed open duets; medullary rays few, thin; color, brown, tinged with red, the sap-wood lighter; specifie gravity, 0.9196; ash, 0.73.

Hydrocyanic acid has been obtained from the edible plum-shaped fruit (Flückiger \& Hanbury, Pharmacographia, 222).

ILICINEA.

33.-Ilex opaca, Aiton,

Hort. Kew. i, 169; 2 ed. i, 277.-Willdenew, Spec. i, 708; Enuni. 172; Berl. Baumz. 190.-Neuveau Duhamel, i, 8.-Michanx, Fl. Bor.Am. ii, 228.-Perseon, Syn. i, 151. - Poiret, Suppl. iii, 65.-Michaux f. Hist. Arh. Am. ii, 191, t. 11 ; N. American Sylva, 3 ed. ii, 122, t. 84.-Barton, Prodr. Fl. Philadelph. 95; Compend. Fl. Philadelph. 94.—Pursh, Fl. Am. Scpt. i, 117.—Rafinesqne, Fl. Lndeviciana, 111; Med. Bot. ii, 7, t. 53 .-Nuttall, Genera, i, 109.--Remer \& Schnltes, Syst. iii, 487.-Link, Eunm. 147.-James, Cat. 176; Leng's Exped. ii, 204.-Ilayne, Dend. Fl. 10.-Torrey in Ann. Lye. N. York, ii, 173; Fl. U. S. 194; Compend. Fl. N. States, 87; Fl. N. York, ii, 2.Elliott, Sk. ii, cif9.-De Candolle, Proilr. ji, 14.-Sprengel, Syst. i, 495.-Watson, Dend. Brit. i, t. 3.-Beck, Bot. 230.-Eaton, Manual, 6 ed. 186.-Loudon, Arboretum, ii, 516 \& t.-Hooker, Fl. Ber.-Am. i, 121 ; Jour. Bet. i, 201.-Eaten \& Wright, Bet. 2e2.-Bigelow, Fl. Boston. 3 ed.64.-Don, Miller's Diet. ii, 17.-Spach, Hist. Veg. ii, 427.-Dietrieh, Syn. i, 554.-Grifitl, Med. Bet. 432.-Emerson, Trees Massachusetts, 341 ; 2 ed. ii, 385 \& t.-Brewne, Trees of Amcriea, 167.-Darby, Bot. S. States, 426.-Darlington, Fl. Cestrica, 3 ed. 17.-Cooper in Suithsonian Rep. 1858, 253.-Chapman, Fl. S. States, 260.-Curtis iu Rep. Gcelogical Surv. N. Carolina, 1860, iii, 58.—Lesquercux iu Owen's 2d Rep. Arkansas, 373.—Wood, Cl. Beek, 496; Bet. \& Fl. 207.-Gray, Manual N. States, 5ed. 306.-Yongg, Bet. Texas, 372.—Vasey, Cat. Forest Trees, 8.-Maximewiczin Mcm. Aead. St. Peterslurg, xxix, No. 3, 29..Nellichamp in Bull. Torrey Bot. Club, viii, 113.
I. aquifolizm, Marshall, Arbustum, 63 [not Limnæus].-Walter, Fl. Caroliniana, 241.
I. Canadensis, Marshall, Arbustum, 64.
I. laxiflora, Lamarek, Diet. iii, 147; Ill. i, 355.—Pursh, Fl. Am. Sept. i, 117.-Rømer \& Schultes, Syst. iii, 494; Mant. 334.De Candolle, Prodr. ii, 14.-Sprengel, Syst. i, 495.-Don, Miller's Diet. ii, 17.-Spach, Hist. Veg. ii, 427.-Dietrieh, Syn. i, 555.-London, Arborctum, ii, 517.-Eaton, Manual, 6 ed. 186.-Eatou \& Wright, Bot. 282.
I. quercifolia, Meerburgh. Ieon. ii, t. 5.

Agerit opact, Rafinesque, Sslva Telluriana, 47.

american holly.

Quincy, Massachusetts, sonthward, near the coast, to Mosquito inlet and Charlotte harbor, Florida, valley of the Mississippi river, sonthern Indiana southward to the gulf of Mexico, and sonthwest throngh Missouri, Arkansas, and eastern Texas to the valley of the Colorado river.

An evergreen tree, sometimes 15 meters in height, with a tronk 0.30 to 1.20 meter in diameter, or toward its northern limits reduced to a shrub; generally in low, rather moist soil; most common and reaching its greatest development in the rich bottoms of sonthern Arkansas and eastern Texas.

Wood light, soft, not strong, tough, rather hard, close-grained, very compact, easily worked; medullary rays numerous, inconspicuous; color, nearly white, turniug to light brown with exposure, the sap-wood still lighter; specific gravity, 0.5818 ; ash, 0.76 ; used and admirably adapted for cabinet work, interior finish, and turnery of the highest elass.

A bitter principle (Ilicin), common to other species of the genus, las been obtainel from the fruit of this tree (Arn. Jour. Pharm. xxviii, 314.—U. S. Dispensatory, 14 ed. 1670.-Nat. Dispensatory, 2 ed. 754).

34.-Ilex Dahoon, Walter,

Fl. Caroliniana, 241.-Michaux, Fl. Bor.-Am. ii, 228-Pursh, F1. Am. Sept. i, 117.-Nuttall, Genera, i, 109.-Roemer \& SchuItes, Syst. iii, 489 ; Mant. 332.-Do Candolle, Prodr. ii, 14.-Elliott, Sk. ii, 680.-Watson, Deud. Brit. ii, t. 114.-Sprengel, Syst. i, 495.Andubon, Birds, t. 48.-Don, Milles's Dict. ii, 19.-Hooker, Jour. Bot. i, 202.-Eaton, Mannal, G ed. 186.-Eaton \& Wright, Bet. 282.-Spach, Hist. Yeg. ii, 428.—Dietrich, Syn. i, 554.-Loudon, Arboretum, ii, 519.-Griffith, Med. Bot. 433.-Darby, Bot. S. States, 426.-Chapman, Fl. S. States, 269.-Curtis in Rep. Geological Surv. N. Carolina, 1960, iii, 58.-Wood, Bot. \& F1. 207.Gray, Manal N. States, 5 el. 30s.—Vasey, Cat. Forest Trees, 8.-Maximowiez in Mem. Acad. St. Petersburg, xxix, No. 3, 29.Nat. Dispensatory, 2 ed. 75.
I. Cassine, Linnceus, Spee. 125, in part.-Marshall, Arbustum, 64.-Aiton, llort. Kew, i, 170, in part ; 2 ed. i, 279. Lamarek, Diet. iii, 147 ; 111. i, $35 \overline{5}$. -Willdenow, Spec. i, 709 ; Enum. i, 172 ; Hort. Berol. i, t. 31.-Nonveau Duhamel, i, 9.Persoon, Syn. 151.-Desfontaines, Hist. Arl. ii, 362.-Poiret, Suppl. iii, 65.-Pursh, Fl. Am. Sept. i, 117.-Remer \& Schultes, Srst. iii, 450.-Hayne, Dend. Fl. 10.-De Candolle, Prodr. ii, 14.-Sprengel, Syst. i, 495.-Don, Miller's Diet. ii, 17.-Spach, Ilist. Veg. ii, 428.—Dietrich, Syn. i, 544-Loudon, Arhoretnm, ii, 517, f. 184.-Eaton \& Wright, Bot. 282.-Gœppert in Del. Scm. Vratisl. 1885 (Linnca, xxvi, 746).
I. Cassine, var. latifolia, Aiton, Hort. Kew. 2 ed. i, : 278.
I. cassinoides, Link, Enum. i, 148.-Rumer \& Selnltes, Syst. iii ; Mant. 332.
I. laurifolia, Nuttall in Am. Jour. Sci. 1 ser. v, 289.-Eaton, Manual, 6 ed. 186.-Eaton \& Wright, Bot. 232.

Agerit palustris, Rafinesque, Sylva Telluriana, 47.
Ageria oboçatu, Rafinesque, Sylva Telluriana, 47.
Ageria heterophylla. Rafinesque, Syiva Telluriana, 48.
DAHOON. DAHOON HOLLY.
Southern Virginia, sonthwarl near the coast to Mosquito inlet and Tampa bay, Florida, west along the Gulf coast to the prainie region of western Lonisima.

A small tree, sometimes 8 meters in height, with a trunk from 0.20 to 0.30 meter in diameter; low, wet soil; not common, and running into nmmerons forms, of which the best marked are-

Var. angustifolia, Torrey A Gray, Fl. N. America, ined.
I. Cassine, var: angustifolia, willdenow, Spee. i, 709,-Aiton, Hort. Kow, 2 ed. i, 278.-Nouveau Duhamel, i, 9, t. 3.
I. angustifolia, Willdenow, lium. i, 17\%.-Pursl, Fl. Am. Sopt. i, 118.-Nuttall, Genera, i, 109.-Rœener \& Schultes, Syst. iii. 489.-De Candolle. Prodr. ii, 14.—Watson, Dend. Brit. i, t. 4.-Sprongel, Syst. i, 495.-Don, Miller's Dict. ii, 17.Howker, Jonr. Bot. i, W01.—\$pach, Mist. Veg. ii, 428.—Dietrieh, Syn. i, 554.-London, Arborotum, ii, 517, t. 185.
I. ligustrina, Elliott, Sk. ii, 708 [not Jacquin].-Spach, Iist. Veg. ii, 429.-Eaton, Manual, 6 ed. 187.-Eaton \& Wright, Bot. 282.-Darby, Bot. S. States, 123.
i I. Watsoniana, Spach, llist. Veg. ii, 420.
var. myrtifolia (only in low cypress swamps and ponds), Chapman, FI. S. States, 269.-Nat. Dispensatory, 2 ed. 755.
I. myrtifolia, Walter, Fl. Caroliniana, 214.-Nouvean Duhamel, i, 10, t. 4.-Michanx, Fl. Bor.-Am. ii, 229.-Poiret, Suppl. iii, 6r.-Willdenow, Enum. Suppl. 8.-Rœmer \& Schultes, Syst. iii, 489.-Link, Enum. 148.-Spach, Hist. Veg. ii, 429.-Eaton, Manual, 6 ed. 187.-Eaton \& Wright, Bot. 282.-Darby, Bot. S. States, 426.-Gray, Mannal N. States, 5 ed. 306.-Maximowicz in Mem. Acad. St. Petersburg, xxix, No. 3, 26.
I. rosmarifolia, Lamarek, III. i, 356.-Persoon, Syn. i, 151.-Poiret, Suppl. iii, 65.
I. ligustrifolia, Don, Miller's Dict. ii, 19.—Eaton, Manual, 6 cd. 187.—Wood, Cl. Book, 497; Bot. \& Fl. 207.

Wood light, soft, not strong, close-grainel, compact; medullary rays numerous, thin; color, light brown, the sap-wood nearly white ; specific gravity, 0.4806 ; ash, 0.91 ; that of var. myrtifolia heavier, nearly white ; specific gravity, 0.5873; ash, 0.90 .

35.-Ilex Cassine, Walter,

Fl. Caroliniaua, 241.-Aiton, Hort. Kew. i, 170, in part.—James, Cat. 176; Long's Exped. ii, 294.-Hooker, Jour. Bot. i, 202.-Eaton, Manual, 6 ed. 186.-Chapman, Fl. S. States, 269.-Curtis in Rep. Geologieal Surv. N. Carolina, 1860, iii, 59.-Lesquereux in Owen's 2d Rep. Arkansas, 373.-Wood, Bot. \& Fl. 208.-Gray, Mauual N. States, 5 ed. 306.-Young, Bot. Texas, 373.-Maximowicz in Mem. Acad. St. Petersburg, xxix, No. 3, 22.

I. Cassine, β. Linnæus, Spec. 1 ed. 125.

Cassine Peragua, Linnæus, Mant. ii, 220.-Marshall, Arbustum, 26.-Plenck, Icon. t. 239.
Cassine Curoliniana, Lamarck, Dict. i, 652
I. vomitoria, Aiton, Hort. Kew. i, 170; 2 ed. i, 278.—Salisbury, Prodr. 70.—Willdenow, Spec. i, 709.—Enum. Suppl. 8.B. S. Barton, Coll. i, 36, 56.-Nouvean Duhamel, i, 10.-Persoon, Syn. i, 151.-Desfontaines, Hist. Arb. ii, 362.Titford, Hort. Bot. Am. 41.-Pursb, Fl. Am. Sept. i, 118.-Nuttall, Gencra, i, 109.-Rœmer \& Schultes, Syst. iii, 491 ; Mant. 333.-De Candolle, Prodr. ii, 14.-Sprengel, Syst. i, 495.-Torrey in Ann. Lyc. N. York, ii, 173.-Don, Miller's Diet. ii, 17.-Hooker, Jour. Bot. i, 202.—Spach, Hist. Veg. ii, 430.—Lindley, Fl. Med. 393.—Dietrich, Syn. i, 555.Loudou, Arboretum, ii, 518, f. 186.-Eaton, Mannal, 6 ed. 187.-Eaton \& Wright, Bot. 282.-Griffith, Med. Bot. 433.Browne, Trees of Amorica, 169.-Guibourt, Hist. Drogues, 7 ed. iii, 544.
I. ligustrina, Jacquiu, Coll. iv, 105; Ieon. Rar. ii, 9, t. 310 [not Elliott].-Lanarck, Ill. i, 356.
I. Floridama, Lamarek, Ill. i, 356.
I. Cassena, Michaux, FI. Bor.-Am. ii, 229.-Poiret, Suppl. iii, 65.-Rœmer \& Schultes, Syst. iii, 490.—Elliott, Sk. ii, 681.Darly, Bot. S. States 426.-Wood, Cl. Book, 497.
I. religiosa, Barton, Fl. Virgiuica, 66.

Cassine ramulosa, Rafinesque, Fl. Ludoviciana, 363.
Hierophyllus Cassine, Rafinesque, Med. Bot. ii, 8.
Emetila rumulosa, Rafinesque, Sylva Telluriana, 45.
Agerio Cassena, Rafinesque, Sylva Tolluriana, 47:
Ageria geminata, Rafinesque, Sylva Tellmriana, 48.

CASSENA. YAUPON. YOPON.

Sonthern Virginia, sonthward, near the coast, to the Saint John's river and Cedar Keys, Florida, west along the Gulf coast to southern Arkansas, and the valley of the Colorado river, Texas.

A small tree, 6 to 8 meters in height, with a trunk 0.10 to 0.15 meter in diameter, or more often a shrub, sending up many slender stems and forming dense thickets; sands, moist soil, along ponds and streams, reaching its greatest development in the river bottoms of eastern Texas.

Wood heary, hard, close-grained, liable to check in drying; medullary rays numerous, conspicuons; color, nearly white, becoming yellow with exposure, the sap-wool lighter; specific gravity, 0.7270 ; ash, 0.87 .

The leaves possess powerful emetic properties, and were employed by the sonthern Indians, together perhaps with those of I. Dahoon, in the peparation of their "black drink" (Am. Jour. Pharm. xliv, 217.-U. S. Dispensatory, 14 ed. 1670.—Nat. Dispensatory, 2 ed. 754).

36.-Ilex decidua, Walter,

Fl. Caroliniana, 241.-Poiret, Suppl. iii, 65.-Chapman, Fl. S. States, 269.-Curtis in Rep. Geological Surv. N. Carolina, 1860, iii, 59.Lesquereur in Owen's 2 d Rep. Arkansas, 373.-Wood, Cl. Book, 497; Bot. \& Fl. 208.-Gray, Manual N. States, 5 ed. 306.-Young, Bet. Texas, 373.-Vasey, Cat. Forest Trees, 8.-Maximewicz in Mem. Aead. St. Petersburg, xxix, No. 3, 30.-Watson in Proe. Am. Acad. xvii, 335.
I. prinoides, Aiton, Hert. Kew. i, 169; 2 ed. i, 278.-Lamarek, Ill. i, 355.-Willdenow, Spec. i, 709.-Neuvean Dubamel, i, 11.-Michaux, Fl. Ber.-Am., ii, 229.-Persoon, Syn. i, 151.-Desfontaines, Hist. Arb. ii, 362.-Pursh, Fl. Amı. Sept. i, \%18.-Nuttall, Genera, i, 109.-Rœmer \& Sehultes, Syst. iii, 488; Mant. 332.-Watson, Dend. Brit. i, t. 15.-Sprengel, Syst. i, 495.-Andubon, Birds, t. 89.-Eaten, Manual, 6 ed. 187.-Eaton \& Wright, Bet. 282.-Darby, Bot. S. States, 426.
I. astivalis, Lamarek, Dict.iii, 147 ; Ill. i, 350.

Prinos deciduus, De Candolle, Prodr. ii, 16.—Don, Miller's Dict. ii, 20.-Hooker, Jour. Bot. i, 202.-Leudon, Arberetum, ii, 520 .
I. ambiguus, Eliett, Sk. ii, 705.

Southern Virginia, sonthward, through the middle districts, to western Florida, valley of the Mississippi river, southern Illinois sonthward to the Gulf of Mexieo, and through southeastern Missouri, Arkansas, and eastern Texas to the valley of the Colorado river.

A small tree, 8 to 9 meters in height, with a trunk 0.15 to 0.20 meter in diameter, or in the Atlantic states a tall, straggling shrub; low, wet woods along streams, reaehing its greatest derelopment in the Iron Mountain region of Missonri and in sonthern Arkansas.

Wood heary, hard, close-grained, compaet; medullary rays numerous, thin ; color, creamy-white, the sap-wood lighter; specific gravity, 0.7420 ; ash, 0.70 .

CYRILLACE

37.-Cyrilla racemiflora, Linnæus,

Mant. i, 50 ; Syst. 14 ed. 241.-Jacquin, Icen. Rar. t. 47 ; Coll. i, 162.-Walter, Fl. Careliniana, 103.-Lamarck, Dict. ii, 245; M1. ii, 144, t. 147, f. 2.-Nonvean Duhamel, i, 215, t. 46.-Desfontaines, Mist. Arls. i, 255.-Elliott, Sk. i, 294.-Eaton, Manual, 6 ed. 119.Eaton \& Wright, Bot. 218.-Torres \& Gray, Fl. N. Ameriea, i, $256 .-$ Nuttall, Sylya, ii, 96, t. $74 ; 2$ el. ii, 43, t. 74.-Planehou in Hooker's Jonr. Bet. v. 2"4.-Schnizlein, Icon. t. 240, f. 1-4, 6, 17, 10, 21.-Darby, Bot. S. States, 417.-Cooper in Smithsonian Rep. 1858, 253.-Chapman, Fl. S. States, 2\%2.-Curtis in Rep. Geelegieal Surv. N. Carelina, 1860, iii, 105.-Poreher, Reseurces S. Ferests, 130.-Maont \& Decaisne, Bot. English ed. 540 \& f.-Baillen, Adansonia, i, 203, t. 4.-Weod, Cl. Book, 493; Bot. \& Fl. 205.-Vasey, Cat. Forest Trecs, 18.

Andromeda plumata, Bartram, Cat.-Marshall, Arbustum, 9 .
Ċ. Caroliniana, Miehaux, Fl. Bor.-An. i, 158.-Gsertuer, f. Fruct. Suppl. 147, t. 209, f. 8.-Persoon, Syn. i, r75.-Pursh, Fl. Am. Sept. i, 170.-Nuttall, Genera, i, 145.-Peiret, Suppl. ii, 4:56.-Reemer \& Sclultes, Syst. v, 408.-Bet. Mag. t. 2456.Walpers, Rep.vi, 421.-Dietrich, Syn. i, 805.

Itea Cyrilla, L'Heritier, Stirp. i, 137, t.66.—Swartz, Prodr. 50; F. Iud. Oee. i, 506; Obs. 94, t.4.—Willdenew, Spec. i, 1146.— Aiton, Hort. Kew. 2 ed. ii, 37.
C. raccmosa, London, Arboretum, iv, 2577 , f. 2503.
C. polystachia, C. parvifolia, C. fuscata, Ratinesque, Anlikon Betanikon, 8 .

IRON WOOD.

North Caroliua southward, hear tho coast, to middle Florida (latitude 30°), westward, along the Gulf eoast, to the valley of the Pearl river, Mississippi.

A small tree, sometimes 8 to 10 meters in height, with a trunk 0.15 to 0.20 meter in diameter, or often a tall shrub, sending up many stems from the root; open swamps and low thickets; a variety (Chapman, Curtiss) with narrower, persistent leaves, and thicker spongy bark, in pond holes and wet depressions of the pine barrens of the Apalachicola region of western Florida, forms dense, impenetrable thickets.

Wood heavy, weak, hard, close-grained, compact; medullary rays thin, not conspienous; color, brown tinged with red, the sap-wood a little lighter ; speeifie gravity, 0.6784 ; ash, 0.42 .

38.-Cliftonia ligustrina, Banks,

Ex. Gertner f. Fruct. Suppl. :246, t. 225.-Bartram, Travels, 2 cd. 31.-Torrey \& Gray, FI. N. America, i, 256.-Nuttall, Sylva, ii, 92, t.73; 2 ed.ii, 39, t. 73.-Planchon in Lookel's Jour. Bot. v, 255.-Walpers, Rep. vi, 429.-Dietrich, Syn. ii, 1412.-Schnizlein. Icon. t. 240xx, f. 5, 7-10, 20.-Cooper in Smithsonian Rep. 1858, 251.-Chapman, Fi. S. States, 273.-Porcher, Resources S. Forests, 130.-Baillon in Adansonia, i, 202, t. 4, f. 3-6.-Vasey, Cat. Forest Trees, 18.

Mylocaryum ligustrinum, Willdenow, Enum. i, 454.-Bot. Mag. t. 1625.-Lamarck, III. iii, 616, t. 952, f. 1.-Pursh, Fl. Am. Sept. i, 302, t. 14.-Poiret, Suppl. iv, 41.-Elliott, Sk. i, 508.-Eaton, Manual, 6 ed. 231.-Eaton \& Wright, Bot. 323.-Darby, Fl. S. States, 417.-Wood, Cl. Book, 493; Bot. \& Fl. 205.

TITI. IRON WOOD. BUCKWHEAT TREE.

Valley of the Savannah river, Georgia, southward to the Chattahoochee region of west Florida, westward along the Gulf coast to the valley of the Pearl river, Louisiana.

A small tree, sometimes 12 meters in height, with a trunk 0.30 to 0.40 meter in diameter, or toward its soathern limits in Florida reduced to a shrub; margins of pine-barren ponds and streams.

Wood heavy, soft, not strong, close-grained, compact; medullary rays numerous, thin; color, brown tinged with red, the sap-wood lighter; specific gravity, 0.6249 ; ash, 0.42 ; largely used as fuel, burning with a clear flame.

CELASTRACEA.

39.-Euonymus atropurpureus, Jacquin,

Hort. Vind. ii, 155, t. 120.-Lamarck, Dict. ii, 573 ; III. ii, 98. -Aiton, Hort. Kew. i, 274 ; 2ed. ii, 29.-Willdenew, Spec. i, 1132; Enum. i, 256.-Michaux, Fl. Bor.-Am. i, 155.-Persoon, Syu. i, 243.-Nouveau Duhamel, iii, 26.-Desfontaines, Hist. Arb. ii, 356.-Pnrsh, Fl. Am. Sept. i, 168. -Turpin, Dict. Sci. Nat. xvii, 532, t.272.-Eaton, Manual, 28; 6 ed. 140.-Nnttall,Genera, 155.-Roemer \& Schultes, Syst. v, 466.-Hayne, Dend. Fl. 24.-Elliott, Sk. i, 293.-De Candolle, Prodr. ii, 4.-Torrey in Ann. Lyc. N. York, ii, 173; Fl. U. S. 261 ; Compend. Fl. N. States, 120; Fl. N. York, i, 141 ; Nicollet's Rep. 147.-Sprengol, Syst. i, 788.-Don, Miller's Dict. ii, 5Beck, Bot. 72.-Hooker, Jour. Bot. i, 201.-Spach, Hist. Veg. ii, 405.-Rafinesque, New Fl. 60.-Loudon, Arhoretum, ii, 499, f. 167.Torrey \& Gray, FI. N. America, i, 257.-Dietrich, Syn. i, 819.-Eaton \& Wright, Bot. 240.-Griffith, Med. Bot. 210, f. 112.-Gray, Genera, ii, 188; Manual N. States, 5 ed. 116.-Richardson, Arctic Exped. 423.-Parry in Owen's Rep. 610.-Darby, Bot. S. States, 268.-Darlington, Fl. Cestrica, 3 ed. 48.-Baillon in Bull. Soc. Bot. France, 7, 314.-Chapman, FI. S. States, 76.-Curtis in Rep. Gcological Surv. N. Carolina, 1860, iii, 102.-Lesquereux in Owen's 2d Rep. Arkansas, 354.-Wood, Cl. Book, 289; Bot. \& Fl. 76.Porcher, Resonrces S. Forests, 129.-Engelmann in Trans. Am. Phil. Soc. new ser. xii, 187.-Kooh, Dendrologie, i, 629.-Young, Bot. Texas, 205.-Vasey, Cat. Forest Trees, 9.
E. Carolinensis, Marshall, Arbnstum, 43.
E. latifolius, Marshall, Arbnstum, 44 [not Aiton].-Agardh, Theor. \& Syst. P1. t. 22, f. 4.

BURNING BUSH. WAHOO. SPINDLE TREE. ARROW WOOD.

Western New York, west to the valley of the upper Missonri river (Fort Union), Montana, southward to northern Florida, southern Arkansas, and eastern Kansas.

A small tree, rarely 6 to 8 meters in height, with a trunk 0.15 meter in diameter, or more often a shiub 2 to 3 meters in height; low, rich woods, reaching its greatest development west of the Mississippi river.

Wood heary, very close-grained, liable to check badly in seasoning; mednllary rays hardly discernible; color, white tinged with orange; specific gravity, 0.6592 ; ash, 0.58 .

Wahoo bark, a mild but rather uncertain purgative, is used by herbalists in the form of decoctions, tinctures, fluid extracts, etc. (Am. Jour. Pharmacy, xx, 80.—U. S. Dispensatory, 14 ed. 402.-Nat. Dispensatory, 2 ed. 559).

> 40.-Myginda pallens, Smitb,

Recs' Cycl. $\mathbf{x x p}$, No. 4.-De Candolle, Prodr. ii, 13. -Dietrich, Syn. i, 554.—Grisebach, Fl. British West Indies, 146.-Chapman in Coulter's Bot. Gazotte, iii, 3 ; Fl. S. States, Suppl. 612.
Semi-tropical Florida, Upper Metacombe Key; in the West Indies.
A small tree, rarely excceding 4 meters in height, with a trimk 0.15 meter in diameter.
Wood very heary, hard, very close-grained, compact, satiny; layers of annual growth and numerous medullary rays hardly distinguishable; color, dark brown or nearly black, the thick sap-wood lighter brown tinged with red; specific gravity, 0.9048 ; ash, 3.42 .

41.-Schæfferia frutescens, Jacquin,

Stirp. Am. 259.—Gærtner f. Fruct. Suppl. 249, t. 225, f. 7.-Lamarck, I11. iii, 402, t. 809.-Poiret in Lamarek, Dict. vi, 727.-De Candolle, Prodr. ii, 41.—Karsten, Fl. Columbix, i, t. 91.-Chapman, Fl. S. States, 76.-Grisebach, Fl. British West Indies, 146.Walpers, Ann. vii, 581.
S. completa, Swartz, Fl. Ind. Occ. i, 327, t. 7, f. A.-Willdenow, Spec. iv, 741.—Aiton, Hert. Kew. 2 ed. v, 371.—Macfadyen, Fl. Jamaica, 207.
S. buxifolia, Nnttall, Sylva, ii, 42, t. 56; 2 ed. i, 190, t. 56.-Cooper in Smithsonian Rep. 1858, 264.

YELLOW WOOD. BOX WOOD.
Semi-tropical Florida, southern keys from Metacombe Key eastward, Caloosa river and sparingly on the Reef Keys; in the West ludies.

A small tree, occasionally 10 meters in height, with a trunk 0.15 to 0.20 meter in diameter, generally hollow and defective.

Wood heary, hard, close-grained, compact, susceptible of a high polish; medullary rays numerous, obscure; color, light bright yellow, the sap-wood a little lighter; specifie gravity, 0.7745 ; ash, 2.54 .

RHAMNACEA.

> 42.-Reynosia latifolia, Grisebach,

Cat. Pl. Cuba, 34.-Eggers, Videnskab, Medd. fra. Nat. For. 173 \& t. ; Bull. U. S. Nat. Mus. xiii, 40.—Gray in Coulters Bot. Gazette, ir, 208.-Chapman, Fl. S. States, Suppl. 612.

PRhamnus lœoigatus, Vahl, Symbelæ, iii, 41.
Ceanothus lcevigatus, De Candolle, Prodr. ii, 30.
Scutia ferrea, Chapman, Fl. S. States, 72 [nor Brongniart].
?Rhamindium revolutum, Chapman, Fl. S. States, Suppl. 612.

RED iron wood. Darling plum.

Semi-tropical Florida, Miami (Garber), bay Biseayne, and on the sonthern keys (Curtiss); in the West Indies. A small tree, sometimes 8 meters in height, with a trunk 0.15 to 0.20 meter in diameter.
Wood heary, exceedingly hard, strong, close-grained, compact; medullary rays numerous, thin ; eolor, rich dark brown, the sap-wood light brown; speeife gravity, 1.0715 ; ash, 3.20.

The edible fruit, ripening in April and May, of agrecable flavor.
43.-Condalia ferrea, Grisebach,

F1. British West Indies, 100.-Walpers, Ann. vii, 588.-Gray in Coulters Bot. Gazette, iv, 208.-Chapman, Fl. S. States, Suppl. 612.
Rhamnus fcrrea, Vahl, Symbelx, iii, 41, t. 58.
Zizyphus emarginatus, Swartz, Fl. Ind. Occ. iii, 1954.
Ceanothus ferreus, De Caudglle, Predr. ii, 30.
Scutia ferrea, Brougniart in Ann. Sci. Nat. 1 ser. $\mathrm{x}, 363$ [not Chapman, Fl. S. States, 72].-Vasey, Cat. Forest Trees, 9.

BLACK IRON WOOD.

Semi-tropical Florida, cape Canaveral to bay Biseayne, on the southern keys; in the West Indies.
A small tree, sometimes 11 meters in height, with a trunk 0.25 to 0.38 meter in diameter, generally hollow and defective; common.

Wood exceedingly heary and hard, strong, brittle, close-grained, compact, diffieult to work; remakable for the large percentage of ash; medullary rays very mumerous, thin; color, rich ormge-brown, the sap-wool lighter; specific gravity, 1.3020; ash, 8.31.

44.-Condalia obovata, Hooker,

Icon. t. 287.-Terrey \& Gray, Fl. i, 685.-Gray in Jour. Boston Soc. Nat. Hist. vi, 169; Genera, ii, 172, t. 164 ; Smithsonian Contrib. iii, 32 ; v, 27 ; Hall's Pl. Texas, 5.-Torres, Bot. Mox. Boundary Survey, 47. -Watson in Proc. Am. Acad. xvii, 336.

BLUE WOOD. LOGWOOD. PURPLE HAW.

Eastern aud southwestern Texas, westward through southern New Mexieo to sonthern Arizona; probably extending into nerthern Mexico.

A small tree, 6 to 10 meters in height, witla a trunk 0.15 to 0.20 meter in diameter, or often a shrab; reaching its greatest development along the streams of eastern Texas; one of the common "chaparral" plants of western Texas, here forming deuse, impenetrable thiekets.

Wood very heavy, hard, close-grained, liable to check in seasoning, containing many groups of large irregnlarly-arranged open ducts; medullary rays numerons, obscure; color, light red, the sap-wood light yellow; specific gravity, 1.1999; ash, 7.03.

45.-Rhamnus Caroliniana, Walter,

Fl. Caroliniana, 101.-Lamarck, 111. ii, 88; Dict. iv, 476.-Michanx, Fl. Bor. Am. i, 153.-Nouvean Duhamel, iii, 47.-Persoon. Syn. i, 239.-Pursh, Fl. Am. Sept. i, 166.-Nuttall, Genera, i, 153.-Rcmer \& Sehaltes, Sjst. \quad, 285.-Elliott, Sk. i, 289.-De Candolle, Prodr. ii, 26.—Sprengol, Syst. i, 768.-Torrey in Ann. Lyc. N. York, ii, 174.—Don, Miller's Dict. ii, 32.-Hooker, Jour. Bot. i; 202.-Torrey \& Gray, Fl. N. America, i, 262.-Dietrieh, Syn. i, 807. -London, Arboretum, ii, 537.-Eaton, Manual, 6 ed. $300 .-E a t o n$ \& Wright, Bot. 390.-Scheele in Rcemer, Texas, 432.-Nuttall, Sylva, ii, 50, t. 59; 2 ed. i, 198, t. 59.-Darby, Bot. S. States, 269.Lesquerenx in Owen's 2d Rep. Arkansas, 354.-Wood, Cl. Book, 219 ; Bot. \& Fl. 77.-Koch, Dendrologie, i, 610.-Gray, Hall's Pl. Texas, 5.
?Frangula fragillis, Rafiuesque, Fl. Lndoviciana, 320; Sylva Tclluriana, 27.
Sarcomphalus Carolinianus, Ratinesque, Sylva Telluriana, 29.
Frangula Caroliniana, Gray, Genera, ii, 178, t. 167 ; Mannal N. States, 5 ed. 115.-Torrey, Bot. Mex. Boundary Sirvoy, 46.-Cooper in Smithsonian Rep. 1858, 251.-Curtis in Rep. Geological Surv. N. Carolina, 1860, iii, 92.-Chapman, Fl. S. States, 73.-Vasey, Cat. Forest Trees, 9.

INDIAN CHERRY.

Long Island, New York, west along the valley of the Ohio river to southern Illinois, Missouri south of the Meramec river, eastern Kansas, and the Indian territory, sonth to northern Florida (latitude 30 ${ }^{\circ}$, and througl, the Gulf states to western Texals.

A small tree, 6 to 10 meters in height, with a trunk 0.20 to 0.30 neter in diameter, or in the Atlantic states generally a tall shrub; rich woods aloug streams and river bottoms, reaching its greatest development in sonthern Arkansas and eastern Texas.

Wood light, hard, not strong, coarse-grained, compact; medullary rays mumerous, thin ; color, light brown, the sap-wood lighter; suecific gravity, 0.5462 ; ash, 0.64 .

The edible fruit sweet and agreeable.

46.-Rhamnus Californica, Esehscholiz,

Mem. Acad. St. Petersbury, s, 281 (Linnea Litt.-Ber. 1828, 149.—Presl, Rep. Bot. i, 197).—Don, Miller's Dict. ii, 3R.-Torrey \& Gray, Fl. N. America, i, : bi3.-Dietrich, Syn. i, 806.-Daton \& Wright, Bot. 390.-Brewer \& Watson, Bot. California, i, 101.-lfemsley, Bot. Am.-Cent. i, 197.
R. oleifolius, ltooker, Fl. Bor.-Am. i, 123. t. 44.-Hooker \& Arnott, Bot. Bechey, 136, 328.-Torrey \& Gray, Fl. N. America, i, 260.-Laton \& Wright, Bot. 390.—Bentham, Bot. Snlphur, 10; Pl. Hartweg. 392.-Durand in Jour. Philadolphia Acad. 1855, 85.-Carriere in Rev. Hort. xlvi, 354, f. 47-49.

Endotropis oleifolia, Lafinesque, Sylva Telluriana, 31.
R. laurifolius, Nuttall in Torrey \& Gray, Fi. N. Ameriea, i, 260 .-Eaton \& Wright, Bot. 390.

Frangula Californica, Gray, Genera, ii, 178; Jour. Boston Soe. N:tt. 1list. vi, 146.-Torrey in Sitgreaves' Rep. $15 \bar{i}$. Paeitic R. R. Rep. iv, 74; lot. Mex. Boundary Survey, 46; Bot. Wilkes Exped. 261.-Nowberry in Pacific R. R. Rep. vi, 69.-Bolander in Proc. Califomia Acad. iii, 78.

California, west of the Sierra Nevadas, from the valley of the upper Saeramento river sonthward to Santa Barbara and fort Tejon.

A small tree, rarely 7 to 9 meters in height, with a trunk 0.30 to 0.37 meter in diameter (Pringle), or commouly a shrub, along the sea-coast and at high elevations often prostrate; common and reaching its greatest development in the valleys of the Santa Cruz monntains. A low shrubby form, deusely white tomentose, especially on the under side of the leaves, of sonthern California, Arizona, and New Mexico, is-
var. tomentella, Brewer \& Watson, Bot. California, i, 101.
R. tomentellus, Bentham, Pl. Hartweg. 303.-Seemann, Bot. Herald, 275.-Walpers, Ann. ii, 267 .

Frangula Californica, var. tomentella, Gray in Stuithsonian Contrib. vi, 28.-Torrey in Pacific R. R. Rep. iv, 74; vii, 9.
Wood light soft, rather coarse-grained, checking in drying; layers of aunual growth marked by many rows of open ducts; medullary rays narrow, obscure; color, brown or light yellow, the sap-wood lighter ; specific gravity, 0.6000 ; ash, 0.58 .

47.-Rhamnus Purshiana, De Candolle,

Prodr. ii, 25.-London, Arboretum, ii, 538, f. 211.-Hooker, FI. Bor.-Am. i, 123, t. 43; London Jour. Bot. vi, 78.-Don, Miller's Dict. ii, 32.-Torrey \& Gray, Fl. N. America, i, 262.—Dietrich, Syn. i, 807.-Nuttall, Sylva, ii, 52 ; 2 ed. i, 200.-Richardson, Arctic Exped. 423.-Newberry in Pacific R. R. Rep. vi, 69.-Koch, Dendrologic, i, 610.-Gray in Proc. Am. Acad. viii, 379.-Brewer \& Watson, Bot. California, i, 101.-Hall in Coulter's Bot. Gazette, ii, 86.
L. alnifolius, Pursh, Fl. Am. Sept. i, 166 [not L'Heritier].

Cardiolepis obtusa, Rafinesqne, Sylva Tellnriana, 28.
Frangula Purshiana, Cooper in Smithsonian Rep. 1858, 259; Pacific R. R. Rep. xii², 29, 57.-Vasey, Cat. Forest Trecs,. 9.-Torrey, Bot. Wilkes Exped. 262.

BEARBERRY. BEAR WOOD. SIIITTMI WOOD.

Puget sound, east along the mountain ranges of northern Washington territory to the Bitter Root mountain, Idaho (Mullan pass, Watson), and the shores of Flathead lake, Montana (Canby \mathbb{E} Sargent), sonthward through western Washington territory, Oregon, and California, west of the Sierra Nevada, to about latitude 40°.

A small tree, often 12 meters in height, with a trank 0.30 to 0.45 meter in diameter; depressious and along the sides and bottoms of cañons in the coniferous forests, reaching its greatest development along the western slope of the Coast Range of southern Oregon.

Wood light, very hard, not strong, close-grained, compact, satiny; medullary rays mmerous, thiu; color, light brown tinged with yellow, the sap-wood somewhat lighter; specific gravity, 0.5072 ; ash, 0.67 .

The bark, like that of other species of the genus, possesses powerful cathartic properties, and, under the nameof Cascara sagrada, has recently been introtuced by herbalists in the form of fluid extracts, tinctures, etc., immense quantities being gathered for this purpose in the Oregon forests (Nat. Dispensatory, 2 ed. 650).

> 48.-Ceanothus thyrsiflorus, Eschscholtz,

Mem. Acad. St. Petershurg, x, 285.-Hooker, Fl, Bor.-Am. i, 125.-Don, Millers Dict. ii, 37.-Hooker \& Amott, Bot. Beechey, 136, 328.-Torrey \& Gray, Fl. N. America, i, 266.-Dielrich, Syn. i, 813.-Loudon, Arboretum, ii, 540.-Eaton \& Wright, Bot. $185 .-$ Lindley, Bot. Reg. xxx, t. 38.-Nuttall, Sylva, ii, 44, t. 57 ; 2 ed. i, 193, t. б万.-Benthan, Bot. Sulphur, 10; Pl, Hartweg. Sop.-Aun. Gand. 1847, t. 107.-Torrey in Pacific R. M. Rep. iv, 14; Bot. Mex. Boundary Survey, 45; Bot. Wilkes Exped. 263. - Newberry in. Pacific 12. R. Rep. vi, 69.-Cooper in Pacitic R. 12. Rep. xif, 5\%.-Bolander in Iroc. California Acad. iif, 78.-Koch, Dendrologie, i, 621.-Watson in Proc. Am. Acad. x, 334.-Brewer \& Watson, Bot. California, i, 102.-Vasey, Cat. Forest Trces, 9.

BLUE MYR'TLE.

California Coast rauges, from Mendicino county south to the vailey of the San Louis Rey river (Pala, Parish Brothers).

A small tree, 8 to 10 meters in lieight, with a trmk 0.10 to 0.15 meter in diameter, or toward the sonthern limits rednced to a low shrmb; common and reaching its greatest development in the Nequoia forests near Santa Cruz.

Wood light, soft, elose-grained, compact; medullary bays very obseme; color, light brown, the sap-wood darker; specifie gravity, 0.5750; ash, 0.69.

The bark of the root may be expected to possess similar astringent properties to that of the shrubby C. Americana, used with advantage in cases of diarrhea and dysentery, and as a domestie remedy in throat troubles. (U. S. Dispensatory, 14 ed. 1609.-Nat. Dispensatory, 2 ed. 373).

> 49.-Colubrina reclinata, 13ronguiart,

Aon. Sci. Nat. 1 ser. $x, 369$.-Hichard, Fl. Cuba, 353.-Grisebach, Fl. British West Inties, 10I.-Eggers in Bull. U. S. Nat. Mus. No. 13, 40 . Rhamnas ellipticus, Niton, Hort. Kew. i, 265; zed. ii, 17.—Willdenow, Spec. i, 1098.—Swartz, Prodr. 50 ; FI. Ind. Oce. i, 197. Zizyplut Deminigensis, Nouveau Duhamel, iii, 56.
Ceanothus reclinatus, L'leritier, Sert. 6.-Rcmer \& Schultes, Syst. v, 288.-De Candolle, Prodr. ii, 31.-Macfadyen, PI. Jamaica, 211.

NAKED WOOD.
Semi tropical Florida, Umbrella kiey, on the north end of Key Largo, and sparingly ou the small islands south of Elliott's Ker ; throngl the West Iudies.

One of the largest trees of the region, decudnons, 12 to 18 meters in height, with a tronk 0.60 to 1.25 meter in diameter; reaching its greatest development within the-United States on Umbella Kev, here forming a dense forest.

Wood heary, hard, very strong, brittle, close-grained, compaet, satiny, susceptible of a good polish, containing many small open ducts; medullary rays ummerous, thin; color, dark brown tinged with yellow, the sap-wood light Sellow; specific gravity, 0.5208 ; ash, 1.75 .
"The timk attains a size of over 1 meter and is most extraordinary. When 0.152 meter thick it becomes furrowed, and the furows and ridges multiply and extend in all direetions; trums 0.75 to 1 meter in diameter appear like a mass of bradeal serpents. On small trunks the bark breaks up into flakes which curl up and drop -off. Between the ridges where the bark persists the edges of dozens of papery layers may be seen" (Ourtiss in let).

SAPINDACE \mathbb{E}.

50. - Asculus glabra, Wilhdenow,

 N. States, 164.-Guimpel, Otto \& Hayne, Abb. Holz. 28, t. 24.-Haync, Dend. Fl. 44.—Sprengel, Syst. ii, 166.-Don, Miller's Dict. i, 652.-Beek, Bot. 65.-Loudon, Arborotum, i, 467, f. 133.-Torrey \& Gray, Fl. N. America, i, 251.-Dietrich, Syn. ii, 1225.-Eaton \& Wright, Bot. 115.-Walpers, Rep. i, 424.-Gray, Genera, ii, 207, t. 176, 177; Manuel N. State8, 5 ed. 118.-Cooper in Smithsonian Rep. 1858, 25 I .-Chapman, Fl. S. States, 79.-Wood, Cl. Book, 288; Bot. \& Fl. 85.-Engolmann in Trans. Am. Phil. Soc. new ser. xii, 187.-Koch, Dendrologie, i, 508.-Vasey, Cat. Forest Trees, 9.-Ridgway in Proe. U. S. Nat. Mus. 1882, 61.
E. pallida, Willdenow, Enum. 406.-Nuttall, Genera, i, 242.-De Candolle, Prodr. i, 597.-Gnimpel, Otto \& Hayne, Abb. Holz. 29, t. 25.-Sprengel, Syst. ii, 166.—Don, Miller's Diet. i, 650. - Eaton, Manual, 6 ed. 6.-Lindley, Bot. Reg. xxiv, t. 51.-London, Arboretum, i, 468, f. 134.
E. echinata, Muhlenberg, Cat. 38.
A. Ohioensis, Michanx f. Hist. Arb. Am. iii, 242 ; N. American Sylva, 3 ed. ii, 156, t. 92.-Poiret, Suppl. iii, 593.-De Candolle, Prodr. i, 597.-Don, Miller's Dict. i, 652.-Eaton, Mannal, 6 ed. 6.-Riddell, Syn. Fl. W. States, 34.-Lindley, Bot. Reg. xxiv, 51, t. 51.-Nuttall, Sylva, ii, 71 ; 2 ed. ii, 1 \%.

I A. carnea, Gnimpel, Otto \& Hayne, Abb. Holz. 25, t. 22.-Hayne, Dend. Fl. 43.-Lindley, But. Reg. xiii, t. 1056.—Watson, Dend. Brit. ii, t. 121.-Don, Miller's Dict. i, 652.-Torrey \& Gray, F1. N. America, i, 253.-Walpers, Rep. i, 425.

Pavia glabra, Spach in Ann. Sci. Nat. 2 ser. ii, 54; Hist. Veg. iii, 23.
Paria pallida, Spach in Awn. Sci. Nat. 2 ser. ii, 54 ; Hist. Veg. iii, 23.
1 Pavia carnea, Spach in Ann. Sci. Nat. 2 ser. ii, 54 ; Hist. Veg. iii, 23.—Don in Swect's Brit. Fl. Gard. 2 ser. ts 301.
?Paria Watsomiana, spach in Ann. Sei. Nat. 2 ser. ii, 54 ; Hist. Veg. iii, 23 .-Torrey \& Gray, Fl. N. America, i, $2 \overline{3} 3$.
? A. Watsoniana, Dictrich, Syn. ii, 1225.-Walpers, Rep. i, $42 \overline{5}$.
A. Hippocastanum, var. Ohioensis, London, Arboretum, i, 467.-Brownc, Trecs of America, 110.
A. Hippocastanum, var. glabra, Londm, Ariooretnm, i, 467.-Browne, Trees of America, 111.
A. Hippocastanum, var. pallita, London, Arboretum, i, 468.-Browne, Trees of America, 111.

OIIO IUUCKIYYE. FETID BUCKEYE.
Western slopes of the Alleghany monntains, Pennsylvania to northeru Alabama, westrard throngh southern Michigan (rare) to southern Iowa, eastern Kansas to about longitude 97° west, and the Indian territory.

A small tree, 8 to 15 meters in height, with a trunk 0.30 to 0.60 meter in diameter; rich soil along streans and river bottoms, reaching its greatest development in the high valleys of the southern Alleghany momtains.

Wood light, soft, not strong, close-grained, compact, difficnlt to split, often blemished by dark lines of decay; medullary rays ohsenre; color, white, the sap-wood daker; specific gravity, 0.4542 ; ash, 0.86 ; largely used in
common with that of the other species of the genus in the mannfature of woodenware, artificial limbs (for which the wood of AEsculus is preferred to that of all other American trees), paper-pulp, wooden lats, less commenly for the bearings of shafting and machinery, and oceasionally manufactured into humber.

The bark of the allied old world species . . Hippscastanm occasionally has been fomnd efficacious as a substitute for cinchona bark in the treatment of intermittent fevers (U. S. Dispensatory, 14 ed. 1505 .—Net. Dispensatory, 2 ed. 712), and similar properties may be looked for in the bark of A. glabra.

> 51.-Esculus flava, Aiton,

Hort. Kew. i, 494; 2 ed. ii, 335.-B. S. Barton, Coll. i, 13; Bot. Appx. 26, t. 15, f. 2.-Willdenow, Spec. ii, 286; Enum. i, 405 ; Berl. Baumz. 13.-Desfontaines, Hist. Arb. i, 385.-Pursh, Fl. Am. Sept. i, 25゙5.-Nuttall, Genera, i, 242.—James in Long's Exped. i, 22.-Guimpel, Otto \& Hayne, Abb. Holz. 27, t. 23.-Hayne, Dend. Fl.44.-Elliott, Sk. i, 436.-Watson, Dend. Brit. ii, t. 163.-Loddiges, Bot. Cah. t. 1280.-Torrey \& Gray, Fl. N. America, i, 252.-Dietrich, Syn. ii, 1225.-Eaton, Manual, 6 ed. 7.-Eaton \& Wright, Bot. 11G.Walpers, Rep. i, 424.-Darby, Bot. S. States, 266.-Torrey in Pacific R. R. Rep.iv, 74.-Browne, Trees of America, 118.-Schnizlein, Ieon. t. 230xx, f. 3.-Cooper in Smithsonian Rep. 1858, 251.—Chapman, Fl. S. States, 80.-Curtis in Rep. Geologieal Sury. N. Carolina, 1860, iii, 48.-Lesqnerenx in Owen's 2d Rep. Arkansas, 354.-Wood, Cl. Book, 288; Bot. \& Fl. 75.-Gray, Mamual N. States, 5ed. 118.Vasey, Cat. Forest Trees, 9.
A. octandra, Marshall, Arbustum, 4.-Miller's Diet. No. 1.

Pavia flava, Mcneh, Meth. 66.-De Candolle, Prodr. i, 598.-Don, Miller's Diet. i, 653.-Spach in Ann. Sci. Nat. 2 ser.ii, 55 ; Hist. Veg. iii, 25.-Loudon, Arboretum, i, 471 \& t.
A. lutea, Wangenbeim in Sehrift. Gesell. Nat. Fr. Berlin, viii, 133, t. 6.-Michaux, Fl. Bor.-Aın. i, 219.-Persoon, Syn. i, 403.-Koeh. Dendrologie, i, 509.
Pavia lutea, Poiret in Lamarek, Diet. v, 94.-Nouveau Duhamel, iii, 155, t. 38.-Michaux f. Hist. Arb. Am. iii, 237, t. 11; N. Amorieán Sylva, 3 ed. ii, 153, t. 91.

- A. neglecta, Lindley, Bot. Reg. xii, t. 1009.

Pavia neglecta, Don, Miller's Diet. i, 653.—Spaelı in Ann. Sei. Nat. 2 ser. ii, 55 ; Hist. Veg. iii, 24.-London, Arboretum, i. 472.

SWEET BUCKEYE.

Allegheny county, Pennsylvania (T.C. Porter), southward along the Alleghany momutains to northern Georgia (Augusta) and Alabama, west along the valley of the Ohio river to sonthern Iowa, the Indian territory, and the valley of the Brazos river, eastern Texas.

A tree 18 to 28 meters in height, with a trunk 0.60 to 0.90 meter in diameter, or toward its sonthwestern limits reduced to a shrul; rich woods and aloug streams, reaching its greatest development on the slopes of the Alleghany mountains of North Carolina and Tennessee.

A variety with purple or flesh-colored flowers, the leaflets pubescent beneath, is-
var. purpurascens, Gray, Manual N. States, 5 ed. 118.
AF. hybrida, De Candollc, Hort. Monsp. 1813, 75.-Poiret, Suppl. iv, 334.
AE. discolor, Pursh, Fl. Am. Sept. i, 255.-Nuttall, Genera, i, 242.-Bot. Reg. iv, t. 310.-Elliott, Sk. i, 436.-Sprengel, Syst. ii, 167.-Sertnm Botanicnm, iv \& t.-Eaton \& Wright, Bot. 116.-Walpers, Ann. iv, 381.
Pavia discolor, Poiret, Suppl. v, 769.-Don, Niller's Diet. i, 6ä3.-Eaton, Mannal, 6 ed. 7.-Spach in Ann. Sei. Nat. 2 ser. ii, 57 ; Hist. Veg. iii, 28.-London, Arborctum, i, 47%.
Pavia hybrida, De Candolle, Prodr. i, 598.—Don, Miller's Dict. i, 65R.-Eaton, Manual, 6 cd. 6.-Spach in Ann. Sci. Nat. 2 ser. ii, 56 ; Hist. Veg. iii, 27.-London, Arboretum, i, 472.-Eaton \& Wright, Bot. 11G.-Moch, Dendrologic, i, 512.
A. Pavia, var. discolor, Torrey \& Gray, Fl. N. Ameriea, i, 252.-Walpers, Rep. i, 424.-Gray in Jour. Boston Soc. Nat. Hist. vi, 167.
Wood light, soft, close.grained, compact, difficult to split; medullary rays mumerous, obscure; color, creamywhite, the sap-rood hardly distinguishable; specific gravity, 0.4274 ; ash, 1.00 .

52. - Esćulus Californica, Nuttall;

Torrey \& Gray, Fl. N. America, i, 251 ; Sylva, ii, 69, t. 64 ; 2 ed. ii, 16, t. 64.-IIooker \& Arnott, Bot. Beechey, : Sit.-Dictrich, Syn. ii, 1225.-Eaton \& Wright, Bot. 116.-Walpers, Rep. i, 424.-Benthan, Bot. Sulphur, 9; Pl. Hareweg. 301.-Durand in Jour. Philadelphia Acad. 1575, 85.-Rev. Hort. iv, 150, f. 10, 11.-Torrey in Pacific R. R. Rep. iv, 7f; Bot. Mex. Boundary Surver, 48; Bot. Wilkes Exped. 260.-Newberry in Pacifie R. R. Rep. vi, 20, 60, f. 1.-13ot. Mag. t. 5077.-li. des Serres, xiii, 30 , t. 1312.London Gard. Chronicle, 1ens, 844.-Belge, Hort. ix, 121 \& t.-Gray in Proc. Boston Soc. Nat. Hist. vii, 146.-Molander in Proe. California Aead. iii, 78.-Walpers, Ann. 624.-Koch, Dendrologic, i, 513.-Brewer \& Watson, Bot. Califormia, i, 106.-Vasey. Cat. Forest Trees, 9.

Calothyrsus Californica, Spach in Ann. Sci. Nat. 2 fer. ii, fo; Hist. Veg. iii, 35.
Pavia Californica, Hartweg in Jonr. Hort. Soc. London, ii, 123.-Carrière in Rev. Hort. 1862.3th \& 4 .

CALIFORNIA BUCKEYE.

California, valley of the upper Sacramento river and Mendocino county, southward along the Coast ranges to San Luis Obispo, and along the western foot-hills of the Sierra Nevada to the San Bernardino mountains.

A low, widely-branching tree, 8 to 12 meters in height, with a short trunk 0.60 to 0.90 meter in diameter, often greatly expanded at the base, or more often a much-branched shrub 3 to 5 meters in height; borders of streams, reaching its greatest development in the cañons of the Coast Range, north of San Francisco bay.

Wood light, soft, not strong, very close-grained, compact; medulary rays numerous, obseure; color, white slightly tinged with yellow, the sap-wood hardly distinguishable; specific gravity, 0.4980 ; ash, 0.70 .

53.-Ungnadia speciosa, Endlicher,

Atacta Bot. t. 36 ; Nov. Stirp. Desc. ix, 75.-Torrey \& Gray, Fl. N. America, i, 684 ; Pacific R. R. Rep. ii, 162.-Walpers, Rep. i, 423; v, 371 ; Ann. vii, 625.-Gray in Jour. Boston Soc. Nat. Hist. vi, 167 ; Genera, ii, 211, t. 178, 179; Smithsonian Contrib. iii, 38 ; v, 30 ; Mem. Am. Acad. new ser. v, 299 ; Hall's Pl. Texas, 5.-Fl. des Serres, x, 217, t. 1059.-Torrey, Bot. Mex. Boundary Survey, 48.Schnizlein, Icon. t. 230, f. 2, 8.-Cooper in Smithsonian Rep. 1858, 265.-Koch, Dendrologie, i, 515.-Baillon, Hist. Pl. \mathbf{v}, 423.Vasey, Cat. Forcst Trces, 9.-Watson in Proc. Am. Acad. xvij, 337.
U. heterophylla, Scheele in Linnæa, xxi, 589 ; Rœmer, Texas, 589.
U. heptaphylla, scheele in Linnæa, xxii, 352; Rœmer, Texas, 432.

SPANISII BUCKEYE.

Valley of the Trinity river (Dallas, Reverchon) through western Texas to the cañons of the Organ mountains, New Mexico (Bigelow) ; southward into Mexico.

A small tree, sometimes 6 to 8 meters in height, with a trunk 0.15 to 0.20 meter in diameter, or toward its eastern and western limits reduced to a low shrub; common west of the Colorado river; bottoms and rich hillsides, reaching its greatest development in the valley of the Guadalupe river, between New Brannfels and the coast.

Wood heavy, soft, not strong, close-grained, compact, satiny, containing numerous evenly-distributed open duets; medullary rays numerous, inconspicuous; color, red tinged with brown, the sap-wood lighter; specific gravity, 0.6332 ; ash, 1.17.

Fruit reputed poisonous.

54.-Sapindus marginatus, Willdenow,

Eunm. i, 432.-Muhlenberg, Cat. 41.-De Candollo, Prodr. i, 607.—Sprengel, Syst. ii, 250.-Don, Miller's Dict. i, 665.-Spach, Hist. Veg. iii, 54.-Torrey \& Gray, Fl. N. America, i, 255, 68j; Pacific R. R. Rep. ii, 162.-Eaton, Manual, 6 ed. 323.-Eaton \& Wright, Bot. 411.-Nuttall, Sylva, ii, 72, t. 65 ; $2 \mathrm{ed} . \mathrm{ii}, 19$, t. 65.-Leavenworth iu Am. Jour. Sci. i, 49, 130.—Engelmann $\&$ Gray in Jour. Boston Soc. Nat. llist. r , :241.-Gray in Jour. Bostou Soc. Nat. Ilist. ri, 169; Genera, ii, 214, t. 180; Smithsonian Contrib. iii, 33; llalls Pl. Texas, 5.-Engelmann in Wislizenus' Rep. 1\%.-Torrey in Emory's Rep. 138; Marcy's Rep. 28:; Pacific R. R. Rep. iv, 2,74 ; Bot. Mcx. Bomdary Survey, 47. Scheele in Remer, Texas, 433.-Schnizlein, 1con. t. 230, f. 22.Chupman, Fl. S. States, 79.-Lesqnercux in Owcn's 2d Rep. Arkansas, 354.-Wood, Cl. Book, 288; Bot. \& Fl. 75.-Porcher, Resources S. Forests, 85. -Young, Bot. Texas, 203. -Vasey, Cat. Forest Trees, 9.-Hemsley, Bot. Am.-Cent. i, 214.-Watson in Proc. Am. Acarl. xvii, 337.
S. saponaria, Lanarck, Ill. ii, 441, t. 307 [not Linmas].-Michaux, Fl. Bor.-Am. i, 242.-Poiret in Lamarck, Dict. vi, 6G3, in part.-Persoon, Syn. i, 444.-Pursh, Fl. Am. Sept. i, 274.-Nuttull, Gcnera, i, 257.-Elliott, Sk. i, 460.-Torrey in Ann. Lye. N. York, ii, 172.-Darby, Bot. S. States, 267.
? S. incquutis, De Candolle, Prodr. i, 60s.
S. falcatus, liafinesque, Med. Bot. ii, 201.
S. acuminata, Rafinesque, New Fl. 2\%.
S. Drummondi, ilooker \& Arnott, Bot. Beechey, Q8t (oxel. var.).-Walpers, Rep. i, 417.

WILD CIIINA. SOAPBERIRY.

Atlantic coast, Savamah river to the Saint John's river, Florida, and on Cedar Keys; sonthem Arkansas, valley of the Wishita river (Prescott, Letierman) throngh Western Lonisiana and Texas to the monntain valleys of southern New Mexico and Arizona; southward into Mexico, and in the West Indies ($\%$ S. incequalis).

A tree, sometimes 15 to 18 meters in height, with a trunk rarely 0.60 meter in diameter; west of the Colorado river much smaller, rarel. 9 meters in lieight; along streams or towarl the westem limits of its distribution only in mountain valleys, reaching its greatest development along the river botoms of eastern Texas.

Wood heavy', strong, hard, close-grained, compact, easily split into thin strips; layers of ammal growth elearly marked by sereral rows of large open ducts; medullary rays thin, obsenre; color, light brown tinged with yellow, the sap-wood lighter ; speeific gravitr, 0.8126 ; ash, 1.50 ; largely used in Texas in the mannfacture of cotton-baskets, and in New Mexico for the frames of pack-saddles.

Saponin, common in several species of the genus, and affording a substitute for soap, may be looked for in the fruit and roots of this tree.

55.-Sapindus Saponaria, Linnæns,

Spec. 1 ed. 367 ; Swartz, Obs. 152.-Lamarck, Ill. ii, 441, t. 307.-Willdenow, Spec. ii, 468.-Aiton, Hort. Kew. 2 ed. ii, 424.-Titford, Hort. Bot. Am. 6I.-Poiret iu Lamarck, Dict. vi, 663.-Desconrtilz, Fl. Med. Antilles, iv, 121, t. 261.-De Candolle, Prodr. i, 607.Spach. Hist. Veg. iii, 53.-Eaton, Manual, 6 ed. 323.-Macfadyen, Fl. Jamaica, 159.-Rafinesque, New Fl. 22.-Nuttall, Sylva, ii, 72; 2 ed. 20.-Richard, Fl. Cnba, 280.—Grisebach, Fl. British West lndies, 126.—Baillon, Hist. Pl. v, 349, f. 353.-Vasey, Cat. Forest Trees, 10.-Chapman in Conlter's Bot. Gazette, iii, 3; F1. S. States, Suppl. 613.

SOAPBERRY.

Semi-tropical Florida, bay Biscayne, cape Sable, Caximbas bay, Thousand Islands, Key Largo, Elliott's Key; in the West Indies.

A small tree, 6 to 10 meters in height, with a trunk sometimes 0.38 meter in diameter; common on cape Sable, and reaching its greatest development within the United States ou the Thousand Islands and along the shores of Caximbas bay.

Wool heavy, rather hard, close-grained, compact; medullary rays mmerous, thin; color, light brown tinged with yellow, the sap-wood yellow; speeific gravity, 0.8367 ; ash, 4.34.

The fruit and roots rich in saponin and nsed in the West Indies as a substitute for soap (Guibourt, Hist. Drogues, 7 ed. iii, 598.-U. S. Dispensatory, 14 ed. $\mathbf{7 5 1}$); the round, black seeds for beads, buttons, and small ornaments.
56.-Hypelate paniculata, Cambesseles,

Mem. Mus. Xviii, 32.-Don, Miller's Dict. i, 671.-Richard, Fl. Cuba, 295.-Grisebach, Fl. Britislu West Indies, 1:7.-Chapman, Fl. S. States, 79.-Vasey, Cat. Forest Trees, 10.

Melicocca paniculata, Jussieu in Mem. Mus. iii, 187, t. 5.-De Candolle, Prodr. i, 615.-Nuttall, Sylva, ii, 74, t. 66; 2 ed. ii, 21, t. 66.

Exothea oblongifolia, Macfadyen, F]. Jamaica, 232.
H. oblongifulia, Hooker in Loudon Jour. Bot. iii, 226, t. \%.

INK WOOD. IRON WOOD.

Semi-tropical Florida, east coast, Mosquito inlet to the sonthern keys; in the West Indies. A tree often 12 meters in height, with a trunk 0.45 meter in diameter.
Wood very heavy, exceedingly hard, very strong, close-grained, susteptible of a good polish, checking in drying; mednllary rays obscure; color, bright reddish-brown, the sap-wood lighter; specific gravity, 0.9533 ; ash, 1.25 ; used in ship-building, for the handles of tools, aud piles; resisting the attacks of the teredo.

57.-Hypelate trifoliata, Swartz,

Fl. Ind. Occ. 1i, 655, t. 14.-Delessert, Icon. iii, t. 39.-De Candolle, Prodr. i, 6I4.-Chapman, F1. S. States, 78.-Grisebach, Fl British West Indies, 127; Cat. P1. Culba, 46.

WH1TE IRON WOOD.

Semi-tropical Florida, Upper Metacombe and Unbrella Keys; in the West Indies.
A tree sometimes 12 meters in leight, with a trink 0.45 to 0.60 meter in diameter.
Wood very heavy, hard, close grained, compact, susceptible of a finc polish, durable in contact with the soil; medullary rays thin, ohscure; color, rich light brown, the sap-wood darker' ; specific gravity, 0.9102; ash, 1.38; used in ship-building, for the handles of tools, posts, ete.

58.-Acer Pennsylvanicum, Limens,

Spec. 1 ed. 1055.-Aiton, llort. Kew. iii, 435.-Michanx, Fl. Bor. Am. ji, 252.-Willdenow, Spec. iv, 9e9; Ennm. i, 1045.-Desfontaines, Hist. Arb. i, 391. -Nouvean Duhamel, iv, 3:-Trittinick, Archiv. i, t. 11.-Hayne, Dend. Fl. 210.-Elliott, Sk. i, 451.-Torres, Fl. U. S. 397 ; Compend. Il. N. States, 170 ; Fl. N. York, i, 135.-Sprengel, Syst. ii, :224.-Eaton, Manual, 6 ed. 2.-Torrey \& Gray, Fl. N. America, i, :46.-Hooker, Fl. Bor.-Am. i, 111 .-Emerson, Trees Massachnsetts, 496; 2 ed. ii, 566 \& t.-Gray, Genera, ii, 200, t. 174, f. 1-3; Mamtal N. States, 5ed. 119.- Richardson, Aretic Exped. 422.-Darby, Bot. S. States, :205.-Cooper in Smithsonian Rep. 1858, 251.-Chapman, Fl. S. States, 80.-Curtis in Fep. Geological Surv. N. Carolina, 1860, iii, 52.-Bnchenau in Bet. Zeit. xix, 285, t. 2, f. 24.-Wool, Cl. Book. 246; Bot. \& Fl. 7.1.-Koch, Dendrologie, i, 521.-Baillon, Hist. Pl. v, 373, f. 418-420.-Vasey, Cat. Forest Trees, 10.—Sears in Bull. Essex Inst. xiii, 175.-Bell in Geologieal Rep. Canada, 1879-'80, 53 .
A. Canadense, Anarshall, Arbustum, 4.
A. striatum. Du Roi, Diss. 58 ; Marbk. i, 8, t. 1.-Wangenheim, Amer. 29, t. 12, f. 2.-Lamarck, Dict. ii, 381.-Ehrhart, Beitr
 ii, 175, t. 47.-Pursh, Fl. Am. Sept. i, 267.-Nuttall, Genera, i, 258.-De Candelle, Prodr. i, 593.-Watsor, Dend. Brit. j, t. 70.-Den, Miller's Dict. i, 648.-Beck, Bot. 64.-Loudon, Arboretum, i, 407 \& t.-Spach, Hist. Veg. iii, 85 ; Ann. Sci. Nat. 2 ser. ii, 162.-Dietrich, Syn. 1281.—Eaton d. Wright, Bot. 112.-Bigelow, Fl. Boston. 3 ed. 407.-Browne, Trees of America, 76 .

STRIPED MAPLE. MOOSE WOOD. STRIIED DOGWOOD. GOOSE-FOOT MAPLE. WIILSTIE WOOD.

Valley of the Saint Lawrence mer (Ha-Ha bay), northern shores of lake Ontario, islands of lake Huron, sonth through the northern Atlantic states, and along the Alleghany monntains to northern Georgia, west through the lake region to northeastern Minnesota.

A small tree, 6 to 10 meters in height, with a trunk 0.15 to 0.20 meter in diameter; eool ravines and mountain sides.

Wood light, soft, close-grained, compaet, satiny; mednllary rays numerous, thin; eolor, light brown, the saprood lighter; specitie gravity, 0.5299; ash, 0.36.

59.-Acer spicatum, Lamarek,

Dict. ii, 381.-Aiton, Hort. Kew. iii, 485.-Persoon, Syn. i, 417.-De Candolle, Prodr. i, 593.-Don, Miller's Dict. i, 648.-Audubon, Birds, t. 134.-Penn. Cycl. i, 77.-Eaten, Manual, 6 cd. 2.-Beck, liot. 64.-Spach, Hist. Vog. 87 ; Ann. Sci. Nat. 2 ser. ii, 163.London, Arboretum, i, 406, t. 26.-Terrey \& Gray, Fl. N. America, i, 246.-Dietrich, Syn. ij, 1281.-Eaton \& Wright, Bet. 112.Torrey, Fl. N. York, i, 185.-Browne, Trces of America, 74.-Emersen, Trees Massachnsetts, 497; 2 ed. ij, 567 \& t.-Parry in Owen's Rep. 610.-Richardson, Aretic Exped. 422.-Chapman, Fl. S. States, 80.-Curtis in Rep. Geelogical Surv. N. Carolina, 1860, iii, 52.-Wood, Cl. Boek, 287 ; Bot. \& Fl. 74.-Gray, Manual N. States, 5 ed. 1i9.-Koch, Dendrologie, i, 522.-Macoun in Geolegical Rep. Canada, 1875-76, 192.-Sears in Bull. Essex Inst. xiii, 175.-Bell in Geological Rep. Canada, 1879-80, 54c.-Nichelson in London Garil. Chronicle, 1881, 17%.
A. Pennsylvanicum, Du Roi, Diss. 61 ; Harbk. i, 22, t. 1 [net Linnælıs].-Waugenheim, Amer. 82, t. 12, f. 30.-Marshall, Arbustnm, 2.
A. parviflornm, Ehrhart, Beitr. iv, 25 ; vi, 40.-Mench, Neth. 56.
A. montanum, Aiton, Hert. Kew. iij, 435; 2 ed. v, 447 (excl. syn. striatum).-Michanx, Fl. Bor.-Am. ji, 253.-Willdenow, Spec. iv, 988 ; Euum. i, 1045.-Desfontaines, Hist. Arb. i, 391.-Nouvean Dnhamel, iv, 33.-Trattinick, Archiv. i, t. 13.-Pnrsl, Fl. Am. Sept. i, 267.-Nnttall, Genera, i, 253.-Guimpel, Otte \& Hayne, Abb. Holz. 59, t. 48.-Hayue, Dend. Fl. 213.-Elliott, Sk. i, 452.-Torrey, Fl. U. S. 398 ; Compend. Fl. N. States, 170.-Sprengel, Syst. ii, 224. llooker, Fl. Bor.-Am. i, 111.-Bigelow, Fl. Boston. 3 cd. 408.-Darby, Bot. S. States, 265.

MOUNTAIN MAPLE.

Valley of the Saint Lawrence river, west along the northern shores of the great lakes to northern Minuesota and the Saskatchewan region, south throngh the northern states, and along the Alleghany mountains to northern Georgia.

A small tree, sometimes 8 to 10 meters in height, with a trunk 0.15 to 0.20 meter in diameter, or often a tall shrub; cool woods and monntain ravines, reaching its greatest development on the western slopes of the Alleghany mountains of North Carolina and Tennessee.

Wood light, soft, elose-graned, compaet; mednllary rays inconspicuous; color, light brown tinged with red, the sap-wool lighter; specific gravity, 0.5330 ; ash, 0.43 .

60.-Acer macrophyllum, Pursh,

Fl. Am. Sept. i, 267.-Poinet, Suppl. v, 669.-Nuttall, Genera, i, 253; Sylva, ii, i九. t. Gi; :2 ed. ii, 24, t. 67.-Do Candolle, Prodr. i, 594.-Sprengel, Syst. ii, 225.-Penn. Cycl. i, 78.-Eaton, Manaal, 6 ed. 2.-Mooker, Fl. Bor. Am. i, 11』, t. 38. -Don, Miller's Dict. i, 648.-Spach in Ann. Sci. Nat. 2 ser. ii, 105.-Torrey \& Gray, Fl. N. America, i, 246.-Hooker \& Arnott, Bot. Beceliey, 327.Dietrich, Syn. ii, 1281.-Loudon, Arboretum, i, 408, t. 28, f. 117, 118. - Eaton \& Wright, Bot. 112.-Bentham, Pl. Hartweg. 301.Browne, Trees of America, 78.-Richardson, Arctic Exped. 423.-Durand in Jour. Pliladelphia Acad. 1855, 84.-Torrey in Pacific R. R. Rep. iv, 74 ; Bot. Mex. Bonndary Survey, 47; Bot. Wilkes Exped. 258.- Newberry in Pacific R. R. Rep, vi, 21, 6\%.-Cooper in Pacitic R. R. Rep. xii, 28, 57; Smithsonian Rep. 1858, 258.-Lyall in Jour. Linwan Soc. vii, 13., 144.-Bolander in Proc. California Acad. iii, 78.-Wood, Cl. Book, 287; Bot. \& Fl. 74.-Rothrock in Smithsonian Rep. 1867, 334.-Koch, Dendrolocie, i, 523.-Gray in Proc. Am. Acad. viii, 379.-Brower \& Watson, Bot. California, i, 107.-Vasey, Cat. Forest Trccs, 10.-Macoun in Geological Rep. Canada, 1875-76, 192.-G. M. Dawson in Canadian Nat. new ser, ix, 330.-Nicholson in London Gard. Claronicle, 1881, 10.
A. palmatumt, Rafincsque, New Fl. \& Bot. i, 48 [wot Thuuberg].

BROAD-LEAVED MAPLE.

Coast of Alaska, from latitude 55° south along the islands and coast of British Colnmbia, through western Washington territory and Oregon, and along the Califoruia Coast rauges and western slopes of the Sierra Nevada to the San Bernardino monntains and Hot Spring valley, San Diego connty (Parish Brothers), not ascending above 4,000 feet altitude.

A tree 24 to 30 meters in height, with a trink 1.20 to 1.50 meter in diameter; along streams and river bottoms, reaching its greatest development on the rich bottom lands of the Cognille and other rivers of southern Oregon, where, with the California lamrel, it forms dense, heary forests.

Wood light, soft, not strong, elose-grained, compact, easily worked, suseeptible of a good polish; mednllary rays numerous, thin; color, rich light brown tinged with red, the sap-wood lighter, often nearly white; specifie gravity, 0.4909 ; ash, 0.54 ; largely used in Oregon in the manufacture of furniture, for ax and broom handles, frames of snow-shoes, ete.; specimens with the grain beautifully eurled and contorted are common and valued in cabinet-making.

> 61.-Acer circinatum, Pursu,

Fl. Aur. Sept. i, 266.-Poiret, Suppl. v, 669.-Nuttall, Gencra, i, 253; Jonr. Philadelphia Acad. vii, 16 (excl. syn.); Sylva, ti, 80, t. 67; 2 ed. ii, 27, t. 67.-De Candolle, Prodı. i, 595.-Sprengel, Syst. ii, :205.-Penn. Cycl. i, 79.-Eaton, Mannal, 6 ed. 2.-Don,
 Gras, Fl. N. Anerica, i, 24.-Hooker, Fl. Bor.-Am. i, 112, t. 39.-Laton \& Wright, Bot. 112.-Dictrich, Syn. ii, 1282.-Browne, Trees of America, 91.-Richardson, Arctic Exped. 422.-hindley in Paxton's Fl. Gard. ii, 156, t. 210 (London Gard. Chronicle, 1851, 791, f. 211).-Newberry in Pacific R. R. Rep.vi, 21, 69.-Cooper in Pacific 12. R. Rep. xii, 28,57; Suithsonian Rep. 1858, 258.Lyall in Jour. Linnzan Soc. vii, 134.-Gray in Proc. Am. Acad. viii, 379.-Wood, Cl. Book, 287, Bot. \& Fl. 74.-kuelt, Dendrologie, i, 563.-Torrey, Bot. Wilkes Exped. 258. - Brewer \& Watson, Bot. California, i, 107.—Vasey, Cat. Forest Trees, 10.Hall in Conlter's Bot. Gazette, ii, 85. Maculn in Geological Rep. Canada, 1875-76, 192.-G. M. Dawson, Canadian Nat. new ser. ix, 330.-Nicholson in London Gard. Chronicle, 1881, 10.
A. virgatum, Ratinesque, New F1. \& Bot. i, 48 .

VINE MAPLE.

British Columbia, valley of the Fraser river (Yale) and probably farther north, southward through Washington territory and Oregon, west of the Cascade mountains to the Mount Shasta region of northern Califormia, rarely ascending to 4,000 feet altitude.

A small tree, sometimes 8 to 12 meters in height, with a trunk 0.20 to 0.30 meter in diameter; along streams; the stems otten prostrate and forming dense, impenetrable thickets.

Wood heavy, hard, not strong, close-grained, compact; medullary rays ummerons, thin; color, light brown or often nearly white, the sap-wood lighter; specifie gravity, 0.6660 ; ash, 0.39 ; used as fuel ; by lumbermen for ax and shovel handles, and by the coast Indians for the bows of fishing nets.

62.-Acer glabrum, Torroy,

 Anerica, i, 247, 684.-Katon \& Wright, Bot. 112.-Walpers, Rep. i, 409.-Nnttall, Sylva, ii, 86; 2. cd., ii, 33.-Newberry in Pacific R. R. Rep. vi, 69.-Cooper in Smithsonian Rep. 1868, 458; l’acitic R. R. Rep. xii, 51,57; Am. Nat. iii, 406.-Eugelmann in Trans. Am. I'hil. Soc. new ser. xii, 187. -Gray in Am. Jour. Sci. 2 ser. xxxiv, 259; Proc, Philadelphia Acad. 186:3, 59.-I'orter in Hayden's Rep. 1870. 474; 1871,480.-Watson in King's Rep. v, 5£.-Porter \& Coulter, Fl. Colorado; Hayden's Surv. Misc. Pub, No. 4, 19.Conller in LIayden's IRep. 1878, 763.-Maconn in Geological Rep. Canada, 1875-76, 19\%.-Brewer \& Watson, Bot. California, i, 107.Rothrock in Whecler's Rep. vi, 83. - Nicholson in 1.ondon Gard. Chronicle, 1881, 750.
A. barbatum, Donglas in Hooker, Fl. Bor.-Am. i, 113.-London, Arboretum, i, 420, f. 125 (excl. syn.).-
A. Dougiasii, Hooker in London Jour. Bot. vi, 77, t. 6 .
A. tripartitum, Nuttall in Torrey \mathcal{A} Gray, ll. N. America, i, 247.-Dietrich, Syn. ii, 1281.-Eaton \& Wright, Bot. 112.Wulpers, Rep. i, 109.-Nuttall, Sylva, ii, 85, t. 71; $2 \mathrm{ed} . \mathrm{ii}, 33$, t. 71 .-Gray in Mem. Am. Acad. new ser. iv', 28; Pacifio R. R. Rep. iv, 73.-Newberry in Paeific R. R. Rep. vi, 69.

DWARF MAPLE.

British Columbia, valley of the Fraser river and probably farther north, south through Washington territory, Oregon, and along the Sierra Nevada of California to the Yosemite valley; east along the mountain ranges of Idaho and Montana to the eastern base of the Rocky mountains, south through Colorado and Utal, in the east Humboldt Range, Nevada, and in the monntain ranges of western New Mexico and eastern Arizona.

A small tree, 8 to 12 meters in lieight, with a trunk sometimes 0.30 meter in diameter, or more ofteu reduced to a low shrmb 1 to 2 meters in height; borders of streams, reaching its greatest development in the mountain cañons of western New Mexico aud castern Arizona.

Wood heary, hard, close-grained, compact; mednlary rays mumerous, thin; color, light brown, or often uearly white, the sap-wood lighter; specific gravity, 0.6028 ; ash, 0.30 .

63.-Acer grandidentatum, Nuttall;

Torrey \& Gray, Fl. N. Anerica, i, 247.-Dietrich, Syn. ii, 1283.-Eaton \& Wright, Bot. 112.-Walpers, Rep. i, 409.-Nnttall, Sylva, 1i, 82, t. 69; 2 ed. ii, 29, t. 69.—Watson in King's Rep. v, 52 ; PI. Wheeler, 7.-Porter in Hayden's Rep. 1871, 480.—Vasey, Cat. Forest Trees, 10.-Parry in Am. Nat. ix, 201, 268.-Rothrock in Wheeler's Rep. vi, 83.-Rnsby in Bull. Torrey Bot. Club, ix, 106.Watson in Proe: Am. Aead. xvii, 338.-Nicholson in London Gard. Chronicle, 1881, 172.

Western Montana, headwaters of the Columbia river (Tuttall), cañons of the Wahsatch mountains, Utah, and south throngh eastern Arizona to southwestem New Mexico (Mogollon monntains, E. L. Greene), and reported in the ranges east of the Rio Grande; southward into Coahnila (Palmer).

A small tree, rarely exceeding 10 meters in height, with a trank 0.20 to 0.25 meter in diameter; aloug streams; not common.

Wood heavy, hard, close-grained, compact; medullary rays numerous, thin, distinct; color, light brown, or often nearly white; specific gravity, 0.6902; ash, 0.64 .

64.-Aicer saccharigum, Wangenheim,

Amer. 36, t. 11, f. 26.—Lamarck, Diet. ii, 379.—Walter, Fl. Caroliniana, 251.—Aiton, Hort. Kew. iii, 434; 2 ed. v, 447.-Ehrhart, Beitr. iv, 34.-Persoon, Syn. i, 417.-Nouvean Duhanel, iv, 29, t. 8.-Willdenow, Spec. iv, 985; Ennm. ii, 1044.-Desfontaines, Hist. Arb. i, 392.-Trattiniek, Arehiv. i, t. 3.-Michaux f. Hist. Arb. Am. ii, 218, t.15; N. American Sylva, 3ed. i, 153, t. 42.-Titford, Hort. Bot. Am. 105.-Pursh, Fl. Am. Sept. i, 266.—Eaton, Mamual, 44; 6 cd. 2.-Nutiall, Genera, i, 253.-Harne, Dend. Fl. 214.-Elliott, Sk. i, 4 io.-Richarlson, Franklin Jour. 26; Aretic Exped. 422.-De Candolle, Prodr. i, 595.-Torrey, Fl. U. S. 396; Compend. Fl. N: States, 120 ; Fl. N. York, i, 135.-Sprengel, Syst. ii, 225.-Penn. Cyel. i, 79. -Hooker, Fl. Bor. Am. i, 113. -Don, Miller's Diet. i, 650.-Beck, Bot. C3.-Bigelow, Fl. Boston. 3 ed. 406.-Spach, Mist. Veg. iii, 170; Amm. Sci. Nat. 2 ser. ii, 99.-Loudom, Arboretum, i, 411, t. 31, t. 122.-'Torrey \& Gray, FI. N. America, i, 248.-Eaton \& Wright, Bot. 112.-Dietrieh, Syn. ii, 1282. - Walpers, Rep. i, 410.Nees, Pl. Med. 5.-Nuttall, Sylva, ii, 88; 2 ed. ii, 35.-Browne, Trees of America, 83.-Emerson, Trees Massachnsetts, 480 ; 2 ed. ii, $\operatorname{sis} \mathrm{E}$ t.-Gray, Genera, ii, 200, t. 174 ; Mannal N. States, 5 efl. 119.-Darlington, Fl. Cestrica, 3 cd. 45.-Darby, Bot. S. States, 205.-Parry in Owen's Rep. 610.-Chapman, Fl. S. States, 80.-Lesquereux in Owen's 2d Rep. Arkansas, 35t.-Wood, Cl. Book,
 206.-Vasey, Cat. Forest Trees, 10.-Gnibourt, Hist. Drogues, \boldsymbol{z} ed, iii, 606.-Ward in Ball. U. S. Nat. Mus. No. 22, 73.-Sears ia Bull. İssex Inst. xiii, 175.-Bell in Geological Rep. Canada, 1879-00, 51c.-Ridgway in Proc. U. S. Nat. Mus. $1882,62$.
A. saccherum, Marshall, Abbustum, 4.
A. barbatum, Michatux, Fl. Bor.-Am. ii, 253.-Willdenow, Spoe. iv, 989.-Poiret, Suppl. ii, 575.-Pursh, Fl. Am. Scpt. i, 266.Nottall, Genera, i, 255.-Elliott, Sk. i, 451.—De Candolle, Predr. i, 505.-Torrey, Fl. U. S. 396 ; Compend. Fl. N. States, 169.-Eaton, Mannal, 6 cd. 2.-Sprengel, Syst. ii, 224.-Don, Miller's Dict. i, 649.-Beck, Bot. 63.-Spach, Hist. Veg. iii, 178; Ann. Sci. Nat. 2 sèr. ii, 118.-Torrey \& Gray, Fl. N. America, i, 249, 684.-Eaton \& Wright, Bot. 112.-Curtis in Rep. Geological Surv. N. Carolina, 1860, iii.51.

SUGAR MAPLE. NCGAL TREF. HARD MAPLE. NOCK MAPLE.

Soathern Newfoundland, valleys of the Saint Lawrence and Sagnenay rivers, shores of lake. Saint John, west along the northern shores of the great lakes to Lake of the Woods; south tirough the northern states and along the Alleghany monntains to northern Alabama and the Chattahoochee region of west Florida (var. Floridanum, Chapman, l. e.); west to Minnesota, eastern Nebraska, casteru Kansas (rare), and eastern Texas.

A tree of great conomic value, 24 to 36 meters in height, with a trmak 0.60 to 1.20 meter in diameter, or towand its southwestern limits greatly reduced in size; rich woods, often forming extensive forests, and reaching its greatest development in region of the great lakes.

Wood heavy, hard, strong, tongh, close-grained, compact, suseeptible of a good polish; medullary rays numerons, thin; color, light brown tinged with red, the sap-wood lighter; speeific gravity, 0.6912; ash, 0.54 ; largely used in the manufacture of furniture, shoe lasts and pegs, saddle-trees, in turnery, for interior finish, and flooring; in ship-building for keels, keelsons, shoes, etc., and furnishing valuable fuel; "eurled" maple and "birds-eye" maple, accidental forms in which the grain is beantifully curled and contorted, are common and highly prized in cabinet-making.

Maple sugar is principally made from this species; the ashes of the wood, rich in alkali, yield large quantities of potash.

> Var. nigrum, Torrey \& Gray,

Fl. N. America, i, 248.-Torrey, Fl. N. York, i, 136.-London, Arboretum, i, 411.-Browne, Trces of America, 84.-Gray, Manual N. States, 5 ed. 119.-Vasey, Cat. Forest Trees, 10.—Bell in Geological Rcp. Cauada, 1879-'80, 54c.
A. saccharinum, Michaux, FI. Bor.-Am. ii, 252 [not Wangenheim].

> A. nigrum, Michanx f. Hist. Arb. Am. ii, 238, t. 16; N. American Sylva, 3 ed. i, 163, t. 43.-Pursh, Fl. Am. Sept. i, 266.Poiret, Suppl. v, 669.-Nuttall, Genera, i, 253.-Elliott, Sk. i, 450 .-Do Candolle, Prodr. i, 595.-Torrey, Fl. U. S. 397 ; Compend. Fl. N. States, 170.-Sprengel, Syst. ii, $225 .-D o n$, Miller's Dirt. i, 650.-Beck, Bot. 63.-Eaton, Manual, 6 ed. 2.-Spach, Hist. Veg. iii, 104 ; Ann. Sci. Nat. 2 ser. ii, 170.-Dictrich, Ssn. ii, 128..-Eaton \& Wright, Bot. 112.Koch, Dendrologie, i, 532.-Gray in Am. Nat. vi, 767 ; vii, 422 .-Woorl, Cl. Book, 236 ; Bot. \& Fl. 74.

BLACK SUGAR MAPLL.

Western Vermont, shores of lake Champlain, westward to sonthern Missouri, south through Tennessee to northern Alabama, the valley of the Chickasaw river, Mississippi (Mohr), and southwestern Arkansas (Fulton, Letterman).

A large tree along streams and river bottoms, in lower ground than the species with which it is connected by numerous intermediate forms.

Wood heavier than that of the species; specific gravity, 0.6915 ; ash, 0.71 .

65.-Acer dasycarpum, Ehrhart,

Beitr. iv, 24.—Mœnch, Meth. 56.—Persogn, Syn. i, 417.—Willdenow, Spce. iv, 985 ; Enum. ii, 1044.—Aiton, Hort. Kew. 2 ed. v, 446.Pursh, Fl. Am. Sept. i, 266.-Nuttall, Genera, i, 252 ; Sylva, ii, 87 ; 2 ed. ii, 35.-Hayne, Deud. Fl. 213.-Elliott, Sk. i, 449.Torrey, Fl. U. S. 396 ; Compend. Fl. N. Statcs, 169; Fl. N York, i, 136, t. 18; Nicollat's Rep: 147.-Sprengel, Syst. ii, 225.Tausch, Regensb. Fl. xii, 853 .-Eaton, Manual, 6 ed. 2.-London, Arboretum, i, 423, fig. 129 \& i.-Hookor, Fl. Bor.-Am. i, 113; Jonr. Bot. i, 200.-Bigelow, F1. Boston. 3 ed. 407.-Torrey \& Gray, Fl. N. America, i, 248.-Eaton \& Wright, Bot. 112.-Emerson, Trees Massachnsetts, 487; 2 ed. ii, 556 \& t.-Parry in Owen's Rep. 610.-Darlington, Fl. Cestrica, 3 ed. 46.-Richardson, Arctic Exped. 423.-Darby, Bot. S. States, 265.-Cooper in Smithsonian Rep. 1858, 251.-Chapman, Fl. S. States, 81.-Curtis in Rep. Geological Surv. N. Carolina, 1860, iii, 51.-Lesquereux in Owen's ad Rep. Arkansas, 354.-Wood, Cl. Book, 286; Bot. \& Fl. 74.-Engelmanu in Trans. Am. Phil. Soc. new ser. xii, 187.-Buchenan in Bot. Zeit. xix, 285, t. 11.—Gray, Manual N. States, 5 ed. 119.-Vasey, Cat. Forest Trees, 10.-Coulter's Bot. Gazette, $\mathbf{v}, 88 .-K o c h$, Dendrologie, $\mathrm{i}, 541$. -Sears in Bull. Essex Inst. xiii, 3.-Bell iu Geological Rep. Canada, 1879-80,53c.-Nicholson in London Gard. Chrouicle, 1881, 136, f. 24.-Ridgway in Proc. U. S. Nat. Mas. 1882, 62.
A. 8accharinum, Linnæus, Spec. 1 ed. 1055.
A. rubrum, var. pallidum, Aiton, Hort. Kow. iii, 434.
A. eriocarpum, Michanx, Fl. Bor.-Am. ii,2"3.-Desfontaines in Ann. Mus. vii, 412, t. 25, f. 1; Hist. Arb. i, 392.-Poiret, Suppl. ii, 573.-Trattiuick, Archiv. i, t. 8.-Micharax f. Hist. Arb. Am. ii, 205, t. 13; N. American Sylva, 3 ed. i, 146, t. 40.Nouvean Duhamel, iv, 30.-Do Candolle, Prodr. i, 595.-Don, Miller's Dict. i, 650.-Penn. Cycl. i, 79.-Beck, Bot. 63.Spach, Ilist. Veg. iii, 116 ; Ann. Sci. Nat. 2 ser. ii, 177.-Darlingto n, Fl. Cestrica, 2 ed. 245.-Dietrich, Syn. ii, 12\$2.-Browne, Trees of America, 95.-Mcehan in Proc. Pbiladelphia Acad. 1868, 140.

soft maple. white maple. silyer maple.

Valley of the Saint John's river, New Brunswick, to Ontario, sonth of latitude 45°, sonth to western Florida; west to eastern Dakota, eastern Nebraska, the valley of the Blue river, Kansas, and the Indian territory.

A large tree, 18 to 30 or, exceptionally, 36 meters in height, with a trunk 1.20 to 1.80 meter in diameter; along streams and intervales, in rich soil; most common west of the Alleghany mountains, and reaching its greatest development in the basin of the lower Ohio river.

Woorl light, hard, strong, brittle, close-grained, compact, easily worked; medullary rays numerons, thiu; epecific gravity, 0.5260 ; ash, 0.33 ; somewhat used in the manufacture of cheap furniture, for flooring, ete; maple sngar is occasionally made from this species.

4 rol:

66.-Acer rubrum, Linnans,

 Abbot, Insects Georgia, ii, 93.-Aiton, Mort. Kew. iii, 434 (oxcl. var.) ; 2 ca. r, 44.-Danch, Doth. 56.-Michaux, l'l. Bor.-Am.

 113; Amn. Sci. Nat. 2 ser. ii, 176.-London, Arboretm, i, 424, f. 130 \& t.-.Torroy \& Gras, Fl. N. America, i, 249, 684.-Diotrich, Syn.

 Sylva, ii, E ; ; ed. ii, 34.—Darlington, Fl. Cestrica, 3 ed. 4G.-Darby, Bot. S. States, 205.-Cooper in Smithsonian Rep. 1858, 251.Chapuma, ll. S. States, 81.-Curtis in Rep. Geological Surv. N. Carolina, 1860, iii, 20. -Lesquerenx in Owen's $2 d$ Rep. Arkansas, 35-H.Wood, Cl. Dook, 186 ; Bot. \& Fl. 74.-Engelmann in Trins. Am. Phil. Soc. new ser. xii, 187.-Porcher, Resources S. Forests, 79.-buchenau in Bot. Zeit. xix, 285, t. 11.-Gray, Manual N. States, 5 ed. 119.-Koch, Dendrologie, i, 54z.—Young, Bot. Texas, 206.-Vasey, Cat. Forest Trecs, 10.-Macoun in Geological lep. Canadar, 1875-976, 192.-Sears in Bnll. Essex Inst, xiji, 176.-Bell in Geoloxical htl. Canada, $1870-80,54^{c}$.-Nicholson in London Gard. Chronicle, 1881, 172, f. 30, 31.-Ridgway in Proc. U. S. Nat. Mus. 1882. 162.
? A. glaucum, Marshall, Arbustum, 2.
? A. Caroliniana, Walter, Yl. Caroliniana, 251.
A. coccineum, Michaux f. Hist. Arb. Am. ii, 203 ; N. Amerıcan Sylva, 3 ed. i, 142.
A. sanguineum, Spach, IIst. Veg. iii, 115; Am, Sci. Nat. 2 ser. ii, 176.—Dietrich, Syn. ii, 1282.

RED MAPLE. SWAMP MAPLE. SOFT MAPLE. WATER MAPLE.
New Brunswick, Quebee and Ontario, south of latitude 49°, north and west to the Lake of the Woods, south to Indian and Caloosa rivers, Florida, west to eastern Dakota, eastern Nebraska, the Indian territory, and the valley of the Trinity river, Texas.

A large tree, 20 to 30 or, exceptioually, 32 meters in height, with a trunk 0.90 to 1.50 meter in diameter; borders of streams and low, wet swamps, reaehing its greatest development in the valleys of the lower Wabash and Yazoo rivers.

Wood heavy, hard, not strong, elose-grained, compact, easily worked; medullary rays mumerous, obscure; color, brown, often tinged with red, the sap-wood lighter; specific gravity, $0.6178 ;$ ash, 0.37 ; largely used in cabinetmaking, turnery, and for woodenware, gan stocks, ete.; an accidental variety with undulating grain is highly valued.

Ink is occasionally made, domestically, by boiling the bark of this species in soft water and combining the tamin with sulphate of iron; formerly somewhat used in dyeing.

Var. Drummondii.

A. Drummondii, llooker \& Arnott in Hooker, Jour. Bot. i, 199.-Nnttall, Sylva, ii, 83, t. 70; 2 ed. ii, 30, t. 70.

Southern Arkansas, eastern Texas, western Louisiana, and sparingly through the Gulf states to southern Georgia.

Well characterized by its obovate or trumeate leaves, the base entire or slightly crenulate-toothed, densely covered, as well as the petioles and young shoots, with a thick white tomentum; frnit eonvergent, the wings bright red, even when fully ripe.

A large tree, in deep, wet swamps, conneeted with the speeies by numerous intermediate forms of Georgia, Florida, and Alabama.

Wood lighter than that of the speeies; specifie gravity, 0.5459 ; ash, 0.34 .

67. - Negundo aceroides, Monch,

Meth. 334.—Torrey \& Gray, Fl. N. America, i, 250.-Eaton \& Wright, Bot. 327.-Torrey iu Nicollet's Rep. 147; Fremont's Rep. 88; Iacific R. R. Rep. iv, 73.-Nuttall, Sylva, ii, 92; 2 ed. ii, 38.-Gray in Jour. Boston Soc. Nat. Hist. vi, 166 ; Mem. Am. Acad. new ser. iv, 29 ; v, 309; Genera, ii, 202, t. 175 ; Pacific R. R. Rep. xii, 41 ; Manual N. States, 5 ed. 120.-Richardson, Aretie Exped. 423.-Parry in Owen's Rep. 610.-Darlington, Fl. Cestrica, 3 ed. 46.-Cooper in Smithsonian Rep. 1858 , 251 ; Am. Nat. iii, 306.-Chapman, Fl. S. Stafes, 81.-Curtis in Rep. Geological Surv. N. Carolina, 1860, iii, 53.-Wood, Cl. Book, 287 ; Bot. \& Fl. 74.-Engelmann in Trans. Am. Ihil. Soc. new ser. xii, 188. -Forter in Hayden's Rep. 1870, 474.-Watson in King's Rep. v, 52 ; Pl. Wheeler, 7.-Morter \& Con]tor. Fl. Colorado; Haydon's Surv. Misc. Pub. No. 4, 19.-Macoun \& Gibson in Trans. Bot Soc. Bdinburgh, xii, 319.-Young, Bot. Texas, 207.-Vasey, Cat. Forest Trees, 10.-Macomn in Geological Rep. Canada, 1875-76, 192.-Mrower \& Watson, Bot. California, i, 108.-Rothrock in Wheeler's Rep. vi, 84.-Hemsloy, Bot. Am.-Cent. i, 214.Scars in Jull. Essex Inst. xiii, 1;6.-Bell in Gcological Rep. Canida, 1870-80, 48c.-Nicholson in London Gard. Chronicle,1881, 815.-Ridgway in I'roc. U. S. Nat. Mus. 1882, 63.-Watson in Proc. Am. Acad. xvii, 338.

Acer Negundo, Linnæus, Spec. 1 ed. 105t. -Waugenheim, Amer. 30, t. 12, f. 29.-Marshall, Arbastum, $2 .-1$ Linarark, Diet. ii, 380.-Walter, Fl. Caroliniana, 250.-Aiton, Hort. Kenv. iii, 436; 2ed. v, 448.-Michaux, Fl. Bor.-Am. ii, 253.-Persoon, Syn. i, 418.-Desfontaines, Hist. Arb. i, 391.-Willdcuow, Spec. iv, 992; Ennm. ii, 1046.-Nonveau Duhamel, iv. 27, t. 7.-Trattiniek, Archiv. i, t. 40.-Michanx f. Mist. Arlo. Am. ii, 247, t. 18; N. American Sylva, 3 ed. i, 172, t. 46.-Pursh, FI. Am. Sept. i, 268.-Hayne, Dend. FI. 216.-Elliott, Sk. i, 452.—James in Long's Exped. ii, ti9.-Torrey, Fl. U. S. 298; Compend. Fl. N. States, 170; Ann. Lyc. N. York, ii, 1z2; Emory's Rep. 407.-Sprengel, Syst. ii, 220゙-Gnimpel, Otto \& Hayne, Ablj. Holz. 119, t. 95.-Eaton, Manual, 6 ed., 2.-Dietrich, Syn. ii, I283.-Loudon, Arlsoretmm, i, 460 , t. 46,47 --Dariby, Bot. S. States, $265 .-$ Bucheuau in Bot. Zeit. xir, $285,1.11 \&$ figs.-Koch, Dendrologie, i, 544.-Baillon, Hist. Pl. v, 374, f. 426.

Negundium fraxinifolium, Rafinesque, Med. Rep. v, 354.-Desvaux, Jour. Bot. v, 170.
Negundo fraxinifolium, Nuttall, Genera, i, 253.-De Candolle, Prodr. i, 596.-Hooker, Fl. Bor.-Am. i, 114 ; Jjour. Bot. i, 200.-Don, Miller's Dict. i, 651.-Beek, Bot. 64.-Spach, Hist. Veg. iij, 119.-Rafinesque, New Fl. \& Bot. i, 48.-Browne, Trees of America, 106.-Scheele in Rœmer, Texas, 433.—Schnizlein, lcon. t. 227, f. 2, 18.
S. Mexicanum, De Candolle, Prodr. i, 596.-Hemsles, Bot. Am.Cent. i, 214.
N. trifoliatum, Rafivesque, New Fl. \& Bot. i, 48.
N. lobatum, Rafinesque, New Fl. \& Bot. i, 48.
N. Californicum, Scheele in Rœmer, Texas, 433 [not Torrey \& Gray].

BOX ELDER. ASH-LEAVED MAPLE.

Shores of the Winooski river and lake Champlain, Vermont, near Ithaca, New York, eastern Pennsylvania, and south to Hernando county, Florida (not detected in northeastern Florida); northwest through the lake region of the United States and Manitoba to the Dog's Hearl, lake Winnipeg, and along the sonthern braneh of the Saskatchewan to the eastern base of the Rocky mountains; west in the United States to the eastern slopes of the Rocky mountains of Montana, through Colorado to the Wahsatel mountains, Utah; sonthwest through the basin of the Mississippi river, western Texas, and New Mexico to the Mogollon momntains, eastern Arizona; sonthward into Mexico.

A tree 15 to 22 meters in height, with a trunk 0.60 to 0.50 or, exeeptionally, 1.20 meter in diameter; moist soil, borders of streams, etc.; in the Rocky Mountain region in higlı valleys, between 5,000 and 6,000 feet elevation; one of the most widely distributed trees of the American forest, reaching its greatest development in the valleys of the Wabash and Cumberland rivers.

Wood light, soft, not strong, close-grained, compact; medullary rays mmerons, thin; color, creany-white, the sap-wood hardly distinguishable; specific gravity, 0.4328 ; aslı, 1.07 ; occasionally used in the interior finish of houses, for woodenware, cooperage, and paper-pulp.

Small quantities of maple sugar are sometimes obtained from this species.

> 68.-Negundo Californicum, Torrey \& Gray,

Fl. N. America, i, 250, 684.-Hooker \& Arnott, Bot. Beechoy, 337, t. 7\%.-Eaton \& Wright, Bot. 327.-Walpers, Rep. i, 410.-Bentham, Pl. Hartweg. 301.-Nnttall, Sylva, ii, 90, t. 72; 2ed. ii, 37, t. 72.-Cooper in Smithsonian Rep. 1858, 258, in part. - Koch, Dendrologic, i, 545.-Brewer \& Watson, Bot. California, i, 108.-Vasey, Cat. Forest Trees, 10. - Nicholson in Loudon Gard. Chrouiele, 1881, 815.

Acer Californicum, Dietrich, Syn. ii, 1283.
N. aceroides, Torrey in Pacific R. R. Rep.iv,74; Bot. Mox. Bonndary Survey, 47; Bot. Wilkes Exped. 259 [not Mœnch]. Bolander in l'roe. California Acad. iii, 78.

BOX ELDER.
California, valley of the lower Sacramento river (Sacramento, and in Marin and Contra Costa countics), sonthward in the interior valleys of the Coast ranges to about latitnde 35°, cañons of the western slopes of the San Bernardino mountains (Parish Brothers).

A small tree, 6 to 12 meters in height, with a trunk 0.30 to 0.60 meter in diameter; borders of streams.
Wood light, soft, not strong, close-grained, compact; medullary rays mumerous, thin ; color, nearly white, or slightly tinged with yellow; specific gravity, 0.4821 ; ash, 0.54 ; occasionally used in the manufacture of cheap furniture.

ANACARDIACEA.

69.-Rhus cotinoides, Nnttall,

Mes. in Herb. Philadelphia Acad. ; Travels, 177.-Cooper in Smithsonian Rep. 1858, 250.-Chapman, Fl. S. States, 70.-Wood, Cl. Book, 285 ; Bot. \& Fl. 73.—Bnckley in Proc. Philadelphia Acad. 1881, 125.-Mohr in Proc. Philadelphia Acad. 1881. 217.
R. cotinus 8 Torrey \& Gray, Fl. N. America, i, 216.—Wood, Cl. Book, 285.

Cotinus Americanus, Nuttall, Sylva, iii, 1, t. 81; 2 ed. ii, 71, t. 81.
Cotinus coggygria, Engler in De Candolle, Suites, iv, 351 , in part.
Indian territory, "on the light, broken, calcareous, rocky banks of the Grand river, a large tribntary of the Arkansas, at a place then known as the Eagle's Nest," (Nuttall, l. c.); Alabama, north of the Tennessee river on southern slopes of the Cumberland mountains (on a hill near Bailie's farm, twelve miles from Huntsville, on the Madison road, Buckley, Mohr), and donbtfully reported north of the Alabama line, in Tennessee.

CHITTAM WOOD.

In Alabama, a small wide-branching tree, 9 to 10 meters in height, with a trunk sometimes 0.30 meter in diameter; on limestone beuches from 700 to 900 feet elevation, in dense forests of oak, ash, maple, ete.; local and very rare; not rediscovered in Arkansas or the Indian territory; in Alabama nearly exterminated.

Wood light, soft, rather coarse-grained, checking badly in drying, very durable in contact with the soil; layers of amnual growth marked by several rows of large open duets; medullary rays, numerous, very obseure; color, lniglit, clear, rich orauge, the thin sap-wood nearly white ; specific gravity, 0.6425 ; ash, 0.50 ; largely used locally for fencing, and yielding a clear orange dye.

> 70.-Rhus typhina, Limems,

Amœn. iv, 311.-Medicns, Bot. Beobacht. 1782, 228.-Wangenheim, Amer. 95.-Marshall, Arbustum, 129.-Walter, Fl. Caroliniana, 255.-Aiton, Hort. Kcw. i, 365; 2 ed. ii, 162.-Nhrhart, Beitr. vi, 89.-Mœnch, Meth. 72.-Willdenow, Spec. i, 1478; Enum. i, 323.B. S. Barton, Coll. i, 51.-Schkuhr, Handb. 237.-Michaux, Fl. Bor.-Am. i, 189.-Nouvean Dulamel, ij, 164, t. 47.-Persoon, Syn. i, 324.-Desfontaines, Hist. Arb. ii, 325.-Poiret in Lamarek, Dict. vii, 503.-Barton, Prodr. Fl. Philadelph. 39; Compend. Fl. Ihiladelph. i,153.-Purslı, Fl. Am. Sept. i, 204.-Faton, Manual, 35 ; 6 ed. 302.-Nuttall, Gencra, i, 203.-Romer \& Schultes, Syst. vi, 643.-Hayue, Dend. Fl. 33.-Elliott, Sk. i, 360.-Torrey, Fl. U. S. :22; Compend. Fl. N. States, 140; ll. N. York, i, 123.-De Candolle, Prodr. ii, 67.-Sprengel, Syst. i, 936.-Watson, Dend. Brit. i, t. 17, 18.-Hooker, Fl. Bor.-Am. i, 126.-Don, Miller's Dict. ii, 70.Beck, Bot. 76.—Spaclı, Hist. Veg. ii, 212.-Bounett, Pl. Jav. Rar. 80.-Loudon, Arboretum, ii, 550, f. 224.-Torrey \& Gray, Fl. N. Amcrica, i, 217, 680.-Eaton \& Wright, Bot. 392.-Bigelow, Fl. Boston. 3 ed. 126.-Dietrich, Syn. ii, 1002.-Emerson, Trces Massachnsetts, 501 ; 2 ed. ii, 571 \& t.-Browne, Trees of Anerica, 184.-Griffith, Med. Bot. 186.-Parry in Owen's Rep. 610.Dirlington, Fl. Cestrica, 3 ed. 43.- Richardson, Arctic Exped. 424.-Darby, Bot. S. States, 254.-Coopor in Smithsonian Rep. 1858, 250.-Chapman, Fl. S. States, 69.—Curtis in Rep. Geological Surv. N. Carolina, 1860, iii, 93.-Lesqueroux in Owen's 2 d Rep. Arkinsas, 353.-Wood, Cl. Book, 384; Bot. \& Fl. 73.-Porcher, Resources S. Forests, 208.-Gray, Manual N. States,5ed. 111.Koch, Dendrologie, i, 576.-Young, Bot. Toxas, 197.-Vasey, Cat. Forest Trees, 10.-Guibourt, Hist. Drognes, 7 ed. iii, 488.-Nat. Dispensatory, 2ed. 12:30.-Ridgway in Proc. U. S. Nat. Mus. 1882, 63.-Engler in Do Candolle, Snites, iv, 377.

Datisca hirta, Limmeus, Snec. 1 ed.1037.-Don, Miller's Dict. i, 290.
R. hypsclodendron, Mench, Moth. 73.
R. Canadense, Millcr, Dict. No. 5.- Nonvean Duhamel, ii, 163.
R. viridiflora, Nouveau Duhamel, ji, 163.-Poirot in Lamarck, Dict. vii, 504.-De Candolle, Prodr. ii, 67.-Nuttall, Gencra, i, 203.-Don, Miller's Dict. ii, 70.-Diotrich, Syn. ii, 1002.-Loudon, Arboretum, ii, 551.-Browne, Trees of America, 184.
R. typhina, var. viridiflora, Engler in De Candolle, Suites, iv, 378.

STAGHORN SUMACH.

New Brunswick, west throngh the valley of the Saint Lawrence river to southern Ontario and Mumesata, sonth through the vorthern states and along the Allegbany mountains to northern Georgia, central Alabama and Mississippi.

A small tree, rarely 9 meters in beight, with a trunk 0.15 to 0.30 weter in diameter, or often a shrub; dry hillsides or often along streams in sandy, moist soil. A variety with laciniate leaves occurs near Hanover, New Hampshire, vìr. laciniata, Wood, Cl. Book, 284.-Bot. \& Fl. 73).

Wood light forittle, soft, coarse-grainell, compact, satiny, susceptible of a good polish; layers of annual growth clearly marked by four to six rows of large open ducts; medullary rass numerons, obscure; color, yellow streaked with green, the sap-wood nearly white; specific gravity, 0.4357 ; ash, 0.50 ; occasionally used for inlaying cabinet work; the young shoots for "sap quills" in drawing the sap of the sugar maple.

Bark and leares astringent, rich in tanniu, and somewhat used locally as a dye and in dressing skins (Special Rep. No. 26, U. S. Ag. Dep. 22, t. 3); an infusion of the berries used domestically as a gargle in cases of catarrhal sore throat.

71.-Rhus copallina, Limmens,

Spee. 1 ed 266.—Medicus, Bot. Beobacht. 1762, 224.-Marshall, Arbostum, 128.-Wangenheim, Amer. 96.-Walter, F1. Caroliniana, 255.Gorlner, Fract. i, 205, t. 44.—Aiton, Hort. Kew. i, 366; 2 ed. ii, 163.-Plenck, 1con. t. 2\%3.-Lamarek, Ill. ii; 346, t. 207, f. 3.Jacqnin, Hort. Schönb, iii, 50, t, 341.-Willdenow, Spec. i, 1480 ; Enum, i, 3:4.-Michaox, Fl. Bor.-Am, i, 18:.-Schkuhr, Handb. 237.-Nonveau Duhamel, ii, 160.-Persoon, Syn. i, $324 .-D e s f o n t a i n e s, ~ H i s t . ~ A r b . ~ i i, ~ 325 .-P ~ P u i r e t ~ i n ~ L a h m r e k, ~ D i c t . ~ v i i, ~ 506 .--~$ Barton, Prodr. Fl. Philadelph. 39.-Pursh, Fl. Am. Sept. i, 205.-Eaton. Mannal, 31; 6 ed. 302.-Nuttall, Genera, i, 203.—Romer \& Schnltes, Syst. vi, 64ĩ.—Harne, Dend. Fl. 34.-Elliott, Sk. i, 362.-Torrer, Fl. U. S. :393; Compend. Fl. N. States, 140; Fl. N. York, 129.-De Candolle, Prodr. ii, 68. - Sprengel, Syst. i, 936.-Don, Miller's Dict. ii. 72.-Beck, Bot. 75.-Hooker in Jour. Bot. i, 202.-Spach, Hist. Veg. ii, 214.-Torroy \& Gray, Fl. N. Ameriea, i, 217.-Eaton \& Wright, Bot. 392.-Bigelow, ll. Boston. 3 ed, 126.-Dietrich. Syn. ii, 1003.-Loudon, Arboretump, ii, 554.-Emerson, Trees Massachusetts, 50:3; 2 ed. ii, 574.-Grifith, Med. Bot. 186.-Gray in Dlem. Am. Acad. new ser. vi, 28 ; Manual N. States, 亏ed. 111 ; Hall's Pl. Texas, 5.-Scheele in Romer, Texas, $431 .-$ Darlington, Fl. Cestrica, 3 ed. 43.-Darby, Bot. S. States, 255.-Chapman, Fl. S. States, 69.-Curtis is Rep. Geological Surv. N. Carolina, 1860, iii, 92.-Lesquerenx in Owen's $2 d$ Rep. Arkansas, 352.-Wood, Cl. Book, 284 ; Bot. \& Fl. 73.-Engelmann in Trans. Am. Phil. Soc. new ser. xii, 187.-Porcher, Resources S. Forests, 207.-Koch, Dendrologie, 575.-Young, Bot. Texas, 197.-Vasey, Cat. Horest Trees, 11.-Nat. Dispensatory, 2 ed. 1236.-Ward in Bull. U. S. Nat. Mas, No. 22, 73.-Ridgway in Prou. U. S. Nat. Mus. 1882, 63.-Engler io Do Candolle, Suites, ir, 384.
?R. copallina, vars. latifolia, latialata, angustifolia, and scrrata, Engler in De Candolle, Suites, ir, 384.

DWARF SUMACH.

Northern New England, south to Manatee and Caximbas bay, Florida, west to Missouri, Arkansas, and the valley of the San Antonio ricer, Texas.

A small tree, 6 to 9 meters in beight, with a trunk 0.15 to 0.20 meter iu diameter, or at the north a low shrul, 1 to 2 meters in heiglot; dry hills and ridges, reaching its greatest development in southern Arkansas and eastern Texas; running into varions forms. The best marked is-
var. leucantha, De Cindolle, Prodr. ii, 68, -Gray in Jour. Boston Soc. Nat. Hist. vi, 158.
R. leucantha, Jacquin, Hort. Schönb. iii, 50, t. 342,-Spack, Hist. Veg. ii, 215.
R. copallina, var, angustialata, Engler in De Candolle, Suites, iv, 384.

Shrubby, leaflets lanceolate, flowers white.
Wood light, soft, not strong; coarse-grained, compact, satiny, susceptible of a good polish; layers of annual growth clearly marked by several rows of large open ducts; medullary rays thin, not prominent; color, light brown streaked with green, or often tinged with red; the sap-wool lighter ; specific gravity, 0.5273 ; ash, 0.60 .

Leares and bark astringent, rich in tamin; the leaves largely collected, principally in Maryland, Virginia. West Virginia, and Tennessee, and ground for tanning and dyeing (Special Rep. No. 26, U. S. Ag. Dep. 26, t. 5); the fruit, acd and astringent, used, as well as that of the shubby Rhus glabra, by herbalists in the form of decoctions, fluid extracts. cte., as a gargle in the treatment of sore throat.

> Var. lanceolata, Gray,

Jonr. Boston Soc. Nat. Ilist. vi, 158.-Torrey, Bot. Mex. Boundary Survey, 44.-Watson in Proc. Am. Acad. xvii, 338.
R. copallina, var. integrifolia, Engler in De Candolle, Snites, iv, 384.

Western Texas, Dallas (Reverchon) to the Rio Grande.
A small tree, with lanceolate, clongated leaflets, 5 to 6 meters in height, with a trank 0.12 to 0.15 meter in diameter; calcareous soil; common; specific gravity, 0.5184 ; ash, $\mathbf{0 . 8 5}$.

72.-Rhus venenata, Do Candolle,

Prodr. ii, 68.-Hooker, Fl. Bor.-Am. i, 126.-Don, Miller's Dict. ii, 71.-Beck, Bot. 76.-Sjach, Hist. Veg. ii, 215.-Lindley, Fl. Med. 284.London, Arboretum, ii, 552, f. 226.-Torres \& Gray, FI. N. Amcrica, i, 218, 681.-Eaton \& Wright, Bot. 392.-Dictrich, Syn. ii, 1003.-Torrey, Fl. N. York, i, 130.-Browne, Trees of America, 186.-Grifith, Med. Bot. 185.-Emerson, Trees Massachnsetts, 504; a ed. ii, 575 \& t.-Darlington, Fl. Cestrica, 3 ed. 44.-Richardson, Aretic Exped. 424.-Cooper in Smithsonian Rep. 1858,
 Arkansas, 353.-Wood, Cl. Book, 284 ; Bot. \& Fl. 73.-Gray, Manual N. Statea, 5 ed. 111.-Vasey, Cat. Forest Trees, 11.Bailey in Am. Nat. vii, 5, f. 3.-Ward in Bull. U. S. Nat. Mus. No. ${ }_{2}$, , 73.-Eugler in De Candolle, Suites, iv, $39 \dot{7}$.

> R. vernix, Limnens, Spec. 1 ed. ©6\%, in part.-Kalm, Travels, Inglish ed. 177.-Medicus, Bot. Beobaeht. 1782, 223.-Marshan, Arbustnm, 130.-Wangenheim, Amer. 92.-Aiton, Hort. Kct. i, 366; 2 ed. ii, 163.-Plenek, Icon. t. 234.-lamarek, Ill. ii, 346, t. 207, i. :.-Willdenow, Spec. i, 1479; Enmu. i, 323.- B. S. Barton, Coll. i, 28, 50.-Schkuhr, Handb. 236.Michaux, Fl. Bor.-Am. i, 183.-Nonveau Dulanel, ii, l65.-Persoon, Syn. i, S24.-Desfontaines, Mist. Arb. ii, 325.Poiret in Lamarek, Dict. vii, 50\%.-Nuttall, Genera, i, 203.-13arton, Prodr. Fl. Philadelph. 39 ; Compend. Fl. Philadelph. 154.-Pursh, Fl. Am. Sept. i, 20.-EEaton, Mannal, 34; 6 ed. 302.-Bigelow, Mcd. Bot. i, 96, t. 10; FJ. Boston. 3 ed. 126.-Rœmer \& Schultes, Syst. vi, 646.-Hayne, Dend. Fl. 34.-Elliott, Sk. i, 362.-Torrey, Fl. U. S. 323; Compond. Fl. N. States, 903.-Sprengel, Syst. i, 936.-Hooker, Jour. Bot. i, 202.-Darby, Bot. S. States, 255.-Porcher, Resources S. Forests, 206.

POISON SUMACH. POISON ELDER.

Northern New England, sonth to northern Georgia, Alabama, and western Louisiana, west to northern Minnesota, Missouri, and Arkansas.

A small tree, 6 to 8 meters in height, with a trunk sometimes 0.15 to 0.20 meter in diameter, or more often a tall shrub; low, wet swamps or, more rarely, on higher ground.

Wood light, soft, coarse-grained, moderately compact; layers of annual growth clearly marked by three or four rows of large opeu ducts; medullary rays thin, very obscure ; color, light yellow streaked with brown, the sap-wood lighter; specific gravity, 0.4382; ash, 0.64.

The whole plant, as well as the allied R. Toxieodendron, to most persons exceedingly poisonous to the touch, owing to the presence of a volatile principle, Toxicodendric acid (U. S. Dispensatory, 14 ed. 908.-Nat. Dispensatory, 2 ed. 1464); the white milky sap turning black in drying and yielding a valuable lacquer (Bigelow, Med. Bot. l.e.)

73.-Rhus Metopium, Linnæns,

Amen. y, :195.-Titforl, Hort. Bot. Am. 51.-Descourtilz, Fl. Med. Antilles, ii, 49, t. 79.-De Candolle, Prodr. ii, 67.-Macfadyen, Fl. Janaica, 225.-Nuttall, Sylva, ii, 121, t.80; 2 ed. ii, 68, t. 80.-Richard, Fl. Cuba, 381.-Conper in Smithsonian Rep. 1859, 264.Grisebach, Fl. British West Indies, 175.—Chapman, Fl. S. States, 69.—Wood, Bot. \& Fl. 73.-Vasey, Cat. Forest Trecs, 11.

Metopium Linnæi, Eugler in De Candolle, Snites, iv, 307.
POISON WOOD. CORAL SUMACH. MOUNTAIN MANCHINEEL. BUM WOOD. HOG PLOM. DOCTOR GUM.
Semi-tropical Florida, bay Biscayne to the sonthern keys; in the West Indies.
A tree 12 to 15 meters in height, with a trunk sometimes 0.60 meter in diameter, reaching in the United States its greatest development on the shores of bay Biscayne, near Miami; one of the most common trees of the region, the large specimens geuerally decayed.

Wood heary, hard, not strong, close-grained, checking badly in drying, containing many evenly-distributed open ducts; medullary rays numerous, thin; color, rich dark brown streaked with red, the sap-wood light brown or yellow; specific gravity, 0.791 ; ash, 2.39 ; little esteemed.

A resinous gam, emetic, purgative, and diuretic, is obtained from incisions made in the bark of this species (Pharm. Jour. vii, 270.-Guibourt, Hist. Drogues, 7 ed. iii, 489).

74.-Pistacia Mexicana, HBк.

Nov. Gon. \& Spec. vii, 22, t. 608.-De Candolle, Prodr. ii, 64.-Gray in Smithsonian Contrib. r, 27.-Torrey, Bot. Mox. Bonndary Survey, 44.-Cooper in Smithsonian Rep. 1858, 265.-Brewer \& Watson, Bot. California, i, 109.-Vascy, Cat. Forest Trees, 11.-Hemsley, Bot. Am.-Cent. i, 221.-Watson in Proc. Am. Acad. xvii, 338.

Texas, valley of the Rio Grande (near the mouth of the Pecos river, Bigelow); sonthward into Mexico (Saltillo, Palmer, etc.).

Wood not collected.

LEGUMINOSE.

> 75.-Eysenhardtia orthocarpa, Watson,

Proc. Am. Acad. siii, 339.
E. amorphoides, var. orthocarpa, Gray in Smithsovian Contrib. iii, 46; v, 237.
E. amorphoides, Torrey, Bot. Mex. Boundary Surver,51, in part.

Western Texas, valleys of the upper Guadalnpe and Rio Grinde, west to the Santa Rita and Santa Catalina mountains, Arizoua (Pringle); sonthward into northern Mexico.

A small tree, 5 to 6 meters in height, with a trunk 0.09 to 0.15 meter in diameter, or more often a low shrub; dry, gravelly soil, reaching its greatest development near the summit of the Santa Catalina momntains, at 3,000 feet altitude.

Wood heary, hard, close grained, very compact; layers of annual growth clearly defined by numerous rows of open ducts; medullary rays nnmerous, thin; color, light reddish-brown, sap-wood clear yellow; specific gravity, 0.8740 ; ash, 1.28.

76.-Dalea spinosa, Gray,

Mem. Am. Acad. new ser. v, 315 ; Ives' Rep. 10.-Torrey, Pacific R. R. Rep. iv, 78; vii, 9, t. 3.-Bot. Mex. Boundary Survey, 53.Walpers, Ann. ir, 485.-Cooper in Smithsonian Rep. 1858, 266.-Watson in Proc. Am. Acad. xi, J32.-Brewer \& Watson, Bot. California, i, 143.-Hemsley, Bot. Am.-Cent. 249.

Asagroca spinosa, Buillon in Adansonia, ix, 222; Hist. Pl. ii, 288.
Colorido desert, southerv California (Agua Caliente, Toras, ete.), and eastward to the valley of the lower Gila river, Arizona.

A small tree, sometimes 6 meters in heiglit, with a short, stout trunk 0.45 to 0.50 meter in diameter (Parry, Parish Brothers), or often a low slirub; dry, gravelly, rocky soil.

Wood light, soft, rather coarse-grained, containing many evenly-distributed open ducts; medullary rays numerons, thin; color, walnut-brown, the salp-wood nearly white; specific gravity, $0.5536 ;$ ash, 4.04.

77.-Robinia Pseudacacia, Linneus,

Spec. 1 ed. 722.-Marshall, Arhustnm, 133.—Wangonheim, Amer. 16, 九. 7.-W'Heritier, Stirp. Nov. 158.—Walter, Fl. Caroliniana, 18f.Aiton, Hort. Kcw. iii, 53 ; 2 ed. iv, 323.-Gwrtner, Fruct. ij, 307 , t. 145.-Wilddenow, Spec. iii, 1131 ; Enum. i, 769 --Michanx, Fl. Bor.Am. ii, 65.-Nouvean Duhamel, ii, 60, t. 16.-Poiret in Lamarek Dict, vi, 222; 111. iii, 163, t. 606.-Persoon, Syn. ii, 311.Desfontaines, Hist. Arb. ii, 302.-Michaux f. Hist. Arb. Am. iii, 245, t. 1; N. Ancrican Sylva, 3 ed. ii, 92, t. 76.-Pursh, Fl. Am. Sept. ii, 487.-Eaton, Mannal, 82; 6 ed. 306.-Thomas in Am. Month. Mag. \& Crit. Rev. ij, 90.-Nnttall, Genera, ii, 118.-Hayue,
 178; Compend. Fl. N. States, 271 ; Fl. N. York, i, 165 ; Euory's Rep. 408.-Hooker, Fl. Bor.-Am. i, 140.-Audulon, Birds, t. 104.-Don, Millor's Dict. ii, 23f.—Beck, Bot. 62.-Spach, Hist. Veg. i, 2:8.-Torrey \& Gray, FI. N. America, i, 294.-London, Arboretnm, ii, 609, f. 305 \& t.-Eaton \& Wright, Bot. 397. -Bigelow, Fl. Boston. 3 ed. 29.0-Brownc, Trees of Anerica, 197.Emerson. Trees, Massachnsetts, 460: 2 ed. ii, 522 de t.-Griffith, Med. Lot. 2:8, f. 123.-Dietrich, Syn. iv, 1053.—Darlington, Fil. Cestrica, 3 ed. 65.-Darly Bot. S. States, 280.-Cuoper in Smithsoniun Liep, 1858, 251.-Chapuan, Fl. S. States, 94.-Curtis in Rep. Geological Surv. N. Carolina, 1860, iii, 48.-Lesquereux in Owen's 2d Rep. Arkansas, 356.—Wood, Cl. Book, 319; Bot. \& Fl. 95.-Lemaire, III. Hort. xii, t. 427.-I'orcher, Resources S. Forests, 188.-Gray, Manual N. States, 5 ed. 131.-Koch, Dendrologie, i, 55.-Verlot in Rev. Hort. 1873, 152 \& f.-Young, Bot. Texas, 228 .-Vasey, Cat. Forest Trecs, 11.-Ridgway in Proc. U. S. Nat. Mus. 1882, 65.

Pseudacacia odorata, Menclh, Deth. 145.
R. fragilis, Sulislmry, Prodr. 336.

I,OCUST. BLACIK LOCUST. YELLOW LOOUST.
Alleghany momntains, Pennsylyania (Locust ridge, Monroe county, Porter) to northern Georgia; widely and generally naturalized throughont the United States east of the Rocky momtains, and possibly indigenous in northeastern (Orowley"s ridge) and western Arkausas and the prairies of eastern Indian territory.

A tree 22 to 25 meters in height, with a trunk 0.90 to 1.20 meter in diameter; west of the Mississippi river much smaller or often a low shrub 1.80 to 3 meters in height, reaching its greatest development on the western sopes of the monntains of West Virginia.

Wood heavy, exceelingly hard and strong, elose-grained, compact, very durable in contact with the gronnd; layers of annual growth elearly marked by two or three rows of large open duets; color, brown or, more rarely, light green, the sap-wood yellow; specifie gravity, 0.7333 ; ash, 0.51 (Trecul in Am. Jour. Sei. 3 ser. xix, 182, t. 2, f. 1; t. 6,7, f. 10.); largely used in ship-building, for posts of all sorts, construction, and in turnery; preferred to other American woods for treenails, and in this form largely exported.

The bark of the root tonic, or in large doses purgative and emetic (U. S. Dispensatory, 14 ed. 1746.-Nat. Dispensatory, 2 ed. 1233); formerly widely planted as a timber tree (Cobbett, Woodlands, par. 323); its cultivation in the United States now gencrally abandoned on aceonnt of the destructive attacks of the locust borer (Oyllene picta, Packerd in Bull. U. S. Entomolegical Com. No. 7, 95).

78.-Robinia viscosa, ventenat,

 t. 17.-Poiret in Lamarck, Dict. vi, 2re.-13. S. Barton, Bot. Appx. ©9, t. 21.- Persoon, Syn. ii, 311.-Desfontaines, Hist. Arb. ii, 302,Aiton, Hort. Kew. Zed. iv, 323.-Michanx f. Hist. Arb. Am. iii, 262, t. 2; N. American Sylva, ii, 104, t 37.-Pursh, Fl; Am. Sept. ii, 488.Nutiall, Genera, ii, 118.-Hayne, Dend. Fl. 140.-Flliott, Sk. ii, 242.-De Candolle, Prodr. ii, 262.-Guimpel,Otto \& Hayne, Abb. Holz. 81, t. (iy.-Sprengrl, syst. iii, 247.-Don, Miller's Dict. ii, 236.-Laton, Mannal, 6 ed. 306.-Spaeh, Hist. Veg. i, $260 .-T o r r e y ~ \& ~ G r a y, ~$ FI. N. America, i, 295.-London, Arboretnm, ii, 626, t. 87, f. 30t.-Eaton \& Wright, Bot. 397.-Browne, Trees of America, 209.Dietrich, Syı, iv, 1053.-Darby, Bot. S. States, 280 . -Cooper in Smitisoniau Rep. 1858,251.-Chapman, Fl. S. States, 94.-Cnrtis in Rep. Geological Surv. N. Curoliva, 18G0, iii, 49.-Wood, Cl. Book, 319; Bot. \& Fl. 95.-Porcher, Resources S. Forests, 193.-Gray, Mannal N. States, 5 ed. 13I.-Vasey, Cat. Forest Trees, 11.
R. glutinosa, Curtis, Bot. Mag. t. 560.-Koch, Dendrologio, i, 59.

CLAMDI LOCUST.

"High Alleghany mountains south of latitude 35° " (Michanx). "Open woods, slopes of Buzzard ridge, altitade 4,500 feet, near Highland, Macon comnty, North Carolina" (J. Donnell Smith).

A sunall tree, 9 to 12 meters in height, with a trunk not exceeding 0.30 meter in diameter; very rare, and not rediscovered until 1882 by the numerons botanists who have visited, during the last thirty gears, the localities where the Mielauns, father and son, diseovered this species; widely cultivated and now oceasionally naturalized in tho Atlantic states.

Wood (of a cultivated specimen) heavy, hard, elose-grained, compact; layers of annual growth elearly marked by many rows of open dnets; medullary rays mmerous, thin; color, brown, the sap-wood light yellow; specific gravity, 0.8094; ash, 0.20.

79.-Robinia Neo-Mexicana, Gray,

Mem. Am. Acad. new ser. v, 314.-Torrey in Paeific R. R. Rop. iv, 79 ; Bot. Mex. Boundary Survey, 53.-Walpers, Ann. iv, 491.Cooper in Smithsonian Rep. 1858, 265.-Watson in King's Rep. v, 419.-Porter \& Coulter, Fl. Colorado; Hayden's Surv. Misc. Pub. No. 4, 23.-Vasey, Cat. Forest Trees, 11.

LOCUST.

Colorado, valley of the Purgatory river (near Trinidad), headwaters of the Canadian river, through westero and sourhwestern New Mexico to the Santa Catalina and Santa Rita mountains (Lemmon, Pringle), Arizona (4,500 to 7,000 feet altitude), southern Utal, Mount Zion cañon, west fork of the Rio Virgin, and near Kanah.

A small tree, sometimes 6 to 8 meters in height, with a trunk 0.15 to 0.25 meter in diameter, or toward its upper limits of growth reduced to a low shrub; reaching its greatest development in the valley of the Purgatory river, Colorado.

Wood heavy, exceedingly hard, strong, elose-grained, compact, satiny, containing many evenly-distribnted open ducts; medullary rays, thin, conspicuons; color, sellow streaked with brown, the sap-wood light yellow; speeifie gravity, 0.8034; ash, 0.60.
80.-Olneya Tesota, Gray,

Mem. Am. Acad. new ser. v, 328 ; Ives' Rop. 11.-Torrey in Pacilic IR. R. Rep. iv, 11, 82; vii, 10, t. 5; Bot. Mex. Boundary Snrvey, 58.-Walpers, Ann. iv, 479, 587.-Cooper in Smithsonian Rep. 1853, 265.-Brewer \& Watson, Bot. California, i, 157.-Vasey, Cat. Forest Trees, 11.-Hemsley; Bot. Am.-Cent. ; 260 .

IRON WOOD. ARBOL DE IIIERRO.

Califomia, valley of the Colorado river south of the Mohave monntains, valley of the lower Gila river, southwestem Arizona; southward in Sonora.

A small tree in the United States, rarely 9 meters in height, with a trunk sometimes 0.45 meter in diameter; dry arroyos and cañons; in Sonora more common and of larger size.

Wood very heavy and hard, strong, brittle, close-grained, compact, the grain generally contorted, difficult to cut and work, susceptible of a high polish; medullary rays umerous, thin; color, rich dark brown streaked with red, the sap-wood elear bright yellow; speeitic gravity, 1.0602 ; ash, 2.29 (the heart-wood, 1.1486 ; ash, 2.59 ; sapwood, 0.8958 ; ash, 1.85) ; oceasionally mauufaetured into canes.

81.-Piscidia Erythrina, Limneus,

Spec. 2 ed. 993.—Jacquin, Amer. 206.—Swartz, Obs. 277.-Lamarek, Dict. i, 443; Ill. iii, 163, t. 605.—Titford, Hort. Bot. Am. 84.Lunan, Hort, Jam. i, 269.-Humboldt, Bonpland \& Knnth, Nov. Gen. \& Spee. vi, 382.-De Candollo, Prodr. ii, 267.-Deseourtilz, Fl. Med. Antilles, iii, 203, t. 196.-Maefadyen, Fl. Jamaiea, i, 258.-Nnttall, Sylva, ii, 31, t. 52; 2 ed. i, 180.-Bentlam in Jonr. Linnæan Soc. iv, Suppl. 116 ; Bot. Sulphur, 81. -Cooper in Smithsonian Rep. 1858, 264.-Chapman, Fl. S. States, 110.-Grisebach, Fl. British West Indies, 200.—Porcher, Resourees S. Forests, 175.-Vasey, Cat. Forest Trees, 11.-Hemsley, Bot. Am.-Cent. i, 3I9.

Erythrina piscipula, Linneens, Spec. 1 ed. 107.
P. Carthagenensis, De Candolle, Prodr. ii, 267.

JAMAICA DOGWOOD.

Semi-tropical Florida, bay Biscayne, west coast, Pease creek to cape Sable, and on the southern keys; in the West Indies and southern Mexico.

A tree 12 to 15 meters in height, with a trunk 0.45 to 0.75 meter in diameter.
Wood heary, very hard, not stroug, elose-grained, compact, susceptible of a high polish, containing few large seattered open ducts; medullary rays thiu, not conspienous; eolor, yellowish-brown, the sap-wood lighter; specific gravity, 0.8734 ; ash, 3.38 ; one of the favorite woods of the region for boat-bnilding, fire-wood, and charcoal.

The bark, especially of the root, narcotic, occasionally administered in the form of tinctures, or used, as well as the young branches and leaves, to poison or stupefy fish.

82.-Cladrastis tinctoria, Ratiuesque,

Fl. Kent. 1824; Neog. 1825; Med. Bot. ji, 210 ; New Sylva, iii, 83.-Torrey \& Gray, Fl. N. Ameriea, i, 390.-Walpers, Rep. i, 807 .Browne, Trees of Ameriea, 192.-Darly, Bot. S. States, 294.-Cooper in Smithsonian Rep. 1858, 251.-Chapman, Fl. S. States, 113.-Porcher Resourecs S. Forests, 175.-Wood, Cl. Book, 301; Bot. \& Fl. 84.-Gray, Manual N. States, 5 ed. 143.-Vasey, Cat. Forest Trees, 11.

Virgilia lutea, Michanx f. Hist. Arb. Am. iii, 266, t. 3; Travela, 289 ; N. Ameriean Sylva, 3ed. ii, 106, t. 78.-Prrsh, Fl. Am. Sept. i, 309.-Nuttall, Genera, i, 284.-Hayne, Dend. Fl. 53.-Loiseleur, Herl. Amar. t. 297.-Do Candolle, Prodr. ii, 93.-Sprengel, Syst. iv ${ }^{2}$, 1. 171.-Don, Miller's Diet. ii, 112.—Eaton, Manual, 6 ed. 397.-Spach, Hist. Veg. i, 163.-Eaton \& Wright, Bot. 480.—Dietrich, Syn. ii, 1501.-Loudou, Arboretum, ii, 565, t. 78.
C. lutea, Koel, Dendrologie, $\mathrm{i}, 6$.

YELLOW WOOD. YELLOW ASH. GOPHER WOOD.

Central Kentucky, cliffs of the Kentucky and Dick's rivers; middle Tennessee, mountains of east Tennessee to Cherokee county, North Carolina.

A tree 9 to 15 meters in lieight, with a trunk sometimes 0.90 or, exceptionally; 1.20 meter in diameter; rich hillsides; in Kentucky on the Trenton limestones, and reaching its best development in middle Tennessee; rare and very local, the large trees generally hollow or defective.

Wood heavy, very harl, strong, close-grained, compact, susceptible of a good polish; layers of annual growth clearly marked by several rows of open ducts, and containing many evenly-distributed similar ducts; color, bright, clear yellow, changing with exposure to light brown, the sap-wood nearly white; specific gravity, 0.6278 ; ash, 0.28 ; used for fuel, occasionally for gunstoeks, and yielding a clear yellow dye.

83.-Sophora secundiflora, Lagasea;

Do Candolle, Cat. IIort. Monsp. 148; Prodr. ii, 96.-Don, Miller's Diet. ii, 110.—Gray in Smithsonian Contrib. iii, 54.-Rev. Hort. 4 ser. 1ii, 201, t. 11.-Bentham \& Hooker, Genera, i, 555.-Hemsley, lot. Am.-Cent. i, 321.-Watson in Proc. Am. Acad. xvii, 347.

Broussonetir secundiflora, Ortrga, Dee. v, 61, t. 7.
Virgilia secundiflora, Cavauilles, Icon. t. 401.
Agastianis seeundiflora, Rafireesque, New Sylva, iii, 86.
Dermatophyllum speciosum, Scheele in Linnza, xxi, 458.
S. speciosa, Bentlanm in Jour. Boston Soe. Nat. Hist. vi, 178.—Gray in Mem. Am. Aead. new ser. ivx, 38; Smithsonian Contrib. iii, 54; Hall's I'. Texas, 7.-Walpers, Ann. ii, 439.-Torrey, Bot. Mex. Soundary Survey, 58.-Yonng, Bot. Texas, 242.-Yasey, Cat. Forest Tremen, 1%.

FRIGOLITO.

Matagorda bay, Texas, west to the monntains of New Mexico (Havard).
A small tree, sometimes 9 meters in height, with a trunk 0.1% to 0.20 meter in diameter, or often, especially west of the San Antonio riter, a tall shrub, rarely exceeding 2 meters in height, forming dense thickets; borders of streams, generally in a low, rather moist soil.

Wood very heavy, hard, elose-grained, compact, susceptible of a high polish; medullary rays munerous, thin; color, orange streaked with red, the heavier sap-wood brown or yellow; specifie gravity, 0.9842; ash, 1.59 ; furnishing valuable fuel.

The seeds contain an exceedingly poisonons alkaloid, Sophoria (H. C. Wood in Philadelphia Med. Times, August 4, 1877.-Rothrock in Coulter's Bot. Gazette, ii, 133.-Nat. Dispensatory, 2 ed. 1333).

84.-Sophora affinis, Torroy \& Gray,

Fl. N. America, i, 390.-Leavenworth in Am. Jour. Sci. 1 ser. ix, 130.-Gray in Jour. Boston Soc. Nat. Hist. vi, 178; Hall's Pl. Texas, 7.-Scheele in Romer, Texas, 4:3.-Vasey, Cat. Forest Trees, 12.

Stypholobium affine, Walpers, Rep. i, 807.
Arkansas, valley of the Arkansas river (Letterman) to the valley of the San Antonio river, Texas.
A small tree, 5 to 7 meters in height, with a trunk sometimes 0.15 to 0.25 meter in diameter; borders of streams and prairies.

Wood heary, very hard, strong, coarse-grained, compact; layers of annual growth clearly marked by several rows of large open ducts; medullary rays thin, conspicnous; color, light red, the sap-wood bright, clear yellow; specific gravity, 0.8503 ; ash, 0.73 .

Ink is occasionally made domestically from the resinous exudations of the pod.

85.-Gymnocladus Canadensis, Lamarck,

Dict. i,733; Ill. iii, 412. t.823.-Michanx, Fl. Bor.-Anı ii, 241, t. 51.-Willdenow, Spee. iv, 460; Ennm. ii, 1019; Berl. Baumz. 169.Persoon, Syn. ii, 626.-Desfontaines, Hist. Arb. ii, 250.—Aiton, Hort. Kew. 2 ed. v, 400.-Miehanx f. Hist. Arb. Am. ii, 272, t. 23; N. American Sylva, 3 ed. i, 182, t. 50.-Pursh, Fl. Am. Sept. i, 304.-Nuttall, Geuera,ii, 243.-Hayne, Dend. Fl. 203.-James in Long's Exped. i, 138.-Reichenbach, Mag. Bot. t. 40.-Do Candolle, Prodr. ii, 480.—Sprengel, Syst. ii, 327.-Correy in Ann. Lye. N.York, ii, 193; Compend. Fl. N. States, 376; Fl. N. York, i, 196; Emory's Rep. 407.-Hooker, Fl. Bor.-Am. i, 166.-Don, Miller's Diet.429.Eaton, Manual, 6 ed. 162.-Beck, Bot. 93.-Spach, Hist. Veg. i, ©9.-London, Arboretnm, ii, 256 \& t.-Torrey \& Gray, Fl. N. Ameriea, i, 398.-Eaton \& Wright, Bot. 258.-Richardson, Aretic Exped. 424.-Walpers, Rep. i, 809.-Browne, Trees of America, 218.-Cooper in Smithsonian Rep. 1858, 251.-Lesquereux in Owen's $2 d$ Rep. Arkansas, 358.-Wood, Cl. Book, 300; Bot. \& Fl. 83.Engolmann in Trans. Am. Phil. Soe. new ser. xit, 190.-Gray, Manual N. States, 5 ed. 145.-Briot in Rev. Hort. 1870, 436.-Vasey, Cat. Forest Trees, 12.-Bell in Geological Rep. Canada, 1879-80,54c.-Ridgway in Proc. U. S. Nat. Mns. 1882, 63.-Chapman, Fl. S. States, Suppl. 61\%.

Guilandina dioica, Liunæus, Spec. 1 ed. 381.-Marshall, Arbustum, 56.—Aiton, Hort. Kew.ii, 56.—James in Long's Exped. i, 138 .

Hyperanthera dioica, Vahl, Symbolm, i, 31.
G. dioica, Koch, Dendrologie, i, 5.-Baillon, Hist. Pl. il, 87, f. 52, 53.

KENTUOKY COFFEE TREE. COFFEE NUT.

Conococheague creek, Franklin county, Pennsylvania (Porter); western New York, shores of Cayuga and Seneca lakes, west through soutliern Ontario and southern Michigan to the valley of the Minnesota river, Minnesota, castern Nebraska, eastern Kansas, southwestern Arkansas, and the Indian territory, to about longitude 96° west, south to middle Tennessee.

A tree 25 to 33 meters in height, with a trunk 0.60 to 0.90 meter in diameter; rich woods and bottoms; not common.

Wood heavy, not hard, strong, coarse-grained, durable in contact with the ground, liable to check in drying, easily worked, suserptible of a high polislı; layers of ammal growth clearly marked by one or two rows of open dutts; medulary rays numerous, thin; color, rich light brown tinged with red, the thin sap-wood lighter; specific gravity, 0.6934 ; ash, 0.67 ; occasionally used in cabinet-making, for posts, rails, \&c.

The fresh leaves, macerated and sweetened, are used in Tennessee as a poison for house-flies; the seeds formerly as a domestic substitute for coffiec.

86.-Gleditschia triacanthos, Linnæus,

Spec. 1 ed. 1056 (excl. var.).-Medicns, Bot. Beobacht. 1782, 230.-Lamarck, Dict. ii, 465 ; Ill. iii, 446, t. 857, f. 1.-Aiton, Hort. Kew. iii, 444 (excl. vars.); 2 ed. v, 474.-Mœnch, Meth. 63.-Abbot, Insects Georgia, ii, t. 285.-Michaux, Fl. Bor.-Am. ii, 257.-Schknhr, Mandb. iii, 554, t. 356.-Robin, Vofages, iii, 497.-Persoon, Syn. ii, 123.-Desfontaines, Hist. Arb. ii, 246. -Willdenow, Spec. iv, 1097; Ennm. 1058; Berl. Baumz. 163.-Nouveau Duhamel, iv, 100, t. 25.-Michanx f. Hist. Arb. Am. iii, 164, t. 10 ; N. Americau Sylva, 3 ed. 108, t. 79.-Pursh, Fl. Am. Sept. i, 221.-Nuttall, Genera, ii, 239.-James in Loug's Exped. i, 138.-Hayne, Dend. Fl. 218.-Elliott, Sk. ii, 709 . -Guimpel, Otto \& Hayne, Abb. Holz. 157, t. 132. -De Candolle, Prodr. ii, 479.-Sprengel, Syst. iii, 918 . -Torrey, Compend. Fl. N. States, 375 ; FI. N. York, i, 192.-Audubon, Birds, t. 42, 146, 150.-Rœmer \& Schultes, Syst. vii, 78.-Don, Miller's Dict. ii, 428.Beck, Bot. 90-Eaton, Maunal, 6 ed. 158. - Spach, Hist. Veg. i, 92.-Torrey \& Gray; Fl. N. America, i, 398.-Loudon, Arboretum, ii, $650, \mathrm{t} .90,91 .-E a t o n ~ \mathcal{K}$ Wright, Bot. 254.-Browne, Trees of America, 212.—Dietrich, Syn. iv, 539.-Darby, Bot. S. States, $295 .-$ Cooper in Smithsonian Rep. 1858, 251. -Gray in Pacific R. R. Rep. xii², 42; Mannal N. States, 5 ed. 145.-Cbapman, Fl. S. States, 115.Curtis in Rep. Geological Surv. N. Carolina, 1860, iii, 49.-Lesqnereux in Oweu's 2d Rep. Arkansas, 358.-Wood, Cl. Book, 300 ; Bot. \& FI. 83.-Engelmann in Trans. Am. Phil. Soc. new ser. xii, 190.-Porcher, Resources S. Forests, 195.-Koch, Dendrologie, i, 8.-Hunt in Am. Nat. i, 433.-Yonng, Bot. Texay, 246.—Vasey, Cat. Forest Trees, 12.-Ridgway in Proc. U. S. Nat. Mus. 1882, $64 .-$ Burgess in Coulter's Bot. Gazette, vii, 95.
G. spinosa, Marshall, Arbustum, 54.
G. Meliloba, Walter, FI. Caroliniana, 254.
G. macrantha, Willdenow, Berl. Baumz. 164.
G. elegans, Salisiury, Prodr. 323.

Melilobus heterophylla, Rafinesque, Sylva Tellariaua, 121.

HONEY LOCUST. BLACK LOCUST. THREE-THORNED ACACIA. SWEFT LOCUST. HONEY SHUCKS.

Pennsylvania, western slopes of the Alleghany monntains, west through sonthern Michigan to eastern Nebraska, eastern Kansas, and the Indian territory to about longitude 96° west; south to Tampa bay, Florida (not detected in eastern Florida), northern Alabama, nortleern Mississippi, and the valley of the Brazos river, Texas.

A tree, 25 or 30 meters, or exceptionally 40 meters, in lieight, with a trunk 0.60 to 1.20 meter in diameter'; low, rich bottom lands, or more larely on dry, sterile hills; the characteristic tree of the "barrens" of middle Kentucky and Teunessee, reaching its greatest development in the bottoms of the lower Ohio River basin; widely cultivated for shade and as a helge plant. and now somewhat naturalized in the Atlantic states east of the Alleghany mountains.

A not uncommon form, nearly destitute of thorns, is-
var. inermis, Purslı, Fl. Anı. Sipt. i, 221.-De Candolle, Mcm. Lég. t. 22, f. 109; Prodr. ii, 479.—Eaton, Mannal, 6 cd. 158.Torrey \& Gray, li, N. America, j, 398. -Loulon Arboretum, ii, 650, t. 92, 93.-Browne, Trees of America, 213.
G. incrmis, Linneula, Spec. 150%, in part.-Nouvean Duhanel, iv, 100.-Bentlam in Trans. Linnam Soc. xxx ${ }^{3}$, 557.

A form with spines and fruit shorter than those of the type is-
var. brachycarpos, Michaux, FI. Bor.-An. ii, 257.-Torrey \& Gray, FI. N. America, i, 398.-Browno, Trees of America, 213.
G. brachycarpa, Pursh, Fl. Am. Sept. 221.-De Candolle, Prodr, ii, 479.-Sprengel, Sset. iii, 919.-Don, Miller's Diet. ii, 428.Eaton, Manual, 6 cd. 158.-Eaton \& Wright, Bot. 254.-Loudon, Arloretum, ii, 653.—Dietrich, Syu. iv, 539.

Wood heavy, hard, strong, coarse-grained, moderately compact, very durable in contact with the soil, susceptible of a high polish; layers of annmal growth strongly marked by many rows of open ducts; medullary rays numerous, conspichous; color, bright brown or red, the sap-wood lighter; specific gravity, 0.6740 ; ash, 0.80 ; used for fence posts and rails, wagon lubss, construction, etc.; its value hardly appreciated.

Beer is sometimes made domestically by fermenting the sweet, umpipe fruit (Porcher l. c.).

87.-Gleditschia monosperma, Walter,

Fl. Caroliniana, 254.-Michaux, Fl. Bor.-Am. ii, 257.—Schkuhr, Handb. iii, 555.-Persoon, Syn. ii, 623.-Desfontaines, Hist. Arb. ii, 24.-Wildenow, Spec. iv, 1097 ; Enum. 1058; Berl. Baumz. 165.-Nouvoau Duhamel, iv, 101.—Aiton, Hort. Kew. 2 ed. F , 474.Michanx f. Ilist. Arl. Am. iii, 169, t. 11 ; N. American Sylva, 3 ed. ii, 111, t. 80.-Pursh, Fl. Am. Sept. 221.-Poiret, Suppl. ii, 641.-Nuttall, Genora, ii, 239.-Hayne, Dend. Fl. 218.—Elliott, Sk, ii, 709.—De Candolle, Prodr. ii, 479.—Sprengel, Syst. iii, $919 .-$ Don, Miller's Dict. 428.-Faton, Manal, 6 ofl. 158.-Spach, Hist. Veg. i, 98. -Torrey \& Gray, Fl. N. America, i, 398.-Eaton \& Wright, Bot.254.-Louflon, Arboretum, ii, 653, f. 364.-Browne, Trees of America, 215.-Dietrich, Syn. iv, 539.-Darby, Bot. S. States, 295.Chapman, Fl. S. States, 115. -Wood, Cl. Book, 300 ; Bet. \& Fl. 83.-Gray. Manual N. States, 5 ed. 145.-Vasey, Cat. Forest Trees, 12-Ridgway in Proc. U. S. Nat. Mus. 1882, 64.
G. triacanthos, var. monosperma, Linnwus, Spee. 1 ed. 1057.-Aiton, Hort. Kew. iii, 444.
G. apratica, Marshall, Arbustura, 54.
G. Carolinensis, Lamarels, Dict. ii, 4f(\%) Ill. iii, 447, t. 857, f. 2.-Romer \& Schultes, Syst. vii,74.
G. triucantha, Gartnor, Fruet. ii, 311, t. 146, f. 3 [not Linnens].
G. inermis, Koch, Dendrologie, i, 9 [not Linnæus].

WATER LOCUST.

South Carolina to Matanzas inlet and Tampa bay, Florina, through the Gulf states to the valley of the Brazos river, Texas, and through Arkansas to middle Kentucky and Tennessee, southern Indiana and Illinois.

A tree 12 to 18 meters in height, with a trunk sometimes 0.60 or, exceptionally, 0.90 meter in diameter; deep swamps; rare in the sonth Atlantic and Gulf states; common and reaching its grea test development in the bottom lands of southern Arkinsas, Louisiana, and eastern Texas, here often covering extensive areas.

Wood heavy, very hard, strong, rather coarse-grained, compact, susceptible of a high polish ; layers of annual growth clearly marked by one to three rows of open ducts; medulary rays thin, conspicuous; color, rich bright brown tinged with red, the thick heavier sap-wood elear light yellow; specific gravity, 0.7342; ash, 0.73.

88.-Parkinsonia Torreyana, Watson,

Proc. Am. Acad. xi, 135.-Brower \& Watson, Bot. California, i, 162.
Cercidium floridum, Torrey in Pacifie R. R. Rep. iv, 11, 82; v, 360, t. 3; Bot. Mex. Boandary Survey, 59.-Gray in Iver Rep. 11.-Vasey, Cat. Forest Trees, 12.—James in Am. Nat. xv, 982.-Hemsley, Bot. Am.-Ceut. i, 327.

GREEN-BARK ACACIA. PALO VERDE.

Colorado desert, sonthern Califoruia (Inio, Toras, ete., Parish Brothers), east to the valley of the lower Gila river, Arizona.

A low, much-branched tree, 8 to 10 meters in height, the short trunk sometimes 0.45 to 0.50 meter in diameter; low cañons and depressions in the sandhills of the desert; common and reaching its greatest development in the valleys of the lower Colorado and Gila rivers.

Wood heary, not strong, soft, close-grained, compact, satiny, susceptible of a beantiful polish, containing many small evenly-distributed open ducts; medullary rays very numerous, thin; color, light brown, the sap-wood clear light yellow ; specific gravity, 0.6531; ash, 1.12.

89.-Parkinsonia microphylla, Torrey,

Pacifie R. 1. Rep. iv, 82; Bot. Mex. Boundary Survey, 59.—Walpors, Ann. vii, 812.—Gray in Ives' Rep. II.-Bentham in Martius, F1. Brasil. xv^{a}, 78. -Watson, Pl. Wheeler, 8; Proc. Am. Aead. xi, 136.-Brewer \& Watson, Bot. California, i, 162.-Hemsley, Bot. Am.Cent. i, 327.

Valley of the lower Colorado and Bill Williams rivers, eastward through southern A rizona.
A small, much-branched tree, 6 to 7 meters in height, with a trunk 0.25 to 0.30 meter in diameter (Wickenburg, Pringle), or often a low shrub 1 to 3 meters in height.

Wood heavy, hard, coarse-grained, compact, containing numerous large, scattered, open ducts; medullary rays numerous, thin, conspicuous; color, rich dark brown streaked with red, the sap-wood light brown or yellow; specific gravity, 0.7449; ash, 3.64.

90.-Parkinsonia aculeata, Linnæns,

Spec. 1 ed. 375.-Jaequin, Stirp. Am. 121, t. 80.-Lamarek, Ill. ii, 475, t. 336.-Willdenow, Spee. ii, 513.-Aiton, Hort. Kew. 2 ed. iii, 24.-De Candolle, Men. Leg. ii, t. 21 ; Prodr. ii, 486.-Descourtilz, Fl. Med. Antilles, i, 54, t. 12.-Macfadyen, Fl. Jamaica, 334.-Bentham, Bot. Sulphur, 87 ; Martius, Fl. Brasil. xv^{2}, 78, t. 26.-Cooper in Smithsonian Rep. 1858, 265.-Torres, Bot. Mex.

- Boundary Survey, 59.-Grisebach, Fl. British West Indics, 204; Pl. Loreutz. 81.-Gray, Hall's Pl. Texas, 8.-Brower \& Watson, Bot. California, i, 163.-Vasey, Cat. Forest Trees, 12.-Hemsley, Bot. Am.-Cent. i, 327.-Watson in Proc. Am. Aead. xvii, 348.

Corpus Christi, Texas, west along the Mexican boundary to the valley of the Colorado river, Arizona (Yuma); and sonthward into Mexico; probably of American origin, but now widely naturalized throughout the tropical and warmer regions of the globe (A. De Candolle, Geog. Bot. ii, 719, 770, 793).

A small tree, 6 to 12 meters iu height, with a trunk sometimes 0.30 meter in diameter.
Wood heavs, hard, very close-grained, inclined to cheek in drying, containing many eveniy-distributed small open ducts; medullary rays very numerous, thin, conspicuous; color, light brown, the very thick sap-wood lighter, often tinged with yellow; specific gravity. 0.6116 ; ash, 2.32.

91.-Cercis Canadensis, Limmens,

8pec. 1 ed. 374.-Du Roi, Obs. Bot. 10.-Marshall, Arbustum; 32.-Lamarck, Dict. ii, 586.-Wangenheim, Amer. 84.-Walter, Fl. Caroliniana, 135.-Aiton, Hort. Kew, ii, 47; 2 ed. iii, 22 .-Willdenow, Spec. ii, 508; Enum. 439; Berl. Baumz. 84.-Nouveau Duhamel, i, 19.-Michaux, Fl. Bor.-Am. i, 265.—Schkuhr. Handb. 354.-Persoon, Syn. i, 454.—Desfontaines, Hist. Arb. ii, 254.Pırsh, Fl. Am. Sept. i, 308.-Eaton, Manal, 46; 6 ed. 89.-Nuttall, Genera, i, 233.-Hayne, Dend. Fl. 53.-Elliott, Sk. i, 470.-Torrey in Ann. Lyc. N. York, ii, 194; Fl. U. S. 441 ; Compend. Fl. N. States, 188; Fl. N. York, i, 188; Nicollet's Rop. 149; Emory's Rep. 408.De Candolle, Prodr. ii, 518.—Sprengel, Syst. ii, 346.-Guimpel, Otto \& Hayne, Abb. Holz. 116, t. 92.-Hookor, Fl. Bor. Am. i, 167; Companion Rot. Mag. i, 24.-Don, Miller's Dict. ii, 468.-Beck, Bot: 94.-Spach, Hist. Veg. i, 129.-Torrey \& Gray, Fl. N. America, i, 392.-London, Arboretnm, ii, 659 \& t.-Eaton \& Wright, Bot. 190.-Dietrich, Syn. ii, 155.-Browue, Trecs of America, 221.-Gray in Mem. Am. Acad. new ser. iv ${ }^{1}$, 38; Manual N. States, 5 ed. 144.-Richardson, Arctic Exped. 424.-Parry in Owen's Rep. 611.Darlington, Fl. Cestrica, 3 ell. 62.-Darly, Bot. S. States, 294.-Cooper in Smithsoniau Rep. 1858, 251.-Chapman, Fl. S. States, 114.Curtis in Rep. Geological Surv. N: Carolina, 1860, iii, 50.-Lesquereux iu Owen's 2d Rep. Arkansas, 357.-Wood, Cl. Beok, 301; Bot. \& Fl. 84.-Engelmann in Trans. Am. Phil. Soc. new ser. xii, 190.-Porcher, Resources S. Forests, 197.-Koch, Dendrologie i, 14.Baillon, Hist. Pl. ii, 121.—Vasey, Cat. Forest Treè, 12.—Ridgway in Proc. U. S. Nat. Mne. 1882, 65.

Siliquastrum cordatum, Mœnch, Meth. 54.

C. Canadensis, var. pubescens, Pursh. Fl. Am. Sept. i, 303.-Loudou, Arboreturu, ii, 659.

REDBUD. JUDAS TREE.

Western Peunsylvania, sonthward to Tampa bay, Florida, northerm Alabama and Mississippi, westward through southern Miehigan and Minnesota to eastern Nebraska; southwest throngh Missouri and Arkansas to the eastern portions of the Indiau ternitory, Lonisiana, and the valley of the Brazos river, Texas.

A small tree, 12 to 16 meters in height, with a trunk sometimes 0.30 meter in diameter; rich woods, borders of streams and swamps; most common and reaehing its greatest development in southern Arkansas, the Indian territory, and eastern Texas, here, when in bloom, a conspicnons featme of the forest.

Wood hears, hard, not strong, rather eoarse-grained, compact, suseeptible of a good polish; layers of annual growth clearly marked by one to three rows of open ducts; medullary rays exceedingly numerous, thin; eolor, rich dark brown tinged with ret, the sap-wood lighter; specific grarity, 0.6363 ; ash, 0.72 .

92.-Cercis reniformis, Engelmann;

scheele in Romer, Texa*, 428. - Watson in Proc. An. Acarl. xvii, 348.
C. occidentalis, var. Gray in Jour. Boston Soc. Nat. Hist. vi, 177.--Walpers, Awu. ii, 440.-Torrey, Bot. Mex. Boundary Survey, 58.-Brewer \& Watson, Bot. California, i, 161.
C. occidentalis, Gray, Hall's Pl. Texas, 7 [not Torrey].-Hemsley, Bot. Am.-Cent. i, 340, in part.
C. occidentalis, var. Texensis, Watson, Index, i, 209.

REDBUD.

Middle and western Texas west of the Colorado river ; in northern Mexico.
A small tree, 6 to 8 meters in height, with a trunk 0.15 to 0.20 meter in diameter, or often a shrub forming dense thiekets; limestone hills; formerly often confounded with the shrubby C. occidentalis of the California coast region.

Wood heary, hard, close grained, compaet; layers of annual growth clearly marked by one to three rows of open dncts; mednllary rays numerous, not conspicuons; color, brown streaked with yellow, the sap-wood lighter; specifie gravity, 0.7513; ash, 0.77.

93.-Prosopis julifora, De Candolle,

Prodr. ii, 447.-Descourtilz, F1. Med. Antilles, viii, 107, t. 550 .-Lindley, Fll. Med. 270.-Walpers, Rep. i, 861.—Bentham, Rov. Mim. in Trans. Linnean Soc. xxx, 377.-Schnizlein, Icon. t. 277, f. 13.-Brower \& Watson, Bet. California, i, 163.-Kothrock in Wheeler's Rep. vi, 42, 107.-1Iemsley, Bot. Am.-Cent. i, 344 .
P. glandulosa, 'Torrey in Ann. Lyc. N. York, ii, 192, t. 2; Emory's Rep, 139; P'acific R. R. Rep. iv, 82.-Don, Miller's Dict. ii, 400 .-Diotrich, Syn. ii. 1424.-Laton \& Wright, Bot. 376.-Walpers, liop. i, 861.-Bentham in Hookor's Jour. Bot. iv, 348; London Jour. l’ot. v, 81.-Grisebach, Fl. British West Indics, 217.-Wateon in King's Rep. v, 42u; Pl. Wheeler, 8.-Gras, Hall's Pl. Texas, 7.-Vasey, Cat. Forest Trees, 1%.
Alfarobia glandulosu, Torrey \& Gray, Fl. N. America, i, 399 ; Pacifie 12. R. Rep. ii, 164.-Engelmann \& Gray in Jomr. Boston Soc. Nat. Hist. v, 242.-Lugelmann in Wislizenus' Rep. 10.-Scheete in Remer, Toxas, 427.-Gray in Jour. Boston soc. Nat. Hist. vi, 181 ; Suithsonian Coutrib. iii, 60; v, 51 ; Mem. Am. Acad. new ser. v, 304 ; lves' Rep 11.Tortes in Sitgreaves' Rop. 15x; Pacific R. 12. Rep. iv, 20, 82; vii, 10 ; l3ot. Mex. Bomudary Survey, 60.-Cooper in Smithsonian Rep. 18.5s, 259; Seientific Pross, San Francisee, Nov, 1871, \& f.-l'almer in Am. Nat. xii, 594.
\boldsymbol{P}. odorata, Torrey in Fremont's Rep, 313, t. 1 (wxcl. fruit).

MESQUIT. ALGAROBA. HONEY LOCUST. HONEY POD.
Texas, valley of the Trinity river (Dallas, ete.) to the northern and western limits of the state; west through New Mexico and Arizona to the mesas west of the San Bernardino monntains, California, reaching southern Colorado, southern Utah (Saint George), and sonthern Nevada; sonthwarl through sonthern Mexieo; in Jamaiea.

A tree of the first economic value, sometimes 9 to 15 meters in height, with a tronk 0.90 meter in diameter, or much smaller, often redueed to a low shrinh; on dry prairies and high rocky plains, or west of the Rocky mountains, along desert streams, here often forming mon forests, and reaching its greatest development within the United States in the valley of the Santa Cruz and other streams of southern Arizona; in western Texas (Fort Stoekton, ete.), on accomnt of the ammal burning of the prairies, rarely 1 meter in height, the roots then enormously developed, often weighing several hundred pounds, forming, as they are here locally known, "mnderground forests" and furnishing the best and cheapest fuel of the region.

Wood heary, very hard, not strong, close-grained, compaet, diffienlt to work, almost indestructible in eontact with the soil, containing many evenly-distributed, rather large, open duets; medullary rays numerons, distinet; color, rich dark brown or often red, the sap-wood clear yellow; speeific gravity, 0.7652 ; ash, 2.18 ; of the root, specifie gravity, 0.8493 ; ash, 3.02 ; exclusively used for the beams and muderpinnings of the adobe honses of New Mexico, Arizona, and northern Mexico; for posts and fencing, and occasionally in the manufaeture of furniture, the fellies of heavy wheels, etc.; the best and often the only fnel of the region, burning slowly with a elear flame, and produeing valuable chareoal, but unsuited for the generation of steam on account of its destructive action apon boilers.

A gum resembling gum arabie is yielded by this species; the unripe and pulpy pods rich in grape sugar, edible, and furnishing valuable and important fodder.

94.-Prosopis pubescens, Bentham,

London Jour. Bot. v, 82 ; Rev. Mim. in Trans. Linnæan Soc. xxx, 380.-Walpers, Ann. i. 259.-Watson in King's Rep. v, 420 ; Pl. Wheeler, 8.-Brewer \& Watson, Bot. California, i, 163.-Rothrock in Wheoler's Rep. vi, 42, 107.-Hemsley, Bot. Am.-Cent. i, 344 .
P. odoratt, Torrey in Fremont's Rep. 313, t. 1 (for frnit).

P: Emoryi, Torrey in Emory's Rep. 139.
Strombocarpa pubescens, Gray in Smithsonian Contrib. iii, 60; v, 51; Ives' Rep.9.-Torrey \& Gray in Pacific R. R. Rep. ii, 163.-Torrey in Pacific R. R. Rep. iv, 11, 20, 82; v, 360, t. 4 ; vii, 10; Bot. Mex. Bonndary Survey, 60.-Cooper in Smithsonian Rep. 1858,259; Scientific Press, San Franciseo, Nov. 1871 \& f.- Vasey, Cat. Forest Trees, 12.
Strombocarpa odorata, Torrey in Sitgreaves' Rep. 158.
SOREW BEAN. SOREW-POD MESQUIT. TORNLLLA.
Valley of the Rio Grande (Presidio), western Texas, westward through New Mexieo and Arizona (valley of the Gila and Colorado rivers) to southern California (White Water, Parish Brothers, Valleeito, Thurber), and southward into Mexico; sonthern Utah (Saint George), and southern Nevada (Ash Meadows).

A small tree, rarely 9 meters in height, with a trunk sometimes 0.30 to 0.45 meter in diameter, or often a tall, much-hranched shrul); sandy or gravelly bottom lands, reaehing its greatest development within the United States in the valleys of the lower Colorado and Gila rivers.

Wood heary, exceedingly hard, not strong, brittle, elose-grained, compact, containing many evenly-distributed open duets; medullary rays uumerous, thin; color, light brown, the sap-wood somewhat lighter; speeific gravity, 0.7609 ; ash, 0.95 ; used for fuel and fencing.

The pods ased as fodder, and sometimes made into flour by the Indians.

> 95.-Leucæna glauca, Bentham,

Ilooker's London Jour. Bot. iv, 417 ; Rev. Mim. in Trans. Linnean Soc. xxx, 443.-Walpers, Rep. i, 884.-Grisebach, Fl. British West Indies, 220. -Hemsley, Bot. Am.-Cent.i, 351.-Watson in Proc. Am. Acad. x vii, 350.-Chapman, Fl. S. States, Suppl. 619.

Mimost glauca, Limmens, Spec. 2 ed. 1504.
Acacia glauct, Willdenow, Spec. iv, 10i5.-De Caudolle. Prodr. ii, 467.
Acacia frondosa, Willdenow, Spec. ir, 1076.-De Candolle, Prodr. ii, 468.
Acaciu biccps, Willdenow, Spuc. iv, 1075.-De Candolle. Prodr. ii, 467.
Mimosa leucocephula, lamarck, Dict. i, 12.
Acuciu lencocephala, Link, Enum. Hort. Berl. ii, 444.—De Candolle, 1 Prodr. ii,467.
Mimosa biceps, Poiret, Suppl. i, 75.
Mimosa frondosa, Klein in Poiret, Snppl. i, 76.

Western Texas, San Saba to Devil's river (Buckley); southward into Mexico ; semi-tropical Florida (introdnced, Curtiss), and through the West Indies.

A small tree, 7 to 9 meters in height, with a trunk 0.10 to 0.15 meter in diameter, or often a tall or, in Florida, low slrull, sending up many steurs from the ground.

Wool heary, hard, close grained, compact, containing many small, regularly-distributed open ducts; layers of annual growth and medullary rays hardly distinguishable; color, rich brown streaked with red, the sap-wood clear yellow; specific gravity, 0.9235 ; ash, 3.29.

96.-Leucæna pulverulenta, Bentlaam,

Hooker's London Jour. Bot. iv, 417; Rev. Mim. in Trans. Linnæan Soc. xxx, 443.-Hemsley, Bot. Am.-Cent. i, 351.
Acacia pulverulenta, Schlechtendal in Linnæa, xii, 571.
Acacia esculenta, Martens \& Galeotti in Bnll. Aead. Brux. $\mathrm{x}^{2}, 312$.
Southern Texas, valley of the lower Rio Grancle ; southward into Mexico.
A small tree, 6 to 8 meters in height, with a trunk 0.10 to 0.15 meter in diameter, often forming dense thickets; rich, sandy loam.

Wood heary, hard, very close.grained, compact, containing many small, regularly distributed open ducts; mednllary rays very numerous, thin, conspicuous; color, rich dark brown, the sap-wood clear yellow; specific gravity, 0.6732; ash, 1.01.

> 97.-Acacia Wrightii, Bentham,

Smithsonian Contrib. iii, 64 ; Rev. Min. in Trans. Linnæan Soc. Xxx, 521.—Gray, Smithsonian Contrib. v, 53.-Walpers, Ann. iv, 626.Torrey, Bot. Mex. Boundary Survey, 161.-Brewer \& Watson, Bot. California, i, 61.-Watson in Proc. Am. Acad. xvii, 351 .

CAT'S CLAW.

Western Texas, valley of the Guadalupe river (New Braunfels), westward and southward to the valley of the Rio Grande; in northern Mexico.

A small tree, rarely 9 meters in height, with a trunk sometimes execeding 0.30 meter in diameter, or often a low, much-branched shrub.

Wood very heary, hard, very close-grained, compact; layers of annual growth marked by oue or two rows of small open ducts, and containing many seattered smaller ducts; medullary rays hardly distinguishable; color, bright, clear brown streaked with red and yellow, the sap-wood clear yellow; specific gravity, 0.9392 ; ash, 0.63 .

> 98.-Acacia Greggii, Gray,

Smithsonian Contrib. iii, 65; v,53; Ives Rep. 11.-Torrey in Sitgreaves Rep. 158; Pacific R. R. Rop. vii, 10; Bot. Mex. Bonndary Survey, 61.-Walpers, Ann. iv, 625.-Bentham, Rev. Mim. in Trans. Linnean Soc. xxx,521.-Cooper in Smithsonian Rep. 1860, 442.Brower \& Watson, Bot. California, i, 164.-Rothrock in Wheelor's Rep. vi, 108.-Homsley, Bot. Am.-Cont. i, 353.- James in Am. Nat. xv, 981.

CAT'S CLAW.

Western Texas, valley of the Rio Grande, westward through southern New Mexico and Arizona to San Diego, California; sonthward into northern Mexico.

A low, much-branched tree, sometimes 9 meters in height, with a trunk rarely 0.45 meter in diameter, or often a shrub; dry mesas aud in low cainons; common; the large specimens generally hollow and defective.

Wood heary, exceedingly hard, strong, brittle, close-grained, compact; layers of annual growth marked by numerous rows of rather large open ducts; medullary rays numerons, thin; color, rich brown or red, the sap-wood light yellow; specific gravity, 0.8550 ; ash, 0.91 ; used for fuel.

A resinous gun resembling gum arabic is produced by this species (Am. Jour. Pharm. lii, 419).

99.-Acacia Berlandieri, Bentham,

London Jour. Lot. i, 5 če ; Rev. Mim. in Trans. Liunæan Soc. xxx, 529.—Walpers, Rop. i,919.—Dietrich, Syn. iv, 500.
A. tephroloba, Gray in Smithsonian Contrib, iii, 6z; v, 54 .-Walpers, Aun. iv, 625.-Torrey, Bot. Mex. Bonndary Surver, 61.-Hemsley, Bot. Am.-Cent. i, 352.-Watson in Proc. Am. Acad. xvii, 351.

Southern Texas, valley of the Nueces (La Salle county) to Devil's river; southward into Mexico.
A small tree, sometimes 6 to 8 meters in height, with a trunk 0.15 to 0.20 meter in diameter, or more often a tall shrub, sending up many stems from the gronnd; the large specimens usually hollow and defective.

Wood not examined.

100.-Lysiloma latisiliqua, Bentham,

Rov. Mim. in Truns. Limnean Soc, xxx, 534.-Chapman, Fll. S. States, Suppl. 619.
Mimosa latisiliqua, Linuxus, Spec. 2 ed. 1504.
Acacia latisiliqua, Willdenow, Spec. iv, 1067.--Persoon, Syn. ii, $255 .-D e$ Candolle, Prodr. ii, 467.-Macfadyen, Fl. Jamaloa, 318.-Nattall, Sylva, ii, 34, t. 53; 2 ed. i, 183, t. 53.-Cooper in Smithsonian Rep. 1858, 264.
L. Bahamensis, Bentham in Mooker's London Jour. Bot. iii, 82.

Acacia Bahamensis, Griselach, Fl. British West Indies, 221.

WILD TAMARIND.

Semi-tropical Florida, southern keys (Key Largo, Elliott's, Plantation, and Boca Chica Keys); through the West Indies.

A tree sometimes 15 meters in height, with a trunk 0.60 to 0.90 meter in diameter; bark of the young, vigorous trees smooth; the older trees generally decayed and defective, with rough, dark bark (Curtiss).

Wood heavy, harl, uot strong, tough, close-grained, compact, susecptible of a fine polish, containiug many scattered, open lucts; medullary rays numerous, not conspicuous; color, rich dark brown tinged with red, the sap-wood white; specifie gravity, 0.6418 ; ash, 2.12 ; somewhat used locally in boat-and ship-building, and considered equel to maliogany for this purpose.
101.-Pithecolobium Unguis-cati, Bentham,

Hooker’ London Jour. Bot. iii, 200; Rev. Min. in Trans. Linnæan Soe. xxx, 572, 648.-Grisebach, FI. British West Indies, 276.Chapman, FI. S. States, 116.-Vasey, Cat. Forest Trecs, 13.

Mimosa Unguis-cati, Linnems, Spec. 2 ed. 1497.-Jaequin, Hert. Schoenb. iii, 74, t. 392.-Deseonrtilz, Fl. Med. Antilles, i, t. 11 .

Inga Unguis-cati, Willdenor, Spec. iv, 1006.—De Candolle, Prodr. ii, 436.-Nuttall, Sylva, ii, 37, t. 54 ; 2 ed. i, 86, t. 54.
Mimosa rosea, Vah1, Ecloga, iii, 33, t. 25.
Inga rosea, Steudel in De Candolle, Prode. ii, 437.
Inga forfex, Kunth, Mim. 12, t. 16.
P. forfex, Bentham in Hooker's Loudon Jour. Bot. iii, 199.

Inga Guadalupensis, Desvaux, Jour. i, 70.
Mimosa (Thuadalupensis, Persoon, Syn. ii, 262.
Inga microphylla, Humbeldt \& Bonpland in Willdenow, Spec. iv, 1004.
P. microphyllum, Bentham in Hookor's London Jour. Bot. iii, 200.
P. Guadalupensis, Chapman, FI. S. States, 116.

CAT'S CLAW.
Semi-tropical Florida, Caximbas bay, and on the sontheru keys; through the West Indies.
A small tree, sometimes 6 meters in height, with a trunk rarely exceeding 0.15 meter in diameter, or often throwing out many spreading, vine-like stems from the ground.

Wood very heavy, hard, close-grained, checking badly in drying; medullary rays numerous, inconspicnons; color, rich red varying to purple, sap-wood clear yollow; specific gravity, 0.9049; ash, 2.46.

ROSACEA.

102.-Chrysobalanus Icaco, Linnwus,

Spec. 1 ed. 513.-Jacquin, Stirp. Am. 154, 1. 94.-Lamarek, Dict. iii, 244; 111. ii, 542, t. 428.-Poiret, Suppl. iii, 135.-Aiton, Hort. Kew. 2 od. iii, 200 .-De Candolle, Prodr. ii, 525 .-Lindley in Trans. Hort. Soe. London, v, 98.-Turpin, Dict. Sci. Nat. 236.-Tussae, Fl. Antilles, iv, 91, t. 31.--Spaeh, Hist. Veg. i, 369, t. 5, 1. 4.-Torrey \& Gray, Fl. N. America, i, 406.-Walpers, Rep. ii, 1; Ann. iv, 64\%.Bentham, Bot. Sulphur, 91 ; 11. Nigritiaut, 336 .-Sprengel, Icon. t. 274 , f. 1-13.-Cooper in Smithsonian Rep. 18i0, 439.-Chapman, 1.1. S. States, 119.—Grisebach, Fl. British West Indies, we.-Baillon in Adansonia, vii, 221 ; Mist. Pl. i, 427, f. 486, 487.-Hooker f. in دlartius, Fl. Brasil. ii, 7.-Guibourt, 1list. Drogues, 7 ed. iii, 287.-Hemsley, Bot. Arn.-Cent. i, 365.

COCOA PLUM

Semi-tropieal Florida, cape Canaveral to bay Biscayne, west coast Caximbas bay, and on the southern keys; through the West Indies and tropical America to Brazil.

A small tree, 7 to 10 meters in height, with a trunk 0.15 to 0.30 meter in diameter, or along sandy beaches a low, prostrate shrub 1.08 to 2.16 meters in height; reaching its greatest development within the United States on the borders and islands of the Everglades, near bay Biscayne.

Wood heavy, hard, strong, elose-grained, compact, containing few irregularly-distribnted, not large, open duets; medullary rays numerous, thin; color, light brown often tinged with red, the sap wood lighter; specifie gravity, 0.7709 ; ash, 0.87.

Varieties are distinguished by A. I. Ourtiss with the skin of the edible fruit white or black, the latter more ovate with narrower, softer stones (? var. pellocarpa, Hooker f. l. c.-C. pellocarpa, Miquel, Prim. Esseq. 193.Grisebach, l. c.).

103.-Prunus Americana, Marshall,

Arbustum, iii.-Darlington in Ann. Lyc. N. York, iii, 87, t. 1; Fl. Cestriea, 3 cd. 72. - Eaton, Manual, 6 ed. 285.-Beek, Bot. 95.-Torrey \& Gray, Fl. N. Ameriea, i, 407 ; Paeific R. R. Rep. ii, 164.-Eatou \& Wright, Bot. 377. -Nuttall, Sylva, ii, 19, t. 48 ; 2 ed. i, 169, t. 48.Torrey, Fl. N. York, i, 194; Emory's Rep. 408; Pacific R. R. Rep. iv, 82.-Emerson, Trees Massachusetts, 449; 2 ed. ii, 511.-1Iooker in London Jour. Bot. vi, 217.—Romer, Syu. Mon. iii, 59.-Gray in Mew. Am. Acal. new ser. iv ${ }^{1}$, 40 ; Manual N. States, 5 ed. 148.Scheele in Rømer, Texas, 430.-Richardson, Arctic Exped. 424.-Parry in Owen's Rep. 611.-Chapman, Fl. S. States, 119.-Curtis in Rep. Geological Sarv. N. Carolina, 1860, iii, 56.-Lesquerenx in Owen's 2d Rep. Arkansas, 358.—Wood, Cl. Book, 327 ; Bot. \& Fl. 102.-Eugelmann in Trans. Am. Phil. Soc. new ser. xiii, 190.-Koch, Dreudrologie, i, 101.-Porter \& Coulter, Fl. Colorado ; Hayden's Surv. Misc. Pub. No. 4, 33.-Vasey, Cat. Forest Trees, 13.-Macoun in Geological Rep. Canada, 1875-’76,194.-Broadhead in Coulter's Bot. Gazette, iii, 52.-Bell in Geological Rep. Canada, 1870-'80,54c.-Ridgway in Proc. U. S. Nat. Mus. 1882, 65.
P. Mississippi, Marshall, Arbustum, 112.
P. spinosa, Walter, Fl. Caroliniana, 146 [not Linnens].
P. nigra, Aiton, Hort. Kew. ii, 165; 2 ed. iii, 198.—Willdenow, Spec. ii, 993 ; Berl. Banmz, 311.-Poiret in Lamarck, Dict.v, 674.-Persoon, Syn. ii, 35.-Bot. Mag. t. 1117 .-Pursb, Fl. Aı. Sept. i, 331.-Torrey, Fl. U. S. 469 ; Compend. Fl. N. Statee, 199.-Sprengel, Syst. ii, 477.-Rœmer, Syn. Mon. iii, 59.

Cerasus nigra, Loiseleur in Nouveau Duhamel, v, 32.-Seringe in De Candolle, Prodr. ii, 538.-Hooker, Fl. Bor.-Am. i, 167; Companion Bot. Mag. i, 24.—Don, Miller's Diet. ii, 513.-Beck, Bot. 96.-Spach, Hist. Veg. i, 399.-Loudon, Arboretum, ii, 704, f. 411, 412.
P. hiemalis, Elliott, Sk. i, 542 [not Michaux].
P. coccinca, Rafinesque, Fl. Ladoviciana, 135.

WILD PLUM. CANADA PLUM, HORSE PLUM.
Valley of the Saint Lawrenee (Quebec) to the valley of Rainy and Assinaboine rivers and southern shores of lake Manitoba; northern Vermont, western New England, and southward through the Atlantic states to the Chattahoochee region of western Florida, west to the valley of the upper Missouri river, Dakota, and Cheyenne cañon, Pike's Peak region, Colorado, southwest through Arkansas, the Indian territory, to about longitude $102{ }^{\circ}$, and the valley of the lower Concho river, Texas.

A small tree, 6 to 12 meters iu height, with a trunk rarely exceeding 0.30 meter in diameter; rich woods, or aloug streams and borders of ponds and swamps, reaching its greatest development on the bottom lands of eastern Texas.

A form with the young leaves and pedicles pubescent is-
var. mollis, Torrey \& Gray, Fl. N. America, i, 407.
P. hiemalis, Miehanx, F1. Bor.-Ann. i, 284.—Poiret in Lanarek, Dict. v, 679.-Persoon, Syn. ii, 35.-Desfontaines, Hist. Arb. ii, 206.-Nonveau Duhamel, v, 184.-Hayne, Dend. Fl. 73.-Sprengel, Syst. ii, 477.-Spach, Hist. Veg. i, 398.-Rœmer, Syn. Mon. iii, 59.
P. mollis, Torrey, Fl. U. S. 470; Compend. Fl. N. States, 199.-Beek, Bot. 95.

Cerasus hiemalis, Seringe in De Candolle, Prodr. ii, 538.-Hooker, Fl. Bor.-Am. i, 168.-Beck, Bot. 96.-Loudou, Arboretnm, ii, 704.-Don, Miller's Dict. ii, 504.

Cerasus Americana, Hooker, Companion Bot. Mag. i, 24.
Wood heavy, very hard, strong, very close-grained, compaet, satiny, susceptible of a beautifnl polish; medullary rays numerons, thin; color, rich bright brown or often red, the sap-wood lighter; specific gravity, 0.7215 ; ash, 0.18 ; osed for the handles of tools, etc.

Often cultivated for the yellow, red, or rarely nearly black, acid or rarely sweet fruit, and finmishing an excellent stock on which to graft the varieties of the domestic plum.

5 FOR

> 104.-Prunus angustifolia, Marshall,

Arbustum, iii.-Ǩoch, Dendrologio, i, 103.

> P. Chicasa, Miehaux, Fl. Bor.-Am. i, 284.-l'oiret in Lamarck, Dict. v, Ge0.-Persoon, Syn. ii, 35.-Nnttall, Genera, i, 302.Nonvean Duhamel, v, 183.-Enliott, Sk. j, $54:-$ Torrey in Ann. Lyc. N. York, ii, 194; Pacific R. R. Rep. iv, 82.Spreugel, Syst.ii, 4 (i.—Audubon, Birds, t. 53. - Eaton, Manual, 6 el. 28i.-Spach, Hist. Veg. i, 397.-Torrey \& Gray, Fl. N. Ameriea, $\mathrm{i}, 407$; Pacifte R. R. Rep. ii, 164.-Eaton \& Wright, Bot. 377.-Rœmer, Syn. Mon. iii, 58.-Darlington, Fl. Cestrica, 3 ed. 73.-Darby, Bot. S. States, 299.-Browne, Trees of Ameriea, 250.-Cooper in Smithsonian Rep. 1858, 251.-Chapman, lll. S. States, 119.-Curtis in Rep. Geologieal Surv. N. Carolina 1860, iif, 56.-Lesquereux in Owen's 2d Rep. Arkansas, 858.-Wood, Cl. lbook, 328; Bot. \& Fl. lu2.-Gray, Mauual N. States, 5 ed. 148; Hall's Pl. Tuxas, 9.-Young, Bot. Texas, 1251.-Porter \& Conlter, Fl. Colorado; Hayden's Surv. Misc. Pul. No. 4, 33.-Vasey, Cat. Forest Trees, 13.-Ridgway in Proc. U. S. Nat. Mus. 1882, 65.
P. insititia, Walter, Fl. Caroliniana, 146.-Abbot, Insects Georgia, ii, t. 60.

Cerasus Chicasa, Seringe in De Candolle, Prodr. ii, 538.-Hooker, Fl. Bor.-Am. i, 168; Companion Bot. Mag. 1, 24.-Don, Miller's Diet. ii, 514.-Loudon, Arboretum, ii, 705.

CHICKASAW PLUM. HOG PLUMI.

Probably native of the eastern slopes of the southern Rocky mountains, where it is found at an altitude of 7,000 feet, and of the high plateau east and southeast of them; now widely naturalized by early cultivation thronghout the Atlantic forests south of Pennsylvania, and west of the Alleghany mountains extending as far north as southern Michigan.

A small tree, 6 to 8 meters in height, with a trunk, 0.15 to 0.20 meter in diameter, or often a low shrnb; generally along streams or borders of prairies, in rich soil.

Wood heary, soft, not strong, close grained, compact ; medullary rays numerous, thin; color, light brown or red, the sap-wood lighter; specific gravity, 0.6884 ; ash, 0.28 ; often cultirated for its globose red or yellow fruit.

105.-Prunus Pennsylvanica, Limmens f.

Suppl. 252.-Willdenow, Spec. ii, 992; Euum. 518; Berl. Baunz. 310.—Albbot, lusects Georgia, i, t. 45.-Poiret in Lamarek, Diet. r, 673.Persoon, Syn. ii, 35.-Nonveau Duhamel, v, 9.-Aiton, Hort. Kew. 2 ed. iii, 198.-Pursh, Fl. Am. Sept. i, 331.-Nuttall, Genera, i, 302.-Torrey, Fl. U.S. 468 ; Compend. Fl. N. States, 198.-Sprengel, Syst. ii, 477.-Hayne, Dend. Fl. 73.-Eaton, Manual, 6 ed., $235 .-$ Beek in Am. Jonrmal Sei. 1 ser. xiv, 112.-Dietrieh, Syn. iii, 42.-Chapman, Fl. S. States, 130.-Curtis in Rep. Geological Surv. N. Carolina, 1860, iii, 57.—Wood, Bot. \& Fl. 102.-Gray in Proc. Philadelphia Acad. 1863, 61 ; Manual N. States, 5 ed. 148.-Koch, Dendrologie, i, 117.-Porter \& Conlter, Fl. Colorado; Hayden's Surv. Misc. Pub. No. 4, 33.-Emerson, Trees Massaehusetts, 2ed. ii, 513.-Vasey, Cat. Forest Trees, 13.-Macoun in Geologieal Rep. Canada, 1875-76, 194.-Bell in Geologieal Rep. Canada, 1879-'80, 544^{c}.-Sears in Bull. Essex Inst. xiii, 176.

9P. lanceolata, Willdenow, Berl. Baumz.240, t. 3, f. 3.
Cerasus borealis, Miehanx. Fl. Bor.-Am. i, 286.-Nonvean Duhamel, v, 32.-Michanx f. Hist. Arb. Am. iii, 159, t. 8; N. Americau Sylva, 3 ed. ii, 152, t. 90.-Seringe in De Candolle, Prodr. ii, 558.-Don, Miller's Dict. ii, 513.-Beek, Bot. 97.-Loudon, Arborctum, ii, 703, f. 410.-Rœmer, Syn. Mon. iii, 78.
P. borealis, Poiret in Lamarck, Diet. v, 674.-Pursh, Fl. Am. Sept. i, 538.-Eaton, Manual, 54.-Barton, Compend. Fl.

8P. persicifolia, Desfontaines, Hist. Arl. ii, 205.
PCerasus persicifolia, Loisoleur in Nouvean Duhamel, v, 9.-Soringe in Do Candolle, Prodr. ii, 537.-Don, Miller's Diet. ii, 512.-Spach, IIist. Veg. i, 411 .—Rœmer, Syn. Mon. iii, 81.

Cerasus Pennsylvaniea, Serimgo in De Candolle, Prodr. ii, 538.-Hooker, Fl. Bor.-Am. i, 168.-Don, Miller's Diet. ii, 514.Beck, Bot. 97.-Torrey \& Gray, F1. N. Anerica, i, 409.-Loudon, Arboretum, ii, 705.-Eaton \& Wright, B3ot. 189.— Torrey, Fl. N. York, i, 196.-Nintall, Sylva, ii, 15; 2 ed. i, 165.-Browne, Trees of Ameriea, 265.-Emerson, Trees Massachusotts, 1 ed. 451.-Rœmer, Syn. Mon. iii, 57. Gray, Manual N. States, 1 ed. 115.-Parry in Owen's Rep. 611.Richardson, Arctie Exped. 425.-Cooper in Smithsonian Rep. 1858,251.-Wood, Cl. Book, 327.

WILD RED GMERRY. PIN CMHRIY. PIGEON CMERRY.

Labrador, shores of Hindson's bay, and west through the Saskatchewan region to the valley of the npper Fraser river (Soda creck, Macoun); south through the northern states to Pannsylvania, central Michigan, northern Illinois, central Iowa, and along the high Alloghany momntains of North Carolina and Tennessee, and the Rocky mountains of Colorado.

A small tree, rarely exceeding 12 meters in height, with a trunk sometimes 0.60 meter in diameter, or in the Rocky Mountain region reduced to a low shrub; commou in all the northern forests, in northern New England taking possession of ground cleared by fire of the coniferous forests.

Wood light, soft, elose-grained, compact; , mednllary rays numerous, thin; color, light brown, sap-wood clear yellow; specific gravity, 0.5023 ; ash, 0.40 .

The small acid fruit used domestically and by herbalists in the preparation of cough mixtures, ete.
106.-Prunus umbellata, Elliott,

Sk. i, 541.—Eaton, Manaal, 6 ed. 286.—Dietrich, Syn. iii, 44.—Chapman, Fl. S. States, 119.—Wood, Cl. Book, 328; Bot. \& Fl. 102.Young, Bot. Texas, 251.-Vasey, Cat. Forest Trees, 13.
P. pumila, Walter, Fl. Caroliniaua, 146 [not Linnæus].

Cerasus umbellata, Torrey \& Gray, Fl. N. America, i, 409.-Eaton \& Wright, Bot. 190.-Rœmer, Syn. Mon. iii, 78.

SLOE. BLACK SLOE.
South Carolina, south near the coast to Mosquito iulet aud Tampa bay, Florida, and through central Alabama to eastern Mississippi (Holly Springs and Enterprise, Mohr).

A small tree, 5 to 6 meters in height, with a trunk 0.25 to 0.38 meter in diameter; dry, sandy soil.
Wood heavy, hard, close-grained, compact; medullary rays mimerous, thin; color, dark reddish-brown, the sap-wood much lighter; specific gravity, 0.8202; ash, 0.12.

The black or red pleasantly aeid fruit nsed as a preserve.
107.-Prunus emarginata, Walpers,

Rep. ii, 9.-Dietrich, Syn. iii, 42.-Loudon, Arboretum, ii, 714.—Watson in King's Rep. v, 79.-Torrey, Bot. Wilkes Exped. 284.Brewer \& Watson, Bot. California, i, 167.

Cerasus emarginata, Donglas in Hooker, Fl. Bor.-Am. i, 169.-Don, Miller's Dict. ii,515.-Torrey \& Gray, Fl. N. America, i, 410.-Eaton \& Wright, Bot. 189.-Rcomer, Syn. Mon. iii, 79.-Torrey in Pacific R. R. Rep. iv, 83.-Bolander in Proc. California Acad. iii, 79.

Cerasus erecta, Presl, Epimel. Bot. 194.-Walpers, Ann, iii, 854.
Cerasus glandulosa, Kellogg in Proc. California Acad. i, 59.
Vancouver's island and the valley of the lower Fraser river, sonth through western Washington territory and Oregon, east to the western slopes of the Bitter Root monntain, Idaho (Lolo trail, Watson), and the valley of the Jocko river, Montana (Canby \& Sargent). California along the western slopes of the Sierra Nevadas and on the Coast ranges, from San Franciseo bay to the Santa Lneia mountains (G. R. Vasey), reaching an elevation of from 3,000 to 4,000 feet.

A tree often 12 to 15 meters in height, with a trunk sometimes excceding 0.30 meter in diameter; at high elevations and thronghont central California reduced to a shrub 2 to 3 meters in height, or in the Santa Lacia monntains 15 to 18 meters in height, with a trunk 0.60 to 0.90 meter in diameter (Vasey); generally along streams or in low, rich woods.

The wood of the type not collected.

> Var. mollis, Brewer,

Bot. California, i, 167.-Hall in Coulter's Bot. Gazette, ii, 86.
Cerasus mollis, Douglas in Hooker, Fl. Bor.-Am. i, 169.-Hooker, London Jour. Bot. vi, 217.—Don, Miller's Dict. ii, 515.Torroy \& Gray, Fl. N. America, i, 410.-Loudon, Arboretum, ii, 417.-Eaton \& Wright, Bot. 189.-Nuttall, Sylva, ii, 14, t. 46; 2 ed. i, 164, t. 46.-Rœmer, Syn. Mon. iii, 79.-Richardson, Arctic Exped, 425.-Newberry in Pacific R. R. Rep. vi, 73.--Cooper in Pacific R. R. Rep. xii, 29, 59; Am. Nat. iii, 406.-Lyall in Jour. Linnæan Soc. vii, 131.-Gray in Proc. Am. Acad. viii, 381.
P. mollis, Walpers, Rep. ii, 9.—Dietrich, Syn. iii, 42.—Torrey, Bot. Wilkes Exped. 284.-Vasey, Cat. Forest Trees, 13.Maconn in Geological Rer. Canada, 1875-'76, 194.

The common northern and Idaho form, more or less wooly pnbescent, especially on the under side of the leaves.
Wood light, soft, not strong, brittle, close-graincl, compact; medullary rays numerons, thin; color, brown streaked with green; specific gravity, 0.4502 ; ash, 0.21 .

108.-Prunus serotina, Elurhart,

Beitr. iii, 20.-Willdonow, Spec. ii, 986; Enum. 517 ; Berl. Baumz. 301.-Persoon, Syn. ii, 34.-Desfontaines, Hist. Arb. ii, 204.-Aiton, Hort. Kow. 2 cd. iii, 196.-Eaton, Manual, 54; 6 ed. 284.-Nnttall, Genora, i, 302.-Barton, Compend. Fl. Philadelph. 54.-Guimpel, Otto \& Hayne, Abl. Holz. 45, t. 37.-Hayne, Dend. Fl. 70.-Sprengel, Syst. ii, 478.-Nees, Pl. Neuwied, 9.-Hooker f. in Trans. Linnæan Soo. xxii ${ }^{2}$, 327.-Curtis in Rop. Geological Surv. N. Carolina, 1860, iii, 56.-Lesquereux in Owen's 2 d Rep. Arkansas, 358.-Wood, Bot. \& Fl. 102.-Engelmann in Trans. Am. Phil. Soc. now scr. xii, 190.-Chapmau, Fl. S. States, 120.—Gray, Manual N. States, 5 cd. 149; Hall's Pl. Toxas, 9.-Koch, Deudrologie, i, 1\%2.-Torrey, Bot. Wilkes Exped. 284.-Emerson, Trees Massachusetts, 2 ed. ii, 515 \& t.-Brewer \& Watson, Bot. California, i, 167.-Vasey, Cat. Forest Trees, 13.-Bentley \& Trimen, Med. Pl. ii, 97, t. 97.-Sears in Bull. Lssex Inst. xiii, 176.-Bell in Gcological Rep. Canada, 1879-80, 54c.-Ridgway in Proc. U. S. Nat. Mns. 1882, 66.
P. Virginiana, Miller, Dict. No. 3 [not Linnæus].-Du Roi, Obs. Bot. 12; Harbk. ii, 191.-Wangenheim, Aner. 34, t. 14.Medicus, Bot. Beobacht. 1782, $345 .-M a r s h a l l$, Arbustum, 112.—Walter, Fl. Caroliniana, 146.-Aiton, Hort. Kew. ii, 163.-Poiret in Lamarck, Dict. v, 664.-Pursh, FI. Am. Sept. i, 329.-Elliott, Sk. i, 540.-Torrey, Fl. U. S. 467 ; Compend. Fl. N. States, 189.-Bigelow, Fl. Boston. 3 ed. 204.
Cerasus Virginiana, Michanx, Fl. Bor.-Am. i, 285.-Michanx f. Hist. Arb. Am. iii, 151, t.6; N. American Sylva, 3 ed. ii, 147, t. 88.-Hooker, Fl. Bor.-Am. i, 169 (excl. syn.).-Don, Miller's Dict. ii, 515.-Beck, Bot. 97.-Darlington, Fl. Cestrica, 2 ed. 289.-Loudon, Arborotum, ii, 710, f. 418.-Browne, Trees of America, 268.
Cerasus serotina, Loiseleur in Nonveau Dnhamel, v, 3.-Seringe in De Candolle, Prodr. ii, 540.-Spach, Hist. Veg. i,416.Torrey \& Gray, Fl. N. America, i, 410.-Loudon, Arboretam, ii, 712, f. 419 \& t.-Eaton \& Wright, Bot. 189.-Torrey, Fl. N. York, i, 196; Pacific R. R. Rep. vii, 11.-Pean. Cycl. vi, 432.-Carson, Med. Bot. i, 41, t. 35.—Griffith, Mcd. Bot. 288.-Emerson, Trecs Massachusetts, 1 ed. 453.-Gray, Manual N. States, 1 ed. 115; Jonr. Boston Soc. Nat. Hist. vi, 186.-Darlington, Fl. Cestrica, 3 cd. 75.-Darby, Bot. S. States, 299.-Cooper in Smithsonian Rep. 1858, 252.—Porcher, Resources S. Forests, 169.-Richardson, Arctic Exped. 425.-Wood, CI. Book, 326.-Bolander in Proc. California Acad. iii, 79.
P. cartilaginea, Lehmann, Ind. Sem. Hamburg, 1833.

Padus serotina, Agardh, Thoor. \& Syst. Pl. t. 14, f. 8.
Padus Virginiana, Rcemer, Syn. Mon. iii, 86.
Padus cartilaginea, Rœmer, Syn. Mon. iii, 86.

WILD BLACK CHERRY. RUM CHERRY.

Southern Ontario, southward through the Atlantic forests to Matanzas inlet and Tampa bay, Florida, west to the valley of the Missouri river, Dakota, eastern Kansas, the Indian territory, and the valley of the upper San Antonio River, Texas.

A tree 18 to 30 meters in height, with a trunk 0.90 to 1.20 or, exceptionally, 1.50 meter in diameter; rich, generally elevated woodlands; common and reaching its greatest development on the western slopes of the Alleghany mountains from West Virginia southward ; not common and of small size in the Gulf region and Texas

Wood light, hard, strong, close, straight-grained, compact, easily worked; medullary rays numerons, thin; color, light brown or red, growing darker with exposure, the thin sap-wood yellow; specific gravity, 0.5822 ; ash, 0.15 ; largely used and esteemed in cabinet work, interior finish, etc., and now becoming scarce.

The bark contains a bitter tonic principle, and infused with cold water generates a small percentage of hydrocyanic acid; employed as a tonic and sedative in cases of pulmonary consumption in the form of cold infusions, sirups, and fluid extracts (Proc. Am. Phar. Assoc. xxiii, 209.-Globley in Jour. Pharm. et Chimic, xr, 40.Guibourt, Hist. Drogues, 7 ed. iii, 317.-Pharn. Jour. 3 ser. iv, 44.—Flickiger \& Hanbury, Pharmocographia, 224.— U. S. Dispensatory, 14 ed. $749 .-$ Nat. Dispensatory, 2 cd .1177); the bitter fruit used domestically in the preparation of cherry brandy.

Note.-The closely-allied P. Firginiana of the north Atlantic region, a tall shrub, sometimes 6 to 8 meters in height, does uot assume arborescent habit.

109.-Prunus Capuli, Cavanilles,

Sprengel, Syst. ii, 477.—Schlochtenclal in Limaæa, xiii, 69, 404.—Koch, Dendrologie, i, 123.-Hemsley, Bot. Am.-Cent. 1, 367.Watson in Proc. Am. Acad. xvii, 35.

Cerasus Capollin, Do Candolle, Prodr. ii, 539.-Don, Miller's Dict. ii, 515.-Loudon, Arboretum, ii, 713, f. 420.—Bedtham, Pl. Hartweg. 10.-Lindley, Fl. Med. $2: 3$-Ponn. Cycl. vi, 432.-Torrey \& Gray, Fl. N. America, i, 412.—Gray in Smithsonian Contril. ソ, 54.

Cerasus Capuli, Scringe in Do Candolle, 1'rodr. ii, 541.—Don, Miller's Dict. ii, 516.—Spach, Hist. Veg. i, 42d.
P. Capollin, Zucearini in Abhandl. Acad. Munich, ii, 345, t. 8.-Rœmer, Syn. Mon. iii, 87.-Torrey, Bot. Mex. Boundary Survey, Ge.-Rusby in liull. Tomey Bot. Club, ix, 53.
P. Canadensis, Mociño \& Sesse, Pl. Mex. Icon. ined.

WILD CHERRY.

Apache and Guadalupe mountains, Texas, west through southern New Mexico and Arizona to the sonthem slopes of the San Francisco monntains; southward through northern New Mexico, and in Peru.

A small tree, in the United States, rarely 12 meters in height, with a trunk often 0.30 meter in diameter; bottoms of cañons and mountain valleys, generally betweeu 5,000 and 7,000 feet elevation.

Wood lieavy, moderately hard, close-grained, compact; medullary rays very numerous, thin; color, brown, or often bright, clear red, the sap-wood nearly white; specific gravity, 0.7879 ; ash, 0.20 .

110.-Prunus demissa, Walpers,

Rep. ii, 10.-Dietrich, Syn. iii, 43.-Bontham, Pl. Hartweg. 307.-Torrey, Bot. Mex. Boundary Survoy, 63.-Watson in King's Rep. $\mathbf{\nabla}, 80$; Pl. Wheeler, 8.-Porter in Hayden's Rep. 1871, 481.-Conlter in Hayden's Rep. 1872, 764.-Rothrock, Pl. Whecler, 37.-Brandegoe in Hayden's Rep. 1875, 236.—Brewer \& Watson, Bot. California, i, 167.—Vasey, Cat. Forest Trees, 13.-Hall in Coulter's Bot. Gazette, ii, 86.-Macoun in Geological Rep. Canada, 1875-'76, 194.-Hemsley, Bot. Am.-Cent. i, 368.

Cerasus serotina, Hooker, Fl. Bor.-Am. i, 169, in part.
Cerasus demissa, Nattall in Torrey \& Gray, Fl. N. America, i, 411.—Gray in Mem. Am. Acad. new ser. iv¹, 40.-Durand in Jonr. Philadelphia Acad. 1855, 87.-Torrey in Pacific R. R. Rop.iv, 83.-Nemberry in Pacific R. R. Rep. vi, 73.-Cooper in Smithsonian Rep. 1858,259; Pacific R. R. Rep. xii ${ }^{2}$, 59.

Padus demissa, Rœmer, Syn. Mon. iii, 87.
P. Virginiana, var. demissa, Torroy, Bot. Wilkes Exped.284.—Gray in Proc. Am. Acad. viii, 381.

WILD CHERRY.

Vancourer's island east to the western slopes of the Rocky mountains of Montana, south through the Pacific region; in Sonora.

A small tree, sometimes 7 to 10 meters in height, with a trunk 0.30 to 0.45 meter in diameter, or more often a low shrub; reaching its greatest development in the rich valleys of southern Oregon and northern California, near the coast; in sonthern California, and east of the Cascade and Sierra Nevada ranges, a low shrub confined to high, mountain valleys.

Wood heavy, hard, not strong, close-grained, compact; medullary rays numerous, conspicnous; color, light brown, the sap-wood lighter; specific gravity, 0.6951 ; ash, 0.50 .

111.-Prunus Caroliniana, Aiton,

Hort. Kew. ii, 163; 2 ed. iii, 196.—Willdenow, Spec. ii, 987.—Poiret in Lamarck, Dict. v, 667.-Persoon, Syn. ii, 34.—Desfontaines, Hist. Arb. ii, 203.-Nattall, Genera, i, 302.—Sprengel, Nene Entdeck. i, 304; Syst. ii, 478.-Hayne, Dond. Fl. 71.-Elliott, Sk. i, 540.Auduloo, Birds, t. 159, 190.-Eaton, Manual, 6 ed. 286 .-Schlechtendal in Linnæa, xiii, 89.-Dictrich, Syn. iii, 43.-Chapman, Fl. S. States, 120.-Curtis in Rcp. Geological Surv. N. Carolina, 1860, iii, 57.—Wood, Bot. \& Fl. 103.-Koch, Dendrologie, i, 124.Yonng, Bot. Texas, 252.—Gray, Hall's Pl. Texas, 9.-Vasey, Cat. Forest Trees, 13.
P. Carolina, Miller, Dict.-Du Roi, Harbk. ii, 198.
P. serratifolia, Marshall, Arbustum, 114.
P. Lusitanica, Walter, Fl. Caroliniana, 146.

Cerasus Caroliniana, Michaux, Fl. Bor.-Am. i, 285.-Nonveau Duhamel, v, 5.-Michaux f. Hist. Arb. Am. iii, 156, t. 7; N. American Sylva, 3 ed. ii, 150, t. 89.-Seringe in De Candolle, Prodr. ii, 540.—Don, Miller's Dict. ii, 516.—Spach, Hist. Veg. i, 420.-Penn. Cycl. vi, 432.-Loudon, Arboretum, ii, 720, f. 423.-Torrey \& Gray, Fl. N. America, i, 411.Eaton \& Wright, Bot. 190.-Browne, Trees of America, 272.-Darby, Bot. S. States, 299.—Griffth, Med. Bot. 291.Cooper in Smithsonian Rop. 1858, 252.-Porcher, Resourcos S. Forests, 171.-Wood, Cl. Book, 326.
P. sempervirens, Willdenow, Enum. Suppl. 33.

PBumelia serrata, Pursh, Fl. Am. Sept. 155.-Rcmer \& Schultes, Syst. iv, 498.
PAchras serrata, Poiret, Suppl. v, 36.
Leptocarpa Caroliniana, Nattall, Sylva, ii, 18; 2 ed. i, 167.
Ohimanthus anygdalinus, Rafinesqne, Fl. Ludoviciana, 159.
Laurocerasus Caroliniana, Rœmer, Syn. Mon. iii, 90.

North Carolina, south, near the coast, to bay Biscayne, Florida, and sonthem Alabama, west, along the Gulf coast, to the valley of the Guadalupe river, Texas.

A small tree, evergreen, 10 to 12 meters in height, with a trunk rarely exceeding 0.30 meter in diameter; common and reaching its greatest development in the rich, light, deep soil of the bottoms of eastern Texas, here often covering extensive tracts known as "peach brakes"; not common in the easteru Gulf states.

Wood heary, harl, strong, close-grained, checking badly in seasoning, susceptible of a good polish; medullary rays unmerous, thin; color, light reddish-brown, or, more rarely, fieh dark brown, the sap-wood lighter; specific gravity, $0.8688 ;$ ash, 0.41 .

Generally planted in the sonthern states as an ornamental and hedge plant; foliage, bark, and fruit contain prussic acid, the leares, especially when bartly withered, often proving fatal to animals browsing upon them.

> 112.-Prunus sphærocarpa, Swartz,

Prodr. 81 ; Fl. Ind. Oee. ii, 927 [not Mlichanx].-Willeenow, Spec. ii, 987.-Poiret in Lamarek, Diet. v, 666.-Persoon, Syn. ii, 34.-Don, Miller's Dict. ii, 516.-Sehlechtendal in Linnea, xiii, 87.-Walpers, Rep. ii, 10.-Grisebach, Fl. British West Indies, 231.Chapman, Fll. S. Stutes, Suppl. 620.

Cerasus sphcrocarpa, Loiseleur in Nonveau Duhamel, v, 4.-Soringo in De Candolle, Prodr. ii, 540.-Loudon, Arboretam il, 221.—Bet. Mag. t. 3141.—Spach, Hist. Veg. i, 421.

Semi-tropical Florida, western shores of bay Biscayne (Curtiss); in the West Indies.,
A small tree, in Florida not exceeding 6 meters in height, with a trunk 0.10 to 0.15 meter in diameter; high rocky woods or, more rarely, along the borders of streams and ponds; rare.

Wood heavy, hard, close-grained, checking badly in drying, containing many very small open ducts; layers of annual growth and mednllary rays obscure; color, light, clear red, the sap-wood pale yellow; specific gravity, 0.8998 ; ash, 0.87.

113.-Prunus ilicifolia, Walpers,

Rep. ii, 10.-Dietrich, Syn. iii, 43.-Torrey, Bot. Mex. Bonndary Survey, 63; Bot. Wilkes Exped. 285.-Brewer \& Watsen, Bot. California, i, 168; ii, 443.-Vasey, Cat. Forest 'Irces, 13.

Cerasus ilicifolia, Nuttall in Hooker \& Arnott, Bet. Beeehey, 340, t. 83.-Torrey \& Gray, Fl. N. Ameriea, i, 411.-Nuttall, Sylva, ii, 16, t. 47 ; 2 ed. i, 165, t. 47.-Torrey iu Emery's Rep. 139; Paeifie R. R. Rep. iv, 83.-Paxton, Brit Fl. Garden, iii, 44, f. 254 .-Walpers, Aun. iv, 654.-Cooper in Smithsonian Rep. 1858, 259.-Kellogg in Proc. Califoruia Aead. ii, 22.-Bolander in Proe. California Acad. iii, 79; iv, 22.-London Garden, 1873, 131 \& fig.

Laurocerasus ilicifolia, Rœmer, Syn. Mon. iii, 92.
isLAy.
California, Const ranges from San Francisco bay sonth to the southern boundary of the state, extending to the western slopes of the San Bernardino and San Jacinto mountains.

A small tree, evergreen, often 9 to 12 meters in height, with a trunk 0.30 to 0.60 meter in diameter, or when distant from the coast often reduced to a low shrub.

Wood rery heary, hard, strong, close-grained, checking in seasoning, satiny, susceptible of a beautiful polish, containing many regularly-distributed rather small open ducts; medullary rays numerous, thin; color, bright reddish-brown, the sap-wood much lighter; specific gravity, 0.9803 ; ash, 0.78 ; furnishing valuable fuel.

114.-Vauquelinia Torreyi, Watson,

Proc. Am. Aead. xi, 147.—Brewer \& Watson, Bot. Califernia, i, 169.-Maximowiez in Aet. Hort. St. Petersbarg, \mathbf{r}^{4}, 237.—Hemsley, Bot. Am.-Cent. i, 370.

Spirca Californica, Torrey in Emory's Rep. 140.
V. corymbosa, Terrey, Bet. Mex. Boundary Survey, 64 [not Correa].

Arizona, high mountains near the Gila (Emory), snmmits of the Santa Catalina mountains (Pringle, Lemmon); in Sonora.

A sinall tree in the Santa Catalina mountains, 4 to 6 meters in height, with a trunk 0.10 to 0.20 meter in diameter; dry slopes and rocky bluffs at 2,700 to 4,000 feet elevation, granitic soil; generally hollow and decayed.

Wood very heavy, hard, very close-grained, compact, susceptible of a beantiful polish; medullary rays numerous, thin; color, rich dark brown streaked with red, the sap-wood yellow; specific gravity, 1.1374; ash, 1.45.

115.-Cercocarpus ledifolius, Nuttall;

Torrey \& Gray, Fl. N. America, i, 427.-Hooker, Icon. t. 324.-Nuttall, Sylva, ii, 28, t. 51 ; 2 ed. i, 178, t.51.-Walpers, Rep. ii, 46:Dietrich, Syn. iii, 119.-Watson in King's Rep. v, 83, 420; Pl. Wheeler, 8.-Porter in Hayden's Rep. 1871, 481.-Coulter in Hayden's Rep. 1872, 765.-Parry in Am. Nat. ix, 201, 270 ; Proc. Davenport Acad. i, 146.-Engelmann in Simpson's Rep. 435.Brewer \& Watson, Bot. California, i, 174.-Vasey, Cat. Forest Trees, 13.-Sargent in Am. Jour. Sci. 3 ser. xvii, 421.-Rothrock in Wheeler's Rep. vi, 43, 111, 360.

MOUNTAIN MAHOGANY.

Cœur d'Alêne mountains, Idaho, southward along the western slopes of the Roeky mountains of Montana and Wyoming; eastern extremities of the Blue mountains of Washington territory and Oregon, Wahsatch mountains, Utah, and west along the mountaiu ranges of the Great Basin to the western slope of the Sierra Nevada of California, extending southward into Arizoua and New Mexieo.

A small, low tree, rarely 12 meters in height, with a trunk sometimes 0.60 to 0.90 meter in diameter, or north of Utah and Nevada reduced to a low shrub; dry, rocky monutain slopes, between 6,000 and 8,000 feet elevation. reaching its greatest derelopment on the high ranges of central Nevada.

A shrubby variety of the Wahşatch mountain and other ranges of Utah, characterized by its rigid, intricately branched growth, short, revolute leaves and smaller flowers and fruit, is-
var. intricatus, M. E. Jonos in herb.
C. intricatus, Watson in Proc. Am. Acad. x, 346.—Parry in Au. Nat. ix, 270; Proc. Davenport Acad. i, 147.
C. brevifolius, Watson in King's Rep. v, 83 [not Gray].

Wood very hears, hard, elose-grained, compaet, brittle, difficult to work, susceptible of a beantiful polish; medullary rays very mumerous, thin; color, bright, clear red, or often rich dark brown, the sap-wood clear yellow; specific gravity, 1.0731 ; ash, 1.04 ; furnishing the most valnable fuel of the region, and largely manufactured into charcoal.

116.-Cercocarpus parvifolius, Nuttall;

Hooker \& Arnott, Bot. Beechey, 337.-Torrey \& Gray, Fl. N. Aurerica, i, 427 ; Pacifie R. R. Rep. ii, 164.-Hooker, Icon.t. $323 .-W a l p e r s$, Rep. ii, 45.-Torrey in Fremont's Rep. 89 ; Enory's Rep. 139; Sitgreaves' Rep. I58; Pacific R. R. Rep. iv, 83 ; Bot. Mcx. Boundary Snrvey, 63; Bot. Wilkes Exped. 287.-Dictrich, Syn. iii, 119.-Gray in Mem. Am. Aead. new ser. ivi, 41 ; Smithsonian Contrib. iii, 68; r, 34 ; Proc. Boston Soc. Nat. IIist. vii, 146 ; Am. Jour. Sci. 2 ser. xxxiii, 411 ; Proc. Philadelphia Aead. 1863, $61 .-$ Engelmann in Trans. Am. Phil. Soc. new ser. xii, 190.-Bolander in Proc. Califurnia Acad. iii, 79.-Porter in Hayden's Rep. 1870, 475; 1871, 481.-Watson in King's Rep. v, 82.-Porter \& Conlter, Fl. Colorado; Hayden's Surv. Misc. Pub. No. 4, 34.-Rothrock, Pl. Wheeler, 37 ; Wheeler's Rep. vi, 111, 359.-Brewer \& Watson, Bot. Californin, i, 174; ii, 444.-Vases, Cat. Forest Trees, 13.-M. E. Jones, Excur. Bot. 12, 15, 20, 21.-Hemsley, Bot. Am. Cent. i, 374.-Watson in Proe. Am. Acad. xvii, 353.

MOUNTAIN MAHOGANY.

California, valley of the Klamath river, southward through the Coast ranges to the San Bernardino and San Jacinto mountains, and in Lower Califoruia; Rocky mountains of W yoming, Colorado, and New Mexico, mountains of southern Arizona, and sonthward into Sonora.

A small tree, rarely 6 to 9 meters in height, with a trunk sometimes 0.30 meter in diameter, or more often a shoub; dry, gravelly soil, reaching its greatest development on the mountains of southern New Mexico and Arizoua, at an elevation of 6,000 to 8,000 feet.

A glabrous variety of southern California, with dark green leaves, is-
var. glaber, Watson, Bot. California, i, 175.
C. betulafolius, Nintall in Ilooker, Ieon. t. 322.-Walpors, Rep. ii, 46.
C. betuloides, Nuttall in Torrey \& Gray, Fl. N. America, i, 427.-Hooker in London Jour. Bot. vi, 218.

A form with small entire or sparingly toothed leaves, of northern Mexico, is-
var. paucidentatus, Watson in Proc. Anı. Aearl, xvii, 353.
Wood very heavy, hard, close-grained, compact, difficult to work, susceptible of a beautiful polish; mednllary rays numerous, thin ; color, bright redlish-brown, tho sap-wood light brown ; specific gravity, 0.9365 ; ash, 0.45 ; furnishing valuable fuel.

117.-Pyrus coronaria, Linnwus,

Spec. 1 cd. 480.—Kalm, Travels, English ed. ii, 166.-Du Roi, Harbk. i, 229.-Marshall, Arbustum, I18.-Aiton, Hort. Kow. ii, 176; 2 ed. iii, 209.—Willdenow, Spec. ii, 1019; Lnum. 527; Berl. Baumz. 3:0.-Persoon, Syu. ii, 40.-Pursh, Fl. Am. Sept. i, 340.-Eaton, Manual, 56 ; 6 ed. 291.-Nuttall, Genera, i, su7.—Barton, Compond. l'l. Philadelph. i, 228.-Hayne, Dend. Fl. 86.-Torrey, Fl. U. S. i, 180 ; Compend. Fl. N. States, 203; Fl. N. York, i, 223 .-Bot. Mag. t. 2009.-Elhott, Sk. i, 559.-Bot Reg. viii, 651.-Sprengel, Syst. ii, is10.-De Candolle, Prodr. is, 635.-Don, Miller's Dict. ii, 6.17.-Beek, Bot. 113.-Hooker, Companion Bot. Mag. i, 25.Reichenbach, Fl. Exot. t. 240.-Torrey \& Gray, Fl. N. Aneriea, j, 223.-Dietrich, Syn. iii, 154.-London, Arboretum, ii, 908 \& t.Browne, Trees of Anteriea, 297.-Richardson, Arctie Exped. 429.-l'arry in Owen's Rep. 612.-Darly, Bot. S. States, 307.-Cooper
 Lesquereux in Owen's $2 d$ Rep. Arkansas, 359. -Wood. Cl. Book, 332 ; Bot. \& Fl. 112.-l'orcher, Resources S. Forests, 149.-Gray, Mantal N. States, $\overline{\mathrm{j}}$ ed. 1ul.-Koch, Dendrologie, i, 214.—Wenzig in Linnea, xxxviii, 40 (exel. var.).-Macoun \& Gibson in Trans. Bot. Soc. Edinburgh, xii, 3:5.-Vasey, Cat. Forest Trees, 13.-Loudon Garden, xix, 400, t. 280.-Ward in Bull. U. S. Nat. Mus. No. 22, 78.-Ridgway in Proe. U. S. Nat. Mus. 1882, 60.

Mfalus coronarit, Miller, Dict. No. 2.-Mench, Meth. (822.-Michanx, Fl. Bor.-Am. i, 292.-Poiret in Lamarck, Dict. v, 562.Desfontaines, Hist. Arl. ii, 140.-Nouvean Dnhamel, vi, 139, t.44, f. 1.-Michaux f. Hist. Arb. Am. iii, 65, t. 10; N. dmerican Sylva, 3 ed. ii, 58, t. 65.-Barton, Prodr. Fl. Philadelph. 55. -Spach, Hist. Veg. ii, 136, t. 8.-Ramer, Syn. Mon. iii, 191.-Decaisne in Nouv. Arch. Mas. x, 154.-Carrière in Rev. Hort. 1877, 410 \& t.
-
Cratagus coronaria, Salisbury, Prodr. 357.
Malus microcarpa coronaria, Carrière in Rev. Hort. 1884, 104, f. 24.

american crab. sweet-soented crab.

Ontario, valley of the Humber river, shores of lake Eric, southward through western New York and Pennsylvania to the District of Columbia, and along the Alleghany mountains to central Alabama and northern Mississippi; west to sonthern Minnesota, Iowa, eastern Kansas, the Indian territory, and northern Louisiana.

A small tree, rarely 6 to 9 meters in height, with a trunk often 0.30 meter in diameter; rich, rather low woods, reaching its greatest development in the valleys of the lower Ohio region.

Wood hears, rather soft, not strong, very close-grained, cheeking badly in drying; medullary rays numerous, obscure; color, brown varying to light red, the sap-wood yellow; specific gravity, 0.7048 ; ash, 0.52 ; used for levers, handles of tools, and in turnery.

Often planted for ornament on account of its fragrant blossoms; the small, yellow-green austere fruit used for preserves, and occasionally made into cider.

118.-Pyrus angustifolia, Aiton,

Hort. Kew. ii, 17G; 2 ed. iii, 209.—Willdenow, Spec. ii, 1020.—Poiret in Lamarck, Diet. v, 45j.-Persoon, Syn. ii, 40.-Pnrsh, Fl, Am. Sopt. i, 341.-Elliott, Sk. i, 559.-Torrey, Fl. U. S. 480; Compend. Fl. N. States, 203.-Sprengel, Syst. ji, 509.—De Candolle, Prodr. ii, 635.Watson, Dend. Brit. ii, t. 132.-Bot. Reg. xiv, 1207.-Don, Miller's Diet. 647.-Beck, Bot. 113.-Hooker, Companion Bot. Mag. i, 25.Torrey \& Gray, FI. N. Ameriea, i, 471.-Loudon, Arboretmm, ii, 909 \& t.-Eaton \& Wright, Bot. 382.-Dietrich, Syn. iii, 154.-Nuttall, Sylva, ii, 24 ; 2 ed. i, 174.—Darby, Bot. S. States, 307.-Cooper in Smithsonian Rep. 1858, 252 .-Chapman, Fl. S. States, 128.Curtis in Rep. Geolog'cal Surv. N. Carolina, 1860, iii, 69.-Lesquerenx iu Owen's 2d Rep. Arkansas, 359.-Wood, Cl. Book, 333; Bot. \& Fl. 112.-Gray, Manual N. States, 5 ed. 161.-Koch, Dendrologie, i, 213.-Vasey, Cat. Forest Trees, 14.-Ridgway in Proc. U. S. Nat. Mtns. 1882, 66.
P. coronaria, Wangenheim, Amer. 61, t. 21, f. 47 [not Linnæus].-Walter, Fl. Caroliniana, 148.

Malus angustifolia, Michaux, Fl. Bor.-An. i, 292.-Decaisne in Nouv. Arch. Mus. x, 155.
Malus scmpervivens, Desfontaines, Hist. Arb. ii, 141.-Nouveau Duhamel, vi, 638, t. 43, f. 1.-Poiret, Suppl. iv, 524.-Spach, Hist. Veg. ii, 135, t. 8, figs.-Rœmer, Syn. Mon. iii, 191.
P. coronaria, var. angustifolia, Wenzig in Linnæa, xxxviii, 41.

Chloromeles sempervircns, Decaisne in Fl. des Serres, xxiii, 126.

AMERICAN CRAB APPLE. SOUTHERN CRAB APPLE.

Pennsylvania ?, southern Delaware, and the valley of the lower Wabash river, Illinois, south to the Chattahoochee region of western Florida.

A small tree, 6 to 9 meters in height, with a trumk rarely 0.30 meter in dianeter; low, rich woods; most common and reaching its greatest development along the river bottoms of the sonth Atlantic states; less common west of the Alleghany monutains.

Wood heary, hard, close grainel, checking badly in drying; mellullary rays numerous, obscure; color, light' brown tinged with red, the sap-wood yellow; specific gravity, 0.6 s 95 ; ash, 0.33 ; used for levers, handles of tools, etc.

The anstere frit used for preserves and made into cider.

119.- Pyrus rivularis, Douglas;

Hooker, Fl. Bor.-Am. i, 203, t. 68.-Don, Miller's Dict. ii, 647.-Torrey \& Gray, Fl. N. America, i, 471.-Eaton \& Wright, Bot. 383.Walpers, Rep. ii, 53.—Dietrich, Syn. iii, 154.-Ledebour, Fl. Rossiea, ii, 99.-Nuttall, Sylva, ii, 22, t.49; 2ed. i, 172, t. 49.-Riehardson, Aretic Exped. 428. -Torrey in Paeifie R. R. Rep. iv, 85; Bot. Wilkes Exped. 292.-Newberry in Paeific R. R. Rep. vi, 73.-Cooper in Smithsonian Rep. 1858, 259 ; Pacific R. R. Rep. xii, 29, 60.-Rothrock in Smithsonian Rep. 1867, 435, 446.-Koeh, Dendrologie, i, 212.-Gray in Proe. Am. Acad. viii, 382.-Wenzig in Linnæa, xxxviii, 38.-Brewer \& Watson, Bot. California, i, 188.-Vasey, Cat. Forest Trees, 14.-Hall in Coulter's Bot. Gazette, ii, 87.-Macoun in Geological Rep. Canada, 1875-776, 195.-Dawson in Canadian Nat. new ser. ix, 330.
P. diversifolia, Bongard in Mem. Acad. Sci. St. Petersburg, 6 ser. ii, 133.
P. fusca, Rafinesque, Med. Bot. ii, 254.
P. subcordata, Ledebour, Fl. Rossiea;ii, 95.

Malus rivularis, Rœmer, Syn. Mon. iii, 215.-Decaisne in Nonv. Areh. Mns. x, 155.
Malus diversifolia, Rœmer, Syn. Mon. iii, 215.-Deeaisne in Nouv. Arch. Mus. x, 155.
Malus subcordata, Romer, Syn. Mon. iii, 192.

OREGON CRAB APPLE.

Coast of Alaska, southward along the coast and islands of British Columbia, through Washington territory and Oregon, west of the Cascade mountains, to Sonoma county, California.

A small tree, sometimes 9 meters in height, with a trunk 0.30 to 0.45 meter in diameter; rich, low woods, generally along streams, often forming dense thickets.

Wood heavy, hard, very close-grained, liable to check badly in drying, susceptible of a beantiful polish; medullary rays numerons, obscure; color, light brown tinged with red, the sap-wood lighter; specifie gravity, 0.8316 ; ash, 0.41 ; used for mallets, manls, bearings of machiuery, etc.

The small, black, pleasantly acid fruit occasionally used as a preserve, and prized by the Iudians as food.

120.-Pyrus Americana, De Candolle,

Prodr. ii, 637.-Watson, Dond. Brit. i. t. 54.-Sprengel, Syst. ii, 511.-Hooker, Fl. Bor.-An. i, 204.-Don, Miller's Dict. ii, 648.-Beek, Bot. 113.-Andubon, Birds, t. 363.-Torrey \& Gray, Fl. N. Ameriea, i, 47\%.-London, Arboretum, iii, 920 \& t.-Eaton \& Wright, Bot. 383.-Torrey, Fl. N. York, i, 224.-Dietrich, Syn. iii, 155.—Nnttall, Sylva, ii, 25, t. 50 ; 2 ed. i, 175, t. $50 .-$ Browne, Trees of America, 326.-Emerson, Trees Massachnsetts, 439; 2 ed. ii, 499.—Parry iu Owen's Rep. 612.-Riehardson, Aretic Exped. 428.Lange, Pl. Groml. 134.-Cooper in Smithsonian Rep. 1858, 252.-Chapman, Fl. S. States, 129.—Curtis in Rep. Goological Surv. N. Carolina, 1860, iii, 70.-Wood, Cl. Book, 333 ; Bot. \& Fl. 112.-Poreher, Resourees S. Forests, 168.—Gras, Manual N. States, 5 ed. 161.-Koeh, Dendrologie, i, 190.-Brewer \& Watson, Bot. Califorvia, i, 189.-Vasey, Cat. Forest Trees, 14.-Macoun in Geological Rep. Canada, 1875-76, 19\%.—Sears in Bull. Essex Inst. xiii, 176.-Bell iu Geological Rep. Canada, 1879-'80, 54'.

> Sorbus Americana, Marshall, Arbustnm, 145.-Willdenow, Enum. 520.-Pursh, Fl. Am. Sept. i, 341.-Poiret, Suppl. v, 164.-Eaton, Mannal, $55 ; 6$ ed. $351 .-N u t t a l l$, Genera, i, 305.-Hayne, Dend. Fl. 75.-Torrey, Fl.U. S. 477; Compend. Fl. N. States, 202.-Spaeh, Hist. Veg. ii,95.-Bigelow, Fl. Boston. 3 ed. 207.-Rœmer, Syn. Mon. iii, 138.-Maximowicz in Bull. Aead. St. Petersburg, xix, 174.-Wenzig in Linnga, xxxvii, 71.-Deeaisne in Nouv. Areh. Mns. x, 158.

Sorbus aucuparia, Poiret in Lamarek, Diet. vii, 234, in part.-Bigelow, Fl. Boston. 1. ed. 119.-Decaisne in Nonv. Areh. Mus. $x, 158$, in part.

Sorbus aucuparia, var. Americana, Persoon, Sjn. ii, 38 \& addend.
P. aucuparia, Meyer, Pl. Labrador, 81, in part.-Sehlechtendal in Linnæa, x, 99.-Hooker f. in Trans. Lionæan Soo. xxiis, 290, 327, in part.

Sorbus humifusa, Rafinesqne, Med. Bot. ii, 265.

MOUNTAIN ASH.

Greenland?, Labrador, Newfomdland, Anticosti island, and westward along the southern shore of James' bay to the valley of the Nelsou river (White Mnd falls), southward through all mountainous regions of the northeastern states, and along the high mountaius of Virgmia and North Carolina; in northern Michigan, Wisconsin, and Minnesota.

A small tree, 6 to 9 meters in height, with a trunk 0.30 to 0.45 meter in diameter; borders of swamps and in moist, rocky woods, reaching its greatest development on the northern shores of lakes Huron and Superior.

A form with smaller fruit, peculiar to the high sonthern Alleghany mountains, is-

$$
\begin{aligned}
& \text { var. microcarpa, Torroy \& Gray, Fl. N. America, i, } 472 . \\
& \text { Sorbus aucuparia, var. a. Michaux, FI. Bor.-Am. i, } 200 . \\
& \text { Sorbus microcarpa, Pursh, Fl. Am. Sept. i, 341.-Poiret, Supph. v, 164.-Elliott, Sk. i, 555.-Torrey, Fl. U. S. 477.-Eaton, } \\
& \text { Manual, } 6 \text { cd. 351.--Spacb, Ilist. Veg. ii, 95.-Rœmer, Syn. Mon. iii, } 138 . \\
& \text { P. mierocarpa, Sprengel, Syst. ii, 511.—De Candolle, Prodr. ii, 636.—Don, Miller's Dict. ii, 648.—Beck, Bet. 113.-Eaton } \\
& \text { \& Wright, Bot. } 383 \text {.-Louton, Arloretum, ii, } 921 .
\end{aligned}
$$

Sorbus Americana, var. microcarpa, Wenzig in Linman, xxxviii, 71.
Sorbus riparia, Rafinesque, New Sylva, 15.
Wood light, soft, close-grained, compact; medullary rays numerous, obscure; color, light brown, the sap-wood lighter; speeifie gravity, 0.5451 ; ash, 0.83 .

Often planted for ornament.

121.-Pyrus sambucifolia,

Chanisso \& Schlechtendal in Linnea, ii, 36.—Bongard in Mem. Acad. Sci. St. Petersburg, 6 ser. ii, 133.-Don, Miller's Dict. ii, G48.-Torrey \& Gray, Fl. N. America, i, 472.-Walpers, Rep. ii, 53.-Dietrich, Syn. iii, 155.-Ledebour, Fl. Rossica, ii, 99.—Trantvotter \& Meyer, Fl. Ochot. 37.-Maximowicz, Prim. Fl. Amnrensis, 103.-Rothrock in Smithsonian Rep. 1867, 446.-Gray, Manual N. States, 5 ed. 161 ; Proc. Am. Acad. viii, 3s2.-Porter in Hayren's Rep. 1870, 475.-Watsou in King's Rep. v,92.-Porter \& Conlter, Fl. Colorado; Hayden's Surv. Misc. Pnb. No. 4, 38.-Brewer \& Watson, Bot. Califoruia, i, 189.-Macoun in Geological Rep. Canada, 1875-76, 195.Jall in Coulter's Bot. Gazette, ii, 87.--G. M. Dawson in Canadian Nat. now sor. ix, 10.-Sears in Bull. Essex Inst. xiii, 176.

Sorbus aucuparia, var. B. Michaux, Fl. Bor.-Am. i, 290.
Sorbus aucuparia, Schrank, Pl, Labrador, 25, in part [not Linnæns].
P. Americana, Newberry in Pacific R. R. Rep. vi, 73 [not De Candolle].-Cooper in Pacific R. R. Rep. xii², 60.-Torrey, Bot. Wilkes Exped. 292.
P. aucuparia, Meyer, Pl. Labrador, 81, in part.-Schlechtendal in Linnæa, x, 99 , in part.-Hooker in Tranc. Linnæan Soo. xxii ${ }^{2}, 290,327$. in part.
Sorbus sambucifolia, Rœmer, Syn. Mon. iii, 139.-Maximowicz in Bnll. Acad. Sci. St. Petersburg, xix, 174.-Wenzig in Limnea, xxxviii, 73.-Decaisue in Nouv. Arch. Mus. x, 159.
Sorbus Sitchensis, Rœmer, Syn. Mon. iii, 139.

MOUNTAIN ASH.

Labrador to northern New England and the shores of lake Superior; high mountain ranges of the Pacific region from Alaska to southern New Mexico; in Kamtchatka.

A small tree, 9 to 12 meters in height, with a trunk sometimes 0.30 meter in diameter, or in the Pacific forests generally reduced to a low shrnb; cold, wet swamps or borders of streams, reaching its greatest development in northern New England and Minnesota.

Wood light, soft, weak, elose-grained, compact; medullary rays numerous, obscure; color, light brown, the sap-wood nearly white; specific gravity, 0.5928 ; ash, 0.35 .

The bark and unripe frnit of the American mountain ashes, like those of the nearly-allied P. aucuparia of Europe, are extremely astringent, and occasionally used, domestically, in infusions, decoctions, etc., in the treatment of diarrhea (Nat. Dispensatory, 2 ed. 1333).

122.-Cratægus rivularis, Nnttall;

Torrey \& Gray, El. N. America, i, 464.-Dietrich, Syu. iii, 161.-Walpers, Rep. ii, 58.-Nuttall, Sylva, ii, 9; 2 ed. i, 160.-Cooper in Smithsonian Rep, 1858, 258; Am. Nat. iii, 407.-Regel in Act. Hort. St. Petersburg, i, 107.—Watson in King's Rep. v, 92.-Porter in Hayden's Rep. 1871, 482.-Conlter in Hayden's Rop. 1872, 765.-Brandegee in Hayden's Rep. 1875, 236.-Vasey, Cat. Forest Trees, 14.-Macoun in Geological Rep. Canada, 1875-'76, 195.-Engelmann in Coulter's Bot. Gazette, vii, 128.
C. sanguinea, var. Douglasii, Coulter in Hayden's Rep. 1872, 765 [not Torrey \& Gray].

British Colnmbia, south through eastern Oregon and Washington territory, east and southeast along the mountain ranges of Idaho, Montana, Utah, and Colorado, to the Pinos Altos monntains, New Mexico (Grecne).

A small tree, 6 to 8 meters in height, with a trunk rarels exceeding 0.30 meter in diameter, or often a tall, mach-branched shrub, forming dense, impenetrable thickets along borders of streams and swamps.

Wood heavy, hard, close-grained, compact; mednllary rays numerous, thin; color, bright reddish-brown, the sap-wood nearly white; specific grarity, 0.7703 ; ash, 0.35 .

Bot. Reg. xxi, t. 1810.-Loudon, Arboretnm, ii, 823, f. 584 \& t.-Koch, Dendrologie, i, 147.-Kaleniezenko in Ball. Soc. Imp. Nat. Moscory, xlviii, 26.-Brewer \& Watson, Bot. California, i, 189.-Macoun in Geological Rep. Canada, 1875-76, 195.-Engelmann in Conlter's Bot. Gazette, vii, 128.

P O. glandulosa, Pursh, Fl. Am. Sept. i, 337, in part.
C. punctata, var. brevispina, Douglas in Hooker, Fl. Bor.-Am. i, 201.
O. sangษinea, var. Douglasii, Torrey \& Gray, Fl. N. America, i, 464.-Walpers, Rop. ii, 58.—Dietrich, Syn. iii, 160.Torrey, Bot. Wilkes Exped. 292.-Regel in Act. Hort. St. Petersburg, i, 116.
C. sanguinea, Nnttall, Sylva, ii, 6, t. 44; 2 ed. i, 157, t. 44 [not Pallas].-Cooper in Smithsomian Rep. 1858, 259; Am. Nat. iii, 407.-Vasey, Cat. Forest Trees, 14.

Authomeles Douglasii, Rœmer, Syn. Mon. iii, 140.
C. rivularis, Brewer \& Watson, Bot. California, i, 189 [not Nnttall].

British Columbia, valley of the Parsnip river, in about latitude 55° N., south through Washington territory and Oregon to the valley of the Pitt river, California, extending east throngh Ilaho and Montana to the western base of the Rocky mountains (valley of the Flathead river, Canby d Sargent).

A small tree, sometimes 12 meters in height, with a trunk 0.30 to 0.45 meter in diameter, or often a tall shrub throwing up many stems from the ground and forming impenetrable thickets; rather wet, sandy soil along streams, and reaching its greatest development in the valleys west of the Cascade mountains; toward its eastern limits a low shrub.

Wood heavy, hard, tough, close-grained, eompact, satiny, suseeptible of a beautiful polish; medullary rays nnmerons, thin ; color, nearly white tinged with rose, the sap-wood lighter; specific gravity, 0.6950 ; ash, 0.33 ; used for wedges, mauls, ete.

The small, sweet, black fruit, ripening in Angust, is largely collected by the Indians.
124.-Cratægus brachyacantha, Sargent \& Englemann;

Engelmann iu Coulter's Bot. Gazette, vii, 128.

HOGS' HAW.

New Orleans?, (Drummond in Lerb. Gray); Minden, Louisiana (Mohr); Concord, Texas (Sargent); Longview, Texas (in frnit, Letterman).

A tree 9 to 12 meters in height, with a trunk sometimes 0.60 meter in diameter; borders of streams in low, very rich soil; the largest North American representative of the genus.

Wood heavy, hard, very close-grained, compact, susceptible of a beantifnl polish; medullary rays numerous, very obscure; color, light brown tinged with rose, the sap-wood lighter ; speeifie gravity, 0.6793 ; ash, 0.42 .

The large blue-black fruit greedily eaten by hogs and other animals.

125.-Cratægus arborescens, Elliott,

Sk. i, 550.—Eaton, Manual, 6 ed. 112.-Torrey \& Gray, Fl. N. America, i, 466.-Eaton \& Wright, Bot. 212.—Dietrich, Syu. iii, 160.Walpers, Rep. ii, $58 .-$ Nuttall, Sylva, ii ${ }_{r} 10$, t. 45 ; 2 ed. i, 160, t. 45.-Darby, Bot. S. States, 306.-Cooper in Smithsonian Rep. 1858, 252.-Chapman, Fl. S. States, 127.-Wood, Cl. Book, 331 ; Bot. \& Fl. 111.-Young, Fl. Texas, 259.-Vasey, Cat. Forest Trees, 14.Engelmann in Bull. Torrey Bot. Clnb, ix, 4.

Phønopyrum arborescens, Rœmer, Syn. Mon. iii, 153.
C. Crus-galli, var. pyracanthifolia, Regel in Aet. Hort. St. Petersburg, i, 109, in part.

Valley of the Savannah river, South Carolina (Aiken, Ravencl), south to the Chattahoochee region of western Florida; valley of the Mississippi river, near Saint Lonis (Engelmann), south and southwest to western Lonisiana, and the valley of the lower Colorado river, Texas.

A small tree, 6 to 9 meters in height, with a trunk sometimes 0.45 to 0.60 meter in diameter; borders of streams and in rather low, wet swamps.

Wood heavy, hard, not strong, close-grained, compact, susceptible of a beautiful polish; medullary rays very numerons, obscure; color, light brown tinged with red, the sap-wood lighter; specific gravity, 0.6491; ash, 0.57 . The small globular fruit bright red or, more rarelf, orange.

126.-Cratægus Crus-galli, Linnæus,

Spec. 1 ed. 476.-Kalm, Travels, Euglish ed. i, 115.-Medicus, Bot. Beobacht. ii, 344.-Walter, Fl. Caroliniana, 147.-Aiton, Hort. Kew. ii, 170; 2 ed. iii, 202.-Willdenow, Spec. ii, 1004,-Micaux, Fl. Bor.-Am. i, 2P8.-Persoon, Syn. ii, 37.-Pursh, Fl. Am. Sept. i, 338.Eaton, Mannal, 55 ; 6 el. 111.-Nuttall, Genera, i, 305.-Barton, Compend. Fl. Ploiadelph. i, 225 ; Prodr. Fl. Philadelph. 54.-Elliott,
 ii, 626.-Hooker, Fl. Bor.-Amı i, 2c0; Companiou Bot. Mag. i, $25 .-D o n$, Miller's Dict. ii, 593.-Beck, Bot.111.-Torrey \& Gray, Fl. N. America, i, 463.-Loudon, Arboretum, ii, 820, f. 574, 575 \& t.-Eaton \& Wright, Bot. 212.-Bigelow, Fl. Boston. 3 ed. 206.-Dietrich, Syn. iii, 15\%.—Browne, Trees of America, 278.-Emerson, Trecs Massachusetts, 433 ; 2 ed. ii, 492 \& t.-Ramer, Syu. Mon. iii, 117.Parry in Owen's Rep. 612.-Darlington, Fl. Cestrica, 3 ed. 83.-Darby, Bot. S. States, 305.-Cooper in Sunithsouian Rep. 1858, 252.Chapman, 1Fl. S. States, 127.-Curtis in Rep. Gcological Surv. N. Carolina, 1860, iii, 83.-Lesquereux in Owen's $2 d$ Rep. Arkansas, 359.-Wood, Cl. Book, 331 ; Bot. \& Fl. 111.-Porcher, Resources S. Forests, 148.—Gray, Maunal N. States, 5 ed. 160; Hall's Pl. Texas,9.-Young, Bot. Texas, 258.-Regel in Act. Hort. St. Pctersburg, i, 108.-Kaleniczenko in Bull. Soc. Inup. Nat. Moscow, xlviii, 19.-Vasey, Cat. Forest Trees, 14.-Bell in Geological Rej. Canada, 1879-'80, 54c.-Ridgway in Proc. U. S. Nat. Mus. 1882, 66.
C. lucida, Du Roi, Obs. Bot. 13.-Wangenheim, Amer. 53, t. 17, f. 42.-Sprengel, Syst. ii, 506.—De Candolle, Prodr. ii, 629.Eaton, Manual, 6 ed. 112.-Don, Miller's Dict. ii, 599.-Eaton \& Wright, Bot. 212.

Mespilus Crus-galli, Marshall, Arbnstnm, 88.-Lamarck, Dict. iv, 441.-Desfontaines, Hist. Arb. ii, 157.-Nouvean Dahamel, iv, 149.-Willdenow, Ennm. 522; Berl. Banmz. 244.-Hayne, Dend. Fl. 80.-Koch, Dendrolegie, i, 142.

PMespilus cuneiformis, Marshall, Arbnstum, 88.
Mespilus lucida, Ehrhart, Beitr. iv, 17.-Mœnch, Meth. 685.-Spach, Hist. Veg. ii, 57.
Mespilus cuneifolia, Mœnch, Meth. 634.
C. Crus-gulli, var. splendens, Aiton, Hort. Kew. 2 ed. iii, 202.

Mespilus Watsoniana, Spach, Hist. Veg. ii, 57.
C. Watsoniana, Romer, Syn. Mon. iii, 117.

COCKSPUR THORN. NEWCASTLLE IHORN.

Valley of the Saint Lawrence river, west through southern Ontario to Manitoba, south through the Atlantic forests to thie valley of the Chipola river, western Florida, and the valley of the Colorado river, Texas.

A small tree, 4 to 10 meters in height, with a trunk sometimes 0.30 meter in diameter, running into various forms. The best marked are-
var. pyracanthifolia, Aiton, Hort. Kew. ii, 170; 2 ed. iii, 202.-De Candolle, Prodr. ii, 626.-Torrey \& Gray, Fl. N. America, i, 464.-London, Arhoretum, ii, 820, t. 128, f. 580.-Browne, Trees of America, 278.-Regel in Act. Hort. St. Petershurg, i, 109, in part.
C. salicifolia, Mediens, Bot. Beobacht. ii, 345.-Rœmer, Syn. Mon. iii, 117.
C. Crus-galli, var. stlicifolia, Aiton, l. c.; 2 ed. l. c.-Willdenow, Berl. Baumz. 244.-De Candolle, l. o.-Loudon, l. a. f. 551-553, 578 \& t.-Browne, l. c.-Regel, l. c. 110.

Mespilus Crus-galli, var. salicifolia, Hayne, Dend. Fl. 80.
Mespilus Crus-galli, var. pyracanthifolia, Hayne, l. c.
Mespilus salicifolia, Koch, Dendrologic, i, 144.
O. Coursetiana, Rœmer, Syn. Mon. iii, 117.
var. ovalifolia, Lindley, Bot. Reg. xxii, t. 1860.-Torrey \& Gray, Fl. N. America, i, 464.—Dietrich, Syn. iii, 159.-Loudon, Arboretum, ii, 821, f. 579 \& t.-Regel in Act. Hort. St. Petersharg, i, 109.

Mespilus ovalifolia, Horucmann, Hort. Hafn. Snppl. 52.-Koch, Dendrologie, i, 143.
Mespilus prunellifolia, Poiret, Suppl. iv, 72.
O. ovalifolia, De Candolle, Prodr. ii, 627.-Don, Miller's Diet. ii, 598.-Rœmer, Syn. Mon. iii, 117.
O. prunellifolia, De Candolle, l. c.-Don, l. c.-Rœmer, l. c.

Mespilus elliptica, Guimpel, Otte \& Hayne, Abb. Holz. 170, t. 144 [not Lamarck].-Spach. Hist. Veg. ii, 68.
var. Iinearis, De Candolle, Prodr. ii, 626.-Torrey \& Gray, PI. N. America, i, 464.-Dietrieb, Syn. iii, 159.-London, Arborctum, ii, 821, f. 577.-Browne, Trces of America, 278.-Regol in Act. Hort. St. Petersbury, i, 110.

Mespilus lucida, var. angustifolia, Ehrhart, Beitr. iv, 18.
C. linearis, Persoon, Syn. ii, 37.-Rœmer, Syn. Mon. iii, 118.

Mespilus linearis, Desfontaines, Hist. Arb. ii, 156.-Poiret, Suppl. iv, 70.-Spaoh, Hist. Veg. ii, 57.
var. prunifolia, Torres \& Gray, Fl. N. America, i, 464.—Dietrich, Syn. iii, 159.-Louden, Arboretum, ii, 821, f. 576 \& t.Regel in Act. Hort. St. Petersbnrg, i, 110.
Mespilus prunifolia, ${ }^{\text {MMarshall, }}$ Arbustum, 90 .-Lamarek, Dict. iv, 443 .-Nouvean Duhamel, iv, 150, t. 40.-Sprengel, Syst. ii, 506.

Mespilus rotundifolia, Elrhart'; Beitr. iii, 20.
C. prunifolia, Persoon, Syn. ii, 37.-Bosc in De Candolle, Prodr. ii, 627.-Don, Miller's Dict. ii, 598.-Lindley, Bot. Reg. xxii, t. 1868.-Eaton, Manual, 6 ed. 112.-Eaton \& Wright, Bot. 212.
Mespilus Bosciana, Spach, Hist. Veg. ii, 58.
C. Bosciana, Rœmer, Syn. Mon. iii, 118.

Wood heavy, hard, not strong, close grained, compact, satiny, susceptible of a fine polish; medullary rays numerous, very obscure; color, brown tinged with red, the sap-wood rather lighter; specific gravity, 0.7194 ; ash, 0.56 .

The long, strong spines are occasionally collected and used to fasteu sacks and for similar purposes.

127.-Cratægus coccinea, Liunæия,

Spec. 1 ed. 476.—Walter, Fl. Caroliniana, 147.-Aiton, Hort. Kew. ii, 167 ; 2 ed. iii, 200 .—Willdenew, Spec. ii, 1000 (excl. syn.).—Michaux, Fl. Bor.-Am. i, 283.-Persoon, Syn. ii, 36.-Pursh, Fl. Am. Sept. i, 337.-Eaton, Manual, 55; 6 ed. 111.-Nuttall, Genera, i, 305.Schrank, Pf.Labrador, 26. -Barton, Compend, Fl. Philadelph. i,226.-Hayne, Dend. Fl. 77.-Elliott, Sk. i, 553.-Torrey, Fl. U. S. 474 ; Compend.Bot. N. States, 201 ; Fl. N. York, i, 221 ; Emory's Rep.403.-De Candelle, Prodr. ii, 627.-Hooker, Fl. Bor.-Am. i, 201; Bot. Mag.t. 3432.—Don, Miller’s Dict. ii, 599.—Meyer, Pl. Labrador, 83.-Beek, Bot. 112.-Lindley, Bot. Reg. 23, t. 1957.-Tortey \& Gray, Fl. N. America, i, 465.-Bigelow, Fl. Boston. 3 ed. 206.-Eaton \& Wright, Bot. 211.-Dietrich, Syn. iii, 160.-Walpers, Rep. ii, 53.Louden, Arboretnan, ii, 816, f. 564-566, t. 121.-Schnizlein, Icon. t. 270, f. 18-20, 22.-Emerson, Trecs Massachusetts, 434 ; 2 ed. ii, 493 \& t.-Richardson, Arctic Exped. 427.-Darlington, Fl. Cestrica, 3 ed. 83.-Darby, Bot. S. States, 305.-Cooper iu Sorithsonian Rep. 1858, 252.-Gray in Pacific R. R. Rep. xii, 43; Manual N. States, 5 ed. 160.-Chapman, Fl. S. States, 127.-Curtis in Rep. Geological Surv. N. Carolina, 1860, iii, 82.-Lesquereux in Owen's 2 d Rep. Arkansas, 309.-Wood, Cl. Book, 331 ; Bet. \& Fl. 111.-Kaleniczeako in Bull. Sıe. Imp. Nat. Mescow, xlviii, 9.-Vasey, Cat. Forest Trees, 14.—Sears in Bull. Essex Inst. xiii, 177.—Bell in Geological Rep. Caoada, 1879-80, 55c.-Ridgway in Proc. U. S. Nat. Mus. 1882, 66.

Mespilns coccinea, Marshall, Arbustum, 87.-Mœnch, Meth. 684.—Lamarck, Dict. iv, 442.-Desfontaines, Hist. Arb ii, 156.Willdenow, Enum. 523; Berl. Banmz. 238.-Wendland in Regensb. Fl. 1823, 699.—Sprengel, Syst. ii, 507.—Spach, Hist. Veg. ii, 64.
Mespilus rotundifolia, Ehrhart, Beitr. iii, 20.—Wendland in Regensb. Fl. 1823, 700.—Watson, Dend. Brit. i, t. 58.-Koch, Dendrologie, $\mathrm{j}, 148$.

Pyrus glandulosa, Moench, Meth. 680.
C. glandulosa, Willdenow, Spec. ii, 1002 (excl. syn.).-Parsh, Fl. Am. Sept. i, 337, in part.-Terrey, Fl. U. S. 475; Compend. Fl. N. States, 201.-De Candolle, Prodr. ii, 627.-Loddiges, Bot. Cal. t. 1012.-Hoeker, Fl. Bor.-Am. i, 201.—Don, Miller's Dict. ii, 599.—Eaton, Mamal, 6 ed.111.—Beck, Bot. 112.-Eaton \& Wright, Bot. 211.—Loudon, Arboretnm, ii, 817, f. $550,567,568$ \& t.-Richardson, Arctic Exped. 427.-Curtis in Rep. Geological Surv. N. Carolina, 1860, iii, 84.Regel in Act. Hort. St. Petersburg, i, 120.
Mespilus glandulosa, Willdenow, Ennm. 523.—Sprengel, Syst. ii, 507.—Spach, Hist. Veg.ii, 62.-Koch, Dendrologie, i, 145
Mespilus pubescens, Wendland in Regensb. F1. 1823, 700.
C. Crus-galli, Bigelow, Fl. Beston. 2 ed. 194 [not Linnæus].
: Mespilus Wendlandii, Opiz in Regeusb. Fl. 1834,590.
C. macracantha, Lodtliges in Loudon, Arboretum, ii, 819, f. 572,573 \& t.
C. glandulosa, var. mucracuntha, Lindley in Bot. Reg. xxii, t. 1912.

Mespilus flabellata, Spach, Hist. Veg. ii, 63.-Koch, Dendrologie, i, 148.
Halmia flabellata, Romer, Syn. Mon. iii, 136.
Anthomeles rotundifolice, Romer, Syn. Mon. iii, 140.
Phenopyrum coreincum, Remer, Syn. Mon. iii, 156.
Fhecnopyram Wenelandii, Rismer, Syn. Mon. iii, 156.

SCARLET HAW. RED HAW. WHITE THORN.

West coast of Newfoundland, west along the valley of the Saint Lawrence river and the northern shores of the great lakes to Manitoba, sonth through the Atlantie forests to northern Florida and eastern Texas.

A small tree, sometimes 9 meters in height, with a trunk 0.30 meter in diameter; open upland woods or along streams and borders of prairies; very common at the north, rare at the sonth; running into many forms, varying in the size and shape of the leaves, size of the fruit, etc. The best marked are-
var. viridis, Torrey \& Gray, Fl. N. Ameriea, i, 465.-Torrey in Nicollet's Rep. 149.
C. viridis, Linnaus, Spec. 1 ed. 4 f6.-Willdenow, Spec. ii, 1001.-Persoon, Syn. ii, 36.-Elliott, Sk. i, 551.-De Caudolle, Prodr. ii, 630.-Dou, Miller's Dict. ii, 601.-Eaton, Manual, 6 ed. 112.-Darlington, Fl. Cestrica, 2 ed. 293.-Eaton \& Wright, Bot. 212.-Beck, Bet. 305.-Darby, Bot. S. States, 305.-Wood, Cl. Book, 332; Bot. \& F1. 111.
? Phenopyrum viride, Rœmer, Syn. Mon. iii, 156.
Mespilus viridis, Koch, Dendrologie, i, 149.
C. glandulosa, var. rotundifolia, Regel in Act. Hort. St. Petersburg, i, 120.
var. populifolia, Terrey \& Gray, Fl. N. America, 1, 465.
C. populifolia, Elliott, Sk. i, 553 [not Walter].-Nnttall, Genera, i, 305.-Eaton, Manual, 6 ed. 11\%-Beck, Bot. 305.-Eaton \& Wright, Bot. 212.-Darby, Bot. S. States, 305.

Mespilus populifolia, Lamarck, Dict. iv, 447.
Phøпnopyrum populifolium, Rœmer, Syn. Mon. iii, 156.
C. coccinca, var. typica, Regel in Act. Hort. St. Petersburg, $\mathrm{i}, 121$.
var. oligandra, Torrey \& Gray, Fl. N. Ameriea, i, 465.
Wood heavy, hard, close-grained, compact; medullary rays thin, very obscare; color, brown tinged with red, the sap-wood a little lighter; specific gravity, 0.8618; ash, 0.38.

128.-Cratægus subvillosa, Schrader,

Ind. Sem. Hort. Gœott.-Torrey in Pacific R. R. Rep. iv, 35.-Ridgway in Proc. U. S. Nat. Mns. 1882, 66.
C. coccinea, var. mollis, Torrey \& Gray, Fl. N. America, i, 465.-Gray in Jour. Boston Soc. Nat. Hist. vi, 186.-Parry in Owen's Rep. 612.-Regel in Aet. Hort. St. Petorsharg, i, 121.

Phcnopyrum subvillosum, Rœmer, Syn. Mon. iii, 154.
O. mollis, Scheele in Linnæa, xxi, 569; Rœmer, Texas, Appx. 473.-Walpers, Ann. ii, 523.
C. sanguinea, var. villosa, Ruprecht \& Maximowicz, Prim. Fl. Amuronsis, 101.
C. Texana, Buckley in Proc. Philadelphia Acad. 1861, 454 (see Gray in same, 1862, 163).-Yonng, Fl. Texas, 258.
C. tomentosa, var. mollis, Gray, Manual N. States, 5 ed. 160.—Wood, Cl. Book, 330; Bot. \& Fl. 121.--Vaeey, Cat. Forest Trees, 14.

Mespilus tilicefolia, Koch, Dendrologie, i, 151.

SCARLET HAW.
Eastem Massachusetts (possihly introduced); central Miehigan to eastern Nebraska, south to middle Tennessee, and sonthwest through Missonri, Arkansas, the Indian territory, and Texas to the valley of the San Antonio river.

A small tree, 7 to 9 meters in height, with a trunk rarely 0.45 meter in diameter; rich woods and along borders of streams and prairies.

Wood heavy, hard, not strong, close-grained, compact; medullary rays numerous, very obseure ; color, light brown or light red, the sip-wood lighter; speeific gravity, 0.7953 ; ash, 0.69.

The linge red fruit often downy, edible, and of agrecable flavor.

129.-Cratægus tomentosa, Linnæus,

Spec. 1 ed. 476 (excl. syn. Gronovins).-Kalm, Travels, Eøglish ed. ii, 151.-Du Roi, Harbk. i, 183.-Torrey \& Gray, Fl. N. America, i, 466.-Dictrich, Syn. iii, 160.-Torrey, F1. N. York, i, 222.-Emerson, Trees Massachusetts, 1 ed. 435 ; 2 ed. ii, 494 \& t.-Parry in Owen's Rep. 612.-Cooper in Smithsonian Rep. 1858, 252.-Chapman, Fl. S. States, 127.-Lesquereux in Owen's 2d Rep. Arkansas, 359.-Wood, Cl. Book, 330.-Engelmann in Trans. Am. Phil. Soc. new scr. xii, 191.-Gray, Manual N. States, 5 ed. 160.-Young, Bot. Texas, 258.-Vasey, Cat. Forest Trees, 14.-Maconn in Geological Rep. Canada, 1875-76, 195.-Ridgway in Proc. U. S. Nat. Mns. 1882, $66_{\mathrm{F}_{\mathrm{p}}}$
C. leucophloos, Mæench, Hort. Weiss. 31, t. 2.-Regel in Act. Hort. St. Petersburg, i, 106.

Mespilus Calpodendron, Ehrhart, Beitr. ii, 67.
C. pyrifolia, Aiton, Hort. Kew. ii, 168; 2 cd. iii, 200.-Willdenow, Spec. ii, 1001.-Persoon, Syn. ii, 36.-Nouveau Duhamel, iv, 131.-Poiret, Suppl. i, 292.-Pursh, Fl. Am. Sept. i, 337.-Nuttall, Genera, i, 305.-Elliott, Sk. i, 550.—Torrey, Fl. U. S. 475 ; Compend. Fl. N. States, 201.-De Candolle, Prodr. ii, 627.-Hooker, Fl. Bor.-Am. i, 201.-Don, Miller's Dict. ii, 599.-Eaton, Manual, 6 ed. 111.-Lindl ${ }^{-}$, Bot. Reg. xxii, t. 1877.-Loudon, Arboretum, ii, 819, f. 571 \& t.--Eaton \& Wright, Bot. 211.

Mespilus latifolia, Lamarck, Dict.ir, 444.-Desfontaines, Hist. Arb. ii, 156.-Noaveau Duhamel, iv, 150.-Spach, Hisl. Veg. ii, 60 .
O. latifolia, Persoon, Syn. ii, 36.—Don, Miller's Dict. ii, 598.—Eaton, Mannal, 6 ed. 112.—Eaton \& Wright, Bot. 212.-Rœmer, Syn. Mon. 119.

Mespilus pyrifolia, Willdenow, Ennm. 523 ; Berl. Baumz. 240.-Kaleniczenko in Bnll. Soc. Imp. Nat. Moscow, xlviii, 15.Sprengel, Syst. ii, 507.-Hayne, Dend. F1. 78.

Mespilus lobata, Poiret, Suppl.iv, 71.
Mespilus odorata, Wendland in Regensb. Fl. 1823, 700.
Mespilus pruinosa, Wendland in Regensb. Fl. 1823,700.
C. lobata, Bosc in De Candolle, Prodr. ii, 628.
C. flava, Hooker, Fl. Bor.-Am. i, 202 (exel. syd.).

Halmia tomentosa, Rœmer, Syn. Mon. 135.
Halmia lobata, Romer, Syn. Mon. 135.
Phcenopyrum pruinosum, Rœmer, Syn. Mon. 155.
9 C. coccinea, var. viridis, Torrey in Pacific R. R. Rep.iv, 86 [not Torrey \& Gray].
C. tomentosa, var. pyrifolia, Gray, Mannal N. States, 5 ed. 160.—Wood, Bot. \& Fl. 111 .
C. coccinea, Brandegeo in Hayden's Rep. 1875, 236 [not Linnæus].
O. leucocephalus, Lavallé, Arboretum Segrez. 78, t. 22 [not Mœnch].
C. coccinea, var. cordata, Lavalleo, Arboretum Segrez. 81, t.22.

black thorn. pear haw.

New Brunswick, westward along the valley of the Saint Lawrence river and the northern shores of the great lakes to the Saskatchewan region, southward through the Atlantic forests to the Chattahooehee region of western Florida, and eastern Texas west to the mountains of eastern Washington territory and Oregon, southwestern Colorado, and sonthwestern New Mexico.

A small tree, 6 to 9 meters in height, with a trunk rarely 0.45 meter in diameter, or often, especially west of the Rocky mountains, reduced to a low shrub, here forming dense thickets along momntain streams; the most widelydistributed of the North American Crategi, varying greatly in the size, shape, and color of the fruit, form of the leaves, amount of pubescence, ete.

Wood heavy, hard, not strong, elose-grained, compact; medullary rays numerons, thin; color, bright reddishbromn, the sap-wood lighter; speeifie gravity, 0.7633 ; ash, 0.50 .

Var. punctata, Gray,

Mannal N. States, 2 ed. 124.-Cooper in Sunithsonian Rep. 1858, 252.—Clapman, Fl. S. Statos, 127.—Porter in Hayden's Rep. 1871, 481.-Vasey, Cat. Forest Trees, 14.
C. punctata, Jacquin, IIort. Vindob. i, 10, t. 28.—Aiton, Hort. Kew. ii, 169; 2 ed. iii, 202.—Willdenow, Spec. ii, 1004.Miebaux, Fl. Bor.-Am. i, 289.-Persoon, Syn. i, 37.-Purslb, Fl. Am. Scpt. i, 33s.-Elliott, Sk. i, 548.-Torrey, Fl. U. S. 4 fi ; Compend. Fl. N. States, 202 ; Fl. N. York, i, 222.-De Candolle, Prodr. ii, 627 .-Hooker, Fl. Bor.-Am. i, 201 (excl. var.); Companion Bot. Mag. i, $25 .-D J u$, Miller's Dict. ii, 589 .-Eaton, Manual, 6 ed. 111. - Beck, Bot. 111.-Torrey \& Gray, Fl. N. America, i, 466.-Lendon, Arboretum, ii, 818, f. 569, 570 \& t.-Eaton \& Wright, Bot. $911 .-$ Dictrich, Syu. iii, 159.-Drowne, Treos of Ameriea, 277.-Emerson, Trees Massachusotts, 435; 2 ed. ii, 495.-Gray, Mannal N. States, 1 oul. 123.-Richardsou, Arctic Exped. 427.-Darlington, Fl. Cestrica, 3 ed. 84.-Darby, Bot. S. States, 306.-Lesquereux in Owen's $2 d$ Rep. Arkansas, 359.-Wood, Cl. Book, 330; Bot. \& Fl. 111.-Engehoamn in Trans. Am. Plil. Soc. new ser. xii, 191.-Kaleniczenko in Bull. Sac. Imp. Nat. Moscow, xlviii, 14.

Mespilus cornifolia, Muenchhausen, Hausv. v, 145.-Lannarck, Dict. iv, 444.-Koch, Dendrolegie, i, 134.-Spach, Hist. Veg. ii, 60, t. 10 , f. e.
C. Crus galli, Wangenheim, Amor. 52.-Dn Roi, Harbk. i, $195{ }^{\text {r }}$ not Linnæns].

Mcspilus cuneifolia, Ehrhart, Beitr. iii, 21.--Spreugel, Syst. ii, 506.-Spach, Hist. Veg. ii, 61.
Mespilus punctata, Loiseleur in Nouveau Duhamel, iv, 152.-Willdenow, Ennm. 524 ; Berl. Baumz. 243.-Poiret, Suppl. iv, 70.-Hayne, Dend. Fl. 79.-Watson, Dend. Brit. i, t. 57.-Spach, Hist. Veg. ii, 61.-Wenzig in Limnæa, xxxviii, 128.

Mespilus pyrifolia, Desfontaines, Hist. Arb. ii, 155.
C. punctata, var. rubra and aurea, Aiton, Hort. Kerv. 2 ed. iii, 202.
C. latifolia, De Caudolle, Prodr. ii, 627.
? C. Alexuosa, Sehweiuitz in Long's 2d Expod. ii, Appx. 112.
C. flava, Darlingtou, Fl. Cestrica, 2 ed. 292 [not Aitoni].
C. cuneifolia, Romer, Syn. Mon. iii, 118.
C. obovatifolia, Rœmer, Syn. Mon. iii, 120.

Haluia punctata, Rœmer, Syn. Mon. iii, 134.
Halmia cornifolia, Rœmer, Syn. Mon. iii, 134.
C. tomentosa, var. plicata, Wood, Cl. Book, 330; Bot. \& Fl. 111.
C. punctata, var. xanthocarpa, Lavallée, Arboretno Segrez. i, 53, t. 16.

Fruit larger than that of the species, dull red or yellow.

130.-Cratægus cordata, Aiton,

Hort. Kew. ii, 168; 2 ed. iii,200.-Willdenow, Spec. ii, 1000.-Persoon, Syn. ii, 36.-Eaton, Manual, 55; 6 ed. 111.-Elliott, Sk. i, 554.Torrey, FI. U. S. 474 ; Compend. Fl. N. States, 201.-De Candolle, Prodr. ii, 628.-Watson, Dend, Brit. i, t. 63.-Lindley, Bot, Reg. xiv, t. 1151.-Ilooker, Fl. Mor.-Am. i, 201.-Don, Miller's Dict. ii, 599.-Deek, Bot. 112.-Torrey \& Gray, Fl. N. America, i, 467.London, Ailoretum, ii, $825 \&$ t. - Eaton \& Wright, Bot. 211.-Dictrich, Syn. iii, 160.-Browne, Trees of Aluerica, 280.-Richardson, Arctio Expecl. 427.-Darlington, Fl. Cestrica, 3 ed. 83.-Darby, Bot. S. States, 306.-Cooper in Smithsonian Rep. 1858, 252.Chapman, Fl. S. States, 127.-Curtis iu Rep. Geological Surv. N. Carolinti, 1860, iii, 82.-Wood, Cl. Book, 331 ; Bot. \& Fl. 111.Gray, Mamual N. States, 5 ed. 159.-Young, Bot. Texas, 257.-Regel in Act. Hort. St. Petersborg, i, 114.-Kaleniczeuko in Bull. Soe. Imp. Nat. Moccow, slviii,31.—Vasey, Cat. Forest Trees, 14.

Mespilus Phonopyrum, Ehrlart in Linnens f. Suppl. 254 ; Beitr. i, 181; ii, 67.-Mœnch, Meth. 685.-Lamarck, Dict. iv, 446.
C. populifolia, Walter, Fl. Caroliniana, 147 [not Elliott].-Pursh, Fl. Am. Sept. i,337.

Mespilats acerifolia, Burgstorf in Lamarck, Dict. iv, 44:.-Nouveau Duhamel, iv, 151.—Spach, Hist.Veg. ii, 65.
Mespilus cordeta, Miller, Ieon. t. 179.-Willdenow, Luum. 523; Berl. Banmz. 239.-Hayne, Dend. Fl. 77.-Sprengel, Syst. ii, 50\%.-Koch, Dendrologie, i, 13\%.

Phenopyrum criolatum, Romer, Syn. Mon. iii, 157.
l'henopy.jrum acerifolium, Ramer, Syn. Men. iii, 157.

WASHINGTON THORN.

Valley of the upper Potomac river, Virginia, sonthward along the Alleghany mountains to northern Georgia: and Alabama, extending west through eastern and middle Kentncky and Tennessee to the valley of the lower Wabash river, Illinois.

A small tree, 6 to 8 meters in height, with a trunk rarely 0.30 meter in diameter; generally along banks of streams.

Wood heary, hard, close-grained, compact; medullary rays nnmerous, obscure; color, brown tinged with red, the sap-wood lighter; specifie gravity, 0.7293 ; ash, 0.46 .

Formerly widely planted as a hedge plant.

131.-Cratægus apiifolia, Michaux,

Fl. Bor.-Am. i, 287.-Persoon, Syn. ii, 38.-Pursh, Fl. Am. Sept. i, 336.-Nuttall, Genera, i, 305.-Elliott, Sk. i, 552.-De Candolle, Prodr. ii, 627.-Don, Miller's Dict. ii, 599.-Audnbon, Birds, t. 192.-Eaton, Mannal, 6 ed. 112.-Hooker, Companion Bot. Mag. i, 25.-Torrey \& Gray, Fl. N. America, i, 467 .-London, Arboretum, ii, 824, f. 588, 589 \& t.-Eaton \& Wright, Bot. 212.-Dietrich, Syn. iii, 160.Darby, Bot. S. States, 306.-Rœmer, Syn. Mon. iii, 121.-Cooper in Smithsonian Rep. 1858, 252.-Chapman, FI. S. States, 127.-Wood, Cl. Book, 331 ; Bot. \& Fl. 111.-Gray, Mannal N. States, 5 ed. 159; Hall's Pl. Texas, 9.-Yonng, Bot. Texas, 257.-Kaleniczenko in Ball. Soc. Imp. Nat. Moscow, slviii, 29.-Vase5, Cat. Forest Trees, 14.
C. oxyacantha, Walter, Fl. Caroliniana, 147 [not Linnsens].

Mespilus apiifolia, Marshall, Arbnstnm, 89.-Poiret, Suppl. iv, 68.-Sprengel, Syst. ii, 508.-Spach, Hist. Veg. ii, 67.
Mespilus monogyna, var. apiifolia, Koch, Dendrologie, $\mathrm{i}, 160$.
C. oxyacuntha, rar. apiifolia, Regel in Act. Hort. St. Petersbnrg, 119.

PARSLEY HAW.

Southeru Virginia, southward near the coast to about latitude 28°, extending west throngh the Gulf states to sonthern Arkansas and the valley of the Trinity river, Texas.

A small tree, rarely 6 to 9 meters in height, with a slender stem rarely exeeeding 0.08 to 0.10 meter in diameter, or more often a low shrub, throwing up many stems from the ground; low, rich soil, reaching its greatest development in the pine-barren hummocks of eentral Florida.

Wood heavy, hard, very close-grained, compact, stsceptible of a beautifnl polish; medullary rays, thin, very obseure; eolor, briglit brown tinged with red or rose, the sap-wood much lighter; specifie gravity, 0.7453 ; ash, 0.97 .

132.-Cratægus spathulata, Michanx,

Fl. Bor.-Am. i, 228.-Persoon, Syı. ii, 37.-Barton, Compend. Fl. Philadelpl. i, 226.-Elliott, Sk. i, 552.-Loddiges, Bot. Cab. t. 1261.Don, Miller's Dict. ii, 599.-Iooker, Companion Bot. Mag. i, 25.-Ciray in Lindley, Bot. Reg. xxiii under t. 1957 ; Manual N. States, 5 ed. 159.-Eaton, Manurl, 6 cd. 112.-Torrey \& Gray, Fl. N. America, i, 467.-Loudon, Arboretnm, ii, 825, f. 591 \& t.-Eaton \& Wright, Bot. 212.-Dictrich, Syn. jii, 160.-Darby, Bot. S. States, 306.-Chapman, Fl. S. States, 126.-Lesquerenx in Owen's 2d Rep.
 xlviii, 31.-Rislgway in As. Nat. vi, 728.

```
Mespilus Azurohus, Marshall, Arbustum, 89 [not Linnens].
Mespilus spathuluta, l'oiret, Suppl. iv, 68.-Desfoutaines, Hist. Arb. ii, 157.-Sprengel, Syst. ii, 507.-Spach, Hist. Veg. ii,
                66.-Koch, Dentrologie, i, 137.
```

C. microcurpu, Lindley, Bot. Reg. xxii, t. 1846.

Phenopyrum sputhultotum, Remer, Syu. Mon. iii, 355.

SMALL-FRUITED HAW.

Virginia, sonthwarl to the Chattahoochee regrion of western Florida, west through the Gulf states to the valley of the Washita river, Arkansas (Hot Springs. Letterman), and the Colorado river, Texas.

A small tree, 6 to S meters in height, with a trunk 0.20 to 0.25 meter in diameter, or often rednced to a low slornb; margins of streans and prairies; common and reaching its greatest development along the bottom lands of restern Louisiana sud eastorn Texas.

Wood heavy, hard, not strong, close gramed, eompact; medullary rays very ummerous, obscure; color, light brown or red. the salp-wood lighter; specific gravity, 0.7159 ; ash, 0.66 .
(i) FOR

133.-Cratægus berberifolia, Torrey \& Gray,

Fl. N. America, i, 469.-Dietrich, Syn. iii, 159.-Walpers, Rep. ii, 59.-Rumer, Syn. Mon. iii, 115.-Wood, Cl. Book, 332.-Regel in Act. Hort. St. Petersburg, i, 123.-Engelmann in Conlter's Bot. Gazette, vii, 128.

Mespilus berberifolia, Wenzig in Linnea, xxxviii, $1 \% 5$.
Phanopyrum ellipticum, Remer, Syn. Mon. iii, 155.
I'hanopyrum Virginicum, Rœmer, Syu. Mon. iii, 155.
New Orleans? (Drummond, No. 105²); Opelousas, Louisiana (Carpenter, Sargent).
A small tree, 6 to 8 meters in height, with a trunk 0.20 to 0.25 meter in diameter ; borders of prairies, in low ground; the fruit and wood not yet collected.
134.-Cratægus æstivalis, Torrey \& Gray,

Fl. N. America, i, 4c8.-Walpers, Rep. ii, z8.-Dietrich, Syn. iii, 162.-Nuttall, Sylva, ii, 12; 2 ed. i, 162.-Darly, Bot. S. States, 306.Chapman, Fl. S. States, 1:77.-Lesquereux in Oren's $2 d$ Rep. Arkansas, 359.-Wood, Cl. Book, 331 ; Bot. \& Fl. 111.-Regel in Act. Hort. St. Petersburg, i, 124.—Vasey, Cat. Forest Trees, 14.

Mespilus astivalis, Walter, Fl. Caroliniana, 148.-Lamarck, Dict. iv, 447.
C. elliptica, Elliott, Sk. i. 548 [not Aiton].
C. lucida, Elliott, Sk. i, 549 [not Ehrhart].
C. opaca, Hooker \& Arnott in Companion Bot. Mag. i, 25.-Loudon, Arhoretum, iv, 2563.

Anthomeles astivalis, Rœmer, Syn. Mon. iii, 141.

MAY HAW. APPLE HAW.

South Carolina, sonth to northern Florida, west through the Gulf states to southern Arkansas and the ralley of the Sabine river, Texas.

A small tree, 6 to 9 meters in height, with a trunk 0.15 to 0.20 meter in diameter; generally in sandy soil along the margins of streams and ponds; common and reaching its greatest development in the bottom lands of westerir Louisiana and eastern Texas.

Wood heary, hard, not strong, close-grained, compact; medullary rays numerous, obscure; color, light brown or red, the sap-wood lighter; specific gravity, 0.6564 ; ash, 0.57 .

The large, globular, fragrant, red fruit, of agreeable subacid flavor, used as a preserve, in jellies, etc.; ripening in May.

135.-Cratægus flava, Aiton,

Hort. Kew. ii, 169 ; 2ed. iii, 201.—Willdenow, Spcc. ii, 1002.-Persoon, Syn. ii, 37.-Pursh, Fl. Am. Sept. i, 338.-Nuttall, Genera, i, 305.De Candolle, Prodr. ii, 628.-Watson, Dend. Brit. i, t. 59.—Don, Miller's Dict. ii, 600.—Lindley, Bot. Reg. xxiii, t. 1939.-Torrey \& Gray, Fl. N. America, i, 463.-Eaton, Manual, 6 ed. 112.-London, Arboretum, ii, 823, f. 585 \& t.-Eaton \& Wright, Bot. 211.Dietrich, Sya. iii, 160.-Darby, Bot. S. States, 30f.-Cooper in Smithsonian Rep. 1858, 252.-Chapman, Fl. S. States, 28.-Curtis in Rep. Geological Surv. N. Carolina, 1860, iii, 83.-Lesquereux in Owen's 2d Rep. Arkansas, 359.-Wood, Cl. Book, 332 ; Bot. \& Fl. 111.-Gray, Manual N. States, 5 ed, 160.-Regel in Act. Hort. St. Petersbarg, i, 122.-Kaleniczenko in Bull. Soc. Imp. Nat. Moscow, slriii, 27.-Vasey, Cat. Forest Trees, 14.

Mespilus flexispina, Mœneh, Verz. Baum. 62, t. 4.-Koch, Dendrologie, i, 139.
C. glandulosa, Aiton, Hort. Kow. ii, 168; 2 ed. iii, 201 [not Michaux].-Persoon, Syn. ii, 37.-Poiret, Suppl. iv, 69, in part.

Mespilus Caroliniana, Poirct in Lamarck, Dict. iv, 442.—Desfontaines, Hist, Arb, ii, 150.-Sprengel, Syst. ii, 507.
C. Caroliniana, Porsoon, Syn. ii, 36.-Elliott, Sk. i, 554.-Eaton, Mannal, 6 ed. 112.-Eaton \& Wright, Bot. 212.

Mespilus flava, Willdenow, Enum. 523.-Poiret, Suppl. iv, 70.—Watson, Dend. Brit. i, t. 59.-Spach, Hist. Veg. ii, 59.
C. turbinata, Pursh, Fl. Am. Sept. Addend. 735.-Poiret, Suppl. v, 543.-Elliott, Sk. i, 549.-De Candolle, Prodr. ii, 627.Don, Miller's Dict. ii, 599.-Eaton \& Wright, Bot. 212.
Mespilus turbinata, Sprengel, Syst. ii, 506.—Spach, Hist. Veg. ii, 66.
C. flava, var. lobata, Lindley, Bot. Reg. xxiii, t. 1932.
C. lobata, Bose in De Candolle, Prodr. ii, 628.-Don, Miller's Dict. ii, 599.-Loudon, Arboretum, ii, 824, f. 554, 586.

Phonopyruin Carolinianum, lemmer, Syn. Mon. iii, 152.
Anthomeles flava, glandulosa, and turbinata, Rœmer, Syn. Mon. iii, 141.

SUMMER HAW, YELLOW HAW

Virginia, sonthward, generally near the coast, to Tampa bay, Florida, west through the Gulf states to eastern Texas and sonthern Arkansas.

A small tree, rarely 7 meters in height, with a trunk 0.30 meter in diameter, or reduced to a much-branched shrub 2 to 3 meters in height; borders of streams, in low, sandy soil subject to overflow.

Wood heary, hard, close-grained, checking badly in drying, satiny, susceptible of a good polish; medullary rays very numerous, obscure ; color, light brown tinged with red or rose, the sap-wood lighter; specific gravity, 0.7809 ; ash, 0.79 .

Fruit small, red or yellow, acid.

Manual N. States, 5 ed. 160.
Var. pubescens, Gray,
Mespilus hiemalis, Walter, Fl. Caroliniana, 148.-Lamarek, Diet. iv, 447.
C. viridis, Walter, Fl. Caroliniana, 147 [not Linnæns].-Elliott, Sk. i, 551.
C. elliptica, Aiton, Hort. Kew. ii, 168; 2 ed. iii, 201.-Willdenow, Spee. ii, 1002.-Persoon, Syn. ii, 3i.-Pursh, Fl. Am. Sept. i, 337.-Nnttall, Genera, i, 305.-Torrey, Fl. U. S. 475; Compend. Fl. N. States, 201.-De Candolle, Prodr. ii, 627.-Hooker, Fl. Bor.-Am. i, 201.-Don, Miller's Diet. ii, 598.-Beek, Bot. 33.-Eaton, Manual, 6 ed. 111.-Torrey \& Gray, Fl. N. Ameriea, i, 469.-Eaton \& Wright, Bot. 211.-Dietrich, Syn. iii, 109.-Darby, Bot. S. States, 306.Cartis in Rep. Geologieal Surv. N. Carolina, 1860, iii, 84.-Regel in Act. Hort. St. Petersburg, i, 122.

Mespilus elliptica, Lamarek, Dict.iv, 447.-Wenzig in Linnæa, xxxviii, 125.-Koch, Deadrologie, i, 140.
C. glandulosa, Miehanx, Fl. Bor.-Am. i, 288 [not Aiton].-Nuttall, Genera, i, 305.—Chapman, Fl. S. States, 128.—Vaser, Cat. Forest Trees, 14.
C. Michauxii, Persoon, Syn. ii, 38.
C. spathulata, Pnrsh, Fl. Am. Sept. i, 336 [not Miehaux].-Do Candolle, Prodr. ii, 627.-Lindley, Bot. Reg. xxii, t. 1890; xxiii, nnder t. 1957.
Mespilus Michauxii, Hornemann, Hort. Hafn. 455.-Poiret, Suppl. iv, 69.
C. flava, Elliott, Sk. i, 551 [not Aiton].
C. Virginica, Loddiges in Loudon, Arboretum, ii, 842, f. 560, 615.-Kaleniczenko in Bull. Soe. Inp. Nat. Moscow, xlviii, 58.

SUMMER-HAW. RED HAW.
Virginia, sonthward to Tampa bay, Florida, and sparingly through the Gulf states to western Louisiana.
A low tree growing with the species, from which it is distinguished by the pubescence of the calyx and young branches, the smaller flowers, and larger, bright red or yellow, globular or pear-shaped fruit.

Wood heavy, hard, not strong, close-graiued, compact ; medullary rays numerous, very obscure ; color, bright red or rose, the sap-wood lighter; specific gravity, 0.7683 ; ash, 0.91 .

The large, edible fruit used in the south Atlantic states in preserves, jellies, etc.
Note.-Crategus parrifolia, Aiton, of the south Atlantie region, a low shrub, is not included in this catalogne.

136.-Heteromeles arbutifolia, Remer,

Syn. Mon. iii, 105.-Decaisne in Nonv. Arch. Mas. x, 144, t.9.-Brewer \& Watson, Bot. California, i, 188 ; ii, 444.
Cratagus arbutifolia, Poiret in Nonveau Duhamel, iv, 131 ; Dict. Suppl. i, 292.-Aiton, Hort. Kew. 2 ed. iii, 202.-Loddiges, Bot. Cab. t. 201.

Aronia arbutifolia, Nuttall, Genera, i, 306.
Photinia arbutifolia, Lindley iu Trans. Linnæau Soe. xiii, 103; Bot. Reg. vi, 491 \& under t. 1956.-Sprengel, Syst. ii, 50s.Do Candolle, Prodr.ii, 631.-Chamisso \& Schleehteudal in Linmea, ii, 542.-Don, Miller's Dict. ii. 602.-Spaeh, Fist. Veg. ii, 80.-Hooker \& Arnott, Bot. Beechey, 139, 340.-Torrey \& Gray, Fl. N. Americi, i, 473.-Dietrich, Syn. iii, 162.Loudon, Arboretum, ii, 868, f. 619.-Benthan, Bot. Sulphar, 14; Pl. Hartweg. 307.-Torrey in Emory's Rep. 140; Sitgreaves' Kep. 119; Pacifie R. R. Rep. iv, 8; Bot. Mex. Boundary Survey, 64; Bot. Wilkes Exped. 291.-Wood, Cl. Book, 329.-Bolander in Proc. California Aead. iii, 80.-Vasey, Cat. Forest Trees, 14.-Palmer in Am. Nat. xii, 599.Maximowiez in Bull. Acad. Sci. St. Petershurg, xix, 180.-Wenzig in Lidnæa, xxxviii, 96.

Mespilus arbutifolia, Link, Ennm. Hort. Berol. ii, 36. •
Photinia 8alicifolia, Presl, Epimel. Bot. 204.-Walpers, Aun. iii, 858.
H. Fremontiana, Decaisue in Nour. Arch. Mus. x, 144.

TOYON. TOLLON. CALIFORNIA HOLLY.

California Coast ranges, Mendocino to San Diego county, extending east to the foot-hills of the Sierra Nevada and San Bernardino mountains.

A small, low-branched evergreen tree, rarely exceeding 9 meters in height, the short trunk sometimes 0.30 to 0.45 meter in diameter, or more often a low, much-branched shrub.

Wood very heavy, hard, close grained, inclined to cheek in drying, satiny, susceptible of a beautiful polish; medullary rays unmerous, very obseure; color, dark reddish-brown, the sap-wood lighter; speeifie gravity, 0.9326 ; ash, 0.54.

137.-Amelanchier Canadensis, Torrey \& Gray,

Fl. N. America, i, 473.-Walpers, Rep. ii, 55.-Dietrich, Syn. iii, 158.-Torrey, F. N. York, i, 225.-Browne, Trees of Ameriea, 282.Emerson, Trees Massachusetts, i, 443; 2 ed. ii, 503 \& t.-Parry in Owen's Rep. 612.-Darlington, Fl. Cestriea, 3 ed. 86.Richardson, Arctic Exped. 423.-Seemann, Bot. Herald, 52.-Hooker f. in Trans. Linnrean Soc. xxii?, 290, 327.-Cooper in Smithsonian Rep. 1858, 252.-Chapman, Fl. S. States, 129.—Curtis in Rep. Geologieal Surv. N. Carolina, 1860, iii, 68.-Lesquereux in Owen's $2 d$ Rep. Arkausas, 359.-Wood, Cl. Book, 329 ; Bot. \& Fl. 110.-Engelmann in Trans. Am. Phil. Soc. new ser. xii, 191.Porcher, Resonrces S. Forests, 168.-Gray, Maunal N. States, 5 ed. 162.-Kooh, Dendrologie, i, 180.-Vasey, Cat. Forest Trees, 14.Maximowicz in Bull. Acad. St. Petersburg, xix, 175.—Ridgway in Proc. U. S. Nat. Mus. 1882, 66.

Mespilus Canadensis, Linnæus, Spec. 1 ed. 478 (exel. syn. Gronovins).-Walter, Fl. Caroliniana, 148.-Aiton, Hort. Ker. ii, 173.

Cratagus tomentosa, Linnæus, Spec. 1 ed. 476 (exel. syn. Gronovius).
Pyrus Botryapium, Linnæus f. Suppl. 255.-Wangenheim, Amer. 90, t. 28, f. 65.-Ehrhart, Beitr. i, 183; ii, 68.-Willdenow, Spee. ii, 1013; Ennm. 525 ; Berl. Baumz. 322.—Aiton, Hort. Kew. 2 ed. iii, 207.—Pursh, Fl. Am. Sept. i, 339.—Hayne, Deud. Fl. 83.-Guimpel, Otto \& Hayne, 100, t. 79.-Sprengel, Syst. ii, 509.-Audubon, Birds, t. 60.-Bigelow, Fl. Boston. 3 ed. 308.
Cratagus racemosa, Lamarck, Dict. i, 84.-Desfontaines, Hist. Arb. ii, 148.-Nonvean Duhamel, iv, 133.-Poiret, Suppl. i, 292.
Mespilus nivca, Marshall, Arbustum, 90.
Mespilus Canadensis, var. cordata, Miehanx, Fl. Bor.Am. ị, 291.
Aronia Botryapium, Persoon, Syn. ii, 39.-Nuttall, Genera, i, 557.-Elliott, Sk. i, 557.-Torrey, FI. U. S. 479; Compend. Fl. N. States, 203.-Eaton, Manual, 6 ed. 29.-Eaton \& Wright, Bot. 135.

Mespilus arborea, Michanx f. Hist. Arb. Am. iii, 68, t. 11; N. American Sylva, 3 ed. ii, 60, t. 66.-Barton, Prodr. Fi. Philadelph. 55.
A. Botryupium, Lindley in Trans. Linnæan Soc. xiii, 100.—De Candolle, Prodr. ii, 632.-Hooker, Fl. Bor.-Am. i, 202.1)on, Miller's Diet. ii, 604.-Beck, Bot. 112.-Spach, Ilist. Veg. ii, 84.-Loudon, Arboretum, ii, 874, f. 627-629 \& t.Rœmer, Syn. Mon. iii, 145.-Darby, Bot. S. States, 307.-Wenzig in Linnæa, xxxiii, 110.-Deeaisne in Nouv. Aroh. Mus. x. 135.

Aromu arborea, Barton, Compend. Philadelph. i, 228.
Aronite eordata, Ratinesque, Med. Bot. ii, 196.
A. octulis, Hooker, W. Bor.-Am. i, 202, in part.

Pyrus Bartramiana, Tauseh, Fl. xxi,715.
Pyrus Wangenheimiant, Tauseb, Fl. xxi, 715.
A. Bartramiana, liemer, Syn. Mon, iii, 145.
A. Wangenheimiana, Remer, Syn. Mon. 146.

JUNE berry. SHAD bush. SERVICE tree. may cherry.
Newfoundland and Labrador, west along the southern shores of Hudson hay to the Saskatchewan region, south through the Atlantic forests to northern Florida, sonthwestern Arkansas, and the Indian territory.

A small tree, 9 to 15 meters in height, with a trunk 0.30 to 0.45 meter in diameter, or in some forms rednced to a low shrub (var. rotundifolia, Torrey \& Gray; Var. oligoearpa, Torrey \& Gray); commou at the north, rare at the south, and reaching its greatest development on the high slopes of the southern Alleghany monntains; rarying greatly in the shape of the leaves, size of the flowers, amonnt of pubescence on the leares and yonng shoots. ete.

The best manked arborescent varicty is-

[^0]Cratoxgus spicata, Lamarek, Dict. i, 84.-Desfontaines, Hist. Arb. ii, 148.-Nouveau Duhamel, iv, 132.-Poirot, Suppl. i, 292.
Mespilus Canadensis, var. obovalis, Michanx, Fl. Bor.-Am. i, 291.
Pyrus ovalis, Willdenow, Spec. ii, 1014 ; Berl. Baumz. 323.-Pursh, Fl. Am. Sopt. i, 340.—Schrank, Pl. Labrador, 26.—Bigelow, Fl. Boston. 3 ed. 207.

Aronia ovalis, Torrey, Fl. U. S. 479; Compend.Fl. N. States, 203.-Eatou, Mannal, 6 ed. 29.—Eaton \& Wright, Bot. 135.
A. ovalis, De Canciolle, Prodr. ii, 632.-Meser, Pl. Labrador, 81.-Hooker, Fl. 13or.-Am. i, 202, in part.-Don, Miller's Dict. ii, F604.-Beck, Bot. 112.—Spach, Hist. Veg. ii, 85.—London, Arborctum, ii, 876, f. 632.
A. intermedia, Spach, Hist. Veg. ii,85.-Wenzig in Linnæa, xxxiii, 112.
A. ollongifolia, Rœmer, Syn. Mon. iii, 147.
A. spicata, Decaisne in Nouv. Arch. Mus. x, 135, t. 9, f. 5.

Wood heavy, exceedingly hard, strong, close-grained, checking somewhat in seasoning, satiny, susceptible of a good polish; mednllary rays very numerous, obscure ; color, dark brown often tinged with red, the sap-wood much lighter; specific gravity, 0.7838 ; asl, 0.55 ; the small frnit sweet and edible.

Note.-The closely allied Amelanchier alnifolia, Nuttall, a low shrub, is widely distributed over the monntain ranges of the interior Pacifie region.

HAMAMELACE \mathbb{E}.

138.-Hamamelis Virginica, Linnæus,

Spec. 2 ed. 124.—Marshall, Arhnstum, 58.—Du Roi, Harbk. i, 423.—Wangenheim, Amer. 89, t.29, f. 62.-Lamarck, Dict. iii, 68; Mll. i, 350, t. 88. -Aiton, Hort. Kew. i, 167; 2ed. i, 275.—Schkuhr, Handb. i, 88, t. 27.-Willdenow, Spec. i, 701; Enam. 171; Berl. Baumz. 172.-Michanx, Fl. Bor. Am. i, 100.-Persoen, Syn. j, 150.-Desfontaines, Hist. Arb. ii, 29.-Pursh. Fl. Am. Sept. i, 116.-Nuttall, Genera, i, 107.-Nonvean Duhamel, vii, 207, t. 60.-Elliott, Sk. i, 219.-Rœmer \& Schultes, Syst. iii, 483.-Loddiges, Bot. Cab. t. 598.Barton, Fl. N. America, iii, 21, t. 78.-Torrey, Fl. U. S. 192; Compend. Fl. N. States, 86; Fl. N. York, i, 260.-Guimpel, Otto \& Hayne, Abb. Holz. 95, t. 75.-Sprengel, Syst. i, 491.-Rafinesque, Med. Bot. i, 227, f. 45.-De Candolle, Prodr. iv, 268.-Hooker, Fl. Bor.-Am. i, 275 ; Companion Bot. Mag. i, 48.-Don, Miller's Dict. iii, 396, f. 69.-Beck, Bot. 152.-Daton, Manual 6 ed. 164.--Spach, Hist, Veg. viii, 79.-Dietrich, Syn. i, 550.-Torrey \& Gray, Fl. N. America, i, 597.-Loudon, Arboretum, ii, 1007, f. 756, 757.Eaton \& Wright, Bot.260.-Bigelow, Fl. Boston. 3 cd. 63.-Emerson, Trees Massachusetts, $416 ; 2$ ed. ii, 473 \& t.-Darby, Bot. S. States, 328.—Darlington, Fl. Cestrica, 3 ed. 98.—Agardh, Theor. \& Syst. Pl. t. 13, f. 7.—Schnizlein, Icon. t. 167, f. 18-25, 27-29.Gray in Am. Jour. Sci. 2 ser. xxir, 438; 3 ser. v, 144; Mannal N. States, 5 ed. 173.-Cliapman, Fl. S. States, 157.-Curtis in Rep. Gcological Surv. N. Carolina, iii, 105.-Lesquerenx in Oweu's 2d Rep. Arkansas, 362.-Wood, Cl. Book, 375; Bot. \& Fl. 120.Engelmann in Trans. Am. Phil. Soc. new ser. xii, 193.-Porcher, Resources S. Forests, 58 .-Koch, Dendrologie, ii, 458.-Baillon in Adansonia, x, 123; Hist. PI. iii, 389, f. 462-464.-Young, Bot. Texas, 291.-Maput \& Decaisne, Bot. Euglish ed. 408 \& f.
H. dioica, Walter, Fl. Caroliniana, 255.-Gmelin, Syst. Veg. i, 281.
II. androgyna, Walter, F. Caroliniana, 255.-Gmelin, Syst. Veg. i, 292.
H. corylifolia, Mœnch, Meth. 273.
H. macrophylla, Pursl. Fl. Am. Sept. i, 116.-Poirct, Suppl. v, 69\%.—Elliots, Sk. i, 220.-Romer \& Schultes, Syst. iii, 483.Rafinesque, Med. Bot. i, 230.-Eaton, Manual, 6 ed. 164.—Don, Miller's Dict. iii, 396.-Eaton \& Wright, Bot. 261.
Trilopus Virginiana, nigra, rotundifolia, and dentata, Rafinesquo, New Sylva, 15-17.
H. Virginiana, var. parvifolia, Nuttall, Genera, i, 107.-Torrey, Fl. U. S. 193; Compend. Fl. N. States, 87.-Don, Millers Dict. iii, 396.-Beck, Bot. 152.-Torrey \& Gray, Fl. N. America, i, 597.
H. parvifolia, Rafinesque, Med. Bot. i, 230.

Trilopus parvifolia, Rafinesque, New Sylva, 17.

WITCH HAZEL.

Northern New England and southern Ontario to Wisconsin, south through the Atlantic region to northern Florida and eastern Texas.

A small tree, exceptionally 7 to 9 meters in height, with a trunk 0.30 to 0.37 meter in diameter, or more often a tall shrub throwing up many stems from the ground; common; rich, rather damp woodlands, reaching its greatest development in the region of the southern Alleghany mountains.

Wood heavs, harl, very elose-grained, compact; layers of annual growth hardly uistinguishable; medullary rays numerons, thin, obsenre; color, light brown tinged with red, the sap-wood nearly white; speeific gravity, 0.6856 ; ash, 0.37 .

The bark and leaves rich in tannin, and largely nsed by herbalists in the form of fluid extracts, decoctions, etc., in external applications, and as a reputed remedy in hemorrhoidal affections (Nezo York Jour. Med. x, 208.Trans. Am. Med. Assoc. i, 35̃0.—U. S. Dispensatory, 14 ed. 1661.-Nat. Dispensatory, 2 ed. 704).

139.-Liquidambar Styraciflua, Linnæns,

Spec. 1 cl. 999.-Marshall, Arbustum, 77.-Wangenheim, Amer. 49, t. 16, f. 40.-Walter, Fl. Caroliniana, 237.-Lamarck, Dict. iii, 533 ; Hl. iii, 367, t. 783.-Aiton, llort. Kew. iii, 365; 2 ed. v, 306.-Gartner, Fruct. ii, 57, t. 90.-Meencl, Meth. 340.-Abbot, Insects Georgia, i, 48.-13. S. Barton, Coll. i, 16.-Willdonow, Spec. iv, 475 ; Enum. 985 ; Berl. Baum\%. 214.-Michanx, Fl. Bor.-Am. ii, 202.-Persoon,
 42, t. 10; vii, 207, t. 60.-Michaux f. Hist. Arb. Am. iii, 194, t. 4 ; N. American Sylva, 3 cd. ji, 49, t. 64.-Barton, Prodr. Fl. Philadelph. 92; Compend. Fl. Philadelph. ii, 177.-Pursh, Fl. Am. Sept. ii, 635.-Eaton, Manual, 110; 6 ed. 208.-Rafinesque, Fl. Ludoviciana, 116. -Nuttall, Geuera, ii, 219; Trans. Am. Phil. Soc. 2 ser. v, 168.-Nees, Fl. Offic. t. 95.-Elliott, Ski, ii, 621.—Sprengel, Syst. iii, 864.— Humbeldt, Boupland \& Kunth, Nonr. Gen. \& Spec. vii, 273.-Andubon, Birds, t.44.-Torrey, Compend. Fl. N. States, 357 ; Fl. N. York, ii, 217.-Beck, Bot. 326.-Heoker, Companion Bot. Mag. ii, 64.-Eatou \& Wright, Bot.302.-Spach, Hist. Veg. x, 84.-Loudon, Arborctum, iv, 2049, f. 1961 \& t.-Lindley, Fl. Med. 322.-Griffith, Mcd. Bot. 581, f. 254. -Broemficld in London Jour. Bot. vii, 144.Schnizlein, Icon. t.98, f. 5-21.—Seemann, Bot. Herald, 346.-Darby, Bot. S. States, 509.-Cooper in Smithsonian Rep. 1858, 252.Chapman, Fl. S. States, 157.-Curtis in Rep. Geological Surv. N. Carolina, 1860, iii, 7 I.-Lesquereux in Owev's 2 d Rep. Arkansas, 362.-Woorl, Cl. Book, 375 ; Bot. \& Fl. 120.-Percher, Resources S. Forests, 344.—De Candolle, Prodr. xvi², 157.-Oliver in Hooker f. Icon. xi, 13.-Gray, Manual N. States, 5 cd. 174.-Koch, Dendrologie, ii, 464.-Young, Bot. Texas, 291.-Vaser, Cat. Forest Trees, 15.-Maout \& Decaisnc, Bot. English ed. 412 \& figs.-Baillon, Hist. Pl. iii, 397, f. 471-474.-Guibourt, Hist. Drognes, 7 cd. ii, 300, f. 445.-Ridgway in Am. Nat. vi, 664 ; Proc. U. S. Nat. Mus. 188:, 67.-Broadhead in Coulter's Bot. Gazette, iii, 53.-Hemsley, Bot. Am.-Cent. i, 400.
L. Styraciflua, var. Mexicana, Örsted, Am.-Cent. xvi, t. 11.
L. macrophylla, Örsted, Am.-Cent. xvi, t. 10.

SWEET GUM. STAR-LEAVED GUM. LIQUIDAMBER. RED GUM. BILSTED.

Fairfield eomnty, Conneetieut, to the valleys of the lower Ohio, White, and Wabash rivers, sonth to cape Canaveral and Tampa bay, Florida, southwest throngh southern Missonri, Arkansas, and the Indian territory to the valley of the Trinity river, Texas; in central and southern Mexico.

A large tree, often 30 to 36 or, exceptionally, 48 meters in beight, with a trunk 1.20 to 1.80 meter in diameter; in low, wet soil; very common and reaching its greatest development in the bottom lands of the Mississippi basin, here, with the cotton gum, forming a large proportion of the lieary forest growth.

Wood heavy, hard, not strong, rather tongh, close-grained, eompaet, inclined to shrink and warp badly in seasoning, susceptible of a beantiful polish; medullary rays numerous, very obscure; color, bright brown tinged with red, the sap-wood nearly white; specific gravity, 0.5910 ; ash, 0.61 ; manufactured into lumber and used in the construction of buildiugs for plates, boarding, and clapboards, in cabinet work as a substitute for black walnut, and for veneering and street pavements; its great economic value hardy appreciated on account of the diffieulty experienced in properly seasoning it.

The balsamic exndation obtained from this species at the south collected by herbalists and sometimes used in the form of a sirup as a substitute for storax in the treatment of catarrhal affections, or externally as an ointment in dressing frost-bite, abscess, etc., and in the mamfacture of chewing gums (Fliickiger $\&$ Hanbury, Pharmacographia, 246.—Nat. Dispensatory, 2 ed. 834).

RHIZOPHORACE Æ.

140.-Rhizophora Mangle, Linnæus,

Spec. 1 ed. 443.-Jacquin, Amer. 141, t.89.-Gartner, Fruct. i, 212, t. 45, f. 1.—Lamarck, Ill. ii, 517, t. 396; Dict. vi, 160.—Willdenow, Spec. ii, 844.-Persoou, Syn. ii, 2.-Decourtilz, Fl. Mcd. Antilles, i, 45, t.10.-Vollozo, Fl. Flum.t. 1.-De Caudolle, Prodr. iii, 32.Eaton, Manual, 6 od. 301.-Spach, Hist. Veg. iv, 332, t. 34.-Torrey \& Gray, Fl. N. America, i, 484.-Nuttall In Am. Jour. Sci, 1 ser. v, 295.-Hooker \& Arnott, Bot. Beechey, 290.—Arnott in Ann. Nat. Hist. i, 361.-Walpers, Rep. ii, 70.-Bentham, Bot. Sulphur, 14.-Darby, Bot. S. States, 312.-Porcher, Resources S. Forests, 55.-Grisebach, Fl. British West Indies, 274.-Schnizlein, Icon. t. 263, f. 1-7.-Maont \& Decaisne, Bot. English ed.419.-Eichler in Martius, Fl. Brasil. xii² 426, t. 90.-Vasey, Cat. Forest Trees, 15.-Baillon, Hist. Pl. vi, 284, f. 253-259.
R. racemusa, Meyer, Prim. Fl. Esseq. 185.-De Candolle, Prodr. iii, 32.
R. Americana, Nuttali, Sylva, i, 95, t. 24; 2 ed. i, 112, t.24.-Cooper in Smithsonian Rep. 1858, 264.

MANGROVE.

Semi-tropical Florida, Mosquito inlet and Cedar Keys to the southern keys; delta of the Mississippi river and coast of Texas; southward through the West Indies and tropical America; now widely naturalized throughout the tropics of the old world (A. De Candolle, Geog. Bot. ii, 772).

A tree 12 to 18 , or, exceptionally, 27 meters in height, with a tronk 0.30 to 0.60 meter in diameter, or more commonly not exceeding 4 to 7 meters in height; low saline shores, reaching in the United States its greatest development on bay Biscayne and cape Sable; sonth of latitude 29°, bordering with almost impenetrable thickets the coast of the Forida peninsula, ascending the rivers for many miles, especially those flowing from the Everglades, and entirely covering many of the sonthern keys.

Wood exceedingly heavs, hard and strong, close-grained, checking in drying, satiny, susceptible of a beautiful polish, containing many evenly-distributed rather small open ducts; mednllary rays numerous, thin; color, dark reddish brown streaked with lighter brown, sap-wood lighter; specific gravity, 1.1617; ash, 1.82 ; furnishing valuable fuel; not greatly affected by the teredo, and nsed for piles.

COMBRETACEA.

141.-Conocarpus erecta, Linnæus,

Spec. 1 ed. 176.-Lamarek, Dict. ii, 96; Ill. i, 126, f. 1.-Jacqnin, Amer. t. 78.-Grertner, Fruct. ii, 470, t. 177, f. 3.-Swartz, Obs. 79.Willdenow, Sp. i, 994.-Aiton, Hort. Kew. 2 ed. i, 381.-Titford, Hort. Bot. Am. 47.-De Candolle, Prodr. iii, 16.-Decoartilz, Fl. Med. Antilles, vi, 68, t. 399.—Spach, Hist. Veg. iv, 304.-Torrey \& Gray, Fl. N. America, i, 485.-Nuttall, Sylva, i, 113, t. 33 ; 2 ed. i, 128, t. 33.-Richard, Fl. Cuba, 526.-Cooper in Smithsonian Rep. 1858, 264.-Chapman, Fl. S. States, 136.-Griselaach, Fl. British West Indies, 277. Eichler in Martins, Fl. Brasil. xiv², 101, t. 35, f. 2.-Vasey, Cat. Forest Trees, 15.

BUTTON WOOD.

Semi-tropical Florida, cape Canaveral to the southern keys, west coast, Tanpa bay to cape Sable; through the West Indies to Brazil.

A low tree, often 8 or, exceptionally, 15 to 18 meters in height, with a trunk sometimes 0.60 meter in diameter ; common and reaching its greatest development in the United States on Lost Man's river, north of cape Sable; or reduced to a low nuder shrub (var. procumbens, De Candolle, l. c.-Eichler, l. c.; C. procumbens, Linnæus, Spec. 1 ed. 177.-Jacquin l. c. 79, t. 52, f. 2.—Grertner, l. c. ini, 205, f. 4-Grisebach, l. ..; C. acutifolia, Willdenow in Remer \& Schultes, Syst. v. 574).

Wood very heary and hard, strong, close-grained, very compact, susceptible of a beautiful polish; medullary rays numerous, obscure ; color, dark yellow brown, the sap-wood lighter; specific gravity, 0.9900 ; ash, 0.32 ; burning slowly like charcoal, and highly valued for fuel.

142.-Laguncularia racemosa, Grertner f.

Fruct. Suppl. 209, t. 217.-De Candolle, Prodr. iii, 17.—Spach, list. Veg. iv, 305.-Nuttall, Sylva, i, 117, t. 34; 2 ed. i, 132, t. 34.-Bentham, Bot. Sulphur, 14, 92.-Richard, Fl. Cuba, 527.-Eichler in Martius, Fl. Brasil. xiv², 102, t. 35, f. 3.-Cooper in Smithsonian Rep. 1858, 264.-Chapmain, Fl. S. States, 136.—Grisebach, Fl. British West Indies, 276.—Vasey, Cat. Forest Trees, 15.-Baillon, Hist. Pl. vi, 278.

Conocarpus racemosa, Linnæия, Spec. 2 cd. 251; Syst. 1ヵ1.-Jacquin, Aner. 80, t. 53.-Swartz, Obs. 79.-Willdenow, Spec. i, 995.
Sehousbca commutata, Sprengel, Syst. ii, 332.
Bucida Buceras, Vellozo, Fl. Flum. iv, t. 87 [not Linnæus].
L. glabrifolia, Presl, Reil. Hænk, ii, 22.-Walpers, Rep. ii, 63.-Chapman, Fl. S. States, 130.

WIIITE BUTTON WOOD. WHITE MANGROVE.

Semi-tropical Florida, cape Canaveral to the southern keys, west coast, Cedar Keys to cape Sable; through the West Indies and tropical America; coast of tropical Africa.

A sinall tree, sometimes 6 or, exceptionally, 22 meters in height (Shark river, Florida, Curtiss), with a trunk 0.30 to 0.60 meter iu diameter, or toward its northem limits reduced to a low shrub; very common ; siline shores of lagoons and bays.

Wood very heavy and hard, strong, close-grained, very compact ; susceptible of a beautiful polish; medallary cays numerons, obscure; color, dark yellow-brown, the sap-wood much lighter; specific gravity, 0.7137; asl, 1.62.

MYRTACEA.

143.-Calyptranthes Chytraculia, Swartz,

Prodr. 79; Fl. Ind. Oce. ii, 921.—Willdenow, Spec. ii, 975.—Aiton, Hort. Kew. 2 ed. iii, 192.-De Candolle, Prodr. iii, 237.-Nuttall, Sylva, i, 101, t. 26 ; 2 ed. i, 117, t. $20 .-$ Berg in Linnea, xxvii, 20 .-Cooper in Smithsoniau Rep. 1858, 264.-Chapman, Fl. S. States, 131.-Grisebach, Fl. British West Indies, 232.-Homsley. Bot. Am.-Cent. i, 408.

Myrtus Chytraculia, Linnæus, Amœn.v, 398.-Swartz, Obs. 202.
Eugenia pallens, Poiret, Suppl. iii, 122.
Semi-tropical Florida, shores of bay Biscayne, Key Largo; in the West Indies.
A small tree, sometimes 8 meters in height, with a trunk 0.10 to 0.15 meter in diameter.
Wood very heary, hard, close-grained, compaet, containing many evenly-distributed rather large open ducts; medullary rays numerous, thin; color, brown tinged with red, the sap-wood a little lighter; specific gravity, 0.8992; ash, 3.32.

144.-Eugenia buxifolia, Willdenow,

Spec. 1i, 960.-Persoon, Syn. ii, 28.-De Candolle, Prodr. iii, 275.-Nuttall, Sylva, i, 108, t. 29; 2 ed. i, 123, t. 29.-Cooper in Smithsonian Rep. 1858,264.-Chapman, Fl. S. States, 131.-Grisebach, Fl. British West Indies, 236.-Vasey, Cat. Forest Trees, 15.

Myrtus buxifolia, Swartz,Prodr. 78; Fl. Ind. Oce. ii, 899.
Myrtus axillaris, Poiret in Lamarek, Diet. iv, 412.
E. myrtoides, Poiret, Suppl. iii, 125.

Myrtus Poireti, Sprengel, Syst. ii, 483.
E. triplinervia, Berg in Linnæa, xxvii, 190 , in part.

GURGEON STOPPER. SPANISH STOPPER.

Semi-tropical Florida, cape Canaveral to the southern keys, west coast, Caloosa river to cape Romano; in the West Indies.

A small tree, rarely 6 to 9 meters in height, with a trunk sometimes 0.30 meter in diameter, reaching its greatest development on the rich hummocks of the Everglades.

Wood very heary, exeecdingly hard, very strong, close-grained, very compact; medullary rays numerons, thin; color, dark brown shaded with red, the sap-wood a little lighter; specifie gravity, 0.9360 ; ash, 1.50 ; somewhat used for fuel.
145.-Eugenia dichotoma, De Candolle,

Prodr. iii, 278.-Nuttall, Sylva, i, 103, t. 27; 2 ed. i, 120, t. 27.-Merg in Linnata, xxvii, 261.-Cooper in Smithsonian Rep. 1858, 264.Chapman, Fl. S. States, 131.-Vasey, Cat. Forest Trees, 15.
E. divaricata, Lamarek, Dict. i, 202.

PMyrtus dichotoma, Vahl in Poiret, Suppl. iv, 53.
Anamomis punctata, Grisobach, FI. British West Indies, 240.

NAKED WOOD.
Scmi-tropieal Florida, Mosquito inlet to cape Canaveral, common; west coast, Caloosa river to cape Romano; in the West Indies.

A small tree, sometimes 6 to 8 meters in height, with a trunk rarely 0.15 meter in diameter.
Δ form with the leaves, buds, and ealyx more or less pubescent (E. dichotoma, var. fragrans, Nuttall, $1,0 . ; E$. pungens, Wildenow, Spec. ii, 964 ; Bot. Mag. t. 1242; E. montana, Aublet, Guian. i, 495, t. 195), not rare in West Indies, and, accorling to Nuttall, collected by Mr. Baldwin in the vicinits of New Smyrna, Florida, has not been rediscovered within the limits of the United States.

Wood very heavy, hard, close-graincd, compact; mednllary rays numerous, thin; color, light brown or red, sap-wood yellow; specifie gravity, 0.8983; ash, 0.74.

The small, edible fruit of agreeable aromatic flavor, and greatly improved by cultivatiou in rich soil.
146.-Eugenia monticola, De Candolle,

Prodr. iii, 275.-Chapman, Fl. S. States, 131.—Grisebach, Fl. British West Indies, 236.—Vasey, Cat. Forest Trees, 15.
Myrtus monticola, Swartz, Fl. Ind. Occ. ii, 898.
E. triplinervia, Berg in Linnæa, xxvii, 190, in part.
E. axillaris, Berg in Linmæa, xxvii, 201, in part.

STOPPER. WHITE STOPPER.

Florida, Saint John's river to Umbrella Key ; rare; in the West Indies.
A small tree, rarely 7 meters in height, with a trunk 0.30 meter in diameter, or in northern Florida reduced to a low shrub.

Wood rery heary, hard, strong, very close-grained, compact; medullary rays numerous, thin; color, brown, often tinged with red, the sap-wood darker; specific gravity, $0.9156 ;$ ash, 1.89.

> 147.-Eugenia longipes, Berg,

Linmæa, xxvii, 150.-Chapman, Fl. S. States, Suppl. 620.
STOPPER.
Semi-tropical Florida, No-Name Key ; in the West Indies.
A small tree, 4 to 7 meters in height, with a trunk 0.15 to 0.20 meter in diameter; rare.
Wood very heavy, hard, close-grained, checking badly in drying, containing many evenly-distribnted open ducts; medullary rays numerous, very obscure; color, dark brown or nearly black, the sap-wood brown tinged with red; specific gravity, 1.1235 ; ash, 3.48 .

The small red fruit with the flavor of cranberries.
148.-Eugenia procera, Poiret,

Suppl. ii, 129.-De Candolle, Prodr. iii, 268.-Nuttall, Sylva, i, 106, t. 28; 2 ed. i, 122, t. 28.-Berg in Linnæa, xxvii, 207.-Cooper in Smithsonian Rep. 1858, 264.-Chapman, Fl. S. States, 131.-Grisehach, Fl. British West Indies, 238.-Vasey, Cat. Forest Trees, 15.

Myrtus procera, Swartz, Prodr. 77 ; Fl. Ind. Occ. ii, 887.—Willdenow, Spec. ii, 968.
E. Barucnsis, Grisebach, Cat. Pl. Cub. [not Jacquin], 87.

RED STOPPER.
Semi-tropical Florida, shores of bay Biscayne, Key Largo, Elliott's Key; in the West Indies.
A trec, 12 to 18 meters in height, with a trunk 0.30 to 0.45 meter in diameter ; often forming extensive groves, and reaching its greatest development in the United States iu the neighborhood of Miami, bay Biscayne.

Wood very heary, exccedingly hard, very strong and close-grained, compact; medullary rays nnmerous, hardly distinguishable; color, light yellow-brown, the sap-wood darker; specific gravity, 0.9453; ash, 2.62; probably valuable in cabinet-making aud as a substitute for box-wood for coarse wood-eugraving.

Note.-Psidium Guaiara, Raddi, the Gnava, widely cultivated in the tropies for its frnit, is now sparingly naturalized in semi-tropical Florida.

CACTACEA.

149.-Cereus giganteus, Engelmann;

Emory's Rep. 158; Am. Jour. Sci. 2 ser. xiv, 335; xvii, 231; Proc. Am. Acad. iii, 287; Bot. Mex. Boundary Survey, Cactaceæ, 42, t. 61, $62 \&$ front.; Brewer \& Watson, Bot. California, i, 247.-Thurber in Mem. Am. Acad. now ser. v, 302, 305.-Fl. des Serres, x, 24, \& t.; xv, 187, t. 1600.-Bigelow in Pacific R. R. Rep. iv, 12.-Engelmann \& Bigelow in Pacific R. R. Rep. iv, 36.-Walpers, Ann. v, 46.-Cooper in Smithsonian Rep. 1858, 259.-Lemaire, Ill. Hort. ix, Misc. $95 .-\mathrm{Marcou}$ in Jour. Hort. Soc. France, 2 ser. iii, 676.-Lindley, Treasury Bot. 256, t. 17.-Vasey, Cat. Forest Trees, 15.-Rothrock in Wheeler's Rep. vi, front.-Hemsley, Bot. Am.-Cent. i, 343.-James in Am. Nat. xv, 982, f. 3.

Pilocereus Engclmanni, Lemaire, 111. Hort. ix, Misc. 95.

SUWARROW. SAGUARO. GIANT OAOTUS.

Valley of Bill Williams river, Arizona, sonth and east through central Arizona to the valley of the San Pedro niver ; southward in Sonora.

A tall, columnar tree, 8 to 18 meters in height, with a trunk sometimes 0.60 meter in dianeter; dry, stony mesas or low hills rising from the desert.

Wood of the large, strong ribs, very light, soft, rather coarse.grained, solid, satiny, susceptible of a fine polish, almost indestructible in contact with the grom ; medullary rays very numerous, broad; color, light brown tinged with yellow; speeifie grarity, 0.3188 ; ash, 3.45 ; used in the region almost exelusively for the rafters of adobe houses, for feneing, and by the Indians for lances, bows, etc.

The edible fruit largely collected and dried by the Indians.

CORNACEA.

150.-Cornus alternifolia, Linnæus f.

Suppl. 125.-Lamarek, Dict. ii, 116; Ill. i, 303.-LHeritier, Cornns, 10, t. 6.-Ehrhart, Beitr. iii, 19.-Aiton, Hort. Kew. i, 159; 2 ed. i, 262.-Willdenow, Spec. i, 664; Ennm. 165; Berl. Baumz. 104.-Michanx, Fl. Bor.-Am. i, 93.-Persoon, Syn. i, 144.-Desfontaines, Hist. Arl). i, 351.-Nonvean Duhanel, ii, 157, t. 45.-Pursh, Fl. Am. Sept. i, 109.-Nuttall, Genera, i, 99.-Rœmer \& Schultes, Syst. iii, 323; Mant. 251.-Elliott, Sk. i, 210.-Guimpel, Otto \& Hayne, Abb. Holz. 53, t. 43.-Hayne, Dend. Fl. 8.-Torrey, Fl. U. S. 180; Compend. Fl. N. States, 83; Fl. N. York, i, 288.-Spreugel, Syst. i, 451.—De Caudolle, Prodr. iv, 271.-Hooker, Fl. Bor.-Am. i, 275.Don, Miller's Diet. iii, 398.-Beck, Bot. 154.-Eaton, Manual, 6 ed. 109.-Tanseh in Regensb. Fl. xxi, 732.-Spaeh, Hist. Veg.viii, 92.Dietrich, Syu. i, 503.-Torrey \& Gray, Fl. N. Ameriea, i, 649.-Loudon, Arboretnm, ii, 1010, f. 760.—Eaton \& Wright, Bot. 210.Bigelow, Fl. Boston. 3 ed.60.-C. A. Meyer in Mem. Aead. Sei. St. Petersburg, v, 6, 13.-Walpers, Rep. v, 932.-Emerson, Trees Massachusotts, 409; 2 ed. ii, 463 \& t.-Parry in Owen's Rep. 613.-Darlington, Fl. Cestrica, 3 ed. 110.-Cooper in Smithsonian
 \& Fl. 143.-Gray, Maunal N. States, 5 ed. 201.-Koch, Dendrologie, i, 690.-Young, Bot. Texas, 303.
C. alterna, Marshall, Arbustum, 35.

DOGWOOD.

New Brunswick, west along the valley of the Saint Lawrence river to the northern shores of lake Superior, sonth throngh the northern states and along the Alleghany mountains to northern Georgia and Alabama.

A small tree, 4 to 8 meters in height, with a trunk 0.15 to 0.20 meter in diameter; low, rich woods and borders of streams and swamps.

Wood heavs, hard, close-grained, cheeking badly in drying; medullary rays numerous, thin; color, brown tinged with red, the sap-wood light yellow; specific gravity, 0.6696 ; ash, 0.41 .

151.-Cornus florida, Linnæus,

Spee. 1 ed. 117.-Marshall, Arbustum, 35.-Lamarck, Diet. ii, 114; 11I. i, 302.-Wangenheim, Amer. 51, t. 17, f. 41.-Walter, Fl. Caroliuiana, 88.-L'Heritier, Cornns, 4.-Aiton, Hort. Kew. i, 157; 2 ed. i, 261.-Willdenow, Spec. i, 661; Enum. 164; Berl. Banmz. 100.—Abbot, Iusects Georgia, ii, t. 73.-B. S. Barton, Coll. i, 12, 45; ii, 17, 19.-Bot. Mag. t. 526. Michaux, Fl. Bor.-Am. i, 91.-Persoon, Syn. i, 143.-Desfontaines, Hist. Arb. i, 350.-Sebkuhr, Handb. 82.-Titford, Hort. Bot. Am. 41, t. 16, f. 7.-Nouveau Duhamel, ii, 153.-Michanx f. Hist. Arb. Am. iii, 138, t. 3; N. American Sylva, 3 ed. i, 176, t. 48.-Pursh, Fl. Am. Sept. i, 108.Bigelow, Med. Bot. ii, 69, t. 73; Fl. Boston. 3 ed. 59.-Eaton, Manual, 19; 6 ed. 108.-Nuttall, Genera, i, 98.-Bartou, Med. Bot. i, 43, t.3.-Rœmer \& Schultes, Syst. iii, 319.-Hayne, Dend. Fl. 6.-Guinpel, Otto \& Hayne, Abb. Holz. 21, t. 19.-Elliott, Sk. i, 207.Torrey in Ann. Lye. N. York, ii, 208; F1. U. S. 178; Compend. Fl. N. States, 82; Fl. N. York, i, 290; Nieollet's Rep. 151; Emory's Rep. 408.-Sprengel, Syst. i, 451.—Beek in Am. Jonr. Sci. 1 ser. x, 264; Bot. 153.-Audubon, Birds, t. 8, 73, 122.-Rafinesque, Med. Bot. i, 131, f. 23-De Candolle, Prodr. iv, 273.-Hooker, Fl. Bor.-Am. i, 277, in part; Companion Bot. Mag. i, 48.-Don, Miller's Dict.
 769.-Eaton \& Wright, Bot. 209.-Reid in London Gard. Chrmicle, 1844, 276.-Browne, Trees of Ameriea, 350.-Emerson, Trees Massachusetts, 413 ; 2 el. ii, 467 \& t.-Grifith, Med. Bot. 347, 1. 164.-Carson, Med. Bot. i, 50, t. 42.-Richardson, Aretie Exped. 429.-Darlington, Fl. Cestrica, 3 ed. 111.-Darly, Bot. S. States, 339.-Cooper in Smithsonian Rop. 1858, 252.-Chapman, FI. S. States, I63.-Curtis in Rep. Geological Surv. N. Carolina, 1860, iii, 60.-Lesqueremx in Owen's 2 d Rep. Arkausas, 364.-Wood, C1. Book, 391 ; Bot. \& Fl. 143.-Blakie iu Cauadiau Nat. vi, 1.-Engelnnann in Trans. Am. Phil. Soc. new ser. xii, 194.-Poreher, Resources S. Forests, 59.-Gray, Manual N. States, 5 ed. 200; Hall's Pl. Texas, 11.-Koel, Dendrologie, i, 694.-Young, Bot. Texas, 303.-Vasoy, Cat. Forest Trees, 16.-Baillou, llist. Pl. vii, 68, f. 46.-Broadhead in Conlter's Bot. Gazette, iii, 53.-Bentley \& Trimen, Med. Pl. ii, 136, t. 136.-Dell in Geological Rep, Cauada, 1879-'80, 55c.-Ridgway in Proc. U. S. Nat. Mus. 1882, 67.

Benthamidia florida, Spach, Hist. Veg. viii, 107.

FLOWERING DOGWOOD. BOE WOOD.

Southern New England, southern Ontario, southern Minnesota, and through the Atlantic forests to latitude 28° 50^{\prime} in Florida, and the valley of the Brazos river, Texas.

A small tree, 9 to 12 meters in height, with a trunk 0.30 to 0.45 meter in diameter, or toward its northern limits reduced to a low shrub; rich woods; very common, especially at the sonth.

Wood heary, hard, strong, close-grained, tough, cheeking barly in trying, satiny, susceptible of a beautiful polish; mednllary rays numerous, conspicnous; color, brown, changing in different specimens to shades of green and red, the saprood lighter; specific gravity, 0.8153 ; ash, 0.67 ; used in turnery, for wood engravings and the bearings of maehinery, hubs of wheels, barrel hoops, ete.

The bark, especially of the root, in common with that of the other species of tho gems, possesses bitter tonie properties, and is used in decoctions, ete., in the treatment of intermittent and malarial fevers (Am. Jour. Pharm. vii, 109.—Maisch in Proc. Am. Pharm. Assoc. 315.—U. S. Dispensatory, 14 ed. 352.-Nat. Dispensatory, 2 ed. 467).

152.-Cornus Nuttallii, Audubon,

Birds, t. 467.-Torrey \& Gray, Fl. N. America, i, 652.-Walpers, Rep. ii, 435.-Bentham, Pl. Hartweg. 312.-Nuttall, Sylva, iii, 51, t. 97 ; 2 ed. ii, 117, t. 97.—Dnrand in Jour. Philadelphia Acad. 185", 89.—Torrey in Pacific R. R. Rep. iv, 94 ; Bot. Mex. Boundary Surpcy, 71; Bot. Wilkes Exped. 326.-Newberry in Pacific R. R. Rep. ri, 24, 75.-Cooper in Smithsonian Rep. 1858, 259; Pacific R. R. Rep. xii, 29, 63.-Lyall in Jour. Linnean Soc. vii, 134.-Gray in Proc. Am. Acad. viii, 3su.-Brewer \& Watson, Bot. California, i, 274 ; ii, 452.-Vases, Cat. Forest Trees, 16. -Hall in Conlter's Bot. Gazette, ii, 88. -Macoun in Foological Rep. Canada, 1875-76, 198.-G. M. Dawson in Canadian Nat. new ser. jx, 331.
C. florida, Hooker, Fl. Bor.-Am. i, 277 , in part.

FLOWERING DOGTVOOD.

Vancouver's island and along the coast of sonthern British Colnmbia, through western Washington territory and Oregon, and southward throngh the Coast ranges of Califonia and along the western slope of the Sierra Nerada to the San Beruardino mountains.

A small, slender tree, sometimes 18 to 24 meters in height, with a trunk rarely $0.4 \tilde{0}$ meter in dianeter'; ascemding the Cascade momntains to 3,000 feet, and the San Bernardino monntains to from 4,000 to 5,000 feet elevation; common; rich, rather damp soil, generally in the dense shade of coniferous forests.

Wood heavy, excecdingly hard, strong, elose-grained, compaet, satiny, susceptible of a good polish; medullary rass numeroas, obscure; color, light brown tinged with ret, the sap-wood lighter; specific gravity, 0.7481 ; ash, 0.50 ; somewhat used in cabinet-making, for mauls, handles, etc.

153.-Nyssa capitata, Walter,

Fl. Caroliniana, 253.-Lamarck, Dict. iv, 308. -Michaux f. Hist. Arb. Am. ii, 257, t. 20 ; N. Amorican Sylva, 3 ed. iii, 37, t. 113.Aiton, Hort. Kew. 2 ed. v, 480 .-Poiret, Suppl. v, 7.10.-Eliott, Sk. ii, 685. Hooker, Companion Bot. Mag. ii, 62.-Eaton, Manual, 6 ed. 236.-Laton \& Wright, Bot. 329.—Spach, Hist. Veg. x, 464.-Darby, Bot. S. States, 493.-Cooper in Smithsonian Rep. 1858, 253.-Chapman, Fl. S. States, 168.-Lesquerenx in Owen's ${ }_{2}$ d Rep. Arkansas, 364.-Wood, Cl. l3ook, 392; Bot. \& Fl. 143.-Koch, Dendrologie, ji, 456.-Vasey, Cat. Forest Trees, 16.
N. Ogeche, Marahall, Arbastum, 97 .
N. coccinea, Bartram, Travels, 2 ed. 17.
N. tomentosa, Poiret in Lamarck, Dict. iv, 508.
N. candicans, Miehaux, lil. l̉or.-An. ii, 259.—Porsoon, Syn. ii, 614.—Desfontaincs, Hist. Arb. i, 37.-Willdenow, Spec. iv, 1113.-l'ursh, Fl. Am. Sept. i, 117.-Poiret, Snppl.iv, 11G.-Nuttall, Genera, ii, 236 ; Trans. Am. Pliil. Soc. v, 167.Rœmer \& Schultes, Syst. v, 557.—Sprengel, Syst. i, E82.-Dietrich, Syn. i, 879.-Loudon, Arboretum, iii, 1318, f. 1199.Brownc, 'Trees of America, 426.
N. montana, Gærtaer, Fruct. iii, 201, t. 216.

OGEECHEE LIME. SOUR TUPLLO. GOPHER PLUM.

Georgia, from the valley of the Ogeechee to the Saint Mary's river, west Florida (uear Vernon, Mohr), and in southern Arkansas.

A tree 9 to 18 meters in height, with a trunk 0.50 to 0.90 meter in diameter; deep swanps and river bottomis ; rare and local.

Woor light, soft, not strong, tough, rather coarse-grained, compact, unwedgeable, contaning man regularlydistributed open lucts; medullary rays nnmerons, thin; color, white, the sap-wood hardly distinguishable; specifie gravity, 0.4613; ash, 0.34.

A conserve, under the name of "Ogeechee limes", is made from the large, acid fruit.
154.-Nyssa sylvatica, Marshall,

Arbustum, 97.-Michaux f. Hist. Arb. Am. ii, 260, t. 21; N. American Sylva, 3 ed. iii, 29, t. 110.-Poiret, Suppl. iv, 116.-Barton, Prodr. Fl. Philadelph. 97 ; Compend. Fl. Philadelph. ii, 193.
N. aquatica, Linnwus, Spec. 1 ed. 1058, in part.-St. Hilaire, Fam. Nat. ii, 152.-Persoon, Syn. ii, 614.-Michaux f. Hist. Arb. Aiv. ji, 165, t. 22; N. Americau Sylva, 3 ed. iii, 31, t. 111.-Remer \& Sclinltes, Syst. v, 576.-Barton, Prodr. FI. Philadelph. 97 ; Compend. Fl. Philadelph. ii, 192.-Sprengel, Syst. i, 832.-Audubor; Birds, t. 133.-Ellioti, Sk, ii, 684.-Dietrich, Syn. i, 8r8.—Eaton, Mannal, 6 ed. 236.—Eaton \& Wriglit, l3ot. 329.—Spach, Hist. Veg. x, 464.—Darby, Bot. S. Statex, 492.-Chapman, Fl. S. States, 168.-Curtis in Rep. Geological Surv. N. Carolina, 1860, iii, 168.-Porcher, Resonrces S. Forests, 347.-Koch, Dendrologie, ii, 455.-Young, Bot. Texas, 304.-Vasey, Cat. Forest Trees, 16.
N. multiflora, Wangenheim, Amer. 46, t. 16, f. 39.-Elliott, Sk. ii, 684.-Walter, Fl. Caroliniana, 253.-Beck, Bot. 307.-Eaton,
 Trees Massachusetts, 312, t. 17 ; 2 ed. ii, 353 \& t.-Schnizlein, Icon. t. 108, f. 1, 2.-Darlington, Fl. Cestrica. 3 cd. 254.Darby, Bot. S. States, 492.-Cooper in Smithsonian Rep. 1858, 252.- Chapman, Fl. S. States, 168.-Curtis in Rep. Geological Surv. N. Carolina, 1860, iii, 62.-Lesquercux in Owen's 2d Rep. Arkansas, 364.-Wood, Cl. Book, 392; Bot. \& Fl. 143.-Gray, Manual N. States, 5 cd. 201.-Koch, Dendrologic, ii, 554.-Yonng, Bot. Texas, 304.-Vasey, Cat. Forest Trees, 16.-Broadbcad in Conlter's Bot. Gazette, iii, 53.-Bessey in Am. Nat. xv, 134.-Bell in Geological Rep. Canada, 1879-'80, 55c.-Ridgway in Proc. U. S. Nat. Mus. 1882, 68. -Burgess in Coultcr's Bot. Gazette, vii, 95.
N. Caroliniana, Poiret in Lamarck, Dict. iv, 507 ; Lamarck, Ill. iii, 442, t. 851, $\mathbf{f} .1$.
N. biflora, Walter, Fl. Caroliniana, 253.-Lamarck, Dict. iv, 508.-Michanx, Fl. Bor.-Am. ii, 259.-Willdenow, Spec.iv, 1113 ; Enum. 1061 ; Berl. Baumz. 256.-Desfontaines, Hist. Arl. i, 37.-Gartner f. Fruct. Suppl. 203, t. 216.—Aiton, Hort.
 iv, 115.-Torres iv Ann. Lyc. N. York, ii, 200 ; Compend. Bot. N. States, 372.-Hayne, Dend. Fl. 229.-Eaton, Mannal, 116.-Bcek, Bot. 307.-Loudon, Arboretuio, iii, 1317, f. 1195, 1196.-Browne, Trees of America, 423.-Baillon, Hist. Pl. v, 266, f. 241-244.
N. integrifolia, Aiton, Hort. Kow. iii, 446.-Persoon, SFn. ii, 614.
N. Canadensis, Poiret in Lamarck, Dict. iv, 507.
N. villosa, Michanx, Fl. Bor.-Am. ii, 258.-Willdenow, Spec.iv, 1112.-Desfontaines Hist. Arb. i, 37.-Aiton, Hort. Kew. 2 ediv, 479.-Bigclow, Fl. Boston 3 ed. 380.-Pursh, 17. Am. Sept. i, 117.-Nuttall, Gencra, ii, 276. -Rœmer \& Schultes, Syst. v, 575.-Sprengel, Syst. i, 832.-Torres, Compend. Bot. N. States, 372.-Dictrich, Syn. i, 878.-London, Arboretum, iii ${ }_{r}$ 1317, f. 1197, 1198.
N. multiflora, var. sylvatica, Watson, Index, 442.

TUPELO. SOUR GUM. PEPPERIDGE. BLACK GUM.

Valley of the Kennebec river, Maine (Kent's Hill, Prof. Stone), West Milton, Vermont, west to central Michigan, sonth to Tampa bay, Florida, and the valley of the Brazos river, Texas.

A tree 15 to 36 meters in lieight, with a trunk 0.60 to 1.50 meter in diameter, or at the north much smaller; borders of swamps, or on rather higl, rich hillsides and pine uplands; at the south often in pine-barren ponds and deep swamps, the base of the trunk then greatly enlarged and swollen (N. aquatica).

Wood hears, rather soft, strong, very tough, unwedgeable, difficult to work, inclined to check unless carefully seasoned, not durable in contact with the soil, containing numerons regularly-distributed small open ducts; medullary rays numerous, thin ; color, light yellow or often nearly white, the sap-wood hardly distinguishable; specific gravity, 0.6353 ; ash, 0.52 ; now largely used for the hubs of wheels, rollers in glass factories, ox yokes, and on the gulf coast for wharf piles.

Note.-Various forms of Nyssa, which at different times have been considered by botanists as entitled to specific rank, are connected by so many intermediate forms, and offer so fow distinctive characters, that they are here united into one polymorphous. species, which thas cnlarged may properly bear Mirshall's earlicr name of Nysa bylvatica, rather than the more familiar Nyssa multifora of Wangenheim.

155.-Nyssa uniflora, Wangenheim,

Amer. 83, t. 27, f. 57.-Walter, FI. Caroliniana, 253.-Elliott, Sk. ji, 686.-Eaton \& Wright, Bot. 329.—Darby, Bot. S. States, 493.-Cooper in Smithsouian Rep. 1858, 253.-Chapmau, FI. S. States, 168.-Curtis in Rep. Geological Surv. N. Carolina, 1860, iii, 62.-Wood, Cl. Book, 392 ; Bot. \& Fl. 143.-Gray, Manual N. States, 5 cd. 201.-Koch, Dendrologie, ii, 455.-Young, Bot. Texas, 304.-Vasey; Cat. Forest Trecs, 16.
N. aquatiea, Linnaus, Spec. 1058, in part.—Marshall, Arbustum, 96.-Lamarek, Dict. iv, 507. -Desfontaincs, Hist. Arl. i, 36.
N. denticulata, Aiton, Hort. Kew. iii, 446; 2 ed. v, 480.-Persoou, Sjn. ii, 615.-Willdenow, Spec. iv, 1114.-Gærtuer f. Frnct. Snppl. 203, t. 216.-Pursh. Fl. An. Sept. i, 1:8.-Poirct, Suppl. iv, 115.-Nuttall, Genera, ii, 236.-Hayne, Dend. Fl. 229.—Rœmer \& Schultes, Syst. r, 577.—Sprongel, Syst. i, 832.-Dietrich, Syu. i, 879.
N. angulosa, Poiret in Lamarek, Dict. iv, 507; Ill. iii, 442, t. 851, f. 2.-Rœmer \& Schultes, Syst. v, $5 \sim 8$.
N. palustris, Salishury, Prodr. 175.
N. tomentosa, Michaux, FI. Bor.-Am. ii, 259.-Persoon, Syn. ii, 615.-Willdonow, Spec. iv, 1113.-Pursh, Fl. Am. Sept. i, 177.-Nuttall, Genera, ii, 236.-Ramer \& Schnltes, Syst. v, 577.-Elliott, Sk. ii, 685.-Sprengel, Syst. i, 832.-Audubon, Dirds, t. 13.-Dietrich, Syn. i, 879.-Eaton \& Wright, Bot. 329.-Darby, Bot. S. States, 493.

N, angulisans, Michanx, Fl. Bor.-Am. ii, 259.-Dietrich, Syn. i, 879.-Spach, Hist. Veg. x, 465.
N. gravilidentata, Michaux f. Hist. Arb. Am. ii, 259, t. 19 ; N. American Sylva, 3 cd. ii, 34, t. 112.-Loudon, Arboretum, iii, 1319, f. 1200, 1201.-Lesquereux in Owen's 2d Rep. Arkansas, 364.
N. capitata var. grandidentata, Browne, Trees of America, 426.

LARGE TUPELO. COTTON GUM. TUPELO GUM.
Southern Virginia, sonth near the coast to the valley of the Saint Mary's river, Georgia, through the Gulf states to the valley of the Neches river, Texas, and through Arkansas and southern and southeastern Missouri to the valley of the lower Wabash river, Illinois.

A large tree, 21 to 30 meters in height, with a trunk 0.90 to 1.20 meter in diameter; deep swamps and river bottoms subject to frequent overflow; one of the largest and most common trees of the botton lands of the lower Mississippi river basin, and reaching its greatest development in the eypress swamps of western Louisiana and eastern Texas, near the coast.

Wood light, soft, not strong, close-grained, compact, unwedgeable; medullary rays mumerous, thin; color, light brown, or often nearly white; specific gravity, 0.5194 ; ash, 0.70 ; used in turnery, largely for woolenware, broom handles, and wooden shoes; that of the root for the floats of nets, ete., as a substitute for eork.

CAPRIFOLIACEA.

156.-Sambucus glauca, Nuttall;

Torrey \& Gray, li. N. America, ii, 13.-Walpers, Rep, ii, 453.-Torrey in Pacific R. R. Rep. vi, 12; Ives' Rep. 15; Bot. Mex. Bonndary Snrvey, 71.-Gray in Smithsonian Contrib.v, 66; Proc. Am. Acad. vii, 387 ; Sym. Fl. N. Amcrica, i², 9.-Watson in King's Rep. v, 134.-Vasey, Cat. Forest Trees, 16.-Brower \& Watson, Bot. California, i, 278.-Hall in Conlter's Bot. Gazette, 88.-Rotbrock in Wheeler's Rep. vi, 135, 363.
S. Californica, Hort.-Koch, Dendrologie, ii, \boldsymbol{z}.

PS. Mexicana, Newberry in Pacific R. R. Rep. vi, 75 [not Presi].

ELDER.

Valley of the Fraser river and Vancouver's island, British Columbia, southward through California to the Mexican bonndary, extending west to the Blue mountains of Oregon and the Wahsatch range, Utah.

A small tree, sometimes S to 9 meters in height, with a trunk 0.30 to 0.45 meter in diameter, or toward its northern limits reducel to a large shrub; confined to valleys, in dry, gravelly soil.

Wood light, soft, weak, coarse-grained, ehecking in drying ; medallary rays numerons, rather conspicuous; color, yellow tingod with brown, the sap-wool lighter ; sperific gravity, 0.5037; ash, 1.57.

The large blue-black frnit mible and sometines cooked.

157.-Sambucus Mexicana, Presl,

11ors. Hank.-De Candolle, Prodr. iv, 3xe.-Don, Miller's Dict. iii, 43\%.-London, Arboretum, if, 1030.-Gray in Smithsonian Contrib. v, 66; Syn. Fl. N. America, i^{2}, 9.-Torrey in Pacilic R. R. Jep. iv, 95; Bot. Mex. Bonndary Survey, 71.-Brewer \& Watson, Bot. Cabifornia, i, 278.-Rothrock in Wheeler's Rep. vi, 135.-Hemsley, Bot. An.-Cent. ii, 1.
S. glauca, Bentham, Pl. Hartweg. 31:3 [not Nattatl].
S. Xelutina, Durand \& llilgard in Jonr. Philadelphia Acad. new ser. iii, :39.

ELDER.

Valley of the Nueces river (San Patricio), sonth and west along the southern boundary of the United States to Posa creek, Kern comity, California, and sonthward into Mexico.

A small tree, sometimes 6 meters in height, with a trunk 0.15 to 0.25 meter in diancter; bottom lands, in moist, gravelly loam.

Wood light, soft, rather coarse-grained, compact ; medullary rays numerons, thin, conspicnons; color, light. brown, the sap-wood lighter; specifie gravity, .4014; ash, 2.00.

158.-Viburnum Lentago, Limpæus,

Spec. 1 ed. 268.-Marshall, Arbustum, 160.-Waugenheim, Amer. 100.—Walter, Fl. Caroliniana, 116.-Aiton, Hort. Kew. i, 322 ; 2 ed. ii, 168.-Willdenow, Spee. i, 1491 ; Enum. 327 ; Berl. Baumz. $\mathbf{3} 31$.-Nouveau Duhamel, ii, 129.-Sehkuhr, Handb. 234.-Miehaux, Fl. Bor.-Am. i, 178.-Persoon, Syn. i, 327.-Desfontaines, Hist. Arb. i, 344.-Poiret in Lamarck, Diet. viii, 658.-Pursh, Fl. Am. Sept. i, 201.-Batlon, Prodr. Fl. Philadelph. 40.-Laton, Manual, 34 ; 6 ed. 387 .-Nuttall, Genera, i, 202.-Hayne, Dend. Fl. 37.Remer \& Schultes, Syst. vi, (i37.-Elliott, Sk. i, 365.-Torrey, Fl. U. S. i, 318 ; Compend. FI. N. States, 138; Fl. N. York, i, 305.Watson, Dend. Brit. i, t. 21.-Spreugel, Syst. i, 934 . - Guimpel, Otto \& Hayne, Abb. Holz. 125, t. 102.-De Candolle, Prodr. iv, $325 .-$ Hooker, Fl. Bor.-Am. i, 279.-Beck, Bot. 156.—Don, Miller's Diet. iii, 440.-Spach, Hist. Veg. viii, 311.-Loudon, Arborctum, ii, 1033, f. 780 .-Dictrich, Syn. ii, 1011.-Eaton \& Wright, Bot. 473.-Torrey \& Gray, Fl. N. America, ii, 15.-Bigelow, Fl. Boston. 3 ed. 123.Penn. Crcl. xxvii, 294.-Emerson, 'Trees Massaelusetts, 361 ; 2 ed. ii, 412 .-Darlington, Fl. Cestrica, 3 ed. 115.-Darby, Bot. S. States, 342.-Chapmau, Fl. S. States, 171.-Wood, Cl. Book, 39\%; Bot. \& Fl. 147.-Engelmann in Trans. Am. Phil. Soc. new ser. xii, 194; Trans. St. Louis Aead. ii, 269.-Gray, Manual N. States, 5 ed. 206; Syn. Fl. N. America, i^{2}, 12.-Koch, Dendrologie, ii, 62.Young, Bot. Texas, 309.-Vasey, Cat. Forest Trees, 16.-Maeoun in Rep. Geological Surv. Canada, 1875-76, 198.-Ridgway in Proc. U. S. Nat. Mus. 1882, 68.

SHELPBERRY. NANNYBERRY.

Southern shores of Hudson bay west in British America to about longitude 1020, south through the northern states to southern Indiaua and Saint Louls comuty, Missouri, and along the Alleghany monntains to northern Georgia.

A small tree, 6 to 9 meters in height, with a trunk sometimes 0.15 to 0.25 meter in diameter; rocky ridges and aloug borders of streams and swamps, in rich, moist soil ; most common and reaching its greatest development far north.

Wood heary, hard, close grained, compact, emitting a disagreeable odor; medullary rays thin, barely distinguishable; color, dark orange-brown, the sap-wood nearly white; speeific gravity, 0.7303; ash, 0.29.

159.-Viburnum prunifolium, Linnæus,

Spec. 1 ed. 268.-Marshall, Arbustum, 160.-Wangenheim, Amer. 98.-Walter, Fl. Caroliniana, 116. -Aiton, Hort. Kew. i, 371 ; 2 ed. ii, 167.-Willdenow, Spec. i, 1487 ; Ennm. 326 ; Berl. Baumz. 530.-Abbot, Insects Georgia, ii, 53.-Nonveau Duhamel, ii, 128, t. 38.Schkuhr, Handb. Z33.-Michaux, Fl. Bor.-Am. i, 178.-Persoon, Syn. i, 326.-Desfontaines, Hist. Arb. i, 344.-Poiret in Lamarek, Dict. viii, 65\%.-Pursl, Fl. Am. Sept. i, 201.-Barton, Prodr. Fl. Philadeph. 39 ; Compend. Fl. Philadelph. i, 151.-Nuttall, Gevera, i, 202.-Romer \& Sehultes, Syst. vi, 631.- Hayne, Dend. Fl. 37.-Torroy, Fl. U. S. i, 31d; Compend. Fl. N. States, 138.-Elliott, Sk. i, 365.-Sprengel, Syst. i, 933.-Guimpel, Otto \& Hayno, Abb. Holz. 125, t. 101.-Watson, Dend. Brit. i, t. 23.-Audubon, Birds, t. 23.Do Candolle, Prodr. iv, 325.—Beek, Bot. 156.-Don, Miller's Dict, iii, 440. -Spach, Hist. Veg. viii, 312.-Loudon, Arboretum, ii, 1034, t. 193.-Hooker, ĺl. Bor.-Am. ii, 279.-Torrey \& Gray, Fl. N. Aıerica, ii, 14.-Walpers, Rep. ii, 451.-Darlington, Fl. Cestrica, 3 ed. 115.-Darby, Bot. S. States, 342.-Chapman, Fl. S. States, 171.—Wood, Cl. Book، 398; Bot. \& Fl. 147.-Gray, Manual N. States, 5 ed. 206 ; Syn. Fl. N. America, $\mathrm{i}^{2}, 12$.-Engelmann in Trans. St. Louis Acad. ii, 269.-Koch, Dendrologıe, ii, 62.-Young, Bot. Texas, 309.Vasey, Cat. Forest Trees, 16.-Ridgway in Proc. U. S. Nat. Mus. 1882, 68.-Watson in Proc. Am. Acad. xviii, 96.
V. pyrifolium, Poiret in Lamarck, Diet. v, 658.-Pursh, Fl. Am. Sept. i, 201.-Nuttall, Genera, i, 202.-Barton, Cempend. Fl. Philadelph. i, 152.-Rcmer \& Schultes, Syst. vi, 631.-Hayne, Dend. Fl. 37.-Watson, Dend. Brit. i, t. 22.Desfontaines, Hist. Arb. i, 345; Cat. Hort. Paris, 3 ed. 404.—De Candolle, Prodr. iv, 325.—Beck, Bot. 156.-Lendonr Arboretum, ii, 1034, f. 781, 782.--Bigelow, Fl. Buston, 3 ed. 123.
V. prunifolium, var. ferrugineum, Torrey \& Gray, Fl. N. America, ii, 15.

BLACK HAW, STAG BUSH.

Fairfield comnty, Comectient, valley of the lower Hudson river (Fishkill landing), south to Hernando county, Florida, and the valley of the Colorado river, Texas, west to Missoml, Arkansas, and the Indian territory.

A small tree, sometimes 6 to 9 meters in height, with a trmk rarely exceeding 0.15 meter in diameter, or at the north generally reduced to a low, much-branched shrub; usually on rocky hillsides, in rich soil.

Wood heavy, very hard, strong, brittle, close-grained, liable to cheek in drying; medullary rays mumerous, very obseure; color, brown tinged with red, the sap-wood nearly white; speeifie gravity, 0.8332 ; ash, 0.5 .

The edible fruit sweet and insipid; the tonic and astringent bark somewhat used in the treatment of aterine disorders in the form of decoctions or tluid extracts (Boston Med. and Surg. Jour. October 10, 1867.-U. S. Dispensatory, 14 ed. 1783.-Nat. Dispensatory, 2 ed. 1821).

RUBIACE .

160.-Exostemma Caribæum, Rœmer \& Schultes,

Syst. v, 18.—Sprengel, Syst. i, 705.—De Candolle, Prodr. iv, 359.—Don, Miller's Dict. iii, 481.—Dietrich, Syn. i, 722.—Spach, Hist. Veg. viii, 395.-Turrey \& Gray, Fl. N. Ameriea, ii, 36.-Chapman, Fl. S. States, 180.-Grisebaeh, Fl. British West Indics, 324.~~ Guibourt, Hist. Dregues, 7 ed. iii. 187, f. 628.-Gray, Syn. Fl. N. America, i², 23.

Cinchona Cariboxa, Jacquin, Stirp. Amer. t. 176, f. 65.-Gærtner, Fruct. i, 109, t. 33.-Aiton, Hort. Kew. i, 228; 2 ed. i, 372.-Lambert, Cinchona, 38, t. 12 (exel. syn.).-Andrews, Bot. Rep. vii, t. 481.

Cinchona Jamaicencis, Wright in Trans. Royal Soc. Ixvii, 504, t. 10.
Semi-tropical Florida, on the southern keys; through the West Indies.
A small tree, sometimes 7 meters in height, with a trunk 0.20 to 0.30 meter in diameter.
Wood very heary, exeeedingly hard, strong, elose-grained, checking in drying, satiny, susceptible of a beautiful polish; medullary rays numerous, rery obscure; color, light brown, beantifnlly streaked with different shades of ${ }^{\text {- }}$ yellow and brown, the sap-wood clear, rich yellow; specific gravity, $0.9310 ;$ ash, 0.23 .

> 161.-Pinckneya pubens, Michaux,

FI. Bor.-Am. i, 103, t. 13.-Willdenow, Enum. Suppl. 30.-Aiton, Hort. Kew. 2 ed. i, 372.-Miehanx f. Hist. Arb. Am. ii, 276, t. 24; N. Ameriean Sylva, i, 180, t. 49.-Pursh, Fl. Am. Sept. i, 158.-Nuttall, Genera, ii, 37.-Barten, Fl. N. Amorica, i, 25, t. 7.-Sprengel, Syst. i, 705.-Elliott, Sk. i, 269.-Rafinesque, Med. Bet. ii, 57, t. 72.-De Caudolle, Prodr. iv, 366.-Audnbon, Birds, t. 165.-Eaton, Manual, 6 ed. 263.-Don, Miller's Diet. iii, 486.-Lindley, Fl. Med. 433.—Spaeh, Hist. Veg. viii, 400.-Eaton \& ${ }^{2} / \mathrm{right}$, Bot. 357.-Torrey \& Gray, Fl. N. America, ii, $37 .-$ Browne, Trees of Amcrica, 354.-Grifith, Med. Bet. 365, f. 174.-Darby, Bot. S. States, 347.-Cooper in Smithsonian Rep. 1858, 253.-Chapman, Fl. S. States, 179.-Wood, Cl. Book, 401; Bot. \& Fl. 150.-Poreher, Resources S. Forests, 404.-Vasey, Cat. Forest Trees, 17.-Gray, Syn. Fl. N. Ameriea, ${ }^{2}$, 23.

Cinchona Caroliniana, Poiret in Lamarek, Dict. vi, 40.
P. pubescens, Persoon, Syn. i, 197.—Gærtnor f. Fruct. Suppl. 81, t. 194, f. 3.

GEORGIA BARK.

South Carolina, near the coast; basin of the upper Apalachicola xiver in Georgia and Florida.
A small tree, 6 to 9 meters in lieight, with a trunk 0.15 to 0.30 meter in diameter; borders of streams, in low, sandy swamps; rare.

Wood light, soft, weak, close-grained, cheeking badly in drying; layers of annual growth clearly marked by four to six rows of large open dnets; medullary rass few, obscure; color, brown, the sap-wood lighter; specific gravity, 0.5350 ; ash, 0.41 .

Infusions of the bark are suecessfully used in the treatment of intermittent fever, as a substitute for cinchona (U.S. Dispensatory, 14 ed.1734).
162.-Genipa clusiæfolia, Grisebach,

Fl. British West Indies, 317.-Gray, Syn. Fl. N. America, i^{2}, 29.
Gardenia clusioffolia, Jacquin, Coll. Appx. 37, t. द, f. 3.-Persoon, Syn. i, 199.-De Candolle, Prodr. iv, 381; Dietrich, Syn. i, 796.

Randia clusidefolia, Chapman, Fl. S. States, 179.-Vasey, Cat. Forest Trces, 17.

SEVEN-YEAR APPLE.

Semi-tropical Florida, on the sonthern kevs; in the West Indies.
A small, mueh-branched, knotty trec, sometimes 6 meters in height, with a trunk rarely exceeding 0.10 meter in diameter, or an Florida more often a shrub; saline shores.

Wood very heavy, hard, close-grained, compact, susceptible of a beautiful polish; medullary rays numerous, thin; color, rich dark brown shaded with orange, the sap-wood light yellow; speeific gravity, $1.0316 ;$ ash, 1.06 .

The large insipid fruit popularly but incorrectly supposed to require seven years in which to ripen.

163.-Guettarda elliptica, swartz,

Prodr. 59 ; Fl. Ind. Occ. i, 634.-Lamarek, Ill. ii, 218.-Persoon, Syn. i, 200.-Poiret, Suppl. ii, 859.-Rcmer \& Schultes, Syst. iv, 412.-De Candolle, Prodr: iv, 457.-Dietrich, Syn. i, $787 .-D o n, ~ M i l l e r ' s ~ D i e t . ~ i i i, ~ 551 .-T o r r e y ~ \& ~ G r a y, ~ F l . ~ N . ~ A m e r i c a, ~ i i, ~ 35 .-G r i s e b a e h, ~ F I . ~$ British West Indiex, $332 .-G r a y$, Syn. Fl. N. Ameriea, ${ }^{2}$, 30 .
G. J'lodgettii, Shuttleworth in herls.-Chapman, Fl. S. States, 17e.-Vasey, Cat. Forest Treas, 17.

Semi-tropical Florida, on the southern keys; throngh the West Indies.
A small tree, 4 to 7 meters in height, with a trunk rarely exceeding 0.20 meter in diameter.
Wood heavy, hard, rery close-grained, ehecking in drying, satiny, susceptible of a beautiful polish, containing numerous seattered small open ducts; mednllary rays numerous, thin; color, light brown tinged with red; specific gravity, 0.6337 ; ash, 1.05 .

ERICACEA.

164.-Vaccinium arboreum, Marskall,

Arbustum, 157.-Miehaux, Fl. Bor.-Am. i, 230.-Persoon, Syn. i, 479.-Desfontaines, Hist. Arb. i, 270.—Pursh, Fl. Am. Sept. i, 285.Nuttall, Genera, i, 263.-Elliott, Sk. i, 495.-Don, Miller's Diet. iii, 853.-London, Arboretnm, ji, 1159.-De Candolle, Prodr. vii, 567.-Dietrich, Syn. ii, 1264.-Darby, Bot. S. States, 414.-Loddiges, Bot. Cal. t. 1885.-Walpers, Ann. ii, 1096.-Chapman, Fl. S. States, $259 .-W o o d$, Cl. Book, 482 ; Bot. \& Fl. 198.-Lesquereux in Owou's $2 d$ Rep. Arkansas, 373.-Yonng, Bot. Texas, 369.Gray, Hall's Pl. Texas, 15; Syn. Fl. N. Amerien, ii', 20.-Vasey, Cat. Forest Trees, 71.
V. mueronatum, Walter, Fl. Caroliniana, 139 [uot Linneus].
V. diffusum, Aiton, Hort. Kew. ii, 356.-Bot. Mag. t. 1607.-Koeh, Dendrologio, ii, 96.

Batodendron rrbrefum, Nuttall in Trans. Am. Phil. Soc. 2 ser. viii, 261 ; Sylva, iii, 43; 2 ed. ii, 111.

FARKLEBERRY.

North Carolina, south near the coast to Hernando connty, Florida, throngh the Gulf states, and from southern Illinois and southern Missouri sonth through Arkansas and eastern Texas to the shores of Matagorda bay.

A small tree, 7 to 9 meters in height, with a trunk rarely 0.25 meter in diameter, or toward its northern limits often rednced to a low shrub; very common throughout the pine belt of the Gulf states along the larger ponds and streams, in moist, sandy soil, and reaching its greatest development in eastern Texas, near the coast.

Wood hears, hard, very close-grained, compact, liable to twist in drying, satiny, susceptible of a beautiful polish; medullary rays unmerous, broad, couspicuons; color, light brown tinged with red, the sap-wood hardly distingnishable; specific gravits, 0.7610 ; ash, 0.39 ; somewhat used in turnery in the manufacture of small hinudles, ete.

165.-Andromeda ferruginea, Walter,

Fl. Caroliniana, 138.-Aiton, Hort. Kew. if, 67 ; 2ed. iii, 52.-Willdenow, Sp. ii, 609.-Miehaux, Fl. Bor.-Am. i, 25e.-Nouvean Duhamel,
 Elliott, Sk. i, 499.—Darby, Jot. S. States, 420. -Clapman, Fl. S. States, 263.-Wood, Cl. Book, 488; Bot. \& Fl. 202.-Gray, Syn. Fl. N. America ii 1,33 .
A. rhomboidulis, Nouvean Duhamel, i, 192.
A. ferruginca, var. arborcscens, Mielınx, Jil. 13ur.-Am, i, 252.
A. ferruginea, var. finticosa, Michanx, Fl. Bor. Am. i, 252.
A. rigida, Pursh, lil. Am. Sept. i, 292.-Loddiges, Bot. Cab. t. 430.

Jyonia ferruginea, Nuttall, Genera, i, 266.-Don, Miller's Diet, iii, 830.—Doudon, Arboretum, ii, 1109.—Dietrich, Syn. ii, 1399.-De Candolle, Prodr. vii, 600.-Koch, Dendrologie, ii, 122.

Lyonia rigida, Nuttall, Geucra, i, 2bt.-Don, Millel's Dict. iii, 830.-l)e Candolle, lrodr, vii, G00.

South Carolina to northern Florida, near the coast.
A small tree, in rich hummocks, 6 to 9 meters in height, with a trunk 0.15 to 0.25 meter in diameter, often crooked or semi-prostrate; or in sandy pine-barren soil reduced to a low shrub, 0.60 to 0.90 meter in height; the leaves varying greatly in shape, venation, etc.

Wood heavy, hard, not strong, very close-grained, checking in drying, satiny, susceptible of a beautiful polish; medullary rays numerous, thin; color, bright brown tinged with red, the sap-wood a little lighter; specific gravity, 0.7500 ; ash, 0.46 .
166.-Arbutus Menziesii, Pursh,

Fl. Am. Sept. i, 282.-Sprengel, Syst. ii, 286.—Don, Miller's Dict. iii, 834.—London, Arboretum, ii, 1122.-Du Candolle, Prodr. vii, $582 .-$ Dietrich, Syn. ii, 1387.-Hooker, Fl. Bor.-Am. ii, 36.-Hooker \& Arnott, Bot. Becchey, 143.-Nnttall, Sylva, iii, 42, t. 95; 2 cd. ii, 109, t.95.-Torrey in Pacific R. R. Rep. iv, 116; Bot. Wilkes Lxped. 378.-Newberry in Pacific R. R. Rep. vi, 23, 79, f. 22.-Cooper in Smithsonian Rep. 1858, 260; Pacific R. R. Rep. xii², 29, 66.-Lyall in Jour. Linnæan Soc. vii, 131.-Gray in Proc. Am. Acad. vii, 393 ; Bot. California, i, 452, in part; Syn. Fl. N. America, ii ${ }^{1}$, 27 , in part.-Vascy, Cat. Forest Trees, 17.-Hall in Coulter's Bot. Gazette, ii, 88.-Maconn in Geological Rep. Canada, 1875-76. 203.-G. M. Dawson in Canadian Nat. new ser. ix, 33I.-Hemsley, Bot. Am.-Cent. ii, 276.
A. procera, Donglas in Lindley's Bot. Reg. xxi, t. 1753.-London, Arboretum, ii, 1121.-De Candolle, Prodr. vii, 58:.Dietrich, Syn. ii, 1387.-Paxton, Mag. Bot. ii, 147 \& t.-Walpers, Rep. vi, 416.
A. laurifolia, Lindley, Bot. Reg. xxx, t. 67.-Hooker, FI. Bor.-Am. ii, 36.

MADROÑA.

Islands of British Columbia, from Seymour narrows sonthward through Washington territory and Oregon, near the coast, and through the Coast ranges of California to the Santa Lucia mountains.

A small tree, sometimes 15 to 25 meters in height, with a trunk 0.90 to 1.20 meter in diameter, or, exceptionall 5 , much larger (tho great specimen near San Rafacl, Marin county, California, 6.85 meters in circumference 2 meters from the ground); south of San Francisco bay much smaller, olten reduced to a low shrub; hillsides, in rich soil.

Wood heavy, hard, strong, close-grained, checking in drying; medullary rays numerons, conspicuous; color, light brown shaded with red, the sap-wood lighter; specitic gravity, 0.7052 ; ash, 0.40 ; largely used in the manufacture of gunpowder, the bark in tanning.

167.-Arbutus Xalapensis, HBK.

Nov. Gen. \& Spec. iii, 281 .—Sprengel, Syst. ii, 286.—Don, Miller's Dict. iii, 834.-Hooker, lcon. i, t. 27.-Bentham, PI. Hartweg. 66.De Candolle, Prodr. vii, 583.-Dietrich, Syn. ii, 1388.—Walpers, Ann. ii, 1105.-Jour. Hort. Soc. London, v, 192 \& t.

PA. variens, Bentham, Pl. Hartweg. 77.-Paxton, Brit. Fl. Gard. ii, 118.-Hemsley, Bot. Am.-Cent. ii, 277.
9A. macrophylla, Martens \& Galeotti in Bnll. Acad. Brux. ix, 9.-Walpers, Rep. ii, 725.
A. Menziesii, Gray in Bot. California, i, 452, in part; Syn. Fl. N. America, ii', 27, in part.-Rothrock in Wheeler's Rep. vi, 25, 183 [not Pursh].

Southern Arizona, Santa Rita mountains, between 4,500 and 7,000 fect elevation; southward through northern Mexico.
Δ small tree, with white, scaly bark, 9 to 12 meters in height, with a trunk 0.45 to 0.60 meter in diameter; dry, gravelly slopes; large specimens generally hollow and defective.

Wood heavy, soft, not strong, brittle, close-grained, checking badly in drying, susceptible of a good polish; medullary rays numerous, obscure; color, light brown tinged with red, the sap-wood lighter; specific gravity, 0.7099 ; ash, 0.25 .
168.-Arbutus Texana, Bnckloy,

Proc. Philadelyhia Acad. 1861, 460.-Gray in Proc. Philadelphia Acad. 1862, 165.-Young, Bot. Tcxas, 370.
A. Menziesii, Gray in Bot. California, i, 452, in part; Syn. Fl. N. America, ii1, 27, in part.

PA. Xalapensis, Watson in Proc. Am. Acad. xviii, 111.
Western Texas, Hays and Travis counties (Buckley), west to the Guadalupe and Eagle monntaius (Havard), and southward, probably into northern Mexico.

A small tree, 5 to 6 meters in height, with a trunk 0.15 to 0.25 meter in dianeter; dry limestone hills and ridges; rare.

7 FOR

Wood heary; hard, close-grained, compact; medullary rays numerous, obscure; color, brown, the sap-wood lighter, tinged with red; specific gravity, 0.7500 ; ash, 0.51 ; used in turnery, the manufacture of mathematical instruments, ete.

Note.-The synonomy and specific position of the Mexican species of drbutus which reach the sonthern boundary of the United States are still obscure, and cannot be well elucidated with the existing knowledge of the Mexican flora.

169.-Oxydendrum arboreum, De Candolle,

Prodr. vii, 601.-Diotrich, Syn. ii, 1389.-Cooper in Smithsonian Rep. 1858, 253.-Chapman, Fl. S. States, 263.-Lesquereux in Owen's 2d Rep. Arkausas, $372 .-$ Curtis in Rep. Gcolegical Surv. N. Carolina, 1860, iii, 79.-Wood, Cl. Book, 489 ; Bot. \& Fl. 203.-Gray, Manual N. States, 5 ed. 296; Syn. Fl. N. Amcrica, ii1, 33.-Koch, Dendrologie, ii, 128.-Vasey, Cat. Forcst Trees, 17.-Nat. Dispensatory, 2 cd. 798.

Andromeda arborea, Linnæus, Spec. 1 ed. 394.-Lamarck, Dict. i, 158.-Marshall, Arbustum, 7.-Wangenheim, Amer. 105.Walter, Fl. Caroliniana, 138.-Aiton, Hort. Kew. ii, 69 ; 2 ed. iii, 53.-Willdenow, Spee. ii, 612; Enum. 452 ; Berl. Baumz. 31.-Michaux, Fl. Bor.-Am. i, 255.-Nouveau Duhamel, i, 178.-Bot. Mag. t. 905.-Desfontaines, Hist. Arb. i, 257.Michaux f.'Hist. Arb. Am. iii, 222, t. 7; N. American Sylva, 3 ed. ii, 126, t. 85.-Pursh, Fl. Am. Sept. i, 295.-Nuttall, Genera, i, 265.-Elliott, Sk. i, 491.-Barton, Fl. N. America, i, 105, t. 30.-Hayne, Dend. Fl. 59.-Torrey, Fl. U. S.i, 420 ; Compend. Fl. N. States, 182.-Sprengel, Syst. ii, 291.-Gray, Mannal N. States, 1 ed. 266.-Darby, Bot. S. States, 419.-Porcher, Resources S. Forests, 379.

Andromeda arborescens, Persoon, Syn. i, 480.—Willdenow, Enum. 453.—Loddiges, Bot. Cab. t. 1210.
Lyonia arborea, Don in Edinburgh Phil. Jour. xvii, 159.—Don, Miller's Dict. iii, 831.-Loudon, Arboretum, ii, 1111.-Spach, Hist. Veg. ix: 486.-Browne, Trees of America, 356.

SORREL TREE. SOUR WOOD.

Western Pennsylvania, southward along the Alleghany mountains to western Florida and the eastern shores of Mobile bay, west to middle Tennessee and through the upper regions of the Gulf states to western Louisiana.

A small tree, 12 to 18 meters in height, with a trunk 0.25 to 0.35 meter in diameter; usually in rather dry, gravelly soil.

Wood heavy, hard, very close-grained, compact, susceptible of a beantiful polish; medullary rays numerous, thin ; color, brown tinged with red, the sap-wood somewhat lighter ; specific gravity, 0.7458 ; ash, 0.37 ; used for the handles of tools, bearings of machinery, etc.

> 170.-Kalmia latifolia, Linnæus,

Spec. 1 cd. 301.-Kalm, Travels, English ed. i, 335.-Marshall, Arbustum, $\boldsymbol{7}$ 2.-Lamarck, Dict. ii, 345; 111. ii, 487, t. 363, f. 1.-Gærtner, Fruct. i, 305, t. 63, f. 7.-Wangenheim, Amer. 64, t. 24, f. 50.-Walter, Fl. Caroliniana, 138.-Aiton, Hort, Kew. ii, 64; 2 ed. iii, 47.Lamarck, Ill. 487, t. 363, f. 1.-Abbot, Insects Georgia, i, t. 87.-Willdenow, Spec. ii, 600 ; Enam. 450; Berl. Baumz. 202.-Schkubr, Handb. 359, t. 116.-Michaux, Fl. Bor.Am. i, 258.-Persoon, Syn. i, 477.-Desfontaines, Hist. Arb. i, 220.-Robin, Voyages, iii, 419.Michaux f. Hist. Arb. Am. iii, 144, t. 4; N. American Sylva, 3 ed. ii, 62, t. 67.-Pursh, Fl. Am. Scpt. i, 296.-Barton, Prodr. Fl. Philadelph. 49.-Eaton, Manual, 47; 6 ed. 195.—Bigclow, Med. Bot. i, 113, t. 13; Fl. Boston. 3 ed. 179.-Nuttall, Genera, i, 267.Hayne, Dend. Fl. 54.-Elliott, Sk. i, 481.-Torrey, Fl. U. S. i, 422 ; Compend. Fl. N. States, 182.-Spreugel, Syst. ii, 293.-Audubon, Birds, t. 55.-Rafinesque, Med. Bot. ii, 16, t. 57.-Sertum Botanicum, iv \& t.-Beck, Bot. 219.-Don, Miller's Dict. iii, 850.-Lindley, Fl. Med. 380.-Loudon, Arboretum, ii, 1151, f. 959.-De Candelle, Prodr. vii, 729.-Spach, Hist. Veg. ix, 498, t. 139.-Heoker, Fl. Bor.Am. ii, 41.-Dietrich, Syn. ii, 1407.-Browne, Trees of America, 363.-Emerson, Trees Massachusctts, 392 ; 2 ed. ii. 443 \& t.Griffith, Med. Bot. 428, f. 192.-Darlingtou, Fl. Cestrica, 3 ed. 172.-Darby, Bot. S. States, 420.-Cooper in Smithsonian Rep. 1858, 253.-Chapman, Fl. S. States, 264.-Curtis in Rep. Geological Surv. N. Carolina, 1860, iii, 99.-Lesquerenx in Owen's 2d Rep. Arkansas, 373.-Wood, Cl. Book, 484 ; Bot. \& Fl. 200.-Poreber, Resources S. Forests, 381.-Gray, Manual N. States, 5 ed. 298; Syn. Fl. N. America, ii', 38.-Koch, Dendrologie, ii, 152.—Vasey, Cat. Forest Trees, 17.-London Garden, xxii, 6, t. 343.

LAUREL. CALICO BUSH. SPOON WOOD. IVY.

New Brunswick and the northern shores of lake Erie, south to western Florida, and through the Gulf states to western Louisiana and the valley of the Red river, Arkansas (Hot Springs, Letterman).

A small tree, sometimes 9 to 12 meters in height, with a trunk 0.30 to 0.60 meter in diameter, or more often a low shrub; rich woodlands; most common and reaching its greatest development in the southern Alleghany mountains, here often forming dense, impenctrable thickets.

Wood heavy, hard, strong, brittle, close-grained, compact; principal medullary rays broad, dark brown, conspicuous, intermediate rays numerons, thin, inconspicuons; color, brown tinged with red, the sap-wood somewhat lighter; specific gravity, 0.7160 ; ash, 0.41 ; used for tool handles, in turnery, and for fuel.

The leaves, buds, and fruit, reputed poisouous to cattle, are occasionally used medicinally (J. S. Dispensatory, 14 ed. 1682.-Nat. Dispensatory, 2 ed. 798).

171.-Rhododendron maximum, Linnæus,

Spec. 1 ed. 391.—Marshall, Arbnstum, 127.-Gærtner, Fruct. i, 304, t. 63, f. 6.—Wangenheim, Amer. 63, t. 22, f. 49.—Aiton, Hort. Kew. ii, 67 ; 2 ed. iii, $50 .-$ Mœuch, Meth. 45.-Lamarck, Dict. vi, 365 ; Ill. ii, 448, t. 364, f. 1.-B.S. Barton, Coll. i, 18.-Willdenow, Spec. ii, 606 ; Enum. 451 ; Berl. Banmz. 357.-Nonvean Duhamel, ii, 141.-Michaux, Fl. Bor.-Am. i, 259.-Schkuhr, Handb. 362.Persoon, Syn. i, 478-Desfontaincs, Hist. Arb. i, 221.-Bot. Mag."t. 951.-Michaux f. Hist. Arb. Am. iii, 144, t. 4; N. American Sỳlva, 3 ed. ii, 64, t. 68.-Pnrsh, Fl. Am. Sept. i, 297.-Eaton, Manual, 47; 6 cd. 301.-Nuttall, Genera, i, 268.-Bigelow, Med. Bot. iii, 101, t. 51 ; Fl. Boston. 3 ed. 178.-Elliott, Sk. i, 483.-Hayne, Dend. Fl. $57 .-T o r r o y, ~ F l . ~ U . ~ S . ~ i, ~ 426 ; ~ C o m p e n d . ~ F l . ~ N . ~ S t a t e s, ~ 184 .-~$ Sprengel, Syd. ii, 292.-Audubon, Birds, t. 103.-Beck, Bot. 220.-Don, Miller's Dict. iii, 843.-Loudon, Arboretum, ii, 1134, f. 932.-De Candolle, Prodr. vii, 722.-Hooker, Fl. Bor.-Am. ii, 43.—Spach, Hist. Veg. ix, 503.-Dietrich, Syn. ii, 1404.-Eaton \& Wright, Bot. 391.-Browne, Trees of America, 359.-Emerson, Trecs Massachusetts, 384 ; 2 ed. ii, 435 \& t.-Griffith, Med. Bot. 428.Darlington, Fl. Cestrica, 3 ed. 171.-Darby, Bot. S. States, 421.-Cooper in Smithsonian Rep. 1858, 253.-Chapman, Fl. S. States, 265.-Curtis in Rep. Geological Surv. N. Carolina, 1860, iii, 97 .-Lesquereux in Owen's 2d Rep. Arkansas, 373.-Wood, Cl. Book, 491 ; Bot. \& Fl. 204.-Porcher, Resources S. Forests, 380.-Gray, Manual N. States, 5 ed. 300; Syn. Fl. N. America ii1, 42.-Koch, Dendrologie, ii, 169.-Vasey, Cat. Forest Trees, 17.
R. procerum, Salisbury, Prodr. 287.
R. maximum, var. roseum, Pursh, Fl. Am. Sept. i, 297.-Eliott, Sk. i, 484.
R. maximum, var. album, Pursh, Fl. Am. Sept. i, 297.-Elliott, Sk. i, 484.
R. maximum, var. purpureum, Pnrsh, Fl. Am. Sept. i, 297.-Elliott, Sk. i, 484.
R. purpureum, Don, Miller's Dict. iii, 843.-Loudon, Arboretum, ii, 1134.-Dietrich, Syn, ii, 1404.
R. Purshii, Don, Miller's Dict. iii, 843.-Loudou, Arboretum, ii, 1135.-Dietrich, Syn. ii, 1404 (var. album, Pursh, l. c.).

GREAT LAUREL. ROSE BAY.

Nova Scotia and the northern shores of lake Erie, south through New England, New York, and along the Alleghany mountains to northern Georgia.

A small tree, sometimes 10 to 12 meters in height, with a trunk rarely exceeding 0.30 meter in diameter, or often a tall, straggling shrub; at the north in cold swamps; rare; very common and reaching its greatest development in the southern Alleghany mountains, steep, rocky banks of streams, etc.; never on limestone.

Wood heavy, hard, strong, brittle, close-grained, compact; medullary rays numerons, thin; color, light elear brown, the sap-wood lighter; specific gravity, 0.6303 ; ash, 0.36 ; occasionally used in turnery for the handles of tools, etc., and a possible substitute for box-wood in engraving. A decoction of the leaves is occasionally nsed domestically in the treatment of rheumatism, sciatica, ete.

MYRSINACEA.

172.-Myrsine Rapanea, Rœmer \& Schnltes,

Syst. iv, 509.—Don, Miller's Dict. iv, 10.-Dietrich, Syn. i, 618.-A. De Candolle, Prodr. viii, 97.-Miquel in Martins, Fl. Brasil. ix, 307, t. 50-52.-Gray, Syn. Fl. N. America ii ${ }^{1}$, 65.

Rapanea Guyanensis, Aublet, Gnian. i, 121, t. 46.—Swartz, Obs. 51; Fl. Ind. Occ. i, 262.-Lamarck, 1ll. ii, 48, t. 122, f. 1.
Samara pentandra, Swartz, Obs. 51; Fl. Ind. Occ. i, 262 [not Aiton].
Samara floribunda, Willdenow, Spec. i, 665.-Lamarck, Ill. ii, 46, t. 122, f. 1.
Caballeria coriacea, Meyer, Prim. Fl. Esseq. 118.
M. Floridana, A. De Candolle in Trans. Linnæan Soc. xvii, 107 ; Prodr. viii, $98 .-$ Dietricb, Syn. i, $98 .-$ Chapman, Fl. S. States, 277.
M. floribunda, Grisebach, ll. British West Indies, 393.

Semi-tropical Morida, Indian river southward to the sonthern keys; through the West Indies to Brazil.
A small tree, in Florida rarely exceeding 8 meters in height, with a trunk 0.10 to 0.15 meter in diameter, or often a shrub; borders of ponds and fresh-water creeks; in the West Indies mneh larger.

Wood heavy, hard, rery close-grained, compact; medullary rays mimerons, very conspicnous; color, browu tinged with red and beautifully striped with the darker medullary rays, the sap-wood hardly distinguishable; specific gravity, 0.8341 ; ash, 0.81 .

173.-Ardisia Pickeringia, Nuttall,

Sylva, iii, 69, t. 102; 2 ed. ii, 133, t. 102.-A. De Candolle, Prodr. viii, 124.-Cooper in Smithsonian Rep. 1858, 264.-Chapman, Fl. S. States, 277.-Vasey, Cat. Forest Trees, 19.-Gray, Sya. Fl. N. America, ii', 65.-Hemsley, Bot. Am.-Cent. ii, 294.

Cyrilla paniculata, Nuttall in Am. Jour. Sci. v, 290.
Pickeringia paniculata, Nuttall in Jour. Philadelphia Acad. vii, 1.

MARLBERRY. CHERRY.
Semi-tropical Florida, Mosquito inlet to the southern keys, west coast, Caloosa river to cape Romano; in the West Indies and sonthern Mexico.

A small tree, sometimes 8 meters in height, with a trunk rarely 0.15 meter in diameter, or often a shrub; reaching its greatest development in Florida on the shores of bay Biscaync.

Wood heavy, hard, very close-grained, compact, susceptible of a beautiful polish; medullary rays very numerous, conspicuous; color, rieh brown, beautifully marked with the darker medullary rays, the sap-wood a little lighter; specific gravity, 0.8602 ; ash, 1.85 .

174.-Jacquinia armillaris, Jaequin,

Amer. 53, t. 39.-Linmæus, Spee. 2 ed. 272.-Aiton, Hort. Kew. i, 257 ; 2 ed. ii, 5.-Lamarck, Ill, ii, 46, t. 39.-Vahl, Eclog. i, 26.-Swarts, Obs. 85.-Willdenow, Spee. i, 1064 ; Enum. 246.-Persoon, Syn. i, 234.-Rœmer \& Sehnltes, Syst. iv, 490.-Sprengel, Syst. i, 668.Don, Miller's Dict. iv, 24.-Dietrich, Syn. i, 638.-Bentham, Bot. Sulphar, 123.-A. De Candolle, Prodr. viii, 149.-Miquel in Martins, Fl. Brasil. ix, 282, t. 27.-Cooper in Smithsonian Rep. 1858, 265.-Chapman, Fl. S. States, 276.-Grisebach, Fl. British West Indies, 397.-Seemann, Jour. Bot. iii, 279.-Vasey, Cat. Forest Trees, 19.-Gray, Syn. Fl. N. Ameriea, ii1, 66.-Hemsley, Bot. Am.-Cent. ii, 294.

Chrysophyllum Barbasco, Lœfling, Iter. 204, 277.

JOE WOOD.

Semi-tropical Florida, on the southern keys; rare; through the West Indies to Brazil.
A low, rigid tree, rarely exceeding in Florida 4 meters in height, with a trunk sometimes 0.15 meter in diameter; in the Bahamas and other West Indian islands probably much larger.

Wood heary, hard, coarse-grained, checking and shrinking badly in drying, containing many scattered large open ducts; medullary rays numerous, broad, conspicuous; color, light clear brown tinged with yellow; specific gravity, 0.6948 ; ash, 3.45 .

The saponaceons leaves sometimes used as a substitute for soap.

SAPOTACE®.

175.-Chrysophyllum oliviforme, Lamarck,

Dict. i, 552; Ill. ii, 42.-Deseourtilz, Fl. Med. Antilles, ii, 71.-A. Do Candolle, Prodr. viii, 158.-Grisebach, Fl. British West Indies, 398.-Gray, Syn. Fl. N. Ameriea, ii', 67.-Chapman, Fl. S. States, Suppl. 634.
C. Caneto, β. Linnæus, Sp. 3 ed. 278 (oxcl. syn. Lælling).
C. monopyrenum, Swartz, I'rodr. 49 ; Fl. Ind. Occ. i, 480.-Persoon, Syn. i, 230.-Rœmer \& Schultes, Syst. iv 703.Sprengel, Syst. i, 666.-Bot. Mag. t. 3303.-Dietrich, Syn. i, 638.-Miquel in Martius, Fl. Brasil. vii, 94.
C. fcrrugineum, Gartner f. Fruct. Suppl. 120, t. 202, f. 1.
C. microphyllum, Chapman in Coulter's Bot. Gazette, iii, 9.-Vasey, Cat. Forest Trees, 18 [not A. De Candolle].

Semi-tropical Florida, cape Canaveral to the southern keys (Elliott's Koy, No-Name Key, Key Largo), west coast, Caloosa river to cape Sable; rare ;/through the West Indies to Brazil.

A small tree, sometimes 9 meters in height, with a trunk 0.25 to 0.30 meter in diameter.
Wood very heavy, hard, strong, close-grained, checking in drying; medullary rays numerous, not conspicuous; color, light brown shated with red, the thin sap-wood a little lighter; specific gravity, $0.9360 ;$ ash, 1.24 .
176.-Sideroxylon Mastichodendron, Jaequin,

Coll. ii, t. 17, f. 5.-Lamarck, Ill. ii, 41, t. 120, f. 2.—Gærtncr f. Fruct. Suppl. 125.-Sprengel, Syst. i, 666.-Dietrich, Syn. i, 622.-A. De Candolle, Prodr. viii, 181.—Grisebach, Fl. British West Indies, 399.—Gray, Syn. Fl. N. America iil, 67.

Bumelia pallida, Swartz, Prodr. 40 ; Fl.Ind. Occ. $4 \approx 9$.
Achras pallida, Poiret in Lamarck, Dict. vi, 533.
Bumeila Mastichodendron, Rœmer \& Schultes, Syst.iv, 493.
S. pallidum, Sprengel, Syst. i, 666.-A. De Candolle, Prodr. viii, 180.—Chapman, Fl. S. States, 274.-Vasey, Cat. Forest Trces, 18.

Bumelia fortidissima, Nuttall, Sylva, iii, 39, t. 94 ; 2 ed. ii, 108, t.94.-Cooper in Smithsonian Rep. 265.

MASTIC.

Semi-tropical Florida, cape Canaveral to the southern keys, west coast, cape Romano to cape Sable; in the West Indies.

A tree often 18 meters in height, with a trunk 0.60 to 0.90 meter in diameter; the largest and most valuable tree of semi-tropical Florida; common.

Wood very heavy, exceedingly hard, strong, close•grained, checking in drying, containing few scattered small open ducts; medullary rays numerons, not conspicuous ; color, bright orange, the sap-wood yellow; specific gravity, 1.0109 ; ash, 5.14 ; not affected by the teredo; largely used in ship- and boat-building.

The dry fruit, of a pleasant subacid flavor, eagerly eaten by animals.

> 177.-Dipholis salicifolia, A. De Candolle,

Prodr. viii, 188 (Delessert, Icon. Mex. ined. t. 40).-Richard, Fl. Cuba, t. 54²-Miquel in Martius, Fl. Brasil. vii, 45, t. 18.-Chapman, Fl. S. States, 274.—Grisebach, Fl. British West Indies, 401.-Vasey, Cat. Forest Trees, 18.—Gray, Syn. Fl. N. America ii', 67.'

Aehras salicifolia, Linnæus, Spec. 2 ed. 470.
Bumelia salicifolia, Swartz, Prodr. 50 ; Fl. Ind. Occ. i, 491.-Lamarck, Il. ii, 42.-Willdenow, Spec. i, 1086.-Aiton, Hort. Kew. 2 ed. ii, 12.-Rœmer \& Schnltes, Syst.iv, 494.—Dietrich, Syn. i, 621.

Sideroxylon salicifolium, Gærtner f. Fruct. Suppl. 124, t. 202.-Lamarck, I1. ii, 42.

BUSTIC. CASSADA.

Semi-tropical Florida, bay Biscayne to the southern keys; through the West Indies to Brazil.
A tree sometimes 15 meters in height, with a trunk rarely 0.60 meter in diameter; the large trees hollow and defective; rare.

Wood very heavy, exceedingly hard, very strong, close-grained, compact, checking in drying, susceptible of a beautiful polish, containing many scattered large open ducts; color, dark brown or red, the sap-wood lighter;specific gravity, 0.9316 ; ash, 0.32 .

> 178.-Bumelia tenax, Willdenow,

Spec. i, 1088; Enum. 248; Berl. Baumz. 67.-Aiton, Hort. Kew. 2 ed. ii, 12.-Rœmer \& Schultes, Syst. iv, 496.-Elliott, Sk. i, 288.Persoon, Syn. i, 237.- Hayne, Dend. Fl. 18.-Sprengel, Syst. i, 664.-Eaton, Mannal, 6 ed. 60.-Don, Miller's Dict. iv, 30.-London, Arboretam, ii, 1193, f. 1017.-Dictrich, Syn. i, 621.-Spach, Hist. Veg. ix, 388.-Eaton \& Wright, Bot. 162.-Nuttall, Sylva, iii, 35, t. 92; 2 ed. ii, 104, t. 92.-A. De Candolle, Prodr. viii, 196.—Darby, Bot. S. States, 428.-Cooper in Smithsomian Rep. 1858, 253.Chapman, Fl. S. States, 275.—Wool, Cl. Book, 501; Bot. \& Fl. 210.-Vasey, Cat. Forest Trees, 19.-Gray, Syn. Fl. N. America, ii', 68.

Sideroxylon tenax, Liunens, Mant. 48.-Jaequin, Coll. ii, 252.-Lanarck, Dict. i, 245; Ill. ii, 42.-Aiton, Hort. Kew, i, 262.Swartz, Obs. 91.—Desfontaines, IIist. Arb. i, 204.—Robin, Vogages, iii, 461.

Sideroxylon Carolinense, Jaequin, Obs.iii, 3, t. 54.
Sideroxylon sericeum, Walter, Fl. Caroliniana, 100.
Sideroxylon chrysophylloides, Michanx, Fl. Bor.-Am. i, 123.-Rafinceque, Fl. Ludoviciana, 53.
B. chrysophylloides, Pursh, Fl. Am. Sept. i, 155.-Nuttall, Genera, i, 135.-Watson, Dend. Brit. i, t. 10.

PB. reclinata, Chapman, Fl. S. States, 275 [not Ventenat].

North Carolina, south near the eoast to cape Canaveral and Cedar Keys, Florida.
A small tree, 6 to 9 meters in height, with a trunk sometimes 0.15 weter in diameter; sandy soil.
Wood heary, hard, not strong, very close-grained, compact, suseeptible of a beautiful polish; well characterized, as in all the North American speejes, by large open ducts, defining, with several rows, the rings of annual growth, and connected by conspicuons branching groups of similar ducts, giving to a eross-section a beautifully retieulated appearance; medullary rass numerous, thin ; color, light brown streaked with white, the sap-wood lighter; specifie gravity, 0.7293; ash, 0.78.

179.-Bumelia lanuginosa, Persoon,

Syn. i, $237 .-$ Pursh, Fl. Am. Sept. i, 155.-Nuttall, Genera, i, 135.-Rœmer \& Schultes, Syst. iv, 497.-Elliott, Sk. i, 288.-Eaton, Manual, 6 ed. 60.-Don, Miller's Dict. iv, 30.-Loudon, Arborctum, ii, I194.-EAton \& Wright, Bot. 162.-A. De Candolle, Prodr. viii, 190.Darby, Bot. S. States, 428.-Cooper in Smithsonian Rep. 1858, 253.-Clapman, Fl. S. States, 275.-Lesquereux in Owen's 2d Rep. Arkansas, 374.—Wood, Cl. Book, 501; Bot. \& Fl. 210.-Gray, Manual N. States, 5 cd. 308; Hall's Pl. Texas, 15; Syn. Fl. N. America, ii ${ }^{1}$, 68.-Young, Bot. Texas, 377 .-Vasey, Cat. Forest Trees, 19.

PSideroxylon tenax, Walter, Fl. Caroliniana, 100.
Sideroxylon lanuginosum, Michaux, Fl. Bor.-Am. i, 122.
PB. ollongifolia, Nuttall, Genera, i, 135; Sylva, iii, 33 ; 2 ed. ii, 102.-Sprengel, Syst. i, 664.-Eaton, Manual, 6 ed. 60.-Eaton $\mathcal{\&}$ Wright, Bot. 162.-Don, Miller's Dict. iv, 30.-Loudon, Arboretnna, ii, 1194.-Dietrich, Syu. i, 621.-A. De Candolle, Prodr. viii, 190.-Lesquereux in Owen's 2d Rep. Arkansas, 374.
B. ferruginea, Nuttall, Sylva, iii, 34 ; 2 ed. ii, 103.
B. tomentosa, A. De Candolle, Prodr. viii, 190.

B: arborea, Buckloy in Proc. Philadelphia Acad. 1861, 461.

GUM ELASTIC. SHITTIM WOOD.

Georgia and northern Florida to Mobile bay, Alabama; southern Illinois and southern Missouri, through Arkansas to the valley of the Rio Grande, Texas (Eagle pass, Havard) (B. oblongifolia).

An evergreen tree, sometimes 18 meters in height, with a trunk 0.90 meter in diameter, or in the Atlantic states much smaller, rarely exceeding 6 meters in height; common and reaching its greatest development in the rich bottom lands of eastern Texas.

A low, depressed form of the sand-hills of the Altamala riser, Georgia, still to be rediseovered, with small leaves and "edible fruit as large as a small date", is var. macrocarpa, Gray, Syn. Fl. N. America, iii, 68 (B. macroearpa, Nnttall, Sylva, iii, 37; 2 ed. ii, 106).

Wood heavy, soft, weak, elose-grained, very compact, the open ducts conspicuous; medullary rays numerous, thin; color, light brown or yellow, the sap-wood lighter; specifie grarity, 0.6544 ; ash, 1.23 ; somewhat used in eabinet-making, for which it is well suited.

A clear, very viseid gum exnded from the freshly-cut wood is sometimes used domestically.

180.-Bumelia spinosa, A. De Candolle,

Prodr. viii, 191 (Delessert, Icon. Mex. ined. t. 75).-Hemsley, Bot. Am.-Cent. ii, 299.—Watson in Proc. Am. Acad. xviii, 112.
Santa Catalina mountains, Arizona, at an eleration of 2,700 feet (Pringle); Parras and Saltillo, Mexico (Palmer, No. 787).

A small tree, 6 to 7 meters in height, with a trumk 0.20 to 0.25 meter in diameter; dry, gravelly soil, near water-courses.

Wood heary, hard, very close-grained, compact, the open ducts conspicuous; medullary rays thin, obscure; color, light rich brown or yellow, the sap-wood lighter; speeific gravity. 0.6603; ash, 1.24.

181.-Bumelia lycioides, Gærtner f.

Fruct. Suppl. 127, t. 120.-Persoon, Syu. i, 237.-Willdenow, Enum. 249 ; Berl. Baumz. 68.-Pursh, Fl. Am. Sept. i, 237.-Nnttall, Genera. . i, 135 ; Sylva, iii, 31, t. 91 ; 2 ed. ii, 101, t. 91 .-Rœmer \& Schultes, Syst. iv, 495.-Hayne, Dend. Fl. 19.-Elliott, Sk. i, 287.—Sprengel, Syst. i, G64.-Eaton, Mannal, 6 ed. 60.—Don, Miller's Dict. iv, 30.-London, Arboretum, ii, 1193, t. 1016.-Dietrich, Syn. i, 621.Spach, Hist. Veg. ix, 388.-Eaton \& Wright, Bot. 162-A. De Candolle, Prodr. viii, 189.-Griffith, Med. Bot. 441.-Darby, Bot. S. States, 427.-Cooper in Smithsonian Rep. 1858, 253.-Chapman, Fl. S. States, 275. -Lesquereux in Owen's 2 d Rep. Arkansas, 374.— Wood, Cl. Book, 501 ; Bot. \& FI. 210.-Gras, Mannal N. States, 5 cd. 308; Syn. Fl. N. Annerica, ii', 68.-Young, Bot. Texas, $376 .-$ Vascy, Cat. Forest Trees, 19.-IIemsley, Bot. Am.-Cent. ii, 298.

Sideroxylon lycioides, Linnæns, Hort. Cliff. 488 (excl. hab.).-Lamarck, Dict. i, 246 ; nll. ii, 42.—Aiton, Hort. Kew. i, 262; 2 ed. ii, 13.-Willdenow, Spec. i, 1090.-Michaux, Fl. Bor.-Am, i, 122.-Pursh, Fl. Am. Sept. i, 155.-Jaume St. Hilairo, Fl. © Pom. Am. Franc. t. 81.

Sideroxylon decandrum, Linneos, Mant. 48.-Willdenow, Spec.i, 1091.
Syderoxylon lave, Walter, Fl. Caroliniana, 100.

IRON WOOD. SOUTHERN BUCKTHORN.

Coast of Virginia and sonthern Illinois, sonth to Mosquito inlet and Caloosa river, Florida, and through southern Missouri, Arkansas, and Texas to the valley of the Rio Coneho, Texas.

A small tree, sometimes 9 to 12 meters in height, with a trunk rarely exeeeding 0.15 meter in diameter; low, rich soil, or ofteu, in the Atlantic and Gulf states, a low, semi-prostrate shrub, deseribed as-
var. reclinatum, Gray, Syn. Fl. N. America, ii1, 68.
Sideroxylon reclinatum, Michaux, Fl. Bor.-Am. i, 122.
B. reclinata, Ventenat, Choix, t.22.-Persoon, Syn. i, 237.-Pursh, Fl. Am. Sept. i, 155.-Romer \& Schultes, Syst. iv, 496.Elliott, Sk. i, 287.-Eaton, Mannal, 6 ed. 60.-Dietrich, Syn. i, 621.-Don, Miller's Dict. iv, 30-LLoudon, Arboretum, ii, 1193.-A. De Candolle, Prodr. viii, 190.-Darby, Bot. S. States, 428.-Wood, Cl. Book, 501 ; Bot. \& F1. 210.

Wood heary, hard, not strong, close-grained, compact; medullary rays numerons, thin; color, light brown or jellow, the sap-wood lighter; specific gravity, 0.7467 ; ash, 0.81 .

182.-Bumelia cuneata, Swartz,

Fl. Ind. Occ. i, 496.-Persoon, Syn. i, 237.-Rœmer \& Schultes, Syst. iv, 498.-Sprengel, Syst. i, 665.-Dou, Miller's Dict. iv, 30.-Dietrich, Syn. i, 621.-Grisebach, Fl. British West Indies, 401.-Gray, Syn. Fl. N. America. ii', 68.-Hemsloy, Bot. Am.-Ccnt. ii, 297.

Achras cuneifolia, Poiret in Lamarck, Dict. vi, 534.
B. angustifolia, Nuttall, Sylva, iii, 38, t.93; 2 ed. ii, 106, t. 93 .-Cooper in Smithsonian Rep. 1858, 265.

Sideroxylon cuneatum, A. De Candollo, Prodr. viii, 181.
B. parvifolia, A. De Candollo, Prodr. viii, 190.-Chapman, Fl. S. States, 275.-Vasey, Cat. Forest Trees, 19.
B. myrsinifolia, A. De Candolle, Prodr. viii, 192.
B. reclinata, Torrey, Bot. Mex. Bonndary Survey, 109 [not Ventonat].

ANT'S' WOOD. DOWNWARD PLUM. SAFFRON PLUM.
A small tree, rarely exceeding 4 meters in height, with a trunk sometimes 0.30 meter in diameter.
Semi-tropical Florida, Merritt's island, Indian river, and southward to the southern keys, not rare; west coast, Cedar Keys to cape Romano, rare; roeky shores and in the interior of low, barren keys; Texas, valley of the lower Rio Grande, Ross to Laredo, and sonthward into northern Mexico; in the West Indies.

Wood heary, hard, not strong, very close-grained, compact, satiny, susceptible of a beautiful polish; medullary rays numerous, thin; color, light brown or orange, the sap-wood lighter; speeifie gravity, 0.7959 ; ash, 1.90.
183.-Mimusops Sieberi, A. De Candolle,

Prodr. viii, 204.-Chapınan, F1. S. States, 275.-Vasey, Cat. Forest Trees, 18.-Gray, Syn. Fl. N. America, ii¹, 69.
Achras Zapotilla, var. parviflora, Nuttall, Sylva, iii, 28, t. 90 ; 2 ed.ii, 97, t. 90 .
M. dissceta, Grisebach, Fl. British West Yndies, 400 , in part.

Achras mammosa, Sieber, Pl. Trin. No. 33 [not Linnerus nor Bonpland].

WILD DILLY.

Semi-tropical Florida, on the southern keys, common; in the West Indies.
A small, low, gnarled tree, sometimes 9 meters in height, with a trunk 0.30 to 0.40 meter in diameter; generally hollow and defective.

Wood very heavy, hard, strong, elose-grained, inclined to check in drying, susceptible of a beantifnl polish; medullary rays numerous, very obscure ; color, rich, very dark brown, the sap-wood lighter; specifie gravity, 1.0838; ash, 2.61.

EBENACEA.

184.-Diospyros Virginiana, Linnæus,

Spec. 1 ed. 1057.-Kahm, Travels, English ed. i, 127, 345.-Marshall, Arbustum, 40.-Wangcnheim, Amer. 84, t. 28, f. 58.-Walter, Fl. Carolimiana, 253 .-Aiton, Mort. Kew. iii, 446 ; 2 ed. v, $478 .-$ Abbot, Iusects Georgia, ii, t. 61, 74.-B. S. Barton, Coll. i, 11, 45; ii, 52.-Michaux, Fl. Bor.-Am. ii, 258.-Grertner f. Fruct. Suppl. 138, t. 207.-Willdenow, Spec.iv, 1107; Enum. 1061 ; Berl. Banmz., 127.-Poiret in Lamarck, Dict. v, 528.-Persoon, Syn. ii, 1806.-Desfontaiues, llist. Arb. i, 208.-Titford, Hort. Bot. Am. 106.Michanx f. 1Iist. Arb. Am. ii, 195, t. 12; N. American Sylva, 3 ed. ii, 157, t. 93.-Pursh, Fl. Am. Scpt. ii, 265.-Nouvean Duhamel, vi, 84.-llarton, Prodr. FI. Pbiladelph. 97 ; Compend. Fl. Philadelph. ii, 198.-Eaton, Manual, 117; 6 ed. 126.-Nuttall, Genera, ii, 240.-Hayne, Dend. Fl. 228.-Elliott, Sk. ii, 712.-Collin, Förslag af nägra Nord-Aınericas Triad. 23.-Torrey, Compend. FI. N. States, 375.-Audubon, Birds, t.87.-Sprengel, Syst. ii, 202.-Watson, Dend. Brit. ii, 146.-Rafinesque, Mcd. Bot. i, 153, t. 32.Beck, Bot. 229.-Don, Miller's Diet. iv, 39.-Loudon, Arboretum, ii, 1195, t. 200, 201.-Eaton \& Wright, Bot. 225.-A. De Candolle, Prodr. iv, 228.—Browne, Trees of Ameriea, 368.-Griffith, Med. Bot. 435, f. 196.-Dietrich, Syn. v, 437.-Belg. Hort. iv, 118 \& t.Darby, l3ot. S. States, 425.-Darlington, Fl. Cestrica, 3 ed. 176.-Cooper in Smitheonian Rcp. 1858, 253.-Chapman, Fl. S. States, 273.-Curtis in Rep. Geological Surv. N. Carolina, 1860, iii, 70 .—Lesqnereux in Owen's 2d Rep. Arkansas, 374.-"Ettingsh. BlattSkel. Dikot. 89, t. 38, f. 12."-Wood, Cl. Book, 500 ; Bot. \& lll. 209.-Porcher, Resources S. Forests, 385.-Engelmann in Trans. Am. Phil. Soc. new ser. xii, 200.-Gray, Mannal N. States, 5 cd. 308; Hall's Pl. Texas, 15; Syn. Fl. N. America, iil, 69.-Koch, Dendrologie, ii, 204.-Hiern in Trans. Cambridge Phil. Soc. xii', 224.-Vasey, Cat. Forest Trees, 18.-Broadhead in Coulter's Bot. Gazette, iil, 59.-Ridgway in Proc. U. S. Nat. Mus. 1882, 68.
D. concolor, Mœneh, Meth. 471.
D. Guaiacana, Robin, Voyages, iii, 417.
D. pubescens, Pursh, Fl. Am. Sept. i, 265 [not Persoon].-Rafinesqne, Fl. Ludoviciana, 139.-Don, Miller's Dict. iv; 38.Loudon, Arboretnm, ii, 1196.
D. Virginiana, var. pubescens, Nuttall, Genera, ii, 240.-Elliott, Sk. ii, 713.
D. Virginiana, var. microcarpa, Rafinesque, Med. Bot. i, 115.
D. Virginiana, var. concolor, Rafinesque, Med. Bot. i, 155.
D. Virginiana, var. macrocarpa, Rafivesque, Med. Bot. i, 155.
D. Persimon, Wikström, Jahr. Schwed. 1830, 92.
D. ciliata, Rafinesque, New Fl. \& Bot. i, 25 [not A. De Candolle].
D. calycina, Audibert, Cat. Bort. Tonn. (ex. Spach).-London, Gard. Mag. 1841, 394.
D. angustifolia, Audibert, Cat. Hort. Tonn. (ox. Spach).-Loudon, Gard. Mag. 1841, 394.
D. lucida, Hort.-Loudon, Gard. Mag. 1841, 394.
D. intermedia, 1lort.-Loudon, Gard. Mag. 1841, 394.

persimmon.

Light-house point, New Haven, Connectient, Long Island, New York, and southward to bay Biscayne and the Caloosa river, Florida, southern Alabama and Mississippi; southern Ohio to southeastern Iowa, southern Missonri, Arkansas, eastern Kansas, the Indian territory, and the valley of the Colorado river, Texas.

A tree 10 to 20 or, exceptionally, 30 to 35 meters in height (Ridgway), with a trunk sometimes 0.60 meter in diameter; very common and often entirely occupying abandoned fields throughout the middle and lower regions of the sonthern Atlantic and Gulf states, reaching its greatest development in the rich bottom lands of the lower Ohio basin.

Wood heavy, hard, strong, very close-grained, compact, susceptible of a high polish, containing few seattered, open duets, the rings of amnual growth marked by one or more rows of similar duets; medullary rays numerous, conspicuous; color, dark brown, or often nearly black, the thick sap-wood light brown, often containing unmerons darker spots; sjecific gravity of the sipp-wood, 0.7908 ; ash, 0.96 ; used in turuery for shoe-lasts, plane-stocks, ete., and preferred for sluttles; the dark heart-wood only dereloped in very old specimens and rarely seen.

The yellow edible fruit exceedingly austere until after frost, then becoming sweet and luscions, or in the Gulf states ripening in August without ansterity; sometimes used domestically, fermented with hops, corn-meal, or wheat bran, as a beverage under the nane of "simmon beer".

A decoction of the bitter and astringent unripe fruit and inner bark oceasionally nsed in the treatment of diarrhœa, sore throat, hemorrhage, etc. (B. R. Smith in Am. Jour. Pharm. October, 1846, 215.-J. E. Bryan in same, May, 1860, 215.-U. S. Dispensutory, 14 ed. 380.—Nat. Dispensatory, 2 ed. 514).
185.-Diospyros Texana, Scheele,

Linnæa, xxii, 145 ; Rœmer, Texas, 441; Appx. 763.-Walpers, Aun. iii, 14.-Torrey, Bot. Mex. Boundary Survey, 109.-Cooper in Smithsonian Rep. 1858, 266.—Young, Bot. Texas, 376.-Hiern in Traus. Cambridge Phil. Soc. xii¹, 238.-Gray, Hall's Pl. Texas, 15; Syn. Fl. N. America, ii1, 70.-Vasey, Cat. Forest Trees, 18.-Hemsley, Bot. Am.-Cent. ii, 300.

BLAOK PERSIMMON. MEXICAN PERSIMMON. CHAPOTE.

Western Texps, Matagorda bay to the valley of the Concho river ; southward into northern Mexico.
A small tree, 4 to 10 meters in height, with a trunk sometimes 0.30 meter in diameter, or more often a low shrub; not rare, and reaching its greatest development in Texas along the rich bottoms of the Guadalupe river ; borders of prairies, iu rieh soil; in Mexico more common and of larger size.

Wood heary, hard, very close-grained, compact, satiny, taking a beantiful polish, coutaining few minute, scattered, open duets; medullary rays numerous, thin; color, hearly black, often streaked with yellow, the thick sap-wood clear bright yellow; specific gravity, 0.8460 ; ash, 3.33 ; used in turnery for the handles of tools, etc., suitable for wood-engraving, and probably the best snbstitute among Americau woods for box-wood.

The small black fruit sweet and insinid.

STYRACACE \mathbb{A}.

186.-Symplocos tinctoria, L'Heritier,

Trans. Linnman Soc. i, 176.-Willdenow, Spec. iii, 1436.-Aiton, Hort. Kew. iv, 419.-Sprengel, Syst. iii, 339.—Don, Miller's Diot. iv, 2.-A. De Candolle, Prodr. viii, 254.-Cooper in Smithsonian Rep. 1858, 253.-Chapman, Fl. S. States, 272.-Curtis in Rep. Geological Surv. N. Carolina, 1860, iii, 65.-Lesqnereux in Owen's $2 d$ Rep. Arkansa8, 374.—Wood, Cl. Book, 499; Bot. \& Fl. 209.Gray, Mannal N. States, 5 ed. 310; Syn. Fl. N. America, ii1, 71.-Young, Bot. Texas, 374.-Vasey, Cat. Forest Trees, 18.

Hopea tinctoria, Linnmns, Mant. 105.—Walter, Fl. Caroliniana, 189.—Michaux, F1. Bor.-Am. ii, 42.—Persoon, Syn. ii, 72.Desfontaines, Hist. Arb. i, 217.-Grertner f. Fruct. Suppl. 146, t.209, f.2.—Robin, Voyages, iii, 419.-Michaux f. Hist. Arb. Am. iii, 61, t.9; N. American Sylva, 3 ed. iii, 45 , t. 117.-Pursh, Fl. Anı. Sept. ii, 451.-Nuttall, Genera, ii, 83.Elliott, Sk. ii, 173.-Eaton, Mannal, 6 ed. 176.—Spach, Hist. Veg. ix, 420.-Eaton \& Wright, Bot. 272.—Darby, Bot. S. States, 425.-Porcher, Resonrees S. Forests, 388.

HORSE SUGAR. SWEET LEAF.
Southern Delaware, south to about latitude 30° in Florida, and west through the Gulf states to western Louisiana and southern Arkansas (Malvern, Texarkana, Letterman).

A small tree, 6 to 10 meters in height, with a trink 0.20 to 0.25 meter in diametcr, or often a low shrub; borders of cypress swamps or in deep, damp, shaded woods.

Wood light, soft, not strong, close-grained, checking iu drying; medullary rays numerous, thin; eolor, light red, or often nearly white, the sap-wood lighter; specifie gravity, 0.5325 ; ash, 0.68 .

Leaves sweet, greedily eaten by cattle and horses, and yielding, as does also the bark, a yellow dye.
187.-Halesia diptera, Linnæus,

Spec. 2 ed. 636.—Marshall, Arbutun, 57.-Liamarek, Dict. ii, 66.—Willdenow, Spec. ii, 849; Enum. 496; Berl. Baumz. 17l.—Cavanilles, Dise. vi, 338, t. 187.-Michaux, Fl. Bor.-Am. ii, 40.-Porsoon, Syn. ii, 4.-Aiton, Hort. Kew. 2 od. iii, 143.-Nonveau Duhamel, v, 144.-Pursh, Fl. Am. Sept. ii, 450.-Nuttall, Genera, ii, 83.-Elliott, Sk. i, 508.-Hayne, Dend. Fl. 66.-Loddiger, Bot. Cab. t. 1172.-Sprengel, Syst. iii, 84.-Eaton, Manaal, 6 ed. 164.-Don, Miller's Dict. iv, 7.-London, Arborotum, ii, 1191, f. 1014.-Spaeh, Hist. Veg. ix, 426.—Eaton \& Wright, Bot. 260.—A. De Candolle, Prodr. viii, 270.-Miers, Contril. i, 193.-Darby, Bot. S. States, 425.-Cooper in Smithsonian Rep. 1858, 253.-Chapman, Fl. S. States, 271.—Wood, Cl. Book, 499; Bot. \& Fl. 209.-Koch, Dendrologie, ii, 201.—Vasey, Cat. Forest Trees, 18.—Gray, Syn. Fl. N. America, ii1', 7 I.
H. reticulata, Buckley in Proc. Pbiladelphia Acad. 1860, 444.

SNOW-DROP TREE. SILVER-BELL TREE.
South Carolina to northern Florida, near the coast, and west through the lower region of the Gulf states to eastern Texas and Garland county, Arkansas (Harvey).

A small tree, sometimes 6 to 10 meters in height, with a trunk 0.10 to 0.20 meter in diameter, or often a shrub sending up many clustered stems from the ront; borders of swamps, in low, wet woods.

Wood light, soft, strong, very close-grained, compaet; medullary rays numerons, thin; color, light brown, the sap-wood lighter; specific gravity, $0.5705 ;$ ash, 0.42 .

188.-Halesia tetraptera, Linnæus,

Spec. 2 ed. 636.—Marshall, Arbustum, 57. Giertner, Frnct. i, 160, t. 32, f. 2.—Lamarek, Diot. ii, 66; Ill. ii, 521, t. 404, f. 1.-Aiton, Hort. Kow. ii, 125 ; 2 ed. iii, 143.-Manch, Meth. 507.-Abbot, Insects Georgia i, t. 46.-Willdonow, Spec. ii, 849 ; Enum. 496 ; Berl. Banmz. 170.-Cavanilles, Diss. vi, 338, t. 186.-Michanx, Fl. Bor.-Am. ii, 40.-Persoon, Syn. ii, 4.-Desfontaines, Hist. Arh. i, 216.Nonvean Duhanel, r, 143, t. 45.—Pursl, Fl. Am. Sept. ii, 449.-Nuttall, Genera, ii, 82.-Bot. Mag. t. 910.-Elliott, Sk. i, 507.Hayne, Deud. Fl. 66.-Loddiges, Bot. Cab. t. 1173.-Surengel, Syst. iii, 84.—Guimpel, Otto \& Hayne, Abl. Holz. 43, t. 35.-Eaton, Manual, 6 ed. 164.—Don, Miller's Dict. iv, G.-London, Arboretun, ii, 1190, f. 1012, t. 196, 197.—Spach, Fist. Veg. ix, 426.-Eaton \& Wright, Bot. 260.-A. De Candolle, Prodr. viii, 270.-Brownc, Trees of America, 366.-Miers, Contrib. i, 191, t. 93.-Darby, Bot. S. States, 425.-Cooper in Smithsonian Rep. 1858, 253.-Agardh, Theor. \& Syst. Pl.t. 22, f. 16, 17.-Chapman, Fl.S. States, 271.-Curtis in Rep. Gcological Snrv. N. Carolina, 1860, iii, 80.-Wood, Cl. Book, 499; Bot. \& Fl. 209.-Örsted in Saerskitt. Aftryk. af Nat. For. Viden. Meddelt. Nos. 1-6, 1866, 89, f. 2.—Gray, Mannal N. States, 5 ed. 310; Syn. Fl. N. America, ii', 71.-Kooh, Dendmogie, ii, 199.-Young, Bot. Texas, 374.—Vasey, Cat. Forest Trees, 18.

RATTLEBOX. SNOW-DROP TREE. SILVER-BELL TREE. CALICO WOOD:

Mountains of West Virginia to southern Illinois, south to middle Florida, central Alabama and Mississippi, and through Arkansas to western Louisiana and easteru Texas.

A tree 10 to 15 meters in height, with a truuk rarely 0.60 meter in diameter, or often a tall shrub; generally along streams, in rich soil; most common and reaching its greatest development in the southern Alleghany mountains; common in eultivation.

Wood light, soft, elose-grained, compact; medullary rays numerous, thill; color, light brown, the sap-wood lighter; specific gravity, 0.5628 ; ash, 0.40 .

Note.-Halesia parviflora, Michanx, of southeru Georgia, and Florida, does not attain the size or habit of a tree.

OLEACE \mathbb{E}.

> 189.-Fraxinus Greggii, Gray,

Proc. Am. Acad. vii, 64; Syn. Fl. N. America, ii, 74.-Hemsley, Bot. Am.-Cent. ii, 305.
Fr. Schiedeana, var. parvifolia, Torrey, Bot. Mex. Bonndary Survey, 166.
Western Texas, valley of the Rio Grande, from the San Pedro to the Pecos river; southward into Mexico.
A small tree, sometimes 7 to 9 meters in height, with a trunk 0.10 to 0.15 meter in diameter (Lampasas mountains, Mexico, Buckley), or often a graceful shrub; limestone soil.

Wood heary, hard, very close-grained, compact; layers of annual growth and medullary rays obseure; color, brown, the sap-wood lighter; specific gravity, 0.7904 ; ash, 0.93 .

190.-Fraxinus anom ala, Torrey;

Watson in King's Rep. v, 283.-Parry in Am. Nat. ix, 203.—Vasey, Cat. Forest Trees, 20.-Gray, Syn. Fl. N. America, ií, 74.
Southwestern Colorado, MeElmo river (Brandegce), southeru Utah, Kanawa, Leeds, Silver Leaf, Labyrinth cañon of the Colorado river, valley of the Rio Virgen, near Saint George.

A small tree, sometimes 6 meters in height, with a trunk 0.15 to 0.20 meter in diameter, with the habit of a dwarf pear tree; common on elevated sandstone mesas and plateaus.

Wood heavy, hard, coarse-grained, containing many large, open, scattered duets, the layers of annual growth marked by several rows of similar clucts; medullary rays numerous, thin; color, light brown, the sap-wood lighter; specifie gravity, 0.6597 ; ash, 0.85 .

> 191.-Fraxinus piṣtaciæfolia, Torrey,

Pacific R. R. Rep. iv, 128 ; Bot. Mex. Boundary Survey, 166.-Cooper in Smithsonian Rep. 1858, 260.—Gray, Hall's Pl. Texas, 19 ; Syn. Fl. N. America, ii ${ }^{1}, \boldsymbol{7 4}$.-Vasey, Cat. Forest Trees, 20.-Rushy in Bull. Torrey Bot. Club. ix, 54.-Hemsley, Bot. Am. Cent. ii, 305.-Watson in Proc. Am. Acad. xviii, 113.
F. velutina, Torrey in Emory's Rep. 149.
F. coriacea, Watson in Am. Nat. vii, 302, in part.-Rothrock in Whoeler's Rep. vi, 186, t. 22.-Vasey, Cat. Forest Trees, 20.
F. pistaciafolia, var. coriacea, Gray, Syn. Fl. N. America, ii², 74.

ASH.
Mountains of western Texas, throngh southern New Mexieo, southern and eastern Arizona, to southern Nevada (Ash Meadows, Rothrock); in northern Mexico.

A small tree, 10 to 12 meters in height, with a trunk rarely 0.45 meter in diameter; generally along borders of streams, in elevated cañons, less commonly in dry soil, the foliage then thiek and coriaceons or, more rarely, velvety tomentose (var. coriacea, Gray, l.c.); the large specimens generally hollow and defective.

Wood heary soft, not strong, coarse-grained, compact; medullary rays numerous, thin ; color, light brown, the sap-wood lighter; specific gravity, 0.6810 ; ash, 0.62 ; oceasionally used in wagon-building, for ax handles, ete.

192.-Fraxinus Americana, Linnaus,

Spec. 2 ed. 1510.-Walter, Fl. Caroliniana, 254.—Aiton, Hort. Kew. iii, 445; 2 ed. v, 476.-Willdenow, Spec. iv, 1102; Enum. 1060; Berl. Banmz. 145.—Muhlenberg \& Willdenow in Neue Sehriften Gesell. Nat. Fr. Berlin, iii, 393.—Vahl Enum. i, 49.—Persoon, Syn. ii, 604.-Desfontaines, Hist. Arb. i, 102.-Nouveau Duhamel, iv, 63.-Michaux f. Hist. Arb. Am. iii, 106, t. 8; N. American Sylva, 3 ed. iii, 49, t. 118 (excl. fruit).-Barton, Prodr. Fl. Philadelph. 97 ; Compend. Fl. Philadelph.ii, 192.-Eaton, Manual, 114.Hayne, Dend. Fl. 221.-Cobbett, Woodlands, 131.—Sprengel, S.st. i, 95.-Beck, Bot.232.-Loudon, Arboretum, ii, 1232, f. 1055 \& t.-Penn. Cycl. x, 455.-Bigelow, Fl. Boston. 3 ed. 408.-Hooker, Fl. Bor.-Am. ii, 51.-Torrey, Fl. N. York, ii, 125, t. 89.-A.De Candolle, Prodr. viii, 177.-Browne, Trees of Ameriea, 394.—Darlington, Fl. Cestrica, 3 ed. 238.-Cooper in Smithsonian Rep. 1858, 253.-Chapman, Fl. S. States, 369.-Curtis in Geological Rep. N. Carolina, 1860, iii, 54.-Wood, Cl. Book, 597; Bot. \& Fl. 277.-Lesquereux in Owen's $2 d$ Rep. Arkansas, 382.-Engelmann in Trans. Am. Phil. Soc. new ser. xii, 206.-Porcher, Resources S. Forests, 494.-Gray, Mannal N. States, 5 ed. 401 ; Hall's Pl. Texas, 19 ; Syn. Fl. N. America, ii ${ }^{1}$, 74.-Koch, Dendrologie, ii, 252.-Young, Bot. Texas, 452.-Vasey, Cat. Forest Trees, 20.-Macoun in Geological Rep. Canada, 1875-'76, 207.-Sears in Bull. Essex Inst. xiii, 177.-Bell in Geological Rep. Canada, 1879-'80, $5^{2} 2 \mathrm{c}$--Ridgway in Proc. U. S. Nat. Mus. 1882, 68.

F. Caroliniensis, Wangenheim, Amer. 81.

F. alba, Marshall, Arbustum, 51.-Hayne, Dend. Fl. 223.
F. acuminata, Lamarck, Dict. ii, 542.-Bosc in Mem. Inst. 1808, 205.-Pursh, Fl. Am. Sept. ii, 9.-Nuttall, Genera, ii, 231 ; Sylva, iii, 64; 2 ed. ii, 129.-Hayne, Dend. Fl. 220.-Elliott, Sk. ii, 672.-Sprengel, Syst. i, 95.-Torrey, Compend. Fl. N. States, 371 ; Nicollet's Rep. 154.-Rœmer \& Schultes, Syst. iii, 277.-Darliugton, Fl. Cestriea, 2 ed. 8.-Laton, Manual, 6 ed. 143.-Beck, Bot.232.-Don, Miller's Diet.iv, 56.-Eaton \& Wright, Bot. 247.-Emerson, Trees Massachusetts, 333; 2 ed. ii, 376 \& t.-Darby, Bot. S. States, 429 .-Porcher, Resources S. Forests, 494.

PF. juglandifolia, Lamarck, Dict. ii, 542.-Bosc in Meın. Inst. 1808, 208.-Desfontaines, Hist. Arb. i, 103.-Hayne, Dend. F1. 221.-Beck, Bot. 232.-Don, Miller's Diet. iv, 55.
F. Canadensis, Gærtner, Fruct. i, 222, t. 49.
F. epiptera, Michanx, Fl. Bor.-Am. ii, $256 .-$ Vahl, Enum. i, 50.-Willdenow, Spec. iv, 1102; Berl. Baumz. 147.-Persoon, Syn. ii, 603 -Desfontaiues, Hist. Arb. i, 103.-Poiret, Suppl. ii, 6ir1.-Nnttall, Genera, ii, 231.-Pursh, Fl. Am. Sept. i, 8.Elliott, Sk. ii, 672.—Sprengel, Syst. i, 96.—Rœmer \& Schultes, Syst. 278.—Eaten, Mannal, 6 cd. 148.—Don, Miller's Dict. iv, 55.-London, Arboretum, ii, 1237.-Penn. Cycl. x, 455.-Eaton \& Wright, Bot. 247.-Hooker, Fl. Bor.-Am. ii, 50.A. De Candolle, Prorlr. viii, 27%-Darhy, Bot. S. States, 429.-Cooper in Smithsonian Rep. 1858, 399.
F. lancea, Besc in Mcm. Inst. 1803, 209 (fide Loudon, Arberetnm, ii, 1237).
F. discolor, Muhlenberg, Cat. 111.—Rafinesque, Fl. Ludoviciana, 37.—Spach, Hist. Veg. viii, 297.
F. Americana, var. latifolia, Loudon, Arborctnm, ii, 1232.-Browne. Trees of America, 396.

PI. juglandifolia, var. sorrata, Hayne, Dend, Fl. 221.
PF. juglandifolia, rar. subserrata, Hayne, Dend. Fl. 221.

WHITE ASH.

Nova Seotia, New Brunswiek, southern Ontario to northern Minnesota, sonth to northern Florida, eentral Alabama and Mississippi, and west to eastern Nebraska, eastern Kansas, the Indian territory, and the valley of the Trinity river, Texas.

A large tree of the first eeonomic value, 15 to 30 or, exeeptionally, 42 meters (Ridgway) in height, with a trunk 1.20 to 1.80 meter in diameter; low, rich, rather moist soil, reaching its greatest development in the bottom lands of the lower Ohio Riser basin; toward its western and southwestern limits smaller, of less economic value, and generally replaced by the greeu ash (Fraximus viridis).

A form of the southern states with remarkably small frnit has been deseribed as-

Var. microcarpa, Gray, Syn. FI. N. America, ii1, 75.
F. albicans, Buckley in Proc. Phitadelphia Acad. 1862, 4, in part.
F. Curtissii, Vnsey, Cat. Forest Trees, 20.

Wood heary, hard, strong, ultimately brittle, coarse grained, compaet; layers of annual growth elearly marked by several rows of large open ducts, occupying in slowly-grown specimens nearly the entire width of the annual rings; medullary rays mumerous, obscure; color, brown, the sap-wood much lighter, often nearly white; specifie gravity, 0.6543 ; asl, 0.42 ; specific gravity of the heavier sap-wood, 0.7180 ; largely used in the manufacture of agricultural implements, carriages, handles, oars, and for interior and cabinet work.

Var. Texensis,

Gray, Syn. FI. N. America, iil, 75.
F. albicans, Buckley in Proc. \cdot Philadelphia Acad. 1862, 4, in part.
F. coriacea, Watson iu Am. Nat. vii, 302, in part.
F. pistacicefolia, Gray, Hall's Pl. Texas, 19 [not Torrey].

Western Texas, Dallas (Reverchon), to the valley of the Devil's river.
A small tree, 10 to 12 meters in height, with a trunk sometimes 0.60 moter in diameter; dry, rocky hills and ridges.

Wood heary, hard, strong, rather close-grained, compact; layers of annual growth marked by one or more rows of open ducts; medullary rays numerons, obscure; color, light brown, the sap-wood lighter; specific gravity, 0.7636 ; ash, 0.70 ; nsed for the same purposes as that of the species.

193.-Fraxinus pubescens, Lamarck,

Dict. ii, 548.-Walter, Fl. Caroliviana, 254.-Willdenow, Spec. iv, 1103; Enum. 1060; Berl. Baumz. 148.-Muhlenberg \& Willdenow inNeue Schriftcn Gesell. Nat. Fr. Berlin, iii, 393.-Vah1, Enum. i, 51.-Persoou, Syn. ii, 604.-Desfontaines, Hist. Arb. i, 102.-Nouveau Duhamel, iv, 62.-Aitou, Hort. Kew. 2 ed. v, 476.-Pursh, Fl. Am. Sept. i, 9.-Rcemer \& Schultes, Syst. 279.-Nuttall, Genera, ii, 231.-Hayne, Dond. FI. 223.-Elliott, Sk. ii, 673.-Sprengel, Syst. i, $95 .-T o r r e y$, Compeud. Fl. N. States, 371; Fl. N. York, ii, 126.Beck, Bot. 232.-Eaton, Manual, 6 ed. 148.-Don, Miltcr's Dict. iv, 55.-Loudon, Arboretam, ii, 1233, f. 1056.-Penn. Cyel. x, 455.Eaton \& Wright, Bot. 247.-Hooker, Fl. Bor.-Am. ii, 51.-A. Do Candolle, Prodr. viii, 278.-Emerson, Trees Massachusetts, 337; 2 ed. ii, 380.-Darlington, Fl. Cestrica, 3 ed. 239.-Darby, Bot. S. States, 429. - Cooper in Smithsonian Rep. 1858, 253.-Chapman, Fl. S.. States, 370.-Curtis in Rep. Gcological Surv. N. Carolina, 1860, iii, 54.-Wood, Cl. Book, 597 ; Bot. \& Fl. 277.-Gray, Manual N. States, 5 ed. 402; Syn. Fi. N. America, ii1, 75.-Young, Bot. Texas, 452.-Vasey, Cat. Forest Trccs, 20.-Sears in Bull. Essex Inst. xiii, 177.-Ridgway in Proc. U. S. Nat. Mus. 1882, 69.
F. Pennsylvanica, Marshall, Arbustum, 51.-Koch, Dendrologie, ii, 253.
F. nigra, Du Roi, Harbk. 2 ed. i, 398 [not Marshall].
F. pubescens, var. longifolia, Willdeuow, Spec. iv, 1104.—Vahl, Eunm. i, 52.-Pursh, Fl. Am. Sept. ii, 9.-Loddiges, Cat. ed. 1836.-Loudon, Arboretum, ii, 1233.-A. De Candollo, Prodr. viii, 278.
F. pubescens, var. latifolia, Wildeuow, Spec. iv, 1104.—Vahl, Enum. i, 52.-Pursh, Fl. Am. Sept.i, 9.-Hayne, Dend. Fl. 223.-Eaton, Manual, 6 od. 148.-Loudon, Arhoretum, ii, 1233.-A. De Candolle, Prodr. viii, 278.
F. pubcscens, var. subpubescens, Porsoon, Syn. ii, 605.-Pursh, Fl. Am. Scpt. i, 9.-Eaton, Manual, 6 ed. 148.-Loudon, Arborctum, ii, 1234,-A. De Caudolle, Prodr. viii, 278,-Browne, Trees of America, 395.
F. longifolia, Bosc in Mem. Inst. 1808, 209.
F. subvillosa, Bosc in Mem. Inst. 1808, 209.
F. tomentosa, Michaux f. Hist. Arb. Am. iii, 112, t. 9; N. American Sylva, 3 ed, iii, 53, t. 119.-Barton, Compend. FL. Pliladelph. ii, 192.
F. Americana, var. pubescens, Browne, Trees of America, 395.
F. oblongocarpa, Buckley in Proc. Philadelphia Acad. 1864, 4.

RED ASH.
New Brunswick to southern Ontario and northern Minnesota, sonth to northern Florida aud central Alabama. A tree 12 to 15 meters in height, with a trunk rarely exceeding 0.60 meter in diameter; borders of streams and swamps, in low ground; common and reaching its greatest development in the north Atlantic states; rare west of the Alleghany mountains, probably not extending west of the Mississippi river.

Wood heavy, hard, strong, brittle, coarse-grained, compact; medullary rays numerous, thin; color, rich brown, the sap-wood light brown streaked with yellow ; specific gravity, 0.6251 ; ash, 0.26 ; specific gravity of the lighter sap-wood, 0.5609 ; somewhat used as a substitute for the more valuable white ash, with which it is often confounded.

194.-Fraxinus viridis, Michaux f.

Hist. Arb. Am. iii, 115, t. 10; N. American Sylva, 3 ed. iii, 54, t. 120 (excl. fruit).-Hayne, Dend. Fl. 222.-Cooper in Smithsonian Rep. 1858, 253 .-Chapman, Fl. S. States, 370 .-Gray in Pacific R. R. Rep. xii², 46 ; Manual N. States, 5 ed. 402; Hall's Pl. Texas, 19; Syn.Fl. N. America, ii', 75.-Curtis in Rep. Geological Surv. N. Carolina, 1860, iii, 54.-Lesquereux in Owen's 2 d Rep. Arkansas, 382.-Wood, Cl. Book, 593; Bot. \& Fl. 277.—Watson in Kiag's Rep. v, 284.-Young, Bot. Texas, 453.-Vasey, Cat. Forest Trees, 20.-Maconn in Geological Rep. Canada, 1875-76, 207.-Bell in Geological Rep. Canada, 1879-80, 49.-Hemsley, Bot. Am.-Cent. ii, 305.-Burgess in Coulter's Bot. Gazette, vii, 95.
F.juglandifolia, Willdenow, Spec. iv, 1104; Ennm. 1060 ; Berl. Baumz. 140 [not Lamarck].-Vahl, Enum. i, 50.-Porsoon, Syn. ii, 604.-Nonvean Dnhamel, iv, 63, t. 16.-Aiton, Hort. Kew. 2 ed. v, 476.-Pursb, Fl. Am. Sept. i, 9.-Rcemer \& Schultes, Syst. i, 278 ; iii, Snppl. 255.-Eaton, Manual, 114.-Sprengel, Syst. i, 95.-Torrey, Compend. Fl. N. States, 371.-Beck, Bot. 233.-Don, Miller's Dict. iv, 55.-Loudon, Arboretum, ii, 1236, f. 1061, 1062 \& t.-Eaton \& Wright, - Bot. 247.-Gray, Manual N. States, 1 ed. 373.

PF. Caroliniana, Willdenow, Spec. iv, 1103; Enum. 1060 ; Berl. Baumz. 148.—Vahl, Enum. i, 51.-Du Roi, Harbk. 2 ed. i, 400.-Persoon, Syn. ii, 605.-Desfontaines, Hist. Arb. i, 103.-Nouveau Duhamel, iv, 62.-Pursh, Fl. Am. Sept. i, 9.Nuttall, Genera, ii, 231.-Elliott, Sk. ii, 673.-Hayue, Dend. Fl. 223.-Sprengel, Syst. i, 95.-Eaton, Manual, 6 ed. 148.-Don, Miller's Dict. iv, 55.-Eaton \& Wright, Bot. 147.-Darby, Bot. S. States, 429.
F. juglandifolia, var. subintegerrima, Vahl, Enum. i, 50.
F. expansa, Willdenow, Berl. Banmz. 150.-Rcmer \& Schaltes, Syst. i, 279.-Don, Miller's Dict. iv, 55.-London, Arboretum, ii, 1238.-A. De Candolle, Prodr. viii, 278.-Browne, Trees of America, 399.
F. Americana, var. juglandifolia, Browne, Trees of America, 398.
F. Novce-Angliae, Kocb, Dendrologie, ii, 251 [not Miller nor Wangenheim]

GREEN ASII.

Shores of lake Champlain, Tiverton, Rhode Island, and southward to northern Florida, west to the valley of the Saskatchewan, the eastern ranges of the Rocky mountaius of Montana, the Wahsatch mountains of Utah, and the ranges of eastern and northern Arizona.

A tree 15 to 18 meters iu height, with a trunk rarely exceeding 0.60 meter in diameter; borders of streams or in low, rather moist soil; at the west confined to the bottom lands of the large streams and to high mountain caũons.

Wood heavy, hard, stroug, brittle, rather coarse-grained, compact, satiny, containing numerous scattered, small, open ducts, the layers of annual growth marked by several rows of larger ducts; medullary rays numerous, obscure ; color, brown, the sap-wood lighter ; specific gravity, 0.7117 ; ash, 0.65 ; inferior in quality, althongh often nsed as a substitnte for white ash.

Var. Berlandieriana, Torrey,

Bet. Mex. Boundary Survey, 166.—Gray, Syn. Fl. N. America, ii1, 75.—Hemsley, Bot. Am.-Cent. ii, 305.-Watson in Proc. Am. Acad. xviii, 113.
F. Berlandieriana, De Candolle, Prodr. viii, 278.

Fr. trialata, Buckloy in Proc. Philadelphia Acad. 1862, 5.
Texas, west of the Colorado river; southward into northern Mexico.
A small tree, 9 to 12 meters in height, with a trunk rarely exceeding 0.30 meter in diameter; borders of streams, in low, rich soil.

Wood light, soft, rather close-grained, compact, containing few small, scattered, open ducts, the layers of annual growth clearly marked by one or two rows of larger ducts; medullary rays numerous, obscure; color, light brown, the sap-wood lighter; specific gravity, 0.5780 ; asll, 0.54 .

195.-Fraxinus platycarpa, Michaux,

Fl. Bor.-Am. ii, 256.-Vahl, Euum. i, 49.—Persoon, Syn. ii, 605 .—Desfontaines, Hist. Arb. i, 103.-Nonvean Duhamel, iv, 64.-Michaux f. Hist. Arb. Am. iii, 128, t. 13; N. American Sylva, 3 ed. iii, 63, t. 124.-Poiret, Suppl. ii, 671.-Pursh, Fl. Am. Sept. i, 9.-Rœmer \& Schultes, Syst. i, 278.-Nuttall, Genera, ii, 231.-Hayne, Dend. Fl. 225.-Elliott, Sk. ii, 673.-Sprengel, Syst, i, 96 . - Caton, Mannal, 6 ed. 149.-Don, Millor's Dict. iv, 55.-Eaton \& Wright, Bot, 247.-A. De Candolle, Prodr. viii, 277.-Darby, Bot. S. States, 429.Cooper in Smithsopian Rep. 1858, 253.-Chapman, Fl. S. States, 370 .-Curtis in Rep. Gaological Surv. N. Carolina, 1860, iii, 53.Lesquereox in Owen's 21 Rep. Arkansas, 382.-Wood, Cl. Book, 598; Bot. \& Fl. 277.-Gray, Manual N. States, 5 ed. 402 ; Syn. Fl. N. Amcrica, ii', $75 .-Y o u n g, ~ B o t . ~ T e x a s, ~ 453 .-V a s e y, ~ C a t . ~ F o r e s t ~ T r e e s, ~ 20 . ~$
iF. Caroliniana, Miller, Dict. No. 6.-Lamarck, Dict.ii,518.-Rœmer \& Schultes, Syst. i, 278.-Don, Miller's Dict, iv, 55.Loudon, Arborctum, ịi, 1237.-Koch, Dendrologie, ii, 258.
F. excelsior, Walter, Fl. Caroliniana, 254 [not Linnæns].
F. Americana, Marshall, Arbustum, 50 [not Linnæns].
F. pallida, Bose in Mem. Inst. 1808, 209.
F. pubescens, Bose in Mem. Inst. 1808, 210 [not Lamarck].
F. triptera, Nuttall, Genera, ii, 232 ; Sylva, iii, 62, t. 100 ; 2 ed. 127, t. 100.-Elliott, Sk. ii, 674.-Don, Miller'e Diot, iv, 56.Loudon, Arboretam, ii, 1240.—A. De Candolle, Prodr. viii, 274.—Darby, Bot. S. States, 429.
F. curvidens, Hoffmannsegg, Verz. d. Pflanzenkult. 29.
F. pauciflora, Nuttall, Sylva, iii, 61, t. 100; 2 ed. ii, 126, t. 100.
F. Americana, var. Caroliniana, Browno, Trees of America, 398
F. Americana, var. triptera, Browne, Trees of America, 399.
F. Nuttallii, Buckley in Proc. Philadelphia Acad. 1860, 444.
F. nigrescens, Buckley in Proc. Philadelphia Aead. 1862, 5.

WATER ASH.
Southeastern Virginia, south near the coast to cape Canaveral and the Caloosa river, Florida, west through the Gulf states to the valley of the Sabine river, Texas, and the Washita river, southwestern Arkansas; in the West Indies.

A small tree, 9 to 12 meters in height, with a trunk rarely exceeding 0.30 meter in diameter; deep river swamps.

Wood very light, soft, not strong, brittle, close-grained, compact, the open ducts not conspicuous; medullary rays few, obscure; color, uearly white, or sometimes tinged with gellow, the sap-wood lighter; specific gravity, 0.3541 ; ash, 0.73.

196.-Fraxinus quadrangulata, Michaux,

Fl. Bor.-Am. ii, 255.—Willdenow, Spec. iv, 1104.-Vahl, Enum. i, 50.—Persoon, Syn. ii, 605.—Bosc in Mem. Inst. 1808, 211.—Desfontaines, Hist. Arb. i, 103.-Nouveau Duhamel, iv, 64.-Michaux f. Hist. Arb. Am. iii, 118, t. 11; 2 ed. iii, 61, t. 123.-Poiret, Suppl. ii, 671.Pursh, Fl. Am. Scpt. i, 8.-Romer \& Schultes, Syst. i, 278.-Nuttall, Genera, ii, 231.-Hayne, Dend. Fl. 223.-Sprengel, Syst. i, 96.-Eaton, Mannal, 6 ed. 149.-Don, Miller's Dict. iv, 55.-Loudon, Arboretum, ii, 1235, f. 1059, 1060.-Spach, Hist. Veg. viii, 296.-Ponn. Cycl. x, 455.-Eaton \& Wright, Bot. 247.-A. Do Candolle, Prodr. viii, 278.-Cooper in Smithsonian Rep. 1858, 254.Chapman, Fl. S. States, 370.-Lesqueroux in Owen's 2d Rep. Arkansas, 382.-Wood, Cl. Book, 598; Bot. \& Fl. 277.-Gray, Manual N. States, 5 ed. 402 ; Syn. Fl. N. America, ii', 75.-Koch, Dendrologio, ii, 259.-Yonng, Bot. Toxas, 453.-Vasey, Cat. Forest Trecs, 20.-EngeImann in Coulter's Bot. Gazette, v, 63.-Ridgway in Proc. U. S. Nat. Mus. 1882, 69.-Burgess in Coulter's Bot. Gazette, vii, 95.
F. tetragona, Cels in Nouv. Cours, Agr. vii, 73.
F. quadrangularis, Loddiges, Cat. 1836.
F. nerrosa, Loddiges, Cat. 1836.
F. quadrangulata, var. nervosa, London, Arboretum, ii, 1235.
F. Americana, var. quadrangulata, Browne, Trees of America, 397.
F. Americana, var. quadrangulata nervosa, Browne, Trees of America, 397.

BLUE ASH.

Southern Miehigan to central Minnesota, south to northern Alabama, and through Iowa and Missouri to northeastern Arkansas (Duvall's bluff, Letterman).

A tree 18 to 25 or, exceptionally, 37 meters in height, with a trunk rarely exceeding 0.60 meter in diameter; generally on limestone hills, rarely extending into the bottom lauds, and reaching its greatest development in the basin of the lower Wabash river.

Wool heary, hard, not strong, brittle, elose grained, compact, satiny; layers of annual growth elearly marked by one to three rows of large open ducts; medullary rays numerous, obseure; color, light jellow streaked with brown, the sap-wood lighter; specifie gravity, 0.7184 ; ash, 0.78 ; largely used for flooring, in carriage-building, ete.

The inner bark, macerated, dyes blue.

197.-Fraxinus Oregana, Nuttall,

Sylva, iii, 59, t. 99 ; 2 ed. ii, 124, t. 99.-Torrey in Pacific R. R. Rep. iv, 128.-Newberry in Paeific R. R. Rep. vi, 25, 87.-Cooper in Smithsonian Rep. 1858, 260; Pacific R. R. Rep. xii², 28, 68; Am. Nat. iii, 407.-Koeh, Dendrologie, ii, 260.-Gray in Bot. California, i, 472 ; Syn. Fl. N. America, ii1, 76.-Vasey, Cat. Forest Trees, 20.
F. pubescens, var. Hooker, Fl. Bor.-Am. ii, 51.
F. grandifolia, Bentham, Bot. Sulphnr, 33 .

OREGON ASH.

Shores of Puget sound, south through Washington territory and Oregon west of the eastern valleys of the Cascade mountains, along the California Coast ranges to San Franciseo bay and the western slopes of the Sierra Nevada to the San Bernardino and Hot Spring monntains, California.

A tree sometimes 24 meters in height, with a trank rarely exceeding 0.60 meter in diameter; moist soil, generally along streams, and reaching its greatest development in the bottom lands of southwestern Oregon.

Wood light, hard, not strong, brittle, coarse-grained, compact, containing many large, open, scattered ducts, the layers of annual growth strongly marked with sereral rows of similar ducts; medullary rass numerous, thin; color, brown, the sap-wood lighter; specific gravity, 0.5731 ; ash, 0.34 ; speeific gravity of the lighter sap-woed, 0.5630 ; used in the manufacture of furuiture, for the frames of carriages and wagons, in cooperage, for fuel, ete.

> 198.-Fraxinus sambucifolia, Lamarck,

Dict. ii, 549.-Muhlenberg \& Willdenow in Ncue Sclıriften Gesell. Nat. Fr. Berlin, iii, 393.-Willdenow, Spee. iv, 1099 ; Enum. 1059 ; Berl. Banmz. 150.-Vahl, Enum. i, 51.-Persoon, Syn. ii, 605.-Desfontaines, Hist. Arb. i, 103.-Mosc in Mem. Inst. 1808, 211.-Nouveau Dnhamel, iv, 60.—Aiton, Hort. Kew. v, 475.-Michaux f. Hist. Arb. Am. iii, 122, t. 12; N. American Sylva, 3 ed. iii, 159, t. 122.Pursh, Fl. Am. Sept. i, 8.-Rcmer \& Schultes, Syst. i, 279.-Nuttall, Genera, ii, 231.-Barton, Compend. Fl. Philadelph. ii, 192.Hayne, Dend. Fl. 224.-'Torrey, Compend. Fl. N. States, 371 ; Fl. N. York, ii, 126.-Beek, Bot. 232.-Eaton, Manual, 6 cd. 148.—Don, Miller's Dict. iv, 54.-Loudon, Arboretum, ii, 1234, f. 1057, 1058.—Spach, Hist. Veg. viii, ,299.-Hooker, Fl. Bor.-Am. ii, 50.-Eaton \& Wright, Bot. 147.-A. De Candollo, Prodr. viii, 278. - Emerson, Trees Massaehusetts, 338; 2 ed, ii, 381 \& t.-Darlington, Fl. Cestrica, 3 ed. 239.-Cooper in Smithsonian Rep. 1858, 253.-Lesquereux in Owen's 2d Rep. Arkansas, 382.-Wood, Cl. Book, 598; Bot. \& Fl. 277.—Gray, Mauual N. States, 5 ed. 402; Syn. Fl. N. America, iil, 76.-Vascy, Cat. Forest Trees, 20.-Ridgway in Proc. U. S. Nat. Mus. 1882, 69.-Bell in Gcological Rep. Canada, 1879-80, 48c.
F. nigra, Marshall, Arbustum, 51 .
F. Nova-Anglice, Wangenheim, Amer. 51.
F. crispa, Hort.
F. sambucifolia, var. crispa, Loddiges, Cat. 1836.-Loudon, Arboretum, ii, 1234.

IT. Americana, var. sambucifolia, Browne, Trees of America,393.

BLAOK ASH. HOOP ASH. GROUND ASH.
Southern Newfoundland, along the northern shores of the gulf of Saint Lawrence, southwesterly to the eastern shores of lake Winnipeg, south through the northern states to New Castle counts, Delaware, the mountains of Virginia, southeru Illinois, and northwestern Arkansas.

A tree 25 to 30 meters in height, with a trunk 0.30 to 0.60 meter in diameter; swamps and low river banks; the most northern representative of the genus in America.

Wood heavy, soft, not strong, tough, rather coarsc-grained, compact, durable, separating easily into thin layers; layers of annual growth strongly marked by several rows of large open duets; medullary rays mumerous,
thin; color, dark brown, the sap-wood light brown, or often nearly white; specific gravity, 0.6318; ash, 0.72; specifie gravity of the heavier sap-wood, 0.7465 ; largely used for interior finish, fencing, barrel hoops, in cabinetmaking, and the inamfacture of baskets.

Note.-Fraxinus dipetala, Hooker \& Arnott, of the California Coast ranges and the western slopes of the soathern Sicrra Nevadas, and F : cuspidata, Torrey, of the valley of tho Rio Grande, do not attain arboroscent habit or dimensions.

The following, characterized by Bose in Mem. Inst. 1808, mainly from the foliage of garden specinens of supposed North American origin, cannot le safely referred to our species: F. alba, cinerea, elliptica, fusca, mixta, nigra, orata, pannosa, pulrerulenta, Richardi, rubicunda, and rufa.

199.-Forestiera acuminata, Poiret,

Soppl. ii, 664.-Hayne, Deud. Fl. 194.-Nuttall in Traus. Am. Phil. Soc. new ser. v, 176.-Toriey in Nicollet's Rep. 154.-Eugelmann $\&$ Gray in Jour. Boston Soc. Nat. Hist. v, 262.-Chapman, Fl. S. States, 370.-Lesquereux in Owen's $2 d$ Rep. Arkansas, 382.Wood, Cl. Book, 600 ; Bot. \& Fl. 277.-Gray, Manal N. States, 5 ed. 402; Proc. Am. Acad. iv, 363 (excl. var.); Syn. Fl. N. America, ii ${ }^{1}$, 76.-Koch, Dendrologio, ii, 224.-Vasey, Cat. Forest Trees, 20.

Adelia acuminata, Michaux, Fl. Bor.-Am. ii, 225, t. 48.
Borya acuminata, Willdenow, Spec. iv, 711.—Aiton, Hort. Kow. 2 ed. 366.-Elliott, Sk. ii, 675.-Eaton, Manual, 6 ed. 57.Eaton \& Wright, Bot. 159.
Borya ligustrina, Willdenow, Spec. iv, 711, in part.—Aiton, Hort. Kew. 2 ed. 366, in part.-Gray, Manual N. States, 2 ed. 358, in part.
Borya nitida, Willdenow, Euum. Suppl. 66.
Bigelovia acuminata, Smith in Rees' Cycl. xxxix, No. 4.

PRIVET.

Western Georgia, western Florida, through the Gulf states to the valley of the Colorado river, Texas, and northward throngh Arkansas to southern Missouri and Cahokia creek, Illinois (opposite Saint Louis).

A small tree, 6 to 8 meters in height, with a trunk rarely 0.20 meter in diameter; borders of swamps and streams, in low, wet soil; common in the Gulf region, near the coast, and reaching its greatest development in southern Arkansas.

Wood heavy, soft, not strong, brittle, close-grained, compact; medullary rays numerous, thin, rather conspicuous; color, light yellow streaked with brown; the sap-wood lighter ; specific gravity, $0.6345 ;$ ash, 0.72 .

200.-Chionanthus Virginica, Linnæus,

Spec. 1 ed. 8.-Marshall, Arbustinm, 33.-Walter, Fl. Caroliniana, 60.-Wangenhcim, Amer. 92.-Aiton, Hort. Kew. iii, 14; 2 ed. i,23.Lamarck, Ill. i, 30, t. 9, f. 1.-Willdenow, Spec. i, 46 ; Enum. 14; Berl. Baumz. 87.-Ahbot, Insects Georgia, ii, t. 98.-Michaux, Fl. Bor.-Am. i, 3.-Vahl, Enum. i, 44.-Persoon, Syn. i, 9.-Desfontaines, Hist. Arb. i, 111.-Pursh, Fl. Am. Sept. i, 7.-Ræmer \& Schultes, Syst. i, 72.-Nuttall, Genera, i, 5; Sylva, iii, 56, t. 88; 2 ed. ii, 122, t. 88.-Elliott, Sk. i, 6.-Hayne, Dend. Fl. 2.-Torrey, Fl. U. S. i, 7; Compeud. Fl. N. States, 17.-Sprengel, Syst. i, 34.-Loddiges, Bot. Cab. t. 1264.-Guimpel, Otto \& Hayue, Abb. Holz. 93, t. 73.-Beek, Bot. 232.-Eaton, Manual, 6 ed. 92.-Don, Miller's Diet. iv, 50.-Leudon, Arboretum, ii, 1206, f. 1029, 1030.-Spach, Hist. Veg. viii, 259.-Dietrich, Syn. i, 37.-Eaton \& Wright, Bot. 193.-A. De Candolle, Prodr. viii, 295.-Brownc, Trees of America, 371.-Darlington, Fl. Cestrica, 3 ed. 238.-Darby, Bot. S. States, 429.-Cooper in Smithsonian Rep. 1858, 253.-Chapman, Fl. S. States, 369.-Curtis in Rep. Geological Surv. N. Carolina, 1860, iii, 95 .-Lesquereux in Owen's 2d Rep. Arkansas, 382.-Wood, Cl. Book, 599; Bot. \& Fl. 276.-Porcher, Resourecs S. Forests, 494.-Gray, Manual N. States, 5 ed. 401 ; Hall's Pl. Texas, 19; Syn. Fl. N. America, ii1, 77.-Koch, Dendrologie, ii, 262.-Young, Bot. Texas, 452.-Vasey, Cat. Forest Trees, 20.
O. trifida, Mœnch, Meth. 437.
C. Virginica, var. latifolia, Vahl, Enum. i, 44.-Aiton, Hort. Kew. 2 ed. i, 23.-Pursh, Fl. Am. Sept. i, 8.-Hayue, Dend. Fl. 2.-Don, Miller's Dict. iv, 50.
C. Virginica, var. angustifolia, Vahl, Enum. i, 44.-Aiton, Hort. Kew. 2 ed. i, 23.-Hayne, Dend. Fl. 2.-Watson, Dend. Brit. i, t. 1.-Don, Miller's Dict. iv, 50.
O. Virginica, var. montana, Pursh, Fl. Am. Sept. i, 8.-Torrey, Fl. U. S. i, 7; Compend. Fl. N. States, 17.-Beck, Bet. 232.Eaton, Manual, 6 ed. 92.-Eatou \& Wright, Bot. 194.—A. De Candolle, Prodr. viii, 295.
O. Virginica, var. maritima, Pursh,Fl. Am. Sept. i, 8.-Torrey, Fl. U. S. i, 7; Compend. Fl. N. States, 17.-Beck, Bot. 232.Eaton, Manoal, 6 ed. 92.—Don, Miller's Dict. iv, 50.—Eaton \& Wright, Bot. 194.—A. Do Candolle, Prodr. viii, 295.— Regel, Gartenflora, xvi, t. 564.
C. maritima, Loddiges, Cat. 1836.
C. heterophylla, Rafinesque, New Fl. \& Bot. i, 86.
C. longifolia, Rafinesque, New Fl. \& Bot. i, 87.
C. montana, Rafinesque, New Fl. \& Bot. i, 88.
C. angustifolia, Rafinesque, New Fl. \& Bot. i, 88.

FRINGE TREE. OLD MAN'S BEARD.
Lancaster county and the banks of the Brandywine, Chester counts, Pennsylvania, south to Tampa bay, Florida, and through the Gulf states to southern Arkansas and the valley of the Brazos river, Texas.

A small tree, 6 to 10 meters in height, with a trunk 0.15 to 0.20 meter in diameter; generally along streams in low, rich soil ; very common in enltivatiou.

Wood heary, hard, elose-grained, compaet; layers of auuual growth marked by several rows of large open ducts, counected as in that of Bumelia by branching gronps of similar duets; medullary rays numerous, obscore; color, light brown, the sap-wood lighter; specific gravity, 0.6372 ; ash, 0.51 .

A decoction of the tonic and auti-periodic bark of the root sometimes employed in the treatment of intermittent fevers (Am. Jour. Pharm. xlir, 39S.-U. S. Dispensatory, 14 ed. 1612).

201.-Osmanthus Americanus, Bentham \& Hooker,

Genera, ii, 667.-Gray, Syn. Fl. N. America, iif, i, 78.
Olea Americana, Linnæns, Mant. 24.-Marsliall, Arbustum, 98.-Lamarck, Dict. iv, 543; Ill. i,28.-Aiton, Hort. Kew. 1, 14; 2 cd. i, 22.-Willdenow, Spec. i, 45 ; Ennm. 13,-Michanx, Fl. Bor.-Am. ii, 222.-Vahl, Ennm. i, 41.-Persoon, Syn. i, 9.-Desfontaines, Hist. Arb. i, 112.-Nouveau Dnhamel, v, 67.—Michanx f. Hist. Arb. Am. iii, 50, t. 6; N. American Sylva, ii, 3 ed. 128, t. 86.-Pnrsh. Fl. Am. Sept. i, 7.-Rœmer \& Schultes, Syst. i, 70.-Rafivesque, Fl. Ludoviciana, 38.Nuttall, Genera, i, 5.-Elliott, Sk. i, 5.-Sprengel, Syst. i, 34.—Croom in Am. Jour. Sci. 1 ser. xxvi, 315.-Dietrich, Syv. i, 37.-Don, Miller's Dict. iv, 48.-Spach, Hist. Veg. viii, 267.-Eaton, Manual, 6 ed. 239.-Dietrich, Syn. i, 37.-Eaton \& Wright, Bot. 333.-A. De Candolle, Prodr. viii, 28i.-Browne, Trees of America, 381.—Darby, Bot. S. States, 429.Cooper in Smithsonian Rop. 1358, 253.-Chapuan, Fl. S. States, 369.—Curtis in Rep. Geological Surv. N. Carolina, 1860, iii, 57.-Lesqnereux in Owen's 2d Rep. Arkansas, 382.—Woed, Cl. Book, 599; Bot. \& Fl. 276.-Porcher, Resonrces S. Forests, 493.-Gray, Manual N. States, 5 ed. 401.-Young, Bot. Texas, 451.-Vasey, Cat. Forest Trecs, 20.

DEVIL WOOD.
Sonthern Virginia, sonth to cape Canaveral and Tampa bay, Florida, and through the Gulf states to eastern Louisiana, near the coast.

A small tree, 10 to 15 meters in height, with a trunk sometimes 0.30 meter in diameter; borders of streams and pine-barren swamps, in moist, rich soil.

Wood heavy, very hard and strong, close-grained, nnwedgeable, diffienlt to work, containing many radiating groaps of open eells parallel to the thin, obscure, medullary rays; color, dark brown, the thiek sap-wood light brown or yellow; specific gravity, 0.8111 ; ash, 0.46 .

BORRAGINACEA.

202.-Cordia Sebestena, Linnæus,

Bpec. 1 ed. 190.-Jacquin, Amer. t. 42.—Lamarck, Ill. i, 421, t. 96, f. 1.-Willdenow, Spec. i, 1073; Enum. 248.—Andrews, Bot. Rep. iii, 157, t. 157.-Poirct in Lamarck, Dict. vii, 45.—Persoon, Syn. i, 166.—Trattinick, Archiv.t. 354.—Ramer \& Schultes, Syst. iv, 452.Spreugel, Syst. i, 649.-Bot. Mag. t. 794.-Aiton, Hort. Kew. 2 ed. ii, 8.-Dcscourtilz, Fl. Antilles, iv, 205, t. 277.-C山anisso in Linnma, vi, 755.—Andubon, Birds, t. 177.—Don, Miller's Dict. iv, 375.—Dietrich, Syv. i, 611.-Nuttall, Sylva, iii, 81, t. 106; 2ed. ii, 145, t. 106.Cooper in Smithsonian Rep. 1858, 265.-Grisebach, Fl. British West Indies, 478.-Gray, Syn. Fl. N. Amorica, iily 180.

IC. juglandifolia, Jacquin, Amer. t. 43.
O. spcciosa, Willdenow in Rœmer \& Schultes, Syst. iv, 799.-A. De Candolle, Prodr. ix, 476.

Sebestena scabra, Rafinesque, Sylva Telluriana, 38.

GEIGER TREE.

Semi-tropical Florida, on the southern keys; raro; in the West Indies.
A small tree, sometimes 8 meters in height, with a trunk 0.06 to 0.08 meter in diameter; rich hummock soil; ornamental and becoming a large tree in cultiration.

Wood heary, hard, close-grained, compact, satiny, containing few scattered, small, open ducts; medullary rays very numerous, thin, conspicuons; color, dark brown, the thick sap-wood light brown or yellow; specific gravity, 0.7108 ; ash, 4.22.

8 FOR

203.-Cordia Boissieri, A. De Candolle,

Prodr. ix, 478.-Terrey, Bet. Mex. Boundary Survey, 135.-Cooper in Smiţhsonian Rep. 1860, 442.-Gray, Syn. Fl. N. America, ii', 180.
Texas, valley of the Rio Grande, westward to New Mexico and southward into Mexico.
A small tree, rarely 8 meters in height, with a trunk 0.12 to 0.15 meter in diameter, or more often reduced to a low slırub.

Wood light, rather soft, close-grained, compact, containing many small seattered open ducts; medullary rays very numerous, thin, conspicuons; color, dark brown, the sap-wood light brown; specifie gravity, 0.6790 ; ash, 3.53.

204.-Bourreria Havanensis, Miers,

Bot. Coutrib. ii, 238.—Gray, Syn. Fl. N. Ameriea, ii ${ }^{1}$, 181.
Ehretia Havanensis, Willdenow in Rœmer \& Sehnltes, Syst. iv, 805.-Humboldt, Bonpland \& Kunth, Nov. Gen. \& Spec. vii, 206.-A. De Candolle, Prodr. ix, 508.

Ehretia tomentosa, Lamarek, Ill. i, 425.-Poiret, Suppl. ii, 1.—Sprengel, Syst. i, 648.—Dietrieh, Syn. i, 630.
B. tomentosa, Don, Miller's Diet. iv, 390.
B. recurva, Miers, Bot. Contril. ii, 238.
B. orata, Miers, Rot. Contril. ii, 238.

Ehretia Bourreria, Chapman, Fl. S. States, 329 [not Linnæus].-Vasey, Cat. Forest Trees, 19.
B. tomentosa, var. Havanensis, Grisebach, Fl. British West Indies, 482.

STRONG BARK.

Semi-tropical Florida, southern keys (Key Largo, Elliott's Key, etc.); in the West Indies.
A small tree, 10 or, execptionally, 15 meters (Key Largo, Curtiss) in height, with a trunk 0.20 to 0.25 meter in diameter; the large specimens generally hollow and defective.

A form (generally shrubby in Florida) with scabrous or hispidulons leaves is-
viar. radula, Gray, Syn. Fl. N. America, ii¹, 181.
Ehretia radula, Poiret, Suppl. ii, 2.-Dietrich, Syn. i, 630.-A. De Candolle, Prodr. ix, j06.-Chapman, F1. S. States, 329.
B. radula, Don, Miller's Dict. iv, 390.-Chamisso in Linnæa, viii, 120.-Miers, Bot. Contrib. ii, 238.

Cordia Floridana, Nuttall, Sylva, iii, 83, t. 107; 2 ed. ii, 147, t. 107.-Cooper in Smithsonian Rep. 1858, 265.
Wood heavy, very hard, stroug, very elose-grained, compact, susceptible of a beautifnl polish; medullary rays numerous, obscure; color, brown streaked with orange, the sap-wood not distinguishable; specific gravity, 0.8073 ; ash, 2.79.

205.-Ehretia elliptica, De Candolle,

Prodr. ix, 503.--Torrey, Bot. Mex. Boundary Survey, 136.—Cooper in Smithsonian Rep. 1858, 206.-Miers, Bot. Contrib. ii, 228, t. 85.Gray, Syn. Fl. N. Ameriea, ii', 181.

KNACKAWAY. ANAQUA.

Texas, Corpus Christi to New Braunfels (Mohr), and southward to the valley of the lower Rio Grande.
A tree 10 to 15 meters in Leight, with a trunk sometimes 0.50 meter in diameter; generally along borders of streams, in rich loam, and reaching its greatest development between the Guadalupe and Nueces rivers, 50 to 75 miles from the Gulf coast.

Wood heary, hard, not strong, very close-grained, compact, unwedgeable, containing many small open ducts arranged in mumerous concentric rings within the layers of annual growth, these marked by soveral rows of larger duets; mednllary rays numerous, thin ; color, light brown, the sap-wood a little lighter; specific gravity, 0.6440 ; ash, 1.31.

- BIGNONIACE \mathbb{E}.

206.-Catalpa bignonioides, Walter,

F]. Caroliniana, 64.-De Candolle, Prodr. ix, 226.-Darlington, Fl. Cestrica,3 ed. 182.-Cooperin Smithsonian Rep. 1858, 253.-Chapman, Fl. S. States, 285.-Curtis in Rep. Geological Surv. N. Carolina, 1860, iii, 50.-Wood, Cl. Book, 513 ; Bot. \& FI. 218.-Burean, Mon. Bignoniaceæ, t. 25.-Gray, Manual N. Statcs, 5 ed. 321, in part; Syn. Fl. N. America, iil', 319, in part.-Koch, Dendrologie, ii, 302.Young, Bet. Texas, 385.-Vasey, Cat. Forest Trees, 19, in part.-Guibeurt, Hist. Drogues, 7 ed. ii, 548.

Bignonia Catalpa, Linnæus, Spec. 1 ed. 622 (excl. syn.).-Lamarck, Dict. i, 417.-Marshall, Arbustam, 21.-Wangenheim, Amer. 58, t. 20, f. 45.-Willdenew, Spec. iii, 289 ; Enum. 649.-Michaux, Fl. Ber.-Am. ii, 25.-Desfoutaines, Hist. Arb. i, 189.-Michaux f. Hist. Arb. Aun. iii, 217, t. 6; N. American Sylva, 3 ed. ii, 55, t. 64.-Barten, Prodr. Fl. Philadelph. 66.-Rafinesque, Fl. Ludoviciana, 159.-Porcher, Resonrces S. Forests, 460.-Maut \& Decaisne, Bot. English ed. 602 \& f .
O. cordifolia, Jaume St. Hilaire in Nenvean Duhamel, ii, 13, in part (excl. t.5).-Barton, Compend. Fl. Philadelph. i, 9.Nuttall, Genera, i, 10.-Elliott, Sk. i, 24.-Torrey, Fl. U. S. i, 16 ; Compend. Fl. N. States, 20.-Beck, Bet. 245.Eaton, Manaal, 6 ed. 85.-Darlington, Fl. Cestrica, 2 ed. 363.—Spach, Hist. Veg. ix, 132.—Eateu \& Wright, Bot. 184.— Darby, Bet. S. States, 439.
C. syringafolia, Sims, Bet. Mag. t. 1094.-Schkuhr, Handb. t. 175.-Aiton, Hort. Kew. 2 ed. i, 24.-Pursh. Fl. Am. Sept. i, 10.-Eaton, Manal, 8; 6 ed. 85.-Meyer, Prim. Fl. Esseq. 3.-Hayne, Dend. Fl. 2.-Loddiges, Bot. Cab. t. 1285.Sprengel, Syst. i, 70.-Sertum Botanicum, i, t.-Lindley, Fl. Med. 499; Penn. Cycl. vi, 363.-Don, Miller's Dict. iv, 230.— Loudou, Arboretum, iii, 1261 \& t.—Dietrich, Syn. i, 82.-Nnttall, Sylva, iii, 77; 2 ed. ii, 140.—Torrey, Fl. N. York, ii, 25.Brewne, Trees of America, 406.
O. communis, Dn Mont, Bot. Cult. 2 ed. iii, 242.

CATALPA. CATAWBA. BEAN TREE. CIGAR TREE. INDIAN BEAN.

Southwestern Georgia, valleys of the Little and Apalachicola rivers, western Florida, and through central Alabama and Mississippi.

A low, mneh-branched tree, 12 to 15 meters in height, with a trunk 0.50 to 0.75 meter in diameter; borders of streams and swamps, in rich loam; rare and local; long enltivated for ornament, and now extensively naturalized throughout the middle and southern Atlantic states.

Wood light, soft, not strong, coarse-grained, compact, very durable ; layers of ammal growth elearly marked by many rows of large open ducts; medullary rays numerous, obsenre; color, light brown, the thin (one or two years') sap-wood lighter, often nearly white ; specific gravity, 0.4474 ; ash, 0.38 ; used and highly valued for fence posts, rails, etc.; a reputed emetic.

A decoction of the seeds and dried bark oceasionally used in cases of asthma and bronchitis (Am.Jour. Pharm. xlii, 204.—U. S. Dispensatory, 14 ed. 1608.-Nat. Dispensatory, 2 ed. 367).

207.-Catalpa speciosa, Warler;

Engelmann in Coulter's Bet. Gazette, v, 1.—Sargent in London Gard. Cbronicle 1879, 784.—Ridgway in Proc. U. S. Nat. Mus. 1882, 70.Barnes in Conlter's Bot. Gazette, ix, 74.
C. cordifolia, Janme St. Hilaire in Neuvean Duhamel, ii, 13, in part, t. 5.-Nuttall in Trans. Am. Phil. Soc. 2 ser. v, 183.
C. bignonioides, Lesquereux in Owen's 2 d Rep. Arkansas, 375 [not Walter.]-Gray, Manual N. States, 5 ed. 321, in part; Syn. Fl. N. America, ii1, 319, in part.-Vasey, Cat. Forest Trees, 19, in part.—Broadhead in Coulter's Bot. Gazette, iii, 59.

WESTERN OATALPA.

Valley of the Vermilion river, Illinois, through southern Ininois and Indiana, western Kentneky and Tenuessee, sontheastern Missouri and western Arkansas̊.

A tree 20 to 35 or, exceptionally, 45 meters in height (Ridgway), with a trunk 1 to 2 meters in diameter; borders of streams and swamps, in rich botton lands; common and reaching its greatest development in the valleg of the lower Wabash river; cultivated and now widely naturalized throngh southern Arkansas, western Louisiana, and eastern Texas.

Wood light, soft, not strong, coarse-grained, compact, very durable in contact with the soil; layers of ammal growth elearly marked loy seceral rows of lange open ducts; medullary rays numerous, obsenre; color, brown, the thin sap-wood lighter; specific gravity, 0.4165 ; ash, 0.39 ; largely nsed for railway ties, fence posts, rails, ete., and adapted for cabinet work and interior finish.

```
208.-Chilopsis saligna, D. Don,
```

Edinburgh Phil. Jour. ix, 261.—Don, Miller's Dict. iv, 224.—Dictrich, Syn. iii, 566.-Gray in Bot. California, i, 587; S5n. Fl. N. Amarica, ii', $3: 0$.-Vasey, Cat. Forest Trecs, 19.-Rothrock in Wheeler's Rep. vi, 217.-Homsley, Bot. Am.-Cent. ii, 494.-Rusby in Bull. Torrey Bot. Club, ix, 54.

Bignonia linearis, Cavnnilles, Icon. iii, 35, t. 269.
C. linearis, De Candolle, Prodr. ix, 227.-Cooper in Sinithsonian Rep. 1858, 266.
O. glutinosa, Eugelmana in Wislizenus' Rep. 10.

DESERT WILLOW.

Valley of the Rio Grande, Texas (Laredo, Letterman), west through southern New Mexice and Arizona to the San Gorgonio pass and the Siun Felipe eañon, San Diego county, California; sonthward into northern Mexieo.

A small tree, 6 to 8 meters in height, with a trunk sometimes 0.30 meter in diameter; mesas and banks of depressions and water conrses in the desert; the large specimens generally hollow and defective.

Wool light, soft, not strong, close-grained, checking in drying, containing many scattered, small, open ducts, the layers of anmual growth marked by several rows of larger dnets; mednllary rays numerons, obseure; color, brown streaked with yellow, the sap-wood much lighter; specific gravity, 0.5902 ; ash, 0.37 .

209.-Crescentia cucurbitina, Linnsens,

Mant. 2 ed. 250.-Swartz, Obs. 234.-Willdenow, Spec. iii, 311.-Persoon, Syn. ii, 168.-Aiton, Hort. Kew. 2 ed. ir, 37.-Grertner f. Fruct. Suppl. 230, t. $2: 23$. -Dietrich, Syu. iii, 56 ín.-Don, Miller's Dict. iv, 232. -De Candolle, Prodr. ix, 246.-Secmann in Jour. Bot. \& Kow Gard. Misc. vi, 274 ; ix, 142.-Walpers, Aun.v, 5e4.-Grisebach, Fl. British West Indios, 445.-Hemsloy, Fl. Am. Cent. ii, 489 .
C. orata, Burmann, Fl. Ind. 132.
C. latifolia, Lamarek, Diet. i, 558; II. iii, 96, t. 547.-Desconrtik, Fl. Antilles, iii, 143, t. 182.
C. lethifera, Tussac, Fl. Antilles, iv, 50, t. 17 .
O. toxicaria, Tussac, Fl. Antilles, iv, 50, t. 17.
C. obovata, Bentham, Bot. Sulphur, 130, t. 46 .

black calabash tree.

Semi-tropical Florida, near Miani, and on Little river (Garber, Curtiss); in the West Indies.
A small tree, in Florida rarels exceeding 6 meters in height, with a trunk 0.10 to 0.12 meter in diameter.
Wood heary, hard, very close-graiued, compact, containing many small, regularly-distributed, open duets; medullary rays thin, hardly distinguishable; color, light brown tinged with orange, the sap-wood lighter; specifie gravity, 0.6319 ; ash, 1.35 .

VERBENACEA.

210.-Citharexylum villosum, Jacquin,

Coll. i, 72; Icon. Rar. t. 118.-Persoon, Syn. ii, 142.-Aiton, Hort. Kew. 2 od. iv, 36.-Dietrieh, Syn. iii, 614.—Schauer in Do Candollo, Prodr. xi, 610.-Walpers, Rep. iv, 76.-Chapman, Fl. S. States, 309.-Vasey, Cat. Forest Trees, 10.-Gray, Syn. Fl. N. America, ii', 340.-Housley, Bot. Am.-Cont. ii, 537.

FIDDLE WOOD.

Semi-tropical Florida, cape Canaveral to the southern kegs (Pumpkin Key, Ourtiss); and through the West Indies to Mexico.

A small tree, rarcly exceeding in Florida 6 meters in heirnt, with a trunk 0.10 to 0.15 meter in diameter, or north of bay Biscayne rednced to a low, mueh-branched shrub; commou and reaching within the United States its greatest develop nent on the shores of hay Biscayne, Lost Man's river, etc.

Wood heary, exceedingly hard, strong, elose-grained, compact, susceptible of a fine polish, containing numerous small, regularly-distributed, open lucts; color, clear bright red, the sip-wood lighter; specific gravity, 0.8710 ; ash, 0.52 .

211.-Avicennia nitida, Jacquin,

Amer. 177, t. 112, f. 1.-Persoon, Syn. ii, 143.-Chamisso in Linnea, vii, 370.-Sprengel, Syst. 11, 768.-Martins, Mat. Med. Brasil. 49; Bot. Brasil. ix, 303.-Dietrich, Syn. iii, 619.-Schaner in De Candolle, Prodr. xi, 699.-Grisebach, Fl. British West Indics, 502.Gray, Syn. Fl. N. America, ii1, 341.
A. tomentosa, Meyer, Prim. Fl. Esseq. 221 [not Jaequin].—Nuttall, Sylva, iii, 79, t. 105; 2 ed. ii, 143, t. 105.-Cooper in
Smithsonian Rep. 1858, 265.-Clapman, Fl. S. States, 310.-Vasey, Cat. Forest Trees, 19.
A. oblongifolia, Nuttall 7; Chapmau, Fl. S. States, 310.-Vasey, Cat. Forest Trees, 19.
BLACK MANGROVE. BLACK TREE. BLACK WOOD.

Florida coast, Saint Augnstine to the southern keys, and from Cedar Keys to cape Sable; deltas of the Mississippi river; throngh the West Indies to Brazil.

A tree 6 to 9 meters in height, with a trunk 0.25 to 0.30 meter in diameter, or, exceptionally, 20 to 23 meters in height, with a trunk 0.60 meter in diameter; north of Mosquito inlet reduced to a low shrub; common along saline shores and swamps, throwing up many leafless, corky stems, and forming, with the red mangrove (Rhizophora), impenetrable thickets, or, more rarely, scattered and round-headed; reaching its greatest development in the United States on the west coast of Florida, north of cape Sable.

Wood very heavy, hard, rather coarsegrained, compact, the eccentric layers of annual growth marked by several rows of large open ducts; medullary rays numerons, thin; color, dark brown or nearly black, the sapwood brown; specific gravity, 0.9138 ; ash, 2.51.

NYOTAGINACEA.

212.-Pisonia obtusata, Swartz,

Fl. Ind. Oce. 1960.-Jacquin, Hort. Schœnb. iii, 36, t. 314.-Lamarck, Ill. jii, 449, t. 861.-Dietrich, Syn. ii, 1226.-Choisy in Do Candolle, Prodr. xiii ${ }^{2}$, 443.-Chapman, Fl. S. States, 374.-Grisebach, Fl. British West Indies, 71.-Vasey, Cat. Forest Trees, 21.

PIGEON WOOD. BEEF WOOD. CORK WOOD. PORK WOOD.
Semi-tropieal Florida, eape Canaveral to the southern keys; through the West Indies.
A tree 9 to 15 meters in height, with a trmk 0.25 to 0.45 meter in diameter; saline shores and beaches, reaching its greatest development in Florida on Elliott's and Old Rhodes Keys.

Wood heary, rather soft, weak, coarse-grained, compact, containing numerous large open ducts; layers of annual growth and medullary rays hardly distinguishable; color, yellow tinged with brown, the sap-wood darker; specific gravity, 0.6529 ; ash, 7.62 ; probably of little value.

Note.-The semi-prostrate and vine-like trunks of P. aculeata, Linnæus, of the same region, although attaining a considerable size, cannot be properly considered arborescent.

POLYGONACE \nrightarrow.

213.-Coccoloba Floridana, Meisner;

De Candolle, Prodr. xiv, 105.-Chapman, Fl. S. States, 392.—Porcher, Resources S. Forests, 376.—Vasey, Cat. Forest Trecs, 21.
C. parvifolia, Nuttall, Sylva, iii, 25, t. 89; 2 ed. ii, 95 , t. 89 [not Poiret].-Cooper in Smithsonian Rep. 1858, 265.

PIGEON PLUM.

Serni-tropical Florida, cape Canaveral to the southern keys, and from cape Romano to cape Sable.
A tree 15 to 18 meters in height, with a trunk 0.30 to 0.60 meter in diameter; one of the largest and most common trees of the region.

Wood very heavy, exceedingly lard, strong, brittle, very close-grained, inclined to check in drying, containing few small, scattered, open ducts; layers of annual growth and numerous medulary rays obscure; color, rich dark brown tinged with red, the sap-wood lighter; specitic gravity, 0.9835 ; ash, 5.03 ; valuable and somewhat used for cabinet-making.

The edible and abundant grape-like fruit, ripening in February and Mareh, is eagerly devoured by raccoons and other animals.

214.-Coccoloba uvifera, Jacqain,

Amer. 112, t. 73.-Gartner, Fruct. i, 214, t. 45, f. 3.-Aiton, Hort. Kew. ii, 34; 2 ed. ii, 421.-Lamarck, Ill. ii, 445, t. 316, f. 2.-Willdenow, Spec. ii, 457 ; Ennm. 431.-Poiret in Lamarck, Dict. vi, 61 .-Persoon, Syn. i, 442.-Titford, Hort. Bot. Am. 61.-Aiton, Hort. Kew. 2 ed. ii, 421.-Sprengel, Syst. ii, 252.-Descourtilz, Fl. Antilles, ii, 41, t. 77.-Bot. Mag. t. 3i30.-Rafinesque, Fl. Telluriana, il, 34.-Spach, Hist. Veg. x, 542.-Dietrich, Syn. Fl. ii, 1326.-Nattall, Sylva, iii, 23, t. 88; 2 ed. ii, 93, t. 88.-Carson, Med. Bot. il, 21, t. 67.-Meisner in De Candolle, Prodr. xiv, 152; Bot. Brasil. v1, 42.-Cooper in Smithsonian Rep. 1858, 265.-Chapman, Fl. S. States, 391.-Porcher, Resonrces S. Forests, 376.-Grisebach. Fl. British West Indies, 161.

Polygonum uvifera, Limmans, Spec. 1 cd, 365.

SEA GIRAIPI.

Semi-tropical Florida, Mosquito inlet to the southern keys, west coast, Tampa bay to cape Sable; through the West Indies to Brazil.

A low tree, rarely exceeding in Florida 4 meters in height, with a gnarled and coutorted trunk often 0.90 to 1.20 meter in diameter, or reduced to a low, gencrally prostrate shrub; saline shores and beaches; common.

West Indian forms, differing in the shape of the leaves, etc., are-
var. ovalifolia, Meisaer, l. c.
var. Lcganensis, Meisner, l. c.
C. Toogancnsis, Jacquin, Amer. 113, t. 178, f. 33.

Wood very heavy, hard, very close-grained, inclined to check in drying, susceptible of a beautiful polish, containing few seattered, rather small, open ducts; layers of annnal growth and nnmerous medullary rays hardly distingnishable; color, rich darli brown or violet, the sap-wood lighter; specific gravity, 0.9635 ; ash, 1.37 ; valuable for cabinet-making.

The edible fruit of agreeable subacid flavor.

> LAURACE \mathbb{E}.
> 215.-Persea Carolinensis, Nees,

Syst. Laurinarum, 150.—Spach, Hist. Veg. x, 492.—Dietrieh, Syn. ii, 1339.-Cooper in Smithsonian Rep. 1858, 254.-Chapman, Fl. S. States, 63.-Curtis in Rep. Geological Surv. N. Carolina, 1860, iii, 63.-Wood, Cl. Book, 620; Bot. \& Fl. 2y0.-Meisner in De Candolle, Prodr. xv^{1}, 50 -Gray, Manual N. States, 5 ed. 422 ; Hall's Pl. Toxas, 473.-Young, Bot. Texas, 473.-Vasey, Cat. Forest Trees, 21.

> Laurus Borbonia, Linnæns, Spec. 1 ed. 370, in part.-Marshall, Arbustam, 73.-Walter, Fl. Caroliniana, 133.-Aiton, Hort. Kew. ii, $39 ; 2$ ed. ii, 429.-Lamarck, Dict. iii, 450.-Willdenow, Spec. ii, 481.-Desfontaincs, Hist. Arb. i, 65.Nonvean Duhamel, ii, 163.
> Laurus Carolinensis, Catesby, Carol. i, 63, t. 63.-Michaux, Fl. Bor.-Am. i, 245.-Persoon, Syn. i, 449.-Desfontaines, Hist. Arb. i, 65.-Poiret, Snppl. iii, 321.-Willdenow, Emm. Suppl. 22.-Michanx f. Hist. Arb. Am. iii, 180, t. 2; N. American Sylva, 3 ed. ii, 116, t. 82.-Pursh, Fl. Am. Sept. i, 276.-Elliott, Sk. i, 461.-Sprengel, Syst. ii, 665.Torrey, Compend. Fl. N. States, 174.-Beck. Bot. 305.-Eaton, Manual, 6 ed. 199.-Loudon, Aboretum, iii, 1299, f. 1168, 1169.-Eaton \& Wright, Bot. 293.-Browne, Trees of America, 414.-Darby, Bot. S. States, 491.-Schnizlein, Icon. t. 106, f. -12.

Laurus Carolinensis, var. glabra, Pursh, Fl. Am. Sept. i, 276.
Laurus Carolinensis, var. obtusa, Pursh, Fl. Ann. Sept. i, 276.
Laurus Caroliniana, Poirct, Suppl. iii, 323.-Nuttall, Genera, i, 258.
P, Borbonia, sprengel, Syst. i, 268.
P. Carolinensis, var. glabriuseula, Meisner in De Candolle, Prodr. x>¹, 51.

RED BAY.

Sonthern Delaware?, south to bay Biscayne and cape Romano, Florida, and through the Gulf states to southern Arkansas and the valley of the Trinity river, Texas, near the coast.

A tree 15 to 20 melers in height, with a trunk 0.60 to 0.90 meter in diameter; borders of streams and swamps, in low, rich soil.

Wood heaty, hard, very strong, brittle, very close-grained, compact, susceptible of a beautiful polish, containing many evenly-distributed open ducts; medullary rays nunerous, thin ; color, bright red, the sap-wood much lighter; specific gravity, 0.6429 ; ash, 0.76 ; formerly somewhat uscd in ship-build ing, interior finish, and for. cabinet work.

Var. palustris, Chapman,

Fl. S. States, 393.
Laurus Carolinensis, var. pubescens, Pursh, Fl. Am. Sept. i, 276.
P. Carolinensis, var. pubescens, Meisner in De Candelle, Prodr. xr¹, 51.

North Carolina to Alabama, generally near the coast.
A small tree, 9 to 12 meters in height, with a trunk rarely exceeding 0.30 meter in diameter; low, sandy banles of pine-barren streams and swamps; well distinguished from the species by the longer peduneles densely clothed, as are the young shoots and under sides of the leares, with short, brown tomentum, and by the somewhat coarsergrained orange-colored wood.

Wood heary, soft, strong, elose-grained, compact, containing uumerons rather large open ducts; medullary rays numerous, thin; color, orange streaked with brown; the sap-w ood light brown or gray; specifie gravity, 0.6396 ; asl, 0.37.

216.-Nectandra Willdenoviana, Nees,

Syst. Laurinarum, 290, 321.-Meisner in De Candolle, Prodr. xvi², 165.
Laurus sanguinea, Swartz, Fl. Ind. Occ. ii, 707.
Laurus Catcsbyana, Michaux, Fl. Bor.-Am. i, 244.-Poiret, Suppl. iii, 321.-Pursh, Fl. Am. Sept. i, 275.-Elliott, Sk. i, 462.-Sprengel, Syst. ii, 265.-Faton, Manual, 6 ed. 199.—Eaton \& Wright, Bot. 294.-Darby, Bot. S. States, 491.

Laurus Catcsbæi, Persoon, Syn. i, 499.-Nuttall, Genera, i, 258.
Gymnobalanus Catesbyana, Nees, Syst. Laurinarum, 483.
N. Bredemeieriana, Nees in Linnæa, xxi, 505.

Persea Catesbyana, Chapman, Fl. S. States, 303.—Vasey, Cat. Forest Trees, 21.

LANCE WOOD.

Semi-tropical Florida, cape Canaveral and eape Romano to the southern keys; through the West Indies to . Central America.

A small tree, 6 to 9 meters in height, with a trunk rarely exceeding 0.15 meter in diameter; common aud reaching its greatest development in Florida on the shores of bay Biseayne and in the neighborhood of cape Romauo.

Wood heavy, hard, close-grained, ehecking in drying, containing many small, regularly-distributed, open ducts; medullary rays numerous, thin ; color, rich dark brown, the sap-wood bright yellow; specifie gravity, 0.7693 ; ash, 0.60.
217.-Sassafras officinale, Nees,

Handb. der Med. Pharm. Bot. ii, 418; Syst. Laurinarnm, 488.—Hayne, Arzn. i, 12, t. 19.-Lindley, Fl. Med. 338.—Dietrich, Syn. ii, 1357.Spach, Hist. Veg. x, 503.-Torrey, Fl. N. York, ii, 158.-Emerson, Trees Massachusetts, $359 ; 2$ ed. ii, 359 \& t.-Griffith, Med. Bet. 551.-Darlington, Fl. Cestriea, 3 ed. 251.-Spruce in Hooker's Lendou Jour. Bot. vii, 278.-Cooper in Smithsonian Rep. 1858, 254.-Chapman, Fl. S. States, 394.-Curtis iu Rep. Gcological Surv. N. Carolina, 1860, iii, 63.-Lesquerenx in Oweu's 21 Rep. Arkansas, 384.-Wood, Cl. Book, 620; Bot. \& Fl. 290.-Porcher, Resources S. Ferests, 350.-Meisner in De Candolle, Prodr. xví, 171.-Gray, Manaal N. States, 5 ed. 423 ; Hall's Pl. Texas, 19.-Koch, Dendrelogie, ii, 364.-Young, Bot. Texas, 473.-Vasey, Cat. Forest Trees, 21,-Broadbead in Coulter's Bot. Gazette, iii, 59.-Bentley \& Trimen, Med. Pl. iii, 220, t. 220.—Ridgway in Proc. U. S. Nat. Mns. 1882, 70.-Bell in Geological Rep. Canada, 1879-80,55c.

Laurus Sassafras, Linneus, Spec. 1 ed. 371.—Du Roi, IIarbk. i, BĒ6.-Kalm, Traveln, English ed. i, 146, 341.—Marshall, Arbustmn, 74.-Wangenheim, Amer. 82, t. 27, f. 56.-Walter, F1. Caroliniana, 134.-Aiton, Hort. Kew. ii, 40; 2 ed. ii, 429.-Lanarek, Dict. iii, 454.-Albet, Insects Georgia. i. t. 11.-B. S. Barton, Coll. 11, 19; ii, 27. -Willdenow, Spec. ii, 485; Enum. 435; Berl. Baumz. 208.-Michanx, Fl. Ber.-Am. i, M43.-Schkuhr, Handb. 349.-Persoon, Syn. i, 450.Robiu, Voyages, iii, 361.-Desfontaines, Hist. Arb. i, 66.-Titford, Hort. l3ot. Am. 130.-Michaux f. Hist. Arb. Am. iii, 173, t. 1; N. Ancricau Sylva, 3 ed. ii, 113, t. 81.-Pursh, M1. Am. Sept. i, 277. -Rafilesque, Fl. Ludoviciana, 25.Bigelow, Mel. Bot. ii, 142, t. 35 ; FI. Boston. 3 ed. 170.-Nuttall, Genera, i, 259 ; Sylva, i, 88 ; 2 erl. i, 104.-Elliott, Sk. i, 464.-Nces, Pl. Offic. t. 131.-Torrey, Fl. U. S. i, 40ヶ; Compend. FI. N. States, 174.-Descontilz, F1. Antilles, vii, 51, t. 464.-Audubon, Birds, t. 144.-Stephenson \& Churchill, Med. Bot. iii, t. 126.-Beck, Bot. 305.-Daton, Manual, 6 ed. 193.-Darlington, Fl. Cestrica, 2 ed. 254.-Eaton \& Wright, Bot. ©93.-Drowne, Trees of America, 416.-Darby, Bet. S. Stater, 49%.

Persea Sassafras, Sprengel, Syst. ii, 270.-Schnizlein, Icon. t. 106. f. 15-23.

SASSAFRAS.

Eastern Massachnsetts, sonthwestern Vermont, and west through southern Ontario and central Michigan to sontheastern Iowa, castern Kansas, and the Indian territory; south to Hernando county, Florida, and the valley of the Brazos river, Texas.

A tree 12 to 15 meters in height, with a trouls 0.60 to 0.90 meter in diameter, exceptionally 24 to 27 meters in heirht, with a trumk 1.80 to 2.25 meters in diameter, or toward its northern limits reduced to a small tree or shrub; rich, samdy loam, reaching its greatest development in southwestern Arkansas and the Indian territory; at the south often taking possession, with the persimmon, of abandoned fields in the middle districts.

Wood light, soft, not strong, brittle, coarse grained, very durable in contact with the soil, slightly aromatic, checking in drying; layers of ammal growth clearly marked with three or fomr rows of large open ducts; medullary rays mumens, thin; color, dull orauge-brown, the thin sap-wood light yellow; slecific gravity, 0.5042 ; ash, 0.10 ; used for light skiffs, ox yokes, ete., and largely for fence posts and rails, and in conperage.

The root, and especially its bark, enters into commerce, affording an powerful aromatic stimulant; the oil of sassafras, distilled from the root, is largely used in imparting at pleasant flavor to many articles of domestic use; the pith of the yonng branches infused with water furnishes a mucilage nsed as a demulcent in febrile and intlammatory affectious (Sharpe in Am. Jour. Pharm. 1863, 53.-Proctor in Proc. Am. Pharm. A.ssoc. 1866, 217.U. S. Dispensatory, 14 ed. 814.—Nat. Dispensatory, 2 ed. 1274; Fliichigcr \& Hanbury, Pharmacographia, 483).
"Gumbo filet," a powder prepared by the Choctaw Indians of Louisiana from the macilaginons leaves, is used at the south in the preparation of "gumbo" sonp.

218.-Umbellularia Californica, Nuttall,

Sylva, i, 87 ; 2 ed. i, 102.-Watson, Bot. California, ii, 61.
Laurus regia, Douglas in Companion Bot. Mag. ii, 137.
Oreodaphae Californica, Nees, Syst. Laurinarum, 463.-Bentham, Pl. Hartweg. 334; Bot. Sulphur, 49.-Dietrich, Syn. ii, 1356.-Hooker \& Arnott, Bot. Beechey, 389.-Torrey in Pacific R. R. Rep. iv, 133; v, 364; Mex. Boundary Survey, 184.Newberry in Pacific R. R. Rep.vi, 24, 88, f. 3.-Ccoper in Smithsouian Rop. 1858, 260.-Bot. Mag. t. 5320.
Tetranthera Californica, Hooker \& Aruott, Bot. Beechey, 159.-Meisner in Do Candolle, Prodr. xv^{1}, 192.-Torrey in Bot. Wilkes Exped. 451.
Drimophyllum pauciflarum, Nuttall, Sylva, i, 85, t.29; 2 ed. i, 102, t. 22.
MOUNTAIN LAUREL. CALIFORNIA LAUREL. SPICE TREE. CAGIPUI. CALIFORNIA OLIVE. CALIFORNIA BAY TREE.
Rogue River valley, Oregon, south through the California coast ranges to San Diego connty, and along the western slopes of the Sierra Nevada to the San Bernardino monntains.

An evergreen tree, 24 to 30 meters in height, with a trink 1.20 to 1.50 meter in diameter, or toward its southern limits and at high elevations a small tree or shrub; most common aud reaching its greatest development in the rieh valleys of south western Oregon.

Wood heary, hard, strong, close-grained, compact, susceptible of a beautiful polish, containing numerous small, regularly-distributed, open duets; medullary rays mumerons, thin; color, rich light brown, the sap-wood lighter; specific gravity, 0.0517 ; ash, 0.39 ; used on the Oregon coast in ship-building, for jaws, bitts, cleats, cross-trees, etc.; the most valuable material produced by the Pacific forests for interior and cabinet work.

The leaves yield a volatile oil, Oreodaphne (Am. Jour. Pharm. xlvii, 105).

EUPHORBIACEA.

219.-Drypetes crocea, Peiteau,

Mem. Mus. i, 159, t. 8.-Nuttall, Sylva, ii, 6G, t. 63 ; 2 ed. ii, 12, t. ti3.-Cooper in Smithsonian Rop. 1858, 265.-Chapman, Fl. S. Statea,

Schafferia lateriflora, Swartz, Fl. Ind. Oce. i, 329.
D. sessiliflora, Bailloin, Ethd. Gen. Euphorbincere, Athas, 45, t. 24. f. 34-40.
D. glauct, Grisebach in Mem. Am. Acad. new ser. viii. 157 [not Vabl].
D. crocea, var. lomgipes, Miller iu De Candolie, Prodr. xv², 456.

GUIANA PLUA. WHITE WOOD.
Semi-tropical Florida, bay Biseayne to the southern keys; in the West Indies.
A small tree, sometimes 9 meters in height, with a trunk 0.12 to 0.17 meter in diameter.
Wood heary, hard, not strong, brittle, elose-grained, cheeking in drying ; medullary rays numerous, thin; color, rich dark brown, the sap-wood yellow; specific gravity, 0.9209 ; asl, 6.14 .

De Candolle, Prodr. $x^{2}, 456$.
Var. latifolia, Miller,
D. glauca, Nuttall, Sylva, ii, 68; 2 ed. ii, 14.-Chapman, F1. S. States, 410.
D. alba, var. latifolia, Grisebach in Nachrich. d. Konigl. Gesell. Wiss. Univ. Götting. 1865, 165, in part.

Semi-tropical Florida, bay Biscayne to the southern keys; in the West Indies.
A tree sometimes 12 meters in height, with a trunk 0.30 to 0.35 meter in diameter.
Wood heavy, bard, not strong, brittle, very close-grained, checking in drying; mednllary rays nnmerous, obseure; color, brown streaked with bright yellow, the sap-wood dull brown; specific gravity, 0.0346; ash, 8.29.

Perlaps a distinct species, the fruit and flowers not recently collected.

220.-Sebastiania lucida, Müler;

Do Cañollo, Prodr. xv², 1181.
Gyminanthes lucida, Swartz, Prodr. 96.
Excoccaria lucida, Swartz, Fl. Ind. Occ. ii, 1122.-Willdenow, Spec. iv, 865.-Poiret, Suppl. i, 155.-Persoon, Syn. ii, 634.Nuttall, Sylva, ii, 60, t. 61 ; 2 ed. ii, 6, t. 61.-A. de Jussieu, Tent. Euphorl. t. 16, f. 55.-Richard, Fl. Cuba, 199.Dietrich, Syn. v, 256.-Cooper in Smithsonian Rep. 1858, 265.-Chapman, Fl. S. States, 405.-Grisebach, Fl. British West Indies, 50.-Vasey, Cat. Forest Trees, 21.

CRAB WOOD. POISON WOOD.

Semi-tropical Floida, bay Biseayne to the sonthern keys; common; in the West Indies.
A small tree, sometimes 9 meters in height, with a trunk 0.15 to 0.20 meter in diameter'; the large specimens generally hollow and decayed.

Wood very heavy, lard, very close-grained, compaet, susceptible of a beantiful polish; medullary rays numerous, obscure; color, rich dark brown streaked with yellow, the sap-wood bright yellow; specific grarity, 1.0905 ; ash, 2.78 ; now largely manufactured into canes, and furnishing valuable fuel.

221.-Hippomane Mancinella, Linnæas,

Spec. 1 ed. 1191.—Jacquin, Amer. 250, t. 159.-Lamarek, Dict. ii, 694.—Aiton, Hort. Kew. iii, 378; 2ed. v, 333.-Swartz, Obs. 369.Willdenow, Spee. iv, 571.-Persoon, Syn. ii, 589.—Titford, Hort. Bot. Anı. Suppl. 9, t. 12, f. 5.-Lamarck, Ill. iii, 374, t. 793, f. 1.Sprengel, Syst. iii, E05.-Spaeh, Hist. Veg. ii, 524.-Nuttall, Sylva, ji, 54, t. 60; 2 ed. i, 202, t. 60.-Bentham, Bot. Sulphur, 163.Richard, Fl. Cuba, 200.-Dietrich, Syn. v, 224.-Cooper in Smithsonian Rep. 1858, 265.-Baillon, Etud. Gcn. Euphorbiacex, t. 6, f. 12-20.-Chapman, Fl. S. States, 404.-Porcher, Resources S. Forests, 120.-Grisebach, Fl. British West Indies, 50.-Regel, Gartcnflora, xv, 163, t. 510.-Miiller in De Candolle, Prodr. xv², 1201.-Schnizlein, Icon. t. 243, f. 3.-Maont \& Decaisne, Bot. English ed. 693 \& f.-Vases, Cat. Forest Trees, 21.

Mancinclla rencnata, Tussae, Fl. Antilles, iij, 21, t. 5.

MANCHINELL.

Semi-tropical Florida, on the sonthern keys; common; through the West Indies and Central America to tho Pacific.

A small tree, in Florida rarely execeling 4 meters in height, with a trunk 0.12 to 0.17 meter in diameter; abounding in white, milky, exceedingly canstie poisonons sap. "Rain washing the leaves becomes poisonous, and the smoke of the burning wood injures or destroys the eyes."-(A. H. Curtiss).

Woodlight, soft, close grained, compaet, contaibing numerons evenly-distributed, small, open dnets; medullary rays numerous, obscure; color, dark brown, the thick sap-wood light brown or yellow; specific gravity (sap-wood), 0.5' 72; ash, 5.16.

URTICACE

222.-Ulmus crassifolia, Nuttall,

Trans. Am. Phil. Soc. 2 ser. v, 169.-Planchon in Amn. Sci. Nat. 3 ser. x, 279 ; De Caudolle, Prodr. xva, 162.-Walpers, Ann. iii, 426.Cooper in Smithsonian Rep. 1853, 254.-Lesquereux in Owou's 2d Rep. Arkansas, 386. -Wood, Cl. Book, 633.-Gray, IIall's, Pl. Texas, 21.-Vasey, Cat. Forest Trces, 23.
U. opaea, Nuttall, Sylva, $i, 35$, t. 11 ; 2 ed. $i, 51$, t. 11.-Browne, Trees of Ameriea, 503.

CEDAR ELM.

Arkansas, sonth of the valley of the Arkansas river to the valley of the Rio Grande, Texas, extending west to Eagle Pass.

A tree 18 to 20 meters in height, with a trunk 0.60 to 0.90 meter in diameter, or toward its southern or sonthwestern limits much smaller; borders of streams, in rich soil; one of the most common and valuable timber trees of Texas west of the Trinity river, and reaching its greatest development in the valleys of the Guadalupe and Trinity rivers.

Wood heavy, hard, not strong, brittle, very elose-grained, compact; layers of annual growth and medullary rays obscure; marked, in eommon with that of all the North American species, by concentric circles of irregularlyarrauged groups of small open ducts; color, light brown tinged with red, the heavier sap-wood lighter; specific gravity, 0.7245 ; ash, 1.20 ; used in the manufacture of wagon lubss, saddle-trees, chairs, ctc., and very largely for fencing.

223.-Ulmus fulva, Michaux,

Fl. Bor.-Am. i, 172.-Persoon, Syn. i, 291.-Willdenow, Enum. Suppl. 14.—Pursh, Fl. Am. Sept. i, 200.—Smith in Rees' Cycl. xxxix, No. 10.-Eaton, Manual, 31 ; 6 ed. 376.-Nnttall, Genera, i, 201.-Remer \& Schultes, Syst. vi, 301.-Elliott, Sk. i, 333.-Hayue, Dind. Fl. 32.-Torrey, Fl. U. S. i, 299 ; Compend. Fl. N. States, 132; Fl. N. York, ii, 166; Fremont's Rep. 97.-Sprengel, Syst. i, 931.-Rafinesque, Med. Bot. ii, 271.—Beck, Bot. 333.-Hooker, Fl. Bor. Am. ii, 142.-Bigelow, Fl. Boston. 3 ed. 114.-Eaton \& Wright, Bot. 464.-Loudon, Arboretum, iii, 1407, f. 1247.-Dietrieh, Syn. ii, 992.-Spach in Ann. Sci. Nat. xv, 363; Hist. Veg. xi, 107.-Emerson, Trees Massachusetts, 297; 2 ed. ii, 334 \& t.-Browne, Trees of Ameriea, 501.-Griffith, Med. Bot. 551.Planchon in Ann. Sci. Nat. 3 ser. x, $276 .-D e$ Candolle, Prodr. xvii, 161.—Scheele in Remer, Texas, 446.-Walpers, Ann. iii, 426.Richardson, Arctic Exped. 436.-Darlington, Fl. Cestriea, 3 ed. 255.-Darby, Bot. S. States, 502.-Cooper in Smithsonian Rep. 1858, 254.-Chapman, Fl. S. States, 416.-Curtis in Rep. Geologieal Surv. N. Carolina, iii, 1860, 55.-Lesquerenx in Owen's 2d Rep. Arkansas, 386.-Wood, Cl. Book, 633; Bot. \& Fl. 299.-Porcher, Resourees S. Foreste, 310.-Engelmann in Trans. Am. Phil. Soc. new ser. xii, 208.-Gray, Manual N. States, 5 ed. 442.-Koch, Dendrologie, ii, 422.-Young, Bot. Texas, 496.-Hayden in Warren's Rep. Nebraska \& Dakota, 2 ed. 121.—Vasey, Cat. Forest Trees, 22.—Bentley \& Trimen, Med. P]. iv, 233, t. 233.-Ridgway in Proc. U. S. Nat. Mus. 1882, 72.-Bell in Geologieal Rop. Canada, 1879-'80, 55'.
U. pubeseens, Walter, Fl. Caroliniana, 111.
U. Americana, var. rubra, Aiton, Hort. Kew. i, 319 ; 2 ed. ii, 107.-Willdenow, Spec. i, 1325.-Hayne, Dend. Fl. 31.

P U. crispa, Willdenow, Enum. 295 ; Berl. Banmz. 520.
U. rubra, Michanx f. Hist. Arb. Am. iii, 278, t. 6; N. American Sylva, 3 ed. iii, 73, t. 128.

RED ELM. SLIPPERY ELM. MOOSE ELM.

Valley of the lower Saint Lawrence river to Ontario and northern Dakota, sonth to the Chattahoochee region of northern Florida, central Alabama and Mississippi, and the valley of the San Antonio river, Texas.

A tree 15 to 20 meters in height, with a trunk 0.45 to 0.60 meter in diameter; borders of streams and hillsides, in rich soil.

Wood heary, hard, strong, very elose-grained, compact, durable in contact with the ground, splitting readily when green; layers of annual growth clearly marked by several rows of large open duets; medullary rays numerous, thin; color, dark brown or red, the thin sap-wood lighter; specitie gravity, 0.6956 ; ash, 0.83 ; largely used for wheel stock, fence posts, rails, railway ties, sills, ete.

The inner bark mucilaginons, nutritious, and extensirely used in various medicinal preparations (Am. Jour. Pharm. xxiv, 1S0.—Philadelphia Mcd.Times,1874,303.—U. S. Dispensatory, 14 ed.913.-Nat.Dispensatory, 2 ed.1480.— Fliichiger \& Hanbury, Pharmaeographia, 501).

224.-Ulmus Americana, Limmæиs,

Spec. 1 ed. 226.-Kalm, Travels, English cd. ii, 998. Marshall, Arbustum, 156. -Wangenheim, Amer. 46.-Gartner, Fruct. i, 205, t. 49 , f. 5.-Walter, Fl. Caroliniana, 111.-Aiton, Hort. Kew. i, 319; 2 ed. ii, 107.-Willdenow, Spec. i, 1325; Enum. 295; Suppl. 14; Berl. Baumz. 519.-Nou veau Dnhamel, ii, 147.—Schknhr, Handb. 179.-Michanx, Fl. Bor.-Am. i, 173.-Persoon, Syn. ii, 191.-Desfontaines, Hist. Arb. ii, 442.-Michaux f. Hist. Arb. Am. iii, 269, t. 4 ; N. American Sylva, 3 ed. iii, 67, t. 126.—Pursh, Fl. Am. Sept. i, 199.Smith in Rees' Cycl. xxxix, No. 7.-Eaton, Manual, 31; 6 cd. 376.-Barton, Compend. Fl. Philadelph. i, 150.-Nuttall, Genera, i, 201.-Rœmer \& Schaltes, Syst. vi, 300.-Elliott, Sk. i, 333.-Hayne, Dend. Fl. 31.-Torrey, Fl. U. S. i, 298; Compend. Fl. N. States, 132; Fl. N. York, ii, 165 ; Nicollet's Rep. 160 ; Emory's Rep. 412.-Sprengel, Syst. i, 930.—Beck, Bot. 333.-Loudon, Arboretnm, iii, 1406, f. 1 W.-Hooker, Fl. Bor.-Am. ii, 142.-Bigelow, Fl. Boston. 3 cd. 114.-Dietrich, Syn. ii, 992.-Eaton \& Wright, Bot. 464.-Spach in Ann. Sci. Nat. 2 ser. xv, 364 ; Hist. Veg. xi, 108.-Emerson, Trees Massachnsetts, 286; 2 ed. ii, 322 \& t.-Browne, Trees of America, 499.-Planchon in Ann. Sci. Nat. 3 ser. x, 268 ; De Candolle, Prodr. xvii, 155. Schcele in Remer, Texas, $446 .-$ Walpers, Ann. iii, 424.-Buckley in An. Jour. Sci. 2 ser. xiii, 398.-Richardson, Arctic Exped. 436.-Darlington, Fl. Cestrica, 3 ed. 250.-Darby, Bot. S. States, 502.-Cooper in Smithsonian Rep. 1858, 254.-Chapman, Fl. S. States, 416.-Curtis in Rep. Geological Surv. N. Carolina, iii, 1860, 55.-Lesquercax in Owen's 2d Rep. Arkansas, :386.—Wood, Cl. Book, 633; Bot. \& Fl. 298.Porcher, Resources'S. Forests, 311.—Engelmann in Trans. Am. Phil. Soc. new ser. xii, 208.-Gray, Manual N. States, 5 ed. 442.-Hall's Pl. Texas, 21. -Koch, Dendrologie, ii, 421.-Young, Bot. Texas, 496. -Winchell in Ludlow's Rep. Black Hills, 68.-Vasey, Cat. Forest Trees, 22.-Hayden in Warren's Rep. Nebraska \& Dakota, 2 ed. 121.-Macoun in Geological Rep. Canada, 1875-776, 209.Sears in Bull. Essex Inst. xiii, 177.—Ridgway in Proc. U. S. Nat. Mns. 1882, 71.-Bell in Geological Rep. Canada, 1879~80, 48c.
U. mollifolia, Marshall, Arbustum, 156.
U. Americana, var. pendula, Aiton, Hort. Kew. i, 320 ; 2 ed. ii, 107.-Willdenow, Spec. i, 1326.-Pursh, Fl. Am. Sept. i, 200.-Eaton, Mannal, 31.-Spach in Ann. Sci. Nat. 2 ser. xv, 364; Hist. Veg. xi, 109.
U. Americana, var. alba, Aiton, Hort. Kew. i, 320 ; 2 ed. ii, 107.-Hayne, Dend. Ifl. 32.
U. pendrela, Willdenow, Berl. Banmz. 519.-Hayne, Dend. Fl. 33.
U. alba, Rafinesqne, Fl. Ludoviciana, 115; New Fl. \& Bot. i, 38 .
U. Americana, var. scabra, Spach in Anu. Sci. Nat. 2 ser. xv, 364; Hist. Veg. ix, 109.—Walpers, Ann. iii, 424.
U. Americana, var. Bartramii, Walpers, Ann. iii, 424.
U. Americana, var. ?aspera, Chapman, Fl. S. States, 416.
U. Floridana, Chapman, Fl. S. States, 416.

WHITE ELM. AMEIICAN ELM. WATER ELM.

Sonthern Newfoundland to the northern shores of lake Superior and the eastem slope of the Rocky monntaius, in about latitude 520 N. ; south to cape Canareral and Pease ereek, Florida, extending west in the United States to the Black hills of Dakota, central Nebraska, the Indian territory, iu about longitude $100^{\circ} \mathrm{W}$., and the valley of the Rio Concho, Texas.

A large tree, 30 to 35 meters in height, with a trauk 1.50 to 2.70 meters in diameter; rich, moist soil, borders of streams, ete.; toward its western and southwestern limits only in river bottoms.

Wood heary, hard, strong, tough, rather eoa:se-grained, comptet, difficult to split; layers of annual growth clearly marked by several rows of large open ducts; medullary rays numerous, thin ; eolor, light brown, the sapwood somewhat lighter; specifie gravity, 0.6506 ; ash, 0.80 ; largely used for wheel stoek, saddle-trees, flooring, in cooperage, and now largely exported to Great Britain and used in boat- and ship-building.

225.-Ulmus racemosa, Thomas,

Am. Jour. Sci. 1 ser. xix, 170 \& t.-Beek, Bot. 334.-Eaton, Manual, 6 ed. 376.-Eaton \& Wright, Bot. 464.-Nuttall, Sylva, i, 37, t. 12; 2 ed. i, 53 , t. 12.-Torrey, Fl. N. York, ii, 166, t. 96. -Browne, Trees of America, 500.-Cooper in Smithsonian Rep. 1858, 254.-Wood, Cl. Book, 633; Bot. \& L'l. 299.-Gray, Manual N. Statos, 5 ed. 442.—Vasoy, Cat. Forest Trees, 22.-Sargent in Rep. Massachasetts Boand Ag. 1878, 271 .-Bell in Geological Rep. Canada, 1879-80, 55c.-Chapman, Fl. S. States, Suppl. 649.
U. Americana, Planchon in De Candolle, Prodr. xvii, 155, in part.

ROCK ELM. CORK ELM. HICKORY ELM. WHITE ELM. CLIFF NLM.
Southwestern Vermont (Robbins), west through western New York, Ontario, and southern Miehigan to northeasturn Iowa (Waverly, Bessey), and sonth through Ohio to eentral Kentueky.

A large tree of great ceonomic value, 20 to 30 meters in lieight, with a trunk sometimes 0.90 meter in diameter; low, wet clay, rich uplands, rocky declivities, or river eliffs; common and reaching its greatest development in sonthern Ontario and the southern peninsula of Michigan.

Wood heavy, hard, very strong, tongh, very close grained, compact, susceptible of a beautiful polish; layers of annual growth marked with one to two rows of small open ducts; melullary rays numerous, obsenre; color, light clear brown often tinged with red, the thick sap-wood mneh lighter; specific grarity, 0.7263 ; ash, 0.60 ; largely used in the manufacture of heavy agricultural implements, wheel stock, and for railway ties, bridge timbers, sills, ete.

226.-Ulmus alata, Michaux,

Fl. Bor.-Am. i, 173.-Persoon, Syn. i, 291.-Michaux f. Hist. Arls. Am. iii, 275, t. 5; N. American Sylva, 3 ed. iii, 71, t. 127.-Pursh, Fl. Am. Sept. i, 200.-Nuttall, Gencra, i, 201.-Romer \& Selıultes, Syst. vi, 209.-Elliutt, Sk. i, 333.-Sprengel, Syst. i, 931.Aulubon, Birds, t. 18.-Laton, Manual, 6 ed. 376.-Loudon, Arboretum, iii, 1403, f. 1248.-Dictrieh, Syn. ii, 992.-Eaton \& Wright, Bot. 464.-Penn. Cycl. xxv, 493.-Drowne, Trees of America, 502.-Planchon in Ann. Sci. Nat. 3 ser. x, 270 ; De Candolle, Prodr. xvii, 155.-Walpers, Ann. iii, 425.-Darby, Bot. S. States, 503.-Cooper in Smithsonian Rep. 1858, 254.-Chapman, Fl. S. States, 417.-Curtis in Rep. Geological Surv. N. Carolina, 1860, iii, jü.-Lesquereux in Owen's 2d Rep. Arkansas, 386.-Wood, Cl. Book, 633 ; Bot. \& Fl. 299.-Porcher, Resources S. Forests, 311.—Gray, Manual N. States, 5 ed. 443; 11all's Pl. Texas, 21.-Young, Bot. Texas, 496.-Vises, Cat. Forest Trees, 22.—Broadhead in Coulter's Bot. Gazette, iii, 60.-Ridgway in Proe. U. S. Nat. Mus. $1882,70$.
U. pumila, Walter, Fl. Caroliniana, 111 [not Linnæus].
U. Americana, var. alata, Spach in Ann. Sci. Nat. 2 eer. xv, 364 ; Hist. Veg. xi, 109.

WAHOO. WINGED ELM.

Sonthern Virginia, south through the middle districts to the Chattahoochee region of western Florida; southern Indiana and Illinois, south to the Gulf coast, and sonthwest through sonthern Missouri, Arkansas, the eastern portions of the Indian territory to the valley of the Trinity river, Texas.

A small tree, 7 to 12 meters in height, with a trunk 0.30 to 0.60 meter in diameter; generally in dry, gravelly soil, or, rarels, aloug the horders of swamps and river bottoms; most common and reaching its greatest development in southern Missouri and Arkansas.

Wood heary, hard, not strong, very close-grained, compact, unwedgeable; medullary rays distant, not conspicuous; color, brown, the sap-wood lighter; specific gravity, 0.7491 ; ash, 0.99 ; largely used for hubs, blocks, ete.

227.-Planera aquatica, Gmolin,

Syst. ii, 150.-Willdeuow, Spec. iv, 967 ; Enum. Suppl. 14 ; Berl. Banmz. 281.-Persoon, Syn. i, 291.-Nuttall, Gencra, i, 202.-Hayne, Dend. Fl. 202.-Liaton, Manual, 6 ed. 266.-Eaton \& Wright, Bot. 360.-Spueh in Ann. Sei. Nat. 2 ser. xv, 355; Hist. Veg. xi, 116.Planchon in Aun. Sei. Nat. 3 ser. x, 261 ; De Candolle, Prodr. xvii, 167.-Walpers, Ann. iii, 428.-Cooper in Smithsonian Rep. 1858 , 254.-Chapman, Fl. S. States, 417.-Wood, Cl. Book, 633; Bot. \& Fl. 299.-Gray, Mauual N. States, 5 ed. 443.-Koch, Dendrologie, ii, 424.-Young, Bot. Texas, 497.-Vasey, Cat. Forest Trees, 23.

Anomymos aquatica, Walter, Fl. Caroliniana: 230.
P. Gmelini, Michaux, Fl. Bor.-Am. ii, 248.-Desfontaincs, Hist. Arb. ii, 446.-Rcmer \& Sehultes, Syst. vi, 305.-Elliott, Sk. i, 334.-Sprengel, Syst. i, 493.-Dietrieh, Syı. i, 551.-Penn. Cyel. xxv, 490.-Darby, Bot. S. States, 503.
P. ulmifolia, Michaux f. Hist. Arb. Am. iii, 283, t. 7; N. American Sylva, 3 ed. iii, 80, t. 130.-Poirct, Suppl. iv, 429.Nouvean Duhamel, vii, (6, t. 21.-Loudon, Arboretum, iii, 1413, f. 1251.-Browne, Trces of America,515.-Curtis in Rep. Geologieal Surv. N. Carolina, iii, 1860, 81.

7 Ulmus ncmoralis, Aiton, Hort. Kow. i, 319; 2 ed. ii, 108.-Willdonow, Spee. i, 1326; Berl. Baumz. 520.-Desfontaines, Hist. Arb. ii, 442.-Pursh, Fl. Am. Sept. i, 200.—Snith in Rees' Cycl. xxxix, No. 8.-Nuttall, Genera, i, 201.-Beek, Bot. 334.Enton, Manual, 6 ed. 376.-Eaton \& Wright, Bot. 464.

Ulmus aquatica, Rafinesquc, F1. Ludovieiana, 165.

P. Richardi, Sprengel, Syst. i, 493, in part.-Torrey \& Gray in Paeific R. R. Rep. ii, 175 [not Michanx].

Valley of the Cape Fear river, North Carolina, south to the Chattahoochee region of western Florida, and through central Alabama and Mississippi to western Louisiana and the valley of the Trinity river, Texas, extending north through Arkansas and southern Missonri to the valley of the lower Wabash river and central Kentucky.

A small tree, 9 to 12 meters in leight, with a trunk 0.30 to 0.60 meter in diameter; cold, deep, inundated river swamps; rare in the Atluntic and eastern Gulf states; very common and reaching its greatest development in the Red River valley and southern Arkansas.

Wood light, soft, not strong, close-grained, compact, containing few seattered open ducts; medullary rays numerons, thin; color, light brown, the sap-wood nearly white; specific gravity, 0.5294; ash, 0.45.

228.-Celtis occidentalis, Limnæus,

Spec. 2 ed. 1478.-Du Roi, Harbk. i, 141.-Marshall, Arbustum, 29.-Wangenheim, Amer. 48.—Gartuer, Fruct. i, 374, t. 77, f. 3.-Walter, Fl. Caroliniana, 250.-Aiton, Hort. Lew. iii, 437 ; 9el.v, 449.-Lamarck, Diet. iv, 137; Ill. iii, 437, t. 844, f. 1.-Abbot, lusects Georgia, i, t. 36.-Willdenow, Sper. iv, 944; Eunm. 1046; Borl. Bauraz. 82.-Nonvean Duhauel, ii, 36, t. 9.-Miehaux, Fl. Bor.-Am. ii, 249.Persoon, Syn. i, 292.-Desfontahes, Hist. Arb. ii, 448.—Michaux f. Hist. Arb. Aıu. iii, 285, t. 8; N. American Sylva, 3 ed. iii, 38, t. 114.Pursh, Fl. Am. Sept. i, 200.-Eaton, Manual, 31; 6 ed. 36.-Nuttall, Genera, i, 202.-Remer \& Sehultes, Syst. vi, $306 .-1$ Iayne, Dend. Fl. 216.-Elliott, Sk. ii, 584.-Torrey, Fl. U.S. i, 300; Compeud. Fl. N. States, 132; Fl. N. York, ii, 167; Bot. Wilkpe Exped. 456.Guimpel, Ottö́ Hagne, Abb. Holz. 119, t.96.-Spreagel, Syst. i, 932.-Watsou, Dend. Brit. ii, 147.-Beel, Bot. 334.-Rafinesque, New Fl. \& Bot. i, 39.—London, Arboretum, iii, 1417 \& t.-Hooker, Fl. Bor. Am. ii, 142.-Eaton \& Wright, Bot. $186 .-S p a c h ~ i n ~ A n m . ~ S c i . ~$ Nat. 2 ser. xvi, 40 ; Hist. Veg. xi, 133.-Penn. Cyel. xxv, 490.-Browne, 'Trces of America, 517.—Emerson, Trees Massachusetts, 306 , t. 16; 2 ed. ii, 344 \& t.-Plaucbon in Aun. Sci. Nat. 3 ser. x, 283 ; De Candollo, Prodr. xvii, 174. -Walpers, Aum. iii, 396.-Riehardson, Arctie Exped. 436.-Darlington, Fl. Cestrica, 3 ed. 20̄6.-Darby, Bot. S. States, 503.-Cooper in Smithsonian Rep. 1858, 254.Chapman, Fl. S. States, 417.-Curtis in Rep. Geological Surv. N. Caroliua, 1860, iii, 61.-Lesquerenx in Owen's 2 , Rep. Arkausas, 386 .Wood, Cl. Book, 634; Bot. \& Fl. 299.-Eugelmana iu Trans. Am. Phil. Soc. now ser. xii, 208.-Porcher, Resources S. Forests, 312.Gray, Manual N. States, 5 ed. 443 ; Hall's Pl. Texas, 21.-Koelı, Dendrologie, ii, 432.-llaydeu iu Warren's Rep. Nebraska \& Dakota, 2 ed. 121.—Vasey, Cat. Forest Trees, 23.—Burbank iu Proc. Boston Soc. Nat. Hist. xviii, 215.-Putzbys in Fl. des Serres, xxii, 206.Macoun in Geological Rep. Canada, 1875-7\%,209.-Ridgway in I'roc. U. S. Nat. Mus. 1882, 72.
O. crassifolia, Lamarck, Diet. iv, 133.-Nouvean Dulumel, ii, 37.-Michanx f. Hist. Arb. Am. iii, 228, t. 9 ; N. American Sylva, 3 ed. iji, 40, t. 115.-Pursh, Fl. Am. Sept. i, 200.-Nuttall, Genera, i, 202. -Romer \& Schultes, Syst. vi, 307.Torrey, Fl. U. S. i, 300 ; Compend. Fl. N. States, 132; Fremont's Rop. 97 ; Linory's Repr. 412.-Spreugel, Syst. i, 932.Beck, Bot. 334.-Eaton, Manual, 6 od. 8j.-Rafisesque, Now Fl. \& Bot. i, 31.- Loudon, Arboretum, ini, 1418, f. 1\&54.Eaton \& Wright, Bot 186.—Spach iu Aun. Sci. Nat. 2 sor. xvi, 39 ; Hist. Veg. xi, 130.—Penn. Cycl. xxp, 490.—Browne, Trees of Amcrica, 519.-Emerson, Trees of Massachusetts, 309; 2 ed. ii, 347 \& t.
O. obliqua, Mœneh, Moth. 344 .
C. occidentalis, vir. scabriuscula, Willdenow, Spec. iv, 995 ; Berl. Baumz. 2 ed. 82.-Hayue, Doud. Fl. 217.-Loudon, Arborotum, iii, 1417.
C. occidentalis, var. tenuifolia, Persoon, Syu. i, 292.
C. cordata, Persoon, Syn. i, 292.-Desfontaincs, Hist. Arb. ii, 448.-Dn Mont, Cour. Bot. Cult. vi, 389.
O. lcevigata, Willdenow, Berl. Banmz. 2 ed. 81 ; Enam. Suppl. 68.-Rœmer \& Schnltes, Syst. vi, 306.-Spreagel, Syst. i, 932.-Rafinesque, New. Fl. \& Bot. i, 34.-Loudon, Arborctum, iii, 1420.-Koch, Dendrologie, ii, 432.
O. pumila, Pursh, Fl. Aın. Sept. i, 200.-Romer \& Sehnltes, Syst. vi, 306.-Torrey, Fl. U. S. i, 300 ; Compend. Fl. N. States, 132.—Beek, Bot. 334.-Eaton, Manual, 6 ed. 86.-R afinesque, New Fl. \& Bot. i, 33.-LLoudou, Arhoretum, iii, 1420.Eaton \& Wright, Bot. 186.
C. alba, Ralinescue, Fl. Ludoviciana, 25; New Fl. \& Bot. i, 32.-Planehon in De Candolle, Prodr. xvii, 177.
O. canina and C. maritima, Rafinesque in Am. Monthly Mag. \& Crit. Rev. ii, 43, 44.
C. occidentalis, var. cordata, Willdenow, Berl. Baumz. 2ed. 82.-Hayne, Dend. Fl. 217.-Rœmer \& Sehultes, Syst. vi, 306.London, Arboretum, iii, 1417.
C. tenuifolia, Nuttall, Genera, i, 202; Sylva, i, 135; 2 ed. i, 149.-Rafinesque, New Fl. \& Bot. i, 36.
C. occidentalis, var. integrifolia, Nuttall, Gcnera, i, 202.-Chapman, Fl. S. States, 417.-Wood, Cl. Book, 634; Bot. \& FI. 299.
C. Mississippiensis, Bose, Dict. Ag. new ed. x, 41.-Poiret, Suppl. iii, 088.-Spach in Ann. Sci. Nat. 2 ser. xvi, 42 ; Hist. Veg. xi, 136.-Planchon in Ann. Sci. Nat. 3 ser. x, 287 ; De Candolle, Prodr. xvii, 176.-Walpers, Ann. iii, 397.-Cooper in Smithsonian Rep. 1858,254.-Lesquerenx in Owen's 2d Rep. Arkansas, 386.-Gray, Mamual N. States, 5 ed. 443; Hall's Pl. Texas, 21.—Vasey, Cat. Forest Trees, 23 .—Ridgway in Proc. U. S. Nat. Mus. 1882, 72.
C. integrifolia, Nuttall in Trans. Am. Phil. Soc. new ser. v, 169.-Cooper in Suithsouian Rep. 1858, 254.
O. longifolia, Nuttall in Trans. Am. Phil. Soc.now ser. v, 169 ; Sylva, i, 134, t. 40 ; 2 ed. i, 148, t. 40.-Rafinesque, New INl. \& Bot. i, 3\%.-Planehon in De Caudolle, Prodr. xvii, 177.
C. hetcrophylla, C. patula, C. Floridiana, C. fuscata, C. salicifolia, C. morifolia, C. maritima, Rafinesque, Now Fi. \& Bot. i. .31-3\%.
C. occidentulis, var. grandidentata, Spach in Ann. Sci. Nat. 2 ser. xvi, 40 ; llist. Veg. xi, 133.-Walpers, Ann. iii, 396.
C. occidentalis, var. sermiata, Spach in Ann. Sei. Nat. 2 ser. xvi, 41 ; Hint. Vog. xi, 134.--Valpers, Ann. iii, 896.
C. crassifolia, var. diliafolia, Spach in Ann. Sci. Nat. 2 sor. xvi, 39 ; Hist. Vog. xi, 131.-Walpers, Ann. iii, 396.
C. crassifolia, var. morifolia, spach in Ann. Sci. Nat. 2 ser. xvi, 39 ; llist. Veg. xi, 131.-Walpers, Ann. iii, 396.
C. crassifolia, var. cuculypiffolia, Spach in Ann. Sci. Nat. 2 ser. xvi, 40; Hist. Veg. xi, 131.-Walpers, Ann. iii, 396.
C. Audibertiana, Spach in Aun Sci. Nat. 2 ser. xvi, 41 ; Hist. Pl. xi, 135.-Planchou in De Candolle, Prodr. xvil, 174.
C. Audibertiana, var. ovata, Spach in Ann. Sci. Nat. 2 ser. xvi, 41 ; Hist. Veg. xi, 135.
C. Audibertiana, var. oblongata, Spach in Ann. Sci. Nat. 2 ser. xvi, 41; Hist. Veg. xi, 135.
C. Lindheimeri, Engchanm in herb. A. Bramn. (Koch, Drendrologie, ii, 434).
C. Berlandieri, Klotsch in Liunea, xviii, 5ht.-Planchon in De Candolle, Prodr. xvii, 178.
C. Tcxana, Scheele in Linnan, xx, 166; Remer, Texas, 446; Appx. 146.
C. occidentalis, var. crassifolia, Gray, Manual N. States, 2 ed. 395 ; 5 ed. 443.-Wood, Cl. Book, 634; Bot. \& Fl. 209.
C. occidentalis, var. pumila, Gray, Manual N. States, 2 cd. :9\%; 5 ed. 443.-Chapman, Fl. S. States, 417.-Curtis in Rep. Gcological Surv. N. Carolina, iii, 1860, 62.-Watson in King's Rep. v, 321.

SUGARBERRY. HACKBERRY.

Valley of the Saint Lawrence river west to eastern Dakota, south through the Atlantie region to bay Biscayno and cape Romano, Florida, and the valley of the Deril's river, Texas.

A large tree, 18 to 30 or, exceptionally, 36 to 39 meters (Ridguay) in height, with a trunk 0.60 to 1.50 meter in diameter; most common and reaching its greatest development in the Mississippi River basin; rich bottoms or dry hillsides; sometimes reduced to a low shrub (C. pumila), and varying greatly in the size, shape, and texture of the leaves (C. Mississippiensis locvigata, integrifolia, crassifolia, ete.): the extremes connected by inmmerable intermediate forms, which, thus considered, make one polymorphous species of wide geographical range.

Wool heavy, rather soft, not strong, coarse-grained, compact, satiny, susceptible of a good polish; layers of aunual growth clearly marked by several rows of large open duets, containing many small groups of smaller duets arranged in intermediate concentrie rings; medullary rajs numerous, thin; color, clear light yellow, the sap-wood lighter; specifie gravity, 0.7287 ; ash, 1.09 ; largely used for fencing and oceasionally in the mannfacture of cheap furniture.

Var. reticulata.

O. reticulata, Torrey in Aun. Lye. N. York, ii, 247.-Eaton, Maunal. 6 ed. 86.-Rafinesque, New F1. \& bot. i, 35.-Eatou \& Wright, Bot. 186.-Nuttall, Sylva, i, 133, t. 39; 2 ed. i, 146, t. 39.-Browne, Trees of America, 518.-Planchon in Ann. Sci. Nat. 3 ser. x, 293; De Candolle, Prodr. xvii, 178.-Walpers, Ann. iii, 396.-Torrey \& Gray in Pacific R. R. Rep. ii, 175.-Cooper in Smithsouian Rep. 1858, 200; Am. Nat. iii, 407.-Gray in Proc. Am. Acad. vii, 401.-Watson in Pl. Wheeler, 16.-Vasey, Cat. Forest Trees, 2π. -Hall in Coulter's Bot. Gazette, ii, 91.—Rothrock in Wheeler's Rep. vi, 238.-Rusly in Bull. Torrey Bot. Club, ix, 54.
C. Douglasii, Planchou in Ann. Sci. Nat. 3 ser. x, 293; De Candolle, Prodr. xvii, 178.-Walpers, Ann. iii, 396.
?C. occidentalis, var. pumila, Watson in King's Rep. v, 321 [not Gray].
C. brevipes, Watson in Proc. Am. Acall. 3 ser. xir, 297.-Rothrock in Whceler's Rep. vi, 238.

mackberry. palo blanco.

Western Texas (Dallas, Ravcnel) to the mountains of southeru Arizona, and throagh the Rocky mountains to eastern Oregon ; in the Tehachipi pass, California (Pringle).

A small tree, 12 to 15 meters in height, with a trunk rarely 0.60 meter in diameter ; borders of streams, generally in high mountain cañons, or in the more arid regions reduced to a low shrub; well characterized by its small, thick, eoriaceons leaves, slightly pubeseent on the underside along the prominent reticulated veins, and by the light-eolored, deeply-furrowed bark, but connected with the typical C. occidentalis by intermediate forms not rare in western Texas.

Wood not distinguishable in structure or color from that of the speeies; speeific gravity, 0.7275; ash, 1.22.

> 229.-Ficus aurea, Nuttall,

Sylva, ii, 4, t. 43; : 2 ed. i, 154, t. 43.-Cooper in Smithsouian Rep. 1858, 265.-Chapman, Fl. S. States, 415.—Vasey, Cat. Forest Trees, 22. F. aurca, var. latifolia, Nuttall, Sylva, ii, $4 ; 9$ ed. i, 154.

Semi-tropical Florida, Indian river to the sonthern keys.
A large parasitic tree, germinating on the trunks and branches of other trees, and sending down to the ground long aerial roots, whieh gradually grow together, kill the inelosed tree, and form a trunk sometimes 0.90 to 1.20 meter in diameter.

Wood exceedingly light, solt, very weak, coarse-grained, compact, not durable; medullary rays thin, hardly distinguishable; color, light brown, the sap-wool lighter; specitic gravity, 0.2616 ; ash, 5.03 .

Sylva, ii, 3, t. 42; 2 ed. i, 153, t. 42.-Ceoper in Smithsonian Rep. 1858, 265.-Chapman, Fl. S. States, 415.-Vasey, Cat. Forest Trees, 22.
Semi-tropical Florida, bay Biscayne to the southern keys (Key Largo, Pumpkin Key, Curtiss).
A tree sometimes 15 metcrs in height, with a trunk rarely exceeding 0.30 meter in diameter.
Wood light, soft, close-grained, compact, containing fow large, open, scattered ducts and many groups of much smaller ducts arranged in concentric circles ; medullary rays numerous, thin, conspicuous; color, light brown or yellow, the sap-wood lighter; specific gravity, 0.6398 ; ash, 4.36.

231.-Ficus pedunculata, Aiton,

Hort. Kew. iii, 450; 2 ed. v, 486.-Chapman, Fl. S. States, 415.-Grisebaeh, Fl. British West Indiee, 151.
F. complicata, Hnmbeldt, Bonpland \& Kunth, Nov. Gen. \& Spee. ii, 48.

Crostigma pedunculatum, Miqne1 in Hooker, London Jour. Bot. ri, 450.-Walpers, Ann. i, 677.

WILD FIG. INDIA-RUIBBER TREE.

Semi-tropical Florida, bay Biscayne to the southern keys (Key Largo, Umbrella and Boca Chica Keys, etc. Curtiss); in the West Indies.

A tree sontetimes 12 meters in height, with a trunk rarely exceeding 0.50 meter in diameter, or often shrubby and much branched from the ground; rare.

Wood light, soft, weak, close-grained, compact, containing many large, open, scattered ducts, with many groups of small dncts arranged in concentric circles; medullary rays numerons, obscure; color, light orange-brown, the sap-wood undistinguishable; specific gravity, 0.4739 ; ash, 4.92.

232.-Morus rubra, Linnæus,

Spec. 1 ed. 986.-Marshall, Arbustum,93.-Wangenheim, Amer. 37, t. 15, f. 35.-Walter, Fl. Careliniana, 241.—Aiton, Hort. Kew. iii, 343; 2 ed. v, 266.-Mœneh, Meth. 343.-Lamarek, Dict. iv, 377.-Abbot, Inseets Georgia, ii, t. 70.-Miehaux, Fl. Bor.-An. ii, 179.Willdenew, Spec. iv, 369; Enum. 967; Berl. Banmz. 252.-Nouveau Duhauel, iv, 91, t. 23.-Persoon, Syn. ii, 558.-Desfontaines, Hist. Arb. ii, 416.—Michaux f. Hist. Arb. Arn. iii, 232, t. 10; N. Americau Sylva, 3 ed. iii, 42, t. 116.-Pursh, Fl. Am. Sept. ii, 639.Eaton, Manual, 105 ; 6 ed. 230.-Barten, Prodr. Fl. Philadelph. 89.-Nuttall, Genera, ii, 209.-Hayne, Dend. Fl. 155.-Elliott, Sk. ii, 574 .-Sprengel, Syst. i, 492.-Torrey, Compend. Fl. N. States, 359; Nicollet's Rep. 160; Fl. N. York, ii, 220; Enory's Rep. 412.Rafinesque, Med. Bot. ii, 243; New Fl. \& Bet. i, 43 ; Am. Manual Mulberry Trees, 13.-Beek, Bot. 316.-Dietrich, Syn. i, 551.Loudon, Arboretum, $\mathrm{jii}, 13 \overline{5} 9$ \& t.-Seringe, Deser. \& Cnlt. du Min. 223, t. 20.-Eaton \& Wright, Bot. 323.-Spaeh, Hist.Veg. xi, 48.Browne, Trees of America, 457.-Emersen, Trecs Massaehusetts, 280; 2 ed. i, 314.—Darlington, Fl. Cestrica, 2 ed. 285.-Darby, Bet. S. States, 503.-Cooper in Smithsonian Rep. 1858, 254.-Cbapman, F1. S. States, 415.-Gray in Paeific R. R. Rep. xii², 47; Mannal N. States, 5 ed. 444.-Curtis iu Rep. Geological Surv. N. Carolina, 18tio, iii, 71.-Lesquereux in Owen's $2 d$ Rep. Arkansas, 386.Wood, Cl. Book, 635; Bot. \& Fl. 300.-Porcher, Resources S. Ferests, 305.-Engelmann in Trans. Am. Pliil. Soc. nen ser. xii, 208.Koch Deudrolegie, ii, 447 .-Young, Bot. Texas, 494.—Bureau in De Candolle, Prodr. xvii, 245.-Hayden in Warren's Rep. Nebraska \& Dakota, 2 ed. 121.-Vasey, Cat. Forest Trees, 22.-Riley in Special Rep. U. S. Dept. Ag. No. 11, 34.-Ridgway in Proe. U. S. Nat. Mus. 1882, 73.-Burgess in Coulter's Bot. Gazette, vii, 95.
M. Canadensis, Lamarek, Diet. iv, 380 .-Seringe, Deser. \& Cult. du Mar. 224.
M. scabra, Willdenotr, Enum. 967 ; Berl. Banmz. 152.-Nuttall, Genera, ii, 209.-Rafinesque, Am. Manual Mulberry Trees, 29.-Hayne, Dend. F1. 154.-Sprengel, Syst. i, 492.-Loddiges, Cat. 1836.
11. tomentosa, Rafinesque, Fl. Ludoviciana, 113; An. Manual Mulberry Trees, 30.
M. reticulata, M. Canadensis, M. pervifolia, and M. riparia, Rafinesque, Am. Manual Mnlberry Trees, 29-31.
M. rubra, var. Canadensis, Loudon, Arboretum, iii, 1360.
M. Missouriensis, Audilert, Cat. Jarl. Tonnelle.
M. rubra, var. tomentosa, Bureau in De Candelle, Prodr. xvii, 246.
M. rubra, var. incisa, Bureau in De Candolle, Prodr. xvii, 247.

RED MULBERRY.

Western Now England and Long Island, New York, west through southern Ontario and central Michigan to the Black hills of Dakota, eastem Nebraska and Kamsas, south to bay Biscayne and cape Romano, Florida, and the valley of the Colorado river, Texas.

A large tree, is to 20 meters in leight, with a trunk 0.90 to 1.20 meter or, exceptionally, 2.15 meters in diameter (P. J. Berchmans, Augusta, Georgia); generally in rich bottom lands; most common and reaching its greatest development in the basins of the lower Ohio and the Mississippi rivers.

Wood light, soft, not strong, rather tough, coarsegrained, compaet, very durable in contact with the soil, satiny, susceptible of a good polisk; layers of ammal growth clearly marked by several rows of large open ducts; medulary rays momerous, thin; color, light orange-vellow, the sap-wood lighter; specific gravity, 0.5898; ash, 0.71 ; largely used in fencing, cooperage, for snaths, and at the south in ship- and boat-building.

The large dark purple fruit sweet and edible.

233.-Morus microphylla, Buckley,

Proc. Philadelphia Aead. 1862, 8.-Gray in Proc. Philadelphia Acad. 1862, 167.- Young, Bot. Texas, 494.

> M. parvifolia, Engclmann in herb-Gray, Hall's Pl. Texas, 21.-Vasey, Cat. Forest Trees, 22.-Riley in Special Rep. U. S. Dept. Ag. No. 11, 34.

MEXICAN MULBERRY.

Valley of the Colorado river, through western Texas to the valley of the Gila river, New Mexico; and sonthward into Mexieo.

A small tree, sometimes 7 meters in height, with a trunk rarely 0.30 meter in diameter, or often reduced to a low shrub; most common aud reaching its greatest derelopment in the mountain cañons of southern New Mexico; in Texas generally on limestone formations.

Wood heary, harl, elose-grained, cosppact; layers of annual growth marked with several rows of small open ducts; medullary rays numerous, thin; color, orange or, rarely, dark brown, the sap-wood light yellow; specific gravits, 0.7715; ash, 0.68.

The small acid fruit hardly edille.

234.-Maclura aurantiaca, Nuttall,

Genora, ii, 234; Trans. Am. Phil. Soc. 2 ser. v, 169; Sylva, i, 126, t.37, 38; 2 ed.i, 140, t.37, 38.—James in Long's Exped. ii, 158.Delile in Bull. Soc. Ag. Her. 1835 \& t.-Eaton, Manual, 6 ed. 217.-Soringo in Mem. Soe. Ag. Lyon, 1835, 125 \& t; Descr. \& Cult. du Mar. 232, t. 273.-Lambert, I'inus, 2 ed. ii, Appx. 4, t. 3.-Loudou, Arboretum, iii, 1342, 1362, f. 12266-1228; Gard. Mag. xi, 312, f. 45-47.-Eaton \& Wright, Bot. 311.-Spach, Hist. Veg. xi, 53.-Browne, Trees of Ameriea, 4G5.-Darby, But. S. States, 504.Cooper in Smithsonian Rep. 1858, 254.-Miquel in Martius, Fl. Brasil. iv, 158. -Wood, Cl. Book, 635; Bot. \& Fl. 299.-Poreher, Resources S. Forests, 101.-Koch, Dendrologie, ii, 437.-Bureau iu De Candolle, Prodr. xvii, 227.-Dumen in Proc. California Acad. v, 398.-Vascy, Cat. Forest Trees, 22.-Gnibourt, Hist. Drogues, 7 ed. ii, $3 \% 5$--Riley in Special Rep. U. S. Dept. Ag. No. 11, 35.

Toxylon Maclura, Rafinese, :e, Now Fl. \& Bot. i, 43; Am. Manual Mulberry Trees, 13.
Ioxylon pomiferum, Rafinesque in Am. Monthly Mag. and Crit. Rer. ii, 118.
Broussonetia tinctoria, Torrey in Ann. Lyc. N. York, ii, 246 [not Kunth].

OSAGE ORANGE. BOIS D'ARC.

Southwestern Arkansas, sonth of the valley of the Arkansas river, southeastern portions of the Indian territory, and southward in northeru Texas to about latitude $32^{\circ} 50^{\prime}$ N. (Dallas, Reverchon, etc.).

A tree, sometimes 15 to 18 meters in height, with a trumk rarely exceeding 0.60 meter in diameter; rich bottom lands; most common and probably reachiug its greatest development along the valley of the Red river in the Indian territory.

Wood heavy, exceedingly harl, very stroug, flexible, close-grained, compact, very durable in coutact with the gromnd, satiny, suseeptible of a beautifnl polish, containing mumerous small open ducts, layers of anmual growth clearly marked by broad bands of larger dncts; medullary rass thin, numerous, conspienous; color, bright orange, turning brown with exposure, the sap-wood light yellow; specific gravity, 0.7736; ash, 0.68 ; largely used for fenco posts, paving blocks, railway ties, wheel stock; extensively planted for hedges, especially in the western states.

PLATANACE

235.-Platanus occidentalis, Linnæus,

Spec. 1 ed. 999.—Dn Roi, Harbk. ii, 134.—Marshall, Arbustum, 105.-Wangenheim, Amer. 31, t. 13, f.31.-Walter, Fl. Caroliniana, 236.Aitoa, Hort. Kîw. iii, 365 ; 2 ed. v, 305.-Mench, Meth. 3is.-Abbot, Insects Georgia, ii, t. 55.-Michans, Fl. Bor.-Am. ii, 163.Lamarek, Diet. v, 438.-Non vean Duhamel, ii, 6, t. 2.-Willdenow, Spee. iv, 474 ; Enum. 984 ; Berl. Baumz. 284.-Persoon, Syn. ii, 575.-Desfontaines Hist. Arb. ii, 545.-Schkuhr, Haudb. iii, 274, t. 306.-Robin, Voyages, iii, 524.-Michaux f. Hist. Arb. Am. iii, 184, t. 3 ; N. American Sylva, 3 ed. ii, 48, t. 63.-Pursh, Fl. Am. Sept. ii, 635.-Barton, Prodr. Fl. Philadelph. 91 ; Compend. Fl. Philadelph. 176.-Eaton, Manual, 110 ; 6 ed. 267.-Nnttall, Gevera, ii, 219.-Hayne, Dend. Fl. 171.—James in Long's Exped. i, 23.-Elliott, Sk. ii, 620.-Sprengel, Syst. iii, 86̄̄.-Watson, Dend. Brit. i, t. 100.-Torrey, Compend. Fl. N. States, 356; Fl. N. York, ii, 218; Bet. Mex. Bonndary Surves, 205.-Audubon, Birds, t. 206.-Loudon, Arboretum, iv, 2043, f. 1959 \& t.-Eaton \& Wright, Bet. 361.-Hooker, Fl. Bor.-Am. ii, 158.-Bigelow, Fl. Bostou. 3 ed. 384.-Emerson, Trees Massachnsetts, 227 ; 2 ed. i, $261 \& t$.-Schcele in Rœmer, Texas, 446.-Buekley in Am. Jour. Sci. 2 ser. xiii, 399.—Darlington, Fl. Cestriea, 3 cd. 282.-Darby, Bot. S. States, 509.-Agardh, Theor. \& Syst. Pl. t. xiii, f. 1, 2.-Cooper iu Smithsenian Rep. 1858, 254.-Hartig, Forst. 446, t. 54.-Chapman, Fl. S. States, 418.-Curtis in Rep. Geological Surv. N. Carolina, 76.-Lesquereux in Owen's 2 d Rep. Arkansas, 386.-Wood, Cl. Book, 640; Bot. \& Fl. 303.Engelmann in Trans.Am. Phil. Soc. new ser. xii, 209.-A. De Candolle, Prodr. xri² 159. Gray, Manual N. States, 5 ed. 447; Hall's PL Texas, 21.-Koch, Dendrologie, ii, 463.-Schnizlein, Ieon. t. 97, f. 1-24.-Young, Bot. Texas, 498.—Hayden in Warren's Rep. Nebraska \& Dakota, 2 ed. 121.-Vasey, Cat. Forest Trees, 22.-Ridgway in Proc. U. S. Nat. Mus. 1882, 73.-Bell id Geological Rep. Cadada, 1879-'80, 55c.
P. lobata, Mcench, Meth. 358.
P. hybridas, Brotero, Fl. Lus. ii, 487.
P. vulgaris, var. angulosa, Spach in Ann. Sci. Nat. 2 ser. xv, 293; Hist. Veg. xi, 79.

SFCAMORE. BUTTON WOOD. BUTTON-BALL TREE. WATER BEECH.
Southern Maine and southeastern New Hampshire to northern Vermont and the northern shores of lakes Ontario and Erie, west tc eastern Nebraska and Kansas, south to northern Florida, central Alabama and Mississippi, and the valley of the Nueces river, Texas, extending sonthwest to the valley of the Devil's river.

The largest tree of the Atlantic forests, often 30 to 40 meters in height, with a trunk 2.40 to 4.20 meters in diameter; generally along streams and river bottoms, in rich, moist soil; very common and reaching its greatest development in the bottom lands of the Ohio and Mississippi rivers; the large specimens generally hollow.

Wood heavy, hard, not strong, rery close-grained, compact, difficult to split and work; layers of aunual growth clearly marked by broad bands of small ducts; the numerons mednlary rays very conspicuous, as in that of all the North American species; color, brown tinged with red, the sap-wood lighter; specific gravity, 0.5678; ash, 0.46 ; largely used for tobacco boxes (its principal use), ox-yokes, butchers' blocks, and, rarely, in the manufacture of cheap furniture.
236.-Platanus racemosa, Nuttall;

Andobon, Birds, t. 362; Sylva, i, 47, t. 15 ; 2 ed. i, 63, t. 15.-Bentham, Pl. Hartweg. 336.-Newberry in Pacific R. R. Rep. vi, 33, 89, t. 11, f. 10.-Cooper in Smithsodian Rep. 1858, 260.-Torrey, Bot. Mex. Bonadary Survey, 204; Ives' Rep. 27; Bot. Wilkes Exped. 457.-A. De Candolle, Prodr. xvi², 160.-Koch, Dendrologie, ii, 469.-Vasey, Cat. Forest Trees, 23.-Watson, Bot. California, ii, 66.
P. occidentalis, Hooker \& Arnott, Bot. Beechey, 160, 380 [not Liunæus].
P. Californica, Bentham, Bot. Sulphur, 54.
P. Mexicana, Moricand, Pl. Rar. Amer. t. 13 P-Torrey in Sitgreaves' Rep. 172; Paeific R. R. Rep. vii, 20.

SYCAMORE. BUTTON WOOD.

California, valley of the Saeramento river, south through the interior valleys and coast ranges to the southern bonndary of the state.

A large tree, 24 to 30 meters in beight, with a trunk 0.00 to 1.20 meter in diameter; borders of streams, in rich soil.

Wood light, soft, not strong, very close-grained, compact, difficult to split; layers of annual growth elearly marked by narrow bands of small ducts; medullary rays numerous, conspicaons; color, light brown tinged with red, the sap-wood lighter; specific gravity, 0.4880; ash, 1.11.

237.-Platanus Wrightii, Watson,

Proc. Am. Acad. x, 349.-Vasey, Cat. Forest Trees, 23.-Rnsby in Bull. Torrey Bot. Clob, ix, 54.
P. Mexicana, Torrey in Emory's Rep. 151 [not Morieand].
P. racemosa, Watson, Pl. Wheeler, 16 [not Nottall].-Rothroek in Wheeler's Rep. vi, 239.

SYCAMORE.

Vallejs of southwestern New Mexico to the valley of the San Pedro river, Arizona; sonthward into Mexico.

A tree sometimes 15 to 18 meters in height, with a trunk 0.45 to 0.60 meter in diameter; banks of streams and high mountain cañons.

Wood light, soft, weak, very close-grained, compact; layers of amual growth clearly marked by several rows of open ducts; medullary rays numerous, thin, very conspicuons; color, light brown tinged with red, the sap-wood. lighter; specifie gravity, 0.4736 ; ash, 1.35 .

JUGLANDACEA.

238. - Juglans cinerea, Limutus,

Spee. 2 ed. 1415.-Jaequin, Ieon. Rar. i, t. 193.—Wangenheim, Amer. 21, t. 9, f. 21.-Walter, Fl. Caroliniana, 23̄.—Aiton, Hort. Kerr. iii, 361 ; 2 ed. v, 296.-Lamarek, Dict. iv, 503; Ill. iii, 365, t. 781, f. 7.-B. S. Bartou, Coll. i, 22, 31 ; ii, 43.-Muhlonberg \& Willdenow in Neuo Schriften Gesell. Nat. Fr. Berlin, iii, 388.-Miehaux, Fl. Bor.-Am. ii, 191.-Willdenow, Spec. iv, 456; Enum. 978; Berl. Banmz. 193.-Persoon, Syn. ii, 556.-Desfontaines, IIist. Arb. ii, 347.-Pursh, Fl. Am. Sept. ii, 636.-Barton, Prodr. Fl. Philadelph. 92.-Bigelow, Med. Bot. ii, 115, t. 32; F1. Boston. 3 ed. 378.-Eaton, Manual, 108; 6 ed. 192.-Nuttall, Genera, ii, 220;
 F1. N. York, ii, 180.-Rafinesque, Med. Bot. ii, 234.-Audubon, Birds, t. 142.-Beek, Bot. 335.-Spach, liist. Veg. ii, 170.-Lindley, Fl. Med. 307.-London, Arboretum, iii, 1439, f. 1262.-Hooker, Fl. Bor.-Am. ii, 143.-Eaton \& Wright, Bot. 287.-Emerson, Trees. Massachusetts, 182 ; $2 \mathrm{ed} . \mathrm{i}, 207$ \& t.—Griffith, Med. Bot. 589.—Carson, Med. Bot.ii, 42, t. 86.-Parry in Owen's Rep. 618.—Darlington, Fl. Cestrica, 3 ed. 262.-Darby, Bot. S. States, 513.-Cooper in Suithsonian Rep. 1858, 254.-Chapman, Fl. S. States, 419.-Curtis. in Rep. Geological Surv. N. Carolina, 1860, iii, 45.-Lesquercux in Owen's $2 l$ Rep. Arkansas, 387 .-Wood, Cl. Book, 640; Bot. \& Fl. 304.-C. De Candollo in Ann. Sei. Nat. 4 ser. xviii, 16, t. 4, f. 45 ; Prodr. xvi, 137.-Porcher, Resontces S. Forests, 317.-Engelmann in Trans. Am. Phil. Soc. new ser. xii, 209.-Gray, Mauual N. States, 5 ed. 447.-Koch, Dendrologic, i, 589.-Hayden in Warren's Rep., Nebraska \& Dakota, 2 ed. 121.-Vasey, Cat. Forest Trees, 23.-Broadhead in Coulter's Bot. Gazette, iii, b0.-Bentley \& Trimen, Med. Pl. iv, 247, t. 247.-Beal in Am. Nat. xv, 36, f. 6.-Sears in Bull. Essex Inst. xiii, 178.-Bell in Geologieal Rep. Canada, 1878-80, 53c.-Ridgway in Proc. U. S. Nat. Mus. 1882, 76.
J. oblonga, Miller, Dict. No. 3.-Dn Roi, Harbk. i, 332-Mœench, Meth. 696.-Retzius, Obs. i, 10.
J. oblonga alba, Marshall, Arbustum, 67.
J. cathartica, Miehaux f. Iist. Arb. Am. i, 105, t. 2; N. American Sylva, 3 ed. i, 109, t. 31.

Carya cathartica, Barton, Compend. Fl. Philadelph. ii, 178.
Wallia cinerca, Alefeld in Bonplandia, 1861, 334.

BUTTERNUT. WHITE WALNUT.

Sonthern New Branswick, valley of the Saint Lawrence river, Ontario and southern Michigan to northern Minnesota (lake Pokegoma, Garrison) and central Iowa, sonth to Delaware and along the Alleghany momntains tonorthern Georgia, central Alabama and Mississippi, northern Arkansas, and sontheastern Kansas.

A tree 18 to 24 or, exceptionally, 30 to 35 meters (Ridgray) in height, with a trunk 0.60 to 0.90 meter in diameter; rich woodlands; rare at the south; most common and reaching its greatest development in the Ohio River basin.

Wood light, soft, not strong, rather coarse-grained: compact, easily worked, satiny, susceptible of a beantiful polish, containing mmerous regularly-distributed, large, open ducts; medullars rays distant, thin, obscure; color, bright liglit brown, turning dark with exposure, the sap-wood lighter; specific gravity, 0.4056 ; ash, 0.51 ; largely used for interior finish, cabinet work, etc.

The inner bark, especially that of the root, is employed medicinally as a mild cathartic (Am. Jour. Pharme. 1874, 169.-U. S. Dispensatory, $14 \mathrm{~cd} .526 .-$ Nat. Dispensatory, 2 cd .794), and furnishes a yellow dye.

239.-Juglans nigra, Limnæus,

Spec. 1 ed. 997.-Jacquin, Icon. Rar. i, t. 191.—Wangenheim, Amer. 20, t. 8, f. 20.-Walter, Fl. Caroliniana, 235.-Aiton, Hort. Kew, iii, 360; 2 ed. v, 296.—Mœnch, Meth. 696.—Lamarck, Diet. iv, 502; Ill. iii, 365, t. 781, f. 6.—Abbot, Iusects Georgia, i, t. 88.Mnhlenberg \& Willdenow in Neue Sehriften Gesell. Nat. Fr. Berlin, iii, 388.-Michanx, Fl. Bor.-Am. ii, 191.-Willdenow, Spec. iv, 456; Enom. 978; Berl. Banmz. 193.-Smith in Rees' Cyel. xx, No. 3.-Persoon, Syn. ii, 566.-Desfontaines, Hist. Arb, ii, 347.Nouvean Duhamel, iv, 179, t. 48.—Michaux f. Hist. Arb. Am. i, 158, t. 1; N. American Sylva, 3 ed. i, 140, t. 30.-Pursh, Fl. Am. Sept. ii, 636.—Barton, Prodr. Fl. Philadelph. 92; Compend. Fl. Philadelph. ii, 177.-Eaton, Manual, 108; 6 ed. 192.-Nuttall, Genera, ii, 220 ; Sylva, i, 41 ; 2 ed. i, $57 .-H a y n o$, Dend. Fl. 163.-Elliott, Sk. ii, 622.-Sprengel, Syst. iii, 865.-Torrey, Compend. Fl. N. States, 357 ; Fl. N. Yon , ii, 179.-Watson, Dend. Brit. ii, t. 158.-Audubon, Birds, t. 84, 156.-Rafinesque, Med. But. ii, 233.-Beck, Bot. 335.Spach, Hist. Veg. ii, 168.-Loudou, Arboretum, iii, 1435, f. 1260 \& t.-Eaton \& Wright, Bot. 287.-Emerson, Trees Massachusetts, 185; 2 ed. i, 211 \& t.-Griffith, Med. Bot. 589.-Parry in Owen's Rep. 618.-Darlingtou, Fl. Cestrica, 3 ed. 262.-Darby, Bot. S. States, 513.-Cooper in Smithsonian Rep. 1858, 254.-Chapman, Fl. S. States, 419.-Curtis in Rep. Gcological Surv. N. Carolina, 1860, iii, 45.-Lesquerenx in Owen's 2d Rep. Arkansas, 387.-Wood, Cl. Book, 640; Bot. \& Fl. 304.-C. De Candolle in Ann. Sci. Nat. 4 ser. xviii, 34, t. 1, f. 1, 8-10; Prodr. xvi², 137.-Engelmann in Trans. Am. Phil. Soe. new ser. xii, 209.-Porcher, Resources S. Forests, 318.-Gray, Manual N. States, 5 ed. $447 .-K o c h$, Dendrologie, i, 587.—Schnizlein; Icon. t. 244, f. 1, 8, 12, 13.-Yonng, Bot. Texas, 500.-Hayden in Warren's Rep. Nebraska \& Dakota, 2 ed. 121.-Vasey, Cat. Forcst Trees, 23.-Guibourt, Hist. Drogues, 7 ed. ii, 302.-Beal in Am. Nat. xv, 36, f. 5.—Sears in Bull. Essex Inst. xiii, 178.—Bell in Geological Rep. Canada, 1879-80, 53c.Ridgway in Proc. U. S. Nat. MIus. 1882, 76. -Nieholson in London Gard. Chronicle, 1882, 780.—Watson in Proc. Am. Acad. xviii, 155.
J. nigra oblonga, Marshall, Arbustum, 67.

Wallia nigra, Alefeld in Bonplandia, 1861, 334.

BLACK WALNUT.

Western Massachusetts, west along the southern shores of lake Erie through southern Michigan to southern Minnesota, eastern Nebraska, and eastern Kansas, south to the Ohattaboochee region of northern Florida, central Alabama and Mississippi, and the valley of the San Antonio river, Texas.

A large tree, often 30 to 45 meters in height, with a trunk 1.80 to 3 meters in diameter; rich bottom lands and hillsides; most common and reaching its greatest development on the western slopes of the southern Alleghany monntains and in the rich bottoms of southwestern Arkansas and the Indian territory; less common east of the Alleghany mountains, and now everywhere scarce.

Wood heavy, hard, strong, rather coarse-grained, liable to check if not carefully seasoned, easily worked, susceptible of a beantiful polish, durable in contact with the soil, containing numerous large, regularly-distributed, open ducts; medullary rays numerous, thin, not conspicnous; color, rich dark brown, the thin sap-wood much lighter; specific gravity, 0.6115 ; ash, 0.79 ; more generally used in cabinet-making, interior finish, and for gun stocks than that of any other North American tree.

240.-Juglans rupestris, Engelmann;

Sitgreaves' Rep. 171, t. 15.-Torrey, Bot. Mex. Boundary Survey, 205; Ives' Rep.27.-Cooper in Smithsonian Rep. 1858, 260.-C. De Candelle in Ann. Sci. Nat. 4 ser. xviii, 28, t. 2, f. 11; Prodr. xvi², 138.-Vasey, Cat. Forest Trees, 24.-Watson, Bot. California, ii, 93 ; Proc. Am. Acad. xviii, 155.-Rusby in Bull. Torrey Bot. Club. ix, 54.
J. rupestris, var. major, Torrey in Sitgreaves' Rep. 171, t. 16; Bot. Mex. Boundary Survey, 205; Pacific R. R. Rep. vii, 20.-C. De Candolle, Prodr. xvi², 138.-Hemsley, Bot. Am.-Cent. iii, 164.
J. Californica, Watson in Proc. Am. Acad. x, 349 ; Bot. California, ii, 93.-Vasey, Cat. Forest Trees, 24.-Rothrock in Wheeler's Rep. vi, 249.

walnut.

Valley of the Colorado river (near Austin), west through western Texas, southern New Mexico, and Arizona from 5,000 to 7,000 feet elevation, and in the California Coast ranges from the San Bernardino mountains to the neighborhood of San Francisco bay and the valley of the Sacramento river.

A trec rarely 15 to 22 meters in height, with a trunk 0.30 to 0.90 meter in diameter, reaching its greatest development in the neighborhood of San Francisco bay; in Texas generally reduced to a low, much-branched shrub; borders of streams and mountain cañons, in rich soil.

Wood heary, harl, not strong, coarse-grained, checking in drying, susceptible of a good polish, containing numerous regularly-distribnted, large, open dncts; mednllary rays distant, thin, obscure; color, rich dark brown, the sap-wood lighter; specific gravity, 0.6554; ash, 1.01 .

The small nuts sweet and edible.

241.-Carya olivæformis, Nuttall,

Genera, ii, 221.-Sprengel, Syst. ii, 849.-Eaton, Manual, 6 ed. . 83.-Spach. Mist. Veg. ii, 173.-Penn. Cycl. vi, 331.-Loudon, Arboretum, iii, 1441, f. 1263.-Eaton \& Wright, Bot. 183.—Scheele in Rœmer, Texas, 447.-Belg. IIort. vi, 223, t. 45, 1. 2.-Torrey, Bot. Mex. Boundary Survey 203.-Cooper in Smithsonian Rep. 1858, 255.-Chapman, Fl. S. States, 418. -Lesqucrenx in Owen's $2 d$ Rep. Arkansas, 387.-Wood, Cl. Book, 641 ; Bot. \& Fl. 304.-C. De Candolle in Amm. Sci. Nat. 4 ser. xviii, 36, t. 1, f. 3, t. 5, f. 59 ; Prodr. xvi², 144.-Poreher, Resourees S. Forests, 333.-Gray, Manual N. States, 5 ed. $448 .-Y$ Young, Bet. Texas, 499.-Vasey, Cat. Forest Trecs, act.-13roadhead in Conlter's Bot. Gazette, iii, 60.-Ridgway in 1'roc. U. S. Nat. Mus. 18c2, 77.-Ilensley, Bot. Am. Cent. iii, 163.-Watson in Proc. Am. Acad. xviii, 155.

Juglans Pecan, Marshall, Arbustum, 69.-Walter, Fl. Caroliniana, 236.-Muhlenberg \& Willdenow in Neuc Schriften Gesell. Nat. Fr. Berlin, iii, 392.

Juglans Illinoinensis, Wangenheim, Amer. 54, t. 18, f. 43.
Juglans angustifolia, Ạiton, Hort. Kew. iii, 361 ; 2 cd. v, 296.
Juglans rubra, Gertner, Frnct. ii, 51, t. 89, f. 1.-Lamarck, III. iii, 365, t. 781, f. 4.
Juglans cylindrica, Lamarck, Dict. iv, 505 ; In. iii, 365, t. 781, f. 5.-Nouveau Duhamel, iv, 179.
Juglans olivasformis, Michaux, Fl. Bor.-Am. ii, 192.-Willdonow, Spec. iv, 457 ; Enum. 979; Berl. Baumz. 194.-Persoon, Syn. ii, 566. -Desfontaines, Hist. Arb. ii, 348.-Michanx f. Hist. Arb. Am. j, 175, t. 3 ; N. American Sylva, 3 ed. i, 114, t. 32.-Muhlonberg, Cat. 88.-Aiton, Hort. Kew. 2 ed. v, 296.-Pursh, Fl. Am. Sept. ii, 636.-Hayne, Dend. Fl. 163.Regel, Gartenllora, xviii, 89.
C. angustifolia, Nuttall, Sylva, i, 41 ; 2 ed. i, 57.

9C. tetraptera, Liebmann in Dansk. Vidensk. Selsk. Forhand. 1850, 80.
Hickorea species, LeConte in Proc. Philadelphia Acad. vi, 402.
C. Illinoensis, Koch, Dendrologie, i, 593.

peoan. illinois nut.

Near Daveuport, Iowa (C. C. Parry), southern Illinois, and Indiạna, northwestern Kentucky, south and southwest through Missouri and Arkansas to eastern Kansas, the Indiau territory, and through western Louisiana and Texas to the valley of the Concho river.

A tree 30 to 52 meters in leight, with a trunk 0.90 to 1.80 meter in diameter; borders of streams in low, rich soil; very common and reaching its greatest development in the bottom lands of A rkansas and the Indian territory; the largest species of the genns and the largest and most important tree of western Texas.

Wood heavy, hard, not strong, brittle, elose-grained, compact; layers of ammal growth marked by one or two rows of large open duets; medullary rays numerons, thin; color, light brown tinged with red; the.sap-wood lighter brown; specifie gravity, 0.7180 ; ash, 1.13 ; less valuable than the wood of the other species and hardly used except for fuel.

The sweet, edible nuts are collected in great quantities, affording an important artiele of commerce.

242.-Carya alba, Nuttall,

Genera, ii, 221.-Elliott, Sk. ii, 624.-Watson, Dend. Brit. ii, t. 148.—Sprengel, Syst. ii, 849.-Torrey, Compend. Fl. N. States, 357 ; Fl. N. York, 181.—Beck, Bot. 336.-Eaton, Mannal, 6 ed. 83.-Spach, Hist. Veg. ii, 174.-Penn. Cycl. vi, 332.-Loudon, Arboretum, jii, 1446, f. 1269 \& t.-Eaton \& Wright, Bot. 183.-Hooker, Fl. Bor.-Am. ii, 143.-Emerson, Trees Massachusetts, 191; 2 ed. i, 21 \& t. Darlington, Fl. Cestrica, 3ed. 263.-Darby, Bot. S. States, 513.-Belg. Hort. vi, 223, t. 48, f. 8.-Cooper in Smithsonian Rep. 1858, 255.Chapman, Fl. S. States, 418.-Curtis in Rep. Geological Surv. N. Carolina, 1860, iii, 43.-Lesquereux in Owen's ed Rep. Arkansas, 387.-Wood, Cl. Book, 641 ; Bot. \& Fl. 304.-C. De Candolle in Ann. Sci. Nat. 4 ser. xviii, 36, t. 2, f. 13, 14, 18, t. 3, f. 24, t.4, f. 44, 46; Prodr. xvi², 142.-Gray, Manual N. States, 5 ed. 448.-Young, Bot. Texas, 499.-Vascy, Cat. Forest Trees, 24.-Aldrich in Am. Nat. xv, 227.-Sears in Bull. Essex Inst. xiii, 179.-Ridgway in Proe.U. S. Nat. Mus. 1882, 72.-Bell in Geological Rep.Canada, 1879-80,55e.

Juglans ovata, Miller, Dict.
Juglans alba ovata, Marshall, Arbustum, 69.
Juglans oualis, Wangenheim, Amer. 24, t. 10, f. 23.
Juglans compressa, Gærtner, Frnet. ii, 50, t. 89, f. 1.-Muhlenberg \& Willdenow in Neue Schriften Gesell. Nat. Fr. Berlin, iii, 300.-Willdenow, Spec. iv, 458; Enum. 979; Berl. Baumz. 195.-Persoon, Syn. ii, 566.-Dcefontaines, Hist. Arb. ii, 347.-Aiton, llort. Kew. 2 cd. v, 297.-Hayne, Dend. Fl. 164.-Lawarck, Ill. iii, 365, t. 781, f. 3.

QJuglans exaltata, Bartram, Travels, 2 ed. 38.
Juglans squamosa, Lamarck, Dict. iv, 504.-Desfontaines, IIist. Arb. ii, 348.—Michaux f. Hist. Arb. Am. i, 190, t. 7; N. American Sylva, 3 ed. i, 123, t.36.-Barton, Prodr. Fl. Philadelph. 92; Compend. Fl. Philadelph. ii, 179.-Bigolow, Fl. Boston. 3 ed. 380.

Juglans alba, Michanx, Fl. Bor. Am. ii 193 [not Linnæus].-Pursh, Fl. Am. Sept. ii, 637.-Eaton, Manual, 108.
C. microcarpa, Nnttall, Gencra, ii, 221 ; Sylva, i, 38, t. 13 ; 2 ed. i, 55 , t. 13.-Sprengel, Syst. ii, 849.-Penn. Cyel. vi, 332.-. Loudon, Arboretum, iii, 1451.-Darlington, Fl. Cestrica, 3 ed. 264.-Cooper in Smithsonian Rep. 1858, 255.-Chapman, Fl. S. States, 419.-Curtis in Rep. Geological Surv. N. Carolina, 1860, iii, 44.-Wood, C1. Book, 642; Bot. \& F1. 304-C. Do Candolle, Prodr. xvi², 143.-Gray, Mawual N. States, 5 ed. 448.-Koch, Dendrologie, i, 596.-Young, Bot. Texas, 499.-Vasey, Cat. Forest Trees, 24.-Ridgway in Proe. U. S. Nat. Mus. 1882, 77.

SHELL-BARK HICKORY. SHAG-BARK HICKORY.

Valley of the Saint Lawrence river, along the northern shores of lakes Ontario and Erie to southeru Miehigan and sontheastern Minnesota, sonth to the Chattahoochee region of westeru Florida, eentral Alabama and Mississippi, and west to eastern Kansas, the Indian territory, and castern Texas.

A large tree of the first economic value, 24 to 30 or, exceptionally, 39 to 45 meters in height (Ridgray), with a trunk 0.90 to 1.20 meter in diameter; rich hillsides and sandy ridges; common and reaching its greatest development west of the Alleghany monntains; varying greatly in the size and shape of the fruit. A form with small, thin-shelled nuts (C. microcarpa, Nuttall l.c.) is not rare from Delaware southward, and in Michigan.

Wood heary, very hard and strong, tough, close-grained, compact, flexible; layers of anmal growth elearly marked with one to three rows of large open duets; medullary rays numerons, thin; color, brown, the thin and more valuable sap-wood nearly white; specific gravity, 0.8372 ; ash, 0.73 ; largely used in the manufacture of agricultural implements, carriages, ax handles, baskets, etc.

The sweet and edible nuts afford an important article of commerce.

243.-Carya sulcata, Nuttall,

 6 ed. 83.-Spaeh, Hist. Veg. ii, 174.-Penn. Cyel. vi, 332.-London, Arboretum, iii, 1448, f. 1271.-Laton \& Wright, Bot. 183.Darby, Bot. S. States, 513.-Cooper in Smithsouian Rep. 1858, 255.-Chapman, Fl. S. States, 418.-Curtis in Rep. Geological Surv. N. Carolina, 1860, iii, 43.-Lesqnerenx in Owen's $2 d$ Rep. Arkansas, 387 .-Wood, Cl. Book, 641 ; Bot. \& Fl. 304.-C. De Caddolle in Ann. Sci. Nat. 4 ser. xviii, 36, t. 5, f. 51, 52; Prodr. xvis, 143.—Gray, Manual N. States, 5 ed. 449.-Young, Bot. Texas, 499.Vasey, Cat. Forest Trees, 24.-Ridgway in Proc. U. S. Nat. Mus. 1882, 78.

Juglans sulcata, Willdenow, Berl. Baumz. 1 ed. 154, t. 7; Spee. iv, 457.-Muhlenberg \& Willdenow in Nene Sehriften Gesell. Nat. Fr. Berlin, iii, 391.-Persoon, Syn. ii, 566.—Desfontaines, Hist. Arb. ii, 348.-Pursh, Fl. Am. Sept. ii, 637.
Juglans mucronata, Michanx, Fl. Bor.-Am. ii, 192.
Juglans laciniosa, Michaux f. Hist. Arb. Am. i, 199, t. 8 ; N. Ameriean Sylva, 3 ed. i, 128, t. 37.-Barton, Prudr. FL. Philadelph. 92.-Poiret, Suppl. iv, 112.-Audubon, Birds, t. 101.
C. cordiformis, Koch, Dendrologie, i, 597.

BIG SHELL-BABK. BOTTON SHELL-BARK.

Chester connty, Pennsylvania, west to southern Indiana and Illinois, eastern Kansas, and the Indian territory. A tree 24 to 30 or, exceptionally, 37 (Ridgway) meters in height, wi th a trunk 0.60 to 1.20 meter in diameter; bottom lands, in low, rich soil; rare and local; most common and reaching its greatest development along the streams of sonthern Arkansas and the Indian territory.

Wood heary, very hard, strong and tough, very close-grained, compact, flexible; layers of annual growth marked by one or two rows of large open ducts; medullary rays numerons, obscure ; color, dark brown, the sapwood nearly white; specific gravity, 0.8108 ; ash, 0.90 ; used for the same purposes as that of the shell-bark hickory.

The large nuts sweet and edible.

244.-Carya tomentosa, Nuttall,

Genera, ii, 221.-Barton, Compend. Fl. Philadelph. ii, 179.—Elliott, Sk. ii, 625.—Spreugel, Syst. ii, 849.-Torrey, Compend. Fl. N. States, 357 ; Fl. N. York, ii, 182.-Beek, Bot. 336.-Eaton, Manual, 6 ed. 83.-Spach, Hist. Veg. ii, 176.-Penn. Cycl. vi, 332.-Loudon, Arboretım, iii, 1444, f. 1267.—Eaton \& Wright, Bot. 183.-Emerson, 'Trees Massaehusetts, 194, t. 13; 2 ed. i, 222 \& t.-Darlington, Fl. Cestrica, 3 ed. 263.-Darby, Bot. S.States, 513 .-Cooper in Smithsouian Rep. 1858, 255.-Chapman, Fl. S.States, 419.-Curtis in Rep. Geological Surv. N. Carolina, 1860, iii, 43.-Lesquerenx in Owen's al Rep. Arkansas, 387.-Wood, Cl. Book, 641; Bot. \& Fl. 304.-C. De Candolle in Ann. Sci. Nat. 4 ser. xviii, 36 ; Prodr. xvi², 143.-Gray, Manual N. States, 5 ed. 449.-Young, Bot. Toxas, 499.-Vasey, Cat. Forest Trees, 24.—Ridgway in Proe. U. S. Nat. Mus. 1882, 78.

Juglans alba, Linnæus, Spee. 1 ed. 997.-Du Roi, Harbk. i, 333.-Kalm in Aet. Holm. 1760, 117.-Wangenheim, Amer. 23, t. 10, f. 2.-Walter, Fl. Caroliniana, 235.-Aiton, Hort. Kew. iii, 360 ; 2 ed. v, 296.-Grertner, Fruct. ii, 50, t. 89, f. 1.Mœneh, Meth. 606.-Abbot, Inscets Georgia, i, t. 29.-Lamarck, Dict. iv, 503; Ill. iii, 364, t. 781, f. 2.-Muhlenberg \& Willdenow in Neue Schriften Gesell. Nat. Fr. Berlin, iii, 369.-Smith in Rees' Cycl. xx, No. 2.-Willdenow, Spec. iv, 457 ; Berl. Baumz. 154.-Desfontaines, Hist. Arb. ii, 347.-Bigelow, Fl. Boston. 3 cd. 379.

Juglans tomentosa, Lamarck, Diet. iv, 504.-Miehanx, Fl. Bor.-Am. ii, 192.-Michanx f. Hist. Arb. Am. i, 184, t. 6 ; N. Ameriean Sylva, 3 ed. i, 120, t. 35.-Pursh, Fl. Am. Sept. ii, 637.-Barton, Prodr. Fl. Philadelph. 92.

> C. tomentosa, var. maxima, Nuttall, Genera, ii, 221 ; Sylva, i, 40; 2 ed. i, 56.-Sweet, Hort. Brit. ed. 1830.-Beek, Bot. $336 .-$ London, Arboretum, iii, 1445.-C. De Candolle, Prodr. xvi², 143.
C. alba, Koch, Dendrologic, $\mathbf{i}, 596[$ not Nuttall].

hocker nut. black hickory. bull nut. big-bud hickory. wilite-heart hickory. king nut.

Valley of the Saint Lawrenee river, northern shores of lakes Ontario and Erie to eastern Nebraska, eastern Kansas, and the Indian territory, sonth to cape Canaveral and Tampa bay, Florida, and the valley of the Brazos river, Texas.

A tree 24 to 30 or, exceptionally, 33 (Ridgray) meters in height, with a trunk 0.90 to 1.20 meter in diameter; generally on rich upland hillsides-less commonly in low river bottom lands; very common in the Gulf states, and throughout the sonth the most widely distributed species of the genus.

Wood heary, very hard, strong, tongl, very close-grained, checking in drying, flexible, containing few large, regularly-distributed, open dnets; medullary rays numerons, thin, obseure; color, rich dark brown, the thick sapwood nearly white; specific gravity, 0.8216 ; ash, 1.06; used for the same purposes as that of the shell-bark hickory.

> 245.-Carya porcina, Nuttall,

Genera, ii, 299.-Barton, Compend. Fl. Philadelpli. ii, 180.—Elliott, Sk. ii, 627.-Watson, Deud. Brit. ii, t. I67.-Sprengel, Syst. ii, 849.Torrey, Compend. Fl. N. States, 358.-Beck, Bot. 336.-Eaton, Manual, 6 ed. 83.-Spach, Hist. Veg. ii, 178.-Pemn. Cyel. vi, 332.Darlington, Fl. Cestrica, 2 ed. 546.-London, Arboretum, iii, 1449, f. 1272-1274.-Catou \& Wright, Bot. 183.-Spach, Hist. Veg. ii, 178.-Emerson, Trees Massachuselts, 197, t. 14; 2 ed, i, 224 \& t.-Wood, Bot. © Fl. 304.-C. De Candolle in Ann. Sci. Nat. 4 ser. xviii, 36, t. 1, f. 5, t. 5 , f. 54 ; Prodr. xvj ${ }^{2}$, 143.-Porcher, Resourees S. Forests, 332.-Gray, Mauaal N. States, 5 ed. 449; Hall's Pl. Texas, 21.—Vasey, Cat. Forest Trees, 24.-Ridgway in Proc. U. S. Nat. Mus. 1882, 78.

Juglans glabra, Miller, Dict. No. 5.-Wangenheim, Amer. 25, t. 10, f. 24.-Muhlenberg \& Willdenow in Nene Schriften Gesell. Nat. Fr. Berliu, iii, 391.-Willdenow, Spec. iv, 458; Bcrl. Bammz. 196.-Persoon, Syn. ii, 566 .-Aiton, Hort. Kew. 2 ed. v, 297.-Eaton, Muunal, 108.-Hayne, Dend. Fl. 164.

Juglans alba acuminata, Marshall, Arbustum, 68.
Juglans obcordata, Lamarck Dict. iv, 504.-Mnhtenberg \& Willdenow in Nene Schriften Gesell. Nat. Fr. Berlin, iii, 391.Willdenow, Spec. iv, 458.-Persoon, Syu. 566.
Juglans porcina, Michaux f. Hist. Arb. Am. i, 206, t. 9; N. Americau Sylva, 3 ed. i, 132, t. 38.— Pursh, Fl. Am. Sopt. ii, (i38.-Barton, Prodr. Fi. Philadelph. 92.-Audubon, Birds, t. 91.

Juglans pyriformis, Muhlenberg, Cat. 92.
Juglans porcina, var. obcorlata, Pursh, Fl.Am. Sept. ii, 638.-Barton, Compend. Fl. Philadelph. ii, 180.-Watson, Dend. Brit. ii, 167.

Juglens porcina, var. pisiformis, Pursh, Fl. An. Sept. ii, 638.-Barton, Compend. Fl. Philadelph. ii, 180.
C. glabra, Torrey, Fl. N. York, ii, 182, t. 101.—Gray, Manual N. Slates, 1 ed. 412.—Darlington, Fl. Cestrica, 3 ed. 264.-Cooper in Sinithsonian Rep. 1858, 255.-Chapman, Fl. S. States, 419.-Curtis in Rep. Geological Surv. N. Carolina, 1860, iii, 44.-Lésqucrenx in Oweu's 2 d Rep. Arkansas; 387.-Koch, Dendrologie, i, 594.-Young, Bot. Texas, 499.
C. amara, var. porcina, Darly, Bot.S.States, 513 .
pIG NUT. JROWN HICKORY. BLACK HICKORY. SWITCH BUD HICKORY.
Southern Maine to southern Ontario, southern Michigan and Mimesota, eastern Nebraska, eastern Kansas, and the Indian territory, south to cape Canaveral and Pease creek, Florida, and the valley of the Nueces river, Texas.

A tree 24 to 30 or, exceptionally, 40 (Ridgncay) meters in height, with a trunk 0.90 to 1.50 meter in diameter; dry hills and uplands; common.

Wood heavy, hard, very strong and tough, flexible, close-grained, cheeking in drying, containing many large open ducts; color, dark or light brown, the thick sap-wood lighter, often nearly white; specifie gravity, 0.8217; ash, 0.99 ; nsed for the same purposes as that of the shell-bark hickory.

246.-Carya amara, Nuttall,

Tenera, ii, 229.-Barton, Compend. Fl. Philadelph. ii, 180.-Elliott, Sk. ii, 626.-Sprengel, Syst. ii, 849.-Torrey, Compend. Fl. N. States, 358; Fl. N. York, ii, 183.-Beck, Bot. 336.-Spach, Hist. Veg. ii, 177.-Penn. Cyel. vi, 332.-Londou, Arboretum, iii, 1443, f. 1264.Hooker, Fl. Bor.-Am. ii, 144.-Emerson, Trees Massachusetts, 199, t. 15; 2 ed. i, 226 \& t.-Darlington, Fl. Cestrica,3 ed. 264.Darby, Bot. S. States, 513.-Cooper in Smithsonian Rep. 1858, 255.-Chapman, Fl. S. States, 419.—Curtis in Rep. Geological Surv. N. Carolina, 1860, iii, 44.-Lesquerenx in Owen's $2 d$ Rep. Arkansas, 387 .-Wood, Cl. Book, 641; Bot. \& Fl. 304.-C. De Candolle in Ann. Sci. Nat. 4 ser. xviii, 36, t. 1, f. 2, t.5,f.53-55; Prodr. xvi ${ }^{2}$, 144. - Gray, Manual N. States, 5 ed. 449; Hall's Pl. Texas, 21.-Koch,
 Rep. Canada, 18r9-'80,52c.—Ridgway in Proc. U. S. Nat. Mus. 1882, 77.

Juglans alba minima, Marshall, Arbustum, 68.
Juglans cordiformis, Wangenheim, Amer. 25, t. 10, f. $2 \overline{5}$.
Juglans angustifolia, Lamarck, Dict. iv, 504 [not Aiton].
Juglans amara, Michanx f. Hist. Arb. Am. i, 177, t. 4 ; 3 ed. i, 116, t. 33.-Pursh, Fl. Am. Sept. ii, 638.
Hickorius amara, Rafinesque, Fl. Ludovieiana, 109.

BITTER NUT. SWAMP HICKORY.

Sonthern Maine to the valley of the Saint Lawrence river, west through Ontario, central Michigan and Mnnesota to eastern Nebraska, eastern Kansas, and the Indian territory, sonth to the Chattahoochee region of western Florida and the valley of the Trinity river, Texas.

A tree 18 to 24 meters in height, with a trunk 0.60 to 0.90 meter in diameter; borders of streams and swamps, in low ground, or often on dry, rich uplands.

Wood hears, very hard, strong, tongh, close-grained, checking in drying; layers of anmual growth marked by several rows of large open ducts; medullary rays numerons, obscure; color, dark brown, the thick sap-wood light brown, or often neurly white; specific grarity, 0.7552 ; ash, 1.03 ; largely used for hoops, ox-yokes, etc.

247.-Carya myristicæformis, Nuttall,

Genera, ii, 222.-Elliott, Sk. ii, 626.-Sprengel, Syst. ii, 849.-Eaton, Manaal, 6 ed. 83.-Spach, Hist. Veg. ii, 179.—Penn. Cyel. $\mathrm{v}, 332 .-$ London, Arboretum, iii, 1451, f. 1275.-Eaton \& Wright, Bot. 1833.-Chapman, Fl. S. States, 419.-C. De Candolle in Ann. Sci. Nat. 4 ser. xviii, 36, t. 6, f. 58; Prodr. xvi², 145.-Koeh, Deudrologie, i, 595.-Young, Bot. Texas, 500.-Vasey, Cat. Forest Trees, 24.-Ravenel in Bull. Torrey Bot. Clull. vi, 81.

Juglans myristicaformis, Miehanx f. Mist. Arb. Am. i, 211, t. 10; N. American Sylva, 3 ed. i, 135, t. 39.-Pursh, Fl. Am. Sept. ii, 638.-Poiret, Suppl. iv, 112.-Rafinesque, Ml. Ludoviciana, 161.
C. amara, var. myristicaformis, Cooper in Smithsonian Rep. 1858, 255.

NUTMEG HICKORY.

Sonth Carolina, "Goose creek" (Michaux), "Berkeley district" (Ravencl); Arkansas, valley of the Arkansas riser (Pine Bluff, Letterman), south to the Red River valley.

A tree 24 to 30 meters in height, with a trunk 0.60 to 0.90 meter in diameter; sandy ridges along the borders of streams and swamps; rare and very local in Sonth Carolina; more common and reaching its greatest development in soutliern Arkansas.

Wood heary, hard, very strong and tongh, close-grained, compact, containing unmerous small open ducts, layers of annual growth marked by one or two rows of larger ducts; medullary rays numerous, thin, not conspicuons ; color, light brown, the sap-mood lighter ; specific gravity, 0.8016 ; ash, 1.06 .

248.-Carya aquatica, Nuttall,

Genera, ii, 222.-Elliott, Sle ii, 627.-Sprengel, Syst. ii, 849.-Eaton, Manual, 6 ed. 83.-Spach, Hist. Veg. ii, 179.-Penu. Cycl. vi, 332.-London, Arborctnm, iii, 1444, f. 1265, 1266.—Laton \& Wright, Bot. 183.-Seheele in Romer, Texas, 447.-Darby, Bot. S. States, 514.-Chapman, Fl. S. States, 419.-Curtis in Rep. Gcologieal Surv. N. Carolina, 1860, iii, 44.-Lesquereux in Owen's 2 d Rep. Arkansas, 387.-Wood, Cl. Book, 641 ; Bot. \& Fl. 304.-C. Do Caudolle in Ann. Sci. Nat. 4 ser. xviii, 36, t. 1, f. 4, t. 5, f. 56, 57 ; Prodr. xvir, 144.—Koch, Dendrologie, i, 593.-Young, Bot.Texas, 500.-Vasey, Cat. Forest Trees, 24.

Juglans aquatica, Michaux f. Hist. Arb. Am. i, 182, t. 5 ; N. American Sylva, 3 ed. i, 119, t.34.-Pursh, Fl. Am. Sept.ii, 638.-Poiret, Suppl. iv, 112.

Hicorius integrifolia, Rafinesque, Fl. Ludoviciana, 109.
O. integrifolia, Sprengel, Syst. ii, 849.-London, Arboretum, iii, 1451.

WATER MICKORY. SWAMP HIOKORY. BITTER PECAN.

North Carolina, in the lower districts, south to cape Malabar and the Caloosa river, Florida (in Florida not detected within 8 or 10 miles of the coast), throngh the Gulf states to western Louisiana, northeastern Arkansas, and the valley of the Brazos river, Texas.

A tree 18 to 21 meters in height, with a trunk 0.60 to 0.90 meter in diameter, or generally much sualler; low river swamps; most common and reaching its greatest development in the bottom lands of the lower Mississippi and Yazoo rivers.

Wood heavy, soft, strong, rather brittle, rery close-grained, compact, containing few seattered, open ducts; layers of anmal growth less clearly marked than in the other species of the genus; medullary rays numerous, thin; color, dark brown, the sap-wood light, often nearly white; specific gravity, 0.7407 ; ash, 1.27 ; used for fencing, fuel, etc.

MYRICACEA.

249.-Myrica cerifera, Linnæus,

Spec. 1 ed. 1024.-Kalm, Travels, English ed. i, 92.-Marshall, Arbustum, 94.-Lamarek, Dict. ii, 592; Ill. iii, 402, t. 809, f. 1.Gærtner, Fruet. i, 190, t. 39, f. 7.-Walter, Fl. Caroliniana, 242.-Aiton, Hort. Kow. iii, 396; 2 ed. v, 379.-Mœneh, Meth. 362.B. S. Barton, Coll. ii, 4.-Nonvean Duhamcl, ii, 190.-Sclskuhr, Handb, iii, 465, t. 322.-Michanx, Fl. Bor.-Am. ii, 227.Willdenow, Spec. iv, 745 ; Enum. 1011 ; Berl. Baumz. 254.-Persoon, Syn. ii, 614.—Desfontaines, Hist. Arb. ii, 472.-Titford, Hort. Bot. Am. 100.-Pursh, Fl. Asu. Sept. ii, 620.-Nuttall, Genera, ii, 235 ; Trans. Arw. Phil. Soc. 2 ser. v, 167.-Bigelow, Med. Bot. iii, 32, t. 43; Fl. Boston. 3 ed. 394.-Hayne, Dend. Fl. 197.-Elliott, Sk. ii, 678.-Sprengel, Syst. i, 493.-Torrey, Compend. Fl. N. States, 372 ; Fl. N. York, ii, 197.-Rafinesque, Med. Bot. ii, 244.-Eaton, Mauaal, 6 ed. 231.-Beck, Bot. 324.-Loudon, Arboretum, iv, 2057, f. 1968.-Liudley, Fl. Med. 305.-Dietrich, Syn. i, 551.-Eaton \& Wright, Bot. 394.-Spach, Hist. Veg. xi, 263.-Emerson, Trees Massachusetts, 224 ; 2 ed. i, 256 \& t.-Darby, Bot. S. States, 507.-Chapmau, Fl. S States, 426.-Curtis in Rep. Geological Surv. N. Caroliua, 1860, iii, 106.-Lesquereux in Oweu's $2 d$ Rep. Arkansas, 389.-Wood, Cl. Book, 650; Bot. \& Fl. 309.-Porcher, Resources S. Forèsts, 312.-C. De Candolle in Ann. Sci. Nat. 4 scr. xviii, 21, t. 3, f. 32; Prodr. xvi², 148.-Lawson in Trans. Bot. Soc. Edinburgh, viii, 108.-Gray, Mannal N. States, 5 ed. 457.-Koch, Dendrologie, ii, 663.-Young, Bot. Texas, 511.-Vasey, Cat. Forest Trees, 28.
M. Pennsylvanica, Lamarck, Dict. ii, 592.-Desfontaines, Hist. Arb. ii, 472.-Nouveau Duhamel, ii, 190, t. 55.-Pursh, Fl. Am. Sept. ii, 620.—Sprengel, Syst. i, 493.-Eaton, Manual, 6 ed. 232.-Eaton \& Wright, Bot. 325.—Spaeh, Hist. Veg. xi, 262.
M. Carolinensis, Miller, Dict. No. 3.-Wangenheim, Amer. 102.-Willdenow, Spec. iv, 746; Enum. 1011.-Aiton, Hort. Kew. 2 d. v, 379.—Parsh, Fl. Am. Sept. ii, 620.-Nuttall, Genera, ii, 235.—Elliott, Sk. ii, 678.—Eaton, Manual, 6 ed. 232.— Eaton \& Wright, Bot. 324.-Darlyy, Bot. S. States, 507.
M. cerifera humilis, Marshall, Arbustum, 95.
M. cerifera, var. latifolia, Aiton, Hort. Kew. iii, 396.
M. ccrifera, var. media, Miehanx, Fl. Bor.-Am. ii, 227.-Chapman, Fl. S. States, 427.
M. cerifera, var. arborescens, Michaux, Fl. Bor.-Am. ii, 227.
M. ccrifera, var. pumila, Michaux, Fl. Bor. Am, ii, 227.-Pursh, Fl. Am. Sept. ii, 620.-Chapman, Fl. S. States, 427.
M. cerifera, var. angustifolia, C. De Candolle, Prodr. xvi², 148.
M. cerifera sempervirens, Hort.

BAYBERRY. WAX MYRTLE.

Shores of lake Erie; Maine, and south near the coast to the Florida keys and southern Alabama.
A tree sometimes 12 meters in height, with a trunk 0.30 to 0.45 meter in diameter, or, except in the southern states, a low, much-branched shrub; usually on sandy beaches and dry hillsides, reaching its greatest development in the bottoms and rich hummocks of the Georgia and Florida coasts.

Wood light, soft, strong, brittle, very close-grained, compact; medullary rays numerous, thin; color, dark brown, the sap-wood lighter; specific gravity, 0.5637 ; ash, 0.51 .

The leaves and stimnlant and astringent bark of the roots sometimes employed by herbalists (Aon. Jour. Pharm. 1863, 193.-U. S. Dispensatory, 14 ed. 257, 1706.-Nat. Dispensatory, 2 ed. 944). The wax which covers the small globular frnit, formerly largely collected and made into candles, and now, under the name of myrtle-wax, a popular remedy in the treatment of dysentery.

250.-Myrica Californica, Chamisso,

Linnæa, vi, 535.-Bentham, Pl. Hartweg. 336; Bot. Sulphur, 55.-Hooker, Fl. Bor.-Am. ii, 160.-Hooker \& Arnott, Bot. Beechey, 390.-Lindley in Jonr. Londou Hort. Soc. vii, 282.-Torrey in Pacifio R. R. Rep. iv, 137; Bot. Wilkes Exped. 465.-Newberry in Pacific R. R. Rep. vi, 89.-Cooper in Pacific R. R. Rep. xii², 68.-C. De Candolle, Prodr. xvi², 153.-Gray in Proc. Am. Acad. vii, 401.-Vasey, Cat. Forest Trees, 28.-Hall in Coulter's Bot. Gazette, ii, 91.-Watson, Bot. Califoruia, ii, 81.
? M. Xalapensis, Hooker \& Arnott, Bot. Bceehey, 160.
Cape Foulwesther, Oregon, south near the coast to the bay of Monterey, California.
A small evergreen tree, rarely exceeding 9 meters in height, with a trunk 0.30 to 0.45 meter in diameter, or toward its northern limits reduced to a low shrub; sandy beaches and gravelly hillsides.

Wood heavy, very hard, strong, brittle, very close-grained, compact; medullary rays numerous, thin, conspicuons; color, light rose, the sap-mood lighter ; specific gravity, 0.6703 ; ash, 0.33 .

C UPULIFERA.

251.-Quercus alba, Linnæus,

Spec. 1 ed. 996.—Du Roi, Harbk. ii, 270, t. 5, f. 5.-Lamarek, Dict. i, 720.-Marshall, Arbustum, 119.—Wangenheim, Amer. 12, t. 3, f. 6.-Walter, Fl. Caroliniana, 235.-Aiton, Hort. Kew. iii, 358; 2 ed. v, 293.-Abbot, Insects Georgia, ii, t. 80, 87.-Michaux, Fl. Bor.Am. ii, 195.-Muhlenberg \& Willdenow in Neue Schriften Gesell. Nat. Fr. Berlin, iii, 395.—Willdenow, Spec. iv, 448; Euum. 977; Berl. Banmz. 346.-Persoon, Syn. ii, 570.-Desfontaines, Hist. Arb. ii, 508.-Michanx f. Hist. Arb. Am. ii, 13, t. 1; N. American Sylva, 3 ed. i, 22, t. 1.-Pursh, Fl. Am. Sept. ii, 633.-Barton, Prodr. Fl. Philadelph. 91; Compend. Fl. Philadelph. ii, 17.-Eaton, Mannal, 108; 6 ed. 293 .-Nottall, Genera, ii, 215 ; Sylva, i, 14 ; 2 ed. i, 24.-Nouveau Duhamel, vii, 175.-Hayne, Dend. Fl. 158.Elliott, Sk. ii, 607.-Sprengel, Syst. iii, 864.-Torrey, Compend. Fl. N. States, 359; Fl. N. York, ii, 192.-Audubon, Birds, t. 107, 147.-Beek, Bot. 330.-London, Arboretnm, iii, 1864, f. 1723-1726 \& t.-Hooker, Fl. Bor.-Am. ii, 158.-Eaton \& Wright, Bot. 385.Bigelow, Fl. Boston. 3 ed. 375.-Spach, Hist. Veg. xi, 155.-Emerson, Trees Massachusetts, 127, t. $1 ; 2$ ed. i, 145 \& t.-Griffith, Med. Bot. 585.-Penn. Cycl. xix, 216.-Richardson, Arctic Exped. 437.-Darlington, Fl. Cestrica, 3 ed. 260.-Darby, Bot. S. States, 511.-Cooper in Smithsonian Rep. 1858, 255.—Brendel in Trans. Illinois Ag. Soc. iii, 613, t. 1.-Chapman, Fl. S. States, 423.-Curtis in Rep. Geological Surv. N. Carolina, 1860, iii, 31.-Lesquoreux in Oweu's $2 d$ Rep. Arkansas, 387.-Wood, Cl. Book, 645; Bot. \& Fl. 306.-Purcher, Resonrces S. Forests, 257.-A. De Candolle, Prodr. xvi², 22.-Örsted in Saerskitt. Aftryk. af. Nat. For. Viden. Meddelt. Nos. 1-6, 1866, 66.-Liebmann, Chênes Am. Trop. t. xxxiii, 29, 30, 58, 59.—Gray, Manual N. States, 5 ed: 450; Hall's Pl. Texas, 21.-Koch, Dendrologie, ii^{2}, 50.-Yonng, Bot. Texas, 505.-Vasey, Cat. Forest Trees, 25.-Broadhead in Coulter's Bot. Gazette, iii, 60.-Sears in Bull. Essex Inst. xiii, 179.-Britton in Bull. Torrcy Bot. Clnb, viii, 126.-Bell in Geological Rep. Canada, 1879-80, 52c.-Ridgway in Proc. U. S. Nat. Mns. 78.
?Q. sinuata, Walter, Fl. Caroliniana, 235.
Q. alba, var. pinnatifida, Michaux, Hist. Chênes Am. No. 4, t. 5, f. 1; Fl. Bor.-Am. ii, 195.-London, Arhoretum, iii, 1864.
Q. alba, var. repanda, Michaux, Hist. Chênes Am. No. 4, t. 5, f. 2.-Pursh, Fl. Am. Sept. ii, 633.-Hayne, Dend. Fl. 159.Loudon, Arboretum, iii, 1864.
Q. alba, var. pinnatifido-sinuata, Hayne, Dend. Fl. 158.
Q. alba, var. sinuata, Hayne, Dend. Fl. 159.
Q. alba, var. microcarpa, A. Do Candolle, Prodr. $\mathrm{xvi}^{\mathrm{i}}, 22$.

WHITE OAK.

Northern Maine, valley of the Saint Lawrence river, Ontario, lower peninsula of Michigan to southeastern Minnesota, sonth to the Saint John's river and Tampa bay, Florida, west to the valley of Nodaway river, Missouri, western Arkansas, and the valley of the Brazos river, Texas.

A large tree of the first economic value, 24 to 45 meters in height, with a trunk 1.20 to 2.40 meters in diameter; all soils; very common and reaching its greatest development along the western slopes of the Alleghany monntains and in the valley of the Ohio river and its tributaries, here often forming more than half the forest crowth.

Wood strong, very heavy, hard, tough, close-grained, liable to check unless carefully seasoned, durable in contact with the soil; layers of annual growth strongly marked by several rows of large open ducts; medullary rays broarl, prominent; color, brown, the sap-wood lighter brown ; specific gravity, 0.7470 ; ash, 0.41 ; largely used in ship-building, construction of all sorts, cooperage, in the manufacture of carriages, agricultural implements, and taskets, and for railway ties, fencing, interior finish, cabinet-making, fuel, etc.

A decoction of the astringent inner bark is employed medicinally in cases of hemorrinage, dysentery, etc. (U. \& Dispensatory, 14 ed. 755.-Nat. Dispensatory, 2 ed. 1196).

252.-Quercus lobata, Née,

Ann. Cicnc. Nat. iti, 278.—Smith in Rees' Cyol. xxx, No. 77.-Persoon, Syn. ii,571.-Nouveau Duhamel, vii, 180.-Poiret, Snppl. it, 224.-Bentham, Pl. Hartweg. 33\%.-Liebmann in Dansk. Vidensk. Selsk. Forlandl. 1854, 14; Chênes Am. Trop. 23, t. 42, f. 1-3.Torres, loot. Mox. Bommlary Survey, 205; Bot. Wilkes Exped. 461, t. 15.-A. De Candolle, Prodr. xvi², 24.-Koch, Dendrologie, $\mathrm{ii}^{2}, 53$. -Vasey, Cat. Forest Trees, 25.-Engehman in Trans, St. Louis Acad. iii, 3z8; Wheoler's Rep. vi, 374 ; Bot. California. ii, 95.

> Q. Hindsii, Bentham, Bot. Sulphnr, \%5.-Eodlieher, Genera, Suppl. iv. 24.-Walpers, Aun. i, G35.-Torrey in Pacific R. R. Rep. iv, 13s; v, 365.-Newberry in Pacifie R. R. Rep. vi, 29, 89, t. 1, f. 7.-Cooper in Smithsonian Rep. $1858,261 .-$ Bolander in Proc. California Acad. iii, $230 .-$ Örsted in Saerskitt. Aftryk. af. Nat. For. Viden. Meddelt. 1866, Nos. 1-6, 66.-Liebmann, Chenes Am. Trop. t. 42, f. 4.-R. Brown Campst. Hora Sylvanæ, 52, f. 1-3.
Q. longiglanda, Torres in Fremont's Geographieal Mom. California, 15, 17.
Q. Ransomi, Kellogg in Proe. California Acad. i, 2 J.

WHITE OAK. WEEPING OAK.

Califormia, west of the Sierra Nevadas from the valles of the upper Sacramento river south through the foothills and interior valleys to the San Bernardino mountains.

The largest of the Paeific oaks, often 30 meters in height, with a trunk 0.90 to 2.40 meters in diameter; very common through the central part of the state.

Wood moderately hard, fine-grainel, compaet; layers of annual growth marked by few large open duets and containing few smaller ducts arranged in lines parallel to the broad, conspienons medullary rays; color, light hmwn, the salp-wood lighter' specifie gravity, 0.7409 ; ash, 0.30 ; of little economic value, and only used for fuel.

253.-Quercus Garryana, Donglas;

Hooker, Fl. Bor. Am. ii, 159.-Hooker \& Arnott, Bet. Beechey, 391.-Nuttall, Sylva, i, 1, t. 1; 2 ed. i, 14, t. 1.-Torrey in Pacific R. R. Rep. iv, 138; Bot. Wilkes Exped. 462.-Newberry in Pacific R. R. Rep. vi, 89.-Cooper in Smithsonian Rep. 1858, 260; Pacific R. R. Rep. xii ${ }^{2}$, 98.68 ; Am. Nit. iii, 407.-Lyall in Jour. Limuæan Soc. vii, 1:31, 144.-A. De Candolle, Prodr. xvi², 24.-Bolander in Proc. California Aead. iii, 229.-Örstedin Siterskitt. Aftryk. af. Nat. For. Viden. Meddelt. 1866, Nos. 1-6, 66.-Rothrockju Smithsonian Rep. 1858, 435.-Liebmann, Chênes Am. Trop. t. 40, f. 3.-Vasey, Cat. Forest Trees, 25.-Engolmann in Trans. St. Louis Acad. iii, 369 ; Bot. California, ii, 95.-Maeoun in Geological Rep. Canada, 1875-76, 210.-G. M. Dawson in Cauadian Nat. new ser. "ix, 330.
Q. Neai, Liebmann in Dansk. Vidensk. Selsk. Forhandl. 1854, 173; Chênes Am. Trop. 23, t. xli, f. $1,2$.
Q. Douglasii, var. ? Neai, A. De Candolle, Prodr. xvi², 24.

- Q. Girstediana, R. Brown Campst. in Ann. \& Ilag. Nat. Mist. April, 1871,2.
Q. Jacobi, R. Brown Campist. in Anu. \& Mag. Nat. Hist. April, 1871, 7.

WHITE OAK.

Vancouver's island, shores of Puget sound, south through western Washington territors, Oregon, and California to San Francisco bay ; in Washington territory and Oregon extending to the eastern slopes of the Caseade mountains.

A tree 21 to 30 meters in height, with a trunk 0.60 to 0.90 meter in diameter, or at high elevations reduced to a low shrnb; dry, gravelly soil ; common.

Wood strong, hard, that of the young trees tongl, elose-grained, compact; layers of amual growth marked by one to three rows of open duets ; medullary rays, varying greatly in width, often conspicuous; color, light brown or yellow, the sap-wood lighter, often nearly white; specifie gravity, 0.7453 ; ash, 0.39 ; somewhat used for carriage and cooperage stock, in cabinet-making, ship-building, and very largely for fuel; the best snbstitute for eastern white oak produced in the Pacific forests.

254.-Quercus obtusiloba, Michaux,

Hist. Chènes Am. No. 1, t. 1; Fl. Bor.-Am. ii, 194.—Smith in Rees' Cyel. xxx, No. 78.-Nichaux f. Hist. Arb. Am. ii, 36, t. 4 ; N. American Sylva, 3 cd. i, 36, t. 5.-Pursh, Fl. Am. Sept. ii, 632.-Nuttall, Genera, ii, 215.-Barton, Compend. Fl. Philadelph. ii, 171.-Elliott, Sk. ii, 606.-Torrey, Compeud. Fl. N. States, 359 ; Fl. N. York, ii, 190.-Deck, Bot. 329.-Eaton, Mannal, 6 ed. 293.-London, Arboretum, iii, 1870, f. 1732 \& t-Hooker, Fl. Bor.-Am. ii, 158.-Eaton \& Wright, Bot. 384.-Scheele in Romer, Texas, 446. -Darlington, Fl. Cestrica, 3 ed. 265.-Darby, Bot. S. Statos, 511.-Cooper in Smithsonian Rep. 1858, 255.-Brendel in Trans. Lliinois Ag. Soc, iii, 615, t. 11.-Chapman, Fl. S. States, 423.-Curtis in Rep. Geological Surv. N. Carolina, 1860, iii, 32.Lesquerenx in Owen's 2d Rep. Arkansas, 387.-Wood, Cl. Book, 645; Bot. \& Fl. 306.-Engelmann in Trans. Am. Phil. Soc. new ser. xii, 209.-Örsted in Saerskitt. Aftryk. af. Nat. For. Viden. Meddelt. 1866, Nos. 1-6, 66.-Liebmann, Chênes Am. Trop. t. H, t. 33, f. 60.-Gray, Minual N. States, 5 ed. 451 ; Hall's, Pl. Texas, 21.-Young, Bot. Texas, 505.
Q. alba minor, Marshall, Arbustum, 120.—Muhlenberg \& Willdenow in Noue Schriften Gesell. Nat. Fr. Berlin, iii, 395.

> Q. stellata, Wangenheim, Amer. 78, t. 6, f. 15.-Abbot, Insects Georgia, ii, t. 77.-Wildenow, Spec. iv, 452; Enum, 977 ; Berl. Baumz. 349.-Persoon, Syn. ii, 570.—Aiton, Hort. Kew. 2 ed. v, 294.-Nouveau Duhamel, vii, 180.-Hayne, Dend. Fl. 161.-Nuttall, Sylva, i, 13; 2 ed. i, 23.-Spach, Hist. Veg. xi, 156.—Emerson, Trees Massachnsetts, 133, t. 3; 2 ed. i, 151 \& t.-A. De Candolle, Prodr. xvi², 22.-Koch, Dendrologie, iii, 52.-Vasey, Cat. Forest Trees, 25.-Engelmann in Trans St. Lonis Acad. iii, 389. -Ridgway in Proc. U. S. Nat. Mus. 1882, 84. - Watson in Proe. Am. Acad, xviii, 156.
? Q. villosa, Walter, Fl. Caroliniana, 235.
Q. lobulata, Abbot, Inseets Georgia, i, 47.
?Q. Drummondii, Liebmann in Dansk. Vidensk. Selsk. Forhaudl. 1854, 170.-A. De Candolle, Prodr. xvi², 24.
Q. obtusiloba, var. parvifolia, Chapman, Fl. S. States, 423.
Q. stellata, var. Floridana, A. De Candolle, Prodr. xvi², 22.

POST OAK. IRON OAK.

Martha's Vineyard, Massachusetts, sonth to northern Florida, west through southern Ontario and Michigan to eastern Nebraska, Kansas, the Indian territory, and extending to the one hundredth meridian in central Tcxas.

A tree rarely exceeding. 24 meters in height, with a trunk 0.90 to 1.50 meter in diameter, or on the Florida coast reduced to a low shrub (var. parvifolia, ete.); dry, gravelly uplands, clay barrens, or in the southwest on Cretaceous formations; the most common and widely-distribnted oak of the Gulf states west of the Mississippi river, forming the principal growth of the Texas "cross-timbers."

Wood heary, hard, close-grained, compact, checking badly in dryiug, very durable in contact with the soil; layers of annual growth marked by one to three rows of not large open ducts; medullary rays numerous, conspicuous; color, dark or light brown, the sap-wood lighter; specific gravity, 0.8367 ; ash, 0.79 ; largely used, especially in the sonthwest, for fencing, railway ties, and fuel, and somewhat for carriage stock, cooperage, construetion, etc.
255.-Quercus undulata, var. Gambelii, Engelmanu,

Wheeler's Rep. vi, 249.

> Q. Gambelii, Nuttall in Jour. Philadelphia Acad. new ser. i, 179.—Torrey in Sitgreaves' Rep. 172, t. 18; Bot. Mex. Boundary Survey, 205.-Cooper in Smithsonian Rep. 1858, 260.-Liebmann, Chênes Am. Trop. 22, t. 40, f. 1.-Hemsley, Bot. Am.-Cent. iii, 171.
> Q. alla, var. ? Gunuisonii, Torrey in Paeific R. R. Rep. ii, 130.—Watson iu King's Rep.v, 321.-Porter in Hayden's Rep. 1871, 493.-Porter \& Coulter, Fl. Colorado ; Hayden's Surv. Mise. Pub. No. 4, 127.-Maeonn in Geological Rep. Canada, 1870-76, 209.
> Q. Douglasii, var. Gambelii, A. De Candolle, Prodr. xvi², 23.
> Q. stellata, var. Utahensis, A. De Candolle, Prodr. $\mathrm{xvi}^{2}, 22$.
> ?Q. Emoryi, Porter \& Coulter, MI. Colorado; Hayden's Surv. Misc. Pub. No. 4, 127 [not Torrey].

SCRUB OAK.
Near the month of the Peeos river (Havard), through the monntains of western Texas, and New Mexico to the Santa Catalina (Lemmon, Pringle) and San Francisco mountains, Arizona, eastern slopes of the Rocky mountains of Colorado north to the valley of the Platte river, and through the Wahsatch mountains of Utah.

A small tree, rarely 15 meters in height, with a trunk sonetimes 0.60 meter in diameter, or often a low shrub spreading from underground shoots and forming dense thickets, reaching its greatest development ou the high monntains of southern New Mexico and Arizona; the large speeinens generally hollow and defective.

Wood heavy, hard, strong, that of young trees quite tough, close-grained, checking badly in drying; layers of annual growth marked by few not large open ducts; medullary rays numerous, conspienous; color, rich dark brown, the sap-wood lighter; speeific gravity, 0.8407 ; ash, 0.99 ; largely used for fuel, and in Utah the bark in tanning.

256.-Quercus macrocarpa, Miehanx,

Hist. Chênes Λ m. No. 2, t. 2, 3; Fl. Bor.-Am. ii, 191.-Willdenow, Spec. iv, $4 \overline{9} 3$; Enum. 977 ; Berl. Baumz. 350.-Smith in Rees' Cyel. xxx, No. 80.—Persoon, Syn. ii, 570.-Poiret, Suppl. ii, 224.—Michanx f. Hist. Arb. Am. ii, 34, t. 3; N. American Sylva, 3 ed.i, $35, \mathrm{t}$. 4.Pursh, Fl. Am. Sept. ii, 682.-Nuttall, Genera, ii, 215.-Nouveau Duhamel, vii, 1s:.-Ilaynes, Dend. Fl. 161.-Sprengel, Syst. iii, 863.Torrey, Compend. Fl. N. States, 359 ; Nicollet's Rep. 160; Fl. N. York, ii, 191, t. 108.-Beck, Bot. 330.-Eaton. Manual, 6 ed. 293.Loudon, Arboretum, iii, 1869, f. 1731 \& t.-Eaton \& Wright, Bot. 385.-Spach, Ilist. Veg. xi, 159.-Emerson, Trees Massaehusetts, 132, t. $2 ; 2$ ed. $i, 149 \&$ t.-Scheclo in Romer, Texas, 446. Richardson, Aresic Exped. $437 .-C o o p e r$ in Smithsonian Rep. 1858 , 255.-Brendel in Trans. Illinois Ag. Soc. 131, t. 5, f. 21.-Chapman, Fl. S. States, 423.-Lesqucrenx in Owen's 2d Rep. Arkansas, 357.-Wool, Cl. Book, 645; Bot. \& ll. 306.-Eugelmann in Trans. Am. Phil. Soc.new ser, xii, 209 ; Trans. St. Louis Acad. iii, :389.A. De Candolle, Prodr. xvi², 20.-Örsted in Saerskitt. Aftryk. af. Nat. For. Viden. Neddelt. Nos. 1-6, 1866, 67. -Liebmann, Chônes Am.
 Lndlow's Rep. Black Hills, 68.-Mayden in Warreu's Rop. Neloraski \& Dakota, 2 ed. 121.-Vasey, Cat. Forest Trees, 24.-Broadhead in Coulter's Bot. Gazette, iii, 60.—J. F. James in Jonr. Cincinnati Soe. Nat. Hist. iv, 1 \& t.-Ridgway in Proe. U. S. Nat. Mus. 1882, 81.-Bell in Geological Rep, Canada, 1879-'80, 49c.-Whatson in Proc. Am. Acad. xviii, 150.
Q. olivaformis, Michaux f. Hist. Arb. Am, ii, 32, t. 2; N. American Sylva, 3 ed. i, 33, t. 3.—Smith in Rees' Cyel. xxx, No. 91.Pursh, Fl. Am. Sept. ii, 632.-Nuttall, Gencra, ii, 215; Sylva, i, 14 ; 2 ed. i, 24 .-Nonveau Duhamel, vii, 181.-Sprengel, Syst. iii, 864.-Torres, Compend. Fl. N. States, 359.-Fl. N. York, ii, 191.-Beck, Bot. 330.-Erton, Mannal, 6 ed. 293.-Loudon, Arborotum, iii, 1869, f. 1730.-Eaton \& Wright, Bot. 385.-Spach, Hist. Veg. xi, 159.-Gray, Mannal N. States, 1 ed. 414.-A. De Candolle, Prodr. xvi², 20.-Örsted in Saerskitt. Aftryk. af. Nat. For. Viden. Meddelt. Nos. 1-6, 1866, 67.-Engelmann in Trans. St. Lonis Acad. iii, 391.
Q.obtusiloba, var. depressa, Nuttall, Genera, ii, 215.
Q. macroearpa, var. olivaformis, Gray, Manual N. States, 2 ed. 404 ; 5 ed. 451.
Q. macrocarpa, var. allreviata, A. De Candolle, Prodr. xvi, 20.
Q. macrocarpa, var. minor, A. De Candollo, Prodr. xvi², 20.
Q. stellata, var. depressa, A. De Candolle, Prodr. xvi², 23.

BURR OAK. 'MOSSY-CUP OAK. OVER-CUP OAK.
Nova Scotia, New Brunswick, northern shores of lake Huron to lake Winnipeg, south to the valley of the Penobscot river, Maine (C. E. Hamlin), and along the shores of lake Champlain and the valley of the Ware river, Massachusetts, to Lancaster county, Penusylvania, west to the eastern foot-hills of the Rocky mountains of Montana, central Nebraska and Kansas, sonthwest to the Indian territory and the valley of the Nueces river, Texas.

A large tree of the first economic value, 94 to 30 or, exceptionally, 50 meters in height, with a trunk 1.20 to 2.10 meters in diameter; rich bottoms and prairies; in the prairie region the principal growth of the "oak openings", and extending farther west and northwest than any oak of the Atlautic forests.

Wood heary, strong, hard, tongh, close-grained, compact, more durable in contact with the soil than that of other American oaks; layers of ammal growth marked by one to three rows of small open ducts; medullary rays often broad and conspicuous; color, lark or rich light brown, the sap-wood much lighter; specific gravity, 0.7453 ; ash, 0.71 ; generally confounded with the less valuable white oak (Q. alba), and employed for the same purposes.
257.-Quercus lyrata, Walter,

Fl. Caroliniana, 235.-Abbot, Insects Georgia, ii, t. 83.-Mielıaux, Hist. Chênes Am. No. 3, t. 4; FJ. Bor.-Am. ii, 195.-Willdenow, Spec.
 Amorican Sylva, 3 cd. i, 39, t. 6.-Aiton, Hort. Kew. 2 ed. v, 295.-Pursl, Fl. Am. Sept. ii, 632.-Noureau Duhamel, vii, 181.-Nuttall, Genera, ii, 215.-Elliott, Sk. ii, 607.-Sprengel, Syst. xi, 156.-Eaton, Mannal, 6 ed. 295.-Loudon, Arboretum, iii, 1871, f. 1733, 1734.-Eaton \& Wright, Bot. 386.-Spach, Hist. Veg. xi, 156.-Darby, Bot. S. States, 511.—Cooper in Smithsonian Rep. 1858, 255.Chapman, Fl. S. States, 423.-Curtis iu Rep. Geological Surv. N. Carolina, 1860, iii, 33.-Lesquereux in Owen's 2d Rep. Arkansas, 387.-Wood, Bot. \& Fl. 306.-A. De Candolle, Prodr. xvi², 19.-Örsted in Saerskitt. Aftryk. af. Nat. For. Viden. Meddelt. Nos. 1-6, 1886, 66.-Koch, Dendrologie, ii ${ }^{8}$, 53.-Gray, Hall's Pl. Texas, 21.-Young, Bot. Texas, 506.—Vasey, Cat. Forest Trees, 25.Engelmann in Trans. St. Louis Acad. iii, 389.-Ridgway in Proc. U. S. Nat. Mus, 1882, 80.

OVER-CUP OAK. SWAMP POST OAK. WATER WHITE OAK.
North Carolina, south near the coast to the Chattahoochec region of northern Florida, west through Alabama, Mississippi, and Louisiana to the valley of the Trinity river, Texas, and throngh Arkansas and sontheastern Missouri (Allenton, Letterman) to middle Tennessee, southeru Indiana and Illinois.

A tree 24 to 30 meters in height, with a trunk 0.60 to 0.90 meter in dianeter; deep, often submerged, river swamps; rare in the Atlantic states; more common and reaching its greatest development in the valley of the Red river and the adjacent portions of Arkansas and Texas.

Wood heavy, hard, strong, tongh, very durable in contact with the ground, close-grained, iuclined to check in drying; layers of annual growth marked by one to three rows of large open ducts; mednllary rays broad, numerons, couspicuons; color, rich dark brown, the sap-rood much lighter ; specific gravity, 0.8313 ; ash, 0.65 ; used for the same purposes as that of the white oak (Q. alba).

258.-Quercus bicolor, Willdenow,

Neue Sehriften Gesell. Nat. Fr. Berliu, iii, 396 ; Spee. iv, 440.--Smith in Rees' Cyel. xxx, No. 50.-Persoon, Syn. ii, 569.-Poiret, Suppl. ii, 219.-Pursh, Fl. Am. Sept. ii, 633.-Eaton, Manual, 107; 6 ed. 294.-Barton, Compend. Fl. Philadelph. ii, 172.-Nuttall, Genera, ii, 215; Sylva, i, 13 ; 2 ed. i, 23.-Noureau Duhamel, vii, 165.-Sprengel, Syst. iii, 860.-Torrey, Conpend. 1'l. N. States, 359 ; Fl. N. York, ii, 192.—Beek, Bot.331.—Bigelow, Fl. Boston. 3 ed. 375.-Eaton \& Wright, Bot. 385.—Emerson, Trees Massachusetts, 135 , t. 4 ; 2 ed. i, 153 \& t.-Buekley in Am. Jour. Sci. 2 ser. xiii, 397.-Darlington, Fl. Cestrica, 3 ed. 266.-Lesquereux in Owen's 2d Rep. Arkansas, 387.—Wood, Cl. Book, 646 ; Bot. \& Fl. 306.-A. De Candollo, Prodr. xvi², 20.—Örsted in Saerskitt. Aftryk. af. Nat. For. Viden. Meddelt. Nos. 1-6, 1866, 67.-Gray, Manual N. States, 5 ed. 451.-Koch, Dendrologie, ii², 47.-Vasey, Cat. Forest Trees, 25.- Engelmann iu Traus. St. Louis Acad. iii, 389.-Broadhead in Coulter's Bot. Gazette, iii, 60.—Sears in Bull. Essex Inst. xiii, 179. Bell in Geologieal Rep. Canada, 1879-'80, 55c. -Ridgway in Proc. U. S. Nat. Mus. 1882, 79.
\& Q. Prinus platanoides, Lamarek, Diet. i, 21.
Q. alba palustris, Marshall, Arbustum, 120.-Mnhlenberg \& Willdenow in Nene Sehriften Gesell. Nat. Fr. Berlin, iii, 39..
Q. Prinus tomentosa, Miehanx, Hist. Chênes Am. No. 5, t. 9, f. 2; F. Bor.-Am. ii, 196.-Loudon, Arboretum, iii, 1876, f. 1739.
Q. Prinus, var. discolor, Miehaux f. Hist. Arb. Am. ii, 46, t. 6; N. Ameriean Sylva, 3 ed. i, 41, t. 7.-Cooper in Smithsonian Rep. 1858, 255.-Brendel iu Trans. Mllinois Ag. Soe. iii, 617, t. 3.-Chapman, Fl. S. States, 424.-Cnrtis in Rep. Geological Surv. N. Carolida, 1860, iii, 34.
Q. bicolor, var. mollis, Nuttall, Genera, ii, 215.-Torrey, Compond. Fl. N. States, 359.
Q. Prinus, var. licolor, Spach, Hist. Veg. xi, 158.
? Q. bicolor, var. platanoides, A. De Candolle, Prodr. xvi², 21.

SWAMP WHITE OAK.

Sonthern Maine, valley of the upper Saint Lawrence river, Ontario, sonthern peninsula of Michigan to sontheastern Iowa and western Missouri, south to Delaware, and along the Alleghany mountains to northern Georgia, northern Kentucky, and northern Arkansas.

A large tree, 24 to 36 meters in height, with a trunk 1.20 to 2.40 or, exceptionally, over 3 meters ("Wadsworth Oak", Geneseo, New York) in diameter; borders of streams and swamps, in deep alluvial soil; common and reaching its greatest development in the region south of the great lakes.

Wood heavy, harl, strong, tough, close-grained, inclined to check in seasoning; layers of anuual growth marked by one to three rows of large open ducts; mednllary rays broad and conspicuons; color, light brown, the sap-wood hardly distinguishable; specific gravity, 0.7662 ; ash, 0.58 ; used for the same purposes as that of the white oak (Q. alba).

259.-Quercus Michauxii, Nuttall,

Gonera, ii, 215 (exel. syn.).-Elliott, Sk. ii, 609.—Sprengel, Syst. iii, 860.—Eaton, Manual, 6 ed. 295.-Eaton \& Wright, Bot. 386.-Darby, Bot. S. States, 511.-Vasey, Cat. Forest Trees, 25.-Engelmanu in Trans. St. Louis Aead. iii, 382.-Ward in Bull. U. S. Nat. Mus. No. 22, 113.-Ridgway in Proe. U. S. Nat. Mus. 1882, 81.
Q. Prinues palustris, Miehaux, Hist. Chênes Am. No. 5, t. 6; Fl. Bor-Am. ii, 196.-Michaux f. Hist. Arb. Am. ii, 51, t. 7 ; N. American Sylva, 3 ed. i, 44, t. 8.-Barton, Prodr. Fl. Philadelph. 91.-Loudon, Arboretum, iii, 1872, f. 1735 \& t.
Q. Prinus, var. Michauxii, Chapmau, Fl. S. States, 424.
Q. Prinus, Curtis in Rep. Geologieal Surv. N. Carolina, 1860, iii, 33, in part.
Q. licolor, var. Michauxii, Engelmann in Trans. St. Louis Aead. iii, 390.

BASKET OAK. COW OAK.

New Castle connty, Delamare, south through the lower and middle distriets to northern Florida, through the Gulf states to the valley of the Trinity river, Texas, and through Arkansas and sonthwestern Missouri to central Tennessee and Kentucky, and the valley of the lower Wabash river.

A tree 24 to 36 meters in height, with a trunk 1.20 to 2.10 meters in diameter; borders of streams aud deep, often submerged, swamps the common and most valuable white oak of the Gulf states, reaching its greatest development in the rich bottom lands of southeastern Arkansas and Lonisiana.

Wood heavy, hard, very strong, tough, close-grained, compact, very durable in contact with the soil, easily split; layers of annual growth marked by few rather large open ducts; medulary rays broad, conspicuous; color, light brown, the sap-wood darker; specific gravity, 0.8039 ; ash, 0.45 ; largely used in the manfacture of agrientural implements, wheel stocks, baskets, for which it is unsurpassed, for cooperage, fencing, construction, and fuel.

The large, sweet, edible acorns eagerly devoured by cattle and other animals.

260.-Quercus Prinus, Linnaus,

Spec. 1 ed. $995 .-$ Du Roi, 1larbk. ii, 276 , t. 6, f. 3.-Lamarek, Dict. i, $720 .-$ Marshall, Arbustum, 125.-Wangenheim, Amer. 15, t. 4, f. 8.-Aitor, Hort. Kew. iii, $356 ; 2$ ed. v, 290.-Meneh, Meth. 3.le.—Abbot, Iusects Georgia, ii, t. E2.-Muhlenberg \& Willdenow in Neue Sehriften Gesell. Nat. Fr. Berlin, iii, 397.-Michaux, Fl. Bor.-Am. ii, 195.-Willdenow, Spec. iv, 439; Enum. 975; Berl. Baumz. 339.-Smith in lees' Cycl. xxx, No. 47.-Persoon, Syn. ii, 568.-Desfontaines, Hist. Arlb, ji, 509.—Pursh, Fl. Am. Sept. ii, 633.-Barton, Compend. Fl. Pliladelph. ii, 171.-Nnttall, Genera, ii, 215.-Nouvean Duhamel, vii, 164.-Hayue, Dend. F1. 155.Elliett, Sk. ii, G08.-Sprengel, Syst. iii, 859.-Torrer, Compend. Fl. N. States, 359.-Audubon, Birds, t. 50, 131.-Beek, Bot. 331.Eaton, Manaal, 6 ed. 291.-Loudon, Arboretam, iii, 1872.-Eaton \& Wright, Bot. 3 5 .-Spaeh, Hist. Veg. xi, 157.-Penn. Cycl. xix, 216.-Darlington, Fl. Cestriea, 3 ed. 267.-Darby, Bot. S. States, 511.-Cooper in Smithsonian Rep. 1858,205.-Chapwan, Fl. S. States, 423.-Lesquerenx in Owen's $2 d$ Rep. Arkansas, 387. -Wood, Cl. Book, 645 ; Bot. \& Fl. 306.-Porcher, Resonrees S. Forests, 264.-A. De Candolle, Prodr. xviz, 21.-Örsted in Saerskitt. Aftryk. af. Nat. For. Vidon. Meldelt. Nus. 1-6, 67.-Gray, Mannal N. States, 5 ed. 451 .-Young, Bot. Texas, 506.-Koch, Dendrologio, ii ${ }^{2}, 48$.-Vasey, Cat. Forest Trees, 25 .-Engelmann in Trans. St. Louis Acal. iii, 390.
Q. Primus, var. monticola, Miehanx, Њist. Chêues Am. No. 5, t. 7; Fl. Bor.-Am. ii, 196.-Michanx f. Mist. Arb. Am. ii, 55, t. 8; N. American Sylva, 3 ed. i, 46, t. 9.-Barton, Prodr. Fl. Philadelph. 91.-Loudon, Arboretum, iii, 18i3, f. 1736.Spaeh, Hist. Veg. xi, 158.-Cooper in Smithsonian Rep. 1858, 255.-Chapman, Fl. S. States, 424.-Curtis in Rep. Geologieal Surv. N. Carolina, 1860, iii, 34.-Wood, Cl. Book, G46.-A. De Candolle, Prodr. xxi², 21.-Gray, Mannal K. States, 5 ed. 451.-Vasey, Cat. Forest Trees, 25.-Bailey in Am. Nat. xiv, 892, f. 1-4.
Q. montana, Willdenow, Spee. iv, 440 ; Enum. 975 ; Berl. Bauma. 340.-Persoon, Syn. ij, 569.-Smith in Rees' Cyel. xax, No. 49.-Pursh, Fl. Am. Sept. ii, 634.-Eatou, Manual, 107, 6 ed. 294.-Barton, Compend. Fl. Philadelph. ii, 172.Nuttall, Gencra, ii, $216 .-$ Nouveau Duhamel, vii, 165, t. 47, f. 2.-Hayuc, Dedd. Fl. 156.-Elliott, Sk. ii, 609.-Sprengel, Syst. iii, 860.-Torrey, Compend. Fl. N. States, 354 ; Fl. N. York, ii, 192.-Beek, Bot. 331.-Bigelow, Fl. Boston. 3 ed. 377.-Eaton \& Wright, Bot. 385.-Emerson, Trees Massachusetts, 138, t. 6; 2 ed. i, 156 \& t.-Gray, Manual N. States, 1 ed. 414.-Darliugton, Fl. Cestrica, 3 ed. 266.-Darby, Bot. S. States, 511.-Lesquereux in Owen's $2 d$ Rep. Arkadsas, 387.-Porcher, Resources S. Forests, 263.-Bargess in Coulter's Bot. Gazette, vii, $9 \overline{\mathbf{j}}$.
Q. Prinus, var. lata, Aiton, Hort. Kow. 2 ed. v, 290.
Q. Castanea, Emerson, Trees Massachusetts, 137, t. $5 ; 2$ ed. i, 155 \& t. [not Muhlenberg \& Willdenow].

CHESTNUT OAK. ROCK OHES'TNUT OAK.

Blue hills, eastern Massachusetts, west to the shores of lake Champlain, shores of Quinté bay, Ontario(Macoun), and the ralley of the Genesee river, New York, south to Delaware, and through the Alleghany Mountain regiou to uortheru Alabama, extending west to central Kentucky and Tennessee.

A tree 24 to 30 meters in height, with a trunk 0.90 to 1.20 meter in diameter; rocky banks and hillsides; very common and reaching its greatest development in the southern Alleghany region, here ofteu forming a largeportion of the forest growth.

Wood heary, hard, strong, rather tongh, close-grained, inclined to check in drying, durable in contact with: the soil, containing few open ducts; medullary rays very broad, conspicuons; color, dark brown, the sap-wood lighter; specific gravity, 0.7409 ; ash, 0.77 ; largely used in fencing, for railway ties, etc.

The bark, rich in tannin, is largely used in preference to that of other North Anerican white oaks in tauning. leather.

261.-Quercus prinoides, willdeuow,

Nene Sehriften Gesell. Nat. Fr. Berlin, iii, 397; Spee. iv, 440.-Persoon, Syn. ii, 569.-Poiret, Suppl. ii, 219.-Noureau Duhamel, vii, 1(6.-Torres, Fl. N. York, ii, 193, t. 109.-Gray, Manual N. States, 1 ed. 415.-Darlington, Fl. Cestriea, 3 ed. 267.-Chapman,. Fl. S. States, 424.-Curtis in Rep. Geological Surv. N. Carolina, 1860, iii, 35.-Lesquerenx in Oweu's 2d Rep. Arkansas, 387.Wood, Cl. Book, 646.-Koch, Dendrologie, ii^{2}, 49.-Young, Bot. Texas, 50G.-Eugelmann in Trans. St. Louis Acad. iii, 391.
Q. Prinus lumilis, Marshall, Arbustum, 125.-Gray, Manual N. States, 5 ed. 452.
Q. Castanea, Muhleuberg \& Willdenow in Neuc Schriften Gesell. Nat. Fr. Berlin, iii, 396 [not Néo].-Willdenow, Spec. iv, 441 ; Euum. 976; 13erl. Baurnz. 341.-Persoon, Syn. ii, 569.-Pursh, Fl. Am. Sept. ii, 634.-Smith in Rees' Cyel. xxx, No. 51.Poiret, Suppl, ii, 219.-Eaton, Mamal, 107; 6 ed. 294.-Barton, Compend. Fl. Philadelph. ii, 172.-Nuttall, Gencra, ii, 216.-11ayue, Dend. Fl. 156.-lilliott, Sk. ii, 610.-Sprengel, Syst. iii, 860.-Torroy, Compend. Fl. N. Slates, 354; Fl. N. York, ii, 193.-Beck, Bot. 331 .-Eaton \& Wright, Bot. 385.-Gray, Manual N. States, 1 ed. 415.-Darlington, Fl. Cestrica, 3 ed. 267. -Darby, Bot. S. States, 511 .-Brendel in Trans. Illinois Ag. Soc. iii, 619, t. 4.-Chapman, Fl. S. Statos, 424.Curtis in Rep. Geologieal Surv. N. Carolina, 1e60, iii, 34.-Lesquereux in Owen's 2d Rep. Arkansas, $3 \neq 7$.-Wood, Cl. Book, 646.-Örsted in Saerskitt. Aftryk, af. Nat. For. Viden. Meddelt. Nos. 1-6, 1866, 6s.-Lielmann, Chênes Am. Trop. t. 1I, K. \& 33, f. 31, 32.-Young, Bot. Texás, 506.
Q. Prinus, var. acuminata, Miehanx, Hist. Chênes Am. No. 5 , t. 8; Fl. Bor. Anu. ii, 196.—Miehaux f. Hist. Arb. Aıu. ii, ©i, t. 9; N. American Sylva, 3 ed. i, 49, t. 10.-Nouveau Duhamel, vii, 167.-Loudon, Arloretum, iii, 1875, f. 1637.-Cooper in, Smithsonian Rep. 1858, 255.-Wood, Bot. \& 11. 306.-Gray, Manual N. States, 5 ed.451.-Vasey, Cat. Forest Trees, 25.
Q. Prinus pumila, Michanx, llist. Chênes Am. No. 5, t.9, f. 1 ; Fl. Bor.-Am. ii, 196.-Loudon, Arboretum, iii, 1875, f. 1738.

Q. Prinus Chinquapin, Michaux f. Hist. Arb. Anl. ii, 65, t. 10; N. Ameriean Sylva, 3 ci. i, 50, t. 11.-A. De Candolle, Prodr. $\mathrm{xvi}^{\mathrm{z}}, 21$.
Q. Chinquapin, Pursl, Fl. Am. Sept. ii, 634.-Smith in Rees' Cycl. xxx, No. 48.-Nuttall, Geuera, ii, 216.-Elliott, Sk. ii, 611.Torrey, Compend. Fl. N. States, 354.—Beck, Bot. 331.-Eaton, Manual, 6 ed. 294.-Darlington, Fl. Cestrica, 2 ed. 536.— Eaton \& Wright, Bot. 385.-Bigelow, Fll Boston. 3 ed. 377.-Emersor, Trees Massachnisetts, $140 ; 2$ ed. i, 158 \& t.Darby, Bot. S. States, 511.
Q. Prinus, var. oblongata, Aiton, Hort. Kow. v, 290.
Q. Prinus, var. prinoides, Wood, Bot. \& Fl. 306.
Q. Muhlenbergii, Engelmann in Trans. St. Louis Acad. iii, $591 .-$ G. D. Butler in Coulter's Bot. Gazette, iii, 77.-Ridgway in Proc. U. S. Nat. Mus. 1882, 82.

YELLOW OAK. CHESTNUT OAK. CHINQUAPIN OAK.

Eastern Massachusetts, shores of lake Champlain, west along the northern shores of lakes Ontario and Erie, through southern Miehigan to eastern Nebraska, eastern Kansas, and the Indian territory; south to Delarrare and through the Alleghany region to northern Alabama and Mississippi, southwest to the Guadalupe momntains, western Texas (Havard).

A tree 24 to 30 or, exceptionally, 39 meters (Ridgıay) in height, with a trunk 0.60 to 0.90 meter in diameter (Q. Muhlenbergii), or often, especially toward the eastern and western limits of its range, reduced to a low, slender shrub (Q. prinoides) ; dry hillsides and low, rich bottoms; rare, exeept as a shrub, east of the Alleghany mountains; very common in the Mississippi River basin, and reaching its greatest development in southern Arkansas.

Wood heary, hard, very strong, close-grained, checking badly in drying, very durable in contact with the soil; layers of annual growth marked by rows of small open ducts; medullary rays broad, conspicuons; eolor, dark brown, the sap-wood much lighter; specific gravity, 0.8605 ; ash, 1.14 ; used for cooperage, wheel stock, fencing, railway ties, etc.

The small acorns sweet and edible.
Note.-Differences in the size and habit of individuals of this species, thes enlarged, seem to be dependent upon soil and climate, numerons intermediate forms connecting the extremes of eastern Massachusetts and the Mississippi valley.

262.-Quercus Douglasii, Hooker \& Arnott,

Bot. Becchey, 391.-Hooker, Icon. iv, t. 382, 383.-Bentham, Pl. Hartweg. 337; Bot. Sulphur, 55.-Nuttall, Sylva, i, 10, t. 4 ; 2 cd. i, 20, t. 4.-Torrey in Pacific R. R. Rep. v, 365; Bot. Wilkes Exped. 462.-Cooper in Smithsonian Rep. 1858, 260.-A. De Candolle, Prodr. xvi², 23.-Bolander in Proc. California Acad. iii, 230.-Ö̈rsted in Saerskitt. Aftryk. af. Nat. For. Viden. Meddelt. Nos. 1-6, 66.-Liebmann, Chênes Am. Trop. t. 41, f. 3, 4.-Vasey, Cat. Forcst Trees, 25.-Engelmann in Trans. St. Lonis Acad. iii, 392 ; Bot. California, ii, 95.-IIall in Coulter's Bot. Gazette, ii, 91.
Q. oblongifolia, var. brevilobata, Torrey in Bot. Wilkes Exped. 460.

MOUNTAIN WHITE OAK. BLUE OAK.

California, from about latitude 39°, sonth along the restern foot-liills of the Sierra Nevadas below 4,000 feet elevation, and througll the Coast ranges to the San Gabriel monntains.

A tree 18 to 24 meters in height, with a trunk 0.60 to 1.20 meter in diameter; common on the low foot hills of the sierras.

Wood very hard, heary, strong, brittle, inclined to cheek in drring; layers of annual growth marked by sereral rows of small open duets and containing many scattered groups of smaller ducts; meduflary rays numerous, rarying greatly in width; color, dark brown, becoming nearly black with exposure, the thick sap-wood light brown; specific gravity; 0.8928 ; asb, 0.84 .

263.-Quercus oblongifolia, Torres,

Sitgreaves' Rep. 173; Bot. Mex. Bnundary Survey, 206 ; Ives' Rep. 2e.-Cooper in Smithsonian Rep. 1858, 261.-A. De Candolle, 1'rodr. xvi?, 36. -Watson, I'l. Wheeler, 17.-Vasey, Cat. Forest Trees, 26. -Engelmanu in Trans. St. Lonis Acad. iii, 393; Bot. California ii, 96.
Q. undulata, var. oblongata, Engelmann in Wheelerss Rep. vi, 250.

WHITE OAK.

California, foot-hills of the San Gabricl monntains, and in San Diego county (here oceupying a narrow belt, 30 miles in width some 30 miles from the coast, Parish Brothers); foot-hills of the monntain ranges of southern Arizona and New Mexico; southward into Mexico.

A small evergreen tree, 12 to 15 meters in height, with a trunk 0.45 to 0.60 meter in diameter; the large speeimens generally hollow and defective.

Wood very heary, hard, strong, brittle, very elose-grained, cheeking badly in drying ; layers of aniual growth hardly distinguishable, containing few small open duets arranged in many groups parallel to the bread and very conspicuous medullary rays; color, very dark brown or almost blaek, the thick sap-wood brown; specific gravity, 0.9441 ; ash, 2.61 ; of little ceonomic value except as fuel.

264.-Quercus grisea, Liebmanu,

Dansk. Vidensk. Selsk. Forhandl. 1854, 13; Chêues Am. Trop. t. 46, f. 1,2.-A. De Candollo, Prodr. xvi, 35.-Örsted in Saerskitt. Aftryk. af. Nat. For. Viden. Meddelt. Nos. 1-6, 1866, 69.-Rusby in Bull. Torrey Bot. Club, ix, 78.-Watson in Proc. Am. Acad. xviii, 156 .
Q. pungens, Liebmann in Dansk. Vidensk. Selsk. Forhandl. 1854, 13; Cbenes Am. Trop. 22, t. 45, f. 1-3.-A. De Candolle, Prodr. xvi ${ }^{2}$ 35.-Örsted in Saerskitt. Aftryk. af. Nat. For. Videv. Meddelt. Nos. 1-6,69.-Rusby in Bull. Torrey Bot. Clubix, 78.
Q. undulata, var. grisea, Eugelmann ju Trans. St. Louis Aead. iii, 382; Wheeler's Rep. vi, 250.
Q. undılata, var. pungens, Engelmann in Trans. St. Lonis Acad. iii, 392; Wheeler's Rep. vi, 250; Bot. California, ii, 96.Palmer in Am. Nat. xii, 596.
Q. atndulata, var. Wrightii, Engelmann in Trans. St. Louis Acad. iii, 382, 392.

WHITE OAK.

Mountains of southern Colorado and westeru Texas (Havard), southern New Mexico and Arizona from 5,000 to 10,000 feet elevation, west to the Colorado desert of California; south ward into northern Mexico.

A tree 15 to 24 meters in height, with a trunk rarely exceeding 0.60 meter in diameter, or reduced to a low, much-brauched shrub; a polymorphous species, varying greatly in habit and in the sbape and texture of the leares, but apparently well characterized by its counate cotyledons; the large specimens generally hollow and defective.

Wood wery heary, strong, hard, close-grained, checking badly in drying; layers of annual growth marked by one or two rows of small open ducts, these connected by rows of similar ducts parallel to the numerous conspicuous medullary rays; color, very dark brown, the thick sap-wood much lighter; specifie gravity, 1.0092 ; ash, 1.82 .

265.-Quercus reticulata, Humboldt \& Bonpland,

Pl. Equin. ii, 40, t. 86.-Poiret, Suppl. v, 609.-Sprengel, Syst. iii, 860.-Loudon, Arboretum, iii, 1944, f. 1865.-Miebaux f. N. Americau Sylva, 3 ed. i, 90.-A. De Candolle, Prodr. xvi², 33.-Örsted in Saerskitt. Aftryk. af. Nat. For. Viden. Meddelt. Nos. 1-6, 67.-Liebmann, Cliêues Am. Trop. t. LL, t. 34, f. 10-16, t. 35, f. 15-22.-Vases, Cat. Forest Trees, 26.-Engelmann in Trans. St. Lonis Acad. iii, 383 ; Wheeler's Rep. vi, 250.-Hemsley, Bot. Am.-Cent. iii, 176.-Watson in Proe. Am. Aead. xviii, 156. 1
Q. spicata, Iumbolt \& Bonpland, Pl. Aquin. ii, 46, t. 89.-Beutham, Pl. Martweg. No. 429.
Q. decipiens, Martens \& Galeotti in Ball. Brux. v, 10.
? Q. reticulata, var. Grcggii, A. De Candolle, Prodr. xvi², 34.-Hemsley, Bot. Am.-Cent. iii, 176.
Southeastern Arizona, San Francisco and Santa Rita mountains from 7,000 to 10,000 feet elevation; sonthward into northern Mexico.

A small tree, 9 to 12 meters in height, with a trunk 0.30 to 0.45 meter in diameter; dry, grarelly slopes.
Wood very heary, hard, elose-grained, checking badly in drying, containing many small, scattered, open duets; medullary rays numerous, very broad; color, dark brown, the sap-wood lighter; specific gravity, 0.9479; ash, 0.52 .

266.-Quercus Durandii, Buckley,

Proc. Philadelphia Acad. 1860, 445; 1881, 121.—Gray, Hall's Pl. Texas, 21.—Young, Bot. Texas, 507.—Vasey, Cat. Forest Trees, 26.Watson in Proc. Am. Acad. xviii, 156.

> Q. obtusifolia, var. brevilgba, Torrey, Bot. Mex. Bonndary Survey, 206.
> Q. annulata, Bnckley in Proc. Philadelphia Acad. 1860, 445.
> Q. San Sabeana, Buckley in Young, Bot. Texas, 507.
> Q. undulata, Engelmavn in Trans. St. Louis Acad. iii, 392, in part [not Torrey].

Alabama, Wilcox county (Buckley), valley of the Little Cahaba river, Bibb county (Mohr); Shreveport, Louisiana?, (Bucklcy); Texas, Dallas (Reverchon), valley of the Colorado river (Buckley, Mohr, Sargent), west and south.

A tree 21 to 24 meters in height, with a trunk 0.60 to 1.20 meter in diameter; rich bottom lands or dry mesas and limestone hills, then reduced to a low shrub, forming dense, impenetrable thickets of great extent (Q. SanSabeana); rare and local in Alabana; the common and most valuable white oak of western Texas.

Wood very heary and bard, strong, brittle, close grained, incliued to check in drying; layers of annual growth marked by few large open duets; medullary rays numerous, conspicuons; color, brown, the sap-wood lighter; specific gravity, 0.9507 ; ash, 1.78 ; used for the same purposes as that of the white oak (Q. alba).

267.-Quercus virens, Aiton,

Hort. Kew. iii, 356; 2 ed. v, 287.-Bartram,Travele, 2 ed. 82.—Michanx, Hist.Chênes Am. No. 6, t. 10, 11; Fl. Bor.-Am. ii, 196.-Willdenow, Spec. iv, 42̄; Elum. 974 .-Robin, Voyages, iii, 264.—Smith in 'Rees' Cyel. xxx, No. 5.-Persoon, Syn. ii, 567.-Desfontaines, 11 ist. Arb. ii, 507.-Poiret, Suppl. ii,213.-Michanx f. Hist. Arl. Am. ii, 67, t. 11 ; N. American Sylva, 3 ed. i, 52, t. 12.-Pursh, Fl. Am. Sept. ii,626.-Nuttall, Genera, ii, 214 ; Sylva, i, 16; 2 ed, i, 28.-Nouveau Dubamel, vii, 15t.-Elliott, Sk. ii, 595.-Sprengel, Syst. iii, 858.-Cobbett, Wootlands, 446.-Eaton, Mannal, 6 ed. 294.-Loudon, Arboretum, iii, 1918, f. 1802, 1803 \& t.-Eaton \& Wright, Bot. 385.-Spach, Hist.Veg. xi,177.-Engelmann \& Gray in Jour. Boston Soc. Nat. Hist. v, 234.-Scheele in Romer, Texas, 446; Appx. 147.-Peun. Cycl. xix, 216.-Darby, Bot. S. States, 510.-Torrey, Bot. Mex. Boundary Survey, 206.-Cooper in Smithsonian Rep. 1858, 255.-Chapman, 1ll, S. States, 421.-Curtis in Rep. Geological Surv. N. Carolina, 35.-Wood, Cl. Book, 643; Bot. \& Fl. 305.-Poreher, Resonrces S. Forests, 2fi3, - A. De Candolle, Prodr. xvi², 37.-Örsted in Saerskitt. Aftryk. af. Nat. For. Viden. Meddelt. Nos. 1-6, 69.Gray, Manual N. States, 5 ed. 452; Hall's Pl. Texas, 21.-Liebmann, Chênes Am. Trop. t. 33, f. 50-57.-Young, Bot. Texas, 503.Vasey, Cat. Forest Trees, 26.—Engelmann in Trans. St. Louis Acad. iii, 383; iv, 191.-Hemsley, Bot. Am.-Cent. iii, 178.-Watson in Proc. Am. Acal. xviii, 155.
Q. Virginiana, Miller, Dict. 7 ed. No. 17.-Koch, Dendrologie, ii ${ }^{2}$, 57.
Q. Phellos, var. sempervirens, Marshall, Arbustum, 124.
Q. sempervirens, Walter, Fl. Carolimiana, 234.
Q. oleoides, Chamisso \& Schlechtendal in Liunæa, r, 79.-Martens \& Galeotti in Bull. Brax. x, No. 3.-Örsted in Saerskıtt. Aftryk, at. Nat. For. Viden. Meddelt. Nos. 1-6, 1866,69.
Q. retusa, Liebmanu in Dansk. Vidensk. Selsk. Forhandl. 1854, 187.-Örsted in Saerskitt. Aftryk. af. Nat. For. Viden. Meddelt. Nos. 1-6, 1866, 69.

LIVE OAK.

Mob Jack hay, Virginia, south along the coast to bay Bisenyne and cape Romano, Florida, along the Gulf coast to Mexico, extending through western Texas to the valley of the Red river, the Apache and Gaudalupe mountaius and the mountains of northern Mexico south of the Rio Grande at 6,000 to 8,000 feet elevation (Havard); in Costa Rica (Q. retusa).

An evergreen tree of great economic valne, 15 to 18 meters in height, with a trunk 1.50 to 2.10 meters in diameter, or in the interior of Texas nuch smaller, often shrubby; on the coast, rich hummocks and ridges, a few feet above water-level; common and reaching its greatest development in the south Atlantic states.

Wood very heavy, lard, strong, tough, very close-grained, compact, difficult to work, susceptible of a beantifal polish; layers of annnal growth obseure, often hardly distinguishable, containing many small open ducts arranged in short broken rows parallel to the broad, conspicuous medullary rays; color, light brown or yellow, the sap-wood nearly white; specific gravity, 0.9501 ; ash, 1.14 ; formerly very lirgely and now oceasionally used in ship-building.

10 FOR

268.-Quercus chrysolepis, Liebmaun,

Dansk. Vidensk. Selsk. Forhandl. 1854, 173; Chenes Am. Trop. 23, t. 47.-Torrey, Bot. Mex. Boundary Sarvey, 206; Bot. Wilkee Exped. 458.-Cooper in Smithsonian Rej. 1858, 260.-Kellogg in Proc. California Acad. ii, 45.-A. De Candolle, Prodr. xvi, 37.-Bolander in Proc. Californin Acad. iii, 231 .-Örsted in Saerskitt. Aftryk. af. Nat. For. Viden. Meddelt. Nes. 1-8, 1866, 69. - Vasey, Cat. Forest Trees, 25.-Eugelmand in Trans. St. Lonis Acad. iii, 383 , 393; Wheeler's Rep. vi, 374; Bot. California, ii,97.-Watson in Proc. Am. Aead. xi, 119. -Palmer in Am. Nat. xii, 586.
Q. fulvescens, Kellogg in Proc. California Acad. i, (77, 71.-Nowberry in Pacife R. R. Rep. vi, 27, 89.
Q. crassipocula, Torrey in Pacifie R. R. Rep. iv, 137; v, 365, t.9.

PQ. oblongifolia, R. Brown Campst. in Ann. \& Mag. Nat. Hist. April, 1871, 4 [not Torrey].

LIVE OAK. MAUL OAK. VALPARAISO OAK.

Cow Creck valley, Oregon, sonth through the California Coast ranges and along the western slopes of the Sierra Nevada and San Bernardino mountains between 3,000 and 8,000 feet elevation, and sonth into Lower California; southeastern Arizona, San Francisco (Grecnc) and Santa Catalina mountains (Pringle).

An evergreen tree of great economic value, 18 to 27 meters in height, with a trunk sometimes 1.50 meter in diameter, or at high elevations reduced to a low, narrow-leaved shrub (var. vaccinifolia, Engelmann in Trans. St. Louis Acad. iii, 393; Bot. California, ii, 97.-Q. vaccinifolia, Kellogg in Trans. California Acad. ii, 96).

Wood heavy, very strong and hard, tough, close graiued, compact, diffeult to work, containing many rather small open ducts arminged in wide bands parallel to the broad, conspicuons medullary rays; color, light brown, the sap-wood darker; specific grarity, 0.8493 ; ash, 0.60 ; somewhat used in the manufacture of agricultural implements, wagons, ete; the most valuable oak of the Pacific forests.

269.-Quercus Emoryi, Torrey,

Emory's Rep. 151, t. 9; Bot. Mex. Bonndary Survey, 206; Pacific R. R. Rep. iv, 138; Ives' Rep. 28.-Watson in Pl. Wheelor, 17.Vasey, Cat. Forest Trees, 20.-Engelmann in Trans. St. Louis Aead. iii, 382, 387, 394; Wheeler's Rep. vi, 250.-Palmer in Am. Nat. xii, 596.-Hemsley, Bot. Am.-Cent. iii, 170.
Q. Lastata, Liebmann in Dansk. Vidensk. Solsk. Forhandl. 1854, 13; Chenes Am. Trop. 22.-A. De Candolle, Prodr. xvis, 36.-Örsted in Saerskitt. Aftryk. af. Nat. For. Viden. Meddelt. Nob. 1-6, 1866, 69.

BLACK OAK.

Bexar and Comal counties, Texas, through the mountain ranges of western Texas, of southern New Mexico, and of eastern and sonthern Arizona.

A tree 12 to 15 meters in height, with a trunk 0.30 to 0.90 meter in diameter, or toward its eastern limits in Texas reduced to a low slirub; common and reaching its greatest development in southwestern New Mexico and southern Arizona between 5,000 and 7,000 feet elevation near streams in open cañons; dry, gravelly soil, the large specimens hollow and defective.

Wood very heary, not hard, strong, brittle, elose-grained, compact ; layers of annual growth marked by several rows of smail open ducts, these comected by narrow groups of similar ducts parallel to the broad, conspicuous medullary rays; color, dark brown or almost black, the thick sap-wood bright brown tinged with red; specific gravity, 0.9263; ash, 2.36.

270.-Quercus agrifolia, N6e,

Amı. Cionc. Nat. iii, 271.-Fischer, Mise. Hisp. i, lûs.-Willdonow, Spec.iv, 431.-Persoon, Syn. ii, 568.-Smith in Rees' Cyel. xxx, No. 29.—Pursh, Fl. Am. Sept. ii, 627.-Nuttall, Genera, ii, 214; Sylva, i, 5, t. 2; 2 ed. i, 16, t. 2.-Nonvean Duhamel, vii, 156.Sprengel, Syst. iii, 859.-Eaton, Manual, 6 ed. 292.-London, Arborctun, iii, 1894.-Bentham, Pl. Hartweg. 337; Bot. Sulphar, 55.-Eaton \& Wright, Bot. 384.-Hookor, Icon. iv, t. 377 .-llooker \& Arnott, Bot. Beechey, 391.—Jour. Hort. Soc. London, vi, 157 \& t.-Carrière in Fl. des Serres, vii, 137 \& f.--Torrey in Sitgreaves' Rep. 173; Pacifle R. R. Rep. iv, 138; v, 305; vii, 20; Bot. Mex. Bounlary Survey, 206; Ives' Rep. 28; Bet. Wilkes Exped. 460.-Paxton's Brit. Flower Gard. ii, 44.-Newberry in Pacifio R. R. Rop. vi, 32 , f. 9.-Bolander in Proc. California Acad. iii, 229.-A. De Candolle, Prodr. xvǐ ${ }^{2} 37$.-Örsted in Saerakitt. Aftryk. af. Nat. For. Viden. Meddelt. Nos. 1-6, 1866, 69.-Liebmann, Chenes Am. Trop. t. 44.-Vasoy, Cat. Ferest Trees, 25.-Engelmann in Trans. St. Louis Aead. iii, 383 ; Wheeler's Rep. vi, 374; Bot. Califoruia, ii, 98.-Hemsley, Bot. Am.-Cent. iii, 167.
Q. oxyadenia, 'Torrey in Sitgreavos' Rep. 172, t. 17.-Cooper in Smithsonian Rep. 1858, 261.
Q. acutiglandis, Kellogg in Proc. California Acad. i, 25.

ENOENO. COAST LIVE OAK.

California, Mendocino county, south through the Coast Range valleys to Lower California.
A large evergreen tree, 24 to 30 meters in height, with a trunk 1.20 to 2.10 meters in diameter, or, rarely, reduced to a low shrub (var. frutescens, Engelmann in Bot. California, ii, 98); rare at the north; commou south of San Francisco bay, and the largest and most generally distributed oak in the extreme southwestern part of the state; dry slopes and ridges.

Wood heavy, inard, strong, brittle, close-grained, compact; layers of anuual growtl hardly distingnishable, containing many large open ducts arranged in several rows parallel to the broad, conspicuous medullary rays; color, light brown or red, the sap-wood darker brown; specific gravity, 0.8253 ; ash, 1.28 ; of little value except as fnel.

271.-Quercus Wislizeni, A. DeCandolle,

Prodr. xvi², 67.—Örsted in Saerskitt. Aftryk. af. Nat. For. Viden. Meddelt. Nos. 1-6, 1866, 73.-Vasey, Cat. Forest Trees, 27.Engelmann in Trans. St. Louis Acad. iii, 385, 396; Bot. California, ii, 98.
Q. Morehus, Kellogg in Proc. Californía Acad. ii, 36.

LIVE OAK.

California, monut Shasta region, south along the western slopes of the Sierra Nevadas to Tulare county, and in the Coast ranges south to the Santa Lucia mountains.

An evergreen tree, 15 to 18 meters in leight, with a trunk 0.90 to 1.80 meter in diameter, or toward its northeastern limits reduced to a shrub 0.90 to 3 meters in height (var. frutescens, Engelmann in Bot. California, ii, 99); not common.

Wood heavy, very hard, stroug, close-grained, compact, containing numerous large open ducts arranged in irregular bauds parallel to the broad, conspicuous medullary rays; color, light brown tinged with red, the sapwood lighter; specific gravity, 0.7855 ; ash, 1.02.

272.-Quercus rubra, Liduæus,

Spec. 1 ed. 996.—Do Roi, Harbk. ii, 265.-Lamarck, Dict. i, 720.—Walter, Fl. Caroliniana, 234.—Aiton, Hort. Kew. iii, 357; 2 ed. v, 292.-Mønch, Meth. 343.-Abbot, Insects Georgia, ii, t. 103.-Micbaux, Hist. Cbêes No. 2, t. 35, 36 ; Fl. Bor.-Am. ii, 200.Willdenow, Spec. iv, 445; Enum. 976; Berl. Baumz. 342.-Smith in Rees' Cycl. xxx, No. 60.-Persoon, Syn. ii, 569.-Desfontaines, Hist. Arb. ii, 511.—Micbaux f. Hist. Arb. Am. il, 126, t. 26; N. American Sylva, 3 ed. i, 84, t. 28.-Pnrsh, Fl. Am. Sept. ii, 630.Eaton, Manal, 108; 6 ed. 293.-Nuttall, Genera, ii, 214.-Barton, Compend. Fl. Philadelph. ii, 169.-Nouveau Duhamel, vii, 170.-Hayne, Dend. Fl. 157.-Elliott, Sk. ii, 602.-Sprengel, Syst. iii, 863.-Torrey, Compeud. Fl. N. States, 358; Nicollet's Rep. 160; Fl. N. York, 189, t. 106.-Beck, Bot. 329.-Loudon, Arboretum, iii, 1877, f. 1740-1744 \& t.-Hooker, Fl. Bor.-Am. ii, 158.Bigelow, Fl. Boston. 3 ed. 376.-Eaton \& Wright, Bot. 384.-Spach, Hist. Veg. xi, 165.-Emerson, Trecs Massachusetts, 48, t. 10; 2 ed. i, 163 \& t.-Scheele in Rœmer, Texas, 446.-Penn. Cycl. xix, 216.—Darlington, Fl. Cestrica, 3 ed. 269.-Darby, Bot. S. States, 510.-Cooper in Smitbsouian Rep. 1858, 255.-Brendel in Trans. llinois Ag. Soc. iii, 369, t. 9.-Chapman, Fl. S. States, 422.-Curtis in Rep. Geological Surr. N. Carolina, 1860, iii, 41.-Lesquereux in Owen's 2d Rep. Arkausas, 388.-Wood, Cl. Book, 644; Bot. \& Fl. 306.-Porcher, Resources S. Forests,262.-Engelmann in Trans. Am. Phil. Soc. new ser. v, 209; Trans. St. Lonis Acad. iii, 394.-A. De Candolle, Prodr. xvi², 60.-Örsted in Saorskitt. Aftryk. af. Nat. For. Viden. Meddelt. Nos. 1-6, 1866, 72.-Gray, Manual N. Srates, 5 ed. 454; Hall's Pl. Texas, 21.-Liebmann, Chênes Am. Trop. t. A, B.-Koch, Dendrologio, ii, 70.Young, Bot. Texas, 504.-Hayden in Warren's Rep. Nebraska \& Dakota, 2 ed. 121.-Vasey, Cat. Forest Trees, 26.-Macoun in Geological Lejp. Canada, 1875-'76, 209.-Sears in Bull. Essex Inst. xiii, 179.-Ridgway in Proc. U. S. Nat. Mns. 1882, 83.-Bell in Geological Rep. Cadada, 1879-'30, 51c.
Q. rubra maxima, Marshall, Arbustnm, 122.--Muhleuberg \& Willdenow in Neue Schriften Gesell. Nat. Fr. Berlin, iii, 395.
Q. rubra, var. latifolia, Lamarck, Dict. i, 720.—Aiton, Hort. Kew. 2 od. v, 292.-Loudon, Arboretum, iii, 1877.
Q. rubra, var. montana, Aiton, Hort. Kow. 2 ed. v, 292.-London, Arboretum, iii, 1877.
Q. ambigua, Michaux f. Hist. Arb. Am. ii, 120, t. 24 ; N. American Sylva, 3 ed. i, 81, t. 26 [not HBK.].-Pursh, Fl. Am. Sept.ii, 6:30.-Nattall, Genera, ii, 214.-Eaton, Manual, 6 ed. 293.-Loudon, Arboretnm, iii, 1881, f. 1749 \& t.-Eaton \& Wright, But. 384 .
Q. coccinea, var. rubra, Spach, Hist. Veg. xi, 165.
Q. coccinea, var. ambigua, Gray, Manual N. States, 5 cd. 454.
Q. rubra, var. runcinata, A. De Candolle, Prodr. xvi²,60.-Engelmann in Trans. St. Lonis Acad. iii, 542.

RED OAK. BLACK OAK.

Nova Scotia, southern New Brnnswick to easteru Minnesota, western lowa, eastern Kansas, and the Indian territory, south to northern Florida, sonthern Alabana and Mississippi, and the valley of the San Antonio river, Texas.

A large tree, 24 to 30 or, exceptionally, 45 meters (Ridguay) in height, with a trunk 1.20 to 2.10 meters in diameter; very common, especially at the north, in all soils and extending farther north than any Atlantic oak.

Wood heary, hard, strong, coarse-grained, inclined to check in drying; layers of annual growth marked by several rows of very large open ducts; medullary rays few, conspicuous; color, light brown or red, the sap-wood somewhat darker; specifie gravity, 0.6540 ; ash, 0.26 ; now largely used for clapboards, cooperage, and somewhat for interior finish, in the manufacture of chairs, etc.

Var. Texana, Buckley,
 Proc. Philadelphia Acad. 1881, 123.-Engelmann in Coulter's Bot. Gazette, vii, 14.
 Q. palustris, Torrey \& Gray in Pacifie R. R. Rep. ii, 175 [not Du Roi].
 Q. eoccinea, var. microcarpa, Torrey, Bot. Mex. Boundary Snrvey, 206.
 Q. Texana, Buckley in Proe. Philadelphia Acad. 1860, 445.-Young, Bot.Texas, 507.

RED OAK.

Western Texas, valley of the Colorado ricer with the species and replacing it south and west, extending to the valley of the Nueces river and the Limpia mountains (Havard).

A tree 21 to 24 meters in height, with a trunk rarely exceeding 0.60 meter in diameter.
Wood heavier, harder, much eloser-grained than the species, not checking in drying; layers of annual growth marked with fewer and smaller open duets ; specifie gravity, 0.9080 ; ash, 0.85 .

273.-Quercus coccinea, Wangenheim,

Amer. 44, t. 4. f. 9.-Muhlenberg \& Willdenow in NeuoSehriften Gesell. Nat. Fr. Berlin, iii, 398.-Miehaux, Hist. Chênes Am. No. 18, t. 31 , 32 ; Fl. Bor, -Am. ii, 199.-Willdenow, Spec. iv, 445 ; Enum. 976 ; Berl. Baumz. 343.—Smith in Rees' Cycl. xxx, 61.-Persoon, Syn. ii, 569.-Desfontaines, Hist. Arb. ii, 511.-Poiret, Suppl. ii, 221 .-Michaux f. Hist. Arb. Am. ii, 116, t. 23; N. Amerieau Sylva, 3 ed. i, 79 , t. 25.-Aiton, Hort. Kew. 2ed. v, 292.-Pursl. Fl. An. Sept. ii, 630.-Eaton, Manual, 108; 6 ed. 292.-Nuttall, Genera, ii, 214 .-Barton, Compend. Fl. Philadelph. ii, 169.-Nou vean Duhancl, vii, 171.-Hayne, Dend. Fl. 157.-Elliott, Sk. ii, 602.-Sprengel, Syst. iii, 863.Torrey, Compeud. Fl. N. States, 3.8 ; Fl. N. York, ii, 189.—Beck, Bot. 389.-Loudou, Arboretum, iii, 1879, f. 1746-1748 \& t.-Eaton \&
 \& t.-Sehcele in Romer, Texas, 446.-Penn. Cycl. xix, 216.—Darlington, Fl. Cestrica, 3 ed. 268.—Darby, Bot. S. States, 510 .-Cooper in Smithsonian Rep. 1858, 255.-Chapman, Fl. S. States, 422.-Curtis in Rep. Geological Surv. N. Carolina, 1860, iii, 40.Lesquereux in Owen's 2d Rep. Arkansas, 388.-Wood, Cl. Book, 645 ; Bot. \& Fl. 306.-A. De Candolle, Prodr. xvi, 61.-Örsted in Saerskitt. Aftryk. af. Nat. For. Viden. Meddelt. Nos. 1-6, 1866, 7\%.-Gray, Manual N. States, 5 ed. 453.-Liebmann, Chenes Am. Trop. t. B.-Koeli, Dendrologie, ii^{2}, 69.-Young, Bot. Texas, 504.-Vasey, Cat. Forest Trees, 26.-Engelmann in Trans. St. Lonis Acad. iii, 3e5, 394.-Ridgway in Proe. U. S. Nat. Mus. 1882, 80.-Watson in Proe. Am. Aead. xviii, 156.
Q. rubra, B. Linnæns, Spee. 1 ed. 996.—Aiton, Hort. Kew. iii, 357.

SCARLET OAK.
Sonthern Maine to nortlern New York, Ontario, northern Michigan and Miunesota, eastern Iowa and northeastern Missonri, sonth to Delaware and southern Tennessee, and throngh the Alleghang region to northern Florida.

A tree 24 to 30 or, execptionally, 54 meters (Ridguroy) in height, with a trunk rarely exceeding 0.60 to 1.20 meter in diancter; at the east in dry, sandy soil or, less commonly, in riel, deep soil; in the northwestern prairie region with Q. macrocarpa forming the oak-opening growth; not common and reaching its greatest development in the basin of the lower Ohio river.

Wood heary, hard, strong, eoarsegrained; layers of amnal growth strongly marked by several rows of large open ducts; medullary rays thin, conspicuons; color, light brown or red, the sap-wood rather darker; specific gravity, 0.740π; ash, 0.19 ; if used at all, confounded with that of Q. rubra.

274.-Quercus tinctoria, Bartram,

Travels, 2 ed. 37.—Abbot, Insects Georgia, ii, t. 56.-Michanx, Mist. Chenes Am. No. 13, t. 24, 25; Fl. Bor.-Am. ii, 198.-Willdenow, Spee. iv, 444 ; Ennm. 976 ; Berl. Baumz. 344.—Desfontaines, Hist. Arb. ii, 509.-Poirct, Suppl. ii, 221.-Michanx f, Hist. Arb. Am. ii, 110, t. 22; N. Ameriean Sylva, 3 ed. i, 76, t. 24.-Aiton, Hort. Kew. 2 ed. v, 291.—Pursl, Fl. Am. Sept. ii, 629.—Smith in Rees' Cyel. xxx, No. 58.-Barton, Prodr. Fl. Philadelph. 91 ; Compend. Fl. Philadelph. ii, 168.-Laton, Munual, 108; 6 ed. 292.-Nuttall, Genera, ii, 214 ; Sylva, i, 21 ; 2 ed. i, 32.-Nouvean Dulamel, vii, 169.-Hayne, Dend. Fl. 156.—Elliott, Sk. ii, 601.—Sprengel, Syst. iii, 862.Torrey, Compend. Fl. N. States, 357 ; Fl. N. York, ii, 188.-Audubon, Birds, t. 8\%.-Beck, Bot. 328.-Loudon, Arboretum, iii, 1884, f. $1753,1754 .-H o o k e r, ~ F l$. Bor. Am. ii, 158.-Bigelow, 1Fl. Boston. 3 ed. 376 .-Eaton \mathbb{E} Wriglit, Bot. B84.-Spacl, Hist. Veg. xi, 164.-Emerson, Trees Massaclusetts, 141, t. 7; 2 ed. i, 160 \& t.-Griffith, Med. Bot. 586.-Gray, Manual N. States, I ed. $416 .-$ Darlington, Fl. Cestrica, 3 ed. 263.-Darby, Bot. S. States, 510.-Cooper in Smithsonian Rep. 1858, 255.-Brendel in Trans. Illinois Ag. Soc. iii, 627, t. 8.-Chapman, Fl. S. States, 422.-Curtis in Rep. Geological Surv. N. Carolina, 1860, iii, 39 .-Lesqueroux in Owen's $2 d$ lep. Arkansas, 388.-Wood, Cl. Book, 645.-Engelmann in Proc. Am. Phil. Soc. new ser. xii, 209 ; Trans. St. Lonis Aead. iii, 395.-Porcher, Resonrces S. Forests, 238.—Orsted in Saerskitt. Aftryk. af. Nat. For. Viden. Meddelt. Nos. 1-6, 1866, 45, 72, f. 18.Liebnann, Chênes Am. Trop. 9, f. 6.-Young, Bot. Texas, 504.-Hayden in Warren's Rep. Nebraska \& Dakota, 2 ed. 121.-Guibourt, Hist. Drogues, 7 ed. ii, 288.—Vasey, Cat. Forest Trees, 27.—Bentley \& Trimen, Med. Fl. iv, 251, t. 251.-Ridgway in Proc. U. S. Nat. Mus. 1882, 84.
? Q. velutina, Lamarck, Dict. i, 172.-Koch, Dendrologie, ii², 68.
Q. nigra, Marshall, Arbnstum, 120 [not Linnæus].-Wangenhein, Amer. 79, t. 6, f. 16.
Q. rubra, Wangenheim, Aner. 14, t. 3, f. 7 [not Linnæus].-Mnhlenberg \& Willdenow in Nene Schriften Gesell. Nat. Fr. Berlin, iii, 399.
Q. discolor, Aiton, Hort. Kew. iii, 358.-Abbot, Inseets Georgia, ii, 111.-Willdenow, Spec. iv, 444; Borl. Banmz. 345.Poiret, Suppl. ii, 22l.-Smith in Rees' Cycl. xxx, No. 59.-Nuttall, Genera, ii, 214.-Elliott, Sk. ii, 601.-Sprengel, Syst. iii, 863.-Beck, Bot. 329.-Eaton, Manual, 6 ed. 292.-Eaton \& Wright, Bot. 384.
Q. tinctoria, var. angulosa, Michanx, Fl. Bor.-Am. ii, 198.-Loudon, Arboretum, iii, 1858.
Q. tinctoria, Var. sinutosa, Michaux, Fl. Bor.-Am. ii, 198.-Loudon, Arboretım, iii, 1885, f. 1755-1757.-Liebmann, Chenea Am. Trop.t. C.
? Q. Shumardii, Buekley in Proc. Philadelphia Acad. 1860, 445.
Q. coccinea, var. tinctoria, Gray, Manual N. States, 5 ed. 454.-Wood, Cl. Book, 306.-A. De Candolle, Prodr. xvi, 61.

BLACK OAK. YELLOW-BARK OAK. QUERCITRON OAK. YELLOW OAK.

Southern Maine to northern Vermont, Ontario, southern Minnesota, eastern Nebraska, eastern Kansas, and the Indian territory, south to the Chattahoochee region of western Florida, southern Alabama and Mississippi, and eastern Texas.

A large tree, 24 to 36 or, exceptionally, 48 meters (Ridgway) in height, with a trunk 0.90 to 1.80 meter in diameter; gencrally on dry or gravelly uplands; very common.

Wood heavy, hard, strong, not tough, coarse-grained, liable to check in drying; layers of annmal growth marked by several rows of very large open ducts; color, bright brown tinged with red, the sap-wood mach lighter; specific gravity, 0.7045 ; ash, 0.28 ; somewhat used for cooperage, construction, ete.

The bark largely used in tanning; the intensely bitter inner bark gields a valuable yellow dye, and is occasionally nsed medicinally in the form of decoctions, ete., in the treatment of hemorrhage (U. S. Dispensatory, 14 ed. $756 . —$ Nat. Jispensatory, 2 ed. 1196).

275.-Quercus Kelloggii, Newberry,

Pacifie R. R. Rep. vi, 89, 286, f. 6.-Torrey, Bot. Wilkes Exped. 460.-R. Brown Campst. Horw Sylvanx, 58, f. 4-6.-Engelmann in Bot. California, ii, 99.
Q. rubra, Bentham, Pl. Hartweg. 337 [not Linneus].
Q. tinctoria, var. Californica, Torrey in Pacific R. R. Rop.jv, 138; Bot. Mex. Bonndary Snrvey, 205; Ivos' Relp. 28.
Q. Californica, Cooper in Smithsonian Rep. 1858, 261.
Q. Sonomensis, Bentham in De Candollo Prodr. xví2, 62.-Bolander in Proe. Califormia Acad. iii, w30.-Örsted in Saerskitt. Aftryk. af. Nat. For. Viden. Meddelt. Nos. 1-6, 1866, 7\%.-Vasey, Cat. Forest Trees, 27.-Engelmann in Wheeler's Rep. vi, $374 .-$ Palmer in Am. Nat. xii, 596.

BLACK OAK.

Valley of the Mackenzie river, Oregon, south through the Coast ranges and along the western slopes of the Sierra Nevada and San Bernardino monutains to the southern borders of California.

A large tree, 18 to 24 meters in height, with a trunk 0.90 to 1.20 meter in diameter, or at high elevations rednced to a slirub; the most common and important oak of the valleys of southwestern Oregon and the California Sierras.

Wood heary, hard, strong, very brittle, close-grained, compaet; layers of annual growth marked by several rows of large open duets; medullary rays few, broad, couspicuous; color, light red, the thin sap-wood lighter; specifie gravity, 0.6435 ; ash, 0.26 ; of little value, except as fuel; the bark somewhat used in tanning.

276.-Quercus nigra, Linnens,

Spec. 1 cd. 995.-Lamarck, Diet, i, 721.—Wangenheim, Amer. 77, t. 5, f. 13.-Walter, Fl. Careliniana, 234.-Aiton, Hort. Kew. iii, 357; 2 ed. v, 291.-Abhot, Insects Geergia, i, 50 ; ii, $58 .-$ Michaux, Hist. Chéues Am. No. 17, t. 22, 23; Fl. Bor.-Am. ii, 198.-Muhlenberg \& Willdenow in Neue Scliriften Gestll. Nat. Fr. Berlin, iij, 399.—Willdenow, Spec. iv, 442.—Smith in Rees' Cycl. xxx, No. 53.-Persoon, Syn. ii, 569.-Desfontaines, Hist. Arb. ii, 509.-Pursh, Fl. An. Sept. ii, 6z9.-Eiston, Manaal, 108; 6 ed. 29z.-Barton, Compend. Fl. Philadelph. ii, 168.-Nouveau Duhamel, vii, 168.-Elliott, Sk. ii, 600.-Sprengel, Syst. iii, 862.-Torrey, Compend. Fl. N. States, 257 ; Fl. N. York, ii, 188; Bot. Nex. Monndary Survey, 206.-Audnbon, Birds, t. 116.-Deck, Bot. 328.-London, Arboretun, iii, 1890, f. 1764, 1765.-Laton \& Wright, Bot. 384.—Spach, Hist. Veg. xi, 162.-Darlington, Fl. Cestrica, 3 ed. 267.-Darby, Bet. S. States, $510 .-$ Cooper in Sinithsonian Kep. $1898,25 \%$ - Brendel in Trans. Illinois Ag. Soc. iii, 625, t. 7.-Chapman, Fl. S. States, $421 .-C u r t i s$ in Rep. Geological Surv. N. Carolina, 1860, iii, 38.-Lesquerenx in Owen's 2d Rep. Arkausas, 388.-Wood, Cl. Book, 644; Bot. \& Fl. 305.-A. De Candolle, Prodr. xvi², 63.-Orsted in Sacrskitt. Aftryk. af. Nat. For. Viden. Meddelt. Nos. 1-6, 72.-Gray, Mannal N. States, 5 ed. 453 ; Hall's Pl. Texas, 21. -Lielımann, Chênes Am. Trep. t. A.-Koch, Dendrologie, ii ${ }^{2}, 61$. -Yonng, Bet. Texas, 503.-Vasey, Cat. Forest Trees, 26. -Ridgway in Proc. Nat. Mus. 1882, 82.-Watson in Proc. Am. Acad. xviii, 156.
Q. nigra, Var. latifolia, Lamarek, Dict. i, 721.
Q. nigra integrifolia, Marshall, Arbustom, 121.
? Q. aquatica, Walter, Fl. Caroliniana, 234.
Q. Marylandica, Muhlenberg \& Willdenow in Neue Schriften Gesell. Nat. Fr. Berlin, iii, 399.

BLACK JACK. JACK OAK.

Long island, New York, west througì northern Ohio and Indiana to about latitude $55^{\circ} \mathrm{N}$. in Wisconsin, southern Minnesota, eastern Nebraska, Kansas, and the Indian territory to abont 99° west longitude, south to Matanzas inlet and Tampa bay, Florida, and the valley of the Nueces river, Texas.

A small tree, sometimes 12 or even 18 meters in height, with a trunk rarely exceeding 0.60 meter in diameter, or more often runch smaller; dry, barren uplands, or often on heary elay soils; very common through the southern states, and reaching its greatest development in sonthwestern Arkansas, Indian territors, and eastern Texas, forming, with the post-oak (Q. obtusiloba), the growth of the Texas cross-timbers.

Wood heavr, hard, stroug, cheeking badly in drying; layers of annual growth marked by several rows of large open dnets; medullary rays broad, couspicuons; color, rather dark rich brown, the sap-wood mueh lighter; specific gravity, 0.7324 ; ash, 1.16 ; of little value exeept as fuel.

277.-Quercus falcata, Michanx,

Hist. Chênes Am. No. 16, t. 28; Fl. Bor.-Am. ii, 199.-Persoon, Syn. ii, 569.—Poiret, Suppl. ii, 221.—Michaux f. Hist. Arl. Am. ii, 104, t. 21; N. American Sylva, 3 ed. i, 73, t. 23.-Pursh, Fl. Am. Sept. ji, 630.-Nottall, Genera, ii, 214.-Barten, Compend. Fl. Philadelph. ii, 170.-Nouveau Duhamel, vii, 169.-Elliett, Sk. ii, 604.-Torrey, Compend. Fl. N. States, 358.-Beck, Bot. 329.-Eaton, Mannal, 6 ed. 293.-Loudon, Arboretum, iii, 188\%, f. 1750, 1751.-Lindley, Fl. Med. 292.-Eaton \& Wright, Bot. 384.-Darlington, Fl. Cestrica, 3 od. 269.-Darby, Bot. S. States, 510.-Cooper in Smithsoniau Rep. 1858, 255.-Chapman, Fl. S. State8, 422.-Curtis in Rep. Geological Surv. N. Carolina, 1830, iii, 39.-Lesquereux in Owen's 2d Rep. Arlansas, 388.-Wood, Cl. Book, 644; Bot. \& Fl. 306.-Porcher, Resources S. Forests, $256 .-A$. De Candolle, Prodr. xvi², 59.-Örsted in Saerskitt. Aftryk. af. Nat. Fer. Viden. Meddelt. Nos. I-6, 1866, 72.-Gray, Manual N. States, 5 ed. 4j3; Hall's Pl. Texas, 21.-Liebmann, Chenes Am. Trop. t. A, t. 22, f. 3.-Young, Bot. Texas, 505. -Vasey, Cat. Forest Trees, 26. -Ridgway in Proc. U. S. Nat. Mus. 1882, 80.
Q. rubra montana, Marshall, Arbustum, 123.
Q. nigra digitata, Marshall, Arbustum, 121.
Q. cuncata, Wangenheim, Auer. 78, t. 5, f. 14.-Koch, Dendrolegie, ii, 64.
Q. clongata, Muhleuljerg \& Willdenow iu Nene Schriften Gesell. Nat. Fr. Berlin, iii, 400.-Willdenow, Spec. iv, 444.-Smith in Rees' Cycl. xxx, 57.-Aiton, Hort. Kew. 2 ed. v, 291.
Q. triloba, Michaux, Mist. Chênes Am. No. 14, t. 26.-Willdenow, Spec.iv, 443 ; Berl. Baumz. 342.-Smith in Rces' Cyel. xxa,
 Hayne, Dend. Fl. 156. -Sprengel, Syst. iii, ë62.-Torrey, Compend. Fl. N. States, 357.-Beck. Bot. 328.-Eaton, Manual, 6 ed. 202.-Eaton \& Wright, Bet. 384.-Wood, C!. Book, 644 ; Bot. \& Fl. 306.
Q. falcata, var. triloba, Nnttall, Gencra, ii, 214.-Elliott, Sk. ii, 604.-Darby, Bot. S. States, 511.-A. De Candolle, Prodr. $\mathrm{xvi}{ }^{2}, 59$.

$$
\begin{aligned}
& \text { Q. falcata, קar. pagodcfolia, Elliott, Sk. ii, 605.-Darby, Bot. S. States, 511.-Curtis in Rep. Geological Surv. N. Carolina, } \\
& \text { 1860, iii, } 39 .
\end{aligned}
$$

Q. discolor, var. triloba, Spach, Hist. Veg. xi, 163.
Q. falcata, var. Ludoviciana, A. De Candolle, Prodr. xvis. 59.

SPANISH OAK. RED OAK.

Long island, New York, south to Hernando county, Florila, through the Gulf states to the valley of the Brazos river, Texas, and through Arkansas and southeastern Missonri to central Tennessee and Kentucky, southeru Illinois and Indiana.

A large trec, 24 to 30 meters in height, with a trunk 0.30 to 1.80 meter in diameter; dry, gravelly uplands and barrens; in the north Atlantic states only near the coast; rare; most common and reaching its greatest development in the south Atlantic and Gulf states, where, in the middle districts, it is the most common forest tree.

Wood heary, very hard and strong, not durable, coarse-grained, ehecking badly in drying; layers of annual growth strongly marked by several rows of large open ducts; medullary rays few, conspicuous; color, light red, the sap-wood lighter; specific gravity, 0.6928 ; ash, 0.25 ; somewhat used for cooperage, construction, etc., and ver. largely for fuel.

The bark rich in tannin.

278.-Quercus Catesbæi, Michanx,

Hist. Chenes Am. No. 17, t. 29, 30 ; Fl. Bor.-Am. ii, 199,—Abloot, Insects Georgia, i, 27, t. 14.—Willdenow, Spec. iv, 446.-Smith in Rece Cycl. xxx, No. 62.-Persoon, Syn. 569.-Desfontaines, Hist. Arb. ii, 511.-Poiret, Snppl. ii, 221.-Michanx f. Hist. Arb. Am. ii, 101, t. 20 ; N. American Sylva, 3 ed. i. 71, t. 22.-Pursh, Fl. Am. Sept. ii, 630.-Nuttall, Gevera, ii, 214.-Nonveau Dubamel, vii, 172.Elliott, Sk, ii, 603.-Sprengel, Syst. iii, 866.-Torrey, Compend. Fl. N. States, 358.-Beck, Bot. 329.-Eaton, Mamal, 6 cd. 293.London, Arboretum, iii, 1889, f. 1762, 1763.—Eaton \& Wright, Bot. 384 -Spach, Hist. Veg. xi, 162.-Darby, Bot. S. States, $510 .-$ Cooper in Smithsonian Rep. 1858, 255.-Chapman, Fl. S. States, 422.-Curtis in Rop. Geological Surv. N. Carolina, 1860, iii, 41.Wood, Cl. Book, 644 ; Bot. \& Fl. 306.-A. De Candolle, Prodr. xvis, 59.-Örsted in Sacrskitt. Aftryk. af. Nat. For. Viden. Meddelt. Nos. 1-6, 1866, 72.-Koch, Dendrologie, ii, 67.-Young, Bot. Texas, 503.-Vasey, Cat. Forest Trees, 26.
\% Q. levis, Waltor, Fl. Caroliniana, 234.

TURKEY OAK. SCRUB OAK. FORKED-LEAF BLACK JACK. BLACK JACK.

North Carolina, south near the coast to cape Malabar and Pease creek, Florida, and along the coast of Alabama and Mississippi.

A small tree, 7 to 15 meters in height, with a trunk 0.45 to 0.60 meter in diameter; very common in the south Atlantic and east Gult states upon barren sandy hills and ridges of the maritime pine belt; rare in Mississippi.

Wood heary, hard, strong, close-grained, compact; layers of annual growth marked by several rows of large open ducts and containing many much smaller ducts arranged in short lines parallel to the broad, conspicuous medullary rays; color, light brown tinged with red, the sap-wood somewhat lighter; specific gravity, 0.7204 ; ash, 0.87 ; largely used for fuel.

279.-Quercus palustris, Dn Roi,

Harbk. ii, 268, t. 5, f. 4.-Wangenheim, Amer. 76, t. 5, f. 10.-Michanx, Mist. Chenes Am. No. 19, t. 33, 34; Fl. Bor.-Am. ii, 200.Willdenow, Spec. iv, 446 ; Eumm. 976 ; Berl. Baumz. 343.-Persoon, Syu. ii, 569.-Desfontaines, Hist. Arb. ii, 511.-Poiret, Suppl. ii, 222.- Michanx f. IIist. Arb. An. ii, 123, t. 25; N. American Sylva, i, 83, t. 27.-Aiton, Hort. Kew. 2 ed. v, 292.-Smith in Rees' Cycl. xxx, No. 6.-Pursh, Fl. Am. Sept. ii, 631.-Barton, Prodr. Fl. Philadelph. 91; Compend. Fl. Philadelph. ii, 170.-Eaton, Manual, 108; 6 ed. 293.-Nuttall, Geuera, ii, 214.-Nonveau Dahamel, vii, 172.-Hayne, Devd. F1. 158.-Sprengel, Syst. iii, 863.-Torrey, Compend. Fl. N. States, 358 ; Fl. N. York, ii, 190, t. 107.—Beck, Bot, 329.—Loudon, Arboretum, iii, 1887, t. 1758-1761 \& t.-Eaton \& Wright, Bot. 384.—Spach, Hist. Veg. xi, 166.-Darlington, El. Cestrica, 3 cd. 269.-Cuoper in Smithsonian Rep. 185e, 255.-Brendelin Trans. Illinois Ag. Soc. iii, 631.-Lesquerenx in Oweu's 2d Rep. Arkansas, 388.-Wood, Cl. Book, 644; Bot. \& Fl. 306.-A. Do Candolle, Prodr. xvi², G0.-Örsted in Saerskitt. Aftryk. at. Nat. l'or. Viden. Meddelt. Nos. I-6, 1866, 23, 72, f. 4.-Gray, Maual N. Stated, 5 ed. 454.-Liebmann, Chênes Am. Trop. t. A.-Koch, Dendrologiv, $\mathrm{ii}^{2}, 71$. -Emerson, Trees Massachusetts, 2 ed. i, 167 \& t. -Vasey, Cat. Forest Trees, 27.-W. E. Stone in Bull. Torrey Bot. Club, ix, 57.-Ridgway in Proc. U. S. Nat. Mus. 1802, 83. -IBargess in Conlter's Bot. Gazette, vii, 95.-Chapman, Fl. S. States, Suppl, 649.
Q. rubra, var. dissecta, Lamarck, Dict. i, 120.
Q. rulra ramosissima, Marshall, Arbustum, 122.-Muhlenherg \& Willdenow in Neue Schriften Gesell. Nat. Fr. Borlin, :398.

PIN OAK. SWAMP SPANISH OAK. WATER OAK.

Valley of the Connecticut river, Massachusetts (Amherst, Stone), to central New York, sonth to Delaware and the District of Columbia; southern Wisconsin to eastern Kansas, southern Arkansas, and southeastern Tennesseo.

A tree 24 to 30 or, exceptionally, 36 meters (Ridgucay) in height, with a trunk 0.90 to 1.50 meter in diameter; low, rich soil, genembly along the horlers of streams and swamps; most common and reaehing its greatest development west of the Alleghany monntains.

Wood heavy, harl, very strong, coarsegrained, inclined to check bally in drying ; layers of annual growth marked by several rows of large open ducts; medullary rays broad, mmerons, conspicnous; color, light brown, the sap-wood rather darker; specific gravitr, 0.6938 ; ash, 0.81 ; somewhat used for shingles, elapboards, eonstruction, and in cooperage.

280.-Quercus aquatica, walter,

 11, t. 19, 20, 21 ; Fl. Bor.-Am. ii, $198 .-M u h l e n h e r g$ \& Willdenow in Neue Schriften Gesell. Nat. Fr. Berlin, iii, 399.-Persoon, Sya. ii, 569.-Desfontaiues, Hist. Arlı. ii, 509.-Poiret, Suppl. ii, 220.-Miehanx f. Hist. Arh. Am. ii, 89, t. 17; N. American Sylva, 3 ed. i, 65, t. 19.-Sunith in Rees' Cyel. xxx, No. 5\%.-Pursh, Fl. Ala. Sept. ii, 623.-Barton, Conpend. Fl. Philadelph. ii, 168.-Nonveau Duhamel,
 328.-Eaton, Manaul, 6 ed. 292.-Loudoo, Arboretum, iii, 1892, f. 1767.-Eaton \& Wright, Bet. 384.-Spaeh, Hist. Veg. xi, 161.Darby, Bot. S. States, 510 - Cooper in Smithsomian Rep. 1858, 25%-Chapman, Fl. S. States, 421 .-Curtis in Rep. Geologieal Surv. N: Carelina, 37.-Lesquereux in Owen's \&d Rep. Arkansas, 388 .-Wood, Cl. Book, 613 ; Bot. \& lil. 30̄̄.-A. De Candolle, Prodr. xvis, 67.-Örsted in Saerskitt. Aftryk. af. Nat. For. Viden. Meddelt. Nos. 1-6, 1866, 72 .-Gray, Manual N. States, 5 ed. 452; Hall’s Pl. Texas, 21.-Licbmaun, Chênes Am. Trop. t. D.-Yonng, Bot. Texas, 503.-Vaser, Cat. Forest Trees, 26.
Q. nigra aquatica, Lamarck, Dict. i, 721.
Q. nigra trifida, Jarshall, Arhustum, 121.
? Q. uliginosa, Wangonheim, Amer. 80, t. 6, f. 18.
Q. hemisphcerica, willdenow, Spec. iv, 443.-Poiret, Suppl. ii, 628.-Pursh, F1. Am. Sept. ii, 628.-Smith in Rees' Cyel. xxx, No. 56, 623.-Nuttall, Genera, ii, 214.-Eaton, Manual, 6 cd. 295.-Eaton \& Wright, Bot. 385.-Michany f. N. American Sylva, 3 ed. 187.
Q. nana, Willdenow, Spec. 448.-Elliott, Sk. ii, 599.
Q. aquatica, vars. cuneata, clongata, inlivisa, attenuata, Aiton, Hort. Kew. 2 ed. v, 290.
Q. hemispherica, var. nana, Nuttall, Genera, ii, 214.
Q. aquatica, var. hybrida, Chapman, Fl. S. States, 421.
Q. nigra, Koch, Dendrologie, ii^{2}, 61, in part.

WATER OAK. DUCK OAK. POSSUM OAK. PUNK OAK.

Sussex connty, Delaware, south through the coast and middle districts to cape Malabar and Tampa bay, Florida, throngh the Gulf states to the valley of the Colorado river, Texas, and throngh Arkansas to the valley of the Black river, sontheastern Missouri (Poplar Bluffs, Letterman), middle Kentucky and Tennessee.

A tree 15 to 24 meters in lueight, with a trunk 0.60 to 1.20 meter in diameter; generally along streams and bottoms in beavy, undrained soil, or, more rarely, upou uplands; very common and reaching its greatest development along the large streams in the maritime pine belt of the eusteru Gulf states.

Wood heary, hard, strong, coarse-grained, compact; layers of annual growth marked by several rows of large open duets; medullary rays thin, conspicnons; color, rather light brown, the sap-wood lighter; specific gravity, 0.7244 ; ash, 0.51 ; probably not used except as fuel.

281.-Quercus laurifolia, Michana,

Hist. Chềnes Am. No. 10, t. 17; Fl. Bor.-Am. ii, 197.—Wilhlenow, Spcc. iv, 4:7.-P'ersoon, Syn. ii, 567.—Smith in Rees' Cycl. xxx, No. 14.Aiton, Mort. Kow. 2 ed. v, 288.-Pursh, Fl. Am. Sept. ii, G27.-Nuttall, Gencra, ii, 214.-Nonvcan Duhamel, vii, 153.-Elliott, Sk. ii, 597.-Sprengel, Syst. iii, 857.-Eaton, Manual, 6 cl. 291.-London, Arboretum, iii, 1897, f. 1775, 1776.-Eatou \& Wright, Bot. 385.Darly, 13ot. S. States, 510 .-Curtis in Rep. Gcological Surv. N. Carolina, 1860, iii, 36.-Liebmam, Chênes Am. Trop. t. D.-Wood, Cl. Book, 643.-Vasey, Cat. Forest 'I'recs, ©Li.-Engehann in 'Trans. St. Lonis Acad. iii, 385, 395.
Q. laurifoliu hybrida, Mieh:ax, IIist. Chênes Am. No. 10, t. 18.
Q. laurifolie, val. obtusa, Willdenow, Spec. iv, 4:8.-Aiton, IIort. Kew. 2 ed. v, 288.-Wood, Cl. Book, 343.
Q. laurifolia, var. acuta, Willdenow, Spec. iv, 428.-Aiton, Hort. Kow. 2 ed. v, 288.
Q. obtusa, Jursh, F1. Am. Sept. ii, (027.
Q. Phellos, var. luurifoliu, Chapman, Fl. S. States, 420.—Wood, Bot. \& Fl. 305.-Young, Bot. Texas, 502.
Q. aquatica. var. laurifolia, A. De Candolle, Prodr. xvi², 68.

LAUREL OAK.

North Carolina, south near the coast to Mosquito inlet and cape Romano, Florida, and along the Gulf coast to the shores of Mobile bay.

A large tree, 18 to 24 meters in height, with a trunk 0.90 to 1.20 meter in diameter; most common and reaching its greatest development on the rich hummocks of the Florida coast.

Wood heavy, very strong and hard, coarse grained, inclined to check in drying; layers of annual growth marked by several rows of rather small open ducts; medullary rays broad, conspicuous; color, dark brown tinged with red, the sap-wood liglter ; specific gravity, 0.7673 ; ash 0.82 .

282.-Quercus heterophylla, Miehaux f.

Hist. Arb. Am. ii, 87, t. 16; N. Ancrican Sylva, 3 ed. i, 64, t. 18.-Pursh, Fl. Am. Sept. ii, 627.-Barton, Compend. Fl. Philadelph. ii, 167.-Nuttall, Genera, ii, 214; Sylva, i, 15; 2 ed. i, 24.-Greeu iu Universal Herbal, ii, 442.-Torrey, Compend. Fl. N. States, 357.Sweet, Cat. 2 ed. 466.-Beck, Bot. 328.-Eaton, Manual, 6 ed. 292.-Loudon, Arboretnm, iii, 1894.-Eaton \& Wright, Bot. 383.Gale in Proc. Nat. Inst. 185̈́, 70, f. 1.-Wood, Cl. Book, 645.—Buckley in Proc. Philadelphia Aead. 1862, 361 ; 1862, 100.-Gray, Hall's Pl. Texas, 21.-Liobmann, Chênes An. Trop. t. B.-Meehan in Proc. Philadelphia Acad. 1875, 437, 465 ; Coulter's Bot. Gazette, vii, 10.-Leidy in Proc. Philadelphia Acad. 1875, 415.-Engelmann in Trans. St. Lonis Acad. iii, 385, 391.-Martindale, Notes on the Bartran Oak, 3; Coulter's Bot. Gazette, vi, 303.—Ward in Bull. U. S. Nat. Mus. No. 22, 114.
Q. aquatica, var. heterophylla, Aiton, Hort. Kew. 2 ed. v, 290.-A. De Candolle, Prodr. xvi², 68.
Q. nigra, var. Cooper in Smithsonian Rep. 1858, 255.
Q. Phellos \times tinctoria, Gray, Manual N. States, 4 ed. 406.
Q. Phellos, var. Gray, Mannal N. States, 5 ed. 453.
Q. Phellos \times coccinea, Engelmann in Trans. St. Lonis Aead. iii, 541.

BARTRAM'S OAK.

New Jersey, Salem and Cumberland counties, "restricted to a line or belt bordering extreme tidal points of streams entering the Delaware river where the alluvial terminates and the upland commences," (Commons); Delaware, near Townsend station and Wilmington; North Carolina (M. A. Curtis in herb. Canby) ; eastern Texas (E. Hall); this perhaps Q. Durandii.

A small tree, 12 to 15 meters in height, with a trunk 0.45 to 0.60 meter in diameter; rare and very local.
Wood heavy, hard, very strong, close-grained, compact; layers of annual growth marked by several rows of small open ducts; medullary rays numerous, conspicuons; color, light brown tinged with red, the sap-wood somewhat darker; specific gravity, 0.6834 ; ash, 0.17 .

283.-Quercus cinerea, Miehaux,

Hist. Chênes Am. No. 8, t. 14 ; Fl. Bor.-Am. ii, 197.-Wildenow, Spec.iv, 425.-Per600n, Syn. ii, 567.-Poiret, Snppl. ii, 212.-Michanx f. Hist. Arl. Am. ii, 82, t. 14; N. American Sylva; 3 ed. i, 61, t. 16.-Aitou, IIort. Kew, 2 ed. v, 288.-Pursh, Fl. Am. Sept. ii, 626.Smith in Rees' Cycl. xxx, No. 6.-Nuttall. Genera, ii, 214.-Nonvean Dubanıel, vii, 151.-Elliott, Sk. ii, 594.-Sprengel, Syst. iii, 857.-Eaton, Manual, 6 ed. 294.-Eaton \& Wright, Bot. 6 ed. 294.-Engelmann \& Gray in Jour. Boston Soc. Nat. Hist. v, 262.Scheele in Romer, Texas, 446.-Cooper in Smithsonian Rep. 1e58, 255.-Chapman, Fl. S. States, 421.-Curtis in Rep. Geological Sury. N. Carolina, 37.-Wood, Cl. Dook, 643 ; Dot. \& Fl. 305.-A. De Candolle, Prodr. xvi², 73.-Örsted in Saerskitt. Aftryk. af. Nat. For. Viden. Meddelt. Nos. 1-6, 1860, 73.-Gray, Manual N. States, 5 ed. 452; Hall's Pl. Texas, 21.-Yonng, Bot. Texas, 502.-Koeh, Dendrologie, ii^{2}, 58. - Vasey, Cat. Forest Trees, 26. -Engelmann in Trans. St. Louis Acad. iii, 385, 395.
Q. Prinus, β. Linnæns, Spec. 1 ed. 995.
Q. humilis, Walter, FI. Caroliniana, 234.
Q. Phellos, var. cinerea, Aiton, Hort. Kow. iii, 354. -Loudon, Arborctum, iii, 1895, f. 1773.-Spach, Hist. Veg. xi, 161.

UPLAND WILLOW OAK. BLUE JACK. SAND JACK.

North Carolina, sonth near the coast to cape Malabar and Pease creek, Florida, west along the Gulf coast to the valley of the Brazos river, Texas, extending north thongh easteru Texas to about latitude 33°.

A tree 9 to 15 meters in height, with a trunk rarely exceerling 0.20 meter in diameter; sandy barrens and dry upland ridges.

Wood heary, hard, strong, close graned, compact; layers of ammal growth marked by several rows of yot large open ducts; medullary rays distant, thin, conspicuous; color, light brown tinged with red, the sap-wood darker; specific gravity, 0.6420 ; ash, 1.21.

284.-Quercus hypoleuca, lingelmann,

Trans. St. Louis Acad. iii, 384 ; Wheeler's Rep. vi, 251.-Vasey, Cat. Forest Trees, 26.-Rnslyy in Bull. Torrey Bot. Clab, ix, 78.
Q. confertifolia, Torrey, Bot. Mex. Bonndary Survoy, 207 [uot 11BK.].-Cooper in Smithsouiau Rep. $1858,261$.

Limpia mountains, Texas (Havard), valleys of the high mountain ranges of southwestern New Mexico, Santa Rita mountains, Arizona, above 6,000 teet elevation; southward into Sonora.

A small evergreen trec of great beauty, 9 to 15 meters in height, with a trunk sometimes 0.75 meter in diameter; dry, gravelly slopes and summits, the large specimens hollow and defective.

Wood leavy, very strong and hard, closegrained, compact; layers of annual growth marked by few small open ducts; mednllary rays broad, conspicnous; color, dark brown, the sap-wood much lighter; specific gravity, 0.8009 ; ash, 1.34.

285.-Quercus imbricaria, Michaux,

Hist. Chenes Am. No. 9, t. 15, 16; Fl. Ber.-Am. ii, 197.—Willdenow, Spec. iv, 428; Ennm. Suppl. 64; Bcrl. Banmz. 338.-Persoon, Syn. ii, 567.-Poiret, Suppl. ii, 214.-Miehaux f. IIist. Arb. Am, ii, 78, t. 13; N. American Sylva, 3 ed. i, 60, t. 15.-Aiton, Hort. Kew. 2 ed. v, 288. -Smith in Rees' Cycl. xxx, No. 15.-Pursh, Fl. Am. Sept. ii. 627.-Nuttall, Genera, ii, 214.-Barton, Compend. Fl. Philadelph. ii, 167.-Nouvean Duhamel, vii, 153.-Hayne, Dend. Fl. 155.-Elliott, Sk. ii, 598.-Sprengel, Syst. iii, 857.-Torrey, Compend. FI. N. States, 357.—Beck, Bot. 328.—Eaton, Mauual, 6 ed. 292.-Loudon, Arboretrm, iii, 1898, f. 1777.-Eaton \& Wright, Bot. 383.-Darby, Bot. S. States, 510.-Torrey \& Gray in Pacific R. R. Rep. ii, 130.—Cooper in Smithsonian Rep. 1858, 255.-Mrendel in Trans. Illinois Ag. Soc. iii, 623, t. 6.-Clapman, Fl. S. States, 4:0.-Curtis in Rep. Geological Surv. N. Carolina, 1860, jii, 36.-Lesquereux in Owen's 2d Rep. Arkansas, 388.-Wood, Cl. Book, 643; Bot. \& Fl. 305.-A. De Candolle, Prodr. xvi', 63.-Orsted in Saerskitt. Aftryk. af, Nat. For. Viden. Meddelt. Nos. 1-6, 1860, 73.-Gray, Manual N. States, 5 ed. 452.-Young, Bot. Texas, 502.-Liebmann, Chênes Am. Trop. t. D, t. xxii, f. 5.-Koch, Dendrologie, iis, 60.-Vasey, Cat. Forest Trees, 26.Broalhead in Conlter's Bot. Gazette, iii, 60.—Ridgway in Proc. U. S. Nat. Mus. 1882, 80.
Q. Phellos, var. imbricaria, Spach, Hist. Veg. xi, 160.

SHINGLE OAK. LAUREL OAK.

Allentown, Lehigh county, Pennsylvania (Porter), west through southern Michigan, southern Wisconsin, and sontheastern Iowa to sontheastern Nebraska and northeastern Kansas, south to northern Georgia and Alabama, middle Tenuessec, and northern Arkansas.

A tree 24 to 30 meters in height, with a trunk 0.60 to 0.90 meter in diameter; rich woodlands.
Wood lieavy, hard, rather coarse grained, checking badly in drying; layers of annual growth marked by many rows of large open ducts; medullary rays broad, conspicuous; color, light brown tinged with red, the sap-wood much lighter; specific gravity, 0.7529 ; ash, 0.43 ; occasionally used for clapboards, shingles, etc.

Spec. 1 ed. 994.—Lamarck, Dict. i, 722.—Wangenheim, Amer. 76, t. 5, f. 11.-Walter, Fl. Caroliniana, 234. -Aiton, Hort. Kew. iii, 354; 2 ed. v, 287.—Abbot, Iusects Georgia, ii, t. 52, 91.-Michaux, Fl. Bor.-Am. ii, 197.-Willdenow, Spee. iv, 423 ; Enum. 974 ; Berl. Banmz. 337.—Smith in Rees' Cycl. xxx, No. 7.-Persoon, Syn. ii, 567.—Desfontaines, Hist. Arb. ii, 507.-Michanx f. Hist. Arb. Am. ii, 75, t. 12 ; N. Ameriean Sylva, 3 ed. i, 58, t. 14.-Pursh, Fl. Am. Sept. ii, 625.-Barton, Prodr. Fl. Philadelph. 91 ; Compend. Fl. Philadelph. ii, 167.-Nıttall, Genera, ii, 214; Sylfa, i, 15; 2 ed. i, 17.-Nouvean Duhamel, vii, 150.-Hayne, Dend. Fl. 155.-Elliott, Sk. ii, 593.—Sprengel, Syst. iii, 857.-Torrey, Compend. Fl. N. States, 357; Fl. N. York, ii, 187.—Beck, Bot. 328.-Eaton, Mauual, 6 ed. 383 .-Loudon, Arberetum, iii, 1894, f. $1774 \&$ t.-Eaton \& Wright, Bot. 383.-Spaeh, Hist. Veg. xi, 160.-Penn. Cycl. xix, 216.Darby, Bot. S. Statee, 509.-Cooper in Smithsonian Rep. 1858, 255.-Chapman, Fl. S. States, 420.-Curtis in Rep. Geological Surv. N. Carolina, 1860, iii, 36.-Lesquereux in Oren's 2d Rep. Arkansas, 388. - Wood, Cl. Book, 643; Bot. \& Fl. 305.-A. De Candolle, Prodr. xvi², 63.-Örsted in Saerskitt. Aftryk. af. Nat. For. Videu. Mcddelt. Nos. 1-6, 1866, 73.-Gray, Manual N. States, 5 ed. 452 ; Hall's Pl. Texas, 2l.-Young, Bot. Texas, 502.-Koch, Dendrologie, ii ${ }^{2}$, 59.-Vasey, Cat. Forest Trees, 26.-Gartenfora, Ixix, 221 \& f.-Ridgway in Proe. U. S. Nat. Mus. 83.
Q. Phellos angustifolia, Marshall, Arbustam, 124.
Q. Phellos latifolia, Marshall, Arbustum, 124.-Loddiges, Cat. ed. 1836.-London, Arboretum, iii, 1895 \& t.
Q. Phcllos, var. viridis, Aiton, Hort. Kew. iii, 354.
Q. Phellos, var. humilis, Pursh, Fl. Am. Sept. ii, 625.

WILLOW OAK. PEACH OAK.

Tottenville, Staten island, New York, south near the coast to northeastern Florida, through the Gulf states to the vallcy of the Sabine river, Texas, and throngh Arkansas to southeastern Missouri, Tennessee, and southern Kentucky.

A tree 18 to 24 meters in height, with a trunk sometimes 0.90 meter in diameter; bottom lands or rich sandy uplands.

Wood heasy, strong, not hard, rather close-grained, compact; layers of anmual growth marked by several rows of small open ducts; medullary rays few, distant; color, light brown tinged with red, the sap-wood lighter red; specific gravity 0.7472 ; ash, 0.50 ; somewhat used for fellies of wheels, elapboards, in construction, ete.

287.-Quercus densiflora, Hooker \& Arnott,

Bot. Beechey, 391.-Hooker, Icon. iv, t. 380.—Bentham, Pl. Hartweg. 337.-Nuttall, Sylva, i, 11, t. 5; 2 ed. i, 21, t. 5.-Torrey in Pacific R. R. Rep. iv, 138.-Bot. Wilkee Exped. 458.-Newberry in Pacific R. R. Rep. vi, 31, 89, f. 8.-A. De Candolle, Prodr. xvi², 82.-Bolander in Proc. California Acad. iii, 231.-Vasey, Cat. Forest Trees, 25.-Engelmann in Trans. St. Lonis Acad. iii, 38'; Bot. California, ii, 99.
Q. echinacea, Torrcy in Pacific R. R. Rep. iv, 137, t. 14.

Pasania densiflora, Örsted in Saerskitt. Aftryk. af. Kat. For. Viden. Meddelt. Nos. 1-6, 1866, 73.
Q. echinoides, R. Brown Campst. in Ann. \& Mag. Nat. Hist. April, 1871, 2.

TANBARK OAK. CHESTNUT OAK. PEACH OAK.

Valley of the Umpqua river, Oregon, south throngh the Coast ranges to the Santa Lucia mountains, California.
A tree 18 to 24 meters in height, with a trunk 0.60 to 0.90 meter in diameter; rich vallers and banks of streams; most common and reaching its greatest development in the redwood forests of the California coast.

Wood heavy, hard, strong, very close-grained, compact, containing broad bands of small open ducts parallel to the thin, dark, conspicuous medullary rays; color, bright reddish-brown, the thick sap-wood darker brown; specific gravity, 0.6827 ; ash, 1.49 ; largely used as fuel.

The bark, rich in tammin, very largely used and preferred to that of any other tree of the Pacific forests for tanning.

Note.-The following shrubby specics of Quercus do not properly find a place in this catalogue:
Quercus undulata, Torrey in Ann. Lyc. N. York, ii, 248, t. 4.
Interior Pacific region from Colorado southward.
Quercus Breweri, Engelmann in Bet. Californla, li, 90.
Q. lobata, var. firuticosa, Engelmann in Trans. St. Louis Acad. iil, 388.

Westeru slopes of the high Sicrra Nevadas, California.
Quercus Georgiana, M. A. Curtis in Chapman's Fl. S. States.
Stone Mountain, Georgia.
Quercus myrtifolia, willdenow, Sp. iv, 424.
Q. Phellos, var. arenaria, Chapman, FI. S. States, 420.
Q. aquatica, var. myrtifolia, A. De Canilolle, Prodr. xvi, of.

South Atlantic and Gulf coast.
Querous ilicifolia, Wangenheim, Amer. 79, t. 6, f. 17.
Q. Lianisteri, Michanx, Hist. Chénes Am. t. 27.

North Atlantic region.
Quercus pumila, Walter, FL. Caroliana, 234.
Q. Phellos pumila, Micharx, Hist. Chénes Am. t. 15, f. 1.
Q. cinerea, var, pumilu, Chapman, Fl. S. States, 421.-A. De Candolle, Prodr. 16, 74.
Q. cinerea, var. sericea, Engelnand in Trans. St. Lenis Acad. iii, 384.
Q. scricea, Willdenow, Spec. 424.
Q. Phellos, var. sericea, Δ iton, Hert. Kew. dii, 351.

Pine barrens, South Carolina.
Quercus dumosa, Nuttall, Sylva, i, 7.
Q. Berberidifolia, Liebmann In Danak. Vldensk. Selek. Forbandl. 1854, 172, in part.
Q. dumora, var. bullata, Engelmann in Bot. Califernia, 298.
Q. acutidens, Torrey, Bot. Mex. Bonndary Sarvey, 207, t. 51 .

Coast ranges of sonthern Califnmia.
Numcrons liylorid or snpposed hybrià oaks, variously described by American botanists, are not properly considered here.

288.-Castanopsis chrysophylla, A. De Candolle;

Seemann's Jour. Bot. i, 182; Prodr. xvi², 109.-Watson in King's lep. v, 32e; liot. California, ii, 100.-Gray in Proc. Am. Acad. vii, 40l.Torrey, Bot. Wilkes Exped. 463.-Vasey, Cat. Forest Trees, 27. -Hall in Coulter's Bot. Gazette, ii, 91.

> Castanea chrysophylla, Douglas iu llooker's London Jour. Bot. ii, 496, t. 16.-Bentham, Pl. Hartweg. 337.-Hooker, Fl. Bor. Am. ii, 159.-Nuttall, Sylva, i, 21 ; 2 ed. ; 37.-Bot. Mog. t. 4953.-Torrey in Paeific R. R. Rep. jv, 137 ; Bot. Mex. Boundary Survey, 205.-Morren in Belg. Hort. vii, 248, t. 240.-Newberry in Pacifie R. R. Rep. vi, 26, 89, f. 4.-Fl. des Serres, xii, 3, t. 1184.-Cooper in Smithsonian Rep. 1858, 261.-Kellogg in Proc. California Acad. ii, 280.Bolander in Proc. California Acad. iii, 231. -Engelmann in Wheeler's Rep. vi, 375.-Shingles in London Gard. Chroniele, 18×2, 716.

Castanea chrysophylla, var. minor, Bentham, Pl. Hartweg. 337.
Castanea sempervirens, Kellogg in Proe. California Aead. i, 71.
C. chrysophylla, var. minor, A. De Candolle, Prodr. xvi, 110.
C. chrysophylla, var. pumila, Vasey, Cat. Forest Trees, 27.

gHINQUAPIN.

Cascade mountains, Oregon, below 4,000 feet elevation, sonth along the western slopes of the Sierra Nevadas, and throngh the California Coast ranges to the San Bernardino and San Jacinto mountains.

A tree 15 to 24 meters in height, with a trunk 0.30 to 0.90 meter in dianeter, or at high elevations and toward its southern limits reduced to a low shrub; most common and reaching its greatest development in the Coast Range valleys of northern California; at its southern limits rarely below 10,000 feet clevation.

Wood light, soft, not strong, close-grained, compact; layers of anuual growth marked by a single row of rather large open ducts; medullary rays numerous, ohsenre; color, light brown tinged with red, the sap-wood lighter; specific gravity, 0.5574 ; ash, 0.35 ; in southern Oregon occasionally used in the manufacture of plows and other agricultural implements.

289.-Castanea pumila, Miller,

Dict. No. 2.-Lamarek, Dict. j, 708.-Michanx, Fl. Bor.-Am. ii, 193.-Willdenow, Spec. iv, 461; Enum. 980; Berl. Baum\%. 78.-Smith in Rees' Cycl. xiv, No. 2.-Nouveau Duhamel, iii, 79.-Persoon, Syn. ii, 572.-Desfontaines, Hist. Arb. ii, 500.- Michallx f. Hist. Arb. Am. ii, 166, t. 7; N. Ameriean Sylva, 3 ed. iii, 16, t. 105.-Aiton, Hort. Kew. 2 ed. r, 298.-Pnrsh, Fl. Am. Sept. ii, 624.Ratinesque, Fl. Ludovieiana, 159; New Fl. \&. Bot. i, 83.-Nuttall, Genera, ii, 21%; Am. Phil. Soc. 2 ser. v, 168.-Hayne, Dend. Fl. 165.-James in Long's Exped. ii, 287.-Elliott, Sk. ii, 615.-Torrey, Compend. Fl. N. States, 355 ; Fl. N. York, ii, 196.-Audubon, Birds, t. 85.-Beek, Bot. 332.-Daton, Manual, 6 od. 84.-Penn. Cyel. vi, 350.-Loudon, Arboretum, iii, 2002, f. 1927, 1928.-Eaton \& Wright, Bot. 184.-Spaeh, Hist. Veg. xi, 192.-Darlington, Fl. Cestrica, 3 ed. 270.-Darby, Bot. S. States, 512.-Cooper in Smithsonian Rep. 1658, 256 .-Chapman, Fl. S. States, 424 .-Curtis in Rep: Geological Surv. N. Carolina, 1860, iii, 47.-Lesquerenx in Owen's 2d Rep. Arkansas, 388.-Wood, Cl. Book, 646 ; Bot. \& Fl. 307.-Porcher, Resources S. Forests, 237.-A.De Candolle, Prodr. xri², 115.-Gray, Manual N. States, 5 ed. 455.-Young, Bot. Texas, 508.-Koch, Dendrologie, ii², 24.-Vasey, Cat. Forest Trees, 27.-Butler in Conlter's Bot. Gazette, iii, 17.

Fagus pumila, Linnæns, Spee. 1 ed. $998 .-D a$ Roi, Harbk. i, 175.-Wangenheim, Amer. 57.'t. 19, f. 44.-Walter, Fl. Caroliniana, 233.-Aiton, Hort. Kew. iii, 361.-Abbot, Insects Georgia, ii, t. 57.
Fagus Castanea pumila, Marshall, Arbnstum, 47.
Fagus pumila, var. procox, Walter, Fl. Caroliniana, 233.
C. nana, Muhlenberg, Cat. 86.-Elliott, Sk. ii, 615.-Rafinesque, New Fl. \& Bot. i, 83.-Darby, Bot. S. States, 512.-Cnrtis in Rep. Geological Surv. N. Carolina, 1860, iii, 47.-Lesquereux in Owen's 2d Rep. Arkansas, 328.
O. alnifolia, Nuttall, Genera, ii, 217 ; Sylva, i, 19, t. $6 ; 2$ ed.i, 36, t. 6 .
C. vesca, Lesquerenx in Owen's 2d Rep. Arkansas, 388 [not Gıertner].

CHINQUAPIN.

Lancaster county, Pennsylvania, and the valley of the lower Wabash river, Indiana, south and southwest to northern Florida and the valley of the Neches river, Texas.

A tree sometimes 15 meters in height, with a trunk 0.30 to 1.05 meter in diameter, or often, especially in the Atlantic states, reduced to a low shrub; rich hillsides and borders of swamps; most common and reaching its greatest development in southern Arkinsas.

Wood light, lard, strong, coarse-grained, durable in contact with the ground, liable to check in drying; layers of annual growth marked by many rows of large open ducts; medullary rays numerous, obscure; color, dark brown, the sap-wood hardly distinguishable; specific gravity, 0.5887 ; ash, 0.12 ; used for posts, rails, railway ties, etc.

The small nuts sweet and edible.
290.-Castanea vulgaris, var. Americana, A. De Candolle,

Prodr. xvi², 114.-Schneck in Coulter's Bot. Gazette, vi, 159.-Bell in Geological Rep. Cadada, 1879-80, 53c.-Ridgway in Proc. U. S. Nat. Mus. 1882, 84.

Fagus Castanea dentata, Marshali, Arbustum, 46.

Fagus Castanea, Wangenheim, Amer. 47 [not Linneus].-Walter, FI. Caroliniana, 233.-Aiton, Hort. Kow. iii, 361, in part.Lamarck, Ill. iii, 366, t. 782, in part.
C. resca, var. Americana, Michanx, Fl. Bor.-An. ii, 193.-Persoon, Syn. ii, 572.-Barton, Prodr. Fl. Philadelph. 90.Pursh, Fl. Am. Sept. ii, 624.-Eaton, Manual, 109; 6 ed. 84.-Nuttall, Gencra, ii, 217.-Elliott, Sk. ii, 614.-Torrey, Compend. Fl. N. States, 855 ; Fl. N. York, ii, 195, t. 111 -LLondon, Arboretum, iii, 1984.-Eaton \& Wright, Bot. 184.-Emersou, Trees Massachusetts, 164, 2 ed. i, 187 \& t.-Porcber, Resources S. Forests, 238. Vasey, Cat. Forest Trees, 27.-Rudkin in 13ull. Torrey Bot. Club, vii, 81.
C. Americana, Rafinesque, New Fl. \& Bot. i, 82.-Willdenow, Enum. Suppl. 64.-Nuttall, Sylva, i, 24 ; 2 ed. i, 38.-Spach, Hist. Veg. xi, 191.-Cooper in Smithsonian Rep. 1858, 256.-Koch, Dendrologie, ii ${ }^{2}$, 23.-Martindalo in Proc. Philadelphia Acad. 1880, 2.
C. vesca, Willdenow, Spec. iv, 460 , in part.-Desfontaines, Hist. Arb. ii, 500 , in part.-Mielanx f. Hist. Arb. Am. ii, 151, t. 6; N. American Sylva, 3 ed. iii, 11, t. 104 [uot Gærtner].-Hayne, Dend. Fl. 165, in part.-Sprengel, Syst. iii, 856, in part.-Beek, Bet. 332.-Penn. Cycl. vi, 350.-Bigelow, Fl. Boston. 3 ol. 224.-Darlington, Fl. Cestrica, 3 ed. 270.-Darby, Bot. S. States, 511.-Chapman, F1. S. States, 424.-Curtis in Rep. Geological Surv. N. Carolfna, 1860, iii, 46.-Wood, Cl. Book, 646; Bot. \& Fl. 306.-Gray, Manual N. States, 5 ed. 455.

chestinut.

Sonthern Maine to the valley of the Winooski river, Vermont, southern Ontario and southern Miehigan, south through the northern states to Delaware and southern Endiana, and along the Alleghany mountains to northern Dlabama, extending west to middle Kentucky and Temnessee.

A large tree, 24 to 30 meters in height, with a trink 1.80 to 4 meters in diameter; rich woods and hillsides; very common and reaching its greatest development on the western slopes of the sonthern Alleghany momntains.

Wood light, soft, not stroug, coarse-grained, liable to check and warp in drying, easily split, very durable in contact with the soil ; layers of annual growth marked by many rows of large open ducts; medullary rays numerous, obseure ; color, brown, the sap-wood lighter ; specific gravity, 0.4504; ash, 0.18; largely used in eabinet-making, for railway ties, posts, fencing, ete.

The fruit, although smaller, superior in sweetness and flavor to that of the European chestnut.
An infusion or fluid extract of the dried leaves is snceessfully employed in the treatment of whooping-congh and other pectoral affeetions (U. S. Dispensatory, 14 ed. 245.-Nat. Dispensatory, 2 ed. 364).

291.-Fagus ferruginea, Aiton,

Hort. Kow. iii, 362; 2 ed. v, 298.-Abhot, Insects Georgia, ii, t. 75.-Willdenow, Spec. iv, 460; Evum. 980; Berl. Banmz. 140.-Persoon, Syn. ii, 571.-Desfontaines, Hist. Arb. ii, 496.-Michanx f. Hist. Arb. Am. ii, 174, t. 9; N. American Sylva, 3 ed. iii, 21, to 106.-Smith in Rees' Cycl. xiv, No. 4.-Pursh, Fl. Am. Sept. ii, 624.—Barton, Prodr. Fl. Philadelph. 90 ; Compend. Fl. Philadelph. ii, 174.-Eaton,
 333.-Eaton, Manual, 6 ed. 145.-Loudon, Arboretun, iii, 1980, f. 1917.-Hooker, Fl. Bor.-Am. ii, 159.-Eaton \& Wright, Bot. 244.Bigelow, Fl. Boston. 3 ed. ;74.-Darlington, Fl. Cestrica, 3 ed. 271 .-Cooper in Smithsonian Rep. 1858, 256.-Chapman, Fl. S. States, 425.-Curtis iu Rep. Geological Surv. N. Caroliua, 1860, iii, 47.-Wood, Bot. \& Fl. 307.-A. De Candolle, Prodr. xvi ${ }^{2}$, I18.-Gray, Manual N. States, 5 ed. 455.-Koch, Dendrologic, $\mathrm{ii}^{2}, 19 .-V a s e y$, Cat. Forest Trees, 27. -Broadhead in Coulter's Bot. Gazette, iii, $60 .-$ Sears in Bull. Essox Inst, xiii, 179.-Bell in Geological Rep. Canada, 1879-80, 52c.-Ridg way in Proc. U. S. Nat. Mus. $1882,85$.
F. sylvatica atropunicea, Marshall, Arbnstum, 46.
\boldsymbol{F}. Amerisana latifolia, Wangenheim. Amer. 80, t. 24, f. 55.-London, Arboretum, iii, 1980, f. 1916.
F. sylvatica, Walter, Fl. Caroliuiana, 233 [not Linnæus].-Pursh, Fl. Am. Scpt. ii, 624.-Beek, Bot. 333.-Darliugton, Fl. Cestrica, 2 ed. 538.-Darby, Bot. S. States, 512.
F. sylvestris, Michanx, Fl. lor. Am. ii, 194.—Michanx f. Hist. Arb. Am. ii, 170, t. 8; N. American Sylva, 3 ed. iii, 18, t. 107.Hooker, l'l. Bor.-Am. ii, 154.-Lesqueroux in Owen's '2d Rep. Arkansan, 388.
F. alba, Rafinestue, Nl. Ludoviciana, 131.
F. sylvatica, var. Amcricana, Ninttall,Genera, ii, 216.-Barton, Compend. Fl. Philadelph.ii, 174.-Elliott, Sk.ii, 613.-Eaton, Manual, 6 cd. 145.-Loudon, Arboretum, iii, 1953.-Eaton \& Wright, Bot. 244.-Fmersou, Trees Massachusetts, 153; 2 ed. i, $1=0$ \& t.-Wood, Cl. 13ook, 617.-Poreher, Resourees S. Forests, 235.
F. Americana, sweet, Hort. Brit.-Spach, Hist. Veg. xi, 201.
F. ferrıginea, var. Caroliniana, Loudon, Arboretum, iii, 198), f. 191\%.

BEECK.

Nova Scotia and the valley of the Restegonche river to the northern shores of lake Huron and northern Wisconsin, sonth to the Cliattahoochee region of western Florida and the ralley of the Trinity river, Texas, west to castern lllinois, southeastern Missomi, and Madison comnty, Arkansas (Letterman).

A large tree, 24 to 30 or, exceptionally, 34 meters (Ridgoay) in height, with a trunk 0.90 to 1.20 meter in diameter; lich woods, or at the south sometimes in bottom lands or the dryer portions of swamps, reaching its greatest development upon the "blnff" formations of the lower Mississippi basin ; very commou.

Wood very hard, strong, tough, very close grained, not dnrable in contact with the soil, inclined to check in drying, difficult to season, susceptible of a beautiful polish; medullary rays broad, very conspicnons; color, varying greatly with soil and situation, dark red, or often lighter, the sap-wood nearly white; specific gravity, 0.6883 ; ash, 0.51 ; largely used in the mannfacture of chairs, shoe-lasts, plane-stocks, handles, etc., and for fuel.

292.-Ostrya Virginica, willdenow,

Spec. iv, 469; Enum. 982; Berl. Baumz. 260.-Persoon, Syn. ii, 573.—Aiton, Hort. Kew. 2 ed. v, 302.—Pursh, Fl. Am. Sept. ii, 623.-Eaton, Manual, 109; 6 ed. 244.-Nuttall, Genera, ii, 219.-Hayne, Dend. Fl. 169.-Elliott, Sk. ii, 618.-Sprengel, Syst. iii, 856.-Torrey, Compend. Fl. N. States, 356 ; Nicollet's Rep. 160; Fl. N. York, ii, 185, t. 102.-Audubon, Birds, t. 40.-London, Arboretom, iii, 2015, f. 1940.-Hooker, Fl. Bor.-Am. ii, 160.-Eaton \& Wright, Bot. 336.-Bigelow, Fl. Boston. 3 ed. 383.-Spach in Ann. Sci. Nat. 2 ser. xvi, 246 ; Hist. Veg. xi,218.-Emerson, Trees Massachusetts, 177 ; 2 ed. i, $201 \&$ t.-Parry in Owen's Rep. 618.-Darlington, Fl. Cestrica, 3 ed. 274. -Darhy, Bot. S. States, 509.-Cooper in Smithsonian Rep. 256. -Chapmau, Fl. S. States, 426.-Curtis in Rep. Geological Surv. N. Carolina, 1860, iii, 75.-Lesqnerenx in Owen's 2d Rep. Arkansas, 388.-Wood, Cl. Book, 647; Bot. \& Fl. 307.-Porcber, Resources S. Forests, 233.-A. De Candolle, Prodr. xvi², 195.-Gray, Manual N. States, 5 ed. 456.-Young, Bot. Texas, 510.-Vasey, Cat. Forest Trees, 27.-Sargent in Am. Nat. xi, 683.-Sears in Bull. Essex Inst. xiii, 179.-Ridgway in Proc. U. S. Nat. Mins. 85.

Carpinus Ostrya, Linnæus, Spec. 1 ed. 998, in part.-Du Roi, Harbk. i, 130.—Wangenheim, Amer. 48.-Marshall, Arbastum, 25.-Mœnch, Meth. 694.-Abbot, Insects Georgia, ii, t. 76.-Nouveau Dohamel, ii, 200.-Michanx f. Hist. Arb. Am. iii, 53, t. 7 ; N. American Sylva, 3 ed. iii, 27, t. 109.
Carpinus Virginiana, Miller, Dict. 7 ed. No. 4.-Lamarck, Dict. i, 708; Wangenheim, Amer. 49.-Nonveau Dohamel, ii, 201.-Desfontaines, Hist. Art. ii, 403.-Smith in Rees' Cycl. vii, No. 5.

Carpinus triflora, Mœuch, Meth. 394.
Carpinus Ostrya, var. Americana, Michaux, Fl. Bor.-Am. ii, 202.
O. Virginica, var. glandulosa, Spach in Ann, Sci. Nat. 2 ser. xvi, 246; Hist. Veg. xi, 218.
O. Virginica, var. eglandulosa, Spach. in Anu. Sci. Nat. 2 ser. xvi, 246; Hist. Veg. $\mathbf{x i}, 218$.
O. Virginiana, Koch, Dendrologie, $\mathrm{ii}^{2}, 6$.

HOP HORNBEAM. IRON WOOD. LEVER WOOD.

Bay of Chaleur, through the valleys of the Saint Lawrence and the lower Ottawa rivers, along the northern shore of lake Huron to northern Minnesota, sonth through the northern states and along the Alleghany mountains to the Clattahoochee region of western Florida, and through eastern Iowa, southeastern Missouri, and Arkansas to easteru Kansas, the Indian territory, and eastern Texas.

A small tree, 9 to 15 meters in height, with a trunk 0.30 to 0.60 meter in diameter; generally on dry, gravelly hillsides and knolls, reaching its greatest development in southern Arkansas; common.

Wood heary, very strong and hard, tough, very close-grained, compact, susceptible of a beautifnl polish, very durable in contact with the soil; mednllary rays numerous, obscure; color, light brown tinged with red, or, like the sap-wood, often nearly white; specific gravits, 0.5284 ; ash, 0.50 ; used for posts, levers, handles of tools, etc.

293.-Carpinus Caroliniana, Walter,

Fl. Caroliniaua, 238.—A. De Candolle, Prodr. xvi, 126.—Koch, Dendrologie, ii², 4.—Sears in Bull. Essex Iust. xviii, 180.—Ridgway in Proc. U. S. Nat. Mus. 1882, 85.
C. Americana, Lamarck, Dict. iv, 708 ; Suppl. ii, 202.-Mich:lux, Fl. Bor.-Am. ii, 201.-Willdenow, Spec. iv, 468; Enum. Suppl. 64; Berl. Baumz. 75.-Persoou, Syn. ii, 573.-Michaux f. Hist. Arb. Am.iii, 57, t.8; N. American Sylva, 3 ed. iii, 26, t. 108.-Pursh, Fl. Am. Sept. ii, 623.-Aiton, llort. Kew. 2 ed. v, 301.-Eaton, Manual, 109; 6 ed. 82.-Bartou, Prodr. Fl. P'hiladelph. 91 ; Compend. Fl. Philadelph. ii, 176.-Nuttall, Genera, ii, 21e.-Hayne, Dend. Fl. 168.-Elliott, Sk. ii, 618.—Watson, Dend. Brit. ii, t. 157.-Sprengel, Syst. iii, 854.-Guimpel, Otto \& Hayne, Abb. Holz. 107, t. 84.Torrey, Compend. Fl. N. States, 356 ; Fl. N. York, ii, 185, t. 103.-Penn. Cycl. iv, 315.-Loadon, Arboretum, iii, 2013, f. 1936.-Hooker, Fl. Bor.-Am. ii, 160.-Waton \& Wright, Bot. 182.-Bigelow, Fl. Boston. 3 ed. 383.-Spach iu Aum. Sci. Nat. 2 ser. xvi, 252 ; Hist. Veg. xi, 224.-Emerson, Trecs Massachusetts, 174 ; 2 ed. i, 198 \& t.-Parry in Owen's Rep. 618.-Darlington, Fl. Ceatrica, 3 cd. 273.-Darhy, Bot. S. States, 508.-Cooper in Smithsonian Rep. 1858,256.-Chapman, Fl. S. States, 425.-Curtis in Rep. Geological Surv. N. Carolina, 1860, iii, 75.-Lesqucreux in Owon's 2d Rop. Arkausas, 388.-Wood, Cl. Mook, 648; Bot. \& Fl. 307.-Gray, Manual N. States, 5 ed. 457; Hall's Pl. Texas, 21.-Young, Bot. Texas, 509.-Vasey, Cat. Forest Trees, 27.-Broadlead iu Coulter's Bot. Gazette, iii, E0.-Bell in Geological Rep. Cauada, 1879-'80, 52.
C. Betulus Virginiana, Marshall, Arbastum, 25.

HOIENBEAM. BLUE BEECH. WATER BEECH. IRON WOOD.
Nova Scotia, southerm New Brmuswiek, northern shores of Georgian bay, southern peninsula of Michigan to northern Minnesota (lake Pokegama, Garrison), south to cape Malabar and Tampa bay, Florida, and the valley of the Trinity river, Texas, west to central lowa, eastern Kansas, and the valley of the Poteau river, Indian territory.

A small tree, 9 to 15 meters in height, with a trmok sometimes 0.60 to 0.90 meter in diameter, or at the north mueh smaller and often reduced to a low shrub; borders of streams and swamps, in moist soil; most common and reaching its greatest development along the western slopes of the southern Alleghany mountains and in southern Arkansas and eastorn Texas.

Wood heavs, very strong and hard, close-grained, inclined to cheek in drying; medullary rays numerous, broad; color, light brown, the thick sap-wood nearly white; specific gravity, 0.7286 ; ash, 0.83 ; sometimes used for levers, handles of tools, etc.

BETULACEA.

294.-Betula alba, var. populifolia, Spach,

Ann. Sci. Nat. 2 ser. $x v, 187$; Hist. Veg. xi, 233.-Endlicher, Genera, Snppl. iv², 19.-Regel in Mem. Soc. Nat. Moseow, xix, 76, t. 4, f. 19-28; Gray, Mannal N. States, 5 ed. 459.-Vasey, Cat. Forest Trees, 28.-Macoun in Geological Rep. Canada, 1879-'v0, 55c.
B. lenta, Du Roi, Harbk. i, 92 [not Linnæus].-Wangenhoim, Amer. 45, t. 29, f. 38.
B. populifolia, Marshall, Arbustum, 19.-Aiton, Hort. Kew. iii, 336 ; 2 ed. v, 299.-Willdewow, Berl. Baumz. 1 ed. 37, t. 2, f. 5 ; Spec. iv, 463.-Persoon, Syn. ii, 572.-Desfontaines, Hist. Arb. ii, 476.-Nouveau Duluamel, iii, 204.-Poiret, Suppl. i, 687.-Michanx f. Hist. Arb. Am. ii, 139, t. 2; N. Ameriean Sylva, 3 ed. ii, 78, t. 71.-Pursh, Fl. Am. Sept. ii, $620 .-$ Smith in Rees' Cyel. iv, No. 8.-Barton, Prodr. Fl. Philadelph. 92 ; Compend. Fl. Philadelph. ii, 175.-Eaton, Manual, 109; 6 ed. 53.-Nuttall, Genera, ii, 218; Sylva, i, 25; 2 ed. i, 42.-Hayne, Dond. Fl. 166.-Sprengel, Syst. iii, 854.Watson, Dond. Brit. ii, 151.-Torrey, Compend. Fl. N. States, 355 ; Fl. N. York, ii, 199, t. 112.-London, Arboretum, iii, 1707, f. 1560.-Hooker, Fl. Bor.-Am. ii, 155.-Eaton \& Wright, Bot. 156.-Bigelow, Fl. Boston. 3 ed. 381.-Emerson, Treed Massachusetts, 213 ; 2 ed.i, 243 \& t.-Gray, Manual N. States, 1 ed. 421.-Cooper in Smithsonian Rep. 1858, 256.Wood, Cl. Book, 649 ; Bot. \& Fl. 308.-Koeh, Dendrologie, ii, 646.
B. acuminata, Elrhart, Beitr. vi, 98.-Mœnch, Meth. 693.
B. alba, subspecies populifolia, Regel in Bull. Soc. Nat. Moseow, xxxiii4, 399; Do Candolle, Prodr. xvi², 164.

WHITE BIRCH, OLD-FIELD BIRCH. GRAY BIRCE.

New Brunswick and the valley of the lower Saint Lawrence river to the southern shores of lake Ontario, south, generally near the coast, to New Castle county, Delaware.

A small, short-lived tree of rapid growth, 6 to 9 meters in height, with a trunk 0.30 to 0.45 meter in diameter; dry, gravelly, barren soil or borders of swamps, now generally springing up apon abandoned or burned land in eastern New Eugland.

Wood light, soft, not strong, close-grained, liable to check in drying, not durable; medullary rays numerous, obscure; color; light brown, the sap wood nearly white; specifie gravity, 0.5760 ; ash, 0.29 ; largely used in the manufacture of spools, shoe-pegs, wood pulp, etc., for hoop-poles and fuel.

The bark and leaves, as well as those of B. papyrifera and B. lenta, are popularly esteemed as a remedy for various chronic diseases of the skin, bladder, etc., and for rheumatic and gouty complaints; the empyreunatic oil of birch obtained from the inner bark by distillation is used externally and internally for the same purposes (U. S. Dispensatory, 14 ed. 1592.-Nat. Dispensatory, 2 ed. 287); the bark occasionally used domestically in the manufacture of ink.

> 295.-Betula papyrifera, Marshall,

Arbustum, 19.-Michaux, Fl. Bor.-Am. ii, 180.
B. papyracea, Aiton, Hort. Kew. iii, 337; 2 ed. v, 300.-Willdenow, Spoc. iv, 464; Enum. 981 ; Berl. Banmz. 58,t.2, f. 1.Nonvean Duhamel, iii, 205.-Persoon, Syn. ii, 572.-Desfontaines, Hist. Arb. ii, 477.-Poiret, Suppl. i, 688.—Miehans f. Hist. Arb. Am. ii, 133, t. 1 ; N. Ameriean Sylva, 3 ed. ii, 70, t. 69.-Smith in Rees' Cycl. iv, No. 9.-Pursh, Fl. Am. Sept. ii, 621.-13. S. Barton, IBot. Appx. 34, t. 27, f. 1.-Eaton, Manual, 109; 6 ed. 53.-Barton, Compend. Fl. Philadelph.ii, 175.-Nuttall, Genera, ii, 218 ; Sylva, 1,25 ; 2 ed. i, 42.-Hayno, Dend. F1. 167.-Watson, Dend. Brit. ii, t. 152.-Sprengel, Syst. iii, 854.-Torrey, Compend. Fl. N. States, 355 ; Fl. N. York, ii, 199.-Audubon, Birds, t. 88.-Loudon, Arboretum, iii, 1708, f. 1561 \& t.-Hooker, Fl. Bor.-Am. ii, 155.-Eaton \& Wright, Bot. 15G.-Bigelow, Fl. Boston. 3 ed. $381 .-$ Penn. Cycl. ii, 349.-Emerson, Trees Massachusetts, 210; 2 ed. i, 239 \& t.-Parry in Owen's Rep. 618.-Richardson, Aretic Experl. 437.-Cooferin Suithsonian Rep. 1858, 256.-Hooker f. in Trans. Linnman Sou. xxiii ${ }^{2}$, 300, 339.-Wood, Cl. Book, 649 ; Bot. \& Fl. 308.-Gray, Manual N. Statos, 5 ed. 459.-Koeh, Dendrologio, ii, 645.-Vasey, Cat. Forest Trees, 28.-Macoun in Geological Rep. Canada, 1875-76, 210.-Soars in Bull. Essex Inst. xiii, 180.-Bell in Geologioal Rep. Canada, 1879-980,45c.
B. nigra, Loiseleur in Nouvean Duhanel, ii, t. 51 [not Linmens].
13. grandis, Sclırader in lnd. IIort. Goell. 1833, 2.
B. rubra, Loddiges, Cat.ed. 1836.
B. Canadensis, Loddiges, Cat. ed. 1830.
B. albr, Mar. papyrifera, Sparh. in Anm. Sci. Nat. 2ser.xv, 188; Hist. Veg. xi, 234.-Endlicher, Genera, Snppl. iv², 19.-Regel in Mem. Soc. Nat. Moscon, Nix, 81, t. 5, f. 5-16.
B. cordifolia, Rearl in Mrm. Soc. Nat. Moscow, xix, 86, t. 12, f. 29-36.
B. alba, subspecies papyrifcra, Regel in Bull. Soc. Nat. Moscow, xxxviii4, 401; De Candolle, Prodr. xvi², 166.
13. alba, subspecies papyrifera, var. cordifolia, legel in Bull. Soe. Nat. Moseow, xxxviii4, 401; Do Candolle, Prodr. xvi ${ }^{2}, 166$.
B. alba, subspecies papyrifera, var. communis, Regel in Bull. Soc. Nat. Moscow, xxxviii4, 401; Do Candollo, Prodr. xvi², 166.
B. alba, subspecies commutata, Regel in IBnll. Soc. Nat. Moscow, xxxviii4, 401; Do Candolle, Prodr. xvi², 166.
B. occidentalis, Lyall in Jour. Linnæan Soc. vii, 134 [not Hooker].
B. alba, var. populifolia, Winchell in Lndlow's Rep. Black Hills, 67 [not Spach].

GANOE BIRCH. WHITE BIRCH. PAPER IBIRCH.

Northern Newfonudland and Labrador to the sonthern shores of Hudson bay and northwest to the Great Bear lake and the valley of the Yukon river, Alaska, sonth, in the Atlantie region to Wading river, Long island, the mountains of northern Pennsylvania, Clear lake, Montcalm comnty, Miehigan, northeastern Illinois and Saint Cloud, Minnesota; in the Pacific region south to the Black hills of Dakota (R. Douglas), the Mullen trail of the Bitter Root monntains and Flathead lake, Montana, the neighborhood of Fort Colville, Washington territory (Watson), aud the valley of the lower Fraser river, British Colnmbia (Engclmann \& Sargent).

A tree 18 to 24 meters in height, with a trunk 0.60 to 0.90 meter in diameter; rich woodlands and banks of streams; very common in the northern Atlantic region and reaching a higher latitude than any deeiduous tree of the American forest.

Wool light, strong, hard, tough, very elose-grained, compact; medullary rays numerous, obseure; color, brown tinged with red, the sap-wood nearly white; specific gravity, 0.5055 ; ash, 0.25 ; largely used in the mannfacture of spools, shoe-lasts and pegs, in turnery, for fuel, wood-pulp, ete.

The very tough, durable bark easily separated into thin layers, impervious to water, is largely used in the manufacture of canoes, tents, etc.

296.-Betula occidentalis, llooker,

 20.-'Torrey in Fremont's Rep. 97 ; Bot. Wilkes Expet. 466.-Nowherry in Pacific R. IR. Rej. vi, 89.-Cooper in Smithsonian Rep. 1858. 261 ; Am. Nat. iii, 408.-Regel in Mem. Soc. Nat. Moscow, xix, 131, t. 15, f. 35 .-Porter in Hayden's Rop. 1571, 493.-Watson in King's Rep. v, 323, t. 35 ; Pl. Wheeler, 17 ; Bot. California, ii, $79 .-$ Porter \& Hayden, Fl. Colorado; Hayden's Surv. Mise. Pulb. No. 4, 127.-Rothrock in Pl. Wheeler. 50; Wheoler's Rep. vi, $939 .-$ Vasey, Cat. Forest Trees, 28.-Macoun in Geological Rep. Cauada, 1875-76, 210.-G. M. Dawson in Canadian Nat. new ser. ix, 331 .
B. alla, subspeeies oceidentalis typica, Regel in Bull. Snc. Nat. Moscot, xxxviii4, 400; De Candolle, Prodr. xvi², 165.

BLACK J3IRCH.

British Columbia, sonth to the Mount Shasta region (Strawberry vale) and the eastern cañons of the Sierra Nevadas above Owen's valley (Lemmon), California, and through the interior ranges and the Roeky monntains to Utah and northern New Mexico.

A small tree, 8 to 12 meters in height, with a trunk sometimes 0.30 to 0.45 meter in diameter; mountain eañons and along streans, in moist soil, often throwing up several stems from the ground and forming dense thickets.

Wood soft, strong, brittle, close-graned, compact; medullary rays numerons, obscure; color, light brown, the sap-wood lighter; sireeifie gravity, 0.6030 ; ash, 0.30 ; somowhat used for fencing, fuel, ete.
297.-Betula lutea, Michanx f.

Hist. Arb. Am. ii, 152, t.5; N. American Sylva, 3 ed. ii, 82, t. 73.-Spach in Ann. Sci. Nat. 2 ser. xv, 191; Hist. Veg. xi, 213.-Lndlicher, Genera, Suppl. iv², 20.-Wood, Bot. © Fl. 303.-Gray, Mannal N. States, 5 ed. 459.-Koch, Dendrologie, ii, 640.-Vasey, Cat. Forest Trees, 28.-Sears in Bull. Essex Inst. xiii, 180.
B. excelsa, Pursh, Fl. Am. Sept. ii, 621 [not Aiton].-Nuttall, Genara, ii, 218.-Sprengel, Syst. iii, 854.-Torrey, Compend. FI. N. Statcs, 355 ; Fl. N. York, ii, 200 .-Lajon, Manual, 6 ed. $53 .-L o u d o n$, Arboretum, iii, 1711, f. 1564, 1505 \& t.-Ilooker, Fl. Bor.-Am. ii, 156.—Eaton \& Wright, llot. 1a6.- Bigelow, Fl. Boston. 3 ed. 382.-Liudley in Penn. Cyel. ii, 349.-Gray, Mspual N. States, 1 cil. 422.-Emersou, Trees Massachusetts, 206; 2 ed. i, 235 \& t.-lRichardson, Aretic Exped. 438.Cooper in Smithsoniau Rep. 1858, 256.-Chapman, Fl. S. States, 428.-Curtis in Rep. Geological Surv. N. Carolina, 1830, iii, 74.-Wood, Cl. Book, 648.-Bell in Geological Rep. Canada, 1879-90,50c.
B. lenta, Regel in Mem. Soe. Nat. Moscow, xix, 1\%5, in part; Bull. Soc. Nat. Moscow, xxxviii4, 417, in part; De Candolle, Prodr. $\mathrm{xri}^{2}, 179$, in part.

GELLOW BIRCII. GRAY BILCII.

Newfoundland, northern shores of the gulf of Saint Lawrence to Abittibi lake and the western shores of lake Superior and Rainy lake, sonth throngh the northern states to Delaware and southern Minnesota, and along the Alleghany mountains to the high peaks of North Carolina and Tennessee.

One of the largest and most valuable decidnons trees of the northern New England and Canadian forests, often 21 to 29 meters in height, with a trunk 0.90 to 1.20 meter in diameter; rieh woodlands; commou.

Wood heavy, very strong and hard, very closegrained, compact, satiny, susceptible of a beautiful polish; medullary rays numerous, obseure; color, light brown tinged with red, the heavier sap-wood nearly whise; specific grarity, $0.65 \tilde{5} 3$; ash, 0.31 ; largely used for fuel, in the mannfacture of furniture, button and tassel molds, pill and mateh boxes, and for the hubs of wheels.

298.-Betula nigra, Limnæns,

Spec. 1 ed. 982.—Marslıall, Arbustum, 18.—Walter, Fl. Caroliniana, 231.—Aiton, Hort. Kew. iii, 336; 2 ed. v, 299.—Gertuer, Fruct. ii, 54 , t. 90 , f. 1.-Willdenow, Spec. iv, 464 ; Enum. 931 ; Berl. Bamnz. 56.-Nouveau Dnhamel, iii, 203, t. 51.-Persoon, Syn. ii, 572.Desfontaines, Hist. Arb. ii, 477.-Suith in Rees' Cycl. iv, No. 2.-Pursh, Fl. Am. Sept. ii, 621.-Nuttall, Geuera, ii, 218.-Hayne, Deud. Fl. 166.-Lamarck, Ill. iii, 350, t. 760, f. 2.-Elliott, Sk. ii, 616.-Watson, Dend. Brit. ii, t. 153.-Sprevgel, Syst. ii, 854.-Torrey, Compend. Fl. N. States, 355 ; Fl. N. York, ii, $201 .-$ Beck, Bot. 325. Loudon, Arboretum, iij, 1710, f. 1562,1563 \& t.-Penn. Cyel.ii, 149.-Emerson, Trees Massachusetts 208; ${ }^{2}$ ed. i, 237._Darlington, Fl. Cestrica, 3 ed. 275.-Darby, Bot. S. States, 508.-Cooper in Smithsonian Rep. 1858, 256.-Chapman, Fl. S. States, 428.-Curtis in Rep. Gcological Surv. N. Carolina, 1860, iii, 73.-Regel in Mem. Soc. Nat. Moscow, xix, 118, t. 12, f. 1-12; Bull. Soc. Nat. Moscow, xxxviii ${ }^{4}, 412$; De Candolle, Predr. xvi², 175. -Lesquerenx in Owen's 2d Rep. Arkansas, 389.-Wood, Cl. Book, 649 ; Bot. \& Fl.308.-Porcher, Resonrces S. Forests, 266.—Gray, Manual N. Staics, 5 ed. 459 ; Hall's Pl. Tesas, 2l.-hioch, Dendrologie, ii, G44.-Young, Bot. Texas, 512. -Vasey, Cat. Foreet Trees, 28.-Burbank in Proc. Boston Soc. Nat. Mist. xviii, 214.—Broadhead in Coulter's Bot. Gazette, iii, 60.-Ridgway in Proc. U. S. Nat. Mus. I882, 85.
B. lanulosa, Michaux, ll. Bor.-Am. ii, 181.-Nonveau Duhamel, iii, 206.
B. rubra, Nichanx f. Hist. Arb. Am. ii, 142, t. 3; N. American Sylva, 3 ed. ii, 80, t. 72.-Loddiges, Lot. Cab. t. 1248.-Eaton,
 Gencra, Suppl. iv ${ }^{2}$, 19.
B. angulata, Ioridiges, Cat. ett. 1836.

RED BIRCH. RIVER BIRCH.

Banks of the Merrimac and Spicket rivers, Middlesex and Essex eomies, Massachusetts, Wading river, Long island, south through the coast and middle districts to the Chattahoochee region of western Florida, west to western Iowa, northwestern Missomi, castern Kansas, the Indian tervitory, and the valley of the Trinity river, Texas.

A tree 18 to 24 meters in height, with a trunk rarely exceeding 0.75 meter in diameter; banks of streams aud ponds; very common and reaching its greatest development in the sonth Atlantic states and in the basin of the lower Mississippi river.

Wood light, rather hard, strong, close-grained, compact; medullary rays numerous, obseure; color, brown, the sap-wood much lighter; specific gravity, 0.5762 ; ash, 0.3π; used in the manufacture of furniture, woodenware, wooden shoes, ox-yokes, ete.

11 FOR

299.-Bctula lenta, Linnaus,

Spec. 1 ed. 983.-Lamarck, Dict. i, 453.-Marshall, Arbustnm, 19.-Aiton, Hort. liew. iii, 3:3; 2 ed. v, 300.-Willdenow, Spec. iv, 464; Enam. 981 ; Berl. Baumz. 59.-Persoon, Syn. ii, 572.-Desfontaines, Hist. Arb. ii, 477.-Nouveau Duhamel, iii, 205.-Michanx f. Hist. Arb. Am. ii, 147, t. 4; N. American Sylva, 3ed. ii, 85, t. 74.-Smithin Rees' Cycl. iv, No. 3.-Pursh, Fl. Am. Sept.ii, 621.-Eaton, Manual, 109; 6 ed. 53.-Barton, Compend. Fl. Philadelph. ii, 175.-Nuttall, Genera, ii, 218.-Hayuc, Dend. Fl. 167.-Elliott, Sk. ii, 617.Watson, Dend. Brit. ii, 144.-Sprengel, Syst. ii, 854.-Torrey, Compend. Fl. N. States, 356; Fl. N. York, ii, 200.-Guimpol, Otto \& Hayne, Abb. Holz. 105, t. 83.-Loudon, Arboretum, iii, 1713, f. 1566.-Hooker, Fl. Bor.-Am. ii, 156.-Eaton \& Wright, Bot. 156.Bigelow, Fl. Boston. 3 ed. 381.-Lindley in Penv. Cycl. ii, 349.—Spach in Ann. Sei. Nat. 2 ser. xr, 190; Hist. Veg. xi, 241.-Emerson, Trees Massachusotts, 203; 2 ed. i, 232 \& t.-Richardson, Aretic Exped. 438.-Endlichor, Genera, Suppl. iv², 20.-Darlington, Fl. Cestrica, 3 ed. 275.-Darby, Bot. S. States, 508.-Cooper in Smithsonian Rep. 1858, 256.-Chapman, Fl. S. States, 428.-Curtis in Rep. Geological Surv. N. Carolina, 1860, iii, 74.-Regel in Mem. Soc. Nat. Moscow, sxxviii4, 125, in part; Bull. Soc. Nat. Moscow, xxxviii, 417 , in part; De Candolle, Prodr. xvi², 179, in part.-Wood, Cl. Book, 648; Bot. \& Fl. 308.-Porcher, Resonrees S. Forests, 265.-Gray, Manual N. States, 5 ed. 458. -Koch, Deudrologie, ii, R39.—Vasey, Cat. Forest Trees, 28.—Sears in Bull. Essex Inst. xiii,

B. nigra, Du Roi, Harbk. i, 93.-Wangenheim, Amer. 35, t. 15, f. 34 .
B. excelsa, Aiton, Hort. Kew. iii, 337 ; 2 ed. v, 299 [not Pursh].-Willdenow, Spec. iv, 464.-Berl. Baumz. 41, t. 2, f.2.-Nouvean Dubamel, iii, 203, t. 52.-Persoon, Syn. ii, 572.-Desfontaines, Hist. Arb. ii, 477.-Poiret, Suppl. i, 687.-Smith in Rees' Cyel. iv, No. 10.-Hayne, Dend. Fl. i, 7.—Spach in Ann. Sci. Nat. 2 ser. xv, 188; Mist. Veg. xi, 243.-Endlieher, Genera, ivs, 20.
B. carpinifolia, Ehrhart, Beitr, vi,99.-Willdenow, Eunm. 981; Berl. Bammz. 49.

CHERRY BIRCH. BLACK BIRCH. SWEET BIRCH, MAHOGANY BIRCH.

Newfonndland and the valley of the Saguenay river, west through Ontario to the Mauitou islands of lake Huron, south to worthern Dedaware and southern Indiana, and along the Alleghany monntains to the Chattahoochee region of northern Florida, extending west to middle Kentucky and Tennessee.

A tree 18 to 24 meters in height, with a trunk 0.90 to 1.50 meter in diameter; rich woodlauds; very common in all northern forests.

Wood heary, very strong and hard, close-grained, compact, satiny, susceptible of a beautiful polish; medullary rays numerons, obscure; color, dark brown tinged with red, the sap-wood light brown or yellow; specific gravity, 0.7617 ; ash, 0.26 ; now largely used in the manufacture of furniture and for fuel; in Nova Scotia and New Brunswick largely in ship-building.
"Birch beer" is obtained by fermenting the saccharine sap of this and perhaps some other species of the genus
300.-Alnus maritima, Muhlenberg,

Mss.-Nuttall, Sylva, i, 34, t. 10^{2}; 2 ed. i, 50, t. 10^{2}.-Gray, Manual N. States, 5 ed. 461; Hajls Pl. Texas, 21.—Canby in Coulter's Bot. Gazette, vi, 1881.

Betula-Alnus maritima, Marshall, Arbustum, 20.
A. oblongata, Regol in Mem. Soc. Nat. Moscow, xix, 172, t. vi, f. 3-9 [not Willdenow].
A. maritima typica, Regel in Bull. Soc. Nat. Moscow, xxxviii ${ }^{4}$, 42\% ; De Candolle, Prodr. xvi ${ }^{2}$, 186.

SEASIDE ALDER.

Southern Delaware and eastern Maryland, near the coast; valley of the Red river, Indian territory, in about. longitude $96^{\circ} 30^{\prime}$ W. (E. Hall); Manchuria and Japan (A. maritima, Japonica and arguta, Regel in De Caudollc, Prodr. xvi², 186).

A small tree, 6 to 7 meters in height, with a trunk 0.10 to 0.15 meter in diameter; borders of streams and 8 wamps.

Wood light, soft, close grained, checking badly in drying; medullary rays broad, conspieuous; color, liglit bright brown, the sap-wood hardly distingnishable, somewhat lighter; specifie gravity, $0.4996 ;$ ash, 0.39 .

301.-Alnus rubra, Bongard,

Mem. Acad. St. Petersburg, 6 ser. ii, 162.-Hooker, Fl. Bor.-Am. ii, 158.—Spach in Ann. Sci. Nat. 2 ser. xv, 205.-Endlicher, Genera, Suppl. iv^{2}, 21.-Lyall in Jour, Linnæan Soc. vii, 134.-Rogel in Bull. Soc. Nat. Moscow, xxxviií, 423; De Candolle, Prodr. xvi ${ }^{2}$, 186.-Torrey, Bot. Wilkes Exped. 467.-Watson, Bot. California, ii, 80.-G. M. Dawson in Canadian Nat. new ser. ix, 331 .

PA. glutinosa, Pursh, Fl. Am. Scpt. ii, 622 [not Willdenow].
A. Oregana, Nuttall, Sylva, i,28, t. 9; 2 ed. i, 44, t. 9.-Newberry in Pacifie R. R. Rep. vi, 25, 89.-Cooper in Smithsonian

A. incana, Var. rubra, Regel in Mem. Soc. Nat. Moseow, xix, 157, t. 17, f. 3-4.

ALDER.

Sitka, south throngh the 1slands and Coast ranges of British Columbia, Washington territory, Oregon, and California to Santa Barbara, extending east through the Blue monntains to northern Montana.

A large tree, 24 to 30 meters in height, with a trunk 0.90 to 1.20 meter in diameter, or in British Columbia and the Blue mountains often reduced to a low shrub; river bottom lands and borders of streans; most common and reaching its greatest development along the large streams of western Washington territory and Oregon.

Wood light, soft, not strong, brittle, very close-grained, compact, easily worked, satiny, susceptible of a beautiful polish; medullary rays distant, broad; color, light brown tinged with red, the sap-wood nearly white; specific gravity, 0.4813 ; ask, 0.42 ; largely used in Oregon in the manufacture of furniture.

> 302.-Alnus rhombifolia, Nuttall,

Sylva, i, 33; 2 ed. i, 49.-Torrey, Bot. Wilkes Exped. 467.—Vasoy, Cat. Forest Trees, 28.—Watson, Bot. California, ii. 80.
A. glutinosa, var. serrulata, Regel in Mem. Soc. Nat. Moscow, xix, 164, in part.
A. serrulata, var. rugosa, Regel in Bull. Soc. Nat. Moscow, xxaviii ${ }^{4}$, 432, in part; De Candolle, Prodr. xvi², 188 , in part.

ALDER.

Valley of the lower Fraser river, British Columbia, sonth through the Coast ranges to southern California, extending east along the ranges of Washington territory to Clear creek, Idabo (Watson), and the valley of the Flathead river, Montana (Crnby \& Sargent).

A small tree, 9 to 15 meters in height, with a trunk sometimes 0.60 to 0.90 meter in diameter, or toward its northern and eastern limits reduced to a shrub; borders of streams; the common alder of the California valleys.

Wood light, soft, not strong, brittle, close-grained, compact; medullary rays mmerous, obsenre; color, light brown, the sap-wood lighter, often nearly white; specific gravity, 0.4127 ; ash, 0.31 .

> 303.-Alnus oblongifolia, Torrey,

Bot. Mex. Bonndary Surver, 20t-Cooper in Smitlisonian Rep. 1858, 266. -Watson in Pl. Wheeler, 17; Bot. California, ii, 80. Rothrock in Whecler's Rep. vi, 239 .-lusby in Bull. Torrey Bot. Club, ix, 79.
A. serrulata, var. oblongifolia, Regel in Bnll. Soc. Nat. Moseow, xxxviii4, 443; De Candolle, Prodr. xvia, 188.

AIDER.

San Bernardino and Cayumaca mountains, California, through the ranges of southern Arizona and southern New Mexico to the ralley of the Rio Grande; southward into Mexico.

A tree 15 to 21 meters in height, with a trunk 0.90 to 1.20 meter in dianeter; borders of streams in deep mountain cañons.

Wood light, soft, not strong, brittle, close-grained, compact; medullary rays numerons, very obscure; color, light brown tinged with yellow, the sap-wood nearly white; specific gravity, 0.3981 ; ash, 0.42 .

304.-Alnus serrulata, Willdenow,

 Sept. ii, 623.-13arion, Proulr, Fl. Philadelph. 89; Compend. Fl. Philidelph. ii, liss.-Taton, Manual, 105; 6 ed. 12.-Nuttall, Genera, ii, 206.-Hayne, Dend. Fl. 122.-Elliott. Sk. ii, 567.-Torrey, Compend. Fl. N. States, 350; Fl. N. York, ii, 202, t. 115.-Beek, Bot. 32G.—Darlington, Fl. Cestrica,; ed. 276 . - Loudon, Arboretum, iii, 1688, f. 15i4.-Eaton \& Wright, Bot. 120.-Bigelow, Fl. Boston. 3 ed. *20.—Spach in Amn. Sei. Nat. 2ser. xw, 206; Ilist. Veg. xi, 251.-Emerson, Trees Massachusetts, 218; 2 ed. i,248 \& t.-Eudlicher,
 1860 , iii, 102.-Lesquerons in Owen's 21 Rep. Arkansas, 389.-Wood, Cl. Book, 650; Bot. \& Fl. 303.-Porcher, Resources S. Forests, 266.-Gray, Mannal N. States, 5 ed. 461.-Young, Bot. Texas, 513.-Broadhead in Coulter's Bot. Gazette, iii, 60.

Betule rugosa, Du Roi, Marbk. i, 176.—Wangenheim, Amer. 86, t. 29, f. 60.-Ehrhart, Beitr. iii, 21.
PBetulet-Aluus glunca, Mirshall, Arbustum, 20.
Betula scrulata, Aiton, IIort. Kew. iii, :38.—Wildenow, Berl. Baumz. 1 ed. d5.-Abbot, Insects Georgia, ii, 183, t. 92.-- Michaux, FI. Bor.-Am. ii, 181.
A. servulatu, Vilr. vulguris, Spach in Aun. Sci. Nat. 2 ser. xr, 206.
A. serrulata, var. macrophylle, Spach in Aun. Sci. Nat. 2 ser. $\mathrm{xr}, 206$.
A. serrulata, var. oblongate, Spach, Hist. Veg. xi, 251.
A. scrulata, var. latifolia, spach, Ilist. Veg. xi,251.
A. rubra, Tuekerman in Am. Jonr. Sei. 1 ser. xlv, 32.
A. hybrith. Reichenbach, Ieon. FI. Germ. xii, t. 630, f. 129\%.
A. glutinose, Var. serruleta, Regel in Mem. Soe. Nat. Moseow, six, 164, t. 11, f. 6, 8, in part.
A. glutinosa, var. rugosf, Regel in Mem. Soe. Nat. Moseow, xix, 165, t. 11, f. 9, 10.
A. scrvulata genuina and obtusifoliu, Regel in Bull. Soe. Nat. Moscow, xxxviií, 432; De Candolle, Prodr. xriz, 188.
A. serrulatu, val'. rugosa, Regel in Bull. Soe. Nat. Moseow. xxxviii', 432, in part; De Candolle, Prodr. xvi, 188 , in part.
A. rugosa, Kucll, Dendrologie, ii, 635.
A. oblougata, midulata, rufosa, Cenadensis, and Americana, Hort.

BLACK ALDER. SMOOTH ALDER.
Essex countr, Massachnsetts, west to southern Missouri, sonth to northern Florida and the valley of the Trinity river, Texas.

A small tree, 6 to 12 meters in height, with a trunk 0.10 to 0.15 meter in diameter, or more often a tall, hranehing shrub forming (lense thickets; borters of streams and swamps, probably reaehing its greatest development in southern Arkansas:

Wood light, soft, close-grained, compact; medullary rays nmmerons, conspicnons; color, light brown, the sapwood lighter; specific glavity, 0.4666 ; ash, 0.38 .

A clecoction of the bark and leaves, as well as those of A. incana, is a popular remedy against impurity of the blood and in the treatment of diarhoea and hematuria, ete. (Ňt. Dispensatory, 2 ed. 135).
305.-Alnus incana, willdenow,
 Manam, 6 el. 12.-London, Arboretum, iii, 1687, f. 1543--Hooker, FI. Bor.-Ann. ii, 157.-Eaton \& Wright, Bot. 120.-Spach in Aun.

 Dendtolowie, ii. i33.-Vasey, Cat. Forest Trees, 28.-Macom in Geological Rep. Canada, icis-76, 210. -Bell in Geologieal Rep.

Betrld-Alnus, var. β. ineoned, limmens, Spec. 1 cel.9z:3.-Dn Noi, larlk. i, 109.
Betula incturt, Limafns, su!pl. 417.-Aiton, Hort. Kew. iii, 339.-Willdenow, Berl. Baunz. 1 el. 45 .-Smith in Rees' Cyel. ir, No. $\overline{\text {. }}$
? IEctule-Alnus rubret, Marshall. Armstum, 2_{0}.

A. incama, var. glauca, Gray, Mimmal N. States, 1 ed. fie3: 3 ed. 461.
A. incuna, Americona, and genzina, Regel in Mem. Soc. Nat. Moscow, xix, 155.

SPECKLED ALDER. HOARY ALDER. BLACK ALDER.

Newfomdland to the eastern base of the Rocky mountains, south to northern New England, Wisconsin, Minnesota, and eastern Nebraskal ; in Enrope.

A small tree, 6 to 7 meters in height, with a trunk 0.10 to 0.15 meter in diameter, or more often a tall, branehing shrub; borders of streams and swamps.

A form with leares green aud glabrons on both sides or slightly pubescent, extending through the mountain ranges of the Pacific region from the Saskatehewan and British Columbia to New Mexico and the southern Sierra Nevadas of Califormith, is-
var. virescens, Watsou, Bot. California, ii, 81 .
-
A. incanct, var. glauca, Regel in Mem. Soe. Nat. Moseow, xix, 154, in part; Bull. Soc. Nat. Moscow, axxviii ${ }^{4}$ 433, in part; De Candolle, Predr. xvi, 189, in part.-Watson in King's Rep. v, 326 [not Aiton]; Pl. Wbecler, 17.-Rothrock, Pl. Wheeler, 50 ; Whecler's Rep. vi, 239.-Maconu in Geological Rep. Canada, 1875-'76, 210.
A. serrulata, var. rugosa, Regel in Bull. Sec. Nat. Moscow, xxxviii4, 432, in part ; De Candolle, Prodr. xvi², 188, in part.

Wood light, soft, elose-grained, cheeking in drying; medullary rays mmerons, broad; color, light brown, the sap-wood nearly white; speeific gravity, 0.4607; ash, 0.42 ; preferred and largely used in northern New England in the final baking of brieks, and oceasionally, as well as that of A. serrulata, in the manufacture of gunpowder.

SALICACEA.

306.-Salix nigra, Marshall,

Arbnstum, 139.—Muhlenberg in Nene Schriften Gesell. Nat. Fr. Derlin, iv, 237, t. 4, f. 5 (Ann. Bot. ii, 65, t.5, f. 5).-Willdenow, Spec. iv, 657; Enum. 1003; Berl. Baumz. 2 ed. 426. -Persoon, Syn. ii, 599.-Michanx f. Hist. Arb. Am. iii, 324, t. 5, f. 1 ; N. American Sylva, 3 ed. iii, 64, t. 125, f. 1.-Pursh, Fl. Am. Sept. ii, 614.-Poiret, Suppl. iv, 61.-Eaton, Manual, 118; 6 ed. 320.-Nuttall, Genera, ii, 231; Sylva, i, 79 ; 2 ed. i, 94.-Hayne, Dend. Fl. 180.-Elliott, Sk, ii, 670.-Sprengel, Syst. i, 100.-Torrey, Compend. Fl. N. States, 370 ; Fl. N. York, ii, 209.—Forbes, Sal.Woburn. 280.-W. Koch, Cemment. 17.-Beek, Bot. 320.-Trautvetter in Mem. Acad. St. Petersburg, iii, 614.-Loudon, Arboretum, iii, 1529, 1604, f. 8.-Hooker, Fl. Bor.-Am. ii, 148.-Barratt, Sal. Am. No. 19.-Eatou \& Wright, Bot. 408.-Dietrich, Syn. v, 419.-Seringe, F1. Jard. ii, 35.—Emerson Trees Massachasetts, 271 ; 2 ed. i, 307 \& t.-Darlington, Fl. Cestrica, 3 ed. 279. -Andersson in Ofr. af. Vet. Akad. Forh. 1858, 114 (Proc. Am. Acad. iv, 53); Kongl. Sven. Akad. Handl. vi, 19, f. 15; De Candolle, Prodr. xvi², 200.-Darby, Bot. S. States, 506.-Cooper in Smithsonian Rep. 1858, 256.-Walpers, Ann. v, 744.Chapman, Fl. S. States, 430.-Curtis in Rep. Geological Surv. N. Carolina, 1860 iii, 75:-Lesquerenx in Owen's $2 d$ Rep. Arkansas, 389.-Wood,Cl.Book, 654; Bot.\& Fl. 310.-Porcher, Resourees S.Forests, 334.-Engelmann in Trans. Am. Phil. Soe. new ser. xii, 209.Gray, Manual N. States, 5 ed. 460; Hall's Pl. Texas, 21.-Koeh, Dendrologie, ii, 513. -Young, Bot. Texas, 514.-Maconn in Geological Rep. Canada, 1875-76, 210.-Vasey, Cat. Forest Trees, 23.-Bebb in Bot. California, ii, 83.-Sears in Bull. Essex Inst. xiii, 181.Ridgway in Proc. U. S. Nat. Mus. 1882, 86.-Hemsley, Bot. Aın.-Cent. iii, 180
S. pentandra, Walter, Fl. Caroliniaua, 243.
S. Caroliniuna, Miehaux, Fl. Ber.-Am. ii, 226.—Lamarck, Dict. vi, 662.-Poiret, Suppl. v, 62.
S. Houstoniana, Pursh, Fl. Au. Sept. ii, 614.-Poiret, Suppl. v, 68.-Sprengel, Syst. i, 107.-Elliott, Sk. ii, 670.-Trantvetter in Mem. Acad. St. Petersburg, iii, 615.-Forbes, Sal. Woburn. 21, t. 21.-Eaton \& Wright, Bet. 409.
S. falcata, Pursh, Fl. Amı. Sept. ii, 614 [not HBk.].-Poiret, Suppl. v, 70.—Sprengel, Syst. i, 107.-Forbes, Sal. Weburn. 279.-Eaton, Manual, 6 ed. 320.-Hooker, Fl. Bor.-Am. ii, 149.-Barratt, Sal. Am. No. 21.-Dietrich, Syu. v, 420.
? S. ambigua, Pursh, Fl. Am. Sept. ii, 617.-Forbes, Sal. Woburn. 282.-Eaton, Manual, 6 ed. 321.-Eaton \& Wright, Bot. 409.
S. ligustrine, Michanx f. Hist. Arb. Am. iii, 326, t. 5, f. 2; N. Ameriean Sylva, 3 ed. iii, 65, t. 125, f. 2.-Poiret, Suppl. v, 61.
S. Purshiana, Spreugel, Syst. iii, 608.-Beek, Bot. 320.—Darlington, Fl. Cestrica, 2 ed. 560.
S. flavo-virens, Hernemans in Cat. Ilert. Hafu. Suppl. ii, 11.
\& S. cordata, var. falcata, Torrey; Compend. FI. N. States, 370.
S. nigra, var. fulcata, Torrey, Fl. N. York, ii, 209.-Carey in Gray, Mannal N. States, 1 cd. 429.-Darlingten, Fl. Cestrica, 3 ed. 280 .

BLACK WILLOW.

Sonthern New Brmswick and the northern shores of lakes Huron and Superior sonthward through the Atlantic region to bay Biscayne and the Caloosa river, Florida, and the valley of the Guadalupe river, Texas; Pacific region, valleys of the Sacramento river, California, and the Colorado river, Arizona.

A small tree, sometimes 15 to 18 meters in height, with a trunk rarely 0.60 meter in diameter, or in southern Florida reduced to a low shrub; usnally along the banks of streams; most common in the basin of the Mississippi river and reaching its greatest development in the rich bottom lands of the Colorado and other rivers of eastern Texas; varying greatly in the size and shape of the leaves (vars. angustifolia, longifolia, latifolia, etc., Andersson in Kongl. Sven. Akad. Handl. vi, 20), length and habit of the aments, ete.

The best marked forms are-
Var. marginata, Andersson in Kongl. Sven. Akad. Mandl. vi, 22 ; De Candolle, Prodr. xvi, 201.
S. marginata, Wimmer in Schedul. Herb. Vindab.
var. Iongipes, Andorsson in Kongl. Sven. Akad. Haudl. vi, 22; De Candolle, Prodr. xvi², 201.
S. longipes, Shnttloworth in herb. Iooker.-Andersson in Ofv. af. Vet. Akad. Forh. 1855, 114 (Proe. Am. Acad. iv, 53).Walpers, Aun. v, 744.

Forms of var. longipes more or less pubescent have been characterized by Andersson in Kongl. Sven. Akad. Handl. vi, 22; De Candolle, Prodr. xvi², 201, as subvars. venulosa and gongyloearpa [Shuttlezorth], (S. longipes, var. pubescens, Andersson in Proc. Am. Aead. iv, 53; S. subvillosa, Elliott in herb. Schweinitz ex. Nuttall, Sylva, i, 79; 2 ed. i, 94 , vide Gray in Proc. An. Aead. iv, 53, note).
var. Wrightii, Andersson in Kongl. Sven. Akad. Handl.vi, 22 ; De Candolle, Prodr. xvi², 201.-Hemsler, Bot. Am.-Cent. iii, 180.
S. Wrightii, Andersson in Ofv. af. Vet. Akad. Forh. 1858, 115 (Proc. Am. Acad. iv, 55 -Walpers, Ann. v, 745.-Torrey in Bot. Mex. Boundary Survey, 204.

Yar. Wardii, Bebb in Bull. U. S. Nat. Mus. No. 22, 114.
Wood light, soft, weak, close-grained, checking badly in drying; medullary rays obscure; color, brown, the sap-wood nearly white; specific gravity, 0.4456 ; ash, 0.70.

The tonic and astringent bark used domestically as a popular febrifuge, and containing, in common with that of all the species of the genus, salicylic acid, a powerful anti-pyritic now successfully used in the treatment of acute cases of gout, rheumatism, trphoid fever, etc. (Am. Jour. Pharm. 1875, 303.—U. S. Dispensatory, 14 ed. 796, 1748.Nat. Dispensatory, 2 ed. 1248).

Note.-The closely allied Salix occidentalis, Bose, of the West Indies is not perhaps specifically distinct from S. rigra, with which some of the forms of var. longipes from southern Florida seem to connect it.

307.-Salix amygdaloides, Andersson,

Ofv. af Vet. Akad. Forl. 1858, 114 (Proc. Am. Acad. iv, 53).—Walpers, Ann. v, 744 .-Bebb in Wheelers Rep. vi, 240.
FS. melanopsis, Nuttall, Sylva, i, 78, t. 21 ; 2 ed. 1,93, t. 21.
S. nigra, var. amygdaloides, Andersson in Kongl. Sved. Akad. Handl. vi, 21; Do Candolle, Prodr. xvi², 201.-Rothrock, P'I. Wheeler, 50.-Porter \& Coulter, Fl. Colorado; Hayden's Surr. Misc. Pub. No. 4, 128.

WILLOW.

Shores of the great lakes (Wayne counts, New York, Hankenson; Painesrille, OLio, Beardslee), westward to the valley of the Saskatchewan, and southward through the Rocky Mountain region to southern New Mexico; bauks of the lower Columbia river, Oregon (Howells).

A small tree, rarely 9 to 12 meters in lieight, with a trmik 0.15 to 0.30 meter in diameter; along streams.
Wood light, soft, not strong, close-grained, ehceking in drying; the heart-wood light brown, sap-wood nearly white; specific gravity, 0.4509; ash, 0.92 .

308.-Salix lævigata, Bebb,

Am. Nat. viii, 202; Bot. California, ii, 83.

WILLOW.

Califoruia, Sierra county (Lemmon) and the valley of the Sacramento river to the southern boundary of the state.

A tree sometimes 15 meters in height, with a trunk 0.30 to 0.60 meter in diameter; borders of streams and bottom lands.

A form with narrower falcate leares (Yreka, E. L. Greene) is-
var. angustifolia, Bebb in Bot. California, ii, 84-Rothroek in Whecler's Rep. vi, 374.
A form with short, densely-flowered aments is-
var. congesta, Bebb in Bot. California, ii, 84 .
Wood ligint, soft, not strong, brittle, close-grained, compact; medullary rays numerous, very thin; color, light brown tinged with red; specific gravity, 0.4872 ; ash, 0.58 .

> 309.-Salix lasiandra, Bentham,

Pl. Hartweg. 336.-Torrey in Pacific R. R. Rep. iv, 138.-Newberry in Pacific R. R. Rep. vi, 89.-Bebb in Bot. California, ii, 84.
S. Hoffmanniana, Hoeker \& Arnott, Bot. Beechey, 159.
S. speciosa, Nuttall, Sylva, i, 58, t. 17; 2 ed. i, 74, t. 17 [not Hooker \& Arnott].-Newberry in Pacifie R. R. Rep. vi, 89.Cooper in Pacifie R. R. Rep. xii ${ }^{2}$, 29.
S. lucida, var. angustifolia, forma lasiandra, Andersson in Ofv. af. Vet. Akad. Forh. 1858, 115 (Proc. Am. Acad. iv, 54).
S. arguta, var. lasiandra, Andersson in Kongl. Sven. Akad. Handl. vi, 33; De Candolle, Prodr. xvi², 20t.

WILLOW.
British Columbia, shores of lake Kamloop (Macoun), southward to the valley of the Sacramento river, California; Rocky mountains, Utah, and through Colorado to New Mexico (rar. Fendleriana).

A tree 12 to 18 meters in height, with a trunk sometimes 0.60 meter in diameter; banks of streams; very common; varying in the shape of the leaves and character of the aments.

The best marked forms are-
var. lancifolia, Bebb in Bot. Califomia, ii, 84.
S. lancifolia, Andersson in Kongl. Sven. Akad. Handl. vi, 34, f. 23.-Gray in Proc. Am. Acad. vii, 402.-Hall in Coulter's Bot. Gazette, ii, 91.
S. lucida, val. macrophylla, Andersson in De Candolle, Prodr. xvi², 205.

The common form of British Columbia and western Washington territory and Oregon.
var. Fendleriana, Bebb in llot. California, ii, 84.
S. pentandra, var. caudata, Nuttall, Sylva, i, 61, t. 18; 2 ed. i, 77 , t. 18.
S. Fendleriana, Andersson in Ofv. af. Vet. Akad. Forh. 1858, 115 (Proc. Am. Acad. iv, 54).-Walpers, Ann. v, 745.
S. arguta, Andersson in Kongl. Sreu. Akad. Handl. vi, 32; De Candolle, Prodr. xvi², 205, in part.

Wood light, soft, not strong, brittle, close-grained, compact; medallary rays mumerons, very obscure; color, light brown, the sap-wood lighter or often nearly white; specific gravity, 0.4756 ; ash, 0.60 . Var. lancifolia, specific gravity, 0.4547 ; ash, 0.79 . Var. Fendlcriana, the heart-woorl brown, sap-wood light brown; specific gravity, 0.4598 ; ash, 0.56.

310.-Salix longifolia, Muhlenberg,

 Pursh, Fl. Am. Sept. ii, 613.-Nuttall, Genera, ii, 231.-Torrey in Ann. Lye. N. York, ii, 248; Fl. N. York, ii, 209; Nicollet's Rop. 160; Fremont's Rep. 97; Emory's Rep. 41: ; Sitgreaves' Rep. 172; Bot. Mex. Bonndary Survey, 20f. - Barratt, Sal. Am. No. 23.-Beck, Bot. 220.-Enton, Mamal, l; ed. 319.-Eaton \& Wright, Bot. 408.-Hooker, Fl. Bor.-Am. ii, I49.-Dietrieb, Spn. v, 4:0.-Parry in Owen's lepp. 618.- lichardson, Aretie lixped. 439, 440.-Cooper in Smithsonian Rep. 1858, 261.-Andersson in Ofv. af. Vet. Akad. Forh. 1858,116 (Proe. Am. Acad. iv, 56); Kongl. Sven. Akod. Ilandl. vi, 54, f. as; De Candolle, Prodr. Ivit 214.Walpers, Aun. v, 7.15.-Lesquereux in Owen's 2l Rep. Arkansas, 389.-Wood, Cl. Book, Gü; ; Bot. \& Fl. B10.-Engelmann in Proc. Am. Phil. Soe. new ser, xit, 200.-Gray, Manual N. States, 5 ed. 465.-Watson in King's Rep. v, 324; Wheeler's Rep. 1572, 493.Gray in Proc. Anl. Aculv vi, 40.-Macoun in Geologieal Rep. Canada, 1875-76, 210.-Vasey, Cat. Forest Trees, 29.-IIall in Coulter's Bot. Gazette, ii, 91.—Bubb in Wheeles's Rep. vi, 2l0; Bot. California, ii, 84. -Ward in Bull. U. S. Nat. Mus. No. 22, 116.
S. fluriatalis, Nuttall, Sylva, i, 73 ; 2 ed. i, 89 .
? S. rubra, Richardson, Aretic Exped. Appx. 37:
S. longifolia, var. pedicellata, Andersson in Kongl. Sven. Akad. Handi. vi, 55, f. 35; De Candolle, Prodr. xvi², 214.Maeonn in Geologieal Rep. Canada, 1875-76, 210.

SAND-BAR WILLOW.

Valley of the Comnecticut river (Sunderland, Massachnsetts, N. G. Jcsup) and of the Potomae river at Washington (Ward); west and northwest through the region of the great lakes to the valley of the Mackenzie river, in latitude $66^{\circ} \mathrm{N}$. (Richardson), through the Mississippi basin, Texas, the Rocky Mountain region, and the Paeific Coast states.

A small tree, 6 to 9 meters in height, with a trunk rarely exceeding 0.30 meter in diameter; borders of streams and river sand-bars, in low, wet sandy soil, often forming low, dense elumps; rare east of the Alleghany mountains; very common throughont the Mississippi River basin, and reaching its greatest development in the valleys of Oregon and northern California.

Well-marked forms, varying from the type in the form of the leaves, aments, and nature of pubescens, ete., are-
var. exigua, Bebl in Bot. California, ii, 85 .
S. exigua, Nuttall, Sylva, i, 75; 2 ed. i, 90.
S. longifolia, var. angustissima, Andersson in Ofv. af. Vet. Akad. Forh. 1858, 116 (Proe. Am. Aead. iv, 56).

Western Texas to California and Oregon.
var. argyrophylla, Andersson in Kougi. Sven. Akad. Handl. vi, 55; De Candollo, Prodr. xvi², 214.-Watson in King's Rep. v, 324.-Porter in Hayden's Rep. 1872, 493.-Rothroek, Pl. Wheeler, 50.-Porter \& Coulter, Fl. Colorado; Hayden's Surv. Mise. Pub. No. 4, 128.-Macoun in Geologieal Rep. Canada, 1875-76, 210.-Bebb iu Bot. California, ii, 85.
S. argophylla, Nuttall, Sylva, i, 71, t. 20; 2 ed. i, $\dot{8} 7$, t. 20 .
? S. brachycarpa, Nuttall, Sylva, i, 69 ; 2 ed. i, 85.
S. longifolia, var. opaca, Andersson in Kongl. Sven. Akad. Handl. vi, 55.
S. longifolia, rar. argyrophylla angustissima, Andersson in Kongl. Sven. Akad. Handl. vi, 55; De Candolle, Prodr. xvi', 214.
S. longifolia, var. argyrophylle opaca, Andersson in De Candoile, Prodr. xvǐ, 214.

Westeru Texas to Oregon.
Woor light, soft, very elose-grained, compact; medullary rays numerous, very obscure; color, brown tinged with red, the sap-wood brown ; specific gravity, 0.4930 ; ash, 0.48 . Var. exigua, heavier, the heart- and sap-wood darker colored; specific gravity, 0.5342 ; ash, 1.06 .

> 311.-Salix sessilifolia, Nuttall,
 f. 36 ; De Candolle, Prodr. xvit, 214.-Wilpers, Ann. v, $746 .-$ Bebb in Bot. California, ii, 85.
S. sessilifolia, var. villosa, Andersson in De Candolle, Prodr. xvi², 215.

Paget somul southward to northern California, near the eoast.
A small tree, 9 to 12 meters in height, with a trunk rarely exceeding 0.30 to 0.45 meter in diameter; borders of streams, in low, wet gromud.

A form with narower entire leaves, of the Sacramento valley and the California Coast ranges, is-
var. Hindsiana, Andersson in Olv. af. Vet. Akad. Forh. 1858, 117 (Proc. Am. Acad. iv, 56).-Belb in Bot. California, ii, \&5.
S. Mindsiana, Bentham, Pl. Hartweg. 335.-Newberry in Paeific R. R. Rep. vi, 89.-Torrey in Pacifie R. R. Rep. iv, 138.Audersson in Kongl. Svou. Akad. Handl. vi, 55, f. 37 ; De Candolle, Prodr. xvia, 215.-Walpers, Ann. v, 746.
S. Hindsiana, var. temifolia, Auderssou in Kongl. Sven. Akad. Handl. vi, 56; De Candolle, Prodr. xvi², 贝15.

Wood light, soft, close-graned, compact; medullary rays thin; color, light red, the sap-rood nearly white; specifie gravity, 0.4397 ; ash, 0.50 .

> 312.-Salix discolor, Muhlenberg,

Nene Schriften Gesell. Nat. Fr. Berlin, iv, 234, t. 5, f. 1 (Ann. Bot. ii, 62, t. 5, f. 1).-Willdenow, Spec. iv, 665.-Persoon, Syn. ii, $599 .-$ Pursh, Fl. Am. Sept. ii, 613.-Poiret, Suppl. v, ©6.-Nuttall, Genera, ii, 231.-Elliott, Sk. ii, 669.-Torrey, Compend. Fl. N. States, 369 ; Fl. N. York, ii, 206.-Sprengel, Syst. i, 104.-Forbes, Sal. Woburn. 279.-Eaton, Mannal, 6 ed. 319.-Smith in Rees' Cyel. No. 25.-Darlington. Fl. Cestrica, 3 ed. 257.-Eaton \& Wright, Bot. 408.-Loudon, Arboretnm, iii, 1530, f. 1317, 1630, f. 147.-Bigelow, Fl. Bostou. 3 ed. 392.-Hooker, Fl. Bor.-Am. ii, 147.--Darratt, Sal. Aın. No. 3.-Emerson, 'Trees Massachusetts, 258; 2 ed. i, 206 \& t.Dietrich, Syn. v, 419.-Richardson, Aretie Exped. 312.-Darby, Bot. S. States, 506.-Andersson in Ofv. af. Vet. Akad. Forh. 1858, 114 (Proe. Am. Aead. iv, 63) ; Koogl. Sven. Alkad. Haudl. vi, 83, f. 49; De Caudolle, Prodr. xvi², 225. - Walpers, Aun. v, 750.-Chapman, Fl. S. States, 430.-Gray, Manual N. States, 5 ed. 462.-Koch, Dendrologie, ii, 570 .-Macoun in Geologieal Rep. Canada, 1874-75, 210.—Ridgway in Proe. U. S. Nat. Mus. 1882, 86.
S. sensitive, Barratt, Sal. Am. No. 8 .

GLAUCOUS WILLOW.
Labrador, west to the valleys of the Peace and Athabasca rivers, sonthward through the Atlantie region to Delaware and sonthern Missouri.

A small tree, rarely exceeding 6 meters in lieight, with a trunk sometimes 0.30 meter in diameter, or more often a tall, straggling shrub 3 to 6 meters in height; aloug streams and borders of swamps in low, wet soil; rarying greatly in the form of leaves, aments, and nature of pubescence.

The best marked forms are-
var. eriocephala, Andersson in Kongl. Sven. Akad. Handl. vi, 85; De Candolle, Prodr, xvi², 225.—Gray, Manual N. States, 5 ed. 463.
S. eriocephala, Michanx, Fl. Bor.-Am. ii, 225.-Lamarck, Dict. vi, 661.-Bigelow, Fl. Boston. 3 ed. 391.-Eaton, Manual, 6 ed. 321 .-Eaton \& Wright, Bot. 409.—Emerson, Trees Massachusetts, 1 ed. $8.59 ; 2$ ed. $\mathrm{i}, 196$ \& t.-Carey in Gray's Manual N. States, 1 ed. 426.-Andersson in Ofv. af. Vet. Akad. Forlı. 1858, 117 (Proe. Am. Aead. iv, 57).-Walpers, Ann. v, 746.
S. erassa, Barratt, Sal. Am. No. 7.
var. prinoides, Andersson in Kongl. Sven. Akad. Handl. vi, 86 ; De Candolle, Prodr. xvi², 225.-Emerson,Trees Massaehusetts, 2 ed. i, 297.
S. prinoides, Pursh, Fl. Am. Sept. ii, 613.-Nuttall, Genera, ii, 231.—Sprengel, Syst. i, 102.-Poiret, Suppl. iv, 67.-Torrey, Compend. Fl. N. States, 366.-Smith in Rees' Cyel. No. 26.-Forbes, Sal.Wobnru. 79, t. 40.-Eaton, Manual, 6 ed. 319.— Beek, Bot. 319.-Eaton \& Wright, Bot. 407.-W. Koch, Comment. 46.-Loudon, Arboretum, iii, 1530, f. 1317, 1612, f. 40.-Hooker, Fl. Bor.-Am. ii, 150.-Emerson, Trees Massachusetts, 1, ed. 259.—Dietrieh, Syn. v, 419.

Wood light, soft, close-grained, compact, containing many evenly-distributed, small, open ducts; medullary rays and layers of amual growth not obscure; color, brown streaked with orange, the sap-wood light brown; speeifie gravity, 0.4261 ; ash, 0.43 .

313.-Salix flavescens, Nuttall,

Sylva, i, 6.5; 2 ed. i, 81.-l lelbb in Bot. Califoruia, ii, 86, iu part.
Rocky momntains of Idaho and Montana sonthward to the Mogolion range, New Mexico (E. L. Greene); on the Cascarle monntains, Oregon, and the Sierra Nevada, Catifornia.

A small tree, sometimes 6 to 9 meters in height, with a trunk rarely 0.30 meter in dianeter; borders of streams, reaching its greatest development in the sonthern Rocky Mountain region.

Wood light, soft, not strong, close-grained, compact; medullary rass mmerous, olscure; color, brown tinged with red, the sap-wood nearly white; specifie gravity, 0.4969 ; ash, 0.61 .

- Conlter's Pot. Gazette, vii, 1m.

Var. Scouleriana, Bebb;

S. brachystuchys, Bentham, Pl. Hartweg. 336.—Anderssen in Ofv. af. Vet. Akad. Forl. 1858, 121 (Proo. Am. Acad. iv, 61); Kongl. Sven. Akad. Handl. vi, 82, f. 48; De Candolle, Prodr. xvi², $\mathscr{2 l}^{24}$.
S. Scouleriana, Barratt in Hooker, Fl. Dor.-Am, ii, 145, in part.-Cooper in Pacitic R. R. Rep. xii², 24.
S. brachystuchys, var. Scouleriana, Andersson in De Caudolle, Prodr. xvi², 224.
S. flavescens, Bebb in Bot. California, ii, 86, in part.

BLAOK WILLOW.

Kadiak island, Alaska (Kellogg), sonthrard through Britislı Columbia, western Washington territory, and * Oregon to Santa Barbara, California.

A small tree, 8 to 9 meters in height, with a trunk rarely 0.60 meter in diameter; uplands, near springs or streams, or often in quite dry soil; common and reaching its greatest development near the shores of Puget sound.

Wood light, hard, strong, tough, close-grained, compact; mednllary rays nmmerons, very obscure ; color, light red, the sap-wood brown ; specific gravity, 0.5412 ; ash, 0.39 .

314.-Salix Hookeriana, Barratt;

Hooker, FI. Bor.-Am. ii, 145, t. 180.-Nuttall, Sylva, i, 64 ; 2 ed. i, 80 .-Andersson in Ofv. af. Vet. Akad. Forh. 1858, 119 (Proc. Am.

Grand rapids of the Saskatchewan (Douglas) ; coast of Washington territory and Oregon.
A small tree, 8 to 9 meters in height, with a trunk rarely 0.30 meter in diameter, or more often a low, straggling shrub with many prostrate stems; on the coast generally along the edge of sea-beaches, or in low, rather moist, sandy soil.

Wood light, soft, close-grained, compact, containing many minute open ducts; medullary rays thin, very olesenre; color, light brown tingel with red, the sap-wood nearly white ; specific gravity, 0.5350; ash, 0.32.

315.-Salix cordata, var. vestita, Andersson,

Kougl. Sven. Akad. Handl. vi, 159 ; De Candolle, Prodr. xvi², 252.

DIAMOND WILLOW.

Valley of the Missouri river and its tributaries, Fort Osage, Missouri (Prince Neuvicd), Iowa, Nebraska, and trestrard to about the one hundred and tenth degree of longitude.

A small tree, rarely S meters in height, with a trunk 0.15 to 0.20 meter in diameter, or more often a straggling shrub not exceeding 1.80 to 3 meters in height; low bottom lands, in wet, sandy soil.

Wood light, soft, closegrained, compact, the annual layers of growth elearly defined ; medullary rays very obscure; color, hrown or often tinged red, the sap-wood nearly white; specific gravity, 0.6069 ; ash, 0.59 ; heavier than that of other species examined, and largely used for fence posts, being said to equal, when thoroughly seasoned, red cedar in clurability in contact with the soil.

Note.-The typical Salix cordata, Anhlenherg, of wide distribotion through the Atlantie region, rarely, if ever, attains arboreseent size or halit.

> 316.-Salix lasiolepis, Bentham,

Pl. Hartweg. mim_{3}-Cooper in Smithsonian Rep. 1858, 261.-Andersson in Otv. af. Vet. Akad. Forl. 1858, 118 (Proc. Am. Aead. iv, 58); De Candolle, Prodr. xvi², 264.-Walpers, Ann. v, 747.-Vasey, Cat. Forest Trees, 29.- Bebb in Bet. California, ii, 86.
S. lasiolepis, var. Bigclovii, Belb in Bot. California, ii, 80 (a vernal state, teste Bebl in lit.).

> S. Bigclocii, Torrey in Pacific R. R. Rep. ir, 139.-Andersson in Ofv. af. Vet. Akad. Forh. 1858, 118 (Proe. Am. Aead. iv, 58); Kongl. Sven. Akal. Jondl. vi, 163, f. 94 ; De Candolle, Prodr, xvi², 255.-Walpers, Ann. v, 747.
S. Bigelorii, var. fuseior, Audersson in Kongl. Sven. Akad. Handl. vi, 163; De Candolle, Prolr. xvi², 205.
S. ——. ? Watson in King's Rep. v, 2\%:.
S. lasiolepis, var. fallax, bebs in Bot. California, ii. 86.

WILLOW.

California, valley of the Klamath river, southward through the western portions of the state, reaching in the. Sierra Nevadas an elevation of 3,500 to 4,000 feet above the sea.

A small tree, sometimes 12 to 18 meters in height, with a truuk 0.45 to 0.50 meter in diameter, or northward and at high elevations rednced to a low shrub; leares varying greatly in shape and breadth (vars. angustifolia and latifolia, Andersson in De Candolle Prodi. xvi ${ }^{2}$, 255), or toward its sonthern limit often persistent until spring (S. Hartucegi, Bentham in Pl. Hartıeg, 52; S. humilis, var. Hartucgi, Andersson, l. c. 236).

Wood light, sot, not strong, close-grained, compact; medullary rays nnmerous, thin ; color, light brown, the sap-rood nearly white; speeific gravity, 0.5587 ; ash, 0.98 ; somewhat nsed as fuel, especially in the southern part of the state.

317.-Salix Sitchensis, Sanson;

Bongard in Mem. Acad. Št. Petersburg, 6 ser. ii, 162.-Ledebour, Fl. Rossica, iii, 609.-Riehardson, Arctic Exped. 439.-Andorsson in Ofv. af. Vet. Akad. Forth. 1858, 126 (Proe. Am. Acad. iv, 66) ; Kongl. Svon. Akad. Handl. vi, 106, f. 59 ; De Candolle, Prodr. xvi², 233.Walpers, Ann. v, 752.-Gray in Proc. Am. Acad. vii, 402.-Hall in Conlter's Bot. Gazette, ii, 93.-Bebl) in Bot. Califernia, ii, 87 ; Coulter's Bot. Gazette, vii, 25.
S. cuneata, Nuttall, Sylva, i, $66 ; 2$ ed. i, 82.

SILKY WILLOW.

Alaska, sonthward near the coast to Santa Barbara, Califormia.
A low, mnch-branched tree, rarely exceeding 8 meters in height, with a trunk 0.30 to 0.45 meter in diameter, or more often a straggling shrub; low, wet soil, borders of streams and ponds.

A form with narrow oblanceolate leaves is-
var, angustifolia, Bebb in Bot. California, $\mathrm{ii}, 87$.
S. chlorophylla, var. pellita, Andersson in Kongl. Sven. Akad. Handl. 139, f. 72 ; De Candolle, Prodr. xviz, 244.

Wood light, soft, close-grained, compact; medullary rays numerous, thin; eolor, light red, the sap-wood nearly white; specific gravity, 0.5072 ; ash, 0.59.
318.-Populus tremuloides, Michaux,

Fl. Bor.-Am. ii, 243.-Nouvean Duhamel, ii, 184, t. 53.-Persoon, Syn, ii, 623.-Desfontaines, Hist. Arb. ii, 465.-Miehaus f. Hist. Arb.-Am. iii, 285, t. 8, f. 1; N. Amoriean Sylva, 3 ed. ii, 175, t. 99, f. 1.-Poiret, Suppl. iv, 377.-Willdenow, Enum. Suppl. 67.Torrey, Ann. Lyc. N. York, ii, 249; Compend. Fl. N. States, 375 ; Fremont's Rep. 97 ; Fl. N. York, ii, 214; Sitgreaves' Rep. 172; Ives' Rep. 27; Bot. Wilkes Exped, 468.—Beck, Bot. 323.—Darlington, Fl. Cestriea, 3 ed. 281.-Eaton, Manual, 117; 6 ed. $277 .-$ Lindley, Fl. Med. 320 .-Hooker, Fl. Bor.-Am. ii, 154.--Eaton \& Wright, Bot. 370.-Bigelow, Fl. Boston. 3 ed. 397.-Spach in Aun. Sci. Nat. 2 ser. xr, 30 ; Hist. Veg. x, 384.-Nuttall, Sylva, i, 55 ; 2 ed. i, 70. -Seringe, Fl. des Jard. ii,56.-Parry in Owen's Rep. 618.Newberry in Pacific R. R. Rep. xi, 25, 89 .-Cooper in Smithsonian Rep. 1858, 257 ; Pacific R. R. Rep. xii², 29, 68; Am. Nat. iii, 409.-Hooker f. in Trans. Linnean Soc. xxiii², 301.-Wood, Cl. Book, 655 ; Bet. \& Fl. 311.-Eugelmann in Trans. Am. Phil. Soe. new ser. xii, 209.-Gray, Manual N. States, 5 ed. 460.-Wesmel in De Caudelle, Prodr. xvi², 325.-London Gard. Chronicle, 1871, 683.-Watso: in King's Rep.v, 327 ; P1. Wheeler, 17 : Am. Jour. Sei. 3 ser. xv, 135; Bot. Califarnia, ii, 91.-Porter in Hayden's Rep. 1871,494.-Purter \& Conlter, 11. Colorado; Hayden's Surv. Misc. Pub. No. 4, 128.-Hayden in Warren's Rep. Nebraska \& Dakota, 2 ed. 121.-Vasey, Cat. Forest Trees, 29.-Hall in Coulter's loot. Gazette, ii, 91.-Macoun in Geological Rep. Canada, 1875-'f6, 210.-Rothrock in Whecler's liep. vi, 51 .-Heal iu Am. Nat. xv, 32, f. 1.-Trelease in Coulter's Bot. Gazette, vi, 284, f. 6.-Sears in Bull. Essex Inst. xiii, 183.-G. M. Dawson in Canadian Nat. new ser. ix, 231.-Ridgway in Proe. U. S. Nat. Mus. 1892, 87.
P. trepida, Willdenow, Spee. iv, 803.-Aitou, Hort. Kew. 2 ed. 395.-Pursh. F1. Am. Sept. ii, 6r8.-Eaton, Mannal, 117.Nuttall, Genora, ii, 239.-Sprengel, Syst. ii, 244.-Loudon, Arboretum, iii, 1649, f. 1510.
P. trcmuliformis, Enerson, Trees Massachnsetts, 243; 2 ed . $\mathrm{i}, 279$ \& t .
P. Atheniensis, Hort.-Koch, Dendrologie, ii, 486 (excl. syz.).

ASPEN. QUAKING Asp.

Northern Newfoundland and Labrarlor to the sonthern shores of Hudson bay, northwest to the Great Bear lake, the mouth of the Mackenzie riser, and the ralley of the Yukon river, Alaska; south in the Atlantic region to the mountains of Pennsylvania, the valley of the lower Wabash river, and northern Kentucky; in the Pacifie region sontl to the ralley of the Sacramento river, California, and along the liocky mountains and interior ranges tusonthern New Mexico, Arizona, and central Nevada.

A small tree, $1 \overline{3}$ to 18 meters in height, with a trunk rarely exceeding 0.60 meter in diameter; very common through Lhitish Aneriea and spreading orer chomons areas bared by fire ef the coniferous forest; in the Pacific region very commen upon moist montain slopes and, bottoms at an elevation of 6,000 to 10,000 feet; the most widely-distributed North American tree.

Wood light, soft, not strong, closegrained, compact, not dmable, containing, as does that of the whole genus, numerous minute, scattered, open ducts; mednlany rass very thin, hardly distinguishable; eolor, light brown, the thick sap-wood nearly white; specitic gravity, 0.4032 ; ash, 0.55 ; largely manufactured into wood-pulp. a substitute for rags in the mamafature ot paper; in the Pacifie region sometimes used for fuel, flooring, in turnery, ete.

A bitter principlo in the burk canses its occasional use as a tonic in the treatment of intermittent fevers and cases of debility (U. S. Dispensatory, 14 ed. 1763).

319.-Populus grandidentata, Michaux,

Fl. Bor. Am. ii, 243.-Persoon, Syu. ii, 624.-Desfontaines, Hist. Arb. ii, 466.-Michaux f. Hist. Arb. Am. iii, 287, t. 8, f. 2; N. American Sylva, 3 et. ii, 176, t. 99, i. 2.-Pursh, Fl. Am. Sept. ii, 619.-Poiret, Snppl, iv, 37\%--Barton, Compend. Fl. Philadelph. ii, 197.-Nuttall, Genera, ii, 2:30.-Hagne, Dend. Fl. 200.-Willdenow, Lumm. Suppl. 67.- liliott, Sk. ii, 710.-Sprengel, Syst. ii, 244.-Torrey, Compend. Fl. N. States, 375 ; Fl. N. York, ii, ©14.-Beck, Bot. 323.-Eaton, Mannal, 6 ed. 277.-Mooker, Fl. Bor.-Am. ii, 154.-Eaton \& Wright, Bot. $370 .-L o u d o n$, Arboretum, iii, 1050, f. 1511.-Bigelow, Fl. Boston. 3 ed. 397.-Spaeh in Anu. Sei. Nat. xv, 2 ser. 33; 11 ist. Veg. x, 384.-Emerson, Trees Massachusetts, 242; 2 ed. i, 278 \& t.-Seringe in Fl. des Jard. ii, 56. - Parry in Owen's Rep. 618.-Darlington, Fl. Cestrica, 3ed. 281.-Darby, Bot. S. States, 507.-Cooper in Smithsonian Rep. 1858, 257.-Chapman, Fl. S. States, 4:31.-Cuttis in Rep. Geological Surv. N. Carolina, 1860, iii, 73.-Wood, Cl. Book, 656; Bot. \& Fl. 311.-Gray, Manual N. States,5 ed. 466.-Koch, Dendrologie, ii, 487.-Wesmal in De Candolle, Prodr. xvi, 327.-Vasey, Cat. Forest Trees, 29.-Watson in Am. Jour. Sci. 3 ser, xv, 1:5.-Beal in Am. Nat. xv, 34, f. 2.-Sears in Bull. Essex Inst. xiii, 182.-Trelease in Coulter's Bot. Gazette, vi, 285.-Bell in Geological Rep. Canada, 1879-80,50.
P. grandidentata, var. pendula, Torroy, Compend. FI. N. States, 3\%5.-Nuttall, Genera, ii, 239.

POPLAR.

Nova Scotia, New Brunswiek, and west throngh Ontario to northern Minnesota, sonth through the northern states and along the Alleghany mountains to North Carolina, extending west to middle Kentneky and Tennessee.

A tree 21 to 24 meters in height, with a trunk 0.50 to 0.75 meter in diameter; rich woods and borders of streams and swamps.

Wood light, soft, not strong, close-grained, compact; medullary rays thin, obscure; color, light brown, the sap-wood nearly white; specific gravity, 0.4632 ; ash, 0.45 ; largely manufactured into wood-pulp and occasionally nsed in turnery, for woodenware, etc.

320.-Populus heterophylla, Linnens,

Spec. 1 ed. 1034.-Marshall, Arbustım, 107.-Wangenheim, Amer. 85.-Walter, Fl. Caroliniana, 248.-Aiton, Hort. Kew. iii, 407; 2 ed. v, 397.-Nouveau Duliamel, ii, 181, t. 51.—Michaux, Fl. Bor.-Am. ii, 244.-Willenow, Spec. iv, 806; Enum. 1017; Berl. Baumz. 293.Desfontanes, Hist. Arb. ii, 466-Pursh, Fl. Am. Sept. if, 619.-Nnttall, Genera, ii, 239.-Hayne, Dend, Fl. 203.-Elliott, Sk. ii, 712.Sprengel, Syst. ii, 244.-Torres, Compend. Fl. N. States, 375; Fl. N. York, ii, 215.-Beek, Bot. 323.-Eaton, Manual, 6 ed. 278.Darlington, Fl. Cestrica, 3 ed. 281.-Lotudon, Arboretum, iit, 1672, f. 1534.—Eaton \& Wright,Bot. 371.—Spach in Ann. Sci. Nat. 2 ser. xv, 30 ; Ilist. Veg. x, 386.—Seringe in Fl. des Jard. ii, 61.-Darby, Bot. S. States, 507.—Cooper in Smithsonian Rep. 1858, $257 .-$ Chapman, Fl. S. States, 431.-Curtis in Rep. Geologieal Surv. N. Carolina, 1860, iii, 73.-Wood, Cl. Book, 656; Bot. \&. Fl. 311.Gray, Manual N. States, 5 ed. 467.-Koch, Dendrologie, ii, 488.-Wesmel in De Candolle, Prodr. xvi², 326.-Vasey, Cat. Forest Trees, 29.-Watson in Au. Jour. Sci. 3 ser. xv, 135.-Trelease in Conlter's Bot. Gazette, vi, 285.-Ridgway in Proc. U. S. Nat. Mus. 1881, 86.

1'. cordifolia, Burgsulorf, Anleit. Erz. Holzart. 3 ed. 152.
P. argentea, Michaux f. Hist. Arb. Am. iii, 390, t. 9 ; N. American Sylva, 3 ed. ii, 170, t. 97.
P. heterophylla, var. argentea, Wesmæl in De Candolle, Prodr. xvi, 376.

RIVER COTTONWOOD. SWAJP COTTONWOOD.

Guilford, Comnectient (W. R. Dudley), Northport, Long island, south, generally near the coast, to southern Georgia, through the Gulf states to western Louisiana, and through Arkansas to central Tennessee and Kentueky, southern Illinois and Indiana.

A tree 24 to 27 meters in height, with a trunk 0.60 to 0.75 meter in diameter; borders of river swamps; most common and reaching its greatest development in the basin of the lower Ohio river; rare and local.

Wood light, soft, not strong, close grained, compact; medullary rays thin, very obscure; eolor, dull brown, the thick sap-wood lighter brown; specific gravity, $0.4089 ;$ ash, 0.81 .

321.-Populus balsamifera, Linnens,

Spec. 1 ed. 1034.-Du Roi, Harbk. 82 -Marshall, Arbustum, 107.-Wangenheim, Amer. E5, t. 28, f. 59.-Aiton, Hort. Kew. iii, 406 ; 2 ed. v, 397.-Mœeheh, Meth. 338.-B. S. Barton, Coll. i, 16.-Nouvean Duhamel, ii, 179, t. 50.-Michaux, Fl. Bor.-Am. ii, 244.-Willdenow, Spec. iv, 805 ; Enum. 1017 ; Berl. Banmz. 290.-Persoon, Syn. ii, 624.-Desfontaines, Hist. Arb. ii, 466.-Michanx f. Hist. Arb. Am. iii, 306, t. 13, f. 1; N. American Sylva, 3 ed. ii, 172, 1. 98, f. 1.-Pursh, F1. Am. Scpt.ii, 618.-Eaton, Manual, 117; 6ed. 278.-Nuttall, Genera, ii, 239 ; Sylva, i, 55 ; 2 ed. i, 70.-Hayne, Dend. Fl. 202.—Sprengel, Syst. ii, 244.—Beek, Bot. 322.—Lindley, Fl. Med. 320.Loudon, Arboretum, iii, 1637, f. 1535, 1536 \& t.-Hooker, Fl. Bor. Am. ii, 153.-Eaton \& Wright, Bot. 370.--Hooker \& Arnott, Bot. Beehey, 159_{1} _Spach in Ann. Sci. Nat. 2 ser. xv, 33 ; Hist. Veg. x, 393.-Lindley, Bot. Reg. xxix, Dise. 20.—Seringe in ll. dcs Jard. ii, 65.-Torrey, FI. N. York, ii, 216; Bot. Wilkes Exped. 469.-Cooper in Suithsouian Rep. 1858, 257; Am. Nat. iii, 408.Hooker f. in Trans. Linnæan Soe. xxiii, 301،-Wood, Cl. Book, G56; Bot. d Fl. 3ll.—Gray, Manual N. States, 5 ed. 467.-Koch, Dendrologic, ii, 495.-Vasey, Cat. Forest Trees, 29.-Macoun in Geologieal Rep. Canada, 1875-76, 211.-Watson in Am. Jonr. Sei. xv, 135.-Beal in Aın. Nat. xv, 34, f. 4.-Trelease in Conlter's Bot. Gazette, vi, 285.—Sears in Bull. Essex Inst. xiii, $181 .-$ Bell in Geologieal Rep. Canada, 1879-'80, 45c.
P. Tacamahaca, Miller, Diet.
P. viminet, Bon Jard. 1845, 565.
P. balsamifera, var. genuina, Wesmel in De Candolle, Protr. xvi=, 329.

BALSAM. TACAMAHAC. BALM OF GILEAD.

Straits of Belle Isle to Richmond gulf and cape Chmehill, Hulson bay, northwest to the shores of the Great Bear lake and the valley of the Ynkon river, Alaska, south to northern New England, central Miehigan and Minnesota, the Roeky mountains and interior ranges of Montana and Idaho, Washington territory, and British Columbia.

A large tree, 18 to 24 meters in height, with a trunk 1.50 to 2.10 meters in diameter; very common on all islands and shores of the northern rivers; in British Columbia generally confomded with the allied P. trichocarpa, the range of the two species here still uneertain.

Wood very light, soft, not strong, elosegtaned, compact; medullary rays mmerons, very obsenre; color, brown, the thick sap-wood nearl, white; specifie gravity, 0.3635 ; ash, 0.66 .

The buds, as well as those of several other species, covered with a resinons exudation, and oceasionally used medicinally as a substitute for turpentine amd other balms.

Var. candicans, Grar.

Manual N. States, 2 ed. 419; 5 ed. 467.-Cooper in Smithsoniau Lep. 1858, 257.-Porter \& Coulter, Fl. Colorado; Hayden's Surv. Mise. Pul. No. 4, 129.-Watson in Am. Jour. Sei. 3 ser. xv, 135.-Bull. Torrey liot. Cluh, vii, 57. -Trelease in Conlter's Bot. Gazette, xi, 285.
P. balsamifera lancolata, Marshall, Arbnstum, 10 s .
P. cundicans, Aiton, Hort. Ḳew. iii, 406 ; 2 cel. v. 397 .-Nonvean Duhamel, ii, 179.-Willdenew, Spec. iv, 806 ; Emmu. 1017; Berl. Bammz. 291.-l'ersoon, Syn. ii, 624.-Dichamx f. llist. Arb. Am. iii, 308, t. 13, f. 2; N. Ameriean Sylva. 3 ed. ii, 173, t. 98, f. 2.-Pursh, Fl. Am. Sept. ii, 618.-Barton, l'rodr. Fl. Philadelph. 96.-Poiret, Suppl. iv, 378.-Nuttall, Genera, ii, 239.-Hayne, Dend. Fl. 202.-Sprengel, Syst. ii, 244.-Torrey, Compend. FI. N. States, 375; Fl. N. York, ii, 217.Audubon, Birds, t. 59.—leek, Bot, 332.-Eaton, Manual, 6 ed. 278.-Loudou, Arboretum, ii, 1676, f. 1537.-Hooker, Fl. Bor.-Am. ii, 154.-Eaton d Wright, Bot. 370.-Bigelow, FI Boston. 3 erl. 398.-Spaeh in Amn. Sei. Nat. 2 ser. xv, 33 ; Hist. Veg. x, 392.-Lindley; Bot. Reg. xxix, Misc. 22.-Emerson, Trees Massachusetts, 245; 2 ed. i, 281.-Seringe in Fl. des Jard. ii, 63.-Gray, Mimmal N. States, 1 el. 431.-Wood, Cl. Book, 656 ; Bot. \& Fl. 311.-Wesmal in De Candolle, Prodr. xvis, :30.
P. Crnadensis, Muneh, Weins. \&1 [not Miehaux f.].

- P. Iatifolia, Mumeh, Meth.:30\%.
P. Ontariensis, Hort--Lomldiges, Cat. 1e36.
P. macrophylla, lindey in loudon, Eneyc. Pl. 840.
P. ncladesca and P. heterophiflla, Hort. (ex. Koch, W:achan. 1865, 238).

A large tree, rare or unknown in a wild state; very common in cultivation. The wood heavier than that of the species; specific gravity, 0.4161 ; ash, 0.46 .

322.-Populus angustifolia, James,

Long's Exped. i, 497.-Torrey in Amı. Lye. N. York, ii, 249 ; Fremont's Rep. 97 ; Sitgreaves' Rep. 172; Ives' Rep. ':7; But. Wilkes Exped. 469.-Nuttall, Sylva, i, 52, t. 16; 2 cd. i, 68, t. 16.-Cooper in Smithsonian Rep. 1858, 261 ; Am. Nat. iii, 408 .-Hayden in Warres's Rep. Nebraska \& Dakota, 2 ed. 121.-Vasey, Cat. Forest Trces, 29.-Watsou in Am. Jour. Sci. 3 ser. xv, 136 ; Bot. California, $\mathrm{ii}, 91$.
P. Canadensis, var. angustifolia, Wesmel in De Candolle, Prodr. xvi², $3 \% 9$.
P. balsamifera, var. angustifolia, Watsou in King's Rep. v, 327 ; PI. Whecler, 17.-Y'orter in Hayden's Rep. 1871, 494.— Porter \& Coulter, Fl. Colorado ; Hayden's Surv. Misc. Pub. No. 4, 128.-Macoun in Geological Rep. Canada, 1875-'76, 211.-Rusby in Bull. Torroy Bot. Clab, ix, 106.

BLACK COTTONWOOD.

Black hills of Dakota (R. Douglas), Swimming Horse creek, and the Snowy Mountain region, Montana, Red Rock creek, sonthwestern Montana (Watson), east Humboldt and Shoshone mountains, Nevada, Rocky monntains of Colorado, and the ranges of sonthwestern New Mexico and eastern Arizona.

A small tree, 15 to 18 meters in height, with a trunk rarely exceeding 0.60 meter in diameter; borders of streams, between 6,000 and 10,000 feet elevation.

Wood light, soft, teak, close-graiued, compact; mednllary rays mmerous, obscure; color, brown, the sap-wood nearly white; specific gravity, 0.3912 ; ash, 0.79.

323.-Populus trichocarpa, Torrey \& Gray;

Hooker, lcon. v, 878 .-Walpers, Ann. v, 767 .-Cooper in Smithsonian Rep. 1858, 266.-Wesmæl in De Candolle, Prodr. xvi², 330.-Watson in King's Req. v, 328 ; Am. Jour. Sci. 3 ser. xv, 136; Bot. California, ii, 91.-Torrey, Bot. Wilkes Exped. 469.-Maeoun. in Geological Rep. Canada, 1875-76, 211.-Trelense in Conlter's Bot. Gazette, vi, 285, f. 5.-G. M. Dawson in Canadian Nat. new. ser. ix, 331.
P. balsamifera, var. Hooker, Fl. Bor.-Am. ii, 154.
P. angustifolia, Newberry in Pacific R. R. Rep. vi, 39 [not James].-Cooper in Pacifie R. R. Rep. xii${ }^{2}$, 29, 68.
P. balsamifera, Lyall in Jour. Linnæau Soe. vii, 134 [not Linnæns].-Hall in Coulter's Bot. Gazette, ii, 91.
P. trichocarpa, var. cupulata, Watson in Am. Jour. Sci. 3 ser. xv, 136 ; Bot. California, ii, 91.
P. balsamifera, var. ? Californica, Watson in Am. Jour. Sei. 3 ser. xv, 136.

BLACK COTTONWOOD. BALSAM COTTONWOOD.

Valley of the Fraser river, British Columbia, and probably much farther north, east to the eastern base of the Bitter Root momtains, Montana (Watson), south through Washington territory, western Oregon and California to the sonthern borders of the state.

A large tree, 24 to 60 meters in height, with a trunk 1.20 to 2.10 meters in diameter; banks of streams and bottom lands below 6,000 feet elevation; very common and reaching its greatest development in the valleys of the lower Colnmbia river and the streams flowing into Puget sound, here the largest deciduous tree of the forest.

Wood rery light, soft, not strong, rather elose-grained, compact; medullary rays thin, hardly distinguisliable; color, light dull brown, the sap-wood lighter, nearly white; specifie gravity, 0.3814 ; ash, 1.27 ; in Oregon and: Washington territory largely manufactured into staves of sugar barrels, woodenware, etc.

324.-Populus monilifera, Aiton,

 Berl. Baumz. 292.-Persoon, Syn ii, (623.-Desfontaines, Hist. Arl, ii, 465.-Nichanx f. Hist. Arb. Am. iii, 295, t. 10, f. 2; N. AmericanSylva, 3 ed. ii, 168, t. 96, f. 2.-l'ursh, Fl. Am. Sept.ii, 618 .-Nuttall, Genera, ii, 239; Trans. Am. Plil. Soc. 2 ser. v, 167.-Hayne, Dend. Fl. 202.-Sprengel, Syst. ii, 244.-Watson, Dend. Brit. ii, t. 102.-beek, Bot. 323.-Eaton, Manual, 6 ed. 278.-Lendon, Arboretmm, iii, 1657, f. 1517 \& t.-Eaton \& Wrigbt, Bot. 371 . -Spach in Ann. Sci. Nat. 2 ser. xr, 32 ; Hist. Veg. x, 380.-Torrey in Fremout's Rep.

 Surv. N. Carolina, 1860 , iii, iz--lesquerenx in Owen's ${ }^{2}$ d Rep. Arkansas, 389.-Wood, Cl. Book, 655.-Engelmann in Traus. Am. Phil, Soc. xii, 209.-Watson in King's Rep. \mathbf{v}, $22 r$; Am. Jour. Sei. 3 ser. xv, 136.-ITayden in Warren's Rep. Nebraska \& Dakota, 2 ed. 121.-Nacoun in Geological Rep. Canada, 1875-76, 2ll-T'release in Conlter's lot. Gazette, vi, 285, f.3, 4.-Ward in Bull. U. S. Nat. Mus. No. 22, 116.-Beal in Am. Nat. xr, 34, f. 3.-Bell in Genlegical Rep. Canada, 1879-80, 56r.-Ridgway in Proc. U. S. Nat. Mus, 1882, 87.-Chapman, Fl. S. States, Suppl. 6i9.
? P. deltoide; Marshall, Arlustum, 106.

[^1]COTTONWOOD. NECKLACE POPLAR. CAROLINA POPLAR. BIG COTTONWOOD.
Shores of lake Champlain, Vermont, south through western New England to the Chattahoochee region of western Florida, west along the northern shores of lake Ontario to the eastern base of the ranges of the Rocky mountains of Montana, Colorado, and New Mexico.

A large tree, 24 to 51 meters in height, with a trunk 1.20 to 2.40 meters in diameter; low, moist soil ; the commoncottonwood of 'Cexas and the western plains, bordering all streams flowing east from the Rocky mountains.

Wood very light, soft, not strong, close-grained, compaet, liable to warp in drying, diffentt to season; medullary rays numerous, obseure ; color, dark brown, the thiek sap-wo od nearly white; specific gravity, 0.3889 ; ash, 0.96 ; largely used in the maufacture of paper-pulp, for light packing.eases, fence boards, and fuel.
325.-Populus Fremontii, Watson,

Proc. Am. Acad, x, 350 ; Am. Jour. Sei. 3 ser. x w, 136; Bot. California, ii, 92 .
P. monilifera, Newberry in Pacific R. R. Rep. vi, 327 [not Aiton].-Watson in King's Rep. v, 327 ; Pl. Wheeler, 17.-Torrey, . Bot. Wilkes Exped. 469.

COTHONWOOD.

California, valley of the upper Sacramento river, south to Sau Bernardino county (Coltou, Pary), and eastward in Nevada and Utalı.

A large tree, 24 to 30 meters in height, with a trunk 1.20 to 1.80 meter in diameter; borders of streams; the common cottonwood of the valleys of central California.

Wood light, soft, not strong, close-grained, compact, liable to warp in drying, difticult to season; medullary rajs thin, very obsenre; color, light brown, the sap-wood nearly white; specifie gravity, 0.4914 ; asb, 0.77 .

> Var. Wislizeni, Watson,

Am. Jour. Sci. 3 ser. xv, 1:37; Bot. Californit, ii, 92 ; Proe. Am. Aead. xviii, 157.-Rusby in Bull. Torres Bot. Club, ix, 79.
P. moniliforn, Torrey in Sityreaves' Rep. 172 ; Bot. Mex. Bounday Survey, 204; Ives' Rep. 27 [not Aiton].-Bigelow in Paeific R. R. Rep. iv, 21.

COTTONWOOD. WHITE COTRONWOOD.

San Diego comnty, California, throngh Arizona and New Mexico to western Texas and sonthern Colorado.
A large tree, 24 to 30 meters in height, with a trunk 1.20 to 1.80 meter in diameter; borders of streans; the prevalent cottonwood of the arid southwestern region, there largely planted as a shade tree and for fuel.

Wood light, soft, not strong, compact; specific gravity, $0.4921 ; 1 s h, 1.13$; furnishing the ordinary domestic fuel of the rerion.

CONIFERA.

326.-Libocedrus decurrens, Torrey,

Smithsonian Contril., vi, $7,1.3$; Pacific li. R. Rep.iv, l40; Bot. Mex. Boundary Survey, $2 l l$; Bot. Wilkes Exped. t. 16.-Bentbam, Pl. Hartweg. 338.-Lindley in London Gard. Chroniele, 1853, 695.-Newberry in Jacife R. R. Rep. vi, 63.-Cooper in Siuithsonian Rep.
 Brown Campst. in "lrans. Bdinburgh Bot. Soc. ix, 3\%3.-Hoopes, Evergreens, 309, f. 40. -Watson in King's Rep. v, 335 ; Bot. California, ii, 116.—A. Murray in London Garden. ii, 54\%.—Gordon, Pinetnm, 2 ed. 402. Veiteh, Mannal Conif. 267.

Thuya Craigana, Murray in Rep. Oregon Exped. 2.t. 5.

Thuya gigantea, Carrieve in Rev. Hort. 1854, 224, f. 12-14, in part; Fl. des Serres, ix. 199, f. 3-5, in part; Trait. Conif. 106, in part: 2 ell. 112, in part.-Gordon, Pinetum, 321, in part; Suppl. 102, in part.-Henkel \& Hochstetter, Nadelhölz. 200, in part.

Heyderia decurvens, Koch, Dendrologie, ii , 179.

WH1TE CEDAR. BASTARD CEDAR. POST CEDAR. INCENSE CEDAR

North fork of the Santian river, Oregon, south along the western slopes of the Casearle and Sierra Nevada monntains between 3,000 and 8,500 feet elevation, and throngh the California Coast ranges to the San Bemardino and Cayumaea monntains.

A large tree, 30 to 45 meters in height, with a trunk 1.20 to 2.10 meters in diameter; slopes and valleys; common.
Wood light, soft, not strong, brittle, elose-grained, compact, very durable in contact with the soil ; bands of small summer cells thin, dark colored, eonspicuons; medullary rays nmmerous, obseure; the thin sap-wood nearly white ; specitic gravity, 0.4017 ; asl, 0.08 ; largely nsed for fencing and in the construction of water-flumes, and for interior finish, furniture, laths, shingles, etc.; often injured by a species of dry rot (Dadalia vorax, Hakness in Pacific Rural Press, Jan. 25, 1879, f. 1, 2), rendering it nnfit for lumber.

327.-Thuya occidentalis, Linnens,

Spec. 1 ed. 1002.-Kihm, Travels, English ed. iii, 170.-Marshall, Arbustum, 152.-Wangenheim, Amer. 7, t. 2, f. 3.-Walter, Fl. Caroliniana, $23 \varepsilon .-A$ iton, Hort. Kew. iii, 3 I $; 2$ ed. v, 321.-Gertner, Fruct. ii, 62, t. 91, f. 2.-Michaux, Fl. Bor.-Am. ii, 209.Willdenow, Sjee. iv, $\quad 06$; Enum. 990 ; Berl. Banmz. 504.-Nonvean Duhamel, iii, I2, t. 4.-Poiret in Lamarek, Diet. vii, 369 ; Ill. iii, 369.—Schkulır, llandb. iii, 287, t. 309.-Persoon, Syn. ii, 580.—Desfontaines, Hist. Arb. ii, 575.-Titford, Hort. Bot. Am. 98.Miehaux f. llist. Arb. Am. iii, 29, t. 3 ; N. American Sylva, 3 ed. iii, 177, t. 156.-Pursh, Fl. Am. Sept. ii, 647.-Barton, Prodr. Fl. Philatelph. 93.-Eaton, Manual, 111; 6 ed. 3fi4.-Nuttall, Genera, ii, 224.-Mayne, Dend. Fl. 177.-Elliott, Sk. ii, 641.-Watson, Dend. Brit. ii, 150. -Sprengel, Syst. iii, 88^{2}.-Riehard, Conif. 43, t. 71, f. 1.-Torrey, Compend. Fl. N. States, 361 ; Fl. N. York, ii, 234.-Rafnesque, Med. Bot. ii, 268.-Meck, Bot. 338.-London, Arborotum, iv, 2454, f. 2312-2314 \& t.-Forbes, Pinetum Wobnrn. 193.-Hooker, Fl. Bor.-Am. ii, 165.-Laton \& Wright, Bot. 451.-Bigelow, Fl. Boston. 3 ed. 388. -Spach, IFist. Veg. xi, 339.-Penn. Cyel. xxiv, 409.-Reid in London Gard. Chronicle, 1841, 276.-Emerson, Trees Massaehusetts, $96 ; 2$ ed. i, 112.-Endlieher, Syn. Conif. $\mathbf{6} 1$. -Lindley \& Gordon in Jomr. Hort. Soc. London, v, 206.-Parry in Owen's Rep. 618. -Darliugton, Fl. Cestrica, 3 ed.
 Cooper in smithsomian Rep. 1858, 257.-Gordon, Pinetum, 323; 2 ed. 403.-Chapman, Fl. S. States, 436.-Wood, Cl. Book, 662; Bot. \& ll. 315.-Poreher, Resomees S. Forests, 507.-Menkel \& ITochsletter, Nadelhölz. 278. -Nelson, Pinacea, 68.-R. Brown Camps. in Trans. Ediaburyh Bot. Soc. ix, 3f\%.-Gray, Manval N. States, 5 ed. 472.-Hoopes, Evergreens, 317.-Parlatore in De Candolle, Prodr. xvi", 4is.-Schnizlein, Icon. t. 76, f. 2.- Koch, Dendrologie, ii ${ }^{2}$, 173.-Vasey, Cat. Forest Trees, 36.-Nacoun in Geological Rep. Cantula, 1875-'76, 211.—Sears in hull. Essex Inst. xiii, 183.-Veiteh, Manual Conif. 261.-Bell in Geological Rep. Canada, 187! -' $00,17{ }^{\circ}$.
T. odorata, Marshall, Arbustmm. 15\%.
T. obtusa, Manch, Meth. G9.

Cupressus Arbor-vita, Targione-Tozetii, Obs, Bot. ii, 51 .
T. Wareana and T. Sibiriea, Hert.

WHITE CEDAL. ARBOR-VITAE.

New brunswick to Anticosti ishand, through the valley of the Saint Lawrence river to the sonthern shores of James'bay and sontheast to the eastern extremity of lake Wininipg, sonth throngh the northern states to central New York, northeru Penusylvania, ccutral Michigan, nortleru Illinois, central Minnesota, and along the Alleghany: mountains to the high peaks of North Carolina.

A tree 12 to $1 s$ meters in height, with a trumk sometimes 1.20 to 1.50 meter in diameter; cold, wet swamps and aloug the rocky banks of streams; very common at the north, spreading over great areas of swamp; extensively cultivated as a hedge and ornamental plant, and prodncing inmmerable seminal varieties. of more or less horticultural value.

Wood very light, soft, not strong, brittle, rather coarse-grained, compact, very durable in contact with the soil; the bands of small summer cells very thin, dark colored; medullary rays numerous, indistinct; color, light brown, turning darker with exposure, the thin sap-wood nearly white; speeific gravity, 0.3164 ; ash, 0.37 ; largely used for posts, fencing, railway ties, and shingles.

The distilled oil and a tincture of the leaves of Thuya have been fonnd usefin in the treatment of pulmonary and uterine complaints (U.S. Dispensatory, 14 ed. $1775 .-N a t$. Dispensatory, 2 ed. 1428).
328.-Thuya gigantea, Nuttall,

Jour. Philadelphia Acad. vii, 52 ; Sylva, iii, 102, t. iii ; 2 ed. ii, 162, t. 111.-Loddiges, Cat. ed. 1836.-Loudon, Arborctum, 1v, 2458.lleoker, Fl. Bor.-Anı. ii, 165.-Spach, Hist. Veg. xi, 342.-Endlicher, Syn. Conif. 52.-Lindley \& Gordon in Jour. Hort. Soe. London, v, 206.-Newherry in Pacific R.R. Rep. vi, 56, f. 22.-Carrière, Trait. Conif. 102; 2cl. 112, in part.-Cooper in Smithsonian Rep. 1858, 262; Am. Nat. iii, 413.-Gordou, Pinelum, 321, in part; Suppl. 102; 2 ed. 181.-Torrey, Bot. Mex. Boundary Survey, 211.-Lyall in Jour. Linnean Soe. vii, 133, 144.-Henkel \&Hochstetter, Nadelhölz. 280, in part.-Nelson, Pinaece, 67.-Rothrock in Swithsonian Rep. 1867, 434.-Parlatore in De Candolle, Prodr. xvi², 457.-R. Brown Campst. in Traus. Edinbnrgh Bot. Soc. ix, 367.-Hoopes, Evergreens, 315.-London Gard. Chroniele, 1871, 683.-Gray in Proc. Am. Aead. vii, 402.-Fowler in Londou Gard. Chronicle, 18i2, 1527.-Koch, Dendrologie, ii ${ }^{\text {² }}$, 176.-Vaser, Cat. Forest Trecs, 36.-E. Hall in Coulter's Bot. Gazetie, ii, 91.Watson, Bot. Califoruia, ii, 115.-Gr. M. Dawson in Cauadian Nat. new ser. ix, 324.-T. Howell in Coalter's Bot. Gazette, vi, 267.-Veitch, Maual Conif. 256.
T. plicata, Don, Hort. Caniah. 6 ed. 249.-Lambert, Piuns, 1 cd. ii, 19 ; 2 ed. 114, in part.-Nuttall, Sylva, iii, 103; 2 el. ii, 164.-Spach, Hist. Veg. xi, 342.-Eudlicher, Syn. Conif. 51 (exel. syn. Wareana \& odorata).-Lindley \& Gordon in. Jour. Hort. Soc. Lendon, v, 205.-Knight, Syn. Conif. 16.-Cartière, Trait. Conif, 102 (excl. syn. Wareana \& odorata); 2 ed. 106 (excl. syn. Wareana).-Cooper in Smithsonian Rep. 1858, 262 ; Pacific R. R. Rep. xii², 27.-Henkel $\mathcal{\&}$ Hechstetter, Nadelhölz. 287 (excl. syn. odorata).-Nelson, Pinaceæ, 68.—Gordou, Pinetum, 2 ed. 406.-A. De Candolle, Prodr. xvi², 457, in part.—Vasey, Cat. Forest Trees, 36.—Veiteh, Manual Conif. 263.
T. Menziesii, Donglas, Mss.-Carrière, Trait. Conif. 106; 2 ed. 107.-Gordon, Pinctun, 3¥3.-Netson, Pinacex, 67.Henkel \& Hechsteticr, Nadclhölz. 281.

T. Lobbii, Hort.

T. occidentalis, var. plicata, Hort.-Hoopes, Evergreens, 321.

red cedar. canoe cedar.

Alaska, south along the Coast ranges and islands of British Columbia, through western Washington territory and Oregon and the Coastranges of northern California to Mendocino connty, extending east along the mountains of Washington territory to the Cœur d'Alêne, Bitter Root, and Salmon River mountains of Idaho and the western slopes of the Rocky mountains of northern Montana (Canby di Sargent).

A large tree, 30 to 45 meters in height, with a trunk 0.90 to 3.60 meters in diameter; low, rich woods and swamps, less commonly on dry ridges and slopes below 5,200 feet elevation; common and reaching its greatest development in western Washington territory and Oregon; the large specimens generally hollow.

Wood rery light, soft, not strong, brittle, rather coarse-grained, compact, easily worked, very durable in contact with the soil; bands of small summer cells thin, dark colored, distinet; medullary rays numerons, obscure; color, dull brown tinged with red, the thin sap-wood nearly white; specific gravity, 0.3796 ; ash, 0.17 ; largely used for interior finish, fencing, shingles, in cabinet-making and cooperage, and exelusively by the Indians of the northwest eoast in the mamufacture of their canoes.

329.-Chamæcyparis sphæroidea, Spach,

Hist. Veg. xi, 3:7.-Endlicher, Syn. Conif. 61.—Lindley \& Gorton in Jour. Hort. Soc. London, v, 209.-Kinight, Syn. Conif. 20.Carrière, Trait. Conif. 133; 2ed. 12\%.-Gorlon, Pinefnm, 49; 2 cd. 71.-Henkel \& IIoehstetter, Nadelhölz. 248.-Nelson, Pinacea, 69.-Parlatore in De Candolle, Prolr. xvi², 464.—Iidgway in Proc. U. S. Nat. Mus. 1882, 87.

Cupressus thyoides, Jinnens, Spec. 1 ed. 1003.-Kalm, Travels, English ed. ii, 174.-Du Roi, Harbk. ii, 193.-Marshall, Arbustum, 39.-Wangenheim, Amer. 8, f. 2, f. 4.-Aiton, llort. Kew. iii, 372; © ed. v, 323.-Bartram, Travels, 2 ed. 409.-Michanx, Fl. Jor.-Am. ii, 208.-Willdenow, Spec. iv, 512; Himm. 991 ; Berl. Baumz. 111.-Nouveau Duhamel, iii, 6.-Persoon, Syn. ii, 580.-Desfoniaines, Ilist. Arlı, ii, 567.-Schknlır, Handb. iii, 286, t. 310.-Michaux f. Hist. Arb. Am. iii, 20, 1.2; N. American Sylva, 3 enl. iii, 162, t. 152.-l'ursh, Fl. Am. Sept. ii, 646.-Eatom, Mamal, 111 ; 6 ed. 115.-Nnttall, Genera, ii, 224.-Hayne, Dend. Fl. 178.-Elliot, Sk. ii, 644.-Watson, Dend. Brit. ii, 150.-Torrey, Compent. Fl. N. Siates, 361 ; 17. N. York, ii, $2: 33$ - Beck, Bot. 338.-London, Arboretum, iv, 2475, f. 2327.-Forbes,
 387.-Finerson, Trees Massachusotts, g\%; 2 ed. i, 114.-Richardson, Arctic Exped. 442.-Darby, Bot. S. States, 516.Cooper in Smithsonian Rep. 1354, 25\%.-Chapman, Fl. S. Statos, 43.-Curtis in Rep. Geologieal Surv. N. Carolina, 1660 , iii, $25 .-W 601$, Cl. Jook, (603; Bot. N Jl. S15.-lorcher, Resources S. Forests, 509. -Gray, Manmal N. States,
 Conif. 23^{3}.
Thuya spheroidch, sprengel, syst. iii, 8e9.
Thaya sphacoifalis, Riclatri, Conif. 45, t. 8, f. 2.
12 FOR

WHITE CEDAR.
Southern Maine, sonth near the coast to northern Florida, and along the Gult coast to the valley of the Pearl river, Mississippi.

A tree 24 to 27 meters in height, with a trimk 0.60 to 1.20 meter in diameter; in deep, cold swamps; rare in the Gulf states, west of the bay of Mobile.

Wood very light and soft, not strong, close-grained, compact, easily worked, very durable in contact with the soil; hauds of small smmmer cells thin, dark colored, conspicuous; medullary rays numerous, obsenre; color, light brown tinged with red, growing darker with exposure, the sap-wood lighter; speeffe gravity, 0.3322 ; ash, 0.33 ; largely used in boat-building, for woolenware, cooperage, shingles, interior finisl, telegraph and fence posts, railway ties, ete.

Along the Athantic coast from New Jersey southward lumber is manfactured from baried trunks of this speeies dug from peat swamps.

> 330.-Chamæcyparis Nutkaensis, Spael,

Hist. Veg. xi, 333.-Nuttall, Sylva, iii, 105; 2 ed. ii, 165.-Endlicher, Syn. Conif. 62.-Ledebonr, Fl. Rossiea, iii, 680.-Lindley \&
 Nadehölz, 20.0 - Parlatore in Do Candollo, Prodr. xvis, 465.-Hall in Coulter's Bot. Gazette, ii, 91.-G. M. Dawson in Canadian Nat. 2 ser. ix, 329.

Cupressus Noothatensis, Limbert, Pinus, 1 ed. ii, 18 ; 2 ed. ii, No. 60.-Loudou, Arboretum, iv, 2480.
Cupressus Nutlaensis, llooker, Fl. Bor.-Am. ii, 165.-Newberry in Pacifie R. R. Rep. vi, 63, f. 28.-Gordon, Pinetum, 66; 2ed. 94.-Cooper in Smithsomian Rep. 1858, 263.-Nelson, Pinacea, 74.-Hoopes, Evergreons, 345.-Lawson, Pinetum Brit. ii, 199, t. 34, f. 1-12.-Koeh, Dendrologie, ii^{2}, 165.-Vasey, Cat. Forest Trees, 36.-Macoun in Geological Rep. Canada, 1876-7\%,211.-Veiteh, Mannal Conif. 235.
Thuya cxcelsa, Bongard in Mem. Aead. St. Petersbura, 6 ser, ii, 164.
Cupressus Americana, Trantvetter, Imag. Pl. Fl. Rossiea, 12, t. 7.
C. Nutkaensis, var. glauca, Walpers, Aun. v, 769.

Thuyopsis borealis, Hort.-Carrière, Trait. Couif. 1 el. 113.
Thuyopsis cupressoides, Carrière, Man. des Pl. iv, 324.
C. exeelsa, Fischorin herb. Sitka.

Thuyopsis Tehugatskoy and T. Tchugatshoye, Hort.

YELLOW CYPRESS. SITKA CYPRESS.

Sitka, south along the islands and Coast ranges of British Colnmbia and the Caseade mountains of Washington territory and Oregon to the valley of the Santian river, Oregon ("Lneky Camp mountain", Cusich).

A large tree of great economie value, 30 to 38 meters in leight, with a trink 1.20 to 1.80 meter in diameter, or toward its sonthern limits and at high elevations much smaller; eommon along the coast at the sea-level to about latitude $49^{\circ} 30^{\prime}$ N., then less common and only at higher elevations; sonth of British Colnmbia hardly below 5,000 feet elevation and very rare and local; the most valuable timber tree of Alaska.

Wood light, hard, not strong, brittle, very elose-graiued, compact, very durable in contact with the soil, easily worked, satiny, susceptible of a beantiful polish, possessing an agreeable, resinous odor; bauds of small summer cells thin, not conspienons; medullary rays thin, mmerons, hardly distinguishable; color, bright, light clear yellow, the thin sap-wood nearly white; speeific gravity, 0.4782 ; ash, 0.34 ; somewhat used in boat- and shipbuilding, for furniture, interior finish, cte., probably unsurpassed in beanty as a cabinet wood by that of any North Ameriean trec.

> 331.-Chamæcyparis Lawsoniana, l'arlatore,
 155.-Sargent in London Gard. Chroniele, 1881, 8.

Cupressus Lausoniana, Murray in Edinhurgh New Phil. Jour. new ser. i, 232, t. 9.-Bot. Mag.t. 5581.-Nelson, P'inacore, T2.-Cooper in Smithsonian Rep. 1858, 2fis.-Lawson, Pinetum Brit. ii, 191, t. 31, f. 1-13.-Hoopes, Evergreens :342, f. 53.-Wenkel \& Hochstetter, Natelhïlz. 246.-Fowler in London Gard. Chronicle, 1872, 285.-London Garlen, vii 503 \& t.-Vasey, Cat. Forest Trees, 36.-Veith, Manual Conif. 231.-Fichler in Mouatsb. Aead. Berl. 1881, f. 29,30 .
Cupressus firagrans, Kellogg in Proe. ('alifornia Acat. i, 10s.
PCupressus attenuatu, Gorton, Pinetum, 1 ed. $57 ; 2 \mathrm{ed} .79$.
C. Boursicrii, Carrière, Trait. Conif. a d. I25 [not Decaisne].
C. Nuth:ames, Torrey, Bot. Wilkes Exped. t. 14 .

PORT ORPORD CEDAR. OREGON OEDAR. WHITE GEDAR, LAWSON'S CYPRESS, GINGER PINE:
Oregon, Coos bay, sonth to the valley of the Rogne river, not extending more than thirty miles from the coast; California, valley of the upper Sacramento river (shores of Castle and Soda lakes, Shasta county).

A large tree of the first economic value, 45 to 61 meters in height, with a trunk 1.80 to 4 neters in diameter; rich woods, in low, moist soil, interspersed with the yellow fir and hemlock; most common and reaching its greatest development aloug the Oregon coast; local; in California very rare and local.

Wood light, hard, strong, vers close-grained, compact, easily worked, very durable in contact with the ground, abounding in ocoriferous resin, satiny, susceptible of a bcantiful polish; layers of small summer cells thin, not conspicuous; medullary rays numerous, very obscme ; color, light yellow or almost white, the thin sap-wood hardly distinguishable; specifie gravity, 0.4621 ; ash, 0.10 ; largely maunfactured into lumber and used for iuterior finish, flooring, railway ties, fence posts, matches, and in ship- and boat-building; the resin strongly dinretic and a powerful insecticide.
332.-Cupressus macrocarpa, Hartweg,

Jonr. Hort. Soc. London, ii, 187.—Bentham, PI. Hartweg. 337.—Gordon in Jour. Hort. Soc. London, iv, 296 \& t. ; Pinetum, 65 ; 2 ed. 91,-Lindley \& Gordon in Jour. Hort. Soe. London, v, 206.—Knight, Syn. Conif. 20.-Torrey, Bot. Mex. Boundary Survey, 211.Cooper in Smithsonian Rep. 1858, 203 ; Proc. California Acad. iii, 290.-Carrière, Trait. Conif. 1 ed. 124, in part.-Bolander in Proc. California Acad. iii, 228.-Henkel \& Hochstetter, Nadelhölz. 239.-Nelson, Pinacea, 73.-Hoopes, Evergreens, 353.-Parlatore in De Candolle, Prodr. xvi², 473.-Fowler in London Gard. Chronicle, 1872, 285.-Koch, Dendrologie, ii², 148.-Vasey, Cat. Forest Trees, 36.-Wation, Bot. California, ii, 113.-Veitel, Manual Conif. 234 .-Lawson Pinetum Brit. ii, 195, t. 32.
C. Lambertiana, Carrière in Rev. Hort. 1855, 232; Trait. Conif. 124; 2 ed. 166.
C. Hartucegii, Carrière in Rev. Hort. 1855, 232; Trait. Conif. 2 ed. 168.
?C. macrocarpa, var. fastigiata, Knight, Conif. 20.-Parlatore in De Candolle, Prodr. xvi², 473.-Veiteh, Manual Conif. 234.
?C. Hartucegii, var. fastigiata, Carrière, Trait. Conif. 2 ed. 169.

MONTEREY CYPRESS.

California, Monterey (Cypress point, Pescadero ranch, and Carmelo point).
A tree 15 to 21 meters in height, with a trunk 1.20 to 1.80 meter in diameter; on granite rocks immediately upon the sea-coast; very local.

Wool heary, hard, strong, rather brittle, very close-grained, compact, easily worked, very durable iu contact with the soil, satiny, susceptible of a beautiful polish, odorons; bands of small summer cells thin, thark colored, conspicuous; mednllary rays numerous, hardly distinguishable; color, clear bright brown streaked with red aud yellow, the thin sap-wood light yellow; specific gravity, 0.6261 ; ash, $0 . \tilde{0} 7$; very beautiful and of undoubted value as a cabinet wood.

333.-Cupressus Goveniana, Gordon,

Jonr. Hort. Soc. London, iv, 296 \& f. ; Pinetum, 60 ; 2 ed. 83.-Bentham, Pl. Hartweg. 337.-Lindley \& Gordon in Jour. Hort. Soc. London, \mathbf{v}, 206.-Carrière, Trait. Conif. 125; 2 ed. 170.-Torrey, Mex. Boundary Survey, 211.-Cooper in Smithsonian Rep. 1858, 266.-Henkel \& Hochstetter, Nadelhölz. 240.-Honpes, Evergreens, 252.-Parlatore in De Candolle, Prodr, xvi², 472.-Fowler in London Gard. Chronicle, 1872, 285.-Watson, Bot. California. ii, 114.-Veitch, Manual Conif. 230.
P. Califurnica, Carrière, Trait. Conif. 127; 2 ed. 164.
C. Californica gracilis, Nelson, Pinacce, 70 , in part

7C. cornuta, Carrière in Rev. Hort. 1866,251 \& f.
? Juniperus aromatica, Hort.
Humboldt county, Califoruia, sonth along the coast and throngh the Coast ranges into Lower California.
A small tree, sometimes 12 to 15 meters in height, with a trink 0.60 to 0.90 meter in diameter; borders of streams and mountain slopes, in rather rich soil, or oftell a low shrnb, fruiting when 0.30 to 1 meter in height, and occupying extensive tracts of sandy barrens 1 to 5 miles inland from the coast, or thin, rocky soil (Pringle); widely but not generally distributed.

Wood light, solt, not stroug, brittle, close-grained, compact; bands of small summer cells broad, dark colored, conspicuou*; medullary rays thin, obscure; color, light brown, the thick sap-wood nearly white; specific gravity, 0.4689 ; ash, 0.45̃.

334.-Cupressus Macnabiana, Mnrray,

Ediuburgh, New Phil. Jonr. new ser. i, 293, t. 10.—Gordon, l'inetum, 64; 2 ed. 90.-Carrière, Trait. Conif. 2 ed. 163.-Hoepes, Evergreens, 303.-Parlatore in De Caudolle, Prodr, xvi, 473.-Koch, Dendrologic, ii^{2}, 150.-Vasey, Cat. Forest Trees, 36.-Watson, Bot. California, ii, 114.-Veiteh, Mannal Conif. 233.
C. glandulosa, Hooker, (ex. Henkel \& Hochstetter, Nadehhölz. 241).
C. Califormic gracilis, Nelson, Pinacea, 70, in part.

California, mountains sonth of Clear lake, Lake county (Torrey, Bolander, Pringle, Miller).
A small tree, sometimes 9 meters in height, with a trunk 0.30 to 0.45 meter in diameter, or more often a tall shrub brancling from the ground; very rare and local; not rediseovered in the original station reported by Jetires, the Mount Shasta region.

Wood not collected.

> 335.-Cupressus Guadalupensis, Watson,

Proc. An. Aead. xiv, 300 ; Bot. California, ii, 114.
C. macrocarpa, ? Watson in Proc. Am. Aead. xi, 119 [not IIartweg].
C. Arizonica, E. L. Greeue in Bull. Torrey Bot. Club, ix, 64.-Rnsby in Bull. Torrey Bot. Club, ix, 79.-Watson in Proe. Am. Acad. xvini, 157.

San Francisco mountains of New Mexico and eastern Arizona (Greene, Rusby), Santa Catalina and Santa Rita mountains, Arizona (Pringle, Lemmon) ; on the Sierra Madre, near Saltillo, and Gaudalupe island, Mexico (Palmer).

A tree 18 to 21 meters in height, with a trunk 0.60 to 0.90 meter in diameter; rocky eañons and ridges; on the New Mexico and Arizona mountains, forming extensive forests between 5,000 and 8,000 feet elevation, generally on northern slopes; local.

Wood light, soft, very close-grained, compact, easily worked, susceptible of a good polish; bands of small summer cells, broad, eonspicuous; medullary rays numerous, very obscure; color, gray, often faintly streaked with yellow, the thick sap-wood light yellow ; specific gravity, 0.4843 ; ash, $\mathbf{0 . 4 4}$.

> 336.-Juniperus Californica, Carrière,

Rev. Mort, $\mathrm{jii}, 353 \&$ f. ; Trait. Conif. $58 ; 2$ ed. 41. Gordou, Pinetum, 121.—Vasey, Cat. Forest Trees, 37.-Engelmann in Trans. St. Lonis Acad. iii, 588; Wheeler's Rep. vi,375.-Palmer in Am. Nat. xii, $\mathbf{5 9 3}$.-Vatson, Bot. California, ii, 113.
J. tetragona, var. osteosperma, Torrey in Pacific R. R. Rep. iv, 141 ; Bot. Mex. Boundary Survey, 210 ; Ives Rep. 28.
J. tetragona, Cooper in Smithsonian Rop. 1858, 263 [not Sehlechtendal].
J. Cerrosianze, Kellogg in Proc. Calitornia Acad. n, 37.
J. occidentalis, Gordon, Pinetum, Suppl. 38; Pinetım, 2 cd. 16e, iu part.-Henkel \& Hochstetter, Nadelhölz. 245, in part.Hoopes, Evergreens, 299, in part.-Parlatore in De Candolle, Predr. xvi², 489, in part.
J. Californict, var. osteosperma, Engelmann; Watson iu Proe. Am. Acad. xi, 119 .

JUN1PER.

California, San Francisco bay, south through the Coast ranges to Lower California.
A small tree, rarely 6 to 9 meters in height, with a trunk 0.30 to 0.60 meter in diameter, or more often a tall shrub, sending up many stems from the ground; sands barrens and dry, rocky soil.

Wood light, soft, very close-grained, compact, very durable in contact with the soil ; bands of small summer cells thin, ilark colored, not conspienous; medulary rays munerous, rery obscure; color, light brown slightly tinged with red, the sap-wool mearly white; specifie gravity, 0.6282 ; ash, 0.75 ; in sonthern California largely used for fencing and fuel.

> Vir. Utahensis, Engelwam,
 Palmer in Am. Nat. xii,591.-Watson, Bot. Califomia, ii, 113.
J. oceidentalis, Watson in King's Iep. v, 33i; in part; l’. Wheeler, 18 [not Hooker].
J. occidentalis; var. Utahcnsis, Veitch, Mannal Conif. 2×9.

JUNIPER.

Western base of the Wahsatch mountains, Utah, to castern California, south through the Great Basin to sontheasteru California (Pringle) and the San Francisco mountains, castern Arizona (Greene).
Δ small, contorted tree, $\mathbf{6}$ to 9 meters in height, with a trunk 0.60 to 0.90 meter in diameter, or more often a tall, much-branched shrub; very common through the elevated valleys and along the lower slopes of all the ranges of central and sonthern Utah and Nevada, and the most generally-distributed arborescent species of the region.

Wood light ${ }^{\prime}$ soft, close-grained, compact, very durable in contact with the soil; color, light brown, the thick sap-wood nearly white; specific gravity, 0.5522 ; ash, 0.49 ; the common fuel and fencing material of the region.

337.-Juniperus pachyphlœa, Torrey,

Pacific R. R. Rep. iv, 142; Bot. Nex. Boundary Survey, 210; Ives' Rep. 28.-Cooper in Smithsonian Rep. 1858, 263.-Henkel \& Hochstetter, Nadelhölz. 247.-Carrière, Trait. Conif. 2 ed. 56.-Parlatore in De Candolle, Prodr. xvi², 490.-Gordon, Pinetum, 2 ed. 164.-Engelmann in Trans. St. Louis Acad. iii, 589 ; Wheeler's Rep. vi, 264.-Palmer in Aın. Nat. xii, 593.-Veiteh, Mannal Conif. 289.-Rusby in Bull. Torrey Bot. Club, ix, 79.-Hemsley, Bot. Am.-Cent. iii, 184.
J. ploelyderma, Torrey in Sitgreaves' Rep. 173, t. 16.
J. Sabina paehyphloea, Antoine, Knpress. 39.

JUNIPER.

Eagle and Limpia mountains (Havard), west along the ranges of western Texas, southern New Mexico and Arizona sonth of latitude 34°; southward into Mexico.

A tree 9 to 15 meters in height, with a trunk 0.60 to 1.20 meter in diameter; dry, stony slopes and ridges, generally between 2,000 and 3,000 feet elevation; the prevailing and largest juniper of the mountains of western Texas.

Wood light, soft, not strong, brittle, very close-grained, compact, susceptible of a five polish ; bands of small summer cells very thin, dark colored, not conspicuons; medullary rays numerous, obscure ; color, clear light red, often streaked with yellow, the thin sap-wood nearly white; specific gravity, 0.5829; ash, 0.11.

338.-Juniperus occidentalis, Hooker,

F1. Bor̀.-Aı.ii, 166.-Eudlicher, Syn. Couif. 26.-Lindley \& Gordon in Jonr. Hort. Soc. Lendon, v, 202.-Carrière, Conif. 42, in part; 2 ed. 40 , in part.-Torrey in Pacific R. R. Rep. iv, 142.-Cooper in Smithsonian Rep. 1858, 263.-Gorden, Pinetnm, 117 (excl. syn.); Suppl. 38 (exel. syn.); 2 ed. 162 (excl. syn.).-Henkel \& Hochstotter, Nadelhölz. 345, iu part.-Nelson, Pinaceæ, 142.-Hoopes, Evergreens, 299 (excl. syn. Californica).-Parlatere in De Candolle, Prodr. xvi², 489, in part.-Vasey, Cat. Forest Trees, 37.-Macoun in Geological Rep. Cauada, 1875-76, 211.-Palmer in Am. Nat. xii, 594.-Watson, Bot. California, ii, 113.-Veitch, Manual Conif. 289.
J. excelsa, Pursh, FI. Am. Sept. ii, 647.-Nuttall, Geuera, ii, 245.
J. Andina, Nuttall, Sylva, iii, 95, t. 110; 2 ed. ii, 157, t. 110.—Carrière, Trait. Conif. 2 ed. 55.

Chamcecyperis Boursierii, Decaisne in Bull. Soc. Bot. France, i, 70.
J. Hermanni, Koch, Dendrologie, $\mathrm{ii}^{2}, 141$ [not Sprengel].
J. oceidentalis, var. pleiosperma, Engelmann in Trans. St. Louis Aead. ii, 590.
J. pyriformis, Hort.

JUNIPER.

Blue monntains and high prairies of eastern Washington territory and Oregon, Caseade mountains of Oregon, valley of the Klamath river, California, and sonth along the high ridges of the Sierra Nevada, between 7,000 and 10,000 feet elevation, to the San Rernardino monntains (Parish Bros.).

A tree 9 to 15 meters in height, with a trunk 1.20 to 2.10 meters in diameter, or often a low, much-branched shrub; dry, rocky ridges and prairies, reaching its greatest development in the California sierras.

Wood light, sott, very close-grained, compact, very durable in contact with the soil; bands of small summer cells thin, not conspicuons; medullary rays mumerons, very obseure ; color, light red or brown, the sal-wood nearly white; specific gravity, 0.5765 ; ash, 0.12 ; largely nsed for fencing and fuel.

> Var. monosperma, Engolman,

Trans. St. Louis Acad. iii, 590 ; Whecler's Rep. vi, $263 .-V e i t e l$, Manual Conif. 289. -Rusly in Bull. Torrey Bot. Club, ix, 79.

JUNIPER.

Eastern base of Pike's peak, Colorado, to the monntains of western Texas, and through New Mexico and southern Arizona to southern Califormia.

A small, stunted tree, 6 to 9 meters in height, with a trunk sometimes 0.60 meter in diameter, or often branching from the gromnd with many stont, contorted stems; dry, gravelly slopes between 3,500 and 7,000 feet eleration.

Wood heavier than that of the type, the layers of annal growth often eceentric ; specific gravity, 0.7119 ; ash, 0.78 ; largely used for fuel and fencing.

Var. conjugens, Engelmann,
Trans. St. Louis Acad. iii, 590.-Veitch, Mannal Conif. 289.-WWatson in Proc. Am. Acad. xviii, 158.

JUN1PER.

Western Texas, valley of the Colorado river (Austin), west and north.
A tree 11 to 15 meters in height, with a trunk sometimes 0.30 meter in diameter, covering with extensive forests the limestone hills of western Texas; its range not yet satisfactorily determined.

Wood light, hard, not strong, very close-grained, compact, very durable in contact with the soil; bands of small summer cells thin, dark colored, conspicuous; medullary rays nnmerons, very obscure; color, brown, often streaked with red, the thin sap-wood nearly white; specifie grarity, 0.6907 ; ash, 0.46 ; largely used for fencing, fuel, telegraph poles, railway ties, etc.

339.-Juniperus Virginiana, Linnæns,

Spee. 1 ed. 1039.-Kalm, Travels, English ed. ii, 180.-Marshall, Arbustum, 70.-Wangenheim, Amer. 9, t. 2, f. 5.-Walter, Fl. Caroliniann, 248.-Aiton, Hort. Kew. iii, 414 ; 2 ed. v, 414.-Lamarek, Diet. iv, 627.-Willdenow, Spec. iv, 853 ; Enum. 1025 ; Berl. Bammz. 198.-Persoon, Syn. ii, 632.-Desfontaines, Hist. Arb. ii, 539.-Miehanx f. Hist. Arb. Am. 1ii, 42, t. 5; N. American Sylva, 3 ed. 173, t. 155.-Pursh, Fl. Am. Sept. 647.-Nonvean Duhamol, vi, 49, t. 16.-Barton, Prodr. Fl. Philadelph. 96; Compend. Fl. Philadelph. ii, 200.-l'aton, Manual, 118; 2 ed. 194.-Nuttall, Genera, ii, 245; Sylva, iii, 97 ; 2 ed. ii, 159.-Bigelow, Med. Bot. iii, 49, t. 45 ; ll. Boston. 3 ed. 398.-Hayne, Dend. Fl. 205.-Elliott, Sk. ii, z17.-Torrey in Nieollet's Rep. 167; Compend. Fl. N. Stater, 377 ; Fl. N. York, ii, 235 ; Mares's Rep. 284 ; Pucific R. R. Rep. iv, 142 ; Bot. Mex. Bonndary Survey, 211 ; Ives' Rep. 28.-Sprengel, Syst. iii, 908. - Richard, Conif. 37, t. 6, f. 2.-Audubon, Birds, t. 43.-Rafinesque, Mel. Bot. ii, 13.-Beek, Bot. 337.-Lindloy, Fl. Med. 556.-Loudon, Arboretum, iv, 2495, f. 2357.-Forbes, Pinetum Woburn. 199.-Penn. Cyel. xiii, 147.-Eaton \& Wright, Bet. 288.Emerson, Trees Massachusetts, 109; 2 ed. i, 118.-Endicher, Syn. Conif. 27, in part.-Schecle in Rumer, Texas, Appx. 447.Linulloy \& Gordon in Jomr. Hort. Soc. Lonilon, v, 202.-Parry in Owen's Rep. 618.-Darlington, Fl. Cestrica, 3 cd. '295.-Knight, Syn. Conif. 12.-Darby, Bot. S. States, 515.-Durand in Jour. Philatelphia Acad. 1355, 101.-Torrey \& Gray in Paeific R. R. Rep. ii, 130, 175.-Carrière, Trait. Conif. 43; 2 ed. 44.-Bigelow in Pacific R. R. Rep. 20.-Gordon, Pinotum, 112; 2 ed. 154.-Cooper in Smithsonian Rep. 1858, 257 ; Am. Nat. iii, 413.-Chapman, Fl. S. States, 435.-Gray in Pacific R. R. Rep. xii ${ }^{2}$, 48; Mantal N. Statos, 5 ed. 474; Hall's Pl. Texas, 21.-Hooker f. in Trans. Linnean Soc. xxiii ${ }^{2}$, 302.-Curtis in Rep. Geological Surv. N. Carolina, 1860, iii, 71.-Lesquereux in Owen's 2d Rep. Arkansas, 389.-Wood, Cl. Book, 663; Bot. \& Fl. 314.-Poreher, Resources S. Forests, 510 .Eugelmann in Trans. Am. Phil. Soe. new ser. xii, 209; Trans. St. Lonis Aead. iii, 591; Whecler's Rep. vi, 263.-Iyall in Jonr. Linnaan Soc. vii, 144.-Henkel \& Hochstetter, Nadelhölz. 335.-Nelson, Pinacew, 153.-Hoopes, Evergreens, 291.-Parlatore in De Candolle, Prodr. xvi', 488. -Young, Bot. 'Texas, 517 . -Koch, Dendrologie, ii^{2}, 138. -Watson in King's Rep. v, 335 . -Rothroek in Pl. Wheeler, 28, 50 ; Wheeler's Rej. vi, 10.-Porter \& Conlter, Fl. Colorado; Llayden's Surv. Mise. Pub. No. 4, 132.-Hayden in Wareu's Rep. Nebraska \& Dakota, 2 ed. 122.—Vasey, Cat. Forest 'Trees, 37.-Guibourt, Tist. Drogues, 7 ed. ii, $242 .-B r o a d h o a d$ in Conlter's Bot. Gazette, iii, 60.-G. M. Dawson in Canadian Nat. new ser. ix, 329.-Sears in Bull. Essex Inst. xiii, 183.-Veitch, Manmal Conif, Zצ2.-Bell in Geological Rep. Canada, 1879-80, 52c.-Ridgway in Proc. U. S. Nat. Mus. 1889, 87.-Hensles, Bot. Am.Cent. iii, 184.
J. Caroliniana, Marshall, Arbnstum, 71.-Dn Roi, IIarls. 2 ed. 497.
J. arboreseens, Moneh, Meth. 699.
.J. Barbudensis, Miehanx, Fl. Bor.-Au. ii, 246 [not Linnæus].-Pursh, Wl. Am. Sept. ii, 647.-Nuttall, Genera, ii, 245; Sylva, iii, 96 ; 2 ed. $\mathrm{ii}, 158$.
J. Virginiana, var. Caroliniana, Willdenow, Berl. Baumz. 198.-Hayne, Deud. Fl. 205. -Loudon, Arboretum, iv, 2495.
J. Virginianct, vill. Hermenmi, Persoon, Syn. ii, 6ia.
J. Hermumui, Sprengel, syst. iii,90z.
J. fotida, Var. Virginiana, Spach in Ann. Sci. Nat. 2 ker. xvi, son: Hist. Veg. xi, 316.
J. Virginiana vulgaris, Endlicher, Syn. Conif. 28.
J. Sabina, var. Virginiana, Antone, Kupress. t. 83, 64.

RED CEDAR. SAVIN.
Southern New Brmswick to the northeru shores of Georgian bay, uorthern Michigan, Wisconsin and Minnesota, sonth to cape Malabar and Tampa bay, Florida, and the valley of the Colorado river, Texas, west to eastern Nebraska, Kansas, and the Indian territory to about the one hundredth parallel of west longitnde; in the Pacific region, Rocky monntains of Colorado to Vanconver's island, British Columbia; not extending to western Texas, California, or Oregon ; in Utah, Nevada, and Arizona rare and local.

The most widely distributed of North Americau Coniferre, a tree 24 to 30 meters in height, with a truuk 0.60 to 1.35 meter in diameter, or toward its northern and western limits much smaller, often reduced to a low shrub; dry, gravelly ridges, and limestoue hills, or in the Gulf states, especially near the coast, in deep swamps; in mortheru Montana, borders of streams and lakes; commen; and reaching its greatest development in the valley of the Red riser, Texas.

Wood light, soft, not strong, brittle, very close- and straight-grained, compact, easily worked, very durable in contact with the soil ; odorous; bands of small summer cells rather broal, conspicuons; mednllary rays unmerons, very obscure ; color, dull red, the thin sap-wood nearly white; specific gravity, 0.4926 ; asl, 0.13 ; largely used for posts, sills, railway ties, interior finish, cabinet-making, and almost exclusively for lead-pencils.

A decoction of the leaves is occasionally used as a substitute for savine cerete, and an infusion of the berries as a diuretic (U. S. Dispensatory, 14 ed. 529.-Nat. Dispensatory, 2 ed. 795).

340.-Taxodium distichum, Richard,

Ann. Mus. xvi, 298 ; Conif. 52, t. 10.-Nonveau Duhamel, iii, 8.-Robin, Voyages, iii, 525.-Lambert, Pinus, 2 ed. 25 \& t.-Torrey, Compend. Fl. N. States, 361 ; Bot. Mex. Bonudary Surves, 210.-Brongniart in Ann. Sei. Nat. 1 ser. xxx, 182.-Loudon, Arboretum, iv, 2481, f. 23:35-2339.-Forbes, Pinctum Wohurn. 17\%, t. 60.-Endlicher, Syn. Conif. 68, in part. -Eugelnann \& Gray in Jour. Boston Soc. Nat. Hist. v. 234.-Scheele in Rœmer, Texas, Appx. 447.-Lindley \& Gordon in Jour. Hort. Soc, London, v, 269.- Knight, Syn. Couif. 20.-Darlington, Fl. Cestrica, 3 ed. 295.-Carrièv, Trait. Conif. 143; 2ed. 180; Rev. Hort. viii, 62 \& f.—Morren in Belg. Hort. vi, 74 \&t.-Gordon, Pinetnm, 305; 2ed. 382.-Londou Gard. Chroniele, 1857, 549.-Cooper in Smithsonian Rep. 1858, 257.-Chapman, FI. S. States, $435 .-$ Curtis in Rep. Geologieal Surc. N. Carolina, 1860, iii, 29.-Lesquereux in Owen's 2d liep. Arliansas, 889.-Wood, CI. Book, 663; Bot. \& Fl. 315.-HenkeI \& Hochstetter, Nadelhölz. 2J8.—Gray, Mauual N. States, 5 ed. 473.-Hoopes, Evergreens, 364, f. 58.-Parlatore in De Candolle, Prodr. xvi², 440.—Lawson, Pinetum Brit. ii, 305, f. 1-9. -Fowler in London Gard. Chroniele, 1872, 1526.-Young, Bot. Texas, 518.-Koch, Dendrologie, ii ${ }^{2}, 195$. -Bertraud iu Bull. Soe. Bot. France, xviii, 127.-Vasey, Cat. Forest Trees, 36.-Broadhead iu Coulter's Bot. Gazetto, iii, 60.-Veiteh, Mannal Conit. 214.-Ridgway iu Proc. U. S. Nat. Mus. 87.-Watson in Proc. Am. Acad. xviii, 158.

Cuprcssus disticha, Linneus, Spec. 1 ed. 1003.-Du Roi, Harbk. i,201.-Marshall, Arlustmm, 39.-Lamarek, Dict. ii, 244.Wangenheim, Amer. 43.-Walter, FI. Caroliniana, 238.-Aiton, Hort. Kew. iii, 372; 2 ed. v, 323.-Bartram, Travels, 2 ed. 88.-Michanx, l^{+}]. Bor.-Am. ii, 208.—Desfontaines, Hist. Arb. ii, 567.-Willdeuow, Spec. iv, 5 , En; Enum. 991 ; Berl. Baumz. 111.-Sehkuhr, Mandb. iii, 288.-Michanx f. Mist. Arb. Am. iii, 4, t. 1; N. Ameriean Sylva, 3 ed. iii, 154, t. 151.-Pursh, Fl. Aru. Scpt. ii, 645.-Barton, Prodr. Fl. Philadelphi. 93.-Rafinesque, Fl. Lndoviciana, 151.-Nuttall, Genera, ii, ㄹ24.-Hayne, Dend. Fl. 178.-James in Long's Exped. ii, 317, 318.-Elliott, Sk. ii, 649.-Beek, 13ot. 238.Eaton, Manual, 6 ed. 116.-Eaton \& Wright, Bot. 215.-De Chanbray, Trait. Arb. Res. Conif. 349.-Diclsson \& Brown in Am. Jour. Sei. 2 ser. v, 15.-Porcher, Resourees S. Forests, 508.

Cupressus disticha, var. patens and var. nutans, Aiton, Ilort. Kew. 2 ed. $\mathrm{v}, 323$.
Cupressus disticha, var. imbricaria, Nuttall, Genera, ii, 224; Trans, Am. Pliil. Soc. 2 ser. v, I63.-Croom in Amı. Jour. Sci. 1 ser. xxviii, 166.

Schubertia disticha, Mirbel in Mem. Mus. xiii, 75.—Sprengel, Syst. iii, 890.-Spach, Hist. Vey. xi,349.
T. microphyllum, Brongniart in Anu. Sci. Nat. 1 ser, xxx, 182.-Endlieher, Syn. Conit. 68.-Lindey © Gordou in Jour. Hort. Soe. London, v, 207.-Carrière, Trait. Conif. 148.
T. adscendens, Bronguiart in Anu. Sci. Nat. 1 ser. xxx, 182.-Endlicher, Syu. Conif. 69.-Lindley \& Gordon in Jonl. Hort. Soc. Londen, v, 207.-Carriere, Trait. Conif. 148.
T. distichum, var. patens and var. nutans, Endicher, Syn. Conif. Gz.-London, Arboretum, iv, 2481.
T. distichum fustigiatum, Knight, Ssn. Conit. 21.-Carièe, Trait. Conif. 145; 2 ed. 181.-Gordon, Pinctum, 307 ; 2 ed. 383.-Henkel \& Hochstetter, Nadelhölz. 260.-Hoopes, Evergreces, 367.
T. distichum, var. microphyllum, llenkel \& Hoehstetter, Nadelhöz. 261.-Parlatore in De Candolle, Prodr. xvi², 441 (T. Sinense pendulum, Forbes, Pinetum Woburn. 180.-Glyptostrobus pendulus, Endlicher, Conif. 71.-Bot. Mag. t. 5603.Carrière, trait. Conif. 152.-T. Sinense, Gordon, Piuctum, 309.-Cupressus Sinense, 1lort.).

Cuprespmnuta disticha, Nelson, 1'macees, 61.

HALD CYPRESS. BLACK CYPRESS. RED CYPRESS. WHITE CYPRESS. DEGIDUOUS CYPRESS.
Sussex comty, Delaware, soutl near the coast to Mosquito inlet and cape Romano, Florida, west through the Gulf states near the coast to the valley of the Nueces ricer, Texas, and throngh Arkansas to western Tennessee, western and northern Kentucky, sontheastern Missomi, and southern Illinois and Indiana.

A large tree of great economic valne, $2 t$ to 46 meters in height, with a trank 1.80 to 4 meters in diameter; deep, snbmerged swamps, river-bottom lands, and pine-barren ponds; common and forming extensive forests in the south Atlantic and Gulf states.

Wood light, soft, close, strajght-grained, not strong, compact, easily worked, very durable in contact with the soil; bands of small summer cells broad, resinous, conspicnons; medullary rays mmerous, very obscure; color, light or lark brown, the sap-wood nearly white; specific gravity, 0.4543 ; ash, 0.42 ; largely mamufactured into Inmber and used for coustruction, cooperage, railway ties, posts, fencing, etc., often injured, especially west of the Mississippi river, by a species of Dadalia, not yet determined, rendering it unfit for lumber.

Two varieties of eypress, black and white, are recognized by lumbermen, the wood of the former heavier than water when green, rather harder and considered more durable than the other; the unseasoned wood of the latter lighter than water and rather lighter colored than black cypress.

341.-Sequoia gigantea, Decaisno,

Bull. Bot. Soc. France, i, 70 ; Rev. Hort. 1855, 9, t, 10, f. 1.-Gray in Proc. Am. Acad. iii, 94; Am. Jour. Sci. 2 ser. xvii. 440; xviii, 150, 286.-Torrey in Pacific R. R. Rep. iv, 140.-Kellogg in l'roe. California Acad. i, 42.-Blake in Pacifio R. R. Rep. v, 257, t. 13.Carrière, Trait. Conif. 166.-Newberry in Pacific R. R. Rep. vi, 90. -Coopor in Smithsonian Rep. 1858, 263.-Wood, Bot. \& Fl. 315.Bloomer in Proc. California Acad. iii, 397.-Hoopes, Evergrecas, 239, f. 29.-Parlatore in Do Candolle Prodr. xvi, 437.-Koch, Dendrologie, ii^{2}, 194.-Bertrand in Anu. Sci. Nat. 5 ser. xx, 114.-Vasey, Cat. Forest Trees, 36.-Muir in Proc. Am. Assoc. xxv, 242.-Watson, Bot. California, ii, 117.

Welliugtonia gigantea, Lindley in London Gard. Chroniele, 1853, 819, 823; Bot. Mag. t. 4777, 4778.-C. Lemaire in Ill. Hort. 1854, 14 \& t.-Naudin in Rev: Hort. 1854, 116.-Fl. des Scrres, ix, 93 \& t. 903 \& t.-Flor. Cabinet, 1854, 121 \& t.Bigelow in Pacific R. R. Rep. iv, 22.-Gordon, Pinctum, 330; Suppl. 106 ; 2 ed. 415.-Murray in Edinburgh Now Phil. Jour. new ser, xi, 205, t. 3-9 (Trans. Bot. Soc. Edinhurgh, vi, 330, t. 6, f. 8, 9).-Henkel \& Hochstetter, Nadelhülz. 222.-Carrière, Trait. Conif. 2 ed.217.-Veitch, Manual Conif. 415.

Wellingtonia Californica, Winslow in California Farmer, September, 1854.-Hooker, Jour. Bot. \& Kew Mise. vii, 26.
Taxodinm Washingtonianum, Winslow in California Farmer, September, 1854.
Taxodium giganteum, Kollogg \& Belır in Proc. California Aead. i, 51.
S. Wellingtonia, Secmanu in Bonplandia, ii, 238; iii, 27; vi, 313; Ann. \& Mag. Nat. Hist. 3 ser. March, 1859, 161.-Lawson, Pinctum Brit. iii, 299, t. 37, 51, 53, f. 1-37.

Gigantabies Wellingtonia, Nelson, Pinacem, 79.

BIG TRES.

California, Western slopes of tho Sierra Nevadas from Placer comity (Calaveras Grove) south to Deer creek on the southern borders of Tulare county.

The largest tree of the American forest, 76 to 119 meters in height, with a trunk 6 to 11 meters in diameter; valleys aud moist swales or hollows hetween 4,000 and 6,000 feet cleration, growing in small, isolated groves, except toward its southern limits, here mixed with the sngar pine and red and white firs, covering large tracts, often seceral hundred aeres in extent.

Wood very light, soft, weak, brittle, mather coarse-gramed, compact, remarkably durable in contact with the soil; bands of small smmer cells thin, date colored, conspienous; uethllary rays mmerons, thin; color, bright clear red, turning much daker with exposure, the thin sap-wood white; specific gravity, 0.2852 ; ash, 0.50 ; in Fresno comuty formerly somewhat manfactured into lumber and locally used for fencing, shingles, construction, ete.

342.-Sequoia sempervirens, Tullicher,

 Newbery in Pacitic 1., 1. Rep. vi, 57, 90, f. 2.--Torrey in Pacitic 1R. li. Rep. iv, 140: 13ot. Mex. Boundary Survey, 210; Ives'

 Kocl, Dendrologic, ií, 193.-Vasey, Cat. Forest Trees, 33.-Stearns in Am. Nat. x, 110.—Watson, Bot. California, ii, 116.—Veiteh, Manall Conif. 2fo-lawson, Pinctum Brit. iii, t. 52 \& figs.

[^2]Taxodii species, Donglas in Companion Bot. Mag. ii, 150.
Sequoia gigantea, Endlicher, Syn. Conif. 190, in part.-Bentham, Pl. Hartweg. 338.
Abies religiosa, Hooker \& Arnott, Bot. Becchey, 160.
Sehubeitia sempervirens, Spach, Hist. Veg. xi, 353.
S. religiosa, Presl, Epimel. Bot. 357.-WValpers, Ann. iii, 448.

Gigantabies taxifolia, Nelson, Pinaceæ, $\boldsymbol{7 8}$.

REDWOOD.

California, from the northern boundary of the state, south throngh the Coast ranges to "Veers creek" near the soathern border of Monterey connty.

A large tree of great economic value, 61 to 92 meters in height, with a trunk 2.40 to 7 meters in diameter, sending up from the stump when cut many vigorous shoots; sides of cañons and gulches in low, wet situations, borders of streams, etc., not appearing on dry hillsides; generally confined to the western slopes of the Coast ranges, and nowhere extending far from the coast; most generally multiplied and reaching its greatest average density north of eape Mendocino.

Wood light, soft, not strong, very brittle, rather coarse-grained, compact, susceptible of a good polish, easily split and worked, very durable in contact with the soil; bands of small summer tells thiu, dark colored, conspicuous; medullary rays nmmerons, very obscure; color, clear light red, the thin sap-wood nearly white; specific gravity, 0.4208 ; ash, 0.14 ; largely sawed into lumber; the prevailing and most valuable building material of the Pacific coast, and in California almost exclusively used for shingles, fence posts, telegraph poles, railway ties, wine-butts, tanning- and water-tanks, coffins, etc.; forms with curled or contorted grain are highly ornamental.

343.-Taxus brevifolia, Nuttall,

Sylva, iii, 86, t. 108; 2 ed. ii, 149, t. 108 (T. occidentalis on plate).-Torrey in Pacilic R. R. Rep. iv, 140.-Newberry in Pacific R. R. Rep. vi, 60, 90, f. 26.-Ceoper in Smithsonian Rep. 1858, 263 ; Pacific R. R. Rep. xii ${ }^{2}$, 26, 69 ; Am. Nat. iii, 414.-Woed, Bot. \& Fl. 316.-Bolander in Proc. California Aead. iii, 229.-Carrière, Trait. Conif. 2 ed. 742.-1 [oopes, Evergreens, 383.-Parlatore in Do Candolle, Prodr. vii 2, 501.-Gray in Prec. Am. Acad. vii, 402.-Koch, Dendrologie, ii², 95.-Gordon, Pinetnm, 2 ed. 392.-Vasey, Cat. Forest Trecs, 35.-Macoun in Geological Rep. Canada, 1875-76, 211.-Hall in Conlter's Bot. Gazette, ii, 91.-Watsen. Bot. California, ii, 110.—G. M. Dawson in Canadian Nat. now ser. ix, 329.-Veitch, Manual Conif. 305.
T. baecata, var. Canadensis, Bentham, Pl. Hartweg. 338.
T. baecata, Hooker, Fl. 13or.-Am. ii, 167, in part.
T. Boursierii, Carrière in Rev. Hort. $1854,228 \& t$. ; Trait. Conif. $523 ; 2$ ed. 739.
T. Lindleyana, Murray in Edinburgh New Phil. Jour. new ser. i, 294; Traus, Bot. Soc. Edinburgh, vi, 1860.—Lawson, Cat. 1855, 15.-Gorden, Pinctum, 316; Suppl. 99.-Heukel \& Hochstetter, Nadellü̈z. 360.—Nelson, Pinacex, 174.
T. Canadensis, Bigelow in Pacifie R. R. Rep. iv, 25 [not Willdenow].

Queen Charlotte islands and the valley of the Skeena river, south throngh the Cuast ranges of British Colnmbia, through western and the monntain ranges of eastern Washington territory and Oregon to the western slopes of the Rocky mountains of northern Montana (Canby (f Sargent), throngla the California Coast ranges to the bay of Monterey and along the western slopes of the Sierra Nevadas to about latitnde 370 N .

A tree 18 to 24 meters in height, with a tumk 0.60 to 0.90 meter in diancter, or toward its eastem limits in Idaho and Montama much smaller, often reduced to a low shrul); rare; low, rieh wouds and borders of streams, reaching its greatest development in western Oregon, Washington territory, and British Columbia.

Wooll heavy, harl, strong, brittle, very close-grained, compact, susceptible of a beantiful polish, very durable in contact with the soil; bands of sonall summer cells thin, datk colored, eonspicnons; medullary rays thin, numerous, very obseme; color, light bright red, the thin saprood light yellow; specifie gravity, 0.6391 ; ash, 0.22 ; used for fence posts and by the Indians of the northwest coast for paddex, spear haudles, bows, ifsh-hooks, etc.

344.-Taxus Floridàna, Nuttall,

 lloopes, Evergreens, 384. -Vasey. Cat. Forest Troes, 36.
T. montana, Nuttall, sylva, iiti, 92 ; 2 ed. $\mathrm{ii}, 155$.

YEW.

Western Florida, banks of the Apalachicola river from Bristol to A spalaga, Gadsden county, and Watson's Landing? (Curtiss).

A small tree, 3 to 6 meters in height, with a trunk 0.15 to 0.25 meter in diameter; rare and very local.
Wood heavy, hard, very elose-grained, compact; bands of small summer cells very thin, dark colored, not conspicuons; medullary rays numerons, obscure; color, dark brown tinged with red, the thin sap-wood nearly white; specific gravity, 0.6340 ; ash, 0.21 .

345.-Torreya taxifolia, Arnott,

Ann. Nat. Hist. i, 134 ; Hooker, Ieou. iii, t. 232, 233.-Eaton \& Wright, Bot. 454.-Nuttall, Sylva, iii, 91, t. 109; 2 ed. ii, 153, t. 109.-Spach, Hist. Veg. xi, 293.-Endlicher, Syn. Conif. 241.-Lindley \& Gordon in Jour. Mort. Soc. London, v, 226.-Darby, Bot. S. States, 516.-Carrière, Trait. Conif. 514; 2 ed. 726. Gordon, Pinetum, 329; 2 ed. 412.-Cooper in Smithsonian Rep. 1858, $259 .-$ Chapman, Fl. S. States, 436.-Wood, Cl. Book, 664 ; Bot. \& Fl. 316.-Hoopes, Evergreens, 387, f. 62.-Parlatore in De Candolle, Prodr. xvi^{2}, 505.-Koch, Dendrologie, $\mathrm{ii}^{2}, 100$.-Vasey, Cat. Forest Trees, 35.-Veitch, Manual Conif. 311.

Caryotaxus taxifolia, Henkel \& Hochstetter, Nadelhölz. 367.
Fotataxus montana, Nelson, Pivacex, 167.

STINKING CEDAR. SAVIN.

Western Florida, eastern bank of the Apalachicola river from Chattahooelee to the neighborhood of Bristol, Gadsden county; doubtfully reported from the shores of a small lake west of Ocheesee and at Wakulla Springs, Wakulla comnty (Curliss).

A tree 12 to 18 meters in height, with a trunk 0.60 to 0.90 meter in diameter, sending up when cut many vigorous shoots from the stem aud roots; borders of swamps on calcareous soil; very rare and local.

Wood light, rather hard, strong, brittle, very close•grained, compact, susceptible of a beautiful polish, very durable in contact with the soil; bands of small summer cells very thin, not conspicuous; medullary rays momerous, obscure; color, clear bright yellow, the thin sap-wood mneh lighter; specifie gravity, 0.5145; ash, 0.73; largely used locally for fence posts, ete.

346.-Torreya Californica, Torrey,

N. York Jour. Plarm. iii, 49; Pacifie R. R. Rep. iv, 140.-Bigelow in Pacifie R. R. Rep. iv, 24.-Kollogg in Proc. California Acad. i, 3.-Newberry in ${ }^{\text {hencitic R. R. Rep. vi, 61, } 90 \text {, f. 27.-Cooper in Smithsonian Rep. 1858, 263,-Bolander in Proc. California }}$
 Pinetum, 2 ed. 410.-Vasey, Cat. Forest Trees, 35.-Watson, Bot. Califormia, ii, 110.
T. Myristica, Hooker f. in Bot. Mag. t. 4780.-Yan Houtte in Fl. des Scrres, ix, 175 \& t.-Carriere, Conif. 315; 2 ed. 727.Gordon. Pinetum, 1 ed. 327.-Murray in Edinburgh New Phil. Jour. new ser. x, 7, t. 3.-Veitch, Mannal Conif. 311.

Caryotaxus Myristica, Henkel \& Hochstetter, Nadelhölz. 268.
Fetataxus Myristica, Nelson, Pinacea, 168.

CALIFORNIA NUTDIEG. STINKING CEDAR.
Califormia, Mendocino county, and along the western slope of the Sierra Nevadas to Tulare county, between 3,000 and 5,000 fect clevation.

A tree 15 to 22 meters in height, with a trunk 0.30 to 0.90 meter in diameter, sending up from the stump when cut many vigorous shoots; borders of streams, in moist soil; rare.

Wood light, soft, not strong, very close-grained, compact, susceptible of a fine polish, very durable in contact with the soil; bands of small summer cells broad, not conspienons; mednllary rays numerous, obsenre; color, clear light yellow, the thin sap-wood nearly white; speciic gravity, 0.4760 ; ash, 1.34 .

347.-Pinus Strobus, Linmeus,

 Mœnch, Moth. 351.-Miehans, Fl. Bor.-Am. ii, 205.-Poiret in Lamarcls, Dict. v, 341 ; 111. iii, 369, t. 786, f. 2.-Lambert, Pims, 1 cd. t. 22; 2cd. i, 27, t. 35; 3ed. i, 51, t. 32.-Willdenow, Spoc. iv, 501; Enum. 932; Berl Banmz. 213.- bersoon, Syn. ii, 579.-Desfontaines, Hist.
 in Rees' Cycl, xxviii, No. 17.-Parsh, l'l. Am. Sept. ii, 614.-Laton, Manmal, 110; 6 erl. 265.-Nuttall, Genera, ii, 2e3; Sylva, iii, 118;
 N. Statcs, 360 ,Fl. N. York, ii, 299.-Pichard, Conif. 60, t. 12, i. D.-Audubon, Bìrds, 1. 39.-Beek, Bot. 339.-Loudon, Arboretum, iv, 2280, f. 2193-2196.-Forbes, Pinetum Woburn. 83.-Hooker, Fl. Bor.-Am. ii, 1G1.-Liaton \& Wriglit. Bot. B9.-Bigelow, Fl. Boston.
 De Chambray, Trait. Arb. Res. Conif. 262, t. 4, 5, f. S.-Emerson, Trees Massachnsetts, 60; 2 ed. i, 73 \& t.-Endlieher, Syn. Conif. 14\%-Gihoul, Arb. Resin, 35, t. 5.-Knight, Syn. Conif. 34.-Lindley \& Gordon in Jour. Hort. Soc. London. v, 215.-Carrièro, Trait. Conif. 302; 2 ed.398.-Bnekley in Am. Jonr. Sci. 2 ser. xii, 39E.-Dinlington, ll. Cestrica, 3 cd. 290.-Darlsy, Bot. S. States, 515.-Gordon, Pinetum, 239; 2 ed. 322.-Cooper in Smitbsonian Pep. 1553, 257.- Fencali, Furst. Pf. 56, t. 11, f. 7-13.-Chapman, Fl.
 S. Forests, 505.-Henkel \& Hochstetter, Nadelhïz. $92 .-$ Nelson, Pinacere, 130.-Hoopes, Evergreens, 136, f. 19.-Gray, Manual N.
 Forest Trees, 32.-Maconn in Geologieal Rep. Canads, 187\%-76, 211.-Sears in 13ull. Essex Inst. xiii, 187.-Veiteh, Mannal Conif. 183.-Bel1 in Geological Rep. Canada, 1879-'80. 49c.
P. Strobus, var. alba, var. brevifolia, Var. compressa, London, Arboretmm, iv, 2280.-Lindley \& Gordon in Jour. Hort. Soc. London, v, 215.

P. Strobus, Var. nivea, Hort.

WHITE PINE. WEYMOUTII PINE.

Newfoundland, northern shores of the gulf of Saint Lawrence to lake Nipigon and the valley of the Wimipeg river, south throngh the northern states to Pennsylvania, the southern shores of lake Miehigan, "Starving rock," near La Salle, Illinois, near Divenport, Iowa (Perry), and along the Alleghany monntains to northern Georgia.

A large tree of the first conomic value, 24 to 52 meters in height, with a trunk 1.20 to 3.50 meters in dianeter; sandy loam upon drift tormations, forming extensive forests, or in the region of the great lakes often in small bodies seattered throngh the hard-wood torests, here reaching its greatest development; north of latitude 47° N. and sonth of Pennsylvania, central Michigan, and Mimesota much smaller, less common and valuable.

Wood light, soft, not strong, very close, straight-grained, compact, easily worked, suseeptible of a beautiful polish; bands of small summer cells thin, not conspicuons, resin passages small, not numerous nor conspicuons; medullary rays nmmerous, thin; color, light brown, often slightly tinged with red, the sap-wood nearly white; speeific gravity, 0.3854 ; ash, 0.19 ; more largely manufactured iuto lumber, shingles, laths, etc., than that of any other North λ merican tree; the common and most valuable building material of the morthern states; largely used in cabinet-making, for interior finish, and in the mannfacture of matches, woodenware, and for many domestic purposes.

Coniferin, a gheoside principle, has been discovered in the cambinm layer of this and several other species of Coniferce (Jowr. fiur Prakt. Chem. xevii, 243.-Am. Jour. Pherm. 1s07, 261.-U. S. Dispensatory, 14 ed. 901).

> 348.-Pinus monticola, youglas;

Lambert, Piuns, 1 ed. iii, 27, t. 35.-Loudon, Arboretum, iv, 2291, f. 2203, 290, -Forbes, Pinetum Woburn, 81, t. 31. -Antoine, Conif, 40, t. 18, f. 3.-Jooker \& Arnott, Bot. Beechey, 391.-Endlieluer, Syn. Conil. 14.-Lindler \& Gorilon in Jonr. Mort. Soc. London, r, 215.Cartiore, Trait. Conil, 305; 2 en. 101.-Cordon, Jinctum, 233 ; 2 ch. 314.-Cooper in Smithsonian Rep. 1e58, 262; Dacific R. R. Rep.
 Hoopes, Evergreons, 185. - Bolander in Proc. Califormia Aeatl, iii, 818. - Paratore in De Candolk, Prodr, xri², 405 . Gray in Proc. Am. Acad. vii, 402. - Fowler in London Gard. Chronicle, 1872, 1071.-Koch, Drmdrologie, ii², 322. -Vasey, Cat. Forest Trees, 32. -
 M. Dawson in Canalian Nat. now ser, ix, 328.-Veitel, Manaal Conif. 181, f.41.-Lawson, Pincium Brit. i, 69, f. 1-6.
P. Strobus, var. monticola, Nuttall, Sylva, iii, 118; a ed. ii, 176.
I. Grozelieri, Carrière in Rer. Hort. 1809, 1:6.
P. porphyrocarpa, Lawson, I'inctum 13rit. i, 83, f. 1-8.

WIIITE PINE.

Vanenorer's island, Const and Gold ranges of sonthern British Colnmbia, through the Cour d'Alene and Bitter Root mountains of Idaho to the valley of the Flathead river, northern Monana (Chmbif © Eargent), sonth along the Cascade monntams of Washington territory and Oregon and the Califomia sierm " Cabavems eomety.

A large tree, 30 to 46 meters in height, with a trunk 0.00 to 1.50 meter in diametur: wit amon and reaching its greatest development in the Pend d'Oreille and Clank's Fork regions of Ihaho, hom d valuable and important timber tree; in British Colnmbia generally below 3,000 feet, and in Californa between 7,000 and 10,000 feet clevation; not common.

Wood rery light, soft, not strong, elose, straight-grained, compact; bands of sinall summer cells thin, resinous, not comspicnous, resin passages mmerons, not large, conspicnons; mednllary rays numerous, obscure; color, light brown or rel, the sap-wood nearly white; specific gravity, 0.3908 ; ash, 0.23 ; inferior in quality, although resembling that of the castern white pine (l '. Strobus); in Idalo and Montana somewhat manufactured into lumber.

349.-Pinus Lambertiana, Douglas,

Compauion Bot. Mag. ii, 92, 106, 107, 130, 152; Trans. Limman Soc. xv, 500.-Lambert, Pinus, 1 ed. iii, 157, t. 68, 69.-London, Arboretun, iv, 22e8, f. 2:03.-Forbes, Pinetum Woburn. 77, t. 30.-Mooker, Fl. Bor.-An. ii, 161.-Antoine, Conif. 41, t. 19.-Liudley in Penn. Cyel. xvii, 173.-Mooker \& Aroott, Bot. Beechey, 394.-Spach, Hist. Veg. xi, 397.-Nuttall, Sylva, iii, 122, t. 114; 2 ed. ii, 180, t. 114.-De Chambray, Trait. Arb. Res. Conif. 34t.-Endlicher, Syn. Conif, 150.-1indley \& Gordon in Jour. Hort. Soc. London, v, 215.-Carrièro, Trait. Conif. 307 ; 2 ed. 403.-Bigelow in Pacific R. R. Rep. jv, 21.-Torrey in Pacitic R. R. Rep.jv, 141; Bot. Mex. Bonndary Survey, 210; Ives' Rep. 28.-Now berry in Paeifie R. R. Rep. vi, 42, 90, f. 14.-Gordon, Pinotum, 228; 2 ed. 307.-Cooper in Smithsonian Rep. $185 \times 26 \%$ - Murray in Trans. Bot. Soc. Edinburgh, vi, 369.-Lawson, Pinetum Brit. i, 47, t. 7, f. 1-7.-Bolander in Proc. California Acad. iii, $200,317 .-H e n k e l \mathcal{A}$ Hochstetler, Nadehḧ̈lz. 95.-Nelson, Pinacere, 115.-Hoopes, Evergreens, 134.-Parlatore in De Candolle, Prodr. xvi², 402.-Fowler in London Gard. Chronicle, 1872, 1071.-Koch, Dendrologje, il ${ }^{2}$, 323 . -Vasey, Cat. Forest Trees, 32.-Yeiteh, Manual Conif. 179.

SUGAR PINE.

Oregon, Cascade and Coast ranges, from the head of the Mackenzie river and the valley of the Rogue river sonth along the western flank of the California sierras, through the Coast ranges to the Santa Lucia mountains, and in the San Berwardino and Cuyamaca mountains.

A large tree, 46 to 92 meters in height, with a trunk 3 to 7 meters in diameter; most common and reaching its greatest development upon the sierras of central and northern California between 4,000 and 8,000 feet eleration; in the Oregon Coast ranges descending to 1,000 feet above the sea-level.

Wood very light, soft, coarse, straight-grained, compaet, satiny, easily worked; bands of small summer cells thin, resinous, conspicuons, resin passages mumerous, very large and conspienous; medullary rays numerous, obscure; color, light brown, the sap-wood nearly white; specific gravity, 0.3684 ; ash, 0.22 ; now largely manufactured into lumber and used for iuterior finish, door-blinds, sashes, etc., and for cooperage and woodenware; less valuable and less easily worked than that of the eastern white pine (Pinus Strobus); its quality injured by the larger and more numerous resin passages.

A sacharine exudation from the stumps of cut or partially-burned trees sometimes used as a substitute for sugar.

350.-Pinus flexilis, James,

Long's Exped. ii, 27, 34.-Torrey in Ann. Lyc. N. York, ii, 249; Pucifie R. R. Repp. iv, 141.-Eaton, Manual, 6 ed. $265 .-E a t o n \&$ Wright, Bot. 359.-Nuttall, Sylva, iii, 107, t. 112; 2ed. ii, 167, t. 107.-Lindley \& Gordon in Jonr. Hort. Soc. Loudon, v, 220.Carrière in Fl. des Serres, ix, 200; Rev. Hort. 1854, 223; Trait. Conif. 310; 2 ed. 392.-Bigelow in Pacifie R. R. Rep. iv, 6, 20.Gordon, Pinetum, 224; 2 ed. 302.-Cooper in Smithsonian Rop. 185s, 26:.-Parry in Trans. St. Louis Acad. ii, 121.-Engelmann in Am. Jour. Sci. 2 ser. xxxiv, 331 ; Trans. St. Louis Acad. ii, 208 ; Wheeler's Rep, vi, 257 ; Bot. California, ii, 124.-Henkel \& Hoehstetter, Nadelhölz. 126.-Nelson, Pinacese, 112.-Bolander in Proo. California Acad. iii, 318.-LIoopes, Evergreens, 131, f. 18.-Parlatore in De Candoile, Prodr. xvis, 403.-Porterin Hayden's Rep. 1871, 494.-Watson in King's Rep. v, xxviii, 332; Pl. Wheeler, 17.-Rohhrock, Pl. Wheeler, 27, 50 ; Wheeler's Rej. vi, $9 .-$ Porter \& Coulter, Fl. Colorado; Mayden, Surs. Misc. Pub. No. 4, 130.-Marray in London Gard. Chronicle, 1875, 106.-Vasey, Cat. Forest Trees, 32.-Sargent in Am. Jonr. Sci. 3 ser. xvii, 420-Lawson, Pinetum Brit. i, 35, f. 1.
> P. Lambertiana, var. Hooker, Fl. Bor.-Am. ii, 161.
> P. Lambertiana, var. brevifolia, Eudicher, Syn. Conif. 150.-LLindley \& Gordon in Jour. Hort. Soc. London, v, 215.Carrière, Trait. Conif. 2 ed. 404.
> P. Alexilis, var. serrulata, Engelmann in Wheeler's Rep. vi, 2 :
> P. flexilis, var. macrocarpa, Lagelman in Whechers lep. vi, 枵8.

WIITTE PINE.
Eastern slopes of the Rocky momntains, Montana, and probably much farther north, sonth to New Mexico, on the Gnadalnpe and Limpia mointams, western Texas (Ifacterl), on the high mountain ranges of Utah, Nevada, and northern Arizona, Invo mometans and monnt Silliman, California.

A tree 15 to 18 meters in height, with a trunk 0.60 to 1.20 meter in diameter; dry, gravelly slopes and ridges between 4,000 and 10,000 feet elevation; common along the eastern slopes of the Rocky momitains of northern Montina, forming open, seattered forests, here low, roumb-topped, and the prevailing forest tree; in central Nevada the most valuable lumber tree of the region.

Wook light, soft, elose-grained, compaet; bamds of small snmmer cells narrow, not conspicnons, resin passages mumerons, large; mednllary has mumerous, conspicnous; color, light clear yellow, turning red with exposure, the sap-wood nearly white; specific gratvity, 0.435 ; ash, 0.28 ; in northern Moutana, Nevada, and Utah sometimes sawed into inferior lmber and used in constrmetion and for varions domestic purposes.

351.-Pinus albicaulis, Engelmann,

Trans. St. Louis Acad. ii, 209 ; Coulter's Bot. Gazette, vii, 4.-Gray in Proc. Am. Acad. vii, 402.-Vasey, Cat. Forest Trees, 32.-H:ll in Coulter's Bot. Gazette, ii, 91.-Lawson, Pinetum Brit. i, 1, f. 1-4.
P. flexilis, Murray, Rep. Oregon Exped. i, t. 2, f. 1 [not James].-Lyall in Jour. Linmrean Soc. vii, 142.-Parlatoro in De Candolle, Prodr. xvi², 403, in part.
P. cembroides, Newberry in Pacific R. R. Rep. vi, 44, 90, f. 15 [not Zuccarini].
P. Shasta, Carrière, Trait. Conif. 2 ed. 390.
P. flexilis, var. allicaulis, Engelnam in Bot. California, ii, 124.—G. M. Dawson in Cadadian Nat. new. ser. ix, 328.

Coast ranges of British Columbia, from the valley of the Lltasyonco river (G. Mr. Dawson) south along the Cascade and Blue mountains of Washington territory and Oregon, extending east along the high ranges of northern Washington territory to the eastern slope of the Rocky mountains of northern Montana (Old Marias pass, Canby \& Sargent); California, Scott's mountains, mount Shasta, and on the high peaks of the Sierra Nevadas to mount San Bernardino.

A small alpine tree, 6 to 12 meters in height, with a trunk rarely 0.60 meter in diameter, or at its highest elevation reduced to a low, prostrate shrub; dry, gravelly ridges at the extreme limit of tree growth, reaching in the San Bernardino mountains an elevation of 10,500 feet.

Wood light, soft, not strong, brittle, close-grained, compact; bands of small summer cells thin, not conspicuous, resin passages numerons, not large; mednllary rays mumerous, obscure; color, light brown, the sap-wood nearly white; specific gravity, 0.4165 ; ash, 0.27 .

> 352.-Pinus reflexa, Engelmana,

Coulter's Bot. Gazette, vii, 4.-Rusly in Bull. Torrey Bot. Club, ix, 80.
P. flexilis, var. reflexa, Engelmann in Wheeler's Rep. vi, 258.
white pine.
High mountains of southwestern New Mexico (Greenc, Rusby) to the Santa Rita monntains (Rothrock, Engelmann -Sargent) and Santa Catalina mountains (Lentmon, Pringle), Arizona.

A tree 24 to 30 meters in height, with a trunk sometimes exceeding 0.60 meter in diameter; rocky ridges and slopes of almost inaccessible cañons between 6,000 to 8,000 feet elevation.

Wood"light, hard, not strong, close-grained, compact; bands of small summer cells thin, resinous, not conspicuons, resin passages large, not numerous; medullary rays numervus, obscure; color, light red, the sapwool nearly white; specific gravity, 0.4877 ; ash, 0.26 .

353.-Pinus Parryana, Engeluanu,

Am. Jour. Sci. 2 ser. xxiv, 332 , note; Bot. Califoruia, ii, 124.-Parlatore iu De Candolle, Prodr. xvi², 402.-Vasey, Cat. Forest Trecs, 30.
P. Llaveana, Torrey, Bot. Mex. Boundary Snrvey, 208 . t. 55 [not Schiedo \& Deppe].-Cooper in Smithsonian Rep. 1858, 262.-Bolander in Proc. California Acad. iii, 318.

PIÑon. NUT PINE.

California, Larkin's station, 20 miles sontheast of Campo, San Diego comnty (Vasey), and sonthward into Lower California.

A small tree, 6 to 9 meters in height, with a trunk 0.30 to 0.45 meter in diameter; very rare within the limits of the United States; south of the boundary forming extensive open forests upon the high mesas and slopes of Lower California (Pringle).

Wood light, soft, close grained, compact; bands of small summer cells thin, not conspicnous, resin passages very mumerous, large, conspicuous; medullary rays numerous, obscure; color, light brown or yellow, the sap-wood much lighter, nearly white; specific gravity, 0.5675; ash, 0.54 .

The large seeds edible.

354.-Pinus cembroides, Zucearmi,

Flora, ii, 93.-Vndheher, Syn. Conif. 18.-Wl. des Serres, iv, 3446, t. 97.-Nelson, Pinacea, 107.-Parlatore in Do Candolle, Prodr. x $\mathfrak{i d}^{2}, 397$.-Engelman in Trans. St. Lonis Acad. ir, 176.-Watson in Proc. An. Acad. xviii, 158.

> P. Llareanu, Sclade \& Deppe in Linnea, xii, 488.-Forbes, Pinetum Woburn. 49, t. 17.-Antoine; Conif. 36, t. 16, f. 1.Spach, List. Veg. xi, 401.-Lindley \& Gordon in Jour. Mort. Soc. London, v, 216.-Carridre, Trait. Conif. 405; 2 ed. 461.-Gordon, Pinetum, $199 ; 2$ ca. 244 (excl. syn. edulis).-IIcnkol \& Hoebstetter, Naulelhölz. 64 (cxcl. syu. edulis).IIoopes, Evergrcens, 143.
> P. ostcosperme, Engelmann in Wislizenus' Rep, No. 3.-Lindley \& Gordon in Jour. Mort. Soc. London, v, 216.-Carrièro in Fl. de's Scrres, ix, 200 ; Rev. Hort. 1854, 227.

NUT PINE.
Santa Catalina monntaius, Arizoua (Pringle); through northern Mesico.
A small tree, in Arizona 6 to 7 meters in height, with a trunk hardly exceeding 0.30 meter in diameter; dry ridges and slopes at 3,500 feet elevation.

Wood light, soft, very close-grained, compact; bands of small summer cells thin, not conspieuous, resin passages few, small; medullary rays mmerons, obscure; color, light clear yellow, the sap-wood nearly white; specific gravity, 0.6512 ; ash, 0.90 .

The seeds edible.

> 355.-Pinus edulis, Engelwann,

W'islizenus' lep. No. 4 ; Wheeler's Rep. vi, 260.-Lindley \& Gordon in Jour. Hort. Soc. London, v. 216.-Carriero, Fl. des Sorres, ix, 201 ; Rev. Hort. 1854, 227; Trait. Conif. 403.-Torrey in Sitgreaves' Rep, 173, t. 20; Pacific R. R. Rep. iv, 140; Ives' Rop. 23.Bigelow in Pacitic R. R. Rep. iv, 3, 19.-Cooper in Smithsonian Rep. 1853, 261.-Hoopes, Evergreens, 142.-Parlatore in De Candolle, Prodr. xvi², 398.-Watson in Pl. Wheeler, 17.-Porter \& Coulter, Fl. Colorado; Hayden's Snrv. Misc. Pul. No. A, 130.Vasey, Cat. Forest Trces, 30.-Rothrock in Whecler's Rep. vi, 9.-Rusby in Bull. Torrey Bot. Club, ix, 106.-Vcitch, Manuak Conif. 172.

> P. cembroides, Gordon in Jour. Hort. Soe. Loudou, v, 236 \& f.; Pinetum, $192 ;$ ed. 265 [not Zuccarini].-Fl. des Scrres, $\mathrm{jv}, 394 \mathrm{~b}, 325^{\mathrm{b}}$, t. 331 , f. 97. Lindley \& Gorlon in Jour. Hort. Soc. London, v, 216.-Carrière, Trait. Conif. 404 ; 9 cd .460.
P. fittilis, Roezl in herb. fule Gordon, Pinetum, Suppl. 76; 2 ed. 265.

PIÑON. NUT PINE.

Eastern base of Pike's peak, Colorado, south through New Mexico to the mountains of western Texas.
A small tree, 6 to 9 meters in beight, with a trunk 0.30 to 0.90 meter in diameter; dry mesas and slopes, generally on lime or saudstone, reaching in Colorado an elevation of 9,000 feet.

* Wood light, soft, not strong, brittle, close-grained, compact, durable in contact with the soil; bands of small summer cells thin, not couspicuons, resin passages few, small; mednllary rays numerous, obscure; color, light brown, the sap-wood nearly white ; specific gravity, 0.6388 ; ash, 0.62 ; largely used for fnel, chareoal, fencing, etc., and in western Texas occasionally manufactured into inferior lumber.

The large edible nuts supply the Indians with a valuable article of food.

356.-Pinus monophylla, Torrey \& Fremont,

Fremont's Rep. 319, t. 4.-Cooper in Smithsonian Rep. 1858, 261.-Bolander in Proc. California Acad. iii, 318.-Hoopes, Evergreens, 142.--Parlatore in De Candolle, Prodr. xvi², 378.-Lawson, Pinetum Brit. i, 65, t. 9, f. 1-12 (P. Fremontiana on plate).-Watson in King's Rep. v, 330 ; Pl. Wheeler, 17.-Koch, Dendrologie, ii', $271 .-$ Bertrand in Bull. Soc. Bot. France, xviii, 81, t. 5, f. 81.Rothrock in Pl. Wheeler, 28, 50.-Vascy, Cat. Forest Trces, 30.-Palmer in Am. Nat. xii, 594.-Engelmann in Whceler's Rep, vi, 259,374; Trans. St. Lonis Aead. iv, 178; 13ot. California, ii, 124.-Sargent in Am. Jour. Séi. 3 ser. xvii, 419.—Masters in London Gard. Chrouicle, 1883, 1. 48, f. 8.
P. Fremontiant, Endlieher, Syn. Conif. 1831, in part.-Gordon in Jour. Hort. Soc. London, iv, 293 \& f.; Pinetum, 194; 2 ed. 235.-Knight, Syn. Conif. 28.-Lindley \& Gordon in Jour. Hort. Soc. London, v, 216.-Carrière, Trait. Conif. 194; 2 ed. 462.-Henkel \& Hochstetter, Nadelhölz. G2.

PIÑON, NUT PINE.

Near Utah lake, Utah, to the eastern foot-hills of the California sierras, south along the mountain ranges of the Great Basin to the San Francisco monntains of eastern Arizona.

A small, busly tree, 4 to 6 meters in height, with a trunk sometimes 1 meter iu diameter; dry, gravelly slopes and mesas between 3,000 and 6,000 feet elevation.

Wood light, soft, weak, brittle, close-grained, compact; bands of small summer cells thin, not conspicuous, resin passages few, not large; medullary rays numerous, obseure; color, yellow or light brown, the salp-wood nearly white; specifie gravity, 0.5605 ; ash, 0.68 ; largely used for fuel and charcoal.

The large edible seeds furnish the principal food of the Indians of the Great Basin.

357.-Pinus Balfouriana, Murray,

Rep. Oregon Expe i, t. 3, f. 1.-Gordon, Pinetum, 217; 2ed. 293. -Henkel \& Hoehstettor, Nadelhölz. 109.-Bolandor in Proc. Calitoruia Acad. iii, 318.-Carrière, Trait. Conif. 2 ed. 425.-Nelson, Piaacea, 104.-Hoopes, Evergreens, 149.-Fowler in Londou Garl. Chronicle, 1872, 973.-Vasey, Cat. Forest Trees, 32.-Engelmann in Trans. St. Louis Acat. iv, 179; Bot. California, ii, 125.Veitch, Manual Conif. 175.-Lawson, Pinetum Brit. i, 11, f. 1-5.

California, Seott's mountain, Siskiyou county (Jeffrey, Lemmon), mount Whitney, and about the headwaters of King and Kern rivers.

A small tree, 15 to 19 meters in height, with a trunk 0.60 to 0.90 meter in diameter; dry, gravelly slopes and ridges, forming upon Seott's mountain a broad belt of open forest growth between 5,000 and 8,000 feet eleration.

Wood light, soft, weak, brittle, very elose-grained, compaet, satiny, susceptible of a good polish; bands of small summer cells rery narrow, dark colored, resin passages few, not conspicuons; medullary rays numerous obseure; speeific gravity, 0.5434 ; ash, 0.41 .

Var. aristata, Engelmam,
Wheeler's Rop. vi, 375.-Bot. California, ii, 1:25.-Veitch, Manual Conif. 175.
P. aristata, Engelmann in Am. Jour. Sci. 2 ser. xxxiv, 331^{\prime}; Trans. St. Louis Acad. ii, © $005, \mathrm{t} .5,6 ; \mathrm{iv}, 179$; Bot. California, ii, 125.—Parry in Trans. St. Lonis Acad. ii, 123.-Wood, Bot. \& Fl. 313.-Regel, Gartenflora, 1863, iii, $91 .-H e n k e l$ \& Hochatetter, Naulelhölz. 417.-Nelson, Pinaceie, 103.-Carrierc, Trait. Conif. 2 eel. 424.-Parlatore in De Candolle, Prodr. $\mathrm{xvi}^{2}, 400$--Porter \& Coulter, Fl. Colorado ; Hayden's Surv. Nisc. Pub. No. 4, 1:0.-Murray in London Gard. Chronicle, 1875, 106.-Gordon, Pinetum, 2 ed. 291.-Vasey, Cat. Forest Trees, 32. -Brandegee in Conlter's Bot. Gazette, 32.Lawson, Pinctam Brit. i, 5, f. 1.
P. Balfouriana, Watson in King's Rep. v, 331 ; Pl. Wheeler, 17 [not Mnrray].-Rothrock in Pl. Wheeler, 28, 50.-Sargent. in Am. Jonr. Sci. 3 ser. xvii, 419.

FOXTAIL PINE. HICKORY PINE.

Mountains of sontheastern California, Nevada, uorthern Arizona, and southern Utah to Colorado, above 7,500 feet, or in Colorado reaching 12,000 feet elevation.

A tree 15 to 30 meters in height, with a trink 0.60 to 2.40 meters in diameter; dry, gravelly ridges ; not common.

Wood light, soft, not strong, very elose-grained, compact ; bands of small summer cells thin, dark colored, not conspicuous, resin passages few, not prominent; medullary rays numerous, obscure; color, rel, the thin sap-wood nearly white; speeifie gravity, 0.5572 ; ash, 0.30 ; in central Nevada largely used for the timbering of mines, and now nearly exterminated.

358.-Pinus resinosa, Aiton,

Hort. Kew. iii, 357; 2 ed. v, 316.-Lambart, Pinus, 1 ed. t. 14; 2 ed. i, 20, t. 14; 3 ed. i, 17, t. 13.-Willdenow, Spec. iv, 496 ; Ennm. 984; Berl. Banmz. 267.-Poirot in Lamarck, Dict. v, 339.-Persoon, Syn. ii, 578.-Desfontaines, Hist. Arb. ii, 612.-Smith in Rees' Cycl. xxviii, No. 3.-Pursh, Fll. Arn. Sept. ii, 642.-Eaton, Manual, 110; 6 ed. 364. -Nuttall, Geuera, ii, 223.-Hayne, Dend. Fl. 173.-Sprengel, Syst. ii, Z3.-Torrey, Compend. Fl. N. States, 360 ; Fl. N. Yorlk, ii, 227.-Beck, Bot. 339.-London, Arboretnm, iv, 2210, f. 2094-2097.-Forbes, Pinetum Woburn. 19, t. 6.-Hooker, Fl. Bor. Am. ii, 161, in part.-Eaton \& Wright, Bot. 358.-Bigelow, Fl. Boston. 3 ed. 34.-Lialley in Penn. Cycl. xvii, 170.-Antoine, Conif. 7, t. 4, f. 1.-Link in Linnæa, xv, 501.-Endlicher, Syn. Conif. 178. -Knight, Syn. Conif, 27.-Lindley \& Gordon in Jonr. Hort. Soc. Londou, v, 219.-Pary in Owen's Rep. 618.-Carrière, Trait. Conif. 401.—Gorlon, Pinetum, 183 (excl.syn. Loiseleuriana); 2ed. 256.-Richardson Arctic Exped. 441.-Cooper inSmithsonian
 Evergreens, 10.-Giray, Blanual N. States, 5 ch. 470.-Parlatore in De Candolle, Prodr. xvi², 3es.-Koch, Deudrologic, ii², 286.Vasey, Cat. Forest Trees, 30.-Macoun in Geological Rep. Canada, 1875-36, w11.-Engelmanu in Trans. St. Louis Acad. iv, 179.Sears in Bull. Essex Inst. xiii, 195.-Bell in Geological Rep. Canada, 1870-90, 50c.-Veiteh, Mannal Conif. 159.

I'. Vubra, Miclanx f. Hist. Arb. An. i, $46, t .1$; N. American Sylva, 3 ed. iii, 91, t. 134 [not Lambert].-Do Chambray Trait. Arb. Res. 344.-Giboul, Arb. Resin. 27.-Carriere, Trait. Conif. 2 ed. 496.
P. Laricio, var. resinosa, spach, List. Veg. 385.

RED PINE. NORWAY PINE.

Newfoundand, northem shores of the gulf of Saint Lawrence and lake Nipigon to the valley of the Winnipeg river, south throngh the northern states to Chestnut Hill, Middlesex county, Massachusetts, the mountains of northern Pennsylvania, Isabella county, Michigan, and central Minnesota.

A large tree, 24 to 46 meters in height, with a trunk 0.60 to 1.37 meter in diameter; light sandy loam or dry, rocky ridges, forming scattered groves ravely exceeding a few hundrel acres in extent; common and reaching its greatest development throngh northern Wisconsin and Minnesota; rare in the eastern States, except in the extreme northern portions of New England.

Wood light, not strong, hard, rather coarse-grained, compact ; bands of small summer cells broad, dark colored, very resinous, resin passages few, small, not couspicuons; medullary rays mumerous, thin; color, light red, the sap-wood yellow or often almost white; specific gravity, 0.4854 ; ash, 0.27 ; largely manufactured into lumber and used for all purposes of construction, flooring, piles, etc.

359.-Pinus Torreyana, Parry,

Bot. Mex. Boundary Survey, 210, t. 58, 59; Proc. San Diego Nat. Hist. Soc. Nov. 1883.-Carrière, Trait. Conif. 326; 2 ed. 423.Gordon, Pinctum, 241.-Cooper in Smithsonian Rep. 1860, 442.-Heukel \& IIochstetter, Nadelhölz. 117.-Belander in Proc. California Acad. iii, 318.-lloopes, Evergreens, 150.-Vasey, Cat. Forest Trees, 31.-Palmer in Am. Nat. xii, 594.-Engelmann in Trans. St. Louis Acad. iv, 181 ; Bot. California, ii, 125.-Voitch, Manual Conif. 173.
P. lophosperma, Lindley in London Gard. Chroniele, 1860, 4G.-Gordon, Pinetum, Suppl. 69; 2 ed. 310.-Henkel \& Hochstetter, Nadelhölz. 112.-Nelson, Pinacere, 117.-Parlatore in De Caudolle, Prodr. xvi², 391.

California, month of the Soledad river, San Diego county; donbtfully reported from one of the islauds off Santa Barbara and from Lower California.

A low, short-lived, gnarled, crooked tree, 6 to 8 meters in height, with a trunk $0: 23$ to 0.33 meter in diameter; .crests of sandy bluffs immediately npon the sea-coast; very local and fast disappearing.

Wool light, soft, not strong, brittle, rather close-grained, compact; bands of small summer cells broad, - resinous, conspicnous, resin passages small, few ; medullary rays numerous, obscure; color, light red, the sap-wood . Sellow or nearly white; specific gravity, 0.4879 ; ash, 0.35 ; locally used for fuel.

> 360.-Pinus Arizonica, Eugelmann,

Wheeler's Rep. vi, 260 ; Trans. St. Louis Aead. iv, 181 ; Conlter's Bot. Gazette, vii, 4.

YELLOW PINE.

Santa Rita momtains (Rothrock, Engelmann \& Sargent), Santa Catalina mountains (Lemmon, Pringle), and probably upon other ranges of southern Arizona.

A tree 24 to 30 meters in height, with a tronk 0.60 to 0.90 meter in diameter; high rocky ridges between 6,000 and 8,000 feet elevation; the prevailing forest tree over large areas near the smmmits of the Santa Catalina monntains (Lemmon).

Wood light, soft, not strong, rather brittle, close grained, compact; bands of small summer cells broad, very resinons, conspicuous, resin passages numerous, large; medullary rays thin, obscure; color, light red or ofteu yellow, the sap-wood lighter yellow or white; specific gravity, 0.5038 ; ash, 0.20 ; sometimes sawed into inferior dumber.

361.-Pinus ponderosa, Donglas,

Companion Bol. Dag. ii, 111.-Loudon, Arboretum, iv, 2243, f. 2132-2136.-Forbes, Pinetmin Wobum. 44, t. 15.-Antoine, Conif. 28, t. 8, f. 1.-lindley in lenn. Cyel. xvii, 172.-Link in Linntea, xv, 306.-Nuttall, Sylva, iii, 114; 2ed. ii, l7:.-Spaeh, Hist. Veg. xi, $389 .-$ Endlieher, Syn. Conif, 163.-Knight, Syn. Conif. 30.-Lindley \&. Gordon in Jour. Hort. Soc. London, v, 217.-Carrière, Trait. Conif. 310; 2 ed. 445.-Gordon, Pinetum, 205; Suppl. 67; 2 ed. 281 . -Newberry in Pacific R. R. Rep. vi, 30, 90, t. 4, f. 12.-Cooper in Smithsonian Rep. 1858, 261 ; Pacifte R. IR. Rep. xií, 27, 68; Am. Nat. iii, 409.-Torrey, Bot. Mex. Boundary Survey, 209 ; Ives ${ }^{\prime}$ Rep. 28.-Fngelnamn in Am. Jour. Sci. 2 ser. xxxiv, 33:\% Proe. Am. L'lil. Soc. © ser. xii, 209; Wheeler's Rep. vi, 261; Trans. St. Louis Acal. iv, 181 ; Bot. Californin, ii, 12 ,-Lyall in Jomr. Liunan Soc. vii, 142. - Bolander in Proe. California Acad. iii, 226 , $317 .-$ Ifonkel \& Hochstetter, Nadelhölz. 71.-Nelson, l'inacene, 125.-Hoopes, Evergreens, 117.-Parlatore in Do Candollo, Prodr. xvi, 395 (excl.syn. Sinclairii).-Watson in King's Rep. v, 331 ; Pl. Wheeler, 17.-Gray in Proc. Am. Acad. vii, 402.-Fowler in Loudon Gard. Chronicle, 1872, 1326.-Koelı, Dendrologie, ii', 310.-Rothrock in Pl. Whecler, 28, 50; Wheeler's Rep. vi, 9.-Porter \& Conlter, Fl. Colorado; IIayden's Surv. Mise. Pub. No. 4, 1:9.-1Iajden in Warren's Rep. Nebraskin \& Dakota, 2 ed, 121.-Vasey, Cat. Forest Trees, 30.-Ilall in Conlter's Bot. Gazette, ii, 91.-Macoun in Geologicil Rep. Canadi, 1875-76, 211.-Brandegee in Coulter's Bot. Gazettr, iii, 39. -G. M. lawson in Canadian Nat. new ser. ix, 396.- liushy in Hull. Torrey Bot. Club, ix, 106.

Abstract

P. Benthamiana, Hartweg in Jour. Hort. Soe. Londou, ii, 189; iii, 223.-Gordon in Jour. Hort. Soc. London, iv, 212 \& t.; (Fl. des Serres, vi, 85 \& f.) ; Pinctum, 188; 2 ed. 261 (exel, syn. Sinclairii).-Knight, Syn. Couif. 30.-Lindley \& Gordon in Jour. Hort. Soc. London, v, 216.-Carrière, Trait. Conif, 350; 2ed. 452.-Mnrray in Edinburgh New Phil. Jour. new ser. i, 287, t.8.-Henkel \& Hoehstetter, Nadelhölz. 84.-Nelson, Pinaceæ, 104.-Fowler in London Gard. Chronicle, 1872, 973. P. resinosa, Torrey in Ann. Lye. N. York, ii, 249 [not Aiton]-Douglas, Companion Bot. Mag. ii, 126.-Hooker, Fl. Bor.-Am. ii, 161, in part.-Winchell in Ludlow's Rep. Black Hills, 68. \boldsymbol{P}. brachyptera, Engelmann in Wislizenus' Rep. No. 4.-Lindley \& Gordon in Jour. Hort. Soe. London, v, 216.-Carrière in Fl. des Serres, ix, 201; Rev. Hort. 1854, 227 ; Trait. Conif. 356; 2 ed. 454.-Bigelow in Pacific R. R. Rep. iv 18.Gordon, Pinetnm, 190; 2 ed. 263.-Henkel \& Hoehstetter, Nadelhölz. 85.-Nolson, Pinaceæ, 454. P. Beardsleyi, Murray in Edinburgh New Phil. Jour. new ser. i, 286, t. 6.-Carrière, Trait. Conif. 359. P. Craigana, Murray in Edinhurgh New Phil. Jour. new ser. i, 288, t. 7. P. macrophylla, Torrey in Sitgreaves' Rep. 173 [not Eugelmann]. P. Engelmanni, Torrey in Pacific R. R. Rep. iv, 141 [not Carrière]. P. Parryana, Gerdon, Pinetum, 202; 2 ed. 277 [not Eugelmann].—Henkol \& Hochstetter, Nadelhölz. 88.-Carrière, Trait. Conif. 2 ed. 446. P. ponderosa, var. Benthamiana, Vasey, Cat. Forest Trees, 30 . P. ponderosa, var. scopulorum, Engolmann in Bot. California, ii, 126.

YELLOW PINE. BULL PINE.
Interior of British Columbia, south of latitude 51°, south and east along the mountain ranges of the Pacific region to Mexico, the Black hills of Dakota, Colorado, and western Texas; not detected in central or southern Nevada.

A large tree, 61 to 91 meters in height, with a tronk 3.60 to 4.57 meters in diameter, or throughout the Rocky Mountain region much smaller, rarely exceeding 30 meters in height (var. scopulorum); dry, rocky ridges and prairies, or in northern California rarely in cold, wet swamps, reaching its greatest development along the western slope of the sierras of northern and central California; in western Washington territory and Oregon rare and local; after Pseudotsuga Douglasii the most generally distribnted and valuable timber tree of the Pacific forests, furnishing the principal lumber of eastern Washington territory and Oregon, western Montana, Idaho, the Black hills of Dakota, western Texas, New Mexieo, and Arizona.

Wood, varying greatly in quality and value, heavy, hard, strong, brittle, not coarse-grained nor durable, compact; bands of small summer cells broad or narrow, very resinous, conspicuous, resin passages few, small; medullary rays numerous, obscure ; color, light red, the very thick sap-wood almost white ; specific gravity, 0.4715; ash, 0.35 ; largely manufactured into lumber, and used for railway ties, fuel, ete.

Note.-A form with purple cones and long glaueous foliage, approaching P. Jeffreyi in habit, is the prevailing tree of the valley of Flathead Iake, Montana (Carby fo Sargent).

362.-Pinus Jeffreyi, Murray,

Rep. Oregon Exped.2, t. 1; Edinlurgh New Phil. Jour. new ser. xi, 224, t. 8, 9 (Trans. Bot. Soc. Ediuburgh, vi, 350 \& t.); Carrière, Trait. Conif. 388; 2 ed. 439.—Gordon, Pinetum, 198; 2 ed. 272.—Henkel \& Hoehstetter, Nadelhölz. 87.-Nolson, Pinaceæ, 115.-Hoopes, Evergreens, 115.-Parlatore in De Candolle, Prodr. xvi², 393.-Lawson, Pinetum Brit. i, 45, t. 6, f. 1-4.-Koch, Dendrologie, iit, 314.-Engelmann in Coulter's Bot. Gazette, vii, 4.-Veitch, Manual Conif. 165.
P. deflexa, Torrey in Bot. Mex. Boundary Survey, 209, t. 56, in part.-Cooper in Smithsonian Rep. 1860, 442.-Henkel \&
Hoehstetter, Nadolhölz, 416, -Carriere, Trait. Conif. 2 ed. 455 .-Bolander in Proe. California Acad. iii, 318.-Parlatore
in De Candolle, Prodr. xvi²,431.-Fowler in London Gard. Chroniele, 1872, 1070.-Murray in London Gard. Clıroniele,
1875, 106.-Gordon, Pinetum, 2 ed. 289 .

bull pine. black pine.

California, Scott's mountain, Siskiyou county, south along the Sierra Nevada to the San Bernardino and San Jacinto inountains.

A large tree, 30 to 31 meters in height, with a trunk 1.20 to 4 meters in diameter; dry, gravelly slopes between 6,000 and 8,000 feet elevation; most common and reaching its greatest development on the easteru slope of the Sierra Nevadas, here generally replacing the allied P. ponderosa, from which it may be distinguished by its more deeplycleft bark, glaucous branchlets and leaves, much larger cones, and by the strong, pungent odor of oil of orange of the freshly-cut branchlets.

13 FOR

Wood light, strong, hard, rather coarse-grained, compact; bands of small smmer cells not broad, very resinous, conspichons, resin passages few, not harge; mednllary rays numerons, obscure; color, light red, the sap-wood pale yellow or nearly white; specitic gravity, 0.5206 ; ash, 0.20 ; largely manufactured into coarse lamber.

Abietine, a volatile earbo-hydrogen possessing powerful anæsthetie properties, is probably obtained by distilling the resinous exnlation of this species, and not ol P. Sabiniana (Watt's Dict. Chemistry, 2d Suppl.1.-Am. Jour. Pharm. 1872, 97.-U. \&. Dispensatory, 14 ed. 900).

363.-Pinus Chihuahuana, Eugelmann,

Wislizenns' Rep. No. 26 ; Wheeler's Rep. vi, 262 ; Trans. St. Louis Acad. iv, 181; Coulter's Bot. Gazette, vii, 4.-Lindley \& Gordon in Jour. Hort. Soc. London, v, $2 \% 0$.-Curriere in Ml. des Serres, ix, 200 ; Rev. Hort. 1854, 227; Trait. Conif. 357 ; 2 ed. 455.-Gordon, Pinetmin, 193; 2 cd .266 .-Torrey, Bot. Mex. Boundary Survey, 209.-Cooper in Smithsonian Rep.1860, 442.-Henkel \& Hochstetter, Natelhölz. 86.-Hoopes, Evergreens, 143.-Parlatore in De Candolle, Prodr. xvi² 397. -Vasey, Cat. Forest Trecs, 32.

Santa Rita monntains, Arizona (Rothrock, Engelmann \& Sargent), Sau Francisco mountains of sonthwesteru New Mexico and Arizona (Grene); in Chilmahua.

A small tree, 18 to 24 meters in height, with a trunk 0.45 to 0.60 meter in diameter; dry, rocky ridges and slopes between 5,000 and 7,000 feet elevation; not common.

Wood light, soft, strong, brittle, close-grained, compact; bands of small summer cells not broad, resinons, conspicuous, resin passages few, rather large, conspicuous; medullary rays numerons, thin; color, elear light orange, the thick sap-wood lighter; specific gravity, 0.5457 ; ash, 0.39 .

364.-Pinus contorta, Douglas;

Loudon, Arboretum, iv, 2292, f. 2210, 2211.-Nuttall, Sylva, iii, 117; 2 ed. ii, 176.-Endlieher, Syn. Conif. 168.-Carrière, Trait. Conif. 164; 2 cd .474. -Torrey in Pacifie R. R. Rep. iv, 141.-Gordon, Pinetum, 165; 2 cl. 232.-Cooper in Smithsonian Rep. 1858, 261.-Lyall in Jour. Linnæan Soc. vii, 133, 141, in part.-Henkel \& Hochstetter, Nadelhölz. 24.-Rothrock in Smithsonian Rep. 1867, 433.-Hoopes, Evergreens, 81, in part.-Parlatore in Do Candolle, Prodr, xví, 381, in part.-Watson in King's Rep. v, 330.-Fowler in London Gard. Chronicle, 1872, 1070.-Gray in Proe. Am. Acad. vii, 402.-Koch, Dendrologie, ii ${ }^{2}$, 301.-Vasey, Cat. Forest Trees, 29.Hall in Conlter's Bot. Gazette, ii, 91 . - Macoun in Geological Rep. Canada, 1875-76, 211.-Engelmann in Trans. St. Louis Acad, iv, 182; Bot. California, ii, 126; London Gard. Chronicle, 1883, 351.-G. M. Darrson in Canadian Nat. 2 ser. ix, 327, in part.-Veiteh, Manual Conif. 145.-Masters in London Gard. Chroniele, 1883, 45, f. 5.
P. inops, Bengard iu Mem. Acad. St. Petersburg, 6 ser. ii, 163 [not Aiton].-Hooker, Fl. Bor.-Am. ii, 161, in part.-Ledebonr, Fl. Rossiea, iii, 676 [not Aiton].
P. Boursieri, Carrièro in Rev. Hort. 1854, 233 \& f. ; FI. des Serres, ix, 200 \& f.; Trait. Conif. 398; 2 ed. 475.
P. Bankisiana, Lindley \& Gordon in Jour. Hort. Soe. London, v, 218, in part.

- P. muricata, Bolander in Proc. California Acad. iii, 227, 317 [not Don].
P. Bolanderi, Parlatore in De Candolle, Prodr. xvi², 379.

SCRUB PINE.

Alaska, sonth along the coast to Mendocino county, California, extending inland to the western slopes of the Coast ranges.

A small, stunted tree, 6 to 9 meters in height, with a trunk 0.30 to 050 meter in diameter; sandy dnnes and exposed rocky points.

Wood light, hard, strong, brittle, coarse-grained; bands of small smmer cells very broad, resinons, conspicuous, resin passages mumerons, not large; medullary rays numerous, obscure; color, light brown tinged with red, the thick sap-wood nearly white; specifie gravity, 0.5815 ; ash, 0.19.

365.-Pinus Murrayana, Balfour,

Rep. Oregon Expot. 2, t. 3, f. 2.-Murray in Edinburgh Now Phil. Jour. new ser. xi, 226 (Trans. Bot. Soc. Edinburgh, vi, 351).
P. inops, Bentham, Pl. Ilartweg. 337 [not Aiton].
P. contorta, Newberry in Pacifie R. R. Rep. vi, 34, 90, t.5, f. 11 [not Douglas].-Engelmanu in Am. Jour. Sei. 2. ser. xxiv, 332 -Lyall in Jour. limmean Soe. vii, 141, in part.-Cooper in Am. Nat. iii, 409.-Parlatoro in Do Candolle; Prodr. $\mathrm{xvi}^{2}, 381$, in part.-l'orter in Hayden's Rep. 1871, 494.-Gray in Proc. Am. Aead. vii, 402.-Rothrock in Pl. Wheeler, 27 , 50.-Parry in Am. Nat. vii, 179.
P. contorta, var. latifolia, Engelmanu in King'ぬ Rep. v, 331 ; Porter \& Coulter, FI. Colorado; Hayden's Snrv. Miso. Pub. No. 4,129 ; Whecler's Rep. vi, 262.-Braudegee in Conlter's Bot. Gazette, iii, 32.-G. M. Dawson in Canadian Nat. new ser. ix, $3 \geq 3$.
P. contorta, vill. Bolanderi, Vasey, Cat. Forest Trees, 2 .

TANARACK. BLACK PINE. LODGE-POLE PINE. SPRUCE PINE.
Valles of the Yukon river, Alaska (Fort Sclkirk, Dall), sonth throngl the interior of British Columbia, along. the monutain ranges of Washington territory aud Oregon and the Sierra Nevadas of California to mount San Jaeinto; on the high plateau east of the Rocky monntains in abont latitnde 56°, and south throngh the momptans of Ilaho, Montana, Wyoming, Colorado, and Utah to New Mexicu and northern Arizona.

A tree 18 to 24 meters in height, with a trunk 0.60 to 1.20 meter in diameter; reaching its greatest development in the California Sierras; in the interior regions in dry, gravelly soil, here the prevailing tree, covering immense areas, and generally replatiog other species destroyed by fire; western Washington territory and sonthward only along the borders of moist alpine meadows between 6,000 and 9,000 feet elevation ; generally confounded with the eloselyallied P. contorta of the coast, from which it may be distinguished ly its longer, broader leaves, very thin, sealy barl, thin sap-wood, and less resinous and finer-grained wood, resembling that of the white pines; the distribution of the two species in northeru British Columbia and Alaska still undetermined.

Wood light, soft, not strong, elose, straight-grained, easily worked, compact, not durable; bands of small summer cel a narrow, not conspienous, resin passages few, not large; medullary rays momerous, obseure; color, light yellow or aearly white, the thin sap-wood lighter; specific gravity, 0.4096 ; ash, 0.32 ; oceasionally manufactured into lo sber, and used for fael, railway ties, etc.

366.-Pinus Sabinıana, Douglas,

Companion Bot. Mag. ii, 150.-Lambert, Pinus, 1 ed. iii, 137, t. 58.-Loudon, Arboretum, iv, 2246, f. 2138-2143.-Forbes, Pinetum Woburn. 63, t. 23, 24.-Hooker, Fl. Bor.-Am. ii, 162.-Liudley iu Pcan. Çcl. xvii, 172.—Antoino, Conif. 30, t. 11.-Hooker \& Arnott, Bot. Beechey, 393.—Link in Linuæa, xy, 509.-Nuttall, Sylva, iii, 110, t. 113; 2 ed. ii, 169, t. 113.-Spach, Hist. Veg. xi, 390.-De Chambray, Trait. Arb. Res. 347.-Endlicher, Syn. Conif. 159.-Knight, Syu. Conif. 30.-Lindley \& Gordon in Jonr. Hort. Soo. London, v, 216.-Fl. des Serres, ix, 275, t. 964 .-Carrière, Trait. Conif. 334 ; 2 ed. 435.-Torrey \& Gray in Pacific R. R. Rep. ii, 130.-Bigelow in Pacific R. R. Rep, iv, 25.-Torrey in Pacific R. R. Rep. iv, 141 ; Bot. Mex. Boundary Survey, 210 ; t. 57 ; Ives' Rep. 28. -Newberry in Pacific R. R. Rep. vi, 39, 90, f. 13.-Gordon, l'inotum, 208; 2 ed. 284.-Cooper in Smithsonian Rcp. 1858, 261.-Walpers, Ann. v, 799.-Bolander in Proc. California Acad. iii, $226,318 .-H e n k e l$ \& Hochstetter, Nadolı̈̈lz. 75.-Lawson, Pinetnm Brit. i, 85, t. 11, t. 1-3.-Nelson, Pinacce, 129.-Hoopes, Evergreens, 121.-Parlatore in De Candolle, Prodr. xvi, 391.-Fowler in London Gard. Chronicle, 1872, 1325.—Koch, Dendrologie, ii ${ }^{2}$, 312.-Vascy, Cat. Forest Trees, 31.-Engchmann in Whecler's Rop. vi, 375; Trans. St. Louis Acad. iv, 182; Bot. Califoruia, ii, 127.-Veitch, Manual Conif. 169.

DIGGER PINE. BULL PINE.

California, Portuguese Flat, Shasta county, sonth along the foot-hills of the Coast ranges and the western slope of the Sierra Nevadas below 4,000 feet elevation.

A large tree, 24 to 30 meters in leight, with a trunk 0.60 to 1.20 meter in diameter ; very common through all the foot-hills region.

Wood light, soft, not strong, brittle, very coarse-grained, compact, not durable; bauds of small summerecells broad, very resinons, conspicuons, resin passages few, large, prominent; medullary rays numerous, obseure; color, light brown or red, the thick sap-wood yellow or nearly white; specific gravity, 0.4840 ; asl, 0.40 ; largely used for fuel.

The large edible nuts furnish the Indians an important article of food.

367.-Pinus Coulteri, D. Don,

Trans. Linnean Soc. xvii, 440.-Loudon, Arboretum, iv, 2zin0, f. 2144-2146.-Forbes, Pinetum Woburn. 67, t. 25, 26.-Autoine, Conif. 31, t. 12, 13.-Penn. Cycl. xvii, 172.-LLink in Linnea, xv, 510.-Nooker \& Arnott, Bot. Beechey, 393.-Nuttall, Sylva, iii, 112; 2 ed. ii, 171.-Endlicher, Syu. Conif. 160.-Carrière in Fl. des Serres, ix, 275 \& t. ; Trait. Conif. 334; 2 cd. $435 .-C o o p e r ~ i n ~$ Smithsonian Rep. 1858, 261.-Torrey in Ives' Rep. 28.-Henkel \& Hochstetter, Nadelhälz. 76.-Bolauder in Proc. California Acad. iii, 318.-Parlatore in De Candolle, Prodr. xvi, 392.-Vasey, Cat. Forest Treos, 31.—Gordon, Pinetum, 2 ed. 266.-Engelmann in Trans. St. Loois Acad. iv, 182 ; Bot. California, ii, 127.-Lawson, Pinetum Brit. i, 23, f. 1-5.
P. macrocarpa, Lindley in Bot. Reg. xxvi, Misc. 61.—Knight, Sgu. Conif. 30.-Lindley \& Gordon in Jonr. Hort. Soc. London, v, 216.-Gordon, Pinetum, 201.-Nelson, Pinacea, 117.-Hoopes, Evergreens, 115.-Veitch, Manual Conif. 166.
P. Sabiniana Coultcri, Loudon, Encycl. Pl. 985, f. 1839-1841.
I. Sabiniana macrocarpa, Hort.

California, Monte Diablo, sonth through the Coast ranges to the Cuyamaca monntains, and probably in Lower California.

A tree 24 to 46 meters in height, with a trunk 0.90 to 1.80 meter in diameter; dry ridges and slopes between 3,000 and 6,000 feet elevation ; most common and reaching its greatest development in the San Jacinto mountains.

Wood light, soft, not strong, brittle, coarse-grained; bands of small summer cells broad, very resinous, conspicnons, resin passages few, large; uedullary lays mumerous, prominent; color, light refl, the thiek sap-woot nearly white; specifie gravity, 0.4133 ; ash, 0.37 .

368.-Pinus insignis, Douglas;

 8, f. 1.-Hooker \& A:sott, Bot. Beechey, 333.-Spaeh, Hist, Veg. xi, 389.-Nuttall, Sylva, iii, 115; 2 ed. ii, 174.-Bentham, Bot. Sulphur, 55.-Dulliber, Syn. Conif, 163.-Knight, Syn. Conif. 30.-Lindley \& Gordon in Jour. Hort. Soc. London, v, 217.Carrière, Trait. Conit. : 39 ; 2 ad. 440.-ligelow in Pacifie R. R. Rep. iv, 25.-Torroy in Pacifie R. R. Rep. iv, 141; Bot. Mox. Boundary Survey, 209, t. 55 ; 1 ves' Rep. 2\%.-Newberry in Pacifie R. R. Rep. vi, 90 -Gordon, Pinetum, 197; 2 ed. 270.-Cooper in Smithsonian Rep. 1858, 261.-Mnrray in Elinburgh Now Phil. Jour. new ser, xi, 222 (Trans. Bot. Soc. Edinburgh, vi, 347).Henkel \& Ilochstether, Natelhölz. 69.-Bolander in Proc.California Acad. iii, 262, t. 317.-Nelson, l'inacea, 114.-Hoopes, Evergreens, 143.-Parlatoro in De Candolle, Prodr. xvi, 395. -Lawson, Pinetum Brit. i, 37 t. 1, 5, f. 1-14.-Fowler iu London Gard. Chronicle, 1872, 1070.-Vasey, Cat. Forest Trees, 31.-E'ngelnann in Trans. St. Lonis Acad. iv, 182; Bot. California, if, 128.-Veitel, Mannal Conif. 163, f. 39.

PP. Californica, Loiseleur iu Nonveau Duhamel, v, 243.-Loudon, Arboretum, jv, 2268.-Endlieler, Syn. Conif. 162.llooker \& Arnott, Bot. Beechey, 393.-Nuttall, Sylva, iii, 117; 2 ed. ii, 175.-Carrière, Trait. Conif. 1 ed. 253.
P. adunca, Bose in Poiret, Suppl. iv, 418.
P. Sinclairii, Hooker \& Arnott, Bot. Becehey, 392, 393, t. 93, in part.-Nuttall, Sylva, iii, 141; 2 ed. ii, 198. -Carrière, Trait. Conif. 2 ed. ii, 198.
P. radiata, D. Don in Trans. Linnæan Soe. xvii, 442; Lambert, Pinus, 1 ed. iii, 133, t. 86.-Loudon, Arboretum, iv, 2270, f. 2182.-Antoine, Conif. 33, t. 14, f. 3.-Hooker \& Arnott, Bot. Beechey, 392, 393, in part.-Nnttall, Sylva, iii, 116; 2 ed. ii, 175.-Endlicher, Syn. Conif. 161.-Hartweg in Jonr. Hort. Soc. London, iii, 226.-Gordon in Jonr. Hort. Soc. Loudon, iv, 214 \& f. (Fl. des Serres, vi, $434 \&$ t.); Pinetum, 206; 2 ed. 282.-Knight, Syn. Conif. 37.-Lindley \& Gordon in Jour. Hort. Soc. London, v, 216.-Carrière, Trait. Conif. 1 ed. 337.-Nelson, Pinaceæ, 127.-Hoopes, Evergrcens, 118.—Koch, Dendrologie, ii ${ }^{2}$, 307.-Vasey, Cat. Forest Trees, 31.
P. tuberculata, D. Don in Trans. Linnæan Soc. xvii, 441 [not Gordon].-Lambert, Pinus, 1 ed. iii, 131, t. 85.-Loudon, Arboretum, iv, 2370, f. 2181.-Antoine, Couif. 33, t. 14, f. 2.-Hooker \& Arnott, Bot. Beechey, 394.-Endlicher, syn. Conif. 162.-Carrière, Trait. Conif. 338; 2 ed. 441, in part.-Nelson, Pinaceæ, 137.-Hoopes, Evergreens, 123 (exel. syn. Californica).-Parlatore in De Candolle, Prodr. xvi ${ }^{2}$, 394, in part.
P. rigida, ${ }^{f}$ Hooker \& Arnott, Bot. Beechey, 160 [not Miller].
P. insignis macrocarpa, Hartweg in Jour. Hort. Soc. London, iii, 226.—Carrière, Trait. Conif. 440.

MONTEREY PINE.

California, Pescadero to Monterey and San Simeon bay.
A trec 24 to 30 meters in height, with a trunk 0.60 to 0.90 meter in diameter; sandy soil, in immediate proximity to the sea-coast; rare and local; now widely cultivated on the Pacific coast for shelter and ornament. A form of Gnadalnpe island, off the coast of Lower California, with leaves in pairs, is var. binata (Engelmann in Proc. Am. Acad. xi, 119; Bot. California, ii, 128).

Wood light, soft, not strong, brittle, close-grained, compact; bands of small summer cells not broad, resinous, conspicuons; color, light brown, the very thick sap-wood nearly white; specific gravity, 0.4574 ; ash, 0.30 ; locally somewhat used for fuel.

> 369.-Pinus tuberculata, Gorton,

Jour. Hort. Soc. London, iv, 218 \& f. (FI. des Serres, v, $51 z^{c}$ \& f.); Pinetum, 211 ; 2 ed. 288 [not Don].-Rep. Oregon Exped. 2, t.2, f.2.Henkel \& llochstettor, Nadelhölz. 78, in part.-Bolauder in Proc. Califoruia Aead. iii, 262,317.-Lawson, Pinetnm Brit. $i, 93, t$. 13, f. 1-9.—Carriere, Trait. Conif. 2 ed. 441, iu part.-Parlatore in De Candolle, Prodr. xvi², 394 (excl. bib.).-Koch, Dendrologie, ii^{2}, 309.—Vasey, Cat. Forest Trees, 31.—Eugelmann in Trans. St. Lonis Aead. iv, 183; Bot. California, ii, 128.—Veitch, Manual Conif. 170.
P. Californica, Hartwey in Jour. Hort. Soc. London, ii, 189 [not Loiseleur].

KNOB-CONE PINE.

Valley of the Mackenzic river, Oregon, sonth along the western slope of the Cascade and Sierra Nevada monntains, and in the California Coast ranges from the Santa Crnz to the San Jacinto monntains.

A tree 18 to 22 meters in height, with a trunk 0.60 to 0.90 meter in diameter, or, rarely, rednced to a low shrub, fruiting when not more than 1 meter in leight; dry, gravelly ridges and slopes from 2,500 (San Bernardino monntains) to 5,500 (mount Shasta) feet clevation: not common.

Wood light, soft, not strong, brittle, conrse gratined, compact; bands of small summer cells very broad, not conspienous, resin massagres mmerons, lage, prominent; medulary rays numerous, thin; color, light brown, the thiek sajr-wool neanly white or slightly tinged witl red; specifie gravity, 0.3499 ; ash, 0.33 .

370.-Pinus Tæda, Linuæus,

Spec. 1 ed. 1000, iu part.-Du Roi, Harbk. ii, 63.-Wangenheim, Amer, 41.—Aiton, Hort. Kew. iii, 368; 2ed. v, 317.-Mench, Meth. 365.Michaux, Fl. Bor.-Am. ii, 205.—Lambert, Pinus, 1 ed. i, 23, t. 16, 17; 2 ed. i, 26, t. 17, 18; 3cil. i, 30, t. 15.-Willdenow, Spec. iv, 498; Berl. Banmz. 269.-Persoon, Syn. ii, 578.-Desfoutaines, Hist. Arb. ii, 612.-Michanx f: Hist. Arb. Am. i, 98, t. 9 ; N. American Sylva, 3 ed. iii, 123, t. 143.-Nonveau Duhamel, v, 245, t. 75, f. 2.-Smith in Recs' Cycl. xxviii, No. 13:-Purslı, Fl. Am. Sept. ii, 644.Nuttall, Genera, ii, 223.-Hayne, Dends Fl. 175.-Elliott, Sk. ii, 636.-Sprengel, Syst. ii, 887.-Katon, Mannal, 6 ed. 265.-Lawson, Ag. Mannal, 351 ; Pinetnm Brit. i, e9, t. 12.—London, Arboretum, iv, 2237, f. 2118-212\%.-Forbes, Pinetum Wobnrn. 43, t. 14.Antoino, Conif. 25 , t. 7, f.1.-Eaton \& Wright, Bot. 359.-Link in Linnrea, xv, 503.-Spach, Hist. Veg. xi, 391.—Griffith, Med. Bot. 609.-Gihoul, Arb. Resin, 32.-Endlicher, Syn. Conif. 164.—Scheele in Romer, Texas, Appx, 447.-Kniglit, Syn. Conif. 30.Lindley \& Gordon in Jour. Hort. Soc. Loudon, v, 217.-Carrière, Trait. Conif. 344 ; 2 cd. 448.-Darby, Bot. S. States, 515.Gordon, Pinetnm, 210; 2 ed. 286.-Cooper in Smithsonian Rep. 1858, 257.-Chapman, Fl. S. States, 433.-Curtis in Rep. Geological Surv. N. Carolina, 1860, iii, 22.-Lesquereux in Owen's 2d Rep. Arkansas, 389.-Wood, Cl. Book, 660; Bot. \& Fl. 313.-Porcher, Resources S. Forests, 506.-Henkel \& Hochstetter, Nadelhölz. 65.-Nolson, Pinacere, 136.-Gray, Manual N. States, 5 ed. 469 ; Hall's Pl. Texas, 21.-Hoopes, Evergreens, 122.-Parlatore in De Candolle, Prodr. xvi²,393.-Young, Bot. Toxas, 516.-Koeh, Dendrologie, ii^{2}, 304.-Vasey, Cat. Forest Trces, 31.-Bentley \& Trimen, Med. Pl. iv, 259, t. 259.-Engelnann in Trans. St. Lonis Aead. iv, 183.Veitch, Mannal Conif. 172.

$$
\text { P. Tada, var. tenuifolia, Aiton, Hort. Kew. iii, } 366 .
$$

LOBLOLLY PINE. OLD-FIELD PINE, ROSEMARY PINE.

Southern Delaware, south to cape Malabar and Tampa bay, Florida, generally near the coast, through the Gnlf states to the valley of the Colorado river, Texas, and north throngh sonthern Arkansas to the valley of the Arkansas river.

A tree 24 to 46 meters in height, with a trunk 0.90 to 1.50 meter in diameter; low, wet clay or dry sandy soil; springing up on all abandoued lands from Virginia southward, and now often replacing in the southern pine belt the original forests of Pinus palustris; in eastern North Carolina rarely on low, rich swamp ridges, here known as rosemary pine and attaining its greatest development and valuc.

Wood light, not strong, brittle, very coarse-grained, not durable; bands of small summer cells broad, very resinous, conspicuous, resin passages few, not prominent; medullary rays numerous, obscure ; color, light brown, the very thick sap-wood orange, or often nearly white; wood of the rosemary pine close-grained, less resinous, lighter, with much thiuner sap; specific gravity, 0.5441 ; ash, 0.26 ; largely used for fucl and manufactured into lumber of inferior quality.

Turpentine is oceasionally manufactured from this species (U.S. Dispensatory, 14 ed. 901. -Flücliger \& Hanbury, Pharmacographia, 545).

371.-Pinus rigida, Miller,

Diet. 7 ed. No. 10.-Du Roi, Marbk. ii, 60.-Marshall, Arbnstum, 101.-Wangenheim, Amer. 41.-Lambert, Piuns, 1 ed. i, 25, t. 18, 19; 2cd. i, 28 ; t. 18, 19 ; 3 ed. i, 32, t. 16, 17.-Willdenow, Spee. iv, 498; Ennm. 988; Berl. Baumz. 268.-Per8oon, Syn. ii, 578.Desfontaines, Hist. Arb. ii, 612.-Michanx f. Hist. Arb. Am. i, 89, t. 8; N. American Sylva, 3 ed., iii, 118, t. 144.-Nouvean Duhamel, v, 244, t. 74.—Aiton, Hort. Kow. 2 ed. v, $317 .-$ Smith in Recs' Cycl. xxviii, No. 14.—Pursh, Fl. Am. Scpt. ii, 643.Poiret, Suppl. iv, 417.-Eaton, Manual, 110 ; 6 ed. 265.-Barton, Compend. Fl. Philadelph. ii, 183.-Nuttall, Genera, ii, 223.Hayne, Dend. Fl. 175.-Elliott, Sk. ii, 635.-Sprengel, Srst. ii, 887.-Torrey, Compend. Fl. N. States, 360; Fl. N. York, ii, 227.Beck, Bot. 339.-Loudon, Arhoretum, iv, 2火39, f. 2123-2126.-Forbes, Pinctum Woburn. 41, t. 13.-Eaton \& Wright, Bot, 358.Antoine, Conif. 26, t. 7, f. 2.-Bigelow, Fl. Boston. 3 ed. 385.-Lindley in Penn. Cycl. xvii, 172.-Link in Linnæa, xv, 503 .Spach, Hist. Veg. xi, 388.-Griffith, Med. Bot. 604.—Gihoul, Arb. Resin, 31.-Endlicher, Syn. Conif. 164.-Knight, Syn. Conif. 30.-Lindley \& Gordon in Jour. Hort. Soc. London, v, 217.-Carrière, Trait. Conif. 342; 2 ed. 447.-Darlington, Fl. Cestrica, 3
\because ed. 299 -DarbymBot. S. States, 514.-Gordon, Pinotum, 207; 2 ed. 283.-Cooper in Smithsonian Rep. 1858, 257.-Chapman, Fl. S. States, 433.-Cnrtis in Rep. Geological Surv. N. Carolina, I860, iii, 21.-Wood, Cl. Book, 660; Bot. \& Fl. 313.-Menkel \& Hochstetter, Nadelhölz, 67.-Nelson, Pinaceæ, 124.—Gray, Manual N. States, 5 ed. 469.-Hoopes, Evergreens, 119.-Parlatore in De Candolle, Prodr. xvi, 394.-Koch, Dendrologio, ii^{2}, 307.-Vasey, Cat. Forest Trees, 31.-Engelmann in Trans. St. Lonis Acad. iv, 183. -Sears in Bull. Essex Inst. xiii, 186.-Veiteh, Manual Conif, 169.
P. Tada, rar. rigida, Aiton, Hort. Kew. iii, 368.
P. Taeda, var. a. Poirct in Lamarek, Dict. v, 340.
P. Fraseri, Loddiges, Cat. ed. 1836, 50 [not Pursh].
P. Loddigesii, London, Arboretnm, iv, 2269,

PITCH PINE.

Valley of the Saint John's river, New Brunswiek, to the northern shores of lake Outario, south through the Atlantic states to northern Georgia, extending to the western slope of the Alleghany monntains in West Virginia and Kentucly (Pineville, Bell county, De Friese).

A tree 12 to 24 meters in height, with a trunk 0.60 to 0.90 meter in diameter; dry, sandy, barren soil, or less commonly in deep, cold swamps; very common.

Wood light, soft, not strong, brittle, coarse-grained, compact; bands of small summer cells broad, very resinons, conspicnons, resin passages numerous, not large; medullary rays numerous, obseure; color, light brown or rell, the thick sap-wood yellow or often nearly white; specific gravity, 0.5151 ; ash, 0.23 ; largely used for fuel, charcoal, and oceasionally manufactured into coarse lumber.

Note.-Upon the island of Nantucket, Massachusetts, this species is now greatly injured by the attacks of the destruetivo caterpillar of the pine moth (Retina frustrana, Scndler in Pub. Massachusetts Ag. Soc. 1883 \& t).

372.-Pinus serotina, Michaux,

Fl. Bor.-Am. ii, 205.-Willenow, Spee. iv, 499.-Persoon, Syn. ii, 578.-Miehanx f. Iist. Arb. Am. i, 86, t. 7; N. Ameriean Sylva, 3 cd. iii, 117, t. 142.-Nonvean Duhamel, v, 246, t. 75, f. 1.-Pursh, Fl. Am. Sept. ii, 643.-Poiret, Suppl. iv, 417.-Nattall, Genera, ii, 223.-Lambert, Pinus, 1 ed. iii, 35, t. 1e.—LHiott, Sk. ii, 634.-Sprengel, Syst. ii, 887.-Torrey, Compeud. Fl. N. States, 360.Beek, Bot. 339.-Eaton, Manual, 6 ed. 265.-London, Arboretum, iv, 2242, f. 2127-2131.-Forbes, Pineturn Woburn. 47, t. 16.Eaton \& Wright, Bot. 359. -Antoine, Conif. 27, t. 8, f. 2.-Lindloy in Penn. Cyel. xvii, 172.-Link in Linnas, xv, 504.-Spach, Hist. Veg. xi, 389.-Gihoul, Arb. Resin. 32.-Endlicher, Syn. Conif. 163.-Knight, Syn. Conif. 30.-Lindley \& Gordon in Jour. Hort. Soc. London, v, 217.-Carriere, Trait. Conif. 341; 2 ed. 449.-Darby, Bot. S. States, 514.—Gordon, Pinetnm, 209; 2 ed. 285.Chapman, Fl. S. States, 433.-Curtis in Rep. Gcological Surv. N. Carolina, 1860, iii, 21.-Henkel \& Hochstetter, Nadelhölz. 70.Nelson, Pinacee, 129.-Parlatore in De Candolle, Prodr. xvi², 394. - Koch, Dendrologie, ii ${ }^{2}$, 305.-Vasey, Cat. Forest Trees, 31.
P. Tada, var. alopecuroidea, Aiton, Hort. Kew. 2 ed. v, 317.-London, Arboretum, iv, 2237.
P. rigida, var. serotina, Loudon, Encycl. PJ. 979, f. 1824-1827.-Cooper in Sinithsonian Rep. 1858,257.-Hoopes, Evergreens, 120.-Engelmann in Trans. St. Lonis Acad. iv, 183.

POND PINE.

North Carolina, sonth near the coast to the head of the Saint Johu's river, Florida.
A tree 12 to 24 meters in height, with a trunk 0.60 to 0.90 meter in diameter; inundated borders of streams and ponds in low, peaty soil; not common.

Wood heary, soft, not strong, brittle, coarse-grained, compact; bands of small snmmer cells broad, forming fully one-half the aunual growth, very resinons, dark colored, conspicuous, resin passages few, large; medullary rays nomerons, obseure ; color, dark orange, the thick sap-wood pale yellow ; specific gravity 0.7942 ; ash, 0.17.

373.-Pinus inops, Aiton,

Hort. Kew. iii, 367 ; '2 ed. v, 316.—Michaus, Fl. Bor.-Am. ii, 204.-Lambert, Pinns, 1 ed. i, 18, t. 13; 2 ed. i, 21, t. 14; 3 ed. i, 25, t. 12.Willdenow, Spee. iv, 496 ; Enum. 983 ; Berl. Baumz. 266.-Persoon, Syn. ii, 578.-Michanx f. Hist. Arb. Am. i, 58, t. 4 ; N. American Sylva, 3 ed. iii, 103, t. 139 . -Nonveau Duhamol, v, 235, t. 69, f. 1.-Pursh, Fl. Am. Sopt. ii, 641.-Smith iu Rees' Cycl. xxviii, No. 10.-Barton, Prodr. Fl. Philadelph. 93.-Compenc. Fl. Philadelph. ii, 183.-Nuttall, Gonera, ii, 223.-Hayne, Doud. Fl. 173.Elliott, Sk. ii, 633.-Sprengel, Syst. ii, 886.-Torroy, Compend. Fl. N. States, 359.-Audubon, Birds, t. 97.-Beak, Bot. 338.-Eaton, Manual, 6 ed. 26\%.-Bon Jard. 183\%, 976.-London, Arboretum, iv, 2192, f. 2068-2071.-Forbes, Pinetum Woburn. 15, t. 4.-Hooker, Fl. Bor.-Am.ii, 16I, in part.-Eaton \& Wright, Bot. 358.-Antoine, Conif. 17, t. 5, f. 3.-Lindloy in Penn. Cycl. xvil, 171.-Link in Linnea, xv, 500 . -Spach, Hist. Veg. xi, 386.-Endicher, Syn. Conif. 167.-Knight, Syn. Conif. 26.-Lindley \& Gordon in Jour. Hort. Soc. London, v, 217.-Carière, Trait. Conif. 361 ; 2ed. 471.-Darlington, Fl. Cestrica, 3 ed. 290.-Darby, Bot. S. States, 514.-Gödon, Pinetum, 167; 2ed. 233.-Cuoper in Smithsonian Rep. 1858, 957.-Chapman, Fl. S. States, 433.-Curtis in Rep. Geologieal Surv, N. Carolina, 1360, iii, :20.-Wool, Cl. Book, 661 ; Bot. \& Fl. 313.-Honkol \& Hochstetter, Nulelhölz. 22.-Nelson, Pinaceæ, 113.-Gray, Manual N. Stales, 5 ed. 4i0.-Moopes, Evergreens, 84.-l’arlatore in De Candolle, Prodr. xvi², 380 (excl. syn. rariabilis).-Vasoy, Cat. Forest Trees, 30 .-Vritel, Manual Conif. 159.
P. Virginiana, Miller, Gard. Diet. 7 ed. No. 9.-Dı Roi, Obs. Bot. 43; Harbk. 2 ed. ii, 35.-Marshall, Arbnstnm, 102.Wangenheim, Amer. 74.-Koeh, Dendrologic, ii^{2}, 299.
P. Tada, var. Virginiana, loiret in Lamarek, Diel. v, 340.

JERSEY PINE. SCRUB PINE.

Middle Island, Long island, Tottenville, and Clifton, Staten island, New York, sonth, generally near the coast, to the rallev of the Savannalı river (Aiken, South Carolina), and through castern and middle Kentucky to "the knobs" of southeastern Indiana.

A tree 24 to 36 meters in height, with a trunk 0.60 to 0.90 meter in diameter, or in the Atlantic states generally mnch smaller; sandy, generally barren soil, reaching its greatest development west of the Alleghany mountains.

Wood light, soft, not strong, brittle, very close-grained, compaet, durable; bands of small summer cells broad, very resinous, conspicuous, resin passages few, not prominent; medullary rays numerous, thin ; color, light orange, the thick sap-wood nearly white; specific gravity, 0.5309 ; ash, 0.30 ; largely used for fuel, and in Kentucky and Indiana preferred for and largely mannfactured into water-pipes and pump-logs.

Cat. Forest Trees, 30.

> 374.-Pinus clausa, Vasey,
P. inops, var. clausa, Engelmann in Trans. St. Louis Acad. iv, 183.-Chapman, FI. S. States, Snppl. 650.

SAND PINE. SCRUB PINE. SPRUCE PINE.

Florida, shores of Pensacola bay, south, generally within 30 miles of the coast, to Pease ereek, and oceupying a narrow ridge along the east coast south of Saint Augustine.

A tree 21 to 24 meters in height, with a trunk 0.60 to 0.75 meter in diameter, or on the west coast rarely 6 to 9 meters in height; barren, sandy dunes and ridges; most common and reaching its greatest development about the head of Halifax bay.

Wood light, soft, not strong, brittle; bands of small summer cells broad, very resinous, conspicuous, resin passages numerons, prominent; medullary rays numerous, thin; color, light orange or yellow, the thiek sap-wood nearly white ; specific gravity, 0.5576 ; ash, 0.31 ; occasionally used for the masts of small vessels.

375.-Pinus pungens, Michaux f.

Hist. Arh. Am. i, 61, t.5; N. American Sylva, 3 ed. iii, 105, t. 140.-Nouvean Dnhamel, v. 236, t. 67, f. 4.-Aitou, Hort. Kew. 2 ed. v, 314.-Pursh, FI. Am. Sept. ii, 643.-Poiret, SuppI. iv, 417.-Elliott, Sk. ii, 635.-Sprengel, Syst. ii, 886.-Eaton, Manual, 6 ed. 265.-Lnmbert, Pinus, 1 ed. iii, 34, t. 17.-Loudou, Arboretum, iv, 2197, f. 2077-2080.-Forbes, Pinotum Woburn. 17, t. 5.-Eaton \& Wright, Bot. 359.-Antoine, Conif. 18, t. 5, f. 4.-Lindley in Penn. Cycl. xvii, 171.-Nuttall, Sylva. iii, 125; 2 ed. ii, 184.-Spach, Hist. Veg. xi, 287.-Endlicher, Syn. Conif. 166.—Knight, Syn. Conif. 2\%.-Lindley \& Gordon in Jour. Hort. Soc. London, $\mathrm{v}_{\text {, }}$ 217.Carriere, Trait. Conif. 359; 2 ed. 470.-Darby, Bot. S. States, 515.—Gordon, Pinetum, 181; 2ed. 254.-Cooper in Smithsonian Rep. 1858, 257.-Chapman, FI. S. States, 432.-Curtis in Rep. Geological Snrv. N. Carolina, 1860, iii, 20.-Wood, Cl. Book, 660; Bot. \& Fl. 313.-Henkel \& Hoohstetter, Nadelhölz, 21.-Nelson, Pinacea, 127.-Gray, Manual N. States, 5 ed. 469.-Hoopes, Evergreens, 98.-Parlatore in De Candolle, Prodr. xvi², 379.—Koch, Dendrologie ii ${ }^{2}$, 304.-Vasey, Cat. Forest Trees, 30 .-Mechan in Rep. Penn. Fruit Growers' Soc. 1877 \& t.-Engelmann in Trans. St. Louis. Aead. iv, 183.-Veitch, Manual Conif. 158.

TABLE-MOUNTAIN PINE. HICKORY PINE.

Alleghany mountains, Penusylvania to Tennessec.

A tree 9 to 18 meters in height, with a tronk 0.60 to 1.05 meter in diameter; most common and reaching its greatest develop ment upon the high mountains of East Tennessee, her often the prevailing speeies and forming extensive forests.

Wood light, soft, not stroug, brittle, coarse-grained, compaet; bands of small summer cells broad, resiuous, conspicuous, resin passages numerous, large; medullary rays numerous, prominent; color, light brown, the thiek sap-wood nearly white ; speeific gravity, 0.4935 ; ash, 0.27 ; in Pennsylvania largely manufactured into chareoal.

376.-Pinus muricata, D. Don,

Trans. Linnæan Soc. xvii, 441.-Lambert, Pinus, 1 ed. iii, t. 84.-Loudou, Arboretum, iv, 2269, f. 2180.-Hooker \& Arnott, Bot. Becehey, 393.-Antoine, Conif. 32, t. 14, f. 1. - Nuttall, Sylva, iii, 113; 2 ed. ii, 172.-Endicher, Syn. Conif. 161.-Knight, Syn. Conif. 26.Gordon in Jonr. Ilort. Soc. London, iv, 216 \& f. (Fl. dos Serres, v, 517^{h} \& f.); Pinetam, 173; 2 ed. 246 (oxcl. byn. Murrayana).Lindley \& Gordon in Jour. Hort. Soc. London, v, 217.-Carrière, Trait. Conif. 359; 2 ed. 470.-Torres, Bot. Mex. Boundary Survey, 209, t. 54 (P. Edgariana on plate).-Cooper in Smithsonian Rep. 1458, 261.-Henkel \& Hochstetter, Nadelhölz. 60.-Nelson, Pinaceæ, 121.-Hoopes, Evergreens, 92.-Parlatore in De Candolle, Prodr. xvi, 379.—Fowler in London Gard. Chronicle, 1872, 1164.—Koeh, Dendrologic, $\mathrm{ii}^{7}, 302$. -Vasey, Cat. Forost Trees, 30.-Engelmann in Traus. St. Louis Acad. iv, 183; Bot. California, ii, 128.—Veiteh, Manual Conif. 151.—London Gard. Chronicic, 1884, 49, f. 7-9.
P. inops, var. Bentham, Pl. Hartweg. 337.
P. Edgariana, Fartweg in Jour. Hort. Soc. London, iii, 217, 226.
P. contorta, Bolander in Proc. California Acad. iii, 227, 317 [not Douglas].

OBISPO PINE. BISHOP'S PINE.

Califormia, Mendocino county south through the Coastranges to San Luis Obispo connty.
A tree 24 to 36 meters in height, with a trunk 0.30 to 0.90 meter in diameter, or more often not exceeding is meters in height; cold peat bogs or barren, sandy gravel; always exposed to the winds and fogs of the ocean, and not found above 2,000 feet elevation, reaching its greatest development in Mendocino county; rare and local.

Wood light, very strong and hard, rather coarse-grained, compact; bands of small summer cells broad, resinous, resin passages few, not prominent; medullary rays mumerous, thin; color, light brown, the thiek sap-wood nearly white; specific gravity, 0.4942 ; ash, 0.26 .

377.-Pinus mitis, Michanx,

Fl. Bor.-Am. ii, 204.-Michaux f. Hist. Arb. Am. i, 52, t. 3; N. American Sylva, 3 ed. iii, 96, t. 137.-Barton, Prodr. Fl. Philadelph 93.-Poiret, Suppl. iv, 417.-Loudon, Arboretnn, iv, 2195, f. 2072-2076.-Antoine, Conif. 16, t. 5, f. 1.-Lindley in Penn. Cyel. xvii, 171.-Spach, Hist. Veg. xi, 386.-Torrey, FI. N. York, ii, 229.-Endlicber, Syn. Conif. 167.-Knight, Syn. Conif. 26.-Lindley \& Gordon in Jour. Mort. Soc. London, v, 217.-Carrière, Trait. Conif. 361; 2 ed. 472.-Gordon, Pinetum, 170; 2 ed. 243 (exol. syn. Roylei).-Cooper in Smithsonian Rep. 1858, 275.-Chapman, Fl. S. States, 433.-Curtis in Rep. Geological Surv. N. Carolina, 1860, iii, 19.-Lesquerenx in Owen's $2 d$ Rep. Arkansas, 389.-Wood, Cl. Book, 660; Bot. \& Fl. 313.-Henkel \& Hochstetter, Nadelhölz. 23.—Gray, Mannal N. States, 5 cd. 470.-Hoopes, Evergreens, 88.-Parlatore in De Candolle, Prodr. xvi, 380.-Young, Bot. Texas, 516.-Koch, Dendrologie, ii^{2}, 300.-Vasey, Cat. Forest Trees, 30.-Broadhead in Coulter's Bot. Gazetto, iii, 60.Engelmanu in Trans. St. Lonis Acad. jv, 184.-Ridgway in Proc. U. S. Nat. Mas. 88.
P. echinata, Miller, Dict. 7 cd. No. 12.-Marshall, Arbustum, 180!-Wangenheim, Amer. 74.
P. Virginiana, var. єchinata, Du Roi, Harbk. ii, 38.
P. Tceda, var. variabilis, Aiton, Hort. Kew. iij, 368.
P. variabilis, Lambert, Pinus, 1 ed. i, 22, t. 15; 2 ed. i, 25, t. 16; 3 cd. i, 29, t. 14.—Willdenow, Spec. iv, 498.—Perboon, Syn. ii, 578.-Nonveau Duhamel, v, 235, t. 69, f. 2.-Aiton, Hort. Kew. 2 ed. v, 316.-Pursh, Fl. Am. Sept. ii, 643.-Smith in Rees' Cycl. xxviii, No. 12.-Barton, Compend. Fl. Philadelph. ii, 183.-Nuttall, Genera, ii, 223.-Elliott, Sk. ii, 633.Sprengel, Syst. ii, 886.-Torrey, Compend. Fl. N. States, 360.-Beck, Bot. 339.-Eaton, Manual, 6 ed. 265.-Forbes, Pinctum Wohurn. 35, t. 11.-Eaton \& Wright, Bot. 358.—Antoine, Conif. 15, t. 5, f. 2.-Link in Lidaæa, xv, 502.Endlicher, Syn. Conif. 16* (excl. syn.).-Darby, Bot. S. States, 514.
P. rigida, Porcher, Resources S. States, 504 [not Niller].

YELLOW PINE. SHORT-LEAVED PINE. SPRUCE PINE. BULL PINE.
Staten island, New York, south to the Chattahoochee region of western Florida, through the Gulf states to Tennessee and eastern Texas, and through Arkansas to the Indian territory, southeastern Kansas, soutbern Missonri, and in Union county, Illinois.

A tree 24 to 30 meters in height, with a trunk 0.60 to 1.35 meter in diameter; light sandy soil or, less commonly, along the low borders of swamps; forming west of the Mississippi river, mixed with oaks and other decidnous trees, extensive forests; the only species of northern Arkansas, Kansas, and Missouri, reachirg its greatest development in western Louisiana, southern Arkansas, and eastern Texas.

Wood, varying greatly in quality and amount of sap, heary, bard, strong, generally coarse-grained, compact; bands of small smmmer cells broad, often occupying half the width of the ammal growth; very resinons, resin passages numerous, large; medullary rays numerous, conspicuous; color, orange, the sap-wood nearly white; specific gravity, 0.6104 ; ash, 0.29 ; largely manufactured into lumber, especially in the states west of the Mississippi river, and among yellow pines only inforior in value to that of P. palustris.

> 378.-Pinus glabra, waltor,

Fl. Caroliniana, 237.-Poiret in Lamarck, Dict. v, 342.-Ravenel in Proc. Elliott Soc. i, 52.-Chapman, Fl. S. States, 433.-Porcher, Resources S. Forests, 206. Hoopcs, Evergreens, 82.-Vasey, Cat. Forest Trees, 30.-Engelmann in Trans. St. Lonis Acad. iv, 184.
\&P. mitis, var. paupera, Wood, Cl. Book, 660.

CEDAR PINE. SPRUCE PINE. WHITE PINE.

South Carolina, sonth to the Chattahoochee region of western Florida, generally near the coast, and throngh the Gulf states south of latitude $32^{\circ} 30^{\prime}$ to the valley of the Pearl river, Louisiana.

A tree 24 to 30 meters in height, with a trunk 0.60 to 1.20 neter in diameter ; rich bottom lauds and hummoeks in dense forests of hard-wood trees, reaching its greatest development in Alabana and Mississippi; not common and local.

Wood light, soft, not strong, brittle, very coarse grainel, not durahle; bands of small summer cells broad, not resinons, resin passages few, not large; mednllary rays numerons, obsenre; eolor, light brown, the sap-wood nearly white; specifie gravity, 0.3931 ; ash, 0.45 .
379.-Pinus Banksiana, Lambert,

Pinns, 1 ed. i, 7, t. 3; 2 ed. i, 7, t, 3 ; 3 ed. i, 9, t.3.-Persoon, Syu. ii, 578.—Desfontaines, 11ist. Arb. ii, 611.-Nouvean Duhamel, v, 234, t. 67, f. 3.—Aiton, Hort. Kew. 2 ed. v, 315.-Pursh, Fl. Am. Sept. ii, 642.—Smith in Rees' Cyel. xxviii, No. 4.-Nuttall, Genera, ii, 223; Sylva, iii, 124; 2 ed. ii, 182.-Sprengel, Syst. ii, 886.-Torrey, Compend. Fl. N. States, 360.-Beek, Bot. 339.-Eaton, Manaal, 6 ed. 265.-London, Arboretnm, iv, 2190, f. 2004-2067.-Forbes, Pineturu Woburn. 13, t. 3.-Hooker, Fl. Bor.-Am. ii, 161.-Eaton \& Wright, Bot. 358.—Antoine, Conif. 8, t. 4, f. 2.-Lindley in Penn. Cyel. xvii, 171.-Link in Linnæa, xv, 491,-Spach, Hist. Veg. xi, 379.-Endlicher, Syn. Conif. 177.-Kniglt, Syn. Conif. 26.-Lindley \& Gordon in Jour. Hort. Soc. London, v, 218 (exel. syn. contorta).--Parry in Owen's Rep. 618.-Carrière, Trait, Conif. 381 ; 2 ed. 485.-Gordon, Pinetum, 163; 2 ed. 230.-Richardson, Aretie Exped. 441.-Cooper in Smithsonian Rep. 1858, 257.-Hooker f. in Truns. Liunæan Soc. xxiii², 301.—Wood, Cl. Book, 661.-Henkel \& Hochstetter, Nadelhölz. 44.-Nelson, Pinacer, 104.-Gray, Manual N. States, 5 cd. 470.-Hoopes, Evergreens, 78.—Vasey, Cat. Forest Trees, 29.-Macoun in Geological Rep. Canada, 1875-'76, 211.-Engelmann in Trans. St. Lonis Acad. iv, 184.-Sears in Bull. Essex Inst. xiii, 186.-Bell in Geological Rep. Canada, 1879-'80, 46c.-Veitch, Manal Conif. 158.
P. sylvestris, var. divaricata, Aiton, Hort. Kow. iii, 366.
P. Hudsonica, Poiret in Lamarek, Diet. v, 339.-Parlatore in De Candolle, Prodr. xvi², 380.-Wood, Bot. \& Fl. 313.-Koch,
Dendrologie, ii^{2}, 298 . Dendrologie, ii ${ }^{2}$, 298.
P. rupestris, Michaux f. Hist. Arl. Am. i, 49, t. 2; N. Ameriean Sylva, 3 ed. iii, 95, t. 136.

gray pine. sceub pine. prince's pine.

Bay of Chalenr, New Brunswick, to the southern shores of Hudson bay, northwest to the Great Bear lake, the valley of the Mackenzie river, and the eastern slope of the Rocky mountains between the fifty-secoud and sixtyfifth degrees of north latitude; south to northern Maine, Ferrisbarg, Vermont (R. E. Robinson), the southern shore of lake Michigan, and central Minnesota.

A small tree, 9 to 22 meters in height, with a trunk rarely exceeding 0.75 meter in diameter; barren, sandy soil or, less commonly, in rich loam; most common north of the boundary of the United States, and reaching its greatest development in the region north of lake Superior, here often forming considerable forests; toward its extreme western limits associated and often confounded with the closely allied P. contorta and P. Murrayana of the Paeific region.

Wood light, soft, not strong, rather close-grained, compact; bands of small summer cells not broad, very resinons, conspicuous, resin passages few, not large; medullary rays ummerous, obscure; color, elear light brown or, rarely, orange, tho thick sap-wood almost white ; speeific gravity, 0.4761 ; ash, 0.23 ; largely rised for fuel, railway ties, ete.

380.-Pinus palustris, Miller,

lict. 7 ed. No. 14.-Marahall, Arbustum, 100.-Wangeuheim, Amer. 73.-Walter, Fl. Caroliniana, 237.-Aiton, Hort. Kew. iii, 368; 2 ed. v, 317.-Abbot, Iuseets Georgia, i, t. 42.-Da Roi, Harbk. 2 ed. ii, 66.-Michaux, Fl. Bor.-Am. ii, 204.-Lambert, Pintis, 1 ed. i, 27, t. 20; 2 od. i, 30 , t. 21 ; 3 ed. i, 41, t. 24, 25.-Willdenow, Spec. iv, 499.-Poiret in Lamarek, Diet. v, 341.-Persoon, Syn. ii, 578.Desfontaincs, Hist. Arl. ii, 612.-Pursh, Fl. Am. Sept. ii, 644.-Sinith in Reos' Cyel. xxviii, No. 15.-Nuttall, Genera, ii, 223; Sylva, iii, 126 ; 2 ed. ii, 18i.-Hayue, Dend. Fl. 174.-Elliott, Sk. ii, $637 .-$ Sprengel, Syst. ii, 887.-Eaton, Manual, 6 erl. 266.-Forbes, Pinotum Wobarn. 59 , t. 22.-Laton \& Wright, Bot. 359.-Antoinc, Conif. 23, t. 6, f. 2.-Link in Linnea, xv, 206.-Griflitl, Med. Bot. 604.-Darby, Bot. S. States, 515.-Cooper in Smithsonian Rep. 1858, 257.-Wood, Cl. Bonk, 660.-Porelecr, Resources \&. Forests, 495.-Michaux f. N. American Sylva, 3 ed. iii, 106, t. 141 (the plate as P. australis).
P. australis, Michaux f. Hist. Arb. Au. i, 64, t. 6.-Nouveau Dahamel, v, 246, t. 75, f. 3.-Londou, Arboretum, iv, 2255, f. 2156-2160.-Lindley iu Penn. Cycl. xvii, 171.-Spach, Hist. Veg. xi, 392.-Endicher, Syn. Conif. 165.-Carson, Mcd. Bot. ii, 43, t. 87.-Gihonl, Arb. Resin. 33.-Knight, Syn. Conif. 30.-Lindley \& Gordou in Jour. Hort. Soc. London, r, 217.-Carrière, Trait. Conif. 345; 2 ed. 450.-Gordon, Pinetum, 187 ; Suppl. 63 ; 2 ed. $260 .-$ Chapman, FI. S. States, 434.-Curtis in Rep. Geologleal Surv. N. Carolina, 1860, iii, 24.—Wood, Bot. \& Fl. 313.-Henkel \& Hochstetter, Nadelhëlz. 65.Nelson, Pinacees, 103.-lloopes, Evergreens, 109.- Parlatore in De Candolle, Prodr. xvi², 392.-Young, Bot. Texas, 517.-Vasey, Cat. Forest Trees, 31.—Bentley \& Trimen, Med. Pl. iv, 258, t. 258 .-Engelmann in Trans. St. Louis Acad. iv, 185.-Veitch, Mannal Conif. 172.

LONG-LEAVE1) PINE. SOUTHERN PINH. GEORGIA PJNE. YELLOW PINE. IIARD PINE

Sontheastern Virginia, south to cape Canaveral and 'ampa bay, Florida, and throngla the Gulf states to the valley of the led river, Louisiana, and the Trinity river, Texas, rarely extending beyond 150 miles from the eoast.

A tree of the first economic value, 18 to 29 meters in height, with a trunk 0.60 to 1.20 meter in dianeter; dry, sandy loam of the maritime plain, generally of Tertiary formation, and forming, outside of the river bottoms, extensive forests almost to the exclusion of other speeies, or toward its extreme interior range, especially in the Gulf states, occupying rolling hills, here mixed with oaks and various deeiduous trees; rarely along the borders of swamps in low, wet soil.

Wood heavy, exceedingly hard, very strong, tough, coarse-grained, compact, durable; bands of small summer cells broad, ocenpying fully half the width of the annual growth, very resinous, dark colored, resin passages fow, not conspieuous; medullary mys mumerons, conspieuons; color, light red or orange, the thin sap-wood nearly white; specific gravity, 0.6999 ; ash, 0.25 ; largely manufactured into lumber and used in construetion of all sorts, for ship-bnilding, feneing, railway ties, ete.

The turpentine, tar, pitch, rosin, and spirits of turpentine manufaetured in the United States are almost exclusively produced by this speeies (U. S. Dispensatory, 14 ed. 709, 899.-Nat. Dispensatory, 2 ed. 1417.—Fliickiger \& Hanbury, Pharmacographia, 545).

381.-Pinus Cubensis, Grisebach,

Mem. Am. Acad. viii, 530; Cat. Pl. Cuba, 217.-Parlatore in De Candolle, Prodr. xvi², 390.
P. Tada, var. heterophylla, Elliott, Sk. ii, 636.
P. Elliottii, Engelmsun; Vasey, Cat. Forest Trees, 30; Trans. St. Louis Acad. iv, 186, t. 1, 2, 3.-Chapman, Fl. S. States, Suppl. 650.
P. Cubensis, var. terthrocarpa, Wright.-Grisebach, Cat. Pl. Cuba, 217.

SLASII PINE. SWAMP PINE. BASTARD PINE. MEADOW PINE.

South Carolina (Bluffton, Mellichamp), south near the coast to the southern keys of Florida, west along the Gulf coast to the valley of the Pearl river, Louisiana, not extending begond 50 or 60 miles inland; in the West Indies.

A tree 24 to 30 meters in height, with a trunk 0.60 to 0.90 meter in diameter; light sandy soil along the dunes and marshes of the coast, or wet elay borders of ponds, abandoned fields, etc., and now rapidly taking possession of ground from whieh the forests of P. palustris have been removed; the only speeies of Florida south of cape Canaveral and bay Biscayne.

Wood heavy, exceedingly hard, very strong, tough, coarse-grained, compact, durable; bands of small summer cells very broad, occupying fully half the width of the amnal growth, very resinous, conspicuous, resin passages few, not large; medullary rays numerons, rather prominent; color, rieh dark orange, the sap-wood lighter, often nearly white; specific gravity, 0.7504 ; ash, 0.26 ; hardly inferior in value to that of P. palustris, although rarely manufactured into limber.

Turpentine is oecasionally manufactured in southern Florida from this species.
Note.-Specimens collected upon the sonthern kess of Florida by A. H. Curtiss connect the forms of Sonth Carolina, Georgia, and northern Florida with the West Indian tree.
382.-Picea nigra, Link,

Limma, xv, 220 .-Carrière, Trait. Conif. 241; 2 ed. 323.-Mooker f. in Trans. Linnaan Soc. xxiii², 301.-Brunet, Hist. Picea, 10 \& t. f. B.-Peck iu Trans. Albany Inst. viii, 283.-Engchmann in London Gard. Chronicle, 1879, 334.-Sears in Bull. Essex Inst. xiii, 185.

Abies Mariana, Miller, Dict.-Wangenhein, Amer. 75.
Pinus Mariana, Du Roi, Ols. Bot. 38; Harbk. ii, 107.-Ehrhart, Beitr. iii, 24.
Pinus Abies Canadensis, Marshall, Arbustum, 103.
Pinus Americana culldre, Wangenheim, Amer. 75.
Pinus nigra, Aiton, Hart. Kew. iii, 370 ; 2 ed. v, 319.—Lambert, linus, 1 ed. i, 41, t. 27 ; 2 ed. i, 45, t. 27 ; 3 ed. i, 64, t.37.Willdenow, Spec. iv, 506; Enum. 990 ; Berl. Banmz. 278.-Persoon, Syu. ii, 579.-Pursh. Fl. Am. Sept. ii, 640.-Smith in Recs' Cyel. xxviii, No. 20.-Barton, Compend. Fl. Philadelph. ii, 182.-Nuttall, Genera, ii, 223.-Hayne, Dend. Fl. 177.-Elliott, Sk. ii, 640.-Sprengel, Syst. ii, 885.-Torrey, Compend. Fl. N. States, 359; Fl. N. York, ii, 230.—Beek, Bot. 340.-Eaton, Manual, 6 ed. 264.-Hnoker, Fl. Bor.-Am. ii, 163.-Eaton \& Wright, Bot. 358.-Digelow, Fl. Boston. 3 ed. 386.-Antoine, Conif. 88, 1. 34, f. 3.-Endlicher, Syn. Conif. 115.-Darby, Bot. S. States, 515.-Porcher, Resources S. Forests, 505,-1Parlatore in De Candolle, Prodr. xyiz. 413.

Pinus Americana, Gærtner, Frúct. ii, 60, t. 91, f. 1.

Pinus rubra, Lambert, Pimus, 1 ed. i, 48, t. 28 ; 2ed. i, 47, t. 30 ; 3 ed. i, 66, t. 38 [not Michaux f.].-Persoon, Syu. ii, 579.-Aitòn, Hort. Kew. 2 ed. v, 319.—Pursh, Fl. An. Sept. ii, 640.-Smith in Recs' Cycl. xxviii, No. 23.-Nuttall, Gcnera, ii, 223.Sprengel, Syst. ii, 88 J.-Torrey, Compend. Fl. N. States, 359.—Beck, Bot. 340.-Eaton, Manual, 6 cd. 264.-Hooker, Fl. Bor.-Am. ii, 164.-Eaton \& Wright, Bot. 358.-Antoine, Conif. 87, t. 34, f. 2.-Endlicher, Syn. Conif. 113.-Gihoul, Arb. Resin. 44.-Parlatore in De Candolle, Prodr. xvi², 413.

Abies denticulata, Michaux, Fl. Bor.-Am. ii, 206.-Poiret in Lamarck, Dict. vi, 520.
Abies nigra, Poiret in Lamarck, Dict. vi, 520.—Desfontaines, Hist. Arb. ii, 580.-Michaux f. Hist. Arb. Am. i, 124, t.11; N. American Sylva, 3 ed.iii, 139, t. 147.-Nouvcan Duhamel, v, 292, t. 81, f. 1.-Lindley in Penn. Cycl. i, 32.-Loudou, Arboretum, iv, 2312, f. 2225-2227.-Spach, Hist. Veg. xi, 410, in part.-Emerson, Trces Massachusetts, 81 ; 2 ed. ii, 96.Griffth, Med. Bot. 606. - Knight, Syn. Conif. 36.-Liudley \& Gordon iu Jour. Hort. Soc. London, v, 211.—Parry in Owen's Rep. 618.-Gordon, Pinetum, 11; 2 el. 17.-Richardson, Arctic Exped. 442.-Cooper is Smithsonian Rep. 1858, 257.Chapman, Fl. S. States, 434.-Curtis in Rep. Geological Surv. N. Carolina, 1860, iii, 27.-Wood, C1. Book, 662; Bot. \& Fl. 313.-Porcher, Resonrces S. Forests, 507.-Henkol \& Hochstetter, Nadelhölz. 191.-Nolson, Pinaceæ, 50.-Gray, Mauual N. States, 5 ed. 471.-Hoopes, Evergreens, 169.-Vasey, Cat. Forest Trees, 33.-Guibonrt, Hist. Drogues, 7 ed. ii, 247.-Macoun in Geological Rep. Canada, 1875-76, 211.-Bell in Geological Rep. Cauada, 1870-80, 44c.-Veitel, Manual Conif. 74.

Abies rubra, Poiret in Lamarck, Dict. vi, 520.-Desfontaines, Hist. Arb. ii, 580.-Loudou, Arboretum, iv, 2316, f. 2228.-
Forbes, Pinetum Woburn. 101, t. 35.-Knight, Syn. Conif. 37.-Lindley \& Gordon in Jour. Hort. Soc. London, v, 211.-
Gordon, Pinetnm, 11; 2 ed. 17.-Henkel \& Hochstetter, Nadelhölz. 189.-Nelson, Pinaceæ, 51.
P. rubra, Link in Linnæa, xv, 521.-Carrière, Trait. Conif. 240; 2 ed. 322.

Abies nigra, var. rubra, Michatx f. Hist. Arb. Am. i, 123; N. American Sylva, 3 ed. iii, 141.—Spach, Hist. Veg. xi, 411.Hoopes, Evergreens, 170.

IAbies rubra, var. arctica, Lindley \& Gordon in Jour. Hort. Soc. London, v, 211.
Abies alba, Chapman, Fl. S. States, 435 [not Poiret].
Abies Amerieana, Koch, Dendrologie, $\mathrm{ii}^{2}, 241$.
P. nigra, var. rubra, Engelmann in London Gard. Chronicle, 1879, 334.

Abies arciica, Hort.
Abies Marylandica, Hort.

BLACK SPRUCE.

Newfoundland, northern Labrador to Ungava bay, Nastapokee sound, cape Churchill, Hudson bay, and northwest to the mouth of the Mackenzie river and the eastern slope of the Rocky mountains; south throngh the northeru states to Pennsylvania, central Michigan, Wisconsin, and Minnesota, and along the Alleghany mountains to the high peaks of North Carolina.

A tree 15 to 21 meters in height, with a trunk 0.60 to 0.90 meter in diameter; light, dry, rocky soil, forming, especially north of the fifticth degree of latitude, extensive forests on the water-sheds of the principal streams or in cold, wet swamps; then sinall, stunted, and of little value (P. rubra).

Wood light, soft, not strong, close, straight-grained, compact, satiny; bands of small summer cells thin, resinons, resin passages few, minute; melullary rays few, conspicnous; color, light red or often nearly white, the sap-wood lighter; specific gravity, 0.4584 ; ash, 0.27 ; largely manufactured into lumber, used in construction, for ship-building, pilcs, posts, railway ties, ete.

Essence of spruce, prepared by boiling the young branches of this species, is used iu the manufacture of spruce beer, a popular beverage (U. S. Dispensatory, 14 ed. 901).

383.-Picea alba, Link,

Linntea, xv, 519.-Carrière, Trait. Conif. 23; 2 ed. 319.-Fl, des Serres, xxi, 157, t. 2251.-Brunet, Hist. Picea, 4 \& t. f. A.Engelmann in London Garl. Chrouicle, 1579, 334.-Sears in Bull. Essex Inst. xiii, 184.

Abies Canalensis, Miller, Dict. No. 1.
Pinus Canadensis, 1 un Roi, Obs. Bot. 38; Harbk. ii, 124 [not Linnæns].-Wangeuheim, Amer. 5, t. 1, f. 2.
P. laxt, Ehrhart, Beitr. iii, 24.
P. glauca, Mœ口ch, Weiss. 73.

Pinus alba, Aiton, LIort. Kew. iii, 371 ; 2 ed. v, 318.-Lambert, Pinne, 1 ed. i, 39 t. 26; 2 ed. i, 43, t. 28; 3 ed. i, 61, t. 35.Willdenow, Spec. iv, 507; Enum. 990 ; Berl. Baumz. 280.-Persoon, Syn. ii, 579.-Pursh, Fl. Am. Sopt. ii, 641.—Smith in Rees' Cycl. xxviii, No. 21.-Eaton, Manual, 6 ed. 264.-Nutiall, Genera, ii, 223.-Hayne, Dond. Fl. 177.-Elliott, Sk. ii, 640.-Sprengel, Syst. ii, 885 .-Torrey, Compend. Fl. N. State8, 359; Fl. N. York, ii, 231.-Meyer, Pl. Labrador, 30.-Beek, Bot. 340.-Hooker, Fl. Bor.-Am. ii, 163.-Eaton \& Wright, Bot. 358.-Bigelow, Fl. Boston. 3 ed. 386.Antoine, Conif. 86, t. 34, f. 1.-Endlicher, Syn. Conif. 112.-Darly, Bot. S. States, 515.-Tuinbouw Flora, 1855, 1 , t. 14, 15.-Walpers, Ann. v, 799.-Parlatore in De Candolle, Prodr. xvi², 414.

Pinus tetragona, Monch, Meth. 364.
Abies alba, Poiret in Lamarek, Dict. vi, 521.—Miebanx, F1. Bor.-Am. ii, 207.—Desfontaines, Hist. Arb. ii, 580.—Miohaux f. Hist. Arb. Am. i, 133, t. 12; N. American Sylva, 3 ed. iii, 144, t. 148.-Nonveau Duhamel, v, 291, t. 81, f. 2.-London, Arboretum, ir, 2310 , f. 2224.-Forbes, Pinetunı Woburn. 95, t. 33.-Nuttall, Sylva, iii, 129; 2 ed. ii, 189.—Spach, Hist. Veg. xi, 412.-Emerson, Trees Massachusetts, $84 ; 2$ ed. i, 99.-Gihoul, Arb. Resin. 43.-Knight, Syn. Conif. 36.-Lindley \& Gordon in Jour. Hort. Soe. London, v, 211.-Parry in Owen's Rep. 618.-Gordon, Pinetnm, 2; 2 ed. 3.-Riehardson, Arctic Exped. 442.-Cooper in Smithsonian Rep. 1858, 257.-Hooker f. in Trans. Linnæan Soe. xxiii?, 301.—Engelmann in Am. Jour. Sci. 2 ser. xxxiv, 330.-Wood, Cl. Book, 661 ; Bot. \& Fl. 313.-Poreher, Resources S. Forests, 507.Henkel \& Hochstetter, Nadelhölz. 188.-Nelson, Pinaceæ, 47.-Gray, Manual N. States, 5 ed. 471.-Murray in Seemann, Jour. Bot. v, 253, t. 69, f. 2-7.-Hoopes, Fvergreens, 157, f. 20.-Vasey, Cat. Forest Trees, 32.-Guibourt, Hist. Drogues, 7 ed. ii, 247.-Macoan in Geological Rep. Canada, 1875-76, 211.-Bell in Geological Rep. Canada, 1879-80, 44e.

Alies rubra, var. cervelea, London, Arboretnm, iv, 2316.-Lindley \& Gordon in Jour. Hort. Soc. London; v, 211.
Abies carrulea, Forbes, Pinetum Woburn. 99.
P. cœrulea, Link in Linnea, xv, 522.

Pinus rubra, var. violacea, Endlieber, Syn. Conif. 114.
P. nigra, var. glauca, Carrière, Trait. Conif. 1 ed. 242.

Abies aretica, Murray in Seemamn, Jour. Bot. v, 253, t. 69, f. 1, 8-13.
Abies laxa, Koch, Dendrologie, $\mathrm{ii}^{2}, 243$.
Abies alba, var. ccrulea, Carrière, Trait. Conif. 2 ed. 320.
Abies alba, var. arctiea, Parlatore in De Candolle, Prodr. xvi², 414.

WHITE SPRUCE.

Newfonndland, northem shore of Labrador to Ungava bay, cape Churchill, and northwestward to the mouth of the Mackenzie river and the valley of the Ynkon river, Alaska; sonth to the coast of Maine, northeastern Vermont (West Burke and Elmwood, Pringlc), northern Miehigan, Minnesota to Moose lake and the White Earth Indian reservation, the Black liills of Dakota (R. Douglas), along the Rocky mountains of northern Montana to the valley of the Blackfoot river (Canby \& Sargent), Sitka, and British Columbia.

A tree 15 to 50 meters in height, with a trunk 0.60 to 0.90 meter in diameter; low, rather wet soil, borders of pouds and swamps; most common north of the boundary of the United States, and reaching its greatest development along the streams and lakes of the Flathead region of northern Montana at an elevation of 2,500 to 3,500 feet; the most important timber tree of the American subarctic forests north of the sixtieth degree of latitude, here more generally multiplied and of larger size than the allied P. nigra, with which it is associated; its distribution southward in British Columbia not yet satisfactorily determined.

Wood light, soft, not strong, close, straight-grained, compact, satiny; bands of small summer cells thin, not conspicnons, resin passages few, minute; mednllary rays nmmerons, prominent; color, light yellow, the sap-wood hardly distinguishable; specific gravity, 0.4051 ; ash, 0.32 ; largely mannfactured into lumber, although not distinguished in commeree from that of the black sprnce (P. nigra).

384.-Picea Engelmanni, Engolmann,

Trans. St. Louis Acad. ii, 212; Wheeler's Rep. vi, 256 ; London Gard. Chroniele, 1879, 334; 1832, 145.-Carrière, Trait. Conif. 2 ed. 348.-G. M. Dawson in Canadian Nat. new ser. ix, 325.-Rnsby in Bull. Torrey Bot. Club, ix, 80.

Alies alba, ' To rrey in Fremont's Rep. 97.
Abies nigra, Engelmann in Am. Jour. Sei. 2 ser. sxxiii, 330 [not Poiret].
Abies Lhgelmanni, Parry in Trans. St. Lonis Acal. ii, 122; London Gard. Chronicle, 1863, 1035; Am. Nat. viii, 179; Proe. Davenport Acad. i, 149.-Regel, Gartouflora, 1864, 244.-Henkel \& Hochstetter, Nadelhölz. 418.-Hcopes, Evergreens, 177, f. 22.-Watson in King's Rep. v, 332 ; Pl. Wheeler, 17.—Porter in Hayden's Rep. 1871, 494.—Porter \& Conlter, Fl. Colorado; Hayden's Sury. Misc. Pub. No. 4, 130.-Vasey, Cat. Forest Trees, 33.-Koch, Dendrologic, ii' ${ }^{2}$ 242.-Hall in Coulter's Bot. Gazette, ii, 91.-Sargent in London Gard. Chronicle, 1877, 631.-Macoun in Geological Rep. Canada, 1875-'76, 211.-Brandegee in Conlter's Bot. Gazette, iii, 32.-Bell in Geological Rep. Canada, 1879-80, 56^{c}.-Veitch, Mannal Conif. 68.

Pinus Engelmanni, Eugelmann in Proc. Am. Phil. Soc. now ser. xii, 209.
Pinus commutata, Parlators in De Candolle, Prodr. xvi², 417.-Gordon, Pinetum, 2 ed. 5.

WHITE SPRUCE.

Peace River plateau, in latitude $55^{\circ} 46^{\prime}$ N. (G. M. Dazoson), through the interior of British Columbia and along the Cascade mountains of Washington territory aud Oregon to the valley of the Mackenzie river; along the principal ranges of the Rocky and Wahsatch mountains to the San Francisco mountains, Sierra Blanco, and mount Graham, Arizona.

A large tree, 24 to 46 meters in height, with a trunk 0.90 to 1.20 meter in diameter, or at its extreme elevation reduced to a low, prostrate shrub; dry, grarelly slopes and ridges between 5,000 and 11,500 feet elevation; the most valuable timber tree of the central Rock, Mountain region, here forming extensive forests, generally above 8,500 feet elevation; rare and of small size in the mountains of Washington territory, Oregon, and Montana.

Wood very light, soft, not strong, very close, straight-grained, compact, satiny; bands of small summer cells narrow, not conspicuous, resin passages few, minute; medullary rays numerous, conspicuous; color, pale yellow tinged with red, the sap-wood hardly distinguishable ; specific gravity, 0.3449 ; ash, 0.32 ; in Colorado manufactured into lumber and largely nsed for fuel, charcoal, etc.

The bark rich in tamin, and in Utah sometimes used in tanning leather.
Note.-Forms of northern Montana too closely connect this species with the allied P.alba. The two species occur here, however, ouly at different elevations, in different soils, and never mingle.

385.-Picea pungens, Engelmann,

London Gard. Chronicle, 1879, 331; 1832, 145.-Masters in London Gard. Chronicle, 1883, 725, f. 130.

P. Menziesii, Engelmann in Trans. St. Louis Acad. ii, 214 [not Carrière].

Abies Menziesit, Engelmann in Am. Jour. Sci. 2 ser. xxxiii, 330 [not Lindley].-Gray in Proc. Philadelphia Acad. 18tis, 76.-Watson in King's Rep. v, 333, in part.-Parry in Am. Nat. viii, 179 [not Lindley].-Porter in Hayden's Rep. 1871, 494.-Hoopes, Evergreens, 166, in parl.-Rothrock in Pl. Wheeler, 28; Whecler's Rep. vi, 10 [not Lindley].-Porter \& Conlter, Fl. Coloralo; Hayden's Surv. Misc. Pub. No. 4, 131 [not Liddey].-Vasey, Cat. Forest Trees, 33, in part.Brandegeo in Conlter's Bot. Gazette, iii, 32 .

Abies Menziesii Parryana, André in Ill. Hort. xxiii, 198; xxiv, 53, 119.-Roezl in 111. Hort. xxiv, 86.
Abies Lingelmanni glauca, Veiteh, Mannal Conif. 69.

WHITE SPRUCE. BLUE SPRUCE.

Valley of the Wind river, south through the monntain ranges of W yoming, Colorado, and Utah.
A tree 30 to 46 meters in height, with a trunk 0.60 to 0.90 meter in diameter; borders of streams, in damp ou wet soil, generally betreen 6,000 and 9,000 feet elevation, never forming forests or reaching as high elevations as the allied P. Engelmanni; rare and local.

Wood very light, soft, weak, close-grained, compact, satiny; bands of small summer cells narrow, not conspicuons. resin passages few, small; medullary rass mmerous, prominent; color, very light brown or often nearly white, the sap-wood hardly distinguishable ; specific gravity, 0.3740 ; asb, 0.38 .

386.-Picea Sitchensis, Carrière,

Trait. Conif. 1 ed. 260 ; Engelmanu in Lomlon Gart. Chroniele, 1879, 341 ; Bot. California, ii, 122.
Pinus Sitehensis, Bongaril in Mem. Acal. St. Petorshurg, g ser. ii, 104.-Mooker, Ml. Bor.-Am. ii, 164.-Endlicher, Syn. Conit. 123.
Abies Menziesif, Lindhy in Penn. Cycl. 1, 32.-Loudon, Arboretnm, is, 2321, i. 2232.-Forbes, Pinetum Woburn. 33, t. 32.Nuttall, Sylva, iii, 1:31, t. 116; : ed. ii, 159, t. 116.-Knight, Syn. Conif. 37. -Lindley \& Gordon in Jonr. Mort. Soc. Loudon, v, :lll.-Newberry iu Pacitic R. R. Rep. vi, 5i, 90, t. 9, f.21.-Gordon, Pinetum, 6; 2 cl . 12.-Cooper in Smithsonian Rep. 1858,262 ; Pacific R. R. Rop. xií, 25, 69, in part.—Wood, Bot. \& Fl.314.-Lyall in Jour. Linnæan Soc. vii, 131, 133, 14.-Menkel \& Ilochstetter, Nadelhölz. 187.-Nelson, Pinacer, 1.18.-Rothrock in Smithsonian Rep. 1867. 433.-Hoopes, Evergrecus, 166, in part. - Watson in King's Repr. v, 333, in part.-Veiteh, Manual Conif. 73.

Pinus Menzicsii, Donglas in Lambert, Pinus, 1 ed. iii, 161, t. 71.-Hooker, Fl. Bor.-Am. ii, 162.-Antoine, Conif. 85, t. 33, f. 1, ?. -Hooker \& Arnott, Bot. Beeches, 394.-Enillicher, Syn. Conif. 112.—Parlatore in Do Candolle, Prodr. xvi², 418.
PAbies trigona, Raljnesque, A \ddagger ląut. Jonr. 119. -EndLicher, Smı. Conif. 124.—Carriere, Trait. Conif. 1 ed. 264.
\& Abies falcata, Ratinesque, Atlant. Jour. 119.-Endlicher, Sya. Conif. 124.-Lindleg \& Gordon in Jour. Hort. Soc. London, v, 213.-Carrière, Trait. Conif. 268 ; 2 ed. 314.

Pinus Menziesii, Var. crispa, Antoine, Conif. 85, t. 35, f. 2.
Abies Sitchensis, Lindley \& Gordon in Jour. Hort. Soc. London, v, 212.-Koch, Dendrolagie, ii², 247.
P. Menziesii, Carrière, Man. des Pl. iv, 339; Trait. Conif. 237; 2 ed. 318.
? Sequoia Rafinesquei, Carrière, Trait. Conif. 2 ed. 213.

TIDE-LAND SPRUCE.

Alaska, sonth to Mendocino county, California, not extending more than 50 miles inland from the coast.
A large tree of great economic value, 46 to 61 meters in height, with a trunk 2.40 to 5.19 meters in diameter; gravelly ridges and swamps, reaching its greatest developnent in Washington territory and Oregon near the mouth of the Colnmbia river, here forming a belt of nearly eontinnous forest growth 50 or, farther north and sonth, rarely more than 10 or 15 miles in width.

Wood light, soft, not strong, elose, straight-grained, compact, satiny ; bands of smail summer cells narrow, not conspicuous, resin passages few, obscure; medullary rays numerous, rather prominent ; color, light brown tinged with red, the sap-wood nearly white; specifie gravity, 0.4287 ; ash, 0.17 ; largely manufactured into lumber and used for construction, interior finish, fencing, boat-building, the dunnage of vessels, cooperage, woodenware, etc.

387.-Tsuga Canadensis, Carrière,

'Trait. Conif. 189; 2 ed. 243.-Sears in Bull. Essex Iust. xiii, 181.—Eugelmann in Coulter's Bot. Gazette, vi, 224.
Pinus Canadensis, Linneus, Spec. 2 ed. 1421.—Wangenhein, Amer. 39, t. 15, f. 36.-Ehrhart, Beitr. iii, 23.-Aiton, Hort. Kew. iii, 370 ; 2 ed. v, 320.-Michaux, Fl. Bor.-Am. ii, 206.—Lambert, Pinus, 1 ed. 50, t. 32; 2 cd. i, 56, t. 35 ; 3 ed. ii, 79, t. 45.-Willdenow, Spec. iv, 505; Ennm. 989 ; Berl. Baumz. 277.-Poiret in Lamarck, Dict. vi, 521.-Persoon, Syn. ii, $579 .-\mathrm{Pursh}$, Fl. Am. Sopt. ii, 640.—Smith in Rees' Cycl. xxviii, No. 29.-Barton, Compend. Fl. Philadelph. ii, 182.-Nuttall, Genera, ii, 223.-Hayne, Dend. Fl. 176.-Elliott, Sk. ii, 639.-Sprengel, Syst. ii, 885.-Torrey, Compend. Fl. N. States, 359; Fl. New York, ii, 230.-Beck, Bot. 340.-Eaton, Manual, 6 ed. 264.-Darlington, Fl. Cestrica, 2ed. $548 .-H o o k e r, ~ F l . ~ B o r .-A m . ~ i i, ~ 164, ~ i n ~ p a r t .-E a t o n ~ \& ~ W r i g h t, ~ B o t .358 . — B i g e l o w, ~ F l . ~ B o s t o n . ~ 3 ~ c d . ~ 386 .-~$ Antoine, Conif. 80, t. 32, f. 3.-Eudlicher, Syn. Conif. 86.-Gihonl, Arb. Resin. 46.-Darby, Bot. S. States, 515.Parlatore in De Candolle, Prodr. xvi, 428.-McNab in Proc. Royal Irish Acad. 2 scr. ii, 211, 212, t. 23, f. 3.-Bentley $\&$ Trimen, Med. Pl. iv, 204, t. 264.

Pinus Americana, Miller, Dict. 7 cd. No. 6.-Du Roi, Obs. Bot. 41 ; Harbk. 2 ed. ii, 151.
Pintes Abies Americana, Marshall, Arbustum, 103.
Abies Canudensis, Destontaines, Hist. Arb. ii, 530.-Miehaux f. Hist. Arb. Am. i, 138, t. 13; N. American Sylva, 3 cd. iii, 146, t. 140-Nonveau Duhamel, v, 293, t. 83, f. 1.-Eaton, Manual, 111.-Richard, Conif. 77, t. 17, f. 2.-Audubon, Birds, t. 197.-Loudon, Arboretım, iv, 2322 \& t.-Forbes, Pinetum Woburn. 129.-Nuttall, Sylva, iii, 133; 2 ed. ii, 190.-Spach, 11 ist. Veg. xi, 42t.—Emerson, Trees Massachusetts, 27 ; 2 ell. i, 92 \& t.-Griffith, Med. Bot. 606.-Knight, Syn. Conil: 37.-Lindley \& Gordon in Jour. ILort. Soc. London, v, 209.-Parry in Owen's Rep. 618.-Darlington, Fl. Cestrica, 3 ed. 291.-Gordon, Piactum, 14; 2ed. 22.-Cooper in Smithsonian Rep. 1858, 257.-Chapman, Fl. S. States, 434.-Curtis in Rep. Geological Surv. N. Carolina, 1860, iii, 27.-Wood, Cl. Book, 661 ; Bot. \& Fl. 313.-Porcher, Resourcus S. Forests, 503 .-Henkel \& Hochstetter, Nadelhölz. 103 (oxel. syn, aromatica).-Nelson, Pinacea, 30.-Gray, Mamal N. States, 5 erl. 471 --ILoopes, Evergreens, 184, f. 23.-Koch, Dendrologie, ii², 249.-Vasey, Cat. Forest Trees,
 Mamal Conif. 114, f. 29.
Picea Cunalensis, Link in Linnsea, xy, 5e4.

Nova Scotia, southern New Brunswick, valley of the Saint Lawrence river to the shores of lake Temiscaming, and sonthrest to the western borders of northern Wisconsin; south through the northern states to New Castle county, Delaware, southeastern Miehigan, central Wisconsin, and along the Alleghany mountains to Clear Creek falls, Winston county, Alabama (Mohr).

A tree 21 to 33 meters in height, with a trunk 0.90 to 1.15 meter in diameter; dry, rocky ridges, generally facing the north alth often forming extensive forests almost to the exelnsion of other species, or, less commonly, borders of swamps in deep, rieh soil; most common at the north, although reaching its greatest individual development in the high monntains of North Carolina and Tennessee.

Wood light, soft, not strong, brittle, coarse, crooked-grained, difficult to work, liable to wind-shake and splinter, not durable; bands of small summer cells rather broad, conspicnons; medullary rays momerous, thin; color, light brown tinged with red or often nearly white, the sap woorl somewhat darker; specific gravity, 0.4239 ; ash, 0.46 ; largely manufactured into coasse lumber and used in constriction for ontside finish, railway ties, ete.; two varieties, red aud white, produced apparently under precisely similar conditions of growth, are recognized by lumbermen.

The bark, rieh in tannin, is the prineipal material used in the northern states in tanuing leather, and yields a fluid extract sometimes used medicinally as a powerful astringent.

Canada or hemloek pitch, prepared from the resinons secretion of this species, is used in the preparation of stimulating plasters, etc. (U.S. Dispensatory, 14 ed. 709. 903.-Nat. ‘'ispensatory, 2 el. 1109.-Fliickiger \& Hanbury, Pharmacographia, 552).
388.-Tsuga Caroliniana, Ef.. mann,

Conlter's Bot. Gazette, vi, 223.
Abies species, Gibbs in Proc. Elliott Soc. i, 286.
Abies Caroliniana, Chapman, Fl. S. States, Snppl. 650.

HEMLOCK.

Southern Alleghany region, Blutf momntain, North Carolina (A. Gray), "Saluda mountain," South Carolina (L. S. Gibbs), Pinnacle monntain, North Carolina (Curtiss); New river, North Carolina, and Casar's liead, South Carolina (Canby), Whitesides mountain and Devil's Court-House peak, Jackson counts, North Carolina (J. Donnell Smith).

A sinall tree, 12 to 15 meters in height, with a trunk 0.60 to 0.75 meter in diameter; dry, rocky ridges between 4,000 and 5,000 feet elevation; rare and local ; long eonfounded with the closely allied T. Conadensis, from which it may be distingnished by its larger, glossier, blunter leares, and larger cones with wide-spreading seales.

Wood light, soft, not strong, brittle, coarse-grained; bands of small summer cells narrow, not conspienous; mednllary rays numerous, thin; color, light brown tinged with red, the sap-wood nearly white; specific gravity, 0.4275 ; ash, 0.40.
389.-Tsuga Mertensiana, Carrière,

Trait. Conif. 2 ed. 250.-Engelmann in Bot. California, ii, 121 ; Conlter's Bot. Gazette, vi, 224.—G. M. Dawson in Canadian Nat. new ser. ix, 324.
:Abies heterophylla, Rafinesque, Atlant. Jour. 119.-Eudieher, Syn. Conif, 124.-Carrière, Trait. Conif. 1 ed. 265.
Pinus Mertensiana, Bongarl in Mem. Acad. St. Petersburg, 6 sol. iii, 163.-Hooker, N. Bor.-Am. ii, 164.-Endlicher, Sya. Conif. 111.-Ledebour, Fl. Rossica, iii, 668.-Parlatore in De Candolle, Prodr. xvi², 428.—McNab in Proc. Royal Irish Acad. 2 ser. ii, 211, 212, t. $\because 3$, f. 4.

Pinus Canadensis, Bongard in Mem. Acad. St. Petcrsburg, 6 sor. iii, 163 [not Limnæus].-Douglas in Companion Bot. Mag. ii, 127.-IIooker, Fl. Bor.-Am. ii, 164, in part.-Ledebour, Fl. Rossica, iii, 668.

Abies Mertensiana, Lindley \& Gordon in Jour. Hrrt. Soe. London, re, ill-Carière, Trait. Conif. I ed. 232.-Gordon, Pinetuo, 13; Snppl. 12; 2 ed. 29.-Lyall in Jour. Linnaan Soc. vii, 133, 144.-Henkel \& llochstetter, Nadelhölz. 152.- Rothrock in Smithsonian Rep. 1867, 433.-Cooper in Am. Nat. iii, 412.-Gray ill Proc. Am. Acad. vii, 402.-Heopos, Evergreens, 192.-Koch, Dendrologie, iiz, 250.-Vasey, Cat. Forest Trees, 33.-Macomn in Geological Rep. Canada 187:-76, 211,-1Iall in Coulter's Bot. Gazette, ii, 91.

Abies Bridgesii, Kellorger in l'roc. California Acad. ii, 37.

Abies Alberliama, Murray in Proc. Hort. Soc. London, iii, 149 \& f.-Lawson, Pinetnm Brit. ii, 111, t. 16, f. 1-18.-Neleon, Pinacea, 31.-Fowler in Loadon Gard. Chronicle, 1872, 75.
Abies taxifolia, Hartweg, ined. (fide Murray in Proc. Mort. Soc. London, iii, 148).
Pinus Pattomiana, McNab in Proc. Royal Irish Acad.2 ser. ii, 211, 212, t. 23, f. $2[$ not Parlatore] (fide Engelmann in London Gard. Chronicle, 1882, 145).

Abies Pattonii, MeNah in Jour. Limman Soc, xix, 208.

MEMLOCK.

Alaska, south along the islands and coast of British Columbia, and through the Selkirk, Gold, and other interior ranges to the Bitter Root monntains of Idaho, and the western slopes of the Rocky monntains of Montana (valley of the Flathead river, Canby $\mathbb{\&}$ Sargent), extending south along the Caseade mountains to southern Oregon and in the Coast ranges to Marin county, California, between 1,000 and 4,000 feet elevation.

A large tree, 30 to 61 meters in height, with a trunk 1.20 to 3 meters in diameter; low, moist bottoms or rocky ridges; very common and reaching its greatest development iu western Oregon and Washington territory, often forming extensive forests, espeeially along the western base of the Caseade mountains.

Wood light, hard, not strong, rather elose-grained; bands of small summer cells thin, not conspicuous; medullary rass numerous, prominent; color, light brown tinged with yellow, the sap-wood nearly white; specific gravity, 0.5182 ; ash, 0.42 ; occasionally manufactured into coarse lumber.

The bark, rich in tannin, is the principal material used on the northwest eoast in tanning leather.

390.-Tsuga Pattoniana, Engelmann,

Bot. California, ii, 121 ; Loudou Gard. Chronicle, 145.

> Abies Pattoniana, Jeffrey in Rep. Oregon Exped. i, t. 4, f. 2.-Murray in Edinburgh Now Phil. Jour. new ser. i, 291, t. 9, f. 1-7.-Lawson, Pinetum Brit. ii, 157, t. 22.-Gray in Proc. Am. Acad. vii,402.-Koch, Dendrologie, ii', 252.-Hoopes, Evergrecus, 172.-Carrière, Trait. Conif. 2 cd. 30 .-Hall in Coulter's Bot. Gazette, ii, 91.-Veiteh, Mannal Conif. 116, f. 31,32 .
\$Picea Californica, Carrière, Trait. Conif. 261 ; 2 ed. 346.
Abies Hookeriana, Mnrray in Edinlurgh New Plil. Jour. new ser, i, 289, t. 9, f. 11-17.-Lawson, Pinetum Brit. ii, 153, t. 21,22, f. 1-22.-Nelson, Piuacee, 31.-McMab in Proc. Royal Irish Acad. 2 ser. ii, 211, 212, t. 23, f. 1.-Veitch, Manual Conif. 115, t. 32.

Abies Williamsonii, Newberry in Pacific R. R. Rep. vi, 53, 90, t. 7, f. 19.-Wood, Bot. \& Fl. 313.-Cooper in Am. Nat. iii, 412.—Vasey, Cat. Forest Trees, 33.

Pinus Pattoniana, Parlatore in De Candolle, Prodr. xvi², 429.
Abies Pattonii, Gordon, Pinetum, 1 ed. 10 (excl. syu. trigona).
Abies Pattoni, Gordon, Pinctum, Suppl. 12.-Henkel \& Hochstetter, Nadelhölz. 151 (excl. syn. trigona).
Valley of the Fraser river, British Columbia, and probably much farther north, south aloug the Caseade mountains and the California Sierras to the headwaters of the San Joaquin river, extending east along the high monntains of northern Washington territory to the western slopes and summits of the Cœur d'Alêne and Bitter Root mountains of Idaho (Lolo trail, Watson), and the divide betreen Thompson and Little Bitter Root creeks, northern Montana (II. B. Ayres).

An alpine tree, rarely 30 meters in height, with a trunk 1.50 to 2.10 meters in diameter; dry slopes and ridges near the limits of tree growth, ranging from an elevation of 2,700 feet in British Columbia to 10,000 feet in the Sierras of central California.

Wood light, soft, not strong, elose-grained, satiny, susceptible of a good polish; bands of small summer cells thin, not censpicuous; medullary rays numerous, obscure ; color, light brown or red, the sap-wood nearly white; speeific gravity, 0.4454 ; ash, 0.44 .

391.-Pseudotsuga Douglasii, Carrière,

Trait. Conif. 2 ed. 256.—Engelmann in Wheeler's Rop. vi, 257 ; Bot. California, ii, 120.—G. M. Dawson in Canadian Nat. new ser. ix, 323.Eichler in Monatsb. Acad. Berl. 1881, f. 18-22.-Rusby in Bnll. Torrey Bot. Club, ix, 79.

Pinus taxifolia, Lambert, Pinus, 1 ed. i, 51, t.33; 2 ed. i, 58, t.36; 3 ed. ii, 82, t. 47.-Pursh, F1. Am. Scpt. ii, 640.-Smithin Rees' Cycl. xxviii, No.28.—Sprengel, Syst. ii, 885.-Eaton, Manual, 6 ed. 264.—Eaton \& Wright, Bot. 358.

Abies tauifolia, Poiret in Lamarck, Diet. vi, 523.-Nouveau Duhamel, v, 293.-Torrey \& Gray in Pacific R. R. Rep. ii, 130.Cooper in Smithsonian Rep. 1858,262; Paeifie R. R. Rep. xii ${ }^{2}$, 69.

Abstract

Abies Douglasii, Lindley in Penn. Cycl. i, 32.-Loudon, Arboretum, iv, 2319, f. 2230.-Forbes, Pinetum Woburn. 127, t. 45.Bentham, Pl. Hartweg. 57.-Nuttall, Sylva, iii, 129, t. 115; 2 ed. ii, 187, t.115.-Spaeh, Hist. Veg. xi, 423.-Knight, Syn. Conif. 37.-Lindley \& Gordon in Jour. Hort. Soe. London, v, 209.-London Gard. Chroniele, 1854, 163.-Bigelow in Pacific R. R. Rep. iv, 17.-Torrey in Paeific R. R. Rep. iv, 141; Böt. Mex. Boundary Survey, 210; Ives' Rep. 28.-Newherry in Pacific R. R. Rep. vi, 54, 90, t. 8, t. 20.-Gordon, Pinotum, 15; Suppl. 10; 2 ed. 24.-Cooper in Smithsonian Rep. 1858, 262; Pacific R. R. Rep. xii², 24, 69; Am. Nat. iii, 411.-Wood, Bot. \& Fl. 313.-Engelmann in Am. Jour. Sei. 2 ser. xxxiv, 330 ; Proe. Am. Phil. Soc. new ser. xii, 209.-Lyall in Jonr. Linnæan Soe. vii, 131, 133, 143.-Henkel \& Hoehstetter, Nadelhölz. 155.-Nelson, Pinaceæ, 32.-Rothroek in Smithsonian Rep. 1867, 433; Pl. Wheeler, 28, 50 ; Wheeler's Rep. vi, 9.Hoopes, Evergreens, 189.-Lawson, Pinetum Brit. ii, 115, t. 17, 18, f. 1-23.-Porter in Hayden's Rep. 1871, 494.-Watson in King's Rep. v, 334 ; Pl. Wheeler, 17.-Fowler in London Gard. Chroniele, 1872, 75.-Gray in Pree. Am. Aead. vii, 402.Koch, Dendrologie, ii^{2}, 255.--Porter \& Coulter, Fl. Colorado; Haydon's Surv. Misc. Pub. No. 4, 131.-Murray in London Gard. Chroniele, 1872, 106. -Vasey, Cat. Forest Trees, 33-Hayden in Warreu's Rep. Nebraska \& Dakota, 2 ed. 122.Maconn in Geological Rep. Canada, 1875-'76, 211.-Hall in Conlter's Bot. Gazette, ii, 91.-Brandegee in Coulter's Bot. Gazette, iii, 32.-Veitel, Manual Conif. 119, f. 35.

Abies mucronatu, Rafinesque, Jour. Atlant. 119.-Endlicher, Syn. Conif. 126. -Lindley \& Gordon in Jour. Hort. Soc. London, v, 213.-Carrière, Trait. Conif. 268; 2 ed. 312.

PAlies mucronata palustris, Rafinesquo, Jour. Atlant. 129.—Carrière, Trait. Conif. 268; 2 cd. 313.
Pinus Douglasii, Lambert, Pinns, 1 ed. iii, 163, t. 21.-Hooker, Fl. Bor.-Am. ii, 162, t. 183.-Antoine, Conif. 84, t. 33, f. 3.Hooker \& Arnott, Bot. Becchey, 394.-Endlicher, Syn. Conif. 87.-Torrey in Sitgreaves' Rep. 173. - Parlatore in De Candolle, Prodr. xvir, 430.-McNab in Proc. Royal Irish Acad. 2 ser. ii, 703 , t. 49, f. 32, 32n, 322^{h}.

Abies Douglasii, var. taxifolia, Loudon, Arboretum, iv, 2319, f. 2231.—Gordon, Pinetum, 16; 2 ed. 25.-Henkel \& Hochstetter, Nadelhölz. 156.

Pinus Douglasii, var. brevibracteata, Antoine, Conif. 84, t. 33, f. 4.
Picea Douglasii, Link in Linnæa, xv, 524.
Tsuga Douglasii, Carrière, Trait. Conif. 192.—Bolander in Proo. California Acad. iii, 232.
Tsuga Lindleyana, Roezl, Cat. Grain Mex. 8.

red fir. yellow fir. oregon pine. douglas fir.

Ooast ranges and interior plateau of British Columbia south of latitude $55^{\circ} \mathrm{N}$. (not reaching the coast arehipelago north of Vancouver's island), east to the eastern slope of the Rocky mountains in latitude 51° N. (Bow River pass, Macoun) ; south along the mountain ranges of Washington territory, Oregon, the California Coast ranges, and the western slope of the Sierra Nevadas, through the mountain ranges east to Montana, Wyoming, Colorado, and the Gnadalupe mountains of Texas; in the Wahsatch and Uintah mountains, the ranges of northern and eastern Arizona, and southward into Mexico; not detected in the interior region between the Sierra Nevada and the Wahsatch monntains, south of the Blue mountains of Oregon, and north of Arizona.

A large tree, 61 to 92 meters in height, with a trunk 0.83 to 3.66 meters in diameter, or in the Rocky monntains much smaller, here rarely 30 meters in height; the most generally-distributed and valuable timber tree of the Pacific region, growing from the sea-level to an elevation in Coloralo of nearly $\mathbf{1 0 , 0 0 0}$ feet; often forming extensive forests, almost to the exclusion of other species, and reaching in western Oregon and Washington territory its greatest development and value.

Wood hard, strong, varying greatly with age and conditions of growth in density, quality, and amonut of sap; difficult to work, durable; bands of small summer cells broad, occupying fully half the width of the annual growth, dark colored, conspicuous, soon becoming flinty and dilficult to cut; medullary rays numerous, obscure; color, varying from light red to yellow, the sap-wool nearly white; specifie gravity, 0.5157 ; ash, 0.08 ; largely manufactured into lumber and used for all kinds of construction, railway ties, piles, fuel, etc.; two varieties, red and yellow fir, are distinguished by lumberinen, dependent probably upon the age of the tree; the former coarse-grained, darker colored, and considerell less valuable than yellow fir.

The bark is found valuable in tanning leather.
14 FOR

Abies Douglasii, var. macrocarpra, Torrey in Ives' Rep. 28.—Vasey, Cat. Forost Trees, 33.
Abics maerocarpa, Vasey in Gard. Monthly, Jan. 1876.

HEMLOCK.
California Coast ranges; San Bernardino mountains to the Cuyamaca mountains.
A tree 30 to 54 meters in height, with a trunk 1.20 to 1.80 meter in diameter; dry ridges and cañons between 2,500 and 4,000 feet elevation.

Wood heavy, hard, strong, cross-grained, very durable, difficult to work; color, rather darker red than that of the species; specific gravity, 0.4563 ; ash, 0.08 ; somewhat manufactured into coarse lumber and largely used for fuel.

> 392.-Abies Fraseri, Lindley,

Penn. Cycl. i, 30.-Forbes, Pinetum Woburn. iii, t. 38.-Link in Linnæa, xv, 531.-Nuttall, Sylva, iii, 139, t. 119; 2 ed. ii, 196, t. 119.Lindles \& Gordon in Jonr. Hort. Soc. London, v, 209. - Carrière, Trait. Conif. 200; 2 cd. 270.-Cooper in Smithsonian Rep. 1858, 257.-Chapıan, Fl. S. States, 434.-Curtis in Rep. Geological Surv. N. Carolina, 1860, iii, 26.—Wood, Cl. Book, 661; Bot. \& Fl. 314.Henkel \& Hoclistettor, Nadelhölz. 169.-Gray, Manual N. States, $\overline{5}$ ed. 472, in part.-Hoopes, Evergreens, 202.-Bertrand in Bull. Soc. Bot. France, xviii, 379.-Koch, Dendrologie, $\mathrm{ii}^{2}, 216$. - Vasey, Cat. Forest Trecs, 35. -Engelmann in Trans; St. Lonis Acad. iii, 596; London Gard. Chronicle, 1877, 147.-Veiteh, Manual Conif. 96.

Pinus Eraseri, Pursh, Fl. Am. Sept. ji, 639.—Smith in Rees' Cyel. xxviii, No. 27.-Poiret, Suppl. v, 35.-Sprengel, Syst. ii, 884.-Beck, Bot. 340.-Eaton, Mannal, 6 ed. 264.-Lambert, Pinns, 1 ed. iii, 74, t. 42.-Eaton \& Wright, Bot. 358.Antoiue, Conif. 76, t. 29, f. 1.-Endlicher, Syn. Conif. 91 .-Parlatore in De Candollo, Prodr. xvi, 419.-McNab in Proo. Royal Irish Acad. 2 ser. ji, 684, t. 47, f. 10.
A. balsamea, var. Fraseri, Nuttall, Genera, ii, 223.-Spach, Hist. Veg. xi, 422.

Pinus balsamea, var. Fraseri, Tofrcy, Compend. Fl. N. States, 359.
Pieea Fraseri, Loudon, Arboretnm, iv, 2340, f. 2243, 2244.—Knight, Syn. Conif. 39.-Gordon, Pinetum, 148; 2 ed. 205.

BALSAM. SHE BALSAM.

High mountains of North Carolina and Tennessee.
A tree 18 to 24 meters in height, with a trunk sometimes 0.60 meter in diameter; moist slopes between $\mathbf{5 , 0 0 0}$ and 6,500 feet elevation, often forming considerable forests.

Wood very light, soft, not strong, coarse-grained, compact; bands of small summer cells rather broad, light colored, not conspicuons; medullary rays numerons, thin ; color, light brown, the sap-wood lighter, uearly white; specific gravity, 0.3565 ; ash, 0.54 .

393.-Abies balsamea, Miller,

Dict. No. 5.-Desfontaines, Hist. Arb. ii, 579.-Nouveau Duhamel, v, 295, t. 83, f. 2.-Richard, Conif. 74, t. 16.-Lindley, Penn. Cyel. i, 30; Fl. Med. f. 268.-Lindley \& Gordon in Jour. Hort. Soe. London, v, 210.-Carriere, Trait. Conif. 217; 2 ed. 292.-Richardson, Arctio Exped. 441.-Darlington, Fl. Costrica, 3 ed. 291.-Cooper in Smithsonian Rej. 1858, 257.-Wood, Cl. Book, 661; Bot. \& Fl. 314.Porcher, Resources S. Forests, 506.-Henkel \& Hochstetter, Nadolhülz. 176.-Gray, Manual N. States, 5 ed. 471.-Hoopes, Evergrecus, 197.-Bertrand iu Bull. Soc. Bot. France, xviii, 379.-Koch, Dendrologie, ii, 214.-Vasey, Cat. Forest Trees, 34.Guibourt, llist. Drogues, 7 ed. ii, 246.-Engelmann in Trans. St. Louis Acad. iii, 597.-Macoun in Geological Rep. Canada, 1875-776, 211.-Scars in Bull. Essex Inst. xiii, 184.-Bell in Geological Rep. Canada, 1879-80, 46c.-Veitch, Manual Conif. 88.

Pinus balsamea, Libuious, Spec. 1 ed. 1002.-Wangenheim, Ancr. 40.-Aiton, Hort. Kew. iii, 370; 2 ed. v, 319.-Monch, Meth. 364.-Dı Roi, Marbk. 2 cd. 144.-Lambert, linus, 1 ed. i, 48, t. 31; 2 ed. i, 52, t. 33; 3 cd. i, 72,t. 41.-Willdenow, Spec. iv, 504 ; Ennu. 989; Berl. Banmz. 276.-Persuou, Syn. ii, 579.-Pursh, FI. Am. Sept. ii, 639.-Eaton, Manual, 111 ; 6 ed. 264.-Nuttall, Genera, ii, 223.-Maync, Dend. Fl. 176.-Elliott, Sk. ii, 639.-Sprengel, Syst. ii, 884.-Torrey, Compend. Fl. N. States, 359 ; Fl. N. York, ii, 229 .-Descourtilz, Fl. Mod. Antilles, iv, 59, t. 246.—Woodville, Med. Bot. 3 ed. v, 1, t. 1.-Beck, liot. 340.-Hooker, Fl. Bor.-An. ii, 163.-Eaton \& Wright, Bot. 358.-Bigelow, Fl. Boston. 3 ed. 385.-Antoine, Conif. 66, t. 26, f. 3.-Endlichor, Syn. Conif. 103.-Gihoul, Arb. Resin. 45.-Darby, Bot. S. States, 515.-
 Trimen, Med. Pl. iv, 263, t. 263.

Pinus Abies Balsamea, Marshall, Arbnstam, 102.

A. balsamifera, Michanx, Fl. Bor.-Am. ii, 207, in part.-Miehanx f. Hist. Arb. Am. i, 145, t. 14; N. Ameriean Sylva, 3 ed. iii, 150, t. 150 , in part.
Picea balsamea, Loudon, Arboretnm, iv, 2339, f. 2240, 2241.-Knight, Syn. Conif, 39.-Gordon, Pinetum, 143; 2 ed. 200.— Henkel \& Hochstetter, Nadelhälz. 176.-Emerson, Trees Massachnsetts, 85; 2 ed. i, 101.-Nelson, Pinaceæ, 37.
Picea balsamea, var. longifolia, Hort.-London, Arboretnm, iv, 2339.
Picea Fraseri, Emersen, Treos Massachnsetts, 88; 2 ed. i, 104 [not Loulon].

BALSAM FIR. BALM OF GILEAD FIR.

Northern Newfonndland and Labrador to the southern shores of Hudson bay, northwest to the Great Bear lake and the eastern base of the Rocky mountains; south through the northern states to Pennsylvania, central Michigan and Minnesota, and along the Alleghany mountains to the high peaks of Virginia.

A tree 21 to 27 meters in height, with a trunk rarely exceeding 0.60 meter in diameter, or at high elevations reduced to a low, prostrate shrub (A. Hudsonica, Hort.); damp woods and monntain swamps.

Wood very light, soft, not strong, coarse-grained, compact, not durable; bands of small summer cells not broad, resinous, conspicuous; medullary rays numerons, obsenre ; color, light brown, often streaked with yellow, the sap-wood lighter; specific gravity, 0.3819 ; ash, 0.45 .

Canadian balsam or balm of fir, an aromatic liquid oleo-resin obtained from this and other species of Alies by puncturing the vesicles formed under the bark of the stem and branches, is used medicinally, chiefly in the treatment of chronic catarrhal affections, and in the arts (U. S. Dispensatory, 14 ed. 898, 900.-Nat. Dispensatory, 2 ed. 1417.Flückiger \& Hanbury, Pharmacographia, 552).

> 394.-Abies subalpina, Engelmann,

Am. Nat. x, 554; Trans. St. Louis Acad. iii, 597; Wheeler's Rep. vi, $255 .-V$ Vases, Cat. Forest Trees, $34 .-$ Hall in Conlter's Bot. Gazotte, ii, 91.-Brandegee in Coulter's Bot. Gazette, iii, 32.-G. M. Dawson in Canadian Nat. newser. ix, 326.—Masters in London Gard. Chroniole, 1881, 236, f. 43, 44, 45.

PPinus lasiocarpa, Hooker, Fl. Bor.Am. ii, 163 [not Hort.].-Endlicher, Syn. Conif. 105.-McNab in Proc. Royal Irish Acad. 2 ser. ii, 682, t. 46, f. 7, 78; t. 47, 48 , 49 (excl. syn.).

PA. lasiocarpa, Nuttall, Sylva, iii, 138; 2 ed. ii, 195.-Lindleg \& Gordon in Jour. Hort. Soc. London, v, 210.-Carrière, Trait. Conif. 1 ed. 221.-Cooper iu Smithsonian Rep. 1858, 262.—Murray in Proc. Hort. Soc. London, iii, 313, f. 27-31.-Henkel \& Hochstetter, Nadelhölz. 161 (excl. syn.).

PPinus species, Torrey in Fremont's Rep. 97.
Picea amabilis, Gorlon, Pinetum, 154, in part; 2 ed. 213, in part.
A. bifolia, Murray in Proc. Hort. Soc. Lendon, iii, 320, f. 51-56; London Gard. Chronicle, 1875, 465, f. 96, 97.-Regel, Gartenflora, xiii, 119.-Henkel \& Hochstetter, Nad elhölz. 420.
A. grandis, Engelmann in Am. Jour. Sci. 2 ser. xxxiv, 310 [not Lindley].-Carrière, Trait. Conif. 2 ed. 296, in part.-Watson in King's Rep. v, 334, in part.-Gray in Proc. Am. Acad. vii, 402 [not Lindley].-Porter \& Conlter, Fl. Colorado; Hayden's Surv. Misc. Pub. No. 4, 131 [not Lindley].

Pinus amabilis, Parlatore in Do Candolle, Prodr. xvir, 426, in part.
Picea bifolia, Murray in Londou Gard. Chronicle, 1875, 105.
A. subalpina, var. fallax, Engelmann in Traos. St. Lonis Acad. iii, 597 .

BALSAM.

Valley of the Stakhin river, Alaska, in latitude $60^{\circ} \mathrm{N}$. (Muir), eonth through British Columbia aud along the Cascade monntains to northern Oregon (Collier), through the Blue mountains of Oregon and the ranges of Idaho, Montana, Wyoming, Utah, and Colorado.

A tree 24 to 40 meters in height, with a trunk rarely exceeding 0.60 meter in dianeter; mountain slopes and cañons between 4,000 (British Columbia) and 12,000 (Colorado) feet elevation; generally scattered and rarely forming the prevailing forest growth.

Wood very light, soft, not strong, rather close-grained, compact; bands of small summer cells very narrow, not conspicuons; medullary rays numerons, obscure; color, light brown or nearly white, the sap-wood lighter; specifc gravity, 0.3476 ; ash, 0.44 .

395.-Abies grandis, Lindley,

Penn. Cyel. i, 30.-Forbes, Pinotun Wolurı. 123, t. 43.-Spach, Hist. Vrg. xi, 42\%.-Nuttall, Sylva, iii, 134; 2 ed. ii, 192.-Liodley \& Gordon in Jour. Mort. Soe. London, v, 210 .-Curriero, Trait. Conif, $220 ; 2$ ed. 296 (exel. 8yn.).-Cooper in Smithsonian Rep. 1858, : $6:{ }^{\prime}$; Pacific IR. R. Rep. xii${ }^{2}, 25,69$; Ann, Nat. iii, 410.-Wood, Bot. \& Fl. 314.-Lyall in Jour. Linnean Soe. vii, 143.-Bolandeı in Proc. California Acad, iii, 283.-Henkel \& Hoehstetter, Nadelhülz. 160.-Nelson, Pinacea, 38.-Hoopes, Evergrecus, 211.Bertrand in Bull. Soc. Bot. Frauce, xviii, 3rb.-Vasey, Cat. Forsst Trees, 34.-Mall in Conlter's Bot. Gazette, ii, 91.-Macoun in Geological Rep. Canada, 1875-76, 211.-Lugelmann in Trans. St. Louis Acad. iii, 593; London Gard. Chronicle, 18:9, 684; 1880, 660, f. 119 ; Bot. California, ii, 113.-G. M. Dawson iu Canadian Nat. new ser. ix, 326 .-Masters in London Gard. Chroniclo, 1881, 179, f. 33-36.-Veitch, Manual Conif. 97, f. 23, 24.

Pinus grandis, Donglas in Companion Bot. Mag. ji, 147.-llooker, Fl. Bor.-Am. ii, 163.-Antoine, Conif. 63, t. 25, f. 1.-Hookes \& Arnott, Bot. Beechey, 394.-Endlieher, Syn. Conif. 105.-Parlatore in De Candolle, Prodr. xvi, 427 (excl. syn.).McNab in Proe. Royal Irish Acad. 2 ser. ii, 678, t. 46, f. 4, 4a.
PA. aromatica, Rafinesque, Atlant. Jonr. 119.-Endlicher, Sjn. Conif. 125.-Lindley \& Gordon in Jour. Hort. Soc. London, r, 213.-Carrière, Trait. Conif. 266; 2 ed. 310.

Picca grandis, London, Arhoretum, iv, 2341, f. 2245, 2246, in part.-Knight, Syn. Conif. 39.-Gordon, Pinetum, 155; Suppl. 5 (exel. syn. Parsonsii); 2 cd. 216.-Newberry in Pacific R. R. Rep. vi, 46, 00, f. 16, t. 6, in part.-Murray in London Gard. Chronicle, 1875, 135, f. 23.
A. Gordoniana, Carrière, Trait. Conif. 2 ed. 298 (oxcl. syn. Parsonsii).-Bertrand in Bull. Soc. Bot. France, xviii, 379.
A. amabilis, Murray in Proc. Hort. Soc. London, iii, 310, f. 22-24 [not Forbes].

WHITE FIR.
Vancouver's island, south to Mendocino county, California, near the coast; interior valleys of western Washington territory and Oregon sonth to the Umpqua river, Cascade mountains below 4,000 feet elevation, through the Blue mountains of Oregon (Cusick) to the castern slope of the Cœur d'Alêne mountains (Cooper), the Bitter Root mountains, Idaho (Watson), and the western slopes of the Rocky mountains of northern Montana (Flathead region, Canby \& Sargent).

A large tree, 61 to 92 meters in height, with a trunk 0.90 to 1.50 meter in diameter; most common and reaching its greatest development in the bottom lands of western Washington territory and Oregon in rich, moist soil; or moist monntain slopes, then much smaller, rarely exceeding 30 meters in height.

Wood very light, soft, not strong, coarse-grained, compact; bauds of small summer cells broader than in other American species, dark colored, resinous, conspicuous; medullary rays numerous, obscure; color, light brown, the sap-wood rather lighter; specific gravity, 0.3545 ; ash, 0.49 ; in western Oregon manufactured into lumber and used for interior finish, packing-cases, cooperage, etc.
396.-Abies concolor, Lindley \& Gordon,

Jour. Hort. Soc. London, v, 210.-Parry in Am. Nat. ix, 204.-Vasey, Cat. Forest Trees, 34.-Engelmann in Trans. St. Lonis Acad. ili, 600 ; Wheeler's Rep. vi, 255 ; London Gard. Chronicle, 1879, 684, f. 114, 115; Bot. California, ii, 118.-Braudegee in Coulter's Bot. Gazette, iii, 32.-Masters in London Gard. Chronicle, 1879, 684, f. 114, 115.-Veitch, Manual Conif. 93.

Pinus concolor, Engelnann in herb. ; Parlatore in De Candolle, Prodr. xví, 426.-McNab in Proc. Royal Irish Acad. 2 ser. ii, 681, t. 46, f. 6.
Picea concolor, Gordon, Pinetum, 155; 2 ed. 216.-Murray in London Gard. Chronicle, 1875, 135, f. 26.
Pinus lasiocarpa, Balfonr in Rep. Oregon Exped. i, t. 4, f. 1 [not Hooker].-Marray in Proe. Hort. Soo. London, iii, 314, \&. 25.-Henkel \& Hochstetter, Nadelhölz. 429.
:A. balsamea, Bigelow in Pacific R. R. Rep. jv, 18 [not Millor].-Torrey in Pacific R. R. Rop. iv, 141.
Picea grandis, Newberry in Pacific R. R. Rep. vi, 46, in part.
Abics grandis, Carrière, Trait. Conif.; 2 ed. 296, in part.-Watson in PI. Wheoler, 17 [not Lindley].
Picea Lonciana, Gordon, Pinetum, Suppl. 53; 2 cd. 218.-Menkol \& Hochstetter, Nadelhölz. 419.
A. Lowiana, Murray in Proc. Mort. Soc. London, iii, 317, f. 38-41.
A. amabilis, Watson in King's Rep. v, 333 [not Forbes].
A. grandis, Var. Loviana, lloopes, Evergreens, 212.

Pinus grandis, Parlatore in De Candolle, Prodr. xví, 427, in part.
Picea concolor, vail' violacea, Murray in London Gard. Chronicle, 1875, 464, f. 94, 95.
Pinus Lowiana, McNab in Proc. Royal Irish Acad. 2 ser. ii, 680, t. 46, f. 5.
A. lasiocarpa, Hort. [not Nuttall].
A. Parsonsii, Hort.

WHITE FIR. BALSAM FIR.

Northern slopes of the Siskiyou mountains, Oregon, and perhaps farther north in the Cascade mountains, south along the western slope of the Sierra Nevadas to the San Beruardino and San Jacinto mounsins, California; along the high mountains of northern Arizona to the Mogolion mountains, New Mexico, northward to the Pike's Peak region of Colorado, and in the Walsatch mountains of Utah.

A large tree, 30 to 40 meters in height, with a truuk 1.20 to 1.50 meter in diameter; moist slopes and cañons between 3,000 and 9,000 feet elevation, reaching its greatest development in the California sierras, varying greatly in the color and length of leaves, habit, cte., and perhaps merely a southern form of the too nearly allied A. grandis, from which it cannot be always readily distinguished.

Wood very light, soft, not strong, coarse-grained, compact; bands of small summer cells narrow, resinous, not conspicuous; medullary rays, numerous, obscure; color, very light brown or nearly white, the sap-wood somewhat darker; specific gravity, 0.3638 ; ash, 0.55 ; occasionally mazutactured iuto lumber and used for packing-cases, butter-tubs, and other domestic purposes.

397.-Abies bracteata, Nuttall,

Sylva, iii, 137, t. 118; 2 ed. ii, t. 118.-Hartweg in Jour. Hort. Soe. London, iii, 2e5. -Lindley \& Gordon in Jour. Hort. Soc. Londoi. v,209.-Carrière, Trait. Conif. 193; 2 ed. 205.-London Gard. Chronicle, 1853, 435; 1854, 459; 1859, 928.—Bot. Mag. t. 4740.-. Lemaire in 111. Hort. i, 14, t. 5.-Fl. des Serres, ix, 109 \& t.-Naudin in Rev. Hort. 1854, 31.-Cooper in Smithsonian Rep. 1858, 262.-Muray in Edinburgh New Phil. Jour. new ser. x, 1, t. 1, 2 (Trans. Bot. Soe. Edinburgh, vi, 211, t. 1, 2).-Henkel \& Hochstetter, Nadelhölz. 167.-Hoopes, Evergreens, 199.-Bertrand in Bull. Soe. Bot. Franee, xviii, 3r9.-Vasey, Cat. Forest Trees, 35.-Engelmanu in Trans. St. Louis Acad. iii, 691 ; London Gard. Cbroniele, 1879, 684; Bot. California, ii, 118.-Veitch, Manual Conif. 89, f. 14, 15.

Pinus venusta, Donglas in Companion Bot. Mag. ii, 152.
Pinus bracteata, D. Don in Trans. Linnatan Soc. xvii, 443.-Lambert, Pinus, 1 ed. iii, 169, t. 91.-Antoine, Conif. 77, t. 30.-Hooker \& Arnott, Bot. Beechey, 394.—Hooker, Ieon. t. 379.-Eudlieber,Syn. Conif. 89.-Walpers, Ann. v,798.Parlatoro iu De Candolle, Prodr. xvi² 419. McNab in Proc. Royal Irish Acad. 2 ser. ii, 674, t. 46, f. 1.
Picea bracteata, London, Arboretum, iv, 2348, f. 2256.-Gordon, Pinetum, 145; 2ed. 202.-Lawson, Pinetum Brit. ii, 171, t. 25, 26, f. 1-7.-Nelson, Pinaeeæ, 37.-Fowler in London Gard. Chronicle, 1872, 286.

A. venusta, Koch, Dendrologie, $\mathrm{ii}^{2}, 210$.

Santa Lacia mountaius, California, from the northern boundary of San Lais Obispo county about 40 miles northward.

A tree 46 to 61 meters in height, with a tronk 0.90 to 1.20 meter in diameter; moist, eold soil, occupying 4 or 5 cañous between 3,000 and 6,000 feet elevation, generally west of the summit of the range (G. R. Vasey).

Wood heavy, not hard, coarse graiued, compaet; bands of small summer cells broad, resinous, conspicuous; medullary rays uumerous, obseure ; color, light brown tinged with yellow, the sap-wood not seen; specific gravity, 0.6783 ; ash, 2.04 ; probably more valuable than the wood of the other North American Abies.

398-Abies amabilis, Forbes,

Pinetum Woburn. 125, t. 44.-Lindley \& Gordon in Jour. Hort. Soe. London, v, 210.—Carriere, Trait. Conif. 219; 2 ed. 296.-Cooper In Smithsonian Rep. 1858, 25.-Lyall in Jonr. Hort. Soc. London, vii, 143.-Henkel \& Hoehstetter, Nadelbölz. 159.-Nelson, Pinaeca, 36.-Hoopes, Evergreens, 209 (exel. syn. lasiocarpa). -Fowler in London Gard. Chroniele, 1872,285. -Koeh, Dendrolegie, $\mathrm{ii}^{2}, 211$ (excl. syn. lasiocarpa).-Maeoun in Geological Rep. Canada, 1875-76, 211.-Engelmann in London Gard. Chroniele, 1880, 720, f. 136-141; Coultor's Bot. Gazette, vii, 4.-Veitch, Mannal Conif. $8 \mathrm{t}^{2}$.

Pinus amabilis, Douglas in Companion Bot. Mag. ii, 93.-Antoine, Conif. 63, t. 25, f. 2.-Hooker \& Arnott, Bot. Beechey, 394.-Endlicher, Syn. Conif. 104.-Parlatore in De Candolle, Prodr. xvi², 426, in part.

Pinus grandis, Lambert, Pinus, 1 ed. iii, t. 26 [not Douglas].
Picea amabilis, London, Arboretum, iv, 2342, f. 2247, 2248.-Knight, Syn. Conif. 39.-Gordon, Pinetum, 154 ; 2 ed. 213 (excl. syn.).-Newberty in Pacific R. R. Rep. vi, 51, 90, f. 18.
A. grandis, Murray in Proc. Hort. Soe. London, iii, 308, f. 18-21 [not Lindley].
A. grandis, var. densiflora, Engelmann in Trans, St. Louis Acad. iv, 599.

Valley of the Fraser river, British Columbia (Engelmann \& Sargent), and probably farther north, south along the Cascade mountains of Washington territory and Oregon.

A tree 30 to 45 meters in height, with a trunk sometimes 1.20 meter in diameter, forming extensive forests on the monntains of British Columbia, between 3,500 and 5,000 feet, and upon the mountains south of the Columbia river between 3,000 and 4,000 feet elevation, here reaching its q reatest development; its northern range not yet determined.

Wood light, hard, not strong, close-grained, compact ; bands of small summer cells broad, resinous, dark colored, conspicuous; medulary rays numerous, thin; color, light brown, the sap-wood nearly white; specific gravity, 0.4228; asl, 0.23.

399.-Abies nobilis, Lindley.

Penn. Cycl. i, 30.-Forbes, Pinetum Woburn. 115, t. 40.-Link in Linnæa, xv, 532. -Spach, Hist. Veg. xi, 419.-Nuttall, Sylva, ili, 136, t. 117; 2 ed. ii, 193, t. 117.-Lindley \& Gordon in Jonr. Hort. Soc. London, v, 209.-Carrière, Trait. Conif. 198; 2 ed. 268.-Jonr. Bot. \& Kow Gard. Misc. ix, 85.-Cooper in Smithsonian Rep. 1s5, 262.-Henkel \& Hochstetter, Nadelhölz. 168.-Hoopes, Evergreens, 203.-Koch, Dendrologio, ii^{2}, 209.-Vasey, Cat. Forest Trees, 34.-Engelmann in Trans. St. Lonis Acad. iii, 601, in part; London Gard. Chronicle, 1879, 885; Bot. California, ii, 119, in part; Coulter's Bot. Gazette, vii, 4.-Veitch, Mannal Conif. 101.

Pinus nobilis, Douglas in Companion 13ot. Mag. ii, 147.-Lambert, Pinus, 1 ed. iii, 167, t. 74.-Hooker, Fl. Bor.-Am. ii, 162.-Antoine, Conif. 77. t. 29, f. 2.-Hooker \& Arnott, Bot. Becchey, 394.-Endlicher, Syn. Conif. 90.

Picea nobilis, Loudon, Arboretum, iv, 2342, f. 2249, 2250.—Knight, Syn. Conif. 39.-Lindley \& Gordon in Jour. Hort. Soc. London, v, 209.-Gordon, Pinetum, 149; Suppl. 48; 2 ed. 207.-Newberry in Pacific R. R. Rep. vi, 49, 90, f. 17.Lawson, Pinetum, Brit. ii, 181, t. 28, 29, f.1-18.-Nelson, Pinacea, 39.
Pseudotsuga nobilis, Bertrand in Bull. Soc. Bot. France, xviii, 86.-McNab in Proc. Royal Irish Acad. 2 ser. ii, 699, t. 49, f. 29, $2^{\text {a }}$.
A. magnifica, Engelmann in Bot. California, ii, 119, in part.

-RED FIR.

Oregon, Cascade montains from the Columbia river south to the valley of the upper Rogue river, and along the summits of the Coast Range from the Columbia to the Nestncea river (Collier).

A large tree, 61 to 92 meters in height, with a trmek 2.40 to 3 meters in diameter, forming, with A. amabilis, extensive forests along the slopes of the Caseade Range, between 3,000 and 4,000 feet clevation; less multiplied in the coast ranges, here reaching its greatest indiridual development.

Wood light, hard, strong, rather close grained, compact; bands of small summer cells broad, resinous, dark colored, conspienons; medullary rays thin, hardly distinguishable; color, light brown streaked with red, the sapwood a little darker; specitic gravity, 0.4561 ; ash, 0.34 .

> 400.-Abies magnifica, Murray,

Proc. Hort. Soc. Lonlon, iii, 318, f. 4:-50; London Gard. Chrouicle, 1875, 134.-Regel, Gartenflora, xiii, 119.-Henkel \& Hochstetter, Nadelhölz. 419.-Koch, Dendrologie, $\mathrm{ii}^{2}, 213$.-Engelmann in Trans. St. Louis Acad. :ii, 601 ; London Gard. Chronicle, 1879, 885, f. 116; Bot. Califoruia, ii, 119 ; Coulter's Bot. Gazetto, vii, 4.-Veiteh, Mannal Conif. 99.
A. campylocarpa, Murray in Trans. Bot. Soc. Edinburgh, vi, 370.
A. nobilis robusta, Hort.-Carriere, Trait. Conif. 2 ed. 269.

Picea magnifica, Gordon, Pinetum, 2 ed. 219.-Murray in Loudon Gard. Chronicle, 1875, 105.
Pinus amabilis, Parlatore in De Candolle, Prodr. xvi, 426, in part.-McNab in Proc. Royal Irish Aead. 2 ser. ii, 677, t. 46, f. 3, 3^{a} ?
A. amabilis, Vaser, Cat. Forest Trees, 34 [not Forbes].

Pseudotsuga magnifica, McNab in Proc. Royal Irish Acad. 2 ser. ii, 700, t. 49, f. 30, 30°.
A. nolilis, Engelmauu, Bot. California, ii, 119 , in part.

RED FIR.

California, mome Shasta, sonth along the western slope of the Sierra Nevadas to Kern county.
A large tree, 61 to 76 meters in height, with a trunk 2.40 to 3 meters in diameter, forming about the base of mount Shasta extensive forests between 4,900 and 8,000 fect elevation; farther south less common and reaching an extreme elevation of 10,000 fect.

Wood light, soft, not strong, rather close-graincl, compact, satiny, durable in contact with the soil, liable to twist and warp in seasoning; bands of small summer cells broad, resinous, dark colored, conspicuous; medullary rays numerous, thin; color, light red, the sap-wood somewhat darker; specific gravity, 0.4701 ; ash, 0.30 ; largely used for fuel and occasionally mannfactured into coarse lnmber.

401.-Larix Americana, Michanx,

Fl. Bor.-Am. ii, 203.-Michanx f. Hist. Arb. Am. iii, 37, t. 4 ; N. Ameriean Sylvi, 3 ed. iii, 167, t. 153.-Audubon, Birds, t. 4.-London, Arboretum, iv, 2390.-Lmerson, Trees Massachusctts, 89 ; 2 ed. i, 105 \& t.-Gihoul, Arb. Resin. 51.-Parry in Owen's Rep. 618.-Richardson, Aretic. Exped. 442.-Cooper in Smithsonian Rep. 1858, 257.-llooker f. in Traus. Linnæan Soc. xxiii, 302.Wood, Cl. Book, 662; Bot. \& Fl. 314.-NeIson, Pinaeex, 86.-Gray, Manual N. States, 5 cd. 442.-Hoopes, Evergicens, 247.Regel, Gartenflora, xx, 105, t. 634, f. 7,8 (Belg. Hort. xxii, 105, t. 10, f. 2, 3).-Bertrand in Ann. Sci. Nat. 5 ser. xx, 90.-Vasey, Cat. Forest Trees, 35.-Macoun in Geological Rep. Canada, 1875-76, 211.-Sears in Bull. Essex Inst. xiii, 185.

Pinus laricina, Du Rei, Obs. Bet. 49; Harbk. ii, 83.-Wangenheim, Amer. 42, t. 16, f. 37.-Mœnch, Mcth. 364.
Pinus Larix rubra, alba and nigra, Marshall, Arbustnm, 103, 104.
Pinus intermedia, Wangenheim, Amer. 42, t.16, f.37.-Du Rei, Harbk. 2 ed. ii, 114.
Pinus pendula, Aiton, Hort. Kew, iii, 369; 2 cd.v, 320.—Lambert, Pinns, 1 ed. i, 55, t. 36 ; 2 efl. ii, 63, t. 39; 3 ed. ii, 86, t. 49.Willdenow, Spec. iv, 502.-Persoon, Syn. ii, 579.-Pursh, Fl. Am, Sept. ii, 645.-Smith in Rees' Cycl. xxviii, No. 32.Eaton, Mannal, 110; 6 ed. 365.-Nuttall, Genera, ii, 223.-Sprengel, Syst. ii, 887.—Andubon, Birds, t. 90 , 180.—Beck, Bot. 339.-Hoeker, Fl. Ber.-Am. ii, 164.-Eaten \& Wright, Bot. 359.-Torrey, Fl. N. Yerk, ii, 232.-Parlatore in De Candolle, Prodr. xvi², 409.

Pinus microcarpa, Lanbert, Pinus, 1 cd. i, 56 , t. 37 ; 2 ed. ii, 65, t. $40 ; 3$ ed. ii, 88 , t. 50 . -Willdenew, Spee. iv, $5 c 2$; Enum. 989 ; Berl. Banmz. 273.-Perseon, Syn. ii, 579.-Aiten, Hort. Kew. 2 ed. v, 321.-Pursh. Fl. Am. Sept. ii, 645.-Smith in Rees' Cyel. xxviii, No. 33.-Eaton, Manual, 110; 6 ed. 365.-Nuttall, Genera, ii, 223.-Hayne, Dend. Fl. 175.-Sprengel, Syst. ii, 887.-Torrey, Compend. Fl. N. States, 360.-Meyer, Pl. Labrador, 30.-Beek, Bet. 340.-Heoker, FI. Ber.-Am. ii, 164.-Eaton \& Wright, Bot. 359.-Bigelow, Fl. Boston. 3 od. 387.-Antoine, Conif. 54, t. 21, f. 1.-Endlieher, S'yn. Conif. 132.

Abies pendula, Poiret in Lamarck, Diet. vi, 514.-Nouvean Dubamel, v, 288.—Lindley \& Gerden in Jonr. Hort. Sec. Londun, v, 213.

Abies microcarpa, Poiret in Lamarck, Dict. vi, 514.-Nonveau Dubamel, v, 289, t. 79, f. 2.-Lindley in Penn. Cycl. i, 33.Lindley \& Gorden in Jour. Hort. Soc. London, 213.
L. tenuifolia, Salisbury iu Trans. Linuman Soc. viii, 313.
L. pendula, Salisbury in Trans. Linnæan Soc. viii, 313.-Forbes, Pinetum Woburn. 137, t. 46.-Carrière, Trait. Cenif. 1 ed. 272.-Gerdon, Pinetum, 129; 2 ed. 177.-Hooker f. in Trans. Linnæan Soc. xxiii, 302.
L. microcarpa, Desfontaines, Hist. Arb. ii, 597.-Forbes, Pinetum Wobnrn. 139, t. 47.-Spach. Hist. Veg. xi, 436.-Link in Linnæa, xv, 536. -Carrière, Trait. Conif. 275; 2 ed. 355.-Gordon, Pinetum, 129; 2 ed. 175.-Henkel \& Hechstetter, Nadelhëlz. 137.-Hooker f. in Trans. Linnæan Soc. xxiii, 302, 341.-Veitch, Manual Conif. 180.
L. intermedia, Loddiges, Cat. ed. 1836, 50.—Forbes, Pinctum Woburn. 141.-Link in Linnæa, xv, 535.
L. Americana rubra, Loudon, Arboretum, iv, 2400.-Knight, Syn. Conif. 40.
L. Americana, var. pendula, Loudon, Arboretnm, iv, 2400.—Carrière, Trait. Conif. 2 ed. 356.
L. Americana, var. prolifera, Louden, Arboretum, iv, 2401.—Carrière, Trait. Conif. 2 ed. 356.
L. decidua, var. Americana, Henkel \& Hochstetter, Nadelbëlz. 133.

LARCH. BLACK LARCH. TAMARACK. ILACKMATACK.

Northern Newfoundland and Labrador to the eastern shores of Hudson bay, cape Churchill and northwest to the northern shores of the Great Bear lake and the valley of the Mackenzie river within the Aretic circle; sonth through the northern states to northern Penusylvania, northern Indiana and Illinois, and central Minnesota.

A tree 24 to 30 meters in height, with a trunk 0.60 to 0.90 meter in diameter; moist uplands and intervalo lands, or sonth of the boundary of the United States in cold, wet swamps, often covering extensive areas, here much smaller and less valuable.

Wood heary, hard, very strong, rather coarse.grained, compact, durable in contact with the soil; bands of small summer cells broad, very resiuous, dark colored, conspicuons, resin passages few, obscure; medullary rays numerous, hardly distinguishable, color, light brown, the sap-wood nearly white; specific gravity, 0.6236 ; ash, 0.33 ; preferred and largely used for the upper knees of vessels, for ship timbers, fence posts, telegraph poles, railway ties, etc.

The inner bark of the closely-allied Enropean lareh is recommended in the treatment of chnonic catamal affections of the pulmonary and urinary passages; probably that of the American species would be equally efficacions.

402.-Larix occidentalis, Nuttall,

Sylva, iii, 143, t. 120; 2 el. ii, 199, t. 120.-Nowberry in Pacific 1R. R. Rep. vi, 59, f. 24, 25.-Cooper in Smithsonian Rep. 1858, 262; Am. Nat. iii, 412.-Lyall in Jonr. Limmean Soc. vii, 143.-Nolson, Pinacem, 91.-Hoopes, Evergreens, 253.-Regel, Gartenfora, xx, 103, t. 685, f. E-10 (Belg. Hort. xxii, 101, t. 8, f. 3-5).-Vasey, Cat. Forest Trees, 35.-Gordon, Pinetum, 2 ed. 176.-Macoun in Geological Rep. Canada, 1875-76, 211.-G. M. Dawson in Canadian Nat. new ser. ix, 329.-Voitcl, Manual Conif. 130.

Pinus Larix, Douglas in Companion Bot. Mag. ii, 109 [not Linnæus].
L. Americana, var. brevifolia, Carrièro, Trait. Conif. 2 ed. 357.

Pinus Nuttallii, Parlatore in De Candolle, Prodr. xvi², 412.

TAMARACK.

British Columbia, Selkirk and Gold ranges, south of latitude 53° N., extending west to the head of Okanagan lake (G.M. Dawson), south along the eastern slopes of the Cascade monntains to the Colnmbia river, through the mometain ranges of northern Washington territory to the western slopes of the Rocky mountains of Montana, and in the Blue mountains of Washington territory and Oregon.

A noble tree of great economic value, 30 to 45 meters in height, with a trunk 0.90 to 1.50 meter in diameter; moist mountain slopes and benches between 2,500 and 5,000 feet elevation; scattered amoug other trees and never exclusively forming forests; the thick bark long resisting the action of forest fires; very common, and perhaps reaching its greatest development in the region north of the Big Blackfoot river and in the valley of the Flathead river, Montana, here the largest and most valuable timber tree.

Wood heavy, exceedingly hard and strong, rather coarse-grained, compact, satiny, susceptible of a fine polish, very durable in contact with the soil; bands of small smmer cells broad, occupying fully half the width of annual growth, very resinous, dark colored, couspicuous, resin passages few, obscure; medullary rays numerons, thin; color, light bright red, the thin sap-wood nearly white; specific gravity, 0.7407 ; ash, 0.09 ; occasionally mannfaetured into lumber, but principally nsed for fuel, posts, railway ties, etc.

> 403.-Larix Lyallii, Parlatore,

Enum. Sem. Hort. Reg. Mus. Flor. 1863; London Gard. Chronicle, 1863,916 (Regel, Gartenflora, xiii, 244).-Lyall in Jour. Linnæan Soo. vii, 143.-Henkel \& Hochstettor, Nadelhölz. 417.-Carrière, Trait. Conif. 2 ed. 361.-Hoopes, Evergreens, 256.-Regel, Gartenflora, xx, 103, t. 635, f. 11-13 (Belg. Hort. xxii, 102, t. 9, f. 1-3).-Bertraud in Ann. Sci. Nat. 5 ser. Xx, 90. Vaser, Cat. Forest Trees, 35.-Maceun in Geological Rep. Canada, 1875-76, 211.-Veitch, Manual Conif, 130.

Pinus Iyallii, Parlatore in De Candolle, Prodr. xvi², 412.
"Cascade mountains, 6,500 to 7,000 feet, forming au open belt of trees mingled with P. flexilis (P. albicaulus); on the Galton range at 6,000 feet and in the Rocky mountains at 7,000 feet, growing with P. flexilis" (Lyall); mount Stewart, Washington territory (Brandegee \& Tweedy, August, 1883); Grave Creek pass, northern Moutana (H. B. Ayres, September, 1883).

A low, uuch-branched, straggling, alpine tree, rarely exceeding 15 meters in height, with a trunk sometimes 1.50 meter in diameter; dry, rocky soil, generally upon northern exposures, and associated with Pinus albicaulis and Tsuga Pattoniana along the upper limits of tree-growth between 5,500 and 7,000 feet elevation (Brandegee).

The wood not collected.
Note.-A well-marked species, distinguished from L. occidentalis by its alpine habit, the larger green or purple deciduous cones with riliated scales, and by the dense tomentum covering the young shoots and leaf buds.

PALMACEA.

404.-Sabal Palmetto, Loddiges;

Rcomer \& Schaltw, Syst. vii, 1487.-Croom in Am. Jour. Sci. 1 ser. xxvi, 315.—Martius, Hist. Palm. iii, 247.-Kunth, Enum. iii, 247.Spach, Hist. Veg. xii, 107.-Chapman, Fl. S. States, 438.-Curtis in Rep. Geologieal Surv. N. Carolina, 1860, iii, 64.-Wood, Cl. Book, $666^{\text {; }}$ Bot. \& Fl. 317.-Vasey, Cat. Forest Trees, 38.

Corypha Palmetto, Walter, Fl. Caroliniana, 119.
Ohamarops Palmetto, Michaux, Fl. Bor.-Am. i, 206.-Michaux f. Hist. Arb.-Am. ii, 186, t. 10; N. American Sylva, 3 ed. iii, 5, t. 101.-Aiton, Hort. Kew. 2 ed. v, 490.-Nuttall, Genera, i, 231.-Elliott, Sk. i, 431.-Sprengel, Syst. ii, 137.Eaton, Manual, 6 ed. 89.-Eaton \& Wright, Bot. 191.-Darby, Bot. S. States, 546.-Cooper in Smithsonian Rop. 258.Poreher, Resourees, S. Forests, 526.

CABBAGE TREE. CABBAGE PALMETTO.

Smith island, off the mouth of Cape Fear river, North Carolina, sonth along the coast to Key Largo, Florida, and along the Gulf coast to the Apalachicola river.

A tree 7 to 12 meters in height, with a trunk 0.60 to 0.90 meter in diameter; sandy maritime shores; very common and reaching its greatest development upon the west coast of the Florida peninsula sonth of Cedar Keys.

Wood light, soft; fibro-vascular bundles hard, diffenlt to work, dark colored; color, light brown ; specific gravity, 0.4404 ; ash, 7.66 ; impervious to the attacks of the teredo, and very durable under water; largely used for piles, wharves, etc.

> 405.-Washingtonia filifera, Wendland,

Frivetect atuicis, woper in Eraithsonian Rep. 1860, 442 [not Martius].
 1/t. i, 2lis is S.-Palmer :

San Bernardino county, California, from the castern base of the Daid Ifernardino momeniag tro tho ralloy of the Colorado river.

A tree 12 to 18 meters in height, with a trunk 0.60 to 1.05 meter in diameter, forming groves . 2250 to 500 plants in the depressions of the desert, in moist alkalino soil, or solitary and seattered near the heads of small ravines formed ly water-courses; often stunted and greatly injured by fire.

Wood light, soft; fibro-vascular bundles hard, difficult to eut, dark colored, conspicuous; specifie gravity 0.5173; ash, 1.89.

> 406.-Thrinax parviflora, Swartz,

Prodr. 57; Fl. Ind. Occ. i, 614.-Aiton, Hort. Kew. iii, 614; 2 ed. ii, 307.-Willdenow, Spee. ii, 202.-Persoon, Syn. i, 383.-Poiret in Lamarek, Dict. vii, 633.-Titford, Hort. Bot. Am. 112.-Sprengel, Syst. ii, 20.-Romer \& Schultes, Syst. vii, 1300.-Martius, Hist. Palm. iii, 255, t. 103.-Kumth, Enum. iii, 253.—Dietrich, Syn. ii, 1091.-Walpers, Ann. v, 818.-Grisebach, Fl. British West Indies, 515.-Vasey, Cat. Forest Trees, 38.-Chapinan in Coulter's Bot. Gazette, iii, 12 ; Fl. S. States, Suppl. 651.
T. Garberi, Chapman in Coulter's Bot. Gazetto, iii, 12; Fl. S. States, Suppl. 651.

SILK-TOP PALAIETTO.

Semi-tropical Florida, sonthern keys from Bahia Fonda to Long's Key ; in the West Indies.
A small tree, 9 meters in height with a trunk rarely exceeding 0.10 meter in diameter, or in pine-barren soil often low and stemless (T. Garberi).

Wood light, soft; fibro-vascular bundles small, hard, not conspicnons; color, light brown; specifie gravity, 0.5991 ; ash, 3.99 ; the trunk used in making sponge- and turtle-crawls.

407.-Thrinax argentea, Loldiges;

Desfontaines, Cat. 3 ed. 31.—Romer \& Schnltes, Syst. vii, 1300.—Martins, Hist. Palm. iii, 256, t. 103, f. 3, t. 163. -Kunth, Ennm. iii, 253.Dictrich, Syn. ii, 1091.-Walpers, Ann. v, 818.-Grisebach, li. British West Indics, 515.-Chapman, Fl. S. States, Suppl. 65L.

Palma argontea, Jacquin, Fragm. :38, No. 125, t. 43, i.1.-Märter in Bom. lhysik. Arbeiten. ii, 76.

SILVER-TOP PALMETTO. BRICKLEY THATCH. BRITILE THATOH.

Semi-tropical Florida, on a nameless key 10 miles west of Key West, Elliot's Key, Key Largo, Piney Key, Boca Chica Key, Key West, Gordon Key, and on the small keys south and west of Bahia Honda Key (Curtiss); in the West Indies.

A small tree, 7 to 9 meters in height, with a trank 0.15 to 0.20 meter in diameter.
Wood light, soft; fibro-vaseular bundles small, very uumerous; interior of the trunk spongy, mueh lighter than the exterior; specific gravity, 0.7172 ; ash, 3.01 ; used for piles, the foliage in the manufacture of ropes, for thatch, ete.

408.-Oreodoxa regia, hbk.

Nov. Genera \& Spec. i, 305.-Martius, Hist. Palm, iii, 163, t. 156, f. 3-5.-Richard, Fl. Cuba, 348.-Kunth, Enum. iii, 182.-Spach, Hist. Veg. xii, 63.-IIl. Hort. ii, 28 \& t.-Walpers, Aun. v, 807.-Grisebach, Fl. British West Iudies, 327.-London Gard. Chronicle, 1875, 302, f. 66.-Chapman, FI. S. States, Suppl. 651.

Enocarpus regia, Sprengel, Syst. ii, 140.
O. oleracea,? Cooper in Smithsonian Rep. 1860, 440.

ROYAL PALM.

Semi-tropical Florida, "Little and Big Palm hummocks," 15 and 25 miles east of cape Romano (Ourtiss), near the month of Little river, and on Elliott's Key; in the West ludies.

A tree 18 to 30 meters in height, with a trunk 0.60 meter in diameter; rich hummocks, often forming extensive groves; in Florida rare and local.

Wood heary, hard; fibro-vasenlar bundles large, very dark, conspicuous; interior of the trunk spongy, much lighter thau the exterior ; color, brown; speeific gravity, exterior of the trunk, 0.7032, ;initeinr, 0.2128 ; ash, 2.54 .

LILIACEA.

409.-Yucca canaliculata, Hooker,

Bot. Mag. t. 5201.-Baker in London Gard. Chroniole, 1870, 1217.-Engelmann in Trans. St. Lonis Acad. iii, 43.
Y. Treculiana, Carriere in Rev. Hort. vii, 280.-Baker in London Gard. Chronicle, 1870, 828.-Engelmann in Trans. St. Lonis Acad. iii, 41.-Vasey, Cat. Forest Trees, 38.-London Garden, xii, 328, t. 94.

SPANISH BAYONET.

Sonthern Texas, Matagorda bay, and from the Brazos and Guadalupe rivers sonth into Mexico.
A small tree, 5 to 8 meters in heiglit, with a trunk 0.30 to 0.75 meter in diameter; dry, gravelly, arid soil.
Wood, like that of the whole gènus, showing distinct marks of concentric arrangement, fibrous, spongy, heavy, difficult to cut and work; eolor, light brown; specific gravity, 0.6677; ash, 6.27.

The bitter, sweetish fruitcooked andeaten by the Mexicans; the root stock, as in the whole genus, saponaceons and largely used by the Mexicaus as a substitute for soap.

> 410.-Yucca brevifolia, Engolmanu,

King's Rep.v, 496; Trans.St. Louis Aead, iii, 47.-Parry in Am. Nat. ix, 141, 351. - Vasey, Cat. Forest Trees, 38.—Watson, Bot. California, ii, 164.
Y. Draconis, ? var. arboreseens, Torrey in Pacific R. R. Rep. iv, 147.

THE JOSHUA. JOSHUA TREE.

Sonthwestern Utah, northwestern Arizona to southern Nevada, and the valley of the Mohave river, California.
A tree 0 to 12 meters in height, with a trunk 0.60 to 0.90 meter in diameter; dry, gravelly soil, forming upon the Mohave desert at 2,500 feet elevation an open, straggling forest.

Wood light, soft, spongy, diffenlt to work; color, very light brown or nearly white ; specific gravity, 0.3737 ; ash, 4.00; occasionally manufactured into paper-pulp.

> 411.-Yucca elata, Engelmann,

Coulter's Bot. Gazette, vii, 17.
Y. angustifolia, var. radiosa, Engelmaun in King's Rep. v, 496.
Y. angustifolia, var. elata, Engelmann in Trans. St. Louis Acad. iii, 50; Wheeler's Rep. vi, 270.

SPANISH BAYONET.

Western Texas to sonthern Arizona and Utah; southward into Mexico.
A small tree, 3 to 5 meters in height, with a trunk 0.20 to 0.25 meter in diameter; dry, gravelly mesas.
Wood light, soft, spongy; color, light brown or yellow; specific gravity, 0.4470 ; ash, 9.28 .
412.-Yucca baccata, Torrey,

Bot. Mex. Bonndary Survey, 221; Ives' Rep. 29.—Coopor in Smithsonian Rep. 1858, 266.—Baker in London Gard. Cbronicle, 1870, 923.Andre in Ill. Hert. 3 ser. xx, 23, t. 115.-Gray, Hall's Pl. Texas, 23.-Engelmann in Trans. St. Louis Aead. iii, 44; King's Rep. v, 496 ; Wheeler's Rep. vi,270.-Loew in Wheeler's Rep. iii, 609.-Rothrock in Wheeler's Rep. vi, 52.-Watson, Bot. California, ii, 164.
Y. filamentosa, Wood in Proc. Philadelphia Acad. 1868, 167 [not Torrey].

SPANISH BAYONET. MEXICAN BANANA.

Western Texas, sonth of latitude 32° N., west through New Mexico to sonthern Colorado and S:an Dicgo connty, California; southward into northern Mexico.

A tree 7 to 12 meters in height, with a trunk 0.6 meter in diameter, or often much smaller, and toward the northern limits of its rạnge stemless; forming upon the liams of Presidio county, Texas, extensive open forests (Havard).

Wood light, soft, spongy, difficult to work; color, light browil: apecific grarity, 0.44"0: ash, 9.28.
The large juicy fruit edible and an important article of food to hiccicans and Yndians; sustrong coarea fiber, prepared by macerating the leaves in water, is manufactured into whe by hie nexpren

INDEX TO CATALOGUE.

[NOTI.-In this inder the names of familiea are indicated by "Small caps", of speciea by "Roman" type, and of synonyms by "Italice".]

A.		
	Page.	Alies Marylandica
Abies alba (Picea alba).	204	Abies Afenziesii (Picea pangens).
Abies altaf (Pieea Engelmanni)	205	Abies Menziesii (Picea Sitchensis)
Abies alba (Picoa nigra).	203	Abiea Menziesii Parryana.
Abics alba, var. arctica.	204	Abies Mertensiana
A bics alla, var. carulea.	204	Abices micracarpa
Alies Albertiana	208	Abies mucranata
Abies amabilis	213	PAbies mucronata palustris.
Alies a mabilis (Abies concolor).	212	Abies nigra (Pieea Engelmanni)
Abies amabilis (Abies grandis) .	212	Abirs nigra (Picea nigra)
Alies amabilis (Alies magnifica)	214	Aliea nigra, var. rubra
dbies A mericana	203	Ahies nobilis
Alvies arctica (Picea albs)	204	Abies nolilis (Abies magnifiea)
Abies arclica (licea nigra)	203	Abies nobilis rabusta
1 Abies aramatica	212	Abies Parsonsii
Abies halsamea	210	Abies Pattoni
I dbies balsamea (Abies concolor)	212	Abies I'attoniana
Abues lalsamea, var. Fraseri	210	Alies Pattonii (Tsuga Mertensians)
Abies balnemifera.	211	Alies I'attonii (Tsuga Pattoniana)
Abies lifolia	211	Abies pendula.
Abies lracteata	213	Alies religiosa
Abies Bridgesii	207	Abies rubra
Abies campylocarpa.	214	- Abies rubra, var. arctica
Alies Canadensis (Picea alba)	204	A bies rubra, var. ceerulea
Abies Canadensis (Tsuga Canadensis)	206	Abies Sitchensis
Alies Canadensis 7 (Tsnga Merteusiana)	207	Abies species (Tanga Caroliniana)
Abies Caroliniana	207	A bies subalpins
Alies ccerulea	204	Abies subalpina, rar. fallax
Ables mincolor.	212	Alies taxifolia (Pseudotsnga Donglasil
Alies denticulata	203	A lies taxifolia (Tsuga Mertensiana)
Abies Douglasii	200	1 Abies trigona.
4 bies Douglasii, var. macracarpa	210	A bies venusta
Abies Douglasii, var. taxifalia	209	Abies Williamsonii.
Abies Enyelmanni	205	Acacia Bahamensis
Abies Engelmanniglauca	205	Aeacia Berlandieri.
t Alies faicata	200	Acacia biceps.
A lies Fraseri.	210	Acacia esculenta
Abies Gordoniana	212	A cacia frandosa.
Abies grandis..	212	Acacia glouca.
Abics grandis (Abies anabilis)	213	Aescia, Green-bark
Abies grandis (Abies concolor)	212	Aeacia Gregrii
Abies grandis (Abies subalplas)	211	Acacia latiriliqua.
Abies grandis, var. densifora.	213	Acacia leucocephala
Alies grandis, var. Lowiana	212	Acacia puiverulenta.
Alies \% heteraphylla.	207	Acacia tephroloba.
Abies Mookeriana	208	A eacia, Thres-thorned
Abies IUudsonica	211	Acacia Wrightil.
A bies lasiocarpa (Ablea concolor)	212	Acer barbatum (Acer glsbrum)
Alics 7 lasiocarpa (A biea aubalpina)	211	Acer barbatum (Acor saccharinum)
Abies laxa	204	Acer Californicum.
Aluics Lowiane	212	A cor Canadense.
Abics macrocarpa	210	- Acer Caroliniana.
Abies magnifica.	214	Acer circinatnm
Abies magnifica (Abloa nobilis)	214	Acer coccineum
Abies Mariana	202	Acor dasyearpo

	Page.		Page
Scer Douglasii.	48	Alnus ghauca	164
Acer Drummondii	50	1 Alnus glutinosa (Aluna rubra)	183
Acer eriocarpum.	49	Alnus glatino8a, var. rugosc.	164
Acer glabrum	47	Alnus glutinosa, var. scrrulata (Aluus rhombifolia)	163
P Acer glaucum	50	Alnus glutinosa, ver. serrulata (Almus serrulats)..	164
Acer grandidentatum	48	1 lnus hybrida.	164
Acer macrophsillam	47	Alnus incana	164
Aer montanum	40	Alnus incana (Regel).	164
Acer Negundo.	51	Alnus incana, var. glauca (Alnus incsna)	64
Acer nigrum.	49	Alnuв incena, var. plauca (Alnus inctana, var. viresceas).	105
Acer palmalum	47	Alnus incana, var. rubra.	163
scer parvilorum	46	Aluus incama, var. virescens.	165
Acer Penusylranicum	46	Alnus Japonica..	162
Acer Pennsylvanicum (Acer spicstam).	46	Almus maritima.	162
Aeer rabram	50	Alnus naritima tupica	162
Acer rubrum, zar. Drummondii.	50	Alnus oblongata (Alons maritima)	162
Seer rubrum, var. pallidum.	49	A Lnus oblongata (Alune serrulata)	164
Acer saccharinum	48	Alnus oblongifolia	163
Aeer saccharinum (Acer dasycsrpnm)	49	Alnus obtusifolia.	164
Acer saccharinum (Acer saccbarinum, var	49	A ${ }^{\text {lnus }}$ Oregana..	163
Acer nacchsrinum, var. nigram	49	Aluus rlombifolin	163
Acer saccharum.	48	Aluns rabra	163
Acer sansuineum	50	Alnus rubra (Aluns serrulata)	16
Acce eplcatum.	46	Alnus rugosa	164
Acer striatum.	46	Alnus serralata	164
Δ cer tripartitum.	48	1 Alnus serrulata (Regel)	164
A cer virgatum	47	Alnus serrulata grnuina	164
Ackras cuneifolia	103	Alnus serrulata, var. latifolia	164
Achras nammosa.	103	Ainue serrulata, var: mecrophylla.	164
A chras pallida .	101	Alnus serruata, var. ollongata.	164
Aehras salicifolia	101	Alnus serrulata, var. oblongifotia	163
1 Achras serrata	69	Alnus serrulata, vat. rugosa (Alnns ineana, var. viroscens)	165
A chras Zapotilla, var. parvifora	103	Alnus serrulata, var, rugosa (Alnus rihombifolia).	163
Adelia acuminata.	112	Alnue serrulata, var. rugosa (Alnus serrulata)	164
Esculun Califernica	43	Atnus serrulata, var. vulgaris	164
1 Esculus carnea	42	Alnus undulata	164
Esculuz discolor.	43	Amelanchier aluifolia.	
Esculus echinata	42	A melanchier Bartramiane	84
Lsculos fava	43	Amelanehier Botryapium	84
Eacnlus flava, var. parpurascens.	43	Δ melancluer Canadensis.	84
Iesculus glabra.	42	A melanchier Canadensis, var. oblongifolia	84
Ssculus Hippocastanum, var. glabra	42	A melanchier ranotenois var. oligocarpa	84
Essculus IIppocastanum, var. Ohioensis	42		84
Eseculus Hippocustanum, var. palida.	42	Amelanchier inlermedra	85
Sseculus hylrida	43	Amelanchiel wrangitum	${ }^{25}$
Esoulus lutea ..	43		d
Esculus neglecta	43		9
Esentur oetandra	43	A melanchier spcaun...	\%
Esculus Ohioensis	42	A melanchier Wangenheimiana	9
Esculus pallida.	42	American Crab	
Fsaulus Pavia, var. discoior	43	A mericas Crab A pplo	
1 Esculus Matsoniana.	42	American Elm.	123
\triangle gastianie secundifora	57	American Holly	35
Ageria Cassena	36	American Linden	27
Ageria geminata.	36	A myris cymosa ...	${ }^{33}$
Ageria heterophyla	35	A myris dyatripa ..	${ }^{33}$
Ageria obrvata.	35	A myris elemifera .	31
Ageria opaca...	35	Amyris Floridana	33
Ageria palustris..	35	Amyris maritima.	33
Alder (Alnus oblongifolis)..	163	Amyris I'lumieri..	33
Aldar (Alnas rhombifelia)	163	Δ myris sylvatica	${ }^{33}$
Alder (Alnas rubra) ..	163	anacamiacrac.	52-54
Alder, Black (Aluns lacans)	16.5	Anamomis punctata.	${ }^{88}$
Alder, black (Alnus serrulata)	164	Anaqua,	114
A'der, Moary ..	165	Andromeda arlorea...	08
Alder, Seaside.	162	Andromeia arborecerns	08
Alder, Smooth .	164	Andromelda ferruginea.	86
Alder, Speckled.	165	Andromeda ferruginea, var. arborescens	6
Alearrusa	62	Andromeda frrruginea, var. fruticosa ..	
Algarosia ghanduloga.	61	Andromeda phumata	
Alnus A mericana (Aluna lacana)	164	Andrometa rloonbuidalis	
Alnus A mericana (Aluns serrulata)	164	Andromeda rigidl a......	
Δ inus arguta..	162	Anona glabra	
A thus Canadensto	164	Anoma lantiolia	
Alnus gonuina.	104	Anona pencula	

	Page.	
Anena species (Anona laurifelia) ..	23	Bartram's Oak.
Anona triloba.	23	Basket Oak.
Asosacent	23	Bassweod.
Anonymor aqualica.	124	Basswood, whito
A thomeles cestivalis.	82	Hastaril Cedar
Anthomeles Douglasii.	75	Bastard Pioe
A nthomeles fiara	82	Satodendran arbareum
Antiomeles glonduloza	82	Bayonet, Spanish (Yucca baccata)
Anthomeles rotundifolia.	77	Bayonet, Spanish (Yacca caoaliculata)
Anthomeles turbinata	82	Bayonet, Spanish (Yucca elata).
Ants Wood	103	Bay, Bull
Apple, American Crab.	72	Bay, Loblolly
Apple, Custard	23	Bsy, Red.
Apple Haw.	82	Ray, Rose
Apple, Oregon Crab	73	Bay, Sweet
Apple, Poul.	23	Bby, 'Jan
Applerserea-year	95	Bay, White
Apple, Sonthera Crab	72	Bayberry
Artud de llierro	56	Bay Tree, Califernia.
Arbor-vitie	170	lean Tree
Arbutus laurifolia	97	Bearberry
PArbutus macrophylla.	97	Bearwoed
Arbutus Menzicsii.	97	Beaver Tree
	97	beech.
Arintus Menziesii (Arlontus Xalspensis)	97	Beech, Blue.
Arbutus procera.	97	Beech, Water (Carpinus Careliniana)
Arbutus Texana	97	Becch, Water (Ilatanus oecidentalis).
PA rbutug variens	97	Beefwood.
Arbutus Xalapensis	97	Beo 'Trce.
PArbutus Xalapensis (Arbatas Texans).	97	Eenthamidia forida.
Ardinia Pickeringia.	100	Betula acuminata...
dronia arborea	84	Betula alba, subspecies commutata
A ronia arbutifolia	83	Betula alla, subspecies occidentalis typica
Aronia Botryapium.	84	Belula alba, subspecies papyrifera.
Arania cordata	84	Betula alba, subspecies papyrifera, rar. communic
Aronia ovalis	85	Retula alla, subspocies papyrijera, var. cordifolia.
A rrumwood.	38	Betula alla, subspeeses populifolia.
Asagroea spinosa.	55	Setula alba, var: papyrijera.
Ash	107	Betnla albs, var.populifolis..
Ash, Black.	111	Betula alba, var. papulifalia (Betzla papyrifera)
Asb, Blue..	111	Betula angulata...
Ash, Green	109	Belula Canadensis
Ash, Ground.	111	Betula carpinifolia.
Asb. lloop....	111	Betula cordifolia
Ash, Mountain (Pyrus Amcricana).	73	Betula excelsa (Betula lenta).
Ash, Mountain (Pyrus sambucifolia)	74	Betula excelsa (Betnla latea)
Ash, Oregen	111	Betula grandis
Asb, Pricli: ${ }^{\text {a }}$ (Santhoxylum Americanam)	29	Betula incana
Abla, Prickly (Xanthaxylum Clava-Hercalia)	30	Belula Lanulosa
Asb, Red.	109	Betula lenta ...
Aslu, Ses ..	30	Betula lenta (Betala alba, var. pepalifolia).
Asb, Wafer.	31	Betula lenta (Betula lutea).
Ash, Water.	110	Betula lalea
Ash, White.	107	Betula nigra........
Ash, Yellaw	57	Setula nigra (Bctula lenta)
Ash-leaved Maplo	51	Betula nigra (Betula pspyrifera).
Asimina campanifora.	23	Betula occidentalis.
Aslmina triloba.	23	Betula occidentalis (Betula papyrifera)
Aspen	171	Retula papyracea
Asp, Quaking.	171	betula papyrifera.
Avicennia nitlda	117	Betula populifolia
Ariceania oblongifolia	117	Betula ruira (Betula nigra)....
Avicennia tomentasa.	117	Betula rubra (Betula papyrifera)
R.		Betula rugosa ..
Bald Cypress	184	Retula serrulata ..
Balm of Gilead	173	9 Betula-Alnus glauca...
Batm of cilead Fir .	211	Betula-Alnue maritima.
Balsam (Abies Fraseri).	210	P Betula-Alnus mebra.
Balsan (Abies subalplas)	211	Betula-slnus, var. β incana.
Balsam (Populns bsisamifora)	173	Betulaceat
Bnlsinu Cottonwoed	174	Big-loud Lickory.
Bamam lit (Abies balsamea).	211	Big Collonwood.
Balsam Fir (Abics concoler).	213	Big Laurel........
Balsam, She. .	210	Big Shell-bark
Bunana, Mexicsa	219	Big Tree......

	Page.		Pago.
Bigelovia acuminata	112	Bourreria Havanensis	14
Bignonia Catalpa	115	Bourreria Havanensls, var. radula.	14
Bignonia linearis	116	Bourreria orata.	114
bignomiacre	115, 116	Butrrcria radula .	114
Bilsted	86	Bourreria recurva	114
Birch, Black (Betula leata)	162	Bourrcria tomentosa	114
Birch, Blaek (Betula occidentalis)	160	Bourreria tomentosa, var. Havanensi	114
Birch, Canoe	160	Box Elder (Negundo aecroides)..	51
Birch, Cberry	162	Box Elder (Negundo Californieum)..	51
Birch, Gray (Betola alba, vur. popolifolia)..	159	Boxwood (Cornue florida).	01
Birch, Gray (Betula latea).	161	Boxwood (Sehaefferia fruteecena)	39
Birch, Mahogany	2	Bralea dulcis?	217
Bireh, Oll-fleld	159	Brohea filamentoga	217
Birch, Paper.	160	Briekloy Thateh.	218
Birch, Red.	161	Brittlo Thateh.	218
Birch, River	161	Broad-leaved Maplo.	47
Bireh, Sweot..	162	Eroursonetia secundifora	57
Bireh, West Indian	33	Broussonetia tinctoria.	128
Birch, White (Betola alba, var. populifolia)	159	Browa lickory.	134
Bireh, White (Betula papyrifera)	160	Bucida Buceras.	87
Bireh, Yellow.	161	Buek oye, Calitornia	44
Bishop's Fine.	200	Buckeye, Fetid.	42
Pitter Nut.	135	Buckeye, Ohio.	42
Bitter Pecan	136	Baekeye, Spanish.	44
Black Alder (Alans incana).	165	Buekeye, Sweet..	43
Black Alder (Alnus 日errulata).	164	Bnekithorn, Sonthern	103
Black Ash.	111	Buekwheat Tree.	38
Black Bireh (Betala lenta).	162	Ball Eay..	19
Black Birch (Betala occidentalia)	160	Ball Nat.	134
Blaek Calahash Tree	116	Bull Pine (Pinus Jeffreyi)	193
Blaek Cherry, wild	68	Bull Piue (Pinus mitis).	200
Black Cottonwood (Popalas angastifolia).	174	Bull Pine (Pions pooderosa)	103
Black Cottonwood (Popalua trichocarpa)	174	- Dull Pine (Pions Sabioiana).	195
Black CJpress	184	Bumelia angustifolia.	103
black Gum	92	Bumelia arborea.	102
Black Haw	94	Bumelia chrysophylloides	101
Black Hiekory (Carya porcina).	134	Bumelia coneata.	103
Black Hiokory (Carya tomentosa)	134	Bumelia ferruginea	102
Black Trouwood..	39	Bumelia foetidissima	101
Black Jack (Quercus Cateebmi)	151	Bumelia lanuginosa.	102
Blaek Jaek (Quercuan ngra)	150	Bumelia lanuginoza, var. macrocarpa	102
Black Jack, Forked-leaf	151	Bumelia lseioidea.	102
Black Larch	215	Bamelia lycioides, var. reelinatam.	103
Black Locnet (Gleditschla triacanthos)	59	Bumelia macrocarpa.	102
Black Loeust (Robinia Paendacacia).	55	Bumelia Mastichodendron	101
Black Mangrove.	117	Eumelia unyrsinifolia.	103
Black Oak (Quereus Emoryi)	146	1 Eumelia oblongifotia.	102
Black Oak (Querens Kelloggi)	149	Bumelia pallida	101
13lack Oak (Qnercas rubra)	148	Bumelir parvifolia.	103
Black Oak (Quercosa tinctoria)	149	Bumelia recinata (Bumelia cuneata)	103
Black Persimmon.	105	Dumelia reclinata (Dumella lyeioldes)	103
Black Pino (Pinqa Joffreyi).	193	\uparrow Bumelia reclinata (Bumelia tenax) .	10
Blaek Pine (Pinue Morrayana)	195	Bumelia salicifolia.	101
Dlack Slee.	67	\% Dumelia serrata.	69
Elack Spruee	203	Bumella өpinosa.	102
Black Sagar Maple	40	Bamelia tonax	101
Black Thorn.	79	Bumelia tomentosa	102
Black Tree ..	117	Bunwood.	54
Plack Waluat.	131	Buralng Bash	38
Black Willow (Salix flavescene, var. Scoule	170	Burr Oak	40
Black Willow (Sallix nlgra) .	168	Bursera acuminata	32
Blackwood.	117	Bureera gummifera	32
Blue Aah	111	burseracese.	32,33
Blue Beech	159	Bustic ..	101
Blue Jack	153	Dutternat..	130
Blae Myrtle	41	Button-ha!] Trea..	129
Ploe Oak	143	Buttonwood (Conocarpas erecta)	87
Blue Spruce	206	Buttouwood (Platanus oceidentalis)	129
Bluewood.	40	Buttonwood (Platanus racemosa).	129
Bola diate.	128	Batonwood, Whito.	87
Borrableaces.	113, 114	Byraonima lucida..	28
Borya acuminata	112	O.	
Borya ligustrina	112	Caballeria coriacea.................	99
Borya nutida.	112	Cahbage Palmetto.	217
Bottom Shell-bark	133	Cabbage 'Tree...	217

Page.
Page.
Page.
Cactackas 89, 00 89, 00
Cactus, Giant 0
Cagiput 120
Calabash Tree, BlackCalico IbashCulicowoorlCalifornia Bay Treo11608California Buckeyo100
Califurnla IIolly: 4120
Califorvin
California Lanare! 1 "California Nutmeg
Califormia Olivo 120186
Calothyraus Californica 43Cal?ptravthes ChytraculiaCauata l'lumCanella allaCanella laurifolia
Canclla Tinterana
Canfleaces
Canoe BirchCamoededirCanota bolocunthCappaminaces
Ctapparis Ireynia
Capraris cynophyllophora
Capjaris emarginata
Cappais famaicensis
Capparis siliquosa
Copparis torulosa
Capparis uncinata
Caphioliacea:
Cardioleyis ob'usa
Carolina PoplarCarpinus Americana
Carpinus Betulus l'irginiana
Cispinus Caroliniaaa
Carpinus OstryaCarpinus Ostrya, war. Americana
Carpinus trifora
Carpinus Tirginiana
Carya aiba
Carya alba (Carra tomentosa)
Carsa amara88Carya amara, var. myristicaformisCarya amara, rar. porcina
Carya angustifolia
Carya aquaticaCnrya enthartica.Curya cordiformisCarya glabraCorya Illinoensis
Carya integrifolia
Carya raicrocarpeCurva myristiçformis
Carya oliveformis
Corya porcina
Carya suleata.
P Carya tetraptera
Carsa tomentosa
Carya tomentora, rar. maxima 134Caryotnrus MyristicaCaryotnxus taxifolia
Cassanta135135134132135130133134132135133135132134133132133186180
C.:ssena101Casnime Caroliniana36C'assine Peragua36
Cussine ramulosa 3036Cristmenalnifolia
Casianea Americano. 157156('astanea chrysophifla
Cublameat chrygoshylla, var. minor 150150
Ca*ternea nana156
(1). 1 minis156
Castarea eempervirens.Costanca tesca (Castanea pumila)
Castanea resca (Castanea vulgarla, var. Americana)
Castanea resca (Castanea vulgarla, var. Americana)
Castanea resea, var. Americana 157 157 157
Castanca vulgaris, rar. Americana
Castanopsls chrysuphella 156
Castanopsis chrysophylla, var. miner 156
Castanopsis chrysophylla, var. pumila 156
Catalja 113
Catalpa bignonioldcs 115
Catalpa bignonioides (Cata!pa spcolosa) 115
Catalpa communis 115
Catalpa cordifulia (Catalpa hlgnonioidea) 115
Catalpa cordifolia (Catalpa specioss) 115
Catalpa speclosa. 115
Catalpa syringafolia. 115
Catalpa, Westorn 115
Catawba 115
Cat's Cluw (Acacia Greggii) 05
Cat's Claw (Acacia Wrightii) 63
Cat's Claw (Pithecolobium Ungais-eati) 64
Ceanothus fcrreus 39
Ccanothus levigatus 39
Ceanothus reclinatus 41
Ceamothas thyrsiflorus 41
Cedar, Bastaril 176
Cedar, Canao 179
Cedar Elm 122
Codar, Incense 176
Codar, Oregod 170
Codar Pina 201
Cedar, Port Orford 179
Cedar, Pust 176
Cedar; Red (Juniperaa Vlrginisna) 182
Colar, Red (Thuya gigantea) 177
Cedar, Stinking (Torroya Callfornica) 180
Cedar, Stiuking (Torreya taxifolia) 180
Cedar, Whito (Chamecyparis Lawsonlana) 173
Cedar, White (Chamzesparis apheroldes) 178
Cedar, Whito (Libocedras decurrena) 176
Cedar, White (Thaya occideatalia) 176
Cedrus Mahogoni 33
Celabtraces 38, 3 :
Celtis alba 123
Celis Audibertiana 120
Coltis Audibertiana, var. oblongala 126
Celtis A udibertiana, var. ovata 126
Celtis Berlandieri 126
Celtis brevipes 120
Celtis canina 125
Oeltis cordata 125
Oeltis cras sifolia 125
Cellis crassifolia, var. eucalyptifolia 125
Celtia crassúolia, var. morifolia 125
Celtis crassifolin, var. tiliafolia 125
Celtis Douglasii 126
Celtis Floridiana 125
Celtis fuscata 125
Celtis heterophylla 125
Ccltis integrifolia 125
Celtis levigata 125
Ccltis Lindheimeri 126

	Page.	
Celtis occidentalis, var. serrul	125	Ohilopsis linearis
Oeltis occidentalis, var. tenuifolia	125	CLilopxis aligna.
Oeltis patula	125	Chimenthus amygdalinus
Celtis pumila	125	Chima, Wiid
Celtia reticulata	126	Clingqapin (Castanea pumila).
Cellis salicifolia	125	Chinquapin (Castanopsis chrysophylla)..
Celtie tenuifolia	125	Chinquapin Oak
Celtis Texana.	120	Chimanthus angustifolia.
Cerasus 4 mericana	${ }^{6} 5$	Clionanthus heterophylla
Cerasus borealis	66	Clionanthus longifolia
Cerasus Capolin.	68	Chimanthus maritima
Cerasus Capuli.	68	Chionauthus montana .
Cerasus Caroliniana	69	Chionantl
Cerasus Chicasa	69	Chionauthns Virginica.
Cerasus demisga	69	Ohioncuthus Virginica, var. angustifolia .
Cerasus emarginata	67	Chionanthus Tirginica, var. latifolia
Cerasus erecta.	67	Chionanthus Virginica, var. maritima
Cerasus jlandulosa	67	Ohionanthus Firginica, var. montana
Cerasus hiemalis.	65	Chittanuwood
Cerasus ilicifolia.	T0	Chloromoles sewprervirens.
Cerasus mollis	67	Cluysobalamas Icaco...
Cerasus nigra .	os	Ohrysobalanus Icaco, var. pellocarpa
Cerasus Pennsylvanica	68	Carysbalanus pellocarpa
- Cerasus persicifolia .	66	Chrysophyllum Barlasco.
Cerasus serotina (Prunbs demlsss)	89	Chrysophylum Caneto, β..
Cerasus serotina (Prunns serotins).	68	Chrysophyllum forrugineum.
Cerasus spherocarpa.	70	Chrysophyllum microphyllum
Cerasus umbellata.	67	Chrysuphylum monopyrenum
Cerasus Firginiana	68	Chry soplyillum oiviformo.
Cercidium floridum	60	Cigar Treo........
Corcia Canadensis ..	61	Cinchona Caribean....
Cercis Canadensis, var. pubescens	${ }^{61}$	Oinchana Caroliniana
Cercis occidentalis	61	Cinchona Jamaicensis
Cercis occidentalis, var	61	Cinnamon Bark
Cercis occidentalis, var. Texensis	${ }^{1}$	Cinnamon, Wiid..
Cercis reniformis.	${ }^{61}$	Citiarexylam villesums
Cercocarpus betuluefolivs	71	Cludrastis lutea.
Oercocarpus betuloides.	71	Cladrastis tinctoria.
Cercocarpus brevifolius	71	Clammy Lucust.
Dercocarpus intricatue	71	Cliff Elu..
Cercocarpus ledifolins	71	Cliflonia liguatrina
Cercocarpos ledifoliua, var. intricatus	71	Clusia flava..
Cercocarpua parvifutioa ..	71	Clusia rosea.
Cercocarpus parvifolina, var. glaber.	71	Coast Live Onk
Cercocarpna parrifolius, var. pancidentatns	71	Cuccoloba Floridana
Cereas giganteus ..	89	Cocoloba Laganensis
Chapote.	105	Coccoloba parvifolia .
Chamacyparis Boursierii (Chamæcypsria Lawsovisna).	178	Coccolola nvifera...
Chamecyparis Boursierii (Joniperus occidentalia)..	181	Cuccoloba uvifera, var. Leganensis.
Ohamecyparis excelsa	178	Cuccoluba avifera, var. ovalifolia .
Chamæçparis Lawsoniana .	178	Cockapar Thorn.
Chamæespsria Nutkaenais	178	Cucaa Plum....
Chamacyparis Nutkaensis, var.glauca	178	Coffee Nut..
Chamaeyparis Nutkanus...	178	Coffec Tree, Kentncky.
Chamrec gparis sphwereldea.	177	Calubrina recilinala
Chamerops Palmetto.	217	Combrbtaces.
Oheiranthodendron Californicum.	26	Condaiia ferrea
Cherry..	100	Condaiia obovata
Cherry Birch .	162	Coniferas..
Cherry, Indian		Conocarpus acutifolia
Cherry, May...	84	Conocarpus erbeta
Cherry, Pigeon	66	Conocarpus erecta, var. procumbene
Cherry, Pln	os	Conocarpus pracumbens
Cherry, Rum	68	Conocarpus ricemosa...
Cherry, Widd (Prums Capnii)..	69	Corai Snmach
Cherry, Wild (Prunns demisaa).	69	Cordia Roissict
Clierty, Wild Black.	68	Cordia Floridana
Cherry, Wild Red.	60	PCordia juglandifolia.
Chentont.	157	Cordia Sebeatena
Chestant Oak (Quercos densiflora)	153	Cordia speciosa
Chentnut Oak (Quercas prinoldes).	143	Cork Eim......
Chertunt Oak (Qnerena Prinus) ..	142	Corkwodi
Cheatnut Oak, Rock	142	Counaceas...
Chickanam Pium.	60	Cornus alterna...
Chilopris quutinosa.	116	Commes atternifoila

	Page.		Page.
Cornus florida	90	Orategus linearis	${ }^{77}$
Cornus forida (Cornus Nuttallit).	${ }^{1}$	Crategus lobata (Crategus favs).	2
Cornus Suttallii	91	Crategus lobata (Cratægus tomentosa)	78
Corypha Palnetta	217	Orategus lucida (Cratregus astivalis).	82
Cotinus Americant	52	Orategus lucida (Crategus Cras-galli).	76
Cotinus eaggyoria	52	Oratagus macracantha..	77
Cotton Gum	93	Cratagus Micharaxi	83
Cottorwood (Populus Fremontii)	175	Oratagus micracarpa	81
Cottonwool (Populus Fremontil, var. Wislizeni)	175	Crategus mallis.	78
Cottouwool (Populus monilifera)	175	Cratagus abovatifolia	80.
Cottonwoel, Balsam.	174	Oratcegts opaca	82
Cottonwood, Bir	175	Oralagus ovalifolia	76
Cottouwood, Black (Populus angustifolia)	174	Oratagus oxyacantha	81
Cottonwood, Black (Populus tricbocarpa).	174	Oratagus oxyacantha, var. apifolia	81
Cottonwool, River	172	Crategus parvifolia.	83
Cottonwood, Swamp	172	Oratagus populifolia (Cratagus coccinea)	8
Cottonwood, White	175	Oratagux populifolia (Crategus cordata)	80
Cow Oak.	141	Cratagus prunclifalia .	78
Cral, American.	72	Oratagus prunifolia .	77
Crab $\Delta_{\text {pple, }}$ America	72	Oratogus punctata.	80.
Crab Δ pple, Oregon	73	Oratagus punetata, ras. brevispina	75
Crsb Ajple, Sonthern	T2	Oratugus punctata, vsir rubra sid aurea	80
Crab, Sweet-scented	72	Oratagus punctata, vaz. xanthocarpa	80
Crabwoed	121	Oratcogus pyrifolia.	78
Cratrgus æstivalis	82	Oratagus racemosa	84
Crategus apiifolis.	81	Cratagus rivularis	74
Cratagus arburescens	75	Oratagus rivularis (Cratægus Douglasii)	75
Cratagus arbutiolia.	83	Cratagus salicifolia.	76
Cratrgus berberifolis	82	Cratogus zanguinea	75
Oratagus Bobciana	77	Oratagus sanguinea, var. Douglasii (Crategus Donglasii)	75
Cratægus brachyacanth	75	Oratagus sanguinea, var. Douglasii (Crstegus rivalaria)	74
Cratagus Oaraliniana	82	Cratagus ranguinea, var. villosa.	78
Cratagua coccinea	77	Crategus spathulata.	81
Cratagus coccinea (Cratmgus tom	79	Crategue spathulata (Cratagus flara, var. pubescens)	83
Orategue caccinea, var. cordata.	79	Orategus spicata	85
Cratagus coccinea, var. mollis	78	Crategus subriiliosa	78
Crategus coceinca var. oligandra	78	Oratagus Texana	78
Cratagus coccinea, var. populifolis	78	Crategns tomentosa.	79
Crategus coccinea, var. typica..	78	Oratagus tornentosa ($\mathrm{Amelanclier} \mathrm{Csnadensis)}$	${ }^{8}$
Cratagus caccinea, var. viridis	78	Oratagus tamentaga, var. mollis.	78
P Oralagus coccinea, var. viridis (Cratmgus tomentosa)	79	Oratagus tomentosa, var. plicata.	80
Cratagus cordata.	80	Crategus tomentosa, var. punctata	80
Orategus caronaria .	72	Cratagus tomentosa, var. pyrifolia	. 79
Cratagus Coursetiana....a	76	Cratagus turbinata	82
Cratægus Crus-galli	76	Cratagus Virginica	83
Oratagus Orusgalli (Crategus coccinea)	77	Oratagus viridis (Crategus coccinea)...	78
Oratagus Orus-galli (Crategus tomentosa, var. punctata)	80	Crategus viridis (Cratogus dlava, var. pubescens)	83
Cratagns Crus-galli, var. linearis	76	Orategue Watsoniana.	\% 6
Cratagus Crus-galti, var. ovalifolis.	\%	Crescentia cucurbitina	116
Crategus Crus.galli, rar. pranifolis	77	Oreceentia latifolia	116
Cratagas Crus-galii, var. pyracanthifolia	76	Crescentia lethifera	116
Cratagus Crus-galli, var. pyracanthifolia (Crgtegua srborescens).........	75	Crescentia abovata*.	116
Crategus Crus.galli, vsr. saliciolia...............................	76	Crescentia avata ...	116
Crategus Crus-galli, var. splendens	70	Crcscentia toxicaria	118
Cratcegus cuneifotia	80	Cncuruber Tres (Magnolia scuminata)	20
Cratagus Douglaaii	75	Cucumber Troe (Magnolia cordata).	21
Crategus cliptica (Crategus æstivalis) .	82	Cucunber Treo, Largo-leaved.	2
Cratagus elliptica (Crategus flavs, var. pubescens)	83	Cueumber Tree, Long-loaved.	22
Cratagua flava	82	Ouprespinnata disticha	183
Crategus flava (Cratagus thav, var. pubescens)	83	Cuprossus A mericana..	178
Cratagus fara (Cratmgus tomentosa)...	79	Cupressus A rbar-vitce	176.
Cratagus fava (Cratrgus tomentosa, var. punctata)	80.	Oupre8848 A rizonica .	180
Orategus fara, vsr. lobata......	82	\bigcirc Cupressus attenuata .	178.
Crategus fava, var. pubescens.	83	1 Cupressus Californica.	179
? Cratrgus fexuosa	80	Cupres8us Californica gracilis (Cupressus Goveuiana)..	179.
Orategus glandulosa (Cratiogus coccinea).	77	Oupressus Californica gracilis (Cupressns Maenabiana)	180
	75	- Oupressus cornuta	179.
Oratagus glandulosa (Cretegus flava).	77	Cuprexsus disticha..	183
Sratague glandulosa (Cratregus flava, rar. pubescens).	83	Cupressus disticha, var. imbricaria	183
Cratayus glandulosa, var. macracantha	77	Cupressus distieha, var. nutans .	183.
Crutagus glandulosa, var. rotundifalia..	78	Cupressus disticha, var. patens..	188:
Cratagus latifolia (Cratogus tomentosa)..	79	Cupressu* Sragrana ...	178
Cratagus latijolia (Crategns tomentosa, rar. punctata).	80	Oupressus glandulosa ..	100
Cratrgus lencocephatur	79	¢иргеваия Goveuiaua.	179
Cratagus leucoyhleos	70	Cupressus Guadalupensis	18*

	Page.		Page.
Cupressus Hartwegii	179	Drypetes sessilifora...	120
1 Oxpressus Hartzegii, var. fastigiata	179	Dack Oak	52
Oupressus Lambertiana	179	Dwarf Mapls.	
Cupressus Lavooniana	178	Dwarf Sumach	3
Cupressas Macdahiana	180		
Cupressus macrocarpa..	179	Ebevacesa	104, 105
Cupressus macrocarpa 8 (Cupressns Guadalupensis)	180	Ehretia Bourreria	114
: Cupressus macrocarpa, var. fastigiata	179	Ehretia elliptica..	14
Cupressus Nootkatensis.	178	Ehretia Havanensis..	
Cupressus Nutkaensis	178	Eliretia radula.	114
Cupressus thyoides	177	Ehretia tomentosa	
Cupuliferes	137-159	Elaphrium integerrimum.	
Custarl Apple.	23	Elder (Sambucus glanca)	
C_{5} press, Bald..	184	Elder (Sambucus Mexicsna).	
Cypress, Blsck	184	Elder, Box (Negundo aceroides)...	
Cypres, Decidueus	184	Elder, Box (Negundo Californicum).	
Cypress, Lamson's	179	Elder, Poison.	
Cypress, Monteray	179	Elemi, Grm	
$C_{\text {spress, }}$ Red	184	Elkwood.	
Cspress, Sitka.	178	Elm, American	
Cspress, White.	184	Elm, Cedar.	
Cypress, Yellewr.	178	Elm, Cliff	
Crrillacere	37, 38	Elm, Cork	23
Cyrilla Caroliniana	37	Elm, Hickory	3
Cyrilla fuscata..	37	Elu, Menss	
Cyrilla paniculata	. 100	Elm, Red...	
Cyrilla parvifolia.	37	Elm, Rock.	
Cyrilla polystachia.	37	Elm, Slippery (Fremontis Californica)	
Cyrila reccmiflera..	37	Elm, Slippery (Ulmue fulva)	
Cyrilla racemosa.	37	Elim, Water	
D.		Elm, Whits (Olmus Americana)	
Daheon.	35	Elm, White (Ulmas racemesa)	
Dahoon Helly	35	Elm, Winged..	124
Dalea spinoss..	55	Emetila ramulesa	
Darling Plum..	39	Enceno..	147
Datiza hirta	52	Endotropis oleifolia	
Deciduons Cypress	184	Ericacre...	96-99
Dermatophylum speciosum	57	Erythrina piscipula	
Desert Willew.	116	Eugenia axillaris	
Dasrilwood.	113	Eugenia Baruensis	
Diamend Willow	170	Eugenis buxifolls	
Digger Plna.	195	Eugenia dichotoma.	
Dills, wild	103	Eugenia dichotoma, var. fragrans	
Diospyros angustifolia	104	Eujenia divaricata	
Dioppyres calycina....	104	Eugenia longipes.	
Diospyres ciliata..	104	Eugenia montara	
Diospyrat concoler.	104	Eugenia monticula	
Diospyros Guaiacana	104	Eugenia myrtoides	88
Diospyros intermedia	104	Eusenia pallens .	88
Diospyros lucida.	104	Eugenia precera.	89
Diospyres Persimon	104	Eugenia pungens ..	88
Diospyros pubescens.	104	Eugenia triplinervia (Eugenis buxifolis)	88
Diospyros Texana, ...	195	Eugenia triplinervia (Eagetuia monticola)	
Dluepyros Virginiana	104	Eoonymus atropurpursus	38
Diorpyros Virginiana, var. concolor	104	Euonymus Carolinensis..	
Diospyros Virginiana, var. macrocarpa	104	Euenymus latifolius	38
Diospyroe Virginuana, var. microcarpa.	104	Elthordiaces.	120, 121
Diospyres Virginiana, var. pubescens.	104	Excocaria lucida.	1
Dipholis salicifolis ..	101	Exostemma Caribxum	95
Docter Gum	54	Exathea oblongifolia	45
Dogwood..	90	Eysenhardtia amorphoides.	55
Degwood, Flewerlog (Cornus florida)..	91	Eysenhardtia amorphoides, var. orthocarp	55
Dagwoed, Flowering (Cornns Nattallii)	01	Essenhardtia orthocarpa	
Dogwood, Jamslen.	57	F.	
Dogwood, Striped ..	46	Fagara fraxinifolia...	30
Douglas Fir..	200	Fagara lentiscifolia.	31
Downwatd Plom.	103	Fagara Pterota.	31
Drimophyllum pauciforum.	120	Fagus alba ..	157
Drypetes alba, var. latîolia.	121	Pague a mericana	157
Drspetes crocea.	120	Fagus a mericana latifolia	157
Drypotes crocee, var. latifolia	121	Fagus Castanea..	157
Drypetes crocea, var. longipes	120	Fogux Castanea dentata	157
Drypetes glauca (Drypetes crocea)	120	Faguy Castanea pumila	116
Srypetcs glauca (Drypetes crecea, var. latifolia)	121	Fagus firruginca.	157

Page. Page.Fagus ferruginea, var. Caraliniana157
Fagus pumike 50
Fagas pumila, var. proccox 150
Fagus mylraticn
F'agus syleatica atropunicea
Fagus sylvatica, var. 1 mericana
Fagus sylvestris157Fan-leaf Palm157
Farkleberry217
9Fetid Buckeye
Ficns nurea 126
Ficus aurea, var. latifolio 120
Fiens brevifolia 127
Ficue complicata
Fiens pedunculata127Filllh.woodFig, Wild.
Fir, Jalm of GileadFir, Malsam (Abies balsames)
Fir, 1:alaam (Abies concolor)
Fir, Jonglas
Fir, l'exl (Abies magnifica)
Fir, Jed (Abies nobilie)
Fir, Red (Pseudotsuga Donglasii)
Fir, White (Abies coucolor)
Fir, White (Abies grandis)
Fir, Yellow
Fir127127211211213209214214209213
209lluwering Dogwood (Cornus florida)Flowering Dogwood (Cornos Nuttallii)Fotataxus mantana
Fotataxus Myristica
Foristicra acuminata.
Forked-leaf Black Jack
Foxtail Pine
Frangula Califarnica
Frangula Califarnica, var. tomentella
Frangula Caraliniana
Prangula fragilis.
Frangula Purshiana
Franklinia
Franklinia Alatamaha
Fraxinug acuminata
Frixiuus alba
Fraxinus alva (Fraxiuns Americaua)Fraxinus albicans (Fraximus Americada, var. microcarps)
Fraxinus albicans (Fraxinus Americana, var. Texensis)
Fraxiaus Americana
Fraxinus A mericana (Fraxiuns platycsrpa)
Fraxinus Americana, var. Caroiniana
Fraxinus A mericana, var. juglandValia
Fraxinus Americana, var. latifolia919118618011215119140414040412625107112107108108107110Flaximus americanaFraxinus Americana, var. 2 nubescens109107Fraxiaus. A mericana, var. quadrangulata108108
Fraxinus Americana, var. quadrangulata ncroosa 110
Fraxinus Americana, var. sambucifolia.Fraximus Americana, var. Texensis.
Fraxinus Amcricana, var. iriptera
Fraxinus anomala
fraxinus Derlandieriana
Fraxinus Canadensis
Fraxinus Caroliniana (Fraxinus platsearpa)
PFraxinus Caraliniana (Fraxinus viridis)
Fraxinus Carolinensis
Frisinus cinerea
Fruxinus cariacea (Fraxinus Americana, var. Texansis)
Fraxinus coriacea (Fraxinus platacixfolia)
Froxinus crispa
Fraxinus Chertissii
Fraxinte curvidens
Froxinus cuspidata
Fuaximat dipetala
Fraxinus discolor
Fraxions olliptica
Fraxinus cyiptera
Fraxinue excelsior 110
Fraxinus expan\&a 109
Fraxinus fusca 112
Fraxinus grandifolia 111
Fraxinna Greggi 100
1 Fraxinve juglandifalia (Fraxinns Americana) 107
Fraxinus juglandifalia (Fraxinus viridis) 109
I Fraxinur jugtandifolia, var. serrata 107
Fraxinus juglandijalia, var. subintegerrima 109
PFraxinus juglandifolia, var. suliserrala 107
Fraxinus lancen 107
Fravinus Conyjolut 108
Fraximes mista.
Fraxinus nervana 110
Fisxinne nigra 112
Fraxinue nigra (Fraxinus pnbescens) 10.3
Fraxinus nigra (Fraximus sambucifolia) 111
Fraxinus nitrescens 110
Fraxinue Nacce.Angliax (Fraxinns sambucifolin) 111
Fraxinus Natce-Anglice (Fraxinus virdis) 100
Fraxinus Nuttallii 110
Fraxinus ablangocarpa 108
Fraxinus Oregana 111
Fraxinus ovata 11:
Fraxinus pallida 110
Haxims pannesa 112
Fraxinus paucifnta 110
Fraxinus Pennsylranica 108
Fıaxiuns pistacixfolia. 100
Fraxinus pistacia folia (Fraxiuus Americana, var. Texensis) 108
Fraxines pistaciofalio, var. cariacea 100
Fraxinus platycarpa 110
Fraxinus puberscons 108
Fraxinus pulescens 110
Fraxinus pubencens, var 111
Fraxinus pulesens, var. latifalia 108
Frexinus pubescens, var. longjfolia 108
Fraxinus pubescens, var. subpubescens 108
Finxinus pulverulenta 112
Fraxinus quadrangularis 110.
Fraxinus qualrangulata 110
Fraxinus quadrangulata, var. nervosa 110
Frasiuns lichardi 112
Fraxinus rubicunda 112
Fraxiuna rufa 11:
Fraxinus samhucifolia 111
Fraxinue sambucifolia, var. crispa 111
Fraxinue S'chiedcana, var. parvifalia. 106
Fraxinus subvillosa 108
Fraxinus tetragana 110
Fraxinus tamentosa 108
Fraxinus trialata 100
Fraxinus triptera. 110
Fraximus velutina 116
Fraxinus vitidis 109
Fraximus viridis, var. Berlandicriana 109
Fremontia Californica 26
Frigolite $\$ 8$
Fringe Treo 113
A.
Gardenia clubiafolia 95
Gelger Tree 113

	Page.		Page.
Maplle, Red.	50	Mespilus Fatconiana ..	76
Maple, Nock .	48	¢Mespilus Wendlandii.	77
Maule, Silver	49	Mesqnit	62
Maple, Sof (Acer dasyearpum).	40	Mesquit, Scrow.pod.	62
Maplo, Soft (Acer rabruif) .	50	Mctopium Linnai.	54
Maple, Striped	40	Mosican lanana.	219
Maple, Sugar..	48	Mexican Mnlberty .	128
Maple, Swamp	50	Mexican Peraimmon	105
Maple, Vino.	47	Michauxia sesilis.	25
Maple, Watcr	50	Mimosa biceps.	62
Maple, Whito	49	Mimora frondosa	62
Marlberty	100	Mimosa glauca..	62
Mastio....	101	Minosa Guadalupensis	64
Mauloak.	140	Mimora latisiliqua	64
May Cherry	84	Mimosa leucocephala	62
May Haw...	82	Mimosa rosea ..	64
Meadow Pino.	202	Mimosa Unguis-cati.	64
Melacers.	33, 34	3imusope dissecta	103
Melicocea paniculata	45	Mimusops Sicberi.	103
Mellicbus heterophylla	59	Mocker Nut.	134
Mexpilus aeerifolia.	80	Mock Orange.	70
Mespilus cstivalis.	82	Monterey Cspress	179
Sespilus apieifolia.	81	Monterey Pino...	196
Mespilus arborea.	84	Mooso Elm..	122
Scspilus arbutifolia	83	Moosewood	46
Afcspilus Azarolus	81	Morus Canadensis (Lamarck and Rafinesque)	127
Mespilus berberifolia	82	Morua microp by lia.	128
Mespitus Boscinna.	77	Morus Missouriensis .	127
Hespilus Calpodendron	79	Morus parvifotia (Morus microphylla)	128
Meepilus Canadensis.	84	Morus parvifolia (Morns rubra).......	127
Mespitus Canadensis, rar. cordata	84	Mforus reticulata	127
yeepilus Canadensis, var. obovalis	85	Morus riparia.	127
Mespilus Caroliniana.	82	Morua rabra.	127
acspilus eoccinea.	77	Morus rubra, var. Canadensis.	127
Mespilus cordata.	80	Aforus rubra, rar. incisa	127
Mespilus cornifolia.	80	Morus rubra, var. tomentosa	127
Mespilus Crus.galli..	78	Mforus scabra...	127
Sccepilus Crus.galli, var. pyracanthifolia	76	دforus tomentosa	127
Mespilus Crus-galli, var. salicifolia..	76	Mossy-cup Oak.	148
Sespilus cuncifolia (Crategus Crus-gall).	76	Mountain Aab (Pyrus Americans).	73
Meespilus cuneifolia (Cratwgus tomentosa, var. punctata)	$\varepsilon 0$	Mountsin Ash (Pyros sambucifolia)	79
f Mrespilus cuneiformis.	70	Mountain Lanrel.	120
Mespilus elliptica (Crategua Crus galli) .	76	Monntain Magnolia ..	20
Mespilus clliptica (Crategus flava, var. pubescens).	83	Monntaiu Maliogany (Cercocarpus ledifoling)..	71
Mespilus flabellata.	77	Mountain Mahogany (Cercocarpus parvifoline)	71
Mespilus fava. .	82	Mountain Mauchineel......................	54
Meepitue flexipina	82	Mountain Maple ...	46
Hespilus glandulosa.	77	Mountain Plum....	34
Mrspilue hiomatis	83	Mountain White Oak	143
Mespilus latifolia	70	Mnlberry, Moxican	128
3^{3} cspitus lincaris.	77	Mulberry, Red....	128
Mespilus lobata.	79	Myginda pallena	38
sfexpitus hucida ...	76	Mylocaryum ligustrinum	38
Mespilus lucida, var. angustifolia	77	Myrica Californica	137
Mespilus Mfichauxii	83	Myrica Carolinensis.	136
Mespilus monogyna, var. apifolia.	81	Myrica cerifera.....	136
Mcerilue nivea	84	Myrica cerifera humilis.	136
Mespitus odorata	79	Myrica cerifera sempervirens.	136
Ifeapilus oralifolia	76	Myrica cerifera, var. angustifolia.	138
Mespilus Phenopyrum	80	Myrica cerifera, var. arborescens..	186
Mcepilus populifolia.	78	Myrica cerifera, var. latifolia..	${ }^{136}$
Serpitus pruinosa.	79	Myrica cerifera, var media ..	136
Afespilus pruncllifolia	70	Myrica cerifera, var. pumita	36
Mcepilus prunifolia 9	77	Myrica Pennsylvanica..	${ }^{136}$
Mespilus pubcscens.	77	P3yrica Salapensis...	137
Mespilus prnctata.	80	myricacre.	136,137
Mexpilus pyrifolia (Cratagus tomentosa).	79	Mrrsinacese.	99, 100
Mespilus pyrifolin (Cratmgus tomentoaa, var. punctata).	80	Myrsine floribunda.	99
Mespilus rotundifolia (Crategus coccinoa).....	77	Myrsine Floridana..	99
Meepilus rotundifolia (Crategns Crus-gelli, var. prunifolis).	77	Myrsino Rapanoa..	99
Mexpitue salicifolia...	76	myrtacre	88,89
Mespilue spathulata	81	Myrtle, Bluo..	41
Mespilus tilinefolia	78	Myrtle, Wax..	${ }^{136}$
Mespilus turbinata	82	Mgrtus axillaris..	88
Stespilus viridis	78	Myrtus buxifolia..	88

	Page.		Page.
3fyrtus Chytraculia.	88	Osk, Cheatnat (Quercze Prinus).....	
plyrtus dichotoma.	88	Oak, Chinquapin.	143
Myrtus monticola	89	Oak, Coast Live	147
Myrtus Poirsti.	88	Oak, Cow	141
Myrtus procera	89	Oak, Dack	52
		Oak, Irou.	139'
N.		Oak, Jack..	150.
Naked Wood (Colubrina reclinato)	42	Oak, Laurel (Quercua imbricaria)	154
Naked Wood (Eugenia dichotoma)	88	Oak, Laurel (Quercua laurifolia).	153
Nannyberry	94	Oak, Live (Querena chrysolepis).	146.
Necklace Poplar	175	Oak, Live (Quercua virens)	14.
Nettandra Bredemeieriana	119	Oak, Live (Quercus Wislizeni).	47
Nectandra Willdenovigna	119	Osk, Maul.	140
Negundium fraxinjolium.	51	Onk, Mossy-cup .	140.
Negundo aceroidea.	50	Oak, Mountain Whito.	143
Negundo aceroides (Negondo Callfornicam)	51	Oak, Over-cup (Quercas lyrata).	140
Negundo Californicum .	51	Oak, Over-cnp (Quercus macrocarpa)	140
Negundo Californicum (Negundo aceroidea)	51	Oak, Peach (Querena densifiora).	155
Jegundo fraxinifolium	51	Oik, Peach (Quercus Phellos)	54
Negundo lobatum.	51	Oak, Pin.	153
${ }_{\text {i }}$ Negundo Mexicanum.	51	Oak, Poasum	152
Negundo trifoliatum.	51	Oak, Post..	159.
Nowcastie Thorn	76	Oak, Punk..	152
Norway Pine.	192	Oak, Quercitron	149
Not, Bitter ..	135	Oak, Red (Quercus falcata).	151
Nut, Bull .	134	Oak, Red (Qacreus rubra).	148
Nut, Coffee.	58	Oak, Red (Qucrens rubra, var. Texaus)	148
Nut, nlinoia	132	Oak, Rock Chestnut.	142
Nut, King	134	Oak, Scarlet	148
Nut, Mocker	134	Oak, Scrub (Quercos Cateshzi).	151
Not, Pig..	134	Oak, Scrub (Quercus undulata, var. Gambelii)	39
Nat Pine (Pluas cembroides)	190	Oak, Shingle..	151
Nut Pine (Pinus edalis)	190	Oak, Spanish.	151
Nut Pine (Pinat monophylla)	190	Oak, Swamp Poat.	149
Nut Pine (Pinua Partyana).	189	Oak, Swamp Spanish	152
Nut, Tallow.	34	Oak, Swamp Whito	141
Notmeg, California	186	Onk, Tanbark	155
Nutmeg, Hickory	135	Oak, Turkey ...	151
Nyctaginacere.	117	Oak, Upland Willow	153
Nyssa aquatioa (Nysam ayl vatica)	02	Oak, Valparaiso.	146
Nyssa aquatica (Nyasa uniflora)	92	Oak, Water (Qucreos aquatica).	152
Nysacangulisans.	${ }^{03}$	Oak, Water (Qucrens paluatris)	152
Nysac angulosa	93	Oak, Water White............	140
Nyssa bifora	92	Oak, Weoping ...	38
Nyasa Canadensis	02	Oak, White (Quercus allay)	137
Nysaa candicans	91	Oak, White (Quercua Garryana).	138
Syssa capitata	91	Oak, White (Quercts grisea).	144
Nysac capitata, var. grandidentata	03	Oak, White (Quercus lohata).	138
Nyesa Caroliniana.	92	Oak, White (Quercus oblongifolla)	144
Tyssa coscinea.	91	Oak, Willow..	154
Nysac denticulata.	92	Oak, Yellow (Qucreua prinoides)	143
Nysasa grandidentata	93	Osk, Yellow (Qucrens tinctoria).	110
Sypa integrifolia	92	Oak, Yellow-bark............	149
Nyesa montana.	91	Oblispo Pine	200
Nysaa mulifitora.	92	Enocarpus regia.	218
Nyeza meltifora, var. sylratica	93	Ogeechee Limo .	91
$\nabla_{y s b a}$ Ogeche.	91	OLio Buckeye...	42
Nysa palustris.	93	Olacinete	34
Nysat sulvatics	$9 ?$	Old.fild Birch.	150
Nyesc tomentosa (Nyasa capitata)	91	Old-field Pine ...	197
Nyana tomentosa (Nyasa unifora)	93	Old Man's Beard.	113
Nyssa unifora.	92	Olea 4 mericona.	113
Nygara tillosa.	92	Olmacter..	106-113
		Olive, California.	
o.		Olnoya Tebota.....	
Oak, Bartram's	153	Orange, Mock	
Oak, Eanket .	141	Orango, Oasge.	128
Oak, Bhek (Quercus Emoryi).	146	Orange, Wild (Prunus Caroliniana).	70
Onk, Black (Querens Kelloggil)	149	Orango, Wild (Xanthoxylum Clava-Herculia)	${ }^{30}$
Oak, Black (Quercus rubra).	148	Orchidocarpum arictinum.	23
Oak, Black (Quercus tiuctoria)	149	Oregon Ash...	111
Oak, Blue .	143	Oregon Celar......	
Onk, Bure....	140	Oregon Crab Apple	73
Osk, Cheatrut (Quercus densifiors)	155	Oregon Pine..	
Oak, Chestnut (Quercus prinoldes)	143	Oreodaphne Cala	

	l'age.		Page.
Oreodera oleraceal	218	Phatinia arbutifolia..	83
Oreotoxa rega	218	Photinia salicifolia.	83
Osage Orange.	128	Picea alba ..	204
Osuantbus Atmericauns	113	Picea a madilix (Abies nmabilis)..	213
Ostrya lirginiona.	153	Ticea amabilis (Ahies subalplaa) ...	211
Ostrya ${ }^{\text {cimginiea }}$	158	ITicea balsanea.	211
Ostryn lïrginica, rar. eghandulosa	158	Picea balsamea, var. longiolia.	11
Ostrya rirginica, var. glanduloga	158	Picea bifolia	11
Over-cup Oak (Querens lsma)	140	Picea bracteata	213
Over.rap O.k (Quercus maerocarpa)	140	\bigcirc Pieca Californica	208
oxydenirum arboroum	98	Picea Canadensis.	206
		Pieca cerrulea..	204
		Picea concolor.	212
Padus cartiluginea	68	Ricca concolor, var. violacea	212
Tadus icmissa.	69	Picen Douglasii...	200
I'adus serotina.	c8	Pieca Engeluanal	205
Padus Virginiana	68	ricea Fraseri (Alies lualsamea)	211
	217	Iicea Fraseri (Alles Frascri)	210
Palm, Royal	218	ricea glauca ..	204
Palma argentea	218	ricea grandis (Alles concolor).	212
Palmacere	217, 118	Picea grandis (dbles grandis)	212
Jalmetto, Cabbago	217	ricea laxa	204
I'alme to, silk top	217	Picea Lowiana.	212
Piameto, Silver-top	218	Picea magnifica.	214
Pallo Blanco	126	Picea Menziesii (Pices pungens)	205
Pato Terdo	60	Picea Menziesii (Pieea Silcheusis)	206
Papaw....	23	Picea digra...	202
Paner Birch	160	Picea nigra, var. glauca.	204
Paradise Treo.	32	Picea nigra, var. rubra..	203
Parkinsouna aculenta	60	Tieca nobilis ...	214
rarkiusonia microphyla	60	Pirea pungens.	205
Parkinsonia Torresana	60	Pieca rubra	203
Parstes liam.	81	Ticen Sitehensis	200
Pusania densifora	155	Pickeringia paniculata	100
r'avia Californica.	43	Pigeon Cherry.	60
- paria carnea.	42	Pigcon Plum	117
Pavin diseolor	43	Pigeonwood	117
pavia flava...	43	Pig Nut	134
Paria glabra..	42	Pilocereus Engelmanni	E9
ravin hybrida	43	Pin Cherry	68
Paria luten	43	Pin Oak	152
racia neglceta	43	Pinckneya pabens.	95
raria paltida.......		Pinckneya pulescens.	95
Pracia lratsoniana.	42	Pine, Bastard...	202
Peach Oak (Quereus densifora)	155	Pine, Bishop's	200
Peach Oak (Quereus Phellos).	154	Pinc, Black (Pinus Jeffreyi).	193
Peach, Wild.	70	Pine, Phack (Pinns Murraysna)	195
Pear llaw	79	Pine, Bull (Pinna Jsfreyi)	193
Pecan	132	Pide, Ball (Pluns mitis) ..	200
Pecan. Bitter.	136	Piue, Bull (Pinus pondeross).	193
Pepperillgo.	02	Tiue, 1 Pull (Pians Sabiniaaa)	195
Pepperwood.	30	Pine, Cedar.	201
Persea Borbonia	118	Pino, Digger	195
Persea Curolinenals	118	Pine. Foxtail.	191
Tersea Curolinensis, var. glabriuscula.	118	Pine, Georgia	202
Jersea Carolioensis, var. palustris.	119	Pine, Ginger	170
Yersea Carolinensis, var. preescens	110	Pine, Gray ...	201
Perea Cateshyana	119	Pine, liard	202
I'ersca Sasbafras.	119	Pine, Mickory (Pinus Balfourlana,	191
Persimmon.	104	Pine, Mickory (Piuns pangens)	199
Persimmon, Mack	105	Pine, Jerscy	199
Persimmon. Mexican.	105	Pine, Knol-eone.	198
Phanopyrten acerifotium	80	Pine, Lollolly	197
Phanopyrum arbarescens	75	Pine, Lodge-pole.	195
Ihannpyrum Carolinianum	82	Pine, Loungleaved	202
Pharnopyrum coccineum.	77	Pine, Meadow ...	202
Thenopyrun cordatum	80	Pino, Mouteray.	190
Ihonopyrum ellipticum	82	Pinc, Xorway .	192
i'henchyrum populfolitem	78	Pind, Nat (Pinus cembroides)	190
Phanopyrum pruinosum	79	Pinc, Nut (Pipns edulis) ...	190
I'henopyren rpathulatum	81	Pive, Nut (Pinus monophylla).	190
Thornopyrum subvillosum.	78	Pino, Nul (Pinus Parryana).	189
Phenopyrum Jirginicum	82	Plne, Oblspo..	200
21/hchoqurunt viride.	78	Ploc, Oll.fiold	197
1hoonopyrum Wendlandii.	77	Pioe, Oregon	209

	Prge.		Page.
Pine, Pitch	198	Pinus contorta (Pinns Mnrrayana)..	194
Pine, Poud	198	Pinus cantorta, var. Bolanderi.	194
Pine, Prince's	201	Pinus contorta, var. latifoha	104
Pine, Red.	192	Pinne Caultcri.	105
Pine, Rosemary	197	Tinus Craigana	193
Pine, Sand.	199	Pinus Cubensis.	202
Pine, Scrul (Pinos Banksiana)	201	Pinus Cubensis, vss. terthracarpa.	202
Pine, Scrab (Pinus clansa)	109	Pinus deflexa	193
Pine, Scrub (Pinus contorta)	194	Pinus Douglasii	209
Plue, Scrub (Piwns inops)	199	Tinus Douglasii, var. brevibracteata	203
Pine, Sbort-leaved	200	l'inus cchinata.	200
Pine, Slash	202	Tinus Edgariona	199
Pine, Sonthern	202	Pinus edulis	190
Plue, Spruce (Pinns clansa)	109	Pinus Elliottii	202
Pine, Sprucu (Pinus glabra)	201	Pinus Engelmanni (Picea Eagelmanni).	205
Pine, Sprace (Pinus mitis).	200	Pinus Engelmanni (I'inus ponderosa)	193
Pinc, Spruce (Pinus Murraysna)	195	Pinnsflexilis	188
Pine, Sugar.	188	Pinu*fexilis (Pinns slbicanlis)	180
Plue, Swamp	202	I'inus flexilis, var. albicaulis	189
Pine, Table-monntain	199	Pinus flexilis, var. macracarpa	188
Pine, Wermonth	187	Pinus jlexilis, var, reflexa	180
Pine, White (Pinus flexilis)	188	Penus ficxilis, var. serrulata	188
Pine, Whito (Pinus glabra)	201	Pinus Fraseri (Abics Fraseri)	210
Pine, Whito (Pinns monticala).	187	Pinus Fraseri (Pinus rigida).	197
Pine, White (Pinas reflexa).	189	Pinus Fremontiana	100
Pine, White (Pinne Strobne).	187	Pinues futilis.	190
Pine, Fellow (Pinus Arizonica)	192	Pinus glabra	200
Pine, Yellow (Pinns mitie)	200	Pinus grandis (Abies ammbilis)	213
Pine, Yellow (Pinas palnstris)	202	Pinue grandis (Abies concolor)	212
Pine, Fcllow (Pinus ponderass)	193	Pinus grandis (Abics grandis)	212
Pinon (Pinua cdulis).	190	Pinus Grozelieri	187
Piñon (Pinns monopbylia)	190	Pinus Hudsonica	201
Pinion (Pinos Parryana)	189	Pinus inaps.	198
Pinue Abies 4 mericana.	206	Pinus inaps (Pinus contorts)	194
Pinua Abie Balsamea	211	Pinus inape (Pinus Marrayana)	194
Pinue Alies Canadensis	202	Pinus inope, var. (Pinus muricata)	199
Pinux adunca	106	Pinus inops, var. clausa	199
Pinus alba.	204	Pinus insignis	106
Pinua albicanlis	189	Pinus insignis macracarpa.	196
Pinus amabilis (Ables amablia)	213	I'inus insignis, var. binata	100
Pinus amabilis (Ables mngnifics)	214	Pinus intermedia	215
Pinus amabilis (Ables subalplns)	211	Pinus Jatfreyl	193
Pinus A mericana (Picea nigra).	203	Pinus Lambortiana	188
Pinus Americana (Tsnga Csnadensis)	206	Pinus Lambertiana, var. (Pinns flexilis)	188
Pinue A mericana rubra	202	Pinus Lambertiana, var. brevifolia	188
Pinus aristata	191	Pinus laricina	215
Pinns Arizonica	192	Pinus Laricio, var. resinoba	101
Pinus australis	201	Pinus Larix.	210
Pinne Belfourisna	191	Pinus Larix alba	215
Pinus Lalfourions (Pinns Balfonriana,	191	Pinus Larix nigra.	215
Pinus Balfouriana, tar, aristata	191	Pinus Larix rubra.	215
Pinus balsamea .	210	Pinus lasiocarpa (Abies concolor)	212
Pinus balsamea, var. Fraseri	210	P Pinus lasiocarpa (Abies subalpina)	211
Plnus Pankslana	201	Pinue Llaveana (Pinus cembroides)	190
Pinue Ianksiana (Pimns contorta)	104	Pinus Llaveana (Pinus Parryans)	189
Pinus Beardesleyi	193	Pinus Loddigesii .	197
Pinus Benthamiana	193	rinus lophosperma.	192
Pinus Bolanderi.	104	Pinue Lowiana.	212
Pinus Boursieri	194	Pinus Iyalli...	216
Pinus brochyptera	193	Pinus Matiana	202
Pinus bracteata	213	Pinus macracarpa	195
Pinue Californica (Pinus Inslgnla).	180	linus macrophyllas.	193
Pinus Californica (Plnus tuberculats)	196	Pinus Menziesii	206
Pinus Canadensis (Plcea slba).	204	Pinus Menziesii, var. crispa.	206
Penus Canadensis (Tsuga Cunadensis).	206	Pinus MEertensiana.	207
Pinu Canadensis (Tanga Mertenglank)	207	Pinue microcarpa	215
Pinas cembroides.	190	Pinus mitis	200
Pinus cembroides (Pinns albfcanlis)	189	Pinus mitis, var. paupera	200
Pinus cembroides (PInns edulis)	190	Pinus momophylia.	190
Piaun Chibuahnsna	194	Pinus manticola	187
Pinns clauas.	199	Pinns muricata	199
T'inus commutata	205	Tinus muricata (Pinns contorta)	194
Jinue concolor.	212	Pinas Marrayna.	194
Plnne contorts.	194	Tinue nigra..	202
Pinus contorta (Pinns maricata)	199	Pinus nobilis.	214

Pinus contarta (Pinns Mnrrayana)194
Pinus contorta, var. latifoha 104
Tina Traiga 105
Pinus Cubensis 202
, vat. lerthracarp103
Pinus Douglasii 209
I'inus cehinata.200
Pinus edulis ...190
I'inus Elliottii 202
Pinus Engelmanni (Pinus ponderosa) 193
Pinu*fexilis (Pinns slbicanlis) 180
Pinus fexilis, var. macracarpa. 188Penus ficxilis, var. serrulata18
Finus Fraseri (Alics Fraseri) 210
Pinus Fremontiana 100
Pinus futilis 190
Pinus grandis (Abies ammbilis) 213
Pinus grandis (Abics grandis). 212
20
Pinas inops 198
Pinus inaps (Pinns contorts) 194
Pinus inops, var. (Pinus muricsts) 199
Pinus inops, var. clausa 192
Pinna insignis 106
I'inus insignis, var. binata 190
Pine intermata 215Pinue Lambortiana1
Pinus Lambertiana, var. (Pinns flexilis) 188
188Pinua laricina
10Pinus Laricio, var. resinoba
Pinus Larix 210
Pinus Larix nigra 215
215Pitus lasiocarpa (Abies concolor)
P Pinus lasiocarpa (A bies subalpina) 2111in190
Pinus Loddigesii 197
Pinus Iosiana 192
. 1
Pinus Matiana. 202
Pinus macrophylla? 193
Pinus Menziesii, var. crispa 206
Pinuarena215
Pinob mitis 200
Pinus momophylia 190Pinus man199Pinus Murraynna194
Pinus nobilis. 214

Page.

ines Nuttallir	210
Pinus osteosperma	190
Plana palustris.	201
Pinns Parryana.	189
Pinus Parryana (Pinos ponderosa).	193
İinus Pattoniana (Tsuga Mertenslanal	208
Pinus Inattoniann (Tsugn Pattoniana) .	208
Pinus pendula	215
linus poudcrosa	192
Finus ponderosn, rar. Benthamiana	193
Finue ponderosa, var. Jeffreyi.	193
Pinus ponderoba, var. scopulorum.	193
Pines porphyrocarpa.	187
Pinus paugens	199
Pinus radiata	196
Pinns retlexa	189
1'ínиs тевілова.	191
Pinus resinosa (1 lhas ponderosa)	103
Pinnsrigida	197
Pinus rigida (Pi isus insignis).	196
l'inue rigida (l'inus mitis)	200
Pinus rigida, var. serotina	198
Jinus rubra (Picea nigra).	203
P'inue rubra (Pinus resinosa)	101
Pinve rubra, var. violacea.	204
Pinus rupcstris	201
Pinns Saluthana.	195
Pinus Sabiniana Coulteri	195
Pinus Sabiniana macrocerpa	195
l'ions serotiua	198
Finuts Shastra.	189
Pinus Sinclairii.	196
Pious Sitchensis	206
flinus species (Alies subslpina)	211
Pinus Strobus	187
I'inus Strobus, var. alba	187
rinut strobue, var, brerifolia	187
Pinus Strobus, var. compressa.	187
Pinns Strobus, vir. monticola	187
Pinus Strolus, rir. nivea	187
Pinus sylcestris, var. divaricata	201
lions Timda.	197
rinus Tada, rar.a.	197
Pintes Teda, var. alopecuroidea	198
Pinue Toeda, rar. heterophylla.	202
Pinue Toda, var. rigida.	197
Pinus Toela, var. tenuifolia	197
P'nus Tioda, var. variabilis	200
Pinus Teda, rar. Firginiana	198
Finus taxifolia........	219
Pinus tetragona.	204
Pinus Torreyana.	192
Pinus tubcrentata	196
Pinu tuberculata (Pinus insignis).	196
Pinue varialnitis.	200
l'inus venusta...	213
Pinus Tirginiana.....	198
l'inus Virginiann, var. echinata.	200
Piscidin Carthagenenzis	57
Piscidia Eirsthrima	57
1'isonda aculcata	117
Pisouia obtusata.	117
1'istacia Mexicana	54
litel I'ine..	198
Pithecolobiam forfix.	01
l'ithecolobiunt Guadalupensis	64
l'ithecolobitem microphyllum	64
1 'ithecolohium Unaruis cati.	64
Planeran aquatica.	124
Planern Gmelini.	124
Planern Richardi	124
Planera ulmifolia.	124
1'latamacese	
Platanue Californica.	129
Platanus iybridas.	129

P'inne Parryana
Pinue Parryana (Pinus ponderosa)
Iinus l'altoniana (Tsaga Merteaslana

us ponderosa

Tinue penderra, rar. Benteriana.
Finue ponderosa. vit. Jefreyi.
Pines porphyrocarpa
Pinus paugens
Pinus radiata
Pinns retlexa

Pinnerigila
Pinus rigida? (Pinus insignis)
inus rigida (linus mitis)
Pinus rigidd, var. serotina
imes rubra (Picea nigrta)
Pinua mibra, var. viciacta

Pinus rupcstris

Pinnssabiuana.

Pinus Sabiniana macrocerpa
l'ions serotiua
atus Shastr

Pintes Sitchensia
Plinus species (Alies subslpina)
nus Stroluns
Tina strobe ki. alba
rinus stobe mar. contra

Pinus Strours Tur. monticata

Tinus strolur rim. nirea...
cestris, var. divaricata
rinus Tada, rar. a.
T. Ta, Nr. alopeur

Pinus Toda, var. rigida
Pinus Tavla, var. tenuifolia
M.
inus Teda, var. Firginiana
Pinus taragom
Pinus Torresana
Pinus tubcrealata
Pinu nubrulu (Pis ios

Pinus Tirginiana
a, var. echinata.

Pisula aculcata.
pisouia obtusata
'istacia Mexicana

Pithecolobium forfix
l'thecolobium Gundalupensis
'ithecolobitem microphyllum
ruis-cat
anera nquatica

Planern Richardi
Planera ulmifolia

Platanue Californica
Platanus hybridas.

Ilatanus lobata
Page.
ratanu\& lobata . .. 120
Platanus Mexicana (Platanus racemosa) ... 120
Platanus Mexicana (Platanes Wrightii) ... 130
Plstanus occidontalis .. 128
l'latanus occidentalis (Platanus racemosa) 129
Platnnus racemosa.. 123
Platanus racemosa (Platanae Wrightll)... 130
Platanus vulgaris, vsr. angulosa.. 120
Platau Wrightil... 130
Plum, Csnada.. 65
Plum, Chickasaw ... 66

Plum, Darling 30.
Plum, Downward.. . 103
Plum, Gopher .. 91
Plum, Guiaua... 121
Plam, Hog (Prunus angastifolis) ... 66
Plum, Heg (Rhas Metoplum) .. 54
Plum, Hog (Ximenis Americana) ... 34
Plum, Horse.. 65
Plum, Monntain ... 34
Plam, Pigeon... 117
Plum, Saffron.. 103
Plum. Wild.. 85
Poison Elder.. 54
Poison Sumach ... 54
Poisonwood (Rbus Motoplum) 54
Poisonwood (Sebastianis lucids).. 121
Polygonace.е.. 117,118
Polygonutn uvifстa ... 118
Poud Applo.. 23
Pond Pine.. 198
Poplar.. 172
Poplar, Csrolins ... 175
Poplar, Niccklace .. 175
Poplar, Yellow.. 22
Pomilus acladesca.. 173
Populus angulata .. 175
Populus angulosa.. 175
Populus angustifolia... 174
Popultes angustifolia (Populus trichecarps) 174
Populus argentea.. 172
Populss Atheniensis............................. 171
Populus balsamifera ... 173
Populus balsamifera (Populus trlchocsrps) 174
Popvlus balsnmifera Lanceolata .. 173
Populus bnlsamifera, vsr.. 174
Popvlus balsamifera, var. angustifolia.. 174
I'opulus balsamifera, rar. I Californica.. 174
Popules balsamifera, var. candicans .. 173
P'opulus balsamyjera, mar. genuina ... 173
Populu» Canadensis (Populas balsamifera, var. candicans) 173
Populus Canadensis (Popolos monilifora) 175
Populus Canodensis, var. angustifolia. .. 174
Populus candicans.. 173
Populus cordifolia .. 172
flopulus deltoide ... 174
Popalus Fremuntii. .. 175
Popnlus Fremontii, rar. Wislizenl... 175
Populus glandulosa .. 175
Populıs grandidentata ... 172
Populus grandidentata, var. pendula.. 172
Populus heterophylla.. 172
Populus heterophylla (Popolus bsissmifera, var. candicans)................. 173
Pupulus heterophylla, var. argentea... 172
Populus lerigota (Populas monilifera, Aiton, etc.)............ 175
Populus lavigata (Populus monllifora, Hort.) 175
1ropulus latifolia ... 173
Iropulus Lindleyana ... 175
Popules macrophylla (Popalus balsamifera, var, candicans)................ 173
1'opulus macrophylla (Populas monilifera) 175
'орииив Marylandica........... ... 175
1'npulas monilifera
174
Populus monilifera (Populus Fremontii) .. 175
Populue monilifera (Popalos Frementil, rar. Wislizeni)..................... 175

	Page.		Page.
Porulus neglecta	175	Ptelia mollis	31
Populus Ontariensis	173	Ptelia trifoliata	31
Populus Taeamahaca.	173	Ptelia trifoliata, var, molis	1
Populus tremuliformis	171	Ptelia viticijolia.	31
Popalus tremaloidea.	171	Punk Oak	152
Populus trepida.	171	Parple Hzw.	40
Populus trichocarps	174	Pyrna Amoricana..	73
Populus trichocarpa, var. cupulata	174	${ }^{\text {l }}$ yrus A mericana (Pyras sambucifolia)	74
Populus viminea.	173	Pyrus Ancricana, var, mierocarpa	74
Populus Virginiana.	175	Pyras angustifolia	72
Porelia triloba.	${ }^{2}$	Pyrus aucuparia (Pyrus Americana)	3
Parkwood	117	Tyrus aucuparia (Pyrua sambucifolia).	74
Porliera anguatifolia	29	I'yrus Dartramiana	ع4
Port Orford Cedar	179	Pyruz Botryapiut.	84
Possum Oak	152	Pyrus comparia ...	72
Port Cedar	176	I'grus coronaria (Pyras auguatifolia)	72
Post Oak	139	Pyrus coronaria, var. angustifolia	72
Post Oak, Swamp	140	Pyrus diversifolia.	73
Prickly Ash (Xanthoxylam Americanum).	29	Pyrus fusa.	73
Prickly Ash (Xanthoxylum Clara-Herculis).	30	Pymis glandulosa	78
Prince's Pine .	201	lyrus microcarpa.	74
Prinos deciduus.	37	Pyrus ovalis	85
Pritchrrdia filamentosa	217	Pyrus rivularis	73
Privet.	112	Pyris sambueifolia	74
Prosopis Emoryi	62	Pyrus subcordatz	T3
Prosopis glandulosa	61	Pyrus Trangenheiniana	84
Prosopla julifora	${ }^{1} 1$		
Prosopis odorata (Prosopia jalifora)	61	Quaking Asp	71
Prosopis odorata (Prosopis pubeacens).	62	Quassia dioica	3
Prosopla puleacena.	62	Quassia Simaruba	2
Pranua Americana	65	Quercitmo Oak	149
Prunua Americana, var. mollis.	${ }_{6}$	Querens acatidcna	155
Prunas angustlfolia.	66	Quercus acutiglandis	146
Prunus borealis'	66	Quercas agrifolin	146
Prunus Canadensis	68	Quercus agrifolia, var.fretescen	147
Prunus Capolin	68	Qnereuk alba	136
Pruons Capuli	68	Quercus alba minor	139
Prunus Carolina	09	Quercus alba palustris.	141
Pruma Carollniana	69	Quercus alba, var. 9 Gumisonii	139
Prunus cartilaginea.	68	Quercus alba, var. microcatpa	137
Prunus Chicasa.	66	Quercue alba, var. pinnatifida	137
Prunus coccinea	65	Quercus alba, var. pinnatifido-sinuata	${ }^{137}$
Prinua demiasa.	69	Quercus alba, var. repanda	137
Prunua emarginata	67	Quercus alba, var. sinuata	137
Pruons emarginata, var, mollia.	67	Quercus ambigua	147
Prunus hiemalis (Pranaa Americana).	65	Quercus annulata	145
Prunus hiemalis (Prunus Americana, var. mollis)	${ }_{6}$	Qnercus mquatica	152
Prama ilicifolla	70	PQuercus aquatica (Quercna nigra)	150
Prunus insititia.	66	Querevs aquatica, var. attenuata	152
1 Prunus lanceolata	${ }^{6}$	Quercus aquatica, var. cuneata	152
Prunus Lusitanica	69	Quereus aquatica, var. clongata.	152
Prunye Miasisrippi	65	Quereus aruutica, var. heterophyla	153
Prunus mollis (Prunns A mericana, var. mollis)	63	Quercus aquatica, var. hybrida	52
Prunus mollis (Prunus emarginata, var, mollia) .		Quercus aquatica, var. indivisa	152
Prunus nigra	6.5	Quareus aquatica, var. laurifolia	152
Prunua Pennsylvanica		Quercns aquntica, var. myrtifolia	$1{ }^{15} 5$
Prunus peraicifolia		Quercns 1aniateri...............	155
Prunus pumila		Querens berbet idifolia	155
Prunus sempervirens	69	Quercus bicolor...	41
Pıanns serotina.	68	Quercus lie ${ }^{\text {elh }}$, var. Miehauxii.	141
Prunus serratifolia..	69	Quercua bicolor, var. mollis .	141
Prunaa aphærocarpa	70	?Quercus liculor, var. platanoides	141
Prunus spinosa	65	Qucicus Brewert....	155
Prunis nmbellata	67	Quercus Californica	140
Prnion Vlrgíiana.	08	Quercus Cas'anea (Qucrens prindiles)..	142
Prunus Virginiana (Pranna merotina)	68	Quercus Caxtanea (Quercus Prinus)...	142
Prunus Virginiana, var. demissa.	69	Querens Catesbei	151
Peeudacacia odorata	55	Quercus Chinguapin	143
Preudopetalon glandulosum	30	Qur rcus clrysol pis	6
Pseudopetalon tricarpum.	30	Quercus chrysolepis, var. vaccinifolia	140
Psendotanga Donglasil	209	Quercma ciuctea	153
Pseadotnaga Donglasil, var. macrocarpa	210	Quervas cinerea, var. punilia.	155
Peeudotnuga magnifica.	214	Querens ennorea, var. surices	155
Preudotruga nobilis	214	Qumerens coctinea .	148
Paidiom Gualva.	89	.Quereus cocinea, val. anbigua	147

	Page.	
Quercus Texana.	148	Rhus Canadense
Quercus tinctoria	149	Rlus copallina
Quercus tinctoria, var. angulosa.	149	Rhu\&cupallina, var. angustialata
Quercus tinctoria, var. Californica	149	\dagger Rhus copallina, var. angustifolia
Quercus tinctoria, var. sinuosa	149	Rhus copalina, var. integrifolia
Quercus triloba.	150	Rhus copallina, var. lanceolata.
P Quereus uliginosa	152	P12hus copallina, var. latialata
Querces undulata	155	\bigcirc Phus copallina, var. latifolia
Quercus undulata (Quercus Durandii).	45	Rhus copalina, var. loucentha
Quercns uudulata, wr. Gambelii	139	\bigcirc Phus copallina, var. serrata
Quercus undulata, var. grisca.	144	Rhus cotinoides
Quercus undulata, var. oblongata.	143	Rhus cotinus?
Qucreus undulata, var. pungens.	144	Rhus glabra..
Quercus undulata, var. Trightii.	144	Rhus hypselodendron.
Qucrcuz racciniolia	146	Rhus leucantha
7 Qucreus relutina.	149	1hhus Metopium
${ }^{7}$ Quercus rillosa	139	Rhus Toxicodendron
Quercns virens	145	Rhns typhina
Quercus Virginiana.	145	Rhus typhina, var. laciniata
Querens Wislizent.	147	Ihhus typhina, var. viridiflora
R.		Rhus venenata
Randia clusiefolia.	95	Rhus rernix
$K^{\text {ªpananea Guyanensis }}$	99	Rhus viridifora.
Rattle-hox.	106	River Birch
Red Ash.	109	River Cotion rood
Red Bay.	118	Robinia fragilis.
Red Birch	161	Robina glutinosa..
Red Cedas (Juniperaa Virginiana)	183	Rolinia Nco-Mexicana
Red Cedar (Thuya gigantea)	177	
Red Cherry, Wild	66	
Red Cspress.	184	Rock Cbestrut Oak
Red Elm.	122	Rock Elm
Red Fir (ablea magnifica)	214	Rock Maplo
Red Fir (Ahies nobilis) .	214	Roancee
Red Fir (Psendotarga Donglasi)	209	Roge Bay......
Red Gam.	86	Roscmary Pine
Red Haw (Cratrgus coccinea).	88	Royal Palm.
Red Hawr (Cratrgua flava, rar. pubescena)	83	Rubiace
Red Lronwood	39	Ram Chorry
Red Maple	50	Rutaces..
Red 3nulherry	128	
Red Oak (Querens falcata).	151	Sabal Palmetio
Red Oak (Quercus rulra)..	148	Saffron Plum
Ked Oak (Quercrea rabra, rar. Texana)	148	Saguaro .
Red Pino..	192	Salicacre
Red Stopper.	89	Nalix - 1
Redhad (Cercts Canadensis)	${ }^{61}$	PSalix ambigua
Redbud (Cercis reniformis).	61	Salis amygdaloides
Redwood.	185	Salix argophylla
Resnosia latifolia.	39	Salix arzuta ..
\% Rhamindium recolutum	39	Salix arguta, var. lasiandra
Rhamiacres	30-43	Salix Rigplonii..
Bhamnus alnifolius..	41	Salix Bigelovii, var. fuecior
Ruamnus Csiliforuica	40	PSalix brachycarpa.
Rhamnus Californica, var. tomentella	41	Salix brachystachys
Khamnns Caroliniana	40	Salix brachystachys, var. Scouleria
Rhamnus ellipticus	41	Salix Caroliniana.
Rhamnus ferrea	39	Salix chlorophylla, var. pelita
? Rhamnus lerigatus.	39	Salix cordata
Fhamnus lauriolius.	40	Salix cordata, war falcata.
Rhammus oteifolius	40	Salix corlata, rer. vestita.
Rhammas Purshiana.	41	Salix crassa
Rhamnus tomentellus .	41	Salix cunceta .
Rhizophora 4 mericana	86	Salix discelor.
Rhizophora Mangle.	$\varepsilon 6$	S.lix discolor, rar. eriocophala
Rhizophora racemosa	86	Salix discolor, var. prinoides
Phizophoracese	86, 87	Salix criocephala.
Rhododendron maxtmum	09	Salix cxigua.
Hhododendron maximum, var. alhum,	99	Salix falcath..
Rhododendron maximum, var. purpureum.	99	Salix Fendteriana
Rhododendron maximum, var, rozeum.	90	Salix flavesceut.
Rhododendron procerum	09	Salix favescens (Salix flavescens,
Rhododendron purpureum	-99	Stuix flavescens, zar . Scoulerian
Rhododendron Purshii.	99	Salix favo-vircns.
Rhus artorescens..	33	Sala

Page. 171
Sapisdus Drummondi
Page. 44Salix Hartwegi
Salix Mindsiana109
Salix IIindsiana, rar. tenuyolia. 169
Salix Hofinanmiana 167
Sulix llookerian170
Salix Moustoniana 165
Salix humilus, var. Martwegi. 171
Salix levigata
Salis lacigata, var. anguatifolia167Salix levimata, var. congesta.Salix lancifolia167107
Salix lisiaudrib 167167
Salix lasiamlra, var. Fendlerians 167
Salix lasiaulta, far. lanclfolia 167Salix lasiolepisSalix haxiolepis, var. angustifolia170
Salix lasiolepig, var. Higelorii 170Salix lusiolcpis, var. fallax171Salix lasiolepis, var. latifolia170
Salix ligustrina 105
Salix longifolia
salix longifolia, var. angustissima168
Salix longifolia, rar argyrophella168
Salix longifolin, var. argyrophylla angustissima168
Salix lungifolia, var. argyrophylla opaca 168168
Salix longifolia, var. exigua
Salix longifolia, var. opacaSalix longjolia, var. pedicellata
Salix longipes
salix lonyipes, var. pubescens
Salix lucida, var, angustifolia, forma lasiandra
satix lucida, var. macrophylla
Salix marginataSalix uigra
Salix nigra, var. amygdaloides
Solix nigra, var. angurtifolia
Salix nigra, val: falcotaSolix nigra, var. latifolialia..
Salix nigra, var. longifolia-••
Salix nigri, var. longipesSalix nigra, rar. longipes, anbrar. gongylocarpa
Salix negra, var. longipes, subvar. venulosa
Salix nigra, var. marginstaSalix nigra, rar. WardiiSalix nigra, var. Wrightil
Salis ocidentalis168168
16816616616167160160160
Salix pentaradrasat penuma160Salix pentandra, var. caudata
Salix prinoides
Salix I'urbhiana16
SSalix rubraSalix Scouleriana
Salix sensitica
Salix sebsilifolis
alix sesanifolia, var. Hindsian109169
Salix sessilifolia, var. villosa. 168Sillix SitcbonsisSallix Sitelıenajs, var. angugtifoliaSaix speciona171167
Salix subcillosa 166
satix ilrighti160
Samara foribunda 99
Samara penlandra. 90
Sainbucu Colifornica 03
Sambucus glauca93
Sambucur glauea iSambncas Moxlcans) 03Samburus MexicanaSambucus Jfexicana (Ssmbncus glanca)93
Sambucus velutina 03Sand JaekSand Pine153199
Sand-har Willow 168
Sapindace.e.Sapindus acuminata.
Sapindus falcatus 4
'Sapindus incequalis.
Sapludus marginalns 44
Sapindus Saponaria 45
Sapindus Saponaria (Sapindns marginatus) 44
Shrotacere 100-103
Sarcoraphalus Carolinianus 40
Sassafras 120
Sassafras officlualo 119
Satintrood 31
Savin (Jnniperus Virginisna) 183
Savin (Torreya taxifolia) 186
Scarlot Haw (Cratagus coccinea) 78
Scarlet Haw (Cratægus snbviliosa) 78
Scarlet Oak 148
Schafferia buxifolia 39
Sehafferia completa 39
Schæfferia fratescens 39
Schafferia laterifora 120
Schousba commutala 87
Schubertia disticha 183
Schubertia sempervirens. 185
Screw Bean 62
Screw-pod Mesgnit 62
Scrub Oak (Quercus Catesbei) 151
Scrub Oak (Quercus nndulata, var. Gambelii) 138
Scrub Pine (Pinus Banksiaaa) 201
Scrub Pine (Pinua clansa) 199
Scrub Pine (Pinus contorta) 194
Scrub Pino (Pinua inops) 192
Scutia ferrea (Condslia ferroa) 39
Scutia ferrea (Reynosia latifolia) 39
Ses Ash 30
Sea Grape 118
Scaside Alder. 162
Sebastiania lucids 121
Sebestena scabra 113
Sequoia gigantea 184
Sequoia gigantea (Sequois sempervirens) 185
${ }^{1}$ Sequoia Rafnesquei 206
Sequoia religiosa 185
Sequoia semporvirens 184
Sequoia Wellingtomia 184
Service Treo. 84
Seven-ycar Apple 95
Shad Bu>b. 84
Shag-bark Hickory 133
She Balsam 210
Shecpberry 19
Shell-bark, Big 133
Shell-bark, Boltom 133
Shell-bark Hickory 133
Shingle Osk 154
Shiltimwood (Bumelia lanuginosa)

Irage. Page.
Trimathemiacfas 25, 20 25, 20
Tetranthera Califormica 120
Thutwh, 13rickley 218
Thateh, Brittie 218
The Jowhua. 219
Thern. Black 79
Thorn, Cockspur 70
Thom, Noweastle 70
Thorn, W'ashingtou 81
Thorm. White 78
 59
Thiuax argenta 218
Thrinax Garberi 217
Thrihux parvithora. 217
Thuya Craigana 176
Thuya excelsa 178
Tbuyakicantea 172
Thuya gigantea (Libocedrus decurrens) 170Thuya LothiiThuya Menziesii177
Thuya obrusa.177
Thuya occinemtalis170
Thutat accidentalis, var. plicata176Thuga odoruta17Thura ricata17617
Thuya Sibirica 176
Thuys spharoidalis 172
Thuya kpheroidea. 177
They, IVareana178
Thuyopeis borcalis 178
Thuy(,q)кis cupressoides 178
Thuyopsis "'chugatskoy 178
Thuyensis Tchneratsioyce. 178
Thylaz fraxineum 20
Tile-laud Spruce 206
Tilia alla 27
Tilia Americana 26
Tilia Americana (Tilia A mericaua, var. pnbescens) 27
Tilia Anericrana, var. heterophylla
Tilia Auericana, var. pubescens
Tilia Americana, var. Walteri.
Tiliu Canadensis27
Thid Caroliniara
Tilia glabra
Tilia grata
Tilia heterophylla
Tilia hiterophylla, var. alba
Tüa latifolio27Tilia laxiflora (Tilia Americana, var. pubescens)Tilia laxifora (Tilia heteropbylla)
Tilia meglecta26Tilia nigra
Tilia probescens
Tilia pubescend, var. leptophylla
PTilia Btenopetala
Tilia truncata27Thimese:26-23
Titi. 38
Tolloa 84
Touthiche Tre (Xanthoxylum Americannm) 29
Toothache Treo (Xanthox glum Clava-Merculis) 0
Torchowal 33
Troruill,62
'Tomeya Californica 186
Torreyu Mifiatica 18
Thurus a farifolia 186
Toriowdendron arborescens. 33
Toxphom Maclura 128
T'us on 81
Tritoil, shrubby 31
Trilopux dentata 85
Trilapue nigra 85
Trilupueparifolia 83Trilopur rotundifolia
Trilopus Virginiana
Tsuga Canadensio
Tsuga Caroliniana
Tsuga Caroliniana 207
Tsuga Doughasii 209
Truga Lindleyana. 208
T'suga Merteusiaua
Tsuga Pattoniana 208 208
Tulipastrum A mericanum
Fiulipastrum A mericanum, var. subcordatum. 20
Tulipijera Liriadendran
Tulip Trec. 22
Tupelo 92
Tupelo Gnm 93
'Tupcle, Large 93
Tupelo, Sonr 91
Turkoy Oak 151
Ulinue alata 124
Ulmus alba 123
Ulmas Americana 123
Utmuв Americana (Ulmus racemosa) 123
Clmus A mericana, var. alata 124
टlinua Americana, var, alba 123
Uilnus Americana, var. Baspera 123
Dhmus A mericana, var. Bartramii. 123
Clmus A mericana, var. pendula 123
c7mus Americana, var. nubra. 122
Clmus A mericana, var. scabra. 123
Clmus aquatica. 124
Uluans crassifolia 122
9 Ulmus crispa 122
Clmus Floridana 123
l'lmus falca 122
Chnus movifolia 123
Utmus nemaralis 124
Clmue opaca 122
Clmus pendula 123
Ulinus puDescens 122
Jlmus pumila 124
Ulmus racemosa 123
l'tmus 7ubra. 122
Umbellularia Cailifornica 120
Umbrella Tree 21
Ungnadia hrptaphylla 44
Ungnadia heteraphylla. 44
Ungnadia speciosa 44
Upland Willow Oak 153
Urostigma pedunculatum 127
Ubticacese. 122-128
Covaria trilaba 23
Faccinium arboreum 98
Taccinium diffusum 06
Vaccinium mucronatum 96
Valparaiso Oak 146
Vauquelinia corymbosa 70
Vauquolinia Torreyi. 70
Verbexacese 110, 117
Viburmum Lentago 94
Vibarana prunifollam 94
Viburnum prunifolitm, var. ferrugineum 94
Vieurnum pyrfalium 84

	Page.		Page.
Water Ash	110	Willow (Salix amygdaloides) .	166
Wster Beech (Carpinne Caroliniana).	159	Willow (Salix lævigata)	167
Water Beech (Platanas occldentalis)	129	Willew (Salix lasiandra)	167
Water Elm	123	Willow (Salix lasielepis).	171
Water Hickory .	130	Willow, Black (Salix flave日cene, var. Scouleriana)	170
Water Lecnst	60	Willow, Black (Salix nigra)	160
Water Maple	50	Willow, Desert	116
Water Oak (Qaercns aqnatica)	152	Willow, Diamend	170
Water Oak (Quercue I Jastris).	152	Willow, Glancous	169
Water White Oak	140	Willow Oak	154
Wax Myrtle.	136	Willew Oak, Upland	153
Weeping 0ak	138	Willow, Sand-bar.	108
Wellingtonia Californica	184	Willow, Silky.	171
Wellingtonia gigantea	184	Winged Elm.	124
Western Catalpa	115	Wintera Canella	24
West-Indias Birch.	33	Witch Hazel.	85
Wegmouth Pine	187	X.	
Whistlewoed	46	Xanthexylum A mericanam	29
White Ash	107	Xanthexlyum aromaticum	30
White Basswood.	28	Xanthexylum Caribæum	30
White Bay.	20	Janthoxylum Carolinianum	30
White Birch (Betula alba, var. populifolia)	159	Xanthoxylum Catesbianum	30
White Birch (Betula papyrifera)	160	Xaatbexylnm Clava-Herculis	30
White Butter wood	87	Tanthoxylum Clava-Herculis (Xanthexslam Americanam)	29
White Cedar (Chamacyparie Lawsenlada)	179	Xanthoxylum Clava-Merculis (Xhnthoxylam Caribaum) .	30
White Cedar (Chamæcyparis spheroidea).	178	Xanthoxytum Clava-Herculis, var	30
White Cedar (Lilecedrus decarreas)	17	Xanthexylum Clava-Herculis, var. fruticosnm	30
White Cedar (Thuya occidentalis).	176	Xanthoxylum Floridanum	30
White Cetton wood	175	Xanthoxylum fraxineum	29
White Cypress	184	Xanthoxylum fraxinifolium (Xanthoxylam Americanom)	29
White Elm (Ulmas Americana)	123	Xanthexyhurr fraxinifolium (Xanthoxylom Clava-Herculis)	30
White Elm (Dlmas racemosa)	123	Xanthoxylum hirsutum	30
White Fir (Alies cenceler)	213	Xanthexylum lanceolatum	30
Whlte Fir (Abies grandis).	212	Xanthoxylum macrophyllum	30
White Iremwood	45	Xanthoxylum mite	20
White Laurel	20	Xanthoxylum Ptereta	31
White Maggrove	87	Xanthoxylum ramiforum.	29
White Maple	49	Xanthoxylum tricarpum (Xantbexylam Americanum)	29
White Oak (Quercas albs)	137	Tanthoxylum tricarpum (Xanthexylnm Clava-Herculis)	30
Whtte Oak (Quercoa Garrysas)	138	Xineuia Americans	34
White Oak (Querces grises).	144	Ximenia montana	34
White Oak (Quercos lobata).	138	Ximenia multifora	34
White Oak (Quercus oblengifolis)	144	Y.	
White Oak, Morntain	143	Yanpee	30
White Oak, Swamp.	141	Yellew Ash	57
White Oak, Water.	140	Yellew-hark Oak	149
White Pise (Pinus flex ills)	188	Yellew Birch	161
White Plue (Pinas glabra)	201	Yellew Cypress.	178
White Pibe (Plans monticola)	187	Yeliow Fir	209
White Pibs (Pinns reflexa)	189	Yellew Haw	83
White Pine (Pinus Strebes)	187	Yellew Locust.	55
White Spruce (Picea alba).	204	Yellow Oak (Quercasi prineidee)	143
White Spruce (Picea Eogelmenni)	205	Yellow Oak (Quercas tincteria)	149
White Spruce (Picea paogeda).	205	Yellew Pive (Piaus Arizenica)	192
White Stopper	80	Yellew Pine (Pinus mitie)	200
White Thorn	78	Yellew Pibe (Pinus palnstris)	202
White Walnet	130	Yellow Pine (Pinus ponderosa)	193
Whiteheart Hickery	134	Yellow I'eplar	22
Whitewood (Canella albs).	24	Yellew woed (Cladrastia tinctoria)	57
Whitewoorl (Drypetes creces)	121	Yellowwod (Schefferia fratescend)	39
Whitewood (Liriedendron Tollipifera)	22	Yew (Taxus lirevifolia).	183
Wild Black Cherry	68	Yew (Taxus Floridana).	180
Widl Cherry (Pribna Capell)	60	Yороп....	36
Wud Cherry (Prusus demissa)	69	Tucca angustifolia, var. elata	219
Wild China	44	Tucca angustifolia, var. radiesa.	219
Wild Cixnamob.	24	Yucea baccata	219
Wild Dilly.	103	Yucai hrevifolin.	218
Wild Fig.	127	Yacca eagaliculata	218
Wild Litne (Xadhexylam Pterota)	31.	Fucea Draconis, 3 var. arborcscens	218
Wild Lime (Ximenia Americans)..	34	Yucor elata.	210
Widd Orange (Prunus Caralinlana)	70	Tucea filamentora?	219
Wild Orange (Xanthexylam Clava-Hercul	30	Tucea Treculiana	218
Wilu l'each.	70	\boldsymbol{Z}.	
Wild Plum	65	Zizyphus Deminigensis	41
Wild Redl Cberry	60	Zizuphus emarginalus...	39
Wild Tamarind.	64	Zygophyllaceits	28,20

PARTII.

THE WOODS OF THE UNITED STATES.

THE WOODS OF THE UNITED STATES.

A critical examination of the wood produced by the indigenons trees of North America, exclusive of Mexico, has been made in connection with the investigation of the forest wealth of the United States.

Mr. S. P. Sharples, special agent in charge of this department of the inrestigation, has liad general direction of such experiments, and suggested the methods adopted for their execution.

The object of this examination has been to determine, first, the fuel value of the woods of the United States; second, the value as material for construction of the wood of the principal timber trees of the country. The results thus obtained are highly suggestive; they must not, however, be considered conclusive, but rather valuable as indicating what lines of research should be followed in a more thorongh study of this subject.

The fuel value has been obtained by a determination of the specific gravity and the ash of the absolutely diry wood, supplemented by a determination of the actual chemical composition of the wood of some of the wrost important trees; the value of our woods for coustruction has been obtained by experiments male with the Uniterl States testing-machine at the Watertown arsenal. Each specimen as received was at once numbered, aud this number, designated in the following tables as "Office number", was carefilly repeated on every fragment cut from the original tree, and always refers to the same specimen. In a few cases in the early part of the work a sub-number was used to designate a specimen from another tree of the same species received from the same collector. In most cases the specimens were taken from the butt-cut of the tree, and unless it is otherwise mentioned in the remarks, were free from sap and knots; they may be regarded as representing the best woorl that could be obtained from the tree.

The specimens used in the different series of experiments are deposited in the National Museum at Washington and in the museum of the Arboretum of Harsard College. It was found necessary, in order to secure proper material upou which to carry out the various experiments, to obtain a much larger amount of wood of the different species than was actually consumed in the experiments. This smplus material has been worked into 12,961 moseum specimens, of convenient size, showing as far as possible the bark, sap-, and heart-wool of each species. These have been made into sixty sets, more or less complete, and distributed to the following educational institations in the United States and Europe:

Institute of Technology, Boston, Massachusetts.
United States Military Academy, West Point, New York.
Academy of Natural Science, Philadelphia, Pennsylvania.
United States Naval Academy, Annapolis, Maryland.
Sheffield Scientific School, New Haven, Comecticut.
School of Mines, Columbia College, New York, New York.
National School of Forestry, Nancy, France.
Museum of Science and Art, Edinburgh, Scotland.
Agricultural Museum, Rome, Italy.
Brown University, Providence, Rhode Istand.
Rensselaer Polytechuic Institute, Troy, New York.
Lawrence Scientific School, Cambridge, Massachusetts.
Iowa Agricultural College, Ames, Iowa.
Administration of National Forests, Lisbon, Portugal.
National Forest Alministration, Paris, France.
McGill University, Montreal, Canada.
Royal Botanic Gardens, Sydnoy, New South Wales.
State Agricultural College, Lansing, Michigan.

Peabody Academy of Seience, Salem, Massachusetts.
Arkansas Industrial University, Fayetteville, Arkansas.
Imperial Botanic Gardens, St. Petersburg, Russia.
American Society of Civil Engincers, New York, New York.
Portland Societs of Natmal History, Portland, Maine.
New Jersey Agricultural College, New Druuswick, New Jersey.
State Agricultural College, Burlington, Vermont.
State Agricultural College, College Station, Maryland.
Uuion College Engineering Selool, Schenectady, New York.
Cornell University, Ithaca, New York.
Hampton Agricultural and Normal Institute, Hampton, Virginia.
Pemusylvania Stato College, State College, Pennsylvania.
Ohio State Uuiversity, Columbus, Ohio.
Agricultural College of Missouri, Columbia, Missouri.
University of Wisconsin, Madison, Wisconsiu.
State Agrieultural and Mechanical College, Auburn, Alabama.
University of Minnesota, Minneapolis, Minnesota.
North Carolina Agricultural College, Chapel Hill, North Carolina.
West Virginia University, Morgantown, West Virgiuia.
State Agrieultural College, Orono, Maine.
Georgia Agricultural College, Athens, Georgia.
Massachusetts Agricultural College, Amherst, Massachnsetts.
Tennessee Agricultural College, Knoxville, Tennessee.
New Hampshiro College of Agriculture, Hanover, New Hampsh ire.
Illinois Indnstrial University, Champaigu, Illinois.
State Agricultural College, Corrallis, Oregon.
State Agricultural College, Manhattan, Kansas.
Agricultural College of Mississippi, Starkville, Mississippi.
Kentacky Agricultural College, Lexiugton, Kentucky.
Claflin University, Orangeville, South Carolina.
Purdue Oniversity, Lafayette, Indiana.
Botanic Garden, Königsberg, Germany.
Eugineer's office, Water-works, Boston, Massachnsetts.
Franklin Society, Providence, Rhode Island.
Madison University, Hamilton, New York.
Rochester University, Rochester, New York.
Colby Academy, New London, New Hampshire.

SPECIFIC GRAVITY AND ASH.

The specifie gravity and the ash of every tree of the United States have been determined (Table I) by M1. Sharples, with the exception of the following: Clusia flava, once detected upon the keys of southern Florida, but not rediseovered; Gordonia pubescens, a rare and local species diseorered in the last century upon the banks of the Altamaha river of Georgia and never rediseovered; Pistacia Mexicana and Acacia Berlandieri, economically mimportant species of the valley of the lower Rio Grande; Cratagus berberifolia, a little known species of the Red River valley; Cupressus Macnabiana, a rare and local species of California of little economie importance, and Larix Iyallii, a rare and local species of the northern Rocky mountains.

At least two determinations of specific gravity have been made tor each species stadied, and, in the case of woods of commercial importance, specimens were takell from many trees growing in widely different parts of the country, and under different conditions of soil and climate.

The specimens used for specific gravity determinations were made 100 millimeters long and about 35 millmeters square, and were dried at 100° centigrade until they ceased to lose weight. The speeific gravity was theu obtained by measurement with micrometer calipers and calculation from the weights of the blocks.

Two determinations of ash were made from each specimen studied by burning small, dried blocks in a muffe furnace at a low temperature.

An average of the specific gravity and of the ash of all the specimens taken from the same tree was made, and the average of these averages is given as the final result for the species; equal weight is thas given to each tree in the calculations without regard to the number of specimens reqresenting it.

In the following table the trees of the United States are arranged in the order of the weight of the dry wood:

	Species.
43	Cendalia ferr
44	Condalin eberata
140	Rhizophera Mangle.
20	Guaiacrm sanctum .
114	Vanquelinia Torrayi
147	Eagenia lougipes....
21	Purliera angustifolia
220	Sebastiania lacida.
183	Vimusops Sieberi.
115	Cercocarpas ledifoliua
42	Reynesia latifolls...
80	Olnesa Terota..
30	Amyris sylvatica
162	Genipa clnsimfolis.
176	Siderexylon Mastichedendren.
264	Quescos grisaa.
141	Cenocsipus erecta.
12	Canella alba
83	Sephora secundiflora
213	Cecceluba Fleridana.
113	I'runis ilicifolia.
214	Cecceloba uvifera.
56	Hypelata pamiculata
266	Quercna Datandü .
267	Quercus virena ..
26.5	Qaercas reticulata
148	Eagenia procera.
263	Qeercus eblougifolia.
97	Acacia Wrightii...
116	Cercocarpus parvifolins
144	Eagenia bexifulia
175	Cbryaop by llum oliviforme.
219	Drypetes crocea, rar. latifelia
136	Heterumcles arbutifolia
177	Dipbeils salicifelia..
100	Exoatcnuma Caribrum
269	Quercus Emeryi
95	Leucæua glasca
219	Drypetes crecea.
32	Ximenia Atuericava
146	Eugenia monticela.
211	A ricennia nitida.
57	If_{5} pelate trifeliata.
272	Quercus rubra, rar. Texana.
101	Pithecolviem Unguis-cati
40	Mygiada pallers...
24	Xantherylanu Caribæum
112	Irumas splberocarpa.
143	Calyptranthea Chytraculia.
145	Engenila dichetona
262	Quercas Doaglasil.
75	Esseuhardia erthecarp
81	Plackda Erythrina.
210	Cltbarcxy lum villoanm
111	Irnons C'aroliniza.
127	Cratagus coccinea.
201	Quercua $\mathrm{pr}^{\text {rineidea }}$
173	Arliala Yickeringia
98	Acacla Gregall
84	Sophera dfinis.....
2 CB	Quercua cbryaelepls
185	Dleapyma Terana..
255	Quercua undulata, var. Gambe
242	Carya alla..
5	Saplidus Saponaria
254	Qaercua ebtasilaba
172	Myrside Rapanea

		Specisa.	
0.8337	402	Larix occileutalis	0.7407
0.8332	273	Qnercna ceccinea	0.7405
0.8319	87	Gleditschia menesperna.	0.7342
0.8316	77	lobivia Pseodscacia	0.7333
0.8313	276	Quercos nigra	0.7324
0.8284	158	Viburnumı Lentage	0.7303
0.8253	278	Quercns Catesbmi.	0.7294
0.8218	178	Bumelia tenax	0.7293
0.8217	130	Crategus cerdata	07293
0.8208	298	Celtis occidentals	0.7287
0.8202	203	Carpinus Careliviana	0.7286
0.8153	31	Swictenia Mshegevi	0.7282
0.8126	298	Celtis eccidentalia, var, reticolata.	0.7275
0.8111	35	Ilex Cassine	0.7270
0.8108	225	Clmus racemosa	0.7263
0.8094	222	Ulmus crassifella	0.7245
0.8073	$\underline{20}$	Quercus nquatica	0.7244
0.8033	103	Prunos Americana	0. 7215
0.8034	120	Crategus Crus-galli	0.7194
0.8016	190	1 raxiane quadrangulata	0.7184
0.8009	241	Carga oliveformis	0.7180
0.7950	407	Tlurinax argented	0.7172
0.7953	170	Kalmia latifelia	0.7160
0.7342	132	Cratægus spathulata	0.7159
0.7917	10	Fremontia Califeruica	0. 7142
0. 7008	142	Laguncularia racemeaz	0. 7137
0.7004	338	Janiperus occidentalis, var.menesperma	0.7118
0.7879	194	Fraxinus viridis	0. 7117
0.7855	202	Cerria Sebeatena	0.7108
0.7838	167	Arbutus Xalapensis	0.7039
0.7800	160	Arbutus Menziesii	0.7052
0.7745	117	Pyrus corenatia	0. 2048
0.7336	274	Quercus tinctoria	0. 7045
0.7715	380	Pinus palnatris	0. 6999
0.7709	11	Capparis Jamaicensia	0. 6971
0.7703	223	Clmus fulva	0.0050
0.7693	110	Prnnus demisma.	0.6951
0. 7683	123	Cratregue Douglasii.	0. 6950
0. 7073	174	Jacquinia armillaris	0. 6948
0.7662	279	Quercus paluatris	0.0938
0.7652	85	Gymuaclarns Csuadensis	0. 6234
0.7630	277	Querene falcata	0. 6928
0.7633	64	A cer sacclarinam, var. nigrum	0. 6915
0.7617	0.1	Acer sacchan inum	0. 6012
0.7610	338	Junipsrus occileatalis, var. cenjugens	0.6907
0.7009	63	Acer grandidentatum.	0.6902
0.7852	118	Pyris angustifolia	0.6895
0.7520	27	Cautia hulucantha	0.6885
0.7513	104	I'runus angrstifelia	0.6884
0.7504	291	lagus ferruginea	0.6883
0.7500	138	Harommrlis Virginica	0.0856
0.7510	$\underline{28}$	Quercas heterophylla.	0. 6834
0.7400	287	Quercus deusifora	0.6827
0.7401	191	Fraxibus piatatiatelia	0.6810
0.7481	124	Gratagus brachyacantha	0.6703
0.7472	203	Cerdia Boissiori.	0.6790
0.7470	37	Cyrilla racemidura.	0.6784
0.7467	397	"Ables bracteata	0.6883
0.74:8	86	Glealitscbia triacauthes	0.6740
0.7453	$\varepsilon 0$	Leucsena pulcerulenta	0.6732
0.7419	250	Myrica Californica.	0.6703
0.7453	150	Comuaalternifola	0.6090
0.7433	405	Fucca csnaliculata	0. 1087
0.7444	61	Acer circinatum	0.0000
0.7420	180	Bumelia epiuosa.	0.6403
0.7409	100	Fraxinus anomala	0.6597
0.7407	39	Euonyurs atroparparea	0. 0592

	Species.
134	Crategua mativalia
240	Juglans rupestris
297	Betala luten
179	Bumella lanuginora
192	Fravinus Americana
272	Quercus rubra.
88	Parkinsenia Tarreyana
212	Pisonia obtusata
218	Unbellularia Californiea
354	Jiuns cerubroides
224	Ulmas Americana
125	Cratie rus arborescens
205	Lhretia dliptiea
275	Quercus Kelloggii
215	Persua Carolinensis
69	Ehns mutimoides
283	Quercus cincrea
100	Laxiloma latisiliqua
230	Fiens lrevifolia.
215	Persea Carolinensis, var. paln
343	Taxus brevifolia
355	Pinus cdulis.
200	Chionanthus Virginica
91	Cercis Canadensis
1	Magnolial granditora
154	Sysya syivatica.
199	Forexinva acmmidata
344	Taxas lilarilama
53	T"uguadia speciosa
209	Crescentia cucurbitina
198	Fraximas ambluritolia
171	Shodndeuilron maximum
356	Junperus Calitorniea
82	Cladraxtis tineturia
332	Cuprssus maerocarpa.
193	Fraxinus ${ }^{\text {unbescens }}$
38	Clithmia ligustrina
401	Larix Americana
66	Acer vatram
90	Parkinsonia nenleata
239	Juglans nigra
377	linus mitis
315	Salix cordata, var, ve
408	Oreoloxa regia
296	Retula oreinumalis
62	Actregharum
40	Jbsumus Californica
400	Thrinax parvitlora.....
23	Xanthoxylum Clava-1lerenlis, var. frim1icosntm.
293	Setula papyrifers.
121	l'yres samhucifolia..
139	Liquidamhar Styraeifua
208	Cbilopsis faligna
23?	Morns rubra
10	Eyrsonimat lucida
280	Castaner pomila.
34	llex Dahoon, zar. myrtifolia
337	duniperus paehyphlea
108	Pruona sorotina
33	Hex opaca
364	Pintua contorta
104	Jraxiuns vitilis, var. Jerlandieriana.
$2: 11$	Hipponame Mausurila .
338	Smiprora uecilentalia.
293	letula niera
294	bomula alla, cor. populifolia
48	Ceauothus tby rxifloras..
107	Fraxinus Oregana

LAC

		Species.	
0.5705	379	Pidus Gankeiara	701
0.5678	340	Torreyn Californic	0.4760
0.5675	309	Salix lastandra	0.4758
0.5672	231	Fieus pedunculat	0.4739
0.6038	237	Platsnus Wrigbtii	0.4738
0. 5654	14	Gortonia Lasianthus	0.4728
0. 5637	361	Pinus ponderosa	0.4715
0. 5688	400	Abies magnifica	0.4701
0.5587	3	Magnolia acuminata	0.4000
0.5570	333	Cupressus Goveniana	0.4689
0. 51574	304	Alnus serrulata	0.4668
0.5572	319	Populus grandidentat	0.4632
0.5336	325	Pepmine Fremontii, va	0. 46:1
0. 585	331	Chamecyparis Lawooniana	0.4621
0,5462	157	Sambucus Mexicana	0.4614
0. 3450	153	Sysa eapitata	0.4613
0.54 .77	305	Alnus ineana	0.4607
0. 5451	309	Salix lasiandra, var. Fendleriana	0.4598
0.5441	382	Picea nigra	0. 4584
0.5434	368	Pinus insignis	0.4574
0.5412	391	Paeniotsuga Douglasii, var. macro-	0.4563
0. 5342	399 309	Salix lasiandra,	0.4517
0.5330	340	Taxodinm diaticham	0.4543
0.5325	50	Esculus glsb	0.4542
0.5300	17	Tilia American	0.4525
0. 5309	200	Castanea mulgatis	0.4504
0.5299	107	Prunua emarginata	0.4502
0.5294	307	Salix amsglaloidea	0.4502
0.5273	6	Magnolia Umbrella	0. 4487
0.5269	206	Catal a a bignonioldes	0.4474
0.5200	411	Yucca elata	0.4470
0.5194	306	Salix nigra.	0.4458
0.5184	300	Tsuga Pattoniana	0.4454
0.5182	404	Ssbal Palnotto	0. 4404
0.5173	311	Salix aessilifolia	0.4397
0. 5157	72	Rhus venenata	0.4382
0. 5151	350	Pinus flexilis	0.4358
0.5145	70	Rhua typhina	0.4357
0.5087	67	Negundo aceroid	0.4328
0. 5072	386	Picea Sticbensis	0.4287
0. 5056	388	Tauga Caroliniana	0.4275
0.5053	51	Eseulns flav	0.4274
0. 5042	312	Salix discolor	0.4981
0.5038	18	Tilia heteropbslla	0.4253
0.5035	387	'truga Canadensis	0.4239
0. 5023	8	Liriodendron Tulipifor	0. 4230
0.5003	398	Abios amalilia	0.4228
0.4996	342	Sequoia acmpervirens.	0.4208
0.4980	207	Catalpa speciosa.	0.4105
0.4969	351	Pinus albicaulis	0.4105
0.4942	321	Populus balsamifera, var. candicans	0.4101
0.4135	t	Magnolia cordata	0.4139
0.4930	28	Stmaruba glanea.	0.4136
0.4026	367	Pinus Coutieri	0.4133
0.4914	302	Aluus rhombifolia	0.4127
0.4903	305	Pinus Murrayama	0.4096
C. 4880	320	Populus beterophslla	0.4080
0.4849	238	Juglans cinerea.	0.4086
0.4587	17	Tilia Americana, va	0. 4074
0.4872	383	1'icea alla	0.4051
0.4354	318	l'opulns tremuloides.	0.4032
0.4843	${ }^{2} 20$	Libocedrus drenrrens.	0.4017
0.4840	303	Alnus ullongifelia	0. 3031
0. 48.1	9	Asimina tridolsz	0. 9969
0.4813	378	Pinus glabra..	0.3331
0.4806	32:	Populus angustifolia.	U.8012
0.478	348	Phus mouticola	0.3008

	Specles.			Species.			Species.	
324	Populus monilifera	0.3889	396	Abies cancalor.	0.3638	329	Chamæcyparis sphæroldea.	0.3322
347	Pinus Strobas	0.3854	321	Papulus halsamifera	0.3635	149	Ccreus gigantens.	0.3188
393	Abies balsamea....	0.3819	392	A lics Fraseri.	0.3565	337	Thuya occidontalis	0.3164
323	Populus tricbucarpa	0.3814	395	Abies grandis.	0.3545	29	Bursera gummifera.	0.3003
328	Tbuyagigantea..	0.3796	195	Frasinus platycarpa	0. 3541	341	Sequaia gigantea	0. 2882
385	l'icea pungens..	0.3740	369	Pinus tuvercalata	0.3499	412	Yucea laceata	0. 2724
410	Yuca brevifalia	0. 3737	394	Abies subalpina	0.3476	229	Ficus aurea.	0.2616
349	Pinns Lambertiana.	0.3684	384	Picea Engelmanni	0.3449			

It will be noticed that all species in which the wood is hearier than water belong to the semi-tropical region of Florida or to the arid Mexican and interior Paeific regions. There seems to be a certain, but by no means constant relation, as shown in this table, between aridity of climate and the weight of the wood produced by closely allied species or by individnals of the same species. The wood of the form of Quercus rubra peculiar to western Texas is nearly 39 per eent. heavier than the average of all the specimens of the typical species grown in the northern states. Among the white oaks the wood of species belonging to regions of little rainfall, Quercus grisca, oblongifolia, Durandii, and Douglasii, is heavier than that of allied species peculiar to regions more favorable for the growth of trees. The average of two specimens of Quercus prinoides grown in westeru Texas is 19 per cent. heavier than the arerage of all the other specimens of this species grown in other parts of the country. In Fraxinus, the wood of F. Greggii of the Rio Grande valley is hearier than that of any other speeies; it only just surpasses in weight, however, the wood of the western Texas form of F. Americana, which is 20 per cent. hearier than the average of all specimens of the typical species grown north of Texas. On the other hand, the wood of Texas forms of Fraxinus viridis is constantly lighter than that of northern specimens, and the wood of Celtis grown in Arizona is lighter than that of the average of all the other specimens of this species. In Juglans, the heaviest wood is that of J. rupestris, a species belouging to a region of little raiufntl, and a speeimen of J. nigra from western Texas is 33 per cent. heavier than the average of all speeimens grown in the Mississippi basin. In the case of Platanus, the heaviest wood is that of the Atlantic species, but wood of the species peculiar to the comparatively moist climate of southwestern Arizona is, however, considerably lighter than that of the drier elimate of southern California.

FUEL VALUE.

The relative fnel values are obtained by deducting the percentage of ash from the specific gravity, and are based on the lypothesis that the real value of the combustible material in all woods is the same.

A number of analyses was also made of the wood of several of the principal trees of the United States (Table II) and their absolute fuel value calcalated. Mr. Sharples describes the methods adopted by him to obtain these results, as follows:

The carbon and hydrogen determinations were made by the ordinary proeesses of organic analysis, by burning the wood in a eurrent of oxygen. The moisture was determined by drying the wood at 100° centigrade natil its weight beeame sensibly constant. The caleulations were then made on the dry wood. The resnlts contain a slight constant errer, arising from the fact that the nitrogen in the wood was not determined. This error is, however, very slight, the nitrogen, which is ineluded in the pereentage of oxygen, rarely amounting, in any wood, to one per cent. The column headed "Hydrogen combined with oxygen", is found by dividing the amonnt in the column headed "Oxygeu" by cight, and represents the hydrogen that may be considered as already combined with oxygen in the form of water, and is therefore useless for fuel. The fuel valne per kilegram is fomd by multiplying the pereentage of carbon by 8,080 , aud that of excess of hydrogen by 34,462 (these beiug the values obtained by Favre and Silberman), adding these together and deducting from the snm the produet of the total hydrogen multiplied by 4, e33, wnieh represents the heat required to evaporate the water produced by burning the hydrogen. The constants nsed above represent the number of kilograms of water raised one degree centigrade, by burning one kslogram of earbon or hydrogen. The fuel value per eubic decimeter is found by multiplying the value per kilogram by the speeific gravity. It need hardly be said that this fuel value is rarely attained in practice, and that it is never utilized. There are too many sourees of loss; the ealcnlation snpposes that the combustion is perfect, that no smoke is given off, and that the heat of the produets of combustion, with the exception of that neeessary to convert the water into vapor, is all utilized.

It appears from Mr. Sharples' experiments that resinons wools give npward of 12 per cent. more heat from equal weights barned than non-resinous woods; the heat produced by burning a kilogram of dry non-resinons wood being about 4,000 mnits, while the heat produced by burning a kilogram of dry resinous wood is about 4,500 units, a mait locing the quantity of heat required to raise 1 kilograu of water 1 degree centigrade.

Comint Rumford first propounded the theory that the calne of equal weights of wood for fuel was the same withont reference to specifie distinctions; that is, that a poond of wood, whatever the varicty, would always produce the same amome of heat (Count Rumford's Worls, Boston, 1873, vol, ii). Marens Bull, experimenting in 1826 upon the fuel value of different woods (Trans. Am. Phil. Soc., new ser., iii, 1), found a variation of only 11 per.cent. betwoen the different species tested. Rumford's theory must be regarded as nearly correct, if woods are
separated into resinons and non-resinous classes. The specifie gravity gives a direct means of comparing heat values of equal volumes of wood of lifferent resinous and non resinous species. In burning wood, however, various circumstances affect its value; few fire phaces are constructed to fully utilize the finel value of resinous wood, and carhon escapes unconsumed in the form of smoke. Pine, therefore, which, althongh eapable of yielding inore heat than oalk or hickory, may in jractice fied considerably less, the pine losing both carbon and hyriogen in the form of smoke, while hekory or oak, buming with a smokeless flame, is practically entirely consumed. The ash in a wood, being non combustible, influences its finel value in proportion to its amount. The state of dryness of wood also has much influence upon its fuel value, thongh to a less degree than is generolly supposed. The water in green wood prevents its rapid combustion, evaporation reducing the temperature below the point of ignition. Green wood may often contain as much as $\overline{0} 0$ per cent. of water, and this water must evaporate during combustion ; but as half a kilogran of ordinary wood will give 2,000 units of heat, while half a kilogram of water requires only 268.5 units to exaporate it, 1731.5 units remain avalable for generating beat in wood containing even a maximum amont of water. la cases where the pessure was perpendicular to the grain of the wood it was applied on the side of the specimen nearest to the heart of the tree.

A factor in the general valne of wood as fuel is the ease with which it can be scasoned; becch, for example, a very dense wood of high fuel value when dried, is generally considered of little value as fuel, on account of the rapidity with which it decays when cut and the consequent loss of carbon by decomposition.

THE STRENGTH OF WOOD.

The specimens tested for the purpose of determining the strength of the wood produced by the different trees of the United States were cut, with few exceptions, before March, 1881 , and wele slowly and carefully scasoned.

Those used in determining the resistance to transverse straill were made 4 centimeters square and long enough to give the necessary bearing upon the supports. These were shod with flat iron phates, slightly rounded on the edges and were set exactly 1 meter apart; they remained perfectly rigid under the pressure applied. Each specimen was weighed, measured, and its specific grarity calculated betore it was tested. The result thus obtained represents the specifie gravity of the air-dried wood.

To eliminate the action of their weight the specimens were placed upright, and hydraulic pressure was applied by means of an iron rod 12 millimeters in radius, acting midway between the supports, the deflections being read at this point.

The direction of the grain of the wood is shown by diagrams in the table (Table III), the pressure acting npon it horizontally trom the left.

The pressure wats applied slowly aud uniformly, a reading of the deflections being taken for every 50 kilograms. When a load of 200 kilograms had been applied it was remored and the set read. Pressure was again applied in the same way, and the readings of deflections were resumed when 200 kilograms was again reached.

The formula used in calculating the coefficient of clasticity was $\mathrm{E}=\frac{\mathrm{P} l^{3}}{4 \Delta b d^{3}} ; l, b, d$, being takenin millimeters; that of the modulus of rupture, $\mathrm{R}=\frac{3 \mathrm{P} l}{2 b d^{2}}, l, b, d$ being in centimeters, P , in both formulas, in kilograms.

A few experiments were also made in the same manner, for purposes of comparison, to determine the transverse strength of specimens 1 meter long between the bearings and 8 centimeters square (Table IV).

The specimens tested by longitudinal compression were 4 centimeters square and 32 centimeters (8 diameters) long. They were placed between the phatforms of the machine, and pressure was gradually applied until they failed. The figures given represent the number of kilograms required to canse failure.

The specimens tested under pressure applied perpendicularly to the fibers were 4 centimeters square and 16 centmeters long. Thes were placed upon the platform of the machine and indented with an iron panch 4 centimeters square on its face, covering the entire width of the specimen and one-quarter of its length at the center. In this series of experiments the direction of the annual rings was noted, horizontal pressure being also applied from the left. Readings were taken of the pressure necessary to produce each successive indentation of 0.254 up to 2.54 millimeters, and in the case of specimens which did not fail with this pressure a further test was made of the weight required to produce indentations of 3.81 and 5.08 . The remarks (Table V) upon the behavior of the wood of the different species under compression were furnished by Mr. James E. Howard, in eharge of the testing machine.

COMPARATIVE VALUES.

In the following table the number standing opposite each species represents its relative value in the column in which it appears.

This table is purely an arbitrary one, since the introduction of one or more species would of course change the value of all species standing lower in value, or results based on an examination of a larger number of specimens of any species may change the relative mumbers in regard to it very considerably. In other words, any twenty or thirty species bearing consecutive numbers may change places with each other. This arises partly from the want of miformity of the wood of any species, and partly from the fact that where so many determinations fall between comparatively narrow limits the mere order of sequence must be largely accidental.

TABLE of RELATIVE VALUES.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \& Specles.

at \& Approximate fuel valno. \& \& \& \& \& Catalogue number. \& Specieg. \& \& \& $$
\begin{gathered}
\text { Dlimato transverso } \\
\text { strengh.. }
\end{gathered}
$$ \& \&

\hline \& MAGNOLIACEx. \& \& \& \& \& \& \& ANACARDIACEA. \& \& \& \& \&

\hline 1 \& Magnolia grandiflora \& 145 \& 133 \& 135 \& 115 \& 124 \& 71 \& Rbas copallina. \& 193 \& 210 \& 205 \& 227 \& 216

\hline 2 \& Magnolis glanca. \& 205 \& 127 \& 163 \& 173 \& 234 \& 73 \& Khas Metopiua \& 59 \& 74 \& 208 \& 73 \& 109

\hline 3 \& Magnolia acuninata \& 230 \& 122 \& 201 \& 189 \& 226 \& \& \& \& \& \& \&

\hline 4 \& Maguolia cordata. \& 265 \& 119 \& 236 \& .191 \& 248 \& \& LEGUSINOSA. \& \& \& \& \&

\hline 5 \& Magnolia macrophylla \& 189 \& 41 \& 184 \& 104 \& 247 \& 77 \& Robinia Proudacacia \& 87 \& 19 \& 3 \& 12 \& 71

\hline 6 \& Magnolis Unibrella \& 249 \& 207 \& 245 \& 234 \& 237 \& 79 \& Robinia Neo-Mexicana \& 51 \& 43 \& 81 \& 16 \& 52

\hline 7 \& Magnolia Fraseri \& 207 \& 114 \& 178 \& 182 \& 202 \& 80 \& Olneya 'Teaota \& 7 \& 143 \& 153 \& 235 \& 2

\hline 8 \& Liriodendron Tulipif \& 259 \& 124 \& 208 \& 229 \& 262 \& 81 \& Piscidia Erythrina \& 35 \& 154 \& 151 \& 34 \& 24

\hline \& A OONACEE. \& \& \& \& \& \& 82 \& Cladrastris tinctoria \& 150 \& 95 \& 88 \& 71 \& 141

\hline \& AsO.AB \& \& \& \& \& \& 84 \& Sophora aftinis. \& 34 \& 102 \& 121 \& 48 \& 27

\hline 9 \& Asimina triloba \& 277 \& 281 \& 293 \& 298 \& 285 \& 85 \& Gymnocladus Canadensis. \& 114 \& 77 \& 144 \& 200 \& 163

\hline 10 \& Anona launfolia \& 220 \& 278 \& 234 \& 277 \& 198 \& 86 \& Gleditschia triacauthos. \& 124 \& 64 \& 77 \& 83 \& 156

\hline \& CANELLACEE. \& \& \& \& \& \& 87 \& Gleditscbia monosperma. \& 88 \& 40 \& 43 \& 41 \& 53

\hline 12 \& Canella alba \& 11 \& 56 \& 50 \& 6 \& 5 \& 88 \& Parkinsonia Torreyaua \& 134 \& 264 \& 259 \& 184 \& 00

\hline \& \& \& \& \& 0 \& \& 01 \& Cercis Canadensis \& 146 \& 228 \& 165 \& 123 \& 142

\hline \& TERNSTRGEMIACES. \& \& \& \& \& \& 93 \& Probopis jnlifora \& 69 \& 259 \& 273 \& 40 \& 26

\hline 14 \& Gordonia Lasiauthu \& 228 \& 187 \& 201 \& 214 \& 240 \& 94 \& Prozopis pubcacen \& 67 \& 172 \& 91 \& 18 \& 28

\hline \& TILIACES. \& \& \& \& \& \& \& ROSACESE. \& \& \& \& \&

\hline 17 \& Tilia Americana. \& 246 \& 161 \& 241 \& 240 \& 200 \& 103 \& Prunus Americana \& 97 \& 161 \& 103 \& 39 \& 104

\hline 17 \& Tilia Amcricana, rar. pubeacen \& 272 \& 183 \& 256 \& 195 \& 298 \& 104 \& Prunns angustifolia \& 113 \& 253 \& 276 \& 197 \& 190

\hline 18 \& Tilia heteropbylla \& 257 \& 158 \& 248 \& 202 \& 263 \& 107 \& Prunus omargimata \& 248 \& 142 \& 194 \& 124 \& 266

\hline \& Malpighiacee. \& \& \& \& \& \& 108 \& Prunns acrotina \& 164 \& 153 \& 115 \& 61 \& 114

\hline \& \& \& \& \& \& \& 110 \& Prunus demissa \& 112 \& 199 \& 186 \& 84 \& 76

\hline 13 \& Brraonlma lucida \& 169 \& 272 \& 288 \& 206 \& 100 \& 111 \& Pranaa Carolinisaa \& 29 \& 120 \& 76 \& 50 \& 32

\hline \& ZYGOPHYLLACESL. \& \& \& \& \& \& 113 \& l'runos ilicifolia \& 10 \& 212 \& 138 \& 63 \& 39

\hline 20 \& Guaiacum sanctum \& 3 \& 147 \& 137 \& 10 \& 1 \& 117 \& Pyrns coronaria \& 109 \& 245 \& 273 \& 181 \& 74

\hline 2 \& Guaiacom eanctum \& 3 \& 148 \& 137 \& 10 \& 1 \& 121 \& Pyrus ammbucifolia \& 165 \& 248 \& 284 \& 220 \& 225

\hline \& rutaces. \& \& \& \& \& \& 125 \& Cratrgas arlorescens \& 135 \& 189 \& 228 \& 95 \& 140

\hline 23 \& Xanthoxylum Clava-Herculis. \& 204 \& 217 \& 219 \& 148 \& 165 \& 120 \& Crategas Crus-gali \& 100 \& 240 \& 210 \& 169 \& 107

\hline 24 \& Xanthoxylum Caribæum \& 27 \& 143 \& 150 \& 15 \& 18 \& 128 \& Cratagns subvillosa \& 52 \& 135 \& 162 \& 68 \& 63

\hline \& SIMARUBEE. \& \& \& \& \& \& 129 \& Cratxgus tomentosa \& 65 \& 213 \& 177 \& 153 \& 80

\hline \& \& \& \& \& \& \& 132 \& Crategus spathnlata \& 102 \& 237 \& 268 \& 139 \& 99

\hline 28 \& Simaruba glauca.............................. \& 268 \& 121 \& 252 \& 171 \& 251 \& 134 \& Crategus restivalis \& 128 \& 250 \& 176 \& 152 \& 94

\hline \& 1\%USERACES. \& \& \& \& \& \& 135 \& Cratsegus flava \& 61 \& 225 \& 167 \& 76 \& 31

\hline 20 \& Bnreera grmmifera \& 208 \& 292 \& 300 \& 300 \& 300 \& 137 \& A melanchicr Canadensis \& 57 \& 34 \& 24 \& 10 \& 48

\hline 80 \& Amjris aylratica. \& 5 \& 65 \& 2 \& 9 \& 6 \& \& Hamamelacere. \& \& \& \& \&

\hline \& meliaces. \& \& \& \& \& \& 138 \& Liqnidambar Styraciflua. \& 162 \& 167 \& 214 \& 128 \& 192

\hline 31 \& Swietenia Malrogoni \& 06 \& 71 \& 58 \& 20 \& 36 \& \& MIHzOPHORACES. \& \& \& \& \&

\hline \& ILICINES. \& \& \& \& \& \& 140 \& Rhiaophora Mangl \& 2 \& 2 \& 10 \& 2 \& 8

\hline 33 \& Hex ораса..... \& 167 \& 244 \& 188 \& 180 \& 149 \& \& COMBRETACEA. \& \& \& \& \&

\hline 34 \& llex Daboon \& 224 \& 240 \& 250 \& 252 \& 214 \& \& Conocarpus orecta............ \& \& \& \& \&

\hline \& CYRILLACES. \& \& \& \& \& \& 141
142 \& Couocarpus orecta \& 108 \& 89
219 \& 204 \& 32
147 \& 174

\hline 38 \& Cliftunla lignatrina \& 152 \& 191 \& 262 \& 231 \& 177 \& \& MYRTACEE. \& \& \& \& \&

\hline \& RHAYNACEE. \& \& \& \& \& \& 144 \& Eagenia buxifulia \& 18 \& 0 \& 38 \& 1 \& 20

\hline 42 \& Resnosia latifolia.. \& 6 \& 74 \& 116 \& 3 \& 4 \& 146 \& Eugenia monticola \& 24 \& 65 \& 15 \& 55 \& 12

\hline 43 \& Contalia ferrea. \& 1 \& 45 \& 85 \& 5 \& 3 \& 148 \& Eacenia proccra... \& 19 \& \& 14 \& \& 9

\hline 45 \& Phamnas Caroliniana \& 184 \& 208 \& 251 \& 154 \& 187 \& 148 \& Cugemia proccra \& 19 \& 38 \& 14 \& 17 \& 9

\hline 47 \& Rhammua Pursbiana. \& 175 \& 129 \& 152 \& 28 \& 131 \& \& CORNACEX. \& \& \& \& \&

\hline \& salindacees. \& \& \& \& \& \& 151 \& Cornus florida \& 44 \& 176 \& 85 \& 03 \& 40

\hline 50 \& Escnlus glabra \& 245 \& 243 \& 271 \& 273 \& 282 \& 152 \& Cormus Nuttallii \& 74 \& 85 \& 60 \& 22 \& 77

\hline 52 \& Eacnlus Califonica \& 208 \& 232 \& 222 \& 246 \& 220 \& 153 \& Ny sma capitata. \& 235 \& 234 \& 194 \& 167 \& 169

\hline 54 \& Saphodus marginatos \& 47 \& 165 \& 112 \& 122 \& 58 \& 154 \& Nyısa malvatica \& 141 \& 178 \& 112 \& 125 \& 127

\hline 60 \& Acer macrophyllum. \& 213 \& 194 \& 190 \& 223 \& 159 \& 155 \& Nysea uniflora \& 195 \& 275 \& 210 \& 237 \& 161

\hline 61 \& Acer circinatum. \& 126 \& 221 \& 147 \& 136 \& 119 \& \& Caplifolfacese. \& \& \& \& \&

\hline 64 \& Acer atchorinum \& 117 \& 9 \& 18 \& 30 \& 73 \& 150 \& Sambochs glanca \& 200 \& 299 \& 295 \& 287 \& 184

\hline 64 \& Acer baccharinum, var. nigrum \& 118 \& 88 \& 68 \& 57 \& 66 \& 159 \& Viburnma prunifol \& 38 \& 131 \& 69 \& 37 \& 35

\hline 65 \& Acerdasycarpmm. \& 192 \& 59 \& 53 \& 113 \& 145 \& \& \& \& \& \& \&

\hline 66° \& Acer rabrum \& 154 \& 117 \& 121 \& 133 \& 151 \& \& RUBIACE®. \& \& \& \& \&

\hline 67 \& Negundo accroldea . \& 256 \& 260 \& 263 \& 270 \& 215 \& 160 \& Exostemama Caribrum \& 15 \& 30 \& 55 \& 8 \& 7

\hline 68 \& Negundo Californicnm.. \& 221 \& 113 \& 132 \& 155 \& 221 \& 101 \& Pinckucya pubens \& 187 \& 231 \& 201 \& 288 \& 230

\hline
\end{tabular}

TAble of Relative Values－Continued．

	Species．				9 E $\stackrel{5}{4}$晏范点			Species．		产 易	$\begin{aligned} & \text { Ultimate transverse } \\ & \text { strength. } \end{aligned}$		
	ERICACEA，												
105	Andromeda ferrugin	72	170	194	107	92	224	Ulmus Americana	136	20.5	110	146	13
160	Arbutus Menziesii	167	164	81	89	110	225	Ulans racemosa	93	62	36	38	112
107	Arbatua Xalapensla	104	251	230	198	75	229	Ulmun alata	86	273	167	158	67
169	Oxydendrum arboreu	78	137	164	90	95	227	Plane ra aquatica．	191	266	228	203	170
170	Kalmia latifolia	161	258	219	168	6.5	228	Celths occidentalis	94	229	135	178	161
171	Fhotodendron maximum	148	242	205	156	133	2.8	Celin occidentalis，var．reticulata	98	143	127	160	56
	SAPOTACEA．						229	Ficua amrea．	300	360	298	299	206
	sarotacme．						231	Ficns peduuculata	244	294	293	284	267
175	Chrysophylhum olivilurme	17	54	107	33	15	232	Morns rubra	163	173	141	179	148
176	Sideroxy lon Masticbodendron	12	61	67	23	25	234	Maclura aurantia	63	114	25	4	22
． 177	Dipholis salicifolia．	10	16	18	11	49							
178	Bumelia t－bax	60	204	200	143	146		PLATANACEEE．					
179	Pamelia lanugiuosa	133	286	294	239	162	235	Platanu＊occidentalis	173	146	222	144	158
181	Bum－lia lycioides	81	193	254	106	97	236	Platanus racemesa	218	240	254	259	245
182	Bumelia cuncata	50	252	265	117	47	237	Platanus Wright	231	286	285	267	211
183	Mimusops Sieberi	4	95	79	135	16		JUGLANDACE ${ }^{\text {a }}$					
	ERENACEA．						238	Juglans einet	276	181	238	265	24
184	Diospyros Virgidiana．．．．．．．．．．．．．．．．．．．．．．．．．．	55	162	98	88	29	239	Juglans nigra	155	63	109	46	12
	STYRACACA．						240		132	218	236	159	143
	Sraplocos tinctoria	190	256	230	218	139	241	Carya olvaformis Ackekfactust．．	163	239	246	164	84
188	Halcsia diptera．．．．．	172	229	107	166	123	242	Carya alma．．．．	36	12	11	27	60
18.		172			160		243	Carya sulcata．H：－L6etatrater．．．．．．．	40	78	33	52	45
	OLEACES．						244	Carya tomentosa the．alear．．．．．．．．．	43	42	26	36	51
191	Fraxinas pistaciafolia	122	254	226	217	108	245	Carya porcina ．Wi．g．inlonta R．．．．	42	92	31	43	41
192	Fiaxinus Americana	130	91	106	121	153	246	Carya umara．．． $\begin{gathered}\text { ¢ } \\ \text { T？}\end{gathered}$	71	86	30	78	78
192	Fraxinus Americana，car．Texengis	60	69	27	65	121	247	Carya myristicæformis H．．गuy Met．．．	49	8	1	23	34
133	Fraxinus pubresens	151.	182	101	162	113	248	Carya squatics ．．．．ar．anarnenthca．．．．	86	93	00	110	55
194	Fraxinas viridis	105	133	51	114	98		myricacez．					
195	Fraxinus platycarpa	291	283	261	296	185							
196	Fraxinus quadrangnlats．	73	190	121	94	111	249	Myrica eerifara	177	137	119	151	18
197		171	156	203	80	157	254	Myrica Californic	125	99	46	74	13
198	Fraxinas sambucifolia．：．Jeffers（ch．Lnst）	149	142	125	175	130		CUPULIFER®．					
199	Forestiera acominat	147	227	175	193	154							
201	Osmanthus Ambrieann	45	28	40	51	64	251	Qucrens alla ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．	85	104	85	82	
							252	Quercus lebata ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．	85	222	163	172	136
							25.3	Quereas Garrrana．．．．．．．．．．．．．．．．．．．．．．．．．．．	79	183	99	07	79
204	Bourtria llavanensis	53	57	71	45	43	254	Qubrens obtusiloba	37	169	106	108	5
205	Ehetiar cliputa	142	256	169	215	87	253	Quercus undulats，var．Gsmbelii．	32	262	194	186	69
	B1GNONIACER．						250	Quercus macrocarpa	82	122	65	103	82
							257	Quercos lyratio．．	30	17	50	160	72
	Catalpa bigoon	250	233		238		258	Quercus bicolor．	60	131	81	102	90
24	Catalja speciosa．	263	175	224	194	254	259	Quercas Michanxii	48	106	28	112	83
268	Chalopsis salgna	161	267	247	278	181	260	Querens Prinus ．．．	75	27	48	67	86
	VERBENACEE．						261	Quercus pridoides	31	53	6	44	61
210	Cithar	28	26	73	13	37	202	Quercus Douglasii．	26	197	57	03	17
－10	－						26：	Qucreus oblongifolia	26	156	175	165	10
	NYCTAGINACEX．						264	Quercus mrisea．．．	8	269	73	110	21
212	1＇isonia＂btusat	157	284	200	274	218	966	Quercns 1 ${ }_{\text {arandii }}$	21	165	57	76	38
							267	Querens rirena	13	49	54	59	30
	OLyGONACEA．						208	Querena clerssoleyis	33	33	4	62	3
213	Cocroloba Floridar	14	43	78	7	13	260	Quencha Emory	22	247	180	176	11
	LaUraces．						270	Qutrensagrifolia．	41	116	75	131	81
							271	Quercus Wislizeni	58	148	118	72	57
215	Persea Carolinonsis．	138	162	88	47	128	26	Quercis rubra．	128	48	63	83	150
215	P＇crsea Carolinensis，rar．palnsiris	140	162	110	232	132	272	Quercum rubra，var．Toxama	23	83	52	42	4
217	Sasmiarras officiunle．	202	273	235	221	188	273	Querma cocrinea	84	65	38	87	11
218	Umbellularia Califurnica	131	70	127	49	126	274	Querens tinctoria	160	81	44	92	11
	EUPHORbIACEA．						275	Quercma kellorgii	137	206	145	143	152
210	Drypotes crocea．	30	73	132	24	23	276	Quercts nipra ．．．	89	102	43	58	46
210	Drypeles crocca，zar．latifolia	25	108	178	70	1.3	277	Quercus falcata．．．	113	11	12	35	117
							278	Quercus Catesbxi．	91	80	42	137	88
	URTICACEE．						279	Querens palustria．．	115	55	32	161	13.
222	Ulmus crassifolia．	09	226	142	142	68	280	Querens anduatica	95	29	40	91	12
223.	Ulmus fulva	111	110	101	66	172	28	Quercus laurif	62	25	13	77	70

TABLE OF RELATIVE VALUES -Continued.

The following table wives the firures from which the table of relative valnes was computed, and inclades all species upon which complete tests have heen made.

The cocdicient of elasticity is derived from the second deflection, the measurements being taken in millimeters and the weicrlat in kilograms.

The ultimate transverse strength is the force, applied at the middle of the stick, required to break a stick 4 centineters square and 1 meter hetween the supports.

In the compression tests the surface exposed to pressure was 4 centimeters square. To give the pressure on a square centimeter these results must be divided by 16.

The indentation to 1.27 millimeters, or the fifth in the series, is the one selected for comparison.

	Specles.	苞	$\begin{aligned} & =5 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$					Species.					
	MAGNOLIACES.							SAPINDACERE.					
1	Magnolia grandillora	63. 20	903	338	7, 705	3,156	50	Asculua glabrs.	45.03	644	211	5, 017	1,132
2	Magnolia ghasa	50.11	014	313	0,700	1, 027	52	Esculns Californica	49.45	683	271	5,686	1,722
3	Magnulia acuminata	46.76	929	286	6,633	1,709	54	Sapindus marginston	80.05	837	800	7, 523	4,350
4	Magnolia cordata.	41.20	941	250	6, 552	1,427	60	Acer marrophylhum	48.83	780	202	0,100	2, 597
5	Magnolia macrephyla	52.90	1,169	297	7,829	1,427	61	Acer circinatuen	66.34	718	327	7,349	3,205
6	Magnolia Uıabrela	44.78	744	249	5,861	1,343	64	Acer atccharinum	68.75	1,465	490	0,907	4,010
7	Magnolia Fraseri	49.89	244	302	0,691	1,966	64	Acer raccharinum, var. nigrum	68.66	1, 027	410	8,803	4,149
8	Liriblendron Tulipifern	42.20	926	280	5, 055	1,296	65	Acer dasycarpum	52.52	1,110	435	7,711	2,509
	ANONACEA.						66	Acer rubrum	61.65	943	346	7,402	2,705
							67	Negando acoroides	42.82	382	226	5,151	1,781
9 10	Asimina triloba. Anona laurifolia	30.61 48.11	482 501	167	3,305 4,829	1,098 2,037	68	Negundo Californicum	47.95	045	340	7,072	1,710
	CANELLACEA.							ANACARDIACERE.					
12	Canella alba	97.20	1,117	438	12,519	9,163	71	Rhna copallina	52.42	730	283	0,033	1,744
	TERNSTREMIACES.						73	Rluns Metopium	77.28	1,050	280	8,523	3,348
14	Gordonia Lasisnthus	46.92	794	286	6,195	1,591		LEGUMINOSA.					
	T1LIACEE.						77	Roblnia Pseudacacia.	72.96	1,301	543	11, 272	4, 038
17	Tilia Americana.	45. 00	840	252			79	Robinia Neo-Mexicana	79.86	1,149	388	10,931	4,427
17	Tilia Americana, var. p	40.47	811	239	5,487	1,044 950	80	Olnoya Teaota	103.59	868	320	b, 851	10,478
18	Tilia hetcrophylla .	42.47 42.27	846	246	6,487	1, 950	$\varepsilon 1$	Piscidia Erythrina.	84.39	851	321	0,548	5,698
18	-	4.. 27	846	240	0,307	1,206	82	Cladrastis tinctoria	62.61	1,002	385	8,550	2,037
	MALPIGHIACEX.						84	Sophora atinis. .	84.46	077	346	0, 129	5,348
19	Byrsozima lucid	57.43	525	181	6, 260	3,475	$\varepsilon 5$	Gymnocladus Canadensis	68.88	1, 048	329	6, 406	2,560
	ZYGOPIIYLLACEAX						80	Gleditschia triacanthos.	06.86	1,080	304	8,001	2, 697
							87	Gleditschia monosperras	72.89	1, 170	439	0, 344	4,420
20	Guaiacum sanctum	113. 38	863	330	11,780	12, 689	88	Parkinaonia Torreyana.	64. 58	558	233	6,679	3,820
	RUTACEE.						91	Corcis Canadensis	63.18	688	310	7, 510	2, 917
23	Xanthoxylum Clara-Herenl	50.15	726	273			93	Prosopis juliflora ...	74.86	583	207	9,412	5,484
24	Xanthoxylum Caribæum ..	88. 20	868	322	10,955	2,546 5,964	94	Prosopis pubeaceua.	75, 37	824	382	10, 732	5,267
	SIMARUBEE.							ROSACEAE.					
28	Simarnba glauca.	40.08	032	241	6,816	1,383	103	Prunus Americana	72.02	827	369	9,419	3,405
							104	Prunus angustifolia	68.65	603	200	8,441	2,132
	BURSERACESA.						107	l'runus eusarginata, var. mollis.	44.93	801	290	7,507	1,280
20	Buraera gummifera	29.41	417	63	2,473	740	108	Pronus serotina	58.14	8.52	354	8, 740	3,269
30	Amyris aylratica.	103. 07	1, 085	557	11,075	8,705	110	Prunus deminsa	00.16	769	295	8, 165	3, 937
	MELIACES.						111	Prunns Caroliuiana	80.52	937	396	8, 989	5,090
81							113	Prunus ilicifulia	97.27	732	334	8,709	4,888
. 1		72.03	1062	428	10,060	4,031	117	Pyrus coronaris	70.11	642	207	6,700	3,099
	ILICINES.						121	Pyrue sembucifolia.	58.08	626	190	6, 123	1,715
33	Hex opaca	57.74	643	293	0,709	2,826	125	Crutagus arboresccua	64.55	788	265	7,969	2,951
34	1lex Dahoon	47. 62	642	244	5,582	1,808	120	Crstagus Crus-galli	71.54	664	$2 \% 9$	6,884	8,368
	ERE						128	Ctatagua subvilloar.	78.98	901	315	8,612	4.207
	Es.						120	Cratagus tomentosa.	75.36	732	303	7, 117	3,844
38	Cliftonia ligustrina	62. 23	783	225	5,038	2,350	132	Crategus spathulata	71.12	673	216	7,280	3,484
	11HAMNACEE.						134	Cratxgus restivalis	65.27	592	304	7,122	3,583
							135	Craterns flava, var. pubeacens.	76. 13	708	309	8,437	5, 103
42	Roynogia latifolia.	103. 72	1,050	350	13,490	0,753	137	Amelanchier Canadenais	77.05	1.197	483	10,712	4,483
43	Comialia frrea	110. 38	1, 143	386	12,848	10,388							
45	Rhammus Carolinisna.	54.27	741	242	7, 112	2, 195		HAMAMELACEPE.					
47	lhamuvs l'urshiana	56.34	013	320	0,934	3, 075	130	Liquidambar Styraciana.	58.73	837	278	7,462	2,122

TABLE OF AVERAGES-Continued.

	Species.							Speolea.					
	RHIZOPHOKACES.							BIGNONLACER.					
110	Rhizophora Mangle................	114.08	1,656	515	13,767	7,394	206	Cataipa bignonioldea	44.57	682	252	5,881	1,230
	COMBEETACER						207	Catalpa apeciosa...................	41.48	822	270	6,521	1,377
	COMBRETACEA.						208	Chilopsis saligna	58.79	544	247	4,753	2,304
141	Conocarpus erecta	98.68	1,025	402	9,503	5,926		VERBENACEx.					
142	Laguncolaria racemosa	70.21	724	221	7,100	2,386							
	MYRTACEXE.						210	Citharexylum villosum NYCTAGINACEX.	88.75	1,257	400	11, 034	4,927
144	Eugenia baxifolia.	92.20	1,575	450	14,198	5,851							
148	Eugenia monticols	89.83	1,095	500	8,846	6,532	212	Pisonia obturata...................	60. 31	465	127	4,962	1,737
148	Eugenta procera ...	92.05	1,191	502	10,750	7,099		POLYGONACEE.					
	CORNACE王.						213	Coccoloba Floridana.	93.40	1,136	382	12,337	6,310
151	Cornus florida	80.98	821	386	8, 553	4,875		LAURACEE.					
153	Corrus Nuttallii	74.44	1,031	423	10,603	3,883	215	Persea Carolinanala	63.81	839	385	9, 173	3,128
153	Nyeed capitata	45. 87	681	290	6,895	2,484	215	Persea Carolinensia, var. paluatria	63.73	849	850	5, 874	3, 078
154	Nybea aylvatica	63.66	818	360	7,497	8, 131	217	Saseafrus officluale	50.38	518	257	6, 110	2,144
155	Nyber uniflora.	51.58	518	279	5, 848	2,575	218	Umbellularia Californica	64. 82	1,068	344	9, 095	3,186
	CAPRIFOLLACEE.							EUPHORBIACES.					
15 d	Sambuens glanca	50.07	805	158	4,400	2,218	218	Drypetes crocea	86. 44	1,039	340	10,410	5,787
159	Vibarnam pranifollam	82.89	907	400	8,474	5,009	218	Drypetea crocea, var. latifolia	88.65	836	802	8,324	6, 510
	RUBIACEE.							URTICACES.					
160	Exostemma Caribsam	92. 89	1,194	429	12, 020	7,707	222	Ulmas orabaifolia	71. 59	704	330	7,248	4, 080
161	Pinokneya prbens	53.28	683	173	4,355	1,678	223	Ulmus fulva	69. 77	953	371	6, 628	2,399
							224	Unmos Amorican	64.54	747	364	7, 191	2,970
							225	Ulmas racemosa	72. 20	1,006	455	9, 474	3,281
185	Audromeda ferruginea	74. 63	814	290	7,802	3, 011	226	Ulmua alata	74.17	523	300	7,001	4, 085
188	Arbutus Menzieali.	70.24	888	887	8, 034	8, 322	227	Planera aquatica	52.71	552	265	Q, 305	2,334
167	Arbutas Xalaperiels	70.81	010	284	6,419	8,947	228	Celtis occidentalis.	72.08	685	337	6, 739	3,472
169	Oxydendram arboren	74. 30	889	311	8, 025	8, 550	228	Celtia occideutalia, var. retlculata	71.80	888	344	6,885	4,373
170	Kalmia latifolia	71.81	585	273	6,890	4,198	229	Ficus anrea	24. 84	257	102	2, 897	989
171	Rhododendron maximam	02. 80	848	283	7,020	8,086	231	Fycus pedanculata	45.07	407	98	4,491	1, 005
	SAPOTACEE						232	Morus rubra	68.56	824	331	6, 721	2,805
	Sapotaced.						234	Maclura aurantiac	76.01	944	483	12,939	5,806
175	Chrysophylum ollviforme........	92. 44	1,124	368	9, 571	6, 108		platanaceze.					
176	Siderorylon Mastichodendron.....	95.89	1,099	414	10,410	5, 682		Platanacez.					
177	Dipbolis sallcifalia	92.86	1,836	480	11,680	4,480	235	Platanas occideutalia	56.52	864	271	7,207	2,645
178	Bumelia tenax	72.89	751	287	7,235	2,894	236	Platanua racemoea.	48.26	624	240	6, 180	1,486
179	Bumelis lanuginosa	61.64	483	165	5, 789	2,564	237	Platanus Wrighti	46.72	457	183	5,228	1,807
181	Bamelia lyoloides	74.07	781	240	7,825	8, 529		JUGLA NDACEE.					
182	Bumelia ouneata.	78.08	603	220	7,648	4,581		Juglans cinerea.	40.66	812	255	6, 270	1,488
183	Mlmasope Sleber'.	105. 55	1,002	390	7,360	6, 091	239	Juglans nigra...	60.91	1,092	365	9, 178	3,140
	EBENACES.						240	Juglana rupestris.	64.89	727	256	8,987	2,900
184	Dlospyros Virginiana..............	76.32	782	375	8,045	5, 192	241	Carya olivaformis	70.99	666	247	6, 951	3,714
							242	Carya alba.	83.11	1,390	512	10,007	4,344
	STXRACEE.						243	Carya aulcata	80.35	1,039	404	8,939	4,609
186	Symplocos thactoria.	52.88	622	264	6, 148	2,967	244	Carya tomentoaa	81.29	1,150	482	9,485	4, 420
137	Halesia diptera	56. 81	683	366	6,940	3,153	245	Carya porcina	81.36	1,014	466	9, 232	4,822
	OLEACES.						246	Carya mmara..	74.74	1, 030	470	8,357	3,878
							247	Carya myristicmformia	79.31	1,465	595	10,206	5,042
201	Fraxinus plotacisfolia	67. 68	601	266	6, 158	3, 368	248	Carya aquatica	73. 13	1,013	376	7,776	4,397
102	Fraxinus Americans.	85.16	1,015	367	7,535	2, 745							
102	Fraxinus Americana, var. Texenain	75.83	1,062	480	8, 804	3, 177		MYRICACKI.					
193	Fraxinus pubeecens	62.35	812	971	6,960	8, 272	249	Myrica cerifara	56.08	888	348	7,122	2,804
194	Fraxinus viridis	70.71	003	382	7,711	3, 821	250	Myrica Californioa.	60.81	992	442	8,516	8,017
195	Fraxinua platycarpa.	35.16	476	229	4,014	2, 209		CUPULIFERE.					
106	Fraxinua quadrangulata	74. 50	774	346	7,980	3,322							
197	Fraxinus Oregana	57.12	848	284	8,320	2, 633	251	Querona alba.........................	74. 38	971	386	8,183 0,793	3,388 3, 014
198	Fraxinus sambucifolia	62.72	872	345	6,760	3,106	252	Quercna lobata	73.87	717	309	0,793	3, 014
190	Forentiera acuminsta	63.00	703	306	6,418	2, 717	253	Quercus Garryana	74. 24	811	375	7, 957	3, 846
201	Osmauthus Americanus	80.74	1,231	449	8, 200	4,206	254	Quercus obtualioba	83.01	833	372	7,790	4,415
							255	Quercus undulata, var. Gambelii..	85. 38	571	200	6, 660	4,072
	borraginaces.						250	Quercus macrocarpa..............	74.09	929	419	7, 843	3, 730
204	Bocrreria Havanensls	78. 48	896	403	0,197	4,702	257	Quercus lyrata.	82.50	1,334	438	7,864	4,033
295	Ehretia clliptica ...	63.56	397	308	6,192	3, 063	258	Quercua blcelor.	76.18	906	388	7,850	3,534

TABLE OF AVERAGES－Contimued．

	Species．			昆量若 				Species．					
250	Quercus	80.03	964	477	7，715	3，725	324	Po	38． 63	094	328	5，651	27
260	Qucrens	74． 42	1， 255	440	8，615	3，686	325	Populus Fremontii	48.77	1，051	298	6， 055	， 882
201	Quercus priuo	86.09	1，125	528	0， 204	4，224	325	Populue Fremontii，var．Wislizenl	45． 60	843	205	5，050	1， 007
262	Quercns Dougla	88.53	771	424	8，013	5，988							
263	Quereus oblongifol	97． 60	857	307	6， 841	7，031		CON1FERE．					
264	Qacreus grise	99.10	740	400	7，666	5，829	320	Libocedrus dect	40.14	847	201	7，440	1，681
$2 \mathrm{C6}$	Quercus Duran	91.00	837	424	8，550	4，922	327	Thaya occidental	31.53	533	210	4， 003	957
267	Quercus vire	93.93	1，130	434	8，748	5，185	328	Thaya gigantea．．．	37．90	1，034	319	7，197	1，114
268	Quercus chrysolep	84． 43	1，198	541	8，721	5，070	320	Chamæeyparis spheroldes．	33.12	404	194	4，149	1，074
269	Quercus Emory	90.44	638	300	c， 759	B，GAB	330	Chammeyparis Natcsensis	47.60	1，029	842	7，281	1，618
270	Quercus agrifoii	81.47	953	399	7，416	3，7i0	331	Cbamæcspstis Lavrso	46.16	1，217	378	7，454	1，817
271	Quercua Wislizen	77.75	861	349	8，527	4，302	333	Capressas Goreuians	46．68	499	230	5，742	2，852
273	Quercas rubra	65.28	1，137	422	8，172	2， 825	338	Juniperus occidentalis，var，conja－	68.75	734	200	－8，505	4，464
272	Qucrens rubra，var	90.03	1， 033	437	9，310	4，665		gens．					
273	Qucrens coccinea	73.91	1，085	450	8， 074	3，224	339	Juniperas Virginiana．	49．11	670	316	6，750	2，376
274	Quercustinctor	70.10	1，034	444	8,012	3，243	340	Tarodium dis	45． 24	1，032	291	6，771	1，166
275	Querens Kellog	84.18	745	328	7，184	2，783	341	Sequoia gigant	28．67	451	196	6，210	1，091
276	Quercus digra	72.39	977	445	7，954	4，582	342	Seq̧oia semper	42.02	676	255	6，650	1，242
277	Quercas falc	69.11	1，402	509	0，532	3，223	343	Taxus brovifolia ．．．．．．．．．．．．．．	63.78	701	460	7，734	4，223
278	Qucreas Catesl	72.31	1， 635	447	7，316	3，646	345	Torroya taxifolia ．．．．．．．．．．．．．．．．．	51.08	821	378	7，384	2，523
270	Quercas palus	68． 82	1，123	405	7，802	3，040	346	Torrera Californica．．．．．．．．．．．．．．．	46．96	401	240	5，625	1，062
280	Qacreas aqua	72.07	1，227	440	8， 023	3， 169	347	Pinas Strobas ．．．．．．．．．．．．．．．．．．．．．	38.47	851	207	8， 219	1，194
281	Quercus laurifol	76.10	1，259	504	8，424	4，056	348	Pinus montic	38．89	950	260	5，349	1，071
282	Quercus beterophy	68.22	1，225	458	0，600	2， 008	349	Pinus Leruberti	36． 76	794	255	5，382	1，244
283	Quercus cinerea．．	03.47	751	424	7，107	3，221	350	Pious dexilis	43.42	676	260	5，591	1，727
284	Quercus bypo	78.41	044	475	4， 095	4，348	351	Pinus albicaulis	41.54	512	249	5，296	1，716
285	Quercus imbricar	74.97	1，193	520	8，839	3，623	352	Pinus reflex	48.05	913	329	7，825	2， 002
286	Quercus Pbellos	74.35	784	422	6， 230	3，452	353	Piaus Party	56.44	375	182	6，420	3，126
287	Qacreus densiflora	67.25	964	404	7， 609	3，593	355	Pinus edulis	63.43	421	191	5，579	3，388
288	Castauopsis chrysop	55． 55	1，012	316	0，959	1，912	356	Pinus monopbylla ．．．．．．．．．．．．．．．．．	58． 20	435	123	4，389	2，713
289	Castanea pamila	58.80	1， 141	423	7，023	1，887	357	Pinns Bslfouriana ．．．．．．．．．．．．．．．．	54.17	504	181	5， 398	2，350
290	Castanca rul	44.05	856	297	6， 106	1，698	357	Pinus Balfouriana，var，sristata．．．	55.60	715	270	5，209	2，140
201	Fagus ferrugine	68.48	1，210	48	7，550	3，145	358	Pinus resinos	48.41	1，132	341	7，274	1，353
292	Ostrya Virgini	82.42	1，373	484	8， 669	3，690	359	Pinus Torrey	60.62	542	823	4，548	2，309
293	Canpinus Carolina	72.20	1，149	490	7，909	3，405	360	Pinas Arizouica	50.28	824	272	6， 292	1，740
				－			361	Pinus ponderosa ．．．．．．．．．．．．．．．．	46.00	887	307	8， 037	1，710
	BETULACEA						362	Pinus Jeffreyi ．．．．．．．．．．．．．．．．．．．．．	50.63	925	318	6，679	1，850
		57.	730	332		2，073	363	Pinus Cbihnaho	4． 37	728	355	5，388	2，470
294	Betula aba，var．popunfolis．．．．．．．	59.43 59.40	1，306	454	7，781	2，083	364	Piaus contor	58.04	$\begin{array}{r}1,585 \\ \hline 711\end{array}$	423	8，868	2，882
296	Betula occidental	60.12	${ }^{1} 924$	344	6，200	2，459	365	Pinas Marrayana	． 83	771	241	5，328	1，379
297	Betris lates	65.34	1，618	533	9，907	2，581	307	Pinus Sabiniana		， 141			2，202
298	Betula	57.42	1，113	415	7，007	2，117	307	inslgnis	45.60	$\begin{array}{r}1,141 \\ \hline 79\end{array}$	325 316	5,874 6,880	1,475 1,087
250	Betula lenta	75.97	1，432	519	0，907	3， 615	300	Pious insignis ．．．．	84． 88	429	175	4，207	1，372
301	Alnus rubra	47.93	1，060	346	6，644	1， 570	370	Pinas Treda ．．．．．．	54.27	1，128	377	6，834	1，718
302	Alaus rhombifol	41． 14	846	201	5，606	1， 257	371	Pinus rigida	51.39	581	316	5，687	2，123
303	Alnas oblongifolia	39.65	769	203	4，452	1，189	371 372	Pious rigida ．．．．．．．．．．．．．．．．．．．	79.29	1，170	407	8， 079	4，740
							373	Pinus Inops	52.93	543	281	5，765	2，496
							374	Pious claje	55.09	543	214	6， 038	2，100
307	Salix amygdaloidea	44．68	501	235	4， 224	1，294	375	Pinas pungens	40.22	03	810	6，670	1，842
308	Salix levigata．．．．	48.44	488	275	5，114	1，804	370	Pinas muricat	49.28	1，194	441	8，142	1，950
309	Sallx lasiandra，var．lanclifolia	45.73	305	200	4， 681	1，311	377	Pinos mitis	60.80	1，375	443	7， 628	2，064
309	Salix lastandra，var．Fendieriana	45． 12	879	288	5，457	1，400	378	Pluna glah	39． 13	448	21	4，604	， 609
313	Salix flavescen	53.91	1，262	388	7，484	2， 019	378	Pinus Banksi	47.60	942 1,488	278	0，329	1，800
313	Salix flavercens，var．Scouleriana	40.39	1，085	345	6， 532	1，581	380	Pinus palostris	69.82	1，488	480	10，074	2，508
316	Salix lssiolepis．．．．．．．．．．．．．．．．．．．．．	55.32	888	347	6， 169	2，241	381	Pinas Caheusie	74.83	1，577	500	10，626	2，985
318	Populus tremaloides．	40.10	814	280	8，285	1，281	382	Picea nigro	45．71	1，100	318	6，520	1，210
319	Populus grandidentata	40.11	963	308	5，727	094	383	Plcea alba	40． 38	1，023	319	5，489	117
320	Populas heterophylla．．	40． 57	723	274	4，627	1，384	384	Pices Engelmano	33	88	245 194	4,271 4,128	1,217 1,207
321	P＇opulus balsamifera．．．．．．．．．．．．．．	36.11	857	235	5，126	1，202	385	Pices pungeus．．				4,128 5,653	1，207
321	Populua balsamifers，rar．candl－ cane．	41.42	230	260	4，418	1，030	386	Ficen Sltchensid ．．	42.80 42.20	990 900	307	5，653 8，142	1,160 1,814
322	Popalus angustifolia．．．．．．	38． 81	1458	171	4，832	1225	888	Tauga Caroliniana	42.58	713	197	0，450	1,990 1,620
323	Popalus irichocarpa	37.66	6 1，117	284	6，248	1，018	380	Tsuga Miortensiana	51.61	1，375	｜ 888	8,7	1，620

TABLE OF AVERAGES-Continued.

The following table illustrates the relation between the specific gravity and the transverse streugth of the wood of species npon which a sufficient number of tests has been male to render such a comparison valuable. The determinations of the specific gravity and transverse strength were, in every case, made pou the same speeimen, at the same time. The table is arranged according to the specific gravity of the specimens.

It will be noticed that the strength of the different specimens elosely but not invariably follows their specific gravity. An examination of Table III will show, however, that in nearly every case where any wide difference occurs it is due to imperfections in the stick disproportiouately affectiug its strengtl. Moreover, in the case of species where the specific gravity and strength of different specimens are nearly identical, their order of arrangement becomes largely accidental. A slight difference in the time occupied in the strength tests, or slight variations in the direction of the grain of the wood, may considerably affect the sequence in such a table:
table illustrating the relation between transverse strength and specific gravity in the wood of certain species.

relation between transverse strength and specific gravity, etc.-Continued.

Catalogue number.	Species.				Catalogue number.	Specioa.		Relative specitlo gravity.	
117	Pyrus coronaria-coutinued	1088	3	2	194	Fraxinus viridis-continued	948	2	
		1087	4	4			957	3	
139	Liquidambar Styracillua...............................	1173	1	2			438	4	
		1182	2	9			57	5	
		1182	3	5			957	6	
		1183	4	8			308	7	
		1173	5	1			308	8	
		1095	6	3	198	Frarivus quadrangulata................................	66	1	
		1181	7	11			66	2	
		1181	8	10			$288{ }^{1}$	3	
		546	9	6			518	4	
		1095	10	4			288^{2}	5	
		546	11	12		*	291	6	
		1183	12	7			125	7	
151	Cornus fiorida . ..	1077	3	1			125	8	
		1077	4	3	217	Sassafras offioinsle..	814	1	
		1092	5	8			814	2	
-		812	0	4			71	3	1
		812	7	5			854	4	
		761	8	7			854	5	
		67	9	6			448	6	
		67	10	4			387	7	
154	Nyssa sylvatica \qquad	750	1	2			71	8	
		835	2	9			387	0	
		750	3	1	223	Ulmus fulva...	131	1	
		833	4	6			134	2	
		833	5	4	224	Ulmus Americans ..	533	1	
		834	6	7			533	2	
		834	7	3			1049	3	2
		813	8	5			19	4	1
		813	9	8			19	5	8
155	Nyөsa uniflora...	128	1	2			1036	B	11
		128	2	1			1036	7	10
		604	3	8			958	8	7
		604	4	4			281	9	8
		550	5	5			281	10	9
		550	8	3			858.	11	5
184	Diospyros Virginiana..................................	425	1	1	225	Olmas racemosa	118	1	1
		1084	2	6			314	2	2
			s	4			314	3	5
		811	4	3			116^{8}	4	3
		1084	5	2		-	428	5	
		811	6	5			116^{3}	8	4
		61	7	8			118	7	5
		61	8	7	228	Celtis ocoideutalis	873	1	5
192	Fraxinus Americana....................................		1	1			873	2	4
		1045	2	4			1111	3	
		$114{ }^{3}$	3	3			300	4	6
		937	4	19			306	5	7
		2272	5	2			1111	6	2
		130	0	7			75	7	8
		431	7	0			75	8	8
		1144	8	5	232	Moras rubra..	132	1	1
		2271	9	10			1255	2	4
		392	10	8			132	3	2
		212	11	11			1255	4	6
		212	12	9		-	1244	5	3
		747	13	21			1245	6	5
		551	14	14		-	1246	7	7
		227	15	13	238	Jnglans cinerea ...	1057	1	
		207	10	12			76^{2}	2	2
		747	17	17		$1{ }^{3}$	16	3	7
		551	18	15			16	4	4
		1145	19	16			78	5	5
		114	20	18			76	6	8
		114	21	20			123	7	6
194	Fraxinus vistdis ...	949		2			883	8	8

RELATION BETWEEN TRANISVERSE STRENGTH AND SPECIFIC GRAVITY, ETC.-Continued.

relation between transverse strength and specific gravity, etc.-Continued.

RELATION BETWEEN TRANSVERSE STRENGTH AND SPECIFIC GRAVITY, ETC.-Continued.

RELATION BETWEEN TRANSVERSE STRENGTH AND SPECIFIC GRAVITY, ETC.-Continued.

	Speciea.				Catalogne number.	Specles.			
387	Truga Canadensis-continued........................	1040	5	4	391	Psendotsuga Douglasil-continued	1022	38	26
		1040	6	5			1008	90	28
		775	7	13			271^{2}	27	24
		787	8	9			1020	28	31
		787	9	8			1022	20	6
		5	10	10			086	80	8
		210	11	7			1020	31	4
		775	12	15			702	32	34
		1042	13	11			709	83	22
		1042	14	12			709	84	27
		5	15	17	394	Abies stbal pina ...	448	1	2
		817	18	14			4498	2	6
		219	17	16			4491	8	5
		817	18	18			449	4	1
		778	19	20			820	8	3
		778	20	19			820	6	4
301	Pseudotsuga Douglasii	708	1	1	396	Ables concolor...	783	1	1
		708	2	2			639	2	j
		704	3	3			733	8	2
		1018	4	8			639	4	4
		1018	5	10			529	5	*
		1016	8	33			520	6	5
		989	7	7	401	Larix Americana ..	2262	1	1
		1018	8	18			228	2	3
		705	9	14			774	3	10
		827	10	5			840	4	8
		881	11	9			786	5	2
		881	12	13			705	6	4
		1008	13.	19			774	7	5
		708	14	11			785	8	7
		720	15	15			840	9	9
		1011	18	17			781	10	12
		627	17.	12			788	11	6
		720	18	30			781	12	11
		1011	19	32	402	Larix oocldentalis	1008	1	3
		974	20	10			1006	2	4
		732	21	21			984	8	1
		732	22	29			984		2
		973	23	25		-	718	5	5
		973	24	20			718	6	6

GENERAL REMARKS.

An examination of the results obtained from the various tests made npou the woods of North America indicate at least the important fact that within the limits of any species the weight and strength of any specimeu of wood depends apon the actual proportion of the space occupied in the layers of annual growth with open ducts to the space occupied with compact, woody tissue, and to the size of these ducts; or in the case of the wood of Coniferæ, the proportion of space occupied with cells formed early in the season to that occupied with the smaller cells of the summer growth. The proportion between these two kinds of growth varies not only in every individual tree, but in different parts of the same tree. The causes which thus affect the growth of wood are not very apparent. It is not soil, nor age, nor general climatic conditions, it appears, which produce the different proportion between the solid and the light portions of the annual growth in any species, because in the same individual this proportion is found to vary from year to year. It varies very irregularly; nor does the rapidity of growth, as has been supposed, greatly affect the strength of wood, because the proportion of open to compact growth is little affected by rapid or slow increase of the tree's diameter. How far annual climatic variations affect the nature of the annual layers of growth has not been demoustrated, although it is not impossible that in years in which conditions farorable to rapid growth are extended late into the season, the proportion of the apnual layer occupied by open, weak growth to the growth of the whole year would be greater than that formed in a year during which the season favorable for rapid growth was less extended.

It follows that while such experiments as those conducted by Mr. Sharples are necessary to establish maximum and relative values for any species, these being established, actual values of any given specimen of
wood may be determined by microscopic examination of its structure ; that is, two specimens of the wood of any species to which the census tests have been applied being given, their relative values can be determined by an examination of their structure as well as or better than by any elaborate experiments.

TANNIN VALUES.

The amount of tannin contained in the bark of various trees of the United States has been determined.
These determinations give the proportion of tannin. They do not indicate the real value of the bark of the species for tanning, which can only be obtained by actual experiments made on a large scale, other properties in the bark, beside the percentage of tannin, affecting the value of the leather prepared with it.

These determinations must therefore be regarded as approximations, which will serve, in some cases, to indicate species not now in general use for this purpose, which may be looked to as possible sources of tannin supply.

The methods adopted by Mr. Sharples in making these determinations are described by him as follows:
The tannin in each case was determined in the rossed hark; that is, bark deprived of the main part of the ontside coating. The method employed was that devised by Lowenthal, whioh may be thns briefly described: A standard decoction of the bark is titrated with permanganate of potash, a quantity of indigo being first added to it. In a second portion the tannin is precipitated by means of gelatine, and the gallio acid in the liquid again determined by permanganate and indigo. The difference between these two readings gives the amonnt of tannin in the bark, the valne of the permanganate having previonsly been determined by pare tannic acid, or by oxalic acid and calenlation.

The bark of the following species has been examined:

	Botanical nama.	Common name.				Botanioal name.	Common name.		
14	Gordonis Laelanthas	Loblolly Bay. Tan Bay	13.14	2.35	275	Quercas Kelloggii	Black Oak	6.76	8.64
93	Prosopis juliflora	Meequit. Algaroba. Honey	4.04	8.71	276	Qnercus nigra	Black Jack. Jack Oak	4.36	6. 28
		Locust. Honey Pod.			277	Querous falcata.	Spanish Oak. Red Oak.	8. 50	4.32
140	Rhizophora Mangle...........	Mangrove	81. 04	6.70	287	Quercue densiflora..........	Tanbark Oak. Cheetnut Oak.	16.46	8.84
160	Exostemma Caribæum.		5.81	7.16			Peach Oak.		
251	Quercus alba	White Oak	5.99	0.11	290	Castanea vulgaris, var. Ameri-	Chestnut	6.25	2.00
258	Quercus macrocarpa..........	Bart Oak. M Over-cup Oak.	4.59	8.05	382	cana. Plcea nigra \qquad	Black Spruce.	7.20	2.84
260	Quercus Prinas................	Cheatnut Oak. Rock Chest-	6.25	3.83	384	Pioea Engelmanni	White Spruce..................	20.56	2.75
		nut Oak.			384	Pícea Engelmani	. do	17.01	2.32
281	Quercus prinoides (old tree)...	Yellow Onk. Chestunt Oak.	4.33	8.38	884	Picea Engelmannido	12. 60	0.75
		Chinquapin Oak.			387	Tauga Canadensis	Hemlock	13. 11	1.81
261	Querces prinoides (young tree)	...do	10.33	6. 23	389	Tsuga Mertenciana.	. .do	14.42	1.44
267	Quercus virens	Live Oak.	10.46	8.89	389	Teuga Mertenslana.	. .do	15.87	1.48
289	Quercns Emoryi	Black Oak	0.76	15.00	300	Teuga Pattoniana		15.72	2.48
272	Quercas mbra.................	Red Oak. Black Oak.........	4.56	4.43	301	Psendotanga Douglasii	Red Fir. Yellow Fir. Ore-	13.79	1.56
274	Quercus tinctoria..............	Black Oak. Yellow-bark Oak. Quercitron Oak. Yellow Oak.	5.90	5.73			gon Pine. Douglae Fir.		

TABLE I.-SPECIFIC GRAVITY, ASH, AND WEIGHT PER OUBIC FOOT

OF DRY SPECIMENS OF THE WOODS OF THE UNITED STATES.

brtcific gravity detrbminations.				ABH Determinations.			Weight, per cobio foot, in ponnds (average).	Remarks.	$\begin{aligned} & \text { 岁 } \\ & \text { 曾 } \\ & \text { 8 } \\ & \text { 8 } \end{aligned}$
First.	Second.	Third.	Average.	First.	Second.	Average.			
9. 6040	0.668	0.6360	0.40	0.65	0.53	39.63	Second sp. gr. determination made on sap-wood	348
0.5034	0. 5037	0.5035	0.42	0.53	0.47	31.38		854
0.5012	0.5413	-	0.5213	0.29	0.20	0.27			248
0.4389		0.4389	0.25	0.25			$261{ }^{1}$
0. 4562			0. 4562	0.30	0.30			$261{ }^{2}$
0.4215			0.4215	0.30	0.30			261:
0.5065	0.8058		0.5061	0.34	0.33	0.34			634
			0.4690			0.29	29.23		
0.4095	0.4184	0.4101	0.4139	0.25	0.38	0.32	25. 79	Third sp. gr. determingtion made on sap-wood; fourth sp. gr.	1178
0.5975	0.4859	0. 5117	0.32	0.32	All sap-wood ...	22
0.6468	0.5534		0.5501	0.45	0.34	0.39			532
			0.5309			0.35	33.09		
0.8787	-	0.3787	0.19		0.19	Growth rapid..	2661
0.5007	0.5067	0.18	0.18	Growth rapid; 0.5 sap-wood ..	266^{2}
0.4606			0. 4606	0.24	0.24		Growth rapld; all sap-wood.	266^{3}
			0.4487			0.20	27.96		
0.5430	-		0.5430	0.25	.	0.25	All sap-wood	2801
0.4976			0.49 -6	0.27		0.27			260*
0.4802			0.4802	0.33		0.33		All sap.wood ..	2805
			0.5003			0.28	81.18		
0.3843	.	.	0.3843	0.25		0.25			138
0.3831	0.3783	.	0.3807	0.27	0.27	0.27	Yeilow poplar .	165
0.3798	0.3787	-	0.3792	0.20	0.22	0.21	Yellow poplar (soft)	174
0.4475	0.4381	.	0.4418	0.17	0.15	0.16	Hard poplar	177
0.4512	0.4442	0.4477	0.19	0.19	0.19	Hard poplar	178
0.4362	0.4150	..	0. 4258	0.18	0.21	0.10	Yellow poplar	187
0.4436	0. 4551	0.4493	0.25	0.30	0.27	.		188
0.3774			0.3774	0.33	0.31	0.32	.		305
0.4763	0.4822	.	0.4793	0.26	0.29	0.28			818
0.4444	0.4400		0.4427	0.20	0.22	0.21		White poplar	1231
0.4198	0.4712		0.4455	0.19	0.16	0.18		Yellow poplar ..	1232
			0.4230			0.23	26.36		
0.2549	0.3810		0. 3679	0.16	0.14	0.15		211
0.4259	...		0.4258	0.24	0.30	0.27			332
			0.3909			0.21	24. 74		
0.4012	0.5190	0.5048	0. 5053	4.94	4. 79	4.86	31.49	..	479

Table I.-SPECIFIO GRAVITY, ASH, AND WEIGHT PER OUBIO FOOT

OF DRY SPECIMENS OF THE WOODS OF THE UNITED STATES-Continued.

Table I.—SPEUIFIC GRAVITY, ASH, AND WEIGET PER CUBIO FOOT

Species.		Stato.	Locality.	Collector.	Soil.	$\begin{aligned} & \text { Diameter } \\ & \text { of tree, } \\ & \text { in } \\ & \text { meters. } \end{aligned}$	laybre of grawte.	
							Sap. wood.	Heartwood.
23. Xanthoxylum Clava-Ierculie.	735	Florida...........	Chattahoochee......	A. H. Carties	Dry, sandy			
Toothache Tree. D'rickly Ash. Sea Ash. Pepper Wood. Wild Orange.	807	Georgia	Cumberland leland.do .				
	1086	Toxas	Palestine	C. Mobr	Damp, eaady	0.352	20	10
23. Xanthoxylam Clava-Herculis, var. fruticoeam \qquad	938	..do	Austin.	. . . do	Dry, calcarcour ...	0.098	33	
24. Xanthoxylom Caribæam \qquad Satin irood.	1109	Florida	Bahia Hoda Key...	A. H. Cartise .	Coral			
	1140do	do	. . ${ }^{\text {do }}$	- . . do	0.136	4	64
25. Xanthoxylum Pterota .	481	. ${ }^{\text {do }}$	Bay Biecayne........	A. IL Curtise	Coral			
	950	Texas	Matagorda bay......	C. Mohr.............	Calcareoar..			
	1128	Florida...........	Bay Biacayne.	A. H. Carties	Coral .	0.84	13	31
20. Ptelia trifoliata \qquad Hop Tree. Shrubby Trefoil. Wafer Ash.	768	. .do	Aepalaga .	.do	Calcareoar........	0.94	23	
27. Canotia holocantha..	1228	Arizona	Wickenbarg.	C. G. Pringle........				
SIMARUBERE.						-		
28. Simarubs glanca Paradisé Trce.	487	Florida	Bay Biscayne.......	A. H. Curtisa	Coral			
29. Barsera gummifera. Gum Elemi. Gumbo Limbo. West In-	462do	Upper Metacombe Key.	...do	...do			
dian Birch.	903do		Department of $\mathbf{A g}$. ricalture.				
30. Amyris aylvatica Torch Wood.	475do	Upper Metacombe Key.	A. H. Curtise	Coral	0.128	61	
meliacex.								
81. Soletenia Mabogodi. Mahogany. Madeira.	452dodo	.do	...do	0. 228	16	81
OLACLNET.								
82. Ximenia Americana Wid Lime. Tallow Nut. Hog Plum. Mountain Plum.	472 1134dododo	...do	0.112	8	43
83. Пох ораса	280	Sonth Carolina....	Waverly Mills......	W. St. J. Mazyck ...	Sandy loam.......	0.144	35	
34. Ilex Dahoon \qquad Dahoon. Dahoon Mouly.	484	Florida	Bay Biscajne	A. H. Curtige	Low, damp	0.128	29	
34. Ilex Daboon, var. myrtifolia.	802do	Jacksonville........	...do	...do	0.148	28	

OF DRY SPECIMENS OF THE WOODS OF THE UNITED STATES—Coutinued.

Table I.-SPECIFIU GRAVITY, ASH, AND WEIGHT PER CUBIC FOOT

Speaiea.		State.	Locallty.	Collector.	Soll.	Dlameter of tree, in meters.	LAYERS OFavOWIR.	
							Sapweod.	$\begin{aligned} & \text { Hoart. } \\ & \text { wood. } \end{aligned}$
35. Hex Cassine \qquad Dasetna. Yaupon Yopon.	345	Alabama..........	Cottage Hill	C. Mohr.	Sandy	0.078	17	
	804	Florida	Saint John's river ..	A. H. Curtise	Rich, sandy.......			
	962	Texas	Matagorda bay	C. Mohr.	Light.			
36 Iex deoidus	56	Mibsoari..........	Alleuton............	G. W. Letterman. ...	Low, damp........			
	335	Texas	Dallat	J. Reverchon	Opland.			
	753	Florida	Chattahoochee river	A. H. Curtiss	Clas	0.088	33	-
	045	Texas	New Braunfels......	C. Mohr.............	Allavial .			
37. Cyrilla racemiflora \qquad Iron Wood.	341	Alabama..........	Chanchula.	..do	Damp, sandy......	0.185		
	015	Georgia...........	Ogeechee rivor......	A. H. Curtiss	Low			
88. Cliftonia llgustrina Titi. Iron Frood. Buckwheat Tree.	338	Alabama...........	Cottage Hill	C. Mohr	Wet	0.194	47
39. Buonymos stropurpareus	03	Mlssouri...........	Allenton............	G. W. Letterman ...	Allarial .			
40. Myginda pallene.	1188	Florida	Umbrella Key	A. H. Cartlss.......	Calcareons.			
41. Schmfiterla fratescena \qquad Yellow Wood. Box Frood.	$\begin{array}{r} 478 \\ 1201 \end{array}$		Upper Motacombs Key.		Coral	0.110	71	……
RHAMMACESE.								
42. Reynoaia latifolla.. Red Iron Wood. Darting Plum.	454dodo		.do	0.112	7	32
43. Condalia ferrea Black Iron Food.	480dodo	. . do	. .do	0. 168	22	58
44. Condalia obovata \qquad Blue Wood. Logroond. Purple Hav.	041	Texas	New Braunfels	C. Mohr	Dry, calcareone...	0. 100	5	36
45. Rbampas Caroliniena........................ Indian Oherry.	43	Missouri...........	Allenton............	G. W. Letterman ...	Limestono-......	$\ldots \ldots \ldots$10
	521	Tonnessce........	Nashville	A. Gattinger........do			
	803	Florida	Saint John'a rivor ..	A. H. Curtiss	Rich hummock ...	0.108	19	
	1094	Arkansaa.........	Jonesboro'..........	T. B. Kitohens	0.050	14
8. Rhamnus Californica	1250	California	Santa Craz mountalns.	C. G. Pringle.	Kloh, allorial.-........	
47. Rhamnus Purshiana.. Bearberry. Bear Wood. Shittim Wood.	093	Oregon	Portland............	G. Engelmann and C. S. Sargent.				
48. Ceasothus thyrsillorus....................... Blue Myrtle.	1101	Californa	SantaCraz..........	C. L. Anderson	0.090	11	

OF DRY SPECIMENS OF THE WOODS OF THE UNITED STATES—Continued.

18 FOR

Table I.-SPECIFIC GRAVITY, ASH, AND WEIGHT PER CUBIC FOOT

Specles.		State.	Locality.	Collector.	Soll.	Dlamsterof treeinmeters.	LAYERE OY GBOWTH.	
							$\underset{\text { wood. }}{\text { Sap. }}$	Heartwood.
49. Colubina reclinata	502	Florida	Umbrella Kcy	A. H. Curtiss.......	Coral	0.126	6	45
	1189do	. do	.do	.do	0. 100	13	24
SAPINDACESE.								
60. Fisculas glabra. Ohio Inckeye. Fetid Buckeye.	297	Missonri...........	Allenton............	G. W. Letterman...	Rich, molst			
	386do		..do	Alluvial .			
	427	Tennesseo........	Nashvllle.	A. Gsttinger.......	Rich, moist			
51. Asculus flava Sucet Ducheye.	445dododo	Rich npland			
52. ※scnlus Californica Calfornia Euckeye.	684	Cslifornia	Marin county	G. R. Vasey.........do Limestono	0.250
53. Ungnadia speciosa. Spanish Buckeye.	944	Texss	New Brannfels	C. Mohr		0.124	26	
s4. Sapiodus msrginstus Wild China. Soapberry.	307	. . . do	Dallas \qquad do \qquad	J. Reverchon do \qquad	Hich, damp			
	589.							
	824	New Mexico	Rio Gila cañon......	E. L. Groenedo			36
	028	Texas	Anstin	C. Mohr	Limestons		24	
55. Sapindus Ssponaria soapberry.	568	Florida do \qquad	Cape Sahle \qquad Kgy Largo \qquad	A. II. Curtiss do \qquad	Rich,sandy, damp Coral	0.134	41	
56. Hypelate paniculata \qquad Ink Trood. Iron Wood.	463	\|...da	Uppor Motacomho Kеу.dodo	0.262	15	80
57. Hypelate trifoliata............................. Thite Iron Wood.	464dodododo	0.234	${ }^{13}$	72
58. Acer Penasylvanicum	99	Vermont	Huntingdon	C. G. Pringle	Gravelly..........			
50. Acer spicatum....	88		 do do			
60. Acer macrophyliam Broad-leared sfople.	982	Oregon \qquad d \qquad	Portland \qquad Portland Furwitnre Company.	G. Englemann and C. S. Sargent. do \qquad	Rich, aliuvial	0. 229	30	40
61. Acer circinatum Vine Ifaple.	$\begin{array}{r} 962 \\ 1013 \end{array}$do	Portiand............do	Moist, alluvial		
		. .do	do	.dodo			
*	1014	Washington territory.	WIlkcson	do			
62. Aecr glabrum Drearf Maple.	526	Colorado	Englemann's cañon.	R. Douglas	Dry, gravelly	0.048	28	

OF DRY SPECIMENS OF THE WOODS OF THE UNITED STATES-Continued.

Tsble I.-SPECIFIC GRAVITY, ASH, AND WEIGHT PER CUBIO FOOT

OF DRY SPECIMENS OF THE WOODS OF THE UNITED STATES-Continued.

grecific cravity dethrminations.				Asi determinations.			Weight, per eubic foet, in pounds (average).	Remarks.	
First.	Sceond.	Third.	Δ verage.	First.	Second.	A verage.			
0. 7012	0.6791	0. 6902	0.66	0.61	0.64	43. 01		886
0.0139	0.6003		0.6671	0.44	0.40	0.42			105
0.6363	0.6300		0.6332	0.51	0.45	0.48			203
0.7697	0.8098		0.7898	0.54	0.59	0.57			298
0.7828	0. 7689		0.7759	0.60	0.57	0.59			99
0.6538	0.6783	0.6661	0.03	1.10	1.02			376
0.6242			0.6242	0.30	0.44	0.40			409
0.7100			0.7106	0.91	0.33	0.62			1233
0.6893	0.6899	0.6856	0.33	0.20	0.31			1234
0.7239			0.7230	0.48	0.35	0. 42			1235
			0.6912			0.34	43. 08		
0.7319	0.6935	0.6639	0. 6964	1.48	1.01	1.25			21.3
0.7249	0. 6980	0.7115	0.56	.	0.50			2741
0.7214	0.7002	0.7108	0.52		0.52			$274{ }^{2}$
0.7117	0.6709	0. 6958	0.70	0.56	0.63			309
0.6410	0.6129-	0.6419	1.31	1.02	1.17			440
0.6868	0.7008	0.7165	0.7014	0.55	0.33	0.44			757
0.6814	0.6840	0. 6827	0.42	0.36	0.39			1167
			0.6015	-		0.71	43.09		
0.4889	0.5254		0. 5072	0.31	0.32	0.32			103
. 0.4860	0.4828	0.4844	0.30	0.31	0.31			367
0.4760	0.5063		0.4911	0.40	0.42	0.41			448
0.6247	0. 6163	0.6344	0.6251	0.29	0.27	0.28			1052
			0.5269			0.33	32.84		
0.6.81	0.6845	0.6803	0. 24	9.25	0.25		All pap-wood.	20
0. 5770	0.6064	.	0.5917	0.43	0.42	0.43			530
0. 5288	0.5510	0.5001	0.5106	0.49	0.49	0.49			743
0.639π	0.6486	0.6400	0. 0433	0.32	0.33	0.33		Second and third sp. gr. determinations made on sap-wood	\$78
0.6374	0. 0185		0. 0273	0.38	0.32	0.35			1048
			0.6178			0.37	38.50		
0.5563			0. 5563	0.31	0.31	0.31			1239
0.5355		0.535 J	0.30	0.30	0.36			1240
			0.5459			0.34	34.02		
0.4332	0.4288	0.4310	0.76	1.22	0.00			290
0.4217	0.4474		0.4346	1. 01	1.30	1.16		...	311
			0.4328			1.07	20.97		
0.4780	0.4856		0.1821	0.51	0. 57	0.54	30.04 -.	...	645
0.6196	0.6393	0.0088	0. 6125	0.48	0.51	0.50	40.04	..	1176

Table I.-SPECIFIC GRaVITY, ASH, AND WEIGHT PER CUBIC FOOT'

Speciea.		State.	Looality.	Collcetor.	Soil.	Dianeter of tree, in meters.	Layels of GROW'TH.	
							Sspwood.	Heart. wood.
70. Rhas typhina staghorn Sumach.	158	Vermont..........	Hincslergh.........	C. G. Pringle..	Gravelly..........			
	1060	Massachnsetts....	Danvers............	J. Robiasen.	.do	0. 120°	2	34
71. Ithus copallina ... Droary Sumach.	70	Misseuti..........	Alleaton............	G. W. Letterman	Moist limestong..-			
	610	Georgia...........	Lower Altamaha	A. H. Curtiss	Dry, clay...			
	736	Florida	Chsttaboocheeriver	de	. do	0. 175	5	10
71. Hhus copsllina, var. lauceelata.........	330	Texss	Dallas	J. Revorchoo	Dry, gravelly			
72. Rhas venenata \qquad Poison Sumach. Poison Elder.	876	Massachusetts....	Danvers	J. Robinsen.........	Wet, swamps.....	0.070	1	20
	1037	. .do	. de	de	. .do	0.085	4	16
	1041	.do	do	de	... do .	0.067	4	27
78. Rhos Mctopinm I'oison Wood. Coral Sumach. Mount. ain Manchineel. Bum Wood. Hog Plum. Doctor Gun.	467	Florlda...........	Uppor Mctacombe Key.	A. IT. Curtiss	Coral	0.222	39	39
75. Eysenhardtia orthocarpa	1147	Arizo日a	Sacta Rita mountains.	C. G. Priagle	Dry, rocky ${ }_{\text {de...... }}$		
76. Dalea spinosa............................	1070	Califernis.........	Agna Caliento......	Parish Brethors	Dry. s.ndy ${ }^{\text {a }}$.		
77. Robinia Pseudacacia. Locust. Black Locust. Yellow Locust.	405	Tenaessbe	Charlestewn Nary. yard. Nashville \qquad	S. 11. Poek	Limestoae			
	441			A. Gattinmer				
	815	West Virginla...	Grafton.............	C. G. Pringle .				
	845	Massachusetts. ..	Danrops	J. Robinson	Gravolly	0.184	4	35
78. Robinla viscosa Chammy Locust.	1061	... dododo	Loain	0.060	4	8
70. Rohinia Neo-Mexicana \qquad Locust.	1031	Celorado.........	Trinldad............	W. B. Strong	Low, moist			
80. Olneya Tesota Iron Wood. ÄroidëHierro.	650	Cslifornia.........	Lower valley. Colorado	G. Engehaman and C. S. Sargeat.	Drs, gravelly
81. 1 iacidis Erythrias............................ Jamaica Dogwood.	564	Florida	Upper Metacombe key.	A. Il. Curtiss.......	Coral
82. Clarlrastis thactoris.....................	$\begin{array}{r} 33 \\ 439 \end{array}$	Kentacky \qquad Tengossee \qquad	Marcer conoty Nashville \qquad	W. M1. Lingey A. Gsttinger	Limestone \qquad Alluvial \qquad	\square
Wood. Yelow Ash. Copher Wood								
83. Sophora нecnodifora \qquad Arigolito.	040	Texas	New Lraunfels	C. Molir	Limestone			

OF DRY SPECIMENS OF THE WOODS OF THE UNITED STATES—Continued.

Table I.-SPECIFIO GRAVITY, ASH, AND WEIGHT PER CUBIC FOOT

OF DRY SPECIMENS OF THE WOODS OF THE UNITED STATES-Continued.

Table I.-SPECIFIC GRAVITY, ASH, AND WEIGHT PER OUBIO FOOT

OF DRY SPEUIMENS OF THE WOOAS OF THE UNITED STATES—Continued.

FOREST TREES OF NORTH AMERICA.

TABLE I.-SPECIFIC GRAVITY, ASH, AND WEIGHT PER CUBIC FOOT

OF DRY SPECLMENS OF WOODS OF THE UNITED STATES-Continued.

Table I.-SPECIFIO GRAVITY, ASH, AND WEIGHT PER CUBIC FOOT

OF DRY SPECIMENS OF THE WOODS OF THE UNITED STATES—Continued.

TAble I.-SPECIFIC GRAVITY, ASH, AND WEIGHT PER CUBIC FOOT

Specios.	$\begin{aligned} & \text { 若 } \\ & \text { E } \\ & \text { B } \\ & \text { 若 } \end{aligned}$	Stato.	Locality.	Collector.	Soil.	Dlameter of tree, in meters.	laykrs of GROWTII.	
							Sap. wood.	Heart wood.
139. Liqnidambar Styraciflon-continued...	$\begin{aligned} & 1182 \\ & 1183 \end{aligned}$	Missfadippl	Yazoo River hottom .. do	R. Abbey	Allovial do			
RHIZOPIIORACEE.	485	Fiorida						
140. Rhizophora Mangle......................... Mangrave.			Day Biscayne.......	A. II. Corties	Salt-marsh........	0.250	31	50
COMBRETACES.								
141. Conocarpns erecta.............................	489dododo	0.164	15	
142. Lagodentaria racemosa. \qquad White Button Wood. White Mangrove.	507do	Sugar-loaf Sounddo		$\mid \ldots \ldots \ldots .$.	
MYRTACES.								
143. Calsptranthea Chytraculia	1205do	Key Largo...........do	Coral			
144. Eugenia boxifolla \qquad Gurgeon Stopper. Spanish Stopper.	456	. . do	Uppor Molacombe Kay.	...do do	0.084	43
	1118do	Loat Man's river....	... do	Humus and coral..			
	$\begin{aligned} & 1120 \\ & 1198 \end{aligned}$	$\mid \text {.... do } \mid$	Elliott's Key \qquad Upper Matacombs Key.	\qquad	Coral \qquad ... do \qquad			
*								
145. Eugenia dichotoma Naked Wood.	$\begin{array}{r} 566 \\ 1200 \end{array}$. . . do	Caximbas pass. Palm 1Lummock do	Sandy \qquad Coral \qquad	0.084	5	: 53
146. Eogenia monticola......................	1115do	Uuubrolla Keydo		0.150	15	
Soppr. Whe Sioppor.	1135	..do		...do . $:$				
	1189do		...do do			
147. Eugedia longipos \qquad Stopper.	1197do	No-Name Keydodo			
148. Eogenia procera Red Stopper.	1127do	Miamidodo	0.141	87
Cactacer.								
149. Corena gigantena Susoarrow. Saguaro. Giant Cactus.	693	Arizona	Tucson	G. Engelmana and C. S. Sargedt.	Dry, gravelly
COLNACES.								
150. Cornas altcrnifolia \qquad Dogwcod.	860 861	Massachusette. do \qquad	Danvers ...do \qquad	J. Roblinsod	Loam \qquad ...do \qquad	
151. Cornus florida	67	Missoari.........	Allenton............ C . W. Let teiman...		Upladda	0.143	47	
lowering Dogrood. Box Wood.	701	Fiorida	Chattaboochec...... A. H. Curtiss.		Calcareous	0.128	72	
	812	Weat Virginia.... Miagoart	Grafton.............	C. G. Pringle.......	Dry			
	2077		Allentoo \qquaddo \qquad	G. W. Lettermando \qquad	Gravelly Flinty	0.122	44	7
	1092							
152. Cormus Nuttallif Flozecring Dogrood.	960	Oregon	Portland.	G. Eugelmana and C. S. Sargent.			

OF DRY SPECIMENS OF THE WOODS OF THE UNITED STATES-Continued.

Table I.-SPECIFIC GRAVITY, ASH, AND WEIGHT PER CUBIC FOOT

OF DRY SPECIMENS OF THE WOODS OF THE UNITED STATES-Continued.

grecific gravity determinations.				asil determinations.			Weight, per cubic foot, in pounds (average).	Remarks.	
First.	Second.	Third.	Average.	First.	Seeond.	Average.			
0.4680	0.4546		0.4613	0.35	0.33	0.34	28.75		605
0.5056	0. 5649	0.5652	0.66	0. 81	0.74		235
0.5650-...		0.5650	0.89	0.79	0.84		517
U. 6070	0.8104	0.6092	0.49	0.43	0.46	...	N. Caroliniana.	608
0.6486	0.6682	...	0. 0559	0.49	0.40	0.43			750
0.6198	0. 5865	0. 6031	0.52	0.53	0.53			813
0.6849	0. 6787	0.6881	0.8839	0.41	0.40	0.11			£33
0.7467	0.6748	0.6708	0.6974	0.38	0.39	0.38			834
0.7429	0.6626	0.7022	0.7026	0.32	0.34	0.33			835
			0.6353			0.52	39.59	,	
0.5589	0.5700	0. 5645	0.72	0.70	0.74			128
0.6638	0.5649	0.5653	0.66	0.81	0.74			235
0.5002	0.5525	0.5204	0.58	0.59	0.59			550
0.4424	0.4002	0.4213	0. 76	0.66	0.71			604
			0.5194			0.70	32.37		
0.5030	0.5098		0.5087	1.00	1. 55	1.57	31.70		681
0.4588	- 0.4668	0.4586	0.4614	1.83	2.17	2.00	28.75		1220
0.7285	0.7075		0.7180	0.27	0.28	0.28		0.1 sap-wood..	108
0.7510	0.7332	\cdots	0.7420	0.29	0. 30	0.30		370
			0.7303			0.29	45.51		
0.8106	0.8108	0.46	0.49	0.48		0.75 sap-mood.	42
0.9140	-.......	0.9140	0.17	0.47	All sap-wood.	110°
0.7749	\cdot	0.7749	0.60		0.60		All sap-wood ..	739
			0.8332			0.52	51.92		
0.0200	0.9419	0.9310	0.24	0.22	0.23	58.02	\cdots	460
0. 5528	0.5013	0.5571	0.28	0.27	0.28		257
0.5126	0.5131	0.6129	0.49	0.68	0.54			381
			0.5350			0.41	33.41		
1.0218			1. 0219	0.71	0. 60	0.66	All sap-wood.	457
1.0425	1.0270	0.9175	0. 0957	1.00	1.02	1.01	Second and third sp. gr. determinations mado on 0.2 sap-wood..	1132
1.0705	1.0840	1.0772	2.48	1.55	1.52		...	1105
			1. 0316			1.06	64.29		
0.9375	0.8933	.	0.0154	0.88	0.79	0.84	.		471
0.8409	0.8598	0.8504	$0.94{ }^{\text {* }}$	1.03	0.09		1129
0.7400	0.7217	0.7353	1.33	1.32	1.32			1104
			$=$			$\xrightarrow{1.05}$	$\begin{gathered} 51.96 \\ = \end{gathered}$		

table I.-SPECific gravity, ash, and weight Per cubic foot

OF DRY SPECIMENS OF THE WOODS OF THE UNITED STATES-Continued.

Table I.-SPECIFIC GRAVITY, ASH, AND WEIGHT PER CUBIC FOOT

OF DRY SPECIMENS OF THE WOODS OF THE UNITED STATES—Continued.

Table I.-SPEOIFIO GRAVITY, ASH, AND WEIGHT PER CUBIC FOOT

OF DRY SPECIMENS OF THE WOODS OF THE UNITED STATES—Continued.

Table I.-SPECIFIC GRAVITY, ASH, AND WEIGHT PER CUBIC FOOT

OF DRY SPECIMENS OF THE wOODS OF THE UNITED STATES—Continued.

Table I.-SPECIFIC GRAVITY, ASH, AND WEIGHT PER OUBIC FOOT

Sperics.		State.	Locality.	Collector.	Soil.	$\begin{gathered} \text { Dlameter } \\ \text { of tree, } \\ \text { in } \\ \text { meters. } \end{gathered}$	LayRite OF chow TH.	
							$\begin{gathered} \text { Sap- } \\ \text { wood. } \end{gathered}$	Heartwood.
201. Osmanthas Americanns \qquad Devil Wood.	283	Lonisiana.........	Amite..............	C. Mohr............	Rlch, allnvlal.....			
	344	Alabama..........	Cottage Hilldo .	Low, rich			
	584	Fiorida	Saint John's river ..	A. II. Curtiss .	Sandy loam.......	0.190	45	18
BORRAGINACEXE.								
202. Cordls Scbestena. Geiger Tree. 203. Cordia Boissieri	$\begin{aligned} & 1202 \\ & 1218 \end{aligned}$	\|. . . do	Key Weat do	Coral			
	1223	Texae......	Brownevilie..	S. B. Backley	Llmestose			
204. Bonrrerla Havanensls Strong Bark.	$\begin{array}{r} 455 \\ 1137 \end{array}$	Florida	Upper Metacombe Ker. Key Largo. \qquad	A. H. Curtise	Coral	0. 082	45
205. Ehretia elliptics. \qquad Knackaway. Anaqua.		Texas \qquad do	New Brannfels	Department of Ag. ricultare. C. Mohr	Rich, allnvial.....	0.170	- 25
BIGNONIACEE. 206. Catalpa bignonloides \qquad Catalpa. Catawba. Bean Tree. Oigar Tree. Indian Bean.								
	$\begin{aligned} & 167 \\ & 540 \end{aligned}$	Ohio \qquad A labsma \qquad Georgis \qquad	Aiexandersville Stockton Bainbridge	S. H. Binkley and E. E. Barney. C. Mohr \qquad A. H. Curtiss \qquad	Clasey loam Low, wet. Clay	.		
	744					0.238	8	17
207. Catalpa speciosa. Testern Catalpa.	38	Miesonri..........	Charleaton..........	C. S. Sargent	Wet clsy..........	0. 288	8	51
	160	Ohio	Dayton	E. E. Barncy	Ciay		
	160	Ilinois	Cairo	D. Axtell				
	171	Indiana	Wabash river	E. E. Barney	Lo. do	-.........		
		Tennossee	Obion river..........	E. P. Hynde and E. E Barney. E. E. Barney.......			
	181	Misennri..........	New Madrid........	do			
	182	Illinois	Ullindo do			
	$\begin{aligned} & 183 \\ & 184 \end{aligned}$	Missouri............	New Madrid..........do				
					.do			
	210	Indiana............	Vlncennesdo				
208. Chilopsis asilgna Desert Willow.	556 595 682	New Mexico \qquad Arizona \qquad do \qquad	Valley of the Uppor Gila river. Tacson \qquad	E. L. Grcene \qquad G. Engelmann and C. S. Sargent. \qquad	Allnvial	
					Moist, gravelly ...			
					... do			
209. Creacentia cuourbitina Black Calabash Tree.	1216	Florida..........	Bay Biscayne.......	A. H. Curtiss	Coral	
VERBENACEXE.								
210. Citharexyium villosum Fiddle Weod.	483do		...do	...do			

OF DRY SPECIMENS OF THE WOODS OF THE UNITED STATES-Continued.

Table I.-SPECIFIC GRAVITY, ASH, AND WEIGHT PER CUBIC FOOT

OF DRY SPECLMENS OF THE WOODS OF THE UNITED STATES-Continued.

bPECIFIC GRAMIT DETERMINATIONG.				ASH Determinations.			Weight, per cubic foot. in pounds (avelayo).	Remarks.	
First.	Second.	Third.	Average.	First.	Second.	Average.			
				.					
1. 0919	1. 0485		1.0702	1.99	1. 12	1.56	-........-.	0.5 sap-rvood.	400
0.9068	1.0522	0.9704	1.71	1.72	1.71		First sp. gr. determination mado on sap-wood; sccond sp.gr.	826
0. 3074	0.6762		0.6918	4.54	4.01	4.27			828
			0.9138			2. 51	56.95		
0.6475	0.6582		0.6539	7. 44	7.79	7.62	40.69		474
0.9629	1. 0040		0.9835	5.25	4.81	5.03	61.29	0.66 sap-wood............ ...	473
0.9149	0.9998	0.9750	0.5635	1.11	1.63	1.37	60.04	First sp. qr. drdermination made on 0.5 sap-wood; third sp.gr. determination made on 0.25 sap .wood.	453
0.6373	0.6485		0.6429	0.66	0.85	0. 70	40.07	-	585
0.5977	0.6815		0.6306	0.46	0.27	0.37	39.86		340
0.8206	0.7650		0.7028	0.82	0.68	0.75		0.9 sap-wood.	470
$\left\{\begin{array}{l}0.7080 \\ 0.8188\end{array}\right.$	0.8482 \}		0.8147	0.52	0.59	0.50		All sap-wood ..	1138
0.7222	0.6787	0.7005	0.48	0.47	0.48			1196
			0.7093	-		0.60	47.94		
0.5030	0.5210	.	0.5120	0.11	2.09	0.10			71
0.4900	0.4828		0.4864	0.08	0.09	0.09			387
0.4542	-	0.4542	0.04	0.05	0.05			446
0.5266	0.5363		0.5315	0.06	0.07	0.07			814
0.5765		0.5773	0.5569	0.06	0.23	0.15		854
0.1558	0.4319	0.5055	0.4644	e. 12	0.15	0.13			1163
			0.5042			0.10	31.42		
0.6326	0. 6202	\cdots	0.6264	0.30	- 0.27	0.32		708
0.6697	0.6840	0. 6769	0.55	0.36	0.46			897
			0.6517			0.39	40.61		
0.9195	0.8448	...	0.8821	8.58	8.16	8.37	All sap-wood ...	468
0.8018	0.9119	0.9019	3.10	3.26	3.23			1185
0.8630	0.9882	.	0.9786	7.07	6. 58	6. 83			1193
			0.9200			6.14	67.39		
1.0060	0.0390	..	0.9730	8.69	0.08	8.89			459
0.8048	0.8878	.	0.8963	7.70	7.70	7.70			1187
			0.9346			- B. 29	58. 24		

Table I.-SPECIFIC GRAVITY, ASH, AND WEIGHT PER CUBIC FOOT

Species.		State.	Locallty.	Collector.	Soll.	$\begin{gathered} \text { Dlameter } \\ \text { of tree. } \\ \text { In } \\ \text { meters. } \end{gathered}$	layzbs of GROWTH.	
							Sap. wood.	Heart wood.
220. Sebastiania lucida \qquad Crab Wood. Poison IFood.	$\begin{array}{r} 469 \\ 1126 \end{array}$	Florida ${ }^{\text {a }}$.	$\begin{aligned} & \text { Upper Metacombe } \\ & \text { Rey. } \\ & \text {................................... } \end{aligned}$	A. H. Cartiss........	Coral	0. 116	30	40
	1206 do	Koy Largo.	do			
221. Hippomane Mancinells \qquad Manchined.	1110do.	Key Weat	...do	. . .do	0.129	35	
URTICACEx.								
222. Ulmus erassifolia Cedar Elm. \qquad	$\begin{aligned} & 324 \\ & 929 \end{aligned}$	Texas \qquad do	Dallas Austin	J. Reverchon.......	Rich loam.........	0.484	52	76
223. Ulmas fulva \qquad Red Elm. Slippery Elm. Moose Elm.	$\begin{aligned} & 30^{1} \\ & 30^{3} \end{aligned}$	Kentacky.........	Mercer county......	W. M. Limney. ds	Limeatone			
	30^{4}do .	. . do	.. do	...do .			
	101	Vermont......	Hinesbarg.	C. G. Pringle........	Gravelly loam			
	120	Mlchigan.........	Dansville.	W. J. Beal ...	Gravelly........ ..			
	134	Missouri..........	Allenton............	G. W. Letierman....	Rich, allnvial...			
	866 309	Vermont.	Charlotte...........	C. G. Pringle........	Gravelly.. ... do			
	429	Teuncssee	Nashville.	A. Gattinger........	Clay ...			
	869	Massachusetts ..	Boxford ...	J. Robingon ...	Ricb loam			
224. Olmus Americana \qquad Whits Ellm. American Elm. Water Elm.	19	... do	Atuold Arboretum .	C. S. Sargent........	Drift	0. 561	19	38
	202	Ohis.......	S. M. Brown \& Co .-	E. E. Barney	Limestone			
	$281{ }^{1}$	Missourl...........	Allenton............	G. W. Letterman....	Allurial..........			
	2812	.. do do	...do	. .do			
	958	Texas	Colorado river	C. Mohr..	.do	0.230	17	3
.	1036	Massachuselta....	Danvers.	J. Robinson	Gravelly..........	0. 160	7	17
	1049do .	North Roading	.do	. .do	0.215	21	10
White Elm. Oliff Elm.	1161	Michigan	Dansvillle	W.J. Beal	. .do			
	116^{2}	. . lo	Big Rapids.	... do	Low, gravelly.....			
	116^{3}	...do	. .do	. .do	. . .do			
	$110{ }^{1}$. do	Mudnon. do	Allavial .			
	314	. do	Hersey	. . .do	Rleb loam.			
	428	Tennesses........	Nashville.	A. Gattinger				
226. Ulmus alata Wahoo. Winged Elm.\qquad	133	South Carolina ... Tenucssee Mississlppl	Bonneau's Depot ... Daridson county ... Kemper's mill	II. W. Ravenol \qquad A. Gattinger \qquad C. Mohr \qquad	...do			
	380				Lomm .			
	533				Allnvial	0.244	82	38

OF DRY SPECLMENS OF THE WOODS OF THE UNITED STATES—Continued.

Table I.-SPECIFIC GRAVITY, ASH, AND WEIGHT 1'ER CUBIC FOOT

OF DRY SPECIMENS OF THE WOODS OF THE UNITED STATES—Continued.

TABLE I.-SPECIFIC GRAVITY, ASH, AND WEIGHT PER CUBIC FOOT

OF DRY SPECIMENS OF THE WOODS OF THE UNITED STATES-Continued.

Table I.-SPECIFIC GRAVITY, ASH, AND WEIGHT PER CCBIC FOOT

OF DRy Specimens of the woods of the united states-Continued.

sfectic gravity determinations.				ash determinatione.			Weight, per cubjo foot, in pounds (average).	Remarks.	
First.	Second.	Third.	Arcrage.	First.	Second.	A veragc.			
0.8791	0.8767		0.8779	0.72	0.70	0.71			27
0.7527	0.6859		0.7193	1. 69	1.09			$91{ }^{3}$
0.7345			0.7345	1.04		1.04			918
0.7654			0. 7634						230
0.9020	0.8610		0.8815	0.99	0. 22	0.96		First sp. gr. detormination made on 0.5 sap-wood...............	383
C. 8512	0.8424		0.8466	0.91	1.24	1.07	..		391
0.8011	0.9061	0.8831	0.8984	0.83	0.90	0.87		All sap-wood .	1083
0.8827	0.8854		0.8840	0.81	0.84	0.83			1164
0.7054	0. 6898	0.7414	0.7122	0.73	0.72	0.73			1165
0.8508	0.8432	-..........	0.8470	0.00	0.95	0.93		0.5 sap.wood.	1160
0.8024	0.7275	0.7389	0. 7563	0.84	0.71	0.78			1170
			0.8108			0.90	50.53		
0.8524	0.8168		0.8346	0.97	0.84	0.91			52
0.8010	0.8709	0.8860	1.02	1.00	1.04		0.5 sap-wood.	72
0.8334	0.8500	0.8417	0.72	1.05	0.89	Second sp. gr. determinstion made on sap-wood; second growth	254
	0.7279		0.7279	1.29	1.65	1.47			289
0.8316	0.8462		0.8389	0.99	1.03	1.01		First sp. gr. dotormination made on 0.5 sap-wood; second sp.	348
			0.8218			1.06	51.21		
0.8157	0.8138	0.8148	0.60	0.60	0.60			6
0.8827		0.8827	1.25	1.40	1.33			51
0.9189	0.9290		0.9240	0.85	0.85	0.85		Socond sp. gr. determination madeonsap-wood; second growth	88
06803		0.6803	1. 58	1.58			121
0.8554	0.8530		0.8542	0.83	0.71	0.77		First sp. gr. determination made ou sap-wood; second sp. gr.	288
0.7926		0.7926	0.68	0.70	0.69		All sap-wood	442
0.8530	0.7152		0.7841	0.82	0.86	0.84		First sp. gr. determination made on 0.8 sap-wood; second sp.	538
0.8842	0.8481	0.8537	0.8620	0.74	0.75	0.75		Third sp-gr. determination made on sap-wood	1051
0.8990	0.7640	0.8315	1.27	1.29	1.28		Second sp. gr. determination made on sap-wood.	1098
0.7470	0.7355	0.8013	0. 7913	1. 15	1.19	1.17		All sap-wood.	1168
			0.8217			0.99	51.21		
0.7814	0.7830	0.7822	1.00	0.97	0.99			153
0. 5927	0.5754		0.5841	0.97	0.33	0.95			401
0.7530	0.7142		0.7336	0.94	1.03	0.90			838
0.9208			0.9208	1.42	0.02	1.17		0.5 sap-wood..	871
			0.7552			1.03	47.00		
0. 7019	0.8112		0.8016	1. 07	1.05	1. 00	49.96	All sap-wood	237
0.7639	0.7332		0.7480	1.31	2. 03	1.67		All sap-wood	129
0.7719	0.7700		0.7510	1. 05	1.32	1.10		0.5 sap-wood.	362
0.8248	0.8244	0.8240	1.32	1.05	1.19		0.5 gap-wood.	740
0.6422	0.6313	0.5821	0.6185	0.91	$1{ }^{1} 17$	1. 04		0.5 sap-wood...........	917
			0.7407			1.27	46. 16		

Table I-SPECIFIC GRAVITY, ASH, AND WEIGHT PER OUBIC FOOT

OF DRY SPECIMENS OF THE WOODS OF THE UNITED STATES-Continued.

Table I.-SPECIFIC GRAVITY, ASH, AND WEIGHT PER CUBIC FOOT

OF DRY SPECIMENS OF THE WOODS OF THE UNITED STATES—Continued.

Table I.-SPEOIfIC GRAVITY, ASH, AND WEIGHT PER CUBIC FOOT

Specles.		State.	Locality.	Collector.	Soll.	$\begin{gathered} \text { Dlameter } \\ \text { of tree, } \\ \text { ln } \\ \text { meters. } \end{gathered}$	LATERS OP OROWTH.	
							Sap. wood.	Heart wood.
259. Quercua Miehanxil. Dasket Oak. Cono Oak.	240	South Carolina ...	Booneau's Depot....	H. W. Ravenel	Allurial			
	524	Alohnma	Kemper's mill	C. Mohr.	do	0.322	22	69
	755	Florida .	Chattahoochee......	A. H. Cnrtiss.	. ${ }^{\text {do }}$	0.260	12	32
200. Quercus Prinus. Chesthut Oak. Rock Chesinut Oä.	31^{1}	Kentucky	Boylv connty	W. M. Linney-......	Shale			
	31^{2}	. do	do	.do	...do			
	$31{ }^{3}$. do	. do	do	. .do		\therefore	
	35	. .do	. .do	. do	Limestone		
-	434	Tennessee..	Nashvillo.	A. Gattinger	Rocky npland..			
	925	Alabama..	Cnllman	C. Mohr.	Dry, rooky........	0.430	34	84
211. Quercns prinoides pin Oak. Chestnut Oak. Okisua	28	Kentucky	Harrodsburg	W. M. Linney				
	341do -.......	Mcrcer county	. do	Limestone.			
	34^{2}do	Boyle county	. do	Waverly shale.			
	$34{ }^{3}$ do	Morcor county	. . do .	Utica slable			
	58	Missouri...........	Allenton............	G. W. Letterman ...	Poor, hills :			
	- 273do	. . do	do	Limestooe			
	287	. do	. do	. .do	Flinty ..			
	323	Texaa	Dallas	J. Reverchon	Calcarboda.......	0. 200	24	35
	514	Teonessco........	Nashville...........	A. Gattinger........	Alluvial ..			
	588		Dallas	J. Reverchon.	do			
	856	Maa: achuactte....	Boxford.............	J. Rolinean.........	Damp	0.304	10	123
262. Quervus Douglasii. Mountain White Oak. Blue Oak.	088	California	Contra Costa county,	G. R. Vasey.........	Clay	0. $2: 18$	59
263. Quorcus ohlongifolia. IVhite Oak.	801	... dc	San Diego courty... do	Dry, gravelly	-	5
	700do	San Gabriel. .	G. Engelmann	.do	0.202	16	
:04. Qnereos mrisea IFhite Oak.	410	New Mcxico......	Silver City \qquad Snuta Rita mountalne. \qquad	E. L. Greeno. \qquad G. Eogelmann and C. S. Sargent. C. G. Prlagle \qquad	Dry, rocky........	0.212	38	40
		Arizona..........						
	1145				...do .			
26 Quorcus retículata.	1148do \qquad Texas \qquadd	...dodo			
260. Querena Purandii	035		Austin..............	C. Mohr	Damp, calcareous.	0.164	24	39
	1103	. . do	. do .	S. B. Buckley.......	.. do			
277. Quetcus virens Lire Oak.	$\begin{aligned} & 404 \\ & 700 \end{aligned}$	Floridn 10	$\begin{aligned} & \text { Charlestown Nary. } \\ & \text { Jard. } \\ & \text { Saint John'a river.... } \end{aligned}$	S. II. Pook \qquad A. H. Curtiss \qquad				
					Sandy	0.238		

UE DRY SPECLMENS OF THE WOODS OF THE UNITED STATES—Continued.

Table I.-SPECIFIC GRAVITY, ASH, AND WEIGHT PER CUBIC FOOT

OF DRY SPECIMENS OF THE WOODS OF THE UNITED STATES-Continued.

brecific grafity determirationg.				abi determinatioas.			Weight. $1 \times \mathrm{r}$ cubice foor, in peunds (average).	Remarks.	4.000000
First.	Socond.	Third.	Averago.	First.	Second.	Average.			
$\begin{aligned} & 0.8205 \\ & 1.0090 \end{aligned}$	0.9330	\ldots	0.8778	1.25	1. 30	1.27		919
	0.9709		0.9900	1.09	0.76	0.93	0.33 sap-wood..	954
			0.9501			1.14	59.21		
0.7888	0.7592		0.7740	0.80	0.62	0.71			574
0.8830	0.8827		0.8829	0. 33	0.34	0.34			649
0.8787	0.9033	.	0.8910	0.73	0.79	0.76			653
			0.8103			0.60	52.93		
0.9975 0.9201	$\left.\begin{array}{l} 0.9019 \\ 0.8855 \end{array}\right\}$		0.9263	$\begin{aligned} & 1.86 \\ & 2.61 \end{aligned}$	$\left.\begin{array}{l} 2.19 \\ 2.78 \end{array}\right\}$	2. 36	57.73	Second sp. gr. determination tnade on sap-wood	594
0.8290	0.8210		0.8253	1.21	1.34	1.28	51.43		663
$\left\{\begin{array}{l}0.7958 \\ 0.8018\end{array}\right.$	$\left.\begin{array}{l} 0.7788 \\ 0.7657 \end{array}\right\}$		0.7855	$\left\{\begin{array}{l}0 . \\ 0 .\end{array}\right.$	$\left.\begin{array}{l} 0.98 \\ 1.18 \end{array}\right\}$	1.02	48.95		677
0.6381	0. 6440		0.6411	0.14	0.10	0.12			7
0.5186	0.5910		0.5548	0.46		0.46			45^{1}
0.5169	0.6351		0.5710	0.43		0.43-		45^{2}
0.7480	0.7480	0.27		0.27			80
0.5809			0.5899	0.47	0.47	0.47			021
0.7516	0.7512	0.7516	0. 3515	0.15		0.15			024
0.6410			0.6410	0.20	0.21	0.21			140
0.50.32			0.5952	0.23	0.24	0.24			141
0.7481	0. 7514		0.7498	0.22	0.31	0.27			146
0.6516	0.6615	0.6566	0.10	0.17	0.17			197
0.6423	0.6997		0.6710	0.27	0.22	0.25			215
0.6897	0. 7090		0. 6904	0.20	0.24	0.22			216
0.6669	0.6867	.	0.6768	0. 20	0.26	0.23	Second growth from stamp	217
0. 6.65	0. 3020	0.6807	0.33	0.32	0.33			218
0.6382	0.6589	0.6489	0.37	0.34	0.36		553
0. $\cos 0$	0. 6252	0.6573	0. 6487	0.07	0.14	0.11		806
0. 5344	0.5604	.-....	0.5124	0.95	0.21	0.23			920
0.7130	0.e80¢	0.6920	0. 6953	0.14	0. 19	0.17			1043:
			0.6540			0.26	40. 75		
0.0142	0.9018		0.9080	0.93	0.76	0.85	56. 50	0.5 sap-wood	931
0.7111	0.70:9		0.7095	0.11	0.16	0.14			23
0.7667	0.7762		0.7215	0.22	0.28	0.25			759
			0.7405			0. 19	40. 15		
0.7361	0.7303	...	0.7303	0. 13	0.08	0.11-........................ .1.............................	17
0. 0.68			0. 18863	0.21	0.21 -	-	361
0. 7205	0.7205	0.31	0.31		.	38^{7}

Table I.-SPECIFIC GRAVITY, ASH, AND WEIGHT PER CUBIC FOOT

Species.		State.	Locality.	Collector.	Soil.	$\begin{aligned} & \text { Diamoter } \\ & \text { of tree } \\ & \text { iu } \\ & \text { meters. } \end{aligned}$	Latres Of GEOWTH.	
							Sap. wood.	Heart wood.
274. Quereas tinctoria-continued......	36^{3}	Kuntncky	Dauvillo Junction..	W. M. Limucy	Slato.........			
	41	Missouri..........	Allenton	G. W. Letterman...	Hilly .			
	34dodo	... do	Rich opland....	0.165	0	16
	86	. . do do dodo.			
	244	Virginia.........	Wytherillo	H. Shriver	Clay			
	247dodo	. do	... do			
	437	Tendesse日........	Nashvillo...........	A. Gattinger...	. .do			
	921	Alahama	Cullmsn	C. Mohr.............	Sandy			
275. Quercus Kelloggii Black Oak.	028 903	Oregon	Saw-mill, Ashland .. Eugene City.......	G. Engelmann and C. S. Sargent. G. 1H. Collier		0. 224	17	78
270. Quercus nigra Black Jack. Jack Oak.	268	Mis8ouri..........	Allenton............	G. W. Letterman....	Clay			
	339	Alabama	Citronelle..	C. Mohr.............	Sandy .	0.128	13	48
277. Quercus faleata............................. Spanish Oak. Red Oak.	131	South Carolins ...	Bonnean's Depot....	H. W. Ravenel	Rich loam			
	245	Virginia .	Wytheville	II. Shriver	Clay ...			
	2651	...do	Carroll county		...do			
	$265{ }^{2}$do	. do	. . do .				
	2653	. .do	...do	. . do				
	548	Mississippi	Keuper's mill ..	C. Mobr.............	Rich loam			
278. Quercus Catesliei Elack Tack. Black Jaek.	342	Alabama.........	Cottago Hill do	Barren, sandy			
	770	Florida .	Aspalaga.	A. II. Cartlisdo	0.301	62	
279. Quercus pilustris \quad R............................ Water Oak.	47 289	Missouri	Allonton............	G. W. Letterman....	Rich, sllovial			
280. Qurreus aquatica. Water Oak. Duck Oak. Moskum Oak. P'unk Oak.	349	Alabama	Cottago Hill	C. Mohr.............	Sandy loam.......	0. 350	8	16
	511	Teunessee.	Tullahoma..	A. Gattioger........	. .do			
	742	Georgia...........	Bainhridge	A. II. Curtisa	Alluvial .	0.310	18	23
281. Quercus laurifulia Lamal Oak.	758 801	Floridis...........	Saint John's river ..		Sancly loam	0.240	83	20
282. Quercus heterophylla Dartram's Uak.	1171	New Jersoy	Mount Holly	S. P. Sharplos.......	Clay	0.329	6	19
283. Quereus cinerea \qquad Upland Iİllow Oak. Blue Jack. Sand Jack	352	Alabama	Citronelle..........	C. Mohr.............	Pino-barren.......			

OF DRY SPECIMENS OF THE WOODS OF THE UNITED STATES-Continued.

Table I.-SPECIFIC GRAVITY, ASH, AND WEIGHT PER CUBIC FOOT

Species.		State.	Locality.	Collector.	Soll.	$\begin{gathered} \text { Diameter } \\ \text { of tree, } \\ \text { in } \\ \text { metors. } \end{gathered}$	LATERE OY GBOWTH.	
							Sapwood.	Heartwood.
34. Quercus hypoleaca......................	416	New Moxico......	Pinos Altos monnt-	E. L. Greene	Dry, rocky........	0.203	49	20
	593	Arizona	Santa Rita mountains.	G. Engelmann and C. S. Sargent.	. do			
285. Quercus imbricaria........................ Shingla Oak. Laurel Oak.	40^{1}	Kentacky	Harrodsburg	W. M. Linney	Utica shale			
	40^{3}	.do	...do	. do	...do			
	40^{8}	. . do	. . do .	. .do .	. do .			
	80	Missouri...........	Allenton............	G. W. Letterman....	Rich, molst			
	135	. .do	do	. . do	Rich loam.			
288. Quercus Phelloa Willow Oak. Peach Oak	812	Teunessec........	Tullahoma..........	A. Gattinger........	Moist, siliceone...	0. 184	10	
287. Quercus densiflora. Tanbark Oak. Chestnut Oak. Peach Oak.	687	California	Marin county.......	G.R. Vasey.........	Gravelly..........	0.400,	25	85
288. Castanopsis chrysophylla \qquad Chinquapin.	820	. .do	Mendocino connty'..	A. Kellogg				
289. Castanca pumila. Ohinquapin.	573	Arkansas.........	Hot Springa	G. W. Letterman....	Sandy loam.......	0.615		
290. Castanea valgaris, tar. Americana Chestnut.	18	Massachasetts....	Arnold Arboretum .	C.S. Sargent........	Drift	0.668	34	42
	2581	Virginia	Fancy Gap	H. Shriver	Moist.............			
	2583dododo			
	2583	...do do					
	516	Tennesseo........	Nashville...	A. Gattinger........	Sandy ..			
	727	Pennsylvania.....	Williamsport.......	C. G. Pringle........				
	868	Massachusetts....	Danvers .	J. Robinson..	Loam	0.110	4	21
291. Fagua ferruginea Beech.\qquad	9do	Arnold Arboretam .	C. S. Sargent........	Drift	0.190	- 0	26
	44^{2}	Kentucky	Mercer county......	W. M. Linney	Hadson River ahale.			
	44^{3}	. dodo	. .do				
	55^{3}	...do	. do	. do	...do			
	55^{4}do	.do	do	. .do			
	119	Michigan	Dansville \qquad Chattahoocheo \qquad Hamilton \qquad	W.J. Beal \qquad A. H. Curtisa \qquad J. Robingon \qquad	Gravelly do \qquad do \qquad	0.272	82	
	765	Florida						
	853	Massachusotts....						
202. Oatrya Virginica Hop Hornbeam. Iron Wood Lever Wood	11do	Arnold Arborotum..	C. S. Sargont........	Drift	0.285	20	44^{4}
	87	Missouri..........	Allenton............	G. W. Letterman....	Rich loam ,	0.085	85	
	$\begin{aligned} & 870 \\ & 877 \end{aligned}$	Massachusotts....	Danvers	J. Robiuson..........	Rocky			
		. . . dodo	. . . do.	Rioh loam..........			
	1047do	North Readingdo		0.190	62	14
203. Carphus Caroliniana...................	40	Misbouri..........	Allenton............	G. W. Letterman....	Damp, allnvial....	
Iron Wood	731	Kentucky	Micreer coanty......	W. M. Linnoy.......	Trentor limestone.			
	73^{3}		. . do					

OF DRY SPEOIMENS OF THE WOODS OF THE UNITED STATES-Continued.

Table I.-SPECIFIC GRAVITY, ASH, AND WEIGHT PER OUBIC FOOT

Species.		State.	Looality.	Collector.	Soil.	Diameter of tree, in metera.	LAYERS OF GBOWTH.	
							Sapwood.	Heart. wood.
283. Carpinus Caroliniana-continucd	77	Miвяоині..........	Allenton............	G. W. Letterman. ...	Hich, alluvial	0.052	22	
	872	Massachasetta...	Danvers	J. Robiuron..	Low, rich			
	1038do	...do	. . do	Gravelly			
BETULACESE.								
204. Betola alba, var. populffolta............... White Birch. Ola-ficld Birch. Gray Birch.	10do	Arnold Arboretum..	C. S. Sargent	Drift	0.170 0.198	10	20 83
205. Betula papyrifora \qquad Canoe Birch. White Dirch. Paper Birch.	223	Vermont...........	Charlotto	C. G. Pringle	Gravelly			
	224	. . do do	. dodo			
	225	. . .dodo	.. do	. . do .			
	722	Montana..........	Missoula............	Sereno Watson	Wet.			
	836	Massachuretts....	Townsend	J. Rohinaon........	0.234	28	
	990	Alaska............	Chilcootinlet	Paul Schultzo....		0.188	57	
	1065	Vermont...........	Charlotte..	C. G. Pringlo........				
	1060dododo				
	1067	... do	.. .do	. . do				
206. Betula occidentalis \qquad Black Birch.	528	Colorado...........	Engelmann's cañon.	Robort Douglaa.....	Wet, sandy			
	629	California	Strawberry valley ..	G. Engelmenn and C. S. Sargent.	Wet, peaty			
297. Betula latea \qquad Yellow Birch. Gray Birch.	155	Vermont..........	Charlotte	C. G. Pringle........	Swampy			
	2301	... do	. . . do	. . .do	Clay..			
	$230{ }^{2}$dodo	...do	Gravelly			
	843	Masbnchnsetts....	Danvera	J. Robinaondo	0.160	34	
	1068	Vermont..........	Charlotte.	C. G. Pringle........	. . do .			
	1069	... dodo	.do	.. do			
	1070	. . . dodo	do	...do			
208. Betula nigra Red Birch. River Birch.	136	Misвouri....	Allcaton.	G. W. Letterman ...	Moist loam			
	308	...do	do	.do	Alluvial ..			
	841	Massachusetts....	North Andovor.....	J. Robinson.do	0.102	30
	842do	dododo	0.214	32	8
	1184	Missouri...	Alleaton.	G. W. Letterman ...	Sandy loam			
299. Betula lenta Oherry Bireh. Black Birch. Sweet Birch. Mahogany Birch.	4	Massachasctts....	Arnold Arborotum..	C. S. Sargent........	Drift	0.302	12	01
	221	Vermont..........	Charlotte...........	C. G. Pringle........	Gravelly...........			
	844	Massacbnsetts....	Danvers............	J. Robingon.........	...do	0.118	41	22

OF DRY SPECIMENS OF THE WOODS OF THE UNITED STATES-Continued.

Table I.-SPEOIFIC GRAVITY, ASH, AND WEIGHT PER CUBIC FOOT

OF DRY SPECIMENS OF THE WOODS OF THE UNITED STATES-Continued.

Table I.-SPECIFIC GRAVITY, ASH, AND WEIGHT PER CUBIC FOOT

OF DRY SPECIMENS OF THE WOODS OF THE UNITED STATES-Continued.

TABLE I.-SPECIFIC GRAVITY, ASH, AND WEIGHT PER OUBIC FOOT

OF DRY SPEOIMENS OF THE WOODS OF THE UNITED STATES-Continued.

brecific grayity determinations.				ASII DETERMMATIONS.			Weight, per cubic foot, in pounds (average).	Remarke.	橎
First.	Second.	Third.	Avarage.	First.	Second.	Average.			
0.3959	0.4222	0.4301	0.4101	0.48	0.43	0.46	25.93	Cnitivated. First and second sp. gr. determinations mads on	1054
0.3912	0.3881	0.3912	0.82	0.75	0.79	24.38		552
0.3511	0.3656	0. 3567	0.3578	1.47	0.87	1. 17		Third sp. gr. determination made on sap-wood	1012
0.4163	0.3937	0.4050	1.56	1.18	1.37			1028
			0.3814			1. 27	23.77		
0. 3817	0.3946	0.3882	1. 34	1. 43	1. 39			199
0.3939	0.3302	0.3621	0.68	0.94	0.81			234
0. 3315	0.3444	0.3380	1.18	0.92	1.05		255
0.3201	0. 3231	0.3216	0.83	0.79	0.81			304
0.4706	0.4778	0.4742	1.09	0.96	1.03			309
0.4355	0. 4032	0.4494	0.69	0. 60	0.65		754
			- 0.3889			0.96	24.24		
0.5490	0. 4635	0.4597	0.4914	0.77		0.77	30.62	All sap-wood .	659
0.4887	0.4176	0.4860	0.4621	1. 17	1. 09	1. 13	28.80		646
0.3891	0.3830	0.3861	0. 63	0.04	0.04			570
0.3428	0.3769	0.3593	0.13	0.17	0.15			634
0.4586	0.4596	0.4501	0.08	0.05	0.06			662
			0.4017			0.08	25.03		
0.3048	0.3021	.	0.3035	0. 29	0.25	0.27			104
0.2817	0. 2870	0.2859	0.29	0.23	0.20			379
0.3284	0. 3275		0. 3280	0.49	0.51	0.50			782
0.3163	0.3275	0.3272	0.3237	0.39	0.44	0.42		783
0.3016	0.3007	0.3012	0.29	0.31	0.30		790
0.3452	0.2880	0.3166	0.36	0.44	0.40			702
0.3108	0.3104		0.3106	0.43	0.37	0.40			796
0.3584	0.3529	0.3697	0. 3603	0.39	0.34	0.37			874
0.3121	0.3232	0.3177	0.37	0.38	0.38		1099
			0.3104			0.37	19.72		
0.3098	0.4178	0.4087	0.12	0.14	0.13			1017
0.3460	0.3851	.	0.3500	0.24	0.19	0.22			1021
			0. 3796			0.17	23. 60		
0.3337	0.3447	.	0.3302	0.94	0.90	0.92	...		350
0.3105	0. 3644	0.3081	0.3277	0.17	0.15	0.16		850
0.3038	0. 3036	0.3182	0.3085	0.13	0.11	0.12			851
0. 2990	0.3091	0.4527	0.3536	0.11	0.13	0.12			852
			0.3322			0.33	20.70	.	

Table I.-specific gravity, ash, and weight Per cubic foot

OF DRY SPECIMENS OF THE WOODS OF THE UNITED STATES-Continued.

Table I.—SPECIFIC GRAVITY, ASH, AND WEIGHT PER CUBIC FOOT

OF DRY SPECLMENS OF THE WOODS OF THE UNITED STATES-Continued.

Table I.-SPECIFIC GRAVITY, ASH, AND WEIGHT PER OUBIO FOOT

Speclce.		State.	Locallty.	Collector.	Soil.	Diameter of trec, in meters.	LAYERS OF GROWTR.	
							Sap. wood.	Heart wood.
347. Pinds Strobus-continned	788	New Branswick .-	Bridgeton	Ed. Sinclair........				
	789	Province of Quebec.	Amquì	A. Grant..........				
	797			Grank Trunk rail.				
	1044	Msssacbnsetts	Resding	J. Kobinbon	Drift..............	0.215	15	10
348. Pinns monticola \qquad White Pine.	$\begin{aligned} & 975 \\ & 987 \end{aligned}$	British Colombia . Oregon \qquad	Hasting's saw-mill, Burrard inlet. Cascale mountains	G. Engelmand and C. S. Sargont. C. S. Ssrgent.	Moist loam..			
349. Pinus Lambertians \qquad Sugar Pine.	638	California.........	$\begin{aligned} & \text { Saw-mill, Straw'. } \\ & \text { berry valley. } \end{aligned}$	G. Eugelmanu and C.S. Sargent.				
	668	.do		G. R. Vasey..........				
	730	...do	Lsssen's peak	Sierra Lumber Company, San Francisco.				
350. Pinus fexilis White Pine.	819	Colorado..........	Ferest City	T. S. Brandegee.....	Gravelly..........	0.502	38	120
	913	Nevada.	Monitor rsage -	A. Triple	. .do			
351. Pinus slbicanlis	992	British Columbia.	Silver Mountain valley, Fraser river.	G. Engelmann and C. S. Sargent.	0.494	50	160
352. Piuvs reflexa	597	Arizona	Santa Kita mountains.do	Rocky			
	002	Now Mexice......	Pinos Altos mountBins.	E. L. Greede				
	061	Arizona	Santa Rita modntaius.	G. Engelmann and C. S. Sargent.	.			
	650	California.........	San Diogo county...	G. R. Vasey.........	-.......
354. Pinns combroides Nut Pine. \qquad	1220	Arizona	$\underset{\text { Santa }}{\text { mountains. }}$ Catalins	C. G. Pringle........
355. Pinus edulis. \qquad Piñon. Nut Pine.	397	Colorado...........	Caion City	E. Weston	Gravelly..........	0. 284	30	79
356. Pinus monophylla Pinon. Nut line. \qquad	823	Eastern Arizona..	San Fradelscomount ains. Lowiston	E. L. Greenedo	0.164	19	66
	801	Eastern Arizonr..	San Francisco mondt-	E. L. Greeno	-			
	900	California.		Depsrtment of Ag-				
	915	Novads...........	Danville.	A. Triple.	Gravelly			
857. l'inus Balfonrisus.......................	577	Callifornis....	Scott monvtains	G. Engolmann and C. S. Sargent.	Rooky	0.368	75	309
	631							
357. Pinus Bslfonriana, var. aristata Foxtail Pine. Mickory Pine.	$\begin{aligned} & 821 \\ & 014 \end{aligned}$	Colorado \qquad Nevada \qquad	Forest City \qquad Prospect mountain.	T. S. Brandegee. A. Triplo	Rocky	0. 450	44	130
358. Pinus rosinosa. \qquad Red I'ine. Norway Pine.	194	Michlgan.........	Barney \& Smith Manufacturiog Co.	E. E. Barney .				

OF DRY SPECIMENS OF THE WOODS OF THE UNITED STATES—Continued.

TABle I.-SPECIFIC GRAVITY, ASH, AND WEIGHT PER CUBIO FOOT

OF DRY SPECIMENS OF THE WOODS OF THE UNITED STATES-Continued.

Table I.-SPECIFIC GRAVITY, ASH, AND WEIGHT PER CUBIC FOOT

OF DRY SPECDMENS OF THE WOODS OF THE UNITED STATES—Continued.

Table I.-SPECIFIC GRAVITY, ASH, AND WEIGHT PER OUBIO FOOT

OF DRY SPECIMENS OF THE WOODS OF THE UNITED STATES－Continued．

spectific gravity determinations．				Ash determinations．			Weight，per cubic loot， in ponnds （average）．	Remarks．	$\begin{aligned} & \text { 呂 } \\ & \text { 首 } \\ & \text { 荷 } \\ & \text {. } \end{aligned}$
First．	Second．	Third．	Average．	First．	Second．	Average．			
		${ }^{\text {f }}$			－				
0.4622	0.4965	．．．．．．．．．．．．	0.4794	0.28	0.33	0.30			394
	0.4588		0.4588	0.20	0.19	0.20		Sap－wood	780
0.4778	0.5065	0.4857	0.4900	0.19	0.18	0.19	．．．．．．．．．．．．		879
			0.4761			0．2？	29.67		
0.7551	0.7284	．．．．．．．．．．．．．	0.7418	0.26	0.26	0.26	．．．．．．．．．．．－	．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．	81
0.7117	．．．．．．．．．	．．．．．．．．．．．．	0.7117	0.16	0.17	0.17	．．．．．．．．．．．．	．．．．．	85
0.6927	0.6974	．．．．．．．．．．．	0.6950	0.26	4.26	0.26	－．－．．．．．．．．	．．．．．	172
0.7563	0.6829	＊	0.7199	0.28	0.21	0.25	．．．．．．．．．．．．	．．．．	243
0.6139	0.5191	－	0.5665	0.39	0.24	0.31	．．．．．．．．．．．．	．．．．．．	302
0.6602	0.6616	－	0.6609	0.27	0.27	0.27		．．．．	357
0.8652	0.9325	－	0.6989	0.28	0.20	0.24	．	Boxed for torpentine，1852；chipped 10 years；abandoned， 1861.	358
0.8509	0.8450	．．．．．．．．．．．．．	0.8479	0.15	0.16	0.16	－．．．．．．．．．．．	Boxed for turpentine，1876；chipped 4 yoars；specimen taken	359
0.6673	0.7914	．．．．．．．．．	0.7294	0.21	．．．．．．．．．．	0.21	．	Boxed for tnrpentine，1876；chipped 4 years；specimen taken	360
0.7590	0.7736	．．．．．．．．．．．．－	0.7663	0.23	0.23	0.23	－．．．．．．．．－．	Loxed for turpentine，1878；chipped 2 years．．．．．．．．．．．．．．．．．．．．．	361
0.6163	0.5714	－．．．．．．．．．．．	0.5938	0.32	0.32	0.32			384
0.6549	0.5924	．．．．．．．．．．．	0.6236	0.28	0.28	0.28	．．．		385
0.4602	0.6188	0.6413	0.5734	0． 29	0.34	0.32	．．．．．．．	．．．．．．．．．．．．	390
0.7744	0.6745	．．．．．．．．．．．．	0.7245	0.17	0.18	0.18	．．．．．．．．．．．		562
0.6415	0．6490		0.6453	0.19	0.26	0.22	．．．．	Tree boxed for turpentine 18 or 20 years ago．	1096
			0.6999			0.25	43． 62		
0.6533	0.6506	－	0.6520	0.31	0.31	0.31			84
0.7881	0.7310	．－．．．．．．．．．．	0.7611	0.16	0.15	0.16			356
0．8529	0.8389	0.8220	0.8370	0.30	0.31	0.31			493
			0.7504			0.26	40． 76		
0.4576	0.4715	．．．．	0.4646	0． 23	0.17	0.20	．．．．．．．．．．．．	［P．rubrs］．．．	109
0.5289	0.5256	\cdots	0． 5272	0.25	0.27	0.26			231
0.4285	0.4486	．．	－ 0.4386	0.29	0． 29	0.29		［P．rubra］．	373
0.4730	0.4593	．．．	0.4662	0.20	0.27	0.28	．．．．．．．．．．．		776
0.4065	0． 4290	0.3997	0.4087	0.29	0.25	0.27			794
0． 4830	0.4098	0.4425	0.4451	0.38	0． 28	0.33			880
			0.4584			0.27	28.57		
0.4074	0.4194		0.4134	0.26	0.21	0.24	．．．．．．．．．．．．		513
0.3848	0.4034		0.3941 ．	0.42	0.38	0.40			020
0.4231	0.4375	－	0.4303	0.34	0.38	0.36	．．．．．．．．．．．		773
0.3809	0.4188	－	0.3999	0.32	0.31	0.32			784
0.3737	0.4020	．．．．．．．．．．．．．	0.3879	0． 24	0.29	0.27			791
			0.4051			0.32	25． 25		
0.3550	0.3551		0.3551	0.36	0.29	0.33			290
0.3365	0.3217		0． 3201	0.35	0.35	0.35	．．．．．．．．．．．		575
0.3507	0.3528		0． 3518	0.20	0.24	0.27	．．．．．．．．．．．	Tree with gray bark．	822
0.3717	0.3725	．	0.3721	0.32	0.33	0.33	．．．．．．．．．．．		893
0.3195	0.3137	．	0.3166	0.43	0.26	0.34			905
			0.3449			0.32	21.40		

Table I.-SPEOTFIC GRAVITY, ASH, AND WEIGHT PER CUBIO FOOT

OF DRY SPECIMENS OF THE WOODS OF THE UNITED STATES-Continued.

table I.-SPECIFIC Gravity, ash, and Weight per Cubic foot

Speeles.		State.	Locality.	Collector.	Soll.	$\begin{gathered} \text { Diameter } \\ \text { of tree, } \\ \text { in } \\ \text { meters. } \end{gathered}$	layers of GBOWTH.	
							Sapwood.	Heartwood.
391. Prendotsuga Douglasii-continned.....	1008	Britiah Colambia		G. Engotmann and C. S. Sargent.				
	1011	Oregon						
	1010do	inlet. Oreron Roilway and Navigation Co.	. .do				
	1018do	Poltant. Saw-mill, Astoria	do				
	1020	..	Portand Furnlture Conipany. Portland Furnlture Company. do				
	1022							
391. Pseulotsnga Donglasii, var.maorocarpa. Hemlock:	642	Califoruia.........	Saw-mill, San Bernardino.	W. G. Wright......				
392. Abies Fraberi \qquad Balsam. She Balsam.	523	North Carolins ...	Roan mountain	Walcott Gibbs......	Peaty loam	0.180	48	
393. Abies balamea \qquad Balsam Fir. Balm of Gilead Fir.	$\begin{aligned} & 107 \\ & 377 \end{aligned}$	Vermont...........	Greon mountains ...	C. G. Pringle	Cold, gravelly loam
		- ...do	Monkton.	. .do	Peaty.			
394. Abies ambalpina Balsam.	$\begin{aligned} & 449^{1} \\ & 449^{2} \end{aligned}$	Colorado...........	Forest City.........	T. S. Brandegee	Molst, sandy loam.			-........
				.do	...do			
	820dodo dodo	0.344	17	155
395. Abies grandis White Fir.	059	Oregon	Portland............	G. Engelmann and C. S. Sargent.	Rlob, allavial.....	0.735	56	43
396. Ables concolor \qquad White Fir. Baltam Iir.	529	Colorado...........	Engelmann'a cañon.	Robert Donglas.....	Rooky	0.196	29	
	580	California	Strawberry valley .-	G. Engelmann and C. s. Sargent.	Allnvial			
	639	. . do do		...do			
	733do	Lassen's peak.	Sierra Lumber Company.	-.......	
397. Ables bracteata	572do	Santa Lacia mountains.	G. R. Vasoy	Rich, sandy loam	0.584	.	-.......
308. Abies amabilis	1004	British Columbia.	Silver peak, near Fraser river.	G. Engelmann and C. S. Sargent.			. 50	120
399. Alles nobilia Red Fir.	965	Oregon	Carcado monntainsdo	Rich \qquad Gravelly loam \qquad			
400. Abies magnlifea Ned Fir.	647	California........	Sodar Springado		1. 324	71	267
401. Larix Americana. \qquad Larch. Black Larch. Tamarack. Hackmatack.	2261226	Vermont	Charlotto..........	C. G. Pringlo........	Cold, swampy			
		... do do do ..						
	$\begin{aligned} & 226^{2} \\ & 226^{3} \end{aligned}$							
	774	Sew Brunswlek ..	Bay of Fundy	$\left\lvert\, \begin{aligned} & \text { Intercolonal rail- } \\ & \text { way. } \end{aligned}\right.$				
	781							
	do \qquad do \qquad Massachnsotts \qquad	Bridgeton \qquad Banvilio \qquad Wenhan \qquad	Ed. Sinctalr \qquad Grand Trunk railway. J. Robinson.				
	786							
i	840				Swampy			

OF DRY SPECIMENS OF THE wOODS OF THE UNITED STATES-Continned.

table I.-SPECIfic GRAVITY, asH, and weight per cubic foot

OF DRY SPECIMENS OF THE WOODS OF THE UNITED STATES-Continned.

Table II.-ACTUAL FUEL VALUE OF SOME OF THE

					furl valur.	
	$\begin{aligned} & \text { B } \\ & \text { 曹 } \\ & \text { 䊀 } \\ & \text { E } \end{aligned}$	Botanieal name.	Common name.	Region.	Per cubic decimeter.	Per kilogram.
165	8	Liriodendrou Talipifera	Tulip Tree. Yollow Poplar. White Wood.	Atlantio	1425.57	3744.61
903	29	Barsera gammifera	Gam Elemi. Gumbo Limbo. West Iudiau Bireh	Semi-tropical Flerida.....	997.32	2913.58
452	31	Swicteuia Mahogoni..	Mahogany. Madeira	. .do	31	802. 0
274	64	Acer saccharinmm, var. nigrum	Black Sugar Maple	Atlantie	3091.37	4345. 48
845	7	Robiuia Pseudacacia	Locnst. Black Locust. Tel		2822.99	3800.02
927	93	Prosopis juliflora	Mesquit. Algaroba. Houey Locust. Honey Pod	Mexican bound	3291.21	4352.30
883	11.	Cercorarphs ledifolius	Mountain Mahogany	Interior pacine..............	4224.06	4052.90
1182	139	Liquidanbar Styracifloa...............	Sweet Gum. Star-leaved Gum. Liquidamber. Ked Gum. Bilsted.	Atlantio	255.24	16.46
1:8	155	Nyssa uniflora	Large Tupelo. Cotton Gum. Tupelo Guns.	Sonthern Atlantio	2332.41	4131.83
1084	184	Diospyros Virgiuiana	['ersimmon		2970.45	3781.61
227	192	Fidaxinas Americama	Whito A8h		\%s.	
180	207	Catalpa ${ }_{\text {aprociosa. }}$	Western Catalp:a	- do	1582.42	3030.38
533	224	Clmus A mericana	White Elm. Americau Eln. Water El	.do	3247.02	
126	235	Platanus oceidentalis	Sycamore. Button Wood. Button-ball Tree. Water Beech.		2406.89 1984.56	
209	239	Juglane nigra....	Blact Waluut	do	1984.56 2768.72	$\begin{aligned} & 3857.26 \\ & 3954.75 \end{aligned}$
322	241	Carya oliveforınis	Pecan. Illiuoi		3851.17	4078. 76
29	$\because 42$	Carya alba.	Shell bark ILickers. Shag-bark Hickery		$\{3319.79$	3811.48
72	244	Carya tomento8a .-.....................	Mocker Nut. Black Hickory. Ball Nut. Bigbud Hickory. White-heart Hickory. King Nut.	.de	3380.57	3004.11
1051	245	Carya porcina	Pig Nut. Browu Hickory. Black Hickory. Switch-ball Hickory.	. .do	3382. 12	3922.89
838	-246	Carya amara.	Bitter Nut. Swamp Hickorydo	2863.42	3003.25
237	247	Carya myristiceformis	Nutmeg Hickory	South	3108.27	3877.58
302	248	Carya aguatica	Water Hickory. Swamp Hickory. Bitter Pecan		S	4073.59
1050	251	Quereua alha	White Oak		3197.41	
988	253	Querena Garryana	.do	Northern Pacifie	2594.31	
424	257	Quercus lyrata	Over-cup Oak. Swamp Post Oak. Water White Oak.	Seuthern Atlantie	3268.92 2843.69	
31	260	Querens Prinua.	Cheatnut Oak. Rock Chestnut Oak.	...de ...	2843.69 3062.08	$\begin{aligned} & 3997.32 \\ & 4075.10 \end{aligned}$
92	272	Qucreua rnbra	Red Oak. Black Oak	Atlantie	3062.08 2505.04	$\begin{aligned} & 4075.16 \\ & 3774.60 \end{aligned}$
247	274	Quercua tinetoria	Black Oak. Yellow-bark Oak. Quercitron Oak. Tellow Oak.do	2505.04 2692.51	374.80 3713.81
339	276	Quereus nigra	Black Jack. Jack Oakdo.	2692.51 3193.28	$\begin{aligned} & 3713.81 \\ & 40.55 .48 \end{aligned}$
548	277	Quercus falcata	Spanish Oik. Led Oak.	Seuthe	2655. 82	3718.07
511	280	Qucreus aquatica.....	WaterOak. Duck Oak. Possum Oak. Ponk Oak		1868.25	4042.96
863	290	Castanea vulgaris, var. Americana	Chestant			3805. 04
55	291	Fagus ferruginea....	Beech	...d	2509.00	4073.05
848	294	Betula alba, var. pepnlifolia.	White Birch. Old-field Birch. Gray Bireh.	Northera	2589.66	4101.41
225	295	Betula papyrifera..	Canoc Birch. White Birch. Paper Birch	... do	2582.604 1624.64	4292.31
272	318	Populus tremuleides.	Aspen. Quaking Asp.............................	Allantic a		
754	324	Populus monilifera.	Cottonwoed. Necklace Poplar. Carolina Poplar. Big Cottonwood.	Atlantio	1906.42	424.15
874	327	Thuya occidentalio .	White Cedar. Arbor-vitie	Northern Atlantio	1411.57	3917.77
701	331	Chawæesparis Lawsoniana	Port Orford Cedar. Oregon Cedar. White Cedar. Lawson's Cypress. Ginger Finc.	Northern Pacifie............	2327.52 3143.57	5263.50 4587.81
527	338	Juniperus occidentalis, var. monesperma.	Juniper ..	Pacifie........................	1035. 71	4739.73
923	340	Taxodium disticham..................	Bald Cypresa. Black Cypress. Red Cypress. White Cypress. Deciduous Cypress.	Southern Atiantic	1855.71 1985.50	4191.47
711	342	Sequola acropervirens ..	Redwood	Califurnia coast. Northern Atlantic	1985.50 1489.03	491.48 42729
1014	347	Pinus Strobas	Whito Pinc. Weymonti Pine		1785.40	\$419.31
638	319	Pinus Lambertiana	Sugar l'ine	Pa		
900	356	Pinns monophylla	Piñou. Nut lize	I	2248. 13	
194	358	Pinus rosinosa	Red Pino. Normay Piua.	Northeri	2001.75	4 con 0.04
632	361	Pinus ponderosa.	Yellow Pine. Bull Pine	Pacific		
623	365	Pinus Marrayana.	Tamarack. Black pinc. Lodge-pold Pine. Spruco Pine.	...do . .	1701.32 1804.29	
571	360	Pinus Salyiniana	Digger Piue. Bull pine...........................	California	1804.29 2031.75	$\begin{aligned} & 3962.97 \\ & 4087.20 \end{aligned}$
389	370	Piuus Tada	Loblolty l'iuc. Old field liuo. Rosemary Pine.		3472. 26	5491.47
1040	371	Piuise rigida.	Pitch Pine.	Southern Atlantie	3980.96	5012.54
83	372	Piuns serotina	Poud line		2008.20	4126.15
021	373	l'inus inops..	Jersey Pine. Serub Ping	Atlant	2054.78	
321	375	Pin ${ }^{\text {a }}$, pungens.	Table-mountain Pine. Hickory Pino.	Alleghany	2094. 32	
557	377	Pinus mltik.........................	Yellow Pine. Short-leaved Plue. Sprace Plue.			

MORE IMPORTANT WOODS OF THE UNITED STATES.

relative fuel value.		fercentage in dry wood.						Specific gravity.	Woight of cabic loot, in poands.	
By volume.	By weight.	Ash.	Hydrogen.	Carbon.	Oxygen.	Hydrogen combined with oxygen.	Excess of hydrogen.			
67	60 \%	0. 27	6.43	47.29	46. 01	5. 75	0.68	0.3807	23.72	
69	70	2.09	6. 02	40.80	51. 09	6.39	0. 30	0.380	23.72	163
32	62	1.09	6. 69	46.76	45. 46	5.68	0.36 1.01	0.3423	21.33	903
23	19	0.56	6.61	51.55	41.28	5.16	1.45	0.782	45.38	452
29	58	0. 23	6. 17	49.19	44.41	5. 55	0.62	0. 7257	45.22	845
14	18	2.05	6.61	51.08	40. 26	5.03	1.58	0.7562	47.12	84
3	42	1. 20	5.45	52.14	41.21	5.15	0.30	1. 0447	65.10	883
45	46	0.48	5.85	50.99	42.68	5. 33	0.52	0.5615	34.99	1182
43	30	0.74	6. 97	48.78	43.51	5.44	1.53	5645		
25	63	0.77	6.44	47.37	45.42	5. 67	0.77	0.5685	35.17	128
36	24	0.30	6. 93	49.73	43.04	5.38	1. 55	0.6289	38.19	1084
65	52	0.47	6.92	47.44	45.17	5. 65	1. 27	0.4020	25.05	180
16	26	0.74	6.57	50.35	42.34	5. 29	1. 28	0.7746	48.27	533
42	40	0.57	5.83	51.45	42.15	5. 27	0.56	0.5011	36.83	120
53	60	0.56	0. co	49. 28	44.16	5.52	0.48	0.5145	32.06	209
33	50	0. 93	6.15	49.51	43.39	5. 42	0.73	0.7001	43.63	322
7	36	0.73	6. 49	49. 67	43.12	5.39	1.10	0.9442	58.84	29
13	61	0.83	6. 13	48.45	44.59	5.57	0.56	0.8710	54.28	539
11	55	1.04	5. 93	49. 69	43.34	5. 42	0. 51	0.8659	53.95	72
10	53	0.74	6. 28	48.98	44.00	5.50	0.78	0.8647	53.88	1051
27	56	1. 03	5.91	49.71	43.29	5.41	0.50	0.7336	45.71	838
21	59	1.06	6.37	48.20	44. 31	5.54	0.83	0.8016	49.95	237
20	38	1. 19	6. 60	49.16	43.05	5.38	1.22	0.7709	48.04	362
17	28	0. 24	6. 59	50.44	42. 73	5.34	1. 25	0.7635	46.58	1050
38	69	0.33	5.73	48.56	45. 38	5. 67	0.06	0.7074	44.08	988
15	33	0.58	6.75	49. 22	43.45	5.43	1. 32	0.7962	49.61	424
28	47	0.34	6. 33	49. 59	43.74	5.47	0.86	0.7114	44.32	
24	37	0.15	6. 62	49.49	43.74	6.47	1.15	0.7514	46.72	91
37	64	0.15	6. 09	48.78	44. 98	6. 62	0.37	0.6875	43. 84	247
34	68	1.37	5. 73	48. 58	44. 32	5.54	0.19	0.7250	45. 18	
18	41	0.29	6.14	50.58	42. 99	5.37	0.77	0.7874	49. 07	548
35	67	0.83	5.75	48.73	44. 69	5.58	0.17	0.7143	44.51	511
56	43	0.13	5. 70	51.74	42.43	6. 30	0.40	0.4621	28.80	868
31	57	0.54	6.11	49.27	44.08	5.51	0. 60	0.7175	44.71	55
40	39	0. 29	6. 49	49.77	43.45	5.43	1.06	0.6160	38.05	848
39	34	0.23	7.12	48.28	44.37	5. 54	1.58	0.6297	39. 24	205
63	20	0.74	6. 58	51.13	41.55	5. 19	1.39	0.3785	23.59	272
55	22	0.65	6. 20	51.64	41. 45	5.18	1.08	0.4494	28.00	754
								,		
68	54	0.37	6. 37	48.80	44. 40	6. 56	0.81	0.3603	22.45	874
44	3	0. 10	6.28	60.07	33.65	4.21	2.07	0.4422	27.56	701
19	11	0.88	6. 03	54.97	38. 12	4.76	1. 27	0.6852	42.70	537
54	8	0.40	6.54	54.98	38. 08	4. 76	1.78	0.4084	24.45	923
52	27	0.13	6.01	52.10	41.70	5.22	0.79	0.4737	29.59	71.
68	21	0.12	0.08	52. 55	41.25	5.15	0.93	0.3485	21. 72	1044
59	13	0.19	6. 40	52.85	40.56	5.07	1.33	0. 4040	25. 18	638
46	32	0.83	6. 39	50.48	43.30	5.41	0.98	0. 5473	34.11	900
49	23	0.20	6.07	52. 18	41.55	5. 19	0.88	0.4855	30.20	194
41	9	0.31	7.02	52. 60	40.07	5.01	2.01	0.5307	33.07	632
68	45	0.37	6. 22	50.05	43.36	5. 42	0. 80	0.4457	27.78	623
57	49	0.42	6. 04	50.22	43.32	5.41	0.63			
50	35	0. 25	C. 23	50.60	42. 02	6. 36	0.87	0.4971	30.98	571 389
9	1	1. 12	7.10	59.00	32. 68	4.08	3. 11	0.6323	39.40	${ }^{389} 1046$
6	6	0.17	6. 80	56.5.5	30.48	4.56	2.24	0.7942	49. 49	83
61	31	0.26	6. 30	50.74	42.70	5.34	0.96	0.4867	30.33	
48	48	0.30	5. 78	51.07	42.85	5.35				32.
22	5	0.20	C. 01	56.64	36.25	4.35	0.43 2.38	0.5143 0.6107	32.05 38.06	321 557
							2.38	0.6107	38.00	555

Tabli il--actual fuel valde of some of the

MORE IMPORTANT WOODS OF THE UNITED STATES-Continued.

belative fuel value.		prbcentage in dry woon.						Specifio gravity.	Weight of cubic foot, in pounds.	
By volume.	By weight.	Ash.	Hydrogen.	Carbon.	Oxygen.	Hydrogen combined with oxygen.	Excess of hydrogen.			
47	15	0.19	6.29	52.93	40.59	5.07	1. 22	0.4900	30.54	879
1	4 -3	0.15	7.26	56.19	36.30	4.54	2. 72	0. 8479	5.84	359
5	2	0.28	7.41	58.61	33.72	4.21	3.20	0. 7417	46.22	81
- 30	12	0.28	6. 70	52.70	40.32	5.04	1.66	0. 6236	38.80	385
4	10	0. 28	0.85	52. 99	39.88	4.99	1.86	0.8988	55.90	358
2	7	0.24	6.83	54.78	38. 15	4.77	206	0.8088	55.08	358
12	14	0.16	6. 22	53.33	40. 29	5.03	1.19	0.7612	47.44	356
4	51	0.30	6. 58	48.45	44. 67	5.58	1.00	0. 4087	25. 47	794
61	25	0.48	5.91	52.38	41. 23	5. 15	0.76	0.4097	25. 53	1042
60	17	0.03	6.42	52.32	41.23	5.15	1. 27	0.4056	25.38	109
26	29	0.27	6.03	51.91	41.79	5. 22	0.81			709
62	65	7.60	7.06	43.35	41.93	5.24	1.82		43. 77	226
70	44	2.74	6.82	47.73	42.71	5. 34	1.48	0. 2128	2.45	242
8	16	1.24	Q. 98	50.46	41.32	8. 16	1.82	0.8493	52. 92	565
										565

Table III．－BEEAVIOR OF THE PRINCIPAL WOODS OF THE

Specles．	$\begin{aligned} & \text { 荷 } \\ & \text { 㽞 } \\ & \text { O } \\ & \text { O } \end{aligned}$	State．	Locality．	Collector．	Soil．			COBPFICIBNT OF flasticity．		－ampdus jo sujupory
magnoliacex．										
1．Mapnolia grandiflora ．．．．．．．．．．．．．．．． Big Laurel．Bull Bay．	346	Alabama ．．．．．．．．．	Cottage Hill ．．．．．．．．	C．Mohr．．．．．．．．．．．	Rieh loam ．．．．．．．．	0． 7051	1 mb	1061	057	820
	346	．${ }^{\text {do }}$	do		．${ }^{\text {da }}$	0.7006	官	887	849	761
	354	．．da	．do	．do ．．．．．．．．．．．．．．	Swampy ．．．．．．．．．．	0.5222	旨	976	930	：32
Swect Bay．White Bay．Bearer Tree．White Laurel．Swamp Laurel．	354	．．do	．．do	．do	．．do	0.5028	T1u	976	896	717
3．Magnolia acuminata． \qquad Cucumber Tree．Mountain Mag－ nolia．	248	Virginla．．．．．．．．．．	Wytheville ．．．．．．．．．	H．Shriver．．．．．．．．	Clay limestone．．．．	0.5000	第	901	1061	703
	246	do	．．do	．do	．do ．．．．．．．．．．．．．．	0.4755	苞	939	021	065
	2011	．．do ．．．．．．．．．．．．．	Fancy Gap	．do ．．．．．．．．．．．．．．	Rich，light．．．．．．．．	0.4862	ITIIT	788	734	574
	2011	．．do	．．．do	．do	．．do ．．．．．．．．．．．．．	0.4564	\square	720	723	525
	534	Miaaissippi ．．．．．．．	Solvers＇mill．	C．Mohr	．do ．．．．．．．．．．．．．．	0． 5682	䟓	1061	1050	717
	534	．．do	．do	．do	．do	0.5852	敬	1109	1085	839
4．Magnolia cordata．．．．．．．．．．．．．．．．．．．．．．．．．	1178	Alabama．．．．．．．．．．	Winaton conuty ．	．do ．．．．．．．．．．．．．．	．．．．．．．．．．．．．．．．．．．	0.4318	Tidil	888	884	564
	1178	．．．do	．do	．do		0.4625	気	876	1017	637
5．Magnolia maeraphylla \qquad Large－leaved Oucumber Tree．	532	Mlasiagippi ．．．．．．．	Quitman	．．do ．．．．．．．．．．．．．．	Rich，low．．．．．．．．．	0.5807	包	1101	1085	516
	532	．．．do	．．．do	．do	．do ．．．．．．．．．．．．t．	0.5580	包	1252	1252	878
6．Magnolia Umbrella．．．．．．．．．．．．．．．．．．． Umbrella Tree．Elk Wood．	266^{1}	Virginia	W ythevilie．．．．．．．．．	H．Shriver		0.4170	枈	800	814	653
	260^{2}	．．do	．．do	．．．do		0.5051	\＃	669	673	612
F．Magnolia Fraseri \qquad Long leaved Cucumber Tree．	260	．do ．．．．．．．．．．	Fancy Gap	．do	Damp ．．．．．．．．．．．．	0.5688	\square	938	976	811
	$200{ }^{1}$	．．．da	do	do	．do	0.5103	TT	887	012	602
8．Liriadendron Tulipifera． Tulip Tree．Yellow Poplar．White Wood．	305	Michigan ．．．．．．．．．．	Lanaing ．．．．．．．．．．．．．	W．J．Beal		0.4174	\％	610	610	473
	818	Weat Virginia．．．．	Grafton．．	C．G．Pringle．．．．．．		0.4930	管	1085	1176	756
	818	．．do	．．do	．do		0.4809	dim	1085	1050	675
	1231	Pennaylvania．	Cheater connty	P．P．Sharple		0.4704	1110	976	076	743
	1231	．．do				0.4911	\square	921	1007	820
	1231	．．do	．do	do		0.4610	易	970	957	755
	1232	．．do	do	do		0.4381	包	076	848	457
	1232	．．do	do	do		0.4511	－	976	1028	722
	1232	da	．do	do		0.4550	ITIJ	904	921	661
	1236	Tennearee	Saw－mill at Naah．	A．E．Balrd		0.4614	［1］	888	834	694
	1230	do	do	do		0.4697	己最	872	888	645
	1236	．${ }^{\text {do }}$	do	do		0.4591	园	888	849	584
	1237	．．．do	do	do		0.4386	包	857	849	584
	1238	．．．do	．do	．do		0．446s	易	976	976	635
ANONACETE． 9．A aimina triloba． Papaw．Custard Apple．										
	211	Miagouri．．．．．．．．．．．	Meramoc river，Jef．	G．W．Lotterman ．	Allnvial ．．．．．．．．．．	0.3034		． 444	407	312
	211	．do	．．．do ．．．．．．．．．．．．．．	．．．do	．．．do	8． 3575	砋	302	315	288
	332	Tenneasec ．．．．．．．．	Cumberland river ．．	A．Gattingor．	．do	0． 4323	（0）	008	723	574
10．A nona laurifolia Pond Apple．		Florida ．．．．．．．．．							${ }^{5} 514$	
	479	Florida ．．．．．．．．．．．	Bay Biacayne．．．．．．．	A．H．Curtiss．．．．．	Swampy ．．．．．．．．．．	0.5705	辿	542	514	628
	479	．．．．do	..do	．do		0．5704		530	488	586
12．Canella alba White Wood．Cinnamon Bark． Wild Cinnamon．	1131	．do	Eniott＇s Key		Coral ．．．．．．．．．．．		TITI	1085	1085	905
	1131	．．．．．do ．．．．．．．．．．．．．．．	do		Coral	1.1280	\square	1085	1148	1148
－TERNSTRGMIACEE． 14．Gordonia Laaianthus \qquad Loblolly Bay．Tan Bay．										
	236	Sonth Carolina．．．．	Bonnean＇a Depat ．．．	II．W．Ravenel ．．．	Wet pinc－barren．．	0.4844	ITITH	718	723	499
	236	do	do	．do	．．．do ．．．．．．．．．．．．	0.4729	（a）	787	763	071
	414	．．．da ．．．．．．．．．．．．．．	Aiken ．．．．．．．．．．．．．．	do ．．．．．．．．．．．．．．	Swampy ．．．．．．．．．．．	0.5470	怱	888	921	773
	414	．．do	．．．do	．do	．．．do ．．．．．．．．．．．．．．	0.5605	级	751	769	729

UNITED STATES UNDER TRANSVERSE STRAIN.

table ill.-behavior of the principal woods of the

UNITED STATES UNDER TRANSVERSE STRAIN-Continued.

Table III．－BEHAVIOR OF THE PRINCIPAL WOODS OF THE

Speolea．		State．	Locality．	Collector．	Soll．			COEFFICIENT OF elasticity．		
RHAMNACEE．	454	Florida ．．．．．．．．．．．	Upper Metacombe Key．	A．H．Cartiss．．．．．	Coral ．．．．．．．．．．．．．．	1． 2812	U1］	976	1050	820
42．Reynosis latifolls．．．．．．．．．．．．．．．．．．．．． ked Iron Wood．Darling Plum．										
43．Condalia terrea Black Iron Wood．	460	do	do	do	．do	13540	E	1191	1109	1127
	460	do	do	．do	．do	1.3430	第	1191	1176	680
45．Rhampus Carolinians．．．．．．．．．．．．．．．．．． Indian Cherry．	803		Saint John＇ө river ．．	．．．．do．．．．．．．．．．．．．	Rich hummock ．．．	0.5369	did	814	794	518
	1094	Arkansas．．．．．．．．．	Jonesboro＇	T．B．Kitchens ．．．		0.5066	（6）	718	687	616
47．Rhamnna Purshiaua． Learberry．Bear Wood．Shittim Wood．	993	Oregon \qquad Flocida \qquad	Portland．．．．．．．．．．．	G．Engelmanuand C．S．Sargent． A．H．Curtiss．．．．	Rich，alluvial．．．．． Coral	0.5943	（3）	775	912	750
49．Colubrina reclinata． Naked Wood．	1132		Umbrella Key ．．．．．．			0.8721	\％	921	976	1216
SAPINDACEA．		Missouri \qquad ．．．do \qquad Tenuessee \qquad								
50．Esculus glabra．．．．．．．．．．．．．．．．．．．．．．Ohio Duckeye．Fetid Buckeye．	297297		Alleuton	G．W．Letterm3n． ．．．．do \qquad	Rieh，moist ．．．．do ．．．．．．．．．．．．．．．	0.4053	易	751	707	468
						0.4002	㐌	687	651	468
	427		Nashville	A．Gattinger．．．．．．	Rich，mois	0.4970	怱	810	574	549
52．Esonlus Californica ．．．．．．．．．．．．．．．．．． California Buckeye．	684684	California ．．．．do \qquad	Marin county ．．．．do \qquad	G．R．Vasoy ．．．．do \qquad	Rich upland. ...do	$\begin{array}{l\|l} 0.5034 \\ 0.5228 \end{array}$	芴	697	669	548
								678	698	649
54．Sapindus marginstus ． fild Ohina．Soapberry．	$\begin{aligned} & 307 \\ & 307 \end{aligned}$	Texas	Dallas	J．Reverchon ．．．．．	Kich，damp....do	0.7681	垦		888	663
		．．．．do ．．．．．．．．．．．．．．．		．．． 10.		0.7784	鲑	857	948	949
	928	$\begin{aligned} & \text {....do } \\ & -\ldots . . d o \end{aligned}$	Anstin do	C．Mohr	Limestone\qquad	$\begin{aligned} & 0.5243 \\ & 0.5310 \end{aligned}$	（Dill	$\begin{aligned} & 842 \\ & 688 \end{aligned}$	814	$\begin{aligned} & 820 \\ & 703 \end{aligned}$
	928			do ．					697	
56．Hypelate paviculata． \qquad Ink Wood．Iron Wrood．	$\begin{aligned} & 463 \\ & 463 \end{aligned}$	Florida ．．．．do \qquad	Upper Metacombe Key． ．．．．do ．．．．．．．．．．．．．．．．．	A．H．Curtiss． ．．．．do \qquad	Coral. ... do	$\begin{aligned} & 1.0405 \\ & 1.0123 \end{aligned}$		$\begin{array}{r}1135 \\ \hline\end{array}$	1206	1201
00．Acer macrophyllom． Broad－leaved II aple．	982 082	Oregon	Portland. . . do	G．Engelmann and C．S．Sargent．	Rich，allnvial.....do	0.5445	盛	607	734	698
	982	．．．．do				0.5341	第	751	751	698
	1023	．．．．do ．．．．．．．．．．．．．．	Portland Furniture Company． do	\qquad		$\begin{aligned} & 0.4907 \\ & 0.5053 \end{aligned}$	Nim	697	842	691
	1023	．－．．do ．．．．．．．．．．．．．．							794	656
61．Aeer clreinatum ．．．．．．．．．．．．．．．．．．．．．．．．	1013	do．．．．．．．．．．．．．	Portland．．．．．．．．．．．．	．．．．do	Molst，allnvial．．． ．．．．do	$\begin{aligned} & 0.8928 \\ & 0.7001 \end{aligned}$	$\begin{aligned} & \text { er } \\ & \text { 药 } \end{aligned}$	$\begin{aligned} & 026 \\ & 634 \end{aligned}$	$\begin{aligned} & 713 \\ & 723 \end{aligned}$	$\begin{aligned} & 712 \\ & 818 \end{aligned}$
	1014	Washington ter－ ritory．	Wilkeson	．do						
6．Acer saccharinum．．．．．．．．．．．．．．．．．．．．． Sugar Mraple．Sugar Tree．Hard Maple．Rock ifaple．	$\begin{aligned} & 299 \\ & 370 \end{aligned}$	Missonri \qquad Vermont \qquad	Allenton Charlotte	G．W．Letterman． C．G．Pringle．	Rich upland．．．．． Gravelly．．．．．．．．．	0.8381	家穴	1528	1457	1219
						0.6852	［1］	888	976	816675
	370 409	New England．．．．．	Charlestown Navy－ yard． Charlotte \qquad	S．H．Pook ．．．．．．．．．	Gravelly	0.6775	20	783	930	
	1233	Vermont．．．．．．．．．．		F．H．Horsford．．．．	．．．．．．．．．．．．．．．．．．．．．	0.7447	先	1683	1953	1404
	1233							1878	1808	1289
	1234	－d	do			$\left\lvert\, \begin{aligned} & 0.6886 \\ & 0.7069 \\ & 0.7108 \\ & 0.7187 \\ & 0.7189 \end{aligned}\right.$	㞏	1220	1395	1235
	1234	．．．do	do				fiTl	1395	1480	1284
	1235	．．．．do ．．．．．．．．．．．．	d				TTOT	1628	1575	1242
	1235		．．do				\＃	1436	1575	1104
64．Acer asccharinnm，var．nigrum．．． Black Sugar Maple．	213	．．do	．de	C．G．Pringle．．．．．．	Clay ．．．．．．．．．．．．．．	0． 7241	didu	1039	1148	10.5
	2741	Minsouri．．．．．．．．．．	Allenten	G．W．Letterman．．	Low，allarial ．．．．	0.7355	等	1085	1221	1055
	440	Tenиевян－．．．．．．．	Nashville	A．Gattinger．	Rich．．．．．．．．．．．．．．	0.6073	Till	888	1149	1024
	757	Florida	Chattalioochee．	A．H．Curtisa	Clay ．．．．．．．．．．．．．．	0.6070	良	857	930	933
	757	．．do	do	do	do	0． 6824	雨	610	688	743
65．Acer dasycarpum－7．．．．．．．．．．．．．．．．． Sofe Maple．White Maple．Silver Maple．	10.52	Massachusetts ．．	Topsteld	J．Rubingou．	Low meadow ．．．．	0.0041	緼	970	1100	1019
66．Acer rubram．．．．．．．．．．．．．．．．．．．．	20	．．do ．．．．．．．．．．．．．	Arnold Arboretam．．	C．S．Sargeut．．．．．．	Drift ．．．．．．．．．．．．	0.7148	的的	827	864	738
Maple．Woler Slople．	530	Miяeiseippl ．．．．．．．	Kemper＇s mill ．．．．．．	C．Mohr	Rhel，a wampy．．	0.0130		871	1030	82）

UNITED STATES UNDER TRANSVERSE STRAIN—Continued.

drflection. in mllimeters, Linder a presbure, in kilograms, of-														Remarks.	
50	100	150	$\mathbf{2 0 0}$	$\underset{\text { (set.) }}{\mathbf{0}}$	200	250	300	350	400	450	500	530			最
5.0	9.3	13.5	18.0	0.5	19.0	23.0	30.0						350	Specimen cross-grained	454
4.1	8.8	11.5	15.5	0.5	16.0	20.0	24.5	30.0	33.7	40.0			481	Long, shattered break	460
4.1	8.3	12.1	16.0	0.5	17.0	21.2							290	Specimen eross-grained.	460
6. 0	12.3	18.0	26.5	2.4	27.5								221	Long break, starting at small knot.	803
6.8	14.2	22.1	33.0	2.5	34.0								963	Shattered.	1094
6.3	10.7	16.5	22.0	1.0	23.0	28.0	36.6						320	Long, shattered break with large splinters.	993
5.3	10.0	15.0	19.6	0.5	19.5	24.5	29.0 .	34.5	48.0	57.0			519	Specimen cross-grained; shattered	1139
6.5	13.8	22.4										109	Crusbed at center bearing	297
7.1	15.0	24.0	41.5										200	..do	297
8.0	17.0	27.6	44.0	7.5	48.6	...							234	Crushod at center bearing; broke at knot on tension side	427
3.0	14.6	23.0	31.5	1.8	32.0	44.0				265	Long fracture; large splinters	684
7.2	14.0	21.7	30.3	2.3	31.8	44.2							277	Long fractore.	684
5.5	11.0	16.6	23.5	1.5	24.5	32.0	42.0	59.0					383	Long, splintered fracture	307
5.7	10.3	15.5	22.4	1.5	23.4	30.7	42.0	58.0	90.0				415	Splintered fracture	307
5.8	12.0	19.0	29.0	3.0	29.7	37.0	53.0						350	. do	928
7.1	14.0	22.0	32.0	4.2	34.2	45.0							300	Long, sprintered fractare	928
4.3	8.1	12.0	16.5	0.7	17.0	21.5	27.0	33.2	39.5	48.5	62.0		538	Shattered..	463
5.2	0.6	14.5	19.0	1.0	10.0	24.0	30.5	36.5	44.5	56.0			477do	463
7.0	13.3	21.0	30.5	3.4	32. 0	43.0						297	Short break, splitting in axis of stick	982
6.5	13.0	19.8	29.5	3.0	31.0	42.0							297	Slightly erusbed at center bearing	982
7.0	11.6	17.8	25.0	2.0	20.0	35.0							205	Slightly ernshed at center bearing ; splintered.	1023
6. 7	12.3	19.4	29.0	2.5	30.0	41.0	...						280	Short break with long, large splinter	1023
7.8	13.7	21.5	30.5	2.0	31.4	40.3						304	Long, shattered break	1013
7.7	13.5	21.0	29.5	2.0	30.0	39.0	50.5						349	. .do	1014
3.2	0.7	10.2	13.5	0.3	13.8	17.0	21.5	25.8	32.0	39.0	50.5		551	Long splinter on angle of two faee	299
5.5	10.0	15.0	20.0	0.7	20.3	26.0	35.0	348	Splintered	376
6.4	10.5	15.5	20.5	0.8	21.3	27.0						288	Specimen cross-grained; split with grain	409
2.9	5.0	7.7	10.2	0.0	10.2	12.0	15.2	18.2	21.7	25.4	31.4	38.3	599	Broke wilh fine splintors on lack	1233
2.6	5.4	8.4	11.2	0.0	11.2	14.0	17.0	20.2	25.3	30.0	39.0	50.0	520	. .do	1233
4.0	7.0	10.2	13.6	0.2	13.6	16.6	20.2	24.6	30.0	36.0	47.0		527	Square break on tension side, splitting in axis	1254
3.5	6.6	10.0	13.0	0.2	13.0	16.0	10.5	23.4	27.7	33.0	42.0		548	...do	1234
3.0	0.2	0.6	13.0	0.0	13.0	15.8	10.7	24.7	30.0	30.8	50.0		330	do	1235
3.4	6.2	9.1	12.2	0.0	12.5	15.4	10.0	22.0	27.6	34.5			471	Specimen cross-grained; shattered on angle of two face	1235
4.7	8.5	13.5	18.2	0.5	18.0	23.5	30.6	38.0	49.5	65.0			150	Broke with long splinters	213
4.5	8.0	12.0	15.5	0.5	16.3	20.0	26.0	32.4	43.5				450	Crnshed sligbtly at center bearing; broke with fino splinters	2741
5.5	8.5	13.0	17.0	0.6	18.0	29.5	29.5	37.0	52.0				437	Broke with fine splinters	440
5.7	10.5	16.5	23.0	1.5	24.0	30.7	41.5	53.0					398	$S_{\mathrm{l}} \mathrm{l}$ intered on angie, starting at small knot	757
8.0	14.2	21.0	30.0	2.0	30.7	40.4	54.0				317	Broke with lonu, fine splintere	757
5.0	8.8	14.0	10.0	1.3	10. 2	25.0	32.0	41.0	55.0				435	Broke with loner tinfoplinters	1052
3.9	11.3	17.2	24.5	1.6	20.0	35.0	46.5				315	Specimen map-wood, cross.grained; broko at knot	20
5.6	9.4	14.2	19.5	1.2	20.0	28.0	30.5	58.0				350	Crashed at center bearing; broko with fiue splinters	530

Table III-BEHAVIOR OF THE PRINCIPAL WOUDS OF THE

Table III．－BEHAVIOR OF THE PRINCIPAL WOODS OF THE

Species	忘EE范O	State．	Locality．	Collactor．	Soil．	$\stackrel{\circ}{0}$ 능 E竑宸	Direction of grain．	corfyicient of ELASTICITY．		
87．Gleditschia monosperma ．．．．．．．．．．．． Water Locust．	760	Florida	Chattahoochee．．	A．H．Curtian ．．．．．	Alluvial	0.7628	20	1061	1149	1073
	760	．do	． 10	do	．do	0.7748	塈	1221	1101	982
88．ParkInsodia Torreyana．．．．．．．．．．．．．． Green－bark Aeacia．Palo Verde．	678	Arizona．．．．．．．．．．．	$\underset{\substack{\text { Lower } \\ \text { river．} \\ \ldots \text { ．do }}}{ } \quad$ Colorado	G．Engelmano and C．S．Sargent． ．．．．do \qquad	$\begin{gathered} \text { Sandy } \\ \text {...do } \end{gathered}$	$\begin{aligned} & 0.6705 \\ & 0.6727 \end{aligned}$		514		511
	678	do					良近	568	602	570
91．Cercis Cauadenais \qquad Nedbud．Judas Tree．	436	Tendearee．．．．．．．．	Naabvilla．．．．．．．．．．．		Limeatone ．．．．．．．．．	0.7323	（6）	814	904	
	1080	Missouri．．．．．．．．．．	Allenton．．．．．．．．．．．．	G．W．Xetterman．．		0． 6341	IT0	588	610	
	1090	．．do	．．do	do	．．do ．．．．．．．．．．．．．．	0.6534	F	452	514	649
	1091	．do	do	．do	．do	0.6250	（0）	651	723	516
93．Prosopis juliflora．．．．．．．．．．．．．．．．．．．．． Mesquit．Algaroba．Honey Locust． Honey Pod．	680	Arizona ．．．．do \qquad	Tucson ．．．．．．．．．．．．．	C．S．Sargent．．．．．．	．．．．．．．．．．．．．．．．．．．．．．．．	$\begin{aligned} & 0.7818 \\ & 0.7614 \end{aligned}$	苞忽	542	618	409
	080								630	574
	927	Texas ．．．．．．．．．．．．	Auatin ．	C．Mohr	Rich，calcareons．．	0.7750	第	509	501	412
94．Prosopis pubescena ．．．．．．．．．．．．．．．． Screw Mean．Screw－pod Mesquit． Tornilla．	$\begin{aligned} & 658 \\ & 658 \end{aligned}$	Californla．．．．．．．．．．	Fort Yuma．．．．．．．．．	G．Engelmann and C．S．Sargent． ．．．．do o ．．．．．．．．．．．．．	Sandy ．．．．．．．．．．．．．	$\begin{aligned} & 0.8068 \\ & 0.8568 \end{aligned}$		814787	$\begin{aligned} & 835 \\ & 814 \end{aligned}$	902
			．．．．do ．．．．．．．．．．．．．．．							886
98．Acacia Greggii Cat＇s Claw．	697	Arizona ．．．．．．．．．．	Santa Rita mount－ aina．	．．．．do ．．．．．．．．．．．．．	Dry，gravelly．．．．．	0.8714	苞	1039	2085	
100．Lyailoma latisiliqua Wild Tamarind．	509	Florida．．．．．．．．．．．	Boca Chica Key ．．．	A．H．Curtiss ．．．．	Coral ．．．．．．．．．．．．．．	0.5670	包	488	401	553
102．Chrysobalanus Icaco ．．．．．．．．．．．．．．．． Coeoa Plum．	480	．．．do ．．．．．．．．．．．．．．	Bay Biscayne．．．．．．．	．．．．do ．．．．．．．．．．．．．．	Swampy．．．．．．．．．．	0． 7753	良	957	1110	961
103．Prupus Awericana ．．．．．．．．．．．．．．．．．． Horse Plum．	68	Miasouri ．．do	Allenton do	G．W．Letterman．．	Rich upland ．．．．do \qquad	0.6003	泷	814	769	649
							怱	651	734	703
	334	Texas	Dallas	J．Revorchon ．．．．．	Rich．	0． 8045	堲	921	976	1240
104．Pronus angustifolia \qquad Chuckazav Plum．Mog Plum．	435	Tennessee．．．．．．．．－	Nashville．．．．．．．．．．．．	A．Gattinger．．．．．．	River bluff	6． 6538	（G）	634	603	469
107．Prunus emarginala，var．mollis ．．．．	$\begin{aligned} & 968 \\ & 968 \end{aligned}$	Warhington ter－ ritory．\qquad	Wilkeson....do\qquad	G．Engelmannand C．S．Sargent． ．．．．do \qquad	Low，rich ．．．do \qquad	$\begin{array}{\|l\|l} 0.4699 \\ 0.4750 \end{array}$		$\begin{aligned} & 751 \\ & 751 \end{aligned}$	849872	687670
108．Prunna aorotina ．．．．．．．．．．．．．．．．．．．．．．．Wild Black Oherry．Kium Oherry．	15	Massachuaetta ．．do \qquad	Roxbury \qquad do \qquad	C．S．Sargent．．．．．．．	Gravelly．．．．．．．．．	0.7438	罗峏	775	849	1171
						0． 7386	脗	1017	888	1084
	115^{1}	Michigan \qquad ．．．do \qquad	Ladsing \qquad Dansville \qquad Allenton \qquad	$\begin{gathered} \text { W.J. Beal } \\ \text {....do } \\ \text { G. W. Letterman. } \end{gathered}$	．．．．do ．．．．．．．．．．．．．	0.5315	dall	651	073	579
	115^{2}				do	0． 5048	䲩	814	849	724
	127	Misaouri．．．．．．．．．．			Rich loam ．．．．．．．．	0．6790	d10］	976	976	965
	127		Allenton ．．．．do	．do	．．do	0.6670	良这	1221	1028	096
	148	Illinois	Waukegad ．．．．．．．．．	12．Dougla	Gravelly	0．6471	（a）	976	930	037
	317	Mlchigan．．．．．．．．．	Hersey ．．．．．．．．．．．．	W．J．Beal	Rich．．．．．．．．．．．．．．．	0.5315	［1］	775	800	689
	317	do	．do	．do	do	0.5403		842	828	691
	368	Vermont．	Chariotte	C．G．Pringla．．．．．．	Gravelly	0.5648	良	764	857	769
	400	Virginia or Mid． d／e Statea．	Charlestown Nary． yard．	S．H．Pook		0． 5028	dim	651	718	042
	763	Florida．．．．．．．．．．．	Chattahoochee．．．．．．	A．II．Curtias ．．．	Clay ．．．．．．．．．．．．．．．	0． 0105	易	970	958	797
	763	do	．．do	．．．do	．．．do ．．．．．．．．．．．．．	0． 6244	包	888	976	792
	1053	Massachusetta．．．．	Topsficid．	J．Robinsou．．．．．．．	Gravelly．．．．．．．．．．	0.6751	㫚	740	760	820
	1053	do	．．．do	do	．do	0.6716	ITII	608	775	820
110．Prunna demiasa \qquad Wild Cherry．	637	Califomia．．．．．．．．	Strawberry vnliey ．．	G．Engelmant and C．S．Sargent．	Low，rich ．．．．．．．．．	0.7636	（6）	814	769	691
111．Pruncs Caroliniana．．．．．．．．．．．．．．．	1092	Florida ．．．．．．．．．．．	Jacknonville．．．．．．．．	A．II．Curtiss ．．．．．	Sandy ．．．．．．．．．．．．．	0.8785	\％	697	718	586
Wid Peach．	1062	Texas ．．．．．．．．．．．．．	Victoria	C．Mohr ．．．．．．．．．．．	Rlch，moist ．．．．．．．	0． 8698	的	1101	1097	1260
	1062	．．．do	．．．do ．．．．．．．．．．．．．．．．	do	．do	0.8481	良忽	976	096	430

UNITED STATES UNDER TRANSVERSE STRAIN—Continued.

deflection, in mllimeters, under a pressure, in kilogramb, of-														Remsrks.	
50	100	150	200	$\begin{gathered} 0 \\ \text { (sot.) } \end{gathered}$	200	250	300	350	400	450	500	550			囫
4.6	8.5	13.3	43.2	0.6	18.0	23.5	29.0		42.0				458	0.66 sap-wood; hroke with leng, fine splinters	760
4.0	8.2	12.8	18.5	1.0	19.5	25.5	33.0	40.5	52.5				419	Specimen cross-grsined; split with grain	760
9.5	10.0	28.4	43.2	6.4	46.0								218	Specinıen cross-grained; hroke at knot	678
8.6	16.2	25.4	35.2	3.0	37.7								247	Long, obliqno fracture.	678
6.0	10.8	15.8	22.9	1.6	22.7	29.7	38.0	50.0	68.0				428	Broke with long, large splinters	436
8.3	16.0	24.5	35.0	2.5	37.0	48.0	74.5						313	. . do	1089
10.8	19.0	29.7	43.0	6.0	45.5	61.0	,.....						277	. .do	1090
7.5	13.5	20.0	28.4	1.5	30.0								220	Broke at knot near support	1091
0.0	15.8	23.0											200	Specimen cross-grained; shert, ohlique frsctnre	680
8.2	15.5	22.5	30.7	1.6	31.7								245	..do	680
9.6	19.5	31.5											170	Specimen cross-grained; shattered	927
6.0	11.7	17.7	24.3	1.3	25.0	32.0	41.0						385	Specimen cross-grained; shert, obliquo fracture.	658
6.2	12.0	17.3	24.5	2.2	25.5	33.5	42.0	53.0					378	. do	658
4.7	9.0	14.0	18.1	0.6	18.6	24.0	29.0						338	Broke at knot near the end.	697
10.0	21.2	32.7	51.3	8.0	55.3								236	Specimen çrosangrained	509
5.1	8.8	13.0	17.8	0.9	18.0	23.0	31.5	40.0	66.6				410	Broke with long splinters, stsrting at knot.	480
6.0	12.7	19.3	27.4	1.7	28.0	37.0	\ldots						277	Broke with long splinters.	68
7.5	13.3	21.0	28.9	1.6	29.0	36.5							300	Broke with leng, large splinters	68
5.3	10.0	'14.9	20.7	0:5	20.6	27.0	34.0	41.0	50.0	61.5	84.0		529	Broke with fine splinters	334
3.7	16.2	20.0	38.5	4.5									200	Specimen cross-grained, defective; square break en tension side ...	435.
6.5	11.5	17.7	25.2	1.5	26.0	36.0	\ldots						293	Broko with long, coarse splinters	968
6.5	11.2	17.0	24.7	1.7	20.0	36.5							286	Shattered.	068.
6.3	11.5	17.3	23.6	1.0	24.2	30.0	38.5	46.5	57.5	73.0			500	. do	15
4.8	11.0	15.9	22.0	0.0	22.0	28.0	35.7	44.0	55.0				467	Broke with fino splinters	15
7.5	14.5	21.7	32.0	1.0	32.5								247	Long, oblique fracture.	115
6.0	11.5	17.6	24.6	1.0	25.0	32.5	45.0						309	..do	115
5.0	10.0	15.2	21.5	1.3	22.0	28.5	36.5	47.0					386	Broko with long splinters.	127
4.0	0.5	15.0	21.0	1.2	22.0	28.0	30.0	45.0	57.5				425	Shattered; long splinters.	127
5.0	10.5	16.0	21.5	1.0	22.5	28.0	36. 5	45.5					400	Broke with fino splinters.	148
6.3	12.2	10.0	26.8	1.1	27.5	36.0							204	Shattered; long splinters on corner	317
5.8	11.8	10.7	$\underline{36.0}$	0.6	24.0	30.0	...						295	Broke with long splinters on corncr.	317
6.4	11.4	10.7	22.6	1.0	23.0	30.0	40.5						328	Broko with coarse splinters.	368
7.5	13.6	21.5	30.7	1.7	31.6	43.5	..						274	Specimen cross-grained; single fracture	406
5.0	10.2	15.2	21.0	0.6	21.8	20.5	34.0						340	Broke with fine splinters ...	763
5.5	10.0	15.5	20.8	1.0	21.5	27.0	35.0						338	Broke with long, largo splinters	763
6.6	12.7	19.5	27.0	1.5	28.0	30.0	46.0	62. 5					350	Specimen cross-grained; long fracturo	1053
7.0	12.6	19.5	26.5	1.5	27.0	34.0	46.0	59.5					350	. . do	1053
6.0	12.7	10.5	28.4	1.6	28.3	30.5							295	Specimen gross.grsined; split with the grsin.........................	637
7.0	13.6	22.0	32.3	4.0	34.0	73.0							250	Specimen cross.grained..	1032
4.1	8.9	13. 5	18.4	0.2	10.0	23.5	20.2	35.7	41.7	53.0	74.0		540	...do	1062
5.0	9.8	14.0	18.5	0.6	19.0	24.5	32.0	37.5					307	Specimen cross-grained; shattered	1062

Table III．－BEHAVIOR OF THE PIRINCIPAL WOODS OF THE

Species．		Stato．	Locality．	Collector．	Soll．			confricient of ELASTICITY．		
113．Prunus iliclfolia Iblay．	1158	California	Santa Craz	C．L．Anderson．		0.9734		751	751	820
	1158	．．．do	． do	do		0.9678	［1］1］	697	712	74．
117．Pyrus cormatia American Crab．Suect－scented Crab．	1087	Peungylvania．	Nazarcth	J．Henry．	Molat ．	0.7357	苞家	751	751	441
	1087	． 10	．．do	．do	．．${ }^{\text {do }}$	0.7228	㐌	729	723	42
	1088	．．do	．do	do	do	0.7240	23	508	405	452
	1088	．．do	．do	．do	．do	0．7382	它	651	630	623
12I．1＇yrus sambucifulia \qquad Mountain dish．	410	Vermont．．．．．．．．．．	Momat Mansfield ．．．	C．G．Pringlo．．．．．．	Gravolly	0.5727	（（））	535	626	445
125．Cratagua arborescens	60^{\prime}	Georgia．．．．．．．．．．	Ogecchee ．．．．．．．．．．．	A．H．Curtiss ．．．．．	Low	$\begin{aligned} & 0.6818 \\ & 0.7126 \end{aligned}$		$\begin{aligned} & 814 \\ & 788 \end{aligned}$	814	700
	607	do	．．do						763	443
126．Cratagus Crus－galli CoclispurThorn．Nenocaslle Thorn．	328	Massachusctts．．．． ．．．．do	Brookline．．．．．．．．．．．	J．Robinson ．．．．．．．	Luam ．．．do	$0 . \cos 6$		513	575	619
	328			．．do			良気	508	514	580
	1003	Misвопrl ．．．．．．．．	Alleuton．	G．W．Lotterman－	Low，wet	0． 7767	（till	751	775	703
	1093	do	do	．d	．${ }^{\text {do }}$	0.7940	最	781	394	708
128．Cramegus	940	Texaa ．．．．．．．．．．．．	Victoria Saint Louis	C．Mohr II．Ergert	Alluvial ．．．．．．．．．．	$\begin{aligned} & 0.7565 \\ & 0.8670 \end{aligned}$		021	913	800
	1081	Missouri．．．．．．．．．．						842	858	616
120．Cratiogus tomentosis Black Thorn．Pear Haw．	$\begin{aligned} & 420 \\ & 426 \end{aligned}$	Tenuesse\qquad	Nasbvillo \qquad ．．．．do \qquad	A．Gattingcr \qquad do \qquad	Limestone. . . .do	$\begin{aligned} & 0.7166 \\ & 0.7527 \end{aligned}$		740	740	$\begin{aligned} & 098 \\ & \tau 20 \end{aligned}$
								651	723	
132 Crategus spathulata Smallfruited IIaw．	926	Louiaiana．．．．．．．．．	Webstcr parish．．．．．	C．Molir．．．．．．．．．．．	Clay ．．．．．．．．．．．．．	0.7102	Es	718	674	
434．Cratagns astivahs May Hav．Apple Haw．	239	South Carolina．．．．	Bodneau＇s Depot．．．．	1I．W．Havenel ．．．．	Damp，rich．．．．．．．．	$0.72 ง 9$ 0． 79.3	（6）	595	592	712
135．Crategus flava，var．pubescens．．． Summer Hav．Nied Havo．	767	Florida ．．．．．．．．．．．	Aspalaga ．．．．．．．．．．．	A．H．Curtiss．．．．．．	Dry clay．．．．．．．．．		T60	740	708	724
137．Amelanchier Cauadeasia ．．．．．．．．．． Juneberry．Shad Bush．Service Tree．May Cherry．	241	Konlucky ．．．．．．．．．	Bromfield Station．．． Danvers	W．M．Linney J．Robinson．	Warerly shalo．．． Loam \qquad ．．．do \qquad	0.8312	I他	1191	1201	1256
	849	Massachnsotts．．．．				0.8472	En	$\begin{aligned} & 1085 \\ & 1163 \end{aligned}$	1149	
	849	．do	．．．do			0.8410			1291	$\begin{aligned} & 1085 \\ & 1054 \end{aligned}$
HAMAMELACEE．										
39．Llquidambar Styraclfua ．．．．．．．．． Sweet Gum．Star－leaved Gum． Liquidamber．Red Gum． Bitsted．	546	Alabana．．．．．．．．．．	Kemper＂a mill \qquad ．．．．do \qquad	C．Mohr ．．．．．．．．．．．	Rich，alluvial ．．．．．	0.5448	［1］	003	610	520
	546	．．．．do ．．．．．．．．．．．．．．		．．．．do ．．．．．．．．．．．．．		0.5796	\square	688	674	003
	1095	Arkansaa．．．．．．．．．．	Liltle Rock. . . .do	G．W．Lctterman．	．．．．do	0.6012	Imil	888	930	776
	1005	．．．．do ．．．．．．．．．．．．．．				0.5765	\square	976	996	703
	$\begin{aligned} & 1173 \\ & 1173 \end{aligned}$	New Jorsey	Mount Holly	S．P．Sharplea ．．．．	Clay	0.6080	TITH．	751	769	750
			．．．．do ．．．．．．．．．．．．．．．			0.6477	E	007	400	738
	1181	Missiasippi ．．．．．．．	Yazuo Rivor botlom	IR．Abbey．．．．．．．．．	Alluvial	0.5864	易s	751	781	5.53
	1181	do	do	d	do	0.6001	磪	787	849	544
	1182	．．do	do	do	．do	0.6250	did	076	1017	670
	1182	do	．do ．．．	do	．do	0.6375	曶	1163	1061	614
	1183	．．do	do	do	do	0.5409	第	814	888	061
	1183		do	do	do	0.6159	良离	1017	97 C	616
RHIZOPHORACEX．										
140．Rhizophora Mangle Sangrore．	185	Forida ．．．．．．．．．．．	Bay Biscaync．．．．．．．	A．H．Curtiss ．．．．．	Salt－marsh．．．．．．	1．1480	208	1627	1627	1308
	485	do		do	．．．do	1.1335	忽荗	1627	1684	1106
Comblietaches．										
141．Conocarpus erecta．．．．．．．．．．．．．．．．．	489	do	．${ }^{\text {do }}$	do	．do	1.0240	29	814	913	$\times 30$
	489	．．do	． 10	do	do	1．0202	0	1062	1130	1035
142．Lacuncularia ravemoan ．i．．．．．．．．．．	507	do	Sugar．Leaf Souud ．．	．do	．do	0.7384	遈家	698	634	272
White Button Wood．White Man－ groke．	507	do	．．．do ．．．．．．．．．．．．．．．．		．．do ．．．．．．．．．．．．．	0．7230	䘩	775	814	761

UNITED STATES UNDER TRANSVERSE STRAIN—Continued.

defletion, in mhllimetrrs, undee a pressurs, in khoorams, of-														Remarks.	
50	100	150	$\mathbf{8 0 0}$	$\underset{(\text { set. })}{0}$	200	250	300	350	400	450	500	550			啹
C. 5	13.0	20.0	29.0	3.0	30.0	38.0	56.0	00.0					350	Broke with large splinters.	1158
7.0	13.7	22.3	32.5	4.5	35.0	48.0	67.0						318	Broke with long splinters.	1158
6.5	13.0	21.5											188	Broke at knot ..	1087
6.7	13.5	21.3											180	Specimen eross-grained .	1087
9.0	21.0	33.5											193	Specimen cross.grained; defective.....................................	1088
7.5	15.5	24.6	36.5	4.8	37.0	51.5							268	Specimen cross-grained ..	1088
8.5	15.8	25. 5	\ldots										190	Broke at knots.	410
6.0	12.0	18.3		1.5	27.1	35.0	47.0						341	Specimen cross grained; broke with one long splinter...............	607
6.2	12.8	20.5										189	Broke at knot.	007
9.0	17.0	28.0	39.0	4.9	41.0	58.0							264	Broke with long splinters..	328
9.6	19.0	28.5	42.3	5.0	44.0							250	Specimen cross-grained; split with grain	328
6.5	12.6	20.0	99.0	2.1	29.0	38.0						300	Square hreak ...	1093
C. 5	12.3	18.1	26.0	2.0	28.5	34.2	46.5						302	Broke at knots..	1098
5.3	10.7	1a.0	22.0	1.0	23.0	29.0	37.0	49.5					367	Speeimen eross-grained; split with grain	949
3. 8	11.0	18. 8	25.5	2.1	26.0	34.0							263	Broko at knot...	1081
6.0	13.2	20.2	29.0	2.2	30.5	39.2							298	Broke with a long splinter, starting at knot...........................	426
7.5	13.5	21.0	30.3	3.0	32.0	41.0	59.0						307	Broke at knot..	426
6.8	14.5	22.5	33.0	2.5	34.0								210	. .do	928
8.2	16.5	28.0	33.0	5.0	41.7	57.0	83.0						304	. .do	239
6.8	13.8	23.5	34.0	4.3	35.0	44.5	70.0						309	Broke at knot with a largo splinter .	767
4.1	8.0	11.5	14.8	0.0	14.0	18.5	22.3	28.0	32.5	40.5	51.5		536	Broke with fine splinters	241
4.5	8.5	12.6	17.0	0.8	17.4	22.0	29.0	38.0	47.5				463	do	840
4.2	8.0	12.4	17.0	0.7	17.7	23.0	30.0	37.0	57.0				450	. do	849
8.1	16.0	24.5	30.2	3.4	37.0								222	Sap-wood; split lengthwiee withont breaking	546
7.1	14.5	23.5	34.5	4.5	36.2	62.5							283	Sap-wood; crushed and splintered	546
5.5	10.5	18.0	22.5	1.0	23.2	30.2	45.0						331	Long, shattered break	1095
. 5.0	9.8	14.5	20.6	0.9	21.0	28.5							300	..do	1095
6.5	12.7	20.5	31.0	3.5	32.0	45.0	79.0						320	Sap-wood; broke with fino splinters.	1173
7.0	12.0	19.7	29.0	2.7	30.4	42.0	67.0						315	...do	1173
6.5	12.5	19.0	32.2	3.0	35.0	...							238	Eroke with long splinters.	1181
6.2	11.5	17.6	28.7	4.0	31.0								232	. do	1181
b. 0	9.0	14.8	20.4	1.0	21.2	29.2							286	Crnshed at center bearing; broko with one long splinter	1182
4.2	9.2	14.7	22.0	1. 2.	23.0	36.0							262	Broko with long, coarse splinters.	1182
6.0	11.0	17.8	25.0	1.4	25.6	35.0							282	Crushed at center bearing; shattered.	1183
4.8	10.0	15.5	$\underline{3} 3.7$	2.4	26.0	40.0							263 do ...	1183
3.0	6.0	8.4	11.0	0.2	11.0	13.5	17.0	20.0	24.0	28.0	32.2	38.3	558	Broke with coarse splinters	485
3.0	5.8	¢. $\overline{\text { ¢ }}$	11.5	0.2	11.5	14.5	18.0	21.8	25.7	20.0			472do	485
6. 0.0	10.7	16.0	21.6	0.0	22.5	28.3	35. 5	47.5					354	Specimen cross-grained; split with graln.	489
4.6	8.6	12.7	17.5	9.1i	17.5	22.0	28.5	35.0	45. 0				450	Splinter*a.	480
7.0	15.4											116	Broke at knut ..	507
6.3	12.0	19.5	25.7	1.2	28.5	36.0	51.0	.					320	Shattered...	507

Table III－BEHAVIOR OF THE PRINCIPAL WOODS OF THE

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Speciea．} \& \multirow[b]{2}{*}{} \& \multirow[b]{2}{*}{State．} \& \multirow[b]{2}{*}{Locality．} \& \multirow[b]{2}{*}{Collector．} \& \multirow[b]{2}{*}{Soll．} \& \multirow[t]{2}{*}{} \& \& \multicolumn{2}{|l|}{corpricient of elastictit．} \& \multirow[t]{2}{*}{}

\hline \& \& \& \& \& \& \& \& \& \&

\hline MyRTACESF． \& \multirow[b]{3}{*}{1118
1125} \& \multirow[b]{3}{*}{Florida．．．．．．．．．．．} \& \multirow{3}{*}{Lost Man＇a river．．．．} \& \multirow[b]{3}{*}{A．H．Curtiss ．．．．．

．．．do ．．．．．．．．．．} \& \multirow[b]{3}{*}{| Humns and coral． |
| :--- |
| Coral |} \& \multirow[b]{2}{*}{1.0635} \& \multirow[t]{2}{*}{易} \& \multirow{3}{*}{1027} \& \multirow[b]{2}{*}{1575} \& \multirow{3}{*}{1055}

\hline 141．Engenia buxifolia ．．．．．．．．．．．．．．．． \& \& \& \& \& \& \& \& \& \&

\hline Gurgeon Stopper．Spanish Stop－ per． \& \& \& \& \& \& \multirow[t]{2}{*}{0.9405} \& 皆 \& \& \&

\hline 146．Eugenia monticola \& 1135 \& ．．．．do ．．．．．．．．．．．．．． \& Umbrella Key ．．．．． \& ．．do ．．．．．．．．．．．．．．．． \& Coral \& \& \& 1017 \& 1085 \& $$
1172
$$

\hline \multirow[t]{2}{*}{| 148．Eugenia procera |
| :--- |
| Ked Stopper． |} \& \multirow[t]{2}{*}{\[

$$
\begin{aligned}
& 1127 \\
& 1127
\end{aligned}
$$

\]} \& \multirow[t]{2}{*}{．．．．．do ．．．．．．．．．．．．．．．．．．．．．．．．．．．．} \& \multirow[t]{2}{*}{| Mlami \qquad |
| :--- |
| do |} \& \multirow[t]{2}{*}{\qquad} \& \multirow[t]{2}{*}{} \& 0．0906 \& U1］ \& 1101 \& 1200 \& 1170

\hline \& \& \& \& \& \& \multirow[t]{2}{*}{1.0023} \& 退 \& 1163 \& 1177 \& 1172

\hline \multirow[t]{3}{*}{151．Cornus florida Flovering Dogtood．Box Wood．} \& \multirow[b]{3}{*}{67} \& \multirow[b]{3}{*}{| Missouri |
| :--- |
| ．．．do |} \& \multirow{3}{*}{Allenton．．．．．．．．．．．．} \& \multirow[b]{3}{*}{| G．W．Letterman．． |
| :--- |
| ．．．．do \qquad |} \& \multirow[b]{3}{*}{} \& \& 17 T \& \& \&

\hline \& \& \& \& \& \& \multirow[t]{2}{*}{$$
\left\lvert\, \begin{aligned}
& 0.8937 \\
& 0.8904
\end{aligned}\right.
$$} \& （11］ \& 787 \& \& \[

872
\]

\hline \& \& \& \& \& \& \& ＝ \& 787 \& 840 \& 1012

\hline \multirow[b]{8}{*}{| 152．Cornus Nuttallii．．．．．．．．．．．．．．．．．．．．．．． |
| :--- |
| Flowering Dogwood． |} \& 761 \& Florida ．．．．．．．．．．． \& Chattahoochee．．．．．． \& \multirow[t]{2}{*}{A．H．Curtiss ．．．．．} \& Calcareous．．．．．．．． \& \& Es \& 787 \& 794 \& 820

\hline \& 812 \& West Vlrginia ．．． \& \multirow[t]{2}{*}{Grafton．．．．．．．．．．．．．} \& \& Dry.................. \& 0.7795 \& 它 \& 787 \& 849 \& 951

\hline \& 812 \& ．．do ．．．．．．．．．．．．． \& \& C．G．Pringle．．．．．． \&do \& 0.7947 \& Es \& 763 \& 814 \& 886

\hline \& 1077 \& Miasouri． \& \multirow[t]{2}{*}{Allenton．．．．．．．．．．．．} \& G．W．Letterman． \& Gravelly \& 0.8047 \& ［1］1］ \& 827 \& 849 \& 1015

\hline \& 1077 \& \multirow[t]{2}{*}{} \& \& \multirow[t]{2}{*}{．．．．do ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．} \& \multirow[t]{2}{*}{| ．．．do \qquad |
| :--- |
| Flinty \qquad |} \& \multirow[t]{2}{*}{| 0.8490 |
| :--- |
| 0.8387 |} \& \％ \& 888 \& 957 \& 966

\hline \& 1092 \& \& .. do \& \& \& \& U17． \& 810 \& 647 \& 710

\hline \& \multirow[b]{2}{*}{960} \& \multirow[t]{2}{*}{Oregon
....do

\qquad} \& \multirow[t]{2}{*}{| Portland |
| :--- |
| da |} \& \multirow[t]{2}{*}{G．Engelmann and C．S．Ssrgent．

\qquad} \& \multirow[b]{2}{*}{} \& \multirow[t]{2}{*}{\[
$$
\begin{aligned}
& 0.7763 \\
& 0.7807
\end{aligned}
$$

\]} \& \multirow[t]{2}{*}{\[

$$
\begin{aligned}
& \text { 要 } \\
& \text { שית }
\end{aligned}
$$
\]} \& \multirow[t]{2}{*}{814

976} \& \multirow[t]{2}{*}{976
1085} \& \multirow[t]{2}{*}{930
1052}

\hline \& \& \& \& \& \& \& \& \& \&

\hline \multirow[t]{2}{*}{153．Nyssa capitata．．．．．．．．．．．．．．．．．．．．．． Gopher Plum．} \& \multirow[t]{2}{*}{\[
$$
\begin{aligned}
& 605 \\
& 605
\end{aligned}
$$

\]} \& \multirow[t]{2}{*}{Georgia．．．．．．．．．．．．．} \& \multirow[t]{2}{*}{| Ogeechee river \qquad |
| :--- |
| ．．．．do \qquad |} \& \multirow[t]{2}{*}{A．H．Curtiss ．．．．．} \& \multirow[t]{2}{*}{\[

$$
\begin{aligned}
& \text { Swampy } \\
& \ldots . . . \text { do } . . .
\end{aligned}
$$

\]} \& \multirow[t]{2}{*}{\[

$$
\begin{array}{r}
0.5739 \\
0.6170
\end{array}
$$
\]} \& \& 810 \& 638 \& 694

\hline \& \& \& \& \& \& \& \& 697 \& 723 \& 688

\hline \multirow[t]{2}{*}{| 154．Nysse sylvatics |
| :--- |
| Tupelo．Sour Gum．Pepperidge． Black Gum． |} \& \multirow[t]{2}{*}{\[

$$
\begin{aligned}
& 233 \\
& 235
\end{aligned}
$$

\]} \& \multirow[t]{2}{*}{| Sonth Carolins |
| :--- |
| ．．．do \qquad |} \& \multirow[t]{2}{*}{Honncan＇s Depot ．．．} \& \multirow[t]{2}{*}{H．W．Ravenel ．．．．} \& \multirow[t]{2}{*}{\[

$$
\begin{gathered}
\text { Mack. } \\
\ldots \text { do. }
\end{gathered}
$$

\]} \& \multirow[t]{2}{*}{\[

$$
\begin{aligned}
& 0.5966 \\
& 0.5735
\end{aligned}
$$

\]} \& 第运 \& 687 \& \[

781
\] \& 783

\hline \& \& \& \& \& \& \& （IIII \& 888 \& 849 \& 745

\hline \& 517 \& Tennessee \& Cumberland river．．． \& \multirow[t]{2}{*}{A．Gatlinger．} \& \multirow[t]{2}{*}{Clay} \& 0． 5979 \& （1］id \& 814 \& 814 \& 689

\hline \& 750 \& Florida ．．．．．．．．．．． \& \multirow[t]{2}{*}{Chattahoochee ．．．．do \qquad} \& \& \& \multirow[t]{2}{*}{$$
\begin{aligned}
& 0.7885 \\
& 0.7936
\end{aligned}
$$} \& \multirow[t]{2}{*}{} \& 800

763 \& 840 \& 996

\hline \& 750 \& \& \& A．H．Curtiss \& Clay \& \& \& 763 \& 781 \& 952

\hline \& 813 \& West Vlrginis ．． \& Grefton．．．．．．．．．．．．． \& \multirow[t]{2}{*}{C．G．Pringle．．．．．．} \& \multirow[t]{2}{*}{\qquad} \& ． 0.6222 \& 20 \& 939 \& 888 \& 783

\hline \& 813 \& \& .do \& \& \& 0.6447 \& 第 \& 888 \& 1039 \& 899

\hline \& 833 \& Massachnsetts．．．． \& West Newbury ．．．．． \& J．Robinson．． \& Rich \& 0.7364 \& 艮㐍 \& 740 \& 769 \& 912

\hline \& 833 \& \& do \& do \& ． do \& 0.7534 \& 良 \& 051 \& 814 \& 73 B

\hline \& 834 \& \& do \& ．do \& ．do ．．．．．．．．．．．．． \& 0． 7233 \& 贸 \& 660 \& 713 \& 827

\hline \& 834 \& \& d \& do \& ．do \& 0.6800 \& ¢ \& 814 \& 872 \& 924

\hline \& 835 \& ．．．do \& Chebaceo pond． \& do \& \& 0.7914 \& 垦 \& 642 \& 051 \& 717

\hline 155．Nyssa nniflora．．．．．．．．．．．．．．．．．．．．． \& 128 \& South Carolina．．．． \& Bonnear＇a Depot ．．． \& H．W．Ravenel ．． \& Swampy ．．．．．．．．．．． \& 0.6648 \& \％ \& 342 \& 592 \& 701

\hline Large Tupelo．Cotion Gum． Tupelo Gum． \& 128 \& ．．．do \& ...do \& ．do \& ．．do ．．．．．．．．．．．．．． \& 0.8135 \& T11H \& 561 \& 564 \& 724

\hline \& 550 \& Alabame \& Stockton． \& C．Mohr． \& Alluvial ．．．．．．．．．． \& 0.5455 \& 包 \& 444 \& 471 \& 628

\hline \& 550 \& \& ... do \& \& ．．do ．．．．．．．．．．．．．． \& 0． 5228 \& 㮣 \& 595 \& 455 \& 687

\hline \& 604 \& Georgia \& Ogeechee river \& A．H．Cnrtiss ． \& Swampy ．．．．．．．．．．． \& 0.5730 \& ［1］ \& 456 \& 444 \& 635

\hline \& 004 \& \& \& ．do \& ．．．do ．．．．．．．．．．．．．． \& 10．5841 \& 等 \& － 488 \& 444 \& 553

\hline CAPRIFOLIACEE． \& \& \& \& \& \& \& \& \& \&

\hline 15f．Samhucus glauca \qquad siluer． \& 681 \& Califomis．．．．．．．． \& Contra Costa county． \& ．G．R．Vaaey ．．．．．． \& Gravelly．．．．．．．．．． \& 0． 5216 \& 毠 \& 34才 \& 305 \& 370

\hline \& $110{ }^{2}$ \& 2 Kentucky ．．．．．．．． \& Mercer connty．．．．．． \& W．M．Idnney．．．． \& Modson River \& 0.8352 \& （b） \& 7 976 \& 957 \& 729

\hline Black Have．Stag Bush． \& \& \& \& \& | shale． |
| :--- |
| Treuton limestono | \& 0.9034 \& （c） \& ） 004 \& 1028 \& 1228

\hline \& 730 \& \& Bsinbridge \& A．H．Curtlss ．．．． \& \& ． 0.8270 \& 䐴 \& 708 \& 734 \& 898

\hline RUMACEE． \& \& \& \& \& \& \& \& \& \&

\hline 16．Exosumma Caribrum． \& 400 \& Florida \& Uppor Metacombe \& A．H．Curtiss ．．．． \& Coral ．．．．．．．．．．．．． \& ． 0.9554 \& 原 \& 7 1136 \& 1085 \& 950

\hline \& $$
466
$$ \& ．do \& Koy． \& . . .do \& ．．．do ．．．．．．．．．．．．．． \& ． 0.9524 \& \& 1221 \& 1302 \& 1055

\hline \& \& \& \& \& \& 0.5425 \& \％ \& － 660 \& 683 \& 405

\hline 101．Thuckneya jubens．．．．．．．．．．．．．．．．．．．．．．．．
fieorgia Jark． \& 381 \& South Carolina．．．． \& Bluftron ．．．．．．．．．．．．．． \& －J．п．Mehtehamp \& Sendy \& － 0.012 \& － \& \& \&

\hline
\end{tabular}

UNITED STATES UNDER TRANSVERSE STRAIN—Continued.

deflection, in milimeters, under a pressure, in khlograms, of-														Remarks.	
50	100	150	200	$\stackrel{c}{\text { (set.) }}$	200	250	300	350	400	450	500	550			
3.0	6.2	9.5	12.5	0.3	13.0	16.5	21.0	20.0	32.0	43.5			450	Shattered.	1118
4.8	9.0	13.5	18.5	0.7	18.5	23.5	30.3	37.0	46.5	61.5			500	Splintered.	1135
4. 1	8.1	12.5	17.0	0.9	17.9	23.0	28.5	36.0	46.5	62.0			503	Specimen ecoss-grained; splintered	1127
4.2	8.3	12.5	16.8	0.6	17.5	22.4	29.0	35.0	46.0	61.5			500	Broke with cearso splinters	1127
6.2	12.0	18.2	26.9	2.2	27.6	36.0	50.0	70.0					372	Broke at knot	87
6.2	11.5	17.0	24.5	2.0	25.5	32.7	43.1	58.2	84.5				432	Maximnm deflection, 120 millimeters ; broke with large splinters...	67
6.2	12.3	20.0	29.0	3.5	31.2	40.5	56.0						350	Broke with large splinters	761
6.2	11.5	18.2	26.7	2.2	28.5	36.5	52.0	68.0	110.0				408	Square hreak on tension side with large flakes......................	812
6.4	120	18.7	27.0	2.5	28.8	39.0	55.0	87.0					378	Square break on tension side with long splinters....................	812
5.9	11.5	167	23.8	1.5	24.5	32.0	43.0	60.5	81.5				433	Brake with long, cearse splinters	1077
5.5	10.2	10.3	24.0	1.6	24.6	32.0	42.5	57.0					412	Slattered one end	1077
8.0	15.2	24.5	35.3	3.0	37.0	48.5	76.0	$\cdots .$					303	Specimen cross-grained; breke with large splinters	1002
6.0	10.0	14.5	20.3	0.9	20.3	25.5	32.0	42.5					397	Brake with long splinters.	960
5.0	9.0	13.2	17.5	0.4	18.0	23.0	29.0	34.0	43.0				449	...do	960
8.0	15.3	25.0	37.3	3.3	38.0	52.0							296	Broke short and split in axis...	605
7.0	13.5	20.3	29.5	2.2	30.5	41.0							285	Shattered..	605
7.1	12.5	19.6	27.5	1.6	28.2	37.5	51.0						334	..do	235
5.5	11.5	18.0	2 5. 5	1.5	26.3	34.7	54.5						318	. .do	235
6. 0	12.0	10.5	28.7	2.4	29.5	38.0							294	Long split at one end ...	517
0.1	11.5	17.7	25.7	2.0	20.0	34.0	40.0	63.0	93.0				425	Broko into fime splinter	750
0.4	12.5	19.0	26.5	2.0	27.5 !	, 37.0	48.5	74.0	120.0				406	Deflected 150 millimeters snd slipped from the besring	750
5.2	11.0	16.2	22.5	0.4	230	29.0	38.0					334	Shattered	813
5.5	0.4	13.5	18.0	0.4	18.2	22.0	27.5	35.0					388	. . lo	813
6.6	12.7	19.7	28.7	2.3	29.7	38.0	53.0	84.0					380	Sap-rood; broke with fine splinters.	833
7.5	12.0	10.0	S9.0	3.0	30.0	42.0	57.5	95. 0					377	. do	833
7.4	13.7	21.6	32.0	3.5	33.5	45.0	66.0	116.0					353	. do	834
6.0	11.2	17.0	25.0 !	2.2	25.2	32.5	44.0	84.0					39.4	Failed from small splinter on corner	834
7.6	15.0	26.0	38.5	5.5	40.6	58.0	100.0						306	Crumpled on compression side at knot; square break with fine splinters.	835
9.0	16.5	20.0	44.5	7.2	46.0	60.0						299	Breke with long splinters.	128
8.7	17.3	28.7	43.0	7.5	45.5	66.2	108.0						309	Shattered at the end.	128
11.0	20.7	33.0	48.5	8.5	53.0	82.0							268	Crusled at center learing; broke with long splinters	550
8.2	16.7	26.7	39.0	5.0	40.8	50.5							203		550
10.7	22.0	36.5	57.5	11.6	62.5	108.0						271	Failed from large splintor on corner	604
10.0	22.0	30.5	58.0 !	12.2	60.5								236		604
14.0	32.0	35.0										158	Broke at knot	681
5.0	10.2	14.7	20.6	3.5	21.0	27.0	34.0						311	. do	110^{2}
5.4	9.3	14.6	10.7	0.9	21.0	26.0	33.5	41.0	51.0	68.5	02.0		524	Broko at knot with one large splinter	1104
6.9	13.3	20.7	20.0	3.0	31.0	40.0	53.0	71.0		383	shattered.	739
4.3	9.0	11.5	15.5	0.4	15.7	20.0	23.7	28.0	33.5				408	Specimen cross-grained; split with grain.	466
4.0	7.5	11.4	15.2	0.5	15.4	10.0	23.0	28.5	33.0	38.0			450	Broko with flne splinters	460
7.4	14.3	22.2							173	Broke at knot with large splinters.	381

Table III.-BEHAVIOR OF THE PRINCIPAL WOODS OF THE

UNITED STATES UNDER TRANSVERSE STRAIN-Continued.

TAmA: H1.-BEHAV1OR OF THE PRINCHPAL WOODS OF TUE

UNITED STATES UNDER TRANSVERSE STRAIN-Continued.

drflection, in mhlimetelis, cmder a pressure, in kilograme, of-														Remarks.	
50	100	150	200	$\begin{gathered} \mathbf{0} \\ \text { (set.) } \end{gathered}$	200	£50	300	350	400	450	500	550			员
5.0	9.5	14.3	19.3	0.6	20.0	25.0	31.2	38.0	47.0	61.0			471	Specimer cross.graince; split	2861
7.0	14.0	21.0	29.6	2.7	32.0	44.2	66.0						305	Failed at knet	$286{ }^{2}$
2.5	14.0	21.4	30.6	2.3	32.0	41.0	59.0						313	Broke with coarse splinters; shattered	291
8.0	150	23.4	33.0	3.5	35.0	46.5	66.5						312	Shattered.	518
5.2	10.3	15.0	208	0.7	21.5	28.0	39.0						350	Square break on tension side with split in axis.	964
5.8	10.4	16. 0	22.0	0.9	22.5	30.0	41.0						323	Shattered	964
5.5	10.7	16.2	21.6	0.5	22.5	28.0	36.0						343	Specimen cross-grained; squaro break on tension side, flake on compression side.	1001
6.6	12.5	18.7	25.7	1.0	26.0	34.0	45.5						311	Spectmer cross-grained ...	1001
10.2	20.6												149 do	1024
11.5	23.0												150	Specimen crossograind ; flake on tonsion sido	1024
4.6	9.0	13.0	18. C	0.6	18.5	23.5	30.2						315	Spectimen cross-grained; bieak started at knot	1030
4.0	8.0	12.5	17.0	0.4	17.3	21.8							327	--...do	1030
6.0	12.0	10.0	26.5	1.6	28.7	39.0							261	Squaro break on tension sido with cearse splinters.................	122
5.0	9.2	14.0	20.6	1.7	21.0	28.0	36.0	49.0	74.0				417	Square break with two largo splinters	147
5.5	11.5	18.0	26.0	2.5	27.5	35.7	53.0	81.5					350	Square breat on tension side with conrse splinters	839
6.0	12.8	22.0	31.2	3.9	34.0	48.0	71.0						346	. . do	839
8.0	16.5	26.5	38.7	4.5	42.0	61.0							298	Squaro break on tension side; slattered.	737
5.6	12.0	18.0	27.0	2.0	28.2	38.0	64.5						313	. . do	737
4.0	7.3	11.2	15.3	0.4	17.7	20.0	24.5	31.0	37.0	46.0	60.5		513	Squave breat on tension sido, splitting in the axis with flne splinters-	283
4.6	8.0	12.7	17.8	1.0	18.0	23.5	30.0	37.0	48.0				433	Sap-woud; specimen cross-grained; broke with long splinters	283
4.5	B. 6	13.0	18.0	1.0	18.2	23.5	30.0	39.5	55.0				400	. do	584
5.5	0.8	14.6	10.8	0.5	20.0	25.0	32.0	40.0	50.0				403	Specimen cross-graincl; splintored...................................	1137
11.5	24.6	36.0	53.0	6.0	56.0	77.5	131.0						308	Specimen cross.grained; squaru break on tension side; split in axis.	942
7.3	14.0	21.5	31.0	2.4	32.5	44.0							291	Broko with coarse splinters	540
8.5	16.0	26.0	37.6	4.5	41.0								223	Crushed at center hearing; breke with coarse splinter	744
8.6	18.4	31.0	63.0	17.5									200	do	744
6.0	11.0	18.0	25.2	1.4	26.0	35.0							295	.lo	744
6.2	11.5	17.0	23.5	1.2	24.3	33.2							287	Crushed at centor beariug ; splintered	38
6.4	12.3	20.4	30.0	2.6	30.7	53.0							251	...do	38
0.5	19.0	31.6	50.5	6.0									200	Spliuteral on corner	62
8.8	17.0	20.0	37.0	3.0	38.0	54.0							294	Sprimen cross-grained	682
4.2	8.3	12.5	17.5	0.7	18.0	23.0							30	Specinern cranseraind; hroke at knots.	490
3.7	7.3	11.1	15.0	0.4	15.7	20.0	25.0	30.0	37.0	46.0			439	lroke with fime aplintera	490
10.5	21.0												127		474
4.2	8.0	12.4	16.8	0.4	17.5	21.5	26.5	32.0					400	Shatterel; 1atgo dakes on teusion sido	473
4.8	0.3	13.5	19.0	0.8	18.7	24.0	31.0	30.0					383	Lroke with coarse splinters ...	473
6.0	11.3	18.0	24.3	1.0	25.0	31.0	40.0	50.0					303	Shatterch	585
6.0	12.0	17.0	24.3	1.2	24.2	30.2	40.0	51.0	377	- do	685
6.0	11.5	16.6	23.6	1.3	24.9	32.0	42.0	57.5					350	Broke with coarse splintors ...	340

Table III-BEHAVIOR OF THE PRINCIPAL WOODS OF THE

UNITED STATES UNDER TRANSVERSE STRAIN—Continued.

deflection, in mllimetere, inder a preseube, in kilograme, of-														Remarks.	
50	100	150	200	$\underset{(\text { get. })}{\mathbf{0}}$	200	250	300	350	400	450	300	550			
8.6	17.4	28.0	40-7	4.5	44.0	66.0							378	Broke short and split.	71
8.5	15.6	23.4	33.8	2.7	35.5	47.5	80.0						302	Broke with fue splinters.	71
11.0	21.0	35.5											154	Sbattered	387
8.0	15.0	23.2	34.0	3.1	36.0								300	. de	387
7.5	14.5	22.0	32.5	2.0	34.0	47.0							281	Coarso splinters	446
8.6	18.0	29.6	$4 \overline{4} .0$	6.2	46.0	74.0							256	Shattered	814
10.0	19.5	30.0	42.0	4.9	45.7	63.0							287	. do	814
14.0	29.0	47.0											157	Square break on tensien side with large flake on compression side..	854
15.0	31.0	52.0											198	do	854
4.5	8.5	12.5	17.0	0.6	18.0	22.5	29.5	37.0					400	Specimen cross-grained; split	703
5. 5	9.9	15.7	21.0	1.1	21.5	27.5							288	. do	703
5. 0	0.4	14.6	20.0	1.5	20.6	26.0	33.6					\cdots	340	Slantered.	468
5.8	11.2	17.3	24.5	1.6	25.0	32.5							252	Sap-wood; shattered	459
c. 5	12.2	10.0	27.2	2.0	27.5	36.5	46.5	61.0					352	Specimen cross-grained; sap-wood; ghattered.	459
6.5	12.5	20.0	29.0	2.2	30.0	42.0	56.0						345	Broke with coarse splinters	324
6.0	11.9	10.8	23.5	1.3	245	31.0	30. 2						313	Sbort break on tenaion side	324
7.8	160	27.5	40.5	6. 0	42.0	57.0	84.0						330	Sap-woud; shattered.	929
9.4	18.2	31.0	44.0	6.5	47.0	65.0	97.0						325	...do	9×9
5.0	10.0	15.2	23.3	1.7	23.6	30.5	47.0						334	Cruslued at center hearing; bent and splintered withont breaking..	30^{1}
5.5	10.5	16.0	22.8	1.6	23.5	31.5	43.0	59.2	112.0				400	do	134
4.8	9.2	14.0	20.0	1.0	20.8	27.0	36.0	51.2	86.0				400	do	134
6.0	10.4	15.5	20.3	1.0	20.3	26.9	35.0	47.5	G0. 0				415	Thin scale on tension side	369
6.0	11.4	17.0	24.2	1.2	25.2	32.6	50.0						304	Broke with coarse splinters ; started at knot	429
5.0	10.0	15.0	20.8	1.0	21.3	20.5	35.0	45.8	64.0				422	0.5 sap-weod; splintered on corners.	19
5.3	10.4	14.7	20.4	0.5	21.0	27.0	34.7	45.7	60.0				448	. . do	19
6.8	13.6	21.2	31.0	3.1	31.0	41.0	60.0	.---					339	Broko with coarse splinters.	281
6.8	13.0	21.0	30.0	3.0	31.0	41.8	61.5						344	- ${ }^{\text {do }}$	281
6.5	12.2	19.5	28.0	3.0	29.0	40.0	56.6	347	Broke witll fine splinters	958
0.7	11.7	17.0	25.0	2.2	25.6	34.5	47.7	69.5					382	Sqnare breat on tension sido, spliting in axis	058
12.2	25.0	41.5	69.2	14.4	73.0					245	Specimen cross-grained ..	1036
0.0	10.0	31.0	46.2	6.2	+9.2	71.3	...						277	Broke with fine splinters.	1036
5.9	11.5	17.5	25.5	2.0	26. 2	33.2	45.6	63.0	98.2			431	-..do	1049
6.0	11.4	17.5	24.0	1.9	24.0	31.5	44.0	60.0					394	Buckled on compression side; fine splinters	1049
4.3	8.2	12.0	16.7	0.5	17.0	22.0	26.5	31.0	40.8	49.0	64.0	85.0	581	Broke with fino splinters.	$116{ }^{1}$
6.0	10.0	16.1	22.0.	0.6	23.0	29.0	38.5	53.5			378	Crushed at center bearing; breke with fine splinter	116^{2}
4.3	8.0	12.2	16.5	0.4	16. 7	21.0	20.5	34.0	46.0	65.0			450	Broke with fino splinters	116^{3}
4.9	9.1	13.7	18.2	0.7	18.4.	-23.0	30.0	38.0	48.5	67.0			467	. do	116^{5}
4.0	7.5	11.0	14.9	0.5	15.0	10.0	24.0	29.4	38.7	52.0			497	. do	314
4.2	7.7	11.7	15.8	0.5	10.0	20.3	26.0	32.0	44.0				442	..do	314
7.5	14.0	22.4	33.2	3.5	35.0	45.0	64.0	01.5	371do	428
10.8	20.4	32.0	45.6	5.5	47.0	64.5	94.0						318	Sap-wood; failed at knot	133
8.5	17.2	28.8	43.5	7.2	45.5	59.3	85.5					300	0.75 heart woed; splinured at corners	380
8.0	15.6	23.7	34.0	3.3	35.3	48.0	61.0	06.0					350	Broke with cearge splinters	533
7.0	14.2	23.0	32.3	2.4	33.5	44.5	64.0	97.0					334	Slipped from bearings; buckled largo splinter on corner.	533

table ili．－behavior of the principal woods of the

Species．		State．	Locality．	Collector．	Soil．		\square	COEPPICIRET OF ELABTICITY．		Modaln of raptnre．
22\％．Planera aquatica ．．．．．．．．．．．．．．．．．．．	758	Florida．．．．．．．．．．．	Chattahoochee．．．．	A．II．Curlisa ．．．	Rich，allovial ．．．．．	0.5761	纺	509	488	574
	758	do	．．do	．do	．do	0.5926	dilim	097	751	820
	018	do	．${ }^{\text {do }}$	C．Mohr	． d o	0.5113	易	407	415	460
228．Cellia occideutalis \qquad Sugarberry．Ifackberry．	75	Missoari．．．．．．．．．．	Allenton．	G．W．Lotterman	Low，rich ．．．．．．．．．	0.5887	［1］d］	610	665	712
	75	do	．do	．do	Allavial ．．．．．．．．．．	0.6023	E	787	849	808
＇	300	Texss	Dallas	J．Roverchon	．do	0.7239	最	555	552	738
	306	do	do	．do	．do	0.7558	易	478	528	755
	306	do	．do	do	．do	0.7708	（10］	751	697	846
	873	Massachusctts．．．．	Salem	J．Robinson．．．．．．．	Leam ．．．．．．．．．．	0.7727		542	564	771
	873	．do	do	do	．do	0.7020	园	626	610	762
	1111	Missourl．．．．．．．．．．	Saint Louis ．．．．．	Henry Eggert．．．．．	Molat loam ．．．．．．．	0.7613°	2	787	763	891
	1111	do	do	．do	．do．．．．．．．．．．．．．	0.7154	永	976	939	820
228．Celtis occidentalia，var．soticalata．． Mackberry．Palo Blanco．	652	Arizona ．．．．．．．．．．	Santa Rita mount－ ains．	G．Engelmann and C．S．Sargeut．	Dry ．．．．．．．．．．．．．．．	0． 7920	㖇	869	851	588
	652	do		C，bisargea．	do ．．．．．．．．．．．．．	0.7882	笏	978	1085	1024
229．Fioun auroa．．．．．．．．．．．．．．．．．．．．．．．．．．	486	Florida．．．．．．．．．．．．	Bay Biscayne．	A．II．Curtiss ．．．．．	Coral ．．．．．．．．．．．．．．	0.3215	第	317	257	278
	480	．．．do	．do	do	．do ．．．．．．．．．．．．．．	0.3061	易	222		109
231．Ficus pednnenlata． \qquad Hild Fig．India－rubler Tree．	508		Locs Chica Key	．do	．．do ．．．．．．．．．．．．．．	0.5085	苞	407		230
232．Morus rubra． ，Med Mulberry．	132	Missourl．．．．．．．．．．	Alleuton．．．．．．．．．．．．．	G．W．Letterman．	Rich loam ．．．．．．．．	0.6876	包	1039	1062	937
	132	．．．do	do	do	．do	0.6784		814	904	848
	1244	．do	do		Upland ．．．．．．．．．．．．	0.6516	IITm	939	888	768
	1245	．do	．．do	．do	do	0.6506	DI	718	814	738
	1246	do	．${ }^{\text {do }}$	．do	do	0.6312	1 I	697	723	696
	1255	．do	do	．do	Rich．．．．．．．．．．．．．．．	0.6875		751	697	745
	1255	do	do	do	do	0.6646	笣	634	678	698
234．Maclara anrautiaca． \qquad Osage Orange．Bois d＇Are．	253	Texas ．．．．．．．．．．．．	Dallas	J．Reverchon ．．．．	Bottom ．．．．．．．．．．．．	0.8011	em	857	930	1111
	253	． do	．do	do	．．．do ．．．．．．．．．．．．．．	0.7027	酔	939	957	1150
235．Platanns occidentalia． Sycamore．Button Wood．But． ton－vall Tres．Water Beech．	21	Massachunetts．．．．	Arnold Arhoretum	C．S．Sargont ．．．．．．	Drift ．．．．．．．．．．．．．．	0.5724	哏	407	454	468
	126	Miasourl．．．．．．．．．．	Allenton．	G．W．Letterman．．	Rich，allavial ．．．．．	0.6125	IIIII	888	976	782
	126	do		do	．do ．．．．．．．．．．．．．．	0.6295		1136	1190	642
230．Platauns racemosa ．．．．．．．．．．．．．．．． Sycamore．Button Trood．	686	California．．．．．．．．．	Carmel river．	G．R．Vasey．．．．．．．	Clay ．．．．．．．．．．．．．．．	0.5170	易	620	622	586
	680	do		do ．．．．．．．．．．．．．．	do	0.4812	，	595	620	537
237．1＇latanus Wrightii． sycamere． JUGLANDACEE． 238．Juplaas cincrea－ Ihutternut．White Walnut．	648	Arizona	Santa kita monut． ains．	G．Engelmannand C．S．Sargent．	Rich，gravelly ．．．．	0.5170	\％	407	425	468
	648	do		．．do ．．．．．．．．．．．．．．	．．．do ．．．．．．．．．．．．．．	0.5369	שי3	531	488	387
	16	Mraxachusetta．．．．	Arnold Arloretum．	C．S．Sargent ．．．．．	Drift ．．．．g．．．．．．．．	0.4829	听	634	051	368
	16	．．do	do	do	do	0.4579	－	763	787	688
	76	Minsoüri．	Allenton．	G．W．Letterman．．	Moist，alluvial ．．．．	0.4318	23	814	888	687
	76	d	．．do	do	do	0.4375	23	976	1017	649
	76^{2}	do	do	．．do	Rich，moist up－	0.4943	苞	1136	1221	696
	123	Michigan．．．．．．．．．	Dansville．	W．J．Bcal．．．．．．．．	Gravelly clay．．．．．	0.3864	包	607	697	560
	393	Michigan	Lansing	．．．d	Gravelly loam ．．．．	0．3205	易勿	488	424	328
	1057	Massachusutts．．．．	Topsifield ．．．．．．．．．．．	J．Robinson ．．．．．．	Drift	0． 5284	dll	814	－ 814	818
230．Juglana nigra Ghack Walnut． \qquad	112	Missouri．．．．．．．．．．	Allentom．	G．W．Letterman．．	Allavial ．．．．．．．．．．	0.5852	垩	904	1030	1029
	117	دtichigan．．．．．．．．．	1）ansvillo ．．．．．．．．．．．	W．J．Beal．．．．．．	Gravelly．．．．．．．．．．	0．5852	包	904	976	760
	149	1llinoia	Waukegan	Robert Douglaa．．．	Loam．．．．．．．．．．．．．．	0．6031		872	976	728

UNITED STATES UNDER TRANSVERSE STRAIN-Continted.

table ill－behavior of the principal woods of the

Specles．		Stato．	Locality．	Collector．	Soil．			COEPPICRENT OF ELABTICITY．		Modalus of rnptnre.
227．Planera aquatica ．．．．．．．．．．．．．．．．．．．	758	Florida ．．．．．．．．．．．．	Chattahoochco．．．．．．＇	A．II．Curtiss ．．．．．	Rich，alluvial ．．．．．	0.5701	旨	509	488	574
	758	do	do	．do	．do ．．．．．．．．．．．．．．	0.5926	（17］）	697	751	820
	918	do	do	C．Mohr	．do	0.5113	篤	407	415	460
228．Celtia occidentalis． \qquad Sugarberry．Hackberry．	75	Missonri．．．．．．．．．．	Allenton．．．．．．．．．．．．	G．W．Loiterman ．．．．do \qquad	Low，rich \qquad Allnvial	$\begin{aligned} & 0.5887 \\ & 0.6023 \end{aligned}$	研	010	665	712
	75	do	．do				\％	787	849	808
	306	Texss	Dallas ．．．．．．．．．．．	J．Reverchon	．do	0.7239	㐌的	555	552	738
	306	．do	．do	do	．do	$0.75 \% 8$	鵖	478	528	755
	300	do	do	．do	．do	0．7700	IIII］	751	697	846
，	873	Massachosctts．．．．	Salew	J．Rohinaon．．．．．．．	Loam ．．．．．．．．．．．．．．	0.7727	ITIH	542	564	771
	873	．do	．do	do	．do	0.7920	国	626	610	762
	1111	Missouri．．．．．．．．．．	Saint Louis	Henry Eggert．．．．．	Molat loam ．．．．．．．．	0． 7613	翟	787	763	801
	1111	do	．do	．do	．．do	0.7154	笏	978	939	820
228．Celtha occidentalis，var．rotlculata．． Hackberry．Palo Elaneo．	652	Arizona ．．．．．．．．．．	Santa Rita mount－ ains．	G．Engelmannand C．S．Sargent． ．．．．do \qquad	Dry ．．．．．．．．．．．．．．．	0.7920	$\frac{\pi}{2 \pi}$	669	651	586
	652	．${ }^{\text {do }}$			．do ．．．．．．．．．．．．．．	0.7882		978	1085	1024
229．Ficua aaroa．．．．．．．．．．．．．．．．．．．．．．．．．	480	Florida ．．．．．．．．．．．	Bay Biscayne．．．．．．．	A．II．Cartiss ．．．．．	Coral	$\begin{aligned} & 0.3215 \\ & 0.3061 \end{aligned}$	笏	$\begin{aligned} & 817 \\ & 222 \end{aligned}$	257	278
	480	．do		do						109
231．Ficus pednacnlata． \qquad IVid Fig．India－rubber Tree．	508	．do ．．．．．．．．．．．．．．	Boca Culca Key	do	．do ．．．．．．．．．．．．．．	0.5085	包	407		230
232．Mortus ruhra．．．．．．．．．．．．．．．．．．．．．．．．．．．． Red Mubberry．	$\begin{aligned} & 132 \\ & 132 \end{aligned}$	Missoari．．．．．．．．．．	Allenton．．．．．．．．．．．．	G．W．Letterman．	Rich loam \qquad ．．．do \qquad	$\begin{aligned} & 0.6876 \\ & 0.6784 \end{aligned}$	家	1039	1062	937
		．do	．do				［1］	814	904	848
	1244	do	do	do	Upland ．．．．．．．．．．．．	0.6516	［1］1］	939	888	768
	1245	do	do	do	．．do	0.8506	［1］d］	718	814	738
	1246	do	do	．do	．do	0.0312	TIITH	697	723	096
	1255	do	do	．．do ．．．．．．．	Rich．．．．．．．．．．．．．．	0.6875	侐	751	697	745
	1255	do	do	．．do	do	0.6648	第	634	678	698
234．Maclura aurantlaca． \qquad Osage Orange．Bois d＇Are．	253		Dallaa	J．Reverchon ．．．．	Bottom	$\begin{aligned} & 0.8011 \\ & 0.7927 \end{aligned}$	$\frac{8}{2 \pi} 4$	857	930	1111
	253	...do	．．．do	．．．do	．．．．do		$1 \mathrm{mb}$	939	957	
235．Platamus oceidentalis \qquad Sycanore．Button Wood．But－ ton－ball Tree．Water Beech．	21	Massaehuaotta．．．．	Aruold Arhoretum ．	C．S．Sargoat．．．．．．	Drift ．．．．．．．．．．．．．．	0.5724	笣迆	407	454	468
	120	Miasouri ．．．．do \qquad	Allcaton．．．．．．．．．．．．．．	G．W．Letterman．	Rich，allarlal ．．．．．	$\begin{aligned} & 0.6125 \\ & 0.6295 \end{aligned}$	$\frac{\pi}{2 \pi}$	888	976	792
	120				do			1136	1190	642
230．Plataus racemosa ． \qquad Sycamore．Button trood．	$\begin{gathered} \mathbf{c} 80 \\ \mathbf{6} 86 \end{gathered}$	Californla ．．．．do \qquad	Carmel river. . . .do	G．R．Vagey ．．．．．．．	Clay \qquad ．．．do \qquad	$\begin{aligned} & 0.5170 \\ & 0.4812 \end{aligned}$	笣	626	022	586
							（1）］	595	626	537
237．1＇latanns Wrightii． Nycamore．	$\begin{aligned} & 648 \\ & 648 \end{aligned}$	Arizona \qquad ．．．do \qquad	Santa lita mount－ תins． ．．．．do	G．Engelmann and C．S．Surgeat． do \qquad	Rich，gravelly. . . .do	$\begin{aligned} & 0.5170 \\ & 0.5369 \end{aligned}$	登	407	425	468
								531	488	887
238．Juglawa ciucrea． Jitternut．White Walnut．	16	Mansachnsctts．．．．	Arwold Arboretum．．	C．S．Sargont ．．．．．	$\begin{gathered} \text { Drift } \\ \text {....do } \end{gathered}$	$\left.\begin{aligned} & 0.4829 \\ & 0.4579 \end{aligned} \right\rvert\,$	W10］	634	051	368
		．．．．do．．．．．．．．．．．．．．	．．．do ．．．．．．．．．．．．．．．．．	．．．do ．．．．．．．．．．．．．．			\＃	763	787	688
	7670	Missour	Allenton	G．W．Letterman．．	．．．．do \qquad Moist，allnvial \qquad ．．．． 10 \qquad	0.4318	䘩	814	888	
		．do					20	976	1017	649
	76	．．．．do \qquad Mlichigan \qquad Michiman \qquad Masanchusotls． \qquad	．．．．do Danavillo \qquad Lansing \qquad Topatield \qquad	．．do ．．．．	Ricl，moist up． land． Gravelly clay Gravelly loam Drift \qquad	0.4043 0． 3864 0.3205 0.5284	炰	1130	1221	696
	123			W．J．Beal \qquaddo \qquad J．Robinson \qquad			䍖	607	097	560
	393						笏	488814	424	328
	1037								814	818
230．Juglans nigra ．．．．．．．．．．．．．．．．．．．．．．．． Fack Folnut．	112	دlinsouri．．．．．．．．．．．	Allenton．．．．．．．．．．．	G．W．Lettermau．．	Allavial ．．．．．．．．．．	0.5852	最复	004	1030	1029
		Michigan ．．．．．．．．．	1ansvillo．	W．J．Beal．．．．．．．．	Gravelly．．．．．．．．．．	0.5852	等	004	970	760
	149	Hinois	Waukegan	Robert Ihoaglas．．．	Loam	0.6031	家	872	976	726

UNITED STATES UNDER TRANSVERSE STRAIN-Contimed.

deflection, in milimptees, undra a preseure, in kilograma, of-														Remarke.	
50	100	150	200	$\underset{\text { (set.) }}{\mathbf{0}}$	200	250	300	350	400	450	500	550			蛕
9.6	20.0	33.5	48.5.4	6.0	49.6								245	Sap-wood; broke through knot.	758
7.0	13.0	10.9	27.2	1.7	29.5	37.2	51.0	80.0					350	Specimen eross-grained	758
12.0	23.5	30.0											200	Broke with large splinters; shattered	918
8.0	14.7	23.0	33.0	3.0	34.4	45.5	78.0						304	Broke with coarse splinters	75
6.2	11.5	17.5	25.3	1.9	25.0	33.5	48.0						345	Failed by bending ; fino splinters	75
8.8	17.7	27.5	40.5	4.5	41.5	56.0	82.0						315	Specimea cross.grained; splinters on cerners at knete	306
10.2	18.5	29.5	42.7	5.5	44.5	60.0	87.0						322	Droke with large splinters	308
6.5	14.0	21.5	30.0	2.5	32.0	42.0	57.5	87.0					361	Bruke with large scale.	308
9.0	17.3	29.0	40.0	5.7	44.0	58.8	91.6						329	Sfuare break on teusion side with eoarse splinters.	873
7.8	18.0	25.2	37.6	4.8	30.0	53.0	82.5					325	Broko with eoarse splinters	873
8.2	12.8	20.0	28.0	2.3	29.0	37.3	51.0	74.0				380	Shattered; large, coarse spliuters.	1111
5.0	10.4	16.0	21.7	1.1	22.3	30.0	38.2						350	Broke at knot; enarse spinters	1111
7.3	15.0	25.0	37.0	5.3	38.0								250	Specimen eross-grained; split with grain	652
5.0	9.1	14.3	20.0	1.5	20.2	26.5	35.4	50.0	70.5				437	Specimen cross-grained; broke with large eplinters	832
15.4	38.0												119	Squaro break	480
22.0													85	.. do	486
12.0												98	Specimen cross-grained; split with grain	508
4.7	9.2	14.0	20.5	1.3	20.7	28.0	40.0	55.0					400	Broke with eoarso splinters	132
6.0	10.8	16.4	23.0	1.0	23.5	31.0	43.0	61.0					362	. do	132
5.2	11.0	15.8	22.6	2.0	23.5	32.3	46.0						327	Broke with thin fakes	1244
6.8	12.0	18.5	26.6	2.3	27.0	38.2	57.0						315	Failed from splinters on the corner	1245
7.0	13.5	20.0	29.0	2.6	30.3	42.0							297	Failed from thin seales on tension side	1248
6.5	14.0	21.4	32.4	2.8	32.2	43.2	70.0						318	Broke with large splinters	1255
7.7	14.4	22.2	32.5	3.0	33.5	44.3							298	. ${ }^{\text {do }}$	1255
5.7	10.5	15.2	0.2	0.7	20.6	27.0	31.5	38.5	47.0	56.4			474	Broke with due splinters	253
5.2	10.2	15.2	20.4	0.4	21.0	20.4	32.0	38.5	47.8	58.0			491	...do	253
12.0	23.0	38.0	55.7	9.2									200	Specimen eross-grainol; split with graln	21
5.5	10.0	14.5	19.8	1.0	20.8	25.0	33.0						338	Stuaro break with coarso splinters	126
4.3	8.2	12.3	17.0	0.8	17.5	22.6							274	. .do	126
7.8	15.7	24.4	36.8	3.5	$\cdot 38.3$	63.0							250	Mroke with fine splinters	686
8.2	15.8	24.6	33.0	4.9	41.0	-						220	Brolie with thin ilakes from tenaion side	688
12.0	23.0	38.7											200	Sperimen cross-grainel; sulit with grain	648
0.1	20.0	34.2											165	Speeimen cross-grained....	648
7.7	15.0	23.0											157	Spceimın cross-kramed; broke at small knots......................	18
6.4	13.4	19.0	27.5	2.0	28.0	38.2						285	Syuare loreak on tersion side; split in axis	10
6.0	11.0	$16.8{ }^{\circ}$	22.8	0.9	24.0	31.7							203		70
5.0	3.6	14.5	20.3	0.6	21.0	28.4							277	Crushed at center bearing; broko with long splinters	70
4.3	8.0	12.4	17.0	0.0	18.0	24.3							297	Crushoil at eenter beariog ; broko with fino splinters	76^{3}
7.0	14.0	18.5	27.0	2.1	29.0							239	siuare break	123
10.0	23.0										110	...do	393
6.0	12.0	17.7	24.0	1.0	24.0	31.0	40.0						349	Square break on tension side, splitting in axie; shattered..........	1057
5.4	0.4	14.0	10.0	0.3	10.2	24.0	29.5	35.6	44.0				430	Spuciman cross-graincal s shattered	112
5.4	10.0	14.8	20.4	0.6	20.5	25.5	32.3						227	. 10	117
5.8	10.0	15.4	21.6	1.3	21.8	29.7	42.0						310	Specimen cross-grained; long break otarted at small knet.	149

Table III.-BEDAVIOR OF TIIE PRINCIPAL WOODS OF THE

UNITED STATES UNDER TRANSVERSE STRAIN-Continued.

	defle	тIor,	IN MLI	LIMETE	R, un	Der	Prese	vine,	L5 Killo	ogram	8, OF-		关品		-
50	100	150	200	$\underset{\text { (set.) }}{\mathbf{0}}$	200	250	300	350	400	450	500	550		Remarks.	
5.0	10.0	15.0	21.6	0.6	21.7								250	Specimon eross-grained; shattered	318
5.0	10.5	16.0	21.9	1.0	21.7	28.0							285	Specimen eross-grained; split at corner	325
5.0	8.6	13.0	17.5	0.2	17.7	22.7	28.5	38.0					394	Crushed at center bearing; broke in long splinters.	407
5. 7	10.6	16.0	22.0	0.7	23.0	28.2	37.0	49.5					383	Square break; split from end to end	430
4.0	8.0	12.6	18.0	1.2	18.7	24.0	32.0	41.0					350	Square break on tersion side; split in axis	766
3.0	6.0	9.8	13.2	0.2	13.5	17.0	21.0	20.0	32.0	400			485	..do	760
4.0	8.2	12.7	17.5	1.0	18.0	23.0	$\because 9.5$	39.2					394	Specimet cross-grained	951
3.2	9.6	15.0	21.0	1.5	21.2	28.0	36.0	49. 5					400	Shattered	051
7.0	14.2	23.0											197	Specimen cross-grained; broko at knot.	415
7.4	14.4	21.5	20.0	2.0	29.4	38.5	50.0	68.5	112.0				405	Failed from splinters on corner	415
6.3	11.6	17.2	24.0	1.0									200	Speeimen eross-grained; broke at kno	672
7.8	14.0	21.5	30.0	1.6	31.2								222	Cross-quained; broke with large splinters	672
7.6	15.19	23.0											195	Defective speeimon: square break on tension side	322
5.4	10.0	15.7	21.4	0.0	21.6	28.0							288	Split; did not hreak	322
10.4	10.7	32.0	51.5	8.8	54.4								248	Specimen eross-graimed; square break on tension sido; split in axis	326
90	19.0	20.3	43.0	5.3	44.0	61.0							256	Square break on tunsion side; long splinters.	326
3.5	7.2	11.4	16.0	0.4	16.2	20.8	27.3	34.5	43.0	58.0	87.0		531	Sap-wood; broke with fime splinters	3
3.7	7.2	10.8	14.4	0.4	14. 5	18.2	23.5	30.0	37.0	50.7	75.0		533	do	3
4.2	8.0	12.2	17.0	0.9	17.6	23.0	29.5	3 E .0	44.0	60.4	82.0		540	Broke with fine splintors	29^{2}
3.0	7.0	10.5	14.0	0.6	14.2	17.6	21.7	26.5	32.0	40.0			451	Droko with long dakes from tonsion side	$118{ }^{2}$
3.1	6.3	9.0	12.1	0.2	12.4	15.5	10.0	23.0	$\bigcirc 0.5$				442	Broke with long, fine splinters	118^{3}
3.0	6.0	9.2	12.5	0.2	12.8	16.0	10.5	24.0	20.0	37.0			483	Broke witb large, charse aplinters	152
4.0	8.2	13.0	18.2	1.0	19.0	25.0	33.0	43.0	56.0	76.0			488	Sap-wood; broke with ine splint	249
4.5	8.4	12.7	16.8	0.6	17.3	21.5	28.5	36.0	46.0	64.0			485	do	249
4.0	7.4	11.2	15.3	0.8	15.4	10.2	25.7	33.5	45.0	57.0	84.0		530	do	249
3.7	6.6	10.0	13.0	0.2	13.2	16. 6	21.0	25.5	33.0	41.0	55.0	100.0	550	Crushed at eentor bearing ; fine splinter	531
3.6	7.0	10.2	13.2	0.3	13.5	17.0	21.0	26.0	33.0	40.6	55.0		550	do	531
3.2	6. 1	9.0	12.0	0.3	12.2	15.3	10.0	23.5	28.4	35.0	44.5	59.0	610	D.fletion of 88 milimetres under pressure of 600 kilograms; some crnshing at center bearing.	531
3.8	6.4	9.6	12.5	0.3	13.0	15.8	20.2	24.0	29.5	30.0	54.0		530	Crushed it eenter bearing; fine splintors...........................	539
3.3	6. 2	0.2	12.8	0.2	13.0	16.9	20.0	25.0	31.5	40.0	59.5		528	0.5 anjowood; erushed at ecnter bearing; fine splinters	530
3.2	6.0	0.0	12.0	0.2	12.5	16.0	19.7	24.5	30.5	...			44.4	Broke withlung splinters	816
3.0	6.0	8.6	11.5	0.3	11.5	14.2	18.2	22.5	28.5	36.0	49.5		519	do	816
6.1	10.0	14.6	20.0	0.9	20.4	26.2	35.0	45.0	58.0	81.0			485	Broke with fine splinters	1056
5.5	10.6	10.0	22.6	1.0	23.0	30.3	40.2	54.0	74.5	105.0			458	Sap-wood; broke with fine splinters.	1056
3.5	0.6	9.6	12.5	0.3	13.0	16.0	20.2	25.0	30.7	38.0	49.5	71.2	548	d	1097
4.0	7.2	10.5	14.2	0.5	14.4	18.0	22.5	28.9	37.0	48.0	70.0		500	0.5 sap-wood; broke with fine splinters.	1097
5.0	0.2	14.0	18.5	0.4	10.0	24.2	30.8	41.0	55.6	.-...			436	Broke with two large splinters on tension sido.	91
6.7	12. 5	18.5	$\because 6.2$	1.4	27.0	36.0	50.0				322	Failed from thin fakes on back	91^{2}
6.5	11.0	17.6	25.0	2.0	26.1	33.19	45.2	60.0	85.0	132.0	..		479	Slipped from bearings; splintered	383
7.4	13.4	21.5	30.5	3.2	31.0	40.0	53.0	78.5	102.5	104.0			450	Sap-weed; slipped from bearings; did not break.	383
5.2	9.0	13.2	18.3	1.0	19.1	25.0	31.4	41.4	54.5	75.0			495	Failed from thin flakes on brek.	383
5.0	10.2	15.0	20.5	1.1	21.0	28.0	36.0	46.0	52.0	91.0	185.0		500	Breke witu fine aplintera	391
5.2	9.7	14.7	20.0	1.0	20.6	26.5	34.0	43.0	61.5	84.0			470	0.5 sap-wood; bryke with fine splinters	391
6.0	11. 5	16.1	22.2	1.0	22.6	30.0	40.0	54.0	77.0	130.0			464	Did not break; pushed threugh tho bearings	1082
7.4	11.7	16.0	21.3	1.1	29.0	27.5	36.0	47.0	63.0	95.0			462	Broke with fine splinters.	1082
4.0	8.2	12.0	16.5	0.6	16. 6	21.0	27.5	35.0	45.0	66.5			488	...do	1164
3.6	6.4	9.5	12.8	0.4	12.7	16.0	20.0	24.5	30.3	37.0	40.0	65.0	577	...de	1164
4.0	7.0	10.2	13.6	04	14.0	17.4	22.0	27.4	33. 2	42.6	56.0		540	...do	1104

Table III.-DEHAVIOR OF TME PRINCIPAL WOODS OF THE

UNITED STATES UNDER TRANSVERSE ST1RAIN-Continned.

) ELEC	10x,	\% Mrli	Limete	8 P,	DER A	A 1 legs	12E, 1	Is ки.	Ram	OF-		$\left[\begin{array}{l} \ddot{G} \text { 岂 } \\ \hline \end{array}\right.$		
50	100	150	200	$\underset{(\sec .)}{\mathbf{0}}$	200	250	300	350	400	450	500	550		Remarks.	
4.0	8.0	11.5	15.6 6	0.5	10.0	20.0	25.0						333	Broke with eoarse splinters	1105
5.2	9.7	15.0	20.8	1.3	21.0	28.0	37.2	50.0	69.5	137.0			463	Fino splinters; net lroken	1160
4.0	7.0	10.5	13.5	0.5	14.0	18.0	24.0	2.4.0	50.0				435	Iroko with nine splintors	1170
5.4	10.3	15.3	22.0	1.4	23.0	29.6	41.5	58.0					392	Sap-wood; failed with two thin flakes on baek.	72
5.0	9.0	13.8	10.6	1.1	20.0	20.0	33.0	44.0	69.0				444	Sap-wool; lnoke with fine splinters	72
3.3	6.0	0.0	12.2	0.3	12.2	15.0	19.1	22.7	27.4	33.0	40.0	50.0	602	Brokn with coarse splinters.	254
6.0	10.4	15.0	21.4	1.1	22.0	28.0	37.1	47.0	01.0	k9. 0			480	Sap-wood; broke with flue splinters	348
5.5	10.0	14.5	20.4	1.0	20.5	27.0	34.0	44.0	57.5	79.7			450	0.5 smp -woud ; lroke with fine eplintor	0
5.0	9.2	14.2	20.0	1.1	20.7	26.2	35.0	44.2	60.0				450	..do...	0
3.9	7.0	10.9	14.2	0.5	15.0	18.3	23.6	31.0	36.0	40.0	60.2	70.0	578	Froke with fue splinter	88
4.7	8.5	12.5	17.5	1.1	18.0	22.5	30.3	37.5	40.0	60.0			500	. de	88
4.5	8.0	12.0	16.2	0.0	10.6	21.3	28.0	38. 2					374	.de	121 ${ }^{1}$
5.0	- 2.0	13.7	18.0	0.9	10.0	23.6	30.6	40.0	59.0	05.0			489	Broke with floe splinters	288
6.5	12.0	19.0	26.7	2.0	28.0	30.0	$4 \overline{4} .0$						344	Broke at linot with coarse splin	442
4.6	8.0	11.0	10.0	0.6	i6. 0	21.0	27.0	35.0	41.0	60.0			400	Broke with fue spliaters	538
4.6	8.0	19.7	17.1	0.6	17.0	23.0	30.0	30.5					396	. do	538
4.5	8.0	11.0	15.7	0.0	10.4	21.2	28.0	30.4	40.0	08.0			474	Square broak on tension sido ; split in axis	538
0.3	13.3	18.0	22.8	6.0	23.3	28.4	30.0	46.5	61.0	84.0			407	Sroke with fino splinters	1051
4.9	8.9	13.4	18.5	1.3	10.0	24.5	31.0	42.5	50.0	75.5			473	. do	1051
5.5	12.0	18.8	27.5	3.0	28.5	37.6	52.5	70.0	110.0			411	Broke with carse splinters; flaked on tension side	1098
6.8	13.0	19.2	28.0	2.6	28.8	37.5	51.6	73.0					309	...do	1008
7.4	13.7	21.0	31.5	5.0	32.5	41.4	57.0	85.0					380	Broko with coarso splinters	1168
6.1	11.1	16.1	23.0	2.2	24.2	31.6	41.6	55.0	73. 0	105.0			450	. ${ }^{\text {do }}$	1108
4.7	3.0	13.3	19.0	1.0	18.4	24.0	21.3	41.5	50.4	84.0			483	Broke with long splinter	153
6.4	12.0	18.5	20.3	2.2	27.5	37.0	50.5	70.5					300	Broko with floo splinters	838
5.1	9.0	14.0	19.0	1.1	19.0	24.7	32.5	42.5	50.7	74.5			470	do	838
4.5	8.6	13.7	18.4	0.6	18.7	24.0	30.6	39.0	51.0	68.5	103.0		518	Broke with long splinters.	838
4.0	7.5	11.2	14.0	0.3	15.0	19.0	23.7	30.0	36.0	45.0	58.5	77.0	553	Broke with fine splinter	237
3.3	6.0	0.0	11.6	0.1	12.0	14.7	18.1	22.0	20.0	31.2	38.5	48.0	637	Deflertion 63 millmeters with a pressure of 600 kilograms; broko with tloe splinters.	237
4.6	8.4	12.0	10.5	1.0	16.5	22.0	20.0	37.5	52.5	72.0			454	Shattered	129
7.5	14.0	21.0	30.5	3.0	31.2	41.2	57.2	86.0					393	0.5 sal-weod; failed from thates on back	302
5.0	10.3	15.2	21.5	1.2	29.0	30.0	42.0	56.5	82.0				400	Broke with lung aplinturs.	362
5.0	10.0	14.7	20.2	1.1	21.0	27.5	30.5	49.0	68.0	109.0			460	Broke with coarse splintera	302
5.0	0.0	13.5	18.0	0.7	18.2	23.5	30.2						336	Failed from loug spinter on corder	740
4.0	7.1	10.8	14.4	0.4	15.0	18.0	22.2	27.0	33.0	40.0	47.2		527	Broke with eoarse splinters	740
4.5	9.5	16.5	20.5	4.0									200	Specimen cross grained .	740
0.7	11.8	17.0	23.0	0.9	23.6							.-	240	Stunre break on teurion slde, splitting in nxis.	917
6.0	11.0	17.4	24.0	1.3	24.0	31.5	42.0	,				348	Shattered......	580
5.4	10.0	14.4	19.0	1.0	20.0	25.2	32.0	40.0	50.0				450	Square break on tension side; split io axis ; shattered	603
5.0	9.7	14.7	20.0	1.0	20.4	20.0	33.0	42.4	co. 0				434d dr	005
7.2	13.5	21.2	30.7	3.1	32.0	42.0	53.0						334	Square break on tension side; split io axis.	8
6.4	11.0	10.7	23.5	1.5	24.0	31.0	40.0	52.0	70.0				302	broke with lurge aphintera	8
4.3	8.6	13.0	17.6	0.4	18.0	23.0	30.5	38.6	48.5				439		32
6.0	10.5	15.0	20.7	1.0	21.5	28.2	37.0	47.5					389	Broke with small splinters .	32^{2}
5.4	10.3	13.5	21.5	0.7	21. E	28.6	37.0						340	Squnro break on tenskon sido, splitiong in axis.......................	32^{1}

TABLE III.-BEHAVIOR OF THE PRINCIPAL WOODS OF THE

UNITED STATES UNDER TRANSVERSE STRAIN-Continued.

deflection, ln mlimmeterg, under a pressure, in khograme, of-														Remarks.	
50	100	150	200	$\underset{\text { (set.) }}{\mathbf{0}}$	200	250	300	350	400	450	500	350			
5.0	0.5	14.4	20.0	1.0	20.0	26.2	34.0	43.5	57.5				437	Breke with fine splinters	49
6. 6	13.0	20.4	30.0	3.2	30.5	41.0	57.5						349	Square break en tension side, splitting in axis.	49
5.6	10.5	17.0	24.0	2.5	25.4	33.5	45.0	59.5	89.0				400	. do	49^{1}
6. 0	12.0	19.0	28.0	3.3	28.7	37.0	48.0						347	..de	49^{2}
5.6	10.7	16.5	23.4	1.8	24.0	31.0	42.5	55.0					393	. do	49
7.2	14.0	23.0	33.2	4.0	34.5	49.0							293	. do	113
6.0	10.9	16.2	22.7	1.5	23.3	32.5							294	Broke with small splinters; slightly crushed at bearing............	113^{2}
5.7	12.6	20.0	30.8	3.0	31.5								250	Breke with fioe spliaters	113^{2}
5.0	10.0	16.5	24.2	2.5	25.0	32.0	42.0	58.0	85.0				417	...do	113^{3}
3.6	7.2	11.0	15.3	0.5	15.4	20.5	26.5	33.0	45.5				450de	238
4.0	8.0	12.0	16.0	0.5	16.3	21.0	27.5	35.0	46.5	63.0			450do	238
4.2	8.0	12.0	16.3	0.6	16.6	21.2	28.5	36.0	49.2				447 do	250
46	8.2	12.7	17.5	0.7	17.7	22.5	30.0	36.5					396	Broke with large flakos.	250
00	11.6	18.0	26.0	2.2	26.5	3 B .3	55.0	.-.					326	Broke with fine sjlinters	251
4.2	8.0	12.0	16.0	0.3	16.1	21.0	27.0	33.5	44.5	61.5			452	Broke with largo splinters	251
5.0	10.0	16.0	22.8	1.5	24.0	30.5	39.5	53.5	70.0				445	Broke with fine splinters	2591
5.6	10.6	16.3	23.2	1.5	24.0	32.0	42.2	53.5					360	Broke with large scale.	2593
5.0	10.0	15.3	21.8	1.5	22.2	29.5	40.8						308	Breko with fiae splinters	403
5.8	11.5	17.8	25.3	2.2	27.0	30.5							279	Broke with large scale	403
8.6	16.5	26.0	41.8	5.6	43.5							208	Square break on tension side, splitting in	443
4.9	0.6	14.5	20.7	1.3	21.3	28.5	37.5	49.5	60.0				440	Broke witlı fine splinters	547
5.0	8.3	12.2	10.0	0.6	16.2	20.7	26.0	32.5	40.7	48.7	67.5		547	do	547
4.0	7.8	11.6	16.0	0.5	16.3	20.5	27.0	33.5	43.0	50.0			480	. do	748
3.7	7.5	11.0	15.0	0.5	15.5	19.6	25.0	32.0	41.5	51.2			492	.do	748
6.5	12.6	18.8	25.5	2.2	27.5	34.5	45.5	65.0	92.0				445	. do	749
6.0	12.5	20.0	20.0	3.0	30.0	42.0	73.0						320	Broke at knet	749
6.6	11.8	17.5	24.7	1.0	25.0	33.5	--.						300	Specimen cross-grained	895
7.0	13.5	20.6	29.0	2.0	29.6	32.0							300	Breke with fine splinters	895
4.4	8.2	12.7	17.1	0.7	17.5	22.3	28.5	37.0	47.0	60. 0			494	. do	1050
6. 2	13.0	19.5	28.0	2.4	28.5	36.0	50.0	68.5	100.0				444	. . do	1050
3.9	7.7	11.7	16.0	0.4	16.5	21.0	26.5	33.5	40.5				420	Broke with large splinters	1257
4.6	9.0	13.3	18.0	0.9	18.7	24.0	32.0	38.0					392	. de	1257
7.2	14.7	23.5	33.0	4.0	34.0	45.6	62.0	90.0	\ldots				374	Specimen cross-grained; splintered on both corners	670
6.4	12.7	18.7	27.3	2.5	28.4	37.0	50.5	75.0				363	Splintered on corner	cio
5.4	11.0	15.5	21.5	1.1	21.5	28.5	37.0	47.0	60.5				447	Square break on tension side, splitting in axis	985
6.0	11.6	18.0	25.0	1.7	26.0	33.0	44.0	57.5	75. 5				403	Specimen cross-grained	985
6.5	12.4	19.0	$27.0{ }^{1}$	2.0	27.3	34.7	45.6	62.0					392	Square break on tension side, splitting in axis	988
6.0	11.4	10.7	23.0	1.2	23.5	30.0	40.0	52.5	70.0				436	. . do	988
7.0	12.0	18.0	25.5	1.5	25.6	33.5	44.0	.-.				350	...do	1027
8.0	14.5	23.0	32.3	2.5	33.5	43.5	52.5	-...				300	. . .do	1027
5.5	10.5	10.0	22.3	1.0	29.3	29.0	36.5	49.0					393	Specimen cross.grained ; broke with long splinters	1023
7.0	14.0	22.0	31.0	2.2	31.0	40.7		-....		281	. do	1029
6.4	13.0	19.6	27.5	2.0	28.0	36.0	40.7	02.0	76. 5	105. 0			450	Square break on tensiou side, splitting in axis	37^{2}
6.4	11.5	17.5	24.0	1.1	24.6	32.0	40.0	50.6	67.5				429	..do	151
5.0	9.6	14.5	10.5	1.0	10.9	26.0	33.5	43.0	60.0				447	Broke with coarse splinters ...	151
6.4	12.5	19.0	28.2	3.0	20.2	38.0	50.8	6. 0					389	Square break on tension side, splitting in axis......................	256
8.0	15.5	23.0	32.5	2.7	33.7	43.5			...				289	...do	351
6.5	11.0	17.7	24.7	1.7	25.0	32.0	43.0	56.0					381	do	351

Table ilf.-beifavior of the principal woods of the

UNITED STATES UNDER TRANSVERSE STRAIN-Continued.

deflection, in millimeters, under a phessude, in kilograms, of-													弟要	Remarke.	
50	100	150	200	$\left\{\begin{array}{c} \mathbf{0} \\ \text { (set.) } \end{array}\right.$	200	250	300	350	400	4 40	500	550			
5.5	10.5	15.7	21.0	1.5	21.7	28.0	36.0						345	Splintered on corb	771
6.0	12.0	18.7	26.4	2.5	27.0								248	Square break	771
8.0	16.0	25.3	36.0	4.0	37.0	48.0	66.0						350	Broke with coarse splinters	417
6.5	13.6	21.7	31.0	2.7	31.9	41.5	58.0	84.0	145.0			426	Sap-woed; drew off bearings; fine splinters.	417
11.0	22.7												138	Specimen rotten; square break	525
0.5	18.5	30.3	43.5	3.2	45.0								247	Split at one end; square break on tensien side..	525
4.0	8.0	13.0	17.0	0.3	17.0	22.0	29.0	37.0	470	64.0			450	Broke with long splinter on corner	79
4.5	8.4	12.0	17.2	0.5	17.5	22.5	2.7	38.0	48.5	64.0			460	Broke with fine splinters	79
5.6	10.3	15.4	21.5	1.5	22.0	28.0	30.5	48.0	60.0	79.0	110.0		523	Broke with large splinter on corner	137
7.2	14.4	22.4	32.0	3.4	33.0	44.0							207	Specimen cross-grained; started at knot	143
4.8	9.5	14.0	19.0	1.0	20.0	25.7	335	41.5	54.3				413	Specimen cross-yrained; eplit	310
5.2	10.1	15.3	21.6	1.5	21.6	28.2	38.0	49.6					392	Splintered at corners	310
5.0	10.5	15.5	21.4	1.4	21.2	29.0	39.5	54.3	\ldots				295	Typical	432
4.7	8.5	13.4	17.6	0.6	17.9	23.0	30.5	40.0	54.5	73.0			450	Broke with fino splintors	831
7.0	13.5	20.6	20.0	3.3	29.7	40.2	56.0	73.2					390	...do	933
6.7	13.7	21.3	31.4	3.3	33.0	45.0	61.0						343	Squate break on tensiun side	933
6.0	11.7	18.0	25.5	2.5	26.8	34.0	40.0	62.0	79.0				449	Failed frorn small splinters on corn	1071
5.4	10.7	17.0	23.4	2.0	23.6	30.8	40.5	34.0	73.3				439	Failed from thin flakes on back.	1072
6. 4	12.0	18.2	20.1	2.5	26.3	34.4	47.0	025	88.5				441	Failed from fine splintera on corn	1073
4.7	9.1	13.4	18.0	0.8	19.2	24.0	31.0	41.0					369	Square break; crushed	545
4.0	8.0	12.0	10.0	0.5	16.1	20.4	27.0	33.0	43.0	56.0			489	Broke with fige splinte	545
3.8	7.5	11.7	16.0	0.5	10.0	$20.5{ }^{\text {b }}$	20.0	34.0	44.5				444	Failod from long splinters on tension side	545
3.0	6.3	0.5	12.5	0.4	12.9	16.0	21.0	20.2	32.7				435	Broke at knot in center of stick	762
2.8	6.4	9.4	12.5	0.5	12.5	18. 0	20.0	25.0	31.4	39.0			450	Square break on tension side.	762
B. 4	11.7	18.2	25.7	1.4	26.0	33.5	45.0	58.0	78.0	109.5			472	Broke with small splinters; drew off be	54
5.0	9.0	14.0	19.0	1.0	19.5	26.0	34.5	45.0	62.0				420	Broke with long splinters	54
5.0	9.0	13.7	19.2	1.0	19.0	25.3	33.0	42.5	57.5				400	Square break on teneion eide, splittiog in axis	$54{ }^{2}$
4.0	8.5	12.7	17.0	0.6	17.2	22.5	29.5	3J. 5	47.5				442	Breke with fine splinters	54^{3}
0.0	16.5	24.5	35.0	3.7	36.0								248	Breke at knot near the end	848
7.5	14.1	22.0	31.6	3.3	32.1	41.5	50.0						338	Specinen crose-grained; eplit with grain	848
4.5	9.0	13.5	18.5	0.9	13.1	24.2	31.6	40.0	52.2	73.0			454	Breke with fine eplinters.	240
5.1	10.4	15.4	21.0	1.0	21.8	27.6	37.0	49.5	64.5	90.0			469	. 1	240
5.0	10.5	15.6	21.5	1.1	22.3	28.0	37.0	48.5	65.0	87.0			476	...de	524
4.4	8.7	14.0	18. 7	1.0	19.0	24.0	31.5	42.5	56.0	75.5			488	...do	524
5.9	11.5	17.5	24.5	1.8	25.5	32.3	43.7	54.0	76.0	99.0			492	Failed from large oplinter, starting at knot	755
5.5	11.4	17.2	24.0	2.0	21.5	32.0	42.5	58.0	76.0	135.0			481	Did not broak ; drew from bearing.	755
4.0	7.8	11.4	14.7	0.3	15.0	19.0	24.4	30.0	37.5	47.5	61.5	\ldots	520	Broke with fine splinters ...	31
4.7	8.5	13.0	17.3	0.5	17.7	21.5	30.0	36.7					307	Square break on teusion side, splitting in axis	314
3.0	5.8	8.5	11.0	0.3	11.6	14.0	17.5	21.5	26.2	31.6	40.0	55.5	557	Craehed at bearing; broke with fine splinters	35
8.4	16.4	20.2	37.5	4.0	39.0	...							233	Square hreak on tension eide, eplitting in axie.......................	434
3.0	6.0	0.0	12.6	0.6	12.7	10.0	22.0	27.5	34.5	44.0			482	Square break with large splintors...	925
4.0	8.0	12.0	16.0	0.6	10.6	20.7	20.0	33.3	41.0			...	448	Failed from large splinter on corner	925
5.0	10.0	14.6	20.4	1.4	20.8	26.8	25.0	40.3	58.0	78.5			489	Broke with fine aplinters	34
3.3	6.4	10.0	13.0	0.3	13.3	16.5	20.0	25.0	30.0	36.2	45.0	54.0	621	Deflection with a messure of 600 kilograms, 68 millimeters; breke with tine splinters.	34^{4}
5.0	9.3	14.0	10.0	1.0	10.3	25.0	32.5	42.0	51.5	60.5	92.5	135.0	551	Broke with largo eplintere	273
4.0	8.0	12.0	18.3	0.8	10.4	21.5	27.5	35.0	43.0	50.5	70.0		545	Broke with fine eplinters .	287

TABLE 1H．－PEHAVIOR OF THE PRINCIPAL WOODS OF THE

Spectes．		Stato．\quad docality．		Collector．	Soul．		CORFFICIEXTO ELASIICITY．				
261．Quercms prinoidor－continued．．．．．	323	Texas	Dallas		J．Revorchon ．．．．．	Calcarcoas \qquad ．．．do \qquad	$\begin{gathered} 0.9205 \\ 0.9900 \end{gathered}$		976		
	3：3	do						976	1007 ！	1090	
	514	Tonncsseo	Nashville．	A．Gattinger－．．．．．	Alluvial ．．．．．．．．．．	0.9059	20	1085	1149	1289	
	514			do	．．．do ．．．．．．．．．．．．．	0.8755	4	976	1002	1120	
202．Quercas 1honglasii．．．．．．．．．．．．．．．．．．． arountain White Oak．Blue Oak．	ci88	California	ContraCostacounty．	G．JR．Vasey ．．．．．．		$\begin{aligned} & 1.0023 \\ & 1.0284 \end{aligned}$	事荡	888	921	1048	
								610	622	937	
263．Quercus oblougifolia． W゙hite Oak．	655	.. do	San Diego connty．．．	．．．．do ．．．．．．．．．．．．．．．	Dry，gravelly．．．．．	$\begin{aligned} & \text { 1. } 1408 \\ & \text { 1. } 0474 \end{aligned}$	巽	697	697	968	
	655		．do					1017	1017	469	
264．Qunreos grisea White Oak．	608	Arizona	Santa Rita mount－ ains．	G．Eugelmannand C．S．Sargent．	Dry，rocky ．．．．．．．	0.0821	en	718	740	037	
260．Quercus Durandii ．．．．．．．．．．．．．．．．．．．	$\begin{aligned} & 1103 \\ & 1103 \end{aligned}$	Toras	Austin.do		Damp，calcareous． ．．．．do \qquad	$\begin{aligned} & 1.0023 \\ & 1.0420 \end{aligned}$	$\frac{\mid[\mid]}{\frac{10 \pi}{2}}$	888		998	
								800	787	987	
207．Quercos virens ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．Live Oak．	404	Fiorida ．．do	Charlestown Navy． gard． Saint Joln＇s river ．．	S．I．Pook A．15．Curtiss．	Sandy	$\text { - } 1.0469$		1430	$\begin{aligned} & 1502 \\ & 1395 \end{aligned}$	1055	
	799						向䀘	1285			
	799do	$\left\lvert\, \begin{array}{\|c} \text { Saint Joln's river .. } \\ \text {.... do } \end{array}\right.$	A．11．Curtiss ．．${ }^{\text {do }}$ \qquad	$\begin{aligned} & \text { Sandy } ~ \\ & \text {..................... } \end{aligned}$	0.9307	國	1221	1252	1212	
	919	Alabam2 ．．．．．．．．．	Mobile conuty ．．．．．．．	C．Mobr ．．．．．．．．．．	Rich, sandy........	0.9114		1221	1191	1010	
	010	－．．．do		C．Mohr do \qquad	Sandy loam do	$\left\|\begin{array}{l}0.8972 \\ 1.0114 \\ 1.0193\end{array}\right\|$		1163	1122	1054	
	$\begin{aligned} & 954 \\ & 954 \end{aligned}$	$\text { Texas } \mid$	Matagorla bay ．．．．do \qquad					697	740	816	
								751	751	649	
	649	California．	San Bernardino．．．．．	W．G．Wright．．．．．		$\begin{aligned} & 0.8835 \\ & 0.8989 \end{aligned}$	23	076		1308	
Live Oak．Maul Oak．Valpa－ raiso Oak．	649	．．．．do ．．．．．．．．．．．．．．．．do ．．．．．．．．．．．．．．．					\square	1030	1149		
	653				G．F．Vasey $\cdot . . .$.	Gravelly．．．．．．．	0.9386	责部	1221	1221	1284
	653	do	do	． 10	－．．do	0.9204	既	1285	1338	1212	
269．Quercos Emoryi．．．．．．．．．．．．．．．．．．．．	654	Arizona．．	Santa Rita mount－	G．Engelmann and C．S．Sargent．	Dry，rocky．．．．．．．．	1． 0264	\square	612	638	703	
970．Qnercus agrifolia \qquad Enceno．Ooast Live Oak．	$\begin{aligned} & 603 \\ & 663 \end{aligned}$	Caluformia\qquad do \qquad		G．R．Vasey ．．．．do \qquad	Loam.	． 0.8602	ITM	1001	957	937	
			Marin combty．．．．．．．． do \qquad			0.8508	\square	976	048	930	
211．Quercus Wisilizenl．．．．．．．．．．．．．．．．． Live Oak．	$\begin{aligned} & 685 \\ & 685 \end{aligned}$		Auburn \qquad do \qquad	G．Engelmann ．．．． ．．．do ．．．．．．．．．．．．．．		－ 0.8676	蚫	904	849	759	
						0.8653	0	857	872	877	
	7	Massachusetts．．．．	Arnold Arborctum．．	C．S．Sargent．．．．．．	Drift ．．．．do	$\begin{aligned} & 0.7011 \\ & 0.6872 \end{aligned}$	Tm	1953	1627	1171	
				. . . do - -			啊	1285	1356		
	7	．．．do	do		do	． 0.6364		1136	1149	1048	
	7		do	． d o	．．do	0.6500	包	1356	1320	1067	
	451	Kentucky	Mercor county	W．M．Linuey ．	Shale	0． 55.8	秱	1． 976	006	$\$ 55$	
	45^{2}	2．．．．do	．．do	．do	．．．do	0.6159	\square		1007	902	
	45^{3}	3 ．．．do	．do	．${ }^{\text {do }}$	．．do ．．．．．．．．．	． 0.5432	Tim	1． 857	1302	787	
	92	Kontucky	Mercer eomnty．．．．．	W．M．Linney．．．	Allurial ．．．．．．．．．	0．6201	（7itil	17814	814	787	
	140	Miohìgan	Dansville	W．J．Beal．．	Sandy ．．．．．．．．．．．．	． 0.6787	［1］1］	（1］ 1221	1252	019	
	141		do	．${ }^{\text {do }}$	．．．do	． 0.5987	｜｜10］	74 763	769	780	
	146	Illinois	Waukegan．	．Robert Douglas．．．	．Gravelly ．．．．．．．．．	． 0.7164	（1）	7 1221	1291	695	
	215	Vermont	Charlotte	C．G．Pringle．	．．．do ．．．．．．．．．．．．	．． 0.7293	湤	7356	1350	1057	
						0.6763	柶	T 076	1028	877	
		．．．．do		do	．．．do ．．．．．．．．．．．．	0．7310	吅	明 888	856	1071	
	，							1221			
	218	．．．．do	． do	．do	． d o	．． 0.7254	dill	11221	1302	1212	
	218	．．．．do	do	．．do	．．．do ．．．．．．．．．．．．．	． 0.6955	艮名	1221	1268	1172	
	920	Mississip	Enterprise．．．．	c．Mohr．．．．．．．．．．	．．Alluvial ．．．．．．．．．	． 0.5841	四	185	814	680	
	020	0 ．．．do	．．．．do ．．．．．．．．	．．do	．．．．de	0.5852	気	－ 976	021	762	

UNITED STATES UNDER TRANSVERSE STRAIN-Continued.

Table 11.-behavior of the principal woods of the

UNITED STATES UNDER TRANSVERSE STRAIN—Continued.

TABLE III．－BEHAVIOR OF THE PRINCIPAL WOODS OF THE

Species．	$\begin{aligned} & \dot{D} \\ & \text { E } \\ & E \\ & E \\ & \text { g } \\ & \text { B } \end{aligned}$	State．	Locality．	Collector．	Soil．		g	COEFFICIEST OF hiasticity．		
280．Querens aguatica－coutinued	742	Georgha：	Bambridgo	A．II．Curtian	Alluvial．	0.7115	E	1221	1285	800
	742	do				0． 800 G	Es	1350	1350	1334
281．Qumpens lantifolia Laurel Oat．	756	Florida	Saint Jolin＇s river ．	．do	Sandy loam．．．．．．．	0.8034	翟	1201	1177	1055
	756	do	do	．．do	do	0.7980	龶	1320	1221	1131
	801	．．do	do	．．do		0.8105	，	1350	13：0	1280
	801	do	do	．do		0.8204	运	1221	1320	1260
282．Quercus heterophylla．．．．．．．．．．．．．．．． Bartram＇s Oak．	1171	Now Jersey	Mount Iolly	S．P．Sharples．	Clay ．．．．．．．．．．．．．．	0.7023	W］	1395	1338	1165
	1171	do		do	do	0.0818	回	1110	1085	947
	1771	do	do	．do	．${ }^{\text {do }}$	0．6898	第	1221	1252	1111
283．Querras cinerea． \qquad Tpland Willozo Oak．Blue Jack． Sand Jack． 284．Querens hypolonce \qquad	352	Alabama．	Citronelle．	C．Mohr．	Pine－barren．．	0.7159	包	－697	751	994
	674	Arizona	Santa lita mount－ aios．	G．Engelmannand C．S．Sargent．	Dry，rocky．．．．．．．	0.8710	炰	904	967	1120
	674	do		．．．．do－．．．．．．．．．．．	．do	0． 8325	獫	939	921	1106
285．Qurrcua imbricaria． Shingle Oak．Laurel Oak．	40^{\prime}	Kentncky	Martodshurg ．．．．．．．．	W．M．Lidney．．．．．	Utica ahale ．．．．．．．	0． 7440	P易	1136	1085	1153
	50	Missouri．	Allenton	G．W．Letterman．．	Rich，moist	0． 8477	第玡	1252	1302	1284
286．Quernus Phellos． Willow Oak．Peach Oat：	512	Temesseo	Tulahoma	A．Gattinger．．．．．．	Moist，ailiccous ．．．	0.7603	等	731	781	923
	512		do	．do	．do	0.7557		763	787	1055
287．Qucreus deasiflora． \qquad Tanbark Oak．Ohestnut Oak． l＇each Oak．	687	Califurnia．	Marin comity ．．．．．	G．1．Vaser．．．．．．	Gravelly ．．．．．．．．．	0． 6010	翑	872.	842	846
	687	do		do	．．do	0.7205	㐌分	076	1085	1048
288．Cartanopais chrysophylla	729	Califomia	Dermocino connty ．．	A．Kollogg		0.5739	厒	096	1007	846
	－29	do	do	do		0.5909	哬	1017	1017	635
：89．Castanea pumila Chinquapin．	573	Artansas	Hot Springs ．．．．．	G．W．Lotterman．	Sandy loam．．．．．．．	0． 6017	四令	1283	1221	1034
	573	do	． 10	do	．do	0．5960	皆	1062	1062	949
290．Castanea vulgaria，var．Americana． Chestrut．	18	3tasaachusotto．．．．	Arbold Arboretum．．	C．S．Sargent．．．．．．	Drift ．．．．．．．．．．．．．	0.4123	1 m	498	525	415
	18	do	．do	．．do	．do ．．．．．．．．．．${ }^{\text {d }}$	0.5330	包	888	872	703
	18	．．．do ．．．．．．．．．．．．．	．do	．do	．．do ．．．．．．．．．．．．．．	0.4508		679	631	619
	$2.58{ }^{2}$	Virginia	Fancy Gap	H．Shriver	Moist．．．．．．．．．．．	0.5050	第	1221	1163	898
	25：83	do	do	．do	．．do ．．．．．．．．．．．．．．	0.5053	第	1085	1039	867
	510	Temnessee	Nashville	A．Gattinger	Sandy ．．．．．．．．．．．	0.4839	葹	872	888	675
291．Fagne forruginoa Beech．\qquad	9	Massachusetts．．．．	Arnold Alboretum．．	C．S．Sargont．．．．．．	Drift．．．．．．．．．．．．	0.7383	Tin	1221	1302	1312
	0	．${ }^{\text {do }}$	．do	do	．．．do	0.7140	E	1221	1221	1235
	44^{3}	Kentucky ．．．．．．．．．	Mercer condy ．．．．．．	W．M．Linney ．．．．	Huclaon Rivershale	0.6352	（Tim）	1085.	1050	1026
	44^{3}	． 10	do	．do	． do	0.6410	［1］id	1039	1122	037
	119	Michigan．．．．．．．．．	Dansvillo ．	W．J．Beal ．．．．．．	Gravelly ．．．．．．．．．．	0.7571	［1］1］	1221	1302	1284
	119	．．．do ．．．．．．．．．．．．．	do	．do	．do	0.6945	㐌	1291	1302	1180
	765	Florida	Cbattahoochee．．．．．．	A．H．Corties ．．．．	．${ }^{\text {do }}$	0.6892	包	970	1007	1024
	765	．do	do	do	．do	0． 6770	退	1103	1136	1048
	853	Massachusotts．．．．	Hamilton	J．Robioson．	．do	0．7000	第	1221	1221	1106
	853	．．．do	．．do	．do	．．do	0.7324	吅	1285	1252	1221
	853	．do	do	．do	．．．do	0.7250	包	1395	1305	1256
292．Ostrya Virginica ．．．．．．．．．．．．．．．．．．．． IIop Hornbeam．Iron Wood． Lever Wood．	11	．．．．do ．．．．．．．．．．．．．．	Arnold Arloretum．	C．S．Sargeut ．．．．．．	Drift ．．．．．．．．．．．．．．	0.7784	？	1626	1028	1446
	11	．do	．．do	．．．do	．．．do	0.7614	相	1305	1470	1289
	877	．．．do ．．．．．．．．．．．．．．	Danvars ．．．．．．．．．．．．	J．Robinson．．．．．	Rioh loam ．．．．．．	0.8460	忽	1395	1395	820
	877	．．do	do	．．do	．．．．do ．．．．．．．．．．．．．	0.8591	Dind	1320	1395	084
	1047	．．do	North Reading．	．．．do		0.8068	\％	1110	1163	1209
	1047	．．do		．do	．．．．．．．．	0.8182	易	1136	$\cdot 1177$	1057

UNITED STATES UNDER TRANSVERSE STRATN-Continued

deflection, in mllimetrra, under a prebelre, in kilograms, of-														Remarke.	
50	100	150	200	$\begin{gathered} 0 \\ \text { (get.) } \end{gathered}$	200	250	300	350	400	450	500	550			
4.0	7.6	12.0	16.	1.0	17.0	21.8	29.0						344	Spccimen cross-graind	742
3.6	7.2	10.3	13.7	0.4	14.0	17.5	21.3	26.0	31.0	37.0	40.5	58.0	569	Brake with coarse splinters.	742
4.0	8.3	12.2	17.0	0.8	17.0	22.5	28.7	36.0	46.3	60.0			450	Broko with large splinte	756
3.7	8.0	11.6	16.0	0.5	16.0	20.6	27.0	33.2	42.5	58.5			4.4	Broke with large splinters and scale on tension side.................	756
3.6	7.4	11.0	14.5	0.5	15.0	18.7	23.5	29.5	36.5	46.0	58.5	80.0	550	0.5 sap-wood; brake with fing splinters	801
4.0	7.4	11.0	15.0	0.6	15.5	19.0	24.5	30.5	37.5	46.7	58.5		540	. . do	801
3.5	7.3	11.0	14.7	0.5	15.0	19.2	23.7	29.5	37.0	48.0			497	Crushell at center bearing; broke with fine splinters	1171
4.4	9.0	12.0	10.5	0.5	17.0	20.9	26.0	33.0	42.0				404	Specimen cross-grained; broke with largo eplinters	1171
4.0	7.8	11.0	14.7	0.5	15.3	19.0	24.0	30.5	38.7	49.0			474	Broke with fine splinters	1171
' 7.0	13.0	19.5	26. 5	1.5	27.0	35.0	40.0	59.0	76.0				424	Croes-grainal; broko with coarse aplinters	352
5.4	10.1	15.0	20.8	1.0	21.0	27.0	35. 5	44.3	55.7	72.5			478	Broke with coarso splinters	074
5.2	10.6	16.0	22.7	1.2	22.7	30.0	37.0	47.0	58.0	73.0			472	. d	674
4.3	9.0	13.5	18.5	0.5	18.6	24.4	31.5	40.0	49.6	60.7			492	0.5 sap-wood; broke with largo splinters	401
3.0	7.5	11.2	15.3	0.5	12.0	19.8	25.0	31.5	40.0	50.0	62.0		548	Brake with fine splintere	50
8. 6	12.5	19.4	28.0	2.1	29.0	39.0	52.5	69.0					394	Broko with large splintera, starting	512
6.4	12.4	19.2	27.0	1.9	27.5	36.0	47.0	63.0	81.5	110.0			450	Broke with coarse splinter	512
5. 6	11.6	17.5	24.5	1.0	24.4	31.0	40.5	55.0					301	Broke with acale; started at knot	687
5.0	0.0	13.6	18.2	0.5	18.4	23.5	29.5	37.0	46.0				447	Broke with coarse splinters	687
4.9	9.7	14.8	20.0	0.4	20.2	25.5	32.0	40.5					361	Specinen ctobs-grained; shattere	729
4.8	0.6	14.6	20.2	0.5	20.3	20.0							271	Specimen crobs.grained; splinter on oorne	729
3.8	8.0	12.0	16.2	0.5	16.2	20.5	25.7	32.2	40.7				411	Scale on tension side; broke with coarse splinters	57.3
4.6	9.2	14.0	19.0	1.2	19.2	24.8	31.5	41.0	62.0				405	Crushod at centor bearing; broke with scales on tension side.	573
9.8	18.6	30.4						-					177	Shattrred	18
5.5	11.2	17.0	23.6	0.7	24.0	30.7	40.5						300	. do	18
7.2	15.0	23.5	33.0	1.7	33.2	45.0							264	Square brcak; aplit at on	18
4.0	8.4	13.0	17.5	0.1	17.8	22.0	20.0	38.0					383	Crushed; square break	$258{ }^{3}$
4.5	0.4	14.4	19.5	0.4	10.6	25.0	33.0	41.0					370	Specimen croes-grained; shatter	$258{ }^{3}$
5.6	11.0	17.0	23.2	0.6	24.0	31.5							288	Broke with cearge splinters ...	516
4.0	7.5	11.6	15.7	0.5	15.6	20.0	26.0	30.7	36.5	45.0	55.5		560	do	9
4.0	8.0	12.2	16.2	0.2	16.3	21.0	26.7	32.5	42.0	54.0	75.0		527	Crushed; coarse splinters.	9
4.5	0.3	14.0	10.0	0.4	10.0	25.0	31.5	41.0	52.5				438	Square broak on tension sids, spllting in axi	44^{3}
4.7	8.7	13.6	18.0	0.5	18.2	23.7	30.5	38.5	52.0				400	Scale on tension side.	44^{3}
4.0	7.5	11.0	14.7	0.4	15.0	19.0	24.0	30.5	37.0	47.0	65.5		548	Broke with caarse aplinters.	119
4.0	7.5	11.2	14.7	0.5	15.0	-10.0	24.5	30.0	37.5	46.7	70.0		504	Broko with flne splinters; scale on tension side	119
5.0	0.7	14.2	19.4	0.7	19.5	25.0	32.0	40.0	53.0				437	Broke with caarse splinters	765
4.2	8.0	13.2	18.0	0.6	18.5	23.6	30.0	39.0	51.5				447	Spocimen cros-grained; broke at knot	765
4.0	8.0	11.5	16.0	0.5	16.5	19.7	25.0	31.0	40.0	49.5			472	Failed from long splintor on coruer	853
3.8	7.8	11.6	15.4	0.5	15.5	20.0	25.5	31.0	40.0	50.0	76.5		521	Crushed with fiue splinters..	853
3.5	7.0	10.0	13.6	0.4	14.0	17.5	21.7	27.0	32.5	42.0	56.5		53¢	Crashed with long splinters ..	853
3.0	6.0	8.6	11.5	0.3	12.0	15.0	18.5	22.0	27.0	33.5	40.0	52.0	617	Sap-wuod; brake with tine splintors; deffection with 600 kilograme	11
3.5	6.6	10.0	13.5	0.2	13.7	17.0	$\underline{20.0}$	28.0	34.0	43.0	60.0	75.0	550	presware, the millinetures. Sap-wood; broke with the splinters	11
3.5	7.0	10.4	14.0	0.1	14.0	18.0	22.3	28.0					350	Broke at knot.	877
2.7	7.0	11.0	14.5	0.5	14.5	18.5	23.4	30.0	37.5				420	Square break on tension side, splitting in axis	877
4.4	8.4	13.0	17.5	1.0	18.0	23.7	30.5	40.0	51.5	67.5	102.0		516	Specituen cross-grained; splintered on corner	1047
4.3	8.3	12.0	17.5	1.0	18.0	23.5	31.0	40.0	52.0	73.5			451	Fuited fram scale on back.	1017

Table III.-BEHAVIOR OF THE PRINCIPAL WOODS OF THE

united states under Transverse strain-Continued.

drflection, im mhlineters, under a mbersune, min khogimam, of-														Remarke.	
50	100	150	200	$\begin{gathered} \mathbf{0} \\ \text { (set.) } \end{gathered}$	200	250	300	350	400	450	500	550			
5.3	10.2	15.2	21.6	1.2	21.5	28.0	36.4	48.0	60.5	80.0			484	Square break on tension side, splitting	46
4.0	7.6	11.0	15.0	0.4	15.0	19.0	24.0	20.7	35.5	45.0	56.0	68.0	578	Broke with fine spl	73
3.5	7.0	10.5	14.0	0.6	14.4	18.6	23.5	29.0	34.3	41.5			500	Specimen cross-grained; failed from large eplinter on corn	731
5.5	10.4	15.7	21.7	1.5	22.4	29.0	37.0	50.5	64.0	03.5			450	Square break on tonsion side, splitting in axis	$73{ }^{2}$
3.8	7.0	10.0	13.7	0.4	14.0	17.7	21.7	27.2	33.0	38.5	48.0	59.0	600	Deflection with 600 kilograms pressure, 82 millimeters; broke with fino splinters.	73^{3}
5.7	10.6	17.0	24.0	2.2	24.8	33.0	45.0						330	Spuecinen cross-grained; started at knot	1038
6.0	12.0	18.0	25.4	0.4	26.0	34.2	48.5	67. 0					388	Crushed at center beating; sfyare break on tension side	10
10.5	19.4	30.0	46.0	6.5	47.8								230	Brokoat knot	10
5.6	11.2	17.6	25.5	2.5	26.8	36.2	56.0	82.0					357	Crushed at center bcaring; broke with fine splinters	848
4.4	8.5	13.0	17.2	0.5	17.5	22.6	28.4	35.7	46.0	65.0			462	Square lreak on teasion side, splitting in	73 E
4.0	8.5	13.4	10.0	1.0	19.2	25.0	33.0	44.0	58.5				430	Broke with coarse splinters	722
4.0	7.4	11.0	15.0	0.5	15.0	19.0	24.0	30.0	37.5	49.0	68.7		504	Failed from scale and long splinter	836
4.7	9.0	14.0	10.5	1.0	20.0	26.3	35.0						348	Specimen cross-graincl; broke on cor	990
4.0	8.2	12.4	17.0	0.5	17.0	22.0	28.0	36.0	50.0				424	Broke with cuarse splinter	990
3.2	6.5	10.0	13.0	0.5	13.4	17.0	21.0	26.5	33.0	43.0			497	Crushed at center beariag; broke with fine splinters	1065
3.0	6.2	0.5	13.3	0.7	13.3	17.0	21.5	26.5	33.0	43.0			469	Crushed at center bearing; broke with large splinter on corner	1065
3.5	6. 4	10.0	13.4	0.6	13.7	17.0	22.0	27.0	33.0	39.0	51.5		524	Square break on tension side; broke with splinters	1065
4.5	8.2	12. 6	17.0	0.4	17.3	21.7	27.5	35.0	44.0				430	Specimen cress-grained; broke with coarbe eplinters	1066
3.7	7.3	11.2	15.0	0.4	15.5	19.7	25.0	32.0	41.6				434	Crushed at centur bearing; hroke with fine acalco...........	1066
3.6	7.2	10.7	14.3	0.3	14.3	18.0	23.0	28.0	35.5	43.0			484	Failed from scales and coarse splinters	1067
3.8	7.6	12.0	16.5	0.5	16.5	21.5	28.0	36. 0	52.0				410	Crushed at ceater bearing; splintered	1067
5.5	11.2	18.0	27.0	2.9	27.4	37.5	54.0						315	Specimen eross-grained; sha	528
5.0	10.0	15.5	21.4	0.9	21.6	29.2	40.5	60.0					373	Crusherl at center beariog; square break on tension side, splitting in axis.	629
3.0	6.3	9.3	12.7	0.5	12.7	16.2	20.0	24.5	30.5	30.5	50.0		513	Sap-wood; specimen cross-grained; shatter	843
3.1	6.4	0.2	12.5	0.4	12.6	15.7	19.5	24.5	30.0	36.0	47.5	60.0	550	Sap-wood; crnshed at center bearing; broke with coarse splinter on conimer.	843
3.1	6.1	9.4	12.4	0.3	12.2	15.4	19.2	23.2	29.0	37.5	57.0		519	Sap-wood; crushed at center hearing; broke with coaree scales....	1068
3.0	6.0	9.0	11.5	0.3	11.5	14.5	18.0	21.7	27.0	34.5	49.5		520	Crushedat center bearing; broke with fine eplintere	1068
3.3	6.0	8.7	11.6	0.2	11.5	14.0	17.0	20.7	25.0	31.0	40.0	55.0	563	0.5 sap-wood; crushed at center bcaring; broke with fine splinters..	1069
3.0	5.8	8.8	11.6	0.3	11.7	14.5	17.7	21.7	26.5	33.0	45.5		517	075 sap-wod; erushed at center bearing ; broke with fine splinters.	1069
3.3	6.3	0.4	12.4	0.3	12.4	1/. 6	10.5	24.0	30.5	38.0			531	Saj-wood; ernshed at center bearing; lroke with fine bplinters on comer.	1070
2.5	5.5	8.3	11.3	0.1	11.4	14.5	18.0	22.0	27.0	33.7	45.5		547	Heart-wood; crushed at center hearing; broke with fine splinters ..	1070
4.7	0.0	13.3	18.2	0.5	18.6	23.5	30,0	30.0	64.5				444	Saj-whod; broke with cearse splinters at corners.	136
4.0	8.0	12.0	15.9	0.7	16.3	21.0	27.0	35.5	51.0				416	Sap-wond; crushed at ceater bearing; broke with coarse splinters at romers.	136
4.7	0.0	14.0	19.0	0.0	19.4	25.0	32.5	45.0	60.0				407	Sip, woed; crushed at center beuring; splintered at corners.	841
4.0	7.2	11.0	14. 7	0.6	14.7	19.0	24.0	31.0	41.0				420	Sip-woot ; ernshodat centor bearing; broke with fino splinters on tensman wide.	841
5.3	10.8	17.0	23.6	1.5	24.0	32.0	45.0	61.5	100.0				400	Siupsout ; crushed at center bearing ; shattered on corner .-.......	842
4.7	9.5	14.0	10.2	0.5	10.4	25.0	33.0	45.0					305	sap-wood; spectuen crons-graincd; started at knot	842
3.5	6. 8	10.0	13.5	0.4	13.5	17.5	21.6	27.0	34.0	40.7	51.5	72.0	550	Sap-woot: arnshed at eenter bearing; bquare break on tension sule, splitting in axis.	4
3.3	6.5	10.0	13.0	0.3	13.5	16.7	20.8	20.0	32. 0	40.0	51.0		547	Sap-wout ; sphaterad on corzers	4
3.6	7.5	10.4	13.3	0.2	13.0	16.5	10.7	24.0	28.5	34.5	43.7	60.0	552	Synare break on tinsion side, splitting in axis.	221
3.5	0.9	10.0	13.0	0.4	13.5	17.2	22.0	27.0	34.0				448	Splintered on corncrs	844
3.1	6.5	10.0	13.7	0.4	14.0	18.0	22.6	28.0	35.5	45.5			197	Specimen cross grained.	844
5. 0	9.5	14.4	13.0	0,5	19.5	25.5							293	Scuare lureak on terusion side, splitting in axis.	967
4.8	0. 6	14.6	19.8	0.5	20.0	20.0							300	. . du	067
5.8	11.0	16.7	22.3	0.7	22.7	30.0	37.5	50.0					354	Nu-...-	901
. 5.8	12.1	10.9	27.0	1.0	27.5	37.0	50.0	72.0	350	. do	901

Table III-BEHAVIOR OF THE PRINCIPAL WOODS OF THE

UNITED STATES UNDER TRANSVERSE STRAIN—Continued:

deflection, in milimeters, ${ }^{\text {chder }}$ a pressure, in khogramb, of-														Remarks.	
50	100	150	200	$\begin{gathered} 0 \\ \text { (set.) } \end{gathered}$	200	250	300	350	400	450	500	550			
3.7	7.6	11.5	15\%	0.1	15.7	20.0	25.2	33.0					384	Cruslied at center hearing; broke with fine splinters.	1025
4.0	7.3	11.0	14.7	0.0	14.8	18.5	23.5	30.0				\ldots	386	Specimen cross-grained: scaled on corner	1025
5.4	10.3	15.5	20.6	0.5	21.2	27.0	35.7						315	Sqnare break on tension side, splitting in axis .	635
7.2	14.6	23.0	34.0	3.5	35.0								24.	Sap-wend; cross.graised.	717
6.7	13,0	20.4	30.0	3.0	31.0	44.0						\ldots	200	Squaro breat	717
5.4	10.3	15.7	21.8	0.0	22.0	30.2							208	Square break on tension side. splitting in axis.	979
5.5	10.7	16.5	22.2	1.0	23.0	30.6	50.0						300	Specimen cross-grained ; square break on tension oide, splitting in axis.	979
0.2	13.0	19.6	28.3	1.3	29.0	30.0							297	Crushed at center bearing: square broak on tension side, splitting inaxis.	694
6.2	12.4	19.0	27.3	1.5	28.0	38.7							289	Crashed at center hearing; splintered on corner	694
4.2	0.0	14.0	10.6	0.8	19.6	26.0	35.0						350	Bruke with coarse splinters.	862
120	25.0	44.0											181	Speciuuen cross-grainct ; split with grain	855
8.0	19.0	36.0	64.5	16.2	73.0								218	Crushed at ceuter heating; splintered on compression side	908
10.0	20.5	36.0	58.0	11.0	63.0								296	. do	908
8.8	19.0	32.5	55.0	11.5	57.0	01.0							200	Crushen at center baring; splintered on tension eid	911
10.2	20.0	31.2	46.0	5.0	47.5	64.0	110.0						313	Square hreak on tension side, splitting in axis; shattered	690
0.6	20.0	32.0	46.0	4.8	48.5								236	Specimen erest.graintl ; flakod on tension sido	690
0.0	18.6	31.0	46.0	5.0	48.0								249	Specimen cross-graiued; broke at knot	640
4.2	0.0	14.2	21.0	1.2	21.5	20.5	45.0						200	Crushed at cunter lbaring: broke with fine splinters	981
5.0 ;	9.5	14.3	19.5	0.5	20.0	28.0	36.0						317	Crushed at center bearing; scalod on tension side	981
14.8	32.0	57.0	'125.0	32.5									200	Crished at center hearing; shattered.	889
4.0	0.0	14.0	10.0	1.1	20.0	20.5	36.5						345	Cruphed at center hearing ; spintercd; square break on tonsion side, splitting in axis.	721
3.8	7.1	10.5	14.2	0.5	14.7	18.3	24.0	31.5					390	Crusbed at center hearing; broke with fine sphintore.	972
4.0	8.5	12.5	16.8	0.3	17.2	22.0	28.0	35.0					379	Crished at renter bearing; broke with coarso aplinters	972
5.3	11.0	16.8	24.5	1.5	25.0	33.0	46.0						347	Crnshod at center lucaring ; broke with fine oplinters.	669
6.6	12.5	10.3	27.7	2.4	28.7								240	Broke with long scale	
7.5	15.0	23.2	33.0	3.8	37.2								231	Spucimen croas.grined; broke at knot..............................	272
5.0	10.7	17.0	24.0	1.5	24.5	32.0	50.0						309	Crushed at center bearing	1035
5.5	10.7	17.0	25.0	2.9	26.0	35.0	48.0	71.5					376	Broke with many fine splinters.	1035
5.0	9.8	15.0	21.4	1.5	22.0	30.0							297	Splintered on cormer	847
5.4	10.5	15.5	21.7	1.0	22.0	28.7	41.0						319	Crusbed at center bearing; breke with fine splintors.	847
6.6	13.5	21.4	30.7	3.3	32.0	47.0							274	. to	522
5.7	11.0	17.4	25.0	1.3	20.2	\ldots							245	Specimen affected with dry rot; square break .	081
5.5	11.2	17.6	25.5	1.7	20.2								225	...do	001
0.6	14.0	29.4	34.2	4.1	35.8	52.0							267	Crushed at center bearing; square break	1054
6.5	12.8	21.0	34.8	5.9	36.0	620							253	do	1054
10.0	21.3	35.2											171	Sppeimen crosegrained; broke at knot	552
4.0	0.3	14.0	20.8	1.0	20.8	28.4							291	Square break with small splinters	1012
4.5	0.2	14.0	10.6	0.9	20.0	27.5							272do	1012
4.0	8.0	12.0	18.0	1.1	17.0	24.0							296	. do	1028
4.2	8.6	12.6	17.6	0.5	17.0	25.0							275do	1028

Table III-BEHAVIOR OF THE PRINCIPAL WOODS OF THE

UNITED STATES UNDER TRANSVERSE STRAIN-Continued.

deflection, Ľ milimetere, under a pressure, m khlograms, of-														Remarks.	-
50	100	150	1800	$\left\|\begin{array}{c} \mathbf{0} \\ \text { (set.) } \end{array}\right\|$	200	250	300	350	400	450	500	550			
7.3	14.6	23.0	33.5	...									234	Crushed at center bcaring; square break on tensien side, eplitting	255
5.5	11.4	17.2	24.2	1.4	25.3	33.2							282	Crushed at center bearing ; square break.............................	304
6.5	13.5	21.0	30.0	2.0	30.7	41.5							258	...do	304
4.3	8.5	13.3	18.8	1.1	19.1	20.0	35.2	51.5					381	Crushed at center bearing; broke with fine eplinters...............	309
5.8	11.6	18.0	25.6	3.0	26.5	36.0	48.5						324	Crusbed at center bearing; shattered..................................	309
4.0	7.5	12.0	16.0	0.4	16.0	20.7	25.8	33.0					385	Crushed at center bearing; broke with fine aplinters...............	754
4.0	8.0	12.5	16.8	0.3	17.0	21.5	27.5	35.5					400	Shattered	754
4.0	8.2	12.8	17.2	0.6	17.5	22.4	29.0	30.0					363	. do	754
4.8	9.6	14.8	21.4	1.7	21.8								249	Started at knet; splintered at corner	659
4.5	9.0	14.0	19.4	0.9	19.4	25.3	33.3						347	Specimen cress-grained; eplintered en cornor.......................	659
7.5	14.7	22.0	3! 4	2.4	33.0	43.0	62.5						317	Specimen cress-grained; split	646
7.3	14.4	23.0	32.6	2.5	34.0	47.0							293	Crushed at center bearing; square break on tension side, splitting in axis.	646
5.4	8.5	13.4	19.0	1.3	19.5	25.5	34.6						339		909
5.0	10.4	16.4	23.0	1.5	23.2	31.0	42.5						300	Square break on tensien side, splitting in axio	009
5.6	11.7	18.4	20.7	2.1	27.2								247	Shattered.	009
6.4	12.3	20.0	31.0	5.5	30.4	43.5							274	Broke with fine splinters	903
7.0	13.0	20.7	28.0	1.2	29.0	41.5							264	Square break	634
6.0	12.1)	18.0	25.0	0.6	25.5	32.5	45.0						300	d	634
5.6	10.9	16.5	22.5	0.5	23.0	29.0	35.5						334	Specimen cress-grained; shatter	662
5. 6	11.0	16.5	22.0	0.7	22.0	29.0							279	de	662
5.9	11.0	16.6	22.0	0.4	22.5	28.5							270	.d	662
10.0	19.0	30.0											104	Square break; aplintered.	379
11.0	21.6	34.6											188do	379
0.4	18.0	23.0	38.7	2.0	40.7								232	Square break on tension side, splitting in axls	782
7.5	16. θ	24.0	33.5	1.2	34.6								225	..do	783
7.8	15.0	23.2											101	Broke with cearse aplintere.	783
8.3	10.0	24.5	35.5	2.0	37.0								249	Square break; splintered	790
8.0	16.8	26.0	36.2	1.6	37.2	...							250	Square break; aplintered	700
14.7	20.0	50.5											168	Square break ...	702
17.5	33.2			\ldots									150	Square hreak ; aplit to end.	792
18.2	37.5	63.0											151	Squaro break	792
6.4	12.5	19.5	27.5	1.0	28.7								250do .	874
7.3	13.4	20.5	28.5	1.4	29.0	30.0						284de	874
9.0	17.5	27.0	38.0	2.4	40.5	\ldots							250do	1099
9.5	18.0	$\because 8.5$	39.0	2.1	40.8	55.0							279	Square break with long splinters....................................	1099
4.0	8.5	13.0	17.8	0.4	18.0	23.0	30.0						349	Shattered.	1017
5.0	0.5	14.0	19.0	0.5	19.0	24.0	31.0						350	Square break ..	1017
5.6	10.5	15. 5	21.7	0.8	22.2	31.0							271	Shattered	1021
4.8	0.5	14.5	20.0	0.8	20.0	26.7	37.0						308	Square brcak on tenslon side, splitting in axis...	1021
18.0	38.0												140	. . .do	350
14.3	29.2	50.5			162	Square break	350
9.8	20.0	32.5	47.5	5.2	50.2	\ldots							206	Squaro break en tensien side, aplitting in axis	850
11.5	23.5	36.0	54.0		55.0					235	Squaro break ...	850
11.0	29.0	33.2											200	Square break ou tension eide, splitting in axis........................	851
0.4	10.0	20.6	40.0	5.2	49.5							217	Square break ...	851
12.0	20.0	38.6	83.0	8.2									200 do ..	852

Table III．－BEHAVIOR OF THE PRINOIPAL WOODS OF THE

Specieo．		State．	Locality．	Collector．	Soil．			COEFPICLEXT OF riasticiry．					
330．Cbamecyparis Nulkaensis 1ellow（ypress．Sitka Cypres＊．	960	Alaska ．．．．．．．．．．．	Sitka	Panl Schulize ．．．．		0.5697	姿気	814	814	851			
	960	．do	do			0.4220	2	888		090			
	983	British Colnmbia－	Saw－mill，Vicloria ．．	G．．do ．．．．．．．．．．．．．．．G．EngelmannandC．S．Sargent．		$\begin{aligned} & 0.5267 \\ & 0.6114 \end{aligned}$	Em	1221	1221				
	983	．do	do				ezs	1110	1191	930			
	994	Alaska	Poril strait	Pani Schultze		0.5074	2］	1163	1149	872			
	094	．do	．do	．do		0.4913	2－3	1085	1122	097			
	094	． do	．．do	．do		0． 6267	狍	1320	1221	930			
	1000	．do ．．．．．．．．．．．．．．	Weidler＇s naw－mill， Portland．	G．Eugdmannand		0.5078	第	814	842	698			
	1000	．．．do	．do ．．．．．．．．．．．．．．．．	．．di ．${ }^{\text {a }}$ ．		0.5159	连	763	723	281			
331．Chaturesparis Lawroniona．．．．．．．． Port Orford Cedar．Oregon Ce． dar．Vhite Cedar．Lawson＇s Cypress．Ginger Pine．	701	Oregon ．．．．．．．．．．．．	Dean \＆Co．＇s baw． milt，Marshtield． do	．．．．d		0.5239	逢			820818			
	707	．do		．．．．do				1221	1221				
	707	．．do	．．．do	．do ${ }^{\text {－}}$		$\begin{aligned} & 0.4682 \\ & 0.6335 \end{aligned}$		1628	1502	1029			
332．Cupressus nlacrocarpa ．．．．．．．．．．．．．． Afonterey Cypress．	675	California. . . .do	Monteroy ．．．．d \qquad	\qquad	Gravelty loam ．．．．do \qquad	$\begin{aligned} & 0.6307 \\ & 0.6512 \end{aligned}$	$\frac{\pi}{50}$	976	1062	$\begin{aligned} & 1041 \\ & 1052 \end{aligned}$			
	675							1085	1085				
333．Cupressus Goveniada ．．．．．．．．．．．．．	691do	Marin county．．．．．．．	G．In．Vasey．．．．．．．．	Dry ridges ．．．．do	$\begin{aligned} & 0.5580 \\ & 0.5563 \end{aligned}$	E	452	456	620			
	691							514	542	659			
	1100	...do	Calistoga....do	W. F. Fisher.......do ...	$\begin{aligned} & 0.4834 \\ & 0.5078 \end{aligned}$		610	592	635			
	1100												
337．Juoipens pachyphta：a Juniper．	602692	Arizons ．．．do					G．Engelmann and C．S．Sargent．\qquad	Gravelly ．．．do \qquad	$\begin{array}{l\|l} 0.5630 \\ 0.5419 \end{array}$		$\begin{aligned} & 610 \\ & 505 \end{aligned}$	630595	738
338．Juuiperns occidentalis，var．con． juniper． 330．Juniperns Virginiana －Red Cedar．Savin．	1102	Texne \qquad Maseachneett． \qquad	Anstin．．．．．．．．．．．．．．	S．B．Buckley ．．．．	Limestonc．．．．．．．．	0.7347	［1］	751	734	－ 409			
	14		Arnold Arboretum	C．S．Sargent ．．．．．	Drift ．．．．．．．．．．．．．．	0.5310	（ilin	509	501	701			
	14	．．dv	．do	do	． do	0.5302	墭	514	614	743			
	327	Texas ．．．．．．．．．．．．．	Dallas....do	J．Reverchon ．．．．．	Calcareans．	0.5357	既	505	010	851			
	327	Floiida		．．．do ．．．．．．．．．．．．．			［1］	610	630	562			
	734		Chattahoochee． ．．．do \qquad	A. H. Curtise.....	．．．．do ．．．．．．．．．．．．．	0.5723	狍	787	787	1052			
	734 do				0.5354	Didid	814	649	1031			
－	800		Saiut John＇e river do	．do			园	787	781	755			
	800	．．do		．do		0.5385	包	904	888	806			
	924	．．do	Chattahoocheo．．	C．Molr ．．．．．．．．．．．	Alluvial	0.4997	笏	888	888	888			
	1240	＇Tennessee	Wilan county．．．．	A．E．Baird		0.7373	包	588	688	750			
	1250	．．do	do	．do		0． 6029	－	444	474	394			
	1251	．do	do	．do		0.5671	（0）	488	542	460			
	1232	．．do	．do	do		0.6398	鸟	718	697	860			
	1253	．．do	do	do		0.6670	易	681	595	620			
	1254	．．．do	do	．do ．．．．．．．．．．．．．．		0.5307		561	603	703			
340．Taxadimn disticham ．．．．．．．．．．．．．	535	Alabama ．．．．．．．．．	Stocklon．．．．	C．Mohr ．．．．．．．．	Alluvial ．	0.4807	岛	1163	1122	675			
Bald Cypress．Black Cypress． Red Cypreas．White Cypress．	535	..do		. do	．．．do ．．．．．．．．．．．．．	0.4023	它	1110	1163	666			
Deciduoud Oypress．	741	Florida	Chattahoochee．．	A．H．Curtise	－．	0.4167	包	904	904	687			
	741	．．do	．do	．．．do		0.4334	笣	839	939	698			
341．Sequoia cigantea	657	California．．．．．．．．．	Tulare county ．．．．．．	G．Engelmann and	Granite．．．．．．．．．．．	0． 3426	4	505	595	， 611			
	657	．．．do			．．．do ．．．．．．．．．．．．．．	0.3506	9	425	444	469			
	666	．．．do		do	．．．do ．．．．．．．．．．．．．．	0． 2887		359	315	401			
342．Sequoia eempervirens	673	．．．do ．．．．．．．．．．．．．	Rassian rivor．．．．．．．	C．S．Sargent ．．．．		0.4103	Ifld	574	558	637			
ledwood．	073	．．．do	．．．do ．．．．．．．．．．．．．．．．	．．．．do ．．．．．．．．．．．．．．		0.4211	曻		751	703			

UNITED STATES UNDER TRANSVERSE STRAIN-Continued.

deflectiox, in mhlimeters, under a prebsdre, in kilograme, of-														Reinarke.	
50	100	150	200	$\left(\begin{array}{c} \mathbf{0} \\ (\text { set. }) \end{array}\right.$	200	250	300	350	400	450	500	550			
6.0	12.0	18.0	24.7	1.0	24.5	31.5	41.0	60.7					363	Square break; eplintered.	969
5.5	10.0	15.0	21.0	1.0	21.2	29.5							297	Crushed at center bearing; sqnare break	909
4.0	8.0	12.0	16.0	0.4	16.0	20.0	25.5	31.7	42.0				435	Crushed at conter bearing ; square break, splitting in axis...........	983
4.4	8.2	12.5	17.0	- 0.5	17.5	21.5	28.0	36.0					397	. do	083
4.2	8.5	12.5	17.2	0.4	17.0	22.0	28.5	39.5					372	. .do	994
4.5	8.7	13.5	17.6	0.2	18.0	22.5	29.0	37.0	53.0				400	Shattered.	984
3.7	8.0	11.5	15.4	0.0	15.0	19.0	24.0	31.5					397do	994
6.0	11.6	17.5	24.2	1.0	24.4	31.5							208	. .do	1000
6.4	13.5												120	Specimen crosegrained; started at knot	1000
5.4	10.5	15.6	21.6	0.6	22.4	29.0	37.0						350	Square break; shattered.	701
4.0	8.0	12.0	16.4	0.4	16.5	21.0	28.0						349	Cruehed at center bearing; square break on tension side, splitting in asia.	707
3.0.	6.5	9.6	12.7	0.2	13.0	16.0	20.0	25.4	32.0				439		707
5.0	9.2	13.5	18.0	1.0	18.0	22.5	28.0	33.0	40.0				444	Sqnare break on tenaian eide, splitting in axia; ahattered from end to end.	675
4.5	9.0	13.5	17.6	0.3	18.0	22.5	27.5	34.0	42.0				449do...	675
10.8	21.4	35.0	49.0	5.0	49.0								222	Sbattered.	691
9.5	18.0	27.8	40.0	3.4	41.7	58.0							281	...dn	691
8.0	18.5	25.5	35.0	1.5	35.7	46.4							271	Specimen croes-grained; slattered	1100
10.7	24.0												140	Specimen cross-grained; splinter on corner	1100
8.0	15.5	24.0	32.5	1.0	32.4	42.5	55.0						334	Shattered.	692
8. 2	16.4	25.0	34.0	1.1	34.0	44.0	58.5						315	...do	692
6. 5	13.3	20.5	28.0	1.6									200	Specimen cross.grained; sbattered	1102
0.6	19.5	29.0	40.6	1.9	40.0	52.0							299	Shattered.	14
9.5	19.0	29.0	40.0	2.0	40.5	53.0	70.0						317	.do	14
8.2	16.0	25.0	33.2	1.2	33.5	43.0	50.0	73.5					363	do	327
8.0	15.5	24.0	31.0	0.8	32.0								240	. .do	327
6.2	12.4	18.2	24.5	0.7	24.5	31.7	38.5	47.2	59.5				449	0.25 sap-wood; squaro break on tension side, splitting in axis	734
6.0	11.5	17.0	23.0	0.4	23.0	29.0	35.7	45.5	54.5				440	0.5 nap-wood; equare break; aplit end to end.	734
6. 2	12.5	19.2	26.5	1.1	26.7	35.0	43.5						322	Square brcak at knot ; nplit to end	800
5.4	11.0	16.5	21.7	0.3	22.0	28.2	35.0						344	Square break on tencion elde, eplitting in axis	800
5.5	11.0	16.1	21.5	0.2	21.8	27.7	34.5	43.5					379	Squaro break; aplit parallel to preseure	024
8.3	14.2	21.4	28.0	0.8	29.0	34.7	48.5						320	Specimen not aeasoned; Abattered.	1240
11.0	20.6	31.0											168	Specimen not searoned ; cross-grained.	1250
10.9	18.0	26.0	34.0	1.5									. 200	Specimen not seatoned; crose-grained; split to end	1251
6.8	14.0	21.5	28.7	1.3	30.0	36.5	45.2	58.0					381	Specimen not eeaboned; ahattered	1252
8.4	16.4	25.6	37.0	4.1	39.0								222	Specimen not seasoned; square break on tenaion side, nplitting in	1253
8.7	16. 2	26.0	36.0	2.4	37.0	48.0	66.0						300	sxis. Specimen not reasoned; shattered	1254
4.2	8.7	12.0	17.5	0.5	18.2	24.5							288	Sqnare break ..	535
4.4	8.1	13.0	17.9	0.6	18.2	24.0							284	Crushed st center hearing with flakes on tension side	535
5.4	10.8	16.7	23.5	1.0	24.5	33.0							293	Squaro bresk on tension side, splitting in axis .	741
5.2	10.4	16.0	22.8	1.1	23.0	30.8							298	Broke with coarse nplinters..	741
8.2	16.4	25.0	34.0	1.2	35.0	\ldots							218	Sqnare l,rak on tension sido, splitting in axis.	657
11.5	22.0	34.0	49.0	3.6									200	Square break	657
13.6	31.0	54.0											171	Sap-rood; shattered..	000
8.5	17.6	27.0	38.0	2.0	38.5	52.5							272	Squaro break; split to end...	673
0.2	13.0	19.0	26.2	0.5	26.5	34.5						300do	673

Table III--BEHAVIOR OF THE PRINCIPAL WOODS OF THE

UNITED STATES UNDER TRANSVERSE STRAIN-Continued.

deflection, in millimetere, undrr a preseure, in kilogramb, of-														Remarks.	
50	100	150	200	$\begin{gathered} \boldsymbol{0} \\ \text { (set.) } \end{gathered}$	200	250	300	350	400	450	500	550			
7.0	14.0	21.2	$2 E^{\prime \prime}$	1.0	30.0	39.0							279	Square break	710
6.5	13.0	19.4	26.0	0.5	26.4	33.5							248	Square break; elattered	711
9.0	17.5	26.6	36.3	1.7	37.0								232	Square break	711
0.0	17.2	26.6											168	Shattered with flakes on tension side	712
7.5	15.0	22.4	32.0	1.5	33.5							250	Square breat	712
6.0	11.5	17.2	23.5	0.7	24.0								238	Square break on tension side, splitting in axis.	713
6.5	13.8	20.0	27.7	1.0	28.4	38.0						270	Square break	713
6.5	13.0	20.0	26.6	0.6	27.0	34.0	50.0						313	Shattered from end to end	714
7.5	14.7	22.0	29.5	0.9	30.0	38.0	48.0						343	Sqaare break	714
7.5	16.0						,						126	Specimen with curiy grain; square break on tēnsion side, splitting in axis.	715
6.0	11.5	17.8	24.0	0.9	24.0	31.5	38.0	47.0	59.3	75.0			490	Square break on tension side, splitting in axis; shattered	978
7.0	14.5	21.5	29.7	1.7	30.0	39.0	49.0	61.6	84.0				431	...do	978
7.5	15.0	22.5	31.0	2.4	31.0	41.0	52.0	66.5	92.5				403	Sbattered.	62
5.0	10.6	10.5	22.3	$\theta .4$	22.5	28.7	35.5	47.0					360	Square break on tension side, eplitting in axis ; ehattered	277
5.2	10.7	16.0	22.6	0.3	22.2	28.5	35.5	46.2					372	. do	277
12.0	22.7	34.5	50.5										200	Broke at emall knot at point of compression.	651
11.0	22.0	33.0	46.5	3.1	49.5	68.0							298	Square break on tension eide, eplitting in axie; albo broke at knot near the end.	651
6.5	11.5	17.2	23.8	1.2	24.2	32.0							266	Square break with scale on tension side..	1
5.3	10.5	16.4	22.8	0.5	23.2	31.0							291	Square break on tensiou side, splitting in axis; shattered.	1
8.5	16.5	25.0	34.3	2.3	35.0	46.5	62.0						343	Square break; shattered	222
2.5	15.3	22.8										181	Croes-graincd	777
4.5	9.4	14.0	20.0	1.0	20.4	29.0							271	Started at knot.	777
4.5	9.2	14.2	19.8	0.0	21.0	29.0							279	Crnebed at center bearing; square break.	788
4.7	9.4	14.8	20.5	0.3	21.0	28.0						293	...do	788
6.4	13.0	20.7	30.0	2.0	31.0								243	Square break	789
6.3	13.0	20.0	22.3	3.6	33.5								225	. do	789
5.0	10.0	15.4	21. B	1.0	21.8	30.0							397	Square break; split to one end	797
5.8	11.5	17.8	25.2	1.3	25.2	36.0							265	Sqasre break	797
7.1	14.0	22.4											167	Specimen cross-grained; broke at large knot	1044
5. 6	11.0	17.0	24.0	1.3	24.6								249	Crushed at center boaring; splister on corner.	1044
4.2	8.2	12.5	17.1	0.7	17.5	24.0							292	Crushed at center bearing ; broke with fine splinters	975
6. 5	13.2	20.2	32.1	3.8	34.2								225	Squaro break..	987
5.1	10.6	10.2	23.5	1.3	24.0	35.0							263	..do	987
5.5	11.0	17.0	23.0	0.0	23.0	30.2							293	Square break on tevoion olde, eplitting in axls	638
6.6	13.2	20.3	29.0	1.2	29.0							240	Shattered	668
6. 0	12.0	18.2	28.0	1.0	26.0	35.0							280	Squaro break	668
B. 4	12.4	18.7	28.0	2.4	29.5								231	Cruehed at center bearing; squaro break	730
6.6	13.2	20.6	32.0	3.0	32.8								226	Squaro break	720
6. 5	12.4	18.9	26.0	1.0	27.0	35.0						293	Square break; ebattered.	819
7.5	14.0	21.6	31.0	2.0	31.4	46.2							271	. do	819
6.2	11.7	17.5	24.0	0.8	24.2	32.0	43.0						331	Specimen croos.grained; equaro break on tenaion sido, aplitting in	810
12.8	25.6	41.5	...										109	Square break at knot ...	013
13.2	28.0	40.0											198	Squaro break; 日battered.	952
7.2	14.5	22.5	31.0	1.2	32.0	42.0						299do	002

26 FOR

Table III-BEHAVIOR OF THE PRINCIPAL WOODS OF THE

UNITED STATES UNDER TRANSVERSE STRAIN—Continued.

deflection, in milimeters, under a pressubr, in kllograms, of-														Remarks.	
50	100	150	200	$\binom{\mathbf{0}}{\text { (set.) }}$	200	250	300	350	400	450	500	550			$\begin{aligned} & \text {. } \\ & \text { 豆 } \\ & \text { g } \\ & \text { 䒹 } \end{aligned}$
6.0	11.5	17.5	24.2	. 1.0	25.0	32.0							294	Specimen cross-grained; failed with long split.	661
5.2	10.0	15.0	20.0	0.8	20.2	25.8	33.0	43.0					363	. .do	661
12.5	28.0												148	Broke at knot near end.	656
11.0	24.0	37.2	55.0	7.0	59.2								215do	656
11.4	23.2	30.2											181	Broke at knot.	397
11.6	23.5												120	Specimen eross grained; broke at knot	882
9.4	21.6												126do	915
9.0	18.5												124	. do	631
7.5	14.8	23.2	32.5	3.2	34.5								238	Square break	631
8.6	17.0	25.7	30.0	2.5									200	. . do	821
5.5	11.0	17.3	23.5	0.0	23.5	31.0	40.0						329	0.25 sap-wood; specimen cross-grain	821
5.8	12.8	19.0	26.3	1.1	27.0	36.0				!			290	Square break with split at end	821
7.5	15.4	24.0	34.2	3.0	35.7	46.2							296	Shattered	014
3.6	7.0	10.7	14.5	0.3	14.6	18.8	24.0	31.0					382	Crushed at conter bearing; square break on tension side, splitting in axis.	315
3.7	7.1	10.5	14.0	0.4	14.0	17.8	22.5	28.5					300	Crnshed at center bearing; square break	315
4.7	9.4	14.0	19.2	0.8	10.5	25.7	35.0						344	Specimen eross-grained; shattere	785
6.5	11.5	16.8	23.5	0.8	24.0	32.0							286	Square break	785
4.0	8.8	13.0	17.8	0.3	17.6	23.0	30.0						330	Square break on tension side, splitting in axi	1074
5.0	9.7	15.0	20.0	0.6	20.3	26.0	40.2						300	Square break on tension side, splitting in axis; erushed at center bearing.	1075
4.7	9.2	14.0	19.5	0.7	195	25.0	33.0						347	Square break; crusbel at center bearing	1076
4.2	8.0	12.3	16.6	0.5	17.0	21.5	28.4						341	Broke with long seale.	1076
7.7	15.5	22.4	30.8	1.0	31.5	41.5	55.5						345	Shattored	996
0.0	21.5	34.6	50.2	7.5	51.7	73.0							300	..do	998
6.4	13.1	20.0	27.5	1.0	28.2	36.0	48.0						300	Square break on tonsion side, aplitting in axis.	1154
6. 0.	11.7	17.9	25.0	1.5	25.3	\ldots						230	Specimon cross-grained; broke at knot	1154
6.0	11.4	16.6	23.2	1.1	24.0	31.0							253	Square break on tension side, splitting in axis	1155
5.6	11.0	16.0	22.1	0.8	22.1	29.0	39.0						328	Square break on tensien side, splitting in axis; shattered	1155
6.7	12.3	10.0	26.5	1.1	27.0	35.0						276	Square break; split to one end.	1156
4.0	7.6	11.5	15.5	0.3	15.3	19.5	25.0	31.5					376	0.75 sap-wood; crushed at center bearing; square break on tension	619
3.6	7.8	11.0	15.5	0.2	15.5	20.0	24.2	30.5					387	side, splitting iu axis. Square break; shattored	626
25.6	51.5	80.0											180	Brokon at end; shattered	630
18.4	37.0	57.0											163	Short break; shattered	630
4.0	8.0	12.0	10.0	0.4	16.2	20.0	25.0	31.6					386	Square break on tension side, splitting in axis	632
0.0	12.0	18.0	24.8	1.0	25.3	33.5	44.0						333	Square break	636
3.8	7.5	11.2	14.7	0.2	15.0	18.5	23.0	28.0	35.0				444	Square break on tensiou sido, splitting in axis.	689
4.5	8.8	13.3	18.0	0.4	18.0	23.0	30.7						327	-....de	718
4.2	8.4	12.7	17.0	0.5	17.0	22.4	28.0						349	Square break; split to one end	718
4.0	8.0	12.5	10.8	0.5	16.7	21.5	28.5						334	Square break on tension side, splitting in axis	731
4.2	8.4	12.4	17.0	0.6	17.5	21.5	27.5						330	Specimen cress.grained.	731
15.6	32.0	54.0											107	Sap-rood; specimen cross.grainot; broke at knot	907
18.0	39.5	71.0											187	Cross-graiued....................	910
9.8	19.3	30.0	40.0	3.8	41.8	55.5							250	Square break on tension side, splittlng in axis ; shattered	633
11.7	27.8										135	Square hreak at knot.................................	633
4.0	7.4	11.0	15.0	0.5	15.0	19.0	24.0	32.5					385	Crushed at center bearing ; broke with the splinters.	667
3.0	6.6	9.6	13.0	0.4	13.2	16.0	20.0	24.5	30.0				500	Square lyeak on tension side, splitting in axis	667

Table III－BEHAVIOR OF THE PRINCIPAL WOODS OF TIE

Species．		State．	Locality．	Collector．	Soil．			corfficikit of blasticity．		
363．Pinus Chiluahuana ．．．．．．．．．．．．．．．．	$\begin{aligned} & 664 \\ & 664 \end{aligned}$	Arizona \qquad ．．．do \qquad	Santa Rita mount－ sling． ．．．．do \qquad	G．Engelmanu and C．S．Sargeat．\qquad	Dry，gravelly ．．．．．	$\begin{aligned} & 0.5801 \\ & 0.5983 \end{aligned}$			051	005
								872	800	759
64．Pines contorta Scrub Pine．	997	British Colnmbla ．．．．do \qquad	Vanconver＇s island ． ．．．．do \qquad dodo	$\begin{aligned} & 0.6456 \\ & 0.0198 \end{aligned}$	值	1808	1775	1048
	997							1395	1395	937
365．Pinas Murrayana \qquad Tamarack．Black Pine．Lodge－ pole Pine．Spruce Pine．	203	Colorado．．．．．．．．．．	Forest City．．．．．．．．．	T．S．Brandegee．．．		0.4551	㿟	542	501	286
	293	．．．．do ．．．．．．．．．．．．．．	．．．．do ．．．．．．．．．．．．．．．	．．．．do ．．．．．．．．．．．．．	do	0.4265	es	525	514	347
	563	．．do	．．do	C．S．Sargent	do	0.4546	III	976	－976	743
	625	California．	Scott mountains ．	G．Engelmannayd	．．do	0.4600	芴	857	888	675
	025	．do	do		．do	0.4018	㐌成	076	970	709
368．Plnus Sabinians．．．．．．．．．．．．．．．．．．．．．． Digger Pine．Bull Pine．	644 do	Contra Costa county ．．．．do \qquad	G．R．Vasey	Gravelly....do	0.5460 0.5426		514651	528	738
	644								642	820
367．Pinus Conlteri．．．．．．．．．．．．．．．．．．．．．．	$\begin{aligned} & 1157 \\ & 1157 \end{aligned}$	$\left\lvert\, \begin{aligned} & \text {... do } \\ & \hline \text {... do } \end{aligned}\right.$	San Bernardino ．．．．do \qquad	W．G．Wright．．．．．	Dry, gravelly-....	$\begin{aligned} & 0.4443 \\ & 0.4322 \end{aligned}$	\mid	$\begin{aligned} & 1221 \\ & 1062 \end{aligned}$	$\begin{aligned} & 1221 \\ & 1062 \end{aligned}$	$\begin{aligned} & 818 \\ & 18 \end{aligned}$
388．Pinus insignis． Monterey Pine．	$\begin{aligned} & 876 \\ & 876 \end{aligned}$	．．．．do ．．．．．．．．．．．．．．．．．．	Monterey ．．．do \qquad	G．R．Vasoy ．．．．do ．	Grarelly loam ．．．．do \qquad	$\begin{aligned} & 0.4835 \\ & 0.5095 \end{aligned}$	\square	$\begin{array}{r} 888 \\ \cdot \\ 1130 \end{array}$	$\begin{array}{r} 872 \\ 1085 \end{array}$	660809
369．Pinus tuberculata ．．．．．．．．．．．．．．．．．．．． Knob－cone Pinc．	$\begin{gathered} 576 \\ 578 \end{gathered}$		$\begin{array}{\|c\|} \hline \text { Mount Shasta } \\ \text {.... do } \end{array}$	G．Engelmann and C．S．Sargent．....do\qquad	Gravelly ．．．．do \qquad	$\begin{aligned} & 0.4071 \\ & 0.3901 \end{aligned}$		$\begin{aligned} & 354 \\ & 519 \end{aligned}$	$\begin{aligned} & 362 \\ & 496 \end{aligned}$	$\begin{aligned} & 293 \\ & 525 \end{aligned}$
376．Pinus Tæda． Loblolly Pine．Old－field Pine． Rosemary Pine．	8282	Florida ．．．do	$\left\lvert\, \begin{array}{\|c\|} \hline \text { Dnval county } \\ \text {.......................... } \end{array}\right.$	A．H．Curtiss	Molst, sandy.......	$\begin{aligned} & 0.6068 \\ & 0.0147 \end{aligned}$		1627	1627	998
								1744	1684	1462
	355	Alabama．．．．．．．．．	Cottage Hill	C．Mohr．．．．．．．．．．．	Low，rich	0.5914	第	688	638	790
	355	．．．．do ．．．．．．．．．．．．．．	Wilmingtou ．．．．．．．．．．．．	．．．．do E．Kidder		0.5840	包	888	864	068
	388	North Carolina ．．．			Loam	0.5600	良走	1395	1302	1012
	388	．．．．do ．．．．．．．．．．．．．	－．．．．do ．．．．．．．．．．．．．．．．．．．．do		$\begin{aligned} & 0.4306 \\ & 0.4675 \end{aligned}$		888	888	502
	$\begin{aligned} & 389 \\ & 389 \end{aligned}$				．．．．do ．．．．．．．．．．．．．．．．．．．．．．．．．		迹	021	939	773
		．．．．do	．．．．do ．．．．．．．．．．．．．．．．	．．．．do ．．．．．．．．．．．	．．．．do ．．．．．．．．．．．．．	0.4937	良药	1136	1085	705
371．Pinus rigida．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．	13	Massachosette．．．．	Arnold Arboratam．． ．．．．do \qquad	C．S．Sargent．．．．．．	Drift	0.5670 0． 5943	Will	697	051	797
	13						\％	775	769	851
	1046	．do ．．．．．．．．．．．．．．	North Reading	J．Robinson．．．．．．．．	．．．．do	0．4371	四	$\begin{aligned} & 642 \\ & 376 \end{aligned}$	537	647 663
	1046	do	do	．．do ．．．．．．．．．．．．．	．．．．do ．．．．．．．．．．．．．				368	
872．Plnas sorotins Pond Iine．	8383	Florida	Duval county ．．．．．．．	A．H．Curties ．．．．．	Moist，eandy losm．	0.7592	［1］	1136	1163	1158
		．．．．do			do	0.7518	？	1221	1177	1172
373．Pinus inops	621	South Caroling ．．．	Aikon ．．．．．．．．．．．．．．．	H．W．Ravenel ．．．．	Dry，sandy ．．．．．．．	0.5403	包	465	465	082
	022	d	．．．．do ．．．．．．．．．． ．	．．．do ．．．．．．．．．．．．．．	do	0.5537	饧	097	097	502
	1169	Indiana．．．．．．．．．．．．	New Albany．．．．．．．．	M．J．Robin8on．		0.5610	策	751	781	855
	1169	do	do	do		0． 5703	\％	542	528	490
	1172	Now Jersey ．．．．．．	Monnt Holly．．	S．P．Sharples ．．．．．	Clay ．．．．．．．．．．．．．．	0．59．0	［1］	452	428	722
	1172	do	．do	．．．do	do	0.7088	（1）	373	358	637
374．Pinos olanss．．．．．．．．．．．．．．．．．．．．．．	270	Florida ．．．．．．．．．	Apalachicola ．．．．．．．	A．H．Cortiss ．．．．．	Dry，sandy barrea．	0.5341	易	542	528	429
Sand Pine．Scrub Pine Spruce Pine	270	．．do		．do ．．．．．．．．．．．．．．		0． 5218	1	505	558	574
375．Pums pungens ．．．．．．．．．．．．．．．．．	321	Virginia．．．．．．．．．．．	Wythevillo ．．．．．．．．．	H．Shriver ．．．．．．．．	Clay ．．．．．．．．．．．．．．．	0.5180	易	679	630	771
Pine．	321	do	．．do	．do	．．．．do ．．．．．．．．．．．．．．	0.5300	留	076	976	680
378．Pinus muricata ．．．．．	671	Californla ．．．．．．．．	Marin connty ．．．．．．．	G．R．Vasey ．．．．．．	Gravelly．．．．．．．．．．	0.5573	箸	1039	1085	1005
Ooispo Pine．Eishor＇Pine．	671					0.5883	2	1221	1302	1059

UNITED STATES UNDER TRANSVERSE STRAIN—Continued.

TAble III.—BEHAVIOR OF THE PRINCIPAL WOODS OF THE

UNITED STATES UNDER TRANSVERSE STRAIN—Continued.

deflection, in mhlineters, under a presbure, in kilograms, of-													Ulimate strength:transverse pressnre.	Remarks.	
50	100	150	200	$\underset{\text { (set.) }}{0}$	200	250	300	350	400	450	500	550			
4.0	7.8	11.2	15.1	0.2	15.2	19.0	24.0	29.2					373	Specimen cross-grained; startod	278
3.5	6.9	10.8	14.2	0.3	14.2	18.0	22.0	27.0	32.0	45.0			450	Square break on tension sids, aplitting in axis	278
3.3	6.7	10.0	13.1	0.0	13.2	18.5	20.2	25.0	29.5	34.0	43.5		507	do	319
\%.7	14.8	23.2	32.0	3.0	33.2	.-.							200	Specimen cross-grained; broke with long split with graia...........	142
7.6	14.8	22.5	32.0	2.4	32.2								243	Square break oo teasion side, splitting in axis.	143
22.2	47.0												112	. .do	544
20.0	41.0												145	Shattered.	544
20.0	42.0	70.5											184	Square break at knot	544
8.7	18.0	29.0	42.0	5.2	43.0	60.0	89.0						327	Sbattered.	764
8.2	16.5	26.0	37.0	3.8	38.0	51.0							270	. . do	764
8.5	17.0	27.0	30.0	5.0	40.2								245	Square break	394
6.0	12.7	19.6	27.5	1.4	27.6	§8.0							277	Long, shattered break	394
3.7	7.2	10.8	14.3	0.3	14.3	18.2	23.0	28.6	38.0				404	Broke with small splinte	780
5.6	10.4	16.4	20.5	1.0	21.0								243	Broke at small knots	780
5.0	10.5	17.0											191	Broke at knot	879
4.7	0.0	13.7	18.4	0.4	18.4	30.0	37.0						308	Brake at small knots ; shattered	879
3.0	6.0	9.0	12.4	0.2	12.5	15.6	10.0	22.6	27.0	32.5			405	Square brask on tension side, splitting in ax	81
3.2	6. 2	0.3	12.4	0.3	12.7	15.5	19.0	23.0	27.2	31.7	37.5		540	Crushed at center bearing ; squars brea	81
5.0	9.2	14.0	18.2	0.4	18.2	23.0	28.0						350	Square break with large splinters	81
3.0	6.0	9.0	12.6	0.3	12.3	15.6	19.0	22.9	20.2	31.0	39.0		520	Squsre break on tension side, splitting in axis with large splinters ..	81
6.0	11.0	17.0	23.2	1.5	24.0	31.5	41.5	55.7					350	Square break on tension side, splitting in axis	85
3.0	0.2	9.2	12.3	0.3	12.3	15.5	19.0	23.6	28.2				442	Crushed at center bearing ; square bresk	85
4.7	0.0	13.7	18.8	1.0	18.8	24.0	31.0	37.2					400	0.5 sap-wood; splintered break	85
7.6	15.5	23.5	32.5	1.8	33.0	42. 3	65.0	70.0					309	Sbattered; split to oas end	85
2.5	5.5	8.0	10.7	0.0	10.0	13. 0	10.6	10.2	23.0	26.7	32.3		540	Broks with large flakes on back	243
2.3	5.7	8.2	11.0	0.0	11.0	13.6	16.6	20.0	23.0	27.5	32.5	30.0	550 do ...	243
3.0	6.3	9.2	12.3	0.3	12.5	15.5	12.0	23.0	27.0	31.0	37.5		500	Square break with flakes on back	357
3.0	5.7	8.5	11.3	0.3	11.4	14.0	17.0	20.6	23.5	28.3	33.0	38.5	628	45 millimetars faflection with 600 kilegrams; broke with flakes on	357
3.4	7.0	10.0	13.4	0.4	13.7	16.8	20.6	25.5	30.3	36.0	45.0		550	back. Sqnare break. (a) Bexed 1852; chipped ten years; abandoned 1861	358
3.0	3.5	8.6	11.4	0.2	11.6	14.0	17.0	23.0	27.0	32.0	38.0	40.8	594	Shattered. (a) Boxed 1852; chipped ten years ; abandoned 1801....	358
3.0	5.8	9.0	11.6	0.3	12.0	14.5	17.5	21.0	25.0	20.0	34.0		526	Sqnare break with large flakes on corners. (a) Boxed 1876; chipped	350
3.0	6.0	0.5	12.6	0.2	12.6	15.0	19.0	23.0	27.0	31.5	37.0	44.0	506	fonr years; specimen taken along chip. Sqnere break on tension side, splittiog in axis. (a) Boxed 1870;	359
						14.0	17.0	20.0	23.0	27.5	31.5	37.0	580	chipped four rears: specimen taken slong chip.	360
2.0	5.5	8.4	11.4	0.0	11.4	14.0	17.0	20.0	23.0	27.0	31.5	37.0	580	Broko with thin tlakes on back. (a) Boxcd 1876; cbipped four years; specimen taken abore cbip.	360
4.0	7.5	11.0	14.0	0.4	14.6	18.4	22.5	28.0	33.0	40.0			409	spuars break, ememewhit shat tered. (a) Boxed 1870; cbipped four	360
2.4	5.0	7.2	10.0	0.0	10.0	12.5	15.0	17.8	20.7	24.0	28.0		549		301
2.4	4.8	7.3	0.8	0.3	10.0	12.0	15.0	17.0	20.2	23.6	28.0	34.0	544	chippel two jears. Broke with mavy splinters. (a) Boxcd 1878; chipped two gears.	361
5.1	10.1	15. 2	20.3	0.0	20.5	20.7							274	grain	384
3.0	5.9	8.5	11.5	0.2	11.6	14.2	17.5	20.8	24.5	29.0	36.5		454	Broke with flaken on back	384
4.0	8.0	11.4	15.5	0.4	15.4	10.6	24.0	29.2	35.0				440	Broko with thick flakes on bae	386
2.7	5.5	8.5	11.0	0.0	11.2	14.2	17.0	21.0	25.0	30.5			. 485		390
3.0	6. 3	9.2	12.4	0.2	12.8	15.5	10.2	23.7	28.5	38.0			453		390
4.5	8.4	12.6	16.8	0.0	10.8	21.5	26.5	32.5	33.0	48.0			497	Shattercd. (a) Tree boxed eightcen or twenty year	1006
3.3	0.7	0.5	13.0	0.3	13.2	16.5	20.5	24.5	20.0	35.4			467	Broke with large fake. (a) Tree boxed eighteen or twenty yearsago.	1096
3.3	7.5	11.2	15.3	0.2	15.5	19.5	24.5	30.0	35.7	44.0			409		84
4.2	8.2	12.4	10.5	0.4	10.4	20.8	25.3	31.0	30.5				447	Specimen eross.grainc	84
3.3	6.6	10.0	13.0	0.2	13.2	16.2	20.0	24.0	28.5	33.0	33.0		504		84
20	5.0	7.8	10.3	0.2	10.2	13.0	15.5	18.2	21.3	25.0	30.0		542		350
											20.0			39 a millimetors deflection wity 600 kilagrams ; breke with large	
2.5	5.0	7.3	10.0		10.0	12.0	15.0	17.5	21.0	${ }^{24.0}$	28.0	31.5	$\begin{array}{r} 025 \\ \text { aro of } \end{array}$	39.2 millimeters deflection with 600 kilograns ; broke with large flat eplinters on corners. urpentine.	356

Table III．－BEHAVIOR OF THE PRINCIPAL WOODS OF THE

Speclea．		State．	Loeality．	Collector．	Soll．			COEPFICIRNT OF RLAETICITY．		
381．Pinus Cabensls－continued．．．．．．．．	493	Florida ．．．．．．．．．．	Bay lbiacayne．．．．．．．	A．II．Curtiss．．．．．	Coral ．．．．．．．．．．．．．．	0.8406	第	1479	1479	1064
	493	．．．．do．．．．．．．．．．．．．．	．．．do		．．．do	0.8042	包	1744	1084	998
382．Plcea nlgra \qquad mack Sprece．	231	Vermont．．．	Charlotte	C．G．Pringle	Cold，peaty ．．．．．．	0.5604	TH	1520	1479	930
	231	．．do ．．．．．．．．．．	．．do	do	．．do	0．5429	20	1221	1221	902
	373	．．do ．．．．．．．．．．．．．．	Huntington．	．do ．．．．．．．．．．．．．	Gravelly ．．．．．．．．．．．	0.4587	苞	904	921	698
	726	Nuw Brumswick ．．	Bay of Fundy ．．．．．．	Intereolonial rail．		0.4698	20	1062	1062	504
	76	do	do			0.4919	＇怱	1221	1221	834
	794	Province of Que－ bee．	Danvillo．．．．．．．．．．．．	Grand Trunk rail－ way．		0． 4296	\％	096	1062	717
	794	．．do．	do			0.4153	笏	1221	1085	701
	880	New Branswick ．．	Bridgeton ．．．．．．．．．．	Ed．Sinclair．．．		0.4425	20	976	888	687
	880	．do	．do	．．do		0.4783	运	939	872	741
383．Picea alba \qquad White Spruce．	513	New LIampshire．．	Stratford	C．G．Pringle ．．．．．	Gravelly ．．．．．．．．．．．	0.4455	［1］ 10	787	769	736
	513	－．do	．．．do	．do	．．do	0.4983	良品	679	688	703
	773	New Brunswiek ．．	Bay of Fundy ．．．．．．	Intereolonial rail－		0.4579	包	1285	1252	813
	773	do	do	do		0.4596	包	1163	1136	702
	784	．．do ．	IBridgeton	Ed．Sinclair．		0.4411	良	039	976	689
	784	．．do	do	do		0.4530	苞	976	976	731
	791	Proviace of Qae－ bec．	Amqui	A．Grant．		0.4319	（11］	1221	1236	811
	791	．．．．do ．．．．．．	．．do	do		0．4163	第	1136	1149	703
384．Pleea Engelmanni Thite Spruce．\qquad	292	Colorado．．．．．．．．．．	Forest City	T．S．Brandegee．．	Damp．．．．．．．．．．．．．．	0.4325	［T］IT	976	1028	757
	292	．．do ．	．．do	do	．．do ．．．．．．．．．．．．．	0.3642	2m	554	588	420
	575	．．do ．	．．．do ．．．．	C．S．Sargent ．．．．．	Peaty．．．．．．．．．．．．．．	0.3411	泵	751	751	548
	822	．．do	do	T．S．Brandegee ．	．do	0.3805	㐌乐	888	864	577
385．Picea pungens．．．．．．．．．．．．．．．．．．．．．． 1Fhite Spruce．Blue Spruce．	269	．．do	Alpine．．	．do	Damp．．．．．．．．．．．．．	0． 3939	IT］	542	574	441
	2701	．．do	．．do	．do	．．do ．．．．．．．．．．．．	0.4036	㐌鸲	444	444	387
	270^{2}	do	do	． do	．．．do ．．．．．．．．．．．．．	0.3810	IIII	610	642	539
886．Picea Sitchensia \qquad Tide land Spruce．	970	Alask	Sitka	Paul Sebaltzo．		0.4670	异	921	957	734
	970	do	do	．do		0.4568	艮	1062	1085	741
	977	British Colambia ．	Saw－mill，Burrard inlet．	G．Engelmann and C．S．Sargent．		0.4038	园	1085	1149	682
	977	do	．．．do			6． 3882	［ili］	1039	1062	635
	1015	Oregon	Weidler＇a saw－mill，	．．do		0.4398	解	1221	1302	776
	1019	．．．do	Saw－mill，Astoria．．．	．．do		0.3517	他	996	976	614
	1019	．．．do	．do	．do		0.3688	园	1110	1085	673
	1020	．．．do ．	Portland Furniture	．．．do		0.3891	漡	642	651	553
	1026	．．．do		．．．do		0.3810	包	610	642	431
387．Tauga Cansdensis． Hemlock．	5	Massachusetts．．．．	A raold Arboretum．．	C．S．Sargent ．．．．．	Drift．．．．．．．．．．．．．．	0.4210	［0］$]^{3}$	763	814	674
	5	．do	．．．do	．．．do	．．do ．．．．．．．．．．．．．	0.8989	可	787	781	580
	219	Vormont ．	Charlote	C．G．Pringle．．．．	Gravelly．．．．．．．．．．．	0.4716	易	1085	1062	738
	219	．．．do	．．．．do	．do	．．do ．．．．．．．．．．．．．	0.4699	23	1017	1007	797
＊	772	New Brunswlek ．．		Intereolonial rail．		0.5124	［1］	1136	1136	900
	772	．．．do		do．		0.5129	㐌	1138	1177	1031
	775	．．．do	Bay of Fundy．	．．．do		0.4922	［1］	488	479	677
	775	．．．do	do	．．do		0.4458	包	439	432	635
	788	．．．do		do		0.3496	号	679	688	541
	778	．．do		．．do		0.3675	－	669	665	530
	787	．．．．do ．．．．．．．．．．．．．	Bridgeton	Ed．Sinclair．		0.4811	包	976	976	745
	787	．．do	do	do		0.4805	尼	1085	1085	790

UNITED STATES UNDER TRANSVERSE STRAIN-Continued.

deflection, in mllimbters, under a prebsure, in kilograms, of-														Remarks.	
50	100	150	200	$\begin{gathered} \mathbf{0} \\ \text { (set.) } \end{gathered}$	200	250	300	350	400	450	500	350			
3.3	6.6	10.0	13.6	1.0	14.1	18.2	22.0	26.5	31.5	37.0			454	Square break	493
2.8	5.8	8.9	12.3	0.5	12.6	16.0	20.6	25.0	29.2				426	Square break on tension side, splitting in axis.	493
3.2	6.6	10.0	13.5	0.3	13.8	17.0	21.2	28.0				397	Squaro break with scales on back	231
4.0	8.0	12.5	16.5	0.4	17.0	22.0	28.7	39.5					385	Crusbed at centor bearing; square break	231
5.4	10.6	16.4	22.7	1.0	23.0	30.0							298	Square break on tensien eide, splitting in axis	$373{ }^{\circ}$
4.6	9.2	14.5	21.0	1.2	21.5								215	Square break at large knet.	770
4.0	8.0	12.0	16.4	0.5	16.5	22.0	29.0	45.0					356	Square break	776
4.9	9.2	13.8	19.0	0.6	19.1	26.0	41.0					306	Square break on tension side, splitting in axis	794
4.0	0.0	13.5	19.0	0.5	19.5	27.0						299	Sqnare break.	794
5.0	10.0	15.0	21.2	0.9	21.5	30.0							293	..de	880
5.2	11.2	17.4	23.6	1.0	24.4	31.5	47.0						316	Square break; split to end	880
6.2	12.7	19.2	27.0	1.6	27.4	37.5	55.5						314	Broke witb flat ecales on bac	513
7.2	14.2	22.4	32.7	4.0	33.5	45.7							300	Square break; shattered	513
3.8	7.8	12.0	16.0	0.5	16.2	21.0	29.2						347	Crusbed at center bearing; failed from flakes on tension eide	773
4.2	8.6	13.0	17.6	0.5	18.0	23.0	31.5						338	Square break.	773
5.2	10.0	15.5	21.3	1.0	21.8	29.6							294	do	784
5.0	10.0	15.3	21.3	0.6	21.5	29.5	43.2						312	.do	784
4.0	7.9	12.0	17.0	0.7	17.0	22.5	29.5						346	Crushed at center bearing f failed from thin scale on tension side	701
4.3	8.5	13.0	17.5	0.4	18.0	24.0							360	Crushed; equare break	791
5.0	9.5	14.0	19.0	0.6	10.0	25.0	36.0						323	Broke with thin acale on back	292
8.8	16.6	26.4											179	Square break at knot near end	292
6.5	13.0	19.0	28.0	2.4	29.6								234	Square break	575
5.5	11.3	17.4	28.0	2.2	27.2								246	Square hreak with short eplinters	822
0.0	17.0	28.0		..									188	Started at knot	269
11.0	22.0	35.2											165	..do	$270{ }^{1}$
8.0	15.2	24.7	39.5	5.5	41.2								230	Square break	$270{ }^{2}$
5.3	10.2	15.2	22.0	1.6	22.5	31.0	46.0						313	Crushed at center bearing ; broke witb few thin splintere	978
4.6	9.0	13.4	18.2	0.7	18.7	25.0	34.0						316	do	970
4.5	8.5	13.2	19.0	1.0	19.0	27.0							291	Crusbed at center bearing; broke with fine splinters	977
4.7	9.2	14.3	21.0	1.5	21.8	32.5							271	Crushed at center bearing ; breke with thin flake.	977
4.0	7.5	11.4	15.4	0.4	15.8	21.0	28.5						331	Crushed at center bearing; broke with fine splintere	1015
4.9	10.0	14.8	22.0	1.5	22.6	35.3							262	Crushed at center bearing; broke with thin flake	1019
4.4	9.0	13.6	10.7	1.0	20.0	28.0							287	Crushed at center bearing ; broke with fine eplinters	1019
7.6	15.0	24.4	36.4	4.3	38.0	.							230	Shattered.	1026
8.0	15.2	24.7							184	Specimen croes-grained; split	1020
6.4	12.0	17.8	25.0	1.0	25.4							245	Sbattorcd.	5
6.2	12.5	19.2	27.0	2.0	27.9	..							250	Square break on tension side, eplitting lnaxis.	5
4.5	9.2	14.0	10.0	0.6	19.0	24.8	34.5						315	Broko with large flakee on back	210
4.8	9.7	14.3	10.5	0.7	19.8	25.0	33.0						340	Square break	219
4.3	8.6	12.8	17.0	0.3	17.3	22.0	28.5	36.4					384	Square break with long eplit in center	772
4.3	8.3	12.5	17.0	0.4	17.2	22.0	27.0	36.0					440	. .do	772
10.0	20.4	34.0	40.0	7.2	51.0	69.5							289	Square break on tonelon side, splitting in axie.	775
11.3	22.6	35.5	53.2	7.8	54.0	72.0							271	Shattercd.	775
7.2	14.2	21.8	32.8	4.0	33.0	.							231	Square break; sbattered.	778
7.3	14.7	22.7	34.5	3.0	30.0							226	Squaro break	778
50	10.0	15.0	20.5	0.6	21.0	27.5	35.7						318	Sqnare break; bourwhat ehattered.	787
4.5	9.0	13.5	18.5	0.6	18.7	24.0	32.5						337	Square break	787

Table III．－BEHAVIOR OF THE PRINCIPAL WOODS OF THE

Speciea．		State．	Locality．	Collector．	Soll．		E			
							易			
387．Tsaga Csandensls－continned．．	793	Province of Quebec	Daprille ．．．．．．	Grand Trnuk rail－ way． ．．．do ．．．．．．．．．．．．．．．		0.5264	T1070	1130	1177	899
	703	．do	．do			0.5248	E	1221	1285	1024
	817	West Virginia ．	Grafton．	C．G．Pringla．		0.4041	鸟	957	986	640
	817	．．．do	．do	．${ }^{\text {do }}$		0.3748	易	814	814	558
	1040	Mararchnsetta．．．．	Danvers ．．	J．Robinaon ．．．．	Moist losm ．．．．．．．	0.5080	墭	763	746	848
	1040	．do	．do	do	．．do ．．．．．．．．．．．．	0.5114	\％	751	763	858
	1042	．．do ．．．．．．．．．．．．．．	North Reading．	． l （0		0.4248	四边	1062	1028	703
	1042	．${ }^{\text {do }}$	．do	．do		0.4244	F	921	890	703
388．T8nga Carollniana \qquad Hemlock．	623	North Carolina．．．．	Hendersonvillo ．．．．．	A．II．Curtiaa ．．．．	Dry，rocky．．．．．．．．	0.5335	包	697	713	462
389．Taugs Mertenalsna．．．．．．．．．．．．．．．．． Hemlock．	971	Washington ter． ritory．	Wilkesan．．．．．．．．．．．	G．Engelmann and C．S．Sargent．	Rich loam ．．．．．．．．	0.5318	翑	1017	1017	570
	995	Alaska ．．．．．．．．．．．	Sitka ．．．．	Paul Schaltze．．．．．		0.5002	畋	1628	1628	1104
	995	．．．．do	．do	．．${ }^{\text {do }}$		0.5472	國	1526	1479	1055
300．Tsuga Pattoninar ．．．．．．	080	British Colnmbla．	Silver peak，near Fraser river．	G．Engelmann and C．S．Sargent．	Gravelly loam ．．．．	0.4590	匆	751	763	720
	980	．．．．do			．do	0.4715	包	775	787	
391．Pendotgnga Donglasil．．．．．．．．．．．．．．Red Fir． Red Fir．Tellow Pine．Douglas Fir．	$271{ }^{2}$	Colorado. . do	Alpine．．．．．．．．．．．．．．．	T．S．Brandegeo ．．．	Molat \qquad ．．．do \qquad	$\begin{aligned} & 0.4852 \\ & 0.4780 \end{aligned}$	包	814	842	776
	$271{ }^{2}$						包	857	888	
	$271{ }^{3}$	do		uo	do	$\begin{aligned} & 0.4874 \\ & 0.5735 \end{aligned}$	包	1110	1149	848
	627	Californis．．．．．．．．．	Saw－mull，Straw－ berty valley．	G．Engelmann and C．S．Sargent．			包	1744	1628	1050937
	627	do	．．．do－．．．．．．．．．．．．．．．	．．do ．．．．．．．．．．．．．．		0.5382		1221	1356	
	702	Oregon ．．．．．．．．	Saw－mill，Marshfield．	．．do		0.4373		888	930	572
	704	．${ }^{\text {do }}$	．．do	．do		0.6590		1526	1628	1181
	705	．．do ．	E．B．Denn＇s aaw－ mill，Marsbfield．	．．do		0.5705 包		1136	1221	933
	700	do	．．．do ．．．．．．．．．．．．．	．do				1395	1305	837
	708	．do	do	．do				1575	1628	1249
	708	． do	do	do		$\begin{array}{l\|l\|} 0.6687 & \text { 檠 } \\ 0.6892 & \text { gy } \end{array}$		1808	1808	1317768
	709	．do	do	．do		$\begin{aligned} & 0.6892 \\ & 0.4375 \end{aligned}$	如	1085	1085	
	700	．do	do	do		$\begin{aligned} & 0.4375 \\ & 0.4448 \end{aligned}$	0.4448 园	1163	1085	802
	720	Montana．	Sat－mill，Miasonla．．	S．Watson ．．．		0.5345	Tmin	1062	1062	703
	720	．．．do	do	．do			第	1221	1221	21
	732	California．	Lassen＇a peak．	Sierra Lamber		$\begin{aligned} & 0.5227 \\ & 0.5090 \end{aligned}$		1221	1252	820
	732	．do	．do	Company．				1163	1163	703
	881	Utah	Salt Lake．	M．E．Jonea ．	Rocky ．．．．．．．．．．．．．	0.5000 0.5601	或	996	976	933
	881	．do	do	do	． do	0.5705		1103	1110	975
	973	Britiah Columhia ．	Saw－mill，Borrard inlet．	C．S．Sargent ．．．．．．		$\begin{aligned} & 0.5005 \\ & 0.4909 \end{aligned}$	IIITI	1221	1221	771
	073	． 10	．${ }^{\text {do }}$	．do			－	1163	1149	820
	974	．．．do	．．do	．．do		$\begin{aligned} & 0.4909 \\ & 0.5300 \end{aligned}$	包	1356	1430	902
	980	．．．do ．．．．．．．．．．．．．	Saw－mill，Victoria ．．	G．Engelmann and		$\begin{aligned} & 0.5306 \\ & 0.4596 \end{aligned}$	饱	1085	1122	7871008
	980	Oregon ．．．．．．．．．．．．	Saw－mill，Portland ．－	C．S．Sargent． ．．－．do \qquad		$\begin{aligned} & 0.4506 \\ & 0.0016 \end{aligned}$	IITim	1221	1191	
	1008	Britiagh Columbia	Ssw－mill，Burrard	．．．do		0.4879	號	1252	1338	764
	iniet，					0． 5501	包	1628	1628	808
						0.5386	2m	1221	1356	000
						0． 5325	良	1191	1191	696
						0． 5960	艮	1628	1713	900
						0.6085	2m	1628	1028	696
						0.0129	包	1028	1628	947
						0.6135	垦	1808	1744	998
						0.4632	20	1110	1085	1048
						0.4485	良	e^{-9}	979	1055

UNITED STATES UNDER TRANSVERSE STRAIN-Continued.

deflection, ix millimeters, under a pregsuee, in kilograms, of-														Remarks.	
50	100	150	200	$\begin{gathered} \mathbf{0} \\ \text { (set.! } \end{gathered}$	200	250	300	350	400	450	500	550			
4.3	8.3	13.0	10.5	0.5	18.0	23.0	29.5	39.0					358	Crushed at center bearing with thin flake on tension sid	793
4.0	7. 6	11.5	15.3	0.2	15.6	10.5	24.3	30.0	42.4				437	Square break; long split in center.	793
5.1	0.9	15.4	22.0	0.8	22.2	30.5							273	Square break	817
6.0	12.0	18.2	27.0	1.5	28.0								238	...do	817
6.4	13.1	20.4	28.0	2.0	28.0	38.0	47.0	64.0					362	Broks with flakes on teasion side.	1040
6.5	12. 8	18.7	25.8	1.3	26.0	33.5	43.0	61.0					366	Square break on tension side, splitting in axis	1040
4.6	0.5	14.4	20.3	0.7	20.5	27.5							300	Crushed at ceater bearing f failed with flakes on corner	1042
5.3	10.9	16.4	23.2	1.3	23.7	32.0							300	Square break; shattered.	1042
7.0	13.7	21.2											197	Specimen cross-grained; started at knot.	623
4.8	9.6	14.4	21.0	1.4	21.5								243	Started at knots	971
3.0	6.0	9.3	12.6	0.4	12.9	16.0	19.7	24.5	30.5	39.0			471	Crushed at center bearing; failed from flakes on back	995
22	6.6	9.6	13.2	0.2	13.2	16.5	205	25.0	34.0				450	Crnshed; splintered	905
4. 5	12.8	19.5	27.0	1.1	27.9	36.0	55.5						307	Square break	980
\&. 3	12.4	18.9	26.4	1.4	26.7	35.5	48.2						307do	980
6. 0	11.6	17.0	23.3	0.9	23.7	32.0	4.0					331	Square break anil split at end	2712
5.7	11.0	10.5	24.0	1.0	24.0	33.0							284	Square break on tension side, splitting in ax	$271{ }^{2}$
4.4	8.5	13.0	17.5	0.6	18.0	23.0	29.5	41.2					362	Did not break; split tbreagh the centor	2713
2.8	6.0	9.2	12.6	0.0	12.8	16.0	10.5	24.0	30.5				448	Square break ; slightly splintered	627
4.0	7.2	11.0	14.5	0.2	14.8	18.2	23.0	29.6					400	.d	627
5.5	10.5	17.0	22.5	1.5	23.0								244	Flaked on tension side	702
3.2	6.0	9.0	1ㄱ. 1	0.3	12.2	15.0	18.5	23.0	27.0	33.0	38.5		504	Sqaare break; large splinte	704
4.3	8.0	11.6	15.8	0.5	16.0	20.3	25.5	31.5					398	Specimen eross-grained; eplit with grain	705
3.5	7.0	10.4	13.0	0.3	14.0	17.0	22.0	27.8	39.5				400	Crushed at center bearing; square break	706
3.1	6.0	9.0	12.3	0.2	12.5	15.0	18.0	22.7	27.5	34.0	45.6		533	Square break on tension side, splitting in a	708
2.7	5.4	8.2	11.0	0.0	11.2	14.0	17.0	20.0	24.5	29.0	34.5	44. 5	562	.do	708
4.5	9.0	13.6	18.7	0.4	19.0	24.7	32.2						327	Failed from large splinter on corner	709
4.2	9.0	13.3	17.8	0.5	18.0	23.5	30.0						342	Specimen cross-grained; splintered.	709
4.6	9.2	14.0	19.6	0.5	20.4	26.5	35.8						300	Specimen cross-grained; shattered	720
4.0	8.0	12.0	16.2	0.4	16.8	21.0	27.5	34.2					393	.de	720
4.0	\%. 8	11.7	10.0	0.4	16.0	20.8	26.5	30.0					350	Failed frem large splintors on corners	732
4.2	8.4	13.0	17.8	0.6	18.0	23.4	30.5						300	Failed from large splinters on ons coracr	732.
4.9	10.0	15.6	22.0	1.0	22.0	29.0	36.0	45.7					398	Squaro break na teasion side, splitting in axis	881
4.2	8.8	13.4	18.6	0.5	18.5	24.6	30.6	38.5	51.5				416	Failed from large splintor on corner	881
4.0	8.0	12.2	17.0	0.4	17.5	22.0	29.2	.					329	Square break	973
4.2	8.5	12.7	17.0	0.3	17.5	22.5	28.7						350	.d	073
3.6	6.8	10.1	13.5	0.3	13.6	17.5	22.2	28.0					385	Failed from large splinter on each corne	974
4.5	8.7	13.2	18.0	0.6	18.0	24. 2	31.0						336	Square hreak on tensjon slde, splitting in axis	086
4.0	8.2	12.5	17.0	0.4	17.2	21.5	27.5	35.0	45.0				430	Crushed at ceater bearing; broke with fime splinters	989
3.9	7.3	11.0	14.7	0.3	15.0	19.0	25.5						320	Crnshed at ceater bearing; broke with flakes on back	1008
3.0	0.0	0.0	12.5	0.0	12.2	15.5	19.5	28.6					383	Crnshed at center bearing; square break; splintered	1008
4.0	7.2	11.0	14.5	0.5	14.8	18.7	24.0	31.5					384	Crushed at center bearing; broke with fine splintors	1011
4.1	8.2	i2.3	16.8	0.4	16.9	22.2							297	Started at knot; spliztered on corner .	1011
3.0	5.7	8.8	12.0	0.2	12.3	15.0	19.0	24.0	32.0				384	Crusbed at centor bearing; breke with fine splinters	1016
3.0	6.0	9.0	11.'6	0.2	12.0	14.8	18.4	23.4	32.5				297	Cracked at knot	1016
3.0	6.0	8.8	11.8	0.2	11.8	14.6	18.0	22.0	28.0				404	Crushed at center bearing and sealci on tension side	1018
2.7	5.0	8.6	11.6	0.2	12.0	14.5	18.5	23.0	31.0				420	Spliatered	1018
4.4	0.0	13.3	18.0	0.5	18.0	24.0	34.0						447do	1020
5.0	10.0	15.2	21.2	0.7	21.5	28.5							450	. do	1020

Table III．－BEHAVIOR OF THE PRINCIPAL WOODS OF THE

Speoles．	$\begin{aligned} & \text { 芯 } \\ & \text { 若 } \\ & \text { 芑 } \end{aligned}$	State．	Locality．	Collector．	Soil．			CORFFICIEST OF Elasticity．		
301．Pseudotsnga Douglasil－cont＇d．．．．	$\begin{aligned} & 1022 \\ & 1022 \end{aligned}$	Oregon ．．．．．．．．．．．．	Portland Furnlture Company． ．．．．do	G．Engelmann and C．S．Sargent， ．．．．do \qquad		0.4893 0.4735	等	1221	1221 1130	769 698
391．Psendotsnga Donglasil，var．ma． crocarpa． Hembock．	642	Californis．．．．．．．．．	Saw－mill，San Ber－ nardino．	W．G．Wright．		0.5357	（10］	1062	1050	783
	642	do		do		0．5397	怱	1085	1050	900
392．A bies Fraseri Balsam．She Balsam．	523	North Carolina ．．．	Soan monntain．．．．．	Walcott Gibbs．．．．	Peaty loam．．．．．．．	0.3602	发	976	1017	654
	523	．．do	．do ．．．．．．．．．．．．．．．	．do	．．．do ．．．．．．．．．．．．．	0.3523	第	976	976	621
	523	do	do	do	．．do ．．．．．．．．．．．．．．	0.3636	包	976	921	642
393．Abies balsamea \qquad Balsam Fir．Balm of Gilead Fir．	377	Vermont	Monkton	C．G．Pringle．．．．．．	Peaty ．．．．．．．．．．．．．	0.4455	笣	740	734	445
	375	．．．．do	．．do	do	．．．do ．．．．．．．．．．．	0.4419	［1］m	651	638	584
304．Abies subalpina \qquad Balsam．	440^{1}	Colorado．	Forest City ．．．．．．．．．	T．S．Brandegeo．．．	Moist，saudy loam	0.3941	¢ुת	775	787	548
	4491	do	do	do	． do	0.3750	TH	775	723	370
	4492	．do	do	do	．do	0.3682	［IT］	872	840	580
	4402		．do	．do	．do ．．．．．．．．．．．．．	0.3807	F	670	642	347
	820	．．．do	．do	do	．do	0.3358	［1］	688	679	518
	820	do	do	．do ．．．．．．．．．．．．．	．．do ．．．．．．．．．．．．．．	0.3350	W	751	740	402
	820	．do	．．do	do	．do	0.3673	嗉	787	787	492
	820	．．．do	．do	．do	．do	0.3622	＝	976	888	460
305．Alies grandis Mhite Fir．	1009	Oregon ．．．．．．．．．．．．	Portland．．．．．．．．．．．．	G．Engelmannsnd C．S．Sargont．	Ricb，allnvial ．．．．．	0.4002	$1111]$	763	751	333
	1010	．．．do	do	．．．．do ．．．．．．．．．．．．．．	．．do	0.3597	［的］	976	1085	527
	1010	．do	do	do	．．do	0.3641	㐌	976	1030	021
306．Abies concolor \qquad White Fir．Balsam Fir．	529	Colorado．	Evgelmanu＇s cañon	Robert Douglas．．．	Rocky ．．．．．．．．．．．．．	0.3602		660	697	555
	529	do	do	do	．do	0.3801	艮	775	787	409
	630	California ．．．．．．．．．	Strawberry valley ．．	G．Engelmannand	Alluvial ．．．．．．．．．．．	0.4010	ITII	688	655	703
	639	do	do	．do ．．．．．．．．．	．．．do	0.4744	泡	651	673	764
	733	．do	Lassen＇s peak．．．．．．．	Sierra Lnmber		0.4989	䎂	1285	1320	904
	733	do	do	．．．．do ．．．．．．．．．．．．．		0.4504	気	1252	1320	700
398．Abies amabilis ．．．．．．．．．．．．．．．．．．．．．	1004	British Columbia ．	Silver peak，near Fraser river．	G．Engelmann and C．S．Sargent．	Rich，sandy loam．．	0.4754	阿	1221	1252	769
	1004	．．．do	－．．do．．．－．．．．．．．．．．．．	．．．do ．．．．．．．．．．．．．．	．do	0.5108	㐌	1221	1268	816
399．Ables nobilis Red Fir．	965	Oregon ．．．．．．．．．．．．	Cascade mountains	．．do	Rich ．．．．．．．．．．．．．．．	0． 5074	胹	1221	1285	005
	965	do	do	．do	．do ．．．．．．．．．．．	0.4932		1221	1208	820
400．Abies magnifica Red Fir．	647	California ．．．．．．．．．	Soda Springs ．．．．．．．	C．Engelmsun and C．S．Sargeut．	Gravelly loam ．．．．	0.4608	笏	542	514	580
	647	．．．．do	do		．．．do ．．．．．．．．．．．．．．	0.5134	边	976	830	810
	647	do	do	do	．．do ．．．．．．．．．．．	0.4965	涨	542	534	703
401．Larix Americsna Larch．Black Larch．Tamarack． Hackmatack．	$226{ }^{2}$	Vermont．．．．．．．．．．	Charlotto．	C．G．Pringlo．．．．．．	Cold，swampy．．．．．	0.7381	ITH	2325	1053	1169
	$226{ }^{2}$	do	．do	do	．do	0.7295	良品	1526	1628	1055
	774	New Branswick ．．	Bay of liandy．．．．．．．	Intercolonial rail－		0.6147	第	1221	1356	937
	774	．．．do	． do	way．		0.6330	［1］	1395	1479	790
	781	．do	．do	．do		0.5973	偳	697	734	703
	781	．．do	．do	．do ．．．．		0.5742	夷	688	688	717
	786	．．．．do ．．．．．．．．．．．．．．	Bridgeton．．．．．．．．．．	Ed．Sinclair ．．．．		0.5064	晨	1430	1395	923
	786	do	do	do		0.6204	＝	1285	1356	1066
	795	．．．．do ．．．．．．．．．．．．．．	Danville．．．．．．．．．．．．	Grand Trunk rail－		0.6170	did	1479	1430	937
	705	do	do	．do ．．．．．．．．．．．．		0.6030	易	1526	1395	870
	840	Massachnsetts．．．．	Wenham ．．．．．．．．．．	J．Robinson ．．．．．．．	Swampy ．．．．．．．．．．	0.5988	它	842	872	820
	840	do		do	．．．do ．．．．．．．．．．．．．	0.6272	第	814	842	823

UNITED STATES UNDER TRANSVERSE STRAIN-Continued.

DEFLECTION, in														Romarks.	
50	100	150	200	$\begin{gathered} 0 \\ \text { (set.) } \end{gathered}$	200	250	300	350	400	450	500	550			\& 首 0 0 0 0
4.0	8.0	12.0	16. ${ }^{\text {a }}$	0.4	16.5	22.0	31.0						328	Square break; aplit at end	1022
4.2	8.6	12.5	17.0	0.4	17.1	22.0	29.0						298	Square break ..	1022
4.6	9.3	14.0	19.0	0.4	19.3	25.2	32. 0						334	Square break on tenaien side, splitting in axis; shattered.	642
4.5	9.3	14.3	19.4	0.4	19.7	25.7	33.0	42.8					388	. do	642
5.0	9.6	15.0	21.0	1.0	21.5	31.0							279	Square break ; aplintere	523
5.0	10.0	15.0	22.0	1.5	22.2	33.5							265	. ${ }^{\text {do }}$	523
5. 0	10.6	15.5	22.6	1.1	23.7	34.0							274do	523
6.6	13.3	21.0											190	Square break	377
5.8	10.8	16.8	22.5	0.5	22.5								249	Specimen cress-grained	377
6.3	12.4	19.5	29.0	2.5	29.3								234	Crushed at ceuter bearing; square break on tensien aide, splitting in axis.	4491
6.3	13.5	21.5											158	Square break at knot ..	4491
5.6	11.5	16.7	24.5	1.5	25.6	39.2					\%	250	Crushed at center bearing; flaked on bsek	449^{2}
7.2	15.2												148	Specimen crosa-graiued; broke at knot	449^{2}
7.1	14.4	22.0	32.0	2.4	35.5								221	Square break	820
6.5	13.2	21.0											197	-. . do	820
6.2	12.4	20.5	32.5	4.4	35.0								210	Square break and aplit	820
5. 0	11.0	17.0											200	Broke with long, oblique split	820
0.4	13.0												142	Speeimen shaky; broke with leng split..............................	1009
5.0	9.0	14.0	20.5	1.0	20.7								225	Crushed at center bearing ...	1010
5.0	9.4	14.5	21.0	1.6	22.0	32.0							265	Square break with loug, thin splinter................................	1010
7.4	14.0	21.5	32.0	2.5	34.5								237	Shattered	529
6.3	12.4	20.0	29.0	2.0	30.0							213	Square break; alattered	529
7.1	14.3	23.0	32.2	1.9	33.4	44.7	64.0						300	Square break with flakea on tenaion side	639
7.5	14.5	22.4	31.5	2.2	32.5	43.7	83.5						326	Thin flake on back	639
3.8	7.4	11.0	14.9	0.4	15.0	18.5	23.4	20.5					386	Crualled at center bearing with thin flake	733
3.9	7.4	11.3	15.0	0.2	16.0	21.0	28.0						340	Cruahed at center bearing; aplintered.................................	733
4.0	7.8	12.0	16. 4	0.6	16.8	22.0	32.5						328	Square break	1004
4.0	7.7	11.9	16.2	0.5	16.8	22.0	30.0					...i.-	348	Crusbed at center bearing; square break	1004
4.0	7.6	11.4	15.4	0.4	10.0	21.0	27.0	38.0					386	Crushed at center bearing ; flaked....................................	965
4.0	7.7	11.7	16.0	0.4	16.2	21.8	29.0	47.0					350	Crushed at center bearing; splintered.	005
9.0	19.0	30.7	46.0	5.5	40.4	94.0							250	Square break ; split..	647
5.0	10.4	15.7	22.0	1.0	22.5	30.0	41.0						348	Specimen cross-grained	647
9.0	18.3	29.5	40.8	4.0	43.5	62.0							300	Square break on tension aide, aplitting ln axis	647
2.1	5.0	7.4	10.0	0.1	10.2	12.7	16.0	19.0	24.0	29.0			499	Crughed at center bearing; broke with fine splintera...............	226^{2}
3.2	6.0	0.2	12.0	0.2	12.0	15.0	18.5	23.0	29.0	38.0			450	Cruahed at center bearing; broke with thin acales..	226^{2}
4.0	7.2	10.8	14.5	0.8	14.6	18.0	23.5	30.0	46.0				400	Crushed at center bearing; broke with fine splinters	774
3.5	6.6	10.0	13.2	0.4	13.5	16.5	25.0					337	Large seale on tension side ...	774
7.0	13.3	21.0	29.7	2.8	30.5	40.4	55.5						300	Shattered at one end..	781
7.1	14.2	22.4	32.0	2.0	32.8	44.0	63.5						306	Specimen eross.graized; aquare break; aplit.	781
3.4	7.0	11.0	14.5	0.5	14.6	18.2	23.7	30.0					304	Cruahed at center bearing; broke with flne aplintera	786
3.8	7.2	10.8	14.5	0.4	14.7	18.5	23.4	29.0	30.0	46.0			455	Square break; splintered..	786
3.3	6.8	10.0	13.2	0.3	13.5	17.0	21.5	28.5	40.0				400	Crushed at centcr bearing; acaled on tensien side....................	795
3.2	7.0	10.3	14.0	0.4	14.5	18.8	24.2	32.5					371	Crusbed at centor bearing ; aealed.....................................	795
5.8	11.2	18.2	26.3	3.0	27.0	35.0	49.0						350	Failcd from large aplinter on corner.	840
6.0	11.6	17.8	25.7	2.0	26.5	35.5	47.0	75.0				.	351	Square break on tenaion aide, splitting in axis.......................	840

Table III．－beHavior OF THE PRINCIPAL WOODS OF THE

Table IV．－BEHAVIOR OF SOME OF THE WOODS OF THE UNITED STATES

Species．		State．	Locality．	Collector．	Soil．			COEFFCIENT OF elasticity．		－exuzdax $j 0$ вupapoy
magnoliaces．										
1．Magnolia grandifora ．．．．．．．．．．．．．．．． Big Laurel．Bull Bay．	346	Alabama ．．．．．．．．．	Cottage Hill ．．．．．．．	C．Mohr ．	Rich loam ．．．．．．．	0． 7347	喵	1191	1097	974
2．Magnolia glauca． Sweet Bay．White Bay．Beaver Tree．White Laurel．Swamp Laurel．	354	．do	do	．．．．do ．．．．．．．．．．．．．	Swarapy ．．．．．．．．．	0.5262	ITH1	1135	1028	816
SAPINDACEE．										
54．Sapindus marginatus．．．．．．．．．．．．．．．．	307	Texas ．．．．．．．．．．．．	Dallas ．．．．．．．．．．．．．	J．Roverchon ．．．．．	Rich，damp．．．．．．．	0． 7838		1100	1062	851
LEGUMiNOSE．										
77．Roliuia Psendacacia \qquad Locust．Dlack Locust．Yellow Locust．	1248	New Xork．．．．．．．．	Long Island ．．．．．．．．	M．C．Beedle．．．．．．		0.8476	皆	1221	1221	1169
HAMAMELACET．										
139．Liquidambar Styracifua ．．．．．．．．．．． Siceet Gum．Star－leaved Gum． Liquidamber．Red Gum．Bil－ sted．	546	Alabama ．．．．．．．．．	Keuper＇s mill ．．．．．．	C．Mohr ．．．．．．．．．．	Rich，alluvial．．．．．	0.6537	I相	939	921	933
OLEACES．										
192．Fraxinus Americada，var．Texcusis	304	Texas ．．．．．．．．．．．．	Dallas ．．．．．．．．．．．．．．	J．Roverchon ．．．．．	Dry，calcareous．．．	0.8198	ITH	1221	1101	1172
BIGNONIACETE．										
207．Catalpa speciosa． Western Catalpa．	38	Missouri．．．．．．．．．．	Charlestou．．．．．．．．．．do	Wet clay ．．．．do \qquad	$\begin{aligned} & 0.4783 \\ & 0.4757 \end{aligned}$	巽	957	840	682
	38	．．．do ．．．．．．．．．．．．．	．．．．do ．．．．．．．．．．．．．．．					939	888	703
URIICACEE．										
224．Ulinus Americana White Dim．American Elon．	10 308	Massachusetts．．．．	Arnold Arboretum．	．．．．do ．．．．．．．．．．．．．．．	Drift ．．．．．．．．．．．．．	0.7534	［1TH	1085	1050	1118：
Water Elm． 228．Caltis occidentalis Sugarberry．Mackierry．	300	Toxas ．．．．．．．．．．．．	Dallas ．．．．．．．．．．．．．．	J．Reverchon ．．．．．	Alluvial ．．．．．．．．．．	0.7491	didu	888	800	916
JUGLANDACEAE．										
230．Juclans nigra Black Walnut．	951	．．．do ．．．．．．．．．．．．．．	Now Braunfels ．．．．．	C．Mohr ．．．．．．．．．	Moist，calcarcous．	0.7108	第	970	006	036.
248．Carya aquatica \qquad Hater Hickory．Swamp Hickory． bitter Pecan．	302	Mississlppi ．．．．．．．	Vleksburg	．．．．do ．．．．．．．．．．．．．		0.7730	T10	970	057	956
CU1＇UlıFERA．										
251．Querens alba White Oak．		Massachusetts． ．．．．do \qquad	Arnold Arborotum ．．．．do \qquad	C．S．Sargont do \qquad	Drift	$\begin{aligned} & 0.6058 \\ & 0.6820 \end{aligned}$	ITm	708	787	892
								763	660	658

INITED STATES UNDER TRANSVERSE STRAIN—Continued.

deflection, in millimeters, under a pregsure, in kiloghams, of-														Remarks.	
50	100	150	200	$\begin{gathered} \mathbf{0} \\ \text { (set.) } \end{gathered}$	200	250	300	350	400	450	500	550			昌
4.0	8.0	12.0	10.2	0.5	16.5	21.0	27.5	36.0					390	Crushed at center bearing; broke with fine eplintere.	719
3.6	7.0	10.5	14.0	0.4	14.0	18.0	22.5	28.0	34.0	45.0			472	.de	719
3.0	5.7	8.4	11.0	0.3	11.4	'14.0	17.5	20.6	24.7	28.5	35.7	47.6	550	. do	984
3.0	6.7	8.2	11.0	0.2	11.0	13.6	16.5	19.5	23.0	26.8	32.0	36.5	632	Deflectien with 000 kilograme $=45.5$ millimeters; breke with fine	034
2.6	5.0	7.6	10.4	0.2	10.4	13.0	16.0	19.0	22.7	27.2	34.0		549	Crushed at couter bearing; fiaked	1006
2.5	5.0	7.5	10.0	0.2	10.0	12.6	15.5	18.5	$\underline{2.0}$	26.5			549	Failed frem large splinter on corner	1006
10.6	24.2												116	Twisted and split.	1159
7.0	13.5	20.0	29.4	1.8	33.5								250	Square break ...:	1159

UNDER TRANSVEISE STRAIN: SPECIMENS EIGHT CENTIMETERS SQUARE.

deflectiox, ix millimtras, under a pregsube, in klograme, of-												Remarke.	
400	800	1200	1600	$\underset{\text { (set.) }}{\mathbf{0}}$	1600	2000	2400	2500	3200	3600			
2.0	4.1	6.4	8.9	0.2	0.0	11.2	15.1	19.5	26.0		3325	Broke with large epplinters on back	346
2. 2	4.3	6.9	9.5	0.3	9.5	12.4	16.2				2785	Breke wlth large splinters	354
2. 2	4.4	6.6	9.2	0.4	9.2	12.2	16.0				2003	Broke with large fake en back...........................	307
2.0	4.0	6.1	8.0	0.0	8.1	10.2	12.6	15.2	10.2	25.0	3092	Broke with large splinters on back	1248
2.0	5.2	7.7	10.6	0.7	10.7	14.2	19.3	26.0			3184	Broke with many fine splinters	546
2.2	4.0	6.0	8.2	0.3	8.2	10.2	13.0	16.5	20.6	26.5	4000	Broke wata mage sphnters	364
2.5	5.1	7.8	11.0	0.3	11.0	15.5					2361	Crusked and split to the end	38
. 2.8	5.2	7.9	11.0	0.4	11.0	15.7	29.6				2400	Breke with finesplinter on one cerner.................	38
2.3	4.5	6.8	9.3	0.2	9.4	12.0	15.2	18.5	25.0	35.0	3815	Broice with fine splinters .	19
2.0	5.5	8.6	12.2	0.8	12.3	17.0	23.2	33.0			3125	Broke with large splinter on one cormer.................	306
2.6	5.0	7.5	0.8	0.4	10.0	12.5	15.5	19.5			3103	Breke with large splinters on corners...................	951
2.5	5.0	$\% 4$	10.2	0.5	10.3	13.0	18.2	24.4	30.0		3270	Broke with large splinters	362
2.5	6.9	9.8	12.4			15.0	10.2	27.3			3043	Breke with large splinters on back	8
3.1	6.4	10.0	14.8	1.2	15.0	21.0					2245de	8

Table IV.—BEHAVIOR OF SOME OF THE WOODS OF THE UNITED STATES UNDER

Species.		State.	Locality.	Collector.	Soil.			COEFFICIRNT OF elabticity.		Modulus of rupture.
230. Qaercus Michanxii...................	$\begin{aligned} & 524 \\ & 524 \end{aligned}$	Alabama do \qquad	Kemper's mill \qquad ... do \qquad	C. Mohr \qquad do \qquad	Alluvial do	$\begin{aligned} & 0.8107 \\ & 0.8348 \end{aligned}$			697	884
								800	745	984
260 Quercus Prinus. \qquad Ohestrut Oak. Rock Ohestnut Oak.	925do	Cullmando	Drs, rocky.......	0.8158	(mid	1085	1028	582
275. Quercus Kelloggii Black Oak.	963	Oregon	Eugeno City...	G. II. Collier		0.7625	(3)	620	564	736
280. Quercus appatica. Water Oak. DuckOak. Pobsum Oak. Punk Oak.	349	Alabama	Cottage Hill	C. Mohr	Ssudy loam.......	0. 7253	U1ITI	1366	1320	1144
BETULACES.										
301. Alnus rubra Alder.	991	Washington territory.	Puyallup...........	G. Engolmanuand C. S. Sargent.		0.5381	\%	729	810	524
CONIFERA.										
320. Chamæc yparis sphæroidea White Dedar.	350	Alabama	Cottage IIIll	C. Mohr	Sandy, wet	0.3719		364	376
370. Pinus Taeda	$\begin{aligned} & 82 \\ & 82 \end{aligned}$	Florida \qquad .. do \qquad	Duval county....do	A. II. Cartiss. do \qquad	Moist, sandy...... do \qquad	$\begin{aligned} & 0.5602 \\ & 0.7614 \end{aligned}$	\mid	$\begin{aligned} & 1061 \\ & 1285 \end{aligned}$	$\begin{aligned} & 1017 \\ & 1302 \end{aligned}$	$\begin{aligned} & 792 \\ & 820 \end{aligned}$
Roeemary Pine.										
372. Pinus serotina. Pond Pine.	$\begin{aligned} & 83 \\ & 83 \end{aligned}$	 dodo	Moist, sandy loam. do \qquad	$\begin{aligned} & 0.7614 \\ & 0.8271 \end{aligned}$	\mid	939787	$\begin{aligned} & 021 \\ & 751 \end{aligned}$	$\begin{aligned} & 933 \\ & 904 \end{aligned}$
380. Pinus palnstris Long-leaved Pine. Southern Pine.	$\begin{array}{r} 81 \\ 85 \\ 243 \\ 243 \end{array}$				Sandy loam \qquad Moist, andy \qquad	$\begin{aligned} & 0.8609 \\ & 0.7213 \\ & 0.6788 \\ & 0.6103 \end{aligned}$		1436	1550	1057
Georgia Pine. Yellozo Pine. Hard Pine.								1085	1007	940
							T1]	1221	1252	820
							粝	1163	1221	940
381. Pinus Cubensis...................... tard Pine. Meadow Pize.	84	... do	Duval countydo	Moist, sandy......	0.7033	d 11	1163	1221	1029

transverise strain: Specimens eight oentimeters square-continued.

27 FOR

Table V.-beHavior OF THE PRINCIPAL WOODS

Spectes	E E E 药	State.	Locality	Collector.	Soll.		Itemaris.
Magnoliacee.							
1. Maqnolia grandiflora........... Big Laurel. Bull Bay.	346	Alabama	Cottage Hilldo \square	C. Mohr...	Rich loam	7353 8056	Crushed fibers at 10 millimetera knot 28 millimctere from end. Triple fiexure
2. Magnolia glaner.........	354	...do	do	do	Swampy	7212	Fibers crushed at 51 millimetera
Sircet Bay. White Bay. Bearer Tree. White Laurel. swamp Laurel.	354do	.do	do	.do	6369	from ond. Fibers crusked at middlo
3. Maydolia nenminata \qquad Cucumber Iree. Mountain	246 246	Virginla..........	Wytheville	H. Shriver.	Clay limestono. .	6795	Fibers crushed at 76 millimetera from end.
Magnolia.	246	dododo	.do	6562	Triple flexuro
	$261{ }^{3}$. do	Fancy Gapdo	Rich, light.......	5126	Cruslied in vicinity of knots at middle.
	$261{ }^{3}$. .do	. do	do	.do	5570	Crushed filcra at 63 millimeters from end.
	534	Mississippl	Selvers' mill.	C. Mohr.	do	7389	Crushed fibers at 76 millimeters from end.
	534	.do	. do	do	do	8333	Crushed fibers at 102 millimeters Trom end undon opposito side at end.
4. Maцnolia cordata Cucumber Tree.	1178	Alabama..........	Winston connly ..	do		6577	Crnshed fibers at 38 millimeters from midile.
	1178	...do	..do	do		6527	Cruswed fibers in viefofty of knots 03 miltimotere from eod.
5. Magnolia macrophylla Large-leaved Oucumber Tree.	532	Mississippi	Quitman	do	Rich, law	7357	Opened longitulinal crack between rings.
	532	...do	do	do	do	6301	Crushel fihera at 63 millimeters from end.
6. Magnolia Umbrella Timbrella Tree. Elk Food.	2661 $266{ }^{2}$	Virginla	Wytheville.......	H. Shriver		5647	Crnshed fibers at 128 millimeters from end.
	2662	.do	.do	da		6073	Triple flexure; doveloped intersecting "Cooper linos".
7. Mamnolia Fraseri \qquad Long-leared Cucumber Tree.	260	. .do	Fancy Gap	.do	Damp	5806	Friled at 6 millimeters knot 51 millimeters from end.
	260	..do	.do	do	do	7575	Fibers ernshed at 51 and at 128 millimeters from end.
8. Liriolendron Taliplfers...	395	Michigan..........	Lansing	W. J. Beal		4063	Failed at knot nt middle.
White Wood.	818	West Virginia....	Grafton.	C. G Pringle		6341	Fibers crnshed at 51 millimeters Prom end ; angle of crashing. 55°.
	818	...do	.do	do		6636	Fibers erushod at 128 millimeters from ond anule of crushing 65°
	1231	Pendsylvania.....	Chester connty...	I. P. Sharple		6514	Fibers crushed at 76 millimeters from ent ; angle of crushing, 75°.
	1231	. . do	do	do		6169	Fibers erushed at mildle
	1232	...do	do	do		6305	. .do
	1232	...do	do	do		5874	Filucrs erushod in vicinity of knot 51 millimetcrs trom end.
	1236	Tennessee	Saw-mill at Nash. ville.	A. E. Baird		5489	Fibers erushed at 63 millimeters from eud.
	1236	. .do		.. .do		5606do
A NONACESE.							
9 Aslmina triloha................. J'apaw. Custard Apple.	211	Mis8ouri..........	Meramec river, Jeflerson connty.	G. W. Lettermen .	Alluvis	3402	Fibers crashed at 114 millimeters from end.
	211	.. .dodo		do	3388	Crublicd at knot 63 millimeters from end.
10. Anona laurifolia F'ond Apple.	479	Fiorlda	Bay biscayne.....	A. E. Curtios.....	Swampy	4630	Fibers crushed at 63 millimeters from end; anglo of erushing, 65°.
Cavellacest	479do	. . . do	do	...do	4907	Ftbers crrastied on one side at middle.
Casellacea.							
12. Canella nliaa.......................	1131	. .do	Elliott's Key	do	Coral	12746	Fibers crashed at middle and split atorg grait.
Eark. Wild Cinnamon.	1131		.do	do	.do	12292	Fibere cinshed near middlo; deflected from heart.
TERNSTRLEMIACEAS.							
14. Gordonia Iasianthns	230	Sonth Carolina....	Bonnean's Depot	II. W. Ravonel ...	Wet plne-barren..	5842	Fihers crushed at knots near cod.
	236	.do	...do	do	.do	57 ± 2	Fibers crusbed at 63 and at 127 millimeters from cod at bnots 10 millmoters in diameter.
	414	...do	Alker	do	Swamps	6790	Filicrs crushed at 63 millimeters from end.
	414	.do	.do	do	. . .do	6306	Fibers crushed at 10 millimeters knot near cud.
TILIACEEA.							
17. Tillis Ararricrna	2	Marsachusetts....	Arnold Arhoretum	C. S. Sargent	Drift..............	4287	Fibers erusbed at 19 and at 103
Lime Tree. Bass Wood. American Linden. Lin.	2						millimeters from cod.
bee Iree.	124	Michigan..........	Eig Raplds	W.J. Beal	Gravel...........	4944	Fibers cruahed at 127 millimetors from eud.

OF THE UNITED STATES UNDER COMPRESSION．

［	pressure，in minograms，requird to prodece an imdentation，in millimetere，of－													
	0.25	0.51	0.76	1.02	1.27	1.52	1.78	2.03	2.28	2.54	4.81	5.08		昌
吅	2041		3221	3447	3497	3670	3847	3978	4078	4209			Began to shear flibers	346
気	1724	23 ¢ 6	2556	2676	2805	2921	3016	3112	3189	3291			Slight shearing of fibers	346
23	1152	1334	1433	1547	1651	1733	1805	1846	1900	1973			Sheared fibers．．	354
焈	1080	1329	1433	1533	1603	1667	1742	1760	1796	1873			Slight shearing of fibers	354
翟	975	1343	1429	1533	1588	1642	1696	1733	1753	1792			．do．	246
第	1016	1420	1535	1651	1737	1805	1889	1941	2037	2111			Splintered at pith；slight shearing of fliers	246
奀	1080	1315	1420	1506	1583	1660	1674	1758	2787	1833			Indented withaut shearing fibers	261
Tili	1157	1379	1465	1579	1685	1715	1774	－1824	1864	1901			Sheared fibers．	2613
\％	1016	1442	1583	1660	1751	1860	1910	1982	2068	2114			Slight shearing of fibers．	534
方	1125	1610	1769	1833	1032	2019	2105	2245	2304	2359			．．do	534
哬	884	1098	1170	1238	1315	1343	1406	1483	$15: 4$	1538			．．do	1178
0	1111	1325	1402	1470	1538	1606	1660	1719	1740	1619			Fibers sheared	1178
丝	1325	1742	1882	2005	2123	2223	2318	2418	2486	2635			．do．	532
垦	1384	1647	1765	1887	2005	2078	2101	2263	2336	2404			．do．	532
(1)	616	975	1098	1111	1143	1216	1247	1297	1329	1343			Indented withont shearing fibers．．．．．．．．．．．．．．．．．．．．．．	266^{1}
18	953	1270	1388	1470	1542	1619	1678	1742	1787	1855			Fibers sheared	266°
3	1080	1524	1665	1810	1901	1996	2082	2173	2245	2318			Indented withont shesring fibers．．．．．．．．．．．．．．．．．．．．．	200
］	1010	1615	1787	1914	2032	2082	2146	2193	2223	2295			Slight shearing；short specimen， 120 millimeters long；split at both ends．	200
䎂	907	1086	1125	1143	1175	1202	1234	1252	1297	1315			Sheared fibers．	395
怱	1025	1297	1388	1470	1533	1606	1674	1737	1792	1846			Slight shearing of fibers	818
	749	1025	1170	1229	1311	1370	1415	1474	1524	1565			．．do	818
［1］	630	844	925	880	1043	1125	1152	1193	1220	1266			Sheared flbers	1231
通	1052	1288	1397	1433	1533	1601	1656	1706	1746	1801			．do	1231
筇	794	1080	1152	1216	． 1257	1302	1343	1379	1384	1442			．da	1232
管	885	1012	1084	1120	1180	1234	1270	1335	1352	1388			do	1232
笏	916	1157	1229	1293	1361	1429	1479	1520	1565	1601			．do	1236
逃	885	1116	1106	1202	1261	1306	1352	1397	1456	1515			．．do	1236
4	667	894	957	1010	1039	1075	1111	1116	1129	1152			．．do．	211
皆	662	943	1052	1111	1157	1198	1229	1281	1288	1297			．．．do．	211
［1ill	943	1429	1010	1805	1941	2068	2150	2254	2304	2336			Slight shearing of fivers．	479
E	1034	1600	1882	2019	2132	2227	2341	2380	2477	2503			．do	479
艮	36.4	6577	7621	8346	8573	8822	8936	8981	9344	9571			Sheared fibers and openeld grain ．．．．．．．．．．．．．．．．．．．．	1131
	3311	6668	8523	0458	9753	10206	10614	10886	10090	11227			Sheared fibersand opened grain at middleand at end．	1131
（6）	6.35	1125	1243	1343	1388	1452	1533	1579	1642	1701			Sheared fibers．．	236
（6）	535	1021	1116	1211	1293	1347	1433	1488	1538	1597			．．．．．do．．	236
苞	1089	1519	1642	1740	1837	1032	2005	2068	2146	2218			do	414
第	1134	1533	1665	1760	1846	1023	1091	2059	2123	2177			．．．do	414
TITI	934	1157	1207	1335	1303	1442	1497	1542	1578	1619			．．．do	2
E	703	880	025	1007	1048	1111	1157	1189	1225				．．do	2
dilil	717	852	894	957	1034	1043	1071	1093	1120	1122			．．．．．．da．．	124

Table V.-behavior of the principal woods of the

Specios.		State.	Locality.	Collector.	Soil		Remarks.
17. Tilia Americana-continned	124	Michigan	Big Rapida	W.J. Beal	Gravel.	4044	
	252	Miasouri.	Allenton.	G. W. Letterman.	Alluvial .	7107	Fibers crashed at 114 millimeters from eud.
	252	...do	dt	do	.do	7235	Fibers crushed at 45 millimeters from end
	316	Michigan	Hersey	W.J. Beal	Rich loam	6314	Fibers ernshed at 51 millimeters from end.
	316	do		do	o		
	1039	Maramcharetts..	Danvers	J. Robinson	Moist gravel.....	5080	Fibera crushed at 76 millimeiers from end.
	1039	do	do	do	do	4527	Triple flexnre
17. Tllia Americana, var. pubescens.	$\begin{aligned} & 745 \\ & 745 \end{aligned}$	Georgia............	Bainbridge\|. . . .do	A. H. Curliss.....	Low do	$\begin{aligned} & 6305 \\ & 0668 \end{aligned}$	Flbers crnshed at 38 millimeters from end.
							Fihors crushed at 127 millimetera from end.
18. Tilis heterophylla \qquad White Bass Wood. Wahoo. MALPIGH1ACEE.	2851	Kentucky	$\begin{aligned} & \text { Cliffa Kentacky } \\ & \text { Miver. } \\ & \text { Mercer coonty.... } \end{aligned}$	W. M. Liunay	Limeatoas	4917	Fluers crushed st 102 millimeters from end.
	$285{ }^{2}$	do		...do do	5548	Fibers erushed at 51 millimeters frone end.
	2853	. .do	.do	d	.do	5120	Fibers erushed at 152 millimeters from end.
	320	Tenneasee	Cumberland river.	A. Grttinger	Alluvial	7666	Fihors crushed at middle.........
	320	. .do	do	do	. do	8278	Fibera crushed at 114 millimeters from and.
19. Byrsonima Incida \qquad Tallowberry. Glamberry.	$\begin{aligned} & 1113 \\ & 1113 \end{aligned}$	Florida do \qquad	No-Name Key	A. H. Curtiss.....	Coral \qquad do	6260	Fibers erushed near middle in vieinity of sm:ill knots.
ZYGOPHYLLACEE.							
20. Gnaiacum sanctun \qquad Lignum-vitae.	476		Upper Metacombs Kay. Elliott's Key \qquaddo	\qquad	11930	Longitudinal split ; slick warped before test. Crashed fibers nad aplit along grain near ent.
	1133					11648	
RUTACES.							
23. Xsnthosylam Clava-Herenlia . . Toothache Tree. Priekly Ash. Sea A8h. Pepper Wood. Wild Orange.	735	... do	Chattahooclee....do	Dry, saady	7372	Triple flexure; developed intersecting "Cooper lines".
	735 dod		... do	7698	Srusheff middlo; deflected form heart.
	1080	Texas	Palestina	C. Mobr	Damp, sandy	7707	Crushed fibers at 127 millimeters from cull.
	1086	dododo	5978	Crushed fibers at knot 6 millimeters in diameier; angle of crushing, 40°.
24. Xanthoxylum Caribxam Satin ITood.	$\begin{aligned} & 1140 \\ & 1140 \end{aligned}$	Florida............	Babia Honda Key. ...do	A. H. Curtiss	Coral	11158	bitile; crushing of fibors; rplistred along graiu. Fractured suddenly; shattered along grain.
		.do			. . do	10751	
SLMARUBEE.							
28. Simaruba glauca Paradize Trec.	487do	Bay Blacayna......	 do	7303	Fibers crushed at middie; angle of crushiug, 90°. Split end to end along grain
	487					6328	
burseracese.							
29. Barsera gummifera \qquad Gum Elemi. Gumbo Limbo.	$\begin{aligned} & 462 \\ & 462 \end{aligned}$do	Upper Matacombe Kes.\qquad	\qquad do	2350	Fibers crushed in vicinity of knots. Fibers erushed at 38 millimeters from end.
West Indian Birch.		do				2595	
30. Ampria aylvatica Torch THood.	$\begin{aligned} & 475 \\ & 475 \end{aligned}$dododo	11975	Split along grain...................
			 do			
MELIACEE.							
31. Swletenia Maliogonl Mahogany. Mfadeira.	$\begin{gathered} 452 \\ 452 \end{gathered}$	dododo	$\begin{aligned} & 11204 \\ & 10115 \end{aligned}$	Fibers erushed at 89 millineters from , nd: threw nff splinters. Failedat 13 undimeters iromend; knot 56 millimeters from end.
			. do			10115	
ILICINEAE.							
38. Mex opaca. \qquad American Molly.	280	South Carolina ...	Waverly Mills....	W. St. J. Mazyck .	Sandy loam.......	7330	Triple tlexure; knot near cnd
	280				... do	6078	Failed at knot 63 millimeters fiom end.
```84. Mex Dahoon #..................```	$\begin{aligned} & 484 \\ & 484 \end{aligned}$	Florida...do	Bay Biscayne   ...do	A. II. Curtiss	Low, damp	5652 5:12	Failed in vieinity of knots 76 mij limeters fromicnd. Fihers ernehed at 114 millimeters from end.
				do	.... do ..............	5012	
CYRILLACEE.   24. Cliftonia lignatrina $\qquad$   Titi. Iron Wood. Buclwheat Treas							
	$\begin{aligned} & 338 \\ & 338 \end{aligned}$	Alabams $\qquad$   ....do $\qquad$	Cottage HIII   ....do $\square$	C. Molr $\qquad$   ....do $\qquad$	$\begin{gathered} \text { Wt .................. } \\ \text {. . . do ............. } \end{gathered}$	$\begin{aligned} & 6169 \\ & 5706 \end{aligned}$	Fihers erashed at end and at 64 millimeters from end.   Triple tlesnre; fibers crushed at 127 millimeters from end; grain wavy.

## UNITED STATES UNDER COMPRESSION-Continued.



TABLE V.-BEHAVIOR OF THE PRINCIPAL WOODS OF THE


## UNITED STATES UNDER COMPRESSION-Continued.



Table V.-BEHAVIOR OF THE PRINCIPAL WOODS OF THE


## UNITED STATES UNDER COMPRESSION－Coutinued．

	presbure，in kilograms，required to produce an indentation，in millimeters，of－												Remarks．	
	0．25	0.51	0.76	1.09	1.27	1.52	1.75	2.03	2.28	2.54	4.81	5.08		
E	1941	2703	2971	3175	3379	3534	3656	3788	3933	4037	4672	5353	Sheared fibers．	1235
长	2313	3357	3747	3024	4110	4332	4473	4617	4781	4890	5715	6283	．．do．	213
㐌	1542	2－99	3392	3579	3751	3007	4028	4164	4336	4441	5262	5715	．．do	213
11	2812	4219	4559	4844	5080	5262	5401	5543	5670	5784	6396	6849	．．do	$274{ }^{2}$
	1860	2744	2948	3166	3334	3465	3015	3801	3892	$40 \pm 8$	4808	5203	．．do．	$274{ }^{2}$
Tl］	2087	3379	3011	3837	4046	4173	4377	4527	4581	4753	5353	5851	．．do ．	757
Lun	2223	3243	3475	3652	3792	2007	4010	4060	4300	4346	4944	5389	．．do	757
［1］	3026	3978	4377	4509	4744	4902	5080	5239	5339	5452	6328	6782	．do	1167
园	1951	2840	3066	3329	3479	3629	3797	3933	4033	3724	4831	4881	．．．do	1167
T171］	1315	2250	2576	2790	2899	3035	3157	3293	3397	3520	4210	4717	．．．do．	1052
장	1951	2518	2703	2840	2935	3085	3252	3381	3538	3615	4264	4536	．．do．	20
［if］	2540	3837	4327	4500	4622	4753	4872	4985	5203	5298	6028	6568	．do	20
IT］	20.3	2976	3248	3379	3479	3600	3742	3833	3928	4024	4620	4879	．．．．．do	530
］	1533	1896	2041	2123	2254	2427	2449	2472	2567	2685	3175	．．．．．	Sheared fibers；split at end	530
包	1179	1633	1715	1842	1887	1946	2028	2037	2141	2177	2531	2722	Sheared fibers	743
包	1361	1702	1860	1932	2028	2141	2214	2254	2350	2400	2722	3039	．．．．do	743
23	1790	2649	2803	3016	3121	3257	3384	3479	3665	3760	4332	4808	．．do	878
2	1469	2032	2268	2427	2449	2580	2703	2776	2890	2035	3483	3742	Slight shearing of fibers	878
边	1805	2259	2386	2508	2613	2758	2794	2939	107	3188	3652	4037	．do	1048
2）	1361	2168	2404	2563	2703	2794	2858	2971	3039	3159	3901	4332	．．do	1048
艮	802	1071	1160	1315	1352	1433	1483	1556	1619	1678	1973	2177	Shered fibers	290
㐌	984	1447	1610	1624	1710	1774	1855	1860	1905	1961	2168	2308	．．do	290
\％	993	1352	1479	1529	1574	1680	1683	1733	1774	1819	2064	2223	do	311
T1］	1542	2250	2449	2486	2490	2531	2658	2672	2790	2704	3062	3311	．．do ．	311
\％	$1179{ }^{\circ}$	1479	1574	1633	1683	1801	1896	1982	2005	2082	2295		Sheared fibers；split at end．	645
20	1202	1520	1619	1674	1756	1860	1951	1996	2073	2114	2449	2790	Sheared fibers．	645
䎂	1134	1397	1479	1651	1637	1665	1733	1801	1805	1855	2087	2177	Sheared fibers；split at end．	736
包	1270	1010	1678	1805	1851	2969	1991	2046	2100	2150	2381		．do	736
（0）	1111	1438	1637	1765	1878	1946	2059	2150	2159	2159	1973	2449	Sheared fibers ；split stick	330
T17	1089	1689	1928	2028	2164	2168	2177	2218	2268	2259		．．．	．－do	330
级	1384	1928	2395	2749	2930	3103	3293	3434	3525	3 3ã0	3969	4340	Sheared fibers；crusbed olliquely at each end．．	467
［1］	1633	2858	3289	3529	3765	3001	4060	4095	4296	4305	4944	5353	Sheared fibers；split at sides ．．．．．．．．．．．	467
20	2926	3856	4346	4740	5126	5353	5700	5920	6283	0396	7485	8074	Sbeared fibers；split at end	405
昜	2676	3878	4153	4436	4763	5058	5410	5615	5869	0056	．．．．．	．．．．．．．	Slight shearing ；split at end ．	405
T11］	2291	3343	3742	4064	4296	4522	4699	4844	4980	5112	5987	．．．．．	Sheared fibers；split at end．．．．	441
20	2944	4264	4550	4808	4967	5103	5307	5421	5534	5670			do	441
E	771	2019	2722	3016	3103	3207	3343	3438		3620	4037		．．．do	815
23	1814	2341	2480	2622	2703	2835	2804	2026	3034	3210	3765	4037	Sheared fibers．	816
23	2132	3257	3615	3783	3978	4069	4264	4380	4500	4604			Slight sbearing；split at end	1247
三	1905	3243	3674	3878	4060	4237	4377	4482	4804	4662			Slight shearing ；spllt at ends	1247
¢	2223	3302	3606	3792	3983	4160	4346	4427	4608	4672	5307	．．．．．．．	Sbeared fibers；split at end	1244
Tin	2485	3520	4128	4219	4332	4513	46.6	4831	4907	5048			Sheared fibers；split at ends	1249

Table V.-BEHAVIOR OF THE PRINCIPAJ WOODS OF THE

Species.		Stute.	Locality.	Collector.	Soil.		Remarks.
79. Rohinia Neo-Mexlcana......... Locuat.	$\begin{aligned} & 1031 \\ & 1031 \end{aligned}$	Colorado..........   ...do	$\begin{gathered} \text { Trinidad. } \\ \text {....do .... } \end{gathered}$	W. B. Strong . . . .	Low, molst ....do .......	10931	Fibers croshed at 51 millmotera from end.
80. Olncya Tesota.. Iron liood. Arbol de Ilierro.	650 650	Callfornia.........		G. Engelimanuand C. S. Sargent.   .... do $\qquad$	Dry, grarelly .	5851	Split along grain ; oblique fractare.
81. Plachlia Erythrina .............. Jamaica Dogevod.	$\begin{aligned} & 564 \\ & 564 \end{aligned}$	Florida ...........	UpperMetacombe Kcy.   ...do	A. H. Cortiss.....	Coral ...	9548	Shattered one end; cross.grained..
82. Cladrantiatinctoria $\qquad$ Yellow Wood. Yellow Ash. Gopher Trood.	$33^{3}$ 33	Kentucky ........	Morecr county....	W. M. Linney ....	Lineatone..	9934	Crushed near middle and at end. .
	430	Tennessce.......	Nashvillo	A. Gattioger......	Alluvisl .	7167	Crushed at end and at 102 milli. meters from end.
84. Sophora aftinis	329	Texas	Dallas	J. Reverchon	Dry, calcareuna.	7734	Split along grain from end to end..
	932	...do	Austin	C. Mobr	. d o	10524	Triplo flexure; took reversed bend near middic.
85. Gymnocladus Canadensis ...... Kentucky Cofee Tree. Coffee Nut.	296 519 1249	Missouri..	Allenton..........	G. W. Letcerman   A. Gattioger $\qquad$	Low, rich Limestone	9208 0109	Crughed at 13 and at 114 millimeters from end.   Cruslsed and split along grain in vicinity of knots.
	1241	Missomi.	Allenton . . . . . . . .	G. W. Letterman..	Allnvial	5874	
	1242	. .lo	. du	do	. 10	5434	Crushed at end and at 102 milli. meters from cad.
	1243	do	do	- do		5343	Triple flexate ....................
86. Gleditschia triacantion	$53^{2}$	do	.do	. .do	Low, rich .........	8119	.do
Three-thorned Acacia. Svoeet Locust. Honey Shucks.	532	do	do	. do	do	7711	Crushed at 76 millmetors from cad.
	444	Tenncssee	Nashville	A. Gattingor ....	Dry, sandy barren	8174	Triple flexure ................. ..
87. Gleditschla monosperma Water Locust.	760	Florida	Chattaboochee	A. H. Curtiss .	Allavial	9889	Crushed at 89 millimeters frem end at 10 millinetera from knos.
	760	.. do	do	do	do	8799	Crushed at mildiont knot ${ }^{5}$ milli. meters in dianeeter.
88. Parkinsonia Turroyana.........	678	Arizona . . . . . . . .	Lower Colorado river.	G. Eugelmann and C. S. Sargent.	Sands . . . . . . . . .	6078 7980	Crushed at 0 millimeters knot at middlo.
	676	. do				7280	Crushed at if millimeters from entl.
91. Cercha Cauadensis.	436	'Tennessee	Nashville.	A. Gattinger......	Limestono	8119	Crushed st knot near middle .
	1089	Mlasonri.	Alledon.	G. W. Letterman . -	Rich.	8369	Crushcl near midllo
	1090	do	do	d	. .do	6704	Crushed nt knot 102 millimelers from end.
	1091	. .do	do	do	.do	6849	Crushed in vicluity of knots at middle.
03. Prusopis juliffora Mesquit. Alfaroba. Honey	680	Arizour	Tucson	C. S. Sargent......		9034	Split aloug grain from eud to end; crishlietl near nuidilo.
Locust Honty Pod.	680	do	. . . do	. .do		10841	Triplo flexare......................
	927	''exas	Austin .	C. Mohr	Rlch, calcareons ..	7462	Crushed near middle; oponed eracks along grain ; split before testiag.
94. 1'rosopis pubuserns ............. Serew lbean. Serew-pod Mex-	658	Colifornia.	Fort Tuma	G. Engelmann and C. S. Sargont.	Sandy	10034	Crushefl at 6 millimetors knot at midille.
quit Tornilla.	658					11431	Crushed near end; cross.grainod..
98. Acacia Greqrii ....... Cat's Claio.	607	Arizoua	Santa Rita mount. aius.	. .do	Dry, gravelly....	11885	Split along grain from end to end.
100. Lysiloma larisiligua..	509	Florida	Bnca Chica Kıy ..	A. H. Curtiss .....	Coral	7053	Crushed near middlo .............
	1112	do	Key Largo	.	..do ..............	8337	Crushed at 10 maillimelers knot 102 millimeters from end.
hosacedi.							
102. Chrysobalanus Icaco.......... Oocoa 1'lum.	480	....do . . . . . . . . . . .	Bay Biscayne.	. . do ..............	Swampy ..........		
103. Prunus Americana............   Wild Nium. Canada Plum.	68	Missouri...........	Allcoton..	G. W. Letterman.	Rich upland ......	8603	Crashed at 25 millimeters from end in vicinity of small knots.
Horse Tlum.	c8	. .do ............	.d	. . .do . . . . . . .	do	8799	Crnshed at 19 and st 89 millimeters from end.
	334	Texar	Dallaa	J. Reverchon ....	Rich	10796	Crushed at 102 millimeters from end and at end.
104. Pronur angrastifolia $\qquad$ Ohickasaw I'tum. Hog Plum.	435	Tcnucasea.	Nathvillo.........	A. Gattinger......	liver bluff .......	6441	

## UNITED STATES UNDER COMPRESSION－Continued．

E	＊Ressurk，in kilograms，mequired to produce an midentation，in millmeters，of－													
$\begin{aligned} & \text { 寻 } \\ & \stackrel{y y y}{*} \\ & \stackrel{y}{\theta} \end{aligned}$	0.25	0.51	0.76	1.02	1.27	1.52	1.78	2.03	2.28	2.54	4.51	5．08		E \％ 勫
F	1905	3493	387）	4155	4427	4614	4799	5013	5126	5298	5924	6192	Sheared fibers	1031
IINT	2041	3357	3810	4037	4241	4400	4559	4786	4808	4831	5602	．．．．．	Sheared fibers；split at end．	1034
（a）	1860	3765	5398	6849	7983	9526	10614	11521	12474	13245			Slight shearing；split at end	6.0
（1］	4309	8250	10387	11885	12973	14062	14787	15467	16057	16510	18008		．．do	850
（11］	2586	4173	4695	5126	5353	5693	5920	6033	6237	6386		．．．．	Sheared fibers；opened seasoning crack．	564
\％	2313	3992	4626	5013	5420	5702	coto	6237	6396	6600	7530	．．．．．．	Sheared fibers；split at end	5 C 4
TITIT	1656	2078	2250	2350	2440	2540	2703	2762	2349	2935	3402	3756	Sheared fibers．	38
\％	2518	2840	3216	3348	3434	3543	3624	3720	3847	3946	4527	4026	．．．．．．do．．．．	$8 i$
												－		
IIIm	2678	2427	4808	5035	5262	5439	3715	5897	6074	6260	7190	7756	Sheared fibers．	389
耐	2041	3720	4581	5062	5434	5761	3874	6105	6559	6655	7576	7847	Sheared fibers；split at end；cempressed area con． tained 3 millimeters knot．	$0: 12$
［面	1810	2926	3153	3357	3529	3097	3847	3033	4105	4209	4695	5162	Sheared flbers；split at end	［19．
20	1656	2028		2254	23.2	2472	2540	2608	2676	2835	5289	3652	Sheared fibers．	1＇31
，	1429	1928	2114	2232	2369	2427	2323	2622	2672	2758			Slight shearing；split at ends	1242
兆	1352	1787	1928	1991	2082	2168	2245	2318	2390	2454	2880		Sheared fibers；split at ends	1243
23	1796	2945	2313	2404	2495	2654	2812	$\because 939$	3075	3180	3720		Sllght sheariog ；split at end ．．．．．．．．．．．．．．．．．．．．．．．．．	532
家	1179	－ 1905	2168	2268	2404	2495	2608	2094	2776	2862	3357		Sheared fibers；split at end	$53^{*}$
ITm	2041	2903	2903	3081	3193	3379	3561	38.47	3946	4014	，	5512	Sheared fibers．	444
㡈	2132	3674	4219	4332	4577	4763	5035	5162	52.5	5380	5934	6350	． le	760
23	2019	3447	3856	4073	4264	4468	4658	4799	5026	5903	6078	6350	．${ }^{\text {do }}$	760
Tld	1452	2223	2699	2048	3620	3298	3484	3652	3801	3836	4527	5080	Sheared fibers and splintered at 6 millimeters knet．	678
IIIIII	1833	$\bigcirc 939$	3266	3479	3620	3701	3788	3001	4024	4082	4717	5035	Sheared fibe	678
（a）	1116	1769	2132	2305	2663	2844	3044	3207	3357	3538	4173	4527	Slight shearing，cansed by uneven laading；season－ inge crack．	430
IId	1769	291	25.2	${ }^{2} 703$	2880	3026	3184	3298	3388	3520	4291	4699	Sbeared fibers．	1089
20	1033	2527	2704	3057	3252	3352	3538	3583	3810	3882	4530		Sheared fibers；split at end	1090
TITII	1452	2263	2676	2767	2875	3071	3153	3293	3343	3425	3765	4105	Slight shearing．	1091
\％	2713	4219	4518	4790	4931	5216	5513	5648	5802	6028	6849	7394	Sheared fibers	680
20	2132	3007	4468	4699	4990	5103	5330	5425	5521	5702	6486		Shenred fibers；split at end	680
ITII	3611	8874	6214	6332	6532	6804	0967	7067	7117	7244	8210	8483	Sheared fibers．	027
ITII	1769	4105	4604	4967	5239	5421	5738	5860	6169	6214	6940	7508	．do．	658
年	2381	3924	4536	5080	5294	5625	5851	5965	6114	6314	7349	7083	．．．de．	658
Idill	1452	1860	1928	2037	2150	2241	2331	2368	2445	2480	2880	3130	Sheared fibers．	504
（blin	1437	2341	2685	2821	2007	3066	31.1	3248	3339	3438	3937	4241	．．do	1112＇
包	1724	26.5	2 2́s8	2930	3107	3252	3357	3450	3600	3652	4106	4491	．．．de	1112
Didib	1724		3133	3484	3538	3810	3892	4150	4241	4355	6058		Shenred fibers ；split at end	480
ITIII	1860	2522	2880	3153	3162	3257	3343	3484	3570	3697	4241	4473	Sheared fibers．	68
23	1790	2449	2703	2890	3039	3221	3350	3443	3620	3683	4219	4672	do	68
es	2122	3108	3620	3828	4014	4150	4332	4327	4662	4795	5670		Sheared fibers；sjlit at end	334
（3）	1134	1585	1801	1682	2132	2291	2859	2413	2540	2608	3130	3538	Sueared at conuer；f millimeters knet．	$42 \overline{3}$

Tande V.-BEHAVIOR OI THE PRINCIPAL WOODS OF THE


UNITED STATES UNDER COMPRESSION－Continued．

19	prebrlie，in kilogramb，required to phodece an indentation，in mllimetere，of－													
	0.25	0.51	0.76	1.02	1.27	1.52	1.78	2.03	2.25	2.54	4.81	5.08		吕
\％	980	1257	1247	1442	1501	1538	1028	1060	1710	1805	2078		Sheared fibers；split at end	233
第	885	1483	1597	1724	1796	1932	1982	2073	2114	2164			Sueared fibers．	233
ITIT］	2099	4649	5280	5851	6214	6555	6759	6872	7145	5278	8029	8483	．．．do	noe－
\％	2313	3583	4073	4527	4740	5126	5285	5416	5535				Slight shearing；split at ends	606
第	975	1021	1084	1161	1216	1306	1347	1303	1470	1483	1715	1951	Sbeared fibers；split at end	968.
砍	612	1111	1216	1252	1343	1452	1483	1542	1619	1687	2019	2078	． do．	968.
［17］	3112	5398	6237	0640	6885	7063	7221	7326	7372	7376	8165	8618	Sheared tibers and splintered	$15^{-}$
Win	\＄107	5307	5489	5820	6237	6468	6640	6795	6972	7112	7530	8210	Sheared tibers．	15.
比	1973	2241	2468	2540	2099	2740	2849	2980	3048	3094	3620	3878	．．do．	115
（11］	2019	2649	2880	3075	3202	3334	3393	3403	3674	3788	4401	4944	Sheared filurs	127
\％	1588	2177	2341	2538	2667	2771	284.4	3026	3071	3168	3538	．．．．．	Sheared fibus ；split at end	127
	1837	2381	2753		2880	2880	2948	3675	3198	3202	3074	3001	Sheared fihers．	317
E－	1384	1588	1656	1765	1860	1941	2019	2087	2173	2914			Sheared fibers；split at end	317
第	1295	1660	1837	1969	2078	2164	2258	2313	2427	2481	2939	3153	d	368
201	1125	2749	1483	1309	1615	1660	1710	1760	1805	1851	2150	2208	Sheared fibers	406.
发	1588	2078	2959	2336	2390	2513	2578	2631	$27 \% 2$	2753	3107	3334	．do	763 ：
第	1542	2123	2350	2495	2581	2713	2853	2890	2039	3048			Sheared fibers；split at en	763 ：
	1724	2395	2713	2812	2971	3093	3184	3302	3420	3479	4173	4581	．do	1053
ITild	2313	3538	3007	4173	4432	4717	4799	4931	5062	5203	5978	6341	Sheared fibers	1053.
$\cdots$	2041	2708	4196	4445	4241	4999	5126	5376					Split at ends	418
T1］	2041	3311	3738	4200	4445	4690	4940	5207	5186	5661	6740	7802	Sheared flhers；silitat end	418
（a）	2177	3221	3561	3792	3937	4087	4219	4346	4477	4531	5443		do	637.
2es	2313	4060	4699	5216	5534	5793	6141	6386	6568	7230			Slight sheariur ；split at end；short specimen， 12 centimeters long．	1032 ＇
等	2223	4105	4786	5307	5557	5869	6105	6202	6522	C613	7892	．．．．．	Sheared filers	1062.
退	2132	3606	3674	3909	4191	4518	4740	4800	4900	5153	6033		Sheared fibers；split at end ．．．．．．．．．．．．．．．．．．．．．．．．．．．	1662.
IIIII	3221	4513	5126	5625	5874	6205	6482	6759	7021	7235	8392	9934	Slight shearing ； 4 millimeters knot．．．．．．．．．．．．．．．．．．	1158.
E	1452	2676	3108	－ 3611	3901	4128	4445	4740	4899	5071	6305		Split at end．．．	1158．
ITH1］	3153	5171	0314	7122	7372	7802	8180	8850	9190	9531	12247	13508	Sheared filuers	883
\％	2048	5534	6804	7462	7983	8593	．．．．	．．．		．．．．	．．．．．		Splitat end．．．	883.
\％	$16: 8$	2401	2622	2858	3030	3198	3288	3357	3501	3674	4211	4753	Sheared fibers．	808
IIIM	2393	3357				4191			4536	4649	5434	5987	．．．．．de	808
等	1702	2895	3171	3370	3583	3083	3850	4928	4173	\＄237	4090	．．．．．．	Slight shearing；split at end	1087
第	1005	3788	4513	4831	5017	5207	2334	5507	5001	5719	6390	7076	Sheared filuers； 13 millineters knot at corner of com．	1087
IITIT	2449	3652	4128	4500	4572	4786	4890	5080	5298	5325	6160	6532	Shirht sherring．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．	1088
ILIU	1588	2699	3160	3170	3792	4055	4173	4318	4481	4563	5080	5603	Sheared fibers	1088
圂	1043	1533	1650	1751	1869	1887	2019	2090	2223	2268	2676	2812	Sheared flhers；split at endr	214
Inlil	680	1406	$16: 8$	1701	1715	1805	10.11	2010	2032	2214	2608	2939	Sheared fibers	410
（6）	057	1746	2254	2522	2703	2840	3016	3116	3248	3438	4150	4763	．．．do．．．．．．	$363{ }^{3}$
｜l｜］	1005	2609	3030	3207	3438	3574	3761	3001	4024	3729	4080	5398	．．．．do	607
$\theta$	1343	1082	2359	2567	2713	2830	2985	319：5	3330	3407	4128		Sheared fihers；splitat end	607

Table V.-behavior of THE PRINCIPAL WOODS OF THE


## INITED STATES ONDER COMPRESSION－Continued．

邑	fresblbr，in kilograms，requibed to produce an midentation，in milimeters，of－													
苞	0.25	0.51	0.76	1.02	1.25	1.52	1.78	2.03	2.28	2.54	4.81	5.08		号
翟	1315	2313	2495	2676	2883	2980	3685	3207	3307	3397	3983	4296	Sheared abers．	328
\％	1314	2155	2490	2713	2883	2976	3671	3171	3198	3484	4064	4763	．．do	328
近	2041	3153	3656	3937	4255	4482	4695	4859	5035	5171			Slight shearing ；split at end	1093
	1701	2676	3085	3379	3611	3828	3092	4119	4264	4391	5353	6033	Sheared tibers．	1093
艮	1315	2495	3130	3484	3788	3983	4219	4391	4581	4753	4806	6350	．．do	949
（1）	2449	3674	4119	4445	4626	4922	5013	5162	6439	5534	6759	7212	Sheared fleers；split at end ．．．．．．．．．．．．．．．．．．．．．．．．．	1081
［14］	1787	3257	3765	4055	4309	4482	4658	4781	4944	5035	5851	6486	Sheared flbers	426
\％	1293	2359	2948	3130	3379	3038	3742	3892	4119	4287	4035	5625	do	426
\％	1315	2617	3066	3329	3484	3674	3910	4055	4164	4287	5262	5761	． do	926
（6）	1433	2698	3130	3402	3583	3742	3856	4028	4101	4264	4990	5579	Shesred fihers；split at end	239
	1905	3720	4445	4831	5103	5398	5025	5874	6056	6260	7394	7983	Sheared fibers；indented on 6 millimeters knot ．．．．．．	767
	2041	3221	3074	3992	4423	4436	4877	4980	5194	5334	6350		Sheared fibers；split nt end	241
	1860	3221	3788	4110	4491	4708	4922	5112	5316	5489	6646	7349	Sheared fibers．	849
	2449	3515	3946	4291	4536	4863	5098	5303	5484	5684	6782		Sheared flbers；split at end	849
\％	1424	1914	2019	2100	2254	2381	2477	2536	2645	2717	3166	3329	Slueared fibers．	540
场	1588	1833	2073	2223	2313	2395	2518	2604	2703	2799	3289	3620	do	546
	1334	1096	2191	2250	2277	2377	2413	2486	2527	2540	2926	3121	．do	1095
－	771	1315	1474	1542	1574	1674	1719	1769	1860	1932			Sheared fibers；split at end	1095
＝	1198	1814	1998	2006	2180	2850	2472	2531	2676	2768	3289		．．．．do	1173
11	2078	2844	3026	3162	3302	3438	3561	3661	3801	3042	4445	4881	Sheared fibers	1178
S	1089	1500	1588	1633	1715	1760	1928	1941	1973	2014	2313	2440	．．．do	1181
S	952	1452	1574	1609	1760	1851	1887	1941	2028	2050	2404	2531	d	118！
2	1384	1782	2000	．．．．．．．	2227	2300	2350	2449	2586	2049	3075	3302	．．do	118！
方	1043	1530	1650	1814	1014	2019	2091	2141	2291	2345	2708	2899	Sheared fibers；split at end	8.
	907	1452	1633	1023	2041	2001	2168	2273	2381	2445	2722	2926	Sheared fibers	118
10	1157	1488	1678	1837	1896	1941	2073	2155	2223	2773			Sheared fibers；split at end	118
d	1311	4173	5806	6940	7576	8006	8464	8822	9140	9453			Slight shearing；split at end	48
物	？227	4763	5987	6713	7212	7689	8052	8337	8663	8913	10637		Sheared fibers；split st end．．	481
怱	2404	4173	4854	5398	5751	6078	6396	6800	6895	7685			de	488
加	1903	4491	5216	57.01	6101	0432	．6859	7099	7226	7530	8790		．do	48
G	817	1515	1796	2050	2132	2359	24.36	2531	2626	2700			Sheared fibers；split at end	$50^{\circ}$
d	1270	1973	2250	2472	2640	2708	2844	2048	3035	3116	3674	3901	Sheared fibers	507
${ }^{1}$	2330	3765	4763	5398	5851	6109	6613	6963	7294	7576	．．．．．．．		Opened seasoning eraeks	111E
\％	4001	5761	5942	6373	6810	7076	7303	7553	7802	8029	0526	9753	Sheared fibers；split at end．	1116
T．	2780	$45 \% 7$	5043	6033	6732	6705	7258	7470	7770	7983	9000	0753	Sheared fibers．	1135
	$3: 388$	5080	5761	8432	6363	7439	7792	8119	8500	8780	10011		Sheared fibers；split at end	1127
23	2313	4672	5842	6668	7235	7 ¢80	8119	8.19	8714	8390	10841	11930	．．ds	1127
	2018	4581	5715	6148	6386	6754	7670	$73: 6$	7485	7720	8800	9708	Sheared fibers； 7 millimeters knot in compression	67
＝	1860	3720	4513	4923	5180	5454		5365	6192	6390	7802	8702	sbeared fibers；split at end．．．．．．．．．．．．．．．．．．．．．．．．．．．	67
\％	2883	3162	3403	3785	4037	4241	4418	4563	4067	4844	5	6169	do	761

Table V،－behavior of The principal woods of The

Species．	$\begin{aligned} & \dot{4} \\ & \text { 兑 } \\ & \text { 吕 } \\ & \text { 芯 } \end{aligned}$	State．	Lecality．	Collector．	Soil．		Remarks．
151．Coruus florida－continued ．．．．	812	West Virginia．．．．	Grafton．．．．．．．．．．．	C．G．Pringle．．．．．．	Dry．．．．．．．．．．．．．．．	8732	Sap－wool；triple flexure；inter－ secting＂Couperlines＂；split at end．
	812			． 0		\％	
	1077	Missouri．．．．．．．．．．．	Allentun．	G．W．Lettermsn．．	Gravelly	9004	Triple flexnre
	1077	．do	．do	．．do	．．d	8881	Triplo flexnre；split at ends；in－ tersecting＂Cooper lines＂．
	1002	do	do	．do	Flinty	8210	Triple flexure；split at ends．．．．．
152．Cornua Nuttaliii $\qquad$ Flowering Dogwood．	280	Oregon ．．．．．．．．．．．	Portlsnd．．．．．．．．．．	G．Eugelmand and C．S．Sargent．   ．．．．do $\qquad$		10387	Crashed st midd
	960	．．．．do ．．．．．．．．．．．．．．	do ．．．．．．．．．．．．．			10819	Crashed st 102 millizueters from end．
153．Nysea capitata．．．．．．．．．．．．．．．．．． Ogecehce Lime．Sour Tu pelo．Gopher Plum．	$\begin{aligned} & 605 \\ & 605 \end{aligned}$	Georgis $\qquad$   ．．．．   do $\qquad$	Ogeechee river．．．．   ．．．．do $\qquad$	A．II．Curtiss   ．．．do $\qquad$	Swsmpy ．．．．．．．．．．．	6895	Crushed at 114 millimeters from end；eplit along grain．
154．Nyese sylvstica．   Iupelo．Sour Gum．Pep． peridge．Black Gum．	517	Teune	Cumberland river   Chattahoochee．	A．Gattinger   A．H．Curtiss	Clay	7349	Crushed on one faee st 25 millime－ ters from middle．   Triple flexnre；split at ends．．．．．．
	750		Chattahoochee． . ...do	A．H．Cartiss   ．．．．do $\qquad$	Clay	8119	Crushed st 3 millimeters knots st midde．
	813	West Vlrginia．．．．	Grafton		．．．．do	8414	Crushed near middle；split slong one corner．   Crusbed at 102 millimeters frem end．
	813	．	do	．．．${ }^{10}$	．．．．．．．．．．．．．．．．．．．．．．．	8210	
	833	Massachusetts．．．	West Nuwbury．．．	J．Robinson．．．．．．．	Rich．．．．．．．．．．．．．．．	7689	Triple flexure；split st ende．．．．．．．
	833	．．do ．．．．．．．．．．．．	．．．．do ．．．．．．．．．．．．	．．．．do－．．．．．．．．．．．．	．．．．do	6023	Crushed at linots 64 millimeters from end．   Crushed at 6 millineters knot 25 millimetors from middle．   Triple flexure；split at ends．
	834	．．．．do ．．．．．．．．．．．．．．	do ．．．．．．．．	．．．do ．．．．．．．．．．．．．．	．．．．do ．．．．．．．．．．．．．．	6577	
	834	．．．．do．．．．．．．．．．．．．	．．．．do ．．．．．．．．．．．．．．	．．．．do ．．．．．．．．．．．．．	．．．．do	7394	
	835	．．．do	Chelanceo pond．	．do		7022	Triple flexure；split at ends．．．．．．   Triple flexure，deffected dlago－ nally；split at euds．   Triple flexare；eplit at ends；in－ tersectiog＂Cuoper lines＂．
	835					7176	
155．Nyesa nuiflora． Large Tupelo．Cotton Gum． Tupelo Gum．	$\begin{aligned} & 128 \\ & 128 \end{aligned}$	South Carolina．．．．   ．．．do $\qquad$	Bonncau＇s Depot ． ．．．．do $\qquad$	H．W．Ravenel．．．．   ．．．．do $\qquad$	Swampy	6390	Crushed at 12 and at 127 millime－ ters from end on opposite sldes． Triple flexare；oplit st ends．．．．．．
						6328	
	$\begin{aligned} & 550 \\ & 550 \end{aligned}$	Alabania $\qquad$   ．．．do $\qquad$	Stockton．．．．．．．．．．	C．Mohr．．．．．．．．．．．	Alluvial ．．．．．．．．．．．	5035	Crushed near middle   Triple flexure $\qquad$
			．．．do ．．．．．．．．．．．．．	do	．do ．．．．．．．．．．．．．	5715	
	$\begin{aligned} & 604 \\ & 604 \end{aligned}$	Georgia．   ．．．．do $\qquad$	Ogecebco river．$\qquad$ do $\qquad$$\qquad$	A．II．Curtiss$\qquad$	Swampy	6123	Triple flexure 102 millimeters from end．   Triplo flexnre；split at end ．．．．．．．
						． 5489	
156．Sambucus glanca ．	681	California．．．．．．．．．	$\begin{gathered} \text { Contra } \\ \text { county. } \end{gathered} \quad \text { Custa }$	G．R．Vascy ．．．．．．．	Gravelly ．．．．．．．．．．	4400	Shattered st end； 10 millimeters knot．
158．Vihurnura Lentago ．．．．．．．．．．．．． sheepberry．Nannyberry．	370	Vermont	Hineabarg．．．．．．．．	C．G．Pringle．．．．	Smampy ．．．．．．．．．．． 8890		Crushed near middle；grain wavy－
159．Vibnraam pranifoluum．．．．．．．． Black Haw．Stag Bush．	$\begin{aligned} & 110^{2} \\ & 110^{4} \\ & 739 \end{aligned}$	Kentnoky do $\qquad$	Mercer county ．．   ．．．．do $\qquad$	W．M．Limey...do$\qquad$	Hudson River 10160 shate．   Trentonlimestone． 10329		Crushed at ends in vicinits of knots；splitalong grain．   Cruslied 38 millimeters from mid－ dle．   Crushed 26 millimeters from mid－ dle；crese－grained．
		Gcorgia．．．．．．．．．．．	Bsinbridge ．．．．．．．	A．1i．Curtiss ．．．．．	Clay ．．．．．．．．．．．．．．．	7938	
rubiaces．							
160．Exostemma Caribæum	$\begin{aligned} & 466 \\ & 466 \end{aligned}$	Florida．．．．．．．．．．．	Upper Motacombe koy．	．．．．do	Coral ．．．．．．．．．．．．．．	18381	Shattered from end to end．．．．．．．．   Crushed at knot at middlo；eplit aloug grain．
		．．．do			．．do ．．．．．．．．．．．．．	10669	
161．Pinekneya pmbens $\qquad$ Georgia Sark． 1ERICACEN．	381	South Carolins．．．．	Blufton ．．．．．．．．．	J．II．Mellichamp ．	Sandy swamp．．．．．	4355	Crushed nt knot 25 miliminctors from middle；opened hotween rings．
1\％R1CACES．							
164．Vaccininm arborcum．．．．．．．．．．． Farkleberry．	$\begin{aligned} & 343 \\ & 343 \end{aligned}$	Alubama ．．．．．．．．．	Clitronello．．．．．．．．．	C．Mobr．．．．．．．．．．．	Sandy	5874	Split and crashed at end；cross－ grained．   Triple flexure，deflected diago－ nally．
		do	do			． 6895	
165．Andromeda fertuginea．．．．．．．．．	1033	Florids．．．．．．．．．．．	Jacknonville ．．．．．．	A．H．Curties ．．．．．	Hammock ．．．．．．．．	7892	Crushed at 76 millimeters from cnd；cross－grained．
166．Arbatos Monziesil Madroñ．	$\begin{aligned} & 843 \\ & 643 \end{aligned}$$079$$679$				Grnvelly   ．．．do $\qquad$   ．．．．do $\qquad$   ．．．．do $\qquad$		．．．．．．do $\qquad$   Shattered and crushed at ends，．．．   Crushed fibers at middle． $\qquad$

UNITED STATES UNDER COMPRESSION-Continued.


Table V.-BEHAVIOR OF THE PRINCIPAL WOODS OF THE

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Species. \& $$
\begin{aligned}
& \dot{5} \\
& \text { 肖 } \\
& \vec{a} \\
& \text { ed }
\end{aligned}
$$ \& State. \& Locallty. \& Collector. \& Soll. \&  \& Remark ${ }_{\text {. }}$ <br>
\hline 17. Arbutus Xalapensls \& $$
\begin{aligned}
& c 83 \\
& c 83
\end{aligned}
$$ \& Arizona

$\qquad$ \& $$
\begin{gathered}
\text { Santa Rita moont- } \\
\text { ning. } \\
\text {-. de.................. }
\end{gathered}
$$ \& G. Engelmannmad C. s. sargent.

$\qquad$ \& \& 7122
5715 \& Crushed near moldde at knota 3 millimeters in diancter. Split obliquely from middlle to end, erushlug fibers at middle. <br>
\hline 160. Oxylendrum arboream ...... Sorrel Tree. Sour Wood. \& 353

353 \& \begin{tabular}{l}
Alabama <br>
do $\qquad$

 \& Cottage Hill ...... \& 

C. Mohr <br>
do $\qquad$
\end{tabular} \& Llght, rich .......

...do ............ \& \begin{tabular}{l}
7430 <br>
7847 <br>
\hline 80

 \& 

Cruabed at 10 millimeters knot at middlo. <br>
Crusticd yt 10 millimeters knot 25 millimeters from nidde.
\end{tabular} <br>

\hline - \& $$
\begin{aligned}
& 515 \\
& 515
\end{aligned}
$$ \& Tenncssee . . . . . . . . \& Nashville......... \& A. Gattinger...... \& Sandy rock . . . . . . .

...do . . . . ${ }^{\text {a }}$. \& 8799 \& Triple flosuro <br>

\hline | 170. Knlmia latifolin. |
| :--- |
| Laurel. Calico Bush. Spoon IFood. Izy. | \& 2622

2023 \& Virginia.......... \& Faney Gnp ....... \& H. Shriver ........ \& Molst \& 6931 \& Crushed at two 6 millimetera knoth at end. Crushed at knot 51 millimeters from evd. <br>

\hline 171. Rhododendron maximam .... Great Lavrel. hose Bay. SAPOTACEE. \& 203 \& $$
\begin{aligned}
& \text {..do } \\
& \text {. .do }
\end{aligned}
$$ \& do \& do \& do \& 7462

6577 \& | Crushed at 25 millimeters from midicle. |
| :--- |
| Crushed at 3 millimetera knot at middle. | <br>

\hline 175. Chryrophyllum oliviforme.... \& \[
$$
\begin{aligned}
& 492 \\
& 492
\end{aligned}
$$

\] \& | Florida |
| :--- |
| ... do .. | \& Bay Biscayne.... \& A. H. Curtiss ..... \& Coral \& 10433

8700 \& Crushed at 25 millimeters from middle, defleeting dlagonally. Crushed nt knot at raidlle; split obliquely. <br>
\hline 176. Slderoxylou Mastichodendron. Hastic. \& 461 \& \& Upper Metacombe key.

. . do \& . do do \& .do \& 10932 \& | Split along grain at end; slight crushing. |
| :--- |
| Crushed at end; oblique aplit .... | <br>

\hline 177. Dipholis salicifolia. \& 488 \& do \& Вау Віксауंне \& do \& .do \& 11052 \& Triple flexure <br>
\hline \& 488 \& do \& do \& do \& do \& 12565 \& Crushed near middlo <br>
\hline \& 500 \& ....do \& Umbrella Key \& do \& .do \& 12272 \& Crnshed at 64 millimeters fromend nad split along grain. <br>
\hline \& 500 \& do \& do \& do \& . . do \& 1)931 \& Croshed at 102 millimeters from end la vicinity of knots. <br>
\hline 178. Bamelia tenax \& 746 \& Georgia \& Bainlridge \& do \& Low \& 7235 \& Split obliquely from middle to cnd. <br>
\hline 179. Bnmelia lanuginogn \& 930 \& Texas ............ \& Austin. \& C. Mohr........... \& Limestone ........ \& 5483 \& Crnshed at end. <br>
\hline \& 330 \& ..do \& do \& do \& . .do \& 5012 \& Crushed nt 102 millimetern from enil at 5 millimeters knot. <br>
\hline \& 1083 \& Miasourl.......... \& Allenton. \& G. W. Letterman. \& do \& 6895 \& Deflected at middlo; split at ends. <br>
\hline 181. Bumelia lycioides $\qquad$ Iron Wood. Southern Buckthorn. \& 333 \& Tenneasce ........ \& Nasliville. \& A. Gattinger \& Allavial \& 7825 \& Splitatend; cross.grained; seasening crack it middle. <br>
\hline 182. Bumelia cuneata An..............
Ants Ants Wood. Safron Plum. \& 1124 \& Florida \& Boea Chica Key... \& A. H. Curtiss ..... \& Coral .............. \& 7643 \& Triple flexare, deflecting from knots. <br>
\hline 183. 3timusops Sieberi.............. Ifild Dilly. \& 458 \& ....do \& Upper Metacombe Kes. \& do \& .do \& 8913 \& Cross-grained; split obliguely fromend to end. <br>
\hline EbENACEE. \& 458 \& do \& . do.. \& do \& .do \& 5806 \& Cross-grnined; split along seasoning cracks. <br>
\hline 184. Diospyros Virginiana. ......... Persimmon. \& 61 \& Miasouri.......... \& Allenton.......... \& G. W.Letterman.. \& Rieh upland \& 7882 \& Triple flexure, defected diagonally. <br>
\hline \& 425 \& Teauesaco \& Nashville \& A. Gatlinger...... \& Rich loam \& 9095 \& Crushel at end .................... <br>
\hline \& 811 \& West Virginia. \& Grafton. \& C. G. Pringle \& \& 7394 \& Triple flexure <br>
\hline \& 811 \& ....do \& do \& ... do .............. \& \& 7802 \& Triple flexure, deflected diagomally. <br>
\hline - \& 1084 \& Missonıi.......... \& Allentun.. \& G. Wr. Letterman.. \& Rielı upland. . . . . \& 8301 \& Deflected at 25 millimeters from midhlo. <br>
\hline \& 1084 \& do \& do \& do \& do \& 8099 \& do. <br>
\hline \& 1162 \& ....do \& do \& . ${ }^{\text {do ............. } \text {. }}$ \& Rich.............. \& 8415 \& Triple gexure, deflected diagonially; iotersecting "Cooper
lines,". <br>
\hline STYRACACES. \& 1162 \& \& do \& \& ...do \& 7901 \& <br>
\hline 18. Eymplocos thinctoria. .........
Morke Sugar. Sueet Leaf. \& 347 \& Alabama \& Cottage 1Iid . ..... \& C. Mohr \& Saady ............ \& 6140 \& Crushed nt 6 millitoeters knot 76 millineters irom end and at 3 millimeters knot at end. <br>
\hline \& 347 \& . .dv \& .do \& do \& . ${ }^{\text {do }}$ \& \& <br>
\hline 1*7. Malesibatiptera. Snou-drop Tree. Silver-beil Tree. \& 738 \& Georgia. \& Bainlmidge ....... \& A. II. Curties.. \& Low \& 6480 \& Friled at 6 milluneters knot 127 millincters from end nud split along grain. <br>
\hline OLEACEAE. \& 738 \& do \& do \& $d 0$ \& do \& 7394 \& Triple alexuro ..................... <br>

\hline 'in. Fraximar piataciefolia A $* h$. \& \[
$$
\begin{aligned}
& 660 \\
& 660
\end{aligned}
$$

\] \& | Arizona |
| :--- |
| .. do $\qquad$ | \& Santa lita mountains.


$\qquad$ \& G. Ingelmannand C. S. Sargent. ....do $\qquad$ \& . . . . . . . . . . . . . . . . . . . . . . . . \& 6441 \& | Crushel at middte on one faco.... |
| :--- |
| Crisheidat middle in vlenaity of 3 willimeters knot. | <br>

\hline
\end{tabular}

## UNITED STATES UNDER COMPRESSION－Continued．

	pregsube，in kilogbams，requined to produce an indentation，in milimetere，of－												Pemarks．	$\begin{aligned} & \dot{4} \\ & \text { 会 } \\ & \text { 吕 } \\ & \text { 品 } \end{aligned}$
	0.95	0.51	0.76	1.02	1.27	1.52	1.78	2.03	2.28	2.54	4.81	5.08		
E	1520	2586	2976	3221	3411	3629	3801	3946	4105	4219	4322	5421	Sheared fibers．	683
1	2359	3583	3983	4250	4482	4662	4854	4500	5112	5207	6123	c623	．．．．．．do．	683
1	1051	3062	3479	3751	3946	1237	4414	4554	4635	4831	5070	6350	．．do．	353
第	1211	2223	2676	2971	3153	3284	3479	3033	3700	3856	4491	5058	．．．do	353
1	1437	2214	2527	2694	2849	3021	3193	3325	2：93	3611	4287	4620	Sheared flors；split at end	515
F	1560	2254	2580	2767	2921	3003	3157	3207	3393	3438	3346		．．．．do．	675
－	$\underline{29} 68$	3289	3674	3969	4105	4237	4350	4491	4581	4690	5384		．．do．	2623
TTT	223	3447	3892	4173	4287	4432	4581	4699	4888	4890	5625	6478	Sheared fibers	$263{ }^{\prime}$
(6)	2041	2767	2980	3107	3252	3352	3434	3502	3507	3674	4264	4491	．．．do．	263
E	1951	2468	2708	2830	2880	2994	3085	3166	3252	3302	3810	4150	Sheared fibers；split at end	263
（17T	4210	5579	6033	6464	6791	7145	7430	7693	7974	8219	9753		．do．	492
\|ex	1860	3705	4626	5120	5425	5742	6014	6050	6532	6736	8119	9026	．${ }^{\text {do }}$	492
艮	2913	4536	6171	6586	58.4	6201	6382	6677	6940	7117		．．	Slight shearing ；split at end	461
Es	2767	4332	4899	5307	5489	5761	5987	6123	6206	6464	7248	7847	Shearel fibers；split atend；short specimen， 121 mil－ limeters long．	401
1	2087	3420	4082	4436	4717	5035	5434	5670			．－	．．．．．．．	Split at end．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．	488
艮年	2177	3493	3963	4327	4608	4844	4649	5398	5479	5648	6441	．．．．．．．	Sheared fivers on one edge；split at end．	488
苞亗	975	2486	3425	3810	4114	4364	4604	4808	．．．．．	5103	．．．．	．．．	Sheared fibers；split at end	600
等	907	2269	3239	3833	4073	4400	4527	484	5013	5207	6123		．．do	500
第	1474	2155	2431	2712	2894	3116	3293	3407	3710	3882	4854	5602	Sheared fibers ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．	746
（11］	1284	1923	2055	2108	2259	2381	2472	2572	2635	2703	3121	3443	．．．do．	930
$\square$	075	1497	1600	1692	1801	1896	1978	2073	2177	2268	2703	3085	．．do．	830
（1］	1769	2835	3148	$342 \%$	3633	20.42	4024	4191	4350	4518	5398	5851	Sheared fibers；split at corner	1083
（6）	880	2522	2527	3289	3529	3751	3904	4178	4304	4536		．	Split at ends	333
㫄	658	2313	3720	4281	4581	4780	4944	5207	5473	5666	6577	7462	Sheared fibers．	1124
年	2076	435	5397	6023	6532	6895	7235	7521	7811	8029	8936	9163	．do．	458
＝	2359	3607	4431	5058	5470	5851	0155	0386	6713	6940	8279	9026	．．．do．	458
㐌不	1905	3130	3674	4001	4214	4332	4527	4667	4780	4890	5625	6140	．do	61
良	2041	3402	4000	4426	4695	4971	5007	5239	5362	5534	6460	7076	．．do．	61
它包	1560	2602	4459	4006	5980	6501	5869	6083	C310	6477	7660	8302	．．．do．	425
Till	2767	4.356	5353	5738	6005	6260	C486	6849	7049	7235	8256	8790	．．．do．	811
\％	1005	3260	3901	4341	4004	4854	5080	5285	5434	［515	6668	7530	．．．80	811
易	1746	3402	4204	2033	5035	5307	5421	5661	5811	5905	7631	7711	．．．．．．do．	1084
＝	2076	4092	4786	5194	5484	5715	5883	6042	6187	6310	7258	7756	．．．．．do．	1084
等d	2 2 40	4495	5557	6065	6323	$6{ }^{\text {6 }}$ C8	6736	6681	7040	7221	8170	8003	．．．．．do．	1102
1203	1203	3039	4000	4695	3080	5421	5606	5651	6069	6246	7417	8301	Slight shearing of flbers ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．	1163
T10	1837	2608	2744	2871	2907	2603	3039	3057	3085	3162	3790	3856	Sheared fibers．	347
튼	1170	1796	1209	2004	2127	2214	2295	2381	2445	2504	2003	3230	do	347
边	12.97	2236	2753	2998	3153	3366	3497	：683	3810	3910	4491	6171	．．．．．do．	738
did	1822	2227	952	2707	2348	3680	3212	2313	3561	3674	4355	4763	Sheated fibers．	660
16	2192	30：0	3425		3787	3301	4150	4332	4503	1004	4413	6078	Sheared fibers along one edge	cco

Table V.-bEHAVIOR OF THE PRINCIPAL WOODS OF THE


## UNITED STATES UNDER COMPRESSION-Continued.



TABLE V.-BELAVIOR OF THE PRINCIPAL WOODS OF THE


## UNITED STATES UNDER COMPRESSION－Continued．

E	freselne，in khograms，hequred to mionder an midentation，in midmmeters，of－												Remarks．	
$\begin{aligned} & \text { E } \\ & \stackrel{U}{E} \\ & \stackrel{E}{E} \end{aligned}$	0.25	0.51	0.76	1.09	1.87	1.55	1.78	2.03	2．28	2.54	4.81	5.05		
T	145	2200	－704	2085	28.49	2971	3075	3175	3248	3370	3878		Slight shearing of tibers；split at end．	964
	1669	$\simeq 359$	2576	9203	2835	2035	2081	3180	3200	3357	3878		．do．	964
	1 C 23	2436	2595	2626	2803	2080	3021	3121	3221	3205	3629		．．．do	1001
\％	1814	$2 \times 3$	$\because 313$	2440	2620	240	2804	$30 \div 6$	3130	32.3	3850	4128	．．．do．	1001
	1407	1842	1900	2118	2214	2313	2431	2531	2022		3148	3470	Sheared fibers	1024
	1315		2064	2006	2141	2245	534	2：81	2486	250	2903	3107	－．do	1024
	150	2023	$24 \% 2$	2085	2880	5094	3880	8.857	3488	3325	4128	1355	Sheared fibors；split at end．．．．．．．．．．．．．．．．．．．．．．．．．．	1030
1	1380	2278	2286	¢654	2850	3016	3212	3302	3438	3561	4150	4708	Sheared fibers	1030
永	1189	10\％\％	1440	1810	1842	1887	1037	108：	2005	2082	2095	2427	Sheared fibers；split at end	122
牢	2273	3348	3801	3983	4119	4264	43.36	4597	4613	4713	5370	5489	Slight shearing of fibers	839
㐋	2152	2029	2839	3184	3357	3583	3819	3092	4155	4318	5283	5025	．．do	838
然	871	1837	2205	2331	2368	2481	25.6	2635	2717	27.3	2912	3383	Sheared fibers．	737
T10	1397	2381	8743	2030	3066	4184	3243	3375	3434	3484	4078	4287	． d o	731
例	274	4355	4990	5398	5698	5920	6123	6373	6518	6659	7750	8593	do	283
坔	2449	2640	2003	3212	3465	3742	30.4	4150	4287	4432	5439	……	Sheared fibers；split at end；short specimen， 103 millimeters long．	288
\％	2xa3	2867	3021	3334	3506	$36 \overline{6} 6$	3788	4014	4110	4240	5058	5625	Sheared fibers．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．	584
em	2041	2486	2703	3062	3912	3425	3570	3710	3842	3963	4763	5202	．．do	584
怱	2087	3756	4182	4877	4967	5210	53.1	5489	5620	5702	6577	7076	do	1137
䎂	2132	3334	3837	4146	4430	4681	4872	4090	5171	5343	6237	6713	．．do	1137
\％	1610	2790	3339	3611	3878	4037	4155	4336	4477	4572	5239	5851	．．do．．	942
砍	152	2608	3060	3293	3447	3651	3774	3901	4037	4150	4920	5443	．．do．	942
ए2	930	1216	1334	1429	1488	1524	1579	1006	1642	1728	2028		Sheared fibers；split at end；speclmen 120 mllli－	540
	735	848	871	025	944	080	1025	1066	1080	1083	1302	1433	Sheared fibers．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．	744
	717	1061	1152	1207	1257	1302	1347	1393	1402	1438	1701	1878	．．do．	744
\％	98	1234	1352	1429	1488	1551	1619	1600	1674	1719	1960		Sheared fibers ；split at end．	38
翟	203	1098	1170	1220	1200	1320	1359	1402	1442	1488	1724	1941	Sheared fibers	38
笭	1270	1851	2105	2205	2304	2408	2558	2658	2731	2803	3375	3593	． d do	682
怱	2076	3652	3001	4264	4491	4704	4895	5080	5162	5216		．．．．	Slight shoaring of fibers ；split at ond．	400
㐌	2048	4241	4808	5153	5362	5561	56.52	5942					．do	490
	749	1302	1515	1669	1746	1778	1787	1801	1790	1805	1978	2064	Sheared fibers；splitat end．	474
发	180	135	1533	1669	1728	1705	1831	1878	10：8	2005	2177		．do．	474
翟！	4128	5308	6260	7031	7303	7485	7621	8074	8392	8063	10115	10706	Sheared fibers．．	473
它家	2104	3810	4499	4080	5316	5025	5860	0123	6532	6759			Slight shearing；split at end；short specimen， 120 millimetors long．	473
20	2019	3039	3230	3330	3429	3465	3534	3624	3724	3788	4309	4522	Sheared fibers	585
\％	$\stackrel{1792}{ }$	2608	2762	2803	2926	2934	20.5	3125	3212	3252	3850	4190	．．do	585
	1031	2880	3157	3330	3515			3878	3937	3987	4481	4854	do	340
2	1531	2295	2481	25.8	2631	2717	2794	2858	2980	3060	3538	3878	．．do．	340
最	1810	1805	2019	2037	2127	2155	2168	2218	2205	2318	2634	2835	．．．．．．do．	71
䬼	1111	1702	2014	2068	2118	2154	2214	2322	2381	2400	2707	2808	．．．．．．do．	71

Table V.-BEHAVIOR OF THE PRINCIPAL WOODS OF THE

Species.		State.	Locality. ${ }^{1}$	Collector.	Soil.		Remarks.
217. Sassafras officinale-coutioued.	387	Missonri. .	Alleatoa..........	G. W. Letterman.	Allovisl .	5751	Crushed at 51 millimeters from cad.
	387	.do			.do	6328	Crushed at middle and at 04 milll. meters from end.
	446	Tednesseo........	Nasherille..	A. Gattinger ......	Riel .	6713	Crushed at 32 and at 89 mill. meters from end.
	814	West Virginia....	Grafton..	C. G. Pringle...		0418	Triple flexare, deflected diagonally.
	814	.do	do	do		6639	
	854	Mossbelınsetts.	Danvers	J. Robinson..	Rich loam	4559	Triple flexurs......................
	854	.do	do	do	.do	5851	. .do
	1163	Missonri.	Allenton.	G. W. Lstterman..	Low, slluvial......	6341	Triplo flexure; developed intorsecting "Cooper lines".
	1163	do	do	do		6033.	
218. Umbellutaria Californica..... Mountain Laurel. California Laurel. Sipiee Tree. Cagi. put. Califormia Olize. California Day Trce.	703703	Oregon ..............	Coos bay..........	G. Engelmsan sad C. S. Sargent.   ....do $\qquad$		$\begin{aligned} & 9435 \\ & 8754 \end{aligned}$	Croshed at 25 millimeters from middle.   Crushed at 38 millimoters from end.
EUPHORB1ACESE.							
219. Drypetes crocea................ Guiana Plum. White Tood.	468	Florida	Opper Metacombo Key.	A. H. Curtiss .	Coral	10410	Crushed in viciaity of small knots
219. Drypetes crocea, var. latifolia.	459	do	do	do	do	8256	Split suddealy fromend to ead....
	459	. .do	do	.lo	. do	8392	Split suddealy; oblique frscturo..
222. Ulmus crassifolia ...............	324	Texas ............	Dallas .	J. Reverchon.	Rich loam	7847	Crushed at 51 millimeters from cnd.
	324	do	.. do	110	do	8414	Crushed in vicinity of small knots 103 millimeters from end.
	929	. do	Anstin.	C. Mohr	do	5951	Crushed at sud; cross.gralned....
	929	do	do	do	do	0781	Triplo nexuro.
Moose Elm.	30 304	Kentueky .	Mercer county ...	W. M. Linney.....	Limestore	7847 8573	Deffected and crnalhed at end and at 102 millimeters from ead. Croshed at middlo
	120	Michigan ........	Dansville. .......	W. J. Beal ........	Gravelly.	0889	Crushed at 102 millimeters from end.
	134	Missouri.	Alleaton.	G. W. Letterman.-	Sich, aliuvial .	8437	Triplo Alexnro......................
	134	.. do	do	do	do	8392	Crushed near muddlo la vieinity of knot.
224. Ulmus Amerieana   White Lim. Ameriean Eim. Tater Klm .	19	Massachns	Arvold Arboretmm ..... 10 $\qquad$	C. S. Sargent   ....do $\qquad$	Drift ...............	$\begin{aligned} & 8041 \\ & 8573 \end{aligned}$	Deflected; cruslied at middle aod curl.   Triple flexuro
	281	Missouri..	Alleaton..	G. W. Letterman. -	Alluvial	7598	Triple flexure; midllo bend eecontric.
	281	do	.. do	do	do	6895	Crusbed at middle ; deflected diagobally.
	958	Texas	Colorado river ...	C. Muhr	do	5351	Crushed at knot 102 millimeters from ent.
	958	. 10	...do ............		do	4900	Crushed at 10 millimeters knot near middle.
	1030	Massachusetts.	Dadvers........	J. Robiason.	Gravelly	7022	Triplo flexuro, deflected diagonally.
	1036	...do	do	do	do	0579	
	1049	do	North Keading	do	do	0049	Triple flexure; developed interseetiag "Cooper lines".
225. Ulmus racemosa $\qquad$ Rook Elm. Oork Elm. Hick. ory Elm. White Elm. Clif Elin.	116	Michigan.........	Dansville .........	W.J. Beal ........	....do .............	11385	Triple flexure; middle deflection 25 millimeters eceentric.$\text { ....... } 10$
	$116^{3}$		Big Rapids		... do .............	. 0571	
	$116^{3}$	do	... do	....do	Low, gravelly....	7847	Crusbed Ilbers at 32 millimeters from enul.
		. . . do	Hudson	. .do	Alluvial ........	0571	Triple flexure.
	314	....do	Iterscy	. do	Rich losm	10387	Craslied at 25 and at 114 millimeters from ead.
	314	do	do		.do	10206	Triplo flexure, deflected diagonally.
	428	Tenaesseo	Nsahvillo.	A. Gattiager.	.do	7349	Crashel at small knot at middls..
226. Ulmus alata. Wahoo. Winged Elm.	$\begin{aligned} & 133 \\ & 133 \end{aligned}$	South Carolios....	Bonneau's Depot .   .... do $\qquad$	II. W. Ravensl....	...do	6895	Crushed at 13 millimoters knot at mildile.
	133	.. do ......		...do..............	. .do	7847	Triple flesure, deflected dlagoailly.
	380	Tennosses........	Davidson county .	A. Gattinger......	Loam	6260	Crushod at IO millmeters knot 64 millimeters frem end.
	533	Mississippl ......	Kemper's mill ....	C. Mohr ..........	Allnvial	7008	Triple flexnre
	533	.do	do	....do ..............	do	7892	Triple flesure, leffected diagonally.

## UNITED SIPATES UNDER COMPRESSION－Continned．

를	presacre，in kilograme，required to froduce an indentation，m mllimetris，of－													
	0.25	0.51	0．76	1．0\％	1.27	1.52	1.78	2.03	2.28	2.34	4.81	8.08		䓪
1	1111	1488	1615	1665	1710	1760	1846	1873	1937	1982	2250	2440	Sheared fibers	387
20	1071	＝1442	1588	1642	1669	1710	1765	1801	1801	1887	2155	．．．	Sheared fibers；aplit at end	387
E	1452	1892	1914	1978	2055	2123	2155	2209	2259	2304	2008	2758	Sheared filers．	446
E	1111	1882	2109	2195	2254	2350	2413	2472	2490	2513	2884	3121	．．．．．do	814
	1542	1778	1982	2164	2250	2377	2531	2672	2776	2862	3561	3946	．de	814
第	1270	2068	2381	2468	2522	2558	2621	2658	2699	2741	3139	3334	．de	854
㐌	1778	1960	2014	2078	2132	2177	2250	2330	2427	2473	2858	3062	．do	854
巽	1275	1833	2068	2164	2259	2413	2468	2531	2595	2635	3198	3538	Slight slearing of fibers	1163
203	1665	2250	2368	2440	2490	2531	2576	2622	2667	2690	2908	3020	Sheared filers．	1163
20	2019	2699	2971	3066	3193	3329		3561	3674	3756	4300	4672	．．de	703
1	1978	2.44	2926	3057	3198	3334	3357	3561	3628	3674	4037	4445	．de．	703
P(	2177	3856	4854	5466	5797	6022	6373	6537	6804	6949	8340	8845	．．do．	408
II	3052	5670	6328	6768	7145	7439	7756	7983	8155	8237	9480	10100	．de．	459
ers	3130	4509	5198	5615	5874	6110	6396	6509	6749	6918	8256	8793	Sheared fibers；splitat end	459
\％	1315	1878	2259	2477	2640	2803	3030	3166	3334	3484	4300	4808	Sheared fibers．	324
11	2060	3303	3820	$3 \times 37$	4046	4237	4359	4531	4690	4899	5851	0192	．de	324
㐌	2676	3856	4296	4635	4890	4697	5353	5516	5797	5065	7212	7983	Slight sluearing of fibers	029
笣	2109	3765	4106	4482	4744	4953	5163	5380	5611	5797	\％ 031	8029	Sheared fibers	929
T1	1678	1814	1910	2032	2923	2322	24.7	2522	2607	2744	2948		Slight shearing of fibers；split at end	$30^{3}$
－	1093	1479	1619	1765	1855	1969	2064	2164	2277	2359	2858	3153	do	30.4
\％	1565	1032	223	2440	250	2667	2758	2866	2335	2994			．．do．	120
第	1379	2277	2380	2527	2685	2709	2976	3112	3207	3260	3937		．do	134
粅	1551	2073	2300	2481	2658	29.8		3089	3：07	3334	4014		de	134
翟	1592	2350	2699	2875	2971	3121	3212	3348	3438	3599	4250	4513	Sheared fihers．	19
若	1338	1905	2168	2377	2504	2645	2753	2844	2971	3057	3074	3992	de	19
Lud	1610	1960	2041	2180	2336	2372	2504	2567	2063	2744	－－－	．．．．	Split at ends；fibers not sheared；specimen 120	281
E	1293	1760	1914	2601	2196	2313	2431	2549	2008	2750	3921		－	281
In：	1610	1669	1715	1787	1882	1982	2118	2214	2331	2354	． 2971	3357	Sbeared fibers．	958
\％	1324	1660	1896	2014	2109	2214	2304	2409	2450	2532	2971	3266	－do	958
\％	$16 \overline{6}$	2449	2744	2958	3139	3201	3452	3559	3697	3754	4740	5171	Slight shearing of fibers	1036
4	1796	2835	3260	3515	3697	3810	3964	4046	4109	4281	4907	5353	．．do	1030
\％	2096	2880	3198	3434	3697	38.8	4028	4182	4281	4468	5489	5871	．．．．do．	1048
203	2291	3289	3674	4037	4241	4527	4605	4886	5035	5108			SIlit at end；fibers did not shear．	116
运	1338	1887	2041	2164	2268	2381	2477	2576	2658	2708	3266		Split at end；slight shearing ef fibers．	116
\％	1179	1987	2254	2468	2013	2794	2898	3035	3125	3243	．．．．		Slight slocaing of fibers；split at end．	$116^{3}$
Es	1111	2295	2740 ，	2071	3184	3402	3583	3738	3882	4019	－ 4808		．．．do．	$116^{8}$
榢	2291	2853	3075	3960	3452	3638	3705	3919	4033	4100	4808		．do．	314
\％	1996	2563	3016	3198	3366	3550	3665	3747	3946	4119	4854		．de	314
等	1678	2875	3348	3620	3842	4073	4200	4400	4581	4672	50.5	6123	Slight shearing of fibers	428
17 m	2586	3001	4377	4677	5013	5243	5557	5607	5942	6069	7303	7689	．．．．．．do．．	133
気	1474	2912	3600	4092	4404	4044	4881	5110	5380	5579	6895	7021	．．．de	133
Did	1678	2405	2817	2708	2869	2971	3030	3202	3203	3348	3860	4106	Sheared fibers．	380
E	2381	3030	32.77	3405	3620	3810	3992	4150	4287	4400	5353	5806	Slight sbearing of fibers．	533
E	2336	3493	3955	4264	4.522	4753	4937	5194	5358	3557	6441	7235	．．．．．do	533

Table V.-behavior of the principal woods of the


## INITMED STATES ONDER COMPRESSION－Continued．

$\stackrel{E}{E}$														－
$\begin{gathered} \text { E } \\ \stackrel{y y y y}{E} \\ \stackrel{y y}{*} \end{gathered}$	0.95	0.51	0.76	1．0：	1.87	1．2\％	1.78	2.03	2.28	2.54	4．81	5.08		E
骂年	1397	1906	2254	2386	2349	2749	2258	2994	3107	3212	3924	4355	Sheared fibers	758
艮荗	1406	1041	241	2350	2181	2602	274	2830	2971	3094	3810	4273	Slight sbearing of fibers	758
星	1104	1833	1769	1796	1973		2169	2182	2245	2313	2693	2903	Sheared fillers．	018
E	1：15	1860	1987	21.3	2032	2341	2459	2：53	2040	298	．．．．．．	．．．	Slight shearing i split at end．	75
㞗	$14 \mathrm{C6}$	9041	2045	2427	25.6	2672	2700	2704	3016	4080	26\％		Sheared fibers．	75
\％	－ 2608	3493	3819	4037	4327	4531	47：5	4809	4980	5180	6237	0040	Slight shearibg of fivers．	306
0	1111	2404	2003	3216	3488	3683	3869	4083	4209	4341	5421	6033	．${ }^{\text {do }}$	30 C
	1：24	$\bigcirc 609$	3107	3102	3583	3837	3951	4105	4264	4350	5316	58.9	Fibers did not sherat	375
\％	18.6	：3039	3583	8865	4073	4332	44．00	4617	4817	4941	5551	6396	d	375
12	1610	2703	3016	3175	3303	3562	3715	3924	\＄064	4110	4877	5307	cl	873
	1751	2740	30.6	330	3565	3742	3974	4119	4314	4445	5156	5625	Slight sheating of flocrs	873
E	1606	2812	3243	20.6	3.24	30.9	3742	3837	3887	3940	4049	．．．．．	Slight shearing ；split at end	111：
1119	1570	2993	3330	3620	3010	4069	4309	4527	4626	4758	5670	6192	Sheared tibers．	1111
1	2233	3493	3946	4200	4373	4536	4693	4094	5071	5262	8078	6350	．${ }^{\text {do }}$	652
9	522	817	802	$\varepsilon 80$	885	885	894	894	898	003	903	1039	Sheared fibers；specimen 120 millimeters long．	486
（4ill	cio	907	980	1030	1073	1116	1161	1175	1211	1229	1429	1479	Sbeared fibers	486
20	955	1080	1243	1320	1905	2019	2064	2123	2191	2313	2604	2840	．．do	508
垦	1751	2440	2009	2840	29.6	3062	3162	32066	3320	3303	3833	4105	do	132
第	1769	25.6	2753	． 2880	2989	3110	3266	3334	3479	3543	4037	4518	．do	132
	15.4	1973	2078	2168	2218	2280	2409	2481	2008	2081	3157	3620	Shearod fibers；split at end	1244
\％	1960	2640	2790	2926	3016	3184	3248	3379	3534	3674	4309	4786	Sheared fibers	1245
第	1905	2313	8531	2676	2875	3063	3252	3515	3652	3715	4445	4944	．do	1246
0	1960	2640	2790	2920	3016	3184	3248	3379	3534	3674	4309	4786	．${ }^{\text {do }}$ ．	1255
2	1905	2313	2531	2676	2875	3066	3252	3515	3659	3715	4445	4944	．．do．	1255
易）	2003	5080	5670	5720	5761	6010	6019	6192	6328	6423	7167	7608	do	253
第	2580	4740	5421	5000	5851	coca	6211	6396	6432	C577	6985	6803	Sheared fibers；Eplit along grain fromond to end．．	253
翟	1678	2105	23.31	2486	2022	2703	2880	2985	3094	3100	3107	4423	Sheared fibers	21
	1492	1982	2177	2341	2440	2581	2527	2885	2985	3060	3583	4082	Slight shoaring of fibers	21
	1202	2404	2858	3039	3085	3134	3280	3348	34.9	3488	3788	3946	Shonred fibers	126
0	1565	2136	2877	2377	2440	2549	2625	2708	2702	2820	3289		Sheared fibers；split at end	126
20	1089	1365	1501	1579	1105	1746	1814	1846	1901	1978	2313	2456	Sheared filuers	686
速	753	1071	1157	1257	1306	1393	1479	1533	1578	1628	2019	2200	．．．．do．	686
2	1134	16：6	1805	1987	2114	2101	2263	2359	2404	2405	2894	3044	．do	648
翟	034	1328	1428	15.0	1610	1683	1765	1842	1887	1932	2313	2540	．．do ．	648
E	908	1542	1588	1669	1742	1801	1833	1905	1087	2037	2381	2590	．．do	10
E	1089	14.5	1500	1543	1010	1678	1719	1769	1810	1860	2197	2291	．．．do	16
E	783	1098	1134	1202	1257	1300	1343	1350	1393	1401	1669	1792	．d	76
0	1025	12.57	1361	1474	1615	16.0	1710	1751	1783	1840	2087	－－－	Sheared fibers；split at ond．．．．．．．．．．．．．．．．．．．．．．．．．．	76
\％	839	1293	1361	1433	14.9	1592	1637	1710	1769	1833	2168	2381	Sheared fibers	$76^{8}$
E	703	008	1102	1134	1170	1211	1243	1260	1297	1302	1479	1533	．do	123
（6）	749	1179	1315	1400	1460	1492	1588	1628	1669	1715	1930		Sheared flbers；split at end	145
［1］	403	508	500	017	635	667	600	768	717	730	860	934	Sheared fibers．	393
	1021	1501	1860	1940	2023	2078	2127	2173	2223	2268	2481	2020	．．．．．．do．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．	1057

Table V.-BEHAVIOR OF THE PRINCIPAL WOODS OF THE


## UNITED STATES UNDER COMPRESSION-Continued.


'Table V.-BEHAVIOR OF THE PRINCIPAL WOODS OF THE


UNITED STATES UNDER COMPRESSION-Continued.

table V.-behavior of the principal woods of the


## UNITED STATES UNDER COMPRESSION－Continued．

空	pregeube，in kilograms，mequird to produce an indentation，in mblimeters，of－												Remarks．	$\begin{aligned} & \dot{4} \\ & \text { 若 } \\ & \text { B } \\ & 8 \\ & 8 \\ & \text { \& } \end{aligned}$
	0．85	0.51	0.76	1.02	1.27	1.52	1.78	2.03	9.28	2.54	4.81	5.08		
	2744	3574	$m_{4}$	4250	4545	4735	4976	5153	5325	5499	6613	7031	Slight shearing of fibers．	238
	1633	2341	2617	2880	3094	3248	3434	3629	3765	3891	4500	．．．．．．．	Slight sliearing of fibers；split at end	238
III	2008	3447	3760	4019	4200	4408	4658	4799	5017	5194	6214	6759	．do．	250
\％	1633	2200	2504	2703	2894	3153	3329	3465				．．．．．	Fibers did net shear；split at end．．．．．．．．．．．．．．．．．．．．	250
［1］	2313	3085	3311	3447	3488	3615	3738	3833	3887	3964	4355	4890	Sheared fibers．	251
－	1438	3815	3865	2567	2713	2858	3048	3166	3248	3357	3901	4400	．．．do	251
右	1860	2767	3016	3357	3574	3751	3933	4078	4293	4296	5103	5625	Slight shearing of fibers；split at end ．．．．．．．．．．．．．．．．．	2591
20	1882	2405	2622	2849	3020	3162	3334	3465	3583	3692			．do	2593
怱	2132	2449	2753	2948	3021	3166	3203	3411	3488	3583	4250		Sheared fibors；split at end	403
包	1483	1987	2205	2023	2150	2803	2967	3045	3157	3252			Split at end	403
20	1996	2980	3071	3162	3285	3343	3429	3479	3570	3633	4037	．．．．．．．	Sheared fibers．	443
IITII	2427	3130	3402	3633	3978	4223	4445	4700	4000	4740	6260	7045	Slight shearing of fibers．	547
家	1951	2812	3134	3429	3683	3901	4119	4273	4450	4595	5625	6033	Shght shearing of fibers；split at end．．．．．．．．．．．．．．．	547
［1］	989	1969	2631	2976	3239	3497	3692	3856				．．．．．．．	Split at end	748
垦	2499	3570	3974	4341	4672	4881	5070	5334	5505	5738	6759	7391	Indented without shearing fibers	749
包	1542	2604	2907	3248	3502	3697	3842	3983	4092	4240	4944	5380	．．．do．	749
d］1］	2109	3311	3311	3389	3561	3656	3751	3833	3887	3960	4545	4854	Sbeared fibers；split at side of stick ．．．．．．．．．．．．．．．．．	895
E	1179	195！	2186	2336	2440	2527	2645	2731	2817	2903	3434	3765	Sheared fibers．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．	895
ITH	2313	3639	4001	4300	4536	4763	5035	5225	5271	5470	6704	7235	Slight shearing of fibers	1050
E	1041	2699	3039	3284	3538	3720	3905	4105	4255	4404	5398	5942	Fibers did not shear．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．	1050
ITin	1438	2985	5212	3447	3574	3701	3842	4010	4114	4246	4890	5370	Sbeared fibers．	1257
E	2223	2858	3289	3470	3611	3751	3892	3983	4042	4128	4513	4890	．do	1257
E $0^{3}$	1384	2233	2581	2799	3016	3230	3388	3574	3724	3812	4617		Did not shear fibers；split at end ．．．．．．．．．．．．．．．．．．．．	670
翟	1860	2459	2685	2862	3012	3180	3307	3438	3588	3710	4332	4854	Slight shearing of fibers；split at end．．．．．．．．．．．．．．．	670
包	2313	3352	3515	3837	4028	4182	4346	4495	4626	4758	5670	6214	Sheared fibers	985
$=$	2041	2998	3289	3484	3742	3905	4155	4300	4427	4527	5579	5878	．do	985
（17］	4482	3493	3742	3882	4024	4246	4305	4391	4527	4053	5330	5897	．${ }^{\text {do }}$	988
E	1896	2676	2794	2980	3157	3257	3425	3497	3674	3702	4377	4795	．do	988
IIII	2214	3797	4119	4291	4491	4695	4831	4980	5128	5252	6123	6600	Sheared fibers；specimen splitinto two pieces．	1027
畴	1588	2767	3302	3567	3788	3916	4110	4264	4427	4495	5388		Sheared fibers；split at end	1027
㐌	1836	3833	4110	4827	4454	4013	4753	4922	5062	$519+$	6069	6386	Sheared filsers	1029
\％	885	2295	2812	2912	3080	3125	3261	3402	3525	3647	2850		Sbeared fibers；splitat ond．	1029
茐	2245	3284	3515	3742	3002	4204	4436	4581	4749	4890	5761	6214	Slight slearing of fibers．	37
笏	1928	3375	3983	4309	4604	4886	5062	5398	5570	5747	6804	7621	．．do	37
d］	3357	4563	6017	5234	5579	5823	6110	6314	6482	6664	7750	8119	．do	151
三	1610	2676	3316	3765	4005	4454	4783	5035	5339	5579			Split at end ；fihors did not shear	151
翟	2123	3379	3842	4228	4477	4740	4944	5144	5298	5466	6396	6872	Slight shearing of fibers．．	256
20	2586	3810	4237	4482	4681	4872	5052	5271	5398	5489	6396		Fibers did not shear；splitat end	351
\％	1547	2449	2767	2921	3107	3316	3425	3538	3710	3819	4473	4990	Slight shearing of fibers．	351
良	2250	3479	3887	4110	4305	4527	4658	4744	4953	5002	5606	5850	Sbeared fibers．	771
20s	2495	3928	4400	4704	4899	5089	5307	5466	4643	5711	6359	6600	．．．do．	771
23	1778	2971	3257	3529	3792	4037	4219	4423	4581	4704	6398	5902	Slight shearing of fivers．	417
ez	1860	2785	3112	3438	3724	3933	4250	4432	4590	4708	6534	6010	．．．．．．do．	417
20	2032	3447	3833	4042	4246	4436	4559	4730	4863	5013	5942	6305	Sheared fibers．	525
20	2291	3747	4146	4377	4527	4644	4813	4953	5067	6216	6105	6532	．．．．．do．．	525
ITIII	2141	2803	3021	3275	8484	3647	3801	3010	4033	4101	4763	5171	．．do．	79
IIII	2214	3057	3334	3470	3633	3747	3937	4105	4273	4350	5216	5600	Slight shearing of fibers．．．．．．．．．．．．．．．．．．．．．．．．．．．．．	$79^{3}$

29 FOR

TABLE V.—BEILAVIOR OF THE PHINCIPAL WOODS OF THE

Speeies.		State.	Locality.	Collector.	Soil.		Romarks.
250. Quercus macromarpa-cont'd..	137	Missouri	Allentou.	$\left\{\begin{array}{l} \text { G. W. Lettorman. } \\ \text { Rohert Jouglas... } \end{array}\right.$	Moist upland .....	8754	
	143	Illinols ..........	Waukegan........		Rich...............	7076	do
		Texas	Dallas ............		Rich, noint	8609	
	310		....do .............	.... do .............	....do		Cruelud at middic of one face.....
	432	cmmesec ........	Nasliville -........	A. Guttinger.......	Alluvial	7255	Triplo flexnre, deflected dlagonalis.
	831	Hinois ............	Winuebaro county	M. S. Bobl . . . . . .	Loam	8256	Cruaticd at 10 millimetere from. end.
	933	Texas .............	Austiu ..........	C. Mohr ..........	Allavial. ...do	. 7053	Crushed in vieinity of 3 millime. tere knot.
	933	Fermont	Charlote. .................	C. G. Pringle.		$\begin{aligned} & 6013 \\ & 7083 \end{aligned}$	Triplo flexure, deffected diagonally.   ......do ...............................
	1071						
	10.2	do	do	d		73.6	Triple flesure
	1073	.. do	....do			7938	Triple flexare, deflected diago. nally.
Oak. Water White Oak.	424424	Tendesseu........	Nashville   ... do	A. Gattioger......	Low ..............	5511	Split obliquely serose the grain ; cross-grained.   Crushed and split st ends.........
		... do ..............			....do .............	7303	
	545	Mississippi .......	Kemper's mill ....	c. Mobr...........	Alluvisl ..........	. 8523	Crushed and split at ends.........
-	545	Florida	....do	....do ..............	.....do ................	8754	Triple flexure, defleeted diagonally.   Crnshici near middlo; etiek wormeaten.   Crashed near middle.
	762		Cbattahocheo   ...do $\qquad$	A. H. Curtise		7756	
	762	do		do	.do	9344	
258. Querens bieolorSvamp White Oak.	12	Massachngetts ...	Arwold A rboretum	C. S. Sargent .....   ....do $\qquad$	Drift $\qquad$   ....do $\qquad$	$\cdot \begin{aligned} & 7530 \\ & 7919 \end{aligned}$	Triple fexnro; split along grain.. Crushod fibers at end $\qquad$
	12	...do.................do.............					
	54	Missour . ........	Allenton...........	G. W. Letterman..	Alluvial ..........	. 8596	Triple flexure; split along grain..
	54			. . do ..............	....do ...............	. 8596	Triple flexure......................
	$\begin{gathered} 54^{2} \\ 54^{3} \\ 848 \\ 846 \end{gathered}$	....do $\qquad$   ....do $\qquad$   Massachnsetts. $\qquad$   ....do $\qquad$		do	...do ...... ......	. 7983	Triple flexure, deflected disgonally.   Fibers crushed at is millimetors from end.   Triple fexure, defleeted diagomally.   Triple fexure
			(t)	. .do	...do	8437	
			Wpat N(whury ...   Annoh Arboretum	J. Robinson   C. S. Sargent	Low, awampy....   Drift...............	$\begin{aligned} & 7022 \\ & 7421 \end{aligned}$	
259. Querenh Michanxil............. Braket Oak. Cow Oak.	240	South Carolina ...   ....do $\qquad$	Bouneau's Depot .   ....do $\qquad$	H. W. Ravenel . ...	Alluvial   ...do $\qquad$	64187756	Triple flexare; spllt along grain..   ......do $\qquad$
	524	Alabsma .........	Kemper's mill ....	C. Mohr. . . .do	do	7756 7847	Triplo flexure......................
	524	Morida	...do . . . . . . . .		.do	7847	Tripte flexure, deflected dingonally.   Triple flesure at 8 millimeters knot 102 millimeters from end of concaro eido; split at end.   Triple tlexare, deflected dingomally.
	755		Chattahooehee...	A. II. Curtise		7938	
	755	do	do		.do	8346	
260. Quercns Prinus ................. Ohestnut Oak. Roek Ohestnut Oak.	31	Kentucky ........	Bosle county ....	W. M. Linney ....	Shalo ..............	877	Crughed fihere at midulo.
	311		do	.... do		9208	Crushed fibore st end. $\qquad$   Crushed fibers at 32 and at 127 miliimeters from end.   Crushed and eplit at end..........
	$\begin{array}{r} 35 \\ 434 \\ 925 \\ 325 \end{array}$		$\int \ldots d o$	do	Limestone ........	10569	
	434   925   025	Tennesseo $\qquad$   Alabama $\qquad$   ....do $\qquad$	Nashville.........	A. Gsttinger .....	Rocky upland ...	5942	
			Cullman	C. Mohr	Dry, rocky	9299	Crushed fibers at 78 millimeters from end.
			....do		. $\mathrm{do} . . . . . . . . . . .$. .	7892	Split at cnd; croes.grained .......
201. Quereua prineides. Yellow Oak. Oheztnut Oak. Ohinquapin Oak.	34	Kentucky ... ....	Mercer county...	W. M. Linney ...	Limestono .......	7938	Triple flexure; midille beod 25 millimeters from center; detiected from heart.
			Boyle eumaty	...do ..............	Waverly shale....	11022	Crushel at 5 millimeters knot 89 millimeters from end.
	273	Missouri..........	Allenton	G. W. Letterman .	Limestone ........	8663	Crusitel snd split at end..........
	487	do	do	do	Flinty ..........	9270	Triple flexure, deflectel from heart.
	323	Toxas	Dallas	J. Roverehon .....	Calcareoue........	9163	Deflecterl 66 millimeters from end and split along grain.
-	514	Tennessee ........	Nambville.	A. Gattinger....	Allovial ..........	9117	Triple flexaro, deflected toward beart.
	514					9253	
202. Quercus Douglaeil Mountain White Oak. Blue Oak.	688	California ........		G. R. Vasey ......	Clay ...............	8709 9117	Crushed fibers at 51 millimoters from milddle.   Cruehed fibere neat middle .......

## UNITED STATES UNDER COMPRESSION－Continued．

E	fhegsure，ln kilogramb，hequibed to peoduce an midentation，in milmmetere，of－												Remarks．	
	0.25	0.51	0.76	1.02	1.27	1.52	1.78	2.03	2.28	2.54	4.51	5.08		
	2676	3887	4341	4817	5167	5403	5622	5915	6033	6260	7536	7938	Slight shearing of fibers．	137
20	749	2676	3184	3420	3588	3792	3933	4042	4178	4355			Shert specimen， 120 millimeters long；split at ends ．．	143
E	1179	2254	2654	2812	3080	3230	3434	3602	3801	3910	4717	5126	Slight shearing ；split at ends	310
23	1678	2790	2980	3134	3356	3535	3692	3792	3937	4028	4653	5153	Slight shearing．	310
E	1960	2835	2935	3166	3393	3525	3638	3792	3919	3983	4881	5353	Sheared fibers．	432
哬	1542	2549	2858	2967	3134	3248	3450	3624	3756	3901	4690		Slight shearing of fihers；split at end．．．．．．．．．．．．．．．．	831
泡	1769	2849	3148	3361	3484	3665	3779	2882	3964	4064	4763	5058	Slight shearing of fibers	933
皆	1678	2926	3366	3574	3715	3856	4628	4155	4237	4314	5062	5367	．${ }^{\text {do }}$	933
ITITII	$\because 678$	3556	3996	4336	4604	4944	5635	5252	5430	5579	6577	7145	．${ }^{\text {do }}$	1071
T11］	2744	3456	36.52	3937	4150	4341	4518	4613	4799	4969	6078	6668	．．do．	1072
171	1996	2885	3280	3470	3701	3882	4114	4291	4391	4513	5367	5806	．．．de．	1073
11.1	2858	4500	5189	5608	5847	8196	6373	6500	6660	6722	7847	8119	．${ }^{\text {de }}$	424
E	2481	4165	4749	5162	6010	5869	6112	6364	6559	6695	7066	8074	Sluared fibers	424
를	1452	1796	2068	2254	2422	2617	2790	2835	3662	3157	3720	．．．．．．	Slight shearing of fibers；split at end	545
｜1］	2078	2971	3320	3574	3833	3996	4114	4296	4436	4530	5443	5866	Sheared fibers．	545
［1］	2041	2631	2926	3186	3360	3529	3661	3751	3882	3933	4559	4990	．de	762
包	1461	2659	2313	2563	2722	2985	3157	3329	3438	3593	4336		Sheared fibers；split at end	762
相	1905	2640	2740	2908	3694	3230	3370	3534	3615	3729	4346		Stight shearing of fibers；split at end．．．．．．．．．．．．．．．	12
E	1343	2673	2322	2495	2676	2844	2976	3125	3261	3348			．de	12
\％	1687	2776	3071	3311	3579	3742	4014	4178	4350	4554	5479		Fibers did net shear；split at end ．．．．．．．．．．．．．．．．．．．．．	64
良		2921	3329	3683	3955	4196	4560	4717	4944	5149	6169	6450	Slight shearing of fibers．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．	54
IUII	2313		3529	3683	3792	3942	3983	4237	4332	4441	5035	5625	Sheared ilbers．	$54^{2}$
E	1628	2368	2586	2744	2935	3094	3248	3388	3529	3661	4355		Slight shearing of fibers；split at en	$54^{3}$
\％	2001	3239	3652	3919	4196	4445	4604	4735	4944	5098	6978	6459	Filers did not shear	846
\％	1951	3198	3538	3856	4646	4287	4626	4786	4971	5158	6123	6759	．de	816
㐌	1946	2767	3044	3339	3547	3674	3878	4028	4146	4309	5080	．．．．．－	Slight shearing of fibers；split at end．．．．．．．．．．．．．．．	240
第方	2359	3030	3402	3720	3978	4150	4486	4658	4849	5008	6033	6577	Fihers did not shear	240
筀	1806	2540	2867	2948	3130	3280	3447	3606	3720	3842	4382		Fibers did not shear；spli	524
20	1202	2050	2341	2572	2776	2930	3116	3261	3375	3461	4028	4332	Fibers did net shear	524
第	3057	3656	4092	4482	4744	4900	5171	5416	5615	5793	6849	7394	Slight shearing of fibers	755
管	1860	2993	3434	3847	4173	4409	4672	4908	5126	5294	6260	6927	．．．de．	755
［10］	2155	3266	3583	36.4	3001	3992	4119	4191	4300	4368	4795		Slight shearing of fibers；split at end．．．．．．．．．．．．．．．．	31
E	1542	2177	2504	2713	2921	3075	3239	3379	3179	3638			Split at ends ．．．．．．	$31^{1}$
（1ain	1860	3452	3670	4042	4300	4531	4626	4886	4967	5262	5652		Sheared fibers．	35
［1］i］	2245	3329	3387	3674	3842	3083	4037	4146	4191	4246	4990	5285	．${ }^{\text {do }}$	434
¢	1452	2676	3039	－ 3270	3434	3574	3720	3856	3978	4673	4626		Sheared fibers；split at end．	925
［m］	1056	2980	3325	3520	3720	3878	4033	4160	4287	4436	5635		． $\mathrm{d}^{\text {a }}$ ．	925
2	1588	2989	3311	3402	3561	3701	38.12	3928	4024	4150	4831	5298	Slight shearing of fibsrs ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．	34
艮豆	1624	3166	3593	3783	3992	4196	4382	4559	4708	4872	5706		Slight slearing of fibers；split at end．．．．．．．．．．．．．．．	$34^{3}$
Dim	2813	3847	4219	4495	4854	5103	5262	5498	5670	5838	7031	7756	Sheared fibers．	273
星侕	2223	33.18	3697	3951	4164	4386	4563	5753	4904	5107	5851	6600	Sheared fibers；lndonted section covers 3 millimeters knet．	287
ย近	1170	2767	3425	3765	3969	4164	4436	4527	4717	4877	6829	6169	Slight shearing of fibers	514
U1IIT	2404	3882	4281	4559	4804	5044	5218	5398	5579	5747	0085	7439	．．．de．	514
近	2767	4808	6942	6373	6713	7008	7248	7512	7756	7928	9026	9934	．de	688
ש3	1709	3720	4491	4090	5262	5466	5797	6942	6214	6398	7668	8392	Fibers did not shear ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．	688

Table V.-beHavior OF THE PRINCIPAL WOODS OF THE


## UNITED STATES UNDER COMPRESSION－Continued．

$\dot{\Xi}$	pressure，in kilogeamb，bequirdd to produce an indentation，in milmmeterb，of－													
$\begin{array}{\|c} \text { 苞 } \\ \stackrel{\Phi}{4} \\ \hline 口 \end{array}$	0.25	0.51	0.76	1.02	1.27	1.52	1.78	2.03	2.28	2.54	4.81	5.08		吕
x	1784	4717	$6305$	7349	7983	8437	8981	9390	9707	9979	1157	1293	Sheared fibers．	655
\％	2353	4309	5171	6761	6078	6477	6795	7081	7372	7500			Split st ends；sap－wood	655
怱	2472	4219	4930	5398	5829	5987	6214	6419	6623	6777	7870		Split at end	698
¢	2200	3828	4354	4626	4940	5071	5353	5489	5657	5806	6377	7031	Slight shearing of fibers．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．	1103
尼边	2631	3856	4332	4067	4004	5216	5466	5643	5806	5987	7122	7666	． do	1103
20	3130	5534	6441	6782	7122	7358	7576	7802	7970	8265	9117	10047	Sheared fibers．	404
T］${ }^{\text {a }}$	1724	3742	4415	4922	5178	5470	5706	5920	6105	6382	7660	8415	Slight shearing of fibers	799
שיֶ	1701	2971	3579	3892	4259	4491	4753	4099	5285	5543	6940	7860	．do．	799
T110	2449	4468	50\％0	5398	5657	5851	6060	6223	6332	6513	7402	7802	Slight shearing of fibers；split at end ．．．．．．．．．．．．．．．．	919
易	1769	3311	3856	4146	4136	4563	4922	5053	5280	5362		－．	Split at end	919
20	1879	3629	4400	4908	5252	5602	5874	6128	6314	6577	8097	8845	Slight shearing of fibers	954
\％	1610	2094	3760	4150	4391	4744	5053	5339	5584	5856	7439	8188	．．do．	954
20	2563	4001	4445	4677	4971	5289	5557	6720	5878	6078	6985	7621	．．do．	649
20	1633	4128	4922	5421	5625	5965	6141	6332	6003	0745	7892	8483	．do	649
didil	2087	3602	4187	4495	4844	5107	5280	5512	5733	5929	7212	7924	．do	053
\％	1910	3456	3978	4364	4877	4971	6248	5570	5702	5929	7054	8000	．${ }^{\text {do }}$	638
\％	2758	4672	5693	6283	60.46		7303	7621	7870	8192	0594		Slight shearing of fibsrs；split at end．．．．．．．．．．．．．．．	654
17 TH	1424	2676	3393		4060	4377	4626	4881	5116	5312	6577	7258	Slight shsaring of fibers．	063
\％	1520	2604	3030	3212	3479	3665	3797	3960	4092	4223	5013	5670	．do	663
N10	2313	3858	4454	4854	5058	5421	5643	5851	6005	6250	7457	7910	．do．	685
20¢	1415	2685	3116	3402	3665	3896	4082	4264	4482	4635	5398	6305	．．．．．do．	685
1510	1637	2995	2495	2694	2899	3157	3266	3479	3692	3783	4445		Slight shearing of fibers；split at end．	7
$\underline{=}$	1043	2046	2395	2622	2744	2039	3075	3283	3434	3488	4033	．．．．．．．	．．do．	7
III	1905	2168	2286	2400	2440	2585	2090	2785	2817	2875	3360	8674	Sheared fibers	45
E	871	1651	1055	2028	2136	2286	2313	2468	2536	2599	3021	．．．．．．．．	Sheared fibers；split at end	45
1	1084	1851	1955	1987	2123	2232	2205	2350	2481	2530	2958	3357	Shesred fibers	$45^{5}$
第令	1790	2976	3393	3683	3802	4033	4359	4500	4053	4854	5715	．．．．．．	Slight shearing of fibers；split at end	80
三	2109	2880	3153	3357	3543	3783	3083	4209	4355	4401	5398		．do	89
［1］	2132	2540	2862	2071	3171	3379	3543	3650	3851	3956	4559	4990	Shorred fibers	92
（11）	1869	2014	2164	2322	2429	2626	2803	2800	3003	3075	3774	．．．．．	Slight shearing of fibers；splitat ond．	140
1111	1678	2254	2372	2518	2081	2785	2944	3021	3130	3175	3783	3001	Sheared fihors．	141
（a）	1778	2570	2722	2858	3026	3171	3293	3420	3525	3611	4300	．．．．．．．．	Split at end．．	146
dile	1951	2404	2558	2885	3003	3588	3397	3388	3756	3937	50.58	5851	Shearod fibers	215
$\square$	1111	2245	2531	2767	2899	3075	3103	3316	3393	3461	4164	．．．．．．．．	Sheared fibers；split at end．	215
它	1837	2522	2693	2753	2244	3075	3166	3243	3388	3570	4264	．．．．．．．．	Split at ond ．．．	217
\％	1763	2454	2072	2808	2983	3121	3212	3343	3452	3570	4264	．．．．．．．．	．．do	217
包	1905	2631	3012	3160	3329	3543	3665	3701	3797	3940	．．．．．		Split at end；short speeimen， 120 millimetors long ．．	218
\％	1560	1910	1951	2028	2141	2209	2263	2318	2354	2440	2894	3160	Shoared fibers	920
E	1084	1078	1787	1833	1869	1978	2041	2105	2164	2203	2622	2860	．．．．．do．	920
ITid	1565	2118	2418	2549	2767	2908	2985	3134	3225	3302	．．．	．．．	Split at end．	1043
第	1724	2409	2703	3334	3484	3175	3307	3438	3570	3629	4445	4854	Split at ond；fibers did not shear．	1043
园	2495	3310	4332	4772	4971	5252	5407	5489	5711	5850	6568	7349	Sheared fibers ；split at ond	931
层	2109	3438	3882	4140	4259	4503	4844	5062	5252	5320	0668	7439	Slight shearing of fibers．．．	931
域	1120	2527	2889	3071	3234	3438	3074	4291	4037	4100	5112	5715	Fibsrs did not shear．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．	752

Table V.-bEHavior Of the principal woods of the


## UNITED STATES UNDER COMPRESSION-Continued.



Table V.-BEHAVIOR OF THE PRINCIPAL WOODS OF THE

Specles.		State.	Locality.	Colloctor.	Soil.		Remarka
281. Quercns lanrifolia-continucd.	$\begin{aligned} & 891 \\ & 801 \end{aligned}$	Florlda   ... .do $\qquad$	Saint John's river. ...do ..............	A. M. Cnrtiss ....		9489 7734	Cruahed at 25 millimeters from mildle.   Crasleed at 80 millimeters from sud and at end.
282. Querens heterophyila.......... Bartran's Oak.	1171	Now Jersey ......	Mondt Holly......	S. P. Sharplos.....	Clay	5171 8029	Crushed at 25 millimeters knot 51 millimeters from end. Crusherl at 102 nillimeters from end.
283. Querens einerea $\begin{aligned} & \text { Upland Witlow Oak. Blue........... }\end{aligned}$	352	Alabama..........	Citronella.........	C. Mohr..........	Pine-barren.......	7167	Split at end and splintered at 102 millimeters from end; brittle.
284. Quercus hypoleues.............	674	Arizona ..........	Santa Rita mount- ains. ...do ................	G. Engelmann and C. S. Sargent.   do	Dry, rocky.   ...do	7167 2222	Triplo flexnre, deflected diagonally ; split at end.   Cross:crained; oblique apllt 152 millineters long.
385. Quercus imbrlcaria ............   Shingle Oak. Laurel Oak.	$49^{2}$	Kentueky . . . . . .	Harrodsburg .....	W. M. Linney . . . .	Uties shale .......	8029	Crushed at end .
	$40^{2}$	.do	.do	do	.do ..............	0026	Triplo flexuro, deflected parallel to rinea.
	50	Missouri	Allenton	G. W. Lettornsn.	Rieh, molst	8845	Triple flexare ......................
	135	. .do	do	do	Rich loam	9458	Crushed at 76 millimeters from end.
280. Qnercus Phellos ..............   Willow Oak. Peach Oak.	512 512	Tennesses.	Tullshoms........	A. Gattinger.....	Moist, siliceons ...	5087 6486	Crushed at 10 millimetere knot at end.   Triple flexure
287. Quercus denalfors ...........	687	California.	Marin connty .....	G. R. Vsaey.......	Gravelly ...........	8464	Crushed at 38 millimeters from
Tanbark Oak. Chestnut Oak. Peach Oak.	687	do	do	do		8754	midnle at 5 millimeters knot.   Triple flezure; middle bend 25 millimeters from middle.
288. Castanopsis ehrysophylla..... Chinquapin.	729	....do	Mondocino county	A. Kellogg. . . . . . .		5651	Crasbed at end at 3 millimeters knot.
	729	. . do				8256	Crushed at end
289. Castsnea prmila Chinquapin.	573	Arkansas........	Hot Springs ......	G. W. Letterman..	Sandy loam .......	8156	Crushed at 51 millimeters from end.
	573	do	do	do	do	7689	Crushed at 5 millimeters knot 51 millimeters from middle.
290. Castanea vulgaris, var. Americana. Chestnut		Masshehnsetts   do   ... do	Aruold Arboretum $\qquad$	C. S. Sargent......	Drift   ....do	. 4137	Triple flexure, deflected parallel to rings.   Crushed 25 millimeters from mid.
	18	. do	do	do	....do .............	5298	Crushed 25 millimeters from middlo at 3 millimeters knot.
	2581	Virginia ..........	Fsncy Gap .......	H. Shriver ........	Moist .... . . . . . . .	7235	Crushed at $\mathbf{2 5}$ millimsters from end.
	$2588^{2}$	do	. 10	do	do	7485	Crnshod st 102 millimeters from
	516	Tennessce	Nashrille.........	A. Gsttinger......	Sandy ....... ......	6373	Crushed at 44 millimeters from cnd.
291. Fagua forruginea $\qquad$ Beech.	$\begin{aligned} & 9 \\ & 0 \end{aligned}$	Massachnsetts   ....do	Arnold Arboretnm ....do $\qquad$	C. S. Sargent...... ...do............	Drift   ....do $\qquad$	7847 7076	Crashed at 32 millimaters from middle and split along grain. Crushos at 64 millimeters from end.
	$44^{2}$	Kentucky .	Mercer comity ....	W. M. Linney.....	Hudson Rivershale	7506	Crished at 76 millimeters from end.
	$44^{3}$	.do	do	do	do	8006	Crushed at 25 and at 327 millimeters from end.
	110	Michigan	Dansville	W. J. Beal	Gravelly	8822	Crnshed at eud ....................
	110	do	do	do	do	8346	Crnslied at middle and at end.
	765	Florida	Chattahoochee...	A. H. Curtiss	. . do ..............	6406	Crushed at middle in vicinity of 13 millineters knot.
	765	. ${ }^{\text {do }}$	do	do	.do	6827	Crashed at end..................
	853	Massaehusetts...	Hamiltou.........	J. Robinson.	. . do .............	8278	Crished at 25 millimeters from cad.
	853	do	.lo	do	. .do	7235	Crushed at 19 millimeters from end.
292. Ostrya Virginiea. Hop Hornbeam. Iron Wood.	11	... do	Arnold Arboretum	C. S. Sargent ......	Drift..............	0390	Crushed st 51 millimeters from mindice.
lever Wood.	11	do	...do	.. de	....do	9934	Triple flexuro; middle hend 25 millimetern ectentric.
	877	.do	Danvers . . . . . . . .	J. Robinson. ......	Rich loam ........	9707	Triple thexure
	877	...do	do	do	. .do	6359	Crashed at 89 millimeters from हnit.
	1047	\|....do	North Reading.	. . l \%		7983	Tuiple flexnre, deflected diagonally perpendicular to ringa.
	1047	... do	d	$\mathrm{do}$		8641	Crualled at al millimeters from cad; opened grain.
203. Carpinua Caroliniana.   Jlornbeam. Bitue Beech.	40	Mlissouri..	Allentoc...........	G. W. Letterman..	Damp, alluvial....	6963	Deflected at middle and split st eads.
Water licech Jrom Wood.	73	Kentucky ..	Merecr eounty....	W. M. Limmey.....	Trenton limestone	0399	Triplofexare.
	73					8373	
	1038	Massachusetts	Danvers	J. Robingon.	Gravelly.	6949	Cress.grained; spllt at knots.

## UNITED STATES UNDER COMPRESSION-Continued.



Table V.-BEHAVIOR OF THE PRINCIPAL WOODS OF THE


## UNITED STATES UNDER COMPRESSION－Continued．

	freselke，iv kilograme，eequired to produce an indentation，in millmeters，of－												Remarks．	
$\stackrel{\stackrel{\rightharpoonup}{E}}{\stackrel{y y y y}{*}}$	0.25	0.31	0.76	1．0\％	1.27	1．5\％	1.28	2.03	2.28	2.54	4.81	5.08		
	1179	1619	5778	1846	1955	2055	2168	2223	2322	2390	2971	3198	Sheared fibors．	10
\％	1048	1547	1597	1701	1769	1877	1937	1991	2078	2173		．．．．．	Slight shearing of fibers；split at end．	10
（6）	1406	2223	2332	2409	2495	2549	2604	2654	2703	2748	3311		．．．．do．	848
17	1179	1669	1787	1868	1932	2014	2105	2150	2209	2254	2676	2003	Sbeared fibers；iudented section eovers 3 millime－ ters knot．	223
3	830	1093	1170	1325	1356	1460	1565	1615	1696	1783	2087	－－．．．．	Slight sbearing of fibers；split at end．．．．．．．．．．．．．．．	223
滰	1650	1973	2114	2235	2295	2391	2531	26.49	2731	2799	3334	3765	Sbeared fibers	722
Alil	1189	1978	2223	2359	2495	2649	2740	2844	2048	3016	3529	3946	Slight sberring of fibers；indented section covers 3 milliaeters kuot．	722
哬	1134	1701	1878	2028	2118	2250	2345	2431	2545	2635	3198	3629	Slight shearing of fibers；split at end ．．．．．．．．．．．．．．	836
11	1343	1941	2064	$2: 14$	2995	2440	2549	2676	2771	2867	3470	3901	．．．do．	838
THT	1384	2028	2168	2304	2391	2531	2676	2785	2862	2985	3543	3847	Sheared fibors	990
\％	930	1470	1583	1687	1796	1864	1241	2023	2091	2177	2676	2994	．．．．do．	990
E	$12 \% 0$	－－	2064	2313	2497	2490	2554	2676	2748	2709	3288	－．．．－	Sbeared fibers；split at ond	1085
管	1261	1748	1883	2005	2077	2182	2205	2391	2513	2595	3207		．．do	1065
㐌	975	1338	1529	1592	1710	1796	1883	1932	2028	2114	2563	2858	do	1066
翟	1021	1488	1633	1715	1819	1892	1951	2046	2073	2200	2667		Slight shearing of fibers；split at end	1066
ed	1179	1533	1656	1769	1892	1978	2150	2209	2304	2391	2939	3357	Slight sberring of flbors	1067
艮	794	1305	1447	1579	1683	1705	1846	1941	2023	2082	2507		Slight shearing of fibers；split at end	1067
TTI	930	1837	2168	2340	2450	2509	2685	2744	2862	2930	3348	3659	Sherrel fhers；split at end．．．．．．．．．．．．．．．．．．．．．．．．．．	528
翟	749	1320	1424	1533	1597	1669	1751	1805	1892	1037	2395	2699	Slight shearing of fibers	629
Tin	1740	23.5	2586	2722	2867	3030	3121	3243	3357	3561	4332	4536.	do	843
萢	1742	2022	2858	3062	3130	3311	3470	3574	3661	3774	4423	4590	．${ }^{\text {do }}$	843
易	1529	1987	2214	2404	2477	2576	2731	2794	2880	2098	3652		Sheared fibers；aplit at end	1068
良	1315	1769	1987	2168	2282	2345	2504	2572	2669	2776	$\ldots$	．．．	Slight sheariny of fibers；spllt at end	1088
T11	1216	2028	2254	2449	2567	2708	2758	2894	2008	3071	3606		Sheared fibers；split at end	1069
P（5）	1343	1887	2118	2254	2368	2481	2500	2854	2749	2799			Split at ends；fihers did not shear	1069
［1］．	18.42	2495	2699	2858	2048	3107	3221	3343	3456	3574	4241	4672	Sheared fibers	1070
$\theta$	1021	1542	1733	1851	2000	2132	2241	2345	2463	2567	3130		Split at end ；fibers did not shear．	1070
ITIT．	1225	2168	2472	2685	2750	2889	3018	3085	3162	3216	3742	4014	Slight sheaing of fibers	138
em	1216	1407	1637	1760	1851	1082	2064	2205	2308	2345		2880	Sheared fibers ；split at end	136
Es	880	1343	164：	1801	1023	1983	2046	2159	2182	2232	2581	2912	Sheared fibers．	841
2	804	1379	1542	1660	1785	1855	1910	1987	2087	2082	2563	2709	Slight shearing of fibers	841
包	1547	2123	2254	2377	2522	2626	2717	2803	2894	2989	3674	4105	．do	842
疝	1120	1515	1024	1737	1851	1896	2000	2087	2141	2205	2209	2948	．．do．	842
I1．	2136	3561	4114	4388	4572	4753	4990	5112	3257	5443	6396	6922	．．do．	4
园	1407	2440	2713	2894	3130	3230	3397	3574	3656	3815	4626		．．．do	4
208	1665	2685	3089	3334	3407	3720	3856	4073	4205	4305	5216	5761	Slight ebearing of fibors	844
笣	1179	2336	2731	3030	3261	3411	3583	3801	3053	4101	5022	5761	．．．．．．do．	844
（6）	1270	1810	1032	2023	2068	2164	2218	2259	2341	2400	2812		Shearod fibers；split at end．．．．．．．．．．．．．．．．．．．．．．．．．．	810
管s	1089	1270	1347	1397	1474	1492	1547	1619	1628	1665	1932	2041	Sheared fibers．	907
［1］	1002	1724	1823	1000	2032	2127	2177	2254	2308	2354	2803	3039	－do	967
20	1774	2064	2223	2377	2481	2572	2836	2753	2808	2930	3574	3010	．do．	991
\％	975	1257	1851	1910	2032	2168	2232	2295	2350	2427	2427	3108	．．do．	991
永	767	1351	1515	1015	1669	1756	1896	1948	1987	2078	2449	2722	do	1025

Table V.-BEHAVIOR OF THE PRINCIPAL WOODS OF THE


## UNITED STATES UNDER COMPRESSION－Continued．

	prebsuee，in milograms，requied to produce an indentation，in millmeterb，of－												Remarks．	
	0.25	0.51	0.76	1.02	1.27	1.52	1.78	2.03	2.28	2.54	4.81	5.08		
$\theta$	953	1243	$13 ิ 2$	1461	1599	1638	1715	1760	1805	1910	2254	．	Sheared fibers；plit at end．	1025
䐴	916	1529	1665	1769	1851	1937	1996	2068	2132	2200	2486	2686	Sheared tibers．	635
第	631	953	1043	1071	1080	1120	1152	1179	1234	1279	1442	1547	do	717
\％	490	857	903	948	998	1043	1084	1129	1166	1229	1497	1047	．．do．	717
	690	944	1052	1084	1125	1193	1270	1315	1347	1388	1669	1860	．．do．	979
第	667	1030	1111	1175	1229	1288	1347	1397	1415	1483	1678	1878	．．do．	979
易	930	1089	1120	1202	1257	1302	1361	1402	1443	1489	1765	2064	．．．do．	604
\％	658	939	998	1080	1120	1207	1225	1266	1311	1343	1624	1774		694
崓	907	1293	1397	1569	1628	1719	1824	1896	1941	2032	2395	．．．．	Slight shearing of flbers；split at end；spooimen 1：0 millimeters loug．	232
第	644	993	1143	1297	1361	1442	1529	1574	1642	1733	2155	2518	Sliglit shearing of tibers ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．	855
20	953	1084	1202	1252	1347	1393	1447	1524	1574	1610	2019	2232	．do	908
dim	1043	1220	－ 1361	1438	1479	1547	1642	1674	1733	1814	2168	2449	．do	908
ITII	409	907	1016	1075	1166	1234	1300	1347	1393	1452	1774	2005	．${ }^{\text {do }}$	911
笏	053	1016	1080	1094	1184	1216 ，	1257	1306	1352	1624	1833		d	911
\％	885	1315	1424	1488	1569	1851	1719	1814	1923	1051	2395	2685	Sheared fibers．	690
［IT］	1202	1851	1087	2123	2218	2286	2350	2482	2504	2500	3029	3379	．．do	690
$\cdots$	1134	1497	1560	1619	1674	1760	1801	1846	1892	1928	2214	2322	．．．do．	640
\％	1030	1207	1270	1388	1447	1547	1569	1624	1674	1715	2032	2232	．．．do．	981
禁	635	880	943	1016	1080	1120	1170	1220	1266	1302	1570	1778	．do	981
2）	993	1107	1170	1266	1311	1384	1488	1488	1533	1579	1905	2177	Slight shearing of fibers	889
（a）	671	1229	1379	1479	1565	1615	1724	1787	1833	1865	2132	．．．．	Slight shearing of fibers；split at end．	721
\％	771	1252	1397	1565	1597	1674	1729	1801	1855	1928	2313	2654	Sheared fibers．	721
\％	862	1021	1384	1615	1078	1719	1810	1960	2010	2078	2481		Slight sbearing of fibers；split at end．．．．．．．．．．．．．．．．	972
dim	1021	1087	1982	2168	2359	2486	2567	2685	2731	2858	3311		Sheared fibers；split at end ；indented section cov－ ers 6 millimeters knot．	972
\％	1066	1529	1633	1700	1769	1851	1037	1906	2069	2118	2541	．．．．．．．	Slight sbearing of filers；split at end．．．．．．．．．．．．．．．	966
\％	1406	1851	2064	2168	2241	2291	2391	2454	2518	2505	2971	3311	Sheared fibers．	669
IIII	948	1134	1202	1257	1279	1311	1352	1388	1393	1397	1010	1740	．．．do	$272{ }^{2}$
怱	658	735	739	758	771	807	839	848	862	888	1025	1111	．．．do	$272^{2}$
的	821	1397	1565	1637	1710	1750	1824	1005	1982	1991	2208	2580	．．do	1035
	802	1267	1261	1315	1365	1411	1470	1524	1569	1578	1800	2013	．．．．．．do．	1035
\％	640	835	934	080	1030	1075	1120	1161	1170	1211	1474	1656	．．．do	847
笣	658	844	880	903	057	998	1034	1080	1129	1170	1402	1533	．．．．．．do．	847
［17］	885	1084	1184	1288	1384	1438	1511	1547	1033	． 1609	1960		Sheared fihers；split at end；specimen 120 millime－ tels long．	622
20	817	1080	1125	1170	1238	1288	1348	1384	1393	1415	1651	1792	Sheared fibers．	961
第	885	1030	1075	1125	1166	1100	1178	1220	1201	1306	1488	1660	．．．．${ }^{\text {do }}$	961
203	889	943	1052	1116	1157	1188	1201	1302	1320	1301	1656	1883	Slight shearing of fibers	1054
\％	522	730	807	852	903	957	1002	1043	1084	1125	1315	1533	．．．．．．do	1054

Table V.-BEHAVIOR OF THE PRINCIPAL WOODS OF THE


UNITED STATES UNDER COMPRESSION－Continued．

	fressure，in kilograme，required to yboduce an lndentation，in mhlimeters，of－												Remarks．	
	0.25	0.51	0.76	1．0：2	1.27	1.52	1.78	$\mathbf{2 . 0 3}$	2.28	2.54	4.81	5.08		
㐌	454	944	11／n	1166	1225	1306	1343	1356	1397	1442	1669	1805	Slight shearing of fibers	652
	749	907	1002	1043	1080	1120	1161	1184	1295	1201	1474		Sheared fibers	1012
\％	504	712	793	817	888	034	948	903	1030	1039			Slight shearing of fibers；split at end．	1012
	030	098	1093	1166	1216	1279	1338	1365	1429	1474			．．do．	1028
，	449	712	789	852	889	039	098	1043	1084	1125	1384		．．do ．	1028
㐌多		595	653	680	726	766	807	848	852	875	1030	1179	Sheared fibers	255
WH	666	898	939	980	998	1043	1080	1120	1166	1198	1315	1452	．do	304
	408	608	685	726	760	830	875	803	948	984	1179		Slight shearing of fibers；split at and．	304
（1）．	1588	2254	2395	2436	2490	2567	2622	2703	2753	2807	3302		．．do．	309
\％	522	1043	1157	1229	1315	1356	1447	1488	1538	1597	2032		．．do．	309
毠	862	1320	1488	1542	1628	1687	1801	1851	1896	1946	2223		Shearod fibers；split at end	754
㐌	830	1143	1220	1306	1352	1397	1442	1488	1529	1574	1837			754
㐌	934	1216	1311	1352	1438	1515	1569	1619	1665	1728	2087	．．．．．．．	Sheared fibers；split at ond ．．．．．．．．．．．．．．．．．．．．．．．．．．．．	659
园	703	098	1179	1252	1325	1388	1442	1556	1588	1047	2023		．．do．	659
170	2064	2971	3143	3216	3307	33：5	3420	3479	3520	3574	4037		．do．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．	646
E	653	1125	1220	1338	1397	1470	1574	1660	1724	1805	2177	2405	Sheared flbers．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．	646
1.1	1120	1311	1411	1438	1533	1637	1719	1756	1801	1869	2177		Slight shearing of fibers；eplit at end．．．．．．．．．．．．．．．	909
E－	658	925	1061	1107	1180	1239	1270	1352	1307	1442	1701	1833	Sheared fibers；split at end	909
等界	635	835	880	930	975	1016	1071	1120	1166	1211	1433	1610	．．．do	912
寿	817	1052	1116	1179	1243	1288	1338	1397	1447	1488	1780		．. do	912
IW］	1071	1179	1216	1270	1315	1365	1402	1436	1442	1485	1428	1769	Sheared fibers．	634
园	1007	1202	1284	1447	1470	1402	1538	1574	1583	$150 \%$	1787	1850	d	634
是	956	1334	1393	1493	1533	1578	1619	1669	1710	1731	1941	2146	Sheared fibers；split along indented fseo．．．．．．．．．．．．	662
｜es	1071	1805	1828	1864	1028	2000	2087	2182	2250	2400	2622		Sheared fibers；pplit at end ．．．．．．．．．．．．．．．．．．．．．．．．．．	662
ITT	522	703	744	785	812	835	875	894	903	984	1034	1134	Sheared fibers	879
E	508	703	717	721	730	739	753	762	708	807	934	903	．do	379
\％	821	1012	1098	1116	1161	1175	1202	1225	1261	1270	1429	1542	．．do	782
－	490	857	898	934	939	948	966	979	980	1007	1116	1229	Sheared fibers；split slong lndented face．．．．．．．．．．．．	782
㐌	621	880	948	1007	1030	1034	1066	1075	1080	1112	1243	1288	Sheared fibers．	783
\％	494	821	975	1034	1071	1080	1102	1116	1120	1134	1216	1243	Shesred fibera；indented face covera 3 millimeters knot．	783
\％ms	631	989	1016	1030	1057	1075	1107	1116	1129	1161	1311	1488	Sbeared घbors．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．	700
dim	680	839	934	957	980	1016	1030	1043	1075	1098	1215	1325	．．．do	790
\％	549	721	767	789	812	852	875	884	894	912	1043	1076	．．．．do	792
$\square$	404	593	626	635	649	662	676	680	604	708	704	839	．．．．do	792
［1］！	671	$\varepsilon 66$	907	062	1002	1043	1075	1116	1157	1170	1397	．．．．．	．．．．do	700
E	703	871	898	939	984	1025	1039	1057	1075	1102	1261	1325	．．．do．	796
［17］	504	789	807	866	893	907	030	939	957	980		．．．．	Sheared fibers ；split at end	874
\％	717	953	993	1025	1039	1048	1057	1075	1089	1116	1216	1293	Sheared fibors．．	874
28	572	944	1034	1075	1084	1125	1161	1103	1220	1270	1497	1610	．．do	1609
did	658	880	953	1016	1057	1107	1152	1207	1252	1266	1447	1542	．．do	1090
ITITI	712	803	876	916	984	1034	1071	1003	1116	1161			Slight shearing of fibers；split at end．．．．．．．．．．．．．．．	1017
\％	1080	1088	1117	1315	1415	1501	1497	1778	1406	1383	1740	1769	Sheared fibers．	1017
漦	507	685	753	803	844	857	898	912	938	060	1110	．．．．．．．	Shosred fibere；spllt at end	1021
钡	080	1148	1107	1143	1211	1200	1288	1334	1370	1384	1579	1728	Sheared fibers．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．	1021

Table V.-BEHAVIOR OF THE PRINCIPAL WOODS OF THE


## UNITED STATES UNDER COMPRESSION-Continued.



30 FOL:

TAmLE V.-BEHAVIOR OF THE PRINCIPAL WOODS OF THE


## UNITED STATES UNDER COMPRESSION-Continued.



Table V.-behavior of the principal woods of the

Species.	$\begin{aligned} & \text { Li } \\ & \text { 兑 } \\ & \text { E } \\ & \text { 荙 } \end{aligned}$	State.	Locality.	Collector.	Soil.		Remaris.
34. Pions Lambertiana-cont'd ..	668 730	Callfornla..	Labsen'a pear ....	$\begin{aligned} & \text { G. R. Vasey........ } \\ & \text { Sierra Lumber } \\ & \text { Company. } \end{aligned}$		5050 46060	Crushed at 28 millinetern irom end.   Triple fiexure
250. Pinna doxilis.   White Pine.	819 819 913	Colorado......... ... .do ........... Nevada ..........	Forost City ...... ... do ........... Danville........	T. S. Brandegeo...		6123 0123 452	Crushed at 25 millumeters from ent.   Crushed at 36 millimeters from end.   Crughed at 10 millimetera knot 70 millimeters from ond.
351. Pinas albicaulis.	992 992	British Columbla ...do . . . . . . . .	Silrer Monntain valley, Fraser iver.   do $\qquad$	G. Engelmanaand C. S. Sargent.   do		4740 5851	Triple ficuro
	661	Arizona	Santa Rlla monntains. $\qquad$	G. Engelmana and U. S. Sargent.   ....do   o ..............		8029 7621	Crushed at 38 and at 89 millimefers fromend; oprned gruin. Crushe? at 32 millimeters from end; split oblinocly along grain.
$\begin{aligned} & \text { 353. Pinus Parryana.................. } \\ & \text { Piñon. Nut Pine. } \end{aligned}$	656 656	California	San Diegn county	G. Th. Vasey.		5902 5570	Crusked nt 64 millimeters from call at 10 millinartera hout. Triple flexure.
855. Pinus ednlis Pinon. Jut İine.	397	Colorado.	Canon Clity	E. Weston	Gravelly..	5570	Crushed at end at 5 millimetera hnot.
356. Pious monophylla...............liñon. Aut Pine.	882	Utah   Norada	Lewiston .........	M. E. Joues.......	Rocky   Gracelly	$\left\lvert\, \begin{aligned} & 4037 \\ & 3 i 40 \end{aligned}\right.$	Split obliquely along grain   Fallel nt 13 millimeters koots at mindlle.
	915		Danrille .	A. Triple .........			
357. Pions Malfouriana.............	631	California	Scott mmontaina ..	G. Engelmano and C. S. Sargent.   . .do $\qquad$	Roeky ...........	4763 6033	Failed nt 19 millimeters ksot 0 milimetrya from enf. Cumbert at 3 milimeters knots at midule.
357. Pinus Balfouriada, var. aristata Foxtail Pine. Hickory Pine.	821 821	Colorado..........	Foreat City .......	T. S. Brandogee.		5489	Crushed at 32 millmeters from che; cross-æıained.   Crushed nt eml......
	914	Nerada.	Prospect mountain	A. Tiplo .......	Rocky	5012	Crushed at middlo and at 3 millimeter hinot 25 millimeters from midollo.
358. Pinos resinosa .................Red Pine. Norway Pine.	$\begin{aligned} & 315 \\ & 315 \end{aligned}$	Miebigan ..........	Hersey   ....do $\qquad$	W.J. Beal ........	...................	7356 8301	Crushed at 51 millinuters from cul.   Crushed at 64 nillimeters from cut.
	785	New Brodawiok ..	Bridgoton .......	Ed. Siuclair		7167	Crushed nt 10 millimetera knot 25 millimeters from end.
	785	do	do	to ..............		8105	Crushed at und .....................
	1074	Vermont.	Charlotte.	C. G. Pringle		0023	Crushed at 25 and at 114 millineters firm end.
	1075	....do ............	. .do	.do		5842	Crusbed at ${ }^{2} 5 \mathrm{nnd}$ at 76 millimo. ters fiom end.
	1076	...do	do	do		7349	Cruslid ot 51 millimetera from end.
	1076	...do	do	do		6886	Crnshed at 6 millimeters tuot at middle.
359. Pinua Torreyana.	990	Californla .	Sad Diego connty.	G. Engelmann ....	Sandy ...........	4400	Crushed at 25 and nt 102 millimeters from end.
	996	...do	.do	d	...do	4876	Triplo flexuto; middlo bend 51 millimeters cecentrie.
	996	..do	do	.do	...d		
360. Pinns ArizoniesYellozo Pine. $\qquad$	1154	Arizona ..........	Santa Rita moantains.	C. G. Pringle......	liocky ............	7485	Crnshed at 25 millimetors from end.   Crunlied at end.....................
	1154	. 1				7349	
	1155	.do	do	d	do	5330	Shattered at end
	1155		.do	do	. .de ............	6350	Crushed at 51 millimeters from entl.
	1156		do	do	.do	50:5	Crmalace at 2s millimetere knot at ent.
	1156	do	do	do	do	4014	.....do...........
361. Pinue pondeross............. Yellow Fine. Bull Pine.	619	Dakata ...........	Deadrood........		Gravelly.........	7915	Crushed at 51 millimeters froon end.
	620	Oregon $\qquad$   Californfa $\qquad$ \| . . . $\qquad$	Snw-mill, Ashlana			7530	Crushed at 70 millmeters from und.
	630		Strawberty valles		Low, wet, swampy	3629	Triple fiexnre perpendicalar to singe; knote.
	630		....		... $\mathrm{d}_{0}$............	3765	......do
	632	. .do	Saw-mill, Struw. berry vallos.			8253	Triple flexare .....................
	636					5942	Crushed at 51 millimeters from ent.
	889	..de	Saw-mill, San Jhernardino.	W. G. Wright		7756	

## UNITED STATES UNDER (OMPRESSION-Continued.



TABLE V.-BEHAVIOR OF THE PRLNCIPAL WOODS OF 2 HE


## Z．NITED STATES UNDER COMPRESSION－Continued．

$\frac{5}{6}$	pregeure，in khogramg，requided to produce an mdentation，in mhlimeters，of－												Remarks．	
	0.23	0.51	0.76	1.02	1.27	1.52	1.78	2.03	2.38	2.54	4.81	5.08		
171	1021	1160	1211	1201	1297	1311	1347	1361	1397	1438	1678	1878	Sheared fibers．	718
厊	857	125	1302	1325	1365	1402	1452	1479	1542	1579	1760	1928	．do	718
E	1202	1769	1905	1082	2023	2068	2114	2155	2186	2218	2540	2685	．do	731
（6）	885	1538	1769	1819	1860	1928	500	2096	2123	$\because 182$	2485	2694	．．do	007
（6）	685	1492	1728	1833	1901	1987	2028	2091	2141	2182	2136	2849	．do	910
	1261	1879	2023	2173	2259	2309	2345	2368	2418	2431	2699		Sheared fibers；split at end	833
包	1579	1769	1882	1946	1969	2014	2064	2082	2118	2150			do．	633
毠	86	1315	1379	1479	1547	1606	1651	1687	1751	1773	2064	2223	．．do．．	667
\％	771	1293	1483	1569	1624	1665	1715	1755	1790	1842	2087	2277	Sheared fibers	667
2	249	953	1769	1937	2000	2103	2168	2223	2286	2354	2812		Sheared fibors；split at ende	604
，	1021	2177	2676	2853	2939	3012	3071	3116	3175	3293	3765		Slight shearing of fibers；split at euds	664
Tin	1585	1787	1905	2000	2078	2164	2250	2309	2372	2440			Slight shearing of fibers；split st end	997
0	1202	1996	2341	20880	2685	1830	2894	2994	3075	3166			Sheared fibers；split at end	997
［10］	883	1071	1202	1229	1252	1270	1279	1288	1293	1311	1497	1869	Sheared fibera．	293
es	667	1061	1143	－1170	1198	1220	1243	1252	1275	1288	1497	1579	do	293
Tid	1270	1374	1501	1588	1665	1715	1774	1846	1910	1964	2223	2404	．do	563
\％	898	1266	1438	1492	1529	1565	1579	1601	1647	1685	1814	．．．．．	Shesred fibers；split st end	825
dim	807	1052	1152	1193	1252	1302	1329	1374	1406	1433	1610	1787	Sheared fibers．	625
2	1202	1778	1010	1982	2041	2087	2188	2200	2258	2313	2667	2849	do	644
\％	1479	2014	2214	2332	2363	2413	2499	2545	2589	2654	3107		Slight ehearing ef fibers；spllt st end	644
TJT	1689	1225	1352	1397	1470	1533	1574	1615	1851	1687	2023	2214	Sheared flbers．	1157
\％	753	1247	1374	1424	1479	1547	1574	1619	1669	1715	1973	2186	．do	1157
2	817	1496	1569	1624	1665	1701	1715	1737	1746	1780	1969	2066	．de	676
包	953	1456	1819	1674	1710	1746	1778	1819	1833	1869	2118		Sheart d fibers；split st end	676
3	593	1093	1306	1379	1424	1456	1489	1594	1538	1569	1769	1905	Shesred fibers	576
\％	767	1166	1201	1297	1320	1347	1379	1397	1429	1470		1746	．．do	576
30		1179	1347	1393	1456	1520	1574	1637	1656	1669			Split st ende；fibers did not shear	82
3	1207	1982	2218	2372	2436	2518	2563	2635	2672	2713	2994		Sherred fihors ；aplit at ends	82
2	1157	1447	1529	1582	1658	1706	1737	1796	1819	1855		$\ldots$	Spllt at end；fibers did not ehear．	355
㐌	1243	1764	1919	2050	2118	2223	2283	2322	2368	2418	2758	2053	Indented withont shearing of fibers	355
2	880	1093	1181	1216	1275	1347	1442	1497	1547	1597	1005		Sheared fibers ；split at ende	388
2	862	1120	1193	1275	1325	1408	1456	1547	1597	1637	1996		Spllt at end；fibers did not shear．	388
2	1247	1433	1407	1560	1633	1674	1701	1733	1774	1796	2019	2182	Sheared fibers．	389
20	025	1520	1678	1801	1855	1901	1928	1073	2005	2037	2223	2336	．do．	389
110	1828	2223	2295	2341	2449	2531	2595	2658	2740	2844	3289	3520	．do	13
쿨	1542	2518	2844	3089	3207	3302	3357	3488	3579	3692	4219	4491	．．do	13
\％	939	1270	1343	1374	1303	1402	1433	1452	1492	1520	1678	1796	．do．	1046
23	703	1170	1.70	1424	1442	1483	1501	1529	15.51	1565	1787	1883	．．．de	1045
（1m	2054	3479	3751	3901	4010	4150	4250	4359	4409	4522	5216	5851	．${ }^{\text {do }}$	83
\％	2658	4255	4854	5239	5401	5679	5729	－ 5625	5534	5552	5761		Sheared fibers；split along graln	83
方	1520	2132	2318	2395	2477	2558	2608	2058	2703	2749	3030	3202	Sheared Albers．	631
2	1043	1678	2033	2127	2186	2241	2277	2309	2341	2368	2013		Sbesred tibers；split st eud	6：2
？	1211	1708	2032	2096	2164	2195	2236	2250	2268	2280	2574	2635	Sheared flbers	1169
2	1116	2073	2350	2431	2504	2527	2399	2049	2600	2731			Slight alicaring of fibers；split at end．	1103

Table V.-behavior of THE PRINCIPAL WOODS OF THE


UNITED STATES UNDER COMPRESSION—Continued．

\＃	pressurr，in kilogramb，required to produce an indentation，in millmetrre，of－													
	0.25	0.31	0.76	1.02	1.27	1.32	1.78	2.03	2.28	2.34	4.81	5．0¢		E 吕 Q ¢
呏	1247	2404	2812	3085	3248	3343	3411	3456					Splitat end	1172
1	1384	2082	2254	2304	2400	2440	2513	2572	2604	2640	2091	3198	Sheared flibers	1172
㐌品	1243	1241	2100	2218	2400	2377	2436	2477	2536	2578	2880	．．．	Sheared fibers；spllt at encs	279
TTI	1134	1429	1656	1715	1801	1814	1846	1860	1869	1923	2132	2359	Sheared flbers	279
ITII	1252	1687	1833	1910	1051	2032	2118	2191	2250	2331	2767	．．．．	Sheared flbers；split aleng grain	321
E	953	1452	1615	1705	1733	1756	1787	1801	1824	1910	2291	2495	Sheared fibers	321
503	1429	1001	2050	2136	2232	2286	2345	2386	2431	2490	2767		Sheared flbers ；split at end	671
TIIT］	862	1325	1515	1601	1669	1756	1787	1842	1901	1946	2304		do	671
20	1080	1429	1551	1624	1706	1756	1810	1887	1951	2009	2341		Slight shearing of fibers ；split at end．	278
＝	1393	217	2481	2613	2676	2762	2781	2790	2783	2790	3139		Sheared fibers	278
\％	1157	1538	1624	1724	1810	1864	1928	1987	2037	2096		．．．	Slight shearing of flibera；split at end．	319
雨	1043	1769	1941	2028	2096	2154	2209	2250	2295	2345	2699	2917	Sheared fibers．	142
Tind	1030	1470	1506	1565	1606	1819	1847	1665	1687	1701	1860	1051	．de	142
	862	1198	1311	1335	1415	1442	1479	1500	1533	1563	1746	1879	． 1	544
20	690	1148	1284	1338	1393	1429	1438	1470	1483	1515	1633	1851	．．do	544
	1043	1515	1592	1660	1728	1760	1810	1851	1901	1941	2186	2336	．．de	784
U1］	1370	1674	1787	1864	1928	1982	2005	2014	2068	2000	2404	2785	．．do	764
IIII	707	1247	1393	1470	1520	1569	1615	1860	1683	1715	1906	2141	de	394
	544	1452	1633	1778	1851	1978	2019	2004	2091	2146	2454	2853	．．．do	304
E	1134	1442	1501	1583	1637	1710	1778	1814	1882	1923	2836	2585	Sheared fibers； 3 millimeters knot in indented section．	780
（11）	807	1315	1520	1628	1687	1719	1760	1810	1842	1855	2032		Sbeared fibers；split at end	780
F	857	1300	1406	1415	1424	1438	1524	1597	1628	1609	1769	1951	Sheared fibers	879
\％	10.1	1293	1361	1743	1529	1574	1842	1687	1765	1792	2064		Sheared fibers；split at end	879
IT］	1769	2968	2499	2022	2681	2799	2885	2948	3021	3062	3221	3860	Sbeared fibers	81
שי3	1288	1860	1096	2087	2168	2259	2313	2386	2440	2480			Slight shearing of fibers；split at end	81
Till	1445	1624	1728	1778	1873	1941	1991	2050					Split at end；fibers did net shear	85
㐌盛	908	1615	1778	1860	1019	1987	2046	2150	2230	2286	2699		Sheared fibers；split st end．	85
ITI	1588	1060	2064	2109	2191	2273	2322	2363	2409	2440			Slight shearing of fibers；split at end	243
良药	1951	2803	3012	2094	2812	2880	3075	3193	3257	3302	3946		Sheared fibers；split at end	243
E	1479	1882	1882	1003	2023	2250	2522	2822	2703	2903			Sheared fibers；opened seasoning cracks	302
Tim	1125	1452	1515	1637	1710	1792	1864	2431	2486	2581	2971		Slight shearing of fibera；split at end	302
IIII	1134	1442	1569	1746	1700	1892	1973	2041	2114	2168			． 10	：57
约	1760	2395	2558	2622	2635	2649	2676	2903	3025	3134			Sheared fivers ；split at end	357
左	1400	1683	1833	1941	2037	2127	2182	2254	2295	2350			Split at end ；fibers did net shear	358
＝	1800	2767	2971	3039	3139	3289	3388	3484	3529	3033	4150		Slight ahearing of fibets；split at end	38
IT	1951	2296	2495	2640	2808	2890	3071	3198	3270				Split at end；fibers did not sbear	359
	2223	3202	3447	3184	3502	3543	3683	355	38.82	3896			Split at eud；sllght shearing of fibers	359
	1551	1837	2037	2214	2422	2540	2676	2758	2885	2998			1	360
＝	2041	2921	2971	2812	3153	2817	2904	3193	3316	3452			Sheared fibers；split at end	360
E	1883	3048	3438	3061	3751	3887	3878	3333	4014	4101	4808	5216	Sheared fibers．	361
T1］	1010	1900	1900	2130	$22^{\circ} 0$	2341	2422	2480	2581	2654	3030		Slight shearing of fibers；aplit at end	361
［1］i］	140 E	1542	1706	1778	1914	2000	2082	2192	2177	203	2740		1	384
E	1452	2 2 4	2885	3026	3110	8160	3210	3098	3357	3411			Sheared fibors；split at ond	384
（17］	1970	1905	2078	2218	2295	2350	2436	2522	2572	2635	3107		Slight shearing of fihers：split at eadm	385
E3	1311	1810	2023	2155	2250	2300	2359	2440	2495	$\bigcirc 595$	2813		．．． R，．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．	385

Table V.-BEHAVIOR OF THE PRINCIPAL WOUDS OF JHR


## UNITED STATES UNDER COMPİESSION-Continued.



TAnLE V.-BEHAVIOR OF THE PRINCIPAL WOODS OF THE

Specien.		State.	Locality.	Colleetor.	Soll.		Remarks.	
267. Tenga Canadensio-contioned.	210	Vermont .........	Charlotto.........		Gravelly.	7892	Crushed st 51 millimeters from midale.	
	772	New Brunswiek ..				4049	Crusbediat middio at 3 millimeters knot.	
	772	do				5307	Triple flexure perpendenlar to rines.	
	735		Bay of Fnady			5489	Crusinal at 45 millmeters from midill .	
	775					$\begin{aligned} & 5738 \\ & 5035 \end{aligned}$	Tifiple nixure; midille bend 51 millimpters eccentric. Crusinell and shattered at end in vicioity of knots.	
	778							
	778					5058	Crusborl at middle at 10 millime. ters knot.	
	787		Bridgeton	Ed. Sinclair		5851	Crubliedat 70 nillimeters iromend; apmed grain from eod to ent.   Tijple flexare perpendicular to ringa.	
	787		do	do		6301		
	783	Province of Qnabec	Daville	Graud Trunk rail. way.		7403	Crnshed at 6 millimeters knot 64 millisenetera from end.	
	793		do			8350	Cronhed at 13 to 25 millimetera from eved.	
		West Virginla ...	Grafton.	C. G. Pringl		c323	Craslipd at 19 millinaters from sidddle.	
	817		do			6101	Craslied at 32 nillimotern from middle.   Crnshed at 66 millimeters from end.   Triple texure	
	1040	Massachusetts....	Danvers ...	J. Robingon.	Moist loam ......	0827		
	1040				do	5510		
	104\%	.do	North Reading	do		6480	Crualied at is millimeters from end.   Crushel at 51 millinuetern from middle.	
	1042		do			5126		
388. Tanga Camollnians $\qquad$ Hemlock.	633	North Carolina....		A. H. .....tiss ....	Dry, rocky .......   Rtch losm $\qquad$ $\qquad$ $\qquad$	64:0	Crumed at 5 milimeters knot near middle.	
385. Truga Mertensisns ... Hemlock.	071 905	Washington territory.   Alaska	Wilkeson .........	G. Eogelmano nad C. S. Sargent.   Paul Schaltze.   ....de $\qquad$		$\begin{gathered} 9185 \\ 7621 \end{gathered}$	Cruahed at 76 millimeters from eod.   Crushol at 0 millimetery bnot 45 millimeters from end.   Crushed at 51 millimeters from middle.	
	${ }^{205}$							
	095					0435		
- 390. Tauga Pattoniana.............	980 980	British Columhia .	Silvor peak, near Fraser river. ....do $\qquad$	G. Engelmannund C.S. Sargent.   do $\qquad$	Gravells loam.... do$\qquad$	5806	Triple flexure; midille bend 38 millimeters eccentric at 3 millimetry knot.   Crushed at : millitueters kuot at midtle.	
	980	do				6341		
	$271{ }^{2}$	Colorado..........	Alpino............	T. S. Brandegee ...	Moist.............	6613	Tiple flexure.	
- 9.91 Peudotanga Douglasii......... Red Fir. Tellow Fir. Ore	627	California   do $\qquad$	Saw-mill, Straw. berty valley.. . . do do	G. Enzelmann and C. S. Sargent.do	................	9117	Crushed nt in mullimeters from middle.	
	627					9390	Cruslied at end and at 102 milllmeters from end.	
	702	Oregon ...........	Snw.mill, Marah-fodd....do ..............	do		5480	Triple flexure perpendiealar to rings.   Crualied at 01 millimeters from end.	
		.... . . de ............................		.....do	............................	9026		
	705		E. B. Dean'u sawmill, Marshfleid. .. do ..............			- $\begin{array}{r}8700 \\ 20550\end{array}$	cnd.   Triple fexuro.	
-	708	$\begin{array}{\|l\|} \hline . . \text { do ................ } \\ \text {.... do ................ } \end{array}$		....do			Cruabed at 89 ullimeters from ent.	
	708		....do	....do ............	..............................	9979	Crusherl at 45 millimeters from end.	
	708	....do .............	....do	$\begin{aligned} & \ldots \text { do } \\ & \ldots \text { do } \end{aligned}$		11022	Cronhed at 25 millimgters from end at 3 millimeters knot.   Crushed at 70 millimoters from cut.	
	709	... . . do . . . . . . . . . . . . . . . . . .	.do ............		.-.................	7212		
	709	....do .............	... do $\qquad$   Saw-mill, Migsonia	$\left\lvert\, \begin{array}{r\|} \text {.. do } . . . . . . . . . . . . . . . . ~ \\ \text { S. Watson .......... } \end{array}\right.$			Crashed at 76 millioneters from midalle.   Crushed at 51 millimetern from end; shattered end.   Triple tlexuro; midale lowed 38 millimeters cerentric. Crushed.at 19 millimeters frum cad.   Cruahed at end	
	720	Montana.				$7240$		
	720	... do ............		do......		$8936$		
	732	California........	Lasstus peak..... Sierra LumberCompany.			$\begin{aligned} & 8029 \\ & 7802 \end{aligned}$		
	732							
	881	Utsh .............	Salt Lake $\qquad$   .. do $\qquad$   Saw mill, l hurtard inlet.	M. E. Jones	Rocky   ...do $\qquad$	6805	Crushed at 3 millimeters huots 38 millimeters trom end.   Crublied at 13 millimeters kuot at middle.   Czusheri at middle	
	881	Britisb Columbia   do $\qquad$   ... do $\qquad$   . . . . io $\qquad$   ....lo $\qquad$   Oregon $\qquad$   Eritimh Columbia		C. S. Sarcreut $\qquad$   .. do $\qquad$   .. do $\qquad$   ... do $\qquad$   G. Engelanmared C. S. Sugent.   .. do $\qquad$   . . lo $\qquad$		$7235$		
	973				...................			
	973	do				. $\left\lvert\, \begin{aligned} & 7670 \\ & 8600 \\ & 9026 \\ & 7556 \\ & 7089 \\ & 7750\end{aligned}\right.$	Crushed nt 38 millimeters from end.   Crusbed nt 51 milliaeters tiom end. $\qquad$   Tripho flexne. $\qquad$   Crushed at gronp of knots $\mathrm{L}_{\mathrm{s}} \mathrm{mil}$. limeters Irom middle.   Crnshed and sbattered at evd.....	
	974	... do $\qquad$   .... do $\qquad$   ....lo $\qquad$   Oregon $\qquad$   Britimh Colmmbia						
	974							
	386							
	089							
	1008							

## UNITED STATES UNDER COMPIRESSION-Continued.



TAble V.-BEHAVIOR OF THE PRINCIPAL WOODS OF THE


## UNITED STATES UNDER COMPRESSION-Continued.



Table V.-BEHAVIOR OF THE PRINCIPAL WOODS OF THE


## UNITED STATES UNDER COMPRESSION－Continued．

$\frac{d}{d}$	pregsure，in khloghamg，nequired to product an mdentation，in millimeters，of－												Remarks．	
	0.95	0.51	0.76	1.02	1.27	1.52	1.78	2.03	2.28	2.54	4.81	5.08		
	993	1125	1220	1311	1388	1461	1538	1601	1674	1774	2313	2586	Slight ehearing of fibers．．	781
	1270	1765	1905	2041	2159	2254	2345	2422	2504	2572	3198		Slight shearing of fibere；split at end	781
忽	¢62	934	1025	1075	1125	1189	1229	1261	1302	1325			do	786
\％	T03	1202	1270	1325	1347	1433	1533	1624	1692	1778	2087	2313	．．do	786
fol	730	1111	1189	1288	1329	1388	1429	1442	1461	1501			do	795
＝	1002	1315	1429	1506	1551	1656	1769	1860	1905	1941			．do．	795
ITII	1315	1733	1842	1987	2082	2168	2227	2313	2422	2472	3085		Sheared fibers；eplit at end；indonted section	840
\％	1179	1760	1882	1946	2028	2168	2259	2390	2490	2536	3030	．．．．．．	Slight shearing of fibers；split at ond．	840
左	953	1574	1774	1860	1928	2000	2019	2050	2118	2186	2541	2713	Sheared fibers．	719
笏	1211	1452	1579	1696	1796	1860	1946	1987	2082	2118	2449		Slight shearing of fibers；split at end	719
שיك	1315	1451	1547	1619	1710	1792	1910	1987	2046	2123	2563		．do	984
－	1633	2336	2350	2345	2400	2545	2681	2803	2948	3094			．do	984
	1656	2681	3134	3348	3375	3470	3652	3756	3901	4051			．do	1406
它	1406	1669	1905	2046	2159	2300	2391	2506	2549	2672			Fibers did not shear．	1006
51	318	508	576	617	658	680	708	735	758	776	945	1048	Sheared fibers．	1159
皿蒕	812	1207	1325	1397	1442	1497	1551	1610	1628	1056	1932	1996	Slight shearing of fibers．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．	1159

31 FOR
-
-

PARTIII.

# THE FORESTS OF THE UNITED STATES IN THEIR <br> ECONOMIC ASPECTS. 

- 


# THE FORESTS OF THE UNITED STATES IN THEIR EC0N0MIC ASPECTS. 

GENERAL REMARKS.

The maps of relative average forest density joined to this report are intended to illustrate the present productive eapacity of the forest covering of the country (map No. 16, portfolio). They are based, except in the case of the extreme western states and territories, upon the retnrus of enumerators. In states originally wooded all land not acconnted for in the returns as cleared or treeless, or otherwise known to be destitnte of tree covering, is treated as forest. The county is taken as the unit, and is seldom divided, unless varied topography or different uatural features in different parts makes lurther subdivision desirable. In the western states and teritories, where topography determines forest distribution, county lines are disregarded, and the estimates are based upon special reports of census experts, or upon the published reports of the various government surveys, maps, etc. The condition and productive capacity of the forest covering have been carefully investigated at many points in each county or unit region, and the area covered with forest, obtained in the manner deseribed above, is muitiplied by the average stand of timber or other nsefnl wood. The results thas obtained are necessarily greatly generalized to conform to the scale of the maps used.

The following statement represents the value of the forest crop of the United States for the ceusus year, so far as it has been possible to obtain it:

Saw 1	\$139,836, 8¢9	Charcoal uscd as frel-		Woed uscd in the manufacturo of-	
Wood used for demestic parposes as fael		In manufacture of iron.	\$4, 726, 114	Handles	\$897, 170
(estlmated)	306, 950,04	Iu manafactare of precious metals. .	29,300	Wheel stock	1,360,892
Wood used by railreads ss fucl	5, 126, 714	10 theotweuty largest cities	521.316	Wood pulp	1,974, 074
Wood used by steamboats as fuel.	1,812,083	Naval stores	5,000,000	Baskets	314, 125
Weod used as fuel-	-	Southern moss	500,000	Excelsior	150, 800
In the manufacture of brick and tile	3, 978,331	Railroad ties ( $29,554,694$ )	9, 806,247	Oars	81, 000
In the manafacture of wool	425, 239	Fence posts (for fencing railroads)	180,000	Shoe pegs	7?, 000
In the manufacture of salt..	121,681	Uncultivated vegctable sabstauces used		Hand-made shingles	47,952
In the production of precions metals	2, 874,593	in the maunfacture of medicives .....	587,000		
In ol her mining operations ........	$073,692$	Uncultivated nots   Heop-pelcs.	$\begin{array}{r} 78,540^{\prime} \\ 1,947,316 \end{array}$	Total	90, 073,004

These returns are incomplete and often unsatisfactory. Many important items are omitted entirely. It was found impossible to obtain statistics of the amount and value of the wood (posts, split rails, ete.) used in fencing, with the exception of posts used by railroads. The amount of material thus consumed annually must be very large, probably exceeding $\$ 100,000,000 \mathrm{in}$ value. No returns of the amount and value of the bark of different trees used in tanning leather have been receiver, and there are no statistics of the amount and valne of the unsawed timber produced-spars, piles, telegraph and other poles, hewed timber, hard wood exported in the log, ships' knees, ete.that is, all timber not manufactured in saw-mills into lomber. The value of the timber of this sort eut in the United States every year must be very large. The returns inelude the railway ties laid down by completed roads, and do not embrace those used in the construction of some 10,000 miles of new road built during the census year. It was found impossible to obtain even an estimate of the amount and value of the cooperage stock prodnced outside of regular saw-mills, and the returns of hand-made shingles only include those made from cypress at a few points in the soutl Atlantie region. Maple sugar to the amonnt of $36,576,061$ pounds and $1,796,048$ gallons of molasses were produced in the forests of the United States during the year 1879. No statisties of the value of these products have, however, been receiver. Statisties of the value of material consumed in the mannfacture of excelsior, wood pulp, wheel stock, handles, shoe pegs, baskets, oars, and hoop-poles are incomplete, and do not fully represent the value of the wood used. The statistics of the valne of will nuts and wild vegetable substances collected are very incomplete, and it has been found impossible to separate the value of the imported from that of the native wood used in the mamufacture of vencers, an industry consuming a large amount of high-priced hard wood. Could complete returns of the forest crop of the census year have been obtained it is not improbable that it would be found to exceed $\$ 700,000,000$ in value.

## THE LUNBER INDUSTRY.

The following table represents the volume, ly states and territories, of the lumber indnstry of the United States for the census year, as derived from the returns of the enmmerators on the sehedule of manufactures, and from the reprorts of speeial agents for manufactures in cities having at the time of the Niuth Census 8,000 or more inhabitants. No distinction between the different kinds of wood sawed was attempted in the enmeration:

STATISTICS OF THE LUMBERING NODUSTRY OF THE


United states for the year exdivg may 31, 1880.

a Includiay $77,500,000$ feet manufactured from logs cat in Alabama.





In the following table the average importance of the saw-mills located in the different states and territories is shown:

AVERAGE SIZE AND PRODUCT OF SAW-MIHLS IN EACH STATE AND TERRITORY OF THE UNITED STATES.

States and Territorice.			Nemafrio of Hande EMHLOYED.		materials asd labok.			- products.							
					$\begin{gathered} \text { Value } \\ \text { of } \\ \text { logs. } \end{gathered}$	Valuo of mill plies.	Wages pald during the year.	Lumber (board measure).	Laths.	Shinglea.	Staveb.	Sets of liead. ings.		Value of other ucts.	Total value of all prod. ucis.
The United States..	25, 0108	$\begin{gathered} \text { Doll } . \\ 7,048 \end{gathered}$	8.8	5.8	Dolls. $5,436$	Dolls. 240	$\begin{gathered} \text { Doull. }_{8} \\ \text { 1, } 235 \end{gathered}$	Feet. $703,000$	$\begin{aligned} & \text { No. } \\ & 68,000 \end{aligned}$	$\begin{aligned} & \text { No. } \\ & \text { 216, } 000 \end{aligned}$	$\begin{gathered} \text { No. } \\ 48,000 \end{gathered}$	$\begin{aligned} & \text { No. } \\ & 5,700 \end{aligned}$	Feet.   1,800	Dolle. 104	Drolls. 0,078
Alabama.	354	4,366	7.9	4.0	4,288	256	1,198	712,000	40,000	15,000	0,000	1,000		.	7,485
Alarka															
Arizona	13	7, 880	9.7	6.0	9, 720	408	2,507	824, 000	11,000	136,000	23, 000			77	16,600
Arkiosas .	319	3,347	9.0	5.5	3,166	190	744	541,000	20,000	194, 000	5,000	1,000			5,623
California.	251	25, 310	19.7	13.7	8,100	744	4,365	1, 214,000	10,000	553,000	8,000	5,000		12	17, 645
Cuiorado...............	96	5,013	16.6	9.0	6,808	476	1,176	c64, 000	51,000	283,000				7	10,951
Connecticnt	300	2, 110	4.0	2.0	2,030	108	504	215, 000	6,000	24,000	1,000			43	850
Dakota	. 39	2,917	11.6	7.5	6,003	324	1,410	751,000	15,000	124, 000				13	11,174
Delaware.	86	3, 015	7.5	4.5	2,672	158	473	367, 000	4,000	6,000	52,000	6,000			4,780
District of Columbia	1	25,000	35.0	25.0	32,000	2,000	6, 000	4,000,000	1,000,000					2, 000	50,000
Phurda	135	16,441	24.0	15.0	13,064	768	4,165	1,834,000	150,000	23,000	6,000	1,000		104	22,668
Georgin.	655	4,735	7.5	5.0	4,655	225	845	690,000	27, 000	39,000	3,000	1,000		6	7,443
Lealio.	48	4,000	6.5	3.6	4,452	352	700	380, 000	16,000	88, 000				1,254	0,340
Ininois	640	5, 143	9.0	6.0	4,624	290	1,230	522, 000	40,000	24,000	38,000	2,000		20	7,911
Indiana.	2,029	3,485	8.0	5.0	4,600	160	777	453, 000	14,000	13,000	140,000	13,000		72	7,052
Indian territory															
Iowa.	328	15,080	12.6	9.0	12, 267	360	2,513	1,258,090	244, 000	390,000	10,000	2,000		117	19,000
Kansas	146	1,801	5.7	3.5	2, 888	170	457	310, 000	40,000	6,000	.......			23	4,700
Kentueky	670	3,418	7.7	3.8	3,341	256	1,003	456,000	40,000	37,000	34,000	12,000		113	6,066
Lonistana.	175	5,165	8.6	5.6	6,321	462	1,143	762, 000	44,000	170,000	1,000			88	10,083
Maine	848	7,475	11.6	7.8	5,607	230	1,369	668, 000	218,000	503, 000	73,000	4,000		215	9,356
Marylani.	369	3,354	-4.8	3.0	2,823	176	600	334, 000	21,000	12,000	44,000			406	4,914
Massaclusotts.	606	4,003	5.0	3.0	3,015	126	712	338, 000	28, 000	32,000	35, 000	3,000		73	5,149
Mlchign	1,640	23,808	18.7	14.7	18,700	868	4, 225	2,530,000	280,000	1,568, 000	121, 000	13,000		322	31, 867
Minesota.	234	28, 936	16.0	12.0	18,839	515	3.950	2,410,000	376,000	831,000	33, 000	2,000		90	31,478
Missinsippl	903	3,127	7.0	4.0	4,037	95	671	512.000	27, 000	18,000				18	6,569
Missourl:	831	3, 265	7.6	4.0	3,534	116	760	453, 000	23, 000	10,600	24,000	4,000		8	6,000
Montana.	:99	5.783	11.0	4.0	7, 148	577	1,332	595, 000	73,000	267, 000				53	14, Cbs
Nelraska	38	2, 4:37	8.0	3.7	4,048	200	771	357, 000						20	6,975
Sevada.	0	14, 066	7.0	4.0	16,865	1,224	1,009	2, 394,000		54, 000					27,020
New Hampalite ........	¢ $\mathrm{B}_{0}$	5, 308	7.0	4.5	3, 175	167	806	429, 600	73,000	98,000	46,000	5,000		86	5, 650
Sew Jerary	$2 \times 4$	5,836	3.7	2.7	3,310	160	633	386, 000	31,000	38,000	........			142	5, 731
Now Mexico.	26	2, 870	10.8	6.7	3,851	650	332	430, 000	4,000	27,000					6,690
New York	2, 822	4,688	6.0	4.0	3, 057	173	766	419,000	28,000	108, 000	29,000	8,000		101	5, 087
North Carolina	$\because 0$	2. 246	7.0	4.0	1,921	111	370	311,000	17,000	11,000				9	3,445
Ohio.	2,352	3.378	6.5	4.0	3,658	124	720	387, 100	21,000	10,000	91, 000	11,000		83	5,895
Oregon	238	0, 980	5.0	2.5	5,678	160	1,062	777, 000	80,000	2,000				46	8,005
Pernaylvania.	2, $8: 7$	7,568	7.5	5.0	4, 732	204	1,032	613,000	65, 000	102,000	28, 000	3,000		139	7,044
Rhode Island	49	2,94	5.0	3.0	2,360	08	676	172,000		80,000	7,000			3	4,909
South Carolina..	4:0	2,515	5.5	3.5	2,783	160	528	442,000	55, 000	24,000				90	4,837
Tennessee..............	755	$\because 6.5$	7.0	5.6	2,657	181	727	400,000	28,000	18,000	5,000			96	4,960
Texas	324	5. 126	14.0	0.8	5,804	577	2, 262	1, 015,000	43,000	347, 000				32	11,338
$1 \mathrm{C}_{\text {ch }}$	107	2, 549	7.9	3.5	2,024	202	609	240, 000	14,000	87, 000				16	3,506
Vemmont.	688	4.759	6.5	3.6	2,810	119	620	469,000	28,000	80,000	10,000	2,000		3	4,730
Virginia.	[10:	2.340	0.0	4.0	2, 055	131	50.7	348,000	16,000	9,000	15,000	1,000		33	3,780
Waxhington............	\%	655,390	24.0	13.5	31,730	380	5, 420	4, 320,000	137, 000	07, 000	630, 000				46,885
W., ¢t Virginia..........	$47 \%$	3.335	8.0	4.0	2,770	143	974	381, 000	25, 000	8,000	80, 000	4,000		85	5, '52
Wisconslu......... ...	Tu4	-3. 160	20.0	12.0	17,356	358	3, 200	2, 100, 000	305, 000	1,226,000	117, 000	10,000		216	25,500
Wyoming ..............		3, <11	9.7	5.5	3, 332	375	911	423,000	43,000	123,000					5, 255

$$
4^{8^{8}}
$$




Michigan is the greatest lumber-produeing state in the Union. The value of its lumber product, with that of Wisconsin and Minnesota, exceeds one-third of the total value of all the Inmber manufactured in the United States. This enormons development of the lumber business in the lake region is due to the excellence of its forests, the uatural adrantages of the country for mannfacturing lumber, and the easy communication between these forests and the treeless agricultnral region mest of the Mississippi river.

The extinction of the forests of the lake region may be expected to seriously affeet the growth of population in the central portion of the continent. The country between the Mississippi river and the Rocky mountains, now largely supplied with lumber from Michigan, Wisconsin, and Minnesota, mist for building material soon depend npon the more remote pine forests of the Gulf region or those of the Pacific coast. A great derelopment in the now comparatively nimportant lumber-mamufacturing interests in these regions may therefore be expected. New centers of distribution must soon supplant Chicago as a lumber market, and new tramsportation rontes take the place of those built to more the pine grown upon the shores of the great lakes. It is not probable, however, that any one point will ever attain the importance now possessed by Chieago as a center for lumber distribntion. With the growth of the railroad system and the absence of good water commmication from the great forests remaining in the conntry towarl the center of the continent, lumber will be more generally shipped direct by rail from the mills to the consumer than in the past. In this way the pine of Mississippi, Louisiana, and Arkansas will reach Kansas, Nebraska, and the whole eonntry now tributary to Chieago. Western Texas and northern Mexico will be supplied by rail with the pine of eastern Texas, and the prairies of Minnesota and Dakota must draw their lumber by rail, not as at present from the pine forests corering the shores of lake Superior, but from the fir and redwood forests of the Pacific eoast.

FUEL.
The following table represents the consumption of forest products as fuel during the census year. The estimates of the amonnt and valne of the wood used for domestic fuel are based upon answers to letters of inquiry addressed to persons living in every town in the United States. The average amount and value of the wood used by a family of five persons, taken as a unit, is multiplied by the number of families in each state using wood for fnel, and the result thus obtained is taken as the total state consumption:

WOOD USED AS FUEL FOR VARIOUS PUPPOSES.


ESTIMATED CONSUMPTION OF WOOD FOR DOMESTIC PURPOSLS.
Xumber of persons using wood for domestic finel $32,375,074$.

States and Territories.	Cords.	Villie.	States and Territories.	Cords.	Value.	States and Territories.	Cords.	Value.
Alabama.	6,076,754	68, 727, 377	Kithsas	2, 095, 439	\$7, 328, 723	North Carolina.	7,434,690	\$9, 019, 569
Alaslia			Kentuck:	7,094,813	13,313, 220	Ohio	8, 191, 543	16,492, 574
Atirona	170,015	724, 572	Lonisiana.	1,944, 838	4,607,415	Oregon	482, 254	1, 254, 511
Arkansas	3, 922,406	5, 095, $2 \times 21$	Maine (a)	1,215,881	4, 078, 137	Pennsylvania	7, 201,902	15, 067, 6.51
Califurnia	1. 718,062	7. 603, 731	Marsyand	1,152, 910	3,170,941	Rhode 1slaud	151, 053	706,011
Colorado	$4{ }^{4} \mathbf{4}, 719$	1,638, 783	Massacbusctts (a)	890, 041	4, 613, 2683	South Carolina.	3, 670, 959	11,505, 997
Cunnecticat	525, 639	2, 371,532	Michigam	7, 8:8, 004	13, 197, 240	'reunceseo	8,084, 011	10, 674, 729
D.kota	422, 918	3, 028,300	Afinnesata	1, 669,568	5,873, 421	Texas	4, 883, 852	10, 177, 311
Delowaro	177,306	751.311	31 ississipp	5, 090, 758	T, 145, 110	Utah	171, 923	418,283
District of Columbia.	26, 902	80,700	Missnuri.	4, 016,373	8, 633,465	Verwon	782,338	2, 500, 189
Flor.da	609.048	1, 230,412	Moutana	119,947	400, 638	Virginia	5,410,112	10, 404, 134
Georgia.	5,910,045	$8,279,245$	Nebraska	908, 188	3, 459, 843	Washington	184, 206	493, 904
lutho	99,910	38?, 686	Nerada	155, 276	1972, 712	Wost Virgiun	-, 241,069	3, 374, 701
Imiania	5, 200, 104	14. 136,662	New Hanrpshire	5fi, 719	1, 564, 669	Wisconsir	7,206,126	11, 863, 739
Inoliana	7, 0.59, 874	13, 334, 729	New Jurses	642, 598	2,787, 216	$\mathrm{W}_{\text {yoning }}$	40,213	224,848
Indian torritory			Now Mexino	169,944	1,06.3, \%60	Jotal	0, 531, 439	300, 950, 040
Lowa.	4,090,649	14, 011, 280	New Yon\%	11, 200,975	37, 509, 364			

" Inclulinus a mun monnt importel fion Camana


	fmulcrls.	Viduc.
In the thante larane ajien	4, 319, 144	\$521, :3f6
In the manatarture of irou	69, 512.2091	4, 726,114
In the prowhetion of previons metals	97, 687	29,306
Tonts	74, (1018,972	5, 270, 736

The forests of the United States, in spite of the great and increasing drains made upon them, are eapable of rielding ammally for many years longer a larger amome of material than has yet been drawn from them, even with our present reckless methods of forest management. The great pine forest of the north has already, it is true, sulfered fatal inroads. The pine which once covered New England and New York has already distippeared. Pemsylvania is nearly stripped of her pine, which once appeared inexhanstible. The great northwestern pineries are not yet exhansted, and with newly-introducel methods, by which logs once supposed inaccessible are now profitably brought to the mills, they may be expected to increase the volume of their ammal product for a.few sears longer in response to the growing demands of the great agricultural population fast covering the treeless midcontinental platean. The area of pine forest, however, remaining in the great pine-producing states of Michigan, Wisconsin, and Mimnesota is dangeronsly small in proportion to the comntry's consumption of white pine lumber, and the entire exhaustion of these forests in a comparatively short time is certain. The wide areas now eovered in Xew England by a vigorous second growth of white pine, although insignificant in extent and productiveness in comparison with the forests it replaces, must not be overlooked in considering the pine supply of the comntry. These new forests, yielding already between two and three hundred million feet of lumber annualls, are capable of great future development.

The pine belt of the sonth Atlantic region still contains immense quantities of timber unequaled for all purposes of construction, althongh masuited to take the place of the white pine of the north. The southern pine forests, although stripped from the bauks of streams flowing into the Atlantic, are practically untonelied in the Gulf states, especially in those bordering the Mississippi river. These forests contain sufficient material to long supply all possible demands which can be made upon them.

The hard-wood forests of the Mississippi basin are still, in certain regions at least, important, although the best walmint, ash, cherry, and yellow poplar lave been largely culled. Two great bolies of hard-wood timber, however, remain, upon which comparatively slight inroads have get been made. The most important of these forests cosers the region occupied by the southern Alleghany Monntain system, embracing sonthwestern Virginia, West Virgimia, western North aud Sonth Carolina, and eastern Kentucky and Teunessee. Here oak unequaled in quality abonnds. Walmit is still not rare, althongh not fonnd in any very large continuous bodies, and cherre, yellow poplar, and other woods of commercial importance are common. The second great body of hard wood, largels oak, is found west of the Mississippi ricer, extending from central Missouri to western Louisiana. The forests of Michigan, especially those of the northern peninsula, still abound in considerable bodies of hard wood, principally maple. Thronghont the remainder of the Atlantic region the hard-wood forests, although often covering considerable areas, have everywhere lost their best timber, and are either entirely insufficient to supply the local demand of the present population, or must soon become so.

In the Pacific region the great forests of fir which extend along the coast region of Washington territory and Oregon are still practically intact. Fire and the ax hare scarcely made a perceptible impressiou upon this magnificent accumulation of timber. Great forests of pine still cover the California sierras through nearly their eutire extent; the redwood forest of the coast, however, once, all things considered, the most important and valuable body of timber in the United States, has alrealy suffered serionsly, and many of its best and most accessible trees have been removed. This forest still contains a large amonnt of timber, although its extent and productive capacity has been generally exaggerated. The demand for redwood, the only real substitute for white pine produced in the forests of the United States, is rapidly increasing, and even at the present rate of consumption the commercial importance of this forest must soon disappear.

The pine forests which cover the western slopes of the northern Rocky mountains and those oceupging the high plateau and inaccessible mountain ranges of central Arizona and southwestern New Mexico have not yet suffered serions damage at the hands of man. The remaining forests of the Pacific region, of little beyond local importance, are fast disappearing. The area of these interior forests is diminished every year by fire and by the demands of a careless and indifferent popmation ; and their complete extermination is probably inevitable.

The forest wealth of the conutry is still mudonbtedly enomons. Great as it is, however, it is not inexhaustible, and the forests of the Unitel States, in spite of their extent, variety, and richness, in spite of the fact that the climatic conditions of a large portion of the comery are pecmlialy favorable to the development of forest growth, camot alwass continue productive if the simplest lars of nature governing their growth are totally disregarded.

The judicions cutting of a forest in a climate like that of the Atlantic or Pacilic Coast regions entails no serious or permment loss. A erop ready for the harvest is gathered for the benefit of the commmity; trees whiel hare reached their prime are cat instead of being allowed to perish naturally, and others take their place. The permanence of the forest in regions better suited for the growth of trees than for general agrieulture may thus be insured. Two caluses, however, are constantly at work destroying the pernanence of the forests of the country and threatening their total extermination as sources of mational prosperity-fire and browsing animals intlict greater permancht injury njon the forests of the comitry than the ax, recklessly and wastefully as it is generally nsed against them.



## FOREST FIRES．

The extent of the loss which the country sustains every sear from injury to woodlands by fire is enormous． An attempt was made to obtain，by means of circulars of inquiry addressed to enmmerators of the census and other persons living in every town of the United States，some estimate of the actual destruction of forest material in this way．More than 30,000 of these circulars were sent out．The information obtained，often vague and unsatisfactory，after a most critical examination，in which all doubtful or contradictory returus were entirely thrown ont，is presented in the following table and accompanying mapr．It must be borne in mind that estimates． based upon iuformation obtained in this manuer are liable to very considerable crror，and due allowance must therefore be made for inaccurate or incomplete returns．Many towns，and eren counties，in which forest fires are known to lave occurred during the year 1880，made no returns whatever，and the returns of other counties tere excluded．It is therefore fair，perhaps，to assume that the following table，inaccurate and unsatisfactory as it no doubt is in many respects，at least does not exaggerate the annual loss inflicted upon the country by forest fires：

TABLE OF FOREST FIRES OCCURRING DURING THE CENSUS YEAR．

States and Territories．	Areas barned，in acres．	Valne of property de－ stroyed．	calses of fire．																						
						$\frac{\stackrel{\dot{D}}{\underline{E}}}{\stackrel{y}{E}}$			雚				墾		突			墨							
Tbe United States．	10，274， 089	\＄25，462， 250	197	1，152	508	628	72	35	262	12	0	32	56	10	2	2	3	3							
Alabama	569， 160	121，225	34	16	4	20	3																		
Alaska．．																									
Arizona	10，240	56，000		．			3		2				2					．．．．．							
Arksnsas	858， 115	259， 470	．．．．．．	27		20						1													
California	356， 815	440， 750		9		23	28		5				4					．．．．．							
Colorado．	113，820	935， 500	．．．．			7	10		1				5	2	2			．．．．．							
Conncetient．																									
Dakota			4		2	2			1																
Delamaro．．．．．	3， 305	15，675	．．．．．．	6	6				2																
District of Colnmbla ．．．																		．．．．．							
Florida ．	105， 320	69，900	11	2		2			3									．．．．．							
Georgia．	705， 351	167， 620	21	15	2	16																			
Idaho．．．	21， 000	202， 000			．．	3						2	10	6				．．．．．							
Illinols	48， 691	45， 775	．	20	．．．．	27	12		3									．．．．．							
Indiaua．	90,427	130， 335	．．．．．	52	20	23			4			．						．．．．．							
1ndian territory ．．．．．．．．．．．	1，000																								
Iowa ．．．	$\begin{array}{r} 11,017 \\ 7,080 \end{array}$	．45，470		26	5	8				7															
Kausas		14，700			1		3		1	5								．．．．．							
Kentacky	556， 647	237， 635	－	51	12	33			10																
Lonislana	64，410	6，800	2	2		2																			
Maine ．．．	35， 230	123，315	$\ldots$	39	14	20			3																
Marytand．．	41， 076	37，425	．．．．．．	31	16	14			5																
Masmachusetts．．	13，899	102， 262	．．．．．．	40	5	37		19	8		3							．．．							
Michigan	238， 271	985， 985		161	43	59		3					1												
Minnesuta	250，805	1，395， 110	．．．	40	13	14			9				8					$\cdots$							
Sississippi	22：， 800	78， 505	12	8	1	17			1									－							
Missoury	783,04688,020	294，865	27	14	10	29		1	10																
Sevata．．．．．．．．	8，710	19，000				3							3					．							
Sew lfampuhiro．．	5，954	63， 010		7	12	0		1	1																
Siem Jersey ．．	71，074	252，240		7	28	6			7		0														
New Mexico．	64，0\％	142， 075	．．．．．	37	1	2			2				3			2									
Sew York．	180．491	1，210， 785	．	37	43	22											．								
North Carolina	5\％， 102	35\％， 980		115	11	34	10	4	25			22						．．．．．							
Obio		797170	．．．	04	27	57		3	11																
Oregon ．．．．．．		50゙， 850		7	．．．	12			4				4				．								
1＇ennoylvaula		3，043， 723		19	133	17			102	．								．．．．							
1：hode Island．．	$431,7: 0$																								
South Carolina ．．．		291， 225	28	17	1	25	．．．．．	．．．．．				2													

TABLA OF FOHESI IIRES OCCURRING DURING THE CENSUS YEAR－Contimued．

			CAUSES OF FIRE．															
Statea and Terrloties．	Atron burned，in acres．	Valuo of property the situyed．			Loeomotives.	$\stackrel{\text { 足 }}{\underset{4}{3}}$	$\begin{aligned} & \text { B } \\ & \text { 己 } \\ & \text { E } \\ & \text { E } \end{aligned}$		㮰		水		安				Wood eutters.	
Tenacsse	985，4\％0	\＄5．$\because-4.980$	19	19	6	14		1	14	＊＊								
Texas	809， 359	273， 095	19	3		7		2	16			4						
Ctah．	42,865	1，042， 800					3						4				3	8
Vermont．	3，941	48，466		10	5	2			1									
Virgiaia．	272，319	320,244		46	13	12												
Wrashington．	37.010	713，200		5		3	－．－		2			1	8					
Weat Firginla	476.75	155， 280	6	22	7	13			6		．．．							
Wisconsin	106，208	725， 610	20	58	12	15			3									
Wyomitrg ．．	83,780	3，255，000				1		－	．				3	1				

The largest number of these fires of any one class was traced to farmers clearing land and allowing their brush fires to escape into the forest．The carelessness of hunters in leaving fires to burn in abandoned camps，next to thmers，was the cause of the greatest injury．The railroads were responsible，too，for serious damage to the forest from fires set by sparks from locomotives，while the intentional buruing of herbage in the forest to improve pasturage often caused serious destruction of timber．

Only the value of the material actually destroyed by fire is included in these estimates．The loss of timber by fire，great as it is，is insignificant in comparison with the damage inflicted upon the soil itself，or with the influence of fire upon subsequent forest growth．If a forest is destroyed by fire all trees，old and yonng，giants ready for the ax，and geminating seedlings－the embryo forests of succeeding conturies－are swept away．Undergrowth essential to protect the early growth of trees，the roots of perenuial herbage，and the seeds of all plants are consumed．The fertility，or rather the ability of the burued soil to produce again spontaneously a similar crop of trees to the one destroyed，is lost，and the subsequent recorering of burned land with the species of the original forest is only accomplished，if aceomplished at all，throngh the restoration of fertility following the slow growth and decay of many generations of less valuable plants．A northern pine and spruce forest when destroyed by fire is succeeded by a growth of brambles，in time replaced by dwarf birch，poplar，and bird cherries，of no esonomic value；sernb oaks and various hard woods follow these，and pine rarely reappears exeept upon laud long mellowed in the various operations of agrienlture．

In the sonth Atlantic region a gradual change in the composition of the pine forests is steadily going on under the inthence of fire．Less valnable species now occupy the ground once covered with forests of the long－leaved pine，throngh which anumal fires have been allowed to run to improve the scanty pasturage they afford．Stockmen have been benefited at the expense of the permanenes of the forest．Fire，too，changes the composition of the broad－leaved forests of the Atlantic region，althongh its influence is here less marked than upon forests of conifers， wheh，milike deciduous trees，rarely grow from stump shoots，and most depend entirely upon the germination of seens Sor their reproduction．Still，in regions continually burned over during a long period of time and then covered again with forests，as is the case in some portions of Kentueky and Tennessee，valnable species，like the white oak and the yellow poplar，are rare or entirely wanting in the new forest gromth．

The forests of the north Pacific coast offer an exception to the law，otherwise general，for this continent at least， that a change of forest crop follows a forest fire．The fir forests of western Washington territory and Oregon when destroyed by fire are quiclily replaced by a vigorous growth of the same species，and the fires which liare consmmed great bodies of the Calitornia redwood have not prevented the reproduction of this species by seeds and shoots．In the interior Pacifie region forests destroyed by fire either do not reproduce themselves，or when，under exceptionally favorable elimatic conditions，a growth of trees recovers the burnen surface，poplars and scrul）pines replace the more valuable species of the original forest．

The damage inflicted upon the permanency of the forests of the comntry by bowsing animals is only surpassed by the injury which they receive from fire．

The cnstom of turning domestic animals into the forest to pick up a scanty and precarious living，common in all parts of the comtry，is universal in the sonthern aml central portions of the Atlantic region and in California． Sheep，eattle，and horses devonr immense quantities of seedling trees，the futme forests of the country．They bark the trunks and destroy the vigor and often the lite of larger trees．Hogs root up young pines and other plants to feed upon their suceulent roots，and devour the edible fruit of many trees．In this way not only is the permanence of the forest endangered，but in the case of decidnons forests their composition is often serionsly affected．Species with thin－shelled edible seeds，pines，white oaks，chestnuts，and beeelies，are mable to hold their own against species with bitter or mpalatable fruit，on account of the excessive destruction of their seeds by hogs and other animals．

In the central portions of the Atlantic region the general replacement of the sweet-fruited valuable white oaks in the young forest growth by the less valuable bitter-fruited black oaks is noticeable, and serionsly endangers the future value of the forests of this whole region. The damage iuflicted upon the California momntain forests by sheep, is immense; they threaten the complete extermination of these noble forests, and with them the entire agricultural resources of the state.

The pasturage of the forest is not only enormously expensive in the destruction of young plants and seeds, but this habit induees the burning over every year of great tracts of woodland, which would otherwise be permitted to grow up natigrally, in order to hasten the early growth of spring herbage. Such fires, especially in the open pine forests of the south, do not necessarily consume the old trees. All undergrowth and scedlings are swept away, however, and not infrequently fires thus started destroy valnable bonlies of timber. This is especially true, also, in the coniferous forests of the Pacific region.

The railroads of the comntry, using in the construction and maintenance of their permanent ways vast quantities of timber, inflict far greater injury upon the forests than is represented by the consumption of material. Railway ties, except in California, are almost invariably cut from vigorous somg trees from 10 to 12 inches in diameter; that is, from trees which twenty or thirty cears ago escaped destruction by fire or browsing animals, and which, if allowed to grow, would at the end of fifty or one hundred years longer afford immense quantities of valuable timber. The railroads of the United States, old and new, consume every year not far from $60,000,000$ ties ; the quantity of lumber in $60,000,000$ ties is comparatively not very great, and would hardly be missed from our forests; bnt the destruetion of $30,000,000$ vigorous, healthy young trees, supposing that an average of two ties is eut from each tree, is a serious drain upon the forest wealth of the country and should cause grave apprehensions for the future, especially in view of the fact that in every part of the country there are now growing fewer seedling trees of species valuable for railway ties than when the trees now ent for this purpose first started.

The condition of the torests of Maine is iuteresting. They show that forest preservation is perfectly practicable, in the Atlantic region at least, wheu the importance of the forest to the community is paramount. The prosperity of this state, born of the broall forests of pine and spruce which once covered it almost uninterruptedy, was threatenel by the prospective exhaustion of these forests, in danger of extermination by fire and the ill-regulated operations of the lumbermen. The very existence of the state depended npon the maintenance of the forest. The great forests of pine could not be restored, bat the preservation of the few remnants of these forests was not impossible. Fires do not consume forests upon which a whole community is dependent for support, and methods for securing the continuanee of suel forests are soon found and readily put into execution. The forests of Maine, once considered practically exhansted, still yicld largely and continuously, and the public sentiment which has mate possible their protection is the one hopeful symptom in the whole country that a change of feeling in regard to forest property is gradually taking place. The experience of Maine shows that where climatic conditions are favorable to forest growth the remants of the original forest can be preserved and new forests created as soon as the entire commmity finds forest preservation really essential to its material prosperity.

The production of lumber is not, however, the only thaction of forests; and the future extent and condition of those of the United States cannot, in every ease, be safely regulated by the general law whieh governs the volume of other crops by the demand for them. Forests perform other and more important duties in protecting the surface of the ground and in regulating and maintaining the flow of rivers. In mountanous regions they are essential to prevent destructive torre:ats, and mountains cannot be stripped of their forest covering without entailing serions dangers npon the whole community. Such mountain forests exist in the United States. In northern Vermont and New Hampshire they guarl the upper waters of the Connecticut and the Merrmac; in New York they insure the constant flow of the Hudson. Such forests still eover the upper slopes of the Alleghany momitains and diminish the danger of destruetive floods in the valleys of the Suspnehama and the Ohio. Forests still cover the mper water-sheds of the Missomi and the Columbia, the Platte and the Bio Grande, and preserve the California valleys from hurial mader the débris of the sierras. The great momntain forests of the comntry still exist, often almost in their original condition. Their inaccessibility has preserved them; it eanot preserve them, however, much longer. Inroads have already been made into these forests; the ax, fire, and the destructive agency of browsing aninals are now everywhere invading them. Their destruction does not mean a loss of material alone, which sooner or later ean be replaced from other parts of the comntry; it means the ruin of great rivers for navigation and irrigation, the destruction of cities located along their banks, and the spoliation of broad arens of the riehest agricultural land. These mountain forests once destroyed can only be renewed slowly and at enormons. cost, and the dangers, actual and prospective, which threaten them now offer the only real eause for general alarmto be fomd in the present condition of the forests of the United States. Other forests may be swept away and the conntry will experience nothing more serions than a loss of material, which can be proluced again if the price of lumber warrants the cultivation of trees as a commercial enterprise; but if the forests whieh control the flow of the great rivers of the country perish, the whole communty will suffer widespreal calamity which no precantions taken after the mischief has been done can avert on finture expenditure prevent.

# NORTH ATLANTIC DIVISION. 

## maine.

The forests of the Northern Pine Belt once extended over the state of Maine. Pine and spruce, with whieh were mingled maple, birch, and other deciduous trees, covered the entire state, with the exception of the immediate coast region between the Kennebec and the Penobscot rivers, a region of hard-wood forest; hemlock was common.

The origimal pine and spruce forests of the state have been practically destroyed. Pine has been cut in every township, and the largest spruce everywhere culled, except from the inaccessible region about the headwaters of the Allaguash river. Scattered bolies of the origiual pine, often of considerable extent and gencrally connected with farms, exist in the sonthern, and especially in the sontheastern, counties, and fine hemlock of large size is still an important element of the forest in the central and southern portions of the region west of the Penobscot river. Birch, maple, and oak, too heary for transport by raft, are still common, except in the neighborhood of manufacturing centers and the lines of railroad. Harl-wool timber is particularly fine and abundant through the central portion of the state; farther north the forest is more gencrally composed of coniferous trees.

The lumber business of southern and central Maine attained its greatest inportance as early as 1850. In that year spruce was for the first time driven down the Kennebec with pine, and the proportion of spruce to pine has since steadily increasel, until, in the season of 1879-80, only 20 per cent. of the lumber cut on that river was pine. The lowest point of productive capacity of the forests of Maine has probably been passed. The reckless disregard of forest property which characterized the carly lumbering operations of the state has been replaced by sensible methods for preserving and perpetuating the forest. This change in public sentiment in regard to the forests has followed naturally the exhaustion of the forest wealth of the state. As this disappeared the importanee of preserving some part, at least, of the tree covering, the source of tho state's greatest prosperity, forced itself npon public attention; for unless the forests eouhl be perpetuated, the state must lose forerer all commercial and industrial importance. It has followed that the forests of Maine, as compared with those in other parts of the country, are now managed sensibly and economically. They are protected from fire principally through the force of public sentiment, and only trees above a certain size are allowed to be cat by loggers bnying stumpage from the owners of land. In the sonthern comnties the young pine now springing np freely on abandoned farming lauds is carefully protected, and large areas are planted with pine in regions where the natural growth has not covered the soil. The coniferous forests, under the present managenent, may be cut over once in every fifteen or twents years, prolncing at each cntting a crop of logs equivalent to 1,000 fect of lumber to the acre, of which from 5 to 7 per cent. is pine, the rest sjruce.

Forest fires, which formerly inflicted every year scrious damage upon the forests of the state, are now of comparatively rare occurrence. During the census year only 35,230 acres of roodland were reported destroyed by fire, with an estimated loss of $\$ 123,315$. These fires were set by farmers in clearing land, by careless hunters, and by sparks from locomotives.

The following estimates of the amome of pine and spruce standing in the state May 31, 1880, were prepared by Mr. Cyrus A. Packard, of Augusta, land agent of the state. They were made up from the resnlts of actual surveys, and have been reviewed by a large number of experts most familiar with the condition of the forests in different parts of the state:

- Basin of-	Pine (Pinue Sirobus).	Sprnco (Picea nigra).
	Feet, buard measure.	Feet, board measure.
Sant John river abd tmoutares	75, 000, 000	1,400,000, 000
Proobscot river and tributaries.	100, 000, 000	1,600,000,000
Fimmebo uver and tribuaries	$50,000,000$	1,000,000,000
Androsenggin river and tributaris.	30,000,000	500, 000,000
Sohot Croix, Machas, Narmamaras ant Eni	200, 009, 000	3LU. U30, 600
Tota!	475,000, 000	5,000,003, 060
	138,835,000	3e], 000, 000




1

1
DENSITYOF OOMRESS
(\%) M

$188: 3$

Quantities of logs cut in Aroostook connty are driven down the Saint John river ant mannfactured iu New Brmuswick. During the season of $1879-980$ there were handled in this way $70,000,000$ feet of spruce, $4,500,000$ feet.of pine, $2,800,000$ feet of eedar, $1,500,000$ feet of squared pine timber, $1,000,000$ feet of squared birch timber, 110,000 feet of squared lareh timber. Of this 70 per cent. of the spruce and 80 per cent. of the pine were retnrned to the United States mannfactured into limber, and the whole of the cedar in the form of shingles.

Important industries dependent for material mpon a supply of hard wood have long flourisher in the state. Large quantities of cooperage stock, woodenware, handles, spools, bobbins, etc., are manufactured, and more recently the prodnction of wood pulp and excelsior, principally from poplar and other sott woods, has assumed important proportions. Mannfacturers from nearly every part of the state report a deterioration and seareity of the best timber, especially oak, which is now largely imported from Cauada or replaced by southern hard pine. Birch, however, is still abundant, and is largely exported in the form of spool and bobbin stock. The manufacture of potash, onee an important industry of the state, has been abandoned as unprofitable. Several establishments engaged in the manufaeture of tauning extracts from hemlock bark are loeated in the state, and the numerous tanneries upon the Penobscot river consume large quantities of the same material. The demand for hemlock lumber is now good, and the logs, after being stripped of their bark, are mannfaetnred into lumber and not allowed, as in other parts of the country, to rot upon the gronnd. A recently-established industry is the manufacture of kegs, barrels, and woodenware from pulp made from chips, brusl, and other waste material of the forest. Partial estimates of the hoop-pole industry gire a product of $5,449,200$, valned at $\$ 75,612$. Daring the year 1579 153,334 pounds of maple sugar were produced in the state.

Androscogian county.-One-half of this county is reported covered with woods, largely second growth; it contains, however, considerable bodies of fine first-growth white pine. Manufacturers of cooperage stock report oak exhausted, other loard woods scaree and of inferior quality, and that no second-growth timber is of sufficient size for use. A large amount of excelsior is mannfactured, prineipally from poplar.

AROostook county.-Nine-tenths of this county is reported covered with forests, the clearings being confined to the neighborhoods of the rare settlements along the river bottoms. Logs cut in this county are largely rafted down the Saint Johu river, and little lumber in proportion to the ent is manufactured within its limits. The production of cooperage stock and other articles requiring hard wood in their manufacture is rapidly inereasing, and with abundant material such industries seem destined to great development.

Oumberland county.-One-half of this connty is reported covered with woods, prineipally of seeond growth. Manufacturers of cooperage stock report a general deterioration and scareity of material, especially hard woods, now nearly exliansted. Spruce and poplar in large quantities are manufaetured into wood pulp.

Franklin countr.-Three-fourths of this counts is reported covered with woods, prineipally confined to the northern portion. Staves, hoop-poles, handles, and excelsior are manufactured in large quantities.

Hancock county.-Seren-eighths of this connty is reported corered with woods, largely eomposed, toward the coast, of second growth white pine. The northern portions contain fine bodies of large hemlock. Manufacturers of cooperage stock report deterioration of material; ash especially has become scarce.

Kennebec county.-Fonr-tenths of this county is reported covered with woods, largely seeond growth. Merchantable spruce and pine have been everywhere removed. Considerable areas are again covered with pine, and the wooded area is increasing. Next to Penobscot this is the most important lumber manufacturing county in the state. Numerous mills located on the Kennebee river saw logs driven from its npper waters and from beyond the limits of the county. Large quantities of poplar and spruce are consumed annally in the mannfactnre of wood pulp, excelsior, handles, etc. The supply of hard wool is small and of inferior quality. The poplar now used is nearly all second growth.

Knox Countr.-One-half of this county is reported cotered with woods, generally of second growth. Heavy timber, lowever, still exists in the towns of Washington, Appleton, and Union. White pine is scaree, and great deterioration in timber of all kinds is reported. Scareity in the near future is approhended by manufacturers. A large amount of cord-wood is cousumed anmally in bursing lime.

Lincoln county.-Abont one-lialf of this connty is reported covered with moods, hearly all second gromth.
OXFORD COUNTY.-Hrom one half to two-thirds of this county is reported covered with woods. The northern portion still contains large areas of original forest, although pine and spruce have been culled ererywhere. In the sonthern part of the eounty there are considerable bodies of second-growth white pine, and the wooded area is increasing. Cooperage stock, handles, and wood pulp are largely manufacturel. Manufacturers report that timber of all kinds has leteriorated iu quality and become scaree, with the exception of oak, which is still abundant and of good quality.

Penobscot county.-Nine-tenths of this county is reported covered with woods. The merehantable pine and spruce bawe been remover from the sonthern portion and everywhere culled. In the northern townships hembek is still abundant and of fine quality. Ponobscot is the great lumber manufacturing county of the state, Bangor, once the principal manct in the United States for pine lumber, being still the most inportant saw-mill center. Spruce and not pinc, howere, except in insignificant quantities, is now manfactured npon the Penobscot. Manufacturers using hard woods report an abundant supply of oxcellent material.

Piscatagus county.-From eight to nime tenths of this comity is reported covered with forests, the smbthern portion only being cleared of the original tree growth.

Sagababoc cou'ry.-One-half of this county is reported eovered with woods, principally second growth. Considerathe second-growth white pine is now growing up upon abandoned farm lands, and the wooded area of the connty is increasing. Mannfacturers report all timber of suffeient size for use scarce and of inferior quality, and apprehend early exhanstion of hard woods suitable for mechanical purposes.

Someliser county.-Five-sixths of this comty is reported covered with woods, the sonthern portion only being eleared of its forests of spruce and piue. Hxcelsior, handles, woodenware, ete, are largely mannfactured. Harl-wool timber of all sorts is abmulant and of excellent qualits, with the execption of black ash, now scarce and in great demand.

Waldo couxty.-From one-quarter to one-half of this comty is reported covered with woods, generally of second growth. The wooled area is now gradually inereasing by the growth of white pine on abandoned farming lands. Manufacturess report a seareity and deterioration of timber of all kinds of sufficient size for use.

WishingTon county.-From eight- to nine-tenths of this county is reported covered with woods. In the sonthern portion cousiderable areas contain scattered bodies of large pine, and through the center of the county are large traets of first-growth hemlock forests. No future scarcity of lumber is apprehended.

Fome couvty.-From one-third to one-half of this county is reported covered with woods; it coutaius large quantities of seattered pine. Second-growth pine is spreading on abandoned agrieultural land, and the forest area is increasing. Wood pulp, cooperage stock, and handles are largely manufactured. Timber of all sorts is reported as depreciating in both quality aud quantity. No immediate searcity, however, is apprehended.

## NEW HAMPSHIRE.

The forests of New Hampshire were originally eomposed of a belt of spruce, mixed with maple, birch, and other hard-wood trees, oeenpyiug all the northern part of the state and exteuding southward through the central portion; the southeastern part of the state and the region bordering the Couneeticut river were covered with forests of white pine, through which considerable bodies of hard wood were seattered. The origiual white-pine forests of New Hampshire are practically exhausted, although in the northern connties of the state there still remain a few scattered bodies remote from streams and of small size; once of great extent and importance, these forests have disappeared before the ax of the settler and lumberman, or have been wasted by forest fires. Large areas, however, once covered with forests of pine, have grown up again, especially in the southern part of the state, with this tree. No estimate of the amount of this second-growth pine standing in the state has been possible; it furnished during the census year a cut of $99,400,000$ feet of lumber, board measure. The remaining forests of the state, considered as a source of hmber snpply, are composed of spruce, more or less mixed with hard woods, of which the sugar maple and the birch are the most valuable. In the northern part of the state large areas of the original spruce forest remain, although these bodies of timber are now ouly found at a considerable distance from streams.

Fires, which at different times have destroyed vast areas of forest, especially in the northern part of the state, are now less frequent and destructive. Duriug the year 1880 but $5,9 \overline{5} 4$ aeres were reported stripped of their tree covering by fires. Of such fires twelve were set by sparks from locomotives, seven by the escape into the forest of fires originally set in clearing land for agricultural purposes, six by sportsmen, one through malice, and one by the careless use of tobacco.

The lasis of the following estimate of the amount of merchantable black spruce (Picea nigra) lnmber standing May 31, IS80, in Carroll, Coos, and Grafton counties, where alone the spruce forests of the state are now of commercial importance, was furnished by Mr. G. T. Crawford, of Boston, and verified by the testimony of other experts:

BLACK SPRUCE (Picea nigra).

Combila	Feret, board measure.
Carroll.	60,000,000
Coos	1,000,000,000
Grafton	450, 000,000
Tstal..	1,510,000,000
feet sawed ou the Connecticui river, in Massachnsetis).	153, 175,000

It is rondrly catimated that the spruce forests of the state contain over $33,750,000$ cords of hard wood and $165,000,000$ tient of hemlock.



Jutan limataina.

Partial returns of the hoop-pole industry give a production during the census year of $4,225,000$, valued at $\$ 29,280$. New Hampshire is fourth among the states in the importance of its maple-sugar product. During the year 1879 it produced $2,731,945$ pounds.

Belknap county.-From one-third to three-eighths of this county is reported corered with woods.
Canroll county.-Five eighths of this connty is reported covered with woods. In the northern portion there are still large areas covered with an original growth of spruce. Large quantities of charcoal are manufactured in this county, and the usnal method of lumbering adopted here and very generally in northern New Hampshire is first to cut the sprnce large enough for saw-logs, taking all trees 6 inches in diameter 25 feet from the ground, and then eut for charcoal all the remaining growth, hard wood and sott, even the young spruce. As the land eleared is of little value for agricultural purposes, it is allowed to grow up again with wood. Deeiduous trees cone up at first, and these are sometimes, but not always, followed by spruce. It is necessary to exereise great care in order to prevent the newly-cleared tracts fiom suffering from fire, as the material for charcoal, ent into corl-wood, is often left on the ground until the second season. Mr. C. G. Pringle, who studied the forests of this region, furnishes the following notes apon the forests of Carroll county:
"The forests on the mountain sides between Crawford's and Bartlett are composed priacipally of the sellow and paper bireh, the sugar maple, the red maple, poplars, the black spruce, and the balsan fir. About Bartlett scattering specimens of white pine make their appearance. In the more level part of North Conway the red and the pitch pine and the hemlock become common, while on the more sterile, sandy plains farther down the Saco these pines with the white birel constitate the principal arboreseent growth.
"The tract known as Hart's location, lying partly in the White Mountain notch, includes 10,000 acres, 2,000 of which bear 15,000 feet per acre of spruce and hemlock-rather more of hemlock than of spruce; 10,000 acres in this tract will cut 25 cords of hard wood per acre. The town of Bartlett, partly cleared, still has 40,000 aeres of woolland, which will yield an average of 5,000 feet per acre of spruce and hemlock and 15 cords of hard wood. Sargent's grant covers mount Crawforl, Stair mountain, and a part of mount Washington. On this traet are 15,000 acres of timber-laud, carrying 20,000 fect per acre, ehiefly spruce. The Thompson and Meserce purehase comprises portions of mounts Washington, Jefferson, and Madison, and covers 12,000 acres. Two thousaud acres of this will yield 30,000 feet of spruce and hemlock per acre in nearly equal ${ }^{2}$ roportions. The remaining 10,000 aeres will cut 25 cords of hard wood per acre. The Bean purchase lies north of the town of Jackson, and covers 40,000 acres. It is occupied by a dense forest, amonuting to 20,000 feet of spruce and hemlock and 20 cords of hard wood per aere. Originally there was considerable pine on the streams and sides of the mountains in this vicinity, particularly on mount Kearsarge, but now there is little left. Twelve and twenty-five years ago much of the town of Bartlett was burned over, and a different growth has come up-white birch, poplar, bird cherry, etc."

A large amount of cooperage stock, excelsior, and an average of 1,000 cords of shoe pegs (from birch and maple) are annually male in this county. Considerable damage to oak and poplar caused by the ravages of the army-worm [\%] are reported. The natural increase of timber is said, however, nearly to equal the present consumption by local industries, and searcity is not apprehended.

Chesmime countr.-About one-half of this county is reported covered with woods.
Coos county.-Nine-tenths of this county is reported coverel with forests. The following is extracted from Mr. Pringle's notes upon the forests of this county:
"Everything east of the Connecticut lakes and about the upper portions of Indian and Perry streams is original forest. Such also is the condition of the Gilmanton, Atkinson, and Dartmonth College grants and the towns of Dixville, Odell, and Kilkemy. All the eastern portions of Clarkssille, Stewartstown, Colebrook, Columbia, and Stratford are forest, and nearly all of Wentworth's location, Millsfield, Errol, Dummer, Cambridge, and Success. In these forests the spruce will cut 5,000 feet and the hard wood about 50 cords per acre. There is considerable hemlock, bat even less pine than in Essex comity, Vermont. Not much of the region has been bnrued over, and spruce cones into the soil again but slowly after elearings and fires.
"In the township of Kilkemy, in the mountains east of Lancaster, there are 10,000 acres of forest still untonched, thongh a branch railroad from Laneaster into this forest has been survesed, and may be constructed in a few years, for the purpose of bringing the lumber down to the mills at Laneaster. Lowe and Burbank's grant is a wilderness, three-fourths well timbered and the remainder a mountain ridge of nearly bare rock. Bean's purchase is nearly inaccessible and but little lumbered. Stank, on the upper Ammonoosuc, is badty cut orer, only about one-quarter remaining in virgin forest. Aloout oue-half of Berlin is ment ; also the northern Lalf of Randolph, the sonth half of Gorlam, and the south quarter of Shelburne. Considerable land in Success was borned over some years ago, as well as sone in Stark and in the castern part of Berlin, bat fires have not lately been very destrnetive in the New Hampshire forests."

A large anonnt of cooperage stock, handles, wood pulp, shoe pegs, etc., is manufactured in this county. Abundant material, with the exception of ash, is reported.

Grafton county.-One.half of this comity is rejorted covered with woods, mostly confined to the northern and central portions. Shoe pegs, cooperage stock, wool pulp, and excelsior are largely manufaetured. The amount of material is considered abundant for the present cousumption.

32 FOR

Hillsborougit county.-One-half of this comty is reported covered with woods, mostly second growth. A large amonnt of cooperage and wheel stock is manufactured. No deterioration in the quality of material is reported, althongh at the present rate of consumption it must soon becone exhansted.

Merrmack countr.-One-half of this county is reported covered with woods. Cooperage stock, handles, and excelsior are largely manufactured. A slight deterioration in the quality of material is reportel.

Rockingilay counts.-From one-quarter to five-eighths of this comenty is reported corered with woods, mostly secoml growth.

Sthaffond cownt:-Four-tentles of this connty is reported corered with woods, mostly second growth. Hoop-poles, cooperage stock, ete, are largely manufactured. Wood of all sorts is reported scarce and rapidly increasing in value.

## VERMONT.

The forests of Yermont, as compared with those of New Mampshire and Maine, are varied in composition. About the shores of lake Champlain several western trees first appear, and thronglout the state the forest is more gencrally composed of deciduous than coniferons species. Forests of spruce, however, spread over the high rilges of the Green mountains, their foot-hills being covered with hard-wood trees and little pine or hemloek occurring in the valleps. A forest of white pine once strotehed aloug the banks of the Connecticnt, and great bodies of this tree occurred in the northwestern part of the state, aljacent to lake Champlain. The original whitepine forests of the state are now practically exhansted. They are represented by a small amonnt of second-growth pine only, which furnished during tho census year a cut of $0,505,000$ feet of lumber, board measnre.

The forests of Vermont now suffer comparatively little from fire, althongh at different periods during the last fifty gears very serious fires have laid waste great areas of forest in the Green Mountain region. During the year 18503,941 aeres of woodland were reported destroyed by fire, with an estimated loss of $\$ 48,466$. Of such fires ten escaped from farms into the forest, fice were set by locomotives, two were traced to the carelessness of hunters, and one to maliee.

Large amounts of cooperage stock, woodenware, furniture, paper-pulp, excelsior, rencers, etc., are manufactured throughout the state. Material for these industries is fast disappearing, and a great deterioration in quality, especially of oak, ash, and chestnut, is reported by manufacturers.

Vermont surpasses all other states in the manufacture of maple sugar. During the year 1879 11,261,077 ponnds were produced in the state.

The following estimate of the spruce standing in the state May 31, 1880, has been prepared from Mr. Pringle's report, and is based upon the statements of numerous timber-land owners and experts in different parts of the state:

BLACK SPRUCE (Ticea nigra).

Regions.	Feet, board measure.
Green Mountain rango...	380,000,000
Valley of the Connecticut river	375, 000,000
Total	755,000,000
Cnt for the census rararending May 31, 1880 (excluding 16,191,000 feet imported from Canada).	109,080,000

Partial returns of the hoop-pole industry give a production dring the census year of ouly 43,900 , valued at $\$ 470$.

ADDISON countr - About one-third of this county is reported covered with woods. Spruce and ash are scarce aud rapidly disappearing. Oak of sufficient size for the manufacture of cooperage stock is exhansted.

Bennington countr.-Two-thirds of this connty is reported covered with woods. Manufacturers of woodenware and cooperage stock consider the prospects for future local supply favorable.

Caledonia counts.-Fromone-thirl to three-eighths of this county is reported covered with woods, mostly confined to the northern and westem portions.

Chitmenden countr.-Abont one-fifth of this comity is reported as woodland. The following extracts are made from Mr. Pringle's note uron the forests of Vermont :
"Except on the summits of a few of the higher peaks of the Green mountains, where black spruce and balsam fir grow to the exclusion of other trees, the arboreal growth is composed of a large number of species. In the ralleys and on the foot-hills, and even on the slopes of the higher mountains in their lower portions, hemlocks mingle with spruce, beech, maple, and birch (yellow birch chiefly, for there is little white birch seen in northern Vermont); basswood, huttermut, the ashes, red oaks, ete., are confined to the lower elerations and are less abundant than the trees first mentioned. Between the isolated patehes of sprnce and fir about the summits of the mountains and the region where hemlock is found, rock maple, yellow birch, and black spruce are the predominating species.
"To estimate the area of raluable original forest still standing in the Green mountains is not an easy task. The belt extends from the Canada line to Massachusetts, and even into that state. The ontlines of this belt are made very irregular by the eleared and settled valleys which run up among the mountains, and by reason of forest elearings, so that its width is constantly varying as we proceed from one end to the other.
"The woodlands of the plateau, some 10 miles broad and elevated from 200 to 300 feet above lake Champlain, lying between the foot-hills of the Green monntains and the lower plain beside the lake, ocenpy, for the most part, rocky hills, and are eomposed prineipally of sugar maple, beech, basswood, white ash, blaek birch, and red oak. Certain limestone bills offer a favorable situation for the butternut, the ironwood, the slippery elm, and the bitter hickory. The swamps and other lowlands yield the red maple, the black ash, the white elm, and the black willow. The latter, especially along streams, is associated with alders aud the sheepberry. The colder, sphagnons swamps are covered with a growth, more or less dense, of yellow cedar, black sprnce, balsam, and lareh; sometimes in the higher portions the white pine mingles with these, scattered or in groves. When grown in sueh soil this wood is liable to be extremely hard and brittle. The poplars occupy lillsides aud ridges where the soil is a light, cold, sandy loam; with them the bird cherry is perpetually associated. The black cherry is scattered in a diversity of soils. White oak and hiekory attain their best derelopment on elayey soil or glades of slight elevation; on the red sand-roek hills they are smaller. Certain slopes of cold clay are still here heavily wooded with hemlock, while warm elay lands are the farored site of the burr oak. In the vicinity of the lake and its tributaries low, wet shores are scattered over with the swanp white oak and the bur oak. The chestnnt oak is common on the thin, poor soil of the red sand-rock hills, ranging through the valley from the lake as far back in some places as the foot-hills of the Green mountains. The red pine appears on the sandy shores of lake Champlan, aud extends far up the Winooski river. The moister and more fertile portions of the sandy plain are still ocenpied to some extent by white pine, the poorer portions by pitch pine. The white birch occurs on cold, wet, sandy soil near the lake; and in the mountains the black spruce becomes the most common tree; with it in strouger soil are associated the yellow bireh and the sugar maple.
"Burlington.-This place is beliered to rank as third, or next to Albany, among the lanber markets of the United States. More lumber may enter some ports, as Ustrego and Tonawanda, for transshipment, but all lumber brought to this market is stored and sold bere. The kind is chiefly white pine bronght up the lake from Canada, a little of it bemg eut in Michigan (perhaps one-teuth); all the rest is of Canadian growth. A few of the lumber companies here own lands of limited extent among the Green mountains, from which they obtain spruce for clapboards, etc. The general direction which the lamber sent from here takes is to the older portions of New England, Massachusetts, Rhode Island, and Comeetient, considerable pine being sent even to Maine, which once snpplied to commerce so much of this material. Mach lamber is dressed here aud sent to Boston for shipment to foreign countries. The business still enjoys the highest prosperity, and during the eensus year, under the stimulus of general commereial prosperity, it was especially actire. As yet no lack in the supply is felt, the loggers only having to go firther back in the Canadian forests than formerly to obtain timber enongh to meet the demand. The proportion of lumber worked up here is small, there being merely a few factories prodacing toors, sash, blinds, packing boxes, ete."

Essex county.-Five-sixths of this county is reported covered with forest. The following is extracted from Mr. Pringle's report:
"Four-fifths of that part of the eounty of Essex lying north of Guildhall and Victory is still in virgin forest, which will yield 5,000 feet of spruce per acre. The towns of Lewis and Averill are entirely unlumbered, and so is Arery's Gore. Colton is mostly covered with forest, and so is Ferdinand. Timber-lands compose about two-thirds of Granby and East Haven, and cover the back parts of the river towns and those erossed by the Grand Trunk railroad. Sontl of Guildhall and Victory the towns of Coneord and Luncuburg are mostly cleared and settled. The proportion of hemlock in these forests is not large; there is considerable yellow cedar and a large amonnt of maple, bireh, and beceh-probably 50 cords per aere. There is but little pine in all this region, principally confined to the township of Lewis; elsewhere only occasional pine trees oceur."

Franimin countr.-From one fourth to three-tenthe of this eounty is reported covered with forest, mostly confined to the hills in the northeastem and northern portions. In the village of Montgomery a large establishment for the manafacture of butter tubs is loeated, aud at East Riehford birch is largely manafaetured into turned ware.

Grand Isle county.-Abont a quarter of this comety is reported covered with woods.
Lanoille countr.-About one-third to one-half of this county is reported eovered with woods, very generally listributed over its entire surface.

Orange county.-One quarter of this county is reported covered with forest.
Orleans county.-One-half of this county is reported corered with woods. The following is extracted from Mr. Pringle's notes:
"At Newport, situated at the southern extremity of lake Memphremagog, are several mills for cutting vencering from birch. The product of these mills is closely packed in boxes, so that it camot warp, and sent to the manufactories near the large cities, to be used for chair bottoms and other purposes. Sonthward from Newport, in the salleys of the Barton and Black rivers, which flow northward into lake Memphremagog, and of the Passmonpsic river, which rums southward and joins the Connecticnt, are almost contimons swamps of yellow
cedar, black spruce, and lareh, from which the cedar timber is now being largely drawn to be sawed into shingles. At barton the hard woods are largely cut into material for furniture, which is shipped toward the sea-board before being put together.
"The valley of the Clyde river from Newport to Island Pond is cleared for the most part and improved for farms. The usual species of the northern torest ocenjey the summits of the low hills on either side of the valley. Enstward from Island Pond, down the Neipegan river to the Connecticnt by the line of the Grand Trunk railroad, we pass throngh the wild region from which the lumbermen have only taken some of the spruce and piue. Here, begiming 2 or $:$ miles baek from the railroad, or in some places mueh nearer to it, a virgin and unbroken forest stretches over the slopes and summits of the hills for many miles to the northward and southward; black spruce, yellow birch, sugar maple, and beech are its chief component species. ln a few phaces; where the soil is sandy, White pine occurs in stragering groves or isolated specimens, and the swamps, as well as those of all of northern Vermont, are ocoupied by the black spruce, yellow cedar, and by a few scattering pines. The pine being the kind of lmmber first secured, is seldom found now in these Vermont swamps. The cedars are now cut and manufactured into shingles, fence posts, railway ties, etc., for which purposes the lasting quality of the wood makes it eminently suited. There is little hemlock in northeastern Vermont, and it is believed to indicate poor soil wherever it occurs. The soil of this entire region presents a marked contrast to that of northern New York, being fertile and in other respects well adapted to agriculture. On this account land once lumbered over is generally occupied by the farmer and not allowed to come up again to forest, except in the more hilly portions."

Staves, tubs, pails, buckets, and hoops are largely manufactured from spruce, cedar, and ash. The quality of the material used is said to have deteriorated, and mannfacturers report that at the present rate of consumption it will soon be consumed.

Rutland countr.-Four tenths of this county is reported covered with woods, principally in the eastern portion. lim, formerly largely nsed in manufacture of tnbs, ete., is reported exhausted, and basswood has become searce.

Whshington county.-One-third of this county is reported covered with woods, principally sitnated in belts along its eastern and western borders. The following is extracted from Mr. Pringle's report:
"Reacling Montpelier from the west we have left lehind the Green Mountain gneiss and entered a granitic formation. Here is an extensive burned region; the fire, in consuming the forest and regetable mold upon the surface of the land, has exposed gravite bowlders thickly embedded in the soil. To replace the forest growth thus removed there is only an occasional little spruce or balsam to be found among the thickets of bird cherry. The hilltop and hillside forests east of Montpelier show hemlocks crerywhere mingled with sugar maples, yellow birches, and spruce; farther east the spruce aud birch predominate. Approaching the Connecticut river, hemlocks and maples again appear and second-growth white pine and paper birches take the place of the other species."

WiNDHAM countr.-Three-eighths of this connty is reported covered with woods, mostly confined to ridges of the Green mountains. Ash and white pine are reported very searce.

Windson county.-From one-fourth to one-third of this comnty is reported covered witl woods, quite generally distributed over the hills. Tubs, barrels, kegs, and buckets of white and red oak, white pine, spruce, and ash are manufactured. Oak is reported by mannfacturers to be abready practically exhausted, spruce to be fast disappearing, and ash very scarce and in danger of speedy extermination.

## MASSACHUSETTS, lRHODE lSLAND, AND CONNECTICUT.

The original forest which once covered these states has disappeared and been replaced by a second, and sometimes by it thind and fourth growth of the trees of the Northern Pine Belt. The area covered by tree growth in these states is slowly increasing, althongh, with the exception of the yonng forests of white pine, the productive cajucity of their woodlands is, in view of the heary demands conti uually made upon them, especially by the railroads, rapidly diminishing. Abandoned farming land, if protected from fire and browsing animals, is now very generally, except in the immediate vicinity of the coast, soon cocered with a rigorous growth of white pine. The fact is important, for this new growth of pine promises to give in the future more than local impor tance to the forests of this region.

These states snstain a considerable ammal loss from forest fires. In Massachusetts during the year 1880 13,599 acres of woodand were reported destroyed by fire, with a loss of 8102,262 . Of these fires fifty-two were set by locomotives, forty by fires started on farms and escaping to the forest, thirty seven by hunters, nineteen by the careless use of tobaceo, eight throngh malice, and three by carelessness in the mannfacture of charcoal. No returns in regarl to forest dires in lihode Island and Connectient have been received, but it is believed that in proportion to their forest area such fires are not less destructive in these states than in Massachusetts. Numerous important industries using hard wood have been driven from these states or foreed to obtain their material from beyond their limits. On the other hand, industries like the mannfacture of certain sorts of woodenware, using secondgrowth pine, are rapidy increasing in volnme. The principal forests now found in these states are situated in Berkshire, Hampden, and Worcester counties, Massachusetts.

Berkshire county, Massachusetts.-From one-third to one-half of this county is reported covered with woods, largely second growth. The high ridges of the hills are still covered with forests of black spruce, their slopes and intervening valleys with hard woods or hemlock, now often replaced by a growth of soung white pine. Cooperage stock, baskets, and wood pulp are largely manufactured. Spruce is reported to have deteriorated in quality; mannfacturers consider the supply of material, however, abundant for all present local demands.

Franklin county, Massachusetts.-One-half of this county is reported covered with woods, largely second-growth white pine.

Woncester county, Massaciusetts.-One-half of this county is reported covered with woods, largely second-growth white pine. Winchendon, the most important point in the United States for the manufacture of woodenware, small cooperage, etc., is supplied with material from the young pine forests of this and the neighboring counties. Timber is reported to have deteriorated. The supply of pine is not equal to the demand, and is rapidly increasing in value.

In Barnstable county, Massachusetts, numerous experiments in forest planting have been made. In South Orleans aud neighboring towns fully 10,000 acres of sandy, barren soil have been successfully and profitably planted with pitch pine. Similar plantations have been made upon the island of Nantucket; and many large groves of white pine planted many years ago in Bristol and Plymonth counties demonstrate the cutire practicability of forest culture in this whole region.

The only important lumber manufacturing establishments found in these states are situated upon the Connecticut river, in Massachusetts and Connecticnt. They are entirely supplied with material from the forests of northern New Hampshire and Vermont. Partial returns of the hoop-pole industry give a production during the census year in Massachusetts of $11,507,600$, valued at $\$ 95,009$; in Connecticnt, of 191,000 , valned at $\$ 9,660$.

## NEW YORK.

That portion of the state north of the forty-third degree of latitude, including within its limits the elerated Adirondack region, was once covered with a dense forest of maple, bireh, basswood, and other northern deeiduous trees, through which were scattered spruce and pine. The low hills bordering the Hudson and extending along the southern boundary of the state west of that river were corered with the coniferons species of the Northern Pine Belt. Over the remainder of the state the broad-leared forests of the Mississippi basin spread almost uninterrnptedly, except where an occasional sandy plain or high elevation farored the growth of pines. The original forest still covers large areas in the northern connties, and protects the hills throngh which the Delaware river forces its way in crossing the sonthern part of the state. With these exceptions, however, the forests ot New York are now almost exclusively of second growth.

The forests of the state, especially in thie north, have at different times suffered great damage from fire. During the census year 149,491 acres of woodland were reported destroyed liy fire, with a loss of $\$ 1,210,785$. Of these fires thirty-seven were set by farmers clearing land for agricultural purposes and allowing them to eseape to the forest, forty-three were set by locomotives, and twenty-two by the carelessness of sportsmen.

With the exception of the spruce of the Adirondack region, the forests of the state are no longer important as a source of general lumber supply; and many industries depending upon hard woods lave in late jears deereased in importance, owing to the want of sufficient material, or have been forced to obtain their supply of timber from the west. White oak, largely consumed by the railhoads, has become searee, and has advanced at least 50 per cent. in value during the last twelre years. Elm, ash, hiekory, and other woods are reported searce in all parts of the state. Partial returus of the hoop-pole industry give a production during the census jear of $10,945,258$, ralued at $\$ 155,764$.

New York is only surpassed by Vermont in the amonnt of maple sugar produced by its forests. During the year 1879 10,693,619 pounds were manufactured in the state.

The following extracts are taken from Mr. Pringle's report upon the forests of northern New York:
"One who enters northeastern New York at Port Kent, and takes stage by way of Keeseville to tho Saranac lakes, finds limself, as long as his route rums up the Au Sable river, which is as far as the Au Sable forks, passing through a region which gives evidence of having been formerly covered with pine. The white, the red, and the piteh pine are all represented here. The pitch pine is confined chiefly to the sterile sandy plains between the An Sable and the Saranac rivers. The red pine mingles with this species, and grows on the rocky hills of the region and on the river cliffs, while the abundance of white pine in nearly all situations must have made this quarter of the state, like the region of Vermont lying opposite, a valnable pinery in former times. But fifty or serenty-five years have passed since the pine of the Champlain valley was harvested and slipped to England by way of the Saint Lawrence.
"In the valleys of the Au Sable and the Saranac rivers white pines spring up numeronsly whenever permitted to do so, and 1 am told that famers, realizing that much of their soil is not suitable for profitable agriculture, aro serionsly considering whether it be not to their highest advantage to surrender much of their land to timber growing, and encourage the growth of the more valuable species, such as white pine, white oak, ete. Of non-coniferous trees
the white, red, and black oaks are conspicuous among the pines, and in the colder and wetter sands the white birch. is common. But through all this region the trecs are all of second growth, and lamber for building parposes is largely imported.
"The forest on the upper waters of the Au Sable and of the divide between this river and the Saranac is principally deroted to supplying fuel to muncrons iron furnaces. The best butt logs only of spruce are sorted out and sent to the saw-mills as the forests are mowed down; the hemlock bark is removed for the tanneries, but everything else, young pine, spruce, and poplar, tall clean with maple and bircl. Here and there, even far up on the hillsides, are seen the charcoal kilus, and around and about them, quite to the crest of the foothills of the Adirondacks, the woods are cut down in great swaths to feed them. Lands once ent over are left to grow up to timber again, though fires originating in the dead brushwood and consuming the sun-dried regetable mold on the surtace of the soil gencrally interfere with any new growth of trees.
"Little Tupper lake is situated in the heart of the Adirondack wilderness, and is surrounded by some of the most valnable timber lands to be found in all this region. The woods abont the lake have never heard the lumberman's ax. The stream which comects it with Tupper lake, by way of Round pond, is not adapted to driving, and before lumber could be bronght down it would be necessary to clear ont the stream by blasting away much roek and building a dam with ilood gates at the foot of hound pond. The shores of this beantiful lake present a marked contrast to those of any I have as yet visited. On other shores and river banks I had seen seattering pines, bnt on all the points and bluff's of this lake throughout its entire circuit, and even following the ravines far back in the hills, are great groves and belts of white pine with straight and clean shafts towering high above all other trees, unless is exeepted the red pine, of which a few. specimens are mingled with them on the gravelly banks of the lake, vring with the white pines in heiglit and beanty of tronk. At certain places on the shores of this lake, and particularly along the sluggish streams comecting it with hound pond below, are considerable swamps occupied chiefly by larch. It is pleasing to observe and to learn from gnides that this lake region of the Adirondack woods has suffered but little from forest fires. It is only limited areas here and there on the shores of the lakes and ponds or along the rivers that have been devastated by fires originally started in hunters' camps. Seldom do these fires spread far back from the water, a fact which is to be attributed, it is believed, to the wet and mossy condition of these woods; yet, when they have been lmmbered, as is the case lower down the liacket river, and a considerable proportion of the trees have been removed so as to expose the brashwood, etc., to the drying influences of the sun, much the usual liability to tire exists here.
"It is safe to assume that 2,500 square niles fairly represent the area of the rirgin forests of the Adirondack wilderness. This area will average 3,000 feet of sprnce (board measure) per acre, or about five billion feet in the aggregate. The amount of hemlock, varionsly estimated from 300 to 10,000 feet per acre, will cat at least 2,000 feet per acre, or $3,000,000,000$ feet in the aggregate, or its equivalent; when the bark alone is cousidered, $3,000,000$ cords of bark. The pine hardly, if at all, exceeds 200 fect per acre, or $320,000,000$ feet in all. The hard wood growing over this entire region will fairly average 40 cords per acre, or $64,000,000$ cords.
"Glens Falls is the great sawing center for the lumber ent upon the upper Hudson. This business here has passerl the point of maximum prosperity and begun to decline; not that there was any necessity for a diminution of the yeally crop of logs from this field, if the forest could be protected from devastating fires. The lumberman leaves stimding, as far as possible, the sprnce trees too small for the ax, and these, the overshadowing growth being removed, grow with increased rigor, so that good crops of timber could be harvested from the soil every thirty or forty years, were it not that orer at least one-half of the area lmmbered fire follows the ax, burning deep into the woody soil and inducing an entire change of tree covering. Poplars, birches, and bird cherries, if anything, succeed the spruees and firs. From this eanse alone the lumbering industry of the region must dwindle. A large area utterly madinted to agriculture is being male desolate and nearly valueless, and its streams, the feeders of the water privileges and canals below, become every year more and more slender and fitfnl. These fires are largely set by reckless sportsmen and hunters, with whom this region peculiarly abounds in summer. They are careless in their smoking; they neglect to wateh and properly extingnish the fires lighted for camp and cooking purposes, and sometimes they cenen delight to set fire to the dry brushwood of lumbered land in lawless sport. Again, to some extent, a class of petty pioneers follow the lumberman, obtaining for a trifling sum a title to a little land, or, squatting without rights, set fire to the dry brushwood left by the lumberers, and allor the fire to spread at will, devastating thonsands of dollars' worth of property for the mere convenience of saving themselves the trouble of burning bomilary strips around their fichd, which might not cost them labor to the amount of \$10. The laws of New York in resperet to the setting of forest fires are totally inadequate to protect the forests. The opinion prevails in the forest regi,n of northern New York that a growth of trees removed is followed by a similar growth, the result of yomgs sedling trees left in the soil, except in the case of pine. 'Pine once eleared off is never rencwed,' was the insariable remark. This of comse presumes that fire is kept out of the clearing, for after a fire has consumed the bushwood and much of the 'daff' or vegetable mold, and with this all the young seedling trees, and eren the secels of trees that may be in the soil, an entirely different growth from the hemlock and spruce springs up. lasjuerry bushes are the first to appear, the seeds of which are dropped by birds flying over the clearing. Bird cherries generally appear anong the first trees, the sceds being dropped everywhere in a new conntry by birds;
poplars and small willows also appear early in a burned district, their downy seeds being widely distributed by the wind. It is only through the agency of the wind that the seeds of birehes and eonifers can be disseminated, and spruces and hemloeks must needs appear, if they return at all, as tardy stragglers.
"Not many miles above Glens Falls the Hudson flows out from among the lowest outposts of the Adirondacks and winds throngh a plain whieh reaches from near Troy to the vieinity of the southern euds of lakes George and Champlain. The soil of this plain is sand deposited by the waters of former periods. The hills which bound this plain on the northwest are piles of sand, gravel, and bowlders, evidently the moraines of a glacier which onee flowed throngh the couras of the Hudson. All this region, from Troy to Luzerne, among the foot-hills of the Adirondacks, must formerly have been covered with pine; among the hills and near the streams white pine, and in the more sterile central portions of the plain, red and pitch pine. To-day there exists of these species seareely more than a seanty and seattered second growth.
"Thirty or forty years ago it was thought that all the accessible spruce in the valley of the upper Hudson had been harvested, but there is to-day nearly as mueh sawed at Glens Falls as there was at that time. At that time nearly all the timber standing near this river and its larger tributaries had been cut. Such as stood 5 or 10 miles back from these streams and all that was growing in the valleys' of the smaller streams, or higher up the mountain slopes, would not pay the cost of hauling to the larger streams ; but it is this timber which now furnishes the present supply. Logs are now driven ont of streams which were then thought iucapable of being driven. By damming streams so small that they may almost dry up in midsummer, throwing the logs into their courses during the winter, either above or below the dams, and in spring.time, when the dams are pouring with the floods resulting from the melting of deep mountain suows, tipping the planks of the dams and letting loose the torrents, the logs from remote places are got out to the large rivers where they can be driven. All the rivers of this region, however, are steep and rocky. The logs come down with their ends badly battered, and often with gravel and fraginents of rock driven into the ends in a manner to injure the saws. They most, therefore, be 'butted' before being sawed; that is, a thin seetion is cut from each end, and on this acconnt the logs are cut in the woods 4 ineles or, for the worst streams, 6 or more inches longer than the standard length. The standard length for all logs bronght down the Hudson is 13 feet. The character of these streams is such that long logs, for spars or other purposes, camot safely be driven through them. Sueh sticks are certain to get fastened among roeks and eause bad jams. As already stated, the lumber business upon the upper Hudson is well advaneed in its deeline, and a score of years hence it must become insignifieant under the practiees now pursued, and the future of this valley gives little promise of prosperity; the soil is inferior in quality and not adapted to agriculture, while the timber, once the chief source of its prosperity, is nearly exhausted.
"As a lumber market Albany ranks second in the United States, or uext to Chieago. White pine is the variety of lumber most largely haudled here, and two-thirds of it comes from Michigan by way of the Erie eanal, the remaining one-third eoming from Cauada through lake Champlain, the white pine contributed by New York being an inappreciable quantity. Nost of the lumber firms here are merely commission dealers, althongh in two large mills considerable lumber is dressed before being shipped. The region supplied by this market includes the banks of the Hulson, New York city, New Jersey, and the shores of Long Island sound. A little reaches Philadelphia, and mneh is shipped to foreign ports from the eity of New York. A great deal of the lumber handled by Albany dealers, liowever, does not go to Albany at all, but, sold ly runners, is sent direet by railroad from the Michigan mills to points south of New York. The lamber trade here is still in full prosperity.
"Leaving the beautiful Molawk valley at Rome, the traveler by the Rome and Watertown railroad soon notes a less improved region, and one, indeed, less eapable of improveluent. For a long time the road streteles over a sandy plain; in the higher portions of this plain, not far from Rome, the red and pith pines are seen, and in the wetter places hemlocks and black spruces appear, with white birelı, black ash, etc. On the higher, undulating lands, 20 or 30 miles worth of Rome, white pine and hemlork seem once to have been the most abundant species of the forest ; they now exist only in broken and seattered ranks, although mumerous stumps give evidence of a former heary growth of these two species. Northward from Albion the country gradually rises, hard wood becoming more and more common until on the limestone banks of the Black river at Watertown the patehes of woodland are mainly composed of birch and maple. Yet the soil continues saudy, and at a little distance from the river is favorable to the growth of pine, and I can readily believe that all this sandy tract east of lake Outario was originally eovered with a heavy growth, principally of pine aud hembotk. The pine was long sinee harvested, and now the mills and tanneries are consuming the hemlock. On caeh of the small streams that flow into lake Ontario are established saw-mills whieh cut quantities of hemlock yearly. Little, however, is sawed at Watertown, although a limited anount of logs is driven down to Dexter at the month of the Black river, and there sawed; yet once the neighborhood of Watertown and Dexter was a great center for the production of pine lumber. This region (chiefly its swamps) still yields a little black spuce. The lumber sawed along the Rome and Watertown railroad at Williamstown, Richmond, etc., is mostly sent southward to Syracuse and other places to meet the demand there for coarse lumber. The lumber yards at Watertown are mostly filled with Canadian pine.
"Carthage, in Jefferson county, was once an important lumber center. The 'Long falls' of the Black river furnished milimited water power. Immense quantities of pine and hemlock lined the banks of the river and covered
the plains of the ricinity; northward lay a heary pinery. Canal-boats laden with lumber were towed through the river to Lyon's falls and thence by canal to Utica. Now the pine is nearly all gone from this region, the saw-mills are rotting down and only a little hemlock is sawed herc.
"That portion of the state which lies along the Saint Lawrence river as far east as the vicinity of Malone, and extending some 25 miles back from the river, seldom exceeds 250 fect above the sea-level and is, for the most part, clayey loam, flat and well adipted to agriculture. This tract is now pretty well settled. Proceeding to the sontheastward and rising to an altitude of 250 fcet a wide region of sandy soil is entered, cold, damp, and unfit for agricultural purposes. This is the region of forcst lying northwestward of the mountains in the southern portions of Saint Lawrence and Franklin connties, and has not yet been badly encroached upon by the ax and fire. The destruction of this forest would be a public calamity, so useless is the soil for any other purpose than the prodnction of timber, and so harmful to the scttled country below would be the consequences resulting from clearing it. This forest is, no doubt, capable of yielding, perpetually, an annual crop double that now drawn from it. This estimate, of comrse, is bascl upon the supposition that fires are prevented. But this side of the forest is less invaled br fures than the valley of the Hudson river, and fires do not burn so deeply into the soil nor consume so much of the vegetable matter; they are, conscquently, less fatal to the continuance of timber growth.
"At Canton, in Saint Lawrence comnty, and in its vicinity as far down as Buck's bridge, below Morley, is sawed all the lumber ent on the Grass river. From this point the lumber is shipped principally to Massachusetts and Connecticnt by rail, both via Rome and via Plattsburgh and Rouse's Point.
"Colonel Colton, of Norwood upon the Racket river, explained to me at length the methods employed by him in the lumber business, and, as nearly the same methods are pursued throughout this region, I give his account. Severul weeks of the summer he devotes to exploring the lands of his company, to decide from what tract the stock of logs for the following year shall be drawn. In the settlements near the margin of the forest are men whose business it is to cut and hanl onto the ice of the river during winter the timber desired by the lumber companies. Contracts are made with these men to harvest the timber above a certain diameter on certain specified tracts belonging to the company. The contractors go to their respective fichs of labor as soon as the snow is of sufficient depth, taking into the woods a force of men, horses, and supplies, and building eamps in the ricinity of their work. When a full stock of logs is placed on the river, and the spring floods break np the ice and set the logs going, other contracts are made with the same or other men to drive the logs into the booms of the different mills at a stipulated price per log. If, as is usually the case, logs of several different companies are on the same river, all are driven down in common, and the drive is called a 'mion drive'. Arrived at the uppermost boom-formed by ehaining together logs floating on the surface of the water and held in place by occasional piers, strong but rude structures of logs filled in with rocks, located above the first sawing station-the logs belonging to these mills are sorted out and turned into the different booms, while those belonging below are sent on their way down the channel. Once within the boom of the mills to which they belong, they are again assorted; the pinc, hemlock, and the spruce are separated, and the different grades are floated into separate booms or pockets which lead down to the different mills or saws which are to cut up each separate class. At the mills inclined planes lead down to the water from each gang of saws, up which, chains being attached to the logs, they are drawn by the machinery into the mill. After sawing, the sorting of the lumber into different grades is completed with care. The boards are run through planing-mills which smooth both sides, then through other machines which tongue and groore their edges, and finally fine saws neatly trim their ends. This dressing of the lumber at the mills makes a saving in freight when it is shipped, besides greatly facilitating sales. Colonel Colton invited me to accompany him 20 or 30 miles up the river to sce the 'drive' which was just coming ont of the woods. The highway by which we drove led near the river, and we could see the logs everywhere coming down, adrancing endwise with the current. In many places of still water the entire brealth of the river for some distance was closely covered with them. These were not so small as those usnally secn in the Maine rivers, but were from full-grown trees of the original forest-spruce from 1 foot to 2 fcet in diameter. With the spruce logs were a few hemlocks, usually of larger size; a few pine logs, sometimes 2 or 3 feet in diameter, floated with the others. As the water was lowering, stranded logs were seen everywhere along the shore. They covered gravel banks and bars in the middle of the river, and were piled in disorter on the rocks of the rapids, or, pushing over the waterfalls, stood on end in the midst of the white, pouring torrent.
"A few miles above Potsdam we entered ulon a saudy soil; the farms appeared less productive and the farm buildings and fences gave evidence of less thrift. As we advanced toward Colton, a region near the borders of the forest some twenty years settled, less and less prosperity among the settlers was manifest. The tilled fields appeared incapable of yielding even passably good crops; some of them could do no more than give a small crop of rye once in three years. The grass lands were red with sorrel, which comes np everywhere over this region as soon as the forest is cleared and the gromm bumed orer. The sandy soil is cold and sour, in some places so light as to be blown about by the wind. Above Sonth Colton we drove over sandy plains utterly incapable of sustaining the menger popmlation, which ekes ont a wretched existence by means of fishing and lumbering. My companion aflirmed that settlements had been pushed farther into the forest than they can be maintained, and that they must in most places be abandoned and the land giren up to forest again. All along our way the woodlands were
straggling and sadly ravaged by the ax, fire, and wind. The spruce and pine had been culled out and most of the hemlock had been cnt down and barked. Half-burned stumps and logs and gaunt and blaekened trunks still standing disfigured the landseape on every side.
"The species of trees observed embraced all those common in northern woodlands. In one locality black eherry was remarkably abundant. Formerly the saw-mills of Colton cut pine, as there was a larger proportion of this lamber upon the Racket than is usually found in northern New York; now they do little busness in any lumber.
"As we passed up along the river I saw small squads of 'drivers' stationed in a few places where the character of the river was such that it was liable to become obstructed with logs. By assisting the logs to pass such places great jams are prevented. The main body of the men, howerer, worked at the rear of the drive, scrambling over the disordered piles of logs whieh aceumulate upon the shore or lodge against the rocks in the midst of the current. With their cant-hooks the men pry and roll the logs into the current, springing about on the pile as the logs roll from under their feet. Not unfrequently logs are left by the subsiding waters among the rocks at some distance from the main channel of the river. Files of men on each side then seize them with their cant-hooks and, splashing through the shallow water, bring them by main force into the channel. Sometimes logs become fastened among the rocks where the eurrent is so swift that they eannot be reached by a boat or in any other way. Then hooks attached to ropes are thrown out from the shore; the logs are grappled and thus hanled off into the earrent. The drivers work Sundays and week days, fair weather or foul; their oceupation is full of peril, and mei are lost every year. Such are usually, as a driver assured me, 'men who do not know where it is safe to go.' But sometimes the most eareful men beeome mixed with the rolling logs or seized by the current of the waterfalls and are swept away.
"Franklin county contains 995,279 aeres, and 347,500 aeres are still believed to be timbered. The timbered portion lies in the south end of the county, and beeause it is not watered through much of its area by streams of sufficient size for driving out the logs, mueh of the timber is inaceessible, or rather, the prices of lumber do not yet warrant bauling the logs long distances. The country aeress the line of the Ogdensburg and Lake Champhain railroad appears exhausted of its spruee and hemlock. Some tracts of hard wood are still standing, but the poplars, whose yonng growth often coneeals the stumps and prostrate trimks of dead hemloeks, really seem in many places the most common species. But little timber land remains in Clinton county and, until the present season, lumbering on the Saranae had been for sereral years nearly su spended. This year, howerer, a company was cutting a few million feet of lumber drawn from the woods of Essex and Franklin comuties. The lumber of the eastern side of the Adirondack wilderness mostly comes out by the way of the Saranac and the Hudson rivers. The mountain sides about lake George are being denuded of their spruce, which is sawed in the vieinity of Ticonderoga, and here, as elsewhere, fires follow the ax in their usual fashion."

The forests of the Adirondack region have suffered severe loss at different times, particularly in 1878 , by the sudden death of great blocks of black spruce. Mr. Pringle earefuly studied the extent of this destruction and the causes whieh produced it. In regard to these, great diversity of opinion exists among woodsmen and others familiar with the Adirondack forests. It has been generally supposed that the trees were killed by an unusually severe summer drought, or by the attaeks of a boring insect working under the bark; but the testimony gathered by Mr. Pringle points to other canses of destruction. The spruce oceupies dry mountain slopes and ridges and deep wet swamps never greatly affeeted by drought. It is noticed that as many trees have died in the swamps as upon the dry slopes. It is evidently not drought, then, which has eaused them to perish. The opinion, too, is firmly held by the most intelligent observers tlat insects do not attack the trees until they are dead or nearly dead, and are never found in cigorons living speeimens.

The black spruce is not a long-lived tree, and this dying out may indicate that the old trees of this forest, probably all of nearly the same age, had so nearly reached the limits of their natural existenee as to be unable to withstand some nnusual or severe elimatic state, such as a period of intense winter coll or late spring frost. The following extracts from Mr. Pringle's report will indieate the opinions of those best able perhaps to form an opinion upon this subjeet:
"Mr. Mark Moody, residing at the foot of Tupper lake, a hunter and woodsman who has passed his life in the forest, testifies as follows: 'The spruce died fearfully in his vicinity about two years ago; he tried to learu the cause. Sixteen years ago the spruce had died ont much in the same way as it has been doing lately. It is the older trees which die. They seem to die by crops, suceessively. Under the large trees were always springing up small trees to take the places of those that perish. There scems to be a narrower limit to the life of the sprnce than to that of any other species. Other trees do not die in the same manner, by crops. The spruce does not seem to enjoy the same green old age, long drawn out, as other trees do, but when it has reached its full growth seems to relinquish its vitality without any apparent or sufficient cause, and before giving evidence of decay or any diminution of rigor.'
"Mr. Wardner, of Bloomingdate, Essex comnty, an old hunter, woodsnan, and guide, testified as follows: 'The sprace timber on this side of the forest has failed clear through to its northern borders, in the same mamer and during the same seasons as in other portions of the region.' Mr. Wardner first noticed the leaves falling and covering the grond in 1878; the destruction was continued through 1879, but during the past season he had met
with very few trees that were dying. Spruce timber had perished in this manuer before, and he pointed ont a broad valley in which most of the trees were dead and falling when he came into this region, twenty-five years before. He had carefully endeavored to ascertain the cause; was positive that insects either under the bark or npon the leaves had nothing to do with the death of the spruce trees, and he is sure that it is not due to drought, as he has seen the greatest destruction on the northern slopes. No aetive destructive agent being apparent, he inclines to the opinion that the spuce trees die becanse they have reached the limit of their life, and that it is some jeculiarity of the winter rather than the summer that turns the scale against them; for this reason they perish in quantities, sometimes in scetions. He has counted the rings of many trees, and considers 100 to 150 years the arerage lifetime of the spruce."

Whatever has caused the destruction of these forests, the damage thus occasioned, both in the loss of valuable timber and in the increased danger of forest fires from the presence of snch a body of dead wood is enormons. It is believed by Mr. Pringle that from one-thitd to one-half of the fully-grown spruce timber left in the Adirondack region is dead.

## NEW JERSEY.

The original forests of New Jersey have disappeared, except from some of the highest and most inaceessible rilges situated in the northwestern part of the state, and these, with the inereased demands of the railroads for ties and other material, are now fast losing their forest covering. The forests of New Jersey are insuffieient to supply the wants of the population of the state, and nearly all the lumber it eonsumes is brought from beyond its limits. The forests of pitch pine, which once eovered large areas in the southern counties, hare now generally been repliced by a stunted growth of oaks and other broad-leaved trees.

The forests of New Jersey, especially those on the dry sandy soil of the southern part of the state, have long sutlered from destructive fires. During the census year 71,074 acres of forest were reported destroyed by fire, cansing a loss of $\$ 252,240$. Of these fires twenty eight were set by locomotives, seven throngh malice, seven by fires set on farms escaping to the forest, and six each by the carelessness of hunters and charcoal-burners.

The mannfacture of cooperage stock and other industries using hard woods have been largely abandoned, owing to the decrease of the local supply of timber.

## PENNSYLVANIA.

Pennsylvania once possessed vast forests of white pine and hemlock stretching over both flanks of the Alleghany mountains and extending from the northern boundaries of the state to its southern limits. East and west of the Alleghany region the whole country was covered with a heary growth of broad-leared trees mixed with hemlocks and occasional groves of pines. Merchantable pine has now almost disappeared from the state, and the forests of hard wood have been either replaced by a second growth or have been so generally enlled of their best trees that comparatively little caluable harl-wood timber now remains. Large and valuable growths of hemlock, however, are still stauding in northwestern Peunsylvania. From all parts of the state mannfacturers using lard wood report great deterioration and scarcity of material, and Pennsylvania, which during the census year was only surpassed by Miehigan in the value of its forest crop, must soon lose, with its rapidly disappearing forests, its position as one of the great lumber-producing states.

The following estimates of merchantable pine and hemlock standing in Pennsylrania May 31, 1880, have been prepared by Mr. H. C. Putnam. They are based upon the reports of a large number of timber-land owners and experts familiar with the forests of the state:

WHITE PINE (Pinus Strobus).


HENLOCK (Tsuga Canadensis).


Of lumber of all kinds $1,848,304,000$ feet, including $258,561,000$ shingles and $183,740,000$ laths, were manufactured in the state during the census year; the nature of the returus, however, prevents anything beyond an estimate, based upon extended correspondence, of the amount of pine and hemlock sawed.



#### Abstract

- Numerous bodies of pine too small to be indicated on the map, of no great commercial importance and not included in these estimates, still remain seattered over the region originally occupied by pine forest.

The forests of Pennsylvania, especially through the mountain regions, have long suffered from destructive fires. During the census year 685,738 acres of forest were reported destroyed by fire, with a loss of $\$ 3,043,723$. Of these fires a large proportion were traced to locomotives and the escape of fires from farms to the forest.

The forests of Pennsylvania produced during the year 1879 2,866,010 pounds of maple sugar. The following extracts are made from Mr. Pringle's report upon the principal lumber-producing regions of


 the state:"Originally the broad pine belt of northern Pennsylvania, occupying the region drained by the numerous streams constituting the headwaters of the Susquehanna, extended from Susquehanna county, in the northeastern corner of the state, westward through Bradford and Tioga counties to Potter connty, although this county never had as mnch pine as the others, and thence sonthwestward over Cameron, Elk, and Clearfield counties. The heaviest growth of pine in all this region was on Pine creek, in the southwest part of Tioga county. Now there is but little pine lett in Susquehanua and Bradford counties, these counties being thickly settled; and in Tioga counts, from which one firm alone has cut four billion feet, there now remain standing but little over one billion feet. The greatest part of the pine now standing in the Pennsylvania forests is on the upper waters of the West Branch of the Susquehanna, in Cameron, Elk, and Clearfield connties. In some of the counties adjoining these, as MeKean, there was once, and still may be, a little pine timber.
"Active lumbering operations on the West Branch of the Susquehanna were begun in 1850, when the boom of the Snsquehanna Boom Company was constructed at Williamsport. At this place the greatest part of the lumber on the West Branch is sawed. At Lock Haven, 25 miles above, on the same river, advantage was taken of the feeder-dam of a canal to construet another boom, and a few companies operating in lumber are now located there, about one-tenth as much lumber being sawed as is handled at Williamsport. Some of the eompanies, however, are removing from Lock Haven to the larger center of Williamsport. Below Williamsport no logs are driven, lut a little timber squared by the ax in the woods and left at full length is mado into rafts and taken down the main Susquehanna. Some of this is sawed in the towns on the river, and the remainder is taken to the large markets to supply the demand for squared timber for ship-building, etc.
"Williamsport is sitnated on the north or left bank of the West Branch of the Snsquehama, and for 2 or 3 miles along the river side are ranged the mills and lumber-yards of the thirty-four lumber companies operating here. We risited a large number of mills and found much the same methods employed in all. The logs are first slit up by gang-saws; then each board or plank is put through an edger, where two circular saws eut a strip from cach side to give the board a square and straight edge; the boards are then assorted into two or more grades, loaded on trucks, and moved over tramways which ramify through the lumber-yards adjacent to each milh. The fragments of boards and better portions of the edgings are made into fence pickets and other portions into laths, and the fragments and strips which will not even make laths are carried to one side and adrled to a burning pile. The fragments thus burned (rather than thrown into the river) constitnte the only waste, for the sawdust supplies the engines with fuel. This being eut chiefly from heart-wood makes better and more casily handled fuel than the sapwood strips. Even these are, howerer, often ent and put up into bundes of lindling-wood for eity use.
"In the woods the trees are sawed into $\operatorname{logs} 12,16$, or 18 feet in length, as can be done to the best adrantage and the least waste of timber.
"The West Branch of the Susquehanua must be an exceptionally fine river to drive, judging from the comparatively unbattered condition of the $\log s$ seen about the mills. The smaller streams in the woods are furnished with flood-dams, and from these extend thronghont the timber belt numerous narrow-gauge railroads, trammays, and slides for bringing down the logs. Little hanling is done npon wagons or sleds, the ground in the woods being too rough, it is said, for hauling logs with teams. It is probable that snow does not fill up the depressions and smooth the surfaces to the same extent as in the northern woods.
"The lumbermen of this place at first were content to send their hmber to market in the simplest shape, but of late, as the supply diminishes more and more, mills and shops are being built for the mamfacture of doors, sashes, blinds, packing-boxes, furniture, etc. Some companies have so exhausted their pine lands that they ean in future only earry on husiness in this way, bnying the rongh timber from their neighbors. As the pine lands of one firm after another are exhansted the pine remaining comes to be held by a very few barties, who know its value. Not all of these are operators, but, living at a distance, sell stumpage to mamfacturers.
"The following table, giving the amounts of lumber rafted ont of the Susquelama boom at Williamsport since the record has been kept, may be of interest as showing something of the rise and decline of the lumber business at this important center. The greatest prosperity or fullest development of the business was attainerd, as will be seen, in 1873. After that year, with the steady deerease of the supply of pine and the consequent inerease of expeuse in securing logs, the ammal stock steatily diminished until 1877. During the past three years the increasing demand for lumber has stimulated the operators to greater activity, bat more than to this canse the recent gain in the yearly stocks is due to the substitution of hemlock for pine, the ratio of hemlock to pine
being at present as 1 to 4 , although the average for the last seven years is but as 1 to 10. As the supply of pine timber is exhausted, hemloek will be more and more handled until it will become the most important timber of this region. The summary is made for the last eight years only:

Tears.	Namber loge	Feet, board measure.	Years.	Number logs.	Feet, beard measure.
1862.	196, 353	37, 853, 621	1875.	1,096, 897	210, 740, 956
1863.	405, 175	76, 475, 820	1876.	715,087	134, 300, 293
1864.	511, 549	96, 505, 681	1877.	569, 827	106, 944, 257
1865.	379, 302	72, 421,408	1888.	017, 552	112, 069, 602
1866.	615,373	118,831,494	1879.	1, 040, 278	190, 549,111
1867.	833,388	163, 196,511	1880 (to November 21).	763,708	128, 558,959
1868.	853, 663	165, 338,380		7,395,455	1,382, 342, 272
1809.	1,080,511	223, 000, 305	Locs remaining in river	7,395,455	
1870.	1,099,777	$225,180,973$	November $21,1880 \ldots \ldots$.		25,000, 000
1871...	84, 129	116, 661, 181			1,407, 342, 272
1872	1,484, 103	297, 185, 652	Deduct bemlock		140, 734, 227
18.38.	$1,582.460$ 369,380	318,342, $180,734,382$	Williamsport pine, 1873-1880		260,608, 045

"It is proper to add that the variations in the yearly stock of logs shown above are in some measure due to a greater or less proportion of each anmal cut being left behind in the woods or in the streams, from varying supplies of water or from other peculiarities of the season.
"The lumber manfactured at Lock Haven and Williamsport is shipped by railroad and canal to Baltimore and Philadelphia and to intermediate cities and stations.
"I tound it more difficult to obtain information of the extent and limits of the hemlock woods of Pennsylvania, and of the amonnt of the standing timber and the ammal crop of hemlock, than I did to get the same faets respecting the pine. Lumbermen agree that there was originally far more hemlock in this state than pine, and they speak of it now as inexlanstible, which is not strietly true, for it is doubtful if it bolds ont to snpply the inereasing drain made upon it by tanneries and saw-mills for more than twentry five years to come. Large quantities of hemlock have been wasted. Much that grew intermingled with the pine has died after the pine las been removed, partly from exposure to fuller smight and summer drought, and partly to forest fires induced by and following lumber operations. In the early days of the tanning industry of this region, when hemlock lumber was esteemed of little value, and whenever of late years the Inmber trade has been so dull as to offer no inducement to send to market the trumks of the trees felled for their bark, large quantities of these have been left in the woods to decay. Now, Lowever, with a good market for hemlock lumber, tanning companies owning hemlock lands, or the contractors who furnish the tameries with bark, buying for this purpose stumpage from the proprietors of the timber-lands, often own saw-mills in the timber region, and cut aud slip this lmber to market by railroad.
"Inasmuch as hemlock, besides mingling more or less with pine throughout the pine belt, scems to lave formed' a border entirely around the pine, the extent of the hemlock woods, as well as the quantity of hemlock timber, has always been much greater than of pine. Beginning in Wayne county, in the extreme northeastern corner of the state, the original hemlock forest extended westward through the northern tier of connties as far as Warren comnty, in the vieinity of lake Erie. Thence its bounds may be traced sonthward through Forest, Clarion, and Jefferson, and thence eastward through Cleartield, Center, Clinton, Lycoming, and Sullivan counties. Now the northeasterv counties are for the most part cleared, and not only have the outskirts of these woods been ent off on all sides, but their continuity has been completely broken mp thronghout its whole extent by countless clearings. and settlements. Yet, however mach the hemloek forest has suffered, it possesses to day greater value than did all the pine standing in 1850 . Quite neglected a few years ago, hemlock is appreciating rapidly in value and importance, anl ere many gears shall have passed it will be almost the only kind of lumber kuown in the Williamsport market. The best grades of hemloek bring as ligh a price as serub pine, the product of the shorter and more knotty trees grown on high land. Althongh as a rule Pennsylvania hemlock is of superior quality, much of it being nearly as good as spruce, yet here, as well as etsewhere, considerable variation in quality is noticed. Lumbermen classify hemlock into two kinds, red and white, according to the character of the wood, but the more intelligent among them attribute the difference to soil and sitnation. White hemlock, being sonnder, firmer, and straighter grained, constitutes the highest grade. Red hembek is more brittle, more inclinel to splinter, and liable to be found more or less decayed when the trees have gained full size. In this condition trees are said to be 'shaky'. Such timber is gencrally foum on bottom lands, while the hembek of high hillsides is apt to be short and serubby. The quality of the hemlock seems to deteriorate west from the center of the state. The Pine Creek hembek is considered better than that of the Simamahoning, and this better than that on the Alleghany. Seldom more than two good logs can be oltained from a trunk, the thitd and fourth logs being generally interior and knotty; $s, 000$ feet per acre is here considered a good yield of hemlock, and 10,000 feet a large yield.
"From Williamsport to Loek Haven the valley of the West Branch of the Susquehanna is usually less than a mile in width, being bounded by abrupt and roeky ridges a few hundred feet iu height. At Lock Haven we .
ascended the ridge on the south side of the river, some 800 feet in altitude, in order to examine the moderate forest growth with which it was covered. In faverable places scattering specimens of white pine indicated the crop these hills have yielded the lumberman in former years. Hemlock, also, was seattered over the hillsides, but even as late as the present year most of the trees in this immediate neighborhood had been felled for their bark; their peeled trunks lay strewn over the hillsides, being left to decay within a mile or two of the saw-mills of Lock Haven. The summit of the ridge afforded a good view of the surrounding conntry. Parallel ridges of a similar altitude, and which appeared more heavily timbered, lay back of the one on which we stood; between them were seen narrow valless occupied by farms. On the north or opposite side of the river successive ridges rose higher and higher as they receded from the river, and in the distance seemed to lose themselves in a plateau whose altitude was equal to that of the ground on which we were standing. The gentle slopes and ronnded summits immediately above the river showed smooth, cultivated fields interspersed among woodlands of deciduons trees. The more distant heights displayed a darker forest growth where hemlock and pines predominated.
"From Loek Haven to Warren, the connty-seat of Warren countr, even on the hillsides overlooking the river, close to the banks of which the railread crept, but especially where we were able to look into the deep runs coming down to the riser by a gradual desceut from the table-lands of the divides, seldom more than a few miles back above the river, we saw much original forest still standing and principally composed of hemlock. Some white pine appeared as scattering trees or in groves, and some hard rood. The proportion of hard wood increased as we ascended the divide between the waters of the Susquehanna and those of the Alleghany river.
"On the summit of this divide the forest had a truly northeru aspect, except that we missed the spruce, not seen in Pennsylvania. The dark foliage of the hemlock mingled with sugar maples, beeches, and birches. For many miles above Lock Haven it was a second growth which occupied the hillsides, a thin growth of white oak, chestnut, locust, ete., which had fellowed the lumberman and forest fires. Considerable second-growth white pine was seen in a few places, but on this none of the present generatiou seem to set much valne, and I have yet to meet any one in the state whe gives a thought te enconraging and preserving such growth. To consume the forests as speedily as possible, satisfied with what can be realized from them in the operation, appears to be the spirit which rules this region. Alternating here and there with the original forest mentioned above were seen all along the railroad leading throngh this timber belt, but especially in the vicinity of the settlements and lumbered districts, tracts which have been ranged by fire. Sometimes the fires had spread from the clearings into uneulled timber, killing everything, large and small. Sometimes 'hemlock slashes' had burned over after the trees had been ent and 'peeled'. Always the charred stumps thickly dotted the ground, and the blackened, halifeonsumed trunks strewn over the soil in confusion gave to the landscape an aspect of complete desolation. The bird cherries and poplars, which in the forests farther north soon cover and hide from riew such wastes of ruin, are wanting here.
"I learned that the best hemlock grows on the steep sides of the deep runs, and that upon the summits of the divides were considerable barrens, the soil of which was sometimes too poor to support any arbereal growth. Farther to the west the summits of the dividing ridges are occupied by hard wood chiefly, although hemlocks mingle with the beeches and maples.
"Arrived at Warren, we find that we have passed through the woods and are in a long-settled and wellimproved country, and, judging from the scattered patches of woodlands occupying the low hills within view, the regien of hard-wood forest has been reached. The coniferous forest belt only extends into the southeastern quarter of Warren county; the nerthern and western portions, lying beyond the Alleghany river, yicld oak, chestnut, hickory, etc. Originally there was a little pine seattered over the southeastern portion of Warren comnty, but this has been mostly cut, and hemlock remains, as it ever has been, the most important timber in this part of the county. In Forest countr, next south of Warren, pine is local, being seattered in small quantities throughont the county. - On the highlands there is much hard wood, beech, maple, and white wood existing in belts between the streans. This, however, may be called a hemlock county. In Mckean county a central table-land is covered principally by a growth of maple, beech, ctc. In the remaining portions of the comnty the timber is chielly hemleck. The valley of the Alleghany river, in the eastern part of McKean county, is mostly cleared and improved. Elk county is oue of the best counties for hemlock. Through Elk, the southwestern corner of McKean, aud the sontheastern corner of Warren runs the Philadelphia and Erie railroad. Along the line of this road, as it passes throngh this portion of the timber belt, are located the largest tanneries of the United States. These are consuming the hemlock of this regiou at an enormous rate, andi, in addition to the vast amonnt of bark which they consume, large quantities are shipped out of the region by railroad. The first important tameries of Warren comnty were established 12 or 15 years ago, and at the present rate of consumption the hemlock of this county can hardly hold ont 20 years longer. The land, after the forest has been removel, is excellent for agricultural purposes throughent this region, and on all sides pioncers are making themselves farms. These men prefer to begin in the undisturbed forest rather than locate on the slashes, because they can pay for their land with the hemlock bark which it yields; and from a radins of 15 miles bark is drawn and sold at from $\$ 450$ to $\$ 5$ a cord to the tameries. On an average, tour trees yield a cord or ton of bark, the equivalent of 1,000 feet of lumber, board measure. In Warren comuty from 5,000 to 0,000 acres of hemlock were cut down in 1880, and there is no possibility of this growth being renewed, lor every foot of slashed land is eventually burned over, and sometines the burnings are repeated until the soil is nearly ruined for agricultural purposes. From the dry slashes the fires extend to a greater or less distance through the living
wools, ruining not only heary bodies of hemlock, but also destroying the belts of hard wood intermixed with the hemlock. Notwithstanding stringent legislation in this state upon the subject of forest fires, they seem inevitable, and especially so in the slashes. They spread from the clearings constantly made throughont this timber belt by the settlers, and, as the forest abounds in deer and its streams are stocked with fish, hunters and fishermen are alwas in the wools, and from their camp fires spread many conflagrations. Many fires here also are set by a tribe of halfecivilized Indians residing in this region, to bum over the huekleberry fields in order that the bushes may renew themselves and yield fuller crops; or, where it is so easy to start a fire and conceal its origin, unany doubtless arise from malice.
"In this region the aspen springs up on land apon which the hemlock has been destroyed, but this tree manifestly does not thrive as it does in northern woods. Yellow and black birch, bird cherry, beceh, maple, white oak, chestnut, black cherry, ete., are the trees whiel spring up slowly among the briers, and cover burned land with a rather meager second growth. If a few pines have been left on the hilltops they may scatter a few seeds and give rise to some salplings, but as regrards hemlock, tires kill it ont clean, seedlings and seed; and if the 'peelers' and the tires happen to leavo any seattering trees standing, these, being more sensitive to changed conditions than pines, are seldom able long to smrvive as seed bearers. The bird cherry only thrives on cold, wet soils here. There is another phase of the slanghter of the hemlock forest: As the pine forest gives out, large numbers of laborers tum to the hembock woods and find employment as bark peelers. In the pine woods work is mostly suspended when spring arrives; then larger nombers of men come into the hemlock woods than can find work at satisfictory wages, and these sometimes set fires in the slashes, which spread into the living woods and kill large quantities of hemlock. To save the bark it must be peeled at once, or before it adheres to the wood and becomes injured by worms, and thus employment is given to a larger force of men.
"The pine now remaining in Clearfield county is mostly found in the northern and the sonthwestern portions of the county. The eastern and southeastern portions are now principally cleared and improved, as the entire county is destined to be, the soil being prineipally a strong, clayey loam, excellent for farming purposes. Already fom fifths of the pine timber originally standing in the county has been removed; most of the hemlock, which orginally abont equaled in amount the pine, remains. There are no tanneries in this region, and after the pine is cut the hemlock is next harvested, the bark being saved and shipped to the tanneries below to the amount of from $\bar{j}, 000$ to 6,000 cords annually. Fires are here sometimes started by hunters in order to clear away the young second growth, that they may be able better to see the deer. One important reason which lumbermen have for planting their saw-mills near the woods, in preference to driving all their logs to the sawing centers below, is that they can then work into shingles, etc., many trees which, being defectire by reason of rotten spots or other blemishes, would not be worth driving down the river. Such trees are seen standing here and there all through the woods, having been left behind by the lumbermen. Sometimes persons buy this culled timber and erect shingle-mills, ete., to work it up.
"With respect to the maximum yield of pine per acre, it rould seem that 10,000 feet was a good yield for tracts of 400 or 500 acres in extent, although smaller tracts of 50 acres ant upward will often cut 25,000 feet to the acre, and even a yield of 100,000 feet to the acre has been reported. The rough nature of the surface in all this region often necessitates the use of slides to bring the logs from the forest to the streams. They are constructed by pinning to ties of hemlock some 3 feet in length hemlock logs about a foot in diameter placed side by side, their inner sides above the point of contact being hern with care to form a broad $V$-shaped trough along which the $\operatorname{logs}$ may be slid. Except where there is considerable descent $\operatorname{logs}$ cannot be slid unless the weather is frosty, when the slide can be kept icy by means of water sprinkled over it from time to time. Slides sometimes are. built for 6 or 8 miles back into the woods, usually following up some run so as to get an even and gentle grade. By this means the greatest part of the logs come down to the streams, for sleds are not used in this country. Most of the hazard of lumbering depends upon the lumberman's ability to slide his logs suceessfully. They can be cut at any time in the woods, and almost any year can be driven to the mills when once in the water, but mild weather interrupts sliding and deep snows impede the operation; so that in open winters lumbermen are sometimes compelled to do their sliding in the night time, when ice will form on the slide. The logs, stripped of their bark, aredrawn singly, by horses with chains, from the places where they have fallen to the upper end of the slide. When a sufiticient nomber-from 6 to 40 , accoiding to the grade and the size of the logs-hare been placed end to end in the sliele, the hook of a chain is driven into the rear $\log$ near its forward end, and horses are attached which walk a tow-path formed on one side of the slide, and push ahead of them the 'trail' of logs, thos bringing them doivn to the stream.
"Only in the late autum and in the winter is it thonght expedient in Pemsylvania to fell pine; if cut in summer, when the bark will part from the wood, the sap-wood soon assumes a blackish appearance and disfigures the lumber. As a rule hemlock is here cht and pecled in summer, at the time when operations in pine are suspended; thus liy alternating operations in pine and hembok the hands are kept employed throughont the whole year. In cutting trees the several parts of the work are allotted to different men; some merely fell the trees, others measure them of into suitable lengths and cut away the limbs as far as the upper end of the last log taken, where they sever the tol of the tree from the trunk hy means of the ax ; others follow in pairs with crossent saws and cut. the trunk into logs."

3
-



## SOUTH ATLANTIC DIVISION.

## DELATVARE.

The northern portion of the state, comprising New Castle and Kent counties, was once covered with the decidnous forests of the Atlantic plain. Conifers, with the exception of the red cedar, were rare. In the sandy soil of the sonthern part of the state rarious pitch pines flourished, forming fully one-half of the forest growth. These pine forests were long ago consumed and are now replaced by a secoud growth, generally composed of the species which originally occupied the ground; and throughont the state the best hard-wood timber has been culled from the forest. Large quantities of wheel and cooperage stock were formerly manufactured in the northern counties; but of late years these and other industries using the products of the forest have, for want of material, gencrally decreased in importance. The mannfacturers report a general scarcity of timber.

During the census year 3,305 acres of woodland were reported destroyed by fire, with a loss of $\$ 15,675$. Of such fires six were set by locomotives, six by the careless burners of brush upon farms, and two through malice.

Kent county.-About one-quarter of this comity is reported covered with forest. A few small mills saw oak from the immediate neighborhood into shipstuff and car lumber, shipping to Wilmington, Philadelphia, and even to New York.

New Castle countr.-Abont one quarter of this county is reported covered witl woodland, mostly of second growth and attached to farms. The large establishments for the manufacture of gunpowder, located in the neighborheod of Wilmington, consume large amounts of willow wood, generally grown for the purpose upon farms in their immediate vicinity.

SUSSEX COUNTY.-One-third to one-half of this county is reported corered with woodland. Numerous small mills, obtaining their supply of logs from the immediate neighborhood, saw oak for shipstuff.

## MARYLAND.

The nerthwestern portion of the state, crossed by the ridges of the Appalachian system, was once covered with the forests of white pine, hemlock, birch, and maple peculiar to this mountain region. The central portion of the state, extending from the mountains to the shores of Chesapeake bay, was covered with oaks, hickories, gums, and other decidnous trees in great variety, the eastern peninsula largely with different species of pitch pine, occupying sandy plains, or mixed with deeidnous trees.

In the mountain region considerable bodies of the original forest remain upon the highest and most inaccessible slopes; in the remainder of the state this, where the land has not been permanently cleared for agriculture, is now largely replaced by a second growth, or-the best timber at least-has been everywhere culled.

A large amount of cooperage stock was formerly manufactured in this state. This industry has, however, greatly suffered from the deterioration and exhaustion of the local supply of timber; manufacturers report the best stock nearly cxliansted and the substitution for oak, formerly exclusively used, of clm and other inferior woods now bronglit from beyond the limits of the state.

During the census ycar 41,076 acres of woodland were reported destroyed by forest fircs, with a loss of $\$ 37,425$. These fires were traced to the carelessness of hunters, to locomotives, and largely to the escape from farms to the forest of fires set in clearing land. The principal lumber manufacturing establishments using Maryland logs are situated in Garrett county; these saw whito pine, hemlock, and oak to supply a limited local demand and ship to Baltimore, Philatelphia, Pittsburgh, and Wheeling; considerable oak timber is sent to Enrope from this county. During the jear 1879 the northern counties produced 176,076 poumls of maple sugar.

## DISTRICT OF COLUMBIA.

The original forest has disappeared from the District of Columbia and has been replaced by a second and third growth of oadse, serub pines, and other trees. The area occupied with woods is probably slowly increasing. A single saw-mill, situated in the city of Washington, saws logs grown beyom the limits of the District.

## VIRGINIA.

The forests of Virginia, like those of the Carolinas and Georgia, fall naturally into three divisions, dependent upon the elevation and soil of the different parts of the state. The monntains and ridges of its western bonler aro
covered with a hears growth of pine, hemlock, white oak, cherry, yellow poplar, and other northern trees; over the region extending east of the mominains oaks, principally black oaks, once formed the prevailing forest growth; throngh these nre now mingled long stretches of varions pitch pines, occupying exhausted and barren soil once devoted to agriculture. The eastern comnties are covered with the forests of the Maritime Pine Belt, generally contined to the Tertiny deposits of the coast and extending inland to the head of tide-water of the principal streans; along the western borders of this pine belt the forest growth is nearly equally divided betveen the pines and the broad-leaved species.

The inaccessible monntain region in the sonthwestern part of the state still contains immense quantities of the original oak, hickory, walnit, and cherry, the scanty population of these mountains haring made butslight inroads upon the forests. Railroads have hardly penetrated them, while the streams which head here are unsuited to carry to market the hard woods of which this forest is largely composed. The most valuable hard-wood forest remaining on the continent exists in southwestern Virginia and the adjacent counties of West Virginia, Kentuckr, Tennessee, and Forth Carolina. From the central and eastern portions of the state the original forest las almost entirely disippeared, and is now replaced by a second growth, in which the Jersey pine and the old-field pine are characteristic features, gencrally replacing more valnable species of the original growth.

Huring the ceusus year 272,319 acres of woodland were reported ravaged ly fire, with a loss of $\$ 326,944$. Of such fires the largest mmber was traced to the careless burning. of bush upon farms and to locomotives.

The mamufacture of cooperage stock is increasing rapidly in the western part of the state, and great quantities of staves are exported thence directly to Enrope, as well as oak, yellow poplar, and walnut in the log. The manuficture ot tobaceo cases from sycamore lumber is an important industry in the neighborhood of Lynchburg and other tobaceo-distributing centers. Considerable quantities of hand-made shingles are produced in the eypress swamps which ocenpy a large portion of Norfolk and other eastern counties. A large amount of secondgrowth pine (linus Teda) is shipped from the different Virginia ports by schooner to New York for fuel, and this second-growth pine furnishes the principal building material used thronghout the state. The grinding of oak and sumach bark and the manufacture of taming extracts are important and profitable industries of the state.

## WEST VIRGINIA.

The forests of West Virginia, with the exception of the belt of pine and spruce confined to the high ridges of the Alleghany monntains, are principally composed of broad-leaved trees, the most important of which are the white and chestnut oaks, the black walnut, the yellow poplar, and the cherry. The white pine and spruce forests reach within the state their southern limit as important sources of lumber supply.

The forests have been largely removed fiom the counties bordering the Ohio river, and the most valuable hardwood timber adjacent to the pricipal streams, especially black walnut, cherry, and yellow poplar, has been culled in nearls every part of the state. But slight inroads, howerer, have yet been made into the magnificent body of harl-wood timber covering the extreme sonthern counties, which still contain vast quantities of oak, cherry, and poplar.

The black walnot found seattered everywhere in West Virginia is least plentiful in the northwestern and Ohio Rivel connties, and most abondant along the upper waters of the rivers flowing into the Ohio through the sonthwestern part of the state. Yellow pophar is found throughout the state, and is still abundant about the bealwaters of nearly all the prineipal streams. Large bodies of eherry are found in Greenbrier, Nicholas, Webster, and other counties immediately west of the mountains, and a large amount of hemlock is seattered through the vallers and ravines of the northeastern part of the state and along the western slopes of the Alleghanies. The area still oreupied by white pine is estimated to extend over 310 square miles, and to contain about $990,000,000$ feet of merchantahle lumber. The principal centers of hmber mannfacture are along the Kanawha river at Ronceverte, in Grembrier comnty, at Parkersburg, and along the npper Potomac.

Pintial returns of the hoop-pole industry gave a product during the census year of $3,549,000$, valued at $\$ 146,000$.
During the census year 476,775 acres of woods were reported destroyed by fire, with a loss of 8155,280 . Of these fizes the largest number was traced to the careless elearing of land for agricultural purposes, although many hath their origin in sparks firom locomotives.

The manufature of cooperage stock is fast increasing in importance, and scems destined, with the exhaustion of the more accessible hatd wool forests of the comitry, to a ssume a much greater development than at present Lange guantities of hack walnut, yellow poplar, and oak in the log are shipped to northern markets and to Europe.

The following notes upon the forests of West Virginia are extracted from Mr. Pringle's report:
"Entering West Virginia at Keyser (New Creek) by way of Cumberland, Maryland, we find ourselves in one of the marow vallegs lying among the low abrupt ridges of the northern Alleghanies, anong which we have been traveling since we reached the vieinity of Williamsport, Pennsylvania. Coning south from middle Pennsylvania, howerer, the forest growth covering the long monntain chains within view from the railroad becomes hearier and heavier, the evitenees of tire and ax largely disappearing. On the hills above Keyser temer evergreens appeared than I hat previonsly seen. A few slopes were prineipally ocenpied by pine in variety, but the mountains of this

region were covered with a growth of deciduous trees, white, black, red, Spanish, and chestuut oaks, hickories, butternuts, black walnuts, yellow poplars, locusts, elms, sugar maples, etc. At Piedmont some $\$ 200,000$ have been expendediu the construction of a boom on the North Branch of the Potomac. At this point, as well as at Swanton and Deer Park, on the Maryland side, there are mills sawing chiefly white oak, and also cousiderable white pine, spruce, hemlock, poplar, white ash, etc. Some spruce which had not been seen or heard of in the timber belt of Pennsylvania is found 20 miles above Piedmont. The market for lumber mannfactured here is chiefly eastward. Much of the oak is sent to Europe, partly in the form of squared timber, partly cut 5 by 12 inches and from 15 to 20 feet long. The mills at Swanton and Deer Park are located on the railroad, and cut timber is hauled to them from the vicinity. The mills at Piedmont are fed by logs driven down the river from the western cortions of Mineral and Grant counties, West Virginia. This lumber is chiefly oak, spruce, and hemlock. Great difficulty is experienced in driving this part of the Potomac, as it is a swift and rocky stream. Logs, especially oak, constantly lodge on the rocks or banks, and there has been great difficulty in maintaining the boom and dam at this point.
"Rowlesburg, in Preston county, owes its existence as a lumber depot to the fact that the Cheat river, upon which it is situated, as it passes through the Briery mountains, for a distance of 25 miles below this point has so narrow and rocky a channel and so swift a current that it is not possible to get the logs farther down the stream. Above Rowlesburg the Cheat river is a good stream to drive, and any one of its branches can be driven from a point 125 miles above that point. From the mouth of the Black Fork, 30 miles above, the timber is brought down in rafts rather than as separate logs; this is because there is no boom as yet at Rowlesburg to stop the logs. There are small booms on Black and Shaver's Forks, many miles above Rowlesburg. Scattered along the river at some distance above howlesburg there are a few small mills, the product of which is floated down the stream on rafts. The timber of Preston connty between Rowlesbung aud the vicinity of the mouth of the river is oak, poplar, chestnut, ash; beech, yellow beech, hemlock, basswood, and hickory.
"The timber of Canaan valley, in Tucker and Randolph connties, is largely hemlock on the lower lands, on the higher situations and slopes sugar maple and beech; and, as soon as a suitable elevation is reached, sprnce is mingled with black cherry.. In other portions of Tucker county and on the tributaries of the. Cheat river, flowing out of Randolph county, the timber is chiefly oak, poplar, ash, spruce, cherry, black walnut, white pine, etc. This, however, is not a black-walnut region, and there are here nowhere more than scattered trees; a careful search has failed to find any great body of this timber here. It is estimated that $2,500,000,000$ feet of yellow poplar are still standing in the valleys of the Cheat and its tributaries.
"Shaver's Fork is heavily timbered with spruce. A boom has been constructed at Grafton, on Tygart's Valley river, a main branch of the Monongahela. It is a rough stream, unfavorable for lumber operations, and for a distance ouly of 10 miles above Grafton is smooth enough to admit of the passage of rafts. All lumber has, therefore, to come down in separate logs, and only such kinds as are light enough to float well can be got down. For this reason there is very little except poplar sawed at Grafton. Oak is too heavy to be driven successfully, and as it cannot be tied up in rafts with poplar, as is done on the Cheat, the stores of oak timber growing in the valleys ${ }^{\circ}$ drained by this river must wait the building of a railroad to bring them to market. The yellow poplar still standing in this region is estimated at $300,000,000$ feet, and on the higher grounds, especially about the headwaters of streams, there are fine bodies of black cherry mixed with other trees.
"At Parkersburg are located the mill and shops of the Parkersburg Mill Company, situated on the banks of the Little Kanawha, a short distance above its confluence with the Ohio. This is the only company operating in lumber within the city of Parkersburg. It manufactures about $6,000,000$ feet of lumber annually, mostly poplar, some oak, and about a quarter of a million feet of beech. Little black walnut can now be obtained here, and that of inferior quality. Rough lumber and manufactured articles of wood find a market in nearly every direction, west, north, and east. I was astonished and delighted to see how closely the lumber was worked up and the great variety of articles manufactured from slabs, edgings, culls, etc., which in other mills are so generally thrown into the waste pile. Broom handles, corn-popper handles, brush handles, brush heads, tool handles of many descriptions, and fly-trap bottoms are but a few of the articles which are turned out by millions from odd bits of wood, few of which are too small to make something or other from. The company executes orders for articles used in manufactories widely distributed over the country from Cincinnati and Chicago to Boston and New York. Poplar is used for broom bandles, and beech, maple, sycamore, black walnut, cherry, etc., for smaller articles. This company does not own and operate timber lands, but buys its logs from parties who deliver rafts to its mill. Formerly much lumber was wasted in this region in clearing lands for farms, but now proprietors of land find it to their advantage to cut and save their $\log s$, which they bring down in rafts themselves or sell to parties who make a business of rafting. Once out of the small streams, the logs are easily rafted down the Little Kanawha during favorable seasons.
"There are no booms on the Little Kanawha, except temporary constructions for special purposes, which are broken ap by every flood. Several years ago it was supposed that the timber on this river was nearly exhausted, but it continues to come down in undiminished quantities to the value of some hundred thousand dollars annually, in addition to railroad ties, staves, ctc. It is only about 40 miles up the main river, and to no great distance back from the stream, that the supply of oak is exhausted. The river is a hundred miles long, and about its upper 33 FOR
waters and those of its tributaries the oak is comparatively untouched. Much of Wirt county and the greater part of Roane, Calhom, and Gilmer, in the upper part of the valley of the Little Kanawha, are a vast sirgin forest of oak and poplar, containing a good deal of black walnut and sugar maple and some black cherry. Baxter county is magnificently timbered, as is Webster, although the timber here is yet inaccessible.
"The Gnyandotte is a good river for lumbering operations. Lafts can come down from a point 100 miles from its mouth. There are yet no booms on this river, except strings of logs oceasionally stretched aeross it for temporary purposes. On its course above Guyandotte are four or five mills, doing for the most part a local business, their product for export being ouly about $1,000,000$ feet of sawed lumber. The rafting of this sawed lumber is attended with some risk of loss, and therefore a much greater amount is brought down in unsawed logs bound together in rafts, which are taken down the Ohio and sold to various mills along its course. These rafts are usually made 11 logs wide, and three or four of these courses are placed end to end. White oak is made up into rafts with a poplar $\log$ in the center of each course, and thus the raft is made light enough to float easily. Along the Guyandotte, in the lower part of its conrse, the oak and poplar have been cut for a distance of from 1 mile to 2 miles from the stream, the black walnut for some 5 miles back; but nine-tenths of the area drained by this river is still in origiual forest, composed of white, chestmut, and other oaks, poplar, walunt, several hickories, beeeh, sugar maples, syeamore, ash, etc. In this region there is, in the aggregate, a good deal of black waluut, but it exists as seattered trees rather than in groves or tracts.
"Coal river is 160 miles long, and for 36 miles, or to Peytona, is navigable for barges. The valley of this river is covered with truly magnificent forests, in which the trees of the several species composing them attain remarkable dimensions. Poplar and white oak here exist in nearly equal proportions, and together constitute about a third of the timber. Besides these there is a good deal of black cherry, lin, and locust, as well as bemlock, the latter not being considered valuable in this country. Black walnut appears more abundant in this region than in any other of similar extent of which I have yet heard. But little timber has yet been removed from the valley of this river, and it is chietly the lower portion and the immediate vieinity of the banks whieh have been lumbered.
"The Elk river empties into the Kanawha at Charleston. About 2 miles above its mouth are located a boom and several saw-mills, and hère are also a dau and loek which secure slaek-water for some 20 miles. The river is about 180 miles in length; logs bave been driven from a point 150 miles above its mouth, but its valley bas only been Immbered to amy great extent in the immediate vieinity of the main river, and to a distance of some 110 miles from its mouth. Most of the original growth of the forest of the Elk basin still remains, and is composed largely of white oak, hickory, chestnut, and poplar. Black walnut here, as every where else in this state, is seattered, although it is estimated that $10,000,000$ feet of this lumber still remain in this region. Above a certain altitude and about the upper waters of this river considerable black cherry, sugar maple, and birch is found. Here also beeeh and basswood abound, by the streans hemlock occurs, and on the mountains a little black spruce. About the upper settlements on this river miles of fence constructed with boards of black cherry and farms fenced with blackwalnut rails may be seen. Formerly large numbers of coal-boats and salt-boats were built upon the Elk river. Once, also, the salt-works of the Kanawha required vast numbers of barrels; these were made of black as well as white oak; now but five of the sixty furnaces once boiling brine in this vicinity are in operatiou, and there is little demand for black oak for staves. The country along the Kanawha between the Elk and the Gauley rivers has been lmmbered for 5 or 6 miles back from the streams, and about one-fourth of the timber has been eut from these valleys. The Gauley river with its several large tributarics drains a valley which covers nearly 5,000 square miles; its length is abont 110 miles, much less than that of the Elk, which is a long, slender stream, but it occupics a much broader valley and has twice the volume of water of the Elk. Unlike the rivers just considered, which wear out for thenselves smooth chamels through the soft sandstone, the Gauley is a rongh stream, tumbling rapidly over hard conglomerate rock, its bed being fill of bowlders and ledges. For the first 10 miles from its mouth the fall arerages 4 feet to the mile; above that 20 feet to the mile, while its upper waters are so swift and rough as to be unnavigable even for small boats. For these reasons the Gauley does not admit of the passing of rafts, and it is a difficult river mon which even to drive single logs. Its valley is but little settled, except on Meadow river and along its right bank below that stream. A bove a point 15 miles from its mouth no timber has been tonched except by the fer settlers. In the lower part of the valley of the Gauley for 15 or more miles the timber is chicfly oak, poplar, walnut, ete: The Gantey and its large affluents, the Cherry, Cranberry, and Williams rivers, all head back in the forests of black spruce, which sometimes take entire possession of the momitain tops; a little lower, yet often mingled with the spruce, hemlocks and black cherry abound. On Cherry river the cherry trees so predominate over all others as to, have given their name to the stream. Here are trees often 4 feet in diameter. The region intermediate between the npper and the lower districts of the Gauley thus deseribed contains much beeel, sugar maple, and black cherry. The white oak which abounds in the lower basin of this river disappears above an altitude of 2,000 feet. 1 was informed that, althongh lmmbering operations were but lately began on the Gauley, nearly $1,000,000$ feet of pophar were bronght out of the river in 1879 , and that it had yielded 50,000 feet of black walnut in 1880 , while there were now in the river poplar logs enough to make $3,000,000$ fect of lumber. About one fourth of the ent of late sears has been sawel at mills near the falls: the rest is rafted to Charleston.

$$
3
$$



"The valley of the New river is only lumbered for from 3 to 5 miles from the stream, although the walnut has been gathered 10 miles farther back. This is a rough country in which to lumber, since the streams cut deep into the earth, and New river cannot be driven.
"Ronceverte is situated on the Greenbrier river at the point where the Chesapeake and Ohio railroad, first meets this stream as it descends from the Alleghany mountains. Here is the boom of the Saint Lawrence Boom Company, and here are located three or four lumber firms operating steam-mills. One of these, the New York Hoop Company, uses two million hoop-poles per annum, cliefly hickory, manufacturing hoops for flour barrrels, pork barrels, hogsheads, and tierces, besides strips for boxes, etc. The proeess of mannfacturing hoops was explained to me as follows:' The poles, of assorted lengths and sizes, are passed through machines which split each of them into two, three, or four pieces, and these are put throngh other machines which plane flat the inner side of each strip, leaving the bark intact. The hoops tius made are tied into bundles and shipped to New York.
"The Greenbrier river rises in the limestone sinks in Randolph county, whence it flows sonthwesterly throngh the fertile limestone valley between the Alleghany and the Grecnbrier mountains for a distance of 120 miles, emptying into the New river at Hiuton. Flowing through such a valley it is not a rapid stream, but from a point 12 miles below Travelers' Rest, on its headwaters, it is fine for rafting. Yet the stream needs some improvement, especially by the closing up of back channels into which the logs are borne by high water, to be left in swamps when the flood recedes.
"Only a small proportion of the timber of the Greenbrier river has heen removed as yet, and it is estimated that in its valley white oak, white pine, poplar, cherry, heulock, walnnt, and ash enough remain to make $1,000,000,000$ feet of boards, and that there are not less than $500,000,000$ feet of white pine in this region, occnpying a belt through the center of both Greenbrier and Pocahontas counties. The eastern limit of the black-spruce belt on the headwaters of the Elk and Gauley rivers, the most extensive and valuable in West Virginia, coincides with the western limits of the white-pine belt lying in Pocahontas comen. Its southern line runs northwesterly from the south cad of Pocahontas to near the center of Nicholas county. From this point its western line runs northeasterly through the ceuter of Webster county to the vicinity of Huttonville, in Randolph county, the northern end of the belt covering the upper waters of Sliavel's Fork of the Cheat river. Over this belt black spruce is scattered more or less densely, sometimes oceupying almost exclusively the high slopes, particularly the northern slopes and the summits of the monntains.
"It is believed that $10,000,000$ feet of black waluut, in paying quantities, could still be gathered in this part of the state, and that there would then be left an equal amount so scattered that it could not be profitably collected at present prices."

## NORTH CAROLINA.

The forests of North Carolina were once hardly surpassed in variety and importance by those of any other part of the United States. The coast region was occupied by the coniferous forests of the southern Maritime Pine Belt; the middle districts of the state by a forest of oaks and other lard-wood trees, through which the old-field pine is now rapidly spreading over worn-ont and abandoned farming lauds. The high ridges and decp valleys of the Appalachian system which culminate in the western part of the state are still everywhere covered with dense forests of the most valuable hard-wood trees mingled with northern pincs and hemlocks. The inaccessibility of this mountain region has protected these valuable forests up to the present time, and few inroads have yet been made into their stores of oak, cherry, yellow poplar, and walnut. The hard-wood forests of the middle distriets, however, have been largely removed or culled of their finest timber, although the area of woodland in this part of the state is now increasing. These new forests, usually composed of inferior pinc, are of little coonomic valne, except as a source of abundant fuel and as a means of restoring fertility to the soil, preparing it to produce again more valuable crops. A larger proportion of the pine forest of the coast has been destroyed in North Carolina than in the other southern states. This part of the state has long been the seat of important lumbering operations, while the mannfacture of naval stores, once almost exclusively confined to North Carolina, and always an important industry here, has seriously injured these forests. The original forests have been practically removed from the northeastern part of the state, the great region watered by the numerous streams flowing into Albemarle and Pamlico sounds; and although some lumber, largely second-growth pine trees of poor quality, is produced here, the importance of these forests is not great. The merchantable pine, too, has been removed from the banks of the Cape Fear and other rivers flowing through the sonthern part of the state, and although these streams still yield annually a large number of logs, they are only procured at a constantly increasing distance from their bauks and with a consequent increasing cost for transport.

Forest fires inflict serions damage upon the pine forests of the south. During the census year 546,102 acres of woodland were reported destroyed by forest fires, with a loss of $\$ 3 \overline{5} 7,980$. The largest number of these fires were traced to the carelessuess of farmers in clearing land, to locomotives, hunters, and to malice.

Manufacturers of cooperage and wheel stock, industries which once flourished in the eastern and central portions of the state, already suffer from the exhaustion and deterioration of material. Such industries, however, are increasing in the extreme western counties, and promise to attain thero an important development.

The following estimate, by counties, of the merchantable pine standing May 31, 1880, south of the Neuse river, the ouly part of the state where it is of commercial importance, was prepared by Mr. Edward Kidder, of Wilmington. It is based upon actual surveys and the reports of a large number of timber-land experts familiar with the different counties still occupied by the forests of long-leaved pine:

LONG-LEAVED PINE (Pinus palustris).

Counties.	Feet, board measare.
Bladen .......................... ..............................	288, 000, 000
Brunswick	141,000,000
Chatham	448,000, 000
Columbus	288, 000, 000
Cumberland	806, 000, 000
Dnplin..	21,000,000
Harnett.	486,000,000
Johnston	863, 000, 000
Moore	504, 000, 000
New Hanovor.	96,000,000
Onslow	34,000,000
Robeson	864,000,000
Sampson.	602, 000, 000
Wake.	48,000, 000
Wayne	40,000,000
Total	5, 229,000, 000
Cot for the census year onding May 31, 1880, exclusive of $50,190,000$ feet cot in the connties adjacent to Alliemarle and Pamlico aonnds and aloug the Pamlico and Neuse rivers, which is largely loblolly pino (Pinus Toda).	. 108,411,000

## NAVAL STORES.

Small quantities of crude turpentine were produced upon the coast of North Carolina, between the Pamlico and Cape Fear rivers, soon after the earliest settlement of the country. It was sent to Great Britain or converted into spirits of turpentine and rosin for home consumption. The demand for ships' stores had greatly inereased the North Carolina production as early as 1818, although the field of operations was not extended south of the Cape Fear river, nor more than 100 miles from the coast, until 1836. The large demand for spirits of turpentine created during that year induced manufacturers to test the yield of trees on the west side of the Cape Fear river, up to that time considered unproductive. The result was satisfactory, although overproduction and low prices deferred until 1840 the development of this region. Since 1840 this industry has been gradually carried southward. Naval stores were prodnced in South Carolina in 1840, and in Georgia two years later. Turpentine orchards were established in Florida and Alabama in 1855, and more recently in Mississippi and eastern Lonisiana.

The naval stores manufactured in the United States are principally produced from the resinous exudations of the long-leaved pine (Pinus palustris), and in small quantities from the loblolly pine (Pinus Tocda), and the slash pine (Pinus Cubensis) of the Florida coast. The trees selected for "boxing" are nsually from 12 to 18 inches in diameter, although trees with trunks only 8 inches through are now sometimes worked. A deep cut or "box" is made in the trunk of the tree, by a cut slanting downward, some 7 inches in depth, and generally 12 inches above the ground, and met by a second cut started 10 inches above the first and running down from the bark to meet it. In this manner a segment is removed from the trmk and a triangular trough formed 4 inches deep and 4 ineles wide at the top.

Two such boxes, or upon a large trnak sometimes four, are made on each tree. A "crop", the unit of production among large operators, consists of 10,000 such boxes. The boxes are cut early in November with a narrow-bladed ax specially manufactured for the purpose, and the trees are worked on an average during thirty-two weeks. As soon as the upper surface of the box ceases to exude freely, it is "hacked" over and a fresh surface exposed, the dried resin adhering to the cut having been first carefully romoved with a sharp, narrow, steel scraper. The boxes, especially after tho first season, are often hacked as often as once a week, and are thus gradually extended upward until upon trees which have been worked during a number of seasons the upper surface of the box is often 10 or 12 feet above the ground. For these long boxes the seraper is attached to a wooden handle, generally loaded with iron at the lower end to facilitate the operation of drawing down the resin. Once in four weeks, or often less frequently, the resin caught in the bottom of the box is removed into a bucket with a small: sharp, oval steel spatle attached to a short wooden handle. The product of these "dippings", as this operation is called, is placed in barrels and transported to the distillery. The first season a turpentine orchard is worked boxes are usually dipped cight times, yielding an average of 300 barrels of turpentine to the erop. The second year the
number of dippings is reduced to five, the product falling off to 150 barrels, while for the third season 100 barrels are considered a fair yield from three dippings. To this must be added the yield of the "scrapes", which for the first year is estimated, for one crop, at from 60 to 70 barrels of 280 pounds each, and for succeeding years at 100 barrels.

Trees can be profitably worked in North Carolina by experienced operators during four or five years, or, upon a small scale, in connection with farming operations and by actual residents, several years longer; fartber south the trees scem to possess less recuperative power, and in South Carolina four years is given as the outside limit during which an orchafd can be profitably worked, while in Georgia, Florida, and Alabama they are often abandoned at the end of the second and always at the end of the third year. Twenty-five men, including overseers, wagoners, distillers, coopers, and laborers can work ten crops. The average wages of such a force is $\$ 1$ a day per man, so that the cost of labor,necessary to work a crop during the season of thirty-two weeks is $\$ 480$.

The following grades of turpentine are recognized in the trade: "Virgin dip", or "Soft white gom turpentine"the product the first year the trees are worked; "Yellow dip"-the product of the second and succeeding years, and becoming darker colored and less liquid every year; "Scrape" or "Hard turpentiue"-the product of the scrapings of the boxes.

Rosin is graded as follows: "W"-Window-glass; "N"—Extra pale; "M"—Pale; "K"—Low pale; "I"— Good No. 1; "H"-No. 1; "G"—Low No. 1; "F"-Good No. 2; "E"-No. 2; "D"—Gool strain; "C"-Strain; " B "-Common strain; "A"-Black.

Window-glass is the lightest grade, and is only produced from the first dippings of "virgin" trees-that is, trees worked for the first time. The resinous exudation becomes daiker colored.and less volatile every year, as the box grows older, and the rosin produced is darker and less valuable. Trees worked during several years produce a very dark brown or black rosin. Spirits of turpentine made from virgin trees is light colored, light in weight, and free from any taste; the resinons matter yielded in succeeding years gains more and more body, and the additional heat required in distilling it throws off some resin combined with the spirits, producing in it a strong, biting taste and greater weight.

Tar, produced by burning the dead wood and most resinous parts of the long-leaved pine in covered kilns, is graded as follows: "Rope yellow", or Ropemakers' tar-the highest grade, produced with a minimum of heat from the most resinous parts of the wood; "Roany," or "Ship smearing"-the next running of the kiln; "Black" or "Thin"-the lowest grade, made from inferior wood, or the last running of the kiln, and therefore produced with the maximum of heat.

The following statistics of the production of naval stores during the census year were prepared by Mr. A. H. Van Bokkelen, of Wilmington, North Carolina, to whom I am indebted for much information in regard to the methods used in carrying on this industry:

States.	Tarpentine.	Rosin.
	Gallons.	Barrels.
Alabama.	2,005, 000	158, 482
Florlda	1,036,350	68, 281
Georgia....	3, 151, 500	277,500
Lonisiana.	250, 000	20,000
Missisalppl	250, 000	20,000
North Carolina.	6, 279, 200	663, 967
Soath Carolina.	4,503,200	333, 940
Total	17, 565, 250	1,542, 170

Eighty thonsand barrels of tar were manufactured during the census year in North Carolina, and 10,000 barrels in the other southern states.

The total valne of this crop of naval stores at centers of distribntion, and of course including freight from the forest and different brokerage charges, was not far from $\$ 8,000,000$. The net profits of the industry, even in the case of virgin trees, is very small, and at present prices is believed to be unprofitable except to the most skilliul operators. The low price of sonthern timber-lands and the facility with which rights to operate tracts of forest for turpentine have been lately obtainable in several states have unnaturally stimulated production. The resnlt of this bas been that manntacturers, anable to make a profit except from virgin trees, abandon their orchards after one or two years' working and seek new fields of operation; the ratio of virgin forest to the total area worked over in the production of naval stores is therefore constantly increasing. It is estimated by Mr. Van Bokkelcn that during the years between 1870 and 1880 an average of one-third of the total annual product of the country was obtained from virgin trees, and that in 1880 one-fourth of the crop was thus produced, necessitating the boxing in that year of the best trees upon 600,000 acres of forest. The production of uaval stores is carried on in a wasteful, extravagant manner, and the net profits derived from the business are entirely out of proportion to the damage which it inflicts upon the forests of the country; the injury is enormous. Lumber made from trees
previonsly worked for turpentine is of inferior quality, although it is probably less injured than has been generally supposed. Comparatively few trees, hotever, once boxed are manufactured into lumber. It is estimated that 20 per cent. of them, weakened by the deep gashes inflicted apon their trunks, sooner or later are blown down and ruined; fires, too, every year destroy vast areas of the turpentine orehards, in spite of the care taken by operators to prevent their spread. It is customary in the winter, in order to prevent the fires which annually run through the forests of the Southern Pine Belt from spreading to the boses, to "racket" the trees; that is, to remove all combustible material for a distance of 3 feet around the base of each boxed tree. Fire, carefully watched, bas then been set to the dry grass between the trees, in order to prevent the spread of accidental conflagrations, and to give the box-choppers a firmer foothold than would be offered by the dry and slippery pine leaves. In spite of these precantions, however, turpentine orchards, especially when abandoned, are often destroyed by fire. The surface of the box, thickly eovered with a most inflammable material, is easily ignited, and a fire onee started in this way may rage over thousands of acres before its fury can be checked.

The manufacture of naval stores, then, decreases the value of the boxed tree for lumber, rednees the ability of the tree to withstand the force of gales, and enormously increases the danger to the forest of total destruction by fire.

Wilmington, the most important distribnting point for this industry in the United States, handles 80 per cent. of all the naval stores manufactured in North Carolina. Previous to 1870 Swansboro', Washington, and New Berne were also large shipping points.

## SOUTH CAROLINA.

The forest covering of South Carolina resembles in its general features that of the states immediately north and soutl of it. The pine forest of the coast, nearly coinciding in area with that of the Tertiary deposits, covers the eastern portion for a distance of 150 miles from the coast. The middle districts are occupied with hard-wood forests, or forests in which pines of various species are mixed with oaks, hiekories, and other deciduous trees. .The forests of the Alleghanies, rich in species and magnificent ip the development of individual trees, spread over the mountains and valleys, which occupy the extreme western part of the state. The streams which fiow through the Coast Pine Belt, often bordered by wide, deep swamps, are ill-suitel to lumber operations, and less serions inroads have therefore been made into the pine forests of South Carolina than into those of North Carolina or Georgia. The inerchantable pine, however, has been removed from the immediate neigliborhood of the coast, from the banks of the Little Pedee river, and from along the lines of railroad.

The most aceessible hard-wood timber has been cut from the forests of the middle districts, although vast quautities still remain remote from railroads or proteeted in deep river swamps, inaccessible except during a few months of summer. The western counties still contain great bodies of hard-wood timber, yet undisturbed except to supply the wants of the scattered population inhabiting this almost inaccessible mountain region.

The manufacture of rough red and white oak split staves and headings for the European and West Indian trade, already au important industry in this state, is capable of large development; rice tierces and rosin barrels are also largely made in the const region from pine. At Plantersville, in Georgetorn connty, and at other points along the coast quantities of hand-made cypress shingles are manufactured in the swamps.

During the census year 431,730 acres of woodland were reported destroyed by forest fires, with a loss of $\$ 291,225$. These fires were set by careless hunters, by the careless burning of brush upon farms, and by sparks' from locomotives.

## BURNING OFF DEAD HERBAGE.

The pine belt of the coast, in Sonth Carolina as well as through its entire extent from Virginia to Texas, suffers from fires set every spring ly grazers for the purpose of improving the scanty herbage growing among the trees of this open forest. These fires run rapidly over the surface stripped by the fires of previous years of any accummation of vegetable material, withont inficting any immediate injury upon the old trees of the forest unless a turpentine orchard is eneomered, when, the resinous surfaces of the boxes being once fully ignited, nothing can save the trees from total destruction. If the mature trees of the forest are uot under normal conditions greatly injured, however, by this ammal burning of the dead herbage beneath them, the forest itself, as a whole, suffers enormously from this cause. Slight and short-lived as these fires are, they destroy the vegetable mold upon the surface of the ground, all sceds and seedling trees, and all shrubbery or undergrowth, which, in protecting the germination of seeds, insures the continuation of the forest. They deprive the soil of fertility and make it every year less able to support a crop of trees, and in thus robbing the soil they influence largely the composition of succeeding erops. Few young lines are springing up anywhere in the coast region to replace the trees destroyed, but where seedlings protected from fire appear npon land long subjected to annual burning, they are usually, although not universally, of less valuable species, aud not the long. leaved pine which gives to this forest its principal economic importance. These anmal fires are slowly but surely destroying the value of the Southern Pine Belt. Thes destroy all seeds and seedling trees, the fertility of the soil, and its power to produce again valuable speeies.

10

$$
5^{18}
$$




$$
5^{-18}
$$



The following estimates of the amount of long-leaved pine standing in the state were made up from information obtained from Mr. Edward Kidder, of Wilmington, North Carolina, in regard to that part of the state north of the Edisto river, and from Mr. W. G. Norwood, of Blackshear, Georgia, for the southern part of the state. They are based on what is believed to be less aecurate information respecting the northern part of the state than has been obtained in regard to the pine forests of the other states, and allowance should be made for possible large errors. The estimates are, however, probably largely below the actual productive capacity of the pine forests of the state which may be expected to exceed by 25 or 30 per cent. the following figures:

LONG-LEAVED PINE (Pinus palustris).

Counties.	Feet, beard measure.	Counties.	Feet, board measure.
Aiken ...	209, 000, 000	Kershaw...........................................	171, 000, 000
Barnwell..	340,000, 000	Lancaster	$5,000,000$
Beaufort.	49,000,000	Lexington	76,000, 000
Charleston.	458, 000, 000	Marion	326,000,000
Chesterfield..	183,000,000	Marlborongh	191, 000, 000
Clarendon	332,000,000	Orangeburgh.	465, 000, 000
Colleton	453,000, 000	Richland............................................	$88,000,000$
Darlington.	337, 000, 000	Sumter	380, 000, 000
Fairfeld.	7,000,000	Williamabnrgh	536,000,000
Georgetown ..	$128,000,000$	Total	5, 316, 000, 000
Hampton	$202,000,000$		5,310,00,00
Horty.	380, 000, 000	Cut for the censns year ending May 31, 1880...	124, 492, 000

The principal centers of lnmber manufacture are Georgetown, Charleston, and various points in Hampton and Barnwell counties, where small railroad mills are located. Charleston and Georgetown are the distributing centers for naval stores manufactured in the state.

## GEORGIA.

The northern counties of Georgia are covered with the forests of the Alleghany Mountain region, here and in northern Alabama reaching the southern limits of their distribution and eonsiderably reduced in the number of species composing them, the pines, firs, beeches, and other northern trees being generally replaced by the broadleaved species of the Mississippi basin. From the base of the mountains forests of oak mixed with pines extend southward, occupying the central portion of the state and mingling with the trees of the Maritime Pine Belt along its northern limits. In the southern and coast counties great areas of swamps are still eovered with forests of cypress, protected by their inaccessibility from the attacks of the lumberman.

The merchantable pine in the immediate vicinity of the principal streams and along the lines of railroad has been removed, and serious damage has been inflicted upon the pine forests of the state by the reckless manufacture of naval stores. Vast areas covered with pine, however, still remain, while the hard-wood forests of the central and northern portions of the state contain a large quantity of the most valuable hard woods.

The manufacture of cooperage stock is still in its infaney, and this and other industries requiring an abundant and cheap supply of hard wood seem destined soon to reach an enormons development in the upper districts of Georgia and the other states of the south Atlantic division.

Dnring the census year 705,351 acres of woodland were reported devastated by fire, with a loss of $\$ 167,620$. The greatest number of these fires was traced to carelessness in elearing land, to sparks from locomotives, and to huuters.

The following estimates of the amount of long-leared pine standing in the state of Georgia May 31, 1880, were prepared by Mr. W. G. Norwood, of Blackshear, in that state, a timber viewer and expert of high standing. He ohtained his results by dividing the whole pine belt into irregular regions over which the average eut per acre conld be obtained, allowance being made for clearings, farms, areas of culled forests, streams, swanps, ete. The area in each of these regions, by counties, was measured npon a large-scale map and the standing timber computed. These estimates include merehantable pine still standing on land partly eut over, or which has been worked in the manufacture of turpentine. The boxed areas include neally all the regions from which any pine has been removed, and extend beyond them in all directions into the unent forests and along rivers and railroads.

Similar methods, practically, were adopted in preparing the estimates of the amount of pine standing in Florida and the other Gulf states. The results thus obtained are not, of course, strictly accurate, and are not supposed to be so. The estimates are intended to show the average productive capacity of the pine forests over large areas, and to indicate generally in what part of the state the principal bodies of pine still oceur. Liberal allowance has been made in computing areas of swamp and cleared land, and it will probably be safo to add 10 per cent. to these estimates of the pine standing in any of the southern states.

The following is an estimate of the amount of pine timber standing in the state May 31, 1880:
LONG-LEAVED PINE (Pinus palustris).

Connties.	Feet, board тесавигу.	Countios.	Feet, board measure.	Countles.	Feet, board measare.
Appling	$543,000,000$	Floyd....4.............	19,000,000	Polk	36,000,000
Baker	134,000,000	Glascock	17, 000,000	Pnluskl.	408,000, 000
Ballumo	$35,000,000$	Glynn ...................	47, 000,000	Randolph..............	126,000, 000
Berrien	410,000, 000	Hancock	$76,000,000$	Richmond	21,000,000
libl	$38,000,000$	Haralsou	21,000,000	Schler .................	28,000, 000
Brooks.	281, 000, 000	Warris	22,000, 000	Screven.................	188,000, 000
Bryan	60,000,000	Houston	101,000,000	Somter . ...............	101, 000,000
Bulloc	$733,000,000$	Irwin	488,000, 000	Talbot.	44,000,000
Burk	298, 000,000	Jeffersou	206,000,000	Tatinall . . . . . . . . . . . .	768,000, 000
Calhoun	117,000,000	Jolunson	291, 000, 000	Taylor.................	$53,000,000$
Catador	82,000, 000	Jones	40,000,000	Telfair.................	598,000,000
Charli	240, 000, 000	Lanrens	1,064,000,000	Terrell .................	104,000, 000
Clay..	96,000,000	Leed	128,000, 000	Thomas.................	311,000,000
Clinch	350, 000, 000	Liberty.................	236,000, 000	Twiggs .................	84, 000, 000
Cofte	578, 000,000	Lownd	236, 000, 000	Upson ..................	32,000,000
Colquilt .	$339,000,000$	McDuftie	10,000,000	Ware . . . . . . . . . . . . . .	161,000, 000
Crawford	45, 000,000	McIntosk	65, 000, 000	Warrea.................	80,000,000
Dccatur	653, 000,000	Macon	52,000,000	Washiogton ..........	240,000,000
Dodgo	417, 000, 000	Miller	164,000,000	Wayne .................	160,000,000
Dooly	$334,000,000$	Mitchell	379,000,000	Webster ................	48,000, 000
Dongherty.	$90,000,000$	Monroe	18,000,000	Wilcox................	202, 000,000
Early	299, 000, 000	Montgomery...........	791,000,000	Wilkinson.............	152,000, 000
Echols.	183,000,000	Muscogee..............	$35,000,000$	Worth	512,000,000
Efliugham	$6,000,000$	Paulding	$2,000,000$	To	16,778, 000, 000
Emanuel.	956,000,000	Pierce	220,000, 000		16, 178,000,000
Cut for the censos rear ending May 31, 1880 (excluding 28,335,000 feet cnt in the region of ahortleaved pine and mixed growth).					272, 743, 000

The principal centers of lumber manufacture are situated along the coast at Brunswick, Darien, Savannah, and Saint Mary's. Logs sawed at these points are now driven down the various streams for a eousiderable distance from the coast. Large quantities of pine lumber are also manufactured in different mills located along the lines of railroad in Appling, Polk, Floyd, and other pine counties. Savannah and Brunswick are the principal points of $r$ istribution of the naval stores manufactured in the state.

## FLORIDA.

The forests of the Southern Pine Belt cover the state as far south as cape Malabar and Charlotte harbor. The long-leaved pine is replaced along the saudy dunes and islands of the coast by oaks (of which the live oak is alone of commercial importance), serub pines, and palmettos,/while a/deciduous forest, largely of northern composition, occupies the ligh, rolling lands in a large part of Gadsden, Leon, Jefferson, and Madison connties. The pine forests gradually decrease southward in density and valne, and south of latitude $29^{\circ} \mathrm{N}$. are of little present eommercial value. Forests of pitch pine (Pinus Cubensis), however, extend far south of the region oecupied by the more valuable long-leaved pine bordering the coast and covering the low ridges of the Everglades. Great areas of swamp ocem everywhere through northern and central Florida, covered with forests of cypress, red cedar, gum, and bordered with bays, magnolias, and other broad-leaved evergreens; while the hummocks or low elevations, covered with rich soil and everywhere common, bear oaks and other deciduons trees, often of great size.

South of cape Malabar and Tampa bay the character of the regetation changes, and the North American arborescent species are replaced by the semi-tropical trees of the West Indies. These occupy a narrow strip along the coast, cover the keys and reefs, and spread over some of the hummoeks of the Everglades. This semi-tropical forcst is confined to the saline shores of the innumerable bays and creeks of the region, or to the coral and sedimentary calcareous formation of the keys and hummocks. The species of which it is composed are liere at the northern limits of their range; individual trees are comparatively small and the forests of the southern extremity of the Floridat peninsula are comuercially unimportant, althongh sufficiently extensive and varied to supply the scanty population of this region with lumber, fnel, and material for boat-building and the manufacture of fishing apparatus.

The forests of Florida have not suffered greatly from fire. Much of the state is uuinhabited and unfit for ugriculture or grazing. The danger, therefore, of fires set in clearing land for farms spreading to the forest is less than in other parts of the south, while the unmerous streams and swamps everywhere intersecting the pine forests and the natural dryness of the sandy ridges, thinly covered with vegetable mold, check the spread of fires when started.

During the census year 105,320 acres of woodland were reported as burued over, with an estimated loss of $\$ 69,900$. The largest number of these fires was set by grazers to improve the pasturage for their stock.


The following estimates, by counties, of the long-leaved pine still standing in Florida east of the Apalachicola river were prepared by Mr. A. H. Curtiss, of Jacksonville; those for west Florida by Dr. Charles Mohr, of Mobile, Alabama:

LONG-LEAVED PINE (Pinus palustris).

Counties.	Feet, board measure.	Conntieo.	Feet, board measure.	Conatien.	Feet, board measure.
${ }^{\text {A Alachua }}$	525,000, 000	Holmes	150, 000, 000	Pntnam.	121,000,000
Baker	144,000,000	Jackson	233, 000,000	Saint John's	66,000,000
Bradford.	138,000,000	Jeffermon	23, 000, 000	Santa 1 losa	213,000,000
Brevard	63, 000,000	Lafayette	425, 000, 000	Sumter	103, 000,000
Calhoun	81,000,000	Levy	346,000,000	Suwanne	$622,000,000$
Clay	77, 000,000	Liberty	75,000,000	Taylor.	218,000, 000
Columbia	455, 000, 000	Madison	122,000,000	Volusia	59,000, 000
Duval	67,000,000	Manateo	200, 000, 000	Wakulla	72, 000, 000
Escambia	90,000,000	Marion	315,000,000	Walton	409, 000, 000
Hamilton	311, 000, 000	Nassau	104, 000,000	Washington	187, 000; 000
Hernando.	142,000,000	Orange	$87,000,000$		
Hillsborongh	102,000,000	Polk...	210,000,000	cotal	6, 615, 000, 000
Cat for the census year ending May 31, 1881 (exclading 77,500,000 feet, estimated, grown in Alabama and sawed in western Florida).					208, 054, 000

In this estimate no account is made of timber remaining on lands which have been cut over, or of that injured by the manufacture of turpentine.

The principal centers of lumber manufacture are Pensacola, Millview, and Blackwater, in Escambia and Santa Rosa counties. The logs sawed here and at other points upon Pensacola bay are driven down the streams from the forests of Alabama, the accessible pine in this part of Florida laving been long exhausted. A large amonnt of pine lumber is also manufactured at Ellaville, in Madison county, upon the upper Suwannee river, and at Jacksonville, Saint Mary's, and at various points upon the lower Saint John river. Logs driven from the lower Suwannee river are sawed at Cedar Keys, where are situated the most important mills in the United States devoted to the manufacture of red cedar into pencil stuff.

Jacksonville, Saint Mary's, and Fernandina are the largest centers of distribution for the naval stores manufactured in the state.

The following extracts are taken from Mr. Curtiss' report upon the forests of Florida:
"In visiting western Florida I have had particularly in view the examination of the timber of a part of the state which is unlike all others in physical conformation, and consequently in regetation. This region differs but little from the country bordering the sonthern Alleghanies, and may perlaps be regarded as the southern terminus of the Appalachian range. It commences about 40 miles north of the Galf of Mexico, and extends northward between the Chipola and Okalokonee rivers into southwestern Georgia and southeastern Alabama. North of this there is little to connect it with the southern mountains except the rugged banks of the Chattalioochee river. The surface is undnlating, hills, often precipitous. The soil, like that of the Piedmont region of Virginia and Carolina, abounds in red clay, and is therefore adapted to crops which do not succeed in other portions of Florida. The vegetation is extremely raried and interesting, comprising most of the plants of northeastern Florida, a large portion of those fonnd in the Piedmont country and in the rich river bottoms of the interior, and a considerable number found only on the limestone with which much of this country is underlaid. In the river bottoms, which are inundated at seasons, there is found a great variety of trees, some of which attain a size probably not equaled elsewhere. In this small portion of the state of Florida is to be found nearly every species of tree growing within the limits of the state, except those semi-tropical species found on the coast south of Cedar Keys and Mosquito inlet. Fully fifty American arborescent species here reach their southern limit. A few species show marked diminution in size, and all northern species which extend southward of this Chattahoochee region here attain in Florida their largest dimensions.
"There are two trees in this region of particular interest, as they are not known to grow anywhere else; these are the stinking cedar (Torreya taxifolia) and the yew (Taxus Floridana). There is reason to believe that the Torreya occurs also along the Wakulla river, and perhaps elsewhere in the state, but there is no positive knowledge of its occurrence except along the Apalachicola river, on the limestone hills which border it at intervals on the east
"The forests of this region are still almost intact. Some poplar and tulip wood is cut from the river banks for northern markets, but the valuable timber on these rich shores is as yet almost untouched. The country sonthwest of this region, though of very little agricultural valne, contains in immense quantity of the best cypress timber, hardly yet disturbed by the lumberman.
"Two mills have recently been established at Apalachicela, one of which saws nothing but cypress lumber. The product of -this mill is sent to New Orleans. As white-pine lumber most soon become scarce, the attention of dealers ought to be directed to sonthern cypress, which will prove a good substitute for it. Although there is plenty of valuable pine in this country the swamps render it somewhat inaccessible, and the mills at Apalachicola
are more easily supplied with logs rafted down the river from Georgia. Many hewed logs of large dimensions are shipped from this point. The country near Apalachicola in surface and timber growth is much like that of northeastern Florida, all the good timber having been cut.
${ }^{6}$ PENCIL CEDAR.
"The favorite variety of red cedar, of tall and straight growth, is becoming scarce, but there remains a large quantity of quality sufficiently good for pencils in nearly all sections of the state north of a line drawn from cape Canaveral to the north end of Charlotte larbor. There is no red cedar in southern Florida, the Dixon mill at, Tampa having exhausted the supply within reach of that place; but new mills have been established near Webster, in Sunter county, and at the head af Crystal river, at present the best source of supply.

## "CYPRESS.

"The main body of cypress in southern Florida is located in the 'Big Cypress', a region of which I have heard much from persons who were in an expedition which went through it during the last Indian war. They entered it at the 'Little Palm hummock', 18 miles northeast of cape Romano. Traveling east about 12 miles they came to the 'Big Palm hummock', when they turned and traveled nearly due north for six days, averaging 12 miles a day. Their guide then informed them that the cypress extended 12 miles farther north; so it would seem that the main body of the 'Big Cypress' has a length of about 85 miles and a width, as they think, of about 20 miles. The cypress grows in belts running north and south, the main central belt being about 6 miles wide and consisting of large timber. There are narrow strips of eypress and pine alternating with prairie, although probably two-thirds of the . whole region is covered with cypress. According to these estimates there must be at least 1,000 square miles covered with eypress timber in this region, which in times of high water conld be floated out by the numerous creeks and inlets flowing toward the Gulf. There are also large quantities of heavy cypress on the swampy borders of Peace creek, the Hillsborough river, the Withlacoochee, etc., many trees squaring from 2 to 4 feet.
"The long-leaved pine extends south to Prairie creek, in about latitude 270 N . The pine between Prairie and Peace creeks, which is sawed at the mill near Ogden, belongs to this species. Timber in this region is quite shaky, and from all reports it is evident that the yellow pine in Manatee, Orange, and Hillsborough connties is quite inferior, being mostly of the rongh-barked, sappy variety called in this region bastard pine. The long-leaved pine ocenpies nearly the whole of the interior of the peninsula north of a line drawn from Charlotte harbor to cape Malabar. At its southern limit I saw trees which measured over 2 feet in diameter and which would furnish logs 30 feet loug.
"Pitch pine (Pinus Cubensis) appears on the west coast at Margo, 10 miles north of cape Romano, and extends northward to Prairie and Fishhead ereeks, being the only pine of this region. From Charlotte harbor northward it is confined to a belt from 10 to 15 miles wide, bordering the Gulf, extending to Tampa and as far nortbward as Pensacola, being also scattered through the interior. This tree seldom exceeds 2 feet in diameter or 50 feet in height, and will afford a great quantity of framing timber, although it will be probably generally used in the production of naval stores, for which it is nearly or quite equal to the long-leaved pine.
"One of the most important facts in regard to the pine forests of Florida is their permanence. Owing to the sterility of soil and the liability to inundation of most of the state, it is certain that but a very small portion of Florida will ever be cleared of its forest covering. Taking into consideration the great area covered with valuable pine forests, and the fact that there will be a continuous new growth if the spread of forest fires can be checked, only trees of the largest size being ent, it is evident that Florida will furnish a perpetual supply of the most valuable pine lumber."

The following notes upon the pine forests of western Florida were furnished by Dr. Charles Mohr, of Mobile, Alabama:
"The pine forests oceupying the region between the valley of the Apalachicola river and the banks of the Choctawhatchee, and from the headwaters of the Chipola to the bay of Saint Andrew's, are yet mostly in their primeval condition and contain a vast body of valuable timber. The district between the Choctawhatehee and the Perdido is the seat of the oldest and most active lumbering industry of the whole Gulf coast. The numerous streams flowing throngh the pine forests of eastern Alabama to the large bays upon the coast of western Flotida make fully 4,000 square miles of sontheastern Alabama comparatively accessible and tributary to the region from which the lumber finds an ontlet by way of the bay of Pensacola.
"The better class of the somewhat elevated and undulating timber-lands which surround Escanbia, Blackwater, and Saint Mary de Galres bay were long since stripped of their valuable timber. These forests having been culled time after time during the last quarter of a century, are now completely exhansted. The low, wet pine barrens, with their soil of almost pure sand, which trend eastward along the shores of Santa Rosa sound and Choctawhatchee bay, have never borne a growth of pine sufficiently large to furnish more than a small supply of timber of very inferior quality. The ridges between the Choctawhatchce river and the Yellow river are also, for the most part, arid, sandy wastes, never yielding more than a few hundred feet of lumber per acre.

"The well-timbered pertion of west Florida commenees with the southern border of Holmes county. This region is not,' however, nearly exhansted along water-courses large enough for rafting, while of late years cauals and ditehes dug into the forest afford faeilities for floating timber growing remote from streams to the mills. Accorling to those best ioformed regarding the amount of timber still standing in this seetion, there is scarcely enough left between the Escambia and Choctamhatehee rivers, in western Florida, to keen the mills on the coast supplicd for another half-dozen years, even if the whole of the pine standing conld be made available.
"The lumber business of Perdido bay is entirely concentrated at Millview, where three large saw-mills are established. Tho production of lumber commenced here in 1865 , inereasing rapidly from $10,000,000$ feet, board measure, in that year, to three and four times that amount. All the lumber mannfactured upon Perdido bay is sent to Pensacola by a railroad constructed for the purnose. Only about 400 pieces of hewed timber are shipped from Millview, although the railroad has carried an average of $37,000,000$ feet of lumber annually to Pensacola, the maximum aunual yield of the Millview mills having been $45,000,000$ feet.
"Pensacola is the most important port of lumber export on the Gulf coast. During the year ending August $30,1879,403$ vessels, of a combined capaeity of 217,487 tons, carried from the harbor of Pensacola $3,090,469$ cubie feet of hewed square timber, $3,769,527$ cubie feet of sawed square timber, and $60,000,000$ feet of sawed lumber, board measure. Of the squared timber four-fifths is shipped to Great Britain.
"The peninsula between the junction of the Eseambia and the bay of Saint Mary de Galves is low, and, along the shore-line, bordered with marshes. The timber needed to supply the mills located upon the shores of these waters has during the past forty sears been drawn from this region, and when new forests have replaced the original growth they have been cut over and over again, and still furnish a small anount of timber, as the turpentine-distiller has not followed the log.getter in these regions. The supply of timber here, however, at present is too small to be taken into account in view of the cormously increased demands of the uills. There are three large mills on Black water bay producing $40,000,000$ feet of lumber a year. Three-fourths of this lumber is produced in the establishmeut of Messrs. Simpson \& Co., near the mouth of the Blackwater river, at Bagdad, about half a mile below Milton. Mills sawing square timber are situated 20 or 30 miles above the mouth of the Blackwater and use mostly water-power. The mill of Messrs. Milligan, Chaffin \& Co., on this river, 20 miles above Milton, sends 28,000 pieces of square sawed timber to Pensacola, averaging 32 eubic feet each; 5,000 such pieces are furnished by a few very small water-mills higher up, swelling the whole amonnt of square timber to 33,000 pieces. The last-named firm has acquired by purchase large tracts of public land along Black and Coldwater rivers. To reach the timber growing on their land a canal 20 miles loug, with sluices that interseet the small tributaries of these streams, has been dug. By means of this canal a sufficient supply of logs is securel to keep the mill running through the year. The large manufacturers of Bagdad have adopted a similar system, and by these means, and by the constrnetion of tramways tapping the more remote and isolated regions tributary to the waters of Black and Yellowwater rivers toward the northern part of the state, the exhaustion of the timber-lands through the whole breadth of western Florida, as far as the banks of the Choctawhatehee river, will certainly be accomplished before the end of the next five years. A sash, door, and blind factory loeated at Baglad eonsumes a large amount of eypress lumber. This is proeared from the mills situated along the sbores of the upper Choctawhatchce bay, and is grown along the banks of the Choctawhatehee river. The cypress lumber is exclusively used in the manufacture of sashes, blinds, doors, moldings, and particularly in the construction of houses, of which every year a considerable uumber is shipped by the way of New Orleans to the treeless regions of western Lonisiana and Texas. This establishment manufactures a large amount of feneing, the rails of cypress, the posts of red and white celar, rounded and capped. This is shipped to New Orleans and to the settlements in sonthern Florida. Of late years it has commenced sawing peneilboards of red cedar. The logs, of very superior quality, are obtained from the lummocks and bottom lands bordering upon the Cboctawhatchee. The lumber for this purpose must be entirely free from knots, of even, close grain, the woody fibers perfeetly straight. These logs are cut in sections 6 inches in length, and the carefnlly-selected pieees sawed into slabs 2 inches broad and a quarter of an inch in thickness. Fifty gross of these slabs are paeked in a case, and the establishment produces about six hundred eases annually. These are mostly shipped to a peneil factory in Jerses City, a small number going also to Germany.
"The saw-mills situated on the shores of Choctawhatehee bay extend from the mouth of Alaqua creck to Freeport, and westward to Point Washington; the logs sawed at these mills are for the most part brought down by raft from the upper waters of the Choctawhatchee and its tributaries. The lumber sawed here is mostly long. leaved pine, with a small amount of eypress. The product of these mills is mostly shipped to Ner Orleans in small sehooners carrying from 15,000 to 20,000 feet each. The capacity of the mills upon this bay is in excess of their production, the difficulty of obtaining logs eausing most of them to remain shut during hatf the year.
"The canses which np to the present time have prevented the destruction of the pine forests about Saint Andrew's bay, which is traversed by one fine river and bordered by another, must be traced to the difficulty of navigating these streams and to the want of a eonvenient ontlet to the Gulf at Apalachicola. There are few sawmills upen this bay, supplying only the loeal demand, and even these are furnished with logs floated down the Chattahooehee from beyond the contines of the state."

## SOUTHERN CENTRAL DIVISION.


#### Abstract

ALABAMA. The northern and northeastern portions of Alabama, embracing the foot-hills of the southern Alleghany monntains and the valley of the Tennessee river, are covered with a rich and varied forest growth of broad-leaved trees, in which oaks, hickories, ashes, walnnts, and cherries abound. South of the Tennessee river the rolling country is covered with oaks, through which belts of short-leaved pine occur. In Cherokee and Saint Clair comnties isolated bodies of long-leaved pine appear, while a narrow strip of the same species stretches nearly aeross the state between the thirty-third and thirts-second degrees of north latitude. Sonth of this central belt the country is again covered with forests of hard woods, which farther south, in the rolling pine-hill region, are mixed with a heary growth of the long.leaved pine; and this species occupies, or once occupied, almost exelusively, ontside of the numerons river bottoms, the sandy plain extending along the coast and reaching nearly 100 miles inland from the shores of the Gulf. Great regions of swamp covered with heavy forests of cypress occur in the southem part of the state, especially in the region watered by the lower Tombigbee and Alabama rivers.

The forests of northers Alabama still contain great bodies of hard-wood timber, although the demands of the rapidly-inereasing irou industry located here have already stripped of their tree covering many of the low hills of northeastern Alabama. The best pine has been gathered from Mobile and Baldwin counties, in the neighborhood of Mobile bay, from the lines of railroads and the banks of streams heading in the southern part of the state and flowing to the Gulf through western Florida.

The pine forests of sonthern Alabama have long snffered from the reckless manufacture of naval stores. During the census year 569,160 acres of woodland were reported destroyed by fire, with an estinated loss of $\$ 121,225$. Of these fires the largest mumber were set to improve grazing, or by careless farmers and hunters.

The mannfacture of cooperage and wheel stock, furniture, and other articles of wood is still in its infaney in Alabama and the other Gulf states. Such industries, in view of the magnificent forests of hard wood covering great areas in this region and the rapid exhaustion of the best material in the north and west, must in the near future be largely transferred to the sonthern states.

The eypress swamps adjacent to Mobile bay yield a large number of hand-split shingles and give employment to many persons, principally blaeks.

The following estimate of the amount of pine standing in the state May 31, 1880, was prepared by Dr. Charlen Mohr, of Mobile, who earefully examined the whole pine region of the Gulf states:


LONG-LEAVED PINE (Pinus'palustris).

Regions.	Feet, board measare.
East of Perdido river.	4,055,000,000
Weat of Perdido river	2,000,000,000
In the region of mixed growth.	10,000,000,000
In tho Central Plno Belt..	1,750, 000, 000
In the Coosa River batid	900, 000, 000
In the Walker County district	180,000, 000
Total	18,885, 000, 000
Cat for the ceosus year onding May 81, 1880 (inoluding 77,500,000 feet, estimated, grown in Alakama and sawod in western Florida).	245, 390, 000

SHORT-LEAVED PINE (Pinus mitis).

In the Central Pino Belt.	1, 875, 000,000
In the Coona liver basin	432,000, 000
Total ..	2,307,000,000
Cnt for the censas year ending May 31, 1880 , none reported.	



In this estimate no account is made of small timber standing on some $1,282,000$ acres which have been cut over, and from which the merchantable pine has been practically removed, or on 600,000 acres injured by the manufacture of turpentine.

There are fewer pine trees per acre in the region of mixed growth than in the pine belt proper, with which it mingles on the north; but the individual trees being larger, the average amount of standing pine per acre is greater, although generally of poorer quality.

Mobile is still the principal center in the state for the manufacture of pine and cypress lumber; a large amount of pine lumber is manufactured also along the line of the railroads penetrating the pine belt in Etowah county, and considerable hard wood is sawed in counties bordering the Tennessee river for local use and northern shipment. Mobile is also the distributing point for the naval stores mannfactured in the state.

The following notes upon the forests of Alabama are extracted from Dr. Mohr's report:

## "the maritime pine region.


#### Abstract

"West of Mobile the road traversed for a distance of over 5 miles the plain, or so-called 'second bottom', composed of a more or less tenacions or sandy yellow clay. It has an elevation above the alluvial of the river of 15 to 25 feet, and is bordered on the west by the ridges of the stratified drift, which extend to within 6 to 18 miles of the shore-line. Near the coast this plain, flat and devoid of drainage, forms for many miles the low, wet savannas sparsely covered with a stunted growth of long-leaved pines; near the estuaries it is interspersed with tracts covered with a black, light soil, rich in humus and bearing a lnxnriant growth of broal-leaved trees associated with a few Coniferce, and with the wooded swamps which extend over the depressions about the base of the higher land, and follow the low, inundated banks of the numerous streans. The prevailing forest tree of this plain, now much cultirated in the vicinity of Mobile, is the long-leaved pine. Situations offering a moister and somewhat richer soil along the hummocks and gentle acclivities bordering the swamps and the bottoms of the water-courses are occupied by the loblolly pine. With this is often associated the pitch pine (Pinus Cubensis), which prefers, however, the more or less inundated and always wet, swampy forest, where its spreading crown towers abore the gum trees and white cedars. Wherever in the plain the long-leaved pine has been cut down, this pitch pine principally and the loblolly pine spring up to replace it. "Many acres can be seen in this regiou covered with thrifty seedlings of this pitch pine, and trees have sprung up, to my own knowledge, since 1865, which are now from 20 to 25 feet in height with a diameter of trunk of from 4 to 6 inches; and trees from 50 to 60 fect in height with a circumference of from 3 to 4 feet, forming quite extensive forests, may be seen upon the shores of the bay from which the primeval forest was removed about fifty years ago.


"Ascending the highlands of drift, with its porous soil composed of irregular strata of white or ferruginous sands, gravels, and pebbles interspersed with layers of clay, the home of the long-leaved pine, which here arrives at perfection and forms the entire forest growth over immense areas, is entered. $\mathrm{U}_{\mathrm{l}}{ }^{\text {ron }}$ this formation, after the removal of the original forest, either the long-leaved pine takes possession again of the soil or is replaced by a more or less stunted growth of various species of oak (Quercus Catesbci, cinerea, nigra, obtusilobx, and falcata), the mocker-nut, and a fow other small trees and slirubs. What the conditions are by which such a rotation is regulated is not apparent. It is no doubt much influenced by the conflagrations which anumally sweep through the woods and whicli are particularly destructive to the young pines, but it cannot be explained solely upon that ground. I have, however, observed that the more broken lands with the same sandy character of surface soil, but with a more argillaceous subsoil more or less impervious to water, are mostly covered with this second growth of decidnous trees, and that the flat table-lands with either a sandy or gravelly soil are invariably covered again with a secontl growth of the long-leaved pine. Among such young growths of this species I have never been able to discover a single seedling of the other pines.
"Cypress swamps of the Tensas river.-The river was extraordinarily high, the Jowlands being overflowed to a depth of more than 10 feet. The torrents which had fallen during the past three weeks caused a heavier freshet than any that had been experienced since the spring of 1875 . Since that year no such opportunity has been offered for getting heary cypress timber from the depths of these swampy forests. No idle man was to be found ou shore; everybody who conld swing an ax, paddle a boat, or pilot a log was in the swamp engaged in felling and floating cypress timber. All the mill-hands worked in the swamps; fields and gardens were left untouched, and even clerks from the stores were sent to the swamps as overseers.
"We soon entered the deep, dark forest stocked with some fine and large eypress trees, and came upon two negroes, each standing in his little skiff, engaged in felling a tree of the largest size. It was astonishing to witness the steadiness and celerity with which they performed their work, considering the instability of their footholds in the narrow boats. Every stroke of the ax told at the designated place, ant it took them scarcely longer to cut a tree in this way than if they had been working npon solid gromid. The top of the tree when felled is sawed off close to the first limbs ly one man working under water a single-handled cross-cut saw. Another, provided with a long pole armed with a sharp iron spike, seizes the trunk and tows it, with the aid of
the slow eurrent, to one of the lake-like shcets of still water which, interspersed with streams, are so common in these lowlands. Here the tranks are made into rafts and can be floated down the river to the mills along the banks below after the subsidence of the flood. The greatest part of this large timber is ouly accessible during the time of a high stage of water, so that the energies of the whole population are deroted during the times of freshets to getting out as mach of it as possible. The large mumber of logs harvested shows elearly with what activity the destruction of these treasures of the forest is being pushed; and the reports, as of heavy thunder, caused by the fall of the mighty trees, resomding at short intervals from near and far, speak of its rapid progress.
"In 1831 Mr. Vinghn found these espress swamps untoneled by the ax. At present their resources are so diminished by the inroads made upon them during the last twelve years that, with a prospect of a rapidlyincreasing demand for cepress lamber in the near future, he judges that they will be completely exhansted during the hext ten years. This opinion is shared by all mill-owners here, who believe that in less than that time their business must come to an end. There is no hope that the supply will be continued by the natural inerease of young trees. It is rare to find small trees among the large specimens. Seedlings and saplings are not found in these deep, swampy forests, and only occur in the openings and upon the banks of water-courses. The fact that the almost impenetrable shade, excluding the admission of light and air to a soil almost coustantly drenched with water, is unfaromble to the growth of a new generation of the eypress, threatens to exclude it from localities where formerly this tree attained its greatest perfection. In swamps open to the influences of light and air, and not liable to prolonged periots of inuudation, a growth of seedlings and small trees, especially along the bauks of the smaller tribataries of the larger streams, springs upl. The extremely slow growth of the eypress, however, during all stages of its existence, even if young trees spring up, destroys all hope of an adequate supply of this timber to meet the wants of coming generations. Trees of small size are as frequently cut as large ones. Saplings from 4 to 12 inehes in diameter even are eut and supply the farmer, the builder, and the mechanic with material for many useful purposes. Logs not over 30 inches in diameter, however, are not worked up in the Tensas mills, which ouly use logs of larger size, the saplings being sent in rafts with pine logs to the saw-mills of Mobile. It is rare that a tree over 3 feet in diameter is found perfectly sound. Trees above 4 feet through are almost always invested with sigus of decay. No timber seems to be open to so many defeets as that of the eypress. Many of the trees are ' windshaken'; that is, portions of the body of the wood have separated in the direction of the concentric rings, causing anuual splits which extend throughout a great length of the trunk, and if occurring repeatedly in the same stick render it unfit for nse. A considerable number of the larger trees are rotten in sections. Logs cut from such trees may appear perfectly sound at both ends, but are found hollow and rotten in the interior. The inspection of eypress logs requires great experience and care to protect the buyer from loss. But there is one disease which particularly affects this timber, the canse of which is a perfeet mystery to all interested in the matter. (a) From the center of the tree outward, althongh never extending into the sap-wood, oceur great numbers of spindle-shaped, narrow exeavations with perfectly smooth, rounded walls more or less tapering toward the ends, parallel with the bundes of woody fibers and nearly regularly disposed in the direction of the annual rings of growth. These cavities vary from oue-half an inch or less to a foot in length, and are found from a few lines to an inch in width. They are filled with a yellowish-brown powder, the resnlt of decayed, woody substance, although the walls of the cavities appear perfectly sound and unaffected by decay. These excavations are called 'pegs', and timber so affeeted 'peggy' timber. The carities have no communication with the surface apparently, and remain always inelosed within the surrounding belt of sap-wood. It is only in the case of very old trees that the larger cavities produced by the junction of the pegs sometimes reach openings produced by external decay or accident. Undonbtedly these pegs canse the large hollows so often found in the center of large-sized and apparently perfeetly healthy trees. Some of the timber of mediam-sized specimens is honey-combed with these pegs. Such peggy stuff is nseful for poles and piekets, which are found not less durable than if made from solid lumber.
"Two varieties of eypress timber are recognized according to the color, firmness, and heaviness of the mood, and are known as white cypress and black eypress; the latter has darker, eloser grained, and more resinous wood than the former, and will sink in water. Its weight makes impossible the transportation of black-eypress logs by floating muder ordinary circumstanees, and the lumberman, mable always to recognize these peculiarities of the wood in the standing tree, euts a chip before felling, which thrown into the water iudicates, by its floating or sinking, whether it is black or white eypress. Trees of the heavy variety are deadened during the months of August and September by cutting a deep ring through the bark, and in the spring of the second season the timber is found sufticiently light to tloat.
"The cypress region of sonthern Alabama, which must be regarded as one of the great resources of its forest wealth, commences upon Mobile river, about 16 or 18 miles above its entrance into Mobile bay, extending through the lowlands upon both banks of this river, in Baldwin and Mobile eounties, where it covers an extreme area of from 75 to 80 square miles. It extends northward to the junction of the Alabama and Tombigbee rivers, covering

[^3] C. S. S.
large tracts in the delta between them, follows northward the course of these streams, and covers the extensive swamps which border their banks and the mouths of their numerous tributaries. Upon the Alabama the cypress swamps extend to the lower part of Clarke county. Next to the Mobile River region the largest supply of eypress can be drawn from the extensive bottoms of the Tombigbee, about the mouth of Bassett ereek, near Jackson. During the freshet of the present year (1880) a large number of logs from this vicinity will be sent to the mills on the Tensas.
$\therefore$ Baldwin county.-A quarter of a century ago a pine forest, unequaled in the maguificence of its tree growth, and supposed at that time to contain an inexhaustible supply of timber, covered Bald win county through its whole extent. To-day this forest, from the line of the Mobile and Montgomery railroad, along the eastern shore of Mobile bay, and along all the water-courses as far as Bonsecours bay, upon the Gulf, is entirely destroyed, and presents a picture of ruin and utter desolation painful to behold.
"The production of naval stores has been carried on in this region without regard to any of its future interests, and, the forest being exhausted, manufacturers have been driven to seek new fields of operation. In the old turpentine orchards, long abandoned, no young trees have sprung up. Too far remote to make it possible to get their timber to the saw-mills, the large trees which hare sufficient strength to withstand the effects of the barbarous process of boxing drag out their preearious existence for years after the smaller and weaker trees have been laid low, and shade the ground sufficiently to prevent the start of a young growth. The wood of these old boxes, as dead pines are called, is, after the loss of their vitality, charged throughout with an excess of resinous matter, and is in that condition sold as 'fat' or 'light' wood, being greatly esteemed as fuel for the generation of steam. For this purpose this final product of the pine forest is carried to the city of Mobile in broad flatboats, propelled by one huge square sail, and steered by a ponderous horizontal beam serving as a rudder. In a few years, however, this, the least valuable and the last product of the pine forest, will have forever disappeared, and with it the last remnant of the original forest growth of this part of the state. Oceasionally, under the shade of the trees left standing, a young growth of pine is fonnd, and on the high and undulating table-laud between Mobile bay and Fish river, where the soil is light and very porous, a low and scanty oak serub has taken possession of the ground. Toward the banks of the water-courses, however, where the largest trees were first cut to furnish timber to the mills once situated on Fish river, thus early leaving the ground open to atmospheric influences, fine and promising groves of long-leaved pine now often cover areas of wide extent. I measured many trees in these young second•growth pine forests, grown up within the last twelve to twenty-five years, standing from 15 to 30 feet in height with a diameter of trunk of from 4 to 6 inches, of thrifty growth, and rapidly overcoming the small oak growth with which it had to contend for the possession ol the soil. It is the turkey and the upland willow oak alone which oceur in these thin soils, too poor to support the Spanish and black oaks.
"The banks of the North Branch of the Fish river are composed of marsh or white drift sand. The arid, sandy ground is covered with a dwarf growth of live oak and myrtle lice oak, observed here for the first time, and which farther east formed by far the largest part of the oak serub covering the shore-lines of the large bays of western Florida. Two or three miles beyond the forks of Fish river a belt of pine forest is reached, not jet lestroyed by the mutilations of the 'box-cutter' nor bereft of its best growth by the log-gatherer'; it covers the highlands and declivities between Fish river and the waters which find their way iuto Perdido bay. This may be regarded as a virgin forest, only slightly invaded up to the present time along the Blackwater creek, Hollenger's ereek, the Perdido river, and the bay shore. The mills situated on Perdido river and bay depend entirely for their present and future supply of logs upon this forest of southern Baldwin county, although I learn that it is expected to supply them during the next five years only, even if their production of lumber does not iucrease. This forest extends over six townships and covers an area estimated at from 125,000 to 150,000 acres.
"the forests of the chattahoochee in eastern alabama, mixed forest growth, etc.
"The forests which once covered the wide bottom lands of the Chattahoochee in the neighborhood of Franklin, Alabama (opposite Fort Gaines), are now rednced to small patehes of woodland confined to the base of ranges of low hills borlering the plain valley to the southeast. The tree growth was found here to differ in no way from that found lower down, except that the short-leaved pine (Pinus mitis) occurs more frequently. The crab apple and the cockspur thorn are frequent along the borders of the woods, but the pond pine (Pinus serotina), which might have been expected here, was not observed. In the sandy, wet, and deeply-shaded bottoms of a sluggish stream winding along the base of these hills I found the spruce pine (Pinus glabra) abundantly associated with the loblolly bay, red and sweet bays, and stately magnolias. The live oak is not found here, and it is donbtful if it extends in this part of the Gulf region more than a few miles north of the thirty-first degree of latitude. The low hills do not rise more than 150 leet above the plain; in entering them the second division of the sylvan vegetation characteristic of the eastern Gulf states is reached-a forest of mixed growth, which must be regarled, on acconnt of its extent as well as the variety of its vegetation, as one of the important natural features of the region. I am of opinion that the deciduons-leaved trees have an equal representation in this forest with the
conifers. This certainly was the case before the settlement of the eountry, but as the broad-leaved trees occopy the best land, the areas of hard-wood forest have been more reduced by the demands of agriculture than hare the forests of pine.
"The distribution of the different species of trees thronghout this region depends upon the nature of the soil and the topographical features of the country. In general it can be stated that the marls and calcareons Tertiary strata which form tho lower ridges and more or less undulating uplands and plains are chiefly occupied by trees with deciduous leares, and by a few yellow pines. Here oaks predominate, and especially the post oak (Ouercus obtusiloba), which prefers the level or gently-swelling ground with a gencrous, warm, and open soil; with it is frequently fonnd the black oak (Quercus tinctoria), the Spanish oak and black-jack upon soils of poorer quality, the last, particularly, preferring oue of closer, more argillaceous character mixed with fine sand. The black.jack finds here its best development, rivaling often in size the post oak; it enters largely also into the undergrowth of the post-oak woods, forming dense thiekets on lands too poor to sustain a beavier tree growth.
"The hickories are unimportant features in the forests of this region. In the dry uplands they seldom attain more than medinm size, although in the more shadel and richer situations the mocker-nut and pig-nut are not rare.
"'The long-leaved pine, on acconnt of the broad extent it covers, its gregarions habit, and the splendid growth it attains here, must be regarded as the most important timber tree of this region. Confined to a siliceons, dry, and porous soil, it occupies the high ridges invariably covered with a deposit of drift, often found widely spread over the more elevated highlands. For this reason the pine forests crown the hills and cover the more or less broken plateaus. They are fouud also toward the southern boundaries of this region, where the sands and gravels of the drift of the lower pine region encroach upon and miugle with the strata of older formations. Under these circumstances it is evident that the line of demarkation between this and the pino region of the coast is difficult to determine. The best distinction is found in the fact that in the pine forests of the lower pine region the growth of pines upon the uplands is never broken by patches of oak, and that the short-leaved pine never oceurs there. Another point of distinction is found in the nature of the second growth, which springs ap after the large pines have been removed. In the pine woods in the region of mixed tree growth the subsoil, of Tertiary origin, seems more favorable to the growth of oaks than to a second growth of the long-leaved ping. This is replaced generally by oaks mixed with the short-leaved pine and various deciduous trees. It is safe to assert that the southern limits of this region coincide with a line following the northern boundary of the coast drifts, along which the lower strata have completely disappeared be neath it.
"Pike county.-On the broad ridges which form the divide between the waters of the Pea and Conecuh rivers, upon a purely sandy soil, are found, within the forest of long-leaved pine, tracts with strictly-defined ontlines from a half mile to several miles in width, covered with a dense vegetation of small trees and shrubs peculiar to the perpetually moist and eool hummocks of the coast. The soil covered with this growth presents no unusnal features; it is as poor and arid as that covering the rest of these heights. Surrounded on all sides by pine forests, not a single pine tree is seen within the limits of these glades, called by the inhabitants 'pogosines', an Indian name the meaning of which I was unable to learn.
"The trees are of small growth, the willow oak, the water oak, beech, red maple, and black gum rarely rising to a height of more than 30 teet among the sourwoods, junipers, hornbeams, hollies, papaws, fringe-trees, red bays, and other trees of the coast. These glades verge upon deep ravines from which issue large springs, and from this fact I conclude that, below their sandy, porous soil, strata must exist perpetually moistened by snbterranean waters near enongh to the sorface to supply the moisture necessary to support such a luxuriant vegetation.
"FORESTS OF THE TENNESSEE VALLEY.
"The character of the forest regetation changes upon the limestone formation of the valley of the Tennessee. This new region of tree growth extends from the northeastern confines of Alabama to a short distance beyond the Mississippi state line with a width of from 35 to 40 miles , and reaching beyond the northern boundary of the state. Its prominent feature is the total absence of pine and the scarcity of other evergreen trees. $\Delta$ few scattered saplings of the loblolly pine aro found on its lower borders, waifs strayed from their natural habitats, the lower part of Morgan county, the true northern limit of this species, in Alabama at least. The red cedar is the only evergreen tree common among the forest growth of this limestone region, and the durability of its wood combined with its beanty places this tree among the most useful produced in this region. The red eedar forms here almost exclusively the second growth after the removal of the original forest, covering everywhere with extensive groves the dry, rocky hillsides and flats. The timber, however, of this secoud growth is only fit for the most ordinary purposes. The trees brauch low, and the trunks are consequently full of knots and unfit for auything except fence posts. The fertile portious of this region have been largely denuded of their forest growth, although more than half is still covered with wood, a considerable portion with almost virgin forest. This is particularly true of Lauderdale :und Colbert counties and the mountainons portions of the counties of Madison and Jackson. The vast quantities of oak, ash, walnut, and poplar timber contained in these counties ean be sent to northern markets as soon as the Tennessee river has been made navigable by the removal of the obstacles at the Mussel shoals.
"The road from Decatur to Moulton, in Lawrence county, leads through broad and fertite valley lands, broken, as the monntains are approached, by limestone ridges jutting out into the plain. The beantiful Moulton valley, inclosed by the low foot-hills of the Sandy Mountain range which form its southern boundary, shows ouly along the base of the mountains a remnant of its original tree covering. Fere the water oak, willow oak, red oak, mulberries, elins, and ashes were the trees found in the lower situations, and on rolling, higher land the white oak; the black oak, post oak, sassafras, and dogwood formed the prevailing forest growth. The lower flank of the steep escarpment of the highlands, a terrace of limestone eliffs mostly destitute of soil, bears a stnnted tree growth. Here the red cedar and the dypland hickory abound, and where the snrface is less broken and a deeper soil covers the rock, chestunts make their appearance with white oaks and the shell-bark and mocker-nut hickories. The ascent is less precipitons as the sandstone ledges are reached, and here the yellow pine (Pinus mitis) and the serub pine (Pinus inops) are prominent anong the oak forests of the monntains. When the crest of this abrupt decline is passed the oak forest is reached. It covers the extensive table-land between the Coosi and the eastern tributaries of the Tombigbee, and extends southward from the valley of the Tennessee to the lowlands commencing below Tusealoosa, ocenpying an area of nearly 6,000 square miles.

## :General Remaris.

"The forests of long-leaved pine are principally confined to the following limited regions east of the Mississippi river: 1. The Great Maritime Pine region. 2. The Central Pine Belt of Alabama. 3. The Pine Region of the Coosa.
"Pine forests of more or less extent, too, mixed with woollands composet of decidnous-leared trees, ocenpy the ridges covered with a porons siliceons soil in the region of what I have called the mised tree growth, and which upon its southern borders verges npon the Coast Pine Belt. Upon the heights of the low ranges of the metamorphic region of Alabama are also found more or less extensive tracts of this pine, generally, however, of inferior quality and size, while as far north as the thirty-fourth degree of latitude patches of thinly-seattered pine are met on the brows of the mountains, and, rarely, on the platean of the carboniferous sand.
"The pine forests of Alabama, from the Escambia to the Mississippi state line, in the counties of Monroe, Baldwin, Washington, Mobile, and in portions of Clarke connty, cover 3,500 square miles. Of these about 1,000 square miles have already been more or less destrosed in the manufacture of naval stores. Allowing 25 per cent. for land under cnltivation, or covered by a forest of different trees, by water, etc., there are still 1,875 square miles left of this forest to supply the demands of the future.
"The whole amonnt of long-leaved pine lumber received at the port of Mobile averages about $60,000,000$ feet, board measnre, representing the product of mills at that place and along the various railroad lines leading to it. The amount of hewed square timber received is still small, but the business of exporting timber of this sort promises to assume large proportions in the near fiture.
"The pine belt of central Alabama.-This forest ocenpies the deposits of drift which, in a strip varying from 10 to 30 miles in width, traverses the state from east to west. It is nearly in the center of the line connecting its eastern and western limits that its greatest width is found. This forest is estimated to cover 550 square miles, no allowance being made for lands cultivated or coverea by other trees. The timber, both in quality and quantity, is nnsurpassed by that growing on the best sections of the lower pine region. The mannfacture of lumber and its export to northern markets has ouly been carried on in this region to any large extent during the last three or four years, and it is now rapidly assuming large proportions. The most important saw-mills in this region are situated on the line of the Louisville and Nashville railroad, between Clear creek and Elmore, Elmore county, and produeed in the aggregate $67,000,000$ feet of lumber, board measure, during the years 1879-80. Considerable lumber is also produced along the line of the Selma, Rome and Dalton railroad, in Chilton connty.
"Naval stores are not get mamufactured in this region.
"The pine region of tine Coosa.-A detached belt of drift largely composed of coarse pebbles stretches from the eastern base of the Lookont Mountain range throngh the valley of the Coosa river, near Gadsden, covering nearly the whole of Cherokee county, to the Georgia state line. This forest is estimated to cover from 400 to 450 square miles, although much of the best timber nearest to the river has already been exhausted. Logs are driven down the Coosa and sawed at Gadsden. The manufacture of lumber at this place has been carried on for a number of years, and amounts to an average of $20,000,000$ feet.

## "NAVAL STORES.

"The manufacture of naval stores in the ceutial Gulf states is almost entirely restricted for the present to the forest contiguons to Mobile and to the railroad lines leading to that port and to the southern confines of the pine belt in Mississippi. It is only during the past two seasons that turpentine orehards bave been worked near Paseagoula, Mississippi, Pearl river, and in eastern Louisitna above Covington. The first tupentine distilleries were established on the Gulf coast a little more than a quarter of a centnry ago, along Fish river on the castern and Jog river on the western shores of Mobile bay. The business som assumed sueh proportions as to leat to the destruction of the 34 vols
forests covering humbeds of spuare miles, particularly in Baldwin county. The production of naval stores in this county, as well as in the lower part of Mobite connty, has at present nearly ceased, on account of the exhanstion of the forest. It is, however, now earried on with the greatest activity on the line of the Mobile and Ohio railroad. Between Mobile station, in Mobile comity, and Quitman, Mississippi, there are at this date not less thau thirty-three stills in operation, while along the Lonisville and Nashwille railroal there have been during the last five years fiftythree stills established in Alabama and Mississippi. These, with few exceptions, are controlled by Mobile capital, their whole produet heing handled from that market, so that the returns containen in the annual reports of the board of trade of Mobile fairly represent the whole production of naval stores in this pine region.
"According to the statements contained in the report for 1850, the crops amounted in the years 1879-'80 to 25,409 barrels of spirits of turpentine and 158,452 barrels ol rosin. During a period of eight years, between 1873 and the close of the busiuess year of $1550,160,000$ barrels of spirits of turpentine and 800,000 barrels of rosin have been produced in this same district. (a)
"The increase in prices during the last few years for all kinds of naval stores, and particularly the aetive demand for the best elass of rosin, have given an increased impetus to this business, in consequence of which many of the older orehards have been abandoned and new ones started, whilo the number of new boxes cut during the present season is greater than ever before. There are no returns to be obtained of the production prior to 1875, but it can be safely assumed that $u_{1}$, to that year 250 square miles of pine forest had been boxed. The production since 1875 must have involved a further destruction of 640,000 acres, or 1,000 square miles of forest. With the low price at which pine lands are held there is not the slightest regard paid to the utilization of their resomrees, and under the present system they are rapidly destroyed, regardless of the needs of the future and with the sole object of obtaining the quickest possible returns on the capital invested.
"It may be of interest to mention here the results obtained by a practical manufacturer by submitting the refuse of saw-mills, that is, slabs and sawdust, to a process of combined steam and dry distillation, with the view of ntilizing the volatile products of such waste. He obtained from one cord of slabs 12 gallons of spirits of turpentine, 25 gallons of tar, 120 gallons of weak pyroligneous acid, and 12 barrels of charcoal. From one cord of lightwood he obtained 12 gallons of spirits of turpentine, $62 \frac{1}{2}$ gallons of tar, and 60 gallons of pyroligneous acid. The sandust obtained from sawing 10,000 feet of pine lumber, subjected to distillation during one day, produced 22 gallons of spirits of turpentine."

## MISSISSIPPI.

The forests of Mississippi originally extended over nearly the entire state. Prairies of no great area, situated in the northern central part of the state, presented the only break in its tree covering. The forest consisted of a belt of long leaved pine, occupying the coast plain and reaching from the eastern confines of the state to the bottom lands of the Mississippi river, and from the coast nearly to the line of Vicksburg and Meridian. The northeastern portion of this long-leaved pine Corest spread over a high rolling conntry, and here the pines were mixed with varions hard-wood trees; north of the long-leaved pine forest a long belt gradually narrowing toward the north and ocenpied by a growth of short-leaved pine and of hard woods reached nearly to the northern boundary of the state, while south of the Tennessee river, in Tishomingo, Prentiss, and Itawamba connties, a considerable area was covered with forests of the short-leaved pine. The remainder of the state was clothed with a growth of hard woods, which in the swamps of the Yazoo delta and the bottom lands of the Mississippi river formed vast and almost impenctrable forests, where eypresses, gums, water oaks, ashes, and other trees which find their home in the deep, inumated swamps of the Sonth Atlantic region attained noble dimensions and great value.

The pine forests have been removed from the immediate neighborhood of the Pascagoula and Pearl rivers and from their principal tribntaries within the southern tier of counties; the most accessible timber has been cleared from the Biloxi, Blind, Jordan, Wolf, and Tchefuncta rivers, flowing into Mississippi sound, and from the line of the Chicago, Saint Lonis, and New Orleans railroad. The long-leaved pine of Mississippi is, however, still practically intact, imm these forests are capable of suplying an immense amount of timber as soon as the means of transpurtation cam be turnished for it. A small amome of pine has been cht in the northeastern pine region from along the line of the Memphis and Charleston milroat.

The hard-wood forests outside of the bottom lands have been largely cleared from many counties in providing for the requirements of agrieulture. Such land when abandoned is again covered in the central part of the state with a gron th of oht fieln pine, and in the north, and especially in the northeastern conuties, by a vigorous gromth of short-leaved pine (Pimus mitis), whieh seems destined to become the most important timber tree of that region. The forests which eover the swamps of the state are still almost intaet, althongh the most accessible cypress, which has fong been cont in the Yazoo delta and the valley of the Pearl river to supply the New Orleans market, has become scarce.

During the censns year 222,800 acres of woodland were reported destroyed by fire, with a loss of $\$ 78,500$. Of these fires the largest number was set by hunters, and by farmers carelessly starting fires in clearing land or to improve pasturage.
a These figures differ somewhat from those prepared by Mr. Van Bokkelen. See page 493.-C. S. S.


Establishments for the manufaeture of wagons, wheel stock, cooperage, etc., have been established at different times in the northern part of the state. The inchastries, however, which depend upon the hard-wood forests for material are still in their infancy in Mississippi, and are capable of enormous development.

The following estimates of the standing-pine supply of Mississippi, May 31, 1880, were prepared by Dr. Charles Moler, who carefully explored the forests of the state:

LONG-LEAVED PINE (Pinus palustris).


SHORT-LEAVED PINE (Pinus mitis).


In this estimate no acconnt is made of small timber standing on some $2,912,000$ acres which have been cut over, and from which the merchantable pine has been practically remosed.

The region of mixed growth, which adjoins the pine belt upon the north, contains a smaller number of pine trees per acre than the pine belt proper; but, the individual trees being larger, the average amonnt of standing pine per acre is here greater, althongh generally of poorer quality, than nearer the coast.

The principal centers of lumber manufacture are at the month of Pascagoula river, in Jackson connty, at Mississippi City, in Harrison county, along the lower Pearl river, upou the line of the Chicago, Saint Louis, and New Orleans railroad in Lincoln county, and in the northeastern counties, where are located many small railroad mills, manufacturing in the aggregate a large amonnt of yellow-pine lumber (Pinus mitis).

The pine forests of the state have up to the present time suffered but little damage from the manufacture of naval stores. Turpentine orchards, however, have been recently established in the vicinity of the coast, near the month of the Pascagoula river, and at other points in the coast counties.

The following remarks are extracted from Dr. Charles Mohr's report upon the forests of Mississippi :
"The pine forests of southern Mississippl-In the vicinity of Scranton, near the mouth of the Pascagoula river, little is left of the original pine forest. The old clearings are covered with fine loblolly pine, from 40 to 60 feet high, upon rather close, dry soil. The pitch pine (Pimus Cubensis) forms dense groves, with seedling trees from 20 to 30 feet in height upon lands of lighter soil extending to the sea-shore. Oaks are not common. Fine groves of stately live oaks, however, line the banks of the rirer up to Moss Point, 4 miles distant.
"The annual export of lumber during the last four or five years has averaged $45,000,000$ feet from the Paseagoula iiver. The largest percentage of this lumber is mamfactured into boards and seantling for ordinary building purposes, and is shipped to Cubr, the Windward islands, to Mexico, Brazil, and a small part, in the form of deals 2 or 3 inches in thickness, intended for slip-building, to France, Spain, Holland, Belginm, and Germany. Large quantitics of charcoal burned upon the banks of Black and Red creeks are sent to New Orleans in small coasting schooners, which run also trom the bay of Biloxi and the bay of Saint Louis. At Moss Point eleven sar-mills, which furnish the lumber manufactured upon it, are sitnated on both banks of the East Pascagonla river. The combined capacity of these mills amounts to 220,000 feet a day, although the amual production during the past years has scarcely exceeded $40,000,000$ fect. The timber mannfactured in these mills comes from the Pascagoula and its tributaries, the Leaf and Chickasawha rivers and their sources, the Bogue Homo, Tallahala, Bay, and Okatuma creeks, as far up as the sonthern limits of Covington and Jones counties. A small uumber of logs also. comes from the Escatawpa. The logs received at these mills average 20 inches in diameter and 40 feet in length Sticks of such average dimeusions are only furnished from first-elass timber-lands, which, according to the best judges, prodnce six or seven trees of that size to the acre. Only lands lining the streams just mentioned, in a belt not exceeding 3 miles in width on cach bank, have been up to this time invaded by the log.getter to supply these mills.
"The vastness of the timber resources yet contained in the region embraced in the northern half of Hanison and the whole of Greene and Perry, up to the sonthern confines of Marion and Jones comnties, is astonishing. As is the case in Alabana, however, trees furnishing first class spars for masts are diffient to find ; they have been cut by spar-honters in every part of tho forest which conld be reached by teams.
"Cypress lumber is not mamfactured in this region, and the loblolly pine firmishes so small a part of the timber mannfactured that it ned not be considered. In , Jones and Covington comties, about the healwaters of the upper tributaries of the Pascagonla, the country is rolling, intersected by nomerous small, swift streams and rivolets. This region is magniticently timbered, and devoid of the barren ridges of almost pure sand so frequently fomal in the pine belt of Alabama.
"The low, flat, more or less wide pine lands bordering upon the marshes of the coast are sparsely covered with pine, while the trees growing in this wet, boggy soil, clevoid of thainage and overlying a subsoil impervious to water, are stunted and of little value. The lower part of Ilarrison connty is covered with these pine meadows, which fact accounts for the comparatively small importance of the hay of Saint Louis as a lumber-producing center.
"At Peallington, on the Pearl river, is established the large saw-mill of Poitevent \& Farre, capable of producing 100,000 feet of limber a day; at Logton, 2 miles farther up the river, are two mills, and 5 miles above these, at Ganesville, there is another. The largest part of the logs sawell at these mills is eut mon the banks of the Abolochitto creck, in Haneock county, and its tribntaries extending into the lower part of Marion county, 50 or 60 miles distant. The remainder comes from the banks of the Pearl and the upper and lower Little rivers, which empty into it 10 miles above Columbia.
"The eypress is nearly exhansted from the lower Pearl river, and the 20,000 or 30,000 feet of this lumber which are sawed anmally at Pearlington are derived from the eypress swamps on the upper waters of the Pearl and Jackson rivers, where there is still a large anome of this timber of good size.
"The eastern bank of the Pearl river, within the Maritime Pine Belt, is sparsely settled, and forests, the especially in Mancock county and the upper part of Marion county, are unsurpassed in the quality and quantity of their pine timber. It is estimated by gool judges that these forests will yield an average of 2,000 feet of lumber, board measure, to the acre. Up to the present time a strip of land scarcely 3 miles in width, embracing the banks of the water-courses, has been stripped of its timber growth, aml fine spar timber is yet to be found here a few miles back from all the streans. Almost the whole of these rich timber-lands supplying the mills on Pearl river form a part of the public domain.
"Tho almost unbroken pine forests covering the upper tier of comties between the Pearl and Pascagonla rivers, toward the northern confines of the pine region, are still practically intact. The wealth of these forests has as yet fonnd no outlet to the markets of the world. Thinly settled, they are still largels the property of the govermment, but in view of the speedily-increasing demand for lumber and the profits derived from the lumber business, such a condition of affairs must soon come to an end. It can be safely asserted that by far the largest part of the timber, felled in the Abolochitto region is taken from goremment land. There can be no question of this when it is considered how insiguificantly small is the area of land which has been legally entered by private persons along that stream. The necessity of adopting proper measures to protect the timber wealth npon the public domain from depredations of such enormons extent forces itself upon the most casnal observer, while to one who looks closer at the consequences of the continuance of the existing state of affairs the urgency becomes appallingly apparent. The ever-inereasing consumption of timber at the mills upon Pearl river, of which one alone ean cut 100,000 feet of lumber a day, will prove a powerful stimulus to a people who, since the development of the lumber business in these regions, have almost completely abandoned their former agricultmral and pastoral pursuits and now depend entirely for their support upon contting pine logs, to supply this enormons demand at the expense of the public property. Already plans have been made to invade this region by tramways and railroads, in order that its timber inay be brought to market. This is true, too, of the region between the Pearl and the Amite rivers, down to the marshy lands of eastern Louisiana, a region in which the forests are also particularly good.
"In the state of Mississippi it is safe to estimate that, after deducting $2 \overline{5}$ per cent. for arcas of swampy and cleared land, 9,000 square miles are still covered by forests of long-leaved pine. The productiou of this region during the ceusus year amounts to $108,000,000$ feet; of this, $60,000,000$ finds its ontlet at Pascagoula, 30,000,000 by Pearl river, $6,000,000$ by bay of Saint Louis, and $12,000,000$ by the Chieago, Saint Louis, and New Orleans railroad to uorthern markets.
"In the northern part of Harrison county we crossed a tract from which twelve years ago a hurricane swept a belt a quarter of a mile wide of all tree growth. It is interesting to note the growth which has since sprung up, among the prostrate charred trunks of the pines still found lying about in large numbers. Black-jack oaks, the largest not over 12 feet in height, are mixed in almost equal mmbers with stunted, thin saplings of the long-leaved pine. These plainly exhihit the helplessness of the struggle to which these offispring of the great timber tree are subjected under the intlnence of repeated conflagrations wherever the oak serub has sprung up and added fuel, in the abundance of its leaves, to the fires which annmally sweep through these woods.
"The nortmeastern counties.-After crossiug the Sucarnoochee river below Scooba, in Kemper county, the pines which had covered the ridges near the borders of Landerdale county disappear; searcely a stray sapling
of the loblolly pine is seen as, Scooba is reached. The celd, wet, calcareous soil of the flatwoods and prairics is unsuited to the growth of all coniferous trees, with the exception of the cypress. Along the railroad, as it traverses the flat prairie region, the country is sparsely wooded; large tracts of the prairio lands have always been destitute of trees, and the woodlands with which they were interspersed were cleared at the first settlement of the country. What remains of the original forest growth is now confined to localities too difficult of drainage to make agricnlture profitable, and to the bauks of streams sulject to innndation. More or less extensive patches of woods are found alse on the ledges where the limestone rock comes to the sarfacc. In the swampy land the willow oak, the water oak, the black gum sweet gnm, white ash, and aloug the ponds willows and cottonwoods, prevail. The post oaks, white $^{\text {s }}$ oaks, and cow oaks are mingled more or less freely with these trees in localities enjoying better drainage. Black-jack and black oaks, mixed with various haws, viburnums, and persimmons, occupy the recky flats. No magnolias were seen in this region. The red, willow, and water oaks, the sycamore, and the sweet gnm abonud along the streams here, and are so common as to deserve special mention, while on the relling nplands black oaks, pest oaks, and white oaks, with poplars, shell-bark and pig-nat hickories, are common. From Tupelo toward Corinth the country is poorly wooded. The ascent is constant, reaching the point of highest elevation between the Gulf of Mexico and the Ohio riverat Booneville. Corinth is sitnated on a wide pine plain, bounded on the west by the valley of the Tusenmbia river and east by the ridges which mark the water-shed of the Tennessee. The soil is here a deep calcareous clay; very stiff and heave, hard as brick in warm, dry weather, and suddenly becoming a bottomless, stiff mire in seaseris of rain. Below the valley of the Tusenmbia river the road passes over low and undolating ridges, of which the higher and steeper are yet covered with the remnauts of the old oak forest. Here the Spanish and post oaks predominate in numbers; then follow the black oak and the searlet oak, while the shell-bark hickory and the mockernut form but a small part of the trec growth of these uplands. The bottoms of the Tuscumbia, although snlyject to frequent overflows, are covered with a primeval forest not inferior in luxuriance and varicty to that of the Mississippi river bettom lands. White-oak timber of the finest quality is fomm here in the greatest abmadance and perfection. The most common species is the cow oak (Quercus Michavxii). I found that this river-bottom forest contained, by actual count, an average of from twelve to fourteen trees of this species, from 30 to 35 inches in diameter, to the acre. It is known to the inhabitants here by the name of cow oak or basket oak, being easily split into narrow, thin strips. The wood is extensively used in the mannfacture of baskets used by the negroes in cotton-picking. These baskets are light, and of considerable strength and durability. Next in frequency follows the willew oak, and then the over-cup swamp oak (Qucreus lyrata), and finally the red oak, found especially on the outskirts of the forest.
"The white ash is not so frequently seen here as elsewhere in similar localities, and does not seent to thrive on these stiff, cold soils. It is in part replaced by the green ash, which here attains the size of a large tree. The black gum is very common, and where the soil is least subjected to overflow the true white oak is fonnd, with fine groups of beech, overtowered by large poplars. Among the smaller trees the mulberry, hornbeam, helly, and abundant papaws must be mentioned.
"The pine hills in the easterv part of Alcorn county are reached at a distance of 6 or 7 miles in a sontherly direction from Corinth. Pine occurs on the dividing ridges between the waters of the Tuscumbia river and Yellow creek, or toward the sonth on those between the Tombigbee and the Tennessee rivers. A short distance west of Glendale station the Cretaceous strata disappear under the ferruginous sands, and mixed with a stunted growth of post oak and Spanish oak, pines appear, forming rast forests on the crests of the hills. This pine (Pinus mitis) takes possession of all the old clearings and fields thrown ont of cultivation. The rapid growth of the seedlings, which spontaneously spring up thickly after the removal of the broad-leaved trecs, leaves no chance for the seedling oaks. It is therefore a certainty that in the future the short-leaved pine will be almost the sole forest tree in this part of the state, outside of the bottom lands, and that it will probably extend its domain far beyond the original limits of its growth.
"The aspeet of these pine woods resembles closely that of the lower pine region. The short-leaved pine replaces here the leng-leaved pine of the coast, the serubby post and Spanish oaks take the place of the turkey and the upland willow oaks, while the black-jack is cemmon to both these regions of identieal geologieal formation. The flora of the two regions also presents the same general features; the asters, goldenrods, sunflowers, and various leguminous plants are often the same or belong to elosely-allied species. The pineclad drift hills interspersed between the Carboniferous and Cretaceons regions are parts of the northern interior drift belt which extends throughont Alabama. The region of the short-leaved pine of northeastern Mississippi extends from the sonthern border of the valley of the Tennessec river to the sonthern extremity of Itawamba countr, and is on an average 10 miles in width, embracing an area of nearly 600 square miles. Of this region, after the deduction of tho fertile bottoms of the Tombigbee and Yellow Creek valleys, where no pines are found, two-thirds can be regarded as occupied by the pine ferest. As the sole supply of pine lumber in the northern part of the state, this region is of great importance. Several saw-mills, none of which have an annual capacity of more than $3,000,000$ feet, are established on the railread line at Glendale, Burnsvilte, and near Inka; portable saw-mills are worked also through this forest in its whole extent, their product being hanled in wagons for miles to the nearest station on the Mobile aud Ohio and the Memphis and Charleston railroads. The largest shipments are made from Burnsville and Corinth.
"The second growth of the short-leared pine, which is already growing with great rapidity in northern Mississippi upon exhansted fields thrown out of cultivation and wherever the forest has been cat from the ridges, shonld be protected and tostered by the owners of the soil. The care bestowed upon the natural seeding of this nseful and valuable timber tree, and in assisting it to gain a permanent foothold on lands regarled as unfit or unprofitable for agriculture, of which tens of thonsands of acres are now fonnd in this state, would lead to results of great benefit to the community. The people have it in their power to replenish their timber resources, fast failing throngh the ever-progressing destruction of the original forest, without other outlay than simply assisting nature in her efforts to recover from injuries sustained in the wholesale destruction of the forest. The restoration of the forest over vast areas, now barren and mproductive wastes, would add vastly to the general welfare and prosperity throngh the inthence such forests wonld exert npon the climate and salubrity of the country, by the shelter they wonld ofler to insectivorons birds aver busy in the destruetion of inseets injurions to farm erops, and by the formation of protective screens against the eotfon-worm, the most testructive of all insects in this part of the conntry; for it must be admitted as an molispnted fiet that the destruction cansed by the cotton-worm is far less upon the small farms where strips of woodland divide the fields than mon the plantations in the rich prairie lamis where large areas are destitnte of woods. Such forests would serve as windbreaks for crops growing in field - and orchard, and as protection against the washing away of the light soil so peculiarly adapted to the cultivation of the great staple of the comntry, thus preventing the rmin of many productive fields, the debris from which, carried away by the rain and floods, fills the rivers and their estuaries, rendering mavigation every year more dangerons.
"Cevtral. pine mills.-A hilly region, the porthern limit of which is mear the center of Benton connty, covered with upland oaks and short-leared pines, extends eastward to the flatwoods in a belt from 8 to 12 miles in width. Farther sonth, in Calhoun and Sumter cometies, this pine region is much wider, embracing the largest part of these and Choctaw and the western part of Oktibbeha comnties; from Koscinsko, Attala county, it extends over the whole of Winston and the western part of Noxnbee comnties, being merged, sonth of Neshoba in the western part of Kemper comty, with the region of mised tree growth. This pine forest supplies a suffieient amount of lumber for the local demand, and portable saw-mills are fonnd near the large settlements from Koscinsko to the southern limits of the region. It forms a prominent feature in the eastern Gnlf states by its geographical position, and must be regarded as one of the distinct divisions which might be designated as the region of the central pine hills. Botanically this region differs from that of the mixed tree growth, upon which it borders toward the south, by the more equal distribution of the pines among the oaks, and particularly by the total absence of the long-leared pine and other conifers, with the exeeption of the loblolly pine and of seattered cypress along the river banks, and by the absence of the great magnolia (M. grandiflora). The second forest growth in the northern part of this region consists almost exclusively of the short-leaved pine, which southward is associated with the loblolly pine. The short-leaved pine will in the finture be the chief forest tree of this region.
"I have personally seen lut little of the flatwoods proper, having only tonched their southern limits in Kemper county. It is a region of close, coll soil, devoid of drainage, and covered with a stunted growth of post oak; and in its reonomic aspects as a timber region, or botanically, is of little interest or importanee.
"Westen Mississippi-In Copiah county; below the village of Terry, ffteen saw-mills are in operation along the railroad, obtaining their supply of logs from the heavily-timbered hills in the neighborhood. This lumber is shipped by mil to Saint Lonis and Chicago. This business has already reached large proportions and is still increasing rapidly, the mills rmming withont intermission at their full capacity thronghont the year.
" Beyond Crystal Springs the comntry loses its rolling eharaeter; the pine hills disappear, and a short distance above the morthern homdary of Copiah county, near Terry, a different geologieal formation is entered, and a strongly-marked change in the regetation takes place. Horizontal strata of loam, inclosing layers of what appears a whitish samd, stretch northward orer a vast extent of level country, and the long-leaved pine disappears with the gravels and sauds of the drift.
"North of the pine region a large amonnt of rieh land between the Pearl and Mississippi rivers has been brought muler eultivation, especially along the boftoms of the Pearl river and along the prineipal railway lines. At Jackson, on the Pearl river, little is left of the original tree growth which covered its banks. Still enongln is left, howerer, to show that it was chiefly composed of sweet gums, white oaks, elms, white ashes, ete. The railroad from Jackson to Vicksbure passes through a fertile agricultural conntry, where only small strips of forest remain between the large plantations and farms. Pines are not seen here, and the black walnut, originally so abnndant among the oak and hickory forests which covered this region, must now be regarded as entirely exterminated. Beyond the Blackwater, in the hilly region of the bluff formation, the great magnolia covers the hillsides, although in tho vicinity of Vickshorg the hills for miles aromed the eity are entirely stripped of their forests.
"Vickshmeg is the center of a considemble lumber indnstry. depending for its supply of timber upon the cypress rafted down from the month of the Yazoo river. The first mill devoted to the manufacture of cypress lumber was established in Vicksburg in 180.5 . Before that time all the timber from the Yazoo valley was rafted down the Mississippi river, mostly to New Orleans, as is still the case with the greatest number of the rafts. A second mill has lately been built at Vicksbra, and the combined anmal eapacity of the two is ten or twelve million feet. No
manufatured lumber is shipped from here farther south than Baton Ronge, nearly the whole production being consumed in the erection of small dwellings in the Mississippi and Yazoo bottoms. The logs received at these mills average 25 inches in diameter, with a length of from 30 to 70 feet.
"The hillsides in the neighborhood of, Vieksburg, when thrown ont of enltivation, are seen covered with a stunted growth of locnst, Chickasaw plums, and other shrubs. The original forests of the bluff hills consist of extensive groves of stately magnolias, stretching down the slopes and mixing with large white oaks, Spanish oaks, beeches, and towering poplars, covering the mossy ground of the small valleys with delightful shade. Many of the magnolias are from 18 inches to 2 feet in diameter. The full-grown trees, however, show that they have already passed their prime; the upper limbs have begnn to die, the base of their trunks being often rotten and hollow. Small specimens and sapling or seedling trees I could not find. The large trees are cut down to supply the neighboring city with fuel, and it is inevitable that in a comparatively short time these magnolia groves will have disappeared, and that these delightfilly-shaded hills must share the desolation which surronnds the town.
"The Yazoo Delta.-Indian bayon, one of the small water-courses between Pearl river, Deer creek, and Sunflower river, has a sluggish current even in time of high water. As is the ease with all the streans of the Yazoo delta, its banks are elerated often to a height of 10 or 15 feet above the surface of the water, thus affording excellent natural drainage for the adjacent country, which is covered with a yellow-brown loam of unsurpassed fertility. As the land, however, recedes from the banks it gradually sinks down again toward the level of the bed of the stream, and the water-courses, following the general direction of the Mississippi river, inclose corresponding lines of depression nearly level with the beds of the streams. These tronghs between the bayous and rivers are one of the characteristic features in the topograply of the Yazoo delta. They are of varions extent, depth, and shape; flat and wide, they form tracts of dark, wet forest swamp, more or less dry in summer; or, narrower and deeper, they form swamps rarely ever entirely free from water; sometimes they are iuundated wooded marshes and cane brakes, or ponds and lagoons more or less shallow and studded with the mighty trinks of the eypress. When these depressions are of considerable depth, lakes, presenting open sheets of water sometimes miles in extent, are formed, their nargins, only, overgrown with the cypress. Upon these features depend the great diversity of the forest growth which yet covers the largest part of the Yazoo valley. Along the elevated ridges fronting the streams the white oak, the willow oak, the shell-bark and mocker-mut hickories, the blaek walmut in great numbers, the yellow poplar and the sassafras large enough to furnish canoes of great size, the mulberry, the Spanish oak, the sweet and the black gums are the principal forest trees, with an undergrowth in the openings of dogwood, various haws, erab apples, wild grapes, buckthorns, etc. In the forests covering the lower lands, which slope back to the swamps and reservoirs, the cow oak takes the place of the white oak, while the over-cup white oak oceurs everywhere in the more or less saturated soil. Here the sweet gum reaches its greatest size, and here grow also in great perfection the bitter-nut, the elms, hornbeans, white ash, box elder, and red maples of enormons size. The honey loenst, water oaks, and red and Spanish oaks are equally common. Here, among the smaller trees, the holly attains its greatest development, with hormbeans and wahoo elms, while papaws, haws, and privets form the mass of the dense undergrowth, which, interspersed with dense cane-brakes, covers the ground under the large trees.
"The region covered by these splendid forests of hard woods possesses a wealth of timber of the most valuable kinds and in surprising variety. They occupy by far the greatest part of Sunflower and the adjoining comnties between the Mississippi river and the hills which border upon the Yazoo to the east. Most of the clearings made in this region before the outbreak of the war, by the planters settled lower down, have sinee been abandoned and are again densely covered with the young growth of the trees of which the forest was originally composed. During the last few years, however, the comntry has been entered again for cultivation by a class of suall farmers, who from being farm hands have now risen to the position of independent landholders. It is astonishing to see the utter disregard of these settlers for the forest wealth of the country, which in a short time conld not fail to be of great commereial value. On the shores of Indian bayou may be seen elearings with hundreds of the finest black walnuts among the deadened trees, while many of the noblest specinens of this valuable timber tree are felled for fence rails or trifling purposes. The amoint of oak and hickory timber destroyed here annnally is amazing. It is generally believed, however, that not one acre in fifty over this whole region of hard-wood forest has get been stripped of its tree covering. Quite different is the condition of the cepress growth in the great Yazoo valles. This tree, confined to low and more or less inuudater bottoms bordering on tho Mississippi, the Lower Yazoo, Big Sunflower, and their mumerous tribntaries, was once found in the greatest abundance in this region, and immense quantities of eqperss lmmber have been turnished by the lower parts of Issaquena and Washington and the western parts of Warren and Yazo conuties. The most valuable timber has now, however, disappeared from the immediate neighborhood of the low river banks easily accessible at seasons of high water during every winter and spring. Only groves standing remote from the banks of the water courses, and which are only accessible to the raftsman during exeeptionally high stages of water, now supply this lumber. In the upper portions of the valley, however, in the low depressions deseribed as extending between the elevated banks of the streams, more or less limited areas of undisturbed eypress forest are fomm. The shallow lagoons, covered with water except during seasons of prolonged drought, and called cypress creeks, present in the spring of the year a strange sight. Ne object meets the eye between the immense trunks of the mighty trees, as in these eypress groves no other tree nor
shrub can live in the dark, shaded, water-covered soil. These reservoirs of drainage, generally withont outlet, are called express lakes if the water in my part of them, too deep to allow the growth of trees, confines the express to their more shallow borders. Here the cypress arrives at its greatest dimensions and produces timber of the finest qualits. These cypress lakes and cypress brakes, remote from streams, at no time of the year comected with them, and always surrounded with a mire of forest swamp impassable to wagons, still retain their best timber. Of late years, since swamp and overtlowed lands have become the property of the state, planters have added many of these eypress traets to their estates by purchase; many others have been acquired by companies formed to construct artificial channels by whieh the timber may be floated to the nearest streams. The richest aml most extensive of these groves of eypress, already more or less in the hauds of eapitalists, are found along Stecle's bayon, between Deer creek and the Sunflower river, in Washington county; between that stream and the lower consse of Bogue Plalia, and between the Mississippi river and Black creek above Greenville. There is also a very large body of cypress inclosing the 'California brake', upon the Little Sunflower, in the connties of Bolivar and Coahoma, extending throngh Tallahatehie connty to the Yazoo river.
"The traffic in eypress lumber in the Yazoo region dates from 1830 . In 1838 it was commenced upon the Sunflower river and Deer creek, ten years after the first settlements were established upon the banks of these streams; since that time rafts have been sent regularly to New Orleans, and camps of lumbermen have been established in every direction, the forests, particularly those upon the public domaius, being regarded as the nudisputed property and lawful prey of the log-getter. In consequence the cypress groves have been, if not entirely destroyed, largely enlled of their best timber wherever it comld be obtained without investment of capital, that is by simply floating the logs to the streams at times of freshet and overflow.
"The entting of these cypress forests is not wisely regulated under the ownership of the state. These lands have heen thrown into the market at 50 cents an acre with the condition of settlement. Beneficial as such a law might prove in the disposal of lands fit for cultivation, it results, in the case of timber-land unfit for the plow, in the rediless destruction of one of the surest sonrees of publie revemue. The state thas sells for 50 cents what on its face is worth to the purchaser hmodreds of dollars, and which, when deprived of its value and rendered forever worthless, will be turned back to the state again.
"Mnch of the destruction of the timber can be traced to wasteful methods practiced by the negroes. Under present methods any one having rented a plantation will, for the most trifling wauts, cut down a tree, regardless of size, and withont any effort to preserve for finture use the parts not immediately wanted, so that the next quarter of a century will probably see the entire destruction of the vast quantities of timber stored in the whole of this great territory."

## LOUISIANA.

The coast of Louisiana is bordered by saline mirshes and savannas extending iuland from 10 to 40 miles, or is covered with a scatterel growth of cypress oceupying extensive fresh-water swamps peculiar to the region. In Vermillion, Caleasien, Saint Martin's, and Saint Landry parishes considerable treeless areas, open grassy prairies in the borders of the forest, ocenr. With these exeeptions Louisiana was originally eovered with a dense and varied forest growth. The Maritime Pine Belt covered the eastern portion of the state nearly to the Amite river, or until checked from further western development by the allnvial deposits of the Mississippi. Forests of pine, too, ocenpied the western part of the state north and south of the Red river. The pine flats of Calcasieu were covered with forests formed almost exclusively of the long-leaved pine, which, farther north, mixed with oaks and various hard-wood trees, extends orer the high rolling country which stretches from the Sabine northeasterly nearly to the Onachita river. The northeastern part of the state was covered, outside of the broad bottom lands of the rivers, with a heavy forest of short-leaved pine (Pinus mitis) mixed with upland oaks, hickories, and other decidnous trees. The bottom lands and all that part of the state bordering the Mississippi were covered with a heavy growth of the trees pecnliar to such low, rich soil throughout the Gulf region. The high blufts which oecur at different points along the Mississippi, the Atchafilaya, and other streams flowing through the western part of the state were covered with a noble forest of evergreen magnolias mingled with beeches, water oaks, and gums.

The most valuable forests of the state are still almost intact, althongh the pine has been cut from the banks of the I'earl river and some of its tributaries, and from aloug the line of the Chicago, Saint Louis, and New Orleans railroad, to furnish the New Olleans market with lmmber. Pine has also been eut along the Sabine river, from both forks of the Calcasien, along the Red river in the neighborhood of Alexandria and Shreveport, and more recently in Catahonla parish, along Little river. The river swamps and rolling hills in the eastern and northern parts of the state still contain vast bodies of valuable hard-wood torest yet untouched by the ax.

The forests of Lonisiana, uninvaded as yet by the manufactnrers of naval stores, have not greatly suffered from forest fires. During the census year only 64,410 aeres of woodland were reported as burned over by fire, with a loss of only $\$ 6,800$. These fires were generally set to improve pasturage, or by careless hunters camping in the forest.

A smatl amomit of cooperage stock is made in New Orleans almost entirely from eypress and pine, although that city has long been an important point of export for oak staves and headings brought there from Arkansas and


Tennessee by river. The magnificent hard woods common over much of the state ean supply abundant material for many important industries which already at the north suffer from the exhanstion and deterioration of the lecal timber supply.

The following rongh estimates of the amount of the long-leaved and short-leaved pine standing in the state have been prepared by measuring upon a large-seale map areas ocenpied by the pine forests, which coineide almost exaetly with geological formations. From these areas the totals of elearings as returned by enumerators and all areas of swamp, bottom lands, and prairies are deducted to obtain the extent of teritory covered with pine forests. By multiplying this area by the average stand of timber per aere, obtained by minerons observations in different parts of the state, the following estinate of the amount of merchantable pine stauding May 31, 1880, is reached:

Parishes.	Long-leared pine (Pinus palustris).	Short-leared pine (Pinus mitis).
Bienville.	Feet, board measure. $416,000,000$	Feet, board measure. $1,837,000,000$
Bobsier		1,574, 000, 000
Caddo		1,696, 000, 000
Calcasirn	4, 219, 000, 000	
Caldwell	602, 000, 000	362, 000, 000
Catahoula	1,558,000,000	304, 000, 000
Claiborne		1,923,000,000
De Soto.		1,971, 000, 000
East Baton Rongo.		, 157, 000, 000
East Feliciana.	198,000,000	886, 000, 000
Grant..	1,574,000,000	..................
Jackson	493, 00¢, 000	1,670,000,000
Livingston	300, 000, 000	
Morehonse.		797, 000, 000
Natchitoches	1,792, 000, 100	618, 000, 000
Onachita	16,000,000	1,126,000,000
Rapidos..	2, 423, 000, 000	...................
Red River		643, 000, 000
Sabine.	598, 000, 000	1,074, 000, 000
Saint Helcna.	749, 000,000	
Saint Landry	579, 000, 000	
Saint Tammany.	1,398, 000, 000	
Tangipahoa.	1,537, 000, 000	
Union...		2,322,000,000
Vernon	3, 741, 000, 000	
Washiugton	1, 734, 000, 000	
Webster.		1,443,000,000
West Folicirna.		122, 000, 000
Winn	2,662, 000, 000	-..................
Total	26, 588, 000,000	21, 625, 000, 000
Cut for the census year ending May 31, 1880	61, 882,000	22,709, 000

The priucipal point of lumber manufacture is Saint Charles, in Caleasien parish, on the southern border of the western pine forest. Lumber manufatured here is shipped east and west by rail, and in small sehooners to Mexican and West Indian ports.. A comparatively small amount of lumber is manufactured at New Orleans from logs eut in easteru Louisiana and towed through lake Pontchartrain and the canals to the eity, and along the river front from logs rafted out of the Red, Little, Black, and other streams of northern Louisiana. New Orleans, however, is principally supplied with lumber sawed at Gulf ports, in spite of its position with reference to the most valuable hard-pine forests upon the continent, its large local lemaud for lomber and all saw-mill refuse, and its facilities for export, which would seem to indicate that it must become the most important center of lumber mannfacture and distribution in the south. Small quantities of pine hmber have long been manufaetured upon the Red river near Alexandria; shortleaved pine (Pinus mitis) is sared at Shreveport, and in small quantities for local consumption at other points in the northern parishes.

## MOSS GINNING.

New Orleans is the center of the " moss-giming" industry of the United States. The "moss" (Tillandsia usncoides), a common epiphyte, growing in great quantities upon the eypress, live oak, and other sonthern trees, is gathered, by men known as "swampers", in the swamps of Louisiana, Mississippi, Alabama, and Florida. The moss when gathered is piled near the swamps and allowed to rot luring ten or twelre months. It loses in this process about 90 per eent. of its weight, and is then shipped to New Orleans, where it is cleaned, dried, and ginned, losing in this latter operation 35 per cent. in weight. The prepared moss is used in upholstery, either alone or
mixed with hair. The product of the New Orleans factories is principally shippel to the western states, a comparatively small anount being sent to Europe. Six moss factories are located in New Orleans, and there are also small establishments at llaquemine and at Morgan City, Lonisiana, and at Pensacola, Florida. New Orleans received during the year cuding Angust 31, 1881,3,500 bales of rough moss, weighing $10,000,000$ poumds, and valued at $\$ 315,000$. A considerable amount, however, is gimed in the country and slipped direct to consumers, or is prepared by the consumers themselves. Persons most familiar with the volume of this industry estimate that the value of the prepared moss gathered ammally in Lonisiana, the principal region of supply, is not far from 8550,000 . The amount gathered, however, saries considerably from year to year. Moss can only be profitably collected at times of high floods, when the swamps are narigable to small boats, and the moss, hanging from the branches of the trees, can be easily gathered. The wages earned by the swampers, too, are not large, and the gathering of moss is only resorted to when more profitable employment upon farms cannot be obtained.

The following extracts are from notes of a hasty journey made through the forest region of western Lonisiana by Dr. Charles Mohr:
"For the investigation of the important pine region of western Lonisiana I selected Alexandria as my starting point. Sitnated almost centrally between the forests of long-leared pine which skirt both sides of the Red River ralley. Alexandria is the seat of the actual humber trade and the point where the lumber interests of this great timber region must be developed in the future. Little is left of the vast cypress swamps which once covered the allucial lamels on the Mississippi river below the month of the Red river and the lower basin of that stream. It is only in the most inaccessble swamps, cut off from all communication with the rivers, that patches of this timber remain. The ever-increasing demand for this lumber has almost exhansted the available cypress of the Red River country, and eypress is now drawn from the forest farther north bordering the Black and Ouachita rivers. The lowlands along the river front, subject to inundation and devoid of drainage, present in their tree growth the same featmes as the low forests of the Mississippi and the Yazoo valleys. The bitter pecan flourishes here luxuriantly, and with it the white ash, the swamp over-cup oak, the persimmon, sycamore, sassafras, sweet gum, and cottonwoor. The green ash is common, and in better-drained localities the willow, white, cow, and red oaks appear, with elms and occasional pecans. Twelve or 15 miles below Alexandria the first pines are seen looming up in the forest; upon a nearer approach they are recognized as the loblolly. A short distance farther up the river, upon sandy bluffs tronting the western shore, fine specimens of the short-leaved pine are observed, associated with black oaks, Spanish oak, the black-jack, and many of the shrubs peculiar to the drift of the coast pine region east of the Mississippi. The wide bottom lands of the river upon which Alexandria is situated extend west to bayou Bœuf. This district, uusurpassed in fertility and regarded as the garden of Louisiana, has but little left of the forest with which it was once covered. The pecan trees alone of the original forest growth have been spared from the general destruction. Of these, fine specimens line the roadsides and dot the fields. The unsightly honey locust occupies the waste low places, in company with a second growth of willows, hackberries, and catalpas. The shores of bayou loenf are coverel with a variety of trees. Cypresses line the brink of the water; beyond these, sycamores, bitter gums, sweet and white gums, pecans, water and willow oaks, red and white elms, red maple, and asli occupy the gentle acclivities, with a deuse undergrowth of smaller trees-the dogwood, several haws, wahoos, catalpas, Carolina bnckthorn, southern priekly ash, etc. Ascending the ridge to the uplands the deep alluvial soil is left behind, and the light sandy loams of the Tertiary strata make their appearance, and with this change of soil the vegetation changes as suddenls. Stately loblolly pines rise above the groves of post, black; and Spanish oaks, and where the ridge descends again to what might be called the second bottom of bayou Bœuf, a forest of white oak is enterel, which contains a stand of timber seldom equaled. On the long, gentle swells these are associated with fine Spanish oaks, a few pig-nuts and mocker-nuts, and in the depressions with red oak, elms, ash, and other trees found on soil of good quality in the same latitude east of the Mississippi river.
"The hills formed by the sandstone drift gravels rise suddenly from the plain covered with the forest of the long-leaved pine, comparing favorably both in the size and number of the trees with the best timber districts in the Coast Pine Belt of the eastern Gulf states. Trees under 12 inches in diameter are rarely seen, as is the case everywhere in these undisturbed primeval pine forests. The soil of this region is closer, more retentive of moisture, and richer in plant-food than that in the Maritime Pine Region east of the Mississippi. The pines here are therefore of more rapid growth and below the standard of quality for which the pine produced on the poor, siliceous ridges of lower Mississippi and Alabama'is so highly valned. The mumerous streams which cut their way through these pine hills are fringed with many of the evergreens peculiar to the eastern Gulf coast; and magnolias, the red and white bay, wax myrtles, willows, and the devilwood are common.
"The pine region west of the Red River valley spreads westward to the Sabine, forming part of the great pine forest which extends far into eastern Texas. Southward it constantly increases in width; and its length from north to south, where it verges upon the lower maritime prairies of the Calcasien, is not less than 100 miles. It includes the whole of the parish of Vernon, the largest part of Calcasien, and portions of the parishes of Natchitoches and Rapides, covering an area of about 4,500 square miles. The northern portion of this belt is one rast primeval forest. The small inroads made by the scattered settlers and the few small saw-mills which supply a small local
demand are too insignificant to be taken into account. In the sonthern portion of this forest the saw-mills on the Sabine river and at Lake Charles have already remored some timber from the banks of the principal streams,
"The region of long-leared pine which skirts the eastern confines of the Red River valley, and which at its sonthern extremity almost tonches the river banks, may be ealled the central pine region of west Lonisiana. The village of Pineville, opposite the city of Alexandria, is the center of the lumber trade of this region. The high, undnlating uplands formed of the Pliocene-Tertiary strata which here front the river bear a growth of loblolly and short-leared pine mixed with mpland oaks. $\Lambda$ few miles to the eastward, howerer, upon the hills eovered with drift, the forest of long-leaved pine appears. The surface in this central pine region is more broken, the soil poorer, more porous and siliceous than west of the Red River valles, and the timber produced here is of unsurpassed quality. An average of not less than fifteen trces to the aere, with a diameter of over 15 inches 3 fect from the gronnd, grow here. The production of lumber is limited to saw-mills situated 7 or 8 miles from the river. They have been gradually removed from its banks as the timber was exhansted on a line 7 or 8 miles in length north and south from Pinerille. The prodnetion of these mills amounts in the aggregate to 40,000 feet a day. The lumber manufactured here supplies the population of the Red River valley as far west as Shreveport.
"The rolling uplands which extend to the edge of the river at Shreveport are covered with a heavy, cold, clayey soil almost impervious to water; they bear an open growth of oaks, among which the post oak is the prevailing species, finding here the conditions most farorable to its growth. The Spanish oak, incariably ealled west of the Mississippi river red oak, with fine black-jack makes up the larger part of the tree growth. Hickories, represented by the pig-nut and mocker-nut, are not frequent, and are of small size. The black oak is fonnd in localities with somewhat rocky surface and loose subsoil, while white oaks oceur along the base of deelivities where an accumulation of vegetable matter has been deposited. The undergrowth in these woods is scanty, and consists for the most part of seedling oaks. Where, however, the forest has been entircly removel, the loblolly pine takes exclnsive possession of the soil. These oak forests reach to the northern confines of the state and extend west into Texas. In their southern extremity toward the pine region the soil is better, and the white oak becomes the prevailing forest tree. My attention was direeted to the fact that since the remoral of the raft of the Red river the drainage of the upper part of the ralley has been greatly improved, and many of the lakes and swamps formerly continnally innndated are now dry, while the swamp forest growth, including the eypress, is dying, or has already died.
"Opposite Shreveport the valley spreads ont into an extensive plain from $S$ to 10 miles in width, descending imperceptibly as it recedes from the bank of the river. These lowlants are nere swamps, often deeply overflowed by the backwater of the river, which finds its way through the mumerous bayons and inlets which intersect this plain. The forest growth covering these swamps is of inferior size, and consists of but few speeies. The cypress occupies the overflowed swamps, but it is always below mediun size, and I did not notice a single specimen 2 feet in diameter. The saline, gypsum soil does not seem suited to its full decelopment. The water locust finds here its favorite home. It is very common in moist localities not subject to constant innndation. The wood of this tree is as hard and durable as that of the common honey locust, and is employed for the same purposes; that is, in the manufacture of stirrups, blocks, hubs, etc. The green ash is frequently scen here growing with the wahoo, hornbeam, holly, and privet, and forming broad clmmps of great lnxuriance beneath the larger trees. After passing Cross bayon the land gently rises, and, with better drainage, the trees of the swamps disappear and are replaced by a more varied and valuable timber growth. The white ash and white and red oaks are the more common trees in the woods which skirt the base of the ridges forming the eastern limits of the valley of the Red river. At this point they are separated from the low hills of the Pliocene sandy loans by a pretty, clear stream, the Red Chute, which runs swiftly over its bed along the base of the uplands; these form long, gentle, swelling slopes, or spread out into broad flats more or less deficient of drainage. The ridges are all wooded with uphand oaks and short-leaved pines, while the loblolly pine, with water and willow oaks, sweet and black gums, cover the depressions and damp flats. The tree growth upon these ridges is vigorons. I have nowhere found the short-leaved pine of finer proportions,
equaling in size and length of clear trunk the long-leaved species. This region of the short-leaved pine, with its low, heavily-timbered ridges, is similar in character of soil and vegetation to the pine hills of central and northern Mississipni, and might be designated as the region of the pine liills of northern Lonisiana. Between lake Bodean and lake Bis:inean the surface of the conntry is rery often imperfecty dramed, and there the loblolly pine is the prevailing tree. A few miles back of Bellevue, in Bossier parish, the level forest is interropted by a strip of prairie from 1 mile to 3 miles wide, covered with a eold, soapy, gray soil impervions to water. On these matural meadows no tree or shrub is growing, except a peenliar Cratagus, new to me. (a) It is a small tree or large shrub, forning strictly-defined, impenetrable; dense thickets a few rods or of several acres in extent. In its arborescent form it rises to a height of from 15 to 20 feet, with a more or less bent trunk 6 or 7 inches in diameter, spreading its crooked limbs at a height of from 4 to 6 feet above the gronnd. The fruit is said to be as large as that of the applo haw, sweet and edible; it is eagerly eaten by swine, which fatten non it. This tree is here ealled by the people 'hogs' liaw'.

[^4]"On the decline which leads to the valley of bayon Dauchitta, the flatwoods give way to a fine growth of Spanish aml post oaks, elms, and gmms.
"The western bank of the bayon is confronted by hills of the post-Tertiary sands and gravels whieh westward form a suceession of steep ridges heavily wooded with the mpland oaks and short-leaved pine. The narrow ereek bottoms inclosed between these ridges are watered abondantly ly springs and clear streams shaded by white and red bay, hollies, azaleas, and kalmias. The great magnolia is not seen here, and the American olive is missing. In these gravelly hills, extending westward to the valley of the Onachita river, the short-leaved pine is very common and the characteristics of the pine-hill region are prominent. These hills cover a large area extending northward into Arkansas, and toward the sonth merging granally into the oak woods which border upon the bottoms of the numerons tributaries of the Red river. This pine-hill region is sparsely settled, and, remote from water and rail communieation, its original stores of pine and hard-wood timber have scarcely been touched.
"An intimate knowledge of the forest growth in this section was obtained by an excursion over the bills to bayou Damehita above its entrance to lake Bistineau. In the localities of the best drainage in this valley the cow oak is very common, mixed with the white and post oaks, while sweet gums, black gums, water and willow oaks, and hackberries oceupy lower situations. On the immediate banks and in the slonghs small eypress trees are common, mixed with the bitter pecan, the hormbeam, the water loenst, and the sycanore. The loblolly pine takes possession of every opening in the forest, descending the high hills, while monerous haws border the edges of the forest. In the bottoms and along the declivities, the Chickasaw and the American plum are fonnd of larger size than farther east. Loblollies and hickories with the black and post oaks oceupy the lower declivities, and upon the heights the yellow pine mixed with upland oaks forms fine forests."

## TEXAS.

The most important forests of Texas are fonnd in the extreme eastern part of the state, where the Maritime Pine Belt of the south Atlantic region extends to about midway between the Trinity and the Brazos rivers. A forest of long leaved pine oecupies most of the territory between the Sabine and the Brazos sonth of the thirty-first degree of north latitnde, reaching south to within 20 miles of the coast. Beyond the long-leaved pine forests, forests of the loblolly pine, mixed with hard wools, streteh westward 50 or 60 miles, while north of these two regions a third livision of the pine belt, composed of a heavy growth ot short-leaved pine mingled with upland oaks, occupies the wolling ridges which extend northward to beyond the Red river. The swamps which line the larger streams flowing into the Gulf, especially within the limits of the pine belt, still contain large bodies of cypress. The quality of the Texas eypress, however, is inferior to that grown east of the Mississippi river, and probably one-third of the timber growing in the valleys of the Sabine and the Nneces rivers is "peggy" or affected by dry rot.

West of the pine belt open forests largely composed of post and black-jack oaks occur, gradually decreasing in density, aud finally, west of the ninety-seventh degree of longitude, entirely disappearing. Farther west, however, the "lower" and "upper cross-timbers", two remarkable bodies of timber, composed of small and stunted specimens of these oaks, extend from the Indian territory far sonth into the prairie region, occupying long, narrow, irregular belts where sandy or gravelly alluvial deposits overlie the limestone of the prairie region. A belt of forest, largely composed of post and black-jack oaks, varying from 20 to 50 miles in width extends southwest of the Trinity nearly to the Nuecés river, its eastern border following generally, at a distance of from 50 to 60 miles inland, the trend of the coast. The bottom lands east of the one hundredth meridian are lined with the deciduous trees which occupy similar situations in the eastern Gulf states. Near the coast the bottom lands of the large rivers, often several miles in wirlth, are covered with dense forests composed of enormons trees. Farther west the bottoms gradnally narrow, the number of arborescent speeies covering them deereases, and individual trees are small and stunted.

West of the Colorado river the forests of the Atlantie region are replaced outside of the bottom lands by. Mexican forms of vegetation; the hills are covered with a stunted growth of mesquit, Mexican persinmon, various acacias, and other small trees of little value except for finel and fencing.

An important tree in the forest of western Texas is the cedar covering the low limestone bills which oceupy hmulreds of square miles north and west of the Colorado river, in Travis, Bastrop, Hays, Comal, and adjacent comuties. West of the one hundredth meridian all forest growth disappears, with the exception of a few scattered cottonwoods, clms, and hackberries, contined to the narrow bottoms, and a shrmbby growth of mesquit, which covens the plains of western Texas, furnishing the only fuel of the region. The mountain ranges, outlying ridges of the liocky monntains, which ocenpy the extreme western part of the state, are covered with an open, stunted forest of western pines and cedars, with which mingle the post oak, the yellow oak, and other species of the Atlantic region.

The pine belt covering the eastern counties of the state is alone important as a soure of lumber supply. Areas of river-bottom land covered with trees are, as compared with the area of the state, insignificant in extent, and these river belts of forest are entirely insutficient to smply even the mere loeal wants of the nearest settlements. The oak forests, which stretch more or less continuonsly between the eastern pine belt and the treeless western prairies and phains, arr, except along their extreme eastern borders, composed of small, stunted trees, often hollow, defective, and of little valne except for fuel, fence rails, and railway ties. The forests of the western monutains are


not luxuriant, and at the best ean only supply a limited local demand with inferior lumber. It is probably no exaggeration to say that west of the pine belt, and with the exception of the small anount of hard wood found on the bottom lands near the coast, the forests of Texas do not contain a single trec fit to manufacture into first-elass lumber. The pine forests, therefore, of easteru Texas and western Louisiana are important faetors in the future development of Texas, as well as of the treeless northeastern provinces of Mexico, which must draw their building material from these piueries. The position of these forests, therefore, with reference to an enormons territory destitute of timber, although adapted to agriculture and grazing, and which must soon be covered with a considerable popnlation and a net-work of railroals, their richness of composition, and the facility with which they can be worked, give to them perhaps a greater prospective value than that possessed by any body of timber of similar extent in the United States.

During the census year 599,359 acres of woodland were reported damaged by fire, with an estimated loss of $\mathbf{8 2 7 3 , 0 9 0}$. Of these fires the larger number was set to improre pasturage, in elearing land, or through malice. These returns do not include the large areas burned in westeru Texas by prairie fires, cheeking the growth of the mesquit over a great extent of territory.

Small amounts of cooperage stock and woodenware, principally for local consumption, are manufactured in the eastern counties from oak and cypress. Manufacturers report an abnodant supply of material.

The following rough estimates of the amonnts of the three kinds of pine standing in the state May 31, 1880, were made by multiplying the average stand of timber per acre by the connty areas occupied by the pine forests, these being obtained by dedncting, from total areas of the county, cstimated areas covered by clearings, bottom lands, swamps, etc. :


The principal centers of lumber manufactme in Texas are Orange and Beamont, on the Sabine and Naeces rivers, above Sakine dass. Long-leaved pine and eypress are sawed here and shipped east and west by rail, and in small quantities by schooner to Texan and Nexican ports. Loblolly pine is sawed at a number of small mills unon the line of the International and Great Northern railroad in the counties south of the Trinity river, and a large amonnt of short-leaved pine is manfactured in the mills upon the line of the Texas Pacific railroad in the northeastern connties, Longview, in Gregg county, being the principal center of this industry. The product of these mills is shipped west by rail to supply settlers upon the prairies of northern Texas with building material.

The following extracts are derived from the notes upon the forests of Texas made by Dr. Charles Mohr, of Mobile:
"West of Marshall, upon the Texas lacitic railroad, the surface of the land becomes more broken; the soil is lighter, more porons, and fiworable to the growth of the short-leared pine, which soon becomes the prevailing forest tree in the woods extending toward the west. Lougriew, a small town at the junction of the International and Great Northern and Texas Pacific railroads, is situated almost in the center of the short-leaved pine region, and is the seat of an active hmber business. These forests of short-leared pine, more or less interspersed with oaks, extend to the northern boundary of the state, and southward with an easterly trend to the confines of the region of the long-leared pine. The short-leaved pine finds its western limits near Mineola.

At Palestine, in Anderson connty, the uplands are covered with a loany, somewhat sandy, soil underlaid with a heary clay. Here a more or less open oak forest is common. The black oak abounds, with the Spanish, blackjack, blue-jack, and post oak, the last, however, always the prevailing species. Next to the post oak the blackjack is the species of widest distribution in Texas, the two species being always found associated together from the northern confines of the state to the prairies of the coast, and from the east to the treeless regions of western Texas. The bois d'are (Maclura aurantiaca) is common along the banks of the water-courses in eastern Texas, attaining a size large enough to be economically valuahle. It is here, howerer, most probably adventitious from the region in the northwest, where it forms an almost uninterrupted belt of woods from 4 to 10 miles wide, extending from a short distance sonth of the city of Dallas to the northern frontier of the state, entering the Indian territory between Sherman and Paris. This tree attains a height of from 45 to 50 feet, with a diameter of from 1 foot to 2 feet, and is or great value.
"The timber growth immediately west of the Brazos is stunted and scanty; large areas of grass laud intervene between the scrubby woods until all at once ligneous growth disappears, and the seemingly boundless prairie, in gently undulating swells, expands before the ricw on all sides. Near the center of Milan county a belt of open postoak woods from 20 to 25 miles in width is entered. It extends from Belton, in Bell county, southward to the upper confines of Gonzales county. Post oaks stand here from 20 to 30 feet apart, with black-jacks and blue-jacks between them, the trees being all of small size. The soil of these oak hills is of poor quality, sandy, gravelly, and more or less broken, arid, and devoid of vegetable mold. Toward the southern limit of this belt, near Bastrop; a tract of loblolly pine is found covering nearly fonr townships, or about 90,000 acres. Daring the last twelve years all the useful timber on this isolated tract has been cat down. A second growth of pine, however, has sprung up, and is now growing vigorously under the fostering care of the owners of the land, and promises in a short time to afford a new supply of timber. A belt of post oak is found intersecting the prairie from the upper part of MeLeman connty, near Waco, and extending to the northern froutier of the state, where it joins the crosstimbers of the Wichita. It is known as the 'lower cross timbers'. This belt of oak wood is nearly 150 miles long, with its greatest width of about 20 miles between Dallas and Fort Worth. At a distance of from 20 to 40 miles west of the lower cross-timbers another belt of oak extends from Comanche connty to the northern boundary of the state, with a long western spur iollowing the valley of the Brazos as far as the ninety-ninth meridian. This oak forest is known as 'the cross-timbers'.
"Taken as a whole, the conntry west of the Brazos river, except the basin of the Colorado, is a poorly-timbered region. The mesquit was first met with on the declivities of the prairie, which rerge here upon the valley of the Colorado. The wood of this tree is hard, fine-grainel, tongh, heavy, and of great durability. In the western portions of the state, almost entirely destitute of other timber growth, it serves, according to its size, a variety of purposes in the economy of the stock ranch, and is there invaluable for fencing. Barning with a clear, smokeless thame and possessing great heating powers, it is unsurpassed as fuel by any other Texas wood. It serves, moreover, another inportant purpose in furnishing an abondance of wholesome and nutritious food to large herds of cattle, at a season of the year when long-contimed dronghts have destroyed the grass upon the prairie. With the increasing settlement of the treeless-prairie region luring the last 15 or 20 years, this tree has spread rapidly east aud north. Near San Antonio I saw extensive districts, reported to have been, a few years ago, entirely destitnte of even a trace of ligneons growth, and which are now covered with copses of mesquit. Similar growths have sprung np everywhere in the prairies of western Texas. The appearance of this new growth may be traced to the influence of the vast herds of stock which range over the prairies, and whieh, in voiding the seeds of this tree, assist its wider distribution, and, in keeping down the grass, diminish the quantity of combustible material which fecds the prairie fires, and thus check and finally prevent the spread of the frequent conflagratious which swept year after year over these grassy plams.

# 19 




"West of the Colorado river the peean-nut is an important produet, forming one of the staple articles of export. Shipments of this nut from San Antonio average aunually $1,250,000$ pounds, obtained from the bottom lands of the Nueces, the Rio Frio, Medina, and Rio Concho. A million pounds, obtained from the Colorado, Guadalupe, Rio Blaneo, Pierderelis, Sabinal, Llano, and San Saba rivers, are shipped from Austin, and about a quarter of a million more from Indianola, gathered on the lower Guadalnpe, San Antonio, Colorado, and other streams flowing into the Gulf. The nuts are worth, on an average, 5 eents a pound to the gatherer.
"On the range of low hills extending from San Antonio to Austin, which rise at some points to a height of over 500 feet above the plain, forming the base of the terraees leading to the table-land of northern Mexico, the woods are confined to the barrens and the declivities bordering upon them. The open plains on these table-lands are either entirely destitute of ligneous growth, or, when covered with deeper and more fertile soil, support low copses of mesquit. The western juniper is observed here for the first time. It is a tree of low growth, seldom exeeeding 35 feet in height, or more than a foot in diameter. It branehes at a short distance from the base, forming a broad, round head. The wood is of a dingy, reddish color, fine-grained, hard, and heavy, and in density and durability is not inferior to that of the red cedar. It is knotty, however, from near the base, and furnishes no sticks sufficiently long to allow its use in cabinet-making, and can only be employed for rough construction, posts, palings, etc., for whieh purposes it is invaluable. The home of the western cedar is found on the rugged highlands whieh surround the channels of the beadwaters of the numerous streams which flow from the eastern declivity of these hills. Here it forms open groves, with searcely any other woody growth among the somewhat seattered trees. These cedar woods are particularly common upon the brows of the steep esearpments from the base of whieh issue the large springs which form such a striking feature in this part of the state. In the vieinity of the settlements few of the. full-grown trees have been left. The improvidence of the first settlers in obtaining their timber supplies and the prairie fires which ran through these cedar woods in former years have eansed the destruction of large areas once covered by this valuable tree. According to my observation, the western cedar prefers a caleareous, dry soil. Its range of distribution seems limited to the hilly region bordering apon the upper part of the Colorado valley, extending toward the south a short distanee below New Braunfels. and westward to the sonrees of the Nueees and Guadalnpe rivers. Well-timbered tracts of this tree are still found west of New Braunfels as far as Boerne, in Kendall county, and on the terraees of the higher ranges in Bandera and Kerr counties."

## INDIAN TERRITORY.

The forests of the Indian territory are eonfined to its eastern portion. West of the ninety-ninth meridian trees are only found along the narrow river bottoms, the intervening ridges being bare of all forest growth. The extreme nortleastern part of the territory contains numerous extensive open prairies, south of which a heavy body of forest composed of hard woods, mixed on the high ridges with the short-leaved pine, extends southward into Texas, with a maximum width in the Choetaw nation of 60 miles. In the Cherokee nation six eonsiderable bodies of pine, varying from 10 to 30 miles in length and 2 to 4 miles iu wioth, oceur on Spavina ereek, Illinois river, Salina river, Spring creek, and Bowman's Fork, tributaries of Grand river. A large body of pine ocenrs also 2ã miles west of Reans, a station upon the Missouri, Kansas, aud Texas railroad. Sunaller bodies of pine are found, too, east of Reams, and at Stringtown, where lumber is manufactured and shipped southward by rail into northern Texas.

The bottom lands of all the streams flowing through the eastern portion of the territory are heavily timbered with hard woods, and espeeially those of the Neosho, Verdigris, Arkansas, and Canadian rivers eontain great bodies of the finest black walnut now growing. A particularly fine growth of this timber extends along the Verdigris river for 50 miles above Coffeeville.

West of the region of heavy forest the country is eovered with an open growth of upland oaks, among which the most prominent are the post oak and the blaek-jack. These torests are interspersed with prairies, often of considerable extent, which gradually occupy the whole comntry outside the bottom lauds. Farther west, between the ninety-seventh and ninety-ninth degrees of west langitude, the "eross-timbers" enter the territory from the south. They are eomposed, as in Texas, of a stunted growth of post oak and blaek-jack, and extend northward across the territory in straggling patches into southern Kansas. The main belt of the "cross-timbers", about to miles wide at the Texas boundary, gradually becomes narrower toward the north and northwest, disappearing, at about longitude $99^{\circ}$ west, upon the ridges south of the Cimarron river.

No returns of the amount of humber mannfactured in the territory have been received, nor other than the most general information in regard to its forest covering.

## AIIKANSAS.

Heavy forests cover the state of Arkansas, with the exception of a few isolated prairies principally contined to Prairie and Arkansas counties, north of the valley of the Arkansas river, and the western borders of the state. North of the Arkansas river the forests are mostly composed of the deciduons trees of the Mississippi basin, through which isolated belts occur, often of eonsiderable extent, in which the short-leaved pine, the only speeies found in
northern Arkansas, is mixed with the hard wools. The sonthwestern part of the state south of the Arkansas river and west of the broad, level plain of the Mississippi is covered outside the river-bottom lands with an almost continuous forest of pine, in which the shortleaved species occnpies the high, dry ridges and the loblolly the moist soil above the bottoms. Great bodies of express cover tho exteusive swanps that stretel along the eastern borler of the state or line the bottoms of the White, Arkansas, Washita, and Red rivers. The hard-wood forests of the state are hardly surpassed in variety and richness, and coutain inestimable bodies of the finest oak, walnot, hickory, and ash timber. Black walmut of large size is still widely seatterel over the state, and is particularly abondant in the valley of the hed and other sonthern rivers. The pine forests are almost intact. Settlements made for agricultural purposes have been confined to bottom lands, and only during the last few years has pine lumber been manufactured in the state, except to supply a very limited local demand. Recently, however, comparatively small quantities of lumber mannfactured at numerons railroad mills, principally established sonth of the Arkansas river, have been shipped north and sonth out of the state.

The forests of Arkansas have received comparatively little damage from fire. Pine generally succeeds pine even on burned laud, althongh upon certain gravel and clay soils the second growth is largely composed of black and red oaks, or, in the southern part of the state, the sweet gum replaces other trees on bottom lands. During the census gear 858,115 aeres of woodland were reportel devastated by fire, with an estimated loss of $\$ 250,470$. The largest number of these fires was due to the earelessness of farmers in clearing land, or to hunters camping in the forest.

Industries consuming hard woods are still in their infancy in Arkansas, although doubtless destined to attain an important development. Rough white-oak stares are largely manufactured in the White River country and in the northeasteru part of the state for eastern and European markets.

A considerable traffic exists in the sonthwestern comnties in the wood of the Osage orange, ased for wheel stock, and more recently as parement in Saint Louis and other northern cities.

The following estimates of the amomt of short-leaved pine standing in Arkansas May 31, 1880, wero prepared by Professor F. L. Harvey, of Fayetteville:

SHORT-LEAVED PINE (Pinus mitis).

Cennties.	Feet, board measure.	Connties.	Feet, beard meaaure.	Counties.	Feet, board meabure.
Ashley	1,555,000,000	Hot Spring	1,348,000,000	Perry.	1,023,000,000
Baxter.	187, 000, 000	Moward	1,254,000,000	l'hlllips.	21,000,000
Boone	124, 000, 000	Independeneo	93, 000,000	Pike	1,095,000,000
Bradley	1, 140,000,000	Izard	242, 000, 000	Poinsetl	45,000, 000
Calhonn	1,519,000,000	Jufferson	518,000, 000	Polk	2,592,000,000
Carroll.	159,000,000	Johnson	248, 000, 000	Pope.	208, 000, 000
Clarko	1,280,000,000	La Fasette	586, 000, 000	Pulask	668, 000, 000
Clay.	3,000,000	Le	14,000,000	Saint Francis	7,000,000
Columbia	1,866,000,000	Liucoln.	105,000,000	Saline	933,000,000
Craighead	18,000,000	Litlle River	$690,000,000$	Scott	1,516,000,000
Cross	54, 000, 000	Logan	554, 000, 000	Searey	100, 000, 000
Dallas	1,659, 000,000	Lonoke	20,000,000	Scbaetlan	243, 000,000
Dorsey	726, 000, 000	Madison	55,000, 000	Sevier	969, 000, 000
Drew	482, 000, 000	Marion	207, 000, 000	Sharp	$35,000,000$
Faulkncr	42,000,000	Miller	622, 000, 000	Stono	170, 000,000
Fulton	146,000,000	Monroo	180,000,000	Union	2,384,000,000
Garland	1,865,000,000	Mentgomer	2, 281,000,000	Van Bur	435, 000, 000
Grant.	207, 000, 000	Nerada.	1, 453,000,000	Whit	23,000,000
Greene	38, 000, 000	Nowton	707, 000, 000	Yell	1,300,000,000
Hempstead. Total.	1,176,000,000	Onachita	1,384, 000,000		
					41,315, 000, 000
Cnt for the ceneus year euding May 31, 1880 (lnclnding 57,043,000 shingles and 2,891,000 laths) ..............					129, 781, 000

## TENNESSEE.

The western counties of Tennessee are covered with heavy forests, similar in distribution and density to those which ocenpy the Yazoo region of western Mississippi. The river swamps in this part of the state still contain large bodies of cypress, while the hills are covered with oaks, hickories, and other hard-wood trees. The central portion of the state, now largely cleared for cultivation, was ouce covered with forests of hard wood, remnants of which are still found unon rocky ridges or laul unfit for agriculture. Nearly throngh the center of this middle distriet, extending north and south, "the cedar glades" oceupy an extensive region of Silurian limestone. Here the eharaeteristic growth consists of red cedar (Juniperus Virginiana), often forming stunted forests of considerable extent, to the exclusion of other species, or is mixed with the honey loenst, a eharacteristic species, also, of this well-markel region.

The eastern part of the state, occupied by the Cumberland platean and the high ranges of the southern Alleghany mountains, is covered with a heavy forest of oak and other hard woods, mixed at high elevations with hemlock, pine, and spruce, and constituting one of the finest bodies of timber now standing in the United States. It contains, besides white and clestnut oak of fine quality, much yellow poplar; black walnut, and cherry. In the sontheastern counties, especially in the valley of the Tencssee river, the harl-wood forests have been, however, already destroyed over large areas to furnish charcoal for the iron-manufacturing industry established here.

During the census year 955,430 acres of woodland were reported devastated by fire, with a loss of $\$ 5,254,980$. Of these fires the largest number was set in the careless clearing of land for agriculture or to improve grazing, and by hunters, locomotives, etc.

Mr. A. G. Willey, of Manchester, Tennessee, has supplied the following statement in regard to the effects produced upon the forest growth by the annual burning of dead herbage to improve pasturage:

## "EFFECT OF FIRES UPON THE FOREST.

"The practice of burning timber-land, said to have been of Indian origin, has been continued by the white settlers. The native grasses do not die down when killed by frost; they simply die standing, and the young grass in the spring inas to push through the old taft, which is often 6 or 8 inches high. The fires are set in the timber and old fields to burn these tufts, that stock may graze four or six weeks earlier than if the old herbage had been left upon the ground. In the barrens and on the Cumberland platean the timber is principally oak of various kinds, which do not shed their leaves at once when killed by frost, or rot when partially green, but remain dry upon the trees and fall gradually during winter and spring. The largest portion, therefore, are on the ground in February, the time when fires are set. The effect of these fires is to destroy all the natural sonrces of fertility, grass, leares, and fallen timber. Had these been allowed to accumulate, what are now called barren lands wonld be the most fertile in the state. The practice kills, too, the roung trees, so that some of the most valuable timber that the land is suitable to produce is unable to stand. The black-jack, post oak, black oak, etc., however, on account of the protection afforded by their thick bark, are able to gain some headway, and so crowd out more valuable trees. The state law makes it a misdemeanor with heavy penalty for any one to set fire to and burn a neighbors land; but the difficulty of detection and conviction in such cases makes this law non-effective. These are the causes and effects of forest fires in this scetion; they never occur here in summer."

Considerable cooperage and wheel stock is manufactured in Tennessee, but, except in the castern part of the state, manufacturers report a scarcity and deterioration of the best hard woods, especially white oak. In the eastern counties the manufacture of oak staves and other industries nsing hard woods are capable of large development.

The principal center of lumber manufacture in the state is Nashville, where several mills saw large quantities of black walnut, poplar, cherry, ash, oak, ete., received by raft from the upper Cumberland river in Tennessee and Kentucky. The local market takes about oue-third of the lunber manufactured here, the remainder being sent north and east by rail. Memphis, on the Mississippi river, is also an important manufacturing center. The mills here are largely supplied by rafts from Missouri, Arkansas, and Tennessee, and saw large quantities of eypress, ash, poplar, hickory, gum, and black walnut. Considerable hard-wood lumber manufactured in Dyer, Lincoln, Obion, and Sinith counties, and pine and hard-wood lumber in Knox and Jefferson, largely from logs obtained in the vicinity of the mills, is principally consumed locally.

## KENTUCKy.

The forests of Keutueky resemble in general features those of Tennessee. Cypress, gnm, and varions water oaks occupy the river swamps of the western connties. The central region, now largely cleared and devoted to agriculture, was once covered with the oaks, walnuts, and hickories of the $\Delta$ tlantic region, while over the eastern and southeastern comnties the dense forests of the Alleghany mountains extended. The eastern counties still contain great bodies of the best hard mood, especially black walnut, white oak, cherry, aud yellow poplar, which are particularly fine and abuudant in Bell, Harlan, and other sontheastern comntics. These forests, protected by the falls of the Cumberland river, which lave prevented the driving of logs from its upper waters, and inaccessible to rail communication, are still practically uninjared, and probably unsurpasserl in the amount, quality, and valne of the timber which they contain. The destruction of forests to supply numerons iron furnaces with charcoal has been great in the northeastern connties, and no small part of this region has already been cut over.

During the census year 556,647 acres of woolland were reported devastated by fire, with an estimated loss of \$237,63i. Of these fires by far the largest number was traced to farmers carelessly clearing land for agricultural pmrposes.

In Barren, Edmonson, and other central counties extensive tracts of prairie existed at the time of the earliest settlement of the state. The presence of these prairies in the midst of a heavily-timbered region is ascribed to the ammal burning to which they were subjected by the aborigines. With the disappearance of the
3.) FOR

Iudians trees sprang up, and this region is now well covered with a vigorous growth of black oaks of different species. White oaks, however, are not abundant, and other species commou to the region, such as the walnuts, the yellow poplar, and the beech, are wanting in these joung forests, indicating perhaps the effect of fires in checking the subsequent growth or development of many useful timber trees.

## pasturage of woodlands.

The forests of Kentucky, as well as those of all the central and southern portion of the United States, suffer severely from the almost universal custom of using woodlands for pasturage. The evil resulting from this practice is ouly more apparent in Kentncky and Tennessee, because in these states the amount of live stock is proportionately larger than in other parts of the south, while in the thickly-settled agricultural sections of these states the ratio of woodland to total area is smaller. The pasturage of woodlands necessitates, or at least induces, the annual burning of the dead herbage, by which underbrush, young trees, seedlings, and seeds are destroyed and the succession and permanence of the forest endangered. What the fires spare, browsing animals devour; hogs root out seedlings, and by selecting the sweet acorns of the white oak in preference to the bitter fruit of the black oaks, are gradually changing the composition of the oak forests. Comparatively few white oaks spring up in the forests of the more thickly settled portions of the central Atlantic region, and this change of forest composition must be ascribed to the preference of domestic animals for the palatable fruit of what, as regards their timber, are the most valuable species. The injury, too, inflicted by the constant stamping of animals and consequent packing of the land about the stems of old trees is very great, and all reports speak of the gradual dying of old trees left standing in the grazing regions of Kentucky and Tennessee.

The spread of the mistletoe (Phoradendron flavescens), consequent upon the removal of the forest and the increase in the number of birds (the mistletoe seems to require a certain amount of light and air for its development; it does not flourish or increase rapidly in the dense forest, and cannot spread except by the ageucy of birls), is a canse of serious injury to the forest of this whole region. It slowly but surely destroys the trees upon which it obtains a foothold. The black walnut espeeially suffers from the growth of this parasite, which seems destined to destroy the finest walnut timber left standing in the settled portions of the southern central region.

Large quantities of cooperage and wheel stock are produced all over the state, and manufacturers generally report no scarcity or deterioration of timber, with the exception of white oak. The principal centers of lumber manufncture are at the mouth of the Tennessee river, in McCracken county, where a large amount of cypress, syeamore, gum, oak, walnut, and other lard wood is manufactured for the northern market from logs rafted down the Tennessee and other streams flowing into the Mississippi ; at Frankfort, where poplar, oak, ash, walnut, pine, cherry, hickory, and maple logs, rafted from the upper waters of the Kentucky river, are sawed, the lumber being shipped north and east by rail; and at Louisville, where walnut, poplar, and oak lumber is manufactured for local consumption. The manufacture of pumps and water-pipes from logs of the Jersey pine (Pinus inops), at one time an important industry at Louisville, has, since the general introduction of city and town water-works, become unremunerative and unimportant.

# NORTHERN • CENTRAL DIVISION. 

## OHIO.

The forests of Ohio were originally composed of deciduous species, among which, in the eastern and especially in the northeastern counties, white pine and hemlock existed in isolated bodies of no great extent.

The original forest has now been generally removed, except from Ottawa, Miami, Montgomery, and a few other western connties, and from swamps and other lands unfit for agriculture; everywhere the walnut and other valuable timbers have been culled, and Ohio must soon depend almost exclusively for the lumber which it consumes upon the northern pineries and the lard-wood forests of the south.

During the census sear 74,114 acres of woodland were reported destroyed by fire, with an estimated loss of $\$ 797,170$. Of these fires the largest number was traced to carelessuess in clearing land, to hunters, sparks from loeomotives, ete.

The production of cooperage stock has long been an important industry in the state; it has already suffered from a searcity and deterioration of white oak, for which elm, beech, maple, and poplar are now often substitnted. Manufacturers of wheel stock, furniture, woodenware, etc., report abnudant material for pesent consumption.

Ohio is sixth among the states in the colume of its lumber-manufacturing interests. The business is widely distribnted throughout the state, generally in the hands of small manufacturers operating portable mills, which threaten the rapid destruction of the remnants of her forests.

## indiana.

Indiana was once almost entirely covered with noble forests of tleciduous trees. Along its western borders these were interrupted, however, by numerous small prairies, the extreme eastern ontposts of the great treeless region which, toward the north, extended over the counties of Benton, Newton, and Jasper, and over considerable portions of Lake, Porter, La Porte, Pulaski, White, Tippecanoe, and Warren comities. These prairies have gradually decreased in area with the settlement of the country, and those originally of small extent are now covered with a vigorous growth of the forest trees of the region.

The forests of Indiana are claracterized by an almost entire absence of coniferons trees. Stunted white and gray pines occupy the sand-dunes which border the southern shores of lake Michigan, and "the knobs"-low, gravelly hills of small extent, in the sontheastern river counties-are covered with a heavy growth of the Jersey pine. Swamps in the sonthwestern counties contain cypress, which finds here the northern limit of its distribution. The broad bottom lands and low ridges of this part of the state are covered with a forest growth probably unsurpassed in the development of individual trees, and rarely equaled in the riehness of its composition.

The forests of the state lave been largely remored in the development of its agriculture. No large bodies of the original timber remain. The black walnut with which the forests of Intiana once abounded has been everywhere culled and is now rare, while the best yellow poplar, oak, and other valuable timbers have been largely consumed.

Daring the census year 90,427 acres of woodland were reported injured by fire, with an estimated loss of $\$ 130,335$. These fires were set by farmers carelessly clearing land, by hunters, and by sparks from locomotives.

The forests of Indiana have long supplied material for a large manufacture of cooperage stock, fumiture, wagon stock, woodenware, etc. Thé cooperage and furniture manufacturers already feel the scarcity and deterioration of the highest grades of oak and walnut, and very generally predict the entire exhaustion at no very distant day of the forests of the state.

Indiana is fifth among the states in the value of its humber-manufacturing interests. Evansville, upon the Ohio river, in Vaulerburgh county, is an important manufactoring center on account of the capital invested there in he lumber business and the amonnt of its product. The business, however, as in Ohio, is generally in the hands of small manufacturers operating portable mills and sawing logs hauled to them by farmers. At the present rate of destruction the forests of the state must soon lose all commercial importance.

## illinois.

The forests of Illinois were originally contined to the southern,portion of the state, the broad bottom lands of the Mississippi and the llinois, and the southern thirl of the delta formed by these rivers. The remainder of the state was covered by broad, rolling prairies. The forest growth in this prairie region was confined to the narrow river bottoms and occasional open park-like groves of burr, scarlet, red, black-jack, or post oaks, known as "oak openings",
through which the prairic fires swept, destroying all undergrowth, withont doing great injary to the full-grown trees. Prairie fires have gradually decreased in frequeney and violence since the settlement of the state, and these open groves are now filled with a vigorous growth of young seedlings and shoots; their characteristic features have disappeared, and the area of the forest is gradually increasing.

The shores of lake Miehigan are covered with a stunted growth of white pine; the dry, roeky hillsides in the western part of Union county, one of the southern comnties of the state, bear a few yellow pines (Pinus mitis), and eypress is found in the southern river swamps. With these exceptions, of little importance commercially, the forests of Illinois are composed of deeiduons species.

During the census year only 48,691 aeres of woodland were reported destroyed by fire, with an estimated loss of 845,775. These fires were generally traced to hunters, and to farmers permitting brush fires to escape to the forest.

The prodnction of cooperage stock was once an important industry in southern Illinois. The business has greatly diminished, owing to the exhanstion of the local supply of the best hard woods. Bass, gum, hackberry, elm, sycamore, and other woods formerly considered of little value, are substituted for oak, and Illinois now receives most of its hard wood from Kentucky, Tennessee, and other southern states.

Illinois is eleventh among the states in the volume of its lumber-manufacturing interests. It owes this position to the fact that mans large mills sawing pine logs rafted down the Mississippi river from the forests of Wisconsin are established within its borders, and not to the extent and value of the forests of the state. The manufacture of Illinois-grown lumber is small and totally inadequate to supply the wants of the present population of the state.

Chicago, owing to its general commereial importance and its position with reference to the great pine forests of the northwest, has beeome the greatest lumber-distributing center in the world.

Aecortling to the statistics gathered by the Northeestern Lumberman of Chicago, and publisined in that jonrnal January 29, 1881, there were received in Chieago during the year $18501,419,974,000$ feet of lumber by lake and $145,563,118$ feet by rail, a total of $1, \overline{5} 65,537,118$ feet, an increase of $96,817,127$ feet over the total receipts of 1879 ; $650,922,500$ shingles were received during the same year.

Lumber was received from the lake ports during the year 1880, as follows:

Points of allipment.	Lamber.	Shingles.	Points of shipment.	Laraber.	Shingles.
	Feet.	Number.		Feet.	Number.
Alıuapeo...............	150, 000		Menominee	225, 110, 000	700,000
Alpena	4,517,000		Monastique	202,000	
Ashland	5, 200, 000	1,311,000	Muskegon	451, 854, 000	23,660,000
Bay de Noquet...	3,670,000		North Bay	110,000	
Bayfield .	980, 000		Oeento.	11,003, 000	395,000
Benton	3,876,000		Ovtonagon	2, 503, 000	2, 886, 000
Blatk Creek	4, 825, 000		Oscoda	739,000	
Lhack River	0, 858, 000		Packard's pier	2, 681,000	
Canada perts	755,000		Paul's pier.	500,000	
Caserillo.	200, 000		Peasaukee	6, 800, 000	3, 100, 000
Cedar lixer	17,383, 000	100, 000	Pentwater	D, 596, 600	25, 572, 060
Charlevoix	1,541,000		Perry'a prer	45, 000	
Cheborgan	33,250,000		Peshtigo	51, 600, 000	7,020,000
Clay Bank		050, 000	Pierport	3,355, 000	
Copper llarbor.	70,000		Point Saint Ignace	12, 085,000	
Cross Village	233, 000		Portage Lake	T 75,000	
Depere...	2:0,000	1,611,000	Port IItron.	344,000	
Duck lake	1, 340,000		Port Sheldon	180,000	.............
Escanaba	5, 182, 000	3,457,000	Red River.	200,000	3,857, 000
Ford lisicer.	17, 850,000	6,915, 000	Regers City	1,066,000	
Frankfort	3, 565, 000		Sagiaaw River	11, 026,000	
Graud llaven..	90, 166, 000	114, 000, 000	Saint Joseph.	1, 602,000	
Green Bay.	1,575,090	22, 502, 000	Saugatuck	4, 014, 000	4,000,000
Llamlin	12, 82\%,000	11,026,000	Sault Ste. Marie	522, 000	
Hancock	300,000		Silver Lake.	2, 185,000	600, 000
Holland	857,000		South liarc	3, 650,000	300, 000
Kewaunee	110,000	5, 881,000	Sturgeon llay.	11,640,000	10, 078,000
L'Anse	0,430,000	170,000	Suamico	3,065, 000	2,480,000
Leland..	070,000	...............	Traverse	23, 280, 000	
Lincoln	1, 205, 000	300,000	Whiteflsh lay.	730,000	
Ludinglou.........	103, 733, 000	34,330,000	White Lake.	c6, 603, 000	24, 756, 000
Ludwig's pler .........	$125,000$		Tetal	1, 419, 1174, 000	583, 340, 000
Mapkinaw City .........	275,000 $165,217,000$		Receipts by rail.	145,563,118	67,582,500
Manist ${ }^{\text {e }}$............	105, 217, 000				
Manitowoc.	70,000	$300,000$	Grand total ...	1, 565, 537, 118	650, 022, 500
Marquette   Masomville	$\begin{aligned} & 2,41 t, 000 \\ & 1,030,000 \end{aligned}$	523, 000			

Lumber was received by rail during the year 1880, as follows:

Names of lines.	Lumber.	Shing'es.
Baltimore and Ohie railroad	Feet.   $0,096,000$	Number.
Chicaro and AIton railroad	988, 000	70,000
Chicago and Eastern Illinois railroad	26, 799, 000	
Chicago and Grand Trunk railway	1, 506,418	80, 000
Chicago and Northwesten railway	11,727,900	44, 642, 000
Chicago, Burlington, aud Quincy railroad	3, 716, 800	
Chicago, Milwankee, and Saint Paul railway.	12,473, 000	13, 180, 500
Chicago, Rock Island, and Pacific railway	2, 224, 000	
Illinois Central railroad...	2,940, 000	............
Lake Shore and Miebigen Sonthern railway	18,686, 000	1,385,000
Michigan Central railroad	24, 798,000	8, 175,000
Pittsburgh, Cinçinnati, and Saint Louis railway	12, 481, 000	
Pittshnrgh, Fort Wayne, and Chicago railway.	17,567, 000	50, 000
Wabash, Saint Louis, and Pacific railway.	610, 000	
Total	145, 563, 118	67, 582, 500

The following account of the early lumber trade of Chicago is condensed from a paper prepared by Mr. George W. Hotchkiss, secretary of the Chicago lumber exchange, and printed in the Northuestern Lumberman under date of Mareh 19, 1881 :
"Colonel Manu, residing at Calumet, brought the first raft of lmober to Chieago. It was square building timber, poled from the mouth of the Calumet to the mouth of the Chieago river. The value of this raft was $\$ 100$, and its owner found considerable difficulty in disposing of it. In 1834 or 1835 Captain Carver opened a lnmberfard on the river bank, near the present site of the State-street bridge, and about the same time a man uamed Harrison owned a small schooner which went to some point across the lake and bronght in white wood. This little ressel could not enter the river, on account of the bar aeross its mouth, and her cargo was unloaded upon scons and rafts, which were floated southward for half a mile or more, around the end of the bar, before they could be headed for the deep water of the river. In 1835 or 1836 a man named Rossiter had a small doek and yarl on the river, between Clark and La Salle streets, and by this time other yards were started on the river. About the year 1836 a man named Cammaek had a pit-mill on the north braneh of the river. His son acted as pit-man, the old man being the top-saw yer. It is not unlikely that the first lumber used in Chieago was manufactured ly this method, although about the same time a wind saw-mill was loeated not far from the present Kinzie-street bridge, which found abundant oecupation in sawing white-wood timber, which then grew in the immediate neighborhood, mixed with elin, ash, basswood, and a few oak trees. History does not record, however, that the market was overstocked by the produet of this mill, or that the lumber dealers of that day hurried to issue a new priec-list low enough to erush the aspirations of their dangerous competitor. In fact, history is so perfectly silent upon the subject of this saw.mill that it is probable its work did not cut meh of a figure in the lnmber trade of that day, and that, in fact, it proved a veritable windmill, of less ealiber than the nusele of the Cammacks, who no donbt fonud greater profit, if harder work, in driving their pit-saw. Captain Carver's lumber-yard was ou the river bank, just west of the present State-street bridge, having a light, temporary dock, upon which the small vessels bringing lumber to the river untoaded. There was at this time ( 1836 or 1837 ) no other lumber-yard in the village upon the river. Captain Carver afterward (about 1839) sold out to George W. Snow, who oecupied the same ground for a nomber of years.
"The earliest lumber of which Mr. Hilliard has any reeollection eane from Saint Joseph, Miehigan; but shortly after his arrival at Chicago a man named Conroe built a mill at Manitowoc, Wiseonsin, and Jones, King \& Co., who were then doing a hardware and general business, reeeived and handled his lumber as a side issne. A small pocket saw-mill, built by a man named Huntoon, in 1836 , was loeated on the river bank not far from the present Chicago-avenue bridge. It was too small to do mueh work, but was esteemed a very useful and really wonderful mill at that time. The North Side was pretty well timbered with elm, oak, and white wood, and from this timber the mill obtained its stoek. After the streets were cut ont the wet nature of the ground compelled one who wonld visit this saw-mill to piek his way to it by jumping from log to log. It was so far from the village to the mill that it was seldom visited, exeept by those who enjoyed a Sunday walk and could find no objective point of greater interest for their stroll. The lumber-yard of Tuckerman \& Higgiuson was located in 1843 on the north side of the river, near the present northwest end of Clark-street bridge. Clark street above Kinzie street had been cleared of timber, and a clear view was to be had as far as the eye conld reach in a western direction, broken only by a few scattering trees which had been left as sentinels upon the plain. At this time George W. Swow had a yard on the river, near State street, and a Mr. Rossiter hal also a yard between Newberry \& Doles' warehouse, on the south branch of the iiver, west of what is now Clark street. Barber \& Mason had a yard a little farther west, near Wells street. J. M. Underwood and Sylvester Lind each had a yard on the west side of the river, near Randolph
strect. This was in 1844. Mr. Higginson ohtained his supply of lumber in those days from Hall \& Jerome, of Menominee, Michigan, Elisha Bailey, of Peshtigo, Wisconsin, and ——— Fisk, of Depere. In 1845 he bad a contract for $1,000,000$ feet with Willaun F. Ferry, of Grand Haven. Lamber came also from Kalamazoo river, Saint Joseph, and Muskegon. In 1844 Mr. Migginson purehased a cargo from Mr. Rose, of Muskegon, and, as it was a beantifnl lot of lumber, ruming $33 \frac{1}{3}$ per cent. upper grades, he was willing to pay a good price, obtaining it at $\$ 575$ per thonsand fect. The first cargo of Saginaw lumber which reachet Chicago was brought by James Fraser, one of the original proprietors of the phat of Bay City, who built two mills at Kawkawlin, in latter years known as the Ballon mills. This was in the year 1847 or 1848 , and the cargo attracted a good deal of attention, beemse it was the first lot of circular-sawed lumber that had ever been seen by any of the dealers, and becanse of its general cleamess of appearance, the attractiveness of a lot-of circular-sawed sidings among it, and its exeellent quality. All these combined to make the cargo a novelty in its way, and it found a sale at $\$ 8$ per thousand feet, an extra good price for those days. Average cargoes at this time were quoted at $\$ 650$ to $\$ 7$ for mill-run lumber, culls out, and it did not need a very coarse piece to rank as a cull. Culls were rated at half price. The retail market held common lumber at about $\$ 8$ during the summer, and 89 was asked for dry lumber through the winter. Common included everything below first and second clear; third clear, selects, picks, and finishing grades generally, being an invention of a later day. First clear sold at from $\$ 12$ to $\$ 16$, and second clear at $\$ 10$ to $\$ 12$; clear, undressed flooring bronght $\$ 12$, and common flooring $\$ 10$. The lath trade was mostly in what was known as board lath, althongh narrow lath arrived in small quantities. The trade of the city in 1843 was abont $12,000,000$ feet, and this was considered as remarkable as to us were last year's sales of $1,500,000,000$ feet, or about 140 times as mach more."

## MICHIGAN.

Michigan once possessed a tree corering of great density, richness, and variety. The hard-wood forests of the Ohio valley covered the sonthern portion of the state, extending to just north of the forty-third degree of latitude. North of this hard-wood belt the character of the forest changed; the white pine appeared, ocenpying the drier and more gravelly ridges, and, gradually increasing in size and freqnency, became the most inportant element in the forests of the central and northern portions of the southern peninsula. In the northern peninsula, especially in the basin of the Menominee river, it covered the sandy plains almost to the exclusion of other species. The forests of hard wood, ocenpying low, rieh soil between the pine-covered ridges, were valuable in their stores of sugar maple, birch, ash, beech, oak, and other northern trees, while the swamps common in the northern part of the state abounded in tamarack and yellow cedar of large size and excellent quality.

North of the central portion of the lower peninsula large tracts of barren plains exist. One of the most extensive of these tracts occupies a considerable portion of Crawford counts, corering an area of several hundred square miles. A second barren region exists in Lake county, and there are others in Ogemaw and Ioseo counties; similar barrens occur in the northern peninsula, the largest in Schoolcraft and Marquette countics. The soilcovering these barrens is a light sandy loam, supporting a stunted growth of gray pine, birches, poplars, and sernb oak. These sandy plains owe thenr existence, perhaps, to the continual burning of the forest, prostrated possibly, in the first instance, by tornadoes, and thus affording abnudant material for a fire hot enough to consume the vegetable mold of the surface and render the soil unfit to prolnce a second growth of heavy timber, or in many instances any tree growth whaterer.

Serious inroads have already been made upon the forests of Michigan. The hard wood has beeu generally cleared from the sonthern counties, now largely ocenpied ly farms, and the timber remaining in this part of the state, in small, seattered bodies, can bardly suffice for the wants of its agricultural population. The merchantable white pine has been cut from the banks of the principal streams and the shores of the lakes, and what now remains is remote from water transportation or scattered in isolated bodies of comparatively small extent. The hard-wood forests of the pine belt, however, although greatly injured by fire in parts of the state from which the pine has been ent, and invaded along their southern borlers by agricultural settlements, contain, especially in the northern third of the lower peninsula and through the northern peninsula, vast quantities of valuable timber.

## FOREST FIRES.

The forests of Michigan have long suffered from destructive fires. Thesse have generally originated in the neighborhood of the loggers' camps or unon the farms of the agricaltural pioneer, while the virgin forest has generally, although not always, escaped serious conflagrations. The timber-prospector and the hunter are responsible for many fires in the primeral pine forest of the northwest; but, as a rule, fires follow and do not precede the lumberman. The reason is obvious: The logger in his operations leaves the resinous tops, branches, and chips of the pine trees scattered far and wide; these by the following midsummer become dry as tinder, and afford abmont material to feed a fire startel by a careless hunter, log-cntter, or farmer clearing land near the forest. Such fires, which too often follow the entting of pine forests oi the north west, have inflicted incaleulable injury upon the comntry. They have destrojed vast quantities of hard-wood timber; they have consumed the young

5
1．\＆゙がN゙リ

if＂Fremutoa
Tn
$\mathrm{F}_{2}$
$=$

DFNSITY OF FORFSTS
minentaber me.ontertox me
 18:8:3
$\qquad$

$$
55^{.0}
$$




## Sc:-

pine trees left by the logger; they have robbed the soil of its fertility, and made it unfit to produce another crop of pine until the growth and decay of generations of other plants shall have restored its lost constituents. In the dense, unculled forest, on the other haud, fires, although often destructive, are less dangerous in the absence of dead material to feed the flames than whon the ground is strewn with dead branches, tops, and resinous chips.

During the census year only 238,271 acres of woodland were reported destroyed by fire, with an estimated loss of $\$ 985,985$. Of the 267 fires reported, 101 were traced to fires set in clearing lavid for agricultural purposes, and which escaped to the forests; 59 to hunters, 43 to sparks from locomotives, 3 to smokers, while only 1 was reported set by Indians.

The hard-wood forests of Michigan lave long afforded abundant material for large and important industries engaged in the production of cooperage stock, handles, oars, agricultural implements, excelsior, wood pulp, ete. Manufacturers, especially in the southern part of the state, now report, however, a seareity and general deterioration of stock. The best oak timber has been everywhere culled to supply the wants of railroads or the demands of the Canadian market. Elm, bass, and other soft woods, which a few years ago were considered of little value, are now in great demand and are fast disappearing, except from regions remote from railroads. Mueh hard wood, especially in the sonthern peninsula, has been destroyed by fire, or, if not destroyed, rendered almost worthless for manufaeturing purposes by partial burning.

Next to Vermont and New York, Michigan produces a larger amount of maple sugar than any other state. During the year $18793,423,149$ pounds were manufactured in the state.

## STATISTICS OF GROWING TIMBER.

The following estimates of the merehantable timber standing in Michigan May 31, 1880, were prepared by Mr. H. C. Putnam, of Eau Claire, Wiseousin, with the assistance, in the lorer peniusula especially, of Mr. G. W. Hotchkiss. These, as rell as the estimates of the timber resources of Wiseonsin and Mimesota, were obtained by compiling the results of actual surreys, and have been further verified by a large number of persons familiar with the forests in the different regions of these states. It must not, however, be forgotten that the figures given represent estimates, and not facts. Statistics of the volume of any growing crop are difficult to obtain and always liable to considerable error, and the forest, from its very nature aud the extent over whieh it is spread, presents greater diffeulties to the collector of statisties of productive eapacity than the more compact and more easily studied crops of the field. The estimates of pine include all trees 12 inches in dianeter 24 feet from the ground. Since they were prepared the scareity of white pine has changed the methods of the lumberman, and trees are now generally estimated and cut as small as 8 inches in diameter 24 feet from the ground. If the amount of standing pine had been estimated upon the 8 -inch basis it would have added (roughly) 10 per cent. to Mr. Putnam's figures. Small bodies of pine remote from streams no doubt exist in different parts of Miehigam, Wisconsin, and Minnesota, in the aggregate of some commercial importance, which are not included in these estimates. The following figures, however, are believed to represent with as great aceuracy as is attainable the productive capacity of the northwestern pineries. They cover the entire region, and these pine forests now contain no great body of unexplored timber, an unknown factor in the country's lumber supply:

WHITE PINE (Pimus Strobus).

Reglona.	Foct, board measure.
lower fexingula.	
Basina of atreama flowing into Saginaw bay, including Saginaw river and tributarica.	7,000,000,000
Basina of streams flowing into lako Hnron.	8,000, 000, 000
Basina of streama flowing into lake Michlgan	14, 000, 000,000
Total	29, 000, 000, 000
Cat for the census year ending May 31, 1880 (including 2,988, 600,000 ahingles and $428,445,000$ latha, but exclugive of $36,000,000$ stavea	4, 068, 773, 000
celer pemingula.	
Basin of Menomince river and tribntarics (Marquette and Menomsnee counties).	1, 600, 000, 000
Ontonagon, Jloughton, Kewecnaw, Baraga, Marçuelto (weat and north of Menomineo bario), and Dlcaoninco (east of Mlenomineo basin) conntics.	2,400,000, 000
Schoolcraft, Chipperw, Mackinac, and Delta counties...............	2,000,000,000
Total	6, 000,000,000
Cut for the censins year ending May 31, 1880 (ineluding 106,482,000 shinglea and 34,266.0i0 latis).	328,438, 000

An estimated amount of $575,500,000$ cords of hard wood is distributed over some $20,000,000$ acres in the lower peninsula. Of this about 20 per cent. is suitable for lumber and cooperage stock. The cut of hard wood for the census year cnding May 31, 1850 (exclusive of $163,821,000$ staves and $18,567,000$ sets headings, and including $6,038,000$ feet of spool stock), was $440,944,000$ fect. In seattered swamps there are standing some $5,000,000$ cords of yellow cedar (Thuya occidentalis).

From Menomince and Delta comnties the merchantable pine has been almost entirely removed. Baraga county contains little pine, and Keweenaw comnty a single considerable body some 30,000 acres in extent.

The northern portion of Ontonagon and Marquette counties is chiefly covered with hard wood.
An estimated amount of $124,500,000$ cords of hard wood is distribnted over some $10,000,000$ acres in the mper peninsula. The cut of hard wood for the census year ending May 31, 1880 (exclusive of fuel and railroad ties), was $1,145,000$ feet.

The southern counties of the upper peninsula contain large areas of swamp, covered with tamarack and yellow cedar (Thuya occidentalis), estimated, in the aggregate, at 62,500,000 cords.

Some $7,000,000,000$ fect of hemlock lumber and $7,000,000$ cords of bark still remain in the state.
Michigan is first among the states in the volume and value of its lumber prodnct. Its principal centers of lumber manufacture are Muskegon, on the shores of lake Michigan, the shores of Saginaw bay, in Bay county, the Saginaw rirer, in Saginaw connty, Manistee, and Menowinec, in the upper peninsula. The valley of the Saginaw was long the scat of the most important lumber-manufacturing operations in the United States. Its supremacy, however, has departed with the destrnction of the splendid pine forest which covered its water-shed, and the center of manufacture has moved westward from the shores of lake Huron across the peninsula to the waters flowing into lake Michigan.

Lumber was first manufactured in the Saginaw valley as early as 1832 . Threo years later a second mil!, with an annual capacity of $3,000,000$ feet, was bnilt upon the Saginaw. In 1836 the first shipments of lnmber were made from this mill, and from that time forward great attention was given to the manufacture of lumber for shipment. The commercial panic of 1837, however, serionsly interfered with the development of this business, and it was not until 1849 that mills began to multiply. In 1844 there were 23 mills upon the Saginaw, with an aggregate capacity of $60,000,000$ feet. Ten years later the number of mills had increased to 82 , manufacturing $425,000,000$ feet of lumber, while in 1873 there were 83 mills, which prodnced that year $567,000,000$ fect. Since 1870 there has been an almost steady decrease in the number of mills operating in the Saginaw ralley; the umber finishing their "ent out" is fast increasing, and those destroyed by fire are not rebuilt. But, althongh the number of mills has decreased, their production has increased, their present capacity being estimated at $023,000,000$ feet. A large part of the lumber mannfactured upon the Saginaw is transported by lake to Ohio and New York ports, and thence to the principal eastern markets, although a considerable amount is shipped by ressel to Chicago and Milwaukee, and thence distributed by rail through the west. The wide market open to this lumber is due to its excellent quality. Twenty years ago logs which would run 25 per cent. "uppers" were considered common; 40 per cent. was the rule, and as high as 75 per cent. "uppers" was sometimes obtained. Logs were then cut from the lower trunk of the tree below the tops, and only the largest trees were selected. Now land which has been cut over three times is gone over again, and lumbermen are satisfied if logs yield 10 per cent. "uppers".

Of late years considerable changes have been introduced into Michigan lumbering operations by railroad logging; by this means mills are able to obtain a constant supply of logs by railroads built into the forest for the parpose, and this supply can be regulated almost entirely by the demand. There are several roads in different parts of the state doing this business, the principal being the Flint and Perc Margnette and the Lake George and Mnskegon River railroads. The growth of this business in the Saginaw valley and at Muskegon, Manistee, and on the Flint aud Pere Marquette road is shown by the following table extracted from Bradstreet's of February 5, 1881 :

Years.	Saginaw valley.	Muskegon.	Mrnistee.	Flint and Pere Marquetterailroad.
1865......	200,000,000	108,505,700		
1868.	209, 000, 000	157, 468, 300		
1867.	429, 207, 808	288, 502, 200		
1868	446, 900, 583	213, 602, 600		
1869.	321, 350,603	267, 789, 000		
1870.	623, 397, 353	108,802,000	121, 221, 395	
1871	521, 706, 027	250, 000, 000	142, 369, 817	
1872.	$645,285,278$	315, 000, 000	155, 556, 720	
1873	680, 070, 461	376, 035, 037	179, 820, 243	
1874.	589, 225, 404	224, 571, 527	182, 218, 383	
1875.	584, 843, 701	309,638, 418	108, 826, 197	...................
1876.	572, 220,472	209, 525, 910	147, 724, 241	...................
1877.	651, 567, 048	312, 285, 951	152, 221, 548	
1878.	558,070, 674	340, 090, 055	178, 542, 869	
1879	780, 189, 286	432, 431, 670	211, 722, 030	14, 357, 670
1880.	048, 174, 274	380, 000, 000	211, 971, 000	87, 485,547

The following extracts are made from Mr. Putnam's report upon the forests of Michigan:
"The southern boundary of the pine forest in Michigan may be represented by a line drawn from Saruia westmard across the state nearly to the month of the Kalamazoo river. Originally the pine forest covered the nortbern two thirds of the state, and estimates made in 1835 gave the amount of pine then standing as $150,000,000,000$ feet. This estimate included the northern peninsula. The present estimate of the pine stauding in the whole state, the northern peninsula also included, is $35,000,000,000$ feet. There are now remaining no large bodies of standing pine in the state which have not been more or less cut into, and the timber adjacent to streams has all been cut.t The pine now remaining is seattered generally through the northern half of the state, lying back at a distance of from 2 to 10 miles from streams large enough to float the logs. The best pine iu the state has been cut. The belt of pine which ran through the center of the state, extending north from the southern boundary of the original pine forest for some 75 miles , contained the best pine in the worthwest. This pine was what was called by lumbermen 'cork pine', a soft white pine, large and sound, with a thick bark. The quality of the pine of the Saginaw valley was particnlarly fine, too; that on the west shore was of smaller size.
"The standing pine on the lower peninsula of Michigan is estimated at $29,000,000,000$ feet, of which there are in the Saginaw valley about $7,000,000,000$ feet, including the pine upon the Saginaw, An Sable, and Cheboygan rivers and their tributaries; on the streans flowing directly into lake Huron there are some $8,000,000,000$ feet more; making $15,000,000,000$ feet upon the streams of the east shore. On the western shore of the state there are $14,000,000,000$ feet, including the pine upon the Kalamazoo, Black, Grand, Mnskegon, White, Pentwater, Aux Bee Scies, Boardman, aud Pine rivers. As before stated, the quality of the timber in the eastern portion of the state is better than that upon the west shore; this is smaller and partakes more of the sapling nature, while that on the east shore is largely cork pine. The pine of the east shore and Saginaw valley is largely used for finishing lumber, and should be transported to the east; indeed all the pine in the lower peninsula of Michigan is wanted at the east, and none should be sent west. The pine of the western shore is suited for fencing, thooring, and dimension stuff, being smaller and containing more knots and sap.
"The largest bodies of pine left in the lower peninsula are in the counties of Presque Isle, Montmorenci, Alpena, Aleona, Ogemaw, Roscommon, Crawford, Missankee, Wexford, Manistee, Grand Traverse, Lake, Osceola, Clare, Giadwin, and Charlevoix. There are bodies of pine also in other counties from 15,000 to 20,000 acres in extent which hare not get been cut. The pine left in the lower peninsula is generally seattered through hard-wood timber, into which the settlers are now entering, clearing the liard-wood forests and exposing the pine to destruction by fire and windfall. This destruction has largely increased with the settlement of the comntry, and will increase still more unless stringent measures can be taken to protect the pine forests from waste.
"The sonthern part of the state outside the pine belt was originally covered with a dense forest of hard-wood timber; this region is now largely settled and is the farming region of Michigan. There is a large amome of hard-wood timber of commercial value still seattered through this farming country, particularly in its middle and northern parts. Along the west shore as far north as the straits of Mackinaw the pine lias been cut in largequantities, but there is still a large amount of hard-wood timber left upon this area.
"The pine of the northern peninsula of Michigan is estimated at $6,000,000,000$ feet. This includes the pinefrom the Saint Mary's river westward to the Wisconsin line and the mouth of the Montreal river, and mon thesonth shore of lake Superior. It is divided as fullows:
"1. On the Menominee river and tributaries, $1,600,000,000$ feet.
"2. In the western portion of the peniusula, not including the Menominee and tributaries, but ineluding all west of the line of the Chicago and Nortlwestern railway between Escanaba and Marquette, 2,400,000,000 feet.
"3. Last of the line of the Chicago and Northwestern railway, $2,000,000,000$ feet.
"The largest bodies of pine in the northern peninsula are in the counties of Chippewa, Maekinae, Schooleraft, Marquette, Honghton, and Ontonagon. There is also quite a large body in Keweenaw county, covering perhaps 30,000 acres. Ontonagon county, which extends along the south shore of lake Superior for nearly 100 miles, for 35 miles back from the lake is mostly covered with hard-wood timber, with a little pine along the streams, but not in sufficient quantities to estimate. This is also true of the northern part of Baraga and Marquette counties, extending along the southern shore of lake Superior, a distance of 125 miles from L'Anse to Onota, in Schooleraft county. There are here a few small bodies of pine seattered through the hard wood, but it is needed by the settlers, and has no export value. The quality of the timber upon the Ontonagon and Presque Isle rivers and the upper Menominee, growing among the liard woods along the south slope of the Penokee iron range, is similar to that on the western shore of the lower peninsula. This timber is, however, somewhat diffientt of access. The streams over which it minst be driven (the Outonagon and Presque Isle) are rough, broken, and require considerable improvement. The pine east of the line of the Chicago and Northwestern railway between Marquetto and Escanaba, on the east lialf of the northern peninsula, is of poor quality, and may be elassed as 'sapling pine', with occasional groves of what is called 'big sapling' scattered throngh the hard woods.
"In the upper peninsula of Michigan, according to the Lake Superior Canal Company's reports of examination aud estimates of corl-wood, there is an arerage of about eighteen cords of wood per acre over the whole area of the peninsula, of which two-thirds is hard wood and one-third soft wood.
${ }^{6}$ ln Menominee and Delta connties, the southern part of Schooleraft county, and the extreme southerr: part of Marquette county are quite large quantities of tamarack and yellow cedar. From most of these lants the merehantable pine has been removed, and where the fires have not destroyed the cedar and tamarack the railroad companies are entting the timber aud shipping it to the prairies for telegraph poles, ties, and posts. It is stated by the owners of the lands, who long since cut the pine from them, that the cedar and tamarack trees left upon the land have nettod them more than the original pine harvested. What makes this timber so valuable is its close proximity to the railroads and the ease with which it can be shipped by rail or over the waters of Green bay. This shows the necessity of preserving this kind of timber for future use, and of not abandoning it for taxes, as has heretofore been done, or allowing it to be destroyed by fires and windfalls.
"There are on the Menomince river some $9,000,000,000$ feet of standing pine, one of the largest bodies left in the northwest. More than half of this, however, lies in the state of Wisconsin. About $200,000,000$ feet of lumber are manufactured annually upon the Menominee. All the mills upon the river are located at its moutl, in the towns of Marinette and Menomonee, in Wisconsin, and it is considered next to impossible to build more mills at that point. The river is here narrow, and the facilities for holding logs, shipping lumber, dockage, etc., are quite limited in proportion to the amomit of timber left in the region tributary to this stream; and this body of pine may therefore be considered to a certain extent in reserve, and likely to ontlast many larger ones. There is little danger from fire on this river; the pine which is left grows upon the hard-wood ridges, interspersed with broad areas of swamp."

## WISCONSIN.

The great prairies of the central Atlantic region once found their northeastern limits in sonthern Wisconsin. The forest covering of all the southern part of the state was confined to the bottom lands or open upland groves of stunted oaks of no great extent or of more than local importance. The central part of the state was covered with a dense forest of hard wools, oaks, ash, maple, cherry, birch, and the other trees of the northern forest, througls which, upon gravelly or sandy ridges, great bodies of white pine were scattered. These pine forests gradually change in character and deerease in protuctiveness as they reach northward. Lakes are more common, and swamps of tamarack, cedar, and spruce ocenpy in the northern part of the state a considerable proportion of the forest area. The pine trees in these northern forests are smaller and more scattered than those farther south, althongh generally less intermixed with hard woods, and affording lumber of poorer quality.

The forest area has somewhat increased in the prairie region of the state since its first settlement and the consequent decrease of destructive prairie fires. The growth of trees has gradually spread from the bottom lands of the streans to the hills, and the oak forests upon the mplands have gradnally encroached upon the prairie, losing their open, park-like character by the appearance of a young growth which has sprung up among the old trees.

The pine has been destroyed along the entire southern borders of the pine belt, along the banks of the principal streams, and from the lines of railroad, while the.hard wood has been often greatly injured or destroyed by fire in those parts of the state where pine has been cut. The amount of pine still growing in Wisconsin is nevertheless large, although it should not be forgotten that the best and most easily accessible has already been harvested. What remains is generally remote from actual lines of transportation, and often, especially in the extreme northern part of the state, of comparatively poor quality.

During the census year 406,298 acres of woodland were reported destroyed by fire, with an estimated loss of $\$ 725,610$. The largest number of these fires was set by farmers in clearing land, or by sparks from locomotives.

The manufacturers of cooperage stock report a general deterioration and scarcity of the best rarieties of hard woods, and the substitution of beech, elm, and other wools for oak.

The following estimates of the amount of timber standing in Wisconsin May 31, 1880, were prepared by Mr. H. C. Putnam:

WHITE PINE ( Jinus Strobus).

Regions.	Feet, board measure.
Baxin of Saint Crolx river and tributaries .	
Basin of Chippewa river and tributarles	15,000,000, 000
Basin of Black river and tribntariea	$900,000,000$
Basin of Wisconsin river and tribntaries	10,000, 000,600
Bagin of Wolf river and tributarios	600, 000, 000
Basin of Ocontoriver and tribataries	500, 000, 000
Basin of Peshtigo river and tributariea	1,500,000; 000
Bashn of Menomonic river and tributariea (in Wheonsin)...........	6,400,000,000
Shore of lake Superior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .	$3,600,000,000$
Total	41, 000, 000, 000
Cut for census year minding May 31, 1880 (inelnding 1,007,039,000 slingles and $348,3(1), 000$ laths).	$2,007,299,000$



Of this amount $485,552,000$ feet were mannfactnred along the Mississippi river in Illinois, Lowa, and Missouri as far sonth as Saint Louis.

The wooded region in Crawford, Richland, Sank, and Vernon counties is estimated to contain 12,000,000 cords of hard wood in addition to some timber of commercial value. The cut for the census year ending May 31, 1880 (exclusive of $86,545,000$ staves and $7,498,000$ sets of headings), was $117,041,000$ feet.

Valuable oak timber exists in large quantities in Dnnn, Pierce, and Saint Croix counties.
The cedar swamps seattered through the pine belt of the state cover an area of some $1,365,000$ acres, and are estimated to contain $62,800,000$ posts, telegraph poles, and railroad ties, in addition to large quantities of tamarack and spruce.

Wisconsin is the third state in the importance of its lumber-manufacturing interests. The great centers of manufacture are in the neighborhood of Ean Claire upon the Chippewa river, upon the Wisconsin river, and upon the shores of Green bay and lake Superior. Logs cut in the forests of Wisconsin supply also mills located on the Mississippi river in Illinois, Iowa, and Missouri with material equivalent to nearly $500,000,000$ feet of lumber.

The following is extracted from Mr. Putnam's report upon the forests of Wisconsin:
"The sonthern boundary of the forest coincides with a line extending northwesterly from near the city of Milwaukee on lake Michigan, to the falls of Saint Croix on the Saint Croix river, and the western boundary of the state. This inclndes the heary hard-wood as well as the pine forest. There is also, or there has been, a large amount of hard-wood timber in the sontheastern part of the state, sonth of this line, but as no large bodies of forest of commercial value are now standing there, it will not be considered here. Large bodies of hard-wood timber exist in Vernon, Crawford, Richland, and Sank counties, covering in the aggregate fully 400,000 acres and containing at least $12,000,000$ cords of wood. This region, however, is already thickly settled, and the forests are being rapidly cleared for agricultural purposes. No estimate has ever bcen made of the anount of pine timber standing in Wisconsin at the time of its original settlement; at the present time it is estimated that $41,000,000,000$ feet of merchantable pine remain in the state, situated as follows, river basins being taken as the uatural divisions of these pineries:
"1. North of the Saint Croix river and upon the lands tribntary to that stream there are $2,500,000,000$ feet, covering $2,000,000$ acres.
"2. On the sonthern shore of lake Superior, including all the waters tributary to the lake in the state of Wisconsin, extending from the Montreal river on the Michigan line westward to the western boundary of the state, and embracing the Wisconsin pine on the Montreal river and upon the Bad, White, Bois-Brulé, Black, and Left-Hand rivers, $3,600,000,000$ feet, covering $1,800,000$ aeres.
"3. On the Chippewa river and its principal tribntaries, the Red Cedar, WestBranch, East Branch, Flambeau, Jump, Yellow, and Eau Claire, covering an area of some $6,253,000$ acres, with an estimated stand of pine of $15,000,000,000$ feet.
"4. In the Black River basin, with an area of $1,000,000$ acres, containing an estimated stand of $900,000,000$ feet.
${ }^{6} 5$. In the Wisconsin River basin, with an area of $4,500,000$ acres, with an estimated stand of $10,000,000$ feet.
"The remainder of the state, lying east of the east line of the Wisconsin River division and north of the sonthern bonndary of the original forest, is divided by rivers as follows: (1) Wolf river, with $600,000,000$ feet of pine; (2) the Oconto ricer, with $500,000,000$ feet of pine; (3) the Peshtigo river, with $1,500,000,000$ feet; (4) the Menomonee in Wisconsin, $6,400,000,000$; making a total in the division east of the Wisconsin of some $7,000,000$ acres, with an estimated stand of $9,000,000,000$ fcet of pinc. This makes a grand total of pine forest area in the state of nearly $23,000,000$ acres, still containing $41,000,000,000$ feet of standing pine. This includes about $200,000,000$ feet upon the Menomonee Indian reservation, in the comty of Shawano, where very little pine has ever been cut; $100,000,000$ fect on the Flambeau reservation, and $200,000,000$ feet upon the Conrt Oreilles reservation. There is no merchantable pine standing on any of the other Indian reservations in the state.
"The quality of the pine in the state of Wisconsin varies largely with the differences in soil. The quality of the pine growing mixed with hard woods upon the southern boundary of the forest and bordering on the prairies was similar to that of the best Miehigan pine. This is especially trie of timber cnt on the Wolf, Oconto, and Peshtigo rivers. The timber originally on the Wolf and Oconto rivers was especially fine. This has been largely cut, although there are still some very fine bodies of the best pine left on the Oconto and the western branch of the Peshtigo and northern branch of the Wolf rivers. The Black River district contained also a large amount of the best upper quality of pine, of which, however, more than half has been cut. The Eau de Galle River basin, in the counties of Pierce, Dum, and Saint Croix, also contained at one time a large amount of the upper grade of pine, now, however, all removed. This grew among hard-wood timber, on good soil, which, when the timber is cut off, is valuable for farming purposes. The pine in this part of the state did not grow in extensive tracts. It was scattered throngh the hard-wood timber, from 1 to 10 large pine trees growing on an acre-trees which would seale from 1,000 to 3,500 feet of lnmber each. There are still small bodies of this large pine left, but the great bulk of it is gone.
" As we go north from the southern boundary of the forest we enter a lighter soil, where cedar and tamarack swamps are interspersed between the hard-wood ridges. Many of these swamps are natural peat-bogs, covered with cedar, tamarack, and spruce. The trec growth upon them is heaviest near the onter edges, the centers
often being covered with grass or eranberry plants. These swamps, originally the beds of lakes, are now filling up and becoming gradually covered with timber. On the Wolf river the timber was very heary. Instances are known of $10,000,000$ or $12,000,000$ feet of pine lumber having been cut from one section of 640 acres in the Lower Wolf River region.
"In the pine forest, away from the large hodies of mixed hard wood and pine previonsly deseribed, the general character of the timber is abont the same, varying somewhat in different localities, but still possessing the same genemal characteristics and qualities. Where the pine grows in large solid bodies there are many young trees mixed with the older, and the timber is generally of inferior or lower grade. This is true of pine growing about the lead of the Flambean and Wisconsin rivers, and the Menomonee river in Wisconsin. Large pine cannot grow and mature upon very poor soil, and where the soil is poor the trees, after reaching a certain size or age, deeay and are thrown down by wind or destroyed by fire. The white pine in Wisconsin does not mature except upon the rich gravelly loam of the ridges.
"The principal points of lumber mannfacture at present in Wisconsin are on lake Winnebago, at the cities of Oshkosh and Menasha, which take largely the product of the Wolf and Fox River pineries; at Green Bay and Oconto, which derive their logs prineipally from the Oconto river; at Peshtigo, on the Peshtigo river; at Marinette, on the Menomonee river; on the Wisconsin river, at Grand Rapids, Stevens Point, Mosinee, Wausau, and Jenny, the terminus of the Wisconsin Valley railroad, and at Necedah, on the Yellow river. Along the Wisconsin Central raihoad, from Junction City to Ashland, are mills of more or less capacity at every station, the most importaut being at Osema, Ashland, Medford, and Unity. Upon the Black river the principal manufacturing points are La Crosse and Black River Falls. On the Chicago, Saint Panl, Minneapolis, and Omaha railway, at Fairchild, are the large mills of Foster \& Co., who are engaged in manufacturing the timber lying between the Black river and the waters of the Chippewa, inchaded in the Chippewa estimate. On the Chipnewa river the largest manufacturing establishment is the Jlississippi River Logging Company, composed of fifteen of the heaviest concerns mpon the Mississippi river. These tirms obtain their stock nostly from the Chippewa river, the logs being driven down to its mouth into what is ealled the 'Beef Slough boom', where they are separated and formed into ratts and towed to the different mills below. This company cuts on the Chippewa about $\$ 00,000,000$ feet a year. The principal manufacturing points. on the Chippewa deriving their logs from its basin are situated at Waubeck, Dunnville, Menomonee, Meridian, and Eau Claire, where several large and important mannfacturing establishments are located. Higher up the river the Badger State Lumber Company and the Grand Island Lumber Company are loeated, and at Chippewa Falls, the county-seat of Chippewa county, the Chiplewa Lumber and Boom Company has a large water-mill, with a cajacity of $65,000,000$ feet a year, besides several smaller concerns. The railroad extending from Chippewa Falls eastward throngh Chippewa and Clark comnties into Marathon county; and joining the Wiseonsin Central railroad at Abbottsford, passes throngh a hard-wood country. Several firms are already established upon this line and have commenced the manufacture of staves and the produetion of lard-wood lumber for wagons, ete., and are developing a large business. This road runs throngh one of the finest bodies of hard wood in the state, containing large amounts of oak and maple growing on a fine soil suitable for farming. The Chippewa River conntry now contains the largest bolly of white pine of the best quality left in the states of Michigan, Wisconsin, and Minnesota. It is, however, being very rajpidly cont.
"It is found in going north toward the heads of the streams that the timber stands more in large groves, and that there is less hard-wood timber mixed with the pine. When the loggers attack these forests they cut clean as they go, the timber being of more uniform size and age, and there being less undergrowth than farther down the streams. It is found, also, that the pineries on the heads of the streams do not hold out as well or yield as large an amount of timber as those farther south, where the forests border on the prairie lands and where the pines grow on better soil. This is true both of the Wisconsin and of the Miehigan pineries. The poorer soils in the northern portion of the state do not grow and mature the large sapling forests of pine found in the southern portions of the pine belt. So that, while there is still a large area which has not been cut and which may appear inexhanstible, yet, owing to the fact that the timber lies more in groves, and that there are here wide extents of tamarack and cedar, swamps and open spaces, the ground will be cut over more rapidly than when the forest was. first entered. This is trne of the pine standing upon all the streams of northern Wisconsin in the Menomonee district-the Wiseonsin, the Chippewa, Saint Croix—and on the southern shores of lake Snperior: Commencing at Menomonee, on the Chicago, Saint Panl, Mimneapolis, and Omaha railway, and running west through the 30 miles. of 'big woods', large mills for the mannfacture of hard-wood timber and of what little seattered pine there is left are established at Kuapp, Wilson, Hersey, Woodville, and Baldwin stations. The prineipal manufactories in the Saint Croix distriet are at Hudson, on the Willow river, and at Stillwater, in Minnesota, which receives its logs from the Saint Croix, in Wisconsin, and which, theretore, should be treated as one of the Wisconsin pinery manufactories. At Somerset, on Apple river, there is one mill ; there is one at Osceola, upon the Saint Croix, and upon the Northern Wiseonsin railroad, whieh runs throngh the Saint Croix division; at Clayton, Granite Lake, and Shell Lake arelarge mills. There are also other mills along this road on the Lake Superior shore. There are mills of small capacity at Superior City, Bayfield, and Ashland; the latter receive their logs by the Wisconsin Central railroad from the Bad liver pinery.
"On the Eau Claire river the timber is small and sound, growing very thick and long; there are frequent instances where $1,200,000$ or even $1,500,000$ feet of lumber have been cut upon a 40 acre lot. One tree was cut on Jump river some years ago which scaled 7,000 feet of lumber. The general character of this timber, especially upon the main Chippewa or West Braneh and a portion of the Flambean, is called 'big sapling pine'. Of the true cork pine very little is found in the northern part of Wisconsin, probably because the soil is not stroug enongh to permit its full development. The general character of the timber upon the Wiseonsin river is very much the same as that upon the main Chippera. There are instances of very fine pine having been cut in the hard-wood forest upon the lower part of the river, and some fine groves are found even as far north as the Tomabawk and East Branch. The flambeau river, or East Branch of the Chippera, has also, in ranges 2 and 3 east, extending from townships 35 to 41 north, inclusive, some excellent bodies of upper grade pine.
"On the Jump river are some fine bodies of pine, nearly approaching in quality Michigan cork pine and running largely to 'uppers'. This is true also of the pine upon the Yellow river, where the timber grows largely scattered among bard woods and is of fine quality. One of the finest bodies of pine in Wisconsin is that which belongs to Cornell university, lying in townships 33 to 38 , ranges 8 and 9 , in the highest part of Chippewa county, on the divide between the Chippewa and Red Cedar rivers. On this body frequent estimates of $1,000,000$ feet to 40 acres have been made. On the Saint Croix river are many barreu areas timbered with scrub pine, patches of Norway pine, and small black and white oak. These barrens cover about 700,000 acres of the Saint Croix region. The soil is sands, and fires ran over the conntry every year. South of these barrens, in Poik, Barren, Saint Croix, Duan, and Pieree counties, is a tract of very valuable hard-wood land, upon which the greatest portion of the timber is now standing, although settlements are already largely scattered through this region. This body of hard wood contains a large amount of valuable white-oak stave timber and much timber suitable for general mannfacturing purposes. It is being, however, rapidly destroyed by settlers and by the fires inciden't to agricultural and logging operations.
"In Clark connty, whieh lies partly in the Chippewa and partly in the Black River region, are large bodies of hard-wood timber as get uncut and growing upon land valuable for farming purposes. This growth exteuds as far north as the northern line of the county. The same body of timber extends east through Marathon and Wood counties, and is particularly fine in the western portions. The same body of hard-wood timber contimues east toward lake Michigan, including the counties of Portage, Wanpaca, Shawano, Ontagamie, Winnebago, Brown, Kewaunee, Manitowoc, Calumet, Fond du Lac, Sheboygan, and Ozankee. Large tracts in these counties are, of course, eleared and settled; still they contain large bodies of unoccupied hard-wood timber, and the opportunities for cheap farms are plenty.
"Of the forest region proper of Wiseonsin, fully 5 per cent. is not covered with timber; this ineludes swamps, lakes, rivers, bottoms, etc. In the extreme southern part of the forest area, over a region from 35 to 50 miles in width, the hard wood predominates, only about one fifth of the forest growth being pine. North of this hard-wood region proper, perhaps one-half of the forest growth is pine and other soft woods and the rest hard woods. Hemlock is scattered througl the pine forest outside of the heavy hard-wood areas. A careful estimate of the hemlock timber now standing gives the following results, the divisions agreeing with those used in estimating the standing pine: On the Chippewa river, upon $3,000,000$ acres, $2,500,000,000$ feet of hemioek; on the Saint Croix river, unon $1,000,000$ acres, $500,000,000$ feet of hemlock; on the Black river, upon 350,000 aeres, $100,000,000$ feet of hemlock; in the country east of the Wisconsin River division, and ineluding the Wolf, Oconto, Peshtigo, and Menomonee rivers and their tributaries, upon 3,000,000 acres, $1,500,000,000$ feet.
"The total area in the state on which hemlock timber grows is about $10,500,000$ acres, contaiuing, roughly, $5,500,000,000$ feet. The quality of the hemlock timber in Wisconsin is not so good as that grown in New York and northern Pennsylvania, althongh it is valuable for its bark, and the timber when peeled can be driven down with the pine and sawed at the mills into dimension stufl for use where coarse lumber is required.
"Generally, therefore, the forests of Wisconsin may be divided into the hard-wood lands already described, along the sonthern borders, from which the pine has been mostly cut; north of this, and extending northward somewhat indefinitely, the mixed growth of hard wood and pine, growing upon soil adapted for agricultural purposes. The open meadors in this region are covered either with grass or ctanberry marshes, alike valuable to the lumber and tarming interests. About the head of the Flambean river are large open spaces ruming into groves of heavy pine timber. These open spaces, once lakes or swamps, are drying up and the timber is gradually spreading over them. There are bodies of timber seatterel through the southern portions of the state outside of the origimal forest area, but the amount of this timber is relatively so small that it camot be considered of commercial importance, and hardly supplies the wants of the population occupying the thickly.settled sonthem cometies.
"Five thonsand men are employed in the pineries of the Chippewa river. They are expected to ent during the logging season about $600,000,000$ feet of logs, or an average per man of over 100,000 feet. This rule is not applicable to the northwestem pineries generally, for in Michigan, as the timber is now farther from the streans, the average cut per man is not as great, and 80,000 feet per man would perhaps be a fair average, taking the piucries of the whole northwest.
"The annual inerease or growth of timber is counterbalanced by the anmual waste by windfalls and the natural deeay of the old trees. The loss to the forest by fire is an maknown quantity, but it is quite a large amount, probably 5 per cent. of the whole. The lumbermen waste the $\log$ which runs into the top of the tree; this is. knotty, but usually somm, and would make good merehantable lumber. It is left in the woods, however, because there is a good deal of work in trimming the knots and cutting off the limbs. From an orilinary-sized tree four 16 -foot logs are insually taken, the rest being left. Often this top $\log$ is 22 inches in diameter at the butt and willseale from 100 to 120 feet. Loggers are paid so much per thousand feet by the limberman, and the amonnt they receive is so small that they cmnot allord to spend the time to finish up and take ont the fifth or last log, which is therefore left in the woods and lost. Nearly one-tenth of the timber, therefore, is left in the woods and lost. The fires about the oll choppings, or where lumber operations are going on, are principally cansed by the carelessness of woodsmen in hunting up land-lines, or of drivingerews on the river in the spring who leare their fires, or by explorers in the forest during the mouth of May or June leaving their camp, fires lurning. In all the old cuttings the dried pine boughs and other timber left on the gromul get very dry, and fire once started burns with great rapidity and violence.
"As a matter of fact, more than half the area from which pine forests have been cut in the northwest is sooner or later burned over. The fire destroys the young trees and changes the nature of the surface of the ground, so that the next crop, which comes up consists of briers and poplars, and then hard woods. When pine is cut off or burned it does not come in again, and I have never seen any old choppings of pine come up with pine again, even when some trees were left and the ground had not been burned, although where a few large trees only are removed from a pine forest growiug on good soil the small trees left standing, if protectel from fire, will continne to grow."

## MinNESOTA.

The Northern Pine Belt finds in Minnesota its extreme western limit in the United States in longitude $90^{\circ} 30^{\prime}$, and its southwestern limit near the forty-sixth degree of latitude. Along its southern and western borders a narrow territory covered with an open growth of hard wood separates the forests of pine from the prairic, which occupies all the sonthern and western portions of the state.

The same general features which characterize the pine belt of Wisconsin extend into Minnesota. The pine inthe southern portion, confined to gravelly ridges, is scattered through forests of hard wood. Farther north theforest changes in character, the pine being small and of inferior quality. Broad areas of barren land covered with. stunted bireh, gray pine, and scrub oak occur, while the whole comntry is thiekly studded with lakes and witl tamarack and cedar swamps. North of the Mississippi River divide the country is more open; the forest is stunted and of little value, and pine is only found in small, scattered clumps mixed with spruce, tamarack, and yellow cedar. The forest growth here occupies perhaps two-thirds of the rocky or swampy surface of the ground. Its productive capacity is not large, and the northern part of the state is not adapted to lumbering operations.

The pine has been removed from the principal streams of the state, and that which remains, except in theregion tributary to lake Superior and in the vicinity of Red lake, is now inaccessible or of comparatively inferior quality. The best hard-wood forests of the state, as in Michigan and Wisconsin, have suffered serionsly by fires started in abandoned pineries, or in clearing land for agriculture.

During the census year 250,805 acres of woodland were reported devastated by fire, with an estimated loss of $\$ 1,395,110$. The largest number of these fires was set in clearing land or by sparks from locomotives.

The mannfacture of cooperage stock to supply the large flouring-mills of the state is an important industry. Manufacturers report a growing searcity and general deterioration of inaterial. Basswood, elm, and ash are largely used; oak is inferior in quality to that grown farther east and south.

The following estimates of the amount of pine timber standing in Minnesota May 31, 1880, were prepared by: Mr. H. C. Putnam:

WHITE PINE (l'imus Strobus).

, Regious.	Feet, board measure.
Mississippi river and tributaries.	2,900, 000,000
Rainy lake and Rainy Lake river.	300, 000, 000
Red Lake river and other tributaries of the Red river	000, 000, 000
Saint Louis river and tribntaries.	3,500, 000,000
Shore of lake Superior.	870,000,000
Total	8,170,000,000
Cut for the census year, ending May 31, 1880 (including 187,836,000 shingles and 88,088,000 lath8).	540, 997, 000

In the belt of hard wood extending west and south of the pine region, and consisting of white, red, and burr oak, sugar-maple, poplar, ete., it is estimated that $3,840,000$ acres of forest remain, capable of yielding an arerage

of 15 cords of wood to the acre, or $57,600,000$ cords. The cut for the census year ending May 31,1850 (exelusive of $7,825,000$ staves and 547,000 sets of headings), was $36,884,000$ feet.

Minnesota is the eighth state in the mportance of its lumber-manufacturing interests. The principal centers. of manufacture are Minneapolis, upon the Mississippi river, the Saint Croix river in Washington county, the Mississippi river in Anoka county, and Duluth, near the mouth of the Saint Lonis river.

The following is extracted from Mr. Putnam's report upon the forests of Minnesota :
"The great hard-wood forest of Minnesota lies to the sonth and west of the pine forest, extending north and northwest from Freeborn and Mower counties on the sontheast into Marshall county, and to within 50 or 60 miles of the bonndary-line between Canada and the United States. This body of liard wood, which is some 300 miles long by about 20 miles wide, borders upon the prairie, and is the extreme western body of timber of any commercial value east of the Rocky mountains. This forest covers about $3,840,000$ acres of land generally valuable for agricultnral f,urposes, besides its timber, which will average about 15 cords to the acre. The surface of the land is level or gently undulating, well watered, particularly the so-called 'park region' which lies in Becker, Otter Tail, Douglas, Stearns, and Todd counties, and in fact extends through Wright, Hemepin, Carver, Le Sueur, Rice, and Steele counties.
"North and east of this belt of hard wood the pine forests commence at a point where the sonthern line of the Wisconsin forest crosses the Saint Croix river, near Taylor's Falls. They extend northwesterly throngh the counties of Chisago, Isanti, Mille Lacs, Benton, Morrison, Todd, Otter Tail, Becker, Polk, and Beltrami, nearly parallel to the line of the hard-wood forest, and, crossing Red Lake river, extend round to the north of Red lake, and thence easterly, reaching the shore of lake Superior at the Grand Portage.
"The general character of the pine in Minnesota is similar to that of northern Wisconsin, although it contains more sapling pine and a smaller percentage of 'uppers.' It is generally somewhat scattering and in smaller groves, Large areas of barren land within the forest proper are covered with hirch, through which are scattered patches of small pine, while large areas of swamp bear only tamarack ant cedar. The pine of Minnesota is estimated as follows:
" 1 . On the portion tributary to the Rainy lake and Rainy Lake river; inclnding the Big Fork, the Little Fork, and the Vermillion rivers, $300,000,000$ teet. This stands upon streams which flow northwarl. This pine will naturally be sent to Manitoba.
"2. On the northeru shore of lake Superior, east of Duluth, and covering the waters tributary to lake Superior, of which very little is surveyed and no area is given, $870,000,000$ feet.
"3. On the waters of the Saint Louis, inchuling the Cloquet, White F'uce, and other small streams, $3,500,000,000$ feet.
"4. On Red Lake river and its tribntaries. The great body of pine in this division is principally upon Red lake and Red Lake river. It is estimated to contain $600,000,000$ feet, although it is nearly all unsurveyed.
" 5 . On the Mississippi river and tributaries above Minneapolis, 2,900,000,000 feet.
"About one-half of the pine has been cnt in Carlton connty; it has all been cut in Pine county with the exception of that growing in a few townships. It has nearly all been cut in Chisago, Kanabec, Morrison, and Crow Wing eonnties. A great deal of pine, too, has been cut in Cass connty, while Todd, Otter Tail, and Wadena have all been cut over. The principal bodies of pine now remaining are located in Cook, Lake, Saint Louis, Cass, Itasca, and Beltrami counties. There were a few thousand acres growing on the Roseau river, where it runs into northwestern Minnesota, but this has all been cut by the Canadians. There is no hemlock or spruce in Minnesota. There are occasional ridges of hard wood within the pine forest, as in Wisconsin and Michigan.
"A large portion of the northern part of the state is as yet unsurveyed and but little known, except that, in the region extending from 30 to 100 miles south from the international line, there is little pine of commercial value. It is an open country, full of bogs, swamps, rocks, and wide areas of worthless land; this region extends from the Arrow river clear through to the international line, south and west of the Lake of the Woods, and to the Vermillion lake.
"Along the line of the Northern Pacific railroad and north and east of the Mille Lacs country are large swamps . covered with tamarack timber of commercial value. Through this country are many marshy lakes containing floating islands, lands in process of formation by the acenmulation of vegetation. The timber in this district is growing and increasing, and if fires can be kept out of the tamarack and cedar timber the small pine will grow rapidly.
"The timber which grew on the Saint Croix river in Minnesota was tributary to Stillwater, and has all been, cut and manufactured there.
"The principal mannfactories of pine on the Mississippi river are at Minneapolis.
"FORESTS ON INDIAN RESERVATIONS.

[^5]valumble for the pine timber which grows upon them. These reservations should be held as long as possible by the government as a timber reserve. They should not be surveyed and subdivided except so far as may be necessary for their protection, and they shond not be offered for sale until some necessity, now unforescen, arises for their disposal. The $1,000,000,000$ feet of pine should be held until the amonnt for which it can be sold is needed by the ludians, or until a price near its value can be obtained for it. By selling the land now the value of the timber cannot be realized, while the interest of the settlers who may hereafter enter upon the prairies would seem to demand that some reservation of pine shonld be made for them, if possible. The proposition to bring these lands into market, subject to pre-emption and homestead entry, is against the interest of every one except the few worthless tramps and irresponsible persons who may seek to enter and procure a title to these lands; and even if the land was so open to homestead and pre emption entry, the aim and purpose of these laws conld not be carried out, for no farms will be made nor homesteads improved in this Indian conntry.
"The White Earth Indian reservation is largely covered with hard wood, there being no pine upon more than a quarter of its area. The land is desirable for agricultural purposes, and may be utilized for the settlement of Indians, or under the homestead and pre-emption laws by whites, but the pine lands are unfit for cultivation, and the homesteading or pre-empting of them should not be allowed."

## IOWA.

lowa lies within the prairie region. The broad bottom lands along the river of the eastern part of the state once bore heary forests of broad-leaved trees. Farther west the tree growth was less heavy in the narrower bottoms. All over the state, however, forests lined the streams and often spread, especially in the southwestern counties, over the uplands. Since the first settlement of the state the forest area has increased by the natural spread of trees over ground protected from fire, and by considerable plantations of cottonwood, maple, and other trees of rapid growth made by farmers to supply fuel and shelter.

The natural forests have been everywhere largely culled of their most valuable timber, and in spite of their increased acreage are, in their commercial aspect, in danger of speedy extemination. Mannfacturers of cooperage stock and others using Iowa timber report great scarcity and general deterioration of stock.

During the census year 11,017 acres of woolland were reported destroyed by fire, with an estimated loss of © 45,470 . These fires were largely the result of carelessness in clearing land.

Lowa is the ninth state in the importance of its lumber-manufacturing interests. It owes its position to numerous large mills situated along the Mississippi river entirely supplied with logs from the pineries of Wisconsin. The amount of Iowa-grown lumber manufactured is insignificant.

## MISSOURI.

Southern aud southwestern Missouri was originally covered with a dense forest of hard woods, through which in the southern counties extensive areas of the short-leaved pine (Pinus mitis), covering gravelly ridges and the low Ozark hills, were common. The northern and western limits of the true forest region may be defined by a line wentering the state from the southwest, in the southern part of Jasper county, and passing northeasterly throngh Dade, Cedar, Saint Clair, Henry, Benton, Morgan, and Cooper counties, and then northward to the borders of the state. West of this line the timber is largely confined to the broad bottom lands, in belts often 2 or 3 miles in width. Farther west these become narrower and less heavily timbered. The extreme northwestern counties, Atchison and Nodaway, are almost destitute of timber.

The forests of sontheastern Missouri still contain great stores of valuable timber, although the best trees bave been cut in the neighborhood of all settlements, and for a distance varying from 5 to 20 miles back from all lines of railroad. This is especially true of the best white oak and of black walnut, once common, but now ahmost exterminated in all parts of the state.

Manufacturers of cooperage stock report a growing searcity of material everywhere, and are now forced to obtain oak from Arkansas and elme and basswood from the rivers of sonthern Illinois and Indiana. The further development, however, of the railroad system of sonthern Missouri will make available for mannfacturing purposes a large amonnt of valuable timber now remote from transportation.

During the census year 783,646 acres of woodland were reported destroyed by fire, with an estimated loss of $\$ 294,865$. These fires were traced to careless lunters, to fires set in clearing farming lamd, to sparks from locomotives, ete.

A gratifying improvement in the condition of the forest in the parts of the state first settled has followed the enactment of a fence law preventing the general ranging of stock through the timber-land. A young growth has sprung up among the older trees amd along the borders of woodlands protected from browsing animals, and these young forests are valuable in their prospective yield and as an indication of the methods which must be adopten to preserve and perpetuate the forests of the whole Atlantic region.


Missouri is the tenth state in the importance of its lumber-manufacturing interests. It owes its position in part to large mills located upon the Mississippi river manufacturing logs eut in the forests of Wiseonsin. A mueh larger amount of lumber, however, in the aggregate, both pine and hard wood, is prodnced in mumerous small railroad mills located along the line of the Iron Mountain and other railroads rmming through the southern part of the state.

Saint Lonis is an important ecnter of lumber distribution. It receives a large portion of the Wisconsin pine crop by raft, Miehigan pine by rail, and southern pine and hard woods by rail and river.

## DAKOTA.

Dakota, with the exception of its river lands and the small territory between the north and south forks of the Cheyenne river, is practically destitute of timber. The bottoms of the principal streams contain extensive groves of hard wood. As far west as the James river timber exists abont the shores of the larger lakes, amel upon the Low Turtle and Pembina mountains of the northern boundary, occasionally asconding the côtcs or sides of low tables rising from the prairie. The Black hills, an extreme outpost of the Rocky Monntain system, were onee hearily timbered. The yellow pine of the Pacifie region is here mingled with the white spruce, the canoe bireh, the burr oak, and the elm of the eastern forests, while poplars of the Atlantic and Pacific regious grow side by side.

Much timber bas already been cut along the eastern rivers to supply the wants of a rapidly-increasing agrieultural population, and the isolated jine forests of the Black hills, separated by hundreds of miles trom any equally large or valuable body of building timber, have ahearly suffiered serions inroads. The best and most accessible pine has been cut and manufactured into lumber or consnmed as fuel in the silver mines and stamping mills to which this region owes its popmation, and much timber has been allowed to perish in the fires which of late years hare often swept through these forests.

The principal center of lumber manufacture is Deadwood, in the Black hills, where a comparatively large amonnt of pine is sawed. In the eastern counties a little oak and elm is manufactured, for the most part in small portable mills.

The following extracts are made from Mr. H. C. Putnam's report upon the eastern portions of the territory:
"Along the whole length of the Missouri river in Dakota there is a belt of hard-wood timber in the bottoms in bodies of from 100 to 500 acres in extent. This timber sometimes grows continnonsly, but more often there are open spaces between the groves. About three-fourths of the trees are bur oak, the remainder syeamore, cottonwood, green ash, box-elder, poplar, willow, etc. A similar forest growth lines the banks of the Red river north of Fort Abererombie as far as Fort Pembina, near the international line. This strip of timber averages perbaps forty rods in width, and cousists of the same varieties of trees that grow upon the Missomi river.
"In the Pembina mountains and west of Fort Pembina, on the Tongue and Pembina rivers, there are bodies of timber, generally of stunted growth, lying mostly along the streams or about the Pembina montaius in groves of from 160 to 3,000 acres in extent. This timber is situated principally in the two northern tiers of townships of Pembina county. It has no value except as finel. The next body of timber in Dakota is in the meighborhood of Devil lake; it aggregates some 25,000 aeres, distribnted as follows: At Wood lake, some 20 miles north of Devil lake, there are 1,000 acres; on Graham's island, a promontory on the north shore of Devil lake, near the northrest end, are 2,500 acres of timber; east of this, on the north shore of the lake, are two groves of about 500 acres; at Rock island, which is really a promontory ruming into the lake, are 3,800 acres of timber; around the east and north shores, and aromud the whole sonthern shore of the lake, past Fort Totten to the extreme west end, are some 15,000 acres of forest adjacent to Devil lake; at Stump lake, a lake some 15 miles in diameter on the north side of Devil lake, there are 1,400 acres of timber; and eommeneing some 10 miles south of Fort Totten, and extending down along Cheyeune river into township 146, range 56 , in Traill, Foster, and Graud Forks connties, are about 10,000 acres of timber. The valley here is only 1 or 2 miles in width, and the timber is generally distribnted throngh it. Probably seven-eighths of all this Devil Lake timber is burr oak; the remainder is sycamore, green ash, etc. This timber in many places grows large, sometimes 30 or 40 feet to the first limb, and is valuable for fuel, for the construetion of $\log$ honses, and for general use by settlers in the absence of other and better material.
"In the Turtle momtans, in Bottinean and Rolette conmties, and extending into the British possessions, is quite a large tract of timber, principally oak of short, serubby growth, and only valuable as fire wood. A body of timber from 1 mile to 5 miles in width extends for 150 miles along the Monse river, in the comnties of bottincan, McHenry, Stevens, and Renville. This timber is composed of burr oak, box-elder, sycamore, green ash, ete., and is suitable for fire-wood, house-building, and rough construction."

Mr. Robert Douglas, of Wankegan, Illinois, contribntes the following remarks upon the forests of the Black Hills region, of which he made a critical examination:
"From Fort Meade the stage road rums about 2 miles along the base of the hills, and then follows mp throught heavy timber, gaining an altitude of over 1,500 feet above the fort when withiu 2 miles of Dead wood; thence down a 36 FOR
steep grade of about a mite until the valley is reached, and then up the valley by an easy grade to Deadwood. Five days' lriving through the hills from the base of the foot hills to one of the highest peaks shows little variation in the species of forest trees. The yellow pine (Pinus ponderosa) is the only tree of much value in the hitls, and composes nineteentrentietlis of the forest, generally covering the hills from base to sumnit. The trees are larger and stand closer together than in Colorado, and grow here, too, more rapidly than farther south, as is shown by the width of the ammal rings of growth and the shoots upon the standing trees. This is the only tree used for lumber at the saw-mills, and no other is used in the mines. The white spruce (Picea alba) grows principally near the watercourses, and here the largest trees of that species are to be found. It is seattered, however, through the pines even within 50 feet of the summit of Terry's peak. It is condemued by both saw-mill proprietors and miners as lacking strength and being very knotty, which cannot be donbted, as it retains its lower branches with wonderful tenacity, even when growing closely and in dense shade. These two species comprise all the Coniferce in the Black hills, with the exception of a prostrate jmiper and rare specimens of the red cedar. The burr oak is found in the valleys extending into the foot-hills and along the creeks for 40 or 50 miles into the plains. It is short, guarly, and apparently of fittle value, although exceptional trees in the valley are of fair size. In the narrow vallegs and along water-conrses are fom the common cottonwood, black willow, narrow-leaved cottonwood, green ash, white elm, box-elder, ironwood, eanoe bireh, and quaking aspen; in the hills canoe bireh, mountain ash, hazel, choke cherry, and juneberry are found growing side by side with the snowberry and mahonia of the Pacifie region. The little aspen and the canoe birch perform the same service the aspen does in Coloralo, and cover the ground after the timber is burued off, thus making a shade in which the pine seedlings find protection from sun and wind, and finally repossess the hills. On the banks of the mumerons ereeks interseeting the 'boud lands' and plains from the Missonri river to the Black hills, box-elder, white elm, green ash, black willow, cottouwood, choke cherre, wild plum, aud buffilo-berry oceur, bat the canoe birel is not found below the foot-hills, where it grows along the creeks 6 or 8 inches in diameter, or as a low shrub upon the hillsides.
"The region ocenpied by the Black Hills forests is 80 miles in length north and south, and about 30 miles wide from east to west. Forest fires are not so frequent nor so disastrous as in Colorado, although the 'big burning' of 1860 , near Custer's peak, is estimated to have extended over 400 square miles. The yellow pine is largely reproducing itself over the whole of this area, the trees being now 3 or 4 feet high. As far as my observation went, this reproduction of the sellow pine over the old 'deadenings' is alnost universal through the hills, although rarely or never seen in Colorado, and even in northern Wiseonsin and the Michigan peninsula seareely a single young pine has appeared in the whole burned district of 1871.
"The timber is disappearing rapidly in the vicinity of Deadrood, Lead City, Terryville, and Central."

## NEBRASKA.

The forest growth of Nebraska was onee confined to the eastern part of the state; the broad bottom lands of the Missonri and the lower Platte rivers contained groves of large oak, walnut, ash, and box-elder of considerable extent. These, under favorable conditions, spread to the blufts and uplands. Westwarl the tree growth gradually became more seanty and stunted, untit, west of the one hundredth meridian, only the large streams were lined with a few small eottonwoods and willows.

The best trees hare already been culled from the seanty forest growth of the state, and if the area of natural woolland has somewhat increased along its eastern borders since the settlement of the country and the diminution of prairie fires, these forests are, in their commereial aspeet, of little importance. Many small plantations of cottonwood and other trees of rapil growth have been made in conneetion with farms in the eastern counties, and these in some cases already furnish mneh-needed shelter to buildings and erops, and supply domestic fuel.

The lumber-manufacturing interests of Nebraska are not important. Mills at Omaha, the principal manufacturing center, saw cottonwood and a little walnut and oak, hauled to them from the neighborhood of the city, and small portable mills at other points along the Missouri saw a little eottonwood and such logs as the country tributary to them ean furnish. The product of all the Nebraska mills is consumed in supplying the local demand.

## KANSAS.

The hears forest of the Mississippi basin just reaches the extreme southeastern corner of Kansas, covering nearly one-third of Cherobee county. North of this, and occupying the remaining eastern border of the state, a prairie region varying in width from 30 to 100 miles is still heavily wooded with valuable timber along the streams, the forest growth oceasionally extending and covering areas of upland. West of this region of mixed prairie and woodland the timber is confined to the banks of streams. It is often, east of the ninety-seventh meridian, of considerable size and value, oceurring in sutficient quantity to supply the most pressing wants of the agrieultural population of this part of the state. West of the ninety-seventh meridian the tree growth gradually diminishes in vigor. Trees are here confned to the immediate banks of the large streams, and are small and of little value. West of the ninety-ninth meridian a few sinall stunted witlows and cottonwoods, seattered at wide intervals along the large streams, represent the ouly forest growth of this aril region.
ซหS＊どヨN
（1）

A large amount of lumber is manufactured in the eastern counties in proportion to the extent of their forest area; but much of the best timber of the state has been cut, and Kansas must soon depend, even more than at present, upon the forests of Arkansas and Lonisiana for its lumber supply.

Considerable plantations made in the eastern and southeastern counties by railroads and in comection with farms promise abuudant success. All attempts, however, to raise trees in the arid central and western parts of the state have resulted in failure.

During the census fear 7,080 acres of woodland were reported destroyed by fire, with an estimated loss of $\$ 14,700$. The lafgest number of these fires originated upon the prairie.

## WIESTERN DIVISION.

## MONTANA.

The forests of Montana are confined to the high monntain ranges which occupy the western part of the territory They are dense and important upon the slopes of the Cour d'Alene and other high ranges. Farther east, along the eastern slopes of the Locky mountains and their ontlying eastem ramges, the Big Belt, the Little Belt, the Crazy, the Snow, and the lear monntains, and the ranges sonth of the Yellowstone river, the Yellowstone, Shoshonee, and Big Horn momntains, the forests are more open, stmated, and gencrally confined to the highest slopes, the bonders of streams, or the sides of cañons. A narrow fringe of cottonwood, green ash, and willow lines the bottoms of the Missomi, Yellowstone, Tongne, Rosebmd, Milk, and of the other large streams of the territory; and a few stunted pines and cetars are seattered along the river bluffs and the highest ridges of the Powder River, the Wolf, and other ranges in the sontheastern part of the teritory. The remainder of the territory, the eastern, northern: and southern portions, are destitute of timber.

The heary forests of northwestern Montana, largely composed of red fir, rellow pine, and tamaraek, and containing great bodies of white pine (Pinus monticola) and considerable valuable spruce (Picca Engelmanai and I. alba) constitute, with those covering the adjacent monntains of Idabo, one of the most important bodies of timber in the United States. Enst and rest of this forest a trecless comntry, adapted to grazing and agriculture, and destined to support a large population which must obtain its building material and railroad supplies from it, extends orer thonsands of square miles. The development, too, of the important mining interests of southern Montana and Idaho is depentent upon these forests, their only valuable souree of timber and fuel supply. These forests guard the headwaters of two of the great rivers of the continent, and in regulating their flow make possible throngh irrigation the derotion to profitable agrienltme of a vast territory now an almost arid waste. The forests, largely composed of the lodge-pole pine (Linus Murrayana), which cover the ontlying eastern ranges of the Rocky momitains at an elevation of frem 5,000 to 10,000 feet above the ocean level with a dense growth of slender trees or on poor soil and in exposed sttuations with an open, seattered forest, are, as sources of lumber supply, of comparatively little value. These forests, however, contain valuable supplies of fuel and abundant material for railway ties. They guard, too, the flow of momerless small streams, and their importance in this connection should not be overlooked.

The most important forests, commercially, of the teritory are found along the valley of Clarke's Fork of the Columbia river, between the Horse Plains and the ldaho line; here the westorn white pine reaches its greatest development, becoming an important part of the forest growth. The valleys of the Saint Regis de Borgia and Missonla rivers contain great bodies of raluable fir and pine, which spread also in great luxurianco over the mountains east and south of Flathead lake.

Fires destroy erey vear large areas of the forest covering the monntains of the western division. The long, dry summers and the character of the forest, composed as it is almost entirely of coniferous resinous trees, favor the spreal of forest fires. They increase rapidly in number with the increase of population, and theaten the entire extermination of the forests of the whole interior Pacific region. During the census year 88,020 acres of forest were reported destroyed by fire, with a loss of $\$ 1,128,000$. These fires, few in number, were traced for the most part to careless hunters, prospectors, and smokers.

Little lmmber is manufactured in the territory. Red fir and spruce are sawed at Missoma and in the neighborhood of nemrly all the mining centers in the western part of the territory. The product of the Montaua mills is entirely used to supply the local demand.

The following report mon the forests of the northem locky Mountain region was prepared by Mr. Sereno Thatson, of Cambridge, a spectal agent of the Cemsus Oftice, in the division of Forestry:
"The territory whose forest resources I attempted under your instructions to examine inchudes an area of about 150,000 square miles, extending from the one humberl and thirteenth meridian to the summit of the Cascade mountains and from the parahn ot $44 \frac{10}{2}$ to the British boundary; or, accorling to political divisions, the western fifth of Dontana, the northern two tifths of Idaho, the castern threefftis of Washington territory, and the mortheastern portion (or metrly one-half) of Oregon. It comprises a central treeless platean of some 30,000 square miltw in extent, the qreat 'plain of the Colnmbia', surommded by more or less extensively timbered momntain systems. This tract is bounded on the east by the broad momntain range which separates Montana from Idaho, on
VNVLNON

the north by the irregularly-broken country which lies north of the Spokane river and of that portion of the Columbia which has a westerly course in the same latitude, and on the west by the Cascade range, white on the sonth the circuit is less completely closed by the somewhat complicated system known as the Blue and Salmon River mountains.
"With the excention of a single comnty (Bearer Head) in Montana this entire region is drained by the Columbia river, since the Rocky Mountain divide, or the main central divide between the headwaters of the Columbia and of the Missouri, forms the boundary between Idaho and Moutana only as far north as 45040 , when it turns abruptly eastward for 75 miles and then again northwestward to the British boundary in continnation of the line of tho Wind River mountains of Wyoming.
"As will be seen from the detailed account which is to follow, the general character of the forest growth throughout this region is remarkably uniform, both in the kinds of trees found and in their mamer of distribution. The trees of the most constant occurrence and that form the mass of the forests generally are, first, the red fir (Pseudotsuga Douglasii) and sellow pine (Pinus ponderosa), gradually giving place at higher altitudes to Picea Engelmanni and Abies subalpina or Pinus Murrayana; while of only somewhat less exteuled range, though sometimes more local in their distribution, are the larch (Lavix occidentalis), cedar (Thuya gigantea), the white pine (Pinus monticola), the hemlocks (Tsuga Mertensiana and, less frequently, Tsuga Pattoniana), Abies grandis, and the balsam poplars. Abies amabilis only is confined to the Cascade mountains. No other species occur of sufficient size to be of importance as timber trees.
"In order to indicate more particularly the extent and distribution of the tree growth, the territories will be taken up in order by connties, and an estimate given of the area covered in each, thongh necessarily of the actual density of growth and amount of available timber (varying from square mile to square mile, aud much of it never seen) no estimate can be given of such probably approximate accuracy as to be of any value whatever:

## "montana.

[^6]sellow pine, with some red fir and larch, and at the higher elerations (above 5,000 fect) of red fir, larch, and scrub pine. In the higher cañons of the main range to the south it is probable that Alies subalpina and Picea Engelmanni also oceur, as I heard of a soft tamarack found at Gwendale, which appeared from the description to be the latter species. Total timbered area of the county is estimated at 2,250 square miles.
"Missoula county ( 21,000 square miles).-The Bitter Root monntains, whieh separate this county from Idaho, are a direct continuation of the Rocky mountains north from the point of divergence of that range in latitude $45^{\circ}$ $40^{\prime}$. While broadening out until they cover a base of 100 miles or more, they rarely reach a height of 8,000 feet. There is nothing alpine in the character of their higher vegetation, nor do they anywhere rise above the limit of forest growth. The summits are not often rery rugged, and thongh the slopes may be steep thej are not generally greatly broken. For the most part the are well wooded upon both sides, with no meadows along the streams and little grass anywhere until the foot-hills are reacied. Upon the Montana side it is from 20 to 40 miles from the base to the summit of the divides, and the Bitter Root valley, which skirts their feet for 60 miles, separates them from the low and comparatively bare spurs of the Rocky mountains on the east.
"Upon crossing the main divide upon the southern border, between the Big Mole and the Bitter Root valleys, at an altitude of 7,000 feet, the yellow pine immediately appears, of large size, and with its usual massive habit, and is henceforth the most conspicnous forest tree along the usual routes of travel, eoming farther down into the valleys than any other tree, and more frequently attaining a large size, probably from its less liability to scrious injury from fires: The deseent trom this sonthern divide to the Bitter Root valley is well wooded with large trees of the yellow pine and red fir (with at first some small Pinus Murrayana), which continue to be the only trees seen bordering the valley. These momitains were erossed by me on the Lolo trail up the Lolo creek, and by the Mullan road, which follows the Saint Regis de Borgia river. In the lower cañons only vellow pine and red fir are found, of the usnal seattered growth-the trees rarely much over 2 feet in diameter-with lareh and Abies subalpina coming down the side gulches, and white pine in the middle cañon. The yellow pine gradually gives place to Picea Engelmanni, Abies subabpina, and A. grandis, though none of these reach the size which thes attain on the Idabo side of the range. The large timber is mostly confined to the neighborhood of the streams, where the lareh and white pine sometimes reach a diameter of 3 or 4 feet, but it becomes much smaller upon the ridges, and in the upper cañons rarely is more than a foot or 18 inches throngh, while the monntain slopes are usually much burned over and covered with fallen timber, largely of Pinus Murrayana. The largest and most abundant tree in the upper cañons is probably the Picea Engelmanni. Sinall trees of the Thuya gigantea are also occasional, but nowhere in northern Montana does it become large enough to be of importance. The Thuya and Abies grandis extend as far south as the Nez Perce creek. I think that no hemlocks were seen on the Montana side of the range, bnt they may oceur.
"North of the Mullan road to Clarke's Fork the eastern slopes of the range continue well wooded. On the eastern side of the county the low spur of the Rocky mountains lying to the cast of Bitter Root valley is to a large extent bare, but has some young yellow pine (known as 'scrub pine' or 'black.jack pine') and Pinus Murrayana. Approaching Hellgate river the timber becomes more prevalent in the ravines; and in the government timber reservation near Missonla, where there is a saw-mill run for government purposes, the timber was found to be yellow pine and red fir (not large) and considerable larch-fine trees 2 feet in diameter or more and 100 feet high. In Granite cañon, in the mountains north of Missoula, where there is also a saw-mill, the lower cañon was occupied by yellow pine and larch, with some red fir rarely over a foot through, and in the upper cañon Abies subalpina and Picca Engelmanni a foot in diameter. On the mountain sides above the cañon the timber is, as usual, small and worthless for lumber. In the eastern portion of the Flathead Indian reservation a very high and rugged range of monntains extends nearly as far north as the head of Flathead lake, and parallel with the main Rocky Mountain range, which here enters the county and continues across the northern boundary. Both of these ranges are throughont densely wooded, though on the eastern side of the Rocky mountains the timber wholly ceases a few miles ( 8 or 10 ) below the summit, giving place to the open grazing region of the upper Missouri. On crossing over the lower end of the western range, from the Big Blackfoot to the Jocko river, the timber was found to be at first almost entirely yellow pine, with red fir and larel in the gulches, the yellow pine ceasing toward the divide (at 5,000 feet altitude) and Pinus Murrayana taking its place, but reappearing on the northern side, with occasional Pieca Engelmanni and even small Thuya gigantea. No white pine was seen. The same trees probably continue northward to the bomdary (the lareh is reported from about 30 miles south of the boundary).
"The remainder of the connty, lying west of the Flathead River valley, is wholly occupied by mountains, of less altitude, but, so far as is known, generally densely wooded, with the exception of some of the spurs toward the Flathead river and Clarke's Fork and some small prairies bordering the streams.
"The total timbered area of the country is estimated at 17,000 square miles."

## WYOMING.

The highest mountain ranges in Wyoming only are well timbered. The high rolling table-land which occupies the central part of the territory is destitute of all tree growth, while the low ranges which rise from this plateau
ONIWORM


$$
7^{6}
$$


and border it on the sonth are either treeless or only support a few stunted yellow pines or firs widely seattered or forming small, isolated patches of open forest upon the highest slopes of the most sheltered ravines. The most important forests of the territory are those in the northeastem corner covering the western extension of the Black bills of Dakota, those upon the foot-hills and slopes of the cañons of the Big Horn mountains, and the dense forests of small lodge-pole pine (Pinus Murrayana) which occupy all the northwestern portion of the territory studded by the system of mountains sturrounding the Yellowstone park.

The most valuable timber of the Big Horn mountains consists of yellow pine (Pinus ponderosa), attaining on the foot-hills sufficient size to furnish saw-logs. Probably one-third of this timber on the east side of the mountains has already been cnt to supply mills located upon the streams from Crazy Woman creek to Tongue river. The table-laud on both sides of the range between the crests of the foot-hills and the base of the Snow range is covered with a belt, from 8 to 10 miles in width, of small white fir (Abies subalpina). The trees are small, rarely exceeding 8 or 10 inches in diameter. They afford, however, nsefnl material for fuel and fence and telegraph poles. This forest has suffered seriously from wind storms and fire. A heary growth of cottonwood, with which is mingled a little green ash, oceupies the banks of all the streams of the Big Horn region, with the exception of No-Wood creek, flowing from the western flank.

The forests of the Yellowstone region, composed for the most part of small lodge-pole piue, are confined to the mountain slopes and high valleys, at an elevation of between 5,000 and 10,000 feet. These forests are capable of supplying great quantities of fuel and fencing material. They contain, however, little timber snitable to manufacture into lumber.

The forests of all this arid central region suffer seciously from fire. These increase with the settlement of the conntry and inflict great damage upon the forest. In northwestern W yoming, however, the forests of lodge-pole pine (Pinus Murrayana) destroyed by fire reproduce themselves, and the area occupied by this species in all the Rocky Mountain region is increasing. This is due no doubt to the fact that fire does not destroy the seeds of this species, protected in the cones, which remain closed upon the trees for years. The heat of the fire causes the cones to open and shed their seeds upon the burned surface of the soil, where they germinate quickly and freely.

During the census year 83,780 acres of woodland were reported destroyed by fire, with an estimated loss of $\$ 3,255,000$. These fires were set by Indians, trappers, and prospectors.

A little lumber, in addition to that mannfactured in the Big Horn region, of which no returns have been received, is sawed in the Medicine Bow and other ranges in the southern part of the territory. A large amonnt of fire-wood and many railroad ties are cut in the southern mountains and delivered by chntes along the line of the Union Pacific railroad.

## COLORADO.

The forests of Colorado are confined to the mountain ran ges and high valleys which cover the western half of the state; the elevated, rolling plateau which extends from the eastern base of the mountains to the eastern boundary of the state is entirely destitute of tree growth, with the exception of an occasional stnnted willow or cottonwood found in the bottom lands of the large streanis. The important forests of the state cover the mountain slopes between 10,000 and 12,500 feet elevation, and are almost exclusively composed of spruce (Picea Engelmanni), with which are mingled different alpine pines of little economic value. Below the spruce belt a more open forest of red fir and yellow pine, occupying ravines or seattered over the ridges, extends down to the foot-hills. These are covered with an open growth in which the nut pine and the western juniper are the prevailing trees, while the borders of streams and bottoms of the cañous are ocenpied by cottonwoods, willows, cherries, oaks, and other deciduous trees and shrubs of little economic importance. Large areas upon the sides of the high Colorado monntains are exclusively covered with a dense growth of the quaking aspen. This tree very generally takes possession here of gronnd from which the coniferous forest has been removed by fire, and, as the number of forest fires is rapidly increasing in Colorado, it seems destined to become the only widely-distributed forest tree of this region. The high vallers, or "parks" as they are here locally called, wheu timbered at all, are covered with a deuse forest growth in which the lodgepole pine (Pinus Murrayana), also common at high elevations in the spruce forests, is the prevailing and often the only species, disputing with the aspen the possession of the burned soil. The high platean of southwestern Colorado is either treeless or is thinly covered with an open growth of small, stunted junipers.

The increase in the number of forest fires raging in the monutains of Colorado is alarming in a region where the forest once destroyed caunot easily reproduce itself, and upon mountains where forest covering is necessary to preserve the integrity of the channels and the constant flow of numerons important streams essential to the irrigation of wide areas of arid territory.

During the census year 113,820 acres of forest were reported destroyed by fire, with an estimated loss of $\$ 935,500$. These fires were set by careless hunters, miners, and prospectors, and by Indians or whites throngh malice.

The forests of the Colorado foot-hills afford abundant fuel and fencing material to supply the wants of the present popnlation of this part of the state. Coarse lumber, suitable for the timbering of mines aud railroad
construction, is manufactured from the fir and pines of the lower momitain slopes, which have also furnished immense guantities of finel and railway ties. The timber, however, of this forest most accessible to mining centers and the lines of railroads has alrady been destroyed, while its productive capacity is ererywhere impaired by wasteful methods of lumbering and destructive conthgrations. The elevated sprnce forests, which contain the only great bodies of heary timber found in the central Rocks Monntain region, have thus far, on account of the diffeculties of operating in them, escaped all serions imroads from the ax of the lumberman. Small portable mills, howerer, have ben estabished in these forests to suply the wats of some of the most elevatel mining centers, and fires every year reduce their extent and value.

Colorato is principalls suppled with hmber from Chicago; a small amount is mannfactured, howerer, in the state, mostly upon the waters of the South Fork of the Platte river, in Jefferson comity, and in the extensive pincries which cover the divide between the waters of the Sonth Platte and the Arkansas rivers. A little lumber is also manutactured in small portable mills in mearly every county.

## NEW MEXICO.

The forests of New Mexico are confined to the slopes and cañons of the high mountain ranges. The elevated platean which oceupies the whole of the eastern part of the territory is trecless, with the exception of occasional willows and cottonwoods bordering the large streams, while the ligh mesas of the sonthwest and west are sometimes dotted with an open growth of dwarf junipers and mut piues ot considerable local importance as a source of fuel and fencing supply. The high monntain ranges extending southwand into the northern part of the territory are coverd with forests very similar in composition, density, and distribution to those covering the monntains of Colorado. Engehnan's spruce is here the important timber tree at high elevations; lower, open forests of red fir and yellow pine occupy the sides of cañous and the lower monntain slopes, and the unt pine and juniper cover the foot hills with an open, scattered growth. The detached mountain ranges which spring from the central platean of the territory are less heavily timbered than the higher monntains north and south. The yellow pine is here the most common and important tree, mingled in sheltered cañons and at highest elerations with oceasional real firs.

The most important forests of the territory cover the high group of mountain ranges west of the Rio Grande aud sonth of the thirty-fourth degree of latitule-the San Francisco, the Tulerosa, Sierra Blanca, Sierra Diablo, Mogollon, Pinos Alfos, and Mimbres. The foothills and lower slopes of these momtains, between 5,000 and 7,000 feet eleration, are covered with a hears growth of junipers, nut pines, and different evergreen oaks. The banks of streams are here lined with immense cottonwools, syeamores, cherries, ashes, and hackberries, while the arroyos or depressions iu the mesas contain fine groves of mesquit. Above an elevation of 7,000 fect the yellow pine appears, aud mingled with it on morth slopes the red fir and white pine (Pinus reflexa); the elevated ralleys contain fine groves of cottonwood, box-elder, alder, and small oaks, while the most inaecessible slopes of some of the highest ranges are coverd with torests of cypress (Cupressus Gumdulupensis).

The coniferons forests of these mountains are dense and valuable, and, although not yet accessible for lumbering operations except at a few points, they seem lestined to become an important factor in the future development of the whole region. They can, if poperly protected, suphly with lumber indefinitely a larger population than will probably ocenpy this part of the United States.

The decidnons trees of this entire sonthwestern region, often of considerable size, are generally hollow, especially the oaks; they are of little value for any mechanical pupose, althongh aftording abmant and excellent fuel.

During the census year 64,034 acres of woodland only were reported destroyed by fire, with an estimated loss of $\$ 142.075$.

A small amonnt of coarse lmmber, principally yellow pine, is manfactured in the territory, mostly in the comnties of San Nighel and Santa Fé. New Mexico, however, like Colorado, obtains most of its lumber by rail from Chicago.

## ARIZONA.

Northern, western. and sonthwestern Arizona are destitute of true forests. Ravines in the mesas of the high Colorado platean of northern Arizona are occasionaly covered, however, with stunted jmipers. Cottonwoods and willows line the banks of the Colorato river, and the ironwoot, the palo verde, the mesquit, the suwarrow, and other Mexiean forms of arboresent vegetation are fomm in the valley of the Gila and the deserts of the sonthern part of the territory ; individual trees are, however, widely scattered, nowhere forming forests in the true meaning of the wom. The low lava ridges and arid lake beds with which the southwestern part of the territory is covered are antircly destinte of tree growth.

The mombain sestem chlminating sonth of the Colorado platean in the San Franciseomountains, and extending sontheasterly through the middle of the territory into New Mexico, is well timbered. The high ranges which spring from this central elevated patean ben heary forests of yellow pine and red fir, the plateau itself


being covered, over thousands of square miles, with an open growth of yellow pine of considerable size. The streams and bottoms of the high mountains are lined with decidnous trees, of which the eottonwood, the cherry, the asb, the alder, and the walnut are the largest and most important. The gronp of short, detached mountain ranges which oceupies with a general north and sonth trend the southeastern part of the territory is covered with a rich and varied forest growth. The highest slopes are covered with forests of pine, in which, in the Sarta Catalina range at least, great bolies of splendid cypress (Cupressus Guadahpensis) are found; a little lower the red fir aud white pine (Pinus reflexa), different oaks and junipers with a madrona, are scattered over the dry, grarelly slopes and ridges betreen 5,000 and 7,000 feet elevation. These in turn are replaced below 5,000 feet with an open growth of small evergreen oaks. The bottoms of the cañous and the borders of the streaus between 4,000 and 8,000 feet elevation are lined in these mountains with hackberry, syeamore, cottonwood, willows, eherries, and ashes. The arroyos in the mesas are often covered, as in southern New Mexico, with noble groves of mesquit, or in drier situations support a stunted growth of acacias, yuceas, cacti, and other descrt plants.

The yellow pine is the only tree of Arizona of great importance as a source of lumber supply. Oaks and other hard-wood trees are invarialbly defective and of little value except for fnel. The red fir, white pine, and cypress oecur only at high elerations, and are generally too seattered and too diffieult of access to make their manufaeture into lumber practicable for the present at least.

The pine forests of central Arizona and sonthwestern New Mexico are of great importance to the development of the treeless regions which surround them. No other bofly of timber of any extent or value exists near the sonthern boundary of the United States between the pine belt of eastern Texas and the forests of the California monntains. These southern interior forests have nowhere jet greatly suffered. Their inaccessibility has protected them. Railroads, however, now either penetrate this forest region, or will soon do so, and these, with the rapid development of the mining intustry now going on in the sonthwest, threaten these forests with the dangers which are fast exterminating those of Colorado and Utah.

During the census year 10,240 acres of woodland were destroyed by fire, with an estimated loss of $\$ 50,000$. These fires were set by careless hunters, prospectors, and Indians.

Pine lumber is sawed in Pima and Pinal connties, principully upon the Santa Catalina, Santa Rita, and Huachuca mountains, to supply important mining centers in this part of the territory. It is also manufactured in small quantities in portable mills near Indian reservations and other centers of population thronghout the forest region. Returns from 13 mills only, situated in Pima, Piual, Apache, and Yavapai comenties, have been received. Sonthern Arizona is now, in spite of its fine forests of pine, almost entirely supplied by rail with lumber manufactured in California.

## UTAH.

The Uintah range, oeenpying with an east and west trend the whole of the northeastern part of the territory, the Wahsatch mountains and their southern extension, the San Pitch and the Sanpete ranges, extending north and sonth nearly throngh the center of the territory, and the monntains which bonnd on the east the great Colorado platean, bear at high elevations fir, spruce, and pine forests of considerable extent. The foot-hills of these mountains and their high valleys are dotted with an open growth of nut pine, juniper, and mountain mahogany (Cercocarpus). The high Colorado platean and the arid deserts of westem and sonthern Utah are treeless, with the exception of a few stunted junpers and nut pines which struggle for existence upon somo of the low monntain ranges, and of willows and cottonwoods which line the banks of the infrequent and scanty streams.

The western flank of the Wahsatch mountains north of the fortieth degree of latitude has already been almost dennded of its best timber to supply the wants of the agrieultural and mining settlements of the Salt Lake region, and the scanty forests of the territory have everywhere suffered serions loss from fire and wastefnl methods of entting timber and railway ties and of manfacturing charcoal.

During the census ycar 42,865 acres of woodland were reported destroyed by fire, with an estimated loss of $\$ 1,042,800$. These fires were set by Indians, wood entters, careless hunters, and prospectors.

Small quantities of lumber-pine, cottonwood, and a little spruce-are manufactured through the Wahsateh region, the principal centers of manufacture being Beaver City and Cedar City, in the south, the neighborhood of Salt Lake City, and Cache county in the extreme northern part of the territory. Utah is, however, almost entirely supplied with lumber from the castern slopes of the California sieruss and from Chicago. Sinall tameries in Salt Lake City obtain a supply of red fir and spuce bark from the neighoming momatans.

The following notes upon Utal forests, made during the prosecntion of a special investigation into the meatproducing capacity of the temitory, have been supplied by Mr. E. C. Hail, a special agent of the Census, in the division of "Meat Production in the Grazing States and Territories":
"The timber of the Wahsatch monntains, in Cache, Rich, Morgan, and Veber connties of Utah, hardy suffices for the wants of the settlers. The trecs from which lumber is obtained are cedar and a variety of white pine (Pinus flexilis). Some tir (Pseudotsuga Douglasii) is found, but it is not common north of the latitude of Salt Lake City. This tree likewise fumishes an inferior kind of lumber. In general, in Utah, north of latitude 40 . the west
base of the Walisateh mountains has been striped of the available timber, so that in the accessible cañons, especially in the neighborhood of settlements, it is laborious and expensive obtaining posts and poles for fencing, to say nothing of smooth planks, ete., for building. Cottonwood and oceasionally box-elder are found fringing the river bottoms of the sections deseribed.
"The Oquirrh mountains, on the cast of Toocle county, and the Onaqui mountains, 30 miles west, contain cedar and considerable red fir, the latter a tree which I am told is not frequent in the Wahsatch range. The mining camps of Salt Lake and Toocle comnties have largely depleted the timber areas of these mountains. More timber is standing on the Onaqui hills than on the Oquirrh range. From the vicinity of the latter to Cottonwood and Binghan Cañon mining districts the dearth of good feneing material is very noticcable thronghout Box Elder, Cache, Rich, Weber, Morgan, and Salt Lake comities. Willow withes, stone walls, cottonwood poles, and sod walls flanked by alitches are among the devices for barriers against stock incursion, all pointing to the lack and costliness of lumber.
"Lafis range, west of Utaif lake.-This range of" low mountains contains seattered black balsam and red fir. In winter this range is visited from the settlements of Utall ralley, and the trees felled and sledded across the lake on the ice, to be used by the railroad and by farmers. No piñon pine was fomd in the Oquirrh or Onaqui momntains.
"The San Pitch monntains, in latitude $39^{\circ} 30^{\prime}$, longitude $111^{\circ} 52^{\prime}$, contain sparse timber-a so-called white pine (Pinus flexilis), serubby cedar, and some other crergreen trees-at a high elevation and unavailable as lumber. No good clear planking suitable for building is obtained from these cuts.
"The low ranges west of Juab valley and flanking Dog valley, Dry valley, and Ferner valley, in latitude $39^{\circ}$ $30^{\prime}$, longitude $112^{\circ}$, contain straggling cedar and some red fir difficult of access. The timber of the whole region north of latitude $39^{\circ}$ and west of the main Walssatch mountains is meager and inadequate for the purposes of the Mormon settlers.
"Fencing about Salt Lake City is of poor construction and costs $\$ 200$ per mile of pine poles and cedar posts. I saw some posts of white balsam (Abies concolor) 50 fect long, obtained from the cañons of the San Pitch range, used for fencing. At Springville, in Utah valley, posts of cedar were pointed out which were in good condition after fourteen years standing. Were it not for the existence of the 'nofence' law, which enables a farmer to cultivate unfenced ground and claim damages from incursions of stock, the Utah farmer would be very badly off, not having means to purchase fencing material in a country so ill supplied with timber. The cedar which abounds here affords a lasting supply of fire-wood and posts, but for poles or plank the region depends largely upon imported lumber, especially for building plank, joists, ctc.
"Upon ranges flanking East and West Tintic valleys, Juab county, in latitude $39^{\circ} 50^{\prime}$, longitude $112^{\circ} 30^{\prime}$, the timber is not abundant; it consists of red fir and black and white balsam, from which rough lumber for the mining camps of Mammoth, Tintic, and Silver City lus been extensively taken. Cedar of the usual dwarfed kind grows abundantly along the upper slopes of the foothills, and is used for braces and posts in shafts of mines.
"Sanpete Valley range (longitude $111^{\circ} 30^{\prime}$, latitude $39^{\circ} 20^{\prime}$ ). WThe Wahsatch mountains, on the east of Sanpete valley, carry on their spurs and through the deep cañons facing the valley some of the best timber fonnd in Utah. It is largely used by the Sanpete settlers. Yellow pine, black and white balsam, red fir, cedar, and poplar constitute the rarieties of trees found. The gellow pine, less abundant now in accessible cañons, furnishes, it is claimed, a clear and firm lumber, fit for building, and not surpassed by any varicty in Utah. The range west of the Sanpete mountains-i.e., the San Pitch mountains before spoken of-carries on its eastern slopes and cañons considerable balsam of both varieties and some red fir and poplar about the headwaters of creeks. Little yellow pine is found on the San Pitch range; at least, none is taken out at present, althongh I was told considerable had. already been lumbered from such cañons as were penctrable. Fencing of cedar posts and poplar and balsam poles is largely used in the valley; cedar posts and pine plank are also used in fencing meadows and fields. In no other valley of Utah are the Mormons so well supplied, apparently, with fair lumber of native growth. Except for furniture and honse trimmings, no imported wood is used here.
"Sevier River mountains (latitude $38^{\circ} 30^{\prime}$ to $39^{\circ} 10^{\prime}$, longitude $112^{\circ}$ ). -The Tushar mountains and the Valley range, on the west of the Sevier valley, are supplied with meager timber, especially the Valley range. In no part of Utah have I noticed so few and so limited areas inclosed. Timber is said to exist in inaccessible places only on the Wahsatch range to the cast of the valley. This is true in regard to the ranges west of the Sevier valley, where the character of the tree growth is inferior to even the average poor quality of Utah forests. Black balsam, white balsan and red fir grow in both ranges, but are approached with great difficulty. The indigenous serub cediar prevails often in thick groves along the foot-hills, especially on the Valley and Tushar ranges to the west of the valley. Several saw-mills at the mouths of cañon streams on the East Wahsatch range have for sereral years worked up all the available lumber, but the prices asked for lnmber-from $\$ 35$ to $\$ 45$ per 1,000 feet-place fencing material beyond the reach of the Scvier farmer.
"All the way up the Scvier valley, and along its south and cast forks, fencing is limited and lumber high, a sure proof of the inadequate supply of trees on accessible mountains.
"Fish Lake platean and mountains (latitude $35^{\circ} 33^{\prime}$, longitude $111^{\circ} 50^{\prime}$ ) contain a considerable quantity of the frevailing timber of Utah, as do also Thousand Springs monntains.


$$
52^{2}
$$


"The Aquarius plateau is said by Sevier Valley stockmen to be abundantly timbered with pine, balsam, and spruce, but Boulder valley (latitude $37^{\circ} 55^{\prime}$, longitude $110^{\circ} 30^{\prime}$ ) was destitute of standing timber, save cedar and poplar on its foot-hill fringe. The country was visited by fires, the Mormous told me, in 1872-73, whieh destroyed large areas of the forests in the region southeast of the Grass Valley country. The whole scetion of Utah lying east of the Sevier valley to the Rio Colorado is better timbered, but from its rongh and impenetrable location the timber is of no avail to most of the settlers, but ouly to sneh as penetrate the high valleys of Grass, Boulder, Potato, etc., lying adjacent to the timber. Feneing on Grass and Rabbit valleys, westeru Pinto county, is cheaper than in Serier valley, but farmers and stoekmen are so poor that they are forced to arail theuselves of the no-fence law when breaking ground for erops.
"In the Paria River region feneing is very limited and lumber expensive, as timber is hard to get out of the mountain cañons.
"In the Kanab Ricer region fencing at the settlements of Upper Kanab and Lower Kanab, Kane countr, is said to be expensire, as material is diffieult to obtain, the cañons leading to the ralley affording a meager supply of cedar and black and white balsam, while some red fir and yellow pine is said to grow on the Serier plateau (latitude $37030^{\prime}$ ); this, howerer, seldom reaches a market in the settlenents, owing to the isolated situation of these forests.
"Considerable serub oak is found on the slopes of the Oquirrl and Onaqui mountains, above referred to, in 'Tooele county, and many cedar thickets of eonsiderable extent. In Tooele valley some feneing with cedar and panels of balsam oceurs. Rush valley contains some bull fences of trunks of ecdar, costing $\$ 125$ per rod, slowing the cost of eren poor material.
"It will be observed that ontside of the Wahsateh mountains no building timber of value has been noted in Utah. The supply in this range has been largely consumed from the easilr-approached eañons and slopes.
"In summing $u p$ my observations, which were made wholly with a view of investigating the feneing of pasture areas and cost of same, it may be stated that Utah seemed rery generally lacking in serviceable material for fencing or building. The country settled for thirty rears has drawn upon the near supply of standing timber, so that now lumber is obtained by great exertion and expense in most of the valley settlements. The labor and cost of fencing cansed Brigham Young to enact the no-fence law, whieh enabled the destitute settlers to break ground, irrigate, and raise grain without the provision of ans barrier against stock inroads, the cattleman being held responsible for the damages of his herd. This law in itself is a commentary on the scareity of timber in Utal."

## NEVADA.

The tree growth of Nerada, except in a portion of Douglas eonnty, in the extreme western part of the state, which the forests of the California sierras just reach, is confined to the low ridges of the central and southern part of the state. The most important of these-the Humboldt, Toiyabe, Monitor Creek, Timpinte, Hot Creek, Kawieh, and probably others-bear near their summits, in sheltered ravines, scattered patches of stunted white pine (Pinus flexilis) of sufficient size to furnish saw-logs. The lower slopes of the mountains of this region are often quite thiekly covered with small mut-pines and groves of the mountain malogany (Cercocarpus), here attaining its greatest derelopment. Below the nut-pine low, stunted junipers cover the foot-hills, often extending, in the central part of the state, across the narrow elevatel valleys which separate the low mountain ranges.

The great development of the mining interests of Nevada has already nearly exterminated its seanty and stunted forests. The white pine has been cut in the neighborhood of mines from all the montain ranges, and the most accessible nut-pine, juniper, and mountain mahogany lave been converted into eord-wood or made into chareoal. The forests of Nevada are nowhere reproducing themselves, and a scareity of fuel, even for domestic purposes, must soon be felt.

A considerable amount of lumber is manufactured in the neighborhood of lake Tahoe, in Douglas county, and sent in flumes down the eastern slopes of the sierras to supply Carson City and Virginia City. The lumbermannfacturing interests of the remainder of the state are neeessarily small and mimportant. Their entire extermination, with the forests whieh furnish them material, cannot be long delayed.

During the census sear 8,710 acres of woodland were devastated by tire, with a loss of $\$ 19,000$. The fires were traced to hunters aud Indians.

## IDAHO.

The western slopes of the Bitter Root and Cour d'Alene mountains, which form north of latitude $46^{\circ}$ the eastern boundary of the territory of Idaho, are covered with dense, extensive, and valuable forests of fir, jine, and larch. The ridges of the Rocky momntains, which below latitule $46^{\circ}$ occupy the eastern border of the territory, and the extreme eastern development of the Blue monntans of Oregon, just entering it from the west, are less heavily timbered with a seattered growth, in which yellow pine and red fir are still the prevailing trees. The great central region occupied by the Salmon River momntains is mexplored. These monntains are more or less timbered, but nothing is known of the composition or character of the forests which cover them. Judging, however, from the general elevation and climate of this region, its forests cannot be very important, nor capable of
supplying more than the local wants of its mining population. The great plains south and southeast of the Salmon liver mountains, comprising fully one-third of the territory, are entirely destitute of tree covering, while the Snake River range and the ranges of the Bear liver country contain in their more sheltered cañons only small areas of open, stunted forest.

During the census year 21,000 acres of woodland were reported destroyed by fire, with an estimated loss of $\$ 202,000$. These fires originated in the carelessness of hunters, prospectors, Indians, etc.

A small amount of phe and fir hmber is manulactured at Boisé City and near other centers of population. The great forests of cerlar, tir, and pine, however, in the Cour d'Alêne region are still almost intact. These forests, with proper care, are capable of furnishing indefinitely the treeless agritultural region of eastern Washington territory and Oregon with an abundant supply of excellent building material.

The following extracts are marle from Mr. Sereno Watson's report upon the forests of the territory:
"This territory north of latitude $44 \frac{1}{2} \circ$ is ocenpied by the Rocky and the Bitter Root mountains, forming its eastern boundary, with their broad, timbered, iuterlacing spnrs, which terminate in the high, mostly treeless plateau which extends from near the Spokane river in a southeasterly direction to this parallel of latitude. The sonthern and southwestern portions were not visited by me, and the statements regarding them are to some extent conjectural.
"Lemhi county ( $\overline{0}, ⿹ 勹 00$ square miles). -In the extreme eastern portion of this county, where the mountains are crossed by the Utah and Northern railroad, scattered trees of red fir are first met at an altitude of 6,000 feet. Beaver cañon, up which the railroad passes, is well timbered on both sides nearly to its head at 6,600 feet altitude with red fir only, but the broad plateau at the summit ( 6,860 feet) is treeless. In the lateral cañons ( 8 to 10 miles long), coming out near the mouth of Bearer cañon, there are two saw-mills, one of which was visited. The timber was here found to be confined to the south side of the cañon, and consisted almost wholly of red fir (here called 'red pine'), averaging from 20 to 22 inches in diameter. The largest $\log$ seen measured 32 inehes at the butt. A 'white pine' proved to be Picea Engelmanni, and a 'bird'seye pine' was Pinus Murrayana, both smoll, as was also the balsam (Abies subalpina), which was found some 3 or 4 miles up the cañon. The yellow pine did not occur here.
" lt is probable that the cañons westwarl along the range are similarly timbered as far as the Lemhi agency. Here the character of the range chauges (as stated under Beaver Head connty, Montana), becoming higher and more rugged, and the Pimus Murayana is probably more abundant, at least at the higher altitudes. The yellow pine also appears, lut at what point is uncertain; it is certainly found at Gibbonsville, on the North Fork of the Salmon river, and it probably extends still farther sonthward. The Salmon River mountains, lying between the Lemhi river and Rock creck, are reported to be well timbered. The southwestern portion of the county I presume to be much more open.
"The total timbered area is estimated at from 1,500 to 2,000 square miles.
"Idaho county ( 10,100 square miles). -The high and crowled spurs of the Bitter Root mountains fill the entire northeastern portion of this county, extending to the line of the South Fork of the Clearwater, mostly densely wooled from base to summit. The foot-hills and plateaus between the streams are more or less covered with scattered yellow pine and red fir. The valley of the Salmon river is probably comparatively treeless, and the low monntain range between that river and the Suake is scantily timbered.
"Estimated timber area, 4,000 square miles.
"Washington county ( 3,000 square miles).-I have but little information in regard to this county. The sontluern portion has been surveyed, and is probably nearly trecless. The rest appears to be more mountainous, and may be scantily timbered.
"Wooded area (say) 300 square miles.
"Nez Percé county ( 3,400 square miles). Mainly high platean, at abont 3,000 feet altitude, in the sontheast more or less covered with seattered yellow pine and red fir of good size, on the western side nearly without timber or with occasional yellow pine. Toward the head of Potluck creek some yellow pine and red fir are found in the valleys, and in the northeast the spurs from the Rocky mountains enter the comnty, covered in addition with the larch and Thuya gigantea. East of the Indian reservation the county extends ap into the monntains in the form of a narrow gore, and is heavily timbered. The portion lyiug south of the reservation in the angle between the Suake and Salmon rivers is oceupied by low mountains, mostly bare.
"Total timbered area estimated at 750 square miles.
"Shosione couxty ( 5,950 square miles). Wholly mountainous ant covered with forests, with the exception of some prairies and open eountry near the Clearwater and lower portion of the Lolo Fork.
"Immeliately alter crossing the divide by the Lolo trail from Montana, at an altitude of 6,000 feet, the forest consinted of Abics subalpina and Picca Engelmmmi, with young Abies grandis and Tsuga Mertensiana, and oceasional larch and red fir, and upon the creeks some small Thuya and Taxus. The trail soon ascended the ridges and followed them for abont 100 miles at an altitude of rom 5,000 to over 7,000 feet, donbtless to avoid the fallen timber which made the canons impassable, though enongh of it was found on the route followed. The timber on these ridges was often small and seattered-Abies subalpina and Picea Engelmanni, with Pinus Murrayana aud P. albicutis-or on the damper northern slopes with lareh and red fir, balsam, hembock, and sometimes the mountain-

DENSTM OFFORF:STS


$\qquad$ I Fifix N


为
unexpliabeo
x.E.
hemlock (Tsuga Pattoniana), the trees larger (occasionally 2 feet through, the Abies grandis being the largest). The . white pine (Pinus monticola) also frequently occurred. During the last day upon this ridge the trail was throngh heary timber, chiefly of hemlock sometimes 3 feet in diameter, with some Abies aud rarely Pinus Murayana and $P$. monticola, the ridge eren at 7,000 feet being corered with the same dense growth. Descending quite abruptly from the drier extremity of the spme, which was covered with Abics, Tsuga, and Pinus (Murrayana, albicaulis, and montico'a), we passed through a forest of heavy balsam (Abies grandis), with a few lareh and some red fir, and at about 4,000 feet came upon cedar (Thuya gigantea) to the exclusion of cerything else—the trees from 2 to 4 feet in diameter. On the stream banks at the base were fomm the Tlnya, Pinus monticola, Abits subalpina and A. grandis, Picea Engcimanni, and Tsuga Mertensiana, all growing together, with an undergrowth of maple, mountain ash, Vaccinium, Ceanothus, Cratagus, Pachystima, Prumus, ete. With timber of this character upon the high ridges it is evident that there must be much very heary timber in the cañons.
"After crossing a low ridge covered with cedar, larch, ancl red fir, and following a narrow meadow frequently interrupted by clumps of timber, the trail at length came ont upon an open camass prairie 25 miles northeast of Kamai. From this point the timber corering the platean is an open growth of yellow pine and red fir, often quite large, with young trees intermixed, and some Picca Engelmani and the two Abies in the wetter places. Considerable timber is cut upon the Lolo Fork aud Clearwater and floted down to the mills at Lewiston. It is uncertain how far south along the main range the above large variety of trees continues. It is probable, in iny opinion, that the Thuya, Abies grandis, Tsuga, Pinus monticola, and Taxus to not pass beyond the heatwaters of the Clearwater, or, at the farthest, that some of them may reach the North Fork of the Salmon river, while the larch may possibly be found in the Salmon River mometains.
"At the northern extremity of the comuty, along the Mullan road, which from the Cœur d'Alêne mission follors up the cañon of the Coenr l'dlêne river, instead of following the spurs, a distance of 37 miles, the swampy bottoms were found hearily timbered with Thuya, red fir, Abics grandis, and Tsuga Mertensiana, with some larch and Pinus monticola. Some of the drier bottoms lad been burned orer, and were mostly covered with Pinus Murrayana. Some Populus balsamifera oceurs, 3 feet throngh, or more (as also on the Montana side). The sites of the ridge were also nearly bare. The Thuya, which exclnsively ocenpies some of the swamps, attaining a large size, ceases at the base of the dividing ridge, where also the Picca Engelmanni and Abies subalpina come in. The rauge above Cœur d'Alêne cañon, and bounding the connty on the north, is not heavily timbered, much of its upper slopes being bare.
"Total timbered area estimated at $\overline{5}, 000$ square miles.
"Kootenai county ( $\overline{5}, 530$ square miles). -The portion south of the Cour d'Alene and Spokane rivers belongs mostly to the Cour d'Alene Indian reservation, and is timbered, with the exeeption of open meadows upon the Cour d'Alêne and Saint Joseph rivers and upon Hangman creek. The timber is principally yellow pine and red fir, with some Pinus Murayana, and fine bodies of cedar (Thuya gigantea) near the western borders of the lake. North of the Cour d'Alene river the roal from the miswion to the fort passes throngh a cedar (Thuya) swamp, with many large trees, from 3 to $\tilde{z}$ feet thronglh, traversing cañons filled with a mixed growth of Abics subalpina and A. grandis, larel, hemlock, Picea Engelmami, and red fir. This latter growth contimes for some miles loclow the fort, where the valley opens ont into the hoad Spolsane plain, which extemds northeastward toward Pend doreille lake without trees. The mountaius south of the lake are low and not heavily timbered. The portion of the county north of Clarke's Fork and of Pend d'Oreille lake las, so tar as I know, neser been explored, but is probably mountainous and for the most part well timheral.
"Estimated timber area of the county", 4,500 square miles."

## WASIINGTON.

Washington territory west of the summit of the Caseade range is covered with the heaviest continnons belt of forest growth in the United States. This forest cxpmis over the slopes of the Cascate and Coast ranges, and ocenpies the entire drift phain sumounling the waters of Poget somm. The highest momain peaks and the sinddunes of the coast are treeless. The marrow vallegs of the Cowlitz and Chehalis rivers are dotted with small oaks and other decidnons trees, and oaks and stunted rellow pines ocarpy with an open growth the barren Steilacoom plain sonth of Paget somd; with these exerptions western W:ashington territory is covered with a magnificent coniferous forest. The most valmable and gemomally distributad timber wee of this ragion is the red or yellow fir (Pscudotsuga Donglasii), forming abont seveneighths of the tow st growth. The valnable red celar (Thuya gigantea) and the hemlock (Tsuga Mertensiann), often covaring axtensive thacts, cepreially near the base of the Caseate monntains, are common; the noble tide land spmee adds value and importance to the forests lordering the coast. The forests which cover the upper ridges of the Cascade monntains are principally composed of firs (Abies amabilis and A. nobilis), spruces (Piceu Engelmanni), varions small pines, hembeks, ete. These elevated forests, often of great beanty, are of little economit: importance.

East of the Cascade monntains the forests are less dense, and are confinel to the mountain ranges. The great plains watered by the Colnmbia and Snake rivas are entirely alestitute of tree covering.

Stevens comnty, which is broken and mountanous, with the exception of the narrow valleys and occasional small prairies, is covered with a heary, open forest growth. The most valuable trees of the forests of this commty are the red iir, the yellow pine (linus ponderosa), the white pine (Pinus monticola), the lareh (Larix occidentalis), and the red cedar.

The forests of Spolane comnty are confined to the spurs and ridges of the extreme eastern part of the county, athd consist of the yellow pine, red fir, and lareh of small size and inferior quality.

The forests of Yakima connty cover about one-half of its area, being confined to the eastern slope of the Cascade range. The forests covering the eastem slopes of these monutains are only surpassed in density and value by those extending over their western tlanks. The yellow pine oceupies the lowest slopes with an open growth of large trees. Abore the pine the red fir is the prevailing tree. This at a greater elevation is succeeded by hemlock and larch, with which are mingled fine bodies of spruce (Picca Engelmanni) and hemlock, while the forest growth below the timber-line consists of firs, pines, and mometain hemlock.

The western portion of Rlikitat county is covered with heavy forest growth, similar in composition and density to that of Yakima.

Walla Walla county is testitnte of timber except in the extreme southeastern corner, where the spurs of the mountains are thinly covered with a sparse growth of yellow pine and larch.

Columbia county is withont forest except along the ridges and summit of the Blne mountains, which are covered with yellow pine, larch, and, above 5,000 feet elevation, with a continuous growth of lodge-pole pine (Finus Murayana).

Whitman county is lestitute of forest except in the extreme sontheastern corner, where there is a scattered growth of small yellow pine.

An estimate of the actual amount of timber standing in the territory is not possible with the existing knowledge of the country, and none has been attempted. The quantity of merchantable timber, however, standing in western Washington territory is enormons; a yield of 200,000 feet of lumber to the acre is not at all exceptional, while over fully 20,000 square miles a yield of 25,000 feet to the acre might be expected; such estimates certainly would not exaggerate the productive capacity of these noble forests.

The forests of Washington territory, especially in the more thickly settled portions west of the Cascade monntains, have long suffered from destructive fires. The injury inflicted by such fires is proportionately less, however, in the humid coast region than east of the mountains, where the dryness of the climate prevents the reprodnction of the forest once destroyed. West of the mountains young trees of the species of the original forest, and especially the red fir, soon densely cover the burned surface and grow with astonishing rapidity and rigor. It seems reasonably certain, therefore, that, whatever may be the fate of the forests which now cover western Washington territory and Oregon, they will be succeeded by forests of similar composition, and that this whole region, ill adapted in soil and topography to agriculture, will retain a permanent forest covering long after tho other great forests of the continent have disappeared.

During the census year 37,910 acres of woodland were destroyed by fire, with an estimated loss of $\$ 713,200$. These fires were set by Indians, by whites in clearing land, by hniters, prospectors, etc.

The forests bordering the shores of Puget sound, the strait of Juan de Fuca, and the lower Columbia river have been culled of their best trees for a distance inland of 1 or 2 miles to supply the important lumbermanufacturing interests of this part of the territory. The product of western Washington territory during the census year was $153,986,000$ feet of lumber, $6,550,000$ laths, 910,000 shingles, and $23,666,000$ staves-by far the largest part being mannfactured in the mills located on the waters of Puget sound.

The first saw-mill built upon Puget sonnd was erected in 1851 . It was a small water-power mill, with a daily capacity of about 1,000 feet. Two years later a similar mill was erected at Seattle, with a daily capacity of from 8,000 to 10,000 feet.

The centers of manufactures now are Port Gamble, Port Madison, Port Blakely, Port Discovery, Seabeck, Utsaladdy, 'lacoma, and Seattle. At the last-named place there is a large establishment manufacturing sugar:barrel. staves from cottonwood for the San Francisco market.

The lumber mannfactured ipon Puget sound is largely shipped to San Francisco and directly to China, Australia, New Zealand, and Mexican and Sonth American Pacific ports.

The population of the southeastern part of the territory is prineipally supplied with lumber, largely coarse yellow pine of inferior quality, cut on the Blue monntains in small portable mills, and delivered at Dayton, in Walla Walla county, by a flume several miles in length. No statistics, however, have been received of the amount of lumber manafactured in this county.

The methods adopted by the lumbermen of western Washington territory are wasteful in the extreme. Loggers. cut only timber growing within a mile or a mile and a half of shores accessible to good booming or shipping points, or which will yield not less than 30,000 feet of lmmber to the acre. Only trees are cut which will produce at least three logs 24 feet long, with a minimum diameter of 30 inches. Trees are cut not less than 12 and often 20 feet from the gromm, in order that the labor of entting through the thick bark and enlarged base may be aroided, while 40 or 50 feet of the top of the tree are entirely wasted.



The fullowing notes upon the forests of eastern Washington territory are extracted from Mr. Watson's report: "Walla Walla county ( 1,260 square miles).-This comty is wholly without timber, which is supplied from. the Blue mountains of Oregon.
"Columbia county ( 2,160 square miles).-A spur of the Blue momatains traverses the sonthern portion of this county, occupying about a fourth of its area, which is partially timbered, chiefly with red fir (Psendotsuga), pine (Pinus ponderosa), and some Picea Engelmanni, none of it large. Elsewhere the county is nearly destitute of trees, thongh some of the streams, especially the Touchet, were at the first settling of the county bordered by seattered pines.
"Whitman county ( 5,000 square miles).-This county is destitute of timber. Some of the townships along the Idaho line were originally sparingly wooded with seattered pines upon the ridges, but these have nearly or wholly disappeared, and the supplies for fencing and fuel are brought from the neighboing mountains of Itaho. There is a saw-mill on the Palonse river, at Palouse, the logs for which are floated donn from abont 9 miles above.
"Spokane county ( 5,500 square miles).-The portion of this connty to the west of the month of the Spokane river is wholly destitute of trees, with the exception of the high point or platean opposite to the mouth of the Okinakane river. Here there is a small area thinly wooded, probably with yellow pine and red fir. On the eastern side of the county spurs from the mountains bordering Cœur d'Alêne lake enter between Rock ereek and Spokane river, and are corered more or less densely with a growth of yellow pine, often small, with some Douglas spruce and tamarack in the ravines. There is a saw-mill at Rock creek supplied from its immediate neighborhood. Crossing Hangman's creek a scattered growth of pine appears upon the ridges between Deep creek and the Spokane river, and as far west as the head of Crab creek. Trees also border the Spokane river below the falls and to within a few miles of its month. The region between the Spokane and Little Spokane rivers is mostly a broad, open valley, the hills bordering it upon the north being very thinly wooded. There are two saw-mills at Spokane Falls, but the logs for them are floated down from near Cœur d'Alêne lake.
"The total area more or less corered with trees may be estimated at from 400 to 500 square miles.
"STEVENS COUNTY ( 14,760 square miles).-This county is broken and mountainous thronghout, but with no high ranges east of the Cascade monntains. The portion lying east of the upper Colnmbia and north of the Spokane river has several small prairies upon Chamokave creek and Colville river, and there is a narrow, open valley along the Columbia for 20 miles below the mouth of the Colville. The mountains are all low, the ridges most frequently thinly wooded or nearly bare, with the timber becoming denser in the ravines, especially northward. The most common tree is the yellow pine, but in the ravines red fir is frequent, with tamarack and lodge-pole pine. Near the Colville river were seen Picea Eagelmamni, Abies grandis, small Thuyas, and fine specimens of Pinus monticola, as welk as Populus balsamifera, Betula papyracer, and Alnus of considerable size. The hills bortering the Columbia above Old Fort Colville are treeless. The drift-wood brought down by the river is said to be chiefy cedar (Thuya gigantea).
"The Colville Indian reservation, lying between the Okinakane and the Cohmbia eastward, is comparatively little linown, being erossed by but two trails, one leading directly westward from Old Fort Colville, the other following the Kettle river, and for much of the way not far distant from the British boundary. As seen from the Colnmbia and from the heights bordering the Okinakane, this portion appears to be more open aud grassy than that east of the Columbia, and, especially toward the south, more like the bare plateau of Spokane county. Okinakane valley itself is narrow, with mainly a desert vegetation of sage-brnsh, Purshia, and other like representatives of the Great Basin flora, which seems to find here its only passageway northward to the British boundary. The hills eastward have thinly-seattered pines, which occasionally desceud into the valley. The northern thail from Old Fort Colville shows the lower valley of Kettle river to be well wooded, but above, opening ont into grassy prairies ant bordered by grass-covered hills or with seattered yellow pine, red fir, and lareh. Upon the more densely wooded ridges and ravines were also found Picea Engelmanni, Abies subalpina, Pinus Murrayana, and Thuya.
"The main ridge separating Kettle river from the Okinakane (about 5,000 feet high and 12 miles from the latter stream) was well grassed upon both sides with large Picea, Pseudotsuga, Pinus ponderost, and Larix along the creeks upon the easternside, and on the west the Pinus ponterosu onls. The ridgesabove the Olinakane to the north appeared treeless, while the northern slopes of the nearer hills to the south were pretty well eovered with muderbrush. West of the Okinakane, between that river and the Methow, the country is much like that to the east-high and broken, with seattered patches of timber, which becomes more general toward the uorthern bondary. Upon the Methow and Similkameen creeks there are open, grassy valleys of considerable extent, but for 12 miles from the mouth of the Methow the hills close in upon it and are consitlerably wooded. The rest of the comnty, from the Methow to the Wenatchee, is oceupied by spurs from the Cascade mountains, which reach the banks of the Colmmbia; these are exceedingly rugged and almost impassable, being seldom traversed, even by Indians. A foot-trail leads fiom the headwaters of the Methow over to the Skagit, and a trail which has been passable for horses crosses the ridges between the upper Chelan lake and the Wenatchee, but it is deseribed by the Indians as dangerous and long disnsed by them. The whole region is probably for the most part well timbered exeept along the Columbia river, where the mountains for from 10 to 15 miles back are but scantily wooded, the pine (Pinus ponderosa) and red fin oceasionally reaching to the river. Heavy timber is reported about the head of Chelan lake, commencing at abont 15 miles from
the foot, mostly yellow pine, but also red fir, some Larix, and small Thuya. The ontlet to this lake is through a deep cañon, and is obstructed by falls and rapids. The Wenatcheo flows through a more open valley, and, at least in lighl water, conld be used for floating timber to the Colnmbia. For 7 miles from its month the ridges on each side are only scantily wooled, hat from that point the trees (yellow pine and red fir, mostly young) ocenpy the valley, and at 20 miles the thick timber begins-pine, fir, red fir, lareh, white pine (Pinus monticola), and cedar, the white pine sometimes 4 feet throngh, the celar not large.
"Yakima countr ( 8,900 square miles). - Immediately sonth of the Wenatchee the highest of the eastern spurs of the Caseade momutains extends in a southeasterly direction to the Colmmbia, forcing that river to make a bend eastward. This spur has an altitude of abont 5,000 feet, and its higher northern slopes, overlooking the month of the Wenatchee and eastward, are somewhat densely covered with pine, red fir, and larch. The sonthern slope, as seen from Ellensburg, appeared nearly bare. I crossed the ridge abont 17 miles above the month of the Wenatehee and at lew miles east of tho high, exceedingly rocky, and snow-covered peaks called by McClellan 'Mount Stuart'. It was fomm mostly well wooded, but the trees not exceeding 1 or 2 feet in diameter, and nsually small red fir and yellow pine, with at length some Abies grandis and Pinus monticola, rarely a small Thuya, on the higher rocky ridges small larches, and at the summit some Pinus Marrayana. The same trees were found on the sonthern desent, excepting the Pimus monticola. Large cottonwools (Populus trichocarpa) occurred on the creelis. Sonth of this range the spurs recede, leaving a comparatively level sage-brush region, wholly trecless, from 50 to 70 miles broad, between the Columbia and Yakima, and crossing the lower portion of the latter river.
"Below the month of the Sebwank, which is at the head of what is known as 'Killitas valley", on the Yakima, the foot-hills of the Caseade momutains extend to the Yakima river, a distance of abont 50 miles from the smmit of the range; but the lower portions of these spurs are bare, or with ouly scattered jines on their northern slopes, aud the chief reliance of the settlers for fencing and fuel is upon the aspens and cottonwoods bordering the streams. Following up, the Yakima from the mouth of the Sehwank, the valley for 10 or 12 miles is thinly timbered with pine and red fir. For 17 miles more there is some larch on the ridges, and in the bottoms some Abies grandis, and rarely a small Thuya. Timber and ties had been extensively ent here for the railroad and floated down the river. At this point the yellow pine and tamarack ceased, and a dense, heary growth began and continned for most of the way to the summit ( 20 or 25 miles), consisting of red fir, lemloek, Abies grandis and A. amabilis (all these from 3 to 5 feet through and 200 fect bigh or more), Pinus monticola ( $1 S$ inches throngh), and Thuya ( 2 fect in diameter). One spruce, not over 23 feet throngh, hat a height of 225 feet.
" 1 n like manner, upon the Nachess river, the open sage-brush country extended about 10 or 12 miles from its month, with only cottonwood along the stream. Seattered pines then commence, with at length red fir, but it is some 25 or 30 miles more before heary timber is reached. A small grove ol oak (Quercus Garryana) is fonnd at the mouth of the Schwank, the only point upon the Yakima where it ocenrs. It is also frequent atong the Nachess for 3 or 4 miles, commeneing at about 12 miles from its mouth, but small and rarely over 6 inches in diameter or 15 feet in height. In Satas valley it is abundant. Along the southem border of the comty there is again along spur extending east from mount Adams to within abont 40 miles of the mouth of the Yakima. This spur las an altitude of about 1,500 feet, and is mostly covered with a seattered growth of yellow pine, red fir, and Abies grandis.
"The entire wooded area ol' the county may be estimated at about 4,500 square miles.
"Klikitat county ( 2,300 square miles).-The spur eastward from mount Adams, just spoken of, covers much of the northern portion of this county and affords a good supply of excellent timber. The area may be estimated at 750 square miles. The high ridge overlooking the Colmmbia from The Dalles eastward is perfectly bare of trees."

## OREGON.

The heary forest of western Washington territory extends through western Oregon. The most valuable timber tree of the region is the red or yellow fir (Pseudotsugn Douglasii), which forms fully seven-eighths of the forest. The tide-land spme (licea Sitchensis) abomds along the coast, and the red cedar (Thaga gigantea) and the hembock (Tsugu Mcrtensiana) are common and of large size. South of Coos bay an important forest of Port Orford cedar (Chamecyparis Latrsomiana), mixed with the red fir and the tide-fand spruce, oceurs.

The valleys of the Willamete, Umpqua, and Rogne rivers contain an open, seattered growth of white oak (Ouerets Garryana), now gradnally increasing by the recent growth of yomir trees protected fiom the fires which formorly swopt every season throngh these prairie-like valleys. South of the Rogne River valley the sugar pine (Pinus Lambertiama), the chestnot oak (Quereus densiflore), and other trees of the California forest occur in sufficiont mmbers to add economic value to the forrsts of the state.

The bottom lands of western Oregon are lined with a continuous growth of cotionwoods of immense size, willows, maples, ashes, and gigantic alders; those in the somthwest, near the coast, contain great bodies of splendid bard maple (Acer macrophyllum) and laurel (Umbelluhtoria Celifornica).

East of the Cascade monntains the forests are confined to the monntain ranges; they are open, seattered, and geverally composed of comparatively small treen.

$$
2^{26^{1}}
$$

37



The forests of Wasco connty, on the western slope of the Caseade range, when above 3,000 feet elevation are important. The most valuable trees are the red fir, the jellow pine, and the larch. The eastern part of the county is eovered with a light growth of pine, prineipally vellow pine.

The slopes of the Blue monntains in Umatilla and Union counties are covered with an open, stunted forest, consisting of red fir, yellow pine, lareh, and, above 4,000 feet elevation, a heavier continnous growth of lodge-pole pine (Pinus Murrayana).

Lake county is destitute of timber except on the eastern slope of the Caseade mountains and the southern part of the county, which eontain a light forest growth eonfined to the high ridges of the mountains, and prineipally composel of yellow pine.

Grant and Baker connties are treeless except in the northern part, where the Blue mountains are covered with a light, open growth composed ehiefly of rellow pine, with some lareh and sernb pine.

The forests of Oregon have suffered serions losses from forest fires. Along the Coast Range, from the Columbia river to Port Orford and through the entire length of the Caseade mountains, fires have raged nearly erery summer sinee the first settlement of the state, destroying thousands of aeres of noble fir, spruee, and eedar. Forests similar in eomposition to those destroyed soon spring up again and cover the burned surface, but the loss in material whieh the state has suffered in this was is incalenlable.

Forest fires are increasing in frequeney, especially west of the summit of the Caseade mountains. During the census year, however, ouly 132,320 aeres of woodlatd were reported destroyed by fire, with an estimated loss of $\$ 593,850$. These fires were set by hunters, Indians, and by farmers clearing land.

The abundant spruce, cedar, cottonwood, ash, maple, and alder of western Oregon have developed flourishing industries. At Portland large quantities of ash, maple, and alder are manfaetured into furniture, and cottonwood, spruee, and cedar supply numerous establishments engaged in the production of cooperage stock and all kinds of woodenware. The supply of this material is large and of excellent quality.

The principal centers of the lamber-manufaeturing interests are at Portland, where fir, spruce, eottonwood, and Lard moods are sawed for the local market, and at Empire City and Marshfield upon Coos bay. Port Orforl cedar and red-fir lnmber are manufactured here, and shipped by schooner to Portland, San Francisco, and Mexiean and Sonth American Pacifie ports. The first mill was established upon Coos bar, at North Bend, 4 miles above Empire City, in 1853; other mills were soon built, and in 1854 the first shipment of Port Orford cedar was made to San Franciseo. Great quantities of this timber have been ent, while fires have destroyed even more than the ax. The fire which raged throngh the forests of Coos bay for three months in the summer of 1867 destroyed cedar estimated to amount to between $200,000,000$ and $300,000,000$ feet of lumber. This tree, however, reprodnces itself very rapidly, and after the forest has been burned over it is the first arboreseent speeies to reappear, springing np generally in the thirl year.

The heaviest continnous bolly of Port Orford cedar now standing is on eape Gregory, extending south to and beyond the mouth of the Coquille river. It is about 20 miles long by an average width of 12 miles, and lies along the western slope of the foot-hills of the Coast Range, extending to within 3 miles of the coast. In this forest twothirds of the trees are Port Orford cedar, the others tide-land spruce and a few red firs. There is great danger, howerer, that the Port Orford cedar, one of the most valuable trees of the American forest, will soon be exterminated as a source of lumber supply, so far as this generation is concerned.

The following notes upon the forests of Wasco, Umatilla, Union, Grant, and Baker counties, the ouly portion of the state risited by Mr. Watson, are extracted from his report:
"Wasco countr ( 17,760 siquare miles). -The timber of this county is confined almost wholly to the steep eastern slopes of the Cascade range; the low spurs of the Blne monntains, whieh enter the county on the east, bordeling John Day's river and sonthward, being only partially supplied with pines, etc. I know nothing abont Walker's range and the Paulina monntains in the sonthwest, bot they are probably low, with little or no wood. The trees of the Caseades are donhtless nearly the same as those to the north of the Colmmbia, the lareh reaching to the headwaters of the beschutes river, the most sonthem loeality for it that I have seen mentioned.
"The total more or less wooded area may be estimated at from 2,500 to 3,000 square miles.
"Umatilla county ( 6,100 square miles).-The Blue mountains oceupy the southern and eastern borders of this county, and are the only sonrce of timber. They are for the most part well wooded, especially in the ravines, the trees growing to a fair size, and consisting of yellow and serub pine, spruce and balsam (Abies subalpina and A. grandis).
"The wooded area is about 1,500 square miles.
"Union county ( 4,300 square miles). -This county has the main range of the Blue mountains on the west and worth and the Cedar mountains on the east, separated ly the valleys of the Grande Ronde aud Wallowa rivers. A large portion of these mountains is well timbered, the amount decreasing toward the east.
"The wooded area may be estimated at abont 2,000 square miles.
"Grant county nortil of latitude $44^{\circ}(5,800$ square miles). -This portion of the county is traversed by the valley of John Day's river, to the north and east of whieh lie the main ranges of the Blue monntains, which are to a considerable extent well wooded. The monntains to the south are low and probably scantily timbered.

37 Por

* Fitteen hundred square miles is probably a liberal estimate for the wooded area.
"Bakfr county vontu of latitude $44^{\circ}(3,800$ spuare miles $)$. This section is bordered on the west by a high range of the Bhe monntains, which is well timbered. The remainder is ahnost wholly without timber.
"The estimated wooded area of this county is 900 square miles."


## CALIFORNIA.

The heary forests of Calitornia are confined to the Coast Range, the eastern and western slopes of the Sierra. Nevada, and the gromp of monntains joming these ranges in the northeru part of the state. They extend from the Oregron bommary south to latitude $34^{\circ} 30^{\prime}$ north. The most important trees of the Coast Range forest are the redwood and the red tir. The tide-land spruce and the hemlock of the Northern Coast Forest extend as far south as cape Mendocino, althongh less gencrally multiplied and less valuable than in Oregon and Washington territory. The chestmut oak (Quereus densiflora), of which the bark is largely used in tanning, is still common in the coast forests of the northern part of the state. The most valuable forest of the western slope of the Sierra Nevada is contined to a belt between 4,000 and 8,000 feet elevation, consisting of the sigar pine (Pinus Lambertiana), the yellow pine, and the red fir. Small scattered groves of the big trees (Sequoia gigantea) strefch along the sonthern portion of this belt. The western slopes of these mountains below 4,000 feet elevation are more or less densely covered with vimions species of pine of little economie importance, and the broad valleys of the Sacramento and the San Joaquin, lying between the Coast Range and the Sierra Nevada, are covered, except at the south, with an open growth of oaks, often of immense size, althongh of little value exeept as fuel. The eastern slopes of the Sierra Nevada are covered with a heavy forest, in which yellow pines (Pinus ponderosa and P. Jeffreyi) are the prevailing. and most important trees.

South of latitude $36^{\circ} 30^{\prime}$ the forests, both of the Sierra Nevada and of the Coast Range, become gratuatly lessheary and less raluable than those covering the monntains farther north. Two degrees still farther sonth they are open and scattered, and lave little ceonomie value. The pine and, fir forests, howerer, whieh cover the uper slopes of the San Bernardino and San Jacinto ranges are important on aceount of their isolated position in a region destitute of tree covering, and supply a considerable local market with lumber.

The northeastern and nearly all the southern and southeastern portions of the state are almost entirety destitute of forest covering. Oaks and occasional pines anl junipers are, however, dotted over the low mountains of sontliwestern California, and willows and cottonwoods line the banks of streams. Forests of pine crown the highest ridges of the Inyo and other mountain ranges, rising from the desert east of the Sierra Nevada, and arborescent ynceas (luccu brevifolia) form upon the high Mohave platean an open forest, more remarkable in the strangeness of jts growth than in economic value.

The narrow belt of redwool which extends along the western slopes of the Coast Range from the bay of Monterey to the northern boundary of the state is the most important forest of similar extent now standing. Few trees equal the redwood in economic value. No other forest ean compare with this in proluctive capaeity, and no other great borly of timber in North America is so generally accessible or so easily worked. Single trees capable of producing 75,000 feet of lumber are not uncommon, while a yield of from $1,000,000$ to $2,000,000$ feet of Jumber per acre is by no means rare. The redwood has already been practically destroyed in the neighborhood of San Fruncisco bay, both north and south, and through the entire extent of this forest the trees most accessible to streams and railroads have been culled. Heary bodies of redwood are still standing, however, in the Sauta Cruz region, and in Humboldt comnty in the valleys of Eel and Mud rivers and Redwood ereek. The largest number of mills engaged in the manufacture of redwood lumber are located upon Humboldt bay, principally at Eureka and Arcata. The logs which sipply these mills are generally cut within a distance of 1 or 2 miles from the shores of the bay, to which they are hanled by teams, made into rafts, and towed to the mills. Attempts made to raft logs down the montain streams watering the redwool forests lave not been successful. The rivers flowing west from the California Coast Range are short and rapid. Floods following the winter rains are sudden and severe, breaking up rafts and driving the logs out to sea, or lodging them far from the banks. At periods of low water numerons bars close these rivers to the navigation of the enormons redwood $\log$. The general destrnetion of these forests must therefore be accomplished by means of short logging railroads specially eonstructed to bring logs to the mills. Such a road has been built along Mad river, and there are others either built or projected near Trinidad and at other points along the coast.

Besides the mills mpon Humboldt bay, there are others devoted entirely to the mannfacture of redwood lumber at Crescent City, in Del Norte county; Trinidall, Rohnerville, and Bridgeville, in Humboldt county; Westport, Kibesillah, Albion, Little River, Caspar, Mendocino, Cuffey's Cove, Punta Arena, and Gnalala, in Mendocino county; lhunean's mills, in Sonoma county ; and at Santa Cruz.
liedwood lumber is principally shipped by sehooner to San Franciseo, the great point of lumber distribution upon the Paeific coast, and also direct by water to Wilmington, San Diego, and other ports of sonthern California, and to Mexico and Sonth America.
$1^{8}$

liedwood lumber is principally shipped by schooner to San Fraucisco, the great point of lumber distribution upon the Pacific coast, and also direct by water to Wilmington, San Diego, and other ports of sonthern Calitornia, and to Mexico and Sonth America.

The following estimates of the amount of accessible redwood standing May 31,1880 , were prepared by Mr: E. L. Allen, secretary of the Redwood Manufacturers' Association of San Francisco. They embrace only such portions of the forest as can be reached by water, or may in the future be penetrated by railroads, and do not include the small, isolated bodies of timber growing in inaccessible cañons:

REDWOOD (Sequoia sempervirens).


No estimate of the amount of pine and fir lumber standing in the state is now possible, and none has been attempted. An enormous amonnt of pine of excellent quality, both white and yellow, is contained in the sierra forests. These forests have been invaded by the lumberman at only a few points; their inaccessibility and the cost of getting to market the lumber manufactured in these mountains have thus far preserved them, and these sierra forests, if protected from fire, will serve as a reservoir from which the whole Pacific coast can draw its lumber supply long after its more accessible forests have disappeared.

The forests of California suffer serionsly by fire; during the census year 356,815 acres of woodland were reported thus destroyed, with an estimated loss of $\$ 440,750$. These fires were set by careless hunters, prospectors, and by farmers in clearing laud. Great injury, every year becoming greater, is inflicted on the mountain forests by stockmen starting fires to improve the herbage of the alpine pastures. These fires destroy undergrowth and young trees, and often consume great quantities of valuable timber, which does not grow again upon these exposed mountain slopes.

## PASTURAGE OF MOUNTAIN FORESTS.

The permanence of the monntain forests of Calitornia is severely endangered, moreover, by the immense herds of sheep, cattle, and horses driven into the mountains every year, at the commencement of the dry season, to graze. From the foot-hills to the highest alpine meadows every blade of herbage and every scedling shrub and tree is devoured. Young trees are barked and ruined, and only the most rigid and thorny chaparral shrubs are able to resist the attacks of these larenous herds. The sharp hoofs of sheep winding around the steep acclivities tread out the roots of grasses and other perennial plants and loosen the surface of the stony soil, which, deprived of the protection of its vegetable covering, is gradually washed into the valleys, choking the bottoms of streams and preparing the way for the disastrous torrents which must follow the destruction of the sierra forests; and the destruction of these forests is certain, if the practice of using them indiscriminately as sheep pastures is continued. The life of any forest in which all young trees are destroyed as soon as they appear above the surface of the soil is limited to the life of the fully grown individuals which compose it. A period of musual climatic conditions, the demand of an increased population for lumber, or the now unforeseen attacks of some insect enemy may at any time sweep away the old trees of the sierra forests. There are no young trees growing to replace them, and it is doubtful if the forest could ever regain its foothold upon the steep and exposed slopes of these monntains once entirely stripped of the protection of their present covering of trees.

The sheep which threateu the destruction of the sierra forests threaten also the agrieultural prosjerity of the state; the streams heading in the sierras and watering the great interior valleys of California are protected in their tlow by the forests growing about their upper sources. If these forests are destroyed, anil the protection to the surface of the gromed which they afford removed, the immense acenmulation of the winter's snows must melt suddenly in the spring; brooks will become torrents, sweeping with irresistible force gravel and stones from the mountain sides down into the valleys below, and bmrying rieh bottom lands in rin. And this is not the only danger which must follow the destruction of these forests. If the snow which supplies the mountain streams melts slowly, a steady flow of water will be maintained late into the season; if, on the other hand, the snow melts suddenly and rapidly during the first warm days of spring, the unnatural flow of water in the stream most be followed by
its equally sudden disappenrance, and the torvent will suddenly timinish to a slender brook or entirely disappear. Irrigation, without which agriculture in a large part of the Pacific region is impossible, is dependent upon the constant and steady flow of streams formed by melting snow, and as the forests whieh cover the mountain sides are essential to prevent the sudden melting of snow, their preservation is necessary for successful irrigation on any large or comprehensive scale.

The forests of California suffer from wasteful methods of cutting. Only the best and most accessible young trees are ent; often a noble pine capable of prodncing 25,000 or 30,000 feet of lumber is felled, a few split shingles made from the butt-cut, und the rest of the tree left to rot upon the ground. The preference of the railroad companies of the state for split rather than sawed redwood ties causes an immense and needless waste of this valuable timber. A great amount of naterial under the most favorable conditions is wasted in splitting ont the ties, and when trees after being cut are fonnd to split bally from any defect in the grain they are abandoned and left to waste.

The forests of California, unlike those of the Atlantie states, coutain no great store of hard woods. The oaks of the Paeific forests, of little value for general mechanical purposes, are unfit for cooperage stock. No hickory, gum, elm, or ash of large size is found in these forests. California produces no tree from which a good wine cask or wagon wheel can be made. The cooperage business of the state, rapidly increasing with the development of grape . culture, is entirely dependent npon the forests of the Atlantic region for its supply of oak. Woodenware and small cooperage stock are mannfactnred in large quantities, however, from cottonwood, sprnce, alder, and reil and white fir. Wine-butts and water-tanks are miversally made from red wood, which is probably unsurpassed for sueh purposes.

The large tanning industry of the state consmes, in preference to all other material, large quantities of the bark of the chestnut oak (Quercus densifora), once a common tree in the forests of the northern Coast ranges, but now becoming searce and in danger of speedy extermination.

The prineipal centers of lumber manufacture ontside of the redwood belt are situated along the line of the Central Pacific railroad, upon both flanks of the Sierra Nevada monntains, in Butte, Tehama, and Mono counties, and in the San Bernarlino monntains. Lmuber manufactured upon the castern slope of the Sierra Nevadas is largely shipped eastward by rail to supply Nevada and Utab. The product of the mills sitnated west of the monntains is largely sent to San Francisco for distribution, or direct by rail to the mining centers of soathern Arizona and New Mexico.


#### Abstract

ALASKA. Little is known to me of the present condition or productive capacity of the forests of Alaska. Their distribution, as shown on the forest map of North America, is based upon notes made by Mr. Iran Petroff, a special agent of the Census Office, who has traced the timber limits of the territory, aided by Mr. C. W. Nelson, of the Smithsonian Institution, by whom the northern limits of the spruce forest ane laid down.

The forests of the territory of any commercial value are confined to the islands and Coast ranges east and south of Prince William sound. The most valnable tree of this region is the Sitka cedar (Chamacyparis Nutkaensis). The hemlock, the tide-land spruce, and the red cedar (Thuya gigantea) attain here also a considerable size. The importance, however, of these forests, both in extent and in the value of the timber they contain, has geuerally been greatly exaggerated. The Coast Forest north of the fiftieth degree of latitude rapidly diminishes in density and quality, and there is nothing in the climate or soil of Alaska to produce a forest growth more valuable than that eovering the Coast ranges of British Columbia.

A few saw-mills of small eapacity are located at different points in southeastern Alaska to supply the local demand for coarse lumber. Alaska is, however, largely supplied with lumber from Puget sound. The treeless Shomagin and Aleutian islands and the sonthern settlements of the peninsula are snpplied with fire-wood brought from other portions of the territory.




Intas Promitcoluh
$\qquad$ ?

## GENERAL INDEX.

[Note.-In this index the names of families are indicated by "Small caps", of species hy "Roman" type, and of syneajms by "Italics".]



Page.	Page.
Amelanchier oblongifota ............................................. 85	Arizona, iumber induatry and manufacturea from wood in .......... 486, 487, 569
A melanchier ovalis (Amelanchier Canadensig) ........................... ${ }^{\text {a }}$.	Arizuna, rank of, according to vaine of lunter products ................ 487
Amelanchier oralis (A melanchier Canadensis, rar. oblongifoial ........) 85	Arizona, statistion of forests, forest fires, standing tinber, etc., in ...491, 568, 500
	Arkansas, lumber indnstry and mannfactures from wood in..........486, 487, 541
Amelanchier Wangenheimiana ......................................... 84	Arkansak, rauk of, according to vaine of lomber prodncts......... .... 487
Americss Crab ................................................72, 284, 364,428	Arkanasa, statistics of forestr, forest fres, standing timber, etc., ina. $491,543,541$
Americau Crab Apple ................................................ Ti, 284	Arkausa, tabuiar statement of the amonnt ef Shert-loaveci liue atandiug
American Eim. .......................................123, 304, 350, 374, 414,440	In the foresta of, May 31, 1880....................................... int
American Holly .............................................. 35, 270, 356,420	Aronia arborea
Americsa Linden ..........................................27, 268, 350, 356,418	Aronia arbutifolia
Amount and vaiue of charrooal used for domentic and manafacturing	Aronia Botryapiun
purposes daring the census yesr ..................................... 489	Aronia cordata ...................................................... 84
Ameunt and raine of wood used as fuel in roannfactures, etc., daring	Aronia
the cenan year..................................................... 489	Arrow word. ........................................................ 38, ェя
Amount and valne of wood used for domestic purposes during the	.ssagroes вpino8a..................................................... is $^{\text {a }}$
census усar........................................................ 489	ABh ..................................................... 107, 296, 208, 370, 434
Amyris........................................................... 10, 13	Asb and specific grsrity of woods .................................... 24x-351
Amyris rymoка ..................................................... ${ }^{33}$	Afb, Black ...................................................111, 298, 372, 438
A myris dyatripa ..................................................... ${ }^{33}$	Asb, Blie ......... ... ........... ........................... 111, 298, 370, 436
Amyria clemifera ................................................... 31	Ash, Green ...... .......................................... 109, 298, 300,436
4 myris Floridana	Asb, Ground ... .............................................111, 298, 372, 4238
Amyris inaritima.	А Аяh, Шопр.................................................... 111, 298, 372, 438
Amyris Plumieri.	Ash, Mountrin (Pyran Americaa3) ...................................73, 284, 428
Amyria sylvatica...................................33, 249, 233, 256, 270, 35fi, 420	Ash, Mountaín (Pyrna aambueifolia) ........................ ....74, 284, 364,428
Anacardacea ..................... ............. 52-54, 253, 256, 276, 360, 424	Asb, Oregon ....................................................111, 298, 372, 4,28
Anamomie punctata............................................) .... 88	Asll, 1rickiy (Xaathoxylum $\Delta$ mericsnum) ............................. 29, 808
Anaqus.......... .......................................... 114, 300, 372.438	Anil, rrickis (Xantloxytm Clava-Herculis) .....................30, 270, 356, 4:0
Andromeds ........................................................ 11, 15	
Andromeda arbaren ................................................... ${ }_{\text {a }}$	Aqh, Sea ......................................................., 30, 270, 356, 400
Andromeds arborescens ............................................... 98	Ash, apecific gravity, and weight per cobic foot of dry specimena of the
A nitromela ferruginea ...............................96, 249, 254, 257, 292, 368, 432	of the United State8 ......................................... 2e6-349
Andromeda ferruginea, vsr. arboreceens ............................... ${ }_{96}$	Asb, Wafir.......................................................... 31, 270
Andromoda ferruginea, rar.fruticosa ................................... 08	Anh, Water. ................................................ 110, 298, 370, 436
Andromeda plumata.................................................- ${ }^{37}$	Anll. Whito ............................................... 107, 296.350, 370, 436
Andromeda rhombridalie ............................................. 08	Anll, Yelluw .................................................. 57, 278, 360, 426
Andromeda rigida ................................................... if $^{\text {a }}$	Ast1-Leavel Maple ............................................51, 276, 360, 424
Anona.................................... ................. .- ...... 10, 13	Aximina . .......................................................... 10,11,13
Anona glabra.......................................................... ${ }_{23}$	Asimina enmpanifora ................................................ 23 $^{\text {a }}$
Anona lsurifolia.................................... 23, 250, 253, 256, 266, 354,418	Asimina triloba . . . . . . . . . . . . . . . . . . . . . . . . . . $23,250,253,236,266,354,418$
Anoma pendula ...................................................... . . is $^{\text {a }}$	Axp, (2uabing. ...........................................171, 328, 350, 344,400
Anona яресіен (A oona laurfolia) ..................................... ${ }_{23}$	Arpeeta, erenomie, of the formath of the United States ....... ......... 483-6n0
Arona tribtar .............. ........................................ i3 3	Axpen ................................................ 171, 328, 350, 354.460
	Atiantic Plain. Decidnon4 Fereat of the Minhisaippi Basin and the...... 4
A nonymos aquatica. ......................................... ........ 124	Atlantic region, the ................................................. ${ }^{\text {d-6 }}$
Anelumeles artivaliq ................................................ in	Atantic regien, western thirl of the, remarks on.
Anehomeles Douglari . ............................................... is $^{\text {a }}$	A verage number of hands anploged in the lombering induatry of the
Anthomeles fara ....................................................	Tnitel States..................................................... 486 $^{\text {d }}$
Antromeles glandulosa ........ ....... .............................. $8_{8}$	A verage sizo and product of saw-mills in each state add territory ....... 488
Antramelea sotundifolia.............................................. it $_{\text {it }}$	
Antromeles furbinata ............. ................................. \&2 $^{\text {a }}$	Avictonia nitida .................................................117, 240, 302
Anta' Wood ............................................... 103, 204,368,434	A ricennia oblongifolia ............................................... 117
Apple, Amerinsi Crsb............................................... 82, 284	Avicennia tomento
Apple, Cuatard ................................................23, 266, 354,418	B. ${ }^{\text {c }}$
Apple Haw. ....................................................82, 286, 364, 430	Baki C.press .............................................. 184, 334, 350, 388,466
Apple, Oregon Crab .................................................. 33,284	Bain of Gilead ............................................... 173, 328, 394, 160
Apple, Pond ...................................................23, 266, 354,418	Baim of Gileal Fir ........................................... .211, 346,412, 478
Apple, Seved-year ..................................................... 95, 200	Bataam (Aliea ¢ ¢raseri)....................................... 210, 346,412,478
Apple, Southern Crab ................................................ 22, 284	Baisam (Abies nabelpina) ...................................211, 348, 412, 478, 577
Arbol do Hierro ............................................... 56, 278, 360, 420	BaLaam (Popnlus baiammifera) ...................................173, 328, 344, 460)
Arbor-vita ...............................................176, 330, 350, 366,462	Baisam Cottonwood ...........................................184, 330, 394, 462
Arbutus.............................................................11, 12, 15	Balaam Fir (A bies balssmea) ....... .............................211, 346, 412, 478
Arbutus laurifolia ................................................... ${ }_{97}$	Baiaam Fir (Abies concolor).....................................213, 346, 412, 478
Arbutus macrophylla ................................................. 9 \%	Balaam, She..................................................210, 346, 412,478
Arbatus Menziegil. ................................. $97,240,254,257,293,388,432$	Banana, Mexican .................................................... 219,348
Arbutus Henzicaii (Arbutas Texaus) .................................. 9i $^{\text {a }}$	Bartran's Oak................................................ 153, 320, 30, 456
Arbutus Menziesii (Arbatas Xalapenais) ................................ ${ }_{97}$	Basket Oak..............................................141, 310, 384, 416, 450
Aroutus proera...................................................... リr $^{\text {a }}$	Ваантооф......................................................27, 268, 366,418
Arbutar Toxana...................................................97, 240, 203	Basяw oot, White . ............................................. 28, 268, 366, 420
Arbutus variens ...................... .............................. $9^{8}$	
Arbutus Xalapenaia.................................97, 249, 254, 257, 292, 368, 434	Bastard Pine .........................................202, 342, 352, 400, 416,474
Arbutus Xatapensis (Arbntus Texsna) ................................ ${ }^{\text {a }}$	Batodendron orboreum ............................................... Qf $^{\text {a }}$
Arlisis............................................................ 11.15	Bayonet, Spanigh (Yucca baceata) .................................... 210, 348
Arulsia lickerlogia ................................................ 100, 249, 2y9	Bayonat, Spanish (Yucca esnailculata) ................................. 218,348
Areas barned over and valon of property destroyeli by foremt frrealuring	Buyonet, Spanisth (Yucca elata)....................................... 210,348










Fires, forest, remarks respecting prevfilence of and losses occasloned by 491-493 Florida, lanber indnstry and mannfactares from wood in .........486, 487, 521-523 Florida. Pencil Cedar of.522
Flosida, production of naval atores in ..... 517
Florida, rank of, according to value of iamber prodnets.
622,523
Florida, remarka by Dr. Charles Mohr on the forests of.
521, 622
Florida, Semitropical Forest of ..... 6
Florida, Southern Pine Belt in ..... 520
Florida, statistica of forests, forest fires, standing tlmber, etc., In....491, 620-520Florida, tabular statement of the amount of long-leaved pine standingin the forests of, May 31, 1880521
Florids, tho Hig Cypress region of ..... 622
Flowering Dogwood (Cornua florida) $.91,288,366,430$
Flowering Dogwood (Cornnes Nattallii) ..... 91, 288, 366, 432
Folataxus montana186
186
Fotataxus Myristica ..... 11,12,15
Foreatiera aenminate ..... $112,250,254,257,208,372,438$
Forest oroy of the Unlted Statee for the censas year, value of the ..... 485
Forest, Decidnous, of the Misbisslppi Basln and the Atlantio Plain.Forest lires during the censins year, eanses of, areas barned over, andlosaes entailed by (ece, also, pader state headings)491, 493
Forest fires, remarks reapecting prevalence of and losees oceasloned loy. 491-493Forest, Interior, in tho l'acific region, extent of tho8-10Forest, Mexleau, of southern Texas, extent of tho.6
Forest of Florida, Semi-tropical
Formst Trees, Catalogne of.. ..... 17-219
Forent Tress, Index to Catalogne of ..... 220-243
Forosts, forest fires, standiag timber, etc., estent of, in the-


Forests, forest fires, standing timber, ete., statiaties of, in-

Alabama	.491, 524-330
Alaska	.. 580
Asizona	491, 568, 56.
Arkimsan	491, 543, 544
California	.491, 578-580

Forests, forest fires, standing timber, etc., statistics of, in-continaed.
401, 367,568

Dakota ................. . . . . . . . . . . . - . . . - . . . . . . . . . . . . . . . . . . . 4 . 4						
Floridi ...... ....... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49.						
Iowa.						
Kansas						

491, 520-523

491, 519,520
491, 571-573
491, 547-550 $\begin{array}{r}491,547 \\ 4915 \\ \hline\end{array}$ 491,543
491,560
491, 562, 56:3
491, 545.546
491, 536-540
491, 494-496
491,511
491, 550, 505
$.491,550-554$
491, 5311-536
491, 560, 561
491, 564-560
491, 584-560
$\cdot 491,571$
491, 496-498
491, 508
401, 501-506
491. $515-518$
... 491.547
491, 576-578
491, 500-510
491, 500, 501
491, 518, 519
492, 544, 545
492, 540-543
$.492,540-543$
$.492,509-571$
$.492,498-500$
$492,498-500$
$492,511,512$
$.492,511,512$
$.492,512-515$
$.492,5154,558$
.492, 566, 567
Wyomiog.
92, 566, 567
Forests, mountain, of California, injury by grazing cattle to the......... 570

Forests of the ceatral plue hills of Misnissippi...............................
Forests of the Chattahoochee, mixed forest growth, eto., in castern Ala-
Forests of the Chattahoochee, mixed forest growth, eto., in castern Ala-
$\qquad$ 527,528
Forests of the Northern Pine Belt once extended over the state of Maine. 494
Forenta of the Tennessce valley In Alabama ................................ 528, 520
Forests of the United States in thelr economic aspects ..................... 483-580
Forents of the Yazoo delta in Mississlppi........................................ 535, 536
Forcsts of weatern Misaissippi .................................................. 534, 535
Forests on ladian reservalions in Minnesots................................. 559, 560
Forked-leaf Black Jack
$.151,320,388,454$
Foxtall Pine
191, 336, 402, 468
Frangula Californica
Frangula Californica, var. Comentella .............................................. 41
Frangula Caraliniana ............................................................. 40
Frangula fragitis.
Frangula Purshiana.
40

Franklinin
41
26
Franklinia Alatamaha ............................. ............................ 25
Fraxinos ............
$11,12,15$
Fraxinus aeuminata.
12,15
107
Fraxinus alha
112
Fraxtnus alla (Fraxinas Americsos)
Fraxinus allicans (Fraxinne A wericana, var. microcarpa)................... 108
Fraxinus allicant (Fraxinos A mericana, var. Texensls) ................... 108
Fraxinns Americana .........................107, 250, 251, 254, 257, 260, 206, 350, 370, 430
Fraxinus Americana (Fraxious platycarpa) ................................... 110
Fraxinus Americana, จar. Caraliniana ............. .......................... 110
Fraxinus Americana, var. juglandifolia ....................................... 109
Frax. пин A mericana, var. latifolia .................................................... 107
Iraxintuя Imericana, vur. micsocarpa ........................................... 108
Fraxinus Amertcana, var. ${ }^{\text {gntbegcens ......................................... } 108 ~} 10$
Fraxinus imericana, var. yuadrangulata.................................... 110
Fraxinus imericana, var. quadrangulata nervosa............................ 110
Fraxinu» dinericana, var. sambucifolia......................................... 111
Fraxtnns Americama, ter. Texonais..................108, 249, 254, 257, 200, 370, 414, 430
Fraxinus \& пиегіели, var. triptera .................................................. 110
Fraxinแв auomala ............................................................. 13, 100, 249, 296
Fraxinu Berlundierinna
....... 109
Fraxinus Canadensis
Fraxinus Chraliniana (Frsxinos platycarps) ...................................... 110
Praxlnus Caraliniana (Fravians viridlay
-raxinue Carolinernis
Fraxinus clneroa

Fraxius Page.
Fraxinus cariacea (Fraxinns Americana, var. Texenels) ................... 108
Fraxinus coriacea (Frexinaa pistaclæfolia) .................................. 106
Fraxinus crispa ................................................................... 111
Fraxinus Curtissii .................................................................... 108
Fraxinus curvidens ............................................................... 110
Fraxinos cuяpidata.................................................................. 112
Fraximus dipetala.................................................................. 112
Fraxinus discalor ..................................................................... . 107
Fraxinus clliptica................................................................. 112
Fraxinus rpiptera ................................................................ 107
Fraxinus excelsior ................................................................. 110
Fraxinus expansa............................................................................... 109
Fraxinus fusca ...................................................................... 112
Fraxinus grandifolia .............................................................. 111
Fraxinus Greggii........................................................... 106, 249, 251, 296
Fraxinus juglandifolia (Fraxinus Amcricsna) ............................... 00 . 07
Fraxinus juglandifolia (Fraximns viridis)...................................... 109
Fraxinus juglandifolia, var. serrata .............................................. 107
Fraxinus juglandifolia, var. subintegerrima ................................... 109
y'raxinus juglandifalia, var. subserrata ......................................... 107
Fraxinus lancea ....................................................................... 107
Fraxinus longifolia... .......................................................... 108
Frasinus mixta..................................................................................... 112
Fraxinus nervosa ......................................................................... 110
Frsxinus vigra ...................................................................... 112
Fraxinus nigra (Fraxiaus pubescens) ........................................ . 108
Fraxinus nigra (Fraxiuus sambucifolia) ........................................ 111
Fraxinus nigrescens ................................................................ 110
Fraxinus Norce-Anglice (Fraxinas sambucifolis) ............................. 111
Fraxinus Navae-Anglice (Fraxinus viriōls)..................................... . 109
Fraxinus Nuttallii. ................................................................... 110
Fraxinus ablongocarpa.................................................................. 108
Frazinus Oregaua ..............................................111, 250, 254, 257, 298, 372, 438
Fraxinos ovata............................................................................. i12
Fraxinus pallila..................................................................... 110
Fraxinия раипва ................................................................ 112
Fraxinus paucifora ................................................................ 110
Fraxinus Pennsylvanica ........................................................ 108
Fraxinus pistacixfolir...................................13, 106, 249, 254, 257, 296, 370, 434
Fraxinus pistaciofalia (Eraxinus Americana, var. Texensis)............... 108
Fraxinus pistaciafolia, var. cariacea ............................................ 106
Fraxions platycarpa........................................110, 251, 254, 257, 208, 370, 436
Fraxinus pubescens ......................................... 108, 250, 254, 257, 296, 370, 436
Fraxinus pulescens.................................................................. 110
Fraxinus pubescens, var ............................................................ 111
Fraxinus pubcscens, var. latifalia................................................ 108
Fraximus pubescens, var. longifolia.............................................. 108
Fraxinus pubescens, var. subpubescens ......................................... 108
Fraxinus pulvertlenta ........................................................... 112
Fraxinus quadrangularis ........................................................ 110
Fraxinus quadrangulata...............................110, 249, 254, 257, 260, 298, 370, 436
Fraxinus quadrangutata, var. nervasa ......................................... 110
Fravinus Richardi................................................................... 112
Fraxinus ruhiconda .................................................................. 112
Fraxinus rufa ............. ........................................................ 112
Fraxinus ssmbucifolia.....................................111, 250, 254, 257, 298, 372, 438
Fraxinus впmbucifalia, var. crısра ............................................. 111
Fraxinus Schiedeana, var. parvifolia.......................................... 106
Fraxinus subvillasa ................................................................ 108
Fraxinus tetragona ................................................................ 110
Fraxinus tomentoвa................................................................ 103
Fraxinus trinlata .................................................................. 109
Fraxinus triptera...................................................................... 110
Fraxinus velutina.................................................................... 106
Fravinus virilis.................................12, 109, 249, 251, 254, 257, 260, 298, 370, 436
Frasinus viridis, var. Berlandieriana......................................... 100, 250, 298
Fremontia.............................................................................. 10, 12, 13



Fringo Treo ....................................................... .. ........... 113, 298

Fuel in manafactures during the census year, amont and value of wool
used as ................................................................................ 489
Fuel valuo, actual, of some of the more Important woods of the Uuited States.

350-3:3
Fuol value of woorla, method of determining the...........................247, 251,252





Lumber industry and manufactures from wood in-continued.

## Page.

New Mexico	488, 487, 56 ¢
New York	486, 487, 502-50.5
North Carolina	486, 487, 515
Ohio	486, 487,547
Oregon	486, 487, 577
Pennyalvania	487,506-510
Rhode Island.	486, 487, 500, 501
South Carolina	486, 487, 518, 519
Tennessee	486, 487, 54,
Texas	487, 54, 542
Utah	886, 487, 50
Vermont	487, 498-500
Virginia.	486, 487, 512
Washington	
West Virginia	66, 487, 512-51.
Wiscon	487, 534, 53.
y yomin	486, 487, 56

Lumber industry, commercial importanco of Cbicago with referenco to the 548
Lumber industry of tbe Saginaw valley in Michigan......................... 552
Lumber industry of the United States, general remarks on ............... 485-493
Lumber market, importance of Burlington, Vermont, as a................. 499
Lumber market, rank of Albany, New York, as a .......................... 503
Lumber trade of Chicago, early.
549, 550
Lumbering indnstry of the United States, average number of bands
employed in
486
Lumbering industry of the Uuited States, statistics of, for jear suding
May 37, 1880.
486, 487
Lumbermen of Washington territory, wasteful methods of.............. 574
Lyonia arborea ....................................................................... 98
Lyonia ferruginea ................................................................. 96

Lysiloma ............................................................................... 10,14
Lysiloma Bahamensis ............................................................ 64
Lysiloma latisiliqua ......................................................64, 250, 282, 362, 426

- $\mathbf{~ M}$

Maclara anrantiaca ..................................128, 249, 254, 257, 306, 376, 442, 542
Madeira ................................................................... $34,270,350,356,420$
Madroña $.97,292,388,432$
Magnolia.
$10,11,13$
Magnolia acuminata.....................................20, 250, 253, 256, 259, 266, 354, 418
Magnolia auricularis ................................................................ 22
Magnolia auriculata................................................................. 22
Magnolia cordata.............................................20, 250, 253, 256, 286, 354, 418
Magnolia De Candollii................................................................ 20
Magnolia fragrang...................................................................... 20
Magnolia 1 raseri ...............................................22, 250, 253, 256, 268, 354, 418
Magnolia glauca.........................................19, 250, 253, 256, 266, 354, 414, 418
Magnolia glauca, var. latifolia...................................................... 20
Magnolia glauca, var. longifolia .................................................. 20
Magnolia grandiflora ............................... 19, 250, 253, 256, 266, 354, 414, 418, 534
Magnolia grandifora, var. elliptica and oborata.............................. 19
Magnolia grandifiora, var. lanceolata ......................................... 19
Magnolia longifolia ............................................................... 20
Magnolia macrophylla.......................................21, 250, 253, 256, 286, 354, 418
Maguolia, Monntain .......................................................... .20, 266, 354, 418
Magnotia pyramidata
22
Magnolia tripetala .................................................................. 21
Magnolia Umbrella..........................................21, 250, 253, 256, 266, 354, 418
Magnolia Firginiana, var. a.glauca
20
Magnolia Virginiana, var. $\beta$.fotida ........................................... 19
Magnolia Virginiana, var. e...................................................... 20
Dfagnolia Firginiona, var. tripetala............................................... 21
alagnoliacese .............................................10-22, 253, 256, 266, 354, 414, 118
Mahogany.................................................................. $34,270,350,356,420$

Mahagany Bircl $102,324,392,458$
Mahogany, Mountain, and the Nat Pine the most important trees of the
Interior Forest
Mahogany, Mountaln (Cercocarpus Jedifolius).............. 71, 284, 350, 428, 560, 571
Mahogany, Mountain (Cercocarpus parvifolius) .......................71, 284, 569, 57!
Maine, foreats of the Northern Pine Belt ance extended over the state of. 494
Maine, lumbor industry and manufacturea from wood in ......... 488, 487, 494-496
Maine, rank of, according to value of lumber prodacts................... 487
Maine, statiatics of forests, foreat fircs, atanding timber, etc., in..... 491, 494, 496
Maine, tabular statement of the amount of Pinc and Spruce standing in
the forests of, May 31, 1880
494
Malighice\&....................................................... $28,253,250,268, ~ 356,420$
Malyighia lucida.
28
Malus angustifolia.
32
Mrulus coronaris ................................................................................ 72


rage.
Sow York, remarks by Mr. C. G. Pringle on tho forests of ............... 501-500 Now York, statlatics of foreste, foreat fres, standing tlmber, ctc., in. 191, 501-500 New Fork, the Northern Pine Bolt in501

North Americnu continent, divislon of the, with roferenco to Its forest geograply
North American foresth, general remarks on tho .......................... 3-16
North Atlantio division, extent of forests, standing timber, forest fites, etc., In the

494-510
North Carulian, grades ot tar and rosin produced iu 517
North ('arolina, Jumber industry and manofactures from wool in ....486, 487, 515 Nortb Carolloa, proluction of naval stores in 516-518
Serih Carelina, rank of, according to value of lamber prodacts
487
Nunth Carolina, stntistics of forests, ferest ilres, atanding timber, etc. In
North Carolina, tabular statement of the nmount of Long-leaved Pine standian in tho forests of, May 31, 1880

516
North Carolina, the Maritime Pine Belt in
515
Nothern Contral division, extent of forests, forest fires, standing timber, ete.. in the.

547-563
Sorthern Forest in the Atlsntic region
3, 4
Northern Forest in tho Pacifle region, extent of the
Northern Pine Belt, forests of the, once extended over tho State of Mains
Northern Pine Belt in Connecticut
Sorthern Pine Belt in Massacbusetts
Northern Pine Pelt iu Minnesota
Northern Pine Belt in New York
...

Northern line Belt in Rhode Island.
7
494
500
500
558
...............................................
Sorthern Pine Beltin the Atlantic region.
Norway Pine.
Sint, Bitter
Nut, Bull
Nit, Coffee
Nut, Ilinets
Nut, King $\qquad$
Nut, Mocker

## er.

$\qquad$
Nut, Pig .
Nut Pine and the Mountain Mahogany the most lmportant trees of the Interior Forest
$192,336,350,402,468$ $135,310,350,380,446$ . $134,310,350,380,444$ .58, 280, 360, 426 $132,308,350,378,444$ 134, 310, 350, 380, 444 134, 310, 350, 380, 444 $134,310,350,380,446$
Interior Ferest .-........................................................................ 9

Nut Pine (Pinus cembroides) .................................................... 190, 330
Nut Pine (Pinus edulis) . ................................................... 190, 336, 402, 408
Nut Pine (Pinus monoplyylla) .....................................190, 336, 350, 402, 468
Nut Pine (Pinus Parryana)............................................... 189, 336, 402, 468
Sut, Tallow ............................................................................. 34,270
Sutmeg, California .......................................................... 186, 334, 400, 466
Nutmeg, Hickory........................................................ 135, 316, 350, 380, 446
Nyctaginaces.................................................... $117,254,257,302,372,438$
Хyss. $10,11,14$

Nysza amyulibans
93
Nyssa anyulosa
93
Nyssa aquatica (Nyssa sylpatica)
Nyssa aquatica (Nyssa nniflara)
Nyesa biftora
92 92

Nyssa Canadensis.
Nyssa candicans 92

Nysa capitata
.91, 250, 253, 257, 200, 306, 432
Sy\&ra capitata, var.grandidentata ............................................... 93
Nyвва Caroliniana........................................................................................ 22
Nysba coccinea..
Nysba denticulata
Nysba grandidentata
Nyska integrifolia
Syssa mortana
S"ysa multiftora
Tysea multifora, var. sylvatica
Nyssa Ogeche
Syssa palustris.
Nyssa sylvatica
257, 260, 290, 300, 432
Nysa tomentosa (Nyssa capitata)
............................ 01
Nysa tomentosa (Nyssa uniflora)
Nyssa uniीora ....................................02, 250, 253, 257, 260, 200, $350,364,432$
Nysza villoba.

## Oak, Black (Quercus Emoryl)

Pago.
Oak, Black (Quercua Kelloggid)
146, 205, 818, 289, 452
Oak, Black (Qnercus rubra)
$149,265,320,388,416,454$
Oak, Black (Quercus tinctoria)
$148,265,318,850,386,452$
$140,265,318,350,388,454,528$
Oak, Blue
.143, 316, 386, 450
Oak, Burr. .................................................................. 140, 265, 314, 284, 448
Oak, Chestnut (Quercas densiflora).................155, 265, 822, 390, 456, 576, 578, 580 Oak, Chestnut (Quercus prinoides) .................................143, 265, 316, 384, 450
Oak, Chestant (Querens Prinna) .......................... 142, 265, 316, 350, 384, 416, 450
Osk, Chinqnapin
$.143,265,316,384,450$
Oak, Const Live ............................................................... 147, 318, 386, 452

Oak, Duck. ........................................................ 152, 320, 250, 388, 416, 454
Osk, Iren.
$130,312,382,448$
Oak, Jack ............................................................ 150, 265, 220, 350, 388, 454
Oak, Laurel (Qnercus imbricaria) ........................................154, 322, 390, 456
Oak, Laarel (Quercus lanrifolis) .......................................... 153, 320, 390, 454
Oak, Live (Quercus chrysolepis) ......................................... 146, 318, 386, 452
Oak, Live (Quercus vireus) ........................................... 145, 265, 316, 356, 452
Oak, Live (Quercus Wislizenl).............................................. 147, 318, 386, 452
Osk, Maul.........................................................................146, 318, 386, 452
Osk, Mossy-cup ........................................................... 140, 265, 314, 384, 448
Oak, Monntain White . . ....................................................... 143, 316, 386, 450
Oak, Orer-cup (Qaercus lyrata) ...............................140, 314, 350, 384, 450, 533
Oak, Over-cap (Quercus macrocarpa) .............................. 140, 265, 314, 384, 448
Oak, Peach (Quercus densiflora)....................................155, 265, 322, 300, 456
Oak. Pesch (Quercan Phellos).......................................... 154, 322, 390, 456
Oak, Pin ....................................................................... 152, 320, 388, 454
Oak, Possum .........................................................152, 320, 350, 388, 416, 454
Oak, Past.................................................................139, 312, 382, 448, 528


Onk, Quercitron..................................................149, 205, 318, 350, 388, 454
Osk, Red (Quercas falcata) .................................... 151, 265, 320, 350, 388, 454
Oak, Red (Querens rubra).......................................148, 265, 318, 350, 386, 459 Oak, Red (Quercas rubra, var. Texans) .................................148, 318, 388, 452 Oak, Rock Chestnut........................................... 142, 265, 316, 350, 384, 416, 450 Oak, Scarlet..................................................................148, 818, 388, 452
Oak, Scrab (Quercus Catesbæi) . .......................................... . 151, 320, 388, 451 Oak, Scrub (Quercus undulata, var. Gsmbelii).......................139, 314, 384, 448
$\qquad$
Oak, Spanish . . . . . . . .............................................. . 151, 265, 320, 350, 388, 454, 528
Oak, Swamp Post........................................................ 140, 314, 350, 384, 450
Onk, Swamp Spanish .......................................................... 152, 320, 388, 454
Oak, Swamp White.......................................................141, 314, 384, 450

Oak, Turkey ................................................................ 151, 320, 388, 454
Oak, Upland Willow ............................................................. 153, 320, 390, 450
Oak. Valparaiso ................................................................ 146, 318, 386, 452

Oak, Water (Quercus aqustica) .................................. $152,320,350,388,410,454$
Oak, Water (Quercns palustris) ..........................................152, 320, 388, 454
Oak, Water White ..................................................... 140, 314, 350, 384, 150

	,

Oak, White (Qnercus alba) ................................137, 265, 312, 350, 350, 414, 446
Oak, White (Quercns Garryana).............................. 138, 312, 350, 382, 448, 576
Oak, White (Quercus grisen) ............................................ 144, 316, 386, 452
Oak, White (Quercas lobata) .............................................. 188, 312, 382, 448

Oak, White (Quercus oblongifolia) ......................................144, 316, 386, 452
Oak, Willow 154, 322, 390, 456
Oak, Yellaw (Quercus prinoides)
$143,265,310,384,450$
Osk, Yellow (Qnerens tinctoria) ...............................149, 285, 318, 350, 388, 454
Oak, Yellow-bark................................................140, 265, 318, 350, 388, 454

Obispo Pine $200,340,404,472$
anocarpuя regra..................................................................... 218
Ogeechee Lime . ................................................................. . 91 , 280, 366, 432
Ohio Bucheyc ..................................................................42, 274, 358, 422

Ohio, lumber industry and manafactures from wood ln .................486, 487, 547
Ohio, rank of, according to valuo of lumber prodacts ...................... 487, 587
Ohio, statistics of forests, forest fircs, standing timber, etc., la........... 491,547

Old-fleld Birch. .......................................................... . 159, 324, 350, 392, 458

Old-flelit Pine.
197, 310, 350, 404, 416, 470
Old Man's Beard
113, 298
Olea Americana.
113
Oleace.f........................................................100-113, 254, 257, 296, 370, 434
Olive, California
120, 302, 374, 440

Page.

Pigeod Plum 117, 302, 372, 438
Pigconwood 117,302, 372, 428

## Pig Nut

 134, 310, 350, 380, 446l'ike county, Alabana, the forests of ............ 528
rilocereus Iingelmanni
.66, 282, 428
I in Cherry
...0.28,
Pia Oak
152, 320, 388, 454
Pinckneja. .10, 11, 14
Pinekneya pubens
Pinckneys pubescens
Pine and Sprnce stauding ln the forosts of Maine May 31, 1880, tabular
etatement of the amonnt of.

Pine, Bastard
202, 342, 352, 406, 416, 474
Pine belt of ceniral Alabama
520
Pinc, Bishop's $200,340,404,472$
Pine, Black (Pinus Jefreyi)
Pine, Black (l'inns Mnrrayana)
Pine, Ball (Piana Jeffreyi)
Pine, Buli (Pious mitis)
Pina, Bull (Pinua ponderoba)
Plne, 13 all (Pinus Sabiniana)
Ping, Cedar
193, 338, 402, 470

Pinc, Digger $\qquad$
Pine forests of Baldwin county, Alabama $5,338,350,404,470$ .193, 338, 409, 470

Pine furests of sontbern Misaissippi....... $200,340,350,406,472$ $193,338,350,402,468$ 195, 338, 350, 404, 470 .201, 340, 406, 472
..................................... 527
....... 532-534
Pine, Foxtail .................................................................. 101, 330, 402, 468
Pine, Georgis .....................................................202, 342, 352, 406, 410, 472
Pine, Ginger
Pine, Gray
Pine, Hard $\qquad$
Pine, Hiekory (Pinne Baifonrians, var. aristata)
Plee, Hlekory (Pinus pangens)
Pine, Jersey.
Pine, Knob-cone
Pine, Lolinily.
Pine, Lodgo-polo
$\qquad$
Pine, Long-leaved
Pine, Long- and Short-leaved, atanding in the foresta of Alabama May 31, 1880, tabnlar statement of the amonat of .
Plne, Long- and Short-icaved, standing in the forests of Lonislana May 31, 1880, tabolar statement of the amount of .
Fine, Long-laaved, Lobloily, and Short-leared. atanding in tho foreata of Teras May 31, 1880, tabular atatement of the amoant of .
Pine, Longleared, standing in the foresta of Florida May 31, 1880, tabuiar atatement of the amount of
Pine, Long.leaved, atanding in the forests of Georgia Msy 31, 1880, tabular statemest of the amount of
Pine, Loag-leaved, standing in the foresta of North Carolina May 31, 1880, tabuiar statement of the amennt of
Pine, Long-leared, standing in the forests of Soath Carolina May 31, 1880, talular statement of the amount of.
Pino, Long-leaved, the eharacteristic tree of the Sunthern Maritime lino Beit
Pine, Meadew....................................................................................... $452,406,416,444$
Pine, Monterey
Pine, Norway. 196, 340, 404, 470
. . ................................ $330,350,402,468$
Pine, Aut (Pinus cembroldea) ......................................................... 100, 336
Pine, Nut (Piana edalis) .................................................. 190, 336, 402, 468
Pinc, Nat (I'iaus mounphyila) ..................................... 100, 336, 350, 402, 468 Pine, Nut (Pinue Partyana). $100,336,350,402,468$ Pine, Nut, and the Monntain Mahogany the mest mportant trees of the Interior Forest.
 Pine, Ohf.field...................................................... 197, 340, 350, 404, 416, 470
Pine, Oregon. $197,340,350,404,416,470$
$209,265,344,352,410,470$ Pine, Pitch
Pine, Pond. $198,340,350,404,470,520,522,525,531$ .......... . 198, 340, 350, 404, 410, 470, 527
Pide, I'rince's. ...........................................................201, 342, 352. 406, 472
Pine, lied .192, 836, 350, 402, 408
Pine remion of the Coosa in Alabama.
line, lomemary ............. 520

Fine, Sand
197, 340, 350, 404, 410, 470
.109, 3ł0, 404, 47
Pine, Scrub (1)iauk Donksiana) ....................................201, 342, 352, 406, 472
Pine, Scrub (Plous clausa)
.100, 340, 404, 47:
Pine, Serub (Pinua contorta)............................................ 104, 338, 404, 470
Page.
Pine, Scrub) (Pians inopa) ..................................... 189, 340, 350, 404, 470, 529
Pine, Shert-jeared .......200,340, 350, 406, 472, 524, 527,530, 531,530,537,541,544,560 Pias, Sbort-lea ved, atanding in the foreats of Arkaneaa, May 31, 1880,
tabular atatement of the amount of.
544
Pine, Slaah
.202, 342. 352, 406, 410, 474, 516
Pinc, Southern .202, 3.32, 352, 406, 410, 472
1ine, Sprnco (Pinas clausa)
$190,340,404,472$
Pine, Sprace (Pinus glabra) ..........................................201, 340, 406, 472, 527
Pine, Spruec (Pinns mitis).
.200, 340, 350, 406, 472
Pine, Spruce (Pinua Marrayana).
105, 338, 350, 404, 470
Pine, Sogar .
Pine, Sugar, an important tree in the Coast Foreat
Pive, Swanp................................................................32, 342, 352, 406, 418, 474
Pino, Tsable-monntain................................................. 109, 340, 350, 404, 472
Piue, Weymoath ...
$187,334,350,400,466$
Pine, White, and Homlock, standing in the foresta of Pennsylrania,
May 31, 1880, tabolar atatement of the amount of.
Pine, White (Pinna fexilie)
506
Pine, White (Pinus glabra).
$188,336,400,468,560,570,571$
Pine, White (Pinus montieols) .............................187, 336, 400, 406, 564, 574, 576
Pine, White (Pinna refexa).
............. 188, 336, 402, 468
Pine, White (Pinns Strobos)
Pine, White, atanding in the forests of Miehigan May 81, 1880, tabular
statement of the amonnt of.
551
Pine, White, standing in the forests of Minnesuta May 31, 1880, taboiar atatement of the amoant of
Pine, White, standing in the forests of Wiaconsin Mas 31, 1880, tabular statement of the amonnt of.
554
Pine, White, the ohsacteristie tree of the Northeru Pine Belt............ 4
Pine, Yellow, an important, cbaracteristic tree of the Coast Foreat ....... 8
Pine, Yellow (Pinns Arizonica) ......................................... 192, 338, 402, 468
Pine, Yellow (Pinus mitia)......................................200, 340, 350, 406, 472, 529
Pine, Yellow (Pinas palustris) ................................ 202, 342, 352, 406, 410, 472
Pine, Yellow (Pinns pendero8z)................193, 338, 350, 402, 468, 562, 565, 574, 578
Piñon (Pinas edulis)
190, 336, 402, 468
Plĩon (Pinua monophylia) ..........................................100, 336, 350, 402, 468
Piñon (Pinus Parryana)................................................ 189, 336, 402, 468
Pinus...................................................................................11, 12, 18
Pinus Abies Americana ........................................................... 206
Pinus Abies Balsamea............................................................. 211
Pinus Abies Canadensis.......................................................... 202
Pinus adunca....................................................................... 106
Pinus alba.......................................................................... 204
Pinus albieaulia ................................189, 250, 255, 258, 336, 400, 468, 565, 572, 573
Pinue amabilis (Abios amabilis) .................................................. 213
Pinus amabilis (Abiss magnifica) ................................................ 214
Pinus amabilis (Abies anbalpins)................................................ 211
Pinus Americana (Pieea nigra)................................................... 203
Pinus A mericana (Tsoga Canadensis) ......................................... 206
Pinus Americana rubra .......................................................... 202
Pinus aristata ..................................................................... 101
Pinus Arizonien .............................................182, 250, 255, 258, 338, 402, 468
Pinus austratis .................................................................... 201
Pinus Balfourians ......................................... 191, 250, 255, 258, 336, 409, 408
Pinus Balfouriana (Pinns Balfonrisna, var. ariststa)....................... 191
Pinus Balfouriana, var. aristata ...........................101, 250, 255, 258, 336,402, 408
Pinus balsamea .................................................................... 210
Pinus balsamea, var. Fraseri ................................................... 210
Pinus Banksiana .................................201, 250, 255, 258, 263, 342, 352, 406, 472
Pinus Bankiana (Pinus contorta).............................................. 194
Pinus Beardsleyi ................................................................... 193
Pinus Benthamiana............................................................... 193
Pinus Bolanderi................................................................... 194
Pinus Boursieri ................................................................... 104
Piлия brachyptera .................................................................. 193
Pinия bractcata .................................................................... 213
Pinus Californica (Pinns insignis)................................................ 106
Pinus Californica (Pinus tnberculata)........................................... 100
Pinus Canadensis (Picea aiba).................................................. 204
I'nus Canadensis (Taaga Canadensia).......................................... 206
Finus Canadenkis (Tanga Mertensiana) ........................................ 207
Pinus epmbroidea. .................................................................. 190, 250, 336
Pinus cembroides (Plnne albicanlia) ............................................. 189
Pinus cembroides (Pinus ednlis) ................................................ 190

Page.
Pinus Chiluabnana ....................................................250, 255, 258, 338, 404, 470
Pinna claura
Pinng clausa....
Pinus cammutat $199,250,255,258,340,404,472$

Pinus concolor 205

Pinus contorta $194,250,255,258,338,404,470$
Pinus contorta (Pinns murivata) ..................................... 190
Pinus contorta (Pinns Murrayana)............................................... 184
Pinus contorta, var. Bolanderi....................................................... 194
Pinus contorta, var. latifolea.................................................... 194
Pizns Coulteri ...............................................195, 250, 255, 258, 340, 404, 470
Pinus Craigana
Pinns Crbensis : $\quad 02,249,255,258,263,342,352,406,416,474,516,5,0,522,525$
Pinus Cubensis, var. terthroearpa.…............................................ 202
Pinus deflexa
202 193

Pinus
Pinus Douglasi ..... 209
ouglasi, var brevibracteata ..... 200
Pinus echinata ..... 200
Pinus Edgariana ..... 199
Pinna edulis $9,13,100,250,255,258,336,402,468$
Pinus Elliottii202
Pinus Engelmanni (Picea Engelmannl)
Pinus Engelmanni (Pinus ponderosa) ..... 193
Pinos flexilis $.13,188,250,255,258,336,400,468,569-571$
Pinus fexilis (Pinus albicanlis) ..... 189
Pinus fexilis, var. albicaulis ..... 189
Pinus fexilis, var. macrocarpa. ..... 188
Pinus flexili, var. reflexa ..... 189
Pinus fexilis, var. serrulata ..... 188
Pinut Fraseri (Ables Fraseri) ..... 210
Finus Fraseri (Pinas rigida) ..... 187
Pinus Fremontiana ..... 190
Pinus futilis ..... 190
Pinus glabra $200,250,255,258,263,340,406,472,597$
Pinus grandis (Ables amabilis) ..... 21
Pinus grandis (Abies concolor) ..... 212
Pinus grandis (Ables grandis) ..... 212
Pinus Grozelieri ..... 187
Pinus IIUdsonica ..... 201
Pinna inapa $108,250,255,258,263,340,350,404,470,529,546$
Pinus inops (Pinus contorta)194
Pinue inops (Pinus Marrayana) ..... 194
Pinus inops, var. (Pinna maricata) ..... 199
Pinus inops, var. claued ..... 190
Pinus lnaignis. .8, 196, 250, 255, 258, 340, 404, 470
Pinus insignis macracarpa ..... 106
Pinus insignis, rar. binata ..... 196
Pinus intermedia ..... 215
Pinns Jeffreyl 9. 193, 250, 255, 258, 338, 402, 470, 578
Pinas Lambertiana , 188, 251, 255, 258, 336, 350, 400, 466, 576, 57
Pinus Lambertiana, var. (Pinna flexilis) ..... 188
Pinus Lambertiana, var. brevifolia ..... 188
Pinus laricina ..... 215
Pinus Laricio, var. resinosa ..... 101
Pinus Larix ..... 216
Pinus Larix alba ..... 215Pinus Larix nigra
215
Pinus Larix rubra ..... 215
Pinus lasiocarpa (Abies concolor) ..... 212
Pinus lasiocarpa (Abies anbalpina)
Pinu* Llaveana (Pinus oembraides)211
Pinut Llaveana (Pinoa Parryana) ..... 189190
Pinus Loddigesit
Pinus lophosperma
192Pinue LowianaPinue Lyalli.212Pinus maerocarpa216
Finus macrophylla185
Pinus Mrariana103
Pinus MenziestiPinus Menzicsii, var. erispa206Pinu 3 Ifertensiana206
Pinue min ..... 15207
Pinua maltía Pina miltia. , 200, 250, 255, 258, 340, 35u, 400, 472, 524, 527, 520-531
Fin'ıs mitis, var. paupera ..... 533, 536, 537, 541, 544, 560 ..... 200
Pinua monopbylla $9,13,190,250,255,258,336,350,402,468$Pinna manticola$7,187,250,255,258,336,400,466,564.565,573-576$a.Pinua mnricata199, 250, 255, 258, 340, 404, 472
Pinus muricata (Pinns contorta) ..... 194
Pinns Murrayana .9, 194, 250, 255, 258, 338, 350, 404, 470, 564-567, 572-577
Pinus nigra ..... 202
Pinue nobilis. ..... 214
Pinus Nuttallii ..... 216
Pinus osteosperma ..... 190
Pinua paluatris. $4,201,249,255,256,263,342,352,400,416,472,516,512-521$,524, 531, 537, 541
Pinus painatrie the characteristic tree of the Sonthern Maritime PineBelt.4
Pinus Parryana $.189,250,255,258,336,402,468$
Pinus Parryana (Pinua pnnderosa) ..... 103
Pinus Pattoniana (Tanga Mertenaiana) ..... 208
Pinus Pattoniana (Tsuga Pattoniana) ..... 208
Pinus pendula ..... 215
Pinna ponderaaa............... 8, 9, 192, 250, 255, 258, 263, 338, 350, 402, 468, 562, 565, 567,574, 575, 578
Pinus panderoaa an important characteristic tree of the Coast Foreat...
Pinus ponderosa, var. Benthamiana. ..... 193
Pinus ponderosa, var. Jeffreyi ..... 193
Pinus ponderoza, var. seopulorum ..... 193
Pinus porphyrocarpa. ..... 187
Pinne puagens $199,250,255,258,340,350,404,472$
Pinus radiata196
Pinua reflexa ..... 569
Pinna reainasz. $191,250,255,258,263,336,350,402,468$
Pinus resinosa (Pinaa ponderoaa) ..... 103
Pinus rigida 197, 250, 255, 258, 340, 350, 404, 470
Pinus rigida (Pinus insignia) ..... 196
Pinus rigida (Pinna mitia) ..... 200
Pinus rigida, var. serotina ..... 198
Pinus rubra (Picea nlgra) ..... 203
Pinus rubra (Pinus reainosa). ..... 101
Pinus rubra, var. violacea ..... 204
Pinus rupestris ..... 201
Pinus Sabiniana $195,250,255,258,338,404,470$
Pinus Sabiniana Coulteri ..... 195
Pinus Sabiniana macrocarpa ..... 105
Pinus serotina $198,949,255,258,340,350,404,416,470,527$
Pinus Shasta ..... 189
Pinus Sinclairit ..... 106
Pinus Sitchensis ..... 208
Pinus apecies (Abies subalpina) ..... 211
Pinus Strobus 4, 187, 251, 255, 258, 263, 334, 350, 400, 466, 404, 506, 551, 554, 558
Pinas Strobua the characteriatic trea of the Northern Pine Belt ..... 4Pinus Strobus, var. alba
187Pinus Strobus, var. brevifolia
Pinus Strobus, var. compressa ..... 187187Pinus Strobus, var. monticolaPinus Strobus, var. nivea187
187
Pinus sylvestris, var. divaricata ..... 201
Pinus TadaPinus Toda, var. a197
Pinus Tceda, var. alopecuroidea ..... 198
Pinus Tada, var. heterophylla ..... 202
Pinus Tada, var. rigida. ..... 197
Pinus Tada, var. tenuifolia ..... 197
Pinus Tada, var. variabilis ..... 200
Pinus Toda, var. Virginiana ..... 198
Pinus taxifolia ..... 209


Page.	Page.
69	Quassia Simaruba ................................................... 3 .
Pranus Carolinisma ..................................69, 249, 253, 256, 284, 362, 428	Quorcitron Oak ........................................148, 265, 318, 350, 388, 454
Prunus cartilaginea................................................... 68	Quercus.............................................................11, 12, 15
Ртипия Сиісаяа...................................................... 68	Quereas scatidens ............ ........................................ 155
Prunия coccinea ..................................................... 65	Quercus acutiglandis.................................................. 146
Pruars demissa ....................................69, 249, 253, 256, 284, 362, 428	Quercus agrifolia .................................146, 240, 254, 257, 318, 386, 452
Prunas emarginata ................................................67, 250, 282	Quercus agrifolia, var. frutegcens......................................... 147
Pruans bmarginata, var. mollita...........................67, 253, 256, 282, 362,428	Quercus alba .....................137, 249, 254, 257, 261, 265, 312, 350, 380, 414,
Prunus hiemalis (Pranns Americaua) ................................... 65	Quercus alba minor................................................... 139
Prunus hiemalis (Prunus Aı̈nerioana, var. mollis) ....................... 65	Quercus alba palustris
Prumus ilicifolia....................................70, 249, 253, 256, 284, 364, 428	Quercus alba, var. Gunnisonii .......................................... 139
Prunиs insititic..................................................... 66	Quercus alba, var. micracarpa
Prunus lanceolata ................................................. 66	Quercus alba, var. pinnatifida
Prunus Lusitanica................................................... 69 - ${ }^{\text {a }}$	Quercus alba, var. pinnatifida-sinuata
Prunиs Мі:8sissippi ................................................... 65	Quercus alba, var, repanda
Prunus molis (Prumns Americaua, var. mollis) ......................... 65	Quercus alba, var.sinuata............................................ 137
Prunus mollis (Pruntus smarginata, var. mollis) .......................... 67	Quereus ambigua ................................................... 147
Prunus nigra ........................................................ 65	Quercus annulata ................................................... 145
Pranus Penasylvanica.......................................12, 66, 256, 282, 428	Quercus aquatica .......................152, 249, 254, 258, 262, 320, 350, 388, 416, 454
Prunus persicifolia .................................................. 66	Quercus qquatica (Querens nigra)..................................... 150
Prunus pumila ..................................................... 67	Quercus aquatica, var.attenuata....................................... 152
I'runus sempervirens................................................. 69	Quercus qquatica, var. cuneata ......................................... 152
Prunus seratina ................................68, 250, 25, 256, 259, 282, 362, 428	Quercus aquatica, var. elongatd'........................................ 152
Prunus serratifolia................................................... 69	Quercus aquatica, var. heterophylla ..................................... 15
Prunus sphrerocarpa .............................................70, 249, 284	Quercus aquatica, var. hybrida ......................................... 152
Prunvs spinosa ...................................................... 65	Quercus aquatica, var. indivisa ......................................... 152
Prunns umbellata ..............................................67, 249, 282, 428	Quercus aquatica, var. laurifolia ...................................... 152
Prums Tirginiana................................................... 68	Quercus aquatira, var. myrtifolis ..................................... 155
Prunus Virginiana (Prunus sorotina) ................................. 68	Quercus Batistcri.................................................... 155
Prunus Firginiana, var. demissa...................................... $0^{9}$	Quereus berberidifolis .............................................. 155
Preudacacia odorata ................................................ 55	Quercus bicolor ................................141, 249, 254, 257, 261, 314, 384, 450
Pseudopetalon glandulosum ............................................ ${ }^{\text {a }}$	Quercus licolor, var. Michauxii ......................................... 141
Pseudopetalon tricarpum ............................................. 30	Quercus bicolor, var. mollis ............................................. 141
Psoulotsuga................................................7, $0,11,12,10,575$	Quercus bicolor, var.platanoides........................................ 141
Paeudotsuga Douglasii...209, 250, 255, 259, 264, 265, 344, 352, 410, 476, 565, 569, 573, 576	Quercus 1reweri .................................................... 155
Pseadotsaga Douglasii, rar. macrocarpa ..............210, 250, 255, 255, 346, 412, 478	Quercur Californica.................................................. 143
Pseudistuga magnifica .............. ................................. 214	Quercus Castanea (Quercas prinoides)
Pseudotsuga nobilis ................................................. 214	Quercus Castanea (Qxercas Prinus) .................................... 142
Psendotagat the most important timber tree of tho Paclic region ...... ${ }^{7}$	Quercuя Catesbæi..............................151, 249, 254, 258, 320, 388, 454, 525
Ptelia............................................................. 10,13	Quercus Chinquapin ................................................. 143
Ptelia mollis .......................................................... ${ }^{31}$	Quercus chrysolepis ................................ 146, 249, 254, 258, 318, 386, 452
Ptella trifollata...............................................12, 31, 249, 270	Quereus chrysalepis, var. vaccinifotia................................... 146
Ptelia trifolista, var, mollis .......................................... 31	Qaercas cinerea $\qquad$ $153,250,255,258,320,390,456,525$
prelia	Quercus cinerea, var. pumila............................................. 155
Punk Oak.............................................152, 320, 350, 388, 416, 454	Quercus cineres, var. sericea............................................... 150.
Purple Haw ......................................................... 40, 272	Qnercus coceinea $\qquad$ $148,249,254,258,318,388,452$
Parshia.............................................................. 575	Quercus cocinea, var. ambigua ............................................ 148
Patnam, Mr. H.C., remarka on tha forests of Michigan by .............. 553. 554	Quercus coccinea, var. microcarpa ........................................... 148
Pratram, Mr. 1. C., romarks on the forests of Minnesots by............. 559, 560	Quercus coccinea, var. rubra ................................................ 147
Patnam, Mr. II. C., remarks on the forests of tho eastern portion of Dakota	Quercus coccinea, var. tinctoria ........................................ 148
by ............................................................. 50.	Quercus confertifolia ................................................. 154
Prataam, Mr. H.C., remarks ou the forests of Wisconsin by. ............ 555-558	Quercus crassipocula .................................................... 140
Pgris ...............................................................10-12, 14	Quercus cuncata ..................................................... ${ }^{150}$
Pgros Atmericana...............................................73, 250, 284,428	Quercus decipiens .................................................... 144
P'yrus Americana (Pyrus samhucifolia) ................................ 74	Queress densiflora ......................154, 249, 254, 258, 265, 329, 390, 456, 576, 580
	Quercus discolor......................................................... 140
Prrus angastifolia..................................................72, 219, 284	Quercus discolor, var. triloba............................................... 151
Pyrus aucuparia (Pyrus Amoricaua) ................................. ${ }^{73}$	Quercus Douglasii ..............................143, 249, 251, 254, 258, 316, 356, 450
Pymus aucuparia (Pyrus sambncifolis) ................................ 74	Quercus Douglasir .................................................. 130
	Quercus Douglasii, var. Neaci....
Pyrus Botryapium.................................................. 84	Quercus Drummondii........
Pyrus coronaria ........................... 72, 249, 253, 256, 259, 260, 284, 364, 428	Quorcus inmosa ............................................................................. 15.
Pyrus caronaria (Pgrus augustifalia) ................................. ${ }^{72}$	Quercus dumosa, var. bullata.............................................. 15.
Pyrus coronaria, var. angustifalia ..................................... 72	Qucreus Durandii .................................145, 240, 251, 254, 258, 316, 386, 452
Pyrus diversifolia ................................................... ${ }^{73}$	Quercus echinacea........................................................... 15.
Pyrus fиsca ......................................................... ${ }_{73}$	Qucreus cohinoides ........................................................... 15.
Pyrus glandulosa .................................................... ${ }_{71}$	Quereus elongata ............................................................. 150
Pyrus microcarpa....................................................... ${ }_{4}$	Quereas Emoryl.............................12, 140, 249, 254, 258, 265, 318, 380, 45:
Pyrus ovalis ........................................................ 85	Quercus Emoryi (Quoreas undulata, var. Gambelii) ...................... ${ }^{\text {a }}$
Pyrus tivularis.....................................................73, 24, 284	Quercus falcala.....................150, 249, 254, 258, 262, 265, 320, 350, 388, 454, 525
P̧rua вambuclfolis..............................12, 74, 250, 253, 256, 284, 364, 428	Quercus falcata, var. Indoviciana ...................................... 151
$P_{\text {l }}$ rus rubcardata ................................................... ${ }^{73}$	Quercus falcata, マar. pagodofalia ....................................... 151
Pyrus Tangenheimiana................................................ ${ }^{\text {. }}$ 81	Quercus falcata, var. triloba ........................................... 151
Q.	Quereus fulve вens .................................................... 140
	Quercus Gambelii .................................................... 133
Quarsia dioica ....................................................... . 32 $^{\text {a }}$	Quercus Garryana.......................138, 240, 254, 257, 261, 312, 356, 382, 448, 576




Rhus cotinoidee ......................................................................................................
52,250,276
Rhus cotinus........................................................................... 52.
Rhus glabra........................................................................ 53
Ihus hypselodendron........................................................... 52
Ihus leucantha ..................................................................... 53
Rhus Motopium ...............................................54, 249, 253, 256, 278, 300, 424
Rhus Toxicodendron ............................................................. 54
Phns typhina..................................................................... 52, 250, 278
Rhus typhina, var. laciniata........................................................ 62
Rhus typhina, var. viridifora.................................................... 52
Rhns venenata ..................................................................... 54, 250, 278
Rhus vernix.......................................................................... 54
Rhus viridiflora.......................................................................... 52
Hiver Birch ................. ............................................161, 324, 392, 458

River Cottonwood.............................................................. 172, 328, 394, 460
Rohinia .......................................................................... 10,13
Robinia fragilis...................................................................... 55
Robinia glutinosa ................................................................... 56
Robinia Neo-Mexicana ..................................13, 56, 249, 253, 256, 278, 360, 426
Robiola Pseudacacia ..............................65, 249, 253, 256, 259, 278, 350, 360, 424
Rohinia vibcosa.................................................................. 56, 249, 278
Rock Chestant Oak.........................................142, 265, 316, 350, 384, 416, 450
Rock Elm .............................................................................. 3 , 304, 374, 440
Rock Maple ................................................................. 48, 276, 358, 423
Rocky Moontain region, northern, report by Mr. Sereno Watsod on the
forests of the ....................................................................... 564,565
Rosaceæ.........................................................64-85, 253, 256, 282, 362, 426
Roве Вау ...... ................................................ .............. 99, 292, 368, 434
Rosemary Pine................................................107, 340, 350, 404, 416, 470
Rosid and tar producod in North Carolina, grados of....................... 517
Royal Palm....................................................................... 218, 348,352
Runiacex....................................................... 95, 96, 253, 257, 290, 366, 432
Rnm Cherry.......................................................................... 282, 362, 428
Rutacee.........................................................29-32, 253, 256, 268, 350, 420
\$.

Sabal Palmetto . ............................................................... $217,250,348,352$
Saffron Plam ................................................................. 103, 294, 368, 434
Sago-lrush
575
Saginaw valbey in Michigan, lamber induatry of.............................. 552
Saguaro ................................................................................... 90,288
Salicace....................................................... 165-175, 255, 258, 326, 394, 460
Salix. .............................................................................11, 12, 16
Salix ——.......................................................................... 170
Salix ambigua..................................................................... 165
Salix amygdaloides .........................................13, 166, 250, 255, 258, 326, 394, 460
Salix argophylla .................................................................... 168
Salix aryuta....................................................................... 167
Salix arguta, var. lasiandra .................................................... 167
Salix Bigelovii ......................................................................... 170
Salix Bigelovii, var. fuscior......................................................... 170
Salix brachycarpa...................................................................... 168
Salix brachystachys .............................................................. 170
Salix brachystachys, var. Scouleriana ............................................ 170
Salix Caroliniant................................................................. 105
Salix chlorophylla, var. pellita ................................................... 171
Salix cordata ............................................................................. 170
Salix cordata, var. falcata... ................................................... 165
Salix cordata, var. vestita................................................................. 250, 328
Salix cras8a........................................................................... 169
Salix cumeata ........................................................................ 171
Salix discolor ........................................................................ $169,250,328$
Sallx discolor, var. eriocophala.......................................................... 169
Salix diseolor, var. prinoidee ..................................................... 169
Salix eriocephala....................................................................... 169
Salix exigua .......................................................................... 188
Salix falcata......................... .............................................. 165
Salix Fendleriana............................................................... 167
Salix flavese6日s............................................. 169, 250, 255, 258, 328, 394, 460
Salix flavescens (Salix flavesceaв, var. Scouleriana) .......................... 170
Salix Havescons, var. Scouleriana ..........................170, 250, 255, 258, 328, 394, 460
Salix flavo-virens.................................................................... 105
Salix fluviatalis...................................................................... 168
Salix Hartwegi ............................................................................ 171
Salix Hindsiana................................................................... 169



©para Paga
Sycamore (Platanus oceldentalis) ...................................129, 306, 350, 87e, 442
Sycamoro (Platanus racemosa) 129, 306, 870, 442
Sycamore (Platanus Wrightii) ............................................ . 130, 306, 370, 442
Symplacos.
11, 15
Symplocos tinctoria . ....................................... $105,250,254,257,294,868,434$
Table-manntsin Pine ................................................... 109, 340, 350, 404, 472
Tacamshao ..................................................................173, 828, 394, 400
Tallowberry ...................................................................... $28,269,356,420$
Tallow Nnt.................................................................................. 34, 270

Tamarack (Larix Amaricana) ......................................215, 346, 352, 412, 478
Tamarack (Larix oceldentalis) ............................................216, 348, 414, 480
Tamarack (Plnus Murrayana) ...................................... 195, 338, 350, 404, 470

Tamarind Wia
64, 282, 362, 420
Tanbark Oak ........................................................... 155, 265, 322, 390, 450
Tan Bsy...........................................................25, 265, 268, 354, 418

Tannin In the bark of certaln specles, per cent. of.......................... 265
Tannin ralucs of the bark of variaus trees ................................. 265
Tar and rosin produced in North Carolina, grades of...................... 517
Tar, turpontine, and roaln lndustry of North Carolina ..................... 516-518
Taxodii apeciea (Sequoia aempervirens)......................................... 185
Taxodinm . . . . . . . . . . . . . . . . . . . . . ................................................ 4, 11, 10
Taxodium adscenden . ............................................................... 183
Taxodium distichum
$.183,250,255,258,334,350,398,466$
Taxodium distichum fastigiatum ................................................. 183
Taxodium distichum, var. microphyllum........................................ 183
Taxodium distichum, var. nutans................................................. 183
Taxodium distichum, vsr. patent ..................................................... 183
Taxodium giganteum ........................................................... 184
Taxodium microphyllum ........................................................... 183
Taxadium, next to the Long-leaved Pine, the characteriatle tres of the
Sonthern Maritime Pine Belt..................................................................
Taxodium हempervirens ............................................................ 185
Taxodium Washingtonianum .................... ............................... 184
Taxus ........................................................................11, 12, 18, 572, 573
Taxus baccata (Taxus brevifolia).................................................. 185
Taxus baccata, var. Ganadensis................................................... 185
Taxив Boursierii...................................................................... 185
Taxus brovifolia ............................................185, 250, 255, 258, 334, 400, 466
Taxts Canadensis..................................................................... 185
Taxus Floridana ............................................................. 180, 250, 334, 521
Taxus Lindleyana .................................................................. 185
Taxus montana ..................................................................... 186
Tennessee, effect of fires upon the farests of................................. 546
Tonnessec, lumber industry and manufactures from wood in......... 480, 487, 545
Tenressee, rank of, according to value of lumber producta............... 487
Tonnessee, statistics of farcsta, forest fires, atanding timber, cte., jn.492, 544, 545
Tennessen valley ln Alabama, forsata of the................................ 528, 629
Tirnathemacre................................ ............. $25,26,253,256,268,354,418$
Tetranthera Californica
120
Texas, Cedar an important trealn ............................................... 540
Toxas, lumber industry and manufacturoa from rood in........... 486, 487, 541, 542
Texas, rank of, according to valne of lomber prodacts.................... 487
Toxas, romarks by Dr. Charlea Mobr on the foresta of .................... 542,543
Texas, statistica of forests, forest fires, standing timber, etc., in...... 492, 5s0-543
Texae, tabular statement of the smount of Long-lesycd, Loblolly, and
Short-leaved Pine atanding ln the foreata of, May 31, $1880 \ldots . . . . . . . .$.
Texas, the peean-nutan important product weat of the Colorado river in. 543
Thatch, Brickloy ................................................................... 218, 848
Thatch, Brittle ..................................................................... 218, 348
The Joshus.......................................................................... 210, 348

Thorn, Black ................................................................. . $70,286,364,430$
Thorn, Cuckapur ............................................................. 76, 286, 364, 430
Thorn, Newcastlo ............................................................ $70,286,364,430$
Thorn, Washlugton ................................................................ 81,286
Thora, White........................................................................ 78, 286
Threc-thorned Acacia .......................................................59, 280, 360, 420
Thrinax ............................................................................. ....... 11,10
Thrinax argentea................................................................... 218 , 249, 348
Thrinax Garberi.......................................................................... 217

Thuya Oraigana........................................................................ 176
Thuya excelsa.
178
Thuya gigantea...........177, 251, 256, 258, 330, 896, 462, 505, 566, 572, 573, 575, 678, 580


	Washington territory, stetistice of forests, forest fires, standing timber, etc., in. $\qquad$ 492, 573-576
clmus rubra........................................................... $122.1{ }^{\text {. }}$	Washington territory, wasteful methods of tho lumbermea of ........... 574
Umbellataria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8, 11, 12, 15	
Cmbellularia Californica . ........................ 120, 250, 254, 257, 302, 374, 440, 576	Water Ash ....................................................................... $10.10,298,370,438$
Umbrella Tree.... .................................................. $21,260,354,418$	Water Beech (Carpinue Caroliniana).................................150, 322, 382, 456
Ungnalia .... ............................................................. 10-31	Wrater Bech (Platanus occidentalis) ...........................129, 300, 350, 376, 442
Ungnadia heptaphyua....................................................... 44	Water Elm ...................................................... $123,304,350,374,414,440$
Ungnadia heterophylla.................................................... 44	Water Hickory .............................................. $18 . .$.
250, 379,456	Water Loeust........................................................ $00.28 .280,362,426$
Uroatigma pedunculatam....................................................................................... 127	Water Maple . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50, 270, 358, 424
Uвticaces.......................................122-128, 254, 257, 304, 374, 414, 440	Water Oak (Quercue aquatica) ...............................152, 320, 350, 388, 410, 454
Utab, Colorado, and New Mexico, Chlearo the principal source of supply	Wster Oak (Quercus palustris)............................................ 152, 320, 388, 454,   Water White ORk ......................... ........................ 140, 314, 350, 384, 450.
	Watson, E. C., remarke on the forests of Utah by........................ 569-571
$r$ in	Watson, Sereno, remarke on the forests of certain connties of Oregon by- 577,578.
Ctah, rank	Watson, Sereno, remarks on the forests of Idaho by..................... 572, 573
Utah, remarks by Mr, E. C. Hall, on the foreste of.......................... 50, 50-571	Watson, Sereno, remarke on the foreste of Montana by ................. 565, 568
Uvarim triloba............................................................... ${ }^{\text {a }}$	Watson, Sereno, remarks on the foreste of Washington territory by..... 575, 576 Watson. Sereno, report on the forests of the northern Rocky Mountain
$v$.	region by ................................................................. 564, 565
Vaccine	Wax Myrtle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136, 312, 880, 446.
Vaceinium...............................................................11, 12, 15, 573	Weeping Oak....................................... ...........138, 312, 382, 448
Vaecinium arhorenm ................................................. $90.249,292,432$	Weight, ash, asd specific gravity per cubic foot of dry specimens of the
Taccinium difusum .......................................................... 06	woods of the United States .............................................. 26. 26-349
Taccinium mucronatum	Weight of the dry wood of trees of the United States .................... 249-251
Yalparaiso Oak........................................................ 146, 318, 386, 452	Wellingtonia Californica ................................................... 18.
Faluc and amount of charceal used for domestic and manafacturing purposes during the census ycar $\qquad$	Wellingtonia gigantea .................. ..................................... 184
	Western Catalpa ................... .....................115, 300, 350, 372, 414, 438
ceвsus уеат...................................................................... 489	Western division, extent of toreste, forest fires, standing timber, ctc., in the $\qquad$
Talue nad amont of wool used for domestic purpose doring the ceusue	West-Indias Birch . ...............................................33, 270, 350, 356, 420
489	West Virgiuia, lumber industry and mauafactures from wood in .. 480, 487, 512-515
Value, economic, of the Redwood of Califorais............................ 578	West Virginia, rank of, seeording to value of lambor products.......... - 487
Talue of property destroyed and areas burned over by ferest fires during the ecnsus year (8ce, also, under state beadinge) $\qquad$ 491, 492	West Virginia, remarke hy Mr. C. G. Pringle on the foreets of.......... 512-515
Valne of the forest crop of the United States for the censns year ........ 485	
Values of woods, comparativa.............................................. 252 255	Whistlewood ................................................................ 46, 274
Vauquelinia .................................................................... $10.12,14$	White and Black Spruces tho characteristic trees of the Northern Forest. 3
Vauquelinia corymbora................................................... 70	White Ash ........ ............................................ 107, 296, 350, 370, 436.
Vauqueliuia Torreyi.....................................................70, 249, 284	White Basswood. .....................................................28, 268, 350, 420
Verbexaceat.........................................116, 117, 254, 257, 300, 372, 438	White Bry.......................................................20, 26G, 354, 414, 418
Vernont, lumber industry and manafactares from wood in ......486, 487, 498-500	White Birch (Betula albe, var. populifolia) .................... 159, 324, 358, 302, 458
Vernont, maple-sugar produet of........................................... 498	White Bireh (Betula papyrifora) ..............................160, 324, 350, 392, 458
Fermont, rank of, according to value of lumber products................ 487	White Buttonwood 87, 288, 304, 430 .
Vermont, remarks by Mr. C. G. Pringlo on the forests of ................ 498-500	White Cedar (Chamæeyparis Laweoniana) .....................179, 332, 350, 308, 404
Termont, statisties of forests, forest fires, standing timber, ete., in ..492, 498-500	White Cedar (Chamæcyparis өphərroidea)....................178, 330, 390, 416, 464.
Vermont, tabular statement of the amount of Sprace atading in the state of, May 31, 1880 $\qquad$	White Cedar (Lihecedrus decurrens).................................176, 330, 396, 462
Vibarnam .................................................................... $10-12$, 14	
Viburnum Lentago................................................94, 249, 290, 432	
Viburnum prunifolium ...................................94, 249, 253, 257, 366, 432	White Elm (Ulmus Americana) $.123,304,350,374,414,440$
Viburnum prunifolium, var. ferrugineum................................. 94	White Elm (Ulmus racemosa) .......................................123, 304, 374, 440-
Tiburnum pyrifolium..................................................... 04	White Fir (Abies coneolor) $\square$ 213, 346, 412, 478
Vine Maple .............................................. ........... 47, 274, 358, 422	Whito Fir (A bies graudis)............................................ 212, 346, 412, 478.
Virgilia luter ............................................................ 57	White Ironwood .......................................................... 45.
Virgitia secundifora ...................................................... 57	White Lamel $\qquad$ 20, 266, 354, 414, 418
Virginia, hmber industry and manufaetures from wood in ........... 486, 487, 512	White Mangrove . .................................................... 87, 288, 364, 430
Virginia, rank of, aecording to value of lumber products................ 487	White Maple ............................................................ 40. . 27.
Tirgiuia, statistics of forests, forest fires, standing timber, etc., ia ...492, 511, 512	White Oak (Querens alba) . . . . . . . . . . . . . . . . . . . . . . 137, 265, 312, 350, 380, 414, 446
W.	White Oak (Quercus Garryans) ..............................138, 312, 350, 382, 448, 576
Wafer Ash ............................................................. 31,270	White Oak (Querens grisea)..........................................144, 316, 380, 452
Wahoo (Enonymus stroporporeus)...................................... 38,272	White Onk (Quercus lobata)........................................ $138,312,382,448$
Wahoo (Tilia heterophylla)...........................................28, 268, 356, 420	hite Oak (Quercas oblongifolia) ..................................144, 316, 380, 452
Wahoo (Clmus nlata) .............................................. $124,304,374,440$	White Oak, Mountain .............................................. 143, 316, 380, 450
Trallia cinerea............................................................. 13.	White Oak, Swamp............................................... . $141,314,884,450$
Wallia nigra............................................................. 131	Wbite Oak, Water.............................................140, 314, 350, 384, 450
Walnut .............................................................131, 308, 378, 444	White Pine (I'inus flexilis) ............................ 188, 336, 400, 468, 569, 570, 571
Walnut, Black.... ...................................... 131, 308, 350, 376, 414, 444	White Piue (Pinus glabra)........................................... 201, 340, 406, 472
Walnut, White ...... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130, 306, 376, 442	White I'ine (Pinns monticols) . . . . . . . . . . . . . . . . . . . . .187, 338, 400, 460, 564, 574, 576
Washingtonia .............................................................11, 12, 16	White Pine (Pinns reflexa) ........................................ 189, 330, 402, 468
Washingtonia flifera................................217, 250, 255, 250, 348, 414, 480	White Pine (Pinne Strobns) .................. 187, 334, 350, 400, 466, 500, 551, 554, 558
Washington territory, lumber industry and manafactures from wood in ............................................................................ 486, 487, 574	White Pine standing in the forcats of Michigan May 31, 1880, tabular statement of tho amonnt of $\qquad$
Washington territors, rank of, according to value of lumber producte .. 487 Washington territory, remarka by Mr. Sereno Wateon on the foresta of. 5i5, 570	White Pine etanding in the foresta of Minnosota May 31, 1880, tabular statement of the amonnt of $\qquad$ $\qquad$



Wood, mannfactares from, and the lomber industry in-continned.


Wood used as fuel in mannfactures, otc., during the census year, amount and value of
Wood used for domestic parposee daring the cenens year, amount and value of.
Woods, comparative values of ..... 252-255
Woods, method of determining the fuel value of ..... 247, 251, 252
Woods, method of determining the strength of ..... 252
Woods of350-353
Woods of the United States under compression, behsvior of the principal. 418-481cipal354-414
Woods, relation between transverse strength and specific gravity ofcertain259-264
Woods, specific gravity and ask of ..... 248-251
Woods, where spccimens of, were deposited ..... 247, 248
W yoming, lomber industry and manufactures from wood in ..... 492, 56
Wyoming, rank of, according to value of lumber products ..... 487
Wyoming, statistice of foreste, forest firee, standing timber, ctc., in..492, 566, 567
XXanthoxylnm10, 11, 13
Xanthoxylum A mericanum ..... 23, 250, 268
Xanthoxlyum aromaticum ..... 30
Xauthoxslum Carihæum 30, 249, 253, 256, 276, 356, 420
Xanthoxylum Carolinianum ..... 30
Xanthoxylum Catesbianum ..... 30
NauthoxyIum Clava-Hercolis ..... 30, 250, 253, 250, 276, 356, 420
Xanthoxylum Clava-Herculis (Xanthoxylum Americanum) ..... 20
Xanthoxylum Clata.IIerculis (Xanthoxylam Carihæom) ..... 30
Xanthoxylum Clava-Herculis, var ..... 30
Xanthoxylam Clava-Herculis, var. fruticobum ..... 30, 250, 270
Xantharyluin Floridanum ..... 30
Xanthoxylum fraxineum ..... 29
Xanthoxylum fraxinifolium (Xanthoxylum Americanom) ..... 29
Xanthoxylum fraxinifolium (Xanthoxylum Clava-Hercalis) ..... 30
Xanthoxylum hirsutum ..... 30
Xanthoxylum lanceolatum ..... 30
Xanthoxylum macrophyllum ..... 30
Xanthoxylum mite ..... 29
Xanthoxylum Pterota ..... 31, 249, 270
Xanthoxylum ramiforum ..... 20
Xanthoxylum tricarpum (Xanthoxylum Americanum). ..... 29
Xanthoxylum tricarpum (Xanthoxylnm Clava-Herculis) ..... 30
Ximenia. ..... 10, 13
Ximenia Americans. ..... 34, 240, 270
Timenia montana ..... 34
Ximenia multifora ..... 34
$\mathbf{Y}$.
Faupon ..... 36,272
Yazoo delta ln Mlssissippi, foreets of the ..... 535, 536
Yellow Ash ..... 57, 278,360, 426
Ycllow-bark Oak ..... $149,265,318,350,388,454$
Yellow Birch ..... 161, 324, 302, 458
Tellow Cypress ..... 178, 332, 398, 464
Yellow Fir 209, 265, 344, 352, 410, 476, 576
Yellow Haw ..... 83, 286
Yeliow Lecnat ..... 55, 278, 350, 360, 414, 424
Yellow Oak (Quercus prinoides) ..... 143, 265, 316, 384, 450
Yellow Oak (Quercua tinctoria) $140,265,318,350,388,454$
Xellow Jine (Pinua Ariznnica) ..... $102,338,402,468$
Yellow Pine (Plaus mitis) ..... 200, 240, 350, 406, 472, 529
Yellow Pine (Pious palustris)$202,342,352,406,416,472$
$402,468,562,565,574,578$
Yelow Pi193, 338, 356, 462, 468,562, 565, 574, 578

"



[^0]:    var. oblongifolia, Toney \& Gray, Fl. N. America, i, 473.-Walpers, Rep. ii, 55.-Dietrich, Syn. iii, 158.-Torrey, Fl. N. York, i, 225; Nicollet's Rep. 149.-Emerson, Trecs Massachusetts, i, 444; 2 ed. ii, 504 \& t.-Wood, Cl. Book, 330; Bot. \& Fi. Ifo.-Gras, Maunel N. States, 5 ed. 162.—Macomn in Geological Rep. Canada, 1875-76, 105.

[^1]:    P. angulata, Aiton, Hort. Kew. iii, 406; 2 ed. v, 396.--Nouveau Duhamel, ii, 186.-Desfontaines, Hist. Arb. ii, 466.Willdenow, Spee. iv, 805 ; Enum. 1017; Berl. Baumz. 294.-Miehaux f. Hist. Arb. Am. iii, 302, t. 12; N. Anerican Sylva, 3 ed. ii, 161, t. 94.-Pursh. Fl. Ann. Sept. ii, 619.-Eaton, Mannal, 11 ; ; 6 ed. $27 \%$.-Nuttall, Genera, ii, 239.-James in Long's Exped. ii, 164.-Torrey in Ann. Lye. N. York, ii, 249.-Elliott, Sk, ii, 711.-Sprengel, Syst. ii, 244.-London, Arboretum, iii, 1670, 1533 \& t.-Eaton \& Wright, Bot. 370.-Spaeh in Ann. Sei. Nat. 2 ser. xv, 321 ; Hist. Veg. x, 391.Seringe in Fl. des Jard. ii, 64.-Seheele in Remer, Texas, 446.-Darby, Bot. S. States, 507. - Cooper in Smithsonian Rep. 1858, 257.-Chapman, Yl. S.States, 431.-Lesquereux in Owen's 2 d Rep. Arkansas, 389.-Wood, Cl. Book, 655; Bot. \& . Fl. 311.-Gray, Manual N. States, 5 ed. 467.-Wesmel in De Candolle, Trodr. xvi, 328.-Koch, Dendrologie, ii, 494.Young, Bot. Texas, 514.-Porter \& Conlter, Fl. Colorado; Hayden's Snrv. Mise. Pub. No. 4, 129.-Vasey, Cat. ForestTrees, 29.-Sears in Bull. Essex Inst. xiii, 182.
    P. lavigata, Aiton, Hort. Kew. iii, 406; 2 ed. v, 395.-Willdenow, Spee. iv, 803.-Pursh, Fl. Am. Sept. ii, 619.-Poiret, Suppl, iv, 378.-Nuttall, Genera, ii, 239; Sylva, i, 54; 2 ed. i, 70.-Sprengel, Ssst. ii, 244.-Beek, Bot. 323.-Eaton, Manual, 6. ed. 278 .-Loddiges, Cat. ed. 1836.—Eaton © Wright, Bot. 370.—Emerson, Trees Massachusetts, 246 ; 2 ed. i, 283.
    P. glandulosa, Mœneh, Meth. 339.
    P. angulosa, Miehaux, Fl. Bor.-Aiv. ii, 243.
    P. Canadensis, Michaux f. Hist. Arb. Am. iii, 302, t. 12; N. American Sylva, 3 ed. ii, 164, t.95.-Spaeh in Ann. Sei. Nat. 2 ser. xv, 32 ; Hist. Veg. x, 390.-Seringe in Fl. des Jard. ii, 65.-Feseali, Forst. Pfl. 122, t.8, f. 10-14.-Wood, Bot. \& Fl. 311.Wesmast in De Candolle, Prodr. xri², 329. - Koeh, Dendrologie, ii, 491.
    P. Virginiana, Du Mout, Cours. Bot. Cult. vi, 400.
    P. Marylandica, Bose in Nonv. Dict. xi, 409.-Poirot, Suppl. iv, 378.-Sprengel, Syst. ii, 244.
    P. macrophylla, Loddiges, Cat. ed. 1830.
    P. Lindleyana, P. neglecta, and P. lavigata, Hort.

[^2]:    Taxodium sempervirens, Lambert, Pinus, 114;-2 cd. ii, 107, t. 52.-Loudon, Arboretum, iv, 2487, f. 2340, 2341.-Hooker, l'I. Bor.-Am. ii, 164 ; Ieon. iv, t. 379.-Hooker \& Aruott, Bot. Becehey, 1841.-Fremont, Geographical Mem. California, 30, 37.-Henkel \& Hochstettcr, Nadelhölz. 262.

[^3]:    a This injury to the cypress is caused by a fungoid plant not yet determined, althongh widely distributcd along tho Gulf coast. -

[^4]:    a Cratagus brachyacantha, Sargent and Engelmam.

[^5]:    "Refering to the Red Lake Indian reservation in Minuesota, and other Indian reservations on which the pine remains nncut; amounting in the aggregate to $1,000,000,000$ feet, it may be sail that they are nearly all nnsurveyed, and are generally covered with a heavy pine forest, and that the lands are unfit for agricultural purposes and only.

[^6]:    "Beaver Head county ( 4,230 square miles).-This comnty, nearly equally divided by the one huudred and thirteenth meridian, is surrounded on three sides, north, south, and west, by the Rocky mountains, and is divided into two portions by a lofty spur which sets off in a northeasterly direction from the middle of the western side. The valleys of Beaver Head river and Red Roek creek to the east and south of this spur are treeless, except that the latter stream is bordered with a considerable growth of Populus angustifolia, often 60 feet high and a foot or two in diameter. The region to the east is seantily supplied with timber of any kind, while the northem flanks of the Rocky Mountain range as far as the head of Horse Plains creek are only sparingly timbered on the ridges and in some of the caũons, the trees small and mainly red fir, with some Pinus albicaulis, the summits and exposed ridges wholly bare.
    "The broad dividing spur, which includes Bald monntain and several other peaks from 10,000 to 11,000 feet high, is abont 30 miles in lengtli by 20 in breadth. The peaks are bare above 9,000 feet, and the western slopes have some timber in the upper ravines alone. The trees at 7,000 feet are mainly red fir, giving place above to a small growth of Pinus Murrayana and P.allicautis. On the eastern side of the spur there are deep, densely-wooded valleys, the timber said to be chiefly red fir, Picea Lagelmani and Pinus Uurrayana. On Rattlesnake creek in this region there is a single saw-mill, 12 miles from Bamoek City, which supplies the town and ueighboring mining eamps with lumber. When a better quality is needed it is broughtacross the mountains from the Lemhi River distriet in Idaho by a road crossing the range at the head of Horse Plains creek. The fuel nsed in Bannock City is hanled some 12 or 15 miles, chicfly from the Rocky mountains. Beyond the head of Horse Plains creek (where the Bald Monntain spur commences) the range for about 40 miles changes in character greatly, becoming higher, broader, and more rocky, with rugged, snow-elal peaks from 10,000 to 12,000 fect ligh, and with high, rocky spurs to the east, separating densely-wooded valleys difficult of access and rarely visited. The forests here come down to the western edge of Big Hole valley, and are contimnous. The trees are said to be largely Pinus Murrayana, lant there is probably a considerable proportion of red fir, Picca Enyelmanni and Abies subalpina. The range now takes its tum to the east, forming the northern line of the county, and rises again into some high, snowy paks, but is much less densely woold. Where the pass crosses the range from the Big Hole valley to the Bitter Root, the prevalent tree is fomd to be Pinus Murrayana, mixed toward the summit of the divide (at 7,000 feet altitude) with some red fir and a small proportion of Picea Engelmanni and Pinus albicaulis. The trees are mostly young and small, evidently frequently overrun by fires, a dense new growth immediately in most cases replacmg the old. The trunks very rarely reached a diameter of 15 or' 20 inches. The timbered area of the comnty may be estimated at 1,000 square miles. No yellow pine was seen or heard of within its limits.
    "Deer Lodge county ( 6,000 square miles). -This county, also nearly bisected by the one hmodred and thirteenth meridian, is ocenpied ly spurs of the locky monntains, which form its southern and eastern border, with the intervening open valleys of Deer Lodge river, Flint creek, and Big Blackfoot river. These spmrs are to a large extent wholly bare of trees, only some of the ravines and ridges being covered by a more or less seattered growth of yellow pine and red fir of moderate size, and the higher northern slopes by a deuser growth of Pinus Murrayana. North of the Big Blackfoot the timber is more dense, coming down into the valley, and consisting principally of

